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Abstract
The unmixing dynamics of a polymer-solvent system is investigated via computer simulation
of a mesoscopic model. The polymer component is represented by a bead-spring model
where the quality of the solvent can be varied by adjusting the attractive component of the
pair interaction. The polymers are dissipatively coupled to a Lattice-Boltzmann solvent
background in order to include hydrodynamic interactions. The project’s overarching
goal is to compare the present model to a continuum model that is being investigated
in a collaborating group and perform a parameter matching. The fact that the available
macroscopic models were found to be lacking a comprehensible connection to microscopic
physics motivated the creation of a novel continuum theory from scratch. This theory is
derived from microscopic principles, always keeping the numerical implementation in mind
and at the same time making sure that it is compatible with the GENERIC formalism and
fundamental symmetries. Thus, all parameters have a well-defined meaning with respect
to the computer model.

Numerical simulations of the mesoscopic model are performed using a coupled Lattice
Boltzmann/Molecular Dynamics approach which at the same time provides the basic picture
used in the derivation of the continuum model. The attraction strength corresponding to
the theta solvent is estimated for two-dimensional systems. Three-dimensional systems
are simulated at various densities. The results are used to estimate the parameters of
the analytically determined Van der Waals equation of state. The coarsening dynamics
during phase separation is examined by calculating the dynamic structure factor for both
two- and three-dimensional systems. Comparison to a simple fluid reveals that in the
viscoelastic case dynamic scaling is violated, meaning that the phase-separation dynamics
of the present computer model is indeed non-standard. First comparisons are made to a
macroscopic model which was simulated by a collaborating group. Furthermore, the use of
Minkowski functionals for analyzing the dynamics of the emerging structures’ geometrical
properties is explored.

In parallel, a procedure for calculating Lattice Boltzmann weights based on the numerical
solution of the Maxwell-Boltzmann constraints has been developed and implemented in a
Python script. The script determines whether or not a valid model corresponding to the
user-supplied parameters exists and calculates its weights if this is the case. A procedure
to obtain particular models even when there are infinitely many solutions to the problem
is available. Furthermore, the script provides a function to determine the validity of a
solution, which can be used to verify existing models from the literature.



Zusammenfassung
Die Entmischungsdynamik eines Polymer-Lösungsmittelsystems wird durch Computersi-
mulation eines mesoskopischen Modells untersucht. Die Polymerkomponente wird durch
ein Kugel-Feder-Modell dargestellt, bei dem die Qualität des Lösungsmittels durch An-
passung der attraktiven Komponente der Paarwechselwirkung variiert werden kann. Die
Polymere sind dissipativ an einen Lattice-Boltzmann-Lösungsmittelhintergrund gekoppelt,
um hydrodynamische Wechselwirkungen zu berücksichtigen. Das übergeordnete Ziel des
Projekts ist es, das vorliegende Modell mit einem Kontinuumsmodell zu vergleichen, das in
einer kollaborierenden Gruppe untersucht wird, und einen Parameterabgleich durchzufüh-
ren. Die Tatsache, dass den verfügbaren makroskopischen Modellen eine nachvollziehbare
Verbindung zur mikroskopischen Physik fehlt, motivierte die Herleitung einer neuartigen
Kontinuumstheorie. Diese Theorie wird aus mikroskopischen Prinzipien abgeleitet, wobei
die numerische Umsetzung stets im Auge behalten und gleichzeitig sichergestellt wird, dass
sie mit dem GENERIC-Formalismus und den fundamentalen physikalischen Symmetrien
kompatibel ist. Somit haben alle Parameter eine wohldefinierte Bedeutung in Bezug auf
das Computermodell.

Numerische Simulationen des mesoskopischen Modells werden mit einem gekoppelten
Lattice Boltzmann/Molekulardynamik-Ansatz durchgeführt, der gleichzeitig das Grundbild
liefert, das bei der Herleitung des Kontinuumsmodells verwendet wird. Für zweidimensionale
Systeme wird die dem Theta-Lösungsmittel entsprechende Attraktionsstärke abgeschätzt.
Dreidimensionale Systeme werden bei verschiedenen Dichten simuliert und die Ergebnisse
verwendet, um die Parameter der analytisch bestimmten Van-der-Waals-Zustandsgleichung
abzuschätzen. Die Vergröberungsdynamik bei der Phasentrennung wird durch Berechnung
des dynamischen Strukturfaktors sowohl für zwei- als auch für dreidimensionale Systeme
untersucht. Der Vergleich mit einem einfachen Fluid zeigt, dass im viskoelastischen Fall
die dynamische Skalierung verletzt wird, was bedeutet, dass die Phasentrennungsdynamik
des vorliegenden Computermodells tatsächlich nicht dem Standardverhalten entspricht.
Erste Vergleiche werden mit einem makroskopischen Modell angestellt, das von einer
kollaborierenden Arbeitsgruppe simuliert wurde. Des Weiteren wird die Verwendung von
Minkowski-Funktionalen zur Analyse der Dynamik von geometrischen Eigenschaften der
während der Phasenseparation entstehenden Strukturen erprobt.

Parallel dazu wurde ein Verfahren zur Berechnung von Lattice-Boltzmann-Gewichten
basierend auf der numerischen Lösung der Maxwell-Boltzmann-Constraints entwickelt und
in einem Python-Skript implementiert. Das Skript ermittelt, ob zu den vom Benutzer
angegebenen Parametern ein gültiges Modell existiert und berechnet dessen Gewichte,
falls dies der Fall ist. Es wird gezeigt, wie bestimmte Modelle auch dann generiert werden
können, wenn es unendlich viele Lösungen für das Problem gibt. Darüber hinaus bietet
das Skript eine Funktion zur Bestimmung der Gültigkeit einer gegebenen Lösung, welche
zur Überprüfung bestehender Modelle aus der Literatur verwendet werden kann.
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Chapter 1

Introduction

While the phase separation of simple fluids is a well-known process that has been studied
experimentally and theoretically for a long time [1–6], a range of interesting new phenom-
ena can arise when one of the components has viscoelastic properties. The morphologies
occurring in the spinodal decomposition of simple fluids are mainly determined by the in-
terplay between surface tension, diffusion, convection, and inertia. Introducing viscoelastic
effects can break the separation of time scales making the theoretical treatment challenging.
One of the most prominent features of the so-called viscoelastic phase separation is the
formation of long-range networks in the viscoelastic component; additional characteristic
phenomena include a slowing-down of the dynamics in the early stages and the volume
shrinking of the viscoelastic component at intermediate times. While being intriguing
from the standpoint of fundamental research, the physical mechanisms taking place in
viscoelastic phase separation are ubiquitous in industrial processes such as the production
of plastic foams and filters, as well as food processing.

While some deviation from the standard behavior was already predicted theoretically
by Binder et al. in 1986 [7], the characteristic freezing and network structures were first
observed experimentally by Tanaka and Nishi [8] and later Aubert [9] as well as Song and
Torkelson [10]. Additional studies by Tanaka and coworkers followed [11, 12], featuring
a theoretical description in terms of a two-fluid model based on the works of Doi and
Onuki [13] as well as Milner [14]. It was proposed that a mere dynamic asymmetry between
components, i.e. when the configurational relaxation time of one component is much larger
than the other’s, is enough to produce viscoelastic-like phase separation [15]. For example,
the characteristic network formation was observed in colloidal suspensions as well [16].
While the universal dynamic scaling is expected to break down in entangled polymer
solutions due to the loss of self-similarity, the colloidal suspensions show universal but
non-standard dynamic growth exponents [17]. A review on viscoelastic phase separation is
provided by reference [18].

1
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There have been numerous efforts to derive continuum theories for binary fluid mixtures
with one viscoelastic component in terms of hydrodynamic two-fluid models which feature
separate velocity fields for each component, or equivalently the relative velocity together
with an average velocity. Pleiner and Harden have derived such equations purely relying
on thermodynamics and basic symmetry principles [19]. However, this approach results
in a model with many unknown parameters making its interpretation challenging. Other
theories couple Oldroyd-B-like viscoelastic equations for the polymer conformation tensor
to the classical hydrodynamic equations, such as the one by Taniguchi and Onuki [20].
The model by Tanaka et al. presented in references [12] and [21] is based on a similar
philosophy and proposes a splitting of the polymeric stress tensor into a shear-stress and
a diagonal bulk stress, which then enters the final dynamic equations merely as a scalar.
Zhou, Zhang, and E have however pointed out that this model violates the second law
of thermodynamics and propose a modified one in ref. [22] that does not suffer from this
problem.

1.1 Objective of the thesis
This thesis was created in the framework of project C3 in the collaborative research center
TRR146, which is funded by the German science foundation DFG. In this project, the
phenomenon of viscoelastic phase separation is studied numerically using two distinct
approaches.

On the one hand, a mesoscopic model where the polymer molecules are described by
bead-spring chains and the solvent is represented on a discrete lattice is adopted. The
particle dynamics is simulated with a Molecular Dynamics (MD) approach, while for
the solvent the Lattice Boltzmann (LB) method is used. The components are coupled
by Stokes friction forces resulting in a momentum transfer from polymer to solvent and
vice versa. By setting the strength of the non-bonded attraction between beads, the
solvent quality can be adjusted implicitly, and phase separation can be induced. Numerical
simulations of this model were performed as part of the present thesis.

On the other hand, macroscopic models such as the one by Zhou, Zhang, and E, as well
as related and modified models, are studied by a collaborating group at the Johannes
Gutenberg Universität in Mainz. They are analyzed with respect to their mathematical
properties such as solubility and well-posedness and simulated by using finite-elements
methods.

The advantage of the mesoscopic model lies in the fact that it has a clear-cut connection to
the underlying microscopic physics and can therefore be considered sound. Even though it
is more efficient than all-atom simulations with explicit solvent particles, the simulation of
large systems over long time periods is computationally still costly. With the finite-elements
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methods, much larger length and time scales are accessible; however, the connection to
microscopic physics is not as clear.

The project’s ultimate goal is to use the numerical results from the mesoscopic model
to calibrate the parameters of a suitable macroscopic model, and in this way obtain an
efficient and well-interpretable simulation strategy for viscoelastic phase separation. This
parameter matching will be facilitated by a second collaborating group at Technische
Universität Darmstadt by methodologies from the field of inverse problems.

While there are some very general structural and dynamical properties like the structure
factor and related dynamic scaling laws for which a comparison between both approaches
is possible, it soon became evident that the available macroscopic models are not well-
suited for a detailed quantitative matching of parameters. Key factors contributing
to this are the somewhat arbitrary splitting of the stress tensor and phenomenological
parameters that were introduced only to enforce thermodynamic consistency, which makes
their interpretation difficult. Furthermore, the existing models based on an Oldroyd-
B constitutive equation suffer some conceptual problems, which will be elaborated on
in section 2.5. Because of this, the main focus of this thesis has been shifted from the
production and analysis of numerical data and the comparison to the macroscopic model
towards the development of a new viscoelastic two-fluid model with a clear connection to
the mesoscopic simulation model and microscopic physics.

Several strategies for the derivation of the continuum dynamics were considered, one of
them being the Rayleigh formalism based on the Onsager symmetry relations [23–25].
However, this is only applicable for purely dissipative processes and relating the transport
coefficients to microscopic physics is not straightforward. It was then found that the
Hamiltonian Poisson bracket formalism can bridge conservative microscopic dynamics
and their continuum counterpart by representing the continuous fields in terms of the
microscopic variables. This is in spirit similar to what has been done by Stark and
Lubensky for nematic liquid crystals in ref. [26]. In conjunction with the GENERIC
formalism [27,28], this finally made possible the construction of the full dynamic equations
involving both Hamiltonian and dissipative contributions.

1.2 Outline
The Outline of this thesis is as follows: In chapter 2, the theoretical foundation of the
thesis is built, starting by outlining general static and dynamic scaling concepts of polymer
solutions. Then, the theory of the phase separation of regular fluids is recapitulated in
terms of Flory-Huggins theory and dissipative dynamical models such as the Cahn-Hilliard
equation and model H. It is shown how a suitable equation of state for the system at
hand can be obtained using Van der Waals theory. The Oldroyd-B model for viscoelastic
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fluids is introduced, and its problems are discussed. Finally, the theoretical framework
comprising the Hamiltonian Poisson bracket formalism and the GENERIC formalism,
which are later used in the derivation of a viscoelastic two-fluid model, is introduced.

Chapter 3 encompasses the numerical methods used in the simulations. This includes a
brief introduction of Molecular Dynamics methods and the descriptions of the particular
potentials used in the production of the numerical results. Furthermore, the fluctuating
Lattice Boltzmann method, which is employed to model the solvent, and its coupling to
the MD particles are described.

The theoretical and computational developments achieved in the framework of this thesis
are compiled in chapter 4. This includes the derivation of a two-fluid model aiming at
modeling the continuum dynamics of viscoelastic phase separation. Furthermore, the
workings of a Python script, which has been developed to automatize the calculation of
weights needed for the construction of LB models, is described. This script simplifies a
task that would otherwise, depending on the exact nature of the desired model, be tedious
up to practically impossible to do manually.

Chapter 5 features numerical results obtained via simulation of the coupled LB/MD
scheme. For two-dimensional systems, the critical attraction strength for the chain-collapse
transition is estimated. The dynamic structure factor during phase separation and the
derived coarsening dynamics are presented for both two- and three-dimensional systems;
these results are compared to the original macroscopic model. Minkowski functionals
are used as a way of describing the dynamics of geometrical properties obtained from
three-dimensional configurations.

In chapter 6, the results of the thesis are summarized, and some prospect for possible
future work on the topic is given.

Supplementary material, such as some information on functional derivatives, as well as the
documentation of the developed software, is found in the appendix. Extensive calculations
that would otherwise hinder the flow of the main text have likewise been outsourced there.
Furthermore, some of the work that does not directly follow the mainline of the thesis but
might still be of interest can be found in this place.



Chapter 2

Theoretical background

In this chapter, the fundamental physics of polymer solutions and their phase-separation
behavior is introduced. Furthermore, the theoretical tools and concepts needed to derive
the viscoelastic phase-separation model in section 4.1 are presented.

Section 2.1 starts by reviewing static and dynamic properties of polymer solutions in
general by discussing scaling laws at different densities and temperatures. Flory-Huggins
theory (section 2.2) gives some fundamental insight into the phase behavior of mixtures
and is used to derive an equation of state. It also provides us with a criterion for the
curvature of the free energy curve that determines whether or not phase separation occurs
for a particular composition. An alternative equation of state is derived by Van der
Waals theory (section 2.3), which explicitly accounts for a finite volume of the polymer
beads, making the description of compressible fluids more realistic. This expression for
the pressure can be used to complete the phase-separation model that is developed in
section 4.1.

The remainder of the chapter is concerned with the field-theoretic description of phase
separation dynamics. The simple energy criterion derived from Flory-Huggins theory is
improved upon by including fluctuations, and it is shown that only fluctuations beyond
some critical wave vector can render the system unstable (section 2.4.1). Model B, also
known as the Cahn-Hilliard equation (section 2.4.2), is the most basic dynamical model for
phase separation of fluids treated here. It does however neglect hydrodynamic advection,
which is accounted for in Model H (section 2.4.3). Dynamic scaling laws for the growth of
characteristic length scales are motivated; they are later compared to numerical results
obtained from the dynamic structure factor in section 5.4.

If one of the fluid components is a polymer, viscoelastic degrees of freedom need to be
included as well. One of the most basic rheological models for a solution is the Oldroyd-B
model, which is described in section 2.5. Here the polymer molecules are approximated

5
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by harmonic dumbbells, which are subject to thermal fluctuations and friction with
respect to a solvent background. The orientation of molecules is described by the average
conformation tensor. This dynamic average is evaluated using the Fokker-Planck equation
for the probability density of the end-to-end vector resulting in a relaxation equation for
the conformation tensor towards its thermal equilibrium value. This then serves as a basis
for the derivation of the hydrodynamic stress tensor. While the underlying microscopic
picture is in spirit very similar to the one used to construct the novel model in section 4.1,
the treatment of fluctuations is problematic for reasons which are elaborated on in the
text.

To derive the novel phase separation model, a different strategy is pursued: Starting from
a microscopic picture inspired by the LB/MD simulation model described in section 3.2.4,
the conservative and dissipative parts of the dynamics are treated separately and without
fluctuations. Once the full equations are constructed, there is the possibility to add
fluctuations transparently and consistently, treating all variables on the same footing.
The derivation of these equations is carried out in such a way that basic principles of
nonequilibrium thermodynamics are automatically satisfied. One crucial principle is
encoded in the Onsager reciprocal relations introduced in section 2.6, which require the
symmetry of the matrix of transport coefficients of dissipative processes.

On the other hand, the conservative dynamics can be described by an antisymmetric
matrix of Poisson brackets (section 2.7), a representation that can be derived from
Hamiltonian mechanics. In the GENERIC formalism (section 2.8), conservative and
dissipative dynamics are modeled in one unified theory with two distinct operators. These
operators are designed in such a way that the conservative part has the Poisson bracket
structure while the dissipative part satisfies Onsager’s symmetry relations and the second
law of thermodynamics.

In section 4.1, the Poisson bracket formalism introduced here is used to derive the
conservative dynamics from a suitably constructed Hamiltonian. A dissipation rate is
derived from a microscopic dissipative coupling inspired by the LB/MD coupling from
section 3.2.4. Comparing this to the GENERIC dissipation rate yields the dissipative
part of the dynamics. The pressure in the complete compressible model must follow a
thermodynamic equation of state for which the expression obtained from Van der Waals
theory is a sound choice.
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2.1 Polymer solutions
The phase behavior of polymer solutions is very diverse. Here we try to give a brief overview
of the statics and dynamics of polymer solutions focusing on scaling relations. We mainly
rely on the references [29–32], where the interested reader can find more information.

Depending on the value of the monomer concentration cm and temperature T , a polymer
solution can be classified as dilute, semi-dilute or concentrated as shown in the phase
diagram in fig. 2.1.

T

θ

R ~ N
ν

dilute,

dilute,
good
solvent

semi�dilute

concentrated

dilute, poor
solvent

Θ solvent

c**

R ~ N
1/2

R ~ N
1/3

R ~ N
1/2

R ~ N1/2

~ N
�1/2

~ N
�1/2

phase coexistence

"gas" "liquid"

ν = 0.59

(Zimm)

(Zimm/
Rouse)

(Zimm) (Rouse/
Reptation)

c*

c

Figure 2.1: General temperature-concentration phase diagram of a polymer solution.
Source: [32], with kind permission of the author.

2.1.1 Statics
Typically, polymer chains collapse at low temperatures or poor solvents and tend to demix
inside the phase coexistence curve, which is also called the binodal. The temperature at the
extremum of the binodal is then called upper critical solution temperature (UCST). Above
the UCST all compositions of polymer and solvent are typically miscible. However, certain
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polymers-solvent combinations can demix at high temperatures. The lowest temperature
of this upper phase coexistence region is called lower critical solution temperature (LCST).

Apart from temperature, the solvent quality can also be related to the excluded volume
of a monomer Vm. If U(r) is the effective interaction energy between two monomers at
distance r, including interactions with the surrounding solvent, the excluded volume is
defined by

Vm =
∫

ddr
(

1 − exp
(

−U(r)
kBT

))
. (2.1)

It is positive if repulsive interactions dominate and negative if attractive interactions
dominate.

The theta temperature Tθ marks the point at which the repulsive interaction of the solvent
is just strong enough to cancel the hard-core repulsion in the polymer chains and Vm = 0.
In this case one uses the term theta solvent. Then, a polymer with N monomers behaves
like a random walk (RW)∗ at all concentrations and the chain size scales like:〈

R2
g

〉
∝
〈
R2

e

〉
∝ N (2.2)

in the limit of large N . The angular brackets ⟨·⟩ denote the ensemble average and we have
introduced the end-to-end vector

Re = rN − r1, (2.3)

where ri is the position of bead i. The radius of gyration Rg is in some sense the average
distance of the beads from the chain’s center of mass, which is expressed by

R2
g = 1

N

N∑
i=1

ri − 1
N

N∑
j=1

rj

2

= 1
2N2

N∑
i=1

(ri − rj)2. (2.4)

The ideal scaling at the theta point is exploited to determine the collapse transition for
two-dimensional polymer solutions by numerical simulations in section 5.2.

Let us now define the concentration c∗
m(T ) at which the system becomes dense enough so

that individual chains begin to interact (overlap limit). We estimate c∗
m as the concentration

at which there are N monomers per volume of a chain. In the theta solvent the chains
always scale like random walks, independent of the concentration. Hence

c∗
m(Tθ) ∼ N

⟨Re2⟩3/2 ∝ N−1/2. (2.5)

∗There are small corrections to scaling due to three-body forces.
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Here we use the sign ‘∼’ to indicate proportionality with dimensionless constant prefactor
and ‘∝’ to indicate proportionality with a factor that has units.

In a good solvent T > Tθ, there is positive excluded volume, however monomers of the
same chain only begin to ‘see’ each other at a length-scale beyond the thermal blob size
ξT . The monomers practically do not interact inside the thermal blobs, and the subchains
in the blobs are ideal with scaling exponent 1/2. The thermal blobs themselves, however,
form a self-avoiding random-walk (SAW) with exponent ν ≈ 0.59. In the limit of an
athermal solvent (T → ∞), ξT becomes identical to the monomer size b, and the chain
behaves like a SAW on all scales. The overlap concentration then scales like

c∗
m(T > Tθ) ∝ N1−3ν . (2.6)

As temperature increases, the total size of the chains increases as well, meaning that c∗
m

must decrease as the system heats up.

At concentrations c > c∗
m individual chains start to interact and the solution becomes

semidilute. While at small length scales, the monomers interact primarily with the solvent
and with monomers of the same chain, other chains become ‘visible’ beyond a certain
correlation length ξc. This motivates the definition of correlation blobs with size ξc. Like
in a melt, excluded volume interactions are screened on length scales larger than the
correlation blobs and the chains as a whole scale like random walks. Thus there is a
hierarchy of blobs, where inside each correlation blob there is a chain of thermal blobs
with SAW configuration, while the subchains in the thermal blobs again scale like an RW
(fig. 2.2).

Figure 2.2: Blob hierarchy in the semidilute regime. The large circles are the correlation
blobs forming a random walk. Inside are the thermal blobs with SAW structure. Within
the thermal blobs, the chain performs a random walk.
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While the size of the thermal blobs ξT is independent of concentration, the correlation
blobs become smaller as the density increases. By c∗∗

m we denote the concentration at
which ξc = ξT , no SAW conformations are left, and the system becomes concentrated.

In poor solvents T < Tθ, the thermal blobs form compact globules whose size scales like
N1/3. Within these globules, there might still be solvent molecules; then, the scaling inside
the thermal blobs is still ideal. Only in the limit of a non-solvent, all solvent is expelled
from the globule, ξT becomes the monomer size b, and the chain is compact on all scales.
Also, when the binodal is crossed, the collapse is accompanied by phase separation (see
sections 2.2 and 2.4). Then the system decomposes into a polymer-rich phase where the
chains essentially form a melt and a dilute phase with some globules suspended in the
solvent.

In principle, mixtures of solvents can also be considered. This can lead to interesting
effects like the swelling of chains in a mixture of two poor solvents in which the chains
would normally be collapsed [33].

2.1.2 Dynamics
To describe dynamics, we first consider single particles in a solution. The particles undergo
stochastic kicks from the surrounding solvent, leading to diffusive motion. On time scales
much larger than the average time between collisions, the mean squared displacement of a
particle is linear in time, ⟨(r(t) − r(0))2⟩ = 2dDt. Here, D is the diffusion constant and d
the spacial dimension. According to the fluctuation-dissipation theorem, there must be a
compensating friction force with coefficient

ζ = kBT/D (2.7)

acting on the particle. Equation (2.7) is known as the Einstein relation.

In concentrated systems, hydrodynamic interactions are screened, and the Rouse model is
a good choice to describe the dynamics of polymer chains. Here, polymers are modeled
as beads connected by springs. One bead can be thought of as a Kuhn segment in a real
chain, i.e. a group of consecutive monomers large enough that the resulting chain of Kuhn
segments can be considered ideal. The surrounding solvent exerts a friction force with
coefficient ζ onto all N beads. Thus, the full dynamics is described by a Langevin equation
with a diffusion constant that scales like DR ∝ 1/N . The time it takes for a chain to cover
a distance equal to its own size R is thus given by

τR ∼ R2

D
= ζR2

kBT
N ∼ ζb2

kBT
N2, (2.8)

which is also called the Rouse time [34].
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Hydrodynamic interactions cannot be neglected in dilute systems. Moving beads introduce
flow in the solvent which propagates through the system with a velocity field that decays
like ∝ 1/r and interacts with other beads. This is accounted for in the Zimm model which
has a diffusion constant D ∝ 1/Nν . It can be shown [35] that the Zimm time scales like

τZ ∼ ζb2

kBT
N3ν . (2.9)

In semidilute systems, both Rouse and Zimm behavior can occur. While it is still commonly
assumed that both regimes can be separated purely by length scale, it has been shown [36]
that the time scale must be taken into consideration as well. Zimm behavior is always
observed on short time scales. Only on time scales larger than the time needed for
a correlation blob to move a distance equal to its own size, the chain begins to feel
the constraint by the surrounding molecules. Then, on length scales larger than the
hydrodynamic screening length ξh, there are no more effects of hydrodynamic interaction,
and Rouse dynamics applies.

In the limit of very low solvent concentration, i.e. melts, surrounding chains form a network
of tubes with a diameter of dt, through which the molecules can move via reptation. Inside
the tubes the chain is able to form blobs of size dt = bN1/2

e containing Ne beads that
describe a random walk. Hence, the average contour length of a tube is

L = N

Ne
dt = b

N

N
1/2
e

. (2.10)

Assuming that inside a tube the chains can diffuse freely with diffusion constant D =
kBT/(Nζ), the reptation time scales with the cube of the chain length:

τr ∼ L2

D
= ζL2

kBT
N = ζb2

kBT

N3

Ne
. (2.11)
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2.2 Flory-Huggins theory
Flory-Huggins theory [30,31,37–40] is a classic theory describing the phase behavior of
mixtures.

Most often in the derivation of Flory-Huggins theory, the configurational entropy of a
mixture is estimated by attempting to count the number of ways in which its components
can be arranged on a regular lattice. Together with a mean-field approximation, this is
then used to construct the free energy of the mixture.

Here we will start by deriving the Edwards equation for a random walk on a lattice and in
an external potential. The solution of this equation for constant potentials allows us to
construct an expression for the free energy of the mixture and a continuum limit removes
the need for a lattice interpretation.

2.2.1 Random walk in an external potential
This derivation of the free energy for a random walk in an external potential is based on
the work of de Gennes in [30], as well as the lecture notes by B. Dünweg [31]. We start by
defining the Green’s function for a M -step random walk on a d-dimensional cubic lattice
with lattice constant a in an external potential U(r), starting at position r0 and ending at
position rM :

GM(r0, rM) = eβU(r0)

zM

∑
WM (r0,rM )

exp[−β(U(r0) + U(r1) + · · · + U(rM))], (2.12)

G0(r0, rM) = δr0,rM
. (2.13)

Here β = 1/(kBT ), WM(r0, rM) is the set of all possible M -step random walks from r0
to rM and z is the number of nearest neighbors of a lattice site. For s being a nearest
neighbor of r, s ∈ nn(r), we can expand

GM(r0, s) ≈ GM(r0, r) + (sα − rα)∂αGM + 1
2(sα − rα)(sβ − rβ)∂α∂βGM , (2.14)

where Einstein sum convention is applied for repeated Greek indexes and the derivatives
∂α = ∂/∂rα are always acting on the second argument of GM . Because of lattice symmetry,
the expression∑

s∈nn(r)
(sα − rα)(sβ − rβ) = δαβ

za2

d
(2.15)

has no off-diagonal components and we can write the sum over all nearest neighbors of r as∑
s∈nn(r)

GM(r0, s) ≈ zGM(r0, rM) + za2

2d ∇2GM . (2.16)
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We now express the Green’s function of a chain that is extended by one bead by multiplying
with the one-bead Green’s function and summing over the nearest neighbors of r:

GM+1(r0, r) =
∑

s∈nn(r)
GM(r0, s)G1(s, r) = e−βU(r)

z

∑
s∈nn(r)

GM(r0, s)

≈ e−βU(r)

z

[
zGM(r0, r) + za2

2d ∇2GM

]

≈ 1 − βU(r)
z

[
zGM(r0, r) + za2

2d ∇2GM

]

≈ GM(r0, r) + a2

2d∇2GM − βU(r)GM(r0, r).

(2.17)

The expansion of the exponential is done under the assumption that the interaction with
the potential is small compared to kBT and thus βU ≪ 1. Also we consider GM to be
slowly varying on the scale of a lattice constant a. Therefore, terms proportional to
βUa2∇2GM are discarded as they are small of second order. Note that we have switched
to a continuum interpretation for the spacial variables. By forming the difference quotient
we switch to a continuum picture in M as well and retrieve the differential equation

∂GM(r0, r)
∂M

=
[
a2

2d∇2 − βU(r)
]
GM(r0, r), (2.18)

which has the same general form as the Schrödinger equation of quantum mechanics. Here
we shall call it Edwards equation. In the continuum limit the initial condition eq. (2.13)
becomes

G0(r0, rM) = adδ(rM − r0). (2.19)

Together with eq. (2.18) it determines GM uniquely. When taking the continuum limit, the
parameter a can be reinterpreted as a bond length. This also implies that the continuum
picture is only meaningful on length scales much larger than a.

For potentials that are constant in space, GM must be translationally invariant. We may
then write GM(r0, rM) =: GM(rM − r0) and set r0 = 0 without loss of generality. The
Edwards equation can then be solved in Fourier space. With the Fourier transform defined
by

G̃M(q) =
∫

ddr e−iq·rGM(r), (2.20)

GM(r) = 1
(2π)d

∫
ddq eiq·rG̃M(q), (2.21)
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eq. (2.18) and the initial condition eq. (2.19) can be transformed to

∂G̃M(q)
∂M

= −
(
a2

2dq
2 + βU

)
G̃M(q), (2.22)

G̃0 = ad. (2.23)

It is easily seen that the function

G̃M(q) = ad exp
[
−M

(
a2

2dq
2 + βU

)]
(2.24)

is the unique solution of this problem. Transformation back into real space via Gaussian
integration results in the final expression for the Green’s function in a constant external
potential

GM(r) =
(

d

2πM

)d/2

e−MβU exp
[
− d

2Ma2 r2
]

=: e−βMUG
(0)
M (r). (2.25)

2.2.2 Free energy
We can now use the results for the Green’s function to determine the partition function of
a single chain in some volume V . Using a continuum limit ∑r → a−d

∫
ddr and dropping

numerical prefactors we find

Zc(1, V, T ) ∼
∑
r0,r

GM(r0, r) = 1
a2d

∫
ddr

∫
ddr0 GM(r0, r)

= 1
a2d

∫
ddr

∫
ddr0 GM(r − r0) = V

a2d

∫
ddrGM(r)

= V

a2d
e−βUM

∫
ddrG(0)

M (r) = V

ad
e−βUM .

(2.26)

For N non-interacting, indistinguishable random walks, the states are multiplicative and
the partition function becomes

Zc(N, V, T ) = 1
N ! [Zc(1, V, T )]N = 1

N !

[
V

ad
exp(−βMU)

]N

. (2.27)

The factor 1/N ! originates from the fact that chains are indistinguishable, and exchanging
individual chains generates an equivalent configuration. We now use eq. (2.27) to calculate
the Helmholtz free energy

βF = − logZc = log(N !) + βNMU −N log
(
V

ad

)
. (2.28)
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For large N we can use Stirling’s formula log(N !) ≈ N log(N) −N and approximate

βF (N, V, T ) ≈ N log(N) −N + βNMU −N log
(
V

ad

)
= −N + βNMU +N log

(
Nad

V

)
.

(2.29)

With the volume fraction ϕ(N, V ) = NMad
/
V and the free energy per lattice site

f = Fad
/
V , we can write

βf(N, V, T ) = βUϕ+ ϕ

M

(
log ϕ

M
− 1

)
. (2.30)

For a two-component mixture of polymers 1 and 2 with corresponding chain lengths
M1,M2 and volume fractions ϕ1, ϕ2, the free energies are additive:

βfFH(N1, N2, V, T ) = βf1(N1, V, T ) + βf2(N2, V, T )

= βU1ϕ1 + ϕ1

M1

(
log ϕ1

M1
− 1

)
+ βU2ϕ2 + ϕ2

M2

(
log ϕ2

M2
− 1

)
.

(2.31)

The internal energies U1 and U2 contain both equal-species contributions and different-
species contributions. By mean-field approximation, both contributions to the Ui are
assumed to be proportional to the respective volume fractions:

U1 = ϕ1u11 + ϕ2u12, U2 = ϕ1u21 + ϕ2u22. (2.32)

The interaction coefficients uij are symmetrical and proportional to the typical number of
nearest neighbors in the dense phase as well as to the strength of interaction at distance a.
The free energy then becomes

βfFH(N1, N2, V, T ) = ϕ1

M1

(
log ϕ1

M1
− 1

)
+ ϕ2

M2

(
log ϕ2

M2
− 1

)
+ β

(
ϕ2

1u11 + ϕ2
2u22 + 2ϕ1ϕ2u12

)
.

(2.33)

Equation (2.33) can easily be generalized to an arbitrary number of components:

βfFH({Nk} , V, T ) =
∑

i

 ϕi

Mi

(
log ϕi

Mi

− 1
)

+ βϕi

∑
j

ϕjuij

. (2.34)
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From eq. (2.34) we can directly calculate an equation of state for the pressure by taking
the derivative

βP ({Nk} , V, T ) = −β
(
∂FFH

∂V

)
{Nk},T

= − 1
ad

∂

∂V
(V βfFH){Nk},T

= − 1
ad

βfFH + βV

(
∂fFH

∂V

)
{Nk},T

. (2.35)

With (∂ϕi/∂V ){Nk},T = − ϕi/V the derivative is

βV

(
∂fFH

∂V

)
{Nk},T

= −
∑

i

 ϕi

Mi

log ϕi

Mi

+ 2βϕi

∑
j

ϕjuij

 (2.36)

and the pressure becomes

βadP ({Nk} , V, T ) =
∑

i

 ϕi

Mi

+ βϕi

∑
j

ϕjuij

. (2.37)

The first term is just the expression from the ideal gas, while the second term accounts for
interaction effects.

Of course, the total volume fraction cannot exceed one, ∑i ϕi ≤ 1, and we can define
the pressure to be infinity at that point. However, this does not reflect the behavior
of a Lennard-Jones-like fluid very well. Here one would expect a continuous rise of the
pressure towards higher and higher densities. We thus conclude the equation of state
from Flory-Huggins theory as derived here is not well suited for our purposes. There is
also the possibility to determine the equation of state of a compressible binary mixture
by introducing a third, non-interacting component termed voids (c.f. appendix A.4). In
this model, the pressure has a divergence at the finite volume V = NMad; however, the
physical interpretation of the voids is somewhat obscure.

2.2.3 Phase behavior
In the following, we consider an incompressible binary mixture of components 1 and 2 and
investigate its phase behavior. With the incompressibility condition ϕ1 = 1 − ϕ2 =: ϕ, the
sum of interaction energies can be rewritten as

U1ϕ1 + U2ϕ2 = (2u12 − u11 − u22)ϕ(1 − ϕ) + ϕu11 + (1 − ϕ)u22. (2.38)

With the definition of the Flory-Huggins interaction parameter

χ = β(2u12 − u11 − u22), (2.39)
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the free energy becomes

βfFH(N1, V, T ) = ϕ

M1

[
log
(
ϕ

M1

)
− 1

]
+ 1 − ϕ

M2

[
log
(

1 − ϕ

M2

)
− 1

]
+ χϕ(1 − ϕ) + β(ϕu11 + (1 − ϕ)u22).

(2.40)

As we shall see below, constant contributions to the free energy and contributions linear
in ϕ do not alter phase behavior. Hence it is sufficient to use the reduced form

βfFH(N1, V, T ) = ϕ

M1
log(ϕ) + 1 − ϕ

M2
log(1 − ϕ) + χϕ(1 − ϕ), (2.41)

which is plotted in (fig. 2.3).
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Figure 2.3: Flory-Huggins free energy eq. (2.41) with M1 = 1, M2 = 2 for varying value of
the interaction parameter χ. The critical value for the interaction parameter is χc ≈ 1.46.
The dashed line follows the inflection points and defines the spinodal.

In case of phase separation, a system with an overall species-1 volume fraction of ϕ0 will
separate into two subsystems I and II: One subsystem of volume VI = λV , 0 < λ < 1,
where species 1, without loss of generality, takes a fraction of ϕI ≤ ϕ0 of the subsystem
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volume, and one subsystem of volume VII = (1 − λ)V , where species 1 has a volume
fraction of ϕII ≥ ϕ0. The global volume fraction of species 1 is then ϕ0 = λϕI + (1 − λ)ϕII.
In the phase-separated state, the total free energy of the system is then given by the sum
of the free energies of both subsystems:

fFH,sep(ϕI, ϕII) = λfFH(ϕI) + (1 − λ)fFH(ϕII). (2.42)

For phase separation to occur in the first place, the free energy of the unmixed state must
be lower than that of the mixed state. We can write this as a condition for the excess free
energy of mixing

∆fmix := fFH(ϕ0) − fFH,sep(ϕI, ϕII)
!
> 0. (2.43)

This condition can always be fulfilled in intervals where the function fFH(ϕ) is concave, i.e.

∂2fFH

∂ϕ2

∣∣∣∣∣
ϕ0

< 0, (2.44)

as it is illustrated in fig. 2.4. It is never fulfilled in regions where fFH is convex. Points

0 φI φ0 φII 1

φ

fFH,sep(φI, φII)

fFH(φ0)

f F
H
(φ
)

Figure 2.4: Flory-Huggins free energy from eq. (2.41) with M1 = 1, M2 = 2 and χ = 3
(blue). The red line indicates the free energy difference between mixed and separated state.
The solid black line is parametrized by the equation f(λ) = λfFH(ϕI) + (1 − λ)fFH(ϕII).

at which the free energy is concave are unstable, i.e. even small fluctuations in ϕ lead to
a reduction in free energy and thus phase separation. In this case, the process is called
spinodal decomposition (c.f. section 2.4). The set of inflection points is called the spinodal
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(dashed line in fig. 2.3). It is the boundary of the unstable regime and is usually drawn in
the ϕ-χ or ϕ-T plane.

Furthermore, there exists a metastable regime outside the spinodal. In this regime, small
fluctuations are not enough to generate a state with lower energy. However, the free energy
barrier can be overcome via nucleation and growth once the bulk energy of a droplet
surpasses its surface energy. Once a critical droplet size is reached, phase separation
takes place. The metastable regime is separated from the stable, one-phase regime by the
binodal.

Generally the optimal compositions in the sense that ∆fmix is maximal, are those ϕI, ϕII
which have a common tangent

∂fFH

∂ϕ

∣∣∣∣∣
ϕI

= ∂fFH

∂ϕ

∣∣∣∣∣
ϕII

= fFH(ϕII) − fFH(ϕI)
ϕII − ϕI

. (2.45)

This condition is equivalent to requiring the chemical potential to be the same in both
phases. The binodal can then be generated by finding ϕI, ϕII for all χ. If now fFH →
fFH +Aϕ+B, an extra term ‘+A’ appears both on the left hand side and right hand side
of eq. (2.45), leaving the condition invariant. This proves that it is safe to neglect constant
and linear contributions to the free energy when studying the phase behavior.

The spinodal curve can easily be calculated by setting the second derivative of the free
energy equal to zero,

1
kBT

∂2fFH

∂ϕ2 = 1
M1ϕ

+ 1
M2(1 − ϕ) − 2χ != 0, (2.46)

and solving for χ. We find:

χ(ϕ) = 1
2

(
1

M1ϕ
+ 1
M2(1 − ϕ)

)
. (2.47)

The critical value of the interaction parameter χc is the value of χ at the minimum of the
spinodal, below which mixtures of all compositions are stable. We begin by calculating
the derivative

2∂χ
∂ϕ

= − 1
M1ϕ2 + 1

M2(1 − ϕ)2
!= 0 (2.48)

and find that the critical volume fraction is

ϕc =
√
M2√

M1 +
√
M2

. (2.49)
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Therefore, the critical interaction parameter is

χc = χ(ϕc) = 1
2

( 1
M1

+ 1
M2

)
+ 1√

M1M2
. (2.50)

For a symmetric mixture of polymers M1 = M2 = M this becomes

χc = 2
M
. (2.51)

Because the interaction parameter is inversely proportional to the temperature, this defines
a critical temperature at the same time: Tc ∝ 1/χc and therefore

Tc ∝ M, (2.52)

explaining why polymers typically mix rather poorly with other polymers.

If one components has a chain length of M2 = 1 we basically have a polymer solution and
eq. (2.50) becomes

χc = 1
2M + 1√

M
+ 1

2 . (2.53)

In the limit that the other component is very long, M ≫ 1, we find

ϕc ≈ 1√
M
, (2.54)

χc ≈ 1
2 + 1√

M
. (2.55)

This means that the critical temperature Tc ∝ (1/2 + 1/
√
M)−1 increases with M but

levels off at some constant value as M approaches infinity.

Note that assuming that each segment carries the same, average internal energy U neglects
among others correlations due to connectivity and makes this a mean-field theory. There
are ways to include these higher-order correlations. However, they lead to a much more
complicated expression for the free energy, and the benefits are slim [41–43].
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2.3 Van der Waals equation of state for polymers
In this section, we derive an equation of state for a system of polymer chains in continuous
space while taking into account interaction energy and finite volume of the individual
polymer beads. This leads to a more realistic model at high densities as compared to the
equation of state derived from Flory-Huggins theory.

2.3.1 Monoatomic molecules
We start by considering a system of monoatomic molecules, i.e. simple particles. For a
single point particle of mass m in a volume V , the canonical partition function is

Zc(1, V, T ) = zid(V, T ) = 1
hd

∫
ddr ddp exp

(
−β p2

2m

)
= V

Λd
(2.56)

with the thermal De-Broglie wavelength Λ =
√
h2/(2πmkBT ). For N indistinguishable,

non-interacting particles this becomes

Zc(N, V, T ) = Zc(1, V, T )N

N ! = zN
id
N ! . (2.57)

Using Stirling’s approximation, this allows us to calculate the Helmholtz free energy of
the ideal gas

βF id(N, V, T ) = − logZc = −N log zid + log(N !)
≈ −N log zid +N log(N) −N.

(2.58)

From here, the pressure is calculated via

Pid = −∂F id

∂V
= NkBT

zid

∂zid

∂V
= NkBT

V
, (2.59)

which is the well-known equation of state of the ideal gas.

For particles with a finite volume B > 0, the total volume available to the gas reduces to
V −NB. The number of available states in the phase space reduces accordingly and in
the absence of additional interactions, the single-particle partition function is

z = V −NB

Λd
= zid

(
1 − NB

V

)
. (2.60)

We also want to take into account attractive interactions, which come into play at
finite temperatures. In a mean-field context, we expect the partition function to vary
exponentially with β:

z = zid

(
1 − NB

V

)
eβU . (2.61)
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Here U > 0 is the effective energy from attractive interactions per particle. The Helmholtz
free energy becomes

F (N, V, T ) = −kBT log
(
zN

N !

)
= F id(N, V, T ) − kBTN log

(
1 − NB

V

)
−NU. (2.62)

To further specify the interaction energy U , we make the following arguments:

(i) It must be proportional to the average particle density, U ∝ N
V

.

(ii) Based on a Lennard-Jones-like interaction, it must be proportional to the depth of
the potential, U ∝ ε.

(iii) It must be proportional to the interaction volume determined by the range of the
interaction, U ∝ Vint.

Hence, the interaction energy takes the form

U = αεVint
N

V
=: AN

V
, (2.63)

where α is some proportionality constant and a parameter A has been defined. With these
considerations, the expression for the pressure is

P = Pid
1

1 − NB/V +N
∂U

∂V
= NkBT

V −NB
+N

∂U

∂V

= NkBT

V −NB
− A

(
N

V

)2
,

(2.64)

for a plot see fig. 5.5.

2.3.2 Polymers
We will now generalize the previous derivations going from single particles to chain
molecules. From eq. (2.26) in the section on Flory-Huggins theory, we know the partition
function for a single random walk of length M :

Zc = V

ad
exp(−βMU). (2.65)

With monomer number density n = NM/V for N chains of length M , analogous argu-
mentation for the interaction energy yields

MU = −αεVint
NM2

V
= −NM2

V
A. (2.66)
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Taking into account a finite volume of the polymer beads, the single-chain partition
function then takes the form

z(V, T ) = 1
ad

(V −NMB) exp
(
β
NM2

V
A

)
, (2.67)

and the total partition function becomes

Zc(N, V, T ) = zN

N ! . (2.68)

From there, we can now calculate the Helmholtz free energy for a polymer system with N
chains of length M :

F = NkBT

[
log
(

Nad

V −NMB

)
− 1

]
− (NM)2

V
A. (2.69)

With the bead number density n(N, V ) = NM/V the corresponding free energy density

0.0 0.2 0.4 0.6 0.8
n

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

f(
n
)
+
2.
85

n

Figure 2.5: Van-der-Waals free energy density eq. (2.70) with M = kBT = B = a = 1
and A = 4. A linear term of 2.85n has been added in order to make the possibility of a
common tangent construction better visible.

is defined by

f(N, V, T ) = F

V
= kBT

n

M

[
log
(

adn

M(1 − nB)

)
− 1

]
− An2. (2.70)

As has been shown in section 2.2, additions to the free energy constant or linear in n do
not alter the phase behavior. With a suitable linear addition, the free energy density has
two local minima in some parameter range (fig. 2.5). This means that there a common
tangent construction is possible, and the system is indeed in a separated state.
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The associated pressure is

P = −
(
∂F

∂V

)
N,T

= NkBT

V −NMB
− A

(
MN

V

)2

= NkBT

MN

n

1 −Bn
− An2.

(2.71)

We see that the Van der Waals pressure has a singularity at V = NMB, accounting
for a minimum possible volume of the system. This is a key feature that the pressure
expression as derived from standard Flory-Huggins theory eq. (2.37) is lacking. Hence the
Van der Waals equation of state is a good candidate to close the system of equations of
the viscoelastic phase separation model derived in section 4.1. Values for the parameters
A and B are estimated by numerical simulation in section 5.3.

For small n we have n/(1 −Bn) ≈ n, n2 ≈ 0 and recover the equation of state of the ideal
gas

P ≈ NkBT
n

MN
= NkBT

V
, (2.72)

which is the limiting case of large volumes when the number of molecules is kept constant.
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2.4 Phase separation dynamics
In this section, some standard dissipative models for phase separation dynamics are
summarized. In doing so, information from the sources [3, 5, 6, 44] is compiled.

Model A motivates the structure of the equations but treats a non-conserved order
parameter. In spinodal composition, the order parameter can, for example, be taken to be
the volume fraction or density of one of the components. Because of the conservation of
mass, the integral of this order parameter must likewise be conserved, and thus Model A
is not a good choice to describe spinodal decomposition. The conservation of the order
parameter is considered in Model B, which describes diffusive transport of the order
parameter and results in the famous Cahn-Hilliard equation. In Model H, convection due
to hydrodynamic flow is accounted for as well.

2.4.1 Energy criterion for spinodal decomposition
Let us consider a mixture of two fluids where the order parameter is given by the field ϕ(r, t).
This could, for example, be the density, volume fraction, concentration, etc. of one of the
components. By f0(ϕ) we denote the free energy density of a homogeneous configuration
without any interfaces or other variations in ϕ. We are interested in isothermal systems,
hence the Hamiltonian H must be interpreted as a Helmholtz free energy. We can in a
first approximation write the free energy density as

f(ϕ) = f0(ϕ) + κ

2 (∇ϕ)2, (2.73)

where a gradient term with coefficient κ > 0 was added to energetically penalize variations
in ϕ, and therefore penalize interfaces, which are sharp variations in ϕ in particular. This
is a crucial ingredient since minimization of surface energy is a central driving force in the
dynamics of spinodal decomposition.

We now investigate the effect of a periodic disturbance on a homogeneous system. The
difference in energy density between a homogeneous system with ϕ(r) = ϕ0 = const. and a
system where ϕ is described by a plane periodic variation ϕ(r) = ϕ0 + A cos(qx) with x
being one component of r is then

∆f(ϕ0, x) = f(ϕ0 + A cos(qx)) − f(ϕ0)

≈ κ

2 q
2A2 sin2(qx) + A cos(qx)f ′

0(ϕ0) + A2

2 cos2(qx)f ′′
0 (ϕ0).

(2.74)

Here we have used eq. (2.73) and expanded f0 up to second order. Now suppose that the
system has size Ld and there are periodic boundary conditions. Therefore q = 2πn/L with
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n = 1, 2, . . . The total difference in free energy is then given by the integral

∆F (ϕ0) ≈ Ld−1A2

2

∫ L

0
dx
[ 2
A

cos(qx)f ′
0(ϕ0) + cos2(qx)f ′′

0 (ϕ0) + κq2 sin2(qx)
]

= LdA2

4
[
f ′′

0 (ϕ0) + κq2
]
,

(2.75)

where the trigonometric terms drop out due to the periodic boundary conditions. The
homogeneous state is unstable if the variation results in a decrease in free energy. This is
the case if

f ′′
0 (ϕ0) < −κq2. (2.76)

Note that this criterion does not depend on the amplitude A of the variation at all. It means
that via κ, the surface tension acts as a resistance against fluctuations. This is an extension
to the criterion in eq. (2.44), which was derived in the framework of Flory-Huggins mean-
field theory where fluctuations are neglected. There, merely a negative second derivative
was enough to pose an instability. Thermodynamically, the second derivative of the free
energy with respect to the volume fraction corresponds to a compressibility. A negative
compressibility means that increasing density is favorable, leading to collapse. This, in turn,
leads to a further increase in density, thus rendering the system unstable. Additionally,
the dependence on q shows that the system is more susceptible to variations with small
wavenumbers or large wavelengths. In particular, the system is unstable wrt. to variations
with a wavenumber smaller than a critical wavenumber

qc(ϕ0) =
√

−f ′′
0 (ϕ0)
κ

(2.77)

as was first shown by Cahn and Hilliard in [1].

2.4.2 Model B or the Cahn-Hilliard equation
Dissipative dynamics for a non-conserved order parameter ϕ is described by the equation [3,
6, 44]

∂ϕ

∂t
= −MδH

δϕ
, (2.78)

where by δH /δϕ we denote the functional derivative of the Hamiltonian (see appendix A.1)
and M is an Onsager coefficient (c.f. section 2.6). At this point, one can also incorporate
thermal fluctuations by using the corresponding Langevin equation; however, we shall
neglect fluctuations for now. Equation (2.78) is also classified as Model A, following the
nomenclature in the review of Hohenberg and Halperin [3].
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In spinodal decomposition of an incompressible binary system, however, the order parameter
ϕ(r, t) can e.g. be identified with the volume fraction of one of the species. It is conserved
in the sense that the integral∫

ddrϕ(r, t) = ϕ0 (2.79)

is constant in time. The flux of the order parameter, jϕ must therefore satisfy a continuity
equation

∂ϕ

∂t
= −∇ · jϕ. (2.80)

According to linear Onsager theory (c.f. section 2.6 eq. (2.178)), a natural form for the
current is then

jϕ = −M∇µ(ϕ), (2.81)

where the chemical potential µ is the functional derivative of the Hamiltonian,

µ(ϕ) = δH
δϕ

. (2.82)

The ‘force’ generating order parameter flow is thus the chemical-potential gradient. Then,
the dynamics is described by the equation

∂ϕ

∂t
= M∇2µ(ϕ), (2.83)

where ∇2 is the Laplacian operator. Equation (2.83) is classified as Model B. For the free
energy we use the ansatz from eq. (2.73):

H =
∫

ddr
[
f0(ϕ) + κ

2 (∇ϕ)2
]
. (2.84)

We can now use the relation for functional derivatives eq. (A.6), to evaluate

δH
δϕ

= µ(ϕ) = f ′
0(ϕ) − κ∇2ϕ. (2.85)

Equation (2.85) together with the Model B eq. (2.83), gives us

∂ϕ

∂t
= −M∇2

[
κ∇2ϕ− f ′

0(ϕ)
]

(2.86)

which is the famous Cahn-Hilliard equation. Note that with the current

jϕ = M∇
[
κ∇2ϕ− f ′

0(ϕ)
]
, (2.87)
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eq. (2.86) has the form of a continuity equation.

We can linearize eq. (2.86) by taking the second order expansion of f0 in order to approxi-
mate its derivative

∂f0

∂ϕ
≈ f ′

0(ϕ0) + (ϕ− ϕ0)f ′′
0 (ϕ0) = f ′

0(ϕ0) − κq2
c (ϕ− ϕ0), (2.88)

resulting in the linearized form of the Cahn-Hilliard equation

∂ϕ

∂t
= −Mκ∇2

[
∇2ϕ+ q2

cϕ
]
. (2.89)

Taking the Fourier transform of eq. (2.89) allows us to turn the partial differential equation
into a differential equation solely in time, which can be solved in q-space.

∂

∂t
ϕ̃(q, t) = −Mκ

(
q4 − q2q2

c

)
ϕ̃(q, t), (2.90)

ϕ̃(q, t) ∝ exp
[
−Mκ

(
q4 − q2q2

c

)
t
]
. (2.91)

With the definition of the growth rate

ω(q) = −Mκ
(
q4 − q2q2

c

)
, (2.92)

the amplitudes of fluctuations grow as exp(ω(q)t). Hence, for f ′′
0 (ϕ0) positive, qc is

imaginary and they decay exponentially. For negative f ′′
0 (ϕ0) however, qc is real and there

is an interval 0 < q < qc for which the growth rate is positive. It is highest at the wave
vector q = qc

/√
2 and since the growth is exponential, the corresponding length scale will

quickly start to dominate the morphology of the system.

Growth law

For the dynamic structure factor, which we define as

S(q, t) = V
∫

ddr e−iq·r ⟨ϕ(0, t)ϕ(r, t)⟩

=
〈
ϕ̃(q, t)ϕ̃(−q, t)

〉
=
〈∣∣∣ϕ̃(q, t)

∣∣∣2〉 , (2.93)

eq. (2.91) leads to

S(q, t) ∝ e2ω(q)t. (2.94)
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Equation (2.94) correctly shows that in the initial stages of phase separation the magnitude
of the structure factor peak grows with time. However, it fails to account for the fact that
the system coarsens, which would cause the position of the peak qmax to move towards
smaller values of q.

The scaling hypothesis states that, at sufficiently late times, the distribution of domain
sizes does not change when lengths are scaled by a function L(t). In other words: L is the
only characteristic length scale at that point. For the equal time pair correlation function
inside a domain that implies the relation

C(r, t) = ⟨ϕ(0, t)ϕ(r, t)⟩ ∝ g

(
r

L(t)

)
(2.95)

with the scaling function g. Then, eq. (2.95) translates to a structure factor of the form

S(q, t) ∝ L(t)dg̃(qL(t)), (2.96)

where g̃ is the Fourier transform of g. With the characteristic length scale defined by

L(t) = 2π
qmax(t) , (2.97)

we have S(qmax, t) ∝ L(t)d. When the wave vector is given in units of qmax, q = xqmax and
we divide by the maximum scattering intensity S(qmax, t), we obtain a master curve that
is independent of time

S(xqmax, t)
S(qmax, t)

∼ g̃(2πx)
g̃(2π) . (2.98)

This collapse to a master curve is shown by the simulation of a simple Lennard-Jones fluid
in section 5.4. For viscoelastic fluids, however, significant deviations can be observed; see
fig. 5.11.

To rigorously derive a scaling law for L(t) is quite involved; however one can argue [5]
that the chemical potential µ is related to the surface tension σ by µ ∼ σ/L. The current
eq. (2.87) scales like jϕ = −M∇µ ∼ Mσ/L2 and must be related to the interface velocity
L/t . This leads us to the scaling law

L(t) ∼ (Mσt)1/3, (2.99)

which is well-known as the Lifshitz-Slyozov-Wagner growth law [45,46].
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2.4.3 Model H
While Model B does take into account the conservation of the order parameter, it does
not account for its hydrodynamic convection. It is thus not able to explain some of the
effects observed in fluids. Consequently, the order parameter ϕ(r, t) has to be coupled
to the velocity field v(r, t). Augmenting the Model B eq. (2.83) by a suitable convection
term results in the Model H equation

∂ϕ

∂t
+ v · ∇ϕ = M∇2µ(ϕ), (2.100)

where µ(ϕ) = δH /δϕ is the chemical potential and the flow field v is governed by the
incompressible Navier-Stokes equations

∇ · v = 0, (2.101)

ρ

(
∂v
∂t

+ (v · ∇)v
)

= ηs∇2v − ∇P − ϕ∇µ, (2.102)

with shear viscosity ηs and pressure P . The assumption that the mass density ρ is constant
in time and space results in the incompressibility condition eq. (2.101). The last term in
eq. (2.102) can be interpreted as a driving force on the fluid, which we denote by the force
density

f = −ϕ∇µ. (2.103)

We shall now derive a dynamic equation for ϕ in the overdamped limit where viscous forces
dominate over inertial forces. The Navier-Stokes eq. (2.102) then becomes the Stokes
equation

0 = ηs∇2v(r) − ∇P (r) + f(r), (2.104)

which has the following form in Fourier space:

ηsq
2ṽ(q) = −iqP̃ (q) + f̃(q). (2.105)

The incompressibility condition ∇ · v(r) = 0 in Fourier space is just q · ṽ(q) = 0, which
allows us to determine the pressure:

P̃ = − i
q2 q · f̃ . (2.106)

Inserting the expression for the pressure into eq. (2.105) results in (sum convention for
repeated Greek indexes implied)

ηsq
2ṽα = −qα

q2

(
qβ f̃β

)
+ f̃α =

(
δαβ − qαqβ

q2

)
f̃β. (2.107)



2.4. PHASE SEPARATION DYNAMICS 31

By defining the Oseen tensor in q-space

T̃αβ(q) = 1
ηsq2

(
δαβ − qαqβ

q2

)
, (2.108)

we can simply write
ṽα = T̃αβ f̃β. (2.109)

The corresponding Oseen tensor in real space can be retrieved via the reverse Fourier
transform

Tαβ(r) = 1
(2π)dηs

∫
ddq

1
q2

(
δαβ + ∂α∂β

q2

)
eiq·r. (2.110)

The integral can be evaluated by using the general formula for n > 0†

1
(2π)d

∫
ddq eiq·r 1

qn
= rn−d

cd,n

, cd,n = πd/22n Γ (n/2)
Γ ((d− n)/2) , (2.111)

which in d = 3 dimensions results in
1

(2π)3

∫
d3q

eiq·r

q2 = 1
4πr ,

1
(2π)3

∫
d3q

eiq·r

q4 = − r

8π . (2.112)

Equation (2.110) then becomes

Tαβ(r) = 1
4πηs

(
δαβ

r
− 1

2∂α∂βr

)
= 1

4πηs

(
δαβ

r
− 1

2

[
δαβ

r
− rαrβ

r3

])

= 1
8πηsr

(
δαβ + rαrβ

r2

)
.

(2.113)

By using the convolution theorem for Fourier transforms, eq. (2.109) becomes

vα(r) =
∫

d3r′ Tαβ(r − r′)fβ(r′), (2.114)

meaning that the overdamped flow field is given by the convolution of the Oseen tensor
with the force density. We recall that the force density is given by fβ = −ϕ∂βµ with
µ = δH /δϕ and insert the above expression for the velocity into eq. (2.100). This results
in the dynamic equation for ϕ,

∂ϕ

∂t
= M∇2µ+ ∂αϕ(r)

∫
d3r′ Tαβ(r − r′)ϕ(r′)∂′

βµ(r′)

= M∇2µ− ∂αϕ(r)
∫

d3r′ µ(r′)∂′
β[ϕ(r′)Tαβ(r − r′)]

= M∇2µ(r) − ∂αϕ(r)
∫

d3r′ µ(r′)Tαβ(r − r′)∂′
βϕ(r′),

(2.115)

where ∂′
α = ∂/∂r′

α . In the first step, integration by parts was used and in the second step
we exploited the fact that because of qβT̃αβ(q) = 0 also ∂βTαβ(r) = 0.

†This can be obtained by interpreting the Riesz potential as a Fourier multiplier [47].
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Growth laws

Let us now consider a characteristic length scale in the coarsening process L(t). Dimensional
analysis for unitless ϕ can again give us an idea about how this length scale evolves in
time. One can argue [5] that

µ ∼ σ

L
, Tαβ ∼ 1

ηsL
, ∂αϕ ∼ 1

L
, (2.116)

and do an estimation of the terms in eq. (2.115), which is itself ∼ t−1:

M∇2µ(r) ∼ Mσ

L3 , (2.117)∫
d3r′ µ(r′)Tαβ(r − r′)∂′

βϕ(r′)∂αϕ(r) ∼ σ

ηsL
. (2.118)

The first term is diffusive in nature while the second term is convective. Hence, diffusive
transport of the order parameter dominates if L ≪

√
ηsM . In this case eq. (2.117) is

relevant and the length scale grows with the Lifshitz-Slyozov law

L(t) ∼ (Mσt)1/3, L ≪
√
ηsM. (2.119)

If L ≫
√
ηsM on the other hand, convective transport of the order parameter dominates

and eq. (2.118) leads to the relation

L(t) ∼ σ

ηs
t,

√
ηsM ≪ L ≪ ηs

2

ρσ
, (2.120)

also see the paper by Siggia [48]. The upper bound in eq. (2.120) comes about when
the overdamped limit in eq. (2.102) is no longer valid, and the inertial terms become
important. Note that the interval defined by the bounds in eq. (2.120) is only nonzero
for sufficiently large viscosities. For small viscosities, the viscous hydrodynamic regime
is left out, and there is a crossover to inertial dynamics right away. In this regime, the
driving term −ϕ∂αµ ∼ σ/L2 has no longer to be balanced against the viscous terms, but
we instead have to compare it with the inertial terms ρ∂tvα ∼ ρL/t2. This leads to

L(t) ∼
(
σ

ρ

)1/3

t2/3, L ≫ ηs
2

ρσ
, (2.121)

a prediction that was first made by Furukawa in [49].

To summarize, we expect a diffusion-driven L ∝ t1/3 growth in the initial phase of demixing.
As the characteristic length scale grows, convection becomes more and more dominant, and
there is a crossover to t1 scaling. At the very end, inertia dominates, and the characteristic
length grows as t2/3.
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2.5 Oldroyd-B model
In the previous section, we have seen a theory for the phase separation of regular, Newtonian
fluids. This section presents one of the most basic models for viscoelastic fluids, the Oldroyd-
B model [50–53], which is based on kinetic theory. It is used in the construction of various
models for viscoelastic phase separation. However, we shall see that it is not without its
problems.

In the Oldroyd-B model, a polymer molecule is represented by two beads at positions
r1 and r2 with respective velocities v1 and v2. The beads are connected via springs
that produce antisymmetric forces F(−r) = −F(r). In this way, both the extension and
orientation of the molecules are captured. We assume that the individual dumbbells do
not interact with each other directly. Instead, we imagine a solvent flow field v(s)(r, t) in
the background (Figure 2.6), which interacts with the beads via Stokes friction forces with
constant ζ. Thermal fluctuations are modeled by random forces, which means that the

Figure 2.6: Dumbbell molecules with solvent flow field in the background.

dynamics of the dumbbell ends is described by the Langevin equations

m∂tv1 = −ζ[v1 − v(s)(r1)] + F(r1 − r2) +
√
kBTζw1(t), (2.122)

m∂tv2 = −ζ[v2 − v(s)(r2)] − F(r1 − r2) +
√
kBTζw2(t). (2.123)

The random variables wi obey the relations

⟨wi⟩ = 0, (2.124)
⟨wiαwjβ(t′)⟩ = 2δijδαβδ(t− t′). (2.125)
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We now transform eqs. (2.122) and (2.123) to center of mass R = (r1+r2)/2 and end-to-end
q = r1 − r2 coordinates. By taking sum and difference of eqs. (2.122) and (2.123) we find

m∂tṘ = −ζ
[
Ṙ − 1

2
(
v(s)(r1) + v(s)(r2)

)]
+
√
kBTζ

2 w+, (2.126)

m∂tq̇ = −ζ
[
q̇ −

(
v(s)(r1) − v(s)(r2)

)]
+ 2F(q) +

√
2kBTζw−. (2.127)

Here we have defined the new random variables

w+ := 1√
2

(w1 + w2), (2.128)

w− := 1√
2

(w1 − w2). (2.129)

It follows directly from eqs. (2.124) and (2.125) that mean and covariance are retained:〈
w+

α

〉
=
〈
w−

α

〉
=
〈
w+

αw
−
β

〉
= 0, (2.130)〈

w+
αw

+
β

〉
=
〈
w−

αw
−
β

〉
= 2δαβδ(t− t′). (2.131)

Now, the following approximations are made:

(i) We approximate the velocity field around the center of mass by first order Taylor
expansion

v(s)(ri) ≈ v(s)(R) + (ri − R) · ∇v(s)
∣∣∣∣
R
. (2.132)

Thus we can write

v(s)(r1) + v(s)(r2) ≈ 2v(s)(R) (2.133)

and

v(s)(r1) − v(s)(r2) ≈ q · ∇v(s)
∣∣∣∣
R
. (2.134)

(ii) One typically assumes (see e.g. [52]) that the effect of noise on R is small on relevant
time scales τ , i.e.√

kBT

2ζ

∫ τ

0
dtw+ ≪ 1

2

∫ τ

0
dt
(
v(s)(r1) + v(s)(r2)

)
. (2.135)

(iii) We furthermore assume overdamped dynamics by neglecting inertial terms (m → 0).



2.5. OLDROYD-B MODEL 35

Then, eqs. (2.126) and (2.127) can be rewritten as

0 = −ζ
[
Ṙ − v(s)(R)

]
, (2.136)

0 = −ζ
[
q̇ − q · ∇v(s)

]
+ 2F(q) +

√
2kBTζw−, (2.137)

or

Ṙ = v(s)(R), (2.138)

q̇ = q · ∇v(s) + 2
ζ

F(q) +
√

2kBT

ζ
w− (2.139)

The center of mass coordinate of the dumbbell is thus locked with the solvent flow field,
while the equation of motion for q is still stochastic. We may therefore equate v(s) = v
with the mass-average velocity of the solution. It is known that a Langevin equation with
constant noise coefficient g,

∂tq = h(q) + gw, (2.140)

and the properties eqs. (2.130) and (2.131) corresponds to a Fokker-Planck equation

∂tΨ(q, t) = − ∂

∂q
·
[
h(q) + g2 ∂

∂q

]
Ψ(q, t) =: LFPΨ. (2.141)

for the probability density of the end-to end vector Ψ(q, t) [54], where the Fokker-Planck
operator LFP was introduced to reduce notation. Here we assume that the total probability
density in the position-velocity space factorizes and that the positional part does not
depend on the center of mass of the molecule but only its end-to-end vector:

f(r1, r2, ṙ1, ṙ2, t) = Ψ(q, t)Ξ(ṙ1, ṙ2, t). (2.142)

In the present case, the Fokker-Planck equation for the probability density of the end-to-end
vector looks like

∂tΨ = − ∂

∂q
·
[(

2
ζ

F(q) + q · ∇v
)
Ψ

]
+ 2kBT

ζ

∂2

∂q2Ψ. (2.143)

With a Hookean spring force F(q) = −kq this can further be simplified to

∂tΨ = ∂

∂q
·
[

2k
ζ

q − q · ∇v + 2kBT

ζ

∂

∂q

]
Ψ. (2.144)

By introducing τq = ζ/(2k), the corresponding Fokker-Planck operator takes the form

LFP(q) = ∂

∂q
·
[(

1
τq

q − q · ∇v
)

+ kBT

kτq

∂

∂q

]
. (2.145)
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The time derivative of the thermal average of a quantity A(q), that does not have any
explicit time dependence, can then be evaluated by

∂t ⟨A⟩ =
∫

ddqA∂tΨ =
∫

ddqΨL †
FPA =

〈
L †

FPA
〉
, (2.146)

where the adjoint Fokker-Planck operator has the form

L †
FP(q) =

(
− 1
τq

q + q · ∇v
)

· ∂

∂q
+ kBT

kτq

∂2

∂q2

=
(

− 1
τq

qλ + qµ∂µvλ

)
∂

∂qλ

+ kBT

kτq

∂

∂qλ

∂

∂qλ

.

(2.147)

Here we use the Einstein sum convention for double Greek indexes. This can now be used
to calculate

L †
FPqαqβ =

(
− 1
τq

qλ + qµ∂µvλ

)
(qαδλβ + qβδλα) + 2kBT

kτq

δαβ

= − 2
τq

qαqβ + qαqµ∂µvβ + qβqµ∂µvα + 2kBT

kτq

δαβ.

(2.148)

With the conformation tensor defined by

Cαβ = ⟨qαqβ⟩ , (2.149)

and the velocity gradient tensor Kαβ = ∂βvα we now find the equation of motion

∂tCαβ = − 2
τq

Cαβ + CαµK
T
µβ +KαµCµβ + 2kBT

kτq

δαβ

= CαµK
T
µβ +KαµCµβ − 2

τq

(
Cαβ − kBT

k
δαβ

)
.

(2.150)

The relaxation equation eq. (2.150) is derived with a Fokker-Planck equation only in the
end-to-end vector. According to eq. (2.138) however, the center of mass of a dumbbell
is convected by the flow field v. For an accurate treatment of a continuum of dumbbells
one needs to account for this convection. This can be achieved by replacing ∂t with the
convective derivative

Dt = ∂t + v · ∇. (2.151)

It is useful to then introduce the upper convected derivative, which accounts for convection
as well as stretching and rotation of tensor quantities X(r, t) under flow [50],

Ï
X = DtX − KX − XKT, (2.152)
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also see the books by Bird [51] and Larson [55]. The relaxation equation for the field
C(r, t) then has the simple form

Ï
C = − 2

τq

(
C − kBT

k
1

)
, (2.153)

which must be zero at thermal equilibrium. Hence, Ceq = kBT1/k, which is a direct
consequence of the equipartition theorem. Note that this differs from the mechanical
equilibrium value, which is of course zero.

2.5.1 Coupling to hydrodynamics
The conformation of the dumbbells couples to the macroscopic velocity field v(r, t) via
the stress that occurs in the Navier-Stokes equations:

ρDtv = −∇ · (P1+ σ). (2.154)

Here P = P (d) + P (s) is the sum of partial pressures of the dumbbell and solvent phases,
and σ is the deviatoric stress tensor of the mixture. It can be split up into contributions
from the dumbbells and the solvent by

σ = σ(d) + σ(s). (2.155)

The deviatoric stress of the solvent, which is considered to be a Newtonian fluid, is given
by the fourth-order viscosity tensor

ηαβγδ = ηs

(
δαγδβδ + δαδδβγ − 2

3δαβδγδ

)
+ ηbδαβδγδ

= ηs(δαγδβδ + δαδδβγ) +
(
ηb − 2

3ηs

)
δαβδγδ

(2.156)

contracted by the velocity gradient tensor. For incompressible flows tr K = 0 this is

σ(s) = η : K = ηs

(
K + KT

)
=: 2ηsD, (2.157)

where the deformation rate tensor

D = 1
2
(
K + KT

)
(2.158)

is the symmetric part of K.

Typically, the total stress of the dumbbell portion is written as a virial (also see ap-
pendix A.5) with a component resulting from intramolecular forces as well as a contribution
form relative motion with respect to v:

Π(d) = σ(d) + P (d)1 = ρ(d)

m(d)

[
⟨qF(q)⟩ +m

2∑
i=1

⟨(ṙi − v)(ṙi − v)⟩
]
, (2.159)
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where m(d) = 2m is the mass of one dumbbell and ρ(d)(r, t) is the dumbbell mass density.
This expression can be derived by considering arbitrary planes in the system and adding
up effects of dumbbells with beads on both sides of these planes, as well as the effect
of momentum transport, see [51]. If one accepts eq. (2.159) as a premise and assumes
a Maxwell-Boltzmann distribution of velocities, the average of the kinetic term can be
evaluated and, with the ideal gas equation of state P (d) = ρ(d)kBT/m

(d), the deviatoric
part of the dumbbell stress be written as

σ(d) = ρ(d)

m(d) (⟨qF(q)⟩ + 2kBT1) − P (d)1 = −kρ(d)

m(d)

(
C − kBT

k
1

)
. (2.160)

Here, the term kBTρ
(d)(r, t)/m(d) can be interpreted as density dependent elastic modulus.

The constitutive equation eq. (2.160) is called the Kramers form of the stress tensor.

2.5.2 Ensemble Problems
The above approach is standard in kinetic theory but seems problematic for the following
reason: In hydrodynamics, one commonly works under the assumption of local equilibrium.
This means that fast variables can be averaged over whereas slow variables occurring in
the macroscopic description, like the mass, energy, momentum, and in this case also the
conformation tensor, define the local fluid element’s thermodynamic ensemble. Therefore,
they should enter as constraints in any statistical average taken. In particular, the averages
in eq. (2.159) should not simply be taken over all chain conformations. Rather they should
be constrained to the local conformation tensor, making the process of averaging the
configurations superfluous in the first place.

We shall try to further illuminate this point by considering a general polymer system. The
following deliberations are published in reference [56]. Let the system be decomposed into
subcells inside which a description of the internal degrees of freedom of the polymer chains
is given by a set of variables ξi, i = 1, . . . , n. As above, the center of mass contribution
can be accounted for by adding convection ‘by hand’ and shall not be treated explicitly.
In the absence of external driving forces, let the dynamics of the probability distribution
Ψ({ξi}) be described by the Fokker-Planck equation

∂tΨ = LFPΨ. (2.161)

Apart from the standard hydrodynamic variables like mass and momentum density, we
introduce additional observables Ai({ξk}), j = 1, . . . ,m to describe the conformational
state of the polymer molecules. These may be transformed into a macroscopic interpretation
by taking the thermal averages

A
(mac)
i (r) := ⟨Ai⟩ =

∫
dnξ AiΨ, (2.162)
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where the integral is carried out over the local subcell and r is the position of that subcell.
Note that if on the microscopic scale a property is evaluated at the molecule’s center of
mass the evaluation at the macroscale must be done at the subcell position r. The time
derivative of the macroscopic quantities is then given by

∂tA
(mac)
i =

〈
L †

FPAi

〉
, (2.163)

also see eq. (2.146). The center of mass motion can again be included by switching to the
convective derivative ∂t → Dt = ∂t + v · ∇.

The backcoupling to macroscopic hydrodynamics happens via an additional viscoelastic
stress in the Navier-Stokes equations. On the microscopic scale, the stress is a function
of the microscopic variables, Π̃αβ({ξi}), while on the macroscopic scale it is expressed in
terms of the A(mac)

j , Π̄αβ

({
A

(mac)
j

})
. It is now crucial to correctly perform the continuum

limit Π̃αβ → Π̄αβ. To do this, Bird et al. pursue the following strategy: First, they evaluate
the full thermal average of the microscopic stress,〈

Π̃αβ

〉
=
∫

dnξΨΠ̃αβ. (2.164)

This average–only by coincidence–happens to be a function of the A(mac)
i ,〈

Π̃αβ

〉
= Σαβ({⟨Ai⟩}). (2.165)

The transfer to the macroscale is then performed by just equating the thus found function
to the macroscopic form of the stress:

Π̄αβ

({
A

(mac)
i

})
= Σαβ

({
A

(mac)
i

})
. (2.166)

This however neglects that, as slow variables occurring on the macroscale, the A(mac)
i define

the local thermodynamic ensemble of the subcell. This must be reflected by a constraint
in the averaging, which implies only averaging over the fast degrees of freedom. We denote
this constrained average by:

⟨X⟩fast :=
∫

dnξΨ
[∏m

i=1 δ
(
Ai({ξj}) − A

(mac)
i (t)

)]
X({ξi})∫

dnξΨ
∏m

i=1 δ
(
Ai({ξj}) − A

(mac)
i (t)

) , (2.167)

which then immediately implies the relation

⟨Ai⟩fast (t) = A
(mac)
i (t) = ⟨Ai⟩ (t). (2.168)

This relation however does not hold true in general. In particular, the macroscopic stress
must be obtained by evaluating the right-hand side of

Π̄
({
A

(mac)
i

})
=
〈
Π̃αβ({ξi})

〉
fast

. (2.169)
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By construction, this form of the macroscopic stress is then guaranteed to be a function of
the A(mac)

i .

In case of the present dumbbell model, the microscopic stress (omitting the kinetic
contribution ∝ δαβ) is given by

Π̃αβ(q) = −k ρ
(d)

m(d) qαqβ = −k ρ
(d)

m(d)Cαβ. (2.170)

Because Cαβ = qαqβ really has only three independent components, it seems natural to
choose {Ai} = {qα} rather than {Ai} = {Cαβ} in order not to artificially introduce any
additional degrees of freedom. In this case m = n = d and eq. (2.167) reduces to the
simple form

⟨X⟩fast =
∫

ddqΨ(q)δ
(
q − q(mac)

)
X(q)∫

ddqΨ(q)δ(q − q(mac))

=
Ψ
(
q(mac)

)
X
(
q(mac)

)
Ψ(q(mac)) = X

(
q(mac)

)
.

(2.171)

In particular, this implies the macroscopic form of the stress

Π̄αβ = −k ρ
(d)

m(d) q
(mac)
α q

(mac)
β = −k ρ

(d)

m(d) ⟨qα⟩ ⟨qβ⟩ (2.172)

instead of

Π̄αβ = k
ρ(d)

m(d) ⟨qαqβ⟩ , (2.173)

as it is commonly proposed in the rheological literature. Therefore, instead of eq. (2.150),
we must consider

∂t ⟨q⟩ =
〈
L †

FPq
〉

= − 1
τq

⟨q⟩ + ⟨q⟩ · ∇v (2.174)

and the related equation

∂t(⟨qα⟩ ⟨qβ⟩) = ⟨qα⟩ ⟨qγ⟩ ∂γvβ + ⟨qβ⟩ ⟨qγ⟩ ∂γvα − 2
τq

⟨qα⟩ ⟨qβ⟩ , (2.175)

which is symmetric with respect to a flip of dumbbell orientation. The conclusion must
be, that ⟨q⟩⟨q⟩ should be the dynamical field variable entering the stress and not ⟨qq⟩ as
prescribed in the standard Oldroyd-B model. It therefore seems more consistent to use a
description without noise first, resulting in a relaxation of the conformation tensor toward
its mechanical equilibrium value (zero) rather than towards the thermal equilibrium value
given by equipartition. The equations of motion can then be thermalized with a Langevin
noise at the very end. This is then in line with the novel model derived in section 4.1.
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2.6 Onsager principle
In this section the Onsager reciprocal relations [57, 58] are discussed. This symmetry
of transport coefficients is a basic requirement in nonequilibrium thermodynamics and
therefore an essential ingredient for the theoretical derivations made in section 4.1.

For the purpose of illustration consider the fundamental thermodynamic relation

dU = TdS − PdV + µ dM (2.176)

with internal energy U , temperature T , entropy S, pressure P , chemical potential µ and
mass M . The differential quantities are extensive in nature while the non-differential
quantities are intensive. At constant volume dV = 0, transforming to the volume
normalized versions of the intensive variables, u for U , s for S and the mass density
ρ for M and solving for the entropy density yields the new relation

ds = 1
T

du− µ

T
dρ. (2.177)

This defines the entropic conjugate variable pairs 1/T and u as well as −µ/T and ρ.

In his famous paper [57], Lars Onsager considers currents of a quantity X, jX that result
from the gradients in the respective entropic conjugate variable Y ,

jX = −MXY ∇Y. (2.178)

Examples for such currents include heat flow ju that results from a temperature gradient
∇(1/T ) or a Fickian diffusion current jρ resulting from the gradient ∇(−µ/T ).

The Onsager reciprocal relations state that if a current results from multiple gradients, i.e.

jX = −
∑
Y

MXY ∇Y, (2.179)

the matrix of transport coefficients MXY must be symmetric:

MXY = MY X . (2.180)

In other words, if a diffusion current induces a heat flow with some transport coefficient, a
heat flow must likewise be accompanied by a diffusion current with the same transport
coefficient. This is a crucial symmetry that dissipative nonequilibrium processes need to
satisfy. It is automatically encoded in the GENERIC formalism (section 2.8), which also
allows for conservative contributions to the dynamics.
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2.7 Hamiltonian field theory with Poisson brackets
In this section, the field-theoretic Poisson bracket formulation of Hamiltonian mechanics
is described. It is central for the construction of the conservative part of dynamics of
the viscoelastic phase separation model derived in section 4.1. If the fields describing
the system have a microscopic, particle-based interpretation, the Poisson brackets can be
calculated on the microscopic level and used to formulate the dynamic equations in the
continuum.

We consider a system that, on the microscopic level, is described by the generalized
coordinates xi and their respective conjugate momenta pi. Furthermore we assume that
there is a set of fields ϕi(x, {xk(t)}, {pk(t)}) which give a complete representation of the
system and can be expressed in terms of the microscopic coordinates and momenta. As an
example for such a field, consider the mass density of a system of particles at positions ri

and with masses mi defined by

ρ(r, {rk}, t) =
∑

i

miδ(r − ri), (2.181)

where δ is the Dirac delta function. This has a well-defined microscopic interpretation and
a continuum limit can be performed by ‘smearing out’ the delta peaks. Similar expressions
can be defined for the momentum density as well, see section 4.1 eq. (4.11).

The Hamiltonian is then written as a functional of the general fields H ({ϕk(x, t)}). We
can now use Hamilton’s equations of motion on the microscopic level,

∂xi

∂t
= ∂H
∂pi

,
∂pi

∂t
= −∂H

∂xi

, (2.182)

to determine the time derivative of any field ψ(x, {xk(t)} , {pk(t)}). If ψ has no explicit
time dependence, ∂ψ/∂t = 0, the total time derivative is

dψ
dt

=
∑

i

(
∂ψ

∂xi

∂xi

∂t
+ ∂ψ

∂pi

∂pi

∂t

)
=
∑

i

(
∂ψ

∂xi

∂H
∂pi

− ∂ψ

∂pi

∂H
∂xi

)

=
∑
ij

∫
ddx′

(
∂ψ(x)
∂xi

∂ϕj(x′)
∂pi

− ∂ψ(x)
∂pi

∂ϕj(x′)
∂xi

)
δH

δϕj(x′) ,
(2.183)

where the chain rule for functionals eq. (A.11) was used in the last step. With the definition
of the Poisson bracket

{ψ, ϕ} =
∑

i

(
∂ψ

∂xi

∂ϕ

∂pi

− ∂ψ

∂pi

∂ϕ

∂xi

)
, (2.184)
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this becomes

dψ
dt

=
∑

j

∫
ddx′ {ψ(x), ϕj(x′)} δH

δϕj(x′) . (2.185)

In particular, eq. (2.185) also holds if ψ is one of the ϕi.

This formalism can be used to coarse-grain from a particle-based description to a field-
theoretic representation of a system. For the hydrodynamics of a simple fluid, for example,
the xi and pi be taken as the coordinates and momenta of the particles that constitute the
fluid, and the fields ϕi be chosen to represent mass density and momentum density ρ(x, t)
and j(x, t). With a suitable microscopic representation of ρ and j, the Poisson brackets
may be evaluated on the microscopic level, while the dynamic equations of the continuum
can be calculated from eq. (2.185), resulting in the Euler equations, c.f. section 4.1.

Generally, the choice of the ϕi must not be unique, and choosing can pose a nontrivial
task. For example, the evaluation of the brackets {ϕi, ϕj} could result in new fields ϕ̃i,
which can not be expressed in terms of the original fields. A different set of fields must be
chosen, or the new fields be incorporated into the original set, and the additional brackets
be evaluated. This procedure could, in the worst case, continue infinitely. Hence, care
must be taken in the choice of ϕi such that the final set of fields is closed. The existence
of such a closed set is by no means guaranteed but depends on the nature of the system
and its description. For the very simple dumbbell model in section 4.1, finding such a set
of fields turns out to be possible. Typically, it is advisable to make sure that none of the
variables that occur in the particle description are discarded.

Finally we take note of some mathematical properties of the Poisson brackets that can be
proven in a straightforward way and will be useful for calculations later on:

{xi, xj} = {pi, pj} = 0, (2.186)
{xi, pj} = δij, (2.187)

{f, g} = −{g, f}, (2.188)
{λ(f + g), h} = λ{f, h} + λ{g, h}, (2.189)
{f, λ(g + h)} = λ{f, g} + λ{f, h}, (2.190)

{fg, h} = {f, h}g + f{g, h}, (2.191)

{f, g(h)} = {f, h}∂g
∂h
. (2.192)
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2.8 GENERIC formalism
The acronym GENERIC [27, 28] stands for ‘general equation for the nonequilibrium
reversible-irreversible coupling’. It is a formalism that can be used to derive the dynamic
equations of abstract state variables while taking into account fundamental principles of
nonequilibrium thermodynamics such as energy dissipativity dH /dt ≤ 0, the Onsager
reciprocal relations (c.f. section 2.6), as well as the Poisson bracket structure of the
conservative part of the dynamics (c.f. section 2.7). It gives a general framework for the
derivation of consistent dynamic equations describing nonequilibrium processes and proved
to be particularly useful in the determination of the dissipative part of dynamics of the
phase separation model derived in section 4.1.

Fundamental ingredients for the GENERIC formalism in the microcanonic ensemble are
total energy E, entropy S and two linear operators L and M. The time evolution equations
are written as

dx
dt

= L
∂E

∂x
+ M

∂S

∂x
, (2.193)

where x is a vector of state variables that fully describe the system. The operator L = −L†

is skew-adjoined and describes the conservative (reversible) part of the dynamics. Therefore
it must not couple to the entropy, which is expressed by the relation

L
∂S

∂x
= 0. (2.194)

The operator M = M† is self-adjoint and positive semi-definite i.e. xTMx ≥ 0. It
represents the dissipative (irreversible) part of the dynamics, hence

M
∂E

∂x
= 0. (2.195)

Equation (2.193) is easily generalized to a system that is entirely described by fields
ϕi(r, t):

dϕi(r, t)
dt

=
∑

j

∫
ddr′

[
Lij(r, r′) δE

δϕj(r′) +Mij(r, r′) δS

δϕj(r′)

]
. (2.196)

If we disregard dissipative effects by setting M = 0, and compare eq. (2.196) with eq. (2.185)
we discover that L must be the matrix of Poisson brackets,

Lij(r, r′) = {ϕi(r), ϕj(r′)}. (2.197)

With the Helmholtz free energy

F (N, V, T ) = E − TS (2.198)



2.8. GENERIC FORMALISM 45

and eqs. (2.194) and (2.195), we find that the evolution equations for the isothermal
ensemble have the form

dϕi(r, t)
dt

=
∑

j

∫
ddr′

(
Lij(r, r′) − 1

T
Mij(r, r′)

)
δF

δϕj(r′) . (2.199)

From here it is obvious that the dynamic equation can be separated into conservative and
dissipative parts(

dϕi(r, t)
dt

)
cons

=
∑

j

∫
ddr′ Lij(r, r′) δF

δϕj(r′) , (2.200)
(

dϕi(r, t)
dt

)
diss

= − 1
T

∑
j

∫
ddr′ Mij(r, r′) δF

δϕj(r′) . (2.201)

In the following we will absorb T by a redefinition of the dissipative operator M/T → M.

Let us now examine the time derivative of the free energy. With the symmetry relation of
L and the positive definiteness of M, we can determine

dF
dt

=
∑

i

∫
ddr

δF

δϕi(r)
dϕi

dt

=
∑
ij

∫
ddr ddr′ δF

δϕi(r)(Lij(r, r′) −Mij(r, r′)) δF

δϕj(r′)

= −
∑
ij

∫
ddr ddr′ δF

δϕi(r)Mij(r, r′) δF

δϕj(r′) ≤ 0,

(2.202)

proving that the free energy of an isothermal system is monotonically decreasing under
GENERIC dynamics.

We note that if one is able to write the energy dissipation rate of a system in the form of
eq. (2.202), this at the same time determines the dissipative matrix M. If, in addition
to that, the set of all Poisson brackets can be evaluated and is closed, L is known from
eq. (2.197) and the complete dynamics can be written down with eq. (2.199).
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Chapter 3

Numerical methods and implementation
details

When simulating viscoelastic phase separation, exact knowledge of the conformations
of the polymer molecules at all points in time is of high value. While hydrodynamic
interactions with the solvent are important (c.f. section 2.4.3 about Model H), we do not
believe that the molecular structure of the solvent is critical. Thus, to be as efficient as
possible, we take a multiscale approach to the numerical simulation. For the polymers,
we use Molecular Dynamics (MD, see section 3.1) to integrate the equations of motion of
bead-spring chain molecules. The bonded interaction is modeled with the FENE potential,
which limits the maximum possible extension of the chains. Interaction with the solvent is
taken into account implicitly by a non-bonded potential with tunable interaction strength.

The MD particles are coupled to a Lattice Boltzmann (LB, see section 3.2) solvent
background via dissipative forces. The fluid is interpreted as mass densities on a discrete
lattice. Lattice sites can only exchange mass with a defined set of neighbors. An integration
step can be divided into a streaming of mass and a collision process that facilitates relaxation
to local equilibrium. Asymptotically, the LB fluid turns into a Navier-Stokes continuum.
The dissipative and random forces resulting from friction with the MD particle correspond
to a force density, which can be incorporated by an extension of the collision process. In
doing so, momentum conservation must not be violated.

This coupled LB/MD scheme was used to produce the numerical results presented in
chapter 5. At the same time, it provides the microscopic picture from which the continuum
viscoelastic phase separation model in section 4.1 is derived. This strategy will allow
for good comparability between simulations of the mesoscopic model presented here and
future simulations of the new continuum model.

47
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3.1 Molecular Dynamics simulations

Classical Molecular Dynamics (MD) is a simulation method for simulating a set of particles
that have continuous coordinates ri inside a simulation box. The particles interact with
each other, and possibly with the external surrounding, via potentials Uj({ri}). Here MD
methods are used to simulate the polymer molecules coupled to the Lattice Boltzmann
solvent. The molecules are modeled by chains of beads, which are connected by FENE
springs with a finite maximum extension. The non-bonded interaction is given by the
Lennard-Jones Cosine potential, which has the advantage that the strength of attraction
can be adjusted. This corresponds to an implicit adjustment of solvent quality and is
used to introduce phase separation. This combination of potentials is a modification of
the Kremer-Grest model [59] which is widely used for the simulation of polymer melts. It
was introduced by Soddemann et al. [60] and used by Steinhauser [61] to study polymer
solutions at different solvent qualities.

The MD simulation works iteratively by solving Newton’s equations of motion where the
forces are given by the gradients of the potentials

pi

mi

= ṙi = vi, ṗi = −
∑

j

∂Uj

∂ri

= Fi, (3.1)

where pi are the particle momenta conjugate to the positions ri and mi the particle masses.
The text following is inspired by references [62,63] where more details can be found.

3.1.1 Velocity Verlet algorithm
In this work, we use the velocity Verlet algorithm [64,65] to integrate Newton’s equations
of motion eq. (3.1). An integration of coordinates and velocities corresponding to one MD
timestep δtMD in the velocity Verlet algorithm, ri(t) → r(t+ δtMD), vi(t) → vi(t+ δtMD),
can be divided into three steps,

vi

(
t+ δtMD

2

)
= vi(t) + 1

2mi

δtMDFi(t),

ri(t+ δtMD) = r(t) + δtMDvi

(
t+ δtMD

2

)
,

v(t+ δtMD) = vi

(
t+ δtMD

2

)
+ 1

2mi

δtMDFi(t+ δtMD),

(3.2)

which are often termed ‘kick-drift-kick’. This split can be motivated as follows: Consider
an observable A({rk(t)}, {pk(t)}, t) on phase space. The total time derivative of A can
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then be written as

dA
dt

= ∂A

∂t
+
∑

i

(
vi · ∂

∂ri

+ Fi · ∂

∂pi

)
A =

(
∂

∂t
+ iL

)
A (3.3)

where we have introduced the Liouville operator

iL =
∑

i

(
vi · ∂

∂ri

+ Fi · ∂

∂pi

)
. (3.4)

Hence, as long as A has no explicit time dependence, ∂A/∂t = 0, we can express the time
derivative by dA/dt = iLA, a differential equation which has the formal solution

A({rk(t)}, {pk(t)}) = exp(iLt)A({rk(0)}, {pk(0)}). (3.5)

We can split the Liouville operator into partial operators acting on coordinates and
momenta respectively,

L = Lr + Lp, (3.6)

iLr =
∑

i

vi · ∂

∂ri

, (3.7)

iLp =
∑

i

Fi · ∂

∂pi

. (3.8)

However, Lr and Lp do not commute and the exponential in eq. (3.5) does not factorize.
Rather, the Trotter formula must be applied [66],

exp(iLt) = lim
n→∞

[
exp

(
iLp

t

2n

)
exp

(
iLr

t

n

)
exp

(
iLp

t

2n

)]n

(3.9)

which for t = δtMD and n = 1 becomes

exp(iLδtMD) ≈ exp
(

iLp
δtMD

2

)
exp(iLrδtMD) exp

(
iLp

δtMD

2

)
. (3.10)

Equation (3.10) has error terms of O (δtMD
4) and therefore becomes exact in the limit of an

infinitely small time step. By taking the particle positions and velocities for the observable
A, one sees that this factorization is equivalent to the Velocity-Verlet algorithm.

The velocity Verlet algorithm is time-reversible, momentum conserving, and in particular
conserves the phase space volume making it a symplectic integrator.
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3.1.2 Force calculation
In the first and last step of eq. (3.2), the forces Fi need to be calculated. Since non-bonded
pair interactions depend on all possible pairs of the N particles in the system, evaluating
all the forces corresponds to N(N − 1)/2 = O (N2) operations. By introducing some skin
thickness rs as well as a cutoff distance rc, beyond which all non-bonded interactions
can be neglected, this computational effort can be reduced significantly. This is typically
done by generating Verlet lists, which contain, for a given particle i the indices of all
other particles j > i within a distance of rc + rs, Vi = {j > i : |ri − rj| < rc + rs}. Using
the Verlet lists only takes O (N) operations. The individual lists stay valid as long as no
particle travels a distance larger than rs/2 and have to be regenerated otherwise, again
requiring O (N2) operations.

Efficiency can be further improved by dividing the system into subcells that are larger
than rc + rs via a so-called cell list. Then, possible candidates for the Verlet list in three
dimensions are limited to the same cell plus the 26 neighboring cells. With the described
strategy, one can achieve a scaling which is linear in N [67].

3.1.3 Langevin thermostat
Solving Newton’s equations of motion for a fixed set of particles in a box with periodic
boundary conditions corresponds to the microcanonical or (N, V,E) ensemble in which
particle number, system volume, and total energy are constant and the temperature T
is fluctuating around some mean value. Here we are however interested in the canonical,
or (N, V, T ) ensemble, in which the total energy fluctuates around its average value and
the temperature is held constant by a thermostat. The particular thermostat used in the
present work is the Langevin thermostat, based on the interplay between thermal motion
and friction as required by the fluctuation-dissipation theorem. In this case, the equations
of motion are

vi = ṙi, miv̇i = −
∑

j

∂Uj

∂ri

− ζLvi + σwi. (3.11)

In the absence of any interaction, Uj = 0∀j, the particles perform Brownian motion, and
the Langevin friction constant ζL is related to the diffusion constant D by the Einstein
relation

ζL = kBT

D
. (3.12)

The terms wi(t) are uncorrelated random variables with zero mean and no memory,

⟨wi(t)⟩ = 0, (3.13)
⟨wiα(t)wiβ(t′)⟩ = δijδαβδ(t− t′), (3.14)
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and the strength is given by

σ =
√

2ζkBT . (3.15)

A robust extension that incorporates the Langevin thermostat into the velocity Verlet
algorithm is given by the update scheme

vi

(
t+ δtMD

2

)
= vi(t) + δtMD

2mi

Fi(t), (3.16)

ri

(
t+ δtMD

2

)
= ri(t) + δtMD

2 vi

(
t+ δtMD

2

)
, (3.17)

v′
i

(
t+ δtMD

2

)
= exp

(
−ζ δtMD

mi

)
vi

(
t+ δtMD

2

)

+
√
kBT

mi

(1 − exp[−2ζδtMD/mi])wi,

(3.18)

ri

(
t+ δtMD

2

)
= ri

(
t+ δtMD

2

)
+ δtMD

2 v′
i

(
t+ δtMD

2

)
, (3.19)

vi(t+ δtMD) = v′
i

(
t+ δtMD

2

)
+ δtMD

2mi

Fi(t+ δtMD), (3.20)

where the wi are typically chosen as independent Gaussian random variables with

⟨wiα⟩ = 0, ⟨wiαwjβ⟩ = δijδαβ. (3.21)

It has been shown, however, that the random variables do not necessarily have to be
Gaussian, but only need to satisfy certain moment conditions, see reference [68]. The
above stepping scheme can be derived via similar operator splitting techniques and is
not unique. However, in this form it has some particularly nice properties with respect
to numerical stability, and accuracy [69, 70]. It is quasi-symplectic in the sense that it
becomes symplectic for ζ = 0 [71].

3.1.4 FENE potential
The bonds between the individual beads of a chain molecule are modeled with the FENE
pair potential [51,59]:

UFENE(r) = −KF

2 r2
max log

(
1 −

(
r

rmax

)2
)
. (3.22)

The logarithmic term has a singularity at r = rmax (see fig. 3.1), limiting the maximum
extension of an N -bead chain to the contour length Nrmax. The strength can be adjusted
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Figure 3.1: FENE potential.

by the parameter KF.

A harmonic bond potential could be used as well, although this may lead to unphysical
behavior in certain situations. For example, bonds can be infinitely stretched in an ideal
extensional flow, a problem that also affects the harmonic dumbbells in the Oldroyd-B
model.

3.1.5 Lennard-Jones Cosine potential
We use a modified version of the Lennard-Jones potential, the Lennard-Jones Cosine (LJC)
potential [60, 61], as non-bonded pair interaction. Via the parameter ϕ in

ULJC(r) =


4εLJ

[(
σLJ
r

)12
−
(

σLJ
r

)6
+ 1

4

]
− εLJϕ r ≤ 21/6σLJ

1
2ϕεLJ

(
cos

[
α
(

r
σLJ

)2
+ β

]
− 1

)
21/6σLJ < r ≤ rc

0 else

, (3.23)

it is possible to adjust the depth of the minimum of the potential at rmin = 21/6σLJ (c.f.
fig. 3.2) and thereby adjust the solvent quality. The constants α and β are chosen such that
ULJC is differentiable at any r > 0 and in particular at r = 21/6σLJ and r = rc, resulting in
the conditions

α21/3 + β = π, α
(
rc

σLJ

)2
+ β = 2π. (3.24)
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Figure 3.2: Lennard-Jones Cosine potential at different attraction strengths ϕ.

For rc = (3/2)σLJ, which we use here, this system of equations is solved by the approximate
numerical values

α = 3.1730728678, β = −0.85622864544. (3.25)

A polynomial continuation can be used in place of the cosine function. However, this does
not improve performance significantly since the implementation of trigonometric functions
is usually very efficient [60]. This potential defines natural units for length σLJ, energy
εLJ, and thereby time tLJ =

√
(mσ2

LJ)/εLJ, where m is the particle mass.

For the simulation of phase separation, the system is first equilibrated with an athermal
solvent ϕ = 0, i.e. purely repulsive interaction. The quench is then performed by instanta-
neously turning on the attractive interaction, see e.g. section 5.4. The value of ϕ must, in
this case, be chosen large enough for the polymer chains to collapse. The value at which
this so called theta collapse occurs in three dimensions is ϕΘ = 0.65 ± 0.02 [61]. In two
dimensions the value of ϕΘ is estimated in section 5.2 to be roughly 1.5.

3.1.6 2D confinement
We use the software package ESPResSo++ [72] for simulating a coupled MD-LB system.
At the time of writing, only three-dimensional Lattice Boltzmann (LB) simulations (see
section 3.2) are supported by the software. We are mainly interested in 3D systems in the
long term, and an implementation of a 2D LB algorithm is associated with substantial
effort. Hence we seek to perform 2D simulations with the software at hand without
spending much time on code development.
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We mimic a two-dimensional system using a box in the form of a thin slab with a small
extension in the z-direction, Lx = Ly ≫ Lz. The particles in the box are confined in the
z = 0 plane by an external potential Uzc that conforms to the periodic boundary conditions
and has a minimum at z = 0:

Uzc(z) = Uzc(z + Lz), U ′
zc(0) = 0, U ′′

zc(0) > 0. (3.26)

We choose the particular form

Uzc(z) = U0

2

(
1 − cos

(2π
Lz

z
))

(3.27)

with the corresponding force

Fzc(z) = − ∂

∂z
Uzc(z) = πU0

Lz

sin
(2π
Lz

z
)
. (3.28)

The parameter U0 gives the maximum height of the potential; we should therefore choose
U0 ≫ kBT . This ensures that fluctuations in the z-direction are small and chain molecules
can not cross each other. Furthermore, the box must be large enough in the z direction
such that the molecules do not interact with their periodic images. With this assumption,
1 − cos(x) ≈ x2/2 and the harmonic approximation of the potential

Ũzc(z) = U0

(
π

Lz

z
)2

(3.29)

should be fairly accurate. The oscillation period of a particle of mass m inside this potential
is then

τ = Lz

√
2m
U0

. (3.30)

As a rule of thumb, the timestep δtMD of the MD simulation should be chosen such that
there are roughly 50 integrations per oscillation period, δtMD < τ/50. This means that
the strength of the potential should be chosen according to

U0 < 2m
(

Lz

50δtMD

)2
. (3.31)

For the two-dimensional numerical simulations presented in chapter 5 the values m = 1,
Lz = 4 and δtMD = 0.005 are used, resulting in a bound for the potential strength of
U0 = 512, which is indeed large compared to kBT .
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3.2 Lattice Boltzmann simulations
In this section the basic principles of the Lattice Boltzmann (LB) simulation method [73–75]
shall be outlined. In particular, the Maxwell-Boltzmann constraints are introduced. For
this mathematical problem, a semi-automatic solution method, which was also implemented
in a Python script, is provided in section 4.2.

We will show how to introduce thermal fluctuations in terms of a multi relaxation time
(MRT) collision scheme [76–78] and how the thermalized fluid can be coupled to soft
matter particles. This coupling scheme was used to generate the numerical results shown
in chapter 5. It also provides the microscopic picture on which the viscoelastic phase
separation model derived in section 4.1 is based. The derivations in the present section
are mainly in line with ref. [73].

3.2.1 Introduction
The Lattice Boltzmann method is a kinetic approach to simulate hydrodynamics on a
discrete lattice originating from lattice gas automata. Each lattice point can be thought
of as containing a certain density of particles. An exchange of particles is only allowed
between a finite number of lattice sites in a defined neighborhood. Hence, there is a
discrete set of allowed velocities {ci}, which can include the velocity with magnitude zero.
With the Lattice Boltzmann timestep δtLB, δtLBci are displacement vectors connecting
lattice sites. Larger sets of velocities can increase precision and stability of the numerics
at the cost of computational effort, see section 4.2. Each of the velocities ci has a separate
mass density ni(r, t), which we shall also call population, associated with it. The fluid
density at the lattice site position r can then be obtained by taking the sum

ρ(r, t) =
∑

i

ni(r, t). (3.32)

Analogously, the momentum density is obtained by taking the sum weighted by the
velocities

j(r, t) =
∑

i

ni(r, t)ci =: ρ(r, t)v(r, t), (3.33)

defining at the same time the local flow velocity v(r, t). The population dynamics is
described by the Lattice Boltzmann equation (LBE):

ni(r + ciδtLB, t+ δtLB) =: n′
i = ni(r, t) +∆i(r, t). (3.34)

Here the collision operator ∆i has been introduced. The collision operator promotes the
relaxation of the populations towards their local equilibrium value and most generally
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takes the form

∆i(r, t) =
∑

j

Lij

(
nj(r, t) − n

(eq)
j (ρ,v)

)
, (3.35)

where the matrix L models dissipative processes (‘collisions’) that occur between pop-
ulations i and j. In the especially simple case where Lij = −δij/τ , ∆ is called the
Bhatnagar-Gross-Krook (BGK) collision operator. Generally, the collisions must conserve
mass and momentum:∑

i

∆i =
∑

i

ci∆i = 0. (3.36)

From here one can show via dual time scale Chapman-Enskog expansion [73] that the
Lattice Boltzmann eq. (3.34) delivers Navier-Stokes dynamics

∂tρ+ ∂β(ρvβ) = 0, (3.37)
∂t(ρvα) + ∂β(ρvαvβ) = −∂αP + ∂βηαβγδ∂γvδ, (3.38)

in the continuum limit of infinitely small timestep δtLB and infinitely small lattice constant
a. Alternatively we can write eq. (3.38) as

∂tvα + vβ∂βvα = −1
ρ
∂αP + 1

ρ
ηαβγδ∂β∂γvδ (3.39)

Here, P is the pressure and η is the fourth-order viscosity tensor which can be expressed
in terms of shear viscosity ηs and bulk viscosity ηb with

ηαβγδ = ηs

(
δαγδβδ + δαδδβγ − 2

3δαβδγδ

)
+ ηbδαβδγδ

= ηs(δαγδβδ + δαδδβγ) +
(
ηb − 2

3ηs

)
δαβδγδ.

(3.40)

Generally the viscosities ηs, ηb can depend on density, however we shall assume that they
are constants for now.

At this point we should note that the model implies the equation of state of an ideal gas.
Hence, with a particle mass of m, the pressure reads

P = ρ

m
kBT =: ρc2

s , (3.41)

where the speed of sound cs is determined by the relation c2
s = (∂P/∂ρ)T . This means

that we can express temperature by kBT = mc2
s .
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Determining the equilibrium populations n(eq)
i is non-trivial as they depend, among other

factors, on the set of velocities used (c.f. section 4.2). Typically, one takes the Maxwell-
Boltzmann distribution of an ideal gas

f(u − v) =
(
2πc2

s

)−d/2
exp

(
−(u − v)2

2c2
s

)
, (3.42)

where u(r, t) is the particle velocity, as a starting point. One then aims at reproducing its
velocity moments up to a certain tensor order, i.e.

1
ρ

∑
i

n
(eq)
i (ρ,v)ciαciβ . . . ciγ =

∫
ddu f(u − v)uαuβ . . . uγ. (3.43)

The equilibrium populations can then, for example, be expressed by a polynomial expansion
in the flow velocity v where the coefficients are Hermite polynomials in the ci, or by
maximizing a suitably constructed entropy, see e.g. the appendix of [79]. A common ansatz
for the equilibrium population is the second order polynomial

n
(eq)
i (ρ,v) = ρwi

(
1 + Av · ci +B(v · ci)2 + Cv2

)
, (3.44)

where the wi are weights with wi ≥ 0, ∑i wi = 1 that depend only on the magnitude of ci,
and A, B and C are constant coefficients. For velocities ci on a cubic lattice, symmetry
dictates the following conditions∑

i

wiciα = 0, (3.45a)∑
i

wiciαciβ = C2δαβ, (3.45b)∑
i

wiciαciβciγ = 0, (3.45c)∑
i

wiciαciβciγciδ = C4(δαβδγδ + δαγδβδ + δαδδβγ) + C ′
4δαβγδ, (3.45d)

...

In the last line, the fourth-order Kronecker delta δαβγδ was introduced. It is equal to
one only if all indexes have the same value and zero otherwise. We shall call the objects
on the left hand side of eq. (3.45) the n-th order moment tensors. It is easy to see that
the odd-order moments always vanish. The above conditions are symmetric under the
exchange of indices. However, the moment tensors also need to satisfy rotation symmetry,
which implies C ′

4 = 0 [80]. The highest tensor order M up to which the isotropy conditions
can be satisfied depends on the choice of the ci. For isothermal hydrodynamics, fourth-
order isotropy is sufficient, while non-isothermal hydrodynamics or multiphase flows need
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isotropy up to sixth order. Generally, more complex physical phenomena require a higher
degree of isotropy and thus a larger set of velocities.

The symmetry conditions eq. (3.45) in conjunction with ∑
i wi = 1 now allows us to

compute the first three moments of the equilibrium population ansatz eq. (3.44):∑
i

n
(eq)
i = ρ

(
1 + v2(BC2 + C)

)
(3.46a)

∑
i

n
(eq)
i ciα = ρAC2vα (3.46b)

∑
i

n
(eq)
i ciαciβ = ρ

(
δαβ[C2 + v2(BC4 + CC2)] + 2BC4vαvβ

)
(3.46c)

On the other hand, the first three moments of the Maxwell-Boltzmann distribution are

ρ
∫

d3u f(u − v) = ρ, (3.47a)

ρ
∫

d3u f(u − v)uα = ρvα = jα, (3.47b)

ρ
∫

d3u f(u − v)uαuβ = ρc2
sδαβ + ρvαvβ =: παβ, (3.47c)

where we have introduced the Euler stress παβ in eq. (3.47c). Matching the moments
eq. (3.46) with eq. (3.47) results in the conditions for the parameters

BC2 + C = 0, (3.48)
AC2 = 1, (3.49)
C2 = c2

s , (3.50)
BC4 + CC2 = 0, (3.51)

2BC4 = 1, (3.52)

which allows us to write down the equilibrium populations

n
(eq)
i (ρ,v) = wiρ

(
1 + v · ci

c2
s

+ (v · ci)2

2cs
4 − u2

2c2
s

)
. (3.53)

One should note that the expansion of the equilibrium populations up to second order in
v is suitable for models with fourth-order isotropy.

3.2.2 The D3Q19 model
One of the most widely used LB models is the three-dimensional model on a cubic lattice
with 19 velocities called the D3Q19 model. Here, the velocities are arranged in three shells
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of equal magnitude like

S0 =


0

0
0


, (1 velocity)

S1 =


±1

0
0

 ,
 0

±1
0

 ,
 0

0
±1


, (6 velocities)

S2 =


±1

±1
0

 ,
 0

±1
±1

 ,
±1

0
±1

 ,
±1

∓1
0

 ,
 0

±1
∓1

 ,
±1

0
∓1


, (12 velocities)

(3.54)

where a is the lattice spacing the velocities are given in units of a/δtLB. This set can be
shown to satisfy isotropy up to fourth order for suitably chosen coefficients.

By setting v = 0 in eq. (3.43), we obtain the Maxwell-Boltzmann constraints
∑

i

wiciαciβ . . . ciγ =
∫

d3u f(u)uαuβ . . . uγ, (3.55)

from which one can determine the weights

wi =


1
3 : ci ∈ S0
1
18 : ci ∈ S1
1
36 : ci ∈ S2

(3.56)

with a speed of sound of

c2
s = 1

3

(
a

δtLB

)2
. (3.57)

Manually determining the weights is typically no easy task and becomes more difficult with
larger velocity sets and increasing dimensionality. A way of determining the weights in an
automated fashion for arbitrary velocity sets, provided that these sets admit a sufficient
degree of isotropy, is presented in section 4.2.

3.2.3 Multiple relaxation time scheme
For the numerical simulations in this work, the multiple relaxation time (MRT) scheme [77,
78] for the collision operator is used.

Here, the dimensionless velocity vectors ĉi := δtLBci/a generate an orthogonal basis for
the diagonal representation of the collision matrix Lij, which was introduced in eq. (3.35).
The 19-dimensional basis vectors ek are listed in table 3.1. They can be constructed from
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k eki bk

0 1 1
1 ĉix 1/3
2 ĉiy 1/3
3 ĉiz 1/3
4 ĉ2

i − 1 2/3
5 ĉ2

ix − ĉ2
i 4/3

6 ĉ2
iy − ĉ2

iz 4/9
7 ĉixĉiy 1/9
8 ĉiy ĉiz 1/9
9 ĉiz ĉix 1/9

k eki bk

10 (3ĉ2
i − 5)ĉix 2/3

11 (3ĉ2
i − 5)ĉiy 2/3

12 (3ĉ2
i − 5)ĉiz 2/3

13 (ĉ2
iy − ĉ2

iz)ĉix 2/9
14 (ĉ2

iz − ĉ2
ix)ĉiy 2/9

15 (ĉ2
ix − ĉ2

iy)ĉiz 2/9
16 3ĉ4

i − 6ĉ2
i + 1 2

17 (2ĉ2
i − 3)(3ĉ2

ix − ĉ2
i ) 4/3

18 (2ĉ2
i − 3)(ĉ2

iy − ĉ2
iz) 4/9

Table 3.1: MRT basis vectors of the D3Q19 model with associated normalization factors,
c.f. [73].

the ĉi via Gram-Schmidt orthogonalization and this set is not unique. Orthogonality is
understood with respect to the previously defined set of weights wi:∑

i

wiekieli = bkδkl. (3.58)

In principle different weights could be used as well, however the same symmetry conditions
must apply. The corresponding normalization factors bk can easily be retrieved from

bk =
∑

i

wi(eki)2. (3.59)

From the Chapman-Enskog expansion, it becomes evident that the collision process
does not touch the equilibrium component of the populations. With ni = n

(eq)
i + n

(neq)
i ,

n′
i(r, t) = ni(r + ciδtLB, t+ δtLB) we can thus write

n′
i
(eq) = n

(eq)
i , (3.60)

n′
i
(neq) =

∑
j

(δij + Lij)n(neq)
i . (3.61)

By defining the transformed populations,

mk =
∑

i

ekini, (3.62)

the Lattice Boltzmann equation then can be written in the compact form

m′
k

(neq) = γkm
(neq)
k . (3.63)
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It can be shown that the modes m0, . . .m3 correspond to the conserved quantities ρ and j.
Thus γ0, . . . γ3 do not contribute and can be set to zero. The value γ4 =: γb is associated
with the bulk stress while γ5, . . . , γ9 =: γs must have equal value due to symmetry and are
associated to shear stress. Bulk and shear viscosities can be expressed by

ηb = δtLBρc
2
s

3
1 + γb

1 − γb
, (3.64)

ηs = δtLBρc
2
s

2
1 + γs

1 − γs
. (3.65)

One of the key advantages of the MRT scheme becomes apparent here, which is the fact
that bulk and shear viscosity can be adjusted independently.

The higher modes are kinetic ones and can be split into three groups with distinct γ-values.
These values can be set to zero for most purposes, which means that the corresponding
modes relax instantaneously.

3.2.4 Thermal fluctuations and coupling to particles
When coupling the LB fluid to Molecular Dynamics (MD) particles, it is vital that the
correct hydrodynamic fluctuations are present in order to reproduce Brownian motion.

The implementation of thermal fluctuations can be done by adding a stochastic term to
the collision operator:

∆i =
∑

i

Lijn
(neq)
j +∆(f)

i . (3.66)

Because the new operator has to satisfy mass and momentum conservation as well, it is
required that∑

i

∆
(f)
i =

∑
i

∆
(f)
i ci = 0. (3.67)

While the average must be zero,
〈
∆

(f)
i

〉
= 0, the covariance

〈
∆

(f)
i ∆

(f)
j

〉
must yield the

correct relation for the hydrodynamic fluctuating stress σ(f)
αβ,

〈
σf

αβσ
f
γδ

〉
= 2kBT

a3δtLB
ηαβγδ. (3.68)

In the continuum limit, this stress enters the dynamic equation for the velocity field
like [81]

∂t(ρvα) + ∂β(ρvαvβ) = −∂αP + ηαβγδ∂β∂γvδ + ∂βσ
(f)
αβ. (3.69)
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The fluctuating Lattice Boltzmann equation with the desired continuum limit has the form

m′
k

(neq) = γkm
(neq) +

√
wkmρ

a3 (1 − γ2
k)Rk. (3.70)

Here, the Rk are Gaussian random variables with ⟨Rk⟩ = 0 and ⟨RkRl⟩ = δkl.

This is now a good starting point to consider coupling to MD particles. Consider a set
of particles i with mass m, positions ri and momenta pi. The particles feel conservative
forces F(cons)

i = − ∂V /∂ri as well as random forces F(f)
i from thermal fluctuations with〈

F f
iα

〉
= 0, (3.71)〈

F f
iα(t)F f

jβ(t′)
〉

= 2kBTζδijδαβδ(t− t′). (3.72)

Coupling to the surrounding fluid is facilitated by Stokes friction forces with friction
coefficient ζ, which are proportional to the relative velocity,

F(diss)
i = −ζ

(pi

m
− v(ri)

)
, (3.73)

where v(ri) denotes the flow velocity at the position of the particle i. While the positions
of the MD particles are continuous in space, the velocity of the LB fluid is only defined on
the lattice sites at Rj. We may thus view the velocity field as a sum of weighted delta
functions

v(r) =
∑

j

v(Rj)δ(r − Rj). (3.74)

In order to interpolate the fluid velocities from the surrounding lattice sites to the particle
positions ri, we introduce a normalized weighting function with compact support ω(r, ri)
such that the interpolated velocity is given by

v(ri) =
∫

d3rω(r, ri)v(r). (3.75)

This then allows the computation of the dissipative force eq. (3.73), which can easily be
incorporated in the MD algorithm. As a result of this force and the random force, the
momentum of the particles changes and momentum conservation requires that the equal
but opposite momentum is likewise transferred to the fluid. This is facilitated by a force
density f , which is found by extrapolating both dissipative and random forces to the lattice
sites via the same function ω:

f(r) = −
∑

i

ω(r, ri)
(
F(diss)

i + F(f)
i

)
. (3.76)
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The equations of motion for the coupled system are then given by

ṙi = pi

mi

, (3.77)

ṗi = F(cons)
i + F(diss)

i + F(f)
i , (3.78)

∂tρ+ ∂αjα = 0, (3.79)
∂t(ρvα) + ∂β(ρvαvβ) = −∂αP + ηαβγδ∂β∂γvδ + ∂βσ

(f)
αβ + fα. (3.80)

It can be shown that this set of equations satisfies the fluctuation-dissipation theorem as
well as conservation of total mass and momentum.

The force density f can be incorporated into the LB algorithm by yet another contribution
∆(c) to the collision operator such that the total operator is given by ∆ + ∆(f) + ∆(c).
While this additional contribution must still conserve mass, it changes the momentum by
δtLBf , hence∑

i

∆
(c)
i = 0,

∑
i

∆
(c)
i ci = δtLBf . (3.81)

This makes the definition of the instantaneous momentum somewhat arbitrary. Here we
shall use

j :=
∑

i

nici + 1
2δtLBf , v = j

ρ
, (3.82)

which is the optimal definition from a numerical viewpoint. It can be shown via Chapman-
Enskog analysis that in the MRT framework ∆(c) takes the form

∆
(c)
i = wi

[
δtLB

c2
s
fαciα + δtLB

2c4
s
Σαβ

(
ciαciβ − c2

sδαβ

)]
(3.83)

with

Σαβ = 1
2(1 + γs)

(
vαfβ + vβfα − 2

3vγfγδαβ

)
+ 1

3(1 + γb)vγfγδαβ. (3.84)

The MD-LB coupling scheme that is outlined in this section is implemented in the
simulation package ESPResSo++ [72,82] which was used to perform the simulations in the
present work. Efficiency can be improved by performing the relatively costly LB steps only
every several MD steps and hence choosing the ratio δtLB/δtMD to be a natural number
larger than one [83].
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Chapter 4

Computational and theoretical
developments

This chapter compiles some of the theoretical and computational concepts that have been
developed.

In section 4.1, continuum equations for viscoelastic phase separation are derived from a
microscopic interpretation that is very close to the LB/MD coupling scheme outlined in
section 3.2.4. In the derivation of the equations, conservative and dissipative contributions
to the dynamics are always kept separate. While the conservative dynamics is derived
with the Poisson bracket formalism introduced in section 2.7, the dissipative coupling is
constructed in such a way that it is compatible with the GENERIC formalism presented in
section 2.8. Due to the simplicity of the underlying microscopic model, the equations can be
derived without taking any approximations other than postulating continuum expressions
for the Hamiltonian and dissipation rate. Only at the very end, several approximations
are taken, significantly reducing the number and complexity of the dynamic equations. A
publication of this found at [56].

Section 4.2 addresses the generation of Lattice Boltzmann models, particularly the deter-
mination of the weights needed to construct the equilibrium distributions for the collision
process. This is done by mapping the Maxwell-Boltzmann constraints, which are tensor
valued equations, onto an equivalent linear system of equations. In doing so, the speed of
sound of the model is left variable and, if a solution exists, the weights can be written as
polynomials in the speed of sound. It is shown how ranges of values for the speed of sound
for which all weights are positive can be identified. Only then a physically consistent
Lattice Boltzmann model can be constructed. The procedure was implemented in the
publicly available Python script LBWeights.py [79,84]. At this point, it should be men-
tioned that the main idea of the theoretical development in this particular section is due to

65
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the work of B. Dünweg, and the contribution of the author is mainly the implementation
and computational aspects of the Python script as well as the finding of higher-order LB
models that were hitherto unknown in the literature.
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4.1 Viscoelastic Model H

In the present section, equations for the continuum dynamics of viscoelastic phase separa-
tion are derived. Similar to Model H (section 2.4.3), mass is conserved and hydrodynamic
flow is taken into account. Furthermore, one component is considered macromolecular
and thus viscoelastic, motivating the term Viscoelastic Model H or VEMH. Like in the
Oldroyd-B model (section 2.5), polymer molecules in a solvent are approximated by har-
monic dumbbells that are coupled to a background velocity field. Instead of formulating
the Langevin equations for the dumbbell and solving the corresponding Fokker-Planck
equation for the end-to-end distribution function, we here determine the conservative part
of dynamics via the Poisson bracket formalism as described in section 2.7. Coupling terms
are constructed in such a way that they are compatible with the GENERIC formalism
outlined in section 2.8. Only at the very end, several approximations are taken, and the
set of equations is significantly reduced and simplified.

In the microscopic interpretation, a molecule is represented by a dumbbell consisting of
two particles with mass m located at positions r(1) and r(2) which are connected by a
harmonic spring with spring constant k (fig. 4.1). To describe the position and orientation

q

k
r

r

(1)

(2)

Figure 4.1: Illustration of a dumbbell molecule

of a dumbbell, the center of mass and relative vector

R = r(1) + r(2)

2 , q = r(1) − r(2) (4.1)

are introduced. Note that the definition of the relative vector is somewhat arbitrary as q
and −q describe the same dumbbell orientation. This symmetry, which we shall call flip
invariance, must be reflected in the final dynamic equations.

In analogy to the LB/MD coupling scheme (section 3.2.4), the solvent background is
considered to be a Navier-Stokes continuum that is coupled to the polymer component
via friction forces. The dynamic variables of the solvent are its density ρ(s)(r, t) and
momentum density j(s)(r, t). The velocity field is then defined by v(s) = j(s)/ρ(s). The
dynamics is given by the Navier-Stokes equations (sum convention is implied for repeated
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Greek indexes)

∂tρ
(s) = −∂βj

(s)
β , (4.2)

∂tj
(s)
α = −∂β

(
P (s)δαβ + j(s)

α v
(s)
β

)
+ ηαβγδ∂β∂γv

(s)
δ + gα, (4.3)

where P (s)(r, t) is the partial pressure of the solvent and ηαβγδ is the fourth-order viscosity
tensor as defined in eq. (3.40). The term gα is a force density and is used to model the
coupling to the dumbbell component via Strokes-friction forces. In vector notation this
takes the more compact form

∂tρ
(s) = −∇ · j(s), (4.4)

∂tj(s) = −∇P (s) − ∇ ·
(
j(s)v(s)

)
+ η

... ∇∇v(s) + g. (4.5)

4.1.1 Hamiltonian
To determine the conservative dynamics of the dumbbell component with the Poisson
bracket formalism, we need a continuum Hamiltonian that has a direct and obvious
connection to the underlying microscopic picture.

The potential energy of a single dumbbell is given by the energy stored in the harmonic
spring, Epot = kq2/2. The kinetic energy in terms of center of mass and relative coordinates
can be expressed by

Ekin = m

2

[(
ṙ(1)

)2
+
(
ṙ(2)

)2
]

= mṘ2 + m

4 q̇2 = m(d)

2 Ṙ2 + m(r)

2 q̇2. (4.6)

Although we could write all equations in terms of just the particle mass m, we introduce
the total dumbbell mass m(d) = 2m and the reduced mass m(r) = m/2 for the relative
motion in order to emphasize the connection with the classical mechanics of two-body
systems. We can then formulate the microscopic Lagrangian of a system containing
multiple dumbbell molecules:

L̂
(d) = Ekin − Epot = m(d)

2
∑

i

Ṙ2
i + m(r)

2
∑

i

q̇2
i − k

2
∑

i

q2
i − U (nb), (4.7)

where U (nb) is the potential energy due to non-bonded interactions. From the Lagrangian
follow the conjugate momenta

p(d)
i = ∂L̂

(d)

∂Ṙi

= m(d)Ṙi, p(r)
i = ∂L̂

(d)

∂q̇i

= m(r)q̇i. (4.8)
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For the continuum description of the dynamics, suitable fields with microscopic interpre-
tation are needed. To that end, we introduce densities for center of mass and relative
component by suitably weighted sums of delta functions centered at the center of mass of
the dumbbells

ρ̂(d)(r) = m(d)∑
i

δ(r − Ri), (4.9)

k̂(r)(r) = k
∑

i

qiδ(r − Ri). (4.10)

Analogously, we define the momentum densities for center of mass and relative momenta

ĵ(d)(r) =
∑

i

p(d)
i δ(r − Ri), (4.11)

ĵ(r)(r) =
∑

i

p(r)
i δ(r − Ri). (4.12)

The corresponding microscopic Hamiltonian is then obtained from the Lagrangian by the
Legendre transformation

Ĥ
(d) =

∑
i

(
Ṙi · p(d)

i + q̇i · p(r)
i

)
− L̂ (d) =

∑
i


(
p(d)

i

)2

2m(d) +

(
p(r)

i

)2

2m(r) + k

2q2
i

+ U (nb).

(4.13)

Note that in the isothermal setting the Hamiltonian must be interpreted as Helmholtz
free energy.

When switching to the continuum picture, we imagine to smooth out the delta peaks ∗

such that the quantities eqs. (4.9) to (4.12) become continuous and differentiable fields.
We denote this by ρ̂(d) → ρ(d), k̂(r) → k(r), ĵ(d) → j(d) and ĵ(r) → j(r), where the hat marks
quantities in microscopic interpretation. Finally, with the mass ratio Γ = m(r)/m(d), we
write the Hamiltonian in terms of the macroscopic variables as

H (d) =
∫

ddr

 1
2ρ(d)

((
j(d)

)2
+ 1
Γ

(
j(r)
)2

+ m(d)

k

(
k(r)

)2
)

+ f + κ

2
(
∇ρ(d)

)2
. (4.14)

The non-bonded interaction is split up into an interface term with interfacial stiffness κ
(for a motivation of the interface term see sections 2.4.2 and 2.4.3 or references [85–87]) and
a thermodynamic free energy density f (d). The functional derivatives of the Hamiltonian

∗In practice, this can, for example, be done by applying the Fourier transformation, discarding higher
modes, and then doing the inverse transformation.
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are then given by

δH (d)

δk(r) = m(d)k(r)

kρ(d) =: q, (4.15)

δH (d)

δj(d) = j(d)

ρ(d) =: v(d), (4.16)

δH (d)

δj(r) = j(r)

Γρ(d) =: v(r), (4.17)

δH (d)

δρ(d) = ∂f (d)

∂ρ(d) − 1
2(ρ(d))2

[(
j(d)

)2
+ 1
Γ

(
j(r)
)2

+ m(d)

k

(
k(r)

)2
]

− κ∇2ρ(d)

= ∂f (d)

∂ρ(d) − 1
2

[(
v(d)

)2
+ Γ

(
v(r)

)2
+ k

m(d) q2
]

− κ∇2ρ(d).

(4.18)

Note that while the microscopic Hamiltonian Ĥ (d) in eq. (4.13) is expressed as a function
of canonically conjugated variables, the macroscopic Hamiltonian H (d) in eq. (4.14) is
a functional on a set of macroscopic fields that are not conjugate. However, by the
Poisson bracket formalism, it is nevertheless possible to derive equations of motion since
the macroscopic fields can be expressed in terms of the microscopic conjugate variables.
Therefore, their Poisson brackets can be evaluated, which is the subject of the next section.

4.1.2 Poisson brackets
We proceed by deriving several auxiliary relations that will aid in the calculation of the
Poisson brackets. For ease of notation, we introduce the shorthand δi = δ(r − Ri), resp.
δ′

i = δ(r′ − Ri), and take note of the elementary brackets{
δi, δ

′
j

}
= 0, (4.19){

Riα, p
(d)
jβ

}
=
{
qiα, p

(r)
jβ

}
= δαβδij. (4.20)

Furthermore,

{
δi, p

(d)
jβ

}
=
∑

k

∂δ(r − Ri)
∂Rkγ

∂p
(d)
jβ

∂p
(d)
kγ

= ∂δ(r − Ri)
∂Rjβ

= −δij
∂δ(r − Ri)

∂rβ

= −δij∂βδi.

(4.21)

Next, we note that for any field A of the form

A(r) =
∑

i

aiδ(r − Ri), (4.22)
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the relation∑
i

aiδ
′
if(r,Ri) =

∑
i

∫
ddr′′ aiδ(r′′ − Ri)δ(r′ − r′′)f(r, r′′)

= A(r′)f(r, r′)
(4.23)

holds. Additionally, if the coefficient ai neither depends on Ri nor on p(d)
i , we have{

A(r), j(d)
β (r′)

}
=
∑
ij

{
aiδi, p

(d)
jβ δ

′
j

}
=
∑
ij

aiδ
′
j

{
δi, p

(d)
jβ

}
= −

∑
i

aiδ(r′ − Ri)∂βδ(r − Ri) = −A(r′)∂βδ(r − r′),
(4.24)

where eq. (4.23) was used in the last step. In particular, the relation eq. (4.24) allows for
the immediate calculation of the brackets{

ρ(d)(r), j(d)
β (r′)

}
= −ρ(d)(r′)∂βδ(r − r′), (4.25){

k(r)
α (r), j(d)

β (r′)
}

= −k(r)
α (r′)∂βδ(r − r′), (4.26){

j(r)
α (r), j(d)

β (r′)
}

= −j(r)
α (r′)∂βδ(r − r′). (4.27)

The remaining brackets are determined via similar, straightforward calculation:{
j(d)

α (r), j(d)
β (r′)

}
= j

(d)
β (r)∂′

αδ(r − r′) − j(d)
α (r′)∂βδ(r − r′), (4.28){

k(r)
α (r), j(r)

β (r′)
}

= δαβ
k

m(d)ρ
(d)(r′)δ(r − r′). (4.29)

All other Poisson brackets are simply zero; for more details see appendix A.3.1. We see
that all Poisson brackets can be expressed in terms of the previously defined fields, and the
set is closed. This is by no means guaranteed but depends on the initial choice of fields.

4.1.3 Conservative equations of motion
Now that Hamiltonian and Poisson brackets are known, all ingredients necessary to
determine the conservative equations of motion are present. We recall from section 2.7
that the conservative part of dynamics can be written as(

∂ϕi(r, t)
∂t

)
cons

=
∑

k

∫
ddr′ {ϕi(r, t), ϕk(r′, t)} δH (d)

δϕk(r′, t) . (4.30)

First of all, we shall note that eq. (4.24) allows us to calculate, for an arbitrary function f ,
the integrals∫

ddr′
{
A(r), j(d)

β (r′)
}
f(r′) = −∂β

∫
ddr′ A(r′)δ(r − r′)f(r′)

= −∂β(A(r)f(r))
(4.31)
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and ∫
ddr′

{
j(d)

α (r), A(r′)
}
f(r′) =

∫
ddr′ A(r)f(r′)∂′

αδ(r − r′) = −A(r)∂αf(r). (4.32)

We will also find useful the similar relations∫
ddr′

{
j(d)

α (r), j(d)
β (r′)

}
f(r′) = −j(d)

β (r)∂αf(r) − ∂β

(
j(d)

α (r)f(r)
)
, (4.33)∫

ddr′
{
k(r)

α (r), j(r)
β (r′)

}
f(r′) = δαβ

k

m(d)ρ
(d)(r)f(r), (4.34)∫

ddr′
{
j

(r)
β (r), k(r)

α (r′)
}
f(r′) = −δαβ

k

m(d)ρ
(d)(r)f(r); (4.35)

more details are again found in appendix A.3.1.

Densities

We proceed by deriving the equation of motion for the dumbbell density ρ(d) via the
Poisson bracket expansion eq. (4.30). Using eqs. (4.16) and (4.31) leads to(

∂ρ(d)(r, t)
∂t

)
cons

=
∑

k

∫
ddr′

{
ρ(d)(r), ϕk(r′)

} δH (d)

δϕk(r′)

=
∫

ddr′
{
ρ(d)(r), j(d)

β (r′)
} δH (d)

δj
(d)
β (r′)

= −∂β

ρ(d)(r) δH
(d)

δj
(d)
β (r)

 = −∂βj
(d)
β (r).

(4.36)

This is just the continuity equation reflecting the conservation of dumbbell mass.

For the relative density k(r) we obtain by using eqs. (4.31) and (4.34) the equation
(
∂k(r)

α (r)
∂t

)
cons

=
∫

ddr′

{k(r)
α (r), j(r)

β (r′)
} δH (d)

δj
(r)
β (r′)

+
{
k(r)

α (r), j(d)
β (r′)

} δH (d)

δj
(d)
β (r′)


= δαβ

k

m(d)ρ
(d)(r) δH

(d)

δj
(r)
β (r)

− ∂β

k(r)
α

δH (d)

δj
(d)
β

(r)

= k

m(r) j
(r)
α (r) − ∂β

(
k(r)

α v
(d)
β

)
(r).

(4.37)
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Currents

Next, the equations of motion for the currents are derived. For the dumbbell current j(d)

we apply eqs. (4.32) and (4.33) to calculate(
∂j(d)

α (r)
∂t

)
cons

=
∫

ddr′
[{
j(d)

α (r), ρ(d)(r′)
} δH (d)

δρ(d)(r′) +
{
j(d)

α (r), k(r)
β (r′)

} δH (d)

δk
(r)
β (r′)

+
{
j(d)

α (r), j(r)
β (r′)

} δH (d)

δj
(r)
β (r′)

+
{
j(d)

α (r), j(d)
β (r′)

} δH (d)

δj
(d)
β (r′)

]

= −ρ(d)(r)∂α
δH (d)

δρ(d)(r) − k
(r)
β (r)∂α

δH (d)

δk
(r)
β (r)

− j
(r)
β (r)∂α

δH (d)

δj
(r)
β (r)

− j
(d)
β (r)∂α

δH (d)

δj
(d)
β (r)

− ∂α

j(d)
α (r) δH

(d)

δj
(d)
β (r)


= −ρ(d)(r)∂α

δH (d)

δρ(d)(r) − k
(r)
β (r)∂αqβ(r) − j

(r)
β (r)∂αv

(r)
β (r)

− j
(d)
β (r)∂αv

(d)
β (r) − ∂α

(
j(d)

α (r)v(d)
β (r)

)
.

(4.38)

In isothermal conditions, the partial pressure of the dumbbell component is given by

P (d) =
(
ρ(d)

)2 ∂

∂ρ(d)

(
f (d)

ρ(d)

)
= ρ(d)∂f

(d)

∂ρ(d) − f (d), (4.39)

and therefore

∇P (d) = ρ(d)∇∂f (d)

∂ρ(d) . (4.40)

This can for example be seen from eq. (A.27) with ρ(2) = 0. Then, we can write

− ρ(d)∂α
δH (d)

δρ(d)

= −∂αP
(d) + ρ(d)

2 ∂α

[(
v(d)

)2
+ Γ

(
v(r)

)2
+ k

m(d) q2
]

+ κρ(d)∂α∇2ρ(d)

= −∂αP
(d) +

[
j(d)∂αv(d) + j(r)∂αv(r) + k(r)∂αq

]
+ κρ(d)∂α∇2ρ(d).

(4.41)

Inserting this in eq. (4.38) and canceling complementary terms finally results in the
dynamic equation for the dumbbell current(

∂j(d)
α

∂t

)
cons

= −∂β

(
j(d)

α v
(d)
β

)
− ∂αP

(d) + κρ(d)∂α∇2ρ(d). (4.42)
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This can be interpreted as an Euler equation for the dumbbell component with a surface
term as driving force.

To calculate the equation of motion for the relative current j(r), we use eqs. (4.31) and (4.35)
to find(

∂j(r)
α (r)
∂t

)
cons

=
∫

ddr′
[{
j(r)

α (r), j(d)
β (r′)

} δH (d)

δj
(d)
β (r′)

+
{
j(r)

α (r), k(r)
β (r′)

} δH (d)

δk
(r)
β (r′)

]

= −∂β

j(r)
α

δH (d)

δj
(d)
β

(r) − δαβ
k

m(d)ρ
(d)(r) δH

(d)

δk
(r)
β (r)

= −∂β

(
j(r)

α v
(d)
β

)
(r) − k(r)

α (r).

(4.43)

In summary, the conservative equations of motion are(
∂ρ(d)

∂t

)
cons

= −∂βj
(d)
β , (4.44)(

∂j(d)
α

∂t

)
cons

= −∂β

(
j(d)

α v
(d)
β

)
− ∂αP

(d) + κρ(d)∂α∇2ρ(d), (4.45)(
∂k(r)

α

∂t

)
cons

= −∂β

(
k(r)

α v
(d)
β

)
+ k

m(r) j
(r)
α , (4.46)(

∂j(r)
α

∂t

)
cons

= −∂β

(
j(r)

α v
(d)
β

)
− k(r)

α , (4.47)(
∂ρ(s)

∂t

)
cons

= −∂βj
(s)
β , (4.48)(

∂j(s)
α

∂t

)
cons

= −∂β

(
j(s)

α v
(s)
β

)
− ∂βP

(s). (4.49)

4.1.4 Dissipative coupling
In analogy to the LB/MD coupling (c.f. section 3.2.4), we imagine the dumbbell molecules
to be in a continuous solvent background to which they are coupled exclusively via
friction forces. These forces are proportional to the relative velocity between solvent and
polymers with a Stokes friction coefficient ζc. When determining the dissipation rate, the
Hamiltonian part of the dynamics will not enter and can be omitted right away. The
dissipative part of the dynamics of a single particle i with mass m and velocity vi inside a
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solvent with velocity field v(s)(r) can be expressed by

(
∂vi

∂t

)
diss

= − ζc

m

(
vi −

〈
v(s)(ri)

〉
ω

)
= −1

τ

(
vi −

〈
v(s)(ri)

〉
ω

)
, (4.50)

where the friction time scale τ = m/ζc was introduced. The solvent velocity at the particle
position is calculated via averaging the solvent velocity around the particle position ri wrt.
some interpolation kernel ω:

〈
v(s)(ri)

〉
ω

=
∫

ddrω(r − ri)v(s)(r) =
∫

ddr′ ω(r′)v(s)(r′ + ri). (4.51)

We require that ω is isotropic and is normalized, i.e.

ω(r) = ω(|r|),
∫

ddrω(r) = 1. (4.52)

In the vicinity of the center of mass R of a dumbbell, the solvent velocity can be expressed
by the Taylor expansion

v(s)
α (r) = v(s)

α (R) + (rβ −Rβ)∂βv
(s)
α (R) + 1

2(rβ −Rβ)(rγ −Rγ)∂β∂γv
(s)
α (R)

+ 1
6(rβ −Rβ)(rγ −Rγ)(rδ −Rδ)∂β∂γ∂δv

(s)
α (R)

+ 1
24(rβ −Rβ)(rγ −Rγ)(rδ −Rδ)(rϵ −Rϵ)∂β∂γ∂δ∂ϵv

(s)
α (R)

+ . . .

=:
(

1 +∆(1) + 1
2∆

(2) + 1
6∆

(3) + 1
24∆

(4) + . . .
)
v(s)

α (R).

(4.53)

In order to determine the dissipative dynamics for the center of mass and relative component
of the dumbbells, it is helpful to know the sum and difference of solvent velocities at the
position of the dumbbell ends. Since r(1) = R + q/2 and r(2) = R − q/2, the estimate of
the sum of velocities is〈

v(s)(r(1)) + v(s)(r(2))
〉

ω

=
∫

ddr′ ω(r′)
(
v(s)(r′ + R + q/2) + v(s)(r′ + R − q/2)

)
=
∫

ddr′ ω(r′)
(

2 +∆(1)
+ + 1

2∆
(2)
+ + 1

6∆
(3)
+ + 1

24∆
(4)
+ + . . .

)
v(s)(R).

(4.54)
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Here, the shorthand notation

∆
(0)
+ (r′) = 2,
∆

(1)
+ (r′) = (r′

α + qα/2 + r′
α − qα/2)∂α = 2r′

α∂α,

∆
(2)
+ (r′) =

[
(r′

α + qα/2)
(
r′

β + qβ/2
)

+ (r′
α − qα/2)

(
r′

β − qβ/2
)]
∂α∂β,

=
[
2r′

αr
′
β + 1

2qαqβ

]
∂α∂β,

...

(4.55)

was introduced.

Because of the isotropy of ω, all odd moments of the kernel vanish and we can write

〈
v(s)

(
r(1)

i

)
+ v(s)

(
r(2)

i

)〉
ω

=
∫

ddr′ ω(r′)
(

2 + 2r′ · ∇ +
[
r′r′ + 1

4qiqi

]
: ∇∇ + . . .

)
v(s)

∣∣∣∣
Ri

= 2
(

1 + 1
2

[
M(2) + 1

4qiqi

]
: ∇∇ + . . .

)
v(s)

∣∣∣∣
Ri

=: 2Ω+(qi) v(s)
∣∣∣∣
Ri

,

(4.56)

where we have introduced the kernel moments for n ≥ 1

M (n)
α1α2...αn

=
∫

ddrω(r)rα1rα2 . . . rαn . (4.57)

Note that both sides of eq. (4.56) are even under a flip transformation q → −q.

The averaged difference in velocities then is

〈
v(s)

(
r(1)

)
− v(s)

(
r(2)

)〉
ω

=
∫

ddr′ ω(r′)
(
∆

(1)
− + 1

2∆
(2)
− + 1

6∆
(3)
− + 1

24∆
(4)
− + . . .

)
v(s)

∣∣∣∣
Ri

,
(4.58)
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where

∆
(0)
− = 0,
∆

(1)
− = (r′

α + qα/2 − r′
α + qα/2)∂α = qα∂α,

∆
(2)
− =

[
(r′

α + qα/2)
(
r′

β + qβ/2
)

− (r′
α − qα/2)

(
r′

β − qβ/2
)]
∂α∂β

=
[
r′

αqβ + qαr
′
β

]
∂α∂β,

∆
(3)
− =

[
(r′

α + qα/2)
(
r′

β + qβ/2
)(
r′

γ + qγ/2
)

− (r′
α − qα/2)

(
r′

β − qβ/2
)(
r′

γ − qγ/2
)]
∂α∂β∂γ

=
[
qαqβqγ

4 + qγr
′
αr

′
β + qβr

′
αr

′
γ + qαr

′
βr

′
γ

]
∂α∂β∂γ,

...

(4.59)

We can write〈
v(s)

(
r(1)

i

)
− v(s)

(
r(2)

i

)〉
ω

=
∫

ddr′ ω(r′)
(
qiα∂iα + 1

2
[
r′

αqiβ + qiαr
′
iβ

]
∂α∂β

+ 1
6

[
qiαqiβqiγ

4 + qiγr
′
αr

′
β + qiβr

′
αr

′
γ + qiαr

′
βr

′
γ

]
∂α∂β∂γ + . . .

)
v(s)

∣∣∣∣
Ri

=
(
qiα∂α + 1

6

[
qiαqiβqiγ

4 +M
(2)
αβ qiγ +M (2)

αγ qiβ +M
(2)
βγ qiα

]
∂α∂β∂γ + . . .

)
v(s)

∣∣∣∣
Ri

=: Ω−(qi) v(s)
∣∣∣∣
Ri

.

(4.60)

Both sides of eq. (4.60) are odd wrt. flip. The simplest form of the interpolation kernel is
just the Dirac delta function ω(r) = δ(r), then all moments M(n) = 0 and the interpolation
operators become

Ω+(q) = 1 + 1
8qq : ∇∇ + . . . , (4.61)

Ω−(q) = q · ∇ + 1
24qqq ... ∇∇∇ + . . . (4.62)

Dumbbells

The Ω operators can now be used to express the dissipation rate of the dumbbell component.
It results from a Stokes friction that is acting on both dumbbell ends located at r(1,2)

i =
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Ri ± qi/2:
d
dt

(
Ṙi + q̇i

2

)
diss

= −1
τ

(
Ṙi + q̇i

2 −
〈
v(s)

(
r(1)

i

)〉
ω

)
, (4.63)

d
dt

(
Ṙi − q̇i

2

)
diss

= −1
τ

(
Ṙi − q̇i

2 −
〈
v(s)

(
r(2)

i

)〉
ω

)
. (4.64)

Expressed in terms of the conjugate momenta, this becomes

ṗ(d)
i = m(d)Ṙi = −m(d)

2τ
[
2Ṙi −

〈
v(s)

(
r(1)

i

)
+ v(s)

(
r(2)

i

)〉
ω

]
= −m(d)

τ

[
Ṙi − Ω+(qi) v(s)

∣∣∣∣
Ri

]
=: −m(d)

τ
u(0)

i ,

(4.65)

ṗ(r)
i = m(r)q̇i = −Γm

(d)

τ

[
q̇i −

〈
v(s)

(
r(1)

i

)
− v(s)

(
r(2)

i

)〉
ω

]
= −Γm

(d)

τ

[
q̇i − Ω−(qi) v(s)

∣∣∣∣
Ri

]
=: −Γm

(d)

τ
∆ui,

(4.66)

where we have defined

u(0)
i = Ṙi − Ω+(qi) v(s)

∣∣∣∣
Ri

, (4.67)

∆ui = q̇i − Ω−(qi) v(s)
∣∣∣∣
Ri

. (4.68)

The total amount of energy dissipated by all dumbbells per unit of time is then given by
the time derivative of the microscopic dumbbell Hamiltonian:

dĤ
(d)

dt
=
∑

i

[
Ṙi · ṗ(d)

i + q̇i · ṗ(r)
i

]
= −m(d)

τ

∑
i

[
Ṙi · u(0)

i + Γ q̇i ·∆ui

]

= −m(d)

τ

∑
i

[(
u(0)

i + Ω+ v(s)
∣∣∣∣
Ri

)
· u(0)

i + Γ
(
∆ui + Ω− v(s)

∣∣∣∣
Ri

)
·∆ui

]
.

(4.69)

Solvent

In the next step, the dissipation rate of the solvent is determined. The viscous dissipation
term ∝ ηαβγδ in the solvent dynamics is well known to comply with non-equilibrium
thermodynamics and can be omitted. It is thus enough to consider(

∂ρ(s)

∂t

)
diss

= 0, (4.70)(
∂j(s)

∂t

)
diss

= g, (4.71)
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where we express the force density g by point forces exerted by the beads,

g(r) = −
∑

i

[
δ
(
r − r(1)

i

)
ṗ(1)

i + δ
(
r − r(2)

i

)
ṗ(2)

i

]
= m

τ

∑
i

[
δ
(
r − r(1)

i

)
u(1)

i + δ
(
r − r(2)

i

)
u(2)

i

]
= m

τ

∑
i

[
δ
(
r − r(1)

i

)(
u(0)

i + 1
2∆ui

)
+ δ

(
r − r(2)

i

)(
u(0)

i − 1
2∆ui

)]
.

(4.72)

With the chain rule for functional derivatives eq. (A.11), this corresponds to a dissipation
rate of

dH (s)

dt
=
∫

ddr
δH (s)

δj(s)(r) · ∂tj(s)(r) =
∫

ddr v(s)(r) · g(r)

= m

τ

∑
i

[
v(s)

(
r(1)

i

)
·
(

u(0)
i + 1

2∆ui

)
+ v(s)

(
r(2)

i

)
·
(

u(0)
i − 1

2∆ui

)]

= m(d)

τ

∑
i

[
u(0)

i · Ω+v(s)
∣∣∣∣
Ri

+ Γ∆ui · Ω−v(s)
∣∣∣∣
Ri

]
.

(4.73)

Adding eqs. (4.69) and (4.73) leads to a total dissipation rate of

d
dt

(
Ĥ

(d) +H (s)
)

= −m(d)

τ

∑
i

[(
u(0)

i

)2
+ Γ∆u2

i

]
. (4.74)

A suitable continuum limit of the microscopic dissipation rate is

dH
dt

= −
∫

ddr
ρ(d)

τ

[(
u(0)(r)

)2
+ Γ∆u(r)2

]
, (4.75)

where

u(0)(r) = v(d)(r) − Ω+(q(r))v(s)(r), (4.76)
∆u(r) = v(r)(r) − Ω−(q(r))v(s)(r). (4.77)

are the continuum analogues of eqs. (4.67) and (4.68).

By inserting eqs. (4.76) and (4.77) into eq. (4.75) the continuum dissipation rate is
expressed in terms of the velocities

τ
dH
dt

= −
∫

ddr ρ(d)
[(

v(d)
)2

− 2v(d) · Ω+(q)v(s) +
(
Ω+(q)v(s)

)2

+ Γ
(
v(r)

)2
− 2Γv(r) · Ω−(q)v(s) + Γ

(
Ω−(q)v(s)

)2
]
.

(4.78)
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We now introduce adjoint operators Ω†
+ and Ω†

− in the sense that with two functions f
and g

∫
ddr f(r)Ω±(q(r))g(r) =

∫
ddr g(r)Ω†

±(q(r))f(r). (4.79)

It is easily shown via multiple integration by parts that this is satisfied with

Ω†
+ = 1 + 1

8∇∇ : qq + . . . (4.80)

Ω†
− = −∇ · q − 1

24∇∇∇ ... qqq − . . . (4.81)

The total dissipation rate thus takes the form

− τ
dH
dt

=
∫

ddr

v(d)(r)
v(r)(r)
v(s)(r)

 ·


ρ(d)v(d) − 2ρ(d)Ω+v(s)

Γρ(d)v(r) − 2Γρ(d)Ω−v(s)

Ω†
+

(
ρ(d)Ω+v(s)

)
+ ΓΩ†

−

(
ρ(d)Ω−v(s)

)


=
∫

ddr

v(d)(r)
v(r)(r)
v(s)(r)

 ·


ρ(d)v(d) − ρ(d)Ω+v(s)

Γρ(d)v(r) − Γρ(d)Ω−v(s)

Ω†
+ρ

(d)
(
Ω+v(s) − v(d)

)
+ ΓΩ†

−ρ
(d)
(
Ω−v(s) − v(r)

)


=
∫

ddr

v(d)(r)
v(r)(r)
v(s)(r)

 ·


ρ(d)

(
v(d) − Ω+v(s)

)
Γρ(d)

(
v(r) − Ω−v(s)

)
−Ω†

+ρ
(d)
(
v(d) − Ω+v(s)

)
− ΓΩ†

−ρ
(d)
(
v(r) − Ω−v(s)

)


= τ
∑
ij

∫
ddr ddr′ δH

δϕi(r)Mij(r, r′) δH
δϕj(r′) ,

(4.82)

where we compare to the GENERIC dissipation rate of the free energy eq. (2.202) in the
last step. From section 2.8 we know that the dissipative part of the dynamics is given by

τ

(
∂ϕi(r)
∂t

)
diss

= −τ
∑

j

∫
ddr′ Mij(r, r′) δH

δϕj(r′) . (4.83)

Recalling the functional derivatives of the Hamiltonian

δH
δj(d) = v(d),

δH
δj(r) = v(r),

δH
δj(s) = v(s), (4.84)
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we can read the dissipative equations of motion directly from eq. (4.82):

τ

(
∂j(d)

∂t

)
diss

= −ρ(d)
(
v(d) − Ω+v(s)

)
, (4.85)

τ

(
∂j(r)

∂t

)
diss

= −Γρ(d)
(
v(r) − Ω−v(s)

)
, (4.86)

τ

(
∂j(s)

∂t

)
diss

= Ω†
+ρ

(d)
(
v(d) − Ω+v(s)

)
+ ΓΩ†

−ρ
(d)
(
v(r) − Ω−v(s)

)
. (4.87)

Equations (4.85) to (4.87) together with the conservative part eqs. (4.44) to (4.49) finally
result in the full equations of motion

∂ρ(d)

∂t
= −∂βj

(d)
β , (4.88)

∂j(d)
α

∂t
= −∂α

(
j(d)

α v
(d)
β

)
− ∂αP

(d) + κρ(d)∂α∇2ρ(d)

− 1
τ
ρ(d)

(
v(d)

α − Ω+v
(s)
α

)
,

(4.89)

∂k(r)
α

∂t
= −∂β

(
k(r)

α v
(d)
β

)
+ k

m(r) j
(r)
α , (4.90)

∂j(r)
α

∂t
= −∂β

(
j(r)

α v
(d)
β

)
− k(r)

α − Γ
τ
ρ(d)

(
v(r)

α − Ω−v
(s)
α

)
, (4.91)

∂ρ(s)

∂t
= −∂βj

(s)
β , (4.92)

∂j(s)
α

∂t
= −∂β

(
j(s)

α v
(s)
β

)
− ∂βP

(s)δαβ + ηαβγδ∂β∂γv
(s)
δ

+ 1
τ
Ω†

+ρ
(d)
(
v(d)

α − Ω+v
(s)
α

)
+ Γ
τ
Ω†

−ρ
(d)
(
v(r)

α − Ω−v
(s)
α

)
.

(4.93)

Conservation of the total momentum p(tot) can be explicitly shown by calculating

∂p(tot)

∂t
=
∫

ddr
d
dt

[
j(d) + j(s)

]
(4.94)

making use of the relations∫
ddrΩ†

+f(r) =
∫

ddr f(r), (4.95)∫
ddrΩ†

−f(r) = 0, (4.96)

and the fact that the integrals over divergences vanish. Note that no overall momentum is
produced by the relative motion.
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Furthermore, it is now possible to write down the complete matrix M,

M = 1
τ

 ρ(d) 0 −ρ(d)Ω+
0 Γρ(d) −Γρ(d)Ω−

−Ω†
+ρ

(d) −ΓΩ†
−ρ

(d) Ω†
+ρ

(d)Ω+ + Ω†
−ρ

(d)Ω−

, (4.97)

which is obviously self-adjoint.

While the calculation of the Poisson brackets is more easily done via the currents, one
might have a better intuition of the equations when they are written in terms of velocities.
We can facilitate such a transformation in a general fashion by inspecting currents of the
form

j(x)
α = c(x)ρ(d)v(x)

α . (4.98)

In particular, here we have c(d) = 1 and c(r) = Γ . The relative density k(r) = kρ(d)q/m(d)

can be treated analogously by choosing a c-factor of k/m(d). We apply this for the sum
of the time derivative of a current and its convection term and find using the continuity
equation for ρ(d):

∂tj
(x)
α + ∂β

j(x)
α j

(d)
β

ρ(d)

 = c(x)
[
ρ(d)∂tv

(x)
α − v(x)

α ∂βj
(d)
β + ∂β

(
v(x)

α j
(d)
β

)]
= c(x)

[
ρ(d)∂tv

(x)
α + j

(d)
β ∂βv

(x)
α

]
= c(x)ρ(d)

[
∂tv

(x)
α + v

(d)
β ∂βv

(x)
α

]
= c(x)ρ(d)D(d)

t v(x)
α , (4.99)

where D(x)
t = ∂t + v

(x)
β ∂β is the convective derivative with respect to the velocity v(x). The

full model is then:

D(d)
t ρ(d) = −ρ(d)∇ · v(d), (4.100)

ρ(d)D(d)
t v(d) = −∇P (d) + κρ(d)∇∇2ρ(d) − 1

τ
ρ(d)

(
v(d) − Ω+v(s)

)
, (4.101)

D(d)
t q = v(r), (4.102)

D(d)
t v(r) = − k

m(r) q − 1
τ
ρ(d)

(
v(r) − Ω−v(s)

)
, (4.103)

D(s)
t ρ(s) = −ρ(s)∇ · v(s), (4.104)

ρ(s)D(s)
t v(s) = −∇P (s) + η

... ∇∇v(s)

+ 1
τ
Ω†

+ρ
(d)
(
v(d) − Ω+v(s)

)
+ Γ
τ
Ω†

−ρ
(d)
(
v(r) − Ω−v(s)

)
.

(4.105)

Equation (4.100) is the continuity equation for the dumbbell component. Equation (4.101)
is the Euler equation for the dumbbell component augmented with a surface term and
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coupling to the solvent as driving forces. Equations (4.102) and (4.103) are the dynamic
equations for the relative component of the dumbbell. They essentially describe a dampened
harmonic oscillator with the solvent velocity field as driving force. Finally, eqs. (4.104)
and (4.105) are the continuity equation of the solvent component and the Navier-Stokes
equation of the solvent, driven by coupling to the center of mass and relative component
of the dumbbell component. A brief diagrammatic summary of the derivation process is
given in fig. 4.2.

Describe System
in terms of fields
ϕi(r, {ri} , {pi})

Evaluate all Poisson
brackets {ϕi, ϕj} = Lij

System
closed?

change set {ϕi}

Write down
Hamiltonian

Determine dissipa-
tion rate → Mij

Write down equations of motion
∂ϕi
∂t =

∑
j

∫
dr′ (Lij − Mij) δH

δϕj

no

yes

Figure 4.2: Summary of the derivation of the equations of motion.

Equations (4.100) to (4.105) were derived, making no approximations other than postulating
a continuum equivalent for the Hamiltonian and the dissipation rate, which is possible only
due to the utmost simplicity of the underlying microscopic picture. They comprise two
scalar equations and four vector-valued equations and, in d dimensions, 2 + 4d variables in
total. Parameters are the interfacial stiffness κ, friction time scale τ , the ratio of spring
constant to reduced mass k/m(r), as well as the solvent’s shear and bulk viscosity ηs and ηb.
While in the microscopic interpretation Γ = m(r)/m(d) = 1/4 has a well-defined constant
value, it might be useful to interpret this as a free parameter that can be used to tune the
strength of solvent-relative coupling.

For the operators Ω+ and Ω−, a maximum order in q at which the expansion is terminated
must be chosen. Furthermore, different interpolation kernels other than ω(r) = δ(r), e.g.
Gaussian functions can be chosen. In that way, not only the solvent velocity at the exact
point of the particle location is included in the coupling, but a broader range of velocities
that depends on the width of the kernel.
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The partial pressures of dumbbell and solvent components, P (d) and P (s), follow by their
respective thermodynamic equation of state. As the LB/MD coupling scheme (section 3.2.4)
is used as an inspiration for these derivations, it is reasonable to use the equation of state
of the ideal gas for the solvent

P (s) = ρ(s)c2
s . (4.106)

For the dumbbell component, we propose the Van der Waals equation of state derived in
section 2.3,

P (d) = NkBT

MN

n

1 −Bn
− An2. (4.107)

The vectors q and −q describe the same dumbbell; therefore, all the equations are covariant
under a flip transformation q → −q, v(r) → −v(r), meaning that all terms in an equation
transform equally. This ambiguity is conceptually somewhat problematic as it allows for
discontinuous jumps in the fields q(r) and v(r)(r), which is especially problematic in the
numerical simulation of the continuum equations. We therefore require the fields to be as
smooth as possible. In the microscopic picture, this could be facilitated by a procedure
in which the orientation of the first dumbbell is chosen randomly. The orientation of the
neighboring dumbbells is then successively chosen in such a way that alignment is as good
as possible. This is done until all dumbbells are assigned an orientation.

It would be desirable to have a quantity that is independent of the sign to describe
orientation altogether. One candidate satisfying this requirement is the conformation
tensor used in the Oldroyd-B model (section 2.5). Since the present model has, in contrast
to the Oldroyd-B model, no overdamping approximations and inertia plays a role both in
the center of mass and relative motion, one would also need an additional, flip invariant
quantity to substitute for v(r). While starting from a description that is flip invariant right
away introduces new complications, c.f. appendix A.3.3, we shall see in the next section
that with suitable approximations, it is possible to simplify the equations in such a way
that the result is completely flip invariant.

4.1.5 New variables
Before taking any approximations, we first introduce new dynamic variables that better
reflect the system’s two-fluid nature. Instead of the basic densities ρ(d) and ρ(s) we use the
total density

ρ = ρ(d) + ρ(s) (4.108)
and the normalized density difference

c = ρ(d) − ρ(s)

ρ
, (4.109)
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which changes sign when ρ(d) and ρ(s) are exchanged. Furthermore, it is helpful to define
the reduced density

ρ(red) = ρ(d)ρ(s)

ρ
= ρ

4
(
1 − c2

)
. (4.110)

Note that the reduced density alone would not be sufficient for a complete description as
it is not sensitive to the exchange of both basic densities. Therefore we choose the density
difference c as a fundamental variable for now and use ρ(red) only to reduce notation.

Instead of the basic velocities v(d) and v(s), we introduce the barycentric (mass-average)
velocity

v = ρ(d)v(d) + ρ(s)v(s)

ρ
, (4.111)

and the velocity difference

w = v(d) − v(s). (4.112)

We also take note of the inverse transformations

v(d) = v + ρ(s)

ρ
w, v(s) = v − ρ(d)

ρ
w, (4.113)

ρ(d) = ρ

2(1 + c), ρ(s) = ρ

2(1 − c). (4.114)

Furthermore, we define a new convective derivative with respect to the barycentric velocity

Dt = ∂t + v · ∇. (4.115)

Transformation between the different convective derivatives is facilitated by the relations

D(d)
t = Dt + ρ(s)

ρ
w · ∇, D(s)

t = Dt − ρ(d)

ρ
w · ∇. (4.116)

Introducing the abbreviations

ρ(d)D(d)
t v(d) = g(d), ρ(s)D(s)

t v(s) = g(s), (4.117)

for the convective equations of motion in the original variables, the dynamic equations in
the new variables can be brought into the form

Dtρ = −ρ∇ · v, (4.118)
ρDtc = −2∇ ·

(
ρ(red)w

)
, (4.119)

ρDtv = g(d) + g(s) − ∇ ·
(
ρ(red)ww

)
, (4.120)

Dtw = g(d)

ρ(d) − g(s)

ρ(s) − w · ∇v + cw · ∇w + ww
2 · ∇c. (4.121)
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Furthermore, the conservation of dumbbell mass can be written as

Dtρ
(d) = −ρ(d)∇ · v − ∇ ·

(
ρ(red)w

)
. (4.122)

These transformations are somewhat tedious but straightforward; details can be found
found in appendix A.2.2.

4.1.6 Approximations
In a first step of simplifying these equations, we assume that inertial effects are negligible
in the motion of the harmonic oscillator by making the overdamping approximation
D(d)

t v(r) = 0. Applied to eq. (4.103), this yields

v(r) = Ω−v(s) − kτ

m(r) q, (4.123)

allowing us to eliminate v(r) entirely from our set of equations. By defining τq = m(r)/(kτ),
the equation for the orientational field becomes

Dtq = Ω−v(s) − 1
τq

q. (4.124)

Furthermore, v(r) also appears in the coupling to the solvent velocity eq. (4.105). After
insertion of eq. (4.123) the equation reads

ρ(s)D(s)
t v(s) = −∇P (s) + η

... ∇∇v(s)

+ 1
τ
Ω†

+ρ
(d)
(
v(d) − Ω+v(s)

)
− Γ

ττq

Ω†
−ρ

(d)q.
(4.125)

As the next approximation, we stop the expansion of the Ω operators after the linear order
in q, i.e. Ω+ = 1 and Ω− = ∇ · q. Hence

g(d) = −∇P (d) + κρ(d)∇∇2ρ(d) − ρ(d)

τ
w, (4.126)

g(s) = −∇P (s) + η
... ∇∇

(
v − ρ(d)

ρ
w
)

+ ρ(d)

τ
w + Γ

ττq

∇ ·
(
ρ(d)qq

)
, (4.127)

and the dynamic equation for q is obtained by transformation of the convective derivative:

D(d)
t = Dt + ρ(s)

ρ
w · ∇, (4.128)

D(d)
t q = q · ∇v(s) − 1

τq

q, (4.129)

Dtq = q · ∇
(

v − ρ(d)

ρ
w
)

− ρ(s)

ρ
w · ∇q − 1

τq

q. (4.130)
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Incompressibility is applied to the total mass density ρ, i.e. Dtρ, ∇ρ and ∇ · v all vanish.
For the viscous stress wrt., v only the shear component remains: η

... ∇∇v = ηs∇2v. The
total pressure, P = P (d) + P (s), is then no longer related to a thermodynamic potential
but acts like a constraint force enforcing incompressibility.

As the relative velocity w is not a hydrodynamic variable, we shall assume that it relaxes
rather quickly and is always small. Furthermore, it is assumed that the dynamics of
w is overdamped and that, similar to v(r), w can be eliminated adiabatically. Since
the elimination of w by overdamping approximation is not as straightforward as for
v(r), and maybe even impossible, we take the following strategy: All terms containing
w are replaced phenomenological terms which are later on chosen in such a way that
they are consistent with the principles of non-equilibrium thermodynamics. The term
ρ(red)w is replaced by the interdiffusion current j(int) and a vector Q replaces the terms
−q · ∇

(
ρ(d)w/ρ

)
− ρ(s)w/ρ · ∇q. The divergence of a stress tensor ∇ · σ is introduced

to replace −η
... ∇∇

(
ρ(d)w/ρ

)
− ∇ ·

(
ρ(red)ww

)
. Writing this as a divergence is done in

order to preserve momentum conservation. The thus modified equations then read

Dtρ
(d) = −∇ · j(int), (4.131)

Dtq = q · ∇v − 1
τq

q + Q, (4.132)

ρDtv = −∇P + κρ(d)∇∇2ρ(d) + ηs∇2v + Γ

ττq

∇ ·
(
ρ(d)qq

)
+ ∇ · σ, (4.133)

∇ · v = 0. (4.134)

Whether terms in a dynamic equation are of conservative or dissipative nature can be
determined from their sign-changing behavior under time-reversal. If the term is covariant
with the time derivative on the left-hand side, it is conservative; if it is contravariant, it is
dissipative. For example, Dtv does not change its sign when time is reversed, but ηs∇2v
does. Therefore, ηs∇2v must be of dissipative nature. Note that this procedure can not be
applied to the phenomenological terms. Typically however, conservative terms are turned
into dissipative ones by such phenomenological replacements.

For the system with the new variables, we define the Hamiltonian by

H =
∫

ddr
[
ρ

2v2 + f + κ

2
(
∇ρ(d)

)2
+ 1

2
Γ

ττq

ρ(d)q2
]
. (4.135)

The phenomenological terms ∇ · j(int), Q, and ∇ · σ must be chosen in such a way that
consistency with non-equilibrium thermodynamic is ensured. Considering the dissipation
rate

dH
dt

=
∫

ddr
[
δH
δv

∂tv + δH
δρ(d)∂tρ

(d) + δH
δq

∂tq
]
, (4.136)
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one obtains after some calculation (see appendix A.3.2)∫
ddr

δH
δv

∂tv = −
∫

ddr ∂βvα(ηs∂βvα + σαβ), (4.137)∫
ddr

δH
δq

∂tq = − Γ

ττq

∫
ddr ρ(d)q

(
1
τq

q + Q
)
, (4.138)∫

ddr
δH
δρ(d)∂tρ

(d) =
∫

ddr j(int) · ∇ δH
δρ(d) . (4.139)

This identifies all dissipative terms, in particular the phenomenological quantities j(int), Q,
and ∇ · σ. For the second law to be satisfied, all of the above terms must be be negative.
The simplest approach is to choose σαβ ∝ ∂βvα and Q ∝ q with positive proportionality
constants, such that their effect can be absorbed by a redefinition of ηs and τq respectively.
For the interdiffusion current we choose

j(int) = −M
(
ρ(d)

)
∇ δH
δρ(d) , (4.140)

where M(ρ(d)) is the Onsager transport coefficient for interdiffusion (c.f. eq. (2.81) in
section 2.4). With the derivative

δH
δρ(d) = ∂f

∂ρ(d) − κ∇2ρ(d) + Γ

2ττq

q2, (4.141)

one sees that the interdiffusion current is driven by bulk, interface, as well as elastic effects.
A coupling to elastic stresses was first predicted by Doi and Onuki in [13].

By straightforward calculation, it can be shown that the conservative part of dynamics
derived via Poisson brackets is not compatible with the simplified set of eqs. (4.131)
to (4.134). Instead, we must suppose that by the adiabatic elimination of v(r) and w, the
Hamiltonian structure of the system is lost.

Equation eq. (4.132) can be transformed into a dynamic equation for the conformation
tensor which is invariant wrt. to flip transformation:

DtCαβ = Dt(qαqβ) = qαDtqβ + qβDtqα

= qαqγ∂γvβ + qβqγ∂γvα − 2
τq

qαqβ

= Cαγ∂γvβ + Cβγ∂γvα − 2
τq

Cαβ.

(4.142)

With the velocity gradient tensor Kαβ = ∂βvα, this becomes

DtC = CKT + KC − 2
τq

C, (4.143)
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where the symmetry of the conformation tensor C = CT has been used. With the upper
convected derivative introduced in eq. (2.152), this takes the compact form

Ï
C = − 2

τq

C. (4.144)

The upper convected derivative describes the convection and deformation of tensor quanti-
ties under flow and here follows naturally from the microscopic description. Compared to
the Oldroyd-B constitutive equation eq. (2.153), which reads

Ï
C = − 2

τq

(
C − kBT

k
1

)
, (4.145)

we see that there is no constant term subtracted on the right-hand side. This is because,
in the present derivation, thermal fluctuations are not yet taken into account and the
equilibrium value of the conformation tensor is the mechanical one, Ceq = 0. However,
in the Oldroyd-B model, fluctuations are taken into account right away in the Langevin
equation for the individual particles. Neglecting the ensemble-defining property of the
average conformation tensor, this results in a nonzero average of C. As has been described
in more detail in section 2.5.2, this approach commonly taken in the derivation of rheological
equations can be seen as problematic. This is because statistical averages are taken inside
small volume elements in which all fast variables are in local equilibrium. Hence the slow
variables, in particular including the conformation tensor C, define a local thermodynamic
ensemble, and statistical averages should be constrained to said ensemble. Doing so then
leads to eq. (2.175) which is equivalent to eq. (4.143). It therefore seems more consistent
to calculate the equations of motion without fluctuations first and only add those at the
very end while making sure that the fluctuation-dissipation theorem is satisfied. This will
be the subject of future work.

To summarize, the final set of approximated equations is

Dtρ
(d) = −∇ · j(int), (4.146)
Ï
C = − 2

τq

C, (4.147)

ρDtv = −∇P − κρ(d)∇∇2ρ(d) + ηs∇2v − Γ

ττq

∇ ·
(
ρ(d)C

)
, (4.148)

∇ · v = 0. (4.149)
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4.2 Semi-automatic construction of
Lattice Boltzmann models

When constructing Lattice Boltzmann (LB) models, the choice of the velocity set and
the determination of respective weights for the equilibrium distributions are central steps
(c.f. section 3.2). For a given set of velocities {ci}, one way of determining the weights is
finding the solution to the Maxwell-Boltzmann constraint (MBC) equations

∑
i

wiciα1ciα2 . . . ciαm =
(
2πc2

s

)−d/2 ∫
ddv exp

(
− v2

2c2
s

)
vα1vα2 . . . vαm , (4.150)∑

i

wi = 1, (4.151)

wi ≥ 0 ∀ i, (4.152)

where {wi} is a normalized set of positive weights and the index i enumerates all velocities.

In this section, which is based on the publication [79], it is shown how this mathematical
problem can be recast in the language of linear algebra, which simplifies its numerical
solution. The resulting procedure has been automatized in the publicly available Python
script LBWeights.py [84]; the documentation of this script can be found in appendix B.1.
Input parameters that need to be supplied by the user are the spacial dimension d, the
maximum tensor order M up to which eq. (4.150) should be satisfied, an integer seed for
the random number generator, and a list of c̃2

i values to be used to generate the velocity
set.

4.2.1 Velocity shells
Here we restrict ourselves to velocities ci on a cubic lattice with lattice constant 1.
Therefore, the script first verifies that the user-supplied c̃2

i values are indeed compatible
with the underlying lattice. If this is the case, the velocity ‘modulus shells’ S(m)

i are
generated. These are sets of lattice velocities cj that are compatible with a supplied
modulus, i.e.

S
(m)
i =

{
cj ∈ Zd : c2

j = c̃2
i

}
. (4.153)

Note that the zero velocity c0 = 0 is included implicitly and forms its own shell S(m)
0 .

Furthermore, we define an ‘equivalence shell’ S(e)
i as an equivalence class of velocities cj

that can be mapped onto each other by transformations Tk in the cubic group. Each
modulus shell consists of one or more of such ‘equivalence shells’. With this definition of
a shell, a wider range of models can be treated, such as, for example, the D3Q41-ZOT
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model by Chikatamarla and Karlin [88]. To exemplify the concept of equivalence shells,
consider the modulus shell with c2

i = 9 in three dimensions which can be divided into two
equivalence shells:ci : ci ∼

0
0
3


 (6 velocities), (4.154)

ci : ci ∼

1
2
2


 (24 velocities). (4.155)

By ci ∼ a we mean that ci is in the same equivalence class as a, i.e. there exists some k
such that ci = Tka. In particular, there is no transformation Tk in the cubic group that
can transform a vector of class (0, 0, 3) into a vector of class (1, 2, 2), and yet they both
have the same absolute value.

The script detects the equivalence shells by explicitly generating all cubic group trans-
formations and applying them to the velocities in the modulus shells, thus spanning the
equivalence shells. A transformation in the cubic group can be interpreted as a combi-
nation of 90◦ rotations about the Cartesian coordinate axes combined with a possible
reflection about the origin. The columns of a transformation matrix Tk must therefore be
some permutation πk of the canonical unit vectors in d dimensions, ±êi with eiα = δiα,
i = 1, . . . , d. We denote this by

Tk =
(
sk(1)êπk(1), sk(2)êπk(2), . . . , sk(d)êπk(d)

)
, (4.156)

where sk(i) = ±1 and each permutation π occurs with every possible combination of signs
s. As there are d! possible permutations of d indexes and 2d possible combination of signs,
the cubic group in d dimensions consists of d!2d transformations in total. The generation
of the group is implemented making use of the permutation routines of the itertools
package [89], which is part of the Python standard library. After the script has generated
the complete cubic group, the list of images of the first velocity in a modulus shell is
generated by applying all transformations. This generates the first equivalence shell. The
same is then done for the first velocity that is not yet in the first equivalence shell and so
on, until all velocities are checked. If a modulus shell decomposes into multiple equivalence
shells, the user is asked whether or not any of the subshells should be discarded; the
remaining shells are processed further in the following steps.

4.2.2 Dimensionality of the tensor space
Equation (4.150) is a tensor equation of rank m, where m is the number of Greek indexes.
We want to satisfy this equation for all ranks m ≤ M , where we call M the degree of
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isotropy of the model. Since for uneven m the MBCs are trivially satisfied because of the
symmetry of the velocity shells, we require M to be an even number. Then there are M/2
tensor equations to be solved in total. For each rank m, we can write the tensors on the
left-hand side (LHS) of eq. (4.150) as expansion in terms of some basis tensors

{
B(m)

j

}
.

The LHS must therefore have the form

∑
i

wiciα1ciα2 . . . ciαm =
DT(m)∑

j=1
λ

(m)
j B

(m)
jα1α2...αm

. (4.157)

The LHS is invariant under the exchange of indexes and under transformations in the
cubic group. The right-hand side (RHS) of eq. (4.150) however is invariant under exchange
of indexes and arbitrary rotations. The dimensionality of the tensor space DT(m) can be
determined by counting the minimum number of tensors B(m)

i necessary to express the
velocity moments on the LHS of eq. (4.150) as a linear combination. However, even fewer
basis tensors may be needed because some coefficients may vanish due to the rotation
invariance of the RHS. For example, this is the case for the coefficient λ(4)

1 as it is defined
below.

For symmetry reasons, the weights for the velocities in an equivalence shell must be the
same. Because the flip of the sign is part of the cubic group, there is a velocity with
opposite sign cj = −ci for each velocity ci in the same shell. Therefore, the velocity
moments only differ from zero if the tensor indexes can be divided into even groups of
equal indexes, which is of course only possible for even rank m:∑

i

wiciα = 0 ⇒
{
B(1)

j

}
= ∅ ⇒ DT(1) = 0,

∑
i

wiciαciβ = λ
(2)
1 δαβ ⇒

{
B(2)

j

}
=
{
δ(2)

}
⇒ DT(2) = 1,

∑
i

wiciαciβciγ = 0 ⇒
{
B(3)

j

}
= ∅ ⇒ DT(3) = 0,

∑
i

wiciαciβciγciδ = λ
(4)
1 δαβγδ

+ λ
(4)
2 (δαβδγδ + δαγδβδ + δαδδβγ) ⇒

{
B(4)

j

}
=
{
δ(4),δ(2,2)

}
⇒ DT(4) = 2.

Here we have introduced the tensorial generalization of the Kronecker delta

(
δ(m)

)
α1...αm

= δα1...αm =
{

1 : α1 = · · · = αm

0 : else , (4.158)

as well as their outer products which are explicitly symmetrized wrt. to index permutation

δ(m1,...,mn) = Sym
(
δ(m1) ⊗ · · · ⊗ δ(mn)

)
. (4.159)
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These are objects of rank ∑n
i=1 mi. For higher ranks we find the basis sets

{
B(6)

j

}
=
{
δ(6),δ(4,2),δ(2,2,2)

}
⇒ DT(6) = 3, (4.160){

B(8)
j

}
=
{
δ(8),δ(6,2),δ(4,4),δ(4,2,2),δ(2,2,2,2)

}
⇒ DT(8) = 5. (4.161)

By now one can quite clearly see that DT(m) is just the number of ways in which the
number m/2 can be written as a sum of positive integers. In the language of number
theory, DT(m) is called the partition function of m/2. There is no analytical form for
the partition function, however it can easily be calculated numerically, for example via
recursion.

4.2.3 Contraction to scalar equations

In the next step, for each m, randomly generated unit vectors n̂(m)
i are used to construct

a set of DT(m) random tensors
{
N(m)

j

}
with

N
(m)
jα1α2...αm

= n̂
(m)
jα1 n̂

(m)
jα1 . . . n̂

(m)
jαm

, j = 1, . . . , DT(m). (4.162)

From a numerical standpoint, assuming that each component of the random unit vectors
is stored with a precision of about 14 digits, the thus resulting set of random tensors is
almost certainly linearly independent. By contracting eq. (4.150) for each m with these
tensors, the tensor equations can be transformed to an equivalent set of linear equations,
which is much easier to solve with standard numerical methods.

Contraction of the LHS of eq. (4.150) by the random tensors (we imply sum convention
for repeated Greek indexes) results in DT(m) scalar terms per tensor rank m:

DT(m)∑
i=1

λ
(m)
i B

(m)
iα1α2...αm

N
(m)
jα1α2...αm

=
∑

i

wiciα1ciα2 . . . ciαmn̂
(m)
jα1 n̂

(m)
jα2 . . . n̂

(m)
jαm

=
∑

i

wi

(
ci · n̂(m)

j

)m
, j = 1, . . . , DT(m).

(4.163)

Therefore there will be

R =
M∑

m=2,4,...

DT(m) (4.164)

linear equations in total. These equations are enumerated by r = 1, 2, . . . , R where the
r-th equation is derived from the tensor equation of rank mr. Similarly, the random vectors
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are simply enumerated by n̂r, r = 1, . . . , R. The contraction of the RHS is then
(
2πc2

s

)−d/2 ∫
ddv exp

(
− v2

2c2
s

)
(v · n̂r)mr

=
(
2πc2

s

)−1/2 ∫
dvx v

mr
x exp

(
− v2

x

2c2
s

)
= (mr − 1)!!cmr

s ,

(4.165)

where standard relations for Gaussian integration have been applied. The double factorial
for odd numbers is defined by (mr − 1)!! = 1 · 3 · 5 · . . . · (mr − 1).

By enumerating the non-trivial (not including zero) equivalence shells by s = 1, . . . , Ns
and exploiting the fact that the weights must be equal within one shell, the set of linear
equations can be written as

Ns∑
s=1

ws

∑
i∈s

(ci · n̂r)mr = (mr − 1)!!cmr
s , (4.166)

where i ∈ s are indexes of the velocities in shell s. The weight w0 of the zero shell can
be calculated from the normalization condition eq. (4.151) once the other weights are
determined. Equation (4.166) can be rearranged to

Ns∑
s=1

ws

∑
i∈s(ci · n̂r)mr

(mr − 1)!! =:
Ns∑

s=1
wsArs = cmr

s , (4.167)

where the R ×Ns matrix A was introduced. With br = cmr
s being the components of the

vector b ∈ RR and the vector of weights w ∈ RNs , this can be written as

A · w = b, Ars =
∑

i∈s(ci · n̂r)mr

(mr − 1)!! , A ∈ RR×Ns . (4.168)

With the vector of c2
s powers, c = (c2

s , c
4
s , . . . , c

M
s ) ∈ RM/2, we can now express b, which

itself consists of c2
s powers, by multiplying c from the left with a suitable matrix D:

b = D · c, Drµ = δmrµ, D ∈ RR×M/2. (4.169)

As the matrix A does not depend on c2
s , it is clear from eq. (4.168) that the components

of w must be polynomials in c2
s and w can be factorized in a similar way:

w = Q · c, Q ∈ RNs×M/2. (4.170)

Putting eqs. (4.169) and (4.170) into eq. (4.168) and canceling the vector c leads to the
new equation

AQ = D. (4.171)
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Due to the cancellation, this equation is now completely independent of the speed of sound.
Hence one can look for a solution Q first and, if such a solution exists, write the weights
as polynomials in c2

s . It then needs to be checked whether or not there are any values of
c2

s that result in all weights being non-negative. The existence of a solution Q, however,
depends on the exact properties of the matrix A.

4.2.4 Differentiating the cases
Whether the system eq. (4.171) has a unique solution, infinitely many solutions, or no
solution at all, depends on the details of the matrix A, in particular its shape and rank.
Here we make use of the singular-value decomposition [90], which is a generalization
of the eigendecomposition that also works for rectangular matrices. The singular-value
decomposition of A has the form

A = USVT, U ∈ RR×R, S ∈ RR×Ns , V ∈ RNs×Ns , (4.172)

where U and V are square orthogonal matrices (U−1 = UT, V−1 = VT) and the matrix S
has the same shape as A. It has the singular values σi of A on the diagonal and is zero
otherwise:

Sij = δijσj. (4.173)
The singular-value decomposition eq. (4.172) is generally not unique. Here we adopt the
convention that the singular values must be ordered by size: σ1 ≥ · · · ≥ σZ > 0. This
determines S, but not necessarily U and V, uniquely. Implementation in the script is
done by applying the routine numpy.linalg.svd from the Python numpy package [91].
The number of nonzero singular values Z ≤ min(R,Ns) is the rank of S and at the same
time the rank of A. Equation (4.171) can now be rewritten as

SVTQ = UTD, (4.174)

or, with Q′ = VTQ and D′ = UTD:
SQ′ = D′, S ∈ RR×Ns , Q′ ∈ RNs×M/2, D′ ∈ RR×M/2. (4.175)

Now there are several different scenarios. If the number of equations R exceeds the rank,
R > Z, the system of equations is overdetermined. Recalling that S is a R ×Ns matrix,
the last R − Z rows of S are then just filled with zeros and eq. (4.175) can be imagined
like:

S Q D' '

σ1

σZ
,
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where the blue columns on the right of S only exist if Z < Ns. It then needs to be checked
whether the last R−Z rows of D′ on the RHS are zero as well. If this is not the case, the
system is inconsistent and has no solution. If the last R − Z rows on the RHS are zero
however, these rows can be pruned from S and D′ without loss of information. We denote
this pruning by S → S′ and D′ → D′′ respectively. The new equation then reads

S′Q′ = D′′, S′ ∈ RZ×Ns , Q′ ∈ RNs×M/2, D′′ ∈ RZ×M/2. (4.176)

At this point, Z ≤ R. If now Z < Ns, S′ has some zero columns on the right (indicated in
blue in the above graphic), and the system is underdetermined. In this case, there are
infinitely many solutions, which is treated in section 4.2.6. If Z = R, however, there are
no such zero columns, S′ is a square diagonal matrix, and a unique solution exists. This
case is treated in the following section.

4.2.5 Unique solution possible
When Z = R, a unique solution exists, S′ is easily invertible and the matrix Q can be
recovered by

Q = VQ′ = V(S′)−1D′′. (4.177)

According to eq. (4.170), the weights are the polynomials in c2
s where the coefficients are

the entries of Q:

wi(c2
s ) =

M/2∑
j=1

Qijc
2j
s , i = 1, . . . , Ns. (4.178)

A useful LB model can only be constructed with positive weights wi ≥ 0 ∀ i. Therefore, we
need to ask whether or not there exist values of c2

s such that all weights are indeed positive.
A procedure that answers this question and at the same time has a straight-forward
numerical implementation is as follows:

1. Find all positive and real roots of all polynomials wi(c2
s ), e.g. using numpy.roots [92].

2. Create ordered list of roots 0 < r0 ≤ r1 ≤ . . .

3. Check for intervals [rj, rk] in which all wi are positive. Valid choices for c2
s lie in

these intervals.

If such intervals are found, a LB model can be constructed. The weights of the non-trivial
shells are expressed by polynomials inside these intervals, and the weight of the zero shell
can be calculated from the normalization condition:

w0 = 1 −
Ns∑
i=1

wi. (4.179)



4.2. SEMI-AUTOMATIC CONSTRUCTION OF LB MODELS 97

At the borders of these intervals, c2
s = rj, at least one of the weights is necessarily zero,

and the model is reduced by the corresponding velocity shell(s).

For example, the input parameters spacial dimension d = 3 and a maximum tensor rank of
M = 4 result in R = DT(2) +DT(4) = 3 linear equations, revealing that at most 3 velocity
shells are needed. Supplying the values c2

i ∈ {1, 2, 4} leads to a system of equations with
a unique solution and one valid interval 1/3 ≤ c2

s ≤ 4/9 (table 4.1). Evaluation at the

shell shell typical weight polynomial weight at weight at
number size vector c2

s ∈ [1/3, 4/9] c2
s = 1/3 c2

s = 4/9

0 1 (0, 0, 0) 1 − (15/4)c2
s + (21/4)c4

s 1/3 10/27
1 6 (0, 0, 1) (2/3)c2

s − (3/2)c4
s 1/18 0

2 12 (0, 1, 1) (1/4)c4
s 1/36 4/81

3 6 (0, 0, 2) −(1/24)c2
s + (1/8)c4

s 0 1/162

Table 4.1: Properties of a 25-speed model in three dimensions that is isotropic up to tensor
rank 4.

interval borders yields two 19-speed models, the one at c2
s = 1/3 being the well-known

D3Q19 model (c.f. section 3.2.2). Hence, to find the D3Q19 model with the script, one
additional shell, for example c2

i = 4, must be provided, which can be eliminated again in
the end due to the freedom of choice in c2

s .

Using the script, it was even possible to discover a novel model isotropic up to tensor rank
M = 10 with 221 velocities (see table 4.2). This has one valid interval and reduces to two
197-velocity models at the interval borders.

4.2.6 Infinitely many solutions
If, after the pruning of the matrices, the rank is less than the number of shells, Z < Ns,
the system is underdetermined and has infinitely many solutions. However it is possible
to force a solution by introducing constraints such as the requirement that one or more
of the weights are to be minimized. To treat such systems, the matrices S′, VT and
D′′ are written to the disk by LBWeights.py to be processed further by the secondary
script Continue.py. This script then solves the linear optimization problem based on the
equation eq. (4.176)

S′VT · w = D′′ · c, (4.180)
which is subjected to the constraints

ws
!= min ∀ s ∈ I, ws ≥ 0 ∀ s,

∑
s

ws ≤ 1, (4.181)
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shell shell typical weight at weight at
number size vector c2

s = 1.033691 c2
s = 1.206545

0 1 (0, 0, 0) 1.125792 × 10−1 5.101845 × 10−2

1 6 (0, 0, 1) 1.444892 × 10−2 3.953745 × 10−2

2 12 (0, 1, 1) 2.781069 × 10−2 4.937669 × 10−3

3 8 (1, 1, 1) 1.970138 × 10−2 3.536908 × 10−2

4 6 (0, 0, 2) 2.251462 × 10−2 2.485832 × 10−2

5 24 (1, 1, 2) 3.624508 × 10−3 3.216647 × 10−3

6 12 (0, 2, 2) 4.387148 × 10−3 7.022298 × 10−3

7 6 (0, 0, 3) 6.910281 × 10−4 1.578096 × 10−3

8 24 (1, 1, 3) 1.038248 × 10−3 1.597874 × 10−3

9 8 (2, 2, 2) 4.381319 × 10−4 5.451840 × 10−4

10 24 (0, 1, 4) 3.513518 × 10−5 0
11 24 (2, 2, 3) 4.350915 × 10−5 1.453046 × 10−4

12 24 (1, 1, 4) 0 9.956211 × 10−5

13 12 (0, 3, 3) 1.885761 × 10−6 3.047305 × 10−5

14 6 (0, 0, 5) 2.394034 × 10−6 1.300108 × 10−5

15 24 (0, 3, 4) 7.194413 × 10−6 1.815117 × 10−5

Table 4.2: Properties of a 221-velocity model in three dimensions that is isotropic up to
tensor rank 10.
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where I is a set containing the indexes of the weights that should be minimized. This is
done using the convex optimization library CVXPY [93–95].

From eq. (4.180) on sees that, apart of an index set I, the script needs to be provided with
a value for c2

s . The user has the option to either supply a single value or even a whole
range of c2

s values, which allows to scan for solutions.

4.2.7 Test mode
From the main script, it is also possible to run a testing mode that allows the user to
supply a numerical solution which is then tested for consistency. The user needs to supply
the spacial dimension, maximum tensor rank and the set of modulus shells. The solution
is provided in form of a value for c2

s as well as a vector of weights w. The weights may be
given in the very general form of a linear combination

w = w0 +
∑
i>0

λiwi, (4.182)

where the parameters λi can vary independently. The equation

A · w = b (4.183)

is satisfied, if the individual components of the vector residuals

∆0 = A · w0 − b, (4.184)
∆i = A · wi, i > 0, (4.185)

all vanish. Since the solution values are typically only given with finite precision, a rounding
error is introduced, and the residuals will not be exactly zero even for a (approximately)
correct solution. For a residual of the form

∆i =
∑

j

Aijwj − bi (4.186)

we can however derive an upper bound for the residuals that is adjusted to the magnitude
of the rounding errors in the provided solution. If the solution is given with n relevant
digits, we can estimate the relative accuracy by ε = 10−n+1. The maximum deviation of a
weight wj from the real value is thus δwj = εwj. Similarly, the supplied value c2

s might
deviate from the real value by as much as εc2

s . Recalling that bi = (c2
s )

mi/2, the error in bi

is then

δb = ε
mi

2
(
c2

s

)mi/2
= ε

mi

2 bi. (4.187)
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From there, the total error on the residual can be estimated by Gaussian error propagation

δ∆i =
√∑

j

(Aij δwj)2 + (δbi)2 = ε

√√√√∑
j

(Aijwj)2 +
(
mi

2 bi

)2
. (4.188)

Of course, this also applies to the residuals of the form of 4.185; in this case we can just
set b = 0. If for all residuals |∆i| < δ∆i, the provided solution is considered to be correct
within the numerical bounds. Using the test mode, several LB models from the literature
could be verified, among others the models derived by X. Shan via Gaussian quadratures
in ref. [96].

The functionality of the LBWeights.py script is summarized in the flow diagram fig. 4.3.
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Figure 4.3: Flow diagram of the Python script LBWeights.py.



102 CHAPTER 4. COMPUTATIONAL AND THEORETICAL DEVELOPMENTS



Chapter 5

Numerical Results

This chapter compiles some of the results obtained from numerical simulations of pure
MD systems as well as results from the coupled LB/MD scheme described in section 3.2.4.

In section 5.1, benchmarks obtained by simulating the coupled model for a typical particle
density on a varying number of processors are shown. The results can be used to estimate
a reasonable number of processors for the simulation of a given size system.

Since some of the numerical quench experiments are performed in two-dimensional systems,
one should have an idea about the critical attraction strength of the collapse transition.
This is estimated in section 5.2 by simulating different chain lengths at varying interaction
strength and exploiting the universal scaling in the theta solvent.

As has been described in section 2.3, a possible model for the non-bonded interactions in
a polymer system, that also allows for the description of phase separation, can be derived
from Van der Waals theory. Several systems at various densities are simulated in order
to obtain an equation of state. The results are then compared to the theoretical Van der
Waals model and first estimates for its parameters are made in section 5.3.

In section 5.4, the dynamic structure factor is evaluated for quenches of two- and three-
dimensional systems. By following the structure factor peak over time, dynamic scaling
plots for the characteristic coarsening length scales are produced. Comparisons are made
with numerical results from a two-dimensional continuum model that has been simulated
by a collaborating group. By suitable scaling and shifting of the peaks and comparison to
simple fluids, it can be confirmed that both models indeed produce non-standard phase
separation dynamics.

How Minkowski functionals can be used to determine geometrical properties of the polymer
morphologies during phase separation is shown in section 5.5. To do so, the configurations
are interpolated to a binary lattice from which quantities like volume, area, curvature, and

103
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Euler characteristic are computed. The initial dynamic behavior is especially sensitive to
the choice of lattice constant and the threshold value for the density at which a lattice site
is considered to be occupied. In the limit of long times, the behavior becomes universal,
allowing for the estimation of dynamic exponents.
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5.1 Benchmarks
In order to estimate the performance and parallel scalability of the LB/MD coupling scheme
as it is implemented in the simulation package ESPResSo++ [72], some benchmarks were
performed on the high-performance cluster ‘DRACO’, which is part of the Max Planck
Computing & Data Facility (MPCDF) in Garching.

The architecture of DRACO is as follows:

• there are ∼ 880 nodes equipped with Intel ‘Haswell’ Xeon E5 processors

• one node has 32 cores with 2.3 GHz

• hyperthreading is possible running two threads on one core

• the maximum memory per node is 128 GB

Furthermore, 106 of the nodes are equipped with graphics accelerator cards (two PNY
GTX980 GPUs each), and there are 64 Intel ‘Broadwell’ nodes with 40 cores and 256 GB
of memory; however, they were not used for any simulations presented here.

5.1.1 Parallel scalability, strong scaling
The strong scaling efficiency measures the parallel performance with fixed problem size,
i.e. fixed number of particles, and fixed number of integrations. It can be calculated by

ess = 1
N

T1

TN

, (5.1)

where T1 is the time needed to complete the task on one processing unit and TN is the
time needed to complete the same task on N processing units. Equation (5.1) holds for
a fixed number of integrations. Here, however, we measure the number of integrations
nN and the time needed to perform these integrations on N processing units, which is
T̃N . Therefore T̃N are calculated for a variable problem size. This then defines the rates
RN := nN/T̃N . The time needed by N processing units to perform a fixed number of
n0 integrations is then given by TN = n0/RN . This allows to express the strong scaling
efficiency by the rates:

ess = 1
N

RN

R1
. (5.2)

The benchmarks are performed for a three-dimensional system of linear size L = 128
containing N = 4784 chains with M = 64 beads each. This corresponds to a particle density
of c ≈ 0.146. These numbers were chosen to match the volume fractions of macroscopic
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simulations that where available for comparison at the time. The particles are coupled
to a LB fluid with a grid with lattice constant one. Hence, there are Npart ≈ 3.1 × 105

particles in total and 1283 ≈ 2.1 × 106 Lattice Boltzmann sites. The system was run for a
certain time, counting the number of MD integrations performed within that time, and
varying the number of nodes used. Note that this is not a rigorous approach to measure
the efficiency since only one run per size is performed, and the smallest computation unit
is one node with 32 processors rather than one single processor.

As unit system σLJ = εLJ = 1 was chosen. With rc = 1.5, this fixes the LJC parameters
α = 3.1730728678 and β = −0.85622864544. For the FENE potential (section 3.1.4),
a strength of KF = 30 and a maximum extension of rmax = 1.5 was used. A Langevin
thermostat (section 3.1.3) fixes the temperature at T = 1. The skin thickness is rs = 0.3
and the timestep is δtMD = 0.005. Configurations are written to the disk every 2000
integrations. For the LB fluid, both shear and bulk viscosity are set to 3; it is coupled to
the MD particles with a friction constant of 20. A costly LB step is performed only every 10
MD steps, which still gives good accuracy while increasing efficiency [83]. All simulations
are performed with an attraction strength of ϕ = 0 i.e. at good solvent conditions. At this
point we should note that in actual quench simulations the system coarsens over time,
which leads to worse load balancing and a gradual decrease in performance.

A significant amount of the time goes into reading the initial configuration from disk in
the beginning. However, we find that this time roughly decreases with a power law with

32 64 128 256
number of cores

103

6× 102

2× 103

3× 103

ti
m
e
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r
re
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s

slope = -0.79

regular

hyperthreading

Figure 5.1: Double logarithmic plot of the time needed to read in the initial configuration for
varying number of processing units. Three runs have been performed with hyperthreading
running two threads per core.

exponent −0.79 with an increasing number of cores (see fig. 5.1). Hyperthreading is not
useful in this case and can even increase the time needed to read the initial configuration.

The number of integrations per second is found to increase approximately linearly with
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the number of cores with a slope of about 0.056 (see fig. 5.2). This linear increase is not
sustained when using hyperthreading; then the rate even decreases again for a large number
of processors. We conclude that hyperthreading is not useful and even disadvantageous
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Figure 5.2: Number of integrations per sec-
ond performed by a varying number of cores
in single and hyperthreading mode.
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Figure 5.3: Strong scaling efficiency as de-
fined in eq. (5.3) for varying number of
cores.

for the present problem.

Recall, that the smallest processing unit used is one node with 32 cores, hence we use a
modified formula for the strong scaling efficiency,

ess = 32
N

RN

R32
, (5.3)

which is at 100% for 32 cores. Equation (5.3) for single threaded runs is plotted in fig. 5.3.
The efficiency decreases approximately linearly with the number of cores with a slope of
about −1.5 × 10−3. At 256 cores there is roughly one processor per 1200 particles or 8200
LB sites. Hence, the problem scales well even at a large number of processors.

The simulations presented in the following sections have been run with no less than 5000
particles or roughly 33000 LB nodes per processors, which corresponds to 64 or fewer
processors, for the problem size used in these benchmarks. Therefore efficiency can be
expected to be within a reasonable range.
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5.2 Theta-collapse transition in two dimensions
As introduced in section 3.1.5, the Lennard-Jones Cosine (LJC) potential is used to model
the pairwise non-bonded interaction between beads. It has the form

ULJC(r) =


4εLJ

[(
σLJ
r

)12
−
(

σLJ
r

)6
+ 1

4

]
− εLJϕ r ≤ 21/6σLJ

1
2ϕεLJ

(
cos

[
α
(

r
σLJ

)2
+ β

]
− 1

)
21/6σLJ < r ≤ rc

0 else

, (5.4)

where the parameter ϕ controls the strength of attraction, and thereby implicitly controls
the quality of the solvent. In this section, the attraction strength corresponding to the
theta solvent in two dimensions is estimated by numerical simulations.

We follow a similar approach as Steinhauser in ref. [61] where the theta point of three-
dimensional polymer solutions has been determined to be ϕΘ = 0.65 ± 0.02. Here it is
exploited that for chains with a large number of monomers M , the chain size scales like a
random walk with M − 1 steps at the theta temperature:〈

R2
g

〉
∝
〈
R2

e

〉
∝ M − 1; (5.5)

also see eq. (2.2) in section 2.1 about polymer solutions. Therefore, the squared chain size
divided by the number of bonds (M − 1) takes a fixed value at the theta point apart from
corrections due to the finite size of the chains.

To estimate the theta point, multiple simulations for different chain lengths and different
interaction strengths have been performed. The number of chains N in a system was
chosen such that the total number of particles is fixed at 32768 for all systems (c.f.
table 5.1). For the potential confining the particles in the z = 0 plane (c.f. section 3.1.6),

M N

256 128
512 64

1024 32
2048 16

Table 5.1: Chain length M versus the number of chains in a system N .

a strength of U0 = 512 was chosen. As only static properties are of interest here, there
is no hydrodynamic interaction with the solvent needed and thus no coupling to LB is
applied. Interchain interaction was turned of as well so that each chain can be viewed as
single, independent molecule. The friction constant of the Langevin thermostat is set to
ζL = 1. Apart from that, the same basic parameters as in section 5.1 were used.
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The simulations were performed at values of ϕ ranging from ϕ = 1.0 to ϕ = 2.0 in steps
of 0.2 resp. 0.1. For each chain length and attraction strength, an independent initial
configuration was set up and equilibrated. The average values of the squared gyration
radius

〈
R2

g

〉
divided by M − 1 are plotted in fig. 5.4; the error bars give the standard

deviation.
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Figure 5.4: Logarithmic plot of R2
g/(M − 1) over the attraction strength ϕ for different

chain lengths. The intersection points give an estimate for the theta transition.

The first intersections of the curves of lower chain length occur at about ϕ ≈ 1.3, while the
curve for M = 2048 intersects the curve for M = 1024 at about ϕ ≈ 1.45. As the finite-size
effects decrease with increasing chain lengths, the data from larger chains provides a more
accurate estimate of the theta point, which we expect at around ϕ ≈ 1.5. Of course, this is
only a very rough estimate for the theta point, which is defined in the limit M → ∞. For
more exact results, ideally, longer chains and a finer resolution in ϕ should be simulated.
Then the intersection points can be plotted and extrapolated to infinite chain length.
Nevertheless, the estimated value determined here seems appropriate to justify the choice
of ϕ = 2 when quenching the system from good to poor solvent quality in the experiments
presented in section 5.4, which are of course likewise performed at finite chain lengths.
Note that in three dimensions the chain conformation has a fractal dimension of two at
the theta point while it takes a value of three in the compact phase. In two dimensions
the fractal dimension is two in both cases making ideal and compact scaling behavior
identical.
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5.3 Van der Waals equation of state
In the future it will be interesting to compare numerical simulations of the continuum
model for viscoelastic phase separation derived in section 4.1 with simulations preformed
with the LB/MD coupling scheme (mesoscopic model, c.f. section 3.2.4). To ensure best
comparability, the parameters of both models should be calibrated to each other. A good
candidate for the equation of state is the Van der Waals pressure which was derived in
section 2.3:

P = NkBT

MN

n

1 −Bn
− An2, (5.6)

hence the interaction parameter A as well as the volume parameter B are among the
parameters that one would like to estimate for the mesoscopic model.

In this section, an estimate for these parameters is obtained by fitting the Van der Waals
equation of state to data obtained from numerical simulations with the mesoscopic model.
Note that only the partial pressure of the polymer phase is of interest here; hence the
simulations can be performed without coupling to the LB-ideal gas. The simulated systems
contain N = 16384 chains of length M = 8 at temperature T = 1. As the systems are
three dimensional, no confinement potential is applied. Otherwise, the parameters are
identical to the ones used in section 5.2. Simulations have been performed at different box
volumes keeping the number of particles fixed. For each run, the average pressure and its
standard deviation were calculated.

In fig. 5.5, the Van der Waals equation of state is plotted for these parameters at B = 1
for different values of the interaction parameter A. For low values of A, there is only one
phase, while for high values of A, there is a dense phase at low volume (high density)
and a gaseous phase at high volume (low density). However, Van der Waals theory fails
in the region in between these phases where phase transition occurs. There, one would
expect the pressure curve to be constant and not an oscillation as it occurs in fig. 5.5 at
A = 0.45. This can be mended by the Maxwell construction, where a horizontal line is
spliced into the curve in such a way that the two resulting areas above and below the
line are of opposite sign but equal magnitude. Because fluctuations increase massively in
the phase transition region, it takes significantly more data points to obtain a reasonable
statistical accuracy. Therefore, the benefits of the Maxwell construction are slim with the
present quality of data, which is why the points in the phase transition region are simply
omitted when fitting the equation of state.

In the left side of fig. 5.6, the results for a purely repulsive non-bonded interaction, i.e.
a Lennard-Jones Cosine attraction strength of ϕ = 0, are plotted. The system is in the
one-phase region and a least-squares fit of the equation of state results in the parameters
A = −2.0 and B = 0.94.
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Figure 5.5: Van der Waals pressure equation of state eq. (5.6) with B = 1 for a system
of N = 16384 chains of length M = 8 and with temperature T = 1 plotted at different
interaction parameters A. The ideal gas is given as a reference.
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Figure 5.6: Pressure curve at ϕ = 0 (left) and ϕ = 1 (right) as well as the fitted Van der
Waals equation of state. The equation of state of the ideal gas is given as reference. Points
marked red have been discarded.
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The right side of fig. 5.6 shows the results for ϕ = 1, data points in the transition region
are marked red and are not taken into account in the fitting procedure. In the intermediate
region, the error bars are large, because the fluctuations massively increase at the phase
transition. The fit results in the parameters A = 0.42 and B = 0.94.
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5.4 Dynamic structure factor
In order to study the coarsening behavior after a quench to a poor solvent quality, the
dynamic structure factor (see section 2.4 eq. (2.93)) was calculated for two and three-
dimensional systems. In the case of the two-dimensional system, the results are compared
to data obtained from a continuum model, which was simulated by a collaborating group.

To calculate the dynamic (time-dependent) structure factor defined by

S(q, t) = 1
N

〈
|ρ̃(q, t)|2

〉
, ρ̃(q, t) =

∫
ddr ρ(r, t) exp(−iq · r), (5.7)

the polymer density is first mapped onto a discrete lattice with lattice constant a. The

Figure 5.7: The density at a lattice site (black dot) is calculated by distributing mass
contributions of enclosed particles (green dot). The magnitude of the contribution is
proportional to the gray shaded area and depends on how close the particle is to the
respective lattice site.

way in which this mapping is carried out is illustrated for a two-dimensional setting in
fig. 5.7. The particles in the system are iterated, and for each particle (green dot in the
figure), the lattice indexes of the lattice site to the bottom left are determined. Then,
the fraction of the particle mass that corresponds to the gray shaded area opposite of the
current lattice site is added to the mass at the current lattice site. For example, in two
dimensions, if the lattice site is at the position (x, y) and a particle with mass m is at the
position (x+ δx, y+ δy), the density contribution of the particle the lattice site is given by

δρ(x, y) = m

a4 (a− δx)(a− δy), (5.8)

where a is the lattice constant. The same is done for all other remaining lattice sites
surrounding the particle. In higher dimensions, the mapping works analogously.

From the resulting lattice density, the structure factor is calculated via Fast Fourier
Transform using the C++ library FFTW3 [97]. The lattice constant a has to be chosen small
enough to provide sufficient resolution. It is found that for a lattice constant smaller than
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Figure 5.8: Structure factor peak at different lattice constants a of the underlying density
lattice. The system contains N = 4784 chains of length M = 64 in a three-dimensional
box with linear size L = 128.

a = 1/8 the structure factor curves are reasonably converged, see fig. 5.8. This is especially
true for the left peak, which is of primary interest here. For the results presented below a
lattice constant of a = 1/8 or lower was used.

5.4.1 In two dimensions
In this section, the structure factor and relating results from two-dimensional mesoscopic
simulations are presented and compared to results from a continuum model that was
simulated by Aaron Brunk at the Johannes Gutenberg University in Mainz. The results
presented here are partly published in reference [98].

The mesoscopic system consists of 1024 polymer chains with 128 beads of mass m = 1
each, in a box of size 512 × 512 × 4. For the confinement of the particles in the xy-plane, a
potential strength of U0 = 512 (see section 3.1.6) was applied. Otherwise, the same basic
parameters as in section 5.1 were used. Four independent systems were equilibrated with
Molecular Dynamics (MD) exclusively at first. Then, the systems were coupled to a Lattice
Boltzmann (LB) fluid and equilibrated further. Once the coupled systems are equilibrated,
phase separation is induced by introducing an attractive well with a depth of ϕ = 2 in the
Lennard-Jones Cosine potential, quenching the system deep into the two-phase regime.

The time evolution of the configuration one of the systems after quenching is given in
fig. 5.9. After the attractive interaction is introduced, small holes begin to form in the
polymer matrix. As time progresses, these solvent holes grow in size leading to a network-
like structure in the polymer phase. The size of the solvent holes is a characteristic length
scale in the system, and, as has been motivated in section 2.4, the dynamic structure
factor is an excellent tool for estimating it.



5.4. DYNAMIC STRUCTURE FACTOR 115

Figure 5.9: Time evolution after quenching a two-dimensional system. Different colors are
used to better distinguish individual chains. The configurations are taken at t = 0, 1500,
7900 and 87500 (left to right, top to bottom).
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The time-dependent structure factor is calculated for all four systems, and the curves are
averaged. A plot of the average structure factor curves at different points in time after
quenching is given in fig. 5.10. At t = 0, the system is close to homogeneous, and there
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Figure 5.10: Structure factor for different points in time after the quench. The curves are
normalized by the time-constant value S(0, t) =: S(0), which is proportional to the total
density.

is little structure. In the structure factor, there is a peak at wavenumber q ≈ 7, which
corresponds to the typical interparticle distance at equilibrium. As the system coarsens,
this peak moves towards smaller wavenumbers, and the maximum scattering intensity
S(qmax) increases, a behavior which is explained in section 2.4.

The results from the mesoscopic model are compared to results from the continuum model
based on the equations

ϕ̇ = ∇ ·
(
n2(ϕ)∇µ− n(ϕ)∇(A(ϕ)π)

)
, (5.9)

π̇ = −h1(ϕ)π + A(ϕ)∇ · (∇(A(ϕ)π) − n(ϕ)∇µ) + ε1∇2π (5.10)
v̇ = ∇ · (η(ϕ)D) − ∇P + ∇ · T + µ∇ϕ, (5.11)
Ï
C = −h2(ϕ)B(tr C)(tr(C)C − 1) + ε2∇2C, (5.12)

µ = −c0∇2ϕ+ ∂f(ϕ)
∂ϕ

, (5.13)

∇ · v = 0, T = tr(C)C. (5.14)

Here, ϕ is the polymer volume fraction, π is a putative bulk stress, v is the mass average
velocity, D is the deformation rate tensor defined in eq. (2.158), C is the conformation
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tensor and f is the free energy density. The model is simulated using finite element
methods (FEMs). For more information on the model as well as on the parameters used,
the reader is referred to the references [98,99].

Structure factors obtained both by the mesoscopic and macroscopic model are given in
fig. 5.11. In the first row, the unnormalized peaks are plotted at different times; both
approaches clearly show the coarsening and the growth in scattering intensities. The second
row features the same data, with the difference that q is normalized by the wavenumber
of maximum scattering intensity qmax and S(q/qmax, t)/S(qmax, t) is plotted, fixing the
position of the peak at the point (1, 1) in the plot. For simple fluids, the curves should
collapse to a master curve (see section 2.4.2). However, both approaches show significant
variation at successive time steps. The same plots for the non-viscoelastic version of the
models are given in the third row. In case of the mesoscopic model, the connectivity
interaction (FENE potential) was omitted. This was compensated by setting a deeper
quench depth of ϕ = 3. In case of the macroscopic model, elastic stresses, i.e. π and C and
their respective coupling terms, were removed. In this case, the collapse works much better,
indicating that both models indeed feature non-standard phase separation dynamics. This
particular comparison is motivated by ref. [100] where a related viscoelastic continuum
model was studied.

In the next step, the dynamic scaling behavior is examined by tracking the wavenumber
of maximum scattering intensity qmax with time. A double logarithmic plot of qmax(t)
is given for both models in fig. 5.12. In the initial regime, both models are close to
the Lifshitz-Slyozov growth law qmax ∝ t−1/3 (c.f. section 2.4.3). For t > 103t/tFE the
macroscopic model transitions to a different regime with slower growth rate. This change
of regimes is also seen in the plot of the maximum scattering intensity in fig. 5.13. Here it
also becomes apparent that the scale of the scattering intensity differs for both approaches.
The value S(q = 0) is proportional to the total density, it is off scale and therefore not
included in the plots in figs. 5.10 and 5.11. The asymptotic value limq→0 S(q) however is
related to the compressibility. As the equation of state is not matched for both models,
their compressibility differs, which results in the mismatch of scales in the scattering
intensity.



118 CHAPTER 5. NUMERICAL RESULTS

Mesoscopic Macroscopic

0.0 0.5 1.0 1.5 2.0

q

10−5

10−4

10−3

S
(q
,t
)/
S
(0
)

t/ (10tLJ) =

2

8

32

128

512

1024

0.0 0.5 1.0 1.5 2.0

q

10−7

10−6

10−5

10−4

S
(q
,t
)/
S
(0
)

t/ (10tFE) =

2

8

32

128

512

2000

0.0 0.5 1.0 1.5 2.0

q/qmax

10−1

100

S
(q
/
q m

a
x
,t
)/
S
(q

m
a
x
,t
)

t/ (10tLJ) =

2

8

32

128

512

1024

0.0 0.5 1.0 1.5 2.0

q/qmax

10−2

10−1

100

S
(q
/
q m

a
x
,t
)/
S
(q

m
a
x
,t
)

t/ (10tFE) =

2

8

32

128

512

2000

0.0 0.5 1.0 1.5 2.0

q/qmax

10−2

10−1

100

S
(q
/
q m

a
x
,t
)/
S
(q

m
a
x
,t
)

t/ (10tLJ) =

2

8

32

128

512

1024

0.0 0.5 1.0 1.5 2.0

q/qmax

10−4

10−3

10−2

10−1

100

S
(q
/
q m

a
x
,t
)/
S
(q

m
a
x
,t
)

t/ (tFE) =

8

16

24

32

40

48

56

Figure 5.11: Time evolution of the structure factor (left panel: mesoscopic simulations,
right panel: macroscopic simulations). The first row shows the normalized scattering
intensity S(q, t)/S(q = 0) vs. the wavenumber q. In the second row, the scattering
intensity has been normalized by its peak value S(qmax) and the wavenumber by qmax. For
comparison, we show another normalized plot for simple fluids without any elastic effects
in the third row.



5.4. DYNAMIC STRUCTURE FACTOR 119

101 102 103 104

time t/∆t

10−1

100

q m
a
x
/
σ

∝ t−1/3

meso

macro

Figure 5.12: Time evolution of the peak
wavenumber qmax. Triangles indicate results
from the mesoscopic model (∆t = tLJ, σ =
σLJ), while circles represent the macroscopic
model (∆t = tF E). The Lifshitz-Slyozov
growth law qmax ∝ t−1/3 is given for refer-
ence.
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Figure 5.13: Normalized peak-scattering
intensity S(qmax, t)/S(0) for mesoscopic
(∆t = tLJ) and macroscopic simulations
(∆t = tFE) respectively. The difference in
scale is due to discrepancies in the equation
of state of both approaches.

5.4.2 In three dimensions
As hydrodynamics and polymer physics in two dimensions both differ significantly from
the corresponding physics in three dimensions, the focus should be put on the numerical
simulation of three-dimensional systems in the long run.

Several three-dimensional systems at different particle concentrations were simulated. Of
particular interest are the results obtained from a model with 4784 chains of length 64 in
a three-dimensional box of linear size L = 128. Aside from a quench depth of ϕ = 1, the
same parameters as for the two-dimensional system above were used. Eight independent
systems have been equilibrated analogously, and average structure factor curves were
computed.

Visualization is not as straightforward in three dimensions as it is in two dimensions. One
possibility is taking slices of thickness b, {r = (x, y, z) : |z − L/2| ≤ b/2}, from the system
and plot their projection onto a plane. This is shown at different times after the quench
in fig. 5.14. Analogously to the second and third row in fig. 5.11, the structure factor
peaks are shifted by the peak wavenumber and normalized by the maximum scattering
intensity, see fig. 5.15. Especially in early times, the curves deviate significantly, which is
a strong indication for non-standard phase separation. The resolution of the data is not
as good as for the two-dimensional system; this is because the smallest reasonable bin size
for the q values is limited by the linear system size by 2π/L, and L is much smaller for
the three-dimensional data.
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Figure 5.14: Slices of thickness 2 of the configurations plotted at times t = 0, 1, 2, 4, 8, 16,
32, 64, 128, 256, 512, 1024, 2048 in units of 10tLJ.
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Figure 5.15: Structure factor peak shifted by qmax and normalized by S(qmax).
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The time evolution of the peak wavenumber qmax(t) is plotted in fig. 5.16. Interestingly,
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Figure 5.16: Time evolution of peak
wavenumber qmax. The Lifshitz-Slyozov
growth law qmax ∝ t−1/3 is given for ref-
erence.

101 102 103 104

time t/tLJ

10−5

10−4

10−3

S
(q

m
a
x
,t
)/
S
(0
)

Figure 5.17: Normalized peak-scattering
intensity S(qmax, t)/S(0).

the coarsening is very slow in the initial phase and only at later times the Lifshitz-Slyozov
growth law is approached.

Similar observations have been made experimentally by Tanaka [11]; he calls this initial
regime in which the solvent slowly starts to push in between the polymer molecules
the ‘frozen regime’. In ref. [100] by Tanaka and Araki, the regime following the frozen
regime is called the ‘elastic regime’, which is dominated by elastic interactions in the
developing polymer network structure. For entangled polymer solutions, it is said to have
a non-universal dynamic scaling exponent that depends on parameters such as the quench
depth and the molecular weight of the viscoelastic component. This is not seen here, as the
polymers are not entangled; instead, scaling follows the standard Lifshitz-Slyozov law. Also,
they observe a ‘volume shrinking’ of the viscoelastic phase in the late stage, which results
in a decrease of the scattering intensity. Such a decrease is not seen here (c.f. fig. 5.17);
however, the relevant time scale might not have been reached yet. Once the network
structure breaks down, the system is said to enter the final stage, the ‘hydrodynamic
regime’ with a growth exponent smaller than the one of the elastic regime.
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5.5 Minkowski Functionals
Minkowski functionals provide a way to extract geometrical information from complex
morphologies and spacial patterns [101–104]. In d dimensions, there are d+ 1 Minkowski
functionals Mi. In three dimensions, they can be interpreted as volume, area, mean
curvature, and Euler characteristic.

The Euler characteristic in this case is given by χE = 2Nc(1 −Nh), where Nc is the number
of connected domains in the topology, and Nh is the number of holes. Hence, for a full
sphere, the Euler characteristic is 2, and it is 0 for a torus. If the morphology is a single
connected network with pores that are not all interconnected, the Euler characteristic is a
negative number. If, on the other hand, the system consists of many separated droplets,
the Euler characteristic is positive. It therefore seems to be a promising tool for the
investigation of network formation and breakdown in viscoelastic phase separation.

The Minkowski functionalsMi, i = 0, . . . , d are defined on convex rings R and have the
following properties: They are additive, i.e.Mi(A ∪B) =Mi(A) +Mi(B) −Mi(A ∩B)
for A, B ∈ R, continuous, as well as translation and rotation invariant. The completeness
theorem states that all functionals satisfying these conditions must be a linear combination
of the d+ 1 Minkowski functionals [105].

In order to calculate the Minkowski functionals from the particle configurations obtained
from the simulations, a suitable representation of the morphology needs to be created
first. This is done following the approach described in ref. [101]. First, the mass density
of the system is mapped onto a discrete cubic lattice with lattice constant a using the
same methods described in section 5.4, see fig. 5.7. The lattice constant should be chosen
small enough for the lattice to capture the features of interest, i.e. the size of the solvent
holes, but not so small that it is sensitive to the particle size. This lattice density is then
transformed into a ‘black and white’ representation, where a lattice site is assigned the
value one, if its associated density exceeds a given threshold density ρt, and zero otherwise.
Because of their additivity, the elementary Minkowski functionals can be calculated for
each lattice cell individually and added up to give the full result.

In three dimensions, each cell has 23 = 8 lattices sites at its edges. Since each site either
has a value of one or zero, there are 28 = 256 possible cell configurations. Because of
rotation symmetry, this can be reduced to a number of 22 cell configurations which are
unique wrt. the value of the Minkowski functionals. These cell configurations and their
associated values can be found in ref. [101]. For mean curvature and Euler characteristics,
two alternative values, depending on whether or not two diagonally adjacent cells should
be considered connected, (8n resp. 26n) or not (4n resp. 26n), are given. A derivation of
the Minkowski functional values for the elementary cells can be found in ref. [106].

In the present implementation, all lattice cells are iterated, and it is determined which
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of the 256 cell configurations is that of the current cell. This is done by calculating the
number

C =
7∑

i=0
2iσi, (5.15)

where the sum is over all surrounding lattice sites, and σi is either one or zero, depending
on whether the threshold density is exceeded or not. The number C is unique to each
possible cell configuration. Hardcoded in the program is an array of size 256 containing
pointers pointing to the elements of a second array of size 22, which lists the values of
the elementary Minkowski functionals. These values are then obtained by following the
pointer at index C in the large array.

This approach to calculating geometrical quantities is surprisingly close to what is done in
some experiments. For example, Tanaka et al.use threshold values on grayscale images
taken from the phase separation of thin films [11,15,100] to estimate the area occupied by
the viscoelastic component. They observe a decrease of area over time, which they term
‘volume shrinking’. Furthermore, they count the number of solvent holes forming, which is
found to rise in the initial regime and decrease again in later stages.

Mecke and Sofonea have used Minkowski functionals to study the dynamic morphology of
spinodal decomposition with two-dimensional Lattice Boltzmann fluids in ref. [102]. They
find a sharp rise in the Minkowski area in the early stage, followed by a slow increase.
The boundary length is found to rise steeply in the beginning as well but decreases again
quickly after reaching its maximum value. That is to be expected as the boundary length
in two dimensions can be associated to the area in three dimensions, the minimization of
area of course being a central driving force in the dynamics of phase separation. Similarly,
they find a sharp increase of the Euler characteristics in the beginning corresponding to
the formation of many disconnected domains of the minority phase. As these domains
grow and coagulate, the Euler characteristic decreases again.

Presented here are results obtained from the same system as shown in section 5.4.2, which
contains 4784 chains of length 64 in a three-dimensional box of linear size L = 128 and
was quenched with a depth of ϕ = 1. All curves are again averages obtained from eight
independent systems. The remaining parameters can be found in section 5.4.2.

Plots of the time-dependent Minkowski volume normalized by L3 for different lattice
constants a of the discretization lattice are shown in fig. 5.18. The threshold value is fixed
at the average density ρt = ρ̄. At this threshold value, the decrease in volume is observed
at all lattice constants. This is in line with the observations made by Tanaka et al., and
differs from the results obtained by Mecke et al. for standard spinodal decomposition.
The interpretation is that as the system coarsens, the solvent is displaced from the
polymer-dense regions, which decreases their overall volume fraction.
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Figure 5.18: Minkowski volume where the
threshold density is fixed at the average
density ρt = ρ̄ and the lattice constant a of
the discretization lattice is varied.
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Figure 5.19: Minkowski volume where the
lattice constant a of the discretization lat-
tice is fixed at 4 and the threshold density
ρt is varied.

The initial value of the normalized volume is at about 0.5 for a = 4 and larger. This is
expected, since, in a homogeneous system, half of the cells should be above the average
density, and half of them below. If the lattice constant is too small, there are too many
empty cells, and the volume is underestimated. Hence, a lattice constant of 4 is chosen for
the following plots. This is at 1/32 of the linear system size, and ideally larger systems
should be considered in the future.

The Minkowski volume at different threshold values and fixed lattice constant a = 4 is
shown in fig. 5.19. The initial behavior is very much sensitive to the choice of the threshold.
At a threshold of 1.2ρ̄ and higher, a rise in volume is seen at the beginning, which is not
the case at lower values. The longtime behavior however seems to be universal for all
thresholds, although the scaling regime might change again at later times, for example,
when network structures begin to break down.

The remaining Minkowski functionals for a = 4 and ρt = ρ̄ are shown in fig. 5.20. The
area shows a slight increase in the beginning before it reaches a peak and decreases again
in the long run (blue curve in the right image of the top row). However, it has to be
noted that this again strongly depends on the choice of the threshold value. Both for
lower and higher threshold ρt = 0.6 and ρt = 1.4, the initial rise is much more pronounced
(yellow and green curves). An interpretation is that the formation of solvent holes in the
beginning leads to an increase of the total surface of the polymer-rich component, which
is then again decreased by the coarsening of the morphology.

Similar behavior is seen in the curvature plots (left image second row). Again, many small
holes could explain a higher mean curvature in the beginning. As the holes grow, the
mean curvature decreases again.
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Figure 5.20: Minkowski functionals at a threshold density of ρt = ρ̄ (if not stated
otherwise), and lattice constant a = 4. The 8-neighbor mean curvature was scaled by a
factor of 0.07 for better visibility.
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The Euler characteristic (right image second row) behaves differently depending on whether
the highly connected (26n) or less connected (6n) variant is used for the calculation of the
elementary functionals. For the lower connected version, the Euler characteristic starts
at a large negative value and increases with time, meaning that the number of holes is
reduced. The highly connected variant however shows a dip in the beginning, indicating
that the number of holes first increases before it decreases again, which is more in line
with the intuitive picture. This is then again highly dependent on the threshold value,
as it is seen in fig. 5.21. While for a lower threshold, both variants show the dip in the
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Figure 5.21: Minkowski Euler characteristic at lattice constant a = 4 with a threshold
density of ρt = 0.6ρ̄ (left) and ρt = 1.6ρ̄ (right).

beginning; this is at the higher threshold only the case for the highly connected variant.
The less connected variant detects a large number of separate domains in the beginning,
which briefly rises initially. This number then decreases again as the domains coagulate,
which is a behavior one would expect from regular spinodal decomposition.

While the Minkowski functionals can give some qualitative idea of the dynamic behavior of
the morphology, they are not very robust with respect to variations of the lattice constant
and threshold density. Therefore, it is hard to justify their use for the quantitative
comparison of different phase separation models as it was the original intent here. Only at
long times, the behavior seems to become universal. This can be exploited to calculate
dynamic scaling laws, which was also done in ref. [102]. This is exemplified in the double
logarithmic plots of the Minkowski volume and Euler characteristic in fig. 5.22. The
Minkowski volume seems to approach a scaling law V ∝ t−1, while the Euler characteristic
is closer to χE ∝ t−2. However, it is also apparent that the universal regime is just barely
reached, and longer times need to be simulated.

Nevertheless, the Minkowski functionals can confirm the existence of distinct regimes in the
dynamics, as was also seen in the analysis of the dynamic structure factor in section 5.4.2.
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the Euler characteristic (right), where the lattice constant a of the discretization lattice is
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slope of −1, the line in the right figure has a slope of −2.
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Chapter 6

Conclusion

In this thesis, the spinodal decomposition of polymer-solvent systems has been studied both
numerically and theoretically. It was shown that the coupled Lattice Boltzmann/Molecular
Dynamics (LB/MD) simulation scheme is indeed able to model non-standard phase
separation behavior. Based on this simulation scheme, a set of continuum equations that
aims at modeling the dynamics of viscoelastic phase separation was derived.

To facilitate the simulation of two-dimensional systems, an external potential confining the
particles to the immediate vicinity of a plane was introduced. For systems that are confined
in this way, the critical attraction strength of the non-bonded potential corresponding to
the theta-solvent was determined by exploiting fundamental scaling relations of polymer
chains.

Three-dimensional systems were simulated at different densities. The resulting pressure
curve was compared to the equation of state obtained from Van der Waals theory, and
first estimates for its parameters were determined.

The dynamics of geometrical properties of the polymer morphologies occurring during
phase separation were examined using Minkowski functionals. Their short-time behavior
was found to be very sensitive to the method parameters used when interpolating the
polymer structure to a binary lattice. Hence, the Minkowski functionals at short times
can be used for a qualitative analysis at best. However, the long-time behavior turned out
to be more robust and can be used to determine dynamic scaling exponents.

The structure factor and related dynamic scaling curves were calculated from both two-
and three-dimensional simulations at successive time steps after a quench of the solvent
quality. By comparison with the structure factors obtained from the phase separation
of a simple Lennard-Jones fluid, it was shown that the demixing dynamics is indeed
non-standard. First comparisons to structure factor data obtained from a two-dimensional
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macroscopic model were made. While some parallels could be drawn, it was found that the
macroscopic models available at the time were not well-suited for an in-depth parameter
matching with the mesoscopic LB/MD method.

Because of that, a novel set of dynamic continuum equations for the description of
viscoelastic phase separation has been derived. In doing so, a new strategy has been taken
combining Hamiltonian Poisson bracket methods with the insights from the GENERIC
formalism. This approach avoids some of the conceptual problems inherent in classic
kinetic approaches such as the Oldroyd-B model and at the same time allows to maintain
a close connection to microscopic physics.

The starting point is a mesoscopic picture where polymer molecules are approximated by
simple Hookean dumbbells that do not interact directly but only through a background-
free energy. By defining appropriate fields, which can be expressed in the mesoscopic
variables, the Poisson bracket formalism was used to construct the Hamiltonian part of
the dynamics. Then, the GENERIC formalism was applied to determine the dissipative
contribution from the continuum dissipation rate. Up to this point, no approximations
or assumptions were necessary other than the postulation of suitable continuum limits
of the Hamiltonian and the dissipation rate. From this basis, the equations were then
simplified by adiabatically eliminating fast variables and introducing phenomenological
terms to retain thermodynamic consistency. While sharing some similarities, the new
model differs from the existing ones in some key aspects: The difficulties of the Oldroyd-B
model that arise when combining Fokker-Planck and continuum picture are avoided by
treating all variables on the same footing. Instead of separate bulk and shear stresses with
unclear interpretation, the conformation tensor is the only variable describing the elastic
effects. As one would expect from entropic elasticity, the conformation tensor enters the
free energy linearly and not quadraticly. Because fluctuations are not yet included, the
conformation tensor relaxes towards zero rather than some finite value.

By construction, the thus obtained model is tightly connected to both the underlying
microscopic physics and the mesoscopic simulation model. Only this makes a future pa-
rameter matching feasible and removes a significant obstacle in creating a computationally
efficient simulation method for viscoelastic phase separation, which is nevertheless sound
in terms of fundamental physics.

Furthermore, a Python script for the calculation of Lattice Boltzmann weights has been
developed. It provides a tool that dramatically simplifies the task of constructing LB
models with a large number of velocities and a high degree of isotropy. The novelty of the
approach lies in using random numbers to transform the tensorial Maxwell-Boltzmann
constraints into a set of linear equations, which can be solved using standard linear algebra
routines. The script can also be used to validate existing models that are found in the
literature. Methods from linear programming were applied to facilitate the determination
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of useful models, even when the resulting system of equations has infinitely many solutions.

6.1 Outlook
The two-fluid model as presented here does not yet include thermal fluctuations. Because
of this, the conformation tensor relaxes towards zero, which constitutes one of the key
differences to the existing models based on Oldroyd-B-like equations. In the future, thermal
fluctuations can be incorporated by adding suitable random terms to the complete set
of equations while ensuring that the resulting Langevin equations satisfy the fluctuation-
dissipation theorem.

In terms of Rouse theory, the center of mass and relative vector used here to describe a
dumbbell molecule correspond to the first two Rouse modes of a polymer chain. Given that
the resulting set of Poisson brackets is closed, higher Rouse modes could be incorporated,
resulting in a more detailed model. Furthermore, alternative spring potentials, for example
the FENE potential, may be considered.

A formulation in terms of variables that are invariant with respect to a flip of the dumbbell
orientation would be desirable. It was motivated how this could be done by using suitable
tensors describing the dumbbell orientation and the orientation dynamics. This, however,
artificially introduces new degrees of freedom. To retain a consistent description, these
would most likely need to be compensated by introducing suitable constraints into the
description. Whether or not this is possible and feasible has not been exhaustively resolved
yet.

One of the next steps should be the numerical simulation of the model and comparison to
the mesoscopic LB/MD model. Ideally, this should be done by simulating actual dumbbells
in the mesoscopic picture first, and then investigate discrepancies occurring when moving
to higher chain lengths.

The way in which the present equations have been derived is unconventional and avoids
some of the problems existing with common rheological approaches. By combining Poisson
brackets with the insights of the GENERIC formalism, it is possible to construct a
continuum theory from a molecular picture without the need for many assumptions or
approximations. This philosophy ensures consistency with microscopic physics in every
step and could potentially be applied to a variety of different problems in the future.
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Appendix A

Supplementary material

This part of the appendix compiles some relevant supplementary material that would
otherwise hinder the flow of the main text.

Functional derivatives occur in numerous places throughout this thesis and are introduced
in appendix A.1. The particular form of the chain- and product rule for functional
derivatives are found there.

Appendix A.2 features an Eulerian two-fluid model that results as a special case from
the viscoelastic model derived in section 4.1. The transformation to respective two-fluid
variables is shown explicitly. The resulting dynamic equations depend on total pressure
and a relative chemical potential that are obtained from a general two-fluid Helmholtz
free energy.

In appendix A.3, some supplementary calculations to the viscoelastic model in section 4.1
are collected. Furthermore, tensorial variables for the description of dumbbell conformation
and conformation dynamic, which are invariant with respect to a flip of the connecting
vector, are introduced.

Appendix A.4 presents a derivation of an alternative equation of state for a compressible
mixture based on Flory-Huggins theory. This is done by introducing empty lattice sites of
variable number, so-called voids, which do not interact energetically but admit a change
of total system volume.

In appendix A.5, the effects of an external confining on the pressure tensor are examined.
The virial expansion for that particular case is shown explicitly. From there, it can be seen
that for the particular potential introduced in section 3.1.6 which confines the particles
in the z-plane, the pressure in the xy-plane behaves exactly as in a real two-dimensional
system.
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A.1 Some notes on functional derivatives
Functional derivatives are used in numerous places in this thesis. This section provides
a brief overview as well as some helpful calculation rules. A more in-depth treatment of
functional derivatives can be found e.g. in the references [107,108].

Consider a general functional F , which takes some function f and maps it onto a scalar
value. We define the variation of F when f(r) is varied by some arbitrary test function
η(r) with strength ε → 0, δf(r) = εη(r), by

δF [f ] = F [f + εη] −F [f ] =
∫

ddr
δF [f ]
δf(r) δf(r), (A.1)

where δF [f ]/δf(r) is the functional derivative of F at position r. This can be understood
as the functional generalization of the total differential

dg(x) =
∑

i

∂g

∂xi

dxi . (A.2)

By setting δf = εδ(r − r′), the integral in eq. (A.1) can be evaluated and we may write

δF [f ]
δf(r′) = lim

ε→0

F [f + εδ(r − r′)] −F [f ]
ε

= ∂F [f + εδ(r − r′)]
∂ε

∣∣∣∣∣
ε=0

. (A.3)

While the argument r still appears on the right-hand side, the functional derivative does
not depend on it; it is considered a ‘silent’ variable. Equation (A.3) provides one way of
calculating functional derivatives.

Consider now a functional given by the integral

F [x(r, t)](t) =
∫

ddrF (x,∇x), (A.4)

which is defined as the integral over a function that has x and ∇x as independent variables.
The variation of the functional F can be expressed by

δF [{xα}] =
∫

ddr
[
∂F

∂xγ

δxγ + ∂F

∂(∂δxγ)∂δδxγ

]

=
∫

ddr
[
∂F

∂xγ

− ∂δ
∂F

∂(∂δxγ)

]
δxγ.

(A.5)

Comparing to the definition eq. (A.1), the functional derivative, which is itself a function
of r, is found to be

δF
δxα

= ∂F

∂xγ

− ∂δ
∂F

∂(∂δxγ) . (A.6)
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It can be shown that for two functionals F1,F2 there is a product rule

δ(F1F2)
δf(r) = δF1

δf(r)F2 +F1
δF2

δf(r) . (A.7)

Furthermore, for a functional F [G ] that depends on a functional G [f ](r′), which itself is a
functional on f as well as a function on r′, F [f ] can be considered to be a functional on f
directly and there is the chain rule

δF [f ]
δf(r) =

∫
ddr′ δF [G ]

δG (r′)
δG [f ]
δf(r) . (A.8)

A useful observation is that one can always express a function as a functional on itself by
using a delta function:

f(r) =
∫

ddr′ δ(r − r′)f(r′), δf(r)
δf(r′) = δ(r − r′). (A.9)

Because of this, the chain rule with a regular function g instead of a functional G as inner
function becomes

δF [g(f)]
δf(r) = δF [g]

δg(f(r))
∂g(f)
∂f(r) . (A.10)

Furthermore, the derivative with respect to a variable t of f , which is not eliminated by
taking the functional, can be expressed by

∂F [f(r, t)]
∂t

= ∂F [f ](t)
∂t

=
∫

ddr
δF [f ]
δf(r)

∂f(r, t)
∂t

. (A.11)
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A.2 Two-fluid Euler equations

The viscoelastic two-fluid model derived in section 4.1 can be reduced to a simple Eulerian
two-fluid model where the coupling between components is only due to their thermodynamic
equation of state. This is done by eliminating the elastic degrees of freedom of the dumbbell
component, the effects of surface tension, as well as coupling and viscous dissipation in
the solvent component. Starting point are the full equations eqs. (4.100) to (4.105). By
setting q = v(r) = η = κ = 0 and taking the limit τ → ∞ these equations reduce to

D(1)
t ρ(1) = −ρ(1)∇ · v(1), (A.12)

D(1)
t v(1) = −∇ ∂f

∂ρ(1) , (A.13)

D(2)
t ρ(2) = −ρ(2)∇ · v(2), (A.14)

D(2)
t v(2) = −∇ ∂f

∂ρ(2) , (A.15)

where f is the thermodynamic free energy density. An expression for f in terms of total
pressure and relative chemical potential is derived in the next section.

A.2.1 Helmholtz free energy
As we are interested in isothermal hydrodynamics, a Helmholtz free energy is used. In
order to derive it, we imagine the system to be decomposed into subsystems that we shall
call fluid elements. By the assumption of local equilibrium, every fluid element can be
treated as an individual thermodynamic system in equilibrium with respect to the fast
variables. A fluid element consists of a certain number of molecules of species one, N (1),
and a certain number of molecules of species two, N (2). It is of constant mass Mtot but
can be distorted and change its volume and composition. The differential Helmholtz free
energy is then given by

dF = −SdT − PdV + µ(1)dN (1) + µ(2)dN (2) (A.16)

with entropy S, pressure P , volume of the fluid element V and chemical potentials of the
components µ(i). Temperature is set to be constant, hence dT = 0. Equation (A.16) can
be expressed with the mass densities instead of particle numbers by applying the relations

N (1) = Mtot

m(1)
ρ(1)

ρ
, N (2) = Mtot

m(2)
ρ(2)

ρ
. (A.17)
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Here the total mass density is denoted by ρ = ρ(1) + ρ(2). Normalizing with the total mass
Mtot, the free energy becomes

df̃ = dF
Mtot

= −P d

(
1
ρ

)
+ µ(1)

m(1) d

(
ρ(1)

ρ

)
+ µ(2)

m(2) d

(
ρ(2)

ρ

)

= P

ρ2 dρ+ µ̃(1)

ρ2

(
ρ dρ(1) − ρ(1)dρ

)
+ µ̃(2)

ρ2

(
ρ dρ(2) − ρ(2)dρ

)
= 1
ρ2

[(
P − µ̃(1)ρ(1) − µ̃(2)ρ(2)

)
dρ+

(
µ̃(1)ρ dρ(1) + µ̃(2)ρ dρ(2)

)]
= P

ρ2 dρ+ µ̃

ρ2

(
ρ(2) dρ(1) − ρ(1) dρ(2)

)
,

(A.18)

where

µ̃ = µ̃(1) − µ̃(2) = µ(1)

m(1) − µ(2)

m(2) (A.19)

is the relative, mass-normalized chemical potential. With the free energy per volume
f̃ = f/ρ we can alternatively write

df̃ = 1
ρ2 (ρdf − fdρ). (A.20)

By using eqs. (A.18) and (A.20) we then find

df = ρ df̃ + f

ρ
dρ = 1

ρ
(P + f)dρ+ µ̃

ρ

(
ρ(2) dρ(1) − ρ(1) dρ(2)

)
. (A.21)

Equation (A.21) can now be used to calculate the derivatives of F =
∫

ddr f :

δF

δρ(1) = ∂f

∂ρ(1) = P + f + µ̃ρ(2)

ρ(1) + ρ(2) , (A.22)

δF

δρ(2) = ∂f

∂ρ(2) = P + f − µ̃ρ(1)

ρ(1) + ρ(2) . (A.23)

Later in the course of the derivations we will also encounter the gradients of the derivatives.
These can be computed by first looking at the individual differentials

d

(
P + f

ρ

)
= d

(
P

ρ

)
+ d

(
f

ρ

)
= 1
ρ

dP − P

ρ2 dρ+ df̃

= 1
ρ

dP + µ̃

ρ2

(
ρ(2) dρ(1) − ρ(1) dρ(2)

)
,

(A.24)
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and

d

(
µ̃ρ(2)

ρ

)
= ρ(2)

ρ
dµ̃+ µ̃

ρ2

(
ρdρ(2) − ρ(2)dρ

)
= ρ(2)

ρ
dµ̃+ µ̃

ρ2

(
ρ(1)dρ(2) − ρ(2)dρ(1)

)
,

(A.25)

d

(
µ̃ρ(1)

ρ

)
= ρ(1)

ρ
dµ̃+ µ̃

ρ2

(
ρ(2)dρ(1) − ρ(1)dρ(2)

)
. (A.26)

By combining the above we find the gradients

∂α
∂f

∂ρ(1) = 1
ρ
∂αP + ρ(2)

ρ
∂αµ̃, (A.27)

∂α
∂f

∂ρ(2) = 1
ρ
∂αP − ρ(1)

ρ
∂αµ̃. (A.28)

A.2.2 Transformation to two-fluid variables
The two-fluid equations eqs. (A.12) to (A.15) are transformed into a representation using
the same two fluid variables introduced in section 4.1: The individual densities ρ(1) and
ρ(2) are replaced by the total density

ρ = ρ(1) + ρ(2) (A.29)

and the normalized density difference

c = ρ(1) − ρ(2)

ρ
, (A.30)

which changes sign when ρ(1) and ρ(2) are exchanged. Furthermore, it is helpful to define
the reduced density

ρ(red) = ρ(1)ρ(2)

ρ
= ρ

4
(
1 − c2

)
. (A.31)

Note that this is invariant wrt. exchange of components. Therefore ρ(red) is only used to
abbreviate notation, and c is kept as an independent variable.

Instead of the elementary velocities v(1) and v(2), we introduce the barycentric (mass-
average) velocity

v = ρ(1)v(1) + ρ(2)v(2)

ρ
, (A.32)
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and the velocity difference

w = v(1) − v(2). (A.33)

We also take note of the inverse transformations

ρ(1) = ρ

2(1 + c), ρ(2) = ρ

2(1 − c), (A.34)

v(1) = v + ρ(red)

ρ(1) w = v − c− 1
2 w, v(2) = v − ρ(red)

ρ(2) w = v − c+ 1
2 w. (A.35)

The mass-average velocity can then be written as

v = 1 + c

2 v(1) + 1 − c

2 v(2). (A.36)

Furthermore, we define a new convective derivative with respect to the barycentric velocity

Dt = ∂t + v · ∇

= ∂t +
(

v(1) + c− 1
2 w

)
· ∇ = D(1)

t + c− 1
2 w · ∇

= ∂t +
(

v(2) + c+ 1
2 w

)
· ∇ = D(2)

t + c+ 1
2 w · ∇,

(A.37)

respectively

D(1)
t = Dt + ρ(red)

ρ(1) w · ∇ = Dt − c− 1
2 w · ∇, (A.38)

D(2)
t = Dt − ρ(red)

ρ(2) w · ∇ = Dt − c+ 1
2 w · ∇. (A.39)

Therefore, the barycentric convective derivative can be written as

Dt = 1
2
(
D(1)

t + D(2)
t + cw · ∇

)
. (A.40)

Total density By applying the transformations introduced above, the mass-average
convected derivatives of the individual component densities take the form

Dtρ
(1) = D(1)

t ρ(1) − ρ(red)

ρ(1) w · ∇ρ(1)

= −ρ(1)∇ · v(1) − ρ(red)

ρ(1) w · ∇ρ(1)

= −ρ(1)∇ · v − ρ(1)∇ ·
(
ρ(red)

ρ(1) w
)

− ρ(red)

ρ(1) w · ∇ρ(1)

= −ρ(1)∇ · v − ∇ ·
(
ρ(red)w

)
,

(A.41)
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and analogously

Dtρ
(2) = −ρ(2)∇ · v + ∇ ·

(
ρ(red)w

)
. (A.42)

The conservation equation for the total density is then obtained by taking the sum

Dtρ = −ρ∇ · v. (A.43)

Density contrast Using eqs. (A.41) to (A.43), the equation of motion of the density
contrast can be written as

ρDtc = Dtρ
(1) − Dtρ

(2) − cDtρ

= −
(
ρ(1) − ρ(2)

)
∇ · v − 2∇ ·

(
ρ(red)w

)
+ ρc∇ · v

= −2∇ ·
(
ρ(red)w

)
.

(A.44)

Average velocity We proceed by considering the individual velocities

Dtv(1) = D(1)
t v(1) − ρ(red)

ρ(1) w · ∇v(1)

= −∇ ∂f

∂ρ(1) − ρ(red)

ρ(1) w · ∇v(1),

(A.45)

Dtv(2) = −∇ ∂f

∂ρ(2) + ρ(red)

ρ(2) w · ∇v(2). (A.46)

Hence

ρDtv = ρDt
ρ(1)v(1) + ρ(2)v(2)

ρ

= ρ(1)Dtv(1) + ρ(2)Dtv(2) + v(1)Dtρ
(1) + v(2)Dtρ

(2) − vDtρ

(A.47)

becomes

ρDtv = ρ(1)
(

−∇ ∂f

∂ρ(1) − ρ(red)

ρ(1) w · ∇v(1)
)

+ ρ(2)
(

−∇ ∂f

∂ρ(2) + ρ(red)

ρ(2) w · ∇v(2)
)

− ρ(1)v(1)∇ · v − v(1)∇ ·
(
ρ(red)w

)
− ρ(2)v(2)∇ · v + v(2)∇ ·

(
ρ(red)w

)
+ ρv∇ · v.

(A.48)
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Using eqs. (A.27) and (A.28) from the previous section, the terms containing the free
energy density can be replaced by the pressure gradient and we find

ρDtv = −∇P − ρ(red)w · ∇w

− ρv∇ · v − w∇ ·
(
ρ(red)w

)
+ ρv∇ · v

= −∇P − ρ(red)w · ∇w − w∇ ·
(
ρ(red)w

)
= −∇P − ∇ ·

(
ρ(red)ww

)
.

(A.49)

Relative velocity Consider

Dtw = Dtv(1) − Dtv(2)

= −
(

∇ ∂f

∂ρ(1) − ∇ ∂f

∂ρ(2)

)
− ρ(red)

ρ(1) w · ∇v(1) − ρ(red)

ρ(2) w · ∇v(2).
(A.50)

Using eqs. (A.27) and (A.28), the free energy terms are expressed via the relative chemical
potential µ̃ and the equation is further modified:

Dtw = −∇µ̃− ρ(red)

ρ(1) w · ∇v(1) − ρ(red)

ρ(2) w · ∇v(2)

= −∇µ̃− ρ(red)

ρ(1) w · ∇
(

v + ρ(red)

ρ(1) w
)

− ρ(red)

ρ(2) w · ∇
(

v − ρ(red)

ρ(2) w
)

= −∇µ̃−
(
ρ(red)

ρ(2) + ρ(red)

ρ(1)

)
w · ∇v

− ρ(red)

ρ(1) w · ∇
(
ρ(red)

ρ(1) w
)

+ ρ(red)

ρ(2) w · ∇
(
ρ(red)

ρ(2) w
)

= −∇µ̃− w · ∇v

− ρ(red)

ρ(1) w · ∇
(
ρ(red)

ρ(1) w
)

+ ρ(red)

ρ(2) w · ∇
(
ρ(red)

ρ(2) w
)
.

(A.51)

Next we make use of

ρ(red)

ρ(1) = 1 − c

2 ,
ρ(red)

ρ(2) = 1 + c

2 , (A.52)
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to finalize the transformation of the relative velocity dynamics

Dtw = −∇µ̃− w · ∇v

− 1 − c

2 w · ∇
(1 − c

2 w
)

+ 1 + c

2 w · ∇
(1 + c

2 w
)

= −∇µ̃− w · ∇v

− 1
2w · ∇

(1 − c

2 w
)

+ c

2w · ∇
(1 − c

2 w
)

+ 1
2w · ∇

(1 + c

2 w
)

+ c

2w · ∇
(1 + c

2 w
)

= −∇µ̃− w · ∇v

− 1
2w · ∇

(1 − c

2 w − 1 + c

2 w
)

+ c

2w · ∇
(1 − c

2 w + 1 + c

2 w
)

= −∇µ̃− w · ∇v + 1
2w · ∇(cw) + c

2w · ∇w

= −∇µ̃− w · ∇v + w
2 c · ∇w + w

2 w · ∇c+ w
2 c · ∇w

= −∇µ̃− w · ∇v + cw · ∇w + 1
2ww · ∇c.

(A.53)

To summarize, the complete set of transformed two-fluid Euler equations is given by

Dtρ = −ρ∇ · v, (A.54)
ρDtc = −2∇ ·

(
ρ(red)w

)
, (A.55)

ρDtv = −∇P − ∇ ·
(
ρ(red)ww

)
, (A.56)

Dtw = −∇µ̃− w · ∇v + cw · ∇w + 1
2ww · ∇c. (A.57)
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A.3 Viscoelastic Model H

Some of the calculations occurring in the derivation of the viscoelastic phase separation
model in section 4.1 are outsourced to this appendix section in order to improve the flow
of the text. Furthermore, a formulation in terms of flip-invariant tensors is introduced.

A.3.1 Basic Poisson brackets

In order tor derive the equations of motion from the Hamiltonian eq. (4.14), all individual
Poisson brackets must be evaluated. From section 2.7 we know that

{f, g} =
∑

i

(
∂f

∂xi

∂g

∂pi

− ∂f

∂pi

∂g

∂xi

)
. (A.58)

This means, that if f involves the coordinate xi, g needs to involve the corresponding
momenta pi in order for {f, g} to be nonzero and vice versa. Since all quantities ρ(d), k(r),
j(d) and j(r) involve the coordinates Ri, and j(d) is the only quantity involving the p(d)

i ,
all brackets containing j(d) are in general nonzero. The relative density k(r) is the only
quantity involving qi and the relative current j(r) is the only quantity involving p(r)

i , hence
also

{
k(r)

α (r), j(r)
β (r′)

}
is in general nonzero (see table A.1).

ρ(d) k
(r)
β j

(d)
β j

(r)
β

ρ(d) 0 0 x 0
k(r)

α 0 0 x x
j(d)

α x x x x
j(r)

α 0 x x 0

Table A.1: Nonzero Poisson brackets

We proceed by deriving several auxiliary relations that will aid in the derivation of the
Poisson brackets. For ease of notation, we introduce the shorthand δi = δ(r − Ri) resp.
δ′

i = δ(r′ − Ri) and examine the elementary bracket (sum convention over repeated Greek
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indexes is implied)

{
δi, p

(d)
jβ

}
=
∑
kγ

∂δ(r − Ri)
∂Rkγ

∂p
(d)
jβ

∂p
(d)
kγ

=
∑
kγ

∂δ(r − Ri)
∂Rkγ

δjkδβγ

= ∂δ(r − Ri)
∂Rjβ

= −δij
∂δ(r − Ri)

∂rβ

= −δij∂βδi,

(A.59)

as well as the more obvious{
δi, δ

′
j

}
= 0, (A.60){

qiα, p
(r)
jβ

}
= δαβδij. (A.61)

Next we note that for any quantity A of the form

A(r) =
∑

i

aiδ(r − Ri), (A.62)

the relation∑
i

aiδ
′
if(r,Ri) =

∑
i

∫
ddr′′ aiδ(r′′ − Ri)δ(r′ − r′′)f(r, r′′)

=
∫

ddr′′ δ(r′ − r′′)f(r, r′′)
∑

i

aiδ(r′′ − Ri)

=
∫

ddr′′ δ(r′ − r′′)f(r, r′′)A(r′′) = A(r′)f(r, r′)

(A.63)

holds. Additionally, if the coefficient ai neither depends on Ri nor on p(d)
i , we have{

A(r), j(d)
β (r′)

}
=
∑
ij

{
aiδi, p

(d)
jβ δ

′
j

}
=
∑
ij

[
aip

(d)
jβ

{
δi, δ

′
j

}
+ aiδ

′
j

{
δi, p

(d)
jβ

}
+ δip

(d)
jβ

{
ai, δ

′
j

}
+ δiδ

′
j

{
ai, p

(d)
jβ

}]
=
∑
ij

aiδ
′
j

{
δi, p

(d)
jβ

}
= −

∑
i

aiδ(r′ − Ri)∂βδ(r − Ri)

= −A(r′)∂βδ(r − r′).

(A.64)
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In particular, this immediately yields the brackets{
ρ(d)(r), j(d)

β (r′)
}

= −ρ(d)(r′)∂βδ(r − r′), (A.65){
k(r)

α (r), j(d)
β (r′)

}
= −k(r)

α (r′)∂βδ(r − r′), (A.66){
j(r)

α (r), j(d)
β (r′)

}
= −j(r)

α (r′)∂βδ(r − r′). (A.67)

For the bracket containing the mixed Cartesian component dumbbell currents we find{
j(d)

α (r), j(d)
β (r′)

}
=
∑
ij

{
p

(d)
iα δi, p

(d)
jβ δ

′
j

}
=
∑
ij

[
δip

(d)
jβ

{
p

(d)
iα , δ

′
j

}
+ p

(d)
iα δ

′
j

{
δi, p

(d)
jβ

}]
=
∑

i

[
δip

(d)
iβ ∂

′
αδ

′
i − p

(d)
iα δ

′
i∂βδi

]
= j

(d)
β (r)∂′

αδ(r − r′) − j(d)
α (r′)∂βδ(r − r′).

(A.68)

Finally, there is{
k(r)

α (r), j(r)
β (r′)

}
= k

∑
ij

{
qiαδi, p

(r)
jβ δ

′
j

}
= k

∑
ij

δiδ
′
j

{
qiα, p

(r)
jβ

}
= k

∑
ij

δiδ
′
jδαβδij = δαβ

k

m(d)

∑
i

δim
(d)δ′

i

= δαβ
k

m(d)ρ
(d)(r′)δ(r − r′).

(A.69)

We will also find useful the similar relations∫
ddr′

{
j(d)

α (r), j(d)
β (r′)

}
f(r′) =

∫
ddr′ j

(d)
β (r)∂′

αδ(r − r′)f(r′)

−
∫

ddr′ j(d)
α (r′)∂βδ(r − r′)f(r′)

= −j(d)
β (r)∂αf(r) − ∂β

(
j(d)

α (r)f(r)
)
,

(A.70)

∫
ddr′

{
k(r)

α (r), j(r)
β (r′)

}
f(r′) = δαβ

k

m(d)

∫
ddr′ ρ(d)(r′)δ(r − r′)f(r′)

= δαβ
k

m(d)ρ
(d)(r)f(r),

(A.71)

∫
ddr′

{
j

(r)
β (r), k(r)

α (r′)
}
f(r′) = −δαβ

k

m(d)ρ
(d)(r)

∫
ddr′ δ(r − r′)f(r′)

= −δαβ
k

m(d)ρ
(d)(r)f(r).

(A.72)
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A.3.2 Dissipation rate
The calculation of the dissipation rate in this section is based on the approximated
equations of motion which where derived in section 4.1.6 and read

∇ · v = 0, (A.73)
Dtρ

(d) = −∇ · j(int), (A.74)
ρDtv = −∇P + ηs∇2v + κρ(d)∇∇2ρ(d) (A.75)

+ Γ

ττq

∇ ·
(
ρ(d)qq

)
+ ∇ · σ, (A.76)

Dtq = q · ∇v − 1
τq

q + Q. (A.77)

The terms ∇ · j(int), ∇ · σ, and Q are phenomenological ones introduced to adiabatically
eliminate the relative velocity w. For the non-phenomenological terms, dissipative terms
can be identified from their sign-changing behavior under time reversal. For example, ρDtv
does not change sign whereas ηs∇2v does, revealing that it is dissipative in nature. To
prove that all phenomenological terms are dissipative as well, the reduced set of equations
of motion without phenomenological and knowingly dissipative terms is shown to be
conservative. The thus reduced set of equations is

∇ · v = 0, (A.78)
Dtρ

(d) = 0, (A.79)

ρDtv = −∇P + κρ(d)∇∇2ρ(d) + Γ

ττq

∇ ·
(
ρ(d)qq

)
, (A.80)

Dtq = q · ∇v. (A.81)

The Hamiltonian of this system is given by

H =
∫

ddr
[
ρ

2v2 + f + κ

2
(
∇ρ(d)

)2
+ 1

2
Γ

ττq

ρ(d)q2
]
, (A.82)

with derivatives

δH

δv
= ρv, (A.83)

δH
δρ(d) = ∂f

∂ρ(d) − κ∇2ρ(d) + 1
2
Γ

ττq

q2, (A.84)

δH
δq

= Γ

ττq

ρ(d)q. (A.85)
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Taking the time derivative and applying the chain rule results in

dH
dt

=
∫

ddr
[
δH
δv

· ∂tv + δH
δρ(d)∂tρ

(d) + δH
δq

· ∂tq
]
. (A.86)

Using integration by parts and incompressibility ∇ · v = 0, the integral∫
ddrψv · ∇ψ = −

∫
ddrψv · ∇ψ (A.87)

for any field ψ(r, t) is equal to its own negative and must therefore vanish entirely. This
immediately implies that for the convective derivative Dt = ∂t + v · ∇∫

ddrψDtψ =
∫

ddrψ∂tψ. (A.88)

Inserting eqs. (A.80) and (A.83), the first term in the dissipation rate eq. (A.86) becomes
∫

ddr ρv · Dtv =
∫

ddr v ·
[
−∇P + κρ(d)∇∇2ρ(d) + Γ

ττq

∇ ·
(
ρ(d)qq

)]

=
∫

ddr v ·
[
κρ(d)∇∇2ρ(d) + Γ

ττq

∇ ·
(
ρ(d)qq

)]
,

(A.89)

where incompressibility and integration by parts were used to eliminate the pressure term.

The second term in the dissipation rate is
∫

ddr
[
∂f

∂ρ(d) − κ∇2ρ(d) + 1
2
Γ

ττq

q2
]
(Dt − v · ∇)ρ(d)

= −
∫

ddr
[
∂f

∂ρ(d) − κ∇2ρ(d) + 1
2
Γ

ττq

q2
]
v · ∇ρ(d)

=
∫

ddr ρ(d)v · ∇
[
∂f

∂ρ(d) − κ∇2ρ(d) + 1
2
Γ

ττq

q2
]
.

(A.90)

With the dumbbell pressure gradient given by

∇P (d) = ρ(d)∇ ∂f

∂ρ(d) , (A.91)

the free energy term can be eliminated again using incompressibility
∫

ddr ρ(d)v · ∂f

∂ρ(d) =
∫

ddr v · ∇P (d) = 0. (A.92)
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The second term in the dissipation rate then reduces to
∫

ddr
δH
δρ(d)∂tρ

(d) = −
∫

ddr ρ(d)v · ∇
[
κ∇2ρ(d) − 1

2
Γ

ττq

q2
]
. (A.93)

For the third term we find
Γ

ττq

∫
ddr ρ(d)q · (Dt − v · ∇)q = Γ

ττq

∫
ddr ρ(d)q · (q · ∇v − v · ∇q). (A.94)

Adding up all contributions to the dissipation rate, the interfacial terms cancel and it
remains:

dH
dt

= Γ

(ττq)

∫
ddr

[
v ·

(
∇ ·

(
ρ(d)qq

))
+ ρ(d)

2 v · ∇q2 + ρ(d)q · (q · ∇v − v · ∇q)
]

= Γ

(ττq)

∫
ddr

[
∇ ·

(
ρ(d)v · qq

)
+ ρ(d)

2 v · ∇q2 − ρ(d)q · (v · ∇q)
]

= Γ

(ττq)

∫
ddr

[
∇ ·

(
ρ(d)v · qq

)]
= 0,

(A.95)

where Gauss’ integral theorem was used to eliminate the last remaining term. This
proves that the system of equations (A.78) to (A.81) is indeed conservative and the
phenomenological terms ∇ · j(int), ∇ · σ, and Q are of dissipative nature.

A.3.3 Formulation with flip-invariant tensors
Instead of the end-to-end vector q = r(1) − r(2) of a dumbbell, which changes sign upon
exchange of indexes, one can consider the flip invariant conformation tensor

Cαβ = qαqβ (A.96)

to describe the orientation. The fact that P := C/Tr C is symmetric (PT = P) and
idempotent (P2 = P) makes it a projection operator. Therefore, C needs to satisfy the
constraints

0 = C − CT, (A.97)
0 = C2 − C Tr C. (A.98)

Note that multiplication with an arbitrary vector n ̸= 0 results in a vector parallel to q:

C · n = q(q · n) ∝ q. (A.99)
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Therefore, the orientation of a dumbbell can be extracted from the conformation tensor
via

±q =
√

Tr C
C · n
|C · n|

. (A.100)

P projects onto a one dimensional space and therefore has only one eigenvalue different
from zero, which in this case is 1. The arbitrariness in the choice of n can be removed
by setting n to the eigenvector u(C)

1 corresponding to the non-trivial eigenvalue. Then
C · u(C)

1 = u(C)
1 and

±q =
√

Tr C
u(C)

1∣∣∣u(C)
1

∣∣∣ . (A.101)

Hence, the direction of q is given by the eigenvector u(C)
1 and its magnitude by

√
Tr C. A

tensor field corresponding to the dumbbell orientation can be defined by

K(r) = k
∑

i

Ciδ(r − Ri). (A.102)

The elastic energy stored in the dumbbell continuum is then simply given by

Epot = 1
2

∫
ddr Tr K(r). (A.103)

Apart form the conformation, another flip-invariant variable to describe the dynamics is
needed. One possible candidate capturing the conformation dynamics is the tensor

Sαβ = q̇αqβ (A.104)

along with its transpose ST. The time derivative of the conformation tensor is then
Ċ = S + ST. Normalized by the trace, we receive an idempotent but not symmetric
operator( S

Tr S

)2

αβ
= Sαγ

Tr S
Sγβ

Tr S
= q̇αqγ q̇γqβ

(Tr S)2 = q̇αqβ

Tr S
= Sαβ

Tr S
, (A.105)

again projecting onto a one-dimensional space. Hence it needs to satisfy the constraint

0 = S2 − S Tr S. (A.106)

Like q from C, the expansion velocity q̇ can be extracted from S via some vector n ̸= 0:

±q̇ = S · n
q · n

. (A.107)
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With u(S)
1 being the eigenvector of S corresponding to the non-trivial eigenvalue, this

becomes

±q̇ = u(S)
1

q · u(S)
1
, (A.108)

where q can be calculated from C according to eq. (A.101).

Because Tr
(
SST

)
= q̇2q2, the absolute value of q̇ can be calculated by

q̇2 =
Tr
(
SST

)
Tr C

. (A.109)

This means that the kinetic energy in the relative motion of one dumbbell is

Ekin = m(r)

2
Tr
(
SST

)
Tr C

. (A.110)

With a corresponding tensor field defined by

J(r) = m(r)∑
i

Siδ(r − Ri), (A.111)

the continuum representation of the connectivity related Hamiltonian has the form

H (r) = 1
2 Tr

∫
ddr

[
K + k

m(r)
JJT

Tr K

]
. (A.112)

Poisson brackets

In this section, the Poisson brackets involving the macroscopic tensor fields K and J are
calculated. First, consider the microscopic bracket of C with S:

{Cαβ, Sγδ} = qα{qβ, q̇γ}qδ + qβ{qα, q̇γ}qδ

= 1
m(r) (qαqδδβγ + qβqδδαγ) = 1

m(r) (Cαδδβγ + Cβδδαγ).
(A.113)

With the tensor of order 2n defined by the outer product

T β1β2...βn
α1α2...αn

= δα1β1δα2β2 . . . δαnβn , (A.114)

which substitutes lower for upper indexes upon contraction, this can alternatively be
written as

{Cαβ, Sγδ} = Cµν

m(r) (δµαδνδδβγ + δµβδνδδαγ)

= 1
m(r)

(
Tαδγ

µνβ + T βδγ
µνα

)
Cµν =: 1

m(r)E
αβγδ
µν Cµν .

(A.115)



A.3. VISCOELASTIC MODEL H 163

Hence, the Poisson bracket of C with S can be written as a linear combination of the
components of C.

The second non-zero microscopic Poisson bracket is the one of S with itself:

{Sαβ, Sγδ} = {q̇αqβ, q̇γqδ} = q̇α{qβ, q̇γ}qδ + qβ{q̇α, qδ}q̇γ

= 1
m(r) (q̇αqδδβγ − q̇γqβδαδ)

= 1
m(r)

(
Tαδγ

µνβ − T γβδ
µνα

)
Sµν =: 1

m(r)F
αβγδ
µν Sµν ,

(A.116)

which can again be written as a linear combination of the components of S.

With the results above, the Poisson brackets for the fields J and K can be evaluated.
Using eqs. (A.63) and (A.115), we can determine

{Kαβ(r), Jγδ(r′)} = km(r)∑
ij

{Ciαβδ(r − Ri), Sjγδδ(r′ − Rj)}

= km(r)∑
i

{Ciαβδi, Siγδδ
′
i} = km(r)∑

i

δiδ
′
i{Ciαβ, Siγδ}

= k
∑

i

δiδ
′
iE

αβγδ
µν Ciµν = Eαβγδ

µν Kµν(r′)δ(r − r′).

(A.117)

Analogously, the Poisson bracket of J with itself becomes

{Jαβ(r), Jγδ(r′)} =
(
m(r)

)2∑
i

δiδ
′
i{Siαβ, Siγδ} = m(r)Fαβγδ

µν

∑
i

δiδ
′
iSµν

= Fαβγδ
µν Jµν(r′)δ(r − r′).

(A.118)

Furthermore, there are the brackets of the form
{
K, j(d)

}
and

{
J, j(d)

}
, which can be

evaluated using the helping relation eq. (A.64). This results in{
Kαβ(r), j(d)

γ (r′)
}

= −Kαβ(r′)∂γδ(r − r′), (A.119){
Jαβ(r), j(d)

γ (r′)
}

= −Jαβ(r′)∂γδ(r − r′). (A.120)

Thus, the description is complete and the set of Poisson brackets is closed.

Summary The functional derivatives are obtained from the continuum Hamiltonian

H (r) = 1
2 Tr

∫
ddr

[
K + k

m(r)
JJT

Tr K

]
, (A.121)
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and read

δH (r)

δJ
= k

m(r)
J

Tr K
=: G, (A.122)

δH (r)

δK
= 1

2

1 − k

m(r)

Tr
(
JJT

)
Tr2 K

 = 1

2

[
1 − m(r)

k
Tr
(
GGT

)]
. (A.123)

Here, a new tensor field G(r, t) with units of a velocity gradient has been defined. The set
of non-zero Poisson brackets is given by

{Kαβ(r), Jγδ(r′)} = Eαβγδ
µν Kµν(r′)δ(r − r′), (A.124)

{Jαβ(r), Jγδ(r′)} = Fαβγδ
µν Jµν(r′)δ(r − r′), (A.125){

Kαβ(r), j(d)
γ (r′)

}
= −Kαβ(r′)∂γδ(r − r′), (A.126){

Jαβ(r), j(d)
γ (r′)

}
= −Jαβ(r′)∂γδ(r − r′). (A.127)

Equations of motion

According to section 2.7 eq. (2.185), the conservative equations of motions can be calculated
from the Poisson brackets and the functional derivatives of the Hamiltonian by(

∂ψ

∂t

)
cons

=
∑

j

∫
ddr′ {ψ(r), ϕj(r′)} δH

δϕj(r′) . (A.128)

For the conformation tensor field, this is(
∂Kαβ

∂t

)
cons

=
∫

ddr′
[
{Kαβ(r), Jγδ(r′)} δH

δJγδ(r′) +
{
Kαβ(r), j(d)

γ (r′)
} δH
δj

(d)
γ (r′)

]
.

(A.129)

Using eqs. (A.122), (A.124), and (A.126), as well as δH
/
δj(d) = v(d), this becomes

(
∂Kαβ

∂t

)
cons

= Eαβγδ
µν

∫
ddr′ δ(r − r′)Kµν(r′)Gγδ

− ∂γ

∫
ddr′ δ(r − r′)Kαβ(r′)v(d)

γ (r′)

= Eαβγδ
µν Kµν(r)Gγδ(r) − ∂γ

(
Kαβ(r)v(d)

γ (r)
)
.

(A.130)
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By explicitly evaluating the term

Eαβγδ
µν KµνGγδ =

(
Tαδγ

µνβ + T βδγ
µνα

)
KµνGγδ = (Kαδδβγ +Kβδδαγ)Gγδ

= KαδGβδ +KβδGαδ = KαδG
T
δβ +GαδK

T
δβ,

(A.131)

the equation of motion in tensor notation can be written as(
∂K
∂t

)
cons

= −∇ ·
(
v(d)K

)
+ KGT + GK, (A.132)

where the symmetry KT = K was used. This form is somewhat reminiscent of the upper-
convective derivative defined in eq. (2.152). While K is convected by v(d), its deformation
happens according to G.

For the tensor field J, which describes the conformation dynamics, the equation of motion
becomes(

∂Jαβ

∂t

)
cons

=
∫

ddr′
[
{Jαβ(r), Jγδ(r′)} δH

δJγδ(r′) +
{
Jαβ(r), j(d)

γ (r′)
} δH
δj

(d)
γ (r′)

]

= Fαβγδ
µν

∫
ddr Jµν(r′)δ(r − r′)Gγδ(r′) −

∫
ddr′ Jαβ(r′)∂γδ(r − r′)v(d)

γ (r′)

= Fαβγδ
µν Jµν(r)Gγδ(r) − ∂γ

(
Jαβ(r)v(d)

γ (r)
)
. (A.133)

Considering

Fαβγδ
µν JµνGγδ = (Jαδδβγ − Jγβδαδ)Gγδ = JαδGβδ − JγβGγα

= JαδG
T
δβ −GT

αγJγβ,
(A.134)

we find the equation of motion for J:(
∂J
∂t

)
cons

= −∇ ·
(
v(d)J

)
+ JGT − GTJ. (A.135)

From the results in section 4.1, one would expect that K and J do not couple to the
dynamics of j(d). Explicit evaluation results in(

∂j(d)
α (r)
∂t

)
cons

=
∫

ddr′
[{
j(d)

α (r), ρ(d)(r′)
} δH
δρ(d)(r′) +

{
j(d)

α (r), j(d)
β (r′)

} δH
δj

(d)
β (r′)

+
{
j(d)

α (r), Kγδ(r′)
} δH
δKγδ(r′) +

{
j(d)

α (r), Jγδ(r′)
} δH
δJγδ(r′)

]
.

(A.136)
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The last line of the previous equation contains the only terms that could add contributions
of K and J to the dynamics of j(d). It can be evaluated using the helping relation eq. (4.32):

∫
ddr′

[{
j(d)

α (r), Kγδ(r′)
} δH
δKγδ(r′) +

{
j(d)

α (r), Jγδ(r′)
} δH
δJγδ(r′)

]

Kγδ(r)∂α
δH

δKγδ(r) + Jγδ(r)∂α
δH

δJγδ(r)

= δγδ

2 Kγδ(r)∂α

[
1 − m(r)

k
Tr
(
GGT

)
(r)
]

+ Jγδ(r)∂αGγδ(r).

(A.137)

The argument r is omitted for clarity and the equation further simplified resulting in

− 1
2
m(r)

k
Tr K∂α

[
Tr
(
GGT

)]
+ Jγδ∂αGγδ

= −1
2
m(r)

k
Tr K∂α

[
Tr
(
GGT

)]
+ m(r)

k
Gγδ Tr K∂αGγδ = 0.

(A.138)

As expected, the tensor fields K and J do not couple to the dynamics of j(d).

In summary, the conservative equations of motion are:(
∂K
∂t

)
cons

= −∇ ·
(
v(d)K

)
+ KGT + GK, (A.139)(

∂J
∂t

)
cons

= −∇ ·
(
v(d)J

)
+ JGT − GTJ

= −∇ ·
(
v(d)J

)
+ k

m(r)
JJT − JTJ

Tr K
.

(A.140)

This is, in essence, the flip-invariant formulation of a harmonic oscillator that is convected
by the field v(d). Choosing the tensor formulation has introduced additional degrees of
freedom as opposed to using the vector-valued variables q and v(r). Whether or not the
symmetry and idempotency constraints eqs. (A.97), (A.98), and (A.106) can be used to
reduce the total number of equations, or may even be essential for a consistent description,
is at this point not fully resolved. This might be possible by using a Hamiltonian formalism
with constraints in the spirit of references [109, 110]. Coupling to the solvent velocity field
can be facilitated by constructing a suitable continuum dissipation rate similar to what
has been done in section 4.1.4; however, further exploration is left for future work.
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A.4 Lattice void model
There is an approach of modeling a compressible mixture in the framework of Flory-Huggins
theory using so called voids [41–43,111]. Additional to the particle species i = 1, 2, . . . ,
there are the voids i = 0 with a molecular weight of M0 = 1 and no interaction of
energetic nature, i.e. u0k = 0 ∀ k, which serve a special role. To allow for changes in overall
volume, the total number of voids N0 is considered to be variable. A change in volume
then corresponds to a change in the number of voids while the number of ‘real’ particles
remains constant for each component individually. As has been shown in the section about
Flory-Huggins theory, section 2.2, the free energy per lattice site and kBT then has the
form

fFH({Nk>0} , V, T )
kBT

=
∑

i

ϕi

Mi

log ϕi

Mi

+ β
∑
ij

ϕiϕjuij, (A.141)

where the volume fraction of voids is given by the fraction of the system that is not
occupied by real particles,

ϕ0 = 1 −
∑
i>0

ϕi. (A.142)

From the free energy density the pressure is calculated via

P ({Nk>0} , V, T ) = −
(
∂FFH

∂V

)
{Nk>0},T

= − 1
ad

fFH + V

(
∂fFH

∂V

)
{Nk>0},T

. (A.143)

Because of the definition of the volume fractions ϕi = NiMia
d/V , and eq. (A.142), the

derivatives of the volume fractions are

V

(
∂ϕi

∂V

)
{Nk>0}

= −ϕi for i ̸= 0,

V

(
∂ϕ0

∂V

)
{Nk>0}

= −
∑
i>0

(
V
∂ϕi

∂V

)
{Nk>0}

=
∑
i>0

ϕi = 1 − ϕ0,

(A.144)

which can be summarized using the Kronecker delta

V

(
∂ϕi

∂V

)
{Nk>0}

= δi0 − ϕi. (A.145)

Then, with M0 = 1, the derivative of the entropic part of the free energy is found to be

V
∂

∂V

(∑
i

ϕi

Mi

log ϕi

Mi

)
{Nk>0},T

= log ϕ0 + 1 −
∑

i

ϕi

Mi

(
log ϕi

Mi

+ 1
)
. (A.146)
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Because the voids do not interact energetically, the derivative of the energetic part of the
free energy is just

V
∂

∂V

∑
ij

ϕiϕjuij


{Nk>0},T

= −2
∑
ij

ϕiϕjuij. (A.147)

Then, the expression for the pressure is determined from eqs. (A.141) and (A.143) by using
the derivatives of the free energy density for the entropic and energetic part eqs. (A.146)
and (A.147):

ad

kBT
P ({Nk>0} , V, T ) =

∑
i

ϕi

Mi

− log ϕ0 − 1 + β
∑
ij

ϕiϕjuij. (A.148)

In particular, if there is only one non-void component in the system, this becomes

ad

kBT
P (N1, V, T ) = ϕ0 + ϕ1

M1
− log ϕ0 − 1 + βϕ2

1u11. (A.149)

In the limit of small volume fraction of the matter-like component, ϕ1 → 0, the void volume
fraction approaches one, ϕ0 → 1, resp. log ϕ0 → 0, and the pressure is approximated by

ad

kBT
P (N1, V, T ) = ϕ1

M1
= adN1

V
, (A.150)

which is just the ideal gas law.

For two non-void components the pressure has the form

ad

kBT
P (N1, N2, V, T ) = ϕ0 + ϕ1

M1
+ ϕ2

M2
− log ϕ0 − 1

+ β
(
ϕ2

1u11 + 2ϕ1ϕ2u12 + ϕ2
2u22

)
,

(A.151)

which has a logarithmic singularity for (ϕ1 + ϕ2) → 1, accounting for a finite volume of
the molecules. This is an improvement upon the equation of state eq. (2.37) obtained with
the naive approach. However, the physical interpretation of this model is still somewhat
problematic as the voids contribute entropically, and the model is still bound to a lattice
interpretation. This is why the equation of state derived from Van der Waals theory in
section 2.3 is preferred here.
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A.5 Effects of confinement on the pressure tensor
In this section, the effects of the confining potential, which was introduced in section 3.1.6,
on the pressure tensor are examined. First, an expression for the pressure tensor in a
system with one and two-body interactions is derived, and then the special case where the
one-body potential only depends on the z-coordinate of particles is analyzed.

Consider a distortion of the system which transforms the coordinates of the contained
particles ri like

ri → r′
i = A · ri. (A.152)

If this distortion is small enough it can be expressed with the infinitesimal strain tensor
dϵ by

A = 1+ dϵ. (A.153)

We define the Hamiltonian by

H ({rk}, {pk}) =
∑

i

p2
i

2mi

+ U({rk}), (A.154)

where U is for now a very general potential depending on all of the particle’s positions.
Omitting constant prefactors, the canonical partition function in the undistorted system is

Zc =
∫

ddNp
∫

V
ddNr exp[−βH ({rk}, {pk})]. (A.155)

Here, β = 1/(kBT ), and the coordinates of the N particles are integrated over the volume
of the original box. Accordingly, the partition function in the distorted system (apart from
constant prefactors) is given by

Zc
′ =

∫
ddNp′

∫
V ′

ddNr′ exp[−βH ({r′
k}, {p′

k})], (A.156)

where coordinates are integrated over the volume of the distorted box.

A canonical transformation of coordinates and momenta is

r′
i = (1+ dϵαβ)ri, p′

i = (1− dϵαβ)pi. (A.157)

Discarding terms that are higher than linear order in the strain, the phase-space volume
element of integration then simply transforms like

ddNr ddNp = ddNr′ ddNp′ . (A.158)
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Changing the integration variables and the integration volume accordingly, the partition
function in the distorted system is then

Zc
′ =

∫
ddNp

∫
V

ddNr exp[−βH ({r′
k}, {p′

k})]. (A.159)

The potential energy in the distorted system is expressed by

U({r′
k}) = U({rk}) + dU({rk}). (A.160)

Again neglecting strain of second order, the squared momentum in the distorted system
becomes

p′2
i = piαpiα − 2dϵαβpiαpiβ, (A.161)

Combining the above, the transformed Hamiltonian can then be written as

H ({r′
k}, {p′

k}) = H ({rk}, {pk}) − dϵαβ

∑
i

piαpiβ

mj

+ dU({rk}). (A.162)

With the phase-space average defined by

⟨f({rk}, {pk})⟩ =
∫

ddNp
∫

V ddNr exp[−βH ({rk}, {pi})]f({rk}, {pk})∫
ddNp

∫
V ddNr exp[−βH ({rk}, {pk})] , (A.163)

the ratio between the partition functions of the distorted and undistorted system is

Zc
′

Zc
=
〈

exp
(
βdϵαβ

∑
i

piαpiβ

mi

− β dU

)〉
. (A.164)

From this, the change in Helmholtz free energy can then be calculated via

dF = −kBT log Zc
′

Zc
= −dϵαβ

∑
i

1
mi

⟨piαpiβ⟩ + ⟨dU⟩

= −PαβV dϵαβ,

(A.165)

where Pαβ are the components of the pressure tensor. With the conformational contribution
to the pressure tensor P(conf) defined by

⟨dU⟩ = −P (conf)
αβ V dϵαβ, (A.166)

we get the expression for the pressure tensor

Pαβ = 1
V

∑
i

⟨piαpiβ⟩
mi

+ P
(conf)
αβ . (A.167)
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Equation (A.167) holds true for any general potential depending only on the particle
positions. Treated below is the case where U can be decomposed into single-particle and
pair interaction:

U =
∑

i

U (1)(ri) +
∑
i>j

U (2)(rij). (A.168)

To ensure translational invariance in a system with periodic boundary conditions, rij is
taken to be the minimum-image connecting vector between two particles with drij = rij dϵ.
Then, introducing the n-body forces F(n) = −∇U (n), the change in potential energy
becomes

dU =
∑

i

∂U (1)(ri)
∂ri

· dri +
∑
i>j

∂U (2)(rij)
∂rij

· drij

= − dϵαβ

∑
i

F (1)
α (ri)riβ +

∑
i>j

F (2)
α (rij)rijβ.

(A.169)

The configurational pressure tensor can likewise be decomposed into contributions from
one- and two-body interactions:

P
(conf,1)
αβ = 1

V

∑
i

〈
F (1)

α (ri)riβ

〉
, (A.170)

P
(conf,2)
αβ = 1

V

∑
i>j

〈
F (2)

α (rij)rijβ

〉
. (A.171)

Here, we are particularly interested in the effects of the confining potential introduced in
section 3.1.6 (see eq. (3.27)), which results in a force that only depends on the z-coordinates
of the particles and acts exclusively in the z-direction,

F(1)(ri) = F (1)
z (zi)êz. (A.172)

Hence, the contribution of the confining potential is given by

P
(conf,1)
αβ = 1

V

∑
i

〈
F (1)

α (ri)riβ

〉
= 1
V

∑
i

〈
F (1)

z (ri)riβ

〉
δzα, (A.173)

or in full matrix notation

P(conf,1) = 1
V

∑
i

〈 0 0 0
0 0 0

xiF
(1)
z (zi) yiF

(1)
z (zi) ziF

(1)
z (zi)

〉 . (A.174)
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For symmetry reasons, the pressure must be invariant under the arbitrary application of
the transformations x → −x and y → −y. Therefore, the zx and zy components of the
pressure tensor need to vanish as well and

P
(conf,1)
αβ = 1

V

∑
i

〈
F (1)

z (zi)zi

〉
δαzδβz. (A.175)

In particular, the xx, xy, yx and yy components of the pressure tensor are not directly
affected by the external potential.

A.5.1 Virial expansion for the pressure tensor
In this section, an expansion of the pressure tensor in the density is derived starting from
the grand canonical partition function

Zgc(µ, V, T ) =
∞∑

N=0
Zc(N, V, T ) exp(βNµ), (A.176)

where µ is the chemical potential. Introducing the shorthand for the N -particle canonical
partition function ZN = Zc(N, V, T ), and the fugacity z = exp(βµ), this becomes

Zgc(µ, V, T ) =
∞∑

N=0
ZNz

N . (A.177)

The grand potential is then defined by

−βΩ = log(Zc) = log
(
1 +Z 1z +Z 2z

2 + O
(
z3
))
. (A.178)

Assuming small fugacity, z the logarithm can be expanded∗, and eq. (A.178) can be
approximated by

−βΩ = Z 1z +Z 2z
2 − 1

2
(
Z 1z +Z 2z

2
)2

+ O
(
z3
)

= Z 1z +Z 2z
2 − 1

2Z
2
1z

2 + 1
3Z

3
1z

3 + O
(
z3
)

= Z 1z +
(
Z 2 − 1

2Z
2
1

)
z2 + O

(
z3
)
.

(A.179)

With the small deformation described by eq. (A.157), the change in the (isothermal,
dT = 0) grand potential is

dΩ = −V Pαβdϵαβ −N dµ . (A.180)
∗log(1 + x) = x − x2/2 + x3/3 + O

(
x4) for small x
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Because of

dz = β exp(βµ)dµ = βzdµ, (A.181)

this can also be written like

−β dΩ = βV Pαβdϵαβ + N

z
dz. (A.182)

Taking the differential of the expansion eq. (A.179), on the other hand, results in the
expression

−βdΩ = −β
(
∂Ω

∂ϵαβ

dϵαβ + ∂Ω

∂z
dz

)

= ∂

∂ϵαβ

[
Z 1z +

(
Z 2 − 1

2Z
2
1

)
z2 + O

(
z3
)]

dϵαβ

+
[
Z 1 +

(
2Z 2 −Z 2

1

)
z
]
dz + O

(
z2dz

)
.

(A.183)

Comparing the coefficients of eqs. (A.182) and (A.183) yields an expression for the particle
number

N

z
= Z 1 +

(
2Z 2 −Z 2

1

)
z + O

(
z2
)
, (A.184)

as well as the equation of state

βV Pαβ = ∂

∂ϵαβ

[
Z 1z +

(
Z 2 − 1

2Z
2
1

)
z2
]

+ O
(
z3
)

= z
∂Z 1

∂ϵαβ

+
(
∂Z 2

∂ϵαβ

−Z 1
∂Z 1

∂ϵαβ

)
z2 + O

(
z3
)
,

(A.185)

which however still depends on the fugacity z.

Expression for the fugacity

An expression for the fugacity in terms of the partition functions ZN , and particle number
N is derived below. This is then used to complete the equation of state.

First, an alternative expression for the particle number is obtained from the grand canonical
partition function by

N = −∂Ω

∂µ
= −∂Ω

∂z

∂z

∂µ
= −βz∂Ω

∂z
= z

∂ log(Zgc)
∂z

= z

Zgc

∂Zgc

∂z

= 1
Zgc

∞∑
k=0

kZ kz
k,

(A.186)
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which is equivalent to

NZgc =
∞∑

k=0
kZ kz

k. (A.187)

Expanding the fugacity in terms of the particle number with coefficients ak,

z =
∞∑

k=1
akN

k, (A.188)

and inserting in the left hand side of eq. (A.187), results in

NZgc = N
[
1 +Z 1

(
a1N + a2N

2
)

+Z 2
(
a1N + a2N

2
)2

+ . . .
]

= N + a1Z 1N
2 +

(
a2Z 1 + a2

1Z
2
2

)
N3 + . . .

(A.189)

Inserting the fugacity expansion eq. (A.188) in the left hand side of eq. (A.187) yields

∞∑
k=0

kZ kz
k = Z 1

(
a1N + a2N

2
)

+ 2Z 2
(
a1N + a2N

2
)2

+ . . .

= a1Z 1N +
(
a2Z 1 + 2a2

1Z 2
)
N2 + 4a1a2Z 2N

3 + . . .

(A.190)

Comparing the coefficients corresponding to the various powers of N in both eqs. (A.189)
and (A.190) allows to determine the coefficients

a1 = 1
Z 1

, a2 = 1
Z 2

1

(
Z 1 − 2Z 2

Z 1

)
. (A.191)

Hence, the fugacity can be expressed by

z = N

Z 1
+ N2

Z 2
1

(
Z 1 − 2Z 2

Z 1

)
+ O

(
N3

Z 3
1

)
. (A.192)

By inserting in the equation of state eq. (A.185) and ordering by powers of N , we get

βV Pαβ = ∂Z 1

∂ϵαβ

[
N

Z 1
+ N2

Z 2
1

(
Z 1 − 2Z 2

Z 1

)]

+
(
∂Z 2

∂ϵαβ

−Z 1
∂Z 1

∂ϵαβ

)
N2

Z 2
1

+ O
(
N3

Z 3
1

)

= N

Z 1

∂Z 1

∂ϵαβ

+ N2

Z 2
1

(
∂Z 2

∂ϵαβ

− 2Z 2

Z 1

∂Z 1

∂ϵαβ

)
+ O

(
N3

Z 3
1

)
.

(A.193)
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This defines the virial coefficients

B
(1)
αβ = 1

Z 1

∂Z 1

∂ϵαβ

, (A.194)

B
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1
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− 2Z 2

Z 1
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∂ϵαβ

)
= Z 2

Z 2
1

(
1
Z 2

∂Z 2

∂ϵαβ

− 2B(1)
αβ

)
, (A.195)

which depend on the partition functions and therefore on the exact nature of particle
interactions. The expansion in N given by eq. (A.193) can be transformed into an expansion
in the mass density ρ by the relation

N = ρV

m
, (A.196)

if all particles have the same mass m. Then, the virial expansion of the pressure has the
general form

βV Pαβ =
∑

k

ρk
(
V

m

)k

B
(k)
αβ . (A.197)

Derivatives of the partition function

To find the derivatives of the canonical partition functions ZN , note that the derivatives
can be expressed by

∂ZN

∂ϵαβ

= Z
′
N

dϵαβ

. (A.198)

For the distorted system, it has been shown at the beginning of the section that the
partition function is

Z ′
N =

∫
ddNp′

∫
V ′

ddNr′ exp[−βH ′]

=
∫

ddNp
∫

V
ddNr exp

[
−β

(
H − dϵαβ

∑
i

piαpiβ

mi

+ dU({rk})
)]

= βZN

〈
dϵαβ

∑
i

piαpiβ

mi

− dU({rk})
〉
,

(A.199)

where the shorthand notations H ′ = H ({r′
k}, {p′

k}) and H = H ({rk}, {pk}) were
introduced. With only one and two-body interactions,

dU = − dϵαβ

∑
i

F (1)
α (ri)riβ +

∑
i>j

F (2)
α (rij)rijβ, (A.200)
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the derivatives become

1
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where the equipartition theorem was used to express the average over the squared momen-
tum.

In particular, the two body interactions do not contribute to the first virial coefficient
because only the N = 1 partition function enters:

B
(1)
αβ = 1

Z 1

∂Z 1

∂ϵαβ

= δαβ + β
〈
F (1)

α (r)riβ

〉
. (A.202)

Hence, the first virial coefficient is proportional to the unit tensor apart from contributions
from one-body forces. It is the same contribution that also enters in eq. (A.170) and
for the same symmetry arguments it must only affect the zz-element for the confining
potential introduced in section 3.1.6.

The full N -particle canonical partition function including prefactors is given by

ZN = 1
N !hdN

∫
ddNp

∫
V

ddNr exp
[
−β

(∑
i

p2
i

2mi

+ U({rk})
)]
, (A.203)

where h is Planck’s constant and the factorial N ! accounts for the fact that the particles
are indistinguishable. For simplicity, we assume that all particles have the same mass
mi = m. The integration with respect to the momenta can then be carried out resulting in

ZN = 1
N !ΛdN

∫
V

ddNr exp[−βU({rk})] = CN

N !ΛdN
, (A.204)

where Λ =
√
βh2/(2πm) is the thermal De Broglie wavelength and the N -particle configu-

rational integral was abbreviated by CN . The one-body interaction then cancels from the
second virial coefficient
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(A.205)
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Explicit calculation of virial coefficients

If the average is over a function only depending on positions the integration over momentum
space cancels out and eq. (A.163) simplifies to

⟨f({rk})⟩ =
∫

V ddNr exp[−βU({rk})]f({rk})∫
V ddNr exp[−βU({rk})]

= 1
CN

∫
V

ddNr exp[−βU({rk})]f({rk}).
(A.206)

The force term entering the first virial coefficient is then
〈
F (1)

α (r)riβ

〉
= 1
C1

∫
ddr exp

[
−βU (1)(r)

]
F (1)

α (r)rβ. (A.207)

The second virial coefficient becomes

B
(2)
αβ = 2β

C 2
1

∫
V

ddr1 ddr2 exp[−βU(r1, r2)]F (2)(r12)|r12β|, (A.208)

where

U(r1, r2) = U (1)(r1) + U (1)(r2) + U (2)(r1, r2). (A.209)
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Appendix B

Software documentation

In this chapter, the documentation for some of the software that was developed during
this project is presented.

Appendix B.1 contains the documentation for the Python script for the determination of
Lattice Boltzmann weights that was introduced in section 4.2. Model parameters are taken
from user input, and the resulting system is checked for solubility. If a unique solution
exists, it is computed; if there are infinitely many solutions, a particular solution can be
determined by further processing with a secondary script.

In appendix B.2, the documentation for a hierarchy of libraries developed for the analysis
of Molecular Dynamics trajectories is shown. The implementation features a trajectory
reader class that is able to efficiently iterate configurations that are concatenated in large
.xyz files. The information for each timestep can be read into a designated data structure
called ‘Frame’, which also contains methods for manipulating and analyzing configurations
of linear chain molecules.
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B.1 LBWeights
In section 4.2, a procedure for the determination of Lattice Boltzmann weights is introduced.
This procedure was implemented in the Python script LBWeights.py. Presented below is
the documentation of this script that was automatically generated from the docstrings in
the code with the documentation tool sphinx [112].
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• genindex

• modindex

• search
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2 CONTENTS:



CHAPTER

ONE

LATTICE-BOLTZMANN-WEIGHTS

“LBweights.py” is a Python script that calculates the weights of the (user-supplied) shells of a Lattice Boltzmann model
on a simple cubic lattice, based upon numerically solving the Maxwell-Boltzmann constraint (MBC) equations. The
script supports arbitrary spacial dimensions and arbitrary tensor ranks up to which the MBCs must hold. The script
requires a Python installation (version 3.5 or 2.7) as well as NumPy. It assumes that the speed of sound is a free
parameter and hence needs more shells than a model whose speed of sound takes on a definite value that is required
for consistency. The output is typically given in the form: weights as a function of sound speed. There are cases where
the supplied set of velocities does not admit any solution; in this case the script aborts. There are also cases where it
admits infinitely many solutions; in this case an additional script “Continue.py” is used, which builds upon data that
the main script stores on file.

In case of a unique solution, the script also calculates the interval(s) of sound speed for which all the weights are
positive. At the borders of these intervals, at least one of the weights is zero, such that the corresponding shell may
be discarded and one obtains a “reduced model”. In this way, the script is able to reproduce well-known models like
D2Q9, D3Q19, D3Q15, etc., but can also easily find higher-order models with significantly more speeds.

For Continue.py, the user has to supply a well-defined value of the sound speed (or an interval plus step size for
scanning several values). Moreover, it requires the specification of a shell (or of a set of shells) whose weight (or sum
of weights) is to be minimized. Continue.py then finds an optimal solution to the thus-specified linear programming
problem. Continue.py therefore requires the package cvxpy, see http://www.cvxpy.org/ .

A significant part of the code is not in the main scripts but rather in a collection of functions in “Functions.py”, which
must be available to “LBweights.py” and “Continue.py”.

Tedious tasks like the construction of velocity shells from the velocity modulus are done by the script.

Apart from being useful for researchers and practitioners, the script may perhaps also be used in a classroom setting.

A detailed description of the underlying mathematical theory, together with illustrative examples, is given in the paper
“Semi-automatic construction of Lattice Boltzmann models” by Dominic Spiller and Burkhard Duenweg, see http://
arxiv.org/abs/2004.03509 (original at Physical Review E, https://journals.aps.org/pre/abstract/10.1103/PhysRevE.101.
043310 / open access).

More extensive documentation can be found at https://bduenweg.github.io/Lattice-Boltzmann-weights/ .
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1.1 Installation

$ git clone https://github.com/BDuenweg/Lattice-Boltzmann-weights.git
$ virtualenv venv
$ source venv/bin/activate
$ cd Lattice-Boltzmann-weights
$ pip install -r requirements.txt

4 Chapter 1. Lattice-Boltzmann-weights



CHAPTER

TWO

LBWEIGHTS.PY

Calculation of the weights of an LB model. You can either supply the input data interactively or by the following
command line arguments:

2.1 Usage

LBweights.py [-h] [-d D] [-m M] [-c C [C ...]] [-s S]
[-y] [--test] [--quiet] [--write-latex]

optional arguments:
-h, --help show this help message and exit
-d D spacial dimension of the lattice
-m M Maximum tensor rank
-c C [C ...] Space separated list of the radii c_i^2 of

the desired velocity shells
-s S Random number generator seed
-y Answer all prompts with yes (may overwrite

file data.npz)
--test Test, whether a set of weights that can be

written as a linear parametric equation
w = w_0 + lambda_1 w_1 + lambda_2 w_2
solves the equation A.w == b for given
speed of sound.
Weights and speed of sound are entered
interactively by the user.

--quiet Turn off most of the output
--write-latex Write unique solution to the file

"latex_tables.dat" in form of a latex
table. This will append to any existing
file.

Calculate LB model vectors and weights for a simple cubic lattice of arbitrary dimension

The method is described in D. Spiller’s and B. Duenweg’s paper “Semi-automatic construction of Lattice Boltzmann
models” Therefore explanations in the code are not very detailed

Exit codes:
• 0: System has unique solution

• 1: System has no solution

• 2: System is underdetermined and requires further examination

5
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• 3: System has unique solution but there is no physically valid range of existence

• 127: General error

LBweights.Analysis(SpacialDimension, MaxTensorRank, ListOfTensorDimensions, GrandTotalList, Arguments)
Performs the analysis for a given set of parameters

Parameters
• SpacialDimension (int) – Spacial dimension

• MaxTensorRank (int) – Maximum tensor rank 𝑀

• ListOfTensorDimensions (list) – List of the dimensions of tensor space for tensors of
rank 2, 4, . . . ,𝑀 .

• GrandTotalList (list) – List of lists. The 𝑠-th sublist contains all velocity vectors of shell
𝑠.

• Arguments (dict) – Dictionary of arguments as returned by function ParseArguments()

Returns
Return codes:

• 0: System has unique solution

• 1: System has no solution

• 2: System is underdetermined and requires further examination

• 3: System has unique solution but there is no physically valid range of existence

• 127: General error

Return type int

LBweights.GetInputData(Arguments=None, ListOfThrowawayStrings=None)
Parse command line arguments. You can optionally give a list with the subshells that you want to discard.

Parameters
• Arguments (dict) – Dictionary of command line arguments. This is useful, if the function

is used in an automated script that does not rely on user input.

• ListOfThrowawayStrings (list) – List of indices of the subshells to be discarded. This
is useful, if the function is used in an automated script that does not rely on user input.

Returns Tuple (SpacialDimension, MaxTensorRank, ListOfTensorDimensions,
GrandTotalList, Arguments)

Return type tuple

6 Chapter 2. LBweights.py



CHAPTER

THREE

CONTINUE.PY

Find optimal weights for an underdetermined problem. This requires the file data.npz to be present in the directory
that can be written by LBweights.py if an underdetermined problem is encountered. You can either supply the input
data interactively or by the following command line arguments:

3.1 Usage

Continue.py [-h] [-c C [C ...]] [-m M [M ...]]

optional arguments:
-h, --help show this help message and exit
-c C [C ...] Range/value of c_s^2 to consider, either in

the form <min> <max> <incr> or a single
value.

-m M [M ...] List of indices of the weights that are to
be minimized. You can use -1 to refer to the
last shell etc.

Contains routines to treat the case of infinitely many solutions.

Exit codes:
• 0: No optimal solution found

• 1: Optimal solution found

• 127: General error

Continue.ParseArguments()
Function to parse command line options.

Returns Dictionary of command line options

Return type dict

Continue.Solve(V, ReducedRhs, NumberOfRows, ShellSizes, CsSquared, MinimizeWeights)
Solve the minimization problem via convex optimization. See: https://www.cvxpy.org/

Parameters
• V (numpy.ndarray) – Orthogonal matrix that results from the singular value decomposition

A=U.S.V

• ReducedRhs (numpy.ndarray) – Pruned matrix that has the inverse singular values on the
diagonal.

7
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• NumberOfRows (int) – Number of rows of A

• ShellSizes (list) – List of shell sizes (int) NOT including zero shell

• CsSquared (float) – Speed of sound squared

• MinimizeWeights (list) – List of indices of the weights that shall be minimized in the
procedure

Returns
cvxpy problem. Problem.status indicates whether or not the problem could be solved.

Return type cvxpy.problems.problem.Problem

8 Chapter 3. Continue.py



CHAPTER

FOUR

FUNCTIONS.PY

Collection of helper functions for LBweights.py and Continue.py

Functions.LINEWIDTH
Line width for console output.

Type int

Functions.QUIET
Flag to suppress standard output.

Functions.AbsSquared(Vector)
Return the squared absolute value of numpy array.

Parameters Vector (numpy.ndarray) – Vector that is supposed to be squared

Returns Return the squared absolute value of Vector

Functions.AnalyzeTensorDimension(CurrentTensorRank)
Recursive generation of lists that specify what types of tensors of rank CurrentTensorRank are compatible with
cubic invariance and also fully symmetric under index exchange. For rank 2, these are just multiples of the 2nd
rank unit tensor 𝛿𝑖𝑗 . Thus tensor dimension is one. For rank 4, these are multiples of 𝛿𝑖𝑗𝑘𝑙 and multiples of (𝛿𝑖𝑗 ,
𝛿𝑘𝑙 + perm.). Thus tensor dimension is two. For rank 6, we get another tensor 𝛿𝑖𝑗𝑘𝑙𝑚𝑛, but also all possible
products of the lower-rank deltas. Hence tensor dimension is three. For each new (even) rank M we get another
delta with M indexes, plus all possible products of the lower-order delta tensors So, for rank two we get [[2]]
(1d) for rank four [[4], [2,2]] (2d) for rank six [[6], [4,2], [2,2,2]] (3d) for rank eight [[8], [6,
2], [4,4], [4,2,2], [2,2,2,2]] (5d) and so on. The routine takes care of that “and so on”. This is most
easily done in a recursive fashion.

Parameters CurrentTensorRank (int) – Tensor rank

Returns Dimension of tensor space list: List compatible tensors

Return type int

Functions.CloseEnough(A, W, B, M, RelTol=1e-05)
Test the condition

⃒⃒
⃒⃒
⃒⃒
∑︁

𝑗

𝐴𝑖𝑗𝑤𝑗 − 𝑏𝑖

⃒⃒
⃒⃒
⃒⃒ < 𝜀

√︁∑︀
𝑗 (𝐴𝑖𝑗𝑤𝑗)

2
+
(︀
𝑚𝑖

2

)︀2
𝑏𝑖 for all 𝑖

Parameters
• A (numpy.ndarray) – Matrix 𝐴

• W (numpy.ndarray) – Vector 𝑤⃗

• B (numpy.ndarray) – Vector 𝑏⃗, 𝑏𝑖 = 𝑐𝑚𝑖
s

9



LBweights Documentation

• M (numpy.ndarray) – Vector 𝑚⃗

• RelTol (float) – Relative tolerance 𝜀

Returns True if condition satisfied, False otherwise.

Return type bool

Functions.ComputeSubshell(Velocity, Group)
Compute the (sub)shell that is being spanned by Velocity wrt. Group.

Parameters
• Velocity (numpy.ndarray) – Velocity vector

• Group (list) – List of transformation matrices that form the cubic group

Returns List of velocity vectors that form the velocity shell spanned by Group

Return type list

Functions.Contains(Array, List)
Checks whether given numpy array is contained in list. The all() function is defined on numpy arrays and evalu-
ates True if all elements are True.

Parameters
• Array (numpy.ndarray) – numpy array

• List (list) – List of numpy arrays

Returns True if Array is contained in List, False otherwise.

Return type bool

Functions.ContainsInSublist(Array, ListOfLists)
Checks whether given numpy array is contained in a list of lists. The all() function is defined on numpy arrays
and evaluates True if all elements are True.

Parameters
• Array (numpy.ndarray) – numpy array

• List (list) – List of Lists of numpy arrays

Returns True if Array is contained in ListOfLists, False otherwise.

Return type bool

Functions.DoubleFactorial(Number)

Implementation of the double factorial. 𝑛!! = 𝑛(𝑛− 2)(𝑛− 4) . . .

Parameters Number (int) – Number

Returns Number !!

Return type int

Functions.Echo(String='\n', Linewidth=70)
Formatted printing If QUIET is set (i.e. via command line option –quiet) this is suppressed.

Parameters
• String (str) – String to be printed to the console

• Linewidth (int) – Maximum line width of console output

10 Chapter 4. Functions.py
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Returns None

Functions.EchoError(String='\n', Linewidth=70)
Formatted printing Prints irregardless of value of QUIET

Parameters
• String (str) – String to be printed to the console

• Linewidth (int) – Maximum line width of console output

Returns None

Functions.EnterWeights(TotalNumberOfShells, i_par=0)
Gets vector of weights from user input

Parameters
• TotalNumberOfShells (int) – Number of shells INCLUDING zero-shell

• i_par (int) – Solution vector index (parametric solutions are written as 𝑤⃗ = 𝑤⃗0+𝜆1𝑤⃗1+
𝜆2𝑤⃗2 + . . .)

Returns Vector of weights

Return type numpy.ndarray

Functions.EvaluateWeights(W0List, SolutionMatrix, CsSquared)
Calculate numerical weights from their polynomial coefficients

Parameters
• W0List (list) – List of polynomial coefficients for zero shell

• SolutionMatrix (numpy.ndarray) – Solution matrix 𝑄

• CsSquared (float) – Speed of sound squared

Returns List of numerical weights [𝑤0, 𝑤1, . . . ]

Return type list

Functions.FillLeftHandSide(SpacialDimension, MaxTensorRank, ListOfTensorDimensions,
TotalNumberOfShells, GrandTotalList)

Construct the 𝑅×𝑁𝑠 matrix 𝐴

Parameters
• SpacialDimension (int) – Spacial dimension

• MaxTensorRank (int) – Highest tensor rank (M) to consider.

• ListOfTensorDimensions (list) – List of the dimensions of tensor space for tensors of
rank 2, 4, . . . ,𝑀 .

• TotalNumberOfShells (int) – Total number of velocity shells 𝑁𝑠

• GrandTotalList (list) – List of lists. The 𝑠-th sublist contains all velocity vectors of shell
𝑠.

Returns Matrix 𝐴

Return type numpy.ndarray

Functions.FillRightHandSide(MaxTensorRank, ListOfTensorDimensions)
Construct the matrix 𝐷 : 𝐷𝑟𝜇 = 𝛿𝑚𝑟𝜇

Parameters

11
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• MaxTensorRank (int) – Maximum tensor rank 𝑀

• ListOfTensorDimensions (list) – List of the dimensions of tensor space for tensors of
rank 2, 4, . . . ,𝑀 .

Returns Matrix 𝐷

Return type numpy.ndarray

Functions.FindRangeOfExistence(W0List, SolutionMatrix)
Make use of the function “roots” that needs the coefficients in reverse order, in order to find the roots of the
weight polynomials. If inbetween two roots all weights are positive, add them to list CompressedRoots

Parameters
• W0List (list) – List of polynomial coefficients for zero shell

• SolutionMatrix (numpy.ndarray) – Solution matrix 𝑄

Returns List CompressedRoots of roots that form valid intervals for the speed of sound.

Return type list

Functions.FindVelocities(SpacialDimension, SquaredVelocity)
Scans the cubic lattice for lattice velocity with squared length SquaredVelocity

Parameters
• SpacialDimension (int) – SpacialDimension

• SquaredVelocity (int) – Squared length of compatible lattice velocities

Returns List of compatible lattice velocity vectors

Return type list

Functions.Frexp10(Float)
Returns exponent and mantissa in base 10

Parameters Float (float) – Original number

Returns (Mantissa, Exponent)
Return type tuple

Functions.GetGroup(SpacialDimension)
Compute the cubic group. Each transformation matrix in the group is made up of 2d unit vectors of type
(0 . . . 0,+ − 1, 0 . . . 0). We will identify a vector with i-th component 1 and 0 elsewhere by the number 𝑖.
A vector with 𝑖-th component -1 and 0 elsewhere is identified by the number −𝑖. The cubic group then con-
sists of all orthogonal matrices, with columns made up of the above unit vectors. In general there are 𝑑!2𝑑 such
transformations.

Parameters SpacialDimension (int) – Spacial dimension

Returns A list of all transformation matrices in the cubic group

Return type list

Functions.GetListOfSubshells(Shell, Group)
Applies all group transformations to all velocities in shell and returns all distinct shells that result.

Parameters
• Shell (list) – List of velocity vectors

• Group (list) – List of transformation matrices that form the cubic group

Returns List of distinct velocity shells
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Return type list

Functions.IndicatorFunction(W0List, SolutionMatrix, CsSquared)
Tests, whether solution yields all positive weights.

Parameters
• W0List (list) – List of polynomial coefficients for zero shell

• SolutionMatrix (numpy.ndarray) – Solution matrix 𝑄

• CsSquared (float) – Speed of sound squared

Returns True if all weights positive, False otherwise

Return type bool

Functions.LatticeSum(RandomVector, ListOfVelocities, TensorRank)
Calculate the sum 𝐴𝑟𝑠 =

1
(𝑚𝑟−1)!!

∑︀
𝑖∈𝑠(𝑐⃗𝑖 · 𝑛⃗𝑟)

𝑚𝑟

for tensor rank 𝑟 and shell 𝑠.

Parameters
• RandomVector (numpy.ndarray) – 𝑟-th random unit vector

• ListOfVelocities (list) – List of velocity vectors in shell 𝑠

• TensorRank (int) – Tensor rank 𝑟

Returns 𝐴𝑟𝑠

Return type float

Functions.MakeRandomVector(SpacialDimension)
Generate a random vector uniformly distributed on the unit sphere.

Parameters SpacialDimension (int) – Spacial dimension d

Returns Vector of length one with random orientation in d-dimensional space.

Return type list

Functions.OutputRangeOfExistence(CompressedRoots)
Screen output of the intervals of the speed of sound that yield all positive weights.

Parameters CompressedRoots (list) – List of roots that form valid intervals for the speed of
sound.

Returns Number of valid intervals

Return type int

Functions.ParseArguments()
Function to parse command line options.

Returns Dictionary of command line options

Return type dict

Functions.RatApprox(x)
Calculates numerator and denominator for a floating point number x and returns the output as a string.

Parameters x (float) – Number to approximate as fraction.

Returns Approximate fraction as string

Return type str
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Functions.TestSolution(GrandTotalList, MaxTensorRank, SpacialDimension, ListOfTensorDimensions,
Solution=None, RelTol=1e-05)

Test validity of the equation 𝐴𝑤⃗ = 𝑏⃗ for given weights w and speed of sound 𝑐2𝑠. A solution is deemed valid, if
⃒⃒
⃒⃒
⃒⃒
∑︁

𝑗

𝐴𝑖𝑗𝑤𝑗 − 𝑏𝑖

⃒⃒
⃒⃒
⃒⃒ < 𝜀0 + 𝜀

√︂(︁∑︀
𝑗𝐴𝑖𝑗𝑤𝑗

)︁2

+
(︁𝑚𝑖

2

)︁2

𝑏𝑖 for all 𝑖

The weights can be given as a linear parametric equation

𝑤⃗ = 𝑤⃗0 + 𝜆1𝑤⃗1 + 𝜆2𝑤⃗2 + . . .

Parameters
• GrandTotalList (list) – List of lists. The 𝑠-th sublist contains all velocity vectors of shell
𝑠.

• MaxTensorRank (int) – Maximum tensor rank 𝑀

• SpacialDimension (int) – SpacialDimension

• ListOfTensorDimensions (list) – List of the dimensions of tensor space for tensors of
rank 2, 4, . . . ,𝑀 .

• Solution (list) – Solution that is to be tested in the form [CsSquared, [[w_00, w_01,
...], [[w_10, w_11, ...], ...] If None is given, the user is prompted to enter a so-
lution by hand.

• RelTol (float) – Relative tolerance 𝜀

Returns 0 if solution is valid, otherwise 1

Return type int

Functions.ToMatrix(Array)
Convert an array of unit vector representations to proper matrix. For example [0,2,1] will be converted to
[[1,0,0], [0,0,1], [0,1,0]].

Parameters Array (numpy.ndarray) – Array of integers

Returns Transformation matrix

Return type numpy.ndarray

Functions.Type(Shell)
Method to determine typical velocity vector for Shell.

Parameters Shell (list) – List of velocity vectors, e.g. [[0,1],[1,0]]

Returns Typical velocity vector, e.g. (0,1)

Return type tuple

Functions.WriteLatexNumber(Value, Outfile, Precision=8, Rational=False)
Write Value to Outfile in a Latex compatible way

Parameters
• Value (float) – Value

• Outfile – Output file

• Precision (int) – Number of digits

• Rational (bool) – Approximate numbers by fractions
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Returns None

Functions.WriteLatexTables(CompressedRoots, W0List, SolutionMatrix, GrandTotalList, MaxTensorRank,
Precision=8, Rational=False, Filename='latex_tables.tex')

Write unique solution to a file in form of a latex table. This will append to any existing file.

Parameters
• CompressedRoots (list) – List of roots that form the valid intervals for the speed of sound

• W0List (list) – List of polynomial coefficients for zero shell

• SolutionMatrix (numpy.ndarray) – Solution matrix 𝑄

• GrandTotalList (list) – List of lists. The 𝑠-th sublist contains all velocity vectors of shell
𝑠.

• MaxTensorRank (int) – Maximum tensor rank 𝑀

• Precision (int) – Number of digits

• Rational (bool) – Approximate numbers by fractions

Returns None

Functions.YesNo(Question)
Ask for yes or no answer and return a Boolean.

Parameters Question (str) – String that is printed when function is called.

Returns True, if answer is in ["YES", "Y", "yes", "y", "Yes", \CR] False, if answer is in
["NO", "N", "no", "n", "No"]

Return type bool
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B.2 Analysis software
In order to process the large amount of data produced by the Molecular Dynamics
simulation, custom software in C++ was developed. Analysis programs are based on a
hierarchy of libraries offering methods for the iterative reading of trajectory files and data
structures and data structures for chain molecule configurations. Presented below is the
documentation of this software that was automatically generated from the docstrings in
the code with the documentation tool doxygen [113].
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1 README

This project was developed for the analysis of Molecular Dynamics trajectories produced by the simulation package
ESPResSo++. The main focus is on trajectories in the .xyz format which are concatenations of individual .xyz
files. As simulations of large systems can easily produce trajectories in the tens or even hundreds of gigabytes, effi-
ciency becomes an important factor in processing these files. Because of this, C++ was chosen as a programming
language to develop the analysis tools which are based on a hierarchy of libraries:
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trajectory.hpp (p.40) defines a trajectory reader which can efficiently iterate large xyz trajectories. It
starts reading the file at the first configuration and allows to jump ahead without explicitly reading every line into
memory.

From every position a Frame (p.3) object can be read which contains particle types, coordinates and optionally
velocities. This class is defined in the fole frame.hpp (p.35) which also defines various functions to modify and
analyze the configurations. This includes the calculation of the dynamic structure factor by mapping the configuration
onto a density lattice and performing a Fast Fourier Transform, as well as the calculation of the Minkowski functionals
in three dimensions.

By the Molecule (p.22) class introduced in molecule.hpp (p.39), a Frame (p.3) can be interpreted
as a set of linear chain molecules (polymers). Because of the molecules' chain-like nature, it is enough to store
references to the first and last particles. Therefore, a Molecule (p.22) object can operate on the data stored
in a Frame (p.3) object while needing very little additional memory for itself. The Molecule (p.22) class
provides various functions to analyze the properties of polymer molecules.

Properties calculated from Frame (p.3) objects and Molecule (p.22) objects at successive points in time
can be stored and processed with the Timeseries (p.26) class.

The classes introduced above allow to easily create compact tailor-made programs for the analysis and manipulation
of large xyz trajectories.

In the below example the average squared end-to-end vector of all molecules is calculated at successive configura-
tions in the trajectory and written to an output file:
#include <iomanip>
#include "trajectory.hpp"
#include "couf.hpp"
using namespace std;
int main(int argc, char **argv)
{

// set output precision
constexpr size_t precision = 10;
// get input file from command line
const char *infile = argv[1];
// get molecule size from command line argument
const size_t particles_per_molecule = static_cast<size_t>(

atoi(couf::parse_arguments(argc, argv, "--ppm", "0")));
// open output file
ofstream outfile("ete_squared.dat");
outfile.precision(precision);
// define trajectory reader with molecule size
Trajectory traj{infile, particles_per_molecule};
// iterate Frames
while(!traj.is_null())
{

outfile « scientific « setw(precision + 2);
// write step to outfile
outfile « traj.index() « ’ ’;
// calculate the average squared end-to-end vector of all molecules in
// the current frame and write to outfile
outfile « traj->mean(&Molecule::end_to_end_squared) « ’\n’;
// advance to next frame according to command line arguments
traj.loop_advance(argc, argv);

}
outfile.close();
exit(0);

}

2 Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Frame 3

Generated by Doxygen



3 File Index 3

Molecule 22

Timeseries< T > 26

Trajectory 31

3 File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

lib/ frame.hpp 35

lib/ molecule.hpp 39

lib/ timeseries.hpp 40

lib/ trajectory.hpp 40

4 Class Documentation

4.1 Frame Class Reference

#include <frame.hpp>

Public Member Functions

• Frame (Real3D box)
• Frame (std::vector< Real3D > coordinates, std::vector< Real3D > velocities, Real3D box, size_←↩

t particles_per_molecule=0)
• Frame (std::ifstream &stream, const size_t particles_per_molecule=0, const char format='x')
• Frame (const char ∗filename, const size_t particles_per_molecule=0, const char format='x')
• void read_xyz (const std::string &filename, const size_t particles_per_molecule=0)
• void read_xyz (std::ifstream &stream, const size_t particles_per_molecule=0)
• bool has_velocities () const
• bool is_null () const
• size_t size () const
• Real3D box () const
• double box (size_t i) const
• bool is_square () const
• size_t particles_per_molecule () const
• size_t number_of_molecules () const
• auto c_cbegin () const
• auto c_cend () const
• auto v_cbegin () const
• auto v_cend () const
• auto t_cbegin () const
• auto t_cend () const
• Real3D coordinate (const size_t index) const
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• Real3D folded_coordinate (const size_t index) const
• Real3D velocity (const size_t index) const
• int type (const size_t index) const
• Molecule molecule (const size_t index) const
• void set_box (const Real3D box)
• void set_particles_per_molecule (const size_t particles_per_molecule)
• void set_number_of_molecules (const size_t number_of_molecules)
• void set_types (size_t max_type)
• void set_types ()
• void reduce_types (size_t max_type)
• void add_particle (Real3D coordinate, int type=0)
• void add_particle (Real3D coordinate, Real3D velocity, int type=0)
• void add_molecule (const Molecule m, const Real3D displacement=Real3D(0.))
• void remove_particle (const size_t index)
• void clear ()
• void fold ()
• void fold_2d ()
• void shift_coordinates (const Real3D shift)
• void scale_box (const double factor)
• void crop_box (const double xmin, const double xmax, const double ymin, const double ymax, const double

zmin, const double zmax)
• void crop_box (const double lx, const double ly, const double lz)
• void rotate_x (const double angle)
• void rotate_y (const double angle)
• void rotate_z (const double angle)
• void rotate (const Real3D v, const double angle)
• std::vector< Frame > divide_box (const int nx, const int ny=1, const int nz=1) const
• Frame slice (const double thickness, const Real3D x0=Real3D(0.), const Real3D norm=Real3D(-1., -1.,

2.)) const
• Frame slice_square (const double thickness, const double height=0.) const
• Frame slice_rectangle (const double thickness) const
• Frame multiply (const size_t mx=2, const size_t my=2, const size_t mz=2) const
• bool consistent () const
• double mean_distance () const
• double smallest_distance () const
• template<typename T >

T mean (T(Molecule::∗f)(void)) const
• template<typename T >

std::vector< T > vector (T(Molecule::∗f)(void)) const
• double max_bond_length () const
• double mean_squared_displacement_cm ( Frame earlier_frame)
• double mean_squared_displacement ( Frame earlier_frame)
• void write_xyz (const char ∗filename, const bool append=false, const size_t precision=11) const
• void write_vtk (const char ∗filename, const bool append=false, const size_t precision=11) const
• void write_pdb (const char ∗filename, const bool append=false) const
• void write_binary (const char ∗filename, const bool append=false) const
• void make_sphere (const double radius)
• void make_cube (const double L)

Friends

• std::ostream & operator<< (std::ostream &os, const Frame &frame)
• bool operator== (const Frame &lhs, const Frame &rhs)
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4.1 Frame Class Reference 5

4.1.1 Detailed Description

The Frame (p. 3) class that stores particle coordinates and velocities as well as the box dimensions. By setting
_particles_per_molecule to a nonzero value N, the system is considered to consist of linear chain molecules of the
given length N. Note, that the coordinates have to be ordered accordingly, i.e. the first particle is the first particle in
chain one and the last particle is the last particle in the last chain and so on. If _particles_per_molecule_ == 0 all
particles are considered to be in one large molecule (zero molecules if system is empty). Each particle can also be
assigned an integer type.

4.1.2 Constructor & Destructor Documentation

4.1.2.1 Frame() Frame::Frame (

const char ∗ filename,

const size_t particles_per_molecule = 0,

const char format = 'x' ) [inline]

Initialize Frame (p. 3) with given three-dimensional box. Particle coordinates and velocities are read from an input
file using designated functions. A molecule size can be given as well.

Parameters

in stream Input file.

in particles_per_molecule Number of particles in one molecule.

in format File format. 'x' corresponds to .xyz format. At the moment only .xyz files are
supported.

4.1.3 Member Function Documentation

4.1.3.1 add_molecule() void Frame::add_molecule (

const Molecule m,

const Real3D displacement = Real3D(0.) ) [inline]

Add a Molecule (p. 22) object to the Frame (p. 3). The coordinates of the particles in the molecule can optionally
be displaced by some vector.

Parameters

in m Molecule (p. 22) object.

in displacement Displacement vector.

4.1.3.2 add_particle() [1/2] void Frame::add_particle (
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Real3D coordinate,

int type = 0 ) [inline]

Add a particle with given type and coordinate vector to the Frame (p. 3).

Parameters

in coordinate Coordinate vector.
in type Particle type.

4.1.3.3 add_particle() [2/2] void Frame::add_particle (

Real3D coordinate,

Real3D velocity,

int type = 0 ) [inline]

Add a particle with given type, coordinate and velocity vector to the Frame (p. 3).

Parameters

in coordinate Coordinate vector.
in velocity Velocity vector.

in type Particle type.

4.1.3.4 box() [1/2] Real3D Frame::box ( ) const [inline]

Returns

Box dimensions.

4.1.3.5 box() [2/2] double Frame::box (

size_t i ) const [inline]

Parameters

in i Box dimension in question.

Returns

Box size in dimension i.
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4.1.3.6 c_cbegin() auto Frame::c_cbegin ( ) const [inline]

Returns

Const-iterator of coordinate vector start.

4.1.3.7 c_cend() auto Frame::c_cend ( ) const [inline]

Returns

Const-iterator of coordinate vector end.

4.1.3.8 clear() void Frame::clear ( ) [inline]

Remove all particles from the system and set box size to zero in all directions.

4.1.3.9 consistent() bool Frame::consistent ( ) const [inline]

Test Frame (p. 3) for consistency by checking whether the number of particles is compatible with the total number
of particles in the system.

Returns

true if consistent, false otherwise.

4.1.3.10 coordinate() Real3D Frame::coordinate (

const size_t index ) const [inline]

Parameters

in index Index of the particle in question.

Returns

Coordinate vector of the particle.

4.1.3.11 crop_box() [1/2] void Frame::crop_box (

const double lx,

Generated by Doxygen



8

const double ly,

const double lz ) [inline]

Remove all particles that are not within the box defined by the given limits.
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Parameters

in lx Maximum x-coordinate.
in ly Maximum y-coordinate.

in lz Maximum z-coordinate.

4.1.3.12 crop_box() [2/2] void Frame::crop_box (

const double xmin,

const double xmax,

const double ymin,

const double ymax,

const double zmin,

const double zmax ) [inline]

Remove all particles that are not within the box defined by the given limits.

Parameters

in xmin Minimum x-coordinate.
in xmax Maximum x-coordinate.
in ymin Minimum y-coordinate.

in ymax Maximum y-coordinate.

in zmin Minimum z-coordinate.
in zmax Maximum z-coordinate.

4.1.3.13 divide_box() std::vector< Frame> Frame::divide_box (

const int nx,

const int ny = 1,

const int nz = 1 ) const [inline]

Divide box into nx x ny x nz equal-sized subboxes.

Parameters

in nx Number of subboxes in the x-direction.
in ny Number of subboxes in the y-direction.

in nz Number of subboxes in the z-direction.

Returns

Vector of subboxes.

4.1.3.14 fold() void Frame::fold ( ) [inline]

Fold all coordinates in the Frame (p. 3) according to the periodic boundary conditions.
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4.1.3.15 fold_2d() void Frame::fold_2d ( ) [inline]

Fold all coordinates in the Frame (p. 3) according to the periodic boundary conditions while ignoring the z-
component. This is useful for pseudo-2d systems where the z-coordinate fluctuates around 0.

4.1.3.16 folded_coordinate() Real3D Frame::folded_coordinate (

const size_t index ) const [inline]

Parameters

in index Index of the particle in question.

Returns

Folded coordinate vector of the particle.

4.1.3.17 has_velocities() bool Frame::has_velocities ( ) const [inline]

Returns

True if Frame (p. 3) contains velocities.

4.1.3.18 is_null() bool Frame::is_null ( ) const [inline]

Returns

True if Frame (p. 3) does not contain any particles.

4.1.3.19 is_square() bool Frame::is_square ( ) const [inline]

Returns

True if box is cubic.

4.1.3.20 make_cube() void Frame::make_cube (

const double L ) [inline]

Make a cube of particles with edge length on a cubic lattice with lattice constant 1.
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Parameters

in L Edge length.

4.1.3.21 make_sphere() void Frame::make_sphere (

const double radius ) [inline]

Make a sphere of particles with given radius on a cubic lattice with lattice constant 1.

Parameters

in radius Radius of the sphere.

4.1.3.22 max_bond_length() double Frame::max_bond_length ( ) const [inline]

Returns

Size of the largest bond in the system.

4.1.3.23 mean() template<typename T >

T Frame::mean (

T(Molecule::∗)(void) f ) const [inline]

Calculates mean value of function f for all molecules that are contained in the system.

Parameters

in f function that is to applied to the molecules.

4.1.3.24 mean_distance() double Frame::mean_distance ( ) const [inline]

Returns

Average distance between particles.

4.1.3.25 mean_squared_displacement() double Frame::mean_squared_displacement (

Frame earlier_frame ) [inline]

Calculate the bead mean-squared displacement with respect to reference frame.
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Parameters

in Earlier_frame Reference frame.

Returns

Mean-squared displacement.

4.1.3.26 molecule() Molecule Frame::molecule (

const size_t index ) const [inline]

Parameters

in index Index of the Molecule (p. 22) in question.

Returns

Molecule (p. 22) object corresponding to given index.

4.1.3.27 multiply() Frame Frame::multiply (

const size_t mx = 2,

const size_t my = 2,

const size_t mz = 2 ) const [inline]

This produces a frame that is extended by periodic images of the original frame.

Parameters

in mx How many copies are in the x-direction.

in my How many copies are in the y-direction.

in mz How many copies are in the z-direction.

Returns

Multiplied frame.

4.1.3.28 number_of_molecules() size_t Frame::number_of_molecules ( ) const [inline]

Returns

Number of molecules in the system.
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4.1.3.29 particles_per_molecule() size_t Frame::particles_per_molecule ( ) const [inline]

Returns

Molecule (p. 22) size.

4.1.3.30 read_xyz() [1/2] void Frame::read_xyz (

const std::string & filename,

const size_t particles_per_molecule = 0 ) [inline]

Read types, coordinates and velocities from and .xyz file.

Parameters

in filename Filename of the .xyz file.

in particles_per_molecule Molecule (p. 22) size.

4.1.3.31 read_xyz() [2/2] void Frame::read_xyz (

std::ifstream & stream,

const size_t particles_per_molecule = 0 ) [inline]

Read types, coordinates and velocities from and .xyz filestream.

Parameters

in stream Ifstream of the open .xyz file.

in particles_per_molecule Molecule (p. 22) size.

4.1.3.32 reduce_types() void Frame::reduce_types (

size_t max_type ) [inline]

Iterate all particle types. If a certain maximum value is exceeded the enumeration starts again at 0.

Parameters

in max_type All set types are smaller than this value.

4.1.3.33 remove_particle() void Frame::remove_particle (

const size_t index ) [inline]
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Remove particle from the Frame (p. 3).
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Parameters

in index Index of the particle that is to be removed.

4.1.3.34 rotate() void Frame::rotate (

const Real3D v,

const double angle ) [inline]

Rotate all coordinates by given angle about a given axis.

Parameters

in v Rotation axis.
in angle Rotation angle.

4.1.3.35 rotate_x() void Frame::rotate_x (

const double angle ) [inline]

Rotate all coordinates about the x-axis by given angle.

Parameters

in angle Rotation angle.

4.1.3.36 rotate_y() void Frame::rotate_y (

const double angle ) [inline]

Rotate all coordinates about the y-axis by given angle.

Parameters

in angle Rotation angle.

4.1.3.37 rotate_z() void Frame::rotate_z (

const double angle ) [inline]

Rotate all coordinates about the y-axis by given angle.
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Parameters

in angle Rotation angle.

4.1.3.38 scale_box() void Frame::scale_box (

const double factor ) [inline]

Scale box size and the coordinates of the particles by a given factor.

Parameters

in factor Scaling factor.

4.1.3.39 set_box() void Frame::set_box (

const Real3D box ) [inline]

Set box dimensions.

Parameters

in box Vector of box dimensions.

4.1.3.40 set_number_of_molecules() void Frame::set_number_of_molecules (

const size_t number_of_molecules ) [inline]

Set number of molecules in the system. The routine checks whether or not the given value is compatible with the
total number of particles. If this is the case, the molecule size is set accordingly.

Parameters

in particles_per_molecule Molecule (p. 22) size.

4.1.3.41 set_particles_per_molecule() void Frame::set_particles_per_molecule (

const size_t particles_per_molecule ) [inline]

Set molecule size.

Parameters

in particles_per_molecule Molecule (p. 22) size.
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4.1.3.42 set_types() [1/2] void Frame::set_types ( ) [inline]

Set particle types according to their index. I.e. particle 0 has type 0 and so on.

4.1.3.43 set_types() [2/2] void Frame::set_types (

size_t max_type ) [inline]

Set particle types according to their index. I.e. particle 0 has type 0 and so on. If a certain maximum value is
exceeded the enumeration starts again at 0. This can be useful for visualization with VMD which only allows for a
finite number of types.

Parameters

in max_type All set types are smaller than this value.

4.1.3.44 shift_coordinates() void Frame::shift_coordinates (

const Real3D shift ) [inline]

Shift all coordinates by a given vector. This was originally implemented to test for translational invariance.

Parameters

in shift Shift vector.

4.1.3.45 size() size_t Frame::size ( ) const [inline]

Returns

Number of particles in the Frame (p. 3).

4.1.3.46 slice() Frame Frame::slice (

const double thickness,

const Real3D x0 = Real3D(0.),

const Real3D norm = Real3D(-1., -1., 2.) ) const [inline]

Takes a slice of given thickness along the plane given by an initial point x0 and a normal vector norm out of the
configuration.
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Parameters

in thickness Thickness of the slice.
in x0 Initial point.

in norm Normal vector.

Returns

Sliced Frame (p. 3).

4.1.3.47 slice_rectangle() Frame Frame::slice_rectangle (

const double thickness ) const [inline]

Takes a rectangular slice of given thickness out of the configuration by slicing the box diagonally. This increases the
surface of the slice.

Parameters

in thickness Thickness of the slice.
in height z-coordinate of the xy plane.

Returns

Sliced Frame (p. 3).

4.1.3.48 slice_square() Frame Frame::slice_square (

const double thickness,

const double height = 0. ) const [inline]

Takes a square slice of given thickness around the xy-plane at given height out of the configuration.

Parameters

in thickness Thickness of the slice.
in height z-coordinate of the xy plane.

Returns

Sliced Frame (p. 3).

4.1.3.49 smallest_distance() double Frame::smallest_distance ( ) const [inline]
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Returns

Smallest distance between particles.

4.1.3.50 t_cbegin() auto Frame::t_cbegin ( ) const [inline]

Returns

Const-iterator of type vector start.

4.1.3.51 t_cend() auto Frame::t_cend ( ) const [inline]

Returns

Const-iterator of type vector end.

4.1.3.52 type() int Frame::type (

const size_t index ) const [inline]

Parameters

in index Index of the particle in question.

Returns

Type of the particle.

4.1.3.53 v_cbegin() auto Frame::v_cbegin ( ) const [inline]

Returns

Const-iterator of velocity vector start.

4.1.3.54 v_cend() auto Frame::v_cend ( ) const [inline]

Returns

Const-iterator of velocity vector end.
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4.1.3.55 vector() template<typename T >

std::vector<T> Frame::vector (

T(Molecule::∗)(void) f ) const [inline]

Returns the value of function f for each molecule in the system in form of a vector.

Parameters

in f function that is to be applied to the molecules.

Returns

vector of function values.

4.1.3.56 velocity() Real3D Frame::velocity (

const size_t index ) const [inline]

Parameters

in index Index of the particle in question.

Returns

Velocity vector of the particle.

4.1.3.57 write_binary() void Frame::write_binary (

const char ∗ filename,

const bool append = false ) const [inline]

Write configuration to binary file.

Parameters

in filename Output filename.

in append Whether or not to append to existing files.

in precision Floating point precision of the output.

4.1.3.58 write_pdb() void Frame::write_pdb (

const char ∗ filename,

const bool append = false ) const [inline]

Write configuration to .pdb file.
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Parameters

in filename Output filename.

in append Whether or not to append to existing files.

in precision Floating point precision of the output.

4.1.3.59 write_vtk() void Frame::write_vtk (

const char ∗ filename,

const bool append = false,

const size_t precision = 11 ) const [inline]

Write configuration to .vtk file.

Parameters

in filename Output filename.

in append Whether or not to append to existing files.

in precision Floating point precision of the output.

4.1.3.60 write_xyz() void Frame::write_xyz (

const char ∗ filename,

const bool append = false,

const size_t precision = 11 ) const [inline]

Write configuration to .xyz file.

Parameters

in filename Output filename.

in append Whether or not to append to existing files.

in precision Floating point precision of the output.

4.1.4 Friends And Related Function Documentation

4.1.4.1 operator<< std::ostream& operator<< (

std::ostream & os,

const Frame & frame ) [friend]

Give Frame (p. 3) information when the Frame (p. 3) object is passed i.e. to cout.
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4.1.4.2 operator== bool operator== (

const Frame & lhs,

const Frame & rhs ) [friend]

Compare two frame objects. Returns true if coordinates, velocities, box dimensions and molecule sizes are the
same by value and false otherwise.

The documentation for this class was generated from the following file:

• lib/ frame.hpp

4.2 Molecule Class Reference

Public Member Functions

• Molecule (r3dcit coordinates_begin, r3dcit coordinates_end, r3dcit velocities_begin, r3dcit velocities_end)
• Molecule (r3dcit coordinates_begin, r3dcit coordinates_end)
• size_t size () const
• bool has_velocities () const
• bool is_null () const
• Real3D coordinate (size_t index) const
• Real3D velocity (size_t index) const
• Real3D bond (const int index) const
• double bond_length (const int index) const
• bool consistent () const
• Real3D center_of_mass ()
• Real3D rouse_mode_0 ()
• Real3D rouse_mode (const size_t p)
• double radius_of_gyration_squared ()
• Real3D end_to_end ()
• double end_to_end_squared ()
• double mean_squared_displacement (const Molecule &earlier_molecule) const
• double mean_bond_length () const
• double max_bond_length () const
• Molecule & operator= (const Molecule &)=delete

Friends

• std::ostream & operator<< (std::ostream &os, const Molecule &molecule)

4.2.1 Constructor & Destructor Documentation

4.2.1.1 Molecule() [1/2] Molecule::Molecule (

r3dcit coordinates_begin,

r3dcit coordinates_end,

r3dcit velocities_begin,

r3dcit velocities_end ) [inline]

Initialize Molecule (p. 22) with references to the start/end coordinates and velocities.
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4.2.1.2 Molecule() [2/2] Molecule::Molecule (

r3dcit coordinates_begin,

r3dcit coordinates_end ) [inline]

Initialize Molecule (p. 22) with references to the start/end coordinates.

4.2.2 Member Function Documentation

4.2.2.1 bond() Real3D Molecule::bond (

const int index ) const [inline]

Parameters

in index Index within the Molecule (p. 22) of the bond in question.

Returns

Bond vector of the particle with the given index.

4.2.2.2 bond_length() double Molecule::bond_length (

const int index ) const [inline]

Parameters

in index Index within the Molecule (p. 22) of the bond in question.

Returns

Bond length of the particle with the given index.

4.2.2.3 center_of_mass() Real3D Molecule::center_of_mass ( ) [inline]

Returns

The center of mass vector.

4.2.2.4 consistent() bool Molecule::consistent ( ) const [inline]

Test for any bonds that might be too large.

4.2.2.5 coordinate() Real3D Molecule::coordinate (

size_t index ) const [inline]
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Parameters

in index Index within the Molecule (p. 22) of the particle in question.

Returns

Coordinate vector of the particle with the given index.

4.2.2.6 end_to_end() Real3D Molecule::end_to_end ( ) [inline]

Returns

The end-to-end vector.

4.2.2.7 end_to_end_squared() double Molecule::end_to_end_squared ( ) [inline]

Returns

The squared end-to-end vector.

4.2.2.8 has_velocities() bool Molecule::has_velocities ( ) const [inline]

Returns

Whether or not the Molecule (p. 22) stores velocities.

4.2.2.9 is_null() bool Molecule::is_null ( ) const [inline]

Returns

Whether or not there are any particles in the Molecule (p. 22).

4.2.2.10 max_bond_length() double Molecule::max_bond_length ( ) const [inline]

Returns

The largest bond length.
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4.2.2.11 mean_bond_length() double Molecule::mean_bond_length ( ) const [inline]

Returns

The average bond length.

4.2.2.12 operator=() Molecule& Molecule::operator= (

const Molecule & ) [delete]

Disable the assignment operator.

4.2.2.13 radius_of_gyration_squared() double Molecule::radius_of_gyration_squared ( ) [inline]

Returns

The squared radius of gyration.

4.2.2.14 rouse_mode() Real3D Molecule::rouse_mode (

const size_t p ) [inline]

Parameters

in p Index of the Rouse mode.

Returns

The corresponding Rouse mode.

4.2.2.15 size() size_t Molecule::size ( ) const [inline]

Returns

The number of beads in the Molecule (p. 22).

4.2.2.16 velocity() Real3D Molecule::velocity (

size_t index ) const [inline]
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Parameters

in index Index within the Molecule (p. 22) of the particle in question.

Returns

Velocity vector of the particle with the given index.

4.2.3 Friends And Related Function Documentation

4.2.3.1 operator<< std::ostream& operator<< (

std::ostream & os,

const Molecule & molecule ) [friend]

Print Molecule (p. 22) info.

The documentation for this class was generated from the following file:

• lib/ molecule.hpp

4.3 Timeseries< T > Class Template Reference

#include <timeseries.hpp>

Public Member Functions

• Timeseries (std::vector< T > data, double timestep=0, double initial_time=0, std::string comment="")
• Timeseries (const char ∗filename, size_t column=1, size_t offset=0)
• void read (const char ∗filename, size_t column=1, size_t offset=0)
• void read_all (const char ∗filename, size_t offset=0)
• void read (std::ifstream &stream, size_t column=1, size_t offset=0)
• void read_all (std::ifstream &stream, size_t offset=0)
• size_t size () const
• double timestep () const
• std::string comment () const
• double initial_time () const
• void push_back (T val)
• void emplace_back (T &&val)
• void set_timestep (double timestep)
• void set_comment (std::string comment)
• void set_initial_time (double initial_time)
• double time (const int step) const
• std::vector< T >::const_iterator begin () const
• std::vector< T >::const_iterator end () const
• T mean () const
• T stdev () const
• double autocorrelation_function (size_t span) const
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• Timeseries & operator+= (const Timeseries &ts)
• Timeseries operator+ (const Timeseries &ts) const
• Timeseries & operator-= (const Timeseries &ts)
• Timeseries operator- (const Timeseries &ts) const
• Timeseries & operator∗= (const double a)
• Timeseries operator∗ (const double a)
• Timeseries & operator/= (const double a)
• Timeseries operator/ (const double a)
• bool operator== (const Timeseries &ts) const
• bool operator!= (const Timeseries &ts) const
• void coarsen (const size_t factor)
• void write (const char ∗filename) const
• void clear ()
• T operator[ ] (size_t i) const
• T const & operator[ ] (size_t i)

Friends

• std::ostream & operator<< (std::ostream &os, const Timeseries &timeseries)

4.3.1 Detailed Description

template<typename T>
class Timeseries< T >

The Timeseries (p. 26) class stores a time series of data points and contains some functions for their analysis. A
data point can be a vector of points as well as the type is templated. A time step, initial time and a comment can be
given.

4.3.2 Member Function Documentation

4.3.2.1 begin() template<typename T >

std::vector<T>::const_iterator Timeseries< T >::begin ( ) const [inline]

Returns

Constant reference to first data piont in form of an iterator.

4.3.2.2 clear() template<typename T >

void Timeseries< T >::clear ( ) [inline]

Clear all data from Timeseries (p. 26).

Generated by Doxygen



28

4.3.2.3 comment() template<typename T >

std::string Timeseries< T >::comment ( ) const [inline]

Returns

The comment that is set.

4.3.2.4 end() template<typename T >

std::vector<T>::const_iterator Timeseries< T >::end ( ) const [inline]

Returns

Constant reference to last data piont in form of an iterator.

4.3.2.5 initial_time() template<typename T >

double Timeseries< T >::initial_time ( ) const [inline]

Returns

The initial time that is set.

4.3.2.6 operator"!=() template<typename T >

bool Timeseries< T >::operator!= (

const Timeseries< T > & ts ) const [inline]

Test whether the data points of two Timeseries (p. 26) are not equal by value.

4.3.2.7 operator∗() template<typename T >

Timeseries Timeseries< T >::operator∗ (

const double a ) [inline]

Multiply two Timeseries (p. 26) element wise by a scalar.

4.3.2.8 operator∗=() template<typename T >

Timeseries& Timeseries< T >::operator∗= (

const double a ) [inline]

Multiply current Timeseries (p. 26) element wise by a scalar.
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4.3.2.9 operator+() template<typename T >

Timeseries Timeseries< T >::operator+ (

const Timeseries< T > & ts ) const [inline]

Add two Timeseries (p. 26) element wise.

4.3.2.10 operator+=() template<typename T >

Timeseries& Timeseries< T >::operator+= (

const Timeseries< T > & ts ) [inline]

Add a second timeseries to the current element wise.

4.3.2.11 operator-() template<typename T >

Timeseries Timeseries< T >::operator- (

const Timeseries< T > & ts ) const [inline]

Substract a second Timeseries (p. 26) from the current element wise.

4.3.2.12 operator-=() template<typename T >

Timeseries& Timeseries< T >::operator-= (

const Timeseries< T > & ts ) [inline]

Substract two Timeseries (p. 26) element wise.

4.3.2.13 operator/() template<typename T >

Timeseries Timeseries< T >::operator/ (

const double a ) [inline]

Divide two Timeseries (p. 26) element wise by a scalar.

4.3.2.14 operator/=() template<typename T >

Timeseries& Timeseries< T >::operator/= (

const double a ) [inline]

Divide current Timeseries (p. 26) element wise by a scalar.

4.3.2.15 operator==() template<typename T >

bool Timeseries< T >::operator== (

const Timeseries< T > & ts ) const [inline]

Test whether the data points of two Timeseries (p. 26) are equal by value.

4.3.2.16 push_back() template<typename T >

void Timeseries< T >::push_back (

T val ) [inline]

Returns

Append new value to the end of the Timeseries (p. 26).
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4.3.2.17 set_initial_time() template<typename T >

void Timeseries< T >::set_initial_time (

double initial_time ) [inline]

Set the initial time.

4.3.2.18 set_timestep() template<typename T >

void Timeseries< T >::set_timestep (

double timestep ) [inline]

Set the timestep.

4.3.2.19 size() template<typename T >

size_t Timeseries< T >::size ( ) const [inline]

Returns

The total number of data points.

4.3.2.20 timestep() template<typename T >

double Timeseries< T >::timestep ( ) const [inline]

Returns

The timestep that is set.

4.3.2.21 write() template<typename T >

void Timeseries< T >::write (

const char ∗ filename ) const [inline]

Write Timeseries (p. 26) to file.

4.3.3 Friends And Related Function Documentation

4.3.3.1 operator<< template<typename T >

std::ostream& operator<< (

std::ostream & os,

const Timeseries< T > & timeseries ) [friend]

Print info.

The documentation for this class was generated from the following file:

• lib/ timeseries.hpp

Generated by Doxygen



4.4 Trajectory Class Reference 31

4.4 Trajectory Class Reference

#include <trajectory.hpp>

Public Member Functions

• Trajectory (const Trajectory &)=delete
• Trajectory (const std::string &filename, size_t particles_per_molecule=0, size_t offset=0)
• bool is_null () const
• bool is_good () const
• bool clear_ahead ()
• size_t index () const
• size_t frames_read () const
• const Frame & frame () const
• double timestep () const
• size_t particles_per_molecule () const
• size_t number_of_molecules () const
• size_t size ()
• void reset ()
• void set_frame ( Frame frame)
• std::streampos tellg ()
• void advance (const size_t number=1)
• void go_to_last_frame ()
• void loop_advance (int argc, char ∗∗argv)
• void move_to (const size_t number)
• void move_to (const std::streampos pos)
• Trajectory & operator= (const Trajectory &)=delete
• Frame operator∗ () const
• Frame ∗ operator-> ()
• Frame operator[ ] (size_t index)
• Trajectory & operator++ ()
• Trajectory & operator+= (const size_t number)
• template<typename T >

double mean (T(Molecule::∗f)(void), size_t step=1)
• template<typename T >

Timeseries< T > timeseries (T(Frame::∗f)(void), size_t step=1, size_t max=std::numeric_limits< int >←↩

::max())
• template<typename T >

Timeseries< std::vector< T > > timeseries (T(Molecule::∗f)(void), size_t step=1, size_t max=std←↩

::numeric_limits< int >::max())
• std::vector< Timeseries< std::vector< Real3D > > > timeseries_set (std::vector< Real3D(Molecule←↩

::∗)()> vofp={ & Molecule::end_to_end, & Molecule::center_of_mass }, size_t step=1, size_t max=std←↩

::numeric_limits< int >::max())
• template<typename T >

Timeseries< T > timeseries_mean (T(Molecule::∗f)(void), size_t step=1, size_t max=std::numeric_limits<
int >::max())

• template<typename T >

Timeseries< T > timeseries_single_molecule (T(Molecule::∗f)(void), size_t i_mol=0, size_t step=1, size←↩

_t max=std::numeric_limits< int >::max())
• void write_xyz (const char ∗filename, const bool append=true, const size_t precision=11)

Friends

• std::ostream & operator<< (std::ostream &os, const Trajectory &trajectory)
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4.4.1 Detailed Description

The Trajectory (p. 31) class is a reader class to read trajectory files given by concatenated xyz configurations. As
the simulations often produce huge files a focus is put on efficiency. Supported formats: .xyz The class can be used
like a forward iterator. Dereferencing returns the current Frame (p. 3) object.

4.4.2 Constructor & Destructor Documentation

4.4.2.1 Trajectory() [1/2] Trajectory::Trajectory (

const Trajectory & ) [delete]

Disable copy constructor.

4.4.2.2 Trajectory() [2/2] Trajectory::Trajectory (

const std::string & filename,

size_t particles_per_molecule = 0,

size_t offset = 0 ) [inline]

Construct Trajectory (p. 31) reader on given file.

Parameters

in filename Input file name.

in particles_per_molecule Number of particles in one molecule.

in offset Number of Frames to be skipped in the beginning.

4.4.3 Member Function Documentation

4.4.3.1 advance() void Trajectory::advance (

const size_t number = 1 ) [inline]

Jump ahead a given number of Frames.

4.4.3.2 frame() const Frame& Trajectory::frame ( ) const [inline]

Returns

Current frame on top of the Trajectory (p. 31).
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4.4.3.3 frames_read() size_t Trajectory::frames_read ( ) const [inline]

Returns

The number of frames that have already been read.

4.4.3.4 go_to_last_frame() void Trajectory::go_to_last_frame ( ) [inline]

Go to last Frames.

4.4.3.5 index() size_t Trajectory::index ( ) const [inline]

Returns

Current frame index.

4.4.3.6 is_good() bool Trajectory::is_good ( ) const [inline]

Check whether trajectory is readable.

4.4.3.7 is_null() bool Trajectory::is_null ( ) const [inline]

Check whether trajectory is unreadable.

4.4.3.8 loop_advance() void Trajectory::loop_advance (

int argc,

char ∗∗ argv ) [inline]

Advance the Trajectory (p. 31) in a way that is given by command line arguments. –offset gives the number of
Frames to skip in the beginning. –max gives the highest Frame (p. 3) index to be considdered. –step gives the
step size. I.e. for a step of 2 only every second Frame (p. 3) is read. Alternatively the step size can be increased
exponentially with the –exp argument.

Parameters

in argc Length of argument array.

in argv Command line argument array.

4.4.3.9 move_to() void Trajectory::move_to (

const size_t number ) [inline]

Move to frame with given inded.
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4.4.3.10 number_of_molecules() size_t Trajectory::number_of_molecules ( ) const [inline]

Returns

Number of molecules in the system.

4.4.3.11 operator∗() Frame Trajectory::operator∗ ( ) const [inline]

Dereferencing the Trajectory (p. 31) returns the frame currently on top.

4.4.3.12 operator++() Trajectory& Trajectory::operator++ ( ) [inline]

Advance by one frame.

4.4.3.13 operator=() Trajectory& Trajectory::operator= (

const Trajectory & ) [delete]

Disable assign operator.

4.4.3.14 particles_per_molecule() size_t Trajectory::particles_per_molecule ( ) const [inline]

Returns

Molecule (p. 22) size.

4.4.3.15 reset() void Trajectory::reset ( ) [inline]

Clear the Trajectory (p. 31).

4.4.3.16 size() size_t Trajectory::size ( ) [inline]

Returns

Total number of Frames. Warning: The complete Trajectory (p. 31) must be iterated to find this number.
Depending on the size this might take a while.

4.4.3.17 timeseries() template<typename T >

Timeseries<T> Trajectory::timeseries (

T(Frame::∗)(void) f,

size_t step = 1,

size_t max = std::numeric_limits<int>::max() ) [inline]

Generate Timeseries (p. 26) object where the data points are calculated from the following frames with function f.

Generated by Doxygen



5 File Documentation 35

Parameters

in f Function of Frame (p. 3).

in step Number of frames to advance each step.

[max] max Highest index to consider.

4.4.3.18 timestep() double Trajectory::timestep ( ) const [inline]

Returns

Time step.

4.4.4 Friends And Related Function Documentation

4.4.4.1 operator<< std::ostream& operator<< (

std::ostream & os,

const Trajectory & trajectory ) [friend]

Print info.

The documentation for this class was generated from the following file:

• lib/ trajectory.hpp

5 File Documentation

5.1 lib/frame.hpp File Reference

#include "molecule.hpp"
#include "fftw3.h"
#include <typeinfo>
#include <memory>
#include <random>
#include <set>
#include <iomanip>

Classes

• class Frame
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Functions

• double read_lattice (const Frame &frame, double ∗lattice, const size_t side_length, Real3D ∗velocity_←↩

lattice=nullptr, const size_t dim=3)
• double read_lattice (const char ∗filename, double ∗lattice, const size_t side_length, size_t dim=3)
• void write_lattice (const Frame &f, const char ∗filename, const size_t side_length)
• std::vector< std::array< double, 2 > > linearize_lattice (const fftw_complex ∗const lattice_transformed,

const size_t side_length, const double lattice_constant, const double bin_width, const double norm=1., const
size_t dim=3)

• template<typename T >

std::vector< std::array< double, 2 > > structure_factor (const T input, const size_t side_length, const
double lattice_constant, const double bin_width=0.1, const double norm=1., const size_t dim=3)

• template<> std::vector< std::array< double, 2 > > structure_factor< double ∗ > (double ∗lattice, const
size_t side_length, const double lattice_constant, const double bin_width, const double norm, const size_t
dim)

• double structure_factor (const Frame &frame, const Real3D q)
• std::vector< Real3D > lattice_vectors_inside_shell (const double radius, const double thickness, const

double lattice_constant)
• std::vector< double > mean_structure_factor (const Frame &frame, const double q, const size_t n_←↩

rand=128)
• template<typename T >

std::array< double, 6 > minkowski_functionals (const T input, const size_t side_length, const double
threshold=-1., const char norm='n', const bool natural_units=false)

• template<> std::array< double, 6 > minkowski_functionals< double ∗ > (double ∗const lattice, const
size_t side_length, const double threshold, const char norm, const bool natural_units)

5.1.1 Function Documentation

5.1.1.1 lattice_vectors_inside_shell() std::vector<Real3D> lattice_vectors_inside_shell (

const double radius,

const double thickness,

const double lattice_constant )

Compute the set of lattice vectors that lie within a spherical shell of certain thickness.

Parameters

in radius Radius of shell.
in thickness Thickness of shell.
in lattice_constant Lattice constant.

Returns

List of vectors.

5.1.1.2 linearize_lattice() std::vector<std::array<double, 2> > linearize_lattice (

const fftw_complex ∗const lattice_transformed,
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const size_t side_length,

const double lattice_constant,

const double bin_width,

const double norm = 1.,

const size_t dim = 3 )

Calculate the Structure factor S(q) from the Fourier transform of the lattice density. This gives the structure factor
depending on the VECTOR q. From this a histogram is produced where each bin contains the average structure
factor for a certain range of absolute values of q.

Parameters

in lattice_transformed Fourier transformation of a density lattice.

in side_length Number of lattice sites in one direction.

in lattice_constant Lattice constant.
in bin_width bin width of the q values

Returns

vector of pairs (q, S(q)).

5.1.1.3 mean_structure_factor() std::vector<double> mean_structure_factor (

const Frame & frame,

const double q,

const size_t n_rand = 128 )

Method for the brute-force calculation of the structure factor S(q). All lattice vectors in a shell of thickness lattice←↩

_constant around q are considered if there are less than n_rand. If there are more, n_rand vectors are chosen at
random.

Parameters

in frame Input Frame (p. 3).

in q Absolute value of vave vector to consider.

in n_rand Number of random orientations to consider.

Returns

Vector of tuples (<q>, <S(q)>, \sigma(q)).

5.1.1.4 minkowski_functionals() template<typename T >

std::array<double, 6> minkowski_functionals (

const T input,

const size_t side_length,

const double threshold = -1.,

const char norm = 'n',

const bool natural_units = false )
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Calculate Minkowski functionals (MFs)in 3 dimensions: V_0: volume V_1: area V_2: mean curvature (4n) V_3:
mean curvature (8n) V_4: Euler-Poincare characteristic (6n) V_5: Euler-Poincare characteristic 26n) The configu-
ration is first mapped onto a black and white lattice. Each cell-center of the lattice has 8 neighbors. Hence there
are 2∧8 different neighborhoods. The MFs are additive and rotationally invariant. By symmetry the number of
neighborhoods that are unique wrt. the MFs reduces to 22. The MFs are computed in the lattice centers.

See paper Arns, Knackstedt, Pinczewski, Mecke Phys. Rev. E 63 2001

Parameters

in input Input lattice configuration either as Frame (p. 3) or filename const char ∗
in side_length Linear lattice size of the interpolation lattice.

in threshold Lattice sites with density >= threshold will be interpreted as 'black'.

in natural_units Normalize results by appropriate power of side_length in order to make it dimensionless.

Returns

std::array of the 6 Minkowski functionals

5.1.1.5 read_lattice() [1/2] double read_lattice (

const char ∗ filename,

double ∗ lattice,

const size_t side_length,

size_t dim = 3 )

Read a lattice from file. Lattice must be cubic.

Parameters

in filename Input file name.

out lattice Array that stores the lattice.

in side_length Linear size of the lattice.

Returns

Total lattice density which is equal to the particle number.

5.1.1.6 read_lattice() [2/2] double read_lattice (

const Frame & frame,

double ∗ lattice,

const size_t side_length,

Real3D ∗ velocity_lattice = nullptr,

const size_t dim = 3 )

Projects a configuration onto a lattice using second-order extrapolation. The closer a particle is to a lattice site
the higher its contribution to the lattice site's density. The box must be cubic. Repeated application adds the new
configuration on top of the old.
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Parameters

in frame Input configuration.

out lattice Array that stores the lattice.

in side_length Number of lattice sites in one direction.

out velocity_lattice Optional array that stores the velocity lattice.

in Dimension of the configuration (either 2 or 3).

5.1.1.7 structure_factor() double structure_factor (

const Frame & frame,

const Real3D q )

Calculate the exact structure factor for given wave vector q

Parameters

in frame Input Frame (p. 3).

in q wave vector.

Returns

S(q)

5.1.1.8 write_lattice() void write_lattice (

const Frame & f,

const char ∗ filename,

const size_t side_length )

Write lattice configuration to disk.

Parameters

in f Frame (p. 3) to get the lattice from.

in filename Output filename.

in side_length Number of lattice sites in one direction.

5.2 lib/molecule.hpp File Reference

#include <iostream>
#include <fstream>
#include <sstream>
#include <cstdlib>
#include <vector>
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#include <string>
#include <stdexcept>
#include <algorithm>
#include <omp.h>
#include <assert.h>
#include <random>
#include "timeseries.hpp"
#include "Real3D.hpp"
#include "couf.hpp"

Classes

• class Molecule

5.2.1 Detailed Description

The Molecule (p. 22) class allows for the modelling of chain molecules. For a Molecule (p. 22) object only the
reference to the first and last bead of the molecule is stored in form of iterators. It is based on a full vector of
coordinates (and optionally a vector of velocities) that may correspond to multiple molecules and is stored at another
place (typically in a Frame (p. 3) object).

5.3 lib/timeseries.hpp File Reference

#include "couf.hpp"
#include "vector.hpp"
#include <algorithm>
#include <sstream>
#include <iomanip>

Classes

• class Timeseries< T >

5.4 lib/trajectory.hpp File Reference

#include "frame.hpp"
#include <list>

Classes

• class Trajectory

Functions

• template<typename T >

double correlation_function (T(Molecule::∗f)(void), Trajectory &trajectory, const size_t span)
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