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Protease-activated receptors (PARs) are a unique class of G-protein-

coupled transmembrane receptors, which revolutionized the perception of

proteases from degradative enzymes to context-specific signaling factors.

Although PARs are traditionally known to affect several vascular

responses, recent investigations have started to pinpoint the functional role

of PAR signaling in the gastrointestinal (GI) tract. This organ is exposed

to the highest number of proteases, either from the gut lumen or from the

mucosa. Luminal proteases include the host’s digestive enzymes and the

proteases released by the commensal microbiota, while mucosal proteases

entail extravascular clotting factors and the enzymes released from resident

and infiltrating immune cells. Active proteases and, in case of a disrupted

gut barrier, even entire microorganisms are capable to translocate the

intestinal epithelium, particularly under inflammatory conditions. Espe-

cially PAR-1 and PAR-2, expressed throughout the GI tract, impact gut

permeability regulation, a major factor affecting intestinal physiology and

metabolic inflammation. In addition, PARs are critically involved in the

onset of inflammatory bowel diseases, irritable bowel syndrome, and tumor

progression. Due to the number of proteases involved and the multiple cell

types affected, selective regulation of intestinal PARs represents an interest-

ing therapeutic strategy. The analysis of tissue/cell-specific knockout animal

models will be of crucial importance to unravel the intrinsic complexity of

this signaling network. Here, we provide an overview on the implication of

PARs in intestinal permeability regulation under physiologic and disease

conditions.
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Introduction

Protease-activated receptors (PARs) are a unique class

of G-protein-coupled transmembrane receptors affect-

ing several biochemical responses, such as hemostasis,

vascular biology and various inflammatory pheno-

types. Since the cloning of PAR-1 in 1991 [1], three

additional receptors have been described: PAR-2 [2,3],

PAR-3 [4] and PAR-4 [5,6]. The first pathway ascribed

to PAR signaling was thrombin-induced platelet aggre-

gation. Since then, the observation that PARs are

expressed by multiple cell types and responsive to a

steadily increasing number of proteases placed these

receptors at center stage in vascular biology. The

mechanism of PAR activation revolutionized the per-

ception of proteases from being simply degradative

enzymes to pivotal context-specific signaling factors.

After protease-induced cleavage at the extracellular N-

terminal domain, the newly generated N-terminus acts

as a tethered ligand by interacting with the second

loop of the receptor [7]. To complicate the picture,

PARs are subjected to a ‘biased agonist’ activation,

depending on the position of the N-terminal peptide

bond hydrolyzed [8–10] (Fig. 1A). Due to its remark-

able complexity, PAR signaling still represents a chal-

lenging therapeutic target. Vorapaxar, for instance, is

a novel PAR-1 antagonist used as an antiplatelet agent

for secondary prevention of cardiovascular events [11].

The epithelium of the gastrointestinal (GI) tract has

become a new hot spot of PAR research. The GI tract

is indeed the body compartment exposed to the highest

number of proteases, either luminal or from the

mucosa. Several investigations demonstrated that all

PARs are expressed throughout the human GI tract,

from the salivary glands, to the stomach, along the

length of the gut, in the pancreas and in the liver [12–

17]. In the intestine, PAR signaling has been reported

both to mediate physiological functions, e.g. ion trans-

port, regulation of intestinal barrier function, gut

motility and sensory functions [18,19], and to exacer-

bate pathological conditions, like tumor development

and progression of inflammatory bowel diseases (IBD)

[20–22]. In conclusion, systematic investigation of

PAR signaling is required for a precise understanding

of GI tract pathophysiology.

PAR expression in the intestine and
their role in intestinal stem cell
differentiation

The GI epithelium is the largest body surface (approxi-

mately 400 m2) separating the external surrounding

from the internal milieu. To fulfill barrier function

while enabling selective assimilation of nutrients and

electrolytes, the intestinal epithelial cells (IECs) are

sealed by junctional complexes controlling paracellular

transport [23]. Notably, all members of the PAR fam-

ily were detected in the small intestine epithelium, and

in particular PAR-1 [24,25] and PAR-2 [26,27] are

expressed by human enterocytes and cells of the lam-

ina propria (Fig. 1B). PAR-2 is expressed both in the

apical and basolateral membrane of enterocytes, thus

regulating GI permeability through myosin light chain

kinase (MLCK) and b-arrestin [28]. In addition, PAR-

1, PAR-2 and PAR-4 are present in endothelial cells

[29], submucosal/myenteric neurons and immune cells

[30], while PAR-1 and PAR-2 were also detected in

fibroblasts, smooth muscle cells, mast cells and human

colon cancer epithelium. Surprisingly, the PAR-3

expression profile still remains unexplored [18].

The intestinal epithelium is the tissue with the most

vigorous renewal rate (every 4–5 days) in the human

body [31], fueled by rapid cell replacement in the villus

structures through differentiation of multipotent

intestinal stem cells (ISCs) localized in the bottom of

the Lieberk€uhn crypts [32]. Intriguingly, trypsin-medi-

ated PAR-2 activation is thought to promote intestinal

regeneration through stabilization of YAP protein in

colonic epithelial cells [33]. A villus/crypt structure, the

surrounding subepithelial fibroblasts and the underly-

ing mesenchymal tissue form an anatomical unit [34],

able to generate four terminally differentiated IEC

types, enterocytes (90% of the epithelial lineage), gob-

let cells, enteroendocrine cells and Paneth cells. Each

crypt contains 4–6 independent ISCs [35], which may

either self-renew or differentiate to transit amplifying

daughter cells, which undergo cycles of cell division

and differentiation while migrating along the crypt-vil-

lus axis [34,36,37], except for mature Paneth cells,

which escape upwards migration to localize at the base

of the crypts [38,39]. In this scenario, PAR-1 and

PAR-2 have been detected in ISCs, and are thought to

affect epithelial cell proliferation and upwards migra-

tion. In particular, PAR-2 (but not PAR-1), being

essential for glycogen synthase kinase-3b activation,

plays a critical role in the regulation of ISC survival

and proliferation in normal crypts, but also in colon

cancer [40]. Clearly, further research is needed to

unravel the role of PARs in IEC proliferation and

differentiation.

Activation of epithelial PARs by host
proteases

Both from the luminal and from the mucosal side,

the GI barrier is exposed to a myriad of proteases
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that have the capacity to activate PARs (Table 1). In

a conceptual view, luminal proteases include the

host’s digestive enzymes and the extracellular pro-

teases from the commensal gut microbiota, while

mucosal proteases are represented by the ectopically

expressed (extravascular) clotting factors and by the

enzymes released from gut resident (mast cells,

macrophages) or infiltrating immune cells (neu-

trophils) (Fig. 1B) [41]. It has been reported that

luminal proteases can cross the gut-vascular barrier

(GVB) into the bloodstream and vice versa, especially

under inflammatory conditions. Orally administered

proteases may translocate the GVB in an intact and

catalytically competent form by a self-enhanced para-

cellular transport, through disruption of tight junc-

tions (TJs). Protease formulations in enteric-coated

tablets are currently used for the treatment of

digestive and pancreatic disorders, leading to

increased serum proteolytic activity [42]. Conversely,

prothrombin and active thrombin were detected in

the intestinal lumen and in the mucosa during

inflammation [43].

Fig. 1. (A) Cleavage and activation of PAR-1 and PAR-2; (B) Activation of intestinal PARs by host proteases. (A) Schematic representation of

transmembrane human PAR-1 (in blue) and PAR-2 (in red) and their mechanism of proteolytic activation. For both receptors, the various

cleavage sites are represented by color-coded arrows along the amino acidic sequence. After proteolytic cleavage at the N-terminal

extracellular domain, the new N-terminus acts as a tethered ligand, transducing intracellular signalling by interacting with the second

extracellular loop of the receptor. An important exception is represented by biased activation of PAR-2 by NE, which does not require the

tethered ligand. Only representative proteases are shown: clotting factors (thrombin and the complex APC-EPCR), digestive trypsin,

neutrophil proteases (CG, NE, PR3) and tryptase from mast cells. (B) Representative drawing of the small intestinal epithelial lining. Mucin-

secreting goblet cells (in green) and enteroendocrine cells (in blue) are intermingled into the monolayer of simple absorptive enterocytes (in

pink), which are sealed by junctional complexes and represent approximately 90% of the epithelial lineage. At the base of Lieberk€uhn crypts

(not shown) ISCs self-renew and differentiate also into Paneth cells, which escape upwards migration. While all members of PAR family are

expressed throughout the GI tract, PAR-1 and PAR-2 were detected on small intestine enterocytes (for PAR-2, both in the apical and in the

basolateral side), and lamina propria cells, being thus susceptible to activation by either luminal or mucosal proteases, which are classified in

a simplified framework.
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Digestive proteases

Digestive proteases, such as trypsin and chymotrypsin,

are normally synthetized in the liver as inactive precur-

sors. Pancreatic acinar cells express multiple isoforms

for trypsinogen: trypsinogen I, II, mesotrypsinogen

and its splice variant trypsinogen IV, which is resistant

to trypsin inhibitors and co-expressed with enteropep-

tidase. After secretion from the pancreatic ducts,

trypsinogen is converted to trypsin on the brush bor-

der of enterocytes by enteropeptidase. Active trypsin,

in turn, promotes its own activation, attacks chy-

motrypsinogen, activates PAR-2 thus enhancing para-

cellular permeability, and, to a less extent, PAR-1 and

PAR-4 [26]. Under inflammatory conditions, trypsino-

gen I-II are prematurely activated in the pancreas,

yielding pancreatic trypsin that strongly stimulates

PAR2 signaling. Activation of trypsinogen IV in extra-

pancreatic epithelial tissues, including healthy and

tumor-affected colon, induces a strong and prolonged

stimulation of PAR-2 and PAR-4 [44].

Blood coagulation proteases

The effect of coagulation factors on platelet and

endothelial PAR signaling has been extensively studied.

Besides thrombin, activated coagulation factor VIIa

(FVIIa) and FXa, in complex with tissue factor (TF) or

endothelial protein C receptor (EPCR), are also able to

activate PARs [45,46]. On the vascular endothelium and

on monocytes, co-expression of PARs and TF drives

PAR-2 activation by the TF-FVIIa-FXa complex

[46,47], triggering intracellular calcium release, von

Willebrand factor release and exposure of P-selectin.

Notably, also human keratinocytes express PAR-2 and

TF [46,48–51]. Although it is generally known that the

TF-FVIIa complex is present on the surface of hepatic

Table 1. Proteases acting on intestinal PARs. Proteases are classified into luminal (digestive and microbial enzymes) and mucosal

(extravascular clotting factors, proteases from resident and infiltrating immune cells). For each protease listed, the targeted PAR(s) and the

tissue/cell type involved are detailed. Square brackets indicate an inactivating effect on PAR signaling; round brackets indicate a less

relevant signaling.

Protease Targeted PAR Cells and tissues Ref

Luminal proteases

Digestive proteases

Trypsin PAR-2 (PAR-1, PAR-4) Luminal trypsin: intestinal enterocytes;

pancreatic trypsin: (inflamed) pancreas

[26]

Extra-pancreatic trypsin IV PAR-2, PAR-4 Extra-pancreatic tissues, e.g. healthy and

tumor-affected colon

[44]

Microbial proteases (resident gut microbiota; invading pathogens)

Gelatinase (E. faecalis) PAR-2 Gastrointestinal tract, enterocytes [72,73]

Gingipains (P. gingivalis) PAR-1, PAR-2 Human gingival epithelial cells (RgpB),

fibroblasts (RgpB), oral epithelial cells,

oral keratinocytes

[76–80]

Serralysin (S. marcescens) PAR-2 HeLa cells, human intestinal carcinoma [81]

Protease (H. pylori) PAR-2 Gastric epithelial cells [82]

LasB (P. aeruginosa) PAR-2 Small intestine, duodenum [88]

Mucosal proteases

Clotting factors (extravascular)

Thrombin PAR-1, PAR-3, PAR-4 Intestinal mucosa and lamina propria [43]

FXa PAR-2 (PAR-1, PAR-3, PAR-4) Sites of FX extravascular expression [18]

TF-FVIIa PAR-2 (PAR-1) Hepatic, non-hepatic cancer cell lines [52]

TF-FVIIa-FXa PAR-2 Cells in which co-expression of PARs and

TF (high levels) occurs, like monocytes,

keratinocytes and endothelial cells

[46,48–51]

TF (non proteolytic) [PAR-2] Cancer cells, endothelial cells [53]

Immune cell proteases (resident or infiltrating)

Cathepsin G PAR-4 From neutrophils: activates PAR-4 on platelets

surface and endothelial cells

[89,126]

Neutrophil elastase PAR-2 From neutrophils, biased agonism [91]

Cathepsin G, elastase, proteinase 3 [PAR-1] [PAR-2] [PAR-4] From neutrophils, disarming of PARs [90]

Tryptase PAR-2 From mast cells; relevant action on colonic

nerve fibers in IBD

[92]
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and non-hepatic cancer cell lines [52], the origin and

transport of extravascular FVII is obscure. It has been

proposed that FVII expression, inducible by hypoxic

conditions, is sufficient to promote pro-invasive FXa-

mediated PAR-1 and PAR-2 signaling. Notably, PAR-2

signaling may also be downregulated by a direct non-

proteolytic effect of the TF cytoplasmic tail [53].

In the last years, increasing attention is arising on

PAR activation by coagulation factors that are

expressed on extravascular sites (Table 2). According

to the prevailing view, the synthesis of coagulation fac-

tors is restricted to the liver and the vascular endothe-

lium (e.g. FVIII) [54]. This paradigm was challenged

in 1996, when Yamada and Nagai first detected FX

expression in macrophages and in human epithelial

cells from nose, bronchus and duodenum [55]. Nota-

bly, in contrast to blood circulating FXa, surface-ex-

pressed FXa is protected from inhibition by

antithrombin III (ATIII) and tissue factor pathway

inhibitor [46]. Extravascular clotting factors have

indeed been often detected in selected body districts,

e.g. in the lungs, or under pathological conditions, e.g.

in the atheroma [56–60]. Surprisingly, albeit devoid of

a nucleus, also platelets were reported to produce sig-

nificant amounts of clotting factors [61]. Extravascular

expression of clotting factors was systematically ana-

lyzed by Dashty and co-workers in eight human pri-

mary cell types (Table 2) [62]. To complete the picture,

a recent investigation demonstrated the presence of

ectopic FIX in mouse small intestine, where expression

was upregulated by stimulation with Toll-like receptor

(TLR) agonists, such as lipopolysaccharide (LPS) from

Escherichia coli [63]. So far, the expression and prote-

olytic activity of extravascular clotting factors is lar-

gely unexplored and deserves further investigation.

Microbial proteases

The gut microbiota, harboring over 1014 commensal

microorganisms, influence several aspects of the intesti-

nal (patho)physiology. It is known that epithelial

PARs respond to microbial-associated molecular pat-

terns (MAMPs), as they communicate with nucleotide-

binding oligomerization domain (NOD)-like receptors

and TLRs in the orchestration of the immune response

[64]. However, the molecular mechanisms underlying

PAR signaling pathways are still under debate (Fig. 2).

Microbial colonization [65] and antibiotic treatment

[66] dramatically affect transcriptomes of IECs, by up-

or down-regulating the expression of hundreds of

genes [67]. Vascular remodeling of villus structures of

colonized mice, with respect to germ-free counterparts

[68], seems to be controlled by the microbiota-depen-

dent upregulation of PAR-1, triggering TF glycosyla-

tion. The activation of the PAR-1/TF loop, in turn,

results in increased transcript levels of the proangio-

genic angiopoietin-1 in IECs and phosphorylation of

its receptor Tie-2 [69]. In other body compartments,

such as human corneal epithelial cells, PAR-2 expres-

sion is upregulated by a bacterial serine protease (i.e.

Acanthamoeba plasminogen activator) [70].

In this context, the proteases secreted by commen-

sal bacteria represent a weapon arsenal through

which the microorganisms shape the GI habitat.

Through their proteolytic activity, bacterial proteases

may weaken the intestinal barrier by directly attack-

ing TJs, or via PAR signaling [71]. Recently, the

observation that fecal samples from IBD patients pre-

sent an increased gelatinolytic activity prompted

researches to investigate gelatinase from Enterococ-

cus faecalis, which disrupts the GI barrier through

Table 2. Ectopically expressed coagulation factors. List of coagulation factors detected in extravascular compartments and cells, except the

traditional sites of clotting factor synthesis: liver, platelets and endothelial cells.

Clotting factor Cell type, tissue, body district of detection Ref

Prothrombin Luminal and mucosal site of inflamed gut [43]

Thrombin Luminal and mucosal site of inflamed gut, synovial fluid, sputum of asthmatic

patients, prostate cancer

[59,60,127,128]

Fibrinogen Sputum of asthmatic patients [59,60]

FXa Human macrophages, human epithelial cells (nose, bronchus, duodenum),

human fibroblasts; human (pre)adipocytes; murine lungs epithelium (also

in asthmatic and fibrotic conditions)

[55–58,62]

FVa Human monocytes [62]

FVIIa Hepatic and non-hepatic cancer cells lines [52]

FVIIIa Human fibroblasts, human macrophages, human monocytes, human (pre)adipocytes [62]

FIXa Murine enterocytes [63]

FXIIIa Human macrophages, human monocytes [62]

TF Human monocytes, human keratinocytes [47,48]

a FIX(a), activated coagulation factor IX(a); FV(a), activated coagulation factor V(a); FVIII(a), activated coagulation factor VIII(a); FXIII(a), acti-

vated coagulation factor XIII(a).
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proteolysis of E-cadherin [72] and, notably, via PAR-2

activation [73]. As a matter of fact, activation of epithe-

lial PARs may be virtually promoted by all the arginine-

specific luminal bacterial proteases [74]. The most strik-

ing example is probably provided by gingipains, respon-

sible for the virulence of Porphyromonas gingivalis in

the onset of periodontal diseases [75]. In particular, argi-

nine-specific gingipain-A (RgpA) and arginine-specific

gingipain -B (RgpB) activate PARs on several cell types,

including human platelets [76] neutrophils [77], gingival

fibroblasts [78,79] and human oral epithelial cells [80].

Proteolysis of intestinal PAR-2, involved in the genera-

tion of inflammatory stimuli and in IBD, was also

reported for Serratia marcescens and Helicobacter py-

lori. While serralysin from S. marcescens has been sug-

gested to activate PAR-2 in human carcinoma and

HeLa cells [81], the protease secreted from H. pylori

that activates PAR-2 in gastric epithelial cells is still

under investigation [82] (Table 1).

Beyond direct proteolysis, bacterial proteases may

activate PARs through alternative pathways. Non-

canonical activation of blood clotting factors, as in the

case of prothrombin [83], FX [84] and FIX [85] by

gingipains, could play a relevant role in case of

extravascular localization. It was recently reported that

subtilisin, a serine protease from the gut commensal

Bacillus subtilis, is able to activate human prothrombin

[86]. Moreover, bacterial enzymes were shown to inter-

fere with digestive proteases and food uptake in health

and disease. From small to large intestine, trypsin

activity is proteolytically inactivated in a microbiota

dependent fashion (e.g. by Bacteroides distasonis) [87].

On the other hand, duodenal biopsies from celiac dis-

ease patients revealed a higher glutenasic activity with

respect to healthy controls, ascribed to LasB elastase

from Pseudomonas aeruginosa. In these genetically pre-

disposed subjects, LasB establishes a pro-inflammatory

phenotype through proteolysis of intestinal PAR-2

[88]. It is therefore likely that many unresolved micro-

biota-host interactions exist on the basis of microbial

proteases that interfere with epithelial PARs.

Proteases of immune cell origin

In the small intestine, the proteases released from

inflammatory cells represent a relevant mucosal source

of proteolytic activities. They are derived from (a)

mast cells, secreting e.g. tryptase, chymase, cathepsin

G (CG) and granzyme B, (b) resident macrophages,

producing matrix metalloproteases (MMPs), caspase,

cathepsin L, cathepsin D and, (c) under inflammatory

conditions, from infiltrating neutrophils, releasing

Fig. 2. Impact of gut microbiota on intestinal PAR signaling. Cartoon representing the apical side of two adjacent enterocytes connected by

TJs. Gut resident microorganisms continuously secrete MAMPs, which may either stimulate TLRs (e.g. LPS), NODs (e.g. peptidoglycan) or

PARs, thus triggering innate immune responses. Moreover, it has been reported that intestinal microbial colonization upregulates PAR-1

expression, promoting TF glycosylation and membrane migration. On the other hand, bacterial proteases, secreted by the resident

microbes, may either directly activate PARs (most importantly, PAR-1 and PAR-2), or promote proteolytic-mediated non-canonical pathways,

thus altering gut permeability.
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neutrophil elastase (NE), CG and proteinase 3 (PR3)

(Table 1) [41]. To give a few examples, while CG acti-

vates PAR-4 on the platelet surface [89], all neutrophil

proteases deactivate PAR-1 and PAR-2 by attacking

peptide bonds beyond the functional cleavage site [90].

Intriguingly, NE mediates a biased PAR-2 activation

through Rho kinase, in contrast to the traditional

trypsin-induced MAPK-mediated signaling [91]

(Fig. 1B). Whether this pathway is relevant in PAR-2

expressing immune cells or in colonocytes in IBD is

still under investigation. Notably, tryptase from

degranulated mast cells induces a prolonged PAR-2

activation which, if localized in proximity to colonic

nerves, correlates with pain and gut dysfunction in

IBD [92].

Conversely, PARs are widely expressed by immune

cells like lymphocytes, macrophages, monocytes, mast

cells and neutrophils [18,93]. Recruitment of innate

immune cells is of particular interest in the onset of a

pro-inflammatory state in IBD: a role of PAR-1 in the

regulation of chemical-induced colitis in mouse models

was indicated, although its precise effect has been

reported to be variable, with a still unresolved molecu-

lar mechanism [94]. On the other hand, PAR-2 was

implicated in the onset of a pro-inflammatory pheno-

type in the small intestine of mice infected with Toxo-

plasma gondii. More specifically, mediators of innate

immunity like interleukin-6, KC/chemokine (C-X-C

motif) ligand 1 as well as PGE2 and 8-isoPGA2 are

under the control of PAR-2 [95]. Moreover, PAR-2

agonists are capable of activating mast cells in human

subjects [96]. In turn, increased mast cell numbers and

tryptase levels have been reported in ulcerative colitis

(UC), and an up-regulated histamine metabolism was

reported in UC [97], Crohn’s disease (CD) [97], and

food allergy [98]. The effects of these proteases on

PAR activation is extremely complex, and, although

extensively studied in humans and animal models, the

general picture is still incomplete. Variable results have

been presented depending upon the species, genetic

background, and disease model used.

Even though a detailed understanding of the action

of PAR-activating proteases could offer a strategic tar-

get for the development of therapies, the clinical out-

comes of digestive, microbiota or innate immune cell-

derived proteases has not been pinpointed so far.

PAR-mediated intestinal permeability
regulation in inflammatory bowel
diseases

Regulation of trans- and para-cellular permeability of

gut epithelium warrants the host’s immune balance

between the luminal and extra-luminal environment.

In this context, imbalance of the protease/antiprotease

activity and bacterial dysbiosis may lead to epithelial

damage and increased intestinal permeability through

direct TJ cleavage or via PAR activation [71]. Actu-

ally, plasma and colonic tissue from CD and UC

patients exhibit enhanced levels of the PAR-1 activat-

ing proteases thrombin and matrix metalloprotease-1,

which correlate with the disease severity index [99–

101]. Gut pathologies are frequently associated with

alterations of paracellular epithelial permeability, e.g.

UC [102], CD [103], celiac disease [104,105] and irrita-

ble bowel syndrome (IBS) [106], and this factor is

indeed correlated to the disease activity index [106–

109]. Furthermore, stress has been shown to increase

colonic permeability through activation of mast cells

and stress-related stimulation of exocrine pancreatic

secretion, particularly trypsin [110].

In this context, PAR1-induced apoptosis contributes

to the epithelial barrier function in a caspase-3 depen-

dent manner both in vitro and in vivo [25]. On the

other hand, PAR-2 was found overexpressed in biop-

sies from IBD patients, thus hinting towards a patho-

physiological role in the etiology of colonic

inflammation [111], as well as in a mouse model of

spontaneous chronic colitis [112]. Indeed, luminal acti-

vation of PAR-2 by trypsin, bacterial proteases or

infusion of a PAR-2 agonist in mice is known to

increase intestinal paracellular permeability by contrac-

tion of the cytoskeleton [113]. This has been supported

by the fact that in contrast to PAR-2 deficient mice,

trypsin administration into the colon lumen of wild

type mice induced a fast and short inflammatory reac-

tion, with an increase in paracellular permeability and

bacterial translocation [27].

Similar to what was previously observed in UC

patients, a recent study showed the presence of high

levels of serine proteases in the feces of IBD and IBS

patients [114], and interestingly, incubation of the IBS

supernatants with PAR-1 lead to the activation of the

receptor, which was implicated in nerve activation

[115]. Strikingly, application of diluted fecal super-

natants from diarrhea-predominant IBS patients on

the mucosal side of murine colonic epithelium lead to

enhanced paracellular permeability in Ussing chamber

experiments. Pre-incubation of the supernatant with a

cocktail of serine protease inhibitors suppressed

this effect, which was not observed in PAR-2 deficient

mice [116]. Finally, oral antibiotic treatment in ani-

mal models was associated with a downregulation

of PAR-2 receptors on epithelial cells, reduced

permeability and the response to luminal activating

factors [113].
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Involvement of PARs in
gastrointestinal tumor progression

Although IBD patients are considered to be at high

risk of developing colonic cancer, due to the effect of

bacterial dysbiosis and chronic gut inflammation, the

impact of PAR signaling in the onset and progression

of intestinal cancer is less explored [45,117]. Beyond

being expressed in the healthy epithelium, PAR-1 and

PAR-2 are highly expressed in human intestinal adeno-

carcinoma cell lines and in stromal cells, and could

possibly enhance their proliferation and metastatic

capacity [45]. In this respect, stimulation of human

intestinal adenocarcinoma cell lines in vitro with either

thrombin or trypsin yielded an increase in proliferation

and invasiveness [118–120]. A pivotal role of PAR-1 in

colonic adenocarcinoma growth was also found in

C57BL/6 mice in vivo, as PAR-1 deficient mice showed

reduced tumor growth when inoculated with the mur-

ine MC-38 or the human HCT116 intestinal adenocar-

cinoma cell line [121]. This study demonstrated that

tumor growth was dependent on the hepatic prothrom-

bin synthesis, thus leading to thrombin formation and

subsequent PAR stimulation. In humans, the progno-

sis of patients with colorectal cancer is rather poor if

the tumor has the ability to express trypsin [122], thus

stressing the clinical importance of PAR signaling. In

a different study, PAR-1 deletion led to tumor pro-

gression in the colon and favored the apoptosis of

transformed epithelial cells. Here, PAR-1 deficient

mice were crossed with adenomatous polyposis coli

Min mice [activated protein C (APC)Min/+], resulting
in spontaneous development of intestinal adenomas. In

C57BL/6 wild type mice, fewer and significantly smal-

ler adenomas were detected in vivo, in comparison to

PAR-1-deficient mice. Similarly, after PAR-1 deletion,

transformed epithelial cells presented less apoptotic

events [123]. These studies demonstrate that the role of

PARs signaling in intestinal tumor progression is by

no means clear and depends on various factors (i.e.

model selection, influence of different proteases). Con-

versely, other studies suggested that colon cancer cells

can induce cancer-associated thrombosis by thrombin

via PAR-4 activation on platelets and subsequent

amplification [124]. Not only PAR-1 and PAR-2 are

expressed by colon cancer cells, but also overexpres-

sion of PAR-4 was detected in carcinogenic tissue,

associated with increased proliferation and migration

of cancer cells. PAR-4 is involved in extracellular sig-

nal-regulated kinase (ERK) 1/2 phosphorylation and

in the progression of colorectal cancer [125]. Further

mechanistic insights on the role of PARs from murine

colon cancer models and mounting clinical evidence

are needed to understand the role of PAR signaling in

intestinal carcinogenesis.

Conclusions

The variety of functions exerted by PARs in the intes-

tine and their widespread presence in different cell

types brought essential information about their effects

in the context of IBD and intestinal cancer. However,

the high complexity of PAR signaling is a big chal-

lenge for future therapies, based on targeted modula-

tion of PAR function. Basic research, performed on

transgenic animal models, for example with tissue-

specific deletion of PARs restricted to specific cell

types, will be instrumental to uncover the role of these

receptors in various intestinal pathologies. In particu-

lar, the functional role of the gut microbiota and its

contribution to PAR signaling through various micro-

bial proteases or by the stimulation of mucosal host

protease activities, but also by the differential regula-

tion of PAR expression profiles in the intestine, will be

an interesting area of research in the near future.
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