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Abstract
We study Shimura (special) subvarieties in the moduli space Ap,D of complex abelian vari-
eties of dimension p and polarization type D. These subvarieties arise from families of covers
compatible with a fixed group action on the base curve such that the quotient of the base curve
by the group is isomorphic to P

1. We give a criterion for the image of these families under
the Prym map to be a special subvariety and, using computer algebra, obtain 210 Shimura
subvarieties contained in the Prym locus.

Keywords Prym variety · Prym map · Galois covering

Mathematics Subject Classification 14H30 · 14H40

1 Introduction

In [4], E. Colomobo, P. Frediani, A. Ghigi andM. Penegini have extensively studied Shimura
curves of PEL type in Ag , contained generically in the Prym locus (see also the papers
[2,3] by E. Colomobo and P. Frediani). The general set-up is as follows: Let Rg be the
scheme of isomorphism classes [C, η], for C a smooth projective curve of genus g and
η ∈ Pic0(C) a 2-torsion element, i.e., η �= OC but η2 = OC . The line bundle η determines
an (unramified) étale double cover h : C̃ → C and there is an induced norm map Nm :
Pic0(C̃) → Pic0(C). The Prym variety associated to [C, η] is defined to be the connected
component of ker Nm containing the origin and is denoted by P(C, η) or P(C̃,C). In a
similar way, one can construct a Prym variety for ramified covers. Consider the scheme Rg,2
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parametrizing triples [C, B, η] up to isomorphism, where C is a smooth projective curve
of genus g, η a line bundle on C of degree 1, and B a reduced divisor in the linear series
|η2| corresponding to a double covering π : C̃ → C ramified over B. The assignment
[C, η] �→ P(C̃,C) (resp. [C, B, η] �→ P(C̃,C)) defines a map P : Rg → Ag (resp.
P : Rg,2 → Ag). This goes under the name of the Prym map. In [4] authors give examples
of one-parameter families (Ct , ηt ) (t ∈ T = P

1\{0, 1,∞}) for which the image under the
Prym map parametrizes Shimura curves in Ag . These curves are contained in the Prym loci
corresponding to unramified étale double covers and to double covers ramified at two points.
More precisely, the authors consider a family of Galois covers C̃t → P

1 with Galois group
G̃ and a central involution σ such that the double covering C̃t → C̃t/〈σ 〉 is either étale or
ramified over exactly two distinct points. By the theory of coverings, the Galois covering
C̃t → P

1 is determined by an epimorphism θ̃ : �r → G̃ with branch points t1, . . . , tr ∈ P
1.

Here�r is isomorphic to the fundamental group ofP
1\{t1, . . . , tr }. Varying the branch points,

we get a family R(G̃, θ̃ , σ ) ⊂ Rg (the image of T in Rg mentioned above). The paper [4]

then gives examples of families R(G̃, θ̃ , σ ) for which the Zariski closureP(R(G̃, θ̃ , σ )) of
the image under the Prym map is a Shimura curve in Ag .

In the paper [5], the first author together with P. Frediani, investigated the occurrence of
Shimura curves arising from families of Prym varieties of double covers that are ramified
over more than two points. Note that in this case the Prym variety is not principally polarized
in general. The paper [5] is thus a generalization of the paper [4]. The subsequent work [7]
of the present authors together with P. Frediani investigated the same problem for higher
dimensional Shimura varieties contained in these loci.

In this paper we generalize the aforementioned papers in two directions: We consider
families of Prymvarieties of arbitraryGalois covers of curves (not necessarily double covers),
while we also get higher-dimensional as well as 1-dimensional families. More precisely to a
finite Galois covering f : ˜C → C we associate a Prym variety P(˜C/C). The Prym variety
is of dimension p = g̃− g, where g̃, g are the genera of ˜C,C respectively. Furthermore, it is
an abelian variety of certain polarization type D, see Sect. 3. So it determines a point in the
moduli space Ap,D of complex abelian varieties of dimension p and polarization type D. The
stack parametrizing families of the above covers of curves will be denoted by R(H , g, r),
where H is the deck group of the covering f : ˜C → C , g = g(Ct ) is the genus of the base
curve and r is the number of branch points of the covering.

We consider the following families of curves: We fix a finite group ˜G and a normal
subgroup H ⊆ ˜G. The families that we consider here are families ˜Ct → P

1 of ˜G-Galois
covers of P

1 branched in s distinct points. Let Ts ⊂ (A1
C
)s be the be the complement of

the big diagonals, i.e., Ts = {(t1, . . . , ts) ∈ (A1
C
)s | ti �= t j∀i �= j}. Note that by sending

3 points to 0, 1,∞, one sees that Ts has complex dimension s − 3. By varying the branch
points we obtain a family f : C → Ts of covers of P

1. This family gives rise to the family
˜Ct → Ct = ˜Ct/H in R(H , g, r) and the corresponding family of Prym varieties P(˜Ct/Ct ).
The image of Ts in R(H , g, r), which we again denote by Ts , is of dimension s − 3. The
Prym map behaves well in families and we are interested in the Zariski closure of the image
Z = P(Ts) under the Prym map which is a subvariety of Ap,D . For computational reasons,
the case where ˜G is abelian is of great importance for us. Therefore, in Sect. 3, we explain
an alternative construction of the abelian covers of P

1 to that given in [4]. Note that the Prym
variety and the Prym map of abelian and metabelian covers have been studied in [9]. The
H -action and its eigenspaces on the cohomology and also the eigenspaces of the whole group
˜G acting on these spaces are useful for our computations.
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In Sect. 4 we point out that the moduli space Ap,D has the structure of a Shimura variety.
We find families for which the subvariety Z is a special (or Shimura) subvariety of Ap,D .
We introduce conditions (B), (B1) and (B2) under which the subvariety Z is special. Using
computer algebra we investigate these condition and find 210 examples satisfying them, see
the table on page 21. We also work out in detail some important examples of the table. In
addition to families of abelian covers,wefind some familieswith ˜G non-abelian. Furthermore,
our approach yields also higher dimensional special families of Prym varieties in Ap,D . Note
that in [2] the authors give upper bounds for the dimension of a germ of a totally geodesic
submanifold, and hence of a special subvariety in the Prym locus.

2 Prymmap and the Prym variety

To a given finite covering f : ˜C → C between non-singular projective algebraic curves, one
can associate an abelian variety, the so-called Prym variety. The map f induces a norm map

Nm f : Pic0(˜C) → Pic0(C)
∑

ai pi �→
∑

ai f (pi )

The Prym variety associated to f is defined as P( f ) = P(˜C/C) = (ker Nm f )
0, i.e. the

connected component of the kernel of Nm f containing the origin. Identifying Pic0 with
the Jacobian, one sees that the canonical (principal) polarization of Jac(˜C) restricts to a
polarization on P( f ).

Classically, f is a double covering which is étale or branched at exactly two points. It
is known that these are the only cases in which P( f ) is principally polarized. In fact, the
restriction of the canonical polarization of Jac(˜C) to P( f ) is twice a principal polarization.
In general the type D of the polarization on P( f ) depends on the topological structure of
the covering map f , see [1].

Let H be a finite group with n = |H |. Suppose C is a compact Riemann surface of genus
g. Let t := {t1, . . . , tr } be an r -tuple of distinct points in C . Set Ut := C\{t1, . . . , tr }.
The fundamental group π1(Ut , t0) has a presentation 〈α1, β1, . . . , αg, βg, γ1, . . . , γr |
∏r

1 γi
∏g

1[α j , β j ] = 1〉. Here α1, β1, . . . , αg, βg are simple loops inUt which only intersect
in t0, and their homology classes in H1(C, Z) form a symplectic basis.

If f : ˜C → C is a ramified H -Galois cover with branch locus t , set V = f −1(Ut ).
Then f |V : V → Ut is an unramified Galois covering. Then there is an epimorphism
θ : π1(Ut , t0) → H . Conversely, such an epimorphismdetermines a ramifiedGalois covering
of C with branch locus t . The order mi of θ(γi ) is called the local monodromy datum of the
branch point ti . Let m = (m1, . . . ,mr ). The collection (m, H , θ) is called a datum. The
Riemann-Hurwitz formula implies that the genus g̃ of the curve ˜C is equal to

2g̃ − 2 = |H |
(

2g − 2 +
r

∑

i=1

(

1 − 1

mi

)

)

(2.0.1)

We introduce the stack R(H , g, r): The Objects of R(H , g, r) are couples ((C, x1, . . . , xr ),
f : ˜C → C) such that

(1) (C, x1, . . . , xr ) is a smooth projective r -pointed curve of genus g.
(2) f : ˜C → C is a finite cover, H acts on ˜C and f is H -invariant.
(3) the restriction f gen : f −1(C\{x1, . . . , xr }) → C\{x1, . . . , xr } is an étale H -torsor.
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202 G. P. Grosselli, A. Mohajer

Note that r = 0 is also possible which amounts to say that the covers ˜C → C are unrami-
fied. Moreover since our problem is insensitive to level structures, we may actually consider
R(H , g, r) as a coarse moduli space. As a result, we omit any assumptions on the automor-
phism group of the base curve C whose non-triviality can be remedied either by considering
the moduli stack or by imposing level structures.

Let us denote the Jacobians of the curves ˜C andC respectively by ˜J and J . Since the finite
group H acts on ˜C , then it acts also on the Jacobian ˜J . We denote by ˜J H the subgroup of
fixed points of ˜J under the action of H . The following theorem is proven in [14] (repectively,
Theorem 2.5 and Proposition 3.1).

Theorem 2.1 (1) f ∗ J = (˜J H )0.
(2) The map φ : J × P(˜C/C) → ˜J sending (c, c̃) to f ∗(c) + c̃ is an isogeny.

For a Galois covering f : ˜C → C with ((C, x1, . . . , xr ), f : ˜C → C) ∈ R(H , g, r)
and deg( f ) = n, one can compute the genus g̃ := g(˜C) by the Riemann-Hurwitz formula.
Using the isogeny f ∗ J × P(˜C/C) ∼ ˜J we see that the dimension of the Prym variety
P(˜C/C) = P( f ) is equal to p = g̃− g. Note that if C ∼= P

1, then the Prym variety P(˜C/C)

is isogeneous to the Jacobian ˜J . We will use this point in the sequel to deduce that some
families are special.

The canonical principal polarization on ˜J restricts to a polarization of a certain type D. Let
Ap,D denote the moduli space of complex abelian varieties of dimension p and polarization
type D. More precisely, Ap,D = Hp/�D is the moduli space of polarized abelian varieties
of type D where Hp := {M ∈ Mp(C) |t M = M, Im M ≥ 0} is the Siegel upper half space
of genus p and

�D = {R ∈ GL2p(Z) | R
(

0 D
−D 0

)

t R =
(

0 D
−D 0

)

}

is an arithmetic subgroup. The above constructions behave well also in the families of curves
and hence we obtain a morphism

P = P(H , g, r) : R(H , g, r) → Ap,D . (2.1.1)

We call the map P the Prym map of type (H , g, r). Our objective in this paper is to study
the image of this map. Since in general the Prym map is not injective, one needs to study
other closely related aspects, namely the generic injectivity.

By the above mentioned H -action on H0(˜C, ω
˜C ) we have the eigenspace decomposition

with respect to the irreducible characters χ ∈ Irr(H)

H0(˜C, ω
˜C ) =

⊕

χ∈Irr(H)

H0(˜C, ω
˜C )χ . (2.1.2)

We set:

H0(˜C, ω
˜C )+ := H0(˜C, ω

˜C )H (∼= H0(C, ωC )),

H0(˜C, ω
˜C )− :=

⊕

χ∈Irr(H)\{1}
H0(˜C, ω

˜C )χ ∼= H0(˜C, ω
˜C )/H0(˜C, ω

˜C )+. (2.1.3)

Notice that H0(˜C, ω
˜C ) = H0(˜C, ω

˜C )+ ⊕ H0(˜C, ω
˜C )−. In the above, Irr(H) denotes the

irreducible characters of H . The characters will appear in the next section in more detail.
We gave the above description containing the irreducible characters in order to indicate that
H0(˜C, ω

˜C )− can be viewed as a subgroup of H0(˜C, ω
˜C ) and not just a quotient. Similarly

there is a decomposition of H1(˜C, Z) as H1(˜C, Z)+ ⊕ H1(˜C, Z)−.
The following lemma is then an immediate consequence of Theorem 2.1 above.
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Lemma 2.2 Let f : ˜C → C be a Galois covering, then

P(˜C/C) = H0(˜C, ω
˜C )−

∗
/H1(˜C, Z)−. (2.2.1)

3 Galois coverings

3.1 Generalities

Let us summarize some general facts about Galois coverings of curves. Let ˜C,C be complex
smooth projective algebraic curves and let f : ˜C → C be a Galois covering of degree n. By
this wemean precisely that there exists a finite group H with |H | = n, together with a faithful
action of H on ˜C such that f realizes C as the quotient of ˜C by H . Consider the ramification
and branch divisors R, B of f . Note that R consists precisely of the points in ˜C with non-
trivial stabilizers under the action of H . The deck transformation group Deck(˜C/C), i.e. the
group of those automorphisms of ˜C that are compatible with f , is isomorphic to the Galois
group H and acts transitively on each fiber f −1(x). If y ∈ ˜C is a ramification point with
ramification index e, then so are all points in the fiber f −1( f (y)). Moreover, the stabilizers
of these points in Deck(˜C/C) ∼= H are conjugate cyclic subgroups, see [15, Proposition
3.2.10]. In particular the stabilizer of a point in ˜C is trivial, if and only if that point is not
a ramification point. The stabilizer Hy of a point y ∈ ˜C is also referred to as the inertia
subgroup of y.

3.2 Galois covers of P
1 and Prym datum

Let ˜G be a finite group and ˜f : ˜C → P
1 a finite ˜G-Galois covering ramified over the

branch points Br( ˜f ) = {t1, . . . , ts} ⊂ P
1 as in introduction. Let �s := π1(P

1\Br( ˜f )) =
〈γ1, . . . , γs |γ1 · · · γs = 1〉, where γ j corresponds to a loopwinding around t j . Such ˜G-Galois
covering is determined by an epimorphism˜θs : �s → ˜G (See [16, Theorem 5.14]). The local
monodromy around the branch point t j is given by ˜θs(γ j ). The set of ramification points
Ram( ˜f ) consists precisely of the points in ˜C with non-trivial stabilizers under the action
of ˜G. As we assume that the cover ˜f is Galois we have that Br( ˜f ) = ˜f (Ram( ˜f )) and
˜f −1(Br( ˜f )) = Ram( ˜f ).

Varying the branch points {t1, . . . , ts} yields a family of ˜G-covers of P
1.

For a normal subgroup H of G̃ we have a cover f : ˜C → C = ˜C/H . Set G = ˜G/H the
quotient group, we have a tower of Galois covers ˜C → C = ˜C/H → P

1 = ˜C/˜G = C/G.
One can associate to the cover f the Prym variety as in the Sect. 2. The following definition
is central in this paper (compare [4], Definition 3.1).

Definition 3.1 A Prym datum (of type (H , g, r)) is a triple (G̃, θ̃s, H) where G̃ is a finite
group,˜θs : �s → ˜G is an epimorphism as above and H is a normal subgroup of G̃, such that
the quotient f : ˜C → C = ˜C/H is in R(H , g, r).

Let ˜G be a finite group and let ˜C → P
1 be a ˜G-Galois covering of P

1 with the Prym datum
(G̃, θ̃s, H). SetU = H0(˜C, ω

˜C ) and letU = U+⊕U− be the decomposition into H -invariant
and H -anti-invariant parts as in Sect. 2 (after (2.1.3)). There is also the corresponding Hodge
decomposition H1(˜C, C)− = U− ⊕U−. Set = H1(˜C, Z)−. By Lemma 2.2 the associated
Prym variety is

P(˜C/C) = U∗−/, (3.1.1)
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204 G. P. Grosselli, A. Mohajer

see [1] for more details.

3.3 Abelian covers and their invariants

Let f : ˜C → C be a H -Galois cover with H finite abelian branched above the points
x1, . . . , xr . Since the group H is abelian, the inertia group above a branch point xi is inde-
pendent of the chosen ramification point and we denote it by Hi . Under the action of G,
the sheaf f∗O˜C splits as the direct sum of the eigensheaves corresponding to the charac-
ters of G. We will denote by ( f∗O˜C )χ the eigensheaf corresponding to a character χ . Then
( f∗O˜C )χ = L−1

χ is an invertible sheaf on C . In particular, the invariant summand L1 is
ismorphic to OC . The algebra structure on f∗O˜C is given by the (OC -linear) multiplication
rule mχ,χ ′ : L−1

χ ⊗ L−1
χ ′ → L−1

χχ ′ and is compatible with the action of H . The line bundles
Lχ and divisors xi are called the building data of the cover. The building data determine
the cover completely up to isomorphisms, see [13], §2, specially Proposition 2.1. The line
bundles Lχ are also very useful for determining the invariants of the cover. Note that the
sheaf f∗ω˜C also splits as the direct sum of the eigensheaves corresponding to the characters
of G and it holds that ( f∗ω˜C )χ = ωC ⊗ Lχ−1 (where ( f∗ω˜C )χ denotes the eigensubsheaf of
f∗ω˜C corresponding to a character χ), see [13], Proposition 4.1. Therefore we have

H0(˜C, ω
˜C ) = H0(C, f∗ω˜C ) = H0(C,⊕(ωC ⊗ Lχ−1)) = ⊕χ∈H∗ H0(C, ωC ⊗ Lχ−1).

(3.1.2)

In view of the above equalities, one obtains

H0(˜C, ω
˜C )+ = H0(C, ωC )

H0(˜C, ω
˜C )− =

⊕

χ∈H∗\{1}
H0(˜C, ω

˜C )χ =
⊕

χ∈H∗\{1}
H0(C, ωC ⊗ Lχ−1) (3.1.3)

3.4 Prym varieties of abelian covers

In this subsection we explain the constructions in Sect. 2 for an abelian group H based on the
constructions of Sect. 3.3. Let f : ˜C → C be a H -Galois cover of C , with H a finite abelian
group. Recall the equivalent description of the Prym variety given in Lemma 2.2. We have

P = P(˜C/C) =
⊕

χ∈H∗\{1}
H0(C, ωC ⊗ Lχ−1)/

⊕

χ∈H∗\{1}
H1(˜C, Z)χ ,

by virtue of (3.1.3) and (2.2.1).

3.5 Abelian covers of P
1

In this section, we follow closely [4] and also [10] whose notations come mostly from [17].
More details about abelian coverings and Prym varieties can be consulted from these two
references respectively. For the latter, Birkenhake and Lange [1] is also a comprehensive
reference.

An abelian Galois cover ˜f : ˜C → P
1 is determined by a collection of equations in the

following way:
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Consider an m × s matrix A = (ri j ) whose entries ri j are in Z/NZ for some N ≥ 2. Let
C(z) be the algebraic closure of C(z). For each i = 1, . . . ,m, choose a function wi ∈ C(z)
with

wN
i =

s
∏

j=1

(z − t j )
r̃i j for i = 1, . . . ,m, (3.1.4)

in C(z)[w1, . . . , wm]. Here r̃i j is the lift of ri j to Z ∩ [0, N ) and t j ∈ C for j = 1, 2, . . . , s.
Notice that (3.1.4) could give a singular affine curve, in which case we consider a smooth
projective model. We impose the condition that the sum of the columns of A is zero (when
considered as a vector in (Z/NZ)m). This implies that the cover given by (3.1.4) is not
ramified over the infinity. We call the matrix A, the matrix of the covering. We also remark
that all operations with rows and columns will be carried out over the ring Z/NZ, i.e. they
will be considered modulo N . The local monodromy around the branch point t j is given by
the column vector (r1 j , . . . , rmj )

t and so the order of ramification over t j is N
gcd(N ,̃r1 j ,...,̃rmj )

.
Using this and the Riemann-Hurwitz formula, the genus g of the cover can be computed by:

g = 1 + d

⎛

⎝

s − 2

2
− 1

2N

s
∑

j=1

gcd(N , r̃1 j , . . . , r̃m j )

⎞

⎠ , (3.1.5)

where d is the degree of the covering which is equal, as pointed out above, to the column
span (equivalently row span) of the matrix A. In this way, the Galois group ˜G of the covering
will be a subgroup of (Z/NZ)m . Note also that this group is isomorphic to the column span
of the above matrix.

Remark 3.2 Consider two families of abelian covers with matrices A and A′ over the same
Z/NZ. If A and A′ have equal row spans then the two families are isomorphic. For more
details, see [17] or [10].

Remark 3.3 For a finite abelian group ˜G, it is well known that the character group ˜G∗ =
Hom(˜G, C

∗) is isomorphic to ˜G. We fix an isomorphism ϕ
˜G : ˜G

∼−→ ˜G∗. In the sequel,
we use this isomorphism frequently to identify elements of ˜G with its characters, without
referring to ϕ

˜G .

For our applications, with notations as in the previous pages, we fix an isomorphism of ˜G
with a product of Z/nZ’s and an embedding of ˜G into (Z/NZ)m .

Let l j be the j th column of thematrix A. Asmentioned earlier, the group ˜G can be realized
as the column span of the matrix A. Therefore we may assume that l j ∈ ˜G. For a character
χ , χ(l j ) ∈ C

∗ and since ˜G is finite χ(l j )will be a root of unity. Let χ(l j ) = exp(2α jπ i/N ),
where α j is the unique integer in [0, N ) with this property. Equivalently, the α j can be
obtained in the following way: let n ∈ G ⊆ (Z/NZ)m be the element corresponding to χ

under the above isomorphism. We regard n as an 1×m matrix. Then the matrix product n · A
is meaningful and n · A = (α1, . . . , αr ). Here all of the operations are carried out in Z/NZ

but the α j are regarded as integers in [0, N ). Furthermore we set α̃ j = ∑m
i=1 ni r̃i j ∈ Z (but

α̃ j is not necessarily in Z ∩ [0, N )).
Using the above facts, we occasionally consider a character of ˜G as an element of this

group without referring to isomorphism ϕ
˜G .

Let us denote by ω
˜C the canonical sheaf of ˜C . Similar to the case of ˜f∗(O˜C ), the sheaf

˜f∗(ωX )χ decomposes according to the action of ˜G. For the line bundles Lχ corresponding to
the character χ associated to the element a ∈ ˜G and ˜f∗(ω˜C )χ we have the following result
proven in [10, Lemma 2.4].
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206 G. P. Grosselli, A. Mohajer

Lemma 3.4 With notations as above Lχ = OP1(
∑s

1〈α j
N 〉), where 〈x〉 denotes the fractional

part of the real number x and

˜f∗(ω˜C )χ = ωP1 ⊗ Lχ−1 = OP1

(

−2 +
s

∑

1

〈

−α j

N

〉

)

.

Notice that the sums in the Lemma are integers. In fact, since the sum of each row of A is

zero in Z/NZ, then
∑

j α̃ j = ∑

i ni (
∑

j r̃i j ) is a multiple of N . Thus
∑

j
α̃ j
N is integer and

this does not depend on the representative chosen modulo N or by taking the fractional part.
Let n ∈ ˜G be the element (n1, . . . , nm) ∈ ˜G ⊂ (Z/NZ)m . By Lemma 3.4,

dim H0(˜C, ω
˜C )n = −1 + ∑s

j=1〈−α j
N 〉. A basis for the C-vector space H0(˜C, ω

˜C ) is given
by the forms

ωn,ν = zνwn1
1 · · · wnm

m

s
∏

j=1

(z − t j )
�− α̃ j

N �dz. (3.4.1)

Here 0 ≤ ν ≤ −1+ ∑s
j=1〈−α j

N 〉. The fact that the above elements constitute a basis can be

seen in [10, proof of Lemma 5.1], where the dual version for H1(C,OC ) is proved.
The general method of our later computations in Sect. 5 is as follows: We remark that if

n = (n1, . . . , nm) ∈ ˜G = Zd1 × · · · × Zdm ⊂ (Z/NZ)m , we consider the ni ∈ [0, N ) and
their sum as integers. The action of the abelian subgroup H is naturally inherited from that
of G̃ and the latter is described as follows: Let g = (g1, . . . , gm) ∈ G̃ and write ord gi = vi .
Then the action of g on eachwi is given by g ·wi = ξvi wi , where ξvi denotes a vi -th primitive
root of unity.

Below we highlight the main ideas to perform the construction of the examples in Sect. 5.
With the above notation, H0(˜C, ω

˜C )+, i.e. the group of H -invariant differential forms, is
the set of all ωn,ν with

∑

ni/ai ∈ Z for all h = (h1, . . . , hm) ∈ H (with ai = ord hi ).
The space H0(˜C, ω

˜C )− is then given by the complement, i.e. the set of all ωn,ν for whom
there exists h = (h1, . . . , hm) ∈ H such that

∑

ni/ai /∈ Z.

3.6 Families of abelian covers of P
1 and their Prymmap

Families of abelian covers of P
1 can be constructed as follows: Let Ts ⊂ (A1

C
)s be the

complement of the big diagonals as in the introduction. We consider abelian covers of P
1

given by the Eq. (3.1.4) with branch points (t1, . . . , ts) ∈ Ts and r̃i j the lift of ri j toZ∩[0, N )

as before. Varying the branch points we get a family f : C̃ → Ts of smooth projective curves
over Ts (viewed as a complex manifold of dimension s − 3) whose fibers C̃t are abelian
covers of P

1 introduced above.
Let ˜G be a finite group and consider a family ˜C → Ts of abelian covers as above whose

fibers ˜Ct are ˜G-Galois coverings ofP1 with a fixedPrymdatum� := (G̃, θ̃s, H). Associating
to t ∈ Ts the class of the pair ((Ct , x1, . . . , xr ), πt : ˜Ct → Ct ) gives a map Ts → R(H , g, r)
with discrete fibers. We denote the image of this map by R(�). It follows that R(�) is
a subvariety of dimension equal to s − 3, see also [4], p. 6. As in the last section, set
Ut = H0(˜Ct , ω˜Ct

) and let Ut = U+,t ⊕ U−,t be the decomposition under the action of

H . There is also the corresponding Hodge decomposition H1(˜Ct , C)− = U−,t ⊕ U−,t .
Set t = H1(˜Ct , Z)−. The associated Prym variety is by 3.1.1, P(˜Ct/Ct ) = U∗−,t/t , an

abelian variety of dimension p = g̃ − g. So we obtain the Prym map R(�)
P−→ Ap,D for

this family.
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4 Shimura subvarieties

Let VZ := Z
2p ⊂ V := Q

2p and let ψ : VZ × VZ → Z be a symplectic form. Let
L = Gsp(VZ, ψ) be the group of symplectic similitudes, i.e.,

L = {g ∈ GL(VZ) | ψ(gu, gv) = ν(g)ψ(u, v) for some ν(g) ∈ Z
∗}.

Let S := ResC/R Gm be the Deligne torus. A Hodge structure of weight 1 and type (1, 0) +
(0, 1) on VZ for which ψ is a polarization corresponds to a homomorphism h : S → LR.

Using the Riemann bilinear relations, the space of all homomorphisms h as above can
be identified with the Siegel upper half space of genus p, Hp = {M ∈ Mp(C) |t M =
M, Im M ≥ 0}. Recall from Sect. 2 that Ap,D = Hp/�D is the moduli space of polarized

abelian varieties of type D, where �D = {R ∈ GL2p(Z) | R
(

0 D
−D 0

)

t R =
(

0 D
−D 0

)

} is
an arithmetic subgroup. Note that Hp = L(R)/K , where K is a maximal compact subgroup.
So Ap,D can be written as a double quotient �D\L(R)/K . Such double quotients are called
Shimura varieties and their structure has beeen studied extensively.We remark that Kn = {g ∈
L(Ẑ) | g ≡ 1( mod n)} is a compact open subgroup of L(A f ) and Ap,D,n = L(Q)\(Hp ×
L(A f )/Kn) can be identified with the space of complex polarized abelian varities (of type
D) of dimension p and with level n structure. Note that Ap,D = lim←− Ap,D,n .

Given a Shimura variety, one can define special (or Shimura) subvarieties. We define them
only for the Shimura variety Ap,D . To state the definition, let us frist explain some notation.
Suppose N ⊂ L is an algebraic subgroup defined over Q. Define the subset YN ⊆ Hp as
follows.

YN = {h : S → LR|h factors through NR}.
We remark that the group N (R) acts on YN by conjugation. We can now state our definition

Definition 4.1 A closed irreducible algebraic subvariety Z ⊂ Ap,D,n is called special (or
Shimura) if there exists an algebraic subgroup N ⊂ L defined overQ, a connected component
Y+ ⊆ YN and an element γ ∈ L(A f ) such that Z(C) ⊂ Ap,D,n(C) is the image of Y+ ×
{γ Kn} ⊂ Hp×L(A f )/Kn under the natural map to Ap,D,n(C) = L(Q)\(Hp×L(A f )/Kn).

Since level structure does not play a role in the sequel, we drop it from the notation and
state the results for Ap,D . We now use Definiton 4.1 to define a particular special subvariety
defined by the families of Prym varieties that we consider.

Let ˜G be a finite group and consider a family ˜C → Ts whose fibers ˜Ct are ˜G-Galois
coverings of P

1 with a fixed Prym datum � := (G̃, θ̃s, H). As in Sect. 3.6, we have a Prym

map R(�)
P−→ Ap,D .

In this paper, we are interested in determining whether the subvariety Z = P(R(�)) ⊂
Ap,D is a special or Shimura subvariety. The Prym varieties of the fibers of the family
˜Ct → Ts fit into a family P → Ts which is an abelian scheme over Ts that admits naturally
an action of the group ring Z[˜G]. This action defines a special subvariety P(˜G) in Ap,D

that contains Z in the following way. The construction of the subvariety P(˜G) given here is
adapted for the case of Prym varieties from [12], see also the paper [11] and also [6] for a
different approach.

Fix a base point t ∈ Ts and let (Pt , λ) be the corresponding Prym variety with λ as its
polarization of type D. Let (VZ, ψ) be as in the beginning of this section. We fix a symplectic
similitude σ : H1(Pt , Z) → VZ. Let F = Q[˜G]. The group ˜G acts on H0(˜Ct , ω˜C )− and
thereby on the Prym variety P(˜Ct/Ct ).We therefore view H0(˜Ct , ω˜C )− as an F-module. Via
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σ , theHodge structure on V = H1(Pt , Q) = H1(˜Ct , Q)− corresponds to a point y ∈ Hp and
one obtains the structure of an F-module on V . F is isomorphic to a product of cyclotomic
fields and is equipped with a natural involution ∗ which is complex conjugation on each
factor. The polarization ψ on V satisfies

ψ(bu, v) = ψ(u, b∗v) for all b ∈ F and u, v ∈ V .

Define the subgroup N as in [12]:

N = Gsp(V , ψ) ∩ GLF (V ). (4.1.1)

If h0 : S → LR is the Hodge structure on VZ = H1(Pt , Z) corresponding to the point
y ∈ Hp , then by the above F-action this homomorphism factors through the subgroup NR.
Define the subset YN ⊆ Hp as in Definition 4.1. The point y lies in YN and there is a
connected component Y+ ⊆ YN which contains y.

Definition 4.2 With the above notation, the special subvariety P(˜G) is the image of Y+ under
the map

Hp → L(Z)\Hp ∼= L(Q)\Hp × L(A f )/L(̂Z) ∼= Ap,D(C).

For t = (t1, . . . , ts) ∈ Ts , let ((Ct , x1, . . . , xr ), πt : ˜Ct → Ct ) ∈ R(H , g, r) be the covering
corresponding to t . For this t , consider the Hodge decomposition H1(˜Ct , C)− = U−,t ⊕U−,t

which corresponds to a complex structure on H1(˜Ct , R)−. We therefore get a point f (t) ∈
Hp . Indeed we obtain a morphism f : Ts → Hp and the following commutative diagram.

Ts Hp

R(�) Ap,D

f

ι0 ι

P

(4.2.1)

It follows by construction of P(˜G) that Z ⊆ P(˜G). As we remarked earlier, the Prymmap is
not in general injective. In order to conclude the equality Z = P(˜G) and hence the speciality
of Z , we still need to assure that the differential of the Prym map on R(�) is injective,
whence dim R(�) = dimP(R(�)). For this purpose, setU = H0(˜C, ω

˜C ) = U+ ⊕U− and
likewise W = H0(˜C, ω⊗2

˜C
) = W+ ⊕ W−. Note that the multiplication map m : S2U → W

is the codifferential of the Torelli map and the codifferential of the Prym map at a given
point coincides with the restriction of the multiplication map m to S2U−. The following
proposition gives sufficient conditions to treat the above situation and is evident.

Proposition 4.3 Consider the following conditions

The restricted multiplication map m : (S2U−)
˜G → W

˜G+ is an isomorphism. (B)

dim(S2U−)
˜G = s − 3. (A)

(S2U−)
˜G ∼= Y1 ⊗ Y2, (B1)

where dim Y1 = 1, dim Y2 = s − 3.
Then condition (B) implies the condition (A) and is implied by condition (B1).
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Another sufficent condition ensuring (B) is the following. Suppose there is an isogeny decom-
position of the Prym variety as follows

P(˜G) ∼ A × JC ′, (B2)

where A is a fixed abelian variety and JC ′ is the Jacobian of a curve C ′ := ˜C/K defined as a
quotient of ˜C by a normal subgroup K�˜G, such that theGalois coverC ′ → P

1 = C ′/(˜G/K )

is branched in r points and this family satisfies condition (∗) of [6], hence it gives rise to a
special subvariety. Therefore, since A is fixed and JC ′ moves in a Shimura family, then the
family of the Prym varieties P(˜G) yields a special subvariety too, see [8, Thm. 3.8]. We have

Theorem 4.4 If the condition (B) holds for some t ∈ Ts, then the subvariety Z is a special
subvariety.

Proof Let N be the subgroup in 4.1.1. If Y+ is a connected component of YN whose image
in Ap,D is P(˜G), then the assumption implies that dim Y+ = dim Ts = s−3. As the vertical
rows in 4.2.1 are discrete, one concludes that dimP(R(�)) = dim P(˜G) = s − 3. This
together with the fact that Z ⊆ P(˜G) implies that Z = P(˜G). ��
When G̃ is abelian, the following Lemma computes the dimension of P(˜G).

Lemma 4.5 Let dn = H1,0(P(˜G))n = H0(˜C, ω
˜C )−,n, then

dim P(˜G) =
∑

2n �=0

dnd−n + 1

2

∑

2n=0

dn(dn + 1).

Note that 2.0 = 0 in ˜G, so in fact the second sum in the right hand side of the above equality
is always meaningful and if |˜G| is an odd number it will be zero.

Proof We calculate dim Ty(YN ) at the point y ∈ Hp . The dimension of the tangent space of
P(˜G) at the point y will be equal to this number. To compute dim Ty(Hp), we first remark
that the polarization induces a perfect pairing φ : H1,0 × VC/H1,0 → C. Then the tangent
bundle Ty(Hp) can be identified with

Homsym(H1,0, VC/H1,0) := {β : H1,0 → VC/H1,0 | φ(v, β(v′))
= φ(v′, β(v))∀v, v′ ∈ H1,0},

i.e., the elements of Ty(Hp) that are their own dual via the isomorphisms induced by φ.
For a more detailed discussion, see [12]. Furthermore notice that VC/H1,0 = H0,1 and
that φ respects the Galois group action, namely it reduces to φn : H1,0

n × H0,1
−n → C

for every character n of ˜G. The subspace Ty(YN ) ⊂ Ty(Hp) consists therefore of β ∈
Homsym(H1,0, VC/H1,0) (symmetric with respect to φ) that respect the F-action on V , that
is, are FC-linear. Any such β can be written as the sum

∑

βn , where βn : H1,0
C,n → H0,1

C,n is
the induced action on the eigenspaces. These βn should satisfy the relation

φn(v, β−n(v
′)) = φ−n(v

′, βn(v)).

The perfect pairing φn gives a duality between H1,0
C,n and H0,1

C,(−n)
. So we have a duality

between βn and β−n if n �= −n in ˜G. If n = −n in ˜G, i.e., if 2n = 0 in ˜G this gives a self
duality for βn . Therefore dim Ty(YN ) is equal to

∑

2n �=0 dnd−n + 1
2

∑

2n=0 dn(dn + 1). ��
Note that the above proof implies that β = ∑

βn ∈ Sym2(H1,0
C

)G . In particular, it follows

that dim P(˜G) = dim(S2H0(˜C, ω
˜C )−)

˜G see also [6], Theorem 3.6.
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5 Examples

In this section, we work out some details of some of the examples given in the table on page
21. We begin with families of cyclic covers of P

1 which are the simplest abelian cases. The
example can elucidate the computations needed for the cyclic case in general. In the abelian
case, i.e. when the group ˜G is abelian, we have gathered some examples which are typical
for abelian covers so that the computations that we perform can be applied to other abelian
cases. If dim P(˜G) = 1, condition (B) is automatically satisfied, sowe also give some abelian
examples with dim P(˜G) = 2, where one needs to do some calculations in order to verify
condition (B). We also work out some abelian and non-abelian examples that do not satisfy
condition (B1). For the non-abelian case, we consider D4-covers and show that the Prym
varieties are in fact isogeneous to Jacobians and then using results of [6] we conclude that
they give rise to special subvarieties. Note that this is the only non-abelian case that one can
handle by hand, since unlike the abelian covers, one does not have explicit equations and so
computations is hardly possible. For the abelian families that do not satisfy condition (B1),
we have again chosen some examples which can be very typical and in fact all of the abelian
examples in this case can be done by hand and we have verified all of them by concrete
computations. Below are the details of the chosen examples.

• Consider the family given by the monodromy data (6, (1, 3, 4, 4)), i.e., the family w6 =
(z − z1)(z − z2)3(z − z3)4(z − z4)4. This family has Galois group Z6 and fiber genus
3. The quotient by the subgroup Z3 gives rise to a triple cover ˜Ct → Ct which is totally
ramified at 5 points, so that the family of the Prym varieties is contained in R3,[5] in the
notation of [4]. This family corresponds to the example with data (r , g̃, #) = (4, 3, 2) in
the table. The quotient curve Ct corresponds to the Z2-covering w2 = (z − z1)(z − z2),
so that C ∼= P

1. Therefore P(˜Ct/Ct ) is isogeneous to J (˜Ct ). By the results of [11], this
latter family is a special family of Jacobians and hence the family of Prym varieties is
also special.

Alternatively, one could use the special subvariety P(˜G) to prove that the family is special.
The automorphism σ of order 3 corresponds to the automorphism w �→ ξ3w, where ξ3

is a primitive 3rd root of unity. Using this action, we compute the eigenspace H0(˜C, ω
˜C )−.

We have that

H0(˜C, ω
˜C )− = H0(˜C, ω

˜C )1 ⊕ H0(˜C, ω
˜C )2 ⊕ H0(˜C, ω

˜C )4 ⊕ H0(˜C, ω
˜C )5,

where H0(˜C, ω
˜C )i is the eigenspace w.r.t the character i ∈ Z6. For a cyclic cover, these are

standard to compute, e.g. [11], p.799. We have that dim H0(˜C, ω
˜C )1 = dim H0(˜C, ω

˜C )5 =
1, dim H0(˜C, ω

˜C )2 = 0, dim H0(˜C, ω
˜C )4 = 1. The group ˜G = Z6 acts on H0(˜C, ω

˜C )−
by w �→ ξ6w so that we have H0(˜C, ω

˜C )−,i = H0(˜C, ω
˜C )i . Now, we can compute the

dimension of P(˜G): This is equal to dim(S2H0(˜C, ω
˜C )−)

˜G , as we remarked earlier. Note
that

(S2H0(˜C, ω
˜C )−)

˜G = H0(˜C, ω
˜C )1 ⊗ H0(˜C, ω

˜C )5

So dim P(˜G) = 1.

• As an abelian and non-cyclic example consider the Z3 × Z3-cover of P
1 given by the

matrix

(

1 1 1 0
0 0 2 1

)

. In other words, this family is given by equations

w3
1 = (z − z1)(z − z2)(z − z3)

w3
2 = (z − z3)

2(z − z4)
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This family is one of the families with abelian Galois group which gives rise to special
subvarieties in the Torelli locus, see [12] or [10] for more details.

Consider the quotient Z3 × Z3 → Z3 by the second factor. This corresponds to a cover
˜Ct → Ct which is totally ramified in 3 points and g(Ct ) = 1. In fact the quotient curve
Ct is just given by the first of the above equations w3 = (z − z1)(z − z2)(z − z3) or
equivalently by the first row of the above matrix. This family corresponds to the example
with data (r , g̃, #) = (4, 4, 7) in the table. The automorphism ν of order 3 corresponds to
the automorphism w1 �→ w1, w2 �→ ξ3w2, where ξ3 is a primitive 3rd root of unity. Using
this action, we compute the eigenspace H0(˜C, ω

˜C )−. We have that

H0(˜C, ω
˜C )− = H0(˜C, ω

˜C )(1,1) ⊕ H0(˜C, ω
˜C )(1,2) ⊕ H0(˜C, ω

˜C )(2,1),

where H0(˜C, ω
˜C )i is the eigenspace w.r.t the character i ∈ Z3 × Z3. For an abelian cover,

these dimensions are computed in [10], Prop 2.8. We have that dim H0(˜C, ω
˜C )(1,1) =

dim H0(˜C, ω
˜C )(1,2) = H0(˜C, ω

˜C )(2,1) = 1. Hence

(S2H0(˜C, ω
˜C )−)

˜G = H0(˜C, ω
˜C )(1,2) ⊗ H0(˜C, ω

˜C )(2,1)

So dim P(˜G) = 1.

• Consider the family given by the monodromy data (6, (1, 1, 1, 1, 2)), i.e., the family
y6 = (x − t1)(x − t2)(x − t3)(x − t4)(x − t5)2. This family has Galois group Z6 and fiber
genus 7. The quotient by the subgroup Z3 gives rise to a triple cover ˜Ct → Ct which
is totally ramified at 6 points. The quotient curve Ct corresponds to the Z2-covering
y2 = (x − t1)(x − t2)(x − t3)(x − t4), which is a curve of genus 1. Hence the family
of Prym varieties is contained in R6,[6] and this family corresponds to the example with
data (r , g̃, #) = (5, 4, 2) in the table.

The automorphism δ of order 3 corresponds to the automorphism y �→ ξ3y, where ξ3 is a
primitive 3rd root of unity. Using this action, we compute the eigenspace H0(˜C, ω

˜C )−. We
have that

H0(˜C, ω
˜C )− = H0(˜C, ω

˜C )1 ⊕ H0(˜C, ω
˜C )2 ⊕ H0(˜C, ω

˜C )4 ⊕ H0(˜C, ω
˜C )5,

where H0(˜C, ω
˜C )i is the eigenspace w.r.t the character i ∈ Z6. We have the dimensions

dim H0(˜C, ω
˜C )1 = 3, dim H0(˜C, ω

˜C )2 = 2, dim H0(˜C, ω
˜C )4 = 1, dim H0(˜C, ω

˜C )5 = 0.
The group ˜G = Z6 acts on H0(˜C, ω

˜C )− by y �→ ξ6y so that we have H0(˜C, ω
˜C )−,i =

H0(˜C, ω
˜C )i . Now, we can compute dim P(˜G) = dim(S2H0(˜C, ω

˜C )−)
˜G . Note that

(S2H0(˜C, ω
˜C )−)

˜G = H0(˜C, ω
˜C )2 ⊗ H0(˜C, ω

˜C )4

So dim P(˜G) = 2. This implies that the family satisfies condition (A). Since the family is
two dimensional, it is not enough to conclude and wemust still show that condition (B) holds.
In order to do this we use the basis of the differential forms introduced earlier. It holds that

H0(˜C, ω
˜C )−,2 = H0(˜C, ω

˜C )2 =
〈

α1 = y2
5

∏

i=1

(x − ti )
−1dx, α2 = xα1

〉

and

H0(˜C, ω
˜C )−,4 = H0(˜C, ω

˜C )4

= 〈β = y4(x − t1)
−1(x − t2)

−1(x − t3)
−1(x − t4)

−1(x − t5)
−2dx〉,
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so that (S2H0(˜C, ω
˜C )−)

˜G = 〈α1 � β, α2 � β〉. We have

m(α1 � β) = (dx)2
∏5

i=1(x − ti )
, m(α2 � β) = x(dx)2

∏5
i=1(x − ti )

.

So v = a1(α1 � β) + a2(α2 � β) ∈ ker(m) if and only if a1
(dx)2

∏5
i=1(x−ti )

+ a2
x(dx)2

∏5
i=1(x−ti )

= 0.

It is straightforward to see that this holds if and only if a1 = a2 = 0. This shows that m is
injective and by condition (A), it is an isomorphism, so condition (B) is satisfied.

• Consider the family of genus 2 curves with non-abelian Galois group ˜G = D4 and
ramification data (23, 4). This family corresponds to the example with data (r , g̃, #) =
(4, 2, 3) in the table and does not satisfy (B1) and therefore we can not conclude by
showing the isomorphy of the multiplication map. However, in this case the quotient
curve C is isomorphic to P

1 and so by the remark after Theorem 2.1, the family of
Prym varieties P(˜C/C) is isogeneous to the family of Jacobians. A close inspection of
Tables 1,2 in [6] shows that this famiy is family (29) of that paper and hence it is a
special family. The same argument shows that the families of genus 3 curves with Galois
group ˜G = D4, ramification data (25) and H = Z

2
2 which corresponds to examples

(r , g̃, #) = (5, 3, 1), (5, 3, 2) in the table are isogeneous to the family (32) of [6] and so
are also special 2-dimensional families (these also do not satisfy (B1)).

• An abelian example that does not verify condition (B1) is the following family. Consider

˜G = Z
2
3 and the monodromy matrix A =

(

1 0 1 2 2
0 2 2 0 2

)

. Then the curve ˜C has genus 7

and equations

w3
1 = (z − z1)(z − z3)(z − z4)

2(z − z5)
2

w3
2 = (z − z2)

2(z − z3)
2(z − z5)

2

Also consider the subgroup H ∼= Z3 generated by the element (0, 1)t , that acts as
w1 �→ w1, w2 �→ ξ3w2,where ξ3 is a primitive 3rd root of unity.Wehave H0(˜C, ω

˜C )− =
V(0,2) ⊕ V(1,1) ⊕ V(2,1) ⊕ V(1,2) ⊕ V(2,2), where all summands have dimension 1. Then
we obtain

(S2H0(˜C, ω
˜C )−)

˜G = (V(1,1) ⊗ V(2,2)) ⊕ (V(1,2) ⊗ V(2,1))

hence condition (B1) is not satisfied. We have

H0(˜C, ω
˜C )(1,1) =

〈

ω1 = w1w2

4
∏

i=1
(z − zi )(z − z5)2

dx

〉

H0(˜C, ω
˜C )(2,2) =

〈

ω2 = w2
1w

2
2

(z − z1)
4
∏

i=2
(z − zi )2(z − z5)3

dx

〉

H0(˜C, ω
˜C )(1,2) =

〈

ω3 = w1w
2
2

(z − z1)(z − z2)2(z − z3)2(z − z4)(z − z5)2
dx

〉

H0(˜C, ω
˜C )(2,1) =

〈

ω4 = w2
1w2

(z − z1)(z − z2)(z − z3)2(z − z4)2(z − z5)2
dx

〉
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Hence we compute

v1 := m(ω1 � ω2) = (dx)2

(z − z1)(z − z2)(z − z4)(z − z5)

v2 := m(ω3 � ω4) = (dx)2

(z − z1)(z − z2)(z − z3)(z − z4)

and we find that a1v1 + a2v2 = 0 if and only if a1 = a2 = 0, so m is injective.
Together with condition (A) this implies that (B) holds. Thus the family gives rise to a
2-dimensional Shimura variety.

• Consider the 3-dimensional family with group ˜G = Z
3
2 and monodromy matrix A =

⎛

⎝

0 0 1 1 0 0
0 1 1 1 0 1
1 1 1 1 1 1

⎞

⎠. The equations of the genus 5 curve ˜C are

w2
1 = (z − z3)(z − z4)

w2
2 = (z − z2)(z − z3)(z − z4)(z − z6)

w2
3 = (z − z1)(z − z2)(z − z3)(z − z4)(z − z5)(z − z6)

We consider theZ
2
2-cover given by the action of the subgroup H = 〈(1, 0, 0)t , (0, 1, 0)t 〉.

The quotient curveC = ˜C/H has genus 2.We have H0(˜C, ω
˜C )− = H0(˜C, ω

˜C )(0,1,0) ⊕
H0(˜C, ω

˜C )(1,0,1) ⊕ H0(˜C, ω
˜C )(1,1,1) where each summand has dimension 1. Then we

get

H0(˜C, ω
˜C )(0,1,0) = 〈ω1 = y2

(z − z2)(z − z3)(z − z4)(z − z6)
dx〉

H0(˜C, ω
˜C )(1,0,1) = 〈ω2 = y1y3

(z − z1)(z − z2)(z − z3)(z − z4)(z − z5)(z − z6)
dx〉

H0(˜C, ω
˜C )(1,1,1) = 〈ω3 = y1y2y3

(z − z1)(z − z2)(z − z3)2(z − z4)2(z − z5)(z − z6)
dx〉

thus if we set

v1 := m(ω1 � ω1) = (dx)2

(z − z2)(z − z3)(z − z4)(z − z6)

v2 := m(ω2 � ω2) = (dx)2

(z − z1)(z − z2)(z − z5)(z − z6)

v3 := m(ω3 � ω3) = (dx)2

(z − z1)(z − z3)(z − z4)(z − z5)

we find that a1v1 + a2v2 + a3v3 = 0 if and only if a1(z − z1)(z − z5) + a2(z − z3)(z −
z4) + a3(z − z2)(z − z6) = 0, i.e. a1 = a2 = a3 = 0. Hence the multiplication map is
an isomorphism and the family gives rise to a special subvariety.

We list all the obtained Prym data that give rise to Shimura varieties. For each example it
is reported: the number r of critical values on P

1, the genus g̃ of ˜C and g of C , the dimension
p = g̃ − g and progressive index (#), the group ˜G and the subgroup H determining the
Prym cover, the number of ramification and branch points of this cover, the quotient group
G = ˜G/H acting on C . Finally the fulfilled conditions are marked.
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r g̃ g p # ˜G H Ram pt Br pt G (B1) (B2) (B)

4 2 0 2 1 S3 C3 4 4 C2 � �
4 2 0 2 2 C6 C3 4 4 C2 � � �
4 2 0 2 3 D4 C4 6 4 C2 � �
4 2 0 2 4,5 D4 C2

2 10 5 C2 � �
4 2 0 2 6 D6 C3 4 4 C2

2 � �
4 2 0 2 7 D6 C6 10 4 C2 � �
4 2 0 2 8,9 D6 S3 10 4 C2 � �
4 3 1 2 1 C6 C3 2 2 C2 � �
4 3 0 3 2 C6 C3 5 5 C2 � � �
4 3 0 3 3 C2 × C4 C4 4 4 C2 � � �
4 3 0 3 4 C2 × C4 C2

2 12 6 C2 � � �
4 3 1 2 5 C2 × C4 C4 4 2 C2 � � �
4 3 0 3 6,7 C2 × C4 C4 8 5 C2 � � �
4 3 0 3 8 C2 × C4 C2

2 12 6 C2 � � �
4 3 0 3 10 A4 C2

2 12 6 C3 � �
4 3 1 2 13–15 C2 × D4 C4 4 2 C2

2 � �
4 3 1 2 16 C2 × D4 D4 4 1 C2 � �
4 3 0 3 17–19 D4 � C2 C2

2 12 6 C2
2 � � �

4 3 0 3 20 D4 � C2 C4 4 4 C2
2 � � �

4 3 0 3 21–23 D4 � C2 D4 20 5 C2 � � �
4 3 0 3 24–26 D4 � C2 C2 × C4 12 4 C2 � � �
4 3 0 3 27 S4 C2

2 12 6 S3 � �
4 3 0 3 28 S4 A4 20 4 C2 � �
4 4 0 4 1 C6 C3 6 6 C2 � � �
4 4 0 4 2–4 Q8 C4 10 6 C2 � �
4 4 2 2 5,6 C2

3 C3 0 0 C3 � � �
4 4 1 3 7,8 C2

3 C3 3 3 C3 � � �
4 4 0 4 9 C2

3 C3 6 6 C3 � � �
4 4 0 4 11 C2 × C6 C3 6 6 C2

2 � � �
4 4 0 4 12 C2 × C6 C2

2 14 7 C3 � � �
4 4 0 4 13,15 C2 × C6 C6 12 5 C2 � � �
4 4 0 4 14 C2 × C6 C6 6 4 C2 � � �
4 4 2 2 16 C3 × S3 C3 0 0 S3 � � �
4 4 2 2 17 C3 × S3 C3 0 0 C6 � �
4 4 0 4 18 C3 × S3 C3 6 6 S3 � � �
4 4 0 4 19 C3 × S3 S3 18 6 C3 � � �
4 4 0 4 20 C3 × S3 C2

3 12 4 C2 � � �
4 4 2 2 21,22 C3 � S3 C3 0 0 S3 � �
4 4 2 2 25,26 S23 C3 0 0 D6 � �
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r g̃ g p # ˜G H Ram pt Br pt G (B1) (B2) (B)

4 5 0 5 1 C8 C4 8 6 C2 � � �
4 5 1 4 2 C2 × C4 C2

2 8 4 C2 � �
4 5 0 5 5 C3 � C4 C6 16 6 C2 � �
4 5 1 4 8 C2 × C6 C3 4 4 C2

2 � �
4 5 1 4 9 C2 × C6 C6 4 2 C2 � �
4 5 2 3 12 C2

2 � C4 C2
2 0 0 C4 � �

4 5 2 3 15 C2
2 × C4 C2

2 0 0 C4 � � �
4 5 1 4 16,18 C2

2 × C4 C4 8 4 C2
2 � � �

4 5 1 4 17 C2
2 × C4 C2

2 8 4 C2
2 � � �

4 5 1 4 19 C2
2 × C4 C2 × C4 8 2 C2 � � �

4 5 2 3 29 C2 × A4 C2
2 0 0 C6 � �

4 5 2 3 30 C2
2 � D4 C2

2 0 0 D4 � � �
4 5 1 4 31 C2

2 � D4 C2
2 8 4 C3

2 � �

4 5 1 4 32,33 C2
2 � D4 C4 8 4 D4 � �

4 5 1 4 34-36 C2
2 � D4 C2 × C4 8 2 C2

2 � �

4 5 1 4 37 C2
2 � D4 C4 � C4 8 1 C2 � �

4 5 2 3 45 C2 × S4 C2
2 0 0 D6 � �

4 6 0 6 1 C10 C5 5 5 C2 � � �
4 7 1 6 1,2 C8 C4 4 4 C2 � �
4 7 1 6 3 C9 C3 6 6 C3 � �
4 7 1 6 4 C10 C5 3 3 C2 � �
4 7 1 6 8 C12 C3 6 6 C4 � �
4 7 1 6 9 C12 C4 8 5 C3 � �
4 7 0 7 10 C12 C6 12 6 C2 � � �
4 7 2 5 11 C12 C3 3 3 C4 � �
4 7 1 6 12 C2 × C6 C3 6 6 C2

2 � � �
4 7 1 6 13 C2 × C6 C6 6 3 C2 � � �
4 7 2 5 14,15 C2

4 C4 4 2 C4 � � �
4 7 2 5 16,17 C4 � C4 C4 4 2 C4 � �
4 7 1 6 18 C2 × C8 C4 4 4 C2

2 � � �
4 7 2 5 19 C2 × C8 C4 4 2 C4 � � �
4 7 1 6 20 C2 × C8 C8 4 2 C2 � � �
4 7 1 6 23–25 C2 × Q8 C4 12 6 C2

2 � �
4 7 1 6 26 C2 × Q8 Q8 12 3 C2 � �
4 7 2 5 29 C3 × S3 C3 3 3 S3 � � �
4 7 3 4 30 C3 × S3 C3 0 0 C6 � �
4 7 2 5 31 C3 × S3 C3 3 3 S3

4 7 2 5 32 C3 × C6 C3 3 3 C6 � � �
4 7 3 4 33 C3 × C6 C3 0 0 C6 � � �
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r g̃ g p # ˜G H Ram pt Br pt G (B1) (B2) (B)

4 7 1 6 41 D8 � C2 C4 4 4 C3
2 � �

4 7 2 5 42 D8 � C2 C4 4 2 D4 � � �
4 7 1 6 43–45 D8 � C2 C8 4 2 C2

2 � �
4 7 1 6 46 D8 � C2 Q16 4 1 C2 � �
4 8 2 6 1 C9 C3 4 4 C3 � �
4 9 1 8 1 C10 C5 4 4 C2 � � �
4 9 2 7 2 C12 C4 4 3 C3 � �
4 9 3 6 3 C12 C3 2 2 C4 � �
4 9 3 6 4,5 C2

4 C4 0 0 C4 � �
4 9 3 6 6 C2

4 C4 0 0 C4 � � �
4 9 1 8 8 C2 × C8 C4 8 6 C2

2 � � �
4 9 1 8 9 C2 × C8 C8 8 3 C2 � � �
4 9 2 7 10 C2 × C8 C4 8 4 C4 � � �
4 9 3 6 13 C2

2 × C6 C2
2 0 0 C6 � � �

4 9 3 6 16 C4 � C2 C4 0 0 D4 � � �
4 9 3 6 18 C4 × D4 C4 0 0 C2 × C4 � �
4 9 3 6 22 C2 × C3 � D4 C2

2 0 0 D6 � �
4 9 3 6 23,24 D4.D4 C4 0 0 C2 × D4 � �
4 10 3 7 1,3 C12 C3 3 3 C4 � �
4 10 1 9 2 C12 C6 6 4 C2 � �
4 10 2 8 4 C12 C3 6 6 C4 � � �
4 10 2 8 5 C12 C4 6 4 C3 � � �
4 10 1 9 6,7 C14 C7 3 3 C2 � �
4 10 4 6 8 C3 × C6 C3 0 0 C6 � � �
4 10 2 8 9 C3 × C6 C3 6 6 C6 � � �
4 10 2 8 10,11 C3 × C6 C6 6 2 C3 � � �
4 10 4 6 12 C3 × C6 C3 0 0 C6 � � �
4 10 2 8 13 C3 × D4 C3 6 6 D4 � � �
4 10 2 8 14 C3 × D4 C4 6 4 C6 � �
4 10 4 6 18–20 C3

3 C3 0 0 C2
3 � � �

4 10 2 8 25 C6 × S3 C3 6 6 D6 � � �
4 10 4 6 26 C6 × S3 C3 0 0 C2 × C6 � �
4 10 2 8 27 C6 × S3 C6 6 2 C6 � �
4 10 4 6 28 C6 × S3 C3 0 0 D6 � � �
4 10 4 6 33 C3 × C3 � S3 C3 0 0 C3 � S3 � � �
4 10 4 6 34,35 C3 × C3 � S3 C3 0 0 C3 × S3 � �
4 10 4 6 39–41 C2

3 � C2
2 C3 0 0 S23 � �

4 11 3 8 1 C2 × C12 C4 4 2 C6 � � �
4 11 3 8 2 D12 � C3 C4 4 2 D6 � �
4 12 2 10 1 C15 C5 3 3 C3 � �
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r g̃ g p # ˜G H Ram pt Br pt G (B1) (B2) (B)

4 12 3 9 2 C18 C3 5 5 C6 � �
4 13 4 9 1,2 C15 C3 3 3 C5 � �
4 13 5 8 3 C3 × C6 C3 0 0 C6 � �
4 14 4 10 1 C15 C3 4 4 C5 � � �
4 14 4 10 2 C3 × D5 C3 4 4 D5 � � �
4 16 6 10 1 C3 × C9 C3 0 0 C9 � � �
4 16 6 10 4 C3 × D9 C3 0 0 D9 � � �
5 3 0 3 1,2 D4 C2

2 12 6 C2 � �
5 3 1 2 3–5 C3

2 C2
2 4 2 C2 � �

5 4 1 3 1 C6 C3 3 3 C2 � �

5 4 0 4 2 C6 C3 6 6 C2 � � �
5 5 1 4 1 C6 C3 4 4 C2 � �
5 5 1 4 2 C2 × C4 C4 8 4 C2 �
5 5 1 4 3,4 C2 × C4 C4 4 3 C2 �
5 5 1 4 5 C2 × C4 C4 8 4 C2 � � �
5 5 2 3 17 C2 × D4 C2

2 0 0 C2
2 � �

5 7 1 6 1 C6 C3 6 6 C2 � � �
5 7 3 4 2,3 C2

3 C3 0 0 C3 � � �

5 7 2 5 4 C2
3 C3 3 3 C3 � � �

5 7 2 5 5–7 C2
3 C3 3 3 C3 �

5 7 3 4 8 C2
3 C3 0 0 C3 �

5 9 1 8 1 C8 C4 8 6 C2 � �
5 9 3 6 3–12 C4.C

3
2 C4 0 0 C3

2 � �
5 10 2 8 1 C2 × C6 C3 6 6 C2

2 � � �
5 10 4 6 5 C3 × S3 C3 0 0 S3 � � �
5 12 3 9 1 C9 C3 5 5 C3 � �
5 13 4 9 1 C12 C3 3 3 C4 � �
6 5 2 3 3 C3

2 C2
2 0 0 C2 � �

6 5 2 3 4 C3
2 C2

2 0 0 C2 �
6 7 2 5 1 C6 C3 3 3 C2 � �
6 7 2 5 2,3 C2 × C4 C4 4 2 C2 �
6 10 2 8 1 C6 C3 6 6 C2 � � �

6 10 4 6 2 C2
3 C3 0 0 C3 � � �

6 10 4 6 3–5 C2
3 C3 0 0 C3 �
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