
Theoretical aspects and data analysis for
topological dark matter searches

By

Joseph A. Smiga
born in Rockville, MD, USA

Mainz // 1 October 2021

Dissertation submitted
for the award of the title “Doctor of Natural Sciences”

to the Faculty of Physics, Mathematics, and Computer Science
of Johannes Gutenberg University Mainz

Supervisor: Prof. Dr. Dmitry Budker



Abstract

Dark matter searches are a significant field of focus in modern physics. Despite the strong
evidence for the existence of dark matter on galactic scales, its underlying composition
remains a mystery. Theoretical efforts point to possible candidates, while experiments
and observations place constraints on the theories. In this work, data from the Global
Network of Optical Magnetometers for Exotic physics searches (GNOME) are analyzed
for evidence of dark matter; namely axion/axion-like-particle domain walls which can
couple to fermion spins. The underlying theory of this dark matter is connected to
the observations from GNOME in order to constrain the physical parameter space. A
thorough description of analysis methods is given along with quantitative meta-analysis
of the experiment. Significant evidence of domain walls was not found which allows for
a region of parameter space to be excluded.
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Conventions

• The metric signature is (+,−,−,−).

• Units chosen such that ~ = c = 1 unless otherwise stated.

• The continuous Fourier transform is {FCf} (ω) :=
∫∞
−∞ dt f(t)e−iωt with inverse{

F−1
C f̃

}
(t) := 1

2π

∫∞
−∞ dω f̃(ω)e+iωt.

• The discrete Fourier transform is {FDf} [k] :=
∑N−1

n=0 f [n]e
− 2πi

N
nk with inverse{

F−1
D f̃

}
[n] := 1

N

∑N
k=0 f̃ [k]e

+ 2πi
N
nk.

• Einstein summation notation is used; e.g., xµyµ =
∑3

µ=0 x
µyµ.

• Vectors are written in boldface; e.g., x.
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Table 1: A list of mathematical conventions.
Symbol Description
γµ Dirac gamma matrices, µ ∈ {0, 1, 2, 3}.
γ5 Fifth gamma matrix, γ5 = iγ0γ1γ2γ3.
φ∗ Complex conjugation of φ.
AT Transpose of matrix A.
ψ† Adjoint of ψ, ψ† = (ψ∗)T .
ψ̄ The Dirac adjoint, ψ̄ = ψ†γ0.
←→
∂µ ψ

←→
∂µφ = ψ∂µφ− (∂µψ)φ.

〈x〉 The average/expectation value of x.
FC, FD Functionals for the continuous and discrete Fourier transform, respec-

tively.
dxe Ceiling function; round x up to the nearest integer.
bxc Floor function; round x down to the nearest integer.
B(k;n, p) Binomial mass function: probability of k out of n successes if each

success has probability p.
P (k;µ) Poissonian mass function: probability of k events when expecting µ.
∂y
∂x Jacobian matrix for (vector) function y with respect to variables x.
O(n) On the order of “n”; either a number, e.g. O(1), or scaling, e.g., O(n2).

Table 2: List of constants with known/approximate values when applicable.
Symbol Value Description
c 299792458 m/s Speed of light in a vacuum.
~ 6.582× 10−16 eV s Reduced Planck’s constant.
µB 5.788× 10−5 eV/T Bohr magneton.
fπ 93MeV Pion decay constant.
h Hubble parameter in units of 100 km/s/Mpc.
R⊕ 6378 km Earth’s radius.
ρDM 4× 105 GeV/m3 Local dark matter energy density.
ρDW . ρDM Domain-wall energy density throughout the galaxy.
ve ≈ 550 km/s Galactic escape velocity.
vc ≈ 10−3c Galactic orbital velocity.
v̄ vc Average domain-wall velocity.
ma Axion/ALP mass.
NDW Domain-wall number/color anomaly.
f̄a Axion/ALP decay constant.
fa f̄a/NDW
fint Coupling strength (in units of energy).
ξ fa/fint Ratio of energy constants. Other sources use C = 2ξ.
σDW ∝ mafa

2 Domain-wall surface tension.
∆x ∝ m−1

a Domain-wall width.
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Table 3: A list of abbreviations.
Name Description
ALP Axion-Like Particles
DFSZ Dine-Fischler-Srednicki-Zhitnitsky
DM Dark Matter
DW Domain Wall
KSVZ Kim-Shifman-Vainshtein-Zakharov
LSP Lightest Supersymmetric Particle
MOND Modified Newtonian Dynamics
NMOR Nonlinear Magneto-Optical Rotation
PQWW Peccei-Quinn-Weinberg-Wilczek
QCD Quantum Chromodynamics
SERF Spin-Exchange Relaxation-Free
SHM Standard Halo Model
SUSY Supersymmetry
WIMP Weakly Interacting Massive Particle
Experiments
ABRACADABRA A Broadband/Resonant Approach to Cosmic Axion

Detection with an Amplifying B-field Ring Apparatus
ADMX Axion Dark Matter Experiment
ALPS Any Light Particle Search
CASPEr Cosmic Axion Spin Precession Experiment
CAST CERN Axion Solar Telescope
GNOME Global Network of Optical Magnetometers for Exotic

physics searches
HAYSTAC Haloscope at Yale Sensitive to Axion CDM
IAXO International Axion Observatory
MADMAX Magnetized Disc and Mirror Axion Experiment
Statistics
CDF Cumulative Distribution Function
EPDF Event Probability Distribution Function
PDF Probability Distribution Function
PMF Probability Mass Function
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Chapter 1

Introduction

Dark matter remains a mystery to science. Despite strong astrophysical evidence of its
gravitational influence on galactic scales — providing significantly higher mass to the
galaxy than ordinary matter — its underlying nature remains unknown. Over the years,
numerous theoretical models have been proposed in an attempt to understand its nature.
Likewise, numerous experimental efforts have been made to test these models and place
constraints on parameter space. Regardless, definitive evidence of dark matter beyond
its gravitational influence continues to evade the best efforts of the physics community.
The work described here focuses on how data from a particular dark matter experiment
is used to better understand the nature of dark matter.

One new effort from the last decade to detect dark matter is the Global Network
of Optical Magnetometers for Exotic physics searches (GNOME). First proposed in
2013 [1] with the first Science Run completed in 2017 [2], GNOME consists of shielded
magnetometers around the world. This experiment aims to find evidence of exotic spin-
coupling between atoms and dark matter that would appear as a pseudo-magnetic field in
the network sensors. Particular interest for this experiment is in detecting domain-wall
crossings from axion-like dark matter. Domain walls are two-dimensional macroscopic
objects across which the underlying field changes significantly.

Substantial work has already led to results from GNOME. Much of the work de-
scribed here expands on the analysis developed in Ref. [3] and the results described in
Ref. [4]. Other analysis efforts of GNOME can be found in Refs. [5–7].

This dissertation is organized as follows: background information is summarized in
Chapter 2; including an overview of dark matter theory, experimental efforts, and basic
magnetometer operation. In Chapter 3, the expected shape of an expected signal is
described. In Chapter 4, the analysis methods used to understand GNOME data are
outlined. In Chapter 5, the sensitivity of the GNOME network is characterized along
with a description of how to understand the types of signals that can are are expected to
be observed by the experiment. Some experimental data is presented in Chapter 6, along
with meta-analysis on how well the experiment performed. Results of the experiment
are summarized in Chapter 7, and concluding remarks on the findings, state, and future
of GNOME are given in Chapter 8. Additionally, Appendix A includes various useful
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mathematical derivations, Appendix B describes how probability distributions are and
can be altered through various operations, and Appendix C describes various applications
of Poissonian statistics.



Chapter 2

Background

Some foundation is needed to understand the basis and current state of dark matter
searches. First, a general overview of dark matter is given in Sec. 2.1. Then, a more
detailed overview of specific dark matter candidates is given with axions in Sec. 2.2,
weakly interacting massive particles (WIMPs) in Sec. 2.3, and others in Sec. 2.4. Several
experimental efforts to understand dark matter are described in Sec. 2.5. Macroscopic
phenomena that may arise in dark matter fields — namely domain walls and boson stars
— are described in Sec. 2.6 and a model of how these objects are distributed throughout
the galaxy is described in Sec. 2.7. Finally, an overview of optical magnetometers, the
device used by GNOME to search for dark matter, is given in Sec. 2.8.

2.1 Dark matter

One of the major outstanding problems in physics is in understanding the nature of
dark matter. Various astronomical observations support the existence of matter that
contributes to the mass of galaxies but is non-colliding and “dark” to direct obser-
vation [8]. The existance of this “dark matter” is supported by various astronomical
measurements: galactic rotation curves of spiral galaxies [9–11], dynamics of galaxies in
clusters [12], X-ray measurements of elliptical galaxies [13,14] and galactic clusters [15],
and gravitational lensing measurements [16–18] (notably from observations of the Bullet
Cluster). These examples of dark matter observations all rely on combining observations
of visible matter to measurements of mass and gravity. Though these measurements may
allow one to understand how much dark matter there is in different parts of the universe,
the constituent(s) of dark matter remain unknown.

Over the years, many candidates have been proposed as potential candidates for dark
matter. Some of these candidates, such as the axion and WIMPs, arise naturally from
theories that aimed to solve other problems in physics. However, it is entirely possible
for dark matter to exist on its own without solving unrelated problems. Likewise, it
is possible for multiple types of dark matter to combine to explain the missing matter.
More details on proposed candidates are given in Sec. 2.2 (axions), Sec. 2.3 (WIMPs),
and Sec. 2.4 (other candidates).

3



2.2. AXIONS AND ALPS 4

A major alternative to dark matter is Modified Newtonian Dynamics (MOND) [19,
20]. The premise of this theory is that Newton’s second law becomes non-linear in the
limit of small acceleration, hence causing the rotation curves of galaxies to “flatten” at
large distances where gravitational acceleration is very small. In particular,

F =

{
ma a� a0

ma a
a0

a� a0
,

where a0 is a constant with units of acceleration that defines the scale at which Newtonian
dynamics fails. Though perhaps MOND explanations of astronomical observations are
not as popular as dark matter explanations, some efforts on this front remain [21–24].
However, it seems that MOND would struggle to explain all features that could be
explained by dark matter. For example, observations of gravitational lensing (e.g., the
Bullet Cluster [16,17]) seem to be at odds with MOND predictions. Some explanations
for this discrepancy have been proposed [21, 22], but these are often incomplete or still
require the inclusion of collisionless matter. Perhaps new MOND models will be refined
capture these phenomena or could be consider along with dark matter models. For the
current scope however, focus will be placed on dark matter models.

2.2 Axions and ALPs

As discussed in this section, the axion originally arose as a solution to the strong-CP
problem in QCD. There are various mechanisms under which the axion can arise and
it will generally be an extension of the Standard Model. However, one can consider a
generalization of the axion as an axion-like particle (ALP) which has many of the same
properties of the traditional axion but may not be a solution to the strong-CP problem.
Axions that serve to solve the strong-CP problem are often called “QCD axions.” A
useful review of axions is given in Ref. [25].

2.2.1 Strong-CP problem

The strong-CP problem concerns the fact that a CP -violating term is expected from
QCD. In particular, the following theta-term should appear in the Standard Model
Lagrangian [25],

LθQCD :=
θQCD
32π2

TrGµνG̃µν , (2.1)

where θQCD is a constant, Gµν is the gluon field, and G̃µν := εµναβGαβ/2 is its dual.
The trace is taken over the adjoint representation of SU(3). The term in Eq. (2.1) is a
topological, or “total derivative,” term that will appear as a non-vanishing surface con-
tribution to the action. However, experiments suggest that this term provides negligible
contributions to the Standard Model, thus placing a very small upper-bound on θQCD.

Experimentally, a common way to measure the theta-term is through the neutron
electric dipole moment (EDM). In particular, the neutron EDM is expected to be pro-
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portional to θQCD [26–29]

|dn| ≈ O
(
10−16 e cm

)
× θQCD . (2.2)

Measurements of the neutron EDM place the constraint, |dn| . O
(
10−26 e cm

)
[30–32].

This leaves a constraint on the theta-parameter, θQCD . 10−10. Similar bounds can be
made based on EDM measurements for 199Hg [33].

Using “naturalness” arguments, one generally expects coupling constants to be O(1).
Such a constraint points to potential new physics that suppress the effects of the theta-
term LθQCD ; though it is still possible for θQCD � 1 without additional phenomena, its
unusually small value provides heuristic evidence of unknown physics. The “strong-CP
problem” in QCD refers to the observation that the CP -violating theta-term, Eq. (2.1),
appears negligible in experiments.

One should note, however, that the estimations for CP -violation rely on the case in
which there are no massless quarks. One can show that the existence of a massless quark
would, alone, preserve CP -invariance [34, 35]. However, barring the discovery of a new
massless quark, this does not seem to be the case.

2.2.2 Peccei-Quinn mechanism

In 1977, R. D. Peccei and Helen R. Quinn proposed a solution to the strong-CP problem
by introducing a dynamic pseudoscalar field that cancels the effects from θQCD [36, 37].
These ideas were expanded upon by F. Wilczek [38] and S. Weinberg [39]. To suppress
the CP -violating effects, a complex (pseudo)scalar field φ is introduced. This field is
equipped with the symmetry U(1)PQ associated with the complex phase φ → e−2iαφ.
This symmetry is associated with chiral rotations of fermions fields1, ψ → e+iαγ

5
ψ [37].

Further, the Lagrangian admits a potential term V
(
|φ|2

)
which is minimized for |φ| =

f̄a√
2
6= 0. The magnitude S := |φ| is associated with a Higgs-mode while the phase is an

axion-mode,
φ :=

S√
2
eia/f̄a , (2.3)

where f̄a is the vacuum expectation value 〈S〉.
This new field will then couple to standard model fields such as quarks and leptons.

This coupling will then induce an (effective) term

Lagg :=
a

32π2
(

f̄a
NDW

)TrGµνG̃µν , (2.4)

which has the effect of making θQCD dynamic, θQCD → θQCD
′(a). In particular, θQCD

′ =
θQCD +NDWa/f̄a where NDW, an integer, is the color anomaly or domain wall number2.

1A chiral rotation means that for spinor fields, the left-handed and right-handed components gain
opposite phases. This is achieved through the addition of the γ5 matrix in the exponent. The constant
factor in the exponent defines the PQ charge of the field and could be zero for some fermions depending
on the axion model.

2Elsewhere, such as Ref. [1], the Higgs-mode expectation value is defined as S0 := 〈S〉 and f̄a =
S0/NDW.
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The value of NDW depends on the particular model. Also, one could also re-define
a→ a− f̄aθQCD, or absorb this shift into S, so that θQCD

′ = NDWa/f̄a.
One can show that energy is minimized when θQCD

′ = 0 [40–42]. In fact, the vacuum
energy from the theta term is [40,41],

E(θQCD) ∝ 1− cos
(
θQCD

′) = 1− cos
(
NDWa/f̄a

)
. (2.5)

Hence a theory with an axion will also have a vacuum that dynamically enforces strong
CP -symmetry. Additionally, because a takes values in the range [0, 2πf̄a) (i.e., to cover
the complex phase in Eq. (2.3)), there are NDW values for a that minimizes Eq. (2.5).

The QCD axion has an additional constraint relating the mass ma and energy scale
f̄a. This can be calculated using current algebra. Considering the contributions from
the up and down quark3, the axion mass ma and scale f̄a are related by [34,43]

ma =
fπmπ

2f̄a/NDW

[
4mumd

(mu +md)2

]1/2
[1 +O(mu,d/ms)]

≈ 5.4× 10−10 eV ·
(
1.1× 1016 GeV

f̄a/NDW

)
, (2.6)

where mπ is the pion mass, fπ ≈ 93 MeV is the pion decay constant, mu and md are the
up- and down-quark masses respectively (mu,d ≈ mu ≈ md), and ms is the strange-quark
mass (ms � mu,d).

2.2.3 PQWW, KSVZ, and DFSZ axions

There are a few different models that introduce the axion to solve the strong CP problem.
In each case, a complex scalar field is introduced with the U(1)PQ symmetry, the phase
of which defines the axion field. Three such models are briefly described here: PQWW,
KSVZ, and DFSZ.

PQWW axion

Perhaps the simplest axion model is the Peccei-Quinn-Weinberg-Wilczek (PQWW) ax-
ion [25,36,37]. In this model, the complex scalar field φ is introduced as a second Higgs
doublet. In particular, one field couples to d-type quarks while the other couples to
u-type quarks. There remains some choice as to which field couples to which quarks, as
well as which field couples to leptons (or if there is an additional third Higgs-like field).
The U(1)PQ chiral symmetry acts on this field via a complex phase. Likewise, parame-
terizing φ as in Eq. (2.3), the U(1)PQ symmetry acts on the axion field a as a constant
shift. There is a potential acting on the new scalar field φ whose U(1)PQ symmetry is
spontaneously broken, such as the conventional “sombrero” potential,

V (φ) ∝
(
|φ|2 − f̄2a

2

)2

. (2.7)

3These quarks have the largest contribution to the axion mass as they are the lightest. The strange
quark could also be included, though the contribution is very small.
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a

g

g

Q

Qkµ

Q

k2 � m2
Q a

g

g

Figure 2.1: (Left) Heavy quark triangle diagram connecting the axion a to the gluon
field g that results in (Right) an effective term ∝ aTrGµνG̃µν in the KSVZ model. A
triangle diagram like the one on the left but with coupling to light is also of interest for
canceling anomalies.

The vacuum expectation value is then 〈φ〉 = f̄a√
2

After electroweak symmetry breaking, the angular part of φ is left as a (pseudo)
Goldstone boson, the axion a. The axion then couples to fermions via PQ charges with
Lagrangian terms of the form (up to possibly a constant prefactor) [44],

L ⊃
(
a/f̄a

)
mψψ̄iγ

5ψ . (2.8)

This coupling results in a triangle diagram (similar to that in Fig. 2.1) which generates
the term given in Eq. (2.4) that acts to cancel the chiral anomaly.

KSVZ axions

The Kim-Shifman-Vainshtein-Zakharov (KSVZ) axion model includes the complex scalar
φ (and symmetry-breaking potential, Eq. (2.7)) described in the PQWW model as well
as a new heavy quark doublet QL and QR, both SU(3) singlets and whose subscripts
denote their respective PQ charge [25, 34, 45]. In this model, the complex scalar φ (and
the axion a) only couples to the heavy quark Q. That is, the Lagrangian contains the
Yukawa term giving mass ∼ f̄a to Q,

LφQQ := fQ̄LφQ̄R + f∗Q̄Rφ
∗Q̄R ,

for constant f , but no such Yukawa terms for standard model particles. In particular,
there are no tree-level couplings of the axion to standard model fields such as quarks,
leptons, photons, and gluons. The heavy quark, however, does interact with both the
axion and gluons. The axion-gluon interaction then arises as an effective term from the
triangle diagram shown in Fig. 2.1. In the KSVZ model, one takes NDW = 1 as there is
only a single, unity-PQ-charge fermion Q [25].

The lack of direct interactions between the KSVZ axion and Standard Model parti-
cles leads to suppressed interactions [34, 45]. This means that experiments that would
disprove the PQWW axion do not necessarily exclude the KSVZ axion. There could
also be an effective electromagnetic coupling a→ γγ depending on the electromagnetic
charge of Q (which is often assumed to be zero). Cavity experiments, for example, can
probe this coupling for various heavy-quark charges and representations based on the
a→ γγ coupling [46].
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The KSVZ axion is not so readily excluded by experiment as the PQWW axion.
Essentially, this is because the KSVZ model introduces a new field that loosens the
connection between the axion and the Standard Model. The axion can then have both
a lower mass and a weaker coupling to ordinary matter. A weaker coupling can explain
why it would be difficult to observe with current experimental methods.

DFSZ axions

The Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) model was first proposed by A. R. Zhit-
nitsky [47] and later, independently by M. Dine, W. Fischler, and M. Srednicki [48]. The
DFSZ model builds on the ideas of the KSVZ model, except that an additional Higgs
field is introduced instead of a heavy quark. A complex scalar φ (and symmetry-breaking
potential, Eq. (2.7)) whose phase describes the axion, as well as two Higgs doublets Hu

and Hd. The Hu Higgs couples with the u-type quarks and Hd Higgs couples with the
d-type quarks via the typical Yukawa terms. There is some choice as to which Higgs
field couples to leptons; for example, DFS’s paper [48] has Hd couple to the leptons.

The axion couples to the standard model via the Higgs sector with the scalar poten-
tial [25]

VDFSZ = λHφ
2HuHd , (2.9)

for some coupling constant λH . The Hu, Hd, and φ have charges Xu, Xd, and Xφ,
respectively, under U(1)PQ, so physics is invariant under the transform (for any constant
α)

Hu → eiαXuHu, Hd → eiαXdHd, φ→ eiαXφφ .

In order for Eq. (2.9) to be invariant under U(1)PQ, one must demand Xu+Xd+2Xφ = 0.
For example, Xu = Xd = +1 and Xφ = −1. The DSFZ model works under the case
in which the vacuum expectation value for the complex scalar field is much larger than
that of the Higgs fields,

〈φ〉 = f̄a/
√
2�

√
〈Hu〉+ 〈Hd〉 . (2.10)

Because quarks and leptons couple to the Higgs fields via Yukawa coupling, the
quark and lepton doublets must also be charged Xu,d under U(1)PQ. The current for
this charge is then (here, Hd couples to the leptons)

jPQ
µ =Xφφ

∗←→∂µφ+XuH
†
u

←→
∂µHu +XdH

†
d

←→
∂µHd

+Xu

(
ūγµγ

5u+ c̄γµγ
5c+ t̄γµγ

5t
)

+Xd

(
d̄γµγ

5d+ s̄γµγ
5s+ b̄γµγ

5b
)

+Xd

(
ēγµγ

5e+ µ̄γµγ
5µ+ τ̄ γµγ

5τ
)
. (2.11)

After electroweak symmetry breaking, this current leads to effective terms∼ mq

(
a/f̄a

)
q̄iγ5q

which, as before, lead to an anomolous term ∼ aGG̃ via quark triangle diagrams like the
one on the left of Fig. 2.1. Similarly, an anomalous term ∼ aF F̃ appears due to triangle
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diagrams with quarks and leptons coupling to photons. For the DFSZ model, NDW = 6
for the six quarks.

In contrast the the KSVZ model in which axions couple to the Standard Model
via an effective term from a loop diagram (and not to the Standard Model quarks), the
DFSZ couples to the Standard Model quarks at tree-level. There would also be couplings
between the axion and leptons similar to the axion-quark coupling because the leptons
also gain a PQ charge [49]. Additionally, the DFSZ model is motivated by results that
arise naturally in SU(5) grand unification techniques [25,46].

2.2.4 Axions in string theory

Axions — or, at the very least, ALPs — notably appear naturally in various realizations
of string theory. In fact, many such particles may exist as a “string axiverse” [50].
Though a detailed exploration of these theories will not be given here, axions arise
in string theory from the Kaluza-Klein zero-modes in the antisymmetric tensor when
compactifying dimensions in the theory [43, 50, 51]. One finds that this mechanism can
generate hundreds or even thousands of axion-like fields [50].

2.2.5 Current constraints

Numerous experiments and observations have been used to search for and constrain
ALP dark matter. Astrophysical constraints, in particular, provide strong bounds on
the characteristics of ALPs. Further discussion of dark matter experiments is provided
in Sec. 2.5.

One of the most stringent bounds on ALP dark matter comes from supernova mea-
surements. In particular, neutrino measurements from SN1987A, a supernova observed
in 1987, provides strong bounds on ALPs and similar dark matter candidates [52–54].
These constraints follow from considering how the existence of ALPs would provide a
cooling channel for hot objects as particles are produced and escape the object. For
supernova with core temperatures around 30 MeV, particles with mass below about a
few hundred MeV can have a significant cooling effect [54], though the extent of the
cooling depends on how strongly the particle couples to the star matter. Neutrino mea-
surements from SN1987A are consistent with cooling times from the Standard Model
predictions [55] and can be used to place a conservative bound on the axion decay con-
stant, [52, 54]

f̄a & 108 GeV . (2.12)

If the decay constant were below this bound, the ALP luminosity would substantially
affect the neutrino signal. It should be noted that the above constraint is somewhat
model-dependent based on how axions couple to matter in neutron stars, and different
models can also be considered [54,56,57]. Similar, though weaker, astrophysical bounds
can be made based on the lifetime and luminosity of red giants, white dwarfs, etc.; see,
e.g., the review in Ref. [53].

Various models have been proposed that could raise doubt on the constraint in
Eq. (2.12). First, one may raise some questions about the exact mechanism under-
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lying supernovae. For a rotating star undergoing a supernova, an accretion disk can
form which would not have the same axion cooling as the star’s denser core [58]. Neutri-
nos originating from the accretion disk could then arrive later than neutrinos originating
from the core, alone. This would yield a deceptively long cooling time for the super-
nova as seen in neutrino measurements, thus allowing for a stronger axion coupling (or
smaller decay constant) than Eq. (2.12). In addition, one may introduce new physics
that suppresses the influence of ALPs in stars and supernovae. One such model would
be to introduce an additional field that couples to ALPs and the Standard Model such
that it causes the ALP to have a large effective mass in a dense environment [59]. The
increased effective mass would then suppress ALP production, reduce the cooling effect,
and weaken the astrophysical constraints.

Another bound on ALP dark matter arises from cosmology. Namely, the energy
density of axions is limited by the critical density needed to close the universe. This
establishes a bound on the axion decay constant [60–62]

f̄a . 1012 GeV , (2.13a)

f̄a .
1012 GeV√
ma/10−5 eV

, (2.13b)

where Eq. (2.13a) uses Eq. (2.6) to eliminate the mass-dependence. This bound relies
on considering the dynamics of the expectation value 〈a〉 with the ansatz

〈a〉 = A(t) cos (mat)

and determining how this evolves in an expanding universe. In particular, the bound (2.13)
assumes an initial condition that A(t0)/f̄a = O(1) when the temperature of the universe
was T0 ≈ 800MeV. Additionally, axion influence on nucleons would affect the production
of 4He during Big Bang nucleosynthesis, which also provides cosmological bounds [63].

More modern cosmological measurements provide additional constraints. Measure-
ments of the cosmic microwave background from the Planck telescope were used along
with other measurements to determine an upper-bound on the axion mass and the den-
sity of cold dark matter [64,65]

ma < 0.529–2.09 eV , (2.14a)
Ωcdmh

2 ≈ 0.12 , (2.14b)

where the mass bound depends on the data and model used in the calculation.

2.3 WIMPs
A common dark matter alternative to axions or ALPs is a class of particles known as
Weakly Interacting Massive Particles (WIMPs). As the name suggests, these particles
are massive — in contrast to ALPs which are typically ultralight — with weak interac-
tions — as one would often expect from dark matter. Like axions, WIMPs arise naturally
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from theories intended to solve an unrelated problem in physics; namely supersymmetry
(SUSY) which can, in part, solve the hierarchy problem. Reviews of SUSY and WIMPs
can be found in Ref.s [66–68] and are used to describe background information here.

The hierarchy problem concerns the vast discrepancy between the typical energy
scales of different aspects of physics; namely between the electroweak (∼ 102 GeV) and
Planck scales (∼ 1019 GeV). Meanwhile, SUSY is a theory that extends the Standard
Model by introducing a symmetry between bosons and fermions. As a result, each
Standard Model fermion will have a bosonic superpartner and vice-versa. The Higgs
particle mass, which reflects the electroweak energy scale, will be influenced by correc-
tions from various Standard Model particles. However, with the introduction of SUSY,
the corrections from particles and their super-partners will cancel, resulting in a mass-
less Higgs boson. If SUSY is broken — which the lack of observed superpartners with
the same mass seems to suggest — the Higgs boson will have some small mass tied to
the symmetry-breaking scale. This consequentially implies that SUSY effects should be
observable at energy scales of a few TeV [66,69,70]. It should be noted that many of the
early foundational papers for SUSY [71–76] did not aim to solve the hierarchy problem
and that SUSY is also often discussed in the context of string theory as its inclusion
fixes certain inconsistencies with the theory.

WIMPs can naturally arise as the lightest supersymmetric particle (LSP) in a theory
with SUSY. Notably, a symmetry known as “R-parity” will preserve LSPs in a similar
manner as how the lightest Standard Model particles cannot decay into lighter particles
and are, thus, preserved. The R-parity assigns opposite charges to particles and their
superpartners and conservation of this charge will prevent LSP from decaying into lighter,
Standard Model particles. In typical SUSY models, LSPs are superpartners to some
superposition of neutral, gauge bosons.

More motivation for WIMPs arises when considering cosmological factors. One can
consider the presence of some heavy particle χ which annihilates or forms from light
Standard Model particles, ` via χ̄χ ↔ ¯̀̀ . After the Universe cools below temperatures
T ∼ mχ, the annihilation interaction χ̄χ → ¯̀̀ will dominate, causing the density of χ
to drop exponentially when in thermal equilibrium. The decay rate is Γχ = 〈σAv〉nχ;
where nχ is the number density for χ and 〈σAv〉 is the thermally averaged product of the
total cross-section and relative velocity. However, the Universe also expands at a rate
defined by the Hubble parameter; conventionally denoted in units of 100 km s−1 Mpc−1

as h. When Γχ . h, the annihilation “freezes-out” and a relic density of χ remains above
what one would expect from thermal equilibrium. For the present critical density of the
universe, ρc ≈ 10−1h2 GeV/cm3, the density parameter for χ is given by [66]

Ωχh
2 = mχnχ/ρc ≈ 3× 10−27 cm3 s−1/ 〈σAv〉 . (2.15)

Moreover, if the cross-section is dominated by weak interactions,

〈σAv〉 ∼ O
(
10−25 cm3 s−1

)
. (2.16)

This implies that a WIMP associated with the electroweak force will inherently have
a relic abundance that is very close to what you would expect for dark matter. The
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coincidental agreement between cosmological relic density, the electroweak energy scale,
and the observed dark matter density — phenomena that are not inherently linked —
is known as the “WIMP miracle” and has motivated many searches for WIMPs.

Despite extensive experimental efforts, definitive evidence for WIMPs or SUSY has
not been found. In particular, the first two experimental runs at the LHC have not found
evidence for SUSY at beamline energies up to 14 TeV; placing significant constraints on
theories of SUSY [70]. However, there remains some hope that some form of SUSY may
be detected in a future 100 TeV accelerator [69, 77]. In addition to accelerator searches,
experiments search for the scattering products from WIMPs interacting with nucleons;
such as the XENON experiment discussed in Sec. 2.5.

2.4 Other dark matter candidates

There are numerous other dark matter candidates aside from axions and WIMPs. Here,
a few examples are listed with a brief overview. Many of the dark matter candidates
will also have modified versions not covered here. It is also entirely possible for dark
matter to consist of a combination of different candidates. Even without discovery,
continued experimental searches for dark matter and other exotic physics can constrain
and rule-out some of dark matter candidates as well as inspire new models.

Neutrinos

Considering only Standard Model particles, one may initially suspect that dark matter
could consist of neutrinos. These particles are electrically neutral and only weakly inter-
act with other Standard Model particles, making them an excellent candidate. Though
the Standard Model assumes that neutrinos are massless, observation of neutrino flavor
oscillation [78–82] suggests that at least some neutrinos have mass.

However, further considerations find inconsistencies with neutrino dark matter and
galactic-scale structure formation [83] and sky map data combined with cosmology mod-
els supports a relatively small contribution from dark matter neutrinos [84].

Dark photons

By introducing an additional U(1) symmetry to the Standard Model, one obtains a new
photon-like particle called the “dark photon” [85,86]. The dark photon is similar to the
photon except that it is associated with its own charge and can posses a mass. This is a
bosonic candidate for dark matter as it can lack strong interactions. Additionally, dark
photons would be produced during inflation [87–89].

Experimental studies and constraints on dark photons have been considered using the
decay of strange hadrons [90], g − 2 measurements [90,91], and cavity experiments [92].
New dark photon experiments continue, such as an exploratory search for dark photons
with a global network of magnetometers using the Earth as a transducer [93,94].
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Relaxions

A potential ALP candidate for dark matter is the relaxion [95]. This particle was pro-
posed as a solution to the hierarchy problem in which the ALP field couples to the Higgs
field, allowing the Higgs mass dynamic scan over a range of values in the early universe.
The relaxion field “rolls” down a bumpy potential. The bumps in the effective relax-
ion potential will grow when the Higgs mass is small. Combined with inflation which
produces Hubble friction, allowing the relaxion field to stop rolling, this will solve the
hierarchy problem as the Higgs mass will naturally settle at a small value as dynamics
ease even if it began at some large cutoff scale. It should be noted that, unlike typical
realizations of the QCD axion, the relaxion field is non-compact, though it retains an
(approximate) discrete shift symmetry as the bumps in the potential are evenly spaced.

In addition to solving the hierarchy problem and possibly the strong-CP problem, it
is also possible for relaxions to constitute dark matter [96,97]. Likewise, one could have
gravitationally bound relaxion stars forming a halo around the Earth or Sun [98].

Quark nuggets

In 1984, Edward Witten described a mechanism by which dense quark matter could exist
to the present day in the form of “quark nuggets” [99] which could explain dark matter.

Formation of quark nuggets arises naturally from a first-order phase transition in the
vacuum. During the transition, regions of space change into the “low-temperature” state
that gradually grow through nucleation4 within a “high-temperature” background state
similar to how ice might form in cold water. Eventually, the low-temperature regions
grow enough to dominate the universe, though high-temperature bubbles remain. If
these bubbles cool further, not through evaporating baryons, but through, e.g., emitting
neutrinos (that result from qq̄ annihilation), then they could form a type of dense quark
matter with a large (positive or negative) baryon number as macroscopic quark nuggets.

Unlike many other candidates for dark matter, quark nuggets would actually interact
fairly strongly with other SM particles. However, a single quark nugget is dense enough
that it would have a fairly small cross-section relative to its mass and massive enough
to have a low number density; making interactions with ordinary matter rare enough
to still be a dark matter candidate. Coincidentally, if the quark nuggets tend to consist
of anti-quarks rather than quarks, this could explain the matter-antimatter asymmetry
observed in the universe; i.e., the antimatter is “locked up” in quark nuggets [100–102].

Experimental constraints on quark nuggets have been considered using a variety of
methods; such as neutrino flux from the sun [100], their acoustic signals when passing
through the Earth [101, 103], through interactions with axions [102], as well as gravita-
tional microlensing, gravitational waves, and cosmic rays [104].

4Witten also considers the case in which the transition occurs through spinodal decomposition instead
of nucleation.
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Primordial black holes

Unlike black holes that form at the end of the life-cycle of large stars, primordial black
holes are hypothesized to form during the early universe [105,106]. The exact conditions
under which these black holes form varies with different models, but the main idea is
that early in the Universe, the typical energy density of space was large enough that
small perturbations could cause enough energy to coalesce into a black hole.

It is possible for primordial black holes to contain at least some of the missing, dark
matter in the universe. Similar to quark nuggets, black holes are very dense objects
that could avoid direct detection due to their size and/or rarity, but still constitute a
substantial amount of mass. A review of primordial black holes as dark matter can be
found in Ref. [107] along with various astrophysical constraints.

Due to Hawking radiation, the black holes will gradually decrease in mass [108].
This condition places a lower-limit on the mass of primordial black holes to survive until
the present day at & 1015 g. However, if these black holes formed at some time after
Planck time ∼ 10−43 s, their mass would be at least 10−5 g [106, 107]. The exact mass
of primordial black holes that would survive to the present day is very model-dependent
and may include a range of masses [107].

2.5 Experimental searches

Numerous experiments have been designed to better understand the nature of dark
matter. Each experiment focuses on some type of interaction or affect that dark matter
may have with visible matter. A few of such experiments are briefly described here. This
by no means describes all dark matter experiments, and there are plenty of experiments
whose data has/can be used to search for dark matter that were not initially designed
to do so. However, this should provide an idea for various techniques being used.

The Cosmic Axion Spin Precession Experiment (CASPEr) measures the effect of the
ambient dark matter field on nuclear spin precession [109–113]. Using nuclear magnetic
resonance techniques, CASEPEr is a series of experiments able to precisely measure
the affects of dark matter on various atoms and molecules through different coupling
schemes. For example, a dark matter field can induce a coupling to matter similar to a
magnetic field that oscillates at the dark matter’s Compton frequency. By matching this
frequency with the Larmor frequency induced by a leading magnetic field, a resonance
occurs that can be measured with magnetometers. CASPEr has been used to search for
ALPs [111–113] as well as dark photons [112].

The interaction between axions/ALPs and Standard Model particles can also extend
to macroscopic scales. For example, using a magnetic torsion pendulum, one can measure
the effects of galactic halo dark matter [114]. Measuring the collective effect of axions
interacting with ordinary matter enables one to consider these macroscopic experiments;
albeit still requiring precision techniques to measure the effects.

The ABRACADABRA experiment considers a magnetic field caused by axion-photon
coupling [115,116]. In this experiment, a toroidal solenoid is used to produce a magnetic
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field. A background axion field oscillating at its Compton frequency will result in an
oscillating magnetic field circling the toroid which can be measured.

Another avenue for detecting dark matter is to convert it into visible matter, e.g.,
photons. The CAST [117] (and its proposed upgrade, IAXO [118]) and the proposed
MADMAX [119] experiments work on this principle. In particular, a strong magnetic
field is used to induce ambient light dark matter (e.g., axions/ALPs and dark photons)
to transition into photons which can be detected. The CAST experiment focuses on
dark matter generated in the Sun, while MADMAX focuses on dark matter present in
the galactic halo.

Similarly, optical cavity experiments measure disturbances from axions on the cav-
ity. Both the ADMX [120] and HAYSTAC [121] experiments search for galactic halo
dark matter using this technique. The cavity is placed in a strong magnet, and the
presence of an axion field induces an electromagnetic effect, disturbing the light in the
cavity. Cavities have also been proposed as potential probes of apparent variations in
fundamental constants due to dark matter interactions [7].

Light-shining-through-a-wall experiments consider an additional step: light is con-
verted into dark matter before being converted back to light. The basic principle of
a light-shining-through-a-wall experiment is that a light source is directed towards an
opaque wall with a detector on the opposite side. If the detector observes a signal from
the light source, that would imply that the light underwent some exotic interaction to
some other particle (e.g., an axion) in order to traverse the wall. These experiments
generally search for relatively light particles as heavier particles are difficult to create
with a light source. For example, the ALPS experiment [122, 123] focuses on searches
for axions/ALPs and dark photons. A strong magnetic field is applied on either side of
the wall to induce transitions into and from dark matter.

As highly sensitive instruments, atomic clocks could also provide an avenue for dark
matter detection. For example, the GPS.DM project uses the data from atomic clocks on
board GPS satellites to search for macroscopic dark matter features (e.g., axion domain
walls) in the galactic halo [124,125]. As these features cross the Earth, one would expect
“glitches” to propagate across the network. This experiment is able to capture useful
information from archival data of existing devices.

The XENON project is a series of experiments using large, underground chamber
of liquid xenon to detect dark matter [126]. As dark matter particles (particularly
WIMPs) traverse the chamber, they can scatter off of xenon nuclei; resulting in photons
and electrons. Photomultiplier tubes measure the photons, while an electric field across
the chamber pulls electrons to the top of the chamber where they are measured by an
array of detectors. By combining the delay between the photon and electron signal with
the position of the detectors that measure the signal, the position of the scattering can
be calculated. Events can also be distinguished by the relative strength of their signals.
Notably, recent results from XENON1T — an iteration of the experiment with 2 tonnes
(2.0 × 103 kg) of xenon in the detection volume — shows promising evidence of solar
axions with mass ma ≈ 2.3 keV/c2 [127].
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2.6 Macroscopic dark matter objects

Under certain circumstances, dark matter can form into stable macroscopic objects or
features. Two notable examples will be discussed here: domain walls and boson stars.
The domain wall is of particular interest for this work as GNOME attempts to observe
these features. Though some effort has been made to observe boson stars with GNOME,
as well [6].

2.6.1 Domain walls

Domains and domain walls are stable structures that form in a field with degenerate
local vacuum states; that is, there are multiple states that a region of space can have
that minimizes energy. A “domain” is a region of space with a given vacuum state,
and “domain walls” separate different domains. A domain wall inherently contains some
amount of energy because spatially transitioning from one vacuum state to another
implies that a domain wall locally deviates from the vacuum state. Despite a system
with a domain wall having more energy than a system without one, a domain wall can still
be stable, especially in the absence of any biasing force that would cause one domain to
be preferred (e.g., have lower energy) than the other, thus causing the preferred domain
to expand and push away the domain wall. However, even if there are no preferred
domains, a domain wall will have some tension that can lead to dynamics that minimize
the surface area of domains.

Though domain walls can be stable, there is some tendency for a system to dy-
namically remove them. This then begs the question of whether these structures are
truly stable on any meaningful timescale. The simplest answer comes from the observa-
tion that there do exist well-documented systems in which domain walls for; such as in
ferromagnets.

Ferromagnets provide a common example of domains and domain walls, in part
because the domains can be easily viewed with Kerr magnetometry. Ferromagnetic ma-
terials can be modeled by a lattice of small magnets from atomic spins. These materials
have a rotational symmetry that is spontaneously broken in the presence of a biasing
magnetic field; including the magnetic field generated by a region of the material in
which the spins happen to align. In particular, spins tend to align with and amplify
the local magnetic field. As a result, if one starts from random disorder, a ferromagnet
will tend to order itself into domains as long as it is below the transition temperature
at which its symmetry is broken. As different domains expand into disordered regions
of the material, they may be oriented significantly differently than their neighboring do-
mains and be unable to further expand. This results in a material speckled with regions
with different orientations that are separated with a network of domain walls.

For this work, domain walls formed in an axion or ALP field is of particular interest.
If NDW > 1, ALPs will have multiple, unique vacuum states and can form domains
separated by domain walls in space. It is possible that the energy contained in domain
walls contributes appreciably to the dark matter energy density of the galaxy. In this
picture, the galaxy could, for example, be contained in a foam-like network of domain
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walls.
Even if NDW = 1, domain walls can still form because of the topology of possible

axion field values5. Recall that the axion arises as the phase of a complex field. A
complex phase can be mapped to a circle S1; typically with the axion taking on a real-
valued field, a(x) ∈ R but with the identification a ∼= a+2πf̄a. Because of this topology,
a domain wall could separate the (identical) vacua a0 and a0 ± 2πf̄a. While in the
NDW > 1 case, a finite domain wall forms a closed surface (e.g., a sphere with different
vacuum states on the inside and outside), a finite domain wall in an NDW = 1 would
form an open surface with the same vacuum on either side. The edge of this surface
is called the “axion string.” The axion field in a loop containing an axion string will
continuously circle through the phase of the underlying complex scalar field.

Though ALP domain walls could be a promising potential avenue for dark matter
searches, there has been some effort to develop models that avoid them altogether. The
so-called “domain wall problem” refers to the inconsistency between the existence of
axion domain walls and cosmological observation. In particular, the energy contained in
axion domain walls would exceed the critical density for the universe [128,129]. There are
a few ways to avoid the issue. First, one could imagine a scenario in which domain walls
formed prior to inflation so that the edge of our domain lies outside of the observable
universe [129]. Another solution is simply that the domain walls are especially unstable
and will annihilate early on, possibly into dark matter [129–132]. This is a common
motivation for models with NDW = 1 (e.g., typical KSVZ axions) because the axion
strings around the domain wall will generally exert some tension that shrinks the domain
wall. It is also possible that there is simply a small bias at the cost of lightly breaking
the PQ mechanism [128,129,131,133–135]. Finally, one can avoid the problem by simply
considering ALPs that do not have the same mass restrictions as the axion to cause the
domain wall problem in the first place.

For the most part, the specific mechanism by which some type of ALP domain wall
could persist today will not be relevant to this work. The regime being considered here
would be one in which the domain walls contain a relatively small energy density —
on the order of dark matter, not exceeding critical density of the universe. Likewise,
it is possible that a network of such domain walls would collapse under its own surface
tension. It will be assumed that there is some mechanism to prevent collapse; possibly
with an additional dark matter candidate. For example, pressure from the other dark
matter resists domain walls akin to air preventing a balloon from collapsing.

A more quantitative discussion of domain walls is given in Chapter 3.1 and Ap-
pendix A.1.

2.6.2 Boson stars and Q-balls

Boson stars are generically a macroscopic, spherical, and stable field configuration of
bosons. These configurations can be maintained through gravity, self-interaction, topol-

5These same principles generally apply to ALPs as well, but not in all models. For example, the
relaxion field is described fully by a real number and not a value on a closed topology.
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ogy, etc., and the exact shape and properties of these features can vary. One can con-
sider boson stars made of, e.g., a gravitationally bound Bose-Einstein condensate of
axions [136–138] or relaxions [98], though the stability of such features has also been
questioned [139].

A feature related to the boson star is the Q-ball [140–142], which is a soliton that
can arise in certain complex scalar fields. Further, the scalar field φ must posses a U(1)
symmetry φ→ e−iθφ. The Lagrangian for this field has the form

LQ =
1

2
∂µφ∗∂µφ− U (φ) , (2.17)

where the potential U (φ) has a global minimum at φ = 0 and is invariant with respect
to phase rotations of φ. The Noether’s current and charge associated with the U(1)
symmetry are given by

jµQ =
1

2i
φ∗
←→
∂µφ , (2.18a)

Q =

∫
d3x j0Q . (2.18b)

A Q-ball can be further understood by using a simple ansatz, φ(t,x) = φ̃(x)eiωt for
the real, spatial function φ̃(x) and real constant ω. A stable solution can be obtained
by minimizing the energy associated with Eq. (2.17) when inserting the ansatz,

EQ =

∫
d3x

[
ω2

2
|φ̃|2 + 1

2
|∇φ̃|+ U(φ̃)

]
.

Consider a further restriction on the ansatz that the field is only non-zero in the region
V,

φ̃(x) =

{
φ0 x ∈ V
0 x 6∈ V

, (2.19)

To make the above ansatz continuous, one can allow the field to interpolate linearly with
a slope of φ0/ε within ε/2 of the border ∂V for ε → 0. Plugging the ansatz (2.19) into
Eq. (2.18), the charge is given by Q = ωV φ20 for volume V =

∫
V d

3x. The energy of the
ansatz solution is given by

EQ =
Q2

2V φ20
+ V U(φ0) +

Aφ20
2ε

,

where A is the area of ∂V and the last term reflects the energy contributions from the
boundary. The boundary term diverges as ε→ 0. However, because the contribution is
proportional to the area, it is clear that the V that minimizes energy will also minimize
surface area; i.e., V is a sphere with some radius R. First, minimizing energy with
respect to volume, V =

√
Q2

2φ20U(φ0)
. Plugging this back into the energy, one obtains

EQ/|Q| =
√
2U(φ0)/φ20. Thus, if U(φ0)/φ

2
0 has a minimum for φ0 6= 0, one can find
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a non-trivial solution to the simple ansatz presented here. This results in a simple
relationship between the radius R of a Q-ball and physical parameters

R =

(
9Q2

32π2φ20U(φ0)

)1/6

. (2.20)

The ansatz (2.19) described here is valid for a “thin-wall” Q-ball. However, the
ansatz fails when U(φ)/φ2 does not obtain a minimum for finite φ, one can still obtain
a Q-ball by considering an ansatz with “smoother” walls. This scenario can occur, for
example, if U(φ) ∝ φp for large φ and p < 2. This is a “thick-wall” Q-ball [142, 143].
Further studies of Q-ball shapes can be found in, e.g., Ref. [144].

2.7 Standard halo model
The standard halo model (SHM) provides a simple description of dark matter in the
galaxy. The model assumes that dark matter exists as a homogeneous cloud encompass-
ing the visible matter in the galaxy. Though simple, this model sufficiently explains the
distribution of dark matter and its observed effects on galaxies.

In the SHM, dark matter is treated as a virialized (i.e., stable and gravitationally
bound) cloud of point-like particles. For this work, we are particularly interested in
surface-like features (i.e., domain walls), so the discussion will be extended to include
such objects. In particular, a “foam” of domain walls whose bubbles contain different
domains will be considered. A similar study of the SHM can be found, e.g., in Ap-
pendix A of Ref. [125]. Discussions of the SHM with point-like particles can be found in
Ref. [145].

It is important to understand the typical speed and direction of dark matter objects
passing the Earth. To do this, one can describe a probability distribution function (PDF)
in “velocity space.” Further, an event probability distribution function (EPDF) derived
from the PDF to distinguish the distribution of object velocities as they are observed
from the velocities of all objects. General details on manipulating PDFs are explored in
Appendix B.

To begin, consider the center-of-mass velocity v0 distribution of an ideal gas,

dPv0 =
(
2πs2

)−3/2
e−

‖v0‖2

2s2 d3v0 , (2.21)

where s is the dispersion velocity and d3v0 = dvx0dvy0dvz0.
Inside this cloud, the Earth travels with the local velocity vL — which is approxi-

mately the galactic orbital velocity vc when the velocity of the Earth around the sun and
us around the Earth is neglected. Further the dispersion velocity will satisfy6 2s2 ≈ v2c .
In the Earth’s reference frame, the velocity is v = v0 − vL and the PDF, Eq. (2.21),
becomes

dPv =
(
πv2c
)−3/2

e
− ‖v+vL‖2

v2c d3v . (2.22)
6A heuristic argument for this is that the galactic orbital speed vc is the speed at which an orbit is

stable. For a thermal gas to be stable, it should likewise be related to the same speed.
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This, alone, is a good approximation for the velocity distribution for a gas of point-like
particles.

One further correction can be made by demanding the speed be below the galac-
tic escape velocity ve. The effects of dark matter escaping the galaxy can be included
into the PDF by multiplying Eq. (2.22) by a factor proportional to the Heaviside func-
tion Θ(ve − ‖v0‖) = Θ (ve − ‖v + vL‖). When doing so, one must also renormalize the
equation to correct for the component of the probability lost at large speeds. However,
demanding particles in the “gas” of the SHM remain below escape velocity implicitly as-
sumes that no particles will enter the galaxy above escape velocity — only that they leave
the galaxy. A full understanding of the contribution of high-speed objects “evaporating”
out of the galaxy would also require an understanding of dark matter in intergalactic
space.

For this work, it is particularly interesting to consider the case in which the objects
are surface-like instead of point-like; particularly for observing domain walls. These
objects are considered to be sufficiently large that they appear to be flat planes across
the Earth. The large-scale structure of the surfaces — i.e., their shape, how they separate
different domains, etc. — will not be considered here. Instead, we assume that the local
orientation of these surfaces as they cross the Earth is random and isotropic. Further,
one is only able to observe the component of the velocity perpendicular to the object’s
surface v⊥. However, there still should be some unobservable velocity component parallel
to the surface. This is clear if the surfaces are of a large object, e.g., a spherical domain,
which will have a three-dimensional velocity even if it cannot be observed locally7.

For surface-like objects, it becomes necessary to consider how the coordinate system
is defined. For point-like particles, there are two vectors of interest: the velocity v
and the Earth’s velocity vL. It can then be useful to think of the velocity distribution
in spherical coordinates with the Earth’s velocity as the pole. However, a surface will
additionally have a perpendicular velocity v⊥ that describes its orientation, and it is
more natural to describe this vector in reference to the total velocity v.

The coordinate system used here is given in Fig. 2.2 and described below. Before
concretely defining all of the coordinate parameters, it helps to introduce a short-hand
notation here that will simplify some of the equations. Namely, for a general polar angle
θ, let the barred variable denote

θ̄ := cos θ .

Denote the angle between the velocity v and perpendicular velocity v⊥ as η ∈ [0, π/2]8

so
v⊥ = vη̄ ,

where the non-bolded velocities denote the speed: v := ‖v‖ and v⊥ := ‖v⊥‖. In the
end, the direction of the (observable) perpendicular velocity is described with respect to
the reference vL. The local velocity vL can then be understood in terms of the galactic

7Even if the objects are infinite planes, one can treat the parallel velocity as an internal degree of
freedom, similar to spin for point-like objects.

8The upper bound is π/2 not π because the perpendicular velocity is a projection of the velocity, so
it cannot point in the opposite direction of v.
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Figure 2.2: Pictorial view of the coordinate system for the (red) Earth’s local velocity
vL, the (blue) total velocity v, and the (green) perpendicular velocity v⊥ (which is
perpendicular to the green plane). The dashed black arrow is perpendicular to vL and
is chosen based on galactic reference.

reference frame (notably that the Earth travels towards the constellation, Deneb). Let
ξ ∈ [0, π] be the angle between v⊥ and vL and φ⊥ ∈ [0, 2π) be the azimuthal angle for
v⊥ with respect to some direction perpendicular to vL. Finally, define an azimuthal
angle φ2 ∈ [0, 2π) for v about v⊥ and with respect to the projection of vL in the
domain-wall plane (or any arbitrary reference in the plane, if vL is perpendicular to the
plane. Altogether, v⊥ is described in polar coordinates (v⊥, φ⊥, ξ) with the pole vL, v
is described with the polar coordinates (v, φ2, η) with the pole v⊥, and vL is given with
respect to galactic coordinates.

The orientation of the domain walls will also follow some probability distribution. It
is assumed that this follows a flat distribution,

dPori =
1

2π
dξ̄ dφ⊥ . (2.23)

This assumption may be imperfect and there may be some structure to a domain-wall
network that leads to some preferred orientation. Such considerations would require a
more detailed understanding of structure formation and considerations of various un-
known characteristics of the underlying physics.

The final PDF is obtained by taking the product of Eq. (2.22) and Eq. (2.23) and
integrating over η and φ2, representing the unobservable total velocity. First, Eq. (2.22)
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must be expressed in terms of the coordinates (v⊥, η̄, φ2).

dP0 =
v2⊥

η̄3 (πv2c )
3/2

e
−

v2⊥
η̄2

+v2L+2v⊥vL

(
sin(ξ) cos(φ2)

√
1/η̄2−1+cos(ξ)

)
v2c dv⊥ dη̄ dφ2

=
sv2⊥

(πv2c )
3/2

e
−

s2v2⊥+v2L+2v⊥vL

(
sin(ξ) cos(φ2)

√
s2−1+cos(ξ)

)
v2c dv⊥ ds dφ2 ,

for s = 1/η̄ ∈ [1, inf). Taking the product of the above equation with Eq. (2.23) and
integrating over the unobservable parameters yields

dP = dv⊥ dξ̄ dφ⊥
v2⊥

2π (πv2c )
3/2

e
− v2L+2v⊥vL cos(ξ)

v2c

×
∫ ∞

1
ds

∫ 2π

0
dφ2 se

− v2⊥s2+2v⊥vL sin(ξ) cos(φ2)
√

s2−1

v2c . (2.24)

Thusfar, the PDF has been described in terms of the velocity distribution of objects
throughout the galaxy (or some generic volume). However, this is not necessarily the
same as the distribution of velocities that are observed. In particular, domain walls that
travel faster with respect to the network are more likely to be observed; thinking in
terms of the volume “swept” by a domain wall over a given period of time, faster walls
cover a larger volume and that volume is thus more likely to include the network. The
EPDF is then given by the product of Eq. (2.24) and v⊥/ 〈v⊥〉,

dPevt = dv⊥ dξ̄ dφ⊥
v3⊥

2π (πv2c )
3/2 〈v⊥〉

e
− v2L+2v⊥vL cos(ξ)

v2c

×
∫ ∞

1
ds

∫ 2π

0
dφ2 se

− v2⊥s2+2v⊥vL sin(ξ) cos(φ2)
√

s2−1

v2c , (2.25)

where
〈v⊥〉 =

∫
v⊥dP .

This EPDF, as estimated with a Monte Carlo simulation, is shown in Fig. 2.3.
Once again, one can consider a speed cutoff due to domain walls traveling above

escape velocity evaporating out of the galaxy. In the case of domain walls, there is some
ambiguity as to whether the total velocity or perpendicular velocity is more relevant.
If the domains can easily stretch out, the perpendicular velocity determines whether
the wall will escape, because one could have part of the domain boundary escaping
the galaxy, while another part remaining within the galaxy. However, if there is some
resistance to stretching a domain when part of the boundary is moving particularly fast,
it would effectively pull the slower part of the boundary. This latter scenario is the case
in which the area of a domain wall contains some energy (and hence, stretching causes
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Figure 2.3: The EPDF for domain walls from a Monte Carlo simulation. In this simu-
lation, vc = vL = 220 km/s and ve = 550 km/s. With this, about 10 % of domain walls
are omitted due to exceeding escape velocity.

an increase in energy), as is discussed in Chapter 3.1. Thus, to remove velocities above
the escape velocity from the EPDF amounts to multiplying by a factor proportional to

Θ(ve − ‖v + vL‖)

prior to the integration in Eq. (2.25).

2.8 Magnetometer operation
The previous sections focus on theoretical aspects behind dark matter searches as well
as broad overviews of some experiments and measurements. A more focused overview of
experimental devices is considered in this section; specifically for magnetometers. This
work focuses on analyzing data from GNOME, which consists of optical magnetometers.
To some extent, the specific operation of a magnetometer can be treated as a black box.
However, knowing the underlying coupling to dark matter is crucial to understanding
observations. A review of GNOME magnetometers used in the first Science Run is found
in Ref. [2]. A more general review of optical magnetometry can be found in Ref. [146].

There are a few different types of magnetometers used in the GNOME network. Not
only do the magnetometers probe different atoms/transitions, there are multiple mag-
netometry techniques implemented across the network. The types of sensors being used
are amplitude modulated nonlinear magneto-optical rotation (NMOR), radio-frequency
(rf)-driven, and spin exchange relaxation-free (SERF) magnetometers. Including vari-
ous different types of magnetometers enables one to test different couplings at the cost
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of adding additional model dependence. That is, because different magnetometers may
couple differently to dark matter, the analysis of magnetometer data is sensitive to the
choice in the coupling model.

Though there are differences, all current magnetometers in the GNOME network
operate on common principles. They all probe a transition in alkali atoms held in a
vapor cell. For the non-SERF magnetometers, these atoms are placed in a leading
magnetic field, while SERF magnetometers operate at near-zero field. The geometry
of the device determines the sensitive axis of the magnetometer. Using a pump- and
probe-lasers, generally with a lock-in amplifier setup, a particular transition is measured
that is sensitive to the magnetic field (i.e., ∆m 6= 0 when using the sensitive axis as
the quantization axis). A voltage representing the transition energy is the output of the
magnetometer, and the data are calibrated to reflect the true magnetic field values.

The magnetometers in GNOME are set up with a few other features. Perhaps most
notably, the magnetometers are placed within magnetic shielding. Because this exper-
iment aims to observe non-magnetic phenomena that mimic the type of spin-coupling
due to a magnetic field, it is important to suppress the spin-coupling linked to real mag-
netic fields. The sensors are also equipped with a GPS-synchronized data acquisition
system [147] that ensures that the data streams from different stations can be synchro-
nized. Further, various auxiliary sensors provide information on the reliability of each
sensor. With this, one can better avoid questionable data in the analysis.

A notable difference in the operation of magnetometers is the use of SERF magne-
tometry [146,148,149]. A common problem in optical magnetometry is spin-exchange in
which colliding atoms transfer angular momentum to each other; conserving total angu-
lar momentum. This reduces coherence and magnetometer sensitivity. Despite the total
angular momentum being conserved, these collisions cause the atomic hyperfine states
to change. In conventional optical magnetometers, this effect is reduced by operating
with low atomic density at the cost of worse sensitivity. However, a way to improve
overall sensitivity is to operate in a regime with high density, fast spin-exchange, and a
weak magnetic field — the SERF regime. This leads to an non-vanishing average spin
precession across the vapor cell that is slower than that of an individual atom. A pump
beam can be used to orient the precession. Under appropriate conditions, a SERF mag-
netometer can have much better sensitivity than more traditional magnetometers due
to the comparatively high density of alkaline atoms being probed.



Chapter 3

Signal shape

Understanding the types of signatures that dark matter can leave in an experiment
is necessary for any dark matter search. Establishing the phenomenology of a theory
enables one to understand the information gathered in an experiment. In this chapter,
the phenomenology of ALP domain walls and axion coupling to matter is established.
This allows one to understand a class of signal shapes that one may expect to see in an
experiment.

First, the shape and characteristics of an ALP domain wall is described in Sec. 3.1.
The shape of the domain wall is established in terms of the underlying degrees of freedom
for the ALP. Then, using generic coupling terms, the signal induced by a domain wall is
described in Sec. 3.2 for coupling to fermion spin and in Sec. 3.3 for Yukawa-like coupling
to fermion mass. The spin-coupling is of particular interest to GNOME as it will result
in a pseudo-magnetic field that can be observed by magnetometers.

3.1 Domain wall field
A common feature of ALPs is that they arise from considering a complex scalar field φ
with a ZNDW symmetry, φ→ exp(2πik/NDW)φ (for k ∈ Z). The ALP field can have any
potential V (φ) that respects the ZNDW symmetry. For example, the Lagrangian1 may
be

L ⊃ |∂µφ|2 −
λ

f̄2NDW−4
a

|2NDW/2φNDW + f̄NDW
a |2 , (3.1)

with slight variations by convention2. The field can be parameterized by a real Higgs
mode S and axion mode a as φ = S√

2
exp(ia/f̄a). Freezing the Higgs mode S → f̄a yields

the axion Lagrangian,

La =
1

2
(∂µa)

2 − 4λf̄4a cos
2

(
a

f̄a/NDW

)
. (3.2)

1Note that the metric signature is (+,−,−,−).
2Other references may use a minus sign in front of the f̄NDW

a term, which results in a similar potential,
up to a phase. The end result of Eq. (3.1) is that the axion potential will have a maximum at zero, while
the minus-convention will have a vacuum at zero.

25
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Matching the second-order Taylor expansion around the vacuum a = πf̄a
NDW

(1 + 2k) to
the scalar mass term m2

a
2 a

2 yields

ma = NDWf̄a
√
2λ . (3.3)

Written in terms of ma and fa := f̄a/NDW, the axion Lagrangian is

La =
1

2
(∂µa)

2 − 2m2
afa

2 cos2
(

a

2fa

)
. (3.4)

The classical equation of motion, as determined by applying the principal of least
action to Eq. (3.4) (assuming the boundary terms vanish), is

−∂2a+m2
afa sin

(
a

fa

)
= 0 . (3.5)

Generically, domain walls form when a field can monotonically increase between
vacuum states (possibly the same state). For simplicity, assume that the axion field is
static in time and only varies in the x-direction, so a = a(x) with a planar domain wall
parallel to the yz-plane. The equation of motion, Eq. (3.5), becomes

a′′

fa
+m2

a sin

(
a

fa

)
= 0 ,

because −∂2a = ∂2a
∂x2

= a′′ for the chosen metric signature. Assume that a(x → ±∞)
becomes constant. Then a(x → ±∞) = k±πfa from the equations of motion (k± ∈ Z).
Note that a = kπfa are the extrema of the potential; minima for k odd and maxima for
k even. With this in mind, define the boundary conditions a(x → ±∞) = ±πfa and
a(0) = 0. That is, the axion wall intersects the origin and separates the vacua closest to
a = 0.

As derived in Appendix A.1, the classical domain-wall solution is given by

a(x) = 2fa arcsin (tanh (max)) . (3.6)

This is shown in Fig. 3.1.
It is also useful to consider the gradient of the field. As is discussed in Sec. 3.2,

one can consider couplings between the axion field gradient and fermionic spins. The
gradient is

a′(x) =
2mafa

cosh(max)
≈ 2mafa

1 +

(
x

1
2

2
√
2

ma

)2

+O(m4
ax

4)

, (3.7)

that is, it can be approximated by a Lorentzian. The full with at half maximum is

∆x =
2 cosh−1(2)

ma
≈ 2
√
2

ma
. (3.8)
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Figure 3.1: The classical axion field from a domain wall.

Finally, consider the energy density in the domain wall. The Hamiltonian density is

Ha =
1

2

(
a′
)2

+ 2m2
afa

2 cos2
(

a

2fa

)
=

2m2
afa

2

cosh2(max)
+ 2m2

afa
2 cos2 (arcsin (tanh(max)))

=
4m2

afa
2

cosh2(max)
.

Integrating over the x yields the surface tension,

σDW = 8mafa
2 . (3.9)

3.2 Spin coupling
The GNOME project is particularly interested in spin-coupling. The magnetometers
used in GNOME rely on couplings involving atomic spins. However, the sensors are
shielded from magnetic fields, so observed couplings are likely the result of an exotic
field penetrating the shielding and coupling to atomic spins.

Generically, the spin coupling terms are of the form,

La−spin = fµ(a)ψ̄γ
µγ5ψ , (3.10)

where fµ(a) is an indexed function of the axion field and ψ̄γµγ5ψ is the axial-vector
current for the fermion field ψ. One could further complicate this term by multiplying
additional terms involving the fermion or other fields, but these couplings are generally
suppressed.
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3.2.1 Linear

Perhaps the simplest coupling between the axion field is the linear coupling of spins to
the gradient ∂µa. This is accomplished via the following coupling to the complex scalar
field φ,

Lint =
iφ
←→
∂µφ

∗

f̄afint
ψ̄γµγ5ψ

S→f̄a−−−−→ ∂µa

fint
ψ̄γµγ5ψ , (3.11)

where fint is the coupling scale.
The axial-vector current is related to the spin S, so that the interaction Hamiltonian

becomes
Hint =

1

fint
∇a · S

‖S‖
, (3.12)

i.e., for spin-1/2 particles, 1/‖S‖ = 2.
Magnetometers used for GNOME measure the change between two atomic energy

levels. Denote the electron spin Se, nuclear spin I, orbital angular momentum L, and
total angular momentum F = Se+I+L. The magnetometers measure the magnetic field
along some sensitive axis (e.g., the direction of a biasing field). Denote the projection of
the spin along this axis as mk for k representing the relevant spin (e.g., mF for F ).

Plugging in the maximum gradient from Eq. (3.7) into Eq. (3.12) yields the change
in energy between atomic energy levels

∆E =
∑

i∈e,p,n,…

2ησ(i)∆mF

‖S(i)‖
fa

fint
(i)
ma , (3.13)

where i labels the species of fermion, σ(i) =
〈
S(i)·F (i)

〉
F 2

(i)

is the projected spin coupling,

η = cos θ for the angle between the axion gradient and sensitive axis θ, and fint
(i) is the

interaction coupling to particle i. In general, we will add up σ(i)

‖S(i)‖fint
(i) into an effective

ratio 2σj
fint

, where j labels the magnetometer.
The energy shift due to the Zeeman effect is

∆EB = gFµB∆mFB , (3.14)

for g-factor, gF , and Bohr magneton, µB. The GNOME magnetometers are shielded from
magnetic field, so the observed “magnetic field” observed is fictitious. For this reason,
Bj refers to the pseudo-magnetic field in the jth magnetometer. Equating Eq. (3.13)
and Eq. (3.14) yields

gF,jBj
σjηj

=
4

µB
maξ =: Bp , (3.15)

where ξ := fa
fint

and the j subscript refers to the jth magnetometer. Here, Bp is the nor-
malized pseudo-magnetic field; i.e., normalized to be independent of the magnetometer
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type and relative orientation. One can understand ξ as the (unitless) coupling strength
relative to fa. Values of σj/gF,j based on proton-coupling for GNOME magnetometers
is given in Table 6.1.

3.2.2 Generalizations

Though much of the work described here will focus on the linear pseudoscalar ALP
coupling with spins described above, one can further generalize the coupling. Consider
spin coupling terms similar to Eq. (3.10) where fµ(a) = ∂µg(a).

For ALP fields, there is an unbreakable symmetry a → a + 2πf̄a imposed by the
topology of the field; recall that an ALP field is originally defined as the phase of a
complex field. This periodic condition must also occur in the function fµ(a); note that
this condition is only true up to a constant in g(a), because a constant vanishes upon
differentiation. After U(1)PQ symmetry-breaking, the ALP field retains the discrete
symmetry a → a + 2πfa = a + 2πf̄a/NDW. Strictly speaking, there is no reason to
demand that fµ(a) has this periodic condition. An interaction term without this ZNDW

symmetry will explicitly break it, which may cause the presence of fermions to drive the
motion of domain walls as one domain could become more energetically preferable.

Considering the discrete symmetries needed in the coupling term, a Fourier expan-
sion of the function g(a) is a natural choice to enforce this symmetry. The minimal
symmetry requirement demands that ∂µg(a) = ∂µg(a + 2πf̄a). Requiring that the the
ZNDW symmetry remain unbroken can be achieved by omitting terms in the Fourier
series. Defining the Fourier coefficients {αi} and {βi}, the Fourier expansion is given by

g(a) = α0a+
∞∑
n=1

[
αnf̄a
n

sin

(
n

f̄a
a

)
− βnf̄a

n
cos

(
n

f̄a
a

)]
. (3.16)

The f̄a
n factors acting on the Fourier coefficients are chosen to simplify the equations in

a later step. The ZNDW symmetry can be preserved if the only non-zero terms in the
Fourier series are multiples of NDW.

The observed signal pattern for a domain wall can be understood by the energy shift
∆E induced by the domain will field, Eq. (3.6). Inserting the field into Eq. (3.10) and
expanding, one obtains

∆E = 2mafa
(
ψ̄γ3γ5ψ

)
sech (maz)

{
α0+

∞∑
n=1

[αn cos (2n arcsin (tanh (maz)))+

βn sin (2n arcsin (tanh (maz)))]

}
. (3.17)

This defines a series of signal shapes defined by each Fourier component. For example,
the α0 term defines the shape of the signal due to linear coupling. Example signals are
given in Fig. 3.2.
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Figure 3.2: Sample signal shapes for different components described in Eq. (3.16) and
Eq. (3.17). The dashed gray lines are sech functions (i.e., the α0 term).

In addition to the class of signal shapes described above, one can consider other
signal shapes for non-ALP scalar fields. If the field is not periodic, one can instead
use a Taylor series to expand the function g(a). Further, one can consider terms with
higher-orders in the fermion field (or other Standard Model particles).

If only very small perturbations in the ALP field are considered, one can still use
a Taylor expansion to approximate the coupling. However, the field across a domain
wall inherently changes significantly. Second-order and higher terms in a (finite) Taylor
expansion would significantly break the ZNDW symmetry over the range of two vacua and
possibly possibly the unbreakable a→ a+2πf̄a symmetry unless NDW � 1 (so the field
across the domain wall does not vary significantly relative to f̄a). Other experiments
could still attempt to measure small oscillations in the ALP field within a domain.
For these experiments, it could be of interest to include a quadratic coupling as an
approximation for higher-order terms. For example, there is a proposal to use GNOME
to search for Q-balls via their linear and quadratic spin coupling [6].

3.3 Mass coupling

In addition to the spin-coupling described in the previous section, one could also consider
a coupling between the ALP field and a mass-like Standard Model term. The form of
this coupling is

La−ψψ = g(a)ψ̄ψ , (3.18)
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where g(a) is some function of the ALP-field.
This work does not consider the mass-like coupling described by Eq. (3.18), though

this is a common type of coupling to consider. The shape of an observed signal from a
domain wall, as before, is described by simply plugging Eq. (3.6) into Eq. (3.18). For
example, a linear coupling would induce a signal similar to Fig. 3.1 with the position axis
replaced by time. Notably, one would observe an effective variation in mass for fermions
as the ALP field varies over time. In a similar coupling to photons with ψ̄ψ → F 2

µν , the
variation in the ALP field would appear as a variation in the fine-structure constant.

Various experimental efforts and proposals have aimed to search for mass-like cou-
pling of the axion to fermions. The apparent variation in mass or fine-structure constant
would be observable in atomic clocks [7, 150], cavities [7], spectroscopy [151, 152], and
gravimeters [153,154]. These experiments among others can provide bounds for mass-like
coupling.

Because the space occupied by Earth possesses a high-density of mass relative to
the galaxy, there may be significant back action of the Earth on the ALP field due to
a mass-coupling term. This idea was explored in detail in Ref. [155] for the case where
g(a) is a quadratic polynomial. The accumulation of mass can result in a significant
effective potential term for the ALP field. This could result in one domain being favored
in the presence of matter. In a more extreme case, focusing on a pair of local minima
in the ALP potential as a (local) double-well, the presence of the effective potential
from background matter could combine the double-well into a single-well between the
double-well. In this case, there would be a “half” domain wall surrounding the Earth as
the effective potential transitions from the single-well case to the double-well case away
from dense regions of matter. In contrast, because fermion spins do not substantially
align across the Earth, the back action from the spin-coupling term will not play such a
large role.
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Chapter 4

Analysis

Data from the GNOME network are studied for signs of ALP domain walls crossing
the network. For this, methods were developed to search through the data to detect
for signatures of such objects. This process involves applying filters to the data as well
as scanning the data for domain-wall signals. In scanning the data, various thresholds
must also be selected to ensure that the results are statistically rigorous. These analysis
methods are also described in Ref. [3].

The effects of applying filters to the data are described in Sec. 4.1. Methods for testing
the consistency between the measurements and a domain wall signal are described in
Sec. 4.2, and a geometric picture of this process is presented in Sec. 4.3. Part of the
analysis involves testing for domain walls with different velocities. This requires one to
develop a set of velocities to test that adequately covers possible domain-wall velocities.
Requirements, design, and optimization of this set is described in Sec. 4.4. An overview
of the analysis procedure as it is applied to real data is described in Sec. 4.5. Finally,
methods for determining the various thresholds used in the analysis are described in
Sec. 4.6.

4.1 Filtering data

Filtering is often used to reduce noise in order to better observe a signal. This noise can
be random/stochastic (e.g., Gaussian noise in which each data point has some random
offset from the true value) or systematic (e.g., a 50 or 60 Hz oscillation due to powerline
interference with electronics). Generically, a filter can be anything that removes some
information with the aim to leave only useful information. An example of filtering is
given in Fig. 4.1 with simulated data to illustrate its benefits.

GNOME aims to search for signals in data streams over time, and the relevant filters
are linear impulse filters. These filters can be described by an impulse response h(t)
(or h[i] for discrete data) with which the data are convolved or, equivalently a transfer
function H(ω) (or H[k] for discrete data) which describes how the data are attenuated

33
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Figure 4.1: (a) Simulated data with a Lorentzian signal, Gaussian-distributed noise, and
a 10 Hz background noise. (b) A notch frequency filter is applied to remove the frequency
component around 10 Hz followed by (c) averaging/down-sampling by 0.2 s.

in frequency space. In particular, filtering the continuous (discrete) data y(t) (y[i]),

yf(t) = {y ∗ h} (t) :=
∫
ds y(s)h(t− s) , (4.1)

yf[t] = {y ∗ h} [t] :=
∑
s

y[s]h[t− s] , (4.2)

where the integral (sum) is over the relevant domain and the discrete indices are cyclic.
Without loss of generality, the domain for continuous data will be R and for discrete
data will be 0, 1, . . . , N − 1 so cyclicality implies t ∼ t+N . It should also be noted that
the convolution operator ∗ is commutative,

y ∗ h = h ∗ y ,

and associative
h2 ∗ (h1 ∗ y) = (h2 ∗ h1) ∗ y .

An example of an impulse filter is a rolling average. In this case, h would be a square
pulse whose length is the averaging time T and whose height is the normalization 1/T .
Plugging h into Eq. (4.1) or (4.2), the filtered signal is described by the integral/sum of
the signal around the respective point, up to a normalization constant; i.e., an average.

The transfer function arises when considering the convolution theorem which con-
nects the functional pointwise product · of functions with the convolution operator ∗ via
Fourier transforms. To be explicit, the continuous and discrete Fourier transform f̃ of
f will be defined here, respectively, as

{FCf} (ω) :=
∫ ∞

−∞
dt f(t)e−iωt and

{
F−1

C f̃
}
(t) :=

1

2π

∫ ∞

−∞
dω f̃(ω)e+iωt , (4.3)

{FDf} [k] :=
N−1∑
n=0

f [n]e−
2πi
N
nk and

{
F−1

D f̃
}
[n] :=

1

N

N∑
k=0

f̃ [k]e+
2πi
N
nk . (4.4)
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For the continuous case, the Fourier transform yields a function in terms of the angular
frequency, while for the discrete case, if the sampling rate is rs, the frequency is given in
units of rs/2N . Connecting the two, ω ∼ 2πrs

N k. The convolution theorem for functions
f and h is then written1

F(f ∗ h) = Ff · Fh , (4.5)

where F can be either discrete or continuous.
With the convolution theorem in mind, one can better understand the practical

use of defining a quantity related to a Fourier transform of h. Because impulse filters
affect signals via convolution and moving to Fourier space replaces convolutions with a
simple pointwise product, this transformation provides a useful computational tool. The
transfer function H is given by2

H (iω) := {FCh} (ω) and H
[
e

2πi
N
k
]
:= {FDh} [ω] . (4.6)

From Eq. (4.5), one can interpret the transfer function as defining the attenuation factors
in frequency space. One can also define a frequency-response function

h̃ := Fh , (4.7)

so h̃(ω) = H (iω) and h̃[k] = H
[
e

2πi
N
k
]
. Setting H or h̃ to zero or one at certain

frequencies will, respectively, exclude or include those frequencies in the filtered data.
In general, the transfer function can be complex, though requiring the input and output
data from a filter be real is achieved by constraining

H∗ (+iω) = H (−iω) or H∗
[
e+

2πi
N
k
]
= H

[
e−

2πi
N
k
]
, (4.8)

where H∗ is the complex conjugate of H and the discrete indices are cyclic (i.e., k ∼
k+N). Heuristically, a complex phase on the transfer function will cause a time-shift in
the filtered data; though perhaps different shifts for different frequency components. As
an example, consider the impulse function ht0(t) = δ(t− t0) that translates the data by
t0. The corresponding transfer function is Ht0 (iω) = e−iωt0 , which is completely defined
by its complex phase.

A useful feature of the filters described here is their linearity. Notably, the convolution
operator is bilinear and the Fourier transform is linear,

f ∗ (ag + h) = a(f ∗ g) + (f ∗ h) ,
F(ag + h) = a(Fg) + (Fh) ,

F−1(ag + h) = a(F−1g) + (F−1h) ,

1Different conventions for the Fourier transform may include a factor ∼ 2π.
2Normally, the transfer function is written with the Laplace transform (continuous) and Z-transform

(discrete) in mind. In particular, {Lh} (s) =
∫
dt h(t)e−st =: H(s) and {Zh} [z] =

∑
t h[t]z

−t =: H[z].
The Fourier transform is a special-case of these transforms.



4.1. FILTERING DATA 36

where f , g, and h are functions, and a is a constant (acting on a function as the typical
pointwise product). Bilinearity in the convolution follows trivially from the fact that
it is a commutative operator. The fact that these operators are linear means that a
measurement can be split into signal ys and noise yn components, y = ys + yn, and the
filter effects on each component can be understood separately.

One may apply multiple filters to data. Consider applying the two filters h1 and h2
to y,

yf = h2 ∗ h1 ∗ y ,

noting that ∗ is associative, so the order of these operations does not matter. For the
transfer functions H1 ∼ Fh1 and H2 ∼ Fh2, the transfer function for the combined filter
is simply the product

H = H1 ·H2 . (4.9)

This can be seen by applying the convolution theorem, Eq. (4.5), twice.
Before describing exactly how filters will effect measurements, it should be noted

that “filtering” as described here can occur at various stages in the experiment. Often,
one considers digitally applying filters to recorded data or to a live data stream (though
the latter can result in unwanted time-shifting). However, the experiment itself may
have some analog filters either by design or experimental limitations. Bandwidth mea-
surements are often used to characterize this “filter” as they describe how an experiment
responds to signals at different frequencies.

4.1.1 Effects on signal

The effects on signals will be considered in an approximation in which data collection is
continuous. From a practical standpoint, this removes complications of considering the
position of the signal within a sampling period. This allows one to ignore subtle effects
that arise from discretizing the data. For example, when considering a peak-shaped
signal, one would need to consider whether the peak is centered on or off of a discrete
point. When returning to the more realistic, discrete data, one can sample points from
the continuous function periodically.

With this approximation in mind, the effects on signals becomes straight-forward.
The filtered signal shape can be obtained either with the impulse response h(t) and
Eq. (4.1) or the frequency response h̃(ω) with the aid of the convolution theorem,
Eq. (4.5). The linearity of the filter means that one can understand the shape of a signal
with different amplitudes; i.e., if, for constant A, y0(t) = Ay1(t) then yf0(t) = Ayf1(t).
Specific examples of filter effects on signals are given in Sec. 4.1.3.

4.1.2 Effects on noise

When calculating the effects of filtering on noise, discrete data are considered. Moreover,
only stochastic noise will be considered; essentially, it will be assumed that systematic
noise is entirely removed by the filters and calibration. Additionally, it is assumed that
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the noise is described by a normal distribution. What is needed, then, is to calculate
the propagation-of-errors (i.e., noise) across the filter.

Because filtering is a linear operation in this case, propagation-of-errors is a fairly
simple operation. For full generality, let the noise be fully described by the covariance
matrix Σ, though this is often diagonal as data points at different times are assumed
to be uncorrelated. Specifically, for data y[t], Σij = Σ[i, j] represents the covariance
between y[i] and y[j] while Σii is the variance in point y[i]. The covariance is often
estimated by calculating the standard error of y[t],

σ2 =
1

N

N−1∑
t=0

(y[t]− ȳ)2 for ȳ =
1

N

N−1∑
t=0

y[t] ,

so Σij = δijσ
2 in this estimation3.

Propagation of errors follows the typical methods. The act of filtering (Eq. (4.2)) is
equivalent to a linear operation with the (real and circulant) Jacobian matrix J [t, s] =
h[t− s],

yf = Jy ,

treating the data stream y[t] as an N -vector y. If the transfer function H(iω) is real,
then J [t, s] will be symmetric. This follows from the idea that a real transfer function
does not shift the data, because a symmetric J (or where h[t] = h[−t]) means that each
filtered point has equal contribution from a time before and the same time after that
point. The covariance in the filtered data is JΣJT or

Σf[t, s] =

N−1∑
m,n=0

J [t,m]Σ[m,n]J [s, n]

=
N−1∑
m,n=0

h[t−m]h[s− n]Σ[m,n] . (4.10)

If the noise is constant and uncorrelated, Σij = δijσ
2, this relationship simplifies to

Σf[t, s] =
σ2

N

N−1∑
k=0

∣∣∣h̃ [k]∣∣∣2 e 2πi
N
k(t−s)

= σ2
{
F−1

D

∣∣∣h̃∣∣∣2} [t− s] . (4.11)

The above equation is obtained by first moving to Fourier space h = F−1h̃. The filtered
data’s covariance matrix Σf is symmetric, real, and circulant for constant, uncorrelated
noise. If the filter roughly leaves yf[t] ∼ y[t] and the initial data are uncorrelated, the
filtered data will be roughly uncorrelated.

3A better approximation for Σ can be made by having M uncorrelated, repeated measurements of y[t],
{yi[t]}, and calculating the covariance as Σ[t, s] = 1

M

∑
i (yi[t]− ȳ[t]) (yi[s]− ȳ[s]) for ȳ[t] = 1

M

∑
i yi[t],

though this is often either difficult or impossible.
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One limitation that remains for the discrete data is that it relies on the size of the
data, N . Ideally, N would be sufficiently large such that considering a larger data-
set would not substantially alter the results. In particular, if the filter has significant
features at low-frequency, one could miss these effects when scaling down to filter a short
data stream; e.g., a high-pass filter to remove background drifts on scales larger than
the data being filtered. If the noise that is fairly stable and uncorrelated and h[t] is
described by a sharp peak, then Eq. (4.11) suggests that the filtered covariance differs
by the unfiltered covariance by a constant factor. Choosing an N sufficiently large that
all the features of the desired filter are obtained (and the appropriate h[t]), will yield a
good approximation of this factor. This is particularly useful when considering a sensor
that may have many on- and off-times but fairly stable noise during its on-time. Having
a single factor would allow one to predict how a filter attenuates (or increases) noise
regardless of the size of the data segment.

One can also consider the effect of a filter on noise in the continuum limit. In this
case, the covariance matrix can be thought of as a function Σ(t, s). Of course, one
should be careful about what it means for continuous data to have random Gaussian
noise, though these ideas are explored in areas like stochastic calculus. Normally, a
Jacobian matrix describes the derivatives of a vector function J = ∂yf/∂y whose matrix
multiplication is performed via summation, while in the continuum limit, this matrix
describes the functional derivative J = δyf/δy whose matrix multiplication is performed
via integration. Uncorrelated data would have a covariance matrix of the form Σ(t, s) =
δ(t− s)σ2(t). It follows that Eq. (4.10) and Eq. (4.11) become, respectively

Σf(t, s) =

∫ ∞

−∞
dx

∫ ∞

−∞
dy J(t, x)Σ(x, y)J(s, y)

=

∫ ∞

−∞
dx

∫ ∞

−∞
dy h(t− x)h(s− y)Σ(x, y) , (4.12)

and (if Σ(t, s) = σ2δ(t− s))

Σf(t, s) =
σ2

2π

∫ ∞

−∞
dω
∣∣∣h̃ (ω)∣∣∣2 eiω(t−s)

= σ2
{
F−1

C

∣∣∣h̃∣∣∣2} (t− s) . (4.13)

Interestingly, the continuum limit no longer includesN . Thinking in terms of frequencies,
the continuum would include frequencies larger than the sampling rate and oscillations
longer than the total sampling time. It follows that so long as the filter does not have
many high-frequency features that would be lost on the discrete data, the factor in
Eq. (4.13) provides a good description of how the filter attenuates the noise.

4.1.3 Examples of signals and filters

The methods for determining the effects of filtering on the data are described in the
previous two sections. It is useful to explore some specific examples of signals, filters,
and how filters affect the data.
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It is of particular interest here to explore peak-shaped signals, though one can easily
explore different signal shapes that may arise from some theoretical predictions. To give
some specific examples of signal shapes here, one can respectively define a Lorentzian,
Gaussian, sech, and square pulse as

yL(t; Γ, A, t0) :=
A
(
1
2Γ
)2(

1
2Γ
)2

+ (t− t0)2
, (4.14a)

yG(t;σ,A, t0) :=
A√
2πσ2

e−
(t−t0)

2

2σ2 , (4.14b)

ysh(t; Γ, A, t0) := A sech
(
t− t0
Γ

)
, (4.14c)

ysq(t; Γ, A, t0) :=

{
A |t− t0| ≤ Γ/2

0 |t− t0| > Γ/2
, (4.14d)

where the variables to the right of the semicolon characterize the shape/width, ampli-
tude, and position of a signal. Writing Fy = ỹ, the Fourier transforms of these signal
shapes are

ỹL(ω; Γ, A, t0) = AΓ
π

2
e−Γ|ω|/2−iωt0 , (4.15a)

ỹG(ω;σ,A, t0) = Ae−σ
2ω2/2−iωt0 , (4.15b)

ỹsh(ω; Γ, A, t0) = AΓπ sech
(π
2
ωΓ
)
e−iωt0 , (4.15c)

ỹsq(ω; Γ, A, t0) = AΓ sinc
(
ωΓ

2

)
e−iωt0 . (4.15d)

In addition to signals, it is useful to consider various filters explicitly. As with the
signals, there are many different types of filters that can be applied, so several examples
are given here.

Consider a rolling average for discrete data4 with N points and continuous data,

havg[t;T, t0] :=

{
1
T 0 ≤ t− t0 ≤ T − 1

0 else
, (4.16a)

h̃avg[t;T, t0] =
sinc

(
2π k

2N/T

)
sinc

(
2π k

2N

) e
− 2πi

N

(
t0+

T−1
2

)
k
, (4.16b)

havg(t;T, t0) :=

{
1
T |t− t0| ≤ T/2
0 |t− t0| > T/2

, (4.16c)

h̃avg(ω;T, t0) = sinc
(
ωT

2

)
e−iωt0 , (4.16d)

4Expressions and inequalities with discrete indices are “cyclic” so that they refer to the equivalent
value in [0, N − 1]. For example, if n ∈ [0, N − 1], then the inequality n+N < A should be understood
as n < A.
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where discrete variables are all integers in [0, N − 1] and continuous variables are real.
Note that the center of the rolling average given here is different for the discrete versus
continuous case.

Likewise, a simple band-pass filter that accepts (positive and negative) frequency
between two values

hbp[t; k0, k1] =


sin

(
2π

k1−1/2
N

t
)
−sin

(
2π

k0−1/2
N

t
)

N sin
(
2π t

2N

) t 6= 0

2(k1 − k0)/N t = 0

− δk00
N
−

{
(−1)t/N N even, k1 = N

2 + 1

0 else
, (4.17a)

h̃bp[k; k0, k1] :=

{
1 k0 ≤ ±k < k1

0 else
, (4.17b)

hbp(ω;ω0, ω1) =
1

π
[ω1 sinc (ω1t)− ω0 sinc (ω0t)] , (4.17c)

h̃bp(ω;ω0, ω1) :=

{
1 ω0 ≤ |ω| < ω1

0 else
, (4.17d)

recalling ω ∼ 2πrs
N k. As before, discrete variables are integers and continuous variables

are real. Here, there is the additional constraint that 0 ≤ k0 ≤ k1 < N
2 + 1 and

0 ≤ ω0 < ω1. Further, the band-pass filter describes a low-pass filter if k0 = 0 or ω0 = 0
and a high-pass filter if5 k1 = dN+1

2 e or ω1 →∞ (and sin(ω1t)
πt → δ(t)). Further, a low- or

high-pass filter can be used to describe all such band-pass filters. For example, denoting
yhp(t;ω0) as the data y(t) with an ω0 high-pass filter applied to it, an ω1 low-pass filter
is given by ylp(t;ω1) = y(t) − yhp(t;ω1) and an (ω0, ω1) band-pass filter is given by
ybp(t;ω0, ω1) = yhp(t;ω0)− yhp(t;ω1).

There are many different potential signals beyond those given in Eq. (4.14) and filters
beyond those given in Eq. (4.16) and Eq. (4.17), as well as combinations of filters. For
example, applying a T rolling average filter, Eq. (4.16), centered at t0 = 0 to the example

5Note the use of the ceiling function here, dxe, which rounds up to the nearest integer.
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signals, Eq. (4.14), also centered at t0 = 0, respectively yields

yL,avg(t; Γ, A, 0) =
AΓ

2

[
arctan

(
t+ T/2

Γ/2

)
− arctan

(
t− T/2
Γ/2

)]
, (4.18a)

yG,avg(t;σ,A, 0) =
A

2

[
erf
(
t+ T/2√

2σ2

)
− erf

(
t− T/2√

2σ2

)]
, (4.18b)

ysh,avg(t; Γ, A, 0) = AΓ

[
arctan

(
sinh

t+ T/2

Γ

)
− arctan

(
sinh

t− T/2
Γ

)]
, (4.18c)

ysq,avg(t; Γ, A, 0) =
A

T
×


T+Γ
2 + t −Γ+T

2 ≤ t ≤ −
∣∣Γ−T

2

∣∣
T+Γ
2 − t

∣∣Γ−T
2

∣∣ ≤ t ≤ Γ+T
2

min{T,Γ} |t| ≤
∣∣Γ−T

2

∣∣
0 |t| > Γ+T

2

. (4.18d)

Likewise, for a high-pass filter accepting frequencies in the range (ω0,∞), Eq. (4.17),

yL,hp(t; Γ, A, 0) = A

(
1
2Γ
)2

t2 +
(
1
2Γ
)2 × e− 1

2
Γω0

(
cos (ω0t)−

t sin (ω0t)
1
2Γ

)
, (4.19a)

yG,hp(t;σ,A, 0) =
A√
2πσ2

e−
t2

2σ2 Re
[
erf
(
σ2ω1 + it√

2σ2

)]
, (4.19b)

ysh,hp(t; Γ, A, 0) = AΓ

∫ ∞

ω0

cos (ωt) dω

cosh
(
π
2Γω

) , (4.19c)

ysq,hp(t; Γ, A, 0) =
AΓ

π

∫ ∞

ω0

sinc
(
ωΓ

2

)
cos (ωt) dω . (4.19d)

As shown before, the filters will also have an effect on the noise. For simplicity, the
noise will be assumed to be constant and uncorrelated Σ[m,n] = σ2δmn. First, for the
rolling-average, Eq. (4.16), applying Eq. (4.10) yields the filtered covariance matrix

Σavg[m,n] =
σ2

T 2
×

{
T − |m− n| |m− n| ≤ T
0 |m− n| > T

. (4.20)

For this, the correlation between two points decreases linearly to zero the further sepa-
rated the two points are. Observe that Σavg[m,m] = σ2/T and down-sampling every T
points removes all correlation as one would expect. For the band-pass filter, Eq. (4.17),
applying Eq. (4.11) and observing that

∣∣∣h̃bp

∣∣∣2 = h̃bp, yields

Σbp[m,n] = σ2hbp[m− n] . (4.21)

4.2 Consistency check
In order to determine if an event signal is detected across the GNOME network, some
system is needed to determine whether the data across the network are consistent with
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what one would expect. Ideally, this system would minimize the rate of false-positive
events due to noise while reliably detecting true-positive events.

Regardless of its nature, a signal in a GNOME magnetometer will have some am-
plitude that will depend on the vector field or gradient direction along the sensitive
axis of the magnetometer. For example, coupling between atomic spins and axion-field
gradient, Eq. (3.12), has an amplitude proportional to the axion field gradient and the
dot product between the sensitive axis and gradient direction. A localized feature in the
axion field, e.g. a domain wall, that crosses the Earth will have some direction, speed,
and characteristic magnitude profile. For planar objects and objects much larger than
the Earth/network, the network will observe the same magnitude profile — up to a pre-
dictable attenuation factor determined by direction — with some signal delay between
sensors.

Information about signal amplitudes in various sensors and their relative delays can
be used to understand the magnitude and velocity of the originating signal. This infor-
mation can be used to identify potential signals, determine their (most-likely) character-
istics, and determine whether they are consistent with an expected signal. Identifying
a class of signals (e.g., signal magnitudes and widths) that can be identified with the
analysis algorithm will describe the sensitivity of the experiment. The sensitive “region”
in terms of observed parameters (e.g., magnetic field magnitude and signal width) can
then be translated into a region of theoretical parameters (e.g., coupling strength and
axion mass).

In this section, we discuss two measurements that can be used to determine con-
sistency between what is measured and what one would expect: signal magnitude and
direction. For magnitude, the signal amplitudes in each sensor are compared to see if
they are consistent with what one expects from a single object passing the network. For
direction, the velocity of the (planar) object is compared to the direction of its pseudo-
magnetic-field gradient. Due to the approximate planar symmetry of these objects at
the scale of the network size, only the component of the velocity/gradient perpendicular
to the plane is measurable. In either case, some quantitative measure of consistency is
determined. A threshold on this measurement will determine whether or not a signal
was detected. The appropriate thresholds are determined through false-positive and
false-negative studies of the data and are described later in Sec. 4.6 and Chapter 7.1.

4.2.1 Signal amplitude and sensitivity

The sensitivity of GNOME is partially dependent on the exact manner by which the data
are analyzed. In any case, GNOME consists of multiple magnetometers with different
noise characteristics and with directional sensitivity to fields. Additionally, the noise
characteristics can change and magnetometers can turn on or off over time. It is then
useful to define a flexible definition of network sensitivity.

For simplicity, we consider the situation in which neither the network (or Earth) nor
the object crossing the network are accelerating. A major implication of this assumption
is that the Earth is not rotating; or at least that the object crosses the Earth on a
timescale much less than one day. To put this in perspective, if an object traveling took
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two hours to cross the Earth, it would need to travel at less than 1 % of the galactic
orbital velocity, vc = 220 km/s — the typical speed of dark matter objects according to
the SHM.

Under the above assumption, the strength of the signal can be described by a sin-
gle vector m. The signal in each magnetometer is described by some function of m,
si = di(m), though this signal will generally appear at different times for different mag-
netometers. Typically, di(m) is linear so that si = di ·m, where d̂i is in the sensitive
direction and ‖di‖ reflects the coupling strength to the ith magnetometer6. One can
combine the signals from all magnetometers s into a single linear equation with the
matrix D whose rows are di,

Dm = s . (4.22)

In practice, the signals have some statistical noise so Eq. (4.22) is not an exact
equation. The noise in the magnetometers can be described by the covariance matrix
Σs. Assuming the noise in the different magnetometers are uncorrelated, Σs is a di-
agonal matrix whose ith element in the diagonal is the variance in the noise of the ith
magnetometer. Minimizing

χ2 := (Dm− s)T Σ−1
s (Dm− s) (4.23)

(see Appendix A.2) yields

m = ΣmD
TΣ−1

s s for Σm =
(
DTΣ−1

s D
)−1

. (4.24)

Further, the χ2 from Eq. (4.23) yields useful statistical information for testing the con-
sistency of the signal with what one would expect. In particular, for N active sensors,
the right tail of the χ2-distribution with (N − 3) degrees-of-freedom yields a p-value. A
p-value close to zero (large χ2) implies that the signal is inconsistent, while a p-value
close to one (small χ2) implies good consistency.

The magnitude-to-uncertainty ratio, ζ is the strength of the signal with respect to
its uncertainty. This can also be thought of as the signal-to-noise ratio for the collective
signal across the network. In other words,

ζ =

√
mTΣ−1

m m . (4.25)

This quantity will be useful to determine the significance of a signal.

4.2.2 Directional consistency

In the previous section, consistency is discussed with respect to the amplitude of a signal
as observed in magnetometers in the network. In addition to signal strength, there is

6For example, different magnetometers may couple to the axion field in different but predictable
ways. The magnitude of di can be used to normalize this difference so that if a signal passes any
two magnetometers with the same direction relative to their respective sensitive axis, than the two
magnetometers will effectively measure the same amplitude after this correction.
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also timing information that can be used to test the consistency of a signal with the
data; namely as it relates to the velocity of the observed object. For planar objects,
the direction of the field gradient and velocity are the same. In practice, there are two
main ways of determining the velocity of an object which are described below: either
calculating a best-fit velocity from the data or through “scanning” the data with different
velocities.

If calculated, the timing of at least five signals in individual magnetometers is needed:
one to use as reference, three for each spatial dimension, and at least one more for
statistics. This will generally require more than five sensors as magnetometers whose
sensitive axes are perpendicular to the gradient will not observe a signal. This method
also requires some guarantee that the signals in the individual sensors are from the same
event. Once the timings are known, the velocity v can be determined up to uncertainty
by solving a linear equation. The direction of v can be then be compared to m for
statistical consistency.

Alternatively, one can scan over different velocities. In this case, the velocity of the
object is assumed, and the analysis is repeated for many different velocity assumptions;
in other words, we “scan” over different object speeds and directions. The direction of
m is then compared to the respective scanned direction. Scanning over more velocities
is needed to better distinguish quickly changing signals (e.g., due to short duration and
large amplitude). Because the velocity is not being measured, this method will generally
only require four sensor; three for each spatial dimension and at least one more for
statistics.

These two methods come with their own advantages and disadvantages. One ma-
jor disadvantage to calculating the velocity is that it requires a signal be identified in
individual magnetometers. This further limits searches to large, localized signals and
may miss smaller signals. Additionally, because the magnetometers are insensitive to
vector fields perpendicular to their sensitive axis, more active sensors would be needed to
test directional consistency by calculating the velocity compared to scanning velocities.
However, scanning velocities comes with the disadvantage that it requires analyzing the
entire data set for each scanned velocity. Additionally, some signals may be lost if the
object’s velocity is missed because not enough velocities are scanned (determining how
many velocities to scan is discussed in Sec. 4.4). At present, the analysis method takes
use of scanning velocities for the consistency check. The simplicity from not needing
to find signals in individual sensors is a major advantage However the large number of
calculations needed to scan over velocity space remains a limitation in the analysis.

Some method must also be devised to determine if two vectors, m and v, have the
same direction. For this case, the two vectors will agree if they are either parallel or
anti-parallel. Calculating the absolute angle between two vectors, m and v, amounts to
calculating

θ = arccos

(
m · v
‖m‖‖v‖

)
.

One would like to then determine a statistical measure of how much θ deviates from 0 or
π. The main issue with simply applying the typical propagation-of-errors to this equa-
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Figure 4.2: Pictoral representation of comparing the directions between two vectors m
(blue) and v (red). The elliptoids at the end of the vectors represent their uncertainty,
and a plane is drawn containing the two vectors and normal to n. The angle between
m and v is given by θ. This angle can be positive or negative or negative depending
on whether it runs counterclockwise with respect to the plane’s normal n (here, it is
positive).

tion is that propagation-of-errors relies on the assumption that the formula is roughly
linear around where it is being evaluated. However, cos θ around where cos θ = ±1 is
precisely where the function has no linear component; a small perturbation in the vec-
tors results in a vanishingly small change in θ. This problem is avoided when working in
two dimensions, because there is a canonical orientation; one can meaningfully define a
clockwise and counter-clockwise angle. In this case, the calculation of the angle remains
linear, notably a linear perturbation in the vectors may result in a sign change. One
solution to this is to define an orientation via an axis of rotation whose perpendicular
plane contains m and v with the orientation defined via a right-hand rule. A pictoral
representation of this is given in Fig. 4.2. The main problem with this method, aside
from the added complexity, is that it relies on defining a plane of rotation that may also
have uncertainty in its definition.

A simpler alternative would be to apply some condition on the absolute angle between
the two directions regardless of the uncertainty in the directions. The main concern then
is in how one might designate a meaningful threshold for agreement. This becomes less
of an issue when scanning over the velocities because the typical angular spacing in
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the scanned velocities provides a meaningful reference for how much the two angles can
deviate. If m deviates from v by an angular spacing much larger than the angular
spacing in the scanned velocities, then one would expect, if the signal were real, that
looking at an adjacent scanned velocity would yield better agreement. The directional
consistency threshold will be given in terms of the angular spacing such that increasing
the threshold will reduce how strict the directional consistency check is.

4.3 Geometric picture
To gain a novel understanding of the amplitude consistency check, it helps to imagine
the χ2-minimization problem in geometric terms. This is described first in general terms
and then applied to the relevant problem.

The main geometric picture to consider is a metric space7 on the set of measure-
ments, X, which includes all measurements involved (e.g., magnetic field measurements
in all GNOME sensors). Let x be a given measurement with uncertainty given by the
covariance matrix Σx. The distance between x and y is defined by

d(x,y) =

√
(y − x)T Σ−1

x (y − x) . (4.26)

A “theory” is parameterized by p ∈ P (e.g., the velocity of an object) and is described
by the function y : P → X, where y(p) describes the expected measurements for the
parameter, p. The set y(P ) ⊂ X describes a hypersurface of possible measurements
assuming the theory is true. From this picture, it is clear that the dimension of the
measurement space X must be larger than the dimension of the parameter space P in
order to be able to use a measurement to determine the appropriate parameter p so that
y(P ) “fits” in the space X.

The χ2-minimization problem is to minimize (as in Eq. (4.23))

χ2(p) := (y(p)− x)T Σ−1
x (y(p)− x) (4.27)

as a function of p ∈ P . Observe, then, that the χ2 acts as the distance function
χ2(p) = d2(x,y(p)), so minimizing χ2 is equivalent to finding the point(s) in y(P )
that is closest to x. Likewise, the χ2 value for p is simply the square of the distance
between y(p) and the measurement x.

It may help to define a “normalized” measurement space X̃ where x→ x̃ := Σ
−1/2
x x

and y → ỹ := Σ
−1/2
x y. Here, Σ1/2

x is the “square-root” of the covariance matrix8, Σx.
7Here, “metric space” refers to the formal mathematical object consisting of a set and a real, non-

negative function d(x, y) that takes two elements of the set and returns the distance between those
elements. This function is commutative d(x, y) = d(y, x), zero if and only if the two inputs are the same,
and follows the triangle inequality d(x, y) + d(y, z) ≥ d(x, z).

8This will be well defined in this case, because Σx is real, symmetric, and (strictly) positive definite.
This means that one can apply the spectral decomposition theorem to decompose Σx = QDQT where
D is a diagonal matrix whose elements are the eigenvalues (all positive) and Q is an orthogonal matrix
whose columns are the respective eigenvectors. Then, Σ

1/2
x = QD1/2QT where the square-root acting

on the diagonal matrix will act on the elements in its diagonal.
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Under this construct, the distance formula becomes d(x,y) = d̃(x̃, ỹ) = ‖ỹ − x̃‖, the
typical L2 norm. In effect, what has been done is that the signal was normalized by the
noise; if the noise in each sensor is uncorrelated, Σx is a diagonal matrix whose elements
are the variance, so Σ

−1/2
x is a diagonal matrix whose elements are the inverse standard

deviation.
Now consider a linear theory where y(m) = Dm for some known matrix D, as in

the the amplitude consistency check. Here, y(P ) is a flat hyperplane that intersects
the origin. In the linear case, as previously shown, χ2-minimization is explicitly solv-
able. What is particularly interesting is that the magnitude-to-uncertainty ratio from
Eq. (4.25) becomes

ζ =

√
mTΣ−1

m m

=

√
(Dm)TΣ−1

s (Dm)

=

√
yTΣ−1

s y

= ‖ỹ‖ .

Now, both the magnitude-to-uncertainty ratio ζ and χ2 can be interpreted as distance
measurements. Specifically, decomposing the measurement x into a component perpen-
dicular and parallel to the y(P ) hyperplane, then

√
χ2 is the perpendicular distance

while ζ is the parallel distance.

4.4 Velocity lattice

The analysis described here relies on considering signals caused by objects coming from
different directions. In order to ensure objects are observed regardless of their velocity
(within reason), the analysis algorithm scans over a region in velocity space; i.e., the
three-dimensional space of possible velocities. In order to accomplish this, a scan over
discrete velocity in a lattice9 is defined. This lattice must be sufficiently dense as to not
miss signals while not so dense as to be computationally impractical.

Each velocity in the lattice will serve two primary functions: correcting for delays
between signals observed by different sensors and directional consistency. To understand
how to adjust for delays, let magnetometer i be at10 xi with the signal si(t), and let
some domain wall have perpendicular velocity v⊥. The timing delay with respect to the

9Here, “lattice” is being used informally to describe some array with some conditions on typical
spacing between points, but may not have a simple relationship between the location of points (e.g., via
a discrete translational symmetry).

10The exact coordinate system is not particularly relevant. For example, a galactic coordinate system
is useful for orienting with respect to the SHM. However, it is often more practical to define an Earth-
centered coordinate system wherein the origin is placed at the center of Earth, the z-axis is along the
Earth’s axis, the x-axis points from the Earth’s center to (0◦ N, 0◦ E), and the y-axis follows from the
right-hand rule.
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Figure 4.3: Visualization of time-shifting signals on simulated data. Each color repre-
sents a different sensor and vertical offsets are used for clarity. (left) Signals are inserted
in the position marked by the boxes. (right) Signals are shifted over by their respective
∆t.

origin would then be
ti =

v⊥ · xi

‖v⊥‖2
. (4.28)

Shifting signals
si(t)→ si(t− ti) (4.29)

will remove delays between signals (see Fig. 4.3). The time t is then the time with respect
to a hypothetical sensor at the origin. It should be noted that additional corrections
may be needed to account for the Earth’s rotation11 (or other acceleration and relative
motion of sensors in the network). In addition to adjusting for delays, the velocity is
also used as a directional consistency check. This is discussed in Sec. 4.2.2.

Each point on the velocity lattice will effectively cover some region of velocity space.
Covering all speeds and directions would require an infinitely large lattice; small speeds
require asymptotically more lattice points due to large signal delays. One solution is to
consider an expected distribution of object velocities and attempt to cover some per-
centage of that distribution at the cost of a higher false-negative rate. This distribution
is the SHM (described in Sec. 2.7).

4.4.1 Lattice requirements

The density of points needed for a given volume of velocity space can be determined by
considering by how much the relative timing of a signal varies based on the direction
and speed of the signal. Consider two sensors located at x1 and x2, so ∆x = x2 − x1,

11For particularly slow domain walls, 2R⊕/v⊥ & 1 day, merely shifting the time of a signal will fail
because a single domain wall can be observed multiple times.
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and a domain wall with (perpendicular) velocity v⊥. The relative timing is then

∆t =
∆x · v⊥
v⊥ · v⊥

=
∆x

v⊥
cos (θ) , (4.30)

where θ is the angle between v⊥ and ∆x. Now, consider a small perturbation dv⊥ or
dθ,

d∆t = −∆x

v2⊥
cos (θ) dv⊥ −

∆x

v⊥
sin (θ) dθ .

Now, the density for the lattice can be determined by demanding that the relative timing
change by less than τ so |d∆t| < τ . Further, let all the sensors be contained in a sphere
of radius R (so ∆x ≤ 2R) and make no assumption on the angle θ (so |sin θ| ≤ 1 and
|cos θ| ≤ 1). This leads to the following conditions on the spacing between the angles
and speeds of points in the velocity lattice,

∆v⊥ <
τv2⊥
2R

, (4.31a)

∆θ <
τv⊥
2R

. (4.31b)

A lattice that satisfies both of these conditions will be sufficiently dense to guarantee
that error in the timing will not exceed τ . Some natural choices for this is to have
R & R⊕ ≈ 6371 km because GNOME is located on the Earth and τ approximately the
sampling period of the data (or less).

Defining a lattice that satisfies Eq. (4.31) can be accomplished using a variety of
algorithms. Though there are many well-established, three-dimensional lattices, they
do not typically follow a spherical pattern that would be necessary here. Instead, a
Fibonacci lattice is used to cover spheres at different radii with sufficient angular density.
The idea of this lattice is that each sequential point on the surface of the sphere differs by
some angle that is the product of the irrational number 2πϕ for golden ratio ϕ := 1+

√
5

2 .
The polar angle is then chosen to evenly cover the sphere. A sphere with Nθ points
covering a polar range up to Θ will then consist of the points

(θ, φ) ∈
{(

arccos

(
1− 1− cosΘ

N
(j + j0)

)
, 2πϕj

)}∣∣∣∣Nθ−1

j=0

, (4.32)

where j0 ∈ [0, 1) is a phase choice. If j0 = 0, the pole is included, and j = 0.5 is often
used to give a more “random” lattice.

In order to match the density requirements, Eq. (4.31), there must be a sufficiently
large number of points in each Fibonacci lattice and enough lattices are placed with
different radii (i.e., speeds). To understand the needed density of points on a lattice,
consider the solid angle covered by a circular region whose radius spans a ∆θ/2 arc on the
sphere. This solid angle is 4π sin2 (∆θ/4) steradians. Observe that this can be thought
of as the solid angle covered by a single point of the lattice with the appropriate spacing,
because two such points with adjacent circular regions will be ∆θ apart. Considering
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Figure 4.4: Example of velocity lattice using a series of Fibonacci spheres. Color desig-
nates different speeds and grey spheres of constant speed are used as visual guides.

that there are 4π sin2 (Θ/2) steradians covered by the polar angle Θ, the number of
points should be

Nθ &
sin2 (Θ/2)

sin2 (∆θ/4)
. (4.33)

The lower bound here assumes that the lattice points are perfectly placed to exactly
cover the desired region of the sphere. However, this is not generally true, particularly
for Nθ > 2, which would leave holes and redundancies if the lower bound was used
exactly.

In addition to ensuring some angular density, enough speeds are needed to satisfy
Eq. (4.31a). Let {vn} be the set of scanned speeds for n = 0, 1, . . . , Nv. These satisfy
the equation ∫ vm

vn

dv⊥
∆v⊥

= m− n ,

noting that ∆v⊥ is a function of v⊥. With this constraint in mind and setting vNv−1

with a desired v0 (i.e., to cover a range that includes [v0, vNv−1], but may also include
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lower speeds), the scanned speeds are

vn =

[
1

vNv−1
+ (Nv − 1− n) τ

2R

]−1

for Nv =

⌈(
1

v0
− 1

vNv−1

)
2R

τ
+ 1

⌉
. (4.34)

A visualization of a velocity lattice generated as described here is shown in Fig. 4.4.
Because larger lattice size corresponds to additional resource requirements, it helps

to gain a better understanding how lattice size scales with the input parameters: Θ, v0,
vNv−1, τ , and R. Without any approximations or constraints, the total number of points
will be

N =

⌈(
1
v0

− 1
vNv−1

)
2R
τ

⌉
∑
n=0


sin2 (Θ/2)

sin2
(

1
4

(
n+ 2R

τvNv−1

)−1
)
 . (4.35)

This equation is somewhat cumbersome in terms of understanding how lattice scales
with the various parameters. Consider the limit vNv−1 → ∞ (and omitting the lattice
point at infinity) as well as the case wherein 2R

τ � v0. Under these conditions,

N ≈ 16

3

(
2R

v0τ

)3

sin2 (Θ/2) . (4.36)

4.4.2 Lattice optimization

Above, a method was described to generate a velocity lattice for covering some volume
of velocity space. However, the exact volume to cover is a matter of choosing a region
containing some percent of the EPDF, Eq. (2.25). There are many ways of accomplishing
this, so the region will be chosen to minimize the number of lattice points.

The shape of the region in velocity space to use is entirely arbitrary. However,
keeping in mind that there is an axial symmetry in the distribution about the Earth’s
galactic velocity, vL, it is natural to require the region to likewise have this symmetry.
Meanwhile, the velocity lattice requires more points at lower speeds; requiring smaller
spaces between both the angular and speed spacing. Thus, the family of regions to be
considered here will consist of the volume bounded within some polar angle Θ of −vL
and further from the origin than some speed v⊥.

First, one can constrain the shape of the region covered by the velocity lattice by
observing the Cumulative Distribution Function (CDF); see Fig. 4.5. Demanding that
the CDF achieve (at minimum) some percentage will constrain the polar angle and
minimal speed of the region. The larger this percentage, the smaller chance of missing
a signal (assuming that the signals follow the SHM) but at the cost of requiring more
lattice points.

After constraining the shapes of the region covered by the velocity lattice to guarantee
some coverage of the SHM EDPF, what remains is to minimize the resource requirements;
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Figure 4.5: The CDF in terms of speed and polar angle Θ relative to −vL. That is, the
probability that an observed event is oriented within the given polar angle and whose
speed is greater than the given speed. The thick black line is drawn at 95 %. For this
CDF, vc = vL = 220 km/s and ve = 550 km/s.

namely the number of lattice points needed to cover the region. After the previous
constraints, the family of regions is one-dimensional and can be parameterized by polar
angle coverage. Applying Eq. (4.36) to the minimum speed and polar angle coverage of
this family of regions, one obtains the number of lattice points needed for the different
regions (see Fig. 4.6). One observes that the case in which all directions are covered is
optimal.

4.5 Procedure

Throughout this chapter, the concepts needed to analyze the data from GNOME were
established. In this section, these ideas will be summarized.

The first step is naturally data collection. Sensors in the GNOME network are
operated by various groups around the world. The collaboration will often designate
specific times, referred to as “Science Runs,” to operate as many sensors in the network
as possible. Other times are used for upgrades, maintenance, as well as off-run operation.
The data have been collected for the following science runs:

• Science Run 1 (6 June–5 July 2017) consisted of six sensors.

• Science Run 2 (29 November–22 December 2017) consisted of nine sensors.

• Science Run 3 (1 June 2018–10 May 2019) consisted of ten sensors.
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Figure 4.6: Plots relevant for optimizing the lattice size. The SHM uses the same
conditions as in Fig. 4.5 with 95 % probability. (a) The minimum speed vs polar angle
coverage when demanding 95 % coverage of the SHM. For full polar angle coverage, the
minimal speed would be 77 km/s. (b) The lattice size as a function of polar angle
coverage. The size is arbitrary as it varies approximately by a proportionality factor
based on τ .
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• Science Run 4 (30 January–30 April 2020) consisted of nine sensors.

• Science Run 5 (23 August–31 October 202112) consists of eleven sensors.

The data are recorded in centralized servers to allow for analysis of every sensor’s data.
The raw magnetometer data is stored along with sanity channel data that states whether
the data at that time is reliable based on ancillary information. Additionally, metadata
are recorded such as calibration information, sensor location and orientation, and timing.

After data are collected, they need to be read by the analysis algorithm. First the
data are read into the program and calibrated into magnetic field units. Then, data
with bad sanity are removed. Filters are applied to remove systematic noise. This
includes powerline frequencies at 50 Hz or 60 Hz depending on the local electric grid and
a high-pass filter to remove long-term drifts and constant offset in the magnetic field
measurement. This step of reading and processing the data can be performed through
a buffer. This allows one to read segments of data into memory as opposed to all data.

A velocity lattice is generated using requirements and techniques described in Sec. 4.4.
Each velocity corresponds to a different time-shifting, Eq. (4.29). If there is directional
bias in the lattice based around galactic coordinates (e.g., to prefer velocities opposite to
that of Earth’s motion in the galaxy), then the distribution would change as the Earth
rotates. In this case, the amount by which time is shifted also varies with time, and
there may be a slightly more complicated process for synchronizing signals. However,
this issue is moot if all directions are covered. From this stage, one can make efficient
use of multi-processing with a process for each velocity in the lattice. Analyses with
different time-shifts are essentially independent.

Once the data are time-shifted so that potential signals are aligned, the collective
data across the network are tested for consistency with a domain wall (or other signal
pattern of interest). This amounts to following the procedures described in Sec. 4.2 at
every time to determine a magnitude vector that best agrees with the observed signals
as well as a p-value quantifying this agreement. Consistency amounts to demanding that
the magnitude vector is in roughly the same direction (within some threshold) as the
respective velocity vector used to shift the signals and that the p-value is below some
threshold. How this threshold is determined is described in Sec. 4.6.

There may be observed, consistent signals at consecutive times or with different
velocities at the same time. These are likely the result of a single event and should be
grouped together as a single event to prevent double-counting. Once grouped, one can
take, e.g., the time and velocity with the largest p-value as representative because it
shows good agreement with expectation. One may further require that the event have
some minimal magnitude-to-uncertainty ratio in order to avoid counting the many “null
events” in which a signal is found to be consistent with zero. The characteristics of
the events are recorded: time, velocity, magnitude vector, p-value, and magnitude-to-
uncertainty ratio.

Once recorded, the potential events can be used to argue for discovery. However,
as one would expect the background to produce some number of false-positive events

12Ongoing.
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regardless of whether or not a domain wall was discovered, some care is needed. Either a
very large signal or many smaller signals would point to such a discovery. In either case,
a discovery of ALP domain walls or lack there of would allow a better understanding of
the possible characteristics of ALPs or similar particles. Further discussion of translating
results to parameter space is given in Chapter 5.

4.6 Choosing thresholds
There are a few thresholds discussed as part of the analysis algorithm, especially for
testing consistency between observation and the expected signal from an ALP domain
wall; namely p-value and directional consistency. The directional consistency threshold
is defined as the proportion of the angular separation between the magnitude and ve-
locity vectors and the angular separation of velocities in the lattice (at the respective
speed). Additionally, understanding the distribution of magnitude-to-uncertainty ratios
is needed to determine the existence of ALP domain walls and determine constraints.

Determining appropriate thresholds to use in the analysis relies on understanding the
characteristics of the data being analyzed. This includes understanding what type of
signals will reliably be observed in the data as well as how likely it is to find false-positive
signals. These heavily rely on understanding the characteristics of the background data.
In many experiments, background data can be taken as part of an ancillary experiment
by taking data with foreground signals either removed or blocked. However, this is
not possible for GNOME. Instead, background data are generated by combining data
from random times in all the sensors in the network (including times in which sensors
were inactive) via “time-shuffling.” These data are then treated as if they were taken
synchronously. As long as the data are shuffled by times much larger than a domain-wall-
crossing time, any foreground signals in an individual magnetometer should be rejected
as they do not appear in other magnetometers.

A false-negative analysis is used to determine how reliable the analysis algorithm can
identify signals. This analysis consists of inserting signals into time-shuffled background
data. The false-negative rate is the percent of inserted signals that are missed, and the
percent of inserted signals that are observed is the detection probability. The rate varies
with the thresholds and characteristics of the inserted signals. So long as the inserted
signal is large enough to be distinguishable from noise over the time used in the shuffled
data, the choice of thresholds should not play a major role; determining what types of
signals should be observable is explored in Chapter 5. One can demand a minimal detec-
tion probability to restrict the p-value and directional consistency thresholds. Further
restrictions can be made to minimize the false-positive rate.

The false-positive analysis is used to characterize the background data. This analysis
consists of running the analysis algorithm on time-shuffled background data without
inserted signals and determining the rate of potential events; particularly with respect
to their magnitude-to-uncertainty ratios. This information is used to determine whether
the signals measured by GNOME can be explained by the background alone.
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Chapter 5

Sensitivity

The sensitivity region describes the class of signals that could be observed by an exper-
iment. This can be described in terms of experimental parameters, such as the directly
observed signal, or theoretical parameters, such as coupling strength. Generally, one
wants to understand the region of physical parameter space to which an experiment is
sensitive. There could be multiple reasons that a signal is not observed; perhaps the
experiment is simply not sensitive enough to observe the signal, or the signal is too
rare to be observed in the finite data available. These conditions restrict the sensitivity
region up to some level of confidence. If nothing is observed from the experiment, the
sensitive region can be understood as the excluded region of physical parameter space.

The sensitivity is formally defined in Sec. 5.1. Physical parameters related to the
ALP theory described in Chapter 3 are connected to the class of observable domain-wall
signals in Sec. 5.2. Methods for generating an exclusion/sensitivity region of parameter
space for an experiment are described in Sec. 5.3. Finally, the manner in which the
sensitivity of the network scales with its size and other parameters is discussed in Sec. 5.4.

5.1 Network sensitivity

In order to establish the types of signals that can be detected, first the sensitivity of the
network must be assessed. The exact sensitivity depends on the analysis methods, so
first an abstract approach will be used. Consider a function A(m; Σs, D) which returns
the strength of the collective response given the magnetometer characteristics D (namely
the sensitive axes) and magnetometer noise Σs for a signal m. One could potentially
consider other information (e.g., the time of the signals) but this should suffice for this
work. A signal is observable if A(m; Σs, D) > ζ0, where ζ0 is some threshold.

The sensitivity of the network can be described by the minimal signal needed to
induce an observable signal. Typically, A is absolutely scalable1, so one can re-write the

1Absolutely scalable means that one can “pull-out” a positive scalar from the function. For example,
let f be an absolutely scalable function, then f(v) = ‖v‖ f(v̂). As long as A(m) is strictly monotonically
increasing in ‖m‖, one can always rescale it to be absolutely scalable. The only conditions where this
breaks down is when larger signals do not imply a signal is more observable.
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condition for a signal to be observable as

‖m‖ > βζ0(m̂) :=
ζ0

A(m̂; Σs, D)
, (5.1)

where βζ0(m̂) is the minimal magnitude needed to observe a signal in the m̂ direction
with the threshold ζ0. Because βζ0 = ζ0β1, one can define β := β1 for simplicity.

The sensitivity described in Eq. (5.1) is still dependent on the direction of the signal,
m̂. It is often useful to consider a direction-independent sensitivity. There are a couple
manners by which this can be achieved. For example, the sensitivity could be averaged
over some distribution of directions ρ(m̂)d2Ω,

β̄ =

∫
d2Ω ρ(m̂)β(m̂) , (5.2)

or the largest (and “worst”) sensitivity,

β̄ = max
m̂

β(m̂) . (5.3)

The latter case will be of particular interest as it is also an upper-bound for the former.
That is, any bounds on parameter space made with Eq. (5.3) will contain the same
bound made with Eq. (5.2).

The generalized method of describing sensitivity can be applied to the analysis meth-
ods used for the GNOME analysis. For this, let A be the magnitude-to-uncertainty ratio
from Eq. (4.25), so β̄ becomes

β̄ = max
m̂

(
m̂T

(
DTΣ−1

s D
)
m̂
)−1/2

. (5.4)

This can be maximized by solving for the eigenvalues for
(
DTΣ−1

s D
)
. If m̂ is an eigen-

vector with eigenvalue λ, then β(m̂) = λ−1/2. By expressing m̂ in the eigenbasis, it
is clear that the lowest and highest eigenvalues will determine the extrema for β(m̂).
In other words, the above equation has a maximum of β̄ = λ

−1/2
min where λmin is the

smallest eigenvalue of
(
DTΣ−1

s D
)
. Likewise, the corresponding eigenvector would be

the least-sensitive direction.

5.2 Connection to physical parameters

The network sensitivity will translate into some set of physical parameter space of signals
that can be observed. In this section, focus will be placed on whether or not an object
will be observed given that it crossed the network and not on whether an object is simply
too rare to be observed over the experiment time.

Particular focus will be placed on axion domain walls (Sec. 3.1) with linear-spin
coupling (Sec. 3.2.1). At the center of the domain wall, where the signal is strongest, the
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signal strength is characterized by Eq. (3.15), defining the normalized pseudo-magnetic
field strength,

gF,jBj
σjηj

=
4

µB
maξ =: Bp . (5.5)

The magnitude vector m is defined precisely so that

Bp = ‖m‖

by including a factor of gF,j

σj
in each row of D.

The network sensitivity is related to physical parameters by noting the connection
between m given by Eq. (5.5) and the condition for a signal to be observable, Eq. (5.1).
Namely that if a signal is observable with magnitude ζ0β̄, then one should be able to
observe a domain wall in an axion field with physical parameters (ma, ξ) if the following
is satisfied,

1

ζ0Afilt(ma)

4maξ

µB
=

B′p
Afilt(ma)

> β̄ , (5.6)

where Afilt is an attenuation factor due to filtering that depends on signal mass (or
width) and B′p := Bp/ζ0 is the strength of a the signal needed to induce a magnitude-
to-uncertainty ratio of one (prior to filter attenuation).

Though linear coupling between fermionic spins and the gradient of an axion domain
wall was considered here, other objects and interaction terms could be included with
similar methods. All that one needs is a method of translating physical parameters to
the strength of an induced signal. The analysis method described here focuses on the
largest magnitude that a signal induces, independent of the signal shape. This means
that the ability to observe a signal does not depend on the signal shape; though filters
may significantly attenuate signals.

5.3 Sensitive region of parameter space

Beyond determining if a given object could be observed, one must consider how likely
the object would pass through the network. This is based largely on the density of the
objects. The typical rate of events is given by

r =
v̄ρDW
σDW

=
v̄ρDW

8mafa
2 , (5.7)

where σDW = 8mafa
2 is the surface tension (Eq. (3.9)).

Understanding the likelihood of observing an event relies largely on Poissonian statis-
tics. These ideas are explored in-depth in Appendix C. The Poissonian probability mass
function (PMF), i.e., the probability of observing k events given that µ are expected, is
given by

P (k;µ) =
µk

k!
e−µ . (5.8)
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There are two approaches for determining the significance of an event considered
here. In the first approach, one considers only the probability of observing at least one
event. The signal from this event must be large enough that it could not be explained by
background alone. For this, the minimum magnitude-to-uncertainty ratio threshold ζ0
must be fairly large. However, if no such events are found, one can generate bounds using
the largest-observed magnitude-to-uncertainty ratio because there were no larger event.
This method is the “loudest-event” method. The second approach involves comparing the
rate of events from the background measurements to the observed rate at all magnitude-
to-uncertainty ratios. This method will be referred to as the “extended” method as the
loudest-event method can be understood as a particular limit of the extended method.
The basis for the extended method is described in Appendix C.3.

5.3.1 Loudest-event method

In the first approach, one must consider the probability of observing no signals. In
addition, even if one would expect an event to be observable, it is possible for it to be
missed due to stochastic noise or other limitations in the analysis. Let ε ∈ [0, 1] be
the detection efficiency and µ = rT̃ be the expected number of events for event rate r
(including those missed by the analysis) and active time T̃ , then the probability that no
events are observed is

∞∑
k=0

(1− ε)k

(
rT̃
)k

k!
e−rT̃ = e−εrT̃ . (5.9)

Note that the factor of ε can be absorbed into r.
One can then define a lower bound on observable event rates RC̃ at confidence level

C̃ by demanding that there be 1− C̃ chance of observing no events, or

r ≥ RC̃ =
− log

(
1− C̃

)
εT̃

. (5.10)

If no events are found, the rate RC̃ can be understood as an upper bound on the event
rate. Combining Eq. (5.7) and Eq. (5.10) yields the bound on observable physical pa-
rameter space (recovering factors of ~ and c)

fint ≤
~
ξ

√√√√ −v̄ρDWε

8ma log
(
1− C̃

) T̃ , (5.11)

recalling fint := fa/ξ. Also, the time T̃ is dependent on the time during which the
network is sensitive to the given parameter space. This may seem to be circular, but the
left-hand side of Eq. (5.11) depends on the interaction strength fint while the right-hand
side depends on the mass ma and ratio ξ; noting from Eq. (5.5) that the strength of a
signal depends on (ma, ξ) and filter attenuation depends only on ma. Further discussion
of the active time is given in Sec. 5.3.3.
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5.3.2 Extended method

Beyond the loudest-event method, the extended method tries to find any excess event
rate above the background; including under conditions where there is a large false-
positive rate. For this, one establishes a false-positive rate (with respect to total ex-
periment time, T ) as a function of the magnitude-to-uncertainty ratio threshold ζ0.
Likewise, using a false-positive background data analysis, one can establish the expected
rate of positive signals in the absence of domain walls. Using methods described in
Appendix. C.3, one can establish an upper-bound on the rate RC̃ at confidence C̃ to ex-
clude the rates εr̄ := T̃

T εr > RC̃ . With Eq. (5.7), this translates to the bound (recovering
factors of ~ and c)

fint ≤
~
ξ

√
v̄ρDWε

8maTRC̃
T̃ . (5.12)

The loudest-event method yields roughly the same results as the extended method
bound when only large magnitude-to-uncertainty ratio thresholds are considered. Prior
to analyzing the data, one can determine the smallest magnitude-to-uncertainty ratio
needed for a single observed event over the experiment time to be significant. If the
loudest event observed is slightly below this threshold, and the extended method is only
considers the excess event rate at the largest magnitude-to-uncertainty ratio, then these
two methods are identical. However, because the extended method also includes smaller
magnitude-to-uncertainty ratios that are especially of interest when testing for low-mass
ALPs.

5.3.3 Active time

The time during which the network is sensitive to domain walls with a particular set
of physical parameters is important because it is entirely possible for domain walls to
be missed because their signal is too weak, regardless of how many cross the network.
The active time can be parameterized using two variables: the signal duration ∆t (or,
equivalently the mass, because ma ∝ (v̄∆t)−1) and the psuedo-magnetic field needed to
induce a magnitude-to-uncertainty ratio of one (prior to filter attenuation) B′p := Bp/ζ0.
Based on the definitions in Eq. (3.8) and Eq. (5.5), these can be understood in terms of
the physical parameters as follows (recovering factors of ~ and c),

∆t =
2 cosh−1 (2)

v̄mac/~
and B′p =

4mac
2ξ

µBζ0
. (5.13)

The function T̃ (∆t,B′p) can be determined by considering the set of signals observable
at any given time — which is determined by the network sensitivity and filter attenuation
factor Afilt — then integrating over the experiment time T .
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5.4 Scaling
The manner in which the size of the network affects the sensitivity. The scaling of the
sensitivity is formally derived in Appendix A.3. If σ is the typical noise (i.e., standard
deviation) of an individual sensor, there are n magnetometers in the network, and the
magnetometers’ sensitive axes are evenly distributed, then the network sensitivity is

β ≈ σ√
n/3

. (5.14)

This follows the typical
√
n scaling. In addition to an improvement in overall sensitivity,

additional sensors will improve the directional coverage of the network and improve
reliability of the network. If there are many sensors, as long as they are not injecting
bad data into the network, an individual sensor can go offline without dramatically
affecting the network and the effects from small errors in an individual sensor can be
suppressed by data from other sensors.

The manner in which the sensitive region of physical parameter space changes with
the characteristics of the network is practically important when trying to observe un-
explored parameter space. The physical parameter space can be parametrized by mass
ma and any two of {fa, fint, ξ := fa/fint}. Often, one reduces the parameter space by
one dimension by fixing the ratio ξ. The class of signals observed from an experimental
perspective are compared to physical parameters in Eq. (5.13).

The mass is related to signal duration with a simple relationship ma ∝ ∆t−1, so,
holding the rate and signal magnitude constant, sensitivity to longer signals is equivalent
to sensitivity to lower mass (and vice versa). This can be accomplished by choosing filters
that do not remove lower-frequency components. When filtering, consider two extremes;
no/minimal filtering and matched filter. Without filtering or only filtering enough to
remove systematic noise, sensitive parameter space will be be largely independent of mass
(limited only by the few unavoidable filters and limits in the sensors such as sample rate
and bandwidth). In the matched filter case, a convolution is performed between the
data and the shape of the desired signal — i.e., a peak of some known width. This is an
optimal filter for amplifying the magnitude-to-uncertainty ratio for a particular signal
width (or mass) at the cost of worsening sensitivity to all other signal shapes.

The magnitude of a signal does not depend on the energy scales, fa or fint, but on the
mass ma and ratio ξ as Bp ∝ maξ. Thus, a more massive ALP would result in a larger
signal. A larger signal would also be observable for more time over the course of the
experiment, but would also imply the existence of fewer domain walls. From Eq. (5.11)
and Eq. (5.12), the upper bound on observable coupling/decay constant scales ∝ m−1/2

a ,
though as long as a given mass is observable, there is also a ∝ T̃+1/2 scaling in these
energy scales. For the same active time T̃ and ratio ξ, increasing the number of sensors
n will then improve sensitivity to a smaller mass as n1/2 and to the energy scales, fa
or fint, as n1/4 at these lower masses. Likewise, for constant mass, the sensitivity to a
smaller ratio ξ improves as n1/2 meaning that, though the axion-decay-constant bounds
will not improve, the coupling scale fint will improve by n1/2. The exact scaling of the
effective time with network sensitivity will depend also on the choice of filters.
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Another useful scaling to understand is related to how many velocities need to be
scanned in the analysis algorithm. This lattice was described in Sec. 4.4 to be dependent
on some time τ describing the maximal error in time-shifting. In practice, this is typically
based on the sample rate of the data (which is also typically down-sampled by the
averaging time). From Eq. (4.36), the number of points in the lattice scales as N ∝
τ−3. Thus, by doubling the averaging time (i.e., halving the sampling rate), one also
requires an eighth as many lattice points, which directly translates into computational
requirements. The longer averaging time will also decrease the mass to which the network
is sensitive.

Computational complexity scale linearly with the size of the network. Many opera-
tions are performed on the individual magnetometers such as filtering and noise estima-
tions. The data from the different magnetometers are used together in the consistency
check, including matrix operations such as inversions; which typically have quadratic
scaling with size. However, the only n-dimensional matrix that is inverted is the co-
variance matrix Σs, which is diagonal for uncorrelated noise, so inverting this matrix
scales linearly. The other inversion is of the d = 3-dimensional matrix, DTΣ−1

s D, whose
computational complexity is constant. The remaining operations include various matrix
multiplications, which have either linear or constant scaling with n. Similarly, memory
requirements will generally scale linearly as one needs to read-in each additional sensor;
though there may be implementations of this analysis wherein quadratic memory scaling
is exchanged for faster computation of some matrix operations. Similar arguments can
be made to find that computational complexity also scales linearly with time.
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Chapter 6

Experimental data

Before discussing the implementation of the analysis described in the previous chapters,
it is useful to understand how the data are stored as well as establish some idea of what
the data look like.

The sensors in GNOME are located around the world, each with their own design.
The types of magnetometers are summarized in Table 6.1 while the location and orienta-
tions of the magnetometers are listed in Table 6.2. Some magnetometers are upgraded,
replaced, and adjusted, so these characteristics may change.

This chapter is organized as follows: the data structure used to store GNOME data
is described in Sec. 6.1. Examples of data from the GNOME network is given in Sec. 6.2,
while data describing an entire Science Run are presented in Sec. 6.3. The quality of a
network is described in Sec. 6.4 along with a discussion of optimizing the network.

6.1 Data structure
In order to facilitate analysis, data from different sensors in the GNOME network is
centrally stored. Each sensors will periodically synchronize collected data with a server
located in Mainz, Germany. Servers in other locations can be used to create backups of
the data and provide a lower latencies at distant locations.

The magnetometer data are stored with some basic standards, though these may be
subject to change depending on needs determined by the GNOME collaboration. The
magnetic field data and sanity channel data (designating the reliability of the data)
are collected and stored at 512 Hz and 1 Hz sampling rates, respectively. These data are
stored along with relevant metadata including date and time of data collection, sampling
rate, units, and calibration information. Each file contains 1 minute of data and the files
are stored in folders based on the station, year, month, and day of the form

.../station/yyyy/mm/dd/ .

Each one-minute file contains roughly 100 kB of data.
Data from GNOME are stored using the HDF5 data structure. This enables an

efficient and flexible means of storing relevant information. Notably, the magnetic field
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Table 6.1: The different types of magnetometers used in GNOME and the corresponding
factor for proton spin coupling. The factor is the ratio of the fractional spin polarization
σp and the Landé g-factor. The value reported is used here (using Ref. [156]) while
the errors include the range of values from other calculations [157–161]. Further infor-
mation can be found in Ref. [162]. “Runs” refers to the science runs during which the
magnetometer was active. Magnetometers that were changed (i.e., Hayward, Krakow,
and Mainz) have multiple lines.

Station Sensor Type Probed transition σp/g Runs
Beijing NMOR 133Cs D2 F=4 −0.39+0.19

−0.00 2,3,5
Belgrade rf-driven 133Cs D1 F=4 −0.39+0.19

−0.00 5
Berkeley 1 NMOR 133Cs D2 F=4 −0.39+0.19

−0.00 1,3,4
Berkeley 2 NMOR 133Cs D2 F=4 −0.39+0.19

−0.00 1–4
Canberra SERF 87Rb D1 0.70+0.00

−0.15 5
Daejeon NMOR 133Cs D2 F=4 −0.39+0.19

−0.00 2–5
Fribourg rf-driven 133Cs D1 F=4 −0.39+0.19

−0.00 1–3
Hayward NMOR 87Rb D1 −0.36+0.05

−0.00 1–3
SERF 87Rb D1 0.70+0.00

−0.15 4,5
Hefei SERF Rb/K D1 −0.38+0.05

−0.00 2,3
Krakow NMOR 87Rb D1 F=2 0.50+0.00

−0.11 1,2,4
SERF 87Rb D1 0.70+0.00

−0.15 5
Lewisburg SERF 87Rb D2 0.70+0.00

−0.15 2–5
Los Angeles rf-driven 85Rb D2 F=2 0.50+0.00

−0.07 5
Mainz NMOR 85Rb D2 F=3 0.50+0.00

−0.11 1–4
SERF 87Rb D1 0.70+0.00

−0.15 5
Moxa rf-driven 133Cs D1 F=4 −0.39+0.19

−0.00 4,5
Oberlin SERF K/Rb D1 −0.38+0.05

−0.00 3–5
Stuttgart rf-driven 85Rb D2 F=3 0.50+0.00

−0.11
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Table 6.2: The location and orientation of the GNOME magnetometers. The orientation
is given in terms of the “altitude” angle with respect to the horizon and “azimuthal”
angle with respect to North (clockwise). Some magnetometers were rotated at various
times, so the current orientation may be different.

Location Orientation
Station Longitude Latitude Elevation Alt Az
Beijing 116.1868◦ E 40.2457◦ N 107.46 m 0◦ 251◦

Belgrade 20.3909◦ E 44.8556◦ N 153.70 m 70◦ 295◦

Berkeley 1 122.2572◦ W 37.8722◦ N 88.54 m 0◦ 28◦

Berkeley 2 122.2570◦ W 37.8723◦ N 99.31 m 90◦

Canberra 149.1185◦ E 35.2745◦ S 593.42 m 90◦

Daejeon 127.3987◦ E 36.3909◦ N 71.14 m 90◦

Fribourg 7.1581◦ E 46.7930◦ N 244.84 m 0◦ 190◦

Hayward 122.0539◦ W 37.6564◦ N 155.20 m 90◦

Hefei 117.2526◦ E 31.8429◦ N 110.43 m 0◦ 90◦

Krakow 19.9048◦ E 50.0289◦ N 263.55 m 0◦ 45◦

Lewisburg 76.8825◦ W 40.9557◦ N 126.94 m 90◦

Los Angeles 118.4407◦ W 34.0705◦ N 149.68 m 0◦ 270◦

Mainz 8.2354◦ E 49.9915◦ N 193.02 m −90◦
Oberlin 82.2204◦ W 41.2950◦ N 216.63 m 0◦ 300◦

Stuttgart 9.1036◦ E 48.7443◦ N 525.37 m 48.7◦ 9.1◦
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and sanity data are stored as “datasets” and the metadata are stored as “attributes”
in each file. The data were read into the analysis algorithm using a Python library
developed for GNOME.

6.2 Sample data

To give a better idea on what GNOME data “looks” like, it helps to present some raw
data. In this section, examples of data from the network will be described. Particular
focus will be placed on Science Run 2 from December 2017 as this was the focus of much
of the data analysis thus far.
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Figure 6.1: Example of filtering and averaging data. Two hours of data are shown from
the Berkeley 2 magnetometer starting on 14 December 2017. (a) Amplitude spectral
density of data with filtered frequencies grayed-out — the width of the line at 60 Hz
does not reflect the exact size of the filter. (b) Raw data and data with a 60 Hz notch
filter. (c) Background removed with a 1.67 mHz high-pass filter. (d) Data binned in 1 s
bins.

First, the data from an individual magnetometer will be considered. Data from the
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Berkeley 2 magnetometer is shown in Fig. 6.1. It should be noted that the data here
were chosen to emphasize how filters can be used to reduce noise and does not necessarily
reflect data typical in other sensors nor the same sensor at different times. For example,
this magnetometer had a very strong powerline-frequency noise at this time. In any case,
one sees a substantial reduction in the standard deviation after each subsequent filter
is applied; dropping from 84 pT initially to 1.4 pT after filtering. However, because the
data were sampled at 512 Hz and the averaging was over 1 s, one would expect the noise
to be reduced by a factor of

√
512 ≈ 22.6 from this step. However, the reduction is only

by a factor of 6.6. This suggests that there is some non-Gaussianity characteristics of
the noise remaining, despite attempts to remove these with filters. Note also that the
filters can lead to some artifacts on the edges of the data, but, in practice, data on the
edge of a filtered subset is not used in the search for events.
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Figure 6.2: Data collected by all the GNOME sensors over Science Run 2 in 2017. Data
are averaged across 30 minute bins to emphasize long-term drifts. Only available, reliable
data are shown.

It is also important to consider what GNOME data look like on long-term time scales.
This can be useful in understanding how the background drifts over time. Figure 6.2
shows several weeks of data with 30 minute averaging for different GNOME sensors.
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Figure 6.3: Average directional sensitivity over Science Run 2. Position on the map
corresponds to the direction from the center of the Earth to that point on the map.
Sensitivity is for proton coupling, and data are averaged into 20 s bins with a 1.67 mHz
high-pass filter and notch filters at powerline frequency. Average over time is calculated
as
〈
β−1

〉−1 with β−1 = 0 when fewer than four sensors are active. The forward � and
backward ⊗ directions of the various sensors are marked with labels on the forward
directions; the two points corresponding to a given sensor have the same color.

One can see, for example, that some of the sensors have daily fluctuations. Though, it
should be noted that analysis is generally designed on timescales much shorter than a
day to avoid the effects of Earth’s rotation. In any case, this can point to other means
of improving sensor stability. The drifts can be removed with high-pass filter at the cost
of reduced sensitivity to longer signals.

6.3 Run characteristics

Over the course of a science run, the sensitivity of the network will inevitably vary as
magnetometers join the network or become inactive. If the network has good directional
coverage and is fairly stable, one would expect the sensitivity to have little variation
in different directions. The average directional sensitivity over time for Science Run 2
is shown in Fig. 6.3. This type of map can motivate future network improvements by
pointing towards directions that could be better-covered; by adding sensors, rotating
existing sensors, or improving existing sensors currently pointing in the given direction.

Just as sensitivity varies with direction, the network sensitivity also varies over time.
This is due both changes in an individual sensor and sensors becoming active and inac-
tive; including due to data being flagged as unreliable by auxiliary measurements. The
sensitivity over time, as well as the number of active magnetometers, is shown in Fig. 6.4.
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Figure 6.4: (a) The number of active magnetometers and (b) sensitivity over time using
proton coupling. The solid lines are one-day rolling average. The data are filtered with
a 20 s averaging, 1.67 mHz high-pass filter, and notch filters at powerline frequency.

Though not always, one generally sees that when more magnetometers are active, the
network becomes sensitive to weaker signals.

6.4 Quality of the network

The network used in the GNOME experiment may be improved without needing addi-
tional sensors or improvements in the existing sensors. This can be accomplished simply
by reorienting the sensitive axes of the magnetometers. The “quality” of the network
will be referred to here as how close the arrangement of the network is to the optimal
arrangement; not the absolute sensitivity of the network, so equally improving all sensors
would not change the network quality. A quantitative measure of the network quality is
presented here.

The orientation of sensors in an optimized network depends on how the network sen-
sitivity is defined (see Chapter 5.1). Two definitions of network sensitivity are described
in this work: as an average over a known distribution of directions (Eq. (5.2)) and as the
worst-case-scenario (Eq. (5.3)). The latter and more conservative definition for network
sensitivity is used. The worst sensitivity β̄0 is determined by the smallest eigenvalue of(
DTΣ−1

s D
)

while the best sensitivity β̄1 is given by the largest eigenvalue — specifically,
β̄ = λ−1/2 where λ is an eigenvalue. The respective eigenvectors denote the worst and
best directions for a signal.

If the network quality is optimized, the sensitivity β(m̂) would not depend on the
direction m̂. This is because the existence of some preferred direction implies that one
could improved sensitivity in a less-preferred direction by rotating the sensitive axis
of a magnetometer away from the preferred direction and towards the less-preferred
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direction. In practice, it is not possible for GNOME to maintain optimal quality under
this definition, because the noise of the magnetometers varies over time along with what
sensors are active.

To better assess the quality of the network, it helps to define some quantitative
“quality factor.” This factor would ideally reflect only how optimally the sensitive axes
are oriented regardless of the network sensitivity. One possibility is to define the quality
factor as the quotient of the best and worst sensitivity,

q0 := β̄1/β̄0 . (6.1)

This factor will lie in the range (0, 1] with q0 = 1 being ideal.
There are a few characteristics of an ideal network that are useful to consider. First,

for and ideal network,
(
DTΣ−1

s D
)
= β̄−2

1 is proportional to the identity matrix. Con-
sider two uncorrelated ideal networks: A and B. If the two networks are combined,

[
DA

T DA
T
] [ΣA 0

0 ΣB

]−1 [
DA

DB

]
=
(
β̄−2
A + β̄−2

B

)
1 .

Thus, the combined network is also ideal with sensitivity
(
β̄−2
A + β̄−2

B

)−1/2. Observe that
the relative orientation of the two sub-networks in the combined network is irrelevant.
Further, this reflects the lack of uniqueness in an ideal network. The set of ideal networks
is invariant under any global rotations of independent ideal sub-networks as well as
parity reflection of any independent sets of sensors (i.e., reversing the sensitive axis of
an independent sensor).

6.4.1 Ideal network

Some heuristic approximation can be made for the sensitivity of an ideal network. Con-
sider a network of n uncorrelated magnetometers with coupling {κj}1, standard deviation
(i.e., noise) {σj}, and sensitive axis in the direction {d̂j}. Thus, the jth sensor will ob-
serve a signal with amplitude sj = κjd̂j ·m. If the angle θj between the sensitive axis d̂j
and the field direction m is random for each sensor, so

(
d̂j · m̂

)2
≈
〈
cos2 θ

〉
= 1/d for

d = 3 spatial dimensions (this calculation is given towards the end of Appendix A.3.3),
then the optimal sensitivity is

β̄opt ≈

√√√√d/
n−1∑
j=0

(
κ2j/σ

2
j

)
. (6.2)

Note that this may not be the exact value for an optimized network of uncorrelated
sensors due to the assumptions made in the calculation. In particular, it is assumed that

1Here, κj =
gF,j

σj
where σj is the projected spin coupling and gF,j is the g-factor for the jth mag-

netometer. Note that elsewhere in this section σj is used to refer to the standard deviation in the jth

magnetometer data.
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the direction between the sensitive axis d̂j and the field direction m is independently
random for each sensor, though correlations may exist. Deviation from Eq. (6.2) and the
actual optimal sensitivity is likely to be small in a network consisting of many, similar
sensors. In this case, the optimal network would have sensitive axes evenly distributed
in all directions, making the set of dot products d̂j · m̂ describe a similar distribution as
if the angle between the signal vector and sensitive axis was random for each sensor.

It is possible to determine an ideal network configuration under certain simplified con-
ditions. In particular, for independent, identical sensors, there are a few configurations
that optimize the network. The simplest of which would be a set of three sensors with
orthogonal sensitive axes. More optimal networks can be found by taking inspiration
from Platonic solids. In particular, the vertices of Platonic solids are evenly distributed
in all directions relative to the center of the polyhedron. One can construct a network
configuration by orienting the sensitive axis of a sensor from the center of the Platonic
solid to each of its vertices. One can verify explicitly that each of these arrangements is
an optimal network with sensitivity β = σ

√
3/n for n vertices/sensors in the network.

Each of these networks is given in Table 6.3.
The optimal networks defined by the Platonic solids can be further reduced into op-

timal sub-networks. For example, the octahedral network consists of two sub-networks
of three orthogonal sensors. Due to the parity symmetry in the octahedron, cube,
icosahedron, and dodecahedron, one can separate each such network into two optimized
networks whose sensitive axes are anti-parallel. Together, this defines optimal configura-
tions of three, four, six, and ten sensors; denoted by N3, N4, N6, and N10. One can also
show that none of these networks can be described as the combination of sub-networks
with the other configurations (e.g., N6 cannot be reduced into two N3 networks). That
is, these networks are irreducible.

The arrangements of sensors described above can be combined into any optimal
network with three, four, six, or more identical, uncorrelated magnetometers. Further,
there is some liberty in how these networks are constructed. For example, a network
with n = 6 sensors could be arranged as N6 or two N3 sub-networks.

Though not based on a Platonic solid, one can explicitly construct an (irreducible)
optimal network with five identical, independent sensors. In fact, two such arrangements
are given by

D5a =



0
√

5
6

√
1
6

0 −
√

5
6

√
1
6√

5
6 0

√
1
6

−
√

5
6 0

√
1
6

0 0 1


and D5b =



1 0 0

−
√

1
3 −

√
2
3 0

−
√

1
3

√
2
3 0

0
√

1
6

√
5
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√

1
6

√
5
6


.

These networks are unique with respect to parity reversal of individual sensitive axes or
global rotations; this is evident because the latter has orthogonal sensitive axes while
the former does not. These networks are also irreducible because an optimal network
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Table 6.3: Examples of ideal networks based on the Platonic solids. The orientations of
sensitive axes in an ideal network are given as lines (dashed in one direction, solid in the
other). A sum of vertices is used to describe multiple ideal subnetworks. For example,
the cube has eight vertices, and the corresponding ideal network consists of two ideal
networks with four sensors each; hence “4+4” is listed. In each case here, X+X vertices
describes two ideal networks with X sensitive axes in opposite directions.

Name Vertices Shape

Octahedron 3 + 3

Tetrahedron 4

Cube 4 + 4

Icosahedron 6 + 6

Dodecahedron 10 + 10

needs at least three sensors and one cannot separate five sensors into two or more ideal
subnetworks with at least three sensors. From these examples, it is evident that optimal
networks are not necessarily unique, even if they are irreducible.

Though, as shown above, there exists a network of at least three independent, identi-
cal sensors exists with q0 = 1, it is not necessarily the case if the sensors are not identical.
For example, consider n ≥ 2 independent, identical sensors with noise σ0 and another,
better sensor with noise σ1 < σ0

√
2/n. Choosing some direction to orient the better

sensor and orienting the remaining sensitive axes to evenly cover orthogonal directions,
the most-sensitive direction will be along the sensitive axis of the better sensor. Thus, it
is not possible to achieve q0 = 1 in this hypothetical network, because there will always
be a preferred direction. However, it is still possible to optimize the network sensitivity.

The process of optimizing a given, arbitrary network can be accomplished in various
ways. For example, a “greedy” algorithm may operate by adding sensors such that their
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sensitive axis points in the least-sensitive direction for the rest of the network. Such an
algorithm could be iterated on a complete network by, in each step, removing some sensor
and adding it back in the least-sensitive direction. Likewise, if β(x̂) is the sensitivity
function for a network, one can slightly rotate one/several sensitive axes as to locally
“ascend” β(x̂); i.e., rotate towards less-sensitive directions. The exact amount to rotate
the sensors in each step can be chosen from any one of numerous optimization methods;
e.g., annealing or gradient descent.

6.4.2 Quality of GNOME

Unlike the ideal networks discussed thusfar, the noise in the GNOME magnetometers
varies over time, and stations will become active or inactive over time. Even if the
network was optimized at some time, it will become suboptimal as the characteristics
of GNOME change. The average network conditions can be used to understand the
best and worst direction; see Fig. 6.3. If one wants to add a new sensor to the network,
orienting its sensitive axis in the least-sensitive direction according to this average would
be ideal.
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Figure 6.5: The “quality” of the GNOME network over time. Solid lines are the one-day
rolling average. Proton couplings are used, and data are filtered with 20 s averaging,
1.67 mHz high-pass filter, and notch filters to remove powerline frequency. (a) The
number of active sensors. (b) The quality q0 of the network. (c) The factor by which
the sensitivity could be improved relative to the theoretical sensitivity, Eq. (6.2).
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The quality of GNOME over the various Science Runs is given in Fig. 6.5 along
with the factor by which the sensitivity could be improved relative to the approximate
optimum, Eq. (6.2). In contrast to the sensitivity, the quality factor (assuming at least
three sensors are active) does not have a clear dependence on the number of active
sensors; the quality decreases significantly towards the end of Science Run 3 because
there was often fewer than three active sensors. Additionally, one can see that Science
Run 2 often had a nearly-optimal network.

The GNOME network can be algorithmically optimized to better understand the
network’s potential. For example, one can consider a network consisting of the nine
magnetometers from Science Run 2 whose noise is their respective average noise during
the run after adjusting for proton coupling. Without altering the orientations of any
magnetometer, the network has a worst-sensitivity of β̄ = 1.0pT and a best-sensitivity of
0.43 pT (q0 = 0.4). For an optimized network, q0 = 0.7 and β = 0.70pT. The sensitivity
of this network is improved by a factor of 1.5 when optimizing the network. However,
it should be noted that this optimization assumes all magnetometers are active which is
not often the case in usual operation.



Chapter 7

Results

Through analyzing the data from GNOME, regions of ALP parameter space have been
probed for signals arising from domain walls. In the absence of evidence, one can exclude
the probed region of parameter space at a given confidence level. In particular, Science
Run 2 — having taken place during December 2017 — is studied. Though Science Runs 3
and 4 contain more data, Science Run 2 had excellent and fairly consistent sensitivity.

The data were analyzed using methods described in Chapter 4. First, a false-negative
analysis was conducted to determine appropriate thresholds to guarantee some detection
efficiency. Then, a false-positive analysis was combined with the observed event rate to
determine whether domain walls were detected and to place bounds on ALP parameter
space.

For the analysis discussed here, data from Science Run 2 were studied with a partic-
ular set of filters. Zero-phase notch filters (quality factor Q = 60) were applied to the
data at the local powerline frequency; e.g., sensors in North America had 60 Hz noise re-
moved while sensors in Europe had 50 Hz noise removed. Likewise a zero-phase 1.67 mHz
first-order high-pass Butterworth filter is applied to data from every sensor to remove
drifts and noise on timescales over 10 min. In both cases, “zero-phase” is accomplished
by applying the filter both forward and backward. The data were also averaged into
20 s bins, which both improves sensitivity to signals longer than the averaging time and
reduces the computational requirements.

In Sec. 7.1, the methods described in Chapter 4.6 are applied to GNOME data. The
results of the full GNOME analysis, namely the event rate in terms of magnitude-to-
uncertainty, are presented in Sec. 7.2. The event rate did not significantly exceed what
one would expect from background alone, so an excluded region of parameter space is
presented in Sec. 7.3. The excluded region is presented using the “extended” method
and compared to the region generated with the “loudest-event” method. Results using
the loudest-event method are also presented in Ref. [4].

77
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Figure 7.1: Probability of detecting an expected signal inserted into background data.
(a) Considers different p-value and directional consistency thresholds. The black line
corresponds to 97.5% detection efficiency and the white dot reflects which threshold
was used in the final study. (b) Relates the detection probability to magnitude-to-
uncertainty ratio. This figure is adapted from one found in Ref. [4].

7.1 Selecting thresholds

To begin, thresholds must be determined to optimize the efficiency by which events are
detected while minimizing the background of false-positive events. For this analysis,
a goal is set to detect and identify ε = 97.5% of signals from domain-wall-crossing
events. This is accomplished by inserting signals into background noise and testing the
algorithm’s ability to detect them as part of a false-negative analysis.

The characteristics of the signals inserted into the data are chosen to cover the
range of signals that we hope to detect. The background data was generated from
measurements by time-shuffling the data. Thus, the domain-wall-crossing signals were
inserted at random times and directions with magnitudes Bp between 0.1pT and 103 pT
and widths ∆t between 0.01 s and 103 s with a flat PDF on a logarithmic scale.

The results of the false-negative analysis can be seen in Fig. 7.1. In Fig. 7.1a, the
probability of detection ε is shown as a function of the p-value threshold and direc-
tional consistency threshold (i.e., the deviation between the measured signal gradient
and scanned velocity in units of angular spacing). The p-value threshold is an upper-
bound while the the directional consistency threshold is a lower-bound for rejection. A
black line highlights the combinations of these thresholds that yields ε = 97.5%. The
white dot on this line is the choice of thresholds used in the final analysis. This choice
was used to reduce the background event rate, as calculated in the false-positive analysis.

The detection probability can vary base on the magnitude of the signal, as well
(Fig. 7.1b). In order to exclude parameter space with either the loudest-event or ex-
tended method, one must guarantee some minimal detection efficiency for all events at
least as large as some magnitude-to-uncertainty ratio. In the loudest-event method, this
is the detection efficiency for the loudest event, while in the extended method, this is the
efficiency for any given magnitude-to-uncertainty ratio. In this analysis, one finds that
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the detection efficiency is at least 97.5% for magnitude-to-uncertainty ratios above 5.

7.2 Event rate
Comparing the event rate observed in the experiment to that which one expects from
background is crucial for constraining physical parameter space. An excess of events
over the background event rate would suggest the existence of ALP domain walls — or
at least the existence of some class of large structures with exotic spin coupling. The
absence of a significant excess could likewise be used to exclude a region of physical
parameter space for a given theory.

To determine what constitutes a “significant excess” in the event rate, a false-positive
analysis is performed on background data. As discussed in Chapter 4, background
data are generated by sampling data from each sensor in the network at random times
through “time-shuffling.” One can generate virtually unlimited background data using
this method. In the end, the amount of background simulated is determined by com-
putational resources and the diminishing benefit of simulating additional background.
Ideally, there would be significantly more simulated background data than the amount
of data used in the experiment. For results discussed here, the data were taken from
Science Run 2 (a 23-day run) and represent 10.7 years of time-shuffled data.

The event rate for GNOME Science Run 2 is shown as a function of minimum
magnitude-to-uncertainty ratio in Fig. 7.2 for the time-shuffled background data and
the measurement data. At no point does the 90 %-confidence lower-bound on the excess
event rate exceed zero — yet alone at the 5σ confidence typically needed for discovery. In
fact, the most significant excess occurred for the loudest event with only 42 %-confidence
that the lower-bound was positive. Thus, we can conclude that evidence for ALP domain
walls was not found in this analysis of GNOME’s Science Run 2 data. The upper-bound
on the excess event rate can be used with the extended method to generate a bound on
physical parameter space.

7.3 Exclusion region
Given that the analysis of GNOME data did not find evidence of ALP domain walls,
bounds on physical parameter space can be established. This will be based on the
sensitivity of the network to different signals over the course of the experiment. This will
define a region of parameter space that should yield positive results in the experiment.
In the absence of positive results, sets of parameters in this region can be excluded.

First, one can consider the types of signals that one would expect from the perspec-
tive of the experiment. The GNOME sensors do not directly measure ALP parameters
like mass and coupling constants; instead they measure the pseudo-magnetic field in-
duced by exotic spin coupling of an ALP feature. For example, if one expects to observe
Lorentzian signals in the network, one can consider the widths and magnitudes that
can be observed. The experimental sensitivity over time was already discussed (see
Chapter 6.3 and Fig. 6.4), but these did not also consider that filters will affect signals
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Figure 7.2: Event rates from the analysis of Science Run 2. (a) The background and
search data event rate with 1−

√
90% ≈ 5% tails; i.e., the upper-bound and lower-bound

(when defined) are at ≈ 95%, and the confidence that the rate is between the bounds
is ≈ 90%. Markers on the search-data event rate emphasize individual events. (b) The
excess event rate with 10 % tails. The dashed black line indicates that no events were
found in the measurement data, so the search data event rate is zero and the lower-tail
is ≈ 5%.

differently depending on their width. Considering the filters used on the various mag-
netometer data sets with the sensitivity and integrating over time yields Fig. 7.3. A
“U”-shaped region of sensitivity appears on this plot. The edge of this “U” is blurred
by changes in sensitivity over time. Roughly speaking, the left side can be understood
as resulting from thin signals being averaged-out, and the right side is the result of long
signals being removed by the high-pass filter. If no filters were applied, the plot would
appear like a horizontal line separating a sensitive and insensitive region.

At this point, all the information needed to generate an exclusion plot; either using
the loudest-event method, Eq. (5.11), or the extended method, Eq. (5.12). In either
case, Fig. 7.3 is the function for T̃ in terms of variables directly observable through the
experiment; these are related to theoretical parameters via Eq. (5.13). Also, the false-
negative analysis was used to guarantee the detection efficiency ε = 97.5% or better.

The expected speed is taken to be the Earth’s galactic rotation speed, v̄ = 10−3c, and
the energy density of domain walls is taken to be the dark matter density, ρDW = ρDM ≈
4× 105 GeV/m3. It is worth remarking that equating the domain-wall and dark-matter
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Figure 7.4: Region of physical parameter space excluded by GNOME Science Run 2 using
the extended method with a 90 % confidence level. (a) The upper-bound on excluded
interaction scale fint as a function of ALP mass and the ratio ξ. The colored regions in
(b) are marked by the respective dashed lines. (b) The excluded interaction scale fint
as a function of ALP mass for different ratios ξ. The ratio ξ = 0.002 corresponds to
the cross-section with the highest bound on coupling; excluding fint < 6 × 105 GeV at
ma = 1.5× 10−13 eV/c2.
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energy densities is not a trivial one. It is entirely possible that domain walls constitute
only a fraction of the energy density attributed to dark matter — or even that domain
walls do not exist at present time. The dark-matter energy density provides a bound on
ρDW as the amount of energy not yet accounted for in the galaxy. If the actual energy
density is much smaller, the frequency of crossing events would also be smaller, which
would weaken the constraints presented here.

For the loudest-event method, the magnitude-to-uncertainty ratio ζ0 can be read off
of Fig. 7.2 as the ratio of the largest event, ζ0 = 12.6. For the extended method, Fig. 7.2b
includes the bound RC̃ as a function of the lower-bound on the ratio ζ0. Each value of
ζ0 can be used to generate an exclusion plot — the union of the excluded regions is the
final result. One only needs to consider the bound on the excess event rate when the
rate of measurement events decreases.

The region of parameter space excluded by this analysis of Science Run 2 using the
extended method is shown in Fig. 7.4. The largest exclusion for the coupling occurs for
ma = 1.5 × 10−13 eV/c2 and ξ = 0.002 where fint < 6 × 105 GeV is excluded. Likewise
setting ξ = 1 (or fint = fa), the coupling fint < 104 GeV is excluded for ma = 3.6 ×
10−15 eV/c2.
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Figure 7.5: Comparison between the excluded region using the loudest-event (dashed
edge) and extended (solid edge) methods setting ξ = 1 (green) and to the value that
maximizes the largest upper bound for fint (blue).

The excluded region from the extended method is compared to the loudest-event
method in Fig. 7.5. Recall that the magnitude of the domain-wall signal is proportional
to maξ and the extended method aims to include weaker signals. Thus, as expected, the
extended method covers smaller masses than the loudest-event method. For the same
ratio ξ = 1, the loudest-event method has a slightly better bound on fint at larger masses.
This likely the result of being “lucky” with how small the largest event happened to be,
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and one would expect this relative improvement to diminish with more data. When
considering the value of ξ that maximizes the respective bounds on fint, the region
excluded by the loudest-event method is entirely contained in the region excluded by
the extended method. As with mass, the extended method excludes regions of parameter
space that have smaller ratios ξ — this is why the extended method is optimized when
this ratio is half the ratio that optimizes the loudest-event method bound. The smaller
ratio ξ also corresponds to a theory with a weaker coupling between ALPs and fermions
relative to the axion decay constant.
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Chapter 8

Summary and outlook

This work applies a theoretical framework of dark matter to understand data gathered
by experiment. Particular focus is placed on domain walls in an ALP field that couples
to fermions via their spin, but the analysis is set up in such a way to allow for similar
methods to be applied to other searches. This can be understood generically as following
the following steps of experimental design:

0. Decide on what type of dark matter to detect and what type of experiment to
design. Some of such models and experiments are described in Chapter 2.

1. Understand what type of signal is expected: the coupling type, pattern, shape,
etc. For this work, this is described in Chapter 3.

2. Devise a method for testing the consistency between experimental data and ex-
pected observation — including consideration for things like filtering and expected
background events. This step enables one to make a statement about whether
something was detected. These methods are described in Chapter 4.

3. Relate what is directly observable in the experiment to the parameter space for the
theoretical unknowns. Here, this involved relating what signal widths/magnitudes
can be reliably observed/expected to the ALP mass ma and the energy scales fa
and fint. These relations are described in Chapter 5.

These steps can then be applied to data. A review of the GNOME data is given in
Chapter 6 with the results of analyzing the data given in Chapter 7. The observed data
was found to be consistent with what one would expect from background data alone;
meaning that strong evidence of ALP domain walls could not be confirmed.

Given that the GNOME experiment could not show the existence of ALP domain
walls during Science Run 2, a region of physical parameter space can be excluded at
some confidence level. The excluded region at 90 % confidence is presented in Fig. 7.4.
The set of parameters within the excluded region would have resulted in the detection
of ALP domain walls, while the parameters not excluded could have been missed by
the experiment. The strictest bound on the coupling scale from this analysis is fint >

85



86

6× 106 GeV for ξ = 0.002 and ma = 10−13 eV/c2. For ξ = 1, the coupling is bounded by
fint > 104 GeV when ma = 4× 10−15 eV/c2.

These constraints fall short of the conservative astrophysical bound on the axion from
SN1987A [52,54] of 108 GeV. However, this bound is highly model-dependent, assuming
a coupling based on the KSVZ and DFSZ axion models. The work presented here is
comparatively model-independent, with the coupling strength allowed to vary freely for
any axion or ALP model. The value of the ratio is typically ξ ≈ O (0.1) [56, 57, 163]
based on calculations from the underlying model1.

Further, the results presented here reflect a truly novel approach to a dark matter
search. This is the first full result from the GNOME network. There are some exam-
ples of networks being used to search for ALP domain walls (e.g., GPS.DM [124] and
gravimeter [153]) using mass-like coupling. However, GNOME is used here to search for
spin-coupling.

Continued operation of GNOME will provide new and improved bounds on dark
matter. The bounds presented here can be improved by taking more data, improving
the sensors (both the sensitivity and reliability), or simply through new analysis. For
example, one can apply a different set of filters that suppress/emphasize different types
of signals in the same data.

Because evidence of ALP domain walls were not found, most of the focus was on
describing excluded bounds. However, if a future study were to find evidence of an
excess event rate in the search data as compared to the expected background rate, one
could use this information to generate a bound on physical parameters. First, similar
to how an upper-bound on the event rate was used to generate the excluded region (see
Eq. 5.12), a band of possible ranges can be generated using the same methods described
in Appendix C. This range translates to a band of parameter space. The magnitude-
to-uncertainty ratio of the excess can be used to restrict Bp ∝ maξ, and the width of
the observed signals restricts the mass. Taken together, one can then constrain the
parameters {ma, fint, ξ} to some volume. However, one may also find that the shape
of the observed signals is not consistent with that of a domain wall; meaning that the
excess event rate could be the result of other objects with exotic spin coupling. Such a
discovery would nevertheless be exciting and point to new physics.

The analysis described in this work was intended to search for ALP domain walls, but
the same analysis would also yield results for other objects. In particular, if an object
with an exotic spin coupling crosses the network and is large enough to appear planer
on the scale of the Earth, one may observe an excess in event rates. As an example,
there has been some interest in using GNOME to detect boson stars [6, 98], especially
in the “thin-wall” regime. If there are boson stars much larger than the Earth, its edge
would appear similar to a plane to the network. Likewise, the analysis described here
would apply to different signal shapes caused by the same object but with different
spin-coupling.

The GNOME collaboration continues to grow and adopt new magnetometer tech-
1Other references (e.g., Refs. [52–54, 56, 57, 163]) will use the dimensionless constant Ci to describe

the coupling strength to particle i that can be related to the constant used here with C/2 = ξ.



87 CHAPTER 8. SUMMARY AND OUTLOOK

nologies to improve sensitivity. A set of planned upgrades referred to as “Advanced
GNOME” aims to improve sensitivity by adding SERF comagnetometers to the net-
work [149, 164, 165]. This upgrade could also include careful consideration of how the
sensors are oriented to optimize sensitivity; as per Chapter 6.4.

Dark matter searches have played a major role in modern theoretical and experi-
mental physics. These efforts have lead to new models of physics as well as expansions
on existing models to attempt to explain this unknown phenomenon. New experiments
have been designed and old experiments have been retooled in the effort to probe this
frontier. Despite its influence on galactic scales, dark matter continues to evade our
best efforts to understand the basic operations of the universe. Hopefully, as experimen-
tal and theoretical methods advance, the true nature of this mysterious matter will be
revealed.
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Appendix A

Useful derivations

A.1 Domain wall shape
Consider the second-order differential equation,

a′′(x) + µ2 sin (a(x)) = 0 . (A.1)

Replacing a → a/fa and µ → ma reproduces Eq. (3.5) from Sec. 3.1. Consider the
boundary conditions,

a(0) = 0 ,

a(x→ ±∞) = ±π ,
a′(x→ ±∞) = 0 .

This corresponds to a solution in which a varies from −π to +π, centered at x = 0.
Note that the constraint on a(x→ ±∞) implies the constraint on a′(x→ ±∞). Finally,
demand that a be monotonically increasing.

Eq. (A.1) is solved with these boundary conditions by

a(x) = 2 arcsin (tanh (µx)) . (A.2)

Proof. First, one can reduce this second-order equation to a first-order one by invoking
the x→ −∞ constraints:

0 = a′′ + µ2 sin (a)

0 = 2a′a′′ + 2a′µ2 sin (a)

=
d

dx

[(
a′
)2 − 2µ2 cos (a)

]
∫ x

−∞
dx̄ · 0 =

∫ x

−∞
dx̄

d

dx̄

[(
a′
)2 − 2µ2 cos (a)

]
0 =

(
a′
)2 − 2µ2 [cos (a) + 1] .
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Demanding that a is monotonically increasing, so a′ ≥ 0, this can be simplified to

a′(x)

2
= µ cos

(
a(x)

2

)
.

Solving this equation can be done with the aid of a change-of-variables. In particular,

a

2
= arcsin c so a′

2
=

c′√
1− c2

.

Now, the x = 0 constraint is used so c(0) = sin(a(0)/2) = 0. Then,

c′√
1− c2

= µ
√

1− c2∫ x

0
dx̄

c′(x̄)

1− c2(x̄)
=

∫ x

0
dx̄ µ∫ x

0
dx̄

d

dx̄
tanh−1 (c(x̄)) = µx

tanh−1 (c(x)) = µx

sin

(
a(x)

2

)
= tanh (µx) .

Finally, one obtains the solution,

a(x) = 2 arcsin (tanh (µx)) .

A.2 χ2 minimization
Consider a minimization problem wherein one has the measurements y and a set of
unknown parameters x. The unknown parameters will model the measurements with
the function µ(x) that predicts y,

µ(x) ≈ y , (A.3)

where deviation from equality can occur due to measurement errors. These errors can
be described by the covariance matrix Σy. The goal then is to minimize

χ2(x) := (y − µ(x))TΣ−1
y (y − µ(x)) (A.4)

to find the most-likely x to describe the observed y. The most-likely parameters are
given by

x0 = ΣxJ
TΣ−1

y (y − b) for Σx = (JTΣ−1
y J)−1 , (A.5)

where Jij = ∂µi(x)
∂xj

is the Jacobian matrix and b := µ − Jx. Observe that b is exactly
the affine component of µ if µ is of the form µ(x) = Ax + b. Likewise, J = A in this
case (independent of x).
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Proof. Denote ∂
∂xk

= ∂k so minimizing Eq. (A.4) requires that

0 = ∂kχ
2(x)

=
∑
i,j

∂k(µi(x)− yi)
(
Σ−1
y

)
ij
(µj(x)− yj)

=
∑
i,j

(∂kµi(x))
(
Σ−1
y

)
ij
(µj(x)− yj)∑

i,j

(µi(x)− yi)
(
Σ−1
y

)
ij
(∂kµj(x))

= 2
∑
i,j

∂µi(x)

∂xk

(
Σ−1
y

)
ij
(µj(x)− yj) ,

where the last line relabels i ↔ j in the second sum and uses the symmetry of the
covariance matrix

(
Σ−1
x

)
ij
=
(
Σ−1
x

)
ji

. Noting the Jacobian matrix Jik(x) = ∂µi(x)
∂xk

, the
above equation can be simplified in matrix form,

JT (m)Σ−1
x µ(x) = JT (m)Σ−1

x y . (A.6)

Let x0 minimize χ2 with µ0 = µ(x0) and J(x0) = J0. Expanding µ(x) around x0,

µ(m) = µ0 + J0(x− x0) +O
(
(x− x0)

2
)
.

Assuming non-linear terms are negligible, Eq. (A.6) becomes

JT0 Σ
−1
x (µ0 + J0(x− x0)) ≈ JT0 Σ−1

x y

JT0 Σ
−1
x y + JT0 Σ

−1
x (J0x0 − µ0) ≈ JT0 Σ−1

x J0x(
JT0 Σ

−1
x J0

)−1
JT0 Σ

−1
x (y − b) ≈ x , (A.7)

for b := (µ0 − J0x0).
Now, in general, for u(v) = Av + b, the error in v, Σv, is propagated into error in

u, Σu, as

Σu =

(
∂u

∂v

)
Σv

(
∂u

∂v

)T
= AΣvA

T . (A.8)

Plugging Eq. (A.7) into Eq. (A.8) yields

Σx =
(
JT0 Σ

−1
x J0

)−1
JT0 Σ

−1
x · Σx ·

((
JT0 Σ

−1
x J0

)−1
JT0 Σ

−1
x

)T
=
(
JT0 Σ

−1
x J0

)−1
JT0 Σ

−1
x J0

(
JT0 Σ

−1
x J0

)−1

=
(
JT0 Σ

−1
x J0

)−1
,
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where the second equality uses the fact that Σ−1
x and

(
JT0 Σ

−1
x J0

)−1 are symmetric. Using
this result to simplify Eq. (A.7) yields the desired

x = ΣxJ
T
0 Σ

−1
x (y − b) for Σx =

(
JT0 Σ

−1
x J0

)−1
.

A.3 Sensitivity scaling

It is of interest to the growth of GNOME to understand how the addition of new sensors
affects the sensitivity of the network as a whole. For this derivation, the coordinates will
be generalized in d dimensions and the network will be assumed to have random, evenly
distributed sensitive directions. The uncertainty scaling will be expressed with respect
to the noise σ in an individual magnetometer. The collective sensitivity β then scales as

β ≈ σ
√
d

n
, (A.9)

for n sensors.
The derivation will be split into multiple parts to establish some background. In

Sec. A.3.1, spherical coordinates will be generalized in d dimensions, and in Sec. A.3.2,
the volume element will be described in these coordinates. The proof of Eq. (A.9) is
given in Sec. A.3.3.

A.3.1 Coordinate system

It helps to generalize spherical coordinates for d dimensions. Denote x ∈ Rd with
components x0, . . . , xd−1. Define the d− 1 angles {ϕ1, . . . , ϕd−1} and radius r such that

x0 = r
d−1∏
j=1

sin (ϕj) and xi = r cos (ϕi)
d−1∏
j=i+1

sin (ϕj) . (A.10)

It remains still to show that this is in fact a bijection; in particular, for r ≥ 0, ϕ1 ∈ [0, 2π),
and ϕi ∈ [0, π] (where i > 1). It will sometimes be useful to compare the coordinates in
different dimensions, for this, the dimension will be places in a superscript, e.g., x(d).

Proof. Observe that the defined coordinates can be restated inductively by dimension

for x(d) ∈ Rd. Define r(k)i =

√∑i−1
j=0

(
x
(k)
j

)2
as the radial distance projected into i-

dimensions and r(k) = r
(k)
k . For d ≥ 2, the coordinates are defined inductively as

x
(k)
i =

{
x
(k−1)
i sin (ϕk−1) i 6= k − 1

r(k) cos (ϕk−1) i = k − 1
.
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As an initial condition for the inductive definition, demand that x(1)0 = r(d). Then(
r(k+1)

)2
=
(
x
(k+1)
k

)2
+

k−1∑
i=0

(
x
(k+1)
i

)2
=
(
r(k+1)

)2
cos2 (ϕk) + sin2 (ϕk)

k−1∑
i=0

(
x
(k)
i

)2
=
(
r(k+1)

)2
cos2 (ϕk) +

(
r(k)
)2

sin2 (ϕk) .

The above equation holds for any ϕk, so r(k+1) = r(k) = r(d) = r; that is, the radius
parameter is constant across each inductive step. Moreover r = r(d) parameterizes radius
(clearly r ≥ 0); r(d) is the radius by definition, but this shows that r is also the radius.

To prove that the map to the new coordinate system is bijective (or, equivalently,
invertable), it remains to show that the angles {ϕi} can be described as a function of the
Cartesian coordinates x. Observe that the angles defined in the inductive coordinate def-
inition are independent of the dimension. Consider first d = 2 wherein x

(2)
0 = r sin (ϕ1)

and x(2)1 = r cos (ϕ1), this can be inverted using a function similar to arctan
(
x
(2)
0 /x

(2)
1

)
so that ϕ1 ∈ [0, 2π) as opposed to (−π, π). In particular, consider the conventional
xy-Cartesian coordinate system for x = x

(2)
1 and y = x

(2)
0 and let ϕ be the angle of

(x, y) measured counter-clockwise from the x-axis. Denote the function used to obtain
the angle as arctan (x, y). Observe that x(d)1 and x

(d)
0 will generate the same angle, be-

cause they are the same as their lower-dimension counterparts up to a shared factor
of
∏d−1
i=2 sinϕi. The remaining angles ϕ2, . . . , ϕd−1 are similarly defined by considering

x = x
(k)
k−1 and y = r

(k)
k−1 for k > 2; in particular, x = r cos (ϕk−1), y = r sin (ϕk−1), and

ϕk−1 = arctan (x, y). However y ≥ 0, so only ϕk−1 ∈ [0, π] are possible. Again, this
definition works for the higher-dimensional counter-parts because the two coordinates
scale by the same amount,

∏d−1
i=k−1 sin (ϕi).

In summary, the inverse of the spherical- to Cartesian-coordinates is given by

r =

√√√√d−1∑
j=0

x2j ≥ 0 ,

ϕ1 = arctan (x1, x0) ∈ [0, 2π) ,

ϕi = arctan

xi,
√√√√ i−1∑

j=0

x2j

 ∈ [0, π] for i > 1 . (A.11)

The only possible issue with the ranges is that if x is zero, then r = 0 and the angles
can take any value. However, this will have no effect on integration because the origin
is a set of measure zero, and the restriction r = 1 is of interest here.

Before continuing, it may help to relate this generalized coordinate system to the
conventional polar and spherical coordinate system. For polar coordinates (d = 2),
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x0 = r sin (φ0) and x1 = r cos (φ0), which is the typical convention for (x, y) = (x1, x0).
Likewise, for spherical coordinates, x0 = r sin (φ0) sin (φ1), x1 = r cos (φ0) sin (φ1), and
x2 = r cos (φ1); so (x, y, z) = (x1, x0, x2), φ0 is the azimuthal angle, and φ1 is the polar
angle. The main change in convention is that, in both cases, the order of the x and y
coordinates is switched.

A.3.2 Volume element

For this work, the set of unit vectors in Rd is of interest. The set of unit vectors forms a
(d−1)-sphere, Sd−1, and can be formed by setting r = 1 and allowing all angles to vary.
In order to integrate over unit vectors, the induced volume element in the generalized
spherical coordinates is of interest. As will be proven here, the volume element in the
coordinate system defined in Sec. A.3.1 is

dx0 · · · dxd−1 = rd−1dr dΩd−1

for dΩd−1 =

d−1∏
j=1

(
sinj−1 (ϕj) dϕj

)
. (A.12)

Proof. The typical change-of-coordinate rules is

dx0 · · · dxd−1 =

∣∣∣∣ ∂(x0, . . . , xd−1)

∂(r, ϕ1, . . . , ϕd−1)

∣∣∣∣ dr dϕ1 · · · dϕd−1 .

With this in mind, consider the Jacobian matrix inductively (by dimension),

J (d) =
∂(x

(d)
0 , . . . , x

(d)
d−1)

∂(r, ϕ1, . . . , ϕd−1)

=

 J (d−1) sin (ϕd−1)

x
(d−1)
0 cos (ϕd−1)

...
x
(d−1)
d−2 cos (ϕd−1)

cos (ϕd−1) 0 · · · 0 −r sin (ϕd−1)

 . (A.13)

Now, the determinant of the Jacobian matrix is

det J (d) = −r det
(
J (d−1)

)
sind (ϕd−1)

+ (−1)d−1 cos (ϕd−1)

× det

 ∂(x
(d−1)
1 ,...,x

(d−1)
d−2 )

∂(ϕ1,...,ϕd−2)
sin (ϕd−1)

x
(d−1)
0 cos (ϕd−2)

...
x
(d−1)
d−2 cos (ϕd−2)

 .
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Focus on the remaining determinant of the (d− 1)× (d− 1) matrix,

det(· · · ) = (−1)d−2 det


r
x
(d−1)
0
r cos (ϕd−2)

...

r
x
(d−1)
d−2

r cos (ϕd−2)

∂(x
(d−1)
1 ,...,x

(d−1)
d−2 )

∂(ϕ1,...,ϕd−2)
sin (ϕd−1)



= (−1)d−2 det


r cos (ϕd−1) 0

0 sin (ϕd−1)
. . .

sin (ϕd−1)



× det


x
(d−1)
0
r...

x
(d−1)
d=2
r

∂(x
(d−1)
1 ,...,x

(d−1)
d−2 )

∂(ϕ1,...,ϕd−2)


= (−1)d−2r cos (ϕd−1) sin

d−2 (ϕd−1) det J
(d−1) ,

where the second line used the fact that the determinant of a product is the product of
determinants, detAB = detA · detB. Together,

det J (d) = −r det
(
J (d−1)

)
sind (ϕd−1)− r cos2 (ϕd−1) sin

d−2 (ϕd−1) det
(
J (d−1)

)
= −r sind−2 (ϕd−1) det

(
J (d−1)

)
.

The initial condition for this this inductive expression is det J (2) = r dr dϕ0. Thus,

dx0 · · · dxd−1 = rd−1dr

d−1∏
j=1

(
sinj−1 (ϕj) dϕj

)
= rd−1dr dΩd−1 , (A.14)

where

dΩd−1 =
d−1∏
j=1

(
sinj−1 (ϕj) dϕj

)
= sind−2 (ϕd−1) dϕd−1 dΩ

d−2 (A.15)

is the surface element on Sd−1.

Finally, it is useful to define the surface area of Sd as

Ad :=

∫
Sd

dΩd . (A.16)

An exact equation for this integral can be determined (e.g., by considering the integral
over a (d+ 1)-dimensional Gaussian) but will not be needed.
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A.3.3 Directional sensitivity

This section will use the coordinate system described in the previous sections to prove
Eq. (A.9).

Proof. The sensitivity of GNOME is defined in Chapter 5. Signals in the GNOME
network are affected by the directional sensitivity of the magnetometers in the network.
A signal is described by a d = 3-dimensional vector m and the sensitive axis of the ith
magnetometer is di. The magnitude ‖m‖ describes the strength of the wall, while the
magnitude of d can be chosen to account for the particular coupling of the sensor to the
signal. Let D be a n×d matrix, where n is the number of sensors in the network, whose
rows are the {di} vectors. The set of signals {si} from the sensors is described by

Dm = s . (A.17)

Denote the uncertainty in the n sensors in the network with the covariance matrix
Σ = diag{σ2i }. The sensitivity of the network is defined in Eq. (5.1) and Eq. (5.4) as the
strength of a signal needed to guarantee q signal-to-noise ratio of 1. The sensitivity is
then

β = 1/
√
m̂TDTΣ−1Dm̂ . (A.18)

To better understand how the sensitivity scales with the size of the array, it helps to
make some simplifying assumptions. First, assume that all the sensors have the same
noise Σ = σ21 and ‖di‖ = κ. Further, consider the vectors di as evenly distributed
along Sd−1. The expected squared sensitivity is then

β2 ≈ σ2/
〈
‖Dm̂‖2

〉
= σ2/

〈
n∑
j=1

κ2 cos2 θj

〉

=
σ2

nκ2 〈cos2 θ〉
,

where θi is the angle between m and di.
To calculate the expectation value of cos θ, one can orient xd−1 in the direction m̂

so that ϕd−1 = θ. The expected value is obtained by integrating against the PDF dΩd−1

Ad−1

over the sphere,

〈
cos2 (ϕd−1)

〉
=

1

Ad−1

∫
Sd−1

dΩd−1 cos2 (ϕd−1)

=
1

Ad−1

∫
Sd−1

dΩd−2 dϕd−1 sind−2 (ϕd−1) cos
2 (ϕd−1) .
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Focus now on the integral over ϕd−1 (dropping the subscript),∫ π

0
dϕ sind−2 (ϕ) cos2 (ϕ) =

∫ π

0
dϕ

[
d

dϕ

(
sind−1 (ϕ)

d− 1
cos (ϕ)

)
+

sind (ϕ)

d− 1

]
=

∫ π

0
dϕ

sind−2 (ϕ)

d− 1

(
1− cos2 (ϕ)

)
d

d− 1

∫ π

0
dϕ sind−2 ϕ cos2 ϕ =

1

d− 1

∫ π

0
dϕ sind−2 ϕ∫ π

0
dϕ sind−2 ϕ cos2 ϕ =

1

d

∫ π

0
dϕ sind−2 ϕ .

Plugging this back into the equation,〈
cos2 (ϕd−1)

〉
=

1

dAd−1

∫
Sd−1

dΩd−2 dϕd−1 sind−2 (ϕd−1)

=
1

dAd−1

∫
Sd−1

dΩd−1

= 1/d .

Finally, the sensitivity is

β ≈ σ

κ

√
d

n
. (A.19)

One can absorb κ into the noise σ or set κ = 1 to get Eq. (A.9).
This is the typical

√
n improvement that one often finds. The dependence on the

dimension d can be understood as one needing a sensor pointing in every dimension to
achieve the same sensitivity as a single sensor, except in all directions.
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Appendix B

Manipulating probability
distributions

A probability distribution function (PDF) can be thought of as a differential n-form1

P (x)dnx over an n-dimensional oriented manifold M such that
∫
M P (x)dnx = 1 and

whose integral over any n-dimensional submanifold is non-negative (with appropriate ori-
entation). Moreover, for an n-dimensional submanifold U ⊂M, the integral

∫
U P (x)d

nx
is interpreted as the probability that one obtains a result in U when randomly sampling
from M.

It is useful to understand how to manipulate and combine probability distributions.
This has physical applications such as understanding the shape of spectral lines [166]
and the standard halo model [125]. Additionally, there are practical applications such
as when one has a random number from a simple PDF and would like a random number
sampled from a different PDF.

One simple type of transformation is to consider the surjective map ψ : M → N
for n-dimensional manifolds M and N where M has the PDF, P0(x)d

nx. One can
understand the PDF P1(y)d

ny of y = ψ(x) by understanding that the probability that
x is in the submanifold U ⊂M is the same as in the image2 ψ(U) ⊂ N ,∫

U
P0(x)d

nx =

∫
ψ(U)

P1(y)d
ny . (B.1)

In this appendix, methods for transforming probability distributions will be explored.
First, in Sec. B.1, a method for transforming a known distribution to a desired distribu-
tion will be explored. Then, in Sec. B.2, the effects of transforming one or more random
variables is considered.

Before continuing, it is important to note that focus will be placed on PDFs, which
are defined for a manifold M. However, it is often important to consider discrete,

1dnx ≡ dx1 ∧ dx2 ∧ · · · ∧ dxn with appropriate parameterization.
2If ψ is not injective, than one may need to double-count the repeated points in ψ(U). For example,

if M = R, N = R+, and ψ(x) = |x|, Eq. (B.1), setting U = [a, b] for a < 0 and b > 0, would read as∫ b

a
P0(x)d

nx =
(∫ −a

0
+
∫ b

0

)
P1(y)d

ny.
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Probability Mass Functions (PMFs) on a set M . PMFs are described by a function
Q : M → R such that Q(k) is the probability of selecting k. Some examples of PMFs
include the Binomial distribution and Poisson distribution. Comparing transformations
of PMFs to PDFs often amounts to simply switching sums and integrals. One could also
consider an injective function φ : M →M from a set M to a manifold M. A PMF Q
on M would then become a PDF P (x)dmx on M where

P (x) =
∑
k∈M

Q(k)δ (x− φ(k)) dmx ,

and δ(x) is the m-dimensional Dirac delta function. Further, transformations between
PMFs, the function f : M → N becomes the function ψ :M→ N between manifolds,
such that the following diagram commutes

M N

M N

f

φM φN

ψ

where φM :M →M and φN : N → N are injective.

B.1 Transforming the distribution

In this section, we will consider the case in which an initial distribution is known and
there is a different desired distribution. This can be particularly useful when building
Monte Carlo simulations in which tools are available to produce a random number from
a known distribution (often a flat distribution on [0, 1)) but a different distribution is
desired.

In general, the problem of transforming between known distributions P0(x)d
nx on

M and P1(y)d
ny on N amounts to finding the appropriate function ψ(x) = y such that

Eq. (B.1) is satisfied. This will be described for the n = 1 case because the 1-dimensional
topologies are easily characterized and the regions U can be easily generalized.

For n = 1-dimension, transforming between different probability distributions can
be accomplished in generality3. To see this, it is useful to consider M = [0, 1) with a
flat distribution dx (i.e., P0(x) = 1). Now, consider some other distribution P1(y)dy on
N = (a, b). Let ψ :M → N be a monotonic function with limx→0+ ψ(x) = a. Define
the cumulative distribution function (CDF) as

C1(y) =

∫ y

a
P1(ȳ)dȳ . (B.2)

3Note that, because S1 and R differ topologically by the inclusion/removal of a set of measure zero,
one can show that a distribution on any real interval can be extended to any 1-dimensional topology.
Thus, only a real interval will be considered here.
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Consider the integral over the family of intervals Ux = [0, x) ⊂M according to Eq. (B.1),∫ x

0
P0(x̄)dx̄ =

∫ ψ(x)

a
P1(ȳ)dȳ ,

x = C1 (ψ(x)) .

From this, one obtains the PDF transformations,

y = C−1
1 (x) and x = C1(y) , (B.3)

to transform from dx to P1(y)dy and vice-versa, respectively.
Strictly speaking, it remains to be seen that Eq. (B.1) is satisfied for all submanifolds

of [0, 1) using the transformation from Eq. (B.3). It suffices to show that Eq. (B.1) is
satisfied for any interbal [x0, x) since all submanifolds will be the union of such intervals.
This is accomplished by considering [x0, x) = Ux ∩ (M−Ux0):∫ x

x0

P0((̄x))dx̄ =

∫ x

0
P0(x̄)dx̄−

∫ x0

0
P0(x̄)dx̄

=

∫ ψ(x)

a
P1(ȳ)dȳ −

∫ ψ(x0)

a
P1(ȳ)dȳ

=

∫ ψ(x)

ψ(x0)
P1(ȳ)dȳ .

Thus, the proposed transformation works for all subsets U .
This procedure can be extended to transform any two 1-dimensional PDFs by first

transforming to [0, 1) then any other PDF. For example, consider the transformation
from any P0(x)dx on M to P1(y)dy on N can be accomplished by

y = C−1
1 (C0(x)) , (B.4)

where C0(x) is the CDF for P0(x)dx and C1(y) is the CDF for P1(y)dy.
To illustrate an n = 2-dimensional case, a specific example will be considered. Con-

sider the initial distribution is flat on the square M = [0, 1) × [0, 1), P0(α, β)dα dβ =
dα dβ. We will consider a distribution on a triangular region N bounded by y = ±x and
x = 1 given by

P1(x, y)dx dy =
(
1 +

y

x

)
dx dy .

The goal, then, is to find a surjective map ψ(α, β) = (x(α, β), y(α, β)). There are many
ways to map a square region to a triangular region. To begin, we can make some
choices to constrain the map. First, we will consider a map that maps together the
boundaries ∂M 7→ ∂N and that is bijective on the interiors of these regions. Further,
one can demand that x = x(α) with x(0) = 0 and x(1) = 1. Likewise, let y(α, β) be
monotonically increasing in β so y(α, 0) = −x(α) and y(α, 1) = x(α). Then, x(α) can
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Figure B.1: Visualization of n = 2-dimensional transformation of (a) a flat distribution
P0(α, β)dα dβ to a (b) non-flat distribution P1(x, y)dx dy described in the text. The
shading indicates the value of P1(x, y).

be defined by integrating over β,

∫ α

0
dᾱ

∫ 1

0
dβ̄ =

∫ x(α)

0
dx̄

∫ x̄

−x̄
dȳ
(
1 +

ȳ

x̄

)
α =

∫ x(α)

0
dx̄ 2x̄

= x2(α) ,

so x(α) =
√
α. For y, one can add a further constraint so that y(α, β) = f(β)

√
α =

f(β)x(α), so that lines of constant β in M form lines through the origin in N . Then,

∫ α

0
dᾱ

∫ β

0
dβ̄ =

∫ √
α

0
dx̄

∫ f(β)x̄

−x̄
dȳ
(
1 +

ȳ

x̄

)
αβ =

∫ √
α

0
dx̄

1

2
(1 + f(β))2

β =

(
1 + f(β)

2

)2

f(β) = 2
√
β − 1 .



115 APPENDIX B. MANIPULATING PROBABILITY DISTRIBUTIONS

Taken together,

ψ(α, β) =
(√

α, (2
√
β − 1)

√
α
)
,

ψ−1(x, y) =

(
x2,

1

4

(
1 +

y

x

)2)
.

A visualization of this transformation is given in Fig. B.1.

B.2 Combining random values

In the previous section, the problem was to generate a desired distribution P1(y)d
ny

from a given distribution P0(x)d
nx by finding the appropriate transformation ψ(x) = y.

In this section, we consider the case in which a transformation is known and the final
probability distribution is constructed from this. For this, it is possible to generalize the
problem slightly more such that the function ψ :M → N is a surjective map from an
m-dimensional space M to an n-dimensional space N for n ≤ m. This generalization
allows one to consider the case of combining independent random variables x0 ∈ M0

from P00(x0)dx0 and x1 ∈M1 from P01(x1)dx1 by imagining a them as a single variable
(x0, x1) ∈ M0 ×M1 with the distribution P0(x)d

2x = P00(x0)P01(x1)dx0dx1. These
variables are then combined via a function ψ :M0 ×M1 → N into a single variable y
with distribution P1(y)dy.

To begin, the case where the dimensions of the two spaces are the same n = m.
Generating a random number with a known distribution and then applying some trans-
formation to the output will yield a new distribution. Given the PDF P0(x)d

nx and an
invertible transformation ψ(x) = y, the distribution P1(y)d

ny would simply follow the
change-of-coordinates,

P1(y) = P0 (ψ(y))

∣∣∣∣∂ψ−1(y)

∂y

∣∣∣∣ , (B.5)

where
∣∣∣∂ψ−1(y)

∂y

∣∣∣ is the Jacobian for ψ−1. If ψ is piecewise-invertible, one defines a
partition {Ui} of M such that the restriction ψi = ψ|Ui : Ui → Vi ⊂ N is invertible.
Then Eq. (B.5) includes a sum,

P1(y) =
∑
i,y∈Vi

P0 (ψi(y))

∣∣∣∣∂ψ−1
i (y)

∂y

∣∣∣∣ . (B.6)

Further generalizations are also possible but will not be explored in detail here. For
instance, if ψ is constant for some region, the distribution P1(y)d

ny will include some
values with discrete probabilities. This can be accomplished with including a Dirac delta
function in P1(y).

Now, consider the case where the dimension of the target space is less than the initial
space n < m. It follows that ψ cannot be an injective function so one must integrate over
a (m−n)-dimensional space given by ψ−1(y). The idea then is to reparameterize x such
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into the pair (y, t) where t paramterizes the submanifold ψ−1(y). That is, ψ(φ(y, t)) = y
for the bijective function φ(y, t) 7→ x. Given this function, the resulting PDF is

P1(y)d
ny =

[∫
ψ−1(y)

ψ(φ(y, t))

∣∣∣∣∂φ(y, t)∂(y, t)

∣∣∣∣ dm−nt

]
dny . (B.7)

Comparing Eq. (B.5) to Eq. (B.7), one sees that φ acts like an inverse of ψ after extending
N to the m-dimensional manifold N × ψ−1(y).

Consider the example of adding up two random numbers x from Px(x)dx and y from
Py(y)dy. The result will be z = ψ(x, y) = x+ y from an unknown distribution Pz(z)dz.
For this case, φ(z, t) = (t, z − t) will satisfy z = ψ (φ(z, t)). The Jacobian determinant
is
∣∣∣∂φ(y,t)∂(y,t)

∣∣∣ = 1, so the final distribution is described by

Pz(z) =

∫
Px(t)Py(z − t)dt = (Px ∗ Py) (z) ,

which is simply a convolution of Px and Py.



Appendix C

Confidence and significance in
Poissonian statistics

There are numerous cases in which one counts the number of instances of something
and would like to either make a statement on how common that thing is or if that
thing is occurring more/less than expected. For example, a Geiger counter can be used
to measure the rate/intensity of ionizing radiation. One can then use this information
to determine the rate at which a radioactive substance decays or compare the expected
decay rate to the observed one. The mathematics used to meaningfully understand these
counts and rates is Poissonian statistics.

For the sake of this appendix, the “thing” being counted will be called an event,
without distinguishing whether an “event” is due to background or the thing one is
trying to measure, because a false-positive event is, by its nature, indistinguishable from
a true-positive event. Poissonian statistics assumes that

• the events are countable and one can properly distinguish events (no double-
counting or missed events).

• the presence of one event does not affect the presence/absence of another. If the
measurements occur over time, for example, one would not expect events to be
clustered together.

• there is some predictable, inherit expected number of events in a given study.
This condition could fail, for example, if the event rate varied over time in an
unpredictable fashion.

This appendix will consider the statistics underlying such situations. A particular fo-
cus will be placed on understanding experiments in which the underlying rate is unknown
and not predicted by theory. This will have direct application to GNOME wherein we
search for domain-wall-crossing events and would like to understand the rate of events,
especially when compared to an expected rate of background events.
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C.1 Poissonian distribution
Fundamental to Poissonian statics is understanding a probability distribution of possible
experimental outputs. Such a distribution will be parametrized by a single parameter:
the expected event count µ, which can be any positive real number.

Before describing the Poissonian probability distribution, consider the binomial dis-
tribution. This distribution describes the outcome of an experiment in which there are
n chances of an event occurring, where there is a p probability of the event occurring in
each chance. Though combinatoric arguments, the binomial distribution is given by the
probability of k events occurring,

B(k;n, p) =
n!

k!(n− k)!
pk(1− p)n−k , (C.1)

this is the binomial Probability Mass Function (PMF). The mean of this distribution is
µ = np.

The Poissonian distribution is the limit of the binomial distribution as n→∞ while
keeping the mean constant. For this, we replace p = µ/n,

lim
n→∞

B(k;n, µ/n) = lim
n→∞

n!

k!(n− k)!
(µ/n)k(1− µ/n)n−k

= lim
n→∞

µk

k!

n!

(n− k)!nk
(1− µ/n)n

=
µk

k!
e−µ .

Thus, the probability of measuring k events given that µ events are expected is given by
the Poissonian PMF,

P (k;µ) =
µke−µ

k!
. (C.2)

Because a common application of Poissonian statistics is in considering the rate r of
events over some time T , one often finds Eq. (C.2) written with µ = rT .

If µ is known, one can determine the significance of measuring n events by considering
the probability of measuring more- and/or less-than n events. Here, the case in which the
expected number of events is not known is considered. First, by establishing a confidence
band for µ given a measurement. Then, a scheme for determining if two measurements
are consistent will be described.

C.2 Confidence intervals
The main idea of building a confidence interval is that one would like to know what the
expected number of events is, given that some number of events are measured. Because
the PMF (Eq. (C.2)) is non-vanishing over the natural numbers regardless of µ, it is
technically possible for µ to be anything. However, one would like to make a statement
on a “reasonable” range of expected event counts within some confidence interval.
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Figure C.1: Confidence intervals for n = 5 observed events and bounds given by X =
Y = 1−C

2 .

It should also be noted that, for large µ, the probability of observing any given
number of events becomes very small. Thus, it makes sense to build the bounds of the
confidence interval using the probability that one measures at least as many or as few
events as measured, as opposed to the likelihood of measuring exactly as many events
as observed.

With these ideas in mind, the confidence interval is defined as the range of expected
event counts such that the observed count falls near the center of the distribution.
Given that n events were observed, define two thresholds X and Y for the bounds of the
confidence interval (µL, µH) such that

X =

n∑
k=0

P (k;µH) and Y =

∞∑
k=n

P (k;µL) . (C.3)

Here, values for X and Y are generally chosen and the above equation defines µH and
µL. For the first constraint, the upper bound µH is determined by finding the largest
expected count such that the probability of observing n or fewer events is at least X.
The second constraint analogously determines a lower bound1. Together, the confidence
level for this interval is given by

C = 1− (X + Y ) . (C.4)

Keeping the confidence level constant still leaves some choice in how far the observed
count can appear in the tails of the distribution. One could, for example, define the
bounds such that X = Y = 1−C

2 to get an interval around the observed count (e.g.,
1There is some question as to whether one should include n in the tail (as in this case) or not. For

example, the upper bound is defined such that the observed count would lie squarely in the tail (hence
the interval being open to exclude the edge cases). As it is defined here, the interval may not vanish for
C → 0 (see, e.g., Fig. C.1).
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Fig. C.1). Setting (X,Y ) = (0, 1 − C), the upper-bound disappears, leaving only a
lower-bound, and similar for (X,Y ) = (1 − C, 0) defining an upper-bound. Also, if no
events are observed, there is no lower-bound solution because

∑∞
k=0 P (k;µ) = 1, so it

only makes sense to define the upper-bound at confidence level C = 1−X.

C.3 Significance of a measurement
Consider running an experiment counting the number of events with the aim of deter-
mining if there is an excess of events with respect to some background (or other baseline).
In many cases, there may not be a clear, underlying expected rate for the background;
with the background defined by a combination of experimental design and uncontrol-
lable factors. The background could be calculated by an ancillary experiment wherein
the signals are removed or suppressed. In this case, the comparison will be between
two values that contain some uncertainty: the “background measurement” n0 and the
“search measurement” n1 (being the combination of background and foreground). The
naïve approach is to simply approximate the two values as part of a Gaussian distri-
bution with a

√
n standard deviation. This approach works particularly well for large

counts as the Poissonian distribution looks Gaussian. However, a more rigorous method
will be explored here that works in all cases.

One is often interested in comparing the rate of events and may use different durations
for the background and search measurement. For example, one may not be able to take
as much search-measurement data due to resource limitations. Thus, this section will
allow this additional flexibility. With this in mind, the following quantities are defined,

µ0 = r0T0 , (C.5)
µ1 = r1T1 = r0T1 + rT̃1 , (C.6)

where µ0 and µ1 are the expected number of background- and search-measurement
events, r0 and r1 are the underlying background- and search-measurement rates, T0
and T1 are the times used for the background- and search-measurement experiments,
r is the underlying excess rate in the foreground, and T̃1 is the time during which the
search-measurement experiment is sensitive to foreground events. In general, the “excess
rate” could be negative, and proving the existence of a significant excess will depend on
excluding the negative case. Often, one simply considers conditions under which T̃1 = T1
so r = r1− r0, however a bit more generality is included here to consider experiments in
which there are times that certain events are missed (e.g., due to temporary reduction
in sensitivity). With this in mind, define

r̄ =
T̃1
T1
r

to be the observed rate of events over the search-measurement experiment.
In an abstract view, the picture described here is of a theory with two parameters: the

event rates r0 and r1 (likewise, the excess rate r can replace r1). The theory states that
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one would expect an observation to sample from a Poissonian PMF with the respective
event rate. In an experiment, the times T0 and T1 are independent variables, while the
measured number of events n0 and n1 are the dependent variables. Based on observation,
one can define a “confidence region” in (r0, r) parameter space at some confidence level.
A visualization of the parameter space is given in Fig. C.2. The question, then, is to
ask what combinations of r0 and r can explain the observed rate within some confidence
level. Since the background is not physically relevant, particular focus will be placed on
defining bounds for the excess rate r given any background r0.

Using the methods described in Sec. C.2, the measurements n0 and n1 will define
confidence intervals on µ0 and µ1 with confidence levels C0 and C1, respectively. Like-
wise, dividing by the corresponding time yields confidence intervals for the rates r0 and
r1,

r0L <r0 < r0H ,

r1L <r1 < r1H . (C.7)

The confidence that both of these inequalities hold is simply

C = C0 · C1 . (C.8)

Further, taking the difference in the two rate bounds (Eq. (C.7)) yields a bound on the
observed excess rate,

−(r0H − r1L) < r̄ < r1H − r0L , (C.9)

noting that r1L − r0H will only be positive if there is a significant excess rate. This
interval corresponds to a confidence of at least C = C0C1. The exact confidence would
be a bit higher to include cases in which the inequalities in Eq. (C.7) do not hold, but
Eq. (C.9) holds.

Recall that the bound on r̄ can be translated in terms of r by multiplying each
element in the inequality by T1/T̃1, where T1 is the total time used to measure µ1 and T̃1
is the time during which the search measurement is sensitive to signals. This is necessary
to meaningfully interpret the rate.

Just as there is some choice in intervals for possible rates, there is some flexibility
in how the confidence interval for r̄ is given. For example, an upper-bound on r0 (so
r0L → 0) and a lower-bound on r1 (so r1H →∞) leaves only the lower-bound

r̄ > −(r0H − r1L) . (C.10)

This extreme is particularly useful if one wants to claim that it is unlikely that there
is no excess rate, because the presence of an excess would exclude the possibility that
the search measurement can be explained by background, alone (r̄ = 0). The confidence
level at which r0H = r1L will describe the significance of a discovery. Alternatively,
considering a lower-bound on r0 (so r0H →∞) and an upper-bound on r1 (so r1L → 0)
leaves only the upper-bound,

r̄ < r1H − r0L . (C.11)
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Figure C.2: A diagram of the theoretical rate parameter space with confidence intervals.
(a) Parameter space in terms of (r0, r1) with confidence intervals in blue and red and r̄
in grey. (b) Parameter space in terms of (r0, r̄) with r1 in grey. The horizontal black
dashed lines represent the bounds on the excess rate r̄.

This bound is particularly useful when there was not a significant excess rate. In this
case, the bound can be used to exclude scenarios in which a large excess rate is expected.
Keeping the confidence level constant and considering other (connected) intervals on the
measurements will result in a confidence interval/band on r contained by the two above
extreme cases.
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