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Abstract

Cosmic rays in the form of high energy particles, strike the Earth every second. Since the �rst

discoveries of the cosmic ray �ux in the early nineteenth century, the origin and properties of the

cosmic rays have been the subject of much investigation and debate. Cosmic ray interactions in

the upper atmosphere create particle showers, containing several species of particles. The daughter

particles generated in these showers carry with them information about the interaction dynam-

ics and properties of the parent cosmic rays. One group of daughter particles are the neutrinos,

which are left handed leptons included in the standard model of particle physics. While they were

previously believed to be massless, progress over the past two decades have established their mass

through observation of oscillations, particularly in atmospheric neutrinos. This work presents an

investigation of the atmospheric neutrino �ux measured with the IceCube South Pole Neutrino

Observatory, using data from 5 seasons of IceCube operation. Modeling of the atmospheric neu-

trino �ux is a multi dimensional problem and at the time of publication the uncertainties on both

theoretical predictions and measurements are of such scale that all models and measurements are

in agreement. This work aims to improve the precision in measurement in order to give bet-

ter discriminating power between models. The analysis presented herein performs an unfolding

in three dimensions, energy, zenith angle and particle identi�cation channel. The method is as

model independent as possible and utilizes iterative Bayesian unfolding to measure the unfolded

event rate by detection volume for two particle groups: νccµ + ν̄ccµ constituting the muon neutrino

charged current interactions, and νrest constituting all other �avor and interaction types. A total

of 204847 neutrino candidate events are observed and unfolded. Great care is taken to avoid bias

in the unfolding via a series of closure tests. The unfolded results yield true interaction rates

on the scale of 10−10[m−3s−1]. The unfolded results are generally in good agreement with pre-

vious unfolded data from Super Kamiokande, but do show some tension with current predictions

- particularly in the low energy region below 80GeV and in the upgoing direction. The relative

uncertainty on the unfolded result lies between 3% and 13% for the energy spectrum, with low

uncertainty particularly in the region of interest to neutrino oscillation measurements. For the

cos(θz) spectrum the relative uncertainty lies between 4% and 7.5% in the upgoing region, while

it rises to 18.5% in the downgoing region. Even with these uncertainties, the results presented in

this dissertation constitute the most precise measurement of the atmospheric neutrino �ux at the

time of publication.
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the surface area of the trigger volume for the standard DeepCore con�guration (purple)
and the 2-Layer veto (pink). Figures from [54] . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Polarization of a dielectric medium by charged particles of di�erent velocities. Left:
Velocity is smaller than c

n and the polarization is symmetric. Right: Velocity is greater
than c

n , the polarization becomes asymmetric and radiation is emitted . Figure from [55] 51
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3.4 Geometry of Cherenkov radiation emission from a dielectric medium following pene-
tration of a charged particle of velocity u. Light waves are emitted spherically and a
characteristic cone shape shock front is created by constructive interference. Figure
from [56] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Schematic of an IceCube DOM. The DOM is comprised of several components: the
downward facing PMT, main electronics board for low level data processing, as well as
power supply, and calibration devices. [51] . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Example of a Digitized waveform from an IceCube DOM. The sample signal is sampled
by an ATWD (top) and fADC (bottom) over 427ns and 6.4µs respectively. [51] . . . . 53

3.7 Typical event topologies in IceCube. (a) Through going track event, associated with
muons and νµ. (b) Cascade event associated with neutral current interactions and
charged current interactions from νe and ντ . (c) Double bang signature associated with
high energy ντ charged current interactions. . . . . . . . . . . . . . . . . . . . . . . . . 55

3.8 Examples of non-ideal event topologies taken from MC, where the truth of the incoming
particle and its interaction is known. (a) 193 GeV νµ charged current event, which
in spite of yielding an outgoing charged lepton displays no clear track. (b) 105 GeV
νe charged current interaction displaying what could be interpreted as a long track.
however, at 105 GeV the electron track is expected to be on the scale of 10 cm. (c) 118
GeV νe neutral current interaction, with irregular topology in which it is not straight
forward to de�ne either a track or a cascade. . . . . . . . . . . . . . . . . . . . . . . . . 56

3.9 Light scattering and absorption in the deep Antarctic glacial ice as a function of depth
and wavelength. A region of high scattering and absorption is visible around 2000 m
depth, and only has a slight dependence on wavelength. . . . . . . . . . . . . . . . . . . 57

3.10 Fit to �asher data in IceCube, yielding a measure of the e�ective scattering coe�cient
be(400) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.11 Illustrating the bubble column and the formation of hole ice. [53] . . . . . . . . . . . . 58
4.1 E�ective particle speed probabilities per event for simulated atmospheric muons (black

dashed line) and muon neutrinos (red) inside DeepCore. Figure from [52]. Speeds are
positive if the hit occurred before the CoG time and negative vice-versa. . . . . . . . . 62

4.2 Schematic of the causal regions connected to the Veto ID Causal Hits algorithm. . . . . 66
4.3 'Blind corridors' allow atmospheric muons to reach the inner detector region undetected.

The blue dot marks the �rst hit in this example event, with red dots marking other hit
strings in the event. Arrows indicate the 'blind' directions for the event in question.
Figure from [59]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 FiniteReco reconstruction of the start- and stopping points, from a reconstructed muon
track direction. Figure from [63]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 E�ciency of the combined trigger- and selection e�ciency for the νcc
µ + ν̄cc

µ channel (left)
and the νrest channel (right) respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Atmospheric muons in the �nal sample. Left: Reconstructed space. Right: True space.
Note how the reconstruction smears the otherwise well con�ned muon signal in true
space into a large part of the reconstructed parameter space. Note the color scale is a
factor of ten times higher in the right plot. . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 HitSpool data for DOM 15 on string 27, shown in blue. The various contributions
to the HitSpool signal are shown. Red: Poissonian noise (un-correlated). Black: non-
poissonian noise (correlated). Yellow: Afterpulses. Components are not to scale. Figure
from [60] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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4.8 Noise contribution at �nal level. Notice that noise is not considered to have a smearing
e�ect, but simply contribute to the event rates - hence the distributions will be identical
in Energy and cos(θz) for both reconstructed space and true space. The will however,
in the true space, be sorted into the background bin. . . . . . . . . . . . . . . . . . . . 74

5.1 Forward folding versus unfolding in a schematic form. Forward folding techniques start
from a truth sample in the form of simulated data, smear that via the response matrix
and compare with the measured data. Unfolding reverses the process: Starting from
the data sample, removing the e�ects of the response matrix and end up with a truth
sample, estimating the underlying truth of nature. . . . . . . . . . . . . . . . . . . . . . 76

5.2 Illustration of the unfolding conceptual procedure. Black represents the population and
blue the sample. They are related by the response matrix, which gives rise to the shift
between the population and sample means in ∆resp. The unfolded histogram is an
imperfect reversal of that process and is shown in the green curve. The associated error
(sometimes known as the unfolding bias) is illustrated by ∆unf. . . . . . . . . . . . . . 76

5.3 Example of 'oscillatory' behaviour in a Matrix Inversion unfolding, without su�cient
regularization. [69] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Events at �nal processing level. Left: Reconstructed Space. Right: True Space. . . . . 79
5.5 True and Unfolded spectra for the Asimov unfolding ensemble test. The average of 200

independently unfolded trials make up the unfolded spectrum. Left: 1 iteration. Right:
30 Iterations. The consistency in the central unfolded values are preserved over the
number of iterations, while the edge bins diverge. The statistical uncertainty is seen to
increase over the number of iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Unfolded to truth comparison in the Asimov case. The χ2 is small to begin with as we
expect, and increases as we update the prior and iterate. This is due to the unfolding
already starting at the best possible match. . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.7 Average chi square comparison of 200 individually unfolded pseudo experiments to the
MC truth. The unfolding now starts at a χ2 of around one, which increases with the
number of iterations. This is due to the pseudo experiments already being close to
the prior knowledge of the unfolding machinery. We again essentially start at the best
possible match between unfolding and MC truth. This plot illustrates the di�erence
between the left and right panels of �g. 5.5. . . . . . . . . . . . . . . . . . . . . . . . . 84

5.8 True and Unfolded spectra for the Toy model unfolding ensemble test. The average
of 200 independently unfolded trials make up the unfolded spectrum. Top Left: 1
iteration. Top Right: 12 iterations. Bottom: 30 Iterations. Like in the previous case,
the statistical uncertainty is seen to increase over the number of iterations. . . . . . . . 85

5.9 Average chi square comparison of 200 individually unfolded pseudo experiments to the
MC truth. The pseudo experiments this time had their energy spectrum modi�ed by a
power law with index: δγ = −0.03. We here observe a rapid drop in the test statistic
as the unfolding converges on the MC truth. A plateau is found around ~15 iterations,
after which the statistical �uctuations get too much weight and again pull the unfolding
away from the MC truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1 Unfolded and true distributions for the Asimov unfolding test, �attened from 2D, so
every ten bins constitutes an energy slice in cos(θz) space. Unfolding converges to the
true value in just one iteration and statistical errors are below 10% except for bins with
very low statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10



6.2 Ratio of unfolded to truth, for the unfolded pseudo experiment. The green shaded bands
represent the uncertainty range from the Asimov case, in which the unfolded pseudo
experiment should fall 68% of the time. The unfolding converges in one iteration and
all unfolded data points fall within the expected region. The black error bars represent
the 1 sigma uncertainty range of the underlying true distribution. . . . . . . . . . . . . 90

6.3 Toy MC Response Matrices. Top left: true smearing/response matrix used in the toy
MC. Other panels: realizations of the response matrix for di�erent sample sizes, known
as pseudo MC response matrices. Top right: 20000 samples. Bottom left: 200000
samples. Bottom right: 500000 samples. With increasing number of samples the pseudo
matrices converge on the shape of the true smearing matrix. . . . . . . . . . . . . . . . 92

6.4 Results from the toy MC unfolding when using di�erent response matrices, each gener-
ated from a separate sampling of the true smearing matrix. The green band represents
the expectation uncertainty into which 68% of all samples are expected to fall. As the
number of trials in the response matrix increases, the unfolding converges to the true
smearing matrix case. The qualitative conclusion is that we need on the order of 500000
MC events to reach the precision of the Asimov closure test. . . . . . . . . . . . . . . . 93

7.1 Representative plot of the unfolding procedure including systematic uncertainties as
applied in this analysis. The underlying truth of nature is shown in black. The blue
curve represents the measured signal, which would usually be subject to statistical- and
systematic uncertainties in a standard measurement. The green curve is the unfolded
distribution - the estimate of the underlying truth. The systematics impact on the
unfolded measurement is represented in red. . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2 Fits to the discrete simulation sets for the event rate as a function of DOM e�ciency.
Left: neutrinos. Right: muons. Blue shows the event rate relative to the nominal data
set, while red indicates the �tted function. The black dashed line indicates the nominal
value of one. For neutrinos the event rate relationship with the DOM e�ciency is linear.
For Muons the functional form generally follows an exponential decay, as decreasing the
DOM e�ciency exponentially increases the muon background. However, a few bins
display more of a linear relationship, which is also well described by the exponential �t.
Shown here are the �ts for nine bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3 Neutrino DOM e�ciency systematic impact on the �nal simulated spectrum including
muon background and noise. Shown is the 2D event rate at the nominal ±1σ values.
Upper: reconstructed space. Bottom: true space. The maximum and minimum event
rates change by approximately 10 as compared to the nominal value, which is what
is to be expected when changing the DOM e�ciency by 10%. Note the e�ect is less
pronounced in the high energy downgoing bins, as the majority of the signal in these
bins is made up of atmospheric muons. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.6 Angular acceptance of DOMs due to the e�ect of the hole ice. . . . . . . . . . . . . . . 100
7.4 DOM e�ciency impact implemented only on the muon part of the simulation. Top:

reconstructed space. Bottom: true space. Notice the asymmetry arising from the expo-
nential decay behavior of the muon veto: in the case of an increase in DOM e�ciency we
see hardly any decrease in the muon rate, however, with a decrease in DOM e�ciency
the muon rate rises exponentially. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
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7.5 Combined DOM e�ciency impact on the �nal simulated spectrum including muon back-
ground and noise. Top: reconstructed space. Bottom: true space. Notice the clear
asymmetric e�ect arising from the exponential decay behaviour of the muon veto - the
regions dominated by neutrinos lose events in case of a DOM e�ciency reduction, while
the regions dominated by muons gain events. . . . . . . . . . . . . . . . . . . . . . . . . 102

7.7 E�ect of implementing the hole ice on the �nal level event rates. Upper: reconstructed
space. Lower: true space. The e�ect depends on arrival direction, this is true in
reconstructed space, but the same e�ect is even more clearly evident in true space. . . 103

7.8 E�ect of the bulk ice scattering length systematic implementation on the �nal level
event rates. Upper: reconstructed space. Lower: true space. . . . . . . . . . . . . . . . 105

7.9 E�ect of bulk ice absorption on the �nal level event rates. Upper: reconstructed space.
Lower: true space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.10 Atmospheric muon scale, relative systematic impact at±1σ levels. Upper: reconstructed
space. Lower: true space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.12 Systematics impact on the for the νcc
µ + ν̄cc

µ channel, when setting the DOM e�ciency
parameter to +1σ or −1σ respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.11 Noise normalization, relative systematic impact at ±1σ levels. Upper: reconstructed
space. Lower: true space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.1 Cumulative distributions of the reconstructed track length between interaction types.
νe, ντ , ν

nc
µ and noise can be classi�ed as 'cascade-like' while νcc

µ and atmospheric Muons
can be classi�ed as 'track-like' [60] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.2 Pseudo Measurements obtained by changing the spectral index according to eq. 8.3.
Shown is the �attened spectrum in zenith angle, so that every 12 bins constitute the
energy spectrum for one zenith angle direction. Each pseudo measurement corresponds
to a speci�c change in spectral index. As expected we see a change in event rate, and
only a small change in the shape of the spectrum. . . . . . . . . . . . . . . . . . . . . . 114

8.3 Pseudo measurements used as input for the re-smearing test. Shown is the �attened
spectrum in senith angle, so that every 12 bins constitute the energy spectrum for one
zenith angle direction. The spectra shown are for various shifts in the spectral index,
using a tipping point at 27GeV , and a rate preserving constant as per eq. 8.4. As
expected the shape of the spectrum is changed, while the overall event rate is constant. 115

8.4 Primary Cosmic ray �ux used as input for the HKKM �ux model, as well as recent data
from various experiments. The HKKM-2015 model uses a spline to the BESS data up
to ~100 GeV after which a power law with index γ = −2.68 is used [9]. The HKKM
authors are currently working on a new version of the HKKM atmospheric neutrino �ux
simulation which uses the latest measurements from AMS-02 and is calibrated by muon
measurements. This is as of yet unpublished and we use the HKKM-2015 model in this
work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.5 Illustrating the unfolding principle with a pseudo measurement input. The true MC
distribution is shown in black, with the response-smeared distribution in blue. From
the blue distribution 200 pseudo experiments are drawn, via a Poisson variation around
the bin value. One such is shown in the blue histogram, with the black dots used as
pseudo data input for the unfolding. The resulting unfolded histogram is shown in green. 117
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8.6 Average reduced χ2 as a function of iteration steps, for the two preliminary ensemble
tests. The error bars correspond to the variance among the 200 χ2s. Left panel shows
the nominal case where the unfolding returns the best match to the truth in the �rst
iteration and iterating mostly makes statistical �uctuations grow. Right panel shows
the case where the reconstructed spectrum is shifted by δγ = −0.03, and the unfolding
shows a rapid increase in consistency with the �rst few iterations. A plateau in the
χ2distribution is reached after ~10 iteration steps. . . . . . . . . . . . . . . . . . . . . . 118

8.7 Evolution of the statistical uncertainty in the unfolding. Left: Unfolded event rate as
function of iterations, averaged over 200 pseudo experiments. The distribution is �at
indicating the unfolding converges as expected at the �rst iteration. The error bars are
seen to grow with the number of iterations, clearly illustrating the enhancement e�ect of
the iterative unfolding procedure on the statistical uncertainty. Right: The evolution of
the statistical uncertainty in number of events, with the number of iterations for various
energy bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.8 Evolution of average relative statistical uncertainty with number of iterations for three
di�erent calculation schemes. RooUnfold Hreco(3), shown in blue, is the built-in method
in RooUnfold to estimate statistical uncertainties from an unfolded ensemble. A man-
ual calculation using a 200 trial ensemble is shown in green, and �nally the matrix-
propagation method is shown in red. Good consistency is seen between all three meth-
ods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.9 Test statistic as function of iteration. This plot corresponds to the right panel of �g.
8.6, but with the y-axis in log scale to better illustrate the behaviour of the reduced χ2

as related to the size of the error bars with the number of evolutions. The vertical black
dashed line indicates the stopping condition from eq. 8.8. . . . . . . . . . . . . . . . . . 121

8.10 Hypothetical evolutions of the test statistic with the number of iterations. . . . . . . . 122
8.11 Statistics only closure test results for each cos(θz) bin. The error bars are small and

represent statistical uncertainty only. The oscillations impact can be clearly seen for
the upgoing bins. Good agreement is seen for all bins to within the few percent level. . 123

8.12 Unfolded pseudo experiment shown relative to input MC, marginalized over the cos(θz)
dimension. Upper: νcc

µ , Lower: νe + ντ . The IceCube data points all fall close to one,
meaning the unfolding is consistent. The error bars show statistical uncertainty only,
and are low compared to the Super-K unfolding results, indicating this analysis to be
systematics dominated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.13 Illustrating the principle of the re-smearing test. One of the 200 pseudo-data inputs
is shown in black dots and the unfolded histogram is shown in green. Each unfolded
histogram is then re-smeared via the response matrix, and is shown here in orange.
Each re-smeared histogram is then compared to the smeared distribution from which
the pseudo-measurements are drawn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.14 Toy MC distributions used to generate detector response and natural truth. Blue:
Assumed prior knowledge of natural truth, which goes in the truth side of the response
matrix. Orange: Reconstructed spectrum which goes in the reco side of the response
matrix. Green: Independent distribution used as natural truth to be 'discovered' by the
unfolding. The generated response matrix thus describes the detector smearing from
truth (blue) to smeared (orange). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
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8.15 Response Matrix and Closure tests of the Toy MC implementation. Top Left: Reco
histogram of the response matrix and smeared truth of the response matrix. Top right:
Response matrix truth and unfolded histogram of the smeared truth spectrum. Bottom
left: Response matrix as used in this toy mc test. Bottom right: Pseudo experiment
drawn around the reco spectrum, unfolded with 5 iteration steps. We see good agreement
in all cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.16 The relative impact of the DOM e�ciency in the re-smearing unfolding test. Top:
track channel. Bottom: Cascade channel. Left: DOM e�ciency at −1σ. Right: DOM
e�ciency at +1σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.17 The relative impact of the Hole Ice in the re-smearing unfolding test. Top: track channel.
Bottom: Cascade channel. Left: Hole Ice at −1σ. Right: Hole Ice at +1σ i . . . . . . . 130

8.18 The relative impact of the Bulk Ice Scattering in the re-smearing unfolding test. Top:
track channel. Bottom: Cascade channel. Left: Bulk Ice Scattering at −1σ. Right:
Bulk Ice Scattering at +1σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.19 The relative impact of the Bulk Ice Absorption in the re-smearing unfolding test. Top:
track channel. Bottom: Cascade channel. Left: Bulk Ice Absorption at −1σ. Right:
Bulk Ice Absorption at +1σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.20 Average reduced χ2 as a function of unfolding iterations. Each line represents a di�erent
ensemble of 200 trials drawn from our reconstructed MC modi�ed by a factor on the
spectral index. For all but the δγ = +0.15 case, the re-smeared spectra are within
approximately 1σ of the pseudo experiment already after three to four iterations. . . . 134

8.21 Analysis �ow of the TSU closure test. A pseudo truth is generated by unfolding the
reconstructed MC. This is then re-smeared, an ensemble is drawn and unfolded after
which the �nal unfolded spectrum is compared the the pseudo truth. . . . . . . . . . . 135

8.22 Conceptual Illustration of the distributions involved in the TSU test. A pseudo truth
(green) is generated from the input MC by unfolding the reconstructed spectrum (blue)
using the standard 5 iterations as prescribed by D'Agostini. This is then re-smeared
(orange) and from the re-smeared distribution an ensemble of pseudo experiments are
drawn (black dots). Each pseudo experiment is then unfolded (purple) and the stopping
condition set by comparison between the unfolded and the pseudo truth. . . . . . . . . 136

8.23 Unfolded pseudo experiment in the statistics only case, for 1 iteration (left) and 25
iterations (right). Top row shows energy spectra, bottom row shows the zenith angle
dependency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.24 True and unfolded distributions for the TSU unfolding test. Top row: zenith angle
spectra. Bottom row: Energy spectra. Left: Cascade channel. Right: Track channel.
The unfolded spectrum converges on the TSU truth with the number of iterations in
all insets, but can be di�cult to identify for the energy plots due to the power law
behaviour of the spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.25 Marginalized unfolded distributions for the TSU closure test including systematics. Left
column: Energy. Right column: cos(θz). Top: 1 iteration. Middle: 15 iterations.
Bottom: 25 iterations. The highest energy bin slowly converges on the input MC with
the number of iterations, where as the upgoing and horizon regions are being pulled
away from the MC with the number of iterations. The stopping condition is calculated
using the unmarginalized 2D spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
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8.26 TSU closure test stopping conditions. Left: Standard calculation based on eq. 8.7.
Right: Full test statistic based on minimization of the total uncertainty as given in
eq. 8.9. The contrast between the two is striking, with the full test requiring only one
iteration as the unfolding is consistent within the error bars already at that stage. . . . 141

8.27 Stopping condition, showing the average TS of the ensemble as function of iterations,
with the minimum marked in the dashed red line. TS is calculated as given in eq.
8.11. Left: Standard 10% burn sample. Right: Scaled burn sample. At �rst glance the
standard burn sample seems to have lower TS values than the scaled version. However,
it is important to realize the test statistic minimizes the total uncertainty band on an
absolute scale, leaving the normalizations not directly comparable. . . . . . . . . . . . . 142

8.28 Burn sample unfolding in the statistics only case. . . . . . . . . . . . . . . . . . . . . . 143
8.29 Burn sample unfolding in the full systematics case. . . . . . . . . . . . . . . . . . . . . 144
8.30 Burn sample unfolding in the full systematics case. . . . . . . . . . . . . . . . . . . . . 145
8.31 Left: Average χ2 as a function of iteration. The error bars represent the square root of

the variance in the ensemble. Right: Error bar size as function of iterations. Interest-
ingly the error bars grow up to ~6 iterations, before dropping o�. The slight cross-over
at high iteration number is due to the behaviour of the unfolding matrix, when having
less statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.32 Distribution of TS values for the ensemble, grouped by iteration. As iterations increase
the TS decreases and the distribution slims considerable (albeit with a bit of an upper
tail). Distributions for intermediate iterations values are seen to be wider. . . . . . . . 146

8.33 Unfolded results of the burn sample TSU test - Left: Energy. Right: cos(θz). Notice the
width of the uncertainty band for the energy plot widening in the energy range between
10 and 100 GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.34 Outcome of the burn sample TSU closure test for
(−)

νµ
cc

channel using the standard
binning, reaching up to 300 GeV in reconstructed space and 600 GeV in true space.
Graph shows the average outcome of the ensemble relative to the pseudo-truth used in
the TSU test. As can be seen the highest energy bin su�ers from poor consistency and
high variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.35 Outcome of the TSU test when changing the binning. Left: Lowering the upper edge of
the highest energy bin from 600 GeV to 250 GeV, a large discrepancy over almost the
entire energy range can be observed. Right: Adding two more bins with edges at 200
GeV, 250 GeV and 1Tev shows the unfolding to be stable up to about 200 GeV, but
does not resolve the discrepancy at higher energies. . . . . . . . . . . . . . . . . . . . . 148

8.36 True neutrino energy by reconstructed bin, giving an overview of which true energy
values end up migrating into which reconstructed bins. Events are shown unweighted,
in order to illustrate the spectrum used for building the response matrix. The standard
binning goes up to 600 GeV. The sharp line in the top left panel is due to the IceCube
simulation not extending below 1 GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.37 True energy coverage for the �nal reconstructed bin from 100 GeV to 300 GeV. Because
the standard true energy binning only goes up to 600GeV in true space, many events
are lost and not included in the unfolding matrix. . . . . . . . . . . . . . . . . . . . . . 151
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8.38 TSU unfolding closure test after application of �xes in section 8.14.1 and 8.14.2. Data
points show the average unfolded value of the 200 pseudo experiments. Two bins with
edges at 200 GeV, 1 TeV, and an upper edge of 5 TeV were added. The �nal bin marked
in red is treated as an over�ow bin and not included in the �nal analysis.. The unfolding
is consistent to within a few percent up to 1TeV. The highest energy bin from 1-5 TeV,
marked in red, is treated as an over�ow bin and not included in the analysis. . . . . . . 151

8.39 Burn sample TSU test performed with updated binning. The last bin bias has been
reduced to about 5% and now falls within one standard deviation of the pseudo truth. 152

8.40 Distribution of muon events at �nal level. Left: Energy. Right: Cos(θz). As expected
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1 Introduction and Motivation

Atmospheric neutrinos are elementary particles generated by cosmic ray interactions in the atmosphere.
The main analysis goal of this dissertation is an atmospheric neutrino measurement, using the IceCube
South Pole Neutrino Observatory. This will be performed in as model independent a way as possible.
Any such measurement requires an amount of background knowledge: both of atmospheric neutrinos
and cosmic rays; but also of neutrino oscillations and neutrino interactions. These topics will be
discussed both in the coming sections of this chapter and in chapter 2. The remaining chapters will
cover the IceCube detector in chapter 3, the data sample and simulation used in chapter 4, the Bayesian
iterative unfolding analysis method in chapter 5, statistical and systematic uncertainties in chapters
6 and 7 before presenting the analysis and results in chapter 8. The �nal chapter, 9, discusses the
results, relates them to other measurements in the �eld and gives an outlook on continuation of this
work.

1.1 Consistency Between Measurement and Theory

Models of the neutrino �ux have associated uncertainties on the scale of about 10% [7], while modern
�ux measurements typically come with errors on the scale of about 20% [3]. Within these errors, the
experimental data and the �ux predictions agree. However, the di�erence between various �ux models
is much smaller than the scale of the uncertainties making distinction between models impossible. It is
thus important, in order to bring the �eld forward, to reduce both the uncertainty in the models and
the measurement error of the data. In this work the aim is to contribute the most precise measurement
of the atmospheric neutrinos to date, and release the data in way which is meaningful and useful for
the neutrino community at large.

1.2 Current Knowledge of the Atmospheric Neutrino Flux

The atmospheric neutrino �ux has been measured by various experiments at several di�erent locations
on Earth over the last three decades. Despite this, the knowledge of the �ux is still associated with
large uncertainties up to about 100% relative uncertainty and a low level of resolution in the energy
spectrum. The major contributions to the knowledge of the atmospheric neutrino �ux are shown in
�g. 1.1 [3]. The earliest measurements listed date from the Frejus experiment in the 1990s to the most
recent measurement by Super Kamiokande in 2016 [3]. As can be seen in �g. 1.1, the muon neutrino
spectrum has been investigated by several experiments in both the high energy region above 1TeV,
as well as in the low energy region below ∼ 10 GeV. Both of these regions show several data points.
However, the energy band between 10GeV and 100GeV shows some sparsity in the measurement data,
which is unfortunate as this is also the main region of interest to neutrino oscillation experiments.
Another goal of this work is to provide a measurement with a dense binning in exactly this region of
the energy spectrum.

1.3 Goals of this Work

For clarity the goals of this work will be summarized here. Based on the discussion of the current
status of atmospheric neutrino measurements, the work presented in this thesis has several goals:
Firstly, to improve the measurement precision over previous e�orts, and thus bring the uncertainty
down. Secondly, to provide measurement data in the sparsely populated region of interest to oscilla-
tion experiments between 10GeV and 100GeV. Thirdly, to perform the measurement in an as model
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Figure 1.1: Historic overview of global neutrino �ux measurements, for the νµ and νe channels. Neu-
trino �ux as a function of energy. The �ux is weighted by E2 to better illustrate the shape of the
energy spectrum. Both the high- and low energy regions are highly populated, but the region from
10GeV to 100GeV is sparse in data points. Figure from [3].
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Figure 1.2: HKKM Atmospheric neutrino �ux energy spectrum prediction as simulated in the HKKM
model, weighted by E3 so that spectrum features are visible. Locations are the South Pole (left) and
Kamioka (right). Graph from [7].

independent way as possible, so a data release can be easily used by model builders without prior
knowledge of the IceCube experiment.

1.4 Modeling the Atmospheric Neutrino Flux

In recent decades much e�ort has gone into modeling the atmospheric neutrino �ux. Two major
simulations exist in the �eld: The Matrix Cascade Equation solver (MCEq) by A. Fedynitch [8], and
the Honda-Kajita-Kasahara-Midorikawa model (HKKM) by M. Honda et al. [7] (colloquially known
as the 'Honda' model). These models rely on measurements or assumptions relating to the cosmic
ray (CR) primary �ux, the interaction cross sections of CR on molecules in the air, and the density
of the atmosphere. The primary CR interactions give rise to a cascade of daughter particles in the
atmosphere, sometimes referred to as an air shower. This leads to both a neutrino �ux and to a
muon counterpart. The properties of these air showers such as energy, directionality and whether they
are mostly hadronic or electromagnetic, leave a characteristic imprint on the neutrino �ux. As such,
many factors need to be taken into account when simulating the atmospheric neutrinos: densities,
cross sections, magnetic �eld strength, and �avour ratios are amongst the most important parameters.
The atmospheric neutrino �ux is expected display a seasonal variation induced by the temperature
dependent atmospheric density.

MCEq works by solving the cascade equation discussed in section 2.4, in one dimension, meaning
it is accurate only insofar as daughter particles are emitted predominantly in the forward direction.
HKKM on the other hand is fully three dimensional and tracks simulated CR from generation, through
propagation in the Earth's magnetic �eld, to interaction in the atmosphere. The initial CR �ux is
calibrated by measurements from the AMS02 experiment on board the international space station
[9]. The atmospheric neutrino �ux at the South Pole, as predicted by the HKKM model, is shown in
�gures 1.2 and 1.3. Due to the geometry of the Earth and because the scattering not being as forward
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Figure 1.3: HKKM model predictions for the atmospheric neutrino �ux arrival direction in zenith
angle at 3.2 GeV energy. The locations are, left to right: Kamioka, Indian Neutrino Observatory,
South Pole, and Pyhasalmi. Notice the increase around the horizon, which is caused by a geometric
e�ect. The solid and dashed lines are for the summer months and winter months respectively, which
illustrates the seasonal variation of the �ux. Graph from [7].

directed in the energy regime below ∼ 5GeV as for higher energies, the atmospheric neutrino �ux is
expected to show a peak at zenith angles around the horizon [10]. Using the HKKM model simulation
�les, a direct comparison of the muon neutrino �ux between Kamioka and the South Pole is shown in
�g. 1.4.

1.5 Why Unfold?

In many cases in particle physics, performing an unfolding of the measured data is not necessary -
particularly in the cases where an analysis seeks to compare a model prediction to data via one or
more parameters. One could simply modify the model prediction to include distortions due to detector
e�ects and proceed to compare prediction directly against measurement via statistical tests. This is
the traditional way of performing a forward folding analysis, �tting for physical parameters of interest.
However, such a measurement leaves no room to compare experimental data directly between di�erent
experiments, because the detector responses vary between experiments. Comparison can then only be
done on the outcome of the statistical tests, usually represented as con�dence intervals on physical
model parameters. This method requires a paradigm in which model testers agree on which models
and parameters to test for, in order for the comparisons to be meaningful. Unfolding overcomes this
challenge by answering a fundamentally di�erent question from the forward �tting models. Whereas
traditional forward �tting yields results based on assumptions of a model and the parameters contained
therein, unfolding aims to yield results based on knowledge of the experimental setup. Where forward
�tting provides the most likely values for the parameters of a model, unfolding provides the most likely
data set to yield the actual measurement. Thus, results from the two methods can not be compared
directly, and they should not be thought of as competing: each method has its raison d'etre and
justi�cation. In this work the aim is to provide a 'true' data sample that can be used as input for
other projects, which is the topic of the next section.
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Figure 1.4: Flux prediction from the HKKM model for Kamioka and the South Pole. The solid and
dashed lines show the oscillated and un-oscillated �uxes, respectively. The cross over between the νµ
and νrest curves are caused by inclusion of the ντ component. The deviation at energies below ∼ 30GeV
stems from the latitude e�ect described in chap. 2.3

23



1.6 Unfolded Data as Input to Other Measurements

The atmospheric neutrino �ux is taken as input to many neutrino experiments: Super Kamiokande,
SNO, Minos, ICARUS, Antares, Frejus, KM3NeT, IceCube, and several others. The measurements
performed by all of these experiments are limited in precision by the current best knowledge of the �ux.
As such a solid understanding of the atmospheric neutrino �ux is essential, not simply from a basic
science point of view, but as a stepping stone toward more precise measurements of other parameters in
areas such as neutrino oscillations or mass hierarchy measurements. However, the measured quantity in
the experiments depend not only on the �ux, but also on the interaction cross section of the neutrinos in
the detection medium, that is also associated with considerable uncertainty. Therefore, measurements
of the �ux must make assumptions regarding the cross sections and vice versa, as both are associated
with uncertainties. The interesting quantity for an experiment aiming to measure an oscillation signal
thus becomes a convolution of the �ux and the cross section, which can be described as an event rate.
A model independent measurement of the true neutrino rate, a convolution of the �ux and the cross
section, in IceCube is the main goal of the analysis presented in this thesis. Such a data set would be
of great interest to any neutrino experiment relying on atmospheric neutrinos.
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2 Neutrino and Cosmic Ray Physics

This chapter focuses on a discussion of neutrino physics from a theoretical as well as historical per-
spective. The following sections will give a historical overview of the theoretical background and
experimental progress leading to the modern understanding of neutrino physics.

2.1 The Standard Model

The standard model of particle physics, developed mainly during the nineteen sixties and seventies,
describes the elementary particles in our universe as well as their interactions. The Standard Model is
well described in scienti�c literature [12, 13] and the Particle Data Group, an international collaboration
[14], publishes yearly reviews of the experimental evidence supporting the theory in the �Review of

Particle Physics� [6]. It describes 17 particle types and groups them into fermion and boson categories
as shown in �g. 2.1. The fermions consist of quarks and leptons and are subdivided into three
generations. These make up all known matter in the universe. The bosons are divided into vector
bosons and scalar bosons. The vector bosons are force carriers and correspond to the basic forces of
nature: Electromagnetism, mediated by the photon, the weak nuclear force, mediated by the W and
Z bosons, and the strong nuclear force mediated by the gluons. The force of gravity is not included
in the standard model per se, although a mass generating mechanism is included via a scalar boson,
known as the Higgs boson. The model has been tremendously successful in describing the quantum
world of particles. It predicted the existence of several particles, which were subsequently discovered
in experiments. All of these were signi�cant discoveries in their own right, but one deserves a special
mention: The discovery of the Higgs boson in 2012, solved a large part of the mystery surrounding the
origin of particle mass, and with it all particles predicted by the standard model of particle physics
had been discovered. A schematic overview of the known particles is shown in �g. 2.1. Even with
this tremendous success of the standard model, the description of nature is not complete and there are
several outstanding challenges such as the baryon asymmetry, dark matter and neutrino mass. In the
standard model, neutrinos are modeled as massless fermions of left handed chirality. However over the
past several decades neutrino mass has been �rmly established experimentally via measurements of
neutrino oscillations. While it is possible to extend the standard model in order to include a standard
mass term via a coupling to the Higgs boson, this would then require the existence of a right handed
neutrino type. As these would be right handed they would not participate in the weak interaction,
making direct detection di�cult. Much e�ort in recent years have gone into investigating the possibility
of the existence of right handed neutrinos. Particularly atmospherically generated neutrinos have been
utilized for oscillation measurements, giving another reason for the atmospheric neutrino spectrum
to be the target of measurement in its own right. The atmospheric neutrinos stem from cosmic ray
interactions in the Earth's atmosphere, which is the topic of the next section.

2.2 Cosmic Rays

Cosmic rays have been known since 1912, when Victor Hess did his famous balloon borne experiments
[4, 5]. Unexplained radiation had been detected and it was hypothesized that it originated in the Earth.
To much surprise, Hess' measurements showed the exact opposite: when he moved his detectors higher
in the atmosphere, the event rates increased, indicating the radiation originated in or beyond the
atmosphere. It was dubbed cosmic rays. Many experiments have since investigated the properties of
cosmic rays, and an illustrative �gure of the �ux scaled by E2.5 is shown in �g. 2.2. A more recent
version from the International Cosmic Ray Conference 2019, summarizing many recent results, is found
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Figure 2.1: Schematic of particles contained in the standard model of particle physics. Figure from
[15].

in �g. 2.3 [19]. The basic structure is the same between them: a steeply falling spectrum, showing a
few distinct features. Most notably, the break in the spectrum at about 3×1015eV/particle in �g. 2.2,
known as 'the knee', could indicate a broken power law dependence. With more data the existence of
this break has been con�rmed and as measurements proceeded to higher energies, a second break was
found, dubbed 'the ankle'. These breaks in the spectrum indicate contributions from di�erent sources
of acceleration, and a full understanding of the source composition is an ongoing e�ort in the �eld.
The cosmic ray composition has also been investigated and found to be made up mostly of Hydrogen
nuclei, as illustrated in �g. 2.4. Care must also be taken to account for the charged particles in the
Cosmic Rays bending in the Earth's magnetic �eld, which is covered by the next section.

2.3 Geomagnetic E�ects

Cosmic rays carry positive magnetic charge as they are made up of atomic nuclei, predominantly
Hydrogen. The cosmic ray composition is illustrated in �g. ?? [6]. Having electric charge, the cosmic
ray's trajectory will bend in Earth's magnetic �eld. Consider a particle of charge Z · e propagating
with velocity ~v in the equatorial plane of a magnetic dipole �eld ~B, as illustrated in �g. 2.5. The
equilibrium condition is found when equating the Lorenz force ~L with the centrifugal force ~c:

Ze|~v × ~B| = mv2

r
(2.1)

The consequence of the cross product behaviour is interesting and has physical consequences for the
�ux: As the magnetic �eld strength increases, the curvature radius will decrease, under assumption of
constant velocity. In essence: The closer a charged particle gets to the surface, the stronger repellent
e�ect of the magnetic �eld. The critical momentum at which a particle can reach the Earth, The
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Figure 2.2: Cosmic ray energy spectrum spanning several orders of magnitude in both energy and
�ux. The energy per nucleon of the incoming cosmic ray is shown on the x-axis, with the energy of
several collider experiments also marked for comparison. The upper x-axis shows the equivalent center
of mass energy for the cosmic ray interactions. The di�erence between the two axes stems from CR
interactions corresponding to �xed target experiments. Graph from [16].

Figure 2.3: Recent summary of cosmic ray energy spectrum measurements from a range of experiments.
The presence of the breaks known as the 'Knee' and the 'Ankle' are clearly visible. Furthermore,
indications of a '2nd Knee' can be seen at around 1017eV Figure from [6].
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Figure 2.4: Fluxes of nuclei of the cosmic ray primary particles in number of particles per energy
per nucleus as a function of energy per nucleus. The inset at the top right shows the H/He ratio at
constant rigidity. Figure from [6].
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momentum cut-o� per proton p
Z , can be calculated by using B = µ0M

4πr3 , setting r = R⊕ and using the
magnetic moment M = 8× 1022Am:

p

Z
=
µ0

4π

eM

R2⊕ ≈ 59.6GeV (2.2)

A few comments are in order: Firstly, the e�ect decreases as the angle between ~v and ~B approaches
zero, predicting the CR �ux to be larger at the poles than at the equator. Secondly, the cross product
dictates the direction of the Lorenz force based on the directionality of the Earth's magnetic �eld -
leading particles to always be bent stronger in the eastern direction. This predicts a stronger CR
�ux from the west as compared to the east and gives rise to an east/west asymmetry. Both the
latitude e�ect and the east/west asymmetry have been veri�ed experimentally as shown in �g. 2.6
and 2.7 [17, 18]. A separate contribution to the latitude e�ect is the density of the atmosphere which
is temperature dependent, and thus also depends on the latitude, at which measurements are done.
This e�ect is illustrated in the upper panel of �g. 2.6. The characteristic features of the cosmic ray
spectrum, will be inherited to the neutrinos generated by the cosmic ray interactions in the Earth's
atmosphere. The development of the atmospheric shower is described by the cascade equation which
is the subject of the next section.

2.4 The Cascade Equation

The Earth is constantly bombarded with radiation from the universe. These Cosmic rays incident on
the Earth interact in the atmosphere, generating pions and kaons, leading to neutrinos as they in turn
decay. The primary interaction usually takes place at a typical altitude of 15-20 km [7], depending
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Figure 2.6: Magnetic (solid) and atmospheric (dashed) latitude e�ect on the cosmic ray �ux. Figure
from [17]

Figure 2.7: East/west asymmetry as a function of zenith angle. Latitude at sea level (left) and at
3400m above sea level (right). The curve shows the theoretical prediction based on an E−3 power
spectrum. Figure from [18]
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on factors such as atmospheric density and energy of the incoming cosmic ray. From the interaction
vertex a cascade of daughter particles propagate downward, and the �ux of particles in the atmosphere
can be described by the cascade equation [35]:

dNi(Ei, X)

dX
= −Ni(Ei, X)

λi
− Ni(Ei, X)

di
+

J∑
j=i

∫ ∞
E

Fji(Ei, Ej)

Ei

Nj(Ej , X)

λj
dEj (2.3)

Here Ni(Ei, X) represents the �ux of particles of type i with energy in the range E to E+dE. X marks
the slant depth in the atmosphere, which is the length along the trajectory traversed by the particle
in atmosphere. The constants λi and di represent the average interaction length and the average
decay length respectively. As such the �rst two RHS terms govern the loss of particles due to these
processes. The third term represents production of particles of type i, and the function Fji(Ei, Ej)
is the transfer function describing the dimensionless particle yield following from an inclusive cross
section for a particle of type j to interact with a nucleus in the atmosphere and produce an outgoing
particle type i with energy: Ei < Ej [35]:

Fji(Ei, Ej) ≡ Ei
1

σair
j

dσjair→i

dEi
= Ei

dni(Ei,Ej)

dEi
(2.4)

dni is then the average number of particles of type i produced in bin E+dE for each interaction of
particle type j. Gaiser et al in [35] gives an important example on page 109 where the authors de�ne
the spectrum-weighted moment:

Zab ≡
∫ 1

0

χγL
dnb
dχL

dχL, (2.5)

where χL is the fraction: Elab/Ebeam. The spectrum-weighted moment is used to calculate the pion
spectrum arising from a power law spectrum of nucleons (N) passing through a target of thickness
dX. The nucleon power law spectrum is de�ned as:

N(E) = KE−(γ+1), (2.6)

and the pion spectrum can then be calculated as:

dΠ(Eπ)

dX
=
N(Eπ)

λN
ZNπ (2.7)

A few comments are in order. Firstly: when formulated like this, the spectrum-weighted moment
Zab has the advantage of directly indicating the strength of the particle production given the spectrum
N(Eπ). Secondly: there is no change in the index of the power law, meaning the spectrum of the
daughter particles (in this example, pions) will have the same spectral index as the beam spectrum.
This makes the power law index a useful '�ngerprint' when investigating distributions and interactions
in astrophysics. Using the cascade equation it is possible to estimate the production of kaons and pions
from the incoming cosmic rays.

2.5 Atmospheric Neutrinos from Cosmic Rays

The Kaons and Pions deposit their energy in the atmosphere. Neutrinos are generated as an incoming
cosmic ray with atomic number Acr strikes an atom in the atmosphere with atomic number Aatm. The
main neutrino generating processes can be written as follows [35]:
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Particle Result Mode Branching Ratio

K+ µ+ + νµ leptonic 63.56%± 0.11%
K+ π+ + π0 hadronic 20.67%± 0.08%
K+ π+π+π− hadronic 5.583%± 0.024%
K+ π+π0π0 hadronic 1.760%± 0.023%
K+ π0 + e+ νe semileptonic 5.07%± 0.04%
K+ π0 + µ+ + νµ semileptonic 3.352%± 0.033%
K0
S π+π− hadronic 69.20%± 0.05%

K0
L π∓e±νe(ν̄e) semileptonic 40.55%± 0.11%

K0
L π∓µ±νµ(ν̄µ) semileptonic 27.04%± 0.07%

Table 2.1: Prominent Kaon decay channels and their branching ratios (>% level).

Acr +Aatm →π± + ... (2.8)

↪→ µ± + νµ(ν̄µ) (2.9)

↪→ e± + νe(ν̄e) + ν̄µ(νµ) (2.10)

A similar chain exists for Acr + Aatm → K±. While the branching ratio for π± → µ± + νµ(ν̄µ) is
100%, the kaon decay only results in a direct daughter muon in approximately 63.5% of the cases [35].
However, several other kaon decay modes can contribute to the neutrino content of an atmospheric
cascade. The kaon decay channels and their branching ratios are listed in table 2.1, for channels
with branching ratios above the 1% level. Most of the branches contain pions, which have an average
lifetime of about 2.8× 10−8s, but due to length contraction as seen from the rest frame can propagate
long distances in the atmosphere. Due to this e�ect a large fraction of secondary pion decays at high
energies can be safely ignored. While (K0

S+K0
L) have high branching ratios into �nal states containing

neutrinos, these kaons contribute little to the overall neutrino �ux as they are produced in a similar
number to K+.

In the cases where all daughter particles decay it is thus reasonable to expect the ratio of muon
neutrinos to electron neutrinos to be around two:

(νµ + ν̄µ)

(νe + ν̄e)
∼ 2 (2.11)

and the ratio of neutrinos to anti neutrinos to be similar to the ratio of anti muons and muons:

νe
ν̄e
∼ µ+

µ−
(2.12)

A few comments are appropriate at this point. Due to time dilation the mean decay length of
the muons can become longer than the average production height. This means a signi�cant fraction
of muons would simply pass by detector locations before decaying, lowering the incident number of
electron neutrinos. Any detector should expect the ratios of νe/νµto drop at energies above approx-
imately one GeV. The �rst detections of atmospheric neutrinos from cosmic ray interactions came
from two independent experiments in 1965: the 'Kolar' experiment in India and the 'South African
neutrino experiment', located at 3.2 km depth in a mine in South Africa [36]. The latter reported the
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Figure 2.8: Illustrating the mass stopping power of positive muons as a function of momentum. Figure
from [6].

detection muons produced from neutrino interactions yielding 22 events over a full detector equivalent
live time of ∼ 94 days vs an expectation of less than one event per year from atmospheric muons.
Later two other experiments were able to con�rm the directionality of the muons to indeed be in the
upgoing direction, which would simply be impossible for an ionizing muon, due to energy loss during
propagation, which is the topic of the next section.

2.6 Charged Particle Energy Loss

As described in the previous section, CR interactions in the atmosphere generate a host of daughter
particles. An important component is the muon, which is capable of propagating distances spanning
several kilometers and can induce Cherenkov radiation. Atmospheric muons constitute an important
background for any measurement utilizing atmospheric neutrinos. This background is discussed in
more detail in sec. 4.4, here the muon properties most relevant for IceCube are discussed.

Energy loss during propagation occurs for all charged particles via electronic interactions. These
are single collisions with energy loss and lead to ionization or atomic excitations of the interaction
material [6]. Typically the energy loss is small compared to the energy of the particle - below 100eV
in 90% of cases. For free electrons the interactions are adequately described by Rutherford scattering,
however, in matter the electrons are not free. The energy transfer between the charged particle and the
electron, W, must be �nite and depends on the atomic structure of the material. Bethe obtained the
di�erential cross section by introducing a correction B(W ) to the Rutherford di�erential cross section
dσR(W ;β)

dW [6]:

dσB(W ;β)

dW
=
dσR(W ;β)

dW
B(W ) (2.13)
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This equation, however, is only valid in the energy regime in which atomic interactions are impor-
tant - above such energies, it does not provide a reasonable description of nature, and the standard
Rutherford di�erential cross section can be used. As charged particles scatter in the medium, they
transfer energy to the medium and thus the mean energy loss is given by the Bethe equation [6]:〈

−dE
dx

〉
= Kz2Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Wmax

I2
− β2 − δ(βγ)

2

]
, (2.14)

where Z and A are the proton and mass numbers of the atoms making up the material and β and
γ are de�ned as in special relativity. δ(βγ) is a correction due to the density of the material. The
di�erential energy loss from eq. 2.14 is also known as the stopping power, and is illustrated for anti
muons in copper in �g. 2.8. In the region of momentum between ∼ 1GeV to ∼ 100GeV the muons are
considered to be minimally ionizing as radiative e�ects contribute less than 1% to the overall energy
loss. In this work neutrinos with energies less than 1TeV are considered, so any secondary muons from
neutrino interactions in the Antarctic ice can be safely assumed to be minimally ionizing. A muon
or electron from such an interaction will lose about 220 MeV/m meaning it is reasonable to expect
muonic Cherenkov track lengths to be predominantly in the range below 100m with a tail extending
up to the km scale.
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Figure 2.9: Muon neutrino (left) and antineutrino (right) charged-current cross section measurements
and predictions. The contributing processes are in order of energy regime: quasi elastic (red), resonance
production (blue) and deep inelastic scattering (red). Figure from [38].

Table 2.2: Table of neutrino interactions and the mediating bosons. [6]

2.7 Neutrino Interactions

Neutrinos are known to be light left-handed spin-½ leptons that couple to quarks and leptons via
the weak force mediated by the W±, Z0 bosons. Neutrinos are massive and so will also interact
gravitationally, although gravity lacks a description in the standard model of particle physics. While
neutrino interactions can occur in di�erent scenarios, this section will focus on the scenarios and
energies relevant to neutrino detection in ice: Neutrino interactions on nucleons and neutrino-electron
scatterings. In terms of interactions the couplings are classi�ed as charged-current interactions (cc) in
which a W -boson is exchanged, or neutral current interaction (nc), mediated by the Z0-boson. Being
neutral in electric charge, neutrinos can only be detected via secondary particles stemming from their
interactions in a medium. In broad terms these can be grouped into 5 distinct scenarios: quasi-elastic
scattering (QE), resonant scattering (RES), deep inelastic scattering (DIS), coherent scattering (COH)
and neutrino-electron scattering (NES). These sub-categories, based on the interaction kinematics, are
illustrated in �g. 2.10. QE, RES, and DIS interaction each dominate in a speci�c energy regime, as
illustrated in �g. 2.9 [37]. The following presents a brief overview of these three interactions.
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Figure 2.10: Feynmann diagrams of the most relevant neutrino interactions

Quasi-Elastic Scattering

In this scenario the incident neutrino scatters on an entire nucleon as opposed to one of its constituent
partons. For the charged current interaction, these are the typical inverse beta decay reactions utilized
for neutrino detection in many experiments:

νe + n→ e− + p+, ν̄e + p→ n+ e+ (2.15)

The quasi-elastic di�erential cross section can be expressed as:

dσ

dQ2
=
G2
FM

2|Vud|2

8πE2
ν

[
A± (s− u)

M2
B +

(s− u)2

M4
C

]
(2.16)

Resonant Scattering

The resonant scattering process produces single pions from inelastic scattering of neutrinos on nucleons.
With enough energy the incident neutrino can excite the struck nucleon into an excited state. At
energies between 1-4 GeV this is the dominant mode of neutrino-nucleon interaction as illustrated in
�g. 2.9. This is due to the 1

s−m2 behaviour in the propagator, leading to a sharp increase in cross
section at energies close to the mass of the resonance. The resonance in question is the ∆-baryon
which has a rest mass of m0 = 1232MeV. The ∆ has seven decay modes and all three types of pion
can be created in the �nal state as allowed depending on the �avour, quark content and interaction of
the parent particles.
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Figure 2.11: Feynmann diagram of the deep inelastic scattering process. Image from [37].

Deep Inelastic Scattering

This process proceeds by the neutrino interacting with one of the constituent quarks of a nucleon,
producing a lepton and a hadronic component in the �nal state. This event is typically catastrophic
for the nucleus containing the struck nucleon, and will start a hadronic cascade. The process is valid
for both neutral- and charged current interactions.

Higher energies

At energies above ∼ 10TeV the typical picture of neutrino cross sections change. The propagator term
is no longer dominated by the exchange boson mass, which, combined with suppression from a (1−y2)
term leads to an approximate power-law behavior at these energies [37]. One notable exception exist
at an energy of 6.3PeVat which a resonance condition is predicted to produce a W -boson. This was
�rst proposed by Glashow in 1960 as a way to directly observe the W -boson and is now known as the
Glashow resonance [37].

Observation

To observe neutrino via the interactions discussed in this section a speci�cally designed detector is
needed, which is the subject of chapter 3. First, a few more concepts and developments in neutrino
physics will be discussed.

2.8 The Solar Neutrino Problem

Nuclear processes in the interior of the Sun produce neutrinos as various energies. The energy of
the Sun comes from fusion processes, mainly the 'pp'-chain and and the CNO-cycle. Proton fusion
proceeds via the weak interaction in a beta process, yielding neutrinos. The various fusion branches
are illustrated in �g. 2.12 and since the energy output of the Sun is known, the expected neutrino
�ux was calculated by R. L. Sears in 1964 [20]. Around the same time propositions for detection of
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Figure 2.12: Proton fusion processes in the Sun. Neutrinos generated are marked in red. Figure from
[28]

these solar neutrinos were put forth by R. Davis and John Bachall, who suggested neutrino capture
on Chlorine-37 [21][22], by the reverse electron capture reaction:

νe + 37Cl→ e− +37 Ar, (2.17)

resulting in a build-up of the radioactive gas Argon. A large reservoir containing the common cleaning
�uid Tetrachloroethylene (C2Cl4) was dug into the Homestake mine at a depth of about 1.5 km, to
act as a neutrino target. The Argon would slowly build up in the tank over time, meaning it could be
periodically �ltered and the activity level measured. Further reading on the technical details and results
of thirty years of running the Homestake experiment can be found in [23]. The results of the neutrino
measurements were surprising: Davis and colleagues expected to measure about 7.2 Solar Neutrino
Units (SNU), however, only 2.56±0.16(stat)±0.16(syst) SNU were observed. The measured event rate
was thus only about one third of what the calculations from Sears and Bachall had predicted. Later
experiments such as GALLEX [24], Kamiokande [25] and SAGE[26] also found a de�cit of neutrinos
[29]. Either the standard solar model was incorrect, the experiments were �awed or neutrinos were
somehow disappearing. This discrepancy became known as the Solar Neutrino Problem.

Although based on Kaon mixing [33], Bruno Pontecorvo is generally attributed as the scientist
who came up with a proposed solution to the Solar Neutrino Problem with his suggestion of neutrino
oscillations [31, 32]. He proposed neutrinos can change from one �avour to another during propaga-
tion. The Sudbury Neutrino Experiment (SNO) later found compelling evidence for solar neutrino
oscillations [30]. The detector is located in the Creighton mine in Canada and is currently know as
SNO+. The original design contained a 6m diameter acrylic vessel containing about one kTon heavy
water (D2O), and was sensitive to all neutrino �avours via the following interactions [30]:
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Figure 2.13: Solar Neutrino results from the SNO experiment. The colored bands indicate the �uxes
measured with the neutral current reaction (blue), charged current reaction (red) and elastic scattering
(green) . The black point shows the best-�t point indicating a combined �ux of muon and tau neutrinos
to be about twice that of electron neutrinos. Image from [30].

A)νe +D →p+ + p+ + e− (cc) (2.18)

B)νx +D →νx + p+ + n0 (nc) (2.19)

C)νx + e− →νx + e− (es) (2.20)

Here νe refers to the electron neutrino and νx refers to any active neutrino �avor. Since reaction A
is valid only for electron neutrinos, while reactions B and C are valid for all neutrino �avors, SNO was
able to �t for separate �avour content in their data analysis. Their main result for the �avor �uxes
is shown in �g. 2.13, and clearly shows the combined muon neutrino and tau neutrino �uxes to be
about a factor of two larger than the electron neutrino �ux [30]. This was smoking gun evidence for
the predicted neutrino oscillations, but more evidence was needed before the puzzle of disappearing
neutrinos could be said to be fully solved. This evidence came from measurement of atmospherically
produced neutrinos, most notably from the Super Kamiokande experiment [34].

2.9 Atmospheric Neutrino Problem

As discussed in section 2.5 neutrinos are generated by cosmic ray interactions in the atmosphere. The
ratio of muon neutrinos to electron neutrinos is expected to be around 2 (at ~GeV scale energies and
below). While the early experiments in the 1960s were able to detect atmospheric neutrinos, they
were unable to detect their direction, and were lacking in statistics for more detailed investigations.
Later experiments, originally intended to search for proton decay, were also sensitive to atmospheric
neutrinos and their directionality. In particular the Kamiokande detector and its successor Super-
Kamiokande made headway in this area [41, 34]. Based on detailed calculations from M. Honda et al
[40]. the ratio of muon neutrinos to electron neutrinos was expected to be constant over the entire
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Figure 2.14: Evidence from Kamiokande (top) and Super-Kamiokande (bottom) for atmospheric neu-
trino asymmetry between up and downgoing regions. Plots show number of neutrino events as function
of zenith angle. Black dots with error bars are data. The left-panel shows electron-like events, while
the right panel shows muon-like events. Top: The solid line shows prediction based on the HKKM
model. Bottom: The boxes show expectation from the HKKM model and the dashed line shows a �t
for neutrino oscillations. Figures from [41][34]
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Figure 2.15: Neutrino mass eigen states, their �avour composition and square mass di�erences. Figure
from [43]

sky. However, this was not what Kamiokande observed: as illustrated in �g. 2.14 the experiment saw
a clear asymmetry between the up and downgoing regions [41]. Also shown is a later measurement by
Super-Kamiokande, with improved statistics, showing clear evidence of neutrino oscillations. A brief
discussion of neutrino oscillations will follow in the next two sections.

2.10 Neutrino Oscillations and Mass

As discussed, by the mid 1990's several experiments such as SNO, Kamiokande and Super-K had
observed discrepancies in the neutrino event rates when compared to theoretical predictions. Despite
Bruno Pontecorvos' early suggestions of neutrino oscillations around 1960 [31, 32], the idea did not
gain much traction because mixing angles were a-priori believed to be small, since this is the case
in the quark sector [42]. However, with the compelling evidence from several experiments, the idea
started to gain prominence.

During propagation neutrinos can undergo a �avor change. The neutrino mass eigenstates can be
expressed as super positions of the �avor eigenstates as depicted in �g. [43]. The process is described
by the PMNS-matrix in analogy to mixing in the quark sector :

U =

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 (2.21)

The matrix is comprised of three mixing angles and three phases, and can be parametrized in the
standard picture as follows:

U =

 1 0 0
0 c23 s23

0 −s23 c23

 ·
 c13 0 s13e

iδcp

0 0 0
−s13e

iδcp 0 c13

 ·
 c21 s21 0
−s21 c21 0

0 0 0

 ·
 eiη1 0 0

0 eiη2 0
0 0 0

 (2.22)
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Figure 2.16: Fit for L/E dependence of neutrino oscillation from Super Kamiokande. [34]

with cij = cos(θij) and sij = sin(θij). The mixing angles (θ12, θ23, θ13) control the level of mixing
between the states while the phases (δcp, η1, η2) control cp-violation. The parallel to ordinary rotation
is evident from the shape of the matrices involved. The �avour states can be expressed as a linear
super position of the mass states via the transformation:

|να〉 =
∑
i

U∗αi|νi〉 (2.23)

In the standard picture the PMNS-matrix is thought to be unitary, but it can be expanded to ac-
commodate inclusion of oscillation into other theoretical �avours such as one or more sterile neutrinos.
In this work, focus will be on the standard picture of neutrino oscillations.

2.10.1 Oscillation Probability

The probability for a neutrino to change �avour during propagation is called the oscillation probability
(P), with the non-oscillation case (1-P) called the survival probability. Here, a brief discussion of the
probability calculation will be given. Considering the neutrinos as plane waves the probabilities can
be found from the time evolution of the mass states as given by the Schrödinger equation:

i
d

dt
|νi〉 = Ei|νi〉 (2.24)

where E is the energy of the neutrino. The solution can be written as:

|νi(t)〉 = e−iEit|νi(0)〉 (2.25)

The mass states oscillate at di�erent frequencies, depending on their energy. Plugging in the
�avor/mass state relation of eq. 2.23:

|να(t)〉 =
∑
i

U∗αie
−iEit|νi〉, (2.26)

it is now possible to construct the �nal transition probability as:
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P (να → νβ) =| 〈νβ(t)|να〉 |2= |
∑
i

UβiU
∗
αie
−iEit|2 (2.27)

Of particular interest is the energy term in these equations. From special relativity the energy is
given as:

Ei =
√
p2
i +m2

i (2.28)

The absolute mass of the neutrino is unknown, but both cosmology and the beta decay spec-
trum constrain it to be small. Thus in the ultra relativistic limit where p � m the energy can be
approximated by a Taylor expansion:

Ei h E +
m2
i

2E
(2.29)

where E represents the total energy of the particle. Getting to the oscillation probability requires
some arithmetic: �rst rewriting the exponential term; remembering Euler's formulae; the trigonometric
double angle relations; and that t = L in natural units:

|e−iEit|2 = ei(Ei−Ej)t = ei(E+
m2
i

2E −E+
m2
j

2E ) = ei(∆m
2
ij/2E)t (2.30)

= 1− 2 sin2

(
∆m2

jiL

4E

)
+ i sin

(
∆m2

jiL

2E

)
(2.31)

Expanding the matrix part of eq. 2.27 and plugging in the exponential term, while remembering
that in the ultra relativistic limit vν = c , the oscillation probability takes the form:

P (να → νβ) =δαβ − 4
∑
i<j

<

(∑
i

U∗βiUαiUβjU
∗
αj

)
sin2

(
∆m2

jiL

4E

)
(2.32)

+ 2
∑
i<j

=

(∑
i

U∗βiUαiUβjU
∗
αj

)
sin

(
∆m2

jiL

2E

)
(2.33)

The mixing angles are then introduced when substituting in the mixing matrix from eq. 2.22. In
order to calculate the oscillation probability for anti-neutrinos instead of neutrinos, make the transfor-
mation: U → U∗, which will result in a sign change on the imaginary part of the oscillation probability.
Note how the phase of the sine function depends both on the square mass di�erence of the oscillating
neutrinos, and also on the L

E fraction. This implies experiments to test various hypotheses regard-
ing ∆m2 must be carefully designed with respect to propagation distance and neutrino energy in
order to optimize the statistical signal of the measurement. For the purpose of performing numerical
calculations of the neutrino oscillation probabilities the prob3 neutrino oscillation package is used [44].

2.11 Neutrino Propagation in Matter

The calculations in the previous section hold true for neutrino propagation in vacuum. In matter, the
picture changes somewhat due to coherent forward scattering. While propagating in a medium, the
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Figure 2.17: Schematic of the Earth layer composition and atmospheric neutrino propagation paths
towards IceCube. This illustrates the variation in oscillation baseline as depending on arrival angle.
Figure from [48].

neutrinos interact with said medium via the interactions described in section 2.7. When propagating
through electron dense environments such as the interior of the Sun or the Earth's core, electron
(anti) neutrinos are prone to these e�ects. All neutrino �avors undergo interactions with electrons via
the weak interaction Z0 exchange. However, the charged current interaction with electron via W±

exchange is forbidden for νµ and ντ (and their anti-neutrinos) due to �avor conservation. The e�ect
of these forward scatterings can drastically change the oscillation probabilities for the neutrinos - even
in the case of small mixing angles and when νµ and ντ only undergo neutral current interactions. The
e�ect is known as the Mikheyev-Smirnov-Wolfenstein (MSW) e�ect, and is not generally restricted to
νe [47]. In an environment with a high density of the SU2 counterparts to the νµ and ντ they would
also undergo charged current interactions in a similar fashion. For the electron neutrinos propagating
through the earth, the MSW-e�ect gives rise to them experiencing an extra potential of V = V cc +V nc:

V cc
νe =

√
2GFNe (2.34)

V nc = −GF√
2
Ne (2.35)

where Gf is the Fermi coupling constant and Ne is the electron number density. As anti-neutrinos
have opposite weak Isospin from neutrinos the sign of the potential is inverted in their case: Vν̄e = −Vνe .
Since the potential changes the Hamiltonian, the matter Hamiltonian must be written with the extra
term:
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HM = H0 + Vνe (2.36)

This rise in potential is equivalent to an increase in the e�ective mass of the neutrino. Since
neutrino oscillations are not sensitive to the absolute scale of the mass but only to the square mass
di�erence, the neutral current contribution, which is valid for all neutrino �avors, can be ignored. The
Hamiltonian in the two-�avor approximation can then be shown to take the following form [49]:

HM =

(
∆m2

m

4E

)[
− cos(2θ) +A sin(2θ)

sin(2θ) cos(2θ)−A

]
(2.37)

where the factor A is given as:

A =
2
√

2GFNeE

∆m2
(2.38)

With this it is then straightforward to recalculate the Schrödinger equation from eq. 2.26, in terms of
the e�ective square mass di�erence in matter ∆m2

M and the e�ective mixing angle in matter θM. It
then takes the familiar form:

i
d

dt

(
να
νβ

)
=

∆m2
M

4E

[
− cos(2θM) sin(2θM)
sin(2θM ) cos(2θM)

](
νi
νj

)
(2.39)

Introducing the constant C:

C2 = (cos(2θ)−A)
2

+ sin2(2θ), (2.40)

the e�ective parameters can be shown to take on the following values:

∆m2
M = C∆m2 (2.41)

sin(2θM) =
sin(2θ)

C
(2.42)

A few comments are in order:

1. The extra potential gives rise to a resonance under the condition cos(2θ) = A, meaning oscilla-
tions can be enhanced irrespective of the magnitude of the mixing angle θ.

2. The resonance occurs only for A > 0 (A < 0 for anti neutrinos), and since A depends on ∆m2

this can be used to determine the sign of the square mass di�erence, and solve the neutrino
mass hierarchy. If, as is the case for solar neutrinos, the resonance occurs, then ∆m2 must be
manifestly positive.

3. A scales with electron number density and energy, and at low values of A, the vacuum oscillation
picture is recovered. For the MSW e�ect to be pronounced, high electron density or long baselines
are required. (while A scales with energy, the phase of the oscillation is inversely proportional
to the Energy, e�ectively canceling out the enhancing e�ect.)

For neutrino detectors such as IceCube, the MSW e�ect plays an important role. Atmospheric neu-
trinos from cosmic ray interactions travel from their interaction point, and since they happen all over
the planet the propagation distance will vary from about 20km up to the diameter of the Earth. The
baselines are exempli�ed in �g. 2.17. The impact from oscillations on IceCube measurements are then
the topic of the next section.
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2.12 Oscillation impact on an IceCube Neutrino Measurement

Figure 2.18: Survival probability of reactor- and
atmospheric neutrinos as a function of L/E. Notice
the solar/reactor survival probability drops by less
than 1% over the relevant L/E range.

Neutrino oscillations will impact the measured
spectrum in both energy and arrival angle and
will have a profound e�ect on the location of
the oscillation minimum. This analysis uses the
oscillation parameters as input, thus the uncer-
tainty related to them must be considered. As
described in section 2.10, neutrinos undergo os-
cillations, the magnitude of which depend on the
energy and propagation length. The neutrinos
measured in this analysis fall in the energy range
from 1GeV to 1TeV and propagate baselines of
20km (directly downgoing) to 12700km (directly
upgoing), making their measurement very sensi-
tive to neutrino oscillations. The critical factor
for oscillations is L/E, which in this case falls in
the range: 0.02 km

GeV ≤ L/E ≤ 635 km
GeV . At these

values the oscillation e�ect from the �rst mass
di�erence ∆m2

21 = 7.56 · 10−5eV 2 is expected to
yield only a small impact on the event rates (as
the e�ect does not reach the percent level until
L/E reaches about 103 km

GeV ). However, we can expect an impact from the second mass splitting at
∆m2

31 = 2.55 · 10−3eV 2 with a mixing angle of θ23 = 41◦, because the L/E range corresponds to about
one period of oscillations, as illustrated in �g. 2.18.

The cp-violating phase will impact the oscillations di�erently for neutrinos and anti-neutrinos
yielding slightly di�erent neutrino to anti-neutrino ratios, and the cp asymmetry can be expressed as:

P (να → νβ)− P (ν̄α → ν̄β) = 4
∑
i>j

(
U∗αiUβiUαjU

∗
βj

)
sin

(
∆m2

ijL

E

)
(2.43)

This is thus manifested as an asymmetry in the oscillation pattern between neutrinos and anti-
neutrinos. While ∆m2

ij is expected to stay the same in both cases due to symmetry reasons, the
cp-violating phase will have an impact on the matrix term. Furthermore, the neutrino interaction
cross sections are di�erent between neutrinos and anti-neutrinos leading to an enhancement of these
asymmetries at �nal level. The oscillations are calculated using the Prob3 calculation code [44],
including three �avours, matter e�ects and including a cp-violating phase, and the oscillograms for the
simulation used in this dissertation are shown in �g. 2.19.
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Figure 2.19: Oscillation systematics impact on the simulated spectrum. Notice here that although
the colors for ∆m21 and δcp might look dramatic the scale is down to the per-mill level. It is thus
reasonable to expect negligible impact from these systematics in the analysis.
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Oscillation Parameters

Parameter Value Prior
θ12 34.5◦ ±1.1◦

θ23 41◦ ±0.11◦

θ13 8.41◦ ±0.17◦

∆m21 7.56 · 10−5eV 2 0.19 · 10−5eV 2

∆m31 2.55t · 10−3eV 2 0.04 · 10−3eV 2

δcp 252◦ ±24◦

Table 2.3: Table of neutrino oscillation parameters used in this analysis, taken from global �t in [50].
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3 The IceCube South Pole Neutrino Observatory

IceCube is a neutrino telescope located at the geographic south pole. This chapter is mainly concerned
with a brief technical description of the telescope, its components and technical capabilities. A more
in-depth treatment can be found in [51]. In short, 5160 digital optical modules, called DOMs, have
been deployed in the deep layers of ice at depths between 1450m and 2820m [52]. The DOMs are
connected on kilometer long cables to the IceCube laboratory at the Antarctic surface. The cables are
colloquially known as strings and IceCube is comprised of 86 of these. 60 DOMs are hosted on each
string, which are organized in a hexagonal pattern. The typical string spacing is 125m and the inter-
DOM spacing on the strings is 17m, making the instrumented region 1km high and 1km across. At the
center of the detector is the �DeepCore� sub-array speci�cally designed for detection of neutrinos with
energies in the tens of GeV range. A surface array of Cherenkov detectors, called IceTop, is utilized
to detect cosmic ray induced air showers, and can also be used as a veto for the in-ice detector array.
A sketch of the detector layout and geometry is shown in �g. 3.1.

The Antarctic ice at these depths are under immense pressure, greatly compacting the ice and
forcing out impurities to the point that the ice is the clearest and most transparent non-gaseous
material on the planet. In the deeper regions of the detector, the average absorption distance for
a photon of 400 nm wavelength goes all the way up to 264m with typical values around 180m [74].
A notable exception to this is the presence of a 'dust layer': a region of ice with high absorption
and scattering due to foreign bodies in the ice, likely soot and dust from volcanic activity during the
corresponding geological time period.

Figure 3.1: IceCube detector architecture schematic, with the Ei�el tower for scale reference.

3.1 DeepCore

In the bottom center of IceCube, 8 strings have been organized with a denser and asymmetric string
spacing. This region is known as DeepCore and has been designed for GeV-scale measurements. This
denser instrumentation allows for a lower energy threshold and better angular and energy resolution
for events in this volume. The DeepCore instrumentation itself consists of 60 DOMs per string, like the
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Figure 3.2: Layout of the IceCube/DeepCore string geometry. Green circles represent ordinary IceCube
strings, with red circles marking DeepCore strings. The shaded regions indicate the surface area of the
trigger volume for the standard DeepCore con�guration (purple) and the 2-Layer veto (pink). Figures
from [54]

ordinary IceCube strings, however, the vertical distance between the modules is only 7m as compared
to the 17m of the standard IceCube con�guration. The geometry is shown in �g. 3.2. Moreover, the
DeepCore DOMs are �tted with PMTs, which have a higher quantum e�ciency than the standard
IceCube DOMs. This combines to make the DeepCore region more light sensitive than the rest of
IceCube, e�ectively lowering the energy threshold for neutrino detection to around 10 GeV [52]. The
DOMs included in the DeepCore trigger are all the DOMs on the 8 DeepCore strings, as well as the
central string 36, and the inner layers of ordinary IceCube strings. Data taken from DeepCore is the
main input for the analysis in this work.

3.2 Detection Principle: Cherenkov Radiation

A charged particle propagating faster than the phase velocity in a dielectric medium will emit Cherenkov
radiation along its path. Such charged particles can be created by neutrino interactions in the ice, and
the light they emit can be detected via photo sensors embedded in the ice.

The Cherenkov light is emitted by the medium polarized by the traversing particle - when the
velocity of the traversing particle is su�ciently large, ie faster than the phase velocity of light, the
polarization becomes asymmetric and radiation is emitted, as illustrated in �g. 3.3. The emitted
radiation forms a wavefront of constructive interference, giving rise to a characteristic cone shape
emission as shown in �g. 3.4. This is highly analogous to the waves generated by a boat moving
faster than the phase velocity of water waves, or to the sonic boom created by an aircraft traveling at
super sonic speed. The opening angle of the emission cone is well known and de�ned by the index of
refraction n and the velocity of the particle v as related to the speed of light c:

cos(θ) =
c

vn
(3.1)

For ultra relativistic particles the opening angle depends only on the index of refraction and eq.
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Figure 3.3: Polarization of a dielectric medium by charged particles of di�erent velocities. Left:
Velocity is smaller than c

n and the polarization is symmetric. Right: Velocity is greater than c
n , the

polarization becomes asymmetric and radiation is emitted . Figure from [55]

Figure 3.4: Geometry of Cherenkov radiation emission from a dielectric medium following penetration
of a charged particle of velocity u. Light waves are emitted spherically and a characteristic cone shape
shock front is created by constructive interference. Figure from [56]

3.1 can be used in event reconstruction to estimate �ight times of photons incident on the optical
modules. The main detection principle thus relies on emission of Cherenkov radiation caused by
secondary particles from neutrino interactions, and their collection on the optical modules in the ice.

3.3 Photo Sensors

The photo sensors employed in IceCube are classical 10 inch photomultiplier tubes (PMT), housed in
individual containment units called Digital Optical Modules (DOM) [51]. Each DOM is packed with
a downward facing PMT as well as on board circuitry for immediate data processing, including data
acquisition, calibrations, and communication with the surface. The whole unit is packed in a pressure
resistant vessel, a schematic is shown in �g. 3.5. PMTs are capable of taking in photons and giving o�
an electric signal. A photo cathode is located in the front of a glass vacuum tube, as a photon strikes
the photo cathode one or more electrons are emitted through the photo electric e�ect. Via an electric
�eld the emitted electrons are accelerated towards the back of the PMT, where the signal is multiplied
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Figure 3.5: Schematic of an IceCube DOM. The DOM is comprised of several components: the down-
ward facing PMT, main electronics board for low level data processing, as well as power supply, and
calibration devices. [51]

by about a factor of several million, via a series of cascading dynodes, before hitting the anode in
the back. This process facilitates detection of single photo electrons (PE). The IceCube PMTs are
produced by Hamamatsu and are sensitive to photons in the 300nm - 650nm wavelength range, with
a peak quantum e�ciency (QE) of about 25% (34% for the high QE DOMs positioned in DeepCore)
[51]. The main task of the DOMs is to detect the light emanating from the particle interactions in the
ice and digitize the signal.

3.3.1 Waveforms

The analogue electron signal is �rst registered on the anode where it creates a voltage drop. This is
known as a pulse. The basic data recording is governed by an on board discriminator set to a pulse
level of 0.25 photoelectrons. When the threshold is surpassed, a recording sequence known as a DOM
launch is begun, which constitutes the lowest level signal information in IceCube. The signal is digitized
by on board dual-channel analogue transient waveform digitizers (ATWD), at a sampling rate of 300
Msps over a duration 427 ns. Each channel also has three gain con�gurations of 16, 2, and 0.25 to
adequately cover the dynamic range of the PMT output. The 427ns time window is su�cient to record
photon signals from within a radius of tens of meters from the DOM. Photons from farther away may
display delayed timing properties due to scattering in the ice, and will also be lower in amplitude. To
capture these, the DOMs are �tted with fast analogue digital converters (fADC) continually sampling
the waveform over a time window of 6.4 µs. Some deadtime is expected as the ATWDs have a ramp-up
time of about 29µs. Examples of digitized waveforms are shown in �g. 3.6. Digitized waveforms are
reconstructed utilizing the WaveDeForm module, yielding a best-�t estimate of the waveform prior to
digitization called a reconstructed pulse. Launches on individual DOMs are not su�cient to categorize
an event, thus the physics data acquisition system operates with coincidences, which is the topic of
the next section.
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Figure 3.6: Example of a Digitized waveform from an IceCube DOM. The sample signal is sampled by
an ATWD (top) and fADC (bottom) over 427ns and 6.4µs respectively. [51]

3.3.2 Trigger Conditions

When a DOM launches, the nearby DOMs are noti�ed of that launch via hardware coincidence wiring.
Any coincident launches on the two DOMs above or below on the same string within ±1µs are marked
as hard linear coincidences abbreviated HLC. Launches inside the time window, which fail to satisfy
these conditions are categorized as soft linear coincidence (SLC). The number of HCL-hits and SLC-
hits are used to de�ne software trigger conditions in the physics data acquisition system (pDAQ).
The most commonly used trigger type is the simple majority trigger (SMT), which searches for HLC
hits in space and time to group DOM launches into into collections constituting events. The trigger
conditions are based on three parameters: A time window, a set of DOMs, and the number of hits
required. Several SMT trigger algorithms run in parallel with di�erent parameter settings. The data
used for the analysis presented in this dissertation is based on the DeepCore SMT3 trigger: it uses the
DeepCore DOMs plus the �rst layer of surrounding IceCube strings, requires 3 HLC hits, and has a
time window of 2.5µs. The pulse information of all hits in an event is stored in a data object called a
pulse series, which is used for later processing and data selection. The relatively wide time window of
the trigger can lead to clusters of DOMs being included in an event from quite separate locations in
the detector, necessitating further cuts on the data. This is discussed in section 4.2, which covers the
sample selection.

3.4 E�ective Area

The e�ective area represents the probability for a particle to interact within the �ducial volume of
the detector. The name comes from the geometric considerations regarding cross section, but is
modi�ed due to the fact that incoming particles interact not based on their geometric size, but due
to a fundamental force interaction. Including the factors based on that ansatz, the 'e�ective area' is
a measure of the cross section IceCube e�ectively represents to an incoming particle. The e�ective
area is calculated from the interaction cross section of the fundamental interaction in question, via the
Feynman rules, multiplied by the number of targets (in the non-shadowing case), and is a measure of
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the probability for particles of interest to interact in the ice (in this case, neutrinos).

� Number Density can be calculated from H2O molar mass: Mmol = 18.01528 g
mol , Avogadro's

number NA = 6.22× 1023/mol, the density of the ice: ρ = 0.9167 g
cm3 and the �ducial volume of

IceCube/DeepCore. Under ideal conditions, the ice consists solely of H2O molecules in the ice
phase, and is homogeneous and isotropic. Any deviation from this assumption will be treated as
a systematic uncertainty in section 7.

Mmol = 18.01528g/mol (3.2)

ρ = 0.9167
[ g

cm3

]
(3.3)

n =
ρ

Mmol
NA (3.4)

= 6.22× 1023 1

mol

0.9167 g
cm3

18.01528 g
mol

= 4.7455 · 1022cm−3 (3.5)

� n is then the number of water molecules per cubic centimeter of ice. Each Oxygen nucleus consists
of 16 nucleons, with the two Hydrogen atoms each contributing one proton to the molecule, giving
a total of 18 nucleons: 10 protons and 8 neutrons.

� The total e�ective area is then a sum over all the di�erent neutrino �avours and their
interaction types, multiplied by the number of targets in the IceCube �ducial volume. The
interaction types have been described in further detail in section 2.7.

Aeff = Vfidu

∑
flav

∑
int

σflav
int n

flav,int
target (3.6)(

σνµcc + σν̄µcc
)
N cc
target (3.7)

The e�ective area then correctly has units of area
[
cm2

]
. The number of targets vary by interaction

type, as some combinations are only valid for certain interactions such as scattering on electrons or
anti-neutrinos incident on protons.

3.5 Event Topology

In an idealized picture IceCube/DeepCore event topologies can be sorted into three distinct categories.
They are classi�ed as: track, cascade, composite and double bang, and are signatures of speci�c particle
and interaction types in the detector. As described in section 3.2, charged particles moving faster than
the phase velocity of light in the medium emit Cherenkov radiation. Di�erent combinations of particle
and interaction type will leave di�erent signatures and event topologies in the detector. This facilitates
some degree of particle identi�cation via the various topologies.

Track

Neutrino interactions yielding an outgoing charged lepton, leads to continuous light emission along the
trajectory of the charged lepton. Insofar as the interaction vertex is outside the IceCube/DeepCore
�ducial volume, this gives rise to a pure track event. Track events are associated with muons, either
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(a) Track (b) Cascade (c) Double Bang

Figure 3.7: Typical event topologies in IceCube. (a) Through going track event, associated with
muons and νµ. (b) Cascade event associated with neutral current interactions and charged current
interactions from νe and ντ . (c) Double bang signature associated with high energy ντ charged current
interactions.

from cosmic ray induced air showers or from muon neutrino interactions in the ice. TeV-scale track
events have a pointing resolution on the sky of about 1 degree, however, since the interaction vertex
is outside the �ducial volume, the energy reconstruction of the incoming neutrino becomes more
uncertain.

Cascade

Neutral current interactions do not yield an outgoing charged lepton, so the energy of the interaction
is deposited into a hadronic or electromagnetic cascade. In both cases the emitted secondaries lead to
emission of Cherenkov radiation from a small prolate region in the ice. The region is typically a few
meters to a few tens of meters in size, depending on the energy. Such a structure is far smaller than
the distance between the DOMs and is thus very di�cult if not impossible to resolve. The cascade
emits radiation roughly isotropically, leading to an approximately uniform distribution of hits on the
DOMs, and is classi�ed as a cascade topology event. These events are associated with all neutral
current events, as well as νe and ντ charged current events, due to the very short propagation distance
of the charged lepton in the ice.

Double Bang

The third type is the double bang, characteristic of a tau neutrino charged current interaction: along
with a cascade, a tau lepton is generated at the interaction vertex and propagates outwards. However,
due to the short lifetime of the tau it will decay within the �ducial volume giving rise to another
cascade. This type of event can only be generated by tau neutrinos of PeV-scale energies and is thus
irrelevant for the analysis presented in this work.

Composite

The 'composite' event topology occurs for charged current events taking place within the �ducial
volume. They are also called 'starting events', as the initial interaction takes place within the �ducial
volume. A cascade is formed at the interaction vertex, and the outgoing charged lepton will give rise
to a track signature along its trajectory. This event signature is associated with charged current events
from νµ and νe interactions.
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Beyond Ideal

Looking beyond the idealized cases, event topology and particle identi�cation becomes more compli-
cated: at GeV energies very little Cherenkov light is available compared to the DOM spacing, making
resolution of the event topology a challenge. A low energy muon neutrino charged current event will
send out a Cherenkov muon, however, its energy will be low enough that it will quickly decay leaving
only a very short track, e�ectively mimicking the cascade events. On the other hand, cascade type
events can be oriented in such a fashion that the pixelation due to the DOM spacing can mimic a
composite event, containing both a cascade and a track. With the low amount of light emitted at GeV
energies, the number of DOM hits is limited and the pixelation e�ect becomes highly pronounced: the
idealized event signatures no longer hold and event classi�cation becomes di�cult, as shown in �g.
3.8. E�ectively, most events at DeepCore energies will be composite and the reconstruction algorithm
discussed in the next chapter will always �t for both a track and a cascade component.

(a) νµ-cc (b) νe-cc (c) νµ-nc

Figure 3.8: Examples of non-ideal event topologies taken from MC, where the truth of the incoming
particle and its interaction is known. (a) 193 GeV νµ charged current event, which in spite of yielding an
outgoing charged lepton displays no clear track. (b) 105 GeV νe charged current interaction displaying
what could be interpreted as a long track. however, at 105 GeV the electron track is expected to be
on the scale of 10 cm. (c) 118 GeV νe neutral current interaction, with irregular topology in which it
is not straight forward to de�ne either a track or a cascade.

3.6 Ice Properties

The IceCube neutrino observatory is built both into and on top of the Antarctic ice sheet. This 2.8
km thick glacier provides both the support structure and the interaction medium for the IceCube
observatory. The ice is formed over millions of years from gradual accumulation of precipitation over
the seasons. Atmospheric properties over geological time scales are imprinted in the ice through air
bubbles and mineral deposits from the atmosphere. An important distinction must be made between
the bulk of the deep glacial ice and the newly re-frozen ice in the bore holes. In the following a
description of both classi�cations will be given.

3.6.1 Bulk Ice

The main bulk of the ice is aptly named 'bulk ice' and is made up of the old ice deep in the Antarctic
glacier. Three physical parameters are of interest: the optical index of refraction the ice, the light
scattering, and light absorption in the ice. Firstly, the index of refraction is related to the emission di-
rection of Cherenkov radiation, and while it is wavelength dependent, it is about 1.38 at the Cherenkov
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Figure 3.9: Light scattering and absorption in the deep Antarctic glacial ice as a function of depth
and wavelength. A region of high scattering and absorption is visible around 2000 m depth, and only
has a slight dependence on wavelength.

emission peak of about 325nm [73]. Good knowledge of the emitted wavelength and angle of Cherenkov
light facilitates good reconstruction of events. Secondly, light scattering in the ice is governed by pho-
ton scattering on electrons, predominantly involving negligible energy transfer through Raylaigh and
Mie scattering. Scattering generally has the e�ect of di�using a concentrated light signal. In the case
of IceCube this will change the shape of emitted light and, combined with the geometry of the detector,
will migrate event topologies toward a more cascade-like signature. Thirdly, light absorption is de-
scribed as the characteristic average length a photon will travel in the medium before being absorbed.
Longer distances are preferred for the experimental design, as shorter distances quench light emission
from events. Deep in the ice the immense pressure is thought to force bubbles out of the ice, creating
a very clear and optically transparent solid. This was �rst investigated in the AMANDA experiment
using both pulsed and continuous light sources embedded in the deep ice [73]. The results are shown
in �g. 3.9, and indicate that below depths of about 2.2 km the absorption drops to the 100m scale,
with the scattering length being about 20m. A 'dust layer' of high scattering and absorption exists
at depths of about 2 km, very likely due to geological periods of high volcanic activity yielding high
concentrations of soot in the Earth's atmosphere. These measurements have since been veri�ed by
IceCube, and the result from a study done using led �ashers on the DOMs, shown in �g. 3.10 gives
a similar and consistent picture of the ice properties [74]. be(400) is a depth dependent parameter
directly related to the scattering of light in the ice. be(400) and a corresponding parameter adust(400)
are well described in [74].

Novel imaging set ups are in production for the IceCube upgrade, in an e�ort to improve under-
standing of the deep Antarctic ice.

3.6.2 Hole Ice

The ice in the drill holes displays di�erent physical properties as compared to the main bulk of Antarctic
ice. The bore holes housing the IceCube strings are drilled using a high-pressure hot water drill, melting
away the ice, and forming a column of liquid water into which the strings are deployed. Over the course
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Figure 3.10: Fit to �asher data in IceCube, yielding a measure of the e�ective scattering coe�cient
be(400)

Figure 3.11: Illustrating the bubble column and the formation of hole ice. [53]
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of about 10 days the ice then re-freezes encasing the cables and the DOMs in the ice. The ice freezes
from the outside towards the center of the column and a curious e�ect manifests: impurities and air
bubbles are pressed out of the freezing ice and into the slightly warmer water towards the center of
the column, eventually forming what is known as a 'bubble column', which is a cylindrical volume of
increased scattering and absorption of light roughly 10 cm in radius. Depending on the exact radial
positioning of the DOM in the bore hole, this obscures part of the main photo cathode area lowering
the e�ective light sensitivity of the DOM. The e�ect has been studied in several ways: through cameras
deployed in the ice [53], in lab experiments, as illustrated in �g. 3.11 and calibrated by using led �ashers
on the mainboards of the DOMs [51]. The obscuring e�ect of the bubble column contributes towards
the overall systematic uncertainty of the experiment, and its modeling as a systematic parameter will
be discussed in section 7.
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4 Data Sample and MC Simulation

IceCube collects data continuously save for short periods of downtime. Much of the collected data is
unsuitable for the neutrino search reported in this dissertation. As such, the raw data needs to be
processed: background events must be rejected, containment cuts enforced, and events reconstructed,
before a data sample can be used for analysis. The process is performed sequentially with each
individual step known as an analysis level. Each analysis level typically performs a speci�c form of
data �ltering, utilizing several di�erent variables described below. The entire process from start to
�nish is simulated in order to optimize the process. This chapter will discuss the data sample and the
corresponding simulation used in this work.

4.1 IceCube Low Energy Simulation

A portfolio of standardized neutrino simulation sets exists for IceCube/DeepCore. They have been
produced using many di�erent parameters, as a combined e�ort by many people in the IceCube low-
energy working group, with Andrii Terliuk taking the lead on simulation production. Generation
of the main neutrino signal was done using GENIE 2.8.6 [57] and drawn from an energy dependent
power law with a spectral index of γ = −2.0. For computational reasons all generated neutrinos are
forced to interact. The events are then re-weighted to the expected �avour and neutrino-anti-neutrino
ratios. These are based in particular on the expectations from the atmospheric interactions and the
cross sections in GENIE. The IceCube/DeepCore detector and decay particles are simulated using
GEANT4. Any photons are propagated through the ice using CLsim. Some photons eventually reach
the PMTs, potentially trigging the IceCube data acquisition (DAQ) algorithms.

4.2 Data Sample Selection: GRECO

This analysis makes use of the GRECO sample selection, developed by M. Larson for use in several
analyses. The sample selection is described in detail in ref. [60], and a short overview will be given
here. The event selection consist of seven levels of cuts which proceed from the Level 0 hit cleaning,
through various cuts, to the event reconstruction and �nal selection at Level 7.

4.2.1 Hit Cleaning

In a typical DeepCore neutrino event at about 10 GeV, only about 10-20% of DOM hits are caused
by photons stemming from the neutrino interaction. Other hits are caused by noise hits happening
within the event time window, and contain no information about the physics of the particle interaction.
The purpose of the hit cleaning step is thus to rid the pulse series of the noise hits and only leave the
relevant hits. Several algorithms for hit cleaning exist, and each will generate a new pulse series which
is added to the event �le. Here, the two hit cleaning algorithms used in GRECO are brie�y discussed:

HLC Cleaning

The strictest hit cleaning algorithm in the IceCube software framework. It accepts only DOM launches
which satisfy the hard linear coincidence (HLC) conditions as described in section 3.3.2. Thus, the
resulting pulse series is cleared of almost all detector noise, but also leaves out a substantial amount of
information about the event, as all soft linear coincidence (SLC) hits are excluded. HLC pulse series
can be used as input seeds for the SeededRT hit cleaning algorithm:
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SeededRT Cleaning

As the name implies, this algorithm starts from a seed in the form of a pulse series, usually the series
of HLC hits produced by the HLC cleaning algorithm. SeededRT attempts to identify interesting SLC
hits based on their proximity to the HLC hits and also include them in the pulse series. For each DOM
in the HLC series a sphere of radius r is de�ned and any SLC hit within it and within a time window
∆t will also be included in the pulse series. Since this depends on the detector geometry due to the
density of the DOM spacing, the parameters are di�erent for IceCube and DeepCore. IceCube uses
r = 150m and ∆t = 1000ns while DeepCore uses r = 75m and ∆t = 500ns. SeededRT Cleaning allows
for high purity pulse series while still locating most hits associated with muon or neutrino events.

Time Window Cleaning

This cleaning algorithm comes in two variants. The �rst one, static time window (STW) cleaning
looks for hits around the trigger time. It permits almost all the noise hits to remain in the pulse
series. In DeepCore any hits 4µs before the SMT3 trigger or 6µs after the trigger are removed. The
second version is a dynamic time window (DTW), which �nds the time with the highest density of
hits and places a window around this time. The DTW is tighter and is typically set to a few hundred
nanoseconds, as compared to the 10 µs of the STW. Time window cleaning is typically combined with
other cleaning mechanisms. In the case of the DTW, this can result in a high fraction of hits stemming
directly from unscattered photons.

4.2.2 L1:DeepCore Filter

The �rst data �ltering algorithm is the DeepCore online �lter, which runs continuously at the IceCube
Lab at the South Pole. The aim of the �lter is to select events within the DeepCore �ducial volume,
shown in �g. 3.2 and reject atmospheric muons. The �ducial volume includes a set of DOMs consisting
of:

1. The bottom 22 DOMs on strings: 25 - 27, 34 - 37, 44 - 47 and 54

2. The bottom 50 DOMs on strings 79 - 86

The remainder of the DOMs are part of the veto region. The DeepCore �lter starts by selecting events
containing an SMT3 trigger as described in section 3.3.2. With the pulse series loaded in memory, a
Center of Gravity is calculated as the average of the position vector ~ri to the i′th DOM [52, 60]:

~rCoG =

NHits∑
i

~ri
NHits

(4.1)

The time of the center of gravity can then be calculated:

tCoG =

NHits∑
i

t0i −
||~ri− ~rCoG||

cice

NHits
(4.2)

with t0i being the time of the �rst hit in the pulse series. The next logic of the algorithm is based
on the e�ective velocity of the signal from the interacting particle: muons will traverse the detector at
close to the speed of light v ≈ 0.3m/ns, while signals from neutrinos will be much slower. The e�ective
velocity v corresponding to hit i, is then found:
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Figure 4.1: E�ective particle speed probabilities per event for simulated atmospheric muons (black
dashed line) and muon neutrinos (red) inside DeepCore. Figure from [52]. Speeds are positive if the
hit occurred before the CoG time and negative vice-versa.

v =
||~rCoG − ~ri||
tCoG − ti

(4.3)

Atmospheric muons will generally have positive e�ective velocities because the events begin in the
outer regions of IceCube and move inwards, whereas neutrino events will generally have negative
e�ective velocities because the hits start from the central region in DeepCore and move outwards. The
distributions are shown in �g. 4.1, and display a clear peak at around v ≈ 0.35m/ns. Any events
containing hits corresponding to e�ective velocities in the range v ∈ [0.25; 0.4]m/ns are rejected and
not included in further processing [52]. E�ective velocities above 0.3m/ns are in principle acausal,
however, the start time of the event is tied to the center of gravity calculation leading early hits to
have overestimated e�ective velocities. This rejection method retains 99.4% of neutrino events while
bringing the atmospheric muon rate down to approximately 17Hz from 280Hz [60].

4.2.3 L2: Processing

The next step in the analysis chain is the standard processing in which low-level variables are calculated.
These variables can later be used to de�ne cuts, be added to boosted decision trees, and contribute to
further �ltering of the event selection. These calculations are part of the standard IceCube software
environment and in general they are related to the location, charge and shape of the event. The
variables are too numerous to fully list here, instead any variable utilized in later cuts will be described
when needed.
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4.2.4 L3: DeepCore Atmospheric Muon Rejection

This processing level is part of the standard DeepCore processing, and is mainly concerned with event
containment and hits in the veto region. Cuts are implemented using the following variables:

NAbove200

This variable counts the number of uncleaned photo electrons above a height of z = −200m and within
a time window of 2µs before an SMT3 trigger. For contained neutrino events this is expected to be
close to 0 (with possible addition of a small noise contribution). Any event with more than twelve
DOMs satisfying this condition is removed.

FirstHitZ

The height coordinate of the �rst hit in the pulse series can be an indication of whether an event is
from an atmospheric muon or a neutrino. Muon events tend to arrive in the downgoing direction and
are thus expected to leave hits in the upper part of the detector �rst. As such, any event with a �rst
HLC hit above z = −120m will be vetoed and removed from the sample [60].

RTVeto

The SeededRT algorithm used for hit cleaning can also be used for �nding clusters of hits in the veto
region in order to identify hits caused by atmospheric muons. In this case the SeededRT is run with a
sphere diameter of r = 250m and a time window of 1000ns. Any event with a cluster of four or more
hits in the veto region is removed [60].

C2QR6

Atmospheric muons generally leave event signatures of long tracks in the detector lasting on the order
of 3µs as the muons traverse the detector at close to the speed of light. This yields a relatively constant
deposition of charge on the DOMs, which can be used to discriminate the atmospheric muon events
from neutrino events that usually deposit their energy over smaller time scales. The charge fraction

of the total event charge, deposited in the �rst 600ns is calculated [60]:

QR6 =

∑
i,ti

qi,ti

Qtot

∣∣∣∣
0<ti−tfirst<600ns

(4.4)

The time is evaluated as related to the �rst hit in the pulse series, tfirst. Atmospheric muon events
will display QR6 values close to zero because they last several times longer than 600ns, while neutrino
events will have values close to one. As early noise hits can interfere with this calculation, the �rst
two hits in the pulse series can be ignored to form the cleaned charge ratio C2QR6. Any event with
C2QR6 < 0.45 is removed from the sample.

4.2.5 L4: Straight cuts + BDT

In similarity with L3, L4 begins with a series of straight cuts, and then trains a boosted decision tree

(BDT) yielding a BDT score upon which a cut can be placed. The following cuts are put in place:
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Time Window Cleaning

A static time window cleaning is positioned around the SMT3 trigger with a range −3500ns < t <
4000ns, any hits outside this time window are removed. A dynamic time window around the time of
maximum pulse density is set with a width of 200ns. Any event with fewer than three hits within this
time window is removed [60].

Boosted Decision Tree

A BDT is trained using several variables, some of which were also utilized at L3. FirstHitZ, NAbove200
and QR6/2CQR6 are all included in the L4 BDT. In addition the following variables are used as input:

LineFit Speed

LineFit is a preliminary reconstruction utilized in IceCube. The algorithm �ts a plane wave propagating
through the ice at velocity ~vLF, to the pulse series. The velocity of said wave can be found analytically
[60]:

~vLF =
〈ti · ~ri〉 − 〈~ri〉 〈ti〉
〈t2i 〉 − 〈ti〉

2 (4.5)

Here 〈ti〉 and 〈~ri〉 denotes the average hit time and average hit position respectively. Similarly to
other variables, this can discriminate between atmospheric muons and neutrinos, as the more cascade-
like neutrino events will tend to have speeds close to zero versus muons that have typical speeds close
to v = 0.3m/ns.

Tensor of Inertia

The shape of the event can be quanti�ed via a tensor of inertia calculation akin to the three dimensional
tensor of inertia used in classical mechanics, instead of the mass m using the charge q [62]:

Txx =
∑
i

qi(y
2
i + z2

i ) (4.6)

Tyy =
∑
i

qi(x
2
i + z2

i ) (4.7)

Tzz =
∑
i

qi(y
2
i + x2

i ) (4.8)

The relevant variable for distinction of muon and neutrino events is then the eigenvalue ratio:

e =
min(Tj)

Txx + Tyy + Tzz
, (4.9)

where min (Tj) represents the smallest moment of inertia along one of the three axes of rotation.
Because events caused by atmospheric muons will have most of their moment of inertia centered around
one axis of rotation, their eigenvalue ratios are expected to be close to zero. Neutrino events on the
other hand are expected to be more symmetric and have an eigenvalue ratio of about 1/3.
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BDT Training

A Boosted Decision Tree or BDT is a learning algorithm to classify events based on multiple variables.
The BDT is trained using MC simulation for which the true values are known, and returns an overall
assessment of the 'signalness' of an event based on the input variables in the form of a score ranging
from -1 (background like) to +1 (signal like). While straight cuts can work well in some cases, generally
speaking not all background events will be very background-like in all variables, while not all signal
events will be very signal-like in all variables. Therefore, a BDT can give an event a high signal-like
score even if some variables are indicative of background, but other variables are indicative of signal.
This score is calculated for each event and then used to enforce a standard straight cut. For the
GRECO selection all of the above variables are included in the BDT and events with BDT scores
below 0.04 are excluded [60].

4.2.6 L5: BDT Background Removal

Another BDT is trained at this level, using a set of variables consisting of: T75Q, VICH, Radial
Distance, Quartiles_CoG, Z-travel, and SPE-zenith. A full description can be found in [60], but the
variables are brie�y discussed in the following.

Quartiles Center of Gravity Distance

The pulse series is divided into its four quartiles in time. The center of gravity is then calculated
for both the �rst and the last quartile. The distance between them is then the variable used. It is a
meaningful variable as low energy neutrino events will have short distances between their �rst and last
centers of gravity, while atmospheric muons typically traverse longer distances in the detector and will
show longer distances between the �rst and last CoG.

Radial Distance

Like the position of the �rst hit in the z-direction was used to veto downgoing atmospheric muon
events, so can the distance from the center of IceCube at string 36 be used to veto signals starting in
the outer layers. This is measured by the radial distance variable ρ of the �rst hit in the pulse series:

ρ36 =

√
(x− x36)

2
+ (y − y36)

2 (4.10)

The radial distance is utilized in the training of the level 5 BDT.

SPE Zenith

The goal of this Single Photo electron reconstruction is to identify downgoing muons by reconstructing
the direction of the event. The algorithm assumes each DOM is hit by just one photon, and performs
a likelihood �t. These are usually time consuming, however, at this point in the selection chain the
event rate is low enough that running such a �t is plausible without severely impacting computation
time [60]. The time for a Cherenkov photon to arrive at an IceCube DOM from a single emission point
can be calculated as:

tpoint = temit +
n

c
|~r| (4.11)
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Figure 4.2: Schematic of the causal regions connected to the Veto ID Causal Hits algorithm.

with ~r being the vector from the point of emission to the DOM, n the spectral index of the ice, c the
speed of light in vacuum and temit the photon emission time. Likewise, the corresponding calculation
can be done for Cherenkov photons from a muon track [65]:

ttrack = temit +
~r · n̂+ ρ tan(θC)

c
(4.12)

where n̂ is the unit vector pointing along the track direction, ρ is the impact parameter of the track
as incident on the DOM: ρ = |~r − (~r · n̂)n̂|. Lastly θC is the opening angle of the Cherenkov cone, also
known as the Cherenkov angle. These formulas are idealized and ignore any contribution to the obser-
vation time due to scattering of photons in the propagation medium. Any such scattering will lengthen
the travel path distance of the photons, delay their arrival time as compared to the expectation, and
give rise to a time residual distribution. Unfortunately no analytical form has been found, but previous
work in AMANDA [62] , found an approximation in the Pandel function: P (∆ti|~rvertex, tvertex, n̂), with
∆ti = ti − tpoint [66], which estimated the scattering as a function of distance between the DOM and
the emission point. A likelihood can then be constructed:

L(~rvertex, tvertex, n̂) =

pulses∏
i

dPPandel(∆ti|~rvertex, tvertex, n̂)

dt
(4.13)

This likelihood can then be maximized to obtain a best-�t value for the spacetime position and
direction of the track. This reconstruction relies on the assumption of an in�nitely long muon track
without starting and stopping points. This is a reasonable assumption for a muon passing through
IceCube. The resulting reconstructed zenith angle is used in the L5 BDT, as atmospheric muons are
predominantly downgoing.

T75Q

The T75Q variable represents the time to reach 75% of the total charge in an event. At �rst glance
this is related to the C2QR6 variable. However, where the former searches for a charge within a time
window, the T75Q does the opposite and searches for a time as a function of charge. The physical
mechanism between the discriminative power is also similar: atmospheric muons travel longer and
will take longer to deposit 75% of the charge in the event as compared to low-energy (E < 100GeV)
neutrinos which will deposit their energy quickly
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VICH

The Veto ID Causal Hits algorithm �nds hits in causal contact with the �rst DOM hit that led to
the SMT3 trigger [63]. It works on an uncleaned hit series and removes hits based on sorting into
the di�erent causal regions shown in �g. 4.2. These include hits outside causal contact with the �rst
trigger hit, either due to occurring before the trigger or to lying outside the causal light cone. Also
excluded are noise hits, and hits too far from DeepCore to meaningfully contribute to the event even
though they are in principle in causal contact. The algorithm then returns the total charge collected
from all the remaining hits, which are marked in red in �g. 4.2.

Z Travel

Atmospheric muons do not carry enough energy to penetrate far through the Earth. Typical distances
are on the scale of a few kilometers, which is why all atmospheric muon events are expected to be in the
downgoing direction. In order to estimate the direction of travel without doing a full reconstruction
of the event the Z Travel calculation is implemented. Like the quartiles distance variable, the hits
included in the �rst time quartile are used to calculate the center of gravity for that set of hits. This
CoG is then used as a starting point, and the Z Travel variable is calculated as the charge weighted
average distance of hits in the z direction only.

∆z =

∑
i qi(zi − zCoG)∑

i qi
(4.14)

Seeing as the neutrino signal is expected to be approximately isotropic save for oscillation/matter/horizon
e�ects, the associated ∆z values are expected to fall in both the positive and negative regime, while
being relatively small compared to the detector size due to their typically low energy. On the other
hand, atmospheric muons are expected to be downgoing, so their ∆z values are expected to be negative
and large as compared to the typical values for the neutrinos.

L5 BDT

Using the variables described above, another BDT is trained. After each training step the least
important variable is removed in an attempt to curtail overtraining. The process is repeated until
only six variables remain [60]. A cut is placed at the BDT value of 0.04 yielding a 95% reduction in
atmospheric muons for only a 30% reduction in the neutrino rate. While this is a signi�cant reduction,
it does have the bene�t of lowering total computation time for the complex calculation performed at
Levels 6 and 7.

4.2.7 L6: Accidental Event Removal and Corridor Cut

Corridor Cut

Even with the above steps in the selection chain to limit the number of atmospheric muons, a few are
still present in the sample [60]. These are the elusive atmospheric muons that enter IceCube along
just the right trajectory to avoid detection until they reach the densely instrumented inner region.
This can happen due to the geometry of the strings and the placement of the DOMs. The hexagonal
pattern allows for straight 'corridors' of low detection sensitivity along which atmospheric muons can
propagate undetected, as shown in �gure 4.3. The corridor cut aims to diminish this e�ect by looking
for SLC hits along these corridors that are correlated with hits in DeepCore [59]. The center of gravity
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Figure 4.3: 'Blind corridors' allow atmospheric muons to reach the inner detector region undetected.
The blue dot marks the �rst hit in this example event, with red dots marking other hit strings in the
event. Arrows indicate the 'blind' directions for the event in question. Figure from [59].

is calculated for the event and the hit string closest to the CoG is used to determine which strings to
check for 'corridor' hits. The algorithm then returns the number of hits found. While in the idealized
case a value of zero would be favorable, in reality the occurrence of noise hits will often cause correlated
corridor hits, so a higher value is necessary to avoid severe signal suppression. The scheme thus allows
one hit on the corridor strings, while events with two or three hits in said region will be removed.

Fill Ratio

The Fill Ratio algorithm was developed as a search for high energy cascades and relies on a recon-
structed vertex and a pulse series as input. It calculates the average distance from the interaction
vertex to all the hits included in the pulse series [67, 60]. It then �nds the fraction of DOMs hit within
this average distance 'containment' sphere, thereby quantifying the density of the event. Track-like
events are expected to show low �ll ratios because they are elongated and a substantial part of the
DOMs in the containment sphere will not have registered any hits. For cascade events the light dis-
tribution is expected to be roughly isotropic, so the FillRatio is expected to be close to one. These
assumptions have been tested and the algorithm implemented for the high energy IceCube neutrino
searches in the energy region above O(10) TeV, where it has proven to be an e�ective discriminator
between track and cascade events [67]. However, for the O(10) GeV events of interest in DeepCore
this discriminating power all but vanishes due to the short muon tracks exhibited at these energies.
Nonetheless, the FillRatio has been shown to have signi�cant power to suppress accidental events
arising from detector noise [60]. Accidental noise triggers are generally characterized by a roughly
uniform distribution of hits in the detector, as opposed to neutrino events, which tend to have hits in
clusters around the interaction vertex. As such the FillRatio calculation for these events will have a
large average radius and a small value of the FillRatio variable. Setting the FillRatio cut at a value
of 0.05 and removing events with FillRatios lower than this yields an order of magnitude reduction in
the accidental background, while only reducing the neutrino signal by about 10% [60]. Importantly,

68



Figure 4.4: FiniteReco reconstruction of the start- and stopping points, from a reconstructed muon
track direction. Figure from [63].

with this cut on the FillRatio the over all accidental noise trigger rate drops below the neutrino trigger
rate.

FiniteReco Containment

The FiniteReco reconstruction algorithm is a re�nement of the in�nite track reconstruction used in
the SPE-Fit reconstruction discussed above [63]. Where SPE-Fit assumes an in�nite muon track,
FiniteReco aims to set meaningful limits for said track. This is done by starting from a seed consisting
of the previous SPE-Fit reconstruction and then assuming light emission from the muon propagation
path along the Cherenkov angle, to �nd the start- and end points of the track. This is illustrated in �g
4.4. FiniteReco does not alter the direction of the track from the seed, but estimates the location of
the interaction vertex from the reconstructed starting point [63]. If an event is outside the DeepCore
�ducial volume it is removed from the sample [60].

4.2.8 L7: Event Reconstruction

The basic data measured by IceCube is charge- and timing information in the form of pulses registered
on the DOMs. The data gathered from the detector can be used to infer information about the physical
properties of the interaction in the ice. Speci�cally, the energy and direction of the incoming particle
are of interest. The reconstruction algorithm used in the GRECO sample is known as Pegleg and
was developed in IceCube by the PhD student Martin Leuerman [58]. Pegleg makes use of two other
reconstruction algorithms, Monopod and Lilliput (stable IceCube software) and will always attempt
reconstruction of a hybrid event, consisting both of a track and a cascade. The track is reconstructed
in segments of �ve meters, while the cascade is reconstructed based on a center of gravity for the
DOM hits not associated with the track. Pegleg �ts eight parameters: The position (x, y, z), time
(t), direction in zenith and azimuth angles (θ, φ), the track length (L), and the energy in the cascade
(Ecascade). The total energy of the event is calculated by assuming the track part comes from a
minimally ionizing muon with an energy loss of 220MeV/m in the ice:
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Etotal = Ecascade + L · 220MeV/m (4.15)

Pegleg starts from an event hypothesis at an arbitrary point in this parameter space, and can be
seeded with the results from a preliminary �t using Monopod. The algorithm works on a collection
of DOM hits, including time and charge information. From the event hypothesis the light output is
estimated using photonic spline tables based on the ice properties. Pegleg then calculates a likelihood
for each DOM to observe a given charge and �nds the total likelihood as the product of all individual
likelihoods for all DOMs. This likelihood space is then organized into time slices and minimized
independently for each time step using the Multinest minimizer package [59]. The output is used to
estimate the underlying true likelihood space in order to create new event hypotheses, which are then
in turn minimized.

Fitting in this eight dimensional parameter space requires substantial computing power for pro-
cessing. In order to bring down the computational requirements, simpli�cations are introduced. A
discretization of the track length is set to the track length step size used when generating splines based
on the ice properties. Only DOMs within 150m of the particle hypothesis position are expected to
carry signi�cant charge. All other DOMs are considered to have charge levels compatible with back-
ground noise. This speeds up the algorithm by avoiding computationally expensive estimates of charge
on distant DOMs, but comes at the price of less energy resolution.

At L7 there are extra optional containment cuts, which are not included for the sample used in this
work. These were introduced in order to minimize the disagreement between MC and data, and came
at a loss in the neutrino event rate [60]. While such disagreement is critical in the case of forward �tting
analyses, the unfolding method used in this dissertation relies more heavily on statistical knowledge of
the response matrix. For each simulated event the MC truth is correlated with the reconstructed value
to give an entry in the response matrix. This type of unfolding analysis is more sensitive to uncertainty
in the response matrix than it is to background contamination. This will be further investigated in
section 6.6. While disagreement between data and MC is never preferable, the iterative unfolding
method can compensate for the e�ect because it converges the unfolded result on the most likely true
value with the optimal number of iterations. The method is described in detail in chapter 5.

The detector resolution in energy and direction de�nes two dimensions in the response matrix,
with a third dimension being particle identi�cation. The smearing in energy and direction due to
detector resolution, stemming from the precision of the reconstruction algorithm, will be mitigated by
the unfolding. The unfolding machinery takes as input the expected signal, the preparation of which
is the topic of the rest of this chapter.

4.3 Detection E�ciency

The detection e�ciency describes the fraction of interacting events detected by IceCube. This e�ciency
is de�ned as the probability for a neutrino interacting in or near the instrumented ice volume to be
included in the data sample at �nal level. The e�ciency is measured via an MC study as described
in the following. The base neutrino simulation data, known as generator level data (or L0 data), is
compared to the GRECO �nal level sample (Level 7, L7), and the e�ciency is de�ned as the ratio of
events N between the two:

ε =
NL7

NL0
(4.16)
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This de�nition of the e�ciency can thus be used to translate back from a measured number of neutrinos
to the number of neutrinos interacting in the ice. From a technical standpoint the L0 data is re-weighted
in a standard way to re�ect the relative strengths by �avour of atmospheric oscillations, cross sections,
and �ux while removing the �ducial volume and livetime. By doing this, the L0 data sample is one-
to-one comparable with our standard simulation after all selection cuts (L7). Normally an e�ciency
calculation presents a binomial problem, but due to the re-weighting this is not entirely true in this
case and special care must be taken when calculating the statistical uncertainty.

4.3.1 Statistical Uncertainty on the E�ciency

Since the e�ciency is calculated from weighted distributions it would be wrong to assume the standard
binomial relationship between L0 and L7 data. Both are weighted the same way, so in order to
determine the uncertainty we must make use of the uncertainty for a weighted binomial distribution:

σε =

[
(1− 2w)σ2

L7 + w2σ2
L0

]
N2
L0

(4.17)

, with w = NL7

NL0
,σL7 and σL0 being the uncertainty on the L7 and L0 samples respectively. The

calculation is con�rmed to be consistent between manual calculation as well as the method implemented
in ROOT.

4.3.2 Overall Detection E�ciencies

The detection e�ciencies for each unfolded channel have been determined using the method described
above, with the results presented in �g. 4.5. Generally the e�ciency is on the few percent level, with
some bins reaching eight or nine percent. This is generally consistent with the expectation based on
the impact on the event rate from the di�erent data sample processing levels [60].

4.4 Background: Atmospheric Muons

Muons generated from cosmic ray interactions in the atmosphere constitute the dominant background
in this analysis. As discussed in sec. 2.6, muons can travel tens of kilometers before having lost all their
energy, and will leave clear Cherenkov tracks in IceCube/DeepCore. Several of the cuts described in
section 4.2 are designed for the sole purpose of bringing down the rate of atmospheric muons included at
�nal sample selection level. The simulation of atmospheric muons is performed using both Corsika [64]
and MuonGun [60]. While the Corsika muon simulations are produced for the IceCube collaboration
as a whole, the selection cuts in sec. 4.2 reduce the standard simulation Corsika background to such
an extent that it is statistically meaningless, and a new simulation scheme dubbed MuonGun was
developed for use in the low-energy regime below 1 TeV [60]. MuonGun generates muons on a cylinder
surface and intentionally aims them at a speci�c region of IceCube. This introduces some bias to
the simulation with certain regions being slightly over simulated and others being under simulated.
Particularly, it can be con�gured to increase statistics in the region of interest, namely DeepCore,
while accepting lower statistics in the outer regions of IceCube. The generation cylinder measures
1600m in height with a radius of 800m, thereby optimizing the volume to surface ratio. The spectrum
from which the muons are generated is customizable, and is drawn from an 'o�set' energy power law,
for historical reasons [60, 65].

f(E) = (E + E0)γ (4.18)

71



Figure 4.5: E�ciency of the combined trigger- and selection e�ciency for the νcc
µ + ν̄cc

µ channel (left)
and the νrest channel (right) respectively.

Figure 4.6: Atmospheric muons in the �nal sample. Left: Reconstructed space. Right: True space.
Note how the reconstruction smears the otherwise well con�ned muon signal in true space into a large
part of the reconstructed parameter space. Note the color scale is a factor of ten times higher in the
right plot.
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Figure 4.7: HitSpool data for DOM 15 on string 27, shown in blue. The various contributions to
the HitSpool signal are shown. Red: Poissonian noise (un-correlated). Black: non-poissonian noise
(correlated). Yellow: Afterpulses. Components are not to scale. Figure from [60]

E is the energy of the muon, E0 an energy o�set and γ the spectral index. For the simulation used
for the GRECO sample simulation, the o�set energy was set to E0 = 700GeV with a spectral index of
γ = −5. This is a notable di�erence to the spectral index of the cosmic rays at about γ = 2.7 [6]. The
steep spectrum is selected in order to facilitate generation of lower energy events, greatly reducing the
computation time. Furthermore, low energy muons produce little light in DeepCore and are di�cult
to identify. It is therefore expected that low energy muons will be the dominant component of the
background at �nal sample selection level. While the atmospheric muon �ux is correlated with the
atmospheric neutrino �ux to some extent, the MuonGun simulation breaks this degeneracy and allows
the muon spectrum to �oat. The simulated muon spectrum at �nal sample selection level including
both Corsika and MuonGun components is shown in �g. 4.6, and indicates that the muon background
contribution is concentrated in the downgoing region at energies between ∼ 20GeV − 80GeV. In true
space the muon contribution is strictly downgoing and at energies above ∼ 100GeV. The overall muon
background contamination is about 26%, and while this may seem large, the unfolding will to some
extent be able to mitigate the e�ects of the background, as will be discussed in chapter 5. First,
another background needs to be discussed: The detector noise.

4.5 Background: Noise

Random noise events in the DOMs arise from thermal radiation and radioactive impurities in the metals
contained in the DOM electronics, PMT glass, and DOM pressure vessel. This has been measured by
extracting the 'HitSpool ' data (data taken directly from DOMs without a trigger). Once a radioactive
decay happens, a rapid succession of hits are recorded on the PMT, with the signal lasting up to a
few milliseconds, as shown in �g. 4.7 [68]. The hits are thought to be caused either by scintillation or
luminescence processes. The overall noise rate is about 540Hz for IceCube DOMs and 780Hz for the
high-QE DeepCore DOMs.

The thermal noise is temperature dependent and stabilizes over the seasons following a slow ex-
ponential decay, and typically occurs with a frequency around 200Hz. The radioactive decay noise on
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Figure 4.8: Noise contribution at �nal level. Notice that noise is not considered to have a smearing
e�ect, but simply contribute to the event rates - hence the distributions will be identical in Energy and
cos(θz) for both reconstructed space and true space. The will however, in the true space, be sorted
into the background bin.

the other hand typically has a value around 50-100 Hz. Both are simulated by the IceCube software
module known as Vuvuzela, and �ts both a Poisson and non-poisson component to the hit distribution
individually from each DOM. The noise model and the Vuvuzela software module was developed by
M.Larson as his Master's Thesis [68]. Applying the noise simulation to the current data sample with
the correct livetime results in the event expectation shown in �g. 4.8. The energy and cos(θz) here
refer to the reconstructed energy and reconstructed event direction respectively, as noise events do not
contain true particle information in the MC for these variables. For the unfolding analysis presented
in this work, the background signal is classi�ed as such and sorted into the background bin on the
truth side of the unfolding matrix.
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5 Analysis Method

Unfolding is the process of removing systematic detector e�ects from a given measurement, in order
to estimate the true distribution giving rise to the measurement. It is particularly useful in the cases
where underlying shifts between true values of nature and measured values are observed. It is of course
not immediately clear when this occurs, due to the nature of the problem. This can for example occur
when the systematic shift is not constant but depends on other variables, leading the shift to follow a
non-trivial distribution. In general this e�ect is known as instrumental smearing. The challenge then,
in an unfolding analysis, is to estimate this smearing and compensate for it. In the following we will
discuss the unfolding method used.

5.1 Unfolding vs Forward Folding

Two main types of 'folding' analyses are widely used in high energy physics; Forward folding and
unfolding. Here we will brie�y touch upon the merits of each, and �nally do a qualitative comparison.
We assume a measurement is represented by a dataset D and strive to �nd information about the
underlying true distribution, under the assumption that our measurement instruments are inherently
inaccurate.

In the forward folding approach this is done by assuming a model, and from that a Monte Carlo
simulation set is built, which then represents the model truth. This estimated truth is then folded
with the smearing of our instruments, also known as the detector response. It is then possible do a
one-to-one comparison with the observed data. This process is then repeated for many di�erent models
and the one which �ts best to the data is then presented as the result. The forward folding approach
thus gives us the model which best explains the observed data and is commonly used for parameter
determination. The process is illustrated as going from left to right in �g. 5.1.

The unfolding approach reverses this process: starting from the observed data, the detector response
is removed from the measured data set to yield an estimate of the underlying true spectrum. Except
for the knowledge of the detector response, the unfolding approach makes no assumption regarding
the nature or structure of the data or the underlying distribution. The unfolding method thus gives us
the best estimate of the underlying truth in a model independent way, and is illustrated progressing
from right to left in �g. 5.1.

Both methods rely on extensive knowledge of the detector response, usually obtained via Monte
Carlo simulations, and both are biased to some degree. The forward folding method focuses on
speci�c models, with parameters which can be determined to a certain level of precision. However,
measurements are always uncertain, so many di�erent models with di�erent parameters could possibly
describe the data. Occam's razor prescribes that we focus on the simplest models, so usually forward
folding analyses test only on one speci�c model. As such they tell us nothing about the merits of other
models, or whether the assumed truth to which the smearing is applied is actually the one realized in
nature. In the context of this analysis a forward folding method would measure a reconstructed event
rate and then use a model to �t, with �ux as a parameter.

On the other hand, the unfolding approach attempts to be model independent by removing the
instrumental e�ects from the measurement. As knowledge of the detector response depends on detector
calibration and MC simulation, there is still a risk of being model-biased. Getting rid of this bias is one
of the challenges when doing an unfolding analysis. Provided this bias is overcome the unfolding gives
an accurate estimate of the underlying truth from which the data sample was generated. This, however,
gives no indication as to the model description of the underlying truth. In the context of this analysis, in
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Figure 5.1: Forward folding versus unfolding in a schematic form. Forward folding techniques start
from a truth sample in the form of simulated data, smear that via the response matrix and compare
with the measured data. Unfolding reverses the process: Starting from the data sample, removing
the e�ects of the response matrix and end up with a truth sample, estimating the underlying truth of
nature.

Figure 5.2: Illustration of the unfolding conceptual procedure. Black represents the population and
blue the sample. They are related by the response matrix, which gives rise to the shift between the
population and sample means in ∆resp. The unfolded histogram is an imperfect reversal of that
process and is shown in the green curve. The associated error (sometimes known as the unfolding
bias) is illustrated by ∆unf.
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Figure 5.3: Example of 'oscillatory' behaviour in a Matrix Inversion unfolding, without su�cient
regularization. [69]

order to quantify how many neutrinos pass through IceCube we can measure a reconstructed event rate,
apply the unfolding method, and �nd the underlying true event rate by unit volume ice without �tting
for a parameter. This unfolding analysis will proceed in multiple dimensions, making simple graphical
illustrations a challenge. Instead, we will employ illustrative schematics in order to introduce concepts
in a comprehensible way throughout. An example of an idealized unfolding procedure is illustrated
in �g. 5.2. A true distribution (commonly known as the population in statistics) is shown in black.
Through reconstruction uncertainties and detector ine�ciencies, at measurement, the average value
and the width of the distribution may be altered, and is shown in the blue curve (commonly known
as the sample in statistics). The mean value shift ∆Resp and widening are described by the response
matrix, which maps true values onto reconstructed values. The main task of the unfolding process,
is then to recover the population mean and variance from the sample distribution. However, not all
unfolding methods are perfect and an error may be introduced, prompting the unfolded distribution
to be shifted away from the true distribution by ∆Unf. In MC closure tests it is possible to quantify
this error, however, it is impossible in a real data unfolding. It is therefore necessary to explore the
parameter space of various combinations of input and response matrix to test the consistency of the
unfolding. Several tests have been developed and will be presented in chapter 8.

Forward folding and unfolding methods each come with their own advantages and disadvantages.
Forward folding is useful for speci�c model testing or di�erentiating between various models. Unfolding
on the other hand is ideal for model independent measurements of physical quantities. One advantage
of unfolded results is they can be used as inputs in other contexts without the knowledge of the detector
response. Many di�erent unfolding techniques exist, and in the following we will discuss the choice of
unfolding method used in this analysis.

5.2 Unfolding Method

Several methods of unfolding exist and among the candidates are such implementations as Single Value
Decomposition (SVD) , Matrix Inversion, Iterative Bayesian Unfolding or bin-by-bin unfolding [11].
A short motivation for our choice of method will be given here. In general a good unfolding method
should live up to the following criteria:
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1. Does not introduce a bias on the unfolded result from the input MC

2. Uses as much information as possible (for example works in multiple dimensions)

3. Is independent of prior expectations (model agnostic with respect to eg. smoothness or shape)

4. Accurately describes the true distribution in closure tests

While many methods have similar advantages each comes with its own drawbacks: Bin-by-bin is signif-
icantly biased towards the MC [69]. Both SVD and Matrix Inversion will yield some �uctuations in the
unfolded spectrum (known as �oscillatory behaviour�), which must be corrected for via regularization,
an example of which is shown in �g. 5.3 [69]. Iterative Bayesian unfolding risks a bias towards the
MC in the case of few iterations, but can yield large uncertainties at high iterations [70].

In this analysis the the D'Agostini iterative Bayesian unfolding method was chosen, and used the
version implemented in the RooUnfold software package for ROOT [72]. The software can handle
multiple dimensions and the non-trivial task of implementing an expansive regularization is avoided.
While the initial iterations are biased towards the MC this bias can be overcome with su�cient itera-
tions. The method is a maximum likelihood estimator, and calculates an unfolding matrix starting o�
from Bayes theorem:

Pn(i|j) =
P (j|i)× Pn(i)

Pn(j)
(5.1)

Here P (i|j) on the left hand side is the unfolding matrix, giving the probability of a measurement
in bin j arising from a true signal in bin i. The other terms can be described as follows:

� P (j|i) is the response matrix and gives the probability for a true event in bin i to yield a
measurement in reconstructed bin j. It represents our knowledge of the detector hardware
response and the reconstruction algorithms. It describes the impact of the detector smearing on
the measurement and can generally be estimated from detailed Monte Carlo simulations.

� Pn(i) is the probability of a true event to occur in bin i. It thus represents the prior knowledge
of our true signal. For the initial value of this, we use a model spectrum and then calculate:

P0(i) =
Nmc
i∑

kN
mc
k

(5.2)

As this term is built from an a-priori model it can introduce a bias in our analysis, however,
optimizing the number of unfolding iterations will compensate for this e�ect.

� Pn(j) is the probability for an event to occur in reconstructed bin j, and is typically called the
marginalized probability in Bayesian analysis. It contains the full information regarding the
parameter space, which then corresponds to the sum over all probabilities of the true bins i
contributing to that reconstruction bin j:

Pn(j) =
∑
i

P (j|i)× Pn(i) (5.3)

Using the Bayesian approach we can then make an estimate of the true energy spectrum Uni simply
by applying the unfolding matrix to the relevant bin in our measured spectrum mj :

Uni = Pn(i|j)×mj (5.4)
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Figure 5.4: Events at �nal processing level. Left: Reconstructed Space. Right: True Space.

U1
i then serves as a �rst estimate of the true distribution. At this point the prior we introduced

can have a strong in�uence on the unfolded distribution, but we can move the unfolding away from
the prior by iterating the whole process. Ie: we take the unfolded spectrum as the input prior for the
next iteration and generate new prior and marginalized probability terms. We then calculate a new
unfolding matrix P2(i|j) and apply it to our measurement to get a less biased estimate of the truth U2

i

. The iterative process works under the assumption that applying the unfolding matrix to our data
brings the unfolded distribution closer to the truth - in essence we move the prior term closer and closer
to the truth. This is unfortunately not always the case, as statistical �uctuations will gain increasing
weight with the number of iterations and may eventually pull the unfolded distribution away from the
truth as the number of iterations increases. In order to combat this 'over�tting', a reasonable number
of iterations must be estimated, which is explained in the next section.

5.3 Expected Signal

The total number of simulated events that make it through to �nal level is 491094. These events are
weighted to �t the expectation from the atmospheric �ux model and based on the genie cross sections,
giving 170461.3 expected signal events. In addition there is a background contribution of 43400.1 muon
and noise events, making for a total expectation value of 213861.4 events. With this the background
contamination is expected to be 20.1%.

IceCube/DeepCore can identify muon neutrino CC events, but νcc
e and νcc

τ events will often be
indistinguishable (except in the case of the �double bang� event signature), and as such will be grouped
together. NC events are indistinguishable amongst �avors by nature, and are strikingly similar to the
νcc
e and νcc

τ events, thus these event types will be grouped together. The expected neutrino rates are
summarized in tab. 5.1.
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Event Type Events Rate [mHz]

Neutrino 170461.3 1.551
Background 43400.1 0.395

Total 213861.4 1.946
Event Type νcc

µ + ν̄cc
µ νrest Atm. µ Noise

Expectation 110040.8 60420.5 42852.5 547.6

Table 5.1: Expected number of events and event
rates for neutrinos and background. Notice these
are expectation values, and can thus be non-integer.
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5.4 Iterations

As we increase the number of iterations in the unfolding, we put less emphasis on our prior, but with
many iterations eventually run the risk of putting too much emphasis on statistical �uctuations. The
number of iterations used in an analysis can then seem like an arbitrary choice, but here we will
describe methods to �nd the optimum number of iterations. When building the unfolding matrix, we
make extensive use of our Monte Carlo simulation. The simulated events are generated individually
from a power law, re-weighted to match the Honda �ux model and IceCube e�ective area, and run
through the Pegleg reconstruction. As such we have full information regarding both the MC truth
and MC reconstructed spectra. From the weighted MC, we generate a pseudo experiment as a Poisson
variation around the nominal MC (the MC generated with all systematics set to their nominal values).
In these tests, this pseudo experiment plays the role of our measured data, while the weighted MC
input to the response matrix, prior and normalization terms are used they way they will be after
unblinding of the measured data. The pseudo experiment is thus statistically independent from the
weighted MC. For simplicity, here the livetime, volume and e�ciency are not compensated for and
the unfolding test proceeds from reconstructed events to unfolded events. We apply the D'Agostini
iterative unfolding approach to the pseudo experiment, and since we know the exact truth spectrum
from which the pseudo experiment was generated, we can compare the two via a simple χ2 test:

χ2 =
∑
i

(
Ui − Ti
σ

)2

, (5.5)

where Ui represents the bins in the unfolded pseudo experiment spectrum, Ti the corresponding bins
in the MC truth spectrum, and σv is the statistical uncertainty on the bin in question (calculated via
propagating the standard statistical uncertainty through the unfolding). We can now let the unfolding
algorithm iterate, calculate this chi square for each step and stop the iterations once the minimum chi
square value has been found. The optimal number of iterations will strongly depend on the e�ect of
the systematic uncertainties. For simplicity here we include a simple example in which we test three
di�erent scenarios:

1. Asimov test: a pseudo-Asimov test in which we do not use a pseudo experiment as input, but
instead use the values from the reconstructed MC directly. Results for the test statistic are shown
in �g. 5.6

2. Pseudo experiment test: a pseudo experiment as described above. The test statistic is averaged
over 200 trials each unfolded separately. The toy model spectra and unfolded results are shown
for 1 and 30 iterations in �g. 5.5, while the evolution of the test statistic is shown in �g. 5.7

3. Systematic uncertainty test: 200 pseudo experiments as above but with the energy spectrum
shifted by a power law index of +/- 0.03, to emulate the impact of such a systematic uncertainty.
The unfolded results are shown in �g. 5.8 with the evolution of the test statistic shown in �g.
5.9

In the pseudo Asimov and the pseudo experiment cases we get good agreement already after the �rst
iteration, since the pseudo measurement is very close to what the unfolding algorithm is built from.
This then constitutes a successful closure test of number of iterations. In the case of the systematic
uncertainty test with a spectral shift we see the following: as expected, a rapid decrease in the test
statistic with number of iterations is observed, after which a plateau is reached, before the statistical
variations start getting too much weight and again pull the chi square to higher values. This is results
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Figure 5.5: True and Unfolded spectra for the Asimov unfolding ensemble test. The average of 200
independently unfolded trials make up the unfolded spectrum. Left: 1 iteration. Right: 30 Iterations.
The consistency in the central unfolded values are preserved over the number of iterations, while the
edge bins diverge. The statistical uncertainty is seen to increase over the number of iterations.

is confounded of two factors: Firstly unfolded bin values move with the number of iterations. In the
full unfolding space, some bins move closer to the truth while others move farther away with iterations.
Overall, as can be seen in �g. 5.8 the ratio of unfolded to truth rises, however the uncertainty rises
faster, bringing the test statistic into the plateau seen in �g. 5.9. While this yields a small test statistic,
the ratio of unfolded to truth still leaves room for optimization, and will be discussed in more detail
in chapter 8.
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Figure 5.6: Unfolded to truth comparison in the Asimov case. The χ2 is small to begin with as we
expect, and increases as we update the prior and iterate. This is due to the unfolding already starting
at the best possible match.

5.5 Unfolded Truth

An important aspect of any unfolding is the choice of truth variable - which value is unfolded. In
essence: which result is the aim of the analysis? In this unfolding analysis the aim is maximally
exploiting the model independence of the D'Agostini unfolding method. As such no assumptions
regarding �ux, oscillations or interaction cross sections are made. For the purpose of this analysis the
truth side of the unfolding matrix must be constructed at such a point in the interaction chain, that
those factors are part of the unfolded result.

Nflav
obs = ΦσNtTliveεPosc (5.6)

Here, the number of targets Nt, the livetime Tlive and the e�ciency ε are constants related to the
experimental setup of IceCube, and those can be compensated for in the unfolding so that:

Nflav
unf =

Nflav
obs

εNtTlive
= ΦσPosc (5.7)

The unfolded variable is thus an event rate folded by the oscillation probability. This allows anyone
using the unfolded data set to make their own assumptions regarding two of these variables, in order
to measure the third one. While one can argue the oscillation parameters are well known, keeping the
oscillation as part of the signal allows forward folding model tests of exotic oscillation scenarios using
the data sample.
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Figure 5.7: Average chi square comparison of 200 individually unfolded pseudo experiments to the MC
truth. The unfolding now starts at a χ2 of around one, which increases with the number of iterations.
This is due to the pseudo experiments already being close to the prior knowledge of the unfolding
machinery. We again essentially start at the best possible match between unfolding and MC truth.
This plot illustrates the di�erence between the left and right panels of �g. 5.5.
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Figure 5.8: True and Unfolded spectra for the Toy model unfolding ensemble test. The average of
200 independently unfolded trials make up the unfolded spectrum. Top Left: 1 iteration. Top Right:
12 iterations. Bottom: 30 Iterations. Like in the previous case, the statistical uncertainty is seen to
increase over the number of iterations.
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Figure 5.9: Average chi square comparison of 200 individually unfolded pseudo experiments to the MC
truth. The pseudo experiments this time had their energy spectrum modi�ed by a power law with
index: δγ = −0.03. We here observe a rapid drop in the test statistic as the unfolding converges on
the MC truth. A plateau is found around ~15 iterations, after which the statistical �uctuations get
too much weight and again pull the unfolding away from the MC truth.
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5.5.1 Truth Binning

The chosen binning has consequences for what information can be extracted in the analysis. Speci�-
cally, this approach to unfolding allows multi dimensional unfolding and events to be sorted in truth
space based on their event classi�cation. In this analysis we opt for νcc

µ , νrest and background, giving
three bins in the 'Particle ID ' (PID) dimension. The choice of response matrix dimensionality and
binning will be discussed further in section 8.1.

5.6 Unfolding the Event Rate

The response matrix relates number of true events to reconstructed events on a bin-by-bin basis.
The aim of the unfolding is to measure the true event rate per volume ice. This can be achieved by
modifying the prior used to construct the unfolding matrix. The MC event rate is weighted by the
inverse number of targets, the inverse e�ciency and the inverse livetime in order to reach the desired
quantity, as described in eq. 5.7. The weighting is performed on a �avor basis since the individual
�avors have di�erent simulation volumes in the MC. The Muon background is likewise weighted based
on the generation volume in the simulation. The background noise is always weighted by one, as the
truth and reconstructed values are equivalent. When marginalizing to get the spectra in energy and
cos(θz) the energy spectrum is weighted by the bin center in order to better illustrate the shape of the
spectrum. Finally, the bin widths are divided out and the units on the unfolded spectra in energy and
cos(θz) are [m−3s−1] in both cases.

5.7 Unfolding the Flux

Much as the unfolding matrix can be weighted to unfold to an event rate per volume, it is also possible
to unfold directly to a �ux. The events are further weighted by inverse cross section, which yields a
�ux. However, care must be taken due to the uncertainty on the assumed cross sections, which can be
large and lead to considerable shape variations in the �nal result.
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6 Statistical Uncertainties

In the following we will discuss the unfolding analysis without systematics, in which we can then
isolate the impact of the statistical uncertainties. The impact on uncertainty from having a �nite
simulation will inform our decisions on how many events it is necessary to generate, as well as how
many dimensions can reasonably be used in the unfolding. In particular we investigate the impact
of a �nite data sample, as well as in our MC - speci�cally pertaining to the response matrix and the
propagation of uncertainty through the unfolding steps. We start from an Asimov closure test and
step by step relax the constraints in order to gauge the impact from each step.

6.1 Toy MC: From �ux to event rate

In order to study the statistical impact of limited Monte Carlo simulation and limited data, we created
a toy MC model to allow better understanding of the RooUnfold software before building the �nal
analysis software. When using a toy MC there is access to the natural truth, which in our simulations
then corresponds to the truth of nature. We simply choose functions to represent the expectation
values for input data. All parameters are chosen to be in good agreement with our current knowledge.

6.2 Toy MC: True Smearing

The response matrix inherently represents the quality and properties of the detector and event re-
construction algorithms. In order to estimate the statistical uncertainty on the unfolding a response
matrix with a limited number of entries must be generated. To that end, some discussion is necessary:
in a real detection scenario the true spectrum is smeared according to the true response matrix of the
detector, the knowledge of which will have to be estimated from Monte carol simulation. In this toy
MC, the true detector smearing is de�ned from an n-dimensional Gaussian, where n is the number of
dimensions used in the unfolding. This smearing function is then used to transform from true values
to reconstructed values. Doing this then yields a toy MC Asimov data sample consisting of true-
and reconstructed spectra as well as a response matrix. The toy MC thus provides us with the true
smearing matrix via the analytical smearing function. A plot of the true response matrix in cos(θz)
and energy is shown in the top left of �g. 6.3

6.3 Asimov Closure Test

After generating the true event spectrum and smearing it to get the reconstructed event spectrum, the
following closure test is performed. This will tell us two things: �rstly whether the unfolding algorithm
behaves as expected and gives meaningful results in a controlled test, and secondly what magnitude of
a statistical uncertainty can be expected based on the event rates in the MC. Using the true smearing
matrix as the input response matrix for the unfolding, the true event spectrum as the prior, and the
reconstructed spectrum as our measurement, we perform the unfolding. If everything is in order we
expect the unfolding to give an unfolded spectrum which matches the true event spectrum in just one
iteration. The statistical error bars in this case represent the 68% interval in which data from unfolded
realizations of the reconstructed spectrum should fall. The result of the Asimov closure test is shown
in �g. 6.1 and with a χ2 ∼ 10−17 the results are seen to be consistent.
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Figure 6.1: Unfolded and true distributions for the Asimov unfolding test, �attened from 2D, so every
ten bins constitutes an energy slice in cos(θz) space. Unfolding converges to the true value in just one
iteration and statistical errors are below 10% except for bins with very low statistics.
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Figure 6.2: Ratio of unfolded to truth, for the unfolded pseudo experiment. The green shaded bands
represent the uncertainty range from the Asimov case, in which the unfolded pseudo experiment should
fall 68% of the time. The unfolding converges in one iteration and all unfolded data points fall within
the expected region. The black error bars represent the 1 sigma uncertainty range of the underlying
true distribution.

6.4 Limited Data Statistics

Proceeding from the Asimov unfolding closure test in the previous section, a pseudo experiment is
drawn from a Poisson distribution around the expectation value of the reconstructed spectrum. This
is then unfolded using the true smearing matrix. The results give a concrete example of what a
realization of the toy MC truth could be. The unfolded data points are expected to fall within the
one sigma green shaded area 68% of the time. The unfolding and the Asimov closure test are shown
in �gure. 6.2 and show good agreement between Asimov and pseudo experiment closure tests.

6.5 Propagation of Statistical Uncertainties in the Response Matrix

There is a known statistical uncertainty on the response matrix as well as the input pseudo experiment.
To calculate the statistical uncertainty on the unfolding, the statistical uncertainty on the unfolding
matrix must be calculated and correctly propagated through the unfolding iterations, as the unfolding
matrix is applied to the input pseudo experiment. This can be expressed as an error propagation
matrix:

∂n̂(Ci)

∂n(Ej)
= Mij +

nE∑
k=1

Mikn(Ek)

(
1

n0(Ci)

∂n0(Ci)

∂n(Ej)
−

NC∑
l=1

εl
n0(Cl)

∂n0(Cl)

∂n(Ej)
Mlk

)
(6.1)

Here M is the unfolding matrix, n̂(C) are the estimated causes, ie: the unfolded values and n(E) are
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the measured e�ects, in this case the pseudo experiment or actual data. ε is the e�ciency and the
index on n illustrates the number of iterations, while indices i, j, k and l represent the bin numbers.
This expression then depends on ∂n0(Ci)

∂n(Ej)
, which is nothing but ∂n̂(Ci)

∂n(Ej)
from the previous iteration [72]

.

6.6 Limited Knowledge of the Detector Response

Unfortunately, the process for generating the response matrix is not quite as simple as was the case for
the true smearing matrix. In reality the response matrix is estimated from event-by-event reconstructed
MC, leaving us with an approximation to the true response matrix of IceCube, as depending on
our MC statistics. The more statistics the better. In order to then generate a fair estimate of our
response matrix we must take into account our limited MC statistics. With the true smearing matrix
and our pseudo experiment well de�ned, we generate di�erent realizations of the detector response
matrix by drawing samples from the true smearing matrix. Shown in �g. 6.3 are the true smearing
matrix and three response matrices generated by 20000, 200000 and 500000 samples respectively. We
then independently unfold the pseudo experiment from the previous section three times using these
statistically di�erent response matrices. Any di�erence between the pseudo experiment closure test
and the tests performed here necessarily arise from the limited statistics of the response matrix used.
As we proceed, once we have enough statistics in the response matrix, we expect the unfolded data
points to fall within the one sigma shaded region 68% of the time and have error bars similar to those
of the Asimov closure test. The results are shown in �g. 6.4, and we qualitatively conclude that we
need on the order of 500000 MC events to reach the precision of the Asimov closure test. The number
of events included in the MC sample is roughly 491 thousand as described in section 5.3, which is
su�cient for the purpose of the unfolding.

6.7 Binning Optimization

In order to get a reasonable statistical uncertainty in our �nal sample, and across all bins, we optimize
the bin size based on event counts in each individual bin. This is done by simple numerical integration
in both the cos(θz) and energy dimension individually. The binning is optimized to give a statistical
uncertainty on the event rate of about one percent in each bin. The resulting binning is twelve
irregularly shaped bins in both cos(θ) and energy, which will be used henceforth. The bin edges are
shown in table 6.1. Although this binning has been optimized in regards to the statistical uncertainty,
later investigations of the sample coverage proved it necessary to further expand the binning. This
is discussed in section 8.14.1, and the updated binning is listed in table 6.2. This updated binning is
utilized several places in the following.
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Figure 6.3: Toy MC Response Matrices. Top left: true smearing/response matrix used in the toy
MC. Other panels: realizations of the response matrix for di�erent sample sizes, known as pseudo MC
response matrices. Top right: 20000 samples. Bottom left: 200000 samples. Bottom right: 500000
samples. With increasing number of samples the pseudo matrices converge on the shape of the true
smearing matrix.

True

Energy [GeV] 1.0 6.04 8.44 10.72 13.36 16.72 21.04
cos(θz) -1.0 -0.81 -0.62 -0.44 -0.27 -0.14 -0.05

Energy [GeV] 26.68 34.11 44.91 63.87 109.28 600.0
cos(θz) 0.04 0.13 0.25 0.41 0.64 1.0

Reconstructed

Energy [GeV] 1.0 6.98 9.73 12.21 15.14 18.43 22.38
cos(θz) -1.0 -0.82 -0.65 -0.49 -0.35 -0.22 -0.09

Energy [GeV] 27.49 34.22 43.58 57.99 86.75 300.0
cos(θz) 0.03 0.16 0.31 0.48 0.70 1.0

Table 6.1: Binning in true and reconstructed space. Bin edges are set by numerical integration of the
upper bin edges, and are independent of the detector resolution.
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Figure 6.4: Results from the toy MC unfolding when using di�erent response matrices, each generated
from a separate sampling of the true smearing matrix. The green band represents the expectation
uncertainty into which 68% of all samples are expected to fall. As the number of trials in the response
matrix increases, the unfolding converges to the true smearing matrix case. The qualitative conclusion
is that we need on the order of 500000 MC events to reach the precision of the Asimov closure test.

True

Energy [GeV] 1.0 6.04 8.44 10.72 13.36 16.72 21.04
cos(θz) -1.0 -0.81 -0.62 -0.44 -0.27 -0.14 -0.05

Energy [GeV] 26.68 34.11 44.91 63.87 109.28 200.0 1000
cos(θz) 0.04 0.13 0.25 0.41 0.64 1.0

Reconstructed

Energy [GeV] 1.0 6.98 9.73 12.21 15.14 18.43 22.38
cos(θz) -1.0 -0.82 -0.65 -0.49 -0.35 -0.22 -0.09

Energy [GeV] 27.49 34.22 43.58 57.99 86.75 300.0 1000
cos(θz) 0.03 0.16 0.31 0.48 0.70 1.0

Table 6.2: Analysis binning as updated due to investigation in section 8.14.1. The previous last bin
edge has been altered to be at 200 GeV, and another bin has been added from 200 GeV to 1 TeV.
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7 Systematic Uncertainties

The systematic uncertainties cover any uncertainty related to the detector, simulation or other e�ects
not arising from the statistical nature of the sample. Since the binning has been selected to have a
relative statistical uncertainty on the signal of maximum 1% in each bin, the measurement precision is
likely systematics dominated and careful consideration must be made for each systematic e�ect. The
systematic uncertainties are divided into two broad categories, by their method of implementation:
'Continuous Systematics' and 'Discrete Systematics'. The systematic e�ects are implemented in the
simulation chain on an event-by-event basis as a weight to each individual event. In the case of i
di�erent systematic uncertainties, the �nal weight of each event in the simulation can thus be expressed
as:

w =
∏
i

δwi, (7.1)

where δwi = 1 is the nominal case of the systematic parameter in question (corresponding to the
standard simulation as discussed in chapter 4). This section will discuss the implementation of each
individual systematic and the impacts on the analysis will be discussed in chapter 8.

7.1 Systematics Strategy

In order to estimate the impact from systematics on the �nal result, two main methods have been
employed: a bracket approach and a Gaussian sample approach. Here will be presented the considera-
tions that led to the �nal choice of implementation. The goal of any systematics implementation is to
estimate how much any measurement will di�er from the underlying truth, due to systematic e�ects.
The central limit theorem [78] predicts that the mean measured value of an experiment will tend to-
wards the underlying truth as the number of samples increases. Thus, statistical uncertainties can be
alleviated by increasing the measurement statistics in the experiment. For systematic uncertainties
there is no such luxury because any uncertainty in the measuring apparatus can move the central value
of the measurement away from the underlying truth. Unlike a known bias, which can be corrected for,
the exact scale of the impact from systematic uncertainties is generally unknown. Thus, the quest of
any systematic uncertainties study, must be a quantization of this e�ect.

Furthermore there is the question of how to implement the systematics in the analysis ansatz: as
both a signal and unfolding matrix are estimated from MC, two options present themselves. Previous
unfolding analyses [79] had implemented the systematics on the input spectrum and kept the knowledge
of the detector smearing constant. It may seem counter intuitive to modify the measured spectrum
to account for systematic e�ects, but it does yield a representation of how the event rates would
respond to changes in detector properties. However, such a method would not fully cover the e�ect
any systematic would have on the detection e�ciency. A di�erent, and more traditional approach is
to implement the systematic e�ect on the MC spectrum and the detector smearing while keeping the
input constant. In principle, for an unfolding analysis like the one presented in this thesis, it would
be easy to imagine the two methods to be equal, since what should a-priori matter is the di�erence
between the input spectrum and the prior used for constructing the unfolding matrix. However, more
careful analysis performed in the early stages of this work, revealed the two methods do not yield
completely identical results, partly due to the relative spectrum shifts combined with the statistical
impact on the unfolding matrix.
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Figure 7.1: Representative plot of the unfolding procedure including systematic uncertainties as applied
in this analysis. The underlying truth of nature is shown in black. The blue curve represents the
measured signal, which would usually be subject to statistical- and systematic uncertainties in a
standard measurement. The green curve is the unfolded distribution - the estimate of the underlying
truth. The systematics impact on the unfolded measurement is represented in red.

In this work, the decision was made to keep the input spectrum constant and to implement the
systematics on the MC and detector response. This means the input measurement is kept as-is, and
the method will give an accurate estimate of the systematic uncertainty in the unfolded measurement.
When building the unfolding matrix both the true and reconstructed values of the input MC are used,
so it is also necessary to consider the impact of systematics on these (see sec. 5.2). In turn, this
impact leads to a shift in the unfolding matrix, which again leads to a systematics shift in the unfolded
spectrum. The principle of the systematics procedure is illustrated in �g. 7.1, where the initial shift
from the true distribution to the measured one, ∆Resp, is due to the response matrix, and the ∆Unf
arises from the unfolding error, as described in section. 5.2. Statistical and systematic uncertainties
will manifest in addition to this unfolding error, and due to the true value of nature being unknown
will be implemented on the unfolded spectrum as illustrated. In the following the di�erent systematics
will be described along with their impact on the event rates in both true and reconstructed space.

7.2 Systematics Chain

We need to consider any systematic arising from experimental e�ects which are not directly related to
the quantity we want to measure. As discussed in section 1 the main result of this analysis is an as
model-agnostic as possible unfolding of the atmospheric neutrino event rate by detector volume. Let
us brie�y consider the physics of the analysis chain: A cosmic ray primary interacts in the atmosphere,
generating daughter particles, eventually leading to neutrino emission. This relationship is governed by
the cascade equation as discussed in section 2.4. The exact relationship is uncertain, but can to some
extent be tuned by correlation with the Muon �ux. The generated neutrinos propagate through the
atmosphere and the Earth and upon arrival at IceCube they will have undergone neutrino oscillation
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of varying baselines. This yields a dependence on oscillation parameters and matter interactions.
Only a certain fraction of neutrinos arriving will interact in the ice, introducing uncertainties on the
interaction cross section. The interaction yields a particle shower in the IceCube �ducial volume (in the
case of a charged current interaction also with an outgoing Cherenkov track), with an electromagnetic
component. The expanding cascade and outgoing Cherenkov track are well understood, have been
implemented in detailed simulations, and carry little to no uncertainty. The photonic output signal on
the other hand is in�uenced by the optical properties of the ice, which are not nearly as well known
and must be taken into account as a systematic e�ect. Eventually photons reach the string bore holes,
and some are detected at the IceCube DOMs. The bore holes have di�erent optical properties to the
bulk ice and the DOMs are not 100% e�cient - both are e�ects which must be included as systematic
uncertainties. The combined e�ect of the systematic uncertainties on the event selection e�ciency must
also be included. While the charge and timing information collected from the PMTs has a high level
of precision, the derived quantities of energy and incoming neutrino direction become uncertain due to
the quality of the reconstruction algorithm. This results in an amount of detector smearing in those
two quantities, which is described by the detector response matrix. The unfolding procedure is able to
overcome this smearing by reversing the e�ect via the unfolding matrix. Unlike the response matrix,
the unfolding matrix depends on the input prior, and is thus a�ected by systematic uncertainties. In
summary, each step in the chain of physical processes leading to neutrino detection is associated with
speci�c systematic uncertainties:

� Neutrino �ux: �avor ratios, neutrino-anti-neutrino ratios, spectral index

� Oscillations: oscillation parameters, matter e�ects

� Interaction: cross sections

� Ice Properties: bulk ice scattering and absorption. Hole ice properties.

� Photon detection: DOM e�ciency (which impacts triggers, veto e�ciency, reconstruction preci-
sion)

� Detector response (overcome by the unfolding)

As such we see that certain systematics in the analysis ansatz are associated with the unfolded quantity,
while others must be accounted for in the unfolding analysis. Because we unfold the event rate by
volume, the measurement should be independent of any systematic related to the �ux, oscillations
or cross sections. Although these measures are introduced in the prior term, the unfolding is able
to overcome that bias, given optimization of the number of iterations. On the other hand, several
systematic parameters require careful consideration as part of the analysis. They encompass the
uncertainties related to the bulk ice properties, the hole ice properties and the e�ciency of the DOMs.
The detector response is estimated from MC depending on these quantities leading to an impact on
it from the systematics. The systematics of interest have been listed in table 7.1 and are discussed in
more detail in the following sections.
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Discrete Systematics

Parameter Value Prior
DOM E�ciency 1.0 ±10%

Hole Ice, p 25 ±5
Bulk Ice Scattering 1.0 10%
Bulk Ice Absorption 1.0 10%

Continuous Systematics

Parameter Value Prior
Livetime 4.8yr 1%

Muon Normalization 1.0 10%
Noise Normalization 1.0 10%

Table 7.1: Systematic uncertainties under consideration. The parameters, their central values as well
as our prior assumptions are listed. Top: Systematics implemented in a re-weighting scheme. Bottom:
Systematics implemented in a discrete systematics scheme. Where possible central values and priors
have been taken from [50].

Systematic MC Simulated Values

DOM E�ciency 0.88 0.94 0.97 1.00 1.03 1.06 1.12
Hole Ice 0.15 0.20 0.25 0.30 0.35

Bulk Ice Scattering 1.0 1.1
Bulk Ice Absorption 1.0 1.1

Table 7.2: Discrete Systematics included and the values at which they are sampled.

7.3 Discrete Systematics

Certain parameters are known as 'discrete systematics', and have an e�ect on low-level IceCube sim-
ulation, such as a�ecting the trigger conditions or the photon propagation in the ice. Changing these
parameters requires changing the systematic in question in the icecube simulation chain, and then
re-processing the data. The GRECO processing chain and reconstruction is used in order to obtain
the new estimate. As this process is very computationally intensive the systematics are sampled at dis-
crete values (hence the name), and there has been considerable e�ort in IceCube to produce low-level
standard simulation sets, which are then processed through the GRECO data selection. The analytical
form of systematics is then discretized by the binning in the following way: a �t is performed to the
bin-by-bin event rate at L7, yielding back the functional form representing the evolution of the event
rate as it develops as a function of the discrete systematic, in that individual bin. This functional form
for each bin is then sampled on an event-by-event basis to yield the correct weight for each event. In
summary: using these �ts it is possible to set the discrete systematic parameter to any desired value
within the analysis framework and simply weight the nominal event rate based on the relative strength
of the �t. Several discrete systematics are implemented separately for neutrinos and muons, as they
are simulated separately. The implementation has been developed, tested, and veri�ed independently
on the two sets. In the sample con�guration the discrete systematics for both neutrinos and muons are
kept to the same level when combining the simulations, in order to preserve consistency and physical
correctness.
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Figure 7.2: Fits to the discrete simulation sets for the event rate as a function of DOM e�ciency.
Left: neutrinos. Right: muons. Blue shows the event rate relative to the nominal data set, while
red indicates the �tted function. The black dashed line indicates the nominal value of one. For
neutrinos the event rate relationship with the DOM e�ciency is linear. For Muons the functional
form generally follows an exponential decay, as decreasing the DOM e�ciency exponentially increases
the muon background. However, a few bins display more of a linear relationship, which is also well
described by the exponential �t. Shown here are the �ts for nine bins.

7.3.1 DOM E�ciency

The DOM e�ciency describes the probability for the optical modules to detect an incoming photon
and is an estimate of the combined e�ciency of the quantum e�ciency of the PMT itself, as well as
the transmission coe�cients of the glass and the optical gel. It is usually listed relative to the expected
PMT-only e�ciency. Ie: when the DOM e�ciency is 100% the DOM is equally e�cient to a standard
PMT.

The DOM e�ciency was measured prior to deployment using a sample of 16 DOMs, and was
found to have a relative uncertainty of 7.7% [51]. There are ongoing e�orts in IceCube to improve
the knowledge of the DOM e�ciency, however, in this work a conservative approach will be taken
and the DOM e�ciency is set to 1.00 ± 10%. Like other discrete systematics the DOM e�ciency is
�tted as a discrete systematic with a linear functional form for each analysis bin, giving the relative
weight in the individual bin as a function of DOM e�ciency. A selection of the �ts are shown in the
left panel of �g. 7.2. All analysis bins follow a linear relationship, however, for some bins the scale is
di�erent from what is expected with a change in DOM e�ciency having symmetric e�ects regardless of
whether the DOM e�ciency parameter is raised or lowered. In these cases the �t takes precedent, as
our standard simulation value could be di�erent from the truth and the weight of the events falling in
that particular bin is determined by the value of the �tted function. A higher DOM e�ciency generally
leads to more detected photons at each DOM. More detected light in turn leads to more triggers and
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Neutrino DOM E�ciency

Figure 7.3: Neutrino DOM e�ciency systematic impact on the �nal simulated spectrum including muon
background and noise. Shown is the 2D event rate at the nominal ±1σ values. Upper: reconstructed
space. Bottom: true space. The maximum and minimum event rates change by approximately 10 as
compared to the nominal value, which is what is to be expected when changing the DOM e�ciency
by 10%. Note the e�ect is less pronounced in the high energy downgoing bins, as the majority of the
signal in these bins is made up of atmospheric muons.
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yields better information of interactions in the ice. This gives a more precise event reconstruction,
eventually leading to a higher neutrino event rate at �nal analysis level. The e�ect of varying the
DOM e�ciency to ±10% on the sample at �nal analysis level is shown in �g. 7.3

7.3.2 Muon Dom E�ciency

The impact of the DOM e�ciency on the background muon rate is estimated in the same way as other
discrete systematics: a �t across the simulation sets is performed for each bin with events falling in that
bin, getting re-weighted based on the desired value of the systematic. Note however, that the DOM
e�ciency has an inverted impact for the muon background: increasing the DOM e�ciency increases
the e�ciency of the muon veto yielding a lower event rate, while decreasing the DOM e�ciency
exponentially increases the number of background muons because the veto system su�ers. This e�ect
is non-linear and the correlation is modeled as an exponential decay, which is implemented in the
functional form of the bin-by-bin �t. For the vast majority of bins this relationship holds true, however,
a few bins display a more linear relationship, which can still be well described by the exponential form,
as seen in �g. 7.2. The impact from combining the asymmetric e�ects from both the neutrino- and
muon DOM e�ciencies on the �nal spectrum, are shown in �g. 7.5.

7.3.3 Hole Ice

Figure 7.6: Angular acceptance of DOMs due to
the e�ect of the hole ice.

The drilling process for installing the IceCube
strings involves melting the packed Antarctic ice.
As this water re-freezes over a period of days, im-
purities and gases are pushed to the center of the
drill hole, leading to a vertical so-called 'bubble
column' with a diameter of about 16cm located
at the center of the drill hole. Unfortunately
this bubble column has a much shorter scattering
length than the surrounding ice, yielding the un-
fortunate e�ect of scattering light which would
have otherwise reached the DOMs. Thus, this
e�ect is modeled as a correction to the DOM an-
gular acceptance, which is applied in the sim-
ulation when a photon is incident on a DOM.
Many initiatives have been taken to investigate
the bubble column, the �rst can be attributed
to IceCube's predecessor Amanda [73], with the
latest being implemented in the future IceCube
upgrade. Here the discussion will focus mainly on results from studies using the �ashers on the DOMs.
The acceptance curve is modeled as follows:

0.34

[
1 + 1.5 cos(η)− cos3 (η)

2

]
+ p cos(η)(cos2(η)− 1)3 (7.2)

where η is the angle of acceptance and p is a discrete constant, with a nominal value of 0.25. This
function is illustrated in �g. 7.6 showing each of the discrete values at which the systematic is sampled
(corresponding to the values in table 7.2). Based on this functional form, an event rate dependence
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Muon DOM E�ciency

Figure 7.4: DOM e�ciency impact implemented only on the muon part of the simulation. Top:
reconstructed space. Bottom: true space. Notice the asymmetry arising from the exponential decay
behavior of the muon veto: in the case of an increase in DOM e�ciency we see hardly any decrease in
the muon rate, however, with a decrease in DOM e�ciency the muon rate rises exponentially.
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Figure 7.5: Combined DOM e�ciency impact on the �nal simulated spectrum including muon back-
ground and noise. Top: reconstructed space. Bottom: true space. Notice the clear asymmetric e�ect
arising from the exponential decay behaviour of the muon veto - the regions dominated by neutrinos
lose events in case of a DOM e�ciency reduction, while the regions dominated by muons gain events.
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Figure 7.7: E�ect of implementing the hole ice on the �nal level event rates. Upper: reconstructed
space. Lower: true space. The e�ect depends on arrival direction, this is true in reconstructed space,
but the same e�ect is even more clearly evident in true space.
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on arrival direction is expected when implementing the systematic, and this is exactly what is seen in
�g. 7.7.

7.3.4 Bulk Ice

The bulk ice discrete systematic is implemented as a modi�cation of two separate physical e�ects: the
scattering length in the ice and the absorption length. With a reduced scattering length, less light
is scattered during photon propagation and it is reasonable to expect the reconstruction algorithm
to perform better both for neutrinos and muons. An e�ect not unlike the DOM e�ciency is thus
expected: a reduction in scattering length is expected to lead to more neutrino events and fewer muon
events, due to better veto performance. Note that the parameters are implemented in such a way that
negative values of σ implies less scattering/absorption corresponding to a longer scattering/absorption
length and vice versa. It is thus a priori expected that an increase in either of these parameters will
lead to a decrease of the observed event rate. The bulk ice is modeled in layers of 2cm width in which
the properties are roughly identical. Furthermore, each of these layers have a preferred direction of
light propagation along which there is less scattering/absorption. The discrete sets used here vary
only the scattering/absorption, not any of the other ice properties, as simulations sets including these
were not available at the time of writing. Longer term, these simulation sets should be produced and
included in future analyses.

7.4 Continuous Systematics

Unlike the discrete systematics, the continuous systematics are described by continuous parameters in
the MC software, as given by eq. 7.1. A short overview of the three continuous systematics included
will be given in the remainder of this subsection.

7.4.1 Livetime

The total time of active measurement using the IceCube/DeepCore detector is known as the livetime.
The livetime is calculated based on the timestamps from the IceCube good run list, for the runs included
in the GRECO sample. The livetime is known to second precision for each run, and is summed for
all runs. The livetime is introduced as a constant scaling parameter over all the parameter space,
meaning event rates scale linearly with livetime. Noise rates can in�uence the e�ective livetime due to
electronics dead time, which may lead to the e�ective livetime being reduced, and with livetimes on
the scale of 5 years or more the solar cycle can change the number of neutrino events due to changes
in the primary cosmic ray �ux. These extra considerations are e�ectively included in the livetime
systematic parameters, the prior for which is conservatively set to one percent.

7.4.2 Muon Scale

A scaling factor is introduced to adjust the level of background muons introduced in the MC described
in sec. 4.4. While in reality the muon rate and the neutrino rates are correlated, in the IceCube MC,
they are independent parameters. The muon rates have previously been measured and an uncertainty
of �ve percent has been assigned to the muon rate in this work. While the spectrum shape might
di�er, early investigations in this work revealed a change in the muon spectral index to be of negligible
importance in relation to this analysis. The relative impact on the reconstructed event rates are shown
in �g. 7.10, and show an increase in event rate up to about 6% in the high energy downgoing region.
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Figure 7.8: E�ect of the bulk ice scattering length systematic implementation on the �nal level event
rates. Upper: reconstructed space. Lower: true space.
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Figure 7.9: E�ect of bulk ice absorption on the �nal level event rates. Upper: reconstructed space.
Lower: true space.
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Figure 7.10: Atmospheric muon scale, relative systematic impact at ±1σ levels. Upper: reconstructed
space. Lower: true space.
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7.4.3 Noise Scale

A scaling factor is introduced to adjust the level of background noise included in the MC. The noise
model is described in sec. 4.4, and the scaling factor simply raises or lowers the overall noise rate. The
systematic prior has been set to ±10%, and the impact on the MC event rates are illustrated in �g.
7.11, and lie below the percent level for most of the parameter space.

7.5 Systematic Uncertainty Impact on the Detector E�ciency

In the unfolding scheme we use our MC to generate the response matrix. As we vary a systematic
uncertainty in the MC, this will in turn change the e�ciency calculation and also the response matrix.
This e�ectively implements the impact from each systematic twice, but since this is an inherent feature
in the analysis framework it is impossible to avoid when using this analysis approach under these
circumstances. It is thus necessary to know the value of the e�ciency under changes to the systematics.
This change in the e�ciency has been implemented in the analysis software and can be queried in the
same way as the impact on the event rate. For illustrative purposes, included here is the e�ciency
change due to to DOM e�ciency systematic being set to its ±1σ values, as seen in �g. 7.12. The
impact is on the scale of approximately 5% to 10% with the largest e�ects seen for the high-energy
downgoing region. Interestingly, a part of the parameter space in the straight upgoing region around
14GeV is also sensitive to changes in the DOM e�ciency.

Figure 7.12: Systematics impact on the for the νcc
µ + ν̄cc

µ channel, when setting the DOM e�ciency
parameter to +1σ or −1σ respectively

7.6 Systematics Implementation in Analysis

In this work two di�erent approaches have been employed, a bracketing approach and a Gaussian
sampling approach. The bracketing approach has merit in the case where several systematic parameters
impact the analysis and more than a few have a large e�ect. This method uses the unfolding performed
in three rounds: First for the nominal case, then twice for the cases in which all systematics have
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Figure 7.11: Noise normalization, relative systematic impact at ±1σ levels. Upper: reconstructed
space. Lower: true space.
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been set to their ±1σ pull values, as given by their priors. In this approach correlations between the
individual parameter's e�ect on the unfolded event rate has to be taken into account. Most parameters
are directly correlated in that increasing their values also leads to a higher event rate, however, some
are inversely correlated, where increasing the systematic parameter in question leads to a lower event
rate. The systematic uncertainty on the unfolded spectrum is set as the limit of the two ±1σ extremes.
This method can prove to be overly conservative, as the a-priori likelihood for all systematic parameters
to have true values at their 1σ priors is unlikely. Furthermore, the bracketing approach explores the
'box' in parameter space bounded by the priors - under the assumption of a Gaussian prior this will
be an overestimate, as the multi dimensional shape of a Gaussian prior is elliptical as opposed to the
rectangular shape given by a �at prior.
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8 Analysis and Results

The unfolding analysis is discussed in this chapter, including: the analysis chain, the closure tests, burn
sample tests, and corrections to the binning and �nal level cuts. We then discuss the application of the
analysis method to the unblinded data sample. The chapter begins by exploring the implementation
of the Bayesian unfolding method.

8.1 Choice of unfolding dimensions

Figure 8.1: Cumulative distributions of the recon-
structed track length between interaction types.
νe, ντ , ν

nc
µ and noise can be classi�ed as 'cascade-

like' while νcc
µ and atmospheric Muons can be clas-

si�ed as 'track-like' [60]

The neutrinos interacting in IceCube come in
three �avours. At best each of these could be re-
solved perfectly, but due to detector limitations
in relation to the light output and kinematics of
the events, certain compromises must be made.
The incident neutrinos have at the time of in-
teraction, a certain energy, called the true en-

ergy. Via the interaction this energy is deposited
into daughter products and emitted photons are
eventually detected by the IceCube DOMs. As
described in section 3.5 this process complicates
the perfect identi�cation of incoming particles.
The reconstructed energy is then the energy as
calculated by IceCube based on the collect charge
on the DOMs. One goal of the unfolding method
is compensating for the di�erence between true
energy and reconstructed energy. The same prin-
ciple applies to the incident angle of the incoming
neutrino, resulting in a multi dimensional unfold-
ing problem.

When performing an unfolding in multiple di-
mensions, it is important to realize what those di-
mensions are. Here, we will discuss the decisions
regarding the choice of unfolded channels. The goal of the unfolding is to compensate for detector
e�ects and relate the reconstructed event information to the underlying true values of nature. Four of
the analysis dimensions are: reconstructed energy, reconstructed zenith angle, true energy, and true
zenith angle. As discussed in section 3.5, events are expected to leave a track, a cascade, or a double
bang signature in the detector, depending on the �avor of the incoming neutrino, the energy, and the
interaction type. However, due to detector design, particle identi�cation in IceCube can prove di�cult,
as GeV-scale Muon Neutrino events will leave only a short muon track, and thus display character-
istics similar to those of neutral current cascades encompassing all �avors. The unfolding procedure
can alleviate this issue. It is possible to also unfold by �avour and interaction type, and correlate
observed event topology with true �avor and interaction. This is done by introducing a measure of
'trackness', and by classifying events as 'track-like' or 'cascade-like', based on the reconstructed track
length. Using the GRECO sample the Pegleg reconstruction yields a reconstructed track length Lr,
allowing for the following categorization:

111



Track− like :Lr ≥ 50m (8.1)

Cascade− like :Lr < 50m (8.2)

This characterization is motivated by the cumulative distribution of reconstructed track length
amongst the di�erent �avors as shown in �g. 8.1. Under the assumption that the outgoing muons
in charged current interactions are minimally ionizing, ideally the expected track length is 4.5m per
GeV: L = E

(
1.0GeV

4.5m

)−1
, resulting in ~50m for a 10 GeV particle. The 50m separation has thus been

chosen by the maximum di�erence between the cumulative distributions of true 'track' events and
true 'cascade' events, as seen in �g. 8.1. For the corresponding truth dimension, we select the only
channels expected to leave a clear track signature in the detector: νcc

µ + ν̄cc
µ for one channel and all

other �avour and interaction types for another channel. The pros and cons regarding channel choice
have been carefully considered, and a short summary will be given here: In principle it would be
possible to unfold the di�erent �avours individually and thus group together all muon-, electron and
tau interactions into three unfolding bins. Firstly, this would lead to a shortage of event statistics,
particularly in the ντ bin, as our MC is limited at present to 491094 events (see section 6.6 for a
discussion of MC sample size requirements). Secondly, this would constitute a measurement of the
ντ normalization, which would depend strongly on the oscillation parameters. Thirdly the unfolding
method is imperfect and the small absolute di�erence between events in the νe and ντ channels would
leave the measurement strongly dependent on systematic errors, eg. the DOM e�ciency. By keeping

the νe,
−
νe, ντ ,

(−)
ντ and νnc

µ + ν̄nc
µ signals in the same unfolding bin, the direct dependence of the event

rate on the oscillation is thus reduced. This leaves the unfolded truth side of the unfolding matrix
with a true 'track' channel consisting of νcc

µ + ν̄cc
µ events and one true 'cascade' channel consisting of

all other �avor and interaction types.

8.2 Number of Iterations

The number of iterations in the unfolding represents how many times the output from the unfolding
is reapplied to update the Bayesian prior and unfold again. It is the Bayesian unfolding pendent
to the regularization parameter occurring in other unfolding schemes, and its main function is to
overcome the bias arising from the initial prior. The unfolding framework is built from our nominal
Monte Carlo simulation, so in case of few iterations it will be biased towards this initial prior, while at
higher iterations the unfolded spectrum will converge on the true value. However, with more iterations
�uctuations in the measured spectrum can grow and be blown out of proportion - this applies both to
statistical and systematic deviations. Generally this type of unfolding converges quickly, giving a rapid
improvement in the maximum likelihood estimate, within 3 to 5 iterations [72, 70]. In this section we
will discuss how to balance the bias vs. the uncertainty to set the optimum number of iterations.

8.2.1 Uncertainties and Iterations

As the unfolding method is iterative and takes the output from one step as input to the next, there is a
very real risk of uncertainties becoming in�ated, as they can grow every time a statistically uncertain
quantity is used as input. This e�ect is actually two-fold as statistical �uctuations can also grow with
the number of iterations. It is thus necessary to limit the number of iterations at a small enough value
that these �uctuations and systematic e�ects are still small. However, there is the caveat that if too
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few iterations are chosen, the unfolded sample will be biased towards the Monte Carlo simulation used
to construct the unfolding framework. The growth of statistical and systematic e�ects with number
of unfolding steps must be evaluated. A preliminary investigation of this e�ect was implemented by a
systematic shift in the input spectrum. Section 8.3 will be a small intermezzo to discuss this.

8.3 Pseudo Measurement by Modifying the spectral index

A spectral index shift, δγ, is included as a modi�cation to the �ux based on the energy, due to the
spectral index power law dependence. Several values of δγ are tested by random sampling, resulting
in pseudo experiments, which are systematically and statistically di�erent from the nominal Monte
Carlo. Two versions of the spectral index modi�cation were implemented and tested, and both will be
discussed in the following.

8.3.1 Standard Spectral Index Shift

The nominal spectral index is shifted by a small amount δγ, thus we expect the endpoint of the �ux
distribution as well as the normalization of the �ux to vary. The standard modi�cation is de�ned as
follows:

Φ′νx = EδγΦνx , (8.3)

when just modifying the spectral index directly as a function of energy we thus expect a modi�cation
of the �nal event rate we see in our pseudo experiment. The standard systematic prior on the spectral
index is δγ = ±0.05, and several samples have been produced at values up to three times this standard
value. as illustrated in �g. 8.2.

8.3.2 Spectral Index Shift - With tipping point

The spectral index shift, δγ is included as a modi�cation to the �ux based on the energy, due to the
spectral index power law dependence. Considering our binning running in irregular bins from 0.1GeV
to 600GeV a tipping point was introduced at 27GeV and the modi�ed �ux was de�ned in the following
way:

Φ′νx = A

(
E

27GeV

)δγ
Φνx , (8.4)

where A is an integral preserving constant and δγ is the shift in the spectral index. When the energy
is above the tipping point at 27 GeV, the fraction raised to the power of δγ will be larger than one,
giving an increase in the �ux, and vice versa when the energy is below 27 GeV. The value 27GeV was
chosen as it is roughly in the center of the logarithmic binning range. We thus expect the overall event
rate to be constant, but events to be redistributed around the tipping point, as can be seen in �g. 8.3.

8.3.3 Systematic Prior on the Spectral Index

Knowledge of the spectral index comes mainly from measurements of primary cosmic rays - speci�cally
results from AMS-02 were used by Honda et al. [9] to calibrate their neutrino �ux model at higher
energies, where the index de�nes the endpoint. Looking at data from various sources, plotting the
Cosmic Ray �ux used as input to the HKKM simulation as well as a shift in the spectral index,
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Figure 8.2: Pseudo Measurements obtained by changing the spectral index according to eq. 8.3. Shown
is the �attened spectrum in zenith angle, so that every 12 bins constitute the energy spectrum for one
zenith angle direction. Each pseudo measurement corresponds to a speci�c change in spectral index.
As expected we see a change in event rate, and only a small change in the shape of the spectrum.
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Figure 8.3: Pseudo measurements used as input for the re-smearing test. Shown is the �attened
spectrum in senith angle, so that every 12 bins constitute the energy spectrum for one zenith angle
direction. The spectra shown are for various shifts in the spectral index, using a tipping point at
27GeV , and a rate preserving constant as per eq. 8.4. As expected the shape of the spectrum is
changed, while the overall event rate is constant.
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Figure 8.4: Primary Cosmic ray �ux used as input for the HKKM �ux model, as well as recent data
from various experiments. The HKKM-2015 model uses a spline to the BESS data up to ~100 GeV
after which a power law with index γ = −2.68 is used [9]. The HKKM authors are currently working on
a new version of the HKKM atmospheric neutrino �ux simulation which uses the latest measurements
from AMS-02 and is calibrated by muon measurements. This is as of yet unpublished and we use the
HKKM-2015 model in this work.

corresponding to the standard systematic prior of δγ = ±0.05, as illustrated in �g. 8.4, shows this
prior to be overly conservative in our energy range of interest (0.1GeV to 600GeV). The only issue
comes below a few GeV where a straight modi�cation of the �ux without a tipping point does not span
the di�erence between measurements. The HKKM model authors have been working on an updated
version of the neutrino �ux model, using a spline to the AMS-02 data below 100 GeV, and a power
law with index γ = −1.68 above 100 GeV, as well as muon data to calibrate the normalization [9].
Unfortunately this has not yet been published, therefore this analysis makes use of the HKKM, 2015
model [7]. In general the systematic prior on the spectral index could reasonably be tightened to a
value of δγ = ±0.03. With this in mind the shifts δγ out to ±3σ, used above, extremely conservative.
It is worth noting however, that the models are slightly di�erent due to the tipping point and integral
preserving factor used above. Even so, checking the ±3σ range is more than adequate for investigating
the impact on an unfolding analysis of a shift in the spectral index.
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Figure 8.5: Illustrating the unfolding principle with a pseudo measurement input. The true MC distri-
bution is shown in black, with the response-smeared distribution in blue. From the blue distribution
200 pseudo experiments are drawn, via a Poisson variation around the bin value. One such is shown
in the blue histogram, with the black dots used as pseudo data input for the unfolding. The resulting
unfolded histogram is shown in green.

8.4 Unfolding Ensemble Test

In order to test the impact of statistical and systematic uncertainties and their evolution with the
number of iterations, two instances of an ensemble test are performed, using the same procedure as
described in section 5.4, but in a di�erent software implementation. Two hundred pseudo experiments
are drawn around the nominal reconstructed Monte Carlo simulation, as well as around a reconstructed
spectrum with a shifted spectral index as discussed above in section 8.3. Each pseudo experiment is
then unfolded using the standard unfolding method with all systematics set to their nominal values.
An illustration of the spectra used in this ensemble test is shown in �g. 8.5 The unfolded spectra are
then compared to the MC-truth via a simple χ2 test. The reduced χ2

red for each iteration is de�ned
from the unfolded bin value ui, the true bin value ti and the uncertainty in bin i σi as:

χ2
red =

1

N

N∑
1

(
ui − ti
σi

)2

(8.5)

and is plotted as a function of iteration steps, as shown in �g. 8.6, yield results similar to the preliminary
test performed in section 5.4, in spite of the software di�erence. As expected the nominal case converges
in the �rst iteration after which it cannot improve the match to the truth. The shifted spectrum on
the other hand sees a large deviation from the truth after the �rst iteration, but undergoes a rapid
increase in consistency between unfolded and truth with the �rst few iteration steps. A plateau is
reached in the χ2 distribution after about 15 iterations. These tests con�rm the expected behavior of
the unfolding. The challenge from here on then becomes the optimization of the number of iterations.
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Figure 8.6: Average reduced χ2 as a function of iteration steps, for the two preliminary ensemble tests.
The error bars correspond to the variance among the 200 χ2s. Left panel shows the nominal case
where the unfolding returns the best match to the truth in the �rst iteration and iterating mostly
makes statistical �uctuations grow. Right panel shows the case where the reconstructed spectrum is
shifted by δγ = −0.03, and the unfolding shows a rapid increase in consistency with the �rst few
iterations. A plateau in the χ2distribution is reached after ~10 iteration steps.

8.5 Evolution of the Statistical Uncertainty

The statistical �uctuations in our sample can be enhanced by the unfolding, and the statistical uncer-
tainty will grow as it is fed into the unfolding repeatedly with each iteration step. In order to check
the impact of this the unfolded spectra from the ensemble test above in sec. 8.4 are averaged for each
step of the unfolding. As an example the event rate for a single energy bin is plotted as a function of
iterations in �g. 8.7. The unfolding converges as the unfolded event rate is constant with the number
of iterations, however, the size of the error bars increases with the number of iterations. The behavior
is plotted in the right panel in �g. 8.7, where the di�erent lines illustrate the evolution of the absolute
statistical uncertainty in various energy bins. Even though the error bars look large and the evolution
can seem drastic, the e�ect is modest - reaching only about 5% relative uncertainty in the worst case
scenario of a low statistics bin and 24 iterations.
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Figure 8.7: Evolution of the statistical uncertainty in the unfolding. Left: Unfolded event rate as
function of iterations, averaged over 200 pseudo experiments. The distribution is �at indicating the
unfolding converges as expected at the �rst iteration. The error bars are seen to grow with the number
of iterations, clearly illustrating the enhancement e�ect of the iterative unfolding procedure on the
statistical uncertainty. Right: The evolution of the statistical uncertainty in number of events, with
the number of iterations for various energy bins.

8.5.1 Statistical Uncertainty Method Consistency Check

Figure 8.8: Evolution of average relative statisti-
cal uncertainty with number of iterations for three
di�erent calculation schemes. RooUnfold Hreco(3),
shown in blue, is the built-in method in RooUn-
fold to estimate statistical uncertainties from an
unfolded ensemble. A manual calculation using a
200 trial ensemble is shown in green, and �nally the
matrix-propagation method is shown in red. Good
consistency is seen between all three methods.

In order to verify the above propagation of the
uncertainty, a check was implemented to com-
pare the statistical uncertainty evolution as a
function of number of iterations, across imple-
mented methods. It is important to realize the
statistical uncertainty error bars represent the
range within which 68% of all unfolded random
trials should fall. It is thus possible to verify
the matrix-propagation method described in sec-
tion 6.5 by comparison to uncertainties calcu-
lated from an ensemble of unfolded pseudo ex-
periments. RooUnfold has a built-in method for
testing this, using an ensemble of 20 pseudo ex-
periments [72]. The calculation of the uncer-
tainty is performed as the square root of the co-
variance matrix of the unfolded pseudo experi-
ments. To further verify the evolution of the sta-
tistical uncertainty, an independent method was
implemented as well, in which the statistical un-
certainty is simply taken as the square root of
the variance of the unfolded values. The average
statistical uncertainty over all bins as a function
of iterations is shown in �g. 8.8 and shows good
consistency between all three methods. As ex-
pected the uncertainty grows with the number of
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iterations, and while the starting value is below 0.5% the iterative procedure can push this up to 2.5%
within the 25 iterations tested. The RooUnfold native method is displaying a less smooth curve due
to the relatively low number of pseudo experiments, namely 20. The comparisons performed in this
test con�rm the fast matrix-propagation method to be consistent with expectations and this method
will be employed henceforth.

8.6 Choice of Test Statistic and Stopping Condition

In order to evaluate the consistency between the unfolded spectrum and the truth, a measure of
similarity needs to be introduced. So far we have made use of the simple Pearson's χ2 de�nition:

χ2 =
∑
i

(
ui − ti
σi

)2

, (8.6)

with uj and tj being the bin content of the unfolded and true histograms respectively. σ here represents
the statistical uncertainty on the unfolded spectrum. We expect values of this χ2 to be close to one,
insofar as the unfolded histogram bin values represent a random sampling from a Poisson distribution.
This χ2 de�nition, while measuring the bin-by-bin di�erence between truth and unfolding in terms of
the statistical uncertainty, gives no indication of whether that uncertainty is large or small in absolute
terms. Under the condition that uj − tj is roughly equal to σ, the absolute scale of σ will not be
represented in the numerical value of χ2. This is a weakness of this χ2 de�nition. As the statistical
uncertainty grows with the number of iterations, while the di�erence between unfolded and truth
becomes smaller, the test statistic is expected to rapidly drop with the number of iterations. At high
iterations where the unfolding can diverge, the test statistic is expected to grow, insofar as the shift
becomes larger than the statistical uncertainty. Both of these e�ects are observed in sec. 8.4 and
illustrated in �g. 8.6.

As the main analysis presented in this thesis progresses from an Asimov test, to MC ensemble tests
and onward to burn sample tests including systematics, it is prudent to alter the choice of test statistic.
A choice of test statistic that encodes the similarity of the two distributions is the χ2 de�nition built-in
to ROOT:

χ2 =
1

UT

∑
i

(Uti − uiT )
2

ui + ti
, (8.7)

where U and T are the total number of events in the unfolded and true histograms respectively, while
ui and ti represent the number of events in bin i in the unfolded and true histograms respectively.
This test statistic de�nition does not include a term for the statistical uncertainty. As such it contains
di�erent information than the de�nition in eq. 8.6, as it instead includes the integrated spectrum.
Because the denominator now depends on the event rate instead of the statistical uncertainty, this
measure is not prone to reduction of the test statistic due to growth of statistical uncertainties. This
de�nition is used in many of the ensemble tests which will be discussed in the rest of this chapter.

Setting the stopping condition to the optimal value is a trade-o� between bias in the unfolding
on the one hand, and uncertainties on the other hand. For the Asimov unfolding tests, very little to
no bias is observed, and the above de�nition of the test statistic in eq. 8.7 is used. In these cases it
makes sense to truncate the unfolding when the di�erence from one iteration to the next is no longer
statistically signi�cant: when the di�erence in test statistic from the i'th iteration to the i-1'th iteration
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Figure 8.9: Test statistic as function of iteration. This plot corresponds to the right panel of �g. 8.6,
but with the y-axis in log scale to better illustrate the behaviour of the reduced χ2 as related to the size
of the error bars with the number of evolutions. The vertical black dashed line indicates the stopping
condition from eq. 8.8.

drops below the width of the TS error bar σi, this condition is ful�lled. Thus that stopping condition
can be expressed as:

∆TSi ≤ σi, (8.8)

with i indexing the iterations, σi being the statistical uncertainty and ∆TS = TSi − TSi−1. The
stopping condition for the unfolding ensemble test discussed in section 8.4, is shown in �g. 8.9. This
de�nition of stopping condition does not inherently take into account the statistical uncertainty in the
individual bin, however, as the binning has been optimized to keep the statistical uncertainty around
the few percent level, this is still reasonable - indeed the consistency checks in section 8.5.1 reveal the
relative statistical uncertainty to be below 2.5%, even at 25 iterations.

The TS calculation takes into account the di�erence between unfolded and simulation truth, but
only does so in absolute terms. The goal here is to make the unfolding as precise as possible - the
iterative procedure should be truncated before the iterations bring the unfolding into a regime with
either a large di�erence between unfolded and truth σunf , large statistical uncertainties σstat or both.
In this regard �nding the optimum stopping condition again becomes a trade-o� between unfolding
pull on the one hand, versus uncertainties on the other. It is not justi�able to keep iterating once the
unfolding pull becomes smaller than the error in the measurement. These considerations then lead to
setting the TS to be the envelope of the uncertainty band on the measurement:

TSσ =
1

N

∑
i

(
σupi − σ

dn
i

)2
, (8.9)

where σup
i and σdn

i are the upper and lower edges of the 68% con�dence interval of the measurement,
with σi de�ned as follows:

σ2
i = σ2

stat + σ2
sys + σ2

unf (8.10)
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Figure 8.10: Hypothetical evolutions of the test statistic with the number of iterations.

The stopping condition is then given as the iteration corresponding to the minimum of the envelope
TS:

nstop = i (min [TSσ]) (8.11)

With the test statistic de�ned, a more general stopping condition must be imposed. It is generally
favorable to minimize the test statistic, except in cases where the evolution of the test statistic is
divergent. Figure 8.10 discusses the hypothetical scenarios of the TS evolution with the number of
iterations. Depending on the shape of the distribution the strategy for setting the stopping condition
will be slightly di�erent. A short discussion of the di�erent cases follows. In case A, the stopping
condition value sharply increases and does not converge, showing a minimum at one iteration (�g.
8.10). As using just one iteration would introduce a bias in the unfolding towards the MC this should
be avoided. The initial increase will be disregarded and the number of iterations will then be set
to �ve, as prescribed by D'Agostini [70]. In case B, the distribution converges towards zero and the
number of iterations will be set to the value corresponding to the minimum of the curve within the
sampled number of iterations, in this case 25. In case C the distribution sharply increases before
tending towards a plateau. For similar reasons as in case A the initial increase will be disregarded and
the stopping condition will be set at the point where the derivative of the curve drops below 1% of
the TS value. In case D where the distribution displays several minima, the stopping condition will
be set to the minimum corresponding to the lowest TS value. In case E, the initial increase will be
disregarded for the same reasons as in case A and C. The distribution at iterations above the increase
will then be minimized according to the logic from case D. The cases are summarized in table 8.1.

8.6.1 Statistics Only Unfolding

Based on the ensemble tests performed in section 8.4, it is now prudent to explore what an actual
unfolded result would look like. To accomplish this, a preliminary closure test is performed without
weighting the prior term. A pseudo experiment is drawn from the standard MC via a Poisson varia-
tion around the individual bin values, and unfolded using the D'Agostini Bayesian unfolding method
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Figure 8.11: Statistics only closure test results for each cos(θz) bin. The error bars are small and
represent statistical uncertainty only. The oscillations impact can be clearly seen for the upgoing bins.
Good agreement is seen for all bins to within the few percent level.
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Case Logic

A Stop after 5 iterations
B Global Minimum
C Disregard initial increase, set by 1% change.
D Global Minimum
E Disregard initial increase + Global Minimum

Table 8.1: Logic of setting the stopping condition for the hypothetical cases shown in �g. 8.10.

described in chap. (5.2). Five iterations are used and the unfolded results for each cos(θz) bin are
shown in �g. (8.11). All unfolded bins show good agreement with the input MC and the statistical
uncertainty is in the few percent range for all bins. This gives a strong indication that the analysis is
systematics dominated. With this test done, a preliminary comparison of the statistics only unfold-
ing results to the Super-K atmospheric �ux unfolding can be performed. This is covered in the next
section.

8.6.2 Expectation: Comparison to Super-K

Using the standard binning, a pseudo experiment is drawn from the reconstructed MC and unfolded
using the standard 5 iterations from D'Agostini [70]. Including no systematic uncertainties, it is possi-
ble to get an early expectation of the validity of this measurement as compared to Super Kamiokande
results [3]. For the two PID channels, the unfolded spectra relative to the input in the statistics-
only case is shown in �g. 8.12. As expected the statistical uncertainty on the unfolded values is on
the percent level and measurements IceCube should be highly competitive in this �eld, provided the
systematic uncertainties can be su�ciently controlled.

8.7 Re-Smearing Closure Test

As mentioned above, in the case of few iterations (e.g. 1-2), the unfolded result might be biased
towards the initial prior. However, when testing for this, we must factor in that we do not a-priori
know the speci�c properties of the measurement to come. We will just measure some event spectrum
and proceed to unfold it. We can simulate this scenario by generating pseudo experiments which are
statistically di�erent from the standard Monte Carlo and then use those as pseudo measurements to
which the unfolding method is applied. This will allow a closure test of the unfolding with regards to
the compatibility of the unfolded spectrum, even when the truth which gave rise to the measurement
is unknown (indeed - this is what we are trying to estimate!). The procedure goes as follows:

1. Generate an input pseudo measurement - based on the reconstructed MC sample. (Blue in �g.
8.13)

2. Draw N pseudo experiments around the pseudo measurement - in this case we will use 200.
(Black dots in �g. 8.13)

3. Unfold each pseudo experiment into true space (Green in �g. 8.13)

4. Smear the unfolded pseudo experiments by the response matrix used - this is then named the
re-smeared histogram (Orange in �g. 8.13)
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Figure 8.12: Unfolded pseudo experiment shown relative to input MC, marginalized over the cos(θz)
dimension. Upper: νcc

µ , Lower: νe + ντ . The IceCube data points all fall close to one, meaning the
unfolding is consistent. The error bars show statistical uncertainty only, and are low compared to the
Super-K unfolding results, indicating this analysis to be systematics dominated.
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Figure 8.13: Illustrating the principle of the re-smearing test. One of the 200 pseudo-data inputs is
shown in black dots and the unfolded histogram is shown in green. Each unfolded histogram is then
re-smeared via the response matrix, and is shown here in orange. Each re-smeared histogram is then
compared to the smeared distribution from which the pseudo-measurements are drawn.

5. Do a test statistic comparison of the re-smeared histogram to its corresponding pseudo measure-
ment for each unfolding step - in this case up to 25 steps.

6. Average the test statistic from the 200 comparisons between unfolded spectra and pseudo exper-
iments

7. Optimize the number of iterations by minimizing the average test statistic

The process is named re-smearing as a �rst detector smearing is included in the MC-sample.

8.7.1 Re-Smearing Toy MC Consistency Test

In order to verify the above algorithm and con�rm its behavior, a toy MC study is implemented. A
response matrix is generated by sampling two di�erent Gaussian distributions to give both a smearing
and a systematic shift from true space to reconstructed space. A curve with di�erent parameters is
then used as a simulation of the underlying truth of nature. All these distributions are illustrated
in �g. 8.14. The true and reco distributions are then randomly sampled 200000 times to generate a
binned version of the response matrix as well as true and reco histograms corresponding to the axis
projections of the response matrix. These histograms are illustrated in the two top panels of �g. 8.15.
The following closure tests are then performed: �rstly the response matrix is applied manually to
the truth histogram, to verify that this procedure correctly yields a result compatible with the reco
histogram of the response matrix. This is illustrated in the red dashed line in the upper left panel
of �g. 8.15. The smeared histogram is then unfolded using the standard D'Agostini implementation
for �ve iteration steps. The resulting histogram is illustrated by the green dashed line in the upper
right panel of �g. 8.15. As a �nal closure test a true spectrum is generated by discretizing the truth
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Figure 8.14: Toy MC distributions used to generate detector response and natural truth. Blue: As-
sumed prior knowledge of natural truth, which goes in the truth side of the response matrix. Orange:
Reconstructed spectrum which goes in the reco side of the response matrix. Green: Independent dis-
tribution used as natural truth to be 'discovered' by the unfolding. The generated response matrix
thus describes the detector smearing from truth (blue) to smeared (orange).

distribution in �g. 8.14 and weighting it to 391 events. It is then smeared and unfolded using �ve
iteration steps. The discretized and unfolded histograms are shown in the bottom right panel of �g.
8.15. We see good agreement in all closure tests, this implies the toy MC is implemented correctly and
the software behaves as expected.

8.7.2 Uncertainties and Iterations

Here we investigate the impact from the uncertainties as a function of the number of iterations. In this
case we take the nominal Asimov pseudo measurement as input and perform the re-smearing test from
sec. 8.7 for each systematic parameter individually. This will reveal which systematics contribute the
most to the uncertainty, which we already have good indication of from the investigations in chapter
(7). However, this section will give an indication of the degree to which the unfolding can compensate
for the systematics impact. The systematic uncertainty on the unfolded measurement as a function of
iterations is shown for each systematic parameter in �gures 8.168.178.188.19. A convergent behavior is
observed in certain bins, while in others a divergence from the pseudo measurement is observed. Most
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Figure 8.15: Response Matrix and Closure tests of the Toy MC implementation. Top Left: Reco
histogram of the response matrix and smeared truth of the response matrix. Top right: Response
matrix truth and unfolded histogram of the smeared truth spectrum. Bottom left: Response matrix as
used in this toy mc test. Bottom right: Pseudo experiment drawn around the reco spectrum, unfolded
with 5 iteration steps. We see good agreement in all cases.
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DOM E�ciency Systematics Impact

Figure 8.16: The relative impact of the DOM e�ciency in the re-smearing unfolding test. Top: track
channel. Bottom: Cascade channel. Left: DOM e�ciency at −1σ. Right: DOM e�ciency at +1σ

of these systematic uncertainties fall in the 1 − 10% range, however particularly the cascade channel
shows larger impact from the bulk ice in the downgoing direction. Overall this indicates that we can
expect a �nal systematic uncertainty on the order of 10%

8.7.3 Combined Extremum Test

In this test we use the modi�ed pseudo measurements as input and set all systematics to the value
within the ±1σ range where they have the maximum impact. We then perform the re-smearing test
under these circumstances in order to investigate the balance point between bias and uncertainties.
The results of this test showed a signi�cant pull away from the central value at 10 iterations, which
was found to be caused by the correlations between the systematic parameters not being correctly
accounted for. These correlations were corrected for and implemented in future systematics tests.

8.8 Re-smearing Test with Modi�ed Input

Here we seek to test the impact of our a-priori ignorance of the input spectrum. In order to assess the
�nal number of iterations we must consider that we do not know the truth related to our measured
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Hole Ice Systematics Impact

Figure 8.17: The relative impact of the Hole Ice in the re-smearing unfolding test. Top: track channel.
Bottom: Cascade channel. Left: Hole Ice at −1σ. Right: Hole Ice at +1σ i
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Bulk Ice Scattering Systematics Impact

Figure 8.18: The relative impact of the Bulk Ice Scattering in the re-smearing unfolding test. Top:
track channel. Bottom: Cascade channel. Left: Bulk Ice Scattering at −1σ. Right: Bulk Ice Scattering
at +1σ
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Bulk Ice Absorption Systematics Impact

Figure 8.19: The relative impact of the Bulk Ice Absorption in the re-smearing unfolding test. Top:
track channel. Bottom: Cascade channel. Left: Bulk Ice Absorption at −1σ. Right: Bulk Ice
Absorption at +1σ
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Atm. Index change -0.15 -0.1 -0.05 0.0 0.05 0.1 0.15
Unfolded Events 74175.3 85818.9 100305.7 116923.9 136426.9 160018.2 188615.4

νµ normalization 0.85 0.9 0.95 1.0 1.05 1.10 1.15
Unfolded Events 102911.1 107214.6 112365.7 116923.9 120430.4 126201.5 130413.0

Table 8.2: Parameter variations in the re-smearing test for setting number of iterations.

spectrum - indeed this is what we are attempting to estimate. When making an actual measurement
we do not know how systematically and statistically separated that measurement will be from the
Monte Carlo used to generate the unfolding matrix. We see however, from previous tests, that when
a systematic and statistical di�erence exists between the measurement and MC used, more iterations
are needed to recover the true values (see sec. 8.3). All our previous tests have been performed with a
known truth, the question now becomes how to optimize the number of iterations in case of an actual
measurement with no known truth. We propose the following: we generate a pseudo-measurement
by appropriately modifying the reconstructed MC - be it as a modi�cation of the spectral index or
normalizations of the di�erent neutrino species. This pseudo-measurement will have no truth directly
associated with it, and will in this test serve as our actual measurement. We now seek to investigate how
well we can re-establish this spectrum through our unfolding and response matrix. As the measurement
is statistically di�erent from our MC the �rst step is to draw a number of pseudo experiments around
the measurement, in order to generate an appropriate ensemble. Each pseudo experiment is then
unfolded using the standard unfolding object, yielding an unfolded spectrum. In previous tests, this
was then compared to the true MC spectrum, but as no such spectrum is available in this case, we
instead do the following: we apply the response matrix to each unfolded spectrum and directly compare
this re-smeared spectrum to the measurement from which it was generated. This will then, over an
ensemble of 200 pseudo experiments inform us how many unfolding steps on average are needed in
order to recover our measurement from an estimated truth. This method may seem cumbersome, but is
necessary, since the di�erence from our actual measurement to our MC is inherently unknown in case of
a blind analysis. We perform these re-smearing tests for a set of variations on the atmospheric spectral
index as seen in table 8.2. The comparison between re-smeared and experiment is quanti�ed the usual
way via a test statistic, and we plot it averaged over the 200 pseudo experiments in the ensemble as
a function of iterations. The test results are shown for the sampled values of the spectral index in
�g. 8.20. The distribution indicates most values of spectral index shift have little to no impact on the
analysis, however, larger shifts away from the nominal value clearly display the expected behaviour of
a quick drop in test statistic. This shows the unfolding is converging rapidly on the input value, and
indicates the unfolding procedure is able to compensate for the systematic di�erence in spectral shape
between the input spectrum and the MC.

8.9 Closing Remarks on the Re-Smearing Test

With all the above considerations of the re-smearing closure test, a few comments are in order. The
re-smearing test seems to be highly sensitive to systematic uncertainties and can only compensate
moderately by the number of iterations, as high iteration counts lead to divergence. Furthermore,
there is a logical consideration to be made: the re-smearing procedure in principle only tests whether
the process of unfolding and then re-folding is considered closed (the process output converges on the
input value). The unfolded result could fall anywhere within the parameter space, potentially very
far from the true value, and as long as the re-smearing is closed, this test would not be able to reveal
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Figure 8.20: Average reduced χ2 as a function of unfolding iterations. Each line represents a di�erent
ensemble of 200 trials drawn from our reconstructed MC modi�ed by a factor on the spectral index.
For all but the δγ = +0.15 case, the re-smeared spectra are within approximately 1σ of the pseudo
experiment already after three to four iterations.
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Figure 8.21: Analysis �ow of the TSU closure test. A pseudo truth is generated by unfolding the
reconstructed MC. This is then re-smeared, an ensemble is drawn and unfolded after which the �nal
unfolded spectrum is compared the the pseudo truth.

it. Thus the re-smearing test does not reveal anything regarding the unfolded truth or say anything
regarding how close that unfolded truth is to the actual truth of nature. Such a comparison is only
possible when the truth is known, so is typically performed versus the best-estimate MC. Since the
analysis method should be as model agnostic as possible, a method should instead be developed that
is independent of the MC, but at the same time gives an indication of how close the unfolded spectrum
resembles an underlying true spectrum. For this purpose, the truth-smearing-unfolding (TSU) test
was devised, and it is the topic of the next section.

8.10 Closure Test: Truth-Smearing-Unfolding (TSU)

With the following test the aim is to show the unfolding is able to overcome a statistical and systematic
di�erence between the natural truth (population) and the MC used to construct the response matrix.
At the same time this test will account for the lack of prior knowledge of the natural truth, as this is
a priori unknown in a real analysis. In previous sections the unfolding has been compared either to
the simulation truth or re-smeared and compared to the input pseudo measurement. However, when
running the analysis on real data it is impossible to compare to a truth in order to set a reasonable
stopping condition. It is of course possible to compare to the MC truth, but that gives a strong bias
towards the MC and basically voids the reasoning behind the entire unfolding procedure. It has also
been shown that the variations due to re-smearing are small and that the re-smearing alone is not an
optimal measure of the quality of the unfolding. Therefore the TSU-test was introduced to compensate
for the a priori lack of knowledge of the underlying natural truth. The TSU test is shown in schematic
form in �g. 8.21, where a pseudo truth is generated, smeared and then unfolded.

The pseudo truth is generated by unfolding the standard reconstructed MC using the standard
5 iterations as recommended by D'Agostini. The unfolded spectrum is then re-smeared by applying
the response matrix (similarly to the re-smearing test). This re-smeared spectrum then forms a basis
from which an ensemble of pseudo experiments are drawn and individually unfolded. In following
the previous sections, the distributions involved are conceptually illustrated in �g. 8.22. The orange
histogram represents the re-smeared standard unfolding, from which the pseudo data is drawn (black
dots). Each is then unfolded (purple) and is tested via the usual test statistic against the pseudo-
truth (green). This is done for 25 iteration steps and all results are recorded. The test statistic
distribution is plotted as a function of number of iterations to set the stopping condition. 25 iterations
was chosen as the maximum based on previous distributions showing minima at under 15 iterations,
and to preserve computing power. This test reveals how many iterations we realistically need when
the unfolded spectrum is statistically and systematically di�erent from the truth used in creating the
unfolding matrix. The next sections will cover the results of the TSU test in the statistics only case,
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Figure 8.22: Conceptual Illustration of the distributions involved in the TSU test. A pseudo truth
(green) is generated from the input MC by unfolding the reconstructed spectrum (blue) using the
standard 5 iterations as prescribed by D'Agostini. This is then re-smeared (orange) and from the
re-smeared distribution an ensemble of pseudo experiments are drawn (black dots). Each pseudo ex-
periment is then unfolded (purple) and the stopping condition set by comparison between the unfolded
and the pseudo truth.

as well as including systematics in order to prepare for a data challenge test.

8.11 TSU - Statistics Only

In order to con�rm the impact on the analysis and assess the consistency of the TSU test, it is
appropriate to run the TSU test in a statistics only case. All systematics are kept �xed at their
nominal values and the pseudo measurement is taken from the standard MC. The unfolded results
using 1 and 25 iteration steps are shown in �g. (8.23), and show good agreement between the unfolded
spectrum and the MC truth, at the few percent level. In a realistic unfolding scenario we would look
at the test statistic distribution to set the stopping condition, which brings us to the next section.

8.12 TSU Systematics Test

Having a good understanding of the statistical behaviour in the TSU test we can now proceed to
include all the systematic parameters. This includes the discrete systematics described in chapter
7, both on the expected spectra and the selection e�ciency. The implemented method uses the
standard bracketing approach for systematics described in section 7.1. As the systematic uncertainties
impact the calculation of the unfolding matrix, they are expected to have a signi�cant impact on the
unfolding itself. The Bayesian iterative unfolding can compensate to some extent: with a high number
of iterations the unfolding can enter into the divergent regime. The results of the TSU test including
systematics is shown in �g. (8.25), and we can conclude:

� Systematics impact the unfolding
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Figure 8.23: Unfolded pseudo experiment in the statistics only case, for 1 iteration (left) and 25
iterations (right). Top row shows energy spectra, bottom row shows the zenith angle dependency.
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� Bayesian unfolding can compensate to some extent

� Impact from systematic depends on number of iterations

In continuation of these points, it is appropriate to turn our attention to the test statistic scores as
a function of iterations. As shown in �g. (8.26), the choice of test statistic now plays an important
role in setting the stopping condition. When using the ROOT χ2 de�nition (eq. 8.7), which ignores
uncertainties the unfolding consistency is seen to increase with the number of iterations. This however
measures only the distance between the data points, while also considering the integrated spectrum.
The consistency increasing over iterations is illustrated in �g. 8.24, showing the TSU MC Truth and
the unfolded spectrum for several iterations. A clear convergence towards the truth spectrum with
the number of iterations is observed. When also considering statistical and systematic uncertainties as
in 8.9, the picture changes: The most favorable iteration is now one, as the unfolding converges well
within the error bars after the �rst iteration. While the di�erence between unfolded spectrum and the
pseudo truth decrease, the error bars on the unfolding on the other hand increase and dominate over
the former, leading to an increase in test statistic. The valid choice is to include the total uncertainty,
since the iteration-to-iteration variation in the unfolded spectrum is smaller than the uncertainty and
this method includes more relevant information. Section (8.6) and �g. (8.10) prescribes how to set
the stopping condition in case of the test statistic distribution seen in the right panel in �g. (8.26):
Ignore the �rst four iterations to avoid bias, and then minimize the distribution from there. In this
case such a method leads to setting the stopping condition to 16 iterations. With the considerations
on systematics and how to set the stopping condition thoroughly tested on simulation, the next section
describes similar testing performed on a small subset of the �nal data sample.
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Figure 8.24: True and unfolded distributions for the TSU unfolding test. Top row: zenith angle
spectra. Bottom row: Energy spectra. Left: Cascade channel. Right: Track channel. The unfolded
spectrum converges on the TSU truth with the number of iterations in all insets, but can be di�cult
to identify for the energy plots due to the power law behaviour of the spectrum.
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Figure 8.25: Marginalized unfolded distributions for the TSU closure test including systematics. Left
column: Energy. Right column: cos(θz). Top: 1 iteration. Middle: 15 iterations. Bottom: 25
iterations. The highest energy bin slowly converges on the input MC with the number of iterations,
where as the upgoing and horizon regions are being pulled away from the MC with the number of
iterations. The stopping condition is calculated using the unmarginalized 2D spectrum.

140



Figure 8.26: TSU closure test stopping conditions. Left: Standard calculation based on eq. 8.7. Right:
Full test statistic based on minimization of the total uncertainty as given in eq. 8.9. The contrast
between the two is striking, with the full test requiring only one iteration as the unfolding is consistent
within the error bars already at that stage.

8.13 Burn Sample Unfolding

In order to test the analysis method on real data without unblinding the analysis, a small subset of
data was prepared: 10% of the full sample was used, with a random sampling from each of the �ve
analysis years. This was then used as input for the TSU test, in order to check consistency with the
MC only tests, before proceeding to blind checks on the full data sample. Two burn sample tests were
performed: One using the standard burn sample and one in which all events were weighted by a factor
of ten to compensate for the lack of statistics. The test statistic stopping condition for the two cases are
shown in �g (8.27). The two distributions are clearly di�erent, illustrating the impact on the stopping
condition a lack of statistics can have in this analysis. At �rst glance the standard burn sample seems
to have lower test statistic values than the scaled version. However, it is important to realize the test
statistic minimizes the total uncertainty band on an absolute scale, leaving the normalizations not
directly comparable. Any e�ect on the stopping condition directly transfers to the unfolded results,
underlining the need for adequate statistics. Moving on to the unfolded results from the burn sample
tests, the statistics only case is shown in �g. (8.28) (unscaled) for 2 and 21 iterations, in order to
illustrate the state of the unfolding in the unscaled case. The full uncertainty treatment is shown in
�g. (8.29) (unscaled) and (8.30) (scaled). Both the unscaled and the scaled versions are included to
illustrate the impact of sample size on the overall uncertainty. at 21 iterations the statistics only case
shows good agreement to within a few percent with the MC Truth, which in this case is represented
by the input pseudo truth and can thus be di�erent from the standard MC truth.

The results of the burn sample test are mostly consistent, however, a few discrepancies were dis-
covered, which will be discussed in the following sections.

8.13.1 TS Distribution - checks on width of distributions

The 200 individual trials drawn from the re-smeared spectrum are unfolded and compared against
the pseudo-truth using the χ2 test given in eq. 8.7. The average value of the χ2s is plotted as a
function of iterations and is shown in �g. 8.31. The error bars show the square root of the variance
of the test statistic distribution for the ensemble. This however, assumes an underlying Gaussian
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Figure 8.27: Stopping condition, showing the average TS of the ensemble as function of iterations, with
the minimum marked in the dashed red line. TS is calculated as given in eq. 8.11. Left: Standard
10% burn sample. Right: Scaled burn sample. At �rst glance the standard burn sample seems to have
lower TS values than the scaled version. However, it is important to realize the test statistic minimizes
the total uncertainty band on an absolute scale, leaving the normalizations not directly comparable.

distribution. Interestingly the error bars in the MC test grow with the number of iterations up to
about ~10 iterations, before declining as iterations increase. This behaviour has not been seen in any
of the previous tests and is unexpected. The size of the error bars as function of iterations is shown
in the right panel of �g. 8.31. A histogram of pseudo experiments in the ensemble as a function of
their test statistic and grouped by iterations is shown in �g. (8.32). The widening of the error bars is
then understood to be a consequence of the individual pseudo experiments in the ensemble converging
towards the truth at slightly di�erent rates. Not only does the central value of the TS distribution
shift to lower values with the number of iterations, the shape of the distribution also changes, yielding
the unexpected behaviour in the right panel of �g. (8.31).

8.14 Burn Sample: An Unfolding Discrepancy

This section will take a look at a historical version of the TSU test utilizing a 10% burn sample, which
led to an update of the binning used in the analysis. These were preliminary tests and revealed a few
issues which had to be corrected. Investigating the marginalized spectra for the unfolded burn sample
in �g. 8.33, revealed two issues: �rstly the highest energy bins display a bias upwards of 10% as well
as a large uncertainty compared to the MC-only TSU test (which has uncertainty on the one percent
level, see �g. 8.25). The discrepancy for the marginalized energy spectrum is illustrated in �g. 8.34,
which shows the ratio of the unfolded spectrum to the MC truth. Secondly the νcc

µ channel shows
a large systematics impact of up to 20% in the mid-range energy bins as can be seen in �gures 8.33
and 8.30. These e�ects could be caused by events creeping into the analysis region from outside the
binning range. A series of checks were implemented in order to further investigate the discrepancies.
In the following sections these checks and the resulting outcomes are discussed.

8.14.1 Binning Optimization Revisited

A possible cause of the discrepancy in the unfolding outcome was suspected to be data/MC mismatch,
which has been known to be an issue in other analyses utilizing the GRECO sample. In those cases
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Figure 8.28: Burn sample unfolding in the statistics only case.
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Unscaled

Unscaled

Figure 8.29: Burn sample unfolding in the full systematics case.
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Scaled

Scaled

Figure 8.30: Burn sample unfolding in the full systematics case.
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Burn

Figure 8.31: Left: Average χ2 as a function of iteration. The error bars represent the square root of
the variance in the ensemble. Right: Error bar size as function of iterations. Interestingly the error
bars grow up to ~6 iterations, before dropping o�. The slight cross-over at high iteration number is
due to the behaviour of the unfolding matrix, when having less statistics.

Figure 8.32: Distribution of TS values for the ensemble, grouped by iteration. As iterations increase the
TS decreases and the distribution slims considerable (albeit with a bit of an upper tail). Distributions
for intermediate iterations values are seen to be wider.
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Figure 8.33: Unfolded results of the burn sample TSU test - Left: Energy. Right: cos(θz). Notice the
width of the uncertainty band for the energy plot widening in the energy range between 10 and 100
GeV.
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Figure 8.34: Outcome of the burn sample TSU closure test for
(−)

νµ
cc

channel using the standard binning,
reaching up to 300 GeV in reconstructed space and 600 GeV in true space. Graph shows the average
outcome of the ensemble relative to the pseudo-truth used in the TSU test. As can be seen the highest
energy bin su�ers from poor consistency and high variance.

Figure 8.35: Outcome of the TSU test when changing the binning. Left: Lowering the upper edge of
the highest energy bin from 600 GeV to 250 GeV, a large discrepancy over almost the entire energy
range can be observed. Right: Adding two more bins with edges at 200 GeV, 250 GeV and 1Tev
shows the unfolding to be stable up to about 200 GeV, but does not resolve the discrepancy at higher
energies.

148



the discrepancies were solved by lowering the energy threshold and imposing a cut at E < 54GeV
[60]. Building on those previous observations, the �rst attempt was to lower the edge of the highest
energy bin from 600 GeV to 250 GeV. The TSU test was then repeated and the result is shown in
the left panel of �g. 8.35. This led to an increase in the discrepancy and a further shape di�erence
across almost the entire energy spectrum as compared to the results using the standard binning (�g.
8.34). This is a clear indication the e�ect is di�erent from what was seen in other GRECO analyses.
Extending the binning range to 1 TeV and adding another two bin edges at 200 GeV and 250 GeV
revealed the unfolding to be relatively stable up to about 200 GeV as can be seen in the right panel
of �g. 8.35. However, extending the binning up to 1 TeV did not fully alleviate the issue. This also
gave an indication that the discrepancy was only present at high energies, and a possible cause could
be migration of events from outside the binning range.

Plotting the true energy distribution of events for each reconstructed energy bin illustrates the bin
coverage of the sample and is shown in �g. 8.36. As can be seen from the �nal cell at the bottom
right, even with an energy cut at 1 TeV, the sample is still under represented in the highest energy
reconstructed bin. This underrepresentation due to the highest bin edge is highlighted in �g. 8.37.
Many events are lost and neither included in the response matrix nor in the unfolding matrix. Thus
these events create an under �uctuation in the estimates of the detector performance, leading to the
discrepancy seen at energies above 200GeV. Adding yet another bin from one to �ve TeV to catch this
in the unfolded spectrum solves the issue as shown in �g. 8.38. However, the highest energy bin shows
large uncertainty and there is no way to further verify that all the possible migration e�ects have been
covered. This bin is therefore treated as an 'over�ow' bin which only exists to catch these events and
help provide the correct coverage and stability for the rest of the unfolding bins. The content of this
bin is not included in the �nal analysis, and the updated binning is shown in table 6.2. The updated
burn sample TSU test with the revised binning is shown in �g. 8.39.

8.14.2 Muon Background Investigation

A high level of impact from systematic uncertainties are seen in the central energy bins between 10GeV
and 100 GeV, and while somewhat alleviated still persist after the binning correction in the previous
section. At �rst glance this could be an artifact of the unfolding treating the muon background
incorrectly, with events migrating into the sample from outside the energy range. However, with
the changes above, the unfolding now goes all the way up to �ve TeV (including the over�ow bin),
adequately covering the entirety of the energy region of the muon component.

The high systematic uncertainty seen in the central energy bins was suspected to be caused by
background. The true and reconstructed MC muon distributions for energy and zenith angle are
shown in �g. 8.40. The main Muon contribution in reconstructed space coincides almost one to one
to the location of the unexpected uncertainty in the energy spectrum. The impact on the overall
uncertainty is thus likely to arise from the number of muons reconstructed into those bins, which are
then unfolded into the background bin. The standard Muon suppression in the GRECO sample, even
though highly e�cient, is not able to remove enough muons that this e�ect is not seen, hinting at a
discrepancy between the MC and data for the muons. A thorough investigation regarding data/MC
agreement of the muon background could be useful, but is beyond the scope of this thesis at this point.
However, as illustrated in �g. 8.40, about 70% of all reconstructed muons fall in the downgoing region
above the horizon. In order to suppress the muon background in the marginalized energy spectrum, a
cut on the zenith angle is enforced. This will of course also a�ect neutrino event rates in the downgoing
region, however, since most neutrino events are either upgoing or around the horizon it is reasonable to
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Figure 8.36: True neutrino energy by reconstructed bin, giving an overview of which true energy values
end up migrating into which reconstructed bins. Events are shown unweighted, in order to illustrate
the spectrum used for building the response matrix. The standard binning goes up to 600 GeV. The
sharp line in the top left panel is due to the IceCube simulation not extending below 1 GeV.
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Excluded

Figure 8.37: True energy coverage for the �nal reconstructed bin from 100 GeV to 300 GeV. Because
the standard true energy binning only goes up to 600GeV in true space, many events are lost and not
included in the unfolding matrix.

Figure 8.38: TSU unfolding closure test after application of �xes in section 8.14.1 and 8.14.2. Data
points show the average unfolded value of the 200 pseudo experiments. Two bins with edges at 200
GeV, 1 TeV, and an upper edge of 5 TeV were added. The �nal bin marked in red is treated as an
over�ow bin and not included in the �nal analysis.. The unfolding is consistent to within a few percent
up to 1TeV. The highest energy bin from 1-5 TeV, marked in red, is treated as an over�ow bin and
not included in the analysis.
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Figure 8.39: Burn sample TSU test performed with updated binning. The last bin bias has been
reduced to about 5% and now falls within one standard deviation of the pseudo truth.
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Figure 8.40: Distribution of muon events at �nal level. Left: Energy. Right: Cos(θz). As expected no
upgoing muons are seen.

apply a cut at cos(θz) > 0.04. Note this cut is only enforced when marginalizing the unfolded spectra,
and thus has no e�ect on the unfolding matrix.

8.14.3 Resolving the Discrepancy

The �xes described in the two previous sub-sections are implemented in the TSU-test. The consistency
plot in �g. 8.38 reveals the issue to be largely resolved. The unfolded results using the updated binning
and the new zenith angle cut are illustrated in �g. 8.42. The analysis is rerun and the stopping
condition plot is shown in �g. 8.41, giving the optimum number of iterations as 21, which is consistent
with the previous scaled burn sample test. The results for the statistics only case, as well as the full
systematics treatment using the sampling approach from the following section are shown in �g. 8.42
and �g. 8.43 respectively. The updated burn sample TSU test displays a far more reasonable impact
from systematics in the region of the energy spectrum previously a�icted with large systematic errors,
and the bias in the highest energy bin has been resolved. This means the bias is so small it can be
safely ignored, since all data points agree with the truth well within the standard 1σ error bars.

8.14.4 Systematics: Bracketing vs. Random Sampling

The preliminary method selected for this analysis was a bracketing approach due to historical reasons.
However, further investigation of the systematic uncertainties, particularly the oscillation parameters,
led to the conclusion that not all parameters had their maximum pull values at their 1σ extent of
their prior. Another approach was necessary to investigate the over/under estimation due to this
discrepancy. Drawing trial sets out of all systematic parameters within their priors has previously
been used in literature [3], but runs the risk of under-sampling the systematic parameter space if the
number of samples are smaller than ~10 samples per dimension. In our case we have shown certain
parameters to be dominant while others have only minimal e�ects on the expected spectrum shape, as
discussed in chapter 7 and section 8.7.2. The systematic impact in this analysis is dominated by the
four discrete systematic parameters, meaning it is feasible to draw random samples from our parameter
set and unfold those in order to get an estimate of the uncertainty. 1474 trials are drawn and each
trial is taken as pseudo-data as input for the TSU-test. As random trials are drawn each systematic is
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Figure 8.41: Test statistic as function of iterations for the scaled burn sample unfolding including
the updated binning and the cos(θz) < 0.04 cut. The optimum number of iterations is 21, which is
consistent with the scaled burn sample test without the modi�cations.

sampled at 1474 random values and as only 4 systematics dominate, this should be an adequate number
of samples to get a good estimate of the uncertainty. The unfolded spectra are shown in �g. 8.44 as
gray curves superimposed over the previous result from the bracketing approach. Generally the two
approaches show good agreement, however, the bracketing approach seems to be overly conservative in
certain regions where it over estimates the uncertainty compared to the random sample approach. This
is expected, as the bracketing approach is known to utilize a box in the systematic multidimensional
space, where a more realistic approach would give a multi dimensional ellipse. With this random
sampling approach the uncertainty bands can be calculated as the 68% and 95% quantiles over the
unfolded trial ensemble. This was done both for the standard MC TSU-test and the TSU-test on the
burn sample. The updated plots are shown in �g. 8.43. This method has been selected as the approach
for handling systematics in the �nal analysis unfolding.

8.15 Data Sample TSU Test

Using the TSU test (sec. 8.10), with the random sampling method (sec. 8.14.4), to estimate the
systematic uncertainties, the full data sample is unfolded using ~1600 samples. The pseudo experiment
truth is again set by unfolding with 4 iterations and drawing a Poisson distributed pseudo experiment
around the unfolding. The following blind checks were in place before unblinding:

1. Test statistic, stat. only: convergence is expected, in consistency with the outputs from the burn
sample tests.

2. Test Statistic, full: the test statistic is calculated from eq. (8.9). The distribution is expected to
take on a similar shape to the distribution from the MC-only TSU test, with a quick drop in TS
value and a clear minimum. Di�erences could indicate growth of either statistical �uctuations,
enhancement of unexpected spectral features or a large systematic impact.

3. Unfolded Ratio: the unfolded spectrum should lie within a few percent of the injected pseudo
experiment truth. This however, needs to be tested as a ratio because blindness is to be conserved.

A post unblinding check was also introduced in order to check for clear bias in the unfolding:
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Figure 8.42: Statistics only result of the scaled burn sample unfolding using the updated binning and
cos(θz) cut, discussed in sections 8.14.1 and 8.14.2 respectively. With the two �xes implemented the
unfolding falls within 2.5% of the injected truth even at 25 iterations.
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Figure 8.43: Scaled burn sample unfolding using the updated binning and cos(θz) cut, discussed in
sections 8.14.1 and 8.14.2 respectively. Here the full uncertainty treatment discussed in section 8.14.4
is included.
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Figure 8.44: Brazilian 'hair' plots - standard bracketed unfolding with the unfolded trials of the random
sampling superimposed in gray.

� Unfolded shape: is a-priori expected to be di�erent from the GRECO MC. This can be checked
via the ratio between the unfolded values and the MC, while keeping the scale on the y-axis
unknown, in order to preserve blindness. In case the unfolded histogram matches the MC well
within one standard deviation this could be indication of a bias in the unfolding method. It could
also indicate the MC to be a precise representation of nature, however, this is a-priori unexpected.
There is no obvious method for distinguishing the two cases, but a clear 1:1 consistency should
be investigated more carefully.

The unfolding was performed blind via the TSU test. The stopping condition was calculated and is
illustrated in �g. 8.45, setting the stopping condition at 17 iterations. For comparison the burn sample
stopping condition came to 21 iterations. The unfolded ratio to the injected pseudo experiment truth
is shown in �g. 8.46. All unfolded data falls within 4% percent of the injected pseudo experiment,
and agree within one standard deviation. This gives a good indication the third unblinding condition
is ful�lled. The analysis is unblinded and the unfolded results for the TSU test are shown in �g.
8.47. Notice this is not the same as �nal data unblinding, as the TSU test unfolds the re-smeared
injected pseudo experiment. The results fall on the expected scale, and show relative uncertainties
within a few percent. These are illustrated in �g. 8.48 and a short discussion is in order: for the
energy spectrum the largest relative uncertainties come to 10% with the central energy bins showing
markedly less uncertainty down to about 5%. For the zenith angle distributions the results are far
more precise, yielding a relative uncertainty in the upgoing region on the roughly 5% level. Only in
the downgoing region is signi�cant uncertainty of about 14% observed, which can be attributed to
the muon background. With these results in place the full data sample is unblinded in the following
section. Results are shown in �g. 8.47
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Figure 8.45: Stopping condition for the full data sample unfolding. Left: full stopping condition. The
distribution follows scenario E in section 8.6 and the stopping condition comes to 17 iterations. Right:
statistics only standard test statistic, which converges as expected on 25 iterations.

Figure 8.46: TSU test Ratio of unfolded to unfolded to injected pseudo experiment truth. Top:
energy. Bottom: zenith angle. All ratios show agreement with the injected pseudo experiment within
the standard 1σ error bars, with central values falling within 2.5% of pseudo experiment truth.

158



Figure 8.47: Result of the full data TSU test. Marginalized spectra for energy (left) and zenith angle
(right) unfolding.
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Figure 8.48: Relative uncertainty on the ratio of unfolded and injected pseudo experiment truth. Left:
energy. Right: zenith angle.

8.16 Full Data Unblinding

With the above checks in place and the stopping condition set at 17 iterations, the full data sample is
unblinded. A total of 204847 events are included in the data sample and are unfolded. The unfolded
results are shown in �g. 8.50 along with the prediction from the HKKM model [7]. The relative
uncertainties are shown in �g. 8.49. These results and their implications will be discussed in the
following chapter.

Figure 8.49: Relative uncertainty on the ratio of the unblinded unfolding and the standard prediction
based on the HKKM model. Left: energy. Right: zenith angle.
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Figure 8.50: Full data sample unfolded results. The ratio is taken with respect to the HKKM simulation
[7] which the unfolding matrix was based upon. Upper: energy. Bottom: zenith angle.
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9 Discussion and Outlook

Presented in this thesis are the results of an iterative unfolding analysis, using 5 years of IceCube/DeepCore
data, unfolding the atmospheric neutrino event rate by volume. Rigorous testing of the analysis method
has been performed and after unblinding 204847 neutrino candidate events are included in the data
sample. The unfolding method has been shown to be consistent within the standard 1σ error bars
through a series of closure tests as described in chap. 8. This chapter will focus on the results, their
implication and future outlook.

9.1 The Unfolded Result

The full unblinded and unfolded data set is shown in �g. 8.50, with the ratio relative to the MC
prediction shown in the lower panel. The relative uncertainty on the unfolded/MC ratio is shown in
�g. 8.49 and ranges from 3% to about 9%, except for the downgoing region where it reaches up to
18% for the cascade-like channel. However, in the region of interest to many oscillation experiments,
below ~80GeV, the relative uncertainty on the ratio is very close to 3%. The relative uncertainty on
the unfolded data itself also goes down to 3%, leading the way for good precision forward �ts to this
data in the future.

While displaying the kind of features which are expected from the neutrino �ux, such as a power-
law dependence, the unfolded data also show some tension in regards to the standard HKKM MC
model. This is particularly evident in the energy range below 100 GeV and in the upgoing region,
which is the region of interest when it comes to neutrino oscillations and matter e�ects. Where the
MC model assumes values for the �ux parameters, the oscillation parameters and the cross sections,
the unfolding only compensates for the IceCube/DeepCore selection e�ciency, volume and ice density.
The discrepancy is most pronounced at energies below ∼ 60GeV and in the upgoing and horizon
regions, which coincides with region of interest to neutrino oscillations. This could indicate an o�set in
the assumptions for the atmospheric neutrino oscillations and the matter e�ects, here referring to the
various oscillation parameters such as ∆m2 and the electron density, when calculating the oscillations
for the HKKM model. While the HKKM �ux model was used to build the MC, it was decided
the systematic uncertainties on the �ux should not be included, as this would introduce systematic
assumptions on the quantity of measurement. It is also important to note that when using the TSU test
to verify the stopping condition, it has been shown that the choice of MC does not have a signi�cant
impact on the unfolded result, due to the nature of the iterative procedure. With that said and
with the unfolding completed as shown in �g. 8.50, it would be illustrative to include the systematic
uncertainty on the MC prediction. However, the systematic uncertainty is not included in the standard
data set published by the HKKM authors. Only tentative estimates have been published in literature
and presentations by the HKKM authors, indicating the systematic uncertainty to be on the scale of
about 10% [9, 7]. An uncertainty of that scale is not large enough resolve the tension observed between
the unfolded data and the HKKM model prediction. That said, there are investigations that can be
performed in this dissertation in relation to the discrepancy, for example a direct comparison with the
Super-K measurements.

9.2 Super-K Comparison

Super Kamiokande published an unfolding of the atmospheric neutrino �ux in 2015 [3], using methods
somewhat similar to those presented in this thesis. Important di�erences occur in the methodology
used for setting the number of iterations, and the choice of unfolding channels. Where Super-K unfolds
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into pure νµ and νe channels, this analysis unfolds into νcc
µ and νrest. The di�erence arises mainly from

the exceptional muon tagging in Super Kamiokande, where the detected Cherenkov ring fuzziness
is a strong discriminator between νµ and νe events. On the other hand IceCube/DeepCore can do
rudimentary particle identi�cation based on reconstructed track length, which does not have the same
discriminative power. In order to keep the assumptions and statistical arguments in this work to a
minimum, the νcc

µ and νrest channels were selected, as described in section 8.1. Although the unfolding
channels di�er a-priori between this work and the Super-K measurement, a direct comparison of the
unfolding to MC agreement can none the less be meaningful, since the Super-K �ux prediction only
makes use of the measured and unfolded νcc

µ events, therefore the Super-k νµ channel is composed
mostly of νcc

µ events. The ratio of the unfolded channels to the corresponding MC predictions are
shown for the νcc

µ channel for Super-K [3] and for this analysis in �g. 9.1. Except for two outlying
data points the results are statistically compatible within the standard 1σ error bars. A comparison
between the Super-Kamiokande νe results and the unfolded νrest channel from this analysis is not valid
since the latter also contains a ντ contribution, making the two particle selection channels di�erent
from each other. A calculation based on sample content by cross section fractions, was investigated
but in�ation of uncertainties quickly revealed this approach to be unfeasible. Notice however, that
while the Super-K results are consistent with the HKKM prediction, there is some tension between
the IceCube results and the HKKM prediction. A direct comparison of event rates would be more
scienti�cally rigorous and potentially be able to reveal the scale of the latitude e�ect, however such
data was not available from Super-K at the time of writing.

Super-K performs a basic closure test on the unfolding method using di�erent inputs to set the
number of iterations, and the work presented in this thesis expands heavily on the closure test method-
ology to achieve a more model independent method. Super-K presents their results in terms of the
atmospheric neutrino �ux, and their publication [3] gives the method for �nding the �ux from the
unfolding as:

Φunf

ΦMC
=
N cc

unf

N cc
MC

(9.1)

Φunf =
N cc

unf

N cc
MC

ΦMC, (9.2)

where N represents the unfolded event rate. Note that in this de�nition from Super-K only the
charged current channel is used, allowing for one to one comparison with the νcc

µ result from this
dissertation. The above relation however, relies on a few assumptions regarding the systematic pa-
rameters involved. The systematic parameters are assumed to completely cancel out both for the
unfolding and the MC. While this is true in eq. 9.1, it is not in eq. 9.2. The strength of an unfolding
analysis is to represent measurements in terms of 'true' data, but this estimate of the unfolded �ux
relies on the assumption that the systematic parameter values of ΦMC are equal to those in nature,
and the 'unfolded' �ux estimate then directly relies on the assumptions of the input simulation. Even
so, this is a simple and convenient estimate to present based on the measured ratio to MC and for
comparison to the Super-K results, a similar calculation is included here, the result of which is shown
in �g. 9.2. While the behavior of the unfolded data naturally follows the shape of the �ux due to the
calculation method, this plot is never the less illustrative of the unfolded data and the precision in
the measurement, as the error bars are small on the y-axis scale (the relative uncertainty is shown in
�g. 8.49). Similar illustrations have been produced by Super Kamiokande and a direct comparison of
the νµ channel is presented in �g. 9.3. This again reveals the consistency between the Super-K and
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Figure 9.1: Data/MC agreement comparison between the unfolded νcc
µ channel and the corresponding

result from Super Kamiokande result published in [3]. Note that the �ux prediction is location depen-
dent, and yields di�erent �uxes for each site at energies below about 30GeV due to the latitude e�ect.
This �gure illustrates the agreement between the unfolded data and the model prediction at the South
Pole and Kamioka respectively.

IceCube measurements, while highlighting the precision of the data presented in this work.

9.3 Further Developments

While the analysis presented herein is systematics dominated, the unfolding itself is only as good as the
knowledge of the response matrix. More detailed knowledge of central systematics such as the DOM
e�ciency and ice properties are likely to have a signi�cant impact on the results of analyses such as the
one presented herein. E�orts are underway in the IceCube collaboration to address exactly these two
systematics. Furthermore, building a larger Monte Carlo simulation and re�ning the sample selection
with more accurate reconstruction algorithms would greatly bene�t the outcome of the analysis. A
sample selection living up to those requirements, named OscNext, have been in preparation alongside
this analysis. While a few adjustments would have to be made to the analysis software used, applying
the same analysis to the OscNext sample would very likely yield a reduction in the uncertainties shown
in �g. 8.48.

9.3.1 Forward Folding

One way of investigating the discrepancy between the unfolded data and the HKKM model prediction
would be to make a classic forward folding analysis and �t for the relevant parameters, such as the �ux
spectral index and the oscillation parameters, using a standard negative log likelihood approach on this
unfolded data set. Some authors suggest avoiding forward �tting to an unfolded data, mostly In such
an analysis a proper and detailed treatment of the systematic uncertainties would be of paramount
importance. The scale of such an endeavor is beyond the scope of this work, and is suitable for a
complete thesis on its own.
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Figure 9.2: Illustrating the unfolded results in terms of atmospheric neutrino �ux. Error bars are
included on the data points.
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Figure 9.3: Comparison of the unfolded νµ �ux between this work and Super Kamiokande. Data taken
from [3] using webplotdigitizer [75]. Error bars are included on the data points for both the Super-K
and IceCube unfolding, however the the IceCube error bars are tiny.
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9.3.2 Direct-to-Flux Unfolding

It is in principle possible to unfold directly to the �ux by modifying the truth side of the response
matrix in order to compensate for the neutrino cross section by �avor and interaction type. In practice
this is complicated by the following: the cross sections in the energy range of interest are not known
to a high precision, which results in a large level of uncertainty. Preliminary tests performed during
this work have indicated the impact of systematic uncertainty on the cross sections to be large enough
that the unfolding diverges. This in turn leads the TSU test to set the number of iteration steps to
be very low, at either one or two iterations, where the unfolding procedure is heavily biased towards
the assumed MC. There is also the issue of a consistent systematics treatment: with the cross section
included, several new systematic parameters would need to be included in the analysis as well. Using
the random trial method would require a geometric increase in the number of trials to the point that
it would become a signi�cant challenge regarding computation time. Ideally the analysis presented in
this work, having 4 major contributing systematics, would require on the order of 104 systematic trials
to give a realistic picture of the systematics impact. With, for example, four new parameters this rises
to 108 trials making the random sampling approach unfeasible. Instead a bracketing approach could
be implemented (this was discussed and investigated for the work in this thesis as well), however, cross
correlations between systematics and non-linear unfolding response to certain systematics complicates
such an approach and can very easily lead to gross mis-estimates of the systematic uncertainty. Based
on the above investigations and considerations, a decision was made for the work in this thesis to focus
solely on unfolding the event rate. A direct to �ux unfolding utilizing the methods presented in this
thesis may later become feasible, provided su�cient progress is made in terms of computing power and
neutrino interaction cross section knowledge.

9.4 Conclusions

The unfolding measurement of the atmospheric neutrino �ux presented in this work contributes to the
world knowledge of the atmospheric �ux, and an updated overview of �ux measurements is shown in
�g. 9.4. Particularly, this work measures in a region of the energy spectrum that is otherwise sparsely
populated, thereby enhancing the data resolution in said region. With regard to the objectives set
out in chapter 1, the three main goals have been ful�lled: the uncertainty on the measurement,
including systematic uncertainties, was brought down to between 3% and 7% in the oscillation region,
as shown in �g. 8.49. This is a marked improvement over the ~20% uncertainty of the previous
low energy measurement performed by Super Kamiokande [3]. Secondly, the 12 data points from this
measurement adequately �ll out the sparsely populated region between 10 GeV and ~100 GeV. Thirdly,
the unfolding procedure was developed to provide an as model independent as possible measurement.
Aside from these points, the spectrum was also unfolded in cos(θz), with an uncertainty between 3%
and 7% in the upgoing region, while the downgoing region had uncertainties of up to 18% due to
muon contamination. The low dimensionality usually employed in a Bayesian unfolding is a point
of critique within the Atlas collaboration, and something this analysis improves upon by unfolding
in three dimensions [76]. Thus, this measurement provides a two dimensional unfolding for both
particle identi�cation channels in energy and cos(θz), which will be of great interest for model builders
when developing multi dimensional models of the atmospheric neutrino �ux. Furthermore, this work
goes beyond previous e�orts in �nding the optimum stopping condition for the number of iterations,
which is sometimes selected arbitrarily in literature [77]. It could be argued that closure tests such
as the TSU test presented in this work should be adopted as the industry standard when performing
iterative Bayesian unfolding. In closing, it is remarked that this thesis presents the most precise
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Figure 9.4: Updated overview of neutrino �ux measurements, with the results from this analysis shown
in green and orange points. The deviation of the νrest channel shown in orange from the standard νe
prediction shown in blue in the energy region from 10− 50GeV is due to the cosmic ray latitude e�ect
and the inclusion of ντ in the νrest channel. The expected �uxes at the South Pole and Kamioka are
shown in �g. 1.4

unfolding measurement of the atmospheric �ux at the time of publication, improves knowledge of the
atmospheric �ux in the region of interest to oscillation measurements, and has provided an as model
independent as possible data set for future use by model builders.
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