
M U LT I -S C A L E M O D E L L I N G O F T H E
E P I TA X I A L G R O W T H O F O R G A N I C T H I N

F I L M S O N I N S U L AT I N G S U R FA C E S

D I S S E R TAT I O N
Z U R E R L A N G U N G D E S G R A D E S

” D O K TO R D E R N AT U R W I S S E N S C H A F T E N ”
A M FA C H B E R E I C H P H Y S I K , M AT H E M AT I K U N D I N F O R M AT I K

D E R J O H A N N E S G U T E N B E R G - U N I V E R S I TÄT
I N M A I N Z

W I L L I A M J A N K E
G E B . I N M E I S E N H E I M A M 0 4 . 1 1 . 1 9 8 9

M A I N Z , D E N 1 1 . 0 8 . 2 0 2 1



Multi-Scale Modelling of the Epitaxial Growth of Organic Thin Films on Insulat-
ing Surfaces

location:
Mainz

date of defense:
December 7th 2021



iii

list of publications
This thesis is in part a recapitulation of material published by the author during
the PhD program in the following articles:

[1] W. Janke and T. Speck, ”Modeling of epitaxial film growth of C60 revisited”.
In: Phys. Rev. B 101.12, 125427 (2020)

Own contribution: I set up the molecular dynamics simulations (using
LAMMPS), calculated transition rate parameters from the data, and made
the modelling of the transition rates. Moreover, I wrote the kinetic Monte
Carlo simulation code, performed the simulations and analyzed the data.
I created all the figures and wrote most of the manuscript.

[2] W. Janke, T. Speck, F. Loske, J. Lübbe, J. Schütte, M. Reichling, and A.
Kühnle, ”Erratum: Quantitative description of C60 diffusion on an insulat-
ing surface [Phys. Rev. B 82, 155428 (2010)]”. In: Phys. Rev. B 101.4,
049907 (2020)

Own contribution: I found the error during testing of my kinetic Monte
Carlo simulation code and wrote the erratum for A. Kühnle upon request.

[3] W. Janke and T. Speck, ”Multiscale modeling of structure formation of
C60 on insulating CaF2 substrates”. In: J. Chem. Phys 154.23, 234701
(2021)

Own contribution: I derived the analytic expression for the used in-
teraction potentials, set up the molecular dynamics simulations (using
LAMMPS), analyzed the data and made the transition rate modelling. I
created all the figures and wrote most of the manuscript. I also designed
the rendering that was featured on the cover of this issue.





A B S T R A C T

Growth morphologies of epitaxially grown molecular thin films are of interest
for a range of different technological applications. While the possibilities of
epitaxial growth experiments are usually explored in the lab, it is desirable to
be able to accurately simulate the process to more quickly explore a wide range
of different experimental protocols. The kinetic Monte Carlo (KMC) method is
a promising approach in that regard, as it can access the necessary time and
length scales on which epitaxial growth can be observed. However, a KMC
algorithm requires the transition rates of all implemented elementary transi-
tions as input parameters and ideally also their dependence on experimental
parameters like temperature. Experimental data can help to inform a model
for the transition rates of a KMC simulation, but experiments alone are not
sufficient to completely determine all the parameters. As a result, KMC rate
models are often oversimplified to be able to work with a limited amount of
experimental information. In this thesis, we present a bottom-up approach for
the determination of a KMC rate model that is built on a foundation of transi-
tion rate data gathered in molecular dynamics (MD) simulations. The example
system on which we apply this approach is the epitaxial growth of the buckmin-
sterfullerene C60 on a calcium fluoride substrate (CaF2(111)). We set up MD
simulations of this system in a wide variety of configurations in which we can
observe the elementary transitions, determine their transition rates in a range
of temperatures and finally use the obtained data to derive a rate model for
use in KMC simulations. To test the obtained models, we run KMC simula-
tions and compare the results with experimental data. This thesis contributes
to the ability to model and simulate the self-assembly processes of molecules
on insulating substrates. Consequently, it advances the understanding of such
systems and enables the development of new strategies to control the evolution
of cluster morphologies in deposition experiments.
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Z U S A M M E N FA S S U N G

Wachstumsmorphologien epitaktisch gewachsener molekularer Dünnschichten
sind für eine Reihe unterschiedlicher technologischer Anwendungen von Inter-
esse. Während die Möglichkeiten epitaktischer Wachstumsexperimente nor-
malerweise im Labor untersucht werden, ist es wünschenswert, den Prozess
genau simulieren zu können, um eine breite Palette verschiedener experimentel-
ler Protokolle schneller untersuchen zu können. Die kinetische Monte Carlo
(KMC) Methode ist in dieser Hinsicht ein vielversprechender Ansatz, da sie
auf die notwendigen Zeit- und Längenskalen zugreifen kann, auf denen epi-
taktisches Wachstum stattfindet. Ein KMC Algorithmus benötigt jedoch als
Eingangsparameter die Übergangsraten aller implementierten Elementarüber-
gänge und idealerweise auch deren Abhängigkeit von experimentellen Parame-
tern wie der Temperatur. Experimentelle Daten können in die Modellierung der
Übergangsraten einer KMC-Simulation mit einfließen, aber Experimente allein
reichen nicht aus, um alle Parameter einer KMC Simulation vollständig zu bes-
timmen. Infolgedessen werden KMC Ratenmodelle oft stark vereinfacht, um mit
der begrenzten Menge an experimentellen Informationen arbeiten zu können.
In dieser Dissertation präsentieren wir einen ”Bottom-up” Ansatz zur Bestim-
mung eines KMC Ratenmodells, das auf einer Grundlage von berechneten Über-
gangsraten aus Molekulardynamiksimulationen (MD) aufbaut. Das Beispiel-
system, auf das wir diesen Ansatz anwenden, ist das epitaktische Wachstum des
Buckminsterfullerens C60 auf einem Kalziumfluorid Substrat (CaF2(111)). Wir
setzen MD Simulationen dieses Systems in einer Vielzahl von Konfigurationen
an, in denen wir die elementaren Übergänge beobachten, ihre Übergangsraten
in einem Temperaturbereich bestimmen und schließlich aus den erhaltenen
Daten ein Ratenmodell für den Einsatz in KMC-Simulationen ableiten. Um
die erhaltenen Modelle zu testen, führen wir KMC Simulationen durch und ver-
gleichen die Ergebnisse mit experimentellen Daten. Diese Arbeit trägt dazu bei,
die Selbstorganisationsprozesse von Molekülen auf isolierenden Substraten zu
modellieren und zu simulieren. Folglich fördert sie unser Verständnis solcher
Systeme und ermöglicht die Entwicklung neuer Strategien zur Kontrolle der
Evolution von Clustermorphologien in epitaktischen Wachstumsexperimenten.
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I
I N T R O D U C T I O N

The self-assembly of organic molecules on insulating or metallic substrates
is used and researched for a variety of technological applications. Prominent
examples are the development of organic photovoltaics [4] and the field of molec-
ular electronics, where self-assembled monolayers can be used to manufacture
electronic devices at a molecular level [5]. Seen as a possible gateway to such
devices, the research on the growth processes of organic molecules on insulat-
ing [6] or metallic [7, 8] substrates has sustained a decent amount of interest.
The large number of possible adsorbate-substrate combinations enables the
ability to tune the molecule-surface interaction, resulting in the evolution of a
range of different interesting molecular structures [9–12].

One adsorbate molecule that is the focus of many studies is the fullerene C60.
The extensive amount of research done after its discovery and first synthesis
in the mid-80s [13] - ranging from the observation of its crystal growth [14,
15] over the discovery of structural phase transitions in bulk [16–18] and in
thin films [19–21] to the development and study of coarse-grained C60-C60
interaction potentials like the Girifalco potential [22, 23] - have resulted in an
extraordinary understanding of its physical properties. In turn, C60 has become
a paradigmatic choice as an adsorbate for deposition experiments on metallic
[24–29] and insulating [30–48] substrates with an impressive variety of resulting
cluster morphologies (See Fig. 1), affected by the choice of substrate, substrate
temperature and incoming adparticle flux.

However, even for an intensely studied particle like C60, well-founded structure
prediction and design principles for self-assembly are largely missing. A path-
way to improvement is the application of computer simulation methods. As the
large length and time scales necessary for the observation of epitaxial growth
(system sizes spanning multiple micrometres and deposition/relaxation phases
that can take several minutes or hours) are way out of range for conventional
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2 introduction

Figure 1: Examples of cluster growth experiments involving deposition of C60 on
different insulating substrates, showing a variety of different growth morpholo-
gies. The images are reprinted from various publications: The top left graphite
image is reprinted with the permission of IOP Publishing from Ref. [42]; permis-
sion conveyed through Copyright Clearance Center, Inc.. The bottom left graphite
image is reprinted with permission from Ref. [45]. Copyright 2018 American
Chemical Society. The KBr and NaCl images are reprinted with permission from
Ref. [35]. Copyright 2007 by the American Physical Society. The CaCO3 image
is reprinted with permission of the Royal Society of Chemistry from Ref. [38];
permission conveyed through Copyright Clearance Center, Inc.. The silicon image
is reprinted from Ref. [30], Copyright 1994, with permission from Elsevier. The
CaF2 images are reprinted with permission from Ref. [53]. Copyright 2011 by the
American Physical Society.

molecular dynamics (MD) methods, one typically resorts to the kinetic Monte
Carlo (KMC) method [49] (also known as Gillespie algorithm[50, 51]), which
has proven to be able to simulate the cluster growth of several deposition ex-
periments [52–58].

While KMC simulations hold enormous potential, they do, however, also come
with a major challenge as they require a model for all the possible elemen-
tary transition rates of the simulated system. This commonly results in models
with a lot of free parameters or sometimes even thermodynamic inconsistencies.
Ideally, one would like to base a KMC rate model on direct measurements of
transition rates in experiments. However, measuring transition rates of the ele-
mentary transitions of epitaxial growth can be extremely difficult [59], even for
the most basic transition types (like free diffusion or edge diffusion). Therefore,
the construction of a complete rate model based on experimental measurements
seems out of reach at the moment and the application of computational methods
is necessary.
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In this thesis, we are going to tackle the problem by establishing a bottom-up
approach for the determination of all relevant rates for a KMC model with a
minimal amount of free parameters and with considerations of thermodynamic
consistency based on MD simulations of elementary transitions. We are going
to apply this approach on the example of C60 epitaxial growth on CaF2(111),
which has shown rich structural behaviour [36, 53, 60], captured using non-
contact atomic force microscopy (NC-AFM) imaging. At room temperature, it
undergoes molecular dewetting (transfer of molecules from the base layer of
a cluster to higher layers [61]) and forms interesting two-layered cluster mor-
phologies. The available data from these experiments provide a solid data set
on which a KMC simulation can be tested.

The dissertation is structured in the following way: We start in chapter II with
the theoretical background and employed methods. We provide some details
on epitaxial growth experiments, discuss some theoretical concepts of epitaxial
growth and introduce the two simulation methods that we employ in this thesis
(KMC and MD simulations).

In chapter III, we show results of MD simulations of C60 molecules (interacting
via the Girifalco potential) in which we measure elementary transition rates to
derive a rate model for the epitaxial growth of C60 on C60(111) (applicable to
the second and higher layers in multilayer growth simulations). We show that
the raw transition rates that we measure in the MD simulation lead to ther-
modynamic inconsistencies in a KMC simulation if they are adopted without
adjustments and we provide an adjusted ”Simple” model that is thermodynami-
cally consistent. The obtained model is then tested against data from multilayer
growth experiments of C60 on mica. The content of this chapter is in large part
a recapitulation of our first publication (Ref. [1]).

In chapter IV, we apply the same approach to C60 on CaF2(111). As there are
no established interaction potentials for this system, we derive (coarse-grained
and atomistic) interaction potentials for C60 with CaF2 with one free parameter
(εF), which determines the interaction strength between the adsorbate and the
substrate. We present MD simulations employing both the atomistic and coarse-
grained models, analyze and compare the results and finally derive rate models
based on the measured transition rates. We then combine the rate models of
chapters III and IV to run KMC simulations of the multilayer cluster growth of
C60 on CaF2(111). We compare the results to experimentally observed cluster
densities and morphologies. While the first part of this chapter (MD simulations
and modelling) is mostly a recapitulation of our second publication (Ref. [3]),
the presented KMC simulation results are unpublished as of the submission
date of this dissertation.
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Details on our implementation of the KMC algorithm are given in the appendix
chapter A. Miscellaneous additional information is provided in the appendix
chapter B.
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6 theory & methods

ii.1 experimental details
While we are not conducting any experiments ourselves in this thesis, we are
interested in reproducing past and future epitaxy experiments with our simu-
lation techniques. Without going into much detail, we are going to discuss a
few experimental details in this section to provide a basic understanding of the
experiments of interest.

ii.1.1 molecular beam epitaxy (mbe)
Molecular beam epitaxy (MBE) is one of the fundamental tools of nanoscience
[62] and has been used to study the epitaxial growth of thin films on surfaces
since the 60s [63, 64]. ”Molecular beam” describes a stream of particles that
is ejected from a device through an ultra-high vacuum (UHV) with negligible
interaction with itself or other gas particles. The term ”epitaxy” (first introduced
in 1928 [65]) stands for the crystalline layer growth upon (”epi”) deposition onto
a crystalline substrate, the crystalline orientation of which imposes an order
(”taxis”) on the orientation of the grown layers. One can distinguish between
”homoepitaxy” if the deposit and the substrate are made of the same material
and ”heteroepitaxy” if the materials are different [66]. While the surrounding
aperature of MBE can be very involved, the basic setup is easily sketched as
shown in Fig. 2.

Figure 2: Sketch of a molecular beam epitaxy setup.

A so-called ”Knudsen Cell” houses a probe of the evaporant material that is
to be deposited on a substrate. A heating element heats the probe to the
point of sublimation and the resulting particle gas can be released through
an orifice by removing a cover. A UHV has to be sustained for the particle
beam to not get disturbed and for the substrate to stay as free of impurities
as possible. The particle flux can be controlled by changing the temperature
of the evaporant via the heating element. To monitor the temperature of the
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Figure 3: Deposition rate of C60 molecules from a Knudsen cell on a substrate
plotted against cell temperature. a) Normal plot. b) Arrhenius plot, showing that
the data follows an Arrhenius type behaviour (Eq. II.1). The values are taken from
Ref. [60].

evaporant a thermometer can be placed in the vicinity of the material. The
evaporation rate - and consequently the deposition rate - follows an Arrhenius
behaviour

kDepos ∼ e
−ES
kBT (II.1)

with Boltzmann constant kB, temperature T and sublimation enthalpy ES. In
Fig. 3 an example of this behaviour is shown with the deposition rate of C60
molecules from a Knudsen cell against the cell temperature. This information
can in principle be used to set a wide range of desired deposition rates in the
experiment. However, in practice this is hard for experimentalists to do as the
deposition rate of any given Knudsen cell decays over time and Knudsen cells
are often made in house without precise manufacturing techniques.
Upon deposition on the substrate, the molecules (also called adparticles) diffuse
around on the surface, nucleating into clusters that can then grow and coalesce
into thin layers.

ii.1.2 atomic force microscopy

While the invention of the scanning tunnelling microscope in 1982 [67] quickly
made atomic resolution imaging of conducting surfaces possible [68] via the
measurement of a tunnelling current between a conducting tip and a conducting
surface, non-conducting surfaces like insulators evaded successful imaging for a
longer period. During the development of the STM, forces between the tip and
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the sample have been observed, spawning the idea of atomic force microscopy
(AFM) in 1986 [69]: measuring those tip-sample forces to image the sample
surface. However, making an AFM work for atomic resolution imaging turned
out to be a harder problem and it took the development of frequency modulated
non-contact atomic force microscopy (NC-AFM) [70] and UHV conditions to
achieve first atomic resolution images with an AFM almost ten years after
its invention [71, 72], opening up the possibility of imaging any kind of non-
conducting surface. Improvements in the technology later enabled imaging of
subatomic features [73, 74], chemical bonds [75] and even the probing of the
interaction force between a single pair of C60 molecules [76].

While details of frequency-modulated NC-AFM fall way out of the scope of
this short introductory section (we refer to the extensive book series by Morita
et al. [77–79] for details), we are providing a basic picture of this technology.
A sketch of a NC-AFM setup is shown in Fig. 4. A sample surface is brought
into proximity of a cantilever tip via piezoelectric elements. The cantilever is
excited into a vibration that can be observed by reflecting a laser off of the
cantilever’s back onto a photosensitive diode (PD). The feedback electronics
use the PD signal to excite the cantilever on its resonance frequency f0. While
the cantilever itself can be understood as a damped harmonic oscillator, the
presence of a sample surface in close proximity of the cantilever tip adds a
perturbation to the oscillator via the acting van der Waals forces between
the tip and the sample. This perturbation results in a shift of the resonance
frequency to f = f0+∆f, which changes depending on the tip-sample distance.
The detector electronics can pick up this change in the resonance frequency,

Figure 4: Sketch of an NC-AFM setup.



ii.1 experimental details 9

thereby indirectly measuring the tip-sample distance / the tip-sample force. To
map out the sample surface, it is moved beneath the cantilever tip, either in
”constant interaction mode” where the distance between the tip and the sample
is kept constant via a feedback loop or in ”constant height mode” where the
probe is not moved along the z-axis during measurement and the change of the
interaction strength is recorded.

ii.1.3 system of interest: C60 on CaF2(111)

As already mentioned in the introduction, there surely are many systems to
choose from when it comes to deposition of C60 molecules on different kinds
of surfaces, most with interesting properties of their own. However, in this
work, we are mainly focusing on the epitaxial growth of C60 on an insulating
CaF2(111) surface.

The structure of calcium fluoride and its (111) surface plane are shown in Fig.
5(a-c). The arrangement of calcium and fluoride atoms in the unit cell [Fig. 5(a)]
is also known as ”fluorite structure”. A close-up of the (111) surface layer is
shown in Fig. 5(c), exposing a triple-layered structure, where a layer of calcium
(2Ca) is placed in between two layers (1F and 3F) of fluoride, each layer being
organized in a hexagonal lattice. At cleavage, a separation between adjacent
triple-layers (i.e. separation between two layers of fluoride) is energetically
favourable, which always leads to CaF2(111) surfaces being terminated by a
layer of fluoride. If done under UHV conditions to prevent degradation through
air exposure [80], the right cleavage techniques [81] can prepare large atomically
flat terraces extending over several µm2.

An atomistic visualization of C60 molecules on the CaF2(111) surface is shown
in Fig. 6. The C60 molecule consists of 60 C atoms arranged in a soccer ball

Figure 5: CaF2(111) structure. Calcium atoms are shown in grey, fluoride atoms
in light grey. (a) Unit cell of CaF2. (b) CaF2 crystal cleaved along the (111) plane.
(c) Close-up of the CaF2(111) surface, revealing its triple-layer structure.
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Figure 6: Atomistic visualization of C60 on CaF2(111).

like spherical structure. The nucleus-to-nucleus diameter of C60 is roughly
2R = 0.71nm while the Van der Waals diameter is close to 2RVdW = 1nm.
The illustration in Fig. 6 shows nicely, how the C60 molecules can cluster with
negligible lattice strain on the CaF2(111) surface despite the different lattice
parameters. In experiments, this results in very regularly shaped hexagonal or
triangular clusters upon deposition.

Figure 7: NC-AFM images from experiments of C60 clusters after deposition on
CaF2(111) at several different temperatures. (a,b,c) large scale NC-AFM images of
multiple clusters, showing the triangular-shaped two-layered cluster at high tem-
peratures and the mostly one-layered hexagonal shapes with complex branched
structures and outer rims in the second layer at room temperature. (d,e,f) Close-
ups of a few cluster morphologies at and above room temperature. (g) Cluster
density measurements at low temperatures. Reprinted with some adjustments
from Ref. [60] with permission of Felix Loske.
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A large body of data on this system was gathered by Felix Loske [36, 60], in-
cluding quantitative measurements on cluster densities and sizes, as well as
qualitative descriptions of cluster morphologies at and above room temperature.
These show a transition from the completely filled two-layered triangular clus-
ter at temperatures T > 315K to complex shapes with a branched structure and
only a partly filled second layer at temperatures T < 300K and a temperature
range of coexistence in between [Fig. 7(a-c)].
These observations together with the cluster density measurements within a
temperature range of 96K to 217K (also including AFM images with visible
cluster morphologies) form an abundance of data which we can try to reproduce
with KMC simulations.
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ii.2 epitaxial cluster growth
In this section we are going to discuss the elementary transitions that govern
the self-assembly of molecules on surfaces in deposition experiments, introduce
different kinds of growth modes that can be observed and derive a model for
the prediction of cluster densities from mean-field rate equation theory.

ii.2.1 elementary diffusive transitions
The elementary transitions involved in the self-assembly of molecules on sur-
faces are mostly simple diffusion moves, but the variety of different possible
transitions makes it hard to comprehend the importance of individual ones as
well as the interplay between them. One quickly realizes that coming up with
a model to accurately describe all the processes without an exploding amount
of free parameters can be a difficult task. Examples of the most basic possible
transitions are shown in Fig. 8. The deposition of particles can be done by
MBE or vapour deposition and its rate can be varied in experiments, typically
in the range of F = 0.01− 1.0 monolayers per minute (ML/min). The times-
pan of active particle deposition is called the deposition regime, the time after
turning off the particle flux is called the post-deposition regime. During post-
deposition, clusters can ripen into more favourable structures through diffusive
transitions. This ripening process depends on the substrate temperature and
can continue for several hours or even days, resulting in either an equilibrium
or a kinetically trapped state. Throughout, evaporation of particles is gener-
ally possible but is negligible for most experiments [82, 83] and will not be
considered in this work.

Figure 8: Basic elementary transitions during the cluster growth of molecules in
deposition experiments.
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Turning to the diffusive processes on the surface, they are assumed to be ther-
mally activated, meaning that the transition rate ki for a transition of type i
can be described by an Arrhenius law [84]

ki(T) = ν0,i exp
(
−
∆Ei
kBT

)
, (II.2)

providing the temperature dependence of those rates in terms of an energy
barrier (or activation barrier) ∆Ei and an attempt rate ν0,i.

For the case of free diffusion of single particles on the surface (FD), the energy
barrier ∆EFD (or ∆ED) is affected by the substrate-adparticle interaction on the
first layer and by the adparticle-adparticle interaction for free diffusion on the
second and higher layers (∆EFD,HL). It governs the mobility of the adparticle,
thereby its ability to hit other adparticles or clusters to nucleate and ultimately
it determines how many clusters form on the surface, as well as their size. If
the diffusion process is composed of single jumps between neighbouring lattice
sites, it can be characterized by a diffusion coefficient D that can be put into
relation with ∆EFD and the attempt rate ν0,FD via

D =
1

4
〈l2〉ν0,FD exp

(
−
∆EFD
kBT

)
, (II.3)

with a mean squared jump length 〈l2〉. However, real diffusion processes often
include jumps across multiple lattice sites or can even be hindered by impurities
on the surface (so called impurity trapping [85]), which can result in an effective
diffusion process between individual impurity sites. In such cases, one has to
be careful with the application of Eq. II.3. If the diffusion coefficient D exhibits
an Arrhenius-like behaviour [the data points (logD, 1/T) form a line] in a given
temperature range, D can be described by an effective attempt rate ν0,FD,eff and
energy barrier ∆EFD,eff, which aren’t necessarily in line with the parameters of
the microscopic free diffusion transition (∆EFD,ν0,FD).

The remaining transition types in Fig. 8 are concerned with particles that are
part of a cluster and as such affect the ordering and relaxation of the surface
structures. These types of transitions typically depend on the configuration of
the neighbouring particles and one can apply a bond counting approach for the
energy barriers

∆Ei(n) = ∆Ei,0 + (n− n̂i)EB (II.4)

where n is the initial number of bonds to neighbouring particles, n̂i is the
number of bonds that can be sustained during the transition (n̂ED-A/B = 1

for edge diffusion, n̂Asc = 2 for ascension, n̂Diss = 0 for dissociation), EB is
the bond energy and Ei,0 is some base energy barrier for the transition i. As
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an example, dissociation transitions i = Diss can be understood as normal
free diffusion moves with added bond energies to the energy barrier, so for
dissociation ∆EDiss,0 = ∆EFD is a valid assumption.

Figure 9: Edge Diffusion along A
and B Edges.

Edge diffusion is the transition by which clus-
ters can relax their outer shape, e.g. to
form rectangular, hexagonal or globular clus-
ters. The energy barrier for edge diffusion can
strongly depend on the adparticle-substrate
interaction, e.g. resulting in different energy
barriers for edge diffusion on edges with dif-
ferent alignment to the underlying substrate
as shown in Fig. 9. In this example, the un-
derlying substrate facilitates edge diffusion
on the A edge while on the B edge it is
largely hindered. Therefore it is necessary
to distinguish two types of edge diffusion
(i = ED-A/ED-B).
In this thesis, we will follow the convention
that B edges are the ones with lower edge diffusion rates. Having strong
differences between A and B edge diffusion rates can have a strong effect
on the resulting cluster morphologies, creating triangular or even star-shaped
islands as a result (as we will see in the next section). If edge diffusion is
overall suppressed (e.g. at low temperatures) clusters grow into fractal shapes.
Ascension (i = Asc) is the transition in which particles jump from one layer
to the layer above. Its base energy barrier ∆EAsc,0 is governed by the bind-
ing energy to the substrate (or the adparticle layer below). If the adparti-
cle has a strong interaction with the substrate (stronger than the adparticle-
adparticle interaction), ascension will mostly be suppressed and clusters will
grow as a monolayer (van der Merve growth) [83]. On the other hand, if
the interaction with the substrate is very weak, clusters will grow as three-
dimensional structures (Volmer-Weber growth). The C60 on CaF2(111) system
falls into an intermediate regime, where partly monolayered clusters can form

Figure 10: Ascension to over-
hang sites.

structures on the second layer. If there are
particles on the edge of the second layer, one
may have to take into account the possibil-
ity of ascension to overhang sites (sites that
are not fully supported by particles below)
as shown in Fig. 10 which can even be fa-
cilitated by the attractive force of the parti-
cles on the second layer. In this figure, one
can again see that a distinction between two
types of overhang sites has to be made to be
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accurate. The overall coordination of the two shown target sites, as well as the
distance from the initial site to the target neighbours, differs on the two edges.

Finally, particles that are on top of an edge of a cluster can descend to the
layer below (i = Desc). For a descension move a slightly increased energy
barrier in comparison to the free diffusion transitions has to be surmounted and
the additional energy barrier is called the ”Ehrlich-Schwöbel barrier” EES

∆EDesc = ∆EFD,HL + EES. (II.5)

A sketch of the potential energy landscape close to a cluster’s edge is shown in
Fig. 11. The magnitude of EES depends strongly on the range of the adparticle-
adparticle interaction. While it can be very large for epitaxy of atoms, larger
molecules like C60 have relatively weak Ehrlich-Schwöbel barriers. The inter-
play between deposition, diffusion, descension and ascension together govern
the likelihood of nucleation and thereby formation of a new layer on top of a
cluster.

After going through the details of all the individual elementary transitions,
we have to conclude that a complete model for the epitaxy of molecules on
surfaces is going to involve many energy barriers and attempt rates as free
parameters, most of which are unavailable in the literature and not accessible
in experiments. To get this problem under control, simplifications (like the bond
counting approach II.4) are inevitable and computational methods have to be
employed to determine values for the free parameters of the model.

Figure 11: Sketch for the potential energy landscape close to a cluster’s edge.
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ii.2.2 cluster shapes
After introducing different kinds of elementary diffusive transitions, we now
show the effect of certain transition types on cluster shapes to produce some
of the commonly observed morphologies. We are also going to name those
morphologies for later reference.

We start with the ”hexagonal” clusters, which evolve when the edge diffusion
and dissociation rates are high enough for the cluster to be able to relax into
these compact shapes and if there is no major difference between the edge
diffusion process on different edges of the cluster.

Figure 12: Change of cluster shapes upon decrease of edge diffusion and dissoci-
ation rates, lowering the clusters abilities to relax into compact shapes.

Fig. 12 shows how clusters evolve into shapes that we are going to call ”fractal-
dendritic” if edge diffusion and dissociation rates are suppressed. The lowering
of these rates can be achieved by lowering the temperature of the system (which
will also affect cluster sizes and densities) or by altering the bond strength EB
between adparticles (Eq. II.4).

Figure 13: Change of cluster shapes upon decrease of edge diffusion on edges of
type B, making it harder for particles to find sites with high coordination on those
edges.

An effect that can be very strong in homoepitaxial growth is the difference be-
tween the edge diffusion rates on A and B edges (as illustrated in Fig. 9). The
change in morphologies that arises when this difference is increased can be
seen in Fig. 13. Slight differences can lead to ”triangular” shapes, turning
into ”triangular star” shapes when the edge diffusion on B edges is strongly
suppressed. The arms of these stars can also grow additional dendrites in the
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directions of the A edges. The increased mobility on A step edges results in an
increased ability to find stable positions (with three or four lateral neighbours)
on these edges, making them grow faster than the B edges, on which the parti-
cles can behave more on the lines of hit-stick-dissociate. Moreover, whenever
a particle is in a ”corner” state where it can transition into the A and B step
direction, it will prefer the A step edge, resulting in a net transfer of particles
from B to A step edges.

Figure 14: Change of cluster shapes upon an increase of the ascension rate, making
nucleation on the second layer more likely and increasing the speed of growth on
higher layers. The second layer is coloured light green.

Figure 15: Ascension onto A and
B edge positions.

The effects of increasing the ascension rate
are shown in Fig. 14. An obvious result is
that starting with monolayer growth at low
ascension rates, higher ascension rates lead
to the growth of structures and eventually to
full coverage of the second layer. Less in-
tuitive is the observation of more and more
”triangular” shapes of the two-layered clus-
ters with a further increase of the ascension
rate. The reason why these two-layered clus-
ters tend to grow into triangles is illustrated
in Fig. 15. The ascension of particles onto A
edge positions requires only coordination of
two adparticles on the edge of the cluster in
common three-neighbour configurations while
ascension onto B edge positions requires three adparticles in an unfavourable
configuration (one particle being in a ”kink” position, only being bound to the
two adparticles upon which it can then ascend.). This makes it easier for clus-
ters to grow into the directions of the A edge. It should be noted that in the
ascension case, A and B edges refer to the edges of the second layer nucleus
with respect to the first layer, not to the A/B edges of the first layer with respect
to the substrate as was the case for the discussion of edge diffusion.
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ii.2.3 cluster densities

In this section, we are going to derive an expression from nucleation theory
for the prediction of cluster densities in deposition experiments based on ex-
perimental parameters. It is a slightly varied form of a derivation that can be
found in Ref. [85, 86]. We start with the definition of rate equations for areal
densities ni of clusters composed of i adparticles,

dni
dt

= Γi−1 − Γi i > 1, (II.6)

where Γi is defined as the net formation rate of size (i + 1)-clusters from i-
clusters. As a first simplification, we assume that clusters only grow by aggre-
gation of single adparticles, based on a premise that clusters consisting of two
or more adparticles are significantly less mobile. With this assumption, we can
write Γi as

Γi = σiDn1ni − γi+1ni+1, (II.7)

where γi denotes the dissociation rate of adparticles from i-clusters, D the
diffusion coefficient of single adparticles and σi the (dimensionless) capture
number, quantifying the likelihood of an i-cluster to capture adparticles. So
far, the set of equations II.6 is driven by the adparticle density n1 for which
no rate equation was given. Assuming that evaporation of adparticles from the
surface is negligible, and introducing the flux F of adparticles onto the surface
per surface area, we can complete the set of rate equations by writing down
the rate equation for single adparticles as

dn1
dt

= F− 2Γ1 −
∑
i>2

Γi, (II.8)

However, the large amount of unknown free parameters in this set of equations
makes further simplifications necessary. We start by assuming the existence of
a critical cluster size i? above which clusters become stable, i.e. the dissociation
rate γi from clusters with sizes i > i? vanishes (γi = 0). In practice, this critical
cluster size i? can depend on the type of adparticle/substrate, on the flux F and
the temperature T . To be able to arrive at a result for the overall density of
stable clusters N, we define it as

N =
∑
i>i?

ni. (II.9)
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Assuming that the net cluster formation rate Γi vanishes for i → ∞, the differ-
ential equation for N takes the compact form

dN

dt
=
∑
i>i?

Γi−1 − Γi = Γi? = σi?Dn1ni? (II.10)

To handle the unstable clusters (i 6 i?), we assume that they are in thermal
equilibrium, meaning that the net formation rates Γi vanish for those cases.
With this assumption, we can approximate the probability of finding a cluster
of size i on an adsorption site with area Ω with the Walton relation [87]

Ωni ≈ (Ωn1)
ieEi/kBT . (II.11)

Eq. II.11 is composed of a product between a Boltzmann factor, incorporating
the energy Ei that is gained by forming a cluster of size i, and the probability of
finding i independent adparticles on a lattice site of size Ω, (Ωn1)i. Inserting
Eq. II.11 into Eq. II.10 yields

dN

dt
= σi?Dn

i?+1
1 Ωi

?−1eEi?/kBT . (II.12)

Finally, we introduce a definition for the average capture number σ

σ =
1

N

∑
i>i?

niσi, (II.13)

to simplify Eq. II.8 into

dn1
dt

= F−
dN

dt
− σDn1N (II.14)

and obtain a closed set of equations for the adparticle and cluster densities
with Eqs. II.14 and II.12. Although the remaining parameters σ and σi can vary
with N/i/ni we assume that they are constants for the following discussion of
solutions to the equations. A detailed discussion on these parameters can be
found in Refs. [83, 85].

The first solution we can give is valid in the so-called transient nucleation
regime, where N � n1. In this early stage of the deposition process, the loss
terms to the adparticle densities in Eq. II.14 can be ignored, leading to a linear
increase of n1 with the total coverage Θ

n1 ∼ Θ = ΩFt, (II.15)
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resulting in a cluster formation rate that increases according to

dN

dt
∼ Θi

?+1. (II.16)

Secondly, we can make statements about the steady state nucleation regime,
where the cluster formation rate can be neglected relative to the aggregation
of adparticles to clusters and the adparticle density is in a steady state:

dN

dt
� σDn1N,

dn1
dt
≈ 0. (II.17)

Putting the assumptions II.17 into Eq. II.14, we obtain

n1 ≈
F

σDN
(II.18)

for the adparticle density. Going a step further, we can now derive a formula
for the cluster density per adsorption site ΩN by first inserting Eq. II.18 into
Eq. II.12,

dN

dt
= σi?D

(
F

σDN

)i?+1
Ωi

?−1eEi?/kBT ,

and then integrating via separation of variables:

Ni
?+1dN = σi?D

(
F

σD

)i?+1
Ωi

?−1eEi?/kBTdt

1

i? + 2
Ni

?+2 = σi?D
−i?
(
F

σ

)i?+1
Ωi

?−1eEi?/kBTt, (II.19)

which after solving for ΩN and some restructuring leads us to our final result
for the cluster density per adsorption site:

ΩN ≈ η(Θ, i?)
(
Ω2F

D

) i?

i?+2

eEi?/(i
?+2)kBT , (II.20)

where the definition η(Θ, i?) = [(i? + 2)Θσi?/σ
i?−1]1/(i

?+2) has been used. Eq.
II.20 is a central result of nucleation theory as it can be used to gain insight
into the physical parameters of the underlying diffusion and assembly process
(like D, ∆ED, ν0,D, i? and Ei?) only by looking at the resulting macroscopic
cluster densities of an experiment [36, 88].



ii.3 kinetic monte carlo 21

ii.3 kinetic monte carlo
Algorithms that make use of (pseudo)random number generators [App. B.1] to
solve problems are referred to as ”Monte Carlo” (MC) methods. In computer
simulations of physical systems, MC methods have now been in use for the bet-
ter part of a century. One prominent and successful example is the metropolis
algorithm [89], which can be used to sample states of a system around energy
minima by applying small random changes to the system and accepting or re-
jecting them based on a criterion (Metropolis criterion) that prefers changes
which reduce the overall potential energy. The Metropolis algorithm can be
very useful to learn about equilibrium properties of a system, however it can
not reproduce the dynamic evolution of a system, as the changes one applies
to the system do not represent physical trajectories. Systems that evolve into
kinetically trapped out-of-equilibrium states, as is often the case in epitaxy
experiments, are therefore out of scope of such simulation methods. A class of
methods that was developed to handle certain types of such systems (so-called
”infrequent-event systems”) are ”kinetic Monte Carlo” (KMC) methods (e.g. the
Gillespie algorithm [50, 51]). These methods can be very efficient in simulating
the dynamic evolution of a system, e.g. they can be able to calculate trajecto-
ries of epitaxial growth at time scales of hours and length scales of micrometres,
making it a natural choice for our system of interest. In this section we are
going to introduce the basic principles of KMC methods. As main sources we
are using Refs. [49, 90] and my master’s thesis [86].

ii.3.1 infrequent-event systems

”Infrequent-event systems” are systems that spend a large amount of time in
metastable, discretized states with rare relatively quick transitions between the
individual states. A prime example for such systems is the decay of radioactive
atoms, which can spend time scales of years in a metastable state to then fi-
nally decay into a new state in a matter of femtoseconds. A different example
is the surface diffusion processes that we are interested in. The problem that
such systems pose to conventional molecular dynamics simulations is that if
one wants to simulate a diffusion trajectory, one has to spend a lot of CPU
time to calculate the microscopic oscillations of the diffusing particle around
the individual lattice sites [Fig. 16a], leading to a very slow progression of
the macroscopic diffusion process. Although such trajectories from MD simula-
tions are basically deterministic, if you are not looking at the fine details and
generate many trajectories with different initial parameters, the whole process
can be understood as a random walk with randomly distributed waiting times
between the jumps. This is the understanding on which KMC simulations are
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Figure 16: Surface diffusion as an example for an infrequent-event system. a) An
example trajectory as it could be the result of molecular dynamics simulations.
The major part of the trajectory is spent oscillating around the individual lattice
sites. b) The result of such a trajectory can as well be modelled by random transi-
tions into one of the three possible directions with equal probability.

based. Instead of calculating the complete trajectories, one instead generates
a random walk by randomly choosing one of the possible diffusion directions
with equal probability. The time evolution of the system can be handled if
the distribution of waiting times between transitions is known. Like in many
physical systems, we can assume that the probability to transition from one
state to another per time interval stays constant, which leads to an exponential
distribution of the waiting times

p(twait) = ke
−kt, (II.21)

with an overall transition rate k, which can be calculated as a sum of individual
transition rates (k = k1 + k2 + k3 for our example of a particle with three
possible diffusion directions). To advance the time in a KMC simulation, we
have to draw a random number according to the exponential distribution (Eq.
II.21). This can be achieved by drawing a uniformly distributed random number
r ∈ (0, 1) and transforming it into an exponentially distributed waiting time via

twait = −
1

k
ln (r) (II.22)

If the transition rates ki are chosen correctly (as they would be measured in
the corresponding MD simulations) the overall macroscopic diffusion processes
resulting from such randomly generated trajectories are going to be indistin-
guishable from the actual trajectories in MD simulations.



ii.3 kinetic monte carlo 23

While we have only discussed a very simple example so far, which probably
could be simulated without any sophisticated algorithm, the introduction of
multiple particles with interactions between them will quickly make the situa-
tion more complicated. In the next section, we are going to go into more detail
on a specific KMC algorithm that can handle such systems, the ”rejection-free
KMC” algorithm.

ii.3.2 rejection-free kmc
The algorithm we have chosen to use in our implementation is the rejection-free
kinetic Monte Carlo (rfKMC) method. It is called ”rejection-free” because every
step in the simulation applies some change to the system, which is in contrast
to some other MC methods (like the Metropolis algorithm) where changes can
be rejected. This can be an obvious advantage, as no computation time is being
wasted on changeless steps. It is sometimes also referred to as the ”residence-
time” algorithm or ”BKL” algorithm, referring to Bortz, Kalos and Lebowitz, who
described the algorithm in their 1975 paper [91].

To describe the algorithm, suppose we have a system that has N different
possible transitions it can go through and we assume that we know the corre-
sponding transition rates {k1, ...,kN}. To decide which of those transitions is
next to execute, we represent them as intervals, the lengths of which are pro-
portional to the values of their transition rates ki. Putting these intervals next
to each other, we obtain a total interval representing the total transition rate
ktot =

∑N
i=1 ki. The pathway selection is now done by drawing a uniformly

distributed random number r ∼ U(0, 1) and multiplying it by ktot to obtain a
random position in this concatenation of intervals (See Fig. 17). This random
position falls into one of the intervals of the transitions, thereby choosing it
as the pathway to execute in this step of the simulation. The probability of
choosing transition i with this algorithm is proportional to the transition rate
ki and given via ki/ktot, just as required for independent transitions with expo-
nentially distributed waiting times (See appendix B.3). To write this procedure
into an algorithm, we construct an array of partial sums

sj =

j∑
i=1

ki j ∈ {1, 2, ...,N}. (II.23)

and look for the smallest j which satisfies sj > rktot to decide which transition
is going to be executed.
To advance the time after executing a transition we proceed as described earlier,
by drawing an exponentially distributed waiting time according to Eq. II.21 with
k = ktot. Afterwards, the possible transitions and the corresponding transition
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Figure 17: Illustration of the pathway selection in rfKMC simulations. In this
example we have two mobile particles, particles with more than three neighbours
are frozen. The possible transitions are shown with orange arrows, the thickness of
which represent the magnitude of the corresponding transition rate. As described
in the main text, the drawing of a random number r ∼ U(0, 1) here decides that
transition 6 is the one that gets executed, moving the particle to the bottom left
corner of the cluster via edge diffusion.

rates have to be determined for the new state of the system before executing
the next step of the simulation.

To sum up this section, we will put the discussed procedure into a well-defined
algorithm. We define S = {1, 2, 3, ...} as the set of indices describing the possible
microstates of the system. The index i ∈ S describes the current state of the
system and transition rates from this state into other states j are denoted
as kij. The transitions i → j should be categorizable into discrete types of
transitions (e.g. diffusion/edge diffusion/ascension/... with n ∈ {1, 2, ...} initial
neighbours) for which the corresponding transition rates should be known in
advance through some kind of rate model. We start with the system being in
any state i at time t = 0 and loop over the following procedure:

1. Determine which transitions i→ j are possible and assign the transition
rates kij according to the given rate model. Impossible transitions are
assigned kij = 0.
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2. Calculate the total transition rate ktot as well as the partial sums sn

ktot =
∑
j∈S,j 6=i

kij sn =

n∑
j=1

kij

3. Draw a random number from the uniform distribution r ∼ U(0, 1) and
determine which transition is executed next by finding the index n that
satisfies

sn−1 < rktot 6 sn. (II.24)

4. Execute transition i→ n.

5. Draw another random number from the uniform distribution rt ∼ U(0, 1)
and update the time of the system via

t→ t+
1

ktot
ln
(
1

rt

)

6. Go back to step 1.

Steps 1 to 3 are where the main computational effort is going to be spent for
any system of decent size. Coming up with a data structure and algorithms that
enable fast refreshing of the transition rates and partial sums after each step as
well as fast searching for the transition that satisfies Eq. II.24 is crucial when
implementing an rfKMC simulation. We provide details on our implementation
in the appendix chapter A.

ii.3.3 transition rate modelling
If one wants to reproduce a physical system like the epitaxial growth of C60
in KMC simulations, it is crucial to come up with an accurate model for the
elementary transition rates of the system. As mentioned earlier, the assump-
tion of an Arrhenius law (Eq. II.2) will give us the temperature dependence
of the individual transition rates, however, this will still leave energy barriers
and attempt rates as unknown parameters that have to be determined for every
transition type. It is infeasible to determine all of these parameters experi-
mentally and it would even be a huge task to do it computationally, so some
simplifications have to be applied to reduce the amount of parameters. A very
important simplification is the application of a bond counting approach, which
is based on the assumption of additive interactions (illustrated in Fig. 18).
Because the interaction range of C60 molecules with each other is relatively
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Figure 18: Application of additive interactions to energy barriers. from the known
energy barriers of free diffusion on a substrate and dissociation of a dimer off the
substrate, one can deduce the energy barriers for dissociation of a particle from
multiple neighbours on a substrate.

short-ranged, we can even assume that the energy barriers only depend on
the lateral neighbours of the initial site, neglecting the neighbourhood of the
target sites (See Fig. 19). This leads to a formula for the transition rate that
depends on the transition type i (i ∈ {FD/Diss,ED-A/B,Asc,Desc}), the number
of initial neighbours n and the temperature T ,

ki(n, T) = ν0,i(n) exp
(
−
∆Ei(n)

kBT

)
, (II.25)

where the energy barriers can be described by the aforementioned formula,

∆Ei(n) = ∆Ei,0 + (n− n̂i)EB, (II.26)

Figure 19: Left: Density plot of the potential energy of a sample C60 molecule
(dark green circle) in a given configuration of fixed cluster molecules (black disks,
viewed from above) interacting via the Girifalco potential (the substrate is omitted).
The dotted dark green line represents a possible reaction path connecting the four
states S1, ...,S4 passing through the transition states T1, T2 and T3. Right: Plot of
the potential energy along the dotted reaction path. The energy barriers ∆Eij (i the
number of initial neighbours, j the number of final neighbours) are only weakly
affected by j. Reprinted with permission from Ref. [1]. Copyright 2020 by the
American Physical Society.
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reducing the energy parameters to the bond energy EB and the base energy
barriers ∆Ei,0.

This leaves us with the attempt rates ν0,i(n) for which no established modelling
approaches exist. Leaving them all as free parameters would give the overall
model too many unnecessary degrees of freedom, considering that the impact of
having the exact attempt rates is relatively small in comparison to the energy
barrier parameters. Therefore, the attempt rates are often assumed to have a
single constant value

ν0,i(n)) = ν0 (II.27)

or sometimes (preferably for atomistic systems) they are even calculated with
a dependence on the temperature [55, 92–94] via

ν0,i(n) =
2kBT

h
, (II.28)

with the Planck constant h. Alternatively, to leave a little more freedom in
these parameters, one can add constraints via the detailed balance condition

ki(n, T)
ki(m, T)

!
=
kj(n, T)
kj(m, T)

, II.25,II.26→
ν0,i(n)

ν0,i(m)
=
ν0,j(n)

ν0,j(m)
:= cnm (II.29)

leading to constant ratios cnm between attempt rates for different numbers
of initial neighbours that are independent of the transition type i. This ef-
fectively introduces the parameters c12, c23, c34, c45, c56 but reduces the free
attempt rates per transition type to just a single one, ν0,i(n0), from which the
others can be calculated. To restrict this modelling a little more, one can de-
cide to set the ratios cnm to one between larger numbers of neighbours (e.g.
c34 = c45 = c56 = 1), as those transition rates are usually strongly suppressed
anyway and have limited impact on the result of the simulations.

Depending on how many of these discussed simplifications one chooses to use,
the resulting model will still have around ten or more free parameters which
one has to somehow determine. To enable the fitting of these parameters, in
the following subsections we are going to discuss two possible computational
approaches to obtain data on transition rates, the harmonic transition state
theory (HTST) and MD simulations.
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ii.3.4 harmonic transition state theory
Transition state theory (TST) methods have been developed for the approxima-
tion of rate constants of chemical reactions in the early 20th century [95–97].
In TSTs a transition is characterized by three states, an initial, a transition
and a final state. The initial and final states are nearby local minima of the
potential energy surface (PES) and they are connected via a saddle point in
the PES, the transition state. An energetically optimal pathway that connects
these three states is called a ”minimum energy path” (MEP) or ”reaction path”.
A parameter that describes a parametrization of an MEP is called a ”reaction
coordinate”. Harmonic transition state theory (HTST), also known as vineyard
theory [98], is a TST method that can approximate the activation barriers ∆E
and attempt rates ν0 (as used in the Arrhenius law) for a transition from the
PES close to its initial and transition state. The resulting HTST transition
rate can be calculated via

kHTST =

∏N
i ν

init
i∏N−1

i νtrans
i

exp
(
−
∆E

kBT

)
, (II.30)

where the energy barrier ∆E is the difference in potential energy between
the initial and transition state [Fig. 20] and νinit

i ,νtrans
i are the normal mode

frequencies at the initial and transition state respectively. While the product

Figure 20: Illustration of the energy landscape along a reaction path. The insets
are example configurations for the initial, transition and final states.
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in the numerator of the fraction goes over all N normal mode frequencies of the
initial state, the product in the denominator only contains the N− 1 normal
mode frequencies that are perpendicular to the reaction path. It has been shown
that the approximated transition rates from HTST can come very close to the
actual transition rates of a system [99, 100].

Minimum Energy Paths

Methods to determine minimum energy paths are often used in TST as a way
to find the transition state. Here, we are going to discuss two approaches for
MEP calculation (based on Ref. [101]) which also find use in this thesis, the
”drag” and the ”nudged elastic band” (NEB) method [102–104].
A very simple and intuitive method for finding an MEP is the drag method.
Starting from the initial state, one chooses one of the N degrees of freedom
of the system to be the ”drag coordinate” which is incremented in small steps
to drive the system from the initial to the final state [Fig 21a]. After each
increment, the N− 1 degrees of freedom perpendicular to the drag coordinate
are relaxed to minimize the potential energy E of the system [Fig 21b], shifting
it towards a point on the MEP [Fig 21c]. The point of maximum potential
energy achieved during the drag is considered the transition state. While this
method is conceptually very simple, its successful application mostly depends
on the arbitrary choice of the drag coordinate and a bad choice can result in
an MEP that never reaches the actual vicinity of the transition state. The drag
method can certainly still be applied to many cases, but one has to be aware
that there are examples where it does not yield good results [105, 106] and the

Figure 21: Simple two-dimensional illustration of an iteration of the drag method
for a particle diffusing from a one neighbour state to a two neighbour state in a
fixed environment (only the diffusing particles coordinates are varied). a) A direct
line connecting the initial and final state is chosen as the drag coordinate and the
particle is displaced in this direction. b) After displacement, the particles coordi-
nates are relaxed perpendicular to the drag coordinate to minimize the potential
energy. c) The particle has relaxed into a position on the MEP and can be dragged
further in the next iteration.
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Figure 22: Simple two-dimensional illustration of the NEB method. a) On an initial
path that connects the initial with the final state, ”beads” are placed equidistantly
as representations of the systems state at several points along the MEP. b) These
beads are ”nudged” as described in the main text to obtain the final MEP.

simultaneous application of other supporting methods (like the NEB method)
may be well advised.

In the NEB method, a string of interconnected images {S0, S1, ..., SN} of the
system is created (also referred to as the ”elastic band”) to form a discrete
initial path connecting the initial state S0 with the final state SN [Fig. 22a].
Here, the states are represented by coordinate vectors Si = (x1, x2, ..., xD),
where D is the dimensionality of the system. While S0 and SN are fixed, the
other N− 1 elements of the string are relaxed into the MEP through so-called
”nudging” by the application of two forces to each of the images,

Fi = Fi,‖ + Fi,⊥. (II.31)

The perpendicular force Fi,⊥ pushes the images towards points on the MEP by
pushing them in the direction of the projected energy gradient

Fi,⊥ = −∇E(Si) +∇E(Si) · τ̂iτ̂i, (II.32)

where ∇ is the ”Nabla” operator ∇ = ( ∂
∂x1

, ∂
∂x2

, ..., ∂
∂xD

) and the τ̂i are esti-
mated tangents to the elastic band that can e.g. be calculated via

τ ′i =
Si − Si−1
|Si − Si−1|

+
Si+1 − Si
|Si+1 − Si|

, τ̂i =
τ ′i
|τ ′i|

. (II.33)

A more detailed discussion on the estimation of the tangents τ̂i (including a
better estimate) can be found in Ref. [101]. The second term of Eq. II.32
removes the components of the energy gradient that are parallel to the elastic
bands tangent. The parallel force Fi,‖ is a spring force that makes the band of
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images ”elastic” by ensuring that even spacing between the individual states
is kept during the nudging. It can be calculated via

Fi,‖ = κ(|Si+1 − Si|− |Si − Si−1|)τ̂i, (II.34)

with a spring constant κ. Iterative displacement of the elastic band in small
increments via the nudging forces Fi leads to a convergence of the states Si
onto the MEP and to a convergence of the nudging forces Fi to zero. Since its
first formulation, the NEB method quickly became a popular solution for the
determination of MEPs of several diffusion processes [107–111] and has also
been improved upon, e.g. with the climbing image (CI-NEB) modification [112]
which further improves the methods ability to find the exact transition state.
While the NEB method also requires an arbitrary guess for the initial path, a
simple linear interpolation between S0 and SN is a good choice in most cases.
If there are multiple MEPs present, some sort of sampling of the various MEPs
needs to be carried out to be able to find the optimal one.

ii.3.5 transition rate measurements in md
simulations

The approach that we are using the most in this thesis for the determination of
transition rates is to measure them directly in molecular dynamics simulations.
The details behind the molecular dynamics method are going to be discussed
in the next section, here we only explain what we are measuring in the MD
simulations and how we derive energy barriers and attempt rates from those
measurements.
One starts with the setup of configurations in which the transitions of interest
can be measured and are unlikely to be disturbed by other transitions. An
example is shown in Fig. 23 (left) for transitions of a particle from a two
neighbour initial state, where the other particles are all in a four neighbour
state and therefore are unlikely to leave their lattice site. MD simulations are
then run in a range of temperatures in which the transitions of interest are
likely to occur (for the example given in Fig. 23, this range is T ∈ (500, 700)K).
Each MD simulation only runs as long as the particle stays in its initial state.
As soon as it transitions away, the residence time τ in the initial state and the
type of occurred transition i are written out and the MD simulation is restarted
with slightly varied initial conditions. This is repeated until enough trajectories
have been simulated to capture data on all transitions of interest.
As a result for each temperature T , one gathers a set of residence times
{τ1, τ2, ..., τN(T)}, where N(T) is the total number of observed trajectories, and
counts of the observed transitions Ni(T) (i ∈ {ED-A,Diss,Asc} for the exam-
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Figure 23: Left: Example configuration for the determination of transition rates
from a two neighbour initial state in MD simulations. Right: Derived Arrhenius
plot including fits for the extraction of energy barriers and attempt rates.

ple of Fig. 23). We are presenting two ways to derive the total transition rate
ktot(T) out of the initial state from those results. The first is a direct calculation
with the (unbiased) estimator for the exponential distribution

k̂tot(T) =
N(T) − 1

ttot(T)
ttot(T) =

N(T)∑
j=1

τj. (II.35)

If N is large, it may be more convenient to use the (biased) maximum likelihood
estimator k̂ ′tot = N/ttot. The second way simultaneously acts as a double check
to see if the residence times are indeed exponentially distributed (as assumed
by Eq. II.35 and by KMC algorithms). If they are exponentially distributed,
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Figure 24: Example probability
distribution of residence times.

one can derive a total transition rate ktot(T)

from the distribution of residence times by fit-
ting an exponential fit

p(τ) = ktot(T)e
−ktot(T)τ (II.36)

to the histogram of residence times [Fig. 24].
From the ktot that is either derived from Eq.
II.35 or from the fit II.36, one can then es-
timate the transition rates for the individual
transition types via

k̂i(T) =
Ni(T)

N(T)
ktot(T). (II.37)
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Finally, the estimates for the transition rates that have been gathered in a
range of temperatures can be used to derive energy barriers and attempt rates
from so-called Arrhenius plots. By applying a logarithm to the Arrhenius law
(Eq. II.2) we obtain the equation

log (ki(T)) = log (ν0,i) −
∆Ei
kBT

. (II.38)

By plotting the logarithmic transition rates log (ki(T)) against the inverse tem-
perature 1/T , we can verify that the rates indeed behave as described by the
Arrhenius law if they fall on a line [Fig. 23 right]. Energy barriers ∆Ei and
attempt rates ν0,i can then be extracted from the fit parameters of a linear fit
of the form y(x) = mx+ b to the data points (1/T , log (ki(T))) via

ν0,i = e
b ∆Ei = −

m

kB
. (II.39)

While this whole method of determining transition rates from MD simulations
can overall take more computational effort than TST methods, it has the clear
advantage of needing fewer assumptions. One only has to assume the validity
of some interaction potentials for the substrate atoms and adparticles with one
another. The validity of the Arrhenius law and the exponential distribution of
waiting times can then be verified by the results of the simulation, which adds
justification to the use of the derived transition rate parameters (∆Ei, ν0,i) in
KMC simulation models.

Free Diffusion and the Mean Squared Displacement

A special case in the determination of transition rates is the free diffusion
process. Here, we are not necessarily interested in the exact escape rate from
a certain lattice site, but rather in the effective diffusion coefficient that results
from a free diffusion process that may be comprised of jumps to neighbouring
lattice sites or of jumps across multiple lattice sites. We, therefore, measure
long diffusive trajectories to then determine the effective diffusion coefficient D
from its relation to the mean-squared displacement

MSD(∆t) = 〈(x(t+∆t) − x(t))2〉 = 4D∆t. (II.40)

Effective energy barriers and attempt rates for the free diffusion process can
then be derived via an Arrhenius plot according to Eq. II.3.
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ii.4 molecular dynamics

Molecular dynamics (MD) is a computational method for the simulation of the
physical time evolution of interacting particles by numerically solving Newton’s
equations of motion [113]. While many of the numerical methods used in MD
simulations have been developed much earlier, their successful application to
many-body problems was only enabled by the development of modern electronic
computers in the mid 20th century, after which MD became a popular simulation
method [114–117] (shortly after the development of MC methods). For this
thesis, we are not implementing an MD algorithm ourselves, but we are using
the ”Large-scale Atomic/Molecular Massively Parallel Simulator” (LAMMPS)
[118] code to set up MD simulations. To do this and to be able to correctly
interpret the MD simulation results, an understanding of the basic ideas behind
MD simulations is necessary. The following pages are going to serve as an
introduction to those ideas. As sources we are mainly using lecture notes
[119], my master’s thesis [86] and the text books Refs. [120, 121], which are
recommended reads for further details on this topic.

ii.4.1 equations of motion

A fundamental starting point for the derivation of equations of motion for an N
body system are the differential equations from the Lagrange formalism

d

dt

(
∂L(q̇, q)
∂q̇k

)
−
∂L(q̇, q)
∂qk

= 0 k ∈ {1, 2, ...,N}, (II.41)

where the Lagrangian L is a function of the particle coordinates q =

{q1, q2, ..., qN} and velocities q̇ = {q̇1, q̇2, ..., q̇N}. The dependence on these
variables can be separated into

L(q̇, q) = K(q̇) −V(q) (II.42)

with a kinetic energy term K(q̇) and a potential energy term V(q). For a
classical N body system with particles of masses mi and pairwise interactions
νij(ri, rj) (written in cartesian coordinates ri), the energy terms K and V can
usually be defined as

K =

N∑
i=1

1

2
miṙ2i V =

N∑
i=1

N∑
j=i+1

νij(ri, rj). (II.43)
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With those definitions, the Lagrangian equations of Eq. II.41 can be written as

mir̈i = −∇riV =: fi i ∈ {1, 2, ...,N}, (II.44)

where ∇ri = ( ∂
∂ri,1

, ∂
∂ri,2

, ∂
∂ri,3

) is the nabla operator and the right hand sides
are defined to be the interaction forces fi. The Eqs. II.44 are also known as
Newton’s equations of motion and in this formulation they are a set of 3N
second-order differential equations. Solving those equations to obtain particle
trajectories ri(t) therefore requires the knowledge of 6N boundary conditions,
which have to be set in the form of initial coordinates and velocities. While
analytic solutions to those equations are infeasible (especially for large N),
in MD simulations we can calculate the solutions numerically by applying
numerical integration schemes. One such scheme will be discussed in the
following after we have introduced some basic examples for the interaction
potentials νij(ri, rj).

Interaction potentials

The derivation of interatomic or intermolecular interaction potentials is a ma-
jor challenge in the field of MD simulations. Especially when parts of the
system are coarse-grained, the resulting effective interactions of the coarse-
grained particles can be hard to determine. However, for non-coarse-grained
atomistic particles, there are a few standard interaction potentials that reg-
ularly find their uses in MD simulations. As the following potentials only
depend on the center-to-center distance between the two interacting particles,

2
16σ0.5σ 1.5σ 2σ

0

ϵ

-ϵ

r

ν L
J(
r)

Figure 25: The Lennard-Jones in-
teraction potential.

we are substituting r := |ri − rj| for better
readability

A very popular interaction potential to de-
scribe both the Van der Waals attraction and
the close proximity repulsion (Pauli repulsion)
of neutral atoms is the Lennard-Jones poten-
tial [122], commonly written as

νLJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
, (II.45)

where ε and σ are free parameters of the
potential, describing the strength and the
range of the interaction, respectively [Fig. 25].
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Whenever there are charged particles (ions, electrons or protons) involved, the
Coulomb interaction [123] finds its use:

νC(r) =
1

4πε0

qiqj

r
, (II.46)

where ε0 is the vacuum permittivity and qi,qj are the charges of the particles.
The Coulomb interaction is repulsive if the two charges have the same sign
and attractive if they have opposite signs. It is hardly used on its own, as
e.g. in the attractive case a potential like this (with a singularity at distance
zero) can easily lead to very strong forces and therefore to instabilities in the
algorithm. For ionic systems, it can be combined with an attractive Van der
Waals (for interactions with neutral particles) and a repulsive term to form a
”Born-Meyer-Huggins” style potential

νCBMH(r) =
1

4πε0

qiqj

r
+Ae−r/ρ −

C

r6
, (II.47)

where C describes the strength of the Van der Waals attraction, A and ρ the
strength and range of the repulsive interaction, respectively. The potential in
Eq. II.47 will for example be used in this thesis to describe the interactions of Ca
and F ions in the CaF2(111) substrate in chapter IV. The more complex coarse-
grained interactions, that we are going to use for C60 interactions, are derived
and discussed in the corresponding sections when the specific simulation setups
are presented.

ii.4.2 velocity verlet integration

When it comes to integration schemes to numerically solve the equations of
motion (Eq. II.44), there is a multitude of options, each with its advantages
and disadvantages. The best choice for any specific application can vary from
case to case, depending on the requirements one poses to the algorithm and the
resulting trajectories. The requirements on the algorithm can range from ease of
implementation to the memory consumption or computational effort per time step.
Concerning the resulting trajectories, their deviation from classical trajectories
or their adherence to energy/momentum conservation laws, or properties like
time-reversibility are things to consider. Here, we introduce a very common
integrator that is a good choice for most applications and which is also used
as the standard integration scheme in the LAMMPS simulation package, the
velocity Verlet algorithm [124].

The velocity Verlet algorithm is used to propagate the particle coordinates r(t)
and velocities v(t) = ṙ(t) forwards (or backwards) through time and its formulas
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Figure 26: Illustration of the velocity Verlet algorithm’s calculations for one time
step.

can be derived by writing down the Taylor expansions up to the second order
terms:

r(t+∆t) ≈ r(t) + ṙ(t)∆t+ r̈(t)
2
∆t2 (II.48)

v(t+∆t) ≈ v(t) + v̇(t)∆t+ v̈(t)
2
∆t2. (II.49)

In Eqs. II.48 and II.49, we can replace ṙ(t) = v(t) and r̈(t) = v̇(t) = f(t)/m

(with f(t) being the forces that are calculated from the interaction potentials
via Eq. II.44), but we need an expression to replace the v̈(t) term, which we
can derive from another Taylor expansion,

v̇(t+∆t) ≈ v̇(t) + v̈(t)∆t → v̈(t) ≈ v̇(t+∆t) − v̇(t)
∆t

. (II.50)

Putting Eq. II.50 into II.49, we arrive at the formulas of the velocity Verlet
algorithm:

r(t+∆t) ≈ r(t) + v(t)∆t+ f(t)
2m

∆t2 (II.51)

v(t+∆t) ≈ v(t) + f(t+∆t) + f(t)
2m

∆t. (II.52)

The calculation order of this algorithm is illustrated in Fig. 26. Starting with
particle coordinates r(t) and velocities v(t) at time t, we can first calculate
the acting forces f(t) from r(t) using the given interaction potentials of the
system. These can then be used to calculate the coordinates at the following
time step r(t+ ∆t) with Eq. II.51, from which we can, in turn, calculate the
forces f(t+∆t). Finally, we can then calculate the velocities at the next time
step using Eq. II.52.

ii.4.3 periodic boundary conditions
The scope of MD and MC simulations is usually limited to a maximum of
several million particles due to constraints of memory or computation time. For
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t t+Δt

Figure 27: Visualization of PBCs. The orange particle is highlighted, as it crosses
the periodic boundary in the shown time step and ends up on the other side of
the simulation box.

example, the MD simulations presented in this thesis are composed of a few
hundred to a few thousand interacting particles. With so few particles, one can
only construct microscopic configurations. A common trick to virtually expand
the simulated configuration into an infinite bulk/plane is the use of periodic
boundary conditions (PBCs). The simulation box is treated as a primitive cell
that is replicated in x/y/z directions to form an infinite periodic lattice [Fig.
27]. In principle, every particle in the simulation now interacts with an infinite
number of periodic images. However, the number of force calculations can be
reduced to a finite number, e.g. by using a cut-off radius rc for short-ranged
interactions (like the Lennard-Jones potential) above which the interactions are
truncated. For long-ranged interactions (like the Coulomb potential), shifting
parts of the calculation into k-space (e.g. with so-called ”Ewald sums”) can
reduce the computational effort [125].

ii.4.4 initialization and thermostating

When performing MD simulations, we are usually interested in the properties
of the system at specific temperatures. Setting up the system to be and stay at
a given temperature is the first thing we have to solve. One can try to initialize
the system in a state that is close to equilibrated at a given temperature by
pulling random initial velocities from the Maxwell-Boltzmann distribution

p(v) =
1

(2πkBT/m)3/2
e
− mv2
2kBT , (II.53)
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but the harder problem is to also put the particles into the right initial positions
such that no net transfer between the time-averaged kinetic and potential en-
ergy takes place (which leads to a shift of the temperature). Instead of trying to
perfectly initialize the system into an equilibrated state, it is therefore mostly
easier to initialize the coordinates either on a grid or randomly and then deal
with the resulting temperature shift with temperature control methods, so-called
”thermostats”.

Velocity rescaling

Velocity rescaling is a conceptually very simple approach to control the tem-
perature of a system by monitoring it and then rescaling the particle velocities
to produce a desired temperature. To do this, we first have to define the instan-
taneous temperature Tinst in an MD simulation via the relation between kinetic
energy Ekin and temperature T :

d

2
NkBT = 〈Ekin〉 =

N∑
i=1

1

2
mi〈v2i 〉 (II.54)

→ Tinst : =
N∑
i=1

miv2i
dNkB

, (II.55)

where d denotes the degrees of freedom per particle (d = 3 for point particles
in three dimensions) and N the number of particles in the system. With this
definition, the temperature T can be calculated as the time average of the
instantaneous temperature, T = 〈Tinst〉. After monitoring the instantaneous

Figure 28: Example equilibration of a small (N = 288) system using velocity rescal-
ing. Starting at a temperature of 420K, velocity rescaling is applied every 50000
time steps, resulting in a temperature close to the desired 500K after a few ap-
plications. The displayed temperature is a running average of the instantaneous
temperature.

0 50000 100000 150000 200000 250000 300000

400

420

440

460

480

500

time steps

T
[K
]



40 theory & methods

temperature over some time to calculate a time average, we can enforce a
certain desired temperature Tdes by rescaling the particle velocities according
to the transformation

vi → v ′i = vi ·

√
Tdes
〈Tinst〉

. (II.56)

This will shift the temperature to Tdes, however, such a discontinuous velocity
rescaling will usually again be followed by a net transfer between potential
and kinetic energy, shifting the temperature away from Tdes over the course of
the next few time steps [Fig. 28]. Therefore this velocity rescaling has to be ap-
plied multiple times, with short equilibration/temperature monitoring intervals
in between. As these jumps and relaxations in temperature do not resemble
the behaviour of any real physical system (the results do not correspond to a
canonical NVT ensemble), velocity rescaling is not considered to be a proper
thermostat. However, it is still a very useful and simple tool to equilibrate a
system at the desired temperature.

Langevin thermostat

The Langevin thermostat controls the systems temperature by modifying the
equations of motion with a friction drag and a random force term,

mir̈i = −∇riV− γmiṙi + Wi. (II.57)

with a friction coefficient γ and a random force vector Wi(t) with no correlations
in time or between particles:

〈Wi(t) ·Wj(t
′)〉 = 6mikBTγδijδ(t− t

′), (II.58)

where δij is the Kronecker delta and δ(x) the Dirac delta distribution. With this
modification to the equations of motion, the particles will behave like they are
moving in a solvent of thermostat particles. The drag term makes the particles
lose kinetic energy to the solvent proportional to their velocity and the random
force term periodically transfers kinetic energy from the solvent back to the
particles. The resulting trajectories resemble a canonical (NVT) ensemble,
however, the generated trajectories can only be representative of systems with
big particles in solution (e.g. colloids). Still, the random nature of the Langevin
thermostat makes it also useful in atomistic and molecular simulations for the
generation of random initial configurations at any given temperature, e.g. from
an initially regular grid of particles.
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ii.4.5 generic simulation procedure
Putting the discussed MD simulation parts together, we can outline a generic
simulation procedure that is applicable to the observation of surface diffusion
processes:

1. Set up an initial configuration in which the particles are placed on a
regular grid that closely represents the crystal structure of the materials
of interest.

2. Equilibration:

• Start with a short run in which the Langevin thermostat with a unique
random seed is applied to give the particles some random initial
velocities.

• Turn off the Langevin thermostat and start the equilibration run in
which velocity rescaling is applied multiple times until the tempera-
ture of the system is sufficiently close to the desired temperature.

• Turn off the velocity rescaling

3. Measurement:

• Let the system evolve without the application of any temperature
control.

• After predefined time intervals or after a transition was detected,
save the current configuration into an output file for later analysis.

• (optional) Monitor and output observables like potential energy /
temperature in predefined time intervals.

As already mentioned, our MD simulations are all implemented using the
LAMMPS simulation package, which comes with an outstanding amount of
functionality out of the box. All the common thermostats and interaction poten-
tials are implemented and custom potentials can be supplied to LAMMPS in
tabulated form. Instructions can be given to the program in the form of an input
script. An example input script is given in the appendix B.4
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In this chapter, we investigate the epitaxial growth process of C60 on an ideal
C60(111) crystal surface. While there are no experimental observations on
this exact system, a well-established understanding of it is transferable to
other systems like the growth of multilayered C60 clusters on substrates like
CaF2(111), where the first monolayer of C60 molecules grows closely packed
to form a C60(111) surface [Fig. 29]. A model for the transition rates of C60 on
C60(111) diffusion processes is therefore valid for the processes on the second
layer and onwards even in the C60 on CaF2(111) system. The contents of this
chapter are largely based on our first publication (Ref. [1]).

In the first part of this chapter, we detail how we measure transition rates of C60
on a clean C60(111) crystal surface in a wide variety of initial configurations and
temperatures in MD simulations. From those transition rate measurements, we
derive energy barriers and attempt rates from Arrhenius plots of the individual
transition types. On that basis, we construct a ”RawMD” rate model that simply
aims to reproduce the MD measurements.

In the second part of this chapter, we then show that this naive approach leads
to a thermodynamically inconsistent rate model, manifesting in a net entropy
production in KMC simulations even when the system is in a steady state. We
then reduce the model to a ”Simple” version that is thermodynamically consis-
tent and generates the same cluster morphologies. Finally, this Simple model
is then used to run C60 on C60(111) multilayer growth KMC simulations, com-
paring our results with the work of Bommel et al [55]. We are going to uncover,
that the high cluster densities that have been observed in this particular study
of C60 multilayer growth on mica can be explained by the formation of grain
boundaries on the coalescence of the first monolayer.

Figure 29: On many substrates (like on CaF2(111)), C60 layers grow closely
packed, forming a C60(111) surface.
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iii.1 md simulations

iii.1.1 the girifalco potential

We start with the introduction of the Girifalco potential, a coarse-grained po-
tential that simplifies the C60-C60 interaction by reducing each C60 molecule
to a single (spherically symmetric) bead. It was first derived in 1991 by L. A.
Girifalco [22, 23]. In a pure C60 system, using such a coarse-grained potential
reduces the number of force calculations per pair of molecules by a factor of
602 = 3600 and also allows for the use of a larger time step in the MD simula-
tion, enabling us to observe processes that take place on very long time scales
like edge diffusion processes with up to four initial neighbours.

To derive the potential, we start by assuming a Lennard-Jones interaction φC(r)

between the individual carbon atoms of different C60 molecules, which we define
as

φC(r) = −
A

r6
+
B

r12
. (III.1)

In an atomistic representation of the C60 molecule, the overall interaction be-
tween two C60 molecules is then given by the sum over all pairwise interactions
of the individual C atoms of the two different molecules. To get to the Girifalco

Figure 30: Sketch of the derivation of the Girifalco potential.
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potential, we approximate this sum by integrating over the surfaces of two
spheres Σ1 and Σ2,

φC60(r) ≈ η
2

∫
Σ1

∫
Σ2

φC(r)dΣ2dΣ1, (III.2)

where r is the distance between the centers of the two spheres and η = 60/4πR2

is the surface density of C atoms (R ≈ 0.355nm is the C60 center-to-nucleus
radius). Evaluating this integral, we obtain the Girifalco potential,

φC60(s) ≈−α

(
1

s(s− 1)3
+

1

s(s+ 1)3
−
2

s4

)
+β

(
1

s(s− 1)9
+

1

s(s+ 1)9
−
2

s10

)
, (III.3)

with the variable s = r/(2R) and constants α = 602A/(12(2R)6) and β =

602B/(90(2R)12). Knowing the nearest neighbour distance d0 ≈ 1.0nm and
the sublimation energy ESub ≈ 1.8 eV of a C60 fcc crystal, we can derive values
for the constants α and β from the conditions

E :=
∑
r∈Λfcc

φC60(s)
!
= 2ESub

∂φC60
∂r

(d0)
!
= 0. (III.4)

The first condition of Eq. III.4 sums over the positions of an fcc crystal Λfcc that
is constructed around a center probe with nearest neighbour distance d0. We
obtain the parameters

α = 46.8× 10−3 eV β = 84.6× 10−6 eV . (III.5)

A comparison of this Girifalco potential with an experimentally measured C60-
C60 interaction potential [76] is shown in Fig. 31. The agreement of the
experimental potential with the Girifalco potential is relatively good around
the energy minimum but deviates pretty strongly for the short-range repulsion
and the long-range attraction. However, considering that this is just one mea-
surement with one specific orientation between the two molecules and also
that there might be other systematic errors in the measurement, the agreement
is remarkable. Also shown in Fig. 31 are samples of the potential energy
between two atomistic C60 representations with random orientations towards
one another, interacting via the Lennard-Jones potential of Eq. III.1. It can
be seen how the sample average aligns perfectly with the Girifalco potential,
the expected effect of integrating out the rotational degrees of freedom. The
samples and their 95% quintiles also hint at the limitations of the Girifalco
potential as they show how atomistically represented C60 molecules can actu-
ally form stronger bonds (at a shorter center-to-center distance) by aligning
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Figure 31: Comparison of the Girifalco potential with experimental data [76] and
with samples of randomly oriented atomistic C60 molecules interacting via the
Lennard-Jones potential III.1. The insets show the maximum and minimum energy
configurations of the samples at r = 10nm.

themselves correctly. Because of this, the Girifalco potential is usually only
assumed to be a good approximation for temperatures well above 260K. At
260K, crystalline C60 goes through a structural phase transition from a phase
in which molecular orientations align (at lower temperatures) to a plastic crystal
in which orientations are disordered (at higher temperatures)[16–21]. The Giri-
falco potential is therefore mostly used for high-temperature studies – like the
prediction of a stable liquid C60 phase [126–130] or the analysis of C60/C70 mix-
tures [131, 132]. However, the simplicity of the potential occasionally motivates
its use at lower temperatures [52, 133–136]. For C60 in bulk, a comparative
study between an atomistic and coarse-grained (Girifalco) representation of the
molecule was done in Ref. [137] employing MD simulations in a temperature
range of T ∈ (300, 1900)K and a range of different pressures, showing that the
Girifalco potential yields similar results as the atomistic representation for low
(ambient) pressures.

In the simulations of this chapter, we are neither using high pressures nor low
temperatures, so the Girifalco potential is a reasonable choice. However, when
using the resulting rate model in KMC simulations, one has to keep in mind
that the rates may be less accurate in a low-temperature regime.
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iii.1.2 simulation setup
Using LAMMPS and a tabulated version of the Girifalco potential, we set
up MD simulations of interacting C60 molecules. The C60(111) substrate is
modelled as a four layer thick crystal of which the bottom layer is fixed in
place. On top of this crystal, an environment of deposited particles in a stable
configuration is set up for one or a few tagged particles that are positioned
in metastable states in which transitions of interest can occur. We measure
the lifetime of those metastable states as well as the frequency of outgoing
transition types i to determine the associated transition rates ki. An example
setup of such an MD simulation is shown in Fig. 32. To equilibrate the system
to a random starting configuration at a given temperature, a combination of the
Langevin thermostat and velocity rescaling is applied before the measurement
begins. After equilibration, the lifetime of the initial state is measured in an
NVE simulation (thermostat and velocity rescaling turned off).

We run a large number of trajectories for every configuration to gather enough
statistics on all possible transitions. The temperature range varies depending
on the configuration but overall the used temperature range is T ∈ (200, 850)K.
The initial configurations can be categorized by the initial number of neighbours
n of their tagged particles, which we vary from n = 0 (free diffusing particle) to
n = 4. To notice if a transition has occurred, the potential energy of the tagged
particles or their coordination number with particles in their neighbourhood are

Figure 32: Example MD simulation configuration for the measurement of the de-
scension rate. The bottom layer of C60 molecules (gray) is fixed in place to ensure
an fcc crystal structure with a (111) surface. The three layers of white-coloured
C60 molecules evolve freely during the NVE simulation but are under the effect of
a Langevin thermostat or velocity rescaling during equilibration. The dark green
particles are put into a stable configuration where they are unlikely to leave their
position and set up the environment for the tagged light green particle, which is
put into a state where the transitions of interest can occur.
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Figure 33: Potential energy and coordination as stop triggers to notice transitions.
Left: Potential energy over time of a single particle bound to a slab of particles
in a two-neighbour configuration, with a threshold (orange) set to notice the dis-
sociation from - or ascension onto - the slab. Right: Coordination number of the
particles at the edge of a slab (in four-neighbour configurations) with a threshold
(orange) set to notice when one of the particles pops out of - or ascends onto - the
slab

measured throughout and used as triggers to stop the simulation when they
cross some threshold value. Examples are shown in Fig. 33 for particles in
two-neighbour and four-neighbour initial configurations.

iii.1.3 raw transition rate measurements

First, we are going to present the transition rate measurements with as little
modelling as possible. In Tab. 1 and 2 the implemented initial configurations
are shown together with possible transition targets and configuration labels.
Suppose we have gathered N(T) trajectories of a certain initial configuration
at temperature T and have observed Ni(T) occurrences of transition target i,
we estimate the transition rate for transitions to target i via

ki(T) ≈
Ni(T)

ttot(T)
ttot(T) =

N(T)∑
j=1

τj, (III.6)

where τj are the run times of each of the trajectories until a transition occured.
In the case of free diffusion (F), the transition rates were derived from the mean-
squared displacement (MSD) of the diffusion trajectories as described in the
methods section II.3.5. In the Arrhenius plots shown in Tab. 1 and 2 we can
nicely see how all the calculated transition rates obey the Arrhenius law by
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Configuration Arrhenius Plot T Target i ∆Ei[meV] ν0,i[THz]

I

1/2001/2801/480

16

18

20

22

200 I 195.6(20) 0.43(4)

−

480

K

I II

1/2501/3001/400

14

16

18

20

22 250 I 181.4(3) 0.325(3)

− II 300.2(13) 0.385(18)

400

K

I II III IV

1/3501/4201/550

10

12

14

16

18

20

22 350 I 501(4) 0.53(6)

− II 188.3(6) 0.262(4)

550 III 409(2) 0.38(2)

K IV 458(4) 0.25(4)

I II III

1/5001/6001/750

8

10

12

14

16

18

20
500 I 439(2) 0.74(3)

− II 744(5) 1.23(12)

750 III 879(34) 2.29(144)

K

I II III

1/6001/6701/750

11

12

13

14

15

16

17

18 600 I 779(5) 4.60(38)

− II 708(4) 2.46(18)

750 III 917(29) 5.33(266)

K

I II III IV

1/6801/7201/770
10

12

14

16

18 680 I 686(5) 1.33(10)

− II 1119(30) 4.32(210)

770 III 1037(20) 4.55(148)

K IV 1062(24) 6.29(165)

Table 1: Summary of the results from our MD Simulations of the C60 on C60(111)
system. The first column shows the configuration with tagged particle (light green)
and the possible transitions (white numerals). The second column shows the cor-
responding Arrhenius plot obtained from the MD data (1/T with T in Kelvin on
the x-axis, log(k) with k in Hertz on the y-axis).
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Configuration Arrhenius Plot T Jump to ∆Ei[meV] ν0,i[THz]

I II III IV

1/6801/7201/770
10

12

14

16

18 680 I 989(17) 3.01(82)

− II 1119(24) 4.76(186)

770 III 967(13) 3.49(73)

K IV 618(9) 0.20(3)

I II

1/7501/7901/840

12

13

14

15

16

17

18 750 I 906(12) 0.91(16)

− II 1295(46) 2.47(169)

840

K

I II

1/7501/7901/840

12

13

14

15

16

17

18 750 I 1270(18) 10.4(28)

− II 1311(39) 3.83(217)

840

K

Table 2: Continuation of Tab. 1.

falling onto lines, so we can derive energy barriers ∆Ei and attempt rates ν0,i
(as explained in Sec. II.3.5), which are also listed in these summarizing tables.
For the following discussions we are going to refer to specific transitions of Tab.
1 and 2 via a combination of the initial configuration label with the transition
target label (e.g. (F)I for the free diffusion transition).

To validate our methodology we can compare some of our results to previous
estimates from similar computational methods. Our value for the diffusion bar-
rier (from config (F)I) of ∆EFD = 195.6(20)meV falls right into a range of other
values in the literature: Gravil et al. [138] (168meV from pair potential calcula-
tions), Liu et al. [52] (178(4)meV from MD simulations like ours), Cantrell and
Clancy [54] (205(22)meV from molecular mechanics calculations) and Goose
et al. [139] (207meV from DFT calculations). The corresponding attempt rate
ν0,FD = 0.43(4) THz is also close to the estimate from MD simulations by Liu
et al. [52] of 0.20(3) THz. Another characteristic energy that we can extract
from our measurements is the Ehrlich-Schwöbel barrier EES, by subtracting
the free diffusion barrier ∆EFD from the descension barrier ∆EDes of transition
(ES)II,

EES = ∆EDes −∆EFD = (300.2− 195.6)meV = 104.6(24)meV . (III.7)



52 c60 on c60(111)

This value is also in very good agreement with the estimate by Goose [139] of
104meV and with the value obtained by Cantrell and Clancy of 129(30)meV .
To conclude our comparison with literature values, the transitions for which
comparable energy barrier values exist in the works of Cantrell/Clancy and Liu
are listed in Tab. 3, all showing relatively good agreement with our results.

Transition this work MM [54] MD [52]

(F)I 195.6(20) 205(22) 178(4)

(1N)III 409(2) 448(25) 429(57)

(2NB)II 708(4) 717(29) -

(ES)II 300.2(13) 334(20) -

Table 3: Comparison of energy barriers ∆Ei (in meV) with previous results from
molecular mechanics (MM) and molecular dynamics (MD). Note that the MM
results are consistently larger.

iii.1.4 transition rate modelling and dis-
cussion

For the modelling of the measured transition rates we are going to start with
the assumption that the energy barriers and attempt rates only depend on the
transition type (i ∈ {FD, Diss, ED-A, ED-B, Asc, Desc}) and the number of
initial (lateral) neighbours n as motivated in Sec. II.3.3,

ki(n, T) = ν0,i(n)e−∆Ei(n)/kBT . (III.8)

The energy barriers that we have extracted from the MD results for the various
transition types are plotted in Fig. 34 as functions of the initial number of
neighbours. In this plot, we can directly see a linear dependence of the energy
barriers to n, which motivates a parametrization of the energy barriers with the
bond counting approach,

∆Ei(n) = ∆Ei,0 + (n− n̂i)EB,i, (III.9)

with a base energy barrier ∆Ei,0, number of sustained bonds n̂i in transitions of
type i, and an effective bond energy EB,i that can also depend on the transition
type i.

The linear fits that are shown in Fig. 34 give us values for the base energy
barriers ∆Ei,0 and effective bond energies EB,i, which are listed in Tab. 4.
The energy minimum of the used Girifalco potential is EG = 277meV and is
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Figure 34: Energy barriers plotted against the number of initial neighbours for
the various observed transition types. The FD/Diss barriers are taken from tran-
sitions (F)I, (1N)IV, (2NA)II and (3NA)III (See Tab. 1 and 2), combining the free
diffusion barrier with the long dissociation paths that represent a complete dissoci-
ation from the cluster. The ascension barriers do not show a significant difference
between A and B step edges, so the shown data points are calculated as averages
of the measurements at the two respective edges. The data points for ED-A are
taken from transitions (1N)II, (2NA)I, (3NA)I and (4NA)I, while the data points
for ED-B are given by transitions (1N)I, (2NB)I, (3NB)I and (4NB)I. All data sets
are well described by the plotted linear fits.

the expected energy barrier for when a bond has to broken completely. This
expectation is fulfilled for the case of free diffusion/dissociation, where the fitted
effective bond energy of EB,FD/Diss = 276(5)meV is very close to EG. For the
case of edge diffusion at A and B step edges, we observe that the effective
bond energies overlap within their margins of error and are both significantly
lower than the full bond energy EG. This is an expected limitation of the bond
counting approach as the transition states of the edge diffusion transitions are

Transition type i EB,i [meV] ∆Ei,0 [meV]

free diffusion/dissociation FD/Diss 276(5) 192(6)

A step edge diffusion ED-A 245(4) 190(5)

B step edge diffusion ED-B 254(10) 508(13)

ascension Asc 206(12) 901(14)

descension Desc 276(5) 300(1)

Table 4: Fitted effective bond energies EB,i and base energy barriers ∆Ei,0.
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close enough to the initial neighbours such that the transitioning particle does
not have to overcome the full bond energy to slide into the target state. This
serves as a reminder that, while the C60-C60 interaction range is relatively
short, it is still long enough that a bond counting approach that only considers
the initial number of neighbours has to be viewed as a rough approximation. A
very surprising result is the significantly lower effective bond strength EB,Asc =

206(12)meV of the ascension transition, which is so far not fully understood.
An analysis of the exact transition paths of ascension may lead to interesting
insights but is not performed here as the ascension barrier of C60 on C60(111)
is high enough for those transitions to not be very relevant for the following
KMC simulations. For the case of descension we only measured one initial
configuration (n = 0), so we assume that EB,Desc is equal to EB,FD/Diss as the
descension transitions also have long transition paths in which all initial bonds
have to be overcome completely.

Turning to the base energy barriers ∆Ei,0, it is notable that the base energy
barrier for ED-A (190(5)meV) turns out to be very close to the one for FD/Diss
(192(6)meV) because the transition path for ED-A is basically initialized by
a small diffusion hop to a metastable state (e.g. see transition (1N)II of Tab.
1). The base energy barrier for ED-B (508(13)meV) is more than a bond
energy larger than the one of ED-A, a significant difference that is important
for the evolution of the triangular star-shaped clusters (see Sec. II.2.2) that
have also been observed in experiments [33–36, 42, 45]. The base energy
barrier for ascension (901meV) is very close to the adsorption energy of C60
on C60(111)(around 930meV , calculated with the Girifalco potential at zero
Kelvin), in line with the expectation that the full adsorption energy has to be
overcome to ascend to a higher layer.

The measured attempt rates do not exhibit any specific behaviour depending
on the number of initial neighbours so we do not add any model on top of
them. The exact values of the attempt rates ν0,i(n) are summarized in Tab. 5.

Initial neighbours n
Transition type i 0 1 2 3 4

free diffusion/dissociation FD/Diss 0.43 0.25 1.23 4.02 -

A step edge diffusion ED-A - 0.26 0.74 1.33 0.91

B step edge diffusion ED-B - 0.53 4.60 3.01 10.4

ascension Asc - - 3.81 4.54 3.15

descension Desc 0.38 0.38 0.38 0.38 0.38

Table 5: Effective attempt rates ν0,i(n) (in units of THz).
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The magnitude of those attempt rates (1011−1013Hz) lies in the same range
as other previously measured values for large molecules from the literature [24,
140, 141].

In the KMC simulations of the following sections, we are going to consider two
rate model variants. The first one is termed the ”RawMD” model and is entirely
based on the energy barriers and attempt rates that we have just discussed and
summarized in Tab. 4 and 5. The second one – called the ”Simple” model – will
restrict the free parameters of the rate model a lot, reducing the attempt rate
parameters and the effective bond strengths to just a single value, ν0,i(n) = ν0
and EB,i = EB. In total the RawMD model ends up having effectively 20 attempt
rate and 10 energy barrier parameters, while the Simple model only has one
attempt rate and six energy barrier parameters.
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iii.2 kmc simulations

iii.2.1 tuning of the ”simple” model
In this section, we are first going to show that the naive approach of building a
rate model only focused on reproducing MD simulation results (RawMD) does
not produce a thermodynamically consistent model, while on the other hand,
the Simple rate model will prove to be thermodynamically consistent. We are
then going to compare the cluster morphologies that the two models produce
in KMC simulations and find fixed values for ν0 and EB with which the Simple
model comes close to the RawMD results.

Detailed Balance and Entropy Production

To evaluate the thermodynamic consistency of our models, we are going to em-
ploy a detailed balance condition. While the atomistic dynamics of the MD
simulations are derived from a Hamiltonian, therefore obeying detailed bal-
ance and guaranteeing an absence of steady dissipation, the rate model we
construct based on those dynamics does not necessarily conserve those prop-
erties. In KMC simulations, the detailed balance condition can be expressed
by pSkS→S ′ = pS ′kS ′→S, where S and S ′ are states of the system (given by
positions of all the molecules), pS and pS ′ are stationary probabilities to ob-
serve those configurations and kS→S ′ / kS ′→S are the transition rates leading
from one configuration to the other. While we do not have direct access to the
stationary probabilities, we do have the transition rates ki(n, T) (Eq. III.8) of
which we want to know if they obey detailed balance with the extracted energy
barriers and attempt rates.

Figure 35: Entropy production measure-
ment system.

A practical way to test this is to cal-
culate the stochastic entropy produc-
tion [142, 143] of the KMC trajecto-
ries. For that purpose, we prepare a
10× 10 unit cell system (cf. Fig. 35)
containing nine particles assembled
into a cluster (without deposition of
additional particles) and run trajecto-
ries at a temperature of T = 318K.
In the resulting trajectories, the parti-
cles go through the various transition
types in different successions and we
can observe if any net entropy production occurs by calculating the change of
entropy after every executed KMC step as the logarithm of the ratio between
the rate ki(n, T) of the transition that occurred and the rate kj(m, T) (m being
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Figure 36: Comparison of the average entropy production of the RawMD and
the Simple model over time. The average is calculated from an ensemble of 100
trajectories at temperature T = 318K.

the new number of neighbour) of the transition that would reverse the KMC
step,

δs = log
(
ki(n, T)
kj(m, T)

)
. (III.10)

The sum of these single contributions δs over the course of the trajectories is
the total entropy production ∆S. After an initial relaxation phase, this entropy
production ∆S should fluctuate around zero if detailed balance is obeyed. Plot-
ted in Fig. 36 is an ensemble average of ∆S over 100 trajectories for both of
our models, showing that the RawMD model exhibits a substantial dissipation
of 8.81kBT of entropy per second. In contrast, the entropy production in the
Simple model perfectly fluctuates around zero, showing that it obeys detailed
balance.

This analysis demonstrates how a naive transfer of transition rates from MD
simulations can easily yield a thermodynamically inconsistent model and that it
is necessary to impose some modelling constraints (as discussed in Sec. II.3.3)
onto the derived rate model to ensure thermodynamic consistency.

Cluster Morphologies

To find suitable parameters ν0 and EB for our Simple model we are measuring
and matching the cluster morphologies that the two models are producing in a
temperature range of T ∈ [225, 360]K. We prepare an empty 1000× 1000 unit
cell systems (totalling an area of A ≈ 0.866µm) and have a particle flux of
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Figure 37: Snapshots from KMC simulations using the RawMD and Simple model
at several temperatures. The shown areas span 1000nm × 866nm and contain
100000 molecules, corresponding to 10% coverage. The parameters used in this
Simple model are EB = 235meV and ν0 = 0.25 THz.
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F = 0.026ML/min active until a coverage of 10% is reached (taking a deposition
time of roughly tDepos ≈ 230 s). The KMC simulation then continues without
deposition over a relaxation time of tRelax = 2tDepos ≈ 460 s during which the
clusters can relax their particle positions.

Snapshots of five different temperatures taken at the end of the simulations are
shown in Fig. 37 for the RawMD model and a Simple model with parameters
EB = 235meV and ν0 = 0.25 THz, which turned out to produce very similar
results. No significant difference between the two models can be spotted with
the bare eye.

For a more quantitative test, we are calculating three geometric properties for
the observed cluster morphologies: The covered area A, the cluster perimeter
P and the mean border curvature κ [Fig. 38]. The Area and perimeter of a
cluster can be calculated from the number of molecules in the cluster N and
the number of molecules at the cluster’s edge NE via

A = N · 0.866nm2 P = NE · 1nm. (III.11)

To calculate the mean curvature κ we make use of the formula for the curvature
of a continuous plane curve in two dimensions given in parametric form γ(t) =

(x(t),y(t)),

κ(t) =
|ẋ(t)ÿ(t) − ẍ(t)ẏ(t)|

(ẋ(t)2 + ẏ(t)2)
3
2

. (III.12)

The cluster perimeters are not given as a continuous curve, but as a set of
NE discrete border molecule positions xn,yn, so we need to approximate the
derivates at molecule n via finite differences

ẋn =
xn+1 − xn−1

2
ẍn =

xn+2 − 2xn + xn−2
4

(III.13)

Figure 38: The three measured shape descriptors.
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Figure 39: Average cluster features of both rate models plotted against tempera-
ture. Left: Comparison between the RawMD model with three Simple (S) models
with a constant attempt rate of ν0 = 0.25 THz and varying EB. Right: Comparison
between the RawMD model with three Simple (S) models with a constant binding
energy EB = 235meV and varying ν0.
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(y coordinate analogous). Plugging the derivatives of Eqs. III.13 into the
formula Eq. III.12, we can calculate the curvatures κn at every border molecule
position and from those the mean border curvature

κ =
1

NE

NE∑
n=1

κn (III.14)

In addition to those three shape descriptors, we are also calculating two di-
mensionless quantities, the circularity C and the dimensionless curvature K,

C =
2πA

P2
K =

κP

2π
, (III.15)

both defined to return unity for circles of any size.

The average values of the shape descriptors are plotted against temperature
in Fig. 39, comparing the RawMD model with variations of the Simple model.
We can see that a very good agreement between the two models is achieved
for EB = 235meV and ν0 = 0.25 THz over the whole temperature range and
also that deviation from those values can lead to significant differences. The
bond strength EB is close to an average of the effective bond strengths EB,i of
the RawMD model listed in Tab. 4 and closest to the ones of edge diffusion,
which are the most important transitions when it comes to cluster relaxation
and consequently cluster shapes. However, with this low EB the cluster energy
is underestimated which would lead to lower cluster densities / bigger clusters
(see Sec. II.2.3). This is compensated by an attempt rate ν0 that is slightly
lower than the attempt rate for free diffusion in the RawMD model.

In the following section, we are going to use the Simple model with the deter-
mined optimal parameters to run multilayer growth simulations.

iii.2.2 multilayer growth
To apply our derived Simple rate model to a specific problem, we are turning to
the consecutive growth of multiple C60 layers, for which we specifically consider
the experimental data published by Bommel et al. in Ref. [55]. In this particular
study, the time evolution of the average cluster density during deposition of C60
molecules on a muscovite mica (KAl3Si3O12H2) substrate was measured using
X-ray spectroscopy. It is plotted in Fig. 40 as a function of mean film height
in units of monolayers (ML, molecular exposure = F·time/n with n the density
of a full monolayer). Using the same molecular flux and temperature as in this
experiment (F ≈ 0.1 ML/min, T = 333K) we have measured the cluster density
time evolution of the Simple model and plotted it in Fig. 40 (green line) in
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comparison to the experimental results. While the simulations naturally recover
the period of the oscillations, the Simple model yields consistently smaller
cluster densities, with a discrepancy exceeding an order of magnitude in both
the first and second layer. The discrepancy in the first layer is to be expected
as the diffusion process of C60 on mica is different than on C60(111), however,
the behaviour of the second and higher layers warrants further investigation.

The authors of this study also reproduced parts of their data (second layer
onwards) using a basic KMC simulation (no sublattices, no distinction between
A and B step edge diffusion) with a top-down constructed rate model (which
we refer to as ”Bommel”), the parameters of which are at variance with our
results and other studies in the literature: ∆EFD,Bommel = 540meV for the free
diffusion barrier and EB,Bommel = 130meV for the bond strength versus our
values in the Simple model, ∆EFD = 192meV and EB = 235meV . The reasons
for these large differences can be seen in the snapshots of the corresponding
KMC simulations in Fig. 41 [subfigures (a) are a reproduction of their model
from our side]. The large diffusion barrier of ∆EFD,Bommel = 540meV was
chosen to reproduce the higher cluster densities that they observed from the
second layer onwards, whereas our Simple model grows much bigger clusters
in lower densities. However, with this high diffusion barrier (and because
they implemented a different bond counting approach), a low bond strength

Figure 40: Cluster density measured at T = 333K as a function of molecular
exposure. Plotted are experimental results from Ref. [55] (dark green circles) in
comparison to results from KMC simulations employing the pure Simple model
(green line), representing the homoepitaxial growth of C60 on a clean C60(111)
surface. Also plotted are the results of the Simple model with modified diffusion
rates on the first layer to reproduce the experimental first layer cluster densities
(bright green line), representing heteroepitaxy of C60 on mica.
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Figure 41: Snapshots taken at different stages of the multilayer growth simulations
with a temperature of T = 333K and a molecular flux of F = 0.1 ML/min. (a) Rate
model as used by Bommel in Ref. [55]. (b) ”Simple” rate model as derived in the
previous section [notice the grain boundaries]. (c) Using the Simple rate model
only for the second and higher layers. In the first layer, the diffusion barrier and
attempt rate have been adjusted to reproduce the experimentally observed first
layer cluster densities of C60 on mica given in Ref. [144].
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(EB,Bommel = 130meV) is needed to make the clusters grow into compact
shapes, which may have been the goal of this parameter tuning. In contrast,
the clusters in our Simple model grow into star-shaped morphologies just as
we have shown earlier.

iii.2.2.1 Grain Boundaries

While the obtained diffusion barrier of ∆EFD,Bommel = 540meV was presented
as a free diffusion barrier for the diffusion process of C60 on a defect-free
C60(111) surface, we are proposing that it is actually an effective diffusion
barrier for C60 on a defective C60 surface grown on mica. As defects, we
are considering ”grain boundaries” that can evolve during the coalescence of a
monolayer. In our KMC simulations, grain boundaries evolve when two clusters
that are initialized on different sublattices (of which we have two possible

Figure 42: Grain boundaries and the evolution of separated domains. (a,c) Visual-
ization of grain boundaries as a result of multiple possible cluster species (clusters
evolving on different sublattices) on (a) C60(111) and (c) mica. The white numer-
als denote the sublattice positions. (b,d) Example result of domains separated
by grain boundaries for (b) two and (d) four possible sublattices. Generated by
placing 25× 25 hexagons with random colors, simulating homogeneous growth of
clusters with fixed spacings. [compare subfigure (b) with Fig. 41c]
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choices) of the honeycomb lattice are unable to cleanly coalesce, leaving a
small space between the clusters that cannot be filled by other C60 molecules
[Fig. 42a]. While in reality particles can take positions on top of the grain
boundaries, these positions are off-lattice for the KMC simulation, so particles
in the simulation are not able to cross grain boundaries. While the impossibility
of crossing overestimates the diffusion hindering effect of grain boundaries, the
two sublattices that we have implemented underestimate the number of grain
boundaries that can evolve during the growth of C60 on mica. The mica surface
has a lattice constant of roughly 0.5nm [145–149], resulting in four possible
sublattices on which the C60 molecules can nucleate into clusters [Fig. 42c], all
being unable to cleanly coalesce with clusters nucleated on one of the other
sublattices. Therefore, C60 grown on mica will form many domains separated
by grain boundaries [Fig. 42d], strongly hindering the diffusion of particles on
the second layer.

To test the effect of grain boundary limited diffusion in our simulation, we
modify the Simple model with a different behaviour on the first layer, meant to
reproduce the observed first layer results of Ref. [55]. To that end we remove
the distinction between A and B step edge diffusion to get compact cluster
growth, we choose an ascension barrier large enough to ensure layer-by-layer
growth, ∆EAsc,mica = 1150meV and most importantly, we have determined a
diffusion barrier and attempt rate of

∆EFD,mica = 655meV ν0,mica = 4× 1015Hz (III.16)

by tuning these parameters to reproduce the experimental first layer cluster
densities at temperatures T ∈ {313, 333, 353}K (data from Ref. [144]). The
results of the KMC simulation with this altered first-layer behaviour are shown
in Fig. 41c and 40 (bright green line). It can clearly be seen how the high
first-layer cluster density has a strong impact on the growth of the subsequent
layers because of the diffusion-hindering grain boundaries. Consequently, the
time evolution of the cluster densities is now in better agreement with the
experimental data at T = 333K not only for the first but also for the higher
layers [Fig. 40 bright green line].

While the cluster densities obtained from our Simple rate model (without the
mica adjustments) can serve as a lower bound that the experiment should hit
if the hindering effect of grain boundaries is negligible, we can calculate an
upper bound for the case where the grain boundaries formed by the four cluster
species are not crossable. To do this we take the simplified growth model shown
in Fig. 42d (hexagonal clusters homogeneously growing with fixed intercluster
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Figure 43: Peak cluster densities of the second C60 layer at the three experimen-
tally observed substrate temperatures [144] (dark green discs) in comparison to
the results of KMC simulations with the Simple rate model (green squares). Also
shown is the upper bound for domain-limited diffusion given by Eq. III.17 (light
green diamonds).

spacings) and calculate how many domains ndomains are forming on average
from the coalescence of n1 first layer clusters. We find

ndomains ≈ 0.38 ·n1 (III.17)

as an upper bound for the second layer cluster densities. In Fig. 43 we plot
the peak second layer densities of the experiment and our Simple model (lower
bound) as well as the domain-limited upper bound of Eq. III.17 for comparison.
Interestingly, the experiment perfectly matches the second layer peak density
of our Simple model for the highest temperature of T = 353K while it strongly
deviates for the other two temperatures and comes close to the domain-limited
upper bound at T = 313K. This suggests that at low temperatures, particle
diffusion and cluster growth on top of the first layer are indeed limited to
domains separated by grain boundaries, while at high temperatures the C60
diffusion can overcome the barriers of the grain boundaries, recovering the
behaviour of a clean C60(111) substrate.

iii.3 summary
In this chapter, we have studied the epitaxial film growth of C60 on C60(111).
We have employed MD simulations to systematically determine energy barriers
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and attempt rates (Tab. 1, 2, 4 and 5) for the elementary diffusive processes from
trajectories starting with specific initial configurations. We have shown that a
rate model that is naively constructed to reproduce the MD simulation results
(”RawMD” model) does not obey detailed balance by measuring the entropy
production along KMC simulation trajectories. To obtain a thermodynamically
consistent rate model, we constructed the ”Simple” model by constraining the
attempt rates ν0,i and effective bond strengths EB,i to single values ν0 and EB
and have determined the values

EB = 235meV ν0 = 0.25 THz (III.18)

as optimal choices for the Simple model by matching the cluster morphologies
of the Simple and RawMD model.

Using this Simple rate model, we have then investigated the multilayer growth
of C60 in KMC simulations. We compared the time evolution of cluster densities
during multilayer growth in our simulation with the experimental data from
Refs. [55, 144] and found a significant discrepancy. We have then shown
that this discrepancy can be explained by the evolution of grain boundaries
during coalescence of the first C60 layer on mica, which hinders the diffusion
and cluster growth process for the consecutive layers. With this, we have also
found a reason why the parameters obtained for the KMC rate model of Ref.
[55] are in strong disagreement with our values and other estimates in the
literature.

The C60 on C60(111) system simulated via the coarse-grained Girifalco poten-
tial was an ideal system for a bottom-up rate modelling from MD simulations
as we have demonstrated here. The MD simulations achieved time scales long
enough to observe all of the relevant transitions with little computational ef-
fort, enabling the gathering of an abundant amount of statistics on every single
transition type. However, it is not necessary to gather this much data on every
transition of interest to derive a reasonable rate model for KMC simulations.
We will demonstrate this in the next chapter where we are going to apply this
approach to the C60 on CaF2(111) system.
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In this chapter, we are going to apply the bottom-up modelling approach of
chapter III to C60 on CaF2(111) diffusion processes to combine the results with
the ”Simple” model of C60 on C60(111) diffusion to obtain a complete rate model
for C60 on CaF2(111) epitaxy. The contents of the first half of this chapter (MD
simulations and rate modelling) are largely based on our second publication,
Ref. [3].

In contrast to the C60(111) substrate of the last chapter, which we could strongly
coarse-grain with the Girifalco potential, the CaF2(111) substrate is going to
require a lot more computational effort as we are not able to coarse-grain it.
Besides requiring the simulation of more particles to achieve the same crys-
tal surface area, CaF2(111) is composed of Ca2+ and F− ions, requiring the
implementation of computationally expensive long-ranged electrostatic interac-
tions. This significantly reduces our ability to gather statistics on the various
transition types, which is why we are limiting the scope of the following MD
simulations to initial configurations with a maximum of two initial neighbours.

While the CaF2(111) substrate cannot be coarse-grained, its interactions with
the deposited C60 molecules can. Using a similar approach as for the derivation
of the Girifalco potential, we can calculate coarse-grained C60-Ca and C60-F
interaction potentials from atomistic C-Ca and C-F potentials by integrating
out the rotational degrees of freedom of the C60 molecule. As the force cal-
culations of the CaF2(111) itself are going to require most of the computation
time anyway, coarse-graining the C60 molecule does not yield a significant
computational gain in this case. However, it is an interesting question what
kind of impact a coarse-graining like this can have on the simulation of diffu-
sion processes on a fine-grained surface like CaF2(111) (especially in a low-
temperature regime where the coarse-grained Girifalco potential is suspected
to be inaccurate). We are therefore adding a comparative study of an atomistic
rigid-body representation and a coarse-grained central body representation of
the C60 molecule diffusion on CaF2(111). The dynamics of the two models are
going to be compared in Sec. IV.1.2 with a detailed analysis of the free diffusion
process and we are going to construct two separate rate models for use and
comparison in KMC simulations based on coarse-grained and atomistic MD
simulations.

Another difference of this system is that we do not have any established C60-
CaF2(111) interaction potentials, so we have to come up with them ourselves.
In defining those interaction parameters we are going to leave a free parameter
εF that allows us to tune the C60-CaF2(111) interaction strength in the MD
simulations. This parameter will be transferred into the resulting KMC rate
models as a free parameter that allows for interpolation between the observed
MD simulation rates. We can then tune εF in KMC simulations to reproduce
experimentally observed cluster properties.
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iv.1 md simulations

iv.1.1 modelling and interaction poten-
tials

CaF2 Interaction Potentials

To model the CaF2(111) substrate atoms, we follow the example of Gillan’s
studies on CaF2 [150]. The electrostatic interaction between the Ca2+ and
F− ions (represented by point particles) is superimposed with a Born-Mayer-
Huggins style potential,

φS
ij(r) =

1

4πε0

qiqj

r
+Aije

−r/ρij −
Cij

r6
. (IV.1)

The electrostatic interaction is determined by the charges of the ions (qCa =

2e and qF = −e) and the parameters for the Van der Waals and repulsive
interactions are given in Tab. 6. A detailed discussion of these interaction
parameters can be found in Ref. [150].

Table 6: Parameters taken from Ref. [150] for the repulsive and Van der Waals
interactions of φS

ij [Eq. (IV.1)].

Aij[eV] ρij[Å] Cij[eVÅ
6
]

F-F 1808.0 0.293 109.1
Ca-F 674.3 0.336 0

Ca-Ca 0 — 0

In the MD simulation setups, the CaF2(111) substrate consists of four layers
of CaF2 arranged in a fluorite structure and is terminated by a layer of fluoride
in the (111) plane (as shown in Sec. II.1.3 Fig. 5). The substrate atoms are
initialized on the corresponding lattice positions and a Langevin thermostat
and velocity rescaling are applied to equilibrate the system with random initial
velocities at a given desired temperature. The bottommost layer of CaF2 is
fixed in place to ensure that the crystal structure stays in one position.

Atomistic Fullerene Model

In the atomistic representation of C60 we neglect molecular vibrations and
represent each molecule by 60 carbon atoms, grouped to form a rigid body.
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The individual carbon atoms of two different C60 molecules interact via the
Lennard-Jones potential

φC(r) = 4εC

[(σC
r

)12
−
(σC
r

)6]
. (IV.2)

the parameters εC and σC can in principle be derived from the parameters α
and β of the Girifalco potential via

σ ′C = R

(
480β

α

)1
6

≈ 3.47Å ε ′C =
2α2

5β602
≈ 2.86meV . (IV.3)

However, using these parameters leads to a strong discrepancy between the lat-
tice constants and cluster energies of the coarse-grained (Girifalco) and atom-
istic representations of C60 clusters on the CaF2(111) surface, especially at low

Figure 44: Configuration for the
C-C interaction potential tuning.

temperatures. As we are interested in
analysing the effect of coarse-graining the
adparticle-substrate interaction on the diffu-
sion processes, we want to minimize the effect
of the adparticle-adparticle coarse-graining
on cluster properties like lattice strain, espe-
cially in the low-temperature regime where
C60 was shown to exhibit structural phase
transitions. Therefore, we are not using the
parameters of eq. IV.3 and perform MD sim-
ulations of 19 C60 molecules arranged in a
hexagonal cluster on the CaF2(111) substrate
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Figure 45: Average bond energy and nearest neighbour distance of C60 clusters
on CaF2(111) simulated with the Girifalco potential in comparison to clusters sim-
ulated using the atomistic potential with two different choices of parameters.
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[Fig. 44] to match the cluster properties of the atomistic representation with the
Girifalco model. The parameters σC and εC were tuned to reproduce the average
potential energy per lateral neighbour (bond energy) of EB ≈ 270meV and an
average center-to-center distance between nearest neighbours of aNN ≈ 10.1Å
of the Girifalco potential at T = 200K [Fig. 45]. The result of this tuning are
the parameters

εC = 2.36meV σC = 3.62Å. (IV.4)

For the interactions between the individual carbon atoms of the C60 molecules
with the substrate atoms, we assume a standard Lennard-Jones C-F ,

φF(r) = 4εF

[(σF
r

)12
−
(σF
r

)6]
, (IV.5)

and a Buckingham C-Ca interaction,

φCa(r) = Ae
−r/ρ, (IV.6)

inspired by the interatomic interaction potentials derived in Ref. [151]. In this
paper, several potentials for CaF2 with different molecules are listed. While
the C60-CaF2 interaction was not investigated in this study, we take the listed
parameters of CaF2 with other atoms of different molecules as reference points
[Tab. 7]. The length scale parameters, ρ = 0.297Å and σF = 2.055Å are
chosen based on the given Ca-O, Ca-Ow and CD-F potentials. The repulsive
parameter A is set to be in the same range as the listed Ca-Ow, Ca-F and
Ca-O potentials, A = 1300 eV . The remaining attractive parameter, εF, is the
most important one, as it sets the interaction strength between carbon and
fluoride atoms and consequently governs the overall adsorption energy of the
C60 molecules on the CaF2(111) substrate. Therefore, we are not estimating
εF and instead leave it as a free variable that we vary in a range of εF ∈

Table 7: Compilation of some of the interaction parameters derived in Ref. [151]
and the parameters that we have chosen to use for our atomistic model (bottom
two lines) for eqs. IV.5 and IV.6. (O: oxygen of carbonate group, Ow: Oxygen of
water, CD: carbon of methanoic acid)

Buckingham Lennard-Jones
ion pair A[eV] ρ[Å] σ[Å] ε[mev]

Ca-O 1550 0.297 — —
Ca-Ow 1186 0.297 — —

Ca-F 1272 0.2997 — —
CD-F — — 2.055 146

C-Ca 1300 0.297 — —
C-F — — 2.055 [35, 55]
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[35, 55] meV , which results in a total molecule-substrate adsorption energy of
300− 800meV . We expect that the dewetting barrier/adsorption energy for
C60 on CaF2(111) is in this range since C60 has been observed to form two-
layered clusters on CaF2(111) at room temperature [36, 53], suggesting that the
molecule-substrate interaction is somewhat weaker than the molecule-molecule
interaction (again, the total adsorption energy of C60 on C60(111) is roughly
930meV).

Coarse-grained Fullerene Model

For the coarse-grained C60 model we employ the same Girifalco potential that
we have derived in Sec. III.1.1 for the C60-C60 interaction. To calculate coarse-
grained interaction potentials of a C60 molecule with the substrate atoms we
follow a similar approach to the derivation of the Girifalco potential (and as it
was previously done in other works [152–154]) and smear out the C atoms of the
C60 molecule onto a sphere SC60 of radius R = 3.55Å over which we integrate
the atomistic interaction potentials φi(r) (i ∈ {Ca,F}) of eqs. IV.6 and IV.5. The
formula from which the coarse-grained potentials φCG

i (r) are obtained can be
written in spherical coordinates as

φCG
i (r) = −2πR2η

∫π
0

dθ φi(
√
R2 + r2 − 2rR cos θ), (IV.7)

where η = 60/(4πR2) is the number density of carbon atoms on the sphere and
r is the distance between the center of the sphere SC60 and the substrate atom.
Solving the integration for our interatomic potentials, we obtain

φCG
F (r) =

60

Rr
εF

(
σ6F

2(R+ r)4
−

σ12F
5(R+ r)10

−
σ6F

2(R− r)4
+

σ12F
5(R− r)10

)
(IV.8)

Figure 46: Atomistic (left) and coarse-grained (right) interaction C60 molecules
with a single atom.



iv.1 md simulations 75

and

φCG
Ca (r) =

60Aρ2

Rr
e−r/ρ

[
sinh

(
R

ρ

)(
1−

R

ρ

)
+
r

ρ
cosh

(
R

ρ

)]
. (IV.9)

The parameters εF, σF, A and ρ are assigned the same values as in the atomistic
model (with εF being a free parameter)

iv.1.2 free diffusion

We start with the free diffusion process, where a single C60 molecule is diffusing
on a clean CaF2(111) surface at a specific substrate temperature. The simula-
tions are again set up using the LAMMPS simulation package [118]. The simu-
lation box is sized approximately 40Å×46Å with periodic boundary conditions
along the x and y direction. A single C60 molecule is placed in the middle of the
surface at the beginning of the simulation [Fig. 47]. For the atomistic model, the
interactions are implemented using the available born/coul/long and lj/cut

pair potentials while for the coarse-grained model we tabulated the potentials
IV.8 and IV.9 to be usable in LAMMPS. After equilibrating the substrate to
the desired temperature, a 50ns trajectory of the C60 molecules is recorded for
later analysis. For each temperature (T ∈ [40, 450]K, covering low to medium-
high temperatures) and interaction strength (εF = {35, 40, 45, 50, 55}meV) ten
of these trajectories are run, totalling 500ns of diffusion per set of parameters.

Figure 47: Side (left) and top view (right) of the MD simulation setup for the free
diffusion process of C60 on CaF2(111). Carbon atoms are shown in green, calcium
atoms in grey and fluoride atoms in light grey
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iv.1.2.1 Minimum Energy Paths

Before going over the actual MD simulation results, we are taking a closer
look at the minimum energy paths (MEPs) for the surface diffusion of a C60
molecule in both the atomistic and coarse-grained model.

From the MD simulation trajectories, we know that in both models the C60
molecules preferably occupy positions above third-layer fluoride atoms (position
3F in Fig. 47), which we identify as lattice sites of the free diffusion process.
To determine the MEPs from a lattice site to a neighbouring one, we have
implemented the drag and NEB method (see Sec. II.3.4) in Mathematica [155].
For simplicity, we leave the CaF2(111) substrate stationary and only optimize
the position/rotation of the C60 molecule along the MEPs. In the coarse-grained
case, we choose a straight line connecting the two lattice sites as an initial
path for the NEB method. In the atomistic model, the choice of an initial path
is not as trivial because of the rotational degrees of freedom. We therefore
first generate an MEP for the atomistic model using the drag method and
then further optimize this MEP with the NEB method. Illustrations of the
resulting MEPs and their corresponding potential energy plots are shown in
Fig. 48(a-f) and intermediate snapshots from the MEP of the atomistic model
with εF = 45meV are shown in Fig. 48(g-k). The energy minima (Emin),
maxima (Emax) and barriers (∆EFD) derived from the potential energy plots are
compiled in Tab. 8.

Major differences between the two models can be spotted in these MEP results.
Firstly, the bond between the atomistic molecule and the substrate is 10− 20%
stronger, expressed by a larger value of Emin. This difference is expected due
to the atomistic model’s ability to align the orientation of the molecule with
respect to the substrate atom positions. Secondly, as the atomistic molecule can
also adjust its orientation during the diffusive transition, it has a significantly
lower diffusion barrier than the coarse-grained model. The rotational degrees
of freedom also cause the atomistic model to have an additional local energy
minimum between the two lattice sites on top of the surface calcium by aligning
the molecule face-down [Fig. 48i]. This additional energy minimum is quite
weak for εF = 35meV but gets stronger with increasing εF (see Fig. 48(d-f)),

Table 8: MEP analysis results. All values are given in meV

Atomistic Coarse-Grained
εF Emin Emax ∆ED Emin Emax ∆EFD
35 −447 −426 20.5 −390 −350 40.1
40 −537 −516 21.2 −475 −421 54.0
45 −631 −608 22.8 −563 −498 65.1
50 −728 −702 25.8 −654 −580 73.8
55 −829 −797 32.3 −747 −666 81.2
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Figure 48: Minimum energy paths (MEPs) for surface diffusion in (a-c) the coarse-
grained and (d-f) the atomistic model for three values of εF. Subfigures (a-f) are
split into an initial configuration (left) with the center-of-mass trajectory of the
MEP shown in orange and a plot of the potential energy along the MEP (right).
(g-k) Snapshots of the atomistic MEP at εF = 45meV with two atoms of the C60
molecule highlighted in orange to track the orientation of the molecule.

as the C-F attraction overwhelms the repulsion of the C-Ca interaction. With
the presence of the meta-stable ”intermediate lattice site” on top of the surface
calcium, the atomistic model tends to always take the path over the calcium
location. In contrast, the coarse-grained model follows a more direct path
between the lattice sites at εF = 35meV and only passes over the calcium
location at stronger values of εF (without the presence of an actual energy
minimum).
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iv.1.2.2 Energy Landscapes

The MEPs and their corresponding potential energy plots of the last section
give an idea of how the potential energy landscapes of our models look like. In
this section, we extract the free energy landscape from the MD trajectories at
non-zero temperatures to see if they match the expectations set by the MEPs.
As the CaF2(111) surface can be seen as a repetition of a simple unit cell (shown
in Fig. 49) in x and y direction, we project the center-of-mass trajectories into
a single unit cell to best make use of the available data. Furthermore, we
assume that the positional probability distribution can be written as

p(x,y; T) = A · exp
(
−F(x,y; T)
kBT

)
, (IV.10)

with a normalization constant A and a free energy function F(x,y; T). As we
are mainly interested in energy barriers, we solve Eq. IV.10 for F and write it
as a difference:

F(x,y; T) = kBT(log(A) − log(p(x,y; T)) (IV.11)

∆F(x1,y1, x2,y2; T) = kBT [log(p(x1,y1; T)) − log(p(x2,y2; T))]. (IV.12)

With Eq. IV.12 we can now reconstruct a free energy landscape from the
positional probability distribution except for a constant offset. Setting this
offset to match the minimum energy of the MEPs, we can compare the potential
energy to the free energy landscape along the MEPs.

In Fig. 50 we can already see that the overall shapes of the free energies are
in quite good agreement with the shapes of the potential energies along the
MEPs. Also, in Fig. 51(left) we can see that the MEPs nicely align with the
obtained free energy landscapes. Especially the presence of a second local

Figure 49: Left: CaF2(111) surface unit cell. Right: Visualization of the logarithmic
positional probability distribution of a C60 molecule inside a CaF2(111) unit cell.
The shown distribution is taken from the MD trajectories of the atomistic model
with εF = 55meV at T = 100K.
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Figure 50: Potential energy EMEP (as calculated in the previous section) in compar-
ison to the free energies F100/F200 (at T = 100K and T = 200K respectively) along
the MEP at εF = 55meV (Left: atomistic. Right: coarse-grained).

energy minimum in the unit cell above the calcium for the atomistic model as
well as its absence in the coarse-grained model are very nicely reproduced
in these density plots. However, as the free energy strongly depends on the

Figure 51: Left: Density plots of ln (p(x,y; T)) at T = 100K for several values of εF
and for both models with the corresponding MEPs overlaid as black dots. Right:
Comparison of the potential energies EMEP along the MEPs (from the previous
section) to the potential energies EPPD along the MEPs (obtained via extrapolation
of the free energy MD data to 0K). The binding strength εF increases from 35meV

for the topmost plot to 55meV for the bottommost plot in steps of 5meV .
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temperature of the system, we can only expect agreement with the previously
determined potential energies along the MEPs at T = 0K. To extrapolate from
our data to T = 0K we use the definition

F(x,y; T) = E(x,y) − TS(x,y), (IV.13)

where we have assumed that there is only a linear dependence between F and
T and that the positional energy E(x,y) and entropy S(x,y) are independent
of temperature. Taking our free energy measurements at various temperatures,
we can obtain E(x,y) and S(x,y) for any point in the unit cell via a linear fit.
Doing this for the coordinates of the MEPs yields the results shown in Fig.
51 (right), which are plotted in direct comparison to the previously determined
potential energies along the MEPs. We can see that the results we obtained
with these two different approaches are in very good agreement with each other.

iv.1.2.3 Diffusion Coefficients

For a final comparing analysis between the two models, we are going to apply
the common approach of evaluating the mean-squared displacement (MSD, see
sec. II.3.5) of the MD trajectories. To derive diffusion coefficientsD(T), diffusion
barriers ∆EFD and attempt rates ν0,FD from the MSDs, we employ the formulas

MSD(∆t) = 〈[x(t+∆t) − x(t)]2〉 = 4D(T)∆t, (IV.14)

D(T) =
1

4
ν0,FD〈l2〉 exp

(
−
∆EFD
kBT

)
, (IV.15)

where we set the mean-squared jump length to 〈l2〉 = 0.3862nm2 = 0.149nm2

to obtain effective attempt rates ν0,FD under the assumption of single jumps

Figure 52: Example free diffusion trajectories of the atomistic (green, measured at
T = 250K) and coarse-grained model (red, measured at T = 150K).
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between neighbouring lattice sites. However, for the discussion of the resulting
attempt rates, we will have to keep in mind that this assumption is not accurate
in our case since the MD trajectories show jumps across multiple lattice sites
(especially at higher temperatures). In the coarse-grained model, we can even
observe occasional long diffusive jumps without a change in direction [Fig. 52],
similar to the behaviour described by Lévy flights [156, 157].

The resulting Arrhenius plots are shown in Fig. 53. While the coarse-grained
model turns out to follow an Arrhenius law across the board (the data points
in Fig. 53a fall onto lines), the atomistic model exhibits a crossover in diffusive
behaviour at crossover temperatures TCross ∈ [100, 200]K which depend on the
value of εF [Fig. 53b].

As this crossover in the behaviour of the atomistic model hints at a relation to
the structural phase transition of C60 [16–21], we take a look at a few addi-
tional shorter trajectories with a higher time resolution to be able to analyze the

Figure 53: Arrhenius plots for the obtained (a) translational diffusion coefficients
of the coarse-grained model in comparison with (b,c) the translational and rota-
tional diffusion coefficients of the atomistic model. The dashed red lines mark the
crossover temperatures of the atomistic model.
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Figure 54: Determination of the rotational diffusion coefficients from (a) distribu-
tions of squared angular displacements (SADs). (b) MSADs obtained from SAD
distributions. The red data point is the result from a fit of Eq. IV.18 to the distribu-
tion shown in (a). (c) Rotational diffusion coefficients obtained from MSADs. The
red data point is the result of a fit of Eq. IV.16 to the data shown in (b).

rotational diffusion of the C60 molecules in the atomistic model. These trajecto-
ries are obtained from simulations with εF ∈ {35, 45, 55}meV at temperatures
T ∈ [60, 360]K, covering a total of 50ns of diffusion per set of parameters.
From the trajectories, we aim to determine a rotational diffusion coefficient
Dr(T) analogous to the translational case (Eq. IV.15) using a definition of the
mean squared angular displacement (MSAD),

MSAD(∆t) = 〈[θ(t+∆t) − θ(t)]2〉 = 2frDr(T)∆t (IV.16)

with the number of rotational degrees of freedom fr = 3. To calculate the
MSADs, we determine the angular displacements [θ(t+∆t) − θ(t)] as the an-
gle of optimal rotation between the conformations of the C60 molecule at times
t and t+∆t. To find the optimal rotation between the two conformations, we
follow a quaternion approach as described in Refs. [158, 159] (see also App.
B.2). For small time intervals ∆t, we find that the squared angular displace-
ments (SAD(t,∆t) = [θ(t+∆t)− θ(t)]2) calculated this way are exponentially
distributed [Fig. 54a],

p?∆t(SAD(t,∆t)) =
1

MSAD(∆t)
· e−SAD(t,∆t)/MSAD(∆t). (IV.17)

However, with increasing ∆t, the distribution naturally changes as the SAD of
an optimal rotation can only take values SAD(t,∆t) ∈ [0,π2), effectively reflect-
ing the exponential distribution back and forth in this interval. The resulting
distribution can be written as

p∆t(x) =
2λ cosh (λx)

1− e−2λπ
2

− λeλx, (IV.18)
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with substitutions λ = 1/MSAD(∆t) and x = SAD(t,∆t) applied for better
readability. Fitting the function Eq. IV.18 to the distribution of SADs, we
obtain values for MSAD(∆t) [Fig. 54b] from which we can then determine
the rotational diffusion coefficients Dr via Eq. IV.16 [Fig. 54c]. The results
are shown in the Arrhenius plots for the rotational diffusion coefficients in
Fig.53c. While the rotational diffusion also experiences a crossover, it appears
consistently at a crossover temperature of around TCross,R = 163(1)K.

The crossover temperatures we have observed in the translational and rotational
diffusion coefficients are lower than the temperatures at which structural phase
transitions of C60 were experimentally observed in thin films [19, 20] (220−
260K). However, deposition experiments of C60 on metal-silicon surfaces have
found a crossover in diffusive behaviour (or rather a crossover in island density
formation behaviour) in a temperature range of 140−160K [48], very compatible
with our results. A similar observation of a diffusive crossover was made in MD
simulations of the diffusion process of C60 on graphene [160] in a temperature
range of 25− 75K. We can suspect that the crossover temperature was shifted
to much lower values in this case because the graphene substrate results in
much lower diffusion barriers for the C60 molecule than the CaF2(111) surface.
With this wide variation of experimentally and numerically observed crossover
temperatures on different substrates, we can conclude that our observation of
a crossover temperature that depends on εF fits into the established work.

iv.1.2.4 Summary and Discussion

From the analyses of the previous sections, we have obtained several estimates
for the diffusion barriers ∆EFD(εF) for the coarse-grained and atomistic model:
From the MEPs in Sec. IV.1.2.1, the energy landscapes in Sec. IV.1.2.2 and
from the Arrhenius plots in Sec. IV.1.2.3. The results are summarized in Fig.
55 and can be grouped into two sets. The first set is composed of the lower
energy barriers (14− 40meV) resulting from the low-temperature analyses of
the atomistic model and is, therefore, most likely accurate for the diffusion
process at low temperatures (where the rotational degrees of freedom of the
C60 molecule play a bigger role). The second set contains the energy barriers
from the coarse-grained model as well as the MSD results of the atomistic
model at high temperatures, which all fall into a higher range of 40− 90meV .
We can apply linear fits to the two sets of energy barriers to obtain models for
the low temperature (LT) and high temperature (HT) regime respectively:

∆EFD,LT = −10.7(67)meV + 0.78(14) · εF (IV.19)

∆EFD,HT = −14.1(82)meV + 1.74(18) · εF. (IV.20)
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Figure 55: Summary of free diffusion energy barriers obtained in the previous
sections. The data can be grouped into two sets which are fitted separately (black
lines). MSD: Diffusion barriers obtained from the translational mean-squared dis-
placement analyses in Sec. IV.1.2.3. NEB: Diffusion barriers taken from the MEPs
of the nudged elastic band method in Sec. IV.1.2.1. PPD: Energy barriers taken
from the energy landscapes calculated in Sec. IV.1.2.2.

Through the observation of cluster densities in molecular beam epitaxy exper-
iments [36], Felix Loske et al. determined an estimate for the diffusion barrier
of C60 on CaF2(111) in a temperature range of T ∈ [96, 217]K. The experimen-
tal estimate of ∆EFD,Loske = 214(16)meV is in strong disagreement with our
results in both the high and low temperature regime. We can extrapolate our
models of Eqs. IV.19 and IV.20 to a get a diffusion barrier of 214meV at values
of

εF,Exp,LT = 288(56)meV εF,Exp,HT = 131(17)meV . (IV.21)

However, these high values of εF are at odds with the observation of two-
layered cluster growth of C60 on CaF2(111) [53, 60], as the adparticle-substrate
interaction would be considerably stronger than the adparticle-adparticle in-
teraction (with ascension barriers larger than 2 eV).

A possible explanation for this discrepancy was discussed in the erratum to
Ref. [36] (Ref. [2]): Impurities on the substrate surface (e.g. adsorbed air/water
molecules for which cold surfaces act as a sink) could strongly hinder the
diffusion process by acting as nucleation sites for the C60 molecules (”impurity
trapping” [85]). The result would be an effective diffusion process with long
jumps between those impurities, which can naturally not be compared to the
diffusion of C60 on a clean CaF2(111) surface as we have simulated it in this
work. A different plausible explanation is the effect of polarizability of C60
(which we have neglected). In growth experiments of C60 on ZnPc/Ag(111)
[134] it was shown that the polarizability of C60 can explain the emergence
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of chain phases. We can suspect that C60 polarizability is also relevant on
the CaF2(111) surface, as the top fluoride layer of the substrate is negatively
charged.

For the attempt rates of the free diffusion process that we can extract from the
MSD analyses, we are not going into as much detail, as the discussion on the
energy barriers already exposed the discrepancy. However, we are going to
model the attempt rates in the following section to supply rate models on the
free diffusion process for KMC simulations. We can note that the attempt rates
of the atomistic model are in the order of 1011Hz in the low-temperature regime
and 1012− 1013Hz in the high-temperature regime, while they are in the range
of 1013 − 1014Hz in the coarse-grained model. Expectedly, these are also at
variance to the attempt rate obtained from the deposition experiments of Felix
Loske [2] (ν0,FD,Loske = 3.2× 1017Hz), but they are compatible with other values
that have been reported for large molecules [24, 140, 141] (1010 − 1014Hz).

Concluding this section on the free diffusion process of C60 on CaF2(111), where
we have analyzed the process in detail with three different approaches, we have
found that the atomistic and coarse-grained models exhibit significantly differ-
ent behaviours at low temperatures. According to our mean-squared displace-
ment analyses, the difference diminishes for higher temperatures above some
crossover temperature TCross, which depends on the value of the interaction
strength εF. In line with previous expectations, our observation also suggests
that the coarse-grained model should only be used in the high-temperature
regime, while the atomistic model is probably the better choice for low temper-
atures. However, to be able to test this conclusion, we keep working with both
models to measure edge diffusion transition rates in the following section. The
rate models we can thereby derive for both the atomistic and coarse-grained
representations of C60 on CaF2(111) can then be tested in KMC simulations
to see which of those models produces the better results when compared to
experimentally observed cluster morphologies.
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iv.1.3 transition rate modelling

With the simulations of the following section, we want to determine a rate
model with a free parameter εF for sets of transition rates observed in MD
simulations. For a given transition type i from an initial state with n lateral
neighbours probed at interaction strength εF and temperature T , we estimate
the transition rate via the estimator

ki(εF,n, T) =
Ni(εF,n, T)
ttot,i(εF,n, T)

, (IV.22)

where ttot,i(εF,n, T) is the total time we have observed an initial state with
n lateral neighbours that can go through transition type i at the specified
parameters (εF, T ). Ni(εF,n, T) is the number of observations of transition
i during this time. We can note that in Ref. [3] we have used a slightly
different estimator (”unbiased”) which leads to minimal differences in the results
presented here. For this set of edge diffusion simulations we are considering
the transition types i ∈ {ED-A, ED-B, Asc, Diss}. The introduction of the
parameter εF also carries over into the energy barriers ∆Ei(εF,n) and attempt
rates ν0,i(εF,n) that are derived from the assumption of an Arrhenius type
behaviour,

ki(εF,n, T) = ν0,i(εF,n)e−∆Ei(εF,n)/kBT . (IV.23)

To arrive at a model that is thermodynamically consistent and allows for in-
terpolation between the εF values that we are probing, we introduce some
constrains on the modelling of the energy barriers and attempt rates (similar
to the discussion in Sec. II.3.3). For the bond counting approach we assume a
linear dependence of the base energy barrier with the parameter εF,

∆Ei(εF,n) = ∆Ei,0 +miεF + (n− n̂)EB, (IV.24)

where Ei,0 is the base energy barrier, mi the slope of the linear dependence
and EB is the effective binding energy, which we have set equal to 235meV
for compatibility of the resulting rate model with the Simple model of Chapter
III. For a simple modelling of the attempt rates ν0,i(εF,n) for edge diffusion
and dissociation, we assume that they are constants with respect to εF but can
change with transition type i and with the number of initial neighbours n,

ν0,i(εF,n) = ν0,i(n) i ∈ {ED-A, ED-B, Diss}. (IV.25)
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As the edge diffusion transitions at A and B step edges, ED-A and ED-B, are
going to be the only transitions for which we gather data from two different
initial states (n = 1 and n = 2), we require the detailed balance condition,

kED-A(εF, 2, T)
kED-A(εF, 1, T)

=
kED-B(εF, 2, T)
kED-B(εF, 1, T)

(IV.26)

to ensure thermodynamic consistency. By Inserting Eqs. (IV.23) and (IV.24)
into (IV.26), we obtain

ν0,ED-A(2)

ν0,ED-A(1)
=
ν0,ED-B(2)

ν0,ED-B(1)
:= c12. (IV.27)

as a condition for the corresponding attempt rates. Only in the case of the
ascension transition are we using a linear model function

ν0,Asc(εF,n) = y+m0,Asc · εF (IV.28)

to give more flexibility to the ascension barriers and allow them to be equal
to separately measured potential energies EPot (a justification will be given in
the corresponding section).

While we could in principle model the free diffusion process from the last section
in conjunction with the dissociation process (as we did in Chapter III), we are
not going to do that here because of the discrepancy with the experiments
that we have seen in the last section. Instead, we are going to model the free
diffusion process separately here as a first example. The Arrhenius plots for
the translational diffusion coefficients of both the atomistic and coarse-grained
model are shown in Fig. 56(a-e) along with the resulting constrained model
[Fig. 56(h,i)] and the unconstrained Arrhenius fit parameters [Fig. 56(f,g)] for
comparison. We can nicely see how the constrained model (dashed lines in 56(a-
e)) produces a similar behaviour as the unconstrained Arrhenius fits (solid lines)
with only a few exceptions like the behaviour of the coarse-grained model at
εF = 35meV . The resulting rate model parameters of the constrained model

Table 9: Rate model parameters for the free diffusion process derived from the
translational diffusion coefficients. Listed are the parameters of Eq. (IV.24) together
with the attempt frequencies (calculated with the assumption of single jumps of
length l = 0.386nm).

Model i ∆Ei,0[meV] mi ν0,i[GHz]

Atom. FD-LT −8.07 0.6546 153

FD-HT −45.33 2.664 9025

CG FD −68.23 2.896 27301
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Figure 56: Comparison of unconstrained modelling (via Arrhenius fits) with the
constrained modelling for the free diffusion process. (a-e) Arrhenius plots of the
translational diffusion coefficients of the coarse-grained and atomistic model. The
solid lines are unconstrained Arrhenius fits, while the dashed lines are from the
constrained model. (f,g) Energy barriers and attempt rates obtained from the
unconstrained Arrhenius fits. (h,i) Constrained model where the functional de-
pendencies are confined to linear/constant via Eqs. IV.24 and IV.25.

are listed in Tab. 9. When using the listed attempt rates in a KMC simulation,
it is important to note that they were calculated with the assumption of single
jumps between neighbouring sites of length l = 0.386nm and have to be
adjusted according to the implemented geometry. With the linear models of
the low and high-temperature regimes of the atomistic model, we are now also
able to express the crossover temperature TCross in terms of the interaction
strength εF,

TCross(εF) = −106.027K+ 5.7187KmeV−1 · εF. (IV.29)

For the discussion of the individual transition types in the following section,
we are going to provide similar comparisons of constrained and unconstrained
models as in Fig. 56, but the resulting modelling parameters are going to be
compiled in the summarizing section IV.1.5.
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iv.1.4 edge diffusion

After the extensive discussion of the dynamics of a single C60 molecule on
an otherwise empty CaF2(111) surface, we now turn to transitions of single
molecules that are bound to clusters of C60 molecules on the substrate. To this
end, we increase the size of the simulation box to 80Å× 92Å to make room
for a 19-membered hexagonal core cluster to which we can attach additional
adparticles at the corners or edges.

Experiments have shown that C60 clusters on CaF2(111) can have two distinct
orientations with respect to the substrate [36]. To determine how we can ini-
tialize the clusters on the substrate in a stable configuration, we run a few MD
simulations with the core cluster aligned parallel to the substrate [Fig. 57 top]
at T = 300K and observe into which alignments it relaxes. As proposed by
Ref. [36], we found the same two possible alignments with an angle of 38.2°
between them, as shown in Fig. 57 (orientations 1 and 2). The transparent
molecules of Fig 57 also expose how the individual adparticles of the cluster
all take positions above the 3F lattice sites, which we had also shown to be
the preferable position of single molecules on the substrate in Sec. IV.1.2. As
the two alignments are basically mirror images of each other, they are equiv-
alent and we choose to initialize the clusters of all following simulations with
orientation 1.

Figure 57: Two observed cluster orientations after relaxation of a cluster that is
initially aligned parallel to the substrate orientation. Three molecules of the final
configurations are rendered transparently to expose their position above the 3F
lattice site.
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iv.1.4.1 One Initial Neighbour

Figure 58: Initial configuration for edge
diffusion with one initial neighbour. Par-
ticles of interest are highlighted in or-
ange.

For the observation of edge diffusion
with one initial neighbour, we posi-
tion two C60 molecules on opposite
corners of the core cluster such that
they are only bound to a single clus-
ter molecule and are on a stable lat-
tice site of the substrate [Fig. 58].
The initialization of the simulations
is again conducted via the application
of a Langevin thermostat and velocity
rescaling to achieve random initial ve-
locities at given temperatures in the
range of T ∈ [225, 450]K. The co-
ordination number of the two corner
molecules is tracked to be able to no-
tice when a transition occurred (as it
changes from one to zero or two). Af-
ter a transition is triggered, a few snapshots are taken in 1 ps intervals to be
able to categorize the transitions later and the simulation time is recorded be-
fore starting a new trajectory with different initial velocities. One of the goals
of these edge diffusion simulations is to test if there is a preferred direction
for edge diffusion (as is the case for A and B step edge diffusion for C60 on
C60(111)), so we categorize the trajectories into transitions towards A and B
step edges as shown in Fig. 58. While dissociation from the cluster is in princi-
ple also a possible transition in this configuration, the edge diffusion transitions
dominate in this medium temperature regime, which is why we are not able to
sufficiently sample the dissociation process.

The Arrhenius plots for this set of simulations are shown in Fig. 59(a-e), show-
ing an overall higher transition rate in the atomistic model and a preference
of both models to diffuse into the direction of the A step edge. The difference
between the transition rates into the A and B directions increases with εF and
becomes especially pronounced in the coarse-grained model. Again, the con-
strained model (dashed lines in Fig. 59(a-e)) reproduces very well the original
Arrhenius data and is close to the unconstrained Arrhenius fits (solid lines)
without any significant deviations. In comparison to the free diffusion model,
we can note that the energy barriers fall into similar ranges, with the ED-A bar-
rier of the atomistic model being very similar to the free diffusion barrier at low
temperatures. Also the free diffusion attempt rate of the atomistic model at low
temperatures (when adjusted for the longer jump length of the edge diffusion
moves, 153GHz · (0.386/1)2 = 2.3× 1010Hz) is comparable with the attempt
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Figure 59: Comparison of unconstrained modelling (via Arrhenius fits) with the
constrained modelling for the edge diffusion processes with one initial neigh-
bour (n = 1). (a-e) Arrhenius plots of the transition rates for the coarse-grained
and atomistic model. The solid lines are unconstrained Arrhenius fits, while the
dashed lines are from the constrained model. (f,g) Energy barriers and attempt
rates obtained from the unconstrained Arrhenius fits. (h,i) Constrained model
where the functional dependencies are confined to linear/constant via Eqs. IV.24

and IV.25.

rates obtained here. Since our modelling established a connection between the
edge diffusion transitions with one and two initial neighbours via Eqs. IV.24
and IV.27, the constrained model presented in Fig. 59(h,i) also incorporates
data from the following set of two neighbour simulations.

iv.1.4.2 Two Initial Neighbours

For the case of transitions with two initial neighbours, we set up two distinct
configurations. In the first configuration [2N1 of Fig. 60], we place six C60
molecules at all edges of the core cluster in positions where all relevant tran-
sitions can be observed (ascension, dissociation and edge diffusion with one
or two final neighbours). The second configuration with a slightly larger core
cluster [2N2 in Fig. 60] serves the main purpose as a test to check if there is an
asymmetry of the edge diffusion transition with regards to the direction of the
transitions (because of the asymmetry given by the angled cluster-substrate
alignment). As no asymmetry is observed in this configuration (the transition
rates in directions A1 and A2, as well as B1 and B2 of Fig. 60 2N2 are the
same), the results of both configurations of Fig. 60 are merged for the following
discussion.
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Figure 60: Initial configurations for edge diffusion with two initial neighbours.
Particles that can go through transitions of interest are highlighted in orange.

Since the coordination number between the C60 molecules in the cluster does
not necessarily change after a transition in this case (edge diffusion can go from
a two neighbour to another two neighbour state), we have to adjust the transi-
tion detection mechanism. To be able to notice transitions we place additional
non-interacting ”dummy” particles at the initial locations of the adparticles
and track the coordination number between those dummy particles and the
molecules of interest.

To also gather enough statistics on the rarer dissociation and ascension tran-
sitions, we exhaust the probed temperature range to a maximum at which the
initial configuration can stably be equilibrated. Since increasing εF also in-
creases the stability of the core cluster, we vary the temperature range in this
set of simulations starting with T ∈ [450, 720]K at εF = 35meV and increasing
it up to T ∈ [650, 920]K at εF = 55meV .

Looking at the Arrhenius plots for the edge diffusion transitions in Fig. 61,
we can already see that there is some difference to what we have seen in the
one-neighbour edge diffusion case (Fig. 59). In this configuration, the two
models now seem to show a much more similar behaviour, starting with almost
equal transition rates for A and B step edge diffusion at the low interaction
strengths (εF = 35meV). Increasing εF increases the divide between A and B
step transition rates very similarly in both models, however at εF = 55meV

a stronger divide can clearly be seen in the coarse-grained model. The ob-
servation of this agreement of the two models again supports the idea that at
higher temperatures the increased rotational diffusion of the atomistic model
leads to an effective behaviour similar to the one generated by the rotationally
averaged interaction of the coarse-grained model (as discussed in Sec. IV.1.2).
However, the agreement could also be explained by the increased coordina-
tion of the probed particles, which may diminish the atomistic model’s ability
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Figure 61: Comparison of unconstrained modelling (via Arrhenius fits) with the
constrained modelling for the edge diffusion processes with two initial neigh-
bours (n = 2). (a-e) Arrhenius plots of the transition rates for the coarse-grained
and atomistic model. The solid lines are unconstrained Arrhenius fits, while the
dashed lines are from the constrained model. (f,g) Energy barriers and attempt
rates obtained from the unconstrained Arrhenius fits. (h,i) Constrained model
where the functional dependencies are confined to linear/constant via Eqs. IV.24

and IV.25.

to lower its effective energy barriers during transitions through adjustment of
its orientation (with too many forces pulling on its atoms from different direc-
tions). While the difference between the unconstrained [Fig. 61(f,g)] and the
constrained modelling [Fig. 61(h,i)] seems more pronounced in this case than
for the one-neighbour edge diffusion, the resulting predicted transition rates
[dashed lines in Figs. 61(a-e)] are still close to the measured data.

Turning to the ascension transitions with two initial neighbours, the correspond-
ing Arrhenius plots are shown in Fig. 62(a,b). In an ascension transition, a clus-
ter particle usually maintains the bonds to its lateral neighbours while breaking
its bond to the substrate. This image of the transition naturally suggests that
the energy barrier for ascension strongly increases with the interaction strength
εF and should have a value close to the total potential energy of a molecule
sitting on the substrate. This is reflected in the Arrhenius plots as we can see
how the transition rate and the energy barriers (slope of the fits) for ascension
are strongly affected by the value of εF. Additionally, we observe a slightly
higher transition rate (and lower energy barrier) in the coarse-grained model,
which can be explained by the weaker adparticle-substrate binding energy of
the coarse-grained model (See. Emin values of Tab. 8, Sec. IV.1.2.1). To test
how well the ascension barriers ∆EAsc obtained from the Arrhenius fits align
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Figure 62: Comparison of unconstrained modelling (via Arrhenius fits) with the
constrained modelling for the ascension process with two initial neighbours (n =
2). (a,b) Arrhenius plots of the transition rates for the coarse-grained and atomistic
model. The solid lines are unconstrained Arrhenius fits, while the dashed lines
are from the constrained model. (c,d) Energy barriers and attempt rates obtained
from the unconstrained Arrhenius fits. Also plotted are potential energies EPot
measured for a single C60 molecule on the CaF2(111) surface. (e,f) Constrained
model where the energy barriers are given by the potential energies EPot of graph
(c) and the functional dependence of the attempt rates is confined to linear via Eq.
IV.28.

with the actual binding energies/potential energies EPot of C60 on CaF2(111),
we have gathered additional data from a small set of simulations where we have
measured the mean potential energy of a single C60 molecule on the substrate
(In a configuration as shown in Fig. 47) at a temperature of T = 300K. The
results are plotted alongside the Arrhenius parameters in Fig. 62c where we
can see that they almost perfectly align with each other except for two strong
deviations of the atomistic model at εF = 50/55meV . However, at these two
values of εF the discrepancy can be explained by insufficient statistics (e.g. with
only 39 observations of ascension at εF = 55meV over the whole temperature
range).

We take this finding of the overlap between the ∆EAsc and EPot values as a
reason to slightly change our modelling approach for the Ascension transition.
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Figure 63: Comparison of unconstrained modelling (via Arrhenius fits) with the
constrained modelling for the dissociation process with two initial neighbours
(n = 2). (a,b) Arrhenius plots of the transition rates for the coarse-grained and
atomistic model. The solid lines are unconstrained Arrhenius fits, while the
dashed lines are from the constrained model. (c,d) Energy barriers and attempt
rates obtained from the unconstrained Arrhenius fits. (e,f) Constrained model
where the functional dependencies are confined to linear/constant via Eqs. IV.24

and IV.25.

Instead of fitting the energy barriers as linear functions to the Arrhenius data,
we use linear fits to the measured potential energies Epot (which we can measure
with very high precision) and therefore give the freedom of a linear dependence
to the attempt rates via Eq. IV.28 to be able to nicely fit the Arrhenius data. The
resulting constrained model [Fig. 62(e,f)] very nicely fits to all the Arrhenius
data sets [dashed lines in Fig. 62(a,b)] including the atomistic data at εF =

50/55meV , even though it deviates strongly from the unconstrained Arrhenius
fits at those values.

Finally, the resulting Arrhenius plots for the dissociation transition with two ini-
tial neighbours are shown in Fig. 63. For dissociation, a particle has to mostly
overcome the two bond energies to its lateral neighbours (which are indepen-
dent of εF), so it can be expected that the dissociation rate only weakly depends
on εF. This expectation is reflected in the data shown in Fig. 63. Combining
this observation with the relatively low amount of statistics on the dissociation
rate, the resulting unconstrained Arrhenius parameters [Fig. 63(c,d)] are all
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over the place and by themselves would not suggest any specific functional
dependence. In contrast, the constrained model nicely produces the slightly
increasing energy barriers of EDiss with εF that we would expect (similar in
slope as the increase of the free diffusion and edge diffusion barriers).

iv.1.5 summary
In the previous sections, we have conducted and analyzed in detail molecular
dynamics simulations on various diffusive transitions of C60 on the CaF2(111)
surface with two distinct representations of the C60 molecule. We have com-
pared an atomistic representation of the C60 molecule with Lennard-Jones C-F
and Buckingham C-Ca interactions to a coarse-grained model of C60 for which
we have derived central-body C60-F and C60-Ca interactions analogous to the
Girifalco potential. The force-field parameters for the implemented interaction
potentials were taken from the literature [151] except for the carbon-fluoride
interaction energy εF which was left as a single free parameter of the models
to be able to tune the molecule-substrate interaction strength.

In the detailed analysis of the free diffusion process in Sec. IV.1.2 we have found
that the two models can produce significantly different results. Especially the
mean-squared displacement analysis of the free diffusion trajectories at low
temperatures and the calculated minimum energy paths make the differences
very apparent. Going to high temperatures, the mean-squared displacement
analysis and the measurements on the edge diffusion process at high temper-
atures suggest that the difference between the two models diminishes. These
observations can be attributed to the atomistic model’s rotational degrees of
freedom, which allow it to optimize its alignment to other particles during dif-
fusive transitions to lower the effective energy barriers of the transitions. This
ability is nullified at higher temperatures, where the rotational diffusion of the
atomistic molecule becomes too fast for any fine alignments to occur, and the
effective atomistic interaction more closely represents the rotationally averaged
coarse-grained interaction. We were able to determine specific crossover tem-
peratures in the rotational diffusion coefficient at TCross,R = 163(1)K and in the
translational diffusion coefficients at TCross,T ∈ [100, 200]K (depending on the
value of εF, see Eq. IV.29), where the atomistic model significantly changes its
temperature dependence and starts to approach the behaviour of the coarse-
grained model [Fig. 56(a-e)].

While the free diffusion barriers obtained in Sec. IV.1.2 (∆EFD ∈ [15, 90]meV)
were found to be at variance with the experimental value of 214(16)meV [36]
(calculated indirectly from cluster densities of MBE experiments), we deter-
mined that the discrepancy can be explained by an effective diffusion process
that is hindered by impurity trapping [85] (air/water molecules adsorbed on the
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Model i n ∆Ei,0[meV] mi ν0,i(n)[GHz]

Atom.

FD-LT 0 −8.07 0.6546 153

FD-HT 0 −45.33 2.664 9025

ED-A 1
−18.9 1.06 18.0

ED-A 2 450

ED-B 1
−22.3 1.56 21.0

ED-B 2 525

Diss 2 −26.5 1.29 2050

Asc 2 −333 19.8 −4355+ 142GHzmeVεF

CG

FD 0 −68.23 2.896 27301

ED-A 1
30.3 0.142 11.8

ED-A 2 518

ED-B 1
−14.8 2.13 19.6

ED-B 2 861

Diss 2 −23.8 1.78 2816

Asc 2 −285 17.3 −3025+ 98GHzmeVεF

Table 10: Final model parameters derived from our MD simulations. Listed are
the parameters of Eq. (IV.24) together with the attempt frequencies.

surface acting as nucleation sites). We, therefore, went on to systematically
probe edge diffusion/dissociation/ascension transition rates to be able to build
comprehensive rate models for the atomistic and coarse-grained representation
that will be tested against experimentally observed cluster morphologies in
KMC simulations in the next section.

The resulting model parameters are summarized in Tab. 10. The ratios between
the attempt rates with one and two initial neighbours (Eq. II.29) are

c12,Atom. = 25.0 c12,CG = 43.9 (IV.30)

We have demonstrated that our approach of building rate models for KMC
simulations based on MD data can also be applied to a system on which no
established interaction potentials are available by using a variable molecule-
substrate interaction potential with a free parameter (in our case εF) that is
passed on to the resulting rate models to be used as a free parameter of the
KMC simulation. While the C60 on CaF2(111) system was computationally
much more expensive to simulate than the C60 on C60(111) system (mainly be-
cause of the fine-grained substrate with long-ranged electrostatic interactions),
we were still able to capture transitions with up to two initial neighbours, cov-
ering the most essential elementary transitions.
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iv.2 kmc simulations
In this section, we combine the obtained rate model for C60 on CaF2(111)
diffusion of the previous section with the Simple model of chapter III to test
if these models can reproduce experimental observations. While the Simple
model even covers very rare transitions, the modelling for the CaF2 substrate
has to be extrapolated to cover transition rates for the rarer transitions (e.g.
with n > 2 initial neighbours) using our modelling with energy barriers from
Eq. IV.24 and attempt rates via Eq. II.29 (of Sec. II.3.3) (assuming by default
c23 = c34 = c45 = c56 = 1).

As our MD simulation data does not cover transitions to and from overhang
sites (sites that are supported by less than three molecules of the layer below,
see Fig. 64), we have to estimate the corresponding transition rates based on
the measurements we have done. We assume that the ascension and descension
rates to overhang sites are the same as the normal ascension and descension
rates. Particles on overhang sites can either do edge diffusion moves according
to the transition rates we have observed on fully supported C60(111) sites, or
ascend/descend. The ascension/descension from overhang sites is modelled like
a free diffusion process with equal transition rates for ascension and descension.
Particles on overhang sites in a B step configuration [Fig. 64b] diffuse just like
on a CaF2(111) surface and therefore are assigned transition rates based on the
free diffusion parameters of the Simple model, ∆EAsc/Desc,Overhang-B = ∆EFD =

192meV and ν0 = 0.25 THz. The overhang site in an A step configuration is
more stable (with four bonds instead of three) and we, therefore, increase the
ascension/descension barrier for those sites to ∆EAsc/Desc,Overhang-A = ∆EFD +

EB = 427meV . As this modelling for the overhang transitions is mostly pulled
out of thin air, we could be missing some important intricacies, e.g. a decreased
ascension barrier from the substrate to overhang sites in comparison to normal

Figure 64: Transitions to and from overhang sites. a) Ascension and descension
transitions to overhang sites. b) Edge diffusion, ascension and descension transi-
tions from overhang sites in A (right) and B step (left) configurations.
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ascension, the presence of an additional Ehrlich-Schwöbel type barrier for
ascension from an overhang site to the top of a cluster, or different edge diffusion
rates on overhang sites. A detailed analysis of the overhang transition rates in
MD simulations may be an interesting topic for a future study.

A basic KMC simulation for the cluster growth of C60 on CaF2(111) was pre-
viously implemented by Martin Körner with results published in Ref. [53]. A
central part of the rate modelling in this study is the idea of ”facilitated dewet-
ting”, which is implemented in a bond counting approach that differs from ours,

∆Ei(n) = ∆Ei,0 + (n1 −n2)EB/2, (IV.31)

considering both the initial and final number of neighbours, n1 and n2. The
parameters for this KMC simulation were mainly taken from the available lit-
erature at the time except for an ascension barrier ”∆E12”, which was tuned
to reproduce experimental cluster morphologies at ∆E12 = 420meV . While
the triangular two-layered clusters were reproduced in this study, the complex
branched structures obtained in Körner’s simulations did not fit the experimen-
tal observations very well (discussed in Körner’s dissertation [161]). Strong
discrepancies are mainly observed in the cluster sizes (due to the low free dif-
fusion rates as a result of Loske’s diffusion parameters taken from Ref. [36]) and
in the branching of the second layer nuclei (due to missing distinction between
A and B step edge diffusion in both layers).

While we can improve upon both of those discrepancies with our more detailed
modelling, a major point we want to address in the following sections is the
understanding that the complex cluster morphologies are induced by particles
on the edge of the second layer via the ”facilitated dewetting” effect, which
was established in Ref. [53]. The way this effect was implemented (Eq. IV.31)
suggests a long-range interaction between C60 molecules that enables the
facilitation of the ascension transition, incompatible with the known short range
of the C60-C60 interaction. Therefore we want to offer an alternative with our
modelling and show that facilitated dewetting is not a necessary process for
the evolution of the experimentally observed cluster morphologies.

iv.2.1 cluster densities
Before we move towards the tuning of the model parameter εF and the compari-
son of cluster morphologies, we want to make sure that our simulation generates
cluster sizes that are comparable to the ones observed in the experiment. Hence,
we have to ensure that we reproduce the cluster densities of the experiment. As
data for the low-temperature regime, we have the density measurements pub-
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lished in Ref. [36]. These were obtained in deposition experiments employing
a flux of F ≈ 0.026 ML/min over a time of roughly four minutes. To this data
set, we add the densities shown in the AFM images at temperatures T = 297K

and T = 319K published in Ref. [53], which were captured with the same ex-
perimental setup after a two minute deposition phase. For a comparison to this
experimental data set, we run KMC simulations and measure the resulting clus-
ter densities at temperatures T ∈ {96, 120, 137, 144, 160, 190, 217} K with a four
minute deposition phase and at temperatures T ∈ {240, 260, 280, 297, 319} K
with a two minute deposition phase.

In the discussion on the MD simulations of the free diffusion process (Sec.
IV.1.2) we have observed a strong discrepancy between the measured diffusion
barriers of the simulations (20 − 90meV) and the experimental value deter-
mined by Felix Loske (214meV) from cluster density measurements [36]. As
we can see in Fig. 65 this discrepancy carries over into the cluster density
measurements if we use the diffusion parameters as measured in the MD sim-
ulations (orange squares and yellow diamonds). Even using the upper end of
our parameter range εF = 55meV , the diffusion process is still way too fast in
the whole temperature range, resulting in significantly lower cluster densities
compared to the experiment.

Figure 65: Cluster density measurements from experiments (red circles) in com-
parison with measurements from our KMC simulations employing various models
for the diffusion parameters. The ”Variable Diffusion Parameters” are calculated
via Eqs. IV.32 and IV.33.
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Trying different combinations of energy barriers and attempt rates for the dif-
fusion process (two example configurations are plotted as dark and light green
triangles in Fig. 65), we find that the lower temperature range can be well
described with diffusion barriers up to 250meV (and attempt rates in the or-
der of up to 1017Hz), while the higher temperatures are better reproduced
with diffusion barriers approaching 100meV (and attempt rates in the order
1011Hz). This observation is compatible with our suspicion, that impurities on
the surface affect the experimental result. The colder a surface, the stronger it
acts as a sink for impurities adsorbed from the imperfect vacuum, resulting in
a stronger increase of cluster densities at low temperatures due to the larger
amount of nucleation sites. This translates into a larger effective diffusion bar-
rier at low temperatures, which should trend towards the diffusion barrier of a
clean substrate at high temperatures.

To be able to best reproduce the cluster densities in the whole temperature
range we therefore determined a model (via an initial guess and consecutive
adjustments) for the diffusion barrier and attempt rate that linearly depends on
the inverse temperature. The result is the following model:

∆EFD

(
1

T

)
= 0.061 eV + 19.61 eV K · 1

T
, (IV.32)

ν0,FD

(
1

T

)
= exp

(
19.26+ 1981K · 1

T

)
Hz. (IV.33)

The cluster densities produced by this model are plotted as hollow purple
circles in Fig. 65, nicely fitting to the experimental data.

An interesting feature of the experimentally observed cluster densities that is
also observed in the simulation is the significant drop between T = 217K and
T = 297K. This drop is not generated by an increase of the diffusion rate,
but by the decreasing stability of small clusters, which hinders nucleation. In
nucleation theory, this is modelled via the critical cluster size i? and the critical
cluster energy Ei? in the formula (derived in Sec. II.2.3)

ΩN ≈ η
(
Ω2F

D

) i?

i?+2

eEi?/(i
?+2)kBT (IV.34)

D =
1

4
l2ν0,FDe

−∆EFD/kBT . (IV.35)

At low temperatures, the prediction of Eq. IV.34 fits our simulation results very
well for parameters η ≈ 0.13, i? ≈ 1.0 and Ei? ≈ 0meV [green dashed line in
Fig. 66a], in line with the expectation of monomers as critical clusters for low
temperatures (where dimers are already considered stable). However, starting
at temperatures of around 200K the simulation results start to strongly deviate
from this model line. We can recover the behaviour of the simulation by adding
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Experiment Variable Diffusion Parameters fit: variable i* fit: constant i*≈1
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Figure 66: Cluster density prediction from nucleation theory with constant and
variable modelling of the i? parameter.

a temperature dependence to the parameter i? and modelling Ei? via

i?(T) =

{
∼ 1.0 T < T1

∼ 1.0+ (T−T1)
(T2−T1)

T > T1
Ei? = (i? − 1)EB, (IV.36)

with T1 ≈ 205K (the temperature at which the deviation from i? ≈ 1.0 starts),
T2 ≈ 285K (the temperature at which i? ≈ 2.0 is reached) and EB = 235meV

(the binding energy between two C60 molecules). The functional forms of Eqs.
IV.36 are plotted in Fig. 66(b,c) and the resulting prediction if Eqs. IV.36 are
put into Eq. IV.34 is plotted as a light green line in Fig. 66a

For a final interesting note, from Eqs. IV.32, IV.33 and IV.35 we can derive a
transport property τ = l2/4D, which behaves analogously to transport proper-
ties of glass-forming liquids [162, 163] where a parabolic form

log(τ/τ0) = J2
(
1

T
−
1

T0

)2
T < T0

was observed (also called ”super-Arrhenius” behaviour). The corresponding
parameters of our modelling are J ≈ 477K, T0 ≈ 357.5K and log(τ0) ≈ −21.04.

second layer occupation, εF-parameter
tuning

As shown in Felix Loskes experiments at around room temperature [53], the
C60 clusters on CaF2(111) transition from a mainly one-layered growth with
interesting morphologies in the transition regime (observed at T = 297K) into
fully two-layered growth of triangular clusters (observed at T = 319K). This
observation is perfect for the tuning of our one free KMC model parameter, εF,
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Figure 67: Second layer occupation after the deposition phase plotted against sub-
strate temperature for the atomistic and coarse-grained model.

as it strongly affects the ascension rate and can therefore only reproduce this
experimental observation in a very narrow range of values.

For the parameter tuning, we aim to reproduce the experimental setup with a
molecular flux of F = 5× 10−4 s−1nm−2 ≈ 0.026ML/min and a two minute
deposition phase in three-layered simulation boxes of area A = 3.464µm
(2000× 2000 unit cells). Simulations are run at temperatures T ∈ [270, 325]K,
varying the interaction parameter in the range εF ∈ [40, 50]meV .

The resulting second layer occupations are shown in Fig. 67 for a selection of
εF values. The second layer occupations are calculated immediately after the
deposition phase as the fraction Λ2 = N2/N1, with Ni being the number of
particles in the i-th layer. In both models we observe a high sensitivity of Λ2
to the parameter εF. To reproduce the experimental observation we look for an
εF at which full coverage (Λ2 ≈ 1) of the second layer is reached by T = 320K

and also a low coverage of around Λ2 ≈ 0.2 evolves at T = 295K. For the
atomistic model (Fig. 67 left) these criteria are satisfied at εF = 42.0(5)meV

Table 11: Optimal εF values for the two models and resulting energy barriers,
attempt rates and transition rates for ascension with two initial neighbours (n =
2). For comparison, the values used by Martin Körner [53] in KMC simulations
investigating the same system are also listed.

Model εF[meV]] ∆EAsc[meV] νAsc[THz] kAsc(295K)[Hz]
Atomistic 42.0(5) 499(10) 1.61(7) 4807

CG 45.5(5) 502(9) 1.43(5) 3795

Körner [53] - ∆E12 = 420 ν12 = 1.00 66791
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and for the coarse-grained model (Fig. 67 right) at εF = 45.5(5)meV . The
corresponding dewetting energy barriers, attempt rates and overall transition
rates (at T = 295K) are given in Tab. 11.

We see that the two different εF values of our two models lead to practically the
same energy barrier and attempt rate for the ascension transition (for n = 2)
of around ∆EAsc ≈ 500meV and νAsc ≈ 1.5 THz. Comparing those values
to the previous work of Martin Körner [53], we see that his assumption of
ν12 = 1.00 THz is actually very close to our result, but combined with the
lower energy barrier ∆E12 = 420meV , leads to much higher ascension rates
at the temperatures of interest. The main source of this discrepancy may be
the choice of parameters for the free diffusion process, which in Martin Körner’s
model were taken from Ref. [36]. These lead to cluster densities much higher
than observed in the experiment and consequently to smaller cluster sizes,
needing higher dewetting rates to accomplish comparable morphologies.

iv.2.2 cluster morphologies
In this section we test our obtained models by comparing the simulation results
we get at low and high temperatures in side-by-side comparisons with NC-AFM
images from experiments.

For the low-temperature regime (96− 217K), we use the NC-AFM image pub-
lished in Ref. [36] from the set of cluster density measurements. For the lower
temperatures of 120K and 137K we were kindly provided with additional im-
ages from Felix Loske and Angelika Kühnle on which the cluster morphologies
can be identified (These images were also taken in 2010 along with the other
measurements for the purpose of counting clusters and are therefore not of the
best visual quality). For the higher temperatures (297 − 319K) we take the
selection of NC-AFM images published in Ref. [53].

For the simulation snapshots, we aim to reproduce the experimental protocol
by applying a molecular flux of F ≈ 0.026 ML/min over a four minute deposition
phase at substrate temperatures T ∈ {96, 120, 137, 160, 217} K and a two minute
deposition phase at temperatures T ∈ {297, 310, 320} K. For the lower temper-
atures (up to 160K) we run system sizes of 2000× 2000 unit cells, which we
increase to 3000× 3000 unit cells for the temperatures above 160K to be able
to produce comparable snapshot sizes without periodic images. As rate models
for the KMC simulation, we use the atomistic and coarse-grained models with
the parameters we have determined in the previous section, εF = 42.0meV
(atomistic) and εF = 45.5meV(coarse-grained). To obtain the correct cluster
sizes, the free diffusion transition rates are calculated using the parameters
given in Eqs. IV.32 and IV.33 for both (atomistic and coarse-grained) models.
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Figure 68: Comparison of AFM images by Felix Loske from low-temperature de-
position experiments with KMC simulation results. Top left experimental images
are reprinted with permission from Ref. [36]. Copyright 2010 by the American
Physical Society.
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The low-temperature results are shown in the side-by-side comparisons of Fig.
68. In subfigure 68a the atomistic model nicely reproduces the compact shapes
that have been observed in the experiments at 160K and 217K, whereas the
coarse-grained model produces triangular star-shaped clusters at 160K and
slightly triangular clusters at 217K. This suggests that the strong difference
between A and B step edge diffusion is exaggerated in the coarse-grained
model. On the other hand, the slight difference between the A and B step edge
diffusion in the atomistic model seems to produce the correct morphologies in
this low-temperature range, which is especially apparent in subfigures 68(b,c).
The atomistic model reproduces the slight triangular star shapes at 120K and
137K very well, while the coarse-grained model overshoots with pronounced
(dendritic) triangular star shapes.

Figure 69: Comparison of AFM images by Felix Loske from high-temperature
deposition experiments with KMC simulation results. Experimental images are
reprinted from Ref. [60] with permission of Felix Loske.
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The high-temperature results are shown in Fig. 69 and tell a similar story.
The edge diffusion rates of the coarse-grained model lead to the formation of
triangular base clusters, which then keep this triangular shape when transi-
tioning into the branched structures with the formation of second layer nuclei
[c.f. Fig. 69c 297K and 310K]. In contrast, the atomistic model again comes
very close to the experimental observation as it forms hexagonal base clusters,
which turn into the branched structures with outer layer rims [Fig. 69b 297K
and 310K]. Also, the transition towards the formation of triangular clusters with
fully covered second layers between 310K and 320K is reproduced extremely
well.

However, there are also minor differences between the results of the atomistic
model and the experiments. Firstly, the branched clusters of the experiment [Fig.
69a 297K] maintain the hexagonal shape of the base clusters to a large degree,
while the clusters in the simulation turn into more random shapes. Secondly, the
KMC simulation (in both the atomistic and coarse-grained model) prematurely
forms third layer nuclei [c.f. Fig. 69(b,c) 320K], which have not been observed
at all in the experiment at this early stage of the deposition process. Both of
these differences can potentially be explained by our arbitrary modelling of the
transition rates towards and from overhang sites (discussed at the beginning
of Sec. IV.2), which is not supported by MD simulations and is most probably
wrong in some way.

To summarize this section, we can conclude that the rate model obtained from
the atomistic MD simulations, reproduces the experimental observations ex-
traordinarily well in the full temperature range. The evolution of the branched
structures with an outer rim was previously explained by the ”facilitated dewet-
ting” effect in Ref. [53]. The way this effect was implemented in Ref. [53] is
arguably at odds with the short range of the C60-C60 interaction and the results
of our modelling (which only considers the initial number of neighbours) show
that ”facilitated dewetting” is not a necessary process for the evolution of the
experimentally observed cluster morphologies.
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P E R S P E C T I V E S

In this thesis, we presented a bottom-up approach for the determination of a
thermodynamically consistent transition rate model for KMC simulations based
on MD simulation data, applied to the example of the epitaxial growth of C60
on a CaF2(111) substrate.

We split the task into two parts by first setting up MD simulations of C60
molecules on a C60(111) surface, interacting via the coarse-grained Girifalco
potential [22, 23]. With this set of coarse-grained simulations, we were able
to measure a large portion of possible elementary transitions for the diffusion
processes of C60 on C60(111) (which are assumed to also be valid for the
higher layers of C60 cluster growth on other substrates like CaF2(111)). To
test the thermodynamic consistency of the derived transition rate models, we
have measured the entropy production along the stochastic trajectories in the
KMC simulations and we have shown that the naive approach of simply tak-
ing the energy barriers and attempt rates from the individual transition rate
measurements of the different processes can lead to a thermodynamically in-
consistent model with a constant entropy production. We have then derived
a thermodynamically consistent constrained ”Simple” rate model for C60 on
C60(111) that produces the characteristic triangular star-shaped clusters that
have been observed in various C60 epitaxy experiments.

We applied this model to run KMC simulations for multilayer growth of C60
on mica and compared the results to the experimental and simulation data of
Ref. [55]. We were able to explain the large discrepancy between the obtained
diffusion barrier (for C60 on C60(111)) of Ref. [55] and other sources in the
literature [52, 54, 138] via the diffusion-hindering effect of grain boundaries
that evolve during coalescence of a large number of clusters in the first C60-
layer on the mica substrate. To support this hypothesis we have shown that
the evolution of grain boundaries with a high cluster density in the first layer
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can significantly increase the cluster density of consecutive layers in our KMC
simulations.

For the second part of the rate model, we had to set up MD simulations in-
volving C60 and the CaF2(111) substrate, for which we did not have any es-
tablished interaction potentials. Using the interaction potentials determined
in Ref. [151] as reference points, we derived potentials for the necessary C-F
and C-Ca interactions in our system with a single free parameter εF. To test
the impact of a Girifalco-style coarse-graining of the C60 molecule on the dif-
fusion simulations, we implemented a coarse-grained and an atomistic (rigid
body) representation of C60 and ran simulations with both representations to
compare the results. For the free diffusion process of C60 on CaF2(111), we ob-
served a crossover in diffusive behaviour of the atomistic model in a temperature
range of T ∈ [100, 200]K, depending on the choice of the interaction parameter
εF. While the coarse-grained and atomistic model exhibited very different tem-
perature scaling at low temperatures (below the crossover temperature of the
atomistic model), the difference diminished for higher temperatures. This obser-
vation is compatible with the understanding that this type of coarse-graining
can be an accurate model for high temperatures, at which the C60 molecule
rotates so quickly that the individual carbon positions can be assumed to be
smeared out over a spherical surface for any interaction with other atoms or
molecules. In comparison to the diffusion barrier determined by Felix Loske via
cluster density measurements [36] (214(16)meV), our results (20 − 90meV)
were found to be at variance. However, the probable presence of impurities on
the CaF2(111) surface in the experiments (especially at low temperatures) can
account for this discrepancy and we proceeded to derive transition rate models
for both representations of C60 on CaF2(111) from transition rate measurements
of edge diffusion, dissociation and ascension transitions.

To test the obtained rate models in KMC simulations, we first came up with
a modelling for the free diffusion process that reproduces the experimentally
observed cluster densities. The free εF parameter of the two models was then
tuned to reproduce the transition to the growth of two-layered clusters at
∼ 320K. The resulting rate models were then used to generate cluster mor-
phologies in the whole experimentally observed substrate temperature range of
T ∈ [96, 320]K, which were then compared to the observed cluster morphologies
of the experiment. While the coarse-grained model produced significantly differ-
ent morphologies (mostly due to its stronger difference between A and B step
edge diffusion), the atomistic model reproduced the experimentally observed
cluster morphologies very well across the whole temperature range. We also
obtained the interesting two-layered cluster morphologies with the branched
structure and outer rims observed at ∼ 297K and the fully covered triangular
clusters at ∼ 320K without the implementation of a ”facilitated dewetting” pro-



perspectives 111

Figure 70: Growth trajectories at 310K starting with a second layer nucleus at
different times of the growth process. a-f) If the second layer nucleus forms at a
very late stage of the growth process, the cluster grows into the branched structure
with outer rims on the second layer. g-l) With a second layer nucleus at the start of
the cluster growth process, it grows into the triangular cluster with a fully covered
second layer.

cess, which was previously used to explain the evolution of those morphologies
[53].

Summarizing this thesis, we have shown that the epitaxial growth processes of
C60 can very well be described by individual elementary transitions in KMC sim-
ulations and that rate models for such systems, which can accurately reproduce
many details of the experimental system, can be derived from MD simulation
data. To build upon our findings, a series of future projects are possible. Firstly,
the obtained final transition rate model can be used to further study the exact
trajectories that lead to certain morphologies, e.g. one could investigate when
and where a second layer nucleus needs to form on top of a base cluster to
make it grow into a specific morphology [see Fig. 70 for an example]. A different
direction would be to use the KMC simulation to explore the space of possible
experimental protocols to try to predict outcomes for experiments that have not
been conducted yet. Running KMC simulations (once the model is determined)
is arguably much easier and cheaper than doing the actual experiment in a lab
and one can potentially expand our ability to manipulate the epitaxial growth
process (e.g. via variation of substrate temperature and/or molecular flux) to
obtain specific desired results. A direction for a smaller project could be to
investigate the transitions to and from overhang sites in MD simulations for
the example of C60 on CaF2(111) to explore if a more accurate modelling of
those transitions (which could involve some light form of ”facilitated dewetting”)
can improve the agreement of the KMC simulations with the experiment even
further. Lastly, our approach can also be applied to other systems to derive
rate models and investigate them in KMC simulations.
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In this chapter, we are going to present some details on the KMC algo-
rithm that we have implemented to simulate the epitaxial growth of C60. Our
code is written in C++ and tested on Linux. It can be accessed via GitLab
(https://gitlab.rlp.net/wjanke/kmc_fullerenediffusion) or it can be requested via
mail (janke4592@gmx.de) for use in similar projects. We start with the intro-
duction of the coarse-grained/discretized image of the epitaxial growth system
that we are implementing and then discuss the individual classes into which
we separate the problem. As software development is not the main focus of this
work, we aim to keep this section short to provide a basic insight into the ideas
behind the implementation. We then introduce the ”fast diffusion” (FastDiff)
algorithm that we have implemented to reduce the computation time spent on
simple free diffusion moves and test if it generates the same behaviour as our
implementation without FastDiff. Lastly, we will provide an analysis of the
computation time scaling with system size and temperature.

a.1 implemented geometry and
framework

a.1.1 lattice coarse-graining

Here, we discuss what kind of lattice geometry we are implementing in our KMC
simulation. We are especially interested in simulating the C60 on CaF2(111)
system where the first layer lattice geometry can be represented by triangu-
lar lattice [Fig. 71 left] with a distance between individual lattice sites of
aCaF2(111) = 0.386nm. The deposited C60 molecules can grow into compact
clusters with very little lattice strain, forming a C60(111) surface for molecules
on the second layer to diffuse/nucleate on. The surface lattice geometry from
the second layer onward can therefore be represented by a honeycomb lattice
with a distance between nearest lattice sites of aC60(111) = 0.577nm [Fig. 71
middle]. For a completely accurate representation of the C60 on CaF2(111)
system, we would have to implement both of these lattice structures (triangular
fine-grained in the first layer, honeycomb for higher layers). However, we are
implementing the same honeycomb lattice for all layers (including the first one),
effectively coarse-graining the lattice structure of the substrate [Fig. 71 right].
This brings with it two main advantages:

• Having a consistent lattice structure for all layers makes the implementa-
tion way easier. Especially when it comes to the rate refreshing algorithm
(where one has to check the states of neighbouring lattice sites), having

https://gitlab.rlp.net/wjanke/kmc_fullerenediffusion
mailto:janke4592@gmx.de
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Figure 71: Coarse-graining of the surface lattice. The fine-grained lattice of the first
layer substrate - like the triangular lattice of the CaF2(111) surface - is replaced by
a coarse-grained honeycomb lattice which represents the structure of a C60(111)
surface.

two different lattices in which the particles cover a different amount of
lattice sites would add complexity.

• The free diffusion process on the coarse-grained honeycomb lattice needs
less individual diffusive transitions to progress, speeding up the simula-
tion.

On the other hand, we are losing the ability to reproduce some of the system’s
properties:

• The fine-grained diffusion trajectories.

• The order that the specific substrate lattice geometry imposes on the
growing clusters. E.g. on CaF2(111), C60 clusters were shown to grow
with two distinct orientations [36].

• During coalescence (when a monolayer starts to fill), clusters that grow
with different orientations or on mismatching lattice positions are not able
to cleanly merge, leaving a grain boundary. This property highly depends
on the first layer lattice geometry and is discussed in chapter III for the
example of C60 on mica.

However, the observables that we are interested in for the C60 on CaF2(111)
system are mainly cluster densities (in the early growth regime) and cluster
morphologies, which are largely unaffected by the missing properties mentioned
above.
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a.1.2 The GridNode Class

The GridNode class is designed to be a building block for the lattice structure
of the simulation and represents a unit cell of the honeycomb lattice [Fig. 72a]
that can be replicated in

~ux =

10
0

nm, ~uy =

cos pi3
sin pi

3

0

nm, ~uz =

 0

0√
1− (0.5/ cos π6 )

2

nm
(A.1)

directions to build a triangular grid of GridNode objects. This triangular grid
is turned into a representation of a honeycomb lattice with the ability for a
GridNode to hold particles in distinct sublattice positions s [white numbered
discs in Fig. 72a]. The variable s can take values 0 (GridNode is empty),
s ∈ {1, 2} for an occupied GridNode in the bottom layer (z = 0) of the simulation
and s ∈ {s0 + 1, s0 + 2} on higher layers (z > 0, s0 is the sublattice position of
the supporting cluster of the layer below). In this representation, the positions
of particles in the system are encoded in the (x,y, z) indices of the GridNode

Figure 72: Visualization of the GridNode class and some of its components. (a) A
GridNode object represents a unit cell that is replicated in ~ux and ~uy directions
to form the honeycomb lattice. An adparticle can take one of the two sublattice
positions marked by white dots. (b) GridNode objects are supplied with pointers
to neighbouring nodes (green) for easy access to their states. (c) Every GridNode

object contains a rate array for double-precision transition rates with dedicated
spaces for every transition type and direction.
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it occupies and its sublattice position s. From the coordinates (x,y, z, s), the
”real” coordinates of the particle can be calculated viaxreal

yreal
zreal

 = (x+ s/3) · ~ux + (y+ s/3) · ~uy + z · ~uz. (A.2)

In addition to the setup of the lattice geometry, the GridNode class also in-
corporates functions for the determination and storage of transition rates. It
is supplied with pointers to neighbouring GridNode objects [Fig. 72b] to be
able to easily check the environment of an occupying particle and determine
its transition rates. To store the determined transition rates, each GridNode

contains a rate array [Fig. 72c] that can hold transition rates (with double

precision) for each of the possible transition types and transition directions.

a.1.3 The RateModel Class
As the transition rates of the particles in the system can only take a finite
amount of different values (depending on the type of transition i, its initial
neighbours n) at any given temperature T , it makes sense to calculate these
possible transition rate values beforehand and store them in a dedicated space
for as long as the temperature of the system stays constant. This is the major
purpose of the RateModel class. It holds (double precision) values for all the
possible transition rates of the system and is also the space where the rate
models are implemented (functions that can be used to calculate the transition
rate values). The transition rates of the RateModel class are accessed by the
GridNode objects for their transition rate refreshing procedures and the chosen
rate model of the system is called to recalculate the transition rates whenever
the temperature of the system is changed.
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a.1.4 The Input Class
The Input class is designed to handle the input parameters and instructions
supplied by an input file that can look like the example below.

[PARAMETERS]

BoxDimensions 500 500 2

RandomSeed Auto

FastDiffusion Auto

Output Compressed trajectory

RateModel CaF2AtomisticMD 42

[INSTRUCTIONS]

SetTemp 100

SetFlux 0.026 MLPerMin

InsertHexagonalCluster 250 250 0 1 2

Run MLs 0.1 0.01

SetFlux 0 MLPerMin

SetTemp 240

Run Time 120 10

It is separated into a PARAMETERS section and an INSTRUCTIONS section. The
PARAMETERS section contains the fixed options that are needed for the KMC
simulation to start, like the size of the simulation box, the random seed for the
random number generator and the rate model with which the RateModel class
will calculate the transition rates. The INSTRUCTIONS section contains a list
of instructions that the program will execute sequentially. Example instruc-
tions are changes of temperature or molecular flux (SetTemp/SetFlux) or the
simulation of a certain amount of time (”Run Time 60 2” for simulation of 60
seconds with output to the trajectory file every 2 seconds). The complete set of
implemented instructions can be found in the manual on the GitLab repository.
With the functionality of the Input class, the program can be used to simulate
a wide variety of experimental protocols without the need for recompilation of
the source code.
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a.1.5 The FullereneKMC Class
The FullereneKMC class incorporates all the needed functionality to combine
the aforementioned classes into a working KMC simulation. To be initialized
it needs a path to an input file which is supplied to an Input class to read
the system parameters. With the supplied parameters it sets up a random
number generator for use in the KMC algorithm, a RateModel to calculate the
transition rates and a grid of GridNodes as well as the connections between
them [Fig. 72b] including the periodic boundary conditions. It can then execute
the instructions given by the Input class.

It is supplied with functions to deposit and move particles around on the grid
and to invoke a refreshing of the transition rates of GridNodes in the vicinity
to where it makes changes. It keeps track of the time of the system and the
total transition rate ktot (used to determine the random time steps and the next
transition to occur as described in Sec. II.3). To be able to find the chosen next
transition of the KMC algorithm without having to go through every single rate
array of the GridNode objects [Fig. 72c], the FullereneKMC class is supplied
with arrays to store partial sums. These partial sum arrays are based on the
system geometry. Let ki(x,y, z), i ∈ {0, 1, ...38} be the transition rates saved in

Figure 73: Visualization of an example state of the FullereneKMC class. Shown
are two clusters and two free adparticles on different sublattice positions in a two-
layered system. White numerals are the x and y indices of the 7× 7 GridNodes Sys-
tem. Colored Numerals are the available sublattice positions in the first (orange)
and second (yellow) layers. Periodic boundary conditions (PBCs) are implemented
in x and y direction.
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the rate array of GridNode at position (x,y,z), we start on the bottom level with
an array that stores the total transition rate of every GridNode,

k(x,y, z) =
38∑
i=1

ki(x,y, z). (A.3)

The next two levels are then given by sums over the all the transition rates of
a specific (y,z)/z coordinate:

k(y, z) =
xmax∑
x=0

k(x,y, z), k(z) =

ymax∑
y=0

k(y, z). (A.4)

With this, the search algorithm can sequentially find the z ′, y ′ and x ′ coordi-
nates of the next transition using the k(z), k(y, z ′) and k(x,y ′, z ′) rate sum
arrays before checking which exact transition to execute via the rate array of
the chosen GridNode. The rate sum arrays have to be maintained whenever
GridNodes recalculate their transition rates. Completely recalculating them
would be very expensive, therefore whenever a GridNode refreshes their transi-
tion rates, it subtracts its overall transition rate value from the rate sum arrays
and then adds its new total value after the refreshing. This can and will result in
numerical errors due to the addition/subtraction of floating-point variables with
various exponents. To mitigate the propagation of those errors, the rate sum
arrays are recalculated every few hundred thousand KMC steps and whenever
the overall transition rate of the system changes by several orders of magnitude.

a.2 fast diffusion

When trying to achieve the experimental system parameters (temperatures of
T ≈ 300K and flat terraces of area A > 4µm2), we observe that most of the
steps in the KMC simulation are free diffusion moves, sometimes by fractions
of more than 99% (depending on the exact temperature and rate model pa-
rameters). As we are not interested in the fine details of the free diffusion
trajectories, but rather in the kinetics of the cluster relaxation, our code imple-
ments a feature to coarse-grain the free diffusion process for a speed-up of the
computation, called ”Fast Diffusion” (FastDiff).

The idea behind FastDiff is based on the formula for the diffusion coefficient,

D =
1

4
l2kFD =

1

4
l2ν0,FDe

−
∆EFD
kBT , (A.5)
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Figure 74: Example of coarse-graining the diffusion process (a) from a jump length
of l = 0.577nm (b) to a jump length of l ′ = 5nm. As a result, the total transition
rate ktot is reduced by a factor of 75.

with the energy barrier ∆EFD, attempt rate ν0,FD and jump length l of the free
diffusion transition. For any given set of these parameters, based on Eq. A.5
we can transform the jump length and attempt rate via

l→ l ′ = a · l ν0,FD → ν ′0,FD =
ν0,FD
a2

a ∈ R+ (A.6)

while conserving the diffusion coefficient. Using the transformation of Eq. A.6,
we can reduce the attempt rates (and thereby the transition rates) of the free
diffusion transition significantly by increasing the jump length l [Fig. 74]. In a
rate catalogue that is initially dominated by free diffusion transitions, this re-
sults in a significant reduction of the total transition rate ktot, thereby speeding
up the propagation of the simulation by increasing the time steps ∆t ∼ 1/ktot
of the KMC algorithm.

We have implemented this idea into our KMC algorithm the following way:
Whenever a particle is moved by the KMC algorithm, the immediate vicinity
(in a hexagon of circumradius R = 2nm) around the particle is checked for the
presence of other particles. If particles are present, refresh the transition rates
of the particle normally (with fine-grained free diffusion moves). If no other
particles are present, the FastDiff algorithm is entered to set transition rates
for a coarse-grained diffusion move:

1. Draw a random integer jump length l ′ ∈ {1, 2, ..., lmax}nm for the coarse-
graining of the next fast diffusion jump of the current particle. The maxi-
mum jump length lmax is a free parameter of the implementation.
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2. Check if any particles are present in a hexagon of circumradius l ′, start-
ing the search from the particle outwards. If a particle is found on
the perimeter of a hexagon of circumradius lpart, set the jump length to
l ′ = lpart − 2nm.

3. Set the transition rates for the six possible FastDiff directions to

kFastDiff,l ′

6
=
kFD
6
·
(
0.577nm

l ′

)2
The added overhead of this algorithm encompasses the need to check a greater
vicinity of the particle to set the FastDiff transition rates, more memory to store
the additional FastDiff transition rates, and the need to keep track of the fast
diffusing particles to be able to detect if any changes of the system make the
determined FastDiff transitions invalid (e.g. if a new particle is deposited in
the vicinity of a FastDiff particle with a long jump length, requiring a redrawing
of the FastDiff jump length). A few example trajectories resulting from a range
of different maximum jump lengths lmax are shown in Fig. 75. In the following
we present a few tests of the FastDiff algorithm, comparing the results with
normal (fine-grained) free diffusion trajectories.

Figure 75: Normal free diffusion trajectory (black) of a single particle in compari-
son with FastDiff trajectories with equal length in time for several values of lmax.
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Single particle diffusion test

We start with the mean-squared displacement MSD(∆t) of a freely diffusing
particle, which is related to the diffusion coefficient via

MSD(∆t) = 〈x(t+∆t) − x(t)〉 = 4D∆t. (A.7)

As the diffusion coefficient D should be conserved under the transformations
of Eq. A.6, the slope of the MSD should not be affected by our FastDiff
implementation. We measure trajectories of 100000 KMC steps in a 1000×1000
unit cell system with a free diffusion barrier of ∆EFD = 150meV , an attempt
rate of ν0,FD = 1× 1013Hz and a temperature of T = 200K. The obtained
MSDs from the trajectories are plotted in Fig. 76 (left), showing that the slope
of the MSDs is indeed not affected by the FastDiff implementation. The plot
also shows how the 100000 KMC steps of the simulation cover different time
and length scales due to the coarse-graining of the free diffusion process.

To test how much faster the KMC simulation progresses with the FastDiff imple-
mentation, we set up systems of sizes 1000×1000, 2000×2000 and 3000×3000
unit cells with the same diffusion parameters as before and let the simulation
run until the trajectory reaches a time of 50ms and compare the computa-
tion time to the simulation without the FastDiff implementation. The obtained
speedups are plotted in Fig. 76 (right), showing that a significant speedup of
the simulation can be achieved by increasing the maximum jump length lmax.
However, diminishing returns seem to set in for lmax & 25nm and we suggest
to not go beyond a maximum value of lmax = 75nm (with a speedup of roughly
a factor of 150).

Figure 76: Results of the single-particle diffusion test. Left: The measured MSDs
of the generated trajectories. Right: Speedup gained with the FastDiff implemen-
tation for single-particle diffusion.
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1500nm

a)

No FastDiff

b)

FastDiff

c)

Figure 77: Fast Diffusion nucleation test. a) Setup of the three particles with a
distance of 200nm between each other (particles have a diameter of 1nm and
are enlarged to be visible). b) Positional distribution of the nucleated cluster loca-
tion without the FastDiff and c) with the FastDiff algorithm (at a maximum jump
length of lmax = 100nm).

Nucleation test

As a test for the collective behaviour of multiple fast diffusing particles, we
look at the nucleation of three particles. To this end, we set up a 1500× 1500
unit cell system and arrange three particles in an even-sided triangle with a
distance of 200nm between each other [Fig. 77a]. As a rate model we use a
”hit-and-stick” model in which all transition rates besides free diffusion (again
calculated with ∆EFD = 150meV , ν0,FD = 1× 1013Hz and T = 200K) are set
to zero, such that the simulation comes to a halt as soon as the three particles
have nucleated. After nucleation, the position of the cluster, as well as the
time it took to nucleate (simulation as well as computation time), are output
for analysis. For the normal free diffusion and each of the FastDiff parameters
(lmax ∈ {3, 5, 10, 25, 50, 75, 100}nm), 5000 nucleation trajectories are gathered.

Figure 78: Nucleation times with normal free diffusion in comparison to the re-
sults of the FastDiff implementation. Left: Mean nucleation times. Right: Nucle-
ation time histogram in comparison to the FastDiff algorithm with lmax = 100nm.
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Figure 79: Computation time
speedup of the nucleation test.

The resulting positional distributions of the
nucleated clusters are shown in Fig. 77(b,c)
for the normal free diffusion and the FastDiff
algorithm (with lmax = 100nm), respectively,
both showing a similar expected behaviour of
most probable nucleation in the middle of the
initial triangle. The resulting mean nucle-
ation times are plotted in Fig. 78 (left), show-
ing no significant deviations of the FastDiff
implementation results from the fine-grained
nucleation trajectories. For a comparison of
the nucleation time distributions, histograms
of the nucleation times without FastDiff and
with FastDiff (at lmax = 100nm) are shown in Fig. 78 (right), which also nicely
align with each other.
The achieved speedup of the computation time in this set of nucleation simu-
lations are plotted in Fig. 79. Similar to the previous test, a speedup of a
factor 150− 200 was obtained for maximum jump lengths lmax > 50nm with an
observation of diminishing returns above lmax = 25nm.

Options of the FastDiff Implementation

The FastDiff implementation can be controlled with the ”FastDiffusion” pa-
rameter of the input file. It can be set to ”Off” to disable FastDiff, can be
supplied with fixed maximum jump lengths via ”Fixed lMaxFL lMaxHL” for the
first and higher layers respectively, or it can be set to ”Auto” to automatically
calculate maximum jump lengths based on the other transition rates of the sys-
tem. The conditions used to determine the maximum jump length in the ”Auto”
setting are mostly arbitrary:

• We don’t want particles to be frozen after deposition, so the total fast
diffusion rate per particle should be somewhat larger than the deposition
rate. We require kFastDiff,lmax > 100kDepos.

• We don’t want the fast diffusion rate to be significantly suppressed in com-
parison to the common cluster diffusion transitions. For this we require
kFastDiff,lmax > 0.1kED-A(n = 2).

• We allow lmax to be maximum 10% of the system dimensions (in x and y
directions, lmax 6 Nx/y). Based on the observed diminishing returns, we
set a global maximum value of lmax 6 75nm.

As the transition rates of the system can change during the simulation by
a change of particle flux or temperature, the maximum jump length will be
recalculated in those cases if the ”Auto” setting is used.
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a.3 performance
While one is usually interested in simulating a certain experimental protocol
with a specific length in time, it is hard to predict the computation time that is
going to be needed in the KMC simulation. Here, we are going to show how
the computation time can scale with the system’s size and also how it strongly
varies with the system’s temperature in ways that one might not expect. As
an example, we use the atomistic rate model determined in Chap. IV with a
parameter εF = 42meV and few adjustments:

• The free diffusion rate is calculated with ∆EFD = 187meV and ν0,FD =

17× 1012Hz. These values reproduce more closely the experimentally ob-
served cluster densities at low temperatures, and also (more importantly)
generate a more pronounced temperature dependence of the computation
time.

• The dissociation rate is lowered by a factor of 5 to more closely reproduce
the cluster densities at around room temperature.

In its current implementation, the RAM usage of the simulation can be a bot-
tleneck as it needs roughly 0.5 kB per unit cell. For the following simulations,
we, therefore, do not exceed a system size of 2000× 2000× 3, taking roughly
6GB of RAM, which most modern machines can deliver.

a.3.1 system size scaling
To provide an example for the scaling of the computation time with the system’s
size, we run simulations of a four minute deposition phase (with a particle flux
of F = 0.026 ML/min) at a constant temperature of T = 120K. The system is
composed with an equal number of unit cells in x and y direction (Ny = Nx),
which is varied in the range Nx ∈ [150, 2000].

The resulting computation times are plotted in Figs. 80(a,b). Subfigure (b)
nicely shows how the computation time per unit cell linearly increases with the
system size and that this linear increase is mostly generated by the increased
search time needed in the transition search method. This scaling can potentially
be improved with the implementation of a true binary search tree to enable
simulation of even bigger system sizes with little drawback. In its current form,
it is more efficient to simulate smaller systems, but one has to be aware that
finite-size effects may occur when the system size is so small that only a few
clusters are forming in the simulation box. In this example such an effect can
be seen for Nx < 250 in Figs. 80(a,b), as the computation time (especially per
unit cell) suddenly starts to increase with smaller system sizes.
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Figure 80: Scaling of the overall computation time (green circles) with the system
size, as well as the time spent in the two main parts of the algorithm (red squares
for rate refreshing, orange diamonds for transition search). (a) total computation
time. The inset shows a zoomed-in section of the plot. (b) Computation time per
unit cell.

The effect can be explained by the decrease of the total particle deposition
rate (as it scales with the substrate area) to a point where nucleated particles
have to wait for prolonged periods for the arrival of new particles to form stable
configurations. This is reflected in Figs. 81(a,b) with an increase of the total
amount of executed KMC steps (as well as the amount of executed KMC steps
per unit cell). In Fig. 81c, we can see that the additional KMC steps are mostly
of the edge diffusion type, which are executed while the nucleated particles are
waiting for the deposition of new particles onto the substrate.

While the system size scaling may change with the system’s temperature or
with the used rate model, a general takeaway from this section is that one

Figure 81: Executed KMC steps versus system size. (a) Total amount of KMC
steps executed. (b) KMC steps per unit cell. (c) Proportion of free diffusion and
edge diffusion moves executed.
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should aim to simulate system sizes in which multiple clusters (optimally in the
order of 10− 100 clusters for best efficiency) can form.

a.3.2 temperature scaling
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Figure 82: Temperature scaling of the (a) computation time, (b) the number of
executed KMC steps and (c) the proportion of executed edge diffusion moves.

To analyze the scaling of the computation time with temperature, we run simula-
tions with a constant system size of 1500× 1500× 3 unit cells at temperatures
in the range T ∈ [100, 290]K. The simulation protocol consists of a four minute
deposition phase with a flux of F = 0.026 ML/min followed by a four minute
post-deposition phase (F = 0) in which the clusters can relax.

The results are shown in Figs. 82(a-c). While one might naively expect a
general increase of the computation time with the temperature (as the total
transition rate increases, the average time step decreases), we observe a large

Figure 83: ”Trapped” state as
discussed in the text.

peak of the computation time at a temperature
of Tpeak ≈ 160K. In this temperature range,
the clustered particles are mobile enough to
explore many of the edge states and tend to
get trapped in one-neighbour edge diffusion
states (especially above the first layer where
the B-step barrier is very large), in which they
do a large number of back-and-forth A-step
edge diffusion transitions before finally leav-
ing the state via dissociation or B-step edge
diffusion [Fig. 83]. This is reflected in the
observed maximum of the proportion of exe-
cuted edge diffusion transitions in Fig. 82c.
With increased temperatures, the decay rate
of those states increases faster than the A-step edge diffusion transition rate,
leading to a decrease in the computation time spent in those states.
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Additionally, the automatically calculated FastDiff jump length increases with
temperature, which strongly reduces the overall computation time at higher
temperatures.

While the observed behaviour is a specific property of the used rate model,
it nicely shows how unpredictable the computation times of a KMC algorithm
can be. Especially when changing parameters or features of a rate model, the
computation times can change drastically and one should always run a few test
simulations before running larger sets of simulations with specified time limits.
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b.1 pseudorandom number genera-
tors

Monte Carlo methods are dependent on a source of random numbers. While
there are ways to obtain ”true” random numbers, e.g. through measurement of
some physical observable that is understood as being random (e.g. atmospheric
noise [164]), one usually resorts to the use of so-called pseudorandom number
generators (PRNGs) as they are easier and more efficient to use. PRNGs
can take an initial ”seed” value and generate a string of values based on some
mathematical algorithm. These strings of numbers are in principle deterministic
(as a PRNG always generates the same string if supplied with the same seed),
however, a PRNG can aim to produce strings whose properties approximate
the properties of real strings of random numbers.

Probably the simplest class of PRNGs are linear congruential generators
(LCGs), which were widely used for a major part of the 20th century before
better algorithms were developed. LCGs are based on the recurrence relation

xn+1 = (a · xn + b) mod c (B.1)

with a modulus c (c > 0), a multiplier a (0 < a < c) and an increment b
(0 < b < m). The LCG is supplied with a seed value x0 from which it can
then derive a string of random numbers {x1, x2, ...}. While LCGs are still widely
used because of their simplicity and efficiency (mostly for simple applications),
they come with a few weaknesses that make them undesirable for scientific

Figure 84: Hyperplanes found in the output of an LCGs. Left: In two dimensions
from the output of an LCG with a = 69069,b = 0, c = 216. Right: In three
dimensions from the output of an LCG with a = 65539,b = 0, c = 231 (the so-
called ”RANDU” LCG).
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applications like MC simulations. An example of those weaknesses is shown
in Fig. 84: when used to choose coordinates in an n-dimensional space, the
generated points tend to fall onto a fixed number of hyperplanes, separated by
areas that are never realised.

More sophisticated PRNGs have been developed to avoid many of the ills of
LCGs, like the Mersenne Twister [165], which is the algorithm that we have cho-
sen to use in our KMC simulation. Specifically we make use of the ”MT19937”
implementation of the GNU Scientific Library [166].

b.2 quaternion approach to obtain
optimal rotations

For the determination of the rotational diffusion in Sec. IV.1.2, we make use of
a quaternion approach [158, 159] to determine optimal rotation transformations
between two conformations of the C60 molecule at different times of the trajec-
tory. Here, we outline the necessary calculations for our specific example. A
conformation A of the C60 molecule is determined by the 3 · 60 coordinates of
its carbon atoms (the origin of the coordinate frame is the center of mass of the
C60 molecule) and can be written as

A =


x1 y1 z1
x2 y2 z2
... ... ...
x60 y60 z60

 ,

AT =

x1 x2 ... x60
y1 y2 ... y60
z1 z2 ... z60

 , (B.2)

where AT is the transpose of the conformation matrix. To work towards a
optimal rotation between two conformations at different times, A(t1) and A(t2),
we start by calculating the inner product M,

M = AT (t1)A(t2) =

Sxx Sxy Sxz
Syx Syy Syz
Szx Szy Szz

 , (B.3)

where the matrix components are defined like Sxy :=
∑60
i=1 xi(t1)yi(t2). The

optimal rotation matrix can then be determined in its unit quaternion represen-
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tation as the eigenvector q with the most positive eigenvalue of the symmetric
4× 4 matrix K10 derived from M via

K10 =


Sxx + Syy + Szz Syz − Szy Szx − Sxz Sxy − Syx
Syz − Szy Sxx − Syy − Szz Sxy + Syx Szx + Sxz
Szx − Sxz Sxy + Syx Syy − Sxx − Szz Syz + Szy
Sxy − Syx Szx + Sxz Syz + Szy Szz − Sxx − Syy

 .

(B.4)

The quaternion q can be written as

q =


q0
q1
q2
q3

 =

(
cos (θ/2)
~v sin (θ/2)

)
|~v| = 1 (B.5)

and represents a rotation of an angle θ about a (3-dimensional) rotation axis
~v. For our analysis of mean-squared angular displacements (MSAD), we take
the values θ = 2 · arccos(q0) as the angular displacement between the two
conformations. The quaternion q can be translated into a rotation matrix R(q)
via

R(q) =

 1− 2q22 − 2q23 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q2q1 + 2q0q3 1− 2q23 − 2q

2
1 2q2q3 − 2q0q1

2q3q1 − 2q0q2 2q3q2 + 2q0q1 1− 2q21 − 2q
2
2

 , (B.6)

which can be used to do a sanity check if the obtained rotation is valid [Fig.
85].

Figure 85: Example conformations A1 and A2 as well as the result obtained by
rotating conformation A1 with the optimal rotation R(q). Three atoms are high-
lighted in orange to be able to track the orientation of the conformations.
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b.3 properties of the exponential
distribution

The waiting times for the processes we are describing in KMC simulations are
exponentially distributed. To be able to understand why the KMC algorithm
is a valid way of simulating the dynamics of our given system, it is therefore
important to understand some of the characteristics of the exponential distri-
bution, which we are going to derive in this section. The derivations of this
section can also be found in basic statistics/stochastic textbooks like Ref. [167]
and in my master’s thesis [86].

Probability Distribution of the Waiting Time for the Next Occurring Transition

Suppose we start with a given system in a microstate which it can leave through
n possible elementary transition pathways. We assume that the set of random
exponentially distributed waiting times X := {X1,X2, ...,XN} for each of the
transitions is a set of independent random variables. We can describe the
waiting time Xi for transition i ∈ {1, 2, ...,n} with the exponential distribution
function with parameter ki via

P(Xi 6 t) = 1− e
−kit for t > 0.

For the KMC algorithm, we are interested in the waiting time until the first of
the possible transitions occurs. In terms of random variables, we are interested
in the distribution function of the random variable Z := min(X), which we can
derive the following way:

P(Z 6 t) = P(min(X) 6 t) = 1− P(min(X) > t)

= 1− P(X1 > t, ...,Xn > t)
(Xi indep.)

= 1−

n∏
i=1

P(Xi > t)

= 1−

n∏
i=1

(1− P(Xi 6 t))

= 1−

n∏
i=1

e−kit

= 1− e−
∑
i kit = 1− e−ktott.

We find that the random variable Z is also described by an exponential dis-
tribution, the parameter of which is the total rate ktot =

∑
i ki. This finding

justifies the way the KMC algorithm advances the time in the simulation by
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drawing exponentially distributed time steps according to the total transition
rate of the system.

Probability of Event i Being the Next Occurring Transition

Knowing how the waiting time for the next occurring transition is distributed,
we are now interested in the probability that any given transition i is the next
one that is going to be executed. In terms of the defined random variables, we
want to derive the probability for Xi to be the smallest waiting time of the set
X,

P(Xi < Xj ∀ j 6= i).

To derive this probability we are making use of the probability densities of our
random variables:

pXi(t) =
d

dt
P(Xi 6 t) = kie

−kit.

Probability densities can be used to calculate the probability of a random
variable Xi taking a value in a given interval (x,y) via

P(x < Xi < y) =

∫y
x
pXi(t)dt.

As the random variables Xi are independent, we can write down the probability
density of the whole set X as the product of the individual probability densities

pX1,...,Xn(t1, ..., tn) =
n∏
i=1

kie
−kiti .

We can now use this distribution to calculate the probability for every variable
Xj, j 6= i to be larger than Xi,

P(Xi < Xj ∀ j 6= i) =
∫∞
0
kie

−kiti

∏
j 6=i

∫∞
ti

kje
−kjtjdtj

dti
=

∫∞
0
kie

−kiti

∏
j 6=i
e−kjti

dti
=

∫∞
0
kie

−
∑
j kjtidti =

∫∞
0
kie

−ktottidti

=
ki
ktot

.
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We find that the probability of event i to have the smallest waiting time (i.e.
for it to be the next transition to occur) is explicitly given by the ratio of
its transition rate ki with the total transition rate ktot. This probability is
reproduced by the KMC algorithms way of determining the next transition via
the drawing of a random number r ∈ [0,ktot] and the sequential search for the
first partial rate sum sm =

∑m
j=1 kj,m ∈ {1, 2, ...,n} that satisfies sm < r (As

described in Sec. II.3).

Memorylessness of the Exponential Distribution

Whenever we do a KMC simulation step by choosing a time step ∆t and a
transition i to execute according to the probabilities derived in the previous
sections, we end up in a new state in which some of the previously possible
transitions may become unrealisable (e.g. because of blocked diffusion paths)
while other new transitions can become available. I.e. for the possible transi-
tions of the next KMC step, we are left with a subset X ′ ⊆ X of ”old” transitions
– which have already waited a time ∆t – and we have a set X∗ of ”new” random
variables for the transitions that were just made available. The question of how
we can account for the fact that some of our transitions have already waited
a while for their possible occurrence is luckily very easy to answer for expo-
nentially distributed waiting times. We simply have to look at the conditional
probability distribution of the ”old” random variables x ′ given that we know
that they have already waited a time ∆t:

P
(
X ′j 6 t+∆t | X

′
j > ∆t

)
= 1− P

(
X ′j > t+∆t | X

′
j > ∆t

)
= 1−

P
(
X ′j > t+∆t ∩ X ′j > ∆t

)
P
(
X ′j > ∆t

)
t>0
= 1−

P
(
X ′j > t+∆t

)
P
(
X ′j > ∆t

)
= 1−

1− P
(
X ′j 6 t+∆t

)
1− P

(
X ′j 6 ∆t

)
= 1−

e−kj(t+∆t)

e−kj∆t
= 1− e−kjt.

We find that the conditional probability distribution of the ”old” transitions is
exactly the same as the ones of a ”new” exponentially distributed variable. This
property is the memorylessness of the exponential distribution. It simplifies the
implementation of KMC algorithms as it allows equal treatment of all possible
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transitions, independent of the fact that some may have already waited some
time for their occurrence during previous KMC steps.

Determining the transition rates for the multiple possible outgoing transitions
of a given initial state

Figure 86: Example con-
figuration.

Suppose we are looking at an initial state that has
multiple possible escape pathways that we would as-
cribe to different types of transition i [Fig. 86]. We
assume that each transition i has a waiting time Xi
that is an exponentially distributed random variable
(with rate ki) that is independent of the other possi-
ble transitions. The probability distribution for such
a waiting time Xi can be written as

P(Xi 6 t) = 1− e
−kit for t > 0. (B.7)

So for an initial state with n possible transitions, we
have a set X = {X1, ...,Xn} of independent exponentially distributed random
variables to describe the process. The particle will escape the initial state after
the time has reached the lowest of the waiting times (te = min(X) = Xm), and
it will move to the state that is the target of transition m. In our simulations,
we are measuring the escape time from the initial state, and take a snapshot
of the state of the system after the transition occurred (which tells us the type
of transition). A set of N simulations will yield N escape times te,j as well as
a number of total occurrences for each transition, Ni (N =

∑
iNi). We need

to derive informations about these observables to be able to analyze the data
correctly.

First, we take a look at the escape time te, which is always going to be the
minimum of the waiting times {X1, ...,Xn}. The probability distribution for te
can be derived as (see earlier section)

P(te 6 t) = P(min({X1, ...,Xn}) 6 t) = 1− e
∑
i kit

= 1− ektott,

so it behaves like a exponentially distributed random variable with total rate
ktot =

∑
i ki. From our set of N simulations with escape times te,j we can

therefore calculate ktot with the maximum likelihood estimator

k̂tot =
N

ttot
or unbiased k̂tot =

N− 1

ttot

ttot = N∑
j

te,j

 .

(B.8)
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Next, for each individual simulation, the probability of transition i to occur can
be written as: (see earlier section)

P(Xi < Xj∀j 6= i) =
ki
ktot

.

So if we are interested in the occurrence of transition i, we can view each
simulation as a Bernoulli experiment with success chance p = ki/ktot. The
total number of occurrences ni over the course of N simulations is therefore
described by the binomial distribution

P(ni × transition i) = b
N, kiktot

(ni) (B.9)

=

(
N

ni

)(
ki
ktot

)ni (
1−

ki
ktot

)N−ni

. (B.10)

The maximum likelihood estimator for ki can be derived by requiring

d

dki
b
N, kiktot

(ni) = 0 → k̂i =
ni
N
· ktot , (B.11)

where ktot can either be replaced by one of the estimators in Eq. (B.8) or by
an estimation derived from the distribution of escape times (as shown in Sec.
II.3.3).
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b.4 example lammps input script
Below is listed one of the input scripts we have used for one of the earliest
simulations of a single C60 molecule freely diffusing on a C60(111) surface
(here at T = 300K). As an interaction potential, a tabulated Girifalco poten-
tial was supplied via the file girifalco.table. Comprehensive explanations
for all the commands can be found in the online LAMMPS documentation at
https://lammps.sandia.gov/doc/.

#example surface diffusion script for C60 on C60

#basic system parameters

dimension 3

units metal

atom_style atomic

boundary p p f

#definition of a grid on which to place particles

lattice custom 1.0 &

a1 10.0 0.0 0.0 &

a2 5.0 8.66 0.0 &

a3 5.0 2.86 8.14 &

basis 0.2 0.2 0.2

#creation of the simulation box

region box block 0 4 0 6 0 10

create_box 2 box

#creation of particles

region substrate block INF INF INF INF INF 4

create_atoms 1 region substrate

create_atoms 2 single 3.00 2.0 4.5

#Definition of pair potentials

pair_style table linear 1200

pair_coeff * * girifalco.table GIRIFALCO_C60 20

pair_coeff 1 2 girifalco.table GIRIFALCO_C60 20

mass * 720.66

neigh_modify delay 0

#grouping of particles

group addatoms type 2

https://lammps.sandia.gov/doc/
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region mobile block 0 4 0 6 1 4

group mobile region mobile

region slab block 0 3 0 5 5 6

# compute commands to access temperature of mobile particles

compute mob mobile temp

compute_modify mob dynamic yes extra 0

#Some log output options

thermo_style custom step atoms temp epair etotal press

thermo 10000

thermo_modify temp mob

#Randomization Run

fix 1 addatoms nve #nve: Verlet integrator

fix 3 mobile nve

fix 2 mobile langevin 300 300 0.01 332115279

timestep 0.01

run 100000

#Temp Monitoring Run

variable newTemp equal "300/f_2*c_mob"
reset_timestep 0

unfix 2

fix 2 mobile ave/time 50 2 200 c_mob ave window 250

fix 4 mobile temp/rescale 50000 v_newTemp 300 1.0 1.0

run 352000

#Measurement Run

reset_timestep 0

unfix 4

unfix 2

dump 1 addatoms xyz 200 ./OutputFile.out

run 40000000
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