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Abstract. The construction of a theory of quantum gravity is among the most challenging pursuits of

modern-day physics. From the theoretician’s point of view, there are some broad features that any theory of

quantum gravity should exhibit. These include renormalizability, unitarity and Background Independence.

However, because of the scarce experimental data available on the nature of the gravitational interaction at

high energies, the specific realization of these requirements is rather unclear. Therefore, it is inevitable to

increase the variety of theoretical approaches towards quantum gravity. These can be parted into two main

categories: Those that employ discrete structures at the fundamental level, such as Loop Quantum Gravity

or Causal Dynamical Triangulations, and the continuum-based approaches such as the Asymptotic Safety

scenario based upon the Effective Average Action, where the ultraviolet completion of quantum gravity is

realized via a non-trivial fixed point of the renormalization group flow.

Although each of these approaches’ physical properties have been explored to some extent, still only

little is known about their relationship to each other. A contact point that seems natural is the comparison

of their geometric features at high energies. In the first part of this thesis, we derive suitable geometric

features for the continuum-based approaches. Based on the functional renormalization group equation for

gravity, we derive a novel flow equation that governs the evolution of renormalized composite operators.

This evolution becomes encoded into that of the composite operators’ anomalous dimensions. We show

that their values in the fixed-point regime can be interpreted as quantum corrections to the classical scaling

dimensions of the composite operators. As a main application, we calculate for the first time the scaling

dimension at the ultraviolet fixed point of the volume operator for submanifolds embedded into spacetime,

within the Einstein-Hilbert truncation as well as the truncation corresponding to higher-derivative gravity

at one loop. In the former case, we observe dimensional reduction phenomena: The scaling dimension in

the ultraviolet becomes much smaller than its classical value. This unveils the genuinely fractal nature of

spacetime, and subsets of it, in the ultraviolet. In the latter case, we find that precisely at the ultraviolet

fixed point the quantum corrections to the scaling dimension vanish, because of the asymptotic freedom

of higher-derivative gravity. However, its fractal nature still is unveiled slightly away from the fixed point,

where we, depending on the dimension of the submanifold, find that the effective scaling dimension either

increases or decreases.

In the second part of this thesis, we propose a novel quantization scheme for fields in contact with

dynamical gravity, including quantum gravity itself. This scheme is subject to three essential requirements:

Background Independence, the use of gravity-coupled approximants, and N -type cutoffs. Therewith we

require that Background Independence is already implemented at the level of the regularized precursor of a

quantum field theory, i.e., its “approximants”. We realize this via the employment of cutoffs of the N -type,

which constitute a metric-independent regularization scheme. We initiate the exploration of this quanti-

zation scheme by applying it to a scalar field in classical spacetimes, and then to quantum gravity itself,

and determining the possible self-consistent spherical background geometries. These turn out to possess

striking physical properties. In particular, they embody a solution to the notorious cosmological constant

problem which, in the traditional approaches, arises due to the field’s quantum vacuum fluctuations.
v





Der Mensch an sich selbst, insofern er sich seiner gesunden Sinne bedient, ist

der größte und genaueste physikalische Apparat, den es geben kann, und das ist

eben das größte Unheil der neuern Physik, daß man die Experimente gleichsam

vom Menschen abgesondert hat und bloß in dem, was künstliche Instrumente

zeigen, die Natur erkennen, ja, was sie leisten kann, dadurch beschränken und

beweisen will.

Ebenso ist es mit dem Berechnen. Es ist vieles wahr, was sich nicht berechnen

läßt, sowie sehr vieles, was sich nicht bis zum entschiedenen Experiment bringen

läßt.

Johann Wolfgang von Goethe (1749–1832);

Naturwissenschaftliche Schriften, Gedankenspäne
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CHAPTER 1

Introduction

1.1. The pursuit of quantum gravity and the results of this

thesis

At the beginning of the 20th century two revolutions shattered the world of

physics. In 1900 M. Planck proclaimed a finite quantum of action h which gave

birth to quantum physics, leading all the way from the wave mechanics of 1920s

to the Standard Model of particle physics whose current form was completed

with the detection of the Higgs boson in 2012.

Moreover, in 1905 A. Einstein proclaimed the speed of light c to be constant

and the upper limit for the speed of signal propagation. This led to special rel-

ativity, putting space and time on equal grounds. Einstein conducted probably

the greatest intellectual achievement of the 20th century by expanding special

relativity to General Relativity in 1915, based upon the equivalence principle.

So far, General Relativity has been confirmed in an abundant number of exper-

iments, most recently with the detection of gravitational waves in 2016.

Although logically fully unrelated, the ideas of quantum physics and relativ-

ity intertwined in many respects during their development, as W. Pauli explains

in the preface to the 1958 Italian and English edition of his 1921 book (article)

“Relativitätstheorie” [1]:

“Es gibt eine Ansicht, nach der die Relativitätstheorie der Endpunkt der ‘klas-
sischen Physik’ ist, d.h. Physik im Stil von Newton-Faraday-Maxwell und beherrscht
durch die ‘deterministische’ Form von raumzeitlicher Kausalität, während später der
neue quantenmechanische Stil der Naturgesetze in Kraft getreten ist. Dieser Gesichts-
punkt scheint mir nur teilweise richtig, und er wird dem großen Einfluß Einsteins, des
Schöpfers der Relativitätstheorie, auf die allgemeine Denkweise der heutigen Physiker
nicht genügend gerecht. Durch ihre erkenntnistheoretische Analyse der Folgen der
Endlichkeit der Lichtgeschwindigkeit (und damit aller Signalgeschwindigkeiten) war
die spezielle Relativitätstheorie der erste Schritt weg von naiver Veranschaulichung.
Der Begriff des Bewegungszustandes des ‘lichttragenden Äthers’, wie das hypotheti-
sche Medium einst genannt wurde, mußte aufgegeben werden, nicht nur, weil er sich

1



2 1. INTRODUCTION

als unbeobachtbar erwies, sondern weil er als Element eines mathematischen For-
malismus überflüssig wurde, dessen gruppentheoretische Eigenschaften von ihm nur
gestört würden.

Durch die Ausweitung der Transformationsgruppe in der allgemeinen Relativitäts-

theorie konnte Einstein auch die Vorstellung von ausgezeichneten Trägheitssystemen

als unvereinbar mit den gruppentheoretischen Eigenschaften der Theorie eliminieren.

Ohne diese allgemein kritische Einstellung, welche naive Veranschaulichung zugun-

sten einer begrifflichen Analyse der Beziehung zwischen Beobachtungsdaten und den

mathematischen Größen in einem theoretischen Formalismus aufgab, wäre der Aufbau

der modernen Form der Quantenmechanik nicht möglich gewesen. In der ‘komple-

mentären’ Quantentheorie führte die erkenntnistheoretische Analyse der Endlichkeit

des Wirkungsquantums zu einem weiteren Abrücken von naiven Veranschaulichun-

gen. In diesem Falle mußten sowohl der klassische Feldbegriff als auch der Bahn-

begriff von Partikeln (Elektronen) in Raum und Zeit zugunsten rationaler Verallge-

meinerungen aufgegeben werden. Wieder wurden diese Begriffsbildungen nicht allein

aus dem Grunde verworfen, weil die Bahnen unbeobachtbar sind, sondern auch, weil

sie überflüssig wurden und die Symmetrie stören würden, welche der dem mathe-

matischen Formalismus der Theorie zugrundeliegenden Transformationsgruppe eigen

ist.”

Today, the experimentally confirmed share of physics is still parted into this

twofoldness: On the one hand, there are quantum field theories on Minkowski

space that culminate in the Standard Model of particle physics. It can describe

three of the four known fundamental forces – the electromagnetic, the weak and

the strong force – with tremendous precision. Especially, it is a highly accurate

description of Nature at small distance scales where these forces dominate. On

the other hand, there is General Relativity which models the remaining grav-

itational force in terms of the curvature of the dynamical spacetime. General

Relativity is a highly accurate description of Nature at large distance scales.

There are much too many accounts on each of these two fields of physics,1 thus,

in order to avoid this great deal of redundancy let us only focus on the aspects

required to motivate the content of this thesis.

The dichotomy of quantum physics, where spacetime is static, and General

Relativity, where spacetime is dynamical, already exhibits the incompleteness

of this twofold framework of physics: It cannot be that spacetime is dynamical

and static, as well. Therewith also comes the problem of time: in quantum

1Outstanding historical accounts on each fields’ history have been written by A. Pais [2, 3].



1.1. THE PURSUIT OF QUANTUM GRAVITY AND THE RESULTS OF THIS THESIS 3

physics, time is an (external) absolute element, i.e., it is not described by an

operator, while in General Relativity it is dynamical. The resulting quest for a

quantum theory of gravity (quantum gravity) consequently is one of the main

pending challenges of modern physics. It must be emphasized that with a the-

ory of quantum gravity one not necessarily wants to unify all four fundamental

forces of Nature to build a “theory of everything” but rather the desideratum

is a theory of gravity that is applicable at all distance scales, i.e., especially at

small distances in the “quantum world”.

Essentially, physics is defined as the mathematical description of Nature

which a fortiori turns it into an experimental science. So as the need for quan-

tum gravity is obvious from the point of view of theoretical physics, where would

one expect experimental signatures of quantum gravity?

A theory of quantum gravity necessarily will include the following constants:

the smallest quantum of action h, viz. the reduced Planck constant ~ = h/2π,

the speed of light c and Newton’s constant G which describes the strength

of the gravitational interaction. From these constants, one can build units of

length, time and mass – called the Planck units – which are typical scales at

which one would expect experimental signatures of the quantum gravitational

theory. In four spacetime dimensions, these are `Pl = (~G/c3)1/2 ≈ 10−35m,

tPl = (~G/c5)1/2 ≈ 10−44s and mPl = (~c/G)1/2 ≈ 10−5g, respectively. From

the point of view of General Relativity as a perturbative effective field theory,

the tremendously large Planck mass suppresses any gravitational interaction of

particles that are scattered in realizable particle accelerators. To illustrate this

suppression of gravitational effects, there is the famous analogy that in order

to create a particle with a Planck mass the corresponding accelerator needed to

be of the size of the Milky Way. However, it must be emphasized that in a non-

perturbative treatment Quantum Gravity might exhibit infrared effects, similar

to confinement in qcd for example, which could be tested experimentally.

How does one attempt building a theory of quantum gravity? The obvious

starting point should be General Relativity, which should be the limit of any

theory of quantum gravity at large distance scales. That General Relativity

itself is incomplete can be seen in its predictions of singularities, e.g. at the

center of black holes or at the instant of the Big Bang. Such singularities are

unphysical and should therefore be resolved by any theory of quantum gravity.
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On the other hand, there are aspects of General Relativity, which should

be passed on to quantum gravity. For example, the principle of Background

Independence should be a main desideratum of quantum gravity. In General

Relativity, the principle of Background Independence refers to the fact that the

spacetime structure which is realized in Nature, in form of the metric gµν , is not

part of the theory’s definition but rather determined dynamically by Einstein’s

equation Gµν [g] = 8πGTµν [g], where Gµν [g] is the Einstein tensor and Tµν [g]

the stress-energy tensor of the matter inhabited on spacetime. For a theory of

quantum gravity, the principle of Background Independence can be rephrased

as the requirement that “none of the theory’s basic rules and assumptions, and

none of its predictions, therefore, may depend on any special metric that has

been fixed a priori. All metrics of physical relevance must result from the in-

trinsic quantum gravitational dynamics” [4].

Part 4 of this thesis is devoted to Background Independence as a first prin-

ciple. In this part, based on the author’s publications [5, 6], we develop a novel

scheme for the nonpertubative analysis of quantum fields that are coupled to

gravity as well as quantum gravity itself. The novel part of this scheme can

be pinned down to the introduction of “N -cutoffs” which regularize the theory

via a dimensionless cutoff parameter N . By means of this technical tool, it

is possible to quantize matter fields as well as gravity in terms of sequences

of “gravity-coupled approximants”, thereby rigorously obeying the principle of

Background Independence.

In certain simple examples, we explore the physical implications of this quan-

tization scheme; especially, we find the striking result that in these cases, the

cosmological constant problem does not occur at all.

The cosmological constant problem is one of the major riddles that oc-

cur when one tries to bring together quantum physics and General Relativity.

Loosely speaking, it refers to the fact that if one treats the stress-energy tensor

quantum mechanically, the quantum fields’ vacuum energies sum up to gigan-

tic contributions to the effective cosmological constant whose value in this case

differs from the observed value “by some 120 orders of magnitude” [7]. Inserted

into the semi-classical Einstein equation the gigantic effective cosmological con-

stant predicted by quantum physics would lead to a spacetime curvature so

large that the resulting universe, in W. Pauli’s words, “could not even reach to

the moon” [8, 9].
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However, all the quantum-physical arguments entering the considerations

about the cosmological constant problem rely on background-dependent calcu-

lations. With the novel quantization scheme presented in Part 4 of this the-

sis, which fully obeys Background Independence, we show that the quantum-

mechanical contributions to the cosmological constant in fact cause diametri-

cally opposed effects: The more modes of a field are quantized, i.e., the more

vacuum fluctuations contribute to the effective cosmological constant, the larger

the radius of spacetime becomes, until, when the field is fully quantized, space-

time ultimately becomes perfectly flat (rather than not even reaching to the

moon).

Another open question that arises when bringing together quantum physics

and General Relativity is about the entropy of black holes. With semi-classical

considerations, J. Bekenstein and S. Hawking showed that black holes, and sim-

ilar spacetimes such as de Sitter space, possess a thermodynamical entropy,

which consequently was named after them. It is a longstanding expectation

towards a theory of quantum gravity that it should be able to explain what

are the microscopic states of the black hole that the Bekenstein-Hawking en-

tropy “counts”. In this regard, another quite intriguing property of the novel

quantization scheme presented in Part 4 is that it offers a natural interpretation

for these microstates. Namely, we will identify the regularized quantum field

(and the spacetime metric) with an approximation by a quantum-mechanical

system of finitely many degrees of freedom. Then, it will be easy to see that the

Bekenstein-Hawking entropy of de Sitter space “counts” precisely these degrees

of freedom.

Next, let us present the existing, viable approaches towards quantum grav-

ity. The rivalry amongst them should not be taken too seriously. In fact, A.

Ashtekar found that due to the scarce experimental data “the most promising

way of enhancing our chances at success is to increase the amount of variety”

[10, 11]. Furthermore, he points out four essential questions that any theory of

quantum gravity should address:

Firstly, non-perturbative methods are essential for any theory of quantum

gravity. The standard methods of perturbative renormalization within tradi-

tional quantum field theory turned out to fail when applied to General Relavity

[12, 13]. Actually, General Relativity is perturbatively renormalizable as an
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effective field theory, however infinitely many parameters, that must be taken

from experiment, arise. Thus, within perturbative renormalization, General

Relativity loses its predictive power.

Secondly, conceptual issues of quantum gravity must be addressed. This ap-

plies for instance to the problem of time described above.

Thirdly, Background Independence should be rigorously implemented. This

raises especially technical questions, such as the regularization of quantum op-

erators in absence of a background geometry.

Fourthly, it must be emphasized that the geometric structure of spacetime at

the Planck scale need not necessarily be a smooth (semi-)Riemannian manifold.

String theory is a quantum gravity candidate that still relies on background-

dependent methods. Its main idea is that the fundamental degrees of freedom

are one-dimensional open or closed strings. These strings’ vibrations can then be

interpreted as particles whereby the strings’ spectrum also includes the graviton.

In this restricted sense string theory is a theory of gravity. To be well-defined,

string theory relies on a critical spacetime dimension of d = 11. This can be

regarded as its main drawback: the way back to our familiar d = 4 spacetime

dimensions is rather arbitrary, whereby string theory loses most of its predic-

tive power. Furthermore, string theory relies on the concept of supersymmetry

which has no reasonable chances of experimental signs, anymore.

There are several approaches that employ Background Independence mani-

festly because they do not make use of any background at all:

Loop Quantum Gravity [14, 15] uses, loosely speaking, instead of points in

spacetime “loops” that are located in three-dimensional space. Therewith one

can for example describe the flux of some field through the area encompassed

by a loop, fully analogously to the flux of the magnetic field in electrodynamics.

This formulation has the technical advantage that any mathematical problem

related to a single point in spacetime can be avoided. However, the loops at best

should not be visualized as located in a rigid spacetime. Rather, the framework

fully implements Background Independence and predicts spacetime to form out

of the loops, or graphs called “spin networks”. Especially, within this frame-

work it has been shown that areas and volumes are quantized which intuitively
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leads to the discrete building blocks of spacetime, often referred to as “atoms

of spacetime”.

Within the statistical mechanics-based approaches to quantum gravity [16–21]

a particularly promising candidate is the method of Causal Dynamical Triangu-

lation. This method attempts to derive spacetime from first principles, whereby

spacetime is modelled as discrete simplices that are glued together in a causal

way. These simplices do not have a physical meaning and should be regarded

as pure approximations. Using Monte Carlo simulations it has been found that

Causal Dynamical Triangulation predicts spacetime at large distance scales to

be a four-dimensional de Sitter space. This is a striking result because the

spacetime dimension is a prediction of the theory, rather than an input. More

precisely, it has been found that the spectral dimension of spacetime is four at

large distance scales and decreases to two at small distance scales.

Furthermore, there are continuum-based approaches to quantum gravity that

also obey to the principle of Background Independence. It is rigorously imple-

mented via the background field method :

Asymptotically Safe quantum gravity is a concept which was proposed by

S. Weinberg in the late 1970s [22]. By and large, the idea that gravity might be

asymptotically safe can be phrased as follows: If there exists a non-Gaussian

fixed point (i.e., a fixed point where the theory is not a free one) in the space of

all couplings of the theory, then the couplings of the theory can be tuned such

that at large energy scales they approach this fixed point. This is a sufficient

condition in order to avoid unphysical ultraviolet divergences.

More precisely, the Asymptotic Safety scenario relies on Wilson’s notion of

non-perturbative renormalization [23, 24], formulated by means of the func-

tional renormalization group based upon the effective average action. The basic

input data required by this framework are the field content as well as the sym-

metries the fields shall be subject to. All resulting action functionals of the

fields that are invariant under the proposed symmetries build the theory space.

As these functionals are parametrized by the couplings of the theory, one syn-

onymously refers to the space of all couplings as the theory space. The effective

average action, which introduces a scale dependence for the action functionals
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of interest, satisfies a number of functional identities, in particular a functional

renormalization group equation, the Wetterich equation [25], developed in the

early 1990s and soon after applied to gravity by M. Reuter [26]. The solutions

of the Wetterich equation correspond to trajectories in theory space. In the

Asymptotic Safety scenario, the rg flow in theory space determined by the

Wetterich equation possesses a non-Gaussian fixed point. In this case, there ex-

ists a subset of the theory space consisting of all the points that are “pulled” into

the fixed point when moving to larger and larger scales, called the uv-critical

surface. The trajectories lying on it are free from ultraviolet divergences (i.e.,

“safe”) and thus correspond to fundamental theories. Lastly, the dimension of

the uv-critical surface corresponds to the degree of predictivity of the theory,

because it is precisely the number of measurements required to fix a specific

trajectory on that surface.

Higher-derivative gravity [27] is a framework that may not be considered a

viable candidate for a fundamental theory of quantum gravity, nevertheless it

is a framework that intrigues many physicists as an arena to probe aspects of

quantum gravity. The name higher-derivative gravity stems from the fact that

the underlying action functional of the theory is built only from operators which

are of fourth order in the derivatives. (Rather than at most of second order, as

in the Einstein-Hilbert action.) Stunningly, higher-derivative gravity is pertur-

batively renormalizable; however, the theory is not unitary and therefore was

quickly discarded. Recently, the theory again attracted quite some attention

because of promising attempts to restore its unitarity. Many features of higher-

derivative gravity are universal such that they can also be analyzed by means

of the non-perturbative Wetterich equation.

It is a longstanding desire to relate and quantitatively compare the discrete

and continuum-based approaches. Envisaged is to bring quantum gravity into

a similar condition as the theoretical side of quantum chromodynamics, a part

of the Standard Model. There, many aspects of the theory could be double-

checked by means of discrete approaches (lattice QCD), on the one hand, and

by means of continuum-based frameworks, on the other hand.

This thesis is fully devoted to the continuum-based approaches to quantum

gravity. On a technical level, the ultimate goal of quantum gravity is to cal-

culate the functional integral Z =
∫
Dĝµν e−S[ĝµν ], where S[ĝµν ] is the action of

the quantum metric ĝµν . This also is the starting point of this thesis: In Part 1
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we will begin with setting up this functional integral for the continuum-based

approaches, thereby employing the background field method. Part 2 is devoted

to the framework of the functional renormalization group for quantum gravity.

On this basis, in Part 3, follows a study of geometric operators in quan-

tum gravity, within the Asymptotic Safety approach as well as within higher-

derivative gravity. This study is based on the author’s publications [28–30].

Particularly, in this part we study the scaling behavior of the volume of sub-

manifolds embedded into the quantum spacetime at high energies. Thereby,

we are going to observe dimensional reduction phenomena which are typical for

quantum theories of gravity. The results presented in Part 3 will be crucial

for the comparison of the different approaches towards quantum gravity, when

results of similar calculations in Loop Quantum Gravity or Causal Dynamical

Triangulation become available.

1.2. The structure of this thesis

This thesis is structured in five parts as follows. Each part begins with a syn-

optic chapter, in which the main results and statements are briefly presented;

furthermore, in case new research results based on the author’s work are pre-

sented, this chapter includes a conclusion and outlook on future prospects.

The opening Part 1 lays the overall foundation for the analyses to follow.

Chapter 3 warms up the detail-oriented reader and outlines the quantization

of a massive scalar field on a fixed, classical and compact Riemannian mani-

fold. Later, in Part 4, we will extensively recourse to these results which is why

Chapter 3 actually serves more than the pure purpose of a warm up.

Then, in Chapter 4 we set up the path integral quantization for quantum

gravity. Thereby, we rely on the background field technique which makes the

rigorous employment of Background Independence possible. Finally, two special

cases are presented: the path integral based on the Einstein-Hilbert action as

well as the path integral for higher-derivative gravity.

The results as presented in Part 1 are still unregularized and it is fair to

say that the ultimate objective of a quantum field theory approach to gravity
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is to give a mathematical meaning to these results, via forms of regularization

and renormalization. This is where this thesis splits into two different paths:

one path is followed in Parts 2 and 3, while another path is openend in Part 4.

These two paths form two separate entities which is why the content of this

thesis can be either read as Part 1 to Part 3 or as Part 1 followed by Part 4.

The first path, to which Part 2 of this thesis gives a comprehensive introduc-

tion, is the Asymptotic Safety approach. In this approach, Wilson’s notion of

non-perturbative renormalization is formulated via a distinct functional renor-

malization group equation that is constructed in Chapter 6.

While the study of approximative solutions to this equation is not the main

focus of Part 2, we thoroughly introduce those two approximate solutions that

will be made use of in Part 3. The first one is the single-metric “Einstein-

Hilbert truncation” that is analyzed in Chapter 7. The second one, presented

in Chapter 8, is the truncation that corresponds to higher-derivative gravity.

Higher-derivative gravity is special because it can also be renormalized pertur-

batively. In this sense, the results of Chapter 8 are universal because it has

been shown that they coincide with the results obtained via perturbative renor-

malization.

Finally, Chapter 9 is a last preparatory chapter for Part 3 and introduces

the renormalization of composite operators via the functional renormalization

group equation. Thereby, we introduce an important characteristic of the renor-

malization behavior of composite operators, namely its anomalous dimension.

Part 3 is based on the author’s publications [28–30] and analyzes the renor-

malization behavior of geometric operators in Quantum Gravity by means of the

functional renormalization group equation for composite operators constructed

in Chapter 9. This analysis opens a new line of research in the framework

of Asymptotically Safe Quantum Gravity. It is particularly important for the

comparison of continuum-based approaches with discrete approaches towards

Quantum Gravity. Furthermore, it paves the way towards the hard problem of

constructing suitable observables within Quantum Gravity.

In Chapter 11 we study geometric operators in the Asymptotic Safety sce-

nario for quantum gravity. Therefore, we employ the approximative solution
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of the functional renormalization group equation given in form of the Einstein-

Hilbert truncation presented in Chapter 7. The analysis mainly deals with the

discussion of the anomalous dimensions of the volume of a submanifold embed-

ded into the quantized spacetime, as well as that of the geodesic length and the

geodesic ball.

In Chapter 12 follows an analogous study, this time within the framework of

higher-derivative gravity which is interpreted as an approximative solution of

the functional renormalization group equation.

Part 4 is based on the author’s publications [5, 6] and is logically inde-

pendent of Parts 2 and 3. Rather, a novel method for the regularization and

renormalization of the quantum gravitational path integral of Part 1 by means

of “N -cutoffs” is proposed, tested and applied to the cosmological constant

problem. Chapter 15 describes this novel framework and puts emphasis on the

rigorous implementation of Background Independence. Further, it explains how

quantized fields (including gravity) arise as the limit of sequences of quantum-

mechanical systems with finitely many degrees of freedom. We call these systems

“approximants”.

In Chapters 16 and 17 we identify two different candidates for approximants

of a quantized scalar field and especially analyze the properties of the self-

consistent background geometry that arises due to Background Independence

of the framework.

In Chapter 18 we put forward these explorations and transfer the novel frame-

work of quantization also to gravity itself.

The overall studies of Chapters 16 to 18 are complemented by a sequel on

Weyl transformations and their anomalous Ward identities, presented in Chap-

ter 19. There, the results of the previous chapters are looked at from a different

point of view.

Finally, Part 5 contains the appendix and closes this thesis. Appendices A, B,

C and E set up the necessary mathematical background required for the calcu-

lations appearing throughout all parts. Appendix D discusses the path integral

measure for quantum fields defined on an arbitrary background manifold. These
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results are especially important for Part 4 and constitute an interesting collec-

tion of results. Last not least, Appendix F collects all calculations that have

been outsourced from the main text body.
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Part 1

The path integral quantization of

gravity





CHAPTER 2

Summary of Part 1

The objective of Part 1 is to formally set up the gravitational path integral

and to derive the effective action obtained from it. That these results are “for-

mal”, means here that they are still up to regularization and renormalization

procedures which will be the crucial themes for the remaining parts to follow.

Thereby, the guiding principle of Part 1 is the rigorous implementation of Back-

ground Independence.

The opening Chapter 3 can be considered a warm up for this purpose and

illustrates most of the required steps by taking the example of a scalar field A

which is defined on a classical, compact and d-dimensional Riemannian manifold

with metric ḡµν of Euclidean signature (+ + · · ·+). The overall dynamics is

determined by an action functional S[A; ḡ] := SEH[ḡ] + SM[A; ḡ] which is split

into two parts. The first part, the Einstein-Hilbert action given by Eq. (3.2),

accounts only for the dynamics of the background metric ḡµν and is not of much

relevance for the moment. (However, in later applications it will be essential.)

The second part is the action (3.3) for the scalar field A which we assume to

not describe any self-interactions:

SM[A; ḡ] :=
1

2

∫
ddx
√
ḡ A
[
−�ḡ + µ2 + ξR̄(ḡ)

]
A .

Because the action is quadratic in the field A, one sometimes refers to it as

a Gaussian scalar field. Here, �ḡ is the Laplacian operator (more precisely,

Laplace-Beltrami operator) built from the background metric ḡµν . The con-

stants µ and ξ describe the mass of the scalar field and its coupling to gravity

in form of the scalar curvature R̄, respectively.

After formally quantizing the scalar field A 7→ Â, we then analyze the gen-

erating functional for the connected Green’s functions (3.9),

exp {W [J ; ḡ]} :=

∫
DḡÂ exp

{
−S[Â; ḡ] +

∫
ddx
√
ḡ(x)J(x)Â(x)

}
,

17
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where J can be regarded a source of the scalar field A. By applying functional

derivatives with respect to J , this path integral generates all connected Green’s

functions. Importantly, we then demonstrate how these can be expanded in

terms of eigenfunctions of the operator −�ḡ + µ2 + ξR̄(ḡ). These expansions

will play a crucial role in Part 4. Also note that the measure itself depends

on the background metric ḡµν . This is an important detail required for the

diffeomorphism invariance of the path integral which is often neglected. Fur-

thermore, the formal effective action (3.22) for the scalar field A is obtained by

Legendre-transforming the functional W [J ; ḡ],

Γ[Ā; ḡ] := −W [J [Ā]; ḡ] +

∫
ddx
√
ḡ(x) Ā(x)J [Ā](x) .

In the remainder of Chapter 1, we then perform a saddle point expansion of

eW around the solution to the classical equations of motion which leads to the

one-loop gravitational effective action (3.38),

Γ[ḡ] := Γ[0; ḡ] = SEH[ḡ] +
1

2
Tr ln (−�ḡ + µ2 + ξR̄) +O(2 loops) .

It can be said that the quantization of the scalar field in this manner follows

Background Independence because the background metric ḡµν is left fully arbi-

trary during the whole process and is still to be dynamically determined.

In case of gravity itself, which is the content of Chapter 4, it is not that

straightforward to built a path integral that obeys Background Independence.

Namely, there are two obstacles which did not occur in case of the scalar field:

Firstly, in case of gravity there exists an additional symmetry given by the

diffeomorphism invariance of the theory. This gauge invariance of the theory

would lead to a diverging path integral because one would integrate infinitely

often over physically identical states. Luckily, this issue can be easily fixed

by means of the Faddeev-Popov trick, fully analogously to Yang Mills theories.

Thereby, one fixes the gauge once and for all whereby so-called ghosts fields

are introduced that complement the theory. After the implementation of the

Faddeev-Popov trick, the theory of the actual physical field and the unphysical

ghost fields becomes invariant under Becchi-Rouet-Stora-Tyutin (BRST) trans-

formation. This invariance compensates for the loss of gauge invariance.

Secondly, it is not possible to write down an action functional for metric

fluctuations without somehow resorting to a background metric. Thus, the
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question arises how a theoretical framework that explicitly makes use of back-

ground structures can be in accordance with Background Independence. In

fact, the answer is simple: Indeed, it can be in accordance with Background

Independence, namely by noting that all backgrounds together are equivalent

to no background, at all. This means, in the construction of the path integral,

the background metric ḡµν must never be specified and furthermore it must be

proven that the framework is invariant under changes of this background metric

(“background gauge transformations” δ(B)). This procedure is called the back-

ground field method.

In order to implement the background field technique, we split the full metric

gµν , which we assume to be of Euclidean signature, into a background part and

a fluctuation part: gµν = ḡµν + hµν . The fluctuation field then is formally

quantized hµν 7→ ĥµν , whereby it is complemented by the ghost fields Cµ, C̄µ
and bµ. After employing the Faddeev-Popov trick, the bare action then is given

by Eq. (4.15), i.e.,

S[ĥ, C̄, C, b; ḡ] := Scl[ḡ + ĥ] + SGF[ĥ; ḡ] + Sgh,1[ĥ, C̄, C; ḡ] + Sgh,2[b; ḡ] .

Here, Scl denotes the classical action for the metric field which is assumed to be

diffeormorphism invariant a priori. Infinitesimally, general coordinate transfor-

mations of the metric amount to applying a Lie derivative LV to it, where V is

some vector field. Since the metric is split into background and fluctuation part,

it must therefore be clarified how to distribute the LV over these parts. This is

a crucial technical step for the application of the background field method. We

do so as follows: the classical general coordinate transformations are promoted

to quantum gauge transformations via δ(Q)ĝµν := LV ĝµν and δ(Q)ḡµν . This sym-

metry of the classical action then is fixed by means of the gauge-fixing action

SGF. Then, according to the procedure of Faddeev and Popov, the action must

be additionally supplemented by the ghost field actions Sgh,1 and Sgh,2 for the

ghost fields Cµ and C̄µ as well as bµ, respectively.

In this way, the full bare action possesses two “symmetries”: first, it is in-

variant under the background gauge transformations δ(B) which are defined by

δ(B) = LV , i.e., the Lie derivative is equally distributed among all fields, includ-

ing the background metric. This realizes Background Independence. Moreover,

the full bare action is invariant under the BRST transformations which is a
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consequence of the Faddeev-Popov method. All these properties are explicitly

proven.

The generating functional for the connected Green’s function (4.17) then is

defined analogously to the case of the scalar field,

exp {W [tµν , σµ, σ̄µ, d
µ; ḡµν ]} :=

∫
Dµ[ĥ, C̄, C, b; ḡ] exp

{
− S[ĥ, C̄, C, b; ḡ]

+

∫
ddx
√
ḡ
[
tµν ĥµν + σ̄µC

µ + σµC̄µ + dµbµ

]}
.

Here tµν , σµ, σ̄µ and dµ are sources for the metric fluctuation and ghost fields.

Again, the measure explicitly depends on the background metric and is con-

structed in such a way that the whole path integral is invariant under BRST

transformations as well as background gauge transformations. The formal ef-

fective action then is defined as the Legendre transform of this path integral.

The rest of Chapter 4 focuses on constructing the bare action as well as the

effective action for two given classical actions: on the one hand, for the Einstein-

Hilbert action, and on the other hand, for the action of higher-derivative gravity.

As for the scalar field, we also perform a saddle point expansion of eW around the

solutions to the equations of motion for the bare action, in order to determine

the gravitational one-loop effective action. Thereby, the bare action takes the

form (here exemplified for the Einstein-Hilbert action where one has bµ ≡ 0)

S[ĥ, C̄, C; ḡ] = SEH[ḡ] + SM[ĥ, C̄, C; ḡ] +O(2 loops) .

The one-loop term SM[ĥ, C̄, C; ḡ] is quadratic in the metric fluctuations ĥµν
which is why this structure enables us to interpret the one-loop expansion of

the bare action as a matter action for the Gaussian “graviton field” ĥµν .

Furthermore, the gravitational one-loop effective action in general then reads

Γ[ḡ] := Γ[0, 0, 0, 0; ḡ]

=Sh.−d.[ḡ] +
1

2
TrST 2 ln

[
U [0; ḡ]

••

••

]
− TrV ln

[
M [g, ḡ]

•

•

]
− 1

2
TrV ln

[
1

α
Y

•
•[ḡ]

]
+O(2 loops) .
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The operator U [0; ḡ] is the inverse propagator of the theory, while the operators

M [g, ḡ] and Y [ḡ] are the Faddeev-Popov operators stemming from the ghost

part of the bare action. All these operators are derived in detail for the special

cases of the Einstein-Hilbert action as well as higher derivative gravity. In later

applications, we will have frequent recourse to the results for these operators.





CHAPTER 3

Warm up: a scalar field on a fixed Riemannian

d-dimensional manifold

Executive summary. In Euclidean conventions, we quantize a scalar field via

a path integral approach on an arbitrary, yet compactly assumed, background

manifold. We conduct a mode decomposition of the Green’s functions and

formally introduce the effective action. Finally, we deduce the effective action

at order one-loop.

3.1. Quantization of the scalar field

To begin with, we develop the quantum field theoretical treatment of a scalar

field A, generically and at order one loop. Therefore, we model the background

spacetime as a d-dimensional, fixed and classical Riemannian manifold M that

we assume to be compact and without boundary. M is equipped with the back-

ground metric ḡ of Euclidean signature (+ + · · ·+). In general, we will indicate

geometric objects arising from the background metric ḡµν with a “bar”, e.g. the

Levi-Civita connection Γ̄αµν and its associated covariant derivate D̄µ.

On the compact Riemannian d-dimensional background manifold (M, ḡ) we

consider the action

S[A; ḡ] := SEH[ḡ] + SM[A; ḡ] . (3.1)

scalar field A. Its first part, accounting for the background geometry, is the

Einstein-Hilbert action

SEH[ḡ] :=
1

16πG

∫
ddx
√
ḡ (−R̄ + 2Λ) (3.2)

23
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with Newton’s constant G and the cosmological constant Λ. The latter part is

the matter action for the scalar field A,

SM[A; ḡ] :=
1

2

∫
ddx
√
ḡ A
[
−�ḡ + µ2 + ξR̄(ḡ)

]
A , (3.3)

in which −�ḡ = −ḡµνD̄µD̄ν is the negative Laplacian while µ and ξ are con-

stants. This is exactly the action (D.13), analyzed in the appendix, with

K [ḡ] = −�ḡ + µ2 + ξR̄(ḡ) . (3.4)

The eigenfunctions {χn,m} of K [ḡ], an elliptic operator, possess the properties

discussed in appendix A.1.2; the eigenvalue problem reads

(K [ḡ])diff
x χn,m(x) = Fnχn,m(x) . (3.5)

Here, we explicitly let the index n run over the set N0 = {0, 1, 2, . . . } to denote

by χ0,m the eigenfunctions with eigenvalue zero in the case of µ = 0 = ξ, if there

are any, otherwise we let n run over N = {1, 2, 3 . . . }.1 Furthermore, m is the

index accounting for the degeneracy Dn of the eigenvalue Fn. Especially, the

set of eigenfunctions{
χn,m

∣∣∣ n ∈ N0 , m ∈ {1, 2, . . . , Dn}
}

(3.6)

forms a basis of L2(M, ḡ), the space of square-integrable functions on (M, ḡ),

such that we can expand the scalar field A as in (D.15),

A(x) =
∞∑
n=0

Dn∑
m=1

an,mχn,m(x) . (3.7)

From this sum, we split the potential zero modes of K [ḡ] for a seperate treat-

ment:

A(x) =

D0∑
m=1

a0,mχ0,m(x) +
∞∑
n=1

Dn∑
m=1

an,mχn,m(x) =: A0(x) + Ã(x) . (3.8)

We will refer to A0 as the “zero” mode of A (in inverted commata) as it is only

required to be a zero mode in the case µ = 0 = ξ.

With this construction, we can give a meaning to the expectation value asso-

ciated to the quantized field A 7→ Â by evaluating the generating functional of

1F0 = 0 for µ = 0 = ξ implies that in general, for arbitrary µ and ξ, F0 need not necessarily
be zero (but potentially is).
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the connected Green’s functions W [J ; ḡ] (also called the Schwinger functional)

defined by

exp {W [J ; ḡ]} :=

∫
DḡÂ exp

{
−S[Â; ḡ] +

∫
ddx
√
ḡ(x)J(x)Â(x)

}
, (3.9)

where the scalar field Â has been coupled to a source J . The ḡ-dependent

measure DḡÂ is explicitly constructed in appendix D.1 and given by

DḡÂ := D
[
ḡ1/4Â

]
=
∏
x

ḡ1/4(x)dÂ(x) . (3.10)

Importantly, we will absorb the integration over the “zero” modes a0,m w.l.o.g.

into the normalization constant,2 such that Ã remains as the sole integration

variable. Likewise, we split off the “zero” modes from the source J ,

J(x) =: J0 + J̃(x) ; (3.11)

then the functional eW [J̃ ;ḡ] can be explicitly calculated using (D.18) and com-

pleting the square,3

exp
{
W [J̃ ; ḡ]

}
= exp {−SEH[ḡ]}Det (K [ḡ])−1/2×

× exp

{
1

2

∫
ddx
√
ḡ(x)

∫
ddy
√
ḡ(y)J(x)〈x|K [ḡ]−1|y〉J(y)

}
. (3.12)

For the time being, we are interested in the J̃-dependence (and not the ḡ-

dependence) of W such that we may absorb e−SEH[ḡ] Det (K [ḡ])−1/2 into the

normalization constant of eW to find

W [J̃ ; ḡ] =
1

2

∫
ddx
√
ḡ(x)

∫
ddy
√
ḡ(y)J(x)〈x|K [ḡ]−1|y〉J(y) . (3.13)

We define the Green’s function, the connected two-point function, as

Gxy := 〈x|G|y〉 := G(x, y)

:=
1√

ḡ(x)
√
ḡ(y)

δ2W [δJ ; ḡ]

δJ̃(x)δJ̃(y)

∣∣∣∣∣
J̃=0

= 〈x|K [ḡ]−1|y〉 .
(3.14)

On the other hand, we find

2The integration over these “zero” modes leads to a Gaussian integral and/or to a delta
function (the letter especially in the case µ = 0 = ξ). In both cases, this part of the path
integral can be absorbed into its normalization constant.
3If we had not split off the zero modes, this result would be ill-defined.
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1√
ḡ(x)

√
ḡ(y)

δ2W [δJ ; ḡ]

δJ̃(x)δJ̃(y)

∣∣∣∣∣
J̃=0

=

=
1√

ḡ(x)
√
ḡ(y)

δ2

δJ̃(x)δJ̃(y)
ln

∫
Dḡ ̂̃A e−S[ ̂̃A;ḡ]+

∫
ddx
√
ḡJ̃ ̂̃A
∣∣∣∣∣
J̃=0

=
1√
ḡ(x)

δ

δJ̃(x)

[
e−W [J̃ ;ḡ]

∫
Dg ̂̃A ̂̃A(y) ̂̃A(y)e−S[ ̂̃A;ḡ]+

∫
ddx
√
ḡJ̃ ̂̃A]

J̃=0

=e−W [J̃ ;ḡ]

∫
Dḡ ̂̃A ̂̃A(x) ̂̃A(y) e−S[ ̂̃A;ḡ]+

∫
ddx
√
ḡJ̃ ̂̃A
∣∣∣∣∣
J̃=0

=

∫
Dḡ ̂̃A ̂̃A(x) ̂̃A(y) e−S[ ̂̃A;ḡ]∫

Dḡ ̂̃A e−S[ ̂̃A;ḡ]

=: 〈 ̂̃A(x) ̂̃A(y)〉 .

Thus, we can express the (unregularized) Green’s function as

G(x, y) = 〈x|K [ḡ]−1|y〉 = 〈 ̂̃A(x) ̂̃A(y)〉 , (3.15)

which amounts to the relation4

K [ḡ]diff
x G(x, y) = 〈x|1̃|y〉 , (3.16)

where 1̃ =
∑∞

n=1

∑Dn
m=1|nm〉〈nm|, the identity operator on the subspace spanned

by {χn,m}n≥1 obtained from excluding the “zero” modes. Therewith, we can

also express the (unregularized) expectation value of the kinetic term via the

Green’s function,〈
(∂ ̂̃A)2(x)

〉
:=
〈
gµν(x)∂µ

̂̃A(x)∂ν
̂̃A(x)

〉
= lim

y→x
ḡµν(x)

∂

∂xµ
∂

∂yν

〈̂̃A(x) ̂̃A(y)
〉

= lim
y→x

ḡµν(x)
∂

∂xµ
∂

∂yν
G(x, y) .

(3.17)

Furthermore, we can rewrite (3.16) using the completeness relation (A.30),

∞∑
n=0

Dn∑
m=1

χn,m(x)χ∗n,m(y) =
δ(x− y)√

ḡ(y)
. (3.18)

4Here, the identity operator can be expressed as 1 =
∑∞
n=0

∑Dn
m=1|nm〉〈nm|, cf. appendix

A.1.3.
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Splitting off the “zero” modes, we find

∞∑
n=0

Dn∑
m=1

χn,m(x)χ∗n,m(y) = K [ḡ]diff
x

∞∑
n=1

Dn∑
m=1

χn,m(x)χ∗n,m(y)

Fn

(3.19)

and therewith

K [ḡ]diff
x G(x, y) = K [ḡ]diff

x

∞∑
n=1

Dn∑
m=1

χn,m(x)χ∗n,m(y)

Fn

=
δ(x− y)√

ḡ(y)
−

D0∑
m=1

χ0,m(x)χ∗0,m(y) .

(3.20)

Having obtained these basic results, we are not endangered by pitfalls any-

more, therefore from now on, for the sake of simplicity, we will simply write Â

instead of ̂̃A, keeping in mind that we have excluded the “zero” modes.

Next, we introduce the effective action which in perturbation theory plays

the role of the generating functional of the one-particle-irreducible graphs. It is

a functional of the scalar field5 Ā, the normalized field expectation value of Â,

i.e.,

Ā(x) :=
1√
ḡ(x)

δW [J ; ḡ]

δJ(x)
≡ 〈Â(x)〉 . (3.21)

When this equation is solved for J , we indicate notationally J = J [Ā]. There-

with, the effective action (EA) is defined as the Legendre transform of the func-

tional W [J ; ḡ],

Γ[Ā; ḡ] := −W [J [Ā]; ḡ] +

∫
ddx
√
ḡ(x) Ā(x)J [Ā](x) . (3.22)

Note that Eq. (3.21) is inverted by δΓ[Ā; ḡ]/δĀ(x) =
√
ḡ(x)J(x) and that the

effective action fulfills the functional integro-differential equation

exp
{
−Γ[Ā; ḡ]

}
=

∫
DḡÂ exp

{
−S[Â; ḡ] +

∫
ddx (Â− Ā)(x)

δΓ[Ā; ḡ]

δĀ(x)

}
.

(3.23)

5We point out that the “bar” over Ā is not meant to indicate an association with the metric ḡ.
Simply put, we do not wish to deviate from the standard use of the “bar” for the expectation
value at this point.
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3.2. The one-loop effective action

To simplify the derivation of the one-loop effective action, we summarize the

exponent on the right-hand side (RHS) of the generating functional of the con-

nected Green’s functions (3.9) to a single J-dependent action

S[A, J ; ḡ] := SEH[ḡ] + SM[A; ḡ]−
∫

ddx
√
ḡ(x) J(x)A(x) , (3.24)

i.e., Eq. (3.9) now can be compactly written as

exp {W [J ; ḡ]} =

∫
DḡÂ exp

{
−S[Â, J ; ḡ]

}
. (3.25)

Essential for deriving the one loop (1L)-approximation of the EA is the field Acl

which is the solution of the classical equations of motion, i.e.,

δS[Â, J ; ḡ]

δÂ

∣∣∣∣∣
Â=Acl

= 0 . (3.26)

We can expand S[Â, J ; ḡ] around Acl using the functional Taylor series (C.5):

S[Â, J ; ḡ] =S[Acl, J ; ḡ]

+
1

2

∫
ddx

∫
ddy

(
Â− Acl

)
(x)

δ2S[Â, J ; ḡ]

δÂ(x)δÂ(y)

∣∣∣∣∣
Â=Acl

(
Â− Acl

)
(y) + · · ·

(3.27)

From Eq. (3.3) it is easy to see that

δ2S[Â, J ; ḡ]

δÂ(x)δÂ(y)
=
√
ḡ(x)

(
−�xḡ + µ2 + ξR̄(x)

)
δ(x− y)

=
√
ḡ(x)

√
ḡ(y) 〈x| −�ḡ + µ2 + ξR̄|y〉 .

(3.28)

with 〈x|y〉 = δ(x − y)/
√
ḡ(y) (see appendix A.1). Next, we plug this expan-

sion into Eq. (3.25), where it will amount to an expansion in ~,6 and shift the

integration variable as Â 7→ Â− Acl to obtain

6To keep track of the order of ~, although we use units in which ~ ≡ 1, we point out that
the Lorentzian counterpart of the generating functional of the connected Green’s functions is

given by exp i
~W =

∫
D( • ) exp i

~S. After scaling the integration variable as Â 7→ ~1/2Â, the
expansion in ~ emerges clearly [31, p. 455]
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exp {W [J ; ḡ]} = exp {−S[Acl, J ; ḡ]}×

×
∫
DḡÂ exp

{
− 1

2

∫
ddx
√
ḡ(x) Â(x)(−�ḡ + µ2 + ξR̄)Â(x) +O(2 loops)

}
.

(3.29)

At order ~, we have arrived at an Gaussian integral over the scalar field Â that

we can evaluate using Eq. (D.25) to find the expansion

exp {W [J ; ḡ]} = exp {−S[Acl, J ; ḡ]}Det (−�ḡ + µ2 + ξR̄)−1/2 +O(2 loops) ,

(3.30)

respectively, after solving for W ,

W [J ; ḡ] = −S[Acl, J ; ḡ]− 1

2
ln Det (−�ḡ + µ2 + ξR̄) +O(2 loops) . (3.31)

Yet, however, we cannot plug this result into the EA as it is defined in terms of

Ā, and not Acl. Thus, we must link both these fields in terms of an expansion

in ~. First, it is clear that

Ā = Acl +O(~) ⇔ Acl = Ā+O(~) . (3.32)

Hence, a functional Taylor expansion of the classical action (3.24) in Acl around

Ā reads

S[Acl, J ; ḡ] = S[Ā, J ; ḡ] +

∫
ddx

(
Acl − Ā

)
(x)

δS[Â, J ; g]

δÂ(x)

∣∣∣∣
Â=Ā

+O(~) . (3.33)

As Acl − Ā is of order ~ and

δS[Â, J ; ḡ]

δÂ

∣∣∣∣
Â=Acl

=
δS[Â, J ; ḡ]

δÂ

∣∣∣∣
Â=Acl

+O(~) = O(~) , (3.34)

it follows that

S[Acl, J ; ḡ] = S[Ā, J ; ḡ] +O(2 loops) . (3.35)

Consequently the 1L-expansion of W [J ; ḡ] reads

W [J ; ḡ] = −S[Ā, J ; ḡ]− 1

2
ln Det (−�ḡ + µ2 + ξR̄) +O(2 loops) . (3.36)

Plugging this expansion into the EA and using the identity ln Det[ · ] = Tr ln[ · ],
we have arrived at the 1L-expansion of the EA,7

Γ[Ā; ḡ] = SEH[ḡ] + SM[Ā; ḡ] +
1

2
Tr ln (−�ḡ + µ2 + ξR̄) +O(2 loops) . (3.37)

7Note that the trace Tr = TrS is taken on the Hilbert space of scalar fields, cf. appendix A.1.
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Henceforth, we agree on explicitly dropping the terms O(2 loops) and denote

by Γ[Ā; ḡ] its 1L-approximation. Furthermore, we are especially interested in

the functional

Γ[ḡ] := Γ[0; ḡ] = SEH[ḡ] +
1

2
Tr ln (−�ḡ + µ2 + ξR̄) (3.38)

and additionally abbreviate, also using Eq. (3.4),

Γ1L[ḡ] :=
1

2
Tr ln (−�ḡ + µ2 + ξR̄) ≡ 1

2
Tr ln [K [ḡ]] . (3.39)

Note that the trace still must be regularized! Lastly, the functional integro-

differential Eq. (3.23) for the one-loop approximation simplifies to

exp {−Γ[ḡ]} =

∫
DḡA exp {−S[A; ḡ]} , (3.40)

respectively

exp {−Γ1L[ḡ]} =

∫
DḡA exp {−SM[A; ḡ]} . (3.41)



CHAPTER 4

Quantization of metric fluctuations

Executive summary. In Euclidean conventions, we quantize gravity via a path

integral approach and formally introduce the effective action for gravity. We

thereby employ the background field method to rigorously ensure Background

Independence of the construction and further make use of the Faddeev-Popov

trick. We demonstrate the construction for quantum gravity based on the clas-

sical Einstein-Hilbert action as well as for higher-derivative gravity. Moreover,

we explicitly deduce the one-loop effective action for these special cases.

What is new? Proof of the classical BRST invariance of the construction for an

arbitrary weight function Y µν [g] in the gauge-fixing action. Expression for the

one-loop effective action for non-vanishing fluctuation fields given by Eq. (4.69).

4.1. The background field method

The classical graviton field “lives” on a generic Euclidean d-dimensional back-

ground manifold with metric ḡµν and usually is interpreted as the fluctuation

around this background metric:1

gµν := ḡµν + hµν (4.1)

where we have introduced the full metric gµν . The classical dynamics of this full

metric are determined by means of some classical action Scl[g] that is a priori as-

sumed to be invariant under general coordinate transformations. Infinitesimally

these are given by (cf. appendix F.1)

δgµν = LV gµν = V ρ∂ρgµν + V ρ∂µgρν + V ρ∂νφµρ = DµVν +DνVµ (4.2)

where L is the Lie derivative and V µ an infinitesimal vector field.

1Other parametrizations are possible, the most general being the exponential para-
metrization [32]. Here, different from Chapter 3, the background manifold is not compact.

31
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In this thesis we apply two different ansätze for the classical action. On the

one hand we will make use of the Einstein-Hilbert action

SEH[g] := 2κ2

∫
ddx
√
g (−R + 2Λ) , (4.3)

entailing the coupling constant κ2 := 1/(32πG) and the consmological constant

Λ. On the other hand, we will employ the higher-derivative action

Sh.−d.[g] :=

∫
ddx
√
g
[
aRµναβR

µναβ + bRµνR
µν + cR2

]
(4.4)

=

∫
ddx
√
g

[
1

2f 2
2

CµναβC
µναβ +

1

f 2
1

E − 1

6f 2
0

R2

]
of the curvature invariants I1 = RµνR

µν , I2 = R2 and I3 = RµναβR
µναβ that

contain only fourth-order derivatives and in the second version of the action

functional are parametrized as follows: The coupling f0 weighs the squared

scalar curvature I2 while the couplings f1 and f2 weigh, respectively, the in-

tegrand of the Gauss-Bonnet term E = I3 − 4I1 + I2 and the squared Weyl

tensor

CµναβC
µναβ = I3 −

4

d− 2
I1 +

2

(d− 1)(d− 2)
I2 . (4.5)

The couplings a, b and c are related to the couplings f0, f1 and f2 by [33]

a =
1

2f 2
2

+
1

f 2
1

, b = − 2

(d− 2)f 2
2

− 4

f 2
1

, c =
1

f 2
1

− 1

6f 2
0

+
1

(d− 1)(d− 2)f 2
2

. (4.6)

In four dimensions, d = 4, it can be shown that the Gauss-Bonnet term is

undynamical [34], δ
δgµν

∫
d4x
√
g E = 0, such that in this case it can be removed

from the action functional which then is parametrized by two couplings only.

Eliminating the coupling f1 by setting f 2
1 = −2f 2

2 turns out to be particu-

larly convenient because thereby E is removed from the action functional by

substracting it from the the squared Weyl tensor:

1

2f 2
2

CµναβC
µναβ +

1

f 2
1

E =
1

2f 2
2

(CµναβC
µναβ − E) =

1

2f 2
2

(
2I1 −

2

3
I2

)
. (4.7)

In terms of the couplings a, b and c this procedure corresponds to setting

a = 0 , b =
1

f 2
2

, c = −1

3

(
1

f 2
2

+
1

2f 2
0

)
. (4.8)
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Thus, the higher-derivative action in d = 4 w.l.o.g. is given by [27]

Sh.−d.[g] :=

∫
d4x
√
g

[
− 1

f 2
2

(
1

3
R2 −RµνRµν

)
− 1

6f 2
0

R2

]
. (4.9)

This action functional is written in such a form that the only term manifestly

breaking the Weyl symmetry gµν 7→ efgµν , with some arbitrary function f , is

the “R2”-term parametrized by the coupling f 2
0 . Therewith, we can make out

two special cases: Firstly, the limit f 2
0 → ∞, sometimes referred to as Weyl’s

higher-derivative gravity, in which the action becomes manifestly invariant un-

der Weyl transformations. Secondly, the limit f 2
2 → ∞ in which the action

reduces to a surface term that has no degrees of freedom. (Later this property

will be resembled in the propagator that becomes singular in the limit f 2
2 →∞.)

Lastly, note that as the volume element, the scalar, Ricci and Riemann curva-

ture are well-defined globally, the Einstein-Hilbert action as well as the higher-

derivative action clearly are invariant under general coordinate transfomations.

For a quantum treatment we also employ the background field technique

[35–37] and interpret hµν as the expectation value of the quantum field ĥµν
that, fully analogous to the classical field, is the quantum fluctuation around

the background metric ḡµν :

ĝµν := ḡµν + ĥµν . (4.10)

The expectation value of the full quantum metric ĝµν defined herein thus is

given by gµν . As before, we will indicate geometric objects arising from the

background metric ḡµν with a “bar”, e.g. a covariant derivate D̄µ. Geometric

objects arising from from the full quantum metric ĝµν are denoted without spe-

cific indication, i.e., Dµ is the covariant derivative associated to the Levi-Civita

connection Γαµν given by ĝµν et cetera.

The bare action Scl[ĝ] of course is still assumed to be invariant under general co-

ordinate transformations. We promote these to quantum gauge transformations

δ(Q) of the quantum field ĥµν by defining

δ(Q)ĥµν := LV ĝµν and δ(Q)ḡµν := 0 (4.11)

where V µ still is an infinitesimal vector field.
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We obtain the expectation value via a path integral approach, making use of

the Faddeev-Popov trick that can be straightforwardly applied to gravity [26, 36,

38–42]. This trick consists in fixing the quantum gauge transformation in order

to avoid the multiple contribution of physically equivalent gauge configurations

to the path integral. We can do so by supplementing the bare action with the

gauge-fixing action

SGF[ĥ; ḡ] :=
1

2α

∫
ddx
√
ḡ Fµ(ĥ; ḡ)Y µν [ḡ]Fν(ĥ; ḡ) (4.12)

for the gauge-fixing condition Fµ(ĥ; ḡ) = 0, where α is a gauge-fixing parameter

and Y µν [ḡ] is a “weight function” in form of either a fixed tensor structure

or a differential operator built from covariant derivatives such that SGF[ĥ; ḡ]

contains covariant derivatives of the same order as Scl[ĝ]. In this case, we

require the operator Y µν [ḡ] to behave symetrically under partial differentiations:∫
ddx
√
ḡ AµY

µν [ḡ]diffBν =
∫

ddx
√
ḡ BµY

µν [ḡ]diffAν , with Aµ and Bµ ordinary

covariant vector fields.2 To account for having fixed the gauge, we must further

supplement the bare action with the Faddeev-Popov action for the Faddeev-

Popov ghosts Cµ and C̄µ that results from the gauge-fixing condition Fµ(ĥ; ḡ) =

0,

Sgh,1[ĥ, C̄, C; ḡ] := −
∫

ddx
√
ḡ C̄µḡ

µνδ(Q)Fν(ĥ; ḡ)

∣∣∣∣
V=C

= −
∫

ddx
√
ḡ C̄µḡ

µν ∂Fν(ĥ; ḡ)

∂ĥαβ
LC(ḡαβ + ĥαβ) ,

(4.13)

where L is the Lie derivative. In case that Y µν [ḡ] is a differential operator, its

contribution to the gauge-fixing procedure must be accounted for by, yet again,

further supplementing the bare action with a second Faddeev-Popov action of

a third (“real”) ghost bµ [43–45],

Sgh,2[b; ḡ] =
1

2α

∫
ddx
√
ḡ bµY

µν [ḡ]bν . (4.14)

2To antizipate the reason for this condition: On the one hand, it will ensure the brst in-

variance of the bare action; on the other hand it is required to obtain ḡνρ(y)
δ2Sgh,2[b;ḡ]
δbµ(x)δbρ(y) =√

ḡ(x)
√
ḡ(y)〈x, µ| − Y [ḡ]|y, ν〉 later on.
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The Faddeev-Popov construction is marked with the breaking of gauge invari-

ance. This downside is compensated by the invariance of the full bare action

S[ĥ, C̄, C, b; ḡ] := Scl[ḡ + ĥ] + SGF[ĥ; ḡ] + Sgh,1[ĥ, C̄, C; ḡ] + Sgh,2[b; ḡ] , (4.15)

under the classical BRST transformations

δεĥµν := εLC ĝµν = εLC(ḡµν + ĥµν)

δεḡµν := 0

δεC
µ := εCν∂νC

µ

δεC̄µ := εα−1Y ν
µ[ḡ]Fν(ĥ; ḡ)

δεbµ := 0 .

(4.16)

Here, ε is an anticommuting and x-independent parameter. Alternatively, one

could have defined the anticommuting BRST operator s to act as sĥµν := LC ĝµν
et cetera. Importantly, note that the BRST operation is nilpotent (for the last

operation only on-shell, however). A proof of its nilpotence and of the invari-

ance δεS[ĥ, C̄, C; ḡ] = 0 can be found in appendices F.2 and F.3.

After these preparations, we can finally become more precise and define the

generating functional for the connected Green’s function [39], also called the

Schwinger functional, as

exp {W [tµν , σµ, σ̄µ, d
µ; ḡµν ]} :=

∫
Dµ[ĥ, C̄, C, b; ḡ] exp

{
− S[ĥ, C̄, C, b; ḡ]

+

∫
ddx
√
ḡ
[
tµν ĥµν + σ̄µC

µ + σµC̄µ + dµbµ

]}
.

(4.17)

Here, we have coupled the fields χ = (χ1, χ2, χ3, χ4)T := (ĥ, C̄, C, b)T to the

sources J = (J1, J2, J3, J4) := (t, σ, σ̄, d). By introducing the J-dependent ac-

tion3

S̃[χ; J ; ḡ] := S[ĥ, C̄, C, b; ḡ]− Ssource[ĥ, C̄, C, b; t, σ, σ̄, d; ḡ] (4.18)

3This shorthand notation also allows the utilization of DeWitt’s notation: Jiφ
i =∫

ddx
√
ḡ
[
tµνhµν + σ̄µC

µ + σµC̄µ + dµbµ
]
. However, we will hardly use it in this thesis.
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with

Ssource[ĥ, C̄, C, b; t, σ, σ̄, d; ḡ] :=

∫
ddx
√
ḡ
[
tµν ĥµν + σ̄µC

µ + σµC̄µ + dµbµ

]
,

(4.19)

the Schwinger functional can be compactly written in this shorthand notation:

exp {W [J ; ḡ]} =

∫
Dµ[χ; ḡ] exp

{
−S̃[χ, J ; ḡ]

}
. (4.20)

Furthermore, we specify the measure to the BRST-invariant measure given by

Eqs. (D.7), (D.8) and (D.10):

Dµ[ĥ, C̄, C, b; ḡ] =DḡĥµνDḡCµDḡC̄µDḡbµ

=
∏
x

ḡ(x)
(d−4)(d+1)

8
− 3d−2

4

∏
µ≥ν

dĥµν(x)
∏
α

dCα(x)dC̄α(x)dbα(x) ,

(4.21)

or, if Y µν [ḡ] does not contain derivatives and hence bµ ≡ 0,

Dµ[ĥ, C̄, C; ḡ] =DḡĥµνDḡCµDḡC̄µ

=
∏
x

ḡ(x)
(d−4)(d+1)

8
− d

2

∏
µ≥ν

dĥµν(x)
∏
α

dCα(x)dC̄α(x) .
(4.22)

The Schwinger functional by construction fails to be invariant under the quan-

tum gauge transformations δ(Q) as δ(Q)SGF[ĥ; ḡ] 6= 0. On the one hand, its

gauge invariance can be restored in form of its invariance under the classical

BRST transformations, δεW [J ; ḡ] = −〈δεSsource[χ, J ; ḡ]〉 = 0. All ingredients of

W [J ; ḡ] but the source action are BRST invariant per construction; this condi-

tion towards the source action is a modified Ward identity. One the other hand,

the use of the background field method further induces the invariance of the

Schwinger functional (for any gauge-fixing condition) under background gauge

transformations δ(B) which are defined by

δ(B)ĥµν :=LV ĥµν

δ(B)ḡµν :=LV ḡµν

δ(B)Cµ :=LVC
µ

δ(B)C̄µ :=LV C̄µ

δ(B)bµ :=LV bµ

(4.23)
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where, again, V µ is an infinitesimal vector field. Note that δ(Q)ĝµν = δ(B)ĝµν =

LV ĝµν but the distribution of the Lie derivative over the background field ḡµν
and the quantum field ĥµν differs. A proof of the invariance δ(B)eW [J ;ḡ] = 0 can

be found in appendix F.4.

By means of the generating functional eW [J ;ḡ] we introduce the J-dependent

expectation values

hJµν(x) :=
1√
ḡ(x)

δW [t, σ, σ̄, d; ḡ]

δtµν(x)
≡ 〈ĥµν(x)〉J

ξ̄Jµ(x) :=
1√
ḡ(x)

δW [t, σ, σ̄, d; ḡ]

δσµ(x)
≡ 〈C̄µ(x)〉J

ξµJ (x) :=
1√
ḡ(x)

δW [t, σ, σ̄, d; ḡ]

δσ̄µ(x)
≡ 〈Cµ(x)〉J

ζJµ (x) :=
1√
ḡ(x)

δW [t, σ, σ̄, d; ḡ]

δdµ(x)
≡ 〈bµ(x)〉J .

(4.24)

Again, we can absorb these definitions into a shorthand notation by introducing

φ = (φ1, φ2, φ3, φ4)T := (h, ξ̄, ξ, ζ)T :

φiJ(x) =
1√
ḡ(x)

δW [J ; ḡ]

δJi(x)
≡ 〈χi(x)〉J . (4.25)

We drop the super- and subscript J sometimes for notational convenience, φ ≡
φJ , and sometimes to indicate the special case φ = φJ=0 which is the actual

expectation value φ = 〈χ〉. It will always be clear from context, which of these

two cases we apply – the latter precludes the former. In the next definition for

example, we stick with the former notation.

We solve Eq. (4.24) for J to obtain J = J [φ; ḡ] and define the EA as the

Legendre transform of the functional W [J ; ḡ],

Γ[φ; ḡ] := Ji[φ; ḡ]φi −W [J [φ; ḡ]; ḡ] , (4.26)

or more precisely,

Γ[h, ξ̄, ξ, ζ; ḡ] =

∫
ddx
√
ḡ
[
tµν [φ; ḡ]hµν + σµ[φ; ḡ]ξ̄µ + σ̄µ[φ; ḡ]ξµ + dµ[φ; ḡ]ζµ

]
−W [J [φ; ḡ]; ḡ]

.

(4.27)
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It is a straightforward calculation (see appendix F.5) to show that Eq. (4.24) is

inverted by the relations

tµν(x) = +
1√
ḡ(x)

δΓ[h, ξ̄, ξ, ζ; ḡ]

δhµν(x)

σµ(x) = − 1√
ḡ(x)

δΓ[h, ξ̄, ξ, ζ; ḡ]

δξ̄µ(x)

σ̄µ(x) = − 1√
ḡ(x)

δΓ[h, ξ̄, ξ, ζ; ḡ]

δξµ(x)

dµ(x) = − 1√
ḡ(x)

δΓ[h, ξ̄, ξ, ζ; ḡ]

δζµ(x)

(4.28)

which in shorthand notation can be absorbed into

Ji(x) =
(−1)|φ

i|√
ḡ(x)

δΓ[φ; ḡ]

δφi(x)
. (4.29)

Here, |φi| denotes the Graßmann parity of the variable φi, i.e., |φi| = 0 for φi

even (here only φ1 = h) and |φi| = 1 for φi odd (here φ2 = ξ̄, φ3 = ξ and

φ4 = ζ). Therewith, it is easy to verify that the effective action (4.27) fulfills

the functional integro-differential equation

exp
{
−Γ[h, ξ̄, ξ, ζ; ḡ]

}
=

∫
DḡĥµνDḡCµDḡC̄µDḡbµ exp

{
− S[ĥ, C̄, C, b; ḡ]

+

∫
ddx

[
(ĥµν − hµν)(x)

δΓ[h, ξ̄, ξ, ζ; ḡ]

δhµν(x)
− δΓ[h, ξ̄, ξ, ζ; ḡ]

δξµ(x)
(Cµ − ξµ)(x)

− δΓ[h, ξ̄, ξ, ζ; ḡ]

δξ̄µ(x)
(C̄µ − ξ̄µ)(x)− δΓ[h, ξ̄, ξ, ζ; ḡ]

δζµ(x)
(bµ − ζµ)(x)

]}
.

(4.30)
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4.2. Quantization of the Einstein-Hilbert action

For the application to the quantization of the Einstein-Hilbert action SEH[ĝ]

defined by Eq. (4.3) we will solely work with the linear, and thus convenient,

gauge-fixing condition

Fµ(ĥ; ḡ) =
√

2Fαβ
µ [ḡ] ĥαβ with Fαβ

µ [ḡ] = δβµ ḡ
αγD̄γ − βḡαβD̄µ , (4.31)

i.e., Fµ(ĥ; ḡ) =
√

2(D̄αĥαµ−βD̄µĥα
α). Therewith the gauge-fixing action (4.12)

contains second-order covariant derivatives, just as the Einstein-Hilbert action

(4.3); thence to obtain an applicable gauge-fixing action it is sufficient to con-

sider the weight function

Y µν [ḡ] = κ2ḡµν . (4.32)

With this gauge-fixing condition and weight function, the gauge-fixing action

reads

SGF[ĥ; ḡ] =
1

α
κ2

∫
ddx
√
ḡ ḡµν(Fαβ

µ [ḡ] ĝαβ)(F ρσ
ν [ḡ] ĝρσ) (4.33)

and the Faddeev-Popov action becomes (see appendix F.6 for details)

Sgh,1[ĥ, C̄, C; ḡ] ≡ Sgh[ĥ, C̄, C; ḡ] = −
√

2

∫
ddx
√
ḡ C̄µM [ĝ, ḡ]µνC

ν , (4.34)

where we have introduced the Faddeev-Popov operator

M [ĝ, ḡ]µν = ḡµρḡσλD̄λ(ĝρνDσ + ĝσνDρ)− 2βḡρσḡµλD̄λĝσνDρ . (4.35)

As can easily be seen, the integral over the ghost fields Cµ and C̄µ contained in

the path integral (4.17) with the above gauge-fixing condition is simply the ex-

ponentiation of Det (M [ĝ, ḡ]••). Furthermore, we usually employ the harmonic

gauge which is given for α = 1 and β = 1/2.

As Y µν [ḡ] does not contain derivatives, we can overall set bµ ≡ 0 such that

the full action (4.15) reduces to

S[ĥ, C̄, C; ḡ] := SEH[ḡ + ĥ] + SGF[ĥ; ḡ] + Sgh[ĥ, C̄, C; ḡ] . (4.36)

and Eq. (4.18) reduces to, with χ ≡ (χ1, χ2, χ3)T = (ĥ, C̄, C)T and J ≡
(J1, J2, J3) = (t, σ, σ̄),

S̃[χ; J ; ḡ] := S[ĥ, C̄, C; ḡ]−
∫

ddx
√
ḡ
[
tµν ĥµν + σ̄µC

µ + σµC̄µ

]
. (4.37)
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4.2.1. The one-loop expansion

It is clear that in order to obtain one-loop expressions for correlators as, say,〈
ĥµν(y)ĥρσ(x)

〉
=

1√
ḡ(x)

√
ḡ(y)

Iρσαβ[ḡ]
δ2W [t, σ, σ̄; ḡ]

δtµν(y)δtαβ(x)

∣∣∣∣∣
(t,σ,σ̄)=0〈

C̄µ(y)Cν(x)
〉

=
1√

ḡ(x)
√
ḡ(y)

δ2W [t, σ, σ̄; ḡ]

δσµ(y)δσ̄ν(x)

∣∣∣∣∣
(t,σ,σ̄)=0

,

(4.38)

we have to expand the action S̃[χ; J ; ḡ] on the RHS of Eq. (4.17). To do so, we

introduce the field χcl = (χ1
cl, χ

2
cl, χ

3
cl)

T as the solution to the classical equations

of motion of the action (4.37),

δS̃[χ; J ; ḡ]

δχi

∣∣∣∣∣
χi=χicl

= 0 . (4.39)

Then, we expand the action S̃[χ; J ; ḡ], with the gauge-fixing action (4.33) and

Faddeev-Popov action (4.34), in the variable χ around χcl up to second order

in χ using Eq. (C.5):

S̃[χ; J ; ḡ] = S̃[χcl; J ; ḡ]+
1

2

∑
i,j

∫
ddx

∫
ddy(χ− χcl)

i(x)

× δ2S̃[χ; J ; ḡ]

δχj(x)δχi(y)

∣∣∣∣∣
χ=χcl

(χ− χcl)
j(y) +O(χ3) .

(4.40)

Inserting this expansion up to second order in χ into the exponent on the RHS

of Eq. (4.17) amounts to an expansion up to first order in ~ (here, we had set

~ ≡ 1, see Footnote 6 of Chapter 3). Thus, the expansion (4.40) in this role

leads to a one-loop approximation of the functional eW .

Moreover, it is not difficult to realize that if one is not interested in correlators

mixing the metric fluctuation ĥµν and the ghost fields C̄µ and Cµ – which we
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will not be – it is in fact sufficient to expand S[χ; ḡ] around the trivial solution

χcl = 0:

S[χ; ḡ] = SEH[ḡ] +
1

2

∫
ddx

∫
ddy ĥµν(x)

δ2(SEH[ḡ + ĥ] + SGF[ĥ; ḡ])

δĥµν(x)δĥρσ(y)

∣∣∣∣∣
ĥ=0

ĥρσ(y)

+

∫
ddx

∫
ddy C̄ρ(x)

δ2Sgh[χ; ḡ]

δCµ(x)δC̄ρ(y)

∣∣∣∣∣
χ=0

Cµ(y) +O(χ3) .

(4.41)

The former second-order term in this expansion leads us to the important def-

inition of the inverse propagator at vanishing metric fluctuation U [0; ḡ] given

by∫
ddx

∫
ddy ĥµν(x)

δ2(SEH[ḡ + ĥ] + SGF[ĥ; ḡ])

δĥµν(x)δĥρσ(y)

∣∣∣∣∣
ĥ=0

ĥρσ(y)

=:

∫
ddx
√
ḡ ĥµν(U [0; ḡ]µνρσ)diff ĥρσ .

(4.42)

Meanwhile, the latter second-order term in the expansion takes on a familiar

form:∫
ddx

∫
ddy C̄ρ(x)

δ2Sgh[χ; ḡ]

δCµ(x)δC̄ρ(y)

∣∣∣∣∣
χ=0

Cµ(y) = −
√

2

∫
ddx
√
ḡ C̄µM [ḡ, ḡ]µνC

ν

≡ +Sgh[0, C̄, C; ḡ] .

(4.43)

Interestingly, this expansion, which amounts to the linearization of the theory

given by the Einstein-Hilbert action as the bare action Scl[ĝ], allows for the

interpretation of its second-order terms as a classical matter action for the

(classical) graviton field hµν and the (classical) ghost fields ξ̄µ and ξµ:

SM[h, ξ̄, ξ; ḡ] := Sgraviton[h; ḡ] + Sgh[0, ξ̄, ξ; ḡ] , (4.44)

where we interpret the term of order h2
µν in the linearized theory as a matter

action for the fundamental graviton field hµν :

Sgraviton[h••; ḡ••] :=
1

2

∫
ddx
√
ḡ hµν(U [0; ḡ]µνρσ)diff I[ḡ]ρσαβhαβ , (4.45)

with I[ḡ]ρσαβ = 1
2
(ḡραḡσβ + ḡρβ ḡσα). The operator U [0; ḡ]µνρσ will be explicitly

stated in the next subsection (for a gauge-fixing condition of type (4.31) it is
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given by Eq. (4.75) and further specified to the harmonic gauge by Eq. (4.77)).

Furthermore, it is evident that the matter action for the classical ghost fields

ξ̄µ and ξµ is determind by the Faddeev-Popov action (4.34) at hµν = 0:

Sgh[0, ξ̄, ξ; ḡ] = −
√

2

∫
ddx
√
ḡ ξ̄µM [ḡ, ḡ]µνξ

ν , (4.46)

where the Faddeev-Popov operator M [ḡ, ḡ]µν also is explicitly stated in the

next subsection (for a general gauge is given by Eq. (4.74) and for the harmonic

gauge by Eq. (4.76)). All in all, the expansion (4.41) thus has become, neglecting

higher-order terms,

S[h, ξ̄, ξ; ḡ] = SEH[ḡ] + SM[h, ξ̄, ξ; ḡ] +O(2 loops) , (4.47)

which resembles the interpretation of fluctuation and ghost fields as matter

fields on a classical background spacetime. Next, we will finally assemble the

generating functional of the connected Green’s functions (4.17) at one-loop,

exp {W [tµν , σµ, σ̄µ; ḡµν ]} :=

∫
DḡĥµνDḡCµDḡC̄µ exp

{
− S[ĥ, C̄, C; ḡ]

+

∫
ddx
√
ḡ
[
tµν ĥµν + σ̄µC

µ + σµC̄µ

]}
, (4.48)

by plugging the expansion (4.47) into the RHS which now is, in fact, of such a

form that we can fully analytically perform the path integrals:

exp {W [tµν , σµ, σ̄µ; ḡµν ]}

= exp {−SEH[ḡ]}
∫
Dḡĥµν exp

∫
ddx
√
ḡ

{
− 1

2
ĥµνU [0; ḡ]µνρσĥ

ρσ + tµν ĥµν

}

×
∫
DḡCµDḡC̄µ exp

∫
ddx
√
ḡ

{
C̄µ

(√
2M [ḡ, ḡ]µν

)
Cν + σ̄µC

µ + σµC̄µ

}
.

(4.49)

In order to apply the Gaussian path integrals (D.35) and (D.37), we shift the

integrations variables as

ĥµν 7→ ĥµν − tρσ(U [0; ḡ]−1)ρσµν

C̄µ 7→ C̄µ + σ̄ν(M [ḡ, ḡ]−1)νµ

Cµ 7→ Cµ − (M [ḡ, ḡ]−1)µνσ
ν

(4.50)
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which leads to, using the linearity of each path integral and partial integration

when “completing the square”,

exp {W [tµν , σµ, σ̄µ; ḡµν ]} = exp {−SEH[ḡ]}Det (U [0; ḡ]
••

••)
−1/2 Det

(√
2M [ḡ, ḡ]

•

•

)
× exp

{
1

2

∫
ddx
√
ḡ tµν

(
U [0; ḡ]−1

)µν
ρσ
tρσ

+

∫
ddx
√
ḡ σ̄µ

(
(
√

2M [ḡ, ḡ])−1
)
µ
νσ

ν

}
.

(4.51)

Here, we are only interested in the (t, σ, σ̄)-depence of W [t, σ, σ̄; ḡ] and thus, for

the moment, we may absorve everything else into the normalization constant:

W [t, σ, σ̄; ḡ] =
1

2

∫
ddx
√
ḡ tµν

(
U [0; ḡ]−1

)µν
ρσ
tρσ

+

∫
ddx
√
ḡ σ̄µ

(
(
√

2M [ḡ, ḡ])−1
)
µ
νσ

ν .

(4.52)

Therewith, we find that the expectation values, given at the introduction of this

subsection, in the one-loop approximation of eW also are given by

1√
ḡ(x)

√
ḡ(y)

δ2W [t, σ, σ̄; ḡ]

δtµν(y)δtρσ(x)

∣∣∣∣∣
(t,σ,σ̄)=0

=
(

(U [0; ḡ]−1)ρσαβ

)diff

y
〈y, α, β|x, µ, ν〉

1√
ḡ(x)

√
ḡ(y)

δ2W [t, σ, σ̄; ḡ]

δσµ(y)δσ̄ν(x)

∣∣∣∣∣
(t,σ,σ̄)=0

=
(

(
√

2
−1

M [ḡ, ḡ]−1)να

)diff

y
〈y, α|x, µ〉 ,

(4.53)

where 〈y, α, β|x, µ, ν〉 = Iαβµν δ(y−x)/
√
ḡ(x) and 〈y, α|x, µ〉 = δαµδ(y−x)/

√
ḡ(x).

Consequently, we have identified those expectation values at one-loop as〈
ĥµν(y)ĥρσ(x)

〉
=
(

(U [0; ḡ]−1)ρσαβ

)diff

y
〈y, α, β|x, µ, ν〉

= 〈y, ρ, σ|U [0; ḡ]−1|x, µ, ν〉〈
C̄µ(y)Cν(x)

〉
=
(

(
√

2
−1

M [ḡ, ḡ]−1)να

)diff

y
〈y, α|x, µ〉

= 〈y, ν|(
√

2M [ḡ, ḡ])−1|x, µ〉 .

(4.54)

Nota bene. As for the scalar field, we technichally could express these expec-

tation values in a basis of eigenfunctions of the operator U [0; ḡ] and M [ḡ, ḡ],
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respectively. However, we will only do so in the following applications, where the

background manifold is specified to the d-dimensional sphere and the operators

U [0; ḡ] and M [ḡ, ḡ] simplify substentially.

4.2.2. The one-loop effective action

To derive the gravitational one-loop effective action we essentially follow the

same steps as in Sections 3.1: We introduce the field χcl = (χ1
cl, χ

2
cl, χ

3
cl)

T defined

by Eq. (4.39) and expand the action S̃[χ; J ; ḡ] – with the gauge-fixing and

Faddeev-Popov action specified to Eq. (4.33) and Eq. (4.34) – in Eq. (4.17) in

the variable χ around χcl up to first order in ~ using Eq. (C.5), respectively

Eq. (4.40),

exp {W [J ; ḡ]} =

∫
DḡĥµνDḡCµDḡC̄µ exp

{
− S̃[χcl; J ; ḡ]

− 1

2

∑
i,j

∫
ddx

∫
ddy(χ− χcl)

i(x)
δ2S̃[χ; J ; ḡ]

δχj(x)δχi(y)

∣∣∣∣∣
χ=χcl

(χ− χcl)
j(y) + · · ·

}
.

(4.55)

After shifting the integration variables as χ 7→ χ − χcl, the second term in the

exponent reads spelled out:

1

2

∑
i,j

∫
ddx

∫
ddy χi(x)

δ2S̃[χ; J ; ḡ]

δχj(x)δχi(y)

∣∣∣∣∣
χ=χcl

χj(y)

=
1

2

∫
ddx

∫
ddy ĥµν(x)

δ2S̃[χ; J ; ḡ]

δĥµν(x)δĥρσ(y)

∣∣∣∣∣
χ=χcl

ĥρσ(y)

+

∫
ddx

∫
ddy ĥµν(x)

δ2S̃[χ; J ; ḡ]

δĥµν(y)δC̄ρ(x)

∣∣∣∣∣
χ=χcl

C̄ρ(y)

+

∫
ddx

∫
ddy ĥµν(x)

δ2S̃[χ; J ; ḡ]

δĥµν(y)δCρ(x)

∣∣∣∣∣
χ=χcl

Cρ(y)

+

∫
ddx

∫
ddy C̄ν(x)

δ2S̃[χ; J ; ḡ]

δCµ(x)δC̄ν(y)

∣∣∣∣∣
χ=χcl

Cµ(y) .

(4.56)
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Let us compute these four terms independently. When employing the gauge

fixing action (4.33) and Faddeev-Popov action (4.34), we construe the first term

as the definition of the operators U [ĥcl, C̄cl, Ccl; ḡ]µνρσ and U [ĥcl; ḡ]µνρσ on ST 2

in the following sense:∫
ddx

∫
ddy ĥµν(x)

δ2S̃[χ; J ; ḡ]

δĥµν(x)δĥρσ(y)

∣∣∣∣∣
χ=χcl

ĥρσ(y)

=

∫
ddx

∫
ddy ĥµν(x)

δ2(SEH[ḡ + ĥ] + SGF[ĥ; ḡ] + Sgh[ĥ, C̄, C; ḡ])

δĥµν(x)δĥρσ(y)

∣∣∣∣∣
χ=χcl

ĥρσ(y)

=:

∫
ddx
√
ḡ ĥµν(U

′[ĥcl, C̄cl, Ccl; ḡ]µνρσ)diff ĥρσ

(4.57)

and∫
ddx

∫
ddy ĥµν(x)

δ2(SEH[ḡ + ĥ] + SGF[ĥ; ḡ])

δĥµν(x)δĥρσ(y)

∣∣∣∣∣
χ=χcl

ĥρσ(y)

=:

∫
ddx
√
ḡ ĥµν(U [ĥcl; ḡ]µνρσ)diff ĥρσ .

(4.58)

Especially note that U ′[ĥcl, 0, 0; ḡ]µνρσ = U [ĥcl; ḡ]µνρσ. We introduce two fur-

ther auxiliary operators, X1[ĥcl, Ccl; ḡ]µνρ and X2[hcl, C̄cl; ḡ]µνρ, in order to con-

dense the off-diagonal terms:∫
ddx

∫
ddy ĥµν(x)

δ2S̃[χ; J ; ḡ]

δĥµν(x)δC̄ρ(y)

∣∣∣∣∣
χ=χcl

C̄ρ(y)

= −
√

2

∫
ddx

∫
ddy ĥµν(x)

√
ḡ(y)

[
δ

δĥµν(y)
(M [ĝ, ḡ]C)ρ(x)

]
χ=χcl

C̄ρ(y)

=: −
∫

ddx
√
ḡ ĥµνX1[ĥcl, Ccl; ḡ]µναḡ

ραC̄ρ

(4.59)

and
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∫
ddx

∫
ddy ĥµν(x)

δ2S̃[χ; J ; ḡ]

δĥµν(x)δCρ(y)

∣∣∣∣∣
χ=χcl

Cρ(y)

=: −
∫

ddx
√
ḡ ĥµνX2[hcl, C̄cl; ḡ]µνρC

ρ . (4.60)

Both operators, X1[ĥcl, Ccl; ḡ]µνρ and X2[hcl, C̄cl; ḡ]µνρ, are maps between the

Hilbert spaces V → ST 2. In terms of their dual operators X1[ĥcl, Ccl; ḡ]∗
ρ

µν

and X2[hcl, C̄cl; ḡ]∗
ρ

µν we may also think of those operators as maps ST 2 → V

as

X1[ĥcl, Ccl; ḡ]∗
ρ

µν := Iµναβ[ḡ]ḡρσX1[ĥcl, C̄cl; ḡ]αβσ , (4.61)

and likewise for X2[hcl, C̄cl; ḡ]∗
ρ

µν . Also, note the identities X1[ĥcl, 0; ḡ] = 0 and

X2[ĥcl, 0; ḡ] = 0. Lastly, the term exhibiting derivatives with respect to both

ghost fields yields∫
ddx

∫
ddy C̄ρ(x)

δ2S̃[χ; J ; ḡ]

δCµ(x)δC̄ρ(y)

∣∣∣∣∣
χ=χcl

Cµ(y) = −
√

2

∫
ddx
√
ḡ C̄µM [ĝcl, ḡ]µνC

ν

≡ +Sgh[ĥcl, C̄, C; ḡ]

(4.62)

where we have additionally defined ĝcl := ḡ + ĥcl. Inserting these expressions

into the expanded exponent of the Schwinger functionals yields

exp {W [J ; ḡ]} = exp
{
−S̃[χcl; J ; ḡ]

}
×
∫
Dḡĥµν exp

{
− 1

2

∫
ddx
√
ḡ ĥµν(U

′[χcl; ḡ]µνρσ)diff ĥρσ

}

×
∫
DḡCµDḡC̄µ exp

{
+

∫
ddx
√
ḡ ĥµνX1[ĥcl, Ccl; ḡ]µνρC̄ρ

+

∫
ddx
√
ḡ ĥµνX2[hcl, C̄cl; ḡ]µνρC

ρ

+
√

2

∫
ddx
√
ḡ C̄µM [ĝcl, ḡ]µνC

ν + · · ·

}
.

(4.63)
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In order two perform the integral over the ghost fields, we shift the integration

variables according to4

C̄µ 7→ C̄µ +
1√
2
ĥαβX2[hcl, C̄cl; ḡ]αβρ(M [ĝcl, ḡ]−1)ρµ

Cµ 7→Cµ − 1√
2

(M [ĝcl, ḡ]−1)µρĥαβX1[ĥcl, Ccl; ḡ]αβρ .

(4.64)

This leads to, using Eq. (D.37),

exp {W [J ; ḡ]} = exp
{
−S̃[χcl; J ; ḡ]

}
Det(M [ĝcl, ḡ]

•

•)

×
∫
Dḡĥµν exp

{
− 1

2

∫
ddx
√
ḡ ĥµν

[
(U ′[χcl; ḡ]µνρσ)diff

+
√

2X2[hcl, C̄cl; ḡ]µντ (M [ĝcl, ḡ]−1)τ κX1[ĥcl, Ccl; ḡ]ρσ
κ

]
ĥρσ

}
+O(2 loops) . (4.65)

Here, we have absorbed a power of
√

2 appearing in front of M inside the

determinant into the normalization constant. What is left is a Gaussian integral

over ĥµν that we can perform by means of Eq. (D.35):

exp {W [J ; ḡ]} = exp
{
−S̃[χcl; J ; ḡ]

}
Det(M [ĝcl, ḡ]

•

•)

×Det

(
U ′[χcl; ḡ]

••

••

+
√

2X2[hcl, C̄cl; ḡ]
••

τ (M [ĝcl, ḡ]−1)τ κX1[ĥcl, Ccl; ḡ]∗
κ

••

)−1/2

+O(2 loops) . (4.66)

Along the very same lines as when discussing the scalar field in Section 3.2, it

easy to see that when keeping track of ~ one has

φ = (χ̂cl) +O(2 loops) , (4.67)

with φ ≡ (φ1, φ2, φ3)T = (h, ξ̄, ξ)T as bµ ≡ 0 and hence ζµ ≡ 0.

4Demonstratively, this amounts to completing the square as C̄MC + (hX2)C + (hX1)C̄ =
(C̄ + hX2M−1)M (C −M−1hX1) + (hX2)M−1(hX1).
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Therewith, we can plug our expansion into the EA (4.27):

Γ[h, ξ̄, ξ; ḡ] =

∫
ddx
√
ḡ
[
tµν [φ; ḡ]hµν + σµ[φ; ḡ]ξ̄µ + σ̄µ[φ; ḡ]ξµ

]
+ S[h, ξ̄, ξ; ḡ]−

∫
ddx
√
ḡ
[
tµν [φ; ḡ]hµν + σ̄µ[φ; ḡ]ξµ + σµ[φ; ḡ]ξ̄µ

]
+

1

2
ln Det

(
U ′[φ; ḡ]

•

•

+
√

2X2[h, ξ̄; ḡ]
••

τ (M [g, ḡ]−1)τ κX1[ĥcl, Ccl; ḡ]∗
κ

••

)
− ln Det(M [g, ḡ]

••

••) +O(2 loops) , (4.68)

where we have defined the expectation value of the full metric gµν := ḡµν + hµν .

Finally, we have deduced the EA at 1L,

Γ[h, ξ̄, ξ; ḡ] =S[h, ξ̄, ξ; ḡ]− TrV ln [M [g, ḡ]
•

•]

+
1

2
TrST 2 ln

[
U ′[φ; ḡ]

••

••

+
√

2X2[h, ξ̄; ḡ]
••

τ (M [g, ḡ]−1)τ κX1[ĥcl, Ccl; ḡ]∗
κ

••

]
+O(2 loops) .

(4.69)

Henceforth, we refrain from explicitly denoting the terms O(2 loops) when it

is clear that we refer to 1L-expressions. In the following application we are

especially interested in the EA at vanishing quantum fluctuation and vanishing

ghost fields; then, the EA heavily simplifies:

Γ[ḡ] := Γ[0, 0, 0; ḡ] = SEH[ḡ]+
1

2
TrST 2 ln [U [0; ḡ]

••

••]

− TrV ln [M [ḡ, ḡ]
•

•] .
(4.70)

Also, we equip the 1L-term of Γ[ḡ], i.e., the term of order ~, with its own

definition:

Γ1L[ḡ] :=
1

2
TrST 2 ln [U [0; ḡ]

••

••]− TrV ln [M [ḡ, ḡ]
•

•] . (4.71)

It is straightforward to see that the functional integro-differential Eq. (4.30) in

the present one-loop approximation boils down to

exp {−Γ[ḡ]} =

∫
DḡĥµνDḡCµDḡC̄µ e−S[ĥ,C̄,C;ḡ] , (4.72)
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where the action S[ĥ, C̄, C; ḡ] is given by its one-loop approximation (4.47), or

equivalently

exp {−Γ1L[ḡ]} =

∫
DḡĥµνDḡCµDḡC̄µ e−SM[ĥ,C̄,C;ḡ] (4.73)

with the matter action (4.44).

The two operators entering Γ[ḡ] are the Faddeev-Popov operator in this spe-

cial case gµν = ḡµν ,

(M [ḡ, ḡ]µν)
diff = δµν D̄

2 + D̄νD̄
µ − 2βD̄µD̄ν , (4.74)

as well as the operator U [0; ḡ]µνρσ that is meticulously calculated in appendix

F.7 and in this case reads

κ−2
(
U [0; ḡ]µνρσ

)diff

EH
=

[
d

(
1− 2

β2

α

)
(P̄tr.)

µν
ρσ − I

µν
ρσ

]
D̄2

+
1

2

(
1− 1

α

)[
δµσD̄

νD̄ρ + δνσD̄
µD̄ρ

+ δµρ D̄
νD̄σ + δνρD̄

µD̄σ

]
+

1

2

(
2
β

α
− 1

)[
ḡµνD̄σD̄ρ + ḡµνD̄ρD̄σ

+ ḡρσD̄
µD̄ν + ḡρσD̄

νD̄µ
]

+

[
d

2
(P̄tr.)

µν
ρσ − I

µν
ρσ

] (
2Λ− R̄

)
+
[
ḡµνR̄ρσ + ḡρσR̄

µν
]
−
[
R̄ρ

µ
σ
ν + R̄σ

µ
ρ
ν
]

− 1

2

[
δνσR̄

µ
ρ + δνρR̄

µ
σ + δµσR̄

ν
ρ + δµρ R̄

ν
σ

]
.

(4.75)

In the harmonic gauge, α = 1 and β = 1/2, these two operators take a par-

ticularly simple form. Using ḡµρ[D̄ν , D̄ρ]Xν = ḡµρ(−R̄ν
σρνX

σ) = R̄µ
νX

ν the

Faddeev-Popov operator then becomes

(M [ḡ, ḡ]µν)
diff = δµν D̄

2 + R̄µ
ν . (4.76)
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Furthermore, all off-diagonal terms in the operator
(
U [0; ḡ]µνρσ

)
EH

cancel such

that it simplifies to(
U [0; ḡ]µνρσ

)diff

EH
= κ2

[
d

2
(P̄tr.)

µν
ρσ − I

µν
ρσ

]
(D̄2 − R̄ + 2Λ)

+ κ2
[
ḡµνR̄ρσ + ḡρσR̄

µν
]
− κ2

[
R̄ρ

µ
σ
ν + R̄σ

µ
ρ
ν
]

− 1

2
κ2
[
δνσR̄

µ
ρ + δνρR̄

µ
σ + δµσR̄

ν
ρ + δµρ R̄

ν
σ

]
.

(4.77)

Adhering to the harmonic gauge, we further specify the background metric ḡµν
to that of a maximally symmetric spacetime whose scalar curvature R̄(x) ≡ R̄

is constant. Then the Ricci and Riemann tensor can be expressed through this

constant (see [46, Eq. (13.2.4-5)]):

R̄µν =
1

d
ḡµνR̄

R̄µναβ =
1

d(d− 1)
R̄ (gσνgµρ − gρνgµσ) .

(4.78)

Consequently, the curvature terms in Eq. (4.77) can be summed up as follows:[
ḡµνR̄ρσ + ḡρσR̄

µν
]

= 2 R̄ (P̄tr.)
µν
ρσ[

R̄ρ
µ
σ
ν + R̄σ

µ
ρ
ν
]

= 2

[
1

d− 1
R̄ (P̄tr.)

µν
ρσ −

1

d(d− 1)
R̄ Iµνρσ

]
[
δνσR̄

µ
ρ + δνρR̄

µ
σ + δµσR̄

ν
ρ + δµρ R̄

ν
σ

]
=

4

d
R̄ Iµνρσ .

(4.79)

When inserting these relations into Eq. (4.77), we have determined the operator

(U [0; ḡ]µνρσ)EH in the harmonic gauge on maximally symmetric background

manifold,(
U [0; ḡ]µνρσ

)diff

EH
=κ2

[
Iµνρσ − (P̄tr.)

µν
ρσ

] (
−D̄2 − 2Λ + cIR̄

)
− κ2d− 2

2
(P̄tr.)

µν
ρσ

(
−D̄2 − 2Λ + ctraceR̄

) (4.80)

with

cI =
d(d− 3) + 4

d(d− 1)
and ctrace =

d− 4

d
. (4.81)
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Likewise, the Faddeev-Popov operator (4.76) in the harmonic gauge on maxi-

mally symmetric background manifold reads

(M [ḡ, ḡ]µν)
diff = δµν

[
D̄2 +

1

d
R̄

]
. (4.82)

4.3. Quantization of the higher-derivative action

4.3.1. With generic spacetime dimension d

As a further application, we consider the quantization of the higher-derivative

action given by Eq. (4.4),

Sh.−d.[ĝ] =

∫
ddx
√
ĝ
[
aRµναβR

µναβ + bRµνR
µν + cR2

]
. (4.83)

Again, let us choose the gauge-fixing condition (4.31), i.e., Fµ(ĥ; ḡ) =
√

2(D̄αĥαµ−
βD̄µĥα

α). This time, however, the bare action Sh.−d.[ĝ] contains fourth-order

derivatives such we can allow the weight function Y µν [ḡ] to be an operator built

from second-order covariant derivatives. Therewith, the gauge fixing action

(4.12) contains fourth-order covariant derivatives like the bare action does. A

generic choice for the weight function is5 [33]

Y µν [ḡ] = ḡµνD̄2 + γD̄µD̄ν − δD̄νD̄µ . (4.84)

With this weight function and the gauge-fixing condition (4.31), the gauge-fixing

action reads

SGF[ĥ; ḡ] =
1

α

∫
ddx
√
ḡ (D̄αĥαµ − βD̄µĥα

α)

×
[
ḡµνD̄2 + γD̄µD̄ν − δD̄νD̄µ

]
(D̄βĥβν − βD̄ν ĥβ

β) . (4.85)

5For an even more general gauge-fixing action, one could also include terms proportional to
R̄µν or R̄ ḡµν into the weight function.
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The Faddeev-Popov action is independent of the choice of weight function and

depends only on the gauge-fixing condition. Thus, as in the previous section,

the Faddeev-Popov action is given by Eq. (4.34),

Sgh,1[ĥ, C̄, C; ḡ] = −
√

2

∫
ddx
√
ḡ C̄µM [ĝ, ḡ]µνC

ν , (4.86)

with the Faddeev-Popov operator given by Eq. (4.35). Lastly, the second ghost-

field action (4.14) for the third ghost field bµ becomes

Sgh,2[b; ḡ] =
1

2α

∫
ddx
√
ḡ bµY

µν [ḡ]bν

=
1

2α

∫
ddx
√
ḡ bµ

(
ḡµνD̄2 + γD̄µD̄ν − δD̄νD̄µ

)
bν . (4.87)

All these ingredients together add up to the full action (4.15),

S[ĥ, C̄, C, b; ḡ] := Sh.−d.[ḡ+ ĥ] +SGF[ĥ; ḡ] +Sgh,1[ĥ, C̄, C; ḡ] +Sgh,2[b; ḡ] , (4.88)

that leads to the Schwinger functional (4.17),

exp {W [tµν , σµ, σ̄µ, d
µ; ḡµν ]} :=

∫
Dµ[ĥ, C̄, C, b; ḡ] exp

{
− S[ĥ, C̄, C, b; ḡ]

+

∫
ddx
√
ḡ
[
tµν ĥµν + σ̄µC

µ + σµC̄µ + dµbµ

]}
.

(4.89)

In order to deduce the one-loop expansion of the Schwinger functional, we fol-

low the very same steps as previously in Subsection 4.2.1. In fact, if we had not

to deal with a weight function that implies bµ 6≡ 0, following the procedure for

the one-loop expansion of Subsection 4.2.1 would yield in structurally identical

results (i.e., we would only have to replace the bare and gauge-fixing action in

the definition of the operator U ′ and U ). Therefore, let us observe what effect

the third ghost field bµ has on the one-loop expansion: Again, we expand the

exponent on the RHS of the Schwinger functional, i.e., S̃[χ; J ; ḡ] (cf. Eq. (4.18)),

with χ = (χ1, χ2, χ3, χ4)T := (ĥ, C̄, C, b)T and J = (J1, J2, J3, J4) := (t, σ, σ̄, d)

around the solution to its equations of motion (4.39) (now with i = 1, 2, 3, 4).

In the second-order term of this expansion,
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1

2

∑
i,j

∫
ddx

∫
ddy χi(x)

δ2S̃[χ; J ; ḡ]

δχj(x)δχi(y)

∣∣∣∣∣
χ=χcl

χj(y) , (4.90)

the only bµ-dependent term will be the term i = j = 4. Thus, this expansion

on the RHS of the Schwinger functional leads to the fermionic Gaussian path

integral (D.36)∫
Dḡbµ exp

{
− 1

2α

∫
ddx
√
ḡ bµY

µ
ν [ḡ]bν

}
= Det

(
1

α
Y

•
•[ḡ]

)+1/2

(4.91)

that, importantly, is fully independent of the remaining path integral over

(ĥ, C̄, C). (Also, we have absorbed a power of 1/2 into the normalization con-

stant.) By analogously following Subsection 4.2.1 with this remaining part to

the one-loop effective action Eq. (4.69) yields the one-loop effective action for

higher-derivative gravity,

Γ[h, ξ̄, ξ, ζ; ḡ] =S[h, ξ̄, ξ, ζ; ḡ]− TrV ln

[
M [g, ḡ]

•

•

]
− 1

2
TrV ln

[
1

α
Y

•
•[ḡ]

]
+

1

2
TrST 2 ln

[ (
U ′[h, ξ̄, ξ; ḡ]

••

••

)
h.−d.

+
√

2X2[h, ξ̄; ḡ]
••

τ (M [g, ḡ]−1)τ κX1[ĥcl, Ccl; ḡ]∗
κ

••

]
+O(2 loops) ,

(4.92)

where X1[h, ξ; ḡ] and X2[h, ξ̄; ḡ] are defined in Subsection 4.2.1 and the operator(
U ′[h, ξ̄, ξ; ḡ]••••

)
h.−d.

is defined by∫
ddx

∫
ddy ĥµν(x)

δ2S̃[χ; J ; ḡ]

δĥµν(x)δĥρσ(y)

∣∣∣∣∣
χ=χcl

ĥρσ(y)

=

∫
ddx

∫
ddy ĥµν(x)

δ2(Sh.−d.[ḡ + ĥ] + SGF[ĥ; ḡ] + Sgh[ĥ, C̄, C; ḡ])

δĥµν(x)δĥρσ(y)

∣∣∣∣∣
χ=χcl

ĥρσ(y)

=:

∫
ddx
√
ḡ ĥµν(U

′[ĥcl, C̄cl, Ccl; ḡ]µνρσ)diff
h.−d. ĥ

ρσ .

(4.93)
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Note that the one-loop effective action depends on ζµ only on tree level. Later,

we will only apply the one-loop effective action at vanishing field expectations

values,

Γ[ḡ] := Γ[0, 0, 0, 0; ḡ]

=Sh.−d.[ḡ] +
1

2
TrST 2 ln

[
(U [0; ḡ]

••

••)h.−d.

]
− TrV ln

[
M [g, ḡ]

•

•

]
− 1

2
TrV ln

[
1

α
Y

•
•[ḡ]

] (4.94)

with∫
ddx

∫
ddy ĥµν(x)

δ2(Sh.−d.[ḡ + ĥ] + SGF[ĥ; ḡ])

δĥµν(x)δĥρσ(y)

∣∣∣∣∣
ĥ=0

ĥρσ(y)

=:

∫
ddx
√
ḡ ĥµν(U [0; ḡ]µνρσ)diff

h.−d. ĥ
ρσ .

(4.95)

The operator U [0; ḡ]h.−d. for a general background metric can be obtained in

a cumbersome and lengthy calculation that we leave out of this thesis because

U [0; ḡ]h.−d. in this generality will not be required here. At least, let us comment

on its general structure: Setting the gauge-fixing parameters to the values

α = − 2

4a+ b
, β =

b+ 4c

4(c− a)
, γ =

2a− 2c

4a+ b
and δ = 1 , (4.96)

the “off-diagonal terms” contained in U [0; ḡ]h.−d., i.e., ḡµνD̄α�ḡD̄β, ḡαβD̄µ�ḡD̄ν ,

D̄µD̄νD̄αD̄β and ḡνβD̄µ�ḡD̄α, [33] and the operator takes the form

(U [0; ḡ]µνρσ)diff
h.−d. = K[ḡ]µναβ

{
Iαβρσ�

2
ḡ + (V κτ )[ḡ]αβρσD̄κD̄τ +W [ḡ]αβρσ

}
,

(4.97)

where �ḡ = ḡµνD̄µD̄ν and Iµνρσ is given by Eq. (A.24). The explicit form of

the tensors K[ḡ]µναβ, (V κτ )[ḡ]αβρσ and W [ḡ]αβρσ can be found e.g. in [33, 47].
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As an example for the operator U [0; ḡ]h.−d. in a general gauge, we determine

it on a flat d-dimensional background (for an explicit derivation see appen-

dix F.8; also cf. [33]),

(U [0; ḡµν = δµν ]
µν
ρσ)diff

h.−d. =

(
b

2
+ 2a

)
Iµνρσ�

2

+

[(
b

2
+ 2c

)
− 2

β2

α
(1 + γ − δ)

]
δµνδρσ�

2

−
[
b+ 4a

4
+

1

2α

]{
δµρ∂

ν�∂σ + δµσ∂
ν�∂ρ

+ δνρ∂
µ�∂σ + δνσ∂

µ�∂ρ
}

−
[
b+ 4c

2
− 2

β

α
(1 + γ − δ)

]{
δµν∂ρ�∂σ

+ δρσ∂
µ�∂ν

}
+

[
2a+ b+ 2c+ 2

δ − γ
α

]
∂µ∂ν∂ρ∂σ ,

(4.98)

with � = δµν∂ν∂µ. Note that for the gauge-fixing parameters (4.96) the last

three – i.e., the “off-diagonal” – terms cancel.

4.3.2. Spacetime dimension d = 4

In four dimensions, d = 4, the specific gauge-fixing parameters (4.96) can be

expressed in terms of the couplings f 2
0 and f 2

2 in Eq. (4.8):

α = −2f 2
2 , β =

f 2
0 + 2f 2

2

2(2f 2
0 + f 2

2 )
, γ =

2f 2
0 + f 2

2

3f 2
0

and δ = 1 . (4.99)
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On the other hand, for a general gauge and on a four-dimensional flat back-

ground the operator (4.98) can also be expressed in terms of the couplings f0

and f2 given by Eq. (4.8) (again, see appendix F.8 for details):

U [0; ḡµν = δµν ]
d=4
h.−d. = −�2

{
− 1

2f 2
2

P(2) +
1

α
P(1)

+

(
1

f 2
0

+
6β2

α

)
P(0,ss) +

2(β − 1)2

α
P(0,ww)

+
2
√

3β(β − 1)

α

[
P(0,sw) + P(0,ws)

]}
,

(4.100)

where we have set δ − γ = 0, i.e., chosen the gauge-fixing parameters to de-

viate from Eq. (4.96) (although α and β still are arbitrary), in order to write

U [0; ḡµν = δµν ]
d=4
h.−d. in terms of the projectors P(2), P(1), P(0,ss) and P(0,ww).

These are spin projectors that project a symmertric rank-2 tensor field onto

the respective one of its four irreducible representations of the Lorentz group.

The projectors are labeled accordingly: P(2) projects onto a spin-2 represen-

tation, P(1) onto a spin-1 representation and P(0,ss) as well as P(0,ww) onto a

spin-0 representation; the “projectors” P(0,sw) and P(0,ws) map each spin-0 rep-

resentation onto the other. In appendix A.2.1 this field decomposition and the

corresponding projectors are constructed explicity. Using Eq. (A.70), the oper-

ator U [0; ḡµν = δµν ]
d=4
h.−d. can be easily inverted. This inverse is the propagator

of higher-derivative gravity in four dimensions and reads (cf. [48])(
U [0; ḡµν = δµν ]

d=4
h.−d.

)−1

= − 1

�2

{
− 2f 2

2P
(2) + α

[
P(1) +

1

2(β − 1)2
P(0,ww)

]

+ f 2
0

[
P(0,ss) +

3β2

(β − 1)2
P(0,ww)

+

√
3β

1− β
(
P(0,sw) + P(0,ws)

) ]}
.

(4.101)
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4.3.3. Weyl-squared gravity in d = 4

As explained earlier already, the limit f 2
0 → ∞ removes the Weyl symmetry-

breaking “R2”-term from the classical action (4.9). As explained earlier already,

the limit f 2
0 → ∞ removes the Weyl symmetry-breaking “R2”-term from the

classical action (4.9). Thus, in this limit we must also gauge-fix the Weyl (con-

formal) symmetry of the action, in which now the sole coupling f 2
2 parametrizes

the Weyl tensor. We can do so by additionally imposing the trace of the metric

fluctuation to vanish: ḡµν ĥµν ≡ ĥ ≡ 0 [49]. Practically, this means that in the

bare action (4.88) we must, on the one hand, take the limit f 2
0 → ∞ and, on

the other hand, make the replacement ĥµν 7→
(
IST2µν

αβ − (Ptr.)[ḡ]µν
αβ)ĥαβ, i.e.,

we must “project out” the trace of the metric fluctuation. Its corresponding

component in field space reduces accordingly to the set of all diffeomorphism-

invariant symmetric and traceless rank-2 tensors; importantly, the identity of

this space is given by 1ST2 − Ptr.[ḡ].

Let us take a look at the implications of this substitution, compared to the

case f 2
0 <∞. In the gauge-fixing action (4.85), the gauge-fixing condition (4.31)

reduces to

Fµ(ĥ; ḡ) =
√

2D̄α (IST2αµ
κτ − Ptr.[ḡ]αµ

κτ ) ĥατ . (4.102)

Although to beginn with, it might seem that the gauge-fixing parameter β has

become superfluous, it in fact has been determined to the value6

β =
1

4
, (4.103)

which is a specification that results precisely in the above gauge-fixing condition.

Further, the inverse propagator at vanishing fluctuation field of Weyl-squared

gravity is

U [0; ḡ]d=4
Weyl := (1ST2 − Ptr.[ḡ]) U [0; ḡ]d=4

h.−d.

∣∣∣∣
f2
0→∞, β=1/4

, (4.104)

where U [0; ḡ]d=4
h.−d. is defined by Eq. (4.95).

6In fact, β = 1/d in a d-dimensional spacetime, but note that the action is only conformally
invariant for d = 4.
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For example, with the remaing gauge-fixing parameters α, γ and δ specified

to the values of Eq. (4.99), i.e., α = −2f 2
2 , γ = 2/3 and δ = 1, U [0; ḡ]d=4

Weyl takes

the form

(U [0; ḡ]µνρσ)d=4,diff

Weyl
= (1ST2 − Ptr.[ḡ])µνγδKWeyl[ḡ]γδαβ ×

×
{
Iαβρσ�

2
ḡ + (V κτ

Weyl)[ḡ]αβ
ρσ
D̄κD̄τ +WWeyl[ḡ]αβρσ

}
. (4.105)

The tensors KWeyl[ḡ]γδαβ, (V κτ
Weyl)[ḡ]αβ

ρσ
and WWeyl[ḡ]αβρσ can e.g. be found in

[49].

On a flat background, we can obtain U [0; ḡµν = δµν ]
d=4
Weyl for an arbitrary

gauge-fixing parameter α and for γ − δ = 0 from Eq. (4.100):

U [0; ḡµν = δµν ]
d=4
Weyl = (1ST2 − Ptr.[ḡµν = δµν ]) U [0; ḡµν = δµν ]

d=4
h.−d.

∣∣∣∣
f2
0→∞, β=1/4

= −�2

{
− 1

2f 2
2

P(2) +
1

α

[
P(1) +

3

8
P(0,ss) +

9

8
P(0,ww)

− 3
√

3

8
P(0,sw) − 9

√
3

8
P(0,ws)

]}
.
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Its inverse, the propagator of Weyl-squared gravity, is given by the condition(
U [0; ḡµν = δµν ]Weyl

)−1
U [0; ḡµν = δµν ]Weyl = 1ST 2 − Ptr. and reads(

U [0; ḡµν = δµν ]
d=4

Weyl

)−1

= − 1

�2

{
− 2f 2

2P
(2) + α

[
P(1) − 2

3
√

3
P(0,ws) +

2

3
P(0,ww)

]}
.

(4.107)

Unfortunately, at two loops the conformal symmetry is anomalous [49], and

consequently radiative corrections will also generate a propagating scalar mode.

Nevertheless, Weyl-squared gravity is still relevant for situations in which the

conformal symmetry is approximately realized [50].
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CHAPTER 5

Summary of Part 2

The content of Part 2 interlinks the preparatory construction of the gravitational

path integral in Part 1 with the application that follows in Part 3. Essentially,

this interlink consists of the explicit construction of the functional renormal-

ization group equation, the presentation of some of its approximate solutions

as well as its application to the renormalization of composite operators. The

overall composition of Part 2 is tuned to prepare the specific ingredients which

will be required in Part 3.

Chapter 6 begins with the explicit construction of the functional renormal-

ization group equation and explains the philosophy of the Asymptotic Safety

scenario for quantum gravity. We add to the action appearing in the gravi-

tational path integral a scale-dependent cutoff action ∆Sk[ĥ, C̄, C, b; ḡ] which

serves the purpose of an infrared cutoff and regularizes the infrared divergences

of the path integral by surpressing the integration below the scale k2. It is

important to note that for the functional renormalization group equation to

be well-defined, the construction does not require an ultraviolet regularization

at the time. Fully analogous to the formal definition of the effective action

by means of the ordinary, unregularized gravitational path integral, one then

obtains a scale-dependent effective action, called the effective average action

Γk[h, ξ̄, ξ, ζ; ḡ]. Here, the first four arguments are the expectation values of the

metric fluctuation as well as of the ghost fields. The functional space of which

these four fields are elements of is called field space.
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One can straightforwardly show that the effective average action constructed

in this way fulfills the functional renormalization group equation (6.13),

k∂kΓk[φ; ḡ] =
1

2
TrST 2

[
(k∂kRk11[ḡ])

([
Γ

(2)
k [φ; ḡ] + Rk[ḡ]

]−1
)11

]

− TrV

[
(k∂kRk23[ḡ])

([
Γ

(2)
k [φ; ḡ] + Rk[ḡ]

]−1
)32

]

− 1

2
TrV

[
(k∂kRk44[ḡ])

([
Γ

(2)
k [φ; ḡ] + Rk[ḡ]

]−1
)44

]
,

with φ = (h, ξ̄, ξ, ζ). The operators Γ
(2)
k [φ; ḡ] and Rk[ḡ] are operators on field

space, namely the Hessians obtained by applying any two functional derivatives

to the effective average action and the cutoff action, respectively. Although the

cutoff action itself only serves the purporse of an infrared regulator of the grav-

itational path integral, the functional renormalization group equation is well-

defined in the infrared and the ultraviolet, too. The reason is that the scale

derivative k∂kRk[ḡ] vanishes in the infrared and the ultraviolet which fully reg-

ulates the traces on the RHS.

The idea of the Asymptotic Safety scenario for quantum gravity is as follows:

For a moment, let us forget about the gravitational path integral and the strug-

gle to give a physical meaning to it. Rather, let us take the above functional

renormalization group equation by the hand and try to find a solution Γk[φ; ḡ]

of it. The space this equation is defined on is the theory space, i.e., the space of

all diffeomorphism-invariant functionals of the fields. Generally, we may assume

that this space has the structure of a vector space, so we can expand

Γk[φ; ḡ] =
∞∑
i=1

ūi(k)Pi[φ; ḡ] .

Then, the functional renormalization group equation is nothing but (infinitely

many) coupled ordinary differential equation for the dimensionful couplings

{ūi(k)}. Hence we can identify theory space with the space of all couplings.

Moreover, we can consider a theory to be fully renormalized if we find a trajec-

tory in the space of all couplings that is well-defined for all values of k. Usually,

this trajectory will be emdedded into some finite-dimensional hypersurface of

theory space. The number of this finite dimension corresponds to the number
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of free parameters of the theory that must be fixed by experiment. Particu-

larly, this makes the Asymptotic Safety scenario predictive. The search for an

ultraviolet-finite trajectory in theory space is fully equivalent to the search for

an ultraviolet fixed point in theory space, out of which the ultraviolet-finite tra-

jectories originate. (The direction of the flow is the direction of lowering k.)

Unfortunately, it is only possible to find approximative solutions of the func-

tional renormalization group equation. An important ansatz for finding approx-

imative solutions are truncations of the theory space, i.e., to study the equation

on a space spanned by finitely many basis functionals
{
Pi[φ; ḡ]

∣∣ i = 1, 2, . . . , N
}

.

This amounts to the ansatz

Γk[φ; ḡ] =
N∑
i=1

ūi(k)Pi[φ; ḡ] .

Before showing examples for such truncative solutions, it is then explicitly shown

how the functional renormalization group equation must be further modified

such that it emulates the evolution of the one-loop effective action of some

given bare action. We will refer to this modification as the “one-loop approxi-

mation of the functional renormalization group equation”.

Chapter 7 presents the first approximative solution of the functional renor-

malization group equation that we will later have recourse to, the single metric

Einstein-Hilbert truncation [26]. Here, “single metric” refers to the fact that we

consider the special case gµν = ḡµν of a vanishing metric fluctuation. Further

“Einstein-Hilbert truncation” refers to the employed two-dimensional trunca-

tion of theory space which is spanned by the functionals
∫

ddx
√
g and

∫
ddx
√
gR,

i.e., by the functionals from which the Einstein-Hilbert action is built. Accord-

ingly, the ansatz for the effective average action (7.2) is built from these two

functionals. The two (dimensionless) running couplings that parametrize this

ansatz are Newton’s constant gk and the cosmological constant λk. Their run-

ning is given by ordinary differential equations (the “rg equations”) which we

explicitly derive from the functional renormalization group equation. We then

show in four spacetime dimensions that the flow of these rg equations possesses

a fixed point which we numerically calculate.

Furthermore we repeat this analysis for the “one-loop approximation” of the

functional renormalization group equation. To these solutions we refer to as
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the simplified Einstein-Hilbert flow. Furthermore, we study this simplified flow

in the presence of matter fields. In both cases, a fixed point in four spacetime

dimensions exists that we numerically calculate.

Chapter 8 treats a further approximative solution of the functional renormal-

ization group equation. Namely, we show how the latter can be used to calculate

the one-loop rg equations (respectively their RHS called the “beta functions”)

for higher-derivative gravity in four spacetime dimensions which is defined via

the classical action

Sh.−d.[g] :=

∫
d4x
√
g

[
− 1

f 2
2

(
1

3
R2 −RµνRµν

)
− 1

6f 2
0

R2

]
.

We then show with what ansatz the one-loop approximation of the funtional

renormalization group equation must be solved in order to obtain the one-loop

beta functions for the couplings f 2
0 and f 2

2 . It is important to note that these

beta functions are universal, i.e., independent of the employed renormalization

scheme. Furthermore, we also consider the scale-invariant special case of Weyl-

squared gravity which amounts to the limit f0 →∞.

It follows a detailed discussion of the solutions to the one-loop rg equations,

whereby it turns out to be useful to introduce the new variable ω := f 2
2 /(2f

2
0 ).

We show that higher-derivative as well as Weyl-squared gravity is asymptotically

free in the coupling f 2
2 . This essentially means that f 2

2 → 0 as k → ∞. More-

over, it is shown that the higher-derivative gravity possesses two non-Gaussian

fixed points of the variables f 2
2 and ω, with one being fully attractive in the

ultraviolet and the other being a saddle point. Thereby one has f 2
2 = 0 for

both fixed points because of asymptotic freedom, such that by setting ω to the

fixed-point value, one obtains a perturbative framework that is fully controlled

by f 2
2 .

Lastly, Chapter 8 concludes with a discussion of the corresponding rg equa-

tions in 4−ε dimensions, which are not universal anymore and moreover gauge-

dependent, i.e., not necessarily physical. We discuss how these rg equations

can be employed in a meaningful way in order to probe the behavior of results

away from four spacetime dimensions.

Part 3 concludes with Chapter 9 which is an extensive discussion of how

to renormalize composite operators via the functional renormalization group
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equation. There are various reasons that motivate the treatment of composite

operators within the functional renormalization group approach. These include

the following: Firstly, composite operators play a crucial role for the construc-

tion of observables for quantum gravity. These are particularly hard to construct

because they are required to be diffeomorphism invariant, for instance, one may

consider correlation functions at a fixed geodesic length. The geodesic length,

however, usually is not included into truncations of theory space which are given

by (quasi-)local operators. Thus, a way out of this problem is to renormalize

the geodesic length as a composite operator. Secondly, in a theory of quantum

gravity, it is rather natural to ask how geometric quantities, such as the volume

of some submanifold, behave at the quantum level. Such geometric properties

are crucial for the comparison of different approaches to quantum gravity, es-

pecially for the comparison of continuum-based with discrete approaches.

The point of origin for this chapter is a set (or basis) of n bare composite

operators O1[ĥ, C̄, C, b; ḡ](x), . . . ,On[ĥ, C̄, C, b; ḡ](x) that we wish to renormal-

ize. We then explicitly show that this is possible by coupling the bare operators

to arbitrary sources and incorporating them into the gravitational path inte-

gral. Then it is rather straightforward to derive the composite-operator func-

tional renormalization group equation Eq. (9.19) for the renormalized operators

[Oi]k [φ; ḡ](x), i = 1, . . . , n. This flow equation possesses a double-layer struc-

ture: it entails these renormalized composite operators, on the one hand, and

the effective average action Γk[φ; ḡ], on the other hand, thus, two approxima-

tions are required to actually find solutions to this flow equation. We call the

approximations for the effective average action and the renormalized composite

operators first and second truncation, respectively.

The most important example is that of geometric operators which are com-

posite operators that do not depend on the ghost fields. Their k dependence is

governed by the flow equation (9.29),

n∑
j=1

γ̄ij(k)Oj[g, ḡ](x) = −1

2
TrST 2

[(
∂tR

grav
k [ḡ]

)((
Γ

(2)
k

)
11

[g, ḡ] + Rgrav
k [ḡ]

)−1

× O(2)
i [g, ḡ](x)

((
Γ

(2)
k

)
11

[g, ḡ] + Rgrav
k [ḡ]

)−1
]
.
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Here, γ̄(k) is the dimensionful anomalous-dimension matrix, into which the

renormalization behavior of the composite operators is fully encoded. In gen-

eral, the anomalous-dimension matrix will be an (n × n)-matrix if the second

truncation is n-dimensional. Further, it is a function of the running couplings

that parametrize the first truncation.

Finally, we outline a scaling argument by which we can identify the anomalous-

dimension matrix with the scaling dimensions of the composite operators in

the ultraviolet, i.e., in the fixed-point regime. For example, in case of a one-

dimensional second truncation, we have the scaling property (9.62),

[O]k→∞[g, ḡ](r) ∼ rd−γ(u∗) .

Here, the geometric operator is assumed not to depend on a spacetime point

itself, but rather on a characteristic length scale. Further, it has canonical mass

dimension −d and u∗ is the fixed point in theory space obtained by means

of the first truncation of the effective average action. (Also, γ denotes the

dimensionless anomalous dimension.)



CHAPTER 6

The FRGE

Executive summary. We explicitly construct the effective average action

and the functional renormalization group equation for quantum gravity. On

this basis, we explain the concept of Asymptotic Safety and outline suitable

approximation schemes for the effective average action. Moreover, we show how

the functional renormalization group equation can be used to derive the one-

loop beta functions for a given bare action.

What is new? The rigorous discussion of the “one-loop approximation” of the

functional renormalization group equation.

6.1. Introduction

The effective action for quantum gravity, as given by its general – yet formal –

definition (4.27) is ill-defined: It still involves ultraviolet (UV)- and infrared (IR)-

divergences. For example, the trace appearing in the one-loop expansion (4.70)

of the effective action associated to the Einstein-Hilbert action contains notori-

ous UV divergences that will play a special role in Chapter 18. Conventionally,

one gives a meaning to the effective action, and therewith to the path inte-

gral (4.17) as well, by regularization techniques that renormalize the originally

divergent quantities. In the conventional, perturbative, approach towards renor-

malization each divergent “bare” quantity is thwarted by a so-called “countert-

erm” to give a renormalized quantity, essentially a parameter. Each of these

parameters’ value must be taken from experiment. In case of the quantization

of the Einstein-Hilbert action, infinitely many perturbative parameters must be

renormalized, resulting in a loss of predictivety. The theory is not perturba-

tively renormalizable.
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In the following, we introduce an alternative method to the conventional pro-

cess of perturbative renormalization, given by the functional renormalization

group equation (FRGE). This equation is an exact, non-perturbative, differen-

tial equation for a scale-dependent version of the effective action, the effective

average action (EAA). Remarkably, the FRGE only requires the presence of an

IR regularization to be well defined (its structure is such that the IR regular-

ization implies an UV regularization, too). This property goes along with the

fact that the FRGE, while constructed with the help of a bare action, is itself

fully independent of a bare action. However, when reimplementing an – for the

FRGE itself superfluous – UV regularization, one can reconstruct a bare action

that then depends on the chosen UV regularization scheme. Importantly, the

FRGE might admit IR- and UV-well defined solutions that are predictive, i.e.,

require only a finite set of parameters to be taken from experiment. Especially

intriguing is the existence of such solutions that correspond to theories that are

otherwise perturbatively non-renormalizable. Indeed, in the case of quantum

gravity strong indications for the existence of such a solution have been found.

6.2. Construction of the FRGE

In order to construct the FRGE from the path integral (4.17), let us equip this

path integral explicitly with an IR regularization, in form of a (low momen-

tum) cutoff, while assuming only implicitly its UV regularization. Therefore, we

add to the full action S[ĥ, C̄, C, b; ḡ] given by Eq. (4.15) the following IR-cutoff

functional for the gravitational field ĥµν and the ghosts C̄µ, Cµ and bµ:

∆kS[ĥ, C̄, C, b; ḡ] :=
1

2

∫
ddx
√
ḡ ĥµν Rgrav

k
µν
ρσ[ḡ]diff ĥρσ

+

∫
ddx
√
ḡ C̄µ Rgh,1

k

µ

ν [ḡ]diffCν

+
1

2

∫
ddx
√
ḡ bµ Rgh,2

k

µ

ν [ḡ]diffbν .

(6.1)
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Fully analogously to Eq. (4.17) we therewith define

exp
{
Wk[t

µν , σµ, σ̄µ, d
µ; ḡµν ]

}
:=

∫
Dµ[ĥ, C̄, C, b; ḡ] exp

{
− S[ĥ, C̄, C, b; ḡ]−∆kS[ĥ, C̄, C, b; ḡ]

+

∫
ddx
√
ḡ
[
tµν ĥµν + σ̄µC

µ + σµC̄µ + dµbµ

]}

=

∫
Dµ[ĥ, C̄, C, b; ḡ] exp

{
− S̃[ĥ, C̄, C, b; t, σ, σ̄, d; ḡ]−∆kS[ĥ, C̄, C, b; ḡ]

}
,

(6.2)

where S̃[ĥ, C̄, C, b; t, σ, σ̄, d; ḡ] is given by Eq. (4.18). The measure is again de-

fined by Eq. (4.21) and in the case of bµ = 0 (and thus dµ = 0) is traded for the

measure Eq. (4.22). This k-dependent version of the Schwinger functional is also

invariant under the background transformations (4.23), δ(B)Wk[J ; ḡ] = 0, which

is proven in appendix F.4; whereas its invariance under the BRST transforma-

tions (4.16) requires the modified Ward identities1 δεWk[J ; ḡ] = −〈δε∆kS[χ; ḡ]〉−
〈δεSsource[χ, J ; ḡ]〉 = 0 to hold (with Ssource given by Eq. (4.19)).

The cutoff action ∆kS[ĥ, C̄, C, b; ḡ] fulfills thee purpose of an IR cutoff at the

scale k that surpresses eigenmodes p2 of the negative Laplacian −D̄2 =: −�ḡ
with p2 � k2 while those eigenmodes with p2 � k2 are not surpressed and fully

“integrated out”. The cutoff operators Rgrav
k [ḡ], Rgh,1

k [ḡ] and Rgh,2
k [ḡ] all have

the general structure

Rk[ḡ] = Zk[ḡ]k2γR(0)
(
(−D̄2/k2)

γ)
, (6.3)

where Zk[ḡ] is a tensor structure that depends on the scale k through the run-

ning couplings of the respective theory and the power γ is chosen such that

R[ḡ] has the same canonical mass dimension as the respective inverse propaga-

tor. E.g., for Rgrav
k [ḡ] one chooses γ = 1 when considering the Einstein-Hilbert

action (4.3) and γ = 2 when considerung the higher-derivative action (4.4).

Also, w.l.o.g. we may require Z gh,1
k [ḡ]µν ∼ δµν and as well Z gh,2

k [ḡ]µν ∼ δµν .

On momentum space, the dimensionless function R(0) : R≥ → [0, 1] , z 7→

1Later, this modified Ward identity can be formulated as a condition that the effective average
action must fulfill, cf. Section 9.1.
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R(0)(z), is required to (at best smoothly) interpolate between R(0)(0) = 1 and

limz→∞R
(0)(z) = 0. A convenient choice of the specific “cutoff profile” is e.g.

R(0)(z; s) =
sz

esz − 1
(6.4)

or R(0)(z) = (1− z)θ(1− z) , (6.5)

with θ the Heaviside step function. The former is called the exponential cutoff. It

depends parametrically on s which is a pratical feature to investigate the cutoff-

dependence of results. The latter specification of R(0) is called the optimized

cutoff [51, 52]. Replacing the conventional Schwinger functionalW withWk, the

classical fields φ = (h, ξ̄, ξ, ζ)T given by Eq. (4.24) now are given by φ ≡ φk[J ; ḡ],

i.e.,

hµν(x) ≡ hkµν [J ; ḡ](x) :=
1√
ḡ(x)

δWk[t, σ, σ̄, d; ḡ]

δtµν(x)
≡ 〈ĥµν(x)〉

ξ̄µ(x) ≡ ξ̄kµ[J ; ḡ](x) :=
1√
ḡ(x)

δWk[t, σ, σ̄, d; ḡ]

δσµ(x)
≡ 〈C̄µ(x)〉

ξµ(x) ≡ ξk
µ[J ; ḡ] :=

1√
ḡ(x)

δWk[t, σ, σ̄, d; ḡ]

δσ̄µ(x)
≡ 〈Cµ(x)〉

ζµ(x) ≡ ζkµ[J ; ḡ] :=
1√
ḡ(x)

δWk[t, σ, σ̄, d; ḡ]

δdµ(x)
≡ 〈bµ(x)〉 .

(6.6)

Again, we therewith express the source functions J = (t, σ, σ̄, d) as functionals

of φ and ḡ; therewith we further define the analog of the effective action (4.27)

as

Γ̃k[h, ξ̄, ξ, ζ; ḡ] =

∫
ddx
√
ḡ
[
tk
µν [φ; ḡ]hµν + σk

µ[φ; ḡ]ξ̄µ + σ̄kµ[φ; ḡ]ξµ + dk
µ[φ; ḡ]ζµ

]
−Wk[Jk[φ; ḡ]; ḡ] .

(6.7)

However, the functional Γ̃k[h, ξ̄, ξ, ζ; ḡ] appears only as an auxiliary functional

on our way to define the EAA by

Γk[φ; ḡ] := Γ̃k[φ; ḡ]−∆kS[φ; ḡ] . (6.8)
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Note that in the limit k → 0, in which the cutoff functional ∆kS[φ; ḡ] vanishes,

i.e., in which the cutoff is fully removed, we recover the conventional effective

action (4.27):

lim
k→0

Γk[φ; ḡ] = Γ[φ; ḡ] . (6.9)

Furthermore, note that the relations (6.6) are now inverted by

tµν(x) ≡ tk
µν [φ; ḡ](x) = +

1√
ḡ(x)

δΓ̃k[h, ξ̄, ξ, ζ; ḡ]

δhµν(x)

σµ(x) ≡ σk
µ[φ; ḡ](x) = − 1√

ḡ(x)

δΓ̃k[h, ξ̄, ξ, ζ; ḡ]

δξ̄µ(x)

σ̄µ(x) ≡ σ̄kµ[φ; ḡ](x) = − 1√
ḡ(x)

δΓ̃k[h, ξ̄, ξ, ζ; ḡ]

δξµ(x)

dµ(x) ≡ dk
µ[φ; ḡ](x) = − 1√

ḡ(x)

δΓ̃k[h, ξ̄, ξ, ζ; ḡ]

δζµ(x)
,

(6.10)

or, in summary,

(Ja)k[φ; ḡ](x) =
(−1)|φ

a|√
ḡ(x)

δΓ̃k[φ; ḡ]

δφa(x)
, (6.11)

i.e., in Eq. (4.28) one must replace Γ bei Γ̃k and not Γk. Consequently, the

functional integro-differential equation (4.30) now reads

exp
{
−Γk[h, ξ̄, ξ, ζ; ḡ]

}
=

∫
DḡĥµνDḡCµDḡC̄µDḡbµ exp

{
− S[ĥ, C̄, C, b; ḡ]

+

∫
ddx

[
(ĥµν − hµν)(x)

δΓ̃k[h, ξ̄, ξ, ζ; ḡ]

δhµν(x)
− δΓ̃k[h, ξ̄, ξ, ζ; ḡ]

δξµ(x)
(Cµ − ξµ)(x)

− δΓ̃k[h, ξ̄, ξ, ζ; ḡ]

δξ̄µ(x)
(C̄µ − ξ̄µ)(x)− δΓ̃k[h, ξ̄, ξ, ζ; ḡ]

δζµ(x)
(bµ − ζµ)(x)

]}
× exp

{
−∆kS[ĥ− h, C̄ − ξ̄, C − ξ, b− ζ; ḡ]

}
.

(6.12)

Note that still, the well-definedness of Γk[φ; ḡ] and of Eq. (6.12) relies on the

implicitly assumed UV regularization.
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The effective average action Γk[φ; ḡ] constructed from the bare action as

above can be shown to fulfill the functional renormalization group equation,

also called the Wetterich equation [25, 26],

∂tΓk[φ; ḡ] =
1

2
TrST 2

[
(∂tRk11[ḡ])

([
Γ

(2)
k [φ; ḡ] + Rk[ḡ]

]−1
)11

]

− TrV

[
(∂tRk23[ḡ])

([
Γ

(2)
k [φ; ḡ] + Rk[ḡ]

]−1
)32

]

− 1

2
TrV

[
(∂tRk44[ḡ])

([
Γ

(2)
k [φ; ḡ] + Rk[ḡ]

]−1
)44

]
,

(6.13)

where t := ln k is the renormalization group time and ∂t ≡ ∂/∂t = k ∂/∂k. In

the case bµ ≡ 0 one fully analogously obtains, now with φ ≡ (h, ξ̄, ξ)T ,

∂tΓk[φ; ḡ] =
1

2
TrST 2

[
(∂tRk11[ḡ])

([
Γ

(2)
k [φ; ḡ] + Rk[ḡ]

]−1
)11

]

− TrV

[
(∂tRk23[ḡ])

([
Γ

(2)
k [φ; ḡ] + Rk[ḡ]

]−1
)32

]
.

(6.14)

An elabortate derivation of the FRGE can be found in appendix F.11. Here, the

operators Rk[φ; ḡ] and Γ
(2)
k [φ; ḡ] are operators on field space, which essentially is

the Hilbert space of which the set of fields χ = (ĥµν , C̄µ, C
µ, bµ)T is an element

of,2 given by (no summation over a and b intended)

〈x, . . .|Rkab[ḡ]|y, . . .〉 :=
(−1)|φ

b|√
ḡ(x)

√
ḡ(y)

Iab[ḡ]
δ2∆kS[φ; ḡ]

δφa(x)δφb(y)
, (6.15)

〈x, . . .|
(

Γ
(2)
k

)
ab

[φ; ḡ]|y, . . .〉 :=
(−1)|φ

b|√
ḡ(x)

√
ḡ(y)

Iab[ḡ]
δ2Γk[φ; ḡ]

δφa(x)δφb(y)
. (6.16)

2This Hilbert space is given by the tensor product ST 2⊗ (V0⊕ V1)∗⊗ (V0⊕ V1)⊗ (V0⊕ V1)∗,
where the Hilbert spaces ST 2 and V are defined in appendix A.1 and V = V0 ⊕ V1 denotes
the Z2-graded Hilbert space V of anticommuting Graßmann fields. Further, V ∗ denotes the
dual space of V .
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The dots “. . . ” and Iab[ḡ] symbolically account for the index structure that

must be adapted accordingly, e.g.

〈x, µ, ν|Rk11[ḡ]|y, ρ, σ〉 = 〈x, µ, ν|Rk
grav[ḡ]|y, ρ, σ〉

〈x, µ|Rk23[ḡ]|y, ν〉 =
−1√

ḡ(x)
√
ḡ(y)

δ2∆kS[φ; ḡ]

δξ̄µ(x)δξν(y)
,

= 〈x, µ|Rk
gh,1[ḡ]|y, ν〉

〈x, µ|Rk44[ḡ]|y, ν〉 =
−1√

ḡ(x)
√
ḡ(y)

ḡνα(y)
δ2∆kS[φ; ḡ]

δbµ(x)δbα(y)
,

= 〈x, µ|Rk
gh,2[ḡ]|y, ν〉 .

(6.17)

Also, note that the off-diagonal elements in fields space of these operators,

Rab
k [φ; ḡ] and (Γ̃

(2)
k )ab[φ; ḡ] with a 6= b, are operators that eventually map be-

tween disjoint Hilbert spaces.

A striking feature of the FRGE (6.13), or respectively (6.14), is that the

traces appearing on the RHS are in fact IR- and UV-finite as they stand, i.e.,

even when removing the implicitly assumed UV cutoff. This is simply due to

the fact that while the cutoff operator Rk[φ; ḡ], being added to the exponent

on the RHS of Eq. (6.2), regulates only IR modes by surpressing their integra-

tion, its k-derivative ∂tRk[φ; ḡ], appearing multiplicatively under the trace in

Eq. (6.13), regulates IR as well as UV modes. This is due to the fact that the

graph of ∂tRk[φ; ḡ] consists only of a small peak around k2, left and right of this

peak the graph quickly approaches zero. Hence, only modes in a small band

around k2 contribute to the trace in Eq. (6.13). This goes along with the fact

that the EAA depends on a bare action – that would require and the presence of

an explicit UV cutoff – only implicitly via the EAA Γk[φ; ḡ]. These key features

thus allow for a philosophical U-turn in the approach towards quantum grav-

ity. Instead of trying to give a meaning to the path integral (4.17) for a given

bare action, we may forget about the bare action alltogether and take the FRGE

(6.13), or respectively (6.14), a differential equation that try to solve for the

EAA Γk[φ; ḡ]. For a given solution Γk[φ; ḡ], the bare action S[χ; ḡ] can then be

reconstructed by means of Eq. (6.12) when explicitly implementing an UV regu-

larization scheme (i.e., with EAA as the input and the bare action as the output).
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Most commonly, the effective average action is considered as a functional of

the full metric gµν = ḡµν + hµν given by

Γk[g, ḡ, ξ̄, ξ, ζ] := Γk[g − ḡ, ξ̄, ξ, ζ; ḡ] . (6.18)

Therewith we further define (in slight abuse of notation):

Γk[g, ḡ] := Γk[g, ḡ, 0, 0, 0]

and Γk[g] := Γk[g, g] .
(6.19)

Note that if we transition into these conventions we may use δ/δhµν(x) ≡
δ/δgµν(x).

6.3. Beta functions and Asymptotic Safety

With this change of strategy, we must clarify on what space the FRGE, as a

differential equation in the renormalization group time t, is actually defined on;

i.e., what is the set of functionals out of which solutions to the FRGE might

arise? We call this space theory space whose definition in general terms is not

far to seek: on the one hand, we have chosen the field space {x 7→ φ(x)} of fields

defined on the, respectively chosen, background spacetime with metric ḡ (here:

φ = (h, ξ̄, ξ, ζ)T ), and on the other hand, we have chosen a symmetry group G

(here the group of spacetime diffeomorphisms). Then, theory space is the set

of all G-invariant, regular functionals {x 7→ φ(x)} → R. On this theory space,

the FRGE has the structure of a “flow equation”, respectively an equation for

integral curves, schematically k∂kΓk[· · · ] = B{Γk[· · · ]}. We will call B the beta

functional. Different initial conditions Γk=Λ[· · · ] = “initial functional”[· · · ] for

this flow equation lead to (possibly) different solutions. Each solution Γk[· · · ] is

a one-parameter family of functionals in theory space and thence is referred to

as a renormalization group (RG) trajectory. The RG flow, the set of all RG tra-

jectories in theory space is determind by the pair (“theory space”,B). Further,

note that for this interpretation it is crucial that the tangent space of the theory

space is isomorphic to theory space itself.3 This condition is trivially fulfilled in

the case that the theory space possesses the structure of a vector space which

is a condition that we, w.l.o.g. for all our purposes, will apply.

3For details on the geometry of theory space see [53].
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In this case, theory space thus is equipped with a basis of functionals4{
Pi[φ; ḡ]

∣∣ i = 1, 2, . . . ,∞
}
, (6.20)

in which the EAA can be expanded:

Γk[φ; ḡ] =
∞∑
i=1

ūi(k)Pi[φ; ḡ] . (6.21)

The coefficients {ūi} are the dimensionful running couplings of the theory. The

left-hand side (LHS) of the FRGE then is given by

∂tΓk[φ; ḡ] =
∞∑
i=1

(∂tūi(k))Pi[φ; ḡ] , (6.22)

while we define the expansion of its RHS in this basis as

B

{
∞∑
i=1

ūi(k)Pi[φ; ḡ]

}
=:

∞∑
i=1

β̄i (ū1(k), ū2(k), . . . ; k)Pi[φ; ḡ] , (6.23)

where the coefficients {β̄i} are called the dimensionful beta functionals. A com-

parison of the coefficients on the LHS and RHS yields

∂tūi(k) = β̄i (ū1(k), ū2(k), . . . ; k) , i = 1, 2, . . . . (6.24)

These exact RG equations, that can be regarded as a generalization of the per-

turbative Callen-Symanzik equations[4], are infinitely many ordinary differential

equations; their solution corresponds to “solving the theory”.

We can remove the explicit k-dependence of the dimensionful beta functions

{β̄i} by going over to the dimensionless running couplings

ui(k) := k−diūi(k) , (6.25)

with di := [ūi] the canonical mass dimension. Therewith the RG equations

become

∂tui(k) = −diui(k) + k−di β̄i
(
kd1u1(k), kd2u2(k), . . . ; k

)
. (6.26)

4Sometimes, we refer to these functionals as “operators”, emphasizing the operator-nature of
their counterparts Pi[χ; ḡ].
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From dimensional analysis it is clear that k−di β̄i
(
kd1u1(k), kd2u2(k), . . . ; k

)
=

β̄ (u1(k), u2(k), . . . ; 1) such that with the dimensionless beta functions

βi (u1(k), u2(k), . . .) := −diui(k) + β̄i (u1(k), u2(k), . . . ; 1) (6.27)

we have obtained the dimensionless RG equations

∂tui(k) = βi (u1(k), u2(k), . . .) . (6.28)

We also write this equation as ∂tu(k) = β(u(k)), in terms of the vectors

u(k) = (u1(k), u2(k), . . . ) and β = (β1, β1, . . . ). As the dimensionless beta

functions do not possesses an explicit k-dependence, these ordinary differential

equations thus build an autonomous system. It is important to emphasize that

only complete RG trajectories, i.e., those for which k 7→ ui(k) is regular for all

k ∈ [0,∞), correspond to a quantum field theory.

In order to solve Eq. (6.28), an “initial” condition of the form

u(µ) = u(R) (6.29)

is required to select a specific trajectory in theory space. This initial condition

can be regarded as “renormalized” couplings at the scale µ. If we infinitesimally

shift this scale, µ′ = µ+ ε, we must shift the “renormalized” coupplings accord-

ingly, u(R)′ = u(µ′) = u(µ) + ε∂µu(µ) = u(R) + ε∂µu(µ), in order to stay among

the same trajectory [54, 55]. To study the parametric dependence of the RG

equations (6.28) on the initial condition(s) (6.29), let us denote by u(k;µ, u(R))

the corresponding parametric solution. As the initial conditions u(µ) = u(R)

and u(µ′) = u(R)′ select the same trajectory (solution), we have

u
(
k;µ, u(R)

)
= u

(
k;µ′, u(R)′

)
= u

(
k;µ, u(R)

)
+ ε

[
∂µ +

∑
i

(∂µui(µ))
∂

∂u
(R)
i

]
u
(
k;µ, u(R)

)
(6.30)

and thus, with µ∂µui(µ) = βi(u(µ)) = βi(u
(R)),[

µ∂µ +
∑
i

βi(u
(R))

∂

∂u
(R)
i

]
uj
(
k;µ, u(R)

)
= 0 ; j = 1, 2, . . . . (6.31)
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We can use this linear partial differential equation to investigate the dependence

of the RG trajectories on the initial condition. Also, this reasoning applies to

the corresponding EAA

Γk[φ; ḡ]
(
µ, u(R)

)
=
∞∑
i=1

ūi
(
k;µ, u(R)

)
Pi[φ; ḡ] , (6.32)

with ūi(k;µ, u(R)) = kdiui(k;µ, u(R)), yielding [54, 55][
µ∂µ +

∑
i

βi(u
(R))

∂

∂u
(R)
i

]
Γk[φ; ḡ]

(
µ, u(R)

)
. (6.33)

A crucial feature in analyzing the RG flow are fixed points u∗ = (u∗1, u
∗
2, . . . )

of the beta functions {βi}:

βi(u
∗) = 0 for all i = 1, 2, . . . . (6.34)

A fixed point is called Gaussian if u∗ = 0 and otherwise non-Gaussian. Taylor-

expanding the RG equations around u∗ yields

∂tui(k) = βi(u)

=
∑
j

(∂jβi)(u
∗)
[
uj(k)− u∗j

]
+ · · ·

=:
∑
j

Bij(u
∗)
[
uj(k)− u∗j

]
+ · · · .

(6.35)

In this linear approximation, the RG equations are solved by

ui(k) = u∗i +
∑
I

CIV
I
i

(
k0

k

)θI
, (6.36)
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where k0 as well as CI are constants and V I is a right-eigenvector of the matrix

B with eigenvalue −θI , i.e.,
∑

j Bij(u
∗)V I

j = −θIV I
i . This can easily be checked:

∂tui(k) = k
∑
I

CIV
I
i k

θI
0 (−θI)k−θI−1

=
∑
I

CI(−V I
i θI)

(
k0

k

)θI
=
∑
j

Bij(u
∗)
∑
I

CIV
I
j

(
k0

k

)θI
=
∑
j

Bij(u
∗)
[
uj(k)− u∗j

]
.

(6.37)

The matrix B(u∗) is called the stability matrix of the fixed point u∗. For a

Gaussian fixed point one generally has B(u∗ = 0) = 0, whereas for a non-

Gaussian fixed point one generally has B(u∗) 6= BT (u∗) such that its negative

eigenvalues θI , called the critical exponents or scaling exponents, might be com-

plex. Furthermore, note that B(u∗) can be decomposed according to

Bij(u
∗) = ∂jβi(u

∗) = −diδij +
∂

∂uj
β̄i(ui; 1)

∣∣∣∣
u=u∗

=: −Dij + B̄ij(u
∗) ,

(6.38)

with Dij = diδij and B̄ij(u
∗) = ∂jβ̄i(u

∗; 1). The matrix D simply states the

canonical mass dimensions of the running couplings {ūi(k)}, which are also the

classical scaling dimensions5 of their dimensionless counterparts {ui(k)}. On the

other hand, the eigenvalues of the matrix B̄(u∗) determine the quantum correc-

tions to the classical scaling of the couplings {ui(k)}, which is why we call B̄(u∗)

the anomalous-dimension matrix and its eigenvalues the anomalous dimensions.

For instance, assume that B(u∗) is a full-rank diagonalizable matrix, and let A

be the matrix that diagonalizes it. Then we have
∑

l,mAilBlm(u∗)A−1
mj = −θiδij.

It is clear that A also diagonalizes B̄(u∗), i.e.,
∑

l,mAilB̄lm(u∗)A−1
mj = −ηiδij,

where {ηi} are the negative eigenvalues of B̄(u∗) (correspondingly, {−ηi} are

the anomalous dimensions). It follows that θi = di + ηi, i.e., the full scaling di-

mension θi of the coupling ui(k) decomposes into the classical scaling dimension

5We call a the scaling dimension of the function y(x) if the differential equation (x∂x+a)y(x) =
0 holds, which is solved by y(x) ∼ x−a.
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di and its quantum correction given by the (negative) anomalous dimension ηi.

When lowering k (direction UV→ IR), we classify the “eigendirection” V I of

an RG trajectory as follows:

• relevant if Re θI > 0 (grows when lowering k)

• irrelevant if Re θI < 0 (shrinks when lowering k)

• marginal if Re θI = 0 (constant when lowering k).

Correspondingly we can decompose the tangent space at u∗ of theory space in

relevant, irrelevant and marginal subspaces that are spannend by the set of the

respective V I . The relevant directions play a particularly special role because

these determine the UV critical hypersurface SUV of u∗. SUV is defined as the

set of all points in theory space that are pulled into the fixed point u∗ by the

inverse RG flow (i.e., k → ∞). Its dimension ∆UV := dim SUV is given by

the number of relevant directions, ∆UV = #
{
θI
∣∣ Re θI > 0

}
. In general, a

trajectory in SUV thus is parametrized by

ui(k) = u∗i +
∑

I with Re θI > 0

CIV
I
i

(
k0

k

)θ
I

. (6.39)

In this framework, the non-perturbative renormalization of a quantum field the-

ory means finding a complete RG trajectory in theory space, i.e., the limits

k →∞ in the UV and k → 0 in the IR must exist.

The asymptotically safe solution to the “UV problem” relies on the existence

of a non-Gaussian fixed point and refers to the existence of a ∆UV-dimensional

parametric family of “asymptorically safe” trajectories, i.e., those with

lim
k→∞

Γk[· · · ] = Γ∗[· · · ] =
∞∑
i=1

ū∗i Pi[· · · ] . (6.40)

Every of these trajectories corresponds to a quantum field theory with fixed

values for ∆UV “renormalized”, i.e., physical, parameters. These must be de-

termined experimentally. Unfortunately, the Asymptotic Safety construction

comes with a catch, indeed: To construct a basis of theory space such that the

(infinitely many) equation βi(u
∗) = 0, let alone the infinitely many ordinary

differential equations (6.28), are actually solvable can be a hard problem. In

many cases, it is reasonable to begin the search for a fixed point in theory space
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by screening subspaces of theory space for fixed points. These subspaces are

called truncations. Note that surely these can also be spanned by infinitely many

functionals. An example of a finite truncation is e.g.
{
Pi[φ; ḡ]

∣∣ i = 1, 2, . . . , N
}

with N <∞. Projecting the RG equations (6.28) onto this truncation, we have

∂tui(k) = βi (u1(k), u2(k), . . . , uN(k)) , i = 1, . . . , N . (6.41)

Here, the beta functions are obtained by neglecting all terms on the RHS, i.e.,

in

B

{
N∑
i=1

ūi(k)Pi[φ; ḡ]

}
, (6.42)

that are proportional to Pj[φ; ḡ] with j ≥ N + 1. The strategy in screening

truncations for fixed points is as follows: if a given truncation is shown to exhibit

a fixed point one must enlarge the truncation to check if the fixed point still

exists in the enlarged truncation. Otherwise, the fixed point could potentially

be only a truncation artefact.

6.4. The ansatz for neglecting the evolution of the ghost fields

An important ansatz in solving the FRGE consists in surpressing the evolution

of the ghosts,

Γk[g, ḡ, ξ̄, ξ, ζ] = Γk[g, ḡ] + Sgh,1[g − ḡ, ξ̄, ξ; ḡ] + Sgh,2[ζ; ḡ] . (6.43)

This ansatz amounts to projecting the FRGE (6.13) onto the subspace of theory

space given by ζ = ξ̄ ≡ 0 ≡ ξ:

∂tΓk[g; ḡ] =
1

2
TrST 2

[
(∂tRk11) [ḡ]

([
Γ

(2)
k [g, ḡ, 0, 0, 0] + Rk[ḡ]

]−1
)11

]

− TrV

[
(∂tRk23) [ḡ]

([
Γ

(2)
k [g, ḡ, 0, 0, 0] + Rk[ḡ]

]−1
)32

]

− 1

2
TrV

[
(∂tRk44) [ḡ]

([
Γ

(2)
k [g, ḡ, 0, 0, 0] + Rk[ḡ]

]−1
)44

]
.

(6.44)
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It is easy to see that the operator Γ
(2)
k [g, ḡ, 0, 0, 0] in field space takes a particu-

larly simple form when employing the ansatz (6.43):

Γ
(2)
k [g, ḡ, 0, 0, 0] =


a11 0 0 0

0 0 a23 0

0 a32 0 0

0 0 0 a44

 , (6.45)

with

a11 = (Γ
(2)
k )11[g, ḡ]

a23 = (S
(2)
gh,1)

23
[g − ḡ, 0, 0; ḡ]

a32 = (S
(2)
gh,1)

32
[g − ḡ, 0, 0; ḡ]

a44 = (S
(2)
gh,2)

44
[0; ḡ] .

(6.46)

These operators follow a generalization of Eq. (6.16): we define the operator

F (2)[g, ḡ, ξ̄, ξ, ζ], that is associated to a functional F [g, ḡ, ξ̄, ξ, ζ], via

〈x, . . .|
(
F (2)

)
ab

[g, ḡ, ξ̄, ξ, ζ]|y, . . .〉 :=
(−1)|φ

b|√
ḡ(x)

√
ḡ(y)

Iab[ḡ]
δ2F [g, ḡ, ξ̄, ξ, ζ]

δφa(x)δφb(y)
.

(6.47)

Also the cutoff operator in field space, Rk[ḡ], is, in full generality as given by

Eq. (6.15), of the above matrix form,

Rk[ḡ] =


Rgrav
k [ḡ] 0 0 0

0 0 Rgh,1
k [ḡ] 0

0 −Rgh,1
k [ḡ] 0 0

0 0 0 Rgh,2
k [ḡ]

 . (6.48)

As a matrix of this form is easily inverted, even for non-commuting entries,

namely by 
a 0 0 0

0 0 b 0

0 c 0 0

0 0 0 d


−1

=


a−1 0 0 0

0 0 c−1 0

0 b−1 0 0

0 0 0 d−1

 , (6.49)
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the FRGE thus becomes

∂tΓk[g; ḡ] =
1

2
TrST 2

[(
∂tR

grav
k [ḡ]

)(
(Γ

(2)
k )11[g, ḡ] + Rgrav

k [ḡ]
)−1

]

− TrV

[(
∂tR

gh,1
k [ḡ]

)(
(S

(2)
gh,1)

23
[g − ḡ, 0, 0; ḡ] + Rgh,1

k [ḡ]
)−1

]

− 1

2
TrV

[
−
(
∂tR

gh,2
k [ḡ]

)(
(S

(2)
gh,2)

44
[0; ḡ] + Rgh,2

k [ḡ]
)−1

]
.

(6.50)

Again, by proceeding fully analogously, we must discard the last term in the

case of bµ ≡ 0 ≡ ζµ. With Eq. (4.14) we have, in full generality,

(S
(2)
gh,2)

44
[0; ḡ] =

1

α
Y [ḡ] . (6.51)

If we specify the gauge-fixing condition to Eq. (4.31), which amounts to consid-

ering the ghost acion (4.34), we find further that

(S
(2)
gh,1)

23
[g − ḡ, 0, 0; ḡ] = −

√
2M [g, ḡ] . (6.52)

With these further specifications, the FRGE for the above ansatz reads

∂tΓk[g, ḡ] =
1

2
TrST 2

[(
∂tR

grav
k [ḡ]

)(
(Γ

(2)
k )11[g, ḡ] + Rgrav

k [ḡ]
)−1

]

− TrV

[(
∂tR

gh,1
k [ḡ]

)(
−
√

2M [g, ḡ] + Rgh,1
k [ḡ]

)−1
]

− 1

2
TrV

[(
∂tR

gh,2
k [ḡ]

)( 1

α
Y [ḡ] + Rgh,2

k [ḡ]

)−1
]
.

(6.53)

6.5. The one-loop approximation of the FRGE

Rigorously obtaining a one-loop approximation of the FRGE (6.13), or respec-

tively (6.14), is per se not possible: the EAA Γk[φ; ḡ] is meant to be the outcome

from solving the equation, so there is literally nothing we could expand in ~
for an expansion in loops. Of course, formally expanding Γk[φ; ḡ] in a series of

vertices is a possible ansatz for solving the FRGE, however, to have at hand a
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one-loop approximation of the FRGE itself, i.e., an FRGE whose RHS amounts

to one-loop beta functions only, is not possible. What is possible, on the other

hand, is to construct such an equation using a reference to some bare action:

Just as we had derived the exact FRGE from constructing the EAA by means of a

bare action, we can review this whole process again and thereby implement the

one-loop approximation thanks to the presence of a bare action. The “FRGE”

obtained in this way is not a closed equation for the EAA, unlike when con-

structing the exact FRGE. Inspired by this one-loop approximation involving a

bare action, we will then propose an approximation scheme of the exact FRGE

that mimics this one-loop approximation, yet still is a closed equation for the

EAA. As is done frequently in the literature, we will call this approximation the

“one-loop approximation of the FRGE” – although it a priori does not amount

to an expansion in ~. Lastly, we will point out in what sense this terminology

is legitimate, indeed.

So let us resort to the conventional one-loop effective action for quantum

gravity as a guiding light. Examplarily consider the theory of higher-derivative

gravity whose one-loop effective action (4.92) we already had deduced in Sec-

tion 4.3. We can express this one-loop effective action through the operator

S(2)[φ; ḡ] associated to the full (bare) action S[χ; ḡ] given by Eq. (4.88). It is

straighforward to see that this operator in field space possesses the structure

S(2)[φ; ḡ] =


S

(2)
11 S

(2)
12 S

(2)
13 0

S
(2)
21 = −(S

(2)
12 )
∗

0 S
(2)
23 0

S
(2)
31 = −(S

(2)
13 )
∗
S

(2)
32 = −(S

(2)
23 )
∗

0 0

0 0 0 S
(2)
44

[φ; ḡ] , (6.54)
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where (S
(2)
ab )
∗

denotes the dual operator (see Subsection 4.2.2), and is explicitly

determined by the matrix elements

〈x, µ, ν|S(2)
11 [φ; ḡ]|y, ρ, σ〉 =

1√
ḡ(x)

√
ḡ(y)

Iαβρσ[ḡ]
δ2S[φ; ḡ]

δhµν(x)δhαβ(y)

≡ 〈x, µ, ν|U ′[φ; ḡ]|y, ρ, σ〉 ;

〈x, µ, ν|S(2)
12 [φ; ḡ]|y, ρ〉 =

−1√
ḡ(x)

√
ḡ(y)

ḡρα
δ2S[φ; ḡ]

δhµν(x)δξ̄α(y)

≡ 〈x, µ, ν|X1[h, ξ; ḡ]|y, ρ〉 ;

〈x, µ, ν|S(2)
13 [φ; ḡ]|y, ρ〉 =

−1√
ḡ(x)

√
ḡ(y)

δ2S[φ; ḡ]

δhµν(x)δξρ(y)

≡ 〈x, µ, ν|X2[h, ξ̄; ḡ]|y, ρ〉 ;

〈x, µ|S(2)
32 [φ; ḡ]|y, ν〉 =

−1√
ḡ(x)

√
ḡ(y)

ḡµα(x)ḡνβ(y)
δ2S[φ; ḡ]

δCα(x)δC̄β(y)

≡ 〈x, µ|
√

2M [g, ḡ]|y, ν〉 ;

〈x, µ|S(2)
44 [φ; ḡ]|y, ν〉 =

−1√
ḡ(x)

√
ḡ(y)

ḡνα(y)
δ2S[φ; ḡ]

δbµ(x)δbα(y)

≡ 〈x, µ| 1
α
Y [ḡ]|y, ν〉 ;

(6.55)

with S
(2)
21 [φ; ḡ] = −S(2)

12 [φ; ḡ]∗ = −X1[h, ξ; ḡ]∗ and likewise for S
(2)
31 [φ; ḡ]. There-

with, the one-loop effective action (4.92) reads

Γ[φ; ḡ] = S[φ; ḡ] +
1

2
TrST 2 ln

[
S

(2)
11 [φ; ḡ]− S(2)

13 [φ; ḡ]
(
S

(2)
32 [φ; ḡ]

)−1

S
(2)
21 [φ; ḡ]

]

− TrV ln

[
S

(2)
32 [φ; ḡ]

]
− 1

2
TrV ln

[
S

(2)
44 [φ; ḡ]

]
.

(6.56)

By means of this example, it is obvious that this is the form of the one-loop

effective action for any bare action S[χ; ḡ] of the form Eq. (4.15).

According to the procedure outlined previously in Section 6.2, it is clear that

we obtain a one-loop approximation of the functional Γ̃k[φ; ḡ], as contructed

from the bare action, by implementing the replacement on the RHS of the above

conventional one-loop effective action, S[χ; ḡ] 7→ S[χ; ḡ] + ∆kS[χ; ḡ]. Thereby,
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an important subtlety occurs: Previously, we had defined the cutoff operator,

that is encoded into ∆kS[χ; ḡ], by

Rk[ḡ] = Zk[ḡ]k2γR(0)
(
(−D̄2/k2)

γ)
, (6.57)

where Zk[ḡ] depends on k through the running couplings of the theory. For ex-

ample, if we were to solve the exact FRGE by making use of the ansatz Γk[φ; ḡ] =∑
i∈I ūi(k)Pi[φ; ḡ] we would give Zk[ḡ] the structure Zk[ḡ] ≡ Z (u(k))[ḡ]. How-

ever, in the one-loop approximation of the effective action, the couplings of the

bare action are not running (yet). Hence, it is not far to seek that if the bare

action has the structure S[φ; ḡ] =
∑

i∈I ūiPi[φ; ḡ] we may use Z (u)[ḡ] for the

structure of the cutoff operator. Thus, for notational clarity, let us define this

cutoff operator by

R̃k[ḡ] = Z [ḡ]k2γR(0)
(
(−D̄2/k2)

γ)
, (6.58)

and by ∆̃kS[χ; ḡ] the cutoff action in which it is encoded. Thus by implementing

the replacement S[χ; ḡ] 7→ S[χ; ḡ]+∆̃kS[χ; ḡ] which goes along with S(2)[χ; ḡ] 7→
S(2)[χ; ḡ] + R̃k[ḡ], we arrive at the EAA – again, as constructed from the bare

action – at one-loop,

Γk[φ; ḡ] := Γ̃k[φ; ḡ]−∆kS[φ; ḡ]

= S [φ; ḡ] +
1

2
TrST 2 ln

[
S

(2)
11 [φ; ḡ] + R̃k11[ḡ]

−S(2)
13 [φ; ḡ]

(
S

(2)
32 [φ; ḡ] + R̃k32[ḡ]

)−1

S
(2)
21 [φ; ḡ]

]

− TrV ln

[
S

(2)
32 [φ; ḡ] + R̃k32[ḡ]

]
− 1

2
TrV ln

[
− S(2)

44 [φ; ḡ] + R̃k44[ḡ]

]
+O(2 loops)

=: S[φ; ḡ] + Γ1L
k [φ; ḡ] +O(2 loops) .

(6.59)

In the deep UV, at a scale Λ for k → ∞, the one-loop result constitutes a

good approximation of the EAA such that Γk=Λ[φ; ḡ] = S[φ; ḡ] + Γ1L
k=Λ[φ; ḡ] can

be regarded as an initial condition for the FRGE. Equivalently, we could have

obtained this one-loop approximation by expanding the exponent on the RHS

of Eq. (6.12) as a Volterra series (cf. Eq. (C.5)). Importantly, note that due
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to the presence of a bare action this equation requires an UV cutoff to be well-

defined. This fact gives rise to the reconstruction problem, i.e., the problem of

reconstructing the bare action from a given solution Γk[φ; ḡ] of the FRGE (6.13)

[56].

Taking the derivative with respect to the renormalization group time t = ln k

yields the equation

∂tΓk[φ; ḡ] = +
1

2
TrST 2

{[
S

(2)
11 [φ; ḡ] + R̃k11[ḡ]

− S(2)
13 [φ; ḡ]

(
S

(2)
32 [φ; ḡ] + R̃k32[ḡ]

)−1

S
(2)
21 [φ; ḡ]

]−1

×

[
∂tR̃k11[ḡ] + S

(2)
13 [φ; ḡ]

(
S

(2)
32 [φ; ḡ] + R̃k32[ḡ]

)−1 (
∂tR̃k32[ḡ]

)
×
(
S

(2)
32 [φ; ḡ] + R̃k32[ḡ]

)−1

S
(2)
21 [φ; ḡ]

]}

− TrV

[(
S

(2)
32 [φ; ḡ] + R̃k32[ḡ]

)−1

∂tR̃k32[ḡ]

]

− 1

2
TrV

[(
S

(2)
44 [φ; ḡ] + R̃k44[ḡ]

)−1

∂tR̃k44[ḡ]

]
+O(2 loops) .

(6.60)

Note that as for the exact FRGE, the traces on the RHS are also UV finite thanks

to the presence of k-derivatives ∂tR̃k[ḡ] of the cutoff operator. On the subspace

ζ = ξ̄ ≡ 0 ≡ ξ this one-loop equation boils down to

∂tΓk[g, ḡ] = +
1

2
TrST 2

[(
S

(2)
11 [g − ḡ, 0, 0, 0; ḡ] + R̃k11[ḡ]

)−1

∂tR̃k11[ḡ]

]

− TrV

[(
S

(2)
32 [g − ḡ, 0, 0, 0; ḡ] + R̃k32[ḡ]

)−1

∂tR̃k32[ḡ]

]

− 1

2
TrV

[(
S

(2)
44 [g − ḡ, 0, 0, 0; ḡ] + R̃k44[ḡ]

)−1

∂tR̃k44[ḡ]

]
+O(2 loops) .

(6.61)
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For example, in case of higher derivative gravity, this reduced one-loop equation

reads

∂tΓk[g, ḡ] = +
1

2
TrST 2

[(
Uh.−d.[g − ḡ; ḡ] + R̃grav

k [ḡ]

)−1

∂tR̃
grav
k [ḡ]

]

− TrV

[(
−
√

2M [g, ḡ] + R̃gh,1
k [ḡ]

)−1

∂tR̃
gh,1
k [ḡ]

]

− 1

2
TrV

[(
1

α
Y [ḡ] + R̃gh,2

k [ḡ]

)−1

∂tR̃
gh,2
k [ḡ]

]
+O(2 loops) .

(6.62)

The operator Uh.−d.[g − ḡ; ḡ] was initially defined by Eq. (4.95) (in this def-

inition, however, we had set g − ḡ = 0 for practical purposes). This one-

loop approximation of the FRGE hence corresponds to setting (Γ
(2)
k )11[g, ḡ] =

S
(2)
11 [g − ḡ, 0, 0, 0; ḡ] = Uh.−d.[g − ḡ; ḡ] in Eq. (6.50).

We emphasize that one fully analogously obtains for the case bµ ≡ 0 ≡ ζµ,

when employing the one-loop effective action (4.70) determined by the Einstein-

Hilbert action (4.3) as part of the bare action, with UEH[g − ḡ; ḡ] given by

Eq. (4.58) that

∂tΓk[g, ḡ] = +
1

2
TrST 2

[(
UEH[g − ḡ; ḡ] + R̃grav

k [ḡ]

)−1

∂tR̃
grav
k [ḡ]

]

− TrV

[(
−
√

2M [g, ḡ] + R̃gh,1
k [ḡ]

)−1

∂tR̃
gh,1
k [ḡ]

]
+O(2 loops) .

(6.63)

Unlike the exact FRGE, these one-loop approximations are not closed equa-

tions for the EAA Γk[φ; ḡ] and still depend on the bare action S[φ; ḡ]. Next, let

us consider the general one-loop approximation Eq. (6.60), that we are stuck

with. It is tempting to ask what might happen if we emulated this equation by

a closed equation for Γk[φ; ḡ]. The following “renormalization group improve-

ment” of Eq. (6.60) is naturally apparent: Simply replace the operator S(2)[φ; ḡ]

on the RHS by Γ
(2)
k [φ; ḡ] and after evaluating the k-derivative on the RHS rein-

stall R̃k[ḡ] 7→ Rk[ḡ] (which amounts to directly making this replacement and
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neglegting the k-derivative of Zk). However, it is immediately obvious that this

procedure leads nowhere meaningfull because the closed equation for Γk[φ; ḡ] ob-

tained in this way clearly is not an approximation of the general FRGE (6.13).6

Therefore, let us move on and perform the “renormalization group improve-

ment” with the one-loop approximation (6.61) on the subspace ζ = ξ̄ ≡ 0 ≡ ξ.

On this subspace, we would try to solve the (general) FRGE with the ansatz

(6.43). Thus, regarding the first procedure, we replace the operator S(2)[φ; ḡ] on

the RHS by Γ
(2)
k [φ; ḡ] and then further employ the ansatz (6.43). For the latter

procedure, we introduce the auxiliary cutoff operator

Rk,k′ [ḡ] := Zk′ [ḡ]k2γR(0)
(
(−D̄2/k2)

γ)
, (6.64)

where the scale k′ has no special meaning and only serves the purpose that ∂t
does not act on Zk. Therewith, the above described “renormalization group

improvement” of Eq. (6.61) reads

∂tΓk[g, ḡ] = +
1

2
TrST 2

[(
(Γ

(2)
k )11[g, ḡ] + Rk11[ḡ]

)−1

∂t(Rk,k′)11[ḡ]

]
k′=k

− TrV

[(
S

(2)
32 [g − ḡ, 0, 0, 0; ḡ] + Rk32[ḡ]

)−1

∂t(Rk,k′)32[ḡ]

]
k′=k

− 1

2
TrV

[(
S

(2)
44 [g − ḡ, 0, 0, 0; ḡ] + Rk44[ḡ]

)−1

∂t(Rk,k′)44[ḡ]

]
k′=k

,

(6.65)

respectively when employing the gauge-fixing condition (4.31),

∂tΓk[g, ḡ] = +
1

2
TrST 2

[(
(Γ

(2)
k )11[g, ḡ] + Rgrav

k [ḡ]
)−1

∂tR
grav
k,k′ [ḡ]

]
k′=k

− TrV

[(
−
√

2M [g, ḡ] + Rgh,1
k [ḡ]

)−1

∂tR
gh,1
k,k′ [ḡ]

]
k′=k

− 1

2
TrV

[(
1

α
Y [ḡ] + Rgh,2

k [ḡ]

)−1

∂tR
gh,2
k,k′ [ḡ]

]
k′=k

.

(6.66)

6For example, the trace over the Hilbert space ST 2 would contain ∂tRk32[ḡ], where ∂t does
not act on Zk, which cannot be the case.
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Indeed, this equation is an approximation of the general FRGE (6.13), namely

precisely Eq. (6.50) (respectively (6.53)) with the only difference that here on

the RHS ∂t does not act on Zk. Although not related to an approximation in

~ per se, we will call Eq. (6.65) the one-loop approximation of the FRGE (6.50)

(respectively (6.53)). Note that again, in the case of bµ ≡ 0 ≡ ζµ we must

discard the last trace in these approximations.

Let us argue why it is legitimate to call this approximation a one-loop ap-

proximation. Say, we are given a bare action of the form of Eq. (4.15),

S[ĥ, C̄, C, b; ḡ] := Scl[ḡ + ĥ] + SGF[ĥ; ḡ] + Sgh[ĥ, C̄, C; ḡ] + Sgh,2[b; ḡ] , (6.67)

with some classical action Scl[ĝ] =
∑

i∈I ūiPi[ĝ] in which the dimensionful cou-

plings {ūi} parametrize some basis functionals Pi[ĝ]. Through the specific

choice of the gauge-fixing parameters entailed in the gauge-fixing action and

the actions for the ghosts fields, these may depend on the bare couplings,

as well: SGF[ĥ; ḡ] = SGF[ĥ; ḡ]({ūi}), Sgh[ĥ, C̄, C; ḡ] = Sgh[ĥ, C̄, C; ḡ]({ūi}) and

Sgh,2[b; ḡ] = Sgh,2[b; ḡ]({ūi}). Furthermore, let us specify the gauge-fixing con-

dition to Eq. (4.31). For this setting, we can calculate one-loop beta functions

{βui(u)} of the dimensionless couplings solving the FRGE (6.66) at g ≡ ḡ on the

truncated theory space spannend by {Pi[g]}i∈I with the ansatz 7

Γk[g, ḡ] :=
∑
i∈I

ūi(k)Pi[g] + SGF[ĥ; ḡ]({ūi(k)}) , (6.68)

where we simply gave a k-dependence to the couplings entailed in the “classical”

and gauge fixing action. In Eq. (6.66), we thereby must also give a k-dependence

to the operators M [g, ḡ] = M [g, ḡ]({ūi(k)}) and Y [ḡ] = Y [ḡ]({ūi(k)}), that re-

sults from giving a k-dependence to the couplings entailed in the ghost actions;

furthermore, the required cutoff operators then have the structure Rk,k′ [ḡ] =

Z [ḡ]({ūi(k′)})k2γR(0)
(
(−D̄2/k2)

γ)
. The RHS of Eq. (6.66) at g ≡ ḡ, expanded

in the basis {Pi[g]}i∈I , will then lead to beta functions {βui(u)} that we appar-

ently can, with the reasoning of this chapter in the back of our mind, interpret

as one-loop beta functions obtained from the above bare action. Especially, we

emphasize that in case these one-loop beta functions are universal we will obtain

precisely these – as from any other renormalization scheme. In Chapter 8 we

will demonstrate this procedure using the example of higher-derivative gravity

in d = 4.

7Note that Γk[g, g] :=
∑
i∈I ūi(k)Pi[g].
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6.6. The gravitational fixed point: a quick review of the state

of affairs

Until recently, the main line of research in asymptotically safe quantum gravity

has been devoted to the search for a gravitational fixed point. The previous

examples illustrate results of first stages of this line of research. We discussed

these particular examples in detail because because they build the foundation

for applications following in the subsequent chapters. Here, let us give a quick

review of the state of affairs in the search for the gravitational fixed point. We

will not discuss the respective findings in detail as they are located somewhat

outside the common thread of this thesis; in this case, we refer to the extensive

literture quoted.

The search for the gravitational fixed point so far has been restricted to

the FRGE (6.50) which neglects the evolution of the ghost fields and is solved

by the ansatz (6.43). In this case the EAA reduces to the functional Γk[g, ḡ].

Solutions to this FRGE on truncations of theory space {
∫

ddx
√
g,
∫

ddx
√
ḡR, . . . }

of increasing complexity have been obtained. In the case of gµν ≡ ḡµν , e.g. by

including higher curvature terms [47, 57–63], the Goroff-Sagnotti counterterm

[64], and polynomials of the Ricci scalar of high order [65–68]. Even solutions

on functional, i.e., infinite dimensional, truncations have been found [69–83].

Furthermore, solutions for ansätze that take into account the bimetric character

of the flow have been obtained [84–87]. All this solutions consitently show a

strong indication for the existence of the gravitational fixed point, which very

likely rejects the possibility of the fixed point being a simple truncation artefact.

Another possible approximation scheme for the EAA with which to solve the

FRGE is its expansion in terms of vertices, schematically defined by

〈x, . . .|Γ(m,n)
k [g, ḡ]|y, . . .〉 := I[ḡ]

δm+nΓk
δḡm(x)δgn(y)

, (6.69)

where I[ḡ] aligns the tensor structure of the RHS to that of the RHS. Also

solutions obtained from ansätze of expansions in vertices are consistent with

the previous results towards an asymptocially safe fixed point [88–94]. More-

over, the gravitational fixed point persists also in presence of a suitable matter

content, see e.g. [95–99].



CHAPTER 7

The single metric Einstein-Hilbert truncation

Executive summary. We explicitly discuss the single metric Einstein-Hilbert

truncation which is the truncation of theory space spanned by the functionals∫
ddx
√
g and

∫
ddx
√
gR. With an appropriate ansatz for the effective average

action we obtain the rg equations for Newton’s constant and the cosmological

constant. We discuss the resulting flow and show that it exhibits a non-Gaussian

fixed point. Moreover, we repeat this study for the simplified Einstein-Hilbert

flow, with and without the presence of matter fields, that results from the one-

loop approximation of the frge.

7.1. The full Einstein-Hilbert flow

Consider the field space φ = (h, ξ̄, ξ)T together with the diffeomorphism group

as the theory space. Let us therewith restrict ourselves to analyzing the FRGE

(6.53), that has been obtained by projecting the general FRGE (6.14) onto the

subspace ξ̄ ≡ 0 ≡ ξ and employing the gauge-fixing condition (4.31). Further,

we will only analyze single metric truncations which here amounts to settng

g ≡ ḡ. Thus, we have at hand the FRGE

∂tΓk[g, g] =
1

2
TrST 2

[(
∂tR

grav
k [g]

)(
(Γ

(2)
k )11[g, g] + Rgrav

k [g]
)−1

]

− TrV

[(
∂tR

gh,1
k [g]

)(
−
√

2M [g, g] + Rgh,1
k [g]

)−1
]
.

(7.1)

Note that we still must consider ansätze of the form Γk[g, ḡ] whose variation we

must perform in order to obtain (Γ
(2)
k )11[g, g].

91



92 7. THE SINGLE METRIC EINSTEIN-HILBERT TRUNCATION

The single-metric Einstein-Hilbert truncation [26] is a two-dimensional trun-

cation of the theory space spanned by the basis functionals (g, ḡ) 7→
∫

ddx
√
g(x)

and (g, ḡ) 7→
∫

ddx
√
g(x)R[g](x). A standard ansatz for solving Eq. (7.1) on

this truncated space is

Γk[g, ḡ] = 2κ2ZNk

∫
ddx
√
g
(
−R[g] + 2λ̄k

)
+
κ2ZNk
α

∫
ddx
√
ḡ ḡµν(Fαβ

µ [ḡ] gαβ)(F ρσ
ν [ḡ] gρσ)

(7.2)

with Fαβ
µ [ḡ] as given by Eq. (4.31). This ansatz is nothing but the classical

Einstein-Hilbert action (4.3) together with the gauge-fixing action (4.33) after

substituting κ2 7→ κ2ZNk and Λ 7→ λ̄k. These are the k-dependent running

couplings that parametrize the Einstein-Hilbert truncation. Furthermore, we

employ henceforth the harmonic gauge and set α = 1 and β = 1/2.

The only ingredient left in order to evaluate the RHS of the flow equation is

the operator (Γ
(2)
k )11[g, g] for the ansatz (7.2). Fortunately, it turns out that we

had already calculated said operator in Subsection 4.2.2 and that it is given by

Eq. (4.77) after substituting κ2 7→ κ2ZNk and Λ 7→ λ̄k:

(Γ
(2)
k )11[g, g] = U [0, g ≡ ḡ]E.−H.

∣∣∣∣
κ2 7→κ2ZNk and Λ7→λ̄k

. (7.3)

Let us agree on refraining from explicitly denoting the substitution of these

couplings, in slight abuse of notation.

Next, we can make use of the paramount feature of the gravitational FRGE –

its background independence. Thus, we may choose a background with metric

ḡ ≡ g that suits our needs. The Einstein-Hilbert truncation is spanned by

functionals depending only on the volume element and the scalar curvature

so that employing a maximally symmetric background manifold (cf. 4.2.2) is

sufficient in order to perform the projection of the RHS of the FRGE onto that

truncation: The scalar curvature is the only magnitude of curvature for these
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spaces and we do not need to distinguish between R2 or RµνR
µν etc.1 Therewith,

the operators (Γ
(2)
k )11[g, g] and M [g, g] simplify to Eqs. (4.80) and (4.82):(

(Γ
(2)
k )11[g, g]µν

ρσ

)diff

=κ2ZNk

[
Iµνρσ − (Ptr.[g])µνρσ

] (
−D2 − 2λ̄k + cIR

)
− κ2ZNk

d− 2

2
(Ptr.[g])µνρσ

(
−D2 − 2λ̄k + ctraceR

)
,

(M [g, g]µν)
diff = δµν

[
D2 +

1

d
R

]
;

(7.4)

with2

cI =
d(d− 3) + 4

d(d− 1)
and ctrace =

d− 4

d
. (7.5)

Lastly, we must choose the specific form (6.3) of the cutoff operators Rgrav
k [g] and

Rgh,1
k [g]. Therein, to set γ = 1 is a necessity while it is furthermore convenient

to set

Z grav
k [g] = κ2ZNk

[
(1ST 2 − Ptr.[g])− d− 2

2
Ptr.[g]

]
(7.6)

and Z gh,1
k [g] =

√
21V .

All in all, we therewith have

(Γ
(2)
k )11[g, g] + Rgrav

k [g] =κ2ZNk (1ST 2 − Ptr.[g])
[
Ak(−D2) + cIR

]
− κ2ZNk

d− 2

2
Ptr.[g]

[
Ak(−D2) + ctraceR

]
and −M [g, g] + Rgh,1

k [g] =
√

21V
[
A0k(−D2) + cVR

] (7.7)

with cV = −1/d and the definitions

Ak(−D2) := −D2 + k2R(0)(−D2/k2)− 2λ̄k ,

A0k(−D2) := −D2 + k2R(0)(−D2/k2) .
(7.8)

1Note that although the scalar curvature is constant, i.e., “x-independent”, for maxi-
mally symmetric spaces, we can still distinguish between the operators

∫
ddx

√
g(x) and∫

ddx
√
g(x)R as surely R = R[g] is still a functional of g. In other words, we could say

that subsequently, all equations hold “for all R”.
2The projectors I, the identity, and Ptr. can be found in appendix A.2.2.
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It can easily be checked that these operators are inverted by[
(Γ

(2)
k )11[g, g] + Rgrav

k [g]
]−1

=
1

κ2ZNk
(1ST 2 − Ptr.[g])

[
Ak(−D2) + cIR

]−1

− 1

κ2ZNk

2

d− 2
Ptr.[g]

[
Ak(−D2) + ctraceR

]−1

(7.9)

and [
−M [g, g] + Rgh,1

k [g]
]−1

=
1√
2
1V
[
A0k(−D2) + cVR

]−1
. (7.10)

By further introducing the abbreviations

Nk(−D2) :=
1

2ZNk
∂t
[
ZNkk

2R(0)(−D2/k2)
]

=

[
1− 1

2
ηN(k)

]
k2R(0)(−D2/k2) +D2R(0)′(−D2/k2)

and N0k(−D2) :=
1

2
∂t
[
k2R(0)(−D2/k2)

]
= k2R(0)(−D2/k2) +D2R(0)′(−D2/k2) ,

(7.11)

where ηN(k) = −∂t lnZNk is the (negative) anomalous dimension3 of the oper-

ator
∫

ddx
√
g R[g], the RHS of the FRGE simplifies to

RHS of Eq. (7.1) = TrST 2

[
(1ST 2 − Ptr.[g])

Nk(−D2)

Ak(−D2) + cIR

]
+ TrST 2

[
Ptr.[g]

Nk(−D2)

Ak(−D2) + ctraceR

]
− 2 TrV

[
1V

N0k(−D2)

A0k(−D2) + cVR

]
.

(7.12)

To actually project this RHS onto the Einstein-Hilbert truncation, we must

neglect all terms O(R2). Hence, we expand the denominators in the traces

according to

1

A + cR
=

1

A (1 + cA −1R)
=

1

A
(1−A −1R) +O(R2)

= A −1 − cA −2R +O(R2) ,

(7.13)

3In the conventions for the anomalous dimension of this thesis, ∂τ lnZNk would correspond
to the anomalous dimension of the operator

∫
ddx
√
g R[g]. Hence, the add-on “negative”.
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which yields

RHS of Eq. (7.1) = TrST 2

[
(1ST 2 − Ptr.[g])

Nk(−D2)

Ak(−D2)

]
+ TrST 2

[
Ptr.[g]

Nk(−D2)

Ak(−D2)

]
− 2 TrV

[
1V

N0k(−D2)

A0k(−D2)

]
−R

{
cI TrST 2

[
(1ST 2 − Ptr.[g])

Nk(−D2)

Ak(−D2)2

]
+ ctrace TrST 2

[
Ptr.[g]

Nk(−D2)

Ak(−D2)2

]
− 2cV TrV

[
1V

N0k(−D2)

A0k(−D2)2

]}
+O(R2) .

(7.14)

We can evaluated the traces with help of the heat kernel techniques developed

in appendix E. Using Eq. (E.4) and the linearity of the trace we obtain

RHS of Eq. (7.1) =

(
1

4π

) d
2

{
tr (IST 2)

[
Q d

2
[Nk/Ak]

∫
ddx
√
g

+
1

6
Q d

2
−1 [Nk/Ak]

∫
ddx
√
gR

]

− 2 tr (IV )

[
Q d

2
[N0k/A0k]

∫
ddx
√
g

+
1

6
Q d

2
−1[N0k/A0k]

∫
ddx
√
gR

]
,

− tr (IST 2 − Ptr.[g]) cI Q d
2

[
Nk/A

2
k

] ∫
ddx
√
gR

− tr (Ptr.[g]) ctraceQ d
2

[
Nk/A

2
k

] ∫
ddx
√
gR

+ 2 tr (IV ) cV Q d
2

[
N0k/A0

2
k

] ∫
ddx
√
gR

}
+O(R2) .

(7.15)
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The small traces appearing here are given by tr IST 2 = d(d + 1)/2, trPtr.[g] =

(1/d)gµνg
µν = 1 and tr IV = δµµ = d. Furthermore, the LHS of Eq. (7.1) for the

ansatz (7.2) clearly is given by4

LHS of Eq. (7.1) = −2κ2∂tZNk

∫
ddx
√
gR + 4κ2∂t(ZNkλ̄k)

∫
ddx
√
g , (7.16)

such that by comparing the coefficients of the truncation’s basis functionals∫
ddx
√
g and

∫
ddx
√
gR on the LHS with those of the RHS we can read of the

RG equations for the dimensionful running coupling ZNk and λ̄k:

4κ2∂t(ZNkλ̄k) =

(
1

4π

) d
2
[
d(d+ 1)

2
Q d

2
[Nk/Ak]− 2dQ d

2
[N0k/A0k]

]
(7.17)

and

−2κ2∂tZNk =

(
1

4π

) d
2

[
d(d+ 1)

2

1

6
Q d

2
−1[Nk/Ak]− 2d

1

6
Q d

2
−1[N0k/A0k]

−
(

(d+ 2)(d− 1)

2
cI + ctrace

)
Q d

2
[Nk/A

2
k ]

+ 2d cV Q d
2

[
N0k/A0

2
k

] ]
.

(7.18)

Next, it is advantageous to re-express the dimensionful “Q-functionals” on the

RHS in terms of dimensionless quantities. These are the threshold functions

Φp
n(w) :=

1

Γ(n)

∫ ∞
0

dz zn−1R
(0)(z)− zR(0)′(z)

(z +R(0)(z) + w)
p

and Φ̃p
n(w) :=

1

Γ(n)

∫ ∞
0

dz zn−1 R(0)(z)

(z +R(0)(z) + w)
p .

(7.19)

Using the optimized cutoff, the threshold functions can in fact be analytically

evaluated [38, 100–102]. One finds

Φp
nopt(w) =

1

Γ(n+ 1)

1

(1 + w)p

and Φ̃p
nopt(w) =

1

Γ(n+ 2)

1

(1 + w)p
,

(7.20)

4Note that SGF[0; g] ≡ 0.
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with Γ the ordinary Gamma function. Furthermore, it is not difficult to verify

that the threshold functions in general are related to the “Q-functionals” by

Qn [Nk/A
m
k ] = k2+2(n−m)

[
Φm
n

(
−2λ̄k/k

2
)
− 1

2
ηN(k)Φ̃m

n

(
−2λ̄k/k

2
)]

,

Qn[N0k/A0
m
k ] = k2+2(n−m)Φm

n (0) .

(7.21)

Therewith the dimensionful RG equations (7.17) and (7.18) become

∂t(ZNkλ̄k) =
1

κ2

(
1

4π

) d
2

kd

{
d(d+ 1)

8

[
Φ1
d
2

(
−2λ̄k/k

2
)

− 1

2
ηN(k)Φ̃1

d
2

(
−2λ̄k/k

2
) ]
− d

2
Φ1
d
2

(0)

} (7.22)

and

∂tZNk = − 1

κ2

(
1

4π

) d
2

kd−2

{
d(d+ 1)

24

[
Φ1
d
2
−1

(
−2λ̄k/k

2
)

− 1

2
ηN(k)Φ̃1

d
2
−1

(
−2λ̄k/k

2
) ]

−d(d− 1)

4

[
Φ2
d
2

(
−2λ̄k/k

2
)

− 1

2
ηN(k)Φ̃2

d
2

(
−2λ̄k/k

2
) ]

− 1

6
dΦ1

d
2
−1

(0)− Φ2
d
2

(0)

}
.

(7.23)

From these equations we can obtain the dimensionless RG equations that are

formulated in terms of the dimensionless running couplings

gk :=
kd−2

32πκ2ZNk
and λk := k−2λ̄k . (7.24)

From the definition of the dimensionless running Newton’s constant we imme-

diately obtain the first dimensionless RG equation

∂tgk = [(d− 2) + ηN(λk, gk)] gk

=: βg(λk, gk) .
(7.25)
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The other dimensionless RG equation is obatined by rewriting Eq. (7.22) into

∂tλk = − [2− ηN(λk, gk)]λk

+ gk 32π

(
1

4π

) d
2

{
d(d+ 1)

8

[
Φ1
d
2

(−2λk)−
1

2
ηN(λk, gk)Φ̃

1
d
2

(−2λk)

]

− d

2
Φ1
d
2

(0)

}
=: βλ(λk, gk) .

(7.26)

This system of ordinary differential equations, that we sometimes will refer to as

the full Einstein-Hilbert flow, depends on the (negative) anomalous dimension

ηN(λk, gk) ≡ ηN(k) = −∂t lnZNk that is determined by Eq. (7.23); namely, this

equation can be easily rewritten into

ηN(k) ≡ ηN(λk, gk) =
gkB1(λk)

1− gkB2(λk)
, (7.27)

with

B1(λk) = 32π

(
1

4π

) d
2

[
d(d+ 1)

24
Φ1
d
2
−1

(−2λk)−
d(d− 1)

4
Φ2
d
2

(−2λk)

− 1

6
dΦ1

d
2
−1

(0)− Φ2
d
2

(0)

]
,

B2(λk) = 32π

(
1

4π

) d
2

[
− d(d+ 1)

48
Φ̃1
d
2
−1

(−2λk) +
d(d− 1)

8
Φ̃2
d
2

(−2λk)

]
.

(7.28)

7.2. The simplified Einstein-Hilbert flow

Next, let us determine the corresponding beta functions obtained from the “one-

loop approximation” (6.66) at g ≡ ḡ. These are given by Eqs. (7.22) and (7.23)

with all k-derivatives of Zk discarded; this amounts to setting φ̃mn ≡ 0 and

therewith we can thus always obtain “one-loop approximations” of exact re-

sults calculated in the single metric Einstein-Hilbert truncation. (Note that
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this implies B2 ≡ 0.) When considering this “one-loop approximation” it is ad-

visible to superimpose another approximation, an expansion in λk. For instance,

the traced equations of motion of the Einstein-Hilbert action (cf. Eq. (18.12))

suggest that close to the mass shell one has R ∼ λk; therefore we may restrict

the expansion in λk to leading order which here implicates the substitution

φmn (−2λk) 7→ φmn (0) in the beta functions. The flow associated to this further

approximation of the beta functions is called the simplified Einstein-Hilbert flow

[102]. These beta functions are given by5

∂tgk = (d− 2)gk +B1(0)g2
k

=: β1L
g (λk, gk)

(7.29)

and

∂tλk = − [2− gkB1(0)]λk + 32π

(
1

4π

) d
2
[
d(d+ 1)

8
− d

2

]
Φ1
d
2

(0)gk

=: β1L
λ (λk, gk) .

(7.30)

These RG equations contain the “one-loop” (negative) anomalous dimension

η1L
N (λk, gk) = B1(0)gk. For example, in four dimensions, d = 4, the beta func-

tions become, when employing the optimized cutoff,

β1L
λ (λk, gk) =

1

2π
gk −

(
2 +

11

3π
gk

)
λk

β1L
g (λk, gk) =

(
2− 11

3π
gk

)
gk .

(7.31)

7.3. Numerical analysis for d = 4

Lastly, we numerically analyze the flow equations of the single metric Einstein-

Hilbert truncation in four spacetime dimensions. First note that the beta func-

tions of both, the “full” as well as the “simplified” Einstein-Hilbert flow, pos-

sess a Gaussian fixed point. Furthermore, one can numerically show that also

5Note that we label these beta functions as “1L” although on the one hand, there is no clear
association to an expansion in ~ (cf. the comment in the previous section), and on the other
hand, we have made a further approximation of the “one-loop approximation” (6.66).
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a non-Gaussian fixed point (λ∗, g∗) of the full Einstein-Hilbert flow exists, i.e.,

βg(λ∗, g∗) = 0 = βλ(λ∗, g∗). Evaluated with the exponential cutoff (6.4) with

s = 1 and the optimized cutoff (6.5), respectively, these are given by

(λexp
∗ , gexp

∗ ) = (0.3590, 0.2723) (7.32)

and (λopt
∗ , gopt

∗ ) = (0.1932, 0.7073) . (7.33)

To determine the number of relevant, irrelevant or marginal “eigendirections”

of this fixed point, we caculate the eigenvalues of the corresponding stability

matrix

B(λ∗, g∗) =

(
∂βλ
∂λ

∂βλ
∂g

∂βg
∂λ

∂βg
∂g

)
(λ∗, g∗) . (7.34)

For the fixed point evaluated with the exponential cutoff for s = 1 the stability

matrix has the complex conjugated eigenvalues −1.4198 ± 3.96282i such that

the real part of the corresponding critical exponents (simply the negative eigen-

values) are real. Also with the optimized cutoff on finds two relevant directions,

the conjugated eigenvalues being −1.47531± 3.04322i. Hence the full Einstein-

Hilbert flow, which takes place in the two-dimensional parameter space (λ, g),

possesses a crictical hypersurface of dimension ∆UV = 2.

A flow diagram of the full Einstein-Hilbert flow is illustrated in Figure 7.1.

Therein, the direction of the flow is defined to be the direction of decreasing

k, which is the direction of increasing coarse graining. Especially important

are the three different types of trajectories emanating from the non-Gaussian

fixed point: trajectories of “type Ia” run, for k → 0, towards negative values for

λ while trajectories of “type IIIa” run towards positive values for λ. Further-

more, there are trajectories of “type IIa”, called the separatrix, that connect

the non-Gaussian fixed point with the Gaussian fixed point for k → 0. (For

a full classification of the flow’s trajactories as well as the explicit form of the

linearized solution see e.g. [103].)

Likewise one can show that also non-Gaussian fixed point (λ1L
∗ , g

1L
∗ ) of the

simplified Einstein-Hilbert flow exists, i.e., β1L
g (λ1L

∗ , g
1L
∗ ) = 0 = β1L

λ (λ1L
∗ , g

1L
∗ ).

Again, evaluated with the exponential cutoff (6.4) with s = 1 and the opti-

mized cutoff (6.5), respectively, these are given by

(λexp,1L
∗ , gexp,1L

∗ ) = (0.1613, 0.8432) (7.35)

and (λopt,1L
∗ , gopt,1L

∗ ) = (0.0682, 1.7136) . (7.36)
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Figure 7.1. Flow diagram of the full Einstein-Hilbert flow for
d = 4 in the (λ, g)-parameter space, obtained by employing the
optimized cutoff. The arrows point in the direction of decreasing
k. The plotted points are the Gaussian fixed point and the non-
Gaussian fixed point (7.33). Highlighted in red is a trajectory of
“type IIIa”.

The stability matrix of this fixed points has eigenvalues −2 and −4, independent

of the specific cutoff profile implemented. Thus, also the simplified Einstein-

Hilbert flow possesses a crictical hypersurface of dimension ∆UV = 2. A flow

diagram of the full Einstein-Hilbert flow is illustrated in Figure 7.2

7.4. Addendum: the simplified Einstein-Hilbert flow with free

matter fields

As an accessory analysis, let us analyze how the RG equations of the simplified

Einstein-Hilbert flow in d = 4 are modified when matter is present. This analysis

runs slights off the common thread through this thesis, but will be required for
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Figure 7.2. Flow diagram of the simplified Einstein-Hilbert flow
for d = 4 in the (λ, g)-parameter space, obtained by employing the
optimized cutoff. The arrows point in the direction of decreasing
k. The plotted points are the Gaussian fixed point and the non-
Gaussian fixed point (7.36).

a small application later on. Therefore, let us consider NS scalar fields {φi},
ND spin-1/2 fermionic fields {ψi} and NV abelian (U(1)) gauge fields {Aiµ}. All
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these fields shall be massless such their bare actions, without self-interaction,

are given by

SS[{φi}; ḡ] =
1

2

∫
d4x
√
ḡ ḡµν

NS∑
i+1

∂µφ
i ∂νφ

i ,

SD[{ψi}; ḡ] =

∫
d4x
√
ḡ

ND∑
i=1

ψ̄i /̄Dψi ,

SV [{Aiµ, c̄i, ci}; ḡ] =
1

4

∫
d4x
√
ḡ ḡµν ḡαβ

NV∑
i=1

F i
µαF

i
νβ

+
1

2

∫
d4x
√
ḡ

NV∑
i=1

(
ḡµνD̄µA

i
ν

)2

+

∫
d4x
√
ḡ

NV∑
i=1

c̄i(−D̄2)ci .

(7.37)

Here, /̄D = γµD̄µ is the Dirac operator and F i
µν = D̄µA

i
ν− D̄νA

i
µ = ∂µA

i
ν−∂νAiµ

is the field strength of the abelian gauge field, that also is split into background

part and fluctuation as Aiµ = Āiµ + aiµ. Due to the U(1)-invariance of the fields

{Aiµ} we have supplied their action functionals with a gauge-fixing action for

the gauge-fixing condition D̄µA
i
ν = 0 as well as the resulting Faddeev-Popov

action for the ghosts c̄i and ci. In this thesis, we do not explicitly discuss the

treatment of matter fields in the functional renormalization group (FRG) for-

malism; however the procedure is fully analogous to the treatment of metric

fluctuations, that are discussed in detail in this thesis. (For details on the role

of matter in the FRG approach towards quantum gravity see e.g. [97, 102, 104].)

Note that here we have not attributed any couplings to the matter fields. This is

because we are only interested in how the numbers NS, ND and NV will modify

the beta functions of the simplified Einstein-Hilbert flow for the couplings λk
and gk, if we include the matter contributions to the ansatz for solving the FRGE.

It is not difficult to obtain the required FRGE: To obtain the simplified

Einstein-Hilbert flow, we have relied on Eq. (6.66) (with the last term on the
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RHS discarded). If we enlarge the field space to also include the above matter

fields the corresponding generalization of Eq. (6.66) will clearly read

∂tΓk[g, ḡ] = +
1

2
TrST 2

[(
(Γ

(2)
k )11[g; ḡ] + Rgrav

k [ḡ]
)−1

∂tR
grav
k,k′ [ḡ]

]
k′=k

− TrV

[(
−
√

2M [g, ḡ] + Rgh,1
k [ḡ]

)−1

∂tR
gh,1
k,k′ [ḡ]

]
k′=k

+
1

2
NS TrS

[(
S

(2)
S [ḡ] + RS

k [ḡ]
)−1

∂tR
S
k [ḡ]

]

−ND Trspin−1/2

[(
S

(2)
D [ḡ] + RD

k [ḡ]
)−1

∂tR
D
k [ḡ]

]

+
1

2
NV TrV

[(
(S

(2)
V )11[ḡ] + RV

k [ḡ]
)−1

∂tR
V
k [ḡ]

]

−NV TrS

[(
(S

(2)
V )32[ḡ] + RS

k [ḡ]
)−1

∂tR
S
k [ḡ]

]
,

(7.38)

where

〈x|S(2)
S [ḡ]|y〉 =

1√
ḡ(x)

√
ḡ(y)

δ2SS[{φi}; ḡ]

δφi(x)δφi(y)

= 〈x| − D̄2|y〉 ,

F〈x|S(2)
D [ḡ]|y〉F =

1√
ḡ(x)

√
ḡ(y)

δ2SD[{ψi}; ḡ]

δψ̄i(x)δψi(y)

= F〈x| − /̄D|y〉F ,

(7.39)

where “F” indicates that the operator is defined on the Hilbert space of spin-1/2

fermions,6

〈x, µ|(S(2)
V )11[ḡ]|y, ν〉 =

1√
ḡ(x)

√
ḡ(y)

ḡρν(y)
δ2SV [{Ai, c̄i, ci}; ḡ]

δaiµ(x)δaiρ(y)

∣∣∣∣∣
ai=0

= 〈x, µ|
[
1V (−D̄2) + Ric

]
|y, ν〉 ,

(7.40)

6This Hilbert space is not discussed in appendix A.1 because it is only sporadically required,
i.e., actually only here, in this section.
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where the operator Ric on V is defined by 〈x, µ|Ric|X〉 = (Rµ
νX

ν)(x), and

lastly

〈x|(S(2)
V )32[ḡ]|y〉 =

1√
ḡ(x)

√
ḡ(y)

δ2SV [{Ai, c̄i, ci}; ḡ]

δci(x)δc̄i(y)

= 〈x| − D̄2|y〉 .
(7.41)

In the derivation of the of the FRGE we have made use of the fact that no

action contains any couplings that could run. Therewith, the evolution of the

matter fields is trivially suppressed and these hence contribute to the FRGE only

with their bare actions. That the “one-loop approximation” of the FRGE for the

enlarged field space, that we consider here, is of the specific form (7.38) is evident

from the discussion of Section 6.5. Further, as the matter fields contribute

only with their bare actions, we have w.l.o.g. set their cutoff operators to

Rk,k′ [ḡ] ≡ Rk[ḡ]. Lastly, we must specify these. For the scalar and vector fields

it is straightforward to set

RS
k [ḡ] = 1S k

2R(0)(−D̄2/k2)

RV
k [ḡ] = 1V k

2R(0)(−D̄2/k2) .
(7.42)

The definition of an appropriate cutoff operator for spin-1/2 fields is rich in

details, that we will not bring up here, for potential pitfalls that might occur

see e.g. [104]. The eligible choice that we will employ is

RD
k [ḡ] = 1spin−1/2R

D
k ( /̄D)

with RD
k ( /̄D) = /̄D +

√
/̄D + k2R

(0)
k ( /̄D

2
/k2) .

(7.43)

Note that in d = 4 the squared Dirac operator is related to the ordinary Lapla-

cian by /̄D
2

= −D̄2 + R̄/4 (called the Schrödinger-Lichnerowicz formula [105,

106]).7

7In the terminology of [102], cutoff profiles (for γ = 1) of the form “R
(0)
k (−D̄2/k2)” are

referred to as “type I”, while profiles of the form “R
(0)
k

(
−D̄2+E
k2

)
”, with E an endomorphism,

are referred to as “type II”. (Note that this terminology is fully unrelated to the classification
of RG trajectories.) Except for the spin-1/2 fields here, we solely employ cutoffs of “type I”
in this thesis.
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To finally solve the FRGE (7.38) we will again use the single-metric ansatz

(7.2) and specify the metric g ≡ ḡ to that of an maximally symmetric space.

Furthermore, we again evaluate all theshold functions at 0. This leads to

4κ2∂t
(
ZNkλ̄k

)
= 2k4 1

(4π)2
Φ1

2(0)

+ matter contributions from

∫
d4x
√
g

−2κ2∂tZNk = k2 1

(4π)2

[
1

3
Φ1

1(0)− 8Φ2
2(0)

]
+ matter contributions from

∫
d4x
√
gR .

(7.44)

These equations are written such that we can literally add on the RHS the coeffi-

cients of the operators
∫

d4x
√
g and

∫
d4x
√
gR from the expansion of the RHS of

Eq. (7.38). Next, let us calculate these contributions individually (with g ≡ ḡ):

For the scalar part :

NS

2
TrS

[(
S

(2)
S [g] + RS

k [g]
)−1

∂tR
S
k [g]

]

=
NS

2
TrS

[
1S
[
−D2 + k2R(0)(−D2/k2)

]−1
∂t
(
k2R(0)(−D2/k2)

) ]

=
NS

2
TrS

[
1S

N0k(−D2)

A0k(−D2)

]

= NS
1

(4π)2

{
Q2

[
N0k

A0k

] ∫
d4x
√
g +

1

6
Q1

[
N0k

A0k

] ∫
d4x
√
gR

}
+O(R2)

= NS
1

(4π)2

{
k4Φ1

2(0)

∫
d4x
√
g +

1

6
k2Φ1

1(0)

∫
d4x
√
gR

}
+O(R2) ,

(7.45)
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For the spin-1/2 part :8

−ND Trspin−1/2

[(
S

(2)
D [ḡ] + RD

k [ḡ]
)−1

∂tR
D
k [ḡ]

]

= −ND Trspin−1/2

[
1spin−1/2

(
− /D + /D +

√
/D

2
+ k2R(0)( /D

2
/k2)

)−1

× ∂t
√
/D

2
+ k2R(0)( /D

2
/k2)

]

= −ND Trspin−1/2

[
1spin−1/2

N0k( /D
2
)

A0k( /D
2
)

]

= −ND
1

(4π)2

{
4Q2

[
N0k

A0k

] ∫
d4x
√
g − 1

3
Q1

[
N0k

A0k

] ∫
d4x
√
gR

}
+O(R2)

= −ND
1

(4π)2

{
4k4Φ1

2(0)

∫
d4x
√
g − 1

3
k2Φ1

1(0)

∫
d4x
√
gR

}
+O(R2) ,

(7.46)

For the vector part associated to the gauge field :

NV

2
TrV

[(
(S

(2)
V )11[ḡ] + RV

k [ḡ]
)−1

∂tR
V
k [ḡ]

]

=
NV

2
TrV

[ [
1V
(
−D2 + k2R(0)(−D2/k2)

)
+ Ric

]−1

× 1V ∂t
(
k2R(0)(−D2/k2)

) ]

= NV TrV

[
1V N0k(−D2)

1V A0k(−D2) + Ric

]
(7.47)

8In the third step, we make use of the expansion of heat kernel for the squared Dirac operator.
This expansion can be obtained analogously to the prescription in appendix E for the ordinary
Laplacian. The corresponding coefficients can be found e.g. in Table 3.1 of [102].
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Here, we can use the fact that for a maximally symmetric spacetime one has

Rµ
ν = 1

d
δµνR and thus Ric = 1

d
R1V . Hence, we can expand

NV TrV

[
1V N0k(−D2)

1V A0k(−D2) + Ric

]

= NV TrV

[
1V

N0k(−D2)

A0k(−D2) +R/4

]

= NV

{
TrV

[
1V

N0k(−D2)

A0k(−D2)

]
− 1

4
R

[
1V

N0k(−D2)

A0k(−D2)2

]}
+O(R2)

= NV
1

(4π)2

{
4k4Φ1

2(0)

∫
d4x
√
g +

2

3
k2Φ1

1(0)

∫
d4x
√
gR

− k2Φ2
2(0)

∫
d4x
√
gR

}
+O(R2)

(7.48)

For the scalar part associated to the gauge field :

−NV TrS

[(
(S

(2)
V )32[g] + RS

k [g]
)−1

∂tR
S
k [g]

]

= −NV TrS

[
1S
[
−D2 + k2R(0)(−D2/k2)

]−1
∂t
(
k2R(0)(−D2/k2)

) ]

= −2NV TrS

[
1S

N0k(−D2)

A0k(−D2)

]

= −2NV
1

(4π)2

{
k4Φ1

2(0)

∫
d4x
√
g +

1

6
k2Φ1

1(0)

∫
d4x
√
gR

}
+O(R2) .

(7.49)
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All in all, the RG equations including the matter contributions are given by,

employing the optimized cutoff,

4κ2∂t
(
ZNkλ̄k

)
= 2k4 1

(4π)2

(
1 +

1

2
NS − 2ND +NV

)
−2κ2∂tZNk = k2 1

(4π)2

(
−11

3
+

1

6
NS +

1

3
ND −

1

6
NV

)
.

(7.50)

The second equation implicates the (negative) anomalous dimension

η1L,matter
N (λk, gk) = − 1

ZNk
∂tZNk

=

[
− 11

3π
+

1

6π
(NS + 2ND −NV )

]
gk

(7.51)

and with Eq. (7.25) we therewith obtain the dimensionless RG equation for gk

∂tgk =
[
2 + η1L,matter

N (λk, gk)
]
gk

=: β1L,matter
g (λk, gk) .

(7.52)

From the first equation follows the dimensionless RG equation for λk,

∂tλk = −2λk +
1

2π

(
1 +

1

2
NS − 2ND +NV

)
gk + η1L,matter

N (λk, gk)λk

=: β1L,matter
λ (λk, gk) .

(7.53)

Note that for NS = ND = NV = 0 these equations reduce to Eq. (7.31). The

corresponding RG flow possesses the fixed point, given by β1L,matter
λ (λk, gk) =

0 = β1L,matter
g (λk, gk),

λ1L,matter
∗ =

3(2 +NS − 4ND + 2NV )

4(22−NS − 2ND +NV )

and g1L,matter
∗ =

12π

22−NS − 2ND +NV

. (7.54)

If we require a positive fixed-point value of Newton’s constant g∗ this condition

will give a non-trivial constraint on the matter content compatible with the

Asymptotic Safety scenario [102]. For example, for the field content of the

“Standard Model of particle physics”, given by NS = 4, ND = 45/2 and NV =

12, we find this condition unfulfilled for the above fixed point:

λ1L,matter
∗ = 3 and g1L,matter

∗ = −4π

5
. (7.55)
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However, we emphasize that one should not over-interpret this finding: the

main virtue of the “one-loop approximation” of the FRGE is its simple structure

which puts it in the frontline for any analysis of exploratory character in the

FRG framework.



CHAPTER 8

The one-loop beta functions of higher-derivative gravity

Executive summary. We make use of the one-loop approximation of the

frge in order to derive the one-loop beta functions for higher-derivative as well

as Weyl-squared gravity in four spacetime dimensions. We discuss the flow of

the resulting rg equations and show that the theory is asymptotically free in

the coupling parametrizing the squared Weyl tensor. Moreover, we discuss the

corresponding one-loop beta functions in 4− ε dimensions.

8.1. Spacetime dimension d = 4

As a further example, let us demonstrate how one can obtain one-loop beta

functions of higher-derivative gravity in four dimensions, d = 4, within the FRG

framework, following the procedure explained in the last paragraph of 6.5. The

bare action of the theory is given by Eq. (4.15), with Scl[ĝ] specified to Eq. (4.9),

i.e.,

S[ĥ, C̄, C, b; ḡ] := Sh.−d.[ḡ + ĥ] + SGF[ĥ; ḡ] + Sgh,1[ĥ, C̄, C; ḡ] + Sgh,2[b; ḡ] (8.1)

with

Sh.−d.[ĝ] :=

∫
d4x
√
ĝ

[
− 1

f 2
2

(
1

3
R2 −RµνRµν

)
− 1

6f 2
0

R2

]
. (8.2)

Furthermore, the gauge-fixing action and ghost actions are determined by the

gauge-fixing condition (4.31) and weight function (4.84), such that these are

given by Eq. (4.85), Eq. (4.34) and Eq. (4.87), respectively. Next, we set the

gauge-fixing parameters to the values given in Eq. (4.99). Therewith, the gauge

111
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fixing action and ghost actions obtain a parametric dependence on the couplings

f 2
0 and f 2

2 ,

SGF[ĥ; ḡ] ≡ SGF[ĥ; ḡ]
(
f 2

0 , f
2
2

)
,

Sgh,1[ĥ, C̄, C; ḡ] ≡ Sgh,1[ĥ, C̄, C; ḡ]
(
f 2

0 , f
2
2

)
,

Sgh,2[b; ḡ] ≡ Sgh,2[b; ḡ]
(
f 2

0 , f
2
2

)
,

(8.3)

and thus do the operators M [ĝ, ḡ] ≡M [ĝ, ḡ] (f 2
0 , f

2
2 ) and Y [ḡ] ≡ Y [ḡ] (f 2

0 , f
2
2 ).

For this setting, we can obtain one-loop beta functions (respectively RG equa-

tions) by giving a k-dependence to the couplings, f 2
0 7→ f 2

0 (k) and f 2
2 7→ f 2

2 (k),

and solving the FRGE (6.66) at g ≡ ḡ with the ansatz

Γk[g, ḡ] =

∫
d4x
√
g

[
− 1

f 2
2 (k)

(
1

3
R2 −RµνRµν

)
− 1

6f 2
0 (k)

R2

]
+ SGF[ĥ; ḡ]

(
f 2

0 (k), f 2
2 (k)

) (8.4)

on the trucated theory space spanned by the operators g 7→
∫

d4x
√
gR2 and

g 7→
∫

d4x
√
g
(

1
3
R2 −RµνR

µν
)
. The “11”-part of the Hessian for this ansatz at

g ≡ ḡ is obviously given by Eq. (4.97) after enabling the k-dependence of the

couplings,(
Γ

(2)
k

)
11

[g, g] = (U [0; g])h.−d.

(
f 2

0 (k), f 2
2 (k)

)
= K[g]

(
f 2

0 (k), f 2
2 (k)

){
1ST 2�2

g + (V κτ )[g]
(
f 2

0 (k), f 2
2 (k)

)
DκDτ

+W [g]
(
f 2

0 (k), f 2
2 (k)

)}
.

(8.5)

Lastly, we must specify the general form (6.3) of the cutoff operators. It is clear

that we must set γ = 2 for the gravitational cutoff operator and γ = 1 for the

cutoff operators of both ghost parts. With the operators at hand, it is further

convenient to set

Z grav
k [g] = K[g]

(
f 2

0 (k), f 2
2 (k)

)
, Z gh,1

k [g] =
√

21V and Z gh,2
k [g] =

1

2f 2
2 (k)

1V .
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All in all, the FRGE (6.66) at g ≡ ḡ therewith becomes

−∂t
(

1

f 2
2 (k)

)∫
d4x
√
g

(
1

3
R2 −RµνRµν

)
− ∂t

(
1

6f 2
0 (k)

)∫
d4x
√
g R2

=
1

2
TrST 2

[[
1ST 2

(
�2
g+k

4R(0)(D4/k4)
)

+ (V κτ )[g]
(
f 2

0 (k), f 2
2 (k)

)
DκDτ

+W [g]
(
f 2

0 (k), f 2
2 (k)

)]−1

1ST 2 ∂t
(
k4R(0)(D4/k4)

) ]

− TrV

[[
−M [g, g]

(
f 2

0 (k), f 2
2 (k)

)
+ 1V k

2R(0)(−D2/k2)
]−1

× 1V ∂t
(
k2R(0)(−D2/k2)

) ]

− 1

2
TrV

[[
− Y [g]

(
f 2

0 (k), f 2
2 (k)

)
+ 1V k

2R(0)(−D2/k2)
]−1

× 1V ∂t
(
k2R(0)(−D2/k2)

) ]
.

(8.6)

The traces on the RHS now must be expanded in curvature invariants by means

of heat kernel methods1, including the off-diagonal heat kernel, and then must be

projected onto the truncation of theory space given by the operators
∫

d4x
√
gR2

and
∫

d4x
√
g
(

1
3
R2 −RµνR

µν
)
. Because of its wide extent, we will not present

this heat kernel expansion here; see e.g. [45, 47, 102] for an elaborate deriva-

tion. After the RHS of the FRGE has been projected onto the above trun-

cation of theory space, one can read off the beta functions for the couplings

f 2
0 and f 2

2 , which are the coefficients of the basis functionals
∫

d4x
√
gR2 and∫

d4x
√
g
(

1
3
R2 −RµνR

µν
)
, respectively.

1Cf. the literature quoted in appendix E.
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Then one finds the RG equations, with t = ln k the renormalization group time,

∂tf
2
2 (k) = − 1

(4π)2

133

10
f 4

2 (k)

=: βf2
2

(
f 2

2 (k)
)
,

∂tf
2
0 (k) = +

1

(4π)2

[
5

3

f 4
2 (k)

f 4
0 (k)

+ 5
f 2

2 (k)

f 2
0 (k)

+
5

6

]
f 4

0 (k)

=: βf2
0

(
f 2

0 (k), f 2
2 (k)

)
.

(8.7)

The RG equations (8.7) are the same as those obtained from dimensional

regularization with the MS scheme [33, 37, 49, 107–110]. In fact, these RG

equations are universal in the sense that they do not depend on the employed

regularization scheme [45, 47, 111]. Furthermore, these RG equations can, in

fact, be shown to be independent of the specific choice of gauge-fixing parame-

ters α, β, γ and δ such that in this sense they are physical. Note that all these

properties only hold for d = 4.

Clearly, the beta functions of the RG equations (8.7) possess the Gaussian

fixed point (f 2
0 ∗, f

2
2 ∗) = 0. However, this fixed point is attrative only in one

direction: As βf2
2
(f 2

2 ) ≤ 0 for all f 2
2 , in the neighborhood of 0 the function f 2

2 is

a monotonically decreasing in k, thus f 2
2 is a relevant direction (the fixed point

is attractive); and as on the hand βf2
0
(f 2

0 , f
2
2 ) ≥ 0 for all (f 2

0 , f
2
2 ), the function f 2

0

is a monotonically increasing in k, thus f 2
0 is an irrelevant direction (the fixed

point is repulsive). Hence, higher-derivative gravity is asymptotically free in the

coupling f 2
2 . In fact, we need not necessarily set f 2

0 ∗ = 0 to obtain a fixed point

because the vanishing parameter f 2
2 already implies the vanishing of both beta

functions, for all f 2
0 . Thus the Gaussian fixed point, although clearly present,

does not resemble any information of preferred values of the coupling f 2
0 in the

UV for k →∞. However, by re-formulating the RG equation for f 2
0 in terms of

the variable

ω(k) ≡ ω
(
f 2

0 (k), f 2
2 (k)

)
:=

f 2
2 (k)

2f 2
0 (k)

, (8.8)
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it is indeed possible to find such preferred values (i.e., fixed points) for ω. We

therefore firstly re-write the RG equation for f 2
0 into (thereby making use of the

RG equation for f 2
2 )

∂tω(k) = − 1

(4π)2

25 + 1098ω(k) + 200ω2(k)

60
f 2

2 (k)

=: βω
(
ω(k), f 2

2 (k)
)
.

(8.9)

Still, we encounter the “problem” βω(ω, 0) ≡ 0 for all ω such that no specific UV

values for the coupling ω can be determined. Secondly, it is therefore customary

to introduce the renormalization group time τ given by the differential

dτ(k) :=
f 2

2 (k)

(4π)2
dt(k) . (8.10)

As the RG equations (8.7) are physical, i.e., independent of the choice of gauge-

fixing parameters, we may integrate this differential with f 2
2 given by the straight-

forward solution to the RG equation ∂tf
2
2 (k) = βf2

2
(f 2

2 (k)), in order to determine

τ . This results in

τ(k) =
10

133
ln
[
133 ln k − 10(4π)2 · const.

]
. (8.11)

Especially, for the UV limit t→∞ we find that τ →∞ such that we can w.l.o.g.

investigate UV properties by means of the new renormalization group time τ .

In terms of τ the RG equations decouple into the independent ordinary dif-

ferential equations

∂τf
2
2 (k) = −133

10
f 2

2 (k)

=: β′f2
2

(
f 2

2 (k)
)

and ∂τω(k) = −200ω2(k) + 1098ω(k) + 25

60

=: β′ω(ω(k)) .

(8.12)

The beta functions (8.12) possess the non-Gaussian fixed points

f 2
2 ∗ = 0 and ω∗,1/2 = −549

200
± 7
√

6049

200
, (8.13)
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i.e., β′
f2
2
(f 2

2 ∗) = 0 = β′
f2
2
(ω∗). By setting ω to either fixed-point value, we obtain

a perturbative series that is controlled solely by f 2
2 . The stability matrix for the

system (8.12) is independent of f 2
2 and in general reads

B(ω∗) =

(
∂β′

f2
2
/∂f 2

2 ∂β′
f2
2
/∂ω

∂β′ω/∂f
2
2 ∂β′ω/∂ω

)
(ω∗) =

(
−133

10
0

0 −183
10
− 20

3
ω∗

)
. (8.14)

For the first fixed point, (
f 2

2 ∗, ω∗,1
)
≈ (0,−0.0229) , (8.15)

we find B(ω∗,1) ≈ diag(−13.3,−18.2), i.e., the fixed point (f 2
2 ∗, ω∗,1) is UV stable,

having two relevant directions. The other fixed point,(
f 2

2 ∗, ω∗,2
)
≈ (0,−5.4671) (8.16)

is a saddle point with one relevant and one irrelevant direction, B(ω∗,2) ≈
diag(−13.3,+18.2).

Figure 8.1. The flow of higher-derivative gravity for d = 4 in the
renormalization group time τ , given by the RG equations (8.12).
Marked in red are the fixed points (8.15) and (8.16).
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Moreover, one can argue that the saddle point (f 2
2 ∗, ω∗,2) lies in an ill-defined

region of theory space as follows [45]: Let us consider the ghost operator 1
α
Y [g]

given by Eq. (4.84) with the gauge-fixing parameters specified to Eq. (4.99).

Re-expressing the coupling f 2
0 by ω, this yields

1

α
Y µν [g]diff = − 1

2f 2
2

(
gµνD2 +

2(1 + ω)

3
DµDν −DνDµ

)
= − 1

2f 2
2

(
gµνD2 − 1− 2ω

3
DµDν −Rµν

)
.

(8.17)

The spectrum of this operator is generally positive provided that

1− 2ω

3
< 0 ⇔ ω > −1 . (8.18)

This condition for a positive (“second”) ghost operator is fulfilled among the

fixed points only by the UV-attractive fixed point (f 2
2 ∗, ω∗,1).

8.2. Weyl-squared gravity in d = 4

In the very same way as in Section 8 we can also obtain the RG equation for Weyl-

squared gravity (there is only one, for the coupling f 2
2 ). Following Subsection

??, we perform in the ansatz for Γk[g, ]̄ (of the previous section) and in the

operators M [g, ḡ] and Y [ḡ] the substitutions f 2
0 → ∞, β = 1/4 and gµν 7→(

Iµν
αβ − (Ptr.)[ḡ]µν

αβ)gαβ. When we further specify the remaining gauge-fixing

parameters to α = −2f 2
2 , γ = 2/3 and δ = 1, this leads to the “11”-component

of the Hessian at g ≡ ḡ,(
Γ

(2)
k

)
11

[g, g] = (U [0; g])Weyl

(
f 2

2 (k)
)

= (1ST2 − Ptr.[g])KWeyl[g]
(
f 2

2 (k)
)
×

×
{
1ST 2�2

g + (V κτ
Weyl)[g]

(
f 2

2 (k)
)
DκDτ +WWeyl[g]

(
f 2

2 (k)
)}

.

(8.19)

Analogous to the case f 2
0 <∞ we further set2

Z grav
k [g] = (1ST2 − Ptr.[g])KWeyl[g] , (8.20)

2Kindly remember that in Weyl-squared gravity the first component of field space consists of
the symmetric and traceless rank-2 tensors. The identity on this space is 1ST 2 − Ptr.[ḡ].
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such that the “one-loop approximation” of the FRGE on the one-dimensional

truncation of theory space given by the operator
∫

d4x
√
g
(

1
3
R2 −RµνR

µν
)

be-

comes

−∂t
(

1

f 2
2 (k)

)∫
d4x
√
g

(
1

3
R2 −RµνRµν

)
=

1

2
TrST 2

[[
1ST 2

(
�2
g + k4R(0)(D4/k4)

)
+ (V κτ

Weyl)[g]
(
f 2

2 (k)
)
DκDτ

+Wweyl[g]
(
f 2

2 (k)
)]−1

(1ST 2 − Ptr.[g]) ∂t
(
k4R(0)(D4/k4)

) ]

− TrV

[[
−M [g, g]

(
f 2

2 (k)
)

+ 1V k
2R(0)(−D2/k2)

]−1

× 1V ∂t
(
k2R(0)(−D2/k2)

) ]

− 1

2
TrV

[[
− Y [g]

(
f 2

2 (k)
)

+ 1V k
2R(0)(−D2/k2)

]−1

× 1V ∂t
(
k2R(0)(−D2/k2)

) ]
.

(8.21)

Again, we will not explicitly perform the projection of the RHS onto the operator∫
d4x
√
g
(

1
3
R2 −RµνR

µν
)

using heat kernel methods, but only state the resulting

one-loop RG equation for the coupling f 2
2 that slightly differs from the case

f0 <∞ [49]:

∂tf
2
2 (k) = − 1

(4π)2

199

15
f 4

2 (k)

=: βWeyl

f2
2

(
f 2

2 (k)
)
.

(8.22)

As in the case f 2
0 <∞ one can show that this one-loop RG equation is univer-

sal, i.e., independent of the employed regularization scheme, and physical, i.e.,

independent of the specific choice of gauge-fixing parameters. Especially, note

that Weyl-squared gravity is asymptotically free in its sole coupling f 2
2 .
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8.3. A comment on the one-loop beta functions in d = 4− ε

Unlike the beta functions of higher-derivative gravity in d = 4, the correspond-

ing beta functions in d = 4− ε are not universal, i.e., regularization-scheme de-

pendent, and not necessarily physical, i.e., they are generally gauge-dependent.

In the literature, the beta functions of higher-derivative gravity have been de-

termined by means of two non-coinciding regularization schemes. On the one

hand, the FRGE in Section 8 can be evaluated using heat kernel methods in

an arbitrary dimension d. If we do so and set d = 4 − ε, the beta functions

will depend parametrically on ε; especially, the parameter ε need not be small

and may take any value resulting in a positive dimension d. The beta functions

obtained in this way have been analyzed in [47] and, interestingly, reflect the

requirement ω > −1 due to the appearance of “ln(1− ω)”-terms. On the other

hand, the beta functions in d = 4 − ε have been obtained by regularizing the

conventional effective action with dimensional regularization (using e.g. the MS

scheme), i.e., ε here plays the role of the regulator, rather than an external pa-

rameter. These beta functions, that are different from those obtained with FRG

methods, have been analyzed in [33, 49]. As the beta functions obtained from

dimensional regularization are easier to handle, and for ε small numerically yield

fixed points that only slightly deviate from those obtained with FRG methods,

we will restrict the following discussion of the beta functions in d = 4 − ε to

those obtained with dimensional regularization.
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With respect to the renormalization group time τ defined by Eq. (8.10), the

RG equations obtained from dimensional regularization read in leading order in

ε [33]:

∂τf
2
2 (k) = −133

10
f 2

2 (k) + ε

[
− (4π)2 + χ(f 2

2 (k), ω(k);α, β, γ, δ)

− f 2
2 (k)

20ω2(k)− 302ω(k) + 5

60ω(k)

]
+O(ε2)

=: β′f2
2 ,ε

(
f 2

2 (k), ω(k)
)

and ∂τω(k) = − 200ω2(k) + 1098ω(k) + 25

60

+ ε
20ω2(k) + 932ω(k) + 821

360
+O(ε2)

=: β′ω,ε(ω(k)) .

(8.23)

Here, χ(f 2
2 , ω;α, β, γ, δ) is a function that “measures the deviation” from the

gauge given by the parameters (4.99), i.e., especially that

χ(f 2
2 , ω;α, β, γ, δ)

∣∣∣∣
Eq. (4.99)

= 0 . (8.24)

In this generality, the function χ is not stated in the literature. Note that

as the beta function β′ω,ε is gauge-independent, the gauge-dependence of the

system of RG equations (8.23) is solely given by the beta function β′
f2
2 ,ε

. This

points at the problematic fact that the renormalization group time τ therewith

also acquires a gauge-dependence, due to its definition through the coupling

f 2
2 . Consequently, “asymptotic freedom in the 4 − ε theory is not a physical

phenomenom, but an artificial occurrence depending on the choice of gauge-

fixing condition” [33]. Here, let us make the seemingly natural assumption that

χ(f 2
2 , ω;α, β, γ, δ) ∼ f 2

2 . On the basis of this assumption, the fixed points of the

system of RG equations (8.23) are in leading order in ε in fact independent of

χ: (
f 2

2 ∗,ε, ω∗,1;ε

)
≈ (−11.8732ε,−0.0229 + 0.1224ε)

and
(
f 2

2 ∗,ε, ω∗,2;ε

)
≈ (−11.8732ε,−5.4671 + 0.5628ε) .

(8.25)
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As a result, these fixed points resemble, for ε small, the physical property of

asymptotic freedom of d = 4-case and we may use them to investigate how the

fixed-point value of a certain quantity, initially at the fixed point (8.13), changes

when slightly moving away from d = 4. For this particular purpose, it may also

be interesting to ask how this fixed-point value of some quantity changes if we

move away from d = 4 only on the f 2
2 -axis of theory space. Therefore, let us

take the limit ε → 0 of the beta function for ω, β′ω,ε=0 = β′ω, which results in

the fixed points (
f 2

2 ∗,ε, ω∗,1

)
≈ (−11.8732ε,−0.0229)

and
(
f 2

2 ∗,ε, ω∗,2

)
≈ (−11.8732ε,−5.4671) .

(8.26)

For the limit f 2
0 →∞ of Weyl-squared gravity, the RG equation with respect

to the renormalization group time τ for the coupling f 2
2 in d = 4 − ε has been

calculated using dimensional regularization in [49] and reads, in leading order

in ε,

∂τf
2
2 (k) = − 1

(4π)2

199

15
f 4

2 (k)

+ ε

[
− (4π)2 + χWeyl(f

2
2 (k);α, γ, δ) +

311

60
f 2

2 (k)

]
+O(ε2)

=: β′f2
2 ,ε;Weyl

(
f 2

2 (k)
)
,

(8.27)

where the function χWeyl(f
2
2 ;α, γ, δ) again measures the deviation from the

gauge α = −2f 2
2 , γ = 2/3 and δ = 1; i.e., especially χWeyl(f

2
2 ;−2f 2

2 , 2/3, 1) = 0.

The explicit form the function χWeyl can be found in [112]. In leading order in

ε, the fixed point of this RG equation turns out to be dependent on the gauge

parameter α (provided that α is independent of the coupling f 2
2 ):

f 2
2 ∗,ε;Weyl ≈ (−11.9030 + 17.8546α)ε . (8.28)

Again, this fixed point (in the appropriate gauge) may be used to investigate

how quantities, evaluated at the Gaussian fixed point of Weyl-squared gravity,

change when one moves away from d = 4.





CHAPTER 9

Composite operators

Executive summary. We motivate the study of composite operators within

the framework of the functional renormalization group equation for quantum

gravity. Then, we explicitly construct an frge that governs the k dependence

of renormalized composite operators. We show that for geometric operators this

renormalization behavior is encoded into the operators’ anomalous dimensions.

To these, we give a geometrical interpretation in form of quantum corrections

to the scaling exponents of the geometric operators.

What is new? The composite-operator frge (9.19) for composite operators

depending on the ghost fields.

9.1. Motivation

The goal of any quantum-gravitational theory is to give a physical meaning to

the path integral (4.17). In the Asymptotic Safety scenario, the physical mean-

ing of this path integral lies in the existence of an UV non-Gaussian fixed point

with a finite number of relevant directions. The tool to probe the existence of

such a fixed point is the FRG formalism, as described in Section 6.2. So far, the

investigations performed among the Asymptotic Safety program show a strong

indication for the existence of such a fixed point, cf. Section 6.6

So why study composite operators in the Asymptotic Safety scenario for

quantum gravity? The main motivation lies in the fact that, in order to make

contact with quantum-gravitational observables, knowledge about the renormal-

ization behavior of geometric operators may be required that cannot be ex-

tracted from the EAA alone. Observables in gravity (i.e., classical or quan-

tum gravity) are challenging to construct because they are required to be

123
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diffeomorphism-invariant [113–119]. Therewith, for example, they cannot de-

pend on a single point in spacetime but rather should be considered as the

integral of some scalar density over spacetime. Thus, one might need to resort

to non-local operators in their construction, which we can illustrate with the

following qualitative example for an observable [28, 29]. Consider the correla-

tion function G(r) of two operators O1[ĝ] and O2[ĝ] at fixed geodesic length r

[117, 118]:

G(r) =

〈
1

vol[ĝ]

∫
ddx
√
ĝ(x)

∫
ddy
√
ĝ(y) O1[ĝ](x)O2[ĝ](y)δ(r − `ĝ(x, y))

〉
,

(9.1)

with `ĝ(x, y) the geodesic length (later on, we will give a precise definition of

it) and vol[ĝ] the spacetime volume. This observable essentially depends on

`ĝ(x, y) which is a non-local operator for which it is realistically impossible to

be included into a truncation on which the FRGE is approximated (truncations

are usually the linear span of (quasi-)local operators) – hence, we can find a

remedy in renormalizing it as a composite operator. Furthermore, we can use

this example to illustrate the need for knowledge about the scaling behavior

of composite operators. In the fixed-point regime, where scale invariance is

realized, we expect the scaling behavior G(r) ∼ r∆. In order to obtain the

scaling exponent ∆, let us rescale the fixed geodesic distance r by a factor λ,

G(λr) =

〈
1

vol[ĝ]

∫
ddx
√
ĝ(x)

∫
ddy
√
ĝ(y) O1[ĝ](x)O2[ĝ](y)δ(λr − `ĝ(x, y))

〉
= e−W [ĥ,...;ḡ]

∫
Dµ[ĥ, . . . ; ḡ]

1

vol[ĝ]

∫
ddx
√
ĝ(x)

∫
ddy
√
ĝ(y)

× O1[ĝ](x)O2[ĝ](y)δ(λr − `ĝ(x− y))

=

〈
Ω∆vol−∆1−∆2

1

vol[ĝ]

∫
ddx
√
ĝ(x)

∫
ddy
√
ĝ(y)O1[ĝ](x)O2[ĝ](y)

×
(
λr − Ω∆`g `ĝ(x− y)

)〉
.

(9.2)

In the second step, we have written out the expectation value, defined in terms of

Eq. (4.17). In the third step, we have rescaled the metric by a factor Ω. Thereby,

we have assumed that the measure is scale invariant and that the operators are

situated in the fixed-point regime, where they all transform homogenously. The

respective scaling dimensions of the operators are denoted by ∆1, ∆2, ∆vol and



9.1. MOTIVATION 125

∆`g . Still, λ is an arbitrary parameter, so we are free to set λ = −Ω−∆`g and

eliminate Ω from the equation in favor of λ:

G(λr) =

〈
λ

∆1+∆2−∆vol
∆`g

1

vol[ĝ]

∫
ddx
√
ĝ(x)

∫
ddy
√
ĝ(y)O1[ĝ](x)O2[ĝ](y)

× (λr − λ`ĝ(x− y))

〉
.

= λ
∆1+∆2−∆vol

∆`g
−1
G(r) .

(9.3)

Consequently, to determine the scaling behavior of the observable G(r), we must

determine that of the geodesic length, as well. In quantum gravity, such scaling

arguments have been discussed especially in the two-dimensional case [55, 120,

121].

Aside from such qualitative examples, we must admit the longstanding prob-

lem of constructing meaningful (four-dimensional) observables in quantum grav-

ity is clearly beyond the scope of this thesis. However, it may also be interesting

to study the renormalization behavior of composite operators that are not true,

diffeomorphism-invariant, observables. On the one hand, as explained above,

one might need to resort to such an operator in order to construct a full-fledged

observable. On the other hand, in a theory of quantum gravity, it is natural to

study geometric quantities, such as the volume of a submanifold of spacetime,

at the quantum level. This can yield general geometric features of the underly-

ing theory for quantum gravity. For example, the effective Hausdoff dimension,

the spectral dimension or the walk dimension of spacetime have already been

estimated in the asymptotic safety scenario, which typically implies an effective

dimensional reduction of spacetime in the fixed-point regime [122–125]. The

further study of such geometric operators will be the essence of Chapters 11

and 12. Geometrical properties such as these are of particular interest for the

comparison of the Asymptotic Safety approach towards quantum gravity with

other approaches, e.g. casual dynamical triangulations or loop quantum gravity.

The mentioned dimensional reduction phenomena, for instance, are a common

feature of several quantum gravity scenarios [126, 127].
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Last not least, the study of composite operators is also motivated by technical

aspects, which we again illustrate by an (introductory) example: For the k-

dependent Schwinger functional Wk[j; ḡ], defined by Eq. (6.2), to be invariant

under the classical BRST transformations (4.16), the identity

0 = sWk[J ; ḡ]

= −〈s∆kS[χ; ḡ]〉 − 〈sSsource[χ; J ; ḡ]〉
(9.4)

must hold. Here, s denotes the anticommuting and nilpotent BRST operator.

This identity, however, is rather impractical in the FRG framework which is

based on the EAA Γk[φ; ḡ] because with the above identity, one cannot check

whether the EAA is BRST invariant. Therefore, it is desirable to express this

identity in terms of the EAA. This can be realized by incorporating the BRST

variations sĥµν and sCµ as composite operators into the k-dependent Schwinger

functional as follows. Define the functional W ′
k[J ; β, τ ; ḡ] analogously to Wk[J ; ḡ]

but with the source action Ssource[χ; J ; ḡ] replaced by

Ssource[χ; J ; β, τ ; ḡ] := Ssource[χ; J ; ḡ] +

∫
ddx
√
ḡ
(
βµνsĥµν + τµsC

µ
)
, (9.5)

i.e., we have coupled the BRST variations sĥµν and sCµ to the sources βµν

and τµ. Also note that sSsource[χ; J ; β, τ ; ḡ] = sSsource[χ; J ; ḡ] due to the nilpo-

tence of the BRST operator. The EAA Γ′k[φ; β, τ ; ḡ] obtained from the functional

W ′
k[J ; β, τ ; ḡ] will fulfill

1√
ḡ(x)

δΓ′k[φ; β, τ ; ḡ]

δβµν(x)
= −

〈
sĥµν(x)

〉
and

1√
ḡ(x)

δΓ′k[φ; β, τ ; ḡ]

δτµ(x)
= −〈sCµ(x)〉

(9.6)

per construction. With these properties, it is possible to re-formulate Eq. (9.4)

as the modified Ward identity [26]∫
ddx

{
δ(Γ′k[φ; β, τ ; ḡ]− SGF[h; ḡ])

δhµν(x)

δΓ′k[φ; β, τ ; ḡ]

δβµν(x)

+
δ(Γ′k[φ; β, τ ; ḡ]− SGF[h; ḡ])

δξµ(x)

δΓ′k[φ; β, τ ; ḡ]

δτµ(x)

}
= Yk . (9.7)
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Here, we only state Yk for the case bµ ≡ 0 [26]:

Yk = TrST 2

[
Rk11[ḡ]

3∑
a=1

(
Γ′

(2)
k [φ; β, τ ; ḡ] + Rk[ḡ]

)−1

1a

(
Γ′

(2)
k [φ; β, τ ; ḡ]

)
aβ

]

− TrV

[
Rk23[ḡ]

3∑
a=1

(
Γ′

(2)
k [φ; β, τ ; ḡ] + Rk[ḡ]

)−1

2a

(
Γ′

(2)
k [φ; β, τ ; ḡ]

)
aτ

]

−
√

2

α
TrV

[
Rk23[ḡ]F [ḡ]

(
Γ′

(2)
k [φ; β, τ ; ḡ] + Rk[ḡ]

)−1

13

]
,

(9.8)

with

〈x, . . .|
(

Γ′
(2)
k [φ; β, τ ; ḡ]

)
aβ
|y, µ, ν〉 := Ia[ḡ]

1√
ḡ(x)

√
ḡ(y)

δ2Γ′k[φ; β, τ ; ḡ]

δφa(x)δβµν(y)
,

〈x, . . .|
(

Γ′
(2)
k [φ; β, τ ; ḡ]

)
aτ
|y, ν〉 := Iaµν [ḡ]

1√
ḡ(x)

√
ḡ(y)

δ2Γ′k[φ; β, τ ; ḡ]

δφa(x)δτµ(y)
,

〈x, µ|F [ḡ]|y, ρ, σ〉 := F ρσ
µ [ḡ] .

(9.9)

Here, the tensors Ia[ḡ] and Iaµν [ḡ] fulfill the role to adapt the tensor structure

of the LHS to the RHS.

The modified Ward identity thus is fulfilled by the full EAA Γk[φ; β, τ ; ḡ]

per construction. However, this is not the case for approximations of the EAA

arising from solving the FRGE on truncations of theory space. Therefore, this

modified Ward identity, obtained by means of composite operators, may be used

to test the consistency and quality of a given approximation. This would not

have been possible with Eq. (9.4) only.

9.2. The composite-operator FRGE

In the subsequent section, we will generalize the incorporation of composite op-

erators into the FRG framework constructed in Section 6.2. The main result of

the process will be the composite-operator FRGE which describes the renormal-

ization behavior of composite operators as a coevolution with the gravitational

EAA (6.13). Especially, this composite-operator FRGE enables us to calculate
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the anomalous-dimension matrix of the composite operators, whose interpreta-

tion we will discuss in detail.

To begin with, let us consider n spacetime-dependent composite Operators

O1[ĥ, C̄, C, b; ḡ](x), . . . ,On[ĥ, C̄, C, b; ḡ](x), each acting on either of the Hilbert

spaces S, V or ST 2 and each being composed of the background metric ḡµν , its

quantum fluctuation ĥµν , as well as the ghost fields Cµ, C̄µ and bµ. Let us couple

these operators to arbitrary external sources ε := (ε1, . . . , εn) and define the

(modified) k-dependent Schwinger functional W ′
k[J ; ε; ḡ], with J = (t, σ, σ̄, b),

by

exp
{
W ′
k[t, σ, σ̄, b; ε1, . . . , εn; ḡ]

}
:=

∫
Dµ[ĥ, C̄, C, b; ḡ] exp

{
− S̃[ĥ, C̄, C, b; t, σ, σ̄, d; ḡ]−∆kS[ĥ, C̄, C, b; ḡ]

−
∫

ddx
√
ḡ(x)

n∑
i=1

εai (x)Oia[ĥ, C̄, C, b; ḡ](x)

}
,

(9.10)

where, with χ = (ĥ, C̄, C, b)T , S̃[χ; J ; ḡ] is given by Eq. (4.18), ∆kS[χ; ḡ] by

Eq. (6.1) and the measure is defined by Eq. (4.21) and inthe base bµ ≡ 0 (and

dµ ≡ 0) by Eq. (4.22). Here, εai (x)Oia[χ; ḡ](x) denotes the sum over the tensor

structure which depends on what Hilbert space Oi[χ; ḡ](x) acts on. For ex-

ample, if it acted on ST 2, the corresponding source need to be a tensor field

εi
µν
ρσ(x) and the above term would read εi

µν
ρσ(x)Oi

ρσ
µν [χ; ḡ](x). This “modi-

fied” k-dependent Schwinger functional is nothing but the ordinary k-dependent

Schwinger functional Eq. (6.2) with the substitution (written schematically)

S̃ 7→ S̃ +
∑
i

εiOi . (9.11)

Moreover, if we define the expectation value of the i-th composite operator as

〈Oia[χ; ḡ](x)〉k := exp {−Wk[J ; ḡ]}
∫
Dµ[χ; ḡ]Oia[χ; ḡ](x)

× exp
{
−S̃[χ; J ; ḡ]−∆kS[χ; ḡ]

}
,

(9.12)
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we immediately obtain the relation

〈Oia[χ; ḡ](x)〉k = − 1√
ḡ(x)

δW ′
k[J ; ε; ḡ]

δεai (x)

∣∣∣∣
ε=0

. (9.13)

Next, let us obtain the effective action that results from the definition (9.10).

Therefore, we define the classical fields φ = (h, ξ̄, ξ, ζ)T analogously to Eq. (6.6),

hµν(x) ≡ hkµν [J ; ḡ](x) :=
1√
ḡ(x)

δW ′
k[J ; ε; ḡ]

δtµν(x)
et cetera. (9.14)

After solving these relations for the sources J , i.e., tµν ≡ tµνk [φ; ε; ḡ] etc., the

Legendre transform of Eq. (9.10) reads

Γ̃′k[φ; ε; ḡ] =

∫
ddx
√
ḡ(x)

[
tk
µν [φ; ε; ḡ](x)hµν(x) + σk

µ[φ; ε; ḡ](x)ξ̄µ(x)

+ σ̄kµ[φ; ε; ḡ](x)ξµ(x) + dk
µ[φ; ε; ḡ](x)ζµ(x)

]
−W ′

k[Jk[φ; ε; ḡ]; ε; ḡ] .

(9.15)

Analogously to Eq. (6.8), we define the effective average action as this Legendre

transform with the cutoff functional substracted:

Γ′k[φ; ε; ḡ] := Γ̃′k[φ; ε; ḡ]−∆kS[φ; ḡ] . (9.16)

Especially note that Γ′k[φ; 0; ḡ] − Γk[φ; ḡ], where the EAA Γk[φ; ḡ] is given by

Eq. (6.8). Furthermore, for the expectation value of the i-th composite operator

it directly follows that

〈Oia[χ; ḡ](x)〉k =
1√
ḡ(x)

δΓ′k[φ; ε; ḡ]

δεai (x)

∣∣∣∣
ε=0

=: [Oia]k [φ; ḡ](x) .

(9.17)

A crucial point is that by following the derivation of the FRGE (6.13) for the

conventional EAA Γk[φ; ḡ] in appendix F.11 yet again with Γ′k[φ; ε; ḡ], it is evident
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that it fulfills the very same FRGE, i.e., with the renormalization group time

t = ln k we have

∂tΓ
′
k[φ; ε; ḡ] =

1

2
TrST 2

[
(∂tRk11[ḡ])

([
Γ′

(2)
k [φ; ε; ḡ] + Rk[ḡ]

]−1
)11

]

− TrV

[
(∂tRk23[ḡ])

([
Γ′

(2)
k [φ; ε; ḡ] + Rk[ḡ]

]−1
)32

]

− 1

2
TrV

[
(∂tRk44[ḡ])

([
Γ′

(2)
k [φ; ε; ḡ] + Rk[ḡ]

]−1
)44

]
.

(9.18)

Here, Γ′
(2)
k [φ; ε; ḡ] is defined via Eq. (6.47) and Rk[ḡ] by Eq. (6.15).

By taking a functional derivative of Eq. (9.18) with respect to εai and then

setting ε = 0, we obtain the following composite-operator FRGE for the renor-

malized operator [Oia]k [φ; ḡ](x):

∂t [Oia]k [φ; ḡ](x) = − 1

2
TrST 2

[(
∂tRk11[ḡ]

)( [
Γ

(2)
k [φ; ḡ] + Rk[ḡ]

]−1

× [Oia]
(2)
k [φ; ḡ](x)

[
Γ

(2)
k [φ; ḡ] + Rk[ḡ]

]−1
)11
]

+ TrV

[(
∂tRk23[ḡ]

)( [
Γ

(2)
k [φ; ḡ] + Rk[ḡ]

]−1

× [Oia]
(2)
k [φ; ḡ](x)

[
Γ

(2)
k [φ; ḡ] + Rk[ḡ]

]−1
)32
]

+
1

2
TrV

[(
∂tRk44[ḡ]

)( [
Γ

(2)
k [φ; ḡ] + Rk[ḡ]

]−1

× [Oia]
(2)
k [φ; ḡ](x)

[
Γ

(2)
k [φ; ḡ] + Rk[ḡ]

]−1
)44
] .

(9.19)

Here, we have used the variational rule δA−1 = −A−1(δA)A−1 and Γ′k[φ; 0; ḡ] =

Γk[φ; ḡ]. Further, the operator [Oia]
(2)
k [φ; ḡ](x) in field space is defined via

Eq. (6.47). The composite-operator FRGE (9.19) possesses a double-layor struc-

ture: to solve it requires an approximation of the EAA Γk[φ; ḡ], on the one hand,
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and an approximation for the renormalized composite operator [Oia]k [φ; ḡ](x),

on the other hand. Note that in the case bµ ≡ 0 ≡ ζµ, again the last trace of

Eq. (9.18), respectively Eq. (9.19), must be discarded.

Lastly, we introduce the notations

Γ′k[g, ḡ, ξ̄, ξ, ζ; ε] := Γ′k[g − ḡ, ξ̄, ξ, ζ; ε; ḡ] (9.20)

and

[Oia]k [g, ḡ, ξ̄, ξ, ζ](x) := [Oia]k [g − ḡ, ξ̄, ξ, ζ; ḡ](x) . (9.21)

9.3. Geometric operators and the anomalous-dimension matrix

When we speak of a geometric composite operator we refer to composite oper-

ators that do not depend on the ghost fields,

Oi[g, ḡ](x) ≡ Oi[g, ḡ, 0, 0, 0](x) , (9.22)

and correspondingly the renormalized operator reads [Oi]k[g, ḡ](x).

In this case, an approximation of the composite-operator FRGE (9.19) that is

not far to seek is to approximate Γk[φ; ḡ] by Eq. (6.43), i.e., to neglect the evolu-

tion of the ghost fields. Instead of directly plugging this ansatz into Eq. (9.19),

it is more practical to rethink this approximation in terms of the EAA Γ′k[φ; ε; ḡ].

This amounts to the ansatz

Γ′k[g, ḡ, ξ̄, ξ, ζ; ε] = Γk[g, ḡ] + Sgh,1[g − ḡ, ξ̄, ξ; ḡ] + Sgh,2[ζ; ḡ]

+

∫
ddx
√
ḡ(x)

n∑
i=1

εai (x) [Oia]k [g, ḡ](x) .
(9.23)

This ansatz corresponds to an expansion of Γ′k[g, ḡ, ξ̄, ξ, ζ; ε] to first order in ε

(provided that the bare composite operator is independent of the ghost fields),

Γ′k[g, ḡ, ξ̄, ξ, ζ; ε] = Γk[g, ḡ, ξ̄, ξ, ζ] +

∫
ddx
√
ḡ(x)

n∑
i=1

εai (x) [Oia]k [g, ḡ](x) + · · · ,

(9.24)
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and then further specifying Γk[g, ḡ, ξ̄, ξ, ζ] to Eq. (6.43). Moreover, we addition-

ally define

Γ′k[g, ḡ; ε] := Γk[g, ḡ, 0, 0, 0; ε]

= Γk[g, ḡ] +

∫
ddx
√
ḡ(x)

n∑
i=1

εai (x) [Oia]k [g, ḡ](x) .
(9.25)

Analogously following Section 6.4, we obtain the following FRGE for Γ′k[g, ḡ; ε]

(employing the gauge-fixing condition (4.31)):

∂tΓ
′
k[g, ḡ; ε] =

1

2
TrST 2

[(
∂tR

grav
k [ḡ]

)((
Γ′

(2)
k

)
11

[g, ḡ; ε] + Rgrav
k [ḡ]

)−1
]

− TrV

[(
∂tR

gh,1
k [ḡ]

)(
−
√

2M [g, ḡ] + Rgh,1
k [ḡ]

)−1
]

− 1

2
TrV

[(
∂tR

gh,2
k [ḡ]

)( 1

α
Y [ḡ] + Rgh,2

k [ḡ]

)−1
]
.

(9.26)

Again, by taking a functional derivative with respect to εai (x) and setting ε = 0,

we obtain the following approximation of the composite-operator FRGE [54, 55]:

∂t [Oia]k [g, ḡ](x) = −1

2
TrST 2

[(
∂tR

grav
k [ḡ]

)((
Γ

(2)
k

)
11

[g, ḡ] + Rgrav
k [ḡ]

)−1

× [Oia]
(2)
k [g, ḡ](x)

((
Γ

(2)
k

)
11

[g, ḡ] + Rgrav
k [ḡ]

)−1
]
,

(9.27)

i.e., in the approximation of neglecting the evolution of the ghost fields no relics

of the ghost fields remain (in terms of traces over V ) in the geometric-composite-

operator FRGE. We could have obtained the same equation if we had plugged

the ansatz (6.43) into Eq. (9.19) and set the ghost fields to zero (on both sides

of the equation).

Hence, so far we have approximated the EAA Γk[φ; ḡ] that contributes to

the composite-operator FRGE. However, choosing an appropriate ansatz for

Γk[g, ḡ] is not yet enough to actually solve the composite operator FRGE. This

also requires a suitable approximation of the renormalized composite opera-

tor [Oia]k [g, ḡ](x). At this point, note that the double-layer structure of the
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composite-operator FRGE means that it entails two copies of theory space:

Γk[g, ḡ] and [Oia]k [g, ḡ](x) each are defined on an distinct copy of it. Thus,

with any two ansätze for Γk[g, ḡ] and [Oia]k [g, ḡ](x) also come along two dis-

tinct truncations of theory space. Let us refer to these as the first and second

truncation, respectively.

For instance, assume that the bare operators O1[g, ḡ](x), . . . ,On[g, ḡ](x) pos-

sesses the same tensor structure and are linearly independent, such that they

form a basis of the second truncation. Then the i-th renormalized composite

operator reads, expanded in this basis,

[Oia]k [g, ḡ](x) =
n∑
j=1

Zij(k)Ok[g, ḡ](x) . (9.28)

By plugging this ansatz into Eq. (9.29) and then multiplying the equation from

the left with Z−1(k), we obtain the following composite-operator FRGE [54, 55]:

n∑
j=1

γ̄ij(k)Oj[g, ḡ](x) = −1

2
TrST 2

[(
∂tR

grav
k [ḡ]

)((
Γ

(2)
k

)
11

[g, ḡ] + Rgrav
k [ḡ]

)−1

× O(2)
i [g, ḡ](x)

((
Γ

(2)
k

)
11

[g, ḡ] + Rgrav
k [ḡ]

)−1
]
,

(9.29)

where

γ̄ij(k) :=
n∑
l=1

(
Z−1(k)

)
il
∂tZlj(k) (9.30)

is the (dimensionful) anomalous-dimension matrix. (We will justify the name

in the upcoming section.) Especially note that on the RHS of Eq. (9.29) only

the bare composite operator remains. Thus, given some first truncation with an

ansatz for Γk[g, ḡ] and a basis of composite operators O1[g, ḡ](x), . . . ,On[g, ḡ](x),

the composite-operator FRGE (9.29) fully encodes the renormalization behavior

of these composite operators into the anomalous-dimension matrix γ̄(k). Also,
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if {Pi[g, ḡ]} is a first truncation and we have at hand the ansatz Γk[g, ḡ] =∑
i ūi(k)Pi[g, ḡ], the anomalous-dimension matrix will generally be a function1

γ̄(k) ≡ γ̄({ūi(k)}; k) . (9.31)

On the other hand, regarding the role of the second truncation, we call the

ansatz (9.28) for the renormalized composite operator a mixing ansatz if n ≥
2 and a non-mixing ansatz if n = 1. Later, we will restrict our explorative

applications to non-mixing ansätze, i.e., such of the form

[O]k[g, ḡ](x) = Z(k)O[g, ḡ](x) (9.32)

for a single bare operator O[g, ḡ](x). Its k-dependence is governed by Eq. (9.29)

with n = 1, i.e.,

γ̄(k)O[g, ḡ](x) = −1

2
TrST 2

[(
∂tR

grav
k [ḡ]

)((
Γ

(2)
k

)
11

[g, ḡ] + Rgrav
k [ḡ]

)−1

× O(2)[g, ḡ](x)

((
Γ

(2)
k

)
11

[g, ḡ] + Rgrav
k [ḡ]

)−1
]
.

(9.33)

Lastly, we point out that following Section 6.5, the “one-loop approxima-

tion” of the composite-operator FRGE (9.29) is given by replacing ∂tR
grav
k [ḡ] by

∂tR
grav
k,k′ [ḡ]

∣∣
k′=k

, e.g. for a non-mixing ansatz

γ̄1L(k)O[g, ḡ](x) = −1

2
TrST 2

[(
∂tR

grav
k,k′ [ḡ]

)((
Γ

(2)
k

)
11

[g, ḡ] + Rgrav
k [ḡ]

)−1

× O(2)[g, ḡ](x)

((
Γ

(2)
k

)
11

[g, ḡ] + Rgrav
k [ḡ]

)−1
]
k=k′

.

(9.34)

1In the case we also have Zij(k) ≡ Zij({ūi(k)}; k) and the partial derivative ∂t in the definition
of γ̄(k) must be traded for the total derivative d/dt when working with this notation.
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9.4. Interpretation of the anomalous-dimension matrix γ̄(k)

We had already defined the anomalous-dimension matrix in Section 6.3: Given

a set of RG equations

∂tūi(k) = β̄i(ū(k); k) (9.35)

for the dimensionful couplings {ūi(k)}, the anomalous-dimension matrix was

defined to be

B̄ij(u
∗) :=

∂

∂uj
β̄i(u; 1)

∣∣∣∣
u=u∗

, (9.36)

where u∗ is a fixed point of the corresponding dimensionless RG equations. We

argued that the negative eigenvalues of B̄(u∗) are the anomalous scaling dimen-

sions that state the quantum corrections to the classical scaling dimensions of

the dimensionless couplings {ui(k)}.

In this section, we will firstly show that we may identify γ̄ij(ū(k); k) with

∂iβ̄j(ū(k); k) if we interpret O1[g, ḡ](x), . . . ,On[g, ḡ](x) as the basis of a first

truncation. This argument has been developed in [55]. In a second step, we

then will show that a dimensionless version of γ̄ij(ū(k); k) evaluated at the fixed

point u∗ moreover encodes the quantum corrections to the geometrical scaling

of the operators, which was shown in [54].

(A) We had motivated the study of composite operators in the FRG formalism

particularly due to the need to renormalize operators that one usually cannot

include as a basis element into a (first) truncation. However, what happened if

we did so? Therefore, let O[g, ḡ], . . .On[g, ḡ] be the basis of a first truncation.

(W.l.o.g. for this purpose, the operators shall be x-independent.) On this

truncation of theory space, let us solve the FRGE (6.53) with the ansatz

Γk[g, ḡ] =
n∑
i=1

ūi(k)Oi[g, ḡ] . (9.37)
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Regarding the canonical mass dimensions, let us set [Oi[g, ḡ]] = −di such that

[ūi(k)] = di as in Section 6.3 (the action, of course, is dimensionless). The RHS

of the FRGE (6.53) then defines the dimensionless beta functions,

n∑
j=1

β̄j(ū(k); k)Oj[g, ḡ]

=
1

2
TrST 2

[(
∂tR

grav
k [ḡ]

)( n∑
j=1

ūj(k)O(2)
j [g, ḡ] + Rgrav

k [ḡ]

)−1 ]

− TrV

[(
∂tR

gh,1
k [ḡ]

)(
−
√

2M [g, ḡ] + Rgh,1
k [ḡ]

)−1
]

− 1

2
TrV

[(
∂tR

gh,2
k [ḡ]

)( 1

α
Y [ḡ] + Rgh,2

k [ḡ]

)−1
]
.

(9.38)

Taking the derivative with respect to ūi(k) yields

n∑
j=1

∂

∂ūi(k)
β̄j(ū(k); k)Oj[g, ḡ]

=− 1

2
TrST 2

[(
∂tR

grav
k [ḡ]

)( n∑
j=1

ūj(k)O(2)
j [g, ḡ] + Rgrav

k [ḡ]

)−1

× O(2)
i [g, ḡ]

(
n∑
j=1

ūj(k)O(2)
j [g, ḡ] + Rgrav

k [ḡ]

)−1 ]
.

(9.39)

This is precisely the RHS of Eq. (9.29) together with the ansatz (9.37) (plus

neglecting the x-dependence), i.e., provided that the first and second truncation

of theory space are spanned by O1[g, ḡ], . . . ,On[g, ḡ], we can identify:

γ̄ij(ū(k); k) =
∂

∂ūi(k)
β̄j(ū(k); k) . (9.40)

Next, let us analyze what this equation implies for the anomalous-dimension

matrix B̄(u∗). Therefore, note that the ansatz (9.29) implies for the canonical

mass dimension of Zij(k), and therewith of γ̄ij(k), that

[Zij(k)] = [γ̄ij(k)] ≡ [γ̄ij(ū(k); k)] = −di + dj . (9.41)
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Hence, if we define the matrix Kij(k) := kdiδij we obtain the dimensionless

matrix

γij(u(k)) :=
n∑
l,m

Kil(k)γ̄lm(ū(k); k)K−1
mj(k)

= kdi γ̄ij(ū(k); k)k−dj .

(9.42)

Also note that for n = 1 we have in principal γ(u(k)) ≡ γ̄(ū(k); k). Moreover,

together with Eq. (9.40) it follows that

γij(k) =
n∑

l,m=1

Kil(k)
∂

∂ūl(k)
β̄m(ū(k); k)K−1

mj(k)

= kdi
∂

∂ūi(k)
β̄j(ū(k); k)k−dj

=
∂

∂ui(k)
β̄j(u(k); 1) .

(9.43)

This implies

γij(u
∗) = ∂iβ̄j(u

∗; 1) = B̄ji(u
∗) , i.e., γ(u∗) = B̄(u∗)T . (9.44)

On the basis of the fact that γ(u∗) and B̄(u∗) are related by a simple transposi-

tion, it is legitimate to call both the anomalous-dimension matrix because both

matrices surely have the same (negative) eigenvalues and thus encode identical

quantum corrections to the scaling of the couplings {ui(k)}.

(B) The other scaling argument, that we are going to develop now, relies on

the study of the dependence of the composite-operator FRGE (9.29) on initial

conditions.2 Therefore, we must take into account that the solution of Eq. (9.29)

is obtained in two steps. Firstly, we must choose the first truncation of theory

space, let it be spanned by {Pi[g, ḡ]}, and then solve the RG equations ∂tui(k) =

βi(u(k)) that result from inserting the ansatz Γk[g, ḡ] =
∑

i ūi(k)Pi[g, ḡ] into the

FRGE (6.53). This solution requires the initial conditions u(µ) = u(R) (respec-

tively ū(µ) = ū(R) for the dimensionful couplings) and we had already shown in

Section 6.3 that the parametric solution Γk[g, ḡ](µ, u(R)) fulfills[
µ∂µ +

∑
i

βi(u
(R))

∂

∂u(R)

]
Γk[g, ḡ](µ, u(R)) = 0 . (9.45)

2Here, we call “y(x0) = y0” an initial condition even though not necessarily x0 = 0.
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Secondly, having obtained this parametric solution we must study, on its basis,

the dependence of the solution of the form (9.29) to the composite-operator

FRGE (9.28) on the “second-step” initial condition3

Zij(µ, ū(µ)) ≡ Zij(µ, ū
(R)) = Z

(R)
ij . (9.46)

Thus, the parametric solutions to the FRGE (9.29) are essentially given by func-

tions Zij(k;µ, ū(R), Z(R)) with Z(R) = {Z(R)
ij }. In Section 6.3 we had argued

that the initial conditions u(µ) = u(R) and u(µ′) = u(R)′, that are infinitesi-

mally related by µ′ = µ+ ε and u(R)′ = u(R) + ε∂µu(µ), yield the same solution,

i.e., trajectory u(k) in theory space. The very same argument also applies to

solutions Zij(k) of the composite-operator FRGE provided that we transform

the third initial condition as

Z
(R)
ij

′
= Zij(µ

′, ū(µ′))

= Zij
(
µ+ ε, ū(R) + ε∂µū(µ)

)
= Z

(R)
ij + ε

d

dµ
Zij(µ, ū(µ)) .

(9.47)

Consequently, we have

Zij
(
k;µ, ū(R), Z(R)

)
=Zij

(
k;µ′, ū(R)′, Z(R)′

)
=Zij

(
k;µ, ū(R), Z(R)

)
+ ε ∂µZij

(
k;µ, ū(R), Z(R)

)
+ ε

∑
l

(∂µūl(µ))
∂

∂ū
(R)
l

Zij
(
k;µ, ū(R), Z(R)

)
+ ε

∑
m,n

(
d

dµ
Zmn(µ, ū(µ))

)
∂

∂Z
(R)
mn

Zij
(
k;µ, ū(R), Z(R)

)
.

(9.48)

3The initial condition depends on ū because the Z
(R)
ij are dimensionful. This is equivalent to

studying the dependence of Γ′k[g, ḡ; ε] given by Eq. (9.25) on this initial condition [54].
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Therefrom follows directly the following linear partial differential equation de-

scribing the dependence of solution on its initial conditions:{
µ∂µ +

∑
l

β̄l
(
ū(R);µ

) ∂

∂ū
(R)
l

+
∑
m,n

(
µ

d

dµ
Zmn(ū(µ);µ)

)
∂

∂Z
(R)
mn

}
Zij
(
k;µ, ū(R), Z(R)

)
= 0 ,

(9.49)

respectively,{
µ∂µ +

∑
l

β̄l
(
ū(R);µ

) ∂

∂ū
(R)
l

+
∑
m,n

(
µ

d

dµ
Zmn(ū(µ);µ)

)
∂

∂Z
(R)
mn

}
[Oi]k [g, ḡ](x)

(
µ, ū(R), Z(R)

)
= 0 .

(9.50)

Furthermore, let us assume that the Z(R)-dependence of the parametric solution

decouples according to

Zij
(
k;µ, ū(R), Z(R)

)
=
∑
l

Z
(R)
il Z̃lj

(
k;µ, ū(R)

)
. (9.51)

Therewith we have that

∂

∂Z
(R)
mn

[Oi]k [g, ḡ](x)
(
µ, ū(R), Z(R)

)
=

∂

∂Z
(R)
mn

∑
l,j

Z
(R)
il Z̃lj

(
k;µ, ū(R)

)
Oj[g, ḡ](x)

= δmi
∑
j

Z̃nj
(
k;µ, ū(R)

)
Oj[g, ḡ](x)

= δmi
∑
l

(
Z(R)−1

)
nl

[Ol]k [g, ḡ](x)
(
k;µ, ū(R)

)
,

(9.52)

and we can rewrite Eq. (9.50) as, using that Z(R) = Z(ū(µ);µ),{
µ∂µδil +

∑
m

β̄m
(
ū(R);µ

) ∂

∂ū
(R)
m

δil

+
∑
m

(
µ

d

dµ
Zim(ū(µ);µ)

)
Z−1
ml (ū(µ);µ)

}
[Ol]k [g, ḡ](x)

(
µ, ū(R), Z(R)

)
= 0 .

(9.53)
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Here, we can employ the definition of the anomalous-dimension matrix

γ̄(k) := Z−1(k)∂tZ(k) ⇔ γ̄(ū(k); k) = Z−1(ū(k); k)
d

dt
Z(ū(k); k) , (9.54)

which yields the equation{
µ∂µI +

∑
m

β̄m(ū(R);µ)
∂

∂ū
(R)
m

I

+ Z(R) γ̄(u(R);µ)Z(R)−1

}
[O]k[g, ḡ](x)

(
µ, ū(R), Z(R)

)
= 0 .

(9.55)

(Written in matrix notation with I the identity matrix.) If we consider this

equation in the fixed-point regime for k, µ → ∞, note that the dimensionful

beta functions behave as

β̄m(ū(R);µ)

∣∣∣∣ µ→∞
ū(R)=ū∗

= dmū
∗
m , (9.56)

where ū∗m = kdmu∗m denotes the dimensionful “fixed point”.

In a next step, let us assume that the composite operators are independent

of the spacetime point x, but rather depend on a characteristic (yet arbitrary)

length scale r. For example, the composite operator could describe the vol-

ume of an n-sphere in which case r would be its radius. On this basis, we

consult another “scaling” equation, next to Eq. (9.55), purely derived from di-

mensional analysis. Therefore, for the canonical mass dimensions let us apply

the conventions in which the metric is dimensionless (cf. appendix A). Then,

by expressing the renormalized composite operator [Oi]k[g, ḡ](r)
(
µ, ū(R), Z(R)

)
in terms of its dimensionless analog and thereby taking into account the canon-

ical mass dimensions [Oi] = −di, [Zij] = −di + dj and [ūi] = di, one obtains the

identity{
µ∂µ − r∂r +

∑
m

dmū
(R)
m

∂

∂ū
(R)
m

+
∑
m,n

(−dm + dn)Z(R)
mn

∂

∂Z
(R)
mn

+ di

}
[Oi]k[g, ḡ](r)

(
µ, ū(R), Z(R)

)
= 0 .

(9.57)
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With the same trick as above, we can trade the partial derivative with respect

to Z
(R)
mn for an inverse matrix

(
Z(R)

)−1
, which yields the equation (in matrix

notation){
µ∂µI − r∂rI +

∑
m

dmū
(R)
m

∂

∂ū(R)
I

+ Z(R)D
(
Z(R)

)−1

}
[O]k[g, ḡ](r)

(
µ, ū(R), Z(R)

)
= 0 ,

(9.58)

where the matrix D is given by Dij = diδij.

Bringing together equations (9.55) and (9.58) in the fixed-point regime for

k, µ → ∞ and ū(R) = ū∗ directly gives the scaling relation (again in matrix

notation){
r∂rI + Z(R)

[
−D + γ(ū(R);µ)

](
Z(R)

)−1

}
[O]k[g, ḡ](r)

(
µ, ū(R), Z(R)

) ∣∣∣∣ k,µ→∞
ū(R)=ū∗

= 0 .

(9.59)

This equation tells us that the eigenvalues of the matrix

−D + γ(ū(R);µ)

∣∣∣∣ k,µ→∞
ū(R)=ū∗

(9.60)

are the full scaling dimensions of the operators

A−1[O]k[g, ḡ](r)
(
µ, ū(R), Z(R)

) ∣∣∣∣ k,µ→∞
ū(R)=ū∗

(9.61)

in the UV, whereby the matrix A diagonalizes said matrix by an similarity trans-

formation [54].

Particularly special is the case n = 1 of a single composite operator. With

di ≡ d and γ̄ij(ū(k); k) ≡ γ(u(k)), the operator [O]k[g, ḡ](r) (which has canonical

mass dimension −d) scales in the UV as

[O]k→∞[g, ḡ](r) ∼ rd−γ(u∗) . (9.62)
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CHAPTER 10

Summary of Part 3

As explained in Part 2, in a theory of quantum gravity it is rather natural to

consider the behavior of geometric quantities at the “quantum level”, i.e., in

the ultraviolet regime. Part 3 is mainly devoted to study this behavior of the

volume Vn of an n-dimensional submanifold embedded into the d-dimensional

spacetime for continuum-based approaches towards quantum gravity. In Chap-

ter 9, we had shown that we can do so by renormalizing the geometric operator

as a composite operator, which leads to a specific scaling relation in the ultra-

violet. Before we summarize the details of the calculations conducted in Part 3,

let us firstly demonstrate how such a scaling relation should be interpreted.

(A) Illustration of the concept of a fractional scaling dimension. We

say that a function f(r) that depends on some length scale r has scaling dimen-

sion a if it solves the differential equation(
r
∂

∂r
+ a

)
f(r) = 0 .

Surely, its solution reads f(r) ∼ r−a which self-explains the term “scaling di-

mension”. For example, the classical n-dimensional volume Vn has the scaling

dimension −n as Vn ∼ rn. In Part 3, we will see that this scaling relation does

not hold in the ultraviolet regime and the main results will be the precise values

of the corrected scaling dimensions for certain approximate settings.

The scaling dimension (or equivalently, its negative, up to definition) can be

synonymously referred to as the fractal dimension. The concept of the fractal di-

mension, or more general of a fractal, has been worked out in full mathematical

rigour [128]. Generally, there exist various ways of defining a fractal dimension,

e.g., the Hausdorff dimension, the spectral dimension, the box counting dimen-

sion, et cetera. These are not necessarily identical, however they are for certain

“classical fractals”. Often, the scaling dimension is employed to approximate

the Hausdorff dimension, which do not necessarily coincide, as well. Here, in

145
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Part 3, we have at hand a specific scaling relation that we wish to interpret

which is why we do not need this level of mathematical rigour and will stick

with identifying the fractal dimension with the scaling dimension.

To illustrate the concept of a fractal dimension, let us consider the general

scaling relation V = r−a with a being a negative real number. Then V can be

thought of as the length of a curve, the area of the surface or generally some

volume. If we rescale the length r by a factor 0 < ε < 1 the value of V will

become smaller by a factor 1/N , i.e., V/N = (εr)−a. We conclude that

N = εa ⇔ a =
lnN

ln ε
.

As an intuitive example, let us consider the area of a square whose scaling di-

mension trivially is a = −2 as V = r2. If we rescale the side of the square by

a factor ε = 1/3, then consequently its area will become smaller by a factor

1/N = 1/9. In other words, we need the number of N = εa = (1/3)−2 = 9

rescaled squares in order to cover the area of the original square. If we iterate

the process of rescaling by a factor 1/3 once more we will arive at rescaling the

sides of the original square by a factor ε = 1/9. Thus, N = εa = (1/9)−2 = 81

squares are required to cover the original square. Furthermore, this trivial ex-

ample also illustrates the concept of self-similarity that many fractals exhibit.

It is instructive to use this view on the scaling dimension in order to con-

struct first simple fractals with a non-integer scaling dimension, i.e., fractional

scaling dimension. Therefore, let us consider the Cantor set with a scaling

dimension of −0.6309 and the von Koch curve with a scaling dimension of

−1.2619. The former is very simple to construct step by step. One starts

with a line and then removes its middle third, such that one is left with two

lines, N = 2, of length ε = 1/3. Then one reiterates this process and re-

moves the middle third of these two lines, such that one is left with four lines,

N = 4, of length ε = 1/9. The full Cantor set then is obtained by reiterating

this process over and over. Thereby, its scaling dimension is constant, namely

a = lnN/ ln ε ≈ ln 2/ ln(1/3) ≈ ln 4/ ln(1/9) ≈ −0.6309. Hence, loosely speak-

ing, the Cantor set is a line that becomes “emptier and emptier” as with each

iteration step more and more parts are cut from it.

In a similar way we can construct a line that “grows” into two-dimensional



10. SUMMARY OF PART 3 147

Figure 10.1. Rescaling the sides of a square by a factor 0 < ε <
1 leads to N = 1/ε2 squares.

Figure 10.2. Construction of the Cantor set which has scaling
dimension −0.6309.

space. Again, one starts with a line and removes its middle third. This miss-

ing middle third is then augmented by the two sides of an isosceles triangle

that would close if the missing middle side was still there. Thus, one has

arrived at N = 4 lines with length ε = 1/3 of the original line. In turn,
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if we repeat this process, we arrive at N = 16 lines with length ε = 1/9

of the original line. If we repeated this process over and over we would ar-

rive at the von Koch curve. This curve has a constant scaling dimension of

a = lnN/ ln ε ≈ ln 4/ ln(1/3) ≈ ln 16/ ln(1/9) ≈ −1.2619, i.e., the curve

“grows” into two-dimensional space with each step. We emphasize that it is

even possible to construct curves with a scaling dimension of a = −2, i.e., curves

that fully cover two-dimensional space. (An example is the Peano curve.)

Figure 10.3. Construction of the von Koch curve which has
scaling dimension −1.2619.

The fractal dimension can also be illustrated by random fractals appearing

in Nature. For instance, in a famous paper, B. Mandelbrot discussed the length

of the British coast [129], whereby he assumed that the length of a coastline

is approximated by means of N measuring rods that cover the coastline. If we

then rescale the measuring rods by a factor 0 < ε < 1, surely the number N

of rods required to cover the coastline will increase, until ultimately, for the

limit ε→ 0, the length of the coastline becomes infinite. This counterintuitive

problem is “solved” by the concept of the fractal dimension: The fractal dimen-

sion of the British coast can be estimated by −1.25 which tells us how much

the measured length of the coastline increases as we decrease the lengths of the

measuring rods.

To give further examples, the surface of Broccoli has an estimated fractal

dimension of −2.7 [130] or the surface of the alveoli of the human lung have an
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estimated fractal dimension of −2.97 [131] which means that the surface of the

lung essentially is three-dimensional.

(B) The anomalous scaling of the volume operator in the ultravio-

let. In Chapter 9 we outlined how to renormalize composite operators within

the framework of the functional renormalization group for quantum gravity. In

practise, to calculate the renormalization of a given set of bare composite opera-

tors, two approximations are necessary, which we referred to as first and second

truncations. The first truncation is the truncation of theory space, the space of

invariant functionals that define the theory, with a corresponding ansatz for the

effective average action Γk. The second truncation is an ansatz for a truncated

basis of bare composite operators. Generally, with such two given approxi-

mations, the renormalization effects of each of these composite operators will

intertwine with those of the others, i.e., “mix”.

The study of composite operators in quantum gravity via this framework con-

stitutes a brand new line of research. To the initiation of this line of research, the

author contributed with the publications [28–30], on which Part 3 is based upon.

Of course, when one begins to undertake the study of a new line of research, it is

suggestive to study its most basic settings. Here, in Part 3, we therefore restrict

the approximations given by the second truncation to non-mixing ansätze, i.e.,

we consider only a single composite operator (in other words, a one-dimensional

basis of composite operators). For this composite operator, we always choose

geometric operators, i.e., those which are independent of the ghost fields and

do only depend on the background metric and the metric fluctuation. Mainly,

we consider the volume operator which is given in form of the volume of an

n-dimensional submanifold that is embedded into the d-dimensional spacetime.

Also regarding the first truncation, we consider rather simple approximations:

In Chapter 11 we consider the Einstein-Hilbert truncation, while in Chapter 12

we consider higher-derivative gravity.

Subsequently, let us consider the renormalization of the volume operator Vn
within this framework. In Chapter 9 we demonstrated that its renormalization

is given by its anomalous dimension γn(u(k)), where u(k) is the set of running

couplings that parametrize the first truncation, e.g., in case of the Einstein-

Hilbert truncation u(k) contains the running of Newton’s constant and of the
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cosmological constant. This anomalous dimension can be calculated by field-

theorical methods but can be interpreted in geometric terms. Namely, let r be

a length scale on which the volume Vn depends (e.g., radius of the n-sphere).

Then in the ultraviolet, for k →∞, one has the scaling relation (9.62),

Vn(r) ∼ rn−γn(u∗) .

Here, u∗ is the non-Gaussian gravitational fixed point obtained with the ansatz

of the first truncation. Moreover, n is the negative of the canonical mass dimen-

sion of the volume operator, [Vn] = −n. Thus, the volume classically scales as

Vn(r) ∼ rn, which is why it is n-dimensional. However, the above scaling rela-

tion tells us that what was classically an n-dimensional subvolume of spacetime

will be distorted at ultraviolet scales, and effectively be n− γn(u∗) dimensional

(i.e., has scaling dimension −n + γn(u∗) in our conventions). In other words,

the Asymptotic Safety scenario for quantum gravity predicts that classical vol-

umes become genuinely fractal at the quantum level, whereby we observe the

phenomenon of either a dimensional increase or a dimensional reduction in the

ultraviolet, depending on the value of the anomalous dimension: If it is positive

we observe a dimensional reduction, while if it is negative we observe a dimen-

sional increase. In terms of the above illustrative examples, this phenomenon

can be visualized as follows: Say, we consider a straight line, which classically

is one-dimensional. If its anomalous dimension is positive in the ultraviolet,

its scaling dimension will be reduced and thus have a magnitude of below one,

similar to the Cantor set. If its anomalous dimension is negative, the magnitude

of its scaling dimension will increase and thus be above one, similar to the von

Koch curve.

Furthermore, it is rather natural to express the scaling of a quantum volume

in terms of a quantum length, which, following the above scaling relation, is

given by Vn ∼ V1
(n−γn(u∗))/(1−γ1(u∗)), where V1 is the length operator.

In Chapter 11 we explicitly calculate the anomalous dimension γn within the

Einstein-Hilbert truncation. For an n-dimensional volume emdedded into a d-

dimensional spacetime, it is given by Eq. (11.29) which is one of the main results

of this chapter. Importantly, this formula does not depend on the specific shape

of the volume, but rather on its classical dimension n. Additionally, we obtain
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a formula for the corresponding one-loop approximation of the anomalous di-

mension which is given by Eq. (11.31). In a next step, we numerically evaluate

these formulae in d = 4 and d = 3 spacetime dimensions at the ultraviolet

fixed-point which leads to the values of the anomalous dimension presented in

Tables 1 and 2 of this chapter. Strikingly, all obtained fixed-point values for γn
are positive such that in four as well as three spacetime dimensions we observe

an dimensional reduction of volumes in the ultraviolet. The values of the full

anomalous dimension are somewhat larger than their one-loop approximations.

More precisely, for d = 4 one finds the fixed-point values of the full anomalous

dimensions γn=4 ≈ 4 and γn ≈ n− 1 for n = 1, 2, 3. The first value means that

the effective scaling dimension of spacetime is approximately zero which sug-

gests that spacetime might be emptier at small distance scales than one would

naively expect. The other values imply that the length of a curve, the area of a

surface and the three-volume all scale as approximately one-dimensional objects

at small distance scales.

Lastly, we also calculate the one-loop anomalous dimensions of Vn in the

presence of matter fields. Here, the sign of the anomalous dimension depends

on the specific matter content.

However, it must be emphasized that these results are still of an explorative

character, given the rough approximations employed to evaluate the composite-

operator FRGE. Generally, one would expect severe corrections to these results

when repeating the analysis for more elaborate approximations for the first and

second truncation.

Chapter 11 closes with the discussion of the renormalization of a further

geometric operator, the geodesic length. Thereby, the discussion of boundary

conditions plays a crucial role because of the dependence on the metric. With

the approximations assumed here, it turns out that the anomalous dimension

of the geodesic length is the same as that of the length of a curve. For more

refined approximations, especially for mixing ansätze, we however expect these

two anomalous dimensions to differ from each other.

Additionally, we outline an argument to show that the geodesic ball in this

framework does not renormalize which implies that the Hausdorff dimension of

spacetime is d.
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In Chapter 12 we repeat the first analysis of the previous chapter for the

framework of higher-derivative gravity at one-loop in four spacetime dimen-

sions. I.e., we calculate the one-loop approximation of the anomalous dimen-

sion γn of the volume operator Vn by means of the one-loop approximation of

the composite-operator FRGE, whereby we specify the first truncation to that

of higher-derivative gravity, respectively Weyl-squared gravity. The resulting

formulae for γn are given by Eq. (12.23) and Eq. (12.26), and constitute the

main results of this chapter. In the physical gauge, the anomalous dimension

vanishes because both, higher-derivative as well as Weyl-squared gravity, are

asymptotically free in the coupling parametrizing the Weyl tensor. However,

slightly away from the fixed-point regime where scale invariance still is realized,

the anomalous dimension does not vanish and its sign depends on the value of

the couplings. Thus we observe an effective dimensional increase as well as a

reduction of volumes in the ultraviolet which seems to be a distinct feature of

higher derivative gravity. Lastly, we also discuss the fixed-point values of the

anomalous dimension in d = 4 − ε spacetime dimensions. These are given in

Table 12.3 and for ε > 0 we mostly observe the effect of a dimensional increase.



CHAPTER 11

Geometric operators in the Asymptotic Safety scenario

for quantum gravity

Executive summary. We employ the composite-operator FRGE in order to

calculate the anomalous dimension γn of an n-dimensional volume that is embed-

ded into the d-dimensional quantized spacetime. Thereby, the first truncation

is that of the Einstein-Hilbert truncation and the second truncation amounts to

the non-mixing ansatz of the sole volume operator. The resulting formula for

γn is evaluated numerically and its values at the gravitational fixed point are

calculated. It is shown that these quantum corrections to the scaling dimen-

sion of the volume operator result in an effective dimensional reduction in the

ultraviolet regime. Moreover, we show that within these approximations the

anomalous dimension of the geodesic length is the same as that of the length of

an ordinary curve. Additionally, we show that the geodesic ball in this setting

does not renormalize, which is why the Hausdorff dimension of spacetime is

given by its classical dimension.

What is new? All results of this chapter represent novel research results.

Based upon: References [28, 29].

11.1. The composite-operator FRGE on the basis of the

Einstein-Hilbert truncation

In this chapter, we consider geometric composite operators of the form O[g, g],

i.e., spacetime-point independent operators at vanishing quantum fluctuation

such that we the background metric reads gµν ≡ ḡµν . To study the renor-

malization behavior of the bare operator O[g, g], we restrict this analysis to a

153
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one-dimensional second truncation. This means that the renormalized operator

is given by the non-mixing ansatz

[O]k[g, g] = Z(k)O[g, g] . (11.1)

Following Section 9.3, the k-dependence of [O]k[g, g] is governed by the composite-

operator FRGE (9.33) at g ≡ ḡ,

γ̄(k)O[g, g] = −1

2
TrST 2

[(
∂tR

grav
k [g]

)((
Γ

(2)
k

)
11

[g, g] + Rgrav
k [g]

)−1

× O(2)[g, g]

((
Γ

(2)
k

)
11

[g, g] + Rgrav
k [g]

)−1
]
,

(11.2)

where γ̄(k) := Z(k)−1∂tZ(k) is the anomalous dimension of the renormalized

operator. To solve this composite-operator FRGE, we will furthermore spec-

ify the first truncation of theory space to the Einstein-Hilbert truncation we

had expounded in Chapter 7. In the Einstein-Hilbert truncation, we can still

distinguish between its definining two basis elements (operators)
∫

ddx
√
g and∫

ddx
√
gR when specifying the metric gµν to that of a maximally symmetric

spacetime. Hence, in this chapter the metric gµν will be that of a maximlly

symmetric spacetime. Furthermore, following Chapter 7, we employ the ansatz

(7.2) for the gravitational EAA Γk[g, ḡ]. On a maximally symmetric background,

its 11-component of the Hessian at gµν ≡ ḡµν is given by Eq. (??),[
(Γ

(2)
k )11[g, g] + Rgrav

k [g]
]−1

=
1

κ2ZNk
(1ST 2 − Ptr.[g])

[
Ak(−D2) + cIR

]−1

− 1

κ2ZNk

2

d− 2
Ptr.[g]

[
Ak(−D2) + ctraceR

]−1
.

(11.3)

Lastly, we specify the tensor structure of the gravitational cutoff operator to

Eq. (7.6), i.e., the cutoff operator reads

Rgrav
k [g] = Z grav

k [g] k2R(0)(−D2/k2) ,

with Z grav
k [g] = κ2ZNk

[
(1ST 2 − Ptr.[g])− d− 2

2
Ptr.[g]

]
.

(11.4)
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With these specifications, we composite-operator FRGE we are going to employ

becomes

γ̄(k)O[g, g]

= −1

2
TrST 2

[
κ2∂t

(
ZNk k

2R(0)(−D2/k2)
)[

(1ST 2 − Ptr.[g])− d− 2

2
Ptr.[g]

]
×

(
1

κ2ZNk
(1ST 2 − Ptr.[g])

[
Ak(−D2) + cIR

]−1

− 1

κ2ZNk

2

d− 2
Ptr.[g]

[
Ak(−D2) + ctraceR

]−1

)

×O(2)[g, g]

(
1

κ2ZNk
(1ST 2 − Ptr.[g])

[
Ak(−D2) + cIR

]−1

− 1

κ2ZNk

2

d− 2
Ptr.[g]

[
Ak(−D2) + ctraceR

]−1

)]
(11.5)

Making use of the cyclicity of the trace, we can rewrite this equation into

γ̄(k)O[g, g] = −TrST 2

[
O(2)[g, g]

(
1

κ2ZNk

(
1ST 2 − Ptr.[g]

) [
Ak(−D2) + cIR

]−1

×Nk(−D2)
[
Ak(−D2) + cIR

]−1

− 1

κ2ZNk

2

d− 2
Ptr.[g]

[
Ak(−D2) + ctraceR

]−1

×Nk(−D2)
[
Ak(−D2) + ctraceR

]−1

)]
.

(11.6)

11.2. The volume of an n-dimensional submanifold

11.2.1. Definition of the volume operator Vn[g, g]

The first operator whose anomalous dimension we are going to calculate and

analyze with help of the FRGE (11.6) is the volume of an n-dimensional subman-

ifold N that is embedded in the d-dimensional spacetime manifold M (of course,
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N ⊂ M and n ≤ d holds). Here, we can already observe that this operator is

not a true observable – neither in classical gravity nor in any approach towards

quantum gravity – because embedded submanifolds break diffeomorphism in-

variance. However, as explained in Section 9.1, the study of the renormalization

behavior of such geometric operators is natural to a gravitational theory and

may point out some of its general geometric features. Furthermore, similar

geometric operators have been defined in other approaches to quantum gravity,

e.g. loop quantum gravity or causal dynamical triangulations [119, 132]. Thus,

studying the renormalization behavior of the volume of an n-dimensional sub-

manifold paves the way to a possible comparison of the predictions of various

quantum gravity models.

Here, for calculational simplification, we want to work in local expressions

– so let us at first clarify our notation: To derive local expressions, let x =

(x1, · · · , xd) : U ⊂ M → U ′ ⊂ Rd be a chart of M and u = (u1, · · · , un) : Ũ ⊂
N → Ũ ′ ⊂ Rn be a chart of N . By pulling back the metric g on M with the

inclusion map ı : N ↪→ M , a metric ı∗g on N is induced. For q ∈ U ∩ Ũ this

induced metric is locally given by

gab(q) := (ı∗g)q(∂/∂u
a|q, ∂/∂ub|q)

= gq
(
dıq(∂/∂u

a|q), dıq(∂/∂ub|q)
)

= gµν(ı(q)) dxµ|q(dıq(∂/∂ua|q)) dxν |q
(
dıq(∂/∂u

b|q)
)

= gµν(q)
∂

∂ua|q
(xµ ◦ ı) ∂

∂ub|q
(xν ◦ ı) .

(11.7)

As N ⊂ M is an embedded submanifold the inclusion map ı : N ↪→ M is an

immersion, i.e., dıq : TqN → TqM is injective for all q ∈ M . This means that

we can identify the tangent space TqN with the subset dıq(TqN) ⊂ TqM . Con-

sequently, we can also identify the canonical vector fields (∂/∂u1, · · · , ∂/∂un) :

Ũ ⊂ N → TN as vector fields on Ũ mapping to TM such that we can write

gab(q) = gµν(q) dxµ|q(∂/∂ua|q) dxν |q
(
∂/∂ub|q

)
= gµν(q)

∂xµ

∂ua

∣∣∣∣q ∂xν∂ub

∣∣∣∣q .
What would make our calculations much more handier now is if we detached

this formula for the induced metric from the submanifold N ⊂ M . That is,
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we want to replace the q-dependence by some dependence on n-dimensional

coordinates. Therefore recall that the canonical tangent vectors of TqM are

defined by ∂xµ/∂ua|q := ∂a(x
µ ◦ u−1)u(q) where ∂a denotes the a-th partial

derivative in Rn. This definition gives us the hint to notationally replace the

coordinates u(q) ∈ Rn by u ∈ Rn and the local parametrization x ◦ u−1 : Rn →
Rd by x : Rn → Rd. Rewriting the formula for the induced metric as

gab ◦ u−1 ◦ u(q) = gµν ◦ x−1 ◦ x ◦ u−1 ◦ u(q) ∂a(x
µ ◦ u−1)u(q) ∂b(x

ν ◦ u−1)u(q)

it becomes clear that we furthermore must notationally replace gab ◦u−1 : Rn →
R by gab : Rn → R and gµν ◦ x−1 : Rd → R by gµν : Rd → R. Implementing

these four substitutions we arrive at

gab(u) = gµν(x(u))
∂xµ(u)

∂ua
∂xν(u)

∂ub
. (11.8)

To summarize the rederivation of this formula, we simply expressed the induced

metric in terms of real analysis with the help of charts. Additionally, we will

denote by g(u) the n× n-Matrix corresponding to gab(u).

Instead of studying the full volume
∫
N
ωN of the submanifold N , where ωN

denotes the volume form given by the induced metric, we will restrict ourselves

to the integration domain U ∩ Ũ , i.e., we will consider the operator

Vn[g, ḡ] ≡ Vn[g, ḡ](U ∩ Ũ) :=

∫
U∩Ũ

ωN =

∫
Ũ ′′

dnu
√

det g(u) , (11.9)

where Ũ ′′ := u(U ∩ Ũ) ⊂ Rn, and set additionally g ≡ ḡ.

11.2.2. Calculation of the Hessian of Vn[g, g]

This local volume is an operator we can easily study thanks to (11.8). In order

to calculate its Hessian given by Eq. (6.47), i.e.,

〈x, µ, ν|V (2)
n [g, ḡ]|y, ρ, σ〉 = I[ḡ]ρσαβ

1√
ḡ(x)ḡ(y)

∫
Ũ ′′

dnu
δ2
√

det g(u)

δgµν(x)δgαβ(y)
,

(11.10)
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we express gµν in terms of gab and use the chain rule such that we can rewrite a

functional derivative with respect to gµν into a functional derivative with respect

to gab,

δ

δgµν(y)
=

∫
dnu

δgab(u)

δgµν(y)

δ

δgab(u)

=

∫
dnu

∂xµ(u)

∂ua
∂xν(u)

∂ub
δ(d)(x(u)− y)

δ

δgab(u)
.

Therewith, we can calculate the Hessian step by step, starting with the first

functional derivative of the integrand
√

det g(u) of (11.9),

δ
√

det g(u)

δgµν(y)
=

1

2

1√
det g(u)

∫
dnu′

∂xµ(u′)

∂u′a
∂xν(u′)

∂u′b
δ(d)(x(u′)− y)

δ det(g(u))

δgab(u′)

=
1

2

1√
det g(u)

∂xµ(u)

∂ua
∂xν(u)

∂ub
adjT (g(u))abδ

(d)(x(u)− y) .

Here, we have used Jacobi’s formula for the variation of the determinant,

δ det(g(u))

δgab(u′)
= adjT (g(u))abδ

(n)(u− u′) . (11.11)

where adj(A) denotes the adjunct of the (square) matrix A which is the trans-

pose of its cofactor matrix. The adjunct matrix is related to the inverse matrix,1

that we will denote with upper indices as usual, by a factor of the determinant,

gab(u) := (g(u)−1)ab =
1

det g(u)
adj(g(u))ab . (11.12)

As the adjunct of a symmeric matrix is symmetric as well, i.e., adj(g(u))ab =

adjT (g(u))ab, we can express the functional derivative of
√

det g(u) by means of

the inverse gab as

δ
√

det g(u)

δgµν(y)
=

1

2

√
det g(u)

∂xµ(u)

∂ua
∂xν(u)

∂ub
gab(u)δ(d)(x(u)− y) . (11.13)

1It should be clarified that the formula (11.8) cannot be inverted in the sense that x(u) cannot
be uniquely solved for u. However, the inverse of g(u) is naturally well-defined as det g(u) 6= 0.
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Next, it is straight forward to build the second functional derivative of
√

det g(u)

using the product rule,

δ2
√

det g(u)

δgαβ(z)δgµν(y)
=

1

2

δ
√

det g(u)

δgαβ(z)

∂xµ(u)

∂ua
∂xν(u)

∂ub
gab(u)δ(d)(x(u)− y)

+
1

2

√
det g(u)

∂xµ(u)

∂ua
∂xν(u)

∂ub
δgab(u)

δgαβ(z)
δ(d)(x(u)− y) .

(11.14)

In the first term, we can use our result (11.13) for the first functional deriva-

tive while in the second term we can again use the chain rule to calculate the

functional derivative of gab,

δgab(u)

δgαβ(z)
=

∫
dnu′

∂xα(u′)

∂u′c
∂xβ(u′)

∂u′d
δ(d)(x(u′)− z)

δ(g−1(u))ab
δgcd(u′)

(11.15)

with

δ(g−1(u))ab
δgcd(u′)

= −gae(u)
δgef (u)

δgcd(u′)
gfb(u)

= −(gac(u)gdb(u) + gad(u)gcb(u))δ(n)(u− u′) .

Plugging in these results into the RHS of (11.14) we obtain the second functional

derivative of
√

det g(u),

δ2
√

det g(u)

δgαβ(z)δgµν(y)
=

1

4

√
det g(u)

∂xα(u)

∂uc
∂xβ(u)

∂ud
∂xµ(u)

∂ua
∂xν(u)

∂ub
δ(d)(x(u)− y)

× δ(d)(x(u)− z)

[
gab(u)gcd(u)− gac(u)gdb(u)− gad(u)gcb(u)

]
.

(11.16)
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11.2.3. Calculation of the anomalous dimension γn(λk, gk)

After having calculated the Hessian V
(2)
n [g, ḡ] we are ready to evaluate the RHS

of the composite-operator FRGE (11.6),

γ̄n(k)Vn[g, g] = − 1

κ2ZNk
TrST 2

[
V (2)
n [g, g] (1ST 2 − Ptr.[g])

Nk(−D2)

[Ak(−D2) + cIR]2

− 2

d− 2
V (2)
n [g, g]Ptr.[g]

Nk(−D2)

[Ak(−D2) + ctraceR]2

]
.

(11.17)

Here, γ̄n(k) is the anomalous dimension of the renormalized operator [Vn]k[g, g].

As γ̄n(k) is dimensionless for non-mixing ansätze, later we will be able to

re-write the RHS in terms of the dimensionless couplings λk and gk given by

Eq. (7.24), such that we have γn(λk, gk) ≡ γ̄n(k). Before we begin with the ac-

tual calculation, we already note that we may discard all curvature terms on the

RHS, because we must project the RHS onto the operator Vn[g, g] which itself is

curvature-independent.2 Therefore, firstly we remove the explicit R-dependence

on the RHS by expanding it to zeroth order in R (i.e., we set R = 0):

γ̄n(k)Vn[g, g] = − 1

κ2ZNk
TrST 2

[
V (2)
n [g, g] (1ST 2 − Ptr.[g])

Nk(−D2)

Ak(−D2)2

− 2

d− 2
V (2)
n [g, g]Ptr.[g]

Nk(−D2)

Ak(−D2)2

]
.

(11.18)

2In fact, this means that we could w.l.o.g. specify the metric to that of flat space, gµν = δµν ,
and then evaluate the trace on the RHS in momentum space. However, for us it is more
convenient to evaluate the trace with heat kernel methods that we already have developed
and utilized in Chapter 7 for the Einstein-Hilbert truncation.
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Note that via the traces over functions of the Laplacian, the RHS still entails an

implicit R-dependence. Let us calculate the first term on the RHS for itself:

TrST 2

[
V (2)
n [g, g] (1ST 2 − Ptr.[g])

Nk(−D2)

Ak(−D2)2

]

=

∫
ddx1

√
g(x1)

∫
ddx2

√
g(x2)〈x1, µ, ν|V (2)

n [g, g]|x2, ρ, σ〉

× 〈x2, ρ, σ| (1ST 2 − Ptr.[g])
Nk(−D2)

Ak(−D2)2
|x1, µ, ν〉

=

∫
ddx1

∫
ddx2 I[g]ρσαβ

∫
dnu

δ
√

det g(u)

δgµν(x1)δgαβ(x2)

× 〈x2, ρ, σ| (1ST 2 − Ptr.[g])
Nk(−D2)

Ak(−D2)2
|x1, µ, ν〉

=
1

4

∫
dnu
√

det g(u)
∂xρ(u)

∂uc
∂xσ(u)

∂ud
∂xµ(u)

∂ua
∂xν(u)

∂ub
(u)

×
[
gab(u)gcd − gac(u)gdb(u)− gad(u)gcb(u)

]
× 〈x(u), ρ, σ| (1ST 2 − Ptr.[g])

Nk(−D2)

Ak(−D2)2
|x(u), µ, ν〉 .

(11.19)

In the last step, we have used Eq. (11.16). Next, we express the remaining

matrix element as a differential operator acting on a delta function,

〈x(u), ρ, σ| (1ST 2 − Ptr.[g])
Nk(−D2)

Ak(−D2)2
|x(u), µ, ν〉

= lim
z→x(u)

(
Iρσµν − P [g]ρσµν(x(u))

)Nk(−D2)x(u)

Ak(−D2)2
x(u)

δ(x(u)− z)√
g(z)

. (11.20)

At this point, the following traces are required:

IST 2
ρσ
µν

∂xρ(u)

∂uc
∂xσ(u)

∂ud
∂xµ(u)

∂ua
∂xν(u)

∂ub
(
gabgcd − gacgdb − gadgcb

)
(u)

=
1

2
(gacgbd + gbcgad)(u)

(
gabgcd − gacgdb − gadgcb

)
(u) = −n2

(11.21)
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and

Ptr.[g]ρσµν(x(u))
∂xρ(u)

∂uc
∂xσ(u)

∂ud
∂xµ(u)

∂ua
∂xν(u)

∂ub
(
gabgcd − gacgdb − gadgcb

)
(u)

=
1

d
gcd(u)gab(u)

(
gabgcd − gacgdb − gadgcb

)
(u) =

1

d
(n2 − 2n) .

(11.22)

Here, the partial derivatives ∂x/∂u combine with IST 2 and Ptr. in such a way

that a tensor depending solely on the metric gab is formed and the trace yields

a simple number. Therewith, we immediately obtain

TrST 2

[
V (2)
n [g, g] (1ST 2 − Ptr.[g])

Nk(−D2)

Ak(−D2)2

]

=
1

4

∫
dnu
√

det g(u)

[
−(d+ 1)n2 − 2n

d
〈x(u)|Nk(−D2)

Ak(−D2)2
|x(u)〉

]
. (11.23)

Fully analogously follows for the second term of Eq. (11.18) that

TrST 2

[
− 2

d− 2
V (2)
n [g, g]Ptr.[g]

Nk(−D2)

Ak(−D2)2

]

=
1

4

∫
dnu
√

det g(u)

[
−4n− 2n2

2d− d2
〈x(u)|Nk(−D2)

Ak(−D2)2
|x(u)〉

]
. (11.24)

All in all, we therewith have boiled down the Eq. (11.18) to

γ̄n(k)Vn[g, g] =
1

κ2ZNk

1

4

[
(d+ 1)n2 − 2n

d
+

4n− 2n2

2d− d2

]
×
∫

dnu
√

det g(u) 〈x(u)|Nk(−D2)

Ak(−D2)2
|x(u)〉 . (11.25)

In order to finally project the RHS onto the operator Vn[g, g], let us expand the

matrix element 〈x(u)|Nk(−D2)/Ak(−D2)2|x(u)〉 using formula (E.5) for the

early time expansion of the untraced heat kernel,

〈x(u)|Nk(−D2)

Ak(−D2)2
|x(u)〉 =

(
1

4π

) d
2

Q d
2

[
Nk/A

2
k

]
+O(R) . (11.26)

Fortunately, the term in zeroth order in the curvature is x(u)-independent, such

that – as we must discard all curvature terms on the RHS – we arrive at the

result
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γ̄n(k)Vn[g, g] =
1

κ2ZNk

1

4

[
(d+ 1)n2 − 2n

d
+

4n− 2n2

2d− d2

]
×
(

1

4π

) d
2

Q d
2

[
Nk/A

2
k

]
Vn[g, g] , (11.27)

from which we can read off the anomalous dimension. Thereby, let us re-express

the “Q-functional” in terms of the threshold functions via Eq. (7.21):

γ̄n(k) =
1

κ2ZNk

1

4

(
1

4π

) d
2
[

(d+ 1)n2 − 2n

d
+

4n− 2n2

2d− d2

]
× kd−2

[
Φ2
d
2

(−2λ̄k/k
2)− 1

2
ηN(k)Φ̃2

d
2

(−2λ̄k/k
2)

]
. (11.28)

By furthermore switching to the dimensionless couplings λk and gk defined by

Eq. (7.24) we arrive at the final result for the (dimensionless) anomalous di-

mension:

γn(λk, gk) ≡ γ̄(k) = 2

(
1

4π

) d
2
−1 [

(d+ 1)n2 − 2n

d
+

4n− 2n2

2d− d2

]
gk

×
[
Φ2
d
2

(−2λk)−
1

2
ηN(λk, gk)Φ̃

2
d
2

(−2λk)

]
.

(11.29)

This equation is the main result of this chapter. It must be emphasized that

Eq. (11.29) does not depend on the parametrization x(u) – i.e., this anomalous

dimension does not depend on the specific type of n-dimensional submanifold

whose volume we consider. The only information of it entailed in γn is its

dimension n so it is worthwhile to give the factor containing the dependence on

the dimensions n its on definition,

f(d, n) :=

[
(d+ 1)n2 − 2n

d
+

4n− 2n2

2d− d2

]
. (11.30)

Let us point out some specific values regarding the choice of n. Setting f(d, 1) =

(d− 3)/(d− 2) and f(d, d) = d(d+ 1), we have reproduced the results for these

special cases that were already calculated in [55]. Interestingly, the anomalous

dimension of the area of a surface, i.e., the case of n = 2, is d-independent

as f(d, 2) ≡ 4. Further values of interest are f(d, 3) = 9 + 3/(d − 2) and

f(d, 4) = 8(2 + 1/(d− 2)).
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Lastly, we define the one-loop anomalous dimension γ1L
n (λk, gk) as the anoma-

lous dimension (11.29) along the simplified Einstein-Hilbert flow that we had

introduced in Section 7.2. As explained in this section, we therefore must set

Φ ≡ 0 and evaluate the remaining threshold function Φ at λk ≡ 0 in Eq. (11.29),

which yields

γ1L
n (gk) = 2

(
1

4π

) d
2
−1 [

(d+ 1)n2 − 2n

d
+

4n− 2n2

2d− d2

]
gk Φ2

d/2(0) . (11.31)

Equivalently, we could have obtained this one-loop approximation of the anoma-

lous dimension with the one-loop approximation (9.34) of the composite-operator

FRGE and then setting λk ≡ 0.

11.2.4. The fixed-point scaling of [Vn]k[g, g] in d = 4

Suppose that r is some characteristic length scale of the n-dimensional volume

Vn[g, g](r), e.g. the radius of an n-sphere. (In fact, we can w.l.o.g. consider the

volume of an n-sphere because the anomalous dimension does not depend on

the specific geometry of the submanifold but only its dimension.) In Section 9.4

we had shown that in this case the renormalized operator [Vn]k[g, g](r) in the

UV scales according to Eq. (9.62), i.e.,

[Vn]k→∞[g, g](r) ≡ 〈Vn[g, g](r)〉k→∞ ∼ rn−γn(λ∗,g∗) . (11.32)

Here, (λ∗, g∗) are the non-Gaussian fixed-points of the Einstein-Hilbert flow;

further we have used that the canonical mass dimension of the n-dimensional

volume is [Vn[g, g](r)] = −n. Remarkably, note that also the spacetime dimen-

sion d in which the submanifold is embedded enters the anomalous dimension

and thus its scaling properties – which is classically not the case. For n = 1

the volume of the submanifold of course is the length of a curve, hence let us

write `[g, g](r) := V1[g, g](r). Therewith we can express the quantum scaling of

an n-dimensional volume in the UV in terms of that of a quantum length:

〈Vn[g, g](r)〉k→∞ ∼ (〈`[g, g](r)〉k→∞)
n−γn(λ∗,g∗)
1−γ1(λ∗,g∗) . (11.33)

Especially, if γn(λ∗, g∗) > 0 we observe an effective dimensional reduction of

the scaling properties of spacetime in the UV. Subsequently, we will explic-

itly compute the fixed point values of the anomalous dimension of submanifolds

embedded in (d = 4)-dimensional spacetime. Indeed, we will find γn(λ∗, g∗) > 0.
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In Section 7.3 we had obatined the non-Gaussian fixed points of the full

Einstein-Hilbert flow as well as of the simplified Einstein-Hilbert flow using the

exponential cutoff (6.4) as well as the optimized cutoff (6.5). For the full flow,

these are given by Eqs. (7.32) and (7.33), while for the simplified flow by Eqs.

(7.35) and (7.36). The values of the full anomalous dimension γn(λ∗, g∗) and its

one-loop approximation γ1L
n (g1L

∗ ) in the fixed-point regime are then obtained by

numerically evaluating Eq. (11.29) and Eq. (11.31) at these fixed-point values.

Note that the threshold functions depend on the cutoff shape, as well. Table

1 depicts the values we obtained for n = 1, 2, 3, 4. The values for n = 1 and

n = 4 are reproductions of the values obtained in [55], while the values for n = 2

and n = 3 are new research results. Remarkably, the values obtained with the

Table 1. Fixed-point values of the anomalous dimension in d = 4.

γopt
n (λopt

∗ , gopt
∗ ) γexp

n (λexp
∗ , gexp

∗ ) γopt,1L
n (gopt,1L

∗ ) γexp,1L
n (gexp,1L

∗ )

n = 1 0.0997 0.1006 0.0682 0.0671

n = 2 0.7973 0.8044 0.5455 0.5368

n = 3 2.0930 2.1116 1.4318 1.4091

n = 4 3.9867 4.0221 2.7273 2.6840

optimized and the exponential cutoff at s = 1 differ only marginally. Generally,

these results show a small relative error due to their cutoff dependence. To give

a few estimates of this error:

• for the s-dependence of the exponential cutoff:

max
i,j∈{0.7,1,1.5}

∣∣∣∣∣γexp,s=i
σn (λexp,s=i

∗ , gexp,s=i
∗ )− γexp,s=j

σn (λexp,s=j
∗ , gexp,s=j

∗ )

γexp,s=1
σn (λexp,s=1

∗ , gexp,s=1
∗ )

∣∣∣∣∣ = 3.2%

• for the s-dependence of the exponential cutoff at one-loop:

max
i,j∈{0.7,1,1.5}

∣∣∣∣∣γexp,1L,s=i
σn (λexp,1L,s=i

∗ , gexp,1L,s=i
∗ )− γexp,1L,s=j

σn (λexp,1L,s=j
∗ , gexp,1L,s=j

∗ )

γexp,1L,s=1
σn (λexp,1L,s=1

∗ , gexp,1L,s=1
∗ )

∣∣∣∣∣ = 1.2%

• for the difference between exponential and optimized cutoff:∣∣∣∣∣γopt
σn (λopt

∗ , gopt
∗ )− γexp,s=1

σn (λexp,s=1
∗ , gexp,s=1

∗ )

γexp,s=1
σn (λexp,s=1

∗ , gexp,s=1
∗ )

∣∣∣∣∣ = 0.9%
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• for the difference between exponential and optimized cutoff at one-loop:∣∣∣∣∣γopt,1L
σn (λopt,1L

∗ , gopt,1L
∗ )− γexp,1L,s=1

σn (λexp,1L,s=1
∗ , gexp,1L,s=1

∗ )

γexp,1L,s=1
σn (λexp,1L,s=1

∗ , gexp,1L,s=1
∗ )

∣∣∣∣∣ = 1.6% .

Let us discuss the quantum scaling corrections based on the full Einstein-

Hilbert flow. An astonishing result is that for n = 4 and d = 4 the classical and

quantum contribution almost perfectly cancel, resulting in the effective scaling

dimension zero, which “could suggest that at very small distance scales (fixed-

point regime) spacetime is actually much more empty than one would naively

expect” [55]. Here, what is new, is the observation that in four spacetime di-

mensions the scaling dimension −(n−γn(λ∗, g∗)) of lower dimensional volumes

(n < d) universally approximates −1, i.e., 〈Vn[g, g](r)〉k→∞ ∼ 〈`[g, g](r)〉k→∞
for n = 1, 2, 3 and d = 4.

Moreover, if we solve the RG equations (7.25) and (7.26) for the full Einstein-

Hilbert flow we can insert the solution into Eq. (11.29). Therewith, we obtain

γn(λk, gk) as a function of k and we can also study its values away from the

fixed-point regime; in this case, however, we cannot interpret the anomalous

dimension as a quantum scaling correction at the scale k because the scaling

argument we had developed leading to the scaling relation (9.62) is applica-

ble only in the fixed-point regime. Figure 11.1 exemplifies this and shows the

(full) anomalous dimension along a trajectory of type IIIa: along the sprirally

approach towards the the fixed point in theory space, the value of γn(λk, gk)

even surpasses n – which we can not interpret as an effective positive scaling

dimension at scale k.

Regarding the one-loop approximations, based on the simplified Einstein-

Hilbert flow, of the quantum scaling corrections, we observe the same trend

although their magnitude is smaller.

How accurate are these results? Because neither the full nor the simplified

Einstein-Hilbert flow take into account the bimetric nature of the gravitational

EAA [4], we must emphasize that the approximations for the anomalous dimen-

sions obtained here might be rather crude. For instance, more precise values

for the (negative) anomalous dimension ηN can be obtained in more refined

truncations, where its value has been shown to be smaller than its single metric
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Figure 11.1. The anomalous dimension γopt
n (λopt

k , γopt
k ) as a

function of k along a trajectory of type IIIa of the full Einstein-
Hilbert flow. The precise trajectory is that marked in red Figure
7.1. The RG equations as well as the anomalous dimension have
been solved/calculated using the optimized cutoff.

absolute value of 2 [102]. This suggests that especially the “one-loop approxi-

mations”, in which contributions from ηN are neglected, may be unreasonable.

In fact, we can already give an estimate on the implications that this affair

may have for the anomalous dimensions based on the full Einstein-Hilbert flow.

Therefore, we will evaluate our single-metric result (11.29) at the fixed-point

values found (using the optimized cutoff) in a “level-2” truncation and stated

in table 7.5 in [102]: λlev. 2
∗ = −0.049, glev. 2

∗ = 1.579 and ηN
lev. 2
∗ = 0.540. This

yields anomalous dimensions, employing the optimized cutoff, γlev. 2
1 ≈ 0.0474,

γlev. 2
2 ≈ 0.3794 and γlev. 2

3 ≈ 0.9959. Compared to the values in table 1 obtained

based on the single-metric full Einstein-Hilbert truncation, these fixed-point val-

ues for the anomalous dimension are severely smaller.

Lastly, we report the “one-loop” approximation of the anomalous dimen-

sion (11.31) evaluated along the simplified Einstein-Hilbert flow with free mat-

ter fields present. For NS scalar fields, ND spin-1/2 fermionic fields and NV
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abelian U(1)-gauge fields, its corresponding non-Gaussian fixed point is given

by Eq. (7.54), such that the anomalous dimension reads3

γopt,1L
n (g1L,matter

∗ ) =
12π

22−NS − 2ND +NV

n(3n− 2)

8π
. (11.34)

As the one-loop anomalous dimension is proportional to g∗, note that if the con-

sidered matter content induces a positive (negative) fixed-point value of New-

ton’s constant, γopt,1L
n (g1L,matter

∗ ) will be accordingly positive (negative) as well.

However, in the Asymptotic Safety scenario for quantum gravity one requires a

positive fixed-point value of Newton’s constant. In this case γopt,1L
n (g1L,matter

∗ ) is

positive, yet again causing a reduction of the effective scaling dimension of the

volume of the n-dimensional submanifold in the UV.

In the Section 9.1, to motivate the study of composite operators, we had

briefly mentioned that such effective dimensional reduction phenomena have al-

ready been observed in various contexts in the Asymptotic Safety scenario for

quantum gravity. More precisely, the spectral and the walk dimensions of the

spacetime manifold have been predicted to effectively reduce to two dimensions

in the UV limit [122, 123]. Meanwhile the Hausdorff dimension is still equal to

the topological dimension, i.e., dH = 4 [123].4 Here, despite our rough approxi-

mations for the first and second truncation of theory space, our results underline

the fact that an effective dimensional reduction may indeed constitute a general

feature of the Asymptotic Safety scenario for quantum gravity – or rather quan-

tum gravity in general because similar dimensional reduction phenomena have

been observed in various scenarios for quantum gravity [126]. Hence, it would

be highly interesting to conduct the study of anomalous scaling dimensions of

volumes of submanifolds with other theories of gravity. Particularly, the first

order formalism [133, 134], extended theories of gravity [135–137], and theories

on foliated spacetimes [138–142] show compatibility with the Asymptotic Safety

scenario.

3This result differs from our result in [29] because there we had employed at cutoff of “type
II” (in the terminology of [102]) for all matter fields, which we have here, i.e., in Section
7.4, employed only for the spin-1/2 fermionic fields. For the remaining matter fields we have
employed a cutoff of “type I”.
4We shall come back to the Hausdorff dimension in Section 11.4.
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11.2.5. The fixed-point scaling of [Vn]k[g, g] in d = 3

In d = 3 the fixed points in the Einstein-Hilbert flow are, using the optimized

cutoff, (λopt
∗ , gopt

∗ ) = (0.0629, 0.1989) for the full flow and (λopt,1L
∗ , gopt,1L

∗ ) =

(0, 3π/40) = (0, 0.2356) for the simplified flow. Using the exponential cutoff

evaluated at s = 1 the fixed points read (λexp
∗ , gexp

∗ ) = (0.1407, 0.1326) for the

full flow and (λexp,1L
∗ , gexp,1L

∗ ) = (0,
√
π) = (0, 0.1772) for the simplified flow.

Table 2 shows the values of the anomalous dimensions γn at the fixed point

in d = 3 for the respective cutoff profiles. Particularly, in d = 3 the one-loop

fixed-point values of γ1L
n become cutoff-independent:

γ1L
n

d=3
=

n(n− 1)

5
. (11.35)

Table 2. Fixed-point values of γn for d = 3. The first two
columns show the one-loop result (simplified flow) obtained via
the optimized and the exponential cutoff. The third and fourth
columns display the results for the full Einstein-Hilbert flow.

γopt,1L
n (gopt,1L

∗ ) γexp,1L
n (gexp,1L

∗ ) γopt
n (λopt

∗ , gopt
∗ ) γexp

n (λexp
∗ , gexp

∗ )

n = 1 0 0 0 0

n = 2 0.4 0.4 0.5303 0.5692

n = 3 1.2 1.2 1.5908 1.7076

11.3. The geodesic length

11.3.1. Definition of the operator `g

In Section 9.1, we had already demonstrated the need for knowledge of the

renormalization and scaling behavior of the geodesic length `g. In this section

we give a first contribution to this “knowledge” by calculating the anomalous

dimension of `g with the composite-operator FRGE (11.6), i.e., with the first

truncation specified to the Einstein-Hilbert truncation and the second trunca-

tion given by the single operator `g.
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In this setting, we had calculated and discussed the anomalous dimension of

the length `[g, g] ≡ V1[g, g] of a curve c : [0, 1]→M , given by the equation

`[g, g] =

∫ 1

0

dσ

√
gµν(c(σ))

dcµ(σ)

dσ

dcν(σ)

dσ
, (11.36)

in the previous section. We had found that the anomalous dimension γ1(λk, gk)

in this setting has the same value for any curve c(σ). Hence, one might ask

why it is necessary to discuss the anomalous dimension of the geodesic length

separately, given that, after all, the geodesic is some parametrized curve c(σ)

itself. The answer to this question is that here, we do not identify some given

parametrized curve as a geodesic but rather define the geodesic as the solution

c[g](σ) to the geodesic equation

d2

dσ2
c[g]µ(σ) + Γµαβ(c[g](σ))c[g]α(σ)c[g]β(σ) . (11.37)

From this point of view, it is obvious that γ1(λk, gk) is the anomalous dimension

of any given curve whose parametrization does not depend on the metric gµν ,

which is not the case for the geodesic c[g](σ). Thus, here we consider the geodesic

length to be the operator

`g =

∫ 1

0

dσ

√
gµν(c[g](σ))

dc[g]µ(σ)

dσ

dc[g]ν(σ)

dσ
, (11.38)

where c[g](σ) is a solution to the geodesic equation. It is clear that in general

the anomalous dimensions of the geodesic length `g and of the length of an ar-

bitrary curve `[g, g], each obtained with the respective non-mixing ansatz, will

differ because the additional g-dependence of the geodesic length gives rise to

a more complicated Hessian (i.e., to more graviton vertices) on the RHS of the

composite-operator FRGE (9.33).

Moreover, the solution of geodesic equation becomes unique only after spec-

ifying either boundary or initial conditions. Thus, when we analyze the renor-

malization behavior of the geodesic length `g we must do so on the basis of either

of these supplementary conditions. Generally, we expect a different renormal-

ization behavior for different supplementary conditions which is why we restrict

the subsequent analysis to the following ones (note that each is a set of 2d con-

ditions):
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Boundary value problem. At first we consider the boundary conditions given

by externally prescribed (i.e., g-independent) starting and end points,c[g]µ(0) = cµQ

c[g]µ(L) = cµP ,
(11.39)

where L is a given distance travelled along c. In this case, we also write

`g ≡ `g(cQ, cP) and refer to the geodesic length as the geodesic distance of the

two points (as we did in Section 9.1). Furthermore, we assume cQ and cP to be

sufficiently close such that no caustics appear and the solution of the geodesic

equation is unique.

Initial value problem. In this case, the solution of the geodesic equation be-

comes unique by externally prescribing an initial point cQ and an initial velocity

χ, i.e., c[g]µ(0) = cµQ

dc[g]µ(σ)/dσ
∣∣
σ=0

= χµ .
(11.40)

Normalized initial value problem at fixed geodesic length. Here, to

make the solution unique, we again externally prescribe an initial point cQ.

But rather than fixing an initial velocity vector, we only externally prescribe

a normalized initial velocity χ0, i.e an initial direction. Then, we still must

impose one further condition. Therefore, we require the geodesic length itself

to be equal to the externally prescribed value r:
c[g]µ(0) = cµQ

dc[g]µ(σ)/dσ

∣∣
σ=0∣∣dc[g]µ(σ)/dσ

∣∣
σ=0

∣∣ = χµ0

`g(cQ, c[g](L)) ≡ r .

(11.41)

Such supplementary conditions involving a fixed geodesic length have occured

in the literature in order to define correlators of the form “〈φ(x)φ(y)〉” [143,

144].
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11.3.2. The anomalous dimension of `g for the boundary value problem

In [28, 29], we have calculated the anomalous dimension of the geodesic length

for a given boundary condition by iteratively solving the geodesic equation or-

der by order in the metric fluctuation hµν . Here, let us instead expand `g in

Riemann normal coordinates as performed in the appendix of [145]: Let xµ∗ be

the coordinates of a point q ∈ M and xµ normal coordinates around q. On a

sufficiently small neighborhood of q we can choose coordinates yµ such that for

ε small

xµ = xµ∗ + εyµ . (11.42)

Thus, ε corresponds to the typical length scale of the neighborhood on which

the normal coordinates are defined. In these coordinates, we have gµν(x∗) = δµν
by construction and the Taylor series of the metric gµν at q can be shown to

take the form

gµν(x) = gµν(x∗)−
1

3
Rµανβ(x∗)x

αxβ +O(ε3) . (11.43)

Next, let c be a curve parametrized by its arc length s and let us expand c in s,

cµ(s) = cµ0 + cµ1s+
1

2
cµ2s

2 +O(s3) . (11.44)

In Riemann normal coordinates we obtain by inserting this expansion into the

geodesic equation (note that the series in s is cut by restricting its coefficients

to be of order ε)

cµ(s) = cµ0 + cµ1s+
1

3
Rµ

αβρ(x∗)c
ρ
0c
α
1 c
β
1s

2 +O(ε3) . (11.45)

The coefficients cµ0 and cµ1 are determined by the boundary condition (11.39).

With ξµ := cµP − cµQ and reparametrizing the geodesic c using the parameter

σ = s/L, σ ∈ [0, 1], its expansion in σ will read

cµ(σ) = cµQ + σξµ − σ(1− σ)

3
Rµ

αβρ(x∗)c
ρ
Qξ

αξβ +O(ε3) . (11.46)

By inserting the expansion (11.46) into the geodesic length `g and expanding

gµν as in (11.43) it is easy to find the expansion

`2
g = gµν(x∗)ξ

µξν − 1

3
Rµανβ(x∗)c

α
Qc

β
Qξ

µξν +O(ε3) . (11.47)
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The expansion of the operator `g in ε then is obtained therefrom by expanding

the squareroot as
√

1 + x = 1 + x/2 +O(x3),

`g =
√
gµν(x∗)ξµξν

(
1− 1

6
Rµανβ(x∗)c

α
Qc

β
Qξ

µξν +O(ε3)

)
. (11.48)

To calculate the anomalous dimension γ`g of `g with the composite-operator

FRGE (11.6), we must at first derive the Hessian `
(2)
g defined via Eq. (6.47).

To shorten our notation, we will write δµνa
µbν = a · b, δµνaµaν = a2 et cetera.

With these abbreviations, the Hessian is determined through the second-order

functional derivative of `g,

δ2lg
δgκτ (z)δgαβ(y)

=− 1

4

1

ξ3
ξαξβξκξτδ(x∗ − y)δ(x∗ − z)

(
1− 1

6
cνQc

σ
Qξ

µξρRµνρσ(x∗)

)
− 1

12

1√
ξ2
ξαξβδ(x∗ − y)cνQc

σ
Qξ

µξρ
δRµνρσ(x∗)

δgκτ (z)

− 1

12

1√
ξ2
ξκξτδ(x∗ − z)cνQc

σ
Qξ

µξρ
δRµνρσ(x∗)

δgαβ(y)

− 1

6

√
ξ2cνQc

σ
Qξ

µξρ
δ2Rµνρσ(x∗)

δgκτ (z)δgαβ(y)
+O(ε3) .

(11.49)

With the Hessian arising thereof, we must project the RHS of the composite-

operator FRGE (11.6) onto the operator `g. Hence, we must find some means

to keep track of the terms proportional to `g in (11.49); especially we want to

ensure that there are no terms proportional to `g hidden in the terms O(ε3).

Therefore, note that when iteratively determining the coefficients cn of the exa-

pansion (11.44) in case of the geodesic, one finds that cn ∼ εn for n ≥ 2 [145].

Next, from c1 = ξ/`g one directly finds c2 ∼ ξ2 and therewith also cn ∼ εn ∼ ξn

holds by the iterative construction of the coefficients cn. Thus, by counting

powers of ξ we can keep track of the terms proportional to `g in (11.49).
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As εn ∼ ξn, only the first term of the expansion (11.49) is proportional to

`g as with the remaining terms it is not possible to build the first term of the

expansion (11.48) (which is
√
ξ2). Thus, we immediately obtain the traces

I[g]κταβ(x∗)
δ2`g

δgκτ (z)δgαβ(y)

∣∣∣∣∣
`g

= −1

4
δ(x∗ − y)δ(x∗ − z)`g

= dPtr.[g]κταβ(x∗)
δ2`g

δgκτ (z)δgαβ(y)

∣∣∣∣∣
`g

.

Aside from these traces, the remaining calculation of the anomalous dimension

is fully analogous to the procedure of Subsection 11.2.3. With the above traces

we thus have

γ̄`g(k)`g = − 1

κ2ZNk
TrST 2

[
`(2)
g (1ST 2 − Ptr.[g])

Nk(−D2)

[Ak(−D2) + cIR]2

− 2

d− 2
`(2)
g Ptr.[g]

Nk(−D2)

[Ak(−D2) + ctraceR]2

]∣∣∣∣∣
`g

=
1

κ2ZNk

1

4

[
d− 1

d
+

2

2d− d2

](
1

4π

) d
2

Q d
2

[
Nk/A

2
k

]
`g .

(11.50)

Reading of the anomalous dimension γ̄`g(k) ≡ γ`g(λk, gk) from this equation,

it turns out that this is precisely the previously found anomalous dimension

γ1(λk, gk) for the length of a curve, given by Eq. (11.29) with n = 1. Hence,

for the approximations employed here to solve the composite-operator FRGE,

i.e., with the first truncation specified to the Einstein-Hilbert truncation and

a non-mixing ansatz for the second truncation, the anomalous dimensions of

the geodesic distance of two points and that of the length of a curve coincide:

γ`g(λk, gk) = γ1(λk, gk). Nevertheless, we must generally expect γ`g(λk, gk) 6=
γ1(λk, gk) for more refined approximations, in particular for mixing ansätze.
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11.3.3. The anomalous dimension of `g for the initial value problem

To rewrite the geodesic length `g in terms of the initial condition (11.40), recall

that the integrand
√
gµν(c[g](σ)) dc[g]µ(σ)/dσ dc[g]ν(σ)/dσ is in fact a constant

of motion. Using the initial condition (11.40), we have that

`g =

∫ 1

0

dσ

√
gµν(c[g](σ))

dc[g]µ(σ)

dσ

dc[g]ν(σ)

dσ

=

∫ 1

0

dσ

√
gµν(c[g](0))

dc[g]µ(σ)

dσ

∣∣∣∣
σ=0

dc[g]ν(σ)

dσ

∣∣∣∣
σ=0

=
√
gµν(cQ)χµχν .

(11.51)

Thus, the only g-dependence of the geodesic length `g obtained with the initial

condition (11.40) is the explicit g-dependence, while the implicit g-dependence

of the curve itself has been removed and traded for the g-independent initial

coordinates and velocities. Therewith, it is obvious that for non-mixing ansätze,

the anomalous dimension of the geodesic length obtained with a pure initial

condition is identical to that of the length of an ordinary parametrized curve,

γ`g = γ1. Also, this result holds for any chosen first truncation. However, we

yet again must expect both anomalous dimensions to differ from another once

we consider mixing ansätze.

11.3.4. The anomalous dimension of `g for the normalized initial value problem

The third supplementary condition of Eq. (11.41) states that the geodesic length

is identical to an externally prescribed, g-independent length: `g ≡ r. This

makes the calculation of the anomalous dimension trivial because of the result-

ing vanishing Hessian. Hence, in this case we find γ`g ≡ 0 which means that `g
is not influenced by gravitational fluctuations at all and its scaling dimension is

the canonical mass dimension at all scales.

This last example shows that when studying the scaling properties of the

geodesic length, one must carefully define via which supplementary conditions

the geodesic trajectory is to be obtained.



176 11. GEOMETRIC OPERATORS IN THE ASYMPTOTIC SAFETY SCENARIO

11.4. The geodesic ball and the geodesic sphere

Let q ∈ M be a point of the spacetime manifold. The geodesic ball of radius r

(fixed and g-independent) with respect to the metric gµν is defined as

Bq[g](r) := vol
{
c(1)

∣∣ c geodesic with c(0) = q and gq(ċ(0), ċ(0)) ≤ r
}
.

(11.52)

Correspondingly, the geodesic sphere of radius r is the subset of Bq[g](r) in

which the inequality becomes an equality,

Sq[g](r) := vol
{
c(1)

∣∣ c geodesic with c(0) = q and gq(ċ(0), ċ(0)) = r
}
.

(11.53)

Here, we are especially interestend in the small r limit in which can deduce the

Hausdorff dimension dH by means of the scaling relation [123]

lim
r→0
〈Bq[g](r)〉k ∼ rdH . (11.54)

To find this small r limit, we expand Bq[g](r) in a power series in r around flat

space, according to theorem 3.1. of [146],

Bq[g](r) = Bflat(r)

{
1 +

R[g](q)

6(d+ 2)
r2 +O(r4)

}
(11.55)

where R[g](q) is the scalar curvature at q, the terms O(r4) are higher curvature

terms and

Bflat(r) =
πd/2

Γ
(
d
2

+ 1
)rd (11.56)

is the volume of the d-dimensional Euclidean ball. Naively, in the limit r → 0

we find

lim
r→0
〈Bq[g](r)〉k = lim

r→0
Bflat(r) (11.57)

which is independent of gµν . Thus, in the limit r → 0 (the volume of) the geo-

desic ball does not renormalize and the Hausdorff dimension is dH = d in this

case. This is an important result which confirms the result already obtained in

[123] via a different argument.

However, we must still clarify whether it has been justified to neglect the

expectation values of the curvature terms in the expansion or whether their

behavior in the UV for k → ∞ could spoil our naively taken limit r → 0. We
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can estimate the UV behavior of these terms with the following kind of “mean

field” approximation:

〈R[g](q)〉k ≈ R[ḡSC
µν (k)] . (11.58)

The k-dependent metric ḡSC
µν is the self-consistent background metric [147], which

is defined by the condition 〈gµν〉k = ḡSC
µν (k). In fixed-point regime, this metric

scales as

ḡSC
µν (k) ∼ k−2 , (11.59)

and thus the expectation value of the scalar curvature in the fixed-point regime

scales as

〈R[g](q)〉k ∼ k2 . (11.60)

Especially, for k →∞ the curvature becomes singular which thwarts our naive

limit r → 0. On the other hand, in the expansion of the geodesic ball we in fact

encounter the term

〈R[g](q)rd+2〉k ∼ rd(kr)2 . (11.61)

Hence, the higher curvature terms in the expansion of the geodesic ball are

negligible in the limit r → 0 if kr � 1. This condition requires the radius r

of the geodesic ball to be within the range of length scales that have already

been integrated out by the RG flow: 0 � r � k−1. Indeed, this is a physical

requirement because only in this way the geodesic ball is affected by all the

relevant modes. Therewith, we have justified our above naive r → 0 limit to be

legitimate.

Lastly, we point out that one fully analogously obtains the small r behav-

ior of the geodesic sphere Sq[g](r) by means of its expansion in r around flat

space [146]:

Sq[g](r) = Sflat(r)

{
1 +

R[g](q)

6d
r2 +O(r4)

}
(11.62)

with the volume of the (d− 1)-dimensional Euclidean sphere

Sflat(r) =
2πd/2

Γ(d/2)
r(d−1) . (11.63)

Therewith we find that

lim
r→0
〈Sq[g](r)〉k ∼ r(d−1) (11.64)

is independent of gµν as well and thus does not renormalize.





CHAPTER 12

Geometric operators in four-dimensional

higher-derivative gravity

Executive summary. Within the framework of four dimensional higher-

derivative gravity and Weyl-squared gravity we use the one-loop approxima-

tion of the composite-operator FRGE in order to calculate the one-loop anoma-

lous dimensions γn of the volume operator, which describes an n-dimensional

volume embedded into the four dimensional quantized spacetime. The result-

ing anomalous dimension is gauge-dependent, whereby we employ the physical

gauge in which only the gauge-invariant modes propagate. Then, the anomalous

dimension vanishes at the gravitational fixed-point because higher-derivative

gravity, as well as Weyl-squared gravity, is asymptotically free in the coupling

parametrizing the Weyl tensor. However, slightly away from the fixed-point in

the ultraviolet regime, γn is non-zero which results in a fractal scaling dimen-

sion of the volume operator. Lastly, we calculate and discuss the values of γn
in d = 4− ε spacetime dimensions.

What is new? All results of this chapter represent novel research results.

Based upon: Reference [30].

In this chapter, we also study the renormalization behavior of the composite

geometric operator Vn[g, g], the volume of an n-dimensional submanifold, that

we had constructed in Subsections 11.2.1 and 11.2.2. Again, we will employ a

non-mixing ansatz for the second truncation such the renormalization behavior

of Vn[g, g] is fully encoded into its anomalous dimension. What is different from

the previous section that instead of the asymptotically safe Einstein-Hilbert

truncation we will employ the asymptotically free truncation of theory space

given by higher-derivative gravity at one loop in d = 4 as the first truncation

(cf. Section 4.3 and Chapter 8). Therewith, the technical aim of this section is

179
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to calculate the RHS of the composite-operator FRGE (9.34) at g ≡ ḡ and with

O[g, g] = Vn[g, g], i.e.,

γ̄1Ln (k)Vn[g, g] = −1

2
TrST 2

[(
∂tR

grav
k,k′ [g]

)((
Γ

(2)
k

)
11

[g, g] + Rgrav
k [g]

)−1

× V (2)
n [g, g]

((
Γ

(2)
k

)
11

[g, g] + Rgrav
k [g]

)−1
]
k=k′

.

(12.1)

Furthermore, as the geometric operator Vn[g, g] is curvature-independent, we

will w.l.o.g. specify the (background) metric to that of flat space, gµν = δµν .

Consequently, the Hessian of the EAA Γk[g, g], in general given by Eq. (8.5).

projected onto flat space reads(
Γ

(2)
k

)
11

[g, g]
∣∣∣
gµν=δµν

= U [0; gµν = δµν ]
d=4
h.−d.

(
f 2

0 (k), f 2
2 (k)

)
, (12.2)

where the inverse propagator U [0; gµν = δµν ]
d=4
h.−d. is given by Eq. (4.100). Also,

we will study the limit f 2
0 → ∞ of Weyl-squared gravity, in which the Hessian

of the EAA correspondingly reads(
Γ

(2)
k

)
11

[g, g]
∣∣∣
gµν=δµν

= U [0; gµν = δµν ]
d=4
Weyl

(
f 2

2 (k)
)
, (12.3)

where the inverse propagator U [0; gµν = δµν ]
d=4
Weyl is given by Eq. (4.106). Lastly,

we must specify the structure of the cutoff operator Rk,k′ [g] given by Eq. (6.64).

While we obviously should set γ = 2 in this equation, such that the cutoff

operator is of the same order as the Hessian of the EAA, it is moreover convenient

to set the tensor structure Zk[g] to

Z h.−d.
k [gµν = δµν ] = −

{
− 1

2f 2
2 (k)

P(2) +
1

α
P(1)

+

(
1

f 2
0 (k)

+
6β2

α

)
P(0,ss) +

2(β − 1)2

α
P(0,ww)

+
2
√

3β(β − 1)

α

[
P(0,sw) + P(0,ws)

]}
,

(12.4)
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when generically considerung higher derivative gravity (f 2
0 finite) and to

Z Weyl
k [gµν = δµν ] = −

{
− 1

2f 2
2 (k)

P(2) +
1

α

[
P(1) +

3

8
P(0,ss) +

9

8
P(0,ww)

− 3
√

3

8
P(0,sw) − 9

√
3

8
P(0,ws)

]}
,

(12.5)

when considering Weyl squared gravity (f 2
0 →∞). Further, we will restrict this

analysis to employing the optimized cutoff (6.5) as the cutoff profile R(0).

12.1. The one-loop anomalous dimension of the volume operator

in higher-derivative gravity

With the ingredients we have set up so far, the inverse propagator appearing in

Eq. (12.1) reads[(
Γ

(2)
k

)
11

[g, g] + Rgrav
k [g, g]

]
gµν=δµν

=
[
�2 + k4R(0)(�2/k4)

]
Z h.−d.
k [gµν = δµν ] ,

(12.6)

with � = δµν∂µ∂ν . This operator obviously is inverted by the propagator[(
Γ

(2)
k

)
11

[g, g] + Rgrav
k [g, g]

]−1

gµν=δµν
=

1

[�2 + k4R(0)(�2/k4)]
Z h.−d.
k [δµν ]

−1 ,

(12.7)

where Z h.−d.
k [δµν ]

−1 can be read off from Eq. (4.101):

Z h.−d.
k [δµν ]

−1 = −

{
− 2f 2

2 (k)P(2) + α

[
P(1) +

1

2(β − 1)2
P(0,ww)

]

+ f 2
0 (k)

[
P(0,ss) +

3β2

(β − 1)2
P(0,ww)

+

√
3β

1− β
(
P(0,sw) + P(0,ws)

) ]}
.

(12.8)
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Thus, the one-loop composite-operator FRGE (12.1) becomes

γ̄1L
n (k)Vn[g, g]

∣∣
gµν=δµν

= −1

2
TrST 2

[
∂t
[
k4R(0)(�2/k4)

]
Z h.−d.
k [δµν ]

1

[�2 + k4R(0)(�2/k4)]
Z h.−d.
k [δµν ]

−1

× V (2)
n [g, g]

∣∣
gµν=δµν

1

[�2 + k4R(0)(�2/k4)]
Z h.−d.
k [δµν ]

−1

]
.

(12.9)

As on flat space all operators involved commute, we are free to rewrite the RHS

as

γ̄1L
n (k)Vn[g, g]

∣∣
gµν=δµν

= −1

2
TrST 2

[
V (2)
n [g, g]

∣∣
gµν=δµν

Z h.−d.
k [δµν ]

−1 ∂t
[
k4R(0)(�2/k4)

]
[�2 + k4R(0)(�2/k4)]

2

]
.

(12.10)

The Hessian V (2)[g, g] of the geometric operator is given by Eq. (11.10) together

with Eq. (11.16). Let us introduce the auxiliary tensor

T µνρσ(u) =
∂xρ(u)

∂uc
∂xσ(u)

∂ud
∂xµ(u)

∂ua
∂xν(u)

∂ub

×
[
gab(u)gcd(u)− gac(u)gdb(u)− gad(u)gcb(u)

]
, (12.11)

by means of which the matrix elements of the Hessian V (2)[g, g] become

〈x1, µ, ν|V (2)[g, g]|x2, ρ, σ〉 =
1√

g(x1)
√
g(x2)

1

4

∫
dnu
√

det g(u)T µνρσ(u)

× δ(d)(x(u)− x1)δ(d)(x(u)− x2) .

(12.12)
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Therewith, Eq. (12.10) becomes

γ̄1L
n (k)Vn[g, g]

∣∣
gµν=δµν

= − 1

2

∫
d4x1

∫
d4x2

∫
d4x3

1

4

∫
dnu
√

det g(u)T µνρσ(u)

× δ(d)(x(u)− x1) δ(d)(x(u)− x2)

× 〈x2, ρ, σ|Z h.−d.
k [δµν ]

−1|x3, α, β〉

× 〈x3, α, β|
∂t
[
k4R(0)(�2/k4)

]
[�2 + k4R(0)(�2/k4)]

2 |x1, µ, ν〉

= − 1

8

∫
dnu
√

det g(u) 〈x(u), µ, ν|T(u)Z h.−d.
k [δµν ]

−1

×
∂t
[
k4R(0)(�2/k4)

]
[�2 + k4R(0)(�2/k4)]

2 |x(u), µ, ν〉 ,

(12.13)

with (T(u)φ)µν := T µνρσ(u)φρσ. As we have chosen the background metric to

be flat, we also are free to evaluate the traces in momentum space, by means of

the unity operator 1ST 2 =
∫

d4p |p, ρ, σ〉〈p, ρ, σ|,

γ̄1L
n (k)Vn[g, g]

∣∣
gµν=δµν

= −1

8

∫
dnu
√

det g(u)

∫
d4p

∂t
[
k4R(0)(p4/k4)

]
[p4 + k4R(0)(p4/k4)]

2

× 〈x(u), µ, ν|T(u)Z h.−d.
k [δµν ]

−1|p, ρ, σ〉〈p, ρ, σ|x(u), µ, ν〉 . (12.14)

Here, we can use that

〈p, ρ, σ|x(u), µ, ν〉 = IST 2
ρσ
µν

e−ix(u)·p

√
2π

4 (12.15)

and that

〈x(u), µ, ν|T(u)Z h.−d.
k [δµν ]

−1|p, ρ, σ〉

= T µναβ(u)
(
Z h.−d.
k [δµν ]

−1
)
αβ

ρσ(p)
eix(u)·p

√
2π

4 , (12.16)
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where the projectors entailed in
(
Z h.−d.
k [δµν ]

−1
)
αβ

ρσ(p) are now all expressed

through momenta, o.e. Lµν = pµpν/p2 et cetera. Hence we have arrived at

γ̄1L
n (k)Vn[g, g]

∣∣
gµν=δµν

= −1

8

1

(2π)4

∫
dnu

√
det g(u)

∫
d4p

∂t
[
k4R(0)(p4/k4)

]
[p4 + k4R(0)(p4/k4)]

2

× T µναβ(u)
(
Z h.−d.
k [δµν ]

−1
)
αβ

ρσ(p) .

(12.17)

Next, we will show that the tensor trace T µναβ(u)
(
Z h.−d.
k [δµν ]

−1
)
αβ

ρσ(p) is

infact independent of u and p when appearing under an momentum integral.

Therefore, we employ symmetric integration under the integral
∫

d4p [148]:pµpν 7→ 1
4
p2δµν

pµpνpρpσ 7→ 1
24
p4 (δµνδρσ + δµρδνσ + δµσδνρ) .

(12.18)

We find that under the integral
∫

d4p the following relations hold (the explicit

calculations of the relations can be found in appendix F.12):

T µνρσ(u)P (2)ρσ
µν(p) =

10

72
n(2− 5n) ,

T µνρσ(u)P (1)ρσ
µν(p) =

1

12
n(2− 5n) ,

T µνρσ(u)P (0,ss)ρσ
µν(p) =

1

72
n(11n− 26) ,

T µνρσ(u)P (0,ww)ρσ
µν(p) = − 1

24
n(n+ 2) ,

T µνρσ(u)
[
P (0,sw) + P (0,ws)

]
ρσ
µν(p) =

1√
3 12

n(7n− 10) ,

T µνρσ(u)P (0,ws)ρσ
µν(p) =

1√
3 24

n(7n− 10) .

(12.19)

Thus, with Eq. (12.8) we have

T µναβ(u)
(
Z h.−d.
k [δµν ]

−1
)
αβ

ρσ(p)

= 2f 2
2 (k)

10

72
n(2− 5n)− α 1

12
n(2− 5n)− f 2

0 (k)
1

72
n(11n− 26)

+
6β2f 2

0 (k) + α

2(β − 1)2

1

24
n(n+ 2) +

√
3f 2

0 (k)β

β − 1

1√
3 12

n(7n− 10) .

(12.20)
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Therewith, we can already read off the one-loop anomalous dimension γ̄1L
n (k) ≡

γ1L
n (f 2

0 (k), f 2
2 (k)) from Eq. (12.17):

γ1L
n

(
f 2

0 (k), f 2
2 (k)

)
=− 1

8

1

(2π)4

∫
d4p

∂t
[
k4R(0)(p4/k4)

]
[p4 + k4R(0)(p4/k4)]

2

×

{
f 2

2 (k)
20

72
n(2− 5n)

+ α

[
− 1

12
n(2− 5n) +

1

48(β − 1)2
n(n+ 2)

]

+ f 2
0 (k)

[
− 1

72
n(11n− 26) +

6β2

2(β − 1)2

1

24
n(n+ 2)

+
β

(β − 1)

1

12
n(7n− 10)

]}
.

(12.21)

Let us evaluate the momentum integral in polar coordinates with P = |p| using

the optimized cutoff (6.5):∫
d4p

∂t
[
k4R(0)(p4/k4)

]
[p4 + k4R(0)(p4/k4)]

2 = 2π2

∫
dP

P 3k∂k(k
4 − P 4)θ(k4 − P 4)

[P 4 + (k4 − P 4)θ(k4 − P 4)]2

= 2π2

∫ k

0

dP
P 34k4

k8

= 2π2 .

(12.22)

All in all, we thus have arrived at the final result for the anomalous dimension:

γ1L
n

(
f 2

0 (k), f 2
2 (k)

)
= − 1

4(4π)2

{
f 2

2 (k)
20

72
n(2− 5n) + α

[
− 1

12
n(2− 5n) +

1

48(β − 1)2
n(n+ 2)

]

+ f 2
0 (k)

[
− 1

72
n(11n− 26) +

6β2

2(β − 1)2

1

24
n(n+ 2)

+
β

(β − 1)

1

12
n(7n− 10)

]}
.

(12.23)
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12.2. The one-loop anomalous dimension of the volume operator

in Weyl-squared gravity

The calculation of the anomalous dimension based on Weyl-squared gravity is

the very same as based on higher-derivative gravity, with the sole difference that

the tensor structure of the inverse propagator must be replaced by Eq. (12.5).

We can read off its inverse from Eq. (4.107):

Z weyl
k [gµν = δµν ]

−1 = −

{
− 2f 2

2 (k)P(2) + α

[
P(1) − 2

3
√

3
P(0,ws) +

2

3
P(0,ww)

]}
.

(12.24)

If we trade Z h.−d.
k [δµν ]

−1 in Eq. (12.17) for Z weyl
k [δµν ]

−1 we can take a shortcut

towards calculating the anomalous dimension γ̄1L,Weyl
n (k) of Vn[g, g]

∣∣
gµν=δµν

based

on Weyl-squared gravity. Therefore, the only remaining task is to calculate the

tensor trace T µναβ(u)(Z Weyl
k [δµν ]

−1)αβρσ(p). Using symmetric integration and

the relations (12.19), we find that under the integral
∫

d4p one has

T µναβ(u)
(
Z h.−d.
k [δµν ]

−1
)
αβ

ρσ(p)

= 2 f 2
2 (k)

10

72
n(2− 5n) + α

[
− 1

12
n(2− 5n) +

1

54
n(7n− 10) +

1

36
n(n+ 2)

]
.

(12.25)

Thus, by following the procedure of the previous subsection, we find the one-

loop anomalous dimension γ̄1L,Weyl
n (k) ≡ γ1L,Weyl

n (f 2
2 (k)),

γ1L,Weyl
n

(
f 2

2 (k)
)

= − 1

4(4π)2

{
2 f 2

2 (k)
10

72
n(2− 5n)

+ α

[
− 1

12
n(2− 5n) +

1

54
n(7n− 10) +

1

36
n(n+ 2)

]}
.

(12.26)

12.3. Discussion of the one-loop anomalous dimensions of the

volume operator

Suppose Vn[g, g] depends on some characteristic length scale r. If we then take

the expectation value of Vn[g, g]
∣∣
gµν=δµν

(r) with respect to (6.2), with the bare
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action specified to Eq. (4.88), Eq. (9.62) tells us that in the fixed-point regime

we will find the scaling relation〈
Vn[g, g]

∣∣
gµν=δµν

(r)
〉
k→∞

∼ rn−γ
1L
n (f2

0 ∗,f
2
2 ∗) , (12.27)

respectively in the limit f 2
0 →∞,〈

Vn[g, g]
∣∣
gµν=δµν

(r)
〉
k→∞

∼ rn−γ
1L,Weyl
n (f2

2 ∗) . (12.28)

As we did when studying the scaling behavior of Vn[g, g](r) in the Einstein-

Hilbert truncation, we can also express this scaling relation in terms of the

length `[g, g] := V1[g, g] of a curve:〈
Vn[g, g]

∣∣
gµν=δµν

(r)
〉
k→∞

∼
〈
`[g, g]

∣∣
gµν=δµν

(r)
〉n−γ1L

n (f2
0 ∗,f

2
2 ∗)

1−γ1L
1 (f2

0 ∗,f
2
2 ∗)

k→∞
, (12.29)

and likewise for the case f 2
0 →∞.

Before we analyze the values of the anomalous dimension in the fixed-point

regime, a few general comments are in order. We observe that to the anomalous

dimension (12.23) in higher-derivative gravity, as well as to that of Weyl-squared

gravity given by Eq. (12.26), all propagating modes of the gauge-fixed propaga-

tor (4.101), respectively (4.107), contribute. This includes both gauge-invariant

spin-2 and scalar modes as well as the unphysical vector and pseudoscalar modes

(cf. Subsection A.2.2).

In Subsection 11.2.1 we had already noted that Vn[g, g] is not a true observ-

able as it clearly breaks diffeomorphism invariance (on the “bulk” manifold).

Its anomalous dimension (12.23) (or (12.26), respectively) reflects this fact in

its gauge dependence. In order to construct an actual observable, we could

combine Vn[g, g] with some observable amplitude such that the gauge depen-

dencies of the respective anomalous dimensions cancel. This procedure has

been explored in two-dimensional quantum gravity, where calculations are usu-

ally performed in the conformal gauge [149–152]. However, here we restrict

our analysis to a much simpler workaround: It is clear that in the physical

gauge α = β = 0 (or α = 0 in case of Weyl-squared gravity) only the gauge-

invariant, i.e., physical, modes propagate [153]. This gauge is often associated
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to the unique “Vilkovisky-de Witt effective action” which refers to the con-

struction of an gauge-independent effective action [154]. If the anomalous di-

mension γ1L
n (f 2

0 (k), f 2
2 (k)) or γ1L,Weyl

n (f 2
2 (k)) it gauge-independent they should

clearly vanish in the UV for k → ∞ because higher-derivative gravity as well

as Weyl-squared gravity is asymptotically free in the coupling f 2
2 (to which the

anomalous dimension should be proportional if it were gauge-invariant). There-

fore, it is important to point out that the anomalous dimension in the physical

gauge vanishes in the UV (at the Gaussian fixed point). To see this, let us ex-

press the anomalous dimension in the physical gauge in terms of the couplings

f 2
2 and ω given by Eq. (8.8):

γ1L
n

(
f 2

2 (k), ω(k)
)

=
n

(4π)2

f 2
2 (k)

576

[
40(5n− 2) +

1

ω(k)
(11n− 26)

]
, (12.30)

and

γ1L,Weyl
n

(
f 2

2 (k)
)

=
1

(4π)2

10

144
(5n2 − 2n)f 2

2 (k) . (12.31)

As f 2
2 → 0 for k → ∞, the anomalous dimension in the physical gauge clearly

vanishes in the UV. (In case of higher-derivative gravity we could say in other

words: It vanishes at either of the fixed points (8.15) or (8.16).)

As soon as we slightly move away from the UV-fixed point, we find ourselves

in a regime where scale invariance is approximately realized, characterized by

an effective fractial scaling dimension of the operator Vn[g, g]
∣∣
gµν=δµν

that still

scales according to Eq. (12.27) or Eq. (12.28), respectively. In case of higher-

derivative gravity, one finds that, given f 2
2 > 0, γ1L

n (f 2
2 , ω) takes positive or

negative values in this regime depending on n. For n = 1, 2 (legnths and areas),

γ1L
n (f 2

2 , ω) is positive for 1/ω < (80 − 200n)/(−26 + 11n), while for n = 3, 4

(three- and four-volumes) it is positive for 1/ω > (80 − 200n)/(−26 + 11n).

Hence, the effective scaling dimension of e.g. the length of a curve can decrease

or increase with respect to its classical scaling dimension, while the opposite

happens for e.g. a three-volume. We can identify this as a distinct feature of

the fractal geometry of higher-derivative gravity as other models of quantum

gravity usually only show dimensional reduction phenomena. In case of Weyl-

squared gravity, it is easy to see that the sign of γ1L,Weyl
n (f 2

2 ) in the physical

gauge goes one-to-one with the sign of f 2
2 .
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Lastly, let us analyze the values of the anomalous dimension for d = 4 − ε.
We will restrict the shift 4 7→ 4 − ε to the f 2

2 -axis of theory space (see Section

8.3). In this case, higher-derivative gravity is equipped with the non-Gaussian

fixed points (f 2
2 ∗,ε, ω∗,1) and (f 2

2 ∗,ε, ω∗,2) given by Eq. (8.26). The first one is

UV-stable while the second one is a saddle point. The corresponding fixed point

(8.28) for Weyl-squared gravity is gauge-dependent and in the physical gauge

given by f 2
2 ∗,ε;Weyl ≈ −11.9030ε. Table 12.3 depicts the values of the anomalous

dimension in the physical gauge at these fixed points.

Table 1. Fixed-point values of the one-loop anomalous dimen-
sion in d = 4− ε.

γ1L
n (f 2

2 ∗,ε, ω∗,1) γ1L
n (f 2

2 ∗,ε, ω∗,2) γ1L,Weyl
n (f 2

2 ∗,ε;Weyl)

n = 1 −0.1012ε −0.0160ε −0.0157ε

n = 2 −0.1291ε −0.0837ε −0.0838ε

n = 3 −0.0839ε −0.2031ε −0.2041ε

n = 4 +0.0348ε −0.3742ε −0.3769ε

Conclusively, in Subsection 11.2.1 we had argued that the study of the renor-

malization behavior of n-dimensional volumes might be particularly useful for

the comparison of the geometrical features of various approaches towards quan-

tum gravity. In this chapter, we have already calculated the anomalous dimen-

sion of some n-dimensional volume for two different approaches: in the previous

section for the Asymptotic Safety approach, thereby restricting the analysis to

the Einstein-Hilbert truncation of theory space, and here, in this section, for

the asymptotically free theory of higher-derivative gravity. Comparing our re-

sults for both approaches, we find striking differences. In the Asymptotic Safety

approach, represented by the Einstein-Hilbert truncation, the effective scaling

dimension of the n-dimensional volume in the UV (at the non-Gaussian fixed

point) was dictated by severe quantum corrections, given by the fixed-point

values of the anomalous dimension. For d = n = 4 we even found that the clas-

sical scaling dimension and its quantum correction almost perfectly annihilate.

On the other hand, for higher-derivative gravity, the effective scaling of the n-

dimensional volume in the UV was found to be purely classical due to the theory

being asymptotically free in the coupling f 2
2 . This suggests that the asymptot-

ically free higher-derivative theory of quantum gravity and asymptotically safe
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quantum gravity are two distinct universality classes, each being characterized

by different fractal scaling properties of the respective geometrical operators.



CHAPTER 13

Conclusion and outlook

The main novel results of Part 3 are the formulae and fixed-point values for the

anomalous dimension of a generalized volume operator within two frameworks.

On the one hand, we employ the framework of Asymptotic Safety scenario for

quantum gravity which we approximate by the Einstein-Hilbert truncation. On

the other hand, we employ the framework of higher-derivative gravity, where

we restrict the analysis to a one-loop approximation. As the fixed-point values

of said anomalous dimension depict severe quantum corrections to the classical

scaling dimension in the former scenario, while they vanish due to Asymptotic

Freedom in the latter scenario, the obtained results suggest that these two sce-

narios belong to two distinct universality classes.

Generally, it is to expect that for more refined ansätze for the first trunca-

tion, the anomalous dimension might obtain large corrections to the preliminary

values obtained here. This is because each truncation of theory space on which

the FRGE is approximated constitutes for itself a non-perturbative excerpt of

a fundamental quantum gravitational theory. Thus by repeating the analysis

for larger and larger first truncations might lead to fully different results rather

than to smaller and smaller corrections (as for example in perturbation theory

when increasing the number of loops for a given analysis). Hence, to verify the

obtained results for more refined first truncations is essential in order to find out

whether these are true aspects of the theory or rather pure truncation artifacts.

A similar reasoning holds for the second truncation. The overall analyses of

Part 3 should be repeated for mixing ansätze of a basis of several composite

(geometric) operators. Again, one should therefrom expect large corrections to

the values obtained here. Especially, the anomalous dimension of the geodesic

length is expected to differ from that of the length of a curve in that case.1

1For a second truncation given by the operators
∫

ddx
√
g Rn, n ≥ 2, the anomalous-dimension

matrix has already been calculated [155, 156].

191
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Despite severe corrections to the results presented in Part 3 can be expected

from a repeated analysis with more refined approximations, the results of Part 3

nevertheless represent a highly important first step towards the study of geo-

metric operators in quantum gravity.

Firstly, the results are important for the comparison of the different ap-

proaches towards quantum gravity. In the discrete as well as in the continuum-

based approaches similar dimensional reduction phenomena have been observed

so far. Here, we calculated a further type of dimensional reduction, in form of

the fixed-point scaling of the volume operator, for the first time within the

continuum-based approaches. It would be intriguing if the corresponding geo-

metric operators analyzed within the discrete approaches scaled similarly. Such

studies within the discrete approaches are thus interesting prospects for the fu-

ture.

Secondly, the results presented here also make an important first step to-

wards the construction of observables within quantum gravity. All formulae

for the anomalous dimension presented in Part 3 depend on the gauge-fixing

parameters and hence are not full-fledged observables. The construction of a

full-fledged observable for quantum gravity clearly is beyond the scope of this

thesis, however, it is clear that geometric operators will play a crucial role in

the construction of a suitable observable for quantum gravity. As so far no re-

sults for renormalized composite operators in quantum gravity were known, the

results of Part 3 contribute to the pursuit of formulating suitable observables

for quantum gravity.



Part 4

Background Independent field

quantization with sequences of

gravity-coupled approximants





CHAPTER 14

Summary of Part 4

In Part 4, based on the author’s publications [5] and [6], we propose a further

novel line of research within the continuum-based approaches towards quantum

gravity, which explores the consequences of Background Independence for the

concepts of regularization and renormalization.

The principle of Background Independence requires the (background) metric

of spacetime to be determined by a dynamical law, rather than fixed a priori

by hand. Thus, we necessarily must consider quantized fields on a curved back-

ground manifold which is subject to Background Independence. It is suggestive

to thereby separate the treatment of quantized matter fields on a curved back-

ground from quantum gravity itself, i.e., the quantization of spacetime.

To rigoruosly implement the principle of Background Independence in both

these quantum field theoretical settings, we propose three essential require-

ments:

(R1) Background Independence

(R2) Gravity-coupled approximants

(R3) N -type cutoffs .

These requirements imply a novel framework for the quantization of fields. They

are not logically independent. Rather (R2) is an interpretation of a regularized

quantum field that obeys (R1), while (R3) is a specific instruction for the re-

alization of (R2).

(A) Sore points of background-dependent quantization frameworks.

Before summarizing these requirements in more detail, let us first illustrate

some of the problems that occur when gravity-coupled fields are quantized in a

framework where these requirements obviously do not hold.

Essentially, a quantum field theory is a quantum system whose degrees of

freedom are parametrized by the points of a smooth manifold which typically

195



196 14. SUMMARY OF PART 4

models spacetime. Thus a quantum field theory can be regarded as a quantum

mechanical system in the limit of infinitely many degrees of freedom. However,

this limit usually does not straightforwardly allow for a physical interpretation,

because of the notorious ultraviolet divergences which are due to the “too many”

degrees of freedom of the system. Its physical interpretation then comes along

with its regularization and renormalization.

A typical regulator employed in background-dependent quantum field theo-

ries, such as those of the Standard Model of particle physics which is defined

on the rigid Minkowski space, is the momentum space cutoff. Typically, it has

the dimension of mass and therefore defines a scale: modes of the field with

momenta below this mass scale are retained, while the other field’s modes are

discarded. Therewith, the definition of the cutoff scale requires a metric on

the background manifold (to define the field’s momenta). By fixing a metric to

introduce a momentum cutoff, obviously the principle of Background Indepen-

dence is violated.

A typical problem that occurs when fields are quantized in this manner and

only then are coupled to gravity is one major aspect of the cosmological con-

stant problem [7, 157–159], namely the gravitational field generated by the zero

point oscillations of quantum fields. To estimate this gravitational field one

can reason as follows1: One quantizes a free and massless field on Minkowski

space, which is assumed to follow the dispersion relation ω(p) = |p|. Then one

identifies the field with a set of harmonic oscillators, each contributing its zero

point energy 1
2
~ω to that of the vacuum state:

%vac =
1

2

∫
d3p

(2π)3
|p| .

This vacuum energy is quartically UV divergent and when regulated via a mo-

mentum cutoff |p| ≤P reads

%vac ∼P4 .

Although this vacuum energy is that of a field living on Minkowski space, it is

then argued that %vac, like any other form of energy, should contribute to the

curvature of spacetime. The curvature of spacetime is determined by the metric

of spacetime, which in turn is dynamically determined by Einstein’s equation.

Thus to account for the vacuum fluctuations of the above quantized field, we

1W. Pauli is credited for this argument [9, 158].
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should add ∆Λ = (8πG)%vac = 8πcGP4 to the cosmological constant appear-

ing in Einstein’s equation. Note the violation of the principle of Background

Independence: In some parts of Einstein’s equation, namely in ∆Λ, the metric

has been explicitly fixed to that of Minkowski space. In other words, we employ

the vacuum energy of quantized fields living on Minkowski space to determine

the geometry of another spacetime. Intuitively, this might seem a valid approx-

imation of the quantized field. However, later we will see that actually it is not,

because of the paramount role of Background Independence.

Finally, it turns out that for every plausible scale P, the curvature produced

by ∆Λ is by far too large to be consistent with observation. For example, if

the cutoff is specified to Planck scale, P = mPl, the calculation produces a

curvature which is about 10120 times larger than the value from modern-day

cosmological observations.

According to a variant of this reasoning, Einstein’s equation contains, be-

sides ∆Λ, also a bare cosmological constant, Λb, whose value is then tuned in

dependence on P in such a way that the sum Λobs = Λb(P) + ∆Λ(P) equals

precisely the observed value. This version of the argument avoids making a

false prediction (any prediction, in fact), but at the expense of an enormous

naturalness problem. To achieve the desired value of Λobs, the bare quantity

Λb(P) must be consequently fine-tuned with a precision of 120 digits.

Often, the concept of supersymmetry was dealt with as a possible way to re-

solve this form of the cosmological constant problem. It was assumed that the

contributions of each field and its “superpartner” to the energy of the vacuum

state more or less perfectly cancel, leading to a serverely smaller value of %vac.

However, as supersymmetry is unlikely to exist, and if it does then only in a

broken form, this avenue of escape from the cosmological constant problem is

blocked.

(B) Quantization and Background Independence. Next, let us summa-

rize the requirements (R2) and (R3) that lead to a quantization framework

which realizes Background Independence.

We refer to an approximant of a state of a quantum field as a quasi-physical

system which is built from finitely many degrees of freedom that are coupled
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to gravity. I.e., an approximant, denoted as Ψf ⊗metric, consists of a quantum

mechanical state Ψf with f < ∞ degrees of freedom, together with a classical

background metric. The requirement (R1) of Background Independence means

that we must employ only those approximants whose metric is determined by

the dynamical backreaction of the state Ψf . As this self-consistency condition is

fulfilled by these gravity-coupled approximants, we denote them symbolically as

ΨSC
f ⊗ self-consistent metric. Therewith, the requirement (R2) further means

that a quantum field theory can only be identified with the limit f → ∞ of a

self-consistent approximant.

The main result of Part 4 is the elucidation of the above version of the cosmo-

logical constant problem for certain simple quantum field theoretical settings.

For these, we construct self-consistent approximants and show that in the limit

f → ∞ the curvature of spacetime does not become disproportionately large.

Thereby, we put a particular emphasis on the fact that the limit f → ∞ and

the evaluation of the self-consistency condition do not commute.

Moreover, we require the (self-consistent) approximants to be physically real-

izable systems which narrows the number of candidates for a possible regulator.

For instance, neither dimensional regularization nor the zeta function technique

allow for the interpretation of the regularized system as a viable quantum sys-

tem. Additionally, the regularization scheme must be in accordance with Back-

ground Independence which rules out all metric-dependent regulators, e.g., a

momentum cutoff.

A simple regularization scheme, which is in accordance with Background In-

dependence, is the employment of a cutoff of the N-type. In some way, N -cutoffs

are similar to momentum cutoffs: both organize the field modes in such a way

that a certain subset of the modes is retained while the complementary subset

of the modes is discarded. In case of a momentum cutoff, the cutoff threshold is

set by a mass scale which leads to a metric-dependent selection of which modes

to retain and discard. In case of an N -cutoff, however, this selection process

is fully independent of metric whereby the cutoff threshold is set by a natural

(or positive real) number N . To avoid details at this point, the concept of an

N -cutoff is at best illustrated by a simple example:

Consider a Gaussian field on the round 2-sphere with radius r. Then the
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field’s modes can be staggered in terms of the eigenvalues of the negative Lapla-

cia −�g, where gµν is the r-dependent background metric. This spectrum is

well known and given by l(l + 1)/r2, l = 0, 1, 2, . . . . Now we can implement an

N -cutoff by demanding that all field modes with l ≤ N are to be retained, while

those with l > N are to be discarded. This selection process of field modes is

clearly independent of the metric and can w.l.o.g. be extended to more complex

systems. Thus, in this seemingly simple manner, quantum field theories can be

regularized in accordance with Background Independence.

Lastly, we note that in case an N -cutoff is implemented, the degrees of free-

dom f of the resulting quantum mechanical system also become a function of N .

(C) The quantum systems discussed in Part 4. The opening Chapter 15

of Part 4 explains in detail the framework of quantization via gravity-coupled

approximants, as outlined above. Next, we summarize the self-consistent ap-

proximants constructed in Part 4 as well as their properties.

In Chapter 16 we begin the exploration of self-consistent, gravity-coupled

approximants by considering a massive scalar field on a classical, curved back-

ground manifold. We assume the latter to be compact and without boundary

and in all applications specify it to a four-dimensional Euclidean sphere S4(L),

whose metric is parametrized by its radius L. Then by evaluating the self-

consistency condition, i.e., the backreaction of the regularized quantum system

with f(N) degrees of freedom on the metric, we obtain the self-consistent spher-

ical background geometries, given by their radii LSC(N).

Thus, in order to construct a self-consistent approximant, we first must reg-

ularize the scalar field via an N -cutoff which leads to a quantum mechanical

system with f(N) degrees of freedom. This system then contributes via its ef-

fective stress-energy tensor to the RHS of a semiclassical version of Einstein’s

equation, which determines the self-consistent background radii LSC(N). In

Chapter 16 we identify a first type of approximants by promoting the scalar

field’s classical stress-energy tensor to an operatorial relation for the quantized

scalar field. Its expectation value then is regularized via an N -cutoff which on

S4(L) results in the self-consistency condition (16.55),

R(L) ≡ 12

L2
= 4Λb +

3G

πL4

[
f(N) +

N∑
n=1

Dn
µ2

En(L) + µ2 + ξR(L)

]
.
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Here, Λb is the bare cosmological constant, G is Newton’s constant, and En
and Dn are the eigenvalues and their degeneracies of −�g. Moreover, µ is the

mass of the scalar field and ξ is a constant coupling the scalar field to the scalar

curvature R. We also show that the degrees of freedom of the regularized system

are given by

f(N) =
N∑
n=1

D(d=4)
n =

1

12

[
N4 + 8N3 + 23N2 + 28N

]
.

We then discuss the solutions of this self-consistency condition in dependence

on the parameters Λb, µ and ξ. It turns out that in any of these cases, the

cosmological constant problem does not occur. If the scalar field was quantized

in a background-dependent way, the radius appearing on the RHS of the self-

consistency condition would be a rigid, fixed radius. This leads to a form of

the cosmological constant problem because the resulting “self-consistent” radius

diverges in the limit N → ∞, i.e., the radius would shrink as more and more

field modes are quantized. On the other hand, with Background Independence

strictly implemented, let us for instance consider the case µ = 0 and Λb = 0.

Then the self-cosistent radius is given by Eq. (16.71),

LSC(N)2 =
G

4π
f(N) =

GN4

48π

{
1 +O

(
1

N

)}
.

Hence, the radius of the self-consistent S4-background geometry grows as more

and more field modes are quantized, until the background manifold becomes

perfectly flat in the limit N → ∞. This means that the cosmological constant

problem is fully absent.

A further striking result of these self-consistent S4-geometries is that they

allow for a natural explanation of the microscopic degrees of freedom which the

thermodynamic Bekenstein-Hawking entropy “counts”. Therefore, we consider

a four-dimensional de Sitter space whose Bekenstein-Hawking entropy is given

by S = π
G
L2. When we specify the radius in that formula to the above self-

consistent radii arising from the quantization of a massless scalar field at bare

cosmological constant, we find that

S (N) =
1

4
f(N) .
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This means that, up to a factor 1/4, the thermodynamical entropy S (N) pre-

cisely amounts to the number of degrees of freedom f(N) of the self-consistent

approximant of the scalar field. This proves a “Λ-N -connection” which was

speculated about in the literature [160, 161].

In Chapter 17 we work out a second type of approximants for the quantized

scalar field. These arise from the point of view of the effective gravitational

action Γ[g] for the background metric gµν , which is the restriction of the full

effective action to a vanishing scalar field, Γ[g] ≡ Γ[A; g]|A=0. From this point

of view, the self-consistency condition is given by the equations of motion for

the background metric gµν , i.e., δΓ[g]/δgµν = 0. To be able to solve this self-

consistency condition, we make use of the one-loop approximation of the effec-

tive action which is of the form Γ[g] = SEH[g]+Γ1L[g]. Then, the self-consistency

condition assumes the form of a (semi-classical) Einstein equation whose RHS

is given by an effective stress-energy momentum tensor, induced from the one-

loop term Γ1L[g]. It turns out, that this effective stress-energy tensor differs

from that of the first type of approximants. For a massless scalar field, for

instance, the resulting self-consistency condition (17.43) reads

12

L2
= 4Λb −

3G

π

1

L4
f(N) .

The resulting self-consistent radii LSC(N) exhibit the same physical proper-

ties when removing the cutoff as for the first type of approximants: For every

Λb > 0, there exists an N -sequence of self-consistent radii LSC(N) that grows

when more and more modes are added, until ultimately in the limit N →∞, the

self-consistent radius becomes infinite and the underlying S4-geometry becomes

perfectly flat. Hence, also for the second type of approximants, the cosmological

constant problem is fully absent in these settings.

Moreover, we also show the origin of the difference between the first and sec-

ond type of approximants. Namely, their difference can be rooted in the metric

dependence of the path integral measure. In many quantum field theoretical

considerations, the dynamics of the background metric is not of importance

which results in a neglect of the metric dependence of the path integral mea-

sure. Then, “semi-classical” considerations usually agree with those obtained

from the point of view of the effective action. However, by the example of

Chapters 16 and 17, it is shown that there indeed is a difference between these

two “quantization techniques”.
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In Chapter 18 we leave the setting of a quantized scalar field on a classical

background manifold and apply the quantization framework by N -sequences of

approximants to quantum gravity itself.

The analysis itself mainly follows the previous two chapters on the scalar

field, but is much richer in technical detail. For the construction of a first type

of approximants of quantized metric fluctuations, we come back to the one-loop

approximations of the gravitational path integral developed in Part 1. There, a

saddle point expansion of the bare action brought it into the form S = SEH+SM,

where the Einstein-Hilbert action solely depends on the background metric,

while the next term is quadratic in the metric fluctuation field which is why

we may interpret SM as the matter action for a Gaussian graviton field. Thus,

the self-consistency condition for the background metric amounts to a semi-

classical Einstein equation whose RHS is given by the expectation value of the

stress-energy tensor obtained from the matter action SM. When regularized via

an N -cutoff, the overall degrees of freedom of the approximants split into those

of the graviton field and those of the ghost fields, which in d = 4 spacetime

dimensions read

fgrav(N) =
1

12
(10N4 + 80N3 + 158N2 − 8N − 180)

fghosts(N) =
1

12
(8N4 + 64N3 + 160N2 + 128N) .

The explicit form of the self-cosistency condition obtained from this first type

of approximants is rather intricate, so we will not discuss them in detail here.

Again we obtain a second type of approximants from the point of view of the

effective action. Therefore, we also employ the one-loop approximation of the

effective action Γ[g] obtained in Part 1. In a way fully analogous to the scalar

field, the one-loop term of Γ[g] leads to an induced effective stress-energy tensor

which differs from that of the “semi-classical” stress-energy tensor precisely by

a contribution of the gravitational path integral measure.

We then show that when regulated via an N -cutoff, the radii of the self-

consistent S4-background geometries are solutions of the equation

0 = 4ΛbL
4 − 12L2 − 3G

π
{ fgrav(N)± fghosts(N)}+ further L-dependent terms .

Here, the “+” and the “−” refer to the self-consistency conditions obtained

from the first and second type of approximants, respectively. We then show
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that also in case of quantum gravity, the self-consistent S4-geometries are free

of the appearance of the cosmological constant problem: We show that in both

cases, “+” and “−”, for a non-vanishing and finite bare cosmological constant,

there exist N -sequences of self-consistent radii that grow as N becomes larger,

i.e., the radius of the background 4-sphere becomes larger as N becomes larger,

which for N →∞ leads to a fully flat background manifold. Again, also in case

of quantum gravity, the self-consistent S4-background geometries are free of the

cosmological constant problem.

However, we argue that the second type of approximants, i.e., those obtained

from the effective action, constitute a more natural candidate for physical ap-

proximants of quantum gravity. This is because only there, the degrees of

freedom of the graviton field, fgrav(N), and those of the ghost fields, fghosts(N),

in leading order in N naturally combine to fgrav(N) − fghosts(N) = 2N4 + · · · ,
i.e., to the two propagating degrees of freedom of the graviton.

The final Chapter 18 of this thesis is an addendum on the difference between

the first and second type of approximants which we constructed. We note

that this difference is rooted in the metric dependence of the path integral

measure. In Chapter 18, we work out the construction of the first and second

type of approximants for a set of general fields. Thereby, we show how the

Weyl transformations’ anomalous Ward identities, resulting from the overall

dependence of the path integral on the background metric, are related to the

difference between first and second type of approximants. This is moreover

demonstrated for the field content we had already discussed, a scalar field as

well as a graviton field accompanied by its ghost fields.





CHAPTER 15

The framework: outline and motivation

Executive summary. We propose a novel framework for the quantization of

fields which are in contact with dynamical gravity. This framework is subject

to three essential requirements: Background Independence, the use of gravity-

coupled approximants, which should constitute physically realizable quantum

systems, and the regularization scheme of cutoffs of the N -type, which are

characterized by a dimensionless number N .

What is new? The proposal that Background Independence should be already

implemented at the level of the regularized quantum field. The regularization

tool of N -cutoffs.

Based upon: Reference [5].

In this part, we present a novel scheme for the quantization of matter fields,

respectively metric fluctuations, which are coupled to classical gravity. Here,

classical gravity refers to the dynamics of a Euclidean background metric ḡ

of a Riemannian background manifold (M, ḡ), that in all applications will be

assumed compact and without boundary. This scheme satisfies three essential

requirements:

(R1) Background Independence

(R2) Gravity-coupled approximants

(R3) N -type cutoffs .

They are not logically independent, but rather (R2) relies on (R1) while (R3)

can be regarded as a realization of (R2). In the subsequent three sections we

discuss each requirement separately. Then, in the remaining chapters of this

part, we implement these requirements in two different sample models: first, in

the quantization of a scalar field on a compact Riemannian background, and

second in the quantization of gravity in the form of metric fluctuations around

a compact Riemannian background.

205
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15.1. First requirement: Background Independence

Background Independence is the paramount feature of classical general relativ-

ity and therefore is de rigueur for a quantum gravitational theory. The modern

approaches towards quantum gravity [162–164] have incorporated the desidera-

tum of Background Independence in two different ways: on the one hand, there

are approaches which literally do not employ a gravitational background in any

way, and on the other hand, there are approaches which self-consistently fix

a gravitational background by invoking the fundamental dynamical laws [165].

In Chapters 3 and 4, we have already exemplified the latter in terms of the

background field technique [35]: In order to Background-Independently quan-

tize fields, we had constructed the quantum fields on a fixed, yet arbitrary,

background, given by the background metric field, and then afterwards proven

that the (still to be renormalized) theory of these quantum fields is invariant

under background gauge transformations. Especially, the following applications

of the subsequently presented quantization scheme have recourse to Chapters 3

and 4. This why we can already regard Background Independence as a fulfilled

desideratum from here on.

15.2. Second requirement: Gravity-coupled approximants

We define an approximant as a quasi-physical system which is built from finitely

many quantum degrees of freedom that are coupled to gravity. Thus, the state

of an approximant App(f) is given by a quantum mechanical state Ψf with f <∞
degrees of freedom together with a classical (background) metric:

App(f) = Ψf ⊗metric . (15.1)

Generally, the quantum mechanical state Ψf is the state of some matter sys-

tem; in case of quantized gravity the quantum metric fluctuations around the

classical background metric can be interpreted as the graviton field. Further,

by gravity-coupled approximants we refer to those approximants whose metric

is determined by the backreaction of the state Ψf . The backreaction of the f
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quantum degrees of freedom on the metric they inhabit is a self-consistency con-

dition whichs obeys requirement (R1). Thus, we could also call gravity-coupled

approximants SC approximants, symbolically

AppSC(f) = ΨSC
f ⊗ self-consistent metric . (15.2)

The requirement (R2) of gravity-coupled approximants means the following

constraint: We allow as regularized quantum field theories only gravity-coupled

approximants. This restriction has the severe consequence that the quantum

field theory (QFT) arising in the limit f →∞ always comes along in combination

with a self-consistently determined metric,

AppSC(f)
f→∞−−−→ ΨQFT ⊗ self-consistent metric . (15.3)

The self-consistently determined metric hereby is a solution to semiclassical Ein-

stein equation with the appropriate stress-energy tensor Tµν [ΨQFT] on its RHS.

The use of gravity-coupled approximants is motivated by several considera-

tions: Firstly, in practice one always has to resort to approximate calculations

in some way. Hence, the resulting approximants should be up to representing

physically realizable systems in their own right.

Secondly, gravity-coupled approximants are subject to classical General Rela-

tivity because they fulfill the self-consistency condition. This condition is rather

natural if one considers a matter QFT on a curved background spacetime or es-

pecially Quantum Gravity itself.

Thirdly, gravity-coupled approximants should not be confined to a technical

tool for regularizing a QFT. It could very well be that experimentalists observe

some finite value fObs at which Nature is to be described by the approximant

App(fObs), rather than by the limit f →∞ (cf. Section 1.5 of [4]).

Fourthly, the limit f → ∞ and imposing the backreaction on the metric

do not commute. Let us expound this with help of the illustration in Fig-

ure 15.1: The top-left box depicts an approximant Ψf ⊗ gµν , composed of the

quantum state Ψf with f degrees of freedom and an arbitrary metric gµν . The

standard approach towards the limit f → ∞ now consists in assuming a rigid

spacetime (RS) with fixed and arbitrary metric gRS
µν . Following the top horizon-

tal arrow this leads to a QFT on a rigid spacetime given by the approximant

Ψ∞⊗gRS
µν . Then after imposing the backreation, following the downward arrow,
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we calculate the induced cosmological constant Λind and find that it is formally

infinite in absence of a cutoff. (If the bare parameters are allowed to depend

on f one will equivalently find the naturalness problem of an infinite finetuning

of the cosmological constant.) This phenomenologically unacceptable state is

illustrated in the lower right box.

On the other hand, if start over at the top-left box with the approximant

Ψf ⊗ gµν and first impose the backreaction on the metric, following the down-

ward arrow, we will arrive at a gravity-coupled approximant ΨSC
f ⊗ (gSC

f )µν .

Only then we take the limit f → ∞ and arrive at the state ΨSC
∞ ⊗ (gSC

∞ )µν of a

QFT on a self-consistent spacetime. Its metric is selected by the self-consistency

condition, adhering to the first requirement of Background Independence. As

we will demonstrate in the applications in the following chapters, the QFT on

a self-consistent spacetime can exhibit features tremendously different the QFT

obtained on a rigid spacetime.

Figure 15.1. Inclusion of the gravitational backreaction does
not commute with the limit f →∞.

15.3. Third requirement: N-type cutoffs

Up to now the concept of a gravity-coupled approximant is still unspecific. The

question arises how to construct suitable and useful gravity-coupled approxi-

mants. In the following, we will outline a possible construction by imposing a
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cutoff which is of “N -type”. The name derives from the fact that in typical

examples the regularization parameter is a positive integer, N ∈ N, but other

cases will occur as well. By implementing an N -type cutoff the degrees of free-

dom of the quantum system become a function of N , f ≡ f(N). In the case

N ∈ N, regularized quantum field theories are represented by ordered sequences

of gravity-coupled approximants, {AppSC(N) , N = 0, 1, 2, . . . }. The removal

of the regulator, corresponding in the standard case to, say, sending a lattice

constant to zero, amounts to following one such sequence for increasing N .

(A) Definition of a cutoff of the N-type. Let (M, ḡ) be a Riemannian

manifold with metric ḡµν of Euclidean signature, and let F be some function

space on (M, ḡ). We assume w.l.o.g. F to be the linear span of a basis B =

{wα( • ) | α ∈ I}, where I is an index set,

F = spanB . (15.4)

For a dimensionless parameter N ∈ N (or N ∈ [0,∞) =: R+ which we, however,

will not employ in the following applications) we define a subset of indices IN ⊂ I

and the subbasis

BN :=
{
wα( • )

∣∣ α ∈ IN} (15.5)

such that the following properties are fulfilled:

B0 = ∅ , B∞ = B and N2 > N1 ⇒ BN2 ⊃ BN1 . (15.6)

Importantly, note that no momentum scale is involved in the definition of the

family of subbases {BN}N∈N. Next, we define the subspace FN ⊂ F as the

linear span of the basis BN ,

FN := spanBN . (15.7)

Then the one-parameter family {FN}N∈N is called a cutoff of the N-type or,

short, an N-cutoff.

(B) Properties of N-cutoffs. Cutoffs of the N -type cope with the important

technical problem of regularizing the path integral

Z[ḡ] :=

∫
F

D(φ; ḡ) e−S[φ;ḡ] , (15.8)
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that manifestly depends on the background metric ḡµν . (Here, φ ∈ F.) A

possible regularized counterpart of this path integral is obtained by restricting

the domain of integration to FN :

ZN [ḡ] :=

∫
FN

D(φ; ḡ) e−S[φ;ḡ] . (15.9)

We can regard the functional ZN [ḡ] as a partition function which describes an

approximant with a finite number f ≡ f(N) degrees of freedom, given by modes

of the field φ|FN . This interpretation is legitimate since we may always choose

FN “sufficiently small” such that this desired property of ZN [ḡ] holds.

The regulator’s free parameter N does not imply a momentum or length

scale that would seperate modes of φ retained in FN from those discarded.

Furthermore, no metric is required to impose an N -cutoff. The only required

ingredients are appropriately chosen subsets of indices {IN}N∈N.

Furthermore, we point out that the concepts of regularization and renor-

malization must be looked upon separately. Especially, an N -cutoff is a mere

regulator. However, it is clear that it is generally possible to contruct sequences

ZN [ḡ], N = 0, 1, . . . , that converge to some limit. If this is (im-)possible, we

may call the theory under consideration to be (non-)renormalizable.

(C) Eigenbases of metric dependent operators. Let K [ḡ] be a self-adjoint

positive operator acting on F, e.g. the negative Laplacian K [ḡ] = −�ḡ ≡
−ḡµνD̄µD̄ν , and consider its eigenvalue problem,

K [ḡ]wα[ḡ](x) = λα[ḡ]wα[ḡ](x) , α ∈ I , (15.10)

with the eigenvalues λα[ḡ] and the eigenfunctions wα[ḡ]. We assume the spec-

trum of K [ḡ] discrete, e.g. by assuming M to be compact. The eigenfunctions

then w.l.o.g. form a basis B[ḡ] = {wα[ḡ]( • ) | α ∈ I} of F. It is clear that we

may choose metric-independent subsets of indices IN ⊂ I and define

BN [ḡ] =
{
wα[ḡ]( • )

∣∣ α ∈ IN} , (15.11)

such that the resulting one-parameter family of subspaces{
FN [ḡ] = spanBN [ḡ]

}
N∈N (15.12)
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is an N -cutoff. Here, we emphasize that although each subspace FN [ḡ] depends

on the metric the requirements for an N -cutoff are still met because the sub-

sets of indices {IN} are metric-independent. Furthermore, we emphasize that

N -cutoffs constructed from eigenbases of metric-dependent operators are not

restricted to those with descrete spectra. However, if the spectrum if continu-

ous the N -cutoff will be given by a continuous parameter N ∈ R+.

(D) N-cutoffs vs. P-cutoffs. We complete the discussion of N -cutoffs by

expounding a prominent family of counterexamples that do not comply with the

third requirement: cutoff of the “P-type”. We exemplify these by returning

to the above eigenvalue problem, whereby we assume, for convenience, that the

eigenvalues are non-degenerate. For the metric ḡµν fixed, we solve the eigenvalue

λ = λα[ḡ] for the label, α = α[ḡ](λ). Therewith, one in practice often uses the

eigenvalues to enumerate the eigenfunctions,

B[ḡ] =
{
Wλ[ḡ]( • )

∣∣ λ ∈ spec(K )
}

(15.13)

with the reparametrized mode functions

Wλ[ḡ](x) := wα[ḡ](x)

∣∣∣∣
α=α[ḡ](λ)

. (15.14)

It is not far to seek to define the subbases {BP}P∈R+ by fixing a momentum

scale P2,

BP =
{
Wλ( • )

∣∣ λ ≤P2
}
. (15.15)

The corresponding “P-cutoff” given by{
FP = spanBP

}
P∈R+ (15.16)

however does not meet the third requirement, i.e., it cannot be uniquely mapped

to an N -cutoff. The reason is obvious: Due to the substitution α → α[g](λ)

the enumeration of the basis functions has become explicitly metric-dependent,

i.e., likewise would be the subsets of indices {IN} had we somehow managed to

related P to N . Also, we note that λ and P, unlike α and N , are dimensionful

with canonical mass dimensions [λ] = 2 and [P] = 1. On the other hand, for a

given N -cutoff we can always construct a P-cutoff by P2(N)[ḡ] = λN [ḡ]. All

in all, we can conclude that the eigenfunctions used to construct a basis of F

may be allowed to depend on the metric, but their labeling necessarily must be

metric-independent.



212 15. THE FRAMEWORK: OUTLINE AND MOTIVATION

15.4. First and second type of approximants

We conclude this chapter with a general remark on two different types of ap-

proximants that we may consider for employing the self-consistency condition

in order to arrive at a gravity-coupled approximant. In other words, we point

out two different candidates for a quantum stress-energy tensor that after the

implementation of an N -cutoff become approximants, and whose backreaction

on the background metric we may then determine. The explicit construction

of these approximants will happen in the subsequent chapters; here we only

outline their unregularized “raw-versions”.

In Chapters 3 and 4 we had developed the Background Independet quantum

field theoretical treatment of a massive scalar field A as well as of the graviton

field hµν . The condensate of the one-loop approximations outlined in these

chapters was the relation

e−Γ[ḡ] :=

∫ ∏
i

D
(
φ̂i; ḡ

)
e−S[{φ̂j};ḡ] (15.17)

with ḡ the background metric and e.g. {φ̂j} = {Â} for the quantized scalar

field or {φ̂j} = {ĥµν , C̄µ, Cµ} for the quantized graviton field that is supple-

mented by the ghost fields C̄µ and Cµ. Here, Γ[ḡ] = SEH[ḡ] + Γ1L[ḡ] is the

one-loop effective action at vanishing field expectation value 〈φj〉 = 0 and

S[{φj}; ḡ] = SEH[ḡ] + SM[{φj}; ḡ] is the sum of the Einstein-Hilbert action of

the background metric and the matter action for the classical fields {φj}.

In Chapters 16, 17 and 18 we then will analyze the backreation of suitable

approximants representing the matter fields A and hµν on the background metric

ḡ, respectively. Importantly, we can do so in two ways. The first way, that we

refer to as “type 1 ”, is a standard semi-classical treatment of Einstein’s equation

for the background metric ḡ: only the matter fields are quantized and one takes

the expectation value of Einstein’s equation with respect to (15.17),〈
S[{φ̂j}; ḡ]

δgµν(x)

〉
= 0 . (15.18)
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Associated to the matter action SM[{φj}; ḡ] is the (Euclidean) stress-energy

tensor

T µν [{φj}; ḡ](x) := − 2√
ḡ(x)

δSM[{φj}; ḡ]

δḡµν(x)
, (15.19)

such that, after promoting the stress-energy tensor to an operatorial relation

for {φ̂j}, the backreaction of “type 1” amounts to the equation

2√
ḡ(x)

δSEH[ḡ]

δḡµν(x)
=
〈
T µν [{φ̂j}; ḡ](x)

〉
. (15.20)

After imposing an N -cutoff on the RHS, the fields’ degrees of freedom {fj(N)}
become encoded into the regularized stress tensor

〈
T µν [{φ̂j}; ḡ](x)

〉
N

which we

thus, together with the background metric ḡµν , identify as a possible candidate

for an approximant. We will call this candidate a first type of approximant. It

is self-consistent if and only if it backreacts on the metric via the equation of

motion above.

The second way to treat the backreaction of the matter fields, that we refer to

as “type 2 ”, is more along the lines of ordinary quantum field theory: simply take

the equations of motion for the background metric ḡ of the one-loop effective

action at vanishing field expectation values Γ[ḡ], i.e.,

δΓ[ḡ]

δḡµν(x)
= 0 . (15.21)

To the one-loop term Γ1L[ḡ] of the effective action we can associate an effective

stress-energy tensor T µνeff [ḡ] by

δΓ1L[ḡ]

δḡµν(x)
=: −1

2

√
ḡ(x)T µνeff [ḡ](x) , (15.22)

such that the backreation of “type 2” amounts to the equation

2√
ḡ(x)

δSEH[ḡ]

δḡµν(x)
= T µνeff [ḡ](x) . (15.23)

Again, after imposing an N -cutoff on the RHS, we can identify (T µνeff )N [ḡ](x)

with a possible candidate for an approximant, which we call a second type of

approximant.

Particularly, using Eq. (15.17) it is evident that the calculations of “type 1”

and of “type 2” are a priori not identical: When taking a variation with respect
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to the background metric ḡ it becomes clear that 〈T µν [{φj}; ḡ](x)〉 and T µνeff [ḡ](x)

differ exactly by the variation of the ḡ-dependent measure
∏

iD(φ̂i; ḡ). This is

not surprising: as always, when promoting a classical field to a quantum oper-

ator the prescription is not unique and after all only experiment can tell which

prescription is “correct”.

Let us illustrate this difference with a quick schematic example: Consider a

covariant tensor field Xµ, i.e., the case {φj} = {Xµ}. Its matter action may

have the structure

SM[Xµ; ḡ] =
1

2

∫
ddx
√
ḡ Xµḡ

ρσO[ḡ]µρXσ (15.24)

with O[ḡ] some operator (that is assumed to commute with ḡµν) acting on

the Hilbert space of covariant vector fields. Thus, when calculating 〈T µν [X̂µ; ḡ]〉
there are two variations to perform: firstly, that of the structure

√
ḡ ḡρσ and sec-

ondly, that of O[ḡ] itself. Interestingly, the measure D(X̂µ; ḡ) given by Eq. (D.8)

is designed exactly such that the local structure
√
ḡ ḡρσ drops out when calu-

lating the path integral (15.17), i.e.,

e−Γ1L[ḡ] =

∫
D
(
X̂µ; ḡ

)
e−SM[X̂µ;ḡ] = Det (O[ḡ]

•

•)
−1/2 (15.25)

where we have used Eq. (D.33) and dropped a power of 1/2 from the result. (For

this illustrative purpose, we neglected possible gauge redundancies in the path

integral that we would have to account for with employing the Faddeev-Popov

trick.) Therewith, we have

Γ1L[ḡ] =
1

2
TrV [ln O[ḡ]

•

•] . (15.26)

Consequently, in the calculation of T µνeff [ḡ] one must perform only a variation of

O[ḡ], while the structure
√
ḡ ḡρσ has been “removed” from appearing in the one-

loop effective action by choosing the correct, invariant path integral measure –

illustrating the origin of the difference between the backreation of “type 1” and

of “type 2”.



CHAPTER 16

A first type of approximants for a quantized scalar field

Executive summary. We determine a first type of approximants for a quan-

tized scalar field. It is constructed by promoting its classical stress-energy ten-

sor to an operatorial relation which then is regularized via an N -cutoff. The

backreaction of this approximant on the background metric amounts to a self-

consistency condition which we explicitly solve for the case that the background

manifold is a 4-sphere. We show that the resulting self-consistent radii of the

4-sphere possess intriguing physical properties. As more degrees of freedom

are added to the quantum system, they become larger, and thus the universe

becomes flatter. Hence, in this setting, the cosmological constant problem is

absent. Moreover, we show that the N -sequences of self-consistent radii allow

for an explanation of the microscopic degrees of freedom which the Bekenstein-

Hawking entropy of de Sitter space “counts”.

What is new? All research results of this chapter are new.

Based upon: Reference [5].

For notational ease, we denote the background metric

in this chapter by gµν ≡ ḡµν.

16.1. The classical field

As already defined in the previous section, we employ the definition (15.19) of

the (Euclidean) classical stress-energy tensor related to a matter action SM,

T µν := − 2
√
g

δ

δgµν
SM , (16.1)

which is equivalent to δSM = −1
2

∫
ddx
√
g T µνδgµν .

215
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The action under consideration is (3.3),1

SM[A; g] =
1

2

∫
ddx
√
g
(
gµν∂µA∂νA+ µ2A2 + ξR(g)A2

)
. (16.2)

Let us directly perform the metric variation, δgµν =: hµν , of the action in order

to find the stress-energy tensor:

δSM[A; g] =
1

2

∫
ddx

{
(δ
√
g)
[
gµν∂µA∂νA+ (µ2 + ξR(g))A2

]
+
√
g
[
δgµν∂µA∂νA+ ξδRA2

]}
. (16.3)

With the help of appendix B we find

δSM[A; g] =
1

2

∫
ddx

{
1

2

√
ggαβhαβ

[
gµν∂µA∂νA+ (µ2 + ξR(g))A2

]
−√ggµαgνβhαβ∂µA∂νA−

√
gξ
[
Rαβhαβ −Dβ(Dαh

αβ −Dβhαα)
]
A2

}
, (16.4)

which can be rearranged to

δSM[A; g] = −1

2

∫
ddx

{
− 1

2
gµν(∂A)2 − 1

2
(µ2 + ξR)gµνA2 + ∂µA∂νA

+ ξRµνA2 − ξDµDνA2 + ξgµνD2A2

}
hµν . (16.5)

Therefrom, we can read off the stress-energy tensor:2

T µν [A; g] = ∂µA∂νA − 1

2
gµν(∂A)2 − 1

2
gµνµ2A2

+ ξ

(
Rµν − 1

2
gµνR

)
A2 − ξDµDνA2 + ξgµνD2A2

. (16.6)

To verify the conservation law DµT
µν = 0 that holds on-shell only, we define

the field AOS as the solution to the classical equation of motion:

δSM[A; g]

δA

∣∣∣∣
A=AOS

= 0 ⇔
[
−�g + µ2 + ξR

]
AOS = 0 . (16.7)

1Where the context is clear, we paranthesize products in a lax way, e.g. write ∂µA∂νA instead
of (∂µA)∂νA.
2This is the Euclidean counterpart of the stress-energy stated in [154, p. 45] that has been
obtained from the corresponding Lorentzian action.
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Straightforwardly we obtain

DµT
µν [AOS; g] = (∂µAOS)gνρ[Dµ, Dρ]A

OS

+ ξgνρ {Rµ
ρDµ +Dµ[Dρ, Dµ] + [Dρ, Dµ]Dµ}A2

OS . (16.8)

As [Dµ, Dρ]f = 0 and [Dρ, Dµ]Dµf = −Rµ
ρDµf for any scalar field f , the con-

servation law DµT
µν [AOS; g] = 0 is fulfilled, as it should be.

The trace of the stress-energy tensor is given by

Tµ
µ[A; g] = gµνT

µν [A; g] =

[
2(d− 1)ξ − d

2
+ 1

]
(∂A)2 − d

2
µ2A2

+

(
−d

2
+ 1

)
ξRA2 − 2(d− 1)ξA(−�g)A . (16.9)

Using the equation of motion, the traced stress-energy tensor can be rewritten

into

Tµ
µ[AOS; g] =

[
2(d− 1)ξ − d− 2

2

]
(∂AOS)2 +

[
−d

2
+ 2(d− 1)ξ

]
µ2A2

OS

+

[
2(d− 1)ξ − d− 2

2

]
ξRA2

OS . (16.10)

Thus, on-shell, after using the equation of motion, we find that Tµ
µ[AOS; g] = 0

if ξ = d−2
4(d−1)

and µ = 0 (cf. [166, p. 119]).

Next, we consider the integrated and traced stress-energy tensor. We use

this occasion to introduce the operator

T := −2

∫
ddx gµν(x)

δ

δgµν(x)
(16.11)

that we are going to widely use throughout this chapter. With its help the inte-

grated and traced stress-energy tensor of any matter action SM can be written

as ∫
ddx
√
g(x)Tµ

µ(x) = T SM. (16.12)

Here, after a partial integration (assuming an empty boundary) we find

T SM[A; g] =

∫
ddx
√
g(x)Tµ

µ[A; g](x) =

∫
ddx
√
g

{(
−d

2
+ 1

)
A(−�g)A

− d

2
µ2A2 +

(
−d

2
+ 1

)
ξRA2

}
. (16.13)
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Again, using the equation of motion, this result can be rewritten into∫
ddx
√
g Tµ

µ[AOS; g] = −
∫

ddx
√
g µ2A2

OS . (16.14)

This implies that on-shell, after using the equation of motion,
∫

ddx
√
g Tµ

µ[AOS; g] =

0 if µ = 0 (for any value of ξ!).

16.2. The quantum system at finite N and backreaction of the

metric

(A) The semiclassical Einstein equation. In the setting we are considering

here, Einstein’s classical equation of motion for the background metric gµν is

given by
δS[A; g]

δgµν(x)
[A; g] = 0 , (16.15)

where the action

S[A; g] := SEH[g] + SM[A; g] (16.16)

consists of the Einstein-Hilbert action (3.2) and the matter action (3.3) for the

scalar field A. The respective components of these equations of motion are given

by
δSEH[g]

δgµν(z)
=

1

16πG

√
g(z)

(
Rµν − 1

2
gµνR + Λgµν

)
(z) (16.17)

and
δSM[A; g]

δgµν(z)
= −1

2

√
g(z)T µν [A; g](z) . (16.18)

With help of the operator T defined by Eq. (16.11), the generic integrated and

traced equations of motion can be compactly summarized as

− 2

∫
ddzgµν(z)

δS

δgµν
[A; g] = T S[A; g] = T SEH[g] + T SM[A; g] = 0 . (16.19)

On a generic manifold, it is easy to see that

T SEH[g] =
1

8πG

∫
ddz
√
g(z)

[(
d

2
− 1

)
R(z)− dΛ

]
, (16.20)

such that on a maximally symmetric background spacetime, where the (con-

stant) scalar curvature is the sole magnitude of curvature, it is in fact sufficient
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to consider the integrated and traced equations of motion in order to determine

the full geometry of the background manifold. These amount to∫
ddz

√
g(z)

[(
1− d

2

)
R(z) + dΛ

]
= 8πG

∫
ddz
√
g(z)Tµ

µ[A; g](z) . (16.21)

We will restrict the treatment of the backreation of the first type of approximant

to the corresponding semi-classical equations of motion. These are obtained by

quantizing the scalar field, A 7→ Â, and replacing Tµ
µ[A; g](z) on the RHS by

〈T̂ µµ [g](z)〉:∫
ddz

√
g(z)

[(
1− d

2

)
R(z) + dΛb

]
= 8πG

∫
ddz
√
g(z)

〈
T̂ µµ [g](z)

〉
.

(16.22)

Here, we have traded the classical cosmological constant for its bare counterpart

Λb. To establish a notion of the expactation value of the quantized traced stress-

energy tensor, we define the following operator on the Hilbert space of scalar

fields:3

T̂ µµ [g] := Tµ
µ[Â; g] =

[
2(d− 1)ξ− d− 2

2

]
DµÂD

µÂ− d

2
µ2Â2

− d− 2

2
ξRÂ2 − 2(d− 1)ξÂ(−�g)Â

. (16.23)

Its expectation value is given by (still requiring regularization!)

〈
T̂ µµ [g](x)

〉
= lim

y→x

{[
2(d− 1)ξ − d− 2

2

]
Dx
µD

µ
y −

d

2
µ2

− d− 2

2
ξR(x)− 2(d− 1)ξ

(
−�xg

)}
G(x, y) . (16.24)

(B) The quantum system at finite N . Now it is time to regularize the

RHS by implementing an N -cutoff which results in the first type of approximant

〈T̂ µµ [g](x)〉
N

. Therefore, we assume the background manifold to be compact

and without boundary. As we had already analyzed the spectral problem of

the operator K [g] given by Eq. (3.4), we can define a suitable cutoff of the

N -type {L2(M, g)N}N∈N by truncating the basis (3.6) of L2(M, g) built from

3Formally, also the metric ĝµν appears to be an operator on the scalar’s Hilbert space; it is
rigidly coupled to the matter field and has no dynamical degrees of freedom of its own. Thus,
we will stick with denoting it by simply gµν .
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eigenfunction of K [g] at the dimensionless number N ∈ N, playing the role of

an UV cutoff:

BN :=
{
χn,m

∣∣∣ n = 1, 2, . . . , N , m ∈ {1, 2, . . . , Dn}
}
. (16.25)

Note that the index n starts running at n = 1 because we had separated of

potential zero modes of the scalar field. Consequently, instead of the full scalar

field A ∈ L2(M, g) we only consider its truncated counterpart restricted to

L2(M, g)N , i.e., its expansion (3.7) is truncated accordingly as

A(x) =
N∑
n=1

Dn∑
m=1

an,mχn,m(x) . (16.26)

The degrees of freedom of the correspondingly truncated quantum field are

then given by the set {an,m | n = 1, 2, . . . , N , m ∈ {1, 2, . . . , Dn}}. Their total

number is

f(N) =
N∑
n=1

Dn . (16.27)

By further implementing theN -cutoff in Eq. (3.20), in which we therefore simply

must cut the sum on the RHS at N , we immediately obtain the desired first type

of approximant:〈
T̂ µµ [g](x)

〉
N

=
N∑
n=1

Dn∑
m=1

1

Fn

{[
2(d− 1)ξ − d− 2

2

]
(Dµχn,m)(x)(Dµχ∗n,m)(x)

− d

2
µ2χn,m(x)2 − d− 2

2
ξR(x)χn,m(x)2

− 2(d− 1)ξχ∗n,m(x)(−�g)χn,m(x)

}
.

(16.28)

More generally, the expectation value 〈A2(x)〉 is regulated via the N -cutoff as〈
Â2(x)

〉
N

= lim
y→x

G(x, y)N =
N∑
n=1

Dn∑
m=1

χn,m(x)χ∗n,m(x)

Fn

. (16.29)

The correspondingly regulated expectation value of the kinetic term is given by〈
(∂Â)2(x)

〉
N

= lim
y→x

ḡµν(x)
∂

∂xµ
∂

∂yν
G(x, y)N (16.30)

=
N∑
n=1

Dn∑
m=1

(D̄µχn,m)(x)(D̄µχ∗n,m)(x)

Fn

. (16.31)
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In the limit N →∞ we would arrive back at the unregularized results.

Going on-shell at the classical level now, i.e., at the quantum level, corre-

sponds to using the (solved) eigenvalue problem (−�g +µ2 +ξR)χn,m = Fnχn,m
under the mode sum. Exploiting this eigenvalue problem, the expectation value

becomes〈
T̂ µµ [g](x)

〉
N

=
N∑
n=1

Dn∑
m=1

1

Fn

{[
2(d− 1)ξ − d− 2

2

]
(Dµχn,m)(x)(Dµχ∗n,m)(x)

+

[
−d

2
+ 2(d− 1)ξ

]
µ2χn,m(x)2

+

[
2(d− 1)ξ − d− 2

2

]
ξR(x)χn,m(x)2

− 2(d− 1)ξFnχn,m(x)2

}
.

(16.32)

The difference between this expactation value and its classical counterpart

(16.10) is noticeable. Therewith, we find for the first type of approximant

that “on-shell”, after using the solved eigenvalue problem,〈
T̂ µµ [g](x)

〉
= −d− 2

2

N∑
n=1

Dn∑
m=1

χn,m(x)2 (16.33)

if ξ = d−2
4(d−1)

and µ = 0.

Let us go back again to the “off-shell” result (16.28). With help of the

operator T defined in (16.11), the integrated expectation value may be written

as ∫
ddx
√
g(x)

〈
T̂ µµ [g](x)

〉
N

=
〈
T SM[Â; g]

〉
N
. (16.34)

It is obvious that this integrated expectation value can be heavily simplified

by exploiting the orthogonality property (A.29) of the eigenfunctions {χn,m}.
However, at the moment the x-dependence of the scalar curvature R thwarts
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this plan and so we rearrange the RHS of Eq. (16.28): After a partial integration

one has∫
ddx
√
g
〈
T̂ µµ [g]

〉
N

=

∫
ddx
√
g

N∑
n=1

Dn∑
m=1

1

Fn

χ∗n,m

{
− d− 2

2
K [g]− µ2

}
χn,m

=

∫
ddx
√
g

N∑
n=1

Dn∑
m=1

{
− d

2
χ2
n,m + χ∗n,m

K [g]− µ2

K [g]
χn,m

}
.

(16.35)

Now, we could make use of the orhtogonality property (A.29) but instead we

recognize that the RHS defines two traces over the Hilbert space S of scalar

fields, that here are evaluated in the basis {χn,m} of S:∫
ddx
√
g(x)

〈
T̂ µµ [g](x)

〉
N

=
〈
T SM[Â; g]

〉
N

= − d

2
TrS[1S]N + TrS

[
K [g]− µ2

K [g]

]
N

. (16.36)

Here,

TrS[O]N =
N∑
n=1

Dn∑
m=1

∫
ddx
√
g(x)χ∗n,m(x)Odiff

x χn,m(x) (16.37)

denotes the restriction of the trace to L2(M, g)N . Note that

TrS[1S]N = f(N) (16.38)

counts the degrees of freedom of the quantum system. Therewith, the back-

reation of the first type of approximant on a generic background, restricted to

the integrated and traced semi-classical equations of motion (16.22), is given by∫
ddz

√
g(z)

[(
1− d

2

)
R(z) + dΛb

]
= 8πG

{
−d

2
TrS[1S]N + TrS

[
K [g]− µ2

K [g]

]
N

}
. (16.39)

(C) The case M = Sd(L). Next, we specialize for the case M = Sd(L), the d-

dimensional sphere of radius L. In this case, the radius L, the Euclidean version

of the Hubble length, is the only free remaining parameter of the geometry: If

γµν denotes the dimensionless metric on the unit d-sphere, then gµν = L2γµν
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will be a metric on Sd(L). Furthermore, its scalar curvature is a constant,

R(x) ≡ const., and related to the radius L by

R(L) =
d(d− 1)

L2
. (16.40)

This implies that the eigenfunctions χn,m of K [g] are identical to the eigen-

functions un,m of the negative Laplacian,

−�gun,m(x) = Enun,m(x) , (16.41)

cf. appendix A.1.3. The eigenvalues then are related by

Fn = En + µ2 + ξR . (16.42)

In this case, we especially find the Green’s function

G(x, y) =
∞∑
n=1

Dn∑
m=1

un,m(x)u∗n,m(y)

En + µ2 + ξR
(16.43)

that we again will apply in the limit y → x and cosequently regularize by cutting

the sum over n at the dimensionless UV-cutoff N . Then, the (−�g)-eigenvalue

EN is the highest one that is retained in the sum. For a given positive integer

N , the corresponding dimensionful UV-cutoff is therefore

P2
UV(N) = EN =

N(N + d− 1)

L2
=
N2

L2

{
1 +O

(
1

N

)}
. (16.44)

Note that the leading term is d-independent.

By virtue of the maximally symmetric ansatz Sd(L), it is sufficient to consider

the integrated and contracted Einstein equation that fully determines L. Fur-

thermore, we can make use of the fact that its volume vol
[
Sd(L)

]
=
∫

ddx
√
g(x)

is finite; hence the classical equation of motion (16.21) becomes

R =
2d

d− 2
Λ− 16πG

(d− 2)vol [Sd(L)]

∫
ddz
√
g(z)Tµ

µ[A; g](z) . (16.45)

The corresponding semi-classical equation of motion (16.39) is obtained by

replacing Tµ
µ[A; g](z) by the first type of approximant 〈T̂ µµ [g](z)〉N , i.e.,

R =
2d

d− 2
Λb −

16πG

(d− 2)vol [Sd(L)]

∫
ddz
√
g(z)

〈
T̂ µµ [g](z)

〉
N
. (16.46)
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The first type of approximant on the RHS fulfills Eq. (16.36). Therewith, we

can re-express it in terms of regularized traces that we can calculate using the

eigenbasis {un,m} of −�g, thereby exploiting the eigenvalue problem −�gun,m =

Enun,m, i.e.,

ΘN(L) :=
〈
T SM[Â; g]

〉
N

=

∫
ddz
√
g(z)

〈
T̂ µµ [g](z)

〉
N

= −d
2

TrS[1S]N + TrS

[
K [g]− µ2

K [g]

]
N

= −d
2

N∑
n=1

Dn +
N∑
n=1

Dn
En(L) + ξR(L)

En(L) + µ2 + ξR(L)

= −
N∑
n=1

Dn

[
d

2
− 1 +

µ2

En(L) + µ2 + ξR(L)

]

= −
(
d

2
− 1

)
f(N)−

N∑
n=1

Dn
µ2

En(L) + µ2 + ξR(L)
.

(16.47)

We can already point out two special cases regarding the mass dependence. The

function µ2 7→ µ2/(En +µ2 + ξR) interpolates between 0 in the limit µ→ 0 and

1 in the limit µ → ∞ at N < ∞. The transition between these limits occurs

roughly at µ2 ≈ En + ξR ≈ n2

L2 + ξ d(d−1)
L2 (cf. table A.1 in appendix A.1.3).

Especially note that

ΘN(L)

∣∣∣∣
µ=0

= −
(
d

2
− 1

)
f(N) (16.48)

turns out to be independent of ξ. Likewise, in the limit µ→∞ at N <∞ one

has

ΘN(L)

∣∣∣∣
µ→∞

= −d
2

f(N) . (16.49)

All in all, the equation of motion for the radius L of the sphere Sd(L) is given

by, with R(L) = d(d− 1)/L2,

R(L) =
2d

d− 2
Λb −

16πG

(d− 2)vol [Sd(L)]
ΘN(L) . (16.50)

The L-dependence of the LHS is the standard L-dependence stemming from the

LHS of Einstein’s equation. On the other hand, the new L-depedence of the RHS
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stems from the dependence of 〈T SM[Â; g]〉, or the “vacuum energy
∑

1
2
~ω”, on

the background geometry. This dependence is absent in Pauli-type calculations.

Entering this formula is the volume of a d-dimensional sphere that is given

by

vol
[
Sd(L)

]
=

2π
d+1

2

Γ
(
d+1

2

) Ld . (16.51)

Also required for further analysis are the eigenvalues E (d)
n of the negative Lapla-

cian−�g acting on scalar fields on Sd(L) and their multiplicitiesD
(d)
n . These can

be found in table A.1 in appendix A.1.3. We interpret solutions to Eq. (16.50)

as a N-sequences of gravity-coupled approximants : N = 0, 1, 2, . . . ,∞. Starting

from N = 0, the classical system, we let successively N = 1, 2 . . . ; thus “turn-

ing on” modes of the quantum field A on the RHS, with the positive integer N

acting as a dimensionless UV cutoff. At every given value of N , we determine

the self-consistent radius

L ≡ Lsc(N) ≡ Lsc(N ; ξ, µ,G,Λb) (16.52)

of that particular d-sphere which amounts to a self-consistent background space-

time, provided it exists. Therewith also comes the self-consistent, quantum-

mechanically generated cosmological constant

Λsc(N) :=
3

Lsc(N)2
. (16.53)

16.3. N-sequences of self-gravitating quantum systems on S4(L)

In four spacetime dimensions, d = 4, the first type of approximant given by

Eq. (16.47) becomes

ΘN(L) = −f(N)−
N∑
n=1

Dn
µ2

En + µ2 + ξR
(16.54)

and the semi-classical equation of motion for the radius L of the 4-sphere S4(L)

reads

R(L) ≡ 12

L2
= 4Λb +

3G

πL4

[
f(N) +

N∑
n=1

Dn
µ2

En(L) + µ2 + ξR(L)

]
. (16.55)
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Here, we have used of the volume of the 4-sphere that simplifies to

vol
[
S4(L)

]
=

2π2
√
πL4

Γ (5/2)
=

8

3
π2L4 =: σ4L

4 . (16.56)

The eigenvalues and corresponding multiplicities of −�g acting on scalars in

d = 4 are given by

E (d=4)
n (L) =

n(n+ 3)

L2
and D(d=4)

n =
(2n+ 3)(n+ 2)(n+ 1)

6
. (16.57)

For d = 4 one can easily check using mathematical induction that the degrees

of freedom of the quantum system at N are

f(N) =
N∑
n=1

D(d=4)
n =

1

12

[
N4 + 8N3 + 23N2 + 28N

]
. (16.58)

Earlier we had pointed out the special cases of Eq. (16.47) in the limits µ = 0

and µ→∞ (at N <∞). Here, these two limits amount to

R(L) ≡ 12

L2

µ→0
= 4Λb +

3G

πL4
f(N) (16.59)

R(L) ≡ 12

L2

µ→∞
= 4Λb + 2

3G

πL4
f(N) . (16.60)

To analize the remaining sum for µ 6= 0,∞; we apply a partial fraction

decomposition to the expression

D(d=4)
n

µ2

E (d=4)
n + µ2 + ξR

=
(µL)2

6

(2n+ 3)(n+ 2)(n+ 1)

n(n+ 3) + 12ξ + (µL)2
. (16.61)

Introducing the abbreviation z := (µL)2 + 12ξ, the decomposition reads

D(d=4)
n

µ2

E (d=4)
n + µ2 + ξR

=
z − 12ξ

6

[
(2n+ 3) + (6− 3z)

1

n(n+ 3) + z

+ (4− 2z)
n

n(n+ 3) + z

]
. (16.62)

Inserting this decomposition into Eq. (16.55) restructures the RHS in such a

way that the quartically, quadratically and logarithmically divergent as well as

convergent terms in the limit N →∞ are revealed:
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R(L) ≡ 12

L2
= 4Λb +

3G

πL4

{
f(N) (quartically div.)

+
z − 12ξ

6

[
N(N + 4) (quadratically div.)

+ (4− 2z)
N∑
n=1

n

n(n+ 3) + z
(logarithmically div.)

+ (6− 3z)
N∑
n=1

1

n(n+ 3) + z

]}
(conv.) .

Here, we have evaluated the sum
∑N

n=1(2n+ 3) = N(N + 4). The conventional

approach towards renormalizing the RHS is to discard the divergent terms, e.g.

by introducing suitable counterterms. The approach we follow, however, is

piecewisely quantizing the system by increasing N step-by-step. Therefore, we

maintain the RHS as it is (partially divergent). Besides, the convergent part in

the bracket on the RHS is

lim
N→∞

N∑
n=1

6− 3z

n(n+ 3) + z
= 6

1− 1
z
− 2π z−2√

9−4z
tan
[
π
2

√
9− 4z

]
for z ≤ 9/4

1− 1
z
− 2π z−2√

4z−9
tanh

[
π
2

√
4z − 9

]
for z > 9/4

,

(16.63)

where we can cross the threshold z = 9/4 using tan ix = i tanhx. Note that

care must be taken when taking the limit N →∞ as is does not commute with

the limit z → 0.

Before explicitly analyzing self-consistent S4-geometries, i.e., solutions of

Eq. (16.55), we can already observe an interesting property of these solutions.

In general, the eigenfunctions of −�g acting on the 4-sphere are harmonics

labeled by four integer quantum numbers, un,m = Ynl1l2m. The main index

n = 0, 1, 2, . . . determines the eigenvalue while the degeneracy index m now

is traded for the triple of integers (l1, l2,m), with n ≤ l1 ≤ l2 ≤ |m|. The

harmonics of the 4-sphere have the structure

Ynl1l2m(ζ, η, ϑ, ϕ) ∝ 4P̄
l1
n (ζ)3P̄

l2
l1

(η)2P̄
m
l2

(ϑ)
1√
2π

eimϕ , (16.64)

where (ζ, η, ϑ, ϕ) are angular coordinates on the 4-sphere and iP̄
j
k denote gen-

eralized associated Legendre functions [167].
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The harmonics of the self-consistent S4 geometry determined by a gravity-

coupled approximant of anN -cutoff will be restricted to those with n = 1, 2, . . . , N .

One can show that this truncated basis of S4-harmonics possesses the “resolving

power” [168]

∆α ≈ π

N
, (16.65)

which is the accuracy with which they can display angular separations. Cor-

respondingly, the minimum proper distance they can resolve is ∆` ≈ πL/N .

These geometric properties make the self-consistent S4(LSC(N)) reminiscent of

a fuzzy sphere [169].

In the following, we are going to explicitly solve the self-consistency condition

(16.55) for the special case of a massless scalar field, i.e., the case µ = 0,

and analyze the properties of the resulting self-consistent geometry given by

the radius LSC(N). To contrast these results with those obtained within the

standard approach from a background-dependent calculation, let us first discuss

these, also for the case µ = 0. The background-dependent calculation amounts

to evaluating the RHS of Eq. (16.55) on a RS. This means that on the RHS we

must replace the dynamical radius L by a rigid, fixed radius LRS:

R[S4(L(N))] ≡ 12

L(N)2
= 4Λb +

3G

π(LRS)4
f(N)

=: 4Λtot(N) .

(16.66)

Here we have defined the total cosmological constant Λtot(N) that behaves as

Λtot(N) ∼ N4 → ∞ for sufficiently large N . Consequently, when the cutoff is

removed for N →∞, the radius L(N) approaches zero and thus the curvature

diverges:

R[S4(L(N))] ∼ N4 N→∞−−−→∞ . (16.67)

This is an epitome of the cosmological constant problem that arises from sum-

ming up vacuum energies propagating on a rigid spacetime to only thereafter

solve Einstein’s equation for the background geometry [7, 157–159]. If the bare

cosmological constant Λb is independent of N the total cosmological constant

Λtot will become unacceptably large for any given cutoff scale N ; or if Λb is

granted to depend on N then it must be tremendously finetuned in order to
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match cosmological observations, which turns the cosmological constant prob-

lem into a naturalness problem.

Moreover, on S4(LRS) the N -cutoff induces the UV cutoff scale P(N) via

P2(N) := EN(LRS) =
N(N + 3)

(LRS)2
. (16.68)

As we shall see later on its seemingly trivial behavior

P(N)
N→∞−−−→∞ (16.69)

should not be taken for granted at all. Thus it is important for us to keep

in mind that for the background-dependent calculation P is a monotonically

increasing function of N .

16.3.1. Self-consistent approximants: µ = 0 and Λb = 0

We start with a remark on the case G = 0 in which no matter effects are present.

Then Eq. (16.55) heavily simplifies to 12/L2 = 0 implying LSC =∞. This is the

expected result: In absence of any matter, the maximally symmetric solution is

flat space R4, here obtained as “S4(∞)”. The result is obtained for N = 0, i.e.,

for no quantum mechanical degrees of freedom, f(0) = 0. This case can thus

can be considered as the classical initial point.

For G 6= 0 the self-consistency condition (16.55) for the spherical background

geometry then becomes
12

L2
=

3G

π

1

L4
f(N) , (16.70)

such that the self-consistent radius (Hubble length) LSC is given by

LSC(N)2 =
G

4π
f(N) =

GN4

48π

{
1 +O

(
1

N

)}
. (16.71)

Then, the self-consistent scalar curvature amounts to4

RSC(N) := R
[
S4(LSC(N))

]
=

12(4π)

G f(N)
=

144(4π)

GN4

{
1 +O

(
1

N

)}
, (16.72)

4Note that RSC ∼ 1/G is non-analytic in G and therewith clearly of non-perturbative char-
acter.
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and correspondingly the self-consistent cosmological constant reads

ΛSC(N) =
12π

G f(N)
. (16.73)

For every N there exists one – and only one – self-consistent S4-background.

Quite remarkably, its radius LSC(N) grows when more quantized modes are

added, cf. Figure 16.1. At N = 0, the classical system (~ = 0) amounts to

a vanishing “Hubble length”, LSC(0) = 0, and infinite curvature, RSC(0) =

∞. Adding quantized modes to it (N = 1, 2, 3, . . . ), the 4-sphere grows and

ultimately becomes locally flat at N →∞: limN→∞ L
SC(N) =∞ and therewith

limN→∞R
SC(N) = 0.

To conclude: The fully quantized system, with the cutoff removed (limit

N →∞ taken), admits a self-consistent background geometry which is perfectly

flat, S4(∞) ∼= R4. This is in sharp contradiction to the usual way of taking the

UV limit in background-dependent calculations which yields an infinitely curved

spacetime, thus creating one form of the cosmological constant problem.

The absolute dimensionful scale of each self-consistent geometry at N is set

by the Planck units, with G = `2
Pl = 1/m2

Pl. Then we have

LSC(N) = `Pl

√
f(N)/4π and ΛSC(N) = 12πm2

Pl/ f(N) . (16.74)

Given the fundamental status of the Planck mass, it therewith becomes clear

that for the above solution it is not possible to construct N -sequences that

result in the limit N → ∞ in a QFT with a non-zero observed cosmological

constant ΛSC(N → ∞) ≡ Λobs 6= 0. On the other hand, if we assume that

Eq. (16.73) represents a valid law of Nature and experimentalists measure a non-

zero, positive cosmological constant Λobs, then this will necessarily imply that

the physically realized universe carries only finitely many quantum mechanical

degrees of freedom f(Nobs) where Nobs < ∞ is fixed by the experimentalists’

measurement:

ΛSC(Nobs)
!

= Λobs . (16.75)

Let us see how the solution (16.71) relates the dimensionless UV cutoff N to

the induced dimensionful cutoff

P2
UV(N) =

N(N + 3)

LSC(N)2
(16.76)
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Figure 16.1. The self-consistent radius LSC(N) for Λb = 0 and
matter constribution on the dynamical S4(L).

Figure 16.2. The self-consistent scalar curvature RSC(N) for
Λb = 0 and matter constribution on the dynamical S4(L).

which, for each N , refers to a different unit of mass, namely 1/LSC(N). We

have

P2
UV(N) =

12π

G

N(N + 3)

f(N)
=

48π

G

1

N2

{
1 +O

(
1

N

)}
N→∞−−−−→ 0 . (16.77)
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Strangely enough, this is a decreasing function of N , cf. Figure 16.3. Quite

paradoxically, the fully quantized system, i.e., the one with N“=”∞, has van-

ishing dimensionful UV cutoff when the units are given by the corresponding

self-consistent background metric on S4(L =∞).

If, instead, we employ a fixed length unit LRS in order to set the scale for

PUV, then we will find the standard – opposite – behavior, as shown above.

Figure 16.3. The self-consistent dimensionful UV cutvoff
PSC

UV(N)2 for Λb = 0 and matter constribution on the dynam-
ical S4(L).

16.3.2. Self-consistent approximants: µ = 0 and Λb 6= 0

Next, we analize the special case of Eq. (16.55) for a massless scalar field, µ = 0,

this time with nonzero bare cosmological constant, Λb 6= 0:

12

L2
= 4Λb +

3G

π
f(N)

1

L4
. (16.78)

This amounts to a quadratic equation for L2,

0 =
2

3
ΛbL

4 − 2L2 +
G

2π
f(N) , (16.79)
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that is graphically illustrated in Figure 16.4. The nonzero bare cosmological

constant, Λb 6= 0, causes a “singular perturbation” of the equation for L2,

giving rise to a new branch of solutions. The general solution reads(
LSC
± (N)

)2
=

3

2Λ

[
1±

√
1− GΛb

3π
f(N)

]
. (16.80)

(
LSC
± (N)

)2
is real provided that GΛbf(N)/3π ≤ 1. For GΛb > 0 and constant,

this condition is violated for N large enough.

Figure 16.4. Illustration of the quadratic equation leading to
the two branches of solutions, nonperturbative and semi-classical,
determined by f(LSC

± (N)2) = 0.

At first, we comment on the solution for the classical system: N = 0. In

this case, no quantized modes of the scalar field A “live” on the 4-sphere. Its

self-consistent radius (16.80) is

LSC
± (0)2 =

3

2Λb

[1± 1] =

3/Λb for “+”

0 for “−”
. (16.81)

LSC
+ (0) =

√
3/Λb is the familiar classical relationship connecting the radius

(“Euclidean Hubble length”) to the cosmological constant. If Λb 6= 0, which we
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assume, S4(LSC
+ (0)) is a nondegenerate manifold. On the other hand, LSC

− (0) = 0

has vanishing radius and infinite curvature. Hence, it is usually not considered

a meaningful solution. Therefore, we shall refer to the “+”-branch of the solu-

tions as the “(semi-)classical branch”.

Figure 16.5. Illustration of the quadratic equation determining
the classical system for Λb = 0: at N = 0 one has the vertical
intercept f(N = 0) = 0.

Secondly, we note that our earlier solutions for Λb = 0 are recovered by

taking the limit Λb → 0 on the “−”-branch of Eq. (16.80):(
LSC
± (N)

)2
=

3

2Λb

[
1±

{
1− 1

2

GΛ

3π
f(N) +O(Λ2

b)

}]

=
3

2Λb

(1± 1)− (±1)
G f(N)

4π
+O(Λ2

b) =

3/Λb →∞ for “+”

G f(N)/4π for “−”
.

(16.82)

For want of a better name, we refer to the “−”-branch of Eq. (16.80) as the

“nonperturbative branch”.
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Figure 16.6. Illustration of the limit Λb → 0 in which the non-
trivial solution of f(L2) = 0 amounts to the self-consistent radius
shown in Figure 16.1.

Furthermore, if we generally assume thatG > 0 and Λb > 0 areN -independent,

nonzero and positive, the requirement

GΛb

3π
f(N) ≤ 1 (16.83)

will be violated for all N > Ncrit where the critical number Ncrit satisfies

GΛb

3π
f(Ncrit) = 1 , (16.84)

respectively, as this equation might not have an integer solution for Ncrit,

GΛb

3π
f(Ncrit) = max

N

{
GΛb

3π
f(N)

∣∣∣∣∣ GΛb

3π
f(N) ≤ 1

}
. (16.85)

If GΛb/3π � 1, the critical number Ncrit will be very large, Ncrit � 1, and so

we may employ the asymptotic form of f(N):

GΛb

36π
N4

crit

{
1 +O

(
1

Ncrit

)}
= 1 , (16.86)

thus

Ncrit ≈
(

36π

GΛb

)1/4

. (16.87)
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For, say, GΛb = 10−120 one has thus Ncrit ≈ 1030. Therewith, let us rewrite

Eq. (16.80) approximating f(N) ≈ N4/12 and GΛb/36π ≈ 1/N4
crit:

(
LSC
± (N)

)2
=

3

2Λb

1±

√
1−

(
N

Ncrit

)4
 . (16.88)

Thus, the self-consistent radius for the semi-classical and nonperturbative branch,

respectively, is bound as(
LSC

+ (N)
)2 ∈ 3

2Λb

[0, 1] and
(
LSC
− (N)

)2 ∈ 3

2Λb

[1, 2] . (16.89)

We iterpret this circumstance as for too many modes, there exists no S4-type

self-consistent background (but perhaps a more complicated one) if Λb 6= 0. Fig-

ure 16.7 clearly illustrates this situation.

Figure 16.7. A bare cosmological constant bounds the two
branches associated to the self-consistent radii LSC

+ (N) and
LSC
− (N). Consequently, there exists a positive integer Ncrit such

that for N > Ncrit no self-consistent S4-background can be real-
ized.
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Lastly, it is astonishing to note that the “−”-branch of the general solution

Eq. (16.80) even admits a negative bare cosmological constant, Λb < 0:

LSC
− (N)2 =

3

2|Λb|

[√
1 +
|Λb|G

3π
f(N)− 1

]
. (16.90)

This solution of astonishing because the classical Einstein equation does not ad-

mit an S4 solution for a negative cosmological constant. Again, the N -sequence

of self-consistent radii, which are purely due to quantum effects and thus start-

ing at N = 1, grow with increasing N , approaching a flat space in the limit

N →∞.

16.4. Micro states of de Sitter space

De Sitter space is the Lorentzian counterpart of the 4-sphere and possesses

an intrinsic entropy S , the Bekenstein-Hawking entropy. This entropy is de-

termined by the cosmological constant, or, equivalently, by the Hubble length

L ≡
√

3/Λ:

S =
3π

GΛ
≡ π

G
L2 . (16.91)

If we let A = 4πL2 denote the area of the de Sitter horizon then there is yet

another way to express the entropy, S = A /4G. Particularly, S is known

only as a purely thermodynamic quantity, i.e., the longstanding question of

what are the underlying microscopic degrees of freedom that S counts is still

unanswered [170]. Following the Euclidean approach towards black holes and

thermal spacetimes [171–173], in which the 4-sphere appears as a saddle point of

the semi-classical gµν-evolution, we may use our previously found self-consistent

radii to explore the intrinsic entropy of de Sitter space for a given N -cutoff:

S (N) :=
π

G
LSC(N)2 . (16.92)

To interpret S (N) let us return to the case of a massless scalar field and

vanishing bare cosmological constant. If we plug in the self-consitent radii

(16.71) that we found for this case, we find a rather striking result:

S (N) =
1

4
f(N) . (16.93)
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This means that, up to a factor 1/4, the thermodynamical entropy S (N) is pre-

cisely the number of degrees of freedom f(N) of the quantum system from whose

backreaction the spherical (or de Sitter) spacetime arose. Using Eq. (16.74), the

area of the resulting Hubble spheres A (N) becomes proportional to the Planck

length squared,

A (N) = f(N)`2
Pl . (16.94)

This result is in accordance with the intuitive picture that horizon surface of

a “fuzzy” de Sitter space is a fuzzy 2-sphere whose angular resolving power

∆α ≈ π/N yields the approximate proper distance of neighboring points

∆` ≡ LSC(N)∆α ≈
√
π/48N `Pl

{
1 +O

(
1

N

)}
. (16.95)

Following our train of thoughts let us further assume that experiment had

provided us some finite observed value for the cosmological constant, Λobs > 0.

Then in the case µ = 0 and Λb = 0 it follows from Equations (16.75) and (16.71)

that Λobs determines a finite value Nobs:

1

4
f(Nobs) =

3π

GΛobs

≡ Sobs . (16.96)

Thus, in this framework universes with an observed non-zero, positive cosmo-

logical constant Λobs are described only by a finite number of degrees of free-

dom f(Nobs) which is determined by the Bekenstein-Hawking entropy Sobs of

de Sitter space. This is precisely an incarnation of the conjectured “Λ-N -

connection” and the “N -bound” [160, 161]. This connection refers to the

hypothesis that the observed entropy Sobs of universes with a positive cos-

mological constant Λ and arbitrary matter content is bounded by some value

N , i.e., Sobs ≤ 3π/GΛ ≡ N . Here, this bound is given by 1/4th of the number

of degrees of freedom.

Although presumably rather inadequate, it is tempting to specify this analy-

sis for the observed values of the real universe: A Hubble radius of LSC(Nobs) ≈
1060`Pl yields Nobs ≈ 1030 and thus S (Nobs) ≈ 10120. This corresponds to

an angular uncertainty of δα ≈ 10−30, respectively a minimum proper length of

δ` ≈ 1030`Pl ≈ 10−3cm. Interestingly, similar estimates have been obtained with

independent arguments based upon the functional renormalization group [168].



CHAPTER 17

A second type of approximants for a quantized scalar

field

Executive summary. We determine a second type of approximants for a

quantized scalar field. It is constructed from the point of view of the one-loop

effective gravitational action and is shown to differ from the first type of approx-

imants by a contribution from the metric dependence of the path integral. In

four spacetime dimensions, we explicitly solve the resulting self-consistency con-

dition for the case of spherical background geometries. Therewith, we demon-

strate that the resulting N -sequences of self-consistent radii are free from the

cosmological constant problem.

What is new? All research results of this chapter are new.

Based upon: Reference [5].

For notational ease, we denote the background metric

in this chapter by gµν ≡ ḡµν.

17.1. Backreaction of the metric on the second type of stress

tensor candidate

The generic equations of motion for the background metric gµν given by the

(unregularized) one-loop effective action Γ[g], defined by Eq. (3.38), read

δΓ[g]

δgµν(z)
=
δSEH[g]

δgµν(z)
+
δΓ1L[g]

δgµν(z)
= 0 , (17.1)

where the first summand is given by (16.17). Again, we restrict the treatment of

the backreaction of “type 2” to the integrated and traced equations of motion:

T Γ[g] = −2

∫
ddz gµν(z)

δ

δgµν(z)
Γ[g] = 0 , (17.2)

239
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such that the remaining task is to calculate

T Γ1L[g] =−
∫

ddz gµν(z)
δ

δgµν(z)
Tr ln (−�g + µ2 + ξR)

=− Tr

[
1

−�g + µ2 + ξR

∫
ddz gµν(z)

δ

δgµν(z)
(−�g + ξR)

]
=

1

2
Tr

[
1

−�g + µ2 + ξR
T (−�g + ξR)

]
.

(17.3)

When applying these three steps to a regularized version of the effective ac-

tion some further commentary is required. We have used the standard rule

δTr[ln K ] = Tr[K −1δK ] that for an arbitrary derivation δ is valid only thanks

to the cyclicality of the trace operation.1 While this holds for the unregularized

(full) trace, this property might not transfer to the regularized trace Tr = Trreg.

Particularly, Tr[AB]reg = Tr[BA]reg might not be realized when employing an

N -cutoff by expressing the trace in terms of the truncated eigenbasis (16.25) of

the operator K . However, subsequently we will assume the cyclicality to hold

also for the regularized trace and, later on, outline in a second, different, calcu-

lation why this assumption is fulfilled. (Also, subsequently we will leave open

what is the specific regulator. Surely, later we will come back to the N -cutoff.)

Without further ado, as the trace is taken on the Hilbert space of scalar fields,

Tr = TrS, we must evaluate T (−�gf)(x) and T R(x) where f(x) = 〈x|f〉 is an

1While strictly speaking up to the definition of the derivative, in standard mathematical
practice and conventions the following property of the left derivative of a composition of
supersmooth functions (functions of commuting as well as anti-commuting variables) holds:
The derivative of the inner fuction stands left of the derivative of the outer function, cf.
theorem 4.4.2 of [174] and eq. (2.15) of [175]. Here, as T surely is a left derivation, the
derivative of the inner function, i.e., T K can be placed on the right side only thanks to the
cyclicality of the trace.
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arbitrary scalar field. Varying the negative Laplacian, we find, using appendix

B, ∫
ddz gµν(z)

δ

δgµν(z)
(−�gf)(x)

=

∫
ddz gµν(z)

{
gασgβτIµναβδ(x− z) (∂σ∂τf − Γρστ∂ρf)

+
1

2
gστgρβDx

σδ(x− z)Iµντβ

+
1

2
gστgρβDx

τ δ(x− z)Iµνσβ

−1

2
gστgρβDx

βδ(x− z)Iµνστ

}
=gαβg

αµgβν
(
∂µ∂νf − Γρµν∂ρf

)
(x)

=gµν
(
∂µ∂νf − Γρµν∂ρf

)
(x)

=− (−�gf)(x) ,

(17.4)

where in the second step we have used partial integration and the fact that we

integrate over an manifold with empty boundary. The other variation we must

perform is

δR(x)

δgµν(z)
=
[
−Rµν(x) +Dα

(
gµαgνβDβ − gµνgαβDβ

)]
x
δ(x− z) , (17.5)

such that∫
ddz gµν(z)

δR(x)

δgµν(z)

= −R(x)−
∫

ddz gµν(z)
[
Dα

(
gµαgνβDβ − gµνgαβDβ

)]
z
δ(x− z) . (17.6)

The second term is a surface term and as the boundary is empty, we find∫
ddz gµν(z)

δ

δgµν(z)
R(x) = −R(x) . (17.7)

Expressed in terms of T these variations read

T (−�gf)(x) = 2(−�gf)(x) and T R = −2R . (17.8)

Hence the variation of the regularized one-loop effective action reduces to

T Γ1L[g]reg = Tr

[
−�g + ξR

−�g + µ2 + ξR

]
reg

. (17.9)
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Therewith and with Eq. (16.20), the equation of motion for R,

T Γ[g]reg = T SEH[g] + T Γ1L[g]reg = 0 , (17.10)

has been determined:

1

8πG

∫
ddz

√
g(z)

[(
1− d

2

)
R(z) + dΛ

]
= Tr

[
−�g + ξR

−�g + µ2 + ξR

]
reg

.

(17.11)

Next, we expound the other, in some sense more rigorous, way to deduce

this equation. As annouced earlier, it will also resolve the problem attached to

the cyclicality of the regularized trace. It makes use of the fact that for any

action functional F [g] and its associated Euclidean stress-energy tensor defined

by Eq. (15.19), i.e.,

T µνF [g](x) := − 2√
g(x)

δF [g]

δgµν(x)
, (17.12)

the following lemma holds:

T F [g] =

∫
ddx
√
g(x)TF

µ
µ[g](x)

=
d

dα
F
[
e−2αg

] ∣∣∣∣∣
α=0

,

(17.13)

where T is as defined by Eq. (16.11). Here, we consider the case F [g] = Γ1L[g]reg

and refer to its associated stress-energy tensor, in order to distinguish it from

(16.34), as the effective stress energy tensor T µνeff [g], i.e.,

T Γ1L[g]reg =:

∫
ddx
√
g(x)Teff

µ
µ[g](x) (17.14)

=
d

dα

1

2
Tr
[
ln K [e−2αg]

]
reg

∣∣∣∣∣
α=0

=
1

2
Tr

[
d

dα
ln K [e−2αg]

]
reg

∣∣∣∣∣
α=0

=
1

2
Tr

[
d

dα
ln K [e−2αg]reg

∣∣∣∣∣
α=0

]
.
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The only calculation left to do is that of the argument of the trace. This implies

that using this lemma, the problem of the previous calculation, associated to the

questionable cyclicality of the regularized trace, does not occur anymore. On the

other hand, the only property of the regularized trace that we are making use of

here (we had done so in the previous calculation, too) is δTr[ · ]reg = Tr[δ( · )]reg.

This property clearly holds; and so we are good to go on with calculating the

argument of the trace.

At first, we apply the (x-independent) Weyl transformation2 to (the matrix

elements of) the operator K [g••] = −�g•• + µ2 + ξR(g••):

d

dα
K
[
e(−2)αg••

]
=

d

dα

{
−�e(−2)αg•• + µ2 + ξR(e(−2)αg••)

}
. (17.15)

Note that the Weyl weight of g•• is −2. As the Christoffel symbols Γ•

•• =
1
2
g••(∂•g•• + · · · ) are uneffected by Weyl transformations, we find that

�e(−2)αg•• = gµνDµDν

∣∣
g••→e(−2)αg••

= e+2αgµνDµDν

= e+2α�g .

(17.16)

As in addition R(e(−2)αg••) = e+2αR(g••), we directly arrive at

d

dα
K
[
e(−2)αg••

]
=

d

dα

{
e(+2)α(−�g••) + µ2 + e(+2)αξR(g••)

}
= 2 [−�g + ξR(g)] e2α ,

(17.17)

and furthermore,

d

dα
K
[
e(−2)αg••

] ∣∣∣∣∣
α=0

= 2 [−�g + ξR(g)] . (17.18)

This implies the vanishing commutator[
d

dα
K
[
e(−2)αg••

]
,K

[
e(−2)αg••

]]
= 0 . (17.19)

As a consequence, we may differentiate Q(K [e(−2)αg••]), where Q is an arbitrary

C1-function, in the naive (“commutative”) way with respect to α:

d

dα
Q
(
K
[
e(−2)αg••

])
=Q′

(
K
[
e(−2)αg••

]) d

dα
K
[
e(−2)αg••

]
= 2

[
K
[
e(−2)αg••

]
− µ2

]
e2αQ′

(
K
[
e(−2)αg••

]) (17.20)

2For more details on Weyl transformations, see Chapter 19.
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and

d

dα
Q
(
K
[
e(−2)αg••

]) ∣∣∣∣∣
α=0

= 2
[
K [g••]− µ2

]
Q′ (K [g••]) . (17.21)

Here in particular, we have for Q = ln the operator equation

d

dα
ln
(
K
[
e(−2)αg••

]) ∣∣∣∣∣
α=0

= 2
[
K [g••]− µ2

]
K [g••]

−1 . (17.22)

This finally is the argument of the trace we wished to calculate such that our

overall result becomes

T Γ1L[g]reg =:

∫
ddx
√
g(x)Teff

µ
µ[g](x)

=
1

2
Tr

[
d

dα
ln K [e−2αg]

∣∣∣∣∣
α=0

]
reg

= Tr

[
K [g]− µ2

K [g]

]
reg

= Tr

[
−�g + ξR

−�g + µ2 + ξR

]
reg

,

(17.23)

which is exactly Eq. (17.9), our previous result that we wished to put on rigorous

grounds.

17.2. The quantum system at finite N : first type vs. second type

of approximants

When employing an N -cutoff in order to regularize the (traces appearing in the)

one-loop effective action, we identify the second type of approximants with

T Γ1L[g]N =:

∫
ddx
√
g(x)Teff

µ
µ[g]N(x) . (17.24)

The difference between the result (17.9), respectively (17.11), for the second

type of stress tensor candidate and Eq. (16.39) for the first type of stress tensor



17.2. THE QUANTUM SYSTEM AT FINITE N 245

candidate is noticable. After employing N -cutoff following the previous section,

it constitutes in the difference between (17.9) and (16.36):3

T Γ[g]N −
〈
T S[Â; g]

〉
N

= T Γ1L[g]N −
〈
T SM[Â; g]

〉
N

=
d

2
TrS[1S]N

=
d

2
f(N) .

(17.25)

The second type of approximant “misses” the term on the RHS in order to match

the first type of approximant. Thus phenomenological differences between the

two are not far to seek: The “missing” term d
2

f(N) for the second type of ap-

proximant leads to negative contributions to the bare cosmological costant Λb

in the case µ2 = 0 = ξ. This is a crucial difference between the quantum field

theoretical equation of motion from which the second type of approximants

arise and Eq. (16.39) of the first type of approximants, where there are positive

contribitions to Λb.

In the following, we will show that the difference (17.25) can be identified

as the contribution from the g-dependent measure DgA when applying T to

Eq. (3.25). Therefore, we consider Eq. (3.40),

e−Γ[g] =

∫
DgA e−S[A;g] , (17.26)

where Γ[g] and S[A; g] are defined by Eq. (3.38) and Eq. (16.16), respectively.

For the moment, it is rather impractical regularize this path integral via an

N -cutoff, so let us assume that it has been regularized by restricting it to a

finite number of spacetime points.

The factor e−SEH[g] can be canceled out to obtain Eq. (3.41),

e−Γ1L[g]reg =

∫
DgA e−SM[A;g] , (17.27)

3Recall that traces over the Hilbert space S then are caculated in the truncated eingenbasis
(16.25). Further, it is impressive to note that this equation resembles the thermodynamical
indentity U−F = TS; the difference between internal and free energy is given by the product
of temperature and entropy. The latter counts the microscopic degrees of freedom which here
also appear on the RHS.
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where Γ1L[g] and SM[A; g] are defined by Eq. (3.39) and Eq. (3.3), respectively.

Furthermore, remember that the measure, defined in Eq. (D.6), is given by (for

any dimensionality d)

DgA =
∏
x

g1/4(x)dA(x) . (17.28)

Applying T to Eq. (3.41) leads to

−e−Γ1L[g]regT Γ1L[g]reg =

∫
DgA

(
−T SM[A; g]

)
e−SM[A;g] +

∫ (
T DgA

)
e−SM[A;g] .

(17.29)

Using the fact that

e+Γ1L[g]reg

∫
DgA

(
−T SM[A; g]

)
e−SM[A;g] = e+Γ[g]reg

∫
DgA

(
−T SM[A; g]

)
e−S[A;g]

=
〈
T SM[Â; g]

〉
reg

,

(17.30)

the difference (17.25) can be written as

T Γ[g]reg −
〈
T S[Â; g]

〉
reg

= T Γ1L[g]reg −
〈
T SM[Â; g]

〉
reg

= − 1

e−Γ1L[g]reg

∫ (
T DgA

)
e−SM[A;g] .

(17.31)

To further calculate T DgA = T
∏

x g
1/4(x)dA(x) let us again make us of

lemma (17.13):

T
∏
x

g1/4(x) =

{
−2

∫
ddx gµν(x)

δ

δgµν(x)

}∏
x

det 1/4 (g••(x))

= lim
α→0

d

dα

∏
x

det 1/4
(
e−2αg••(x)

)
= lim

α→0

d

dα

(∏
x

e−
d
2
α

)
·

(∏
x

g1/4(x)

)
,

(17.32)

where we have used that [det (e−2αg••)]
1/4

=
[
e−2dα det (g••)

]1/4
. Using further-

more that ∏
x

e−
d
2
α = e−

d
2
α
∑
x 1 , (17.33)
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we arrive at

T
∏
x

g1/4(x) =

[
−d

2

∑
x

1

]∏
x

g1/4(x) . (17.34)

At this point we must clarify what is meant by “
∑

x 1”. As we have regu-

larized the path integral by discretizing spacetime, i.e., restricting spacetime

to finitely many points {xj | j = 1, 2, . . . , J}, the sum
∑

x 1 = J simply

states the number of these spacetime points. The lattice points in field space

{A(xj) | j = 1, 2, . . . , J} can be expanded as in Eq. (D.15); thereby we can

employ an N -cutoff,

A(xj) =
N∑
n=1

Dn∑
m=1

an,mχn,m(xj) . (17.35)

This linear map establishes a bijection between the sets {A(xj) | j = 1, 2, . . . , J}
and {an,m | n = 1, . . . , N ; m = 1, . . . , Dn}, and thus we can identify the number

of spacetime points with the degrees of freedom of the quantum system, i.e., we

can identify the discretization-based cutoff with the N -cutoff:(∑
x

1

)
reg

= TrS[1S]reg ≡ TrS[1S]N = f(N) . (17.36)

As a consequence, we have

T DgA = −d
2

TrS[1S]N DgA . (17.37)

Inserting this transformation behavior of the measure into Eq. (17.31), we have

re-derived Eq. (17.25):

T Γ[g]N −
〈
T S[Â; g]

〉
N

=
d

2
TrS[1S]N . (17.38)

Therefore, the difference between the two ways – for the first and second type of

approximants – of calculating the backreation of the scalar field A on the back-

ground metric g can be rooted in the contribution of the g-dependent measure.

17.3. N-sequences of self-gravitating quantum systems on S4(L)

When specifying Eq. (17.11) to the sphere Sd(L), there is not much work left: we

can again use that the volume vol
[
Sd(L)

]
=
∫

ddx
√
g(x) is finite and the scalar

curvature R is constant. Additionally, we calculate the trace in the truncated
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eigenbasis {|nm〉}n=1,...,N of the negative Laplacian −�g, cf. Eq. (16.25) and

appendix A.1.3. Therewith, we regularize the trace through the dimensionless

UV cutoff N :

T Γ1L[g]N = Tr

[
−�g + ξR

−�g + µ2 + ξR

]
N

=
N∑
n=1

Dn∑
m=1

〈nm| −�g + ξR

−�g + µ2 + ξR
|nm〉

=
N∑
n=1

Dn
En + ξR

En + µ2 + ξR
. (17.39)

The final result for the equation of motion for the radius L of the d-sphere, with

R(L) = d(d− 1)/L2, is

R(L) =
2d

d− 2
Λb −

16πG

(d− 2)vol [Sd(L)]
Θeff
N (L) . (17.40)

Here, we have defined analogously to Eq. (16.47):

Θeff
N (L) := T Γ1L[g]N =

N∑
n=1

Dn
En(L) + ξR(L)

En(L) + µ2 + ξR(L)
. (17.41)

Subsequently, we will restrict the discussion of the N -sequences arising as

solution of Eq. (17.40) to the case off a massless scalar field, i.e., µ = 0 and

therewith ξ = 0, in four spacetime dimensions, d = 4. In this case, the second

type of approximant

Θeff
N (L)

µ=0
≡ Θeff

N = f(N) (17.42)

becomes independent of L such that, with R(L) = 12/L2, Eq. (17.40) becomes

12

L2
= 4Λb −

3G

π

1

L4
Θeff
N . (17.43)

This equation does not have solutions for a vanishing or a negative bare cosmo-

logical constant, in contrast with the first type of approximants. On the other
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hand, for Λb > 0 there exists a complete N -sequence of self-consistent radii,

given by

LSC(N)2 =
3

2Λb

[
1 +

√
1 +

GΛb

3π
f(N)

]

=
1

2
L2

b

[
1 +

√
1 +

G

πL2
b

f(N)

]
,

(17.44)

where we have defined the bare length Lb via Λb =: 3/L2
b. As in case of the first

type of approximants, the N -sequence of self-consistent spacetimes S4(LSC(N))

has some remarkable properties:

Firstly, we note that a self-consistent S4 geometry exists for allN = 0, 1, 2, . . . .

Hereby, the for 4-sphere for N = 0 with radius LSC(0) = Lb is standing out as

it is purely classical. Such a classical initial point of the N -sequence for µ = 0

and Λb > 0 did not exist in the case of the first type of approximants, for which

self-consistent S4 geometries were of purely quantum nature (N ≥ 1).

Secondly, for Lb fixed the N -sequence (17.44) of self-consistent “Hubble”

radii LSC(N) monotonically increases in the cutoff parameter N . Ultimately,

in the limit N →∞ the self-consistent Hubble radius becomes infinite, i.e., the

N -sequence of self-consistent 4-spheres grows until it reaches flat spacetime:

S4(LSC(N))
N→∞−−−→ R4 . (17.45)

Note that the flat spacetime, which arises for the fully quantized system, does

so without any finetuning. Consequently, the N -sequences of the self-consistent

scalar curvature RSC(N) or of the self-consistent cosmological constant ΛSC(N)

decrease in N and ultimately vanishes in the limit N →∞ of the fully quantized

system:

RSC(N) = 4ΛSC(N) =
12

LSC(N)2

N→∞−−−→ 0 . (17.46)

Hence, as in the analogous case for the first type of approximants, the “cos-

mological constant problem”, according to which the effective cosmological con-

stant increases with the amount of quantized vacuum fluctuations from which it
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arises, does not occur here. This becomes particularly clear in the limit f � 1,

where f(N) ≈ 1
12
N4 and thus

LSC(N) ≈

√
Lb

√
G

4π
f(N) ≈

(
G~
48π

)1/4

L
1/2
b N . (17.47)

Here, we reinstated Planck’s constant for a moment. The self-consistent radius

LSC(N) becomes a linear function of N when N � 1. Further, it depends on

both G and ~ in a non-analytic way, showing the non-perturbative character of

this calculation. We can re-express the dependence on this constants through

the Planck length which for d = 4 and c ≡ 1 reads `Pl = (~G)1/2,

LSC(N) ≈ N

(48π)1/4

√
`Pl Lb . (17.48)

Here, the dependence of the Planck length is also non-analytic.

Thirdly, note that for Lb (arbitrarily) fixed, we cannot construct N -sequences

of self-consistent radii that would result in a finite “observed” value of the

Hubble radius Lobs ≡ (3/Λobs)
1/2. However, we can do so by finetuning the

bare length Lb, i.e., granting it some N -dependence, Lb ≡ Lb(N). By setting

Eq. (17.44) equal to Lobs,

L2
obs

!≡ LSC(N)2 =
1

2
Lb(N)2

[
1 +

√
1 +

G

πLb(N)2
f(N)

]
, (17.49)

and solving this equation for Lb(N), we find that

Lb(N) =
L2

obs√
L2

obs + G
4π

f(N)
. (17.50)

If Lb is finetuned in this way, we have constructed an N -sequence of self-

consistent radii that in the limit N → ∞ converges to the value Lobs, i.e.,

Lac(N) → Lobs as well as Lb(N) → 0. Thereby, the value of Lobs can be set

freely. Again, this becomes particularly clear in the limit N � 1 in which

Lb(N) ≈ (48π)1/2`Pl

(
Lobs

N`Pl

)2

. (17.51)

Again, we have absorbed Newton’s constant G (and the Planck constant ~) into

the Planck length `Pl.
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Fourthly, we recall that the dimensionless UV cutoff N induces the dimen-

sionful UV cutoff P(N) by

P(N)2 := EN(LSC(N)) =
N(N + 3)

LSC(N)2
. (17.52)

As for the background dependent calculation the dimensionfull UV cutoff di-

verges for N → ∞, analyzing the induced dimensionful UV cutoff P(N) gives

insights towards the difference between the background dependent and the Back-

ground Independent calculation. Here, for the latter given by the self-consistent

radii (17.44) with Lb fixed we have

P(N)2 =
2N(N + 3)

L2
b

[
1 +

√
1 +

12f(N)

N4
T

]−1

(17.53)

with the abbreviation

NT ≡ (12π)1/4

(
Lb

`Pl

)1/2

. (17.54)

To understand hove the P-cutoff behaves in the limit N →∞, we approximate

it for N � 1 and re-write it in terms of mPl ≡ `−1
Pl ,

P(N)2 ≈ (24π)m2
Pl

N2

N4
T

1 +

√
1 +

(
N

NT

)4
−1

. (17.55)

Therewith, it is easy to that

lim
N→∞

P(N) = (24π)1/2mPl

NT

, (17.56)

i.e., for the Background Independent calculation, P(N) never reaches infinity

but rather converges to some finite value which is a rather striking result. Fig-

ure 17.1 shows a graph of P(N) for NT � 1: For N = 0 we find the classical

initial point P(N = 0) = 0 of a vanishing cutoff. Then, for N small, P(N)

increases with N until it reaches the “transition” value NT after which the curve

approaches a plateau and P(N) becomes independent of N . This brings us to

the main conclusion of this chapter:

In the Background Independent calculation the limits N → ∞ and P →
∞ are obviously inequivalent. Because per construction, the regulator is only

removed fully in the former limit, N →∞, it is incorrect to attempt taking the

limit P →∞ when the gravitational backreaction is taken into account.
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Figure 17.1. The dimensionful cutoff scale P in dependence
on N according to Eq. (17.53). The corresponding sequence of
approximants assumes a positive bare cosmological constant.

If Lb & `Pl, i.e., if the self-consistent radius of the (N = 0)-approximant

is of order of the Planck length or larger, then there is no approximant for

0 ≤ N < ∞ that has a dimensionful UV cutoff larger than about the Planck

scale, P(N) . mPl. Although the regulator is fully removed and all field modes

are integrated out each member of the N -sequence does not face the problem of

transplackian momenta.



CHAPTER 18

Gravity-coupled approximants for quantized metric

fluctuations

Executive summary. We apply the framework for the quantization of fields

by gravity-coupled approximants to quantum gravity itself. Therefore, we apply

the background field technique and identify a first and second type of approx-

imants for quantized metric fluctuations. The first type of approximants is

obtained by interpreting the one-loop term of the bare gravitational action as

the matter action for a Gaussian graviton field. Therefrom, we obtain a clas-

sical stress-energy tensor which we promote to an operatorial relation that we

subsequently regularize by an N -cutoff. The second type of approximants is

obtained from the one-loop term of the effective action which induces an effec-

tive stress-energy tensor that also is regularized by an N -cutoff. We trace back

the difference between the two kinds of approximants to the dependence of the

gravitational path integral measure on the background metric. In four space-

time dimensions and for spherical background geometries, we explicitly solve

the resulting self-consistency condition for the background metric. We show

that for both kinds of approximants, there exist N -sequences of self-consistent

“background” radii that are free from the cosmological constant problem.

What is new? All research results of this chapter are new.

Based upon: Reference [6].

18.1. A first type of approximants

(A) The classical graviton field and its backreaction on the back-

ground metric. We want to define the first type of approximants for metric

fluctuations analogously to those for the scalar field. Therefore, we employ the

253
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action functional (4.47) for the (classical) graviton field hµν and the (classical)

ghost fields ξ̄µ and ξµ,

S[h, ξ̄, ξ; ḡ] = SEH[ḡ] + SM[h, ξ̄, ξ; ḡ] , (18.1)

that we had obtained by linearizing the theory given by the action (4.36). Es-

pecially, recall that this linearization corresponds to a one-loop approximation.

Associated to the classical matter action (4.44),

SM[h, ξ̄, ξ; ḡ] := Sgraviton[h; ḡ] + Sgh[0, ξ̄, ξ; ḡ] , (18.2)

is the classical stress-energy tensor defined by Eq. (15.19),

T µν [h, ξ̄, ξ; ḡ](x) := − 2√
ḡ(x)

δ

δḡµν(x)
SM[h, ξ̄, ξ; ḡ] . (18.3)

The conservation law D̄µT
µν = 0 is induced by the invariance of the action

S[h, ξ̄, ξ, ḡ], as given by its general definition (4.36), under the background gauge

transformations (4.23), δ(B)S[h, ξ̄, ξ, ḡ] = 0 (cf. appendix F.4). Consequently,

also every term in the Taylor expansion (4.41), that yields in Eq. (4.47), is δ(B)-

invariant, and therewith especially the matter action SM[h, ξ̄, ξ; ḡ]. Given that

δ(B)ḡµν = LV ḡµν = D̄µVν + D̄νVµ, we thus have [154, p. 38]

0 = δ(B)SM[h, ξ̄, ξ; ḡ] =

∫
ddx

δSM[h, ξ̄, ξ; ḡ]

δḡµν(x)
δ(B)ḡµν(x)

= −
∫

ddx
√
ḡ(x)

(
D̄µT

µν [h, ξ̄, ξ; ḡ]
)
(x)Vν(x) ,

(18.4)

where have performed a partial integration in the second step. As the in-

finitesimal vector field Vν can be chosen fully arbitrary, the conservation law

D̄µT
µν [h, ξ̄, ξ; ḡ] = 0 immediately follows. In fact, we therewith have shown

that this conservation law is fulfilled for any stress-energy tensor defined by

Eq. (15.19), provided that the defining matter action is δ(B)-invariant.

As before for the scalar field, we will restrict the treatment of the back-

reation of first type (and later also of the second type) of quantum stress tensor

candidate to the integrated and traced equations of motion

T̄ S[h, ξ̄, ξ; ḡ] = 0 , (18.5)
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where the operator

T̄ = −2

∫
ddx ḡµν(x) δ/δḡµν(x) (18.6)

is defined as in Eq. (16.11) (the “bar” shall indicate that the operator is built

from the background metric ḡ). As outlined in Section 16.2, also here the inte-

grated and traced equations of motion are sufficient when maximally symmetric

background spacetimes are under consideration because their scalar curvature

is their sole magnitude of curvature. When determined by the action (4.47),

these equations of motion amount to∫
ddz
√
ḡ(z)

{(
d

2
− 1

)
R̄(z)− dΛ

}
= −8πG

∫
ddz
√
ḡ(z) ḡµν(z)T µν [h, ξ̄, ξ; ḡ](z) , (18.7)

where we have used Eq. (16.20). The RHS is given by (up to the factor −8πG)∫
ddz
√
ḡ(z) ḡµν(z)Tµν [h, ξ̄, ξ; ḡ](z)

= T̄ SM[h, ξ̄, ξ; ḡ]

=
1

2

∫
ddx
√
ḡ hµνT̄

{
(U [0; ḡ]µνρσ)diff I[ḡ]ρσαβ

}
hαβ

−
√

2

∫
ddx
√
ḡ ξ̄µT̄ M [ḡ, ḡ]µνξ

ν .

(18.8)

The required variations are performed in appendix F.9 and are given by

T̄
√
ḡ(x) = − d

√
ḡ(x)

T̄ Iρσαβ[ḡ](x) = 4Iρσαβ[ḡ](x)

T̄ (U [0; ḡ]µνρσ)diffAρσ = 2
(
U [0; ḡ]µνρσ

∣∣
Λ=0

)diff

Aρσ

T̄ (M [ḡ, ḡ]µν)
diffXν = 2(M [ḡ, ḡ]µν)

diffXν ,

(18.9)
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where Aρσ and Xν are arbitrary tensor fields. Therewith, the RHS becomes∫
ddz
√
ḡ(z) ḡµν(z)T µν [h, ξ̄, ξ; ḡ](z) = T̄ SM[h, ξ̄, ξ; ḡ]

=
1

2

∫
ddx
√
ḡ hµν

{
(4− d)(U [0; ḡ]µνρσ)diff

+ 2
(
U [0; ḡ]µνρσ

∣∣
Λ=0

)diff
}
I[ḡ]ρσαβhαβ

−
√

2

∫
ddx
√
ḡ ξ̄µ(2− d) (M [ḡ, ḡ]µν)

diff ξν .

(18.10)

(B) The semi-classical Einstein equation. In a next step, we quantize the

fields (h, ξ̄, ξ) 7→ (ĥ, C̄, C) and promote this equation for the integrated and

traced stress-energy tensor to an operatorial relation, whose expectation value

we subsequently take:∫
ddz
√
ḡ(z) ḡµν(z)

〈
T̂ µν [ḡ](z)

〉
:=
〈
T̄ SM[ĥ, C̄, C; ḡ]

〉
. (18.11)

The corresponding semi-classical integrated and traced equations of motion are

given by∫
ddz
√
ḡ(z)

{(
d

2
− 1

)
R̄(z)− dΛb

}
= −8πG

∫
ddz
√
ḡ(z) ḡµν(z)

〈
T̂ µν [ḡ](z)

〉
. (18.12)

Here, we have traded the classical cosmological constant Λ for the bare cos-

mological constant Λb. Further, the expectation value is taken with respect to

one-loop expansion of the Schwinger functional given by Eq. (4.17), i.e., the

action in the exponent on the RHS of Eq. (4.17) is approximated by the expan-

sion (4.47). This result still is up to regularization, i.e., now we should explain
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how this expectation value is modified when implementing a cutoff of the N -

type. However, it will turn out to be more convenient to firstly rephrase the

unregularized result before finally implementing the N -cutoff:〈
T̄ SM[ĥ, C̄, C; ḡ]

〉
= lim

y→x

∫
ddx
√
ḡ(x)

{[(
2− d

2

)
(U [0; ḡ]µνρσ)diff

x

+
(
U [0; ḡ]µνρσ

∣∣
Λb=0

)diff

x

]
I[ḡ]ρσαβ

〈
ĥµν(y)ĥαβ(x)

〉
−
√

2 (2− d) (M [ḡ, ḡ]µν)
diff
x

〈
C̄µ(y)Cν(x)

〉}
.

(18.13)

The one-loop expectation values 〈ĥµν(y)ĥαβ(x)〉 and 〈C̄µ(y)Cν(x)〉 appearing

here are precisely those calculated in Eq. (4.54) such that the RHS of the semi-

classical equations of motion becomes〈
T̄ SM [ĥ, C̄, C; ḡ]

〉
= lim

y→x

∫
ddx
√
ḡ(x)

{[(
2− d

2

)
(U [0; ḡ]µνρσ)diff

x

+
(
U [0; ḡ]µνρσ

∣∣
Λb=0

)diff

x

](
(U [0; ḡ]−1)ρσαβ

)diff

y
〈y, α, β|x, µ, ν〉

−
√

2 (2− d) (M [ḡ, ḡ]µν)
diff
x

(
(
√

2
−1

M [ḡ, ḡ]−1)να

)diff

y
〈y, α|x, µ〉

}
.

(18.14)

After using that ((U [0; ḡ]−1)ρσαβ)diff
y 〈y, α, β|x, µ, ν〉 = 〈y, ρ, σ|U [0; ḡ]−1|x, µ, ν〉

and ((M [ḡ, ḡ]−1)να)
diff

y 〈y, α|x, µ〉 = 〈y, ν|M [ḡ, ḡ]−1|x, µ〉, we can perform the

limit y → x:〈
T̄ SM[ĥ, C̄, C; ḡ]

〉
=

∫
ddx
√
ḡ(x)

{
〈x, µ, ν|

[(
2− d

2

)
U [0; ḡ]

+
(
U [0; ḡ]

∣∣
Λb=0

)]
U [0; ḡ]−1|x, µ, ν〉

− (2− d)〈x, µ|M [ḡ, ḡ]M [ḡ, ḡ]−1|x, µ〉

}
.

(18.15)
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In this equation, we recognize the traces over the Hilbert spaces ST 2 and V as

defined in appendix A.1:∫
ddz
√
ḡ(z) ḡµν(z)

〈
T̂ µν [ḡ](z)

〉
:=
〈
T̄ SM[ĥ, C̄, C; ḡ]

〉
=

(
2− d

2

)
TrST 2 [1ST 2 ]

+ TrST 2

[(
U [0; ḡ]

∣∣
Λb=0

)
U [0; ḡ]−1

]
− (2− d) TrV [1V ] .

(18.16)

With the result (18.16) for the RHS of the semi-classical integrated and traced

equations of motion (18.12), these become∫
ddz
√
ḡ(z)

{(
d

2
− 1

)
R̄(z)− dΛb

}
= 8πG

{(
d

2
− 2

)
TrST 2 [1ST 2 ]

− TrST 2

[(
U [0; ḡ]

∣∣
Λb=0

)
U [0; ḡ]−1

]
− (d− 2) TrV [1V ]

}
.

(18.17)

(C) The quantum system at finite N on Sd(L). Finally, we must regularize

the first type of stress tensor candidate (18.16) by means of an N -cutoff. We

will restrict the implementation of the N -cutoff to the case M = Sd(L), i.e the

background spacetime is given by the d-sphere with radius L. On Sd(L) it is

particularly simple for us to implement an N -cutoff; namely we can do so by

truncating the eigenbases of −�ḡ of the Hilbert spaces V and ST 2 constructed

in appendix A.1.3 and given by (A.42) and (A.52), respectively, at the finite

value N :

BV
N :=

{
|nm〉T

∣∣ n = 1, 2, . . . , N ; m = 1, 2, . . . , DT
n

}
×
⋃{
|nm〉L

∣∣ n = 1, 2, . . . , N ; m = 1, 2, . . . , DL
n

}
, (18.18)

and

BST 2

N :=
{
|nm〉TT

∣∣ n = 2, 3, . . . , N ; m = 1, 2, . . . , DTT
n

}
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×
⋃{
|nm〉L

T ,T
∣∣ n = 2, 3, . . . , N ; m = 1, 2, . . . , DLT ,T

n

}
×
⋃{
|nm〉L

L,T
∣∣ n = 2, 3, . . . , N ; m = 1, 2, . . . , DLL,T

n

}
×
⋃{
|nm〉trace

∣∣ n = 1, 2, . . . , N ; m = 1, 2, . . . , Dtrace
n

}
. (18.19)

Note that we also have excluded the zero mode from the trace (i.e., scalar) part

of ST 2. Consequently, when implementing this N -cutoff, we do not consider

full vector and symmetric rank-2 tensor fields, but rather only their projections

onto the linear spans of the bases BV
N and BST 2

N . This means that traces of

some operator AV acting on V or of some operator AST 2 acting on ST 2, given

by Eqs. (A.43) and (A.53), when regularized by an N -cutoff read

TrV [AV ]N =
N∑
n=1

DTn∑
m=1

T 〈nm|AV |nm〉T +
N∑
n=1

DLn∑
m=1

L〈nm|AV |nm〉L , (18.20)

and

TrST 2 [AST 2 ]N =
N∑
n=2

DTTn∑
m=1

TT 〈nm|AST 2|nm〉TT

+
N∑
n=2

DL
T ,T

n∑
m=1

LT ,T 〈nm|AST 2|nm〉L
T ,T

+
N∑
n=2

DL
L,T

n∑
m=1

LL,T 〈nm|AST 2|nm〉L
L,T

+
N∑
n=1

Dtrace
n∑
m=1

trace〈nm|AST 2|nm〉trace .

(18.21)

The degrees of freedom of the quantum system, which are generally given by

the degrees of freedom of the graviton fgrav and of the ghost fields fghosts, at the

finite N -cutoff then are given by, respectively,

fgrav(N) =
N∑
n=2

(
DTT
n +DLT ,T

n +DLL,T
n

)
+

N∑
n=1

Dtrace
n ≡ TrST 2

[
1ST 2

]
N

(18.22)

and

fghosts(N) = 2
N∑
n=1

(
DT
n +DL

n

)
≡ 2 TrV

[
1V
]
N
. (18.23)
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Therewith we can identify the first type of approximants for quantized metric

fluctuations with1

ΘN(L) =
〈
T̄ SM[ĥ, C̄, C; ḡ]

〉
=:

∫
ddz
√
ḡ(z) ḡµν(z)

〈
T̂ µν [ḡ](z)

〉
=

(
2− d

2

)
TrST 2 [1ST 2 ]N + TrST 2

[(
U [0; ḡ]

∣∣
Λb=0

)
U [0; ḡ]−1

]
N

− (2− d)TrV [1V ]N .

(18.24)

Here the background metric is w.l.o.g. considered to be written in the form ḡµν =

L2γµν , with γµν the dimensionless metric on the unit d-sphere. Furthermore,

the scalar curvature of the d-sphere is x-independent, R̄[Sd(L)] ≡ const., and

the volume is finite, given by

vol
[
Sd(L)

]
=

2π
d+1

2 Ld

Γ
(
d+1

2

) =: σdL
d . (18.25)

Therewith, the backreaction (18.17) of the first type of approximants ΘN(L) on

the background metric ḡµν becomes(
d

2
− 1

)
R̄(L) = dΛb −

8πG

σdLd
ΘN(L)

= dΛb +
8πG

σdLd

{(
d

2
− 2

)
TrST 2 [1ST 2 ]N

− TrST 2

[(
U [0; ḡ]

∣∣
Λb=0

)
U [0; ḡ]−1

]
N

− (d− 2)TrV [1V ]N

}
.

(18.26)

18.2. A second type of approximants

(A) The second stress tensor candidate. To analyze the backreation of

the second type of approximants, we consider the equations of motion given by

the EA at vanishing quantum fluctuation and vanishing ghost fields. As in this

1Here ΘN (L) must not be confused with the first type of approximants for scalar field that
we had denoted by the same symbol.
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case one has gµν = ḡµν , we will, for ease of notation, write only gµν instead of

ḡµν in this section. In general, the equations of motion for the EA (4.70) are

given by
δΓ[g]

δgµν(x)
= 0 . (18.27)

Again, we confine ourselves to considering the integrated and traced equations

of motion that we treat on a generic background manifold:

0 = T Γ[g] ⇔ 0 = T SEH[g] +
1

2
TrST 2

[(
U [0; g]−1

)••
µν

T U [0; g]µν ••

]
− TrV

[(
M [g, g]−1

)•
µ
T M [g, g]µ•

]
,

(18.28)

where T = −2
∫

ddx gµν(x) δ/δgµν(x) as defined in Eq. (16.11).

Both traces appearing here still are subject to regularization, and surely we

later will do so by implementing an N -cutoff. In fact, both traces in Eq. (4.70)

are already subject to regularization which is why we have performed the stan-

dard rule δTr ln[A] = Tr[A−1δA] on the already regularized traces. As we had

explained in Chapter 17, this rule might not hold when regularizing the traces

via a finite mode cutoff (given by cutting its expansion in terms of eigenmodes

of the negative Laplacian on a maximally symmetric spacetime). For the traces

regulated in this way, the cyclicity property might not hold anymore – which is

why the mentioned standard rule might not hold anymore, too, as it makes use of

the cyclicity. However, the more basic standard rule δTr[ · ] = Tr[δ · ] is fulfilled

also by the regularized trace: we vary with respect to the metric and the (reg-

ularized) traces are metric-independent (cf. their definition in appendix A.1).

Thus, by showing that [T U ,U ] = 0, we can ensure that any function Q(U )

can be differentiated in the ordinary, commutitive way: T Q(U ) = Q′(U )T U

(and likewise for M ). Particulary, then the rule δTrreg ln[A] = Trreg[A−1δA] is

applicable for A = U and A = M .

To proceed further, we hence must calculate T (U [0; g]µνρσ)diffAρσ as well

as T (M [g, g]µ)diff
ν Xν where, for this purpose, Aρσ and Xν are arbitrary, but

g-independent, tensor fields (representing elements of a basis V and ST 2 with
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respect to which the traces are calculated). As a tedious calculation in appendix

F.9 shows, one has

T
(
U [0; g]µνρσ

)diff

Aρσ = 2

(
U [0; g]µνρσ

∣∣∣∣
Λb=0

)diff

Aρσ

and T (M [g, g]µ)diff
ν Xν = 2 (M [g, g]µ)diff

ν Xν .

(18.29)

Note that these equations hold for arbitrary gauge fixing parameters α and

β. Therewith, the commutators [T U ,U ] = 0 and [T M ,M ] = 0 obviously

are fulfilled and our above step toward calculating the integrated and traced

equations of motion has been correct, indeed. These hence are given by

0 = T SEH[g] + TrST 2

[(
U [0; g]−1

)••
µν

(
U [0; g]µν ••

∣∣
Λb=0

)]
reg

− 2 TrV

[(
M [g, g]−1

)•
µ
M [g, g]µ•

]
reg

,
(18.30)

which together with Eq. (16.20) yields

0 =

∫
ddz
√
g(z)

[(
d

2
− 1

)
R(z)− dΛb

]
+ 8πGTrST 2

[(
U [0; g]−1

)••
µν

(
U [0; g]µν ••

∣∣
Λb=0

)]
reg
− 16πGTrV [1V ]reg .

(18.31)

A byproduct of this general statement is the application of T to the one-

loop term Γ1L[g], which we identify as the second type of quantum stress tensor

candidate or the effective (quantum) stress tensor,

T Γ1L[g]reg =:

∫
ddx
√
ḡ(x) (Teff)µµ[ḡ](x) . (18.32)

Later, when regularizing via an N -cutoff, we will indentify this second type of

stress tensor candidate with the second type of approximants. Generally, we

have

T Γ1L[g]reg = TrST 2

[(
U [0; g]−1

)••
µν

(
U [0; g]µν ••

∣∣
Λb=0

)]
reg
− 2 TrV [1V ]reg .

(18.33)

At this point, note that together with Eq. (18.16) we have obtained the difference

T̄ Γ1L[ḡ]reg −
〈
T̄ SM[ĥ, C̄, C; ḡ]

〉
reg

=

(
d

2
− 2

)
TrST 2 [1ST 2 ]reg − dTrV [1V ]reg .

(18.34)
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Like in case of backreation of the scalar field A, this difference can tracked

back to gravitational measure given by Eq. (4.22), i.e.,

DḡĥµνDḡCµDḡC̄µ =
∏
x

ḡ(x)
(d−4)(d+1)

8
− d

2

∏
µ≥ν

dĥµν(x)
∏
α

dCα(x)dC̄α(x) . (18.35)

To see this, let assume this measure to be regularized by restricting it to finitely

many spacetime points. Then apply the operator T̄ to Eq. (4.73). This leads

directly to

T̄ Γ1L[ḡ]reg −
〈
T̄ SM[ĥ, C̄, C; ḡ]

〉
reg

= e+Γ1L[ḡ]reg

∫ (
T̄ DḡĥµνDḡCµDḡC̄µ

)
e−SM[ĥ,C̄,C;ḡ] . (18.36)

With the help of lemma (17.13) we can evaluate the variation of the measure:

T̄
∏
x

ḡ(x)
(d−4)(d+1)

8
− d

2 = lim
α→0

d

dα

∏
x

det
(
e−2αḡ••(x)

) (d−4)(d+1)
8

− d
2

= lim
α→0

d

dα

(∏
x

e−2dα[
(d−4)(d+1)

8
− d

2
]

)(∏
x

ḡ(x)
(d−4)(d+1)

8
− d

2

)

= lim
α→0

d

dα

(
e[− d−4

2
d(d+1)

2
+d2]

∑
x 1
)∏

x

ḡ(x)
(d−4)(d+1)

8
− d

2

=

([
−d− 4

2

d(d+ 1)

2
+ d2

]∑
x

1

)∏
x

ḡ(x)
(d−4)(d+1)

8
− d

2

=

[
−d− 4

2
TrST2 [1ST2 ]reg + dTrV [1V ]reg

]
×
∏
x

ḡ(x)
(d−4)(d+1)

8
− d

2 ,

(18.37)

where we have used that (here with f(x) ≡ 1)

TrST 2 [1ST 2f(x̂)]reg =

∫
“lattice”

ddx
√
ḡ(x) 〈x, µ, ν|f(x̂)|x, µ, ν〉

= tr[IST 2 ]

∫
“lattice”

ddx f(x)

=
d(d+ 1)

2

∑
x

f(x)

(18.38)
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and that

TrV [1V f(x̂)]reg =

∫
“lattice”

ddx
√
ḡ(x) 〈x, µ|f(x̂)|x, µ〉

= tr[IV ]

∫
“lattice”

ddx f(x)

= d
∑
x

f(x) .

(18.39)

Here, “lattice” refers to discretized spacetime with which we have regularized

the path integral. Therewith, we have re-derived precisely Eq. (18.34):

T̄ Γ1L[ḡ]reg −
〈
T̄ SM[ĥ, C̄, C; ḡ]

〉
reg

= e+Γ1L[ḡ]reg

∫ (
T̄ DḡĥµνDḡCµDḡC̄µ

)
e−SM[ĥ,C̄,C;ḡ]

=
d− 4

4
TrST 2 [1ST 2 ]reg − dTrV [1V ]reg .

(18.40)

Particularly, note that in Section 17.2 we have shown that we can identify the

discretization-based cutoff with an N -cutoff.

(B) The quantum system at finite N on Sd(L). To proceed further, we first

specify the gauge fixing conditions to the harmonic gauge, α = 1 and β = 1/2,

and the metric gµν to that of an maximally symmetric background spacetime

such that the operator U [0; g]µνρσ is given by Eq. (4.80). It is clear that the

operator in this form is inverted by[(
U [0; g]−1

)µν
ρσ

]diff

=κ−2
[
Iµνρσ − (Ptr.)

µν
ρσ

] (
−D2 − 2Λb + cIR

)−1

− κ−2 2

d− 2
(Ptr.)

µν
ρσ

(
−D2 − 2Λb + ctraceR

)−1
,

(18.41)

i.e., (U [0; g]−1)
µν
ρσU [0; g]ρσαβ = Iµναβ .

Next, we explicitly specify the maximally symmetric background to the d-

dimensional sphere of radius L, i.e., Sd(L). Therewith, we can finally specify

the regulator to a cutoff of the N -type, as described in the previous section.
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Especially, the regularized traces now are given by Eqs. (18.20) and (18.21).

Then, we identify the second type of approximants with Eq. (18.33), i.e.,2

Θeff
N (L) := T Γ1L[g]N

= TrST 2

[(
U [0; g]−1

)••
µν

(
U [0; g]µν ••

∣∣
Λb=0

)]
N
− 2 TrV [1V ]N .

(18.42)

With the finite volume (18.25) of the d-sphere and its x-independent scalar

curvature R(L), the backreaction of Θeff
N (L) on the background metric gµν ≡ ḡµν

becomes(
d

2
− 1

)
R(L) = dΛb−

8πG

σdLd
Θeff
N (L)

= dΛb+
8πG

σdLd

{
2 TrV [1V ]N

− TrST 2

[(
U [0; g]−1

)••
µν

(
U [0; g]µν ••

∣∣
Λb=0

)]
N

}
.

(18.43)

To prepare the application of the trace formula (18.21), we split the identity

1ST 2 according to Eq. (A.86), i.e., 1ST 2 = PTT + PLT ,T + PLL,T + Ptr.. This

yields, with D2 = �g,[(
U [0; g]−1

)µν
ρσ

(
U [0; g]ρσαβ

∣∣
Λb=0

)]diff

=
(
PTT + PLT ,T + PLL,T

)µν
αβ

[
−�g + cIR

−�g − 2Λb + cIR

]
+ (Ptr.)

µν
αβ

[
−�g + ctraceR

−�g − 2Λb + ctraceR

]
.

(18.44)

Here, PTT , PLT ,T and PLL,T are the projectors onto the traceless transverse,

traceless longitudinal-transverse and traceless longituginal-longitudinal part of

the York decomposition (see appendix A.2.2). Therewith, we have finally brought

2Again, we use the same symbol as for the second type of approximants for the scalar field.
Further, again the metric of the d-sphere is written as gµν ≡ ḡµν = L2γµν .



266 18. APPROXIMANTS FOR QUANTIZED METRIC FLUCTUATIONS

(U [0; g]−1) (U [0; g]
∣∣
Λb=0

) into a form such that we can calculate its trace using

Eq. (18.21),

TrST 2

[(
U [0; g]−1

)••
µν

(
U [0; g]µν ••

∣∣
Λb=0

)]
N

=
N∑
n=2

DTTn∑
m=1

TT 〈nm| −�g + cIR

−�g − 2Λb + cIR
|nm〉TT

+
N∑
n=2

DL
T ,T

n∑
m=1

LT ,T 〈nm| −�g + cIR

−�g − 2Λb + cIR
|nm〉L

T ,T

+
N∑
n=2

DL
L,T

n∑
m=1

LL,T 〈nm| −�g + cIR

−�g − 2Λb + cIR
|nm〉L

L,T

+
N∑
n=1

Dtrace
n∑
m=1

trace〈nm| −�g + ctraceR

−�g − 2Λb + ctraceR
|nm〉trace .

(18.45)

Now we are in a position to exploit the eigenvalue problem of the negative

Laplacian acting on symmetric rank-2 tensor fields defined on the d-sphere:

−�g(uJn,m)µν(x) = E J
n (uJn,m)(x) with J ∈ {(TT ), (LT , T ), (LL, T ), trace}. The

corresponding eigenvalues and their multiplicities can be found in table A.1 in

appendix A.1.3. Applying these eigenvalue problems yields

TrST 2

[(
U [0; g]−1

)••
µν

(
U [0; g]µν ••

∣∣
Λb=0

)]
N

=
N∑
n=2

{
DTT
n

E TT
n (L) + cIR(L)

E TT
n (L)− 2Λb + cIR(L)

+DLT ,T
n

E LT ,T
n (L) + cIR(L)

E LT ,T
n (L)− 2Λb + cIR(L)

+DLL,T
n

E LL,T
n (L) + cIR

E LL,T
n (L)− 2Λb + cIR(L)

}
+

N∑
n=1

DS
n

E S
n (L) + ctraceR(L)

E S
n (L)− 2Λb + ctraceR(L)

.

(18.46)
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In the same way, yet much quicker, we obtain TrV [1V ]N calculated using Eq. (18.20):

TrV [1V ]N =
N∑
n=1

DTn∑
m=1

T 〈nm|1V |nm〉T +
N∑
n=1

DLn∑
m=1

L〈nm|1V |nm〉L

=
N∑
n=1

(
DT
n +DL

n

)
.

(18.47)

18.3. N-sequences on S4(L)

As of yet, we have deduced two equations of motion for the radius L of the

d-dimensional sphere Sd(L): Eq. (18.26) obtained with the first type of approx-

imants (“type 1”) and Eq. (18.43) obtained with the second type of approxi-

mants (“type 2”). For the 4-sphere, d = 4, these can be summarized as (with

gµν ≡ ḡµν)

R[S4(L)] ≡ 12

L2
= 4Λb +

8πG

σ4L4

{
− TrST 2

[(
U [0; g]

∣∣
Λb=0

)
U [0; g]−1

]
N

∓ 2 TrV [1V ]N

}
,

(18.48)

where the “−” and “+” in front of the last trace refers to the backreaction of

“type 1” and “type 2”, respectively. In Eqs. (18.46) and (18.47) we had already

evaluated both traces in the truncated bases BV
N and BST 2

N of eigenfunctions

of the negative Laplacian −�g. Therewith, the equation of motion for L reads

(note that En ∼ 1/L2)

12

L2
= 4Λb +

3G

π

1

L4

{
−

N∑
n=2

[
DTT
n

E TT
n (L) + cIR(L)

E TT
n (L)− 2Λb + cIR(L)

+DLT ,T
n

E LT ,T
n (L) + cIR(L)

E LT ,T
n (L)− 2Λb + cIR(L)

+DLL,T
n

E LL,T
n (L) + cIR(L)

E LL,T
n (L)− 2Λb + cIR(L)

]

−
N∑
n=1

DS
n

E S
n (L) + ctraceR(L)

E S
n (L)− 2Λb + ctraceR(L)

∓ 2
N∑
n=1

(
DT
n +DL

n

)}
,

(18.49)
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with cd=4
I = 2/3 and cd=4

trace = 0. The respective eigenvalues E J
n of −�g and their

multiplicities DJ
n can be found in table A.1 in appendix A.1.3. Also, we have

inserted σ4 = 8π2/3. Next, in order to evaluate the sums, we rearrange the RHS

which yields

12

L2
= 4Λb +

3G

π

1

L4

{
−

N∑
n=2

(
DTT
n +DLT ,T

n +DLL,T
n

)
−

N∑
n=2

[
DTT
n

2Λb

E TT
n (L)− 2Λb + 8/L2

+DLT ,T
n

2Λb

E LT ,T
n (L)− 2Λb + 8/L2

+DLL,T
n

2Λb

E LL,T
n (L)− 2Λb + 8/L2

]

−
N∑
n=1

DS
n −

N∑
n=1

DS
n

2Λb

E S
n − 2Λb

∓ 2
N∑
n=1

(
DT
n +DL

n

)}
.

(18.50)

Here, Λb plays a role similar to the mass µ in the calculation for the scalar field

in Section 16.2: The function Λb 7→ 2Λb/(E J
n (L) − 2Λb + 8/L2) interpolates

between zero for Λb = 0 and −1 for Λb →∞ (for n fixed).3 However, unlike in

case of µ for the scalar field, Λb does not interpolate continously between these

values as the function has a pole at 2Λb = E J
n (L) + 8/L2 = 1

L2 (fJ(n) + 8) with

fJ(n) a positive, monotonically increasing function for all J . Hence the function

of Λb defined above is positive left of its pole and negative (in the plane below

−1) right of its pole. Having had these insights toward its Λb-dependence, we

will, in the following, analyze Eq. (18.50) for Λb = 0, Λb ∈ (0,∞) and Λb →∞
seperately.

3Note that in case of the scalar field we encountered an interpolation between 0 and 1 at this
place. The difference between the signs becomes apparent when taking a look at defining
action functionals of the theories: The action Eq. (3.3) for the scalar field A has the structure
“A(−�g + µ2 + ξR)A” while the linearized Einstein-Hilbert action for the graviton hµν has
the structure of Eq. (4.80), i.e., “h(−�ḡ − 2Λb + cR̄)h”.
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(A) The case Λb = 0. For the case of a vanishing bare cosmological constant,

Λb = 0, the equation of motion for L reads

12

L2
=

3G

π

1

L4

{
−

N∑
n=2

(
DTT
n +DLT ,T

n +DLL,T
n

)
−

N∑
n=1

DS
n ∓ 2

N∑
n=1

(
DT
n +DL

n

)}

=
3G

π

1

L4

{
− fgrav(N)∓ fghosts(N)

}
.

(18.51)

Using mathematical induction, the sums appearing on the RHS can be easily

proven to yield

N∑
n=2

(
DTT
n +DLT ,T

n +DLL,T
n

)
=

1

12
(9N4 + 72N3 + 135N2 − 36N − 180) ,

N∑
n=1

DS
n =

1

12
(N4 + 8N3 + 23N2 + 28N) ,

N∑
n=1

(
DT
n +DL

n

)
=

1

12
(4N4 + 32N3 + 80N2 + 64N) .

(18.52)

(The second sum, here stemming from the trace part of the field decomposition,

is identical to the degrees of freedom f(N) we encountered in the calculation for

the scalar field.) Therewith, we have the degrees of freedom4

fgrav(N) =
1

12
(10N4 + 80N3 + 158N2 − 8N − 180)

fghosts(N) =
1

12
(8N4 + 64N3 + 160N2 + 128N)

(18.53)

and the equation of motion for L in leading order in N becomes

12

L2
=

3G

πL4

1

12

{
− 8− 10 for “type 1”

+ 8− 10 for “type 2”

}
N4

[
1 +O

(
1

N

)]
, (18.54)

4Note that the degrees of freedom are only well-defined for N ≥ 1 which hints at the purely

quantum nature of the approximants. On the other hand, the sum
∑N=0
n=1 ( • )n := 0 is zero

per definition such that this formula for the degrees of freedom is not applicable for N = 0,
where there are zero degrees of freedom of the quantum system, of course.
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where the number “10” stems from the graviton’s modes while the “8” stems

from the ghost fields’ modes. Therewith, the self-cosistent radii read

LSC(N)2 = −G
π

{
3/8 for “type 1”

1/24 for “type 2”

}
N4

[
1 +O

(
1

N

)]
. (18.55)

Notably, for both types of calculation, the self-consistent radius LSC(N) is imag-

inary for all N such that in d = 4, the graviton hµν does not permit a self-

consitent spherical background for vanishing bare cosmological constant.

(B) The case Λb ∈ (0,∞). Let us go back again to analyzing the equation

of motion for L with a finite and non-vanishing bare cosmological constant Λb.

With the sums we have already evaluated, Eq. (18.50) becomes

12

L2
= 4Λb −

3G

π

1

L4

{
fgrav(N)± fghosts(N) + 5z

1

4− z

+
N∑
n=2

[
DTT
n

2Λb

E TT
n (L)− 2Λb + 8/L2

+DLT ,T
n

2Λb

E LT ,T
n (L)− 2Λb + 8/L2

+DLL,T
n

2Λb

E LL,T
n (L)− 2Λb + 8/L2

+DS
n

2Λb

E S
n (L)− 2Λb

]}
,

(18.56)

where we have introduced the abbreviation z = 2L2Λb and detached the (n = 1)-

term from the sum over the scalar (“S”) modes. Applying a partial fraction

decomposition to the remaining sums leads to

N∑
n=2

[
DTT
n

2Λb

E TT
n (L)− 2Λb + 8/L2

+DLT ,T
n

2Λb

E LT ,T
n (L)− 2Λb + 8/L2

+DLL,T
n

2Λb

E LL,T
n (L)− 2Λb + 8/L2

+DS
n

2Λb

E S
n (L)− 2Λb

]

=
5

3
z(N − 1)(N + 5) +

5

6
z(z − 10)

N∑
n=2

2n+ 3

n(n+ 3)− z + 6

+
1

2
z(z − 2)

N∑
n=2

2n+ 3

n(n+ 3)− z + 2
+

1

3
z(z + 2)

N∑
n=2

2n+ 3

n(n+ 3)− z
.

(18.57)
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Therewith we can identify the terms that are quartically, quadratically and

logarithmically divergent as well as finite in the limit N → ∞ on the RHS of

the equation of motion as

12

L2
= 4Λb −

3G

π

1

L4

{
quartically div. terms + quadratically div. terms

+ logarithmically div. terms + finite terms

}
(18.58)

with:

quartically div. t. =
1

12

18N4 + 144N3 + 318N2 + 120N − 180 (“type 1”)

2N4 + 16N3 − 2N2 − 136N − 180 (“type 2”)

quadratically div. terms =
5

3
z(N − 1)(N + 5)

logarithmically div. terms =
5

6
z(z − 10)

N∑
n=2

2n

n(n+ 3)− z + 6

+
1

2
z(z − 2)

N∑
n=2

2n

n(n+ 3)− z + 2

+
1

3
z(z + 2)

N∑
n=2

2n

n(n+ 3)− z
(18.59)
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finite terms = 5z
1

4− z
+

5

6
z(z − 10)

N∑
n=2

3

n(n+ 3)− z + 6

+
1

2
z(z − 2)

N∑
n=2

3

n(n+ 3)− z + 2

+
1

3
z(z + 2)

N∑
n=2

3

n(n+ 3)− z
,

N→∞
= 5z

1

4− z
− 14 +

24

6− z
+

36

4− z
+ 15z

+
π

2
z

{
5(z − 10) tan

[
π
2

√
4z − 15

]
√

4z − 15

+
3(z − 2) tan

[
π
2

√
1 + 4z

]
√

1 + 4z

+
2(z + 2) tan

[
π
2

√
9 + 4z

]
√

9 + 4z

}
.

(18.60)

(In the last step, note that the limits N → ∞ and z → 0 do not commute.

Also note that the square root appearing in the argument of the first tangent

function is ill-defined for 4z < −15.)

On the other hand, the remaining sums (18.57) on the RHS of the equation

of motion for L can be evaluated by means of the identity

N∑
k=0

1

x+ k
= ψ(x+N + 1)− ψ(x) (18.61)

that is fulfilled by the digamma function5 [176, 177]

ψ(x) :=
d

dx
ln Γ(x) , (18.62)

5The digamma function ψ is meromorphic on C \ (−N0) with poles of residue −1 located at
x ∈ −N0. Restricted to the real part of its domain, it asymptotically behaves as a logarithm:
limx→∞[ψ(x+ 1)− ln(x)] = 0. Furthermore, note that ψ(x+N + 1)−ψ(x) ∈ R for all x ∈ C
and N ∈ N as ψ(z)∗ = ψ(z∗) ⇒ ψ(z) + ψ(z∗) = 2Reψ(z).
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with Γ the ordinary gamma function. Applying this relation to Eq. (18.57)

yields

N∑
n=2

[
DTT
n

2Λb

E TT
n (L)− 2Λb + 8/L2

+DLT ,T
n

2Λb

E LT ,T
n (L)− 2Λb + 8/L2

+DLL,T
n

2Λb

E LL,T
n (L)− 2Λb + 8/L2

+DS
n

2Λb

E S
n (L)− 2Λb

]

=
z

3

[
5(N − 1)(N + 5) +

5

2
(z − 10)Ψ1(N, z)

+
3

2
(z − 2)Ψ2(N, z) + (z + 2)Ψ3(N, z)

]
,

(18.63)

where we have introduced the “Ψ-functions”

Ψi(N, z)=ψ

(
N +

5 +
√

4z + qi
2

)
+ ψ

(
N +

5−
√

4z + qi
2

)
− ψ

(
7 +
√

4z + qi
2

)
− ψ

(
7−
√

4z + qi
2

) (18.64)

with q1 = −15, q2 = 1 and q3 = 9. Note that each Ψi is real-valued for all

(N, z). All in all the equation of motion for L, Eq. (18.50), therewith becomes

0 =: fN(L) = 4ΛbL
4 − 12L2

−3G

π

{
fgrav(N)± fghosts(N) + 5

L2Λb

2− L2Λb

+
2L2Λb

3

[
5(N − 1)(N + 5) + 5(L2Λb − 5)Ψ1(N, 2L2Λb)

+ 3(L2Λb − 1)Ψ2(N, 2L2Λb) + 2(L2Λb + 1)Ψ3(N, 2L2Λb)

]}
.

(18.65)

A few comments are in order. First, it is clear that the real non-negative

zeros of the function fN(L) are the self-consistent radii LSC(N) of the S4-type

background manifold. These depend parametrically on G and Λb.

Secondly, the question of the existence of such zero points; for given values

of N , G and Λb; can be answered in the affirmative, reasoning as follows. The
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digamma function ψ possesses poles at −k with k ∈ N0 (cf. Figure 18.1).

At each pole, ψ diverges towards +∞ when said pole is approached from the

left and towards −∞ when approached from the right. Consequently, as ψ is

continuous between the pole at −k and that at −(k + 1), it possesses a zero

point in each of these intervals. What does this imply for the zeros of fN(L)?

Figure 18.1. The graph of the digamma function ψ.

Having fixed N , G and Λb; the function fN possesses poles arising from non-

positive arguments of the digamma functions with which the “Ψ-functions” are

constructed.6 These poles are precisely determined by

N +
5−

√
8L2Λb + qi

2
= −k and

7−
√

8L2Λb + qi
2

= −k , (18.66)

with k ∈ N0. Clearly, these equations can be solved for non-negative values of

L:

LNk,i =

√
[2(N − k)− 5]2 − qi

8Λb

and Lk,i =

√
[2k − 7]2 − qi

8Λb

. (18.67)

Again, fN diverges towards +∞ when L approaches the pole at LNk,i, respec-

tively Lk,i, from the left and towards −∞ when it is approached from the

right. Hence, fN necessarily possesses a zero point for some L ∈ [LNk,i, L
N
k+1,i]

or L ∈ [Lk,i, Lk+1,i], respectively (cf. Figure 18.2 for an illustration). Of these

6For this discussion, we may ignore the pole located at L2Λb = 2 as it arose from seperating
the (n = 1)-term from the sum earlier on the RHS and therefore could be technically absorbed
into the, then modified, “Ψ-functions”.
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zero points, we are especially interested in the N -dependent ones that amount

to N -dependent self-consistent radii of the S4-type background. In a rough

approximation these are given by

LSC
k,i(N) ≈

LNk,i − LNk+1,i

2
. (18.68)

Importantly, for the pair (k, i) fixed to arbitrary values, the sequence of self-

consistent radii constructed in this way increases monotonically as N is in-

creased: LSC(N) → ∞ as N → ∞. Thus, for non-vanishing and finite bare

cosmological constant Λb, there exists, for each pair (k, i), a family of self-

consistent radii LSC
k,i(N) that increases monotonically with N . The more modes

of the quantum fluctuation hµν are quantized, the larger the self-consistent ra-

dius of the S4-type background becomes, until it ultimately, for the fully quantized

system N → ∞, becomes flat: S4(∞) ∼= R4. This means that among the self-

consistent background S4-geometries arising from Background-Independently

quantizing metric fluctuations are S4-geometries which are free of the “como-

logical constant problem”.

Thirdly, we stress that the other families of self-consistent radii can exist.

In a logical order, one first specifies the dimensionless cutoff N = N ′ to only

then solve Eq. (18.50) for LSC(N ′). If there are several solutions, i.e., several

self-consistent radii, at N = N ′ all of these will be radii of possible realiza-

tions of self-consistent S4-type backgrounds – i.e., nature is free to “choose”

among these at each fixed N = N ′. For instance, increasing k proportionally

to N , k 7→ k + 1 as N 7→ N + 1, in the self-consistet radius approximated by

Eq. (18.68) results in a static self-consistent radius that does not change as N

is increased. Further, by overproportionally increasing the parameter k as N

increases, one may also construct a family of shrinking self-consistent radii that

potentially result in a curvature singularity for N →∞.

Fourthly, the function fN might possess further zeros, other than the ones

constructed above. These further zeros are due to the fourth-order polynomial

structure of fN in L and occur for certain values of the dimensionless cutoff N

and the parameters G and Λb (cf. Figure 18.3). Especially, note that for N

fixed LSC
k,i(N) as approximated by Eq. (18.68) is bound from above by k = 0:

LSC
k+1,i(N) ≤ LSC

k,i(N). However, still a larger self-consitent radius than LSC
0,i(N)

might exists due to the fourth-order polynomial structure of fN that dominates

the graph for large values of L.



276 18. APPROXIMANTS FOR QUANTIZED METRIC FLUCTUATIONS

Figure 18.2. The graph of the function fN(L) resulting from the
“type 2”-calculation for N = 10 and N = 100. The parameters
G and Λb are set to G = 1 and Λb = 10−2. The dashed graph
for comparison is that of the polynomial L 7→ 4ΛbL

4 − 12L2 −
3G
π

[fgrav(N)− fghosts(N)]. It is clear to see that this polynomial
dictates the trend of the graph from which the poles, resulting
from the digamma-functions that fN entails, emerge. (Due to
numeric limitations, the graph at these poles sometimes ends at
finite values.) Also clearly illustrated is how the location of the
most-right pole LNk=0,i shifts to the right as N is increased.

Fifthly, we note that this analysis it applicable to the first type of approx-

imants as well as to the second type of approximants. However, as the prop-

agating degrees of freedom of the quantum system are known to be given by

fgrav − fghosts, the second type of approximants appear to be a more natural

choice of approximants.



18.3. N -SEQUENCES ON S4(L) 277

Figure 18.3. The graph of the function fN(L) resulting from
the “type 1”-calculation for N = 100. The parameters G and
Λb are set to G = 1 and Λb = 10−1. The dashed graph for
comparison is that of the polynomial L 7→ 4ΛbL

4 − 12L2 −
3G
π

[fgrav(N) + fghosts(N)]. Clearly visible is the last zero of fN ,
that is due to this polynomial’s contribution, located right of the
last pole of the graph (which due to numerical limitation is de-
picted only as a small peak).

(C) The case Λb ∈ (−∞, 0). In case of non-vanishing negative bare cosmolog-

ical constant, the self-consistent radii which are due to the “Ψ-functions” are

also given by Eq. (18.67), i.e.,

LNk,i =

√
− [2(N − k)− 5]2 − qi

8|Λb|
and Lk,i =

√
− [2k − 7]2 − qi

8|Λb|
. (18.69)

These radii are real if and only if

qi > [2(N − k)− 5]2 viz. qi > [2k − 7]2 . (18.70)

Since qi ∈ {−15, 1, 9} and N, k ∈ N0, it is straightforward to see that the

argument of the square roots is always negative and hence there exist no self-

consistent radii which are due to the “Ψ-functions”, i.e. in other words, which

are due to logarithmic divergences. However, there still may be self-consistent

radii arising arising as zeros of fN(L) which are due to its polynomial structure,

i.e., quartic and quadratic divergences. It is a rather difficult task, if not impos-

sible, to proof the existence of these self-consistent radii analytically (without

approximations); furthermore they depend parametrically on G and Λb. Here,
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where we only take the very first steps of the program of N -cutoff approximants,

we will leave this proof an open task and restrict our analysis to showing ex-

amples sequences of self-consistent radii LSC(N) that grow with N . Figure 18.4

clearly illustrates such a sequence arising from the “type 2”-calculation with a

negative bare cosmological constant. For the same values of G and Λb, Figure

18.5 shows the analogous graph for the calculation of “type 1”; strikingly there

exist no self-consistent radii for the calculation of “type 1”. This further em-

phasizes that the calculation of “type 2” is preferable to that of “type 1”.

Hence, also in the case of a negative bare cosmological constant, the cosmo-

logical constant problem can be avoided and there exist self-consistent back-

ground S4 geometries that in the limit N →∞ become perfectly flat.

Figure 18.4. The graph of the function fN(L) resulting from the
“type 2”-calculation for the parameters G = 20 and Λb = −1/10.
It is clearly illustrated that the zeros, i.e., self-consistent radii
LSC(N), grow as N becomes larger.

(D) The case Λb → ±∞. For the case of a diverging bare cosmological

constant, Λb → ±∞, the equation of motion for L in leading order in N becomes

12

L2
=

±4 · ∞ − 6G
π

1
L4

∑N
n=1

(
DT
n +DL

n

)
for “type 1”

±4 · ∞+ 6G
π

1
L4

∑N
n=1

(
DT
n +DL

n

)
for “type 2”

(18.71)
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Figure 18.5. The graph of the function fN(L) resulting from the
“type 1”-calculation for the parameters G = 20 and Λb = −1/10.
There exist no zero points hence no self-consistent radii in this
case.

Hence for all N , the self-cosistent radius for both calculations, “type 1” and

“type 2”, becomes singular in this case, LSC(N) = 0, and the curvature diverges,

RSC(N) =∞.





CHAPTER 19

Weyl transformations and their Ward identities

Executive summary. For a given set of fields we derive the Weyl transforma-

tions’ anomalous Ward identities which result from quantizing these fields on

a generic Euclidean background manifold. On this basis, we explicitly demon-

strate how the anomaly contributes to the difference between first and second

kind of approximants, proposed in the previous chapters. By the examples of a

scalar field and metric fluctuations, we highlight the general results.

What is new? The relationship between the Weyl transformations’ anomaly

and the first and second type of approximants.

Based upon: Reference [6].

In the previous sections, we had rooted the difference between the first and

second type of approximants (for the scalar as well as the graviton field) in the

contribution from the path integral measure. Here, in this short intermezzo on

Weyl transformations, we will explicitly show how the anomaly resulting from

the non-Weyl-invariance of the measure contributes to this difference.

19.1. Weyl transformations and their anomalous Ward identities

(A) Weyl transformations. On a generic Euclidean background manifold

(M, g) consider some action functional S[{φj}; g] of a set of fields {φj} in which

each field φj is potentially equipped with an arbitrary index structure that we

henceforth will not explicitly denote. Associated to the action S[{φj}; g] is the

stress-energy tensor defined by Eq. (15.19), i.e.,

T µν [{φj}; g](x) := − 2√
g(x)

δS[{φj}; g]

δgµν(x)
. (19.1)

To each field φj we assign a Weyl weight wj, that we may choose freely, often

it is defined as the canonical mass dimension wj = [φj] (cf. appendix A for the

281
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conventions used here). We define the Weyl transformation of the metric field

gµν and each field φj as

g′µν(x) := e−2α(x)gµν(x) (19.2)

φ′j(x) := ewjα(x)φj(x) . (19.3)

Next, we will Taylor-expand the Weyl-transformed action S[{φj}; g] in α(x)

around α = 0:

S
[
{ewjαφj} ; e−2αg

]
= S [{φj} ; g] +

∫
ddx
√
g(x)α(x) N [{φj} ; g] (x) +O(α2)

(19.4)

where the field N [{φj}; g] has been defined by this expansion. On the other

hand, we can first expand the exponential in the transformations (19.2) and

(19.3) in α,

S
[
{ewjαφj} ; e−2αgµν

]
=S [{(1 + wjα)φj} ; (1− 2α)gµν ] +O(α2)

=S [{φj + wjαφj} ; gµν − 2αgµν ] +O(α2) ,
(19.5)

and only then Taylor-expand the action in wjαφj and −2αgµν around α = 0:

S
[
{ewjαφj} ; e−2αgµν

]
= S [{φj} ; g] +

∑
j

∫
ddxwj α(x)φj(x)

δS[{φj + wjαφj}; gµν − 2αgµν ]

δ(wjαφj)(x)

∣∣∣∣∣
α=0

+

∫
ddx (−2α(x)gµν(x))

δS[{φj + wjαφj}; gµν − 2αgµν ]

δ(−2αgµν)(x)

∣∣∣∣∣
α=0

+O(α2)

= S [{φj} ; g] +
∑
j

∫
ddxwj α(x)φj(x)

δS[{φj}; gµν ]
δφj(x)

−2

∫
ddxα(x)gµν(x)

δS[{φj}; gµν ]
δgµν(x)

+O(α2)

= S [{φj} ; g] +

∫
ddx
√
g(x)α(x)

[∑
j

wj√
g(x)

φj(x)
δS[{φj}; gµν ]

δφj(x)

+ gµν(x)T µν [{φj}; g](x)

]
+O(α2) .

(19.6)
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By comparison with the above definition of the field N [{φj}; g] we can read off

the identity

N [{φj} ; g] (x) = Tµ
µ[{φj}; g](x) +

∑
j

wj√
g(x)

φj(x)
δS[{φj}; gµν ]

δφj(x)
. (19.7)

Furthermore let us define the functional

N [{φj}; g] :=

∫
ddx
√
g(x) N [{φj} ; g] (x) , (19.8)

for which to define in general, it is sufficient to consider the restriction to α(x) ≡
const. = α:

S
[
{ewjαφj} ; e−2αg

]
= S [{φj} ; g] + αN [{φj} ; g] +O(α2) . (19.9)

On the other hand, said functional is determined by

N [{φj} ; g] =

∫
ddx
√
g(x)Tµ

µ[{φj}; g](x)

+
∑
j

wj

∫
ddxφj(x)

δS[{φj}; gµν ]
δφj(x)

.
(19.10)

With help of the operator T := −2
∫

ddx
√
g(x) gµν(x)δ/δgµν(x), the integrated

and traced stress-energy tensor can be expressed as∫
ddx
√
g(x)Tµ

µ[{φj}; g](x) = T S [{φj} ; g] , (19.11)

which leads the way to an alternative derivation of Eq. (19.10) employing lemma

(17.13), cf. appendix F.10.

(B) Ward identities. Next, we define the effective action Γ[g] associated to

the action S[{φj}; g] by1

e−Γ[g••] :=

∫ ∏
i

D (φi; g••) e−S[{φj};g••] (19.12)

where D(φj; g••) ≡ Dgφj is the g dependent path integral measure of the field

φj, cf. appendix D.1. The Weyl transformation of this measure is given by its

Jacobian Jj[α; g] that we parametrize as follows:

D
(
φ′j; g

′
••

)
= Jj[α; g]D (φj; g••) =: e−

∫
ddx
√
g(x)α(x)Aj(x)D (φj; g••) . (19.13)

1In this paragraph, we indicate the placement of indices (where these need not be placed) by
bullets because this placement is essential to perform Weyl transformations correctly.
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Therewith, applying the Weyl transformations (19.2) and (19.3) to the EA, we

find

exp
{
−Γ[e−2α(•)g••]

}
=

∫ ∏
i

D
(
φ′i; e−2α(•)g••

)
exp

{
−S[{φ′j}; e−2α(•)g••]

}
=

∫ ∏
i

e−
∫

ddx
√
g(x)α(x)Ai(x)D (φj; g••) exp

{
− S[{φj}; g]

−
∫

ddx
√
g(x)α(x)N [{φj}; g](x) +O(α2)

}

=

∫ ∏
i

D (φj; g••) e−S[{φj};g] exp

{

−
∫

ddx
√
g(x)α(x)

[
Ai(x) + N [{φj}; g](x) +O(α2)

]}
.

(19.14)

Furthermore expanding the exponential in the last step gives

exp

{
−
(
Γ[e−2α(•)g••]− Γ[g••]

)}
=

1

e−Γ[g••]

∫ ∏
i

D (φj; g••) e−S[{φj};g••]

{

1−
∑
i

∫
ddx
√
g(x)α(x)

[
Ai(x) + N [{φj}; g](x)

]
+O(α2)

}

=: 1−
∑
i

∫
ddx
√
g(x)α(x)

[
Ai(x) +

〈
N [{φ̂j}; g](x)

〉]
+O(α2) ,

(19.15)

where we have have quantized each field φ 7→ φ̂i and the expectation value has

been defined by the last step, i.e., it is calculated with respect to
∫∏

iD (φi; g) e−S[{φj};g].

On the other hand, an ordinary Taylor expansion of the EA gives

Γ[e−2α(•)g••]− Γ[g••] = −2

∫
ddxα(x)gµν(x)

δΓ[g]

δgµν(x)
+O(α2) . (19.16)

Let us define the effective stress-energy tensor T µνeff [g] by

δΓ[g]

δgµν(x)
=: −1

2

√
g(x)T µνeff [g](x) . (19.17)
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Therewith, the ordinary Taylor expansion amounts to

exp

{
−
(
Γ[e−2α(•)g••]− Γ[g••]

)}
= 1−

∫
ddx
√
g(x)α(x)Teff

µ
µ[g](x) +O(α2) .

(19.18)

Combining both these expansions, we can read off the following identity from

term of order α:∫
ddx
√
g(x)α(x)Teff

µ
µ[g](x) =

∑
i

∫
ddx
√
g(x)α(x)

[
Ai(x)+

〈
N [{φ̂j}; g](x)

〉]
.

(19.19)

The function α, however, is fully arbitrary. Thus, this identity is equivalent to

Teff
µ
µ[g](x) =

∑
i

Ai(x) +
〈
N [{φ̂j}; g](x)

〉
. (19.20)

This is the anomalous Weyl-Ward identity and we call the first term on the RHS

the anomaly. Its integrated version reads

T Γ[g] =:

∫
ddx
√
g(x)Teff

µ
µ[g](x)

=
∑
i

∫
ddx
√
g(x) Ai(x) +

〈
N [{φ̂j}; g](x)

〉
.

(19.21)

(Note that this equation still requires regularization!)

(C) Teff
µ
µ vs. 〈 ̂classicalT µµ 〉. Let us promote Eq. (19.7) to an operatorial relation

whose expectation value we subsequently take:〈
Tµ

µ[{φ̂j}; g](x)
〉

=
〈
N [{φ̂j}; g](x)

〉
−
∑
j

wj√
g(x)

〈
φ̂j(x)

δS[{φj}; gµν ]
δφj(x)

∣∣∣∣∣
φj=φ̂j

〉
.

(19.22)

From this operatorial relation and Eq. (19.20) we can deduce the difference

Teff
µ
µ[g](x)−

〈
Tµ

µ[{φ̂j}; g](x)
〉

=
∑
j

[
Aj(x) +

wj√
g(x)

〈
φ̂j(x)

δS[{φj}; gµν ]
δφj(x)

∣∣∣∣∣
φj=φ̂j

〉]
(19.23)
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whose integrated version amounts to

T Γ[g]−
〈
T S[{φ̂j}; g]

〉
=
∑
j

[∫
ddx
√
g(x) Aj(x)

+ wj

∫
ddx

〈
φ̂j(x)

δS[{φj}; gµν ]
δφj(x)

∣∣∣∣∣
φj=φ̂j

〉]
.

(19.24)

(Again, all terms appearing in this paragraph still require regularization.)

19.2. Example: a real scalar field

As an example, consider a single real scalar field A on a generic Euclidean

background manifold (M, g), i.e., φj = A, whose action is given by Eq. (3.3),

SM[A; g] =
1

2

∫
ddx
√
g A
[
−�g + µ2 + ξR(g)

]
A . (19.25)

Here, let us set the Weyl weight of the field A to its canonical mass dimension,

i.e., wj ≡ w = [A]. We can deduce the canonical mass dimension of the scalar

field A from the fact that the action has canonical mass dimension zero. Using

the convention of dimensionless coordinates (cf. appendix A), we find

0
!

=
[ ∫

ddx

0

√
g

−d

gµν

+2

∂µ
0

A ∂ν
0

A
]
⇒ [A] =

d− 2

2
. (19.26)

Consequently, the scalar field φj = A possesses Weyl weight wj ≡ w = (d−2)/2.

Therewith we can deduce the functional N [A; g] by means of Eq. (19.9) (with

α ≡ const.):

SM

[
e
d−2

2
αA; e−2αg

]
=

1

2

∫
ddx

√
det(e−2αg••) e

d−2
2
αA

[
− e2αgµνDµDν

+ µ2 + ξR(e−2αg)

]
e
d−2

2
αA

=

∫
ddx
√
g(x)A

[
(−�g + ξR(g)) + e−2αµ2

]
A .

(19.27)
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where we have used that
√

det(e−2αg••) = e−dα
√
g, R(e−2αg) = e2αR(g) and

that fact that the Christoffel symbols are not affected by Weyl transformations.

Hence we have

SM

[
e
d−2

2
αA; e−2αg

]
− SM [A; g] =

1

2

∫
ddx
√
g(x)A(e−2α − 1)µ2A

= − αµ2

∫
ddx
√
gA2 +O(α2)

!
=αN [A; g] +O(α2)

(19.28)

from which immediately follows that

N [A; g] = −µ2

∫
ddx
√
g(x)A(x)2 . (19.29)

Next, let us deduce the anomaly A (x) from Weyl transforming the measure

defined by Eq. (D.6),

D(A; g) :=
∏
x

det (g••)
1/4 dA(x) . (19.30)

Thereby let us assume that the measure is regularized by discretizing spacetime,

i.e., restricting it to finitely many points. This leads to

D(A′; g′) =
∏
x

det
(
e−2α(x)g••

)1/4
d
(

e
d−2

2
α(x)A(x)

)
=
∏
x

e−
2dα(x)

4 (det g••)
1/4 e

d−2
2
α(x)dA(x)

=
∏
x

e−α(x) (det g••)
1/4 dA(x)

= e−
∑
x α(x)D(A; g)

!
= e−

∫
ddx
√
g(x)α(x)A (x)D(A; g) .

(19.31)

Here, we must clarify the sum in the forelast step. It is a sum over the finitely

many points of spacetime. As shown in Section 17.2, we can identify this
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discretization-based regulator with a cutoff of the N -type. This is why the

sum can be rewritten as
∑

x α(x) = Tr[α(x̂)]N and hence also reads∑
x

α(x) =

∫
“lattice”

ddx
√
g(x) 〈x|α(x̂)|x〉

=

∫
“lattice”

ddx
√
g(x)α(x)A (x) ,

(19.32)

where the integration domain “lattice” means the finitely many spacetime points.

By setting α(x) ≡ 1, we can determine the integrated field A :∫
“lattice”

ddx
√
g(x) A (x) =

∫
“lattice”

ddx
√
g(x) 〈x|1S|x〉

= TrS[1S]N .

(19.33)

In a further step, we compare the general defintion of the EA, Eq. (19.12),

with the EA (3.40) we had defined for the scalar field A in Chapter 3 at order one

loop. It is clear that we must replace the general EA Γ[g] of the previous section

with the 1L-EA (3.39), i.e., Γ1L[g] = 1
2

Tr ln (−�g + µ2 + ξR) ≡ 1
2

Tr ln K [g].

Accordingly, when employing an N -cutoff, we have

T Γ1L[g]N =
〈
N [Â; g]

〉
N

+

∫
ddx
√
g(x) AN(x)

= − µ2

∫
ddx
√
g(x)

〈
Â2(x)

〉
N

+ TrS[1S]N .

(19.34)

Expanding the scalar fieldA in the truncated basis of eigenfunctions {χn,m}n=1,...,N

of K [g] = −�g + µ2 + ξR, this equation becomes, using Eq. (16.29),

T Γ1L[g]N = − µ2

∫
ddx
√
g(x)

N∑
n=1

Dn∑
m=1

χn,m(x)χ∗n,m(x)

Fn

+
N∑
n=1

Dn

=
N∑
n=1

Dn

[
1− µ2

Fn

]
= TrS

[
K [g]− µ2

K [g]

]
N

(19.35)
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Furthermore, Eq. (19.24) becomes when employing anN -cutoff, using Eq. (16.29),〈
T SM[Â; g]

〉
N

=
〈
N [Â; g]

〉
N
− d− 2

2

∫
ddx

〈
Â(x)

δSM[A; g]

δA(x)

∣∣∣∣∣
A=Â

〉
N

= − µ2

∫
ddx
√
g(x)

〈
Â2(x)

〉
N

− d− 2

2

∫
ddx
√
g(x)

〈
Â(x)(K [g]Â)(x)

〉
N

= − µ2

∫
ddx
√
g(x)

N∑
n=1

Dn∑
m=1

χn,m(x)χ∗n,m(x)

Fn

− d− 2

2

∫
ddx
√
g(x)

N∑
n=1

Dn∑
m=1

χn,m(x)(K [g]χ∗n,m)(x)

Fn

= − d

2
TrS[1S]N + TrS

[
K [g]− µ2

K [g]

]
N

.

(19.36)

Together with the previous equation leads directly to

T Γ1L[g]N −
〈
T SM[Â; g]

〉
N

=
d

2
TrS[1S]N , (19.37)

which precisely is (a regularized version of) Eq. (17.25).

19.3. Example: graviton and ghost fields

As a further example, consider the graviton field hµν together with the ghost

fields ξ̄µ and ξµ also on a generic Euclidean background manifold (M, ḡ). Their

classical dynamics is determined by the matter action (4.44),

SM[h, ξ̄, ξ; ḡ] := Sgraviton[h; ḡ] + Sgh[0, ξ̄, ξ; ḡ] , (19.38)
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in which we specify both, the graviton action (4.45) and the Faddeev-Popov

action (4.34), to the harmonic gauge α = 1 and β = 1/2:

Sgraviton[h••; ḡ••] :=
1

2

∫
ddx
√
ḡ hµν(U [0; ḡ]µνρσ)diff I[ḡ]ρσαβhαβ

=
1

2

∫
ddx
√
ḡ(x)hµν

{
1

2

[
d

2
(P̄tr.)

µν
ρσ − Ī

µν
ρσ

]
(D̄2 − R̄ + 2Λ)

+ ḡµνR̄ρσ − δνσR̄µ
ρ − R̄ρ

µ
σ
ν

}
Īρσαβhαβ

(19.39)

and

Sgh[0, ξ̄, ξ; ḡ] = −
√

2

∫
ddx
√
ḡ ξ̄µM [ḡ, ḡ]µνξ

ν

= −
√

2

∫
ddx
√
ḡ ξ̄µ

[
δµν D̄

2 + R̄µ
ν

]
ξν .

(19.40)

We will exploit the freedom of chosing the Weyl weights of the fields hµν , ξ̄µ
and ξµ by applying the Weyl transformations as follows:

ḡ′µν(x) = e−2α(x)ḡµν(x)

φ′j(x) = ewjα(x)φj(x)
(19.41)

with

φj =hµν ⇒ wj =
d− 6

2

φj = ξ̄µ or ξµ ⇒ wj = [φj] =
d− 2

2
.

(19.42)

The Weyl weights of the ghost fields correspond to their canonical mass di-

mensions, [ξ̄µ] = [ξµ] = (d − 2)/2, however this is not the case of for graviton

field hµν . (The chosen Weyl weight would be its canonical mass dimension if

Newton’s constant was dimensionless.) Therewith let us obtain the functional

N [h, ξ̄, ξ; ḡ] using Eq. (19.9). With α( · ) ≡ α) we therefore expand

SM

[
e
d−6

2
αh, e

d−2
2
αξ̄, e

d−2
2
αξ; e−2αḡ

]
= Sgraviton

[
e
d−6

2
αh; e−2αḡ

]
+ Sgh

[
0, e

d−2
2
αξ̄, e

d−2
2
αξ; e−2αḡ

]
(19.43)
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in the parameter α. Let us expand both terms independently; the former term

yields

Sgraviton

[
e
d−6

2
αh; e−2αḡ

]
=

1

2

∫
ddx

√
det (e−2αḡ••)

=e−dα
√
ḡ

e
d−6

2
αhµν

{
1

2

[
d

2
(P̄tr.)

µν
ρσ − Ī

µν
ρσ

]

× (e2αD̄2 − e2αR̄ + 2Λ) + e2α
(
ḡµνR̄ρσ − δνσR̄µ

ρ − R̄ρ
µ
σ
ν
)}

e4αĪρσαβe
d−6

2
αhαβ

=
1

2

∫
ddx
√
ḡ

{
hµνU [0; ḡ]µνρσh

ρσ + e−2αΛhµν

[
d

2
(P̄tr.)

µν
ρσ − Ī

µν
ρσ

]
hρσ

}

=
1

2

∫
ddx
√
ḡ

{
hµνU [0; ḡ]µνρσh

ρσ

+ (1− 2α)2Λhµν
1

2

[
d

2
(P̄tr.)

µν
ρσ − Ī

µν
ρσ

]
hρσ

}
+O(α2)

=Sgraviton[h; ḡ]− 2αΛ

∫
ddx
√
ḡ hµν

[
d

2
(P̄tr.)

µν
ρσ − Ī

µν
ρσ

]
hρσ +O(α2) ,

(19.44)

while the latter term in fact can be shown to be invariant under Weyl transfor-

mations:

Sgh

[
0, e

d−2
2
αξ̄, e

d−2
2
αξ; e−2αḡ

]
= −

√
2

∫
ddx e−dα

√
ḡ e

d−2
2
α ξ̄µe2α

[
δµν D̄

2 + R̄µ
ν

]
e
d−2

2
αξν

= −
√

2

∫
ddx
√
ḡ ξ̄µ

[
δµν D̄

2 + R̄µ
ν

]
ξν

=Sgh[0, ξ̄, ξ; ḡ] .

(19.45)

Thus we have determined the “non-invariance” that amounts to

SM

[
e
d−6

2
αh, e

d−2
2
αξ̄, e

d−2
2
αξ; e−2αḡ

]
− SM[h, ξ̄, ξ; ḡ]

= − 2αΛ

∫
ddx
√
ḡ hµν

[
d

2
(P̄tr.)

µν
ρσ − Ī

µν
ρσ

]
hρσ +O(α2)

!
=αN [h, ξ̄, ξ; ḡ] +O(α2) .

(19.46)
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From this equation we can easily read off that

N [h, ξ̄, ξ; ḡ] ≡N [h; ḡ]

= − 2αΛ

∫
ddx
√
ḡ hµν

[
d

2
(P̄tr.)

µν
ρσ − Ī

µν
ρσ

]
hρσ .

(19.47)

Next, we quantize the fields (h, ξ̄, ξ) 7→ (ĥ, C̄, C) and determine the anom-

alies Ai by Weyl transforming the measure for the graviton ĥµν and the ghost

fields C̄µ and Cµ. Again, let us do so seperately and assume that each mea-

sure is regularized by discretizing spacetime. The measure for ĥµν is given by

Eq. (D.10), i.e., (cf. [118, Eq. (2.19)])

D(ĥ; ḡ) := D
[
ḡ
d−4

4 ĥµν

]
=
∏
x

ḡ(x)
(d−4)(d+1)

8

∏
µ≥ν

dĥµν(x) , (19.48)

where we have used that the symmetric tensor ĥµν possesses d(d+ 1)/2 degrees

of freedom. Performing a Weyl transformation on this measure leads to

D(ĥ′; ḡ′) =D
(

e
d−6

2
αĥ; e−2αḡ

)
=
∏
x

(
e−2dα(x)ḡ(x)

) (d−4)(d+1)
8

∏
µ≥ν

d
(

e
d−6

2
α(x)ĥµν(x)

)
=
∏
x

e−α(x)
d(d−4)(d+1)

4 g(x)
(d−4)(d+1)

8 eα(x)
(d−6)d(d+1)

4

∏
µ≥ν

dĥµν(x)

=
∏
x

e−
d(d+1)

2
α(x)D(ĥ; ḡ)

= e−
d(d+1)

2

∑
x α(x)D(ĥ; ḡ)

= exp {−TrST 2 [1ST 2α(x̂)]N}D(ĥ; ḡ) .

(19.49)



19.3. EXAMPLE: GRAVITON AND GHOST FIELDS 293

Here, we have identified the discretization-based cutoff with an N -cutoff, as

before, i.e.,

TrST 2 [1ST 2α(x̂)]N =

∫
“lattice”

ddx
√
ḡ(x) 〈x, µ, ν|α(x̂)|x, µ, ν〉

= tr[IST 2 ]

∫
“lattice”

ddxα(x)

=
d(d+ 1)

2

∑
x

α(x) .

(19.50)

By setting α ≡ 1, it follows immediately from the definition of the anomalies

Aj that ∫
“lattice”

ddx
√
ḡ(x) Aĥ(x) = TrST 2 [1ST 2 ]N . (19.51)

The measure for the ghost fields C̄µ and Cµ is given by Eqs. (D.7) and (D.8),

i.e.,

D(C; ḡ)D(C̄; ḡ) := D
[
ḡ
d+2
4d Cµ

]
D
[
ḡ
d−2
4d C̄µ

]
=
∏
x,µ

ḡ(x)−d/2dCµ(x)dC̄µ(x) .

(19.52)

We point out, as we did in appendix D.5, that the ordering of the factors in the

product is crucial; here, the ordering is defined in the way the factors stand (no

further commuting). Applying a Weyl transformation to the measure for the

ghost fields leads to

D(C ′; ḡ′)D(C̄ ′; ḡ′) =
∏
x,µ

(
e−2dα(x)ḡ(x)

)−d/2
d
(

e
d−2

2
α(x)Cµ(x)

)
d
(

e
d−2

2
α(x)C̄µ(x)

)
=
∏
x,µ

ed
2α(x)ḡ(x)−d/2e−d(d−2)α(x)dCµ(x)dC̄µ(x)

=
∏
x

e2dα(x)D(C; ḡ)D(C̄; ḡ)

= e2d
∑
x α(x)D(C; ḡ)D(C̄; ḡ)

= exp {− (−2TrV [1V α(x̂)]N)}D(C; ḡ)D(C̄; ḡ) ,

(19.53)
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where we have used that

TrV [1V α(x̂)]N =

∫
“lattice”

ddx
√
ḡ(x) 〈x, µ|α(x̂)|x, µ〉

= tr[IV ]

∫
“lattice”

ddxα(x)

= d
∑
x

α(x) .

(19.54)

Again, by setting α ≡ 1 it follows immediately from the definition of the field

Aj that ∫
“lattice”

ddx
√
ḡ(x) [AC̄(x) + AC(x)] = −2 TrV [1V ]N . (19.55)

With these ingredients, we are ready to calculate the difference given by Eq. (19.24).

Therefore, first note that the general EA defined by Eq. (19.12), which, in this

application, is defined by the bare matter action SM[ĥ, C̄, C; ḡ], here is precisely

is the 1L-EA (4.71),

Γ1L[ḡ] =
1

2
TrST 2 ln [U [0; ḡ]

••

••]− TrV ln [M [ḡ, ḡ]
•

•] . (19.56)

Hence, Eq. (19.24), when applying an N -cutoff, here yields

T̄ Γ1L[ḡ]N −
〈
T̄ SM[ĥ, C̄, C; ḡ]

〉
N

=

∫
“lattice”

ddx
√
ḡ(x)

∑
j∈{ĥ,C̄,C}

Aj(x) +
d− 6

2

∫
ddx

〈
ĥµν(x)

δSM[ĥ, C̄, C; ḡ]

δĥµν(x)

〉
N

+
d− 2

2

∫
ddx

〈
C̄µ(x)

δSM[ĥ, C̄, C; ḡ]

δC̄µ(x)

〉
N

+
d− 2

2

∫
ddx

〈
Cµ(x)

δSM[ĥ, C̄, C; ḡ]

δCµ(x)

〉
N

= TrST 2 [1ST 2 ]N − 2 TrV [1V ]N +
d− 6

2

∫
ddx

〈
ĥµν(x)

(
U [0; ḡ]µνρσĥ

ρσ
)

(x)
〉
N

− (d− 2)
√

2

∫
ddx

〈
C̄µ(x) (M [ḡ, ḡ]µνC

ν)(x)
〉
N

= TrST 2 [1ST 2 ]N − 2 TrV [1V ]N +

(
d

2
− 3

)
TrST 2 [1ST 2 ]N − (d− 2)TrV [1V ]N

=

(
d

2
− 2

)
TrST 2 [1ST 2 ]N − dTrV [1V ]N ,

(19.57)
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which is precisely Eq. (18.34). (In the third step, we have applied the one-loop

expectation values given by Eq. (4.54).)





CHAPTER 20

Conclusion and outlook

In the final part of this thesis, we considered quantum fields in contact with

dynamical gravity and proposed a novel, non-perturbative framework for the

analysis of such systems.

This framework is subject to a main principle, Background Independence,

which must be rigorously implemented already at the level of the regularized

precursors of a quantum field theory, which we refer to as “approximants”. The

resulting generalized continuum limit of such self-consistent approximants thus

results in a quantum field theory whose fields live on a dynamically selected

background manifold, in accordance with Background Independence. To realize

such limites, we introduced a regularization scheme via cutoffs of the N -type

which results in N -sequences of approximants of an increasing number of de-

grees of freedom. Moreover, we argued that each member of an N -sequence

should constitute a (quasi-)physically realizable system. All these considera-

tions together can be summarized in the proposed requirements (R1,2,3).

After proposing this quantization framework, we began with probing the

properties of the explicit quantum systems that arise from it. Therefore, on the

one hand, we considered a quantized scalar field on a classical background mani-

fold, and, on the other hand, quantum gravity itself, by means of the background

field technique. We identified two non-identical candidates for N -sequences of

approximants, which in turn are inspired from two different versions of the field’s

operatorial stress-energy tensor that is not unique at the quantum level. As a

starting point, we chose to determine the underlying self-consistent spherical

geometries, given by a sequence of N -dependent, self-consistent radii. It must

be emphasized that we henceforth determined these in exact calculations.

When specialized to four spacetime dimensions, the resulting N -sequences of

self-consistent radii exhibited striking physical properties. Especially we were

able to demonstrate the absence of the cosmological constant problem, whereby
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adding further degrees of freedom to the quantum system flattens the universe.

Furthermore, they allow for an interpretation of the microscopic degrees of free-

dom that form the thermodynamic Bekenstein-Hawking entropy of de Sitter

space.

These preliminary investigations of the proposed novel quantization frame-

work should be extended in a number of directions. Especially, more physically

realizable approximants should be constructed. Then the convergence prop-

erties of the resulting N -sequences should be analyzed, i.e., conditions should

be worked out under which N -sequences of approximants converge to quantum

field theories of desirable properties.

Regarding the analyzed field content, this will particularly require the treat-

ment of self-interacting matter. Regarding the self-consistent background ge-

ometries, it is necessary to expand their analysis to more complicated back-

ground structures. In particular, background structures of cosmological models

might result in approximants with physically intriguing properties.
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Part 5

Appendix





APPENDIX A

Mathematical background

The following appendix gives an overview about the mathematical conventions

and notations used in this thesis. As the content of such an appendix can eas-

ily get out of control, let us specify a few notational peculiarities right away:

Throughtout this thesis, we use natural units in which ~ ≡ 1 ≡ c. In theo-

ries of gravity, canonical mass dimensions can follow the conventions of either

dimensionless coordinates, i.e. [xµ] = 0, [∂µ] = 0, [gµν ] = −2 and [gµν ] = +2

etc., or of a dimensionless metric tensor, i.e. [gµν ] = 0, [gµν ] = 0, [xµ] = −1,

[∂µ] = +1. In case that we specify canonical mass dimensions, we always point

out which convention we follow. With x, y ∈ Rd, the delta-function is defined

by δ(x− y) :=
∏d

i=1 δ(x
i− yi). Furthermore, det and tr denote the determinant

and trace of a matrix, while Det and Tr denote the determinant and trace of an

operator (that potentially is equipped with a tensor structure, as well).

A.1. Conventions and notation

A.1.1. Manifolds and Hilbert spaces

Where not mentioned elsewise, we model classical spacetime as an d-dimensional

Riemannian manifold M with metric g of Euclidean signature, i.e. signature

+ + · · ·+. In the rare cases of working on Lorentzian manifolds we adopt the

signature −+ · · ·+. In special cases, Lorentzian metrics can be converted into a

Euclidean metrics applying a Wick rotation of the time coordinate in the com-

plex plane. The mathematical aspects of Wick rotations are delicate [178] and

as these are hardly made use of throughout this thesis, we will, later on, solely

expound the Wick rotations actually used.

We denote by gµν , R = gµνRµν , Rµν = Rσ
µσν and Rσ

ρµν = −∂νΓσµρ + · · ·
the components of the metric tensor, scalar and Ricci curvature as well as the
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Riemann tensor emerging from g, respectively.1 Also, Dµ denotes the covariant

derivative given by g and we call �g := gµνDµDν the Laplacian operator.

Attached to (M, g) is the Hilbert space L2(M, g) of square-integrable func-

tions with the scalar product

( · , · )g : L2(M, g)× L2(M, g)→ C

which is locally given by

(f1, f2)g :=

∫
ddx
√
g(x) f ∗1 (x)f2(x) , (A.1)

where g(x) = det (gµν(x)) denotes the determinant of the metric.2 Let us define

another, auxilliary, scalar product by

(f1, f2)1 :=

∫
ddx f ∗1 (x)f2(x) , (A.2)

which is independent of the metric g. This scalar product is not associated to

L2(M, g) but plays a crucial role in evaluating the Gaussian path integral.

Next, we may express ( · , · )g employing the bra-ket notation:

(f1, f2)g := 〈f1|f2〉 (A.3)

with |f2〉 ∈ L2(M, g) and 〈f1| ∈ L2(M, g)∗, the dual space. Introducing the

basis
{
|x〉
∣∣x ∈ Rd

}
one has f(x) := 〈x|f〉 and consequently

〈f1|f2〉 =

∫
ddx
√
g(x) f ∗1 (x)f2(x)

=

∫
ddx
√
g(x) 〈f ∗1 |x〉〈x|f2〉

= 〈f1|
∫

ddx
√
g(x)|x〉〈x|f2〉

such that in this setting the unit operator on L2(M, g) is given by

1L2 =

∫
ddx
√
g(x) |x〉〈x| ; (A.4)

1Note that in the common textbooks [179] and [46], the Riemann tensor is defined with the
opposed sign.
2We denote by g the metric as a geometric object, i.e. a section of a vector bundle, as well
the determinant of its local components. In the respective context, it will be clear to what
notion we are referring to (mostly the latter).
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that is the completeness relation of the basis {|x〉}. Its orthogonality follows as

〈x|y〉 = 〈x|1L2|y〉 =
δ(x− y)√

g(y)
(A.5)

and we can therewith confirm consistency,

〈z|f〉 =

∫
ddx
√
g(x) 〈z|x〉〈x|f〉 = f(z) .

Defining matrix elements of an operator A on L2(M, g) by

Axy := 〈x|A|y〉 , (A.6)

matrix multiplication of A with another operator B and the operator trace of A

are given by, respectively,

(AB)xy =

∫
ddz
√
g(z)AxzBzy (A.7)

Tr[A] =

∫
ddz
√
g(z)Azz . (A.8)

A differential Operator Adiff associated to the abstract operator A is defined as

(for f ∈ L2(M, g))(
Adifff

)
(x) :=

∫
ddy
√
g(y)Axyfy = 〈x|A|f〉 . (A.9)

Alternative notations are
(
Adifff

)
(x) =

(
Adiff(x)f

)
(x) ≡

(
A

diff(x)
x f

)
(x) where

“diff(x)” refers to differentiation with respect to x. The inverse operator A−1

of A is defined by

A−1A = AA−1 = 1L2 (A.10)

from which we derive the relations (
AA−1

)
xy

= 1L2xy (A.11)∫
dd
√
g(z)Axz

(
A−1

)
zy

= 1L2xy (A.12)

Adiff(x)〈x|A−1|y〉 =
δ(x− y)√

g(y)
. (A.13)

So far, we have built a framework to handle scalars on a Riemannian mani-

folds, i.e. the space of square-integrable functions L2(M, g). In addition to that,
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we are required to accordingly treat vector fields and symmetric rank-2 tensor

fields. Geometrically, vector fields are elements of ΓTM , the space of sections

of the tangent bundle TM → M , while symmetric rank-2 tensor fields are el-

ements of ΓSym2(TM), the space of sections of the vector bundle of bilinear

mappings on TM , Sym2(TM)→M . Locally, X ∈ ΓTM and φ ∈ ΓSym2(TM)

can be expressed, with help of a chart x : U ⊂M → U ′ ⊂ Rd, as [179–181]

Xq = Xµ(q)
∂

∂xµ|q
(A.14)

φq = φµν(q)
∂

∂xµ|q
⊗ ∂

∂xν |q
(A.15)

where q ∈ U .3 Relying on the fact that vector budles are locally trivial, we fur-

ther restrict ΓTM to V and ΓSym2(TM) to ST 2, which are subspaces identified

by the local isomorphisms

ΓTM |U ⊇ V |U ∼= L2(M, g)|U ⊗Rd

ΓSym2(TM)|U ⊇ ST 2|U ∼= L2(M, g)|U ⊗R
d(d+1)

2 .

Then we may extend the scalar product (A.1) to the space of vector fields and

symmetric rank-2 tensors, respectively,

(X, Y )g :=

∫
ddx
√
g(x) gµν(x)X∗µ(x)Y ν(x) (A.16)

(φ, ψ)g :=

∫
ddx
√
g(x)

1

2
(gµαgνβ + gµβgνα)(x)φ∗µν(x)ψαβ(x) , (A.17)

where X, Y ∈ V and φ, ψ ∈ ST 2 (or complexifications thereof). These local ex-

tentions of ( · , · )g are obviously well-behaved under coordinate transformations

and hence defined globally. Therewith, we identify the spaces of vector fields

and of symmetric rank-2 tensor fields as Hilbert spaces. Their canocial bases

are given by, respectively{
|x, µ〉

∣∣x ∈ Rd , µ ∈ {1, . . . , d}
}

(A.18)

3At this short moment in time, we are aware of the ongoing abuse of notation: Physicists
usually treat sections of vector bundles locally, i.e. consider mappings codomain of chart →
manifold → total space that are well-behaved under chart transitions. If x denotes a chart
and X a vector field, then such mappings are obtained by X ◦ x−1. However, we denote
this mapping, that we consider only in local treatments, as x 7→ Xµ(x) where x ∈ Rd, and
conveniently forget about the interposed chart but keep in mind the transformation behaviour
under chart transitions from now on.
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{
|x, µ, ν〉

∣∣x ∈ Rd ; µ ≤ ν ; µ, ν ∈ {1, . . . , d}
}
. (A.19)

These bases map X ∈ V and φ ∈ ST 2 to their local components, Xµ(x) =

〈x, µ|X〉, X∗µ(x) = 〈X|x, µ〉, φµνx = 〈x, µ, ν|φ〉 and φ∗µν(x) = 〈φ|x, µ, ν〉, and

fulfill the relations:4

〈x, µ|y, ν〉 = δµν
δ(x− y)√

g(y)
(A.20)

〈x, µ, ν|y, α, β〉 =
1

2

(
δµαδ

ν
β + δµβδ

ν
α

)δ(x− y)√
g(y)

(A.21)

as well as∑
µ

∫
ddx
√
g(x) |x, µ〉〈x, µ| = unity operator on ΓTM (A.22)

∑
µ,ν

∫
ddx
√
g(x) |x, µ, ν〉〈x, µ, ν| = unity operator on ΓSym2(TM) . (A.23)

Regarding the scalar products, we verify that for X, Y ∈ V and φ, ψ ∈ ST 2 one

has

〈X|Y 〉 =
∑
µ

∫
ddx
√
g(x) 〈X|x, µ〉〈x, µ|Y 〉

=

∫
ddx
√
g(x)X∗µ(x)Y µ(x)

≡ (X, Y )g

and

〈φ|ψ〉 =
∑
µ,ν

∫
ddx
√
g(x) 〈φ|x, µ, ν〉〈x, µ, ν|ψ〉

=

∫
ddx
√
g(x)φ∗µν(x)ψµν(x)

≡ (φ, ψ)g .

After having meticulously introduced the geometric framework to work with,

let us summarize the precedent outline by introducing a simplified notation. We

denote by. . .

4When indices appear in bras and kets, we explicitly denote whether they are summed over.
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. . .S the Hilbert space of scalars with canonical basis {|x〉}. Its unit

operator is 1S =
∫

ddx
√
g(x) |x〉〈x| and the operator AS acting on S

is locally given by 〈x|AS|f〉 = (AS)diff
x f(x). Its trace reads TrS[AS] =∫

ddx
√
g(x) 〈x|AS|x〉.

. . .V the Hilbert space of vector fields with canonical basis {|xµ〉}.
Its unit operator is 1V =

∑
µ

∫
ddx
√
g(x) |x, µ〉〈x, µ| and the opera-

tor AV acting on V is locally given by 〈x, µ|AV |X〉 = (AVX)µ (x) =

(AV )µν
diff

x Xν(x). Therewith, its trace is given by the formula TrV [AV ] =∑
µ

∫
ddx
√
g(x) 〈x, µ|AV |x, µ〉.

. . .ST 2 the Hilbert space of vector fields with canonical basis {|x, µ, ν〉}.
Its unit operator is 1ST 2 =

∑
µ,ν

∫
ddx
√
g(x) |x, µ, ν〉〈x, µ, ν| and the

operator AST 2 acting on ST 2 is locally given by 〈x, µ, ν|AST 2|φ〉 =

(AST 2φ)µν (x) = (AST 2)µναβ
diff

x
φαβ(x). Therewith, its trace is given by

TrST 2 [AST 2 ] =
∑

µ,ν

∫
ddx
√
g(x) 〈x, µ, ν|AST 2|x, µ, ν〉.

Also, we point out the significant fact that TrS, TrV as well as TrST 2 are inde-

pendent of the metric g due to (A.5), (A.20) and (A.21).

Lastly we introduce the general notation

〈x, µ1, µ2, . . .|1|y, ν1, ν2, . . .〉 =: Iµ1µ2···
ν1ν2···

δ(x− y)√
g(y)

,

such that especially

IST 2
µν
ρσ =

1

2

(
δµρ δ

ν
σ + δµσδ

ν
ρ

)
(A.24)

and IV
µ
ν = δµν and IS = 1. Usually, as the context is clear, we write only I for

IST 2 .

A.1.2. Separable Hilbert spaces

Often we assume M to be compact. This implies the Hilbert space S = L2(M, g)

to be separable and equipped with a generic countable basis
{
|n〉
∣∣n ∈ N} of S.
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Without loss of generality, this basis can be chosen orthonormal, 〈n|m〉 = δnm.

In terms of the functions 〈x|n〉 =: un(x) this relation reads

δnm = 〈n|m〉 = 〈n|1S|m〉 =

∫
ddx
√
g(x)u∗n(x)um(x) (A.25)

and the completeness relation 1S =
∑

n|n〉〈n| amounts to

δ(x− y)√
g(y)

= 〈x|y〉 =
∑
n

〈x|n〉〈n|y〉 =
∑
n

u∗n(x)un(y) . (A.26)

In this setting the trace of the operator AS acting on S can be computed as

TrS[AS] =
∑
n

〈n|AS|n〉 . (A.27)

Therewith it is clear that the Hilbert spaces V and ST 2 of vector fields and

symmetric rank-2 tensor fields are separable, too. However, in order not to

digress in the preliminary, we dub their generic countable bases only in special

cases.

Next, we will study the properties of a basis of S that has been constructed

in terms of the eigenfunctions of some operator acting on S. Therefore, let K

be some operator acting on S that is self-adjoint with respect to (A.1). We

assume its eigenvalue problem,

K χn = Fnχn (A.28)

to be solved. Furthermore, we assume K to have a fully discrete spectrum and

to be positive definite; then one finds the sequence

F1 < F2 < · · · < Fn
n→∞−−−→∞

and
{
χn,m

∣∣n ∈ N , m ∈ {1, . . . , Dn}
}

, where m is the index accounting for the

degeneracy Dn of the eigenvalue Fn, forms an orthonormal and complete basis

of S. The orthogonality and completeness realtions, (A.25) and (A.26), now

read

δnkδml =

∫
ddx
√
g(x)χ∗n,m(x)χk,l(x) (A.29)

δ(x− y)√
g(y)

=
∑
n∈N

Dn∑
m=1

χ∗n,m(x)χn,m(y) . (A.30)
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Here, we draw attention to an important lemma: If K is self-adjoint with

respect to (A.1) then

L := g1/4(x̂)K g−1/4(x̂) (A.31)

is self-adjoint with respect to (A.2). Note that for the sake of clarity, we denoted

the position operator in the argument on g1/4 with a “hat” – elsewise, we drop

the “hat” for operators. The proof is a sequence of equal signs:

(f1,L f2)1 =

∫
ddxf ∗1 (x)g1/4(x)

(
K g−1/4f2

)
(x)

=

∫
ddx
√
g g−1/2f ∗1 g

1/4K g−1/4f2

=
(
g−1/2f1g

1/4,K g−1/4f2

)
g

=
(
K g−1/4f1, g

−1/4f2

)
g

=

∫
ddx g1/2

(
K g−1/4f ∗1

)
g−1/4f2

=

∫
ddx

(
g1/4K g−1/4f ∗1

)
f2

= (L f1, f2)1 �

where in the fourth step we have used that K is self-adjoint with respect to

(A.1).

To diagonalize L , let us consider its eigenvalue problem:

L ψn = F ′
nψn ⇔ K g−1/4ψn = F ′

ng
−1/4ψn .

Without loss of generality, we can choose ψn = g−1/4χn which implies

F ′
n = Fn .

Hence, we have found that

spectrum(L ) = spectrum(K ) = {Fn} . (A.32)

The eigenfunctions ψn of L occur with the same degree of degeneracy as χn
(that of Fn) and fullfill

δnkδml =

∫
ddx g1/4(x)g1/4(x)χ∗n,m(x)χk,l(x) = (ψn,m, ψk,l)1 (A.33)
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δ(x− y) = g1/4(x)g1/4(y)
∑
n

Dn∑
m=1

χ∗n,m(x)χn,m(y) =
∑
n

Dn∑
m=1

ψ∗n,m(x)ψn,m(y) .

(A.34)

Note that {ψn,m} forms a basis of S, too.

A.1.3. The special case M = Sd(L)

Sometimes we restrict (background) spacetime to the special case of M = Sd(L),

the d-sphere of radius L, and employ the bases of S, V and ST 2 given in terms of

the eigenfunctions of the negative Laplacian −�g = −gµνDµDν . The spectrum

of the Laplacian on the d-sphere, acting on S, V and ST 2, has been determined

rigorously [182–184]. Subsequently, we summarize the required results while

introducing compact notations for these.

The eigenvalue problem for the Laplacian acting on scalars reads

−�gun,m(x) = E S
n un,m(x) , (A.35)

where n = 0, 1, 2, . . . and m = 1, 2, . . . , DS
n accounts for the degeneracy of E S

n .5

We introduce the state |nm〉 in S by

〈x|nm〉 := un,m(x) ; (A.36)

thence {
|nm〉

∣∣ n = 0, 1, 2, . . . ; m = 1, 2, . . . , DS
n

}
(A.37)

is an orthonormal basis of S and the trace of an operator AS is given by

TrS[AS] =
∞∑
n=0

DSn∑
m=1

〈nm|AS|nm〉

=
∞∑
n=0

DSn∑
m=1

∫
ddx
√
g(x)un,m(x)AS

diff
x un,m(x) .

5Here, we explicitly let the index n start running from zero to mark the (single) zero mode –
the constant function.
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A vector field can be decomposed into transverse and longitudinal parts, cf.

(A.75). Accordingly, the eigenvalue problem of −�g can be decomposed into

transverse and longitudinal eigenfunctions:

−�g
(
uTn,m

)
µ
(x) = E T

n

(
uTn,m

)
µ
(x) , (A.38)

where Dµ
(
uTn,m

)
µ

= 0; n = 1, 2, . . . and m = 1, 2, . . . , DT
n ; as well as

−�g
(
uLn,m

)
µ
(x) = E L

n

(
uLn,m

)
µ
(x) , (A.39)

where
(
uLn,m

)
µ

= Dµun,m; n = 1, 2, . . . and m = 1, 2, . . . , DL
n . We introduce the

states |nm〉T and |nm〉L in V by

〈x, µ|nm〉T := aTn
(
uTn,m

)µ
(x) (A.40)

and

〈x, µ|nm〉L := aLn
(
uLn,m

)µ
(x) (A.41)

where aTn and aLn are constants chosen such that I〈nm|kl〉J = δIJδnmδkl; I, J =

T, L. Then{
|nm〉T

∣∣ n = 1, 2, . . . ; m = 1, 2, . . . , DT
n

}
×
⋃{
|nm〉L

∣∣ n = 1, 2, . . . ; m = 1, 2, . . . , DL
n

}
(A.42)

is an orthonormal basis of V and the trace of an operator AV is given by

TrV [AV ] =
∞∑
n=1

DTn∑
m=1

T 〈nm|AV |nm〉T +
∞∑
n=1

DLn∑
m=1

L〈nm|AV |nm〉L , (A.43)

or put another way,

TrV [AV ] =
∑
I=T,L

∞∑
n=1

DIn∑
m=1

(
aIn
)2
∫

ddx
√
g(x)

(
uIn,m

)
µ
(x)(AV )µν

diff

x

(
uIn,m

)ν
(x) .

A covariant symmetric rank-2 tensor field can be decomposed into transverse-

traceless, longitudinal-transverse-traceless, longitudinal-longitudinal-traceless and

trace part, cf. (A.84). Accordingly, the eigenvalue problem of −�g can be de-

composed:

−�g
(
uTTn,m

)
µν

(x) = E TT
n

(
uTTn,m

)
µν

(x) , (A.44)
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where Dµ
(
uTTn,m

)
µν

= 0 = gµν
(
uTTn,m

)
µν

; n = 2, 3, . . . and m = 1, 2, . . . , DTT
n ;

−�g
(
uL

T ,T
n,m

)
µν

(x) = E LT ,T
n

(
uL

T ,T
n,m

)
µν

(x) , (A.45)

where
(
uL

T ,T
n,m

)
µν

= Dµ

(
uTn,m

)
ν
+Dν

(
uTn,m

)
µ
; n = 2, 3, . . . andm = 1, 2, . . . , DLT ,T

n ;

−�g
(
uL

L,T
n,m

)
µν

(x) = E LL,T
n

(
uL

L,T
n,m

)
µν

(x) , (A.46)

where
(
uL

L,T
n,m

)
µν

= 2DµDνun− 2
d
gµν�gun; n = 2, 3, . . . and m = 1, 2, . . . , DLL,T

n ;

as well as

−�ggµνun,m(x) = E trace
n un,m(x) , (A.47)

where n = 0, 1, 2, . . . and m = 1, 2, . . . , Dtrace
n . We introduce the states |nm〉TT ,

|nm〉L
T ,T , |nm〉L

L,T and |nm〉trace in ST 2 by

〈x, µ, ν|nm〉TT := aTTn
(
uTTn,m

)µν
(x) , (A.48)

〈x, µ, ν|nm〉L
T ,T := aL

T ,T
n

(
uL

T ,T
n,m

)µν
(x) , (A.49)

〈x, µ, ν|nm〉L
L,T := aL

L,T
n

(
uL

L,T
n,m

)µν
(x) , (A.50)

〈x, µ, ν|nm〉trace := atrace
n gµν(x)un,m(x) (A.51)

where aTTn , aL
T ,T

n , aL
L,T

n and atrace
n are constants chosen such that I〈nm|kl〉J =

δIJδnmδkl; I, J ∈ {(TT ), (LT , T ), (LL, T ), trace}. Then{
|nm〉TT

∣∣ n = 2, 3, . . . ; m = 1, 2, . . . , DTT
n

}
×
⋃{
|nm〉L

T ,T
∣∣ n = 2, 3, . . . ; m = 1, 2, . . . , DLT ,T

n

}
×
⋃{
|nm〉L

L,T
∣∣ n = 2, 3, . . . ; m = 1, 2, . . . , DLL,T

n

}
×
⋃{
|nm〉trace

∣∣ n = 0, 1, . . . ; m = 1, 2, . . . , Dtrace
n

}
(A.52)

is an orthonormal basis of ST 2.
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The trace of an operator AST 2 can be calculated by means of this basis,

TrST 2 [AST 2 ] =
∞∑
n=2

DTTn∑
m=1

TT 〈nm|AST 2|nm〉TT

+
∞∑
n=2

DL
T ,T

n∑
m=1

LT ,T 〈nm|AST 2 |nm〉L
T ,T

+
∞∑
n=2

DL
L,T

n∑
m=1

LL,T 〈nm|AST 2|nm〉L
L,T

+
∞∑
n=0

Dtrace
n∑
m=1

trace〈nm|AST 2|nm〉trace ,

(A.53)

which is equivalent to

TrST 2 [AST 2 ] =
∑
I

∞∑
n=2

DIn∑
m=1

(
aIn
)2
∫

ddx
√
g
(
uIn,m

)
µν

(AST 2)µναβ
diff (

uIn,m
)αβ

+
∞∑
n=0

Dtrace
n∑
m=1

(
atrace
n

)2
∫

ddx
√
g gµνun(AST 2)µναβ

diff
gαβun ,

where I ∈ {(TT ), (LT , T ), (LL, T )}.

Lastly, we point out that the index n starts running from 0, 1 and 2 for un,

uTn and uTTn , respectively, per construction [182, 184] (corresponding to the rank

of the tensor). All other eigenfunctions are constructed from these three; and

consequently one can deduce the respective ranges that n indexes [183].
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A.2. Field decomposition

Details on how to decompose a tensor field can be found in many textbooks,

e.g. [102, 185, 186]. Subsequently, we introduce the most important properties.

In general, we denote a projector onto some subspace of a Hilbert space by P

and by P its associated tensor structure given by

〈x, µ1, µ2, . . .|P|y, ν1, ν2, . . .〉 = (P µ1µ2···
ν1ν2···)

diff
x

δ(x− y)√
g(y)

.

(Usually, we write P µ1µ2···
ν1ν2··· for notational simplicity and keep in mind that

we deal with a differential operator.)

A.2.1. On flat spacetime

Tensor fields defined on a flat spacetime, i.e. Euclidean space with the metric

gµν = δµν or Minkowski space with the metric gµν = ηµν , can be decomposed

into irreducible representations of the Lorentz group. These are labeled by spin

J and parity P , in short JP [102, p. 21].

A vector field Xµ can be decomposed into its transverse and longitudinal

components. These correspond to the following representations of the Lorentz-

group, respectively. Firstly, a (d− 1)-dimensional representation with JP = 1−

given by the projector

Lµ
ν :=

pµp
ν

p2
(A.54)

in Fourier space (otherwise Lµν = ∂µ∂ν
∂2 ) and, secondly, a one-dimensional rep-

resentation with JP = 0+ given by the projector

Tµ
ν := δνµ − Lµν . (A.55)

This implies that we may split the vector field Xµ as

Xµ = XT
µ + ∂µσ := Lµ

νXν + Tµ
νXν (A.56)

where ∂µXT
µ = 0 and σ is a scalar field.
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A symmetric rank-2 tensor field φµν can be decomposed into four irreducible

representations of the Lorentz group – firstly, a (d + 1)(d − 2)/2-dimensional

representation with JP = 2+ given by the projector(
P (2)

)
µν

αβ
=

1

2

(
Tαµ T

β
ν + T βµ T

α
ν

)
− 1

d− 1
TµνT

αβ (A.57)

on the transeverse-traceless part of φµν :

XTT
µν :=

(
P (2)

)
µν

αβ
φαβ . (A.58)

Secondly, there is a (d − 1)-dimensional representation with JP = 1− given by

the projector (
P (1)

)
µν

αβ
:=

1

2

(
Tαµ L

β
ν + T βµ T

α
ν + Tαν L

β
µ + T βν L

α
µ

)
(A.59)

whose projection (traceless, not transverse) of φµν can be written in terms of a

transverse vector ξTµ : (
P (1)

)
µν

αβ
φαβ := ∂µξ

T
ν + ∂νξ

T
µ . (A.60)

Lastly, there are two one-dimensional representations, each with JP = 0+, given

by the projectors (
P (0,ss)

)
µν

αβ
:=

1

d− 1
TµνT

αβ (A.61)(
P (0,ww)

)
µν

αβ
:= LµνL

αβ (A.62)

whose actions on φµν can be expressed through two scalar fields, s and w,

respectively: (
P (0,ss)

)
µν

αβ
φαβ =

1

d
Tµνs (A.63)

where s = d−1
d
Tαβφαβ (transverse, not traceless) and(

P (0,ww)
)
µν

αβ
φαβ =

1

d
Lµνw (A.64)

where w = Lαβφαβ (neither transverse nor traceless).

The subsequent relations equally hold for the actual projectors P(2), P(1) etc.

(with I exchanged for 1):
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With help of the identity I given by Eq. (A.24) we can formulate the com-

pleteness relation that the projectors defined above fulfill,

P (2) + P (1) + P (0,ss) + P (0,ww) = I , (A.65)

which is equivalent to

φTTµν +
(
∂µξ

T
ν + ∂νξ

T
µ

)
+

1

d
Tµνs+

1

d
Lµνw = φµν . (A.66)

Next we note that it is possible to define projectors that entwist the two one-

dimensional representations. These are given by(
P (0,sw)

)
µν

αβ
=

1√
d− 1

TµνL
αβ (A.67)

(
P (0,ws)

)
µν

αβ
=

1√
d− 1

LµνT
αβ (A.68)

and can also be included in expressing an orthogonality relation for the projec-

tors: (
P (I,ab)

)
µν

ρσ(
P (J,cd)

)
ρσ

αβ
= δIJδbc

(
P (J,ad)

)
µν

αβ
, (A.69)

where P (2) ≡ P (2,00), P (1) ≡ P (1,00), I, J = 0, 1, 2 and a, b, c, d ∈ {0, s, w}.

It can be easily verified that a linear combination

Y = a2P
(2) + a1P

(1) + assP
(0,ss) + awwP

(0,ww) + aswP
(0,sw) + awsP

(0,ws)

where a2, a1, as, aw, asw ∈ R, is inverted by

Y −1 =
1

a2

P (2) +
1

a1

P (1) +
aww

assaww − aswaws
P (0,ss) +

ass
assaww − aswaws

P (0,ww)

− asw
assaww − aswaws

P (0,sw) − aws
assaww − aswaws

P (0,ws) , (A.70)

i.e. Y Y −1 = Y −1Y = I.

Finally, we introduce the projector on the trace part of a symmetric rank-2

tensor,

(Ptr.)
αβ
µν :=

1

d
gµνg

αβ (A.71)
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and note that this definition also holds on curved manifolds (just as the identity

(A.24)). With that, one has the relations

Ptr. =
d− 1

d
P

(0,ss)
tr. +

1

d
P

(0,ww)
tr. +

√
d− 1

d

(
P

(0,sw)
tr. + P

(0,ws)
tr.

)
; (A.72)

I − Ptr. = P
(2)
tr. + P

(1)
tr. +

1

d
P

(0,ss)
tr. +

d− 1

d
P

(0,ww)
tr. −

√
d− 1

d

(
P

(0,sw)
tr. + P

(0,ws)
tr.

)
.

A.2.2. On curved spactime

On curved spacetime the decomposition of a symmetric rank-2 tensor field into

irreducible representations of the Lorentz group is not possible.6 However, a

similar decomposition, the York decomposition, is still possible [187]. First, a

symmetric tensor field φµν is split into its transverse and longitudinal parts:

φµν = φTµν + φLµν (A.73)

where DµφTµν = 0. The longitudinal component can be expressed through a

vector ξµ,

φLµν = Dµξν +Dνξµ . (A.74)

Then again, the vector ξµ can be decomposed into transverse and longitudinal

parts:

ξµ = ξTµ +Dµσ , (A.75)

where DµξTµ = 0. The longitudinal part of φµν hence becomes

φLµν = Dµξ
T
ν +Dνξ

T
µ + 2DµDνσ . (A.76)

Next, we will further decompose φTµν into its traceless and trace part. Therefore,

we write the trace of φµν as

φ := gµνφµν = gµνφTµν + gµνφLµν = gµνφTµν + 2D2σ , (A.77)

where D2 = gµνDµDν . Hence,

gµνφTµν = φ− 2D2σ ⇔ φTµν =
1

d
gµν
(
φ− 2D2σ

)
(A.78)

6This is obviously only possible for tensors whose transformation behaviour under coordinate
transformations is given by elements of the Lorentz group.
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and

φTµν = φTTµν +
1

d
gµν
(
φ− 2D2σ

)
(A.79)

where gµνφTTµν = 0 (transverse-traceless). All together, the York decomposition

reads

φµν = φTTµν +Dµξ
T
ν +Dνξ

T
µ + 2DµDνσ +

1

d
gµν
(
φ− 2D2σ

)
. (A.80)

Nota bene. Applying general coordinate transformations to φµν , it is straight-

forward to see that the fields ξTµ and σ are pure gauge fields while φTTµν and the

combination φ−2D2σ are invariant and hence physical degrees of freedom [185].

Futhermore in flat space, i.e. gµν = δµν or gµν = ηµν , one finds that s = φ−2D2σ

and w = φ+ (d− 1)D2σ [102].

Often it is convenient to take a look at the York decomposition from a dif-

ferent angle: Define by

φLTµν := Dµξν +Dνξµ −
2

d
gµνD

2σ (A.81)

the traceless longitudinal part of φµν . This directly leads to the decomposition

φµν = φTTµν + φLTµν +
1

d
gµνφ .

Next, we can further decompose the traceless longitudinal part by decomposing

the vector ξµ according to Eq. (A.75):

φL
T ,T

µν := Dµξ
T
ν +Dνξ

T
µ (A.82)

is the tranceless longitudinal-transverse part of φµν (where the latter “trans-

verse” refers to the decomposition of ξµ) and

φL
L,T

µν := 2

(
DµDνσ −

1

d
gµνD

2σ

)
(A.83)

is the traceless longitudinal-longitudinal part of φµν . Then the York decompo-

sition can be written as

φµν = φTTµν + φL
T ,T

µν + φL
L,T

µν +
1

d
gµνφ . (A.84)

Note that the degrees of freedom of φTTµν , (d+1)(d−2)/2, of φL
T ,T

µν , d−1, and of

φL
L,T

µν and 1
d
gµνφ, each having a single degree of freedom, sum up to d(d+ 1)/2
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– corresponding to the decomposition in flat spacetime into irreducible repre-

sentations of the Lorentz group.

Also on curved spacetimes, projectors on the respective parts of the York

decomposition can be constructed. The definition (A.24) of the identity Iµνρσ
on the space symmetric tensors does not depend on the metric can is therefore

trivially valid also on curved spacetimes. Likewise the projector on the trace

part

(Ptr.)
µν
ρσ :=

1

d
gρσg

µν (A.85)

fulfills its purpose on curved spacetimes: (Ptr.)
µν
ρσφµν = (1/d)gρσφ. The re-

maining projectors cannot be adopted as simply from flat space and their con-

struction is much more involving. Following [62] the projector on the traceless

longitudinal part is given by7

(PLT )µνρσ = (P1)µνα (P−1
2 )αβ(−Dγ)(I − Ptr.)

γβ
ρσ

where

(P1)µνα =Dµδνα +Dνδµα −
2

d
gµνDα

(P2)αβ =

[
−D2δαβ −Rα

β −
d− 2

d
DαDβ

]
.

Therewith one has (PLT )µνρσφ
ρσ = (φLT )µν . In practical situations the appear-

ance of the inverse projector P−1
2 makes it difficult to deal with the projector

PLT . In this thesis, the projector PLT is only formally required, however. Fur-

thermore, this definition also entails the projector onto the vector part,

(Pξ)
α
ρσ := (P−1

2 )αβ(−Dγ)(I − Ptr.)
γβ
ρσ

that acts as (Pξ)
α
ρσφ

ρσ = ξα. Hence, by applying the projectors of a contravariant

vector onto its longitudinal and transverse part,

(PL)µνξ
ν :=Dµ(D2)−1Dνξ

ν = Dµσ

(PT )µνξ
ν := (IV − PL)µνξ

ν = (ξT )µ ,

7(PLT )µνρσ acts on contravariant second-rank tensors – we could raise and lower its indices
using Iµνρσ such that it acts on covariant tensors. Here, we refrain from doing so in order to
not artificially complicate the matter.
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we can construct the projector of a contravariant second-rank tensor fields onto

its traceless longitudinal-transverse and traceless longitudinal-longitudinal part.

These are

(PLT ,T )µν
ρσ

:= (Dµδνα +Dνδµα) (PT )αβ(Pξ)
β
ρσ

(PLL,T )µν
ρσ

:=

(
Dµ(PL)να +Dν(PL)µα −

2

d
gµνDβ(PL)βα

)
(Pξ)

α
ρσ

and act as (PLT ,T )µν
ρσ
φρσ = Dµ(ξT )ν+Dν(ξT )µ and (PLL,T )µν

ρσ
φρσ = 2DµDνσ−

(2/d)gµνD2σ. Obviously these projectors fulfill

PLT = PLT ,T + PLL,T .

Lastly, we define the projector on the traceless transverse part by

(PTT )µνρσ = (I − PLT − Ptr.)
µν
ρσ ,

that acts as (PTT )µνρσφ
ρσ = (φTT )µν , such that we obtain the overall identity

I = PTT + PLT ,T + PLL,T + Ptr. . (A.86)

Furthermore, it should be said that these projectors fulfilll the defining proper-

ties of a set of projectors: PIPJ = 0 for I 6= J and P 2
I = PI .

A.3. Lorentzian vs. Euclidean action functionals

Here, we wish to briefly illustrate how Euclidean action functionals can be

derived from Lorentzian action functionals by a formal analytic continuation

(“Wick rotation”). All the omitted subtleties can be found in the standard

textbooks [102, 118, 188].

Consider the action functionals of a scalar field A on a four-dimensional

curved spacetime with Lorentzian signature:

SLor = −1

2

∫
d4
√
−g

(
gµν∂µA∂νA+ (m2 + ξR)A2

)
and the four-dimensional Einstein-Hilbert action

SLor
EH =

1

16πG

∫
d4x
√
−g(R− 2Λ) .
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Next, assume g to be a static Lorentzian metric of the form

gLor
µν (x) =

(
g00(x) 0

0 gij(x)

)
of signature − + + . . . , i.e. g00 < 0. Here, static means that with xµ ≡ (t, xi),

the components g00 and gij depend on xi only. In order to map this metric

to the Euclidean, we “Wick-rotate” the time t to the imaginary time tE by

letting t = −itE and considering tE real thereafter. The formal rules for Wick-

rotating the action functionals are
∫

dt = −i
∫

dtE, gµνLor∂µA∂νA = gµνE ∂µA∂νA

and RLor(g) = R (gE) where

gE
µν =

(
−g00 0

0 gij

)
.

Therewith we can determine the Wick-rotated action functionals,

iS = (−i)(−i)
1

2

∫
dtE

∫
d3x
√
gE

(
gµνE ∂µA∂νA+ (m2 + ξR)A2

)
= −1

2

∫
d4x
√
gE

(
gµνE ∂µA∂νA+ (m2 + ξR)A2

)
=: −SE ,

and

iSEH =
1

16πG

∫
dtE

∫
d3x
√
gE(R− 2Λ)

=: − (SEH)E .





APPENDIX B

Metric variations of geometric objects

This appendix is nothing but a list of variations of geometric objects built from

the metric gµν . All these variations can be obtained in tedious, yet simple cal-

culations, applying basic algebra and, here and there, commutators of covariant

derivatives: [Dµ, Dν ]φρ = Rµνρ
λφρ and [Dµ, Dν ]φρσ = Rµνρ

λφλσ +Rµνσ
λφρλ. In-

dices are raised and lowered using gµν .

• δgµν =: hµν

• δgµν = −hµν

• δ√g = 1
2

√
ggµνhµν

• δ2√g =
√
g
(

1
4
h2 − 1

2
hµνhµν

)
• δΓβγε = 1

2
gεσ [Dβhγσ +Dγhβσ −Dσhβγ]

• δRαβγ
ε = −DαδΓβγ

ε +DβδΓαγ
ε

= 1
2

[
−Rαβγ

µhµ
ε +Rαβµ

εhγ
µ −DαDγhβ

ε

+DβDγhα
ε +DαD

εhβγ −DβD
εhαγ

]
• δRµν = 1

2

[
Rµσhν

σ +Rν
σhσµ + 2Rαµνγh

αγ

+DνDαh
α
µ −DµDνhα

α −DαD
αhµν +DµD

αhαν
]

• δR = −Rµνhµν +Dβ(Dαh
αβ −Dβhαα)

• gαγ δ2Rαβγδ = DλhαδD
λhαβ −Dαh

λαDβhλδ −Dαh
λαDδhλβ

+Dαh
λαDλhβδ −DαhλβDλhαδ + 1

2

[
−DλhD

λhβδ

+Dβh
αλDδhαλ +Dβh

λ
δDλh+Dδh

λ
βDλh

]
• δ2R = Rβµh

βγhµγ −Rαβγµh
βγhαµ

− 3hβγDγDαh
α
β + 2hβγDβDγh+ 2hβγD2hβγ

− hβδDαDβh
α
δ −Dαh

λ
βDλh

αβ + 3
2
DλhαβDλh

αβ

− 2DαhλαDβh
β
λ + 2DαhλαDλh− 1

2
DλhDλh

325





APPENDIX C

Functional calculus

In this appendix, we review the basic conventions and definitions of functional

calculus as well as the properties of the functional derivative.

C.1. Functionals and functional derivatives

Consider a function space F, e.g. F = C∞(Rn,R). In this case, an element

f ∈ F is function Rn → R, x 7→ f(x). A functional F then is a function

F→ R, f 7→ F [f ]. Thus a functional is a function whose domain is a function

space. A few examples (n = 1):

• F [f ] =
∫ x2

x1
dx f(x)

• Fg[f ] =
∫∞
∞ dx g(f(x), f ′(x)) with g : R×R→ R fixed

• Fx[f ] = f(x) with x ∈ R fixed (“evaluation functional”) .

To prepare the definition of the functional derivative, we define the delta

function

δx0 : Rn → R , x 7→ δx0(x) := δ(x− x0) (C.1)

that will play the role of a basis vector in the “x0-th direction”. Therewith the

functional derivative of a functional F : C∞(Rn,R)→ R with respect to f(x0)

is defined as
δF

δf(x0)
[f ] := lim

ε→0

1

ε
(F [f + εδx0 ]− F [f ]) . (C.2)

This definition is in full analogy with the partial derivative of a function f :

Rn → R, given by

∂f

∂xi
(x) := lim

ε→0

1

ε
(f(x+ εei)− f(x)) (C.3)

where ei = (0, 0, . . . , 1, 0, 0, . . . , 0) (with 1 at the i-th entry). Just like the

partial derivative ∂f/∂xi again is a function Rn → R, the functional derivative

327
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δF/δf(x0) again is a functional C∞(Rn,R)→ R. Table 1 depicts the details of

this analogy.

Table 1. Corresponding objects in the analogy between function
and functional.

Function f Functional F

argument x ∈ Rn argument f ∈ F

x = {xi | i = 1, . . . , n} f = {f(x) | x ∈ Rn}

i = {1, . . . , n} = Nn x = (x1, . . . , xn) ∈ Rn

x• : Nn → R f : Rn → R

ei δx0

δij δ(x− x0)

An important example is the functional derivative of the “evaluation func-

tional” F [f ] := f(x) with x ∈ Rn fixed – in the distributional sense this is the

delta distribution. We have

δF

δf(x0)
[f ] = lim

ε→0

1

ε
(f(x) + εδx0(x)− f(x)) = δx0(x) .

Analogous to δxi/δxj = δij we write henceforth δf(x)/δf(x0) = δ(x− x0).

Another, alternative, yet more general, definition of the functional derivative

is to consider δF [f ]/δf(x) to be defined by∫
ddx

δF [f ]

δf(x)
φ(x) := lim

ε→0

F [f + εφ]− F [f ]

ε

=
d

dε
F [f + εφ]

∣∣∣∣
ε=0

=:δF (f, φ) .

The more general functional derivative δF (f, φ) can be regarded as a “direc-

tional derivative” in the direction of φ. It is related to our previous definition

by

δF (f, δx0) =

∫
ddx

δF [f ]

δf(x)
δ(x− x0) =

δF [f ]

δf(x0)
.
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Futhermore, the functional derivative can be generalized to functions f :

Rn → Rk by componentwise differentiation,

δfα(x)

δfβ(x0)
= δαβδ(x− x0) (C.4)

where α, β ∈ {1, 2, . . . , k}. Therewith, also the functional Taylor series (more

precisely: Volterra series) goes along the lines of the analogy with ordinary

calculus:

F [f + h] = F [f ] +
∑
α

∫
dnx

δF [f ]

δfα(x)
hα(x)

+
1

2!

∑
α,β

∫
dnx1

∫
dnx2

δ2F [f ]

δfα(x1)δfβ(x2)
hβ(x1)hα(x2) + · · · (C.5)

C.2. Properties of the functional derivative

To state the properties of the functional derivative, let F, F1, F2 : F → R be

functionals, α1, α2 ∈ R and G : F → F a function-valued functional, d.h.

G[f ] ∈ F and (F ◦G)[f ] ∈ R. Then the following properties hold:

δ

δf(x)
(α1F1[f ] + α2F2[f ]) = α1

δF1

δf(x)
[f ] + α2

δF2

δf(x)
[f ] (linearity) (C.6)

δ

δf(x)
(F1F2)[f ] =

δF1

δf(x)
[f ]F2[f ] + F1[f ]

δF2

δf(x)
[f ] (product rule) (C.7)

δ(F ◦G)

δf(x)
[f ] =

∫
dny

δF [G[f ]]

δ(G[f ])(y)

δ(G[f ])

δf(x)
(y) (chain rule) (C.8)

δ

δf(x)
commutes with

∫
dny (C.9)

δ

δf(x)

∂

∂yi
f(y) =

∂

∂yi

δf(y)

δf(x)
=

∂

∂yi
δ(y − x) (C.10)
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Proof. All these properties can proven in the same way as their counterparts

in ordinary calculus would be proven. As an example, let us prove the chain

rule (C.8): Define vx ∈ F by

vx :=
1

ε
(G[f + εδx]−G[f ])− δG[f ]

δf(x)

ε→0−−→ 0

and w : F× F→ R by

w(ρ, φ) :=
1

ε
(F [ρ+ εφ]− F [ρ])− δF (ρ, φ)

ε→0−−→ 0 .

Therewith, we can write

G[f + εδx] = G[f ] + ε

(
δG[f ]

δf(x)
+ vx

)
and

F [ρ+ εφ] = F [ρ] + ε (δF (ρ, φ) + w(ρ, φ)) .

From these two equations we can deduce that

F [G[f + εδx]] = F [G[f ]] + ε

{
δF

(
G[f ],

δG[f ]

δf(x)
+ vx

)

+ w

(
G[f ],

δG[f ]

δf(x)
+ vx

)}
,

which is equivalent to

F [G[f + εδx]]− F [G[f ]]

ε
= δF

(
G[f ],

δG[f ]

δf(x)
+ vx

)
+ w

(
G[f ],

δG[f ]

δf(x)
+ vx

)
.

In the limit ε→ 0 we find

δ(F ◦G)

δf(x)
[f ] = δF

(
G[f ],

δG[f ]

δf(x)

)
=

∫
dny

δF [G[f ]]

δ(G[f ])(y)

δ(G[f ])

δf(x)
(y)

which is what we wanted to show.
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Lastly, we point out some special cases of the chain rule (C.8). Consider

G[f ] := g ◦ f with g : R→ R fixed and F [f ] := f(x0) with x0 ∈ Rn fixed. Then

we find
δ(F ◦G)[f ]

δf(x)
= g′(f(x0)) δ(x0 − x) (C.11)

where the prime denotes the ordinary derivative. Therewith we also find that,

with G as above and F an arbitrary functional,

δ(F ◦G)[f ]

δf(x)
=

δF [g ◦ f ]

δ(g ◦ f)(x)
g′(f(x)) (C.12)

and
δ(g ◦ F )[f ]

δf(x)
=
δF [f ]

δf(x)
g′(F [f ]) . (C.13)





APPENDIX D

The path integral measure

Path integrals play a key role in this thesis. The catchiest part in their con-

struction, aside from their regularization, is the construction of “correct” path

integral measures. The following appendix is a detailed exposition on this issue;

we will construct all path integral measures used throughout this thesis and ap-

ply these in evaluating Gaussian integrals. Lastly, a technical note: All Gaussian

integrals evaluated here can be w.l.o.g. generalized by replacing f(x̂) 7→ f̂ .

D.1. Constructing an invariant measure

Given two real scalar fields f and φ on flat space, consider the simple path

integral ∫
Dφ e−

∫
ddx f(x)φ2(x) (D.1)

where the measure is given by Dφ := N
∏

x dφ(x). It is understood that the

normalization constant N is always chosen such that we may ignore irrelevant

multplicative constants. This measure is still of an ill-defined nature and must

be regularized, e.g. by Fourier transforming the field φ and employing a cutoff

in momentum space. At the formal level, the integral is easily evaluated [31,

p. 188], ∫
Dφ e−

∫
ddx f(x)φ2(x) =

(∏
x

∫
ddφ(x)

)
e−
∑
x f(x)φ2(x)

=
∏
x

∫
ddφ(x)e−f(x)φ2(x)

=
∏
x

√
π

f(x)
= Det (f(x̂))−1/2 . (D.2)

333
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With f and φ defined on a curved manifold (M, g) we wish to evaluate path

integrals such as∫
Dφ e−

∫
ddx
√
g(x)f(x)φ2(x) = Det

(√
g(x̂)f(x̂)

)−1/2

. (D.3)

Due to the transformation behaviour of the scalar density
√
g(x) it is obvious

that the path integral (D.3) is neither diffeomorphism- nor BRST-invariant.

However, by defining the path integral with an appropriate measure it is possible

to restore its BRST invariance. Eq. (D.3) suggests to introduce the scalar

density

φ̃ := g1/4φ (D.4)

and to define the path integral measure Dφ̃ as Dgφ := D
[
g1/4φ

]
. Then∫

Dφ̃ e−
∫

ddx
√
g(x)f(x)φ2(x) =

∫
D
[
g1/4φ

]
e−
∫

ddxf(x)(g1/4(x)φ(x))
2

= Det (f(x̂))−1/2 .

(D.5)

The BRST-invariance of a genergal path integral
∫
Dφ̃ F [φ̃] has been proven

rigorously by showing that the Jacobian of the BRST transformation associated

to diffeomorphisms is equal to 1 [189]. From the invariant scalar measure Dφ̃
it is straightforward to derive the corresponding invariant measures for path

integrals over tensors of any rank. The most frequently needed measures are

given by [189, p. 260]

Dgφ := D
[
g1/4φ

]
for a scalar field φ (D.6)

Dgφµ := D
[
g
d+2
4d φµ

]
for a contravariant vector field φµ (D.7)

Dgφµ := D
[
g
d−2
4d φµ

]
for a covariant vector field φµ (D.8)

Dgφµν := D
[
g
d+4
4d φµν

]
for a contravariant tensor field φµν (D.9)

Dgφµν := D
[
g
d−4
4d φµν

]
for a covariant tensor field φµν , (D.10)
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where Dφµ :=
∏

x,µ dφµ(x), Dφµν :=
∏

x,µ,ν dφµν(x) etc.; and therewith Dgφ =∏
x

(
g1/4(x)dφ(x)

)
et cetera.1

Assuming (D.6) to be invariant, the invariance of the remaining measures

can be easily proven: With the help of vielbeins we will transform the tensors

under consideration into tensors “without” spacetime indices. Then we can use

(D.6) to obtain the invariant measures. The vielbeins are defined by gµν =

eµ
aeν

bδab from which one obtains
√
g = det eµ

a as well as
√
g−1 = det eµa from

gµν = eµae
ν
bδ
ab. Next, we will derive (D.8) and (D.10) explicitly – the remaining

measures follow analogously.

The covariant vector field “without” spacetime indices is given by

φ̃a := g1/4eµaφµ . (D.11)

Therewith, it follows that

Dφ̃a = D
[
g1/4eµaφµ

]
=
∏
x

det
(
g1/4(x)eµa(x)

)
Dφµ

=
∏
x

g
d−2

4 (x)Dφµ

= D
[
g
d−2
4d φµ

]
is invariant. The covariant tensor field “without” spacetime indices is, in turn,

given by

φ̃ab := g1/4eµae
ν
bφµν , (D.12)

from which follows in the same way that

Dφ̃ab = D
[
g1/4eµae

ν
bφµν

]
=
∏
x

det
(
g1/4(x)eµa(x)⊗ eνb(x)

)
Dφµν

=
∏
x

gd
2/4(x) (det eµa(x))2dDφµν

=
∏
x

g
d2

4
−d(x)Dφµν

= D
[
g
d−4
4d φµν

]
1For symmetric tensor fields, such as the metric field, we define the measure as

∫
Dφµν :=∏

x,µ≤ν
∫

dφµν(x) to avoid double counting.
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is invariant.2 Here, φµν has been vectorized and thus is thought to possess

a single index running from 0 to d2 − 1. Furthermore, “⊗” in the second

line denotes the Kronecker product3 such that eµa(x) ⊗ eνb(x) is regarded as

a d2× d2-dimensional matrix; also the determinant in the second line is defined

with respect to this concept. Note that in d = 4 the measure Dφµν already is

the correct invariant measure for functional integration over covariant rank-2

tensors.

Nota bene. Throughout the proof we had considered φ, φµ, φµ, φµν and φµν

to be bosonic variables. It is straightforward to show that for fermionic (Grass-

mann) variables the results are identical; however, note that if φ is Grassmann

one must use

Dφ̃ = D
[
gkφ
]

= Det(gk)−1Dφ .
This becomes obvious when we remind us of the definition of integration over

Grassmann variables,
∫

dη η := 1. Rescaling η with a constant c one finds that

d(cη) = dη/c.

At last, we point out that in order to define a diffeomorphism-invariant path

integral, it is not necessary to choose preferred coordinates in function space

[191]. We also may define a scalar density of arbitrary weight w by φ̃ = g−w/2φ

to obtain for the exponent in (D.5)∫
ddx

√
g(x)f(x)φ2(x) =

∫
ddx f(x)

(
g
w
2

+ 1
4 (x)φ̃(x)

)2

.

Consequently, defining the measure accordingly, the path integral∫
D
[
g
w
2

+ 1
4 φ̃
]

e−
∫

ddx
√
g(x)f(x)φ2(x) =

∫
D
[
g
w
2

+ 1
4 φ̃
]

e
−
∫

ddx f(x)
(
g
w
2 + 1

4 (x)φ̃(x)
)2

= # Det (f(x̂))−1/2

is invariant, too. Earlier, we made the easiest choice of setting w = −1/2. This

choice of coordinates in function space is analogous to choosing an orthonormal

frame in a vector space. However, note that when substituting φ̃ = g1/4φ we

arrive back at (D.5).

2When considering the metric field gµν , the very same result can be derived by analysing the
metric in field space (the “supermetric” or “DeWitt-metric”) [118, 190].
3The Kronecker A ⊗ B product of two d × d-dimensional matrices A and B is a d2 × d2-
dimensional matrix whose determinant fulfills det(A⊗B) = (detA)d(detB)d.
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D.2. The Gaussian integral over scalar fields

D.2.1. The action functional

Consider a real scalar field A on a Riemannian manifold (M, g) that we, for

ease of the subsequent analysis, assume to be compact. We define the action

functional for A by

S[A; g] :=
1

2
(A,K A)g =

1

2

∫
ddx

√
g(x)A(x) (K A) (x) (D.13)

where K is an operator defined to have the properties outlined in subsection

A.1.2. In terms of the scalar density B := g1/4A the action reads

S[A(B); g] = S
[
g−1/4B; g

]
=

1

2

∫
ddx g1/2g−1/4BK g−1/4B

=
1

2

∫
ddxBg1/4K g−1/4B

=
1

2
(B,LB)1

(D.14)

where L := g1/4(x̂)K g−1/4(x̂).

We can expand A in the eigenbasis {χn,m} of K ,

A(x) =
∑
n,m

an,mχn,m(x) . (D.15)

Multiplying this equation with g1/4(x) we obtain the expansion of B in the

eigenbasis {ψn,m} of L ,

B(x) =
∑
n,m

an,mψn,m(x) . (D.16)
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Note that both expansions possess the same coefficients. Inserting these expan-

sions into S we find

S[A; g] =
1

2
(A,K A)g

=
1

2

∫
ddx
√
g
∑
n,m

an,mχn,mK
∑
k,l

ak,lχk,l

=
1

2

∑
n,m,k,l

an,mak,lFk

∫
ddx
√
g χn,mχk,l

=
1

2

∑
n,m

Fna
2
n,m

(D.17)

where we have used (A.29). Likewise, using (A.33), we find

S[A(B); g] =
1

2
(B,LB)1

=
1

2

∫
ddx

∑
n,m

an,mψn,mL
∑
k,l

ak,lψk,l

=
1

2

∑
n,m,k,l

an,mak,lFk

∫
ddxψn,mψk,l

=
1

2

∑
n,m

Fna
2
n,m ,

(D.18)

which confirms that (B,LB)1 = (A,K A)g.

D.2.2. The transformation formula

In order to evaluate certain path integrals, it is often useful to expand the scalar

field A as in (D.15),

A(x) =
∑
n

ānχ̄n(x) , (D.19)

where the summation over two indices has been absorbed into a single sum.

In section D.1 we have learned that instead of
∫
DA we must choose

∫
DB =∫

D
[
g1/4A

]
=
∫
DgA as the measure to construct an diffeomorphism-invariant

path integral. The scalar density B can be expanded as in (D.16),

B(x) =
∑
n

ānψ̄n(x) , (D.20)
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with ψ̄n = g1/4χ̄n. After performing this expansion, one wishes to change the

integration variables from B(x) to an. To do so, we make use of two fundamental

rules. Firstly, ∫
DgAF [A] =

∫
DA Det

(√
g(x̂)

)−1/2

F [A] , (D.21)

whose proof is trivial on the prevailing level, given thatDgA =
∏

x g
−1/4(x)dA(x).

Secondly, expanding any scalar field C in a basis {un}, C(x) =
∑

n αnun(x),

one has ∫
DC G[C] =

(∏
n′

∫
dcα′

)
G

[∑
n

αnun

]
. (D.22)

This relation can be easily proven when considering the transition from the

integration variable C(x) to αn is given by C(x) ≡ Cx =
∑

n Jxnαn, with

Jxn = un(x) the Jacobian. From the properties of the basis,∑
n

J∗xnJyn =
∑
n

u∗n(x)un(y) = δ(x− y)

∑
x

J∗xnJxm =

∫
dxu∗n(x)um(x) = δnm ,

it follows that J = J† and hence det J = 1. Therewith, it is obvious that

DC =
∏

x dC(x) =
∏

n dαn.

Applying these rules to the expansions of the scalar fields A and B amounts

to the rules ∫
DAF [A] =

∏
n,m

∫
dan,m Det

√
g(x̂)F [A[a]] (D.23)∫

DB F [B] =
∏
n,m

∫
dan,m F [B[a]] . (D.24)

D.2.3. The Gaussian integral in configuration space

In quantum field theory, the by far most important functional integral to eval-

uate is the Gaussian one. Therefore, let us evaluate the integrals∫
DA e−S[A;g] and

∫
DgA e−S[A;g] =

∫
DB e−S[A(B);g]
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with S defined as in (D.13) and (D.14). After expanding A and B as in (D.15)

and (D.16), we found in equations (D.17) and (D.18) that

S[A; g] =
1

2

∑
n,m

Fna
2
n,m = S[A(B); g] .

With (D.24) we can finally evaluate:∫
DB e−S[A(B);g] =

∏
n,m

∫
dan,m e−

1
2
Fna2

n,m

=
∏
n,m

√
2πF−1/2

n

= Det K −1/2

= Det L −1/2 .

(D.25)

Likewise, we obtain for the other integral∫
DA e−S[A;g] = Det

√
g(x̂)

−1/2∏
n,m

∫
dan,m e−

1
2
Fna2

n,m

= Det
√
g(x̂)

−1/2
Det K −1/2

= Det
(√

g(x̂)K
)−1/2

.

(D.26)

Note that in this case – as a consistency check – we derived, starting from a

non-diffeomorphism-invariant path integral, a result that is not diffeomorphism-

invariant, too. I.e., we are always going to consider DgA as the correct measure

to integrate over functionals depending on the scalar field A.

D.2.4. A note on the phase space measure

Quite interestingly, the results (D.25) and (D.26) can be related to evaluating

the canonical path integral over phase space. For this single purpose, we will

consider the action

SLor[A; g] := −1

2

∫
ddx
√
−g
[
gµν∂µA∂νA+ Ω(g)A2

]
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defined on a d-dimensional Lorentzian manifold with signature − + + . . . , so

that we are not required to use an Euclidean Hamilton formalism. Here, Ω is

an ordinary function. Defining the Lagrangian as [192, p. 131 ff.]

LLor[A; g] := −1

2

[
gµν∂µA∂νA+ Ω(g)A2

]
one has

S[A; g] =

∫
ddx
√
−gL .

In order to derive the associated Hamiltonian density

H[A; g] := pAȦ(A, pA)− L

let us employ the ADM decomposition of the metric [188]:

gµν =

(
NaN

a −N2 Nb

Nc hab

)
(D.27)

and for the inverse metric,

gµν =

(
−1/N2 N b/N2

Nc/N
2 hab −NaN b/N2

)
, (D.28)

with N the lapse function and Na the shift vector (the indices a, b, c . . . run

over {1, 2, 3} and describe vectors on the spatial Cauchy surface). Note that

−g00 = 1/N2 and that the volume element then reads
√
−g = N

√
h .

The canonical momentum is defined as

pA :=
∂

∂Ȧ

(√
−gL

)
= −
√
−gg00

(
Ȧ+

g0a

g00
∂aA

)
.

Applying the ADM decomposition, this expression becomes more handy,

pA =

√
h

N

(
Ȧ−Na∂aA

)
.

Therefrom, we can express Ȧ in terms of A and pA,

Ȧ = − 1√
−gg00

pA −
g0a

g00
∂aA

=
N√
h
pA +Na∂aA ,
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as well as L in terms of A and pA,

√
−gL = −1

2

[
− N√

h
p2
A +N

√
hhab∂aA∂bA+N

√
hΩ(g)A2

]
,

such that the Hamiltonian density is given by

H =
1

2

N√
h
p2
A + pAN

a∂aA+
1

2
N
√
h
[
hab∂AA∂bA+ Ω(g)A2

]
.

Having obtained these results, it is easy for us to evaluate the canonical

path integral (which is anologous to the elementary quantum-mechanical path

integrals4)∫
DA

∫
DpA e i

∫
ddx(pAȦ−H) =

∫
DA

∫
DpA exp i

∫
ddx

{
pA

(
Ȧ−Na∂aA

)
− 1

2

N√
h
p2
A −

1

2
N
√
h
(
hab∂aA∂bA+ Ω(g)A2

)}
. (D.29)

Note that DA =
∏

x dA(x) is g-independent. Using eq. (D.3), we can perform

the Gaussian integration over the field momentum pA(x) to obtain∫
DA

∫
DpA e i

∫
ddx(pAȦ−H) =

(
Det

N2(x̂)√
−g(x̂)

)−1/2 ∫
DA e iSLor[A;g]

=:

∫
D′gA e iSLor[A;g] ,

(D.30)

with

D′gA :=
∏
x

(
N2(x)√
−g(x)

)−1/2

dA(x)

=
∏
x

{√
−g00(x)(−g(x))1/4dA(x)

}
=

(∏
x

√
−g00(x)

)
DgA

where we have used (D.28) and denoted by DgA the Lorentzian counterpart of

the measure from the previous subsections.

4DADpA is analogous to the “Liouville measure” dq ∧ dp in elementary quantum mechanics.
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In order to obtain the invariant (formally fully covariant) Lagrangian path

integral (D.25), this result suggests that DAD [NpA] ≡ DAD
[
pA/
√
−g00

]
is

the correct phase space measure [191], i.e.∫
DA

∫
D [NpA] e i

∫
ddx(pAȦ−H) =

∫
DgA e iS[A;g] =: Z[g] . (D.31)

with DgA :=
∏

x (−g(x))−1/4 dA(x), as in the previous subsections, is the final

result for the correct path integral in phase space.

On the other hand, we may firstly ackowledge the result (D.25) to be defined

over an “un-foliated” curved spacetime. Then the result (D.30), and therewith

(D.31), follows from (D.25) for any foliation, chosen to be applied to (D.25), in

the legit gauge N ≡ 1.

D.3. The Gaussian integral over vector fields

When we wish to perform a path integral over a covariant (real) vector field

φµ, we ought to choose the invariant measure (D.8), Dgφµ := D
[
g
d−2
4d φµ

]
. A

Gaussian path integral over vector fields thus is∫
D
[
g
d−2
4d φµ

]
exp

{
−
∫

ddx
√
gφµ (OV φ)µ

}
(D.32)

where OV is an Operator on V , the Hilbert space of vector fields defined in

section A.1, that acts as (OV φ)µ (x) = (OV )µν
diff

x φν(x). Now the path inte-

gral (D.32) can be easily performed, using (D.25) and taking into account the

additional vector structure,∫
Dgφµ exp

{
−
∫

ddx
√
gφµ (OV φ)µ

}
=

∫
D
[
g
d−2
4d φµ

]
exp

{
−
∫

ddx
√
g(x)φµ(x)(OV )µρ

diff

x
(gρνφν) (x)

}
= Det

(
g(x̂)

d−2
4d δµν

)
Det

(√
g(x̂)(OV )µρg

ρν(x̂)
)−1/2

= Det g(x̂)
d−2

4 Det g(x̂)−
d
4 Det

(
g(x̂)−1

)−1/2
Det

(
(OV )µρ

)−1/2

= Det ((OV )
•

•)
−1/2 . (D.33)
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In the third step, we have partially perfomed the determinants with respect

to the vector structure. This important result confirms that that the measure

(D.8) has been constructed indeed in a correct way, i.e. to be diffeomorphism-

invariant.

D.4. The Gaussian integral over symmetric rank-2 tensor fields

The Gaussian path integral over a (real) covariant symmetric rank-2 tensor field

φµν in turn is given by∫
D
[
g
d−4
4d φµν

]
exp

{
−
∫

ddx
√
gφµν (OST 2φ)µν

}
(D.34)

where OST 2 is an Operator on ST 2, the Hilbert space of symmetric rank-2 tensor

fields defined in section A.1, that acts as (OST 2φ)µν (x) = (OV )µναβ
diff

x
φαβ(x). To

perfom this integral, we will regard the symmetric pair (µν) of indices in φµν to

have been (half-)vectorized into a single index, such that the sum over µ and ν in

(D.34), each from 0 to d−1, becomes a single sum from 0 to d(d+1)/2 (avoiding

double counting), and the index structure of (OV )µναβ can be interpreted as a

d(d + 1)/2 × d(d + 1)/2-matrix. Therewith, we have transformed the integral

(D.34) into the form of the integral (D.32) – that we already have evaluated –

and find the Gaussian path integral over symmetric rank-2 tensor fields,∫
Dgφµν exp

{
−
∫

ddx
√
gφµν (OST 2φ)µν

}
=

∫
D
[
g
d−4
4d φµν

]
exp

{
−
∫

ddx
√
g(x)φµν(x)(OST 2)µνρσ

diff

x

(
Iρσαβφαβ

)
(x)

}
= Det

[
g(x̂)

(d−4)
4d

d(d+1)
2

]
Det

(√
g(x̂)(OST 2)µνρσI

ρσαβ(x̂)
)−1/2

= Det
[
g(x̂)

(d−4)
4

(d+1)
2

]
Det

(√
g(x̂) Iρσαβ(x̂)

)−1/2

Det
(

(OST 2)µνρσ

)−1/2

where Iρσαβ := 1
2

(
gραgσβ + gρβgσα

)
and the determinant of the tensor structure

is taken as the determinant of the d(d + 1)/2 × d(d + 1)/2-matrix constructed

from the respective tensor. Using the fact that detA = det
[
(detA)1/n

1n×n

]
for an n× n-matrix A, we obtain (cf. [118, p. 59ff])

Det
(√

g(x̂) Iρσαβ(x̂)
)

= Det

[√
g(x̂) g−2/d(x̂)

1

2

(
δραδσβ + δρβδσα

)]
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= Det

[(
g−2/d(x̂)g1/2(x̂)

) d(d+1)
2

]
= Det

[
g(x̂)

(d−4)
2d

d(d+1)
2

]
.

As an immediate consequence, the Gaussian integral over symmetric rank-2

tensor field is determined:∫
D
[
g
d−4
4d φµν

]
exp

{
−
∫

ddx
√
gφµν (OST 2φ)µν

}
= Det ((OST 2)

••

••)
−1/2 . (D.35)

Interestingly, requiring this result to hold for OST 2 = I sometimes is used to de-

fine the measure indirectly, in order to bypass the ill-definedness of the product

over all spacetime-points in the defintion of the measure used here [193].

D.5. The Gaussian integral over fermionic variables

Along the same lines, Gaussian integrals over fermionic fields on curved space-

times can be obtained. Here, the starting point is the path integral over the

fermionic scalar field η on flat space [31]:∫
Dη exp

{
−
∫

ddx η(x) (OSη) (x)

}
= Det (OS)+1/2 ,

where OS is an operator acting on scalar fields. This path integral is a cose-

quence of the definitions
∫

dη := 0 and
∫

dη η := 1 that define the integration

of fermionic variables. Remarkbly, the sign of the exponent, −1/2 or +1/2, en-

trenches the difference between bosonic and fermionic Gaussian path integrals.

With the previous discussion on bosonic variables in the back of our mind and

using eqs. (D.6), this Gaussian path integral for the fermionic scalar field η

defined on a curved spacetime becomes∫
Dgη exp

{
−
∫

ddx
√
g(x) η(x) (OSη) (x)

}
= Det (OS)+1/2 ,

with Dgη = D
[
g1/4η

]
= Det g(x̂)−1/4Dη. Likewise, the Gaussian integral over

a fermionic vector field ηµ reads∫
Dgηµ exp

{
−
∫

ddx
√
g(x) ηµ(x) (OV η)µ (x)

}
= Det (OV

•

•)
+1/2 (D.36)
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where OV is an operator acting on vector fields. Using Eq. (D.8), the employed

measure is Dgηµ = D
[
g
d−2
4d ηµ

]
= Det g(x̂)−

d−2
4 Dηµ.

Also, we are in need of deriving Gaussian integrals over complex fermionic

scalar and vector fields. Therefore, let η and η̄ be conjugate complex feriomic

scalar fields and ηµ and η̄µ conjugate complex fermionic vector fields. In the

definition of fermionic path integrals, there is a sign ambiguity given by the

ordering of the factors in the product
∏

x dη(x)dη̄(x). Therefore, it is crucial to

specify the ordering with which to the measure is defined. Here, we will employ

the “natural” ordering

DηDη̄ :=
∏
x

dη(x)dη̄(x)

which results in the “hyperbolic” Gaussian integrals5 [31]∫
DηDη̄ exp

{
+

∫
ddx η̄(x)(OSη)(x)

}
= Det OS ,

as well as ∫
DηµDη̄µ exp

{
+

∫
ddx η̄µ(x) (OV η)µ (x)

}
= Det (OV

•

•) .

Applying the measures (D.6), (D.7) and (D.8), we immediately find the cor-

responding Gaussian integrals over the respective fields defined on a curved

spacetime,∫
DgηDgη̄ exp

{
+

∫
ddx
√
g(x) η̄(x)(OSη)(x)

}
=

∫
D
[
g1/4η

]
D
[
g1/4η̄

]
exp

{
+

∫
ddx
√
g(x) η̄(x)(OSη)(x)

}
= Det OS ,

and∫
DgηµDgη̄µ exp

{
+

∫
ddx
√
g(x) η̄µ(x) (OV η)µ (x)

}

5For the ordering DηDη̄ =
∏
x dη̄(x)dη(x), the fermionic Gaussian integral is∫

DηDη̄ exp
{
−
∫

ddx η̄(x)(OSη)(x)
}

= Det OS . The corresponding Gaussian integral over

complex bosonic scalars, a and ā, is
∫
DāDa exp

{
−
∫

ddx ā(x)(OSa)(x)
}

= Det O−1.
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=

∫
D
[
g
d−2
4d ηµ

]
D
[
g
d+2
4d η̄µ

]
exp

{
+

∫
ddx
√
g(x) η̄µ(x) (OV η)µ (x)

}
= Det (OV

•

•) .

(D.37)

As for the real-valued fermionic fields, the only technicality to take into account

is the Jacobian arising from the transformation of the fermionic variables, that

for the case of vector fields is given by

D
[
g
d−2
4d ηµ

]
D
[
g
d+2
4d η̄µ

]
= Det g(x̂)−

d−2
4 Det g(x̂)−

d+2
4 DηµDη̄µ

= Det
(√

g(x̂)δµν

)−1

DηµDη̄µ .





APPENDIX E

The evaluation of traces using heat kernel techniques

Traces of the form Tr [1W (−D2)]; where 1 is the identity on the space the

trace is taken on, e.g. (A.23) for the Hilbert space ST 2, and W is a scalar

function; can be evaluated by means of heat kernel techniques. These have

been extensively studied in the literature [40, 194–199]. Here, we may skip the

details and restrict our calculation to applying the formula for the local early

time expansion of the heat kernel

lim
y→x
〈x, µ1, µ2, . . .|1esD

2|y, µ1, µ2, . . .〉 =

(
1

4πs

) d
2
∞∑
n=0

sn tr an(x) , (E.1)

where tr denotes the trace of the tensor structure of the Seeley-DeWitt coeffi-

cients an. In fact, the applications in this thesis only demand the first two of

these coefficients1

a0(x) ≡ I

and a1(x) =
1

6
R(x)I ,

where I denotes the identity of the tensor structure of the Hilbert space in

cosideration, i.e. specifically IST 2
µν
ρσ given by Eq. (A.24), IV

µ
ν = δµν and IS = 1.

To actually apply formula (E.1), we Fourier transform the trace according to2

Tr
[
1W (−D2)

]
=

∫ ∞
−∞

ds W̃ (s) Tr
[
1e−isD2

]
,

which requires the function W to decrease sufficiently fast in the direction of

±∞. With s 7→ −is we obtain

Tr
[
1W (−D2)

]
=

∫ ∞
−∞

ds W̃ (s)

∫
ddx
√
g(x)〈x, µ1, µ2, . . .|1e−isD2|x, µ1, µ2, . . .〉

1The coefficients an with n ≥ 3 are at least squared in the curvature and thus can be neglected
in the Einstein-Hilbert truncation.
2Alternatively, we could use a Laplace transform.
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=

∫ ∞
−∞

ds W̃ (s)

∫
ddx
√
g(x)

(
1

4πs

) d
2
∞∑
n=0

sn tr an(x)

= tr(I)

∫ ∞
−∞

ds W̃ (s)

(
i

4πs

) d
2
∫

ddx
√
g(x)

[
1− 1

6
isR(x)

]
+O(R2) .

(E.2)

Can we also use this formula to calculate Tr [PW (−D2)] where P is a

projector on a subspace of the Hilbert space the trace is taken over? Videl-

icat, we can interpret P as the identity of this very subspace (the isomor-

phism is obvious) and, for example, consider TrV [PT W (−D2)] where PT is

the projector on the transverse part of a vector field (cf. subsection A.2.2).

If we denote the corresponding subspace of V by VT with identity 1VT we

find that TrV [PT W (−D2)] = TrVT [1VT W (−D2)], which is from where we

could proceed the calculation with the above recipe. Unfortunately, there is

an obstacle here that renders this recipe not applicable: The projector PT
is defined by differential constraints involving covariant derivatives which ulti-

mately gives TrV [PT W (−D2)] a further curvature depedence. In the expression

TrVT [1VT W (−D2)], this curvature dependence is hidden in the subspace VT it-

self because VT in fact is spanned per definitionem by {PT |x, µ〉 | x ∈ Rd ; µ =

1, . . . , d}.3 On the other hand, it is obvious that the above formula applies only

to Hilbert spaces that are not given by differential constraints and thus are

“curvature independent”. Inspecting the counter-example VT a little further,

we in fact obtain, using the defintion of the projector PT ,

TrVT
[
1VT W (−D2)

]
= TrV

[
PT W (−D2)

]
= TrV

[
1V W (−D2)

]
− TrV

[
D

• 1

D2
D•W (−D2)

]
.

The first term can be calculated using the standard above procedure while the

second term requires the application of off-diagonal heat kernel methods [62,

3The structure of this discussion is similar to the question whether the trace is independent of
the metric gµν , although it is calculated e.g. for scalar fields as TrS [A] =

∫
ddx

√
g(x)〈x|A|x〉.

Surely, the trace is independent of the metric, namely because the states are g-dependend
themselves: 〈x|y〉 = δ(x− y)/

√
g(y).



E. THE EVALUATION OF TRACES USING HEAT KERNEL TECHNIQUES 351

200] that are not required in this thesis. Thus, we can conclude that we indeed

may caculate Tr [PW (−D2)] with the above formula, provided that P is not

defined by differential constraints. The only example appearing in this thesis

for such a projector, aside from the identity, is the projector Ptr. on the trace

part of a symmetric rank-2 tensor field, given by Ptr.[g]µναβ = 1
d
gµνgαβ. We thence

have

TrST 2

[
Ptr.W (−D2)

]
= tr(Ptr.)

=1

∫ ∞
−∞

ds W̃ (s)

(
i

4πs

) d
2
∫

ddx
√
g(x)

[
1− 1

6
isR(x)

]
+O(R2) .

Next, we can still work on Eq. (E.2) in order to organize the intermediate

result:∫ ∞
−∞

ds W̃ (s)

(
i

4πs

) d
2
∫

ddx
√
g(x)

[
1− 1

6
isR(x)

]
=

(
1

4π

) d
2

{∫ ∞
−∞

ds W̃ (s)

(
i

s

) d
2
∫

ddx
√
g(x)

+
1

6

∫ ∞
−∞

ds W̃ (s)

(
i

s

) d
2
−1 ∫

ddx
√
g(x)R(x)

}

=

(
1

4π

) d
2

{
Q d

2
[W ]

∫
ddx
√
g(x) +

1

6
Q d

2
−1[W ]

∫
ddx
√
g(x)R(x)

}
with the “Q-functionals”

Qn[W ] :=

∫ ∞
−∞

ds W̃ (s)(−is)−n . (E.3)

This Mellin transform can also be expressed through W instead of W̃ by making

use of the Gamma function4 Γ(n) = in
∫∞

0
dz zn−1e−iz:

Qn[W ] =

∫ ∞
−∞

ds W̃ (s)(−is)−n
1

Γ(n)
(−i)n

∫ ∞
0

dz zn−1eiz

=
1

Γ(n)

∫ ∞
−∞

ds W̃ (s)

∫ ∞
0

dz
1

s

(z
s

)n−1

eiz

4Note that here Γ(n) ∈ R and thus Γ(n)∗ = Γ(n).
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=
1

Γ(n)

∫ ∞
0

dz zn−1

∫ ∞
−∞

ds W̃ (s)eizs

=
1

Γ(n)

∫ ∞
0

dz zn−1W (z) .

In the third step we have substituted z 7→ z/s.

All in all, we have obtained the equation, with W a scalar function,

Tr
[
AW (−D2)

]
= tr(A)

(
1

4π

) d
2

{
Q d

2
[W ]

∫
ddx
√
g(x)

+
1

6
Q d

2
−1[W ]

∫
ddx
√
g(x)R(x)

}
+O(R2) ,

(E.4)

with A = 1 and A = I or on ST 2 also A = Ptr. and A = P .

Lastly, it is obvious that if we follow the procedure yet again with the untraced

heat kernel, we will obtain the expansion

lim
y→x
〈x, µ1, µ2, . . .|AW (−D2)|y, µ1, µ2, . . .〉

= tr(A)

(
1

4π

) d
2

{
Q d

2
[W ] +

1

6
Q d

2
−1[W ]R(x)

}
+O(R2) .

(E.5)



APPENDIX F

Outsourced calculations

This appendix is a conglomerate of meticulous calculations that the author

decided to dislodge from from the main text for various reasons, mostly because

the respective calculation is long and comprehensive. Then the author does not

have to encumber the reader with it at that point. Sometimes calculations have

been moved in order not to digress from the main line of thought, as well.

F.1. Derivation of the infinitesimal coordinate transformation

Consider a d-dimensional (semi-)Riemannian manifold (M, g). In a local chart

x : U ⊂ M → U ′ ⊂ Rd the metric is given by local functions gµν : U → R.

In abuse of notation, let us think of the functions gµν as being actually the

mappings gµν ◦x−1, i.e. we think of these local functions as gµν : Rd → R. With

x ∈ Rd consider the infinitesimal coordinate transformation

x′
µ
(x) := xµ − V µ(x)

where V µ is an infinitesimal vector field. We insert this coordinate transforma-

tion into the argument of gµν to then expand it around x′:

gµν(x) = gµν(x
′ + V (x)) = gµν(x

′) +
∂

∂xα
gµν(x

′)
(
x′
α

+ V α(x)− x′α
)

+ · · ·

= gµν(x
′) +

(
∂

∂xα
gµν(x)

)
V α(x) +O(V 2) .

The chart transitions are given by

∂x′µ

∂xν
= δµν −

∂V µ(x)

∂xν
;

∂xµ

∂x′ν
= δµν +

∂xα

∂x′ν
∂V µ(x)

∂xα
= δµν +

∂V µ(x)

∂xν
+O(V 2) ;
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such that the metric transforms as

g′µν(x
′) = gαβ(x)

∂xα

∂x′µ
∂xβ

∂x′ν

= gµν(x) + gµβ(x)
∂V β(x)

∂xν
+ gαν(x)

∂V α(x)

∂xµ
+O(V 2) .

Bringing this transformation behaviour together with the above Taylor expan-

sions immediatle yields

g′µν(x) = gµν(x) + V α(x)
∂gµν(x)

∂xα
+ gµα(x)

∂V α(x)

∂xν
+ gαν

∂V α(x)

∂xµ
+O(V 2)

= gµν(x) + (LV g)µν(x) +O(V 2) .

We particularly stress that LHS and RHS are defined at the same point x.



F.2. PROOF OF THE NILPOTENCE OF THE BRST OPERATION 355

F.2. Proof of the nilpotence of the brst operation

We apply successively apply the BRST operations δη and δε, with η and ε an-

ticommuting parameters. Note that δη and δε are “even”, i.e. commuting,

however.

Nilpotence applied to ĥµν :

δηδεĥµν = δη(εLC ĝµν)

= εδη(LC ĝµν)

= ε
(
LδηC ĝµν + LCδηĝµν

)
= ε (LηCτ∂τC ĝµν + LC(ηLC ĝµν))

= εη (LηCτ∂τC ĝµν − LC(ηLC ĝµν))

= 0

as for an arbitrary covariant tensor field φαβ one has

LCσ∂σCφαβ − LC(LCφαβ)

= (Cσ∂σC
ρ)∂ρφαβ + [∂α(Cσ∂σC

ρ)]φρβ + [∂β(Cσ∂σC
ρ)]φαρ

− Cσ∂σ(LCφαβ)− (∂αC
σ)LCφσβ − (∂βC

σ)LCφασ

=−
[
CσCρ∂σ∂ρφαβ

=0

+Cσ(∂αC
ρ)∂σφρβ

(3)

+Cσ(∂βC
ρ)∂σφαρ

(2)

−Cγ(∂αC
σ)∂γφσβ

(3)

+ (∂αC
σ)(∂βC

γ)φσγ

(1)

−Cγ(∂βC
σ)∂γφσα

(2)

−(∂αC
γ)(∂βC

σ)φγα

(1)

]
= 0 .

(F.1)

(The eponymously labeled terms cancel; the first term vanishes due to a symmetric-

antisymmetric contraction.)
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Nilpotence applied to Cµ:

δηδεC
µ = δη(εC

ν∂νC
µ)

= ε[(δηC
ν)∂νC

µ + Cν∂ν(δηC
µ)]

= ε[(ηCρ∂ρC
ν)∂νC

µ + Cν∂ν(ηC
ρ∂ρC

µ)]

= εη[(Cρ∂ρC
ν)∂νC

µ − (Cν∂νC
ρ)∂ρCµ − CνCρ∂ν∂ρ

=0

Cµ]

= 0 .

Nilpotence applied to C̄µ:

δηδεC̄µ = δη[εα
−1Y ν

µ[ḡ]Fν(ĥ; ḡ)]

= εα−1Y ν
µ[ḡ]

∂Fν(ĥ; ḡ)

∂ĥαβ
δηĥαβ

= εηα−1Y ν
µ[ḡ]

∂Fν(ĥ; ḡ)

∂ĥαβ
LC ĝαβ .

Therewith δηδεC̄µ = 0 iff we use the equation of motion of the Fadeev-Popov

action with respect to C̄µ:

δSgh[ĥ, C̄, C; ḡ]

δC̄µ
= 0 ⇔ ∂Fµ(ĥ; ḡ)

∂ĥαβ
LC ĝαβ = 0 .
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F.3. Proof of the brst invariance of Scl + SGF + Sgh

The invariance of the bare action itself is trivial as the BRST transformation

reduces to a general coordinate transformation of the metric:

Scl[ĝ + δεĝ] = Scl[ĝ + εLC ĝ] = Scl[ĝ + LεC ĝ] = Scl[ĝ] .

Next, we insert the BRST transformation into the gauge-fixing condition and

expand (all terms O(ε2) can be neglected):

Fµ(ĥ+ δεĥ; ḡ) = Fµ(ĥ; ḡ) +
∂Fµ(ĥ+ δεĥ; ḡ)

∂(ĥαβ + δεĥαβ)
δεhαβ .

Therewith, we apply the BRST transformation to the gauge-fixing action and to

the Fadeev-Popov action (again, neglecting terms O(ε2)):

SGF[ĥ+ δεĥ; ḡ + δεḡ] =
1

2α

∫
ddx
√
ḡ Fµ(ĥ+ δεĥ; ḡ)Y µν [ḡ]Fν(ĥ+ δεĥ; ḡ)

=
1

2α

∫
ddx
√
ḡ

(
Fµ(ĥ; ḡ) +

∂Fµ(ĥ+ δεĥ; ḡ)

∂(ĥαβ + δεĥαβ)
δεhαβ

)

× Y µν [ḡ]

(
Fν(ĥ; ḡ) +

∂Fν(ĥ+ δεĥ; ḡ)

∂(ĥρσ + δεĥρσ)
δεhρσ

)

=
1

2α

∫
ddx
√
ḡ

(
Fµ(ĥ; ḡ)Y µν [ḡ]Fν(ĥ; ḡ)

+ 2Fµ(ĥ; ḡ)Y µν [ḡ]
∂Fν(ĥ+ δεĥ; ḡ)

∂(ĥαβ + δεĥαβ)
δεhαβ

)

=SGF[ĥ; ḡ] +
ε

α

∫
ddx
√
ḡ Fµ(ĥ; ḡ)Y µν [ḡ]

∂Fν(ĥ+ δεĥ; ḡ)

∂(ĥαβ + δεĥαβ)
LC ĝαβ .

Note that if Y µν [ḡ] is a differential operator built from covariant derivatives we

made use of its behavior under partial differentiations,
∫

ddx
√
ḡ AµY

µν [ḡ]diffBν =∫
ddx
√
ḡ BµY

µν [ḡ]diffAν , that we had required in its definition.
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Sgh[ĥ+ δεĥ,C̄ + δεC̄, C + δεC; ḡ + δεḡ]

= −
∫

ddx
√
ḡ ḡµν

(
C̄µ + εα−1Y σ

µ[ḡ]Fσ(ĥ+ δεĥ; ḡ)
)

× ∂Fν(ĥ+ δεĥ; ḡ)

∂(ĥαβ + δεĥαβ)
LC+δεC

(
ḡαβ + ĥαβ + εLC+δεC ĝαβ

)
= −

∫
ddx
√
ḡ ḡµν

(
C̄µ + εα−1Y σ

µ[ḡ]Fσ(ĥ+ δεĥ; ḡ)
)

× ∂Fν(ĥ+ δεĥαβ; ḡ)

∂(ĥαβ + δεĥαβ)
LC+δεC

(
ḡαβ + ĥαβ + εLC ĝαβ

)
= −

∫
ddx
√
ḡ ḡµν

(
C̄µ + εα−1Y σ

µ[ḡ]Fσ(ĥ+ δεĥ; ḡ)
)

× ∂Fν(ĥ+ δεĥαβ; ḡ)

∂(ĥαβ + δεĥαβ)

[
LC(ḡαβ + ĥαβ) + LδεC(ḡαβ + ĥαβ)− εLC(LC ĝαβ)

]
=Sgh[ĥ, C̄, C; g]−

∫
ddx
√
ḡ ḡµν

{
+ C̄µ

∂Fν(ĥ+ δεĥαβ; ḡ)

∂(ĥαβ + δεĥαβ)
εLCρ∂ρC ĝαβ

− C̄µ
∂Fν(ĥ+ δεĥαβ; ḡ)

∂(ĥαβ + δεĥαβ)
εLC(LC ĝαβ)

+
ε

α

[
Y σ

µ[ḡ]Fσ(ĥ; ḡ)
] ∂Fν(ĥ+ δεĥαβ; ḡ)

∂(ĥαβ + δεĥαβ)
LC ĝαβ

}
Eq. (F.1)

= Sgh[ĥ, C̄, C; g]−
∫

ddx
√
ḡ

{
ε

α
Fµ(ĥ; ḡ)Y µν [ḡ]

∂Fν(ĥ+ δεĥαβ; ḡ)

∂(ĥαβ + δεĥαβ)
LC ĝαβ

}
.

Again, note that if Y µν [ḡ] contains derivatives then partial integrations have

been performed in the last step. With this result, it immediately follows that

SGF[ĥ+δεĥ; ḡ+δεḡ]+Sgh[ĥ+δεĥ, C̄+δεC̄, C+δεC; ḡ+δεḡ] = SGF[ĥ; ḡ]+Sgh[ĥ, C̄, C; ḡ]

which is what was left to show, as δεSgh,2[b; ḡ] = 0 holds trivially.
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F.4. Proof of the invariance of eW [J ;ḡ], eWk[J ;ḡ] and eWk[J ;β,τ ;ḡ] under

background gauge transformations δ(B)

We prepare the proof with a small lemma: Let f be a scalar built from tensors

Ti
µ1···µk
ν1···νl for which δ(B)(Ti)

µ1···µk
ν1···νl = LV (Ti)

µ1···µk
ν1···νl holds. Consequently, δ(B)f =

LV f and

δ(B)

∫
ddx
√
ḡ f =

∫
ddxδ(B)(

√
ḡ f)

=

∫
ddx

[
(LV
√
ḡ)f +

√
ḡ LV f

]
=

∫
ddx

[√
ḡ (D̄ρV

ρ) +
√
ḡ V ρD̄ρf

]
=

∫
ddx
√
ḡ D̄ρ(V

ρf)

= 0 .

The last step holds due Gauss’s law; in the third step have used that

LV
√
ḡ =

1

2

√
ḡ ḡµνLV ḡµν

=
1

2

√
ḡ ḡµν [V ρ∂ρḡµν + (∂µV

ρ)ḡρν + (∂νV
ρ)ḡµρ]

=
1

2

√
ḡ [V ρḡµν∂ρḡµν + 2∂ρV

ρ]

=
1

2

√
ḡ
[
2V ρΓ̄µνρ + 2∂ρV

ρ
]

=
√
ḡD̄ρV

ρ .

As the classical action Scl[ĝ] in form of the Einstein-Hilbert action (4.3) or

of the higher-derivative action (4.4), SGF[ĥ; ḡ] as in Eq. (4.12), Sgh[ĥ, C̄, C, ḡ]

as in Eq. (4.13), Sgh,2[b; ḡ] as in Eq. (4.14), Ssource[ĥ, C̄, C, b; t, σ, σ̄, d; ḡ] as in

Eq. (4.19) and ∆kS[ĥ, C̄, C, b; ḡ] as in Eq. (6.1) precisely are of that form, one

immediately has that δ(B)Scl[ĝ] = 0, δ(B)SGF[ĥ; ḡ] = 0, δ(B)Sgh[ĥ, C̄, C, ḡ] = 0,

δ(B)Sgh,2[b; ḡ] = 0 and δ(B)Ssource[ĥ, C̄, C, b; t, σ, σ̄, d; ḡ] = 0 as well as δ(B)∆kS[ĥ, C̄, C, b; ḡ] =

0. The crucial ingredient here is that δ(B)Fµ(ĥ; ḡ) = LV Fµ(ĥ; ḡ) for the back-

ground gauge transformations.
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The action Ssource[ĝ, C̄, C; t, σ, σ̄; β, τ ; ḡ] is almost of that form – the term

τµC
ν∂νC

µ does not transform as a tensor. However, it can still be tamed.

Applying the background gauge transformation to it we find by expanding and

neglecting terms O(V 2):

τµC
ν∂νC

µ + δ(B)(τµC
ν∂νC

µ) = (τµ + LV τµ)(Cν + LVC
ν)∂ν(C

µ + LVC
µ)

= τµC
ν∂νC

µ + V σ(∂στµ)Cν∂νC
µ + τσ(∂µV

σ)Cν∂νC
µ

(1)

+ τµV
σ(∂σC

ν)∂νC
µ−τµCσ(∂σV

ν)∂νC
µ

(2)

+ τµC
ν(∂νV

σ)∂σC
µ

(2)

+τµC
νV σ∂ν∂σC

µ

−τµCν(∂νC
σ)(∂σV

µ)

(1)

−τµCνCσ∂ν∂σV
µ

= τµC
ν∂νC

µ + V σ∂σ(τµC
ν∂νC

µ)− τµCνCσ∂ν∂σV
µ

=0

= τµC
ν∂νC

µ + LV (τµC
ν∂νC

µ) ,

where the eponymously labeled terms cancel. We have used that LV τµ =

V σ∂στµ + τσ∂µV
σ and LVC

µ = V σ∂σC
µ − Cσ∂σV

µ. Thus we may especially

write CνLV (∂νC
µ) = Cν∂ν(LVC

µ) and therewith have

δ(B)(
√
ḡ τµC

ν∂νC
µ) =

√
ḡ D̄ρ(V

ρτµC
ν∂νC

µ) .

It follows that also δ(B)Ssource[ĝ, C̄, C; t, σ, σ̄; β, τ ; ḡ] = 0.

Lastly, we must show the invariance of the gravitational measure (4.21),

respectively (4.22), under δ(B). It is clear that applying δ(B) to Eq. (4.21) or

Eq. (4.22) amounts to applying a general coordinate transformation. In fact,

on can show that any measure∏
x

ḡ(x)α
∏

index structure

dφ(x) ,
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where φ is a tensor field with arbitrary index structure and α is an arbitrary

parameter, is ivariant under general (infinitesimal) coordinate transformations

x 7→ x′(x) = x+ V (x) [118, 201–203] given by∏
x

ḡ(x)α
∏

index structure

dφ(x) 7→
∏
x

det

(
∂x′µ(x)

∂xν

)β
ḡ(x)α

∏
index structure

dφ(x) .

The power β depends on the parameter α and the dimension d but is not of

importance here. Calculating the Jacobian yields∏
x

det

(
∂x′µ(x)

∂xν

)β
=
∏
x

det(δµν + ∂νV
µ)β(x)

=
∏
x

(1 + ∂µV
µ)β(x)

=
∏
x

eβ∂µV
µ(x)

= eβ
∑
x ∂µV

µ(x)

= eβ
∫

ddx∂µV µ(x)

= 1 ,

assuming an empty boundary of the manifold. Hence, the gravitational mea-

sure (4.22) also is δ(B)-invariant. As a side note, in the literature the above

calculation has been used as a point of suspension of the dicussion regarding

the potential irrelevance of the parameter α.

All in all, we thus have shown that δ(B)eW [J ;ḡ] = 0, δ(B)eWk[J ;ḡ] = 0 and

δ(B)eWk[J ;β,τ ;ḡ] = 0.
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F.5. Derivation of the relation Ji = ((−1)|φ
i|/
√
ḡ) δΓ/δφi

We consider only the case bµ ≡ 0, i.e. that Y µν [ḡ] does not contain derivatives.

In the following we abbreviate: t ≡ t[h, ξ̄, ξ], σ ≡ σ[h, ξ̄, ξ] and σ̄ ≡ σ̄[h, ξ̄, ξ] as

well as W = W [J [φ]; ḡ]. We first show the relation for i = 1 and then for i = 3.

The calculation for i = 2 is fully analogous.

δΓ[φ; ḡ]

δhαβ(y)
=

∫
ddx
√
ḡ

[
δtµν(x)

δhαβ(y)
hµν(x) + tµν(x)

δhµν(x)

δhαβ(y)

=Iαβµν δ(x−y)

+
δσ̄µ(x)

δhαβ(y)
ξµ(x) +

δσµ(x)

δhαβ(y)
ξ̄µ(x)

]

−
∫

ddx

 δt
µν(x)

δhαβ(y)

δW

δtµν(x)

=
√
ḡ(x)hµν(x)

+
δσµ(x)

δhαβ(y)

δW

δσµ(x)

=
√
ḡ(x)ξ̄µ(x)

+
δσ̄µ(x)

δhαβ(y)

δW

δσ̄µ(x)

=
√
ḡ(x)ξµ(x)


=
√
ḡ(y) tαβ(y) .

In the case i = 3 it is crucial to note that when calculating the left derivative

of a composition of functions of even and odd variables, the inner derivatives

stands left of the outer derivative (cf. Footnote 1 of Chapter 17).

δΓ[φ; ḡ]

ξα(y)
=

∫
ddx
√
ḡ

[
δtµν(x)

δξα(y)
hµν(x) +

δσ̄µ(x)

δξα(y)
ξµ(x)

− σ̄µ(x)
δξµ(x)

δξα(y)
+
δσµ(x)

δξα(y)
ξ̄µ(x)

]

−
∫

ddx

[
δtµν(x)

δξα(y)

δW

δtµν(x)
+
δσµ(x)

δξα(y)

δW

δσµ(x)
+
δσ̄µ(x)

δξα(y)

δW

δσ̄µ(x)

]
=−

√
ḡ(y) σ̄α(y) .
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F.6. Derivation of the Fadeev-Popov operator M [ĝ, ḡ]µν

Sgh[ĥ, C̄, C; ḡ] = −
∫

ddx
√
ḡ C̄µḡ

µν ∂Fν

∂ĥαβ
LC(ḡαβ + ĥαβ)

= −
∫

ddx
√
ḡ C̄µḡ

µν
√

2Fαβ
µ [ḡ]LC(ḡαβ + ĥαβ)

= −
√

2

∫
ddx
√
ḡ C̄µ

[
ḡµβ ḡαγD̄γ − βḡµν ḡαβD̄ν

]
LC ĝαβ .

Next, add

0 = − βḡρσḡµλD̄λ

[
ĝσν ĝ

νδ(∂ρĝδτ − ∂δĝρτ )Cτ
]

+
1

2
ḡµρḡσλD̄λ

[
ĝρν ĝ

νδ(∂σĝδτ − ∂δĝστ )Cτ
]

+
1

2
ḡµρḡσλD̄λ

[
ĝσν ĝ

νδ(∂ρĝδτ − ∂δĝρτ )Cτ
]

in form of a “zero” to[
ḡµβ ḡαγD̄γ − βḡµν ḡαβD̄ν

]
LC ĝαβ = + ḡµβ ḡαγD̄γ(C

ρ∂ρĝαβ)

+ ḡµβ ḡαγD̄γ((∂αC
ρ)ĝρβ)

+ ḡµβ ḡαγD̄γ((∂βC
ρ)ĝαρ)

− βḡµν ḡαβD̄ν(C
ρ∂ρĝαβ)

− βḡµν ḡαβD̄ν((∂αC
ρ)ĝρβ)

− βḡµν ḡαβD̄ν((∂βC
ρ)ĝαρ) .

It follows that[
ḡµβ ḡαγD̄γ − βḡµν ḡαβD̄ν

]
LC ĝαβ = ḡµρḡσλ

[
D̄λ(ĝρνDσC

ν) + D̄λ(ĝσνDρC
ν)
]

− 2βḡρσḡµλD̄λ(ĝσνDρC
ν) .

Insert this back into Sgh:

Sgh[h, C̄, C; ḡ] = −
√

2

∫
ddx
√
ḡ C̄µ

[
ḡµρḡσλD̄λ(ĝρνDσ + ĝσνDρ)− 2βḡρσḡµλD̄λĝσνDρ

]
Cν

= −
√

2

∫
ddx
√
ḡ C̄µM [ĝ, ḡ]µνC

ν .
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F.7. Derivation of the operator (U [0; ḡ]µνρσ)EH

Here, we explicitly calculate the inverse propagator
(
U [0; ḡ]µνρσ

)
EH

for the

Einstein-Hilbert action (4.3) with gauge fixing action (4.33) (with unspecified

gauge fixing parameters), defined by Eq. (4.42),∫
ddx

∫
ddy ĥµν(x)

δ2(SEH[ḡ + ĥ] + SGF[ĥ; ḡ])

δĥµν(x)δĥρσ(y)

∣∣∣∣∣
χ=0

ĥρσ(y)

=:

∫
ddx
√
ḡ ĥµν(U [0; ḡ]µνρσ)diff ĥρσ .

We define the integrals I1, I2 and I3 as:∫
ddy

∫
ddz ĥµν(x)

δ2(SEH[ḡ + ĥ] + SGF[ĥ; ḡ])

δĥµν(y)δĥρσ(z)

∣∣∣∣∣
χ=0

ĥρσ(z)

= − 2κ2

∫
ddx

∫
ddy

∫
ddz ĥµν(y)

[
δ2

δgµν(y)δgρσ(z)

(√
g(x)Rx

)]
g=ḡ

ĥρσ(z)

+ 4Λκ2

∫
ddx

∫
ddy

∫
ddz ĥµν(y)

[
δ2

δgµν(y)δgρσ(z)

√
g(x)

]
g=ḡ

ĥρσ(z)

+
1

α
κ2

∫
ddx
√
ḡ(x) ḡγδ(x)

∫
ddy

∫
ddz ĥµν(y)

×

[
δ2

δĥµν(y)δĥρσ(z)

(
Fαβ
γ [ḡ]diff

x ĥαβ(x)
)(

F τε
δ [ḡ]diff

x ĥτε(x)
)]

ĥ=0

ĥρσ(z)

=: I1 + I2 + I3 ,

where we had taken into account that Fαβ
µ [ḡ]ĝαβ = Fαβ

µ [ḡ]ĥαβ. Next we bring

the integrals I1, I2 and I3 independently into such a form that, at the end, we

can read off U [0; ḡ].

We start with I3, noting that further one has Fαβ
µ [ḡ]ĥαβ = D̄αĥαµ−βD̄µĥ

α
α and

therewith:1

I3 =
1

α
2κ2

∫
ddx
√
g(x) ḡγδ(x)

∫
ddy

∫
ddz ĥµν(y)

(
Fαβ
γ [ḡ]diff

x Iµναβδ(x− y)
)

×
(
F τε
δ [ḡ]diff

x Iρστε δ(x− z)
)
ĥρσ(z)

1Remember also that
δĥµν(x1)

δĥαβ(x2)
= Iαβµν δ(x1 − x2) with Iαβµν defined in Eq. (A.24).
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=
1

α
2κ2

∫
ddx
√
g(x) ḡµν(x)

∫
ddy

∫
ddz ĥαβ(y)

×
[(
δβµ ḡ

αγ(x)D̄y
γ − βḡαβ(x)D̄y

µ

)
δ(x− y)

]
×
[(
δσν ḡ

ρτ (x)D̄z
τ − βḡρσ(x)D̄z

ν

)
δ(x− z)

]
ĥρσ(z) ,

where have used that D̄x
µδ(x−y) = ∂xµδ(x−y) = −∂yµδ(x−y). Next, we perform

two partial integrations, in y and z respectively, in order two evaluate the delta

functions. Yet another partial integration in x yields

I3 = − 1

α
2κ2

∫
ddx
√
ḡ(x) ḡαβ(x)ĥµν

[
(δναḡ

µγD̄γ − βḡµνD̄α)

× (δσβ ḡ
ρτD̄τ − βḡρσD̄β)

]
x

ĥρσ(x)

=
1

α
2κ2

∫
ddx
√
g(x) ĥµν(x)

[
− δνσḡµγD̄γD̄ρ + βḡνβ ḡµγ ḡρσD̄γD̄β

+ βḡµνD̄σD̄ρ − β2d (Ptr.)
µν
ρσD̄

2

]
x

ĥρσ(x) ,

where (P̄tr.)
µν
ρσ = (1/d)ḡρσḡ

µν is the projector on the trace part of ḡµν , see

appendix A.2.2.

Next, the integral I2 can be quickly treated. Using the second variation of the

metric determinant (cf. appendix B),

δ2
√
g(x)

δgµν(y)δgρσ(z)
=

√
g(x)

2

[
1

2
gµνgρσ − 1

2
(gµρgνσ + gµσgνρ)

]
(x)δ(x− y)δ(x− z) ,

one straightforwardly obtains

I2 = 2κ2Λ

∫
ddx
√
ḡ ĥµν

[
d

2
(P̄tr.)

µν
ρσ − I

µν
ρσ

]
ĥρσ .

Lastly, we determine I3. To do so, we again use the metric variations stated in

appendix B:

ĥµν(y)
δ2(
√
g(x)R(x))

δgµν(y)δgρσ(z)
ĥρσ(z) =

√
g(x)δ(x− y)ĥµν(y)

{

+
1

2

[
1

2
gµνgρσ − 1

2
(gµρgνσ + gµσgνρ)

]
R

− gµνgαρgβσRαβ + gµνgραgσβDβDα

− 1

2
gµνgρσD2 + gµαgνσgρβRαβ
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− gµαgνβgρδgστRδαβτ − gµσgνγgρτDγDτ

+
1

2
gµρgνσD2

}
x

δ(x− z)ĥρσ(z) .

Therewith one has

I1 = 2κ2

∫
ddx
√
ḡ(x) ĥµν(x)

{
− 1

2

[
d

2
(Ptr.)

µν
ρσ − I

µν
ρσ

]
R

+ ḡµνR̄ρσ − ḡµνD̄σD̄ρ +
d

2
(Ptr.)

µν
ρσD̄

2 − ḡµαδνσR̄αρ

+ ḡµαḡνβR̄ραβσ + δµσ ḡ
νγD̄γD̄ρ −

1

2
IµνρσD̄

2

}
x

ĥρσ(x) .

Putting these results together, the off-diagonal terms can be summed up by

exploiting the symmetry (µν)↔ (ρσ) and partial integration. One finds

I1 + I2 + I3 = 2κ2

∫
ddx
√
ḡ ĥµν

{ (
1− 1

α

)
δνσḡ

µγD̄γD̄ρ +

(
2
β

α
− 1

)
ḡµνD̄σD̄ρ

+
1

2

[
d

(
1− 2

β2

α

)
(P̄tr.)

µν
ρσ − I

µν
ρσ

]
D̄2

+

[
d

2
(P̄tr.)

µν
ρσ − I

µν
ρσ

](
Λ− 1

2
R̄

)
+ ḡµνR̄ρσ − ḡµαδνσR̄αρ + ḡµαḡνβR̄ραβσ

}
ĥρσ .

As I1 + I2 + I3 =
∫

ddx
√
ḡ ĥµν(U [0; ḡ]µνρσ)diff

EH ĥ
ρσ holds per construction, we

can read of the operator (U [0; ḡ])EH:

κ−2(U [0; ḡ]µνρσ)diff
EH =

[
d

(
1− 2

β2

α

)
(P̄tr.)

µν
ρσ − I

µν
ρσ

]
D̄2

+
1

2

(
1− 1

α

)[
δµσD̄

νD̄ρ + δνσD̄
µD̄ρ

+ δµρ D̄
νD̄σ + δνρD̄

µD̄σ

]
+

1

2

(
2
β

α
− 1

)[
ḡµνD̄σD̄ρ + ḡµνD̄ρD̄σ

+ ḡρσD̄
µD̄ν + ḡρσD̄

νD̄µ
]

+

[
d

2
(P̄tr.)

µν
ρσ − I

µν
ρσ

] (
2Λ− R̄

)



F.7. DERIVATION OF THE OPERATOR (U [0; ḡ]µνρσ)EH 367

+
[
ḡµνR̄ρσ + ḡρσR̄

µν
]

− 1

2

[
δνσR̄

µ
ρ + δνρR̄

µ
σ + δµσR̄

ν
ρ + δµρ R̄

ν
σ

]
−
[
R̄ρ

µ
σ
ν + R̄σ

µ
ρ
ν
]
.
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F.8. Derivation of the operator (U [0; ḡµν = δµν ]
µν
ρσ)h.−d.

We spread the calculation of the operator (U [0; ḡµν = δµν ]
µν
ρσ)h.−d. given by

Eq. (4.98) into two parts: (A) The variation of Sh.−d.[ḡ+ ĥ], given by Eq. (4.4),

on the one hand and (B) that of SGF[ĥ; ḡ], given by Eq. (4.85), on the other

hand. In a further step (C), we will specify this result to four spacetime dimen-

sions which leads to Eq. (4.100). For that purpose, we introduce two auxiliary

operators, Ωµν
ρσ[ḡ] and ΩGF

µν
ρσ[ḡ]. The former arises from applying the varia-

tion δḡµν := ĥµν twice to the higher-derivative action evaluated at ḡ,

δ2Sh.−d.[ḡ] =:

∫
ddx
√
ḡ ĥµνΩ

µν
ρσ[ḡ]diff ĥρσ ;

while the latter arises from reformulating the gauge-fixing action SGF[ĥ; ḡ] that

per se already is quadratic in ĥµν ,

SGF[ĥ; ḡ] =:

∫
ddx
√
ḡ ĥµνΩGF

µν
ρσ[ḡ]diff ĥρσ .

A direct cosequence of these definitions together with that of the operator

(U [0; ḡµν ]
µν
ρσ)h.−d., Eq. (4.95), is∫

ddx
√
ḡ ĥµν

(
U [0; ḡµν ]

µν
ρσ

)diff

h.−d.
ĥρσ =

∫
ddx
√
ḡ ĥµνΩGF

µν
ρσ[ḡ]diff ĥρσ ,

respectively,

U [0; ḡ]h.−d. = Ω[ḡ] + 2 ΩGF[ḡ] . (F.2)

(A) With some straightforward algebra the second variation of Sh.−d.[ḡ] can be

expanded as

δ2Sh.−d.[ḡ] =

∫
ddx

{
a δ2
(√

ḡ R̄µναβR̄
µναβ

)
+ b δ2

(√
ḡ R̄µνR̄

µν
)

+ c δ2
(√

ḡ R̄2
)}

=

∫
ddx

{(
δ2√ḡ

) [
a R̄µναβR̄

µναβ + b R̄µνR̄
µν + c R̄2

]
+ 2

(
δ
√
ḡ
) [
a δ
(
R̄µναβR̄

µναβ
)

+ b δ
(
R̄µνR̄

µν
)

+ c δ
(
R̄2
)]

+
√
ḡ
[
a δ2
(
R̄µναβR̄

µναβ
)

+ b δ2
(
R̄µνR̄

µν
)

+ c δ2
(
R̄2
)]}

.

Further expanding the Riemann, Ricci and scalar curvature in the last term

according to δ2R̄2 = 2δ(R̄ δR̄) = 2[(δR̄)2 + R̄ δ2R̄], it is clear that the only
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surviving term when evaluating this second variation on flat space with ḡµν =

δµν , i.e. the only curvature-independent term, is “2(δR̄)2”; and thus

δ2Sh.−d.[ḡ]

∣∣∣∣
ḡµν=δµν

=

∫
ddx
√
ḡ
∣∣
ḡµν=δµν

=1

{
2a
(
δR̄µναβ

)(
δR̄µναβ

)
+ 2b

(
δR̄µν

)(
δR̄µν

)
+ 2c

(
δR̄
)2
}
ḡµν=δµν

.

The variations required here can be found in appendix B and projected onto

flat space read, with ĥ ≡ ĥα
α and � = ∂α∂

α,

δR̄µναβ

∣∣∣
ḡµν=δµν

=
1

2

(
− ∂µ∂αĥνβ + ∂ν∂αĥµβ + ∂µ∂βĥνα − ∂ν∂βĥµα

)
δR̄µν

∣∣∣
ḡµν=δµν

=
1

2

(
∂α∂ν ĥµ

α − ∂µ∂ν ĥ−�ĥµν + ∂µ∂
αĥαν

)
δR̄
∣∣∣
ḡµν=δµν

= ∂β∂αĥ
αβ −�ĥ .

Next, we bring these variations, when squared and integrated, into the desired

form. For the coupling a:∫
ddx

(
δR̄µναβ

)
δR̄µναβ

∣∣∣
ḡ=δ

=

∫
ddx

1

4

(
− ∂µ∂αĥνβ + ∂ν∂αĥµβ

+ ∂µ∂βĥνα − ∂ν∂βĥµα
)

×
(
− ∂µ∂αĥνβ + ∂ν∂αĥµβ

+ ∂µ∂βĥνα − ∂ν∂βĥµα
)

=

∫
ddx

1

4

(
+ ĥνβ∂α∂µ∂µ∂αĥνβ − ĥνβ∂α∂µ∂ν∂αĥµβ − ĥνβ∂α∂µ∂µ∂βĥνα

+ ĥνβ∂α∂µ∂ν∂βĥµα − ĥµβ∂α∂ν∂µ∂αĥνβ + ĥµβ∂ν∂α∂ν∂αĥµβ

+ ĥµβ∂α∂ν∂µ∂βĥνα − ĥµβ∂ν∂α∂ν∂βĥµα − ĥνα∂β∂µ∂µ∂αĥνβ

+ ĥνα∂β∂µ∂ν∂αĥµβ + ĥνα∂β∂µ∂µ∂βĥνα − ĥνα∂β∂µ∂ν∂βĥµα

+ ĥµα∂β∂ν∂µ∂αĥνβ − ĥµα∂β∂ν∂ν∂αĥµβ − ĥµα∂β∂ν∂µ∂βĥνα

+ ĥµα∂β∂ν∂ν∂βĥµα

)
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=

∫
ddx

1

4
ĥµν

(
+ δµαδνβ�2 − δµα∂ν∂β�− δµα∂ν∂β�+ ∂µ∂ν∂α∂β

− δµα∂ν∂β�+ δµαδνβ�2 + ∂µ∂ν∂α∂β − δµα∂ν∂β�

− δµα∂ν∂β�+ ∂µ∂ν∂α∂β + δµαδνβ�2 − δµα∂ν∂β�

+ ∂µ∂ν∂α∂β − δµα∂ν∂β�− δµα∂ν∂β�+ δµαδνβ�2
)
ĥαβ

=

∫
ddx ĥµν

(
δµαδνβ�2 − 2δµα∂ν∂β�+ ∂µ∂ν∂α∂β

)
ĥαβ ;

For the coupling b:∫
ddx

(
δR̄µν

)
δR̄µν

∣∣∣
ḡ=δ

=

∫
ddx

1

4

(
− ∂α∂ν ĥµα + ∂µ∂ν ĥ+�ĥµν − ∂µ∂αĥνα

)
×
(
− ∂β∂ν ĥµβ + ∂µ∂ν ĥ+�ĥµν − ∂µ∂βĥβν

)
=

∫
ddx

1

4

(
+ ĥµ

α∂ν∂α∂β∂
ν ĥµβ − ĥµα∂ν∂α∂µ∂ν ĥ− ĥµα∂ν∂α�ĥµν

+ ĥµ
α∂ν∂α∂

µ∂βĥβ
ν − ĥ∂ν∂µ∂β∂ν ĥµβ + ĥ∂ν∂µ∂

µ∂ν ĥ

+ ĥ∂ν∂µ�ĥ
µν − ĥ∂ν∂µ∂µ∂βĥβν − ĥµν�∂β∂ν ĥµβ

+ ĥµν�∂
µ∂ν ĥ+ ĥµν�

2ĥµν − ĥµν�∂µ∂βĥβν

+ ĥνα∂
α∂µ∂β∂

ν ĥµβ − ĥνα∂α∂µ∂µ∂ν ĥ− ĥνα∂α∂µ�ĥµν

+ ĥνα∂
α∂µ∂

µ∂βĥβ
ν
)

=

∫
ddx

1

4
ĥµν

(
+ δµα∂ν∂β�− δµν∂α∂β�− δµα∂ν∂β�+ ∂µ∂ν∂α∂β

− δµν∂α∂β�+ δµνδαβ�2 + δµν∂α∂β�− δµν∂α∂β�

− δµα∂ν∂β�+ δµν∂α∂β�+ δµαδνβ�2 − δµα∂ν∂β�

+ ∂µ∂ν∂α∂β − δµν∂α∂β�− δµα∂ν∂β�+ δµα∂ν∂β�
)
ĥαβ

=

∫
ddx ĥµν

1

4

(
δµνδαβ�2 + δµαδνβ�2 − 2δµα∂ν∂β�

− 2δµν∂α∂β�+ 2∂µ∂ν∂α∂β
)
ĥαβ ;

For the coupling c:∫
ddx

(
δR̄
)
δR̄
∣∣∣
ḡ=δ

=

∫
ddx

(
∂µ∂αĥ

αβ −�ĥ
)(
∂µ∂ν ĥ

µν −�ĥ
)
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=

∫
ddx ĥµν

(
∂µ∂ν∂α∂β − 2δµν∂α∂β�+ δµνδαβ�2

)
ĥαβ .

(In each second step of these three calculations we have used partial integration.)

Therewith, it follows that

δ2Sh.−d.[ḡ]

∣∣∣∣
ḡµν=δµν

=

∫
ddx ĥµν

[(
b

2
+ 2c

)
δµνδαβ�2 +

(
B

2
+ 2a

)
δµαδνβ�2

− (b+ 4a)δµα∂ν∂β�− (b+ 4c)δµν∂α∂β�

+ (2a+ b+ 2c)∂µ∂ν∂α∂β

]
ĥαβ

and thus, with Iµνρσ given by Eq. (A.24),

Ωµν
ρσ [ḡµν = δµν ]

diff = +

(
b

2
+ 2c

)
δµνδρσ�

2 +

(
b

2
+ 2a

)
Iµνρσ�

2

− b+ 4a

4

[
δµρ∂

ν�∂σ + δµσ∂
ν�∂ρ + δνρ∂

µ�∂σ + δνσ∂
µ�∂ρ

]
− b+ 4c

2
[δµν∂ρ�∂σ + δρσ∂

µ�∂ν ]

+ (2a+ b+ 2c)∂µ∂ν∂ρ∂σ .

(F.3)

(B) Next, we re-write the gauge-fixing action (4.85) that is built from the gauge-

fixing condition Fµ(ĥ; ḡ) = 0 given by Eq. (4.31) and the weight function Y µν [ḡ]

given by Eq. (4.84); we do so on a generic background with metric ḡµν (i.e. here

ĥ = ḡµν ĥµν , �ḡ = ḡµνD̄µD̄ν etc.):

SGF[ĥ; ḡ] =
1

2α

∫
ddx
√
ḡ Fµ(ĥ; ḡ)Y µν [ḡ]diffFν(ĥ; ḡ)

=
1

α

∫
ddx
√
ḡ
(
D̄ρĥ

ρ
µ − βD̄µĥ

)
Y µν [ḡ]diff

(
D̄σĥ

σ
ν − βD̄ν ĥ

)
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=

∫
ddx
√
ḡ ĥµν

[
− 1

α
D̄µ
(
ḡνβ�ḡ + γD̄νD̄β − δD̄βD̄ν

)
D̄α

+
β

α
ḡαβD̄µ

(
ḡνρ�ḡ + γD̄νD̄ρ − δD̄ρD̄ν

)
D̄ρ

+
β

α
ḡµνD̄ρ

(
ḡρβ�ḡ + γD̄ρD̄β − δD̄βD̄ρ

)
D̄α

− β2

α
ḡµν ḡαβD̄ρ

(
ḡρσ�ḡ + γD̄ρD̄σ − δD̄σD̄ρ

)
D̄σ

]
ĥαβ

=

∫
ddx
√
ḡ ĥµν

[
− 1

α
ḡνβD̄µ�ḡD̄

α − γ

α
D̄µD̄νD̄αD̄β +

δ

α
D̄µD̄νD̄αD̄β

+
δ

α
D̄µ[D̄β, D̄ν ]D̄α +

β

α
ḡαβD̄µ�ḡD̄

ν +
γβ

α
ḡαβD̄µ�ḡD̄

ν

+
γβ

α
ḡαβD̄µ[D̄ν ,�ḡ]−

δβ

α
ḡαβD̄µ�ḡD̄

ν − δβ

α
ḡαβD̄µD̄ρ[D̄ν , D̄ρ]

+
β

α
ḡµνD̄β�ḡD̄

α +
γβ

α
ḡµνD̄β�ḡD̄

α +
γβ

α
ḡµν [�ḡ, D̄

β]D̄α

− δβ

α
ḡµνD̄β�ḡD̄

α − δβ

α
ḡµν [D̄ρ, D̄

β]D̄ρD̄α − β2

α
ḡµν ḡαβ�2

ḡ

− β2

α
ḡµν ḡαβD̄σ[�ḡ, D̄σ]− β2γ

α
ḡµν ḡαβ�2

ḡ +
δβ2

α
ḡµν ḡαβ�2

ḡ

+
δβ2

α
ḡµν ḡαβD̄ρ[D̄

σ, D̄ρ]D̄σ

]
ĥαβ

=

∫
ddx
√
ḡ ĥµν

[
− 1

α
ḡνβD̄µ�ḡD̄

α +
δ − γ
α

D̄µD̄νD̄αD̄β

+ 2
β

α
(1 + γ − δ)ḡµνD̄α�ḡD̄

β − β2

α
(1 + γ − δ)ḡµν ḡαβ�2

ḡ

+ curvature-dependent terms

]
ĥαβ
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Therefrom, we can read off the operator ΩGF
µν
ρσ[ḡ] evaluated at ḡµν = δµν

easily:

ΩGF
µν
ρσ[ḡµν = δµν ] = − 1

4α

[
δµρ∂

ν�∂σ + δµσ∂
ν�∂ρ + δνρ∂

µ�∂σ + δνσ∂
µ�∂ρ

]
+
δ − γ
α

∂µ∂ν∂ρ∂σ +
β

α
(1 + γ − δ) [δµν∂ρ�∂σ + δρσ∂

µ�∂ν ]

− β2

α
(1 + γ − δ)δµνδρσ�2 .

(F.4)

Finally, we can bring the result (F.3) from (A) and the result (F.4) from

(B) together; with Eq. (F.2) these lead directly to the operator U [0; ḡ]h.−d.,

(U [0; ḡµν = δµν ]
µν
ρσ)diff

h.−d. = Ωµν
ρσ[ḡµν = δµν ] + 2 ΩGF

µν
ρσ[ḡµν = δµν ]

=

(
b

2
+ 2a

)
Iµνρσ�

2

+

[(
b

2
+ 2c

)
− 2

β2

α
(1 + γ − δ)

]
δµνδρσ�

2

−
[
b+ 4a

4
+

1

2α

]{
δµρ∂

ν�∂σ + δµσ∂
ν�∂ρ

+ δνρ∂
µ�∂σ + δνσ∂

µ�∂ρ
}

−
[
b+ 4c

2
− 2

β

α
(1 + γ − δ)

]{
δµν∂ρ�∂σ

+ δρσ∂
µ�∂ν

}
+

[
2a+ b+ 2c+ 2

δ − γ
α

]
∂µ∂ν∂ρ∂σ .

This precisely is Eq. (4.98) and thus what we wished to show.

(C) In four spacetime dimensions, d = 4, we may eliminate one coupling thanks

to the undynamical Gauss-Bonnet term. The couplings f0 and f2 that are

related to a, b and c via Eq. (??) can be regarded as the most convenient

choice; thence subsequently let us rewrite the operator Ωµν
ρσ [ḡµν = δµν ] given

by Eq. (F.3) in terms of the couplings f0 and f2. Therefore, we introduce the

auxiliary notation

Aµναβ sym. := A((µν)(αβ)) ,
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i.e. “sym.” indicates that a tensor structure is to be fully symmetrized. One

has

Ωµναβ [ḡµν = δµν ] =

{
+

(
b

2
+ 2c

)
δµνδαβ�2 +

(
b

2
+ 2a

)
δµαδνβ�2

− (b+ 4a)δµα∂ν�∂β − (b+ 4c)δµν∂α�∂β

+ (2a+ b+ 2c)∂µ∂ν∂α∂β

}
sym.

= �2

{
1

2f 2
2

[
+ δµνδαβ − 4

3
δµνδαβ + δµαδνβ

− 2δµα
∂ν∂β

�
− 2δµν

∂α∂β

�
+

8

3
δµν

∂α∂β

�

+ 2∂µ∂ν∂α∂β − 4

3
∂µ∂ν∂α∂β

]

+
1

f 2
0

[
− 1

3
δµνδαβ +

2

3
δµν

∂α∂β

�
− 1

3

∂µ∂ν∂α∂β

�2

]}
sym.

= �2

{
1

2f 2
2

[
+ δµαδνβ sym.

=Iµναβ

− 2

(
δµα

∂ν∂β

�
− ∂µ∂ν∂α∂β

�2

)
sym.

=P (1)µναβ

− 1

3

(
δµνδαβ − 2δµν

∂α∂β

�
+
∂µ∂ν∂α∂β

�2

)
sym.

=P (0,ss)µναβ

+

(
���

���

2δµν
∂α∂β

�
− ∂µ∂ν∂α∂β

�2
−

���
���

2δµν
∂α∂β

�

)
sym.

=P (0,ww)µναβ

]

+
1

f 2
0

(
−1

3
δµνδαβ +

2

3
δµν

∂α∂β

�
− 1

3

∂µ∂ν∂α∂β

�2

)
sym.

=−P (0,ss)µναβ

}

(A.65)
= −�2

(
− 1

2f 2
2

P (2)µναβ +
1

f 2
0

P (0,ss)µναβ
)
,

where we have made use of the spin projectors P (2), P (1), P (O,ss) and P (0,ww)

that are defined by Eqs. (A.57), (A.59), (A.61) and (A.62). Next, we also

rewrite the operator ΩGF
µναβ[ḡµν = δµν ] given by Eq. (F.4) in terms of these
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projectors. Thereby, for convenience, we set the gauge fixing parameters γ and

δ to γ − δ = 0; then one has

ΩGF
µναβ[ḡµν = δµν ] = −�2

{
−β
α
δµνδαβ − 1

α
δµα

∂ν∂β

�
+

2β

α
δµν

∂α∂β

�

}
.

The projector P on the trace-part of a symmetric rank-2 tensor field can be

decomposed according to Eq. (A.72):

1

4
δµνδαβ = P µναβ

=
3

4
P (0,ss)µναβ +

1

4
P (0,ww)µναβ +

√
3

4

(
P (0,sw) + P (0,ws)

)µναβ
,

where the “projectors” P (0,sw) and P (0,ws) are given by Eqs. (A.67) and (A.68).

Furthermore one has, with Eqs. (A.54) and (A.55),

δµα
∂ν∂β

�
sym. =

(
T µαLνβ + LαβLµν

)
sym.

=
1

2

(
P (1)µναβ + 2P (0,ww)µναβ

)
and

δµν
∂α∂β

�
sym. =

(
T µνLαβ + LµνLαβ

)
sym.

=

√
3

2

(
P (0,sw) + P (0,ws)

)µναβ
+ P (0,ww)µναβ .

Therewith the operator ΩGF[ḡµν = δµν ] immediately reads

ΩGF[ḡµν = δµν ] = −�2

{
1

α
P(1) + 3

β2

α
P(0,ss) +

(β − 1)2

α
P(0,ww)

+
√

3
β(β − 1)

α

[
P(0,sw) + P(0,ws)

]}
.

Consequently, the inverse propagator in d = 4, U [0, ḡµν = δµν ]
d=4
h.−d., reads

U [0, ḡµν = δµν ]
d=4
h.−d. = Ω[ḡµν = δµν ] + 2 ΩGF[ḡµν = δµν ]
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= −�2

{
− 1

2f 2
2

P(2) +
1

α
P(1) +

(
1

f 2
0

+
6β2

α

)
P(0,ss)

+
2(β − 1)2

α
P(0,ww)

+
2
√

3β(β − 1)

α

[
P(0,sw) + P(0,ws)

]}
The operator U [0, ḡµν = δµν ]

d=4
h.−d. in this form can be easily inverted by means

of Eq. (A.70). The required parameters are

a2 = − 1

2f 2
2

, a1 =
1

α
, ass =

6β2f 2
0 + α

αf 2
0

, aww =
2(β − 1)2

α
,

asw = aws =
2
√

3β(β − 1)

α
, assaww − a2

sw =
2(β − 1)2

αf 2
0

,

ass
assaww − a2

sw

=
6β2f 2

0 + α

2(β − 1)2
,

aww
assaww − a2

sw

= f 2
0 ,

asw
assaww − a2

sw

=

√
3f 2

0β

β − 1
,

such that
(
U [0, ḡµν = δµν ]

d=4
h.−d.

)−1
– which is the propagator of higher-derivative

gravity in d = 4 – is given by(
U [0; ḡµν = δµν ]

d=4
h.−d.

)−1

= − 1

�2

{
− 2f 2

2P
(2) + α

[
P(1) +

1

2(β − 1)2
P(0,ww)

]

+ f 2
0

[
P(0,ss) +

3β2

(β − 1)2
P(0,ww)

+

√
3β

1− β
(
P(0,sw) + P(0,ws)

) ]}
.

This is precisely Eq. (4.101) and thus what we wanted to show.
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F.9. Calculation of T (U [0; g]µνρσ)diffAρσ and T (M [g, g]µν)
diffXν

First, we introduce the auxiliary operator

γ := −1

2
T =

∫
ddx gµν(x)

δ

δgµν(x)
.

With its help, the relations we wish to proof now read

γ
(
U [0; g]µνρσ

)diff
Aρσ = −

(
U [0; g]µνρσ

∣∣
Λ=0

)diff
Aρσ

γ
(
M [g, g]µ

)diff

ν
Xν = −

(
M [g, g]µν

)diff
Xν .

In the following, we verify all the relations needed as ingredients to calculate

γ(U [0; g]µνρσ)diffAρσ and γ(M [g, g]µν)
diffXν . These are in summary:

(1) γgµν = gµν , γgµν = −gµν

(2) γ(Ptr.)
µν
ρσ = 0 = γIµνρσ

(3) γΓρµν = 0

(4) γR = −R

(5) γRµν = 0 , γRµν = −2Rµν , γRµ
ν = −Rµ

ν

(6) γRµνρ
σ = 0 , γRρ

µ
σ
ν = −Rρ

µ
σ
ν

(7) γ(DτDνA
ρσ) = 0

(8) γ(DµDνA
ρσ) = −DµDνA

ρσ which implies γ(D2Aρσ) = −D2Aρσ

(9) γ(DµDνAρσ) = −2DµDνAρσ

(10) γ(DτDνX
ρ) = 0

(11) γ(DµDνX
ρ) = −DµDνX

ρ which implies γ(D2Xρ) = −D2Xρ

Aplying these rules to the operator (U [0; g]µνρσ)diff as given by Eq. (4.75) acting

on Aρσ and to the operator (M [g, g]µν)
diff as given by Eq. (4.74), the relations

γ(U [0; g]µνρσ)diffAρσ = −(U [0; g]µνρσ|Λ=0)diffAρσ as well as γ(M [g, g]µν)
diffXν =

−(M [g, g]µν)
diffXν directly follow. It remains to verify the above rules:2

2Cf. appendix B for the applied metric variantions; especially note that
δgµν(y)
δgαβ(x) = Iαβµν δ(x−y).
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(1) ∫
ddx gαβ(x)

δ

δgαβ(x)
gµν(y) =

∫
ddx gαβ(x)Iαβµν δ(x− y) = gµν(y)∫

ddx gαβ(x)
δ

δgαβ(x)
gµν(y) = −

∫
ddx gαβ(x)gµρ(y)gνσ(y)Iαβρσ δ(x− y)

= − gµν(y)

(2)

γ(Ptr.)
µν
ρσ = γ

(
1

d
gµνgρσ

)
=

1

d
(−gµνgρσ + gµνgρσ) = 0

γIµνρσ = 0 (holds trivially)

(3)

γΓρµν(y) =

∫
ddx gαβ(x)

1

2
gρσ(y)

[
Dy
µδ(y − x)Iαβνσ

+Dy
νδ(y − x)Iαβµσ −Dy

σδ(y − x)Iαβµν

]
= − 1

2
gρσ(y)

∫
ddx
√
g(x)

[
Dx
µ

δ(y − x)√
g(x)

Iαβνσ

+Dx
ν

δ(y − x)√
g(x)

Iαβµσ −Dx
σ

δ(y − x)√
g(x)

Iαβµν

]
= 0 (after using partial integration)

(4)

γR(y) =

∫
ddxgαβ(x)

[
−Rµν(y) +Dµ

yD
ν
y − gµν(y)D2

y

]
Iαβµν δ(x− y)

=R(y) +

∫
ddx (d− 1)D2

xδ(x− y)

=
∫

ddx
√
g(x)Dxµ

[
(d−1)√
g(x)

Dµxδ(x−y)

]
=0

= −R(y)
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(5)

γRµν(y) =

∫
ddx gαβ(x)

1

2

[
Rµ

ρ(y)
δgνρ(y)

δgαβ(x)
+Rν

ρ(y)
δρµ(y)

δgαβ(x)

+2Rρ
µν
σ(y)

δgρσ(y)

δgαβ(x)
+Dy

νD
ρ
y

δgρµ(y)

δgαβ(x)

−D2
y

δgµν(y)

δgαβ(x)
+Dy

µD
ρ
y

δgρν(y)

δgαβ(x)

]

=
1

2

[
Rµν(y) +Rνµ(y) + 2gρσ(y)Rρ

µν
σ(y)

+

∫
ddx gρµ(x)Dy

νD
ρ
yδ(x− y)

=surface term=0

−
∫

ddx gρσ(x)Dy
µD

y
νg

ρσ(y)δ(x− y)

=surface term=0

−
∫

ddx gµν(x)D2
yδ(x− y)

=surface term=0

−
∫

ddx gρν(y)Dy
µD

ρ
yδ(x− y)

=surface term=0

]

=
1

2

[
2Rµν(y)− 2Rµν(y)

]
= 0

γRµν(y) = γ
[
gµρ(y)gνσ(y)Rρσ(y)

]
= − gµρ(y)gνσ(y)Rρσ(y)− gµρ(y)gνσ(y)Rρσ(y)

= − 2Rµν(y)

γRµ
ν(y) = γ

[
gµρ(y)Rρν(y)

]
= −Rµ

ν(y)
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(6)

γRµνρ
σ(y) =

1

2

∫
ddx gαβ(x)

[

−Rµνρ
τ (y)gσγ(y)

δgτγ(y)

δgαβ(x)
+Rµντ

σ(y)gτγ(y)
δgργ(y)

δgαβ(x)

−Dy
µD

y
ρg

στ (y)
δgντ (y)

δgαβ(x)

=surface term=0

+Dy
νD

y
ρg

στ (y)
δgµτ (y)

δgαβ(x)

=surface term=0

+Dy
µD

σ
y

δgνρ(y)

δgαβ(x)

=surface term=0

−Dy
νD

σ
y

δgµρ(y)

δgαβ(x)

=surface term=0

]

=
1

2

[
− gτγ(y)gσγ(y)Rµνρ

τ (y) + gργ(y)gτγ(y)Rµντ
σ(y)

]
=
[
−Rµνρ

σ(y) +Rµνρ
σ(y)

]
= 0

γRσ
µ
σ
ν(y) = γ

[
gµτ (y)Rρτσ

ν(y)
]

= −gµτ (y)Rρτσ
ν(y) = −Rσ

µ
σ
ν(y)

(7-11)

First, one has

DµDνA
ρσ = gµτDτDνA

ρσ = gµτ
[
∂τDνA

ρσ + ΓρτεDνA
εσ + ΓστεDνA

ρε − ΓεντDεA
ρσ
]
.

Next, as DνA
ρσ = ∂νA

ρσ+ΓρνεA
εσ+ΓσνεA

ρε, the terms inside the square brackets

depend only via the Christoffel symbols on the metric. Therewith, one directly

has:

γ(DτDνA
ρσ) = 0

γ(DµDνA
ρσ) = γ(gµτDτDνA

ρσ) = −DµDνA
ρσ

γ(DµDνAρσ) = γ(gµτgνεDτDεA
ρσ) = −2DµDνAρσ .

(The proofs of γ(DτDνX
ρ) = 0 and γ(DµDνX

ρ) = −DµDνX
ρ are fully analo-

gous.)
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F.10. Calculation of Eq. (19.10) using lemma (17.13)

∫
ddx
√
g(x)Tµ

µ[{φj}; g](x) = T S [{φj} ; g]

= − 2

∫
ddxgµν(x)

δ

δgµν(x)
S [{φj} ; g]

= lim
α→0

d

dα
S
[
{φj} ; e−2αg

]
= lim

α→0

d

dα

{
S [{(1 + wjα− wjα)φj} ; (1− 2α)g] +O(α2)

}
= lim

α→0

d

dα

{
S [{(1 + wjα)φj} ; (1− 2α)g]

+

∫
ddx

∑
j

−wjαφj(x)
δS[{φj}; g]

δφj(x)
+O(α2)

}

= lim
α→0

d

dα

{
S [{φj} ; g] + αN [{φj} ; g] +O(α2)

− α
∑
j

wj

∫
ddxφj(x)

δS[{φj}; g]

δφj(x)
+O(α2)

}

=N [{φj} ; g]−
∑
j

wj

∫
ddxφj(x)

δS[{φj}; g]

δφj(x)
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F.11. Derivation of the functional renormalization group

equation

We only show the case bµ 6≡ 0; the case bµ ≡ 0 follows fully analogously by

employing the measure (4.22) instead of (4.21). Taking the partial derivative

with respect to the renormalization group time t = ln k of the functional Γ̃k[φ; ḡ]

yields (thereby taking note of the comment on the chain rule for the left deriv-

ative of Graßmann variables in Footnote 1 of Chapter 17)

∂tΓ̃k[φ; ḡ] =

∫
ddx
√
ḡ

[
∂ttk

µνhµν + ∂tσ̄kµξ
µ + ∂tσk

µξ̄µ + ∂tdk
µζµ

]
− (∂tWk) [Jk[φ; ḡ]; ḡ]

−
∫

ddx
√
ḡ

[
(∂ttk

µν)
δWk [Jk[φ; ḡ]; ḡ]

δtkµν

=
√
ḡhµν

+ (∂tσ̄kµ)
δWk [Jk[φ; ḡ]; ḡ]

δσ̄kµ

=
√
ḡξµ

+ (∂tσk
µ)
δWk [Jk[φ; ḡ]; ḡ]

δσkµ

=
√
ḡξ̄µ

+ (∂tdk
µ)
δWk [Jk[φ; ḡ]; ḡ]

δdkµ

=
√
ḡζµ

]

= − (∂tWk) [Jk[φ; ḡ]; ḡ]

=

∫
Dµ[ĥ, C̄, C, b; ḡ] ∂t∆kS[ĥ, C̄, C, b; ḡ] e−S̃[ĥ,C̄,C,b;t,σ,σ̄,d;ḡ]−∆kS[ĥ,C̄,C,b;ḡ]∫

Dµ[ĥ, C̄, C, b; ḡ] e−S̃[ĥ,C̄,C,b;t,σ,σ̄,d;ḡ]−∆kS[ĥ,C̄,C,b;ḡ]

=
〈
∂t∆kS[ĥ, C̄, C, b; ḡ]

〉
.
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Before proceeding further, let us rewrite the cutoff action (6.1) using Eqs. (A.5),

(A.20) and (A.21) (see also appendix A.1)

∆kS[ĥ, C̄, C, b; ḡ]

=

∫
ddx
√
ḡ(x)

∫
ddy
√
ḡ(y)

{
+

1

2
ĥµν(x) Rgrav

k
µν
ρσ[ḡ]diff

x

δ(x− y)√
ḡ(y)

ĥρσ(y)

+ C̄µ(x) Rgh,1
k

µ

ν [ḡ]diff
x

δ(x− y)√
ḡ(y)

Cν(y)

+
1

2
bµ(x) Rgh,2

k

µ

ν [ḡ]diff
x

δ(x− y)√
ḡ(y)

bν(y)

}
.

=

∫
ddx
√
ḡ(x)

∫
ddy
√
ḡ(y)

{
+

1

2
ĥµν(x)〈x, µ, ν|Rgrav

k [ḡ]|y, ρ, σ〉 ĥρσ(y)

+ C̄µ(x)〈x, µ|Rgh,1
k [ḡ]|y, ν〉Cν(y)

+
1

2
bµ(x) 〈x, µ|Rgh,2

k [ḡ]|y, ν〉 bν(y)

}
.

Thus,

∂tΓ̃k[φ; ḡ] (F.5)

=
〈
∂t∆kS[ĥ, C̄, C, b; ḡ]

〉
=

∫
ddx
√
ḡ(x)

∫
ddy
√
ḡ(y)

{
1

2
〈x, µ, ν|∂tRgrav

k [ḡ]|y, ρ, σ〉
〈
ĥµν(x)ĥρσ(y)

〉
+ 〈x, µ|∂tRgh,1

k [ḡ]|y, ν〉
〈
C̄µ(x)Cν(y)

〉
+

1

2
〈x, µ|∂tRgh,2

k [ḡ]|y, ν〉 〈bµ(x)bν(y)〉

}
.

Next, we must find a way to express the expectation values above through the

EAA Γk[φ; ḡ]. Therefore, we firstly acknowledge that

δ2Wk[J ; ḡ]

δJa(x)δJb(y)
=

δ2

δJa(x)δJb(y)
ln expWk[J ; ḡ]

=
δ

δJa(x)

(
1

eWk[J ;ḡ]

δeWk[J ;ḡ]

δJb(y)

)
= − 1

(eWk[J ;ḡ])
2

δeWk[J ;ḡ]

δJa(x)

δeWk[J ;ḡ]

δJb(y)
+

1

(eWk[J ;ḡ])
2

δ2eWk[J ;ḡ]

δJa(x)δJb(y)
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=
δWk[J ; ḡ]

δJa(x)

δWk[J ; ḡ]

δJb(y)
+
√
ḡ(x)

√
ḡ(y)

〈
χa(x)χb(y)

〉
=
√
ḡ(x)

√
ḡ(y)

{〈
χa(x)χb(y)

〉
− 〈χa(x)〉

〈
χb(y)

〉}
=
√
ḡ(x)

√
ḡ(y)

{〈
χa(x)χb(y)

〉
− φa(x)φb(y)

}
. (F.6)

Secondly, note that Eq. (6.10) inverts Eq. (6.6) in the following sense (here, the

index structure is supressed):

δ(x− y)δab =
δJa(x)

δJb(y)

=

∫
ddz

δ(φc)k[J ; ḡ](z)

δJb(z)

δ(Ja)k[φ; ḡ]

δφc(z)

=

∫
ddz

(
δ

δJb(z)

1√
ḡ(z)

δWk[J ; ḡ]

δJc(z)

)(
δ

δφc(z)

(−1)|φ
a|√

ḡ(z)

δΓ̃k[φ; ḡ]

δφa(x)

)
.

We can re-express this identity by introducing the crucial operators Gk[J ; ḡ]

and Γ̃
(2)
k [φ; ḡ] in field space by (we point out that in this definition no sum over

a and b is intended)

〈x, . . .|Gab
k [J ; ḡ]|y, . . .〉 :=

1√
ḡ(x)

√
ḡ(y)

Iab[ḡ]
δ2Wk[J ; ḡ]

δJa(x)δJb(y)
,

〈x, . . .|
(

Γ̃
(2)
k

)
ab

[φ; ḡ]|y, . . .〉 :=
(−1)|φ

b|√
ḡ(x)

√
ḡ(y)

Iab[ḡ]
δ2Γ̃k[φ; ḡ]

δφa(x)δφb(y)
,

where “. . . ”, Iab and Iab symbolically account for the index structure that must

be adapted accordingly, e.g.

〈x, µ, ν|G11
k [J ; ḡ]|y, ρ, σ〉 :=

1√
ḡ(x)

√
ḡ(y)

Iµναβ[ḡ]
δ2Wk[J ; ḡ]

δtαβ(x)δtρσ(y)
,

〈x, µ|G23
k [J ; ḡ]|y, ν〉 :=

1√
ḡ(x)

√
ḡ(y)

δµαδ
β
ν

δ2Wk[J ; ḡ]

δσα(x)δσ̄β(y)
.

Hence, the above identity reads∫
ddz
√
ḡ(z) 〈x, . . .|Gab

k [J ; ḡ]|z, . . .〉〈z, . . .|(Γ̃(2)
k )bc[φ; ḡ]|y, . . .〉 = δac

δ(x− y)√
ḡ(y)

Iac

= δac 〈x, . . . |y, . . .〉 .
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Therewith, especially the following relation holds:

Gk[J ; ḡ] =
(

Γ̃
(2)
k [φ; ḡ]

)−1

, .

and furthermore Eq. (F.6) amounts to〈
χa(x)χb(y)

〉
Iab = 〈x, . . .|Gab

k [J ; ḡ]|y, . . .〉+ φa(x)φb(y)Iab .

By plugging this equation back into our intermediate result (F.5) we obtain

∂tΓ̃k[φ; ḡ] =

∫
ddx
√
ḡ(x)

∫
ddy
√
ḡ(y)

{
1

2
〈x, µ, ν|∂tRgrav

k [ḡ]|y, ρ, σ〉

[
〈y, ρ, σ|G11

k [J ; ḡ]|x, µ, ν〉+ hµν(x)hρσ(y)

]

+ 〈x, µ|∂tRgh,1
k [ḡ]|y, ν〉

[
〈y, ν|G23

k [J ; ḡ]|x, ν〉+ ξ̄µ(x)ξν(y)

]

+
1

2
〈x, µ|∂tRgh,2

k [ḡ]|y, ν〉

[
〈y, ν|G44

k [J ; ḡ]|x, ν〉+ ζµ(x)ζν(y)

]}
.

It immediately follows that

∂tΓk[φ; ḡ] = ∂tΓ̃k[φ; ḡ]− ∂t∆kS[φ; ḡ]

=

∫
ddx
√
ḡ(x)

∫
ddy
√
ḡ(y)

{
1

2
〈x, µ, ν|∂tRgrav

k [ḡ]|y, ρ, σ〉〈y, ρ, σ|G11
k [J ; ḡ]|x, µ, ν〉

+ 〈x, µ|∂tRgh,1
k [ḡ]|y, ν〉〈y, ν|G23

k [J ; ḡ]|x, ν〉

+
1

2
〈x, µ|∂tRgh,2

k [ḡ]|y, ν〉〈y, ν|G44
k [J ; ḡ]|x, ν〉

}
.

Note that G23
k [J ; ḡ] = −G32

k [J ; ḡ]. Further applying the definitions (6.15) and

(6.16), from which

Gk[J ; ḡ] =
(
Γ(2)[φ; ḡ] + Rk[ḡ]

)−1

follows, yields
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∂tΓk[φ; ḡ]

=

∫
ddx
√
ḡ(x)

{
1

2
〈x, µ, ν| (∂tRk11[ḡ])

([
Γ(2)[φ; ḡ] + Rk[ḡ]

]−1
)11

|x, µ, ν〉

− 〈x, µ| (∂tRk23[ḡ])
([

Γ(2)[φ; ḡ] + Rk[ḡ]
]−1
)32

|x, µ〉

− 1

2
〈x, µ| (∂tRk44[ḡ])

([
Γ(2)[φ; ḡ] + Rk[ḡ]

]−1
)44

|x, µ〉

}

=
1

2
TrST 2

[
(∂tRk11[ḡ])

([
Γ

(2)
k [φ; ḡ] + Rk[ḡ]

]−1
)11

]

− TrV

[
(∂tRk23[ḡ])

([
Γ

(2)
k [φ; ḡ] + Rk[ḡ]

]−1
)32

]

− 1

2
TrV

[
(∂tRk44[ḡ])

([
Γ

(2)
k [φ; ḡ] + Rk[ḡ]

]−1
)44

]
.

This is precisely Eq. (6.13) and thus what we wanted to show.



F.12. DERIVATION OF THE RELATIONS (12.19) 387

F.12. Derivation of the relations (12.19)

In this section, we solely work in four-dimensional flat spacetime. The derivation

(or proof) of the relations (12.19) proceeds as follows: First, we show that under

the integral
∫

d4p using symmetric integration the projectors P (2)(p), P (1)(p) etc.

can be expressed in terms of Ptr.[gµν = δµν ] and IST 2 ≡ I. Then the relations

(12.19) directly follow from the Equations (11.21) and (11.22), i.e.

IµνρσT
ρσ
µν(u) = −n2 and Ptr.[δµν ]

µν
ρσT

ρσ
µν(u) =

1

d
(n2 − 2n) .

Consider the relations (12.19) to be labeled top-down from (1) to (6). Subse-

quently, we will show each relation separately.

(1)

P (2)
µνρσ(p) =

1

2
TµρTνσ +

1

2
TµσTνρ −

1

3
TµνTρσ

=
1

2

[(
δµρ −

pµpρ
p2

)(
δνσ −

pνpσ
p2

)
+

(
δµσ −

pµpσ
p2

)(
δνρ −

pνpρ
p2

)]

− 1

3

(
δµν −

pµpν
p2

)(
δρσ −

pρpσ
p2

)
Using symmetric integration under the integral

∫
d4p we have

P (2)
µνρσ(p) =

1

2

[
δµνδνσ

(i)

−1

4
δµρδνσ

(ii)

−1

4
δµρδνσ

(ii)

+
1

24
(δµνδρσ + δµρδνσ + δµσδνρ

(iii)

)

+ δµσδνρ

(i)

−1

4
δµσδνρ

(ii)

−1

4
δµσδνρ

(iii)

+
1

24
(δµνδρσ + δµρδνσ + δµσδνρ

(iii)

)

]

− 1

3

[
δµνδρσ −

1

4
δµνδρσ −

1

4
δρσδµν +

1

24
(δµνδρσ + δµρδνσ + δµσδνρ

(i)

)

]

=

(
1

24
− 1

3

(
1

2
+

1

24

))
4

1

4
δµνδρσ +

(
1− 2

1

4
+

1

12
− 1

3 · 2 · 6

)
Iµνρσ

=− 5

9
Ptr.[δ]µνρσ +

5

9
I[δ]µνρσ .
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Thus,

T µνρσ(u)P (2)ρσ
µν(p) = −5

9

(n2 − 2n)

4
− 5

9
n2

=
10

72
n(2− 5n) .

(2)

P (1)
µνρσ(p) =

1

2

(
TµρLνσ + TµσLνρ + TνρLµσ + TνσLµρ

)
=

1

2

(
δµρ

pνpσ
p2
− pµpνpρpσ

p4
+ δµσ

pνpρ
p2
− pµpνpρpσ

p4

+ δνρ
pµpσ
p2
− pµpνpρpσ

p4
+ δνσ

pµpρ
p2
− pµpνpρpσ

p4

)
Using symmetric integration under the integral

∫
d4p we have

P (1)
µνρσ(p) =

1

2

(
1

4
δµρδνσ +

1

4
δµσδνρ +

1

4
δνρδµσ +

1

4
δνσδµρ

− 4
1

24
(δµνδρσ + δµρδνσ + δµσδνρ)

)

=
1

2

(
I[δ]µρνσ −

4

6
Ptr.[δ]µνρσ −

4

12
I[δ]µρνσ

)
=

1

3
I[δ]µρνσ −

1

3
Ptr.[δ]µνρσ .

Thus,

T µνρσ(u)P (1)ρσ
µν(p) =

1

3
(−n2)− 1

3

1

4
(n2 − 2n)

=
1

12
n(2− 5n) .

(3)

P (0,ss)
µνρσ (p) =

1

3
TµνTρσ
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=
1

3

(
δµν −

pµpν
p2

)(
δρσ −

pρpσ
p2

)
=

1

3

(
δµνδρσ − δµν

pρpσ
p2
− δρσ

pµpν
p2

+
pµpνpρpσ

p4

)
Using symmetric integration under the integral

∫
d4p we have

P (0,ss)
µνρσ (p) =

1

3

(
δµνδρσ −

1

4
δµνδρσ −

1

4
δρσδµν

+
1

24
(δµνδρσ + δµρδνσ + δµσδνρ)

)

=
1

3

((
1− 1

2
+

1

24

)
4Ptr.[δ]µνρσ +

1

12
Iµνρσ

)
=

1

36
I[δ]µνρσ +

13

18
Ptr.[δ]µνρσ

Thus,

T µνρσ(u)P (0,ss)ρσ
µν(p) =

1

36
(−n2) +

13

18
· 1

4
(n2 − 2n)

=
1

72
n(11n− 26) .

(4)

P (0,ww)
µνρσ (p) = LµνLρσ

=
pµpνpρpσ

p4

Using symmetric integration under the integral
∫

d4p we have

P (0,ww)
µνρσ (p) =

1

24
(δµνδρσ + δµρδνσ + δµσδνρ)

=
1

6
Ptr.[δ]µνρσ +

1

12
I[δ]µνρσ .

Thus,

T µνρσ(u)P (0,ww)ρσ
µν(p) =

1

12
(−n2) +

1

6
· 1

4
(n2 − 2n)

= − 1

24
n(n+ 2) .
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(5)[
P (0,sw) + P (0,ws)

]
µνρσ

(p) =
1√
3

(TµνLρσ + LµνTρσ)

=
1√
3

(
δµν

pρpσ
p2
− pµpνpρpσ

p4
+ δρσ

pµpν
p2
− pµpνpρpσ

p4

)
Using symmetric integration under the integral

∫
d4p we have[

P (0,sw) + P (0,ws)
]
µνρσ

(p) =
1√
3

(
2

1

4
δµνδρσ − 2

1

24
(δµνδρσ + δµρδνσ + δµσδνρ)

)
=

1√
3

((
2

4
− 2

24

)
4Ptr.[δ]µνρσ −

2

24
· 2I[δ]µνρσ

)
=

1√
3

(
5

3
Ptr.[δ]µνρσ −

1

6
I[δ]µνρσ

)
Thus,

T µνρσ(u)
[
P (0,sw) + P (0,ws)

]
ρσ
µν(p) =

1√
3

(
−1

6
(−n2) +

5

3
· 1

4
(n2 − 2n)

)
=

1√
3 12

n(7n− 10) .

The proof of (6) is fully equivalent to (5).
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