
JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Upscaling of fluid flow in fractured rock masses

Dissertation
zur Erlangung des Grades

"Doktor der Naturwissenschaften"
im Promotionsfach Geologie/Paläontologie

am Fachbereich Chemie, Pharmazie, Geographie und Geowissenschaften
der Johannes Gutenberg Universität Mainz

von

Maximilian Oskar Kottwitz
geboren in Wiesbaden

Mainz, 2021

http://www.uni-mainz.de
https://www.fb09.uni-mainz.de/
http://www.uni-mainz.de


1. Gutachter:
Prof. Dr. Boris J. P. Kaus

2. Gutachter:
Dr. Anton A. Popov

Tag der mündlichen Prüfung:

11.10.2021



“Qui bene bibet bene vivit.
Qui bene vivit bene dormit.
Qui bene dormit non peccat.

Qui non peccat in cælum venit.
Ergo qui bene bibet in cælum venit. ”

- Latin saying





v

Abstract

Numerical modeling of fluid flow is applied to assess hydraulic reservoir properties and their
uncertainties for decades and thus proven to be an essential part of geo-resource exploration.
Yet, one of its main challenges is how to properly translate flow from the pore- to the reservoir-
scale - the so-called upscaling problem. For fractured reservoirs, where flow predominantly
localizes in large individuals or connected networks of open discontinuities, this may be cum-
bersome, as their mechanically induced structures are often complex and inherently multi-
scale. Field-data-constrained stochastic fracture network models with reduced-order discrete
fracture representations are the most common approach to model multi-scale fracture sys-
tems in 3D. Upscaling their effective properties like permeability or porosity crucially relies
on parametrizations prescribing an average flow behavior at the single fracture scale to model
network-scale flow. Advancing the accuracy and applicability of these techniques to model
fluid flow in fractured rock masses from the fracture to the network scale is the main scope of
this thesis.
Initially, a new scheme to quantify the non-planar geometry of single fractures is established
as a basis to derive a refined parallel plate parametrization from the results of numerous 3D
Stokes flow simulations in synthetically generated fractures. The accuracy of this prediction
scheme depends on the ratio between the fracture size and the length scale of the long-range
correlations in its aperture field. Analyzing these correlation lengths in 3D-imaged, naturally
occurring discontinuities revealed that simple linear relationships to their mean apertures serve
as an approximation of this property in network-scale models. Prior knowledge of the fractures
correlation length enables determining the lowest scale in the upscaling process, at which us-
ing reduced-order fracture network models with parameterized flow behavior accounting for
in-fracture flow variability is statistically valid.
As a next step, the flow complexities in fracture intersections were explored in numerical sim-
ulations, revealing that they represent preferred pathways for fluid migration compared to
the crossing fractures and that, if its orientation aligns with the applied pressure gradient
and its length is close to the system size, it enhances effective permeabilities. A newly es-
tablished pipe-flow parametrization scheme enables including these effects into network-scale
simulations. There, computational limitations for networks with many fractures and incorpo-
rating hydraulic properties of the matrix represent current issues in discrete fracture network
flow methods. Developing a new single continuum discretization method for discrete fracture
networks that includes parametrizations for fracture and intersection flow to generate high-
resolved grids of individual, fully anisotropic permeability tensors helps tackle these problems.
Combining this with a newly developed, massively parallelized finite-element Darcy-flow code
capable of incorporating anisotropic permeability tensors at the local scale improves the effi-
ciency of upscaling hydraulic properties of fractured-porous media. Furthermore, the provided
discretization guidelines help to avoid the resolution dependency of single continuum methods
while conserving the anisotropic character of complex multi-scale fracture networks during the
upscaling process.
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Zusammenfassung

Das numerische Modellieren von Fluidfluss in Gesteinen ist seit Jahren ein wichtiges Werkzeug
in der Exploration von Georessourcen, um die hydraulischen Eigenschaften poröser und ge-
klüfteter Reservoire besser abschätzen zu können. Eine der größten Herausforderungen dabei
ist das korrekte Hochskalieren (engl.: upscaling) der Strömungseigenschaften von der Poren-
auf die Reservoir-Skala. Besonders in bruchdominierten Reservoiren erweist sich das oft als
schwierig, da die hydraulischen Eigenschaften maßgeblich von einzelnen oder in Netzwer-
ken verbundenen Klüften beeinflusst werden. Aufgrund des skalenübergreifenden Auftretens
hydraulisch aktiver Diskontinuitäten werden oftmals auf Felddaten gestützte, stochastische
Bruchnetzwerkmodelle mit diskreten Bruchdarstellungen reduzierter Ordnung verwendet, um
mehrskalige Bruchsysteme in 3D zu modellieren. Das durchschnittliche Fließverhalten auf der
Kluft- und Poren-Skala wird dann mit Hilfe von Parametrisierungen vorgegeben und der effek-
tive Permeabilitäts-Tensor des Bruchsystems durch einen Darcy-Ansatz berechnet. Die Verbes-
serung der Genauigkeit und Anwendbarkeit dieser Techniken zur Modellierung von Fluidfluss
in geklüfteten Gesteinsmassen von der Kluft- bis zur Netzwerkskala ist das Hauptanliegen die-
ser Arbeit.
Zunächst wird ein neues Schema zur Quantifizierung der nicht-planaren Geometrie einzelner
Klüfte erarbeitet. Dies dient als Grundlage für die Herleitung einer verfeinerten Parametri-
sierung der Kluft-Permeabilität auf Basis zahlreicher 3D-Stokes-Simulationen in synthetisch
generierten Klüften dient. Es wird gezeigt, dass die Genauigkeit dieser Parametrisierung vom
Verhältnis zwischen der Größe des Risses und der internen Korrelations-Länge des Apertur-
Feldes abhängt. Die Analyse dieser Korrelationslänge in 3D-verbildlichten realen Diskonti-
nuitäten ergab, dass einfache lineare Beziehungen zu deren mittleren Aperturen verwendet
werden können, um diesen Parameter in Modellen auf Bruchnetzwerk-Skala vorzugeben. Da-
durch ist es möglich, die niedrigste Skala im Hochskalierungs-Prozess zu bestimmen, bei der
die Verwendung von diskreten Bruchnetzwerkmodellen mit parametrisiertem Strömungsver-
halten auf der Kluft-Skala statistisch aussagekräftig ist.
Anschließend wird die Komplexität von Fluidströmungen in Kreuzungen von Klüften mit
3D-Stokes-Simulationen untersucht. Dabei wird gezeigt, dass Kluft-Kreuzungen bevorzugte
Wegsamkeiten für Fluide darstellen, wenn deren räumliche Orientierung ähnlich zur allge-
meinen Fließrichtung ausgerichtet ist und deren Länge nah an der Gesamtlänge des betrach-
teten Systems liegt. Mit Hilfe einer neu entwickelten Parametrisierung der Kluft-Kreuzungs-
Permeabilität kann dieser Effekt in Fluidfluss-Simulationen auf der Bruchnetzwerk-Skala in-
tegriert werden. Dort stellen rechnerische Einschränkungen für Bruchsysteme mit einer ho-
hen Anzahl an Klüften und die Integration der hydraulischen Eigenschaften der Matrix ak-
tuelle Probleme klassischer Methoden zur Fluidfluss-Simulation in diskreten Bruchnetzwerk-
Modellen dar. Um diese zu lösen, wird eine neue Diskretisierungs-Methode entwickelt, die Pa-
rametrisierungen für Kluft- und Kluft-Kreuzungs-Permeabilitäten heranzieht, um Kontinuums-
Gitter-Modelle mit anisotropen Permeabilitäts-Tensoren aus diskreten Bruchnetzwerk-Modellen
zu erstellen. Mit Hilfe einer neu entwickelten, massiv parallelisierten Finite-Elemente-Software,
die in der Lage ist, anisotrope Permeabilitäts-Tensore auf lokaler Ebene mit einzubeziehen,
können dann effektive Permeabilitäten von Bruchnetzwerken mit einem Darcy-Ansatz ermit-
telt werden. Dabei wird die für Kontinuums-Methoden oft beobachtete Auflösungsabhängig-
keit untersucht, um Diskretisierungs-Vorgaben zur akkuraten, Anisotropie-konservierenden
Hochskalierung hydraulischer Eigenschaften mehrskaliger Bruchnetzwerke abzuleiten.
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Chapter 1

Introduction

Assessing the permeabilities of fractured reservoirs or fault zones is a key challenge of reservoir
engineering in the fields of natural resource production (Khelifa et al., 2014; Ghosh et al., 2020),
geothermal energy recovery (Bodvarsson et al., 1985; Patterson et al., 2020), nuclear waste dis-
posal (SKB, 1992; La Pointe et al., 1995) and CO2-sequestration (IPCC, 2005; March et al., 2018).
Thus, advancements in this research field have, besides their scientific benefits, a profound
societal impact by ensuring long-term resource supplies and counterbalancing the challenges
induced by climate change.
A common characteristic of fractured reservoirs is a low permeable host rock, which causes
most fluids to migrate through connected networks or large individuals of open discontinu-
ities (Barenblatt et al., 1960; Warren and Root, 1963), more generally known as fractures. They
can be observed at the smallest scales by microscopes, up to the largest scales from satellite
images (Hardebol et al., 2015; Espejel et al., 2020). Thus, fractured reservoirs exhibit a strong
multi-scale character with distinct hydraulic features across scales, distinguishing them from
conventional, unfractured reservoirs. Numerous studies have revealed the structural hetero-
geneities of naturally occurring fracture networks (Dershowitz and Einstein, 1988; Odling et al.,
1999; Bonnet et al., 2001; Neuman, 2005). They represent essential parts of brittle fault zones in
the upper crust, whose structural appearance relates to their mechanical origin (Fossen et al.,
2007; Faulkner et al., 2010). Non-stationary and potentially anisotropic hydraulic properties
across scales are the direct consequences of these structural complexities and difficult to pre-
dict only from outcrop- and production-data or well-tests (Berkowitz, 2002; Bourbiaux et al.,
2005). Thus, numerical methods to model fluid flow and predict effective permeabilities have
gained increasing popularity throughout the past decades to complement field and laboratory
measurements while assessing the hydraulic properties of the reservoir.

1.1 Fluid flow modeling in fractured rocks

Modeling fluid flow in fractured or porous media can broadly be separated into direct- and
continuum-flow modeling approaches. For direct-flow modeling, the incompressible Navier-
Stokes equations (e.g., eq. 4.3.35 in Bear, 1972) usually provide the foundation to model the
migration of a single phase of fluid through a digital representation of the rock’s pore space.
For most subsurface flow conditions, it is common to assume laminar flow conditions, i.e.,
Reynolds numbers below 1 - 10 (Bear, 1972), which enables the use of the Stokes equations



2 Chapter 1. Introduction

for similar tasks. After discretizing these equations with, for example, finite difference (e.g.,
Strikwerda, 1984; Kaus et al., 2016), finite element (e.g., Girault and Raviart, 1986; Zienkiewicz
and Taylor, 2000) or finite volume (e.g., LeVeque, 2002; Perić, 2020) techniques and applying
pressure boundary conditions, one can solve for the velocity distribution within the digital
representation of the rocks pore space, under the assumption that the rock matrix is fully im-
permeable. Volume averaging of the velocities (e.g., Osorno et al., 2015) and substituting into
Darcy’s law for flow through porous media (Darcy, 1856) yields an directional permeability
value that has been proven to reflect experimental measurements, if resolved sufficiently (e.g.,
Eichheimer et al., 2019; Eichheimer et al., 2020). Alternatively, Lattice-Boltzmann techniques

are applied to solve similar problems (e.g., Jin et al., 2017; Zambrano et al., 2019). While direct-
flow modeling is a well-established method in the field of digital rock physics (DRP, e.g., Andrä
et al., 2013a; Schepp et al., 2020) to compute effective properties of imaged rocks, its limitation
lies in the applicable scale. The techniques to obtain the required digital representations of the
rocks pore space, usually done with high-resolution X-ray computed tomography (HRXCT) or
micro-CT (µCT) (Andrä et al., 2013a; Cnudde and Boone, 2013), are limited in their maximum
scannable size and respective trade-off to resolution, i.e., medical CT-scans of drill-cores (e.g.,
St-Onge et al., 2007). Hence, direct-flow modeling is only applicable to small scales (nanometer
to a couple of decimeters). For larger scales, continuum-flow modeling approaches serve to
simulate fluid flow and compute effective permeabilities. There, the concepts for flow through
porous media proposed by Darcy (1856) serve as the basis to describe the hydraulic structure
of rocks and model the pressure drop therein. Originated from a set of flow-through exper-
iments through soil columns, Darcy derived his famous formula relating the flow through a
porous medium to the applied pressure drop, fluid properties, and its permeability. The lat-
ter represents an intrinsic property of the medium that averages the resistance to flow over a
certain volume. Neuman (1977) has shown that the Darcy equation originates from the Navier-
Stokes equation by averaging, considering a symmetric permeability tensor for a homogeneous
medium and the assumption of an incompressible, iso-thermal Newtonian fluid flowing in
laminar and steady-state conditions. Thus, the Darcy equation represents an averaged ver-
sion of the Stokes equations, and the transition between direct- and continuum-flow modeling
provides the initial step in the upscaling process. There, the goal is to find an effective perme-
ability tensor for a certain local area of a fine grid model to be inserted into a global coarse grid
model that is computationally easier to solve (e.g., Zhou et al., 2010). Several methods exist
to perform upscaling tasks (Christie and Blunt, 2001; Farmer, 2002), whereas flow-based up-
scaling techniques with either periodic or linear-gradient pressure boundary conditions are the
most accurate compared to averaging techniques (e.g., Renard and De Marsily, 1997; Hauge
et al., 2012; Lie, 2019). Yet, the use of the Darcy equation to upscale and predict fluid flow
rests on the assumption that the porous medium is more or less homogeneous and the do-
main is a representative elementary volume (REV, e.g., Bear, 1972), i.e., the variance of the
mediums effective properties is low for the current volume. According to Long et al. (1982)
and Oda (1985), this behavior is given for fractured-porous media as well, if the rocks are ho-
mogeneously and densely fractured. However, the multi-scale character of fracture networks
interferes with this assumption if fractures span throughout the whole domain of interest (Long
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et al., 1982). Hence, either the size of a potential REV has to be determined for each fractured
rock mass individually before finding the appropriate coarse grid scale (Chen et al., 2008; Az-
izmohammadi and Matthäi, 2017) or large scale features have to be explicitly represented in
the upscaling process (Berre et al., 2019). Thus, several numerical methods to obtain effective
permeability tensors of fractured-porous media were developed in the past decades (Renard
and De Marsily, 1997; Berre et al., 2019). They account for the complex spatial arrangement of
fractures by (1) either explicitly representing every single fracture with reduced-order models
(2D lines or 3D planes) in the computational mesh (Klimczak et al., 2010; Dreuzy et al., 2012;
Hyman et al., 2015; Maillot et al., 2016; Alghalandis, 2017) or (2) generate a grid of so-called
equivalent (block) permeability tensors (as defined by Durlofsky, 1991, this is equal to the ef-
fective permeability tensor, if an REV exists at the considered scale and otherwise provides an
accurate basis for further uspacling) that are derived based on all fractures that intersect each
computational cell (Long et al., 1982; Oda, 1985; La Pointe et al., 1995; Jackson et al., 2000;
Svensson, 2001; Chen et al., 2015; Sweeney et al., 2020). Leung et al. (2012) and Hadgu et al.
(2017) have showed, that both discretization methods deliver comparable results and hence are
suitable to provide accurate upscaled hydraulic representations of fractured-porous media for
more sophisticated reservoir engineering tools like multi-phase flow or multi-physics coupled
solvers (Lemonnier and Bourbiaux, 2010; Kolditz et al., 2016).

1.2 Single fracture permeability

The hydraulic response to pressure changes of individual fractures represents the primary con-
trol of the reservoirs’ hydraulic properties. Assuming that a fracture consists of two parallel
plates separated by a constant aperture, one can analytical solve the Stokes equations (e.g.,
Bear, 1972) by extending the 1D Poiseuille-flow solution throughout the domain of the ide-
alized fracture. Integrating the resulting velocities and substituting them into Darcy’s law
yields the well-known cubic law (Lomize, 1951; Snow, 1969; Witherspoon et al., 1980) relat-
ing the permeability of the fracture to its aperture. Many experimental and numerical studies
have investigated this relationship to provide functional corrections, accounting for the non-
planar structure of naturally occurring fractures. Barton and Choubey (1977) experimentally
derived standardized profiles with individual joint roughness coefficients (JRC) accounting for
hydraulic and mechanical effects of the non-planar fracture morphology. These coefficients can
be determined by visually comparing a profile drawn from a fracture surface to the standard-
ized profiles to relate the hydraulic aperture from mechanically measured apertures (Barton
et al., 1985; Barton and Quadros, 1997). Numerical fluid flow simulations in synthetic or im-
aged fractures provide an alternative, more quantitative tool to obtain hydraulic apertures of
irregular fractures. Early attempts conducted 2D simulations of the Reynolds equation and
derived functional corrections to the cubic law based on the mean and standard deviation of
the aperture field (Patir and Cheng, 1978; Brown, 1987; Mourzenko et al., 1995; Zimmerman
and Bodvarsson, 1996; Oron and Berkowitz, 1998). While these parametrizations well-captured
permeability reductions due to flow channeling induced by increasing closure of the fracture,
3D Navier-Stokes or Lattice Boltzmann simulations (Brush and Thomson, 2003; Jin et al., 2017;
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Kling et al., 2017; Kluge et al., 2017) revealed their non-unique behavior for permeability pre-
dictions. Fracture surface features protruding into the aperture field accumulate drag force at
the fluid-rock interface that impedes fluid flow and consequently reduce fracture permeability
(Foroughi et al., 2018; Mourzenko et al., 2018). Thus, incorporating the morphology of the in-
dividual fracture surfaces and their degree of mismatch next to its aperture field for fracture
permeability predictions (Brown, 1995) is highly important. The surface roughness of frac-
tures is well described by self-affine fractal models (Power et al., 1987; Power and Tullis, 1991;
Schmittbuhl et al., 1993; Schmittbuhl et al., 1995; Candela et al., 2009) with scaling (or Hurst)
exponents ranging between 0.3 and 0.8 (Boffa et al., 1998; Ponson et al., 2007; Bouchaud, 1997;
Candela et al., 2012; Pluymakers et al., 2017), regardless of rock type and opening mode. The
aperture between two juxtaposed fracture surfaces follows the same scaling, assuming both
surfaces are uncorrelated. In nature, the self-affine scaling is only present up to a certain length
scale, above which the aperture tends to be well correlated and independent of observation
scale (Brown and Scholz, 1985; Glover et al., 1998b). The presence of this correlation length
often depends on the shear displacement during fracturing, assuming two perfectly mated
surfaces at nucleation stage (Wang et al., 1988; Brown, 1995; Plouraboué et al., 1995; Méheust
and Schmittbuhl, 2000). However, fluid-rock interactions like dissolution/erosion (Durham
et al., 2001; Kaufmann et al., 2016; Chen et al., 2019) or mineral growth (Noiriel et al., 2010;
Kling et al., 2017) bear the potential to alter the surface properties of fractures significantly
and should theoretically modify the correlation length as well. Statistically, the ratio of system
size to aperture correlation length affects the variability of the average hydraulic behavior of
similar fracture populations (Méheust and Schmittbuhl, 2000; Méheust and Schmittbuhl, 2001;
Méheust and Schmittbuhl, 2003) and thus needs to be investigated in real data to be able to
parameterize fracture permeability in the upscaling process.

1.3 Fracture network permeability

Fractured reservoirs display pronounced multi-scale characteristics, as fractures scale from the
nanometer- to reservoir-scale (Goldscheider et al., 2010; Bertrand et al., 2015; Hardebol et al.,
2015; Volatili et al., 2019). Typically, those fractures arrange in 3D networks whose structures
result from diverse brittle failure mechanisms (Pollard and Aydin, 1988; Wibberley et al., 2008;
Vrolijk et al., 2016). Especially in upper crustal fault zones, intense and complex fracturing
occurs in regions of proximity to the fault (Fossen et al., 2007; Faulkner et al., 2010). Hence,
assessing the structural heterogeneities of natural fracture networks has been one of the main
scientific issues in rock engineering (Priest, 1993). The main properties such as fracture size-
, orientation- and aperture-distributions (Dershowitz and Einstein, 1988; Odling et al., 1999;
Bonnet et al., 2001), as well as fracture density and spacing (Dershowitz and Herda, 1992; Or-
tega et al., 2006), are measured from outcrops or borehole studies to quantify the statistics of
a fracture network. However, acquiring deterministic knowledge of all fractures in a network
is impossible, and a certain amount of extrapolation is necessary to model effective properties
such as permeability or porosity of a fractured rock mass in 3D. Thus, the discrete fracture
network (DFN) method provides the conceptual basis to generate stochastic realizations of
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fracture network models in 2D and 3D (Long et al., 1982; Cacas et al., 1990; Bogdanov et al.,
2003; Darcel et al., 2003; Lei et al., 2017). Every fracture in a network is explicitly approxi-
mated by a reduced-order model (i.e., lines in 2D or planar object like discs or rectangles in 3D)
with a prescribed orientation, size, and location based on field observations. Fracture sizes are
randomly sampled from predefined probability density functions, which for natural fracture
systems usually follow exponential, log-normal, gamma, or power-law distributions (see Bon-
net et al., 2001, and references therein). Fracture orientations in 3D are predominantly modeled
with Fisher distributions (Fisher, 1953; Best and Fisher, 1979; Fisher et al., 1987) that assign a
mean orientation and a parameter accounting for the spherical dispersion around the mean for
a specific fracture set (see Peacock et al., 2018, for details on how to group fractures into sets
based on orientation, type and age relations). The location of fractures are defined by center
points, which are (1) randomly placed across the whole domain (Cacas et al., 1990; De Dreuzy
et al., 2002; Lavoine et al., 2019) or distributed based on (2) mechanical constrains (Davy et
al., 2013; Bonneau et al., 2016; Maillot et al., 2016) or (3) fractal models (Darcel et al., 2003;
Davy et al., 2006; Akara et al., 2020). Open-source software tools such as FraNEP (Zeeb et al.,
2013) or FracPaQ (Healy et al., 2017) help determine most of these properties from digitized 2D
fracture-trace maps on outcrop or satellite images to complement analog field measurements.
Generating 3D DFN models with open-source software is possible with, for example, Frac-
Sim3D (Xu and Dowd, 2010), dfnWorks (Hyman et al., 2015) or ADFNE (Alghalandis, 2017).
The DFN method has been extensively utilized in the past to estimate effective or equivalent
permeabilities (depending on whether a REV exists or not, respectively) of fracture network
(see review papers of Liu et al., 2016; Lei et al., 2017). A crucial requirement to model flow
through the DFN is to prescribe average hydraulic apertures of the fractures from which the
cubic law relates their permeabilities (see the previous section on fracture permeability). They
are most often either randomly sampled from aperture distributions measured in the field (see
Gong and Rossen, 2017, and references therein) or correlated to the fracture length in a lin-

ear (Pollard and Segall, 1987; Renshaw and Park, 1997) or sub-linear (Olson, 2003; Klimczak
et al., 2010) manner. Network-scale flow is then usually simulated with the single-phase Darcy
equation in a discretized mesh, explicitly incorporating the structure of the DFN (Berre et al.,
2019). They tend to capture anisotropic flow patterns through complex network geometries, es-
pecially if no REV exists but tend to have the drawback of high computational loads if the DFN
consists of a large number of fractures. However, due to the uncertainty linked to the DFN
input properties, many simulations have to be conducted to obtain a statistically valid quan-
tification of the network’s permeability. Thus, several studies suggested to mesh given DFN
to an equivalent continuum model (ECM), either in 2D (Reeves et al., 2008; Botros et al., 2008;
Rutqvist et al., 2013; Chen et al., 2015) or 3D (Hadgu et al., 2017; Sweeney et al., 2020), which
requires less computational effort to solve. In this method, the DFN domain is subdivided into
a grid of continuum cells with unique equivalent permeability tensors that are analytically de-
rived based on all fractures that intersect the cell (Oda, 1985; Chen et al., 1999). Leung et al.
(2012) and Hadgu et al. (2017) have demonstrated, that ECM methods provide similar effective
permeability estimates as the DFN method, if resolved sufficiently. However, the resolution
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FIGURE 1.1: Sketch demonstrating permeability upscaling in fractured rock masses. Panels a and b
show the velocity distributions (joined color-bar) resulting from direct-flow simulations (Stokes equa-
tion) within porespaces of the Fontainebleau sandstone benchmark dataset (e.g. Andrä et al., 2013b;
Eichheimer et al., 2019) and a limestone fracture (CT-scan provided by J. Klaver), respectively, from
which effective permeabilities are computed. Panel c displays a random permeability distribution (gen-
erated with the scripts provided by Räss et al., 2019) of a porous medium at the meso-scale (color-bar be-
low shows permeability for c, e and g), whereas panel d shows a DFN realization of a fractured medium
with 500000 fractures following a power-law size-distribution spanning three orders of magnitude (gen-
erated with ADFNE by Alghalandis, 2017). Panel e presents the ECM of the models shown in c and d,
demonstrating the multi-scale permeability structure of fractured-porous media. In panel f, the linear
gradient pressure boundary conditions for three iterations of continuum-flow simulations (Darcy equa-
tion) are shown, that are required to compute the effective permeability tensor of e. Panel g displays a
macro-scale model of a normal fault (CT-scan of a sandbox experiment provided by J. Schmatz), that
is populated with the upscaled permeability tensors obtained in a similar manner as demonstrated in e

and f.
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dependency of this method is still not fully understood. Furthermore, it is still an open ques-
tion at which scale it is valid to prescribe average flow-behavior in the individual fractures, as
Dreuzy et al. (2012) demonstrated that fracture-scale flow heterogeneity affects network flow
in small fracture networks. In contrast, Makedonska et al. (2016) concluded fracture-scale flow
heterogeneity has negligible effects on network flow for larger fracture networks.

1.4 Motivation

The possibility to advance my academic skills in a scientific topic that finds applications in
current societal challenges (long-term resource supply & sustainable utilization and counter-
ing climate change) was one of the main reasons for me to engage in this Ph.D. opportunity.
Besides this personal interest, addressing existing scientific challenges in the field of fractured
reservoir modeling provides additional motivation. Benefiting from (1) the massively paral-
lelized finite-difference software LaMEM (Kaus et al., 2016) developed in the geodynamics and
geophysics workgroup at Johannes Gutenberg-University (JGU) Mainz, (2) the workgroups
competency to develop massively parallelized, high-performance computing (HPC) scalable
numerical software, (3) the computational infrastructure provided by the MOGON II cluster at
JGU Mainz (hpc.uni-mainz.de) and (4) the remarkable field laboratory installed in the scope of
the German federal ministry of education and research (BMBF) funded project PERMEA (grant
no. 03G0865A), the following scientific issues provide the rationale for this thesis:

• The vast heterogeneity of fracture morphologies, expressed in varying scaling exponents
and mean amplitudes of the surface roughness (e.g., Brodsky et al., 2011) is well-known,
but quantifying their control on the permeability of fractures is often a non-unique prob-
lem. In addition, the coupled effects of hydraulic history (e.g., Pyrak-Nolte and Nolte,
2016) and mechanical interaction (Azizmohammadi and Matthäi, 2017) shape the aper-
ture field of fractures and thus modify fluid flow as well. Furthermore, direct modeling
approaches to predict permeabilities of imaged rocks numerically are prone to resolution
dependency (Eichheimer et al., 2019) and require a certain amount of accuracy to yield
valid results. Thus, analyzing the non-unique predictive behavior in high-resolution nu-
merical simulations and providing a universal, more accurate prediction of fracture per-
meability while accounting for the vast heterogeneity of fracture morphologies represents
a crucial requirement to model fluid flow at larger scales. Optimally, the applicability of
such predictive equations, usually based on synthetic fracture models, must be confirmed
with flow simulations in 3D imaged natural discontinuities.

• Diverse techniques to model fluid flow in fractured porous media have been established
and verified in the past (e.g., Berre et al., 2019; Berre et al., 2020). From a technical
perspective, the future challenges are focused on discretizing multi-phase flow exten-
sions and multi-physics (thermal-hydraulic-mechanical-chemical, THMC) coupling (e.g.,
Kolditz et al., 2016). Yet, an accurate and upscaled initial representation of the hydraulic

structure of the fractured-porous medium is a crucial requirement for these modeling ap-
proaches. However, fractured and faulted rocks display a strong multi-scale character,
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e.g., fracture sizes span across several orders of magnitude (Bertrand et al., 2015), and
these effects on the upscaling are not fully understood. The computational limitations of
the DFN method for large multi-scale networks (Hadgu et al., 2017), the inability of some
flow-solver to handle fully anisotropic permeability tensors (Sweeney et al., 2020) and
the resolution dependency of equivalent continuum methods (Jackson et al., 2000; Svens-
son, 2001) represent unresolved issues that have to be addressed to provide accurate and
statistically valid upscaled hydraulic representations of fractured reservoirs.

• The hydraulic properties of fault zones represent a crucial asset in the field of subsurface
resource utilization. According to a general model, damage zones in proximity to the
fault plane are often intensely fractured and thus highly conductive areas, whereas the
fault core, on the contrary, is usually inhibiting flow due to the presence of gouge lay-
ers (e.g., Faulkner et al., 2010). However, these structures can get utterly complex due
to multiple faulting events with potentially changing tectonic settings, leading to highly
heterogeneous hydraulic properties, both spatially and temporally. Hence, combining
mapping, field tests, and sampling campaigns with laboratory experiments and numeri-
cal simulations of fluid flow provides an integrative approach to accumulate multi-scale
data for a hydraulic reservoir assessment and advance the understanding of flow pro-
cesses through fault zones. Furthermore, direct comparisons of numerical and experi-
mental evaluations of hydraulic properties from fracture to reservoir scale are rare but
explicitly required from an engineering perspective (Thacker et al., 2004), as validating
numerical methods to predict fluid flow in fractured porous media has been an ever-
lasting topic (e.g., Cacas et al., 1990; Dershowitz et al., 1991) and crucial to proof the
methodological applicability.

1.5 Thesis outline

The first chapter of this thesis summarizes the theoretical background and recent advances in
multi-scale fluid flow modeling in fractured rocks and outlines the scientific rationale of this
thesis. The second chapter addresses the vast diversity of natural fracture morphologies and
their effects on permeability. Numerical permeability estimations of an extensive data set of
synthetically generated fractures with prescribed geometries help derive a new correction fac-
tor for the cubic-law parametrization for fracture permeability that reduces the non-unique be-
havior of existing permeabilities. In the third chapter, this refined parametrization gets tested
and confirmed on a data set of 3D imaged, naturally occurring discontinuities. Furthermore,
the fractures are analyzed concerning long-range correlations in their aperture field to shed
light on an often ignored but significant statistical property of fractures, as it primarily controls
the non-unique behavior of predictive equations. The fourth chapter addresses flow patterns
in simplified fracture intersections and provides a parametrization concept to upscale those
effects to larger scales. This parametrization and the refined one for fracture permeability are
integrated into a continuum method to predict effective permeability tensors of fracture net-
works based on numerical simulations of the 3D Darcy equation. Moreover, this method’s
resolution dependency is analyzed to provide discretization guidelines for obtaining the most
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accurate and efficient permeability tensors that reflect the hydraulic structure of the network.
The fifth and last chapter of this thesis summarizes the results of this thesis and draws some
general conclusions. It follows a brief outlook that addresses how the methods developed in
this thesis can be applied and validated with data obtained from a naturally occurring fractured
reservoir.

1.6 Further notes

Chapters 2-4 are written such that they represent individual studies, whereas, from a thematic
point of view, they are closely related. Hence, there may be some overlap in content concerning
the used methodologies and introductory literature researches.
The auxiliaries used in this thesis which are not directly indicated in the text are summed up
in the following. This thesis was written in TexStudio using the template "Masters/Doctoral
Thesis" retrieved from "www.latextemplates.com". Data pre- and post-processing as well as
analysis and fitting were carried out in Matlab and Python, similar as the 2D plotting (all scripts
are available upon request). 3D visualizations were generated with ParaView, whereas all final
plots where edited in Inkscape. English grammar was corrected with Grammarly.
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Chapter 2

The hydraulic efficiency of single
fractures: Correcting the cubic law
parameterization for self-affine surface
roughness and fracture closure 1

2.1 Abstract

Quantifying the hydraulic properties of single fractures is a fundamental requirement to un-
derstand fluid flow in fractured reservoirs. For an ideal planar fracture, the effective flow is
proportional to the cube of the fracture aperture. In contrast, real fractures are rarely planar,
and correcting the cubic law in terms of fracture roughness has therefore been a subject of nu-
merous studies in the past. Several empirical relationships between hydraulic and mechanical
aperture have been proposed, based upon statistical variations of the aperture field. However,
often they exhibit non-unique solutions, attributed to the geometrical variety of naturally oc-
curring fractures. In this study, a non-dimensional fracture roughness quantification-scheme is
acquired, opposing effective surface area against relative fracture closure. This is used to cap-
ture deviations from the cubic law as a function of quantified fracture roughness, here termed
hydraulic efficiencies. For that, we combine existing methods to generate synthetic 3D frac-
ture voxel models. Each fracture consists of two random, 25cm2 wide self-affine surfaces with
prescribed roughness amplitude, scaling exponent, and correlation length, which are sepa-
rated by varying distances to form fracture configurations that are broadly spread in the newly
formed two-parameter space (mean apertures in sub-millimeter range). First, we performed
a percolation analysis on 600’000 synthetic fractures to narrow down the parameter space on
which to conduct fluid flow simulations. This revealed that the fractional amount of contact
and the percolation probability solely depends on the relative fracture closure. Next, Stokes
flow calculations are performed, using a 3D finite differences code on 6400 fracture models
to compute directional permeabilities. The deviations from the cubic law prediction and their
statistical variability for equal roughness configurations were quantified. The resulting 2D
solution fields reveal decreasing cubic-law accordance’s down to 1 % for extreme roughness

1This chapter was published in Solid Earth (Kottwitz, M. O., Popov, A. A., Baumann, T. S., and Kaus, B. J. P.,
https://doi.org/10.5194/se-11-947-2020)

https://doi.org/10.5194/se-11-947-2020
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configurations. We show that the non-uniqueness of the results significantly reduces if the
correlation length of the aperture field is much smaller than the spatial extent of the fracture.
An equation was provided that predicts the average behavior of hydraulic efficiencies and re-
spective fracture permeabilities as a function of their statistical properties. A model to capture
fluctuations around that average behavior with respect to their correlation lengths has been
proposed. Numerical inaccuracies were quantified with a resolution test, revealing an error
of 7 %. By this, we propose a revised parametrization for the permeability of rough single
fractures, which takes numerical inaccuracies of the flow calculations into account. We show
that this approach is more accurate compared to existing formulations. It can be employed to
estimate the permeability of fractures if a measure of fracture roughness is available, and it can
readily be incorporated in discrete fracture network modeling approaches.

2.2 Introduction

The geometrical inhomogeneities of single fractures and their effect on fluid flow remain a cru-
cial parameter for understanding the hydraulic properties of fractured reservoirs, such as crys-
talline or tight carbonate rocks with nearly impermeable matrices. Hence, it has wide-ranging
industrial applicability in the fields of petroleum and gas production, geothermal energy re-
covery, CO2 sequestration, nuclear waste disposal, and groundwater management. Fluid flow
in fractured reservoirs is commonly modeled by the discrete-fracture-network (DFN) approach
(Bogdanov et al., 2003; Klimczak et al., 2010; Leung et al., 2012; Dreuzy et al., 2012), which re-
lies on knowing the permeability of single fractures. The permeability of a single fracture is
often approximated by the well-known cubic law (Snow, 1969; Witherspoon et al., 1980), as-
suming that a fracture is composed of two parallel plates separated by a constant aperture.
However, natural fracture walls show deviations from planarity, i.e., roughness, resulting in
varying apertures within the fracture plane. On top of that, fluid-rock interactions like disso-
lution (Durham et al., 2001), erosion (Pyrak-Nolte and Nolte, 2016) and mineral growth (Kling
et al., 2017) as well as the surrounding stress field (Zimmerman and Main, 2004; Azizmoham-
madi and Matthäi, 2017) further modify the geometry of a fracture, causing deviations of the
parallel plate assumption.
Considerable effort has been made to study the effect of fracture surface roughness on flow
and reactive transport behavior. Early attempts (Patir and Cheng, 1978; Brown, 1987; Zimmer-
man and Bodvarsson, 1996; Oron and Berkowitz, 1998) employed the 2D Reynolds equation,
a simplification of the Navier-Stokes equations, which assumes that the cubic law holds lo-
cally with the aperture varying in the x− y along-fracture plane. They derived semi-empirical
functions that describe the deviations from the cubic law in terms of the mean and standard de-
viation of the aperture field. Increasing computational power led to numerical improvements,
with 3D Lattice Boltzmann (Jin et al., 2017; Foroughi et al., 2018) or Navier-Stokes (Mourzenko
et al., 1995; Brush and Thomson, 2003) simulations revealing the non-uniqueness of previous
functional approximations of fracture permeability. Factors such as shear displacement (Kluge
et al., 2017), tortuosity, and the degree of mismatch between the opposing fracture surfaces
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(Mourzenko et al., 2018) were demonstrated to affect fluid flow paths and permeabilities. De-
tailed analyses of exposed fracture surfaces have shown that self-affine fractal models are ca-
pable of quantifying surface roughness properties from thin-section- to outcrop-scale. Thereby,
the dependence of surface roughness as a function of the observation scale is captured by their
scaling exponent (the so-called Hurst exponent H). For example, mode I fractures in a porous
sandstone showed H of 0.4 − 0.5 (Boffa et al., 1998; Ponson et al., 2007). Micro-fractures in
Pomeranian shale featured H of 0.3 and 0.5 (Pluymakers et al., 2017), depending on the open-
ing mode. In other studies, H of fault surfaces (mode II fractures) tends to fall in the range
of 0.6− 0.8 with respect to slip orientation (Power and Tullis, 1991; Schmittbuhl et al., 1995;
Bouchaud, 1997; Renard et al., 2006; Candela et al., 2012), regardless of rock type. Based on this,
it is commonly assumed that a fracture consists of two opposing self-affine surfaces, and the
resulting aperture field follows the same scaling relationship, assuming both surfaces are un-
correlated (Plouraboué et al., 1995). However, observations of opposing fracture walls (Brown,
1995) have demonstrated that the two surfaces tend to be well correlated above a specific length
scale and non-correlated below it, which poses an upper limit to the self-affine scaling in na-
ture. Following Méheust and Schmittbuhl (2001) and Méheust and Schmittbuhl (2003), the
ratio between system size L and the correlation length lc defines whether the fracture has an
intrinsic permeability or not. Their statistical approach suggested that permeabilities of uncor-
related fractures (i.e., lc/L = 1) are strongly fluctuating and anisotropic for the same roughness
configurations, revealing the importance of considering low lc/L ratios to be able to quantify
an intrinsic fracture permeability.
Although extensively studied, no clear mathematical relationship between fracture roughness
and permeability has been derived so far, leaving the cubic law as standardized parametriza-
tion in DFN modeling approaches. Thus, an applicable refinement is desired to promote their
realism to help better understanding fluid flow on a reservoir scale. In this paper, existing algo-
rithms are used to generate a large data set of synthetic fractures covering all possible kinds of
roughness configurations. Single-phase 3D Stokes flow calculations are then performed with a
finite difference code, utilizing a high-performance-computing (HPC) cluster to handle the as-
sociated computational effort. By interpreting the statistical variations of the results, a refined
parametrization of single fracture permeability is proposed, which is demonstrated to provide
accurate predictions for the permeability of rough fractures.

2.3 Method & Data

2.3.1 Fluid flow in self-affine fractures

Generally, the flow of an incompressible Newtonian fluid is most accurately described by the
Navier-Stokes equations (NSE). Assuming, that the flow is solely laminar (Reynolds numbers
below unity according to Zimmerman and Bodvarsson, 1996), the fluid viscosity is constant
and gravity is negligible at the system size, they reduce to the simpler Stokes equations, i.e.,
momentum balance (2.1) and continuity (2.2) equations, which for steady-state flow conditions
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FIGURE 2.1: a) Aperture field of a synthetically generated fracture (d = 1 mm,
σs = 0.5 mm, H = 0.9) with a lc/L ratio of 1/16. b) Zoom-in showing the uncor-

related part of the aperture field. Units of Lx are in mm.

are given in compact form by:
µ∇2v = ∇P, (2.1)

∇ · v = 0, (2.2)

with the fluid’s dynamic viscosity µ, pressure P and velocity vector v = (vx, vy, vz), ∇, ∇·,
and ∇2 denote the gradient, divergence, and Laplace operator for 3D Cartesian coordinates,
respectively.
These equations can be solved analytically for an idealized fracture, consisting of two parallel
plates, vertically separated by a constant aperture a. Volumetric integration of the horizontally
extended Poiseuille-flow solution yields the well known cubic law:

Q = −wa3∆P
12µ

, (2.3)

with total volumetric flow rate Q, fracture width w and pressure gradient along the fracture ∆P
(see Zimmerman and Bodvarsson (1996) for a more detailed derivation). Combining equation
2.3 with Darcy’s law for flow through porous media:

Q = − kA∆P
µ

, (2.4)

with cross-sectional area A, leaves the intrinsic permeability k of an idealized fracture propor-
tional to its aperture by k ∝ a2/12. For a rough walled fracture, the aperture is no longer
constant but rather varying across the fracture plane. The mean planes of an upper and lower
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FIGURE 2.2: Two aperture fields constructed from synthetic fractures. Both aper-
ture fields are based on the same sets of random numbers with varying Hurst
exponents H, which is a) 0.4 and b) 0.8. The two statistical parameters ā and
σa are indicated by black solid and dashed lines, respectively. Axis units are in
mm, while the vertical axis (indicating aperture) is exaggerated by a factor of two
for clarity. Note that ā and σa are identical for a) and b). Increasing height fluc-
tuations at smaller scales, caused by a lower Hurst exponent results in a larger

effective surface area S for fracture a) compared to b).

rough surface su(x, y) and sl(x, y) are separated by a constant distance d to form a(x, y) accord-
ing to:

a(x, y) =
[

su(x, y) +
d
2

]
−
[

sl(x, y)− d
2

]
. (2.5)

Depending on d, the surfaces may overlap at certain points and form contact areas, such that
a0(x, y) is zero at these locations:

a0(x, y) =

 a if a(x, y) > 0

0 if a(x, y) ≤ 0.
(2.6)

Assuming, that su and sl are self-affine, the standard deviation σ of the aperture field computed
at system size l scales as (Brown, 1995; Schmittbuhl et al., 1995):

σ =

 βlH if 0 ≤ l ≤ lc

βlH
c if lc ≤ l ≤ L,

(2.7)

with the maximal system size L and the correlation length lc. Below lc, the fracture is uncorre-
lated, and it is well correlated above it (see Fig. 2.1 for a visual explanation). The prefactor β

delivers information about the overall amplitude of the surface roughness. H typically denotes
the scaling or Hurst exponent with 0 < H ≤ 1, whereas H = 1 corresponds to self-similar and
H < 1 to self-affine scaling (e.g., Mandelbrot, 1982). Physically, self-affinity is expressed by
higher height fluctuations at smaller scales, leaving H as a measure for the ratio of large scale
versus small scale roughness intensity.

Here, we use the following two non-dimensional quantities to quantify the geometry of a
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rough fracture: (i) the relative closure R and (ii) the effective surface area S. We compute the
relative closure by dividing the standard deviation of the aperture field at the maximal system
size σa by the average aperture field ā:

R =
σa

ā
, (2.8)

with ā defined by:

ā =
1

LxLy

Lx∫
x=0

Ly∫
y=0

a0(x, y)dxdy. (2.9)

This quantity or its reciprocal is commonly used to infer the amount of contact between the op-
posing fracture walls (Patir and Cheng, 1978; Brown, 1987; Zimmerman and Bodvarsson, 1996;
Méheust and Schmittbuhl, 2000). Theoretically, it falls in the range 0 < R ≤ ∞, whereas R = 0
shows perfect accordance with parallel plates and the surfaces are in contact if R ≥ (3

√
2)−1

(see Brown, 1987).
Furthermore, one requires a parameter that quantifies the effective surface roughness of a frac-
ture since fractures with different H can have equal R values (see Fig. 2.2 for a visualization of
the non-uniqueness of R). We, therefore, introduce a new quantity, the "effective surface area
S". This parameter uniquely combines varying amplitudes and scaling exponents, because an
increase in fracture surface area is the direct consequence of increasing roughness. For that,
we calculate the ratio of the surface area of the fracture sa f to twice the area of its projection
on the fracture plane (i.e., two times the base area perpendicular to the flow direction) sac and
normalize it with the fractional amount of the aperture field that has opened, i.e.:

S =
( sa f

sac

)( 1
1− c

)
, (2.10)

with c being the contact fraction of the aperture field (i.e. where a0(x, y) = 0), which leaves
1 ≤ S ≤ ∞, with S = 1, showing perfect accordance with parallel plates. To finally quantify the
influence of fracture roughness on its intrinsic permeability, the proportionality resulting from
the cubic law needs to be corrected (e.g., Witherspoon et al., 1980) by applying a correction
factor according to:

k ∝ χ
a2

12
. (2.11)

The approximation of χ in terms of quantified fracture roughness, i.e., χ(R, S), is the main
subject of this study.

2.3.2 Numerical permeability estimation

To simulate the laminar flow of an incompressible, iso-thermal, and iso-viscous fluid, we use
a 3D binary voxel model input. We solve the linearized momentum balance (eq. 2.1) and
continuity (eq. 2.2) equation in 3D, using velocity and pressure as primary variables. The cou-
pled system is implemented in the open-source software package LaMEM (Kaus et al., 2016).
LaMEM is a 3D staggered grid finite-difference code, which is based upon PETSc (Balay et al.,
2018). The software is massively parallel and thus optimized for the use of high-performance
computing (HPC) clusters to enable the computation of high-resolution models in a reasonable
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amount of time. Here, the matrix is considered impermeable and constrained to no-flow condi-
tions by forcing all three velocity components to be zero at the matrix-void-boundary. Besides,
the staggered grid discretization scheme is rescaled at the fluid-matrix interface to provide
higher accuracy (Eichheimer et al., 2019). Different pressures are applied on two opposing
boundaries (∆P = 0.01 Pa for all models), while the remaining boundaries are set to no-slip.
This fixes the principal direction of fluid movement (here it is in y-direction, e.g. Fig. 2.3). After
ensuring that the numerically converged solution is obtained (see appendix A in Eichheimer
et al., 2019), the velocity component parallel to the principal flow direction is integrated over
the volume to compute the volume average velocity v̄ according to:

v̄ =
1
V

∫
V

|vy| dy, (2.12)

with the domain volume V. To finally obtain the intrinsic permeability ki, v̄ is substituted into
Darcy’s law for flow through porous media, similar to the approach of Osorno et al. (2015):

ki =
µv̄
∆P

, (2.13)

with the fluid’s dynamic viscosity µ.

2.3.3 Synthetic fracture data set

As in-situ data of fractures are rarely accessible and limited to the size of drill cores, numer-
ical studies commonly rely on a stochastic generation approach for synthetic fractures (e.g.,
Brown, 1995; Candela et al., 2009). Here, we numerically generate isotropic self-affine surfaces

high pressure boundary

low pressure boundary

velocity vector

porespace

matrix

computation point

coordinate point

x

y

z

FIGURE 2.3: Model setup employed in the numerical simulations. The two
boundaries where the pressure gradient is applied are indicated. The green ve-
locity vectors are used for the computation of v̄ and scaled according to their
magnitude. The sub-figure illustrates the staggered-grid discretization-scheme

of a single voxel.
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with a MATLAB script (Kanafi, 2016), which makes use of random theory and fractal model-
ing techniques (Persson et al., 2004). It uses the standard deviation of surface heights σs, the
Hurst exponent H, the cutoff length lc, and the system size L in x and y direction as input
parameters to obtain su(x, y) and sl(x, y), which are built from two independent Gaussian ran-
dom number fields. The code is slightly modified, such that the seeds for the random number
generator are prescribed to produce reproducible results. The mean planes (x − y coordinate
plane in both cases) of su and sl are separated by varying values of d according to equation 2.5
to simulate different closure stages of the fracture. Since ignoring mechanical deformation is
a common practice (Brown, 1987; Méheust and Schmittbuhl, 2000; Méheust and Schmittbuhl,
2003; Mourzenko et al., 2018), we also assume that both surfaces are in contact at the locations
where they overlap. Finally, the data is transferred into a 3D voxel space of 512× 512× 128 vox-
els with a fixed physical voxel size of 0.1 mm, resulting in a model domain of 51.2× 51.2× 12.8
mm. The relative closure and the effective surface area are computed according to equations
2.8 and 2.10, respectively. It is important to note that both quantities are computed only within
the effective pore space of the fracture parallel to the direction of the applied pressure gradient
because only this contributes to the overall flow. For some configurations, it might be possible
to have small amounts of trapped pore space within the fracture that must be excluded before
further numerical treatment. We separate the data sets generated in this study into two groups,
each which specific sets of input-parameter combinations and a certain number of realizations
(input values are listed in table 2.1). The first group is used to analyze the percolation proba-
bilities and determining the parameter boundaries for geometries of group 2, which are later
used for numerical flow simulations. To check, whether each fracture configuration in group 1
is able to transmit fluids, i.e., if it is percolating or not, we apply a recursive flood-filling MAT-
LAB routine (e.g., Torbert, 2016). Then, the percolation probability p represents the mean value
of n fracture realizations built from one specific input parameter combination, such that:

p =
1
n

n

∑
i=1

pi , with pi =

 1 if percolating

0 if non-percolating.
(2.14)

TABLE 2.1: Minimal and maximal input values for parameters d, σs, H and lc/L.
n denotes the total number of increments, including minimum and maximum.
Subscripts g1 and g2 indicate data for group 1 or 2, respectively. Thus, multiply-
ing the n values of each parameter gives the total number of parameter combi-
nations (6000 for group 1, 320 for group 2). The number of realizations for a set
(i.e. the number of different random number seeds used to generate the surfaces
with one peculiar parameter combination) are given in the footnotes, resulting in
a total of 600000 and 6400 fracture configurations for group 1 and 2, respectively.

Parameter Dimension ming1 maxg1 ng1 ming2 maxg2 ng2

d mm 0.01 1 20 0.2 5 4
σs mm 0.1 0.6 6 0.2 0.5 4
H - 0.1 1.0 10 0.1 1.0 4
lc/L - 1/16 1 5 1/16 1 5
rg1 = 100, rg2 = 20
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Figure 2.4 shows the percolation probability as a function of relative closure R, as there was
no notable variation with respect to their effective surface areas. Generally, the percolation
probability starts reducing from 1 at R ≈ 1 and converges to zero at R ≈ 5. Higher lc/L
ratios show earlier convergences to their percolation limit, as visible from the two fitted lines
for lc/L 1 and 1/16. From the inset plot, it is evident that the contact fraction of all models only
depends on the relative closure R, first contact between both walls occurs at R ≥ 3

√
2σa, which

is in good accordance with Brown (1987). Following this, we have chosen to limit the fracture
geometries for the fluid flow simulations to configurations with R ≤ 1 to (i) exclude non-
percolation systems and (ii) limit the effect of the above-mentioned "melting" hypothesis, which
intensifies with increasing R. To ensure applicability to nature, the input values for group 2 (see
table 2.1) are chosen, such that the resulting fracture geometries are classified from "closed" to
"open" joints according to Bieniawski (1989). The resulting parameter-ranges for fractures in
group 2 can be found in table 2.2. For the numerical fluid flow simulations, we implemented the
following workflow: First, we apply a flood-filling algorithm on the initial 3D model along x-
direction. R and S are calculated on the resulting effective pore space, followed by a numerical
permeability estimation, as explained above, in the same direction. Then, we rotate the initial
model by 90◦ in the x− y plane, and the procedure explained above is repeated. In this manner,
two-directional permeability values for every fracture are obtained, resulting in a total sum of
12800 fluid-flow simulations.

FIGURE 2.4: Percolation probability p (eq. 2.14) and the mean fractional amount
of contact c as a function of relative closure R for all fracture realization sets of
group 1 and 2. Different shades of blue indicate different lc/L ratios as given in

the legend, whereas black lines show best fits to the data.
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TABLE 2.2: Resulting minimal and maximal values for mean aperture (ā), stan-
dard deviation of the aperture field (σa), contact fraction (c), relative fracture clo-
sure (R), effective surface area (S) and numerical fracture permeability (km) for

the fracture geometries in group 2.

Parameter ā σa c R S km
Dimension m m - - - m2

min 1.91× 10−4 1.16× 10−4 0 0.03 1.04 6.78× 10−14

max 4.96× 10−3 8.51× 10−4 0.44 0.99 2.49 7.94× 10−7

2.4 Results

2.4.1 Hydraulic efficiency

In the following section, we present the results of the numerical fluid flow experiments within
the geometries of group 2. For this, we normalize the numerically computed permeabilities
(km) by the permeability predicted by the cubic law (kcl) with equivalent mean aperture ā of the
associated effective pore space:

χ =
km

kcl
. (2.15)

FIGURE 2.5: The distribution of the hydraulic efficiency χ for different lc/L ratios
as a function of R and S. Both axes limits in a correspond with b-e. Dark blue color
indicates poor hydraulic efficiency, whereas lighter color shows increasing accor-
dance with the cubic law. The black contour lines indicate the absolute residuals

to the fitted surface (Compare with Fig. 2.6).

Consequently, one can use the hydraulic efficiency χ as the correction factor in eq. 2.11 to
apply the cubic law to rough fractures. In that way, a fracture whose configuration is close to



2.4. Results 21

the parallel plate geometry shows excellent hydraulic efficiency with χ close to one. In the R-
S-space, the parallel plate fracture configuration exclusively corresponds to a single point with
coordinates (0, 1). Perfect hydraulic efficiencies (χ = 1) were validated by flow simulations in
parallel-plate fractures.
The key result of this study, a model that corrects the cubic law in terms of quantified fracture
roughness, is proposed in Fig. 2.5. Due to the complexity of the results, we fitted a regularized
surface with a MATLAB function called "gridfit" (DErrico, 2006) to approximate the solution in
R-S space. The function can interpolate scattered data within a prescribed bounding box and
a certain amount of smoothing, resulting in a clearer solution image compared to conventional
interpolation techniques. Furthermore, to enable an adequate basis for the fitting, the data was
cropped above R = 1.0 and S = 2.5 to provide sufficient data density in R-S-space, which
reduces the total amount of simulations used for the fitting from 12800 to 10292.
The results display significant deviations from the cubic law approximation, even for fractures
where both surfaces are not in contact (i.e., R ≤ 0.23). We obtain the lowest χ values in regions
of high R and S, with a general trend of increasing χ for larger lc/L ratios.
The absolute residuals of the fitted surface from Fig. 2.5 to the simulated data are computed to
investigate the hydraulic efficiency fluctuations for similar fracture configurations. As before,
we fit a regularized surface through the scattered points from which we extract the displayed
contour lines (Fig. 2.5). They indicate that the goodness of the fit reduces with increasing lc/L
ratios, especially in the lower right corner. Hence, the non-uniqueness of the data reduces for

= 1/16

= 1/8 = 1/4

= 1/2 = 1

a)

b) c)

d) e)

FIGURE 2.6: Absolute residual values of the fitted surfaces in Fig. 2.5 for different
lc/L ratios as a function of R and S, binned into equally sized boxes. All axes
limits in a correspond to the ones in b-e. Orange boxes indicate the mean absolute
residual value of the specific bin, whereas the smaller black boxes on top give the

maximum absolute residual.
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FIGURE 2.7: Parity plot of predicted versus computed hydraulic efficiency χ for
a total of 2554 fractures with an lc/L ratio of 1/16. The black line indicates the
location of perfect parity. Inlet data gives the mean and standard deviation of pre-
dicted (kp) over computed (kc) permeabilities that correspond to all data points

in the plot.

lower lc/L ratios, which can be even better seen in Fig. 2.6. A regional, maximum residual of
about 0.2 for fractures with a lc/L ratio of 1/16 enables a more or less unique parametrization
refinement, which is not the case for higher lc/L ratios. Our finding that low lc/L ratios show
lower reduced variability is consistent with the results of Méheust and Schmittbuhl (2003).

An easy integration of this parametrization refinement into a DFN framework requires a
mathematical approximation of the fitted surface shown in Fig. 2.5 a), which was found by the
following equation:

χ = 1− (0.4809 tanh(0.5139S) + 0.5408) tanh
( R

39.28 tanh(−2.451S) + 39.47

)
(2.16)

To predict single fracture permeability, it is only necessary to know the mean and standard
deviation of the aperture field (ā and σa), the fractional amount of surface contact (c) and the
surface area protruding into the void space (sa f ). From these values, R and S are computed
to infer the hydraulic efficiency χ with eq. 2.16, which is then multiplied by the permeability
predicted by the cubic law with aperture ā (see eq. 2.11). Fig. 2.7 demonstrates the accuracy
of eq. 2.16 to predict hydraulic efficiencies and accompanying permeabilities for fractures with
lc/L ratios of 1/16. To quantify the hydraulic efficiency fluctuations (σχ) with respect to its
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TABLE 2.3: Coefficients a, b, c and d for equation 2.17, determined by least-square
fitting for fractures with varying lc/L ratios.

lc/L a b c d
1/16 0.0428 0.1652 -0.8226 0.8822
1/8 0.6517 -0.3135 -0.6751 0.6625
1/4 0.9509 -0.7343 -0.7852 0.7672
1/2 1.0491 -0.9632 -1.2065 1.1752

1 1.3267 -1.3174 -1.6613 1.6178

correlation length, we provide a model of the form:

σχ = (a× eR + b)(c× tanh(S) + d) (2.17)

with corresponding parameter values given by table 2.3.

1.5

6

16x16x32

64x64x128

256x256x512

= 0.07241

FIGURE 2.8: Error norm computed by eq. 2.18 as a function numerical voxel
size ∆r. The orange line depicts the mean error of 128 different fracture sub-
sets discretized with decreasing resolutions. The figure inlay sketches the down-
sampling procedure is sketched: The maximal resolution is consecutively de-
creased by 16 in horizontal and 32 voxels in the vertical direction (displayed is
the maximal, intermediate and minimal reduction stage). Dashed gray lines indi-
cate the voxel size and associated error norm of the numerical simulations used
to provide the refined single fracture permeability parametrization. Black lines
highlight the convergence rate by showing local slopes as indicated by the at-

tached values.
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2.4.2 Accuracy of the numerical solution

Numerical inaccuracies in solving the Stokes flow equations related to the resolution of the
numerical models potentially have an important impact on the results shown here. For numer-
ical permeability estimations of single fractures, the resolution perpendicular to the aperture
field is the most crucial part. As the most relevant roughness features are expressed within
the uncorrelated region of a fracture (i.e., where lc = L), it is necessary to examine the numer-
ical error introduced due to resolution loss therein. For that, eight fractures with the size of
4096x4096x512 voxels and a lc/L ratio of 1/16 are generated in the same manner as explained
in section 2.3. For each fracture, 16 subsets are drawn that focus uncorrelated regions of the
fracture, resulting in subsets of 256× 256× 512 voxels. By this, the fracture part oriented per-
pendicular to the applied pressure gradient is over-resolved by a factor of two. The resolution
of these initial models is then consecutively reduced down to 16× 16× 32 voxels (see inlay
of Fig. 2.8 for a workflow sketch) while maintaining a constant dimensional aspect ratio. The
resulting permeability at every stage (kr) is then compared to the result at maximal resolution
(kmax), assuming that this represents the most accurate solution. Finally, we compute the error
norm according to:

||δk|| =
∣∣∣∣ kr − kmax

kmax

∣∣∣∣ (2.18)

Ideally, the error norm should get negligible at the highest resolution. Fig. 2.8 shows the mean
error norm of a total of 128 uncorrelated fracture subsets as a function of voxel size ∆r. A mean
error of about 0.01 % at maximal resolution indicates optimal convergence to the most accurate
solution, which validates the numerical procedure. The voxel size of the numerical models
used in this study (0.1 mm) results in an acceptable mean error of 7.2 %, as indicated in Fig. 2.8.

2.5 Discussion

Many studies report that the cubic law deviates with increasing relative fracture closure (Patir
and Cheng, 1978; Brown, 1987; Zimmerman and Bodvarsson, 1996), which is usually attributed
to the flow channeling around the contact spots within the fracture, introducing an in-plane tor-
tuosity that reduces the permeability. We quantified the deviations from the cubic law due to
vertical roughness features (i.e., amplitudes or Hurst exponents, see Fig. 2.5). The results sug-
gest that with increasing fracture surface area protruding into the fluid phase, more drag force
accumulates at the fluid-matrix interface, which resists the flow and leads to reduced perme-
abilities. It is not possible to capture these vertical variations in the flow field with previous 2D
modeling approaches (e.g., Patir and Cheng, 1978; Brown, 1987; Renshaw, 1995; Zimmerman
and Bodvarsson, 1996), which then results in a biased prediction and the need for more pa-
rameters to ensure an adequate quantification. Fig. 2.9 highlights this issue by computing the
norm ||δk|| between measured and predicted permeabilities for all fractures in this study. With
a mean error of 26.7 % eq. 2.16 delivers a better prediction compared to the mentioned studies.

As already shown by Méheust and Schmittbuhl (2003), the uncertainty for predicting frac-
ture flow is a function of its lc/L ratio. Considering flow predictions for uncorrelated fractures
(i.e. lc/L ≥ 1) is problematic. Blocked pathways connected to the early appearance of the
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percolation limit (see Fig. 2.4) or flow enhancing configurations (χ > 1) as also observed by
Méheust and Schmittbuhl (2000) are producing substantial variations in their hydraulic effi-
ciencies. With decreasing lc/L ratios, the impact of vertical flow tortuosity on its permeability
increases relative to the impact of in-plane tortuosity, as both start to act at comparable scales
and generally, the fractures exhibit larger portions of flow inhibiting regions compared to flow
enhancing ones (see Méheust and Schmittbuhl, 2000). On the contrary, the fluctuations in the
average flow behavior decrease significantly with decreasing lc/L ratios. This suggests that
predicting hydraulic properties is constrained to fractures, whose sizes are significantly greater
than their correlation lengths. Theoretically, the correlation length is mainly controlled by shear
offset and respective gouge generation (Brown, 1995; Méheust and Schmittbuhl, 2000). With
the assumption of a perfectly matched fracture (lc = 0) at its nucleation stage, it is tempting
to propose that most natural fractures actually meet the conditions of low lc/L ratios and sub-
sequently enable the prediction of their hydraulic properties. However, so far, little is known
about naturally existing correlation lengths in fractures, as the imaging of in-situ fractures is
limited to the size of drill cores. Only Brown (1995) report measurements of lc by analyzing
the power spectral densities of composite topographies for two matched profiles on opposing
joint surfaces, shedding some light into their natural ranges. From a mechanical perspective,
correlation lengths that are equal to the size of the fracture seem rather unrealistic, considering
that the shear displacement ds of fractures scales with their length L f according to ds = αL f

0.5

(Schultz et al., 2008). Using α values between 0.01 and 0.001, which is about the range for

FIGURE 2.9: Mean error norm δk (see eq. 2.18) of all fractures considered in this
study for different prediction models. The mean error norm recorded for this
study is 0.267. Inlet plot shows box and whisker plots incorporating all outliers,

i.e. representing minimum and maximum recorded values.
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FIGURE 2.10: A sketch of the three different closure regimes, indicated as a func-
tion of R with corresponding p and c. The lower part of the figure shows three
examples of fluid flow simulations from the indicated regimes. Grey shaded
area is fracture void space, whereas white regions indicate contact between both
surfaces. Blue lines depict chosen streamlines, approximated from the resulting

Stokes velocity vectors.

Moros’ joints in Schultz et al. (2008), results in a maximal lc/L f ratio of 0.01. All of that illus-
trates that further research on fractures correlation lengths is required because the presence of
it is omnipresent in most relevant studies (Brown, 1995; Mourzenko et al., 1996; Méheust and
Schmittbuhl, 2003; Dreuzy et al., 2012; Pyrak-Nolte and Nolte, 2016; Mourzenko et al., 2018).

2.6 Conclusion

To understand the effects of fracture surface roughness on fluid flow, we performed numerical
simulations of high-resolution 3D Stokes-flow within fractures for a large synthetic data set By
consolidating varying asperity amplitudes and roughness scaling within a new quantity, that
accounts for the effective increase of surface roughness compared to its parallel plate equiva-
lent, we were able to provide a new way to characterize fracture roughness. By combining the
effective surface area with the relative fracture closure, we established a two-parameter charac-
terization scheme that reads similar to a phase diagram. It is utilized to quantify the hydraulic
efficiency of single fractures empirically, i.e., the correction factor applied to the current state-
of-the-art fracture permeability parametrization (cubic law). Our findings confirm the results
of Méheust and Schmittbuhl (2003) and highlight that predicting fracture flow is constrained
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to scales of at least 16 times larger than the correlation length. The hydraulic efficiency as a
function of effective surface area and fracture closure is given by eq. 2.16, its variability with
respect to the correlation length is given by eq. 2.17 and table 2.3, whereas an overall numerical
error of 7.2 % has to be considered. Ultimately, we used the percolation probability and con-
tact fractions to classify three different closure regimes that differ in terms of their hydraulic
interpretation:

(i) The open regime defines fractures whose surface walls are not in contact with each other
(e.g., unconfined dilatant or karstified fractures). In this regime, we generally observe a
good agreement of the cubic law with hydraulic efficiency between 70− 100% and only
extreme roughness configurations (e.g., needle-shaped mineral coatings) result in larger
deviations.

(ii) The contact regime is characterized by fractures exhibiting a rapidly decreasing hydraulic
efficiency from 70− 10% up to 1 % in extreme cases, which is caused by strong three-
dimensional channeling due to surface roughness and increasing fracture closure. Likely,
this regime is most suitable for subsurface conditions, as a certain amount of contact
between both fracture surfaces is required to withstand confining pressures.

(iii) The percolation regime incorporates fracture configurations that do not percolate at all
due to blocked fluid pathways. Here, we do not incorporate fluid flow data, but it is
plausible that the hydraulic efficiency is very poor with a maximum of 25%, which will
quickly converge to 0% due to the effect of decreasing percolation probability with further
closure. We observe the no-flow boundary at R ≈ 6.

Our results generally help to understand the hydraulic response induced by different types
of fracture geometries and refine the parametrization of single fracture permeability given by
the cubic law. Moreover, the developed quantification scheme allows monitoring and parame-
terizing the hydraulic and geometric evolution of fractures during aperture field-shaping pro-
cesses. This parametrization can easily be incorporated in a DFN modeling framework to inves-
tigate the hydraulic responses at reservoir scales, assuming that the minimal correlation length
is no longer than 1/16 of the reservoir size. If DFN’s of scales close to the correlation length are
considered, fluctuations in the average flow behavior are expected. This can modify network
scale flow connectivity and thus requires additional concepts to compute permeabilities (e.g.,
Dreuzy et al., 2012).
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Chapter 3

The correlation lengths and
permeabilities of natural rock
discontinuities 1

3.1 Introduction

Naturally occurring reservoirs with fracture-dominant flow behavior play a key role in hy-
drocarbon production, geothermal energy systems, and CO2-sequestration (March et al., 2018;
Ghosh et al., 2020; Patterson et al., 2020). As their host rock porosity is relatively low (e. g.,
crystalline basement or tight carbonate rocks), the flow through open discontinuities primarily
controls bulk hydraulic properties. Typically referred to as fractures, they can have various
lengths, apertures, and orientations in nature (Gudmundsson, 2011). Thus, prescribing their
permeabilities is a crucial requirement to model fluid flow at the network- or reservoir scale
(e. g., Cacas et al., 1990; Bogdanov et al., 2003; Darcel et al., 2003). This is typically done
with a parallel plate analogous, for which an analytical solution to the Stokes equations ex-
ists (Lomize, 1951; Snow, 1969; Witherspoon et al., 1980). In combination with Darcy’s law
for flow through porous media, one can relate the permeability of a fracture by the separa-
tion of the two parallel plates, i.e., its aperture. Surface roughness and contacting asperities
cause deviations from the idealized model, and their impacts on fracture permeability have
been quantified from numerical flow simulations by numerous studies (e. g., Patir and Cheng,
1978; Brown, 1987; Renshaw, 1995; Zimmerman and Bodvarsson, 1996; Mourzenko et al., 1995;
Brush and Thomson, 2003; Jin et al., 2017; Foroughi et al., 2018; Mourzenko et al., 2018). Not
seldom, these functional approximations are non-unique, arising from the fact that aperture
field of fractures show long-range correlations (Brown and Scholz, 1985; Glover et al., 1998b).
Above certain length scales, the two fracture surfaces tend to be well-matched, while below
these scales, the aperture follows self-affine models (Brown, 1995). There, large fluctuations
in the average flow behavior are expected, which causes non-uniqueness of predictive func-
tions. Considering fractures at scales larger than their apertures correlation length significantly
reduces these fluctuations (Méheust and Schmittbuhl, 2003) which allows predicting average
flow behaviors for fracture populations with similar geometries (e. g., Kottwitz et al., 2020).

1This chapter is currently in preparation for publication (Kottwitz, M. O., Klaver, J., Schmatz, J., Reinhardt, M.,
Enzmann, F., Popov, A. A., and Kaus, B. J. P.)
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More specifically, the ratio between the correlation length and observation scale determines
whether a modified parallel plate model adequately represents the fracture’s hydraulic prop-
erties. Dreuzy et al. (2012) were the first to analyze the coupled effects of fracture scale het-
erogeneity and network topology on the permeability of fracture networks from numerical
simulations of fluid flow. By setting a constant correlation length for all fractures and varying
the fracture-size and -density distributions, they could demonstrate a strong effect of fracture
scale heterogeneity on network scale flow and subsequently on the network’s permeability that
a modified parallel plate assumption cannot compensate. Notably, this effect is only severe if
the correlation length is close to the overall system size and that it is weak if the system size is
much larger than the correlation length. For large-scale fracture networks, it is valid to model
the permeabilities of fractures with a modified parallel plate model as shown by Makedonska
et al., 2016. They studied the effects of aperture variability up to a certain correlation length on
flow and transport in kilometer-scale fracture network models. While prescribing the correla-
tion length as fractions of the size of the fracture, they demonstrated that for low in-fracture
variability (small correlation length fractions and low aperture variance), no significant effect
on flow and transport behavior occurs. Only for sufficiently large in-fracture variabilities, ef-
fects on the network-scale transport behavior are noticeable. It highlights that an analysis of the
correlation length in naturally occurring fractures is required to determine the scale at which
a modified parallel plate assumption is valid for use in network flow models. Unfortunately,
no general model exists that predicts the correlation length of fractures, as measurements on
natural fractures are seldom reported. Brown (1995) provided a technique to estimate minimal
and maximal correlation lengths from profilometer measurements of separated fracture sur-
faces and reported metrics for several discontinuities. This technique was adopted by Glover
et al. (1998a), extended by Ogilvie et al. (2006) and applied by Zambrano et al. (2019) to present
further estimates of correlation lengths, all based on measurements of synthetically mated frac-
ture surfaces for aperture computations. However, analyzing correlation lengths in fractures
has not benefited from recent progress in the field of digital rock physics (DRP, e. g., Andrä
et al., 2013b; Schepp et al., 2020), which allows for non-destructive imaging of fractures in 3D
(e. g., Tokan-Lawal et al., 2017) by using X-ray computed tomography (CT) (Andrä et al., 2013a;
Cnudde and Boone, 2013). As this better reflects in-situ conditions and avoids artificial mating
of fracture surfaces, analyzing CT-scanned fractures presents a valuable option to gain further
knowledge on correlation lengths in naturally occurring fractures. For this study, we compile a
data-set of 18 CT-scanned fractures and pre-process them to perform correlation length analysis
according to the method of Ogilvie et al. (2006) to derive a model that predicts the correlation
length of fractures. This should help determine the scale at which the utilization of a modified
parallel plate assumption in network flow models (e. g., Davy et al., 2013; Bonneau et al., 2016;
Maillot et al., 2016; Alghalandis, 2017; Lavoine et al., 2019) is valid. Additionally, we utilize the
data-set for numerical fluid flow simulations to obtain their permeabilities (e. g., Eichheimer
et al., 2019; Eichheimer et al., 2020). By comparing those to several fracture permeability pre-
diction functions based on synthetic fracture data-sets (e. g., Patir and Cheng, 1978; Brown,
1987; Renshaw, 1995; Zimmerman and Bodvarsson, 1996; Kottwitz et al., 2020), we assess their
accuracy and applicability to natural data.
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3.2 Methods & Data

3.2.1 Obtaining surface and aperture data from binarized voxel models of discon-
tinuities

In the following, we describe the pre-processing routine to obtain single fracture data that
applies to any 3D binarized (two phases: void space and the solid matrix) voxel-data-set con-
taining a single isolated fracture penetrating the whole scan volume. As the fracture might be
scanned in arbitrary orientation, the first step is to align the fracture horizontally, i. e., in the
x-y plane in a regular Cartesian coordinate system. For that, we generate a 3D point cloud of
all voxel vertices that represent the pore space phase by fixing the left lowermost corner of the
model to (0|0|0) and using the voxel resolution as constant grid spacing. Principal component
analysis (PCA) is applied to the 3D point cloud to obtain its covariance matrix, whereas the
columns (eigenvectors) are in descending order with respect to their eigenvalues. Multiplying
the 3D point cloud with the ordered covariance matrix rotates the point cloud such that the
principal component with the smallest eigenvalue is aligned with the z-direction. After align-
ment, we transfer the point cloud back into voxel format by (1) generating a voxel grid with
spatial extents of the new point cloud and the same spacing as before, (2) fixing the left lower-
most corner of the model to (0|0|0) (this may require shifting the points) and (3) dividing the
point coordinates with the voxel spacing, rounding the results to obtain the grid-indices of the
rotated voxel representing the fractures pore space. We construct the aperture field and both
individual fracture surfaces by probing vertical columns of the aligned voxel model to produce
2D surfaces. The index of the first column voxel representing pore space multiplied with the
grid spacing marks the height of the lower surface for the respective x- and y-location of the
vertical column. The last entry denotes the height of the upper surface, and the total sum of
pore space voxels per column indicates the local aperture. Contact between both surfaces is
present if the probed vertical column contains no voxels representing the pore space. The aper-
ture field at that location is zero, whereas the individual fracture surfaces are left empty. For
spectral analysis routines, this requires interpolation of the empty patches, which according
to (Candela et al., 2009) has a minor effect on the result. Another limitation of this technique
are rarely observed but yet present local overhangs in voxel data-sets, which impede surface
analysis algorithms as well (Brown and Scholz, 1985; Schmittbuhl et al., 1995; Shepard et al.,
1995). If possible, regions of substantial overlap should be cropped out from the initial voxel
model.
We follow the method described in Kottwitz et al., 2020 to compute the two necessary param-
eters from the constructed upper and lower surface as well as the aperture field to quantify
the fractures deviation from the parallel plate equivalent, i. e., the relative closure R and the
effective surface area S. The relative closure is computed by dividing the standard deviation of
the aperture field σa by its average ā:

R =
σa

ā
, (3.1)
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with ā defined by:

ā =
1

LxLy

Lx∫
x=0

Ly∫
y=0

a(x, y)dxdy, (3.2)

whereas a(x, y) is the 2D aperture field, Lx and Ly denote the spatial extends of the fracture
plane. The effective surface area is computed according to:

S =
( sa f

sac

)( 1
1− c

)
. (3.3)

Here, sa f denotes the summed area of the upper and lower fracture surfaces, and sac the sur-
face area of the fractures parallel plate equivalent and the fractional amount of contact in the
aperture field is given by c.

3.2.2 Estimating the correlation length in fracture aperture fields

A crucial requirement for the applicability of fracture permeability parametrization concepts
(e. g., Patir and Cheng, 1978; Brown, 1987; Renshaw, 1995; Zimmerman and Bodvarsson, 1996;
Kottwitz et al., 2020) is that the scale at which permeability is prescribed must be much larger
than the correlation length of the fractures aperture field (Méheust and Schmittbuhl, 2003; Kot-
twitz et al., 2020).
Thus, correlation length analysis is obligatory to validate the use of parametrization concepts.
A common technique to obtain it is by comparing scaling characteristics of the fractures in-
dividual surfaces to the ones of its aperture field. For fracture surfaces, the scaling is well
described by self-affine fractal models (Brown and Scholz, 1985; Power et al., 1987; Schmit-
tbuhl et al., 1995), i. e., the standard deviation of their surface heights σs along a profile drawn
from the surface at observation scale l follows a power law according to:

σs(l) = βlH, (3.4)

whereas H denotes the Hurst exponent (0 ≤ H < 1) characterising the self-affine property and
β a proportionality constant that defines a characteristic scale (Mandelbrot, 1985; Candela et al.,
2009). Equivalently, the power spectrum P(k) of the same profile follows a power law of the
form:

P(k) = Ck−α, (3.5)

where k is the wavenumber that relates to the observation scale l according to k = 2π/l, α is the
power law exponent that relates to the Hurst exponent by α = 1− 2H (Brown, 1995; Candela
et al., 2012) and C denotes the proportionality constant.
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FIGURE 3.1: The pre-processing workflow of arbitrarily oriented fracture voxel
models is delineated in this figure. Panel a shows the raw segmented voxel model
of sample D03 obtained after thresholding and segmenting the CT data. Panel b
displays the fracture void space of a after the PCA alignment process described
in the text. The red rectangle denotes the region of interest (ROI) that avoids sub-
stantial regions of overlap in the voxel model, which would otherwise impede
PSD analysis functionality. Panel c shows the steady-state velocity field resulting
after the Stokes-flow simulations with LaMEM (conducted on the full aligned
voxel model, not the ROI), which is then used to compute the directional perme-
ability. Panel d displays an exemplary slice drawn from the ROI as indicated in
b (yellow slice) to obtain 1D profiles of the upper and lower surface, from which
the aperture is calculated. Repeating this procedure along the full length of the
ROI allows to reconstruct the aperture field (shown in panel e) as well as upper
(shown in panel f ) and lower (shown in panel g) surfaces used for PSD analysis

to estimate their correlation length.
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However, the aperture field between two self-affine surfaces follows the same power law
only to some extend. Above a certain length scale, both surfaces tend to be well-matched and
can be interpreted as parallel planes. This correlation length lc poses a limit to the self-affine
scaling of aperture field standard deviation σa according to:

σa(l) =

 βlH if 0 ≤ l ≤ lc

βlH
c if l ≥ lc.

(3.6)

In practice, the scaling function levels off to constant values at scales above the correlation
length (or below the wavenumber corresponding to it) (Brown, 1995). Here, we employ the
spectral approach suggested by (Brown, 1995), extended by (Ogilvie et al., 2006) and applied
by (Zambrano et al., 2019) to obtain estimates of aperture field correlation length. It involves
computing the average power spectral densities (PSD) of multiple parallel 1D profiles drawn
from a surface (panels b and d demonstrate this profilometry-procedure for slices drawn from
a 3D voxel model, the same procedure is repetitively applied here on 2D surfaces) after re-
moving the mean and linear trend from the profiles an applying a 10 % cosine taper to obtain
respective scaling functions. In natural data, the transition from self-affine scaling to perfect
correlation does not occur as abruptly as demonstrated in (Brown, 1995), but rather smoothly
within a range of length scales. Thus, the method of (Ogilvie et al., 2006) suggests computing
the mismatch ratio rmPSD of the PSD of the aperture field (PSDa) and the sum of the PSD’s of
the lower (PSDl) and upper (PSDu) surface according to:

rmPSD =
PSDa

PSDl + PSDu
. (3.7)

While plotting the mismatch ratio as a function of scale, one can determine the minimal corre-
lation length when the curve starts to decrease from unity and a maximal correlation length if
the ratio converges to 0. The latter is often difficult to determine due to the scale limitations of
imaging techniques. Thus the minimal correlation length is considered the reliable approxima-
tion of the correlation length (e. g., Zambrano et al., 2019).

3.2.3 Fluid flow modelling

Direct flow modelling of a single phase fluid in a digital representation of the rocks pore space
is based on the Navier-Stokes equations (e. g., Bear, 1972). For most subsurface flow conditions,
it is common to assume laminar flow conditions, i. e. Reynolds numbers below 1 - 10 (Bear,
1972). Then, the Stokes equations approximate the motion of an iso-viscous, iso-thermal and
incompressible fluid at steady-state conditions by:

µ∇2v = ∇P, (3.8)

∇ · v = 0, (3.9)

with the fluid’s dynamic viscosity µ, pressure P and velocity vector v = (vx, vy, vz), ∇, ∇·,
and ∇2 denote the gradient, divergence, and Laplace operator for 3D Cartesian coordinates,
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respectively. We use the methodology described and benchmarked in (Eichheimer et al., 2019;
Eichheimer et al., 2020) and already applied in Kottwitz et al. (2020) and Kottwitz et al. (2021)
to obtain intrinsic permeabilities of fractured-porous media voxel data-sets. There, the 3D stag-
gered grid finite difference code LaMEM (Kaus et al., 2016) is employed to solve equations 3.8
and 3.9, utilizing the PETSc framework (Balay et al., 2018) for high-performance-computing
(HPC) optimized parallelisation. The volume average of the resulting velocities (e. g., Osorno
et al., 2015) is substituted into Darcy’s law to yield an intrinsic permeability value for the direc-
tion that corresponds to the direction of the applied pressure gradient.

3.2.4 Fracture dataset

For this study, we compiled a data-set of 18 CT-scanned fractures of various sources described
in the following. The first three selected discontinuity models (D01, D02 and D03) were sampled
in the scope of the German federal ministry of education and research (BMBF) funded project
PERMEA (grant no. 03G0865A) from a tight carbonate quarry near Ittling in the Franconian Alb
(Germany) featuring the Upper Jurassic (Malm) formation, a frequent targeted for geothermal
energy production in the southern German Molasse Basin area (Cacace et al., 2013; Homuth
et al., 2014; Przybycin et al., 2017). The three samples were scanned by the CoreTom scanner
of XRE located in Ghent, Belgium, with a resolution of 14.5 µm (D01) and 45 µm (D02 and D03)
and processed with ImageJ (Schneider et al., 2012). While D01 was identified as "classical" open
fracture, microstructural analysis of D02 and D03 suggested a pressure solution-driven origin
which therefore were classified as dissolution seam and open stylolite, respectively. The fol-
lowing five fracture models were obtained from Digital Rocks Portal (Prodanovic et al., 2015)
(DRP). Sample N01 is retrieved from the published data set by Prodanovic et al. (2016) and rep-
resents a calcite coated open fracture within a micritic limestone from the Niobara formation,
collected near Lyons, Colorado. It was imaged with a resolution of 26.69 µm at the University
of Texas High-Resolution X-ray Micro-tomography Facility and already featured in publica-
tions by Tokan-Lawal et al. (2014) and Tokan-Lawal et al. (2017). Samples B01, B02, B03 and B04

represent subsets of a single fracture in a Bentheimer sandstone that was artificially cracked
with a triaxial test. Both sides were brought together with an offset of 1mm and wrapped with
Teflon for scanning and flow-through experiments (see Karpyn et al., 2007, for further details).
The original scanned image was rescaled to produce a 3D binary data set with cubic voxels of
27.433 µm side length, which was featured in several publications already (Karpyn et al., 2007;
Karpyn and Piri, 2007; Piri and Karpyn, 2007; Prodanovic et al., 2009; Crandall et al., 2010;
Zhang et al., 2019) and cropped to four subsets before being published at Karpyn et al. (2016).
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FIGURE 3.2: The void spaces for all 18 fracture voxel models after the PCA align-
ment process are displayed in this figure. The same voxel models were used to
numerically estimate their permeabilities with LaMEM. In the following, panel
indices are linked to sample names as indicated in the text: a = D01, b = D02, c =
D03, d = N01, e = B01, f = B02, g = B03, h = B04, i = R01, j = R02, k = R03, l = R04, m =
R05, n = R06, o = R07, p = R08, q = R09, r = R10. The physical length of the longest
side of the model is indicated on the right for each sample. Panel h shows the
geometrical configuration of each sample (grouped in four categories based on
their origin) in terms of relative closure R and effective surface area S as defined
in the text. The background color indicates the expected hydraulic efficiency χ in
percent as defined by equation 16 in Kottwitz et al. (2020), the black lines depict

chosen contours of χ with annotated values in percent.
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TABLE 3.1: Summary table for fracture quantitative data. The voxel size of the
aligned CT-model (vs), the fractures mean aperture (ā), its standard deviation
(σa), the fractures effective surface area(sa f ), its contact fraction (c), its relative
closure (R) and effective surface area (S) are given in the columns for each of the

18 samples.

sample vs [m] ā [m] σa [m] sa f [m2] c [ ] R [ ] S [ ]

D01 13.5× 10−6 1.01× 10−4 2.82× 10−5 4.39× 10−4 0.0095 0.28 1.19
D02 45× 10−6 2.46× 10−4 8.44× 10−5 1.10× 10−3 0.049 0.34 1.22
D03 45× 10−6 6.75× 10−4 2.15× 10−4 4.20× 10−3 0.011 0.31 1.37
N01 26.69× 10−6 1.37× 10−3 3.81× 10−4 5.70× 10−4 0.0003 0.28 1.31
B01 27.433× 10−6 5.68× 10−4 2.32× 10−4 1.10× 10−3 0.013 0.40 1.17
B02 27.433× 10−6 4.59× 10−4 2.05× 10−4 1.08× 10−3 0.030 0.45 1.16
B03 27.433× 10−6 4.82× 10−4 2.06× 10−4 1.09× 10−3 0.015 0.42 1.16
B04 27.433× 10−6 5.45× 10−4 2.44× 10−4 1.10× 10−3 0.016 0.45 1.17
R01 200× 10−6 1.42× 10−3 2.64× 10−4 2.52× 10−2 0.0095 0.18 1.07
R02 200× 10−6 1.16× 10−3 1.79× 10−4 2.71× 10−2 0.0060 0.15 1.06
R03 200× 10−6 1.28× 10−3 1.99× 10−4 2.63× 10−2 0.0061 0.15 1.13
R04 200× 10−6 9.69× 10−4 1.75× 10−4 2.61× 10−2 0.0052 0.18 1.12
R05 200× 10−6 1.48× 10−3 2.59× 10−4 2.90× 10−2 0.0070 0.17 1.20
R06 200× 10−6 1.10× 10−3 1.65× 10−4 2.55× 10−2 0.0007 0.14 1.12
R07 200× 10−6 1.10× 10−3 1.82× 10−4 2.70× 10−2 0.0062 0.17 1.20
R08 200× 10−6 1.12× 10−3 1.86× 10−4 2.42× 10−2 0.0075 0.16 1.08
R09 200× 10−6 1.11× 10−3 2.05× 10−4 2.78× 10−2 0.0052 0.18 1.19
R10 200× 10−6 1.13× 10−3 2.35× 10−4 2.58× 10−2 0.0027 0.18 1.15

The remaining 10 samples (R01 - R10) were acquired in the scope of the German federal
ministry of economy and energy (BMWi) funded project ReSalt (grant no. 032444A-D) in a
quarry near Bebertal, Germany, featuring Permian sandstones (Flechtinger formation) and a
quarry near Würzburg, Germany, featuring Upper Triassic sandstones (Remlinger formation).
The samples were synthetically cracked with a Brazilian test, brought together and wrapped
for scanning and further experiments, similar to the samples of Karpyn et al. (2007). For more
details on sample preparation and experimentally determined effective properties, the reader is
referred to Frank et al. (2020b) and Frank et al. (2020a), respectively, who feature these samples
in their publications. All samples were scanned by a Medical CT-scanner (SOMATOM Defini-
tion AS VA48A) located at the Petroleum Engineering Department Montanuniversität Leoben
with a resolution 200 µm. Pre-processing (rescaling, resampling and masking) was performed
in Avizo (https://www.fei.com/software/amira-avizo/) while the segmentation was carried
out with the random forest approach (e.g., Geurts et al., 2009) implemented in the Ilastik soft-
ware package (Berg et al., 2019). The void space of every model after the alignment process
described above is displayed in figure 3.2 and the corresponding metrics are given in table 3.1.
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3.3 Results & Discussion

3.3.1 Correlation length estimation

The results of the correlation length analysis and fluid flow simulations for all 18 CT-scanned
samples are presented and discussed in the following. The raw data sets have been pre-
processed following the above-mentioned methodology to obtain an aligned voxel model, the
aperture field, and both individual surfaces. PCA-based rotation were only required for sam-
ples D01−03 and R01−10. PSD analysis was performed on the individual surfaces of each frac-
ture and its aperture field to compute corresponding mismatch ratios. The minimal correlation
length was estimated by manually picking the x-axis value of the plot, at which the curve starts
to deviate significantly from unity. All resulting PSD and mismatch ratio plots are displayed in
figure 3.3 and 3.4, whereas the final metrics are given in table 3.2. Generally, it was possible to
determine a minimal mismatch ratio for every fracture sample. However, for samples N01 and
B01−04, the decrease from unity of the mismatch ratio was not as pronounced as in the other
samples with final mismatch ratios between 0.2 and 0.4. Despite this, the long-wavelength
tails in these plots (panels d2, e2, f2, g2 and h2) significantly differ from the previous parts of
the curves, which enabled to determine the minimum correlation length which for these frac-
tures is close to the model lengths. Off-leveling of the power spectral density curves at short
wavelengths is observed for the medical CT-scanned fractures (samples R01−10) and the data
provided from DRP (samples N01 and B01−04). Usually, this is attributed to resolution effects
(Jacobs et al., 2017), especially for the medical CT-scanned ones, but could also be induced by
Thresholding algorithms in the segmentation process. Consequently, the mismatch ratio curves
of the DRP samples level off from unity at shorter wavelengths. Since the correlation length
estimate is conducted at larger scales, the result remains unbiased of this effect. However, the
quantification of a fractal scaling trend across the full length-scale of the model is impeded.
For large scales, the curves are not biased by resolution effects, and fractal behavior can be ob-
served in the PSD data of the individual surfaces. However, due to the limited scaling range
and resolution effects, we refrain from fitting scaling exponents to the data. Samples D01−03 and
R01−10 display randomly occurring peaks with arbitrary amplitudes in the PSD curves. They
seem to be caused by a sampling bias in the PCA alignment algorithm (induced by converting
voxels to points and vice versa), as these effects are not observed in samples that didn’t require
an initial alignment (samples N01 and B01−04).
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FIGURE 3.3: This figure expands to the next page. Refer to the caption of figure
3.4.
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FIGURE 3.4: Results of the correlation length estimation analysis. Panel alpha-
betic indices are linked to sample names by: a = D01, b = D02, c = D03, d = N01,
e = B01, f = B02, g = B03, h = B04, i = R01, j = R02, k = R03, l = R04, m = R05, n =
R06, o = R07, p = R08, q = R09, r = R10. Subscript 1 for each panel index shows the
power spectral densities of the aperture field and both fracture surfaces, subscript
2 displays the mismatch ratio plot from which the minimal correlation length is
obtained by data-picking. There, the black dashed line indicates a mismatch ra-
tio of 1 (i. e., non-matching and uncorrelated surfaces and aperture) and the red
dashed line highlights the picked wavelength, at which the mismatch ratio starts

to deviate from unity (i. e., the minimal mismatch or correlation length.
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TABLE 3.2: Summary table for fracture analysis results. The first column indi-
cates the hand-picked minimal correlation length lc from the mismatch ratio plots
(panel subscript 2 in figures 3.3 and 3.4), and the second column its ratio to the
physical length L of each individual model. The third column displays the nu-
merically predicted fracture permeability km from LaMEM. The next 6 columns
indicate the L2 error norm of the computed permeability to the one predicted by
the parametrizations of Patir and Cheng, 1978 (epc), Brown, 1987 (eb), Renshaw,
1995 (er), Zimmerman and Bodvarsson, 1996 (ezb), Kottwitz et al., 2020 (ek) and

the cubic-law (ecl) (e. g., Witherspoon et al., 1980; Long et al., 1982).

sample lc [m] lc/L km [m2] epc [%] eb [%] er [%] ezb [%] ek [%] ecl [%]
D01 2.36× 10−4 0.017 1.32× 10−11 68.1 65.6 70.9 65.6 1.18 91.1
D02 1.20× 10−3 0.037 1.63× 10−10 77.7 75.8 82.5 59.9 13.1 115
D03 4.10× 10−4 0.047 1.45× 10−10 255 254 265 141 3.33 363
N01 4.43× 10−3 0.26 2.64× 10−8 51.1 48.9 53.6 51.8 31.7 71.8
B01 2.43× 10−3 0.11 1.29× 10−9 51.7 51.3 55.9 43.3 21.6 96.8
B02 4.48× 10−3 0.19 5.76× 10−10 73.9 74.4 78.2 54.2 13.4 134
B03 5.47× 10−3 0.25 5.56× 10−10 111 112 117 96.6 8.31 179
B04 8.74× 10−3 0.16 8.74× 10−10 90.0 90.1 94.8 73.3 6.29 156
R01 5.65× 10−3 0.043 1.90× 10−8 27.1 25.5 26.4 23.7 0.39 32.9
R02 2.17× 10−3 0.015 9.06× 10−9 31.0 29.7 29.6 27.9 7.51 34.2
R03 2.98× 10−3 0.021 8.61× 10−9 47.0 45.5 45.4 43.5 13.1 50.1
R04 2.25× 10−3 0.018 3.63× 10−9 47.3 45.4 46.3 44.4 10.7 53.5
R05 3.43× 10−3 0.025 2.05× 10−8 52.6 50.8 51.4 48.9 4.31 58.2
R06 1.78× 10−3 0.013 5.45× 10−9 47.8 46.4 46.0 45.7 15.5 51.0
R07 2.91× 10−3 0.021 6.64× 10−9 50.8 49.0 49.5 47.3 5.11 55.9
R08 3.87× 10−3 0.029 9.29× 10−9 42.9 41.5 41.4 39.1 15.2 46.6
R09 2.31× 10−3 0.017 2.99× 10−9 53.4 51.5 52.3 50.4 5.89 59.5
R10 4.04× 10−3 0.030 5.94× 10−9 61.2 59.1 60.4 59.2 15.6 68.9

This results in sometimes stronger (sample R02) or weaker (sample R04) pronounced local
peaks in the mismatch ratio curves as well. Providentially, these locally occurring sampling
biases don’t impede the manual picking of the correlation length, as the global trends of the
curve are still clearly visible. Exceptional behavior in the mismatch ratio curve is evident in
panel c2 in figure 3.3 showing the data for sample D03. There, the short-wavelength mismatch
ratios range at a slightly lower level than unity. This could indicate that the aperture field of
opened stylolites exhibits other approximations than being the sum of the upper and lower
surface, as assumed for classical fractures (Ogilvie et al., 2006). Alternatively, this could be
attributed to the still present slight overhangs in the CT data, although the model has been
cropped to a region where substantial amounts of overlap were avoided. Yet, these effects
didn’t interfere with the procedure to determine the minimal correlation length, as the onset of
long-range deviations from the mismatch ratio at short wavelengths was clearly definable.

3.3.2 Fracture permeability prediction

The numerically estimated permeabilities for all 18 fracture samples are given in table 3.2. To
evaluate the applicability of functional parametrizations for fracture permeability, we compute
the error norm of the numerically measured permeability km to predicted permeabilities kp



42 Chapter 3. The correlation lengths and permeabilities of natural rock discontinuities

TABLE 3.3: All parametrization models considered to predict fracture permeabil-
ity kp in this study. A prerequisite for all prediction models is the permeability
predicted with the cubic law (kcl), which is multiplied with a custom factor for
each model for permeability predictions. The mean aperture is given by ā as
defined in eq. 3.2. Lz gives the width of the voxel model in the perpendicular
direction to the fracture plane, which is needed to calculate the rescaling factor
for the cubic law to account for the whole model, not only the fracture void. The
standard deviation of the aperture field is given by σa and the fractional amount
of contact by c. The relative closure is given by R as defined by eq. 3.1 and the
effective surface area by S as defined in eq. 3.3. The formula to predict the per-
meabilities of Kottwitz et al. (2020) could be used as presented in the paper while
the rest was reformulated from the hydraulic to mechanical aperture relations

presented in each paper.

Parametrization model Formula to compute kp

Cubic law (kcl) 1
12 ā2 ā

Lz

Patir & Cheng (1978) kcl
(
1− 0.9e−0.56 ā

σa
)

Brown (1987) kcl
(
1− 0.743e−0.478 ā

σa
)

Renshaw (1995) kcl
( σ2

a
ā2

)−1.5

Zimmermann & Bodvarsson (1996) kcl
(
1− 1.5 σ2

a
ā2

)(
1− 2c

)
Kottwitz et al. (2020) kcl

(
1− (0.48 tanh (0.51S) + 0.54) tanh

( R
39.28 tanh (−2.45S)+39.47

))
according to:

ep =

∣∣∣∣ km − kp

kp

∣∣∣∣ . (3.10)

The formulas to compute the predicted permeabilities of the most cited models in the literature
and the recently proposed model by Kottwitz et al. (2020) are given in table 3.3. The result-
ing prediction errors (eq. 3.10) for each considered model are displayed in table 3.2. Figure
3.5 shows a box plot of the prediction errors, indicating that with a median error of 9.5 % the
parametrization of Kottwitz et al. (2020) gives the best approximation of the numerically es-
timated permeabilities of all fractures. There, the largest error was recorded for the fracture
model N01, which has the largest lc/L ratio of the whole data set. In contrast, the highest er-
ror for all other models was recorded for sample D03, showing the largest effective surface
area. These results confirm the findings of Kottwitz et al. (2020) that incorporating a statistical
measure accounting for the geometrical properties of both individual fracture surfaces into a
parametrization model improves the accuracy of numerical permeability predictions. Further-
more, the applicability of this model for real data has been proven by the comparatively low
median prediction error. Panel a in figure 3.6 presents the error of the Kottwitz et al. (2020)
model as a function of the ratio between correlation length and fracture size (lc/L) which ac-
cording to Méheust and Schmittbuhl (2003) is the primary control on the non-unique behavior
of fracture permeability predictions. There, the largest prediction error is recorded for the high-
est lc/L ratio, and a global trend of increasing errors for larger lc/L ratios was determined by
linear regression (ep ∝ 0.68lc/L). This confirms that the variance of predicting an average flow
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FIGURE 3.5: Box plot of the absolute prediction errors ep calculated according to
eq. 3.10 for various predicted permeabilities kp by the models indicated in table
3.3, ordered in ascending order with respect to their median values. The whiskers
of each box plot have a length of 1.5 times their interquartile range, such that
every point falling outside of that range is considered as an outlier, denoted with
a black point with annotations for respective sample names. The median values

in percent for each box plot are indicated in red next to the box.

behavior for fracture populations with equal statistics increases for fractures with correlation
lengths closer to the size of the flow system (Méheust and Schmittbuhl, 2003). Theoretically,
the models with lc/L ratios below 1/16 (samples D01−03 and R01−10) should show the lowest
prediction errors. However, we observe scattering of the errors up to 15 % for these models,
which is most likely attributed to method intrinsic error induced by low numerical resolutions.
As reported by Kottwitz et al. (2020), the resolution perpendicular to the applied flow direction
is the most crucial to determine the accuracy of numerical fracture permeability predictions.
They estimated the method intrinsic error of their parametrization model to be about 7.2 % for
their chosen numerical resolutions with a classical resolution test. To obtain a rough estimate
of a general method intrinsic error for this study, we produced an error curve based on the
cubic law parametrization shown in the inlet plot of panel b in figure 3.6. It is based on several
numerical simulations with parallel plate fracture geometries discretized with nc cells (starting
from 1 to 50). For each model, we then numerically simulate the permeability and compute the
absolute error to the analytical solution of the cubic law by eq. 3.10. The maximum error of
66 % for a fracture with 1 cell discretization width (i. e., the numerical resolution of the frac-
tures aperture) quickly converges to zero. The outer plot in panel b of figure 3.6 displays the
flow-perpendicular discretization width (i. e., aperture divided by cell size) for representative
samples of each data set. Thus, samples of the ReSalt group (R01−10) are assumed to show the
largest method intrinsic errors while numerically predicting their permeabilities, as their mean
discretization width is about 7 cells on average. Based on the error curve of the inlet plot, this
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FIGURE 3.6: Panel a shows the permeability prediction error of Kottwitz et al.
(2020) (ep) as a function of the correlation length to size ratio (lc/L) for each frac-
ture sample of the data set Grey symbols indicate the origin group of the fracture
samples. The green band indicates the interpreted trend of error increase with
its proportionality (approximated by linear regression) indicated below the top
edge. Panel b displays the fitted probability distribution functions (PDF) of the
aperture (a) to voxel-size (vS) ratio, i. e., the discretization width, of representa-
tive samples for each group (D01, N01, B01, R01). The indicated values at the peaks
of each normal distribution function indicate the mean discretization width. The
inlet plot of panel b shows the error curve to approximate the method intrinsic
error of the numerical permeability predictions used in this study. The error em is
computed from the resulting permeabilities of numerical simulations in parallel-
plate fractures of nc cells discretization width and the analytical solution of the
cubic law. The colored vertical lines indicate the number of cells (nc) of the anno-
tated average discretization widths from the outer plot for the respective groups,

while their error percentages are given above.

corresponds to an error of 3.9 %. The increasing mean discretization widths (indicated in b, fig-
ure 3.6) for the other groups (11, 18 and 46) correspond to lower errors (1.6, 0.6 and 0.1 %). Thus
a scatter of 15 % in the permeability prediction model for lc/L ratios below 1/16 could be in-
duced by their lower discretization widths combined with a propagated method intrinsic error
during the fitting of the Kottwitz et al. (2020) model. Theoretically, the results of the numerical
flow simulations within the fracture samples, especially for the ones with low discretization
widths, could be improved by doubling the numerical resolutions while maintaining the orig-
inal CT-derived structure, similar as done for the resolution tests in Eichheimer et al. (2019) or
Eichheimer et al. (2020). Yet, this would result in computationally unfeasible numerical resolu-
tions in the dimensions of the fracture plane (x- and y-direction in this case), as cropping these
to lower, computationally more feasible sizes would reduce the models lc/L ratio and hence,
by theory, increase the prediction error ep. Thus, we accept the scatter of prediction errors for
the fractures with lc/L ratios below 1/16, as it does not severely bias identifying the global
trend of increasing errors for larger lc/L ratios, although it could potentially clarify this trend.
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3.3.3 Aperture-correlation-length model

The correlation length in single fractures has already been identified as the main control on pre-
dicting their average flow behavior (Méheust and Schmittbuhl, 2003; Kottwitz et al., 2020). Its
effect on network scale flow was, to our knowledge, are only addressed by two studies. Small-
scale fracture networks with system sizes close to a constant prescribed correlation length for
all fractures, Dreuzy et al. (2012) have shown that local aperture variations affect network scale
flow. For kilometer-scale networks, Makedonska et al. (2016) have shown that aperture vari-
ations correlated up to certain fractions of the fracture length affect network flow and trans-
port properties only if aperture variability and correlation length fractions are sufficiently high.
Thus, both studies indicate that in-fracture variabilities induced by the correlation length in sin-
gle fractures affect network flow behavior only under the condition that the maximum fracture
scale correlations range close to system sizes. Both have used simple assumptions for prescrib-
ing the correlation length of each fracture in their network due to the absence of a physical
model that relates the correlation length. Dreuzy et al. (2012) provided constant correlation
length values for all fractures in the network, regardless of their length, and Makedonska et al.
(2016) used a simple relation to the fracture length. Alternatively, with the results provided in
this study and some data from the literature, it is possible to derive a simple model based on
real data as a first-order approximation for the application in fracture network flow models.
For this, we argue that this form of correlation should be based on firm measurements that are
anyway required for a hydraulic description of a fracture. The actual fracture length is often
difficult to measure in the field due to censoring or truncation effects (e. g., Bonnet et al., 2001;
Lu et al., 2017) and usually not reported in combination correlation length measurements, the
most straightforward quantity to find correlations with is the mean aperture (ā, eq. 3.2). Indeed,
compiling the data of this study with the results of Ogilvie et al. (2006) (estimated mismatch
length and arithmetic mean aperture) and Glover et al. (1998a) (mean mismatch length, com-
puted from their upper (λ1) and lower (λ2) estimates as well as arithmetic mean aperture) in
figure 3.7 suggest that the correlation length is decently approximated with a linear relationship
to the fractures mean aperture in the form of:

lc = βā. (3.11)

Here, β ranges between 1 and 13 to incorporate all data points, whereas linear regression sug-
gests β = 2.93. Unfortunately, the data-set of the pioneering study of Brown (1995) could not
be included in this graph, as they dont report measures for average apertures.

3.4 Summary & Conclusion

For this study, a data set of 18 CT-imaged fractures was compiled to (1) measure the corre-
lation length of their aperture fields and to (2) numerically assess their permeabilities for an
evaluation of the accuracy of several parametrization models from the literature. We provided
some pre-processing guidelines applicable to any single fracture CT-data set with arbitrary ori-
entation to reconstruct individual surfaces and aperture fields from binarized voxel models.
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FIGURE 3.7: The correlation length lc as a function of the mean aperture ā for all
measurements from this study as well as Glover et al. (1998a) and Ogilvie et al.
(2006). The light green area indicates the range incorporating all measurements
of the interpreted linear relationship, the black line gives the result of a linear

regression to the data with annotated functional relations.

Next, we applied PSD analysis to this reconstructed data to derive mismatch ratio plots as sug-
gested by Ogilvie et al. (2006), to determine the minimal correlation length of each sample.
Additionally, we computed the directional permeability of each sample from finite-difference
Stokes-flow simulations (e. g., Eichheimer et al., 2019; Eichheimer et al., 2020; Kottwitz et al.,
2020) and compared to the permeabilities predicted according to Patir and Cheng (1978), Brown
(1987), Renshaw (1995), Zimmerman and Bodvarsson (1996), and Kottwitz et al. (2020). This
lead to the following main results:

(i) An adequate prediction of fracture permeability requires statistical measures accounting
for the properties of the individual surfaces, not only the aperture field. This was already
expected due to the findings of Kottwitz et al. (2020). Now it has been proven its applica-
bility by a median permeability prediction error of only 9.48 % for their model on a large
data set of natural fractures.

(ii) The error of the functional permeability prediction increases with respect to the ratio
of the fractures correlation length to its size. This confirms the theoretical findings of
Méheust and Schmittbuhl (2003) and Kottwitz et al. (2020), that uniquely predicting an
average flow behavior of fractures is constrained to low correlation-length-to-size ratios.

(iii) Synthesizing the estimates of the minimal correlation length of this study with additional
measurements from the literature demonstrated that the onset of correlation within the
aperture field tends to range in the same order of magnitude as the average aperture.
Thus, a simple linear relationship between the correlation length and the mean aperture
serves as parametrization for network-scale models.

Prescribing constant fracture permeabilities with a modified parallel plate model is still
common practice in network-scale models, especially for discrete fracture network (DFN) mod-
els (e. g., Lei et al., 2017; Berre et al., 2019; Lavoine et al., 2019; Sweeney et al., 2020). However,
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based on the results of Dreuzy et al. (2012) and Makedonska et al. (2016), the validity of that as-
sumption is put at risk for network models that show fracture scale correlations close to the size
of the studied system. Considering that correlation lengths of fractures seem to range in similar
orders of magnitude as their mean apertures, it is questionable if this condition is achievable
for fractures in classical applications of network-scale flow models. Since several studies pro-
posed that fracture aperture correlates to its length, either linearly (Pollard and Segall, 1987;
Renshaw and Park, 1997) or sub-linearly (Olson, 2003; Klimczak et al., 2010), fracture apertures
will always be several orders of magnitude lower (1 to 3 for dikes, more than 3 for joints ac-
cording to the aforementioned sources) than their sizes and thus should be their correlation
lengths. Hence, if network-scale flow in systems of size close to the maximum considered frac-
ture aperture are modeled, either the methods of Dreuzy et al. (2012) and Makedonska et al.
(2016) to prescribe in-fracture flow heterogeneity or direct-flow simulations within resolved
geometries of fracture networks should be favored against the classical DFN approach. As
long as the systems maximum aperture is about two orders of magnitude lower than the sys-
tem size (rough approximation arising from a minimal required lc/L ratio of 1/16 for a unique
permeability prediction within a fracture and a linear correlation length model with moderate
β of 6), utilizing a modified parallel plate model for prescribing fracture-scale flow should be
valid. It is important to note that this conclusion only holds for fractures with a slight amount
of slip, as the results of Zambrano et al. (2019), for example, suggest that the correlation length
increases as a function of slip. If faults, i. e., fractures with severe shear displacements, are
considered in network-scale flow models, long-range flow correlations within the fault might
well be of similar size as the whole system. They thus require individual treatment for pre-
scribing their hydraulics in larger-scale flow simulations, which poses an exciting challenge
for a follow-up study. Additionally, the origin of the correlation length, either physically or
stochastically, is still not understood so far and will hopefully be addressed in future studies,
next to the question if or how fluid-rock-interactions like dissolution or mineral growth as well
as particle transport-induced clogging and overhangs in the voxel-model modify long-range
correlations within fracture flow.
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Chapter 4

Equivalent continuum-based upscaling
of flow in discrete fracture networks:
The fracture-and-pipe model 1

4.1 Abstract

Predicting effective permeabilities of fractured rock masses is a crucial component of reser-
voir modeling. This is often realized with the discrete fracture network (DFN) method, where
single-phase incompressible fluid flow is modeled in discrete representations of individual
fractures in a network. Depending on the overall number of fractures, this can result in high
computational costs. Equivalent continuum models (ECM) provide an alternative approach
by subdividing the fracture network into a grid of continuous medium cells, over which hy-
draulic properties are averaged for fluid flow simulations. While this has the advantage of
lower computational costs and the possibility to include matrix properties, choosing the right
cell size for discretizing the fracture network into an ECM is crucial to provide accurate flow
results and conserve anisotropic flow properties. Whereas several techniques exist to map a
fracture network onto a grid of continuum cells, the complexity related to flow in fracture in-
tersections is often ignored. Here, we utilize numerical simulations of Stokes-flow in simple
fracture intersections to analyze their effect on permeability. We demonstrate that intersection
lineaments oriented parallel to the principal direction of flow increase permeability in a process
termed intersection flow localization (IFL). We propose a new method to generate ECM’s that
includes this effect with a directional pipe flow parametrization: the fracture-and-pipe model.
Our approach is tested by conducting resolution tests with a massively parallelized Darcy-flow
solver, capable of representing the full permeability anisotropy for individual grid cells. The
results suggest that as long as the cell size is smaller than the minimal fracture length and larger
than the maximal hydraulic aperture of the considered fracture network, the resulting effective
permeabilities and anisotropies are resolution-independent. Within that range, ECM’s apply to
upscale flow in fracture networks, which reduces computational expenses for numerical per-
meability predictions of fractured rock masses. Furthermore, incorporating the off-diagonal

1This chapter was submitted to Solid Earth (Kottwitz, M. O., Popov, A. A., Abe, S., and Kaus, B. J. P., IN REVIEW,
https://doi.org/10.5194/se-2020-208)

https://doi.org/10.5194/se-2020-208
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terms of the individual permeability tensors into numerical simulations results in an improved
representation of anisotropy in ECM’s, previously reserved for the DFN method.

4.2 Introduction

Discontinuities in rocks provide major pathways for subsurface fluid migration. Thus, frac-
tured reservoirs are frequent targets for oil, gas, or water production, geothermal energy re-
covery, and CO2 sequestration. In addition, both the safety of nuclear waste disposals and
subsurface contaminant transport crucially depend on the presence of fractures. Characteriz-
ing natural fracture networks across scales and predicting their permeabilities to model fluid
flow therein has thus been a long-standing topic of research (e.g., Long et al., 1982; Dershowitz
and Einstein, 1988; Cacas et al., 1990; Neuman, 2005; Dreuzy et al., 2012).
Since the acquisition of fracture data is usually limited to borehole logs, or outcrop scans (Lei
et al., 2017), the discrete fracture network (DFN) model is commonly used as a conceptual
framework to provide statistically-based approximations of real fracture networks (Darcel et
al., 2003; Xu and Dowd, 2010; Davy et al., 2013; Maillot et al., 2016). Measured structural prop-
erties like size- and orientation-distributions (Odling et al., 1999; Healy et al., 2017) as well as
fracture density and spacing (Ortega et al., 2006) serve as quantitative basis to generate syn-
thetic DFN realizations for further analysis (e.g., Hyman et al., 2015; Alghalandis, 2017). The
hydraulic response to pressure changes of each fracture is then parametrized with the cubic
law (Snow, 1969; Witherspoon et al., 1980), relating the fracture’s effective permeability to its
aperture. In reality, surface roughness, fracture closure, and fluid-rock interactions (e.g., ero-
sion or crystal growth) cause deviations from the parallel-plate assumption (Brown, 1995; Oron
and Berkowitz, 1998; Méheust and Schmittbuhl, 2000). Semi-empirical functions derived from
numerical simulations in rough-walled fractures with quantified statistics of the aperture field
(e.g., Patir and Cheng, 1978; Brown, 1987; Renshaw, 1995; Zimmerman and Bodvarsson, 1996;
Mourzenko et al., 2018) serve as corrections to the cubic-law, if the fractures internal correlation
length-scale is significantly smaller than the size of the considered fracture (e.g., Méheust and
Schmittbuhl, 2003; Kottwitz et al., 2020).
A large number of numerical methods to compute effective permeabilities of fractured media
have been developed (see reviews of Jing, 2003; Berre et al., 2019), all relying on (modified)
cubic-law assumptions. Improved discretization techniques with individual fracture treatment
like the DFN method come at the cost of high computational expenses, making it difficult to
employ it for reservoir scale simulations. Discretizing the fractured media as equivalent contin-
uum blocks significantly reduces the computational effort at comparable numerical accuracy
(Hadgu et al., 2017).
According to Long et al. (1982) and Oda (1985), fractured rocks behave similar to porous media.
They can be represented by a positive definite permeability tensor (Chen et al., 1999) as long
as the considered system behaves like a representative elementary volume (REV) (Bear, 1972),
i.e., its effective properties (permeability or porosity, for example) are more or less homogenous
at the reference scale of the system. Due to the multi-scale character of fracture systems (e.g.,
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Bonnet et al., 2001; Davy et al., 2006), determining the required homogenization scale is diffi-
cult, as distinct larger features may dominate overall flow. Thus, a discrete representation of all
fractures in a network given by the DFN method is essential to capture that multi-scale charac-
ter adequately. La Pointe et al. (1995), Jackson et al. (2000), Svensson (2001), Leung et al. (2012)
and Hadgu et al. (2017), among others, have however showed, that representing a DFN with
a grid of equivalent continuum blocks of sizes lower than the REV yields similar flow results,
if resolved sufficiently, and thus reproduces the overall flow-behaviour of the DFN method.
This highlights that the use of continuum methods for flow modeling in fractured rocks is not
restricted to REV scales and can thus be used equivalently to the DFN method.
Several techniques to generate equivalent continuum models (ECM) of DFN’s have been devel-
oped in 2D (Reeves et al., 2008; Botros et al., 2008; Rutqvist et al., 2013; Chen et al., 2015) and 3D
(Hadgu et al., 2017; Sweeney et al., 2020), whereby the so-called Oda method (see Oda, 1985)
is used to formulate permeability tensors of grid cells that intersect fractures. There, the per-
meability tensor aligns with the orientation of the intersecting fracture, and the permeabilities
of the individual fractures are summarized if multiple fractures intersect one cell, yielding a
positive definite, fully anisotropic tensor (e.g., Chen et al., 1999). The groundwater-flow equa-
tions for porous media (Bear, 1972), i.e., Darcy’s law (Darcy, 1856), are then used to simulate
laminar, steady-state, single-phase flow to compute effective permeabilities of the medium.
However, commonly used 3D flow solvers like PFLOTRAN (Lichtner et al., 2015) or MOD-
FLOW (McDonald and Harbaugh, 1988) have numerical difficulties treating fully anisotropic
permeability tensors and rather use their principal components or maximum values for flow
simulations. So-called stair-case patterns are the direct consequence of these simplifications,
which introduce artificially prolonged flow paths, especially in transport simulations, which
have to be compensated for (e.g., Reeves et al., 2008; Botros et al., 2008; Sweeney et al., 2020)
when predicting effective permeabilities of fractured media.
This study focuses on an often ignored but important aspect in fracture network modeling
given by the complexity of fracture intersection flow. To our knowledge, only a few studies
have presented 3D flow simulations within fracture intersections (Zou et al., 2017; Li et al.,
2020), revealing the fact that flow velocities will increase within the fracture intersections com-
pared to the fractures itself (shown by increasing Péclet numbers within the intersections). The-
oretically, this effect should increase if the direction of the applied pressure gradient aligns with
the orientation of the intersection. As a consequence, the effective permeability should increase
by a certain amount within the intersection. To demonstrate that, we systematically conduct
3D numerical simulations of Stokes flow within differently oriented, planar fracture crossings
to analyze the permeability increase caused by intersection flow localization (IFL). Using these
results, we extend the current state-of-the-art methodology for equivalent continuum represen-
tations of DFN’s to account for IFL in a quantitative manner and analyze its impact on effective
permeability computations. There, it is still unclear at which level of detail the ECM has to be
discretized to conserve the structural complexity of the DFN, as aforementioned stair-case pat-
terns and artificial connectivity cause resolution dependencies. Subsequently, resolution tests
are performed on two DFN test cases with a newly developed, massively parallelized high-
performance-computing (HPC) optimized finite element Darcy-flow solver that is capable of
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handling fully anisotropic permeability tensor cells. By that, we consistently investigate the
upscaling capabilities of the ECM method, which is frequently used for effective permeability
predictions in fractured porous media.

4.3 Methods

4.3.1 Fracture intersection flow modelling

Fluid flow in porous and fractured media is described by the well-known Navier-Stokes equa-
tions (Bear, 1972). It is commonly assumed that sub-surface flow in fractures ranges in the
laminar regime, i.e. Reynolds numbers below unity (Zimmerman and Bodvarsson, 1996). As-
suming the flowing fluid to be incompressible, isoviscous and the impact of gravity to be neg-
ligible, steady-state flow at constant temperature is defined by Stokes momentum balance (eq.
4.1) and continuity (eq. 4.2) equations (Bear, 1972):

µ∇2v = ∇P, (4.1)

∇ · v = 0, (4.2)

with the fluid’s dynamic viscosity µ, pressure P and velocity vector v = (vx, vy, vz). ∇, ∇·,
and ∇2 denote the gradient, divergence, and Laplace operator for 3D Cartesian coordinates,
respectively.
Here, the 3D staggered grid, finite-difference code LaMEM (Kaus et al., 2016) is used to solve
the coupled system of equations 4.1 and 4.2, utilizing PETSc (Balay et al., 2018) for HPC op-
timisation. Applying different absolute pressures on two opposing sides of a 3D voxel model
representing the fractured or porous medium (e.g., a) or d) in figure 4.1) while setting the other
boundaries to no-slip (velocity component normal to the boundary is zero) enables the pre-
diction of the mediums directional permeability. After obtaining the steady-state solution, the
volume integral of the pressure-gradient aligned velocity component vz (e.g., Osorno et al.,
2015) is computed according to:

v̄ =
1
V

∫
V

|vz| dz, (4.3)

with domain volume V. Using Darcy’s law for flow through porous media (Darcy, 1856), that
relates the specific discharge Q according to:

Q = − kA∆P
µ

, (4.4)

with intrinsic permeability k and cross-sectional area A in combination with the fact that Q =

v̄A, the directional permeability kz is calculated by:

kz =
µv̄
∆P

. (4.5)

As demonstrated by Eichheimer et al. (2019), Kottwitz et al. (2020), and Eichheimer et al. (2020),
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FIGURE 4.1: Panels a and d show the binary voxel-models (impermeable ma-
trix in transparent gray) for a fracture intersection that is orientated along and
transverse to the flow direction, respectively. The red bottom faces is the high
pressure boundary (0.02 Pa), the blue top faces the low pressure boundary (0.01
Pa) forcing the fluid to flow in z-direction. The orientations (arranged as dip-
direction/dip) for the fracture pair in a are f1 = 100/90, f2 = 190/80, and
f1 = 170/90, f2 = 260/10 for the fractures in d. The length of both cubes is 1
cm and all fracture apertures are constant (1.25 mm). Panels b and e visualize flow
velocity distribution in the void space. Panels e and f highlight velocity vectors
within the intersections at slices indicated with green rectangles in b and e, re-

spectively.

the numerical resolution has to be sufficiently high to produce a converged result. Generating
every model at different levels of detail (e.g. 1283, 2563 , 5123 and 10243 voxels), ensures that
the most accurate solution is obtained (see comparison of errors to the result at largest resolu-
tion in plot b, figure 4.7). Figure 4.1 presents Stokes-flow in simple fracture intersections and
highlights the IFL effect. If the fracture intersection is aligned with the principal flow direction
(plot a - c in figure 4.1), the velocity significantly increases within the intersection, resulting in
higher directional permeabilities. In the opposite case, when the fracture intersection connects
no-pressure boundaries (plot d - f in figure 4.1) and is thus oriented oblique to the flow direc-
tion, the flow velocity slightly disperses around the intersection and the overall impact on the
directional permeability is minor.
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4.3.2 Permeability parametrization concepts

As the two main structural features (fractures and intersections) composing a fracture network
differ significantly in terms of their hydraulics (figure 4.1), they require independent concepts
to parametrize their permeabilities for formulating their effective grid block permeability ten-
sor. For fractures, it is usual practice to use the cubic-law parametrization Snow (e.g., 1969) and
Long et al. (1982), relating the specific discharge Q through a void system between two parallel
plates according to:

Q = −wa3
m∆P

12µ
, (4.6)

with the fractures width w and distance between the two plates, i.e. mechanical aperture am.
Comparing this analytical solution with Darcy’s law (eq. 4.4, cross-sectional area A = wam)
leaves the intrinsic permeability of a fracture k f defined by:

k f =
a2

m
12

. (4.7)

Natural fractures deviate from the assumptions of parallel plates, which is why am in eq.
4.7 is commonly replaced with a hydraulic aperture ah that corrects the parametrization for
fracture closure and surface roughness (e.g., Patir and Cheng, 1978; Brown, 1987; Renshaw,
1995; Zimmerman and Bodvarsson, 1996; Kottwitz et al., 2020). Yet, there is no ready to use
parametrization concept tailored for fracture intersections. The simulations shown on figure 4.1
suggest that the flow in the intersection is approximately pipe-like. Then, the specific discharge
Q through a tube of radius rt and length lt is related by the Hagen-Poiseuille flow solution
through a pipe (e.g., Batchelor, 1967) according to:

Q = −πr4
t ∆P

8ltµ
. (4.8)

Again, combining this equation with Darcy’s law (eq. 4.4, cross-sectional area A = πr2) results
in the following expression for the intrinsic permeability of a pipe ki:

ki =
r2

8
. (4.9)

The apparent pipe radius should then be modified based on the intersection shape to calculate
an equivalent hydraulic radius rh to compensate for the structural difference. As a first-order
approximation, we use half the size of the hypotenuse in a right-angled triangle whose legs are
the two intersecting apertures (called half-hypotenuse assumption in the following, see figure
4.2 for details). This delivers sufficiently good results, as demonstrated later (figure 4.8).

4.3.3 Equivalent continuum representation of DFN’s

The use of the ECM approach instead of the DFN method to predict the effective permeabilities
of fractured media crucially depends on the capability to reflect the anisotropic flow properties
at the scale of the continuum cells. Therefore, it is essential to integrate the geometry of a DFN
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ah1

ah2

rh

FIGURE 4.2: 2D Sketch of the half-hypotenuse assumption in an idealized rectan-
gular fracture crossing (grey regions indicate rock matrix, white regions fracture
pore space). The hydraulic apertures (ah1 and ah2) of both intersecting fractures
are indicated with solid blue lines. The hypotenuse of the right-angled triangle
with the two hydraulic apertures as legs is given by the black dashed line. The
hydraulic radius rh (indicated by the solid red line) to approximate the radius of

the pipe model is defined as half of the length of the hypotenuse.

into the generation procedure of the ECM instead of generating the grid cell conductivities in a
stochastic manner (Hadgu et al., 2017). The accuracy of the ECM permeability prediction then
depends on the resolution of the DFN-mapped continuum grid. Jackson et al. (2000) and Svens-
son (2001) already demonstrated that using cell sizes larger than the average fracture spacing of
the network introduces artificial connectivity and hence overestimates effective permeabilities.
Sufficient resolution of the continuum grid is therefore required to obtain comparable results
with the DFN method (e.g., Botros et al., 2008; Leung et al., 2012).
To our knowledge, there is no approach to generate an ECM of a DFN that takes the effect of
IFL (figure 4.1) into account. Thus, we will explain our new approach to generate continuum
representations based on DFN structures - the fracture-and-pipe model.
Generally, the DFN approach offers a straightforward way to characterize structurally complex
fracture networks. Most commonly, every fracture is modeled as a geometric primitive (here
a disc) with a prescribed length l, center coordinate p0 and unit normal vector n̄ defining its
orientation. Based on this, fracture intersections can be calculated to define the backbone of
the network. Here, fracture intersections are approximated with a line defined by two points
i0 and i1, whereas the unit vector ī between the two points defines its orientation. The goal
of the ECM method is to generate a 3D regular grid with constant x-y-z spacing δx, whereas
every grid cell contains a symmetric, positive definite permeability tensor that is based on the
fractures and their intersections.
To map each individual fracture to its corresponding grid cells, we first assume a horizontal
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(a)

(b)

(c)

FIGURE 4.3: Workflow for generating an equivalent continuum model of a DFN.
Panel a shows the input fracture network of 4 arbitrarily oriented fractures (gray)
and their intersections (magenta). Panel b displays a grid of ellipsoids, each re-
flecting the shape of the permeability tensor in the equivalent continuum model
of a with a resolution of 43 voxels. The size of the ellipses is scaled to the norm of
the permeability tensor of the cell, such that larger ellipsoids denote higher per-
meabilities. The green plane in b indicates the location of the 2D slice displayed
in c. There, different green-intensities present the norm of the permeability ten-
sor of each cell. Black lines denote fractures in 2D and yellow ellipses the x- and
y-shape of the permeability tensor of each cell. Note, how the shape of the ellipse

changes from being planar, if multiple fractures cross a cell.

disc (normal vector ḡ = [0, 0, 1]) at center point pg = (0, 0, 0) with corresponding fracture ra-
dius r (r = l/2) and represent it with an equally spaced set of points in the x-y plane Pg, with
the condition ||Pg − pg)|| ≤ r. By that, we obtain a constantly spaced grid of points represent-
ing the fracture in horizontal orientation, provided that the initial equal spacing of the points
δp is a small fraction of the cell size δx to prevent gaps in the mapped 3D grid. Next, we seek
the rotation matrix R f that aligns the current normal vector of the x-y plane ḡ = [0, 0, 1] with
the actual normal vector of the fracture n̄. Utilizing Rodrigues’s rotation formula (Rodrigues,
1840) around the rotation axis w = (ḡ× n̄)/||(ḡ× n̄)|| (unit vector orthogonal to ḡ and n̄) yields
the rotation matrix R f according to:

R f = I + ||ḡ× n̄|| C + (1− ḡ · n̄) C2, (4.10)

with ×, ·, and ||x|| denoting the cross-product, dot-product and vector norm of x, respectively.
I represents the 3-by-3 identity matrix and C the cross-product matrix of the rotation axis w =
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[wx, wy, wz]:

C =

 0 wz wy

wz 0 −wx

−wy wx 0

 . (4.11)

Following this, R f is used to rotate the 3× n array of points representing the fracture plane Pg

(n is the number of 3D points in Pg) around pg and translate all points to the actual center point
p0 to produce a rotated set of points Pr representing the fracture in its actual 3D position:

Pr = Pg ∗ R f + p0, (4.12)

where ∗ denotes matrix-matrix multiplication. By ensuring that the lower left corner coordi-
nate of the rectangular grids bounding box is initially located at (0, 0, 0) (this may require a
translation of all center points to incorporate all fractures), we obtain the grid-indices (i,j and
k in x,y and z-direction, respectively) of the fracture by dividing Pr with the cell size δx and
rounding the results. Finally, we compute the individual anisotropic permeability tensor Kijk

for the cells by using a parametrized fracture permeability value (eq. 4.7) and the rotation
matrix R f according to:

Kijk =
Vf

Vc
k f

R f

1 0 0
0 1 0
0 0 0

 R′f

 . (4.13)

Vc denotes the cell volume (δx3) and Vf the fracture volume per cell, which is approximated
by counting the number of Pr points per individual cell, multiplying it with the squared initial
point spacing δp and the hydraulic aperture ah of the fracture. Obviously, the accuracy of Vf

crucially depends on the initial point spacing of Pg - the finer the spacing, the better the ap-
proximation of Vf . Plot c in figure 4.4 shows that the condition δp/δx ≥ 16 delivers sufficiently
constant permeability values. In case multiple fractures transect the same cell, the permeability
tensors are summed, similar to Chen et al. (1999) or Hadgu et al. (2017). However, these cells
need additional treatment as they incorporate fracture intersections. To map all previously
found intersections to the grid cells and formulate their permeability tensors, we follow the
same workflow as presented for individual fractures. A horizontal line of the same length as
the intersection (||i1 − i0||), parallel to the x-axis is represented by a constantly spaced set of
points (similar spacing as in the case of a fracture, i.e. δp), whereas the mean point of the line is
again located at (0, 0, 0). We then calculate the rotation matrix Ri (eq. 4.10) by using ḡ = [1, 0, 0]
and n̄ = (i1 − i0)/||i1 − i0||. After identifying the corresponding grid i,j and k indices as de-
scribed above, their permeability tensors are increased by using a parametrized interesection
permeability (eq. 4.9):

Kijk = Kijk +
Vi

Vc
ki

Ri

1 0 0
0 0 0
0 0 0

 R′i

 . (4.14)

Vi represents the intersection volume per cell, which we again approximate by counting the
number of Pr points per cell and multiplying it with point spacing δp and the term πr2

h, whereas
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(a)

(b)

(c)

FIGURE 4.4: Fracture intersection caused changes of permeability tensor charac-
teristics. Panel a shows a simple DFN structure of two arbitrary oriented frac-
tures (grey) intersecting at a line (magenta). The cube length is set to 1 m and
the system origin is at (0, 0, 0). The center point of the first fracture is located at
(0.4899|0.5685|0.5110) and its normal vector is given as (−0.3195, 0.7894, 0.524).
The second fractures center point is located at (0.7604|0.5000|0.5000), whereas its
normal vector is given by (−0.9461, 0.1715, 0.2747). Both fractures have the same
hydraulic aperture of 1 · 10−3 m and both fully penetrate the system. The resulting
intersection ranges from point (0.6499|0.3086|1.000) to (0.8003|1.000|0.0505) and
its orientation is given by the unit vector (0.1270, 0.5839,−0.8018). The hydraulic
pipe radius resulting from the half-hypotenuse assumption is 7.0711 · 10−4. Panel
b visualizes the shape of the permeability tensor for an ECM model that considers
only fracture permeability (grey, inside) and for the presented fracture-and-pipe
model (transparent magenta, outside). The size of both ellipses is scaled with
the norm of the resulting permeability tensor to provide comparability. Panel c
presents the norm of the permeability tensor Kijk as a function of the ratio be-
tween initial point spacing δp and ECM grid spacing δx (see text for explana-
tions). The dashed black line denotes the condition δp/δx ≥ 16, that is used to
provide an correct approximation of the fracture and intersection volume per cell.

rh denotes the hydraulic radius of the pipe approximating the intersection. Figure 4.3 shows
the resulting ECM structure with 43 cells of an arbitrary complex DFN, generated with the pre-
sented approach. For certain fracture systems (ideally no more than two fractures that fully
penetrate the system, e.g., plot a) in figure 4.4), the presented approach derives an analytical
solution for permeability by setting δx equal to the system size, resulting in a single perme-
ability tensor for the whole system. Figure 4.4 demonstrates that incorporating the intersection
as a pipe has a significant effect on the shape and absolute value of the permeability tensor at
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intersections, which could cause an overall permeability increase by almost one order of mag-
nitude. However, the exact amount of permeability increase depends on the chosen hydraulic
pipe radius. The impact on the overall permeability at the network needs to be evaluated.

4.3.4 Continuum flow modelling

In the following, we will explain our method to obtain the effective permeability tensor of con-
tinuum cell representations for fractured-porous media. The governing equations for steady-
state single-phase flow equations for an incompressible, isothermal and isoviscous fluid with-
out sources and sinks are given im compact form by the following system of mass (eq. 4.15)
and momentum (eq. 4.16) conservation equations:

∇ · q = 0, (4.15)

q = −K∇P, (4.16)

whereas ∇ and ∇· denote the gradient and divergence operator for global 3D Cartesian coor-
dinates, respectively. The specific discharge (flux) is given by q, pressure by P and the positive
definite and symmetric hydraulic conductivity tensor by K according to:

K =

kxx kyx kzx

kyx kyy kzy

kzx kzy kzz

 ρg
µ

, (4.17)

with the principal permeability tensor components kxx, kyy and kzz, the off-diagonal compo-
nents kyx, kzx and kzy as well as fluid density ρ, gravitational acceleration g and fluid dy-
namic viscosity µ. We employ a 3D finite-element discretization scheme (e.g., Hughes, 1987;
Zienkiewicz and Taylor, 2000; Belytschko et al., 2000; Lin et al., 2014) for equations 4.16 and 4.15
to simulate boundary driven pressure diffusion through any input grid consisting of unique
permeability tensors. Using the Galerkin method (e.g., Belytschko et al., 2000; Lin et al., 2014),
we transform equation 4.15 into an expression for the nodal residual R according to:

R =
∫

V
∇NTK∇NdVP = 0. (4.18)

V denotes the domain volume, N the nodal shape function matrix and P the nodal pressure. We
use 8-node rectangular elements (voxels) with linear interpolation functions (e.g., Zienkiewicz
and Taylor, 2000) for volume integral approximation, whereas element integrals are evaluated
by Gauss-Legendre quadrature rule (e.g., Belytschko et al., 2000) over 8 integration points with
parametric coordinates. Within each element, standard coordinate transformation is employed
to compute shape function derivatives with respect to global coordinates ∇N:

∇N = J−1∇LN, J = ∇LNx, (4.19)

where ∇L denotes gradient operator for local 3D element coordinates, J the Jacobian matrix
and x the 3D global element coordinates. After imposing initial pressure conditions at the
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boundary nodes, the global residual vector Rg is assembled from elemental contributions (e.g.,
Hughes, 1987) according to eq. 4.18 to solve the linear system of equations:

CgPnew = Rg, (4.20)

for the unknown pressure Pnew. Cg denotes the global coefficient matrix, which is assembled
from the nodal coefficient matrix C given by:

C =
∫

V
∇NTK∇NdV. (4.21)

Following this, we evaluate the nodal Darcy velocities u based on the newly solved nodal
pressures by:

u = K∇NPnew, (4.22)

whereas the velocity vectors on the nodes are averaged from the neighbouring integration
points.

Three principal directions of the applied pressure gradient have to be considered to predict
the full tensor of permeability. Thus, the flow simulation procedure repeats three times such
that each principal flow direction (x-, y- and z-direction in a Cartesian coordinate system) is
covered. For each iteration, we apply two constant pressure values at two opposing boundary

FIGURE 4.5: Pressure boundary conditions for an applied gradient in z-direction.
Here, top and bottom faces experience constant pressures of 1 and 0 Pa, respec-
tively. A linearly interpolated pressure distribution is applied at the remaining
four boundary faces, as indicated by the colored wedges next to the side-faces
of the model. Thus, the principal direction of flow is in z-direction, allowing to
calculate the z-component related terms of the permeability tensor according to

eq. 4.23
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FIGURE 4.6: Benchmark case 1 from Berre et al. (2020). Panel a shows the bench-
mark geometry of an embedded fracture (aperture of 10−2 m) in a matrix with a
hydraulic conductivity of 10−6. The hydraulic conductivity in the grey band at
the bottom is increased to 10−6. Constant pressures of 4 Pa and 1 Pa are applied
at the inlet band (blue) and outlet band (red), respectively. The diagonal light
grey line through the model indicates the sampling line for the pressures shown
plot in b. The pressure distribution is plotted as a function of arc length of the
gray line in a and the results of different resolutions are compared to the bench-
mark target field obtained from 17 different numerical methods. The dark grey
region illustrates the area between the 10th and 90th percentiles for the highest
refinement level of the benchmarked methods, whereas the light grey region il-

lustrates the same area for their lowest refinement level.

faces (e.g., lower and upper face in a cube for principal flow in z-direction) and the same linear
interpolation between those two values at the remaining four boundary faces (see figure 4.5 for
an example). This ensures to capture both, the diagonal and off-diagonal terms of the perme-
ability tensor properly, which are computed by substituting the volume average ū of all nodal
velocity vectors uI (see eq. 4.3) into Darcy’s law for flow through porous media in the form of
eq. 4.4. Figure 4.5 displays the situation of a vertically aligned pressure gradient (∆Pz = δP

δz ).
We compute the corresponding entries in the permeability tensor according to:kzx

kzy

kzz

 =
µ

∆Pz

ūx

ūy

ūz

 , (4.23)

and vice versa for the iterations with pressure gradients in x- and y- direction to obtain the
permeability tensor as shown in eq. 4.17.
The used single-continuum discretization scheme might appear simplistic compared to more

sophisticated mesh-representations (see Berre et al., 2019). However, the merits of our ap-
proach rather lay (1) on a fully anisotropic permeability representation of the individual contin-
uum cells and (2) massive parallelization and HPC optimization. Utilizing the parallelization
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framework of PETSc (Balay et al., 2018) and their multigrid preconditioned solvers reduces the
computational cost, allowing simulations routinely with 109 individual grid cells. An increase
in grid resolution compensates the benefits of using conforming meshes or multi-continuum
formulations Berre et al. (e.g., 2019). To test this, we compare our modeling procedure against
benchmark case 1 from Berre et al. (2020), which compares 17 different methods of simulat-
ing single-phase flow in fractured porous media. The initial setup (displayed in a) in figure
4.6) consists of an inclined fracture with a hydraulic aperture of 10−2 m embedded in a cube
of 100 m length with a matrix hydraulic conductivity of 10−6 m2. The hydraulic conductiv-
ity of a small band of 10 m width at the bottom is increased to 10−5 m2. We prescribe these
two values as background permeabilities and use the methodology described in section 3.3.2
to incorporate fracture permeability accordingly. The boundary conditions are given by small
pressure inlet (4 Pa) and outlet (1 Pa) bands as indicated in plot a in figure 4.6. The comparison
of the pressure distribution (plot b in figure 4.6) highlights that already with a resolution of 323

voxels, and we obtain a good fit with the benchmark target field. This thus suggests that our
modeling procedure is sufficiently correct for effective permeability predictions.

cubic voxels

(a) (b)

FIGURE 4.7: Panel a displays the location of all 100 intersection lineaments con-
sidered in the flow benchmark. 52 intersection configurations directly connect
in- and outlets of flow (upper and lower z-face), whereas 48 connecting non-
boundary flow faces. Panel b compares the numerically estimated permeability
at highest resolution (10243 voxels) to the ones obtained at lower resolutions by
calculating their error norms ||δk|| according to eq. 4.24. Gray dots represent the
average error norm for all considered intersection configurations at resolutions
lower than 10243 voxels. The light gray area highlights the range between mini-

mum and maximum error.
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4.4 Results

4.4.1 Intersection flow benchmark

To test the half-hypotenuse assumption (see figure 4.2 for details) as a first-order approxima-
tion for the hydraulic radius of the pipe, we conduct a benchmark study in the following. We
calculate the directional permeabilities of simple fracture crossings with varying orientations
from high-resolutions Stokes-flow simulations (e.g., section 2) and compare them to their an-
alytically derived ECM single-cell counterparts (δx is equal to the full system size L) using
the half-hypotenuse parametrization. For each intersection model, two fully persistent frac-
tures with constant hydraulic apertures of 1.25 mm are placed in a cube of length 10 mm. Two
fractures with a dip angle of 90 and dip directions separated by 90 (i.e., 90 and 180) are consec-
utively rotated counter-clockwise by increments of 10 around the center of the cube until we
reach a total rotation of 90. We repeat this procedure nine times while consecutively reducing
the dip angle of one of the two fractures by increments of 10 for each iteration. The dip angle
of the remaining fracture is kept constant (i.e., 90) to maintain connectivity in the z-direction.
This results in a total of 100 different intersection configurations (52 representing direct in- and
outlets of flow, 48 connecting non-boundary flow faces), producing a wide variety of intersec-
tion orientations within two opposing octants in the cube (see figure 4.7 a for all generated
intersection lineaments). For each configuration, we produce a binary voxel model (pore-space
and matrix) of two crossing parallel plate fractures (similar to a) and d) in figure 4.1). Follow-
ing the approach described in section 2, we apply different pressures at the bottom and top
boundary to numerically estimate the directional permeability (setting the remaining bound-
aries to no-slip yields the vertical permeability component of the permeability tensor, kz). We
were systematically increasing the numerical resolutions of the Stokes-flow simulations (1283,
2563 , 5123 and 10243 voxels) for each intersection configuration (resulting in a total of 400 HPC
flow simulations) to determine whether the result at the highest level of detail represents a
sufficiently converged solution. This is done by calculating the L2-error-norm ||δk|| according
to:

||δk|| =
∣∣∣∣ kx − k1024

k1024

∣∣∣∣ , (4.24)

whereas k1024 represents the directional permeability obtained at the highest resolution (i.e.
10243 voxels) and kx the directional permeability from simulations with lower resolution (i.e.,
1283, 2563 , 5123 voxels). The resulting average error norms for all 100 intersection configu-
rations are plotted in figure 4.7 b, which demonstrate the convergence towards the numerical
result at the highest resolution. With an average error norm of about 0.6 % and a maximum
error of 2.4 % for simulations with 5123 voxels compared to the simulations at 10243 voxels,
we assume that the solution at 10243 voxels represents a sufficiently accurate solution and can
furthermore be used to benchmark the tensors generated with the ECM approach. Next, we
follow the approach of section 3.3.3 to generate a single-cell permeability tensor of each inter-
section model, using a δp/δx ratio of 16 and extract the vertical permeability component of
the tensor (kzz) and compare it with the one resulting from the Stokes-flow simulations. The
results (figure 4.8) demonstrate that, if the intersection connects the two pressure boundary
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faces (intersection-to-flow-direction angle γ ≤ 40), the actual permeability obtained from the
Stokes simulations is reasonably well reproduced with a small underestimation by the fracture-
and-pipe model and heavily underestimated by the fracture-only approach (e.g., Hadgu et al.,
2017). Using the half-hypotenuse assumption sufficiently integrates the effect of IFL at the
scale of a continuum cell. Both models fail to predict the accurate directional permeabilities
for intersections that connect no-pressure boundary faces (γ > 40), indicating that the effect of
flow dispersion within the crossing fracture may play a more important role than previously
thought. However, the cumulative error boxplot in figure 4.8 indicates that both methods give
statistically acceptable predictions of the directional permeabilities (median error of 2.7 % for
the fracture-and-pipe model and a median error of 7.9 % for the fracture-only model). Thus,
the systematic error observed for γ > 40 appears negligible.

4.4.2 ECM based permeability upscaling of DFN’s

So far, we presented a methodology to transfer a DFN into a regular grid of equivalent contin-
uum cells and demonstrated its accuracy for simple fracture crossings at the scale of the con-
tinuum cells. This suggests that we can expect similar accuracy if we represent larger DFN’s

ecm

FIGURE 4.8: The left plot shows a comparison of directional permeabilities ob-
tained from high-resolution Stokes-flow simulations (ks) and analytically coun-
terparts (kecm) derived with the ECM-approach described in the text as a function
of the angle γ between the intersection and the principal flow direction. Ma-
genta dots represent the mean permeability ratios (10 values per point) for the
ECM approach described in section 3.3.3 with the half-hypotenuse pipe radius
parametrization. Gray dots present the mean permeability ratio for an ECM ap-
proach that ignores the effect of intersections. The right plot shows a boxplot of
the error norm ||δk|| computed according to eq. 4.24 with kecm as kr for all 100

fracture-and-pipe (magenta) and fracture-only models (gray).
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with complex structures by an equivalent continuum representation, provided that the grid
resolution is sufficiently large to resolve the DFN in a similar way (i.e., a maximum of two frac-
ture segments and one intersection per cell). As fracture networks typically have a multi-scale
character with power-law or log-normal fracture size distributions (e.g., Bonnet et al., 2001;
Davy et al., 2006), fulfilling that conditions require huge grid resolutions, making this method
infeasible for practical applications. Predicting the effective permeability of the DFN by solv-
ing the groundwater flow equations (Darcy’s law) would then require prior upscaling of the
grid cell conductivities (e.g., Zhou et al., 2010; Hauge et al., 2012), depending on chosen flow
solver and the available computational resources. However, averaging or flow-based upscaling

(a) (b)

(c) (d)

FIGURE 4.9: Panels a and b display the test DFN’s with 10000 and 1000 fractures,
respectively. Both are generated with the software ADFNE (Alghalandis, 2017),
whereas input parameters are given in the text. Yellow lines depict the location
of the slice shown in c and d. There, black lines indicate fractures and magenta

spheres the location of fracture intersections.
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(a) (b) (c) (d)

(e) (f)

FIGURE 4.10: Panels a, b, c and d display the norm of the permeability tensor for
each cell in an ECM representations of the 10000 fracture test DFN displayed in
figure 4.9 a) for grid resolutions of 323, 643, 1283 and 2563 voxels, respectively.
Panels e and f visualize the resulting velocity distribution for an applied pressure

gradient in z-direction.

approaches may misrepresent network-scale flow characteristics, depending on the selected
coarse-grid resolution. It is often unclear how the resolution dependency affects the accuracy
of effective permeability computations and whether flow anisotropy is conserved. In the fol-
lowing, we will demonstrate that using ECM’s of DFN’s with sufficiently high resolutions is
capable of doing precisely that while avoiding initial upscaling. For this, we compare effective
permeability tensors obtained from the previously described massively parallelized continuum
flow simulations for different DFN scenarios with varying resolutions of their equivalent con-
tinuum counterparts. We generate two test DFN’s utilising the open-source MATLAB toolbox
ADFNE (Alghalandis, 2017). Similar to Hadgu et al. (2017), the fractures in each DFN are
separated into three orthogonal sets, reflecting naturally observed properties reported in SKB
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(2010). S1 : 90|090 , S2 : 90|000 , S3 : 00|360 give the mean dip-angle and dip-direction for
the three fracture sets, respectively with a constant Fisher distribution concentration value of
5 accounting for variability around the mean. Fracture sizes l are distributed as a power law
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FIGURE 4.11: Absolute permeability values k for the 6 main components of
the computed effective permeability tensor (principial components in red, off-
diagonal components in black) and the norm of the permeability tensor in ma-
genta as a function of the grid resolution in cubic voxels (number of voxels in

x-y-z direction).

according to:

l =
[(

lα+1
1 − lα+1

0

)
u + lα+1

0

]1/α+1
, (4.25)

whereas l1 is the upper cut-off length (500 m) and l0 the lower cut-off length (15 m), u repre-
sents a set of uniformly distributed random numbers in the interval (0, 1) and α the power law
exponent (here α = −2.5). All fracture centers are randomly placed in a cube with 500 m side
lengths (the resulting DFN’s are displayed in figure 4.9) with a background matrix permeabil-
ity of 10−18 m2. A sub-linear scaling of aperture versus length (e.g., Olson, 2003; Klimczak
et al., 2010) is employed to correlate the hydraulic apertures ah of the fractures to their lengths
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l:
ah = β l0.5, (4.26)

with a scaling factor β of 10−4. The only difference between the two test DFN’s is the overall
fracture number, which is 10000 for the DFN-A (plot a in figure 4.9) and 1000 for the DFN-B (b
in figure 4.9), such that we obtain a densely and sparsely fractured system, respectively. DFN-A
thus represents the scenario of a typical REV network, according to Long et al. (1982) and Oda
(1985). DFN-B, on the other hand, reflects a flow scenario closer to the percolation threshold
with anisotropic, non-REV behavior (Maillot et al., 2016).
After calculating all fracture intersections with ADFNE’s built-in function Intersect (see b and
d in figure 4.9 for intersection spots in a 2D slice), we use the method presented in section 3.3.3,
which incorporates the permeability parametrization concepts from section 3.3.2, to generate
several ECM’s with varying grid resolutions. Starting from 43 voxels and increasing by pow-
ers of two up to 10243 voxels yields 9 different continuum representations for each test DFN
(see figure 4.10 for examples). For each representation, we compute the effective permeability
tensor of the DFN by repeatedly solving the Darcy equations in three principal flow directions.
The results are displayed in figure 4.11. For both test DFN’s, the norm of the resulting effec-
tive permeability tensor ranges within the same order of magnitude. For DFN-A, we obtain
a difference of about 30 % from coarse (43 voxels, ||kij|| = 5.24 ∗ 10−11) to fine (10243 voxels,
||kij|| = 4.03 ∗ 10−11) grid resolution, whereas DFN-B shows a larger difference of about 129 %
(coarse ||kij|| = 5.07 · 10−12, fine ||kij|| = 2.21 · 10−12). Thus, the resolution dependence of the
absolute permeability is small for fracture networks with an expected REV-behavior (DFN-A)
and more pronounced for fracture networks with non-REV behavior (DFN-B). Interestingly,
the individual components of the permeability tensor converge to constant values above reso-
lutions of 1283 voxels for both test cases, indicating that anisotropy magnitude depends on the
level of detail of the ECM grid.

4.5 Discussion

Including a pipe-flow model into the ECM generation process improves the representation of
permeability anisotropy therein and potentially impacts overall permeabilities. For example, at
the scale of the intersection itself, it significantly modifies the shape and absolute values of the
permeability tensor (figure 4.4). However, looking at the presented errors of the intersection
benchmark (2.7 % and 7.9 % for the fracture-and-pipe and fracture-only model, respectively)
indicates that, from a statistical perspective, the effect of IFL on overall permeability seems
minor. Repeating the resolution test from section 3.4.2 with a fracture-only discretization ap-
proach for both test DFN’s indeed resulted in almost identical permeability values (deviations
of about 0.02 %). Thus, the effects of IFL seem to disappear at DFN sizes much larger than
intersection size (mean hydraulic radius of approx. 0.7 mm versus 500 m system size in our
case). This may be attributed to the fixed aperture-length correlation chosen for the test cases
in this study. If, for example, two dominant fractures with larger apertures form an intersec-
tion that penetrates the whole system along the direction of flow, the effect of IFL might become
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significant again due to the non-linear radius-permeability relation. Also, if small DFN’s with
sizes closer to the mean hydraulic radius of the intersections (e.g., micro-fracture networks)
are considered for permeability prediction, IFL should play an important role. Then, how-
ever, additional factors have to be considered as well. For example, Dreuzy et al. (2012) have
shown that fracture scale heterogeneity affects network scale connectivity due to flow channel-
ing caused by closure in the aperture field. This may appear if the ECM cell size is similar to the
internal correlation length of the fractures (e.g., Méheust and Schmittbuhl, 2003; Kottwitz et al.,
2020) which would ultimately require new concepts to account for deviations from the aver-
age flow behavior instead of using fracture permeability parametrizations. A possible solution
could be to introduce fracture permeability fluctuations if the ECM cell size is smaller than the
individual fractures correlation length. Unfortunately, the scaling of the correlation length in
fractures is poorly understood, so further research is required before integrating these effects.
Additionally, the pipe parametrization we use as a first-order approximation for intersection
permeability requires refinement to account for irregular shapes, tortuosity, or closure, repre-
senting another exciting question to solve in future studies.
For flow simulations at reservoir scales (similar to the test-cases considered here), the only com-
putationally feasible solution is to use parametrization concepts (e.g., section 3.3.2). For that,
we were able to demonstrate that the presented fracture-and-pipe ECM method can provide
converged effective permeability tensors if the ECM resolution, i.e., the ratio of system size to
discretization step size, is sufficiently large. This resolution dependency for 3D ECM’s has not
been reported at this level of detail so far but was expected based on previous works of Jackson
et al. (2000) and Svensson (2001). Their main identified problem is artificially increased con-
nectivity at lower resolutions, which occurs if the resolution is larger than either the average
spacing of the fracture network or the minimal fracture length of the DFN, leading to over-
estimated permeabilities and misinterpreted anisotropy. Here, we use the average minimal
distance of each fracture center to all other fracture centers in the network as a first-order ap-
proximation for fracture spacing. With an average spacing of 13.1± 4.5 m, continuum grid res-
olutions above roughly 38 cubic voxels should theoretically start preventing artificial connec-
tivity for DFN-A. For DFN-B, an approximated average spacing of 28.9± 10.9 m, the required
resolution to damp that effect is even lower (about 17 cubic voxels). Both test DFN’s have the
same lower cutoff fracture size of 15 m, so artificial connectivity should start decreasing above
resolutions of about 33 cubic voxels. Looking at figure 4.11, we observe ongoing permeability
convergence at these three mentioned resolutions. We attribute this to the fact that fractures
are spaced randomly in space but sampled with a regular grid. Thus, the distance between
fracture tips and continuum cell-edges might be larger for low resolutions, again causing per-
meability overestimations. Only above a resolution of 128 cubic voxels, all these effects seem to
dampen out, allowing to declare the solution as sufficiently converged with quantitative errors
below 10% for tensor norm and individual components. Hence, we suggest a general upper
boundary of a third of the minimal fracture length l0 as cell size for an ECM discretization of a
DFN to provide consistent results.
Based on analytical solutions of flow in fracture networks with constant apertures, Svensson
(2001) proposed that the ratio of ECM cell size to hydraulic aperture should not exceed two
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to provide small flow errors. So far, the ratio of cell size to the minimal hydraulic aperture in
the system was much larger (about 1260) due to the low scaling factor β of the sub-linear aper-
ture to length correlation (eq. 4.26). To achieve similar discretization ratios of Svensson (2001)
while maintaining a power-law size scaling, we would have to increase β to 10−1, resulting
in minimal and maximal apertures of 0.39 and 2.14 m, respectively. As this would violate the
assumption of laminar flow conditions within the fractures, we cannot test their hypothesis
and rather recommend staying above the maximum hydraulic aperture ah1 of the system, as
otherwise the volume-fraction based permeability scaling factor in equations 4.13 and 4.14 ex-
ceed unity. In that case, parametrization assumptions might not hold anymore, preventing the
use of continuum flow methods. However, as demonstrated here, sticking to l0/3 > δx > ah1

as condition for ECM discretization delivers constant effective permeabilities and conserves
flow anisotropy for the upscaling. Within that discretization range, mapping a DFN onto an
equivalent continuum grid can be used as a geometric upscaling procedure for further effective
permeability analysis. Notably, this range strongly depends on the structural characteristics of
the considered DFN, especially on the fracture size distribution and corresponding aperture
correlation functions. For some DFN’s this may require to crop the fracture size distributions
from below to a few multiples of the cell size and compensate the hydraulic contribution of
lower sized fractures with a background permeability.

4.6 Conclusion

This study analyzed the complexity of fracture intersection flow by conducting Stokes-flow
simulations in simple fracture crossings. Intersections aligned with the pressure gradient cause
an increase in permeability, as they act as a pipe. This results in intersection flow localization
(IFL), i. e., intersections represent preferred pathways for the fluids compared to the con-
nected fractures. We thus extended the state-of-the-art methodology to generate equivalent
continuum models (ECM) for effective permeability computations of discrete fracture networks
(DFN) to incorporate IFL effects. We integrate those with a directional pipe-flow parametriza-
tion with a hydraulic radius of half the hypotenuse size in a right-angled triangle with side
lengths of both intersecting hydraulic apertures. By assessing the permeabilities of fracture in-
tersections numerically, we could demonstrate that for system sizes close to the approximated
pipe radius (typically mm to cm), the effect of IFL on permeability can be almost one order of
magnitude. At larger scales (system size of several hundred m), on the other hand, the impact
of IFL on overall flow is minor. There, the cell size with which the ECM is discretized repre-
sents the most crucial aspect for the accuracy of ECM-based effective permeability predictions.
Based on a resolution test with two different DFN scenarios, we suggest that the ECM cell size
should not be smaller than a third of the minimal fracture size and larger than the maximal hy-
draulic aperture of the system to conserve constant permeabilities and full anisotropy of flow.
We conclude that ECM methods equivalently serve as geometric upscaling procedures for fluid
flow problems within that range. Whether this holds for transport problems as well needs to
be determined in future studies.
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Chapter 5

Conclusion & Outlook 1

5.1 Summary & Conclusions of this Thesis

The general goal of this thesis was to advance 3D numerical modeling of fluid flow in fractured
reservoirs to provide accurate predictions of their hydraulic properties at scales covering the
smallest micro-fracture up to the whole reservoir. Improving the accuracy and assessing the
non-uniqueness of existing single fracture permeability prediction models was the first issue
addressed in the scope of this thesis, as it is crucial to upscale fluid flow from fracture- to net-
work scales and. Chapter 2 contributed a new scheme to quantify the vast heterogeneity of
naturally occurring fracture morphologies with the help of only two non-dimensional parame-
ters computed from the statistics of the fracture’s aperture field and its individual surfaces. By
computing effective permeabilities from numerical simulations of high-resolution 3D Stokes
flow in an extensive data set of synthetically generated fractures covering a wide variety of sta-
tistical fracture configurations, we could derive a new, comparatively better parametrization
model for fracture permeability. Quantifying the fracture wall roughness-induced geometrical
deviations from the classical parallel-plate model yields a prediction of the average flow be-
havior for fracture populations with statistically similar geometries and provides the tool to
parametrize the hydraulic effects of fluid-rock interactions or mechanical closure by a shift in
parameter-space. Furthermore, we confirmed the seminal results of Méheust and Schmittbuhl
(2003) by identifying the ratio between long-range aperture correlations and system length as
the primary control on the non-uniqueness of permeability predictions and provided func-
tional measures to integrate a variance model into network-scale flow models. The first part
of chapter 3 demonstrated the applicability of this model on a data-set of 18 CT-imaged natu-
ral discontinuities, as the model originates solely from synthetic data. In the second part of the
chapter, we have analyzed long-range aperture correlations in those 3D-imaged discontinuities,
as this evidentially represents an essential but rarely reported property of natural fractures. In-
tegrating these results with the few measurements reported in the literature showed that a
linear relation to the fracture’s mean aperture well approximates the length-scale of long-range
aperture correlations. It also facilitates determining a minimal scale at which prescribing an
average flow behavior of fractures in network-scale models is valid. There, imaging pore- and
fracture-volumes for volumes larger than a few cubic decimeters on a CT-like level of detail is

1The outlook part of this chapter is based on the results of the PERMEA project and involves scientific contribu-
tions from Kottwitz, M. O., Popov, A. A., and Kaus, B. J. P., Deckert, H., Abe, S., Costa, A., Schmatz, J., Klaver, J.,
Bauer, W. and Freitag, S.
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impossible due to top-end spatial limitations of imaging techniques. Thus, modeling fluid flow
in network-scale models requires upscaling both the initial hydraulic structure (via permeabil-
ity parametrizations) and the governing equations (i.e., from finite-difference Stokes to finite-
element Darcy approximations of the fluxes). Chapter 4 provides a computationally efficient
framework to predict effective permeability tensors of fracture networks, modeled by discrete
reduced-order models such as the discrete fracture network (DFN) method. For this, we started
with performing 3D Stokes flow simulations in a bunch of idealistic fracture-intersection mod-
els (two parallel plates fractures crossing each other) to (1) demonstrate the process of intersec-
tion flow localization (IFL) and (2) work out a parametrization to incorporate these observa-
tions into network-scale continuum models. The numerical simulations showed that fracture
intersections represent preferred pathways for fluid migration and enhance the overall perme-
ability of the system if its orientation aligns with the applied pressure gradient and its length is
of similar size as the system. A directional pipe-flow parametrization well-approximates these
hydraulic effects if the hydraulic radius of the pipe has half the length of the hypotenuse in a
right-angled triangle with side lengths of both intersecting hydraulic apertures. As a next step,
we provided a methodology to generate equivalent continuum models (ECM) from any input
DFN as the basis to perform flow-based upscaling (i.e., computing the effective permeability
tensor of the system from 3D Darcy flow simulations). For this, we subdivide a DFN into a 3D
regular grid of voxel elements, where each has an individual anisotropic permeability tensor
based on fractures and intersections crossing the cell. We used this methodology to assess the
effective permeabilities of two kilometer-scale test DFN’s with ECM’s of varying resolutions.
Seemingly, IFL affects the effective permeabilities of a fracture system only when a prominent
intersection penetrates the whole domain. Yet, the resolution test demonstrated how the res-
olution dependency of ECM methods biases upscaling accuracy. We concluded that the ECM
cell size should not be smaller than a third of the minimal fracture size and larger than the max-
imal hydraulic aperture of the system to produce converged effective permeability estimates
and conserve their anisotropy. Within this range, we argue that the ECM method serves as an
accurate and cost-efficient tool to upscale the hydraulic properties of fracture networks while
providing the possibility to incorporate matrix hydraulics.
The compiled results of this thesis enhanced the accuracy of multi-scale modeling of fluid flow
in fractured reservoirs. Improving current and deriving new parametrizations for complex
flow patterns at small scales benefited the integration of those hydraulic effects to larger scales.
There, examining the resolution dependency of continuum methods optimized the trade-off
between (1) having an efficient numerical method to model fluid flow while (2) properly cap-
turing the multi-scale character of a fractured reservoir as it allows to determine the minimal
scale at which reduced-order models like the DFN or ECM method for permeability predic-
tions is statistically valid. Thus, analyzing the variance of hydraulic network properties in-
duced by limited knowledge of reservoir structure in a stochastic manner should benefit the
most from these findings. The work conducted in this thesis thus delivers the framework to
provide properly upscaled intrinsic permeabilities of multi-scale structures for more sophis-
ticated, multi-physics (i.e., mechanically and/or thermally coupled) simulations in reservoir
engineering.
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The straightforward scientific extension of this thesis is to apply and validate the developed
multi-scale methods on a naturally existing fractured reservoir targeted for subsurface resource
utilization. The following section gives an outlook on planned studies from a current research
project that targets this.

5.2 Outlook: Insights from the PERMEA project

Understanding the hydraulic complexity of naturally fractured and faulted upper crustal zones
is a key asset of subsurface resource utilization. Especially for carbonate rocks, multi-scale char-
acteristics occur from the nanometer- to reservoir-scale (Goldscheider et al., 2010; Hardebol et
al., 2015; Volatili et al., 2019). If the rock matrix is considered impermeable, the vast majority of
fluids migrate through open discontinuities (for simplicity, further referred to as fractures). In
conceptual fault models, fractures arrange in networks with increasing fracture densities in re-
gions close to the fault (so-called damage zones) (Evans et al., 1997; Faulkner et al., 2010). While
damage zones may be highly transmissive features of fault zones, the fault core is thought to act
as a hydraulic barrier due to the sealing properties of the ground particles in fault gouges (e.g.,
Morrow et al., 1984). Due to the diversity of tectonic mechanisms that produce faults in the up-
per crust (Pollard and Aydin, 1988; Wibberley et al., 2008; Vrolijk et al., 2016), the structure of
damage zones and fault cores can be highly heterogeneous, which translates to non-stationary
and anisotropic hydraulic properties, both spatially and temporally (Aydin, 2000; Faulkner et
al., 2010). A recently published summary paper considering numerous multi-scale hydraulic
assessments of fault zones illustrates this (Scibek, 2020). Since seismic surveys cannot image
individual fractures or fault zone features below a couple of tens of meters, acquiring detailed
reservoir data is intricate and limited to direct observations of outcrops, sample measurements,
drill cores, and borehole imaging (Xu and Dowd, 2010; Lei et al., 2017). Thus, stochastic meth-
ods to extrapolate the data are required to complement field measurements while ensuring
proper integration of detailed reservoir data into numerical simulations of fluid flow repre-
sents a vital opportunity to improve the uncertainty of hydraulic reservoir assessments.
For reservoirs with fracture-dominant flow, the usual approach is to measure fracture length-,
orientation- and density distributions (Dershowitz and Einstein, 1988), which serve as input
data for stochastic modeling approaches like the discrete fracture network method (DFN) (Ca-
cas et al., 1990; Bogdanov et al., 2003; Darcel et al., 2003). There, fractures are either placed
randomly (Hyman et al., 2015; Maillot et al., 2016; Alghalandis, 2017; Lavoine et al., 2019)
or mechanically constrained (Davy et al., 2013; Bonneau et al., 2016; Maillot et al., 2016) in a
3D medium to generate several 3D realizations of fracture networks reflecting naturally ob-
served properties. The pressure drop through an individual fracture then represents the pri-
mary controlling factor of the reservoir hydraulics and strongly depends on its aperture-field
statistics and surface characteristics (Zimmerman and Bodvarsson, 1996; Foroughi et al., 2018;
Mourzenko et al., 2018). Quantifying the deviations from the parallel plates model (Lomize,
1951; Snow, 1969; Witherspoon et al., 1980) as a function of the fractures geometry allows to pre-
dict the intrinsic permeability of fractures (Patir and Cheng, 1978; Brown, 1987; Renshaw, 1995)
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from numerical simulations of fluid flow. However, the accuracy of that prediction strongly de-
pends on the ratio between the correlation length of the aperture field and the considered scale
(Méheust and Schmittbuhl, 2003). Flow characteristics at scales below the correlation length are
highly variable and anisotropic due to flow-channeling, -clogging, or -enhancement induced
by local aperture variations (Méheust and Schmittbuhl, 2000; Méheust and Schmittbuhl, 2001).
These effects dampen out if fracture scales much larger than the aperture correlation length are
considered. There, it is possible to define an average flow behavior of fractures with similar
geometrical characteristics (e.g., Méheust and Schmittbuhl, 2003; Kottwitz et al., 2020), allow-
ing for easy integration of individual fracture flow characteristics into fracture network flow
models by using a corrected parallel plate model. Various numerical techniques (e.g., Jing,
2003; Berre et al., 2019) can be applied to simulate network scale flow with the single-phase
Darcy equation, either in a discretized version of the DFN itself or in a continuum representa-
tion thereof (Reeves et al., 2008; Hadgu et al., 2017; Sweeney et al., 2020). For the latter, the grid
resolution has to be sufficiently high to capture complex and anisotropic network flow patterns
(e.g., Svensson, 2001; Kottwitz et al., 2021). However, both of them rely on the modified par-
allel plate assumption to prescribe fracture hydraulics. Dreuzy et al. (2012) have shown that
local aperture variations affect network scale flow if the total system size is close to the aper-
ture correlation length. For kilometer-scale networks, Makedonska et al., 2016 have shown that
aperture variations have negligible effects on network flow and transport properties. Thus, an
analysis of the correlation length in naturally occurring fractures is required to determine the
validity of the modified parallel plate assumption in network flow models.
Combining reservoir information assessed in field campaigns (structural mapping and sam-
pling, UAV-based outcrop evaluation) with laboratory experiments (µCT-scans, petro-physical
measurements) and numerical models of fluid flow represents an opportunity to get quantita-
tive insights on reservoir complexity and subsequent permeability predictions. In the scope of
the German federal ministry of education and research (BMBF) funded project PERMEA (grant
no. 03G0865A), a quarry of densely fractured tight carbonate rocks serves as a natural labora-
tory for structural and hydraulic data acquisition. Integrating this information into numerical
simulations of fluid flow to compute and upscale reservoir permeabilities is a key target of
this study. For that, we utilize numerical methods to simulate direct (Stokes) and continuum
(Darcy) flow in fractured-porous media at resolutions that allow integrating real data cover-
ing multiple orders of magnitude in size scaling. Typically, direct flow simulations require 3D
representations of segmented pore-space and rock matrix obtained from imaging techniques
(e.g, Cnudde and Boone, 2013; Andrä et al., 2013a). The resulting voxel models serve as in-
put geometries for laminar Stokes flow simulations and subsequent permeability predictions
(Osorno et al., 2015; Eichheimer et al., 2019; Eichheimer et al., 2020). They become infeasi-
ble for larger scales due to the lack of imaged data and high computational cost. Continuum
flow simulations allow the upscaling of flow properties over a regular grid of control volumes
with individual permeability tensors by solving the Darcy equations for prescribed pressure
boundary conditions. Initial knowledge of the intrinsic permeability structure of the medium
is required and can be obtained from experimental measurements (Dastidar et al., 2007), direct
flow simulations (Andrä et al., 2013b) and analytical models (Patir and Cheng, 1978; Brown,
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1987; Renshaw, 1995; Zimmerman and Bodvarsson, 1996; Kottwitz et al., 2020).
This study will propose a data-oriented multi-scale strategy for fluid flow simulations in frac-
tured porous media for a numerical assessment of damage zone permeability. On the micro-
scale (micrometer to a few centimeters), we utilize µCT-scans of various types of fractures, or
3D fault zone features that are sampled from the test side to (1) analyze the statistics of the
fractures individual surfaces and aperture field, (2) numerically compute their intrinsic per-
meabilities, compare to existing parametrizations and (3) determine the aperture correlation
length to legitimize the usage of parametrization concepts for fracture permeability in fracture
network flow models. On the macro scale (centimeter to a couple of hundreds of meters), we
employ classical field mapping and digital fracture analysis on image-based 3D photogram-
metry outcrop models (Nesbit et al., 2018; Akara et al., 2020) to quantify fracture length- and
orientation-distributions as well as fracture densities for the test site. We generate stochastic
DFN models that extrapolate the deterministically mapped fracture properties on outcrop sur-
faces to 3D with this data. The DFN’s are transferred into equivalent continuum models (ECM,
e.g., Leung et al., 2012) with a recently developed technique accounting for flow-localization
in fracture networks (see Kottwitz et al., 2021) to compute their effective permeabilities. After
successfully validating the multi-scale flow simulation methodology with analog flow-through
experiments through 3D-printed fracture networks, we explore the effects of individual frac-
ture morphology on damage zone permeability in a numerical parameter study.

5.2.1 Test site description

The Upper Jurassic (Malm) aquifer is a frequent target for geothermal energy production in
the southern German Molasse Basin area (Cacace et al., 2013; Homuth et al., 2014; Przybycin et
al., 2017). The fracture-dominant formation is outcropping in an active limestone quarry near
Ittling in the Franconian Alb, which serves as a test site for structural and hydraulic data acqui-
sition for this study. There, a horizontally layered formation of limestones has been subject to
multiple faulting events resulting in a dominant WNW-ESE striking moderately steep (60-80 ◦

dipping to NNE or SSW) conjugate normal fault system and a few NNE-SSW striking conjugate
faults steeply dipping (∼80 ◦) towards WNW or ESE. Correlating layers in fault-juxtaposed
blocks for both fault sets indicate very low to unrecognizable amounts of slip. Intensive frac-
turing (joints, calcite veins, and stylolites) is observed throughout the whole quarry and dis-
tinguished in two sets that follow similar orientations as the fault systems, i. e., a NNE-SSW
and a WNW-ESE striking non-layer-bound joint set, both steeply dipping (80-90 ◦). Stylolites
predominantly follow WNW-ESE striking orientations, similar to the latter joint set. Several
core plugs were sampled from consecutive layers on an outcrop wall to conduct petro-physical
measurements of the rock matrix. Wood’s metal injection (WMI), mercury intrusion porosime-
try (MIP), and BIB-SEM imaging (following the methodology of Klaver et al., 2015) indicate
locally connected moldic pores and vugs (pore diameters between 0.1 and 1 µm, pore throats
from 0.008 to 0.04 µm) with homogeneous porosities of ∼5 %. Gas permeability measurements
conducted in a Hassler-cell (e.g., Filomena et al., 2014) reveal average matrix permeabilities of
1.22 · 10−17 ± 4.98 · 10−18m2 with no notable influence of local stylolites. Performing several
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pumping tests in 9 drilled, 16-22 meter deep wells within a small subregion of the quarry en-
abled to relate hydraulic parameters according to the techniques of Cooper and Jacob (1946)
and Dupuit (1863). Effective permeabilities range between 2.13 · 10−15 and 8.02 · 10−11 m2 with
a mean of 2.58 · 10−13m2, whereas 50 % of the measurements fall into a narrower range be-
tween 2.07 · 10−13 and 3.87 · 10−13 m2. Local transmissivity fluctuations were thought to be
caused by the presence or absence of fractures, identified in well-imaging logs (e.g., Serra and
Serra, 2004; Shalaby and Islam, 2017). By utilizing fracture frequency and permeability mea-
sures for each well, we related an average hydraulic aperture of 0.186± 0.019 mm according to
the formula presented in Klimczak et al. (2010). Generally, the relative increase of rock matrix
to bulk network permeability measurements indicates fracture-dominant flow, which justifies
using the DFN method and related fluid flow modeling techniques to complement and extend
the hydraulic assessment of the reservoir.

5.2.2 Digital fracture mapping from photogrammetry models

Structure-from-motion (SFM) photogrammetry represents a cost-efficient tool to obtain geo-
referenced 3D models of natural objects (Westoby et al., 2012). Numerical analysis of the digital
models can be applied to obtain surface measurements of discontinuities (e.g., Baker et al., 2008;
Poropat, 2009; Renard and Candela, 2017) or bulk fracture data (e.g., Olariu et al., 2008; Nesbit
et al., 2018; Akara et al., 2020). Here, we employ Agisoft Metashape (https://www.agisoft.com/)
to generate a 3D outcrop model from high-resolution camera and unmanned aerial vehicle
(UAV) images of the test site. Next, we apply a digital mapping routine on visible fractures
from the outcrop model to obtain 3D fracture data. For that, we utilize the "PointPicker" tool
within the VTK-toolbox (Schroeder et al., 2006) to digitize points on each visible individual
fracture trace or plane from the 3D outcrop surface. A fitting routine is applied to all digitized
points per fracture to obtain a center point and a mean plane reflecting its orientation. Next,
we compute the fracture length by projecting all digitized points onto their mean plane and
finding the two that are the furthest away from each other. With this information, we gen-
erate a disk that approximates the fractures orientation, location, and length in 3D, which is
a common practice in DFN modeling (e.g., Hyman et al., 2015). Repeating this digital map-
ping procedure for all visible fractures on the outcrop model enables to compute bulk fracture
length- and orientation distributions easily. To obtain estimates of fracture spacing and volu-
metric densities, the most common approach is to conduct classical 1D scan-line surveys (e.g.,
Priest and Hudson, 1981). Here, we perform those surveys digitally by prescribing a scan-lines
start and endpoint on the digital outcrop model and calculating its intersection points with the
digitized fracture discs. From this, we can directly infer the P11 fracture intensity measure of
Dershowitz and Herda (1992) for certain scan-line lengths. If fracture orientations follow Fisher
distributions (Fisher et al., 1987), i. e.:

f (α) =
κeκ cos α sin α

eκ − e−κ
, (5.1)

with α being the angle between a fracture normal and the mean pole of a fracture set and κ

the fisher concentration parameter (κ = 0 indicates a uniform distribution and larger κ values
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denote increasing concentration around the mean orientation), we can directly relate the 3D
intensity measure P32 (e. g., Dershowitz and Herda, 1992) with the conversion factors provided
by Wang (2005). By calculating the auto-correlation function of P11 for different lengths along
the scan-line, we can obtain directional correlation lengths of fracture intensity. By this, we
estimate the amount of spatial correlation while generating the stochastic 3D DFN models of
the damage zone used for effective permeability predictions.

5.2.3 DFN modeling of damage zone and equivalent permeability estimation

Due to a lack of volumetric fracture data, extrapolation of the outcrop-based data is necessary
to assess the permeabilities of the reservoir numerically. Here, DFN modeling is conducted
with the open-source Matlab toolbox ADFNE (Alghalandis, 2017) to generate stochastic real-
izations of 3D fracture networks that reflect the statistical properties obtained from a digital
mapping of the test-site. The integration of macro (orientation- and length-distribution, frac-
ture intensity) and micro-scale (fracture permeability, aperture correlation length) fracture data
into the generation of stochastic DFN’s is described in the following. As shown in the previ-
ous section, the fracture radii and orientations for both identified sets result from digital map-
ping, and prescribing both for generating DFN’s with randomly distributed fracture centers is
straightforward (e. g., Long et al., 1985; Cacas et al., 1990; Berkowitz, 2002; De Dreuzy et al.,
2002; Lei et al., 2017; Smeraglia et al., 2021). However, spatial correlation of fracture positions
is thought to be the direct consequence of mechanical behavior of rocks during brittle deforma-
tion (Pollard and Aydin, 1988; Olson, 1993). Additionally, it affects the connectivity of fracture
networks and their effective properties (Bonneau et al., 2016; Davy et al., 2018). Thus, prescrib-
ing spatial correlation within stochastically generated DFN’s is vital to reflect the networks’
structure in flow simulations. As explained above, directional correlation lengths result from
the auto-correlation analysis of 1D scan-line measurements. Those estimates serve as input for
algorithms that produce spatially correlated random fields, frequently used in geophysical ap-
plications (see Räss et al., 2019). Based on these 3D random fields (here called nucleation fields,
NF), we constrain the location of fracture centers while generating the DFN. Each voxel in the
3D NF possesses a scalar value drawn from the standard normal distribution with a prescribed
standard deviation. After rounding and setting negative values to zero, we loop over all ele-
ments in the NF and generate nv randomly distributed fracture centers within the bounding
coordinates of the current voxel, whereas nv is its scalar value. All fracture centers generated
by this procedure are stored in a point-list of length nt, from which a random subset of length
n f is drawn in the DFN generation procedure to prescribe the spatial position of all fractures.
Note that the ratio of n f to nt shouldn’t be smaller than 1/32 to assure that the enforced spatial
correlation does not vanish by under-sampling. Furthermore, the chosen size, resolution, and
standard deviation of the initial NF should result in a reasonable amount of fracture centers per
voxel compared to estimates obtained from fracture intensity measurements. The total number
of fractures (n f ) for both determined sets to insert into the 3D volume is again inferred from
the 1D virtual scan-line measurements as follows:
The average P11 value (e. g., Dershowitz and Herda, 1992) for a scan-line length that corre-
sponds to the fracture intensity correlation length is calculated. Next, its 3D counterpart is
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related for each set according to
P32 = C13 × P11, (5.2)

whereas C13 is the conversion factor reported by Wang (2005) for a certain angle between scan-
line- and mean fracture-orientation and the fisher dispersion parameter κ. The total number of
fractures per unit volume (P31 in Dershowitz and Herda, 1992) can be related by:

P31 =
P32

Ā
, (5.3)

with Ā being the integral of the fracture area distribution f (A) according to:

Ā =
∫ Amax

Amin

A f (A)dA, (5.4)

with fracture area related to its radius r by A = π ∗ r2. Thus, the total number of fractures to
be inserted n f within a certain volume V can be referred by:

n f = P31 ∗V. (5.5)

As there is no individual information on fracture aperture, but rather an average estimate from
the test site pumping tests (āexp = 0.186± 0.019 mm) and the measured values from the µ-CT-
scans (see table 3.1, 1 ≥ a ≥ 6 ×10−4m), we utilize a sub-linear scaling function to infer mean
apertures ā from length L of the individual fractures as suggested by Olson (2003) or Klimczak
et al. (2010):

ā = βL0.5. (5.6)

The prefactor β is chosen, such that eq. 5.6 produces the pumping-test determined average
aperture āexp assuming a mean fracture length L̄ obtained from the measured size distribution
(either log-normal or power-law), i. e.:

β =
āexp√

L
. (5.7)

After generating a statistically constrained random DFN realization with ADFNE (Alghalan-
dis, 2017) and calculating all fracture intersections with its built-in function "Intersect", it is
transferred into an equivalent continuum model (ECM) according to the method described in
Kottwitz et al. (2021), which is an extension of the works of Oda (1985), Chen et al. (1999) and
Hadgu et al. (2017). There, the DFN is subdivided into a regular grid of voxels and their perme-
ability tensors are prescribed analytically. For each fracture or fracture intersection, we identify
the corresponding grid voxels and add the symmetric permeability tensors K (subscript f for
fractures, i for intersections) to the respective voxels according to:

K f =
Vf

Vc
k f

R f

1 0 0
0 1 0
0 0 0

 R′f

 . (5.8)
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or

Ki =
Vi

Vc
ki

Ri

1 0 0
0 0 0
0 0 0

 R′i

 . (5.9)

with Vf and Vi denoting the volumes of fracture and intersection per cell, respectively, and Vc

the voxel volume. R f and Ri represent rotation matrices, accounting for the alignment of the an-
alytical permeability tensor with the orientation of the fracture or intersection itself, which can
be found with the help of Rodrigues’s rotation formula (Rodrigues, 1840). The parametrized
permeabilities for fractures and intersections are given by k f and ki, respectively. Fracture per-
meability is prescribed with a modified cubic-law according to the model of Kottwitz et al.
(2020), i. e.:

k f = χ
ā2

12
. (5.10)

The mean aperture is given by ā (see eq. 2.9), χ represents the hydraulic efficiency according to
Kottwitz et al. (2020), which itself is a function of the fractures relative closure and effective sur-
face area. Kottwitz et al. (2021) have demonstrated the effect of intersection-flow-localisation
(IFL), resulting in an increase of overall permeability if the intersection is aligned with the
applied pressure gradient. They have also shown, that the hydraulics of idealized fracture
intersections (simple x-crossings) are approximately pipe-like and can thus be approximated
by:

k f =
r2

h
8

, (5.11)

whereas rh denotes the pipe radius computed from the intersecting hydraulic apertures ah1 and
ah2 according to:

rh =

√
a2

h1 + a2
h2

2
. (5.12)

However, the resolution of ECM models for permeability predictions has to be chosen care-
fully. Applying too low resolutions (large voxel-sizes) can introduce artificial connectivity (e.
g., Jackson et al., 2000; Svensson, 2001) biasing flow computations. Applying too high resolu-
tions (small voxel-sizes) instead produces either anti-physical volumetric permeability scaling
ratios (i.e., above unity if the voxel-size is below the hydraulic aperture of a fracture) or inter-
feres with the assumption of prescribing an average fracture flow behavior with a modified
parallel plates assumption (i.e., if the ratio between aperture correlation length and voxel-size
is larger than 1/16). Depending on the fracture network properties, the range of applicable
ECM grid resolutions may be limited and needs to be determined individually (Kottwitz et al.,
2021), as otherwise fracture-scale heterogeneity may affect network scale flow as pointed out
by Dreuzy et al. (2012). They prescribe constant aperture correlation lengths for each fracture
in the system, regardless of its length or aperture. However, looking at the in-situ determined
aperture correlation lengths for this study (see table 3.2) suggest that their values range in the
order of the fractures mean apertures (average lc/ā ratio of ∼1.5). Following the results of
Ogilvie et al. (2006), Watanabe et al. (2008), and Zambrano et al. (2019), the aperture correlation
length mainly depends on shear displacement.
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FIGURE 5.1: Sketch of the workflow to obtain the permeability tensor of a DFN that reflects observed
fracture-length, -orientation and -position distributions of a natural occurring fracture zone. Panel a
shows the fracture size distribution (power-law between 15 and 250 m in this case with an exponent
of −2.8), panel b the orientation distribution of two fracture sets (dip-direction and dip of 026|57 and
093|59 for set 1 and 2, respectively with fisher dispersion values of 7). In panel c, the nucleation field
for fracture centers (see text for details) is displayed, whereas red colors indicate a larger number of
fracture centers (n f c) per voxel. The resulting DFN based on the input data from a-c with 6000 fractures
is shown in panel d. The permeability structure of the constructed ECM of the DFN in d is displayed
in e, whereas the velocity distribution for a pressure gradient aligned in the vertical direction, obtained
from continuum-flow simluations is given in f. Repeating this procedure for pressure gradients aligned

in both principal directions in the horizontal plane yields the permeability tensor shown in g.
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As observed faults for the test site show minor to non-recognizable amounts of shear dis-
placement, we assume that it is valid to couple the prescription of fracture aperture correlation
length to its mean aperture by lc = ā ∗ 1.5.. Thus, the minimal voxel-size δxmin for discretizing
the ECM is given as δxmin = 16 ∗ (āmax ∗ 1.5) to full-fill the condition proposed by Méheust and
Schmittbuhl (2003) or Kottwitz et al. (2020) that ensures the applicability of prescribing an av-
erage fracture flow behaviour. According to Kottwitz et al. (2021), the maximum discretization
voxel-size has to be lower than a third of the minimal fracture length (Lmin) in the system to
ensure correct network flow simulations. Hence, the range of applicable δx for ECM discretiza-
tion ranges between Lmin/3 >= δx >= 24āmax. In figure 5.1, an application of the described
procedure is demonstrated for a hypothetical damage zone.

5.2.4 Multi-scale fluid flow modeling & benchmark validation

Our approach to model fluid flow in fractured-porous media involves direct flow modeling
at the micro scale and continuum flow modeling at the macro scale. Direct flow modeling
of a single phase of fluid in a digital representation of the rocks pore space is based on the
Navier-Stokes equations (e.g., Bear, 1972). For most subsurface flow conditions, it is common
to assume laminar flow conditions, i. e. Reynolds numbers below 1 - 10 (Bear, 1972). Then,
the Stokes equations approximate the motion of an iso-viscous, iso-thermal and incompressible
fluid at steady-state conditions by:

µ∇2v = ∇P, (5.13)

∇ · v = 0, (5.14)

with the fluid’s dynamic viscosity µ, pressure P and velocity vector v = (vx, vy, vz), ∇, ∇·,
and ∇2 denote the gradient, divergence, and Laplace operator for 3D Cartesian coordinates,
respectively. We use the methodology described and benchmarked in (Eichheimer et al., 2019;
Eichheimer et al., 2020) and already applied in Kottwitz et al. (2020) and Kottwitz et al. (2021)
to obtain intrinsic permeabilities of fractured-porous media voxel data sets There, the 3D stag-
gered grid finite difference code LaMEM (Kaus et al., 2016) is employed to solve equations 5.13
and 5.14, utilizing the PETSc framework (Balay et al., 2018) for high-performance-computing
(HPC) optimized parallelization. The volume average of the resulting velocities (e.g., Osorno
et al., 2015) is substituted into Darcy’s law to yield an intrinsic permeability value for the direc-
tion that corresponds to the direction of the applied pressure gradient.
At the macro scale, the Darcy equations (Darcy, 1856) govern fluid motion under the same
simplifications that hold for the Stokes equations and are given for steady-state conditions by:

q = −K∇P, (5.15)

∇ · q = 0, (5.16)
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whereas the specific discharge is given by q and the positive definite, symmetric hydraulic
conductivity tensor by K according to:

K =

kxx kyx kzx

kyx kyy kzy

kzx kzy kzz

 ρg
µ

, (5.17)

with the principal permeability tensor components kxx, kyy and kzz, the off-diagonal compo-
nents kyx, kzx and kzy as well as fluid density ρ, gravitational acceleration g and fluid dynamic
viscosity µ. In contrast to direct flow simulations that require a physical representation of pore
space, continuum flow modeling techniques average the hydraulic properties over certain con-
trol volumes. They usually arrange in continuous grids of cells with unique permeability ten-
sors. Here, we utilize a 3D finite element approximation (e.g, Hughes, 1987; Zienkiewicz and
Taylor, 2000) for equations 5.16 and 5.15 to simulate pressure diffusion through a grid of rect-
angular voxel elements with eight internal integration points each to approximate volume inte-
grals with linear interpolation functions by Gauss-Legendre quadrature rule (e.g., Belytschko et
al., 2000; Zienkiewicz and Taylor, 2000). Again, the PETSc framework (Balay et al., 2018) is used
for HPC scalability and accelerating the solution process with multi-grid solvers. By applying
a pressure gradient at two opposing model boundaries and a linear interpolation between both
pressures at the remaining four boundaries (see figure A1 in Appendix of Kottwitz et al., 2021),
one can obtain the entries of the permeability tensor that correspond to the direction of the
applied pressure gradient. Repeating the simulation two times while changing the direction
of the applied pressure gradient to the two remaining principal directions in a Cartesian co-
ordinate system yields the full permeability tensor of the considered medium. A comparison
of this methodology with 17 different numerical approaches to model fluid flow in fractured
porous media (Berre et al., 2020) has proven its applicability. To further validate the above-
mentioned direct and continuum methods to simulate fluid flow, we will conduct a benchmark
study with a 3D-printed structure of a simple fracture network. Comparing the numerically
simulated permeabilities via both methods (3D binarized voxel model and 3D fully anisotropic
continuum model with intersection-flow localization compensation) to the ones determined
from analog flow-through experiments with synthetic silicon oil (classified fluid with a higher
viscosity and a lower sensitivity to surrounding temperatures than water to provide laminar
flow conditions) yields the possibility to validate the numerical simulation. After successful
validation, the effects of individual fracture morphology (prescribed with varying hydraulic
efficiencies) on damage zone permeability are explored in a numerical parameter study.
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Perić, M. (2020). “Finite-Volume Methods for Navier-Stokes Equations”. In: Fluids Under Pres-
sure. Ed. by T. Bodnár, G. P. Galdi, and Š. Nečasová. Cham: Springer International Publish-
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