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Abstract

The nature of dark matter, the invisible substance making up over 80% of
the matter in the Universe, is one of the most fundamental mysteries of
modern physics. Ultralight bosons such as axions, axion-like particles or
dark photons could make up most of the dark matter. Couplings between
such bosons and nuclear spins may enable their direct detection via nuclear
magnetic resonance (NMR) spectroscopy: as nuclear spins move through the
galactic dark-matter halo, they couple to dark-matter and behave as if they
were in an oscillating magnetic field, generating a dark-matter-driven NMR
signal.

In the first chapter of this thesis, we review the predicted couplings
of axions and axion-like particles with baryonic matter that enable their
detection via NMR. We then describe two measurement schemes being
implemented in the Cosmic Axion Spin Precession Experiment (CASPEr), an
NMR experiment seeking to detect axion and axion-like particles. The first
method, presented in the original CASPEr proposal, consists of a resonant
search via continuous-wave NMR spectroscopy. This method offers the
highest sensitivity for frequencies ranging from a few Hz to hundreds of MHz,
corresponding to masses ma ∼ 10−14–10−6 eV. However, Sub-Hz frequencies
are typically difficult to probe with NMR due to the diminishing sensitivity
of magnetometers in this region. To circumvent this limitation, we suggest
new detection and data processing modalities: a non-resonant frequency-
modulation detection scheme, enabling searches from mHz to Hz frequencies
(ma ∼ 10−17–10−14 eV).

As a second part of this thesis, we apply the above mentioned
non-resonant method and use ultralow-field NMR to probe the axion-
fermion “wind” coupling and dark-photon couplings to nuclear spins.
No dark matter signal was detected above background, establishing new
experimental bounds for dark-matter bosons with masses ranging from
1.8× 10−16 to 7.8× 10−14 eV.

In the last chapter of this thesis, we use Deep Neural Networks (DNNs)
to disentangle components of oscillating time series, arguably the most
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common form of signals acquired during dark-matter searches. We show
that the regression and denoising performance is similar to those of least-
square curve fittings (LS-fit). We then explore various applications in which
we believe our architecture could prove useful for time-series processing,
when prior knowledge is incomplete. Because the Autoencoder needs no
prior information about the physical model, the remaining unknown latent
parameters can still be captured, thus making use of partial prior knowledge,
while leaving space for data exploration and discoveries.
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1
Introduction

In 1945 Edward M. Purcell measured the first radio-frequency absorption

from nuclear magnetic moments in paraffin [1]. In the following months,

Felix Bloch observed nuclear spin precession in water [2]. Subsequently,

Bloch’s nuclear magnetic resonance (NMR) techniques showed that electrons

provide magnetic shielding to the nucleus. The resulting change in magnetic-

resonance frequency, known as the chemical shift, provides information on the

electronic environment of nuclear spins. The discovery of this phenomenon

enabled NMR-based chemical analysis [3] and the field of NMR quickly grew

to become a dominant tool in analytical chemistry, medicine and structural

biology. NMR also remains at the forefront of fundamental physics, in fields

such as materials science, precision magnetometry, quantum control [4, 5]

and in searches for exotic forces.

Prior to Purcell’s work, the existence of dark matter was postulated in

1933 by Fritz Zwicky to explain the dynamics of galaxies within galaxy

clusters. Zwicky discovered that the amount of visible matter in the clusters

could not account for the galaxies’ velocities and postulated the presence of

some invisible, “dunkle” (dark) matter [6]. Armed only with astrophysical

observations of the early 20th century and the Virial theorem, Zwicky

postulated that if dark matter exists it should be “in much greater density

than luminous matter”. Modern observations now show that dark matter
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composes more than 80% of the matter content of the Universe [7], possibly

confirming Zwicky’s discovery.

Elucidating the nature of dark matter will profoundly impact our

understanding of cosmology, astrophysics, and particle physics, providing

insights into the evolution of the Universe and potentially uncovering

new physical laws and fundamental forces beyond the Standard Model

[8]. While the observational evidences for dark matter are still derived

from its gravitational effects at the galactic scale and larger, the key to

solving the mystery of its nature lies in directly measuring non-gravitational

interactions of dark matter with Standard Model particles and fields. To

date, experimental efforts to directly detect dark matter have largely focused

on Weakly Interacting Massive Particles (WIMPs), with masses between

10 and 1000 GeV [9, 10]. Despite considerable efforts, there have been no

conclusive signs of WIMP interactions with ordinary matter. A multitude of

other particles were introduced as possible candidates, but as of today, none

of them have been detected and the nature of dark matter remains unknown.

The Standard Model predicts that the strong force could violate the

charge conjugation parity symmetry (CP-symmetry). This effect has never

been observed and experimental measurements constrain strong-CP violation

to an extremely low value [11]. The need for this fine tuning is known as the

strong CP problem. In 1977, Roberto Peccei and Helen Quinn introduced a

mechanism potentially solving the strong CP problem [12], from which the

axion naturally emerges as a bosonic particle [13, 14].

The existence of axions may help to answer other open questions in

particle physics such as why the strong force respects the combined charge-
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conjugation and parity-inversion (CP) symmetry to such a high degree [15],

the relative weakness of the gravitational interaction [16], and how to unify

the theories of quantum mechanics and general relativity [17].

In addition to Peccei and Quinn theory, a wide variety of theories predict

the existence of new spin-0 bosons such as axion-like particles (ALPs) as well

as spin-1 bosons such as dark photons [7, 18]. The absence of evidence for

WIMPs has reinvigorated efforts to search for these ultralight bosonic fields,

as dark matter candidates [19], composed of bosons with masses smaller than

a few eV. Indeed, axions and ALPs should interact only weakly with particles

of the Standard Model, making them “dark” and they could account for all

of the dark matter density [20–22]. In addition, axions and ALPs could form

structures similar to the dark-matter galactic clusters [23, 24].

In addition to interacting via gravity, axions and ALPs are predicted to

have a weak coupling to the electromagnetic field, enabling their conversion

to photons via the inverse-Primakoff effect [25, 26]. Past and current axion

searches largely focus on detecting photons produced by this coupling. These

searches include helioscopes, detectors pointed at the Sun, such as the

“CERN Axion Solar Telescope” (CAST [27]). Helioscope detection could

happen when axions produced in the Sun are converted back to photons in

a strong laboratory magnetic field [28].

“Light-Shining-Through-Walls” experiments, such as the “Any Light

Particle Search” (ALPS [29]), do not rely on astrophysical-axion sources.

These experiments seek to convert laser-sourced photons into axions in a

strong magnetic field. Subsequently, axions travel through a wall and are

converted back to photons via the same mechanism.
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Other searches include haloscopes, aimed at detecting local axions in

the Milky Way’s dark-matter halo. These experiments include microwave

cavity-enhancement methods, such as the “Axion Dark Matter Experiment”

(ADMX [30, 31]), which could convert local axions to photons in a high-Q

cavity. More information on the wide array of experimental searches for

axion and ALP dark matter can be found in Ref. [32].

While all the aforementioned experiments seek to detect ALPs through

their conversion to photons, the possibility of direct ALP detection via their

couplings to nucleons and gluons has been recently proposed [33, 34]. These

couplings give rise to oscillatory pseudo-magnetic interactions with the dark-

matter ALP field. This dark-matter field oscillates at the ALP Compton

frequency, which is proportional to the ALP mass. Therefore, another

method to search for dark-matter bosonic fields was recently proposed: dark-

matter-driven spin-precession [35–37], detected via NMR techniques [36–

40]. These concepts were recently applied to data measuring the permanent

electric dipole moment of the neutron and successfully constrained ALP dark

matter with masses ≲ 10−17 eV [40].

The Cosmic Axion Spin Precession Experiment (CASPEr [33]) is a

haloscope, seeking to detect the NMR signal induced by these couplings.

The CASPEr collaboration is composed of two main groups, each searching

for axions and ALPs via different couplings: CASPEr-Gradient (formally

CASPEr-Wind) is based on the pseudo-magnetic coupling of ALPs with

nucleons and CASPEr-Electric is sensitive to the axion-gluon coupling. The

two experiments rely on different couplings but are otherwise similar, in

the sense that they both measure ALP-induced nuclear-spin precession.
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Efforts within this program utilizing zero- to ultralow-field (ZULF) NMR

spectroscopy [41] are collectively referred to as CASPEr-ZULF.

In this thesis, we first review the predicted couplings of axions and ALPs

with baryonic matter that enable their detection via NMR. We then describe

two measurement schemes being implemented in CASPEr. The first method,

presented in the original CASPEr proposal, consists of a resonant search

via continuous-wave NMR spectroscopy. This method offers the highest

sensitivity for frequencies ranging from a few Hz to hundreds of MHz,

corresponding to masses ma ∼ 10−14–10−6 eV. However, Sub-Hz frequencies

are typically difficult to probe with NMR due to the diminishing sensitivity

of magnetometers in this region. To circumvent this limitation, we suggest

new detection and data processing modalities. We describe a non-resonant

frequency-modulation detection scheme, enabling searches from mHz to Hz

frequencies (ma ∼ 10−17–10−14 eV), extending the detection bandwidth by

three decades.

As a second part of this thesis, we apply the above mentioned

non-resonant method and use ultralow-field NMR to probe the axion-

fermion “wind” coupling and dark-photon couplings to nuclear spins.

No dark-matter signal was detected above background, establishing new

experimental bounds for dark-matter bosons with masses ranging from

1.8× 10−16 to 7.8× 10−14 eV. While presenting the experiment, we formally

introduce the data analysis modality, in addition to reviewing the

experimental scheme and the theoretical effects of bosonic dark matter on

nuclear spins.

Lastly, we propose to employ Deep Neural Networks (DNNs) to analyze
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time-series data emerging from physics experiments. DNNs are widely used

in pattern-recognition tasks for which a human-comprehensible, quantitative

description of the data-generating process, cannot be obtained. While

doing so, DNNs often produce an abstract (entangled and non-interpretable)

representation of the data-generating process. This may be one of the

reasons why DNNs are not yet used extensively in physics-experiment signal

processing: physicists generally require their analyses to yield quantitative

information about the system they study. We find this to be a missed

opportunity for the physics community.

In the final chapter of this thesis, we propose to use DNNs to disentangle

components of oscillating time series. To this aim, we design and train a

DNN on synthetic oscillating time series to perform two tasks: a regression

of the signal latent parameters and signal denoising by an Autoencoder-

like architecture. We show that the regression and denoising performance

is similar to those of least-square curve fittings (LS-fit) with true latent-

parameters initial guesses, in spite of the DNN needing no initial guesses at

all. We then explore various applications in which we believe our architecture

could prove useful for time-series processing, when prior knowledge is

incomplete. As an example, we employ the DNN as a preprocessing tool

to inform LS-fits when initial guesses are unknown. Moreover, we show that

the regression can be performed on some latent parameters, while ignoring

the existence of others. Because the Autoencoder needs no prior information

about the physical model, the remaining unknown latent parameters can still

be captured, thus making use of partial prior knowledge, while leaving space

for data exploration and discoveries.



2
The axion spin precession scheme

2.1 Foreword

This chapter is mainly composed of the contents of the following article:

Antoine Garcon, Deniz Aybas, John W Blanchard, Gary Centers,

Nataniel L Figueroa, Peter W Graham, Derek F Jackson

Kimball, Surjeet Rajendran, Marina Gil Sendra, Alexander O

Sushkov, Lutz Trahms, Tao Wang, Arne Wickenbrock, Teng

Wu, Dmitry Budker. The Cosmic Axion Spin Precession

Experiment (CASPEr): a Dark-Matter Search with

Nuclear Magnetic Resonance. Quantum Science and

Technology, Vol. 3, no. 1, 2017. IOP Publishing.

In this chapter, we briefly review how the ALP-nucleon and axion-gluon

couplings could induce an NMR signal. We later focus on describing two

NMR measurement schemes implemented in both CASPEr-Gradient and

CASPEr-Electric. The first method, presented in the original CASPEr

proposal [33], consists of a resonant search via continuous-wave NMR

spectroscopy (CW-NMR). This method offers the highest sensitivity for

frequencies ranging from a few Hz to hundreds of MHz. Sub-Hz frequencies

are typically difficult to probe with NMR due to the diminishing sensitivity
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of magnetometers in this region. We then propose a non-resonant frequency-

modulation scheme that may circumvent this limitation.

2.2 Axion- and ALP-induced nuclear spin

precession

2.2.1 ALP-nucleon coupling - CASPEr-Gradient

CASPEr-Gradient is a haloscope searching for ALPs in the Milky Way’s

dark-matter halo via their pseudo-magnetic coupling to nucleons, referred

as the ALP-nucleon coupling. As the Earth moves through the galactic

ALPs, this coupling gives rise to an interaction between the nuclear spins

and the spatial gradient of the scalar ALP field [34]. The Hamiltonian of the

interaction written in Natural Units takes the form:

HaNN = gaNN

√
2ρDM cos(mat)v⃗.σ⃗N , (2.1)

where σ⃗N is the nuclear-spin operator, v ∼ 10−3 is the velocity of the Earth

relative to the galactic ALPs, ρDM ∼ 0.4 GeV/cm3 is the local dark-matter

density [42] and gaNN is the coupling strength in GeV−1. The ALP mass, ma,

usually given in electron-volts, can also be expressed in units of frequency,

more relevant for an NMR discussion. The Compton frequency associated

to the axion and ALP mass is given by: ωa = mac
2/ℏ, where c is the speed

of light in vacuum and ℏ is the reduced Plank constant. For the rest of the

discussion, we set ℏ = c = 1.

The coupling in Eq. (2.1) is the inner product of an oscillating vector
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field with the nuclear-spin operator. Therefore Eq. (2.1) can be rewritten as

an interaction between spins and an oscillating pseudo-magnetic field:

HaNN = γB⃗ALP .σ⃗N , (2.2)

where γ is the gyromagnetic ratio of the nuclear spin and we have identified

the ALP-induced pseudo-magnetic field known as the “ALP wind”:

B⃗ALP = gaNN

√
2ρDM

γ
cos(ωat)v⃗. (2.3)

Equation (2.3) can be understood as follows: as nuclear spins move with

velocity v⃗ through the galactic dark-matter halo, they behave as if they

were in an oscillating-magnetic field B⃗ALP of frequency ωa, oriented along v⃗.

As ρDM and v⃗ are determined by astrophysical observations, the only free

parameters are the ALP frequency (or equivalently, the ALP mass) and the

coupling constant, which define the two-dimensional parameter space of the

ALP-nucleon coupling shown in Fig. 2.1. Thus the measured amplitude of

B⃗ALP probes the value of gaNN . Considering the coupling constant range

of interest in Fig. 2.1 (gaNN ∼ 10−3–10−23 GeV−1) and the 129Xe nuclear

gyromagnetic ratio (γ ∼ 11.777 MHz/T) yields an ALP-wind amplitude

spanning |B⃗ALP | ∼ 10−10–10−30 T. In order for an experiment targeting the

ALP wind to surpass existing astrophysical and laboratory constraints on

gaNN , the experiment must be sensitive to ultralow magnetic fields.

The oscillating nature of the ALP wind suggests a magnetic-resonance-

based detection method. In the following discussion we briefly explain why

NMR techniques, specifically continuous-wave NMR, are particularly well-
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Figure 2.1: ALP-nucleon coupling parameter space: coupling strength gaNN versus ALP
mass ma. The purple line represents the mass-coupling parameter space corresponding to the
QCD axion proposed to solve the strong CP problem [34]. The darker purple region of the
line shows where the QCD axion could be all of the dark matter. The red line is the projected
sensitivity of CASPEr-Gradient using hyperpolarized 129Xe. The blue line is the sensitivity using
hyperpolarized 3He during a future upgrade of the experiment. The dashed lines are the limits
from magnetization noise for 129Xe (red) and 3He (blue). The ADMX region shows the mass
range already excluded (dark blue) or that will be covered (light blue) by ADMX (probing
the axion-photon coupling). The green region is excluded by observations on Supernovae
SN1987A [43, 44]. The blue region is excluded by searches for new spin-dependent forces.
Figure adapted with permission from Ref. [45].
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suited for this application.

Consider a collection of nuclear spins with gyromagnetic ratio γ,

immersed in a static magnetic field B⃗0 (the leading field; see Fig. 2.2-a),

oriented along the z-axis. The spins orient along the leading field to produce

a bulk magnetization along the z-axis. We now introduce an oscillating-

magnetic field B⃗xy(t) oriented in the transverse xy-plane. If the magnitude

of the leading field is such that the Larmor frequency γ|B⃗0| is equal to the

oscillating field frequency, a resonance occurs. The magnetization responds

by building up a transverse component, M⃗xy.

Subsequently, the transverse magnetization undergoes a precession about

B⃗0, at the Larmor frequency. This oscillation creates a time-varying magnetic

field that can be picked-up via magnetometers, producing the NMR signal.

The spectrum exhibits a Lorentzian-shaped peak at the Larmor frequency.

The search for the resonance is done by varying the magnitude of the leading

field and monitoring the transverse magnetization.

This protocol is the continuous-wave NMR experiment introduced by

Bloch’s first nuclear induction experiment [2]. The term continuous-wave

refers to the fact that the oscillating field is continuously applied to the

sample. Frequencies are probed sequentially by varying the leading-field

magnitude or the oscillating-field frequency.

The fact that the ALP wind has an unknown frequency and cannot be

“switched off” suggests a similar experimental scheme. CASPEr-Gradient

is effectively a CW-NMR experiment in which the transverse component

of B⃗ALP relative to B⃗0 is analogous to the oscillating transverse field:

B⃗ALP,xy ←→ B⃗xy. The resonance is reached when the Larmor frequency
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is equal to the ALP frequency (γ|B⃗0| = ωa). The experimental scheme is

represented in Fig. 2.2-a.

This ALP-induced NMR signal is characterized with two relevant

coherence times defining the linewidth of the resonance. The ALP wind

oscillates with a temporal coherence inversely proportional to its frequency:

τALP ∼ 106/ωa [34]. This effect is modelled by assuming that B⃗ALP (t) in Eq.

(2.3) acquires a random phase after each time interval τALP [33]. In addition,

the transverse magnetization decoheres and decays exponentially with a

characteristic time T2 [46]. For the sake of an NMR-based discussion, we will

now assume that the signal coherence time is limited by τ = min{T2, τALP}.

As a result the expected linewidth of the resonance becomes δν = 1/πτ [46] 1.

The allowed values of the ALP mass span many orders of magnitude,

yielding a large frequency bandwidth to explore (see Fig. 2.1). Conveniently,

the NMR techniques used in CASPEr-Gradient are broadly tunable, with

the upper bound of the scanned region limited by the achievable magnetic-

field strength. In addition, in order to avoid signal broadening that would

reduce overall sensitivity, B⃗0 must remain spatially homogeneous over the

sample region. These requirements are readily met by superconducting NMR

magnets up to fields of about 20 T. Such capabilities enable the detection of

ALPs with corresponding frequencies ranging from a few Hz to hundreds of

MHz (ma ∼ 10−14–10−6 eV). As such, CASPEr-Gradient is a broadband

search for light ALP dark matter and is complementary to many other

experiments typically looking at higher mass ranges (e.g ADMX searches

1Recent theories suggest that the signal should not necessarily be Lorentzian-shaped
but could be asymmetric, reflecting the fact that the ALPs energy cannot be smaller than
mac

2 (for a stationary ALP) and is higher by mav
2/2 for a moving ALP [47]. However

the discussion remains equivalent.
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for axions of mass ma ≥ 10−6 eV [32]).

2.2.2 Axion-gluon coupling - CASPEr-Electric

The second CASPEr experiment, CASPEr-Electric, relies on the coupling

between CP-solving axions and gluons. This coupling induces an oscillating

nucleon electric dipole moment (EDM) [48]:

dn = gd

√
2ρDM

ωa

cos(ωat), (2.4)

where gd is the strength of the axion-gluon coupling in GeV−2. As in the case

of CASPEr-Gradient, the only two free parameters are gd and ωa, giving rise

to another two-dimensional parameter space to explore.

The major experimental difference between CASPEr-Electric and

CASPEr-Gradient is that CASPEr-Electric makes use of a static electric

field applied perpendicularly to the leading magnetic field. As in CASPEr-

Gradient, |B⃗0| is tuned to scan for resonance. If the resonance condition

is met, the axion-induced EDM oscillates at the Larmor frequency.

The interaction between the EDM and the static electric field causes

spins to rotate away from the direction of B⃗0. This produces a non-

zero oscillating transverse magnetization, M⃗xy(t). Subsequently, M⃗xy(t)

undergoes precession about B⃗0 and induces the NMR signal.

CASPEr-Electric and CASPEr-Gradient detection schemes are similar in

the sense that the effects of both, an oscillating EDM in the presence of a

static transverse electric field and an oscillating ALP wind, are analogous to

weak magnetic fields, oscillating at the axion or ALP frequencies. Both

CASPEr-Gradient and CASPEr-Electric can be described as CW-NMR
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Figure 2.2: Schematic representation of the resonant (CASPEr) and sidebands (CASPEr,
SILFIA) experimental schemes. The hyperpolarized 129Xe sample is immersed in the leading

field B⃗0 produced by a tunable NMR magnet. The magnetometer is sensitive to the transverse
magnetization M⃗xy. The black arrow represents the instantaneous total magnetization.

(a.1) Resonant scheme: at resonance (γ|B⃗0| = ωa), the transverse component of the ALP

wind, B⃗ALP,xy, tilts the sample’s magnetization which acquires a non-zero component on the

xy-plane: M⃗xy. M⃗xy precesses about B⃗0 at the Larmor frequency. (a.2) The resonant signal
is a low amplitude Lorentzian-shaped peak at the ALP frequency. (b.1) Sideband scheme:

subsequently to a π/2 magnetic pulse, the magnetization is on the xy-plane. M⃗xy precesses

at the Larmor frequency. The longitudinal component of the ALP wind, B⃗ALP,z, induces
modulation of the Larmor frequency. (b.2) The signal of the non-resonant scheme exhibits a

carrier frequency (γ|B⃗0|) and a set of sidebands at γ|B⃗0| ± ωa. The amplitude of the carrier
frequency is large because the full magnetization is rotated by the π/2 pulse. The sidebands
amplitude is expected to be small.
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experiments. Although we now focus on the sensitivity of CASPEr-Gradient,

the discussion for CASPEr-Electric is analogous. We note that CASPEr-

Gradient is not sensitive only to axions and ALPs but could detect any light

particle coupling to nuclear spins, in particular, hidden photons [49, 50].

2.3 Experimental sensitivity

Here we discuss the physical parameters affecting the sensitivity of the

experiment. Later on, these results are compared to the ones obtained for a

non-resonant detection scheme, aiming at probing lower frequencies. During

this discussion, we consider the signal on resonance and limit the integration

time to τ < min{τALP , T2}, during which there is coherent averaging of the

signal. At resonance, the transverse magnetization increases as if under the

action of a of a low-amplitude rf-field [46]:

|M⃗xy(τ)| ∝ γρP sin
(
γ|B⃗ALP,xy|τ

)
⇒ |M⃗xy(τ)| ∝ γ2ρP|B⃗ALP,xy|τ, (2.5)

where ρ is the spin density of the sample given in cm−3 and P∈ [0, 1] is the

dimensionless polarization factor. The NMR signal can be written in terms

of the transverse magnetization:2

|S(t)| ∝ |M⃗xy(τ)| ⇒ |S(t)| ∝ γ2ρP|B⃗ALP,xy|τ. (2.6)

To make an estimation on the signal-amplitude threshold Amin, for which

2We note that the signal in Eq. (2.6) appears to scale as γ2. However, this quadratic

scaling is only an artefact arising from the definition of B⃗ALP which exhibit a 1/γ
dependence. As such, the signal remain linear in γ.



16 The axion-induced spin precession scheme

a event is detected, we use the model proposed in Ref. [33] and assume that

the noise is dominated by the magnetometer white noise. Where the white-

noise spectral density,
√

S(f), usually given in fT/
√
Hz, is experimentally

determined and depends on the frequency probed, f . Limiting the integration

time to τ , the signal is coherently averaged and remains constant while the

white-noise spectral density decreases as 1/
√
τ [51]. An event is detected if

the signal amplitude is higher than the white noise spectral density after τ ,

yielding Amin ∼
√

S(f)/τ . The signal-to-noise ratio at resonance, SNRRES,

is obtained by comparing the signal amplitude from Eq. (2.6) to Amin:

SNRRES := |S(τ)|/Amin (2.7)

∝ γ2ρP|B⃗ALP,xy|
√

S(f)
−1
τ 3/2. (2.8)

The SNR of the resonant signal increases as τ 3/2. The reasons are as

follows: 1) The integration takes place in a time window during which

the signal stays phase coherent, thus scaling the SNR as τ 1/2 2) When the

resonance condition is satisfied, |M⃗xy(t)| increases linearly with time. Hence,

the signal is linearly amplified by τ .

Because of this, the SNR greatly benefits from the use of samples with

long spin coherence times T2. Typical values of T2 for liquid 129Xe are on

the order of 10 to 1000 seconds [52, 53], making xenon an attractive sample.

Liquid xenon also provides high spin density, and can be polarized above 50%

via spin-exchange optical pumping methods [54], increasing the sensitivity by

a factor of at least 105 compared to thermal polarization (usually on the order

of parts-per-million).

The choice of magnetometer determines the value of
√

S(f) and is
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constrained by the frequency of the expected signal. In the ωa ∼ 10–106

Hz region, the best sensitivities are achieved by SQUIDs. Accounting for

all experimental parameters (ALP-wind coherence time, sample geometry,

density, and polarization), such SQUIDs would allow CASPEr to reach

unconstrained regions of the parameters space (see Fig. 2.1; details are given

in Ref. [33]).

Frequencies above 2 MHz are usually considered to be the sensitivity

cross-over between SQUIDs and inductive pick-up coils. To probe the 2–200

MHz region CASPEr will enter its phase II, in which the magnetometer is

switched from a SQUID to inductive pick-coils. Atomic magnetometers may

also be used at low frequencies, in particular with zero and ultralow magnetic

fields as suggested in Ref. [55].

2.4 Ultralow frequencies: sidebands detec-

tion

It turns out to be difficult to probe frequencies below ∼ 10 Hz with the

previously described resonant scheme. Indeed, SQUIDs lose sensitivity

below their characteristic “1/f-knee frequency”, typically on the order of

a few Hz [56]. To overcome this, one can use a non-resonant measurement

protocol that could be implemented as a low-frequency extension to CASPEr.

The method consists in measuring sidebands induced by modulation of

the Larmor frequency and removes the need to scan for resonance. This

experimental scheme, represented in Fig. 2.2-b, was first introduced by the

“Sideband in Larmor Frequency Induced by Axions” experiment (SILFIA).
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In this procedure, the hyperpolarized 129Xe sample is immersed in

a leading magnetic field, B⃗0, oriented along the z-axis and the bulk

magnetization is also initially along the z-axis. Prior to the acquisition, a π/2

magnetic pulse is applied to the sample. After the pulse, the magnetization is

in the transverse plane: Mz
π/2−−→Mxy. Under the action of B⃗0, M⃗xy precesses

about the z-axis at the Larmor frequency γ|B⃗0|. During the precession, a

transient signal S(t) is acquired for a time τ = min{τALP , T2}. Recalling

that τALP ∼ 106/ωa and T2 ∼ 10− 1000 s, then in this low-frequency regime

τALP > T2, and the transient-signal coherence time becomes τ = T2. Once

the coherence time T2 is reached, the transverse magnetization has decayed

and the sample is switched for a new one. A π/2 pulse is applied again and

the next transient acquisition takes place.

This measurement method differs from the previous one in the sense

that it does not require the ALP wind to tilt the sample magnetization.

Following a resonant π/2 pulse, the magnetization is always in the xy-

plane, producing a signal oscillating at the Larmor frequency. The detection

involves measuring modulation of the Larmor frequency, induced by the ALP-

wind, similarly to the AC-Zeeman effect [57]. In contrast to the resonant

scheme, sidebands are induced by the longitudinal component of B⃗ALP

relative to B⃗0: B⃗ALP,z (see Fig. 2.2-b). The frequency-modulated signal takes

the form:

S(t) ∝ γρPe−iγ|B⃗0|te−iγ|B⃗ALP,z | sin(ωat)/ωa . (2.9)

This expression can be written in terms of the Bessel functions of the first
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kind Jk:

S(t) ∝ γρP
∞∑

k=−∞

Jk

(
γ|B⃗ALP,z|

ωa

)
e−iγ|B⃗0|teikωat. (2.10)

The spectrum of such a frequency modulated signal exhibits a large central

peak at the Larmor frequency and sidebands located at γ|B⃗0| ± kωa, where

k = 1, 2, 3... . The kth sideband’s amplitude is given by [58]:

|Sk(t)| ∝ γρP Jk

(
I
)
⇒ |Sk(t)| ∝ γρP

(
Ik

2kk!
− Ik+2

2k+2(k + 1)!
+ ...

)
,

(2.11)

where I = γ|B⃗ALP,z|/ωa is the modulation index. Recalling that

|B⃗ALP | ∼ 10−10–10−30 T, we see that I ≪ 1. Thus, the signal can be

approximated by its carrier and the first set of sidebands (k = ±1) arising at

frequencies γ|B⃗0| ± ωa [59]. Expanding J1 to first order, the sideband signal

can be approximated by:

SSB(t) ∝ γ2ρP
|B⃗ALP,z|

ωa

e−iγ|B⃗0|te±iωat. (2.12)

The Fourier transform of S(t) yields a spectrum presenting a central peak at

γ|B⃗0|, surrounded by two sidebands located at γ|B⃗0| ± ωa. The amplitude

of the central peak is large because the full magnetization is rotated by the

π/2 pulse. As γ|B⃗ALP,z|
/
ωa ≪ 1, the sidebands amplitude is expected to be

small.

Synchronizing the pulse with a stable clock enables recovery of initial

phases of each transient signal and allows coherent averaging as long as
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the acquisition time is smaller than τALP [60, 61]. Thus we can coherently

average the transient signals into sets, s, each of length T2. Here s, is the

average over n = τALP/T2 transient signals: s = 1
n

∑n
i=1 Si(t). Coherent

averaging of n transient signals decreases the expectation value of the white

noise as 1/
√
n [51] while keeping the signal amplitude constant, as in the

resonant case. Considering a white-noise spectral density of
√
S(f), coherent

averaging of the n transient signals yields a signal threshold of:

Amin,n ∼
√
S(f) (nT2)

−1/2. (2.13)

We recall that the sidebands are always located around the Larmor

frequency, therefore this scheme removes the need to search for resonance.

|B⃗0| is arbitrary adjusted such that the detection can be done in a region

where the SQUID sensitivity is optimum, regardless of the ALP frequency:√
S(f) :=

√
Sopt. We can then rewrite Eq. (2.13) setting the SQUID noise

spectral density to
√

Sopt:

Amin,n ∼
√
Sopt (nT2)

−1/2. (2.14)

The acquisition and coherent averaging are repeated until the desired

total integration time Ttot is reached. This yields N independent averaged

sets
{
s1, s2...sN

}
each of length T2 and of signal threshold Amin,n. Here

N = Ttot/τALP , is the number of independent sets. Each set is measured

for a time τALP . We recall that after τALP , the ALP-wind phase changes

by an unknown amount. As a result, the N sets have uncorrelated phases

and averaging them would decrease the signal as well as the noise. However,
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some additional signal-processing techniques can be employed to improve the

detection threshold, namely, incoherent averaging of the sets si.

In practice, incoherent averaging corresponds to averaging the sets{
s1, s2...sN

}
in the frequency domain by averaging their power spectral

densities: PSD = 1
N

∑N
i=1 PSD(si). Such processing does not reduce the

noise mean value, but only the noise-power standard deviation [62]. After

the incoherent averaging sequence, the signal threshold becomes (details are

given in the appendix of Ref. [33]):

Amin,N ∼ Amin,n N−1/4 ⇒ Amin,N ∼
√

Sopt (τALP Ttot)
−1/4. (2.15)

The signal threshold scales as t−1/2 as long as the signal is phase coherent

(t < τALP ), then scales as t−1/4 once the ALP coherence time is reached

(t > τALP ). Recalling that τALP ∼ 106/ωa the signal threshold in Eq. (2.15)

becomes:

Amin,N ∼ 10−3/2
√

Sopt (Ttot ωa)
−1/4. (2.16)

After the coherent and incoherent averaging sequences, the signal-to-noise

ratio SNRsidebands is obtained by comparing the signal amplitude from Eq.

(2.12) to Amin,N :

SNRSB := |SSB(t)|/Amin,N (2.17)

∼ 103/2γ2ρP|B⃗ALP,z|
√

Sopt
−1
T

1/4
tot ω

−5/4
a . (2.18)

SNRSB does not scale with T2. Indeed, the transient signals can be
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coherently averaged until τALP is reached, making T2 irrelevant (ignoring

the duty cycle). Two factors contribute to the gains in sensitivity in the

low-frequency ALPs region; 1) Lower ALPs frequencies imply longer ALP-

wind coherence time, increasing the time during which the signal can be

coherently averaged 2) The amplitude of the transient signal is determined

by the modulation index of the first Bessel function. As such, low frequency

modulations produce higher sidebands amplitudes.

The relative sensitivity of the resonant and sideband schemes is

determined by the ratio of equations (2.18) and (2.8). This ratio is computed

by assuming identical samples and equal longitudinal and transverse

components of B⃗ALP . We impose identical total integration time, Ttot, for

both the resonant and sidebands measurement scheme. Ttot is calculated by

assuming coherent averaging for a time τ = T2 in each frequency bin during

the resonant search. Ignoring duty cycle, the total integration time during

the resonant search becomes Ttot =
|Ω|
δν
T2. Where Ω is the frequency range

of interest and δν ∼ 1/πT2 is the linewidth of the resonance. The relative

sensitivity of the resonant and sideband scheme becomes:

SNRSB/SNRRES ∼ 103/2|Ω|1/4π−1/4

√
S(f)√
Sopt

ω−5/4
a T−1

2 . (2.19)

We now set the frequency range to Ω = 0–1 kHz and assume that

the SQUID white-noise level above the knee frequency, f0 = 2 Hz, is

approximately constant
√
S(f > f0) =

√
Sopt = 0.9 fT/

√
Hz. Below f0, the

SQUID noise is set to
√
S(f < f0) ∼ 10 fT/

√
Hz (extracted from Ref. [63]).

Values of T2 higher than 100 seconds impose a total integration time longer
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than 1 year to probe the region Ω via the resonant scheme and are ignored.

Eq. (2.19) is plotted against ωa and T2 in Fig. 2.3.

As shown in Fig. 2.3, the sidebands scheme is beneficial for ALP

frequencies bellow 80 Hz and if long resonant integration time in each

frequency bin cannot be achieved (either due to low T2 or to some constraint

on Ttot). We recall that the sidebands are located around the central peak

at γ|B⃗0| ± ωa. Thus if the ALP frequency is lower than the linewidth

1/πT2, the sidebands are inside the central peak and cannot be resolved.

This case corresponds to the excluded, red region of the Fig. 2.3 and

represents the current lower bound of the CASPEr experiment. Considering

a realistic T2 of 100 seconds, yields a lower limit in the mHz range. This

sideband-detection scheme enables detection of ALPs with masses in the

ma ∼ 10−17–10−14 eV region, increasing the bandwidth of the experiment

by three orders of magnitude and allowing the CASPEr detection region to

convene with ultracold neutrons experiments [64].

2.5 Discussion

Axions and ALPs are well-motivated dark-matter candidates; in addition, the

QCD axions provides a solution to the strong CP problem. The discovery of

such particles would shed light on many fundamental questions in modern

physics, offering a glimpse of physics beyond the Standard Model.

The oscillatory pseudo-magnetic couplings between axion/ALPs and

matter open the possibility of direct dark-matter detection via NMR

techniques. When nuclear spins couple to ALPs in the Milky Way dark-

matter halo, the spins behave as if they were in an oscillating magnetic field.
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Figure 2.3: Resonant versus sidebands detection: sensitivity cut-off regions for equal total
integration time and sample parameters (spin density, geometry). Extracted from Eq. (2.19).
Blue area: sensitivity is higher for resonant detection. Green area: region enabled by sidebands
detection. Red area: excluded by the linewidth 1/πT2. We assume that the SQUID white-
noise level above the knee frequency, f0 = 2 Hz, is approximately constant

√
S(f > f0) ∼ 0.9

fT/
√
Hz. Below f0, SQUID noise is set to

√
S(f < f0) ∼ 10 fT/

√
Hz (extracted from Ref.

[63]; low-Tc W9L-18D9 SQUID - PTB). Values of T2 higher than 100 seconds impose a total
integration time longer than 1 year to probe the region of interest via the resonant scheme
and are ignored.
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The axion-gluon coupling can induce an oscillating nucleon electric-dipole

moment. CASPEr-Gradient and CASPEr-Electric seek to measure the NMR

signals induced by the ALP wind and the nucleon EDM, respectively.

The original CASPEr experiment is based on resonant search via CW-

NMR. This method enables the search for axions and ALPs at frequencies

ranging from a few Hz to a few hundred MHz (ma ∼ 10−14 − 10−6 eV).

Probing lower frequencies using this approach suffers in sensitivity due to

limitations of the magnetometers. Therefore non-resonant detection of ALP-

induced sidebands around the Larmor frequency could be beneficial. This

detection scheme allows probing of the axion and ALP parameter space in the

mHz to Hz region (ma ∼ 10−17–10−14 eV), thus increasing the bandwidth of

CASPEr by three decades. Sideband-based ALP searches introduced by the

SILFIA experiment using hyperpolarized noble gases in the gas phase and

SQUID detection, are already in progress at the The National Metrology

Institute of Germany (PTB).

Only a few experiments are tuned to the mass range accessible by

CASPEr, even though the presence of ALPs at these frequencies is well-

motivated. This makes CASPEr complementary to other searches, which

typically look at lower or higher frequencies.



26 The axion-induced spin precession scheme



3
Experimental constraints on bosonic dark

matter

3.1 Foreword

This chapter is mainly composed of the contents of the following article:

Antoine Garcon, John W Blanchard, Gary P Centers, Nataniel

L Figueroa, Peter W Graham, Derek F Jackson Kimball,

Surjeet Rajendran, Alexander O Sushkov, Yevgeny V Stadnik,

Arne Wickenbrock, Teng Wu, Dmitry Budker. Constraints

on Bosonic Dark Matter from Ultralow-Field Nuclear

Magnetic Resonance. Science Advances, Vol. 5, no. 10, 2019.

In this chapter, we describe an application of the ALP-induced sidebands

measurement scheme proposed in Chap. 2. This experiment was carried

via ZULF NMR on a sample of 13C-enriched formic acid. We first describe

the ZULF NMR experimental setup and review the three relevant magnetic

regimes in which the ZULF experiments can be carried. We then discuss in

more details the properties of bosonic dark-matter fields and their possible

effect on the NMR sample. In particular we show that axion, ALP and dark-

photon fields, can be detected by examining ZULF NMR spectra in search for

sidebands around the formic acid resonance lines. The subsequent sections
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describe the measurement scheme, the data processing techniques, and

calibration employed during this search. Finally we present new laboratory

results for bosonic dark matter, complementing astrophysical constraints

obtained from supernovae 1987A1 [44].

3.2 Experimental scheme

3.2.1 Experimental setup overview

The experimental setup used in this experiment is the one described in

Ref. [4]. Additional descriptions of similar ZULF NMR setups can be found

in Refs [67, 68].

The NMR sample consists of ∼ 100 µL of liquid 13C-formic acid

(13CHOOH) obtained from ISOTEC Stable Isotopes (Millipore Sigma),

degassed by several freeze-pump-thaw cycles under vacuum, and flame-sealed

in a standard 5 mm glass NMR tube.

Prior to every transient acquisition, the sample is thermally polarized

for ∼ 30 s in a 1.8 T permanent magnet, after which the NMR tube is

pneumatically shuttled into the zero-field region. During the shuttling, the

sample goes through a magnetic field of a guiding solenoid wrapped around

a fiberglass tube, ensuring adiabatic transport into the shielded region [41].

The zero-field region is achieved using a four-layer µ-metal and ferrite

shield (MS-1F shield produced by Twinleaf LLC, 106 magnetic shielding

factor). In this region, the residual magnetic field is ≲ 10 pT. Three

orthogonal pairs of Helmholtz coils which receive current from an amplified

1We note that the constraints based on SN1987A data continue to be reexamined; see
e.g. Refs. [65, 66].



3.2 Experimental scheme 29

source (AE Techron 7224-P) are wound on the holder. This allows for the

application of AC and DC magnetic fields along three orthogonal directions.

This set of coils is used to apply acquisition-starting pulses. A separate set of

coils mounted on the innermost shield is used to apply the shimming, leading

DC-, calibration AC-, and benchmark AC-fields.

After shuttling, the guiding magnetic field is turned off, a magnetic

pulse (corresponding to a π rotation of the 13C spin) is applied to initiate

magnetization evolution.

In the zero-field region, the sample stops ∼ 1 mm above the spin-

exchange-relaxation-free magnetometer’s (SERF [69, 70]) rubidium-vapor

cell (cell produced by Twinleaf with 500 torr of nitrogen buffer gas).

In order for the magnetometer to operate in SERF regime, the rubidium

cell is maintained at 180 C◦ by means of a resistive heater. The 795

nm circularly-polarized pump beam (from a Toptica Photonics diode laser

system, locked to the D1 Rubidium line), propagates along the y-axis.

The linearly polarized probe beam (from another Toptica Photonics

diode laser system), propagating along the x-axis, is blue-detuned 10 GHz

from the center of the rubidium D2 line to probe the rubidium atoms’

polarization. The polarimeter’s analog output signal is digitized with a 24

bit acquisition card (NI 9239, National Instrument) at a 5 kHz sampling

rate. Synchronization of the experiments and control of shuttling, magnetic

pulses, and data acquisition is accomplished with a LabVIEW program.

Following each transient acquisition, the sample is shuttled back into the

polarizing magnet and the experiment is repeated. In order to increase the

SNR, the transient signals are averaged using the phase-cycling technique
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Figure 3.1: Nuclear spin energy levels and NMR spectra of 13C-formic acid
measured in three different field conditions. (a) At zero magnetic field, the
F = 1 levels are degenerate, resulting in a spectrum exhibiting a single peak at
the J-coupling frequency. (b) In the presence of a DC-magnetic field Bz ≈ 50
nT, the mF = ±1 degeneracy is lifted. The spectrum exhibits two split J-
resonances. The splitting is equal to ℏmFBz(γC + γH). The asymmetry of
the resonances is due to the influence of the applied field on the response
characteristics of the atomic magnetometer. (c) The addition of an oscillating
magnetic field along Bz modulates the mF = ±1 energy levels, resulting in
sidebands located at J/2π±Bz(γC + γH)/2± ωAC with amplitude proportional
to the modulation index: As ∝ BAC(γC + γH)/2ωAC.

described later in Sec. 3.4.1.

3.2.2 Measurement schemes

The experimental setup described above enables measurements to be done

in three notable magnetic conditions. The “zero-field” regime corresponds to

the situation during which no external field is applied to the sample which

evolution then is dominated by the internal Hamiltonian. The “ultralow-

field” regime is when a weak DC magnetic field is applied to the sample. In

this case, the Zeeman Hamiltonian can be considered as a small perturbation

of the internal Hamiltonian. Finally, we refer to the “frequency-modulation”
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regime, the situation during which a weak DC magnetic field is applied in

addition to an oscillating magnetic field. In this section, we briefly review

the physics of these magnetic conditions applied to the polarized sample of

formic acid.

Zero-field regime

13C-formic acid possesses an electron-mediated spin-spin coupling between

the 13C and its neighbouring 1H, referred to as J-coupling. In isotropic

liquids, rotational motion of the molecules averages the J-coupling

Hamiltonian to its isotropic form:

HJ = ℏJCHI · S , (3.1)

where JCH/2π ≈ 221 Hz for formic acid, I and S are the nuclear spin-1/2

operators for 1H and 13C, respectively.

Prior to the acquisition, the sample is shuttled to the magnetically

shielded region where the residual magnetic field is on the order of 10 pT. In

such a low magnetic field, the Zeeman interaction is on the order of 0.1 mHz

and is negligible compared to the J-coupling. For isotropic fluids in zero-

field, other interactions typically relevant in NMR spectroscopy, such as the

short-range dipole-dipole couplings, are averaged-out by molecular tumbling

and are also negligible. As a result, the sample’s evolution in zero-field is

dominated by the J-coupling Hamiltonian given by Eq. (3.1).

Following shuttling, the guiding field is turned off suddenly and a

magnetic field pulse with area γCBxtpulse = π is applied to the sample, where

γC is the gyromagnetic ratio of the 13C nuclear spin. As a result, the 13C and
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1H nuclear spins are in a superposition of the triplet |F=1;mF=± 1, 0⟩ and

singlet |F=0;mF=0⟩ states which evolves under the J-coupling Hamiltonian.

The unperturbed energy levels are given by:

E(F )/ℏ =
1

2
JCH[F (F + 1)− I(I + 1)− S(S + 1)], (3.2)

where I = S = 1/2 for 13C and 1H and F = 0, 1. Then the singlet and triplet

states energy levels are respectively:

E(F = 0,mF = 0)/ℏ = −3

4
JCH ,

E(F = 1,mF = 0,±1)/ℏ =
1

4
JCH . (3.3)

The selection rules for transition between the singlet and triplet

states, ∆F = 0,±1 and ∆mF = ±1, arise because the observable is the

magnetization along the y-axis. The corresponding spectrum exhibits a

single peak centred at
[
E(F = 1,±1)− E(F = 0)

]
/ℏ = J ≈ 2π · 221 Hz (see

Fig. 3.1.a).

Ultralow-field regime

The experimental setup allows application of a DC-magnetic field, Bz, along

the z-axis via the Helmholtz coils surrounding the sample. In such conditions,

the Hamiltonian under which the formic acid molecules evolve becomes:

H = HJ +HZ (3.4)

= HJ − ℏ(γCSz + γHIz)Bz , (3.5)
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where γC/2π = 10.70 MHz.T−1 and γH/2π = 42.57 MHz.T−1 are the

gyromagnetic ratios of the 13C and 1H nuclear spins, respectively. A field

of about 50 nT yields a Zeeman interaction, HZ, on the order of γCBz/2π ≈

γHBz/2π ≈ 0.1 Hz, which remains much weaker than the J-coupling and

can thus be treated as a perturbation. To first order in Bz, the eigenstates

are those of the unperturbed Hamiltonian, HJ, and perturbed energies can

be read from the diagonal matrix elements of the Zeeman perturbation:

∆E(F,mF )/ℏ = −⟨F,mF |(γCSz + γHIz)Bz|F,mF ⟩, (3.6)

yielding the perturbed energy levels:

E(F = 0,mF = 0)/ℏ = −3

4
JCH ,

E(F = 1,mF = 0,±1)/ℏ =
JCH

4
−mF

γC + γH

2
Bz .

Thus, to first order, the effect of such a field is to break the degeneracy of

the triplet state due to the now non-negligible Zeeman splitting. Recalling

the selection rules ∆F = 0,±1 and ∆mF = ±1, the magnetometer

measures oscillations at two different frequencies between the |F=0;mF=0⟩

and |F=1;mF=± 1⟩ states. As a result, the single J-coupling line is

split into a doublet and the spectrum exhibits two lines located at

J/2π ±Bz
γC+γH

4π
(see Fig. 3.1.b).

Frequency-modulation regime

In this regime, we apply an oscillating magnetic field BAC = BAC cos(ωt) · êz

in addition to the DC-field along z-axis. Under these conditions, the formic
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acid molecules evolve under the following Hamiltonian:

H = HJ +HZ +HAC (3.7)

= HJ +HZ − ℏ(γCSz + γHIz)BAC cos(ωt) . (3.8)

In the case where the modulation index,
BAC(γC+γH)

2ω
, is much smaller

than one, the resulting spectrum is composed of the J-coupling doublet

peaks, located at JCH/2π ±Bz
γC+γH

4π
each exhibiting a set of sidebands

located at frequencies JCH/2π ±Bz
γC+γH

4π
± ω/2π. Such a spectrum is shown

in Fig. 3.1.c, alongside the corresponding energy levels. The sidebands’

amplitude As, is proportional to the modulation index [71]. This behavior will

later be experimentally confirmed by varying the amplitude and frequency

of a calibration AC-field while a DC-field was continuously applied to the

sample.

3.3 Bosonic dark-matter fields

3.3.1 Dark-matter field properties

If dark matter predominantly consists of particles with masses mDM ≲ 10 eV,

making up the totality of the average local dark-matter density, then they

must be bosons with a large mode occupation number. It would be impossible

for fermions with such low masses to account for the observed galactic dark

matter density, since the Pauli exclusion principle prevents them from having

the required mode occupation.

In this scenario, axion and ALP bosonic dark matter is well described by
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a classical field a(t), oscillating at the Compton frequency (ωDM ≈ mDMc
2/ℏ)

[72–74]:

a(t) ≈ a0 cos(ωDMt) , (3.9)

where a0 is the amplitude of the bosonic field.

The temporal coherence of the bosonic field is limited by the relative

motion of the Earth through random spatial fluctuations of the field. The

characteristic coherence time τDM, during which the bosonic dark-matter

fields remains phase coherent, corresponds to ∼ 106 periods of oscillation of

the fields [36].

The amplitude a0 can be estimated by assuming that the field energy

density constitutes the totality of the average local dark-matter energy

density (ρDM ≈ 0.4 GeV/cm3 [75]). Then a0 is related to the dark-matter

density through:

ρDM =
1

2

c2

ℏ2
mDM

2a20 . (3.10)

We note that a0 is expected to fluctuate with relative amplitude of order

one due to self-interference of the field. This effect should induce stochastic

variations of a0, and great care must be employed when computing the actual

amplitude of ALP field. As this effect is beyond the scope of this thesis we

assume a0 to be constant for the rest of this discussion. We later account

for these variations by using a Monte-Carlo method. We invite the readers

to consult Ref. [76] which provide a more complete framework regarding this

effect.
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3.3.2 Dark-matter couplings to nuclear spins

CASPEr-Gradient is sensitive to any field such that its interaction with

nuclear spins can be written in the form:

HDM = −ℏgNIN ·D, (3.11)

where gN is a coupling constant that parametrizes the coupling of the effective

field, D, to nuclear spins represented by the operator IN. In analogy with the

Zeeman interaction, HZeeman = −ℏγNIN ·B, such an effective fieldD may be

thought of as a pseudo-magnetic field interacting with nuclear spins, where

the nuclear gyromagnetic ratio, γN, is replaced by the coupling constant, gN.

For clarity, we focus this discussion on the the so-called “axion wind

interaction” with effective field Dwind = −∇a(r, t) and coupling constant

gaNN. A number of other possible couplings between nuclear spins and

bosonic dark matter fields take a form similar to Eq. (3.11). These include

couplings to the “dark” electric (with coupling constant gdEDM and effective

field DdEDM) and magnetic (with coupling constant gdMDM and effective field

DdMDM) fields mediated by spin-1 bosons such as dark photons [19, 77] or

a quadratic “wind” coupling to an ALP field (with coupling constant gquad

and effective field Dquad) [78]. These are discussed later.

As the Earth orbits around the Sun (itself moving towards the Cygnus

constellation at velocity, v, comparable to the local galactic virial velocity

∼ 10−3c), it moves through the galactic dark-matter halo and an interaction

between axions and ALPs with a given nucleon N , can arise. Assuming that

ALPs make up all of the dark matter energy density, ρDM, and that the

dominant interaction with nucleon spins is linear in ∇a(r, t), Eqs. (3.9) and
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(3.10) can be used to write the the effective field as

Dwind(t) = −
√
2ℏcρDM sin (ωDMt)v. (3.12)

Then, given the local galactic virial velocity, v, only two free parameters

remain in the Hamiltonian in Eq. (3.11): the coupling constant, gaNN, and the

field’s oscillation frequency, ωDM, fixed by the boson mass. A CASPEr search

consists of probing this parameter space over a bosonic mass range defined

by the bandwidth of the experiment. In order to calibrate the experiment,

we apply known magnetic fields and the experiment’s sensitivity to magnetic

fields directly translates to sensitivity to the coupling constant. If no ALP

field is detected, upper bounds on the coupling constant can be determined

based on the overall sensitivity of the experiment.

3.3.3 Dark-matter signatures in zero- to ultralow-field

NMR

The sample - 13C-formic acid, effectively a two-spin 1H–13C system - is

pre-polarized in a 1.8 T permanent magnet and pneumatically shuttled

to a magnetically-shielded environment for magnetization evolution and

detection.

The spin Hamiltonian describing the system is

H = ℏJCHI · S − ℏ (γHI + γCS) ·B (3.13)

+ ℏ
(
gappI −

1

3
gannS

)
·Dwind(t) ,
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Figure 3.2: Top: signal acquisition scheme with simulated spectra. After
polarization, each transient acquisition starts following a magnetic π-pulse
(corresponding to a 180 degrees flip of the 13C spin along any direction). The
external AC-magnetic field’s phase varies between transient acquisitions (orange).
As a result, the sidebands generally possess different phases in each transient
spectrum. Averaging the transients yields a spectrum in which the sidebands are
destructively averaged out (purple). Shifting each transient by a phase equal to
the external field’s accumulated phase restores the sidebands’ phase coherence,
yielding a spectrum with high signal-to-noise ratio sidebands (orange). For clarity,
only one of the two Zeeman-split J-coupling peaks and its two sidebands are
shown. Bottom: result of the phase-shifting procedure for actual data. (a)
Transients are averaged using 2001 phase increments and stacked into a two-
dimensional plot. (b) Side view of (a), sidebands are rescaled by a factor
10 for clarity. (c) Averaging with ϕ = 0 rad corresponds to averaging the
transients without phase shift; sidebands are averaged out and carrier peaks
appear with maximum amplitude. When the optimal phase (for ω/2π = 0.73
Hz, ϕ = 2.93 rad) is approached, sidebands appear. These spectra were acquired
in an experiment during which the AC-field frequency and amplitude were set to
0.73 Hz and 0.24 nT. Transient acquisitions of 30 s were repeated 850 times
with a time interval between each transient of τ = 61 s.
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where the electron-mediated spin-spin coupling JCH/2π ≈ 221 Hz for formic

acid and I and S are the nuclear-spin operators for 1H and 13C, respectively.

Additionally, B is an applied magnetic field, gapp is the ALP-proton coupling

strength, and gann is the ALP-neutron coupling strength. We assume

gapp = gann = gaNN [40].

In the absence of external fields (B = Dwind(t) = 0), the nuclear

spin energy eigenstates are a singlet with total angular momentum F = 0

and three degenerate triplet states with F = 1, separated by ℏJCH. The

observable in our experiment is the y magnetization, leading to selection

rules ∆F = 0,±1 and ∆mF = ±1, as in Ref. [79]. The zero-field spectrum

thus consists of a single Lorentzian located at JCH/2π ≈ 221 Hz, as shown

in Fig. 3.1(a).

In the presence of a static magnetic field, B = Bzêz, applied along

z, the mF = 0 states are unaffected, while the mF = ±1 triplet states’

degeneracy is lifted. The corresponding spectrum exhibits two peaks at

JCH/2π ±Bz(γH + γC)/2π, as shown in Fig. 3.1(b).

So long as |JCH| ≫ |γHB| ≫ |gaNNDwind| the mF = 0 states are

unaffected, and the mF = ±1 states are shifted by

∆E(mF = ±1)(t) = ∓ℏ
2
Bz(γH + γC)±

ℏ
2

2

3
gaNNDz(t) , (3.14)

where Dz(t) is the projection of Dwind(t) along the axis of the applied

magnetic field. The time dependence of Dwind(t) leads to an oscillatory

modulation of the mF = ±1 energy levels, giving rise to sidebands around

the J-coupling doublet as shown in Fig. 3.1(c). The sidebands are separated

from the carrier peaks by ±ωDM/2π and have an amplitude proportional to
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Figure 3.3: ALP wind-nucleon linear coupling parameter space. The CASPEr-
ZULF region is excluded by this work (90% confidence level) using a thermally
polarized sample (data averaged over 850 transient acquisitions of 30 s each).
The “New Force” region is excluded by searches for new spin-dependent forces
[80]. The SN1987A region represents existing limits from supernova SN1987A
cooling [44, 81]. The νn/νHg region is excluded by measurements of the ratio
of neutron and 199Hg Larmor precession frequencies [40]. The dashed line
corresponds to the sensitivity of a planned second phase of CASPEr-ZULF, with
a projected ∼ 105 factor increase in sensitivity and the bandwidth extended
towards lower frequencies by using a comagnetometer technique [82] and longer
integration times.

the modulation index (gaNN/ωDM).

As a result, dark-matter fields with sufficiently strong coupling to nuclear

spins can then be detected by searching for frequency-modulation-induced

sidebands in the well-defined ZULF NMR spectrum of formic acid.

3.3.4 Bosonic dark-matter effective fields

In order to predict the amplitude of the formic acid response to bosonic dark-

matter fields, one must compute the equivalent magnetic field which would
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induce an identical response. We refer to these as dark-matter “effective

fields”. In the following, we show the effective fields of the ALP-wind linear

and quadratic [78, 83] couplings, in addition to those of the dark-photon

couplings. The full derivation of these expressions is given in A.1.1 of the

Appendix.

In the case of the ALP-wind linear coupling, the field acting on the 1H-

13C spins induces an energy shift equal to the one produced by a magnetic

field with amplitude

Beff
ALP,z(t) = −

2

3

gaNN

γH + γC

√
2ℏcρDM × sin(ωDMt− k · r + ϕ)v · êz, (3.15)

where ωDM ≈ mDMc
2/ℏ is the ALP Compton frequency, k ≈ mDMv/ℏ is the

wave-vector (v is the relative velocity), mDM is the rest mass of the ALP, ϕ is

an unknown phase, and êz is the axis along which the leading DC-magnetic

field is applied.

It is theoretically possible that interaction of nuclear spins with ∇a can

be suppressed [78, 83], in which case the dominant axion wind interaction,

referred to as the quadratic wind coupling, is related to ∇a2. In the case of

the ALP-wind quadratic coupling the equivalent magnetic field amplitude is:

Beff
quad,z(t) = −

4

3
ℏc2

gquad
2

γH + γC

ρDM

ωDM

× sin(2ωDMt− 2k · r + ϕ)v · êz . (3.16)

where gquad, having dimensions of inverse energy, parameterizes the ALP

quadratic coupling strength to nuclear spins.

There are two possible interactions of dark photons with nuclear spins

that can be detected with CASPEr-ZULF: the coupling of the dark electric
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field to the dark electric dipole moment (dEDM) and the coupling of the dark

magnetic field to the dark magnetic dipole moment (dMDM). The equivalent

magnetic field amplitudes are:

Beff
dEDM(t) =

2

3

gdEDM

γC + γH

√
2ℏc3ρDM × cos(ωDMt+ ϕ)ϵ · êz , (3.17)

and

Beff
dMDM(t) =

2

3

gdMDM

γC + γH

v

c

√
2ℏc3ρDM × cos(ωDMt+ ϕ)ϵ · êz , (3.18)

with coupling constants gdEDM and gdMDM (having dimensions of inverse

energy) and dark photon field polarization ϵ.

The experimental sensitivity to real magnetic fields then directly

translates to sensitivity to the coupling constants gaNN, gquad, gdEDM, and

gdMDM. Inverting equations (3.15)–(3.18) yields the corresponding conversion

factors from magnetic field to the dark-matter coupling constants:

δgaNN(ω) ≈
[
1.3× 108

GeV−1

T

]
δB(ω), (3.19)

δgquad(ω) ≈

[
190

GeV−1

√
T
√
rad/s

] √
ω · δB(ω), (3.20)

δgdEDM(ω) ≈
[
1.3× 105

GeV−1

T

]
δB(ω), (3.21)

δgdMDM(ω) ≈
[
1.3× 108

GeV−1

T

]
δB(ω). (3.22)

Here we have used γC/2π = 10.70 MHz.T−1 and γH/2π = 42.57 MHz.T−1,

v ≈ 10−3c and ρDM ≈ 0.4 GeV/cm3.
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3.4 Results

3.4.1 Signal processing: post-processing phase cycling

The expected dark matter coherence time (∼ 14 hours for a particle with

19 Hz Compton frequency) is much longer than the nuclear spin coherence

time in 13C-formic acid (∼ 10 s). Taking advantage of this mismatch, we

introduce the post-processing phase-cycling technique shown in Fig. 3.2,

which consists of incrementally phase shifting the transient spectra and

subsequently averaging them together. If the phase increment matches the

phase accumulated by the oscillating field between each transient acquisition,

the sidebands add constructively. This allows coherent averaging of the

complex spectra, such that the signal-to-noise ratio scales as N1/2, where N

is the number of transients. Because the dark-matter Compton frequency

is unknown, it is necessary to repeat this operation for a large number

of different phase increments (at least many as the number of transient

acquisitions).

For each transient acquisition, the sample is prepared in the same

initial state, which determines the phase of the J-coupling peaks. When

averaging the transients together, the J-coupling peaks’ amplitude and

phase remain constant, while the uncorrelated noise is averaged away, thus

increasing the SNR as the square root of the total integration time Ttot, i.e.

SNR(Ttot) ∝ T
1/2
tot .

However, the dark-matter-related information resides not in the J-

coupling peaks, but in their sidebands. The external bosonic field oscillates

at an unknown frequency and its phase at the beginning of each transient
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acquisition is unknown. This phase directly translates into the phase of

the sidebands in the transient spectra: while the phase of the J-coupling

peaks is identical from one transient acquisition to another, the phase of the

sidebands varies. As a result, naively averaging the transient spectra averages

the sidebands away, thus removing the dark-matter-related information from

the resulting spectrum.

Here we use a post-processing phase-cycling technique which enables

coherent averaging of the spectra in the frequency domain, even for transient

signals for which no obvious experimental phase-locking can be achieved due

to the unknown frequency of the signal. The method is similar to acquisition

techniques in which an external clock is used to register the times of the

transient acquisitions and post-processing phase shifting of the transient

signals is employed to recover the external field’s phase [84, 85].

The method relies on the fact that the bosonic field’s phase at the

beginning of each transient acquisition is unknown but not random. Indeed

we recall that the bosonic fields remain phase coherent for ∼ 106 oscillations,

which for frequencies below 19 Hz is longer than the total integration time (14

hours). Thus, precise knowledge of the transient-signal acquisition starting

times enables recovery of the phase of the bosonic field.

A full description of this averaging method is given in the appendix A.1.2.

Each transient spectrum is incrementally phase shifted prior to averaging. If

the phase shift is equal to the phase accumulated by the bosonic field between

two transient acquisitions, then the phase stability of the J-coupling peaks

is shifted to their sidebands which can thus be coherently averaged.

Considering that the frequency of the bosonic field is unknown, the correct
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phase shift is also unknown. Thus, we repeat the operation for 2001 different

phase increments between [−π, π], yielding 2001 averaged spectra, one of

which being averaged with the phase increment such that the sidebands are

coherent.

To demonstrate the viability of this method, a small magnetic field was

applied with amplitude 0.24 nT oscillating at 0.73 Hz, to simulate a dark-

matter field. Using this processing technique, the SNR of the sidebands

scales as SNR(Ttot) ∝ T
1/2
tot (see Fig. A.3 in the appendix), as expected

during a coherent averaging procedure. This is a dramatic improvement over

the alternative power-spectrum averaging (typically implemented for sets of

incoherent spectra), which would yield a T
1/4
tot scaling.

3.4.2 Calibration

We remind the reader that the energy shifts produced by Dz(t) are equivalent

to those produced by a real magnetic field with amplitude

Bwind(t) =
2

3

gaNN

γH + γC

·Dz(t) ∝
gaNN

γH + γC

√
ρDM sin (ωDMt)v · êz. (3.23)

Similar relationships for dark-photon and quadratic-wind couplings were

provided by Eqs. (3.16)–(3.18).

Based on Eq. (3.23), the sensitivity of the experiment to dark matter was

calibrated by applying a real oscillating magnetic field of known amplitude

and frequency and measuring the amplitude of the resulting sidebands in the

coherently averaged spectrum.

The experimental sensitivity is defined by the ability to observe dark-

matter-induced sidebands above the magnetometer noise floor. In order
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to show that the sideband amplitude scales with the modulation index,

B/ω, and does not present unusual scalings due to experimental errors, two

calibration experiments were performed. A first calibration was performed

by varying the amplitude of the AC-field from 95 to 310 pT while holding

the frequency constant at ω = 2π × 0.73 Hz. Then the amplitude was held

at 160 pT while varying the frequency, from 0.45 to 1.7 Hz. The results of

this experiment are shown in Fig. A.1 in the appendix. Similar experiments

were performed to determine the minimum detectable frequency (see A.1.7

in the appendix). Based on this calibration, we can extrapolate the expected

sidebands amplitude, As(B,ω), for any field of amplitude B and frequency

ω:

As(B,ω) = 5.53× 10−6 rad.s−1 × B[T]

ω[rad.s−1]
. (3.24)

Then the magnetometer noise level determines the smallest detectable driving

field, which is then converted to dark-matter coupling bounds via eqs. (3.19)-

(3.22).

3.4.3 Search and analysis

The dark matter search data were acquired and processed as described above,

but without a calibration AC-magnetic field applied.

For each Compton frequency, the appropriate phase increment is

computed, which identifies the corresponding coherently averaged spectrum

to be analyzed. The noise in the spectrum defines a detection threshold at

the 90% confidence level (further details in A.1.5 in the appendix). When the

signal amplitude at the given frequency is below the threshold, we set limits
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on the dark matter couplings to nuclear spins at levels determined by the

calibration and effective-field conversion factors (see Sec. 3.3.4). If the signal

is above the threshold, a more stringent analysis is performed by fitting the

coherently averaged spectrum to a four-sideband model. When the fit rules

out detection, the threshold level is again used to set limits.

In case of an apparent detection, further repeat measurements would need

to be performed to confirm that the signal is persistent and exhibits expected

sidereal and annual variations.

3.4.4 CASPEr-ZULF search results: constraints on

bosonic dark matter

The results of the CASPEr-ZULF search for axionlike particles are given

in Fig. 3.3. The frequencies presenting sharp losses in sensitivities at

0.21, 1.69, and 2.16 Hz were the ones for which the nearest optimal phase

increment was close to zero, thus presenting maximal-amplitude J-coupling

peaks, raising the detection threshold (see discussion in 3.5 in the appendix).

The red-shaded area labeled “CASPEr-ZULF” corresponds to upper bounds

on nuclear-spin couplings to dark matter consisting of ALPs at the 90%

confidence level. This represents our current sensitivity limitation after

850 30-second transient acquisitions using samples thermally polarized at

∼ 1.8 T. The “CASPEr-ZULF Phase II” line corresponds to the projected

sensitivity of a future iteration of this work that will use a more sensitive

magnetometry scheme to measure a larger sample with enhanced (non-

equilibrium) nuclear spin polarization.

Figures 3.4 and 3.5 show the search results for the ALP quadratic
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interaction and dark photon interactions, respectively. No signal consistent

with axion, ALP or dark-photon fields have been observed in the red-shaded

areas. The two different limits given in Fig. 3.5 were obtained using the

same data set but analyzed by assuming two orthogonal initial polarizations

of the dark-photon field (see A.1.8 in the appendix).

In all cases, the search bandwidth was limited from below by the finite

linewidth of the J-resonance peaks, preventing to resolve sidebands at

frequencies lower than 45 mHz. Due to the finite coherence time of the dark-

matter fields (corresponding to ∼ 106 oscillations), the bandwidth’s upper

limit (19 Hz), is the highest frequency which can be coherently averaged after

14 hours of integration time. The sensitivity fall off is due to the sidebands’

amplitude scaling as the modulation index. Further details are given in A.1.4

and A.1.7 of in the appendix.

3.5 Discussion

This work constitutes demonstration of a dark-matter search utilizing NMR

techniques with a coupled heteronuclear spin system. The results provide

new laboratory-based upper bounds for bosonic dark matter with masses

ranging from 1.86× 10−16 to 7.85× 10−14 eV, complementing astrophysical

bounds obtained from supernova SN1987A [44, 81].

Our data analysis provides a method to perform coherent averaging of the

bosonic-field-induced transient signals. This method should prove useful for

other experiments seeking to measure external fields of unknown frequency

using a detector with a comparatively short coherence time. Conveniently,

this phase-cycling approach also suppresses the carrier-frequency signals,
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Figure 3.4: ALP wind-nucleon quadratic coupling parameter space. The
CASPEr-ZULF region is excluded by this work (90% confidence level) using a
thermally polarized sample (data averaged over 850 transient acquisitions of 30
s each). Other regions of this figure are defined in the caption of Fig. 3.3.
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Figure 3.5: Left: dark photon-nucleon dEDM coupling parameter space. The
SN1987A region represents existing limits for ALPs from supernova SN1987A
cooling [44, 81] adjusted to constrain dark photons as discussed in Ref. [86].
Right: dark photon-nucleon dMDM coupling parameter space. The CASPEr-
ZULF regions are excluded by this work (90% confidence level) using a thermally
polarized sample (data averaged over 850 transient acquisitions of 30 s each).
The red and purple lines correspond to the case where the dark-photon field
polarization is along the ϵ̂1 and ϵ̂3 axes of the non-rotating Celestial frame,
respectively (see A.1.8 in the appendix). The dashed lines correspond to the
sensitivity of a planned second phase of CASPEr-ZULF, with a projected ∼ 105

factor increase in sensitivity.
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which would otherwise increase the detection threshold via spectral leakage.

As this method is applied during post-processing, it does not require

modification of the experiments provided that the data to be analyzed have

been time stamped.
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4
Deep neural network for physics-signal analysis

4.1 Foreword

This chapter is mainly composed of the contents of the following article:

Antoine Garcon, Julian Vexler, Dmitry Budker, Stefan Kramer.

Deep Neural Networks to Recover Unknown Physical

Parameters from Oscillating Time Series. preprint

arXiv:2101.03850, 2021.

Deep neural networks (DNNs) have been successfully used in a wide

variety of tasks, such as regression, classification (e.g, in image or speech

recognition [87, 88]), and time-series analysis. They are known for being

able to construct useful higher-level features from lower-level features in

many applications. However, these feature representations frequently remain

incomprehensible to humans. This property is one of the reasons why

DNNs are not more widely used in physics, in which the approach to data

exploration is usually drastically different.

Most systems studied in physics are well described by physicals models,

generally referred to as equations of motion. The experimental data are

analysed with respect to a particular model. When doing so, the equations

of motion are analytically or numerically solved, yielding a theoretical
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description of the data-generating process. The resulting model generally

includes a set of mathematical variables that can be adjusted to span the

data. The true values of these variables are generally unknown and must be

recovered. For that reason, we refer to them as latent parameters. The true

latent parameters are approximated by comparing the data to the model,

typically by fitting the model to the data. With this in mind, the ability

of DNNs to find abstract representations of the data features rather than a

quantitative generating process is generally seen as a limitation rather than

an advantage by physicists. For that reason, DNNs are still often viewed

as black boxes in physics and started to be used in the field only in recent

years [89].

We find this to be a missed opportunity for the physics community.

With physical models at hand, one can generate arbitrarily large volumes of

synthetic data to train the DNNs, and later process real-world signals [90].

This circumvents many challenges of supervised learning during which DNNs

are trained with data for which the true latent parameters (labeled data)

need to be known. Making full use of this possibility, DNNs were recently

trained on synthetic nuclear magnetic resonance (NMR) spectroscopic data,

simulated by accurate physical models [91]. The large amount of labeled

data generated this way enables convergence of the DNN, which is then used

to process real NMR data with great accuracy. A similar approach, that is,

starting training with synthetic data and continuing with real-world data,

has become popular in robotics and autonomous driving.

Moreover, extensive work was done in order to disentangle and make

sense of DNN representations. A notable example is that of the β-
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variational autoencoder architecture [92]. Correlation loss penalties can also

be used during DNN training, without prior knowledge of the data-generating

process [93, 94]. These methods consist of penalizing the DNN if its feature

representation becomes entangled during training. While doing so, the DNN

is encouraged to produce an efficient or disentangled feature representation.

While disentangled, the representations achieved through these methods are

not readily interpretable and usually require further analysis.

Nonetheless, DNNs are being increasingly used in physics data processing,

in particular for signal classification – during which unusual datasets are

flagged for further analysis. It was shown that Autoencoders can effectively

be trained on Large Hadron Collider particle-jet data to detect events or

anomalies [95]. In this instance, the DNN is successfully able to increase

the events’ signal-to-noise ratio by a factor 6. Other searches in high-energy

physics, including [96, 97], have recently been performed also with the aim

of detecting data displacement from a null-hypothesis (no anomalies). All

these searches seek to perform data analyses in a model-independent setting,

that is, with minimal prior information or bias. More recently, DNNs have

been applied to time-series processing in nano-NMR [98]. In nano-NMR

settings, the noise model is complex and noise overpowers the weak signals,

rendering standard data analyses inefficient. The DNN was tasked to classify

signals (i.e. discriminating two frequencies) and outperformed full-Bayesian

methods.

While often achieving great successes, to our knowledge most applications

of DNNs in physics are geared toward classification problems. In addition,

DNNs are still rarely employed for time-series analyses, although they are
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the most common form of data acquired during physics experiments. In

this chapter, we propose to use a DNN to disentangle components of

monochromatic, amplitude- and frequency-modulated sine waves (AM/FM-

sine waves respectively), arguably the most prevalent forms of time-domain

signals in physics. The method yields similar performance as more standard

analyses such as least-square curve fittings (LS-fits), during which the data-

generating process is assumed to be known and a least-squares regression is

performed to predict the signal’s latent parameters.

LS-fits, however, require the user to input latent-parameters initial

guesses prior to regression. These initial guesses are the prior estimation of

the true latent parameters and provide a starting point for the LS-fit gradient

descent. The trained DNN, however, needs no initial guesses, thus requiring

less prior information about the data-generating process. Indeed, we show

that, precisely because DNNs find abstract data representations, they can

be used in settings when prior knowledge exists, but is not complete, as it

is particularly the case in “new-physics” searches [99], thus leaving space for

data exploration and discoveries.

The first part of this chapter describes the synthetic data that we generate

and use throughout this work, i.e. monochromatic, AM- and FM-sine

waves time series, and their relevance to real-world physics experiments.

We then describe our DNN architecture, which incorporates two tasks: A

Regressor DNN 1 performs a regression of the signal’s latent parameters

that are known to be present in the data-generating process. In addition, an

Autoencoder [100] denoises the signals by learning an approximation of the

1We note here that throughout the paper the term Regressor is employed as opposed
to a Classifier, not as an independent variable in a regression. Therefore, Regressor
refers to the DNN predicting the signal’s latent parameters.
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unknown latent parameters. As a benchmarking method, we evaluate the

DNN by comparing its performance to an LS-fit with true initial guesses.

We later employ the DNN in realistic settings, when prior knowledge

about the data-generating process is incomplete: LS-fit fidelity is typically

highly sensitive to initial guesses, thus requiring the user to perform

preprocessing work or to possess prior information in order to perform

optimally. As a first application, we show that the DNN can be used

to predict initial guesses for the model fit evaluation. While consistently

converging to optimal solutions, the technique circumvents the usual

difficulties arising from fitting signals, such as the need for initial-guesses

exploration.

Next, we show that the DNN can be used when the user ignores if the

time-series are monochromatic-, AM- or FM-sine waves, but still wishes

to recover their main frequency component. In such settings, the user is

generally required to repeat the analysis by exploring the space of data-

generating processes and initial guesses. Using our architecture enables the

user to input only the known information when performing the analysis. That

is, the Regressor is tasked to recover the user-expected latent parameters

while ignoring the existence of others. Because the Autoencoder needs no

prior information, it is still able to capture unknown information.
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Figure 4.1: Examples of frequency-modulated sine wave (FM) synthetic time
series. Top: pure and noisy FM-sine wave decomposition. Gaussian noise
and frequency modulation are linearly added to decaying sine wave carrier.
Bottom: random selection of noisy-input (blue) and pure-target (black) samples,
illustrating the effect of the random latent parameter selection.



4.2 Data description and generation procedure 59

4.2 Data description and generation proce-

dure

The time series studied here are exponentially decaying monochromatic, FM-

and AM-sine waves. Gaussian noise is linearly added to the pure signals. An

example of FM-signal is shown in Fig. 4.1 (top) alongside its sub-components

(decaying-sinewave carrier, frequency-modulation signal, and noise).

Decaying monochromatic-sine waves appear and are prevalent in all fields

of physics. They arise from solving the equations of motion of the two-

level quantum system, or of the classical harmonic oscillator; to which

a multitude of other physical systems can be mathematically reduced to.

Notorious examples include the spin-1/2 particle in a DC magnetic field,

the orbital motion of planets, or RLC circuits. In information theory, the

two-level quantum system also provides a complete description of the qbit.

Frequency and amplitude modulation generally arise from external factors

such as oscillating magnetic or electric fields applied by the experimenters.

Amplitude and frequency modulation of a carrier frequency are also the

most common scheme of information communication links. Some form of

Gaussian noise, while not necessarily always dominant, is in general present

in any real-world signal. The statistical Gaussian noise formalism provides an

accurate description of electronic thermal-noise, quantum shot noise, black-

body radiation, and of White noise in general.

The time series are generated by propagating the time, t, from 0 to 511

(with length T = 512) in 1 s increments, and using the following formula:
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fMono(t) = cos(2πFct+ ϕ) · e−t/τ ,

fAM(t) = cos(2πFct+ ϕ) · e−t/τ ·
(
1 + Im cos(2πFmt)

)
,

fFM(t) = cos
(
2πFct+ ϕ+

0.01Im
Fm

cos
(
2πFmt

))
· e−t/τ ,

where Fc and ϕ are the sine wave carrier frequency and phase, respectively.

Fm and Im are the modulation frequency and amplitude. Noise is linearly

added to the signals after being sampled from the Gaussian distribution with

zero mean and standard deviation σ.

Before each sample generation, the latent parameters are randomly and

uniformly sampled within the following ranges:

Fc ∈ [10/T, 1/8], ϕ ∈ [0, 2π],

Fm ∈ [1/T, 1/16], Im ∈ [0, 1],

τ ∈ [0.2T, 8T ], σ ∈ [0, 1].

The range of Fc ensures the carrier frequency remains well within the Fourier

and Nqyist limits. The modulation amplitude range ensures the majority of

the signal’s power remains in its first sidebands and carrier.

Noise is linearly added to the pure signals by sampling the Gaussian

distribution with zero mean and standard deviation σ.

Most DNN implementations generally require input and target data to

be normalized such as to avoid exploding and vanishing gradients during

training [101, 102]. All signals and latent parameters are normalized to lie
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within the 0-to-1 range prior to the application of the DNN. The phase ϕ

is mapped to two separate parameters, ϕ :→
{

sin(ϕ)+1
2

; cos(ϕ)+1
2

}
, such as to

account for phase periodicity during loss computation, while keeping both

targets properly normalized. All other latent parameters are normalized

using their respective range. Prior to adding the noise, we normalize the

pure signals such that the resulting noisy signals remains within the [0, 1]

range with mean 0.5. This normalization is performed identically for all

signals.

Despite requiring only 6 latent parameters to generate the samples, these

ranges enable a wide scope of functions to be realized. AM/FM-signals with

minimum Im reduce to decaying monochromatic-sine waves and reach 100%

modulation with maximum Im. The coherence time range is wide enough

to span underdamped signals up to virtually non-decaying signals. These

latent parameter ranges are wide enough such that they would encompass

many foreseeable real-world signals. A random selection of FM-signals with

and without noise is shown in Fig. 4.1 (bottom), illustrating the richness of

the data in a more qualitative manner.

The choice of studying monochromatic, AM-, and FM-sine waves is

not only motivated by their richness and prevalence in real-world physics

experiments. Indeed, despite originating from different physical models and

having different mathematical descriptions, the time series share similar

visual features. As a result, within some range of parameters, even expert

users could mistake the three generating processes. This is especially

the case for weak modulations in the presence of noise, for which visual

discrimination in time- or frequency-domain (inspecting the spectrum) may
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be impossible. For all the reasons cited above, monochromatic-, AM- or FM-

sine waves appear as good representative signals on which to perform our

study. Nevertheless, the methods presented in this here can be applied to

other types of signals as well.

4.3 DNN architecture and training proce-

dure

The latent-parameters regression and signal denoising are performed by

two separate architectures (Python code implementation is given in the

appendix).

Denoising is performed by an Autoencoder architecture [100] composed

of an Encoder followed by a Decoder. Noisy signals are first passed through

the Encoder. The Encoder output layer has 64 neurons and thus produces

a compressed representation of the input signal. Following this step, the

Encoder output is passed through the Decoder, which decompresses the

signal to its original size. This type of [Encoder-Decoder] architecture,

is widely used, inter alia, for data denoising [103]. As the Encoder

output dimension is smaller than the dimension of the input data, the

Encoder’s output layer acts as an information bottleneck, or more specifically

dimensionality reduction, thus encouraging the Autoencoder to capture

relevant latent features while discarding noise or redundant information [100].

Latent-parameters regression is also performed while passing the data

through the Encoder. The Encoder output is then passed through a third

DNN referred to as the Regressor.



4.3 DNN architecture and training procedure 63

Figure 4.2: Unified DNN architecture and loss description. The Encoder
produces a reduced representation of the input noisy signals. The Encoder
output is passed to the Regressor, which outputs the latent parameters’
prediction. The Encoder and Regressor outputs are passed to the Decoder,
which produces a noiseless prediction of the inputs. The Regressor andDecoder
outputs are used to compute the regression and denoising losses, MSEreg and
MSEdec, respectively. The loss used during backpropagation is a weighted sum
of MSEreg and MSEdec using a bias parameter β.
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The Encoder composed of 2[Conv1D-Maxpool] layers, followed by 2

Dense layers. The Encoder output layer has 64 neurons. The Regressor

is composed of 2[Conv1D −Maxpool] followed by a Conv1D and 4 Dense

layers. The output dimension of the Regressor is adjusted to the number

of latent parameters that the Regressor is tasked to detect. The Decoder

is composed of 1 Dense-3[Conv1D-Maxpool-Upsampling] layers, followed

by a single Conv1D layer. The Decoder consists of a concatenation of the

Regressor and Encoder ouputs.

All activation functions are rectified linear units, with the exception of

the Regressor and Decoder outputs, which are linear and sigmoid function,

respectively.

After refining the base Encoder, Regressor and Decoder, we unify the

three architectures into a single DNN as depicted in Fig. 4.2 such that

the Regressor and Decoder share the same Encoder. As such, we pass

the Encoder output to the Regressor, which predicts the signal’s latent

parameters. The Decoder input then consists of a concatenation of the

Regressor and Encoder outputs.

The latent parameter regression and signal-denoising losses are computed

simultaneously (MSEreg and MSEdec, respectively). The loss used during

backpropagation is computed as a weighted sum of MSEreg and MSEdec

as follows:

L oss = β ·MSEreg + (1− β) ·MSEdec, β ∈ [0, 1], (4.1)

where the hyperparameter β is the bias adjustment between the two tasks.

This architecture presents the advantage of enabling bias control via
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a unique hyperparameter. Moreover, both networks are naturally trained

at the same time rather than in alternate, thus accelerating training

approximately two-fold and enabling high-momentum gradient optimizers.

To illustrate the architecture’s output, we train the DNN on AM-sine

waves and show a prediction example in Fig. A.5 of the appendix, alongside

the noisy input signal.

During training, the Regressor’s target data consists of the latent

parameters, and the Decoder target data are the noiseless signals. For

both, the loss function is the mean squared error (MSE). The optimized

architectures achieve sufficient performance, while keeping the number of

trainable parameters under 1 million, such as to be able to perform training

on a modern laptop GPU under 12 hours for a typical training session of 20

training sets of 100′000 samples, over 10 epochs. Due to the number and

characteristics of the instances, asymptotic loss is reached within a small

number of epochs. In general, increasing the number of training set instances

was more beneficial than increasing the number of epochs.

To illustrate the effect of the bias parameter, we train the unified DNN

on identical FM-sine waves datasets with varying values of β. For this

experiment, training is performed using 12 training sets of 100′000 randomly

generated samples for 10 epochs. Because the number of synthetic samples is

large and the latent parameters are continuous random variables, overfitting

(controlled by a validation set, unseen during training) was never an issue.

The performance of the trained DNN is evaluated using a test set of

100′000 randomly generated FM-samples, which were unseen during training.

Figure 4.3 shows the test-sample losses for the denoising (top) and regression
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Figure 4.3: FM-sine waves test-data prediction errors: total weighted loss
βMSE, Denoising loss MSEdec and Regression loss MSEreg for varying values
of β. Setting β = 0 or β = 1 fully biases training toward one of the two tasks,
preventing the negatively-biased tasks to reach sufficient performance. Middle-
range values enable both tasks to be learned simultaneously.
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(bottom) tasks after training. Setting β = 0 fully biases training towards

the denoising tasks, which achieves best performance, while the parameter

regression yields the worst results; vice versa for β = 1. This behaviour

is also observed in Fig. A.8 in the appendix, which shows the validation

losses during training. The training curves show that extremum values of β

prevents validation loss improvement of the negatively-biased task. Middle-

range values enable both tasks to be learned simultaneously.

We find that the best values of β are those for which the initial β-weighted

regression and denoising losses are within the same order of magnitude. As a

result, determining a good value for β is a trivial task: A single forward

pass is performed to obtain the initial values of MSEreg and MSEdec.

Regardless of the type of data (monochromatic-, AM- and FM-samples),

DNNs trained with β = 0.001 achieve good overall performance (lowest

weighted total loss) and little bias towards any of the tasks. This value

of β is employed throughout the entire chapter. For all that follows, training

is always performed using 20 training sets of 100′000 randomly generated

samples for 10 epochs. This training is always enough to reach asymptotic

loss, while exhibiting no noticeable overfitting. Training can be performed

on decaying monochromatic-, AM-, FM-sine waves or a combination of all

three processes.
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Figure 4.4: Comparison of DNN post-training performance to LS-fits with true
latent-parameters initial guesses for 1000 random monochromatic, decaying sine
waves from the test set (unseen during training). The denoising (MSEdec, top)
and latent-parameters relative regression losses (MSEreg, bottom) are sorted
by increasing noise levels. The DNN was trained on monochromatic sine waves
samples. MSEreg is the MSE from the true latent parameters to the predicted
latent parameters. For the DNN, MSEdec is the MSE from the true noiseless
signal to the Decoder noiseless-signal prediction. For the LS-fits, MSEdec is
computed similarly, but the noiseless-signal prediction is generated by inputting
the predicted latent parameters in the noiseless data-generating process. The
LS-fit with true initial guesses vastly outperforms the DNN for low-noise signals
but both systems reach similar performance for high-noise.
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4.4 Results

4.4.1 Post-training performance evaluation

We train the DNN on a random selection of decaying monochromatic sine

waves (no modulation). The training, validation, and test samples are

generated using random frequency, phase, coherence time, and noise levels.

After training, we evaluate the DNN performance by comparing its prediction

error to an LS-fit using the Python Scipy library.

When performing the LS-fit, the input data is the noisy signals and the

objective function is with respect to the noiseless data-generating process.

The LS-fit then produces predictions of the true latent parameters. To this

end, the LS-fit requires latent-parameters initial guesses to start the gradient

descent. The initial guesses used here are the true latent parameters (i.e. true

frequency, phase, and coherence time). After gradient descent, we use the

LS-fit outputs to generate a prediction of the noiseless signals. This is done

by inputting the LS-fit latent-parameters predictions in the data-generating

process. The LS-fit and DNN performance are then compared in two ways:

(i) the latent-parameters regression loss is the MSE from the true latent

parameters for both the LS-fit and DNN (MSEreg), and (ii) the denoising

error is the MSE from the true noiseless signals for both the LS-fit and

DNN (MSEdec). Note that this comparison drastically favors the LS-fit,

which then constitutes a good benchmark method. Indeed, in any practical

applications the true value of the latent parameters are hidden from the user,

and LS-fits are employed precisely to approximate them.

A random selection of 1000 noisy signals from the test set is processed



70 Deep neural networks for physics-signal analysis

using this method. Figure 4.4 shows the relative MSEreg and MSEdec for

both the DNN and LS-fit sorted by noise level (examples of signals with

extremum noise levels, alongside LS-fit and DNN predictions are shown in

Fig. A.6 in the appendix). A similar evaluation is performed using AM-

samples. In this experiment, the DNN is specifically trained on AM-samples.

Examples of such samples are given in Fig. A.6 in the appendix. Figure A.7

shows the prediction errors of all samples, for both the DNN and LS-fit sorted

by noise levels.

For both monochromatic and AM-signals, the DNN performs generally

worse than the LS-fit for low-noise signals. However, the DNN reaches LS-fit

performance-level once the noise reaches the top half of the allowed range,

while requiring no initial guesses. The latent-parameters regression follows

a similar trend. We note that, in general, DNN outputs are less sensitive

to noise, and the performance is more consistent throughout both datasets.

These results show that our architecture is a good alternative to LS-fits for

time-series analysis, as it reaches acceptable performance when benchmarked

to standard LS-fits with true guesses, while needing no initial guesses.

4.4.2 DNN-assisted LS-fit

We now wish to apply our DNN in more realistic settings. Fitting oscillating

time series using LS-fits is notoriously difficult because theMSE is in general

a non-convex function of the latent parameters and possesses numerous local

minima. Consequently, the quality of the LS-fit is highly dependent on the

initial guesses in addition to the noise. In the previous experiments, LS-fits

were only performed as a benchmark method, and the initial guesses were
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Figure 4.5: DNN latent-parameters predictions used as initial guesses for DNN-
assisted fits. Comparison to LS-fit with true initial guesses. Top: The denoising
(MSEdec) and latent-parameters relative regression losses (MSEreg) are sorted
by increasing noise levels. See Fig. 4.4 for MSEreg and MSEdec computation
methods. Bottom: Phase and carrier frequency predictions for the DNN-assisted
fits and LS-fits. Both methods converge to the same losses and predictions for
over 99% of the samples. The DNN and data employed here are identical as in
Fig. 4.4.
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the true latent parameters. In any real-world setting, the user must perform

preprocessing work or use prior information to find initial guesses leading to

the global minima. We propose to employ the DNN as a preprocessing tool

to assist LS-fit in the situation when the user possesses no prior information

about the initial guesses and wishes to recover the signal’s latent parameters.

The sine wave samples from the previous experiment are fitted while using

the DNN latent predictions as initial guesses. Results of this experiment are

shown in Fig. 4.5 alongside LS-fits with true initial guesses results.

Because the DNN predictions are always within the venicity of the true

parameters, almost all DNN-assisted LS-fits converge to optimal solutions.

In settings when the initial guesses are unknown or samples are numerous,

the user can initially train the DNN on synthetic data and use it for DNN-

assisted fits. As the latter performs optimally regardless of the noise level,

this enables fast and accurate analysis of large datasets by removing the

need for initial guesses exploration. This conjunction use of DNNs and LS-

fits also enables access to prediction uncertainties, typically in the form of a

covariance matrices, which DNNs typically lack [104–106].

4.4.3 Partial information regression and denoising

In the experiments presented above, the data-generating process was assumed

to be fully known by the user. The DNN or DNN-assisted LS-fits were

employed to recover the signal latent parameters and denoise the signal. We

now wish to explore the possibility of employing the DNN in a situation

where the data-generating processes to be explored are multi-fold and

guesses must be done. This is typically the case in “new-physics searches”
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Figure 4.6: Performance comparison of the specialized DNN (trained on AM-
sine waves, tasked to denoise signals and recover all latent parameters of AM-
sine waves) and of the partial DNN (trained on monochromatic, AM- and FM-
sine waves, tasked to denoise signals and recover the carrier frequency, phase,
coherence time and noise level only). Top: Example of noisy input AM-
signal, alongside specialized- and partial-DNN denoised and latent predictions.
Bottom: Individual latent parameters and signal denoising root mean squared
error (RMSE), averaged over the whole AM-sinewave test set (100′000 samples)
for both DNNs.
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experiments [99], during which hypothetical and undiscovered particles may

cause signals deviating from the null-hypothesis (i.e. no new particles).

As the hypothetical particles are numerous, they may have many potential

effects on the signals. We take the situation in which a potential external

source could modulate a carrier signal produced by the experiment, as it is

sometimes the case for bosonic dark-matter [107].

Specifically, we study the case in which the end-user is aware of the

existence of an oscillation in the signal provided by the experimental setup.

The user ignores if the signal is monochromatic, amplitude or frequency

modulated. Nonetheless, the user wishes to recover the frequency, phase,

and coherence time of the expected oscillation.

In this situation, the typical approach is to test all allowed processes

by varying the LS-fits objective functions and explore the space of initial

guesses for each process. This approach presents a new set of challenges,

as this exploration is time consuming and sometimes unrealistic, if the data

is too large or if too many processes are to be tested. Moreover, in some

situations, all guesses can be wrong.

We show that it is possible to perform the regression and denoising with

partial prior information about the physical process producing the data.

That is, the DNN is tasked to perform the regression only on the narrow set

of latent parameters that exist across all models: frequency, phase, coherence

time, and noise level. However, the DNN ignores any form of modulation.

This is done by decreasing the number of neurons in the Regressor’s output

layer. The DNN is then trained on signals from every explored model

(monochromatic, AM and FM). We now refer to this DNN as the partial
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DNN (ignoring the existence of particular modulation type).

After training, we compare the performance of the partial DNN to a

specialized DNN, trained specifically on AM signals, which performs a re-

gression of all latent parameters. Figure 4.6 shows the MSEreg and MSEdec

averaged over the AM-sine wave test set (100′000 samples) for both the AM-

specialized DNN and the partial DNN. Because the partial DNN is trained

on a wider variety of data, its prediction accuracy is, on average, lower than

the specialized DNN. However, both DNNs performance remain close and

the partial DNN is sufficiently accurate to perform the previously described

experiments.

Using this method, the user’s prior information is encoded into the

Regressor architecture and training data. The Regressor then captures

the expected latent parameters co-existing across the entire training set.

The Encoder and Decoder remain unchanged and are still able to capture

unknown latent parameters by reproducing noiseless signals. As a result,

prior to the analysis, the user need not be fully aware of the data generating

physical model but can instead train the DNN on a wider class of models

(in this instance, the DNN was trained assuming the presence of any type

of modulation). This feature is of particular importance in exploration of

data obtained from new physics searches (such as dark-matter searches),

in which the multitude of allowed physical models enables various forms of

emerging signatures within the data. Thus, in addition to removing the need

to iteratively explore models, this method enables weaker and partial prior

information to be employed, while leaving space for signal exploration and

unexpected discoveries.
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4.5 Discussion

We have presented an efficient DNN that combines the denoising of times

series and regression of their latent parameters. The DNN was trained and

evaluated on synthetic monochromatic, frequency- and amplitude-modulated

decaying sine waves with Gaussian noise; some of the most prevalent forms

of signals acquired in physics.

For high-noise signals, the DNN reaches same levels of precision as an

LS-fit with true initial guesses, in spite of the DNN needing no guesses at

all. In addition, the architecture requires no hyperparameter fine tuning to

perform consistently. Moreover, because large volumes of synthetic training

data can be generated, the DNN is quickly adaptable to a broad range of

physical signals. This makes our architecture a good alternative to LS-fits

for analysing large volumes of data, when fitting individual signals requires

too much computation or user time.

The DNN architecture is flexible and can accommodate for various levels

of user prior information. First, the DNN was used to assist LS-fits and

predict initial guesses, unknown by the user. In this situation, DNN-

assisted LS-fits consistently converge to the optimal solutions. Moreover, the

regression task can be adapted to accommodate for partial prior information

about the data-generating process. The known latent parameters are encoded

in the Regressor and training data, while the Decoder helps the Encoder to

still capture unknown signal features, thus leaving space for data exploration

and discoveries.

Because training is done on arbitrarily large volumes of synthetic data,

raw performance could be improved by increasing the number of trainable
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parameters such as adding more layers or neurons, without too much concern

for overfitting.

Therefore, we believe this architecture is readily applicable to existing

physics experiments, in particular bosonic dark-matter searches [107–109],

in which large quantities of data are to be analyzed with partial prior

information.
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5
Summary and outlook

5.1 Summary and personal notes

My work in Prof. Dmitry Budker’s group started by catching up with my

colleagues and slowly understanding how axions and ALPs were expected to

generate CASPEr’s NMR signal. While doing so, we realized that for subHz

frequencies, CASPEr’s original resonant CW-NMR measurement scheme was

not optimal, and that a non-resonant sideband search would yield higher

sensitivities. This part of our work is described in the second chapter of this

thesis.

Later on, my work focused on applying the sideband scheme not on the

main CASPEr experimental setup but on the ZULF NMR setup available

at the time. This implementation led us to the understanding of the effect

of bosonic dark-matter fields on small organic molecules such as formic acid

(effectively a two-spins system), rather than on pure xenon spins as was

originally proposed.

While performing the experiments, we subsequently found a data-

processing scheme enabling restoration of the sidebands phase coherence,

even in conditions in which the ability to do so was not obvious. This

experiment provided new experimental bounds on the existence of ALPs
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and dark-photons. This part of our work was described in the third chapter

of this thesis.

Following up on these experiments, my work focused on analyzing data

from complementary experiments, published elsewhere [110–112]. This

finally led me to concurrently join Prof. Stefan Kramer’s group who enabled

me to explore applications of machine learning, in particular deep learning

to physics-signal processing. A first approach in applying neural networks to

disentangle noisy time series is presented in the final chapter of this thesis.

5.2 Outlook

5.2.1 General improvements

Future experiments will be carried out with increased integration time. We

recall that the bosonic dark-matter fields are coherent for a time τDM on the

order of 106 periods of oscillation. The phase-cycling procedure depicted in

Fig. 3.2 is valid for data sets with total time less than τDM. For integration

times longer than the coherence time of the bosonic field Ttot > τDM. In

such a situation, one could for example coherently average the data in sets of

duration τDM using the phase-cycling procedure. This yields Ttot/τDM sets of

coherently averaged data. To profit from longer integration time and further

increase the SNR, these sets can be incoherently averaged by averaging their

PSDs, yielding an overall SNR scaling as (TtotτDM)
1/4 (see Supplementary

Materials in Ref. [36]).
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5.2.2 Complementary Searches

In order to increase the bandwidth of the experiment (see A.1.7), we

propose complementary measurement procedures. As the amplitude of the

sidebands scales as 1/ωDM, the sensitivity of the experiment decreases for

higher frequencies. To probe frequencies ranging from ∼ 20 to 500 Hz

(corresponding to bosonic masses of ∼ 8×10−14 to 2×10−12 eV), it was shown

in Ref. [71] that a resonant detection method will be more sensitive than

the current frequency-modulation-induced sidebands measurement scheme.

Resonant AC fields can induce phase shifts in the J-coupling peaks [113];

cosmic fields can induce the same effect. By gradually varying the magnitude

of a leading magnetic field, one can tune the splitting of the J-coupling

multiplets to match the dark-matter field frequency. Such a resonance would

manifest itself by shifting the phase of the J-coupling peak.

For frequencies below ∼ 45 mHz (corresponding to bosonic masses

≲ 2 × 10−16 eV), the sidebands are located inside of the J-coupling

peaks and the experimental sensitivity drops rapidly. This represents

the lower limit of the bandwidth accessible by the frequency-modulation-

induced sidebands measurement scheme presented in this work. To probe

down to arbitrarily low frequencies, another measurement scheme has

been implemented based on a single-component liquid-state nuclear-spin

comagnetometer [114]. Further details and results of this scheme are

presented elsewhere [82].
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5.2.3 Parahydrogen hyperpolarization

In order to search a greater region of the bosonic dark-matter parameter

spaces, several sensitivity-enhancing improvements are planned for the

next phase of the experiment. In this work, nuclear spin polarization

was achieved by allowing the sample to equilibrate in a 1.8-T permanent

magnet, which yields a 1H polarization ≲ 10−5. For the next phase

of the experiment, a substantial sensitivity improvement can be obtained

by using so-called “hyperpolarization” methods to achieve much higher,

non-equilibrium nuclear-spin polarization. Current efforts are focused on

the implementation of non-hydrogenative parahydrogen-induced polarization

(NH-PHIP)1 [115]. Signal enhancement via NH-PHIP has been demonstrated

at zero field [116] and after optimization is expected to increase nuclear

spin polarization levels to at least 1%. Because parahydrogen can be flowed

continuously into the sample, a steady-state polarization enhancement can

be achieved [117], improving the experimental duty cycle.

Additional sensitivity enhancement will be provided by magnetometer

improvements and use of a larger sample. In the experiments reported

here, only about 50 µL of the sample contributed to the signal, which was

detected from below with an atomic magnetometer with a noise floor around

10 fT/
√
Hz. With a larger (≳ 1 mL) sample hyperpolarized via NH-PHIP

detected via a gradiometric magnetometer array with optimized geometry

and sensitivity below 1 fT/
√
Hz, we anticipate an improvement by ≳ 105

relative to the results presented here.

1Non-hydrogenative parahydrogen-induced polarization methods are often referred
to with the acronym SABRE, for Signal Amplification by Reversible Exchange of
parahydrogen.
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Following the publication of the work presented in Chap.3 we started the

design and construction of our own parahydrogen generator. The generator

is currently fully functional and allows for high volumes of parahydrogen

to be produced, stored and flowed through the NMR samples. While the

generator is used for other scientific work [118], no dark-matter search as

been conducted with it yet. It is my hope that a future group of students

will do so.

5.2.4 Search for axions with spin-based amplifiers

After the publication of our results, a collaboration was started with Prof.

Xinhua Peng and Dr. Min Jiang. Indeed, their MASER setup located at

the University of Science and Technology of China (Hefei) presented great

potential towards more sensitive axion searches. We remind the reader that

the search presented in this thesis was performed using thermally polarized

spins (formic acid sample) located a few mm away from the magnetometer’s

vapor cell. In Prof. Xinhua Peng setup, 129Xe spins are trapped within the

magnetometer vapor cells. As a result, the xenon vapor is hyperpolarized via

spin-exchange collisions with the optically pumped 87Rb atoms. Moreover,

the lower spin density of the xenon vapor (versus liquid-state spins) is largely

compensated by Fermi-contact enhancement. Following up on this idea, a

resonant search was successfully carried out to completion [112], constraining

the presence of axions in a much larger portion of the parameter space and

with a ∼ 4 orders of magnitude sensitivity improvement.

The same setup can be operated as a Floquet-state MASER [119, 120] by

introducing a feedback magnetic field oscillating at the xenon spins Larmor
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frequency. The coherence time of this self-oscillating nuclear spin resonator

was shown to reach ∼ 104 s. As a result, combining xenon hyperpolarization

with this feedback system could conceivably offer further improvement at

frequencies around 0.1 mHz. Work to perform this non-resonant sideband

search is ongoing.

5.2.5 Further applications of machine learning

Further work to explore application of machine learning and DNNs in physics

data processing is ongoing. The DNN architecture presented in this thesis

could be augmented by adding an upstream classifier DNN-module, which

could identify the type of signals being analyzed. Classified signals could

then be processed via specialized versions of our architecture, trained on the

corresponding type of signals.

Time-domain oscillations generally appear as peaks or peak multiplets in

frequency-domain spectra. Frequency, amplitude, and phase information is

then localized to narrow regions of the spectral data. For that reason, we

believe further improvements could be attained by making use of frequency-

domain information. We suggest to use Fourier transforms or power spectra

as DNN inputs, in addition to the raw time series.

The proposed DNN architecture can be used to detect and approximate

hidden features in time series data. The Regressor outputs a prediction of

prior known parameters, but real signals could still contain unknown latent

variables. These hidden latent variables can be detected and approximated

by our DNN, as it also incorporates an Autoencoder-like structure. As such,

the bottleneck layer contains a feature representation of the time series, used
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by the Decoder to recreate the original signal. This bottleneck layer will be

further investigated, in order to detect and specify hidden latent parameters.

We remain aware that in physics data analysis, a sole estimation of

latent parameters often provides insufficient information. Standard analysis

usually requires a quantitative estimation of the prediction uncertainty, often

represented as error bars or confidence intervals. In LS-fits, this uncertainty is

naturally obtained by maximizing the fit likelihood under the assumption of

Gaussian distributed latent variables [121]. Despite extensive efforts, DNNs

still lack the capacity for reliable uncertainty evaluation [104–106]. While

the DNN-assisted LS-fit method presented above partially solves this issue,

more work needs to be done in this area to further generalize DNN usage in

physics signal processing.
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Appendix

A.1 Chapter 3

A.1.1 Dark matter effective fields

In the following, we explicitly state the Hamiltonians describing the

interaction of ALPs and dark photons with a single nuclear spin-1/2 having

gyromagnetic ratio γN. By analogy to the Zeeman interaction, we then derive

the expressions of the corresponding pseudo-magnetic fields acting on a two-

spin system such as formic acid. In the following, all expressions are given

in SI units.

ALP Wind linear coupling to nuclear spins

For a single nuclear spin, axions and ALPs generate a pseudo-magnetic field

through what is known as the “axion wind interaction”, described by the

nonrelativistic Hamiltonian [19, 35, 37],

Hwind =
√
ℏ3c3gaNN∇a(r, t) · IN (A.1)

= −ℏgaNNDwind · IN , (A.2)
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where:

Dwind(t) = −
√
ℏc3∇a(r, t) , (A.3)

is the ALP effective field, acting on the nuclear spin, and IN is the spin

operator in units of ℏ.

The ALP field, a(r, t), can be written as:

a(r, t) = a0 cos(ωDMt− k · r + ϕ) , (A.4)

where ωDM ≈ mDMc
2/ℏ is the ALP Compton frequency, k ≈ mDMv/ℏ is its

wave-vector with v, the average velocity of the particles in the laboratory

frame, mDM is the rest mass of the ALP particle and ϕ is an unknown phase.

As the value of ϕ has no incidence on the measurement we set its value to

zero for the rest of this discussion. Differentiating Eq. (A.4) yields:

∇a(r, t) =
mDMa0

ℏ
sin(ωDMt− k · r)v , (A.5)

Recalling that a0 is related to the dark-matter density through

ρDM =
1

2

c2

ℏ2
mDM

2a20 , (A.6)

yields:

Dwind(t) = −
√
2ℏcρDM × sin(ωDMt− k · r)v.

We now assume that the ALP field is acting on the nucleons of the coupled

13C and 1H nuclear spins while a weak DC magnetic field is applied to the
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sample. The axion wind Hamiltonian now becomes

Hwind = −ℏDwind ·
(
gappI −

1

3
gannS

)
, (A.7)

where, gapp is the ALP-proton coupling strength, gann is the ALP-neutron

coupling strength. To first order, the mF = 0 states are unaffected, and the

mF = ±1 states are shifted by

∆E(mF = ±1)(t) = ±ℏ
2

2

3
gaNNDz(t) , (A.8)

where we have assumed that gapp = gann = gaNN, and Dz(t) is the

projection of Dwind(t) along the axis of the applied magnetic field. Thus

the perturbation induced by Dz(t) takes a similar form to that of a magnetic

field Bz(t) (see Eq. (3.7)):

Bz(t) =
2

3

gaNN

γH + γC

Dz(t) (A.9)

= −2

3

gaNN

γH + γC

√
2ℏcρDM sin(ωDMt− k · r)v · êz .

ALP Wind quadratic coupling to nuclear spins

It is theoretically possible that interaction of nuclear spins with ∇a can

be suppressed [78, 83], in which case the dominant axion wind interaction,

referred to as the quadratic wind coupling, is related to ∇a2:

Hquad = ℏ2c2(gquad)2∇a2(r, t) · IN (A.10)

= −ℏ(gquad)2Dquad · IN , (A.11)
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where gquad, having dimensions of inverse energy, parameterizes the ALP

quadratic coupling strength to nuclear spins and where we have introduced

the effective field due to the quadratic axion coupling:

Dquad = −ℏc2∇a2(r, t) . (A.12)

Assuming the form of a(r, t) given by Eq. (A.4):

∇a2(r, t) = a20k sin(2ωDMt− 2k · r) , (A.13)

we obtain for the effective field:

Dquad(t) = −2ℏc2
ρDM

ωDM

sin(2ωDMt− 2k · r)v . (A.14)

As for the linear coupling, the effect of Dquad acting on a single spin is

equivalent to that of a magnetic field, whose amplitude in this case is given

by:

Bquad,z(t) =
gquad

2

γN

Dquad,z(t) (A.15)

= −2ℏc2 gquad
2

γN

ρDM

ωDM

× sin(2ωDMt− 2k · r)v · êz .

Specifically for formic acid, assuming equal coupling of the axion field to the

proton and the neutron, we have

Bquad,z(t) = −
4

3
ℏc2

gquad
2

γH + γC

ρDM

ωDM

× sin(2ωDMt− 2k · r)v · êz . (A.16)
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We note that for the quadratic coupling case, the modulation frequency

is twice the Compton frequency of the ALPs. Therefore, an experiment

sensitive to a certain range of axion masses for the linear coupling is, at the

same time, probing quadratic couplings of axions of half the mass.

Dark-photon couplings to nuclear spins

There are two possible interactions of dark photons with nuclear spins that

can be detected with CASPEr-ZULF: the coupling of the dark electric field

to the dark electric dipole moment (dEDM) and the coupling of the dark

magnetic field to the dark magnetic dipole moment (dMDM).

Assuming the dark photons make up the totality of the dark matter

energy density, ρDM, the energy stored in the dark electric field, EdEDM(t), is

set equal to ρDM, in a form analogous to that of the usual electromagnetism:

ρDM =
ϵ0
2
|EdEDM|2 , (A.17)

where ϵ0 is permittivity of free space. The dark magnetic field is given by:

|BdMDM| ≈
v

c
|EdEDM| . (A.18)

The Hamiltonians describing the dark EDM and dark MDM are respectively

given by:

HdEDM = gdEDM

√
ℏ3c3
π

EdEDM(t) · IN , (A.19)
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and:

HdMDM = gdMDM

√
ℏ3c3
π

BdMDM(t) · IN , (A.20)

where gdEDM and gdMDM (of dimension of inverse energy) parametrize the

strength of the dark photon couplings to the EDM and MDM, respectively.

Similarly to axions and ALPs, the above Hamiltonians are expressed by

analogy to the Zeeman interaction by introducing the following magnetic

fields:

BdEDM(t) =
gdEDM

γN

√
2ℏc3ρDM cos(ωDMt)ϵ̂ · êz , (A.21)

and

BdMDM(t) =
gdMDM

γN

v

c

√
2ℏc3ρDM cos(ωDMt)ϵ̂ · êz , (A.22)

where ϵ̂ is the bosonic field’s polarization vector. Assuming equal coupling

to the proton and neutron, yields for a two-spin (1H-13C) system:

BdEDM(t) =
2

3

gdEDM

γC + γH

√
2ℏc3ρDM cos(ωDMt)ϵ̂ · êz , (A.23)

and

BdMDM(t) =
2

3

gdMDM

γC + γH

v

c

√
2ℏc3ρDM cos(ωDMt)ϵ̂ · êz , (A.24)

Note that for ordinary photons, the coupling to the EDM is strongly

suppressed since the electromagnetic interaction respects the CP symmetry.

However, the dark photon need not respect the CP symmetry, in which case

there would be no associated suppression [86].
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A.1.2 Signal processing: post-processing phase-

cycling

The averaging method is illustrated in Fig. 3.2 in the publication main

text. Subsequent transient acquisitions are separated by a time interval τ .

The nth transient acquisition yields a transient spectrum denoted FFTn.

The operation is repeated N times, yielding a set of N transient spectra:{
FFTn where n = 1, 2... N

}
. Once every FFTn has been acquired, a phase

shift, ϕ, incremented by the current acquisition number n, is applied to each

FFTn:

FFTϕ
n := FFTn × exp(−inϕ) . (A.25)

The N transient phase-shifted FFTϕ
n are then averaged:

⟨FFTϕ⟩ := 1

N
×

N∑
n=1

FFTϕ
n . (A.26)

If the phase shift matches the accumulated phase of the dark-matter field

between each transient acquisition,

ϕ :=

∫ τ

0

ωDMdt (modulo 2π), (A.27)

where ωDM is the oscillation frequency of the dark-matter field, the sidebands

will be averaged coherently. Generally, the “carrier” J-coupling peaks will be

averaged to zero, with the exception of cases where ωDM = 2π/τ . Because

the sidebands are coherently averaged, their SNR scales as SNR(Ttot) ∝ T
1/2
tot

while the J-coupling peaks are averaged away along with the uncorrelated
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noise.

The data shown in Fig. 3.2 of the main text were acquired in an

experiment during which the AC-field frequency was set to 0.73 Hz. The

time interval between each measurement was set to τ = 61 s (including 30 s

of acquisition and 31 s for polarization, shuttling and pulsing, combined).

The optimal phase shift is computed using Eq. (A.27), yielding ϕ ≈ 2.93

rad. Note that as the frequency of the bosonic fields is unkown, this optimal

phase shift cannot be computed during the actual dark-matter-search run.

However, this optimal phase shift must necessarily lie within the [−π, π]

interval. In practice we numerically try 2001 phase increments within [−π, π]

:
{
ϕk = kπ/1000 where k = −1000,−999, ...1000

}
.. This method produces

a set of 2001 phase-shifted averaged FFTs: ⟨FFTϕk⟩.

Figure 3.2 illustrates the result of the phase-shifting processing method

for an experiment where the transient acquisition is repeated 850 times. The

⟨FFTϕk⟩ are ordered by phase increment ϕk, and stacked in a two-dimensional

plot. This plot is then examined and searched for sidebands. The phase

increment of ϕ = 0 rad corresponds to averaging without applying any

phase shift. In this case, the averaging is optimized for the J-resonances and

sidebands cannot be seen (i.e., they are destructively averaged). However,

a specific phase increment of ϕ = 2.93 rad (highlighted in orange), yields

maximum sideband amplitude while the J-coupling peaks are averaged

out. This phase value (and its negative counterpart) corresponds to the

optimal value for which the benchmark-field coherence is restored and yields

maximum SNR, matching the computed value using Eq. (A.27).
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A.1.3 Sideband amplitude determination

A benchmark sideband measurement was performed using a test field of

amplitude B0 = 0.24 nT, oscillating at the frequency ω0/2π = 0.73 Hz. The

transient acquisition data, consisting of 30 s time-series sampled at 5 kHz,

are Fast-Fourier Transformed. The transient FFTs are multiplied by a

calibration function expressing the magnetometer sensitivity within the

0 to 500 Hz bandwidth. The calibration function is obtained by measuring

the magnetometer response to an applied frequency-varying magnetic field

of fixed amplitude.

Following the calibration, the baseline of the FFTs is fit and subtracted.

The transient FFTs are then averaged using the phase-shifting scheme

described in the previous section.

The next operation consists in extracting the sideband amplitudes from

the averaged spectrum. To this end, six complex Lorentzians are fit to the

averaged spectrum (two for the J-peaks, each possessing two sidebands):

L(ν) :=
α

Γ− i(ν − νc)
exp (iϕ) , (A.28)

where α, Γ, νc and ϕ are the amplitudes, linewidths, center frequencies and

phases of the Lorentzians, respectively, and are real, freely fitted parameters.

The benchmark sideband amplitude, centered at νc is given by As0 = |L(νc)|.
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A.1.4 Calibration: signal scaling versus bosonic-field

amplitude and frequency

In order to experimentally verify that the sideband amplitude scales with

the modulation index, As(B, ω) ∝ B/ω, two calibration experiments were

performed.

A first calibration was performed by varying the amplitude of the AC-

field with constant frequency. The results of this experiment are shown in

Fig. A.1 and show the linear dependence of the sideband amplitude on the

amplitude of the AC-field. Each data point corresponds to the measured

sideband amplitude (as defined is the previous section) for AC-calibration

fields of amplitude varying from 0.095 to 0.31 nT at fixed frequency 0.73 Hz.

The second calibration was performed by varying the frequency of the

AC-calibration field from 0.45 to 1.7 Hz with constant amplitude of 0.16 nT.

The results of this calibration (Fig. A.1) show the 1/ω dependence of the

sideband amplitude with the frequency of the AC-field.

Both calibration experiments were carried out with 2100 seconds

total integration time for each data point (corresponding to 70 transient

acquisitions of 30 seconds).

A.1.5 Detection threshold determination

The detection threshold, Ath, is defined as the required signal amplitude such

that we can claim detection with a 90% confidence in the case: As(B, ω) >

Ath, where As(B, ω) is the measured signal as described in Eq. (3.24). To

define the detection threshold, we use the standard p-value test described in

Ref. [122]. To this aim we consider a complex spectrum containing noise
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Figure A.1: Calibration data. (a) & (b) : Sideband amplitude scaling with
external field amplitude and frequency. (a) & (c) : Calibration-field set to
0.16 nT and frequency, ω/2π, varied from 0.45 to 1.7 Hz. The sideband
amplitude follows a 1/ω dependence on the calibration-field frequency ω. (b)
& (d) : Calibration-field frequency set to 0.73 Hz and amplitude varied from
0.095 to 0.31 nT. The sideband amplitude follows a linear dependence on the
calibration-field amplitude. (a) & (b) : Each point is the amplitude of the
sideband lorentzian fit. Data are averaged over 70 scans of 30 s using the
optimal phase increment corresponding to the probed frequency. Error bars show
the 1-σ confidence interval obtained from the fitting procedure.
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only:

FFT(ω) = χ1(ω) + iχ2(ω) , (A.29)

where χ1(ω) and χ2(ω) are the real and imaginary part of the FFT,

respectively, and ω/2π is the probed frequency. The signal detection

threshold can be defined by studying the power spectral density (PSD) of

this noisy spectrum:

PSD(ω) ∝ χ1(ω)
2 + χ2(ω)

2 . (A.30)

To this aim we use the result that if the Fourier coefficients χ1(ω)

and χ2(ω) are normally distributed with zero mean, variance σ2 and

are frequency independent (consistent with white noise), then the PSD

cumulative distribution function (CDF) follows an exponential distribution

[122]. Hence, at any frequency ω/2π, the probability that the measured

power P is smaller than z0 is:

Pr{P (ω) < z0} = 1− e−z0/2σ2

, ∀ω . (A.31)

In practice, the value of σ2 is obtained by fitting the evaluating the PSD CDF

of a noise-only spectrum (in the present case via the MATLAB Kaplan-Meier

estimator). We then fit the PSD CDF to the exponential distribution given

in Eq. (A.31). An illustration of this procedure is shown in Fig. A.2.

We now define a signal power z0 such that, if at the probed frequency

ω/2π, the power of a spectrum containing both the signal and noise, P(ω),

is greater that z0, a detection can be claimed with a false-alarm probability
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p0 (a false alarm corresponds to the case where the measured power P(ω) is

due to noise fluctuations). This yields:

p0 : = Pr{P(ω) > z0} (A.32)

= 1− Pr{P(ω) < z0} (A.33)

= e−z0/2σ2

. (A.34)

Solving the above equation for z0 yields:

z0 = −2σ2 ln(p0) . (A.35)

Setting now the false-alarm probability to p0 = 0.10 (corresponding to a

confidence level of 90%) we find the signal power threshold is terms of the

noise fluctuation:

z0 ≈ 4.6σ2 . (A.36)

As our analysis is done on the spectrum amplitude, defined as the square-root

of the PSD, we define the detection threshold as:

Ath =
√
z0 (A.37)

≈ 2.14σ . (A.38)

Any signal with amplitude As(B,ω) > Ath is inspected for detection. The
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case where no such signal is observed, yields the upper-bound exclusion line:

As(B,ω) = Ath . (A.39)

Using Eq. (3.24) this limit can be expressed in term of magnetic field versus

frequency:

Bth(ω) =
Ath

As0

B0

ω0

ω . (A.40)

Such analysis is done in a frequency-dependent manner by computing

the phase increment corresponding to the studied frequency. The averaged

spectrum obtained using this phase increment is then studied as explained

above to define the signal-detection threshold at ω. The results of this

analysis are given in Fig. A.2.c, where Eq. (A.40) is evaluated for every

frequency within the bandwidth.

The exclusion plots shown in Figs. 3.3, 3.4 and 3.5 in the publication

main text, are obtained by converting ω to bosonic masses in eV and Bth(ω)

to coupling constants in GeV−1 using Eqs. (3.19), (3.20), (3.21) and (3.22)

in the publication main text.

The exclusion lines show the 2.14σ confidence level of the experiment

(90% CL). Such frequency-dependent analysis yields higher detection

threshold for frequencies for which the phase increment is close to 0 rad.

Indeed, the spectra obtained from the 0 radian phase increment contains

maximum amplitude J-couplings, which then raise the detection threshold

to a higher value due to spectral leakage. This effect manifests itself in the

exclusion lines by sporadic and sharp increases of the detection threshold.
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Figure A.2: (a) : Example of empirical white-noise power-spectral-density
cumulative distribution function (CDF) and fit to the exponential distribution
ϕσ2{χ} = 1− e−χ/2σ2

. The fit yields a white-noise variance σ2 ≈ 9.16 × 10−4

[fT2]. (b) : White-noise power histogram. (a), (b) : Non-corrected for
misalignment (see A.1.8), noisy-data analysed around 1.5 Hz in a 5 Hz frequency
bin using the optimal phase increment corresponding to the 1.5 Hz frequency. (c)
: Amplitude of AC magnetic field yielding a signal above the detection threshold
for frequencies within the bandwidth 0.045 to 19 Hz. Based on the calibration
data (see section A.1.4) and power threshold evaluation. Total integration time of
25500 s (corresponding to 850 transient acquisitions each 30 seconds long, with
a duty cycle of 50% imposed by the polarization step between each acquisition).

We note that in the literature, similar analyses are done by applying a

statistical penalty for searching multiple frequencies within a bandwidth of

interest to account for the look-elsewhere effect (corresponding to raising Eq.

(A.31) to the power of the number of frequencies probed). Our analysis does

not require such a penalty. Indeed, the characteristic signature of the bosonic

fields, a set of four sidebands around the J-coupling frequencies, allows one

to differentiate false alarms from true detection events.
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A.1.6 Coherent averaging: signal scaling with integra-

tion time

Figure A.3 shows the sidebands amplitude As, detection threshold Ath, and

signal-to-noise ratio, SNR:= As/Ath, scaling with the total integration time

using the phase-shifting procedure described in A.1.2.

During this experiment, the AC-field is maintained at a frequency

ωAC/2π = 0.73 Hz and amplitude BAC = 0.24 nT. The experiment is

repeated with increased number of transient acquisitions each of length 30

s. All values are extracted using the averaged spectrum obtained from the

optimal phase increment corresponding to ωAC.

Figure A.3 shows that the sideband amplitude remains constant while

the signal detection-thresholds decreases as Ath(Ttot) ∝ Ttot
−1/2 as expected

while performing a coherent averaging. The SNR scales accordingly as SNR

∝ Ttot
1/2.

A.1.7 Bandwidth: accessible bosonic mass range

The bandwidth of the experiment is limited from below by the linewidth of

the J-coupling peaks. For bosonic fields with frequencies lower than 45 mHz

(corresponding to bosons with mass ≲ 1.86 × 10−16 eV), the corresponding

sidebands are located inside the J-resonance and cannot be resolved. As a

result, we limit the lower end of the search bandwith to 45 mHz, below which

calibration could not be achieved (see Fig. A.4). In principle, the bandwidth

extends to frequencies up to ∼ 500 Hz, corresponding to the maximum

detectable frequency of the magnetometer (see Materials and Methods Sec.

3.2). However, the data are acquired during ∼ 14 hours (corresponding
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Figure A.3: Sidebands amplitude As, detection threshold Ath at 90% confidence
level (90% CL), and signal-to-noise ratio As/Ath (SNR) versus integration time
Ttot, using the phase shifting processing method. As remains constant, Ath scales
as Ttot

−1/2 during the averaging, consistent with coherent averaging. Thus the
SNR scales as Ttot

1/2. During this experiment, the AC-field is maintained at
a frequency ωAC/2π = 0.73 Hz and amplitude BAC = 0.24 nT. Noisy data
analysed around 0.73 Hz in a 5 Hz frequency bin. Data is averaged over 850
scans of 30 seconds using the optimal phase increment corresponding to the
0.73 Hz frequency. Error bars show the 1-σ confidence interval obtained from
the fitting procedure.
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Figure A.4: Sideband amplitude scaling with calibration-field frequency.
Calibration-field set to 0.8 nT and frequency, ω/2π, varied from 0.045 to 0.088
Hz. The sideband amplitude follows a 1/ω dependence with the calibration-
field frequency ω/2π. Each point is the amplitude of the sideband lorentzian
fit. Data are averaged over 70 scans of 30 s using the optimal phase increment
corresponding to the probed frequency. Error bars show the 1-σ confidence
interval obtained from the fitting procedure.

to 850 transient acquisitions each 30 seconds long, with a duty cycle of

50% imposed by the polarization step between each acquisition). The 850

transient signals are coherently averaged for as long as the bosonic field

remains phase-coherent. The coherence time of the bosonic fields is on the

order of 106 periods of oscillation, which for fields of ∼ 19 Hz corresponds to

∼ 14 hours. This limits the search bandwidth to fields of frequencies below

19 Hz (corresponding to bosons with mass lower than 7.8× 10−14 eV).
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A.1.8 Dark-matter-field directionality

Daily and annual modulations

We note that the ALP field described in Eq. (A.4), seen in the Earth’s

reference frame, has annual and daily modulations due to the motion of

the Earth in the Solar System. These modulations are expected to 1-

modulate the orientation of the experiment’s sensitive axis with respect to

the dark-matter wind, thus modulating the overall experimental sensitivity

and 2- change the lineshape of the experimental power spectra from

pure Lorentzians to skewed Lorentzians. These effects are addressed and

accounted for during the data processing by weighting transient spectra

during the averaging sequence using the following method.

For axions and ALPs, the experiment is sensitive to the projection of the

bosonic pseudo-magnetic field gradient, ∇a(r, t), onto the direction of the

leading magnetic field. We denote this axis in the laboratory frame by the

unit vector êz. As a result of the yearly revolution of the Earth around the

Sun and the daily revolution of the Earth, the alignment of êz with ∇a(r, t)

varies over time. This effect can increase or totally suppress the expected

signal depending on when transient acquisitions happen and must be included

in the analysis to avoid overestimating the experiment’s sensitivity.

To this aim, we use the analysis proposed in Ref. [123], originally applied

to nuclear recoil in WIMP-nucleus scattering but which directly translates

to this sensitive-axis misalignment. Detailed and comprehensive calculations

are given in Ref. [123], here we show how these results are applied to our

current signal analysis. We recall that the ALP scalar-field gradient can be
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written as (ignoring its initial phase):

∇a(r, t) = a0 cos(ωDMt− k · r − π/2) · k , (A.41)

where ωDB =
√
(mDMc2)2 + (mDMvc)2/ℏ is the bosonic particle de Broglie

frequency, k = mDMv/ℏ is its wave-vector with v, the average velocity of the

particles in the laboratory frame and mDM is the mass of the particle. When

shifting from the galactic-center to the laboratory frame, v can be written

as the following vectorial sum of velocities:

v(t) = vDM − v
SG
− v

ES
(t)− v

LE
(t) , (A.42)

where vDM is the velocity of the local bosonic field with respect to the

center of the galaxy and is taken to be zero on average due to the isotropic

structure of the dark-matter halo, v
SG

is the velocity of the Sun with respect

to the center of the galaxy, i.e. v
SG

is the velocity of the Sun towards the

Cygnus constellation and is approximatly constant, v
ES
(t) is the velocity of

the center of the Earth with respect to the sun and v
LE
(t) is the velocity

of the laboratory with respect to center of the Earth. The expected signal

amplitude S, is proportional to the projection of the field’s gradient onto the
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sensitive axis:

S(t) ∝∇a(r, t) · êz (A.43)

∝ mDMa0
ℏ

cos(ωDBt− k · r)v(t) · êz (A.44)

∝ mDMa0
ℏ

cos(ωDBt− k · r)... (A.45)

×
(
v

SG
· êz + v

ES
(t) · êz + v

LE
(t) · êz

)
.

During the calibration and benchmark acquisitions, an oscillating-

magnetic field is continuously applied along the êz direction. After

averaging the benchmark sideband amplitude As0 is obtained from the fitting

procedure. To avoid overestimating the expected signal amplitude and

account for the previously discussed astrophysical motions, we weigh the

transient spectra by the factor |v(tn)·êz|
|v| ≈ |v(tn)·êz|

10−3c
before including them

in the average spectra, where tn is the starting time of the nth transient

acquisition. This replicates the daily and yearly amplitude modulations of

the signal induced by the motion of the Earth in the Solar System such as to

avoid overestimating the expected signal amplitude from the bosonic fields.

During the search acquisitions, no oscillating-magnetic field is applied

and this misalignment effect is naturally included in the data. Nonetheless

we weight the transient spectra by the factor v(tn)·êz
|v| before averaging them.

Indeed, a transient spectrum acquired when v(tn) · êz = 0, cannot possibly

include any signal and thus contains only noise. The effect of weighting such

a transient spectrum by this factor is to prevent the addition of noise in

the averaged spectrum. On the contrary, spectra acquired when v(tn) · êz is

maximal possess higher weight to account for the fact that the signal should
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be maximal during the acquisition.

For dark photons, the experiment is sensitive to the projection of the

field’s polarization, denoted by the unit-vector ϵ̂, onto the leading field

direction êz. We note that, at any point in space and time, ϵ̂ can take any

direction and is uniformly distributed along the unit-3D-sphere. Moreover, ϵ̂

is assumed to be constant during one coherence time, which is always longer

that the total measurement time. Therefore the experiment probes a unique

value of ϵ̂, modulated by the annual and daily motions of the sensitive axis

of detection.

The analysis is performed assigning three equally probable orientations

ϵ̂i; and by time propagating ϵ̂i · êz(t0). This quantity is then used as a weight

during the averaging of transient signal similar to the ALP case, thus yielding

three corresponding limits.

To obtain limits comparable with other experiments, the three ϵ̂i, are

given in the non-rotating Celestial Frame. The axis of this frame are

practically fixed on any relevant time scale, since it takes the Solar System

∼ 250 million years to complete one orbit about the galactic centre, so

different experiments can be compared easily in this case (even if they are

performed many years apart in time).

The three assigned directions are the usual orthonormal axis of the non-

rotating Celestial Frame. The first assigned orientation, ϵ̂1, lies in the

Celestial Equator Plane and points towards the Sun at the Vernal Equinox.

The second orientation, ϵ̂2, points towards the North Celestial Pole (i.e.

along the axis of rotation of the Earth). In this case the sensitivity of

the experiment is null, as êz is pointing East in the laboratory frame and
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remains perpendicular to ϵ̂2 at any point in time. The third orientation is

the following vector product ϵ̂3 = ϵ̂1 × ϵ̂2, and lies in the Celestial Equator

Plane. A complete mathematical description and schematic of this coordinate

system can be found in Ref. [123].

Search data time-stamp

The search data are composed of 850 transient scans, each 30 s long, spaced

by a polarization time of 31 s. The first transient scan was acquired on the

28th of July 2018 at 10:00:06 (CET). Data acquired in Mainz, Germany.

Expected sideband lineshape

The oscillating bosonic fields described in the Earth frame also exhibit

annual and daily modulations due to the presence of the modulated wave-

vector k, and de Broglie frequency ωDB in the arguments of the cosine

function. The effect of such modulations is to modify the lineshape of the

power spectra from the expected Lorentzian signal. The first modulation

due to the motion of the Earth with respect to the galactic center enters

in the de Broglie frequency ωDB =
√

(mDMc2)2 + (mDMvc)2/ℏ, where v

is modulated as in Eq. (A.42). The amplitude of the velocities in Eq.

(A.42) are |vDM| ≈ 0, |v
SG
| ≈ 220 km.s−1 ≈ 10−3c, |v

ES
(t)| ≈ 30 km/s and

|v
LE
(t)| ≈ 0.5 km/s [123]. Those components are therefore negligible

compared to the rest mass-energy of the particle, so the usual approximation

ωDB ≈ mDMc
2/ℏ is used. The second modulation appears in the spatial

argument of the cosine function, k · r. This component is dominated by

the velocity of the Sun towards the Cygnus constellation, |v
SG
|, which is
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taken as constant both in amplitude and direction. Therefore, we neglect

other components of the wave-vector. These two approximations yield a

non-modulated cosine-form gradient, thus yielding a pure Lorentzian power-

spectral line.
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A.2 Chapter 4

A.2.1 DNN architecture implementation

The pseudo-code architectures of the Encoder, Regressor, Decoder, and

unified DNN, as implemented in Python (Keras - Tensorflow), are given

below in addition to the custom weighted-loss function.

bott l eneck d im = 64 # Output dimension o f the Encoder

l a t ent d im = 7 # Output dimension o f the Regressor (# l a t en t parameters )

s i g n a l l e n g t h = 512

## ENCODER subDNN

input shape = ( s i gna l l e n g th , 1 )

i = Input ( shape=input shape )

x = Conv1D(64 , k e r n e l s i z e =64, a c t i v a t i o n=’ re lu ’ , padding=’same ’ ) ( i )

x = MaxPooling1D (4 , padding=’same ’ ) ( x )

x = Conv1D(64 , k e r n e l s i z e =32, a c t i v a t i o n=’ re lu ’ , padding=’same ’ ) ( x )

x = MaxPooling1D (4 , padding=’same ’ ) ( x )

x = Flat ten ( ) ( x )

x = Dense (128 , a c t i v a t i o n=’ re lu ’ , k e r n e l i n i t i a l i z e r = ’ ’ he uniform ’ ’ ) ( x )

bo t t l eneck = Dense (64 , a c t i v a t i o n=’ re lu ’ , k e r n e l i n i t i a l i z e r = ’ ’ he uniform ’ ’ ) ( x )

encoder = Model ( i , bo t t l eneck )

## REGRESSOR subDNN

input shape = ( bott leneck dim , 1 )

r i = Input ( shape=input shape )

x = Reshape ( ( bott leneck dim , 1 ) ) ( r i )

x = Conv1D(64 , k e r n e l s i z e =64, a c t i v a t i o n=’ re lu ’ , padding=’same ’ ) ( x )

x = MaxPooling1D (4 , padding=’same ’ ) ( x )
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x = Conv1D(64 , k e r n e l s i z e =32, a c t i v a t i o n=’ re lu ’ , padding=’same ’ ) ( x )

x = MaxPooling1D (4 , padding=’same ’ ) ( x )

x = Conv1D(64 , k e r n e l s i z e =32, a c t i v a t i o n=’ re lu ’ , padding=’same ’ ) ( x )

x = Flat ten ( ) ( x )

x = Dense (256 , a c t i v a t i o n=’ re lu ’ , k e r n e l i n i t i a l i z e r = ’ ’ he uniform ’ ’ ) ( x )

x = Dense (128 , a c t i v a t i o n=’ re lu ’ , k e r n e l i n i t i a l i z e r = ’ ’ he uniform ’ ’ ) ( x )

x = Dense (64 , a c t i v a t i o n=’ re lu ’ , k e r n e l i n i t i a l i z e r = ’ ’ he uniform ’ ’ ) ( x )

l a t e n t = Dense ( l a t ent d im ) ( x )

r e g r e s s o r = Model ( r i , l a t e n t )

## DECODER subDNN

input shape = ( bott l eneck d im+latent d im , 1 )

d i = Input ( shape=input shape )

x = Dense (128 , a c t i v a t i o n=’ re lu ’ , k e r n e l i n i t i a l i z e r = ’ ’ he uniform ’ ’ ) ( d i )

x = Reshape ( ( 1 2 8 , 1 ) ) ( x )

x = Conv1D(64 , k e r n e l s i z e =32, a c t i v a t i o n=’ re lu ’ , padding=’same ’ ) ( x )

x = MaxPooling1D (2 , padding=’same ’ ) ( x )

x = UpSampling1D (4 ) ( x )

x = Conv1D(64 , k e r n e l s i z e =32, a c t i v a t i o n=’ re lu ’ , padding=’same ’ ) ( x )

x = MaxPooling1D (2 , padding=’same ’ ) ( x )

x = UpSampling1D (4 ) ( x )

x = Conv1D(64 , k e r n e l s i z e =32, a c t i v a t i o n=’ re lu ’ , padding=’same ’ ) ( x )

x = MaxPooling1D (2 , padding=’same ’ ) ( x )

x = UpSampling1D (2 ) ( x )

decoded = Conv1D(1 , k e r n e l s i z e =32, a c t i v a t i o n=’ sigmoid ’ , padding=’same ’ ) ( x )

decoder = Model ( d i , decoded )

## Uni f i ed DNN model

concat = Concatenate ( ) ( [ encoder ( i ) , r e g r e s s o r ( encoder ( i ) ) ] )
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ae outputs = decoder ( concat )

f l a t t e n a e ou t pu t s = Reshape ( ( s i g na l l e n g th , ) ) ( ae outputs )

concat2 = Concatenate ( ) ( [ f l a t t e n a e ou tpu t s , r e g r e s s o r ( encoder ( i ) ) ] )

DNN outputs = concat2

DNN = Model ( i , DNN outputs )

## CustomLoss func t i on

de f customLoss ( yTrue , yPred ) :

l a t e n t S i z e = 7

S i gna l S i z e = 512

beta = 0.001

mseSignal = K. square ( yTrue [ : , 0 : S i gna l S i z e ] = yPred [ : , 0 : S i gna l S i z e ] )

mseSignal = K. abs ( mseSignal )

mseSignal = K. sum(mseSignal , ax i s==1)

mseSignal = mseSignal / S i gna l S i z e

mseLatent = K. square ( yTrue [ : , S i gna l S i z e : ] = yPred [ : , S i gna l S i z e : ] )

mseLatent = K. abs (mseLatent )

mseLatent = K. sum(mseLatent , ax i s==1)

mseLatent = mseLatent/ l a t e n t S i z e

weighted mse = (1=beta )*mseSignal + beta *mseLatent

re turn weighted mse

DNN. compile ( opt imize r = ’ADAM’ , l o s s = customLoss )

DNN. summary ( )
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A.3 Supplementary figures

Figure A.5: Example of DNN prediction using a noisy AM-sine wave input.
The DNN was trained only on AM-sine waves samples. Top: Noisy input
and Decoder denoised prediction. Bottom: True latent parameter targetsand
Regressor prediction. The phase ϕ is mapped to two separate latent variables
to accommodate for phase periodicity during loss computation.
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Figure A.6: Example of minimum (left) and maximum noise (right) sine wave
(top) and AM-sine wave (bottom) samples. DNN and LS-fits denoised and latent
parameters predictions are shown below the respective inputs.
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Figure A.7: Comparison of DNN post-training performance to LS-fits with true
latent-parameters initial guesses for 1000 random AM-sine wave from the test set
(unseen during training). The denoising (MSEdec, top) and latent-parameters
relative regression losses (MSEreg, bottom) are sorted by increasing noise levels.
The denoising (MSEdec, top) and latent-parameters regression losses (MSEreg,
bottom) are sorted by increasing noise levels. The DNN was trained only on
AM-sine waves samples. See Fig. 4.4 for MSEreg and MSEdec computation
methods. The LS-fit with true initial guesses vastly outperforms the DNN for
low-noise signals but both systems reach similar performance for high-noise.
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Figure A.8: Validation loss during training for various values of β. Top:
signal denoising losses. Bottom: latent-parameters regression losses. Training is
performed on 12 training sets of 100′000 randomly generated FM-sine waves for
10 epochs. For clarity, validation-loss is displayed after each individual training
set backpropagation.
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[119] Martin Suefke, Sören Lehmkuhl, Alexander Liebisch, Bernhard
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