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SUMMARY
Sensory stimuli have long been thought to be represented in the brain as activity patterns of specific neuronal
assemblies. However, we still know relatively little about the long-term dynamics of sensory representations.
Using chronic in vivo calcium imaging in the mouse auditory cortex, we find that sensory representations un-
dergo continuous recombination, even under behaviorally stable conditions. Auditory cued fear conditioning
introduces a bias into these ongoing dynamics, resulting in a long-lasting increase in the number of stimuli
activating the same subset of neurons. This plasticity is specific for stimuli sharing representational similarity
to the conditioned sound prior to conditioning and predicts behaviorally observed stimulus generalization.
Our findings demonstrate that learning-induced plasticity leading to a representational linkage between
the conditioned stimulus and non-conditioned stimuli weaves into ongoing dynamics of the brain rather
than acting on an otherwise static substrate.
INTRODUCTION

It is believed that sensory-evoked activity patterns at the level of

sensory cortices can serve as a neural correlate of a percept. In

light of the common day experience that the same sensory stim-

ulus evokes the same percept from day to day, the most parsi-

monious assumption is that the underlying sensory representa-

tions are also stable. However, over the last years, there is

growing evidence that this assumption may not always be justi-

fied and that neuronal tuning to sensory stimuli undergoes

ongoing remodeling even under behaviorally and environmen-

tally stable conditions: long-term remodeling of functional

properties of neurons has been reported previously in the mouse

hippocampus and barrel, visual, motor, and posterior parietal

cortex (Clopath et al., 2017; Deitch et al., 2021; Driscoll et al.,

2017; Hainmueller and Bartos, 2018; Huber et al., 2012; Mankin

et al., 2012; Margolis et al., 2012; Rokni et al., 2007; Rule et al.,

2019; Schoonover et al., 2021; Ziv et al., 2013). However, it is still

unclear how functional changes at the level of individual neurons

affect the properties of sensory representations at the population

level and how such ongoing changes relate to those expected to
This is an open access article under the CC BY-N
occur during learning. This gap in knowledge is not only due to

the scarcity of data up to now, but is also a consequence of

the difficulty to establish appropriate frameworks to describe

complex population dynamics in a biologically interpretable

manner.

Themouse auditory cortex offers an interestingmodel to study

the longevity of sensory representations. It has been previously

shown that sounds lead to the non-linear co-activation of

neuronal subgroups at the local microcircuit scale (Atencio and

Schreiner, 2013; Bathellier et al., 2012; See et al., 2018). A given,

specific local neuronal subgroup can be activated by a subset of

different sounds and therefore gives rise to near identical

response patterns. We called the stereotypical local response

pattern that is associated with this subset of sounds in a popula-

tion of imaged neurons a response mode (Bathellier et al., 2012).

The combination of different sounds that are mapped to a spe-

cific response mode varies across the auditory cortex. Thus, a

distinct representation for a specific sound is formed at the

global scale by the combinatorial pattern of multiple local

response modes. Furthermore, this global description of

neuronal population activity based on local response modes is
Cell Reports 38, 110340, February 8, 2022 ª 2022 The Authors. 1
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sufficient to predict spontaneous categorization behavior inmice

trained to discriminate pairs of sound stimuli (Bathellier et al.,

2012). The discrete nature of auditory representations at the

population level provides a highly sensitive and robust readout

for changes occurring over the time course of days and enables

a systematic assessment of their dynamics.

Here, we used chronic two-photon calcium imaging in the

mouse auditory cortex over several days to monitor sound-

evoked activity patterns forming sensory representations. We

find that, even in behaviorally habituated mice, auditory repre-

sentations display significant plasticity on the single-cell and

population levels. Exploiting the discrete nature of response

modes, we observed near stationary dynamics involving sub-

stantial remapping of stimuli to response modes as well as the

creation and elimination of individual response modes, while

leaving the statistics of neural activity patterns observed at a sin-

gle time point largely unaffected. Applying the same analysis to

data from mice undergoing auditory-cued fear conditioning

(ACFC), we observed specific biases in the mapping of stimuli

to response modes resulting in an increased co-activation of

shared subgroups of neurons activated by the conditioned stim-

ulus and specific non-conditioned stimuli that are characterized

by a high representational similarity to the conditioned stimulus.

These dynamics of enhanced co-mapping suggest the formation

of new sensory associations to the conditioned stimulus and

were predictive of the level of stimulus generalization we

observed behaviorally.

RESULTS

Chronic large-scale calcium imaging of neurons in the
mouse auditory cortex
To assess the long-term dynamics of auditory representations,

we transduced cells in themouse auditory cortex with a co-injec-

tion of two rAAV8 vectors to drive stable expression of two fluo-

rescent proteins under the control of the synapsin promoter: the

genetically encoded calcium indicator GCaMP6m (Chen et al.,

2013), to chronically record neural activity, and the fusion protein

H2B:mCherry, as a structural marker to distinctively label the

nuclei of transduced neurons (Figures 1A–1C) (Nathanson

et al., 2009).

We used intrinsic signal imaging in response to a set of pure-

tone stimuli of varying frequency to guide subsequent two-

photon imaging. For calcium imaging experiments in awake,

head-fixed, passively listening mice, we used a stimulus set of

brief (50–70 ms) sounds containing 19 sinusoidal pure tones

and 15 complex sounds characterized by temporally modulated

power in multiple frequency bands delivered free field using a

calibrated speaker at 74 dB sound pressure level (Figure S1A).

Mice were habituated to head fixation and pre-exposed to the

set of sound stimuli for at least 5 days to ensure that adaption to

novel sensory responses was largely completed (Kato et al.,

2015) and that data acquisition occurred under behaviorally

and environmentally familiar and constant conditions. The red

nuclear marker enabled high-fidelity re-identification and regis-

tration of individual local populations that were re-imaged for

four time points at a 2-day interval (Figures S2A–S2D). We

imaged neuronal activity in response to the 34 sound stimuli
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(20–30 repetitions each, presented in a pseudorandom order)

in a total number of 21.506 neurons in 97 different fields of

view (�100–300 neurons per FOV) in the cortical layer 2/3 of 12

mice (Figures 1D and S2E–S2G). When assessing trial-averaged

calcium responses to pure tones and complex sounds over this

period, we observed that many neurons that were responsive

within an FOV showed essentially stable responses to the sound

stimuli over a 2-day interval (30.75% ± 0.01% of responses).

Others, however, showed substantial re-tuning involving the

gain (36.85% ± 0.02%) or the loss (32.41% ± 0.01%) of re-

sponses with substantial signal amplitudes (Figures 1E and

S1B).

Dynamic long-term remodeling of sound responses in
individual neurons and populations of neurons
In light of the re-tuning of sound responsiveness in a substantial

fraction of neurons, we next asked how these changes would

affect the ability of the auditory cortex to form a stable represen-

tation of the auditory world.When pooling the data obtained from

all mice and FOVs, we identified on any given day a comparable

number of neurons showing significant responses for any of the

34 stimuli used in this study (Figures 2 and S3). However, when

considering only those neurons that displayed significant sound-

evoked responses on the first imaging day, and following them

across days, we observed a progressive blurring of the response

profile with time, reflecting the fact that some neurons changed

their preferred stimulus or became unresponsive. This process

was largely mirrored when considering only those cells with

sound-evoked responses on the last imaging day, highlighting

neurons that gained responsiveness to sounds during the course

of the experiment. We quantified the instability of responses

across days by computing the averaged, normalized response

amplitude for the preferred stimulus. If computed for the stimulus

that was driving the neurons’ maximal response on that given

day, this quantity is 1 and stable, by definition. However, if this

analysis is performed on each day for the preferred stimulus

from the first day, we found a substantial and continuous loss

of average response amplitudes. Again, a symmetric observa-

tion wasmade when normalizing to the preferred stimulus ampli-

tude of the last day. The observation that, despite substantial

changes in sound tuning of individual cells, a similar number of

cells is sound responsive on a given day, indicates that represen-

tations in the auditory cortex are maintained in a dynamic equi-

librium at a global level.

Next, we asked how these changes, observed on the level of

individual cells, become manifest on the level of population ac-

tivity. We observed that population responses were often stable

across several days. However, consistent with our single-cell

analysis above, sometimes the set of neurons responding to a

given stimulus changed from one imaging day to the next (Fig-

ures 3A–3C, S4A, and S4B). To assess whether these changes

affect the ability of neural populations to stably distinguish be-

tween auditory stimuli, we trained a linear classifier to discrimi-

nate single-trial activity patterns elicited by different sound

stimuli in a given FOV (see STAR Methods). When training and

testing with activity patterns recorded at the same day, we

observed similar performances across different imaging days

(Figure 3D). However, the impact of the changes in the



Figure 1. Chronic imaging of sound-evoked activity in auditory cortex of awake mice

(A) Experimental timeline. Dataset comprises 21,506 cells from 12 mice.

(B) Confocal image of a coronal section of a mouse brain sacrificed 46 days after stereotactic injection of a mixture of two rAAVs leading to the expression of

GCaMP6m (green) and H2B::mCherry (red) in the auditory cortex. Counterstain is DAPI (blue). Scale bar, 1 mm.

(C) In vivo two-photon image of a local population of neurons in layer 2/3 of the auditory cortex showing expression of GCaMP6m (green) and H2B:mCherry (red).

Scale bar, 100 mm. White circles and digits represent the location of the neurons in (D).

(D) Simultaneously recorded activity traces of 10 example neurons from the two-photon field of the view shown in (C) during awake, passive listening (green,

DF/F0; blue line, stimulus presentation; colored arrowheads, stimulus identity; PT, pure tones; CS, complex sounds).

(E) Responses to auditory stimuli in single neurons monitored over multiple days (green, mean DF/F0; gray, single trial DF/F0; blue line, stimulus presentation;

insets show images of cells on different days; image scale bar, 5 mm; trace scale bar, 1 s, 250% DF/F0). Note that individual cells show both stable and plastic

features in tuning.
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population response on stimulus discrimination became evident

when training the classifier on sound responses from the first day

and testing the performance with activity patterns from the

following imaging days. The decoding performance decreased

monotonically with an increasing interval between training and

testing. As above, we made a symmetrical observation when

training the classifier on the data from the last imaging day and
testing with sound responses from previous imaging days.

Consistent observations were made using an alternative, multi-

class decoding approach (Figure S4C). Different subsets of

stimuli evoked activity patterns in the various FOVs within the

same mouse (Bathellier et al., 2012). Therefore, combining the

information from various FOVs led to a substantial increase in

decoding compared with single FOVs (Figure S4D). Thus,
Cell Reports 38, 110340, February 8, 2022 3



Figure 2. Balanced drifts in tuning at the single-cell level

(A) Normalized response profiles of neurons with a significant response to at least one stimulus on day 1 sorted by stimulus with highest response amplitude.

Sorting from day 1 is applied to the subsequent days. N is total number of significantly sound-responsive cells on each day. For illustrative purposes, only every

30th cell is shown (PT, pure tones; CS, complex sounds).

(B) Average (mean ± SEM) normalized activity to the stimulus with highest response amplitude on day 1 (A) plotted across days. Estimation of best stimulus is

robust against sub-sampling of trials (black; Figure S3).

(C) Same as (A), for cells with a significant response on a given day. Sorting is done for each day individually.

(D) Same as (B), for cells with a significant response on a given day.

(E) Same as (A), for cells with a significant response on day 7. Sorting from day 7 is applied to the previous days.

(F) Same as (B), for cells with a significant response on day 7.
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extending the analysis to the level of neuronal populations, we

found that the ability to decode sounds from the auditory cortex

was largely robust against the ongoing remodeling of sound-

evoked response patterns.

A discrete set of response modes forms a population-
level representation of the auditory world
Having observed a considerable degree of ongoing remodeling,

not only of tuning properties in individual neurons but also of neu-

ral representations on the population level, we next sought to

capture the essence of these changes more efficiently. To this

end, we exploited the fact that, on a microcircuit scale, sound-

evoked activity patterns fall into a near-discrete set of response

modes (Bathellier et al., 2012).

This phenomenon is illustrated for an example FOV in Fig-

ure 4A, where we probed the population response with a set of

pure tones with gradually changing frequency. Instead of a

unique and distinct population response for each of the pure

tones, we observed an abrupt, highly non-linear transition from

one response pattern to another. To further assess the similarity

of the response patterns, we constructed a similarity matrix by

calculating pairwise correlations of single-trial response vectors.
4 Cell Reports 38, 110340, February 8, 2022
The entries along the diagonal were calculated as the average

Pearson correlation of all pairwise combinations of response

vectors elicited by the same sound, thus reflecting the trial to trial

reliability of the response pattern elicited by a given sound. Cor-

relation was low for sounds that did not evoke any activity in the

particular FOV. Off-diagonal entries were calculated as the

average correlation of all pairwise combinations of single-trial

response vectors elicited by a pair of two different sounds (see

STAR Methods). The two prominent clusters highlighted that,

in this example, the stimuli from 2 to 4 kHz evoked highly similar

activity patterns, allowing to describe their collective stereotyp-

ical response pattern by a single response mode (Figure 4B).

Likewise, the activity patterns elicited by the stimuli between 4

and 10 kHz showed a high degree of similarity and therefore

constituted a second response mode. The stimuli 11.3 to 15.9

kHz evoked no response in this FOV and were assigned to the

so-called 0-mode.

Applying the correlation analysis together with subsequent

clustering (Figure S5) we observed, in most FOVs in our dataset,

that the activity patterns elicited by subsets of stimuli could be

well described by a shared, stereotypical response mode. The

composition of the subsets of sound stimuli mapped to a shared



Figure 3. Population responses to auditory

stimuli are dynamic under basal conditions

(A–C) Single-trial population response vectors

acquired from a given FOV. Examples are shown

for three example stimuli and three different FOVs

over the time course of 7 days. For illustrative

purposes, only the 50 most active cells are shown

in random order and trials are sorted by de-

scending mean activity (PT, pure tones; CS,

complex sounds).

(D) Linear pairwise discriminability calculated by

logistic regression averaged across all possible

sound pairs and FOVs (mean ± SEM) plotted

across days. The classifier was trained with data

from either first (green), last (red), or given (purple)

imaging day. Dashed line indicates chance level.
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response mode varied across FOVs and often comprised a mix

of both pure tones and complex sounds. In a given FOV we typi-

cally observed between three and nine different response

modes, on average associated with 2.40 ± 0.21 (mean ± SEM)

sound stimuli and comprising in the majority of FOVs less than

10 significantly active neurons (Figure S6).

In summary, our analysis of the data based on individual imag-

ing days corroborates previous reports suggesting a functional

layout of the superficial layers of mouse auditory cortex with

scattered and partially overlapping neuronal subgroups that

are driven in a non-linear manner by different groups of sound

stimuli (Bathellier et al., 2012; See et al., 2018).

Ongoing recombination of sensory representations
during basal conditions
Having observed that the structure of auditory representations in

an FOV can be well approximated by a small set of response

modes, we exploited this highly reduced, non-linear description

to capture the main aspects of the ongoing representational

changes during basal conditions. We constructed similarity

matrices from the response patterns observed on all imaging

days within an FOV and applied hierarchical clustering to statis-

tically identify individual response modes (see STAR Methods

and Figure S5). The analysis revealed that, over the time course

of several days, the response mode structure forming a sound

representation undergoes substantial remodeling. This dy-

namics becomes obvious when considering the clustered simi-

larity matrices of the response patterns for the four imaging

days sorted on each day individually or even more dramatically

when keeping the sorting of the first or last day fixed for the re-

maining days (Figures 5A–5C and S7). Here, the response

modes that, after sorting, became apparent as few, well-defined

clusters in thematrices, gradually eroded over the time course of

several days.

To systematically analyze these ongoing changes, we as-

sessed for each of the 97 FOVs and each of the 34 stimuli if
C

they were mapped to any response

mode. We found that, on a given day,

about a third of the stimuli was mapped

to a response mode, but over the time

course of a week, about half of the stimuli
elicited at least once a population response (Figure 5D). In prin-

ciple, these changes could be explained by unstable mapping of

individual stimuli to a set of stable response modes. However,

when quantifying the number of response modes observed in

the 97 FOVs, we also observed that responsemodes themselves

underwent ongoing remodeling, i.e., new response modes were

identified at a later time point, whereas others were no longer de-

tected (Figure 5E). Of all stimuli being mapped to a specific

response mode on a given day, only half remained in that

mode on the following imaging day, whereas almost 20%moved

to a different responsemode, andmore than 30% to the 0-mode,

i.e., no longer elicited a population response (Figure 5F). This dy-

namics was largely balanced, as almost 30% of stimuli mapped

to a response mode on a given day did not elicit a population

response on the previous imaging day. In summary, we found

changes in the mapping of sounds to response modes, as well

as changes in the response modes themselves, while the

average number of stimuli being mapped to a response mode

and the total number of response modes remained fairly stable

across imaging days.

ACFC increases population responses for stimuli with
representational similarity to the conditioned sound
We next wondered to what extent behaviorally relevant experi-

ences that trigger the formation of a memory to a sound would

impact on the long-term dynamics of sensory representations

in mouse auditory cortex (Aschauer and Rumpel, 2018). To this

end, we acquired a second dataset (10 mice; 74 FOVs; 16,882

neurons) with four imaging time points at a 2-day interval using

the same set of sound stimuli as before (Figure 6A). On the day

between imaging sessions two and three, mice underwent an

ACFC paradigm in which they learned to associate the presenta-

tion of a sound with the subsequent application of a mild foot

shock. A complex sound (CS6) from the stimulus set was chosen

as conditioned stimulus (CS+) for all conditioning experiments. It

has previously been shown that ACFC and variants thereof
ell Reports 38, 110340, February 8, 2022 5



Figure 4. Abrupt transitions in population responses elicited by gradually changing stimuli delineate discrete response modes

(A) Example population activity from an FOV showing a non-linear response mode transition to interpolation of pure-tone frequencies from 2 to 15.9 kHz. Top:

stimulus identity; bottom: single trial population response vectors. For illustrative purposes, only the 50most active cells are shown in random order and trials are

sorted by descending mean activity.

(B) Similarity matrix (mean Pearson correlation) from the example FOV shown in (A). Top: stimulus identity; right: response mode identity; 0-mode: no significant

population response (see STAR Methods).
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induce nucleus-wide reorganization of chromatin and specific

changes in gene expression (Cho et al., 2017; Peter et al.,

2012, 2021), affect the dynamics of synaptic connections (Lai

et al., 2018;Moczulska et al., 2013; Yang et al., 2016), and induce

changes in the tuning of neurons in the mouse auditory cortex

(Dalmay et al., 2019; Gillet et al., 2017; Quirk et al., 1997; Wein-

berger, 2004).

To test for the successful formation of a memory at the behav-

ioral level, we exposed mice again to the sound cue used for

conditioning in a neutral context after the last imaging session

and scored freezing behavior as a readout of fear-related mem-

ory recall. As expected, we observed low freezing levels during

silence and significantly increased freezing during presentation

of the conditioned sound. Furthermore, we also observed high

freezing levels during the presentation of a second sound stim-

ulus that was not presented during the conditioning session

(nonCS+ (a)) (Figure 6B; n = 10 mice; mean ± SEM: first 30 s:

5.00 ± 2.51, CS+: 28.49 ± 3.73, nonCS+: 34.26 ± 3.45; df: 2;

F = 22.47; *p < 0.0001 for first 30 s and CS+, *p < 0.0001 for first

30 s and nonCS+). The observation that non-conditioned stimuli

sharing perceptual similarity with the CS+ can also evoke condi-

tioned responses is commonly described as stimulus generaliza-

tion (Pavlov and Anrep, 1927). A high level of generalization is

typically observed following classical fear conditioning unless

specific differential conditioning paradigms are utilized (Letzkus

et al., 2011).

We compared the fraction of sound-responsive cells in both

datasets and found only a transient increase in the first imaging

session after conditioning (Figure 6C; control: n = 97 FOVs; mean

± SEM; 1 ± 0, 0.989 ± 0.061, 0.916 ± 0.057, 0.933 ± 0.046,

ACFC: n = 74 FOVs; mean ± SEM; 1 ± 0, 1.057 ± 0.047, 1.110

± 0.055, 0.971 ± 0.039; *p < 0.0001). The efficacy to decode

sounds from population response vectors recorded within indi-

vidual FOVs; however, showed a long-lasting increase following

conditioning in comparison with the control group (Figure 6D;

control: n = 97 FOVs; mean ± SEM; 0.6878 ± 0.0052, 0.6849 ±

0.0056, 0.6794 ± 0.0051, 0.6779 ± 0.0049, ACFC: n = 74

FOVs; mean ± SEM; 0.6866 ± 0.0059, 0.6824 ± 0.0056, 0.6866

± 0.0055, 0.6874 ± 0.0061; *p < 0.05). In parallel to this, the

average number of stimuli that evoked a population response

in a given FOV, i.e., were mapped to a response mode, was

significantly increased following conditioning compared with
6 Cell Reports 38, 110340, February 8, 2022
control (Figure 6E; control: n = 97 FOVs; mean ± SEM 11.27 ±

0.68, 10.95 ± 0.70, 9.90 ± 0.59, 9.12 ± 0.57, ACFC: n = 74

FOVs; mean ± SEM 11.78 ± 0.75, 11.01 ± 0.70, 11.01 ± 0.69,

11.22 ± 0.73; day 5: *p = 0.0095, day 7: *p < 0.0001).

We next wondered to what extent the response increase

observed for a given stimulus is predicted by its similarity to

the CS+ prior to conditioning. As our knowledge of the relevant

perceptual space in mice is very limited at present, we used

representational similarity in the auditory cortex as a proxy for

stimulus similarity. We followed an approach to use the correla-

tion of stimulus-evoked activity patterns to gain a pairwise mea-

sure of the representational similarity between the 34 sounds

including the CS+ (Kriegeskorte et al., 2008). We constructed

correlation matrices by calculating the Pearson correlation be-

tween the pairwise response vectors for all sound stimuli re-

corded on the first imaging day in each FOV of both datasets

and then averaged them across all FOVs (Figure 6F). This yielded

a robust measure of representational similarity, as we obtained

highly consistent estimates for both datasets analyzed sepa-

rately (Figure S8). We next sorted the stimuli according to their

similarity to the CS+ and calculated for each dataset the fraction

of FOVs in which a particular nonCS+ stimulus elicited a popula-

tion response. During baseline (day 1), there was no systematic

difference between the ACFC and control datasets (Figure 6G;

gray dots, Spearman rank correlation r = 0.32, p = 0.07). In

contrast, 3 days after conditioning (day 7) we found that a subset

of stimuli were more likely to elicit a population response in the

conditioned group. This observation was specific for stimuli

with a high representational similarity to the CS+, as other

stimuli with low similarity to the CS+ showed only minor changes

(Figure 6G; black dots, Spearman rank correlation r = 0.66, p <

0.0001). Notably, responses to the CS+ itself seemed to be

barely affected by conditioning.

Fear conditioning drives the formation of associations
between sensory representations, predicting
behavioral generalization
Stimulus generalization is believed to involve the linkage or asso-

ciation between the conditioned CS+ and other nonCS+ stimuli

during conditioning (Dunsmoor and Paz, 2015; Pavlov and An-

rep, 1927). At the microcircuit level, the activation of a shared

subgroup of neurons by different stimuli has been interpreted



Figure 5. Recombination of responsemodes over the course of days

(A) Single-day similarity matrices of sound-evoked responses from an

example FOV sorted by hierarchical clustering. The clustering procedure

sorts the sound stimuli according to the similarity of their corresponding

response patterns observed in the FOV. Sorting from day 1 is applied to the

subsequent days. Top: stimulus identity (PT, pure tones; CS, complex

sounds).

(B) Same as (A) but sorted on each day individually.

(C) Same as (A) but sorting from day 7 is applied to the previous days.

(D) Life-time plot depicting the stability of the mapping of stimuli to response

modes. The mapping was assessed for the 34 stimuli in all 97 FOVs resulting in

a maximally possible number of 3.298 mappings, displayed along the y axis. A

thin horizontal black line indicates a mapping (significant response) present on

a given day. Mappings are sorted based on day 1, from present to non-present

mappings. Data from 12 mice.

(E) Life-time plot of the total number of response modes that were identified in

a given FOV. A thin horizontal black line indicates presence of a response

mode on a given day, data pooled over all 97 FOVs and 12 mice.

(F) Flow chart of response mode dynamics. Left: development of popul-

ation responses present on day i (defined as mode A) 2 days into the

future (mode A, mode B, or 0-mode). Right: development of population

responses present on day i (defined as mode A) from 2 days previously

(mode A, mode B or 0-mode). Numbers are counts and fractions averaged

across transitions.
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as the formation of an association among sensory representa-

tions (Grewe et al., 2017). We therefore leveraged our framework

to describe population dynamics using responsemodes to test if

ACFC leads to changes consistent with an increased formation

of associations between CS+ and nonCS+ representations. In

this framework the formation of associations would be reflected

by an increased number of stimuli being mapped to the same

response mode. Such a change would be consistent with our

observation that fear conditioning increases the number of

sounds driving a population response in a given FOV as

described above (Figures 6E and 6G). Alternatively, however,

an increased likelihood of population responses could also be

explained by an increased formation of new response modes,

without involving increased co-mapping of stimuli to the same

subgroup of neurons.

Our analysis of the response mode dynamics revealed that

learning induces a bias in the ongoing recombination of sensory

representations compared with basal conditions. Specifically,

we found that the average number of modes per FOV was indis-

tinguishable between the baseline and fear conditioning cohorts

during all imaging days (Figure 7A; control: n = 97 FOVs; mean ±

SEM; 5.42 ± 0.32, 5.10 ± 0.34, 4.93 ± 0.30, 4.69 ± 0.29, ACFC:

n = 74 FOVs; mean ± SEM; 5.51 ± 0.37, 5.49 ± 0.35, 4.97 ±

0.32, 5.01 ± 0.31), whereas the average number of stimuli per

response mode was significantly larger following conditioning

(Figure 7B; control: n = 97 FOVs; mean ± SEM; 2.39 ± 0.21,

2.27 ± 0.13, 2.19 ± 0.13, 1.99 ± 0.11, ACFC: n = 74 FOVs;

mean ± SEM; 2.36 ± 0.12, 2.11 ± 0.13, 2.48 ± 0.17, 2.53 ±

0.20; day 5: *p = 0.0021; day 7: *p < 0.0001). Both datasets in

our study were dominated by a substantial degree of ongoing

representational dynamics (Figure S9). Under basal conditions,

we observed that stimuli disappeared from a given response

mode, by a rate that was almost balanced by new stimuli being

added to it (Figure 5F). Intriguingly, we found that, after fear con-

ditioning, both of these rates were shifted: the rate of stimuli be-

ing added to a mode per day increased, relative to the baseline

dynamics (Figure 7C; control: n = 97 FOVs; mean ± SEM; 1 ±

0.056, 0.902 ± 0.054, 0.829 ± 0.052, ACFC: n = 74 FOVs;

mean ± SEM; 1 ± 0.065, 1.032 ± 0.066, 1.027 ± 0.065; transition

3/5: *p < 0.0001; transition 5/7: *p < 0.0001), while the rate of

stimuli disappearing (and entering the 0-mode) decreased (Fig-

ure 7D; control: n = 97 FOVs; mean ± SEM; 1 ± 0.054, 1.186 ±

0.058, 1 ± 0.054, ACFC: n = 74 FOVs; mean ± SEM; 1 ± 0.057,

0.819 ± 0.052, 0.761 ± 0.05; transition 3/5: *p < 0.0001; transi-

tion 5/7: *p < 0.0001). Both processes effectively increased the

average number of stimuli that are mapped to a response mode.

The former suggests an increase in the formation of new associ-

ations among stimuli, while the latter suggests the stabilization of

existing associations. Note that such an increase in the average

number of stimuli per response mode is compatible with the

overall improvements of stimulus decoding that we observed

following fear conditioning, as we illustrated by means of a sim-

ple, mathematical model (Figure S10).

We next assessed if increased co-mapping of stimuli following

fear conditioning is specific to nonCS+ sound stimuli similar to

the CS+. In the basal control group, as expected, sounds with

a higher representational similarity before conditioning also

had a higher likelihood to be co-mapped to the same response
Cell Reports 38, 110340, February 8, 2022 7



Figure 6. Auditory-cued fear conditioning

increases responsiveness for stimuli similar

to the CS+

(A) Experimental timeline for cohort of mice un-

dergoing chronic calcium imaging and auditory-

cued fear conditioning (ACFC). During condition-

ing a complex sound stimulus (CS6) was used as

conditioned stimulus. In the memory test session

mice were exposed to the CS+ as well as another

non-conditioned sound (nonCS+). The imaging

dataset comprises 16,882 cells from 10 mice.

(B) Increase in freezing behavior for conditioned

stimulus (CS+) and high level of generalization to

nonCS+ (a) in the memory test 4 days after fear

conditioning. Gray lines depict behavior of indi-

vidual animals and black line is mean ± SEM of all

animals (*one-way ANOVA with correction for

multiple comparisons, p < 0.0001).

(C) Normalized fraction of sound-responsive cells

over the imaging days averaged over FOVs (mean

± SEM, *bootstrap test, p < 0.0001).

(D) Decoding performance (pairwise logistic

regression, training and test data from same day)

in baseline and ACFC dataset (mean ± SEM,

*bootstrap test, p < 0.05).

(E) Average number of stimuli eliciting a population

response in a given FOV (mean ± SEM, *bootstrap

test, day 5: p < 0.01, day 7: p < 0.0001).

(F) Correlation matrix of sound response vectors

for all stimuli averaged across all FOVs from both

datasets on day 1. Arrows mark columns repre-

senting the stimulus used for fear conditioning

(CS+) and the non-conditioned stimulus presented

during the memory test session (nonCS+ (a)).

(G) Difference between basal and fear conditioning

groups in the fraction of FOVs in which a popula-

tion response to a given stimulus was observed.

Gray dots mark values for baseline (day 1) and

black dots after conditioning (day 7). Stimuli are sorted on the x axis by descending similarity to the stimulus used for fear conditioning. Correlation color bar

represents the correlation of population response vectors to the CS+ (see CS+ column) from (F). Arrowsmark the stimulus used for fear conditioning (CS+) and the

non-conditioned stimulus (nonCS+ (a)) presented during the memory test session. Note the strong increase in responsiveness after fear conditioning for stimuli

with a high correlation to the CS+. *Spearman’s rank correlation, r = 0.66, p < 0.0001.
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mode, as both measures of population activity are related to one

another. Importantly, when comparing the basal control group to

the dataset obtained from conditioned mice, we found that the

likelihood of co-mapping to the CS+ was more pronounced

specifically for the non-conditioned soundswith a high represen-

tational similarity to the CS+ (Spearman rank correlation:

r = 0.73, p < 0.0001; Figures 7E, 7F, and S11). This suggests

that fear conditioning led to an increased formation of associa-

tions between the CS+ and those nonCS+ sounds that a priori

showed a high level of representational similarity.

To test the correlation between the changes at the level of

cortical representations and behavioral stimulus generalization,

we performed another fear-conditioning experiment. Here,

mice were conditioned to the same complex sound stimulus

CS6 as CS+ and we used three nonCS+ sounds to probe for

stimulus generalization in a test session 4 days later. We

selected two sounds from our set of 34 stimuli, one that showed

a high increase of co-mapping to the CS+ (nonCS+ (b)) and one

that showed no change (nonCS+ (c)) (Figure 7F). In addition, we

included the non-conditioned stimulus used in our previous
8 Cell Reports 38, 110340, February 8, 2022
experiment (nonCS+ (a)) to replicate our finding. Importantly,

all stimuli used in this experiment did not induce freezing in naı̈ve

mice (Figure S12). We found that, after conditioning, freezing

levels induced by nonCS+ (a) and nonCS+ (b) were significantly

higher than those observed in response to nonCS+ (c) (Figure 7G;

n = 16 mice; mean ± SEM: first 30s: 22.50 ± 2.28, nonCS+ (a):

63.05 ± 3.41, nonCS+ (b): 68.48 ± 2.38, nonCS+ (c): 41.80 ±

4.10, blank: 37.21 ± 4.37; df: 4; F = 30.87; *p < 0.0001 for first

30 s and all other groups, *p < 0.0001 for nonCS+ (a, b) and

nonCS+ (c) and blank). Together, our findings indicate that repre-

sentational similarity is predictive of the degree of conditioning-

induced mapping of nonCS+ stimuli onto the same response

mode as the CS+ and that this co-mapping, in turn, can predict

the degree of behavioral generalization to a non-conditioned

stimulus.

DISCUSSION

Westudied the dynamics of auditory representations in the cortex

in thousands of neurons over the time course of several days. To



Figure 7. Increased co-mapping of the CS+

and nonCS+ stimuli to shared response

modes predicts behavioral generalization

(A) Mean number of response modes averaged

over FOVs (mean ± SEM) in both experimental

groups.

(B) Mean number of stimuli per response mode

averaged over FOVs (mean ± SEM). *Bootstrap

test, day 5: p < 0.01, day 7: p < 0.0001.

(C) Normalized fraction of stimuli gaining a

response mode representation averaged over

FOVs (mean ± SEM). *Bootstrap test, days 3–5:

p < 0.0001, day 5–7: p < 0.0001.

(D) Same as (B) for stimuli losing a response mode

representation. *Bootstrap test, days 3–5: p <

0.0001, day 5–7: p < 0.0001.

(E) Examples from two FOVs showing the re-

sponses of the conditioned stimulus (CS+) and a

non-conditioned stimulus (nonCS+). Prior to fear

conditioning the nonCS+ did not elicit a significant

response (0-mode), whereas after fear condition-

ing its response became similar to that of the CS+

(mode A). Top: stimulus identity; middle: mode

identity; bottom: single trial population response

vectors. For illustrative purposes, the 50 most

active cells are shown in random order and trials

are sorted by descending mean activity (PT, pure

tones; CS, complex sounds).

(F) Top: for each stimulus, sorted on the x axis by

descending similarity to CS+, the plot shows the

fraction of FOVs this stimulus is co-mapped to the

response mode of the CS+ on day 7 in experi-

mental groups with (acfc, red) and without (basal,

blue) fear conditioning. Correlation color bar

represents average correlation of population

response vectors to the CS+ (same as in Fig-

ure 6G). Arrows mark non-conditioned stimuli

presented during the memory test session in (G)

(nonCS+ (a, b, c)). Bottom: differences between

fractions for acfc and basal. *Spearman’s rank

correlation, r = 0.73, p < 0.0001. Note a strong

increase in co-mapping after fear conditioning

specifically for stimuli with larger representational

similarity to the CS+ prior to conditioning.

(G) Top: experimental time line of behavioral

experiment. During conditioning the same com-

plex sound (CS6) as in Figure 6 was paired with the

unconditioned stimulus. During the generalization

test, mice were exposed to three non-conditioned

sound stimuli. Bottom: increase in freezing

behavior in a test session for three non-condi-

tioned stimuli (two with high-response correlation

to the CS+ (nonCS+ (a, b)) and one with low

response correlation to the CS+ (nonCS+ (c)).

Freezing to nonCS+ (c) is not different to time

periods without the presentation of a stimulus

(blank). Gray lines depict behavior of individual

animals and the black line is the mean ± SEM of all animals. *One-way ANOVA with correction for multiple comparisons, first 30 s versus nonCS+ (a, b, c) and

blank: p < 0.05, nonCS+ (a, b) versus nonCS+ (c) and blank: p < 0.0001.
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capture structure in massive parallel recordings, changes in pop-

ulation activity are often described using a single, albeit rather ab-

stract metric, such as decoding power (e.g., Figure 3D). Here, the

identification of response modes based on the non-linear activa-

tion of distinct neuronal subgroups provided a description of pop-

ulation activity at an intermediate and biologically more interpret-
able level. A response mode represents the mapping of a set of

sensory stimuli to the stereotypical activation of a specific sub-

group of neurons and thus reflects non-linear properties of audi-

tory perception (Liberman et al., 1967). Using this framework,

we found that auditory representations undergo substantial

recombination even under environmentally and behaviorally
Cell Reports 38, 110340, February 8, 2022 9
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stable conditions. We observed nearly stationary dynamics

involving the gain and loss of responsemodes aswell as changes

in the mapping of stimuli to individual response modes.

What are the driving forces underlying the recombination of

sensory representations during basal conditions? As the pattern

of connectivity is considered amajor determinant for the patterns

of activity that can arise in neuronal networks, it appears plausible

that ongoing remodeling of synaptic connections could underlie

the plasticity we observed in our experiments. Indeed, such basal

dynamics in connectivity are observed in themouse auditory cor-

tex during behaviorally stable conditions without need for adap-

tion (Loewenstein et al., 2011, 2015). Interestingly, such sponta-

neous dynamics in synaptic connections even persist during

pharmacological blockade of neuronal activity (Dvorkin and Ziv,

2016; Nagaoka et al., 2016; Rubinski and Ziv, 2015; Yasumatsu

et al., 2008), and thus appear to represent a fundamental feature

of neuronal circuits.More recently, theoreticalmodeling has been

used to investigate how ongoing synaptic plasticity, as it is

observed during basal conditions, affects the long-term stability

of activity patterns in a network (Humble et al., 2019; Kappel

et al., 2015, 2018; Mongillo et al., 2018; Susman et al., 2019).

For successful navigation in a complex and changing environ-

ment, it is essential to balance the discrimination and generaliza-

tion of sensory stimuli. Generalization and transfer of learning to

stimuli sharing perceptual features can be useful, given that natu-

ral stimuli typically reoccur in a similar, but rarely in theexact same

form. However, excessive stimulus generalization is believed to

play an important role in clinical contexts, such as post-traumatic

stress disorder (Besnard and Sahay, 2016). In the laboratory

setting, stimulus generalization is typically investigated in condi-

tioning paradigms employing simple stimuli, such as pure tones

in the auditory domain that can be changed in a unidimensional

manner tocontrol their perceptual similarity to theCS+.Predicting

the perceptual similarity for naturalistic stimuli that are different

from the CS+ along multiple sensory dimensions is challenging.

In our study, we used the degree of representational similarity

between the CS+ and non-conditioned stimuli prior to condition-

ing as a proxy for perceptual similarity, allowing us to infer the

extent of learning-induced changes in the sound-evoked activity

patterns. This is in line with previous findings in which the repre-

sentational similarity at the level of the auditory cortex was used

as a neurometric measure to predict behavioral categorization

of stimuli in a discrimination task (Bathellier et al., 2012). Stimulus

generalization is believed to entail a linkage between theCS+ and

nonCS+ sharing perceptual features; however, the circuitmecha-

nisms mediating this linkage are still poorly understood (Boddez

et al., 2021; Dunsmoor and Paz, 2015). When studying the effect

of ACFC on the intrinsic dynamics of auditory representations,we

observed an increased co-mapping of non-conditioned stimuli to

the same subgroups of neurons that are driven by the CS+,

consistent with a contribution of the auditory cortex to stimulus

generalization (Aizenberg and Geffen, 2013; Armony et al.,

1997; Thompson, 1962). Increased co-activation of shared sub-

groups of neurons by different stimuli has been suggested to

represent a neuronal correlate of the formation of an association

between the stimuli. Increased co-activation of shared neuronal

subgroups has been reported previously during the formation of

an association between the CS+ and the unconditioned stimulus
10 Cell Reports 38, 110340, February 8, 2022
at the level of the amygdala (Grewe et al., 2017) as well as in hip-

pocampal ensembles representing environmental context where

both the degree of co-activation and the transfer of fear between

conditioned andnon-conditionedcontextswasdependent on the

time elapsed between both experiences (Cai et al., 2016).

Together, our findings suggest that generalization follows and

additionally reinforces the structure of internal representations.

Of note, our study did not reveal prominent conditioning-

induced effects on the neuronal representation of the CS+ that

outlasted several days and could be interpreted as a representa-

tional expansion in the auditory cortex (Figure 6G). This is in

contrast to an earlier study in which guinea pigs were extensively

conditioned to pure tones (Weinberger et al., 1993), but consis-

tent with a more recent study in which discriminatory fear condi-

tioning led to an increased representational distance between

the paired CS+ and an unpaired CS� in the absence of pro-

nounced response potentiation (Dalmay et al., 2019).

Interestingly, the recombination of representations, i.e., their

association as well as their dissociation, ensues to a substantial

degree also during basal conditions and remains a matter of

research to investigate their functional relevance (Chambers

and Rumpel, 2017). We speculate that the ongoing dynamics

of subgroups of neurons could support cognitive processes

that occur without explicit mental engagement, such as the

spontaneous creation of associations (Wallas, 1926) or their

forgetting (Richards and Frankland, 2017).

Limitations of the study
Here, we used calcium imaging to record sound-evoked pat-

terns of activity in the mouse auditory cortex. As such, it remains

an indirect measure of neuronal activity and offers only limited

temporal resolution. It therefore remains unanswered in how

far the non-linearly activated subgroups of neurons correspond-

ing to various response modes reflect Hebbian cell assemblies.

A better temporal resolution of the fine structure of activity

patterns as much as a reconstruction of the underlying connec-

tivity will be needed to resolve this question in the future. Further-

more, we used Pearson correlation of sound-evoked activity

patterns as a measure of representational similarity that pro-

vided a good, albeit not perfect, predictor of the effects observed

following conditioning. This indicates that another measure

could provide an even better metric for representational

similarity.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

rAAV (ITR-hSyn-GCaMP6m-WPRE-ITR) This paper N/A

rAAV (ITR-hSyn-H2B::mCherry-WPRE-ITR) This paper N/A

Deposited data

In vivo two-photon imaging data This paper https://doi.org/10.12751/g-node.trwj8c

Experimental models: Organisms/strains

Mouse: CB57BL/6J Jackson Laboratory Strain #000664; RRID: IMSR_JAX:000664

Recombinant DNA

pAAV-hSyn-hChR2(H134R)-EYFP Addgene Addgene 26973; RRID:Addgene_26973

pAAV-hSyn-GCaMP6m-WPRE This paper N/A

pAAV-hSyn-H2B::mCherry-WPRE This paper N/A

Software and algorithms

MATLAB R2007a, R2016b, R2019b MathWorks, Natick, MA, USA N/A

Image processing of chronic two-photon data This paper https://doi.org/10.5281/zenodo.5822486
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Simon

Rumpel (sirumpel@uni-mainz.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Original imaging data, corresponding ROI coordinates for extraction of cellular calcium activity and sound stimulation data have been

deposited at G-Node (www.g-node.org) and is made publicly available as of the date of publication (G-Node: https://doi.org/10.

12751/g-node.trwj8c).

All original image processing code has been deposited at the Zenodo online depository and can be accessed at Zenodo: https://

doi.org/10.5281/zenodo.5822486.

Any additional information that may be required to re-analyze the data reported in this paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse maintenance
Experimental subjects for imaging experiments were male CB57BL/6J mice of eight to twelve weeks of age from Jackson laboratory

(strain #000664). For behavior experiments investigating the generalization of different auditory stimuli, experimental subjects were

male C57BL/6JRj of eight weeks of age from Janvier laboratories. Before surgical procedures, mice were kept in groups of five, and

housed in 530 cm2 cages on a 12h light/dark cycle with unlimited access to dry food and water. Experiments were carried out during

the light period. All animal experiments were performed in accordance with the Austrian laboratory animal law guidelines for animal

research and had been approved by the Viennese Magistratsabteilung 58 (Approval M58/00236/2010/6) and the Landesuntersu-

chungsamt Rheinland Pfalz (Approval 23 177-07/G 17-1-051).
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Molecular cloning
For the generation of a recombinant AAV (rAAV) genome encoding for GCaMP6m under the human SynapsinI promoter (phSyn),

a plasmid containing the inverted terminal repeats (ITRs) of AAV, phSyn (Addgene plasmid 26973), Woodchuck Hepatitis

Prottranscriptional Regulatory Element (WPRE), and a human Growth Hormone polyadenylation site (hGH-pA site) was digested us-

ing BamHI and AccIII and the gene coding for GCaMP6m was PCR amplified from a commercially available plasmid (Addgene

plasmid 40754) and inserted. Finally, the plasmid was digested with AccIII and HindIII to excise the original transgene and

30overhangs were blunted and 50overhangs were filled in using Klenow fragment.

For the generation of a recombinant AAV genome encoding for H2B-mCherry fusion protein under the phSyn, a gene coding for

mCherry was PCR amplified and inserted into a plasmid containing a gene for H2B directly after its coding sequence using ClaI and

SpeI to produce a fusion gene. The H2B-mCherry fusion genewas PCR amplified and inserted into a plasmid containing ITRs, phSyn,

WPRE, and hGH-pA using KpnI and HindIII. Finally, the WPRE was removed using HindIII and XhoI, and 30overhangs were blunted

and 50overhangs were filled in using Klenow fragment.

rAAV production
All rAAV vectors described were produced in HEK 293 cells by using a helper virus free, two-plasmid based production method

(Grimm et al., 2003) based on a commercially available AAV helper free system (Agilent Technologies, CA, USA; catalog#

240,071). Briefly, HEK293 cells were transfected by using the calcium phosphate method. 72 h post transfection, cells were har-

vested and collected by centrifugation (2,500 x g, 20 min at 4�C). Cell pellets were resuspended in resuspension buffer and lysed

by three consecutive freeze/thaw cycles. For removal of genomic DNA, cell lysates were incubated with benzonase (50 U/mL) for

one hour at 37�C. Subsequently, rAAV particles were precipitated with CaCl2 (25 mM) followed by PEG precipitation (8% PEG-

8000, 500 mM NaCl). After resuspension of PEG precipitates in 50 mM HEPES, 150 mM NaCl, 25 mM EDTA, pH 7.4 overnight at

4�C, rAAV particles were further purified by CsCl density gradient centrifugation. Fractions from CsCl density gradients were

analyzed by measuring the refractory index. Samples within a refractory index ranging from 1.3774 to 1.3696 were pooled and dia-

lyzed against PBS for removal of CsCl by using dialysis cassettes with a molecular weight cutoff of 20 kDa (Thermo Scientific, MA,

USA; catalog# 87738). Finally, rAAV preparations were concentrated by using ultrafiltration units with a molecular weight cutoff of

50 kDa (Millipore, MA, USA; catalog# UFC905024). After addition of glycerol to a final concentration of 10%, rAAV preparations

were sterile filtered with Millex-GV filter units (Millipore, MA, USA; catalog# SLGV013SL), frozen in liquid nitrogen, and subsequently

stored in aliquots at�80�C. Genomic titers of purified rAAV stocks were determined by isolation of viral DNA (Viral Xpress DNA/RNA

Extraction Reagent, Millipore, MA, USA; catalog# 3095) and subsequent qPCR analysis using primers specific for phSyn.

Stereotaxic injections
All surgical equipment was sterilized with 70% v/v ethanol before use. Animals were deeply anesthetized with a mixture of ketamine

and medetomidine (KM; 2.5 mg ketamine-HCl and 0.02 mg medetomidine-HCl/25 g mouse weight) injected intraperitoneally, and

positioned in a stereotaxic frame (Kopf Instruments, Tujunga, CA, USA; Stereotaxic System Kopf, 1900). The eyes were protected

from dehydration and intensive light exposure using sterile eye gel (Alcon Pharma, Novartis, CHE; Thilo-Tears Gel) and a piece of

aluminum foil. Lidocaine was applied as local anesthetic subcutaneously before exposure of the skull. The scalp was washed with

a 70% v/v ethanol in water solution and a cut along the midline revealed the skull. A small hole was drilled into the skull above the

auditory cortex using a stereotaxic motorized drill (Kopf Instruments, Tujunga, CA, USA; Model, 1911 Stereotaxic Drilling Unit) leaving

the dura mater intact. Injections were performed perpendicular to the surface of the skull. Virus solution consisted of a mixture of two

different recombinant AAV viruses (rAAV2/8 ITR-phSyn-GCaMP6m-WPRE-hGHpolyA-ITR; titer: 1.75 * 1011 viral genomes (VG)/ml;

rAAV2/8 ITR-phSyn-H2BmCherry-hGHpolyA-ITR; titer: 2 * 1013 VG/ml) in PBS. The virus mixture was loaded into a thin glass pipette

and 150 nL were injected at a flow rate of 20 nL/min (World Precision Instruments, Sarasota, FL, USA; Nanoliter, 2000 Injector) in five

locations along the anterior-posterior axis, resulting in a total injection volume of 750 nL. Stereotactic coordinates were: 4.4, �2,5/-

2.75/-3/-3.25/-3.5, 2.5 (in mm, caudal, lateral, and ventral in reference to bregma). Glass pipettes (World Precision Instruments, Sar-

asota, FL, USA; Glass Capillaries for Nanoliter, 2000; Order# 4878) had been pulled with a long taper and the tip was cut to a diameter

of 20–40 mm. After the injection, the pipette was left in place for three minutes, before being slowly withdrawn and moved to the next

coordinate. After completion of the injection protocol, the skin woundwas sealed using tissue adhesive (3MAnimal Care Products, St.

Paul, MN, USA; 3M Vetbond Tissue Adhesive), and anesthesia was neutralized with 0.02 mL atipamezole. Mice were monitored daily

and intraperitoneal injections of carprofen (0.2 mL of 0.5 mg/mL stock) were applied on the first days after surgery.

Cranial window implantation
Two weeks after stereotactic injections, animals were anesthetized using isoflurane (Abbott Animal Health, IL, USA; IsoFlo). All sur-

gical equipment and glass coverslip were sterilized with 70% v/v ethanol before use. Anesthesia was initialized in a glass desiccator

filled with an isoflurane/air mixture. Anesthetized animals weremounted on a stereotaxic frame (Kopf Instruments, Tujunga, CA, USA;

Stereotaxic System Kopf, 1900) and the head was positioned using ear, teeth, and a custom-made v-shaped head holder. Anes-

thesia was maintained by delivery of a 1.5 to 2.4% isoflurane/air mixture with a vaporizer (High Precision Instruments, MT; Univentor
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400 Anesthesia Unit) at a flow rate of around 200 mL/min to the snout. 0.02 mL dexamethasone (4 mg/mL) was administered intra-

muscularly to the quadriceps, as well as 0.02 mL carprofen (0.5 mg/mL) intraperitoneally. The eyes were protected from dehydration

and intensive light exposure using sterile eye gel (Alcon Pharma, Novartis, CHE; Thilo-Tears Gel) and a piece of aluminum foil. A local

anesthetic (lidocaine/epinephrine (Gebro Pharma, Austria)) was applied subcutaneously before exposure of the skull. The scalp was

washed with a 70% v/v ethanol in water solution and a flap of skin covering temporal, both parietal regions and part of the occipital

bonewas removed. Themusculus temporalis was injected with lidocaine/epinephrine (Gebro Pharma, Austria) as an additional anes-

thetic and tominimize bleeding. Subsequently, themuscle was partly removed with a surgical scalpel and forceps to expose the right

temporal bone. Using a finemotorized drill, the bones of the skull were smoothened, and part of the zygomatic processwas removed.

The surface was cleaned using cortex buffer and a 2% v/v hydrogen peroxide in water solution, and covered with a thin layer of one

component-instant glue (Carl Roth, Germany; Roti coll). A thin layer of dental cement (Lang Dental, IL, USA; Ortho-Jet) was applied

onto the skull, sparing the area of the temporal bone above the auditory cortex. A rectangular groove of about 2 mm by 3 mm was

carefully drilled into the skull above the auditory cortex, and the bonewas carefully lifted using scalpel and forceps. The exposed area

was carefully cleaned and kept moist using sterile sponge (Pfizer, NY, USA; Gelfoam) and cortex buffer. The craniotomywas covered

with a small circular cover glass (Electron Microscopy Sciences, PA, USA; five mm diameter, catalog# 72,195-05), and sealed with

1.2% low-melting agarose (SigmaAldrich, MO, USA; Agarose Type IIIA). The cover glass was finally set in placewith one component-

instant glue and dental cement. In order to position the animal under the microscope with the objective facing the window plane

perpendicularly, a custom-made titanium head post was mounted on the implant above the window and embedded with dental

cement. After dental cement had dried, animals were placed back in a pre-warmed cage. After the surgical procedure, animals recov-

ered for at least one week before further handling.

Habituation to awake chronic two-photon imaging
Animals were habituated to handling at the two-photonmicroscope. Therefore, animals weremildly water deprived and fixated under

the objective in a custom-made acrylic glass tube, using a custom-made head post implant. Themouse headwas laterally tilted such

that the surface of the auditory cortex aligns approximately with the horizontal plane. During habituation, head fixation lasted for a

minimum of 30 min each day, and animals were given access to a 5% m/v sucrose in water solution. This was repeated for at least

five days until animals accommodated to the head fixation apparatus, showed reduced signs of stress and less body movements

(typically consisting of few second long running bouts). The full sound stimulus set later used for recording of sound-evoked activity,

was repeatedly presented. Hence, animal subjects did extensively experience all sensory stimuli before any data acquisition.

Sound presentation
All sounds were delivered free field at 192 kHz sampling rate in a soundproof booth by a custom-made system consisting of a linear

amplifier and a ribbon loudspeaker (Audiocomm, Austria) placed in 25 cmdistance to themouse head. The transfer function between

the loudspeaker and the location of the mouse ear was measured using a probe microphone (Br€uel&Kjær, Bremen, Germany; 4939-

L-002) and compensated numerically by filtering the sound files with the inverse transfer function to obtain a flat frequency response

at themouse ear (between 0.5 kHz and 64 kHz ±4 dB). Sound control and equalization was performed by a customMATLAB program

running on a standard personal computer equipped with a Lynx 22 sound card (Lynx Studio Technology, CA, USA). The stimulus set

consisted of 34 sound stimuli (19 pure-tone pips (50ms; 2 to 45 kHz separated by a quarter octave) and 15 complex sounds (70ms))

separated by one-second-intervals and played at 80 dB sound pressure level. The complex sounds in the stimulus set were char-

acterized by broad frequency content and temporal modulations, generated from arbitrary samples of music pieces or animal calls

replayed at fourfold speed. All stimulus on- and offsets were smoothened with a ten-ms-long half-period cosine function.

In vivo two photon imaging
The two-photon microscope (Prairie Technologies, WI, USA; Ultima IV) was comprised of a 203-objective (Olympus, Tokyo, Japan;

XLUMPlan Fl, NA = 0.95) and a pulsed laser (Coherent, CA, USA; Chameleon Ultra). Both fluorophores (GCaMP6m and mCherry)

were co-excited at 920 nm wavelength, and separated by emission using a fluorescence filter cube (filter one: BP 480-550 nm; filter

two: LP 590 nm; dichromaticmirror: DM570 nm;Olympus, Tokyo, Japan; U-MSWG2). Full frame imagingwas performed using a field

of view of 367 3 367 mm (pixel size: 256x128) and images were acquired at five Hz frame rate (sampling period: 196,86ms). In the

last habituation session, several field of views (FOVs) at different xy-positions in layer 2/3 (about 150–300 mmdepth from cortical sur-

face) were screened for the presence of reliable sound responses. FOVs with reliable sound responses were repeatedly imaged at a

two-day interval, using the stimulus set described above. Each stimulus was presented for at least 20 repetitions per FOV in pseudo-

randomized order. Next, the focal plane was moved 50 mm in the z axis and data was acquired for a second FOV with the same xy-

coordinates. Between imaging periods, animals were given access to few drops of a 5% w/v sucrose in water solution.

Auditory cued fear conditioning
The behavioral setup for imaging experiments was controlled by a personal computer withWINDOWSXPProfessional, Version 2002,

SP2 (Microsoft, Redmond, WA, USA) operating system running custom MATLAB R2007a software (MathWorks, Natick, MA, USA).

The behavioral setup for experiments investigating the generalization of different auditory stimuli was controlled by a personal

computer with WINDOWS 10, Version 2021, (Microsoft, Redmond, WA, USA) operating system running custom MATLAB R2016b
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software (MathWorks, Natick, MA, USA). All behavioral experiments were performed in an isolation cubicle (H10-24, Coulbourn In-

struments,Whitehall, PA, USA) whichwas equippedwithwhite LEDs as house light, amicrophone and aCCDKB-R3138 camera with

infrared LEDs (LG Electronics Austria, Vienna, Austria) which was connected to a Cronos frame grabber (Matrox, Dorval, QC, Can-

ada). The conditioning chamber (253 253 42 cm, model H10-11M-TC, modified, Coulbourn Instruments) was combined either with

a stainless-steel shock floor or a grid floor. A custom-made cartridge (round or quadrangular) formed the walls of the chamber in

order to create different local environmental contexts. Foot shocks were delivered via an external shocker (Precision Animal shocker,

Coulbourn Instruments). Sounds were played from an L-22 soundcard with a maximal sampling frequency of 192 kHz (Lynx Studio

Technology, Costa Mesa, CA, USA) and delivered via an amplifier (Model SLA-1, Applied Research and Technology, TEAC Europe

GmbH, TASCAM Division, Wiesbaden, Germany), a modified equalizer (Model #351, Applied Research and Technology, TEAC

Europe GmbH, TASCAM Division, Wiesbaden, Germany) and a custom-made speaker for free field delivery of sounds. The sound

stimuli used were from the stimulus set used for in vivo two-photon calcium imaging. 70 ms stimuli were repeated 15 times with a

one-second-interval, resulting in a total duration of 14.07 s. On- and offsets of stimuli were smoothed with a 10-millisecond long

half-period cosine function. Sound levels for all stimuli used were normalized to a mean power of 78 dB sound pressure level

(SPL). Peak sound levels ranged from 83 to 89 dB SPL.

Conditioning session
In the conditioning environment, lights were turned on (�20-30 lux), and roundish cartridges were used as walls of the chamber. A

mild residual ethanol odor was present from previous cleaning of the chamber. Mice were placed in the chamber directly before the

start of each session. After at least 1 min baseline (60–90 s) five sound-shock pairings (0.75 mA, one second, immediately following

the sound) were given with a randomized inter-stimulus-interval ranging from 50 to 75 s (paired).

Memory and generalization test session
Four days after the conditioning session (i.e. one day after the two-photon imaging paradigmwas completed), mice were tested for a

conditioned freezing response. In order to create a different environmental context, quadrangular cartridges were used as chamber

walls, lights were turned off, and home cage bedding was placed underneath the metal grid to provide a familiar odor. In the memory

test session for animals in the imaging experiments (Figure 6B), after at least one minute of baseline (60–90 s), the conditioned stim-

ulus (CS+) and one non-conditioned sound stimulus (nonCS+ (a))were presented in three randomized presentation blocks with an

inter-stimulus-interval of twenty to thirty seconds. In the generalization test session for animals in the experiments investigating

the generalization of different auditory stimuli (Figures 7G, S12A and S12C), after at least one minute of baseline (60–90 s), three

non-conditioned sound stimuli were presented in three randomized presentation blocks with an inter-stimulus-interval of twenty

to thirty seconds. In thememory test session for animals in the experiments investigating naive freezing behavior to different auditory

stimuli (Figure S12B), after at least one minute of baseline (60–90 s), five non-conditioned sound stimuli were presented in three ran-

domized presentation blocks with an inter-stimulus-interval of twenty to thirty seconds.

Quantitative analysis of freezing behavior
During conditioning, memory and generalization test session, movies were recorded at a frame rate of 2.8 frames per seconds.

Movies were analyzed offline based on a similar approach as described previously (Kopec et al., 2007), which provides a rapid

and unbiased analysis of animal behavior. In short, the number of ‘significant motion pixels’ (SMP), i.e. pixels which varied by a fixed

threshold of gray values, was calculated for all pairs of consecutive frames using a customMATLAB R2007a or R2019b script (Math-

Works). For each movie, the size of the mouse was estimated by the median SMP value of the 25% highest SMPs calculated from

pairs of frameswhichwere recorded at least twominutes apart – thus capturing themouse likely at different positions in the chamber.

The threshold for freezing was defined as fewer SMP than corresponding to 0.3% of the mouse size, which separates SMP values

during freezing and movement periods. Baseline freezing was assessed during 60–90 s baseline period of each protocol run.

Confocal imaging
Mice were deeply anesthetized and perfused with a PBS/Heparin solution and subsequently with a 4%PFA solution following stan-

dard procedures. Brain sections of 70 mm thickness were cut on a vibratome (Leica Biosystems, Germany; VT-1000). Next, they were

incubated for 30 min in a 5 mg/L 40, 6-diamidino-2-phenylindole (DAPI) solution, and mounted on cover slips. Confocal images were

acquired on a LSM780 microscope (Carl Zeiss, Germany) using a 403 immersion objective (Objective Plan-Apochromat 40x/1.4 Oil

DIC M27, Carl Zeiss, Germany).

Image processing of chronic in vivo two-photon data
In order to track cells across days, the optimal affine transformation was identified to register regions of interest (ROI), encompassing

the soma of individual neurons, onto each frame of the time series recorded from the same FOV across several days. ROIs were

selected independently by two human experts and can be described by a set of several hundred points marking the centers of

the mostly spherical neuronal somata. This set of points was transformed for each frame by a two-dimensional affine transformation.

The objective function value for the optimization of this transformation is the pixel-wise overlap between a band-pass filtered and

binarized image of each frame and a mask generated from the transformed ROIs by drawing a circle with a three-pixel (4.30 mm)
e4 Cell Reports 38, 110340, February 8, 2022



Article
ll

OPEN ACCESS
radius around the center of each ROI. This six-dimensional optimization problemwas solved numerically usingMATLAB’s implemen-

tation of the Nelder-Mead-Simplex algorithm (fminsearch). This was done in two iterations, first for the entire frame, then for four

equally sized horizontal segments to correct for full framemovements during the two-photonmicroscope scanning. In a third iteration

individual ROIs were moved to the maximum in a two-pixel (2.87 mm) surrounding of a low-pass filtered image to allow for slight local

distortions.

ROI inclusion criteria
Four quality criteria were defined in order to only include cells in the analysis that had a reliably present signal in the H2B:mCherry

channel marking the neuronal somata. This was done on a frame-by-frame basis, so that at each given time point a cell was either

reliably present or excluded. The number of cells excluded in each of these steps are shown in Figure S2.

Nearest Neighbor Distance (NND)

Strongly overlapping cells in a given frame, i.e. cells with a center-to-center distance below three pixels (4.30 mm), were defined as

unreliable in that respective frame. Thus, the chance to wrongly label individual cells was minimized.

Normalized Soma Signal Intensity (NSSI)

For each cell at each time point, the difference between the mean signal intensity in the soma (two-pixel radius; 2.87 mm) and the

mode of the intensity of the surrounding (ten-pixel radius; 14.34 mm) was computed and normalized by the 95-percentile of this dif-

ference. Cells with an intensity close to the background, an NSSI below the value of 0.2 were excluded.

Objective Function Value (OFV)

The optimization described above resulted in the alignment and an objective function value, which describes the pixel wise overlap of

the frame and the template. In order to rule out movement artifacts, individual frames in which the OFV was less than three standard

deviations below the mode of the OFV for a given FOV were rejected.

Soma Signal to Noise ratio (SSN)

The difference of the mean intensity of the soma (two-pixel radius; 2.87 mm) and the mode of the intensity of the surrounding (ten-pixel

radius; 14.34 mm)wasdefined as signal. The standard deviation of a jittered version of the signal (same radii, but pseudo-random location

of the ‘‘soma’’ in the ten-pixel radius)wasdefinedasnoise. Inorder tobe included in theanalysis, cellshadtohaveanSSNvalueaboveone.

All quality criteria were tested and cells were excluded on a frame-by-frame basis. Excluded time points were treated as missing

entries in the data. Cells that were not reliably detected on at least ten trials for each stimulus on a given day were completely

excluded from the analysis.

Calculation of DF/F0 and deconvolution
The baseline F0 used to compute the DF/F0 was defined as a moving rank order filter, the 30th percentile of the 200 surrounding

frames (100 before and 100 after). This DF/F0 was then deconvolved using the algorithm published by Vogelstein and colleagues (Vo-

gelstein et al., 2010).

Stimulus-evoked sound responsiveness of single cells
To classify single cells as sound responsive or not, all trials from a given stimulus were compared in a rank-sum test against twenty

randomly picked patterns of spontaneous activity (from periods without sound presentation). A cell was classified as significantly

responsive, if the p value was below 0.01 after a Benjamini-Hochberg correction for multiple comparisons against number of

days (4), number of stimuli (34), and number of cells (21506) for at least one stimulus (Benjamini and Hochberg, 1995).

Sound response profiles of single cells
For each significantly sound responsive cell, sound response vectors to pure-tone frequencies and complex sound stimuli weremax-

normalized to the stimuluswith highest response amplitude on the given day. The selection of cells for each day and sorting of cells on

the y axis was performed either on significantly sound responsive cells and their tuning from day one (Figure 2A), the given day (Fig-

ure 2C), or from day seven (Figure 2E).

For the analysis to control for a sampling bias, the sorting of cells on the y axis was performed with a subset of either the first or the

second half of trials of a session (Figure S3A).

FOV inclusion criteria
We included FOVs in our analysis that satisfied the following three criteria: (A) FOVs needed to contain at least 100 ROIs (i.e. neurons):

which fulfilled the quality criteria described above, (B) FOVs needed more than ten significantly sound responsive neurons on each

day and (C) neuronal populations in the FOVs needed to respond to at least four stimuli on at least one day.

Definition of response modes
Response modes were defined for a given FOV. For each trial i, the population response of n simultaneously recorded neurons was

characterized by an n-dimensional vector v. Each entry of v was the mean deconvolved activity recorded in a time bin of 400 ms after

stimulus onset. The response similarity between two stimuli p and q was then determined by
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Sðp;qÞ = 1

MpMq

XMp

i = 1

XMq

j = 1

pðnp;inq;jÞ

with trial numbersMp,Mq, andPearson’s correlation coefficient r(v1,v2). Note that stimuli p and qmay refer to stimulus pairs presented

at the same day (Figure 4) or at two different days (Figures 5 and 7), in which case the same stimulus presented at different days is

formally treated as two different stimuli. Response reliability for a given stimulus, at a given day was assessed by S(p,p) (the mean

correlationover all pairs of trials, excludingpairswith i = j, i.e. same trials). The response toa stimulus, forwhichS(p,p)>0.4wasdeemed

reliable.Responsemodeswere thenestimatedbyhierarchical clusteringof responsesimilarityS(p,q), restricted to (day-specific) stimuli

p with reliable response, with 1-S(p,q) as metric and unweighted average linkage clustering as linkage criteria. All responses of stimuli

with non-reliable response (S(p,p) < 0.4)were assigned to the ‘‘null-mode’’ (0-mode).Choosing this thresholdwe found thatmostprom-

inent clusters were well captured, aswe verified by visual inspection of all FOVs. Importantly, our overall results are qualitatively similar

when the threshold for response reliabilitywasset to 0.3or 0.5 (data not shown). Thehierarchical clusteringalgorithmprovidedbyMAT-

LAB (functions linkage and dendrogram) was used to sort stimulus responses. To estimate the number of relevant clusters objectively,

the resulting cluster tree was cut at every possible cluster number and a Hubert’s G was calculated as

G =
2

OðO� 1Þ
XO
i = 1

XO
j = i +1

ðSij � cÞTij;

where O is the size of matrix S, c is a threshold, and T is a binary matrix of equal size with entries

Tij =

�
1;
0;

if i and j are clustered together;
otherwise:

The threshold was set to c = 0.4, as for response reliability, ensuring that only ‘reliably’ correlated sound responses are considered

to participate in the same cluster. Again, the overall results were qualitatively similar when using a slightly different threshold, e.g. 0.3

or 0.5 (data not shown). The response modes in a given FOVwere then defined as the clusters obtained for themaximal G-value. This

clustering was highly significant (p < 0.001) for all neuronal populations in a FOV compared to three surrogate datasets generated by

(a) shuffling the stimulus identity across trials, (b) shuffling the stimulus identity for each cell individually and (c) shuffling the cell iden-

tity for each trial (Figures S5B and S5C).

Mode-associated responsiveness of single cells
Similar to stimulus evoked sound responsiveness, we estimated whether a given cell is significantly responsive in a given response

mode (see ‘‘definition of response modes’’; [Figure S6A]). For each cell, we determined the rank-sum between activities from all trials

associated with the mode to the same amount of spontaneous activity patterns drawn randomly from periods without sound presen-

tation. A cell was significantly responsive in a given mode, if the p value was below 0.01 after a Benjamini-Hochberg correction

against number of imaging days (four), number of modes (varying by FOV), and number of cells (21506).

Pairwise sound decoding based on full response vectors
A linear classifier (MATLAB function lassoglm with L1 regularization) was trained to discriminate between responses to two different

stimuli (Figures 3D, 6D, S4D, and S10B). For the analyses where training and testing were done on the same day, cross-validation

wasperformedby leavingout one trial.Where training and testingweredoneondifferent days, trainingwasdonewith all trials of a given

day and the performance of the classifier was tested on each trial of a different day. The pairwise decoding performance was then

defined as the percentage of correctly classified trials, and FOV decoding performance was defined as the mean pairwise decoding

performance over all pairs of stimuli.

Correlation of stimulus responses
Similarity matrices based on correlation of single trial stimulus responses (Figure S5) were first averaged for stimuli and then across

FOVs. In Figure 6F the averagematrix of the responses in both datasets is shownwhereas in Figures S8A andS8B thematrices for the

cohort of mice undergoing ACFC and the baseline cohort are shown separately.

Difference of stimulus responsiveness on day one and day seven
We computed the fraction of FOVs, in which each stimulus evoked a reliable population response (see STAR Methods section:

definition of response modes) on day one and on day seven, in each of the datasets (basal and ACFC) respectively (Figure 6G).

The difference of stimulus responsiveness which is plotted for each stimulus is the difference between the fraction in the ACFC cohort

and the fraction in the basal condition cohort.
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Difference of stimulus co-mapping to the CS + on day seven between the two experimental cohorts
Two stimuli were considered as co-mapped, when they evoked the same response mode (see ‘‘Definition of Response Modes’’)

(Figure 7F). We computed the fraction of FOVs, in which each stimulus evoked the same response as the CS+, i.e. where each stim-

ulus was co-mapped to the CS+, for both experimental cohorts separately (basal and ACFC).

Sound decoding based on a 34-fold classifier
A support vector machine was trained to discriminate between all 34 stimuli using MATLAB’s built in cecoc function (Figure S4C).

When training and testingwas done on the same day, cross-validation was performed by leaving out one trial. When done on different

days, the classifier was trained using all vectors of one day and tested with all vectors of the other day. The decoding performance

was defined as the percentage of correctly classified trials.

Dependence of decoding on number of modes and stimuli per mode
We used a minimalistic model to study the dependence of sound discriminability on the number of modes and number of stimuli per

mode in a FOV (Figures S10A and S10C). For simplicity, we assume all trials of a given stimulus evoke responses in the same mode

(which can be the 0-mode). This model suggests that in a regime with a 0-mode as large as observed in our experimental data, an

increase in both number of modes and stimuli per mode improves decoding performance.

In themodel, we assume two stimuli that aremapped to the samemode are indistinguishable, but can be distinguished from stimuli

mapped to a different mode (including the 0-mode). The contribution of a mode to the overall decoding performance in a FOV is pro-

portional to its size and to a mode specific decoding factor, given by the average discriminability associated with a stimulus in this

mode. This factor is large if only few stimuli are mapped to this mode, as these are distinguishable from all other stimuli. Reversely,

this factor is small for modes with many stimuli, since these can only be distinguished from few other stimuli.

We cast these considerations into mathematical form to reveal how the average discriminability depends on number of modes and

stimuli per mode. The decoding performance of a full FOV PFOV is given by

PFOV =

1

Nstim

 
N0P0 +

XNm

i =1

PiLi

!

with the total number of stimuliNstim, the number of stimuli evoking no responseN0, the decoding factorP0 specific to the 0-mode, the

number of different response modes Nm, the decoding factor Pi specific to response mode i and Li, the number of stimuli mapped to

response mode i. The mode specific decoding factor Pi was determined by the size of the mode Li the stimulus is mapped to and the

probabilities of its correct classification when compared to different stimuli within ðPsameÞ and outside ðPdiffÞ the mode:

Pi =
ðLi � 1ÞPsame + ðNstim � LiÞPdiff

Nstim � 1

For simplicity, we considered the case of equally distributing the number of stimuli per mode. This results in an upper bound on the

decoding performance, as can be seen by inserting Pi into the expression of PFOV above. A numerical analysis revealed that this pro-

vided a reasonable approximation within the experimentally observed regime of number of modes and stimuli per mode. Thus, the

expression for the decoding performance simplifies to:

PFOV =
1

Nstim

ðN0P0 + NmLmPmÞ;

with the mean number of stimuli per mode Lm, the number of modes Nm. For the mode specific decoding factors, we then obtain:

Pm =
ðLm � 1ÞPsame + ðN� LmÞPdiff

Nstim � 1

and

P0 =
ðNstim � LmNm � 1ÞPsame + LmNmPdiff

Nstim � 1
:

Assuming chance decoding within a given mode ðPsame = 0:5Þ and perfect decoding between modes ðPDiff = 1Þ and a total of 34

stimuli yields Figure S10A. In general, the decoding performance increases with number of modes, while the optimal number of stim-

uli per mode for a given number of modes is obtained for a uniform distribution of stimuli per mode including the 0-mode, which fol-

lows from Chebyshev’s sum inequality.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using MATLAB (Mathworks, Natick, MA, USA). We used following statistical test for the given

statistical analysis.
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Freezing behavior
To compare freezing behavior during different time windows in a memory/generalization test session (Figures 6B, 7G, S12A, and

S12B), a one-way ANOVA was performed followed by a correction for multiple comparisons with Tukey’s honestly significant differ-

ence method. Stars denote significance levels: *p < 0.05.

Comparison of neuronal population dynamics between basal and fear conditioning groups
Bootstrapping was performed to test whether two mean values could origin from the same distribution (Figures 6C–6E, 7A–7D,

and S10C). To do so, 10000 surrogate datasets were sampled with replacement from the original datasets. For each of the two

respective values the means of the surrogate datasets were computed and compared. Next, the p value was calculated as the prob-

ability that both the surrogate from the distribution of the smaller original mean was larger than the larger original mean, and vice

versa. The p values were corrected for multiple comparisons with a Bonferroni correction. Stars denote significance levels: *p < 0.05.

Difference of stimulus responsiveness and co-mapping to the CS+
Stimulus responsiveness was measured as the fraction of FOVs in which any stimulus elicited a response on day one and day seven

(Figure 6G). Spearman’s Rho was calculated between each pair of values for the difference in stimulus responsiveness between the

two datasets and the average correlation of stimuli to the CS + on day one and on day seven. For Figure 7F, Spearman’s Rho was

calculated between each pair of values for the difference between the two datasets in the fraction of FOVs in which stimuli were co-

mapped to the response mode of the CS+ and the average correlation of stimuli to the CS + for both datasets on day seven. The p

values were analyzed for testing the hypothesis of no correlation against the alternative hypothesis of a nonzero correlation. Stars

denote significance levels: *p < 0.05.

Comparison of cellular sound response profiles after sorting with data from different sessions or trials
To compare the sound evoked activity to the best stimulus assessed on a different day or a different subset of trials, a one-way

ANOVA was performed followed by a correction for multiple comparisons with Tukey’s honestly significant difference method. Stars

denote significance levels: *p < 0.05 (Figure S3B).

Decoding comparison
To compare decoding performance of a linear classifier trained with response vectors (Figure S4D), or with maximum pooling from

the best FOV of one mouse, a one-way ANOVA was performed followed by a correction for multiple comparisons with Tukey’s hon-

estly significant difference method to reject the null-hypothesis that the decoding performances of all FOVs come from the same

distribution.

Comparison of mean correlations of stimulus response vectors between the experimental cohorts
To compare the mean correlations of stimulus responses in the cohort of mice undergoing ACFC and the baseline cohort

(Figure S8C), we calculated their Pearson correlation coefficient and p value using a permutation test based on shuffling the order

of stimuli. Stars denote significance levels: *p < 0.05.
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