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Abstract
In this study, an effective numerical technique has been introduced for finding the solutions of the first-order integro-differ-
ential equations including neutral terms with variable delays. The problem has been defined by using the neutral integro-
differential equations with initial value. Then, an alternative numerical method has been introduced for solving these type 
of problems. The method is expressed by fundamental matrices, Laguerre polynomials with their matrix forms. Besides, 
the solution has been obtained by using the collocation points with regard to the reduced system of algebraic equations and 
Laguerre series.

Keywords Neutral type equations · Integro-differential equation · Variable delays · Laguerre polynomial and series · Matrix 
method

Introduction

Delay differential equations in neutral type and integro-dif-
ferential equations are of an attractive interest in many appli-
cations in science and engineering. In applied mathematics, 
they have an increasing enthusiasm by their implementation 
in dynamical systems, electrodynamics and mechanics as 
well. In recent years, numerical treatment of the neutral type 
integro-differential equations has been arised [1]. These type 
of equations occur in mechanics, physics, technical problems 
such as progress for showing cutting and infeed grinding. 
Besides, they describe some procedures in chemistry and 
physics for reactors. Moreover, some well-known biological 
processes growth, death and birth are determined by neu-
tral type equations. In ecological phenomena, some models 
with respect to the neutral type integro-differential equa-
tions are used for evolution equations of single species [2]. 
Furthermore, many applications of these types of equations 
exist in medicine. For instance, sugar quantity in blood is 
modeled by using them; immunology, epidemiology, can-
cer chemotherapy may explain different aspects of human 

body interaction with diseases. As another example, in Fig. 1 
model of pressure regulation of model of arterial blood is 
represented by the formulation of functional differential 
equations. In this figure, arterial vessels are shown by A and 
B. These arterial vessels have connections to each other, 
blood flow from A to B has a rate which is shown by Q, R 
represents peripheral resistance, and the heart productivity is 
denoted by Qh . The incoming liquid rate is Qin while the out-
coming rate is Qout [3]. Furthermore, epidemic of the human 
immunodeficiency virus (HIV) is modeled by the system 
of functional integro-differential equations. Besides, fishing 
process, river pollution control can be described and these 
examples are ecological applications in the ecology field.

Neutral type delay integro-differential equations under 
the initial condition are of numerical solutions which have 
been reached by many authors. Such problems have dif-
ficulties in motivation but also often appear at numerical 
investigations. Functional integro-differential equations 
including Volterra type integrals have been searched with 
regard to numerical analysis aspect by Brunner [4]. Col-
location methods have been applied for solving Volterra 
functional integral equations including non-vanishing delays 
[5]. Besides, in the literature, continuous spline collocation 
methods [6], Lagrange interpolation and Chebyshev interpo-
lation [7], Adams–Moulton method [8], backward substitu-
tion method [9], continuous Runge–Kutta method [10–12], 
Spectral method [13] have been implemented in order to find 
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the solutions of neutral type integro-differential equations 
including variable delays.

In this work, the following first-order integro-differential 
equation including neutral terms and variable delays is con-
sidered as

under the initial condition

where P0(t),P1(t), u(t), v(t), g(t) and the delay term �(t) are 
defined as continuous functions for ∞ > b > t ≥ 0 . Here the 
aim is about finding a numerical solution yN(t) by using the 
truncated Laguerre series of given problem (1)–(2):

where an, n = 0, 1, ...,N are unknown coefficients; Ln(t) are 
the Laguerre polynomials for n = 0, 1, ...,N and defined as

Numerical method

In this section, the numerical method based on Laguerre 
polynomials is introduced. The main advantage of the 
method lies in its straightforwardness since it has no aim for 

(1)y�(t) + P1(t)y
�(t − �(t)) = P0(t)y(t) +

t−v(t)

�
t−u(t)

K(t, s)y(s)ds + g(t), 0 ≤ t, s ≤ b,

(2)y�(0) = �0,

(3)yN(t) =

N∑
n=0

anLn(t),

(4)Ln(t) =

n∑
r=0

(−1)r

r!

(
n

r

)
tr.

discretization as a reliable tool. On the other hand, Laguerre 
polynomials give powerful solutions, especially on the posi-
tive interval since its applications in several fields with these 
types of properties.

Fundamental relations

In here, the matrix forms of Eq. (1) are composed. First of all, 
it is organized as

where

Then, the matrix form of the numerical solution (3) is con-
sidered as

where

here �(t) is defined as in the matrix form:

where

Thus, the connection between �(t) and ��(t) is defined as

(5)D3 + D2 = D1 + I + G,

D1 = P0(t)y(t); D2 = P1(t)y
�(t − �(t)); D3 = y�(t) ; I =

t−v(t)

∫
t−u(t)

K(t, s)y(s)ds; G = g(t).

(6)
[
y(t)

]
= �(t)�,

�(t) =
[
L0(t) L1(t) L2(t) … LN(t)

]
and � = [a0 a1 ... aN]

T .

(7)�(t) = �(t)�

�(t) =
[
1 t t2 … tN

]
,

� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−1)0

0!

�
0

0

�
(−1)0

0!

�
1

0

�
(−1)0

0!

�
2

0

�
⋯

(−1)0

0!

�
N

0

�

0
(−1)1

1!

�
1

1

�
(−1)1

1!

�
2

1

�
⋯

(−1)1

1!

�
N

1

�

0 0
(−1)2

2!

�
2

2

�
⋯

(−1)2

2!

�
N

2

�

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯
(−1)N

N!

�
N

N

�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(8)��(t) = �(t)�

Fig. 1  A diagram to describe the cardiovascular system



15Mathematical Sciences (2022) 16:13–21 

1 3

in which

Therefore, the matrix relations (7) and (8) are used and 
��(t) is defined as follows

So that, from (7) and (9)

is obtained in which � is described as

Thus, from (6), (7), and (10) [14]:

By replacing t → t − �(t) into (11) and by using (9), we 
obtain

where

Diversely, the kernel function K(t, s) is obtained by using 
the Taylor series as

Then, its matrix form is written as

� =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 … 0

0 0 2 … 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 N 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

.

(9)��(t) = �(t)��

(10)�(t) = �(t)�−1; ��(t) = �(t)�,

� =
[
cpq

]
, cpq =

{
−1, p < q

0, p ≥ q
.

(11)
[
y�(t)

]
= �(t)��

(12)
[
y�(t − �(t))

]
= �(t − �(t))�� = �(t − �(t))��� = �(t)�(t − �(t))���

�(−�(t)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�
0

0

�
(−�(t))0

�
1

0

�
(−�(t))1 …

�
N

0

�
(−�(t))N

0

�
1

1

�
(−�(t))0 …

�
N

1

�
(−�(t))N−1

⋮ ⋮ ⋱ ⋮

0 0 …

�
N

N

�
(−�(t))0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

K(t, s) =

N∑
i,j=0

kijt
isj , kij =

1

i!j!

�i+jK(0, 0)

�ti�sj
, K =

[
kij
]
, i, j = 0, 1, ...,N.

(13)�(t, s) = �(t)��T (s).

By means of the relations (9) and (13), the integral part 
of Eq. (1) has a matrix form as

where

and

Similarly, from (11), the initial condition in Eq. (2) has 
the matrix form as

Therefore, we obtain the matrix forms of D1, D2, D3 and 
I in Eq. (5), from (6), (12), (11), and (14), respectively, as

So that, Eq. (1) can be represented by the following 
matrix equation as

Method of solution

In this section, the collocation points are defined by

Thus, the collocation points (17) are substituted into 
Eq. (16) and the fundamental matrix is obtained asor

(14)
t−v(t)

∫
t−u(t)

�(t)��T (s)�(s)�ds = �(t)�

t−v(t)

∫
t−u(t)

�T (s)�(s)ds�� = �(t)��(t)��,

�(t) =

t−v(t)

∫
t−u(t)

�T (s)�(s)ds =

t−v(t)

∫
t−u(t)

[si+j]ds = [qij(t)],

qij(t) =
(t − v(t))i+j+1 − (t − u(t))i+j+1

i + j + 1
, i, j = 0, 1,… ,N.

(15)
[
y�(0)

]
= �(0)�� =

[
�0
]
.

D1 = �0(t)�(t)�

D2 = �1(t)�(t)�(t − �(t))���

D3 = �(t)��

I = �(t)��(t)��.

(16)

�(t)�� + �
1
(t)�(t)�(t − �(t))���

= �
0
(t)�(t)� + �(t)��(t)�� +�(t).

(17)ti =
b

N
i, i = 0, 1,… ,N

�(t
i
)�� + �

1
(t
i
)�(t

i
)�(t

i
− �(t

i
))���

= �
0
(t
i
)�(t

i
)� + �(t

i
)��(t

i
)�� +�(t

i
)
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where

Briefly,

Here we have the augmented matrix form of Eq. (18). 
Besides, we consider the initial condition which is given in 
Eq. (2). Its matrix form is defined in Eq. (15). By putting the 
row from (15) in place of the last row of (19),

Then, we construct the new augmented matrix as

In Eq. (20), if rank
[
�̃
]
= rank

[
�̃;�̃

]
= N + 1 , then the 

coefficients matrix � is uniquely determined with the help 
of Gauss Elimination procedure [15–22]. Then, by using 
Eq. (3), the problem (1)–(2) is solved numerically and its 
numerical solution is obtained as in the form

Analysis of the method

In this section, some properties of the method are intro-
duced. The stability of the collocation methods has been 
investigated previously by Brunner et al. [23, 24]. Besides, 
the stability of the related problem has been also considered 
by some authors [25, 26]. However, existence and unique-
ness theorems and convergence of the method are given as 
follows.

(18)
{
�� + �1����� − �0� − ����

}
� = �

� =

⎡⎢⎢⎢⎣

L0(t0) L1(t0) … LN(t0)

L0(t1) L1(t1) … LN(t1)

⋮ ⋮ ⋱ ⋮

L0(tN) L1(tN) … LN(tN)

⎤⎥⎥⎥⎦
, � =

⎡⎢⎢⎢⎣

a0
a1
⋮

aN

⎤⎥⎥⎥⎦
, � =

⎡⎢⎢⎢⎣

g(t0)

g(t1)

⋮

g(tN)

⎤⎥⎥⎥⎦
,

�0 = diag
�
P0(t0) P0(t1) … P0(tN)

�
,

�1 = diag
�
P1(t0) P1(t1) … P1(tN)

�
,

� = diag
�
X(t0) X(t1) … X(tN)

�
,

�� = diag
�
X(t − �(t0)) X(t − �(t1)) … X(t − �(tN))

�
.

(19)�� = � or [�;�]

�̃ =

⎡
⎢⎢⎢⎢⎢⎣

𝜔00 𝜔01 𝜔02 … 𝜔0N

𝜔10 𝜔11 𝜔12 … 𝜔1N

⋮ ⋮ ⋮ ⋱ ⋮

𝜔(N−1)0 𝜔(N−1)1 𝜔(N−1)2 … 𝜔(N−1)N

u00 u01 u02 … u0N

⎤
⎥⎥⎥⎥⎥⎦

, �̃ =

⎡
⎢⎢⎢⎢⎢⎣

g(t0)

g(t1)

⋮

g(tN−1)

𝜆0

⎤
⎥⎥⎥⎥⎥⎦

.

(20)�̃� = �̃ or
[
�̃;�̃

]
.

y(t) ≅ yN(t) =

N∑
n=0

anLn(t).

Convergence of the method

Definition 1 Let yN(t) be the approximate solution of the 
problem (1)–(2) which has an exact solution as y(t) . Then, 
the collocation method is said to be convergent if an only if

where h is the step size and h → 0, N → ∞ [27–31].

Definition 2 If the largest number is p for the finite constant 
C, then the method is of order p such that [27–31]

where h is the step size and h → 0, N → ∞ [27–29].

Theorem 1 Consider the first-order integro-differential 
equation including neutral terms and variable delays in 
Eq. (1) under the initial condition (2). Then,

 i. g(t)   is continuous in 0 ≤ t ≤ b,
 ii. K(t, s) is a continuous function for 0 ≤ t ≤ b and 

‖y‖ < ∞,
 iii. K(t, s) satisfies a Lipschitz condition as follows

for all 0 ≤ t, s ≤ b . Then, the problem (1)–(2) has a 
unique solution [27–31].

Theorem  2  Consider  tha t  g(t) ∈ C[I ×ℝ
N ,ℝN] , 

K(t, s) ∈ C[I × I ×ℝ
N ,ℝN] and K(t, s) ∈ C[I × I ×ℝ

N ,ℝN] 

f o r  
t−v(t)∫
t−u(t)

|K(t, s)y(s)|ds ≤ N  f o r  0 ≤ t, s ≤ b  , 

y ∈ Ω =
{
� ∈ C[I,ℝN] ∶ �0(0) = t0 and

||�(x) − �0
|| ≤ b

}
 . 

Then, our initial value problem (IVP) (1)-(2) has at least one 
solution [27–30].

Existence and uniqueness

Theorem 3 Consider the first-order integro-differential 
equation including neutral terms and variable delays in 
Eq. (1) under the initial condition (2). Assume that g(t) and 
K(t, s) are continuous functions which satisfy the Lipschitz 
conditions. Then,

(21)lim
h→0

||yN(ti) − y(ti)
|| → 0, i = 0, 1,… ,N,

(22)||yN(ti) − y(ti)
|| ≤ Chp, i = 0, 1,… ,N.

(23)‖‖K(t, s)y1 − K(t, s)y2
‖‖ ≤ L‖‖y1 − y2

‖‖

(24)
‖‖g(t)y1 − g(t)y2

‖‖ ≤ L‖‖y1 − y2
‖‖,

‖‖K(t, s)y1 − K(t, s)y2
‖‖ ≤ L‖‖y1 − y2

‖‖,
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for every ||t − t0
|| ≤ a and ||s − t0

|| ≤ a for any initial value 
t0 and the positive constant a > 0 , ‖‖y1‖‖ < ∞ and ‖‖y2‖‖ < ∞ . 
Then, the IVP has a unique solution.

Proof [28–30].

Accuracy

In this section, the accuracy of the approximate solution is 
investigated. As an important factor for the numerical meth-
ods in the literature, the approximate solutions are corrected 
with regard to the residual error correction procedure. On 
the other hand, a brief error analysis is given in order to 
reach the approximation for the problem (1)–(2).

Residual correction

In here, the residual correction is given in order to improve 
the solutions and for the comprehensive error analysis for the 
approximate solution of the problem (1)–(2) [17, 18, 32–37].

Now, let us consider the er ror function as 
eN(t) = y(t) − yN(t) . Then, we construct an error problem 
in the form

Subsequently, the numerical method is applied on the 
error problem in Eq. (26) and we have the approximate solu-
tion for the error function in the form as follows

Thus, the corrected approximate solution is obtained as

(25)RN(t) =

|||||||
y�
N
(t) + P1(t)y

�
N
(t − �(t)) − P0(t)yN(t) −

t−v(t)

∫
t−u(t)

K(t, s)yN(s)ds

|||||||
, y�(0) = �0.

(26)e�
N
(t) + P1(t)e

�
N
(t − �(t)) = P0(t)eN(t) +

t−v(t)

∫
t−u(t)

K(t, s)eN(s)ds, e�
N
(0) = 0.

(27)eN,M(t) =

M∑
n=0

a∗
n
Ln(t).

(28)yN,M(t) = yN(t) + eN,M(t).

Error analysis

In this section, we investigate the absolute error function 
EN(t) for t = tp ∈ [a, b], p = 0, 1, 2, ....

and the accuracy of the numerical solutions is checked. Spe-
cifically, if EN(tq) ≤ 10−kq ( kq any positive integer) is small 
enough, then the approximation has its reliability.

Algorithm

In here, the present method is shown by its algorithm. The 
steps are explained clearly in order to see the implementa-
tion of the computer programming part of the work.

Step 0 Input initial data: P
0
(t) , P

1
(t) , u(t) , 

v(t) and �(t)
Step 1 Set m ≤ N for m ∈ ℕ

Step 2 Construct the matrices such as 
�(t), �, �

Step 3 Replace in the fundamental equa-
tion

Step 4 Put the collocation points, 
ti =

b

N
i, i = 0, 1,… ,N into the 

fundamental equation in S3
Step 5 Calculate [�;�]

Step 6 Compute the matrix for the initial 
condition

Step 7 Substitute the outcome from S6 
into the matrix in S5 and get [
�̃;�̃

]
Step 8 Determine the system in S7. 

Output: yN (t)
Step 9 Accuracy check:EN(t)

(29)EN(tp) =

|||||||
yN(tp) − y�(tp) − P1(tp)y

�(tp − �(tp)) + P0(tp)y(tp) +

t−v(t)

∫
t−u(t)

K(tp, s)y(s)ds

|||||||
≅ 0
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Step 10 If EN(tq) ≅ 0 . Stop
Step 11 Else back S1

Numerical experiments

Numerical experiments section gives us an idea about 
the method and its applicability, validity and reliability. 
The applications of this method have been implemented 
by using some numerical illustrations. Here Maple and 
MATLAB computer programs are used for the calculation 
algorithm and plotting.

Example 1 Firstly, the first-order Volterra integro-differential 
equation including neutral term and variable delay.

under the initial condition

Hereby approximate solution of (30)–(31) is found by 
using the algorithm of the present method for N = 4.

The collocation points (17) are set for N = 4 on the inter-
val [0,1] which are as follows.

Then, Eq. (1) has its fundamental matrix equation as{
�� + �1����� − �0� − ����

}
� = �

where

(30)

y�(t) +

(
15t2

2
+ t + 1

)
y�(t − y(t)) = y(t) +

t−(1−3t)

�
t−1

y(s)ds, 0 ≤ t ≤ 1

(31)y�(0) = 1

(32)y(t) ≅ y4(t) =

4∑
n=0

anLn(t)

t0 = 0, t1 =
1

4
, t2 =

1

2
, t3 =

3

4
, t4 = 1.

�1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 55∕32 0 0 0

0 0 27∕8 0 0

0 0 0 191∕32 0

0 0 0 0 19∕2

⎤
⎥⎥⎥⎥⎥⎦

, �0 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

, � =

⎡
⎢⎢⎢⎢⎢⎣

1

5∕4

3∕2

7∕4

2

⎤
⎥⎥⎥⎥⎥⎦

,

� =

⎡⎢⎢⎢⎢⎢⎣

L0(0) L1(0) L2(0) L3(0) L4(0)

L0(1∕4) L1(1∕4) L2(1∕4) L3(1∕4) L4(1∕4)

L0(1∕2) L1(1∕2) L2(1∕2) L3(1∕2) L4(1∕2)

L0(3∕4) L1(3∕4) L2(3∕4) L3(3∕4) L4(3∕4)

L0(1) L1(1) L2(1) L3(1) L4(1)

⎤⎥⎥⎥⎥⎥⎦

, � =

⎡⎢⎢⎢⎢⎢⎣

0 −1 −1 −1 −1

0 0 −1 −1 −1

0 0 0 −1 −1

0 0 0 0 −1

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

,

� =

⎡⎢⎢⎢⎢⎢⎣

1 0 0 0 0

1 1∕4 1∕16 1∕64 1∕256

1 1∕2 1∕4 1∕8 1∕16

1 3∕4 9∕16 27∕64 81∕256

1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎦

, � =

⎡⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 2 0 0

0 0 3 0 0

0 0 0 4 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

, � =

⎡⎢⎢⎢⎢⎢⎣

1 1 1 1 1

0 −1 −2 −3 −4

0 0 1∕2 3∕2 3

0 0 0 −1∕6 −2∕3

0 0 0 0 1∕24

⎤⎥⎥⎥⎥⎥⎦

.

Table 1  Error comparison for different truncation values: N=6, 8 and 
10 for 0 ≤ t ≤ 1 of Example 2 with � = 2

t E
6
(t) E

8
(t) E

10
(t)

0.0 0.310003E−07 0.152872E−09 0.7290084 E−10
0.1 0.362380 E−07 0.182554 E−09 0.8628143 E−10
0.2 0.392103 E−07 0.179427 E−09 0.1005388 E−10
0.3 0.452390 E−08 0.179520 E−09 0.1167447 E−10
0.4 0.460112 E−08 0.748210 E−10 0.1371187 E−11
0.5 0.470210 E−08 0.739810 E−10 0.1634357 E−11
0.6 0.469890 E−08 0.741415 E−10 0.2083742 E−11
0.7 0.467535 E−08 0.741883 E−10 0.3533296 E−11
0.8 0.480254 E−08 0.741851 E−10 0.9147544 E−11
0.9 0.479244 E−08 0.758964 E−10 0.2819447 E−11
1.0 0.365974 E−07 0.120792 E−09 0.8338398 E−10

Table 2  Errors comparison for � = 3 and different numerical methods 
for 2 ≤ t ≤ 10 of Example 2

LCM MSSM

t e
9,10

(t) h = 0.2

2 1.139823 E−14 5.421496585000796 E−13
4 0.151262 E−16 6.515621375768887 E−14
6 0.141397 E−16 8.905202963926939 E−15
8 0.141953 E−16 1.222058478717036 E−15
10 0.153359 E−15 1.635112401379701 E−16
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So, the augumented matrix is found as

Now, the initial condition is defined in (31) has the matrix 
form as

So that the new augmented matrix is constructed as

[W;G] =

⎡
⎢⎢⎢⎢⎢⎣

2∕5 −1∕5 0 0 0 ; 1

1∕2 −1∕4 0 0 0 ; 5∕4

3∕5 −3∕10 0 0 0 ; 3∕2

7∕10 −7∕20 0 0 0 ; 7∕4

4∕5 −2∕5 0 0 0 ; 2

⎤
⎥⎥⎥⎥⎥⎦

.

[
y�(0)

]
=
[
1 0 0 0 0

]
.

By following the procedure, the system is solved, and 
then, an Laguerre coefficients are found as follows

Consequently, these calculated coefficients are estab-
lished and they are replaced in Eq. (32). Then, the exact 
solution of (30)–(31) is acquired as

�
W̃; G̃

�
=

⎡
⎢⎢⎢⎢⎢⎣

2∕5 −1∕5 0 0 0 ; 1

1∕2 −1∕4 0 0 0 ; 5∕4

3∕5 −3∕10 0 0 0 ; 3∕2

7∕10 −7∕20 0 0 0 ; 7∕4

1 0 0 0 0 ; 0

⎤
⎥⎥⎥⎥⎥⎦

.

a0 = 2, a1 = −1, a2 = 0, a3 = 0, a4 = 0.

(33)y(t) = t + 1.

Fig. 2  E
N
(t) error comparison for Example 2

Fig. 3  Comparison between exact solution with the numerical solu-
tions with regard to Laguerre approach for N = 4, 5, 6, 8 and 10 in 
Example 3

Table 3  Error comparison for 
different truncation values: N
=5, 6, 8 and 10 for 0 ≤ t ≤ 1 of 
Example 3

Laguerre collocation method (LCM) error results

t E
5
(t) E

6
(t) E

8
(t) E

10
(t)

0.0 0.1592426E−04 0.1460124E−05 0.1259787E−07 0.7290084E−09
0.1 0.3395409E−04 0.3266380E−05 0.1484878E−07 0.8628143E−09
0.2 0.7241097E−04 0.3894070E−05 0.1739167E−07 0.1005388E−08
0.3 0.1162061E−03 0.2697500E−05 0.2016250E−07 0.1167447E−08
0.4 0.1355990E−03 0.8985236E−06 0.2274026E−06 0.1371187E−08
0.5 0.8420424E−04 0.2892807E−05 0.2366310E−06 0.1634357E−08
0.6 0.1030002E−03 0.1772840E−04 0.1910115E−06 0.2083742E−08
0.7 0.5116663E−03 0.6075665E−04 0.5844883E−06 0.3533296E−08
0.8 0.1250068E−02 0.1554554E−03 0.4857541E−05 0.9147544E−08
0.9 0.2451094E−02 0.3354244E−03 0.1585916E−05 0.2819447E−07
1.0 0.4274240E−02 0.6465534E−03 0.3807165E−05 0.8338398E−07
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Example 2 As a second example, the first-order Volterra 
integro-differential equation including neutral term and 
delay is considered [37]

and the initial condition

corresponding to the exact solution yexact(t) = et . Corre-
spondingly, the problem (34)-(35) is solved by the similar 
approach which is followed in Example 1. In Table 1, abso-
lute errors for different N truncation values are demonstrated 
for their comparison. Herein this error comparison with dif-
ferent numerical methods: Laguerre collocation method 
(LCM) for M = 10 and N = 9 and mixed spline/spectral 
method (MSSM) with h = 0.2 in Table 2 and in Fig. 1. From 
these comparisons, we can see apparently that more suitable 
and efficient results are obtained for the smaller when we 
have increasing N value.

Example 3 Consider the first-order Volterra integro-differen-
tial equation including neutral term and delay from Eq. (1) 
with P1(t) = v(t) = g(t) = 0 , K(t, s) = u(t) = 1 and includ-
ing a delay term y(t − 1) together with P0(t) = 1 . Moreover, 
the initial condition is given as y(0) = 1 and the exact solu-
tion is yexact(t) = et . Then, the absolute errors for different N 
truncation values are demonstrated for their comparison in 
Table 3 and Fig. 2. Besides, we can see the numerical solu-
tions with regard to Laguerre approach and exact solution 
of the problem in Fig. 3. From these comparisons, we can 
see apparently that more suitable and efficient results are 
obtained for the smaller when we have increasing N value. 
Subsequently, there are improved results with related to the 

(34)

y�(t) = (� − 1)e(1−t) − (� + 1)y(t) + y(t − 1) − �

t

�
t−1

y(s)ds, t ≥ 0,

(35)y(0) = 1,

Sect. 4.1. Residual correction helps for a better approxima-
tion and give smaller values for the error function which is 
shown in Table 4.

Conclusion

In this study, a powerful numerical technique to determine 
the numerical solutions of first-order integro-differential 
equations including neutral terms and variable delays is 
proposed. The technique affords approximate solutions of 
the problem which are mainly close enough to the exact 
solutions with respect to N . Accuracy and applicability of 
the method have been proved by the visible results at the 
tables and the figures. The main advantages of this technique 
are including but not limited to straightforward coding, its 
apparent algorithm and accessible matrix calculations. 
Moreover, the error analysis including the residual correc-
tion supports the results with the additional error problem 
solution which is explained and applied in an example.

As a future outlook, this numerical study and the tech-
nique can be extended to other models with related to Volt-
erra integro-differential equations including retarded term. 
However, some modifications are required [38].
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