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Abstract

We study Shimura (special) subvarieties in the moduli space A, p of complex abelian vari-
eties of dimension p and polarization type D. These subvarieties arise from families of covers
compatible with a fixed group action on the base curve such that the quotient of the base curve
by the group is isomorphic to P!. We give a criterion for the image of these families under
the Prym map to be a special subvariety and, using computer algebra, obtain 210 Shimura
subvarieties contained in the Prym locus.
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1 Introduction

In [4], E. Colomobo, P. Frediani, A. Ghigi and M. Penegini have extensively studied Shimura
curves of PEL type in Ay, contained generically in the Prym locus (see also the papers
[2,3] by E. Colomobo and P. Frediani). The general set-up is as follows: Let R, be the
scheme of isomorphism classes [C, n], for C a smooth projective curve of genus g and
n e Pic?(C) a 2-torsion element, i.c., n # O¢ but n2 = Oc. The line bundle 1 determines
an (unramified) étale double cover & : C — C and there is an induced norm map Nm :
Pic%(C) — Pic®(C). The Prym variety associated to [C, n] is defined to be the connected
component of ker Nm containing the origin and is denoted by P(C,n) or P(C,C). In a
similar way, one can construct a Prym variety for ramified covers. Consider the scheme R, >
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parametrizing triples [C, B, n] up to isomorphism, where C is a smooth projective curve
of genu@ g, n a line bundle on C of degree 1, and B a reduced divisor in the linear series
dl corresponding to a double covering 7 : C — C ramified over B. The assignment
[C,n] — P(C, C) (resp. [C, B,n] — P(C, C)) defines a map & : R, — A, (resp.
P Ry o — Ag). This goes under the name of the Prym map. In [4] authors give examples
of one-parameter families (C;, ;) (t € T = P'\{0, 1, 0o}) for which the image under the
Prym map parametrizes Shimura curves in A,. These curves are contained in the Prym loci
corresponding to unramified étale double covers and to double covers ramified at two points.

More precisely, the authors consider a family of Galois covers C; — P! with Galois group
G and a central involution o such that the double covering C, —> G /(o) is either étale or
ramified over exactly two distinct points. By the theory of coverings, the Galois covering
C; — P! is determined by an epimorphism 6 : T, — G with branch points t1, ..., € PL.

Here I', is isomorphic to the fundamental group of P'\{r1, ..., #,,}. Varying the branch points,
we get a family R(G,6,0) C R, (the image of T in R, mentioned above). The paper [4]

then gives examples of families R(G, 0, o) for which the Zariski closure &2 (R(G, 5, o)) of
the image under the Prym map is a Shimura curve in Ag.

In the paper [5], the first author together with P. Frediani, investigated the occurrence of
Shimura curves arising from families of Prym varieties of double covers that are ramified
over more than two points. Note that in this case the Prym variety is not principally polarized
in general. The paper [5] is thus a generalization of the paper [4]. The subsequent work [7]
of the present authors together with P. Frediani investigated the same problem for higher
dimensional Shimura varieties contained in these loci.

In this paper we generalize the aforementioned papers in two directions: We consider
families of Prym varieties of arbitrary Galois covers of curves (not necessarily double covers),
while we also get higher-dimensional as well as 1-dimensional families. More precisely to a
finite Galois coverlng f: C — C we associate a Prym variety P(C /C). The Prym variety
is of dimension p = g — g, where g, g are the genera of C,C respectively. Furthermore, it is
an abelian variety of certain polarization type D, see Sect. 3. So it determines a point in the
moduli space A, p of complex abelian varieties of dimension p and polarization type D. The
stack parametrizing families of the above covers of curves will be denoted by R(H, g, r),
where H is the deck group of the covering f : C - C, g = g(Cy) is the genus of the base
curve and r is the number of branch points of the covering.

We consider the following families of curves: We fix a finite group G and a normal
subgroup H C G. The families that we consider here are families C; — P! of G-Galois
covers of P! branched in s distinct points. Let Ty C (Al )* be the be the complement of
the big diagonals, i.e., Ty = {(#1,...,t) € (A )* | t; # t;¥i # j}. Note that by sending
3 points to 0, 1, co, one sees that Ts has complex dimension s — 3. By varying the branch
points we obtain a family f : C — T of covers of P!. This family gives rise to the family
5, — C; = 5,/H in R(H, g, r) and the corresponding family of Prym varieties P(E,/C,).
The image of 75 in R(H, g, r), which we again denote by Ty, is of dimension s — 3. The
Prym map behaves well in families and we are interested in the Zariski closure of the image
Z = P (Ty) under the Prym map which is a subvariety of A, p. For computational reasons,
the case where G is abelian is of great importance for us. Therefore, in Sect. 3, we explain
an alternative construction of the abelian covers of P! to that given in [4]. Note that the Prym
variety and the Prym map of abelian and metabelian covers have been studied in [9]. The
H -action and its eigenspaces on the cohomology and also the eigenspaces of the whole group
G acting on these spaces are useful for our computations.
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In Sect. 4 we point out that the moduli space A, p has the structure of a Shimura variety.
We find families for which the subvariety Z is a special (or Shimura) subvariety of A), p.
We introduce conditions (B), (B1) and (B2) under which the subvariety Z is special. Using
computer algebra we investigate these condition and find 210 examples satisfying them, see
the table on page 21. We also work out in detail some important examples of the table. In
addition to families of abelian covers, we find some families with G non-abelian. Furthermore,
our approach yields also higher dimensional special families of Prym varieties in A, p. Note
that in [2] the authors give upper bounds for the dimension of a germ of a totally geodesic
submanifold, and hence of a special subvariety in the Prym locus.

2 Prym map and the Prym variety

To a given finite covering f : C — C between non-singular projective algebraic curves, one
can associate an abelian variety, the so-called Prym variety. The map f induces a norm map

Nmy : Pico(5) — PicO(C)
D aipi— Y aif(pi)

The Prym variety associated to f is defined as P(f) = P(E/C) = (ker Nmf)o, i.e. the
connected component of the kernel of Nmy containing the origin. Identifying Pic® with
the Jacobian, one sees that the canonical (principal) polarization of Jac(E ) restricts to a
polarization on P(f).

Classically, f is a double covering which is étale or branched at exactly two points. It
is known that these are the only cases in which P(f) is principally polarized. In fact, the
restriction of the canonical polarization of J ac(a) to P(f) is twice a principal polarization.
In general the type D of the polarization on P (f) depends on the topological structure of
the covering map f, see [1].

Let H be a finite group with n = |H|. Suppose C is a compact Riemann surface of genus

g. Lett := {f1,...,t} be an r-tuple of distinct points in C. Set U; := C\{t1,...,#}.
The fundamental group (U, tp) has a presentation (ay, B1,...,%g, Be, V1s---» ¥r |
]_[1 Vi ]_[’f[cxj, Bjl1=1).Hereay, Bi, ..., ag, Bg are simple loops in U, which only intersect

in fo, and their homology classes in H;(C, Z) form a symplectic basis.

Iff: C — C is a ramified H-Galois cover with branch locus t,set'V = f‘1 ).
Then fly : V — U, is an unramified Galois covering. Then there is an epimorphism
0 : 1 (U;, t9) — H.Conversely, such an epimorphism determines a ramified Galois covering
of C with branch locus 7. The order m; of 8(y;) is called the local monodromy datum of the
branch point ;. Let m = (m1, ..., m,). The collection (m, H, 6) is called a datum. The
Riemann-Hurwitz formula implies that the genus g of the curve Cis equal to

~ 4 1
25 —2=|H| (2g—2+z<l—mi>> (2.0.1)

i=1
We i’£1tr0duce the stack R(H, g, r): The Objects of R(H, g, r) are couples ((C, x1, ..., X;),
f : C — C) such that

(1) (C, Xlyeees Xr) is a smooth projective r-Npointed curve of genus g.
(2) f:C — C isafinite cover, H acts on C and f is H-invariant.
(3) the restriction £8¢" : f~1(C\{x1,...,x}) = C\{x1, ..., x,} is an étale H-torsor.
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202 G. P. Grosselli, A. Mohajer

Note that » = 0 is also possible which amounts to say that the covers C — C are unrami-
fied. Moreover since our problem is insensitive to level structures, we may actually consider
R(H, g, r) as a coarse moduli space. As a result, we omit any assumptions on the automor-
phism group of the base curve C whose non-triviality can be remedied either by considering
the moduli stack or by imposing level structures.

Let us denote the Jacobians of the curves CandC respectively by 7 and J. Since the finite
group H acts on C, then it acts also on the Jacobian J. We denote by J JH the subgroup of
fixed points of J under the action of H. The following theorem is proven in [14] (repectively,
Theorem 2.5 and Proposition 3.1).

Theorem 2.1 (1) f*J —(JH)°
(2) The map ¢ : J x P(C/C) — T sending (c, ¢) to f*(c) + € is an isogeny.

For a Galois covering f : C — C with (Cyx1y vy xp), [ C — C) € R(H,g,r)
and deg(f) = n, one can compute the genus g := g(g ) by the Riemann-Hurwitz formula.
Using the isogeny f*J X P(5 /C) ~ J we see that the dimension of the Prym variety
P(@/C) = P(f)isequalto p = §—g. Note that if C = P!, then the Prym variety P(G/C)
is isogeneous to the Jacobian J. We will use this point in the sequel to deduce that some
families are special.

The canonical principal polarization on J restricts toa polarization of a certain type D. Let
A, p denote the moduli space of complex abelian varieties of dimension p and polarization
type D. More precisely, A, p = H,,/I'p is the moduli space of polarized abelian varieties
of type D where H), := {M € M,(C) |' M = M,Im M > 0} is the Siegel upper half space

of genus p and
_ 0 D\;,, (0 D
D—{ReGLz,,(ZHR(_D 0)R—(_D 0)}

is an arithmetic subgroup. The above constructions behave well also in the families of curves
and hence we obtain a morphism

P =P(H,gr):R(H, g,r) = App. @.1.1)

We call the map & the Prym map of type (H, g, r). Our objective in this paper is to study
the image of this map. Since in general the Prym map is not injective, one needs to study
other closely related aspects, namely the generlc injectivity.

By the above mentioned H -action on H° (C, wg) we have the eigenspace decomposition
with respect to the irreducible characters x € Irr(H)

HYC.0p)= € HC.wp). (2.1.2)
xelr(H)
We set:
HO(C, wg)+ = H(C,wp)! (= H(C, wc)),
H'C.wp)- = @ H'C.op* = HC.op)/H'C.wp)s. 13
xelm(H)\{1)

Notice that H0(6, w§) = Ho(a, w§)+ © HO(G, wg)—. In the above, Irr(H) denotes the
irreducible characters of H. The characters will appear in the next section in more detail.
We gave the above description containing the irreducible characters in order to indicate that
HO (C wg)— can be viewed as a subgroup of HO(C W) and not just a quotient. Similarly
there is a decomposition of H\(C,Z) as H(C, Z)+ ® H\(C,Z)_.

The following lemma is then an immediate consequence of Theorem 2.1 above.
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Lemma22 Let f : C — C be a Galois covering, then

P(C/C) = H(C,wg)-"/Hi(C,Z)_. (2.2.1)

3 Galois coverings
3.1 Generalities

Let us summarize some general facts about Galois coverings of curves. Let C.Cbe complex
smooth projective algebraic curves and let f: C — C be a Galois covering of degree n. By
this we mean precisely that there exists a finite group H with | H| = n, together with a faithful
action of H on C such that f realizes C as the quotient of c by H. Consider the ramification
and branch divisors R, B of f. Note that R consists precisely of the points in C with non-
trivial stabilizers under the action of H. The deck transformation group Deck(5 /C), i.e. the
group of those automorphisms of C that are compatible with f, is isomorphic to the Galois
group H and acts transitively on each fiber f~!(x). If y € C is a ramification point with
ramification index e, then so are all points in the fiber f ~1(f(y)). Moreover, the stabilizers
of these points in Deck(5 /C) = H are conjugate cyclic subgroups, see [15, Proposition
3.2.10]. In particular the stabilizer of a point in C is trivial, if and only if that point is not
a ramification point. The stabilizer Hy, of a point y € C is also referred to as the inertia
subgroup of y.

3.2 Galois covers of P! and Prym datum

Let G be a finite group and f : C — P! a finite G-Galois covering ramified over the
branch points Br(f) = {t1,...,t;} C P! as in introduction. Let Ty := m; (Pl\Br(f)) =
Y1 er o Yslyroooys = 1), where yj corresponds to a loop winding around ;. Such G-Galois
covering is determined by an epimorphism 0 Ty — G (See [16, Theorem 5.14]). The local
monodromy around the branch point #; is given by 9 (j). The set of ramification points
Ram( f ) consists precisely of the points in C with non-trivial stabilizers under the action
of G. As we assume that the cover f is Galois we have that Br( f ) = f (Ram( f )) and
7 Br(f)) = Ram(f).

Varying the branch points {¢, ..., #;} yields a family of G- -covers of P!

For a normal subgroup H of G we have a cover c f C - C= C/H Set G = G/H the
quotient group, we have a tower of Galois covers C—>Cc=C /H — P! = c / G=C /G.
One can associate to the cover f the Prym variety as in the Sect. 2. The following definition
is central in this paper (compare [4], Definition 3.1).

Deﬁnltlon 3.1 A Prym datum (of type (H, g, r)) is a triple (G s, H) where G is a finite
group, 9 Iy — G is an epimorphism as above and H is a normal subgroup of G, such that
the quotient f : C—>C= C/H isin R(H, g, r).

Let G be a finite group and let C — P! bea G-Galois covering of P! with the Prym datum
(G, 05, H).SetU = HO(G, wg)andletU = U, @U_ be the decomposition into H -invariant
and H -anti-invariant parts as in Sect. 2 (after (2.1.3)). There is also the corresponding Hodge
decomposition H! (5, C)_=U_®U_.SetA = H (5, Z)—.By Lemma 2.2 the associated
Prym variety is

P(C/C) = U* /A, (3.1.1)
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204 G. P. Grosselli, A. Mohajer

see [1] for more details.

3.3 Abelian covers and their invariants

Let f : C — C be a H-Galois cover with H finite abelian branched above the points
X1, ..., Xr. Since the group H is abelian, the inertia group above a branch point x; is inde-
pendent of the chosen ramification point and we denote it by H;. Under the action of G,
the sheaf f,Og splits as the direct sum of the eigensheaves corresponding to the charac-
ters of G. We will denote by (f,Ox)* the eigensheaf corresponding to a character x. Then
(f+O)X = L;l is an invertible sheaf on C. In particular, the invariant summand L is
ismorphic to Oc. The algebra structure on f, O is given by the (Oc-linear) multiplication
rule my , : L;l ® L7' — L7}, and is compatible with the action of H. The line bundles
L, and divisors x; are called the building data of the cover. The building data determine
the cover completely up to isomorphisms, see [13], §2, specially Proposition 2.1. The line
bundles L, are also very useful for determining the invariants of the cover. Note that the
sheaf f.wg also splits as the direct sum of the eigensheaves corresponding to the characters
of G and it holds that ( fywz) = wc ® L ,—1 (where ( fxwE)X denotes the eigensubsheaf of
fxwg corresponding to a character x ), see [13], Proposition 4.1. Therefore we have

H(C, wg) = H'(C, fuwg) = H'(C, ®(wc ® Ly-1)) = ®yenH(C,0c ® Ly-1).

(3.1.2)
In view of the above equalities, one obtains
H(C, wp)+ = H(C, wc)
HC.op)-= P H'C.op))= @ H'C.oc®L,) (3.1.3)

xeH*\{1} xeH*\{1}

3.4 Prym varieties of abelian covers

In this subsection we explain the constructions in Sect. 2 for an abelian group H based on the
constructions of Sect. 3.3. Let f : C — C be a H-Galois cover of C, with H a finite abelian
group. Recall the equivalent description of the Prym variety given in Lemma 2.2. We have

P=PC/O)= P H'C.oc®L) @ HC.D,
xeH*\{1} xeH*\{1}

by virtue of (3.1.3) and (2.2.1).

3.5 Abelian covers of P!

In this section, we follow closely [4] and also [10] whose notations come mostly from [17].
More details about abelian coverings and Prym varieties can be consulted from these two
references respectively. For the latter, Birkenhake and Lange [1] is also a comprehensive
reference. N

An abelian Galois cover f : C — P! is determined by a collection of equations in the
following way:
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Consider an m x s matrix A = (r;;) whose entries r;; are in Z/NZ for some N > 2. Let

C(z) be the algebraic closure of C(z). Foreachi = 1, ..., m, choose a function w; € C(z)
with
s ~
N=T]e—tpiifori=1,...m, (3.1.4)
j=1

in C(x)[w1, ..., wn]. Here 7j; is the lift of r;; to ZN [0, N)and ; e Cfor j =1,2,...,s

Notice that (3.1.4) could give a singular affine curve, in which case we consider a smooth
projective model. We impose the condition that the sum of the columns of A is zero (when
considered as a vector in (Z/NZ)™). This implies that the cover given by (3.1.4) is not
ramified over the infinity. We call the matrix A, the matrix of the covering. We also remark
that all operations with rows and columns will be carried out over the ring Z/NZ, i.e. they
will be considered modulo N. The local monodromy around the branch point ¢; is given by
the column vector (ryj, ..., 7y j)’ and so the order of ramification over ¢; is Wi\’_—ﬁ.

Ljoenes mj
Using this and the Riemann-Hurwitz formula, the genus g of the cover can be computed by:

s=2 1 g ~ -
> —ﬁchd(N,rU,...,rmj) , (3.1.5)
j=1

g=1+d

where d is the degree of the covering which is equal, as pointed out above, to the column
span (equivalently row span) of the matrix A. In this way, the Galois group G of the covering
will be a subgroup of (Z/NZ)™. Note also that this group is isomorphic to the column span
of the above matrix.

Remark 3.2 Consider two families of abelian covers with matrices A and A’ over the same
Z/NZ.1f A and A’ have equal row spans then the two families are isomorphic. For more
details, see [17] or [10].

Remark 3.3 For a finite abelian group G, it is well known that the character group G* =
Hom(G, C*) is isomorphic to G. We fix an isomorphism ¢ : G = G*.In the sequel,
we use this isomorphism frequently to identify elements of G with its characters, without
referring to ¢g.

For our applications, with notations as in the previous pages, we fix an isomorphism of G
with a product of Z/nZ’s and an embedding of G into (Z /NZ)™.

Let/; be the jth column of the matrix A. As mentioned earlier, the group ¢ G can be realized
as the column span of the matrix A. Therefore we may assume that/; € G. For a character
x> x(j) € C* and since G is finite x (1j) will be a root of unity. Let x (l ) =expa;mi/N),
where «; is the unique integer in [0, N) with this property. Equivalently, the ; can be
obtained in the following way: let n € G C (Z/NZ)™ be the element corresponding to x
under the above isomorphism. We regard » as an 1 x m matrix. Then the matrix productn - A
is meaningful and n - A = (¢, ..., o). Here all of the operations are carried out in Z/NZ
but the o are regarded as integers in [0, N). Furthermore we set &; = sz=1 n;rij € Z (but
a; is not necessarily in Z N [0, N)).

Using the above facts, we occasionally consider a character of G as an element of this
group without referring to isomorphism ¢g.

Let us denote by wg the canonical sheaf of C Similar to the case of f*(OC) the sheaf
f* (wx)y decomposes according to the action of ¢ G. For the line bundles L, corresponding to
the character x associated to the element a € G and f* (wg), we have the following result
proven in [10, Lemma 2.4].
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Lemma 3.4 With notations as above Ly, = Op (Z 1 ) where (x) denotes the fractional
part of the real number x and

J?;(a)a)x =wp @ L,-1 = Opi (—2+Z<_Oj\;>> )
1

Notice that the sums in the Lemma are integers. In fact, since the sum of each row of A is

zeroin Z/NZ,then 3 &; = >, ni(}_; 7ij) is a multiple of N. Thus Z, + is integer and
this does not depend on the representatlve chosen modulo N or by taking the fractional part.

Let n_e G be the element (nl, e, fy) € G C (Z/NZ)™. By Lemma 3.4,
dim H° (C W)y =—1+ Z/ 1 ——) A ba51s for the C-vector space HO(C wg) 1s given
by the forms

5 0
oy = 2w wi [J@ -l ¥z, (B4.1)
j=1

Here0 <v < -1+ ij 1= %). The fact that the above elements constitute a basis can be
seen in [10, proof of Lemma 5.1], where the dual version for H L, 00) is proved.

The general method of our later computations in Sect. 5 is as follows: We remark that if
n=my,...,ny) € G = Zg, X -+ X ZLg, C (Z/NZ)™, we consider the n; € [0, N) and
their sum as integers. The action of the abelian subgroup H is naturally inherited from that
of G and the latter is described as follows: Let g = (g1, ..., gm) € G and write ord gi = vj.
Then the action of g on each w; is given by g-w; = &,, w;, where &,, denotes a v;-th primitive
root of unity.

Below we highlight the main ideas to perform the construction of the examples in Sect. 5.

With the above notation, H%(C, wg)+, 1.e. the group of H-invariant differential forms, is

the set of all w,,, \llth > nija;i € Zforallh = (hy, ..., hy) € H (with a; = ord h;).
The space H 0, wg)— is then given by the complement, i.e. the set of all w,,, for whom
there exists h = (hy, ..., hy) € H suchthat ) n;/a; ¢ Z.

3.6 Families of abelian covers of P! and their Prym map

Families of abelian covers of P! can be constructed as follows: Let Ty C (A] )* be the
complement of the big diagonals as in the introduction. We consider abelian covers of P!
given by the Eq. (3.1.4) with branch points (71, . .., ty) € T; and 7;; the lift of r;; to ZN[0, N)
as before. Varying the branch points we get a family f : ¢ — T of smooth projective curves
over T (viewed as a complex manifold of dimension s — 3) whose fibers C, are abelian
covers of P! introduced above.

Let G be a finite group and consider a family C — Ty of abelian covers as above whose
fibers C, are G-Galois coverings of P! with a fixed Prymdatum X := = (G, 05, H). Associating
tot € T the class of the pair ((Cy, X1, ..., X;), 77 : Ct — Cy)givesamap Ty — R(H, g,r)
with discrete fibers. We denote the image of this map by R(X). It follows that R(X) is
a subvariety of dimension equal to s — 3, see also [4], p. 6. As in the last section, set
U =H (a, g, ) and let Uy = U4, @ U—_; be the decomposition under the action of
H. There is also the corresponding Hodge decomposition H! (C,, (C)_ =U_,eU_ -
Set A, = H; (C,, Z)—. The associated Prym variety is by 3.1.1, P(C,/Ct) =U* ,/A,, an

. @
abelian variety of dimension p = § — g. So we obtain the Prym map R(X) — A, p for
this family.
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4 Shimura subvarieties

Let Vg := Z* C V := Q* and let ¥ : Vz x Vz — Z be a symplectic form. Let
L = Gsp(Vz, ¥) be the group of symplectic similitudes, i.e.,

L ={g € GL(Vy) | ¥ (gu, gv) = v(g)¥ (u, v) for some v(g) € Z*}.

Let S := Resc/r G, be the Deligne torus. A Hodge structure of weight 1 and type (1, 0) +
(0, 1) on V7 for which v is a polarization corresponds to a homomorphism # : S — L.

Using the Riemann bilinear relations, the space of all homomorphisms % as above can
be identified with the Siegel upper half space of genus p, H, = {M € M,(C) |' M =
M,Im M > 0}. Recall from Sect. 2 that A, p = H,/I'p is the moduli space of polarized
abelian varieties of type D, where I'p = {R € GL,,(Z) | R (_OD IO)> 'R = (_OD 10)>} is
an arithmetic subgroup. Note that H, = L(R)/K, where K is a maximal compact subgroup.
So A, p can be written as a double quotient I'p\ L(IR) /K . Such double quotients are called
Shimura varieties and their structure has beeen studied extensively. We remark that K,, = {g €
L(Z) | ¢ = 1(mod n)} is a compact open subgroup of L(Ar) and A, p , = LQ)\(H, x
L(Af)/K,) can be identified with the space of complex polarized abelian varities (of type
D) of dimension p and with level n structure. Note that A, p =1im A}, p .

Given a Shimura variety, one can define special (or Shimura) subvarieties. We define them
only for the Shimura variety A, p. To state the definition, let us frist explain some notation.
Suppose N C L is an algebraic subgroup defined over Q. Define the subset Yy C H, as
follows.

Yn = {h:S — Lg|h factors through Ng}.
We remark that the group N (R) acts on Y by conjugation. We can now state our definition

Definition 4.1 A closed irreducible algebraic subvariety Z C A, p , is called special (or
Shimura) if there exists an algebraic subgroup N C L defined over Q, a connected component
Yt C Yy and an element y € L(Ay) such that Z(C) C A, p ,(C) is the image of Yt x
{vK,} C H,xL(Ay)/K, underthe naturalmapto A, p ,(C) = LQ)\(H, x L(Ar)/K},).

Since level structure does not play a role in the sequel, we drop it from the notation and
state the results for A, p. We now use Definiton 4.1 to define a particular special subvariety
defined by the families of Prym varieties that we consider.

Let G be a finite group and consider a family C — T, whose fibers E, are G-Galois
coverings of P! with a fixed Prym datum ¥ := (G, é;, H). As in Sect. 3.6, we have a Prym
map R(Z) 2> A,.p.

In this paper, we are interested in determining whether the subvariety Z = Z(R(X)) C
A, p is a special or Shimura subvariety. The Prym varieties of the fibers of the family
C + — T fitinto a family P — T, which is an abelian scheme over T that admits naturally
an action of the group ring Z[é]. This action defines a special subvariety P(é) in Ay p
that contains Z in the following way. The construction of the subvariety P(G) given here is
adapted for the case of Prym varieties from [12], see also the paper [11] and also [6] for a
different approach.

Fix a base point ¢ € T; and let (P;, A) be the corresponding Prym variety with A as its
polarization of type D.Let (Vz, ¥) be as in the beginning of this section. We fix a symplectic
similitude o : HY\(P,, Z) — Vz.Let F = Q[G] The group G acts on H° (C,, wg§)— and
thereby on the Prym variety P(C +/Ct). We therefore view HO (C 1, @g)— as an F-module. Via
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208 G. P. Grosselli, A. Mohajer

o, the Hodge structureon V = HY(P, Q) = Hl(a, Q)— corresponds toapoint y € H, and
one obtains the structure of an F-module on V. F is isomorphic to a product of cyclotomic
fields and is equipped with a natural involution * which is complex conjugation on each
factor. The polarization i on V satisfies

Y (bu,v) = ¥ (u,b*v) forallb € Fandu,v € V.
Define the subgroup N as in [12]:
N =Gsp(V,¥)NGLF(V). 4.1.1)

If hop : S — Lp is the Hodge structure on Vz = H Yp,7) corresponding to the point
y € H, then by the above F-action this homomorphism factors through the subgroup Ng.
Define the subset Yy < H, as in Definition 4.1. The point y lies in Yy and there is a
connected component Y+ C Yy which contains y.

Definition 4.2 With the above notation, the special subvariety P (G)is the image of ¥ under
the map

H, — L(Z)\H, = L(Q)\H, x L(Aﬂ/L(Z) = A, p).

Fort = (t1,...,t) € Ty, let ((Cy, x1, ...y Xp), 74 - C, — Cy) € R(H g, r) bethe coverlng
correspondmg to ¢. For this ¢, consider the Hodge decomposition H; (C,.C)_=U_ OU_;
which corresponds to a complex structure on H (C +, R)_. We therefore get a point f(¢) €
H,. Indeed we obtain a morphism f : 7y — H), and the following commutative diagram.

TJ$>HP

lol l‘ 4.2.1)

R(®) 25 App

It follows by construction of P (5) that Z C P(a). As we remarked earlier, the Prym map is
not in general injective. In order to conclude the equality Z = P (G) and hence the speciality
of Z, we still need to assure that the differential of the Prym map on R(X) is injective,
whence dim R(X) = d1m 3?’(R(E)) For this purpose, set U = HY (C wF) =U,®U_and
likewise W = HO(C, a)c 2 = W, @ W_. Note that the multiplication map m : S?°U — W
is the codifferential of the Torelli map and the codifferential of the Prym map at a given
point coincides with the restriction of the multiplication map m to S?U_. The following
proposition gives sufficient conditions to treat the above situation and is evident.

Proposition 4.3 Consider the following conditions

The restricted multiplication map m : (SZU_)G — Wf is an isomorphism. B)
dim(s2U_)% =5 — 3. (A)

SPUNC =y @7, (BI)

wheredimY; =1, dimY, =5 — 3.
Then condition (B) implies the condition (A) and is implied by condition (B1).
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Another sufficent condition ensuring (B) is the following. Suppose there is an isogeny decom-
position of the Prym variety as follows

P(G)~AxJC, (B2)

where A is a fixed abelian variety and JC’ is the Jacobian of a curve C’ := c /K defined as a
quotient of c by anormal subgroup K < G, such that the Galois cover C' — P! = ¢’ / (G /K)
is branched in r points and this family satisfies condition (x) of [6], hence it gives rise to a
special subvariety. Therefore, since A is fixed and JC’ moves in a Shimura family, then the
family of the Prym varieties P (G) yields a special subvariety too, see [8, Thm. 3.8]. We have

Theorem 4.4 [f the condition (B) holds for some t € Ty, then the subvariety Z is a special
subvariety.

Proof Let N be the subgroup in 4.1.1. If Y™ is a connected component of Y whose image
inA, pis P(G) then the assumption implies that dim Y+ = dim 7y = s — 3 As the vertical
rows in 4.2.1 are discrete, one concludes that dim Z(R(X)) = dim P(G) = s — 3. This
together with the fact that Z C P(G) implies that Z = P(G). O

When G is abelian, the following Lemma computes the dimension of P(&).

Lemma4.5 Lerd, = H'O(P(G)), = H*(C, wg)— 5, then

- 1
dim P(G) = Y dud_y + 3 > du(dy + D).

2150 2n=0

Note that 2.0 = 0in G, so in fact the second sum in the right hand side of the above equality
is always meaningful and if |G| is an odd number it will be zero.

Proof We calculate dim 7y, (Yy) at the point y € H,. The dimension of the tangent space of
P(G) at the point y will be equal to this number. TO compute dim T, (H), we first remark
that the polarization induces a perfect pairing ¢ : H'"0 x Vg/H"? — C. Then the tangent
bundle T, (H,) can be identified with

Hom™" (H'0, Ve /H'0) := (f: H'* — Ve/H' | $(v, B(V)))
=o', B)Vv, v € H"},

i.e., the elements of 7 (IH,) that are their own dual via the isomorphisms induced by @.
For a more detailed discussion, see [12]. Furthermore notice that V¢ / H'0 = HO! and
that ¢ respects the Galois group action, namely it reduces to ¢, : H,,l’0 X HE’nl - C
for every character n of G. The subspace Ty (Yy) C Ty(H,) consists therefore of B €
Hom®" (H'0, Ve / H-9) (symmetric with respect to ¢) that respect the F-action on V, that
is, are Fg-linear. Any such B can be written as the sum Y 8,,, where B, : Hé’,?w H&L is

the induced action on the eigenspaces. These 8, should satisfy the relation
G (v, B-n (V) = ¢_, (', B (v)).

The perfect pairing ¢, gives a duality between H(é’ and H(C \(—ny- SO we have a duality

between B, and f_, if n # —n in G.Ifn=—ninG,ie.,if2n = 0in G this gives a self
duality for B,. Therefore dim 7 (Yy) is equal to } 5, .o dnd—n + 5 > modndy+ 1. O

Note that the above proof implies that ;3 3" B, € Sym? (H¢ )G In particular, it follows
that dim P(G) = dlm(S2H0(C, wc)_)G see also [6], Theorem 3.6.
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5 Examples

In this section, we work out some details of some of the examples given in the table on page
21. We begin with families of cyclic covers of P! which are the simplest abelian cases. The
example can elucidate the computations needed for the cyclic case in general. In the abelian
case, i.e. when the group G is abelian, we have gathered some examples which are typical
for abelian covers so that the computations that we perform can be applied to other abelian
cases. If dim P (5) = 1, condition (B) is automatically satisfied, so we also give some abelian
examples with dim P(a) = 2, where one needs to do some calculations in order to verify
condition (B). We also work out some abelian and non-abelian examples that do not satisfy
condition (B1). For the non-abelian case, we consider D4-covers and show that the Prym
varieties are in fact isogeneous to Jacobians and then using results of [6] we conclude that
they give rise to special subvarieties. Note that this is the only non-abelian case that one can
handle by hand, since unlike the abelian covers, one does not have explicit equations and so
computations is hardly possible. For the abelian families that do not satisfy condition (B1),
we have again chosen some examples which can be very typical and in fact all of the abelian
examples in this case can be done by hand and we have verified all of them by concrete
computations. Below are the details of the chosen examples.

e Consider the family given by the monodromy data (6, (1, 3, 4, 4)), i.e., the family wb =
(z—z1(z - )3z — z3)4(z — z4)*. This family has Galois group Zg and fiber genus
3. The quotient by the subgroup Z3 gives rise to a triple cover C, — C; which is totally
ramified at 5 points, so that the family of the Prym varieties is contained in R3 |5} in the
notation of [4]. This family corresponds to the example with data (r, g, #) = (4, 3,2) in
the table. The quotient curve C; corresponds to the Z;-covering w?=(z—21)(z - 22),
so that C = P!. Therefore P(C,/Ct) is isogeneous to J(C,). By the results of [11], this
latter family is a special family of Jacobians and hence the family of Prym varieties is
also special.

Alternatively, one could use the special subvariety P (G) to prove that the family is special.
The automorphism o of order 3 corresponds to the automorphism w +— E;w where &3
is a primitive 3rd root of unity. Using this action, we compute the eigenspace H° (C w§)—.
We have that
H(C,wz)- = H'(C.wp) @ H(C, wp)2 @ H(C. wz)s ® H(C, wp)s.

where H O(C wg); is the eigenspace w.r.t the character i € Z6 For a cyclic cover, these are
standard to compute, e.g. [11], p. 799 We have that dim H° (C )1 = dim HO (C a)C)S =
1, dim H° (C w§)2 =0, dim HY (C ,wF)4 = 1. The group G = Zs acts on HO(C, wF) -
by w — &sw so that we have HO(C, wF)—i = =HO (C a)c), Now, we can compute the

dimension of P(G). This is equal to dlm(SZHO(C, wc)_)G, as we remarked earlier. Note
that

(S2H(C. wp) )% = HO(C. wp)1 ® HOC. 0p)s
So dim P(G) = 1.
e As an abelian and non-cyclic example consider the Z3 x Zsz-cover of P! given by the

matrix (é (1) ; (1)> In other words, this family is given by equations

wi = (z—21)(@ —22)(z — 23)
w; = (z —23)%(z — 24)
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This family is one of the families with abelian Galois group which gives rise to special
subvarieties in the Torelli locus, see [12] or [10] for more details.

Consider the quotient Z3 x Z3 — Zs3 by the second factor. This corresponds to a cover
5, — C; which is totally ramified in 3 points and g(C,) = 1. In fact the quotient curve
C; is just given by the first of the above equations w3 = (z — z1)(z — 22)(z — z3) or
equivalently by the first row of the above matrix. This famlly corresponds to the example
with data (r, g, #) = (4,4, 7) in the table. The automorphism v of order 3 corresponds to
the automorphism w; — wiy, wy > &3 wg, where &3 is a primitive 3rd root of unity. Using
this action, we compute the eigenspace H° (C, wg)—. We have that

HO(C, w§)_ = HO(C, w&F)a,n @ HO(C, w§F)1,2) D HO(C, wF) 2,1

where HO (C wg); is the eigenspace w.r.t the character i € Z3 x Z3. For an abehan cover,
these dlmensmns are computed in [10], Prop 2.8. We have that dim H° (C wF)1,1) =
dim H° (C wF)1,2) = HO (C w§) 2,1 = 1. Hence

(S*HO(C, wz) )¢ = H(C, wp) a2 ® H(C, wp) 2.1y
So dim P(G) = 1.

e Consider the family given by the monodromy data (6, (1, 1, 1, 1, 2)), i.e., the family
y6 =x—-t)kx—-n)x—1)x—1)x— t5)2. This family has Galois group Z¢ and fiber
genus 7. The quotient by the subgroup Zs3 gives rise to a triple cover C; — C; which
is totally ramified at 6 points. The quotient curve C; corresponds to the Z,-covering

2= (x —t1)(x — )(x — 13)(x — t4), which is a curve of genus 1. Hence the family

of Prym varieties is contained in Rg 6] and this family corresponds to the example with
data (r, g, #) = (5, 4, 2) in the table.

The automorphism § of order 3 corresponds to the automorphism y +— Sgy, where &3 is a
primitive 3rd root of unity. Using this action, we compute the eigenspace H° (C, w§)—. We
have that

H(C, 0p)- = H(C.0p)1 @ H'(C, wg)2 ® H(C, wg)s ® H(C, wp)s,

where H O(C wg)i is the eigenspace w.r.t the character i € Zg. We have the dimensions
dim H°(C, wg)1 =3, dim HO(C L wg)2 =2, dim H° (C,wz)s = 1,dim HO(C wg)s = 0.
The group G = Zg acts on H(C, wF)— by y > &gy so that we have HO (C wF)—,i =
HO (C, wg)i- Now, we can compute dim P(G) = dlm(SzHO(C, wc),)G. Note that

(S2H(C.wz) )¢ = H(C, w)2 ® H(C. )4

So dim P(é) = 2. This implies that the family satisfies condition (A). Since the family is
two dimensional, it is not enough to conclude and we must still show that condition (B) holds.
In order to do this we use the basis of the differential forms introduced earlier. It holds that

5
HO(C, wg)-2 = H(C, wp)2 = <oc1 =y [ =) dx, e = xa1>
i=1
and
Ho(a,wﬁ)fA = HO(G,w5)4

=B=y'a-—n - - - )T —15)"2dx),
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so that (S2HO(C, wg)— )G = (a1 © B, ar © B). We have

dx)? x(dx)?
M ©f) = =L om0 = —
[Ti—i(x —1) [[oix—1)
Sov =aj(a; © B) + ax(ex © B) € ker(m) if and only if a; i (d)(‘) +a ]_[x(d(x) 5= =0.
1 i=1 X l

It is straightforward to see that this holds if and only if a; = a» = O This shows that m is
injective and by condition (A), it is an isomorphism, so condition (B) is satisfied.

e Consider the family of genus 2 curves with non-abelian Galois group G = Dy and
ramification data (23, 4). This family corresponds to the example with data (r, g, #) =
(4,2,3) in the table and does not satisfy (B1) and therefore we can not conclude by
showing the isomorphy of the multiplication map. However, in this case the quotient
curve C is isomorphic to P! and so by the remark after Theorem 2.1, the family of
Prym varieties P(5 /C) is isogeneous to the family of Jacobians. A close inspection of
Tables 1,2 in [6] shows that this famiy is family (29) of that paper and hence it is a
special family. The same argument shows that the families of genus 3 curves with Galois
group G = Dy, ramification data (25) and H = Z2 which corresponds to examples
(r,g,#) = (5,3, 1), (5,3, 2) in the table are isogeneous to the family (32) of [6] and so
are also special 2-dimensional families (these also do not satisfy (B1)).

e An abelian example that does not verify condition (B1) is the following family. Consider

1012 2). Then the curve C has genus 7

~ _ 2 1 =
G = Z3 and the monodromy matrix A = <0 2202

and equations
wi = (z —21)(z — 23)(z — 24)%(z — 25)°
w3 = (2 — 22)*(z — 23)%(z — 25)*

Also consider the subgroup H = Zj generated by the element (0, 1)’, that acts as
wi > wi, wy > 3wy, where &3 is a primitive 3rd root of unity. We have HO(C, w§F)- =
V.2 @ Vi, @ V1) @ Via,2) ® Vi2,2), where all summands have dimension 1. Then
we obtain

(S2H'(C, wa)—)G = Va1 ®Ve2) & Vap ® Vo)
hence condition (B1) is not satisfied. We have
wiwl

H'(C, wF)1,1) = <w1 = dx>
[T —zi)(z—25)?
i=1

2,,2
wiw
wy) = 7 12 dx>

(z—z) [1@—z)%(@z —z5)3
=2

~ w w2
H(C, wg)12) = <w3 12 dx

HY(C.wp)e2) =

(z —z21)(z — 22)%(z — 23)%(z — 24)(z — 25)?

2
~ wiyw?r
HO(C,wa)(z,l) =({w4 = 1 dx >

(z —z1)(z — 22)(z — 23)%(z — z4)%(z — 25)?
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Hence we compute

(dx)?
(z—z1)(@—22)(z —24)(z — 25)
(dx)?
(z =21z —22)(z = 23)(z — 24)
and we find that ajv; + a2v> = 0 if and only if a; = a» = 0, so m is injective.
Together with condition (A) this implies that (B) holds. Thus the family gives rise to a
2-dimensional Shimura variety. ~
e Consider the 3-dimensional family with group G = Z% and monodromy matrix A =
001100

011101 ].The equations of the genus 5 curve C are
111111

v i=m(w) © w2) =

v i=m(w3 QO wy) =

w} = (z —23)(z — 24)

wi = (z —22)(z — 23)(z — 24)(z — 26)

w3 = (2 — 21z — 22)(z — 23)(z — 24) (2 — 25)(2 — 26)
We consider the Z%-coverN given by the action of the subgrgup H=(1,0, 9)’, 0, 1, 0)%).
The quotient curve C = C/H has genus 2. We have HO(C, w§)_ = HO(C, w§)0,1,0) D

HO(G, wF)(1,0,1) @ HO(G, ®g)(1,1,1) where each summand has dimension 1. Then we
get

Y2

0/~ _ _
H(C, 0p)0.1.0) = (@1 = (z—22)(z —23)(z — 24)(z — za)dx)
HO 5, - _ _ y1)y3 d
(Copaon = o= S e — e — G-z
yiy2y3

HO(C, oF)(1,1,1) = (w3 =

(z —z1)(z — 22)(z — 23)%(z — 24)*(z2 — 25)(z — 26) *)
thus if we set

(dx)?

v i=m(w O o) = (z—22)(z —23)(z2 — 24)(z — 26)
(dx)?

vy i=m(wy O wy) = (z—21)(z — 22)(z — 25)(z — 26)
(dx)?

v3 1= m(w3 O w3) =
(z—z1)(z —z3)(z — z4)(z — 25)
we find that aj vy + apvy + azvs = 0 if and only if a; (z — 21)(z — z5) + a2(z — 23)(z —
24) + a3(z — 22)(z — z6) = 0, i.e. a1 = az = a3 = 0. Hence the multiplication map is
an isomorphism and the family gives rise to a special subvariety.

We list all the obtained Prym data that give rise to Shimura varieties. For each example it
is reported: the number r of critical values on P!, the genus g of C and g of C, the dimension
p = g — g and progressive index (#), the group G and the subgroup H determining the
Prym cover, the number of ramification and branch points of this cover, the quotient group
G=G /H acting on C. Finally the fulfilled conditions are marked.
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r % g p # G H Rampt Brpt G  (Bl) (B2) (B)
4 5 0 5 1 Cg Cy 8 6 C Vv v v
4 5 1 4 2 CrxCy C3 8 4 C v v
4 5 0 5 5 C3 x Cy Ce 16 6 Cy v v
4 5 1 4 38 CyxCs C3 4 4 G v v
4 5 1 4 9 CyxC¢ Cg 4 2 C Vv v
4 5 2 3 12 CIxcy C2 0 0 Cs v v
4 5 2 3 15 CIxcy C2 0 0 Cy v v
4 5 1 4 1618 CIxCy C4 8 4 g v v v
4 5 1 4 17 3xCy C2 8 4 g v v v
4 5 1 4 19 C3xCy CyxCy 8 2 G v v
4 5 2 3 29 Crx Ay C3 0 0 Ce v v
4 5 2 3 30 C3xDy C3 0 0 Dy v v v
4 5 1 4 31 C3xDy C3 8 4 c v v
4 5 1 4 3233 CIxDy G4 8 4 Dy v v
4 5 1 4 3436 CIxDy CyxCs 8 2 c3 v v
4 5 1 4 37 C3x Dy C4xCy 8 1 Gy v v
4 5 2 3 45 Cyx Sy €2 0 0 D v v
4 6 0 6 1 Cio Cs 5 5 C v v v
4 7 1 6 12 Cg C4 4 4 C v v
4 7 1 6 Co C3 6 6 C3 v v
4 7 1 6 4 Cio Cs 3 3 Cy v v
4 7 1 6 Cra C3 6 6 Cyq v v
4 7 1 6 9 Cr2 Cy 8 5 C3 v v
4 7 0 7 10 Cin Ce 12 6 G Vv v v
4 7 2 5 11 Ci C3 3 3 Cy v v
4 7 1 6 12 Cy xCs Cx 6 6 (o v v
4 7 1 6 13 CrxCs Cg 6 3 G Vv v v
4 7 2 5 1415 C2 Cy 4 2 Cy v v v
4 7 2 5 1617 CyxCy Cy 4 2 Cs v v
4 7 1 6 18 Cy xCg Cy 4 4 (o v v
4 7 2 5 19 CyxCg Cq4 4 2 Cy v v v
4 7 1 6 20 CyxCg Gy 4 2 C Vv v v
4 7 1 6 2325 CrxQs Ca 12 6 c3 v v
4 7 1 6 2 Cyx Qg O 12 3 Cy v v
4 7 2 5 29 C3 x 83 C3 3 3 S3 v v v
4 7 3 4 30 C3 x 83 C3 0 0 Ce v v
4 7 2 5 31 C3 x 83 C3 3 3 S3

4 7 2 5 32 C3 x Cq C3 3 3 Ce v v v
4 7 3 4 33 C3 x Cq C3 0 0 Ce v v v
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