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Abstract
The calculation of scattering amplitudes beyond the leading order or tree

level approximation in perturbation theory is required to match the increas-
ing precision of measurements at modern particle colliders where the funda-
mental structure of nature is put to test. The approach to higher-order calcu-
lations, based on the expansion on Feynman diagrams, becomes increasingly
cumbersome beyond the simplest 2 → 2 processes. Moreover, the scattering
amplitudes at a given perturbative order receive virtual and real corrections,
which are given by divergent integrals over different integration measures.
Although the divergences between the sum of all the contributions cancel
against each other, realizing this cancellation in an automated fashion is dif-
ficult, and a framework to unify the integration measures is desired in order
to pave the way for the possibility to cancel the divergences arising in the real
and virtual contributions at the integrand level. In this thesis, the Loop-Tree
Duality (LTD) formalism is utilized to reduce the dimension of the virtual
loop integrals to that of the real radiation corrections. The formalism is ap-
plied in first instance to single Feynman integrals, resulting in the construc-
tion of integrands which have a tree-like structure where the usual Feynman
propagators acquire a modified causal prescription for the position of the
poles. Using the Feynman diagram expansion of the scattering amplitudes
and the decomposition of each virtual contribution into trees, an expression
in terms of a tree amplitude-like object is found for the integrand of the com-
plete scattering amplitude in an arbitrary field theory. The tree structure of
the integrand is then exploited to construct recursion relations which allow
to compute the integrand without making reference to individual Feynman
diagrams, providing a first step into the possible automation of the numerical
calculation of higher-order amplitudes.
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Zusammenfasung
Die Berechnung von Streuamplituden jenseits der Näherung führender

Ordnung oder des Baumniveau in der Störungstheorie ist notwendig, um mit
der ansteigenden Genauigkeit von Messungen an modernen Teilchenbeschle-
unigern mithalten zu können, bei denen die grundlegende Struktur der Natur
auf die Probe gestellt wird. Die Herangehensweise an Berechnungen höherer
Ordnung, basierend auf der Entwicklung in Feynman-Diagrammen, wird
jenseits der einfachsten 2 → 2 Prozesse zunehmend umständlich. Zudem er-
halten Streuamplituden zu einer bestimmten perturbativen Ordnung in der
Störungstheorie virtuelle und reale Korrekturen, die durch divergente Inte-
grale über verschiedene Integrationsgebiete gegeben sind. Obwohl sich die
Divergenzen in der Summe aller Beiträge gegenseitig aufheben, ist die Real-
isierung der Aufhebungen in automatisierter Weise schwierig und ein Rah-
men zur Vereinheitlichung der Integrationsgebiete ist erwünscht, um den
Weg für die Möglichkeit zu ebnen, die Divergenzen, die in den realen und
virtuellen Beiträgen auftreten auf dem Niveau des lntegranden aufzuheben.
In dieser Arbeit wird der Loop-Tree Duality (LTD) Formalismus verwendet
um die Dimension der virtuellen Schleifenintegrale auf die Dimension der
realen Strahlungskorrekturen zu reduzieren.Der Formalismus wird zunächst
auf einzelne Feynman-Integrale angewandt, was zur Konstruktion von Inte-
granden führt, die eine baumartige Struktur haben, bei denen die üblichen
Feynman-Propagatoren eine modifizierte kausale Vorschrift für die Position
der Pole erhalten. Unter Verwendung der Entwicklung in Feynman-Diagrammen
von Streuamplituden und der Zerlegung jedes virtuellen Beitrags in Bäume,
wird ein Ausdruck in Form eines baumamplitudenartigen Objekts für den
Integranden der vollständigen Streuamplitude in einer beliebigen Feldtheo-
rie gefunden. Die Baumstruktur des Integranden wird dann ausgenutzt, um
Rekursionsrelationen zu konstruieren, die es ermöglichen, den Integranden
ohne Bezugnahme auf einzelne Feynman -Diagrammen zu berechnen, was
einen ersten Schritt in Richtung einer möglichen Automatisierung der nu-
merischen Berechnung von Amplituden höherer Ordnung darstellt.
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Chapter 1

Introduction

1.1 The quest for precision in particle physics

The XX and XXI centuries have seen an amazing progress in humankind’s
understanding of nature. Starting with the discovery of quantum mechanics
and relativity, physicists have embarked on a quest to understand the fun-
damental building blocks that make up our universe and how these blocks
interact with each other.

The current theoretical paradigm asserts that there are four kinds of fun-
damental interactions among the known kinds of matter: the gravitational,
electromagnetic, strong and weak nuclear interactions. These interactions
can be mathematically described by fields which have values at different
points in spacetime. There is, however, a divide in the properties of the field
theories describing each of the interactions.

Gravity is described by Einstein’s General Relativity, a classical field the-
ory where the gravitational interaction is understood as a consequence of en-
ergy bending spacetime. It is responsible for sustaining the large-scale struc-
ture of the universe, providing the dominant force amongst celestial bodies
such as stars, planets and galaxies. One characteristic property of the gravi-
tational interaction is its attractive nature: two bodies that interact through a
gravitational potential are always attracted to each other. As of today, there
is no known consistent quantum-mechanical description of gravity, although
there are indirect hints to the existence of gravitons, the hypothetical car-
rier of the interaction, thanks to the observation of gravitational waves by
LIGO [4].

The three remaining interactions are described by gauge Quantum Field
Theories. On one hand, the electromagnetic interaction is described by an
Abelian gauge theory were the force carrier, the photon, is massless and is
responsible for creating electric and magnetic fields. The charge associated
to the electromagnetic interaction can have different signs, meaning that elec-
trically charged particles can attract or repel each other, depending on their
charges, which is in contrast to gravitation. Electromagnetism is the second
interaction whose effects can most easily seen on a macroscopic scale, being
responsible for a wide range of phenomena, from holding atoms together
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through the attraction of nuclei and the electrons on their orbitals to the
propagation of (visible) light. Meanwhile, the strong interaction, carried by
massless, non-Abelian gauge bosons known as gluons, is responsible for the
binding of quarks to form hadrons, such as the proton or the neutron. Finally,
the weak interactions, mediated by the W± and Z0 bosons, is responsible for
the radioactive beta decay. These three interactions can be put together into
a single framework, known as the standard model (SM) of particle physics.

The SM has proved to be an outstanding theory, not only correctly de-
scribing the dynamics of the particles known before and during its develop-
ment, but also predicting the existence of a variety of particles which, time
and time again, have been discovered through ever more ambitious experi-
ments, with the discovery of a massive scalar of around 125 Gev discovered
at the Large Hadron Collider (LHC) at CERN in 2012, which after extensive
tests has shown to match all the expected properties of the Higgs boson.

Despite of its wide range of success, the SM is not a complete description
of nature. Beyond its biggest limitation, which is the impossibility to consis-
tently quantize Einstein’s gravity due to the perturbative non-renormalizability
of the theory, there is also no explanation in the SM for the existence and na-
ture of dark matter and dark energy, which comprise around 94% of the uni-
verse’s energy. Although we picked these two examples, there many more
phenomena which the SM fails to explain, and the currently accepted picture
is that the SM is a low-energy effective theory of a bigger framework which
allows to explain all the currently observed discrepancies and the phenom-
ena for which we do not have an explanation. As the history of physics has
proved time and time again, independently of the soundness of the theoreti-
cal models that describe nature, discoveries that lead to a deeper understand-
ing of the universe are found through observation, introducing the need to
supersede the currently accepted paradigms and develop new models that
adjust to the newly discovered aspects of reality. This means that the current
goal of the particle physics community is to probe the predictions of the SM
to a very high degree of accuracy and precision in order to look for clues of
the hypothetical ”higher structure” which reduces to the SM at low enough
energies.

With the current machinery of particle colliders, there are two possible
venues to put the SM to the test.

The first one is to increase the energy and luminosity at which the colli-
sions occur. On this front, the LHC has provided the greatest improvements,
having managed to operate at a collision energy of 7 TeV during its first run
between 2009 and 2013, in which evidence for the Higgs boson was first dis-
covered. The first improvements helped it achieve a collision energy of 14
TeV and, currently, further work on the collider plan to increase its luminos-
ity by a factor of 10. Also at CERN, there are plans for the design of other
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colliders, such as the Compact Linear Collider [5, 6] and the Future Circu-
lar Collider [7–10]. Elsewhere in the world, the International Linear Collider
in Japan [11] and the Circular Electron-Positron Collider in China [12, 13]
are currently under design. All these experiments will, through different
observations, extend the limit to which the SM has been tested so far and,
hopefully, shed some light into its possible extensions. The second possibil-
ity is to look at the values of very precise measurements, such as the ones
provided by electron-positron colliders, and try to find tiny (but significant)
discrepancies between the observed values and the predictions made by the
calculations obtained from the framework of the SM. However, highly pre-
cise measurements require, in turn, highly precise calculations. As it turns
out, increasing the predictions of calculations in the SM is no easy task.

The issue with the calculation of observables in the SM stems from the
structure of Quantum Field Theory (QFT), the mathematical formalism used
for its description. Due to the highly non-linear nature of the QFT’s involved
in the description of the SM, the equations of motion cannot be solved exactly
and it is necessary to recur to the use of perturbation theory for the calcula-
tion of observables such as cross-sections at high energy. The perturbative
series of an observable in an arbitrary QFT can be organized in terms of Feyn-
man graphs, which give graphical representations of the terms appearing in
the expansion. These graphs organize themselves by the number of external
particles in the process, and by the number of internal closed loops in the
graphs. Although these graphs provide an intuitive and, in principle, simple
way to calculate the necessary contributions to an observable at any given
perturbative order, in practice this is hardly what happens. One of the first
issues is combinatorial in nature, because the number of graphs contributing
to a particular observable grow rapidly with the number of external parti-
cles and the number of closed loops. Moreover, the nature of the contribu-
tions beyond the Leading Order (LO) approximation is complicated because
of the appearance of integrals over all possible values of the momenta run-
ning through the loop. These integrals usually lead to divergences, and for
a general observable these divergences cancel only in the combination of the
so-called virtual and real corrections. Intuitively speaking, given the calcu-
lation of a LO observable with n external particles, some of the divergences
that occur in the corrections with L = 1 closed loop and n external particles
are cancelled against corrections with (n + 1) external particles, but no addi-
tional closed loop. These first corrections, known as Next-to-Leading Order
(NLO) corrections, are for the most part solved and can be performed in an
automated fashion through the use of programs such as [14–17]. The current
bottleneck for automation starts at Next-to-Next-to-Leading-Order (NNLO).
Due to the increasing capacity of collider experiments, such contributions
are necessary in order to compare to the current experimental benchmarks.
Thus, it is of utmost importance to make progress towards breaking this bot-
tleneck and design a framework in which one can compute NNLO correc-
tions efficiently and automatically.
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It is in this direction where the work of this thesis was done. We propose
a new formulation of the Loop-Tree Duality (LTD) formalism [1–3], which
allows to accommodate all the perturbative contributions at a given loop or-
der in the same footing as the corrections with fewer amounts of loops and
additional external particles. This unification of the structure of the different
corrections allows for the definition of an object with properties similar to
those of the leading order corrections prior to the integration over the loop
momenta, aiming for the numerical computation of higher-order corrections
bypassing some of the difficulties occurring in the typical analytic calcula-
tions of higher-order corrections.

1.2 Outline

This thesis is organized as follows.

In Chapter 2, we provide an introduction to QFT, illustrating some of its
basic concepts, which set the framework to perform the calculation of scatter-
ing amplitudes and cross-sections. The Lagrangian formalism for scalar φ3

theory, Quantum Electrodynamics (QED) and Quantum Chromodynamics
(QCD) is introduced. Afterwards, the formula relating scattering amplitudes
to cross sections is introduced, and a study of Feynman graphs and integrals
is performed, focusing on the singular behaviour of loop integrals. We will
see that there are two kinds of physical singularities present in higher-order
corrections to scattering amplitudes: ultraviolet (UV) and infrared (IR) diver-
gences. The energy regimes and the origin of each of these singularities will
be discussed, along with a basic introduction to the theory of renormaliza-
tion, which allows for the cancellation of UV divergences through the intro-
duction of counterterms. Finally, we explicitly calculate the amplitude for the
process γ → e+e− in QED at one-loop order. This calculation will serve as an
example of the cancellation of IR divergences, which involve contributions
from the virtual loop corrections and the so-called real corrections, given by
diagrams with additional external edges.

Chapter 3 is devoted to the systematic classification of Feynman graphs.
Here, we argue what kind of Feynman diagrams contribute to a scattering
amplitude at a given perturbative order, and classify these diagrams into ap-
propriate sets. Afterwards, we perform a graph-theoretical analysis of the
relation between L-loop graphs with n external edges and tree graphs with
n + 2L external edges. The mechanism to relate these graphs will be the op-
erations of cutting and sewing, which are inverse to each other. Essentially,
cutting open an internal line of a loop graph reduces the loop order of the
graph by one and increases its number of external legs by 2. Hence, cutting
exactly L internal lines of an L-loop graph results into a connected tree graph
with n+ 2L external legs. Given a specific tree graph, there will be more than
a single set of cuts which of the associated loop graph which result into the
same tree graph. We will see that this property implies that the symmetry fac-
tor associated to a loop graph will cancel after cutting when the overcounting
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of tree graphs is properly taken into account, making it possible to exchange
a summation over loop graphs for a summation over cut tree graphs.

The relation between loop and trees is further studied in Chapter 4, where
we look at the analogue of the cutting operation for the Feynman integral as-
sociated to a given Feynman graph. It will be seen that cutting an internal line
amounts to calculating the residue of the integrand at the pole in the energy
component that arises when the associated momentum goes on-shell. We
will first perform the analysis at the one-loop level, obtaining the Loop-Tree
Duality (LTD) formula at one-loop, obtaining an integrand with the struc-
ture of a tree graph but with a modified causal prescription for the Feynman
propagators and we present an example to illustrate the validity of the LTD
formula. Finally, a generalization of the LTD formula is discussed, showing
that it is possible to reproduce the behaviour at arbitrary loop order at the
cost of introducing a set of combinatorial factors Sσα which follow from the
fact that, in general, multivariate residues cannot be calculated as the product
of residues in a single complex variable. We discuss the non-uniqueness of
the LTD representation for multiloop graphs, and provide a numerical exam-
ple of the application of LTD to the two-loop sunrise graph in one spacetime
dimension. The chapter is then concluded with a brief mention of the differ-
ent approaches to LTD available in the current literature.

The extension of LTD to the integrand of the complete L-loop scattering
amplitude is performed in Chapter 5. We begin by discussing the regular-
ized forward-limit of tree amplitudes and tree amplitude-like objects, which
is central to the definition of a non-singular loop integrand. The local repre-
sentation of UV counterterms is then introduced, allowing us to write all of
the virtual contributions to the scattering amplitude at a given perturbative
order as integrals over L loop momenta. We will see that the local represen-
tation can be constructed such that residues of bare loop graphs originating
from higher-order poles are cancelled against residues in the counterterms.
This property will let us preserve the interpretation of the cut integrands as
having a tree-like structure. Applying the LTD formula to every Feynman
diagram contributing to a given scattering amplitude at L loops and using
the relation between the sum of loop and tree graphs derived in Chapters 3
and 4 will then allow for the definition of an integrand which can be obtained
without computing individual Feynman diagrams. The last step is then to in-
troduce recursion relations that allow for the efficient calculation of the loop
integrand. We conclude our discussion with a summary and an outlook of
the further potential extensions of our work in Chapter 6.





7

Chapter 2

Basic notions of Quantum Field
Theory

In this chapter, we give a brief overview of QFT and its applications in the
phenomenology of the SM. We discuss how to construct cross-sections in
terms of S-matrix elements and how these are computed order by order as
a perturbative expansion in the couplings of the field theory under consid-
eration. This will lead naturally to the introduction of Feynman diagrams
and Feynman integrals, which are at the center of this thesis. We will study
some of their properties and their singularity structure, exposing how these
integrals often yield divergent results when treated at face value. This will
lead us to discuss the different regularization procedures used in the litera-
ture to treat the divergences and how to remove them to obtain measurable
predictions for physical observables.

2.1 Gauge Theories in Particle Physics

Our current understanding of particles and their interactions is based on
QFT, where the fundamental objects are operator-valued distributions, the
fields, whose excitations give rise to the different particles observed in na-
ture. A particular field theory can be specified by a classical Lagrangian den-
sity1. For example, the Lagrangian describing the dynamics of a real scalar
field φ of mass m in four dimensions can be written as

Lscalar =
1
2

(
∂µφ∂µφ − m2φ2

)
+ Lint, (2.1)

where Lint contains the interactions terms that are typically polynomials
in φ (for example Lint = 1

3! gφ3), and the remaining terms make up the free
Lagrangian, which describe the dynamics of the field when it is subject to no
external potential.

For the calculation of physical observables, we will be interested in the
so-called gauge theories: field theories whose Lagrangian is invariant under
local transformations. Such a theory can be build up by considering a field
theory that exhibits a global symmetry and promoting this symmetry to a
local symmetry.

1In what follows, we will refer to a ’Lagrangian density’ simply as a ’Lagrangian’.
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Assume we are given a Dirac field Ψ with free Lagrangian

LD = Ψ(i/∂ − m)Ψ, (2.2)

where /p = pµγµ,Ψ = Ψ†γ0 and γµ denote the Dirac matrices. For any
real number α, this Lagrangian is invariant under the transformation

Ψ → eiαΨ, (2.3)

which implies that the theory has a global symmetry. We could then ask:
what happens if α is a function of the spacetime coordinates? In this case, the
mass term mΨΨ is still invariant; however,

∂µeiα(x)Ψ → eiα(x) (∂µΨ + (i∂µα)Ψ
)

, (2.4)

that is, the derivative term is not invariant under local phase transforma-
tions. The solution to this problem comes from the introduction of a covariant
derivative, Dµ, which acting upon the Dirac field Ψ is given by

DµΨ(x) = ∂µΨ + ieAµ(x)Ψ(x), (2.5)

where e is a constant and the vector field Aµ transforms according to

Aµ(x) → Aµ(x)− 1
e

∂µα(x), (2.6)

so that multiplying the second term by iΨ(x) gives exactly the necessary
quantity to cancel the term proportional to ∂µα in the transformation of Ψ.
Furthermore, we can construct another gauge invariant quantity by consid-
ering the commutator of two covariant derivatives:

[Dµ, Dν] = [∂µ + ieAµ, ∂ν + ieAν]

= ie
(
[∂µ, Aν(x)]− [∂ν, Aµ(x)]

)
= ie(∂µ Aν − ∂ν Aµ)

= ieFµν

(2.7)

where we define the field strength tensor Fµν = ∂µ Aν − ∂ν Aµ. With these
objects, we write down our final Lagrangian as

LEM = −1
4

FµνFµν + Ψ(i /D − m)Ψ. (2.8)

Interpreting the coupling e as the electric charge, the Lagrangian LEM
describes the dynamics of the electron, represented by the field Ψ, coupled
to the gauge field Aµ that represents the photon. The classical equations
of motion obtained by varying this Lagrangian with respect to the photon
field can be seen to be the inhomogeneous Maxwell’s equations with cur-
rent jµ = ΨγµΨ, and the variation with respect to Ψ will give Dirac’s equa-
tion. Upon quantization of this theory, we obtain Quantum Electrodynamics
(QED). This is the simplest example of a gauge theory that corresponds to
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fields of physical particles and generalizing this construction to non-Abelian
gauge groups (meaning that two successive transformations have non-trivial
commutation properties), we obtain the most general type of gauge theories.
The most important property of non-Abelian gauge theories is the fact that,
contrary to the case of QED, the gauge field presents self-interaction terms:
for a theory with gauge group SU(N) for N ≥ 2, we write

LSU(N) = −1
4

Fa
µνFaµν + iΨ( /D − m)Ψ (2.9)

where, now, we interpret Ψ as a multiplet of N Dirac fields whose covari-
ant derivative acts as

DµΨ=∂µΨ − igAa
µtaΨ (2.10)

where the generator matrices ta are introduced, with the defining prop-
erty

[ta, tb] = i f abctc (2.11)

for some set of complex numbers f abc, known as structure constants. The
dimension of the matrices ta depends on the underlying Lie group of the the-
ory; in particular, there are (N2 − 1) generators in the adjoint representation
of the group SU(N). This means that a set of (N2 − 1) gauge fields Aa

µ is
introduced to obtain a theory with local invariance with respect to transfor-
mations belonging to the Lie algebra of SU(N).

Also, as in the case of QED, one can define the field strength tensor through
the commutator of two covariant derivatives. In this case, however, because
of Eq.(2.11), the two gauge fields do not commute, but rather satisfy

[Dµ, Dν]Ψ = [∂µ − igAa
µta, ∂ν − igAb

νtb]Ψ

= {[∂µ, ∂ν]− ig[∂µ, Ab
νtb]− ig[Aa

µ, ∂ν]− g2[Aa
µta, Ab

νtb]}Ψ

= {−ig∂µ Ab
νtb + ig∂ν Aa

µta − ig2Aa
µ Ab

ν f abctc}Ψ.

(2.12)

Defining the field strength tensor by the relation [Dµ, Dν] = −igFa
µνta, we

then find

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ + g f abc Ab

µ Ac
ν (2.13)

thus, when squaring, we obtain not only a quadratic term in the deriva-
tives of Aµ but also self-interaction terms with three and four gauge fields in-
teracting. The most important application of gauge theories is the SM, which
describes the interaction of matter, represented by fermionic fields mediated
by the exchange of a set of gauge bosons. This theory is based on the gauge
group

SU(3)⊗ SU(2)⊗ U(1) (2.14)
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where SU(3) is the gauge group of the strong interaction and SU(2) ⊗
U(1) is the gauge group of the electroweak interaction. This gives raise to 8
colors of massless gluons ga, as well as the three massive electroweak bosons
W+, W−, Z and the massless photon γ. The electroweak bosons then acquire
their mass through the Higgs mechanism.

2.2 Computation of observables and Perturbation
Theory

Given that the theories we will be working with are quantum mechanical,
the most general quantities we can calculate are probabilistic in nature. In
particular, we are interested in giving a quantitative description of the phe-
nomena of scattering, which can thought of as the consequence of localized
collisions between particles. The mathematical description of scattering in
quantum field theories is done via the S-matrix, which encodes the informa-
tion about how particles interact with each other. We will do a short review of
the definition of the S-matrix and its connection to cross-sections, our main
object of interest, as well as how to compute the elements of the S-matrix
from the knowledge of the Lagrangian. Detailed discussions of the subject
can be found in standard textbooks [20, 21].

2.2.1 The S-Matrix and Cross-Sections

Consider the scattering process where n initial particles scatter into m final
particles. A state formed in the asymptotic past where each particle has a
definite momenta is known as an "in" state |i〉in = |p1, p2, ...pn〉in. Similarly, a
state formed in the asymptotic future where each particle has a definite mo-
menta is an "out" state | f 〉out = |k1, k2, ..., km〉out. We will be mainly interested
in process where the initial state has no more than two particles. Thus, in
what follows, we will assume that our "in" state is a two-particle state. The
probability that the initial state |i〉in evolves into the final state | f 〉out can be
obtained by squaring the transition amplitude between the states,

P(i → f ) = |out 〈 f |i〉in |
2

= |out 〈k1, k2, ..., km|p1, p2〉in |
2.

(2.15)

Now, each of these states can be reached by starting from the states de-
fined at some common reference time, for example, t = 0, taking the final
state to time T and the initial state to −T with a time evolution operator,
and then let T → ∞. The (unitary) operator that results from this limiting
procedure is the S-matrix:

P(i → f ) = |out 〈k1, k2, ..., km|p1, p2〉in |
2

= | 〈k1, k2, ..., km| S |p1, p2〉 |2
(2.16)
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In an arbitrary scattering process, there exist the possibility that no scat-
tering occurs at all. To separate this information from the actual interaction
process, the S-matrix is written as

S = I + iT, (2.17)

where I is the identity matrix in the Hilbert space where the "in" and
"out" states are defined, and the T matrix contains all the information from
the interactions. Momentum conservation should be encoded into either the
S or T matrices, so we will define the matrix elements to contain an explicit
momentum-conserving delta functions,

〈k1, k2, ..., kn| iT |p1, p2〉

= (2π)4δ(4)

(
p1 + p2 − ∑

i
ki

)
iA(p1, p2; k1, k2, ..., km)

(2.18)

where the remaining factor, A(p1, p2; k1, k2, ..., km), is the so-called scatter-
ing amplitude. We will usually assume that all the states are outgoing, and
write

A(−p1,−p2; k1, k2, ..., km) = An(p1, p2, p3..., pn) (2.19)

to denote the amplitude with n external particles. The minus sign in front
of p1 and p2 in the left-hand side express the fact that, in a scattering process,
an incoming particle with momentum p can be understood as an outgoing
particle with momentum −p. The general rule of thumb is then to compute
the amplitude with all states outgoing, and then change the signs of the mo-
menta associated to the physically incoming particles of the process to obtain
the correct value for the amplitude. These amplitudes may also depend on
the polarizations of the external particles in theories with spin, but we will
not write this dependence unless strictly necessary.

Scattering amplitudes are of central interest because of their relation to
cross-sections. For a 2 → (n − 2) scattering process, the differential cross-
section is given by

dσ =
1
F

(
n

∏
i=3

d3pi

(2π)32Ei

)
|An(p1, p2, p3, ..., pn)|2

× (2π)4δ(4)

(
p1 + p2 −

n

∑
i=3

pi

) (2.20)

where F is a flux factor depending only on the initial kinematics and Ei
are the on-shell energies of the final state particles. Assuming, then, that an
expression for the amplitude An is known, one could obtain the cross sec-
tion by performing the integrations over the final state momenta. Within the



12 Chapter 2. Basic notions of Quantum Field Theory

current framework of QFT, there is no known technique that allows for the
exact calculation of the scattering amplitude for interacting theories in four
spacetime dimensions, which is related to the fact that there is no known ex-
act solution to the classical equations of motion for interacting fields in four
dimensions.

One can, however, find the solution to the equations of motion for free
field theories and calculate the probability that a free particle propagates in
space-time from one point to another. When including interactions, the solu-
tion to the free-field equations of motion serve as an useful first approxima-
tion for the observables of the interacting theory if the couplings of the theory
are small. Therefore, what is done in practice is to organize the amplitude as
a perturbative expansion in the couplings and keep only the first few orders
of the expansion to obtain a meaningful approximation to the full amplitude.
The problem, then, translates into the calculation of the coefficients of this
expansion. We outline how this coefficients are calculated in the framework
of perturbation theory.

2.2.2 The Perturbative Expansion and Feynman Diagrams

Consider a field theory with a single coupling g. According to our previ-
ous discussion, the n particle scattering amplitude can be written as a power
series in g

An = A(0)
n + g2A(1)

n + g4A(2)
n + . . . (2.21)

and, if the condition g << 1 is met, higher powers of g give smaller con-
tributions to the amplitude. This condition usually depends on the energy
scale at which the process occurs; for example, if we let g denote the cou-
pling of QCD with n f flavours of quarks, it is possible to show that, at a
center of mass energy ECM =

√
s, the coupling is given approximately by

g2(s) =
2π

b0 log
(√

s
Λ

) (2.22)

where b0 is a constant. We can see that, for values of s such that
√

s >> Λ,
g(k) is small. This phenomena is known as asymptotic freedom [18, 19] and
implies that, at very high energies, the interactions of non-Abelian gauge the-
ories become small enough so that one can apply perturbation theory to cal-
culate observables. In this sense, Λ is the scale at which perturbation theory
breaks down, since at energies lower than this scale, the coupling becomes
large and higher-order contributions to the amplitude become large.

Each of the coefficients A(L)
n in Eq.(2.21) depend on the kinematics of the

particles involved in the scattering process. The standard approach to cal-
culate each of the terms in the perturbative expansion is through the use
of Feynman diagrams, which give a pictorial representation of the different
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A3 = + g2

 + +

+ . . .

FIGURE 2.1: Contributions to off-shell photon decay into a
quark-antiquark pair up to one-loop corrections in the strong

interaction.

contributions that make up the quantities A(l)
n and are built using the Feny-

man rules, which are specific to the field theory under consideration. We
include the Feynman rules of some commonly encountered field theories in
Appendix A.

The different sets of diagrams contributions to the scattering amplitude
can then be organized by their number of external edges and loops, in such
a way that the correction of order L contains diagrams with only L closed
loops. Each closed loop introduces a momenta which is not constrained by
momentum conservation, and thus should be integrated over. Therefore, ev-
ery L loop diagram is associated with an integration over all of the spacetime
components of L different momenta.

In Figure 2.1, we can see the first few contributions to the process where
an off-shell photon decays into a quark-antiquark pair. The first order con-
tribution to the amplitude is known as the tree-level or leading order (LO)
contribution. Tree amplitudes have no unconstrained momenta, and there-
fore require no integration to obtain the amplitude. More interesting are the
next-to-leading order, or NLO corrections. This kind of corrections include
one closed loop, and according to our previous discussion, an integration
should be performed over the so-called loop momenta. The extension to
higher loops is natural, so that by considering graphs with higher number
of loops introduces additional integrations to be performed in order to ob-
tain the corresponding contributions.

2.2.3 Singularities of Feynman Integrals

The calculation of a scattering amplitude beyond tree-level involves the com-
putation of Feynman integrals. The functions to be integrated are, in gen-
eral, rational functions of the loop momenta. This implies that one might en-
counter singularities within the integration region, and dealing with the di-
vergences that arise because of these singularities is an extremely non-trivial
task.
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p

k − p

k
p

k

FIGURE 2.2: Diagrams corresponding to the scalar two- and
three-point functions, B(1)

2 and T(1)
3 , at one-loop order.

To illustrate this point, consider the diagrams of Figure 2.2, which show
the contributions to the two- and three-point functions in φ3 theory at one-
loop.

The integral expression corresponding to the bubble diagrams is given by

B(1)
2 (p) =

∫ d4k
(2π)4

1
(k2 + iδ)((k − p)2 + iδ)

(2.23)

while the triangle diagram can be written as

T(1)
3 (p) =

∫ d4k
(2π)4

1
(k2 + iδ)((p1 − k)2 + iδ)((k + p2)2 + iδ)

(2.24)

where we have taken the internal lines to be massless, but we assume
p2 6= 0. Let us first focus on the behaviour of the two-point function. For
k → ∞2, we can take (k − p) ≈ k and then integral behaves as

B(1)
2 (p) ∝

∫ d4k
k4

∝
∫ dk

k
∝ log k

(2.25)

meaning that the integral will diverge logarithmically. Similarly, one can
find situations in which the integral diverges linearly or quadratically with
the magnitude of k. This type of divergence, which is related to modes with
very high energies, are known as ultraviolet (UV) divergences and get their
name from their similarity to the ultraviolet catastrophe of black-body radia-
tion, the phenomena that gave birth to the discovery of quantum mechanics.
These singularities are systematically removed through the process of renor-
malization, whose basic ideas we will discuss later.

2This statement only really makes sense if the momenta are Euclidean. This can always
be accomplished by first performing a Wick rotation, so we ignore this technicality for the
moment.
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A(0)
4 = +

FIGURE 2.3: Real emission diagrams for the γ∗ → qq̄ process

The other kind of singularities of Feynman integrals are known infrared
(IR) divergences. These kind of divergences come from the regions where the
momenta is small, and can only occur when one or more internal lines are
massless. For example, from the 1/k2 term in the denominator of Eq.(2.24),
we can see that the integral has a pole in the integration region as k → 0. This
kind of singularity is known as a soft singularity [22, 23]. Another kind of
infrared divergence can occur for configurations where the loop momenta is
collinear with one of the external momenta. In the case of the bubble integral,
if we have k → zp for some real number z, then the propagator denominator
(k − p)2 behaves as p2, and then the integral will diverge if p2 = 0; these are
known as collinear (or mass) divergences.

It is worth noticing that IR singularities not only appear in loop inte-
grals, but that they can also be present in the phase-space integrals when
one considers real corrections to a given process where the radiated particles
are massless. From a physical point of view, these corrections are necessary
because any detector has a finite resolution, which implies that if a given
particle radiates another particle with very small energy or with small mo-
menta collinear to the direction in which the original particle was scattered,
the detector will not be able to distinguish between the process without the
radiated particle and the actual physical process that occurred.

As an example, consider the process γ∗ → qq̄. Similarly to the loop correc-
tions in Fig. 2.1, one can also compute the corrections coming from diagrams
of higher multiplicity. For this process, the contributing diagrams are given
in Fig. 2.3.

In this case, when the integration over the three-particle phase space is
performed, there can be soft singularities when the energy of the emitted
gluon goes to zero and, if one is interested in the computation of observ-
ables where the masses of external quarks can be neglected, there will be
also collinear singularities arising from the regions of phase-space where the
gluon momenta is collinear with the momenta of the quark or antiquark.

The fact that both real and virtual corrections present IR singularities is
not innocuous, but rather is at the root of their resolution: the Kinoshita-
Lee-Nauenberg (KLN) theorem [24, 25] asserts that the IR singularities aris-
ing from the loop corrections to a particular order in perturbation theory are
cancelled by the IR singularities that appear in the phase-space integration of
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real corrections at the same perturbative order.

The KLN theorem, however, only applies to the so-called infrared safe
observables, which are a set of observables insensitive to the inclusion of
additional soft or collinear particles. This property is satisfied by various ob-
servables in the Standard Model, and is crucial to its predictive power.

Realizing the cancellation of IR divergences between real and virtual cor-
rections in practical calculations is, in general, a very involved task, since the
integrations are performed over different integration domains. Moreover, in
all but the most simple of examples, performing the analytical computation
of the phase-space integrals is in general not possible. Therefore, there are
two general approaches to the calculation of loop amplitudes

• The virtual corrections are first integrated analytically over the loop
momenta. As a first step, UV singularities must be regularized and
removed by including renormalization counterterms. The introduc-
tion of the regulator and of the counterterms, as we will see, can be
performed systematically and presents no difficulty. Performing the
loop integrals, however, is rather difficult since beyond one-loop and
low multiplicity, the loop integrations are quite non-trivial. The usual
approach is not to perform these integrals directly, but rather to find
systems of differential equations in the kinematic invariants which re-
duce the problem to the evaluation of a reduced set of basis integrals
[26–32]. Moreover, the computations usually involve the manipula-
tion of transcendental functions such as multiple or elliptic polyloga-
rithms [33–41]. Afterwards, the phase-space integration of the virtual
and real corrections is performed numerically. Although the sum of
both contributions is free of IR divergences, each contribution is inte-
grated over a different integration measure. Therefore, these singulari-
ties have to be first treated separately. An example of such a technique
is the so-called dipole formalism [42–45], in which one introduces a set
of counterterms given as integrals over the real radiation phase-space,
that can be integrated over the phase-space measure of a single unre-
solved particle in such a way that adding and substracting the countert-
erms to the sum of virtual and real corrections appropriately to each of
the contributions yields integrands, for both the virtual and real cor-
rections, that contain only integrable singularities and therefore can be
safely computed.

• One can attempt to perform the complete calculation numerically, for
example, through numerical loop integration [46–58] or numerical uni-
tarity [59–76]. In this approach, the difficulties in the treatment of the
phase-space integrations are the same, but the challenges encountered
in the analytic computation of the loop amplitudes is changed instead
for a numerical computation. This process requires the computation
of counterterms that can be written in a local representation [51, 53] in
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such a way that they render the loop integrals UV integrable, while re-
producing the correct value of the counterterms found in the analytic
approach.

In general, the treatment of UV singularities can be performed in a sys-
tematic fashion, while that of IR singularities is more complicated and de-
tailed. Let us, then, see how the UV singularities of Feynman integrals are
parametrized and removed.

2.2.4 Regularization and Renormalization

In order to extract physically measurable quantities from the evaluation of
Feynman integrals, their divergences must be treated and isolated, in order
to associate a finite result to each integral which then allows to obtain a value
for a given observable. The first step that is needed in order to treat this
divergences is regularization: the integral is redefined by the introduction
of a parameter which parametrizes the divergence, in such a way that the
regularized integral is finite for some values of the parameter and that, in
the limit where the original integral is recovered, the divergent behaviour
emerges. As a very elementary example, consider the integral

I =
∫ ∞

1

dx
x

(2.26)

which is divergent as x → ∞. This integral can be regularized by inte-
grating up to some cut-off K. We obtain a modified integral, which can be
evaluated

I(K) =
∫ k

1

dx
x

= log K (2.27)

the new result is then finite, and we recover the original integral as K →
∞. Although this process has not removed the divergence, we have man-
aged to obtain a finite result where the singularities are clearly parametrized.
A similar idea could be applied to the scalar two-point function of Eq.(2.23),
where we could define the integral such that, when integrating over the mag-
nitude of the momenta, we integrate only up to some very large, but finite,
momentum Λ. This is an example of a regularization scheme, known as cut-
off regularization. From the point of view of the properties of Feynman in-
tegrals this is not the most convenient regularization procedure, since the in-
troduction of a preferred momentum scale breaks Lorentz invariance. There
are many more regularization schemes, such as Pauli-Villar (PV) [77] and
lattice regularization [78], among others. The regularization scheme most
commonly encountered in perturbative Quantum Field Theory calculations
is dimensional regularization (DR), which was introduced independently by
Giambiagi and Bollini [79] and ’t Hooft and Veltman [80]. The idea behind
dimensional regularization is to redefine the integration in some arbitrary
number of dimensions D, compute the integral as a meromorphic function
for the values of D which make it convergent and then perform an analytic
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continuation to the whole complex plane. The result, typically, is that if
one performs a Laurent expansion of the D dimensional integral around the
physical dimension (for example, taking D = 4 − 2ε and expanding around
ε = 0), the singularities will appear as poles in ε plus additional terms which
are finite in the limit ε → 0. It is worth noticing that the integrations is per-
formed as if D was an integer, but the analytic continuation guarantees that
the result is valid even for non-integer values of D.

To illustrate this procedure, we consider the so-called tadpole integral

T(1)
1 (b, m) =

∫ d4k
(2π)4

1
(k2 − m2 + iδ)b (2.28)

where we take the single propagator to have mass m and let it be raised
to an arbitrary power b. For large k, the integral behaves as k3−2bdk, such
that for b < 3

2 the integral has a UV divergence. For example, if b = 1, the
integral diverges quadratically, while for b = 2 the integral has a logarithmic
divergence. Now, we will compute this integral assuming that the momenta
is D dimensional. The first step is to perform a Wick rotation, which al-
lows us to rewrite this integral in terms of the magnitude of a D-dimensional
Euclidean vector k = (kE

0 ,~k) by means of the change of variables k0 = iKE
0 ,

which doesn’t change the integration limits of the integral over the Euclidean
time component of the momenta thanks to the Feynman iδ prescription. The
net result is to pick up a factor of i(−1)b. Thus, we write

T(1)
1 (b, m; D) = i(−1)b(µ2)

D−4
2

∫ dDk
(2π)D

1
(k2 + m2)b (2.29)

where we have introduced an arbitrary scale µ, which ensures that the re-
sult has the same units as the result in D = 4 for every value of D. Now, since
the integrand is spherically symmetric, we can work in D dimensional spher-
ical coordinates. The measure can then be written in terms of the magnitude
of the momenta and the D-dimensional solid angle,

dDk = kd−1dkdΩD (2.30)

and the integrations can be performed separately. The integral over the
solid angle is a standard computation that can be found in textbooks, e.g. [20],
with the result

∫
dΩD =

2π
D
2

Γ
(D

2

) (2.31)

where Γ(x) is Euler’s Gamma function. The remaining integral

Iint(D) =
∫ ∞

0

kD−1

(k2 + m2)b dk (2.32)

can be performed by first changing variables to u = k2, which results in
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Iint(D) =
1
2

∫ ∞

0

u
D
2 −1

(u + m2)b du (2.33)

and then a further change of variables x = m2

u+m2 puts the integral, after a
bit of algebra, in the form

Iint(D) =
1
2
(m2)

D
2 −b

∫ 1

0
xb−D

2 −1(1 − x)
D
2 −1dx (2.34)

This integral can be evaluated with Euler’s Beta function and yields

Iint(D) =
1
2
(m2)

D
2 −bB

(
b − D

2
,

D
2

)
=

1
2
(m2)

D
2 −b Γ

(
b − D

2

)
Γ
(D

2

)
Γ(b)

so that, putting everything together, the final result for T(1)
1 is, in terms of

2ε = 4 − D,

T(1)
1 (b, m; ε) =

i(−1)b

(4π)2−ε
(µ2)ε(m2)2−ε−b Γ (b − 2 + ε)

Γ(b)
(2.35)

We can now perform the Laurent expansion, using the properties of the
Gamma function. For example, in the case b = 2 the resulting integral has an
overall factor of Γ(ε). Its behaviour around ε = 0 is

Γ(ε) =
1
ε
− γ +O(ε) (2.36)

where γ = 0, 57721... is the Euler-Mascheroni constant. Hence, we can
write the tadpole integral as

T(1)
1 (2, m; ε) =

i
16π2

(
1
ε
− γ + log(4π)− log

(
m2

µ2

))
+O(ε) (2.37)

This results has allowed us to separate the singular behaviour of the in-
tegral encapsulated as a pole in the regulator ε from a finite result in terms
of m2. From the point of view of a cut-off regulator, we expected the integral
to diverge as log Λ for some momentum scale Λ. Thus, we can see that a
logarithmic divergence of a loop integral translates into a simple pole in di-
mensional regularization. Moreover, polynomial divergences are related to
higher-order poles in the regularization parameter ε. As a consequence of
this procedure, we have introduced an additional scale µ2 in order to keep
the units of the calculated quantities consistent independent of the regula-
tor3.

3Physical observables should not be dependent on this scale, however. This observation
lead to the development of the renormalization group and the Callan-Symansyk equations.
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Although we have managed to extract the finite behaviour of the integral
and parametrize its singularity structure in terms of a regulator, it is only half
of the story: there is no escaping the fact that the integral still depends on ε
and in order to obtain a physical result, we must take ε → 0. Therefore, what
we need is a set of rules that allow us to subtract these poles, leaving as the
result of our calculation a finite result. The procedure of removing the UV
singularities of a Feynman integral is known as renormalization. This pro-
cesses relies on the fact that the parameters that enter our calculations, which
generally come from a Lagrangian through the Feynman rules, are not the
physical quantities measured in an experiment. Thus, performing a redef-
inition of the quantities in the Lagrangian (that is, renormalizing the basic
quantities that make up a field theory) by demanding that the parameters
that enter our calculations match their measured values we can get rid of the
divergences and obtain finite results for our predictions.

At the level of amplitudes and Feynman integrals, the effect of renormal-
ization is to modify the values of the quantities being calculated by adding
additional contributions known as counterterms. For example, the renormal-
ized tadpole integral in Eq.(2.37) would take the form

T(1)
1,ren(2, m; ε) = T(1)

1 (2, m; ε) + δT (2.38)

where the counterterm δT is picked such that the divergent term, propor-
tional to ε−1, is cancelled. Thus, we can see that, in general, the counterterms
depend on the regulator and are by themselves divergent quantities. Their
singular behaviour, however, is such that the divergences of the physically
observable quantities being calculated are cancelled. In this case, we could
simply pick

δT = − i
16π2ε

(2.39)

which would render the tadpole finite. In this case, we have defined the
counterterm to have no finite contribution but one can in general pick it such
that it also leaves a finite contribution after cancelling the divergences. A set
of rules to pick the finite part of the counterterms is called a renormalization
scheme4.

The example given in Eq. (2.39) is known as the minimal substraction
(MS) scheme, where the counterterms are constructed to only remove the

4In general, every choice of renormalization scheme must guarantee that the divergences
are cancelled, leaving the arbitrariness to choose some non-vanishing finite contribution to
the counterterms. If a calculation is performed with a particular renormalization scheme, it
is always possible to do a further finite renormalization to translate the result into another
renormalization scheme. The renormalization scheme that is most convenient to use initially
depends on the particular calculation under consideration.
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divergences. A related renormalization scheme is the modified minimal sub-
straction (M̄S) scheme [80, 81], where the counterterms are defined to can-
cel both the divergence and the term proportional to (−γ + log(4π)), which
tends to appear after expanding around ε = 0 in calculations using dimen-
sional regularization. Along with these two, the other most commonly used
scheme is the on-shell renormalization scheme. In order to introduce it, we
will discuss the systematic process of renormalization by starting from a La-
grangian and see how the counterterms arise from the redefinition of the
parameters defining the theory.

Consider, once again, the QED Lagrangian of Eq.(2.8). We will rewrite
this Lagrangian by using the explicit expressions for the field strength tensor
and the covariant derivative, as

LEM = −1
4
(∂µ(Ab)ν − ∂ν(Ab)µ)(∂

µ(Ab)
ν − ∂ν(Ab)

µ)

+ Ψb(i/∂ − mb)Ψb − ebΨbγµ(A0)
µΨb

(2.40)

where we have added a subscript b to all of the quantities in the La-
grangian, which is used to denote that none of the values of the parameters
appearing in the Lagrangian correspond to the measured values, nor are the
fields properly normalized to compute the correct scattering amplitudes. We
refer to this as the bare Lagrangian, and give a similar name to each of its
quantities.

The quantities appearing in the bare Lagrangian are related to the phys-
ical quantities through the process of renormalization. On one hand, the
renormalized fields are defined as

Ψb = Z1/2
2 Ψ (2.41)

in the case of the fermion field, and

(Ab)µ = Z1/2
3 Aµ (2.42)

where Z2, Z3 are formally infinite constants which allow the amplitudes
obtained from a perturbative expansion using the renormalized fields Ψ and
Aµ to have the proper normalization by setting the residues of the propa-
gators at their poles equal to 1. With these modifications, the Lagrangian
becomes

LEM = −1
4

Z3FµνFµν + Z2Ψ(i/∂ − mb)Ψ − Z2Z1/2
3 ebΨγµ AµΨ. (2.43)

Now, we must properly define the remaining parameters of the Lagrangian:
the mass mb and the charge eb. The renormalized charge e is defined by in-
troducing an additional factor Z1 such that
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ebZ2Z
1
2
3 = Z1e. (2.44)

Before we write out the renormalization of the mass, notice that no renor-
malization is necessary in order to obtain the appropriate tree-level ampli-
tudes. Thus, we should expect the renormalization factors Zi to have the
expansion

Zi = 1 + δi (2.45)

where δi are a set of coefficients which can be expanded as a power series
in the couplings (in this case, the electric charge) such that they cancel the di-
vergences that appear in the amplitudes beyond the tree-level approximation
order by order in perturbation theory. These coefficients is what we referred
to previously as the counterterms. With this in mind, we introduce the mass
counterterm δm as

δm = Z2mb − m (2.46)

written in terms of the renormalized mass m. The QED Lagrangian takes
the form

LEM = −1
4

FµνFµν + Ψ(i/∂ − m)Ψ − eΨγµ AµΨ + LCT (2.47)

where the first set of contributions is written completely in terms of the
renormalized fields and parameters, and the last term, known as the coun-
terterm Lagrangian, is given by

LCT = −1
4

δ3FµνFµν + Ψ(iδ2/∂ − δm)Ψ − eδ1Ψγµ AµΨ (2.48)

where all the fields, as well as the mass and electric charge, are renor-
malized. The different contributions to the counterterm Lagrangian are then
treated as further interaction vertices, and the corresponding Feynman rules
are shown in A.

By a suitable fixing of the counterterms, the amplitudes calculated using
the renormalized Lagrangian will result in finite values. This fixing is real-
ized by imposing renormalization conditions, which will be relations that fix
the behaviour of the higher-order corrections to the tree-level propagators
and the interaction vertex. In QED, this relations read

Σ(/p = mP) = 0,

d
d/p

Σ(/p)|/p=mP
= 0, (2.49)

Π(q2 = 0) = 0,

−ieΓµ(q = 0) = −ieγµ
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where Σ(/p) is the value by which the pole of the fermion propagator is
displaced from the bare mass mb by quantum corrections5. Therefore, the
first condition in Eq.(2.49) fixes the location of the simple pole of the electron
propagator at a finite mass value mP, known as the pole mass, while the sec-
ond condition guarantees that the residue of the propagator at the pole mass
is simply the imaginary unit i.

On the other hand, Π(q2) denotes the quantum corrections to the photon
propagator, and the third equation fixes the value of the residue of the photon
propagator at q2 = 0. Finally, Γµ is made up of the higher-order contributions
to the electromagnetic interaction vertex. Its renormalization condition fixes
the electromagnetic charge appearing in the interaction vertex to have the
value of the measured electric charge of the electron or any other fermion
under consideration.

Notice that we have written the renormalization conditions such that the
fermion propagator has a pole at mP, where mP is some finite mass which
we define as the locations of its pole. The purpose of this is to provide a
definition for the physical mass, that may be different from the renormalized
mass m that one computes in an arbitrary renormalization scheme. With this
in mind, we define the on-shell scheme to be the renormalization scheme
where the value of the renormalized mass m coincides with the value of the
pole mass mP. This renormalization scheme will be the most useful to us, as
we will see later on when the application of the LTD formalism to define the
integrand for loop amplitudes is exposed.

2.2.5 Cancellation of IR divergences

We conclude this chapter by explicitly calculating the NLO corrections to the
process γ∗ → e+e−, in order to show a concrete example of the cancellation of
infrared divergences. We will perform this computation using dimensional
regularization. The diagrams contributing to this process are given by the
two first diagrams in Figs 2.1 and the two diagrams in Fig. 2.3, but with ev-
ery gluon replaced by a photon. We will need various identities involving
sums of polarization vectors, spinors and traces of Dirac matrices, the proof
of which can be found in any standard textbook, for example in [20].

The first contribution we must compute is the tree-level contribution. The
Feynman rules used in this calculation can be found in Appendix A. The
three particle tree amplitude is given, according to these rules, simply by the
QED vertex dressed with the appropriate spinors and polarization vector;
if we let q denote the momentum of the photon, p1 the momentum of the
electron and p2 the momentum of the positron, we find

5It is common terminology to refer to quantities coming from contributions beyond tree-
level or leading order as quantum corrections. This is because the leading order contribu-
tions to a scattering amplitude are essentially the predictions that the classical theory asso-
ciated to the Quantum Field Theory under consideration would make.
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A(0)
3 = −ieu(p1)γ

µv(p2)εµ(q) (2.50)

where, due to momentum conservation, q = p1 + p2. Here, we take the
electron line to be on-shell, and to simplify the subsequent calculations, we
take them to be massless, i.e. p2

1 = p2
2 = 0. Since we are interested in the

cross-section, we consider the square of the amplitude, summed over spins
and polarizations. Using the identity

(uγµv)† = vγµu (2.51)

valid for any pair of spinors u and v, we find

∑
spins

|A(0)
3 |2 = e2 ∑

s,s′
u(p1)γ

µv(p2)v(p2)γ
νu(p1)∑

h
εµ(q)ε∗ν(q) (2.52)

where the sums go over the spins s, s′ of the electron and positron, re-
spectively, and the polarizations of the photon, denoted by h. To proceed, we
need the completeness relations

∑
s

u(p)u(p) = /p + m

′
∑

s
v(p)v(p) = /p − m

∑
h

εµ(q)ε∗ν(q) = −gµν +
qµnν + qνnµ

q · n

(2.53)

where m is the mass of the fermion described by the spinors u or v, and nµ

is the so-called reference vector, characterized by the properties n2 = 0 and
q · n 6= 0. By evaluating the sum in a convenient order, we can realize that
the contributions depending on the reference vector vanishes. For example,
contracting the term qµnν into the Gamma matrices results in a contribution
proportional to

u(p1)/qv(p2) = u(p1)(/p1 + /p2)v(p2) (2.54)

which, due to the momentum-space Dirac equations,

u(p)/p = u(p)m

/pu(p) = mu(p)
v(p)/p = −v(p)m

/pv(p) = −mv(p)

(2.55)

vanish for massless external states. Thus, putting all of these identities
together, we obtain
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∑
spins

|A(0)
3 |2 = e2Tr(/p1γµ

/p2γµ). (2.56)

In order to evaluate the trace, we use the D-dimensional contraction iden-
tity

γµγνγµ = −(D − 2)γν, (2.57)

while replacing D = 4 − 2ε and e2 = 4πα, with α the fine structure con-
stant. This results in

∑
spins

|A(0)
3 |2 = −4πα(2 − 2ε)Tr(/p1/p2). (2.58)

Finally, using the defining property of the Gamma matrices

{γµ, γν} = 2gµν, (2.59)

which is independent of the dimensions of spacetime, we can see that

Tr(/p1/p2) = Tr(2p1 · p2 − /p2/p1)

= 8p1 · p2 − Tr(/p1/p2)
(2.60)

where, in the second line, we used the property that the trace of a product
of matrices is cyclic to exchange the order of /p1 and /p2. We can solve this
equation for the trace to obtain

Tr(/p1/p2) = 4p1 · p2 (2.61)

with which we find the square of the tree amplitude to be

∑
spins

|A(0)
3 |2 = 16πα(1 − ε)s0 (2.62)

where we defined s0 = (p1 + p2)
2 = 2p1 · p2. The integration over the

two-particle phase space yields the cross-section for this process. We will not
need to compute this integral, however, and proceed with computation of
the virtual and real corrections.

At the one-loop level, there is a only one correction to the scattering am-
plitude, given by a vertex correction, which has the topology of a triangle
diagram. This contribution will involve an integration over the loop mo-
menta; taking this momenta to coincide with the momenta of the virtual
photon propagating in the loop, we can write this contribution as
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A(1)
3 = εµ

∫ dDk
(2π)D×

u(p1)(−ieγα)i(/p1 + /k)(−ieγµ)i(/k − /p2)(−ieγβ)(−igαβ)v(p2)

(k2 + iδ)((k + p1)2 + iδ)((k − p2)2 + iδ)
.

(2.63)

As a first step, let us simplify the integral where possible. Cancelling
the different factors of i, putting together the corresponding powers of the
electric charge and contracting the Lorentz indices with the metric tensor, we
find

A(1)
3 = −e3εµ

∫ dDk
(2π)D

u(p1)(γ
α(/p1 + /k)γµ(/k − /p2)γα)v(p2)

k2(k + p1)2(k − p2)2 , (2.64)

where we have dropped momentarily the iδ prescription. We can simplify
the integrand further using the contraction identity

γαγµγνγργα = −2γργνγµ + (4 − D)γµγνγρ (2.65)

and the Dirac equations, as in the tree calculation. As a result, we arrive
at the integral

A(1)
3 = 2e3εµ

∫ dDk
(2π)D

u(p1)((/k − /p2)γ
µ(/k + /p1)− ε/kγµ/k)v(p2)

(k + p1)2(k − p2)2k2 (2.66)

where, in the denominator of the integrand, we have replaced D = 4− 2ε.
Now, we want to rewrite the integrand in such a way that there is a single
denominator. One way to achieve this is to introduce the so-called Feynman
parameters, which arise from the formula

1
A1A2 . . . An

= (n − 1)!
∫
[0,1]n

dnα
δ (1 − ∑n

i=1 αi)

(∑n
i=1 αi Ai)

n . (2.67)

Since we have three denominators, we need to introduce three Feynman
parameters. We can then see that

α1(k + p1)
2 + α2(k − p2)

2 + α3k2

= (α1 + α2 + α3)k2 + α12k · p1 − α22k · p2

= k2 + 2k · (α1p1 − α2p2) + (α1p1 − α2p2)
2 − (α1p1 − α2p2)

2

= (k + α1p1 − α2p2)
2 + α1α2s0

(2.68)

where, going from the first to the second line, we used the fact that p2
1 =

p2
2 = 0, in the third line we used α1 + α2 + α3 = 1 and completed the

square, and in the last line we expanded (α1p1 − α2p2)
2 and kept the only
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non-vanishing term, which is then expressed in terms of s0. This allows us to
rewrite

A(0)
3 = 4e3εµ

∫ 1

0
dα1

∫ 1−α1

0
dα2∫ dDk

(2π)D
u(p1)((/k − /p2)γ

µ(/k + /p1)− ε/kγµ/k)v(p2)

((k + α1p1 − α2p2)2 + α1α2s0)
3 .

(2.69)

Now, we can focus on the loop integration. Since the integration is per-
formed over all values of the loop momenta k, we can perform the shift
k → k − α1p1 + α2p2 without changing the integration measure. This results
in the denominator of the integral being invariant under the k → −k. Thus,
any term with an odd power of k in the numerator vanishes by symmetry.
With this in mind, we end up with the integral

∫ dDk
(2π)D

u(p1)
(
(1 − ε)/kγµ/k + (εα1α2 − (1 − α1)(1 − α2)) /p2γµ/p1

)
v(p2)

(k2 + α1α2s0)3 .

Using the anticommutator of the Gamma matrices, we find

/kγµ/k = (2kµ − γµ/k)/k

= 2kµ/k − γµk2 (2.70)

and

/p2γµ
/p1 = (2pµ

2 − γµ
/p2)/p1

= 2pµ
2 /p1 − γµ(2p1 · p2 − /p1/p2)

= −s0γµ

(2.71)

where the last line is only valid when the expression is inside the spinors
u(p1) and v(p2), by virtue of the Dirac equation. Having reduced the in-
tegrand to this form, we can perform the loop integrations via the Tadpole
integral of Eq.(2.28), as well as

∫ dDk
(2π)D

kµkν

(k2 − ∆)n =
(−1)n−1i

(4π)
D
2

gµν

2
Γ(n − D

2 − 1)
Γ(n)

(∆)
D
2 +1−n (2.72)

which can be obtained by noting that, due to the spherical symmetry of
the integral and the fact that there is no preferred four-vector upon which
the integral depends, the only possible tensor structure that can be obtained
after integration is gµν. From this integral, one immediately obtains, after
contracting with the metric tensor,
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∫ dDk
(2π)D

k2

(k2 − ∆)n =
(−1)n−1i

(4π)
D
2

D
2

Γ(n − D
2 − 1)

Γ(n)
(∆)

D
2 +1−n. (2.73)

With these formulas at hand, we can evaluate

∫ dDk
(2π)D

2kµ/k − k2γµ

(k2 + α1α2s0)3

=
i

2(4π)
D
2

Γ
(

2 − D
2

)
(−α1α2s0)

D
2 −2γµ

− iD

4(4π)
D
2

Γ
(

2 − D
2

)
(−α1α2s0)

D
2 −2γµ

=
i

2(4π)
D
2

Γ
(

2 − D
2

)
(−α1α2s0)

D
2 −2

(
1 − D

2

)
γµ

=
i

32π2(4π)−ε
Γ(ε)(−α1α2s0)

−ε(−1 + ε)γµ

(2.74)

while, on the other hand, we can use the tadpole integral formula to ob-
tain

∫ dDk
(2π)D

1
(k2 + α1α2s0)3 = − i

32π2(4π)−ε
Γ(1 + ε)(−α1α2s0)

−1−ε. (2.75)

Using these results, we can write the one-loop correction to the amplitude
as a two-dimensional integral over the Feynman parameters

A(1)
3 =

4ie3εµ(−s0)
−ε

32π2(4π)−ε

∫ 1

0
dα1

∫ 1−α1

0
dα2u(p1)γ

µ
[
−(1 − ε)2Γ(ε)(α1α2)

−ε

((1 − α1)(1 − α2)− εα1α2)Γ(1 + ε)(α1α2)
−1−ε

]
v(p2).

(2.76)

We can see at this point that the remaining integrations have no Lorentz
structure and depend only on the regularization parameter ε. That means
that we can write

A(1)
3 =

4ie3εµΓ(ε)(−s0)
−ε

32π2(4π)−ε
u(p1)γ

µv(p2)F(ε) (2.77)

where
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F(ε) =
∫ 1

0
dα1

∫ 1−α1

0
dα2

[
−(1 − ε)2(α1α2)

−ε

((1 − α1)(1 − α2)− εα1α2)ε(α1α2)
−1−ε

] (2.78)

and we used Γ(1 + ε) = εΓ(ε) to factor out the Gamma function. This
integral can be split into two different integrations, according to the power
of (α1α2) that appears in each of them. The first of these integrals is

I1 = (ε − (1 − ε)2 − ε2)
∫ 1

0
dα1

∫ 1−α1

0
dα2(α1α2)

−ε

= −(1 − ε)(1 − 2ε)
∫ 1

0
dα1α−ε

1
(1 − α1)

1−ε

1 − ε

= −(1 − 2ε)
∫ 1

0
dα1α−ε

1 (1 − α1)
1−ε

= −(1 − 2ε)
Γ(1 − ε)Γ(2 − ε)

Γ(3 − 2ε)

(2.79)

where we used the definition of Euler’s Beta function to perform the last
integration. The remaining integral is given by

I2 = ε
∫ 1

0
dα1

∫ 1−α1

0
dα2(1 − α1 − α2)(α1α2)

−1−ε. (2.80)

In this case, we have contributions with three different integrands: (α1α2)
−1−ε,

α1(α1α2)
−1−ε and α2(α1α2)

−1−ε. By virtue of the symmetry of the integral un-
der the exchange of α1 and α2, the last two integrals give the same result. For
the first one, a procedure identical to the calculation of I1 yields∫ 1

0
dα1

∫ 1−α1

0
dα2(α1α2)

−1−ε = −1
ε

Γ(−ε)Γ(1 − ε)

Γ(1 − 2ε)
(2.81)

while, for example,

∫ 1

0
dα1

∫ 1−α1

0
dα2α1(α1α2)

−1−ε

=
∫ 1

0
dα1α−ε

1

∫ 1−α1

0
dα2α−1−ε

2

=
∫ 1

0
dα1α−ε

1
(1 − α1)

−ε

−ε

= −1
ε

∫ 1

0
dα1α−ε

1 (1 − α1)
−ε

= −1
ε

Γ2(1 − ε)

Γ(2 − 2ε)

(2.82)
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with the remaining integral giving the same result.

Recalling that the tree amplitude is given by A(0)
3 = −ieεµu(p1)γ

µv(p2)
and using the result of the Feynman parameter integrals, we can write

A(1)
3 = −A(0)

3
4e2Γ(ε)(−s0)

−ε

32π2(4π)−ε

[
−(1 − 2ε)

Γ(1 − ε)Γ(2 − ε)

Γ(3 − 2ε)

−Γ(−ε)Γ(1 − ε)

Γ(1 − 2ε)
+ 2

Γ2(1 − ε)

Γ(2 − 2ε)

] (2.83)

We can now rewrite all the Gamma functions in order to factorize a single
ratio of Gammas. In order to do this, we write

Γ(2 − ε) = (1 − ε)Γ(1 − ε)

Γ(3 − 2ε) = (2 − 2ε)(1 − 2ε)Γ(1 − 2ε)

Γ(2 − 2ε) = (1 − 2ε)Γ(1 − 2ε)

Γ(−ε) = −Γ(1 − ε)

ε

(2.84)

with which we arrive at the result

A(1)
3 = −A(0)

3
α

2π

(
− s0

4π

)−ε 2ε2 − ε + 2
2ε2(1 − 2ε)

Γ(1 + ε)Γ2(1 − ε)

Γ(1 − 2ε)
(2.85)

where we replaced e2 = 4πα. This means that we can write the complete
amplitude, up to one-loop order, as

A3 = A(0)
3 + A(1)

3 +O(α2)

≈ A(0)
3

(
1 − α

2π

(
− s0

4π

)−ε 2ε2 − ε + 2
2ε2(1 − 2ε)

Γ(1 + ε)Γ2(1 − ε)

Γ(1 − 2ε)

) (2.86)

When we square this quantity, we will keep contributions only to next-
to-leading order in α. That means that we will throw away the square of the
loop amplitude, and only keep the interference term between the tree and
loop amplitudes. This means that, for our calculation, we take

|A3|2 = |A(0)
3 |2

(
1 − α

π

(
− s0

4π

)−ε 2ε2 − ε + 2
2ε2(1 − 2ε)

Γ(1 + ε)Γ2(1 − ε)

Γ(1 − 2ε)

)
+O(α2)

(2.87)

We would like to expand this around ε = 0. In order to get rid of innocu-
ous factors of Euler’s constant γ, we multiply and divide by eεγ. Restoring
the renormalization scale µ to obtain a result with consistent units, we obtain
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A(0)
4 =

p1

k

p2

+

p1

k

p2

FIGURE 2.4: Real emission diagrams for the γ∗ → e+e− process

|A3|2 = |A(0)
3 |2

(
1 − α

π
Sε

(
s0

µ2

)−ε ( 1
ε2 +

3
2ε

+ 4 − π2

12

)
+O(ε)

)
, (2.88)

where we define Sε = (4π)εe−εγ. Having this expansion, we clearly see
that the integral is singular when ε → 0. Hence, we expect that the poles in ε
will be cancelled by the corresponding real corrections. Without any further
ado, we go on to tackle this calculation.

The corresponding diagrams, with the momenta of the final-state lines,
are shown in Fig. 2.4. The expression for the amplitude is then

A(0)
4 = u(p1)(−ieγα)

i(/p1 + /k)
(p1 + k)2 (−ieγµ)v(p2)ε

∗
α(k)εµ(q)

+ u(p1)(−ieγµ)
i(−/p2 − /k)
(−k − p2)2 (−ieγα)v(p2)ε

∗
α(k)εµ(q)

= −ie2u(p1)
γα(/p1 + /k)γµ

(p1 + k)2 v(p2)ε
∗
α(k)εµ(q)

+ ie2u(p1)
γµ(/p2 + /k)γα

(p2 + k)2 v(p2)ε
∗
α(k)εµ(q)

= −ie2ε∗αεµu(p1)

[
γα(/p1 + /k)γµ

(p1 + k)2 −
γµ(/p2 + /k)γα

(p2 + k)2

]
v(p2)

(2.89)

Before squaring to obtain the contribution to the cross-section, we can
simplify this expression a bit. First, we notice that

u(p1)γ
α
/p1 = u(p1)

(
2pα

1 − /p1γα
)

= u(p1)2pα
1

(2.90)

where we used the anticommutator of the Dirac matrices on the first line
and then the Dirac equation on the second line. Similarly,

/p2γαv(p2) = 2pα
2v(p2). (2.91)
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These relations, along with the fact that the external momenta are mass-
less, allow us to write

A(0)
4 = −ie2ε∗α(k)εµ(q)u(p1)

[
2pα

1γµ + γα/kγµ

2p1 · k

− 2pα
2γµ + γµ/kγα

2p2 · k

]
v(p2)

(2.92)

Now, we proceed similarly as with the three-point tree amplitude, by
computing the square of the amplitude and summing over spins. In this
case there are two polarization vectors which will yield two metric tensors,
and we find

∑
spins

|A(0)
4 |2 = e4Tr

[
/p1

(
2pα

1γµ + γα/kγµ

2p1 · k
− 2pα

2γµ + γµ/kγα

2p2 · k

)

/p2

(
2p1αγµ + γµ/kγα

2p1 · k
−

2p2αγµ + γα/kγµ

2p2 · k

)]
.

(2.93)

Expanding the product inside the trace we obtain four different contribu-
tions, that we can distinguish by the structure of their appropriate denomi-
nators. Two of them have a denominator of the form (2p1 · k)(2p2 · k), while
the remaining two are of the form (2p1 · k)2 and (2p2 · k)2. The calculation
of these traces is performed in Appendix B. The result for the amplitude
squared is given by

∑
spins

|A(0)
4 |2 = e4

[
32(1 − ε)2(p1 · k)(p2 · k)

(2p1 · k)2 +
32(1 − ε)2(p1 · k)(p2 · k)

(2p2 · k)2

+
64(1 − ε)(p1 · p2)(p1 · p2 + p1 · k + p2 · k)− 64ε(1 − ε)(p1 · k)(p2 · k)

(2k · p1)(2k · p2)

]
(2.94)

This result can be further simplified. First, let

s = q2 = (p1 + p2 + k)2 (2.95)

be the center-of-mass energy squared of the collision process. Next, de-
fine

x1 =
2p1 · q

q2 =
2p1 · k + 2p1 · p2

s
,

x2 =
2p2 · q

q2 =
2p2 · k + 2p1 · p2

s
,

x3 =
2k · q

q2 =
2p1 · k + 2p2 · k

s
,

(2.96)
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which can be interpreted as the ratio of each particles energy to the total
energy of the process. These variables satisfy the relation x1 + x2 + x3 = 2.
Solving for the kinematic invariants, we obtain

2p1 · k = s(1 − x2),
2p2 · k = s(1 − x1),
2p1 · p2 = s(1 − x3).

(2.97)

Replacing e2 = 4πα, the squared amplitude can be written in terms of x1
and x2 as

∑
spins

|A(0)
4 |2 = 128π2α2(1 − ε)

[
(1 − ε)

(
1 − x1

1 − x2
+

1 − x2

1 − x1

)
− 2(x1 + x2 − 1)
(1 − x1)(1 − x2)

− 2ε

]
.

(2.98)

Let us perform a further change of variables, namely yi = 1 − xi, for
i = 1, 2, 3. These variables satisfy y1 + y2 + y3 = 1, and

∑
spins

|A(0)
4 |2 = 128π2α2(1 − ε)

[
(1 − ε)

(
y1

y2
+

y2

y1

)
− 2

y1y2
+

2
y1

+
2
y2

− 2ε

]
.

(2.99)

We can factorize the squared three-point tree amplitude from this quan-
tity, obtaining

∑
spins

|A(0)
4 |2 = 8πα ∑ |A(0)

3 |2
[
(1 − ε)

(
y1

y2
+

y2

y1

)
− 2

y1y2
+

2
y1

+
2
y2

− 2ε

]
.

(2.100)

In terms of the variables yi, the three-particle phase-space dφ3 can be fac-
torized as

dφ3 = dφ2dφ̃ (2.101)

where dφ2 is the two-particle phase space measure, and

dφ̃ =
(4π)ε−2

Γ(1 − ε)
s1−εd3xδ(1 − y1 − y2 − y3)(y1y2y3)

−ε (2.102)

Hence, one only needs to integrate the squared amplitude against dφ̃. We
must compute
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I =
∫

d3yδ(1 − y1 − y2 − y3)(y1y2y3)
−ε

[
2

y1y2
− 2

y1
− 2

y2

+(1 − ε)

(
y1

y2
+

y2

y1

)
− 2ε

] (2.103)

Before performing any integration with the delta function, we notice that
the integrand is invariant under y1 → y2. Therefore, we can simplify the
integral to

I =
∫

d3yδ(1 − y1 − y2 − y3)(y1y2y3)
−ε

[
2

y1y2
− 4

y1
+ (1 − ε)

2y1

y2
− 2ε

]
(2.104)

Each of these integrals can be evaluated separately with the help of Math-
ematica. The final result, with the appropriate prefactor of (4π)ε−2/Γ(1 − ε)
simplifies to

I =
22ε−3πε−2(1 − 2ε)(ε2 − 2ε + 2)Γ2(−ε)

Γ(3 − 3ε)
. (2.105)

Multiplying by the customary factor e−εγ and expanding the result around
ε = 0 yields

∫
dφ3 ∑

spins
|A(0)

4 |2 =
α

π

(
1
ε2 +

3
2ε

+
19
4

− 7
12

π2
)

×
(

s0

µ2

)−ε

Sε

∫
dφ2|A(0)

3 |2,

(2.106)

where we restored the appropriate units by introducing the factor (s0/µ2)−ε.
Integrating Eq.(2.88) over the two-particle phase space and adding both re-
sults, we can see that the poles in ε cancel exactly against each other, leading
to our desired result. An exploration of the IR structure of the related process
e+e− → 3 jets is presented in [82].

Having done an overview of renormalization and explicitly shown in an
example how the cancellation of IR divergences between virtual and real cor-
rections goes through in an infrared-safe process, we have introduced all the
fundamental concepts of QFT necessary for the calculation of scattering am-
plitudes. Our next task, which is the organization of the different kind of
Feynman diagrams that may appear in a general L-loop computation, is the
topic of the next chapter.
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Chapter 3

Tree and Loop Feynman Graphs

The perturbative expansion of an amplitude in QFT, as discussed in Chapter
2, can be organized in terms of Feynman diagrams, with higher-order contri-
butions being represented by diagrams with a higher amount of loops. Any
graph with closed loops can be associated to a set of tree graphs through the
concept of a spanning tree or a cut graph, which represent all the possible
ways to open up a loop diagram into fully connected trees. In terms of Feyn-
man integrals, this implies that it is possible to rewrite the integrand of an
amplitude in such a way that it has a tree-like structure. Moreover, not every
possible loop diagram gives a direct contribution to the amplitude at a given
order in perturbation theory.

In this chapter, we will give a systematic classification of the different
type of Feynman graphs that can contribute to a scattering amplitudes at all
orders in perturbation theory. We will see how some of these give vanish-
ing contributions or are removed after renormalization. A general notation
which includes counterterm diagrams will be provided and the relation be-
tween a linear combination of loop diagrams weighted with symmetry factor
and a sum of tree diagrams will be derived. Although the relations studied
in this chapter are purely diagrammatic in nature, they set the ground for the
possibility to write integrands of L-loop amplitudes which are given only in
terms of tree-like objects.

3.1 Connected Graphs

As a starting point, we want to look at the elements that define a Feynman
graph1. In general, a graph is a set of vertices together with a set of edges,
which are lines connecting some of the vertices according to some prescribed
rules.

In the case of a Feynman graph, it is important to distinguish between
internal and external edges: an internal edge corresponds to a propagator,
while an external edge corresponds to an external particle. In a general

1Feynman diagrams are an example of the mathematical objects studied by graph theory,
which is a branch of discrete mathematics. Although we will use some of the concepts of
graph theory, a thorough exposition of these can be found in [84]
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graph, there is an external vertex at the end of each external line. For a Feyn-
man graph, the external vertices are not associated to the value of any phys-
ical quantity, so it is common practice to omit them. The internal vertices,
however, are related to the interactions terms of the Lagrangian and con-
tribute powers of the coupling of the theory. Finally, the set of rules which
tells us how to connect the different vertices and edges of a Feynman graph
are the Feynman rules of the specific field theory. Thus, a Feynman graph can
be characterized by the number of external lines (and the particles associated
to these lines), n, the number of internal vertices (which we will simply call
vertices), V, and the rules to put them together to compute their values.

One can further characterize a vertex by its valency, which is the number
of edges that join at a given vertex. For example, a vertex of valency 3 would
be a vertex where three edges meet; these are the most typical kind of vertices
we encounter in Quantum Field Theory. In the QED Lagrangian of Eq. (2.8),
the interaction term ΨAµΨ is represented by the vertex

γ = −ieγµ (3.1)

where the electromagnetic field Aµ is connected to the fermion and an-
tifermion fields Ψ and Ψ. The resulting expression carries a power of the
coupling, which in this case is the electric charge e. A particular feature of
the Standard Model is that there are no vertices with valency greater than
four.

Another important property of graphs in the context of Feynman dia-
grams is that of connectivity. An edge or a vertex is said to be a connected
component of a graph if it can be reached from another element of the graph
by following a continuous path throughout the graph. If there is no such
continuous path between two elements of the graph, such elements are said
to be disconnected.

Figure 3.1 show two different graphs with four external edges. The graph
on the left has all the edges connected to a single vertex and is a connected
graph. The graph on the right, however, is composed of two disconnected
edges that connect two pairs of external edges; in this case, we say that the
graph has two connected components.

The most general graph is then made up of k connected components, n
external edges and V vertices. Using these quantities, one can define the first
Betti number or the cyclotomic number of the graph [83]

L = n − V + k (3.2)

which, in the physics literature, is what we refer as the number of loops.
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FIGURE 3.1: The left figure shows a connected graph with a
single vertex of valency 4. The left diagram shows a graph with

two disconnected lines.

FIGURE 3.2: One-loop tadpole diagram in a generic theory with
a cubic coupling.

Given this relation, instead of describing a graph by its number of vertices,
one can use the number of loops. This is the approach usually found in the
Quantum Field Theory literature, since the perturbative expansion of the
S-matrix organizes itself in diagrams with an increasing number of loops.
A particular property of the S-matrix is that only fully connected diagrams
contribute to the scattering amplitudes at any given perturbative order [20].
Therefore, our focus will be centered around these kind of diagrams. This
also implies that vacuum diagrams do not contribute to the S-matrix, since
they would always be disconnected from the components which contain the
external particles.

As we discussed previously, diagrams containing loops are often diver-
gent due to the integration over the loop momenta. There are, however, di-
agrams that contain further possible singularities: diagrams with a tadpole
insertion, which introduce a propagator with momentum zero, and diagrams
with a self-energy insertion on an external leg, which are divided through by
an on-shell propagator. We will digress into the role of these two types of
diagrams on the calculation of scattering amplitudes before we discuss the
general classification of all loop diagrams that typically appear in the pertur-
bative computation of the S-matrix.

3.1.1 Tadpole Diagrams

Tadpoles are a type of loop diagrams with the property that only one external
leg is attached to them, which can be itself attached to another part of a bigger
diagram. These diagrams contribute to the one-point correlation function,
thus giving quantum corrections to the classical vacuum-expectation value
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p
k

p

FIGURE 3.3: One-loop self-energy correction to the fermion
propagator in QED

of the fields. We will see later that, after renormalization, these diagrams are
non-vanishing only if one deals with massive scalar fields.

A typical example of a tadpole diagram is shown in Fig.3.2. We can see
that if we were to attach this tadpole to another diagram, the line attached to
the tadpole would then become an internal propagator. Because of momen-
tum conservation, this propagator would have momentum zero. In the case
of a massless field, since the propagator is proportional to 1/p2, we would
divide the whole diagram by zero, which means that any such diagram di-
verges and thus is ill-defined.

The expression for the Feynman integral associated to the one-loop tad-
pole was derived in Eq.(2.35) within dimensional regularization and its Lau-
rent expansion around D = 4 was given in Eq. (2.37). We saw that the
only scale upon which the integral could depend was the mass of the particle
propagating in the loop. A massless tadpole integral in arbitrary space-time
dimension would be an integral of the form

T(1)
1 (b, 0) =

∫ dDk
(2π)D

1
(k2)b . (3.3)

A general property of dimensional regularization [85] is that Eq.(3.3) van-
ishes for any value of b 6= −D

2 . For this reason, tadpole diagrams are usually
excluded from the calculation of scattering amplitudes in theories were the
fields have a vacuum expectation value equal to zero. If this is not the case,
the particle that attaches the tadpole to the rest of the diagram contributes a
massive, zero momentum propagator, which then multiplies the rest of the
diagram by a factor of 1/m, where m is the mass of the propagating parti-
cle. In this case, moreover, the tadpole integral does not vanish and requires
any associated source term2 to be renormalized in order to deal with its UV
divergences.

3.1.2 Self-Energy Diagrams

Self-Energy diagrams are, in general, the quantum corrections to two-point
correlation functions. This means that the loop-level corrections to the tree-
level propagators are obtained by evaluating self-energy diagrams. A typical
example of a one-loop self-energy contribution to the fermion propagator
in QED is shown in Fig.3.3. From the structure of this diagram, it can be

2A source is any term in the Lagrangian which is linear in a single field.
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seen that in any kind of diagram with a self-energy insertion on an external
leg, the propagator that connects the self-energy attachment to the rest of the
diagram will have the same momentum as the on-shell external particle. This
means that we would have a contribution of the form

1
p2 − m2

∣∣∣∣
p2=m2

→ ∞ (3.4)

making any diagram with such an insertion divergent.

The resolution to this problem is found through the use of the Lehmann-
Symanzik-Zimmermann (LSZ) reduction formula [86], which instructs us to
compute S-matrix elements by first calculating the n-point (off-shell) correla-
tion function, Fourier transforming into momentum space and then looking
at its behaviour close to the region where the momenta go on-shell. Then, the
S-matrix element will be proportional to the coefficient of the multiple pole
of the correlation function.

In terms of Feynman diagrams, this means that we do not include dia-
grams with self-energy corrections attached to external legs in the compu-
tation of scattering amplitudes. This does not mean, however, that the self-
energy diagrams do not play a role in the calculation of higher order contri-
butions.

For example, in a scalar theory, the bare and renormalized amplitudes
Abare

n and Aren
n are related to each other, at every order in perturbation theory,

by

Aren
n ({p}, g, m) = (Z1/2

φ )nAbare
n ({p}, gb, mb), (3.5)

where the renormalized amplitude depends on the momenta

{p} = {p1, ..., pn}, (3.6)

the renormalized coupling g and the renormalized mass m, while the bare
amplitude depends on the bare parameters, which are related to the renor-
malized parameters of the theory through renormalization constants, similar
to those defined in the case of QED in Eq.(2.45). Here, the factor Z1/2

φ relate
the bare scalar field φb and the renormalized field φ as

φb = Z1/2
φ φ, (3.7)

in the same way that Z2 relates the bare and renormalized fermionic fields
Ψ in QED. The higher-order corrections to Zφ = 1 + δZφ are then computed
by evaluating the self-energy and counterterm diagrams to the desired order
and then apply the renormalization conditions to determine the value of the
counterterms. An example of the computation of a wave-function renormal-
ization at one-loop order in QED is given in Appendix C.



40 Chapter 3. Tree and Loop Feynman Graphs

FIGURE 3.4: Two-loop diagram with a self-energy insertion on
an internal propagator. The diagram contains a squared propa-

gator, coming from the two red lines.

A different situation occurs when we consider a diagram with a self-
energy insertion on an internal edge. We illustrate one such diagram in
Fig.3.4. As a consequence of momentum conservation on the two vertices
connecting the red propagators with the self-energy insertion, these two will
have the same momenta, and then the complete diagram will have a propa-
gator raised to a power greater than one. These diagrams, as opposed to the
insertions on external legs, do contribute to the scattering amplitude and we
make a distinction between both kinds of graphs.

3.1.3 General Organization of Loop Graphs

Having found the solution to the problems that arise when dealing with tad-
pole and self-energy insertions, we can start organizing the loop graphs that
appear in the calculation of a scattering amplitude. To begin with, let

UL,n (3.8)

denote the set of all graphs, including tadpoles and any kind of self-
energy insertion, with n external edges and L loops. This means that, if the
theory has a single coupling g, the resulting integral will be multiplied by a
factor of g2l+n−2. Since we are interested in the diagrams that contribute to
the scattering amplitudes, we will denote by

US
L,n (3.9)

the set of all diagrams in UL,n without tadpoles or self-energy insertions
on external legs. Diagrams such as the one in Fig.3.4 are included in US

L,n.
Now, we assume that counterterm diagrams have integral representations
with the structure of the associated loop diagrams whose divergences they
cancel; for example, it is possible to write a counterterm to a propagator as a
two-point function, such that the integrand obtained by adding both the bare
and counterterm diagrams is free of UV divergences. The fact that this is pos-
sible has been shown in [87]. This allows us to treat counterterm diagrams as
elements of UL,n or US

L,n, instead of treating the bare and counterterm contri-
butions differently. Thus, we need to further define two sets: first,

UCT
L,n (3.10)
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γ∗ γ∗

FIGURE 3.5: The graph on the left correspond to a one-loop
correction to the process γ∗ → qq. The graph on the center is
the spanning tree obtained by removing the internal gluon line,
while the third graph denotes the cut graph obtained by cutting

open the gluon propagator

which is the set of all counterterm diagrams with L loops and n external
edges, and

US,CT
L,n (3.11)

which is the restriction of UCT
L,n to the counterterm diagrams that con-

tribute to the scattering amplitude.

3.2 Relations Between Loop and Tree Graphs

In the language of graph theory, any graph with closed loops can be associ-
ated to a set of tree graphs through the concept of a spanning tree: for any
graph Γ ∈ UL,n, we let EΓ = {e1, e2, ..., eN} denote the set of its internal edges.
A spanning tree is a sub-graph of Γ which contains all of its vertices and is
a connected tree graph. Such a graph, which we denote by Tsp ∈ U0,n, can
be obtained by deleting L of the N internal edges of Γ. There are, in general,
many ways to obtain a spanning tree from a single loop graph Γ. We can
specify the deleted edges by a set {eσ1 , ..., eσL}, and let σ = {σ1, ..., σL} denote
the set of indices of the deleted edges.

Every spanning tree Tsp of the graph Γ is in one-to-one correspondence
with a cut graph Tcut, which is obtained from Γ by taking each of the edges
deleted to form the spanning tree and cutting them open so that they become
a pair of external edges of a new tree graph, which we call a cut graph. In
contrast to spanning trees, cut graphs belong to the set U0,n+2L. These will be
of special interest to us, because cutting a single line of a loop graph trans-
lates directly to the computation of a residue of the integrand associated to
it via the Feynman rules. In what follows, we will denote by TΓ the set of
spanning trees of the graph Γ and CΓ the set of all set of indices of the edges
of Γ that can be deleted or cut to obtain a spanning tree or a cut graph, re-
spectively.

Let us illustrate the difference between a spanning tree and a cut graph
and why the concept of a cut graph is more useful to us, using the example



42 Chapter 3. Tree and Loop Feynman Graphs

of the NLO corrections to γ∗ → qq.

In Fig.3.5, we can see the one-loop graph coming from the QCD vertex
correction, alongside two different tree graphs. In the first case, the gluon
line is removed, leaving the tree level photon-quark-antiquark vertex. The
last graph shows a tree graph with five external particles, obtained by cut-
ting open the gluon propagator. This diagram is not associated in any way to
the real corrections we saw in Fig.2.3, but as we will see, its structure matches
exactly with the residue of the one-loop integral associated to the triangle di-
agram when the gluon propagator goes on-shell. This is a first hint at the
relation between cut tree graphs and loop graphs at the level of the Feynman
integrals and not only at a purely graph-theoretical level.

Conversely, any connected tree graph can be associated to a loop graph
through the use of the operation of sewing [2].

To see how sewing works, we begin by considering a graph Γ ∈ UL−1,n+2
such that each of its external edges is labelled by a set of momenta

{p1, ..., pn, k1, k1}. (3.12)

We then say that we sew the edges with momenta k1 and k1 if we take
both edges and put them together to form a new internal line. The result is
an L-loop graph that has n external edges labelled by the momenta pi

3.

In general, if we start from a tree graph Γtree ∈ U0,n+2L, we can pick L
pairs of external edges labelled by momenta of the form {k1, k1, ..., kL, kL and
sew them together to obtain a graph ΓL−loop ∈ UL,n. In this sense, sewing and
cutting are inverse operations of each other. Similarly to the way in which the
cut graph corresponds to taking a residue of a Feynman integral when one of
its propagators goes on-shell, we would like to know what it means, in terms
of Feynman integrals, to sew two external edges of a graph.

The first thing to notice is that sewing only makes sense in the context of
Feynman integrals if, for every pair of sewed external lines, ki = −ki. This
is because each internal propagator of a Feynman integral has a unique mo-
menta flowing through it, up to redefinitions of the loop momenta. If we let
k denote the momenta flowing through an internal edge and we cut it open,
the resulting external edges can only be assigned the momentum k evaluated
on its mass shell. The direction of the original momentum flow will then
translate to one of the cut edges having outgoing momentum k and the other
having outgoing momentum −k. This implies that, when we try to sew two
edges together in order to invert the process of cutting, the selected edges
must have equal and opposite momenta. This means that graphs that can be

3Notice that this is a purely graphical statement and is independent of the quantities used
to label the graphs; that is, there is no need at this point to refer to the momenta, but it will
prove useful to use this labelling.
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sewed have the structure of a forward limit.

In theories with spin, the external particles of a Feynman graph are dressed
with their respective wave-functions; fermions are associated with spinors
u(k) or u(k), anti-fermions with spinors v(k) or v(k), while gauge bosons
come with polarization vectors εµ(k) and their complex conjugates. When
we sew a pair of external lines associated with particles with spin, we must
perform a sum over the physical and unphysical polarizations of these parti-
cles. In the case of a pair of fermions, this means that the spinors are replaced
as

∑
s

us(k)us(k) = /k + m, ∑
s

vs(k)vs(k) = /k − m (3.13)

which is just the completeness relation for Dirac spinors. These are the
usual numerators of the fermion propagators. In this sense, the additional
summing procedure allows for the sewing operation to introduce the correct
propagator into the resulting diagram. In addition to this, one must include
a factor of (−1) whenever a fermion line is sewed, independent of whether
the resulting loop is a fermion loop or not. While this statement makes sense
in the case of fermion loops, which always include a factor of (−1) due to the
anticommuting nature of the fermion fields, the necessity of this factor is not
so evident when one obtains different kinds of loops after sewing4.

Diagrams with fermions running in non-fermion loops do not have the
prefactor of (−1), which implies that there must be a mechanism to can-
cel out this minus sign in the sewing procedure in order to obtain results
consistent with the standard Feynman rules. The resolution to this problem
is found by looking at amplitudes with identical fermion-antifermion pairs.
Such amplitudes can, in general, be written as a linear combination of ampli-
tudes where all fermion-antifermion pairs have different flavours.

An example of a process with scattering of fermions of different flavours
in QED is the annihilation of an electron-positron pair into a muon-antimuon
pair. At tree level, there is only a single diagram that contributes to this
process

Similarly, at leading order, the amplitude for the process e−µ− → e−µ−

can be calculated from the single diagram

4An example of a non-fermion loop that includes a fermion line is a graph like the one in
Fig.3.3. Such a diagram could be obtained by sewing two external electron edges of a graph
contributing to a e+e− → e+e− process at tree level.
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γ

e−

e+ µ−

µ+

FIGURE 3.6: Tree-level contribution to the amplitude
A4(e+e− → µ+µ−)

γ

e−e−

µ− µ−

FIGURE 3.7: Tree-level contribution to the amplitude
A4(e−µ− → e−µ−)

Note that, in either of these diagrams, the only sewing procedures that
make sense are between particles of the same flavour. In both cases, the re-
sulting diagram is a tadpole insertion into the electron or muon propagator,
which by virtue of having a fermion loop include a minus sign. Now, in the
case of electron-positron scattering, the tree-level amplitude receives contri-
butions from two different diagrams, namely

γ

e−1

e+1 e−2

e+2

γ

e−2e−1

e+1 e+2

FIGURE 3.8: Contributions to electron-positron scattering at
leading order in QED. The tree-level amplitude is given by the
difference between the diagram on the left and the diagram on

the right.

The diagrams on the left and right of Fig.3.8 can be related to the diagram
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for the processes e+e− → µ+µ− and e−µ− → e−µ−, respectively, by substi-
tution of the muon mass with the electron mass. In this sense, one can obtain
the amplitude A4(e+e− → e+e−) as a combination of two amplitudes with
fermions of different flavours. Now, this amplitude is given by the difference
between the two diagrams in Fig.3.8, with the relative minus sign between
the two contributions being a consequence of Fermi statistics. Now, when we
try to sew, for example, e−1 with e+1 , we get two different kinds of contribu-
tions: from the diagram on the left, we get a tadpole insertion into the e−2 e+2
edge. On the other hand, sewing these two edges on the diagram on the right
leads to a self-energy insertion into the remaining electron edge. The minus
sign coming from the sewing procedure will then multiply the minus sign in
front of the tree diagram, resulting in the correct sign for this contribution to
the electron two-point function at one-loop. The same behaviour occurs with
general graphs, were a pair of fermion-antifermion lines are sewn together.

In the case of massless gauge bosons, such as photons or gluons, we have

∑
s

(
εs

µ(k, n)
)∗

εs
ν(k, n) = −gµν +

kµnν + kνnµ

k · n
, (3.14)

where n is a reference vector. As in the fermion case, we would like to use
this relation to restore the numerator of the boson propagator. These propa-
gators, however, are gauge-dependent. In particular, in Feynman gauge, the
numerator of the gauge boson propagator is given simply by (−1) times the
metric tensor. Using the completeness relation for gµν, we can write

− gµν = ∑
s

(
εs

µ(k, n)
)∗

εs
ν(k, n)−

kµnν + kνnµ

k · n
(3.15)

the gauge dependence of the propagator is reflected on the fact that one
cannot write the metric tensor in terms of only physical polarizations, but
rather also needs to include the terms that depend explicitly on the reference
vector n. The contributions coming from these unphysical polarizations are
cancelled by diagrams including Fadeev-Popov ghosts. Thus, we also need
to consider tree diagrams with external ghosts and develop sewing rules for
them. Since ghosts are anticommuting scalar particles, there is no need to
introduce any external wave function. However, in analogy to the sewing of
fermion edges, a factor of (−1) is included whenever a pair of ghost edges
are sewn together.

So far, we have seen how to go from loop to tree graphs, and vice versa,
at the level of individual loop graphs. On one hand, from an L-loop graph
we can obtain various tree graphs by choosing a set of L internal edges and
cutting then open into a pair of external edges. On the other hand, a tree
graph can be turned into a loop graph by identifying pairs of external edges
and sewing them together. In terms of Feynman integrals, these operations
are related to the calculation of residues. We would like to see what happens
when we try to relate the complete set of graphs that contribute to an arbi-
trary L-loop amplitude with n external edges to the set of graphs obtained
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FIGURE 3.9: One-Loop contribution to the two-point function
in a theory with cubic interactions. Exchanging the internal
edges leads to an equivalent expression, leading to the appear-

ance of a symmetry factor.

by sewing all possible tree graphs with n + 2L external edges into the graphs
that contribute to the L-loop amplitude. Our findings constitute the main re-
sult of this chapter: we will see how a sum over loop graphs, weighted with
their corresponding symmetry factors, can be replaced by a sum over a set of
sewed tree graphs.

3.3 Cancellation of Symmetry Factors

There is one aspect of loop integrals that we have ignored so far, but is crucial
for the correct calculation of a scattering amplitude: the presence of symme-
try factors. These are combinatorial factors associated to the fact that a given
loop graph might be invariant under the exchange of some of its internal
edges.

The need for symmetry factors can be seen already in the simple exam-
ple of the two-point function of Fig. 3.9. One might start by drawing the
diagram as the graph on the left, with the red propagator on the top and the
blue on the bottom. Equivalently, one could swap the position of these inter-
nal edges. The corresponding expression for the Feynman integral associated
to either of these diagrams is the same, so we must multiply by a factor of 1

2
when adding it’s contribution to a correlation function or a scattering ampli-
tude. The reciprocal of this number, S = 2, is known as the symmetry factor
of the diagram.

For higher-loop graphs, the computation of the symmetry factors becomes
an exercise in combinatorics. However, we know that, through the process
of cutting, one can identify an arbitrary loop graph with a set of tree graphs,
and since the external edges of these graphs always fix the position of the
internal edges, their symmetry factors are always trivial. Hence, we are in-
terested in seeing what happens with the symmetry factors of a set of loop
graphs if we cut them all open. In order to do this, we must first introduce
some additional notation which will allow our treatment of the problem to
be as general as possible. The arguments in this section closely follows [2].

Let us define a new set
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U⊗L
L,n (3.16)

called the set of L-marked, L loop graphs with n external edges. The ele-
ments of this set are the graphs Γ ∈ UL,n that can be obtained by marking a
set of L internal edges of Γ, labelling them with the indices {1, 2, ..., L} and an
orientation of each of these edges, such that when cutting the marked edges,
we obtain a connected tree graph Γcut ∈ U0,n+2L. Two marked graphs are
different if they are obtained by marking different edges of the same graph.
Moreover, two marked graphs are also considered to be different if the order
of the markings is different; that is, choosing the same set of internal edges,
but labelling them with different indices, yields two different marked graphs.
Finally, two marked graphs are different if the orientation of one or more of
the marked internal edges is different.

We can characterize each graph of U⊗L
L,n by identifying an ordered tuple

of edges {eσ1 , ..., eσL} such that cutting these edges results in a connected tree
graph, together with a map eσj → j that performs the marking of the selected
internal edges, and an orientation of each of the lines, which means assigning
each of the lines eσj a pair of signs of the form {+,−} or {−,+}. We define a
projection map

π f : U⊗L
L,n → UL,n (3.17)

that takes a marked graph into its corresponding loop graph by getting
rid of the marking of the internal edges. We can see a connection between
marked graphs and spanning trees by noting that, for any graph Γ ∈ UL,n,
the number of spanning trees |TΓ| is equal to the number of ways one can
select a set of markings. This implies that there are

Nmarked = 2LL!|TΓ| (3.18)

marked graphs that project to Γ under π f , which is obtained from the
number of spanning trees by multiplying by the number of possible ways to
assign an orientation (2L) and by all the possible ways to assign the labels
{1, 2, ..., L} to the selected edges (L!). We define also a set

US,⊗L
L,n (3.19)

which is the subset of U⊗L
L,n which only contains diagrams that contribute

to the scattering amplitude. At this point, its useful to introduce an "interme-
diate" set

U⊗L, nh
L,n (3.20)

whose elements are obtained from those of U⊗L
L,n by forgetting the infor-

mation on the ordered tuple {eσ1 , ..., eσL}, but keeping both the marking and
the orientation. The elements of U⊗L, nh

L,n are then characterized by marking
L internal edges and assigning an orientation to each of these edges. This



48 Chapter 3. Tree and Loop Feynman Graphs

means that two graphs where the L marked edges are not the same, but
where the orientation of both sets of L edges is equal, are considered to be
the same element of U⊗L, nh

L,n . We can furthermore define projections

πh : U⊗L
L,n → U⊗L, nh

L,n (3.21)

defined by dropping the information on the ordered tuple of edges, and

πm : U⊗L, nh
L,n → UL,n (3.22)

defined by getting rid of the marking and orientation of the internal edges.
It is in this sense that U⊗L, nh

L,n is an intermediate set between U⊗L
L,n and UL,n.

These projections satisfy the relation

π f = πm ◦ πh. (3.23)

Now, we can build a set of tree graphs by considering the set of momenta
{P} = {p1, ..., pn, k1, ..., kL, k1, ..., kL}. Then, let

UL−Sew
0,n+2L (3.24)

be the set of all tree graphs with (2n + L) external lines with momenta in
{P} where all the pairs (ki, ki) are sewn together for all i ∈ {1, 2, ..., L}. This
results in graphs with n external edges and L loops. Assigning the momenta
ki and ki to the sewn edges defines a marking and an orientation of the new
internal edge, which we take to be from ki to ki. With this properties in mind,
we can define a bijection

B : U0,n+2L → U⊗L, nh
L,n (3.25)

which sends the j-th sewed edge labelled by the momenta k j to the ori-
entation label + and the j-th sewed edge labelled by the momenta kj to the
orientation label −.

Let F denote an arbitrary operator acting on a graph Γ. For example,
we could let F be the operator that maps the graph its algebraic expression
according to the Feynman rules. We want to show that

∑
Γ∈U⊗L

L,n

1
S(π f (Γ))

F(π f (Γ)) = ∑
Γ∈UL−Sew

0,n+2L

F(B(Γ)) (3.26)

where S(Γ) denotes the symmetry factor of the graph. This relation al-
lows to exchange a sum of marked loop graphs weighted by the symmetry
factors associated to the unmarked graph with a sum over the corresponding
cut graphs.

To prove this statement, first notice that we have established that there is
bijection between the graphs in UL−sew

0,n+2L and U⊗L,nh
L,n . However, there might

be several graphs in U⊗L
L,n which project into the same graph in U⊗L,nh

L,n . What
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we have to show is that the symmetry factor exactly compensates the over-
counting when going form the marked graphs to the tree graphs.

Consider a graph Γ ∈ U⊗L
L,n . An automorphism on Γ is an isomorphism

from the graph to itself; that is, it corresponds to a symmetry of the graph.
Such a transformation permutes the edges and vertices of π f (Γ), leaving it
invariant. If we let Aut(π f (Γ)) denote the group of automorphisms of π f (Γ),
we can see that the dimension of this group exactly corresponds to the sym-
metry factor of the graph π f (Γ), that is

S(π f (Γ)) = |Aut(π f (Γ))|. (3.27)

Adopting this point of view will allow us to use concepts from group the-
ory to prove Eq.(3.26).

Let T ∈ Aut(π f (Γ)). T induces a transformation on each graph Γ ∈
U⊗L

L,n by permutting the corresponding edges and vertices together with the
markings and orientations of the original marked graph. This means that T
induces a group action on the set of marked graphs. We denote such a group
by GT and an arbitrary transformation in this set by gT. Now, let

GT(Γ) = {gT(Γ)|gT ∈ GT} (3.28)

be the orbit of Γ under GT, that is, all the graphs that can be obtained from
the graph Γ by applying transformations from GT. Since any transformation
in GT permutes the markings and orientations of Γ, but leave the same in-
ternal edges marked, all graphs in the orbit of Γ project to the same graph
πh(Γ) in U⊗L,nh

L,n . On the other hand, a graph Γ ∈ U⊗L
L,n corresponds, due to

the markings, to a tree graph. Since tree graphs have no symmetry factors,
their automorphism group is trivial. This means that the only transformation
leaving the marked graphs invariants is the identity, implying that the group
action GT is free. Thus, GT(Γ) generates all graphs which project to πh(Γ)
and the symmetry factor correctly compensates the over-counting.

Let us discuss some examples to make our argument a bit more clear. We
begin by looking a the one-loop two point function. This graph has a sym-
metry factor S = 2. Any graph obtained by marking one of its internal edges
will inherit this symmetry factor. The two marked graphs, which project to
the one-loop bubble graph, are shown in Fig. 3.10.

From the perspective of the sewn graphs, the two marked bubbles are
obtained from the same graph:

hence, the symmetry factor of 2 cancels the over-counting of the marked
graphs.

More involved examples can be found at two loops and beyond. We con-
sider the so-called sunrise diagram,
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1
2


+ -

+

+ -


FIGURE 3.10: Possible markings of the one-loop bubble graph.
These inherit the symmetry factor S = 2 from the original un-

marked graph.

k k

FIGURE 3.11: Cut graph obtained from the marked one-loop
bubble.

which contributes to the NNLO corrections to the propagator. Notice that
exchanging any two of the three propagators at a single vertex leaves the di-
agram invariant. Since there are 3! ways of doing this, the diagram has a
symmetry factor of S = 6. Moreover, there are three ways of marking two
out of the three propagators, and for each of these markings, there are two
possible ways to assign the labels 1 or 2 to each of the marked edges. This
means that there are six graphs in U⊗2

2,2 which project to the sunrise graph.

An example of these graphs is given in Fig.3.13.The remaining five marked
graphs are obtained by assigning the labels 1 and 2 to each possible way to
pick two of the three internal edges. All of these six marked graphs project
onto the same sewn graph of Fig. 3.14. As in the previous one-loop example,
the symmetry factor cancels the over-counting of loop graphs which produce
the same sewn graph, just as we expected from Eq.(3.26).

Having shown how to relate tree and loop graphs through the operations
of cutting and sewing, we have seen that, at the level of graph theory, we can
translate any problem involving loop graphs to the study of tree graphs. By
looking at the particular kind of loop graphs contributing to the scattering
amplitude at arbitrary loop order, we have been able to construct a compact
notation to reference the different kinds of graphs we might encounter in a
given calculation, and we have seen how the symmetry factors of loop graphs
are cancelled by the different ways to open up a loop graph once we have
given special labels to each of its internal edges. It is time to see how these
relations between tree and loop graphs translates to Feynman integrals.
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FIGURE 3.12: Two-loop sunrise graph. This is an element of
U2,2.

+ -

+ -

1

2

FIGURE 3.13: One of the six possible marked graphs obtained
from the two-loop sunrise.

k1 k1

k2 k2

FIGURE 3.14: Cut graph obtained from the marked two-loop
sunrise graph.
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Chapter 4

Loop-Tree Duality

Loop-Tree Duality, or LTD for short, is an approach to the calculation of Feyn-
man integrals based on Cauchy’s residue theorem. The main motivation
behind this approach is the fact that the virtual corrections to a scattering
amplitude at any fixed perturbative order are given as integrals over all the
components of the momenta running through the loops, while the radiative
corrections are calculated as phase-space integrals. Therefore, it becomes
beneficial to write all the corrections in terms of the same integration mea-
sure. The LTD formalism attempts to do this by performing the integration
over a single component of each of the loop momenta (usually the energy) by
calculating the residues of the integrand obtained when the propagators go
on-shell. In terms of the underlying Feynman graphs, calculating a residue
is equivalent to cutting an internal line into two external lines with opposite
on-shell momenta. The result is then a sum of integrals performed over the
spatial components of the loop-momenta where the new, so-called dual inte-
grands, have a tree-like structure.

In this chapter, we will derive the LTD formula for individual Feynman
integrals. As a first step, we provide the derivation of the LTD formula at
one-loop and give explicit analytic computations of some cut integrals in φ3

theory. We then proceed to the multiloop case, where complications arise
due to the calculation of residues in more than one complex variable.

4.1 Loop-Tree Duality at One-Loop

We introduce the LTD formalism [1] for Feynman integrals by first deriving
the formula at the one-loop level.

Let Γ ∈ U1,n denote a one-loop graph with n external edges and N inter-
nal edges. Let EΓ = {e1, ..., eN} denote the set of the internal edges. Assume
that all the momenta p1, p2, ..., pn are outgoing, and define

qj =
j

∑
i=1

pi

We are interested in the calculation of the integral
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I(1)n =
∫ dDk

(2π)D
P(k)

∏ej∈EΓ
D

νj
j

(4.1)

where P(k) is a polynomial in the loop (and external) momenta, and the
inverse propagators Dj are given by

Dj = k2
j − m2

j + iδ (4.2)

where k j = k + qj, mj the mass of the j-th line and δ is an infinitesimally
small quantity. We assume that Di 6= Dj for i 6= j without loss of generality
and that each propagator can be raised to an arbitrary integer power νj. It
will be convenient to denote the integrand of Eq.(4.1) as

f (E,~k) =
P(k)

∏ej∈EΓ
D

νj
j

, (4.3)

where we choose to make the dependence on the energy and the spatial
components of the loop momenta explicit and separate.

The loop integrand becomes singular when any of the propagators goes
on-shell. Letting E denote the energy component of k, this means that each
propagator develops a pair of poles in E which are solutions to

Dj = 0 −→ E + qj,0 = ±
√
|~k +~qj|2 + m2

j − iδ

We now expand the square root to first order in δ in order to determine
the location of the poles in the complex E plane. This results in

E± = −qj,0 ±
(

Ej −
iδ

2Ej

)
(4.4)

where we define Ej =
√
|~k j|2 + m2

j . Each propagator gives a pole located
in either the upper- or lower-half of the complex E plane and we can use the
residue theorem to perform the integral over E, under the assumption that
the polynomial P(k), seen as a function of E, is such that the integrations
over half-circles at infinity vanish, by picking a contour in either of the half-
planes. The election of closing the contour on either side of the complex plane
is arbitrary and the result of the integration is independent of this choice. We
can also average over the two possibilities:

I(1)n = − i
2

∫ dD−1k
(2π)D−1×

∑
r

(
res
(

f (E,~k), E = E+
r

)
+ res

(
f (E,~k), E = E−

r

)) (4.5)

where E±
r denote the pole of the r-th propagator whose real part has the

sign ± and both sums go over all the positive or negative energy poles. We
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now specialize to the case where νj = 1. This means that each pole is simple,
and we can directly compute each residue. In general, the residues will be
the product of the factors

res

(
1

k2
j − m2

j + iδ
, E = E+

)
=

1
2Ej

(4.6)

for the pole at E+ = −qj,0 + Ej − iδ
2Ej

or

res

(
1

k2
j − m2

j + iδ
, E = E−

)
= − 1

2Ej
(4.7)

for the pole at E− = −qj,0 − Ej +
iδ

2Ej
, with the remaining propagators

evaluated at E = E+ or E = E−, respectively. This modifies the iδ prescrip-
tion of each propagator, for a 6= j, as

Da(E = E+) = (E+ + qa,0)
2 − |~ka|2 − m2

a + iδ

=

(
−qj,0 + Ej + qa,0 −

iδ
2Ej

)2

− |~ka|2 − m2
a + iδ

= (−qj,0 + Ej + qa,0)
2 −

−qj,0 + Ej + qa,0

Ej
iδ − |~ka|2 − m2

n + iδ

= (−qj,0 + Ej + qa,0)
2 − |~ka|2 − m2

a +
qja,0

Ej
iδ

(4.8)

where we have kept terms only up to order δ and we define qja = qj − qa.
The result for E = E− is obtained by the simple shift Ej → −Ej. Finally, in
each residue, we evaluate the polynomial P(k) at the corresponding energy.

The cut integrands obtained by this procedure are tree-like objects built
from propagators that have a modified iδ prescription that, at one loop, de-
pends on the external momenta1. These are known as dual propagators [88].

An obvious question at this point is: why is it convenient to consider
the average over the different contour closings, if one ends up with more
contributions than by considering just a single contour? Let us answer this
question at the one-loop level, and postpone the discussion for higher-loop
integrals for the derivation of the multi-loop LTD formula.

1Notice that the role of the iδ prescription is to specify the position of the poles of the
propagators in the complex plane. Therefore, when the modified iδ prescription is taken
into account, one only cares about the sign of the prefactor in front of iδ. At the one-loop
level, these signs are defined completely once the external momenta is fixed. This doesn’t
hold beyond two-loops, which is the main problem one has to solve in order to generalize
the LTD formula for multiloop integrals.
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If there are massless particles propagating in the loop, and integral such
as Eq.(4.1) will develop IR singularities whose structure might be difficult to
parametrize. However, the behaviour of tree amplitudes in soft and collinear
limits is very well understood: the amplitudes factorizes in soft limits while
the squared amplitudes factorizes in collinear limits [22, 23] into an ampli-
tude with fewer external particles, multiplied by a factor that depends only
on the kind of soft or collinear particles. Thus, if it were possible to write
the integrand of a loop amplitude as a tree amplitude-like object with similar
factorization properties close to their IR singularities, it would be possible to
identify the regions where the IR divergences of the virtual corrections occur
and achieve a cancellation, at the integrand level, of the IR divergences of the
virtual and real corrections to a cross-section at NLO. This is achieved pre-
cisely by the averaging procedure.

To illustrate this point, let us consider the 5-point tree-level amplitude
in φ3 theory. There are 15 diagrams that contribute to this amplitude, cor-
responding to the insertion of an additional scalar to each of the lines of the
three diagrams that contribute to the 4-point scalar amplitude, which are sim-
ply the sum of an s, t, and u channel diagrams. If we let two of the external
lines be labelled by a pair of momenta (k, k), where k → −k, we can sew their
corresponding edges together to obtain various one-loop graphs. Out of the
15 diagrams, three of them sew into a tadpole insertion

A(1−TP)
3 = (4.9)

another six sew into self-energy insertions

A(1−SE)
3 = (4.10)

while the remaining six all sew into the triangle diagram

A(1−triangle)
3 = (4.11)

Now, the one-loop amplitude with three external massless scalars is cal-
culated only from the triangle diagram and its possible counterterms. If we
applied the LTD formula and only picked one contour closure, we would
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miss half the possible tree diagrams contributing to the five-point tree ampli-
tude that are consistent with the LSZ formula. The resulting integrand has
the structure of a tree amplitude where the contributions that are singular in
the forward limit k → −k have been removed. This new tree-like object en-
joys the same factorization properties as the tree amplitude, which simplifies
the study of the IR singularities of the whole virtual contribution to the cross
section. This is the reason why it is useful to perform an averaging procedure
at one-loop.

4.1.1 Computation of simple integrals using LTD

Before we introduce the generalization of the LTD theorem to multiloop inte-
grals, let us illustrate the consistency of the theorem with the computation of
some simple cut integrals and how their contributions sum up to the result
obtained for the Feynman integral after direct integration.

We begin by considering the triangle integral in Eq.(4.11), where we take
the outgoing momenta to be p1 and p2, and we take every particle massless.
The expression for this integral, in dimensional regularization, is then

I(1)3 (p1, p2) = µ4−D
∫ dDk

(2π)D
1

(k2 + iδ)((k + p1)2 + iδ)((k − p2)2 + iδ)
(4.12)

including the renormalization scale. Using standard Feynman parame-
ters and reflection identities for Gamma functions, the massless triangle in-
tegral evaluates to [89]

I(1)3 (s) =
i

16π2s

(
s

4πµ2

)−ε Γ(1 + 2ε)Γ(1 − ε)

ε2 cos πε (4.13)

which depends only on the kinematic invariant s = (p1 + p2)
2.

In order to apply LTD, we notice that each of the three propagators has
two residues, whose location in the complex k0 plane are given by

k2 + iδ = 0 −→ k±0 = ±
(
|~k| − iδ

2|~k|

)

(k + p1)
2 + iδ = 0 −→ k±0 = −E1 ±

(
|~k + ~p1| −

iδ
2|~k + ~p1|

)

(k − p2)
2 + iδ = 0 −→ k±0 = E2 ±

(
|~k − ~p2| −

iδ
2|~k − ~p2|

) (4.14)

where we have kept terms only up to O(δ). Applying LTD, we can write
the triangle integral as the linear combination



58 Chapter 4. Loop-Tree Duality

I(1)3 (p) =
1
2

(
3

∑
i=1

Cut(i+) +
3

∑
i=1

Cut(i−)

)

=
1
2 ∑

α=−1,1

3

∑
i=1

Cut(i(α))

(4.15)

where, labelling the inverse propagators as D1 = (k + p1)
2 + iδ, D2 =

(k − p2)
2 + iδ and D3 = k2 + iδ, the quantity Cut(i(α)) denotes the cut ob-

tained by evaluating the residue of the propagator Di at the pole k(α)0 . As
we mentioned previously, at one loop one obtains equivalent results when
closing the contour upwards or downwards. Thus, we will show the results
only for the integrals obtained by closing the contour on the lower-half of the
complex plane.

In order to simplify the resulting integrals, we work on the Center of Mo-
mentum (CoM) frame, where the external momenta p1 and p2 are given by

p1 = (E,~p), p2 = (E,−~p) (4.16)

with E = |~p|, since the external momenta are massless. Furthermore, the
invariant s takes the value 4E2. Using this coordinates, we can write

Cut(1+) = −iµ4−D
∫ dD−1k

(2π)D−12|~k + ~p|
×

1

((|~k + ~p| − E)2 − |~k|2)((|~k + ~p − 2E)2 − |~k + ~p|2)

= −iµ4−D
∫ dD−1k

(2π)D−12k
×

1

(k − E)2 − |~k − ~p|2)((k − 2E)2 − k2)

(4.17)

where we perform the shift~k → ~k − ~p to go from the first to the second
line, and we introduce the short-hand notation k = |~k|. If we let θ be the
angle between~k and ~p, we can parametrize the integration measure as

dD−1k = kD−2dk sinD−3 θdθdΩD−2 (4.18)

were ΩD denotes the solid angle in D dimensions. Further rescaling k =

Ex =
√

s
2 x and evaluating the solid angle using Eq.(2.31) turns the cut into

the two dimensional integral
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Cut(1+) =
i

(2π)D−12s
π

D
2 −1

Γ
(D

2 − 1
) (√

s
2µ

)D−4

×
(∫ ∞

0

xD−4

1 − x
dx
)(∫ π

0

sinD−3 θ

1 − cos θ
dθ

) (4.19)

The remaining integrals depend only on the dimension D, and we set
D = 4 − 2ε, keeping in mind an expansion around D = 4. The first one is
performed with the transformations x = y

1−y ,

∫ ∞

0

x−2ε

1 − x
dx =

∫ 1

0

1 − y
1 − 2y

y−2ε

(1 − y)−2ε

1
(1 − y)2 dy

=
∫ 1

0

y−2ε(1 − y)2ε−1

1 − 2y
dy

=
π

2
(−2i − cot(πε) + tan(πε))

= −π csc(2πε)ei2πε,

(4.20)

while the second one requires cos θ = 1 − 2z. This then yields

∫ π

0

sin1−2ε θ

1 − cos θ
dθ =

∫ 1

0

(4z(1 − z))−ε

2z
2dz

= 4−ε
∫ 1

0
z−ε−1(1 − z)−εdz

= 4−ε Γ(−ε)Γ(1 − ε)

Γ(1 − 2ε)

(4.21)

where we used the definition of the Euler’s Beta function and written it
in terms of Gamma functions. Simplifying the resulting expression using the
identity

Γ(z)Γ(1 − z) = π csc(πz) (4.22)

the final result for this integral is

Cut(1+) =
i

32π2s

(
s

4πµ2

)−ε Γ(1 + 2ε)Γ(1 − ε)

ε2 ei2πε (4.23)

The result for the second cut is obtained in an analogous fashion, and we
simply quote the final result:

Cut(2+) =
i

32π2s

(
s

4πµ2

)−ε Γ(1 + 2ε)Γ(1 − ε)

ε2 . (4.24)

At this point, by noticing that
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1 + ei2πε = 2eiπε cos πε

= 2(−1)−ε cos πε
(4.25)

we can see that the adding the two cuts already yields the result of Eq.(4.13).
The remaining cut integral Cut(3+) can be seen to be proportional to an ex-
pression of the form

1
εUV

− 1
εIR

(4.26)

where each of the parameters regularize either an UV or an IR divergence.
However, since we are working in dimensional regularization, we can take
these two regulators to be the same, which implies that the integral van-
ishes. This phenomena, where a cancellation occurs between UV and IR di-
vergences, is only present when working in dimensional regularization. The
steps involved in the calculation when the contour is closed on the upper-
half of the complex plane is identical, resulting in the three same integrals.
Hence, we can see that the LTD theorem reproduces the result for the direct
integration of the loop integral.

4.2 Loop-Tree Duality for Multi-Loop Integrals

We will now see how to generalize Eq.(4.5) to L-loop integrals. As a first step,
we will highlight the additional complications that arise beyond one loop by
looking at a particular example.

Consider the integral

I(2)sun(p2; m1, m2, m3) =
∫ 2

∏
i=1

(
dDKi

(2π)D

)
×

1
(k2

1 − m2
1 + iδ)(k2

2 − m2
2 + iδ)(k2

3 − m2
3 + iδ)

(4.27)

which corresponds to the sunrise graph of Fig. 3.12 and the momenta
satisfy the constraint

k1 + k2 + k3 = p. (4.28)

The two integration variables Ki can be any two of the momenta of the
three propagators {k1, k2, k3}. This is an example of the general idea that we
can pick different bases of independent loop momenta by picking L out of
the N propagators in a given loop integral, with the momenta of the remain-
ing (N − L) propagators written as a linear combination of the independent
loop momenta and the external momenta.



4.2. Loop-Tree Duality for Multi-Loop Integrals 61

We want to find an LTD formula for the integral of Eq.(4.27). As a first
attempt, we notice that each inverse propagator Di = k2

i − m2
i + iδ produces

two poles at

ki,0 = ±

√|~ki|2 + m2
i −

iδ

2
√
|~ki|2 + m2

i

 , (4.29)

where we have expanded to first order in δ. Now, we consider all the
possible ways to cut two propagators that yields a connected tree graph. In
the case of the sunrise, this will happen when we pick any two propagators,
meaning that here are

ncut =

(
3
2

)
= 3 (4.30)

possible ways to choose the propagators2. Using the translation invari-
ance of the loop integral, we can choose the independent loop momenta K1
and K2 so that they match the momenta of the cut propagators. Thus, we can
perform the calculation of the residues as two independent complex vari-
ables. For each variable, we can close the integration contour on either hemi-
sphere of the complex plane. There are four different ways to close the two
contours of each possible cut, and we average over them as we did in the
one-loop case. Let us define

Cut(iλi , jλj) = λiλjRes( f , ki,0 = Ei, k j,0 = Ej) (4.31)

where λ = ±1 and Ei = λi

√
|~ki|2 + m2

i −
iδ

2
√
|~ki|2+m2

i

and we let f denote

the integrand of Eq.(4.27). For example, if we pick K1 = k1 and K2 = k2,

Cut(1+, 2+) =
1

2
√
|~k1|2 + m2

1

1

2
√
|~k2|2 + m2

2

× 1
(p − k1 − k2)2 − m2

3 + s3({1, 2})iδ

(4.32)

where s3({1, 2}) depends on the energies of the cut propagators, and the
momenta k1 and k2 entering the combination k3 = (p − k1 − k2) are now on-
shell. Applying this procedure and then shifting back so that every cut is
integrated over the same pair of Euclidean momenta, we would obtain

I(2)sun(p2; m1, m2, m3) =
(−i)2

4

∫ dD−1k1

(2π)D−1
dD−1k2

(2π)D−1

3

∑
i 6=j

∑
λ∈{−1,+1}

Cut(iλi , jλj)

(4.33)

2This means that are there are three possible marked graphs
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FIGURE 4.1: Plots of the 1D sunrise integral evaluated using the
LTD ansatz of Eq.(4.33) (dotted line) and numerical evaluation
of Eq.(4.34) (dashed line) as functions of p for m1 = 11, m2 =

13, m3 = 17.

Before we proceed, let us compare the values of the sunrise integral eval-
uated in two different ways: by direct integration and by using the formula
in terms of cuts. To make this comparison as simple as possible, we will work
in D = 1.

Using Feynman parameters, the integral can be rewritten as

I(2)sun(p; m1, m2, m3) =
1

4π

∫ 1

0

∫ 1−a1

0
d2a

U 3
2

F 2 (4.34)

where

U = a1a2 + a1(1 − a1 − a2) + a2(1 − a1 − a2) (4.35)

and

F = (−a1a2(1 − a1 − a2)p2 + U (a1m2
1 + a2m2

2 + (1 − a1 − a2)m2
3)

2 (4.36)

The resulting integral can be performed numerically. On the other hand,
since each momenta is one dimensional, applying the residue theorem once
in each variable amounts to calculating the integral. Therefore, the integral
should simply be the sum of the cuts, evaluated at their corresponding poles
in K1 and K2.

Figure 4.1 show the values of the 1D sunrise integral as a function of p
for fixed values of the masses obtained by using our LTD ansatz and the nu-
merical evaluation of the integral after Feynman parametrization. Clearly,
there is something wrong: while both results appear to have the same order
of magnitude, the values and the behaviour of the integral are completely
different from one another. This means that there must we something wrong
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with our approach to the residue calculation.

In order to see what is happening, let us consider the iterative application
of LTD to the sunrise integral, computing first the residues in one of the two
energy components, say, of k2, and then trying to apply the residue theorem
in the remaining energy integral. To simplify the discussion, we will take all
propagators to be massless. We rewrite the integral as

I(2)sun(p2) =
∫ dDk1

(2π)D
1

k2
1 + iδ

Ibub(k1) (4.37)

where

Ibub(k1) =
∫ dDk2

(2π)D
1

(k2
2 + iδ)((p − k1 − k2)2 + iδ)

(4.38)

has the structure of a one-loop bubble integral, and we have taken k1
and k2 as our two independent loop momenta, while explicitly writing k3 =
(p − k1 − k2). The two denominators result in poles on the k2,0 plane located
at

k2
2 + iδ = 0 −→ k±2,0 = ±

(
|~k2| −

iδ
2|~k2|

)
,

(p − k1 − k2)
2 + iδ = 0 (4.39)

−→ k±2,0 = p0 − k1,0 ±
(
|~k1 +~k2 − ~p| − iδ

2|~k1 +~k2 − ~p|

)
.

We can then evaluate the dk2,0 integral by using the residue theorem, av-
eraging over the closing in the two hemispheres of the complex plane, as we
did in the one-loop case. The integral then becomes

Ibub(k1) =
1
2

2

∑
i=1

∑
r={+,}

Ii,r
bub(k1). (4.40)

We can explicitly compute the residue of the cut at the pole k2,0 = |~k2| −
iδ/2|~k2|. The residue formula yields a factor of 1/2|~k2|, while the remaining
propagator evaluates to
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(p − k1 − k2)
2 + iδ =

(
p0 − k1,0 − |~k2|+

iδ
2|~k2|

)2

− |~p −~k1 −~k2|2 + iδ

= (p0 − k1,0 − |~k2|)2 − |~p −~k1 −~k2|2

+ iδ +
p0 − k1,0 − |~k2|

|~k2|
iδ

= (p0 − k1,0 − |~k2|)2 − |~p −~k1 −~k2|2

+
p0 − k1,0

|~k2|
iδ

(4.41)

thus, the corresponding contribution to the sum in Eq.(4.40) is given by

I1,+
bub = −i

∫ dD−1k2

(2π)D−12|~k2|
×

1

(p0 − k1,0 − |~k2|)2 − |~p −~k1 −~k2|2 +
p0−k1,0

|~k2|
iδ

(4.42)

with the remaining contributions being computed in similar fashion. In
the next step, we would like to apply the residue theorem in the complex k1,0
plane. However, the resulting integrals have a more complicated structure,
due to the prefactor in front of the iδ in Eq.(4.42). In a regular Feynman in-
tegral, the propagators have the usual Feynman prescription to separate the
position of the poles in a symmetric fashion between both hemispheres of the
complex plane. In this case, the position of the poles of the dual propagator
in the k1,0 plane depends on the sign of (p0 − k1,0). Keeping track of these
signs represents the main difficulty in writing down a general LTD formula
beyond one-loop and is the reason behind the mismatch found in Fig. 4.1:
a naive application of the residue theorem is insensitive to the constraints
which relate the different loop momenta, which cannot be ignored if one is
to obtain a correct LTD representation of an arbitrary loop integral.

We would like to find a LTD formula for integrals of arbitrary loop order
which preserves the structure of the residues found in the one-loop case; that
is, that the singularity structure of the cut propagators is defined directly by
the Feynman propagators before the introduction of any dual prescription. In
order to do this, we will first introduce some general notation to refer more
easily to each of the different properties of the integrals that are important to
the derivation, as well as a proper definition of a multidimensional residue.

Consider a graph Γ ∈ UL,n. Let EΓ = {e1, e2, ..., eN} denote the set of in-
ternal edges of Γ. We can obtain a cut graph Γcut ∈ U0,n+2L by cutting open
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L internal edges, for example, {eσ1 , ..., eσL}. We denote by σ = {σ1, ..., σL} the
set of indices of the cut edges.

We let

p1, p2, ..., pn

be the external momenta of the graph Γ, while

k1, k2, ..., kN

denote in the momenta of the internal edges. Notice that there is no sin-
gle way to define the integrand associated to the graph Γ, since we have
the freedom to pick L out of the N momenta in k1, ..., kN as the independent
loop momenta that we integrate against, while the remaining (N − L) inter-
nal momenta become linear combinations of the independent loop momenta
and the external momenta. Thus, we will assume that the first L momenta
k1, k2, ..., kL form a basis of independent loop momenta. For each internal
edge, we define the inverse propagator

Dj = k2
j − m2

j + iδ, ej ∈ EΓ (4.43)

where, as in the one-loop case, we assume Di 6= Dj for i 6= j without loss
of generality, since the case where two propagators are equal to each other
amounts to considering an integral with fewer propagators, where one of the
propagators is raised to a higher power.

We let f (k) denote any function which depends on the D-dimensional
momentum k = (E,~k). We also use the notation f (E,~k) when we want to
emphasize the dependence of f on its energy component. We denote by∫ dD−1k

(2π)D−12
√
~k2 + m2

f (±
√
~k2 + m2,~k) (4.44)

the integral of the function f over the forward (+) and backward (-) on-
shell hyperboloid k2 = m2. Such integrals would be obtained by computing
residues of loop integrals where the real part of the pole is positive or neg-
ative, respectively. Anticipating the appearance of an average over the two
possible contour closings associated to the poles of a single propagator, we
introduce the shorthand notation

dkcut =
dD−1k

(2π)D−12
√
~k2 + m2

(4.45)

for the integration measure of the cut integrals, and∫
±

dkcut f (k) =
∫

dkcut ∑
λ={±}

f (λ
√
~k2 + m2,~k) (4.46)
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for the sum of the integrals over both hyperboloids. Our object of interest
is the general loop integral

IL =
∫ ( L

∏
i=1

dDki

(2π)D

)
PΓ

∏ej∈EΓ
D

νj
j

(4.47)

where PΓ is a polynomial in the independent loop momenta k1, ..., kL and
the external momenta p1, ..., pn. We further demand that PΓ be such that all
energy integrations over half-circles at infinity vanishes. This conditions is
always satisfied, for example, in the case of scalar integrals where PΓ = 1.
Now, we proceed to separate the energy integrations and write

IL =
∫ ( L

∏
i=1

dD−1ki

(2π)D−1

)
1

(2π)L

∫ PΓ

∏ej∈EΓ
D

νj
j

dE1 ∧ dE2 ∧ ... ∧ dEL (4.48)

where we have interpreted the integrand over the energy components as
an L-form. We want to perform the L energy integrations using the residue
theorem. The first issue we must address is how to properly define the
residue of a function of multiple complex variables.

To begin, let σ denote some indices defining a spanning tree, and choose
the independent loop momenta to be the momenta flowing through the lines
indexed by σ. Furthermore, let

E(α)
σ = (E(α)

σ1 , . . . , E(α)
σL ) (4.49)

be a solution to the set of equations

Dσ1 = · · · = DσL = 0 (4.50)

where α = ±1 denotes the sign of the real part of each solution. Since
there are two solutions to each of the equations Dσi = 0 for a given propa-
gator, we can see that there will be a total of 2L solutions Eα

σ, which can in
general be written as(

±
√
|~kσ1 |2 + m2

σ1
− iδ, · · · ±

√
|~kσL |2 + m2

σL
− iδ

)
(4.51)

Now, we consider the L-fold residues of the differential form

PΓ

∏ej∈EΓ
D

νj
j

dE1 ∧ dE2 ∧ ... ∧ dEL := f dE1 ∧ dE2 ∧ · · · ∧ dEL (4.52)

where we have introduced a short-hand notation for the integrand of
Eq.(4.47). These residues are calculated around the poles defined by the
equations in Eq.(4.50). We can define the local residue [90] at E(α)

σ as the
contour integral
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res( f , E(α)
σ ) =

1
(2π)L

∮
γε

f dE1 ∧ dE2 ∧ · · · ∧ dEL (4.53)

where the integration region in CL

γε = {(E1, . . . , EL) ∈ CL||Dσi | = ε ∀i ∈ (1, . . . , L)} (4.54)

encircles the point E(α)
σ with orientation

d arg Dσ1 ∧ d arg Dσ2 ∧ · · · ∧ d arg DσL ≥ 0. (4.55)

Each local residue around E(α)
σ corresponds to the contribution to the in-

tegral obtained from a single cut of L internal propagators. From their defini-
tion, these residues can be calculated as a simple generalization of the residue
theorem in one complex variable, which we will perform shortly. However,
we will first show that the value of the L-fold residue of f is not given by the
sum of the residues, but rather by a sum weighted by combinatorial factors.
The result to prove is that

1
(2π)L

∫
f dE1 ∧ dE2 ∧ · · · ∧ dEL

= (−i)L ∑
σ∈CΓ

∑
α

Sσα(−1)n(α)
σ res( f , E(α)

σ )
(4.56)

where, as in the previous chapter, CΓ is the set of all possible indices of cut
edges, and nα

σ denotes the number of entries with negative real part in E(α)
σ .

The following derivation follows the lines of [1].

As a first step, let us pick a set of L integration variables indexed by an
element σ̃ ∈ CΓ and let us assume that the integration is performed in an
iterative fashion. Let π̃ ∈ SL denote the order in which the integrations are
performed; that is, we integrate first over kσ̃π1

all the way up to kσ̃πL
. We

remind ourselves that in the intermediate steps after the first m integrations,
the position of the poles in the remaining integration variables will depend
on the values of the Euclidean components of (kσ̃π1

, . . . , kσ̃πm ).

Let k̃ = (k̃1, . . . , k̃L) = (kσ̃π1
, . . . , kσ̃πL

) denote the ordered set of integra-
tion momenta and α̃ = (γ1, . . . , γL) denote the ordered set of winding num-
bers. Each αi = ±1, and its value denotes whether the integration contour in
the variable k̃i is closed above (+1) or below (-1) in the complex plane.

Furthermore, let us specify by σ ∈ CL a particular cut of the graph Γ asso-
ciated to the Feynman integral we are calculating. This cut can be taken by
cutting L lines one after the other, and in analogy to the integration process,
we denote by π ∈ SL the order in which the edges eσi are cut, such that the
first cut edge is eσπ1

and the last is eσpiL
. Also, we let α = (λ1, . . . , λL) denote
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the signs of the real part of the cut under consideration, meaning that λi = 1
is related to a cut whose residue has a positive energy with respect to the
orientation of the cut edge eσπi

.

Now, let the momenta of the cut edges be specified by the ordered set k̂ =
(k̂1, . . . , k̂L) = (kσπ1

, . . . , kσπL
). Recall that we would like to choose the pick

the independent loop momenta, which will be our integrations variables, to
match with the momenta of the cut edges. Noticing that either k̃ or k̂ can be
chosen as bases of independent loop momenta, we can relate them as

k̂i =
L

∑
j=1

Σijk̃ j + qi (4.57)

where qi is a linear combination of external momenta and Σij is an L × L
matrix whose entries are all in the set {−1, 0, 1}. Before we proceed, let us
consider the familiar example of the sunrise integral to see how to construct
Σij.

The momenta of the three propagators of the sunrise integral are related
through momentum conservation at either of the vertices as

k1 + k2 + k3 = p (4.58)

Consider the (1, 3) cut3 taken in that order and let us pick the integration
variables to be k1 and k2, ordered in such a way that we integrate first over
k2 and then over k1. Thus, our two ordered basis are

k̃ = (k2, k1) (4.59)

for the integration variables and

k̂ = (k1, k3) (4.60)

for the momenta of the cut edges. We can rewrite k3 = p − k1 − k2, so that

k̂ = (k1,−k1 − k2 + p). (4.61)

Now, in order to identify the elements of the matrix Σij, we can set p =

0 and look at the coefficients relating the resulting bases k̃ and k̂. It is not
difficult to see that, treating each of these ordered sets as vectors,

k̂ = Σk̃ (4.62)

with

Σ =

[
0 1
−1 −1

]
(4.63)

It is then straightforward to restore p in the relevant terms. For example,

3The signs of the energies are not important for this point, so we omit them.
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k̂2 =
2

∑
j=1

Σ2jk̃ j + p

= −k2 − k1 + p

(4.64)

which, of course, gives the correct result. This process generalizes directly
to arbitrary loop order.

Going back to our arbitrary loop integral, we define Σ(j) to be the sub-
matrix of Σ obtained by deleting rows and columns from (j + 1) up to L.
Furthermore, in order to perform the integration procedure, we assume that
all masses have large imaginary parts which are strongly ordered, meaning
that Im(mσ1) >> Im(mσ2) >> · · · >> Im(mσL). The final result will be in-
dependent of this assumption. The point of this assumption is that, during
the intermediate integrations, the ordering will allow us to keep track of the
location of the poles. After all L integrations have been performed, we can
drop the assumption and analytically continue the integrand to any desired
kinematic configuration. Given these conditions, we find the intermediate
result

1
(2π)L

∫
f dE1 ∧ dE2 ∧ ... ∧ dEL

= ∑
σ∈CΓ

∑
π∈SL

∑
α∈{−1,1}L

Cσ̃π̃α̃
σπα res

(
f , E(α)

σ

) (4.65)

where

Cσ̃π̃α̃
σπα =

L

∏
i=1

∆(i), (4.66)

with the numbers ∆(i) defined to be zero if det Σ(i) = 0. Otherwise, we let
Π(i) denote the inverse of Σ(i), and set

∆(i) = γiΠ
(i)
ii θ

(
γi Im

(
i

∑
j=1

Π(i)
ij λjmσj

))
(4.67)

where θ(x) denotes the Heaviside step function. It is in this definition
that the assumption about the strong ordering is important. As before, lets
compute a few of these coefficients to understand a bit better the way they
work.

Let us consider our previous example, where the Σ matrix is given in
Eq.(4.63). From the structure of the coefficients Cσ̃π̃α̃

σπα , it is clear that if a single
∆(i) vanishes, then the coefficient is zero. In the present case, taking j = 1
yields the submatrix
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Σ(1) = 0 (4.68)

which, of course, has a vanishing determinant4. Therefore, ∆(1) = 0 and
the coefficient Cσ̃π̃α̃

σπα vanishes for the particular choices of k̃ and k̂, indepen-
dent of the values of α and α̃.

Now, let us consider again the (1, 3) cut and the integration variables to
be k1 and k2, but assume instead that the integration is performed first over
k1 and then over k2. This gives the new ordered basis

k̃ = (k1, k2) (4.69)

for the integration variables, while the basis spanned by the momenta of
the cut edges remains k̂ = (k1, k3). In this case, we find the matrix relating
the two bases to be

Σ =

[
1 0
−1 −1

]
(4.70)

Let us further assume that the imaginary part of the masses is ordered ac-
cording to Im(m1) >> Im(m2) >> Im(m3). Recalling that the permutation
σ is related to the cut basis, this means that mσ1 = m1 and mσ2 = m3 and
we have Im(mσ1) >> Im(mσ3). Notice that, in order to compute a particular
coefficient Cσ̃π̃α̃

σπα , we need to specify the winding numbers and the sign of the
energies. Hence, for our example, we will take α = (1, 1) and α̃ = (1,−1).
We can then see that

Cσ̃π̃α̃
σπα = ∆(1)∆(2) (4.71)

where the first coefficient ∆(1) is computed from the submatrix Σ(1) = 1;
it follows that Π(1) = 1, and

∆(1) = γ1Π(1)
11 θ

(
γ1 Im

(
1

∑
j=1

Π(1)
j1 λjmσj

))
= 1

since all of γ1, Π(1)
11 and λ1 are equal to one. The matrix Σ(2) (and, in

general, Σ(L)) is equal to Σ, since no rows or columns are eliminated. Its
determinant is

det Σ = −1. (4.72)

This matrix is its own inverse, as can be easily checked by matrix multi-
plication. Then, we can compute

4We take the value of a scalar as the definition of its determinant
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∆(2) = γ2Π(2)
22 θ

(
γ2 Im

(
Π(2)

21 λ1mσ1 + Π(2)
22 λ2mσ2

))
= θ (−Im (−m1 − m3))

= 1

since both the real and imaginary part of all the masses is taken to be
positive. If we had the difference (m1 − m3) instead of the sum −(m1 + m3)
inside the imaginary part, we would have used our assumption on the strong
ordering of the masses to determine the sign of the argument of the Heaviside
function, which allows us to obtain the value of the coefficient. Putting the
two values together, we find that, for our particular choices of the bases,
orderings and signs,

Cσ̃π̃α̃
σπα = 1. (4.73)

In its actual form, Eq.(4.65) gives a value for the L-fold residue we are
looking for. This highlights the fact that the representation of the integrand
in terms of cuts is non-unique, since in this form, we are free to choose a set
of integration variables, the order in which we take them and the contour
closing for each of the energy components.

Following a similar idea to that discussed in the one-loop case, let us con-
sider the calculation of the full L-loop amplitude for some particular scat-
tering process. Via the cutting and sewing procedures, we can relate loop
diagrams with fewer external particles to tree diagrams with 2L additional
external particles, whose momenta is taken to be pair-wise related through
a forward limit. If we attempted to construct all the diagrams contributing
to the loop amplitude by sewing tree graphs, we would obtain contributions
where all possible integration orders and contour closings appear. There-
fore, keeping the result of Eq.(4.65) for the integrand will lack the tree-like
structure we would like to achieve. With this in mind, we consider instead a
weighted average over σ̃, α̃ and π̃.

In order to perform this average, we need to introduce the concept of a
chain graph [24]. The chain graph of an arbitrary graph can be obtained by
grouping the internal propagators into chains, which are sets of loop mo-
menta whose elements differ only by a linear combination of external mo-
menta. Then, one picks a representative propagator of each chain, and col-
lapses all the remaining propagators into the representatives. Finally, all ex-
ternal lines are removed. For a given graph Γ ∈ UL,n, we let |CΓchain | denote
the number of spanning trees of its corresponding chain graph. For each
propagator Dj, we denote by nchain(j) the number of propagators in its chain.
Set

Nchain(σ) =
L

∏
j=1

nchain(σj) (4.74)
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and then, perform an average where each term is weighted by 1/Nchain(σ).
This allows us to obtain

1
(2π)L

∫
f dE1 ∧ dE2 ∧ ... ∧ dEL

= (−i)L ∑
σ∈CΓ

∑
α

Sσα(−1)n(α)
σ res

(
f , E(α)

σ

) (4.75)

where the coefficients Sσα are given by

Sσα =
(−1)L+n(α)

σ

2LL!|CΓchain | ∑
π∈SL

∑
σ̃∈CΓ

∑
π̃∈SL

∑
α̃∈{−1,1}L

Cσ̃π̃α̃
σπα

Nchain(σ)
(4.76)

here, the 2L comes from the average over α̃ and the L! comes from the av-
erage over π̃. Le us remark that the values of these coefficients depends only
on the structure of the underlying chain graph of the original graph under
consideration.

The expression for the coefficients Sσα in Eq.(4.76) can be simplified in
some cases. At one-loop, we can deduce from our original discussion of LTD
that Sσα = 1/2 for every loop graph. This can be deduced by noticing that,
in this case, the sums over π and π̃ are trivial, while the only possible chain
graph at one-loop is the vacuum bubble.

At two loops, there are only two possible chain graphs: the sunrise with-
out external legs, and the product of two one-loop vacuum bubbles. In the
latter case, the graph essentially behaves as the product of two one-loop
graphs, and we obtain Sσα = 1/4. In the former case, if the orientation of
the cut lines is chosen to be the same across the cut, then

Sσα =
1

(L + 1)
1

(
L

n(α)
σ
)

(4.77)

which generalizes to L-loop graphs whose underlying chain graph is a
vacuum bubble with (L + 1) propagators (the so-called banana graphs).

Notice that the formula for the L-fold residue in Eq.(4.75) makes no refer-
ence to the structure of the poles, meaning that it is valid for poles of arbitrary
order. Let us, then, specialize to the case where every propagator occurs at
power one and compute the value of the residue.

As a first ingredient, we need to compute the contribution coming from
the residue of the propagator Dσj at its poles. We write each of the cut prop-
agators as

Dσj = k2
σj
− m2

σj
+ iδ (4.78)
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where, according to our previous discussion, we pick the momenta of the
cut propagators to be the independent loop momenta. The poles of 1/Dσj in

the energy component occur at kσj,0 =
√
|~kσj |2 + m2

σj
− iδ, and we find

res

(
1

Dσj

,±
√
|~kσj |2 + m2

σj
− iδ

)
= ± 1

2
√
|~kσj |2 + m2

σj

(4.79)

where we drop the infinitesimal imaginary part iδ because these factors
introduce no additional poles into the integrand. Now, we need to evaluate
the uncut propagators at the poles of the cut propagators. In order to do
this, notice that the set of indices σ = {σ1, . . . , σL} defines a tree graph, Tcut,
obtained from the original loop graph Γ by deleting the edges {eσ1 , . . . , eσL}.
Now, consider the propagator Dj, where the index j is such that j /∈ σ. Thus,
cutting this index will produce a two-forest5 (T1, T2). As a convention, we
orient the external momenta of T1 such that all momenta are outgoing. The
external edges of T1 are comprised by ej, the set of cut edges and possibly a
subset of the external edges {1, . . . , n}. We let ρ denote the set of indices cor-
responding to the external edges of T1 which come from cutting the internal
edges of the original graph Γ. For a given element a ∈ ρ, the energy compo-
nent has an imaginary part which depends on the infinitesimal δ; expanding
up to first order, we find that

kρa,0 = ±
√
|~kπa |2 + m2

πa − iδ

= ±
√
|~kπa |2 + m2

πa ∓
iδ

2
√
|~kπa |2 + m2

πa

≡ ±Eρa ∓
iδ

2Eρa

(4.80)

where we have defined the on-shell energy of the line ρa as

Eρa =
√
|~kπa |2 + m2

πa

.
This is a straightforward generalization of the behaviour at one-loop.

Now, let us evaluate Dj at these values of kρa,0:

5A two-forest is a tree graph whose structure is that of two disjoint trees. In general,
one can define an n-forest as a graph with n disjoint trees. This kind of graphs appear in
the formulation of the Feynman Tree Theorem [91], which represents the first attempt to
evaluate loop integrals in terms of tree-level contributions.
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Dj = k2
j,0 − |~k j|2 − m2

j + iδ

=

(
∑
a∈ρ

ka,0 + ∑
b∈Eext

kext
b,0

)
− |~k j|2 − m2

j + iδ

= k2
j − m2

j +

(
1 + Ej ∑

a∈ρ

1
Ea

)
iδ +O(δ2)

(4.81)

and we can see that(
1 + Ej ∑

a∈ρ

1
Ea

)
= Ej ∑

a∈{j}∪ρ

1
Ea

≡
Ej

E||
. (4.82)

Defining sj(σ) =
Ej
E||

for every uncut propagator, we obtain the LTD rep-
resentation for a multi-loop integral with only single poles

∫ ( L

∏
j=1

dDk j

(2π)L

)
PΓ

∏ej∈EΓ
(k2

j − m2
j + iδ)

(4.83)

= (−i)L ∑
σ∈CΓ

∫
±

(
L

∏
j=1

dkcut
σj

)
Sσα

PΓ

∏j/∈σ(k2
j − m2

j + isj(σ)δ)

where the ± subscript in the integral sign becomes a short-hand notation
for the sum over the energy signs α.

Notice that the iδ prescription of the dual propagators in the LTD repre-
sentation, being written explictly in terms of the energies, breaks the Lorentz
invariance of the underlying integrand. We can restore this by introducing a
reference, light-like vector η with η0 ≥ 0, and rewrite

sj(σ) = ∑
a∈{j}∪ρ

η · k j

η · ka
, (4.84)

so that our derivation corresponds to the choice η = (1,~0). Essentially,
the reference vector gives the direction of the axis in Minkowski space along
which we compute the residues. The structure of the Feynman propagators
then allows us to determine that the easiest such choice is to integrate along
the energy components.

Let us attempt, once again, to evaluate the one-dimensional two-loop
sunrise integral using the new, modified LTD formula with the combinato-
rial factors Sσα. In this case, we can use the simplified version of Eq.(4.77).
It is easy to see that there are only two possible values these factor can take
at two-loops: if n(α)

σ = 0, 2, then Sσα = 1/3 and if nσα = 1 then Sσα = 1/6.
Thus, all cuts where both energies have the same sign have factor of 1/3 and
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all cuts with mixed energy signs have a factor of 1/6. The integral is written
then in terms of cuts as

ILTD
sun =

(
1
3

Cut(1+, 2+)− 1
6

Cut(1+, 2−)− 1
6

Cut(1−, 2+) +
1
3

Cut(1−, 2−)

+
1
3

Cut(1+, 3+)− 1
6

Cut(1+, 3−)− 1
6

Cut(1−, 3+) +
1
3

Cut(1−, 3−)

+
1
3

Cut(2+, 3+)− 1
6

Cut(2+, 3−)− 1
6

Cut(2−, 3+) +
1
3

Cut(2−, 3−)
) (4.85)

and, taking {i, j, k} to be a permutation of {1, 2, 3}, each of these cuts is
given by

Cut(iλi , jλj) =
λiλj

4mimj

1
(λimi + λjmj − p)2 − m2

k
(4.86)

in the case of the one-dimensional sunrise and where we again used the
notation λi = ±1. We can now compare a couple of values of the integrals.
A numerical integration of the Feynman parameter integral yields

I f p
sun(p = 1, m1 = 11, m2 = 13, m3 = 17, δ = 0) ≈ 2, 509745163 × 10−6, (4.87)

while evaluating the result of the residues, weighted by the appropriate
combinatorial factors, results in

ILTD
sun (p = 1, m1 = 11, m2 = 13, m3 = 17, δ = 0) ≈ 2, 509745157× 10−6 (4.88)

which shows that both approaches agree within a high degree of accuracy.
We can furthermore compare the behaviour of the integrals as functions of p
below the lowest pseudo-threshold, as shown in Figure 4.2. From this graph,
it is easy to see that both results agree very precisely. This allows us to verify
that the refined approach to the calculation of the residues, beyond one-loop,
reproduces the correct results for the Feynman integrals.

4.3 Remarks

Let us give some closing remarks on the multi-loop LTD formula. As we saw
in Eq.(4.65), the representation in terms of cuts is not unique. In fact, different
ways to perform the multidimensional residue will yield different represen-
tations of the cut integrand, which evaluate to the correct integrated result.

One approach, first introduced at one-loop in [88] and subsequently gen-
eralized to multi-loop integrals [92, 93] is based on a distributional identity
between the Feynman and advanced propagators, namely
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FIGURE 4.2: Plots of the 1D sunrise integral evaluated using the
LTD formula of Eq.(4.83) (dotted line) and numerical evaluation
of Eq.(4.34)(dashed line) as functions of p for m1 = 11, m2 =

13, m3 = 17.

1
D(k)

=
1

DA(k)
+ 2πiθ(k0)δ(k2) (4.89)

where D(k) = k2 − m2 + iδ and DA(k) = k2 − m2 − ik0δ is the inverse
advanced propagator. Since the latter has all is residues in the same hemi-
sphere of the complex plane, integrals of products of these advanced prop-
agators can be shown to vanish, thus leading to relations between integrals
of Feynman propagators and cut integrals. Applications of this formulation
of LTD have been considered in [94–101]. This process, which results ana-
log to computing residues, only takes into account the poles coming from
a definite closure of the integration contours. Moreover, the final result de-
pends upon a mixture of Feynman and dual propagators. In contrast, the re-
sult obtained by the evaluation of the direct evaluation of the L-fold residue
depends exclusively on dual propagators, making the definition of general
rules to calculate the integrand simpler to implement. An advantage of the
distributional method, however, is that the amounts of terms contributing
to the integrand does not grow as rapidly with the number of loops due to
the fact that there is no averaging procedure over the possible contour clo-
sures. The relation between both formulations has been explored in [102] and
further mathematical explorations into the geometrical structure of LTD are
pursued in [103, 104].

One final approach is that of [105–108], where the calculation of the residues
is performed iteratively as in Eqs.(4.37) and (4.38), with a careful procedure
to keep track of the position of the poles at each step of the iteration, while
again only considering a single contour closing for each of the loop integra-
tions. This approach results in a formula where the sum is performed over
all possible loop momentum bases, in such a way that the complement of
each set of propagators defining a basis yields a spanning tree. In this case,
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every propagator has a modified prescription for the position of the poles of
the uncut propagators, but again no averaging procedure is performed.

In either of these two approaches, the benefits from considering a single
contour closing are most evident when computing individual Feynman in-
tegrals, since each of these receives a smaller amount of cut contributions.
However, when trying to extend this approach to the direct calculation of
the loop integrand for a scattering amplitude, the behaviour of the averaged
sum of cuts allows to obtain recursion relations, akin to those encountered
for tree level amplitudes, which means that one does not have to consider
the generation and evaluation of every single Feynman diagram and instead
just pick some generic building blocks to build up an amplitude at a fixed
loop order with an arbitrary number of external edges. At the time of writ-
ing this thesis, no such structure is exhibited in the approaches to LTD where
no averaging procedure is performed. The construction of the loop integrand
and the recursion relations satisfied by it will be discussed in what follows.
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Chapter 5

Integrands of Amplitudes from
Loop-Tree Duality

In the previous chapters, we have seen, from different perspectives, how ob-
jects with the structure of loops can be related to tree-like objects. On the one
hand, we discovered that graphs with internal loops can be cut in several
ways to produce tree graphs and how to perform this process backwards by
sewing pairs of external edges of tree graphs. We also found that the combi-
natorial aspects of both kinds of graphs are related to each other by proving
that the symmetry factors associated to loop graphs are compensated when
cutting the graph open by the different ways to assign markings to the cut
lines. In this way, we are able to express a sum of loop graphs weighted with
symmetry factors as a sum of tree graphs which can be sewed according to
the markings into the original loop graphs.

From the perspective of Feynman integrals, the LTD formula allows to
recast the loop integrand as a sum of tree-like quantities with a modified iδ
prescription for the position of the poles in the complex plane. This, in turn,
means that the representation of the loop integral in terms of loop Feynman
graphs can be decomposed into a sum over tree graphs by suitably modify-
ing the Feynman rules used to translate the graphs into the algebraic expres-
sion for the integrand.

Now, we are interested in taking this process one step forward and con-
sider the behaviour of the complete, renormalized L-loop amplitude after
applying LTD to each of the its individual contributions. In order to do this,
we first do a thorough discussion of the forward limit of tree-like objects. We
will introduce a technique that allows the counterterm to be written in a local
form, so that they can be put in the same footing as the contributions to the
bare amplitude, which allows for the application of the LTD formula to such
contributions. Finally, taking advantage of the cancellation of the symmetry
factors will allow us to define an integrand for the complete loop amplitude
in terms of tree-like objects.

Although it is clear that defining "an" integrand for the loop amplitude
is straightforwardly done, for example, by summing up the integrands to
each individual Feynman integral contributing to the amplitude, what is not
obvious is how to define an integrand with definite factorization properties
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or that can be easily computed without first generating all the possible di-
agrams and extracting their values through the Feynman rules. The con-
struction of integrands for loop amplitudes without explicit reference to the
Feynman graphs has been considered in specific field theories and, in some
cases, under certain conditions such as the planar limit or specific loop or-
ders [109–122]. In contrast, we will see that the tree-like structure of the in-
tegrand defined through the application of LTD allows for its computation
using a modified version of the Berends-Giele [123] recursion relations.

5.1 The regularized forward-limit

When we looked at the structure of cut and sewn graphs, we mentioned that
tree graphs that can be sewn have the structure of a forward limit, by virtue
of the fact that in order to consistently sew two external lines with momenta
k and k, these must satisfy the relation k = −k. For an arbitrary tree am-
plitude or tree-like object, the forward limit is in general ill-defined, since
some propagators might develop singularities in this limit. In this section,
we introduce the regularized forward limit, which gives us a prescription for
removing the contributions that become singular in the L-fold forward limit
of any tree-like object.

Consider a tree amplitude with (n + 2L) external particles

A(0)
n+2L(p1, . . . , pn; k1, . . . , kL, k1, . . . , kL) = ∑

Γ∈Un+2L

f (Γ) (5.1)

where, for every graph Γ, f (Γ) represents the expression obtained for it
by application of the Feynman rules of the theory under consideration. We
denote the masses of the external particles as

p2
j = (mext

j )2, k2
j = k

2
j = m2

j . (5.2)

The conditions for a contribution to be singular in the L-fold forward limit

lim
k1→−k1

. . . lim
kL→−kL

An (5.3)

depend only on the momenta carried by the propagators, meaning that
they are independent of the detailed structure of the theory.

There are two different scenarios in which a propagator can become sin-
gular in the forward limit. The first one, where the propagator goes on-shell,
is divided into two different cases. We can characterize the first of these by
choosing a subset of indices A ∈ {1, 2, . . . , L}. Any diagram where a propa-
gator with momenta of the form

pj + ∑
a∈A

(ka + ka) (5.4)
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for some j ∈ {1, ..., n} and mass mext
j will go on-shell in the forward

limit, because the terms in the sum cancel against each other when we take
ka → −ka. Due to the fact that the momenta of a propagator is determined by
the condition that the sum of the momenta entering any given vertex equals
the sum of the momenta going out of it, we can see that a combination of
the form (ka + ka) + pj can only occur if the two lines with momenta ka and
ka are separated by a single propagator. This implies that sewing these two
lines yields a self-energy insertion into an external leg.

The second case in which a propagator can go on-shell is when we ex-
change pj in Eq.(5.4) for some momenta kb with b /∈ A. In this case, the
momenta of the singular propagator takes the form

kb + ∑
a∈A

(ka + ka) (5.5)

and then, if the propagator has mass mb, it will go on-shell in the forward
limit. Again, as in the previous case, the structure of such a propagator im-
plies that any two lines ka and ka are separated only by a single propagator.
In this case, since the line with momenta kb is to be sewn with the line kb,
sewing the lines with momenta ka and ka yields a loop graph with a self-
energy insertion into an internal edge.

The second and final scenario where a contribution to the amplitude An
can develop a singularity in the forward limit is the case where the corre-
sponding diagram has a internal edge with momentum

∑
a∈A

(ka + ka), (5.6)

which results in a propagator with momentum zero. If the edge associ-
ated to this propagator is massless, the diagram will develop a singularity.
Given that the only momenta in this propagator has the form of the sum of
ka and ka, we can see that sewing the two edges results into a tadpole inser-
tion.

The different types of tree diagrams that develop singularities in the for-
ward limit, after sewing, have the structure of the diagrams that represented
problematic contributions to the loop amplitudes. We recognized, in that
context, that the contributions coming from tadpoles or self-energy inser-
tions to external legs can be dropped out of the calculation of any on-shell
amplitude. In this spirit, let us define the set

Uns
0,n+2L (5.7)

to be the set of all tree graphs where propagators with momenta of the
form of Eqs.(5.4), (5.5) and (5.6) are excluded. With this definition in mind,
we set
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R f A(0)
n+2L = lim

k1→−k1

. . . lim
kL→−kL

∑
Γ∈Uns

0,n+2L

f (Γ) (5.8)

to be the regularized L-fold forward limit of the tree amplitude.

We can, at this point, define what is meant by a "tree-like object". The
map from the Feynman diagrams to the amplitude is given by applying the
Feynman rules to each graph Γ that contributes to the amplitude, which we
represent by f (Γ). The tree-like object associated to this amplitude is ob-
tained by the replacement

f (Γ) → Sσα f (Γ), (5.9)

where Sσα are the combinatorial factors of Eq.(4.76). This means that a
tree-like object is directly related to a (set of) loop graph(s). The properties
that characterize the singular behaviour of tree graphs in the forward limit
is independent of the appearance of these combinatorial factors. Then, we
define the regularized forward limit of a tree-like object in the same way we
define it for a tree amplitude.

5.2 Local representation of counterterms and higher-
order poles

Notice that, when defining Uns
0,n+2L, we also exclude diagrams that yield self-

energy insertion on internal edges upon sewing. These diagrams, however,
can in general contribute to the scattering amplitudes and are characterized
by the fact that they contain propagator raised to powers higher than one.
From the theory of complex analysis, we know that, in order to compute the
residue of a function with higher-order poles, one must compute derivatives
of the function. In the case of Feynman integrals, such residues lead to objects
that do not possess the structure of trees and, moreover, there is no general,
process-independent way to compute them since the derivative will depend
on the structure of the numerator of the loop integrand. Therefore, it would
be beneficial if we could drop the contributions coming from the residues
of diagrams of higher order poles. We now outline a procedure which al-
lows for the construction of local counterterms, therefore solving the issue
of putting bare and counterterm graphs at the same footing, which have the
additional property of having cuts which cancel the contributions from the
bare, higher-order poles. This procedure is showcased at the two-loop order.
The ideas of this section follow [87].

We will discuss the technique in the context of φ3 theory. The Lagrangian
of this theory can be written as

Lφ3 =
1
2

∂µφ∂µφ − 1
2

mφ2 +
λ̃

3!
φ3 + LCT (5.10)
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FIGURE 5.1: Two-loop diagram with a self-energy insertion on
an internal propagator. The diagram contains a squared propa-
gator, coming from the two red lines. The second diagram is the
counterterm that cancels the UV subdivergences that originate

from the self-energy insertion.

where we write λ̃ = µε(4π)εe−εγλ to absorb the usual factors of 4π and
Euler’s constant γ appearing in dimensional regularization. The counterterm
Lagrangian is given by

LCT = −1
2
(
Zφ − 1

)
φ∂2φ − 1

2

(
ZφZ2

m − 1
)

m2φ2 +
1
3!

(
Z

3
2
φ Zλ − 1

)
λ̃φ3.

(5.11)
We are interested in the perturbative expansion of the renormalization

constants Zφ and Zm. These are calculated in detail in Appendix C. We would
like to point out that these constants can also be written, up to one-loop order,
as

Zm = 1 +
λ2

16π2
1

4m2 B0(m2, m2, m2), (5.12)

Zφ = 1 +
λ2

16π2

(
2 − ε

6m2 B0(m2, m2, m2)− 1 − ε

3m4 A0(m2)

)
(5.13)

if one works in the on-shell scheme, in terms of the scalar integrals

A0(m2) = 16π2S−1
ε µ2ε

∫ dDk
i(2π)D

1
k2 − m2 (5.14)

and

B0(p2, m2
1, m2

2) = 16π2S−1
ε µ2ε

∫ dDk
i(2π)D

1
(k2 − m2

1)((k − p)2 − m2
2)

. (5.15)

We are interested in the structure of diagrams that contain self-energy
insertions on internal edges. An example of such a diagram, with its accom-
panying counterterm, is shown in Fig. 5.1.

Using the short-hand notation for the propagators
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Di = k2
i − m2

i + iδ (5.16)

we can write the integral expression for the first diagram of Fig. 5.1 as

I2 =
iλ6

2
µ4εS−2

ε

∫ dDk1

(2π)D
dDk2

(2π)D
1

D1D2
2D3D4D5D6

(5.17)

where D2 denotes the propagator associated to either of the red lines. If
we attempted to apply the LTD formula to this diagram, any cut involving
either of the red propagators would involve the calculation of the residue
when D2 = 0. Since this propagator appears to the power two, we would
be forced to compute a derivative if we wanted to find the value of such
a residue. This is problematic because the derivative destroys the tree-like
structure of the resulting integrand. Moreover, the calculation of the deriva-
tive is process-dependant and hence not very well suited for automation.
Hence, we will try and see if this contribution can be cancelled against some
of the other contributions obtained after cutting.

The second diagram in Fig. 5.1 gives the counterterm contribution that
cancels the UV subdivergences of the self-energy insertion in the two-loop
bare diagram. Using the Feynman rules for the counterterm Lagrangian, we
obtain the value

ICT
2 = − λ6

(4π)2 µ2εS−1
ε

∫ dDk2

(2π)D

Z(1)
φ k2

2 −
(

Z(1)
φ + 2Z(1)

m

)
m2

D2
2D3D4D5

. (5.18)

Notice that there is only one integration involved in the definition of the
counterterm diagram, while the bare diagram involves two different loop in-
tegrations. Therefore, the cancellation of the UV divergences is realized only
after all integrations are performed. We would like to find a representation
of the counterterm, such that it involves two integrations as well.

Let us introduce the short-hand notation

R2(k1, k2) =
1

2D1D2
2D3D4D5D6

(5.19)

for the integrand of the the bare, two-loop diagram. We want to find a
representation for the counterterm diagram of the form

ICT
2 = iλ6µ4εS−2

ε

∫ dDk1

(2π)D
dDk2

(2π)D RCT
2 (k1, k2) (5.20)

where RCT
2 (k1, k2) is a rational function in the energies E1 and E2. We

would like to impose the following conditions on the counterterm integrand:
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1. Integrating over k1 results in the same expression for the counterterm
as in Eq.(5.18).

2. The sum of the bare and counterterm integrands behaves as

lim
|~k1|→∞

(
R2(k1, k2) + RCT

2 (k1, k2)
)
= O(|~k1|−5) (5.21)

3. Let p = (E,~p) be an arbitrary D-momentum. We can associate to this
variable an on-shell momentum via p̃ = (sgn(E)

√
|~p|2 + m2,~p). With

this notation, we also demand that

lim
k2

2→m2

(
R2(k1, k2) + RCT

2 (k1, k2)
)
= O

(
(E2 − Ẽ2)

2
)

(5.22)

that is, the combination of the bare and counterterm integrands van-
ishes quadratically as k2 goes on-shell,

4. RCT
2 (k1, k2) has no poles in E2.

The first condition is simply the requirement that the candidate integrand
RCT

2 is consistent with the result for the counterterm obtained from the renor-
malized Lagrangian. The second requirement implies that the UV diver-
gences associated to the self-energy subgraph are cancelled locally. To under-
stand why, we set D = 4. Then, in the limit |~k1| → ∞, assuming condition 2
holds,

∫
d4k1

(
R2(k1, k2) + RCT

2 (k1, k2)
)

∝
∫

d4k1
1

|~k1|5

∝
∫ ∞ |~k1|3dk1

|~k1|5

=
∫ ∞ dk1

|~k1|2

(5.23)

which means that the sum of the bare and counterterm integrands is reg-
ular in the UV region of k1. Thus, conditions 1 and 2 alone secure that RCT

2
would be a proper local counterterm for the bare two-loop diagram. In this
regard, we have already managed to solve one of the issues we first men-
tioned when discussing the structure of counterterms in regards to LTD,
which was to put them in the same footing as the bare loop contributions.

The third condition is imposed further to achieve the cancellation of the
residue when D2 = 0 of the original loop graph, while the last condition en-
sures that ICT

2L does not receive contributions from cutting both propagators
of the self-energy insertion on the loop diagram. It is worth noting that all
of these conditions can be imposed only on the structure of the self-energy
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p

k − p
2

k + p
2

p

FIGURE 5.2: One-loop self-energy subgraph.

subgraph, and are independent of the remaining parts of the full diagram.
Therefore, any diagram with a one-loop self-energy insertion on an internal
edge would be constructed in the same fashion, meaning that this procedure
is process independent. Given this considerations, it will be sufficient for us
to consider the behaviour of the one-loop sub-graph in order to determine
the form of RCT

2 .

Consider the one-loop self-energy graph, with momenta as in Fig. 5.2. We
write the associated integral expression as

− iΣ1 = λ2µ2εS−1
ε

∫ dDk
(2π)D R1(k) (5.24)

where we define the integrand

R1(k) =
1

2D+D−
(5.25)

in terms of the propagators D± =
(
k ± p

2

)2 − m2. This diagram is accom-
panied by the counterterm

= i
[
(Z−

φ 1)p2 − (ZφZ2
m − 1)m2

]
(5.26)

where, to one-loop order, we only keep the appropriate powers of Zφ and

Zm. If we let Z(1)
φ and Z(1)

m be the coefficients multiplying λ2/16π2 in Eqs.
(5.13) and (5.12), we can see that the appropriate counterterm at one-loop is
given by

− iΣCT
1 =

iλ2

16π2

[
Z(1)

φ p2 − (Z(1)
φ + 2Z(1)

m )m2
]

. (5.27)

We want to find an integral representation

− iΣCT
1 = λ2µ2εS−1

ε

∫ dDk
(2π)D RCT

1 (k) (5.28)

satisfying the conditions imposed on the two-loop counterterm, if we
identify k with k1 and p with k2. We can achieve this by defining
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D̃± =

(
k ± p̃

2

)2

− m2 (5.29)

and expanding the propagators D± around the on-shell kinematics de-
fined by D̃±. To perform this expansion, we first use the identity

1
(k − q1)2 − m2

1
=

1
(k − q2)2 − m2

2

×
[

1 −
2(k − q2) · (q1 − q2)− (q1 − q2)

2 + m2
1 − m2

2

(k − q2)2 − m2
2

]−1 (5.30)

which is easily shown to hold by simplifying the expression inside the
bracket on the right-hand side of the equation. We can use this identity to
express the propagators 1/D± in terms of 1/D̃±, and then expand the bracket
in (p − p̃). For example, to expand D+ in terms of D̃+, we first notice that
m1 = m2 = m. Then, the last term on the bracket drops out, and

1(
k + p

2

)2 − m2
=

1(
k + p̃

2

)2
− m2

×

1 −
2
(

k + p̃
2

)
·
(
− p+ p̃

2

)
+
(
− p

2 + p̃
2

)2

(
k + p̃

2

)2
− m2


−1

=
1(

k + p̃
2

)2
− m2

×

1 −
4
(

k + p̃
2

)
· (p − p̃) + (p − p̃)2

4
((

k + p̃
2

)2
− m2

)

−1

.

(5.31)

We can simplify the expression in the numerator inside the bracket, using
the fact that p̃2 = m2, to obtain

4
(

k +
p̃
2

)
· (p − p̃) + (p − p̃)2

= 4k · (p − p̃) + 2p · p̃ − 2m2 + p2 − 2p · p̃ + m2

= 4k · (p − p̃) + p2 − m2,

(5.32)

and then, using the Taylor expansion

(1 + x)−1 = 1 − x +O(x2) (5.33)
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we can expand the bracket to first order in (p − p̃) to obtain

1
D+

=
1

D̃+

[
1 − 4k · (p − p̃) + p2 − m2

4D̃+

]
+O((p − p̃)2). (5.34)

An analogous computation yields the expansion of 1/D− around 1/D̃−,
and we simply quote the result:

1
D−

=
1

D̃−

[
1 +

4k · (p − p̃)− p2 + m2

4D̃−

]
+O((p − p̃)2). (5.35)

These two results allow us to obtain the expansion of the integrand for the
one-loop self-energy around the on-shell kinematics defined by the vector p̃,

1
2D+D−

≈ 1
2D̃+D̃−

×
[

1 − 4k · (p − p̃) + p2 − m2

4D̃+
+

4k · (p − p̃)− p2 + m2

4D̃−

]
.

(5.36)

This expansion fulfills condition 2, since each of the terms in the differ-
ence between R1 and the expansion has three propagators, while having a
single power of k in the numerator. Thus, when k → ∞, each of the contribu-
tions vanish as |~k|−5 or better. Furthermore, in the limit where p goes on-shell
with mass m, the terms linear in (p2 − m2) drop out, which means that this
difference behaves in the limit as O((p2 − m2)2). This implies that this term
also satisfies condition 3. Furthermore, condition 4 is trivially satisfied since
the inverse propagators D̃± are independent of the energy E associated to p.
It only remains to see whether condition 1 is satisfied.

Define ECT
1 to be the result of the expansion in Eq.(5.36). We would like

to integrate over k and express the result in terms of the counterterm of
Eq.(5.27), with Z(1)

φ and Z(1)
m defined as in Eqs. (5.13) and (5.12). We will

need a redefinition of the loop integral B0(p2, m2
1, m2

2) of Eq.(5.15),

B0(p2, m2
1, m2

2) = 16π2S−1
ε µ2ε

∫ dDk
i(2π)D

1

(
(
k − p

2

)2 − m2
1)(
(
k + p

2

)
)2 − m2

2)
, (5.37)

obtained by shifting k → k − p
2 . Instead of explicitly evaluating the in-

tegrals, we are going to express the integrals resulting from integrating ECT
1

over dDk in terms of A0(m2) and B0(m2, m2, m2). This will require us to per-
form a tensor reduction [124] in the terms with a non-trivial numerator, as
well as the use of integration-by-parts (IBP) relations, which relate integrals
with the same number of propagators raised to different powers.
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As a first step, let us group the terms of ECT
1 in an appropriate fashion,

namely

ECT
1 = − 1

2D̃+D̃−
+

k · (p − p̃)
2

(
1

D̃2
+D̃−

− 1
D̃+D̃2

−

)

+
p2 − m2

8

(
1

D̃2
+D̃−

+
1

D̃+D̃2
−

)
.

(5.38)

We want to integrate ECT
1 over k, multiplying by a factor of λ2µ2εS−1

ε ,
express the result in terms of A0(m2) and B0(m2, m2, m2), and then use

Z(1)
m =

1
4m2 B0(m2, m2, m2) (5.39)

and

Z(1)
φ =

2 − ε

6m2 B0(m2, m2, m2)− 1 − ε

3m4 A0(m2) (5.40)

to write the result in terms of the renormalization constants. In the re-
mainder of this section, we will write A0 = A0(m2) and B0 = B0(m2, m2, m2),
as well as ∫

k
= µ2εS−1

ε

∫ dDk
(2π)D , (5.41)

in order to shorten the notation. From the definition of the integral B0 and
the fact that p̃2 = m2, we can see that∫

k

1
D̃+D̃−

=
i

16π2 B0 (5.42)

The two remaining contributions require additional work. We can sim-
plify the calculation by noting that, for any vector q that is independent of k,
performing the transformation k → −k yields the relation

∫
k

k · q
D̃2

+D̃−
=
∫

k

k · q((
k + p̃

2

)
− m2

)2 ((
k − p̃

2

)
− m2

)
= −

∫
k

k · q((
−k + p̃

2

)
− m2

)2 ((
−k − p̃

2

)
− m2

)
= −

∫
k

k · q
D̃+D̃2

−

(5.43)

where we pick a single minus sign due to the power of k in the numera-
tor, while the factor of (−1)D from the integration measure cancels when we
invert the order of the D integrals. By an equivalent argument, we find
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∫
k

1
D̃2

+D̃−
=
∫

k

1
D̃+D̃2

−
(5.44)

with which we write

∫
k

ECT
1 = −1

2

∫
k

1
D̃+D̃−

+
∫

k

k · (p − p̃)
D̃2

+D̃−
+

p2 − m2

4

∫
k

1
D̃2

+D̃−
. (5.45)

Given that the first integral is immediate, we only need to perform the
other two. The integral with a power of k in the numerator is related to the
tensor integral ∫

k

kµ

D̃2
+D̃−

. (5.46)

Notice that, since the only vector left after performing this integral is p̃,
the result must be proportional to it. Thus, if we take the ansatz∫

k

kµ

D̃2
+D̃−

= ap̃µ (5.47)

we find, by contracting each side with p̃ and using the condition p̃2 = m2,

a =
1

m2

∫
k

k · p̃
D̃2

+D̃−
. (5.48)

We can express this integral in terms of integrals with fewer powers of
the denominators, using the identity

2k · p̃ =

(
k +

p̃
2

)2

−
(

k − p̃
2

)2

= D̃+ − D̃−

(5.49)

which implies that k · p̃ = 1
2(D̃+ − D̃−), and then

a =
1

2m2

∫
k

D̃+ − D̃−
D̃2

+D̃−

=
1

2m2

∫
k

(
1

D̃+D̃−
− 1

D̃2
+

)
.

(5.50)

The first of these two integrals is expressed directly in terms of B0. The
second one, however, has a single propagator squared; we would like to ex-
press this integral in terms of A0 and B0. In order to do this, we define the
family of integrals

J(a) =
∫

k

1
(k2 − m2)a (5.51)
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which can be seen to be the tadpole integrals discussed previously. We
can find relations amongst integrals with different power, by noting that, in
D spacetime dimensions,

0 =
∫

k

∂

∂kµ

(
kµ

(k2 − m2)a

)
= DJ(a)− 2a

∫
k

k2

(k2 − m2)a+1

= DJ(a)− 2a
∫

k

k2 − m2 + m2

(k2 − m2)a+1

= DJ(a)− 2aJ(a)− 2am2 J(a + 1),

(5.52)

which is a consequence of the fact that surface terms coming from Feyn-
man integrals vanish. This yields the recurrence relation1

J(a + 1) =
D − 2a
2am2 J(a). (5.53)

Then, if we notice that

J(1) =
∫

k

1
(k2 − m2)

=
i

16π2 A0 (5.54)

(shifting k → k ± p̃
2 does not change the value of the integral), we find

J(2) =
D − 2
2m2 J(1) =

D − 2
2m2

i
16π2 A0. (5.55)

But, from its definition, J(2) is equal to the integral of 1/D2
+. Thus, we

can finally write, using D − 2 = 2 − 2ε,

a =
1

2m2

(
i

16π2 B0 −
1 − ε

m2
i

16π2 A0

)
=

i
32π2m2

(
B0 −

1 − ε

m2 A0

) (5.56)

which gives the final result∫
k

k · (p − p̃)
D̃2

+D̃−
=

i p̃ · (p − p̃)
32π2m2

(
B0 −

1 − ε

m2 A0

)
. (5.57)

Now, we are left with the last integration, which involves an integrand
with three propagators. Let us, then, attempt to derive a set of IBP relations
for the family of integrals

I(a1, a2) =
∫

k

1
D̃a1

+ D̃a2
−

. (5.58)

1This is the simplest example of an IBP relation.
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We begin by writing down a formula for the derivatives

∂

∂kµ D̃± =
∂

∂kµ

(
k ± p̃

2

)2

= 2
(

kµ ±
p̃µ

2

) (5.59)

so that

0 =
∫

k

∂

∂kµ

(
kµ

D̃a1
+ D̃a2

−

)

= DI(a1, a2)− 2a1

∫
k

k ·
(

k + p̃
2

)
D̃a1+1

+ D̃a2
−

−−2a2

∫
k

k ·
(

k − p̃
2

)
D̃a1

+ D̃a2+1
−

.

(5.60)

We proceed to simplify these expressions by rewriting the numerators in
terms of the denominators. Using Eq.(5.49), we find

k ·
(

k +
p̃
2

)
=

3
4

D+ +
1
4

D− +
3
4

m2 (5.61)

from which, exchanging p → −p, we obtain

k ·
(

k − p̃
2

)
=

1
4

D+ +
3
4

D− +
3
4

m2. (5.62)

This allows us to rewrite

0 = DI(a1, a2)−
a1

2

(
3I(a1, a2) + I(a1 + 1, a2 − 1) + 3m2 I(a1 + 1, a2)

)
− a2

2

(
3I(a1, a2) + I(a1 − 1, a2 + 1) + 3m2 I(a1, a2 + 1)

)
=

(
D − 3

2
(a1 + a2)

)
I(a1, a2)−

a1

2
I(a1 + 1, a2 − 1)

− a2

2
I(a1 − 1, a2 + 1)− 3m2

2
(a1 I(a1 + 1, a2) + a2 I(a1, a2 + 1)) .

(5.63)

We can use these set of identities to find the value of the missing integral,
which we can identify with I(2, 1). Then, setting a1 = a2 = 1 and noting that
Eq.(5.44) implies that I(2, 1) = I(1, 2), as well as I(a, 0) = I(0, a), we find

0 = (D − 3)I(1, 1)− I(2, 0)− 3m2 I(2, 1) (5.64)

which implies
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I(2, 1) =
∫

k

1
D̃2

+D̃−

=
i

48π2m2

(
(1 − 2ε)B0 −

1 − ε

m2 A0

)
.

(5.65)

Putting everything together, we arrive at the result

λ2
∫

k
ECT

1 =
iλ2

16π2

[
−B0

2
+

p · p̃ − m2

2m2

(
B0 −

1 − ε

m2 A0

)
+

p2 − m2

12m2

(
(1 − 2ε)B0 −

1 − ε

m2 A0

)]
.

(5.66)

We can invert Eqs.(5.39) and (5.40) in order to write the integrals B0 and
A0 in terms of the renormalization factors as

B0 = 4m2Z(1)
m , (5.67)

A0 =
2(2 − ε)

1 − ε
m4Z(1)

m − 3m4

1 − ε
Z(1)

φ . (5.68)

Substitution of these values in Eq.(5.66) results, after some algebra, in

∫
k

ECT
1 =

iλ2

16π2

[
Z(1)

φ p2 − (Z(1)
φ + 2Z(1)

m )m2

+G1p2 + G2m2 + G3p · p̃
] (5.69)

where G1, G2 and G3 are functions linear in Z(1)
φ and Z(1)

m . We can see
that the integral of ECT

1 does not reproduce the integrated counterterm of Eq.
(5.27). This could be anticipated by noting that the prefactor in front of p · p̃
is non-vanishing for generic values of m and there is no such contribution in
the integrated counterterm. We must find, then, an additional contribution
which still satisfies conditions 2,3 and 4, while ensuring that the additional
terms in the integration of ECT

1 drop out. With this in mind, the authors of [87]
propose

RCT
1 =− 1

2D̃+D̃−

[
1 − 4k · (p − p̃) + p2 − m2

4D̃+
+

4k · (p − p̃)− p2 + m2

4D̃−

]
+

(p − p̃)2

8m2

(
2

D̃+D̃−
− 1

(D̃+)2
− 1

(D̃−)2

)
.

(5.70)

Let us denote by MCT
1 the correction term in the second line. We can use
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the results of Eqs.(5.55) and (5.42) to derive the value of its integral over k, in
terms of A0 and B0, as

λ2
∫

k
MCT

1 =
λ2(p − p̃)2

8m2

(
2i

16π2 B0 −
2(1 − ε)

m2
i

16π2 A0

)
=

iλ2

16π2

[
p2 + m2

4m2

(
B0 −

1 − ε

m2 A0

)
− p · p̃

2m2

(
B0 −

1 − ε

m2 A0

)]
.

(5.71)

Comparing with Eq.(5.66), we can see that the terms proportional to p · p̃
are equal and opposite in sign, so they drop out after integration of RCT

1 .
Adding the remaining contributions, we find

λ2
∫

k
RCT

1 =
λ2

16π2 i
[

Z(1)
φ p2 − (Z(1)

φ + 2Z(1)
m )m2

]
, (5.72)

as required. We can see that the correction MCT
1 does not spoil any of the

other conditions. Condition 4 is trivial because of the fact that MCT
1 depends

on p only through the numerator (p − p̃)2. Condition 3 also follows from
the polynomial dependence on the numerator. Thus, we must show that
condition 2 is also satisfied. We can prove this by noting that

2
D̃+D̃−

− 1
(D̃+)2

− 1
(D̃−)2

= −
(

1
D̃+

− 1
D̃−

)2

= −
(

D̃− − D̃+

D̃+D̃−

)2

= − (2k · p̃)2

D̃2
+D̃2

−

∝
1

|~k|6

(5.73)

for |~k| → ∞. Thus, all conditions are satisfied and we have managed
to find a local representation for the counterterm. All that is left to show is
that the sum of the residues of the counterterm and the bare diagram in the
variable k vanish quadratically in the on-shell limit to prove that the contri-
butions coming from cuts of raised propagators vanishes in the sum between
bare and counterterm graphs, which is what we need in order to obtain tree-
like objects after application of the LTD formula at higher loops.

We will consider the example of one of the poles of the sum R1 + RCT
1 to

exhibit the behaviour of the residue in the on-shell limit. The bare integrand
R1, defined by
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R1 =
1

2D+D−
(5.74)

with

D± =
(

k ± p
2

)2
− m2 (5.75)

has four poles in the variable k0, the energy component of the loop mo-
mentum, that arise when each of the propagators go on-shell. We can find
the position of the poles of, say, D+, by solving

D+ = 0, →(
k0 +

E
2

)2

= ±

√∣∣∣∣~k + ~p
2

∣∣∣∣2 + m2

= ±Ek

(5.76)

where we define

Ek =

√∣∣∣∣~k + ~p
2

∣∣∣∣2 + m2. (5.77)

Let us denote the poles of D+ by

k±0 = −E/2 ± Ek. (5.78)

We compute the residue of R1 at k0 = k+0 . As a first step, we factorize

D+ = (k0 − k+0 )(k0 − k−0 ) (5.79)

so that, using the standard formula for the residue at a single pole, we
find

Res
(

1
2D+D−

, k0 = k+0

)
=

1
2

lim
k0→k+0

(
k − k+0

(k0 − k+0 )(k0 − k−0 )D−

)

=
1

2(k+0 − k−0 )
1

D−

=
1

2Ek

1
D−

(5.80)

where D− is understood to be evaluated at k0 = k+0 . On the other hand,
we can see from Eq.(5.70) that RCT

1 has double poles in k0, coming from the
squared propagators. For example, the poles of the propagator D̃+ are lo-
cated at

k̃±0 = − Ẽ
2
± Ek (5.81)
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where we used the fact that the spatial components of p and p̃ are equal to
each other. Each of the terms in RCT

1 has a different pole structure, according
to the power of D+ and D− that appear in the denominator. Therefore, we
compute each residue accordingly. The first contribution is equivalent to the
residue of R1,

Res
(

1
2D̃+D̃−

, k0 = k+0

)
=

1
2Ek

1
D̃−

(5.82)

where, as in the previous calculation, D̃− is understood to be evaluated
at k0 = k̃+0 . To compute the remaining residues, we first note that

k · (p − p̃) = k0(E − Ẽ). (5.83)

Hence, writing D̃+ = (k0 − k̃+0 )(k0 − ˜k−0 ), we can compute

Res

(
k0(E − Ẽ)
2D̃2

+D̃−

)
=

1
2

lim
k0→k̃+0

d
dk0

(
k0(E − Ẽ)(k0 − k+0 )

2

D̃−(k0 − k−0 )2(k0 − k+0 )2

)

=
1
2

lim
k0→k̃+0

d
dk0

(
k0(E − Ẽ)

D̃−(k0 − k−0 )2

)

=
E − Ẽ

8D̃−E2
k
−

(E − Ẽ)(Ek − Ẽ)
(

Ek − Ẽ
2

)
2E2

k D̃2
−

−
(E − Ẽ)

(
Ek − Ẽ

2

)
4E3

k D̃−
,

(5.84)

which illustrates how the computation of derivatives destroys the tree
structure of the residues that come from propagators with simple poles. The
other residues are calculated in analogous fashion, and we find

Res(RCT
1 , k0 = k̃+0 ) =− 1

4EkD̃−
+

(E − Ẽ)2

8Ekm2D̃−
+

(E − Ẽ)2

32E3
k m2

− (E − Ẽ)2

32E3
k D̃−

− (Ek − Ẽ)(E − Ẽ)
2EkD̃2

−
+

Ẽ(E − Ẽ)2

16E2
k D̃2

−

(5.85)

which reproduces the results of [87]. Looking at the result for the residue
of RCT

1 , we see that most of the contributions already vanish quadratically in
the limit where p goes on-shell, because of the explicit factors of (E − Ẽ)2 in
the numerators. When we sum the residues of R1 and RCT

1 , the only term
which does not explicitly vanish in this limit is given by

1
4Ek

[
1

D−
− 1

D̃−
− 2(Ek − Ẽ)(E − Ẽ)

D̃2
−

]
, (5.86)
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but, recalling that each propagator in this expression is evaluated at k+0
and k̃+0 for D− and D̃−, respectively. This implies that

D̃− − D− = (Ek − Ẽ)2 − (Ek − E)2 = (E − Ẽ)(2Ek − E − Ẽ) (5.87)

which in turn means that we can factorize (E − Ẽ) from the bracket in
Eq.(5.86), with the remaining factor given by

2Ek − E − Ẽ
D−D̃−

− 2(Ek − Ẽ)
D̃2

−
. (5.88)

In the strict on-shell limit, we have E = Ẽ and D− = D̃−. This implies
that the zero-th order term in the Taylor expansion of Eq.(5.88) in (E− Ẽ) van-
ishes, meaning that the expansion begins at O(E − Ẽ). Taking into account
that this expression is multiplied already by an overall factor of (E − Ẽ), we
can see that, in the on-shell limit,

1
4Ek

[
1

D−
− 1

D̃−
− 2(Ek − Ẽ)(E − Ẽ)

D̃2
−

]
∼ O

(
(E − Ẽ)2

)
. (5.89)

Finally, to obtain the two-loop counterterm RCT
2 , simply take the expres-

sion for the integrated counterterm in Eq.(5.18) and substitute RCT
1 , with p

replaced by k2. This implies that the local structure of the counterterm, even
at two-loop order, is completely determined by its one-loop behaviour. This
was to be expected due to the fact that the UV divergence of the original bare
graph comes from the one-loop self-energy subgraph.

Let us recap what we have achieved: by introducing a local representa-
tion for the counterterm that cancel the UV subdivergences of two-loop bare
graphs with a self-energy insertion on an internal edge, we have managed
not only to put the counterterms in the same footing as the bare contributions
(in terms of the number of loop integrations involved in both kind of contri-
butions), but also shown that the residues associated to propagators raised to
powers greater than one cancel between the bare and counterterm contribu-
tions. Moreover, since such residues are due to one-loop subgraphs, we have
been able to construct, in the context of scalar φ3 theory, the appropriate local
counterterm that achieves this cancellation in a process-independent fashion.
The advantages of this result are twofold.

First, as we have stressed along this section, the appearance of higher-
order residues spoils the tree-like structure of the integrand obtained after
applying LTD to a given Feynman integral. Realizing the cancellation of such
residues after renormalizing the UV divergences allows us to conserve the in-
terpretation of the cut integrand as a tree-like object.
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On the other hand, let us comment on the benefits of this result towards
the numerical calculation of scattering amplitudes. Within an analytic cal-
culation, higher-order residues can be reduced through IBP relations in the
same way we used to show that the proposed local representation integrates
to the proper counterterm. Such a procedure, however, is process depen-
dent. This is not well suited for automation, which is a feature one would
desire in a numerical calculation. Therefore, being able to extract the a priori
process-dependent behaviour and isolate it into a universal building block
which depends only on the field theory provides an elegant solution to the
problem, paving the way for a suitable automation of the remaining contri-
butions in the calculation.

Local counterterms satisfying the conditions needed to cancel the higher-
order residues for QCD are constructed in detail in [87]. One of the con-
sequences of the construction is that a local representation for the fermion
propagator counterterm that vanishes quadratically in the on-shell limit is
only possible if field and mass renormalization are performed in the on-shell
scheme.

Let us close this section by detailing the general structure of the coun-
terterm contributions, which will allow us to apply LTD formula to all terms
entering the calculation of an arbitrary L loop scattering amplitude.

In general, a counterterm obtained from the Feynman rules of a given
field theory will include fewer than L loop integrations to cancel the UV di-
vergences of its associated bare loop graph. When constructing an integral
representation for the counterterm, we introduce an additional number of
loop integrations so that both the bare and counterterm contributions are in-
tegrated over the same amount of loop momenta. With this in mind, let

f CT
LCT ,nCT

(Γ) (5.90)

for the integrand of a counterterm with LCT additional loop integrations
and nCT external legs. For example, the one-loop counterterm RCT

1 of Eq.(5.70)
is denoted by f CT

1,2 . As a further assumption, without loss of generality, we
take all the external edges nCT to contain momenta only of the remaining
loop integrations. Let iCT ⊂ {1, . . . , L} be the set of indices of the loop inte-
grations introduced by the local representation of the counterterm with in-
tegrand f CT

LCT ,nCT
(Γ), so that |iCT| = LCT, and let (q1, . . . , qnCT) be the set of

external momenta associated to this counterterm. Then, the integral repre-
sentation satisfies

1. After integration,

∫ (LCT

∏
j=1

dDkij

(2π)D

)
f CT
LCT ,nCT

(Γ) (5.91)
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one obtains the analytic representation of the counterterm computed
from the Feynman rules,

2. the sum of the bare and counterterm contributions vanishes at least as
O(|~kij |−5) when |~kij | → ∞ for each of its associated loop integrations.
As in the two-loop case considered earlier, this guarantees that the UV
divergences in each loop integration vanish locally between the bare
and counterterm contributions,

3. the integral representation has no poles in the energies q0i of the exter-
nal edges. This ensures that, applying the LTD formula to the integral
representation of the counterterm requires exactly LCT cuts,

4. finally, performing the mass and field renormalization in the on-shell
scheme, it is possible to construct an integral representation for the
propagator counterterms f CT

LCT ,2, with external momenta (q,−q), so that
the sum of all bare and counterterm two-point integrands contributing
to the scattering amplitude vanishes quadratically as q goes on-shell.
This condition, as we saw in our two-loop calculation, guarantees that
there are no contributions coming from higher-order poles.

These conditions are the generalization of the conditions imposed on RCT
1

and RCT
2 to arbitrary loop order. We would like to point out that the explicit

construction of the counterterms has only been performed up to the two-
loop order, which is the main case of interest for practical calculations due to
the fact that state of the art algorithms for the automated calculation of loop
amplitudes are only available at the one-loop order. However, the one-loop
like structure of the integral representation implies that such a construction
is always possible at higher-loop orders.

5.3 LTD representation of the integrand for L-loop
amplitudes

Having dealt with the problem of higher-order poles and expressing the
counterterm contributions as loop integrals with the same amount of integra-
tions as the bare contributions, we have managed to find the last ingredient
needed to write down the LTD representation of the loop integrand of the
L-loop scattering amplitude with n external particles.

We begin by applying the LTD formula to the integrand f CT
LCT ,nCT

of each
counterterm diagram that contributes to the L-loop scattering amplitude with
n external particles. This results in an integrand over LCT-fold cuts, per-
formed over the spatial components of the LCT loop momenta. Let us denote
by

VCT
LCT ,nCT

(5.92)
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the result of this cutting procedure. We can regard this result as new
vertex of the theory with nCT external edges and LCT pairs of edges (kij , kij)

which reproduce the integrand f CT
LCT ,nCT

when sewed together. Each of these
cuts will have its own combinatorial factor Sσα, which do not need to be
identical of those of its associated bare graph. That this is the case can be
seen from the fact that the cuts of bare graphs always involve L cuts, while
in general LCT ≤ L, so that the structure of the cut graph for the counterterm
might be different from that of the bare contribution. We identify VCT

0,nCT
, that

is, vertices with LCT = 0, with the original vertices of the theory.

We can now provide a definition of a tree-amplitude-like object. Recall
that in Eq.(5.9) we have defined a tree-like object through the replacement of
its usual representation in terms of Feynman graphs by multiplying by the
appropriate combinatorial factor. We can generalize this definition, so that
the object

ACT
0,n+2(L−LCT),LCT

(5.93)

is given by the sum of all tree diagrams with (n + 2L − 2LCT) external
legs, where the vertices are given by all the possible VCT

LCT ,nCT
and each dia-

gram is weighted by its corresponding combinatorial factor Sσα. Recalling
that an L loop amplitude in an arbitrary field theory is proportional to g2L,
where g is the coupling of the theory, we can conclude that the all of the coun-
terterm vertices appearing in ACT

0,n+2(L−LCT),LCT
are proportional to g2LCT . For

the bare contributions, we write

A0,n+2L = ACT
0,n+2L,0 = ∑

Γ∈U0,n+2L

Sσα f (Γ), (5.94)

which is nothing but the tree amplitude with n + 2L external legs where
every diagram is weighted by the appropriate combinatorial factor inherited
from the cutting procedure. The external momenta of this amplitude are
given by

{p1, ..., pn; k1, ..., kL, k1, ..., kL}. (5.95)

For an arbitrary LCT ∈ {0, 1, ..., L}, we define its regularized forward limit

R f ACT
0,n+2(L−LCT),LCT

(5.96)

in the same fashion as the regularized forward limit of tree amplitudes in-
troduced in Eq.(5.8). Summing the contributions with every possible amount
of counterterm insertions, we set

BL,n(p1, ..., pn; k1, ..., kL, k1, ..., kL) =
L

∑
LCT=0

R f ACT
0,n+2(L−LCT),LCT

, (5.97)
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which corresponds to the regularized forward limit of a UV-finite sum of
weighted tree diagrams. We want to show that the expression in Eq.(5.97)
corresponds precisely to the integrand of the L loop amplitude after applica-
tion of LTD.

As a starting point, we write the L loop amplitude as a sum over Feynman
diagrams as

AL,n(p1, ..., pn) = ∑
Γ∈US

L,n

(−1)nc(Γ)

S(Γ)

∫ L

∏
j=1

(
dDk j

(2π)D

)
f (Γ) (5.98)

where S(Γ) is the symmetry factor associated to the graph Γ, as defined
in Chapter 3, and nc(Γ) is the number of closed fermion loops of the graph.
We can apply LTD individually to each of the graphs, using Eqs.(4.45) and
(4.75), to turn each of the loop integrals into a sum of cut integrals

AL,n(p1, ..., pn) = (−i)L ∑
Γ∈US

L,n

(−1)nc(Γ)

S(Γ) ∑
σ∈CΓ

∫
±

L

∏
j=1

dkcut
σj

Sσα f cut(Γ) (5.99)

where f cut denotes the loop integrand without the cut propagators and
all the remaining propagators are turned into the corresponding dual prop-
agators. For every one of these integrals, it is possible to relabel the loop
momenta (kσ1 , ..., kσL) so that the loop momenta becomes (k1, ..., kL) for all
the contributions. For a each set of integrals defined by the same cut, this
amounts to performing a linear transformation on the momenta, and there
are L! factorial ways to do this, starting from a given basis (kσ1 , ..., kσL) of
independent loop momenta. Averaging over all these possibilities, we can
exchange the order of the sums and the integration, obtaining

AL,n(p1, ..., pn) =
(−i)L

L!

∫
±

L

∏
j=1

dkcut
j ∑

Γ∈US
L,n

(−1)nc(Γ)

S(Γ) ∑
σ∈CΓ

∑
SL

Sσα f cut(Γ)

(5.100)
where the sum over SL is the sum over all possible permutations intro-

duced by the averaging procedure. Recall that we introduced the notation∫
±

dkcut =
∫ dD−1k

(2π)D−12
√
~k2 + m2

∑
λ=±

(5.101)

to denote the integration over the spatial components of the loop mo-
menta k, summed over the forward and backwards on-shell hyperboloid.
This sum is equivalent to summing over the two possible orientations of the
flow of the momentum k. This means that, restoring the sum over the hy-
perboloids, we can identify that the four remaining sums appearing in Eq.
(5.100) make up the set U⊗L,ns

L,n , which is the set of non-singular graphs from
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the set in Eq.(5.7) where L internal lines have been marked. With this, we can
write

AL,n(p1, ..., pn) =
(−i)L

L!

∫ L

∏
j=1

dkcut
j ∑

Γ∈U⊗L,ns
L,n

(−1)nc(Γ)

S(Γ)
f cut(Γ) (5.102)

where we have dropped the ± subscript on the integral since the sum
over the hyperboloids has been put together in the sum over the non-singular
marked graphs.

Since we are summing over L loop marked graphs, we can use Eq.(3.26)
to exchange the summation over marked graphs by a summation over sewed
tree graphs. By definition of the loop amplitude, there are no singular con-
tributions coming from self-energy insertions on external legs, nor there are
tadpole insertions, if we assume that all fields in the theory have vanishing
vacuum expectation values. Moreover, because of the way we constructed
the local representation for the counterterms, there are no residues coming
from higher-order poles. We can, therefore, recognize the sum over sewed
graphs as the regularized forward limit of the sum of weighted tree graphs,
which is exactly the definition of BL,n. The result of this observation is that

AL,n(p1, ..., pn) =
(−i)L

L!

∫ L

∏
j=1

 dD−1k j

(2π)D−12
√
|~k j|2 + m2

j

 L

∑
LCT=0

R f ACT
0,n+2(L−LCT),LCT

=
(−i)L

L!

∫ L

∏
j=1

 dD−1k j

(2π)D−12
√
|~k j|2 + m2

j

BL,n({pi}, {ki, ki}).

(5.103)

The formula in Eq.(5.103) represents the main result of this thesis, since it
provides a definition of the integrand for an arbitrary, renormalized L-loop
scattering amplitude which does not depend on the evaluation of individual
Feynman diagram as the integral over the spatial components of the loop
momenta of the regularized forward limit of a tree-amplitude-like object. An
additional caveat of this formula is that, since the momenta of a tree ampli-
tude (and by consequence, the momenta of a tree-amplitude-like object) are
completely determined by momentum conservation, this representation of
the loop integrand provides a global definition of the loop momenta. As we
have already mentioned, the structure of the tree-amplitude-like object not
only differs from the tree amplitude by the inclusion of combinatorial fac-
tors, but also on the modification of the usual Feynman propagators to dual
propagators, whose modified causal prescription is relevant in the remain-
ing integrations to determine in which direction to perform the necessary
contour deformation [49, 54, 55, 106, 125] to avoid the non-pinch singularities
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of the integrand in a numerical calculation.

We conclude this section by mentioning the remaining generalizations of
Eq.(5.103). In theories such as QED or QCD where there are more than one
species of particles, we must also perform a sum over all flavours of the (2L)
additional particles appearing as external edges of the cut integrand. When
cutting lines associated to particles with spin, we perform a sum over both
physical and unphysical polarizations, in line with our remarks in Eqs.(3.13)
and (3.15) about the cutting of fermion or gauge boson propagators and their
numerator structure. Finally, in non-Abelian gauge theories, the bare loop
diagrams receive contributions from loops with ghosts and antighosts that
cancel the contributions from the longitudinal polarizations of the gauge
bosons. In that regard, we must include cut diagrams with external ghosts
and antighosts.

Finally, in the context of the SM, it is known that the Higgs field acquires
a non-vanishing vacuum expectation value. This means that contributions
where a tadpole is inserted into an external line through a Higgs propaga-
tor, even though the propagator has momentum zero, the Higgs has a non-
vanishing mass, rendering such diagrams finite. In order to accomodate for
this new contributions, we would include terms where the internal edges
have momenta

∑
a
(ka + ka) (5.104)

in the regularized forward limit, whenever the internal edge with this mo-
menta corresponds to a Higgs boson. Since there is no condition on which
renormalization scheme to use for the the Higgs sector, we can follow the
ideas in ??, where the renormalization of the Higgs sector is performed under
the condition that the vacuum expectation value of the Higgs field matches
the physical vacuum expectation value of the interacting theory. This trans-
lates to the condition that the tadpole contributions vanish, and therefore, no
modification is needed to include the Higgs sector in an application of the
LTD formula to a calculation in the SM. If the use of such renormalization
scheme is not convenient, one must simply extend the contributions to the
regularized forward limit adding the contributions determined by Eq.(5.104).

5.4 Recursion relations for the integrand

In contrast to higher-loop contributions, the structure of tree-level ampli-
tudes is remarkably simple, since these are always rational functions of the
external momenta. The singularities of tree amplitudes are also very well
understood, given by poles that occur when a propagator goes on-shell. A
remarkable property of tree amplitudes is that the residues at the poles ex-
hibit a factorized structure, given by the product of lower point amplitudes.
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This factorized structure can be exploited to construct tree amplitudes re-
cursively, and such an approach can be classified broadly into two different
kinds.

On one hand, there are the so-called on-shell recursion relations, of which
[128, 129], the BCFW recursion relations, is the one most used in the liter-
ature. The technique is based on performing a complex deformation of the
momenta of a tree amplitude, where some of the momenta are shifted accord-
ing to pi → pi + zqi, with z a complex variable, in such a way that the on-shell
conditions and conservation of momenta are still satisfied by the shifted mo-
menta. The complexified amplitude then develops poles in z, which can be
shown to always be simple and applying the residue theorem to the func-
tion A(0)

n (z)/z, where A(0)
n (z) denotes the shifted tree amplitude, yields an

expansion of the amplitude that takes the schematic form

A(0)
n = ∑ A(0)

n1,R
1

P2 A(0)
n2,L (5.105)

with A(0)
m,S lower-point amplitudes evaluated at the position of the poles,

and P2 a propagator-like quantity that "connects" the factorized subampli-
tudes. The seeds for the recursion in this approach are given by the three-
point amplitudes of the theory, which are nothing else than the cubic interac-
tion vertices contracted with external wave-functions. In theories of massless
particles these three-particle amplitudes vanish unless the momenta is taken
to be complex, which is built-in in the formalism via the shifted momenta.
Furthermore, a striking property of three-point amplitudes is that their kine-
matic structure can be completely determined using only the constraints im-
posed on them by Lorentz symmetry [130]. This means that on-shell re-
cursion relations can be seen to produce tree-level amplitudes without the
need to refer to Feynman diagrams, or even Lagrangians. In practice, these
kind of relations are very useful in analytic calculations, but not very well
suited for numerical computation of amplitudes with arbitrary inputs. The
reason for this is that, when the momenta is shifted to obtain the deformed
amplitude A(0)

n (z), the position of the physical poles of the original ampli-
tude is also shifted. This means that each of the individual contributions
in Eq.(5.105) will contain spurious poles which only cancel once the sum is
performed. This results in large cancellations amongst different terms, which
reduces the precision of a numerical calculation where the recursion relations
are employed. However, when working with specific representations of the
kinematic variables [131, 132], the BCFW recursion relations allow to obtain
compact closed expressions for tree amplitudes of arbitrary multiplicities, as
shown in [133, 134].

The second general approach to the recursive calculation of tree ampli-
tudes are the off-shell recursion relations, first derived in the case of color-
ordered gluon amplitudes by Berends and Giele in [123]. In this case, given
an arbitrary tree-amplitude, one constructs an object known as an off-shell
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current, which corresponds to removing one of the external wave-functions
of the amplitude, and contracting it with an additional propagator that cor-
responds to the same kind of particle whose wave-function was removed.
These off-shell currents can be shown to satisfy recursion relations, where
the building blocks are given by the vertices, propagators and external wave
functions of the theory. Finally, the amplitude is obtained by a contraction
with a suitable external wave function. In [135], a comparison is made be-
tween the numerical implementation of the different kind of recursion rela-
tions, and it is found that off-shell recursion yields the fastest results at high
multiplicity. For this reason, given that the ultimate goal of the LTD formal-
ism is to allow for the automated numerical calculation of loop amplitudes,
we choose to use off-shell recursion relations for the calculation of the tree-
amplitude-like objects. With this in mind, we give a detailed review of the
algorithm in the simple case of tree amplitudes in scalar φ3 theory, explaining
along the way the necessary modifications to accomodate an arbitrary field
theory.

We let

J0,j (5.106)

denote an off-shell current, which can be also defined as an object with
j external legs with on-shell momenta (p1, ..., pj) and an additional external,
off-shell leg with momenta pj+1, subject to momentum conservation

j+1

∑
i=1

pi = 0. (5.107)

The first step in the recursion involves setting the values for the j = 1
currents. These will be given by

J0,1(pi) = 1, i ∈ {1, ..., j − 1} (5.108)

for the case of φ3 theory, and by the appropriate wave-functions for the
case of particles with spin. The one-particle currents serve as the seeds of the
recursion.

Higher multiplicity currents are then built by considering the different
ways in which to put one-particle currents together. In order to do this, we
let γ be a subset of {p1, ..., pj−1}2. We look for partitions of γ given by subsets
α, β ⊂ γ, that is

α ∪ β = γ, α ∩ β = ∅. (5.109)

Furthermore, set i = |γ| and a = |α|. We define the total momentum of
the sets α and β as

2It suffices to consider only the first (j − 1) pi’s due to momentum conservations
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P1 = ∑
p∈α

p, P2 = ∑
p∈β

p (5.110)

and, finally, we set P3 = −P1 − P2. Then, the off-shell currents are con-
structed recursively according to

J amp
0,i (γ) = ∑

α,β
V(P1, P2, P3)J0,a(α)J0,i−a(β) (5.111)

where V(P1, P2, P3) denotes the three-point interaction vertex, and

J0,i(γ) =
−i

D(P3)
J amp

0,i (γ) (5.112)

where D(k) = k2 −m2 are the scalar inverse propagators. In theories with
spin, the numerator of 1/D is modified to yield the appropriate propagators.
In theories with multiple interaction vertices, an additional sum over all the
possible types of vertices is introduced and, if there are vertices with valency
higher than three, the set γ is partioned into more than two subsets. In partic-
ular, for four-point vertices such as the four gluon vertex of QCD, one must
construct threefold partitions.

Finally, the amplitude is obtained as

A(0)
n (p1, ..., pn) = J0,1(pn)J amp

0,n−1(p1, ..., pn−1) (5.113)

where the contraction with J0,1(pn) is only relevant for theories with spin.
We can put this algorithm to test with a simple calculation by computing the
4-point scalar amplitude. Working from the bottom up, we want to obtain

A(0)
4 (p1, ..., p4) = J amp

0,3 (p1, p2, p3) (5.114)

From the definition of Eq.(5.111), we need to set γ = {p1, p2, p3}, which
implies i = |γ| = 3. There are three possible partitions of this set into two
disjoint sets, namely

α1 = {p1, p2}, β1 = {p3}
α2 = {p1, p3}, β2 = {p2}
α3 = {p2, p3}, β3 = {p1}.

(5.115)

Since the only vertex in φ3 theory is given by the coupling V(q1, q2, q3) =
−iλ for any set of momenta {q1, q2, q3}, we can write

J0,3(γ) = −iλ ∑
α,β

J0,a(α)J0,3−a(β). (5.116)
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Now, we can see that in every possible partition, we have a = 2, which
implies that all the currents J0,3−a(β) = J0,1(pi) = 1. This means that the
off-shell current simplifies to

J0,3(γ) = −iλ ∑
α

J0,2(α). (5.117)

We only need to compute the currents J0,2. We first notice that, since all
of the sets α have only two momenta, the only possible partition is given
by splitting the set into two sets with a single momenta each. Thus, if the
momenta in the set α are (k1, k2), then we have P3 = −k1 − k2, and

J0,2(α) =
−i

(k1 + k2)2 − m2J
amp

0,2 (α). (5.118)

Finally, since the partitions of the two-particle sets are given by single
element sets, we can see that the recursion terminates, since all the J0,a and
J0,i−a entering the definition of J amp

0,2 are the one-point currents, which for
scalar are simply defined to be 1. Thus, the two-point amputated current is
simply given by the vertex −iλ, and we find

J amp
0,3 (γ) = −iλ (J0,2(α1) + J0,2(α2) + J0,2(α3))

= iλ

(
iJ amp

0,2 (α1)

D(p1 + p2)
+

iJ amp
0,2 (α2)

D(p2 + p3)
+

iJ amp
0,2 (α3)

D(p1 + p3)

)

= iλ2
(

1
D(p1 + p2)

+
1

D(p2 + p3)
+

1
D(p1 + p3)

) (5.119)

which coincides with the four-point amplitude as computed from the
Feynman rules. With this off-shell current, moreover, one could construct
the five scalar amplitude in a more efficient fashion than by generating the
complete set of Feynman diagrams contributing to the amplitude.

Now, we can address the issue of modifying the recursive algorithm in
order to calculate the tree-amplitude-like object Bl,n introduced in Eq. (5.97).

The first modification we have to perform is the inclusion of the combina-
torial factors Sσα appearing in Eq.(4.76). We will show that, up to three-loop
order, it is possible to dress the vertices and propagators that make up the re-
cursion relations in order to reproduce the appropriate combinatorial factors.

To begin, we recall that the combinatorial factors depend only on the
structure of the underlying chain graph Γchain of a given graph Γ. We specify
a cut through the set of permutations

(σα1
1 , . . . , σαL

L ). (5.120)

A general property of the combinatorial factors is that they are invariant
if we change the energy signs αj → −αj for all of the cut lines. Thus, it is
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1 1

2

FIGURE 5.3: Chain graphs up to two-loops.

sufficient to consider only a limited amount of cases to derive the remaining
factors.

At one-loop order, the only possible chain graph is the vacuum bubble,
and as we argued previously, all the one loop combinatorial factors are given
by Sσα = 1/2. Thus, we introduce the vertex rule

k+1 k
−
1

=
1
2

, (5.121)

where the blobs indicate the parts of the diagram where the cut lines k+1
and k

−
1 attach to. Similarly, at two-loop order, the only possible chain graphs

are given by a product of two one-loop vacuum bubbles, and by the sunrise
graph with no external legs. The first occurs for graphs whose integral ex-
pression factorizes into the product of two independent one-loop integrals.
These chain graphs are shown in Fig. 5.3.

At the two-loop level, we can use Eq. (4.77) to find that the only possible
combinatorial factors at this order are given by 1/3 when the sign of the
energies of both cut lines is equal and by 1/6 when the sign of the energies
are different from each other. With this in mind, we introduce the vertex
factors

k+1 k+2

=
1√
3

,

k+1 k−2

=
1√
6

. (5.122)

The reason for the square roots is easy to explain: each of these vertices is
accompanied by a second vertex, where ki for i = 1, 2 is exchanged with ki.
These second vertices will have then the same factor, so that when building
up the complete tree diagram associated to the cut, we recover the correct
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FIGURE 5.4: Irreducible three-loop chain graph. Figure taken
from [2].

combinatorial factors.

Finally, the three-loop case requires to be more careful. The basic chain
graph at three loops is shown in Fig. 5.4. The combinatorial factors associated
to this graph need only be computed once, and any three-loop graph whose
chain graph has this structure will inherit those values. Using Eq.(4.76), we
find

Three-loop chain:

Cut (1+, 2+, 3+) (1+, 2+, 3−)
Sσα

3
64

29
192

Cut (1+, 2−, 3+) (1+, 2−, 3−)
Sσα

29
192

29
192

Cut (1+, 2+, 4+) (1+, 2+, 4−)
Sσα

5
96

19
192

Cut (1+, 2−, 4+) (1+, 2−, 4−)
Sσα

19
192

1
4

(5.123)

In addition to the six-propagator three-loop graph in Fig. (5.4), there are
two additional two chain-graphs that can be seen as subtopologies of this
graph, obtained by pinching one or two pairs of vertices together. These are
shown in Fig. 5.5).

The combinatorial factors for these graphs are given by
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FIGURE 5.5: Non-factorizable suptopologies of the irreducible
three-loop chain graph. Figure taken from [2].

5-propagator chain:

Cut (3+, 4+, 5+) (3+, 4+, 5−)
Sσα

1
4

11
96

Cut (3+, 4−, 5+) (3+, 4−, 5−)
Sσα

13
192

13
192

Cut (1+, 3+, 5+) (1+, 3+, 5−)
Sσα

1
8

11
192

Cut (1+, 3−, 5+) (1+, 3−, 5−)
Sσα

37
192

1
8

(5.124)

for the graph on the left of Fig. 5.5, and

4-propagator chain:

Cut (1+, 2+, 3+) (1+, 2+, 3−)
Sσα

1
4

1
12

Cut (1+, 2−, 3+) (1+, 2−, 3−)
Sσα

1
12

1
4

(5.125)

for the remaining chain graph. These last coefficients, due to the ”banana-
like” structure of the four-propagator chain graph, can be computed using
the simplified formula of Eq. (4.77). These combinatorial factors can be dis-
tributed among vertices of cut graphs according to

k+1 k+2
k+3

=
1
2

√
3, (5.126)
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k+1 k−2
k+3

=
1
4

√
5, (5.127)

k+1 k−2
k−3

=
19
80

√
10, (5.128)

k+1 k+2 k
−
2

k−3

=
29
64

√
6, (5.129)

and

k+1 k−2 k
+
2

k−3

=
9

32

√
6. (5.130)

Using these vertex factors, it is possible to reproduce the combinatorial
factors of any graph whose underlying chain graph is given by any of the
graphs in Fig. 5.4 or 5.5. However, at three-loop order, one encounters an ad-
ditional vacuum graph which is not a chain graph. This is shown in Fig.5.6.
Its underlying chain graph is given by the five-propagator graph of Fig. 5.5.
However, the vertex rules introduced so far are not sufficient to reproduce
the correct combinatorial factors for the cuts of the ladder graph. These cuts
can be classified according to two different sets, and each of those will require
the introduction of an additional factor to dress the internal propagators of
the cut graphs associated with the lines with a shared momenta.

The first class of cut can be represented by cutting the lines (3, 4, 5). In
this case, the lines (1, 6), which share the same momenta, are uncut. Then,
we pick either one of lines 1 or 6, but not both, an attach factors
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1

2 4

6

35

FIGURE 5.6: Three-loop vacuum graph with six propagators.
The lines labelled by 1 and 6 carry the same momenta, which

implies that this is not a chain graph.

k+3k+1 k+2

= 1, (5.131)

k−3k+1 k+2

=
220
361

, (5.132)

k+3k+1 k−2

=
13
10

, (5.133)

and

k−3k+1 k−2

=
13
10

. (5.134)
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to one of the chosen propagators. The other type of cut can be character-
ized by either the sets (1, 3, 5) or (3, 5, 6). Without loss of generality, we work
with a cut of the type (1, 3, 5). In this case, the propagator 6 is left uncut, and
we attach to it the factors

k+3
k+1 k

−
2 k+2

=
24
19

, (5.135)

k−3
k+1 k

−
2 k+2

=
11
10

, (5.136)

k+3
k+1 k

+
2 k−2

=
370
361

, (5.137)

and, finally

k−3
k+1 k

+
2 k−2

=
24
19

. (5.138)

Dressing the cut graphs with these vertex and propagator factors allows
to reproduce the combinatorial factors associated to the cut graphs, eliminat-
ing the need to use Eq. (4.76). Although we have limited ourselves to doing
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this construction up to three-loop order, it is in principle possible to perform
this same analysis for four and higher order loop graphs. The main com-
plication in these scenarios is the appearance of more chain and non-chain
vacuum graphs, which imply the need to introduce a bigger amount of ver-
tex and propagator factors.

The remaining two modifications we need to make to the recursion re-
lations in order to succesfully apply them to compute BL,n are to include
all possible counterterm vertices, as defined in Eq. (5.92), and to define the
recursion relations to exclude contributions which would lead to singular
propagators.

The quantities entering the recursion relations are off-shell currents

JLCT ,j(q1, ..., qj) (5.139)

with j external on-shell edges and that contain counterterm vertices of
order g2LCT . The momenta of these edges is chosen to be a subset of

{p1, . . . , pn; k1, . . . , kL; k1, . . . , kL}, (5.140)

where the dependence of JLCT ,j on the momenta of the cut lines is pair-
wise, i.e. it always depends on pairs (ka, ka), of which there are exactly LCT.
The combinatorial factors will be distributed among the vertices and propa-
gators appearing in the recursion. Attaching the vertex factors is straightfor-
ward, since the structure of each vertex is independent on where the off-shell
current attaches to. However, one can only identify if a propagator needs
the insertion of a particular combinatorial factor after the off-shell currents
are contracted into another vertex. We solve this issue by treating currents
which might result in non-trivial combinatorial factors as currents of differ-
ent flavour and group the off-shell currents according to which have the same
propagator factor. These are later combined after being attached into a new
vertex. The recursive algorithm in this case, detailed for φ3 theory, starts by
setting

J0,1(qi) = 1, i ∈ {1, ..., j − 1}
Jk,1(qi) = 0, k ≥ 1,

(5.141)

meaning that there are no one-particle currents with counterterms. In
other words, we only need the external states of the theory to initialize the
recursion. Then, as before, we pick a subset γ of the momenta {p1, . . . , pj−1}
and partition it into subsets α and β satisfying

α ∪ β = γ, α ∩ β = ∅. (5.142)

Then, with i = |γ| and a = |α| being the amount of elements in each set,
and the total momenta
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Q1 = ∑
q∈α

q, Q2 = ∑
q∈β

q, Q3 = −Q1 − Q2, (5.143)

we define the off-shell currents recursively through

J amp
LCT ,i, f (γ) = ∑

L1+L2+L3=LCT

∑
α,β

′
∑

f 1, f 2
CVVCT

L3,3(Q1, Q2, Q3)

× CαJL1,a, f1(α)CβJL2,i−a, f2(β),
(5.144)

where the primed sum is over all subsets of γ forming a partition and
such that only contributions with the same combinatorial factor for the prop-
agator are selected. The possible combinatorial factors for the propagators
are indexed by f , and we sum over all such possibilites for the lower-order
currents. Furthermore, the vertices VCT

L3,3 denote the possible tri-valent ver-
tices of order LCT, and CV denotes the combinatorial factor associated to this
vertex. Finally, Cα and Cβ denote the propagator combinatorial factors for
the sub-currents JL1,a, f1(α) and JL2,i−a, f2(β), respectively.

At this stage, we veto the singular kinematic configurations. If the mo-
mentum Q3 is of the form of Eqs. (5.4), (5.5) or (5.6), we set

JLCT ,i, f (γ) = 0, (5.145)

otherwise,

JLCT ,i, f (γ) =
−i

D(Q3)
J amp

LCT ,i, f (γ)

+ ∑
L1+L2=LCT

(
−i

D(Q3)

)2

VCT
L2,2(Q3,−Q3)J

amp
L1,i, f (γ)

(5.146)

where VCT
L2,2 denote propagator counterterm vertices. Since there are no

further counterterms in φ3 besides the vertex and propagator counterterms,
we have exhausted all possibilites. In theories with with additional vertices,
both bare and coming from counterterms, the extension of these formulation
is equivalent to the extension of the recursion relations for tree amplitudes
from scalar theories to any other field theory. From this currents, then, one
obtains

R f ACT
0,n+2(L−LCT),LCT

(p1, . . . , pn; kα1 , . . . , kαL−LCT
, kα1 , . . . , kαL−LCT

) =

J amp
LCT ,n−1+2(L−LCT)

(p1, . . . , pn; kα1 , . . . , kαL−LCT
, kα1 , . . . , kαL−LCT

)
(5.147)

from which all regularized forward limits can be computed, and then
their sum yields BL,n.
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Chapter 6

Summary and outlook

In this thesis, we have explored techniques for the calculation of scattering
amplitudes and cross-sections in various quantum field theories, with an aim
to develop a formulation that allows the efficient and automated computa-
tion of two-loop amplitudes and beyond.

To reach this goal, we introduced in Chapter 2 the fundamental princi-
ples of QFT and their application to the calculation of amplitudes and cross-
sections. We started by looking at the Lagrangian formulation of gauge
theories, and found the relation between amplitudes, defined as transition
amplitudes of asymptotic in and out states, and cross-sections, which pro-
vide the main kind of observables measured at collider experiments. It was
then shown that, within the framework of perturbation theory, scattering
amplitudes can be computed as a series in the couplings of the field the-
ory where each of the coefficients to be determined can be organized in the
language of Feynman diagrams. There, we argued that beyond the leading
order contributions, these diagrams translate into integrals of rational func-
tions over some set of unconstrained momenta. We then saw that these in-
tegrals develop multiple singularities associated to different energy regimes
and discussed the various technicalities needed in order to remove these di-
vergences.

The first step in this direction was the need for regularization, which al-
lows to parametrize the divergences of a given integral. Amongst the many
possible regularization schemes, the one we chose to use along our work was
dimensional regularization. The singularities associated to the high-energy
modes (UV) were shown to cancel with the introduction of counterterms,
which can be computed after the theory has been renormalized. Such a pro-
cess was performed at the Lagrangian level, showing that defining field the-
ories in terms of physical parameters allows a separation of the degrees of
freedom in such a way that the divergences of the theory are absorbed into
unobservable quantities. We discussed the different kinds of renormaliza-
tion schemes, which are conditions imposed on the observables of the theory
defined at some energy scale so that the divergences can be cancelled succes-
fully. These cancellations occur at the level of the scattering amplitudes.

Singularities associated to low-energy modes (IR), however, were shown
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to persist after renormalization. These singularities cancel between the vir-
tual corrections, coming from higher-loop diagrams, and real or radiative
corrections, which come from diagrams with additional external particles1.
We then argued that in gauge theories, both Abelian and non-Abelian the
KLN theorem guarantees the cancellation of IR divergences among these
contributions. Finally, in order to illustrate this principle, we performed a
one-loop calculation in QED to show how the cancellation of IR divergences
manifests itself in the calculation of the real and virtual corrections to the
cross-section. There, we saw that these cancellations occur only after all inte-
grations have been performed, since the different type of corrections live in
spaces of different dimensions and their integrations measures are different
to one another. Although the result itself is consistent, the fact that one must
perform the calculation of each contribution separately and keep track of the
regulator in each one of them is not very well suited for the use in numerical
calculations, since the treatment of every contributions highly depends on
the process under consideration.

Chapter 3 is devoted to graph-theoretical study of the relation between
loop and tree graphs. We first work out which kind of diagrams contribute
the the scattering amplitude at a given perturbative order, reaching the con-
clusion that only connected graphs are to be considered in the calculation of
amplitudes. Moreover, we saw that there are special types of graphs, namely
those which contain insertions of tadpoles or self-energies on external edges,
which give rise to singular contributions. In the case of tadpoles, it was ar-
gued that, given that the vacuum expectation values of the fields in the the-
ory vanish, one can always ignore such contributions. On the other hand, we
introduced the LSZ formula and argued that using the formula to calculate
a scattering amplitude by computing the simple poles of off-shell correlation
functions imply that diagrams with self-energy insertions on external edges,
which produced higher-order poles in the correlation functions, do not con-
tribute to the amplitude themselves but rather provide the basis for the cal-
culation of the wave-function renormalization constants, which are then seen
to associate the bare and renormalized amplitudes to one another.

Having discussed which kind of diagrams contribute to scattering am-
plitudes, we proceed to do a brief classification of diagrams with n external
edges and L internal loops, with our without counterterm insertions. From
this basic definitions, we look at ways to relate loop graphs and tree graphs,
finding that these can be relate through the operations of cutting and sewing,
which are inverse to each other. The essential idea is then that, given a loop
graph, one can cut open one of its internal edges within a loop to reduce the
loop order by one and increase the number of external edges by two. Pick-
ing exactly L internal edges of a L graph and cutting them open then yields

1This does not mean that there are no radiative corrections that include loops. For exam-
ple, the IR divergences associated to the two-loop corrections to some process are cancelled
against one-loop corrections with one additional external particle, as well as tree contribu-
tions with two extra external particles.
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a connected tree graph with 2L additional external edges. We also saw that
the loop graph can be recovered after cutting by identifying pairs of external
edges and putting them together. We then took a detour from our graphic
theoretic discussion by looking at the necessary conditions that must be im-
posed on the algebraic quantities associated to Feynman graphs in order for
the cutting and sewing operations to make sense beyond being purely pic-
torial relations, emphasizing the way in which cutting behaves in theories
with spin. Finally, we discussed the role of symmetry factors of loop graphs
and how these factors cancel when cutting exactly L internal edges. We were
able to prove that these symmetry factors cancel against the overcounting of
equivalent tree graphs obtained by different cuts. This result is summarized
in the equation

∑
Γ∈U⊗L

L,n

1
S(π f (Γ))

F(π f (Γ)) = ∑
Γ∈UL−Sew

0,n+2L

F(B(Γ)), (6.1)

where the sets summed over represent, on the loop side, the set of all L
loop graphs were a marking is introduced to each of its internal edges and,
on the tree side, the set of all graphs which give, by sewing exactly 2L legs,
the L loop graph on the left-hand side of the equations. We wrote this rela-
tion such that it was valid for the linear combination of any operator acting
on the graphs, implying that this equation holds for the sum of Feynman di-
agrams that contribute to a scattering amplitude at any loop order.

Chapter 4 takes the graph-theoretical discussion of Chapter 3 and trans-
lates it into the context of Feynman integrals. This is done through the deriva-
tion of the LTD formula, both at one- and multi-loop level, which constitute
the first principal result of this thesis. As a first step, we provide the deriva-
tion of the LTD formula at one-loop for integrals where all the propagators
occur at the power one. It is shown that the pole structure of the propagators
allows for the application of the residue theorem to perform the integration
over the energy component of the loop momenta. The resulting integrand
is then argued to have the structure of a tree diagram, and we see that this
tree diagram can be interpreted as a cut diagram, tying up with our previous
discussion of the graph-theoretical relation between loop and tree graphs. It
is also seen that the modification induced by the residue computation is to
change the causal prescription for the poles of the propagators, introducing
a dependence on the momenta of the external particles. We discuss the fact
that one might average over all possible contour closings and argue why this
is benefitial in order to obtain a tree-like structure for the integrand of the
complete scattering amplitude after applying LTD to each of its individual
contributions. Before deriving the LTD formula at multi-loop order, we per-
form a simple calculation to show the consistency of the LTD formula at one-
loop by calculating a three-point scalar one-loop integral through the explicit
evaluation of the cut integrals resulting from the application of the theorem.
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In order to perform the derivation of the multi-loop LTD formula, a dis-
cussion of the differences between the one-loop and higher-loop cases is done
by considering the behaviour of the two-loop two point function, given in
terms of the so-called sunrise integral. We see that a naive application of the
residue theorem in which we assume that the residues in the energies of the
two loop momenta can be computed independently by finding the position
of the poles through the original Feynman propagators leads to inconsistent
results. A more careful approach is then taken, by first computing the residue
in a single energy variable and looking at the dependence of the result on the
second, unintegrated energy component. This leads to the discovery that the
causal prescription of the poles is modified by an amount dependent on the
momenta of the cut propagators. This dependence reveal the inconsistency
of treating the residues separately, and we proceed to show that a represen-
tation in terms of cuts for multi-loop integrals, where the structure of the
poles is determined completely by the original Feynman propagators, can be
obtained at the cost of introducing a set of combinatorial factors, which in a
sense account for the way in which a given pole "distributes itself" among
the different possible contours as a function of the momenta of the remain-
ing loop momenta. These combinatorial factors are rational numbers and are
shown to depend only on the structure of the underlying chain graph of the
loop graph under consideration. The resulting expression for the integral
over the energy components of the integrand f at L-loops is then

1
(2π)L

∫
f dE1 ∧ dE2 ∧ ... ∧ dEL

= (−i)L ∑
σ∈CΓ

∑
α

Sσα(−1)n(α)
σ res

(
f , E(α)

σ

) (6.2)

with the coefficients Sσα given by

Sσα =
(−1)L+n(α)

σ

2LL!|CΓchain | ∑
π∈SL

∑
σ̃∈CΓ

∑
π̃∈SL

∑
α̃∈{−1,1}L

Cσ̃π̃α̃
σπα

Nchain(σ)
, (6.3)

where the possibility of propagators raised to powers higher than one is
considered by leaving the expression for the residue of f at each of its poles
without evaluation. Specializing the result to single poles results in an in-
tegrand where every contribution has the structure of a tree graph, and the
modified causal prescription for the propagators of the dual integrand is de-
rived. Finally, to further probe the consistency of our formula, we show a
numerical comparison of the sunrise integral calculated using the corrected
LTD formula and a direct Monte-Carlo evaluation, finding excellent agree-
ment between the two results.

The second main result of this thesis is derived in Chapter 5. By taking
into account the loop graphs which do not contribute to the scattering ampli-
tude, we define the regularized forward limit of tree amplitude with n + 2L
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external edges. This object is shown to be the kinematic limit of a set of
non-singular tree graphs, and the criteria to choose which diagrams to omit
according to the momenta flowing through their propagators is constructed.
Afterwards, we provide a first definition of a "tree-like object" as a quantity
constructed from the standard Feynman graph expansion of a tree amplitude
or correlation function, where each graph is weighted by a combinatorial fac-
tor inherited from some loop graph which, after cutting, yields the tree graph
under consideration.

We then perform a thorough treatment of counterterms, stemming from
the need to express them in a local representation which allows for the appli-
cation of the LTD formula to all contributions to the scattering amplitude. We
show that it is possible to find local representation for the counterterms that
make them match the loop order of the bare contributions, while cancelling
the UV singularities at the level of the integrand. Moreover, the local rep-
resentation can also be constructed to cancel the contributions coming from
residues of higher-order poles, such as those of diagrams with self-energy
insertions on an internal edge. This is a result of utmost importance, since
higher-order poles require the calculation of derivatives, which presents a
roadblock in the attempt to automate the calculation of amplitudes through
the use of the LTD formalism since not only the tree structure of the inte-
grands is lost, but also non-trivial numerators of the loop integrand, which
naturally appear in theories with spin, make the calculation of such residues
a process-dependent operation. Therefore, since the counterterms have a uni-
versal structure that depends only on the loop order and the field theory un-
der consideration, one can preserve both the tree structure and the process-
independence of the LTD formula by suitably constructing the counterterms.
The explicit construction of such counterterms if performed in φ3 theory up
to two-loop order, and we mention how the analogous result for QCD am-
plitudes implies that the only consistent renormalization scheme in which
these cancellations can be realized at a local level for fermion self-energies is
the on-shell scheme. Finally, we introduce a general notation for the integral
representation of an arbitrary counterterm, paving the way for the applica-
tion of the LTD formula to the counterterm contributions.

The LTD formula is then applied to the sum of graphs that yield the L
loop amplitude in an arbitrary field theory. All of the previous results are
put together at this moment, showing that after application of the LTD for-
mula to each individual graph, it is possible to use the formula relating the
sum of loop graphs weighted by symmetry factors to sewn tree graphs to ex-
press the integrand as a sum of regularized forward limits of tree-like objects
with counterterm insertions going from 0 to L. This result is contained in the
equation
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AL,n(p1, ..., pn) =
(−i)L

L!

∫ L

∏
j=1

 dD−1k j

(2π)D−12
√
|~k j|2 + m2

j

BL,n({pi}, {ki, ki})

(6.4)
where

BL,n(p1, ..., pn; k1, ..., kL, k1, ..., kL) =
L

∑
LCT=0

R f ACT
0,n+2(L−LCT),LCT

, (6.5)

is the UV-regularized tree-amplitude like object, constructed from regu-
larized forward limits of tree graphs with all possible orders of counterterm
insertions. This formula suggests that the structure of loop corrections, and
thus of all the calculable observables in a given QFT, is completely deter-
mined by the tree structure of the theory. This is an observation also im-
plied by other modern approaches to the calculation of scattering ampli-
tudes [110, 112, 136–139]. For our applications, the implications of this are
two-fold.

On one hand, having a representation of the loop corrections given in
terms of phase-space-like integrals suggests that there is a way to put the
virtual and real corrections together at an integrand level such that the IR
divergences become integrable. Finding a representation of cross-sections
satisfying this property would provide a mayor breakthrough in the field of
higher-order calculations, since the implementation of an automated Monte
Carlo computation of the cross-sections would be much easier to perform if
one is working with single, convergent integrands, instead of the sum of di-
vergent integrands which have to be rendered finite separately. This kind of
calculation, where the IR divergences are cancelled separately in the virtual
and real contributions, is one of the many techniques used nowadays for the
calculation of cross-sections [140–144], and such cancellation is achieved by
the introduction of additional IR counterterms2 that can be integrated over
a single-particle phase-space by the definition of mappings which allow the
phase-space measure to factorize appropriately.

On the other hand, the fact that the loop integrand possesses a tree-like
structure allows the construction of recursion relations to calculate the inte-
grand without referring to individual Feynman diagrams. The construction
of off-shell recursion relations is reviewed in the familiar context of tree am-
plitudes, followed by a discussion of the necessary modification that have
to be implemented to adjust the algorithm for the calculation of the loop in-
tegrand BL,n. We first see how it is possible to distribute the combinatorial
factors obtained from cutting the loop graphs into vertices and propagators

2These are not derived from the systematic renormalization of the Lagrangian and should
not be confused with the UV counterterms.
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of the resulting cut graphs. Afterwards, including all possible counterterm
vertices and vetoing the singular configurations yields the modified recur-
sion relations for the calculation of the loop integrand.

It is important to emphasize that, although our work provides a big step
towards the application of LTD to numerical computations, there are still
some hurdles to overcome. First, in order to numerically evaluate the virtual
contributions, it is not sufficient to achieve the cancellation of the IR diver-
gences with the real contributions in order to obtain purely integrable sin-
gularities. One needs, for some of the singularities, an algorithm of contour
deformation to avoid some of the poles of the unphysical poles of the inte-
grand. Moreover, realizing the local cancellation of IR divergences is by itself
a very difficult task. In alternate approaches to LTD, such cancellations have
been shown to occur in simple one-loop processes [108]. However, a frame-
work in which this cancellations occur at two or higher loop levels is not
currently known. From a technical point of view, one of the main difficulties
in achieving these cancellations lies in the fact that the phase-space integra-
tions of the real and virtual corrections include delta functions with support
on different sets of momenta satisfying by themselves momentum conserva-
tion. Therefore, it is only possible to obtain maps from one into the other in
kinematicly degenerate regions of phase-space, close to where the IR diver-
gences occur. Although there are known solutions to both problems in the
standard treatment of the calculations, the adaptation of these techniques to
the LTD approach represents an open problem which, in the author’s opin-
ion, would pave the way for an efficient automation of the calculation of
two-loop cross-sections.
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Appendix A

Feynman Rules for Select Quantum
Field Theories

In this appendix, we list the Feynman rules for φ3 theory and QED. The φ3

theory Lagrangian of Eq.(2.1) can be written, after renormalization, as

Lφ3 =
1
2

∂µφ∂µφ − 1
2

m2φ2 +
λ̃

3!
φ3 + LCT (A.1)

where we write λ̃ = µε(4π)−
ε
2 e

εγ
2 λ to absorb the usual factors of log(4π)

and Euler’s constant γ appearing in dimensional regularization. The coun-
terterm Lagrangian is given by

LCT = −1
2
(
Zφ − 1

)
φ∂2φ − 1

2

(
ZφZ2

m − 1
)

m2φ2 +
1
3!

(
Z

3
2
φ Zλ − 1

)
λ̃φ3

(A.2)
where the renormalization constants Za for a = φ, m, λ have an expansion

in the coupling λ

Za = 1 +
∞

∑
n=1

Z(n)
a

(
λ2

(4π)2

)n

. (A.3)

From the first line, we read off the Feynman rule for the propagator and
the interaction vertex,

=
i

p2 − m2 + iδ
(A.4)

= iλ̃ (A.5)

In addition, there are two further vertices coming from the counterterm
Lagrangian,

= i
[
(Zφ − 1)p2 − (ZφZ2

m − 1)m2
]

(A.6)
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for the propagator counterterm, and

= i(Z
3
2
φ Zλ − 1)λ̃ (A.7)

for the vertex counterterm.

For QED, we quote the Lagrangian from Eq.(2.47)

LEM = −1
4

FµνFµν + Ψ(i/∂ − m)Ψ − eΨγµ AµΨ + LCT (A.8)

and the counterterm Lagrangian from Eq.(2.48)

LCT = −1
4

δ3FµνFµν + Ψ(iδ2/∂ − δm)Ψ − eδ1Ψγµ AµΨ (A.9)

Again, we use the first line of the Lagrangian to obtain the propagators

=
i(/p + m)

p2 − m2 + iδ
(A.10)

for the fermions,

µ µ =
−igµν

p2 + iδ
(A.11)

for the photons, and finally

γ = −ieγµ (A.12)

for the interaction vertex. Similarly, the counterterm Lagrangian gives
three additional vertices: one for each propagator

= −i(/pδ2 − δm) (A.13)

for the fermion,

= −i(gµν p2 − pµ pν)δ3 (A.14)

in the case of the photon, and
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γ = −ieγµδ1 (A.15)

for the vertex counterterm.
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Appendix B

Trace calculation for the process
γ∗ → e+e−γ

In this appendix, we perform the detailed calculation of the traces that ap-
pear after expanding the argument of Eq.(2.93). We would like to point out
that the computation of traces of an arbitrary number of Gamma matrices
can be performed with single lines of code using the Mathematica packages
Form [145] or FeynCalc [146–148]. However, because of the relative simplic-
ity of these traces, we show the detailed calculation.

The four traces to be computed are given by

T1 = Tr
(
/p1(2pα

1γµ + γα/kγµ)/p2(2p1αγµ + γµ/kγα)
)

,

T2 = Tr
(
/p1(2pα

1γµ + γα/kγµ)/p2(2p2αγµ + γα/kγµ)
)

,

T3 = Tr
(
/p1(2pα

2γµ + γµ/kγα)/p2(2p1αγµ + γµ/kγα)
)

,

T4 = Tr
(
/p1(2pα

2γµ + γµ/kγα)/p2(2p2αγµ + γα/kγµ)
)

.

(B.1)

First, we notice that T4 can be obtained from T1 by the replacement p2 →
p1 and the cyclic properties of the trace. Furthermore, reversing the order of
the Gamma matrices and relabelling the dummy Lorentz indices shows that
T2 = T3. Thus, we only need to compute T1 and T2.

A straightforward, if lengthy calculation reveals

T1 = Tr
(
/p1(2pα

1γµ + γα/kγµ)/p2(2p1αγµ + γµ/kγα)
)

= Tr
(
(2pα

1/p1γµ + /p1γα/kγµ)(2p1α/p2γµ + /p2γµ/kγα)
)

= Tr
(
2pα

1/p1γµ
/p2γµ/kγα + /p1γα/kγµ

/p2γµ/kγα

)
= Tr

(
γα/p1γα/kγµ

/p2γµ/k
)

= 4(1 − ε)2Tr
(
/p1/k/p2/k

)
= 16(1 − ε)2

(
(p1 · k)(p2 · k)− k2(p1 · p2) + (p1 · k)(p2 · k))

)
= 32(1 − ε)2(p1 · k)(p2 · k).

(B.2)

To get to the third line, we used p2
1 = 0 and the cyclic property of the trace

to obtain /p1/p1 = p2
1 = 0, which cancels two of the contributions. To get the
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fourth line, we again use the cyclicity of the trace to obtain the product /p1/p1,
leaving only a single trace to be calculated. To perform the contraction of the
Lorentz indices, we use the identity

γαγνγα = −(D − 2)γν = −2(1 − ε)γν, (B.3)

allowing us to obtain the fifth line. Finally, we use the trace identity

Tr(γµ1γµ2γµ3γµ4) = 4(gµ1µ2 gµ3µ4 − gµ1µ3gµ2µ4 + gµ1µ4 gµ2µ3) (B.4)

and k2 = 0 to obtain the desired result. We can see that the value of the
trace is invariant under the exchange of p1 and p2, which implies that, also,

T4 = 32(1 − ε)2(p1 · k)(p2 · k). (B.5)

The remaining trace is given by

T2 = Tr
(
/p1(2pα

1γµ + γα/kγµ)/p2(2p2αγµ + γα/kγµ)
)

= Tr
(
(2pα

1/p1γµ + /p1γα/kγµ)(2p2α/p2γµ + /p2γα/kγµ)
)

= Tr
(
4p1 · p2/p1γµ

/p2γµ + 2pα
1/p1γµ

/p2γα/kγµ

+2p2α/p1γα/kγµ
/p2γµ + /p1γα/kγµ

/p2γα/kγµ

)
= −8(1 − ε)p1 · p2Tr(/p1/p2)− 4(1 − ε)Tr(/p1/p2/p1/k)

− 4(1 − ε)Tr(/p1/p2/k/p2) + Tr(/p1(−2/p2γµ/k + 2ε/kγµ
/p2)/kγµ)

= −32(1 − ε)(p1 · p2)
2 − 8(1 − ε)p1 · p2Tr(/p1/k)

− 8(1 − ε)p1 · p2Tr(/p2/k) + 2εTr(/p1/kγµ
/p2/kγµ)

= −32(1 − ε)(p1 · p2)(p1 · p2 + p1 · k + p2 · k)
+ 2εTr(/p1/k(4p2 · k − 2ε/p2/k))

= −32(1 − ε)(p1 · p2)(p1 · p2 + p1 · k + p2 · k)
+ 32ε(1 − ε)(p1 · k)(p2 · k)

(B.6)

where, apart from the contraction identity we used in the previous com-
putation, we also used the identities

γαγµ1γµ2γα = 4gµ1µ2 − 2εγµ1γµ2 (B.7)

and

Tr(γµ1γµ2) = 4gµ1µ2 . (B.8)
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Appendix C

Computation of the Wave-Function
Renormalization

In this Appendix, we compute the wave-function renormalization constants
at one-loop order for fermions in QED and scalars in a theory with a cubic
interaction.

In order to compute the renormalization factor Z2 for the fermion wave-
function at the one-loop order, we begin by calculating the self-energy con-
tribution

−iΣ2(/p) =
p

k
p

= −e2
∫ dDk

(2π)D
(D − 2)(/k − /p) + Dm

(k2 − m2
γ)((k − p)2 − m2)

where we have written the integral in dimensional regularization. Also,
to regulate the possible IR divergences coming from the photon propagator,
we include an small mass mγ, which should cancel in the computation of any
physical observable. Introducing Feynman parameters, we turn the product
of the two propagators into

1
(k2 − m2

γ)((k − p)2 − m2)
=
∫ 1

0
dx

1
[(k − (1 − x)p)2 − ∆(x)]2

(C.1)

where we define

∆(x) = (1 − x)(m2 − xp2) + xm2
γ. (C.2)

We can perform the shift k → k + xp and introduce the renormalization
scale µ to obtain

− iΣ2(/p) = −e2µ2ε
∫ 1

0
dx
∫ dDk

(2π)D
(D − 2)(/k − x/p) + Dm

(k2 − ∆(x))2 (C.3)



132 Appendix C. Computation of the Wave-Function Renormalization

Now, since the denominator is an even function in k, the term with /k
in the numerator vanishes. The resulting momentum integral is then the
tadpole integral of Eq.(2.28) in the special case b = 2, with a "squared mass"
∆(x). Then, using the general result of Eq.(2.35), with D = 4 − 2ε, we arrive
at the intermediate result

−iΣ2(/p) =
ie2µ2ε

8π2
Γ(ε)

(4π)−ε

∫ 1

0
dx [(1 − ε)x/p − (2 − ε)m] (∆(x))−ε (C.4)

At the same order in the electric charge, the counterterm Lagrangian gives
a contribution to the two-point function, given by

− iΣCT
2 (/p) = = i(/pδ2 − δm). (C.5)

Thus, the second renormalization condition, dΣ
d/p

∣∣∣
/p=m

= 0, results directly

in an expression for the counterterm δ2 in the on-shell scheme

δ2 =
dΣ2

d/p

∣∣∣∣
/p=m

= − e2µ2ε

8π2 Γ(ε)
∫ 1

0

dx
[(1 − x)2m2 + xm2

γ]
ε

×
[
(1 − ε)x − ε

2x(1 − x)m2

(1 − x)2m2 + xm2
γ
(x − 2 + ε(1 − x))

] (C.6)

which agrees with the result of [20]. Notice that all the UV divergences of
δ2 are contained in the first term in the brackets, since the appearance of ε in
the numerator of the second term cancels the pole from the Gamma function.

Now, we will compute the factor Zφ for φ3 theory, using the Lagrangian
and Feynman rules of Appendix A. At one-loop, there are two corrections to
the Fermion propagator, denoted by M(1)(p2), which we write as

M(1)(p2) =

p
k

p︸ ︷︷ ︸
M(1)

bare(p2)

+ ︸ ︷︷ ︸
M(1)

CT(p2)

. (C.7)

The value of the second contribution is given by the Feynman rule for the
counterterm. Thus, we only need to compute the bare contribution, which is
given by the integral

M(1)
bare(p2) =

λ̃2

2

∫ dDk
(2π)D

1
(k2 − m2 + iδ)((k − p)2 − m2 + iδ)

(C.8)
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where the factor of 2 in the denominator is the symmetry factor associ-
ated to the bubble diagram. As in the case of QED, we introduce Feynman
parameters. In this case, both propagators have mass m, and we find

1
(k2 − m2 + iδ)((k − p)2 − m2 + iδ)

=
∫ 1

0
dx

1
[(k − xp)2 − m2 + x(1 − x)p2]2

(C.9)

thus, shifting k → k + xp in the loop integration and using again the
tadpole integral of Eq.(2.28), we find, setting D = 4− 2ε as in all our previous
calculations,

M(1)
bare(p2) =

iλ̃2

2(4π)
D
2

Γ
(

2 − D
2

) ∫ 1

0
dx
(

m2 − x(1 − x)p2
)−2+D

2

=
iµ2ε(4π)−εeεγλ2

2(4π)2−ε
Γ(ε)

∫ 1

0
dx(m2 − x(1 − x)p2)−ε

=
iλ2

32π2

(
m2

µ2

)−ε

eεγΓ(ε)
∫ 1

0
dx
(

1 − x(1 − x)
p2

m2

)−ε

.

(C.10)

Putting this contribution together with the counterterm, the one-loop cor-
rection to the propagator is given by

M(1)(p2) =
iλ2

32π2

(
m2

µ2

)−ε

eεγΓ(ε)
∫ 1

0
dx
(

1 − x(1 − x)
p2

m2

)−ε

+ i
(
(Zφ − 1)p2 − (ZφZ2

m − 1)m2
) (C.11)

Similar to the case of QED, we impose the renormalization conditions

M(p2 = m2) = 0
dM
dp2

∣∣∣∣
p2=m2

= 0
(C.12)

We can directly obtain Zφ from the second condition, since the countert-
erm contribution is linear in p2 at one-loop order. We find

Zφ − 1 = − λ2

32π2

(
m2

µ2

)−ε

eεγΓ(ε)
∫ 1

0
dx

∂

∂p2

(
1 − x(1 − x)

p2

m2

)−ε
∣∣∣∣∣

p2=m2

= − λ2

32π2m2

(
m2

µ2

)−ε

eεγεΓ(ε)
∫ 1

0
dx (1 − x(1 − x))−ε−1 x(1 − x).

(C.13)
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At this point, we can see that the appearance of ε in the numerator of
this expression, which we find after computing the derivative, will cancel
the pole of the Gamma function. Since all remaining terms are finite when
ε → 0, we can simply take ε = 0, giving us the final result

Zφ = 1 − λ2

32π2m2

∫ 1

0
dx

x(1 − x)
1 − x(1 − x)

. (C.14)

Since the remaining integral is just a number, this result shows that, at
one-loop order, the renormalization constant Zφ in φ3 theory is independent
of the regulator.
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