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Simple Summary: Adult-onset familial insulinomatosis is a rare disorder with recurrent, severe
hypoglycemia caused by multiple insulin-secreting pancreatic tumors. The etiology was unclear
until the genetic variant p.Ser64Phe in the MAFA protein, a key coordinator of insulin secretion in
pancreatic cells, was defined as the cause in two families. Based on the cases of two sisters with
insulinomatosis, we aimed to identify further disease causes. The sequencing of the complete coding
regions of the patients’ genomes revealed a second genetic MAFA variant, p.Thr57Arg, as the cause of
familial insulinomatosis, linking genetic, clinical, and biochemical analyses from the patients’ family
to the pre-described cell culture data. Thus, we confirm a defect in a crucial regulatory region of
the MAFA protein as an important cause of a specific hereditary syndrome, which is characterized
by insulinomatosis and/or mild hyperglycemia. This study extends the pathophysiological and
diagnostic disease concept and verifies the inheritance pattern of familial insulinomatosis.

Abstract: Adult-onset familial insulinomatosis is a rare disorder with recurrent, severe hypoglycemia
caused by multiple insulin-secreting pancreatic tumors. The etiology was unclear until the variant
p.Ser64Phe in the transcription factor MAFA, a key coordinator of β-cell insulin secretion, was defined
as the cause in two families. We here describe detailed genetic, clinical, and family analyses of two
sisters with insulinomatosis, aiming to identify further disease causes. Using exome sequencing,
we detected a novel, heterozygous missense variant, p.Thr57Arg, in MAFA’s highly conserved
transactivation domain. The impact of the affected region is so crucial that in vitro expression
studies replacing Thr57 have already been performed, demonstrating a phosphorylation defect
with the impairment of transactivation activity and degradation. However, prior to our study,
the link to human disease was missing. Furthermore, mild hyperglycemia was observed in six
additional, heterozygote family members, indicating that not only insulinomatosis but also MODY-
like symptoms co-segregate with p.Thr57Arg. The pre-described MAFA variant, p.Ser64Phe, is
located in the same domain, impairs the same phosphorylation cascade, and results in the same
symptoms. We confirm MAFA phosphorylation defects are important causes of a characteristic
syndrome, thus complementing the pathophysiological and diagnostic disease concept. Additionally,
we verify the high penetrance and autosomal dominant inheritance pattern.
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1. Introduction

Hypoglycemia due to endogenous hyperinsulinism is a rare clinical condition. In
newborn and infants, rare monogenetic diseases caused by variants in genes involved in the
regulation of insulin secretion (ABCC8, KCNJ11, GCK, HADHSC, INSR, GLUD1, SLC16A1,
HNF1A, HNF4A, and UCP2) present with severe persistent hypoglycemia [1]. In adults,
however, the most common cause of this pathology is either sporadic insulinoma (80%)
or insulinoma associated with multiple endocrine neoplasia type I (MEN1) (9–10%) [2,3].
Although insulinomas can be small and sometimes challenging to detect, modern diag-
nostic and surgical techniques usually allow localization and successful resection today.
In the remaining 10% of cases, endogenous pancreatic hyperinsulinism is either due to
insulinomatosis or functional β-cell disorders, clinically termed as noninsulinoma pan-
creatogenous hypoglycemia syndrome (NIPS) and adult nesidioblastosis [4,5]. They are
histopathologically characterized by β-cell hypertrophy, islet hyperplasia, and an increase
in β-cell mass. Disease pathogenesis is largely unknown and may be different from con-
genital hyperinsulinemic hypoglycemia, given that so far no distinct genetic causes have
been identified in adult patients with NIPS/nesidioblastosis [1,6,7]. However, the observed
association with gastric bypass surgery in obese patients suggests that a reactive process
possibly unmasks or induces a defect in β-cells, resulting in hyperfunction [8,9].

Insulinomatosis is another rare cause of hyperinsulinemic hypoglycemia in adults
and is characterized by the synchronous and metachronous occurrence of small insuli-
nomas, multiple insulinoma precursor lesions, and small proliferative insulin-expressing
monohormonal endocrine cell clusters (IMECCs) [10]. Clinically, in parallel to few macro-
tumors (usually 0.5–1 cm), multiple microtumors are found throughout the entire pancreas,
expressing exclusively insulin. Due to the small size and the multicentric occurrence of
the tumors, both diagnosis and therapy are clinically challenging. The clinical course of
the disease is characterized by early recurrent hypoglycemia requiring repeated surgical
intervention. Already in 1977, Tragl et al. were the first to describe a family with multiple
adenomas restricted to β-cells and the occurrence of diabetes mellitus in different members
of the same family, raising the possibility of a common genetic origin [11]. However, only
recently, a disease-causing variant in the V-MAF avian musculoaponeurotic fibrosarcoma
oncogene homolog A (MAFA) basic leucine zipper-containing protein has been identified
causing insulinomatosis [12]. MAFA belongs to the family of large MAF transcription
factors and is expressed in islet β-cells. It is required for postnatal β-cell function and
acts as a transactivator of insulin and several genes involved in glucose-stimulated insulin
secretion [13–17]. The only clinically relevant MAFA variant known, Ser64Phe, is associated
with the autosomal dominant inheritance of either insulinomatosis or diabetes mellitus,
documenting the physiological properties of MAFA, both as an oncogene and key islet
β-cell transcription factor [12]. In this study, we investigated two sisters with recurrent
hyperinsulinemic hypoglycemia for genetic causes. Using whole exome sequencing, bioin-
formatics, and family analysis, we identified a second, hitherto unreported MAFA variant
(NM_201589.4: c.170C>G, p.(Thr57Arg)) as a cause of insulinomatosis and mild hyper-
glycemia in other family members. The exchange of Thr57 results in a phosphorylation
defect as it is located in the functionally crucial part of the transactivator domain, and its
relevance has already been demonstrated by others.

2. Materials and Methods
2.1. Patients

Two German sisters suffering from insulinomatosis (detailed case reports for both are
provided in the Results section) and their family were evaluated (Figure 1: 17 relatives were
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genotyped; ten of them also underwent physical examination and blood sampling). Clinical
evaluation of the relatives included age, sex, body mass index (BMI), previous illnesses,
hospitalizations, allergies, medication, use of nicotine and alcohol, an orienting physical
examination and routine clinical chemistry, hematology, coagulation, and endocrine testing
(see below). Special attention was paid to the report of symptoms of diabetes mellitus,
hypoglycemia, eye diseases (especially hereditary cataract and glaucoma), and malignancy.
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deceased individuals (III3 and IV2). In 7 family members who did not carry Thr57Arg (symbols 
with green bold border), neither diabetes nor insulinomatosis has been detected (III4–5, IV5, and V4 
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other hand, was introduced into the pedigree by person III4 and is, thus, inherited only throughout 
one branch. CUP = cancer of unknown primary; y. = age in years; † = deceased. 

Figure 1. Pedigree, presenting genotype, phenotype and age of the family members. Four genera-
tions of the family underwent further molecular genetic (MAFA Thr57Arg and PROX1 Ala394Thr;
genotyped individuals marked by the bold border of the symbols) and laboratory testing as well
as an evaluation of the medical history. In individuals with the symbol filled in dark blue, only
a buccal swab was available for laboratory analysis (III2, V1, and VI1–5), suitable for genotyping
but not for metabolic analyses, e.g., the determination of HbA1c. MAFA Thr57Arg was detected
(symbols with red bold border) in 12 family members (III1–2, IV3–4, V1–3, V5, and VI1–4), 2 with
insulinomatosis (IV3–4, arrow points on index case), 4 with an overt diabetes (III1 (based on patient
medical history), V2–3 and V5 (HbA1c > 5.6 or impaired fasting glucose (IFG)), and 6 members
(4 children below 10 years (VI1–4) and 2 adults (III2 and V1)) whose glycemic status was unclear,
because blood samples were not available. Furthermore, diabetes mellitus was known in 2 deceased
individuals (III3 and IV2). In 7 family members who did not carry Thr57Arg (symbols with green
bold border), neither diabetes nor insulinomatosis has been detected (III4–5, IV5, and V4 + 6–7) or
they had an unclear glycemic status (VI5). Subject numbers of the six PROX1 Ala394Thr carriers are
underlined (III4, IV3–4, V4–5, and VI5). The MAFA mutation is inherited through the left wing of
the pedigree (starting with the left couple in generation I). The PROX1 variant, on the other hand,
was introduced into the pedigree by person III4 and is, thus, inherited only throughout one branch.
CUP = cancer of unknown primary; y. = age in years; † = deceased.
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Ten samples from German healthy volunteers were analyzed in parallel with the
genomic DNA (gDNA) of the two sisters by Next Generation Sequencing to eliminate
common local variants and sequencing artifacts.

All laboratory analyses in the patients were performed for diagnostic purposes at the
Institute of Clinical Chemistry and Laboratory Medicine and the Institute of Pathology,
University Medical Center Mainz. Patients and healthy controls provided explicit consent
to the use of their pseudonymized data for research purposes. The studies were designed
and executed in accordance with all local legal and regulatory requirements, notably
the General Data Protection Regulation (EU 2016/679) and the Declaration of Helsinki,
7th revision.

2.2. Routine Laboratory Analyses

Family members were subjected to a set of routine blood analyses: Clinical chemistry
analyses (Na+, K+, Ca2+, glucose, creatinine, alanine aminotransferase (ALAT), aspartate
aminotransferase (ASAT), alkaline phosphatase, γ-glutamyl transferase, total bilirubin,
lipase, α-amylase, C-reactive protein (CRP), albumin, urea-N, phosphate, triglyceride,
and total and HDL-cholesterol) were performed on an Architect c8000 system (Abbott,
Wiesbaden, Germany); hormone analyses (insulin, pro-insulin, C-peptide, and thyroid-
stimulating hormone (TSH)) were performed on an Architect i2000 system (Abbott, Wies-
baden, Germany); whole blood counts were performed on an Advia 2120i Hematology
System (Siemens Healthcare GmbH, Erlangen, Germany); coagulation testing (Quick, acti-
vated partial thromboplastin time (aPTT), derived Fibrinogen) was performed on an ACL
TOP 700 instrument (Instrumentation Laboratory (IL), Munich, Germany); and HbA1c on
a Variant II Hemoglobin Testing System (BioRad, Munich, Germany), all using reagents
of the respective device manufacturers. The estimated glomerular filtration rate (eGFR)
(according to the CKD-EPI formula), LDL-cholesterol (according to Friedewald), and the
LDL/HDL ratio were calculated.

2.3. Histopathology and Immunohistochemistry

Serial sections from archival pancreatic tissue were subjected to MAFA immunohisto-
chemistry as well as insulin and glucagon staining. The result was evaluated and compared
to that of normal human pancreas by an experienced pathologist. To achieve compa-
rability, MAFA immunohistochemistry was performed using the same MAFA antibody
(Anti-MafA antibody ab26405, Abcam, Cambridge, UK, RRID: AB_776146; dilution: 1:2000)
as Iacovazzo et al. [12] following the manufacturer’s instructions. After deparaffinization,
hydration, and heat-induced epitope retrieval, incubation steps were carried out in an
Autostainer 480-A (Thermo Fisher Scientific, Dublin, Ireland) using the Dako EnVision™
FLEX HRP/Dab (Agilent, Santa Clara, CA, USA) detection system with signal amplification
by EnVision™ FLEX + Rabbit (LINKER) (Agilent, Santa Clara, CA, USA).

Standard staining/immunohistochemisty protocols of the Institute of Pathology (Uni-
versity Medical Center Mainz) were used to detect the neuroendocrine/proliferation mark-
ers chromogranin, synaptophysin, insulin, glucagon, and KI-67 in formalin-fixed, paraffin-
embedded pancreatic tissue sections from patients IV3 and IV4 following resection.

2.4. DNA Extraction and Sequencing

Genomic DNA was isolated from 200 µL whole blood or from buccal swabs OG-675
(Oragene DNA, DNA Genotek, Ottawa, ON, Canada) using the blood/saliva protocol
of the QIAamp DNA Mini kit. For primary evaluation of case 1 and 2, genetic variants
were detected by whole exome sequencing (WES) as described by Barco et al. [18], except
for the hybridization probe set (NimbleGen MedExome, Roche, Pleasanton, CA, USA).
Sanger Sequencing (Beckman CEQ8000, Sciex, Darmstadt, Germany; Wenzel et al. [19]) and
multiplex ligation-dependent probe amplification (SALSA MLPA Probemix P017, MRC
Holland, Amsterdam, The Netherlands) were used for MEN1 testing prior to WES and
to confirm the variants detected by WES. Targeted analysis of family members was per-
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formed by Sanger- or pyrosequencing (PyroMark Q96 ID, Qiagen, Hilden, Germany), as de-
scribed previously [20], with PCR primers (Integrated DNA Technologies, Coralville, Iowa,
USA), and the conditions adapted to the current analytics (primers for Sanger sequencing:
MAFA_T57R.for ACGACTTCGACCTGATGAAGTTCG, MAFA_T57R.rev CCCCGGCCT-
GAGACGAGC, PROX1_A394T.for CTGCCATGTCGCAAGTTGTG, PROX1_A394T.rev
AACTGGCCATCTGCACATTG; primers for pyrosequencing: MAFA_T57R_PSQ.for 5′ Biotin
tagged CGCCAGGCTCGCTGTCCT, MAFA_T57R_PSQ.rev GGCACGGAGGAGCAGGG,
MAFA_T57R_PSQ.Rseq ACGGAGGAGCAGGGC, dispensation order TCGTGCTG).

2.5. Bioinformatics Analyses

The quality of WES was checked with fastQC (Babraham Bioinformatics) and the
sequencing analysis viewer (Illumina, San Diego, CA, USA). The format conversion of
the resulting fastq-files, whole-genome alignment (GRCh37/hg19), variant calling, and
copy number variation (CNV) detection was performed using NextGENe, version 2.4.1.1
(Softgenetics, State College, PA, USA). Variants were filtered by an in-house Perl-pipeline:
All variants present in the ten controls were excluded, as well as variants with a minor
allele frequency (MAF) above 0.01 in dbSNP. The remaining variants were reduced by two
gene lists: one targeting genes known to cause endocrine tumors (AIP, AP2S1, BAP1, BRAF,
CASR, CDC73, CDKN1A, CDKN1B, CDKN2B, CDKN2C, EGLN1, EGLN2, EPAS1, FH, GCM2,
GNA11, H3F3A, HRAS, IDH1, KIF1B, KRAS, MAX, MDH2, MEN1, NF1, PTH, RET, SDHA,
SDHAF2, SDHB, SDHC, SDHD, SLC25A11, TMEM127, TP53, TSC1, TSC2, and VHL); and
the other targeting genes, which are involved in nutrient sensing, insulin secretion, growth
and differentiation of pancreatic β-cells, or known causes for maturity onset diabetes of
the young (MODY) as well as syndromic and non-syndromic congenital hyperinsulinism
(ABCC8, ADAMTS9, ADCY5, ADK, AKT1, AKT2, AKT3, ALG3, ALG6, APPL1, ARX, BCL11A,
BCL2, BLK, CACNA1D, CAMK1D, CDC123, CDKAL1, CDKN1C, CDKN2A, CDKN2B, CEL,
CENTD2, CREB1, DGKB, DUSP9, ESRRG, FOXA1, FOXA2, FOXO1, FTO, G6PC2, GCG,
GCK, GCKR, GIP, GIPR, GLIS3, GLP1R, GLUD1, GSK3B, GSTM1, H19, HADH, HHEX,
HK1, HKDC1, HMGA2, HNF1A, HNF1B, HNF4A, IGF2, IGF2BP2, INS, INSR, IRS1, IRS2,
ISL1, ITGB6, JAZF1, JUN, KCNJ11, KCNQ1, KDM6A, KLF11, KLF14, KMT2D, LGR5, MAF,
MAFA, MAFB, MAPK1, MAPK3, MAPK8, MCAT, MEN1, MNX1, MPI, MTNR1B, NCOA6,
NEUROD1, NEUROG3, NKX2-2, NKX6-1, NOTCH2, OASL, ONECUT1, P2X7, PAX4, PAX6,
PCBD1, PCSK1, PDLIM5, PDX1, PGM1, PIK3CA, PIK3R1, PIK3R2, PMM2, POC1A, PPARG,
PRC1, PRKAA2, PROX1, PTF1A, RBMS1, SIRT1, SLC16A1, SLC2A2, SLC30A8, TCF7L2,
THADA, TLE4, TMEM195, TP53INP1, TSPAN8, UCP2, VDR, WFS1, and ZBED3). Variants
detected in both sisters, were considered as potential causes of the disease.

3. Results
3.1. Case Report
3.1.1. Clinical Case 1; Index Patient (Female, IV4, 48 Years Old at Time of Study)

Starting at the age of 34, the patient experienced continuous weight gain (>20 kg) and
recurrent episodes of severe hunger. An initial medical and psychiatric examination was
unremarkable. It has been performed due to a three-hour incident in which the patient
had damaged other vehicles with her car but could not remember it afterwards. At the
age of 38, a “low blood glucose level” was incidentally detected. Consequently, a 72-h
fasting test was initiated and had to be stopped after 4 h due to hypoglycemia (16 mg/dL)
with increased insulin and C-peptide levels (data not shown). An endoscopic ultrasound
(EUS) of the pancreas showed a 7 mm lesion in the tail of the pancreas (data not shown).
The patient received left-sided pancreatic resection with the histological diagnosis of a
well-differentiated neuroendocrine tumor (NET) of 0.6 cm that was immunohistochemically
positive for chromogranin, synaptophysin, and insulin (NET G1, Ki-67 index 1%, pT1, pN0,
L0, V0, Pn0, R0, G1). After surgery, she still complained about hypoglycemia symptoms.
Diagnostic work-up revealed persistent hyperinsulinemic hypoglycemia with another
solitary lesion of about 5 mm in the pancreatic body (in EUS) (Figure 2a–c). Functional
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imaging with 68Ga-DOTATOC-PET/CT was negative (Figure 2d). Biochemical and genetic
analyses (Sanger sequencing and MLPA of the MEN1 gene) provided no evidence for
MEN1 variants. Diagnostic laparotomy with intraoperative ultrasound identified two
focal lesions that were approximately 5 mm in diameter. Histological examination after
partial resection of the pancreatic head confirmed the diagnosis of insulinomatosis with
multifocal microadenomas that were monohormonally positive for insulin and mostly
<5 mm in size, except for two larger adenomas (NET G1) of 6 and 7 mm in diameter. Since
the second surgical intervention, the patient was asymptomatic. After the detection of
the germline MAFA variant Thr57Arg, MAFA immunohistochemistry was performed on
residual archival tissue of the resected pancreatic specimen. MAFA protein expression was
found in the nuclei of islet cells as well as in the nuclei of an insulinoma. Although the data
should be considered preliminary, at least no obvious difference in MAFA expression was
found between patient islets and insulinoma and wild-type islets from non-insulinoma
patients (Figure 3).

3.1.2. Clinical Case 2; Sister of Clinical Case 1 (IV3, 57 Years Old at Time of Study)

Since the age of 45, the patient had suffered from recurrent episodes of fatigue, con-
fusion, blurred vision, and tremors, which improved with food intake. The consequence
was continual weight gain (11 kg). At the age of 53, a low blood glucose level (60 mg/dL)
was detected when the patient was found to be unconscious after physical stress. Persis-
tent symptoms and the sister’s medical history finally prompted a diagnostic work-up.
A prolonged oral glucose tolerance test (oGTT) was unremarkable. A 72 h fasting test
was stopped after 11 h with a blood glucose level of 35 mg/dl and clinical signs of hy-
poglycemia, immediately reversible after intravenous glucose infusion (Figure 4a). The
corresponding insulin-, C-peptide- and pro-insulin levels were inappropriately elevated
(14 mU/mL, 2.97 ng/mL, and 20.3 pmol/L). Molecular genetic testing for MEN1 was nega-
tive, as were imaging procedures (including magnetic resonance imaging (MRI), EUS, and
68Ga-DOTATOC-PET/CT). Functional imaging with 18F-DOPA-PET/CT (GLP-1-receptor-
imaging was not available at that time) showed physiological radionuclide accumulation
in the common bile duct and a diffuse, homogeneous uptake throughout the pancreas,
although this was judged to be nonspecific (Figure 4b). A 2-fold to 3-fold increase in insulin
levels was observed in all three arteries (superior mesenteric, gastroduodenal, and splenic
artery) in response to selective arterial calcium infusion (SACI) (Figure 4c). Histological
evaluation after a duodenum-preserving resection of the pancreatic head showed multiple
small insulin-positive tumorlets with 2–4 mm in diameter, consistent with the diagnosis of
insulinomatosis. Since the operation, the patient has been asymptomatic.
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biochemical signs of hypoglycemia. (b) A 72 h fasting test showed marked hypoglycemia after 22 h 
with a plasma glucose as low as 33 mg/dL and corresponding serum C-peptide, insulin, and 
proinsulin levels inadequately elevated. (- = not performed). Values outside the reference range are 
highlighted in red. (c) Further imaging with endoscopic ultrasound revealed a single lesion of 4–5 
mm. (d) Functional imaging with 68Ga-DOTATOC-PET/CT was negative with low and diffuse 
uptake in the pancreatic head (yellow frames), interpreted as unspecific. 

Figure 2. Laboratory tests and diagnostic imaging of case 1 (index patient, IV4). (a) Endocrine
testing showed unremarkable oral glucose tolerance (prolonged test conditions) without clinical
or biochemical signs of hypoglycemia. (b) A 72 h fasting test showed marked hypoglycemia after
22 h with a plasma glucose as low as 33 mg/dL and corresponding serum C-peptide, insulin, and
proinsulin levels inadequately elevated. (- = not performed). Values outside the reference range
are highlighted in red. (c) Further imaging with endoscopic ultrasound revealed a single lesion of
4–5 mm. (d) Functional imaging with 68Ga-DOTATOC-PET/CT was negative with low and diffuse
uptake in the pancreatic head (yellow frames), interpreted as unspecific.
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Figure 3. Glucagon, insulin and MAFA immunohistochemistry of case 1 (IV4). Immunohistochemical
staining of serial sections of the resected pancreatic specimen of case 1 showing a solitary insulinoma
(left panels (a,c,e)) and normal pancreatic tissue with multiple pancreatic islets (right panels (b,d,f)).
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Figure 4. Laboratory tests and diagnostic imaging of case 2 (sister of index patient, IV3). Endocrine
testing showed normal prolonged oral glucose tolerance without clinical or biochemical signs of
hypoglycemia (data not shown). (a) A 72 h fasting test was stopped after 11 h showing inadequately
elevated insulin, C-peptide, and proinsulin levels. (- = not performed). Values outside the reference
range are highlighted in red. (b) Functional imaging with 18F-DOPA-PET/CT showed physiological
radionuclide-accumulation in the common bile duct and a diffuse, non-homogeneous uptake in the
whole pancreas (yellow frame), judged to be unspecific. (c) The selective arterial calcium infusion
(SACI)-test showed a 2- to 3-fold increase of insulin secretion after calcium-stimulation of all three
arteries (superior mesenteric, gastroduodenal and splenic artery).
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3.2. Molecular Genetic Testing
3.2.1. Molecular Genetic Testing of the Two Patients and Classification of the Detected
Variants According to the ACMG Criteria

WES in the index patient and her sister and the subsequent selection of the rare vari-
ants present in both sisters from the predefined set of 158 genes (Patients and Methods
section) revealed two variants, both in heterozygous state: c.1180G>A, p.Ala394Thr in the
PROX1 and c.170C>G, p.Thr57Arg in the MAFA gene (Table 1), which were confirmed by
Sanger Sequencing (Figure 5). PROX1 and MAFA are both transcription factors involved in
β-cell differentiation, although unlike PROX1, MAFA is expressed in mature β-cells and
plays a major role in the regulation of insulin secretion [21]. The PROX1 variant is very
rare (Table 1), and the MAFA variant has not been described in the literature or databases
yet. Both variants cause amino acid exchanges. Bioinformatics tools consistently predict
pathogenic significance for the MAFA variant Thr57Arg, while prediction for the PROX1
variant c.1180G>A, p.Ala394Thr, is predominantly benign (Table 1). A further classification
of the variants according to the ACMG (American College of Medical Genetics) [22] cri-
teria was based on multiple sequence alignments and extensive functional data from the
literature (Table 1).

Table 1. Comparison and classification of the potentially disease-causing variants in PROX1 and
MAFA genes detected by WES and variant filtering.

PROX1 MAFA

Genotype GA CG
Mutation Call c.1180G>A c.170C>G

Amino Acid Change p.Ala394Thr p.Thr57Arg
Exon 1 1

Coverage 101 103
Chromosome 1 8

RefSeq NM_001270616.2 NM_201589.4
dbSNP rs1217787927 no entry
ClinVar no entry no entry

GnomAD 1/251,260 alleles no entry
Mutation Taster disease causing disease causing

PolyPhen2 benign probably damaging
SIFT tolerated damaging

PROVEAN neutral deleterious
OMIM Gene 601546 610303

OMIM Disease no entry 147630
Inheritance (OMIM) no entry AD

ACMG criteria likely benign pathogenic
ACMG = American College of Medical Genetics.

The MAFA variant is located in a region of the transactivation domain that is highly
conserved between species (Figure 6a) and among the members of the large MAF tran-
scription factor family (Figure 6b). The phosphorylation of this D/E/S/T/P-rich region is
known to be crucial for binding MAFA to its target DNA sequences [23–26], regulation of
β-cell insulin secretion [13,27], transforming activity of MAFA [28], and MAFA degradation
by the proteasome [23,25,29–31]. Thr57 is one of the four serine and threonine residues
phosphorylated in a series of phosphorylation steps mediated by GSK3 (Glycogen syn-
thase kinase 3) and initiated primarily by phosphorylation of Ser65 by a priming kinase
(Figure 6b). A set of evidence from in vitro and in vivo studies has confirmed that this
basal mechanism is very similar among human large MAF proteins [21]. Transfection
studies in which the five crucial serine and threonine residues of MAFA were systematically
replaced by alanine show a significant phosphorylation defect for all constructs, including
the Thr57Ala construct [23]. Apart from MAFA translocations in patients with multiple
myeloma, only one pathogenic variant in the MAFA gene is known, Ser64Phe. It prevents
phosphorylation of Ser65 by the priming kinase. Ser64Phe leads to a characteristic syn-
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drome in which some family members, mainly women, are affected by insulinomatosis
and other family members, mainly men, by mild diabetes [12], consistent with the obser-
vations in the family described here. No benign variants have been reported within this
part of the transactivation domain. In the large databases (e.g., dbSNP and GnomAD),
single, extremely rare variants of uncertain significance are listed, but none of them affects
phosphorylated residues 49, 53, 57, 61, and 65. However, variants in homologous residues
of other large MAF proteins have been described, and they are all pathogenic. In both,
MAFB and c-MAF (alias MAF), a Thr62Arg variant (corresponding to Thr57Arg in MAFA)
causes characteristic syndromes with autosomal dominant inheritance. MAFB Thr62Arg
and several other amino acid exchanges at this position cause Multicentric Carpotarsal
Osteolysis Syndrome (MCTO, OMIM #166300) [21,32], and Thr62Arg in c-MAF results in
the Ayme-Gripp syndrome (OMIM #601088) [24] (Figure 6b). Interestingly, the clinical
picture caused by MAFB and c-MAF variants depends on their localization. Variants that
are not located in the highly phosphorylated part of the transactivation domain cause
different syndromes, respectively. Based on this evidence and in accordance with the
ACMG criteria, we classified the MAFA variant Thr57Arg as pathogenic even at this stage
of investigation. In contrast to that, the detected PROX1 variant is not located in one of the
essential domains. Several PROX1 variants have been associated with a risk for alterations
in glucose and lipid metabolism [33], but not with monogenic diabetes or insulinomatosis.
For these reasons and because we had already classified the MAFA variant as pathogenic,
we assessed the PROX1 variant as likely benign, even though it cannot be ruled out as a
modifier of the disease.
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to case 1.

3.2.2. Molecular Genetic Testing of Asymptomatic Family Members

Four generations underwent further molecular genetic and laboratory testing as well
as an evaluation of their medical history (Figure 1, Table 2). In addition to the index patient
and her sister, a total of 17 clinically asymptomatic family members were investigated
(eight female and nine male). Apart from the two index cases, MAFA variant Thr57Arg was
detected in 10 other family members (five female and five male). None of them had been
diagnosed with insulinomatosis so far. In the entire family, however, four members were
already diagnosed with overt type 2 diabetes (three men and one female). Two of them (III3
and IV2; Figure 1) had died from other causes (pancreatic cancer and cancer of unknown
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primary): One is treated with insulin and metformin (III1), and one is treated with diet only
(V3). Two further family members (one female and one male) showed borderline HbA1c
and/or impaired fasting glucose (IFG) levels (V2, HbA1c 5.8% and V5, IFG, HbA1c 5.9%
[ref.: 4.1–5.6%]; Figure 1, Table 2).
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Figure 6. D/E/S/T/P-rich region of the MAFA transactivation domain (a) illustrates high conserva-
tion of a functionally essential part of the MAFA transactivation domain known to regulate MAFA
binding to its target DNA sequences by phosphorylation. Conserved amino acid residues are shaded
gray, and black frames indicate the phosphorylation sites. The numbering refers to human MAFA.
(b) shows the high homology of this region among the members of the large MAF transcription factor
family in humans and illustrates the GSK3-mediated phosphorylation cascade, which is initiated by
the phosphorylation of residue 65 (MAFA) by a priming kinase (21, 23). Amino acid residues known
to be affected by pathogenic variants are provided in blue and underlined, and the MAFA variant
Ser64Phe is among them (blue arrow, S64F), which has been shown to cause a phosphorylation defect
and a syndrome characterized by insulinomatosis, mild diabetes, and cataract (12). The red arrow
marks the amino acid affected by the MAFA variant Thr57Arg (T57R) reported in this manuscript.
In vitro transfection studies (23) have confirmed that the exchange of MAFA residues 65, 61, 57,
53, and/or 49 by alanine, an amino acid which cannot be phosphorylated, causes phosphorylation
defects and impairs MAFA-binding to DNA. For two further large MAF proteins (MAFB and c-MAF),
pathogenic missense variants have already been detected and among them include the MAFB variants
Thr62Arg (21) and Thr62Ala (ClinVar VCV000807627.3, T62I/P/R/A) and the MAF (c-MAF) variant
Thr62Arg (T62R) (24), variants with the same amino acid exchange as we now found in MAFA.
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Table 2. Clinical characteristics and laboratory results of two patients with insulinomatosis (IV3 and IV4) and five relatives (V2, 3, 4, 5; III4). In family members III5,
IV5, V6, and V7, the laboratory tests indicated in the table were also performed. Since there were no abnormalities in glucose metabolism and neither the MAFA nor
the PROX1 variant was detected in the corresponding branch of the family, we have not presented the test results in this table.

Reference Patient IV3 Patient IV4 Patient V5 Patient V3 Patient V2 Patient V4 Patient III4

Sex/age - F/57 F/48 M/29 M/38 F/30 M/31 F/81

BMI 18.5–24.9 kg/m2 27.0 26.0 26.6 29.0 38.0 29.9 26.1

Preexisting
diagnosis -

Insulinomatosis
Diabetes

Depression

Insulinomatosis
Diabetes

Hypothyroidism
Crohn’s disease

Allergic asthma
Impaired fasting

glucose (IFG)

Allergic asthma
Diabetes
Rosacea

-

Allergic asthma
Hypothyroidism

Gastro-oesophageal
reflux disease

(GERD)

Hypertension
Atrial fibrillations
Cataract-operation

Polyarthritis

Reported therapy -
Duodenum-preserving

resection of the
pancreatic head (2010)

Left-sided pancreatectomy
(2008)

Tumor-enucleation of the
pancreatic head (2009)
Duodenum-preserving

subtotal pancreatectomy
(2010)

- - - - -

Medication - Pancreatic enzymes
Pantoprazole

Insulin-therapy
Pancreatic enzymes Cetirizine Formoterol/

Beclomethasone
Oral

contraceptives

Cetirizine
Omalizumab

Levothyroxine

Candesartan
Bisoprolol

Rivaroxaban

MAFA c.170C>G,
p.Thr57Arg C/G C/G C/G C/G C/G C/C C/C

HbA1c
4.1–5–6% 6.9 ↑ 7.5 (↑) 5.9 (↑) 6.6 ↑ 5.8 (↑) 5.4 5.4

21–38 mmol/mol
Hb 51 59 42 49 40 35 36

F-Glucose 70–100 mg/dL 143 ↑ 128 ↑ 129 ↑ 125 ↑ 95 94 85

Insulin 6–25 mU/L 6.7 6.3 * 24.3 ↑ 26.5 ↑ 15.7 9.3 4.5

Pro-insulin <9.4 pmol/L 8.07 <0.1 * 2.42 7.50 11.2 ↑ 5.86 3.10

C-Peptide 0.8–5.2 ng/mL 2.0 <0.01 * 2.75 4.52 3.37 2.54 1.66

OH-Butyrate <74 µmol/L 70 60 45 30 154 ↑ 21 183

CRP <5 mg/L 1.1 0.54 1.6 3.5 22 ↑ 2.5 3.6

TG <150 mg/dL 74 63 154 (↑) 260 ↑ 138 261 (↑) 118

Cholesterol <200 mg/dL 181 141 214 ↑ 254 ↑ 192 263 ↑ 235 ↑
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Table 2. Cont.

Reference Patient IV3 Patient IV4 Patient V5 Patient V3 Patient V2 Patient V4 Patient III4

HDL-C >40 mg/dL 81 75 55 45 71 56 82

LDL-C <160 mg/dL 85 53 128 157 93 155 129

AST 5–31 U/L 25 34 24 73 ↑ 27 34 29

ALT <35 U/L 21 27 40 171 ↑ 19 59 ↑ 14

ALP 37–111 U/L 103 98 65 87 57 90 106

GGT 9–36 U/L 24 14 29 78 ↑ 11 59 19

Bilirubin 0.3–1.2 mg/dL 0.58 0.42 0.49 0.45 0.38 0.59 0.54

Albumin 35–50 g/L 40 38 40 41 37 46 41

Lipase <60 U/L 12 4 38 36 29 30 41

BMI body mass index; CRP = C-reactive protein; TG = Thyroglobulin; HDL-C = high-density lipoprotein cholesterol; LDL-C = low-density lipoprotein cholesterol; AST = aspartate
aminotransferase; ALT = alanine aminotransferase; ALP = alkaline phosphatase; GGT = gamma glutamyl transferase; ↑ = increased values compared to reference range; (↑) = marginal
increased values compared to reference range; * = insulin therapy.
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Four patients presented with a tumor disease (one with lung cancer (IV1), one with
lung cancer and a brain tumor (III1), one with pancreatic cancer (IV2), and one with a
cancer of unknown primary (III3)), and one female with advanced age has dementia. There
was no history of congenital eye disorders in this family.

Genetic testing revealed that the six symptomatic (insulinomatosis or mild diabetes;
classification here after laboratory analyses) individuals studied from generations III-V
(Figure 1, III1; IV3, 4; V2, 3, 5) all carried the MAFA variant, but only three of them had
the PROX1 variant (IV3, 4; V5). Generation VI and individuals III2 and V1 could not be
analyzed in this regard because only a buccal swab was available for genotyping, but no
EDTA blood was available for determining HbA1c. In the six healthy subjects studied, the
MAFA variant was absent (III4, 5; IV5; V4, 6, 7), whereas the PROX1 variant was detected in
two of them (III4, V4). Thus, the segregation of these variants in the family clearly suggests
the MAFA variant as the cause of the disease and further autosomal dominant inheritance.

4. Discussion

Using whole exome sequencing, we identified a so far unreported missense MAFA
variant (c.170C>G, p.Thr57Arg) as the cause of insulinomatosis in two sisters with recur-
rent hyperinsulinemic hypoglycemia. Thr57Arg is located in MAFA’s highly conserved
transactivation domain, which is so crucial that extensive functional analyses have already
been performed. These include expression studies confirming that the replacement of
threonine at position 57 with an amino acid that cannot be phosphorylated by GSK3 results
in a defect in the stepwise phosphorylation of MAFA, impairing the binding of MAFA to
its DNA target and preventing proteasome-mediated degradation [23,25,29–31]. So far,
only one other pathogenic MAFA variant (c.191C>T, p.Ser64Phe) has been described. It is
located in the same MAFA domain, impairs the same phosphorylation cascade, and results
in the same characteristic symptoms in the two affected families as observed in the family
described here [12]. In summary, we describe a novel pathogenic MAFA missense variant
that is highly likely to cause impaired phosphorylation and, therefore, functional defects,
cosegregating with both phenotypes, insulinomatosis and MODY-like diabetes (“MODY-
like”: autosomal dominantly inherited, rather mild hyperglycemia (diabetes/IFG/HbA1c
> 5.6) caused by a pathogenic variant in a transcription factor regulating insulin secretion).
The detection of this second pathogenic MAFA variant confirms that a phosphorylation
defect in the transactivation domain is accompanied by a characteristic set of symptoms in
the affected family and confirms the autosomal dominant inheritance of the disease.

Iacovazzo et al. recently demonstrated for the first time that the Ser64Phe mutation
of the MAFA gene was linked to insulinoma or mild, non-insulin dependent diabetes [12].
Ser64Phe was discovered to impair phosphorylation within MAFA’s transactivation domain
and to profoundly increase MAFA protein stability in β-cell-lines at high and low glucose
concentrations. There was no significant change in the amount of wild-type and mutant
MAFA mRNA in transfected cells, confirming that the effect on protein turnover was
posttranscriptional. These findings imply that the activity of Ser64Phe-MAFA is enhanced
in β-cells/pancreas islets due to an increased transactivation capacity that is at least partly
related to decreased MAFA degradation [12,23,25,29–31]. However, the transactivation
activity of MAFA can be both decreased and increased depending on the cell type studied
and the expression of other transcription factors [12,23,25,28–31]. The Thr57Arg MAFA-
variant found in our family, similar to that reported by Iacovazzo et al. [12], is located
within the highly conserved D/E/S/T/P-rich domain, impairing phosphorylation within
MAFA’s transactivation domain, thus enhancing the protein stability and probably the total
transactivation capacity of MAFA. Whether a phosphorylation defect in the D/E/S/T/P-
rich domain of MAFA increases or decreases, net MAFA protein expression in β-cells
cannot be conclusively answered at present. Both Iacovazzo et al. [12] and our group
found no obvious difference by immunohistochemistry between MAFA expression in
islets and insulinomas in insulinomatosis patients and islets from patients not affected by
insulinomatosis, but the data are based on very few cases so far.
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MAFA, MAFB, and MAF are large MAF proteins that have been shown to be oncogenes
in tissue cultures, animal models, and human cancer. MAFA’s ability to induce proliferation
of quail neuroretina cells [34] and chicken embryo fibroblasts [35] when overexpressed
demonstrated its transformation potential. Large MAF proteins are overexpressed in 50%
of multiple myelomas and 60% of angioimmunoblastic T-cell lymphomas in humans. In
particular, in 8–10% of multiple myelomas the MAF, MAFB, and MAFA genes are translo-
cated to the immunoglobulin heavy chain locus [36]. When expressed alone in β-cells,
MAFA is only a weak transactivator of the insulin promoter, but when co-expressed with
Pdx1 and Beta2/NEUROD1, these three factors synergistically and strongly activate the
promoter [27]. The simultaneous expression of these three factors in non-β-cells (e.g., liver
cells) induced the expression of the endogenous insulin gene, as well as other important
β-cell genes (GCK, SLC2A2, G6PC2, KCNJ11, and SUR1) [23,29,30]. Thus, these three key
β-cell transcription factors can be used for trans-differentiating non-β-cells into insulin-
producing cells [37]. Immunohistochemical examinations in patients with MEN1 associated
insulinomas demonstrated a linked decrease in both menin and MAFA. Moreover, in
mouse insulinomas, decreased MAFA expression resulting from targeted MEN1 ablation
was consistently observed [38]. Furthermore, in vitro analysis using insulinoma-derived
cell lines revealed that menin regulates MAFA on both protein and mRNA levels and binds
to MAFA promoter sequences. Menin knockdown concomitantly decreased the mRNA
expression of both MAFA and β-cell differentiation markers (INS, GCK, SLC2A2, and PDX1)
while increasing tumor proliferation, indicating that altered menin expression disrupts the
MAFA differentiation pathway in insulinoma.

In conclusion, there is growing evidence that mutations of MAFA, which impair phos-
phorylation within the transactivation domain, result in increased MAFA protein stability
and probably transactivation capacity. The transactivation activity exerted by MAFA in this
process is presumably dependent on the maturity and degree of differentiation of the β-cell
or its progenitor, as well as on the expression of further transcription factors and possibly
also on the current metabolic conditions. This mechanism could explain the physiological
properties of MAFA acting as an oncogene as well as a key transcription factor of islet
β-cells, which regulates insulin secretion and the function of differentiated β-cells.

However, the mechanisms explaining how the same gene variant causes either diabetes
or insulinomatosis are still unclear. Iacovazzo et al. [12] discussed a similarly paradoxical
phenotype described for pathogenic variants of the transcription factor HNF4A and the
potassium channel gene ABCC8, in which diabetes is preceded by transient congenital
hyperinsulinism in some patients [39]. In accordance with the results of Iacovazzo et al. [12],
the two phenotypes appeared to be mutually exclusive in the family described here, even
though we cannot comment on the glycemic status of the two patients prior to developing
insulinomatosis. All mutation–positive patients with available glycemic status had insuli-
nomatosis or diabetes/impaired glucose tolerance. The pedigree (Figure 1) clearly confirms
the previously reported [14] autosomal dominant mode of inheritance as well as the high
penetrance of the disease (insulinomatosis or mild impairment of glucose metabolism).
Family members with hyperglycemia had a mean BMI of 27.2 kg/m2 (excluding one out-
lier (V2) with BMI of 38), with a slight preponderance of the male gender. Diabetes was
managed through diet and in one case by insulin administration (III1). There were no
significant diabetic complications reported by family members. In contrast to the family
members with hyperglycemia, both patients with insulinomatosis were females, which is
consistent with the findings of Iacovazzo et al. [12] demonstrating that insulinomatosis is
predominant in females. Additionally, sporadic insulinomas are more common in females
too (male-to-female ratio of 1:1.4).

Several mechanisms are proposed by Iacovazzo et al. [12] as possible explanations
for this phenomenon. In vitro, the treatment of human β-cells and human insulinomas
with estrogens has been shown to enhance proliferation and insulin secretion [40]. Further-
more, during pregnancy, an expansion of β-cell mass induced by prolactin and placental
lactogen signaling mediated by the prolactin receptor (PRLR) is observed. PRLR was



Cancers 2022, 14, 1798 17 of 20

significantly downregulated and the PRLR promoter was shown to be directly activated
by MAFA in luciferase reporter assays in both MAFA knockout islets and MIN6 β-cells
with siRNA-mediated knockdown of MAFA [41]. Therefore, estrogens and prolactin could
potentially promote β-cell proliferation, predisposing female carriers of MAFA mutations
to insulinomatosis. Similarly to the family members with insulinomatosis reported by
Iacovazzo et al. [12], one of our female insulinomatosis patients experienced the first hypo-
glycemic symptoms after pregnancy. She did not complain about any clinical problems
during the pregnancy. The other affected sister, however, had never been pregnant and
developed the first symptoms after puberty. In summary, it is striking that there is a
female preponderance for developing insulinomatosis and a male preponderance for de-
veloping diabetes/impaired glucose tolerance in the three families with MAFA mutations
reported so far. However, the precise mechanisms that determine the development of
either insulinomatosis or diabetes remain unknown, and it is not ruled out that diabetes
and insulinomatosis may develop consecutively. Furthermore, it is not excluded that the
PROX1 variant detected in our family acts as a modifier in this regard.

In clinical practice, diagnosis and therapy of familial insulinomatosis remains chal-
lenging. In large studies, insulinomatosis is responsible for less than 5% of all patients
with hyperinsulinemic hypoglycemia [2,10]. There are no distinct clinical or biochemical
characteristics that distinguish solitary insulinoma from multifocal insulinomatosis. Multi-
ple insulin-secreting microtumors are present in affected patients, distributed throughout
the entire pancreas and only detectable by histological examination. Even when utilizing
modern functional imaging modalities such as Glucagon-like peptide-1 receptor (GLP-1R)
imaging, only few macrotumors with a mean size of 0.5–1 cm can be detected [42,43]. Thus,
the clinical course of the disease is still characterized by early recurrent hypoglycemia
requiring repeated surgical intervention. All documented clinical cases had persistent or
recurrent disease after the initial surgical intervention. Only the histological examination
of a larger, representative pancreatic specimen confirmed the diagnosis of insulinomato-
sis and distinguished it from multifocal NET with MEN1 mutations or nesidioblastosis.
The SACI test should be considered in cases where noninvasive imaging modalities are
negative or when there is evidence of a multifocal disease, as it can distinguish solitary
insulinoma from multifocal/diffuse diseases with sensitivity and specificity of 95–100%
and 90%, respectively, and determine the extent of surgical intervention [44,45].

The mean age at the diagnosis of insulinomatosis in our family was 39.5 years, being
almost exactly the same as reported in the families by Iacovazzo et al. [12] (39.4± 13.1 years).
Unfortunately, we were unable to determine the exact age at the diagnosis of diabetes.
However, the recorded past medical history of the living family members indicated that
the initial presentation of diabetes in our family occurred between 29 (V5) and 50 years
of age (compared to 38.4 ± 16.4 years as reported by Iacovazzo et al. [12]). Therefore,
most patients with MAFA mutations show clinical features of insulinomatosis or diabetes
already in young adulthood. In contrast, the youngest patients with MAFA mutations
and diagnosed diabetes or insulinomatosis were 11 and 18 years old, respectively [12].
We, therefore, recommend that asymptomatic mutation carriers should be monitored for
diabetes/impaired glucose tolerance beginning in adolescence and that these patients
should receive regular clinical screening as well as information/counselling, especially for
signs and symptoms of neuroglycopenia.

The findings of this study have to be seen in light of some limitations. A more
detailed characterization of the mild hyperglycemia observed in four variant carriers
(Figure 1) could provide further insights in the dynamics of the glucose metabolism in these
patients. The affected family members consented to a one-time examination (including
blood glucose and HbA1c), but not to an oral glucose tolerance test. Furthermore, it
would be valuable to assess the glycemic status of the variant carriers in generation VI
(genotyping by buccal swab). The parents were educated about potential symptoms of
hypoglycemia and hyperglycemia, but they declined blood sampling and functional testing
of the asymptomatic children at that time.
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While it is clear that Thr57Arg causes a phosphorylation defect, which increases
protein stability, and while Thr57Arg probably increases MAFA-mediated transactivation
capacity of the beta cell, the consequences for MAFA’s transactivation activity per molecule
remain largely unknown. Using the MAFA Thr57Ala construct, transactivation activity
has already been studied extensively by others. As the result was clearly dependent on
cell type, differentiation, and embryonic or neoplastic origin of the cell model, it did not
seem reasonable to repeat the expression studies on another (or the same) cell models only
replacing Thr57Ala by Thr57Arg. Extensive further studies are needed to elucidate the
complex regulation of MAFA’s transactivation activity.

5. Conclusions

We define a second MAFA variant, p.Thr57Arg, as the cause of familial insulinomatosis
by linking genetic, bioinformatic, clinical, biochemical, and family data to functional
in vitro analyses from the literature. We, thus, confirm MAFA phosphorylation defects as
an important cause of a hereditary syndrome, which is characterized by insulinomatosis
and/or mild, MODY-like hyperglycemia. This study extends the pathophysiological and
diagnostic disease concept and verifies the high penetrance and autosomal dominant
inheritance pattern of familial insulinomatosis.
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