
ModulaR Specification and
Compositional Soundness of

AbstRact InteRpReteRs

Dissertation
submitted for the award of the title

“Doctor of Natural Science”
to the Faculty Physics, Mathematics, and Computer Science

of Johannes Gutenberg-University
in Mainz

Sven Keidel
born in Frankfurt-Höchst, Germany.

Mainz, 9.3.2021

D77

CONTENTS

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 What Are Static Analyses and Why Do They Matter 1
1.2 Soundness of Static Analyses . 2
1.3 Why Existing Analyses Are Difficult to Prove Sound 4
1.4 Compositional Soundness Proofs of Static Analyses 6
1.5 Dissertation Outline . 10

2 Background on Big-Step Abstract Interpretation and Arrows 13
2.1 Introduction to Big-Step Abstract Interpreters . 13
2.2 Arrows, an Abstraction for Effectful Computations 15

3 Capturing the Similarities between Concrete and Abstract Interpreters 21
3.1 Introduction . 21
3.2 Why and How to Make Soundness Proofs Compositional 23
3.3 Soundness Proposition for Arrows . 28
3.4 Compositional Soundness for Arrow-Based Abstract Interpreters 30
3.5 Interface Design and Parametricity . 32
3.6 Case Studies . 35
3.7 Related Work . 38
3.8 Conclusion . 40

4 Sound and Reusable Components for Abstract Interpretation 41
4.1 Introduction . 41
4.2 Analysis Components By Example . 43
4.3 Analysis Components And Their Soundness . 47
4.4 Sound Composition Of Analysis Components . 50
4.5 Soundness Of Component-Based Static Analyses 53
4.6 Sturdy: A Library Of Sound And Reusable Analysis Components 54
4.7 Experimental Evaluation And Case Studies . 57
4.8 Related Work . 62
4.9 Conclusion . 63

5 Modular Fixpoint Algorithms for Big-Step Abstract Interpreters 65
5.1 Introduction . 65
5.2 Designing Big-Step Fixpoint Algorithms . 67
5.3 Modularizing the Description of Big-Step Fixpoint Algorithms 73
5.4 Soundness of Modular Big-Step Fixpoint Algorithms 79
5.5 Evaluation . 82
5.6 Related Work . 84
5.7 Conclusion . 86

6 A Systematic Approach to Abstract Interpretation of Program Transformations 87
6.1 Introduction . 87
6.2 Illustrating Example: Singleton Analysis . 88
6.3 Generic Interpreters for Program Transformations 91
6.4 Sort Analysis . 95
6.5 Locally Ill-Sorted Sort Analysis . 98

i

6.6 Related Work . 100
6.7 Conclusion . 101

7 Related Work 103
7.1 Modular Analyses Description and Compositional Soundness Proofs 103
7.2 Other Techniques for Ensuring the Soundness of Static Analyses 111
7.3 Testing Soundness . 113

8 Future Work 115
8.1 Proof Mechanization . 115
8.2 Backward Analyses . 115
8.3 Performance Scalability . 116

9 Conclusion 117

Bibliography 119

ABSTRACT

Static analyses are automated tools that yield information about computer programs without
running them. Static analyses are used in modern integrated development environments (IDEs),
compilers, and continuous integration servers. For example, IDEs use static analyses to warn
developers about common problems such as type errors, dead code, or memory leaks. Compilers
use static analyses mainly to optimize the code. For example, a compiler may use a constant
analysis to move variable assignments out of loops that do not change.

Depending on the use case of a static analysis, the results of the analysis need to be more or
less reliable. For example, if a dead code analysis used in an IDE fails to report that a piece of
code will never be executed, then the consequences will probably be not that bad. However, if a
compiler optimization relies on a faulty analysis, then the optimization may change the semantics
of the program. Such a changed program semantics leads to unexpected program behavior and
crashes. In these use cases, the unreliable analyses are unacceptable.

One way of ensuring that a static analysis is reliable, is to prove that the analysis is sound.
Soundness means that a static analysis never fails to report a certain class of bugs or program
behavior. For example, a sound static type checker never misses a type error and hence it guar-
antees that a type correct program executes without crashing. Soundness is especially important
for static analyses used in compiler optimizations, for security analyses, and for analyses that
verify mission-critical software.

Unfortunately, formally proving that a static analysis is sound is difficult. A formal soundness
proof shows for all programs, that the analysis result corresponds to the execution of the program.
While some complexity of a soundness proof is inherent, a large part is incidental and comes
from how the analysis is structured. In particular, many static analyses do not clearly separate
different concerns. This coupling often makes a soundness proof infeasible. For example, the
analyses in the LLVM compiler have not been proven sound and developers discovered 81 cases
of unsoundness since 2010.

In this thesis, we propose a methodology for structuring static analyses such that their sound-
ness proof becomes easier. The core principle of this methodology is to make the soundness
proof compositional. More specifically, we show how analyses can be implemented modularly
with small and reusable components. Each component can be proven sound independently and
the composition of components remains sound. This means analysis developers do not need to
worry about soundness, as long as they use sound components.

We evaluate our methodology by developing several control-flow and data-flow analyses for
languages with different programming paradigms. We implemented these analyses by using
sound and reusable components of the open-source Haskell library Sturdy1, that we developed as
part of this thesis. Our experiments show that compositional soundness proofs require less effort,
because large parts of the analysis consist of language-independent components that have been
proven sound a priori. Furthermore, compositional soundness proofs are less complicated, be-
cause components capture only a small piece of functionality, which can be easily proven sound.

1https://github.com/svenkeidel/sturdy

iii

https://github.com/svenkeidel/sturdy

ACKNOWLEDGEMENTS

Anonymized for online publication.

v

1INTRODUCTION

The goal of this thesis is to simplify the soundness proof of static analyses. To set the stage, we
explain what static analyses are, how they are used, and why they matter.

1.1 What Are Static Analyses and Why Do They Matter

Static analyses are tools that analyze the source code of computer programs to provide informa-
tion about their execution. They calculate this information by inspecting the source code of a
program, but without running it. Static analyses have a wide variety of applications, which we
discuss in this section.

Static analyses are effective tools for ensuring the security of software [Ayewah et al. 2008;
Bessey et al. 2010]. For example, consider the Heartbleed security vulnerability in the OpenSSL
library that affected millions of servers across the internet [Durumeric et al. 2014]. The vulner-
ability leaked sensitive information about SSL keys by reading outside the bounds of an array.
Even though the OpenSSL library is widely used and well tested, the tests missed this vulnera-
bility. To quote Dijkstra [1969], „program testing can be used to show the presence of bugs, but
never to show their absence“. In contrast, a static array bounds analysis [Hovemeyer et al. 2005]
could have detected the vulnerability [Wheeler 2014]. In particular, the analysis guarantees that
all array accesses are within their bounds, during all executions of the program. In other words,
the analysis does not miss unsafe array accesses, like the one in the Heartbleed vulnerability.
In summary, static analyses are tools to ensure the security of software, because they provide
stronger guarantees than testing.

Integrated development environments (IDEs) use static analyses to provide feedback to soft-
ware developers about their programs. For example, Figure 1.1 illustrates the use of static analyses
in a Python IDE. The highlighted area 1 lists common problems in the edited programs, such as
unused variables, dead code, possible null-pointer dereferences, etc. This information is produced
by several static analyses called bug finders [Ayewah et al. 2008; Calcagno et al. 2015]. Area 2
presents a list of possible code completions for the current context. To make these completions
more relevant, the IDE narrows down the list of all possible completions by considering type in-
formation. This information is produced by a static analysis called a type checker [Cardelli 1996;
Pierce 2002; Mitchell 1990]. Area 3 and 4 describe the class structure of the edited program. While
in Python some parts of the class structure are evident by glancing at the source code, other parts
are not so obvious. This is because Python allows to dynamically create or change parts of the
class structure at runtime. These dynamic parts of the class structure can be determined ahead
of time with another static analysis [Fromherz et al. 2018]. Lastly, static analyses enable several
automated code refactorings [Mens and Tourwé 2004; Wedyan et al. 2009]. To summarize, IDEs
use static analyses to enrich the development experience over plain text editors.

Compilers often use static analyses to enable code optimizations. For example, Figure 1.2 il-
lustrates how a loop-hoisting compiler optimization [Aho et al. 1986] uses information of a static
analysis. A loop-hoisting optimization moves code outside the body of a loop to avoid redundant
recomputation. For instance, the value of the variable c on the left of Figure 1.2 never changes
between loop iterations and hence the assignment c=a+b is redundant. To avoid this redundancy,
the optimization hoists the assignment out of the loop, such that the assignment is only com-
puted once. To detected which code is redundant, the optimization uses a reaching definitions
analysis [Nielson et al. 1999]. This analysis computes which variable definitions reach a certain
statement, without being overwritten. In particular, the variables in the expression a+b are de-
fined by the function parameters and are not overwritten in between. This means the value of the
expression a+b does not change between loop iterations and the assignment can be safely moved
outside the loop body. In summary, compilers use the information of static analyses to generate
efficient code.

To summarize, static analyses retrieve information about programs without running them.
They can be used to ensure the security of software, they aid programmers during the develop-

1

1. IntRoduction

Figure 1.1: Screenshot of the Python IDE PyCharm. The highlighted parts contain program infor-
mation produced by static analyses.

func(a, b) {
for(x = y = 0; x < 100; x++) {

c = a + b
y = x ∗ y + c

}
return y

}

func(a, b) {
c = a + b
for(x = y = 0; x < 100; x++) {

y = x ∗ y + c
}
return y

}

Figure 1.2: Compiler optimization that moves constant code out of loops. The optimization re-
quires information of a static analysis to detect which variables do not change between loop
iterations.

ment process, and they allow compilers to generate efficient code. However, many static anal-
yses lose their usefulness, if they produce false information. For example, consider a compiler
optimization that uses false analysis information. The optimization may change the semantics
of programs, which leads to unexpected program behavior and bugs that are hard to find. To
avoid this, many analysis developers ensure that their analysis is sound, which we discuss in the
following section.

1.2 Soundness of Static Analyses

In this section, we explain what soundness is and why it is a necessary requirement for some
analysis use cases. However, to be able to understand soundness, we first need to explain why an
analysis cannot always compute precise information about programs.

Consider an array bounds analysis [Hovemeyer et al. 2005] that ensures that array accesses
are safely within the bounds of the array. For example, consider the following program:
for(i = 0; i < x.length-1; i++)

x[i] = x[i] + x[i+1];

The analysis determines the range of index variable i. Since variable i is within the range 0 ≤
i < x.length − 1, the array accesses x[i] and x[i+1] are both safely within the bounds of array
x.

However, guaranteeing the safety of array accesses is not always that easy. For example,
consider a variation of the program above, where the index variable depends on a complicated
arithmetic expression:

2

1.2. Soundness of Static Analyses

Unsafe Safe

Unsafe
Safe

Program Execution

A
rray

B
ounds

A
nalysis

True
Positive

True
Negative

False
Negative

False
Positive

False Positive Example:
All array access in the program are safe.
Analysis reports x[i+1] is potentially unsafe.
for(i = 0; i < x.length - 1; i++)

x[i] = x[i] + x[i+1]

False Negative Example:
Array access x[i+1] is potentially unsafe.
Analysis reports all array accesses are safe.
for(i=0; i<

√
x.length + log(x.length); i++)

x[i] = x[i] + x[i+1]

Figure 1.3: Classification of cases where an array bounds analysis correctly or incorrectly pre-
dicted the safety of array accesses.

for(i = 0; i <
√
x.length + log(x.length); i++)

x[i] = x[i] + x[i+1]

To guarantee that index variable i does not exceed the upper bound of array x, the analysis needs
to reason about the loop condition 𝑖 <

√
x.length + log(x.length). This requires knowledge

about the mathematical properties of roots and logarithms. However, even if the analysis were
able to reason about this program, in practice, other programs are even more complicated. The
complexity of these programs makes it impossible for the analysis to give a precise answer about
the safety of array accesses. To overcome this problem, the analysis may give an imprecise answer
that an array access is potentially unsafe.

More generally, static analyses attempt to verify properties of the execution of programs,
such as the safety of all array accesses. Unfortunately, most interesting properties about the exe-
cution of programs are undecidable due to Rice’s theorem [Rice 1953]. To overcome this problem,
static analyses retain decidability by giving imprecise answers. To better understand imprecise
answers, we classify the cases in which an analysis correctly or incorrectly predicted the property.
Figure 1.3 shows this classification at the example of the array bounds analysis. The rows of the
diagram specify what the analysis predicted and the columns show what actually happens when
the program is executed. The interesting cases are when the analysis was mistaken (false positive
and false negative), which we discuss in the following.

An analysis answer is false positive, if the analysis falsely reports that a program violates a
property. For example, the array bounds analysis may report that an array access is potentially
unsafe, while all array accesses are safe when the program is executed. False positive answers can
be annoying for software developers, because they cause them to needlessly investigate problems
that a program does not have. Furthermore, software developers start to ignore the entire report
of the analysis, if too many results are false positive [Sadowski et al. 2015]. For this reason, IDEs
usually use static analyses with a low number of false positives answers. In contrast, for compiler
optimizations false positive analysis answers are more tolerable. In such a case, the compiler may
skip the optimization and leave the program unchanged.

Unsafe Safe

Unsafe
Safe

Program Execution

Sound
A
nalysis

True
Positive

True
Negative

False
Positive

An analysis answer is false negative, if the analysis falsely re-
ports that a program satisfies a property. For example, the array
bounds analysis may report that all array accesses are safe, while
the program crashes due to an unsafe array access. False negative
analysis answers can be more tolerable within an IDE setting. For
instance, software developers care more about that reported bugs
are actually bugs in the program, than about an exhaustive report
of all potential bugs of the program [Sadowski et al. 2015]. How-
ever, for other analysis use cases, false negative answers are unde-
sirable. These use cases require a special class of static analyses, which never give false negative
answers. Static analyses which never give false negative answers are called sound. For example,
it is desirable for type checkers to be sound [Pierce 2002; Rompf and Amin 2016]. A sound type

3

1. IntRoduction

checker reports all possible type errors, before the program is executed. If a type checker is un-
sound, it misses some type errors, which are potential bugs in the program. Furthermore, it is
important that security analyses are sound [Wassermann and Su 2007; Russo and Sabelfeld 2010].
A sound security analysis guarantees that a certain type of vulnerability cannot occur. If a secu-
rity analysis is unsound, it fails to report some security vulnerabilities, which leaves programs
open for attacks. Lastly, it is imperative that the static analyses of compiler optimizations are
sound [Kanade et al. 2007; Lerner et al. 2003]. If these analyses were unsound, the optimizations
may change the semantics of a program, which leads to unexpected program behavior and bugs
that are hard to find.

To summarize, sound static analyses do not give false negative answers. Soundness is im-
portant for analysis use cases where false negative answers are undesirable. However, many
analyses that attempt to be sound, are in fact unsound. This is because it is difficult to ensure that
an analysis is sound.

1.3 Why Existing Analyses Are Difficult to Prove Sound

To ensure that an analysis is sound, many analysis developers prove their analysis sound for-
mally. A formal soundness proof relates how programs are executed to the results of the analysis.
However, many soundness proof attempts are difficult or even infeasible, because the proofs are
monolithic. Monolithic means that it is difficult to split the soundness proof into smaller lemmas
that are independently provable. In this section, we discuss three reasons that cause soundness
proofs to become monolithic. In the following section, we discuss how this dissertation solves
these problems by making soundness proofs compositional.

Impedance mismatch between the style of concrete and abstract semantics The first reason
for monolithic soundness proofs is the impedancemismatch between the style of the concrete and
abstract semantics. We illustrated this impedance mismatch with an analogy in Figure 1.4. For
example, type checkers are usually described with a big-step semantics, whereas they are proved
sound with respect to a small-step semantics [Pierce 2002]. The impedance mismatch between the
semantics requires a type preservation lemma, which says that the type of an expression before
and after each evaluation step are the same. Furthermore, the small-step program semantics often
uses substitution to bind variables, whereas the type checker uses environments [Pierce 2002].
This impedance mismatch requires a substitution lemma, which says that the type before and
after substitution are the same. These two lemmas are an indication of the impedance mismatch
and increase the effort and complexity of the soundness proof.

For real-world programming languages, this impedance mismatch complicates the soundness
proof significantly. For example, Scala’s new type system (dependent object types (Dot)) was pro-
posed in 2012 [Amin et al. 2012]. After its inception, it took 4 years and several attempts [Amin
et al. 2014, 2016] to prove the type system sound [Rompf and Amin 2016]. Yet, the Dot core cal-
culus only covers a small subset of the Scala type system. Despite a lot of progress [Jeffery 2019;
Campos and Vasconcelos 2018; Rapoport and Lhoták 2019; Giarrusso et al. 2020], extending the
Dot calculus soundly to the full Scala type system remains a challenge.

No Separation of Effects The second problem that makes soundness proofs monolithic, is that
analyses often do not clearly separate the implementation of different effects of the language. For
example, consider the following Java program that tries to increment an element of an array.

1 int safeIncrement(int arr[], int index) {
2 try {
3 arr[index] += 1; // exception may occur if the index exceeds the array bounds.
4 } catch(IndexOutOfBoundsException e) {
5 index = -1;
6 }
7 return index;
8 }

4

1.3. Why Existing Analyses Are Difficult to Prove Sound

Soundness Proof

Program

Co
nc
ret

e S
em

an
tic
s Abstract Semantics

Figure 1.4: Depiction of a monolithic soundness proof. A soundness proof relates the execution
of a program (concrete semantics) to the results of an analysis (abstract semantics). A problem
that makes the soundness proof monolithic is the impedance mismatch between the concrete
and abstract semantics. In this analogy, we depict the impedance mismatch with two different
types of Sierpinski triangles [Sierpinski 1915]. Even though it is easy to see that the concrete and
abstract semantics are related somehow, it is difficult to split the soundness proof into smaller
lemmas, which can be independently proven.

Depending on the length of the array arr, line 3 may or may not cause an exception. This means
the variable index at the return statement is either unchanged or -1. An analysis needs to consider
both of these cases. This example demonstrates the interaction between the effects of mutable
variables and exceptions. This interaction makes it difficult to separate these concerns in an
analysis and soundness proof.

Another downside of the mixing of effects is, that it is hard to reuse existing analysis func-
tionality. For example, it is hard to reuse functionality for analyzing exceptions, if the language
also features mutable variables. This causes many analysis developers to develop and prove new
analyses sound completely from scratch [Shivers 1991; Jensen et al. 2009; Jourdan et al. 2015;
Rompf and Amin 2016; Al-Sibahi et al. 2018]. However, such from-scratch soundness proofs are
often infeasible due to the high effort and complexity. For instance, many static analyses that aim
to be sound only have partial soundness proofs or no soundness proofs [Andreasen et al. 2017;
Emanuelsson and Nilsson 2008], others are known to be unsound [Wang et al. 2016; Smaragdakis
and Kastrinis 2018; Livshits et al. 2015].

Monolithic Fixpoint Algorithms A central part of every static analysis is its fixpoint algorithm.
A fixpoint algorithms calculates the analysis result for loops and recursive functions. It repeatedly
reanalyzes parts of the program until the analysis result does not change anymore. However,
there is often no single fixpoint algorithms that performs best for all analyzed programs. For
example, consider the following Java Program:

1 int x[] = ...; int y[] = ...;
2 for(int i = 0; i < x.length; i++) {
3 ... // Code that is computationally expensive to analyze
4 for(int j = 0; j < y.length; j++) {
5 ... // Code that is computationally expensive to analyze
6 }
7 }

A fixpoint algorithm needs to repeatably reanalyze both loops. However, depending on the di-
mensions of the arrays x and y, it can be faster to first reanalyze the inner loop or first the outer
loop, or a combination thereof. This example shows that it is hard to find a single best analysis
order, that performs well for all programs. The example also shows that the development of a
fixpoint algorithm for a new analysis requires fine-tuning and adaptation.

5

1. IntRoduction

Unfortunately, many existing fixpoint algorithms are monolithic [Bourdoncle 1993; Nielson
et al. 1999; Rosendahl 2013; Kim et al. 2020]. This means it is hard to split their implementation
into smaller pieces, which can be independently proven sound. This makes the soundness proof
more difficult as the entire fixpoint algorithm needs to be proven sound at once. Furthermore,
the soundness proof of these fixpoint algorithms is also brittle, when we fine-tune or adapt them.
In particular, every small change to the fixpoint algorithm invalidates the soundness proof and
the proof needs to be reconstructed all over again.

To summarize, many soundness proofs are difficult because they are monolithic. Monolithic
means that it is hard to decompose the soundness proof into smaller lemmas, which can be proven
independently. The main reasons for monolithic soundness proofs are the impedance mismatch
between the concrete and abstract semantics, the mixing of concerns, and monolithic fixpoint
algorithms. In the next section, we explain how this dissertation solves these problems bymaking
soundness proofs compositional.

1.4 Compositional Soundness Proofs of Static Analyses

In this section, we present a methodology for structuring static analyses, such that their sound-
ness proof becomes compositional. Compositional means that the soundness proof consists of
small independent soundness lemmas and does not require reasoning about the analysis as a
whole. In particular, we claim the following hypothesis:

Compositional soundness proofs are feasible and reduce the effort and complexity of develop-
ing sound static analyses.

Our evaluation shows our methodology simplifies soundness proofs and reduces their effort.

1.4.1 Capturing the similarities between analysis and language semantics

The first problem we need to solve is the impedance mismatch between the concrete and abstract
semantics. We explained in the previous section how this impedancemismatch increases the com-
plexity and effort of the soundness proof. We solve this by (1) describing both the concrete and
abstract semantics with the same style of semantics and (2) we capture the similarities between
the concrete and abstract semantics.

In particular, we capture the similarities between the language semantics and the analysis
with a generic semantics. The generic semantics operates on expressions of the same language,
but can be instantiated different ways to derive the concrete or abstract semantics. To this end, the
generic interpreter is parameterized by operations that abstract over the values of the language.
The interface describes the types of these operations. To recover the concrete semantics and
abstract semantics, we instantiate the generic semantics with two different implementations of
the operations.
This reorganization has the following benefits:
• The soundness proof takes less effort, because an instantiated generic semantics is sound, if
its operations are sound. This means no reasoning about the generic semantics is necessary
and it suffices to prove soundness of the operations. We prove this with a theorem once and
for all generic semantics.

• The soundness proof of the operations is less complicated, because each operation captures
only a small piece of functionality. This small piece of functionality is easier to reason about
than the whole interpreter. Furthermore, each operation can be proven sound independently
of other operations and independently of the generic semantics.

• The reorganization reduces the effort of creating new analyses for the same language. In
particular, we can reuse the same generic semantics to create a variety of different analyses.
We demonstrate this in Chapter 6.

We describe this technique in more detail in Chapter 3.

6

1.4. Compositional Soundness Proofs of Static Analyses

Generic Semantics

Interface

I II I

III IV III

I II III IV

I

II

III

IV

Concrete Instance

I

II

III

IV

Abstract Instance

Soundness Lemma I

Soundness Lemma II

Soundness Lemma III

Soundness Lemma IV

Generic Semantics

Concrete Instance

I II I

III IV III

I II III IV

Generic Semantics

Abstract Instance

I II I

III IV III

I II III IV

Composed
Soundness Proof

Figure 1.5: Depiction of a compositional soundness proof. In comparison to the monolithic proof
(Figure 1.4), both the concrete and abstract semantics are derived from a generic semantics (left).
The generic semantics consists of a combination of small operations depicted as puzzle pieces.
Each of these operations has a specific type, which is described by an interface. Both the con-
crete and abstract semantics instantiate this interface in two different ways. For soundness, it
suffices to prove smaller soundness lemmas for each operation (↭), each of which can be proven
independently. The proof of the derived concrete and abstract semantics (right) then follows au-
tomatically by composition ().

1.4.2 Modularizing the analysis of effects

The second problem we address is the close coupling of effects in the analysis implementation.
To solve this problem, we refine the design of the previous subsection (Figure 1.6). In comparison
to Figure 1.5, we reorganized the operations into independent analysis components. Each analysis
component captures a specific aspect of the analysis and consists of an interface for operations, a
concrete and abstract instance, and a soundness lemma for each operation. For example, the store
component captures the effect of variable mutation and the exception component captures the
effect of exception handling. Each component consists of an interface, a concrete and abstract
instance of its operations, and a soundness lemma for each operation. The components with
straight lines are language-specific and cannot be easily reused. In contrast, the components
with dashed lines are language-independent and reusable and can be provided as part of a library.
Furthermore, the reusable components can be proven soundness from the library authors a pri-
ori, which reduces the effort of the soundness proof. Because components interact, they need
to be composed with a specific composition operation (⊕). For soundness, it suffices to prove
the soundness lemmas of the language-specific components (↭). The soundness lemmas of the
language-independent components can be reused (). Lastly, soundness of the composed super

7

1. IntRoduction

Generic Semantics

Interface

I II I

III IV III

I II III IV

Value Component

Concrete Abstract
Instance Instance

I II

I I

II II

Store Component

Concrete Abstract
Instance Instance

III

III III

Exception Component

Concrete Abstract
Instance Instance

IV

IV IV

· · ·⊕ ⊕

Figure 1.6: Depiction of a compositional soundness proof that modularizes the effects of the lan-
guage.

component follows mostly without extra proof effort.
A challenge to make the soundness proofs compositional is the interaction between different

effects, as we discussed in Section 1.3. We solve this problem by defining a specific composition
operator for analysis components (⊕). If the interaction is non-trivial, as for variable mutation
and exceptions, the composition requires an additional implementation that describes interaction.
This implementation also needs to be proven sound, which adds extra proof work for these com-
positions. However, we show in our evaluation that most interactions are trivial. In these cases,
the implementation of the composition and the soundness proof can be derived automatically.

This refinement has the following benefits:
• The reorganization reduces the effort of implementing new analyses. In particular, we avoid
reimplement common analysis functionality by reusing existing analysis components.

• The soundness proof is less complicated, because each component only captures a small piece
of functionality and can be proven sound independently.

• The soundness proof takes less effort, because it suffices to prove soundness of language-
specific analysis components. In particular, the language-independent reusable components
can been proven sound a priori. Furthermore, the composition of analysis components is
sound, if each component is sound. We prove this with a theorem once and for all types of
components.

We describe this technique in more detail in Chapter 4.

1.4.3 Modularizing fixpoint algorithms

Lastly, we make the soundness proof of fixpoint algorithms compositional by composing them
from small and reusable combinators. These combinators separate different concerns of the fix-

8

1.4. Compositional Soundness Proofs of Static Analyses

point algorithm and have different responsibilities, such as:
• For example, some combinators detect loops and decide how many loop iterations are ana-
lyzed independently.

• Other combinators detect recursive function calls and decide how deep these function calls
are analyzed.

• Other combinators pause the execution of the analysis to send debugging information to a
graphical analysis debugger.

• Other combinators collect information about the analyzed program, such as its control-flow
graph.

This design allows us to develop newfixpoint algorithmsmore easily by reusing existing language-
independent combinators. Furthermore, the design allows us to fine-tune existing fixpoint algo-
rithms more easily by adding, replacing or reordering combinators.

More specifically, the following function fix calculates the fixpoint of function 𝑓 with com-
binators 𝜑1 . . . 𝜑𝑛 :

fix(𝑓) = 𝜑1 (𝜑2 (. . . 𝜑𝑛 (𝑓 (fix(𝑓))) . . .))

The first combinator 𝜑1 gets control first and may call or ignore the combinator 𝜑2. The second
combinator 𝜑2 then may call combinator 𝜑3 and so on. This pattern continues until the last
combinator 𝜑𝑛 calls the function 𝑓 and the cycle repeats.

This reorganization has the following benefits:
• Fixpoint combinators reduce the effort of implementing new fixpoint algorithms. In particu-
lar, we avoid reimplementing common functionality by reusing existing combinators. Fur-
thermore, we can adapt the fixpoint algorithm to a new language more easily by adding
language-specific fixpoint combinators.

• The soundness proof is less complicated, because each fixpoint combinator captures only a
small piece of functionality and can be proven sound independently.

• The soundness proof takes less effort, because it suffices to prove soundness of the language-
specific fixpoint combinators. In particular, the language-independent reusable combinators
have been proven sound a priori. Furthermore, a fixpoint algorithm composed of combinators
is sound, if each combinator is sound. We prove this with a theorem once and for all modular
fixpoint algorithms.

We describe this technique in more detail in Chapter 5.

1.4.4 Evaluation

The thesis of this dissertation is: Compositional soundness proofs are feasible and reduce the effort
and complexity of developing sound static analyses. We support this statement with our evaluation.
In particular, we show how our approach allows us to separate different analysis concerns by
developing the Sturdy library with sound analysis components and fixpoint combinators. As
of January 2021, the library contains 22 analysis components and 14 fixpoint combinators. The
library is implemented in Haskell and is open-source.1

Furthermore, we demonstrate that the analysis components and fixpoint combinators of the
Sturdy library are reusable by using them to develop several analyses for following languages:
• PCF [Plotkin 1977], a research language with higher-order functions and numbers,
• While, a research language with mutable state and while loops,
• Scheme [Abelson et al. 1998], a real-word language with dynamic typing, higher-order func-
tions and mutable state,

• Stratego [Visser et al. 1998], a real-world domain-specific language for developing program
transformations,

1https://github.com/svenkeidel/sturdy

9

https://github.com/svenkeidel/sturdy

1. IntRoduction

For each of these languages we developed a generic semantics, that we reused to develop types
of static analyses:
• Control-flow analyses for the higher-order languages PCF and Scheme,
• Data-flow analyses for PCF, Scheme, and the While language,
• Static type analyses for the dynamically-typed languages Scheme and Stratego.

These analyses appear as case studies throughout this dissertation (Chapters 3-5). The case studies
have shown that our methodology reduces the development effort of static analyses, because of
the reuse of generic semantics, analysis components, and fixpoint combinators. Furthermore, it
reduces the effort and complexity of soundness proofs, because it constructs the soundness proofs
compositionally.

In Chapter 6 we conducted a larger case study, by using our approach to develop 3 analyses
for the domain-specific language Stratego. Stratego is difficult to analyze due to its unorthodox
and dynamic language features, such as generic traversals. Despite these difficulties, we show
how our approach allows us to systematically develop sound analyses.

1.4.5 Contributions

In summary, this thesis makes the following contributions:
• We present a methodology for structuring static analyses, that simplifies their development
and simplifies their sound proof. The core principle of this methodology are compositional
soundness proofs.

• We show how the similarities of the language semantics and the analysis can be captured
with a generic interpreter (Chapter 3). We prove that the code of the generic interpreter can
be disregarded in a soundness proof.

• We describe how the effects of a language can be captured with reusable analysis components
(Chapter 4). We prove that an analysis is sound, as long as it is composed of sound analysis
components.

• We describe how fixpoint algorithms can be implemented modularly by reusable fixpoint
combinators (Chapter 5). We prove that a fixpoint algorithm is sound, as long as it consists
of sound fixpoint combinators.

• We developed an open-source Haskell library with reusable analysis components and fixpoint
combinators.

• We support our thesis by using our methodology to develop several analyses for different
languages and report on the effort and complexity of the development and soundness proof.

• We conduct a larger case study by using our approach to develop three analyses for the
domain-specific language Stratego (Chapter 6).

1.5 Dissertation Outline

In this section we outline the rest of this dissertation and indicate which chapters are based on
peer-reviewed papers or drafts.
Chapter 2: Background on abstract interpretation and arrows.
Chapter 3: Capturing the Similarities between Concrete and Abstract Interpreters

This chapter is based on the following peer-reviewed article:

Compositional Soundness Proofs of Abstract Interpreters
Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg.
Proc. ACM Program. Lang. 2, ICFP (2018), 72:1–72:26.
https://doi.org/10.1145/3236767

10

https://doi.org/10.1145/3236767

1.5. Dissertation Outline

Chapter 4: Sound and Reusable Components for Abstract Interpretation

This chapter is based on the following peer-reviewed article:

Sound and Reusable Components for Abstract Interpretation.
Sven Keidel and Sebastian Erdweg.
Proc. ACM Program. Lang. 3, OOPSLA (2019), 176:1–176:28.
https://doi.org/10.1145/3360602

Chapter 5: Modular Description and Soundness Proofs of Fixpoint Algorithms for Big-Step Ab-
stract Interpreters

This chapter is based on the following draft:

Modular Description and Soundness Proofs of Fixpoint Algorithms for Big-Step Abstract
Interpreters.
Sven Keidel, Tobias Hombücher, and Sebastian Erdweg.

Chapter 6: A Systematic Approach to Abstract Interpretation of Program Transformations

This chapter is based on the following peer-reviewed article:

A Systematic Approach to Abstract Interpretation of Program Transformations.
Sven Keidel and Sebastian Erdweg.
Lecture Notes in Computer Science, Springer, VMCAI (2020), 136–157.
https://doi.org/10.1007/978-3-030-39322-9_7

Chapter 7: Related Work
Chapter 8: Future and Ongoing Work
Chapter 9: Conclusion

11

https://doi.org/10.1145/3360602
https://doi.org/10.1007/978-3-030-39322-9_7

2BACKGROUND ON BIG-STEP ABSTRACT
INTERPRETATION AND ARROWS

In this chapter, we introduce the necessary background for the style of static analyses that we use.
Furthermore, we introduce background for the arrow abstraction that allows us to modularize the
effects of the language.

2.1 Introduction to Big-Step Abstract Interpreters

We base our static analyses on abstract interpretation [Cousot and Cousot 1979]. Abstract inter-
pretation is a methodology for rigorously proving soundness of static analyses. In this section,
we provide the background on abstract interpretation necessary to understand the rest of the
dissertation.

We illustrate abstract interpretation at the example of an interval analysis for a language
with arithmetic and boolean expressions. Such an analysis is useful for detecting common bugs
such as “divide-by-zero” errors or invalid array accesses, as it analyzes the range of numbers an
expression may evaluate to. We implement the analysis in Haskell, a functional programming
language. The top of Listing 2.1 defines the abstract syntax of our example language.

The function eval on the left of Listing 2.1 defines the concrete semantics of the language.
Function eval is called a big-step interpreter [Pierce 2002], because it evaluates a program expres-
sion in one big step to a numeric or boolean value. To this end, the interpreter eval performs a
case distinction on the top-level syntax construct. In each case, the interpreter first evaluates the
subexpressions and then recombines the resulting values. For example, in case of addition, the
interpreter first evaluates the subexpressions e1 and e2 to numeric values i and j and then uses
the Haskell addition to combine the resulting number.

The function �eval on the right of Listing 2.1 defines an interval analysis for the language.
Function eval is called a big-step abstract interpreter [Darais et al. 2017], because it evaluates
each program expression to an abstract value. In case of the interval analysis, abstract numeric
values are intervals. Themeaning of an interval value is that the program could evaluate to any of
these numbers within the interval. Abstract boolean values can be one of three cases: �Truewhich
represents the concrete boolean True, �False which represents False, and T̂op which represents
True or False.

The abstract interpreter �eval works similar to the concrete interperter eval. It also performs
a case distinction on the top-level syntax construct. In each case it first evaluates the subexpres-
sions and then recombines the resulting values. For example, in case of addition, the abstract
interpreter first evaluates the subexpressions e1 and e2 to the intervals (i1,i2) and (j1,j2) and
then recombines them by adding the outer interval bounds.

To prove this analysis sound, we need to relate the results of the abstract interpreter �eval
to the results of the concrete interpreter eval. The relationship is described mathematically by a
Galois connection [Cousot and Cousot 1977]. Each Galois connection consists of an abstraction
function 𝛼 that relates concrete to abstract values and a concretization function 𝛾 that relates
abstract to concrete values. For example, for the numeric values the abstraction function returns
the smallest interval containing a set of numbers, e.g., 𝛼 ({1, 2, 4}) = [1, 4] . In contrast, the con-
cretization function returns the set of numbers contained in the interval, 𝛾 ([1, 5]) = {1, 2, 3, 4}.
With such a Galois connection and the inclusion ordering on intervals (v), we prove soundness
by proving the following proposition:

∀𝑒 ∈ Expr. 𝛼 ({eval 𝑒}) v�eval 𝑒 or equivalently ∀𝑒 ∈ Expr. {eval 𝑒} ⊆ 𝛾 (�eval 𝑒).
That is, the abstract interpreter is sound, if it overapproximates the results of the concrete inter-
preter, for all programs.1

1The soundness proposition is drastically simplified due to the simplicity of the analyzed language. For amore general
definition see Section 3.2

13

2. BacKgRound on Big-Step AbstRact InteRpRetation and ARRows

-- Language
data Expr = NumLit Int | Add Expr Expr | BoolLit Bool | And Expr Expr

-- Concrete Interpreter -- Abstract Interpreter
data Val = NumVal Int | BoolVal Bool data V̂al = �NumVal Interval | �BoolVal �Bool
eval :: Expr � Val �eval :: Expr � V̂al
eval e = case e of �eval e = case e of

NumLit n � NumVal n NumLit n � �NumVal (n,n)
Add e1 e2 � Add e1 e2 �

let NumVal i = eval e1 let �NumVal (i1,i2) = �eval e1
NumVal j = eval e2 �NumVal (j1,j2) = �eval e2

in NumVal (i + j) in �NumVal (i1 + j1, i2 + j2)
BoolLit True � BoolVal True BoolLit True � �BoolVal �True
BoolLit False � BoolVal False BoolLit False � �BoolVal �False
And e1 e2 � And e1 e2 �

let BoolVal p = eval e1 let �BoolVal p = �eval e1
BoolVal q = eval e2 �BoolVal q = �eval e2

in case (p,q) of in case (p,q) of
(True, True) � BoolVal True (�True, �True) � �BoolVal �True
(_ , _) � BoolVal False (> , �True) � �BoolVal T̂op

(�True, >) � �BoolVal T̂op
(_ , _) � �BoolVal �False

Listing 2.1: Interval analysis for a small language with arithmetic and boolean expressions. We
describe the analysis as a big-step abstract interpreter in Haskell. The interpreter eval on the
left describes the semantics of the language we want to analyze. The interpreter �eval on the
right describes the analysis. We use a “hat” symbol to distinguish abstract from concrete names.

In the following, we demonstrate how these proofs work by proving one case of the And

construct. The proof is by structural induction over the expressions Expr of the language. In case�eval 𝑒1 = �False and �eval 𝑒2 = T̂op, we know by definition that �eval (And 𝑒1 𝑒2) evaluates to�False.2 Furthermore, by the induction hypothesis for 𝑒1, we know that {eval 𝑒1} ⊆ {False} =
𝛾 (�False) = 𝛾 (�eval 𝑒1). Similarly, by the induction hypothesis for 𝑒2, we know that {eval 𝑒2} ⊆
{True, False} = 𝛾 (T̂op) = 𝛾 (�eval 𝑒2). In case eval 𝑒2 = False, then 𝑒 evaluates to False.
Furthermore, in case eval 𝑒2 = True, then 𝑒 also evaluates to False. Thus we conclude

{eval (And 𝑒1 𝑒2)} ⊆ {False} ⊆ 𝛾 (�False) = 𝛾 (�eval (And 𝑒1 𝑒2)) .
Already for this tiny example the soundness proof was quite involved: We needed to reason

about two concrete executions (eval 𝑒2 = True and eval 𝑒2 = False) and relate them to the
result of an abstract executions. Proving all other cases of the And construct requires a consider-
able amount of effort. The example above demonstrates that soundness proofs of small analyses
already may require a lot of effort.

Not only are soundness proofs a lot of effort, they are also quite intricate. In particular, it
is easy to overlook mistakes in a soundness proof, which invalidates the entire proof. For ex-
ample, consider the analysis of addition in Listing 2.1. Even though the analysis of addition
looks sound on first sight, it is in fact unsound. For instance, consider the program max_int + 𝑒 ,
where max_int is the largest possible 64-bit integer and the expression 𝑒 evaluates either to 0
or 1. The concrete interpreter evaluates max_int + 0 to max_int, but overflows for 𝑒 = 1:
max_int + 1 = min_int. The abstract interpreter on the other hand evaluates the program to
[max_int + 0, max_int + 1] = [max_int, min_int]. Since the right interval bound is greater than
the left, the concretization function maps 𝛾 ([max_int, min_int]) to ∅. However, the empty set
does not overapproximate the concrete results {min_int, max_int} and hence the abstract inter-
preter is unsound. This example shows how subtle soundness bugs can be and how easily edge
cases can be overlooked.

2For the sake of readability, we omit writing BoolVal.

14

2.2. Arrows, an Abstraction for Effectful Computations

run :: InterpreterArrow Stmt () eval :: InterpreterArrow Expr Val
run = proc stmt � case stmt of eval = ...

Sequence s1 s2 � do
run � s1 data Expr = ...
run � s2 data Stmt = Sequence Stmt Stmt

Assignment x e � do | Assignment Variable Expr
v ← eval � e | Throw Expr
write � (x,v) | ...

Throw e � do
v ← eval � e
throw � v

...

Listing 2.2: Interpreter for a statement-based languages that uses an arrow to abstract over the
effects of the language.

To summarize, abstract interpretation is a methodology to define static analyses and rigor-
ously prove them sound. However, with the conventional approach to abstract interpretation,
soundness proofs are a lot of effort and cases of unsoundness can be easily overlooked.

2.2 Arrows, an Abstraction for Effectful Computations

In this dissertation, we use Arrows [Hughes 2000] to implement static analyses. In this section,
we explain what arrows are and what properties they have that make them useful for our work.

2.2.1 Encoding the effects of programming languages with Arrows

Arrows are an abstraction over effectful computations. In this work, we are interested we use
arrows to model the effects of programming languages and analyses with arrows. For example,
consider a language with mutable variables, exceptions, and a stack of local variables. We could
model these effects with the following arrow:
type InterpreterArrow x y = (Stack, Memory, x) � (Memory, Either Exception y)

The arrow InterpreterArrow is a function that takes a stack, a memory, and an additional argu-
ment of type x and returns a changed memory and either an exception or a value of type y. This
arrow has the benefit, that we do not need to pass around the stack and memory in the interpreter
implementation. Furthermore, the arrow hides the handling of exceptions from the interpreter
code.

To develop an interpreter for this language (Listing 2.2), we use the pretty notation for ar-
rows [Paterson 2001]. The proc keyword introduces a new arrow computation. The syntax
y ← f � x passes the input x to the computation f and binds the result to y. The syntax f � x

passes the input x to the computation f, but ignores the result. A sequence of arrow statements
y ← f � x; v ← g � u first executes the computation f and then executes the computation g.

The arrow pretty notation desugars to the operators of the arrow type classes Category, Arrow
and ArrowChoice (Listing 2.3).3 The arrow type classes use a type variable c for the type of the
arrow computation. This type variable c takes to type arguments, the input and output types of
the computation. Furthermore, the arrow type classes contain the following operations:
• An identity operation id, that simply returns its argument to the output of the computation.
• A composition operation f ◦ g, that passes the output of the second computation g to the
input of the first computation f.

• An operation arr f, that embeds a pure function f in an effectful arrow computation.

3The original definition of the arrow type classes is available at https://hackage.haskell.org/package/base/
docs/Control-Arrow.html

15

https://hackage.haskell.org/package/base/docs/Control-Arrow.html
https://hackage.haskell.org/package/base/docs/Control-Arrow.html

2. BacKgRound on Big-Step AbstRact InteRpRetation and ARRows

class Category c where instance Category InterpreterArrow where
id :: c x x id = 𝜆(stack,mem,x) � (mem,Right x)
(◦) :: c y z � c x y � c x z f ◦ g = 𝜆(stack,mem,x) �

case g (stack,mem,x) of
returnA = id (mem',Right y) � f (stack,mem',Right y)
f ≫ g = g ◦ f (mem',Left exc) � (mem',Left exc)

class Category c ⇒ Arrow c where instance Arrow InterpeterArrow where
arr :: (x � y) � c x y arr f = 𝜆(stack,mem,x)� (mem,Right(f x))
(∗∗∗) :: c x y � c u v � c (x,u) (y,v) f ∗∗∗ g = 𝜆(stack,mem,(x,y)) �
(&&&) :: c x y � c x z � c x (y,z) case f (stack,mem,x) of

(mem',Right x') �
class ArrowChoice c where case g (stack,mem',y) of

(+++) :: c x y � (mem'',Right y')� (mem'',Right(x',y'))
c u v � (mem'',Left exc)� (mem'',Left exc)
c (Either x u) (Either y v) (mem',Left exc) � (mem',Left exc)

(| | |) :: c x z �
c y z � instance ArrowChoice InterpeterArrow where
c (Either x y) z f | | | g = 𝜆(stack,mem,e) �

case e of
data Either a b = Left a | Right b Left x � f (stack,mem,Right x)

Right y � g (stack,mem,Right y)

Listing 2.3: Arrow typeclasses (left) and excerpt of arrow instances for interpreter arrow (right).

class ArrowMemory var val c where instance ArrowMemory var val InterpreterArrow where
read :: c var val read = 𝜆(_,mem,var)� (mem,Right (lookup var mem))
write :: c (var,val) () write = 𝜆(_,mem,(var,val)) �

(insert var val mem, Right ())

class ArrowExcept err c where instance ArrowExcept Exception InterpreterArrow
throw :: c err () throw = 𝜆(stack,mem,exc) � (mem, Left exc)
catch :: c x y � catch f g = 𝜆(stack,mem,x) �

c (err,x) y � case f (stack,mem,x) of
c x y (mem',Right y) � (mem',Right y)

(mem',Left exc) � g (stack,mem',(exc,y))

Listing 2.4: User-defined arrow operations that interact with the effects of the arrow
computation.

• Two operations f ∗∗∗ g and f &&& g, that execute both computations f and g and collect their
results into a tuple.

• Two operations f +++ g and f | | | g, that execute either the computation f or g if the input is
Left or Right.

The arrow instance for our InterpreterArrow in Listing 2.3 is straight-forward. The instance
passes the stack unchanged to the computations f and g, it threads the memory through the
computations, and it pattern matches on the Either type in the output of f and g.

The arrow operations write and throw, are user-defined and allow interacting with effects
of the arrow computation explicitly. The write operation updates the memory and the throw

operation causes an exception. They are defined in custom type classes shown in Listing 2.4.
To summarize, arrows are an abstraction over effectful computations. They hide details about

the effects of the computation, which makes the code easier to understand and reason about. Ar-
row computations are commonly described with a pretty notation that desugars to the operations
of the arrow type classes.

16

2.2. Arrows, an Abstraction for Effectful Computations

type StateT s c x y = c (s,x) (s,y)

instance Arrow c ⇒ Category (StateT s c) where
id = proc (s,x) � returnA � (s,x)
f ◦ g = proc (s,x) � do

(s',y) ← g � (s,x)
f � (s',y)

instance Arrow c ⇒ Arrow (StateT s c) where
arr f = arr (𝜆(s,x) � (s,f x))
f ∗∗∗ g = proc (s,(x,y)) � do

(s',x') ← f � (s,x)
(s'',y') ← g � (s',y)
returnA � (s'', (x',y'))

instance ArrowChoice c ⇒ ArrowChoice (StateT s c) where
f | | | g = proc (s,e) � do

case e of
Left x � f (s,x)
Right y � g (s,y)

Listing 2.5: Arrow Transformer that adds state to an existing arrow computation.

2.2.2 Modular Effects with Arrow Transformers

In the previous section, we discussed how we can model the effects of an example language with
an arrow InterpeterArrow. However, the arrow InterpreterArrow mixes the implementation of
three different types of effects. Thismakes it difficult to reuse any of the code for another language.
A solution to this problem is to construct arrows from reusable arrow transformers, which we
discuss in this section.

An arrow transformer is a type that adds an effect to an existing arrow computation. For
example, the state arrow transformer [Hughes 2000] in Listing 2.5 adds a piece of mutable state
s to the input and output of an arrow computation c.4 The important bit that makes this arrow
transformer reusable is that it is parametric in the underlying arrow c. This allows us to apply this
arrow transformer to any existing arrow that implements the arrow type classes. To this end, the
StateT implements an arrow instance of the form Arrow c ⇒ Arrow (StateT s c). This means,
the type StateT s c implements an arrow instance given an arrow instance for the underlying
arrow c. These instances are called liftings, because they lift the operations of the underlying
arrow c through the arrow transformer.

With the StateT arrow transformer and two further transformers, we can recreate the inter-
preter arrow of Section 2.2.1:
type StateT s c x y = c (s,x) (s,y)
type ReaderT r c x y = c (r,x) y
type ExceptT err c x y = c x (Either err y)
type InterpreterArrow' x y = ExceptT Exception (ReaderT Stack (StateT Memory (�))) x y

We can verify that this is the case, by unfolding the type definitions of the arrow transformers
from the outside in:
InterpreterArrow' x y

= ExceptT Exception (ReaderT Stack (StateT Memory (�))) x y
= ReaderT Stack (StateT Memory (�)) x (Either Exception y)
= StateT Memory (�) (Stack,x) (Either Exception y)
= (�) (Memory,(Stack,x)) (Memory,(Either Exception y))
= (Memory,(Stack,x)) � (Memory,(Either Exception y))
� (Stack,Memory,x) � (Memory,Either Exception y)
= InterpreterArrow x y

4We use the suffix “T” to distinguish arrow transformer from regular arrows.

17

2. BacKgRound on Big-Step AbstRact InteRpRetation and ARRows

In comparison to the original interpreter arrow of Section 2.2.1, the new type InterpreterArrow'
is more extensible. In particular, we can add new effects of the interpreter arrow simply by adding
new arrow transformer. Furthermore, we can change the semantics of arrow by reordering the
arrow transformers. For example, moving the ExceptT transformer to the bottom of the arrow
transformer stack implements a language semantics, in which exceptions reset the memory:
ReaderT Stack (StateT Memory (ExceptT Exception (�))) x y

= (Memory,(Stack,x)) � Either Exception (Memory,y)

This arrow type resets the memory whenever an exception occurs, because the Either type, in
the result of the function, wraps the memory.

To summarize, an arrow transformer captures a specific effect of an arrow computation. They
can be used to compose complex effectful computations. This has the benefit, that we can easily
change existing arrow computations by adding or rearranging existing arrow transformers.

2.2.3 Algebraic Properties of Arrows

We chose arrows as an abstraction for effects in our work, because of their algebraic properties.
More specifically, arrows form an algebra. For example, the interpreter run in Listing 2.2 uses an
arrow algebra, that can be described with the following BNF grammar:
E ::= id | E ◦ E | arr F | E &&& E | E | | | E | read | write | throw | catch E E

In particular, the algebra consists of the general-purpose arrow operations of the Category, Arrow
and ArrowChoice type classes and the language-specific operations for accessing the memory and
handling exceptions.

The main benefit of such an arrow algebra is that it gives us a useful reasoning principle:
structural induction. For the arrow algebra above, this induction principle is defined as follows:

𝑃 (id) 𝑃 (arr 𝑓)
𝑃 (𝑓) ∧ 𝑃 (𝑔) =⇒ 𝑃 (𝑓 ◦ 𝑔)
𝑃 (𝑓) ∧ 𝑃 (𝑓) =⇒ 𝑃 (𝑓 ∗∗∗𝑔)
𝑃 (𝑓) ∧ 𝑃 (𝑔) =⇒ 𝑃 (𝑓 | | | 𝑔)

𝑃 (read) 𝑃 (write) 𝑃 (throw)
𝑃 (𝑓) ∧ 𝑃 (𝑔) =⇒ 𝑃 (catch 𝑓 𝑔)

∀𝑓 : E. 𝑃 (𝑓)

The induction principle lets us prove a property 𝑃 about all arrow computations. More specifically,
the premises above the bar are obligations we have to prove. The conclusion of the induction
principle below the bar then guarantees that any arrow computation 𝑓 : 𝐸 satisfies the property
𝑃 . We use this induction principle in Chapter 3 to compose a soundness proof for an arrow-based
abstract interpreter.

Another benefit of the algebra of arrows is that they allow abstract reasoning about effect-
ful computation. In particular, arrows satisfy a number of algebraic laws [Hughes 2000] shown
in Figure 2.1 These laws allow us to prove properties about arrow computations without need-
ing to know the arrow type. These proofs are easier because they hide details of the effectful
computations. Furthermore, they are more reusable, because they hold for all underlying arrows.

To summarize, arrows have algebraic properties that aid us to reason about arrow computa-
tions. The most important algebraic property for our work is the induction principle, which lets
us reason about all arrow computations. The other algebraic property are the laws that arrows
satisfy. These laws let us prove properties for arrow computations of an arbitrary type.

18

2.2. Arrows, an Abstraction for Effectful Computations

arr id = id

arr (𝑓 ≫ 𝑔) = arr 𝑓 ≫ arr 𝑔

first (arr 𝑓) = arr (first 𝑓)
first (𝑓 ≫ 𝑔) = first 𝑓 ≫ first 𝑔

first 𝑓 ≫ arr fst = arr fst ≫ 𝑓

first 𝑓 ≫ arr (id ∗∗∗𝑔) = arr (id ∗∗∗𝑔)≫ first 𝑓

first (first 𝑓)≫ arr assoc× = arr assoc×≫ first 𝑓

left (arr 𝑓) = arr (left 𝑓)
left(𝑓 ≫ 𝑔) = left 𝑓 ≫ left 𝑔

𝑓 ≫ arr Left = arr Left≫ left 𝑓

left 𝑓 ≫ arr (id+++𝑔) = arr (id+++𝑔)≫ left 𝑓

left (left 𝑓)≫ arr assoc+ = arr assoc+≫ left 𝑓

where

assoc× (𝑎, (𝑏, 𝑐)) = ((𝑎, 𝑏), 𝑐) assoc+ 𝑒 =


Left 𝑥 𝑒 = Left (Left 𝑥)
Right (Left 𝑦) 𝑒 = Left (Right 𝑦)
Right (Right 𝑧) 𝑒 = Right 𝑧

Figure 2.1: Algebraic laws that arrows satisfy.

19

3CAPTURING THE SIMILARITIES BETWEEN
CONCRETE AND ABSTRACT INTERPRETERS

This chapter is based on the following peer-reviewed paper:
Compositional Soundness Proofs of Abstract Interpreters
Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg.
Proc. ACM Program. Lang. 2, ICFP (2018), 72:1–72:26.
https://doi.org/10.1145/3236767

Abstract — Abstract interpretation is a technique for developing static analyses. Yet, proving
abstract interpreters sound is challenging for interesting analyses, because of the high proof com-
plexity and proof effort. To reduce complexity and effort, we propose a framework for abstract
interpreters that makes their soundness proof compositional. Key to our approach is to capture
the similarities between concrete and abstract interpreters in a single shared interpreter, parame-
terized over an arrow-based interface. In our framework, a soundness proof is reduced to proving
reusable soundness lemmas over the concrete and abstract instances of this interface; the sound-
ness of the overall interpreters follows from a generic theorem.

To further reduce proof effort, we explore the relationship between soundness and parametric-
ity. Parametricity not only provides us with useful guidelines for how to design non-leaky inter-
faces for shared interpreters, but also provides us soundness of shared pure functions as free the-
orems. We implemented our framework in Haskell and developed a 𝑘-CFA analysis for PCF and
a tree-shape analysis for Stratego. We were able to prove both analyses sound compositionally
with manageable complexity and effort, compared to a conventional soundness proof.

3.1 Introduction

Abstract interpretation [Cousot and Cousot 2002] is an approach to static analysis with sound-
ness at its heart: An abstract interpreter must approximate the behavior of a program as pre-
scribed by a concrete interpreter. This soundness proposition can guide the design of abstract
interpreters [Cousot 1999] and prescribes what needs to be proven about the analysis. Unfortu-
nately, it is far less clear how to prove an abstract interpreter sound and, in particular, how to
decompose the soundness proof into proof obligations of manageable size. Yet, compositional
soundness proofs are crucial when developing verified abstract interpreters for real-world lan-
guages to reduce proof complexity and proof effort.

AbstractConcrete

What makes the decomposition of the soundness proof diffi-
cult is that concrete and abstract interpreters are oftenmisaligned,
such that a case of one interpreter relates to multiple cases of the
other interpreter (see figure). For example, a language construct
IfZero that checks if a given number is zero has two outcomes in
the concrete interpreter (is zero, is not zero) but three outcomes
in an interval analysis (is zero, contains zero, does not contain zero). Such misalignment between
concrete and abstract interpreter prevents a piece-wise decomposition of the soundness proof.
Conversely, when concrete and abstract interpreter functions share the same structure we could
decompose the proof along that structure.

We present a novel framework for defining abstract interpreters such that their soundness
proofs become compositional. Our key contributions are that (i) we can abstract from the differ-
ence between concrete and abstract interpreters such that (ii) the soundness proof for the shared
parts is fully compositional and (iii) follows automatically from the soundness of the non-shared
parts. Indeed, most concrete and abstract interpreter are very similar and only differ in a few
places where the interpreters operate on the concrete or abstract domain (e.g., addition of num-
bers vs intervals). We propose to make these similarities explicit in a generic interpreter function,
abstracting from the interpretations of primitive operations on the respective domain. We realize

21

https://doi.org/10.1145/3236767

3. CaptuRing the SimilaRities between ConcRete and AbstRact InteRpReteRs

this abstraction using Haskell’s arrows [Hughes 2000], a generalization of monads. Instantiat-
ing the generic interpreter with arrow instances for the concrete and abstract domain fixes the
respective language semantics. For an abstract interpreter factorized in this way, we obtain the
following benefits when proving soundness:
1. We can decompose the soundness proof into soundness lemmas about the operations of the

concrete and abstract arrow instances. Each soundness lemma is context free, i.e., indepen-
dent from where the operation is used in the generic interpreter. This narrows the scope of
the lemmas and makes them reusable.

2. Arrows restrict the meta-language of generic interpreters, which solely consists of arrow ex-
pressions. Because arrows are a first-order language, we can use structural induction over
arrow expressions to obtain a generic soundness proof for any generic interpreter composed
of sound arrow operations.

For example, consider the following abstract syntax tree of a shared arrow expression. On the
right, we list the soundness lemmas required to prove concrete and abstract instances of the
shared expression sound. We write 𝑒 ¤v 𝑒̂ to mean that 𝑒 is soundly approximated by 𝑒̂:

≫

ifZero

∗∗∗

insert 4 arr succ

∗∗∗

insert 7 arr pred

second

arr abs

𝑓 ¤v 𝑓 ∧ 𝑔 ¤v𝑔 =⇒ (𝑓 ∗∗∗𝑔) ¤v (𝑓 ∗̂∗∗𝑔)

𝑓 ¤v 𝑓 ∧ 𝑔 ¤v𝑔 =⇒ (𝑓 ≫ 𝑔) ¤v (𝑓 ≫̂𝑔)

𝑓 ¤v 𝑓 =⇒ second 𝑓 ¤v�second 𝑓

𝑓 ¤v 𝑓 ∧ 𝑔 ¤v𝑔 =⇒ ifZero 𝑓 𝑔 ¤v�ifZero 𝑓 𝑔

insert 𝑛 ¤v�insert 𝑛 arr succ ¤v ârr succ
arr pred ¤v ârr pred arr abs ¤v ârr abs

Functions ≫, ∗∗∗, and second are language-independent arrow operations, function arr is a
language-independent operation that embeds pure functions into arrow computation, and ifZero

and insert are language-specific operations. The concrete and abstract arrow instances define
implementations for all arrow operations; we denote abstract implementations with a hat ∗̂∗∗ to
distinguish them from concrete definitions ∗∗∗. With that, we formulate a context-free soundness
lemma for each arrow operation. For example, the lemma of ∗∗∗ is context-free in that it proves
soundness of the operation for all sound subexpressions 𝑓 , 𝑓 and 𝑔,𝑔. This allows us to reuse the
same lemma for every occurrence of ∗∗∗ in the shared expression. Soundness of the shared expres-
sion now follows by structural induction on arrow expressions: Given all leaves are sound and all
intermediate nodes preserve soundness, the composed expression is sound. This way, we have
effectively decomposed the soundness proof into smaller lemmas that can be proved indepen-
dently and that can be composed to reason about full abstract interpreters. We assert this result
as a generic meta-theorem, stating that any arrow expression is sound if the arrow operations it
uses are sound.

We also show that in meta-languages with parametricity [Reynolds 1983], the soundness of
shared code follows as a free theorem [Wadler 1989], given the interface does not leak details of
the abstract interpreter into shared code. Based on this observation, we extract guidelines for
the interface design to be used in the generic interpreter. In particular, following our guidelines,
we get soundness of pure functions embedded with arr for free, which reduces the number of
lemmas required for our example from 8 to 5. Lastly, parametricity allows us to generalize our
framework to abstract interpreters that share code over interfaces other than arrows.

To evaluate our approach, we implemented a 𝑘-CFA analysis for PCF and developed a tree-
shape analysis for Stratego [Visser et al. 1998], a dynamic language for program transformations
used in practice and featuring dynamic scoping of pattern-bound variables, higher-order func-
tions, and generic tree traversals. For both analyses, we extract a generic interpreter and prove
it sound compositionally, thus demonstrating the applicability of our approach. We show that,
for the 𝑘-CFA analysis, the soundness proof can be decomposed into 16 independently provable
lemmas and for the tree-shape analysis into 27 lemmas. We reflect on our soundness proofs and
explain why it has a reduced complexity and effort compared to conventional soundness proofs.

In summary, we make the following contributions:

22

3.2. Why and How to Make Soundness Proofs Compositional

• We describe a new approach for organizing abstract interpreters by sharing code with the
concrete interpreter over an interface based on arrows.

• We show that the soundness proof of such abstract interpreters can be conducted composi-
tionally, based on soundness lemmas of the arrow operations.

• We prove a generic meta-theorem showing that any generic interpreter is sound if it is com-
posed of sound arrow operations. Thus, the soundness proofs of our abstract interpreters are
not only compositional, but proofs about the shared parts actually follow for free.

• We apply parametricity to develop guidelines for the interface design, to obtain soundness
of embedded pure functions for free, and to generalize our approach to interfaces other than
arrows.

• We demonstrate the applicability of our approach through two case studies and show that our
approach reduces the effort and complexity of soundness proofs.

3.2 Why and How to Make Soundness Proofs Compositional

In this section, we first discuss the complexity and effort of soundness proofs of conventional
abstract interpreters. Then, we describe informally how we can make soundness proofs compo-
sitional and how this reduces proof complexity and effort.

3.2.1 Conventional Abstract Interpreters

To illustrate the difficulties of soundness proofs of conventional abstract interpreters, we con-
struct an abstract interpreter for a small example language in Haskell. Expressions in our example
language are either variables, integer literals, additions, or conditionals:
data Expr = Var String | Lit Int | Add Expr Expr

| IfZero Expr Expr Expr

We would like to implement an abstract interpreter for this language that predicts the numbers
a program evaluates to as an interval. For example, consider the following program:
IfZero (Var "x") (Lit 2) (Lit 5)

This program evaluates to 2 if x is bound to 0 and to 5 otherwise. In order to be sound, the abstract
interpreter must approximate all possible results of this program. That is, if the interval for xmay
contain 0, the most precise approximation of this program in the domain of intervals is [2, 5].

We define a conventional concrete interpreter eval and a conventional abstract interpreter�eval for this language in Listing 3.1. The definition of the concrete interpreter is standard, hence,
we only explain how the abstract interpreter differs. In case of an addition, the abstract inter-
preter adds the interval bounds. In case of IfZero, as described in the introduction, the abstract
interpreter distinguishes three cases for the interval resulting from evaluating e1: the interval
contains zero only, does not contain zero, or contains zero and other values. If the interval con-
tains zero only, we evaluate e2; if the interval does not contain zero, we evaluate e3. But if the
interval contains zero and other values, we evaluate both e2 and e3 and join their results using
the least upper bound operation t.

The abstract interpreter appears to correctly approximate the concrete interpreter’s behavior.
But what exactly do we have to prove to verify the soundness of �eval? We prove the following
soundness proposition for the collecting semantics [Cousot 1999] of eval:

∀ 𝑒 ∈ Expr.∀ 𝑋 ⊆ Env. 𝛼𝑉 ({eval 𝑒 𝜌 | 𝜌 ∈ 𝑋 }) v�eval 𝑒 𝛼𝐸 (𝑋)
Here, 𝛼𝑉 and 𝛼𝐸 are abstraction functions of Galois connections [Cousot and Cousot 1979] for
values and environments of the interpreters:

𝛼𝑉 : P(Val) ⇆ V̂al : 𝛾𝑉 𝛼𝐸 : P(Env) ⇆ Ênv : 𝛾𝐸

𝛼𝑉 (𝑋) = (min𝑋,max𝑋) 𝛼𝐸 (𝑋) =
⊔
𝜌∈𝑋
[𝑥 ↦→ 𝛼𝑉 (𝜌 (𝑥)) | 𝑥 ∈ dom(𝜌)]

23

3. CaptuRing the SimilaRities between ConcRete and AbstRact InteRpReteRs

type Val = Int type V̂al = (Int,Int)
type Env = Map String Val type Ênv = Map String V̂al

eval :: Expr � Env � Maybe Val �eval :: Expr � Ênv � �Maybe V̂al
eval e env = case e of �eval e env = case e of

Var x � lookup x env Var x � �lookup x env
Lit n � return n Lit n � return (n,n)
Add e1 e2 � do Add e1 e2 � do

v1 ← eval e1 env (i1,j1) ← �eval e1 env
v2 ← eval e2 env (i2,j2) ← �eval e2 env
return (v1 + v2) return (i1+i2, j1+j2)

IfZero e1 e2 e3 � do IfZero e1 e2 e3 � do
v ← eval e1 env (i1,j1) ← �eval e1 env
if v == 0 if i1 == 0 && j1 == 0
then eval e2 env then �eval e2 env
else eval e3 env else if j1 < 0 || 0 < i1

then �eval e3 env
else �eval e2 env t �eval e3 env

Listing 3.1: Conventional design of a concrete (left) and abstract interpreter (right) for our
example language.

The soundness proposition quantifies over sets of environments 𝑋 , which represent properties of
the program’s free variables. For example, 𝑋 = {𝜌 | 𝜌 ∈ Env∧∀ (𝑥 ↦→ 𝑣) ∈ 𝜌. even(𝑣)} describes
environments that map variables to even numbers. The soundness proposition states that, for any
𝑒 , all concrete evaluations of 𝑒 under environments 𝜌 satisfying 𝑋 must be predicted by a single
abstract evaluation of 𝑒 under the single abstract environment 𝛼𝐸 (𝑋) representing property 𝑋 .

To prove this soundness proposition for our example, we proceed by structural induction
over the expressions of our language. The soundness proof for Var, Lit and Add is easy, be-
cause the interpreters align and we only need to reason about the Galois connection 𝛼𝑉 . The
case IfZero 𝑒1 𝑒2 𝑒3 is slightly more involved: We perform a case distinction on the result of�eval 𝑒1 𝛼𝐸 (𝑋), because the result prescribes which branch of IfZero will be analyzed.
• In case �eval 𝑒1 𝛼𝐸 (𝑋) = Just (0, 0), the first branch 𝑒2 will be analyzed. From the induction
hypothesis for 𝑒1, we learn that 𝛼𝑉 { eval 𝑒1 𝜌 | 𝜌 ∈ 𝑋 } ⊆ �eval 𝑒1 𝛼𝐸 (𝑋) = Just (0, 0).
Since 𝛾𝑉 (Just (0, 0)) = {0}, the concrete interpretation eval 𝑒1 must also result in 0 and the
concrete interpreter evaluates the the first branch 𝑒2. This lets us conclude:

𝛼 ({ eval (IfZero 𝑒1 𝑒2 𝑒3) 𝜌 | 𝜌 ∈ 𝑋 }) v 𝛼 ({ eval 𝑒2 𝜌 | 𝜌 ∈ 𝑋 })
v�eval 𝑒2 𝛼𝐸 (𝑋) v�eval (IfZero 𝑒1 𝑒2 𝑒3) 𝛼𝐸 (𝑋).

• The case for intervals without 0 is analogous to the previous case.
• The last case is more involved because �eval 𝑒1 𝛼𝐸 (𝑋) contains zero and other numbers. In
this case, we have to reason about multiple outcomes of behavior of the concrete interpreter.
Independent of the result of 𝑒1, the concrete interpreter will either evaluate the first or second
branch of IfZero and hence:

{eval (IfZero 𝑒1 𝑒2 𝑒3) 𝜌 | 𝜌 ∈ 𝑋 }) ⊆ {eval 𝑒2 𝜌 | 𝜌 ∈ 𝑋 } ∪ {eval 𝑒3 𝜌 | 𝜌 ∈ 𝑋 }

This lets us conclude:

𝛼𝑉 ({eval (IfZero 𝑒1 𝑒2 𝑒3) 𝜌 | 𝜌 ∈ 𝑋 })
v 𝛼𝑉 ({eval 𝑒2 𝜌 | 𝜌 ∈ 𝑋 } ∪ {eval 𝑒3 𝜌 | 𝜌 ∈ 𝑋 })
v 𝛼𝑉 ({eval 𝑒2 𝜌 | 𝜌 ∈ 𝑋 }) t 𝛼𝑉 ({eval 𝑒3 𝜌 | 𝜌 ∈ 𝑋 })
v�eval 𝑒2 𝛼𝐸 (𝑋) t�eval 𝑒3 𝛼𝐸 (𝑋) = �eval (IfZero 𝑒1 𝑒2 𝑒3) 𝛼𝐸 (𝑋).

With this, we have proved soundness for a very simple static analysis of a very simple program-
ming language. And already the proof was not trivial: For every case in the abstract interpreter,

24

3.2. Why and How to Make Soundness Proofs Compositional

eval :: Expr � Env � Maybe Val
eval e env = case e of
TryZero e1 e2 e3 �
case eval e1 env of
Just v
| v == 0 �

eval e2 env
| otherwise �

eval e3 env
Nothing �

eval e3 env

�eval :: Expr � Ênv � �Maybe V̂al�eval e env = case e of
TryZero e1 e2 e3 � case �eval e1 env of

Just (i,j)
| (i,j) == (0,0) � �eval e2 env
| j < 0 || 0 < i � �eval e3 env
| otherwise � �eval e2 env t �eval e3 env

Nothing � �eval e3 env
JustNothing (i1,j1)

| (i,j) == (0,0) � �eval e2 env t �eval e3 env
| j < 0 || 0 < i � �eval e3 env
| otherwise � �eval e2 env t �eval e3 env

Figure 3.1: Concrete interpreter (left) and abstract interpreter (right) for TryZero and how their
cases relate to the.

we had to establish which cases of the concrete interpreter are relevant and then establish that
the abstract interpreter subsumes them all. The complexity and effort of such proofs quickly
grows as language features become more complex. For example, consider another language con-
struct TryZero e1 e2 e3 in Figure 3.1 whose concrete semantics is like IfZero e1 e2 e3 except
the evaluation defaults to e3 if the evaluation of e1 fails: When defining an abstract interpreter
for TryZero, we need to be careful about how we handle failed executions. In particular, we often
do not knowwhether a computation definitely succeeds or fails. To be precise, we use type �Maybe
to represent potential failure (JustNothing) alongside definite success (Just) and definite failure
(Nothing). Based on this type, we can implement TryZero in the abstract interpreter as shown in
Figure 3.1.

In the soundness proof for TryZero, we have to relate 7 cases of the abstract interpreter to
3 cases of the concrete interpreter as indicated by the diagram on the right. Compared to IfZero,
the soundness proof for TryZero is worse in two ways:
• We have to relate a single case of the abstract interpreter to up to 3 cases of the concrete
interpreter at once. The more cases we need to relate, the higher the proof complexity.

• We have to prove 7 cases of the abstract interpreter sound. The more cases we need to prove,
the higher the proof effort.

These problems are already apparent in the soundness proof for our example language. For precise
abstract interpreters of real-world languages, proof complexity and proof effort quickly make a
soundness proof infeasible. However, it is exactly for analyses of such languages that we need
soundness proofs to ensure all corner cases are covered. Therefore, the question this paper aims
to answer is: How can we make soundness proofs of abstract interpreters simpler and more
systematic, such that soundness proofs of abstract interpreters for real-world languages become
feasible?

3.2.2 Concrete and Abstract Interpreters using Arrows

This paper presents techniques thatmake soundness proofs of abstract interpreters compositional,
thereby reducing proof complexity and proof effort. A key idea is to factorize the implementa-
tion of a concrete and abstract interpreter into a shared implementation based on Haskell ar-
rows [Hughes 2000]. This factoring aligns the cases of the interpreters and exposes the structure
along which a proof can be decomposed, namely the arrow operations used to define the generic
interpreter. Because arrows are a first-order language and their code is not interleaved with com-
putations of the meta-language, they induce an induction principle in the meta-language. By
proving that every arrow operation preserves soundness of its arguments, the soundness of the
entire generic interpreter directly follows from this induction principle. With this technique, we
can decompose monolithic soundness proofs into smaller, reusable, and context free soundness
lemmas about the arrow operations of the generic interpreter.

25

3. CaptuRing the SimilaRities between ConcRete and AbstRact InteRpReteRs

data Expr = Var String eval' :: IsVal v c ⇒ c Expr v � c Expr v
| Lit Int eval' ev = proc e � case e of
| Add Expr Expr Var x � lookup � x
| IfZero Expr Expr Expr Lit n � lit � n
| TryZero Expr Expr Expr Add e1 e2 � do

v1 ← ev � e1; v2 ← ev � e2
class ArrowFix x y c where add � (v1,v2)

fix :: (c x y � c x y) � c x y IfZero e1 e2 e3 � do
v ← ev � e1

class ArrowChoice c ⇒ IsVal v c where ifZero ev ev � (v,(e2,e3))
lookup :: c String v TryZero e1 e2 e3 �
lit :: c Int v try (proc (e1,x) � do
add :: c (v, v) v v ← ev � e1
ifZero :: c x v � c y v � c (v,(x,y)) v returnA � (v,x))
try :: c x y � c y v � c x v � c x v (ifZero ev ev)

(proc (_,(_,e3)) � ev � e3)� (e1,(e2,e3))

Listing 3.2: generic interpreter based on arrows.

Note, that our technique requires to implement a concrete interpreter in the same meta-
language as the abstract interpreter. This causes extra work if a reference semantics already
exists and is implemented in a different meta-language. However, it simplifies the soundness
proof as we do not have to conduct proofs across different meta-languages. In this subsection,
we provide a brief introduction to arrows, and demonstrate how to use arrows to define a generic
interpreter that corresponds to the concrete and abstract interpreters in the previous subsection.
In the next subsection, we show how this generic interpreter enables a compositional soundness
proof.

Arrows, like monads, support effectful computations that, for example, manipulate state, trig-
ger exceptional control flow, or rely on non-determinism. Arrows generalize monads by inter-
nalizing the input type for a computation. For example, an arrow computation of type (c x y)

expects a value of type x as input and yields a value of type y; c is the higher-order type construc-
tor defining the arrow. In contrast, monadic computations have type m y and rely on meta-level
bindings to implicitly provide inputs x through the lexical context in which the computation was
defined. The pretty notation [Paterson 2001] for arrows reads similarly to do-notation for mon-
ads. The keyword proc x starts a new arrow computation with input x. The notation y ←f� x

represents an arrow computation f, which receives its input from the variable x and binds the
result to the variable y. This notation desugars to operations of the Arrow, ArrowChoice, and
user-defined type classeswith language-specific operations. This desugaring translates sequential
statements y ←f� x; g� y into the sequential composition operator f ≫ g. For arrow expres-
sions where variables span multiple statements as in y1 ←f� x1; y2 ←g� x2; h� (y1,y2) the
notation desugars into the parallel composition operator ∗∗∗ as in (f ∗∗∗ g) ≫ h. Case expres-
sions are translated to a pure function that destructs a sum type into an Either type, embedded
into arrows with arr :: (x � y) � c x y, followed by the choice operator | | | of the ArrowChoice
type class that encodes the bodies of each case. For example, here is an example desugaring (⇝)
of an arrow expression:

proc e � case e of { Var x � f � x; Lit y � g � y }
⇝ arr (𝜆e � case e of { Var x � Left x; Lit y � Right y }) ≫ (f | | | g)

Section 2.2.1 contains an illustrative example that the reader may find helpful for understanding
how the pretty notation for arrows desugars into arrow expressions. For the full details on how
arrows desugar, we refer the reader to the work of Paterson [2001].

In Listing 3.2, we use arrows to describe a generic interpreter eval' that generalizes both eval

and �eval from the previous subsection. To do so, we extract the operations that differ between
the concrete and abstract interpreter into a type class IsVal. Each type class member of IsVal in
Listing 3.2 represents a language-specific operation. lookup defines a variable lookup operation

26

3.2. Why and How to Make Soundness Proofs Compositional

type Interp a b = Env � a � Maybe b type �Interp a b = Ênv � a � �Maybe b
instance IsVal Val Interp where instance IsVal V̂al �Interp where

lookup = 𝜆e x � Map.lookup x e �lookup = 𝜆e x � to�Maybe (Map.lookup e x)
lit = arr id l̂it = arr (𝜆n � (n,n))
add = arr (𝜆(x,y) � x + y) âdd = arr (𝜆((i1,j1),(i2,j2)) �

(i1+i2,j1+j2))
ifZero f g = proc (v,(x,y)) � �ifZero f g = proc ((i,j),(x,y)) �

if v == 0 if (i,j) == (0,0)
then f � x then f � x
else g � y else if 0 ∉ (i,j) then g � y

else (f � x) t (g � y)
try f g h = 𝜆e x � case f e x of t̂ry f g h = 𝜆e x � case f e x of

Just y � g e y Just y � g e y
Nothing � h e x Nothing � h e x

JustNothing y � g e y t h e x

eval :: Interp Expr Val �eval :: �Interp Expr V̂al
eval = fix eval' �eval = fix eval'

Listing 3.3: Arrow instances for the concrete interpreter (left) and the abstract interpreter (right).

as an arrow from a string to the value type v that the type class is parameterized by. The ifZero

operation is parameterized by two arrows as continuations and takes as argument a triple of a
value and arguments x and y for the continuations. If the value in the triple is zero, the first
continuation is invoked using x; otherwise, the second continuation is invoked using y. The try

operation is parameterized by three arrows: one for computing a value (or raising an error); one
for dispatching on the value resulting from invoking the first arrow if no error was raised; and
one for the case where an error was raised. The fix operator of the type class ArrowFix (also
Listing 3.2) computes the fixpoint of the generic interpreter. This allows concrete and abstract
interpreter to employ different fixpoint strategies.

To define the concrete and abstract language semantics, we instantiate the generic interpreter
with two different arrow instances. We do this in by defining two arrow types Interp and �Interp
that define instances for the Arrow, ArrowChoice, ArrowFix, and IsValue type classes. In Listing 3.3,
we show the arrow types, their instances for IsValue, and the top-level interpreters eval and �eval
that instantiated the generic interpreter eval'. The generic interpreter completely desugars into
operations of the arrow type classes implemented by Interp and �Interp. Ultimately, the two
instantiated interpreters have the same semantics as the interpreters of Section 3.2.1. Note that
since the generic interpreter describes a parameterized semantics, we can define new alternative
abstract domains by instantiating the generic interpreter with another arrow instance.

3.2.3 Compositional Soundness Proofs of Abstract Interpreters

The previous section described how to define concrete and abstract interpreters in a way that
common code is shared between the two. This organization of concrete and abstract interpreter
allows us to prove soundness of interpreters like eval and �eval in Listing 3.3 compositionally
based on separate soundness preservation lemmas for each arrow operation. For our example, we
prove the following soundness preservation lemmas, one for each operation of the IsVal, Arrow,
ArrowChoice, and ArrowFix type classes. We use 𝑓 ¤v 𝑓 as a compact notation for the soundness
proposition.
• arr 𝑓 ¤v ârr 𝑓 for each pure function 𝑓 in the generic interpreter,
• lit ¤v l̂it, add ¤v âdd, lookup ¤v�lookup,
• if 𝑓 ¤v 𝑓 and 𝑔 ¤v𝑔 then ifZero 𝑓 𝑔 ¤v�ifZero 𝑓 𝑔

• if 𝑓 ¤v 𝑓 and 𝑔 ¤v𝑔 and ℎ ¤v ℎ̂ then try 𝑓 𝑔 ℎ ¤v t̂ry 𝑓 𝑔 ℎ̂

• if 𝑓 ¤v 𝑓 and 𝑔 ¤v𝑔 then 𝑓 ≫ 𝑔 ¤v 𝑓 ≫̂ 𝑔

27

3. CaptuRing the SimilaRities between ConcRete and AbstRact InteRpReteRs

Figure 3.2: Soundness lemmas for the try operation (left) and for the ifZero operation (right).

• if 𝑓 ¤v 𝑓 and 𝑔 ¤v𝑔 then 𝑓 ∗∗∗ 𝑔 ¤v 𝑓 ∗̂∗∗ 𝑔

• if 𝑓 ¤v 𝑓 and 𝑔 ¤v𝑔 then 𝑓 | | | 𝑔 ¤v 𝑓 |̂ | | 𝑔
• if [∀𝑥, 𝑥 . 𝑥 ¤v 𝑥 ⇒ 𝑓 (𝑥) ¤v 𝑓 (𝑥)] then fix 𝑓 ¤v f̂ix 𝑓

The fixpoint combinator fix required a different soundness lemma, because it is the only
higher-order construct compared to the otherwise first-order arrow language. To keep the rest
of the shared arrow code first-order, we only allow one occurrence of fix at the very top-level of
the interpreters.

For soundness of the interpreters eval ¤v�eval, we first unfold the definition of eval and �eval
which gives us fix eval′ ¤v f̂ix eval′. We then use the lemma for fix, which leaves us to prove
eval′ 𝑥 ¤v eval′ 𝑥 given 𝑥 ¤v 𝑥 . Because eval′ 𝑥 and eval′ 𝑥 refer to an arrow expression with
the same structure, except for occurrences of 𝑥 and 𝑥 , we can use structural induction over the
arrow expressions. The cases of this induction are always instances of the soundness lemmas
for the arrow operations from above and the assumption 𝑥 ¤v 𝑥 . This proves that the top-level
interpreters are sound.

But what impact does compositional soundness proofs have on proof complexity and proof
effort? Let us compare the proof of TryZero to the non-compositional proof from the previous
subsection. Before, we had to prove 7 cases of the abstract interpreter and relate them to up to
3 cases of the concrete interpreter. Now, TryZero is composed of try and ifZero. Their soundness
lemmas are simpler and can be proved independently as illustrated in Figure 3.2. Moreover, the
soundness lemmas are independent of their specific usage in the generic interpreter and can be
reused whenever the generic interpreter makes use of try or ifZero. In particular, we reused the
lemma for ifZero twice: Once for interpreting IfZero and once for interpreting TryZero.

To summarize, compared to conventional soundness proofs, in compositional soundness proofs
we have to prove smaller lemmas that are context-free, which reduces the proof complexity. Fur-
thermore, we have to prove less cases and lemmas are reused, which reduces the proof effort. In
the next two sections we describe our framework more formally.

3.3 Soundness Proposition for Arrows

To construct compositional soundness proofs, we first need a soundness proposition ¤v that is
applicable for all intermediate expressions of the interpreters. For example, the generic inter-
preter of Listing 3.2 uses the ifZero operator with return type c (v,(Expr,Expr)) v. This type is
instantiated in the concrete interpreter with arrow type

Interp (Val, (Expr, Expr)) Val

and in the abstract interpreter with arrow type�Interp (V̂al, (Expr, Expr)) V̂al.
To relate values of these two types in our soundness proposition, we need to define a Galois con-
nection [Cousot and Cousot 1979] between these arrow types. However, in general, our generic
interpreter makes use of arrows of many different types, many which of which only become ap-
parent after arrow desugaring. For example, the composition operator≫ is used by the generic
interpreter with various types ranging from Val and Expr to tuples, Maybe, Either, and combi-
nations thereof. To relate all types with a Galois connections, we require a systematic way for
constructing Galois connections and, based on that, soundness propositions.

28

3.3. Soundness Proposition for Arrows

3.3.1 Systematic Way for Constructing Galois Connections

A well-known technique for constructing Galois connections is described by Nielson et al. [1999,
Lemma 4.23]. A Galois connection 𝛼 : P𝐴 ⇄ 𝐴 : 𝛾 can be defined by an embedding function
𝜄 : 𝐴 → 𝐴, such that the abstraction function is given by 𝛼 (𝑋) = ⊔{𝜄 (𝑥) | 𝑥 ∈ 𝑋 }. Then the
concretization function exists and is uniquely determined by 𝛾 (𝑥) = {𝑥 | 𝛼 (𝑥) v 𝑥}. In other
words, we only need to define an embedding function and we obtain the Galois connection for
free.

First, we define embedding functions for abstracted base types. For example, for an inter-
val analysis, we can define an embedding function for numeric values 𝜄 : Int → Interval
by 𝜄 (𝑛) = [𝑛, 𝑛]. Then the abstraction function sends the set {1, 3, 5} to ⊔{𝜄 (1), 𝜄 (3), 𝜄 (5)} =⊔{[1, 1], [3, 3], [5, 5]} = [1, 5]. Second, for compound types, we define the embedding function
component-wise. For example, for products we define the embedding function 𝜄 (𝐴,𝐵) : (𝐴, 𝐵) →
(𝐴, 𝐵) by 𝜄 (𝐴,𝐵) (𝑎,𝑏) = (𝜄𝐴 (𝑎), 𝜄𝐵 (𝑏)), given embeddings 𝜄𝐴 : 𝐴 → 𝐴 and 𝜄𝐵 : 𝐵 → 𝐵. This
approach naturally extends to other compound data types we face in Haskell, such as lists [a],
Maybe a, Either a b, and so on. Note that data types in Haskell also have a coinductive interpre-
tation, e.g., lists can be infinite. However, in this work we only consider inductive interpretations
of datatypes.

However, the construction of Galois connections with embedding functions 𝜄 : 𝐴→ 𝐴 places
requirements on the concrete domain 𝐴 and the abstract domain 𝐴. First, it assumes that both
domains have a preorder ⊏𝐴 respectively ⊏𝐴. Second, it assumes that the abstract domain 𝐴
is finitely complete, that is, all elements 𝑥 and 𝑦 have a least upper bound 𝑥 t𝐴 𝑦. While it is
easy to define preorders for the types occurring in our interpreter, these orders often are not
finitely complete. For example, type Either Int String has no least upper bound for Left 5 and
Right "x". Fortunately, we can lift a non-completely ordered type𝑋 to a finitely complete ordered
type 𝑋>. The lifting 𝑋> adds a greatest element > to the type 𝑋 , such that all incomparable
elements now have a least upper bound:

𝑥1 v𝑋> 𝑥2 iff 𝑥2 = > ∨ 𝑥1 v𝑋 𝑥2

For example, the lifted type (Either Int String)> has all least upper bounds, such as
(Left 5) t (Right “x′′) = >.

Based on embedding functions 𝜄𝑋 , partial orders ⊏𝑋 , and the lifting𝑋>, we can systematically
construct Galois connections for all types that occurring in our interpreters. What is left, is to
define the soundness proposition for arrow types Interp and �Interp.
3.3.2 Soundness Proposition for Arrows

It is not possible to give a general definition of a soundness proposition for arbitrary arrows, be-
cause arrows and their soundness propositions are analysis-specific. However, we can define a
soundness proposition for specific classes of arrows. In this section, we define a soundness propo-
sition for Kleisli arrows [Hughes 2000]. Kleisli arrows are functions 𝐴 → 𝑀 (𝐵) parameterized
by a monad 𝑀 . It is well-known that monads are expressive enough to describe a wide range of
effects in programming languages [Liang et al. 1995; Wadler 1992; Moggi 1991]. For example, we
can describe the two interpreter arrows of section Section 3.2.2 as Kleisli arrows:

Interp(𝐴, 𝐵) = 𝐴→ 𝑀 (𝐵) �Interp(𝐴, 𝐵) = 𝐴→ 𝑀 (𝐵)
𝑀 (𝐵) = Env→ Maybe 𝐵 𝑀 (𝐵) = Ênv→�Maybe 𝐵

This way, Kleisli arrows and their soundness proposition serve as a good starting point to define
analysis-specific soundness propositions.

We define the soundness proposition for Kleisli arrows for the forward collecting semantics
[Cousot and Cousot 1992a] of the concrete interpreter. The forward collecting semantics of a
function 𝑓 : 𝐴 → 𝐵 describes the strongest post-condition {𝑓 (𝑥) | 𝑥 ∈ 𝑋 } of 𝑓 under a pre-
condition 𝑋 ⊆ 𝐴 over the inputs of 𝑓 . For example, the strongest post-condition for 𝑓 (𝑥) = 𝑥 + 𝑥
for the pre-condition N is the set of even numbers. In our scenario, we describe the forward

29

3. CaptuRing the SimilaRities between ConcRete and AbstRact InteRpReteRs

collecting semantics of 𝑓 : 𝐴→ 𝐵 as a single function 𝜆𝑋 .{𝑓 (𝑥) | 𝑥 ∈ 𝑋 } of type P(𝐴) → P(𝐵).
Before we can define the soundness proposition for Kleisli arrows, we first need to define a Galois
connection between the forward collecting semantics of the concrete Kleisli arrow and the >-
lifted abstract Kleisli arrow on the underlying function space [Nielson et al. 1999, page 253]:

𝛼𝐴,𝑀 (𝐵) : (P𝐴→ P(𝑀 (𝐵))) ⇄
(
𝐴> → 𝑀 (𝐵)>

)
: 𝛾𝐴,𝑀 (𝐵)

𝛼𝐴,𝑀 (𝐵) (𝑓) = 𝛼𝑀 (𝐵) ◦ 𝑓 ◦ 𝛾𝐴 𝛾𝐴,𝑀 (𝐵) (𝑓) = 𝛾𝑀 (𝐵) ◦ 𝑓 ◦ 𝛼𝐴

The Galois connection for Kleisli arrows uses Galois connections 𝛼𝐴 : P𝐴 ⇆ 𝐴> : 𝛾𝐴 and
𝛼𝑀 (𝐵) : P(𝑀 (𝐵)) ⇆ 𝑀 (𝐵)> : 𝛾𝑀 (𝐵) constructed with the techniques described in Section 3.3.1.
With the Galois connection between the concrete and abstract Kleisli arrows, we are ready to
state soundness proposition for Kleisli arrows.

Definition 3.3.1 (Soundness proposition for Kleisli arrows). Let Interp and �Interp be Kleisli
arrows. Then, a computation 𝑓 ∈ Interp(𝐴, 𝐵) is sound with respect to a computation 𝑓 ∈�Interp(𝐴, 𝐵)

𝑓 ¤v 𝑓 iff 𝛼𝐴,𝑀 (𝐵) (𝜆𝑋 . {𝑓 (𝑥) | 𝑥 ∈ 𝑋 })) v 𝑓 >

In this definition, 𝑓 > is the >-lifting of function 𝑓 :

𝑓 > (𝑥) =
{
>, 𝑥 = >
𝑓 (𝑥), 𝑥 ≠ >

This definition is well-defined for Kleisli arrows over any types𝐴 and 𝐵 for which Galois con-
nections 𝛼𝐴 and 𝛼𝑀 (𝐵) exist. Given these Galois connections, we can use this soundness propo-
sition for all parts of the interpreters, making it a key ingredient for constructing compositional
soundness proofs.

3.4 Compositional Soundness for Arrow-Based Abstract Interpreters

In this section, we present how our framework enables compositional soundness proofs and we
prove that the composition always succeeds. Our framework is language-agnostic and can be
used for any abstract interpreter satisfying the following two requirements:
• The concrete interpreter and abstract interpreter must share their implementation. That is,
eval = fix eval′ and �eval = f̂ix eval′ for some eval′.

• The generic interpreter eval′ must be an arrow computation.
The first requirement enables compositional soundness proofs, because the proof can be decom-
posed along the structure of the shared code. The second requirement ensures that the recompo-
sition of subproofs must succeed. Together, they provide a powerful framework where all shared
code is sound by construction and users only have to prove soundness for the differing code: the
concrete and abstract implementations of arrow operations.

Arrows induce an induction principle because arrow notation [Paterson 2001] (used through-
out the examples in this paper) fully desugars to operations of the arrow type classes and the
residual code does not contain any non-arrow constructs of the meta-language anymore. Fur-
thermore, the arrow type classes can be described by an endofunctor 𝐹 [Hamana and Fiore 2011]
and the arrow instances as algebras of this endofunctor. The initial 𝐹 -algebra induces the desired
induction principle. For example, the initial 𝐹 -algebra for the generic interpreter of Listing 3.2
is described by the following generalized algebraic datatype (GADT) that enumerates all arrow
expressions that can be described over the IsVal type class:
data AExp :: C � C � Set where

Lit :: AExp Int v
Add :: AExp (v,v) v
Lookup :: AExp String v

30

3.4. Compositional Soundness for Arrow-Based Abstract Interpreters

IfZero :: AExp x v � AExp y v � AExp (v,(x,y)) v
Try :: AExp x y � AExp y v � AExp x v � AExp x v
(≫) :: AExp x y � AExp y z � AExp x z
(∗∗∗) :: AExp x y � AExp u v � AExp (x,u) (y,v)
(| | |) :: AExp x z � AExp y z � AExp (Either x y) z
Arr1 :: AExp A1 B1 . . . Arr𝑛 :: AExp A𝑛 B𝑛

The datatype contains one constructor for each operation of the IsVal type class and its super-
classes Arrow and ArrowChoice. It does not contain an operation for the fixpoint combinator, which
requires special treatment as we discuss later. Besides these arrow operations, the desugaring
arrow computations also generates pure functions that are embedded into arrow computations
using the arr operation. To avoid a higher-order constructor Arr :: (a � b) � AExp a b, we
enumerate each of the pure functions as individual constructors Arr𝑖 . The initial F-algebra AExp

then induces the following induction principle for predicates 𝑃 .

𝑃 (Lit) 𝑃 (Add) 𝑃 (Lookup)
𝑃 (𝑓1) ∧ 𝑃 (𝑓2) =⇒ 𝑃 (IfZero 𝑓1 𝑓2)

𝑃 (𝑓1) ∧ 𝑃 (𝑓2) ∧ 𝑃 (𝑓3) =⇒ 𝑃 (Try 𝑓1 𝑓2 𝑓3)
𝑃 (𝑓1) ∧ 𝑃 (𝑓2) =⇒ 𝑃 (𝑓1≫ 𝑓2)
𝑃 (𝑓1) ∧ 𝑃 (𝑓2) =⇒ 𝑃 (𝑓1 ∗∗∗ 𝑓2)
𝑃 (𝑓1) ∧ 𝑃 (𝑓2) =⇒ 𝑃 (𝑓1 | | | 𝑓2)
𝑃 (Arr1) . . . 𝑃 (Arr𝑛)
∀A, B ∈ C. ∀𝑒 ∈ AExp A B. 𝑃 (𝑒)

This induction principle allows us to decompose soundness proofs because of the shared imple-
mentation. Specifically, we set

𝑃 (𝑒) iff 𝑒 ¤v 𝑒̂,
where 𝑒 refers to the concrete instance of the arrow code and 𝑒̂ to the abstract instance, i.e.,
the respective 𝐹 -algebra. With this predicate, the premises of the induction principle exactly
correspond to the soundness preservation lemmas discussed in Section 3.2.3. For example:

𝑓1 ¤v 𝑓1 ∧ 𝑓2 ¤v 𝑓2 =⇒ (𝑓1≫ 𝑓2) ¤v(𝑓1 ≫̂ 𝑓2)

Thus, the induction principle shows that all shared arrow code is sound if the soundness preser-
vation lemmas hold. This is the essence of decomposing the soundness proof of an arrow-based
abstract interpreter.

However, before we can state our main soundness theorem, we need to add support for fix-
point combinators. In Section 3.2.3, we applied concrete and abstract fixpoint combinators fix

and f̂ix to the generic interpreter. Since fixpoint combinators are higher-order functions of the
form

Fix : (AExp A B→ AExp A B) → AExp A B,

adding them to our GADT would break the induction principle, because the datatype would not
be strictly positive [Coquand and Paulin 1988]. Instead, we adapt the soundness proposition for
fixpoint combinators by Cousot and Cousot [1992a, Proposition 4.3]:

Definition 3.4.1. A fixpoint combinator fix is sound with respect to f̂ix iff fix 𝑓 ¤v f̂ix 𝑓 for all
soundness preserving functions 𝑓𝐶 : 𝐶 (𝐴, 𝐵) → 𝐶 (𝐴, 𝐵), that is:

[∀𝑥, 𝑥 . 𝑥 ¤v 𝑥 ⇒ 𝑓 (𝑥) ¤v 𝑓 (𝑥)] =⇒ fix 𝑓 ¤v f̂ix 𝑓 .

Now we are ready to state our main soundness theorem:

Theorem 3.4.1 (Soundness of Abstract Interpreters based on Arrows). For a given concrete in-
terpreter eval : Interp(𝐴, 𝐵) and abstract interpreter �eval : �Interp(𝐴, 𝐵) defined by eval =
fix eval′ and �eval = f̂ix eval′ with a shared implementation eval′𝐶 : 𝐶 (𝐴, 𝐵) → 𝐶 (𝐴, 𝐵) (natu-
ral in 𝐶 [Lane 1971])1 over a functor 𝐹 with an initial algebra, soundness eval ¤v�eval follows from
(i) soundness of the fixpoint combinators fix and f̂ix and (ii) the soundness preservation lemmas of
𝐹 .

1eval′𝐶 is natural in𝐶 iff for all 𝑓 : 𝐶 (𝐴, 𝐵) → 𝐷 (𝐴, 𝐵) , 𝑓 ◦ eval′𝐶 = eval′𝐷 ◦ 𝑓

31

3. CaptuRing the SimilaRities between ConcRete and AbstRact InteRpReteRs

Proof. From the soundness proposition of the fixpoint combinators, we know that eval ¤v�eval
if eval′(𝑥) ¤v eval′(𝑥) for all 𝑥 ∈ Interp(𝐴, 𝐵), 𝑥 ∈ �Interp(𝐴, 𝐵) with 𝑥 ¤v 𝑥 . Because eval' is
natural in the arrow type𝐶 , the arrow expressions eval′(𝑥) and eval′(𝑥) have the same structure
except for occurrences of 𝑥 and 𝑥 . Thus eval′(𝑥) ¤v eval′(𝑥) follows by structural induction, the
soundness preservation lemmas, and the assumption 𝑥 ¤v 𝑥 . □

Thus, to prove an abstract interpreter based on arrows sound, it suffices to use a sound fixpoint
combinator and to verify the soundness preservation lemmas. Since each soundness preserva-
tion lemma is concerned with a single arrow operation only, the soundness proof of the abstract
interpreter decomposes into small, manageable proof obligations.

The naturality of eval′𝐶 in the arrow type 𝐶 is crucial in this proof of Theorem 3.4.1. It en-
sures that the generic interpreter does not produce a structurally different arrow expression when
instantiated with the concrete and abstract arrow types. Only if the structure of the interpreters
is the same, we can apply the induction principle. In general, we can ensure this if the generic
interpreter is parametric in the arrow type.

One shortcoming of our proof method, though, is the handling of pure functions Arr1 . . . Arr𝑛
that the arrow desugaring generates. Proving soundness for each pure function is tedious and
usually uninteresting. In the next section, we use parametricity [Reynolds 1983], a property of
parametric polymorphism, to describe interface guidelines such that all pure functions are sound
by a free theorem of parametricity.

3.5 Interface Design and Parametricity

The main goal of this paper is to reason about soundness of the operations of the interpreters,
rather than about composed code of the generic interpreter itself. The design of the interface
influences how much reasoning about shared code is necessary, if any at all. In this section, we
provide guidelines for how to design interfaces such that soundness of pure functions follows as
a free theorem of parametricity.

To this end, let us revisit the interface for IfZero from Section 3.2.2:
ifZero :: c x v � c y v � c (v,(x,y)) v

Instead of providing two continuations that are called when the argument value is zero or not,
we could have designed an operation isZero, that returns a Boolean value that represents its
outcome:
eval' ev = proc e � case e of data �Bool = True | False | >

IfZero e1 e2 e3 � do isZero :: c v �Bool
b ← isZero ≪ ev � e1; case b of

True � ev � e2
False � ev � e3
> � (ev � e2) t (ev � e3)

The value> is solely used by the abstract interpreter to express uncertainty about whether a value
is zero. The concrete instance of isZero never returns > because it is always certain if the value
is zero. Although this definition describes an alternative but equivalent semantics, there are two
problems:
1. The generic interpreter now describes behavior that is specific to the abstract interpreter but

not the concrete semantics. The interface of the generic interpreter leaks details of the abstract
interpreter into shared code.

2. Proving soundness of the instantiated generic interpreter requires reasoning about more code
than just the arrow operations it is comprised of. In particular, we have to consider the entire
case expression in the shared code to prove soundness. The interface design of isZero does
not allow us to decompose the soundness proof.

But is there a metric that helps us identify interface operations that leak details of the abstract
interpreter? The answer can be found in a property called parametricity [Reynolds 1983], a prop-
erty of parametric polymorphism. The key idea of parametricity is that types can be interpreted
as relations and terms in related environments yield related results [Wadler 1989].

32

3.5. Interface Design and Parametricity

To set the stage, we recall the definition of Reynolds’ parametricity [Reynolds 1983] due to
Ghani et al. [2015]. Well-typed System 𝐹 programs 𝑒 are identified by the typing judgment Γ,Δ `
𝑒 : 𝜏 , where 𝜏 is a type with type variables closed under Γ and Δ is the regular typing context.
Parametricity describes two parallel interpretations for System F contexts, types and terms, that
work in lock-step: An object interpretation È𝑇É𝑜 : Set |Γ | → Set that interprets types as sets and
terms as functions, and a relational interpretation È𝑇É𝑟 : Rel |Γ | (𝐴, 𝐵) → Rel(È𝑇É𝑜𝐴, È𝑇É𝑜𝐵)
that interprets types as relations and terms as relation preserving functions. Each interpretation
takes extra arguments based on |Γ |, the number of type variables in the context Γ.

How these two interpretations interact is described by the following main theorem of para-
metricity [Reynolds 1983]:

Theorem 3.5.1 (Abstraction Theorem). Let 𝐴, 𝐵 ∈ Set |Γ | , 𝑅 ∈ Rel |Γ | (𝐴, 𝐵), 𝑎 ∈ ÈΔÉ𝑜𝐴 and 𝑏 ∈
ÈΔÉ𝑜𝐵. For every term Γ,Δ ` 𝑒 : 𝜏 , if (𝑎,𝑏) ∈ ÈΔÉ𝑟𝑅, then (È𝑒É𝑜𝐴 𝑎, È𝑒É𝑜𝐵 𝑏) ∈ È𝜏É𝑟 (𝑅). □

More informally, if 𝑎 and 𝑏 are instances of the typing context Δ and are related by 𝑅, then
a term 𝑒 with context Δ applied to 𝑎 and 𝑏 are related by 𝑅. If we choose 𝑅 to be the sound-
ness proposition for arrow types, the abstraction theorem provides an alternative way to prove
soundness of abstract interpreters with a shared implementation. We prove this as a theorem
below. However, since arrows are higher-order types of kind ∗ → ∗ → ∗, we in fact require the
abstraction theorem for higher-order parametricity that holds for System 𝐹𝜔 [Atkey 2012]. The
general idea of the abstraction theorem for first-order parametricity carries over to the one for
higher-order parametricity. Therefore, we omit the definitions for higher-order parametricity for
simplicity.

Theorem 3.5.2. In System 𝐹𝜔 , soundness of abstract interpreters that share a common implementa-
tion with the concrete interpreter follows from the soundness lemmas for operations of its interface.

Proof. First, we desugar the type class IsValue into a record that is passed in as a dictionary [Hall
et al. 1996]. This allows us to type check eval' with the following judgement:

{c : ∗ → ∗ → ∗, v : ∗}, {dict : IsValue c v} ` eval′ : c Expr v→ c Expr v

We now apply the abstraction theorem for higher-order parametricity as follows. The typing
variable context has type variables for the arrow type c and value type v, hence, for 𝐴 and 𝐵
we choose the tuples (Interp, Val) and (�Interp, V̂al) that instantiate the respective arrow and
value type. Furthermore, for the relation 𝑅 we have to define relations on arrows and values. For
the relation on values, we choose 𝑣 ¤vVal 𝑣̂ iff 𝛼Val (𝑣) v 𝑣̂ , where 𝛼Val : P(Val) → V̂al is the
abstraction function for values. Because arrows are higher-kinded types, the relation on arrows
is parameterized by relations 𝑅 over the domain and 𝑄 over the codomain of the arrow. For the
soundness relation on arrows, we choose

𝑓 ¤vInterp 𝑓 iff (𝑎, 𝑎) ∈ 𝑅 =⇒ (𝑓 (𝑎), 𝑓 (𝑎)) ∈ 𝑄 for all 𝑎 ∈ 𝐴, 𝑎 ∈ 𝐴.

If we instantiate𝑅 and𝑄 with the relation𝛼 (𝑥) v 𝑥 , we obtain the original soundness proposition:

𝑓 ¤vInterp 𝑓 iff 𝛼𝐴 (𝑎) v 𝑎 =⇒ 𝛼𝐴 (𝑓 (𝑎)) v 𝑓 (𝑎) for all 𝑎 ∈ 𝐴, 𝑎 ∈ 𝐴.

If we use the abstraction theorem with these definitions, we obtain the following rule.

𝑎 ∈ ÈIsValue c vÉ𝑜 (Interp, Val)
𝑏 ∈ ÈIsValue c vÉ𝑜 (�Interp, V̂al)
(𝑎,𝑏) ∈ ÈIsValue c vÉ𝑟 (¤vInterp, ¤vVal)

(Èeval′É𝑜 (Interp, Val) 𝑎, Èeval′É𝑜 (�Interp, V̂al) 𝑏) ∈
Èc Expr v→ c Expr vÉ𝑟 (¤vInterp, ¤vVal)

The rule says, given two instances 𝑎 and 𝑏 for the interface IsValue and 𝑎 and 𝑏 satisfy the sound-
ness preservation lemmas of IsValue, then the generic interpreter eval' instantiated with the
instance 𝑎 is sound with respect to eval' instantiated with 𝑏. □

33

3. CaptuRing the SimilaRities between ConcRete and AbstRact InteRpReteRs

The main consequence of Theorem 3.5.2 is that we do not have to reason about soundness of
shared code, since it follows as a free theorem from parametricity. In particular, this relieves us
from having to prove soundness of individual pure functions in arr. Instead, we obtain a generic
soundness lemma for the arr operation itself:

(arr, ârr) ∈ È∀x, y. (x→ y) → c x yÉ𝑟 (¤vInterp).

Because all pure functions 𝑓 in the generic interpreter are shared code, this lemma guarantees
(arr 𝑓 ¤v ârr 𝑓).

Theorem 3.5.2 can also help us understand how to design the interface such that the each arrow
operation is compositionally sound. When a soundness proof for an arrow operation fails, it usu-
ally fails with the approach based on parametricity as well as with the approach from Section 3.4.
However, the approach based on parametricity can tell us why a proof failed. To this end, it is
instructive to compare the soundness lemmas of Theorem 3.5.2 to the corresponding soundness
lemmas of Theorem 3.4.1. For example, for the composition operator≫, Theorem 3.5.2 requires

(≫, ≫̂) ∈ È∀x, y, z. c x y→ c y z→ c x zÉ𝑟 (¤vInterp)

whereas Theorem 3.4.1 requires

𝑓1 ¤v 𝑓1 ∧ 𝑓2 ¤v 𝑓2 =⇒ (𝑓1≫ 𝑓2) ¤v(𝑓1 ≫̂ 𝑓2).

The soundness lemmas have almost the same meaning, except that the orderings used in the
former lemma are fixed by the relational interpretation È−É𝑟 rather than chosen by us. This is an
important distinction because it restricts how we can design our interface, while still being able
to prove soundness compositionally.

For example, let us revisit the flawed version of isZero introduced earlier in this section. Ob-
serve that we cannot prove ifZero ¤@�ifZero using parametricity either:

(isZero,�isZero) ∉ Èc v �BoolÉ𝑟 (¤vInterp, ¤vVal)
The problem is that the ordering for �Bool is determined by its relational interpretation based on
the underlying sum type:

È�BoolÉ𝑟 = {(True, True), (False, False), (Top, Top)}.
However, we require that > is the greatest element to be able to prove the soundness lemma for
isZero, which is not the case for this ordering. The underlying problem is that we exposed the
type �Boolwith non-standard ordering to the generic interpreter. This problem exists not only for�Bool, but for all types with non-standard ordering, such as values, environments, etc.

These observations lead us to the following guideline for good interface design of generic
interpreters, helping us to avoid leaking interfaces:

Guideline. An interface of a generic interpreter is good if its operations do not expose types with
non-standard orderings. Instead, non-standard ordered types in the abstract interpreter must be
hidden from the interface by using universal quantification.

To summarize, the abstraction theorem for meta-languages with parametricity provides an
alternative way to prove soundness of abstract interpreters that share code. This drastically re-
duces the required effort of the soundness proof, because shared code is sound by a free theorem
of parametricity. Furthermore, the abstraction theorem provides us with a useful guideline for
how to design our interface. Finally, nothing in the proof of Theorem 3.5.2 is specific to arrows.
In particular, we are not making use of the induction principle for arrows and use the abstraction
theorem instead. This should allow us to apply Theorem 3.5.2 to abstract interpreters that share
code with the concrete interpreter using an interface other than arrows. We have not explored
this further so far.

34

3.6. Case Studies

3.6 Case Studies

This paper presents a framework for compositional soundness proofs. In this section, we report
on two case studies that we conducted to answer the following research questions:
(RQ1) Is our technique applicable to interesting languages and interesting static analyses?
(RQ2) Does our technique reduce the complexity and effort of soundness proofs?
The case studies involved constructing generic interpreters for Stratego and PCF, developing con-
crete and abstract arrow instances, and proving the instantiated interpreters sound. For Stratego,
we developed a tree-shape analysis as abstract arrow instance; for PCF, we implemented an ad-
vanced control-flow analysis (k-CFA) as abstract arrow instance.2

3.6.1 Tree-Shape Analysis for Stratego

We developed a sound abstract interpreter for Stratego [Visser et al. 1998], a real-world language
for the implementation of program transformations that operate on abstract syntax trees akin to
s-expressions. Stratego is being used in various projects to define interpreters [Dolstra and Visser
2002], refactorings [de Jonge and Visser 2012], desugarings [Erdweg et al. 2011], and compilers
[Avgustinov et al. 2007; Bagge and Kalleberg 2006; Economopoulos and Fischer 2011]. Further-
more, Stratego is used to compile programs of WebDSL [Visser 2007], a domain-specific web-
programming language in which, for example, the website conf.researchr.org of ICFP and
others is implemented [van Chastelet et al. 2015].

Stratego transformations operate on untyped terms using rewrite rules and strategies as illus-
trated by the following simple evaluator for arithmetic expressions:
rules strategies

reduce: Add(Succ(m), n) → Succ(Add(m,n)) main = downup(try(reduce))
reduce: Add(Zero(), n) → n

The strategy main walks the expression tree down and up again, and tries to reduce each visited
node using the rewriting rule reduce. Rule reduce consists of two alternatives reduce: pat � gen

that try to match pat and, if successful, generate gen. Stratego has many language features that
make it a challenging language to statically analyze, including dynamic scoping of pattern-bound
variables, higher-order functions, and generic tree traversals.

Stratego provides a rich set of abstractions for program transformations. These abstractions
desugar into a core language for Stratego with just 12 constructs [Visser et al. 1998; Bravenboer
et al. 2006]. We developed a generic interpreter based on arrows for this core language. For the in-
terface of the generic interpreter, we identified 27 operations, of which 9 operations are language-
independent and 18 operations are specific to Stratego. The language-specific operations consist
of 10 operations for terms, 6 for term environments, and 2 for strategy environments.

We instantiated the generic interpreter with Kleisli arrows for the concrete and abstract do-
main. The concrete domain uses the usual interpretation of terms and environments. In the
abstract domain, we approximate terms as a set of term patterns containing wildcards ∗. For
example, the abstract term {Zero(), Add(∗, ∗)} represents the set of concrete terms containing
Zero() and all terms with root Add. This way, our abstract arrow instance realizes a tree-shape
analysis [Keidel and Erdweg 2017] that Stratego developers can use to predict the shape of trees
a transformation will produce when run.

For the concrete instance of ArrowFix, we compute the usual least fixpoint. However, since
the abstract domain of sets of term patterns is infinite, the least fixpoint is not computable for the
abstract domain. Therefore, for the abstract instance of ArrowFix, we approximate the greatest
fixpoint instead. Specifically, our fixpoint combinator keeps track of the recursive depth of the
interpreter and yields > for recursive calls whose depth exceeds a certain threshold. This pro-
duces a finite approximation of the infinite set of terms that can be produced by a given program
transformation. The precision of the abstract interpreter increases with more iterations.

We have verified the soundness of our tree-shape analysis by proving that abstract instanti-
ations of the generic interpreter approximates the concrete instantiation. The soundness proof

2All code of the case studies is open source and can be found at https://github.com/svenkeidel/sturdy/.

35

conf.researchr.org
https://github.com/svenkeidel/sturdy/

3. CaptuRing the SimilaRities between ConcRete and AbstRact InteRpReteRs

call :: ... ⇒ StratVar � [Strat] � [TermVar] � (Strat � c t t) � c t t
call f actualStratArgs actualTermArgs ev = proc a � do

senv ← readStratEnv � ()
case Map.lookup f senv of

Just (Closure formalStratArgs formalTermArgs body senv') � do
tenv ← getTermEnv � ()
mapA bindTermArg � zip actualTermArgs formalTermArgs
let senv'' = foldl bindStratArgs (if Map.null senv' then senv else senv')

(zip formalStratArgs actualStratArgs)
b ← localStratEnv senv'' (ev body) �� a
tenv' ← getTermEnv � ()
putTermEnv ≪ unionTermEnvs � (formalTermArgs,tenv,tenv')
returnA � b

Nothing � fail � ()
where

bindTermArg = proc (actual,formal) �
lookupTerm (proc t � insertTerm � (formal,t)) fail �� actual

bindStratArgs senv (v,Call v' [] []) senv =
case Map.lookup v' senv of

Just s � Map.insert v s senv
_ � error $ "unknown strategy: " ++ show v'

bindStratArgs senv (v,s) = Map.insert v (Closure [] [] s senv) senv

Listing 3.4: Shared implementation of calls of strategies.

is completely compositional. We decomposed the proof into 27 soundness lemmas, one for each
operation in the interface of the generic interpreter. All operations in the interface conform to
the guidelines of interface design of Section 3.5, and hence soundness of all pure arr expressions
follows as a free theorem due to the parametricity of our meta-language Haskell. The soundness
of the instantiated interpreters then follows from Theorem 3.4.1 and the 27 soundness lemmas.

To reflect on the complexity and effort of the soundness proof (RQ2), we want to highlight
the soundness proof of the implementation of strategy calls. We show the code of the generic
interpreter in Listing 3.4. A strategy in Stratego accepts two kinds of arguments, strategy argu-
ments and term arguments. Hence, the interpreter has to bind these two kinds of arguments in
the respective environment and then invoke the interpreter recursively on the body of the called
strategy.

Traditionally, proving soundness of the concrete and abstract instantiations of this code is a
severe challenge: The complexity of the code would be reflected in the proof. With our technique,
we can decompose the proof into 2 soundness lemmas about strategy environments (readStratEnv,
localStratEnv), 6 lemmas about term environments (lookupTerm, insertTerm, unionTermEnvs,
getTermEnv, putTermEnv), a few lemmas about language-independent arrow operations, and var-
ious lemmas about embedded pure functions. Each of these lemmas is manageable and can be
proved in isolation, thus reducing the proof complexity. Our approach also reduces the proof ef-
fort. First, some lemmas can be reused in other cases of the interpreter, such as the ones for term
environments, which are needed for pattern matching as well. Second, we obtain the soundness
lemmas for applications of embedded pure functions Map.lookup, zip, and foldl as free theorems
of parametricity. And third, the soundness of the generic interpreter follows for free from the
induction principle of Theorem 3.4.1.

In summary, we developed an arrow-based generic interpreter for Stratego together with
a concrete and an abstract arrow instance. The abstract arrow instance realizes a tree-shape
analysis for Stratego. We compositionally proved this analysis sound by verifying 27 smaller and
individually provable lemmas. Thus, our technique was applicable to this scenario (RQ1) and, as
we argued, the resulting proof is less complex and required less effort than a traditional proof
(RQ2).

36

3.6. Case Studies

data Val data V̂al = >
= ClosureVal (Expr,Env) | �ClosureVal (Set (Expr,Ênv))
| NumVal Int | �NumVal Interval

type Env = Map String Val type Ênv = Map String Addr
type �Store = Map Addr V̂al

Listing 3.5: Concrete (left) and abstract domain (right) for 𝑘-CFA analysis of PCF.

3.6.2 Control-Flow Analysis for PCF

We implemented an abstract interpreter for an analysis that has been widely studied in the litera-
ture [Midtgaard 2012]: control-flow analysis (CFA).We implemented this analysis for PCF [Plotkin
1977], a language with first-class functions, numbers, an ifZero construct, and fixpoint combina-
tor Y. The analysis we implemented is a 𝑘-CFA analysis [Shivers 1991] and the fixpoint algorithm
we used is due to Darais et al. [2017].

We briefly summarize how our analysis works. The analysis approximates functions (clo-
sures) as sets of expression and environment pairs, while natural numbers are approximated us-
ing bounded intervals. We ensure termination by employing Darais et al.’s fixpoint algorithm
for big-step semantics [2017]. Darais et al.’s fixpoint algorithm memoizes the results of all inter-
preter calls in a cache. When the interpreter is called with the same expression and environment
recursively or repeatedly, it returns the cached result instead of recursing. This guarantees termi-
nation since there are only finitely many environments to consider and the interpreter repeats it-
self eventually. To finitely approximate environments, we adopt a common approach for (𝑘-)CFA
[Shivers 1991; Horn and Might 2010]: We allocate the values of an environment in an abstract
store that has only finitely many addresses available. There are only finitely many stores if all
abstract values are finite domains. For closures this is the case, because there only finitely many
expressions that can be evaluated for a given program. And our abstract domain for numbers is
finite, because we restrict the maximum bounds of intervals. If an interval exceeds theses bounds,
it is approximated with infinity. We summarize the concrete and abstract domain of the 𝑘-CFA
interpreter in Listing 3.5.

Listing 3.6 shows the generic PCF interpreter and the interface that we developed for it.
The interface has a total of 16 operations: 4 value operations (class IsVal), 2 closure opera-
tions (IsClosure), 4 environment operations (ArrowEnv), a fixpoint operation (ArrowFix from Sec-
tion 3.2.2), a failure operation (ArrowFail), and 4 language independent arrow operations (Arrow,
ArrowChoice). We developed two instances of the interface: A concrete instance and a 𝑘-CFA in-
stance. The code of these instances can be found in the artifact of our paper and its accompanying
documentation.

We compositionally proved the soundness of 𝑘-CFA instantiated interpreter relative to the
concrete instantiation of the interpreter. We decomposed the soundness proof into 16 lemmas,
one for each operation of the arrow type classes referenced by the generic interpreter. Sound-
ness of all pure arr expressions followed by parametricity of the meta-language Haskell (The-
orem 3.5.2). As is common in proofs by induction, often the induction hypothesis has to be
strengthened such that all cases of the induction are provable. We encountered this situation
when proving soundness of the environment operations in the ArrowEnv type class. We had to
strengthen the soundness proposition to guarantee that all environments passed in and out of
the abstract arrow operation are consistent with the abstract store, i.e., all environment-bound
addresses exist in the store. Note that this strengthened requirement of store consistency is not
an artifact of using our techniques: It is necessary for non-compositional soundness proof as well.

To assess the complexity of our proof, we compare it to another proof of a 𝑘-CFA for a PCF-
like language that can be found in the PhD thesis of Darais [2017]. The proof in Darais’ PhD thesis
relates in three theorems four different semantics, each proven by induction over derivations. It is
not obvious how the cases of the induction can be decomposed further systematically, because of
the differences between the concrete and abstract semantics. In comparison, our proof consists of
16 soundness lemmas that relate the concrete and abstract instances directly. The lemmas prove
smaller pieces of functionality than the induction cases in Darais’ proof. For example, the generic

37

3. CaptuRing the SimilaRities between ConcRete and AbstRact InteRpReteRs

data Expr = Var Text | Lam String Expr eval :: (IsNum v c, IsClosure v env c,
| App Expr Expr | Y Expr | Zero | Succ Expr ArrowChoice c, ArrowFix Expr v c,
| Pred Expr | IfZero Expr Expr Expr ArrowEnv Text v env c,ArrowFail String c)

⇒ c Expr v
class IsNum v c where eval = fix $ 𝜆ev � proc e � case e of

succ, pred :: c v v Var x � lookup' � x
zero :: c () v Lam x e1 � do
if_ :: c x z � c y z env ← getEnv � ()� c (v, (x, y)) z closure � (Lam x e1, env)

App e1 e2 � do
class IsClosure v env c where fun ← ev � e1

closure :: c (Expr, env) v arg ← ev � e2
applyClosure :: c ((Expr,env),v) v applyClosure' ev � (fun, arg)� c (v, v) v Zero � zero � ()

Succ e1 � do
applyClosure' ev = applyClosure $ v ← ev � e1; succ � v

proc ((e,env),arg) � case e of Pred e1 � do
Lam x body � do v ← ev � e1; pred � v

env' ← extendEnv � (x,arg,env) IfZero e1 e2 e3 � do
localEnv ev � (env', body) v1 ← ev � e1

Y e' � do if_ ev ev � (v1, (e2, e3))
fun' ← localEnv ev � (env, Y e') Y e1 � do
applyClosure' ev � (fun',arg) fun ← ev � e1

_ � fail � show e env ← getEnv � ()
arg ← closure � (Y e1, env)
applyClosure' ev � (fun, arg)

Listing 3.6: Generic interpreter for PCF and its language specific interface.

interpreter in Listing 3.6 uses a helper function apply' to apply a closure value to an argument
value. Since we had proven the soundness of the language-independent arrow operations, the
soundness proof for the shared code in apply' decomposed into just 3 soundness lemmas about
interface operations: one for apply, the operation that unpacks a closure; one for extendEnv, the
operation that extends the environment with an argument value; and one for localEnv, the op-
eration that interprets under the extended environment. The functionality of apply' requires a
manual proof in Darais’ thesis, but in our setting, we get soundness of apply' for free because it
is shared code and is sound by Theorem 3.5.2. There are of course also commonalities between
the proofs, most significantly, we borrow the soundness lemma for fixpoints from Darais.

In summary, we developed a 𝑘-CFA analysis for PCF in our framework. We compositionally
proved this analysis sound by verifying 16 smaller and individually provable lemmas. Thus, our
techniques can be used to prove soundness of 𝑘-CFA, an interesting and widely studied static
analysis (RQ1). As we argued, the resulting proof is less complex and required less effort than a
traditional proof (RQ2).

3.7 Related Work

Our work is a continuation of a long line of research on constructing and proving the soundness
of abstract interpreters. We have already related to many relevant sources throughout this paper.
Here, we discuss related work in more detail.

One of the main ideas of abstract interpretation is to systematically derive a sound static
analysis from a concrete semantics, by using the soundness proposition and proof as the guiding
principle. Cousot and Cousot [1979] pioneered the approach, which has since been extended to
a wide range of domains and semantic styles [Cousot 1999]. Such derivations enable soundness
proofs that follow a systematic sequence of derivation and proof steps. But these proof steps can
be involved, especially for interesting languages where one case of the abstract interpreter relates
to many cases of the concrete interpreter. The focus of our work is to minimize the effort and
complexity involved in proving soundness. We achieve this by factoring the concrete and abstract

38

3.7. Related Work

interpreter into a shared implementation that is parameterized over an arrow-based interface. The
abstract instance of that interface can still be derived using techniques described by Cousot [1999].
However, in our experience, a soundness proof after the definition is easier because the proof goal
is clear and progress can be made from either concrete and abstract side.

The idea of defining a language by implementing an interpreter in a meta-language (defini-
tional interpreters) was famously described by Reynolds [1998]. In the context of abstract in-
terpretation, the idea was explored even earlier by Jones and Nielson [1994], who describe an
approach that translates expressions of the object language into expressions of a suitable meta-
language. Constructs of the meta-language then have two different interpretations, one that
recovers to the concrete semantics and one that recovers the abstract semantics of the object lan-
guage. As a reasoning principle for soundness, the authors define a logical relation [Plotkin 1980]
over the meta-language. The main benefit from using a logical relation is, soundness of all pro-
grams in the meta-language follows from soundness lemmas for each meta-language construct.
The logical relation has to be proven when the meta-language is created and maintained when
the meta-language changes. Compared to this paper, we use arrows as a meta-language and their
induction principle as reasoning tool for soundness. This induction principle is very similar to a
logical relation as it allows us to prove soundness of any arrow expression from soundness lem-
mas for each arrow operation. However, the main benefit of this induction principle is that we
do not need to prove or maintain the induction principle itself. The induction principle follows
for free from the fact that we use arrows, which are a first order language and can be expressed
by an algebraic datatype.

The topic of definitional abstract interpreters was also recently revisited by Darais et al. [2017].
They show that an abstract definitional interpreter inherits properties of the meta-language, such
as push-down control-flow precision. Similarly to our work, the concrete and abstract interpreter
that Darais et al. present share code, but over a monadic interface instead of one based on arrows.
Another similarity is that the abstract interpreters that we present can be regarded as definitional
abstract interpreters, since we are using a meta-language to define our interpreters. The main
difference between the work of Darais et al. is that we use a restricted meta-language (arrows),
not necessarily as a means to inherit functional properties, but as a means to making soundness
proofs compositional, which was not the focus of Darais et al.. We provide a generic theorem that
ensures the soundness of an arrow-based abstract interpreter based on the soundness lemmas of
the arrow operations, and we use parametricity to obtain soundness of embedded pure functions
for free.

Monadic abstract interpreters by Sergey et al. [2013] show that concepts in static analysis
such as context-sensitivity, poly-variance, flow-sensitivity, etc. are independent of any particu-
lar language semantics and can be captured by an appropriate monad. These results carry over
to our abstract interpreters based on arrows, because every monad gives rise to a Kleisli arrow.
Sergey et al. describe their semantics using a shared monadic small-step abstract machine, but
do not address the question of how to prove soundness of monadic abstract interpreters. We
address soundness in this paper by factoring concrete and abstract interpreter into a shared big-
step interpreter, which enables compositional soundness proofs. The usage of arrows provides
an induction principle, which allowed us to ensure the soundness of the abstract interpreter by
construction of sound arrow operations. We expect that it is possible to define a small-step ab-
stract machine in the style of Sergey et al., but using arrows instead of monads in a way that our
generic theorems apply.

Galois transformers and modular abstract interpreters by Darais et al. [2015] represent a sys-
tematic way to construct monadic abstract interpreters. Galois transformers are monad trans-
formers, whose monadic operations can be proven sound with respect to each other. While our
technique decomposes a soundness proof along operations of an interface, Galois transformers
decompose a soundness proof along a monad transformer stack. For example, the operations
get for fetching and put for writing state can be proven sound with respect to the concrete and
abstract state monad transformer, independent of the rest of the monad transformer stack. The
technique described in our paper and Galois transformers complement each other: Galois trans-
formers still require a way to compose the lemmas of operations to a proof of the interpreters,
which we provide. And our technique can benefit from decomposing the proof of soundness
lemmas even further. In the future we want to combine these two approaches by using arrow

39

3. CaptuRing the SimilaRities between ConcRete and AbstRact InteRpReteRs

transformers to achieve an even larger degree of proof decomposition.
Abstracting abstract machines (AAM) by Horn and Might [2010] is a technique for deriving

sound abstract interpreters from concrete language semantics described as abstract machines.
The concrete semantics is transformed in multiple steps to an abstract machine that is suitable
to be approximated by an abstract interpreter. Each step of the transformation is systematic and
preserves soundness with respect to the original concrete semantics. A consequence of this ap-
proach is that there must be a one-to-one correspondence between transitions in the concrete and
abstract semantics. As we have discussed in Section 3.2, this is often not the case, for example, for
ifZero over the interval domain. In contrast, our approach only requires a one-to-one correspon-
dence between concrete and abstract arrow operations, but allows for a mismatch within these
operations: An abstract operation can distinguish 𝑚 cases even if the corresponding concrete
operation distinguishes 𝑛 cases.

Cousot et al. [2006] describe a different technique of soundness proof composition which is
orthogonal to ours: The technique is for composing separate abstract analyses by organizing
them in a hierarchy, such that analyses further down in the hierarchy can be influenced by the
output from analyses further up, but not the other way around. The focus of our paper is not on
composing different analyses, but rather on composing a soundness proof for a generic abstract
interpreter from reusable lemmas about the operations of the language being abstracted.

3.8 Conclusion

We have presented a novel technique for defining concrete and abstract interpreters by sharing
code over an interface based on arrows. Such interpreters can be proven sound compositionally:
Our Theorem 3.4.1 tells us how to compose such a proof, and reduces the effort of proving sound-
ness to the effort of proving a context-free soundness lemma for each interface operation and
each embedded pure function in the generic interpreter. Our Theorem 3.5.2 applies parametricity
to obtain the soundness of the embedded pure functions for free, which further reduces the proof
effort. We demonstrated the applicability of our technique by implementing two case study anal-
yses and proving them sound: a tree-shape analysis for Stratego and a 𝑘-CFA analysis for PCF.
Compared to traditional soundness proofs abstract interpreters, our soundness proofs are less
complex and require less effort because we were able to decompose large proof obligations into
independent soundness lemmas, from which the soundness of the abstract interpreters follows
by construction. In the future, we want to investigate how our technique scales to even more
complicated languages and analyses.

40

4SOUND AND REUSABLE COMPONENTS
FOR ABSTRACT INTERPRETATION

This chapter is based on the following peer-reviewed paper:
Sound and reusable components for abstract interpretation.
Sven Keidel and Sebastian Erdweg.
Proc. ACM Program. Lang. 3, OOPSLA (2019), 176:1–176:28.
https://doi.org/10.1145/3360602

Abstract —Abstract interpretation is a methodology for defining sound static analysis. Yet, build-
ing sound static analyses for modern programming languages is difficult, because these static
analyses need to combine sophisticated abstractions for values, environments, stores, etc. How-
ever, static analyses often tightly couple these abstractions in the implementation, which not
only complicates the implementation, but also makes it hard to decide which parts of the anal-
yses can be proven sound independently from each other. Furthermore, this coupling makes it
hard to combine soundness lemmas for parts of the analysis to a soundness proof of the complete
analysis.

To solve this problem, we propose to construct static analyses modularly from reusable anal-
ysis components. Each analysis component encapsulates a single analysis concern and can be
proven sound independently from the analysis where it is used. We base the design of our anal-
ysis components on arrow transformers, which allows us to compose analysis components. This
composition preserves soundness, which guarantees that a static analysis is sound, if all its anal-
ysis components are sound. This means that analysis developers do not have to worry about
soundness as long as they reuse sound analysis components. To evaluate our approach, we devel-
oped a library of 13 reusable analysis components in Haskell. We use these components to define
a 𝑘-CFA analysis for PCF and an interval and reaching definition analysis for a While language.

4.1 Introduction

Abstract interpretation [Cousot and Cousot 1979] is a methodology for defining sound static anal-
ysis. A static analysis is sound if it predicts, at compile time, all relevant dynamic behavior of
a program. For example, if a sound static nullness analysis claims a variable is not null, then
this variable may not store a null pointer in any execution of the program. Analysis soundness
is important whenever a developer or optimizing compiler acts on the analysis result [Knoop
and Rüthing 1999]. For example, when a developer or compiler omits a null check, only a sound
nullness analysis can provide the required guarantee that this check is indeed redundant.

Building sound static analyses for modern programming languages is difficult. Analysis de-
velopers must provide abstractions for all values (e.g., integers, strings, objects) as well as for all
effects (e.g., environments, stores, exceptions) supported by the analyzed language. The combina-
tion of these abstractions forms the essence of a static analysis. However, a static analysis often
closely couples different abstractions, which makes it harder to replace them. This coupling also
complicates a soundness proof, as it is not clear which parts of the analysis can be proven sound
independently and which parts have to be proven together. Furthermore, the coupling makes
it hard to establish an end-to-end soundness proof, from soundness lemmas for each part of the
analysis.

In this paper, we propose analysis components as modular building blocks for static analyses.
An analysis component is governed by an interface I that describes which concern of the ana-
lyzed language the component implements. For example, an analysis component for stores will
enlist read and write operations in its interface I. The crucial feature of analysis components is
that they can be proven sound individually, and the soundness of the complete static analysis fol-
lows by construction. To this end, each analysis provides both the canonical concrete semantics
C and an abstract semantics𝐶 for the operations enlisted in the interface. An analysis component

41

https://doi.org/10.1145/3360602

4. Sound and Reusable Components foR AbstRact InteRpRetation

is sound if for each operation in I, the abstract semantics𝐶 approximates the concrete semantics
C. Analysis developers can use such analysis components as building blocks to construct sound
static analyses.

In our approach, analysis developers define a static analysis as an interpreter against the
interfaces of analysis components. We call such an interpreter a generic interpreter because it is
not specific to the concrete or abstract semantics stipulated by the analysis components. Indeed,
we can instantiate the same generic interpreter to obtain a range of alternative language semantics
by selecting compatible components:
• We obtain a concrete interpreter using the canonical concrete semanticsC of the components.
• We obtain an abstract interpreter using the abstract semantics 𝐶 of the components.

A key theoretical result of this work is that the instantiated abstract interpreter is guaranteed
to soundly approximate the instantiated concrete interpreter if the used analysis components are
sound. That is, analysis developers do not need to worry about soundness as long as they combine
sound analysis components.

As consequence of our design, the same analysis component can be reused across analyses
and across languages without change. For example, when researchers discover a new abstraction
for stores, they can cast it as an analysis component implementing the Store interface and prove
the component sound. Afterwards, any existing analysis that uses a Store component can easily
be upgraded to use the new abstraction, without needing to revisit the soundness of the analysis.
Moreover, many analysis components like Store are actually language-independent and can be
reused across languages. Indeed, most language-specific behavior is captured by the generic
interpreter. Thus, to target a new language, an analysis developer can reuse existing analysis
components and only has to develop a generic interpreter for the new language.

We demonstrate that our design is feasible by developing an component-based analysis frame-
work in Haskell. In our framework, we represent analysis components as a pair of arrow trans-
formers, a generalization of monad transformers. We can compose these arrow transformers and
use them to instantiate the generic interpreter, thus obtaining executable concrete and abstract
interpreters. We extend the arrow-based theory on compositional soundness proofs for abstract
interpreters by Keidel et al. [2018] to allow reasoning about isolated arrow transformers. This
forms the basis of our new theory about horizontal and vertical composability of analysis com-
ponents, and the proof obligations entailed thereby.

We evaluate our design by creating the open-source library Sturdy of 13 sound analysis com-
ponents in Haskell. We demonstrate the applicability of our analysis components by using them
to define well-known analyses: A 𝑘-CFA analysis [Shivers 1991] for PCF as well as an interval
analysis [Nielson et al. 1999] for a While language. We were able to define both analyses mod-
ularly by describing generic interpreters and analysis components separately. We then changed
theWhile analysis in two different ways to study the impact on the analysis definition and sound-
ness proof. First, we changed the analysis to additionally compute reaching definitions [Nielson
et al. 1999] rather than intervals only. Second, we changed the While language to add exception
handling. In both cases, changes were confined to a single analysis component and the generic
interpreter, whereas the rest of the analysis definition and soundness proofs remained stable.

In summary, we make the following contributions:
• We propose an approach for themodular construction of static analyses from reusable analysis
components, which are based on arrow transformers (Section 4.2).

• We define a soundness proposition for analysis components and demonstrate how they can
be shown sound in isolation (Section 4.3).

• We develop a theory that explains the horizontal and vertical composition of analysis compo-
nents and when their soundness is preserved (Section 4.4).

• We prove that a static analysis based on analysis components is sound, if all its analysis com-
ponents are sound (Section 4.5).

• We provide an open-source library of reusable analysis components in Haskell (Section 4.6).
• We evaluate the applicability and reusability of our components by defining a 𝑘-CFA analysis,
an interval analysis, and a reaching definitions analysis (Section 4.7).

42

4.2. Analysis Components By Example

4.2 Analysis Components By Example

Static analyses mix language concerns, which convolutes their implementation and soundness
proof. In this section, we first illustrate the problems that arise when analyses mix concerns,
before sketching our solution of analysis components.

4.2.1 Problem Statement

A static analysis is sound if it correctly approximates the concrete semantics. Analysis sound-
ness has been specifically well-studied for abstract interpreters, which need to approximate the
concrete interpreter. Unfortunately, the soundness criteria for abstract interpreters requires rea-
soning about the whole interpreter definition. As we show here, such non-modular reasoning
quickly becomes unwieldy, even for simple languages.

For example, consider the following concrete interpreter run and abstract interpreter r̂un for a
simple While language implemented in Haskell. We only show the case for assignments Assign.

data Expr = …
data Stmt = Assign Var Expr | If Expr [Stmt] [Stmt] | While Expr [Stmt]

run :: Map Var Addr1 � Map Addr Val2 � [Stmt] � Maybe3 (Map Addr Val2)
run env1 store2 (Assign var expr : rest) = case3 eval env1 store2 expr of

Just3 val � case lookup1 var env1 of
Just addr � run env1 (insert2 addr val store2) rest
Nothing � let addr = alloc env1 var

in run (insert1 var addr env1) (insert2 addr val store2) rest
Nothing3 � Nothing3

r̂un :: Map Var Addr1 � M̂ap Addr V̂al2 � Int4 � [Stmt] � �Maybe3 (M̂ap Addr V̂al2)
r̂un _ _ fuel4 _ | fuel ≤ 04 = JustOrNothing3 >2
r̂un env1 store2 fuel4 (Assign var expr : ss) = case3 �eval env1 store2 expr of

Just3 val � case lookup1 var env1 of
Just addr � r̂un env1 (insertWith2 (t) addr val store2) (fuel-14) ss
Nothing � let addr = �alloc env1 store2 var val

in r̂un (insert1 var addr env1) (insertWith2 (t) addr val store2) (fuel-14) ss
Nothing3 � Nothing3
JustOrNothing3 val � Nothing3 t (... same code as for Just3 val)

The concrete interpreter run takes an environment (mapping variables to addresses) and a store
(mapping addresses to values), and yields a possibly updated store if the execution does not fail.
The interpreter code itself is standard, but we color-coded and enumerated the parts of the code
that relate to different concerns: environment1, store2, and failure3.

The abstract interpreter r̂un handles a fourth concern: termination4. In this simple example,
we use a fuel counter that we decrease on every recursive call, and we top out when no fuel is
left. For the environment1 concern, r̂un uses the same representation and operations as run, but
addresses may now be shared between variables. For the store2 concern, r̂un uses a representa-
tion that maps addresses to an abstract value domain V̂al, and it uses insertWith to join values
in the store. Finally, for the failure3 concern, r̂un uses a representation with a third alternative
JustOrNothing.

Even though the analysis r̂un is fairly simple, it highlights two key challenges when develop-
ing sound static analyses:
Modular Implementation The code of the analysis r̂un fails to separate concerns andmixes them

with language-specific code. That is, all concerns are directly addressed in the analysis code
and there is high coupling. This entails the standard problems [Parnas 1972]: It becomes hard
to update the code of one concern without affecting other concerns.
Ideally, we would like to implement each concern separately and independent of r̂un as a
reusable component. That is, we would like to hide the implementation of each concern be-
hind an interface and only use that interface in r̂un. We could then instantiate r̂un by select-
ing and composing appropriate components. This would allows us, for example, to exchange

43

4. Sound and Reusable Components foR AbstRact InteRpRetation

Interface Soundness Proof
class ExceptOps exc e where

throw :: e � exc e x
catch :: exc e y � (e � y) � y

throw ¤v �throw
catch ¤v �catch

Concrete Instance Abstract Instance
data Except e x =

Success x | Fail e

instance ExceptOps Except e where
throw e = Fail e
catch exc h = case exc of
Success x � x
Fail e � h e

data �Except e x =�Success x | �Fail e | �SuccessOrFail x e

instance ExceptOps �Except e where�throw e = �Fail e�catch exc h = case exc of�Success x � x�Fail e � h e�SuccessOrFail x e � x t h e

Figure 4.1: Preliminary design of an analysis component for exceptions. We write f ¤v f̂ as a short-
hand to say that f̂ soundly approximates f.

the implementation for stores without having to think about environments or failures. This
would also make it easier to adapt the analysis when the analyzed language changes. Many
existing analysis frameworks separate concerns to some extent (e.g., call graph construction
and transfer functions), but in a way that precludes addressing the second challenge.

Modular Soundness Proof The entanglement of concerns in r̂un also complicates the soundness
proof significantly. In order to show that r̂un soundly approximates run, we have to reason
about all concerns at once. Moreover, a change to any of the concerns potentially invalidates
the entire soundness proof. Essentially, the problems from the implementation are reflected
in the soundness proof: It becomes hard to update the code of one concern without affecting
the other ones.
Ideally, we would like to prove the soundness of each component separately and independent
of r̂un. That is, we would like to find a soundness proposition that we can prove separately
for each component, and only use that proposition in the soundness proof of r̂un. We can
then obtain a provably sound analysis by instantiating r̂un with appropriate components, as
long as each component satisfies the soundness proposition. One of the key questions is how
such a soundness proposition may look like, and how sound components can be composed to
yield sound compound components.

In the remainder of this section, we will discuss two designs of components for modularly defined
and sound static analyses. The first component design is simple yet fails to address our challenges,
illustrating why a good component design is difficult to come by. We resolve these issues in our
second component design, which is based on arrow transformers.

4.2.2 A First Attempt to Design Analysis Components

In this subsection, we propose a preliminary design for analysis components that addresses parts
of the two challenges of the previous subsection. In this preliminary design, an analysis compo-
nent consists of four parts, as we illustrate in Figure 4.1: An interface describing the operations
of the component, a concrete and an abstract instance of the interface to define the concrete and
abstract semantics, and a proof that the abstract semantics soundly approximates the concrete
semantics for each operation.

We illustrate this design in Figure 4.1 for a component providing exception handling. The
interface is parameterized by an exception type exc e x, which describes a computation that
throws an exception e or terminates successfully with x. The catch operation takes a computation
exc e y and extracts the value y or handles the exception with (e � y). The concrete instance
of the component use data type Except as exception type and implements the operations in a
standardway. The abstract instance uses error type�Except that has an extra case �SuccessOrFail,
representing a computation that succeeded or failed. For �SuccessOrFail, the abstract �catch
joins (t) the outcomes of the success and fail cases. Finally, the component contains a soundness
proof for �throw and �catch (we skip the details for now). This preliminary design of analysis
components addresses parts of our design challenges, but not all of them:

44

4.2. Analysis Components By Example

Modular Implementation We succeeded in encapsulating analysis concerns in components, and
components can be exchangedwith other components implementing the same interface. How-
ever, our components do not compose. For example, consider the composition of the excep-
tion component from above with a component for stores. The problem is that the exception
component describes computations of the form e � y (see the type of catch), where the store
component describes computations of type (store,x) � (store,y). To add stores, we would
need to change the type of the catch operation to thread a store:
catch :: (store,exc e y) � (e � (store,y)) � (store,y)

This is not modular because the interface for the exception component has changed in an
incompatible way and we cannot reuse previous implementations. To resolve this, we need
to make the exception component parametric in the shape of computations so that it can
accommodate effects (like store passing) imposed by other components.

Modular Soundness Proof We succeeded in making the soundness of each analysis component
separately provable. For example, we can show that �catch soundly approximates catch given
a standard Galois connection between Except and �Except. But as long as the composition
of components requires changes to the interface or instances to accommodate new effects,
previous soundness proofs become void. The question is what happens when we follow our
plan of making components parametric in the shape of computations. This will require us to
make the soundness proofs parametric, too, meaningwe need to proof soundness independent
of effects imposed by other components.

In the following subsection, we refine our first design to address both challenges.

4.2.3 Arrow-Based Analysis Components

In the previous subsection, we presented a preliminary design for analysis components that sup-
ported separation of concerns but failed to support component composition. To make analy-
sis components composable, we abstract over the effects imposed by other components using a
higher-order type parameter c, which we add to each interface as illustrated in Figure 4.2 for ex-
ceptions. The type parameter c has kind ∗ � ∗ � ∗ and describes computations, that is, c x y is a
computation with input x and output y. In the literature, this design is known as arrows [Hughes
2000]

Arrows abstract over effects of computations and are a generalization of monads. For example,
we can define an arrow Arr as Arr x y = (Store,x) � Except e (Store,y), which represents a
computation that threads a store and may yield an exception. But, importantly, we can define
parametric arrow computations without specifying the exact arrow type. This is similar to mon-
ads, which provide return and bind operations for defining parametric monadic computations.
The set of operations for arrows is somewhat larger, but in this paper we will hide the details
using the proc-notation [Paterson 2001] that is similar to monadic do-notation. For example, the
implementation of catch in the concrete instance of Figure 4.2 uses proc x � ... to introduce
an arrow computation that binds the input to x. Arrow statement exc ← f � x runs f on input
x and binds the result to variable exc. Function returnA has type (c x x) and embeds its input as
an arrow output.

Keidel et al. [2018] have previously explored the usage of arrows in the definition of abstract
interpreters. They showed that it is possible to define an arrow type for the concrete domain
and a separate arrow type for the abstract domain, such that a single generic interpreter can be
instantiated to yield the concrete and abstract semantics, respectively. They also showed that
this design allows compositional soundness proofs, where each operation of the arrows can be
verified independently and the soundness of the instantiated interpreters follows by construction.
However, Keidel et al. fail our goal: Their arrows only separate concrete from abstract domain but
fail to separate concerns like exceptions and stores—they did not consider analysis components.

Inspired by their work, we use arrows in the interface of our analysis components. However,
components can only be composable if their implementations permit effects from other compo-
nents. To this end, we define the concrete and abstract instances of our analysis components using
arrow transformers. An arrow transformer wraps an arrow type to impose additional effects. For

45

4. Sound and Reusable Components foR AbstRact InteRpRetation

Interface Soundness Proof
class ArrowExcept e c where

throw :: c e x
catch :: c x y � c (x,e) y � c x y

∀c⇆ ĉ,
throwc ¤v�throwĉ
catchc ¤v�catchĉ

Concrete Instance Abstract Instance
data Except e x =

Success x | Fail e
type ExceptT e c x y = c x (Except e y)

instance ArrowExcept e (ExceptT e c)
throw = proc e � returnA � Fail e
catch f h = proc x � do
exc ← f � x
case exc of

Success x � returnA � x
Fail e � h � (x,e)

data �Except e x =�Success x | �Fail e | �SuccessOrFail x e
type �ExceptT e c x y = c x (�Except e y)

instance ArrowExcept e (�ExceptT e c)�throw = proc e � returnA � �Fail e�catch f h = proc x � do
exc ← f � x
case exc of�Success y � returnA � y�Fail e � h � (x,e)�SuccessOrFail y e � (returnA � y)

t (h � (x,e))

Figure 4.2: An arrow-based analysis component for exceptions.

example, the concrete instance in Figure 4.2 uses arrow transformer ExceptT e c, which adds ex-
ceptions of type e to the output of a computation c. We do the same in the abstract instance using
arrow transformer �ExceptT e c. Using arrow transformers, the implementation of the concrete
and abstract operations is parametric in the underlying arrow except for the locally added effect
(here: the propagation and representation of exceptions). From now on, we use the notation
〈ExceptT, �ExceptT〉ArrowExcept to refer to analysis components.

The revised design based on arrow-transformers addresses both of our design goals, where
our preliminary design fell short:
Modular Implementation Each component encapsulates a single analysis concern and is ex-

changeable with other components implementing the same interface. However, in contrast
to our preliminary design, analysis components based on arrow transformers are composable.
For example, we can compose the exception component 〈ExceptT, �ExceptT〉ArrowExcept with
a store component 〈StoreT,�StoreT〉ArrowStore to obtain a component which combines both
effects:

〈ExceptT, �ExceptT〉ArrowExcept ◦ 〈StoreT,�StoreT〉ArrowStore
= 〈ExceptT ◦ StoreT, �ExceptT ◦�StoreT〉ArrowExcept+ArrowStore

Specifically, the composition of arrow transformers stacks their effects (ExceptT e (StoreT c)),
while the composition of interfaces combines all operations in a new interface. We do not
need to change the implementation of either component. Like monad transformers [Liang
et al. 1995], the composition of arrow transformers requires a lifting of the inner arrow trans-
former to the outermost transformer. We show in our evaluation that these liftings are mostly
boilerplate and can be derived automatically.

Modular Soundness Proof Like in the preliminary design, we can prove soundness of an arrow-
based component by proving each operation of the interface sound. However, since we use
arrow transformers, components are parametric in the effects of other components and the
soundness proof must be parametric as well. That is, we must show that �throwĉ is sound
with respect to throwc for any related arrows ĉ and c. We found that such generic soundness
proofs are feasible and we provide a large library of provably sound analysis components in
Section 4.6. Sound analysis components following our design are freely composable and their
composition always remains sound. We provide the formal results in the upcoming sections.

4.2.4 Instantiating Concrete and Abstract Interpreters

Using the analysis components described in the previous subsection, we can refactor the concrete
and abstract interpreter of Section 4.2.1. First, we extract a generic interpreter as proposed by Kei-
del et al. [2018] to capture the similarities of the concrete and abstract interpreter. In contrast to
Keidel et al., we parameterize the generic interpreter using the interfaces of analysis components:

46

4.3. Analysis Components And Their Soundness

runGeneric :: (ArrowEnv String addr c, ArrowStore addr val c, ArrowExcept e c, ArrowFix c)
⇒ c [Statement] ()

runGeneric = fix $ 𝜆run' � proc stmts � case stmts of
Assign var expr : rest � do

val ← eval � expr
addr ← lookup id alloc � var
write � (addr,val)
local run' � (var,addr,rest)

...

The second step of our refactoring is to compose analysis components implementing all required
interfaces of the generic interpreter:

〈EnvT,�EnvT〉ArrowEnv ◦ 〈StoreT,�StoreT〉ArrowStore ◦ 〈ExceptT, �ExceptT〉ArrowExcept ◦ 〈Fix, F̂ix〉ArrowFix
The order in which the analysis components are composed matters. For example, in the order
above, we obtain a language semantics in which store updates in a try block are reset whenever
an exception occurs. In contrast, if we swap the order of the store and exception component, we
obtain a language semantics in which store updates persist whenever an exception occurs.

The third and final step is to obtain the original concrete and abstract interpreters from Sec-
tion 4.2.1 by instantiating the generic interpreter. The concrete slice of the composed analysis
component yields the concrete interpreter, the abstract slice yields the abstract interpreter. In
Haskell it suffices to specify the desired interpreter type and let the implicit type-class inference
select the correct component instances:

run :: EnvT (StoreT (ExceptT Fix)) [Stmt] ()
run = runGeneric

r̂un ::�EnvT (�StoreT (�ExceptT F̂ix)) [Stmt] ()
r̂un = runGeneric

As we show in the following sections, we obtain that an abstract interpreter r̂un soundly
approximates a concrete interpreter run if they are instances of the same generic interpreter and
the fully-composed analysis component is sound. The fully-composed analysis component is
sound if all individual analysis components are sound. Thus, analysis soundness follows directly
from using sound analysis components.

4.3 Analysis Components And Their Soundness

To be able to rely on the results of an analysis, the analysis has to be proven sound. In this section,
we describe our analysis components formally and how to prove them sound.

To set the stage, let us first recall the definition of soundness [Cousot 1999]: A concrete func-
tion 𝑓 : 𝐴 → 𝐵 is sound with respect to an abstract function 𝑓 : 𝐴 → 𝐵, if all behavior of 𝑓 is
overapproximated by 𝑓 . More formally, let 𝛼𝐴 : P𝐴 ⇆ 𝐴 : 𝛾𝐴 and 𝛼𝐵 : P𝐵 ⇆ 𝐵 : 𝛾𝐵 be Galois
connections between concrete and abstract domains, then

𝑓 is sound w.r.t. 𝑓 iff ∀𝑋 ∈ P𝐴. 𝛼𝐵{𝑓 (𝑥) | 𝑥 ∈ 𝑋 } v 𝑓 (𝛼𝐴 (𝑋)) .

Here the powersetsP𝐴 andP𝐵 describe properties of the concrete domain. Given such a property
𝑋 ∈ P𝐴 about the inputs of 𝑓 , the set {𝑓 (𝑥) | 𝑥 ∈ 𝑋 } describes the strongest post-condition of 𝑓
for the pre-condition 𝑋 .

This soundness proposition is relative to the Galois connection (𝛼𝐴, 𝛾𝐴) and (𝛼𝐵, 𝛾𝐵). These
Galois connections describe how concrete properties P𝐴 and P𝐵 correspond to abstract values𝐴
and𝐵. Choosing a Galois connection and an ordering of the abstract domains𝐴 and𝐵 is part of the
analysis design and different Galois connections provide different soundness guarantees. In the
following subsection, we describe how to construct Galois connections for analysis components.

4.3.1 Galois Connections between Analysis Components

Proving soundness requires a Galois connection that relates a concrete domain 𝐴 to an abstract
domain 𝐴. A Galois connection [Ore 1944] between two preorders 𝐴 and 𝐴 consists of a pair of

47

4. Sound and Reusable Components foR AbstRact InteRpRetation

monotone functions (𝛼,𝛾), where 𝛼 : 𝐴 → 𝐴 is called the abstraction function and 𝛾 : 𝐴 → 𝐴 is
called the concretization function, such that

∀𝑥 ∈ 𝐴, 𝑥 ∈ 𝐴. 𝛼 (𝑥) v𝐴 𝑥 iff 𝑥 v𝐴 𝛾 (𝑥).
Our analysis components consist of operations over a pair of arrow transformers. To relate

these operations in a soundness proof, we need to define a Galois connection between these arrow
transformers. However, we first describe the shape of Galois connections for regular arrows,
because this will guide the design of Galois connections for arrow transformers.

In the following, we use the notation G(𝐴,𝐴) to denote the set of all Galois connections
between the types 𝐴 and 𝐴. An arrow C is a function that constructs the type of a computation
C(𝐴, 𝐵), whose input type is 𝐴 and output type is 𝐵. Analogously, a Galois connection between
two arrows [Keidel et al. 2018] C and Ĉ is a function that takes a Galois connection between
the inputs G(P𝐴,𝐴) and outputs G(P𝐵, 𝐵) and constructs Galois connection between the arrow
types:

∀𝐴,𝐴, 𝐵, 𝐵. G(P𝐴,𝐴) × G(P𝐵, 𝐵) → G(C(𝐴, 𝐵), Ĉ(𝐴, 𝐵)) .
Since our analysis components consist of arrow transformers, we need to generalize the con-

struction further. A Galois connection between arrow transformers T and T̂ maps a Galois
connection between the underlying arrow types C and Ĉ to a Galois connection between the
transformed arrow types T(C) and T̂(Ĉ).

Definition 4.3.1. A Galois connection for an analysis component 〈T, T̂〉 is a Galois connection
between the two arrow transformers T and T̂. It has the following type:

∀C, Ĉ.
[
∀𝐴,𝐴, 𝐵, 𝐵.G(P𝐴,𝐴) × G(P𝐵, 𝐵) → G(C(𝐴, 𝐵), Ĉ(𝐴, 𝐵))

]
→

[
∀𝐴,𝐴, 𝐵, 𝐵.G(P𝐴,𝐴) × G(P𝐵, 𝐵) → G(T(C)(𝐴, 𝐵), T̂(Ĉ)(𝐴, 𝐵))

]
.

That is, given a Galois connection between the underlying arrow types C and Ĉ, the function
constructs a Galois connection between the arrows T(C) and T̂(Ĉ).

The design of an analysis component crucially depends on the choice of Galois connection.
The Galois connection dictates how the component’s abstract arrow transformer needs to approx-
imate the concrete transformer. Moreover, the Galois connection is not uniquely determined; dif-
ferent Galois connections provide different soundness guarantees. Therefore, the developer of an
analysis component also has to specify the corresponding Galois connection in accordance with
Definition 4.3.1.
Example 4.3.1. For example, a Galois connection between two exception arrow transformers
ExceptT𝐸 (C)(𝐴, 𝐵) = C(𝐴, Error 𝐸 𝐵) and �ExceptT𝐸 (C)(𝐴, 𝐵) = C(𝐴,�Error 𝐸 𝐵) has the type

∀C, Ĉ.
[
∀𝐴,𝐴, 𝐵, 𝐵.G(P𝐴,𝐴) × G(P𝐵, 𝐵) → G(C(𝐴, 𝐵), Ĉ(𝐴, 𝐵))

]
→

[
∀𝐴,𝐴, 𝐵, 𝐵.G(P𝐴,𝐴) × G(P𝐵, 𝐵) → G(Except𝐸 (C) (𝐴, 𝐵), Except𝐸 (Ĉ)(𝐴, 𝐵))

]
.

To construct this Galois connection, we extend the Galois connections for domain and codomain
to include the extra data of the exception arrow transformer. From a Galois connection (𝛼𝐸, 𝛾𝐸)
between the exception types and a Galois connection (𝛼𝐵, 𝛾𝐵) between the codomains, we can
easily derive Galois connections (𝛼Error, 𝛾Error) ∈ G(P(Error 𝐸 𝐵),�Error 𝐸 𝐵) for the codomain
of the exception transformers. Then from the Galois connection (𝛼C, 𝛾C) between the underlying
arrows and (𝛼𝐴, 𝛾𝐴) between the domains, we construct the Galois connection of the underlying
exception transformer types:

𝛼ExceptT = 𝛼C ((𝛼𝐴, 𝛾𝐴), (𝛼Error, 𝛾Error)) 𝛾ExceptT = 𝛾C ((𝛼𝐴, 𝛾𝐴), (𝛼Error, 𝛾Error))
Importantly, all Galois connections of analysis components have the same type shown in

Definition 4.3.1. This allows us to compose these Galois connections with regular function com-
position. This becomes important, when we compose analysis components, which we discuss in
Section 4.4. With Galois connections between arrow transformers, we can develop the soundness
proposition of analysis components.

48

4.3. Analysis Components And Their Soundness

4.3.2 Soundness of Analysis Components

In this subsection, we describe how to prove soundness of analysis components, and what sound-
ness means exactly. In particular, we develop a theory for analysis components and their sound-
ness proofs that allows us to express soundness of arrow operations of arbitrary arity and type.
To this end, we first describe our analysis components more formally.

An analysis component consists of a type class describing the interface of the component
and two instances for two arrow transformers. Type classes and their instances can be described
by algebras for a functor [Hamana and Fiore 2011]. The functor describes the codomain of each
operation of the type class. For arrow type classes, this functor has type SetU×U → SetU×U ,
i.e., it maps arrow types to arrow types. For example, we can describe the type class ArrowExcept
in Figure 4.2 with the functor

ArrowExcept𝐸 (C)(𝑋,𝑌) = [𝑋 ≡ 𝐸] + [C(𝑋,𝑌) × C(𝑋 × 𝐸,𝑌)] .

The first operand of the coproduct describes the type of throw and the second operand the argu-
ments of catch. An algebra over a functor 𝐹 is a function of type ∀𝑋,𝑌 . 𝐹 (C) (𝑋,𝑌) → C(𝑋,𝑌).
This function combines all operations of the type class. In case of ArrowExcept, the algebra com-
bines a computationC(𝐸,𝑌) for throw and a functionC(𝑋,𝑌) ×C(𝑋 ×𝐸,𝑌) → C(𝑋,𝑌) for catch.
In addition, the functor is parameterized by other arguments of the type class. For example, the
functor ArrowExcept𝐸 is parameterized by the type of exceptions 𝐸.

With this theory, we define our analysis components formally as follows:

Definition 4.3.2 (Analysis Component). An analysis component 〈𝑓 , 𝑓 〉 : 〈T, T̂〉𝐹 is a pair of
algebras 〈𝑓 , 𝑓 〉 over a functor 𝐹 : SetU×U → SetU×U , where 〈𝑓 , 𝑓 〉 is a pair of functions 𝑓C :

𝐹 (T(C)) (𝑋,𝑌) → T(C) (𝑋,𝑌) and 𝑓Ĉ : 𝐹 (T̂(Ĉ)) (𝑋,𝑌) → T̂(Ĉ) (𝑋,𝑌).

In this definition, 𝐹 defines the interface of the analysis components, 𝑓 and 𝑓 implement the
interface for arrow transformers T and T̂.

This formal definition of analysis components allows us to define their soundness proposition
precisely:

Definition 4.3.3 (Soundness of Analysis Components). Given an analysis component 〈𝑓 , 𝑓 〉 :

〈T, T̂〉𝐹 and a Galois connection for the arrow transformers of this analysis component, then
the analysis component 〈T, T̂〉𝐹 is sound iff all operations of 𝐹 are pair-wise sound in 𝑓 and 𝑓
according to the Galois connection. More formally, let 𝐹 = 𝐹1+ . . .+𝐹𝑛 be the functor representing
a type class, 𝑓 = 𝑓1 . . . 𝑓𝑛 be the algebra representing the concrete operations, and 𝑓 = 𝑓1 . . . 𝑓𝑛 be
the algebra representing the abstract operations. Then 𝑓 is sound w.r.t. 𝑓 iff

∀𝑥, 𝑥 . 𝛼𝐹 (T) (𝑥) v 𝑥 =⇒ 𝛼T (𝑓𝑖 (𝑥)) v 𝑓𝑖 (𝑥) for all 1 ≤ 𝑖 ≤ 𝑛.

In other words, an analysis component is sound if each operation preserves soundness of their
arguments. For example, in the case of the ArrowExcept component in Figure 4.2 we have to prove
the following two lemmas.

𝛼 (throw) v�throw
∀𝑓 , 𝑓 , 𝑔, 𝑔. 𝛼 (𝑓 , 𝑔) v (𝑓 , 𝑔) =⇒ 𝛼 (catch(𝑓 , 𝑔)) v�catch(𝑓 , 𝑔)

That is, we prove that throw is sound w.r.t. �throw and catch(𝑓 , 𝑔) w.r.t. �catch(𝑓 , 𝑔) given
sound continuations 𝑓 , 𝑓 , 𝑔, 𝑔. In contrast to Keidel et al. [2018], these soundness lemmas for
the ArrowExcept component are reusable because of the following reasons.
• The operations are defined over arrow transformers Except𝐸 (C) and Except𝐸 (Ĉ) and the
proofs are universal in the underlying arrows C and Ĉ, which allows us to swap out the
underlying arrows when we compose this component.

• The proofs are universal in the exception types 𝐸 and 𝐸, which allows us to use this component
and proofs in languages with different exception types.

49

4. Sound and Reusable Components foR AbstRact InteRpRetation

But how do we actually prove these lemmas if we do not know the underlying arrows C and
Ĉ? We need to establish a base-line, which allows us to reason about generic arrows in these
soundness proofs. Fortunately, arrows already provide a basic reasoning tool-kit: the algebraic
arrow laws [Hughes 2000]. To illustrate how such a proof works, we include proofs in the supple-
mentary material accompanying this paper. These proofs show that it is feasible to reason about
soundness of arrow operations over arrow transformers without knowing the underlying arrows
C and Ĉ. The only assumptions we had to make about the arrow operations ofC and Ĉ, was they
are sound, monotone and obey the arrow laws (Section 2.2.3). We demonstrate in the following
section how these assumptions are preserved under composition of components.

To summarize, in this section, we developed a generic theory to prove soundness of analysis
components once and for all. These soundness proofs are reusable, because they are specific to
arrow transformers rather than specific tomonolithic arrows. In the following section, we explain
a different way to define sound analysis components from existing analysis components.

4.4 Sound Composition Of Analysis Components

In Sections 4.2.2 and 4.2.3 we showed that we need to compose analysis components to combine
their effects and to explain how their effects interact. In this section, we describe three different
ways for composing analysis components and prove them sound.

4.4.1 Horizontal Composition

The simplest way of composition occurs when the arrow transformers of a component implement
multiple interfaces 〈T, T̂〉𝐹 and 〈T, T̂〉𝐺 . For example, the transformers ExceptT and �ExceptT
defined in Figure 4.2 do not support a finally f g operation that executes g nomatter if f succeeds
or fails. We capture this operation in a new interface:

class ArrowFinally c where
finally :: c x y � c x () � c x y

We implement this operation in another component 〈ExceptT, �ExceptT〉ArrowFinally with the same
arrow transformers. We horizontally compose 〈ExceptT, �ExceptT〉ArrowExcept with the compo-
nent 〈ExceptT, �ExceptT〉ArrowFinally to obtain the functionality of both components in a new
component 〈ExceptT, �ExceptT〉ArrowExcept+ArrowFinally. More formally:

Definition 4.4.1 (Horizontal Composition). The horizontal composition 〈T, T̂〉𝐹 ⊕ 〈T, T̂〉𝐺 of two
analysis components 〈𝑓 , 𝑓 〉 : 〈T, T̂〉𝐹 and 〈𝑔,𝑔〉 : 〈T, T̂〉𝐺 is defined as 〈𝑓 + 𝑔, 𝑓 + 𝑔〉 : 〈T, T̂〉𝐹+𝐺 .

Furthermore, this composition preserves soundness of components:

Theorem 4.4.1 (Horizontal composition preserves soundness). Given sound analysis components
〈T, T̂〉𝐹 and 〈T, T̂〉𝐺 , their horizontal composition 〈T, T̂〉𝐹 ⊕ 〈T, T̂〉𝐺 is sound.

Proof. Follows directly by 4.3.3, because we can separately prove soundness of each operation in
the interface 𝐹 and in 𝐺 . □

To summarize, horizontal composition allows us to compose components with the same arrow
transformers that implement different interfaces.

4.4.2 Component Lifting

In general, analysis components use different arrow transformers to implement different inter-
faces 〈T, T̂〉𝐹 and 〈U, Û〉𝐺 . We detail how to compose such components using vertical composition
in the next subsection. Vertical composition means that we stack one component on top of the
other, effectively wrapping the nested component. Here, we discuss an important preliminary
for vertical composition, namely the lifting of operations of the nested component through the
wrapping.

50

4.4. Sound Composition Of Analysis Components

To compose components vertically, we need to compose their arrow transformers: T ◦ U =
∀C.T(U(C)). Similar tomonad transformers [Liang et al. 1995, Section 8], to make the operations
of 𝑈 available for the composed arrow transformers T ◦ U, we need to lift them through 𝑇 . The
reason is that we cannot interact with the inner arrow transformerU directly; all interaction with
U has to go through T.

For example, to make the ArrowExcept operations defined by ExceptT available in StoreT ◦
ExceptT, we need to lift throw and catch through StoreT. This lifting explains how store passing
interacts with exception handling. To this end, we have to implement a lifting instances that
explains how and when StoreT provides ArrowExcept operations:
instance ArrowExcept e (StoreT (ExceptT e c)) where

throw = Store (proc (_,e) � throw � e)
catch (Store f) (Store g) = Store $ catch f (proc ((s,x),e) � g � (s,(x,e)))

This instance allows Store to provide ArrowExcept operations whenever Store is applied to Except.
The lifting then delegates to the operations of the nested Except transformer.

But this lifting is not reusable, because it is coupled to the composition StoreT ◦ ExceptT. If
we want to replace one of the transformers or if there is another transformer in between StoreT
and ExceptT, the lifting fails to work. Therefore, we generalize the lifting definition to precisely
capture when StoreT can provide ArrowExcept operations:
instance ArrowExcept e c ⇒ ArrowExcept e (StoreT c)

More specifically, StoreT provides ArrowExcept operations whenever the underlying arrow c pro-
vides ArrowExcept operations. The implementation of the operations stays the same. This lifting
is more reusable because it is neither coupled to the arrow transformer Except nor its position in
the transformer stack.

Formally, a lifting of operations in 〈U, Û〉𝐹 through the transformers 〈𝑇,𝑇 〉 corresponds to a
pair of functions 〈𝛿U, 𝛿Û〉 : 〈U, Û〉𝐹 → 〈T ◦U, T̂ ◦ Û〉𝐹 , where 𝛿U lifts the concrete part of the
component and 𝛿Û the abstract part of the component. As discussed above, to make this lifting
reusable, 𝛿U needs to be parametric in U and 𝛿Û parametric in Û.

A lifting of components is sound if the functions 〈𝛿, 𝛿〉 preserve soundness:

Definition 4.4.2 (Soundness of Component Liftings). A lifting 〈𝛿, 𝛿〉 : 〈U, Û〉𝐹 → 〈T ◦U, T̂ ◦ Û〉𝐹
is sound iff the component 〈𝛿 (𝑓), 𝛿 (𝑓)〉 : 〈T ◦U, T̂ ◦ Û〉𝐹 is sound for all sound components
〈𝑓 , 𝑓 〉 : 〈U, Û〉𝐹 .

In general, each lifting has to be shown sound separately. In particular, because liftings are
not unique for a pair of arrow transformers, we cannot formulate a generic soundness theorem.
However, inmany cases we obtain a proof with less or no effort, whichwe discuss in the following.
Reusable liftings. As described above, we can make liftings reusable by abstracting over the un-

derlying arrow and only specifying minimal requirements. We use this technique extensively
to limit the number of lifting instances and soundness arguments needed.

Generic liftings. First-order operations of type c x y often can be lifted with a generic lift op-
eration:
class ArrowLift t c where

lift :: c x y � t c x y

For example, the throw operation that throws an exception can be lifted through the Store

arrow transformer with this generic lift operation:
instance ArrowExcept e c ⇒ ArrowExcept e (StoreT c) where

throw = lift throw

It suffices to show the soundness of the generic lift operation to ensure all its use cases are
sound.

Derivable liftings. Often concrete and abstract arrow transformer are implemented with the
same arrow transformer. For example, the StoreT and �StoreT arrow transformers are both
implemented with the StateT arrow transformer:

51

4. Sound and Reusable Components foR AbstRact InteRpRetation

newtype StateT s c x y = StateT (c (s,x) (s,y))
newtype StoreT c = StoreT (StateT Store c x y)
newtype �StoreT c = �StoreT (StateT Store c x y)

In this case, a lifting for the StoreT and �StoreT arrow transformers can be derived automati-
cally by Haskell [Marlow 2010] from the lifting defined on the underlying StateT arrow trans-
former.

deriving instance ArrowExcept e (StoreT c)
deriving instance ArrowExcept e (�StoreT c)

Furthermore, the liftings for both arrow transformers share the same implementation and all
differences of concrete and abstract store type are universally quantified. Therefore, sound-
ness of this component lifting follows as a free theorem of parametricity [Keidel et al. 2018,
Theorem 5].

We evaluate how many of these liftings fall into either of these categories in Section 4.7.
To summarize, to compose two analysis components with differing arrow transformers, we

need to lift the operations of the inner arrow transformers through the outer arrow transformers.
Such a lifting is sound if it preserves soundness of the underlying component. In general, sound-
ness of these liftings needs to be proven manually, however, often we obtain a soundness proof
with less or no effort if we can reuse the same lifting operation or share the implementation of
the lifting. Equipped with component lifting, we can support the vertical composition of analysis
components.

4.4.3 Vertical Composition of Analysis Components

In the remainder of this section, we discuss how to combine independent analysis components
〈T, T̂〉𝐹 and 〈U, Û〉𝐺 using vertical composition. Our goal is to obtain a new analysis compo-
nent that implements both interfaces 𝐹 and 𝐺 based on the functionality of all involved arrow
transformers. The key idea of vertical composition is to first lift one component and then to use
horizontal lifting on the result.

For example, to obtain an analysis for store passing and exception handling, we compose the
components 〈StoreT,�StoreT〉ArrowStore and 〈ExceptT, �ExceptT〉ArrowExcept. The order in which
we compose these components matters. For example, the order StoreT ◦ ExceptT determines
that store updates are reset while the order ExceptT ◦ StoreT determines that store updates
propagate when an exception occurs.

The composition 〈StoreT,�StoreT〉ArrowStore◦〈ExceptT, �ExceptT〉ArrowExcept of these two com-
ponents requires a combination of techniques we presented in the previous two subsections:
1. We lift the operations of 〈ExceptT, �ExceptT〉ArrowExcept through 〈StoreT,�StoreT〉 to obtain a

component 〈StoreT ◦ ExceptT,�StoreT ◦ �ExceptT〉ArrowExcept.
2. We specialize the generic arrow transformer types of 〈StoreT,�StoreT〉ArrowStore to obtain a

component 〈StoreT ◦ ExceptT,�StoreT ◦ �ExceptT〉ArrowStore.
3. Finally, we horizontally compose both components to obtain a component with the operations

of both interfaces: 〈StoreT ◦ ExceptT,�StoreT ◦ �ExceptT〉ArrowStore+ArrowExcept.
The lifting in this composition is glue code which describes how the two components interact.

More formally, we define vertical composition of analysis components with glue code as fol-
lows:

Definition 4.4.3 (Vertical Composition). The vertical composition 〈T, T̂〉𝐹 ◦Δ 〈U, Û〉𝐺 of two anal-
ysis components 〈𝑓 , 𝑓 〉 : 〈T, T̂〉𝐹 and 〈𝑔,𝑔〉 : 〈U, Û〉𝐺 and a lifting Δ = 〈𝛿, 𝛿〉 : 〈U, Û〉𝐺 →
〈T ◦U, T̂ ◦ Û〉𝐺 is defined as

〈T, T̂〉𝐹 ◦Δ 〈U, Û〉𝐺 : 〈T ◦U, T̂ ◦ Û〉𝐹+𝐺
〈𝑓 , 𝑓 〉 ◦Δ 〈𝑔,𝑔〉 = 〈𝑓 , 𝑓 〉 ⊕ (Δ〈𝑔,𝑔〉) = 〈𝑓 + 𝛿 (𝑔), 𝑓 + 𝛿 (𝑔)〉.

52

4.5. Soundness Of Component-Based Static Analyses

That is, we lift the operations of 〈U, Û〉𝐺 through 〈T, T̂〉 and horizontally compose the result-
ing components. This brings us to the main soundness theorem for the composition of analysis
components.

Theorem 4.4.2 (Vertical composition preserves soundness). Given sound analysis components
〈T, T̂〉𝐹 and 〈U, Û〉𝐺 and a sound lifting Δ : 〈U, Û〉𝐺 → 〈T ◦U, T̂ ◦ Û〉𝐺 , then the vertical compo-
sition 〈T, T̂〉𝐹 ◦Δ 〈U, Û〉𝐺 is sound.

Proof. The lifted component 〈T ◦U, T̂ ◦ Û〉𝐺 is sound because the lifting Δ preserves soundness
(4.4.2) and its input 〈U, Û〉𝐺 is sound. Furthermore, the specialized component 〈T ◦U, T̂ ◦ Û〉𝐹
is sound because 〈T, T̂〉𝐹 is parametric in the underlying arrow. Then by Theorem 4.4.1 the hori-
zontal composition 〈T ◦U, T̂ ◦ Û〉𝐹 ⊕ 〈T ◦U, T̂ ◦ Û〉𝐺 is sound and hence 〈T, T̂〉𝐹 ◦Δ 〈U, Û〉𝐺 is
sound. □

To summarize, in this section we discussed how to soundly compose analysis components
to obtain a complete analyses. The composition of two components with differing arrow trans-
formers and different interfaces requires some glue code that explains how the effects of these
components interact. As for the components themselves, the definition and soundness proof of
glue code can be reused, facilitating the easy construction of provably sound static analyzers.

4.5 Soundness Of Component-Based Static Analyses

The focus in the paper so far has been on analysis components themselves. However, analysis
components alone do not describe complete static analyses. In this section, we describe how to
use analysis components to define complete static analyses. Finally, we prove that any static
analysis, that is based on sound analysis components, is sound.

To use analysis components to describe a static analysis, we need to describe the semantics of
the analyzed language with an arrow-based generic interpreter [Keidel et al. 2018] that captures
the similarities of concrete and abstract semantics. For example, Listing 3.6 in Chapter 3 and
Listing 4.1 in Section 4.7 show the generic interpreters for PCF and a While language. A generic
interpreter does not describe the concrete semantics nor a particular abstract semantics. Instead it
is a template of the language semantics, that we need to instantiate with suitable arrow instances
to obtain the concrete semantics or a particular abstract semantics

To instantiate a generic interpreter with an analysis component, we first compose an analysis
component 〈ConT,�AbsT〉I which matches the interface I of the generic interpreter. However, we
cannot instantiate the generic interpreter with 〈ConT,�AbsT〉 directly because the generic inter-
preter expects arrows, where the analysis component 〈ConT,�AbsT〉 consists of arrow transformers.
To obtain a pair of arrow instances, we apply the analysis component 〈ConT,�AbsT〉 to a pair of
base arrows 〈P_→ P_, _→ _〉. From this application we get the collecting semantics [Cousot
1999] ConT (P_→ P_) of the concrete interpreter and the abstract function space �AbsT (→) of
the abstract interpreter. More importantly, the abstract interpreter run�AbsT (→) soundly approxi-
mates the concrete collecting semantics runConT (P_→P_) , which we prove below.

In fact, any generic interpreter instantiated with any sound analysis component with a com-
patible interface is sound, which leads us to our main soundness theorem:

Theorem 4.5.1 (Soundness of component-based analyses). Let eval𝐶 : I(𝐶) ⇒ 𝐶 (𝑋,𝑌) be a
generic interpreter with an arrow-based interface I. Furthermore, let 〈ConT,�AbsT〉I be a sound
analysis component. Then the abstract semantics eval�AbsT(→) is sound with respect to the concrete
collecting semantics evalConT(P_ → P_) .

Proof. The soundness lemma of the analysis component 〈ConT,�AbsT〉I (Definition 4.3.3) guar-
antees that the pair of arrow instancesConT (P_→ P_) and�AbsT (→) are sound. Furthermore,
the main soundness theorem for arrow-based generic interpreters [Keidel et al. 2018, Theorem 3]
guarantees that the generic interpreter eval�AbsT(→) is sound w.r.t. evalConT(P_→P_) . □

53

4. Sound and Reusable Components foR AbstRact InteRpRetation

Note that the arrows P_→ P_ and (→) implement the Arrow and ArrowChoice type classes.
This requires one extra sound lifting of these operations through the ConT and �AbsT arrow
transformers. Theorem 4.5.1 can be easily extended to account for this lifting, which we omitted
for a cleaner presentation.

To summarize, in this section we have shown how to define a complete static analysis based
on analysis component and how to prove it sound. This requires a generic interpreter for the an-
alyzed language, which captures the similarities of concrete and abstract interpreter. We proved
that this generic interpreter instantiated with a sound analysis component is sound.

4.6 Sturdy: A Library Of Sound And Reusable Analysis Components

We developed the Sturdy library of 13 sound and reusable arrow-based analysis components in
Haskell.1 We use some of these components to implement two static analyses in Section 4.7, to
demonstrate the reusability of these components. In this section, we briefly describe selected
components and then discuss measures to counter their performance overhead.

4.6.1 Analysis Components

Single Transformer Components A good source for components are single arrow transformers
that are used both for the concrete and the abstract interpreter. For example, the arrow trans-
former ReaderT r c adds data of type r to the input of the arrow computation c. It can be easily
turned into an analysis component 〈ReaderT, ReaderT〉ArrowReader that adds data to both the
concrete and abstract interpreter. Furthermore, because the concrete and abstract implemen-
tation of the ArrowReader operations is exactly the same, only differing in the type of data r,
and hence can be proved sound trivially with a soundness theorem for parametricity [Keidel
et al. 2018, Theorem 5].

This way we defined 5 analysis components for reading and writing state, for constant
data, and for continuation-passing style.

〈ReaderT, ReaderT〉ArrowReader 〈StateT, StateT〉ArrowState
〈WriterT, WriterT〉ArrowWriter 〈ConstT, ConstT〉ArrowConst
〈ContT, ContT〉ArrowCont

These arrow transformers are well-known and we borrowed their definition from the arrow
transformer libraries arrows and atl on Hackage.2 Furthermore, some of these arrow trans-
formers appeared in form of monad transformers in [Darais et al. 2015, 2017], which we took
inspiration from.

Environment Components To implement environment components, we created the type class
ArrowEnv with an operation getEnv to fetch an environment, localEnv to set a new environ-
ment in a local context, extendEnv to extend the given environment with a new binding and
lookup to look up a binding in the current environment:
class ArrowEnv var val env c where
getEnv :: c () env localEnv :: c x y � c (env,x) y
extendEnv :: c (var,val,env) env lookup :: c (val,x) y � c x y � c (var,x) y

Based on this interface, we created two components for environments. The first com-
ponent 〈EnvT,�EnvT〉ArrowEnv implements the standard abstraction for environments [Cousot
1999], i.e., a mapping from variables to abstract values.

The second component 〈EnvT, �BoundedEnvT〉ArrowEnv implements a finite abstraction for
environments for languages with closures [Shivers 1991]. In this component abstract envi-
ronments consist of a pair of mappings (MapVar �Addr, Map �Addr V̂al) from variables to ab-
stract addresses to values. By limiting the amount of abstract addresses, the abstract domain
of environments and abstract closures becomes finite.

1https://gitlab.rlp.net/plmz/sturdy/
2http://hackage.haskell.org/

54

https://gitlab.rlp.net/plmz/sturdy/
http://hackage.haskell.org/

4.6. Sturdy: A Library Of Sound And Reusable Analysis Components

All arrow transformers of the environment components are implementedwith the ReaderT
arrow transformer. This gives us the soundness proof for getEnv and localEnv proofs for
free [Keidel et al. 2018] because they are implemented with the same ArrowReader operations.

Store Components To implement store components, we created the type class ArrowStore with
operations to read from and write to a store:
class ArrowStore var val c where

read :: c (val,x) y � c x y � c (var,x) y
write :: c (var,val) ()

Based on this interface we defined a store component 〈StoreT,�StoreT〉ArrowStore, which
implements a path-insensitive store abstraction. The abstract store is a mapping from vari-
ables to abstract values. Each binding indicates if the binding must be present in the store or
may not be present in the store. When we read a may-binding, the operation �read f g joins
results of the success and failure continuations f and g.

Furthermore, we implemented a component 〈ReachingDefsT, �ReachingDefsT〉ArrowStore
for tracking reaching definitions [Nielson et al. 1999], which uses the store interface. This
component calculates which variable definitions reach a certain program point without being
overwritten. We implemented this analysis as a lifting of the store operations, by recording
the label of the current assignment alongside the value in the store in the abstract run. After
the analysis has run, we read out the store at each program point from the fixpoint cache to
obtain the reaching definition information.

Failure and Exception Components To analyze failure and exceptions, we created two compo-
nents 〈FailureT, �FailureT〉ArrowFail and 〈ExceptT, �ExceptT〉ArrowExcept that employ two dif-
ferent abstractions for error.

The abstract �FailureT transformer wraps the output with an error type in which errors
overapproximate successful results, i.e., Success x v Fail e. With this ordering, erroneous
branches of computation overwrite successful branches of computation: Fail etSuccess x =
Fail e. This abstraction is useful when we want to propagate information about failures in
programs.

The abstract �ExceptT transformer wraps the output with an error type (Figure 4.2) in
which Successx v SuccessOrFailxe w Faile. This abstraction is more precise than the
error type of FailureT, because the case Success describes computation that must succeed
and cannot fail.

Fixpoint Components To implement fixpoint components, we created a type class with a fix

operation that calculates the fixpoint over an arrow computation:
class ArrowFix x y c where

fix :: (c x y � c x y) � c x y

Based on this interface we implemented a fixpoint component 〈Fix, F̂ix〉ArrowFix, whose con-
crete fix operation calculates the standard fixpoint fix f = f (fix f). The abstract fix op-
eration implements a parallel/sequential fixpoint algorithm [Darais et al. 2017]. We param-
eterized this fixpoint algorithm by a widening operator [Cousot and Cousot 1992b] for the
codomain y that ensures that the fixpoint iteration terminates and a second operator on the
domain x that joins recursive calls to avoid infinitely deep chains of recursive calls. The fix-
point component 〈Fix, F̂ix〉 is the only component which does not consist of arrow trans-
formers and hence has to be placed at the bottom of the component stack. This ensures that
the function f we fix over is a pure function and no side effects interfere when we iterate on
f multiple times.

Additionally, the abstract f̂ix operation detects computations which potentially do not
terminate. Non-terminating computations are usually represented with the bottom element
⊥ of the abstract domain for values and add a lot of boilerplate to the abstract interpreter.
Instead, we capture the bottom element with a component 〈TerminatingT, �TerminatingT〉
that wraps the output with a Maybe-like type:
data Terminating a = NonTerminating | Terminating a

55

4. Sound and Reusable Components foR AbstRact InteRpRetation

This transformer allows us to remove the bottom element from the abstract domain of values
and the boilerplate of propagating bottom values.

Based on the same ArrowFix interfacewe implemented a component 〈ContourT, �ContourT〉
that tracks the call context of the abstract interpreter. This call context consists of a list of re-
cursive calls to the abstract interpreter and is useful, for example, in a 𝑘-CFA analysis [Shivers
1991]. We implement this component as a lifting of the fix operation:
fix f = �ContourT $ proc (𝛿,x) � fix (�runContourT bx : 𝛿c𝑘 ◦ f ◦ �ContourT) �� x

On each recursive call we push the argument x of the abstract interpreter onto the current
call string 𝛿 and limit it size to at most 𝑘 .

4.6.2 Reducing the Performance Overhead of Analysis Components

Every analysis component adds some overhead to the runtime of the analysis. We identified two
main sources for this performance overhead: Inefficient arrow code and dynamic dispatch. In
the rest of this section, we explain how we addressed these issues to reduce the performance
overhead of analysis components in our library.

The first issue was an inefficient pattern of arrow code that occured frequently in the imple-
mentation of arrow transformers: The composition of a pure function f with an effectful arrow
computation g as in g ◦ arr f. The problem with this pattern is that the composition operation
“◦” does not know that arr f is a pure computation and hence has to consider all possible ef-
fects of both operations. For example, if the arrow type supports exceptions, the composition
operation “◦” has to check if an exception occured in arr f, even though arr f cannot cause an
exception. Fortunately, we can eliminate this inefficient pattern by using a type class which cap-
tures the composition of pure functions with effectful computations. The Profunctor type class3
defines an operation dimap which pre- and post-composes two pure functions with an effectful
computation:
dimap :: (x � x') � (y � y') � c x' y � c x y'

The implementation of dimap for arrows is more efficient than effectful composition, because it
can exploit that the functions it composes with are pure. For example, in contrast to g ◦ arr f,
the operation dimap f id g does not have to check that f cause an exceptions.

As a second source of performance overhead we identified the dynamic dispatch of type class
methods. Without any optimization options the GHC Haskell compiler, converts type classes
to dictonaries (records of functions) [Hall et al. 1996]. Calling functions from these dictonaries
entails a dynamic dispatch, which causes a performance overhead. We counter this issue by
annotating the arrow type class methods with INLINE, such that GHC retains a copy of the source
code of the type class methods. Furthermore, we annotated the complete type of the generic
interpreter in the file where we compose an analysis. This allows GHC to specialize the definition
of the generic interpreter, inline arrow operations and eliminate any form of dynamic dispatch.
Furthermore, because all arrow operations are inlined, GHC can optimize some redundent pre-
and post-processing in arrow transformer liftings.

We evaluated how these two optimizations affect the performance of arrow transformers with
a benchmark.4 The benchmark instantiates an arrow-based concrete interpreter with different
arrow transformers and measures the runtime for an example program. Figure 4.3 shows the run-
times for each transformer in microseconds with and without optimizations. The results show
that the profunctor optimization does not significantly improve the performance of individual
transformers, but it does improve the performance by 12x if multiple transformers are combined
into a stack. The inlining optimization improves the performance of individual transformers and
the transformer stack by several orders of magnitude. Lastly, combining the profunctor and
inlining optimization does not significantly improve the performance over just the inlining opti-
mization.

3http://hackage.haskell.org/package/profunctors
4https://gitlab.rlp.net/plmz/sturdy/blob/benchmark/lib/bench/ArrowTransformerBench.hs

56

http://hackage.haskell.org/package/profunctors
https://gitlab.rlp.net/plmz/sturdy/blob/benchmark/lib/bench/ArrowTransformerBench.hs

4.7. Experimental Evaluation And Case Studies

Transformer No Opts. Profunctor Inline Prof. + Inline

ConstT 261 𝜇s 233 𝜇s (1) 5 𝜇s (56) 5 𝜇s (56)
ReaderT 907 𝜇s 874 𝜇s (1) 8 𝜇s (119) 8 𝜇s (117)
StateT 435 𝜇s 433 𝜇s (1) 13 𝜇s (33) 13 𝜇s (33)
WriterT 1506 𝜇s 1490 𝜇s (1) 13 𝜇s (118) 13 𝜇s (119)
ErrorT 664 𝜇s 664 𝜇s (1) 14 𝜇s (48) 14 𝜇s (47)
ExceptT 827 𝜇s 804 𝜇s (1) 15 𝜇s (56) 15 𝜇s (55)
TerminatingT 515 𝜇s 502 𝜇s (1) 14 𝜇s (38) 14 𝜇s (37)

Stack 209408 𝜇s 18085 𝜇s (12) 27 𝜇s (7730) 26 𝜇s (7978)

Figure 4.3: Benchmark results for individual arrow transformers without optimizations and with
the profunctor and inlining optimization. Each column shows the average runtime in microsec-
onds and in parentheses the speed up compared to the unoptimized version. The bottom row
shows benchmark results for an arrow transformer stack which combines all transformers above.

To summarize, in this section we presented a library of analysis components for different
analysis concerns. Furthermore, we described two techniques that we used to reduce the perfor-
mance overhead of arrow transformers. In Section 4.7, we will use some of these components to
implement static analyses, to demonstrate their reusability.

4.7 Experimental Evaluation And Case Studies

In this paper, we presented an approach to reduce the effort of defining and proving soundness
of static analyses with the help of sound and reusable analysis components. To evaluate our
approach, we answer the following research questions:
(RQ1) Modular implementation: Are analysis components reusable and do they compose?
(RQ2) Modular soundness proofs: Are analysis components separately verifiable and do their

soundness proofs compose?
(RQ3) Liftings: Is the effort of implementing liftings and proving their soundness acceptable?

To answer these research questions, we conducted two experiments. The first experiment
starts with an interval analysis for the While language. We explore how analysis components
support modular analysis development and soundness proofs by building a reaching definitions
analysis on top of the interval analysis. We then challenge our approach by extending the While
language with exceptions and observe how the interval and reaching definitions analyses change.

In our second experiment we build a control-flow analysis (k-CFA) for PCF. The analysis
predicts the control flow of calls to first-class function values, which is not statically decidable.
The goal of this experiment is to test if our approach is specific to some languages or analyses.

Across both experiments we were able to answer our research questions affirmatively. In
particular, the implementation and soundness proofs of most liftings comes for free.

4.7.1 Experiment 1: Analyses for a WHile Language

We implement an interval analysis for a statically-scoped While language. This interval analysis
will serve as a base-line as we extend this analysis in two different ways to study the impact of
these changes. First, we add a reaching definition [Nielson et al. 1999] analysis to the interval
analysis. Second, we extend the While language with exceptions.

Interval Analysis for the While Language

We start by defining an arrow-based generic interpreter for our While language (Listing 4.1).
The interpreter is basically a more complete version of the one we presented in Section 4.2.4. To
implement an interval analysis for this language, we need to instantiate the generic interpreter
with a ”super-component” that implements all required interfaces. Our first research question
RQ1 asks if we can separate concerns in the implementation of this super-component. Indeed,

57

4. Sound and Reusable Components foR AbstRact InteRpRetation

data Expr = ...
data Statement = Assign String Expr Label | If Expr Statement Statement Label

| While Expr Statement Label | Begin [Statement] Label

run :: (IsVal v c, ArrowAlloc (Var,v,Label) addr c, ArrowRand v c,
ArrowEnv Var addr env c, ArrowStore addr v c, ArrowFail e c,
ArrowFix [Statement] () c, ArrowChoice c) ⇒ c [Statement] ()

run = fix $ 𝜆run' � proc stmts � case stmts of
Assign x e l:ss � do

v ← eval � e
addr ← lookup (proc (addr,_) � returnA � addr) alloc � (x,(x,v,l))
write � (addr,v)
extendEnv' run' � (x, addr, ss)

If cond s1 s2 _:ss � do
b ← eval � cond
if_ run' run' � (b,([s1],[s2]))
run' � ss

While cond body l:ss �
run' � If cond (Begin [body,While cond body l] l) (Begin [] l) l : ss

Begin ss _:ss' � do
run' � ss; run' � ss'

[] � returnA � ()

Listing 4.1: Generic interpreter for statements of the While language.

Concrete Stack

IsVal

ArrowAlloc

ArrowRand

ArrowEnv

ArrowStore

ArrowFail

ArrowFix

ArrowChoice Abstract Stack
ConcreteT 12 1 ↑ ↑ ↑ ↑ ↑ ↑ �IntervalT
RandomT 1 ↑ ↑ ↑ ↑ ↑ �RandomT
EnvT 4 ↑ ↑ ↑ ↑ �EnvT
StoreT 2 ↑ ↑ ↑ �StoreT
FailureT 1 ↑ ⇝ �FailureT
TerminatingT ↑ ⇝ �TerminatingT
Fix 1 4 F̂ix

Figure 4.4: Interval analysis of the While language: Boxes n represent components, straight
arrows ↑ represent trivial liftings, squiggly arrows ⇝ represent non-trivial liftings.

we were able to implement each interface in a separate component and to compose the super-
component from these using the techniques described in Section 4.4.

We display the involved components and their composition in Figure 4.4, which introduces a
novel notation we devised for this paper. Each box n in the table indicates a separate analysis
component 〈Row𝐿, Row𝑅〉Col. The column label indicates the component’s interface; the left and
right row labels indicate the used concrete and abstract arrow transformers; the boxed number
indicates how many operations of the interface had to be implemented. For example, box 4 in
Figure 4.4 indicates an analysis component 〈EnvT,�EnvT〉ArrowEnv that implements 4 operations.

Our notation in Figure 4.4 also displays how components are composed. Components that
appear on the same row compose horizontally without any extra effort. Components that appear
on different rows require vertical composition based on one or more liftings. We display liftings
as upward arrows, yet distinguish two kinds: A straight arrow ↑ represents a lifting whose im-
plementation and soundness proof was trivial because the lifting was (i) reusable, (ii) generic, or
(iii) derivable (Section 4.4.2). In contrast, a squiggly arrow ⇝ represents a lifting that required a
non-trivial implementation and soundness proof. Regarding the research questions, we conclude
the following:

58

4.7. Experimental Evaluation And Case Studies

Concrete Stack

IsVal

ArrowAlloc

ArrowRand

ArrowEnv

ArrowStore

ArrowFail

ArrowFix

ArrowChoice Abstract Stack
ConcreteT 12 1 ↑ ↑ ↑ ↑ ↑ ↑ �IntervalT
RandomT 1 ↑ ↑ ↑ ↑ ↑ �RandomT
EnvT 4 ↑ ↑ ↑ ↑ �EnvT
ReachingDefsT ⇝ ↑ ⇝ ↑ �ReachingDefsT
StoreT 2 ↑ ↑ ↑ �StoreT
FailureT 1 ↑ ⇝ �FailureT
TerminatingT ↑ ⇝ �TerminatingT
Fix 1 4 F̂ix

Figure 4.5: Reaching definitions analysis of the While language

(RQ1) Modular implementation: We successfully separated concerns of the analysis into 7 anal-
ysis components: 6 reusable analysis components from our library and 1 language-specific
analysis component 〈ConcreteT, �IntervalT〉 for values, conditionals, and allocation.

(RQ2) Modular soundness proofs: We successfully decomposed the soundness proof into sound-
ness lemmas about the individual components: Each soundness lemma proves a single con-
cern of the analysis, while it is independent of other concerns. For example, the soundness
proofs of the conditional if_ in IsVal is independent of the store and fixpoint cache, even
though these are threaded through the branches of the conditional. This is possible because
the IsVal component is parametric in the underlying arrow c, which contains the store and
fixpoint cache after composition.

(RQ3) Liftings: We required 22 liftings to compose all 7 analysis components. Of these liftings,
20 liftings are trivial. Only 2 liftings required an explicit implementation and soundness proof.
We conclude that the effort for liftings is modest and acceptable.

Reaching Definitions Analysis for the While Language

We want to refine our previous interval analysis to also keep track of reaching definitions [Niel-
son et al. 1999]. A definition (here: assignment) reaches another statement if there is at least
one control-flow path where the assigned variable was not reassigned in between. Since the lan-
guage syntax remains unchanged, no change occurs to the generic interpreter run or its required
interfaces. The challenge is this: Can we reuse the implementation and soundness proofs of all
previously used components unchanged?

(RQ1) Modular implementation: We encapsulate the concern of reaching definitions in its own
analysis component 〈ReachingDefsT, �ReachingDefsT〉ArrowStore as described in Section 4.6.
Technically, the reaching definitions component piggybacks on another component imple-
menting the ArrowStore interface, but stores additional data in the abstract run. In the con-
crete run, reaching definitions has no effect and uses the identity transformer. Figure 4.5
shows how the new component (gray background) neatly integrates with the existing com-
ponents; no changes to other components were necessary.

(RQ2) Modular soundness proofs: We only had to prove soundness of the reaching definitions
component, while all other soundness lemmas remain valid. Except for the reaching defini-
tions component, there is no additional proof effort.

(RQ3) Liftings: Since the reaching definitions was realized as a non-trivial lifting, we additionally
obtain 2 such liftings in our final composition. None of the other liftings were (or could have
been) influenced. Thus, we retain that the lifting effort is modest and acceptable.

59

4. Sound and Reusable Components foR AbstRact InteRpRetation

Concrete Stack

IsVal

IsExc

ArrowAlloc

ArrowRand

ArrowEnv

ArrowStore

ArrowExcept

ArrowFail

ArrowFix

ArrowChoice Abstract Stack
ConcreteT 12 2 1 ↑ ↑ ↑ ↑ ↑ ↑ ↑ �IntervalT
RandomT 1 ↑ ↑ ↑ ↑ ↑ ↑ �RandomT
EnvT 4 ↑ ↑ ↑ ↑ ↑ �EnvT
ReachingDefsT ⇝ ↑ ↑ ⇝ ↑ �ReachingDefsT
StoreT 2 ↑ ↑ ↑ ↑ �StoreT
ExceptT 3 ↑ ↑ ⇝ �ExceptT
FailureT 1 ↑ ⇝ �FailureT
TerminatingT ↑ ⇝ �TerminatingT
Fix 1 4 F̂ix

Figure 4.6: Reaching definitions and interval analysis of the While language with exceptions.

Extending the While Language with Exceptions

Finally, we study the effort to update an analysis when a language evolves. In particular, we
add exceptions to the While language and observe how this affects the interval and reaching
definitions analyses.

This time we have to change the generic interpreter, because we are adding new syntax:
data Expr = ... | Throw ExceptName Expr
data Stmt = ... | TryCatch Stmt ExceptName String Stmt Label | Finally Stmt Stmt Label

The generic interpreter implements these new expressions and statements with operations of the
ArrowExcept interface, that we now depend on. The rest of the generic interpreter stays the same.
The challenge is this: Can we reuse our analysis components unchanged given that exception
handling has a cross-cutting effect on the control flow of the language?
(RQ1) Modular implementation: We encapsulate the core functionality of exception handling

in the language-specific interface IsExc and the reusable exception analysis component (Sec-
tion 4.6), which provides the operations throw, catch, and finally. But, since ArrowExcept is
a new interface, we also need to add liftings for its operations through the other components
used, such that throw, catch, and finally are available after full composition. Figure 4.6 shows
how the new component (row with gray background) and the new liftings (column with gray
background) neatly integrate with the existing components. No other changes unrelated to
exceptions were necessary.

(RQ2) Modular soundness proofs: We only had to prove soundness lemmas for the exceptions
component and for the liftings of exception operations. All other soundness lemmas remain
valid.

(RQ3) Liftings: Our extension requires 8 new liftings, of which only 1 lifting was non-trivial and
required an explicit soundness proof. In total, we now have 34 liftings of which 29 are trivial
and 5 are non-trivial.
To summarize, we extended the interval analysis with a reaching definitions analysis and

added exceptions to our While language. In both cases, our design allowed us to capture the ex-
tension as a separate analysis component, while reusing all other analysis components unchanged.
We were also able to reuse all previous soundness lemmas unchanged. For the reaching defini-
tions analysis, we only needed to prove the new component sound. For exception handling, we
additionally had to prove a few new liftings sound. However, the vast majority of liftings (85%)
has a trivial implementation and soundness proof that is reusable, generic, or derivable.

4.7.2 Experiment 2: Control-Flow Analysis for PCF

To confirm that the succesful application of analysis componentswas not particular to the analysis
or language of the first experiment, we define a 𝑘-CFA analysis [Shivers 1991] for PCF [Plotkin

60

4.7. Experimental Evaluation And Case Studies

Concrete Stack

IsNum

IsClosure

ArrowEnv

ArrowFail

ArrowFix

ArrowChoice Abstract Stack
ConcreteT 3 2 ↑ ↑ ↑ ↑ �IntervalT
EnvT 4 ↑ ↑ ↑ �BoundedEnvT
ContourT ↑ ⇝ ↑ �ContourT
FailureT 1 ↑ ⇝ �FailureT
TerminatingT ↑ ⇝ �TerminatingT
Fix 1 4 F̂ix

Figure 4.7: 𝑘-CFA analysis of PCF: Components n and liftings ↑/ ⇝ .

1977]. PCF is a language with first-class functions and numbers and the main purpose of the
𝑘-CFA is to approximate which function values may be called at any function application.

To implement this analysis, we first need to describe the semantics of PCF with an arrow-
based generic interpreter that captures the similarities between concrete and abstract semantics.
Our case study builds on an existing generic interpreter for PCF and an existing 𝑘-CFA analy-
sis [Keidel et al. 2018]. The goal of our case study is to modularize this analysis by using analysis
components. As first step, we refactor the generic interpreter to depend on individual interfaces,
each encapsulating a different concern (Listing 3.6 in Chapter 3). Except for the use of arrows,
the generic interpreter is fairly standard and requires no further explanation.

𝑘-CFA imposes different challenges than those encountered in the first experiment. In partic-
ular, environments are embedded in to closure values and therefore must be abstracted to a finite
domain if we want our analysis to terminate [Horn and Might 2010]. Let us revisit our research
questions to see if they are affected by this.
(RQ1) Modular implementation: Again we succeeded in decomposing the analysis into several

independent analysis components as shown in Figure 4.7. Each analysis component encap-
sulates a single concern, which simplifies its implementation. Furthermore, the composition
cleanly combines the analysis components as they need to work in concert, and the liftings ex-
plain how different components interact. For example, the environment component asks the
contour component for the current call context to allocate new addresses. However, the en-
vironment component is not tightly coupled to the contour component as these components
communicate through an interface and are combined with component composition.

(RQ2) Modular soundness proofs: Again we were able to prove each analysis component sound
independently and composition preserves soundness. We included the soundness proofs of
the analysis components for the environments, exceptions, fixpoints, and values in the sup-
plementary material accompanying this paper. Because of the separation of concerns, each
soundness lemma can be verified independently, which makes it easier to prove compared to
a monolithic proof. For example, when proving environment operations sound, we do not
have to reason about failure or fixpoint caches. Similarly, the proof of the value operations
also became easier because the operations are independent of effects in the language.

(RQ3) Liftings: The composition of analysis components for this analysis requires in total 14
liftings. Of these 14 liftings, we were able to derive the soundness proof of 11 liftings au-
tomatically using the techniques of Section 4.4.2. Only 3 liftings required an explicit imple-
mentation and soundness proof: The Arrow/ArrowChoice liftings of the failure and termination
component and the ArrowFix lifting of the contour component.
To summarize, we modularized the implementation and soundness proof of a 𝑘-CFA analy-

sis for PCF using analysis components. Each analysis component encapsulates a single concern,
which simplifies the implementation and soundness proof and increases its reusability. Further-
more, the composition of these analysis components required 14 liftings of which 11 could be
derived and proven sound automatically and only 3 required an explicit implementation and
soundness proof. Analysis components appear to be applicable to a wider range of languages
and analyses.

61

4. Sound and Reusable Components foR AbstRact InteRpRetation

4.8 Related Work

Proving soundness of static analyzers for real-world languages is a difficult endeavor. Some dy-
namic language features such as Java’s reflection [Smaragdakis et al. 2015] or JavaScript’s dy-
namic evaluation [Meawad et al. 2012] complicate static analysis and its soundness proof. As
a consequence, static analyzers [Flanagan et al. 2002] and bug finders [Rutar et al. 2004] often
either unsoundly approximate these language features or ignore them all together [Jourdan et al.
2015]. Unsound analyses still provide valuable information about program behavior, however,
this information might not be reliable. For static analyzers that have been proven sound, the
proof effort is significant. For example, Verasco [Jourdan et al. 2015] is a static analyzer for C,
whose soundness has been formally verified in the proof assistant Coq. The implementation of
the abstract interpreter consists of 17k lines of Coq code, as do the proof scripts (17k LOC). This
shows that a soundness proof of a static analysis for a real-world language requires significant
effort and expertise. In this work, we aim to reduce the effort and complexity of soundness proofs
by separating analysis concerns with analysis components. We hope that with our technique the
soundness proof of static analyses for real-world languages becomes more approachable.

Sergey et al. [2013] showed that analysis aspects such as context-sensitivity, polyvariance and
flow-sensitivity can be captured by monads. A monadic abstract interpreter has the benefit, that
it allows to change these analysis aspects by changing the underlying monad, while the rest of
the analysis definition stays the same. This is possible because the monadic abstract interpreter
abstracts over the underlying monad with interfaces, which are similar to the interfaces of our
analysis components. However, Sergey et al. did not develop a theory to prove monadic abstract
interpreters sound. In this work, we demonstrate that arrows, a generalization of monads, are
also capable of capturing different analysis aspects. We improve upon the work of Sergey et al.
[2013] by developing a theory that simplifies and reduces the effort of proving soundness static
analyses.

In this work, we describe abstract interpreters with arrows instead of monads. The benefit of
using arrows is that they form an algebra and hence provide the reasoning principle of structural
induction over arrow expressions [Keidel et al. 2018]. This induction principle decomposes the
soundness proof of arrow-based abstract interpreters into smaller soundness lemmas of the arrow
operations. We use this induction principle in Theorem 4.5.1 in Section 4.5 to prove soundness of
generic interpreters instantiated with analysis components. In contrast, monadic expressions do
not support an induction principle and hence a generic interpreter based on monads requires a
manual soundness proof. We are not aware of any inherent disadvantages of arrows over mon-
ads, however, one important difference between arrows and monads is that arrows also capture
the input of computations. In particular, higher-order arrow operations need to pass arguments
to inner computations explicitly. For example, in lookup (proc var � alloc � var) � var the
argument of alloc need to be passed in as argument to lookup. This explicit argument passing can
be cumbersome and sometimes might not be possible if the higher-order arrow operation does
not pass along the argument to the inner computation. In contrast, monads lift this restriction
and arguments can be passed freely into higher-order monad operations.

As discussed in the introduction, we build on the theory of compositional soundness proofs
of abstract interpreters by Keidel et al. [2018]. We improve upon this work by composing the
arrow instances of the concrete and abstract interpreter from modular and reusable components
based on arrow transformer. Our work simplifies the implementation and soundness proof of
arrow instances, because existing analysis functionality can be reused and does not need to be
reinvented. Furthermore, the implementation and soundness proof of our analysis components
themselves is simpler compared to monolithic arrows, because each component captures only a
single concern of an analysis instead of mixing them. Moreover, we retain the benefit of arrow-
based abstract interpreters, namely, analysis creators do not need to reason about the code of the
generic interpreter.

The idea of composing static analyses from modular components has also been explored by
Darais et al. [2015]. The authors also propose to share code between concrete and abstract inter-
preter. But the code of the generic interpreter is parameterized by a monad instead of by an arrow.
To recover the concrete and abstract interpreter, the generic interpreter is instantiated with two
monads composed from monad transformers. These monad transformers capture reusable anal-

62

4.9. Conclusion

ysis functionality and are called Galois Transformers. A short-coming of this approach is that
monads are missing a reasoning principles to compose a soundness proof and hence a generic in-
terpreter based on monads still requires an explicit soundness proof. We improve upon this work
by describing static analyses with analysis components based on arrow transformers. The bene-
fit of using arrows is that arrows provide the reasoning principle of structural induction, which
makes the soundness proof of static analyses compositional [Keidel et al. 2018]. This means that
when we instantiate an arrow-based generic interpreter with sound analysis components, the
resulting abstract interpreter is sound and no extra reasoning about the generic interpreter is
required.

Defining abstract interpreters from components has been revisited recently by Darais et al.
[2017]. Core of their approach is a definitional interpreter (generic interpreter) that is parame-
terized by a monad. Instantiating the interpreter with monads composed of monad transformers,
yields the concrete and abstract semantics. The authors describe several analysis components,
such as a fixpoint algorithm for big-step semantics, a trace collecting or dead code collecting
semantics. We took inspiration of these components, especially of the fixpoint algorithm. We
improve upon this work by describing a theory that modularizes the soundness proof of anal-
ysis components. This means we can prove analysis components sound independently and the
composition of analysis components preserves soundness.

There are several techniques to compose different abstract domains to improve the precision of
the analysis such as reduced products [Cousot and Cousot 1979] and cofibered products [Venet
1996]. For example, the reduced product P(Z) ⇆ Interval × Parity combines the abstract
domains of intervals to rule out interval bounds with a wrong parity. While techniques such
as reduced products compose different abstractions for data (e.g. values, environments, stores),
in contrast, our paper describes a technique to modularly define and modularly prove sound
the semantics for different cross-cutting aspects of the analysis (e.g. values, exceptions, mutable
state, fixpoint computations). In the future, we want to explore if we can combine the technique
of this paper and the techniques for composing abstract domains, by creating a component that
combines two value components and computes their reduced product.

Madsen and Lhoták [2018] proposed an approach that reduces the soundness proof burden
of static analyses. The approach uses SMT solvers to prove soundness of operations over some
abstract domains automatically. Annotations in the code aid the SMT solver in the proving pro-
cess. These annotations contain mathematical properties, such as monotonicity, required to prove
soundness. The authors evaluate their approach by proving soundness of value operations over
abstract domains for booleans, strings and integers. However, the authors have not explored if
their verification technique scales to a soundness proof of a complete static analysis. Compared
to our work, we currently do not use proof automation to prove soundness of our analysis com-
ponents. However, our technique guarantees that a complete static analysis is sound if all its
analysis components are sound. In the future, we want to explore how we can incorporate proof
automation to simplify the soundness proof of analysis components.

4.9 Conclusion

We propose a novel approach to constructing static analyses modularly from reusable analysis
components. Each analysis component covers one aspect of the analyzed language, can be proven
sound independently, and their composition preserves soundness. Our analysis components con-
sist of pairs of arrow transformers, for which we develop a Galois connection and soundness
proposition. We use analysis components to instantiate arrow-based generic interpreters [Keidel
et al. 2018] to obtain complete sound static analyses. A key result of our work is that a static
analysis based on analysis components is sound, if all their analysis components are sound. We
demonstrate the applicability and usefulness of our approach by creating a library of 13 reusable
analysis components that allow us to define a𝑘-CFA analysis for PCF and an interval and reaching
definition analysis for a While language.

63

5
MODULAR DESCRIPTION AND SOUNDNESS
PROOFS OF FIXPOINT ALGORITHMS FOR BIG-STEP
ABSTRACT INTERPRETERS

This chapter is based on the following draft:
Modular Description and Soundness Proofs of Fixpoint Algorithms for Big-Step Abstract
Interpreters.
Sven Keidel, Tobias Hombücher, and Sebastian Erdweg.

Abstract —Abstract interpretation is a methodology for defining sound static analyses. In this pa-
per, we study fixpoint algorithms for big-step abstract interpreters. We identify three challenges
regarding the termination of a fixpoint algorithm, two of which are unique to big-step abstract
interpreters. To this end, we develop a novel big-step fixpoint algorithm that solves these chal-
lenges and iterates on the strongly-connected components of the call graph. However, since the
algorithm is implemented as a single monolithic function, it is hard to extend, configure and adapt
the algorithm for new languages, analyses and use-cases. In particular, for each new use case we
would need to change the implementation of the algorithm and redo its soundness proof.

We address this issue by describing a framework for developing modular fixpoint algorithms,
that describes an algorithm with small and reusable combinators. This framework allows us to
fine-tune an algorithm more easily by rearranging existing combinators or by adding new lan-
guage and analysis-specific combinators. Furthermore, the framework simplifies the soundness
proof of fixpoint algorithms, as the proof can be composed from soundness lemmas for each com-
binator. This means analysis developers do not have to worry about soundness of the fixpoint
algorithm, as long as they reuse sound combinators. Lastly, we showwith our evaluation, that our
framework describes an entire family of fixpoint algorithms for different languages and analyses,
that can be easily extended and fine-tuned.

5.1 Introduction

Abstract interpretation [Cousot and Cousot 1977] is a methodology for defining sound static
analyses. While in the past, many static analyses have been described as abstract interpreters
in small-step style [Schmidt 1996; Sergey et al. 2013; Horn and Might 2010; Might and Shivers
2006a,b; Darais et al. 2015], more recently big-step abstract interpreters have been investigated
more thoroughly [Darais et al. 2017; Keidel et al. 2018; Keidel and Erdweg 2019; Wei et al. 2019;
Bodin et al. 2019]. Such big-step abstract interpreters can be simply described as recursive func-
tions in a meta-language such as Haskell. For example, consider the following big-step abstract
interpreter that calculates the interval of an arithmetic expression:�eval :: Ênv � Expr � Maybe V̂al Expr = Var String�eval env expr = case expr of | Num Int

Var x � lookup x env | Add Expr Expr
Num n � return (n,n) | ...
Add e1 e2 � do

(i1,i2) ← �eval env e1 Ênv = Map String V̂al
(j1,j2) ← �eval env e2 V̂al = Interval
return (i1+j1,i2+j2)

This abstract interpreter looks like a regular concrete interpreter in big-step style, except that
it computes intervals instead of numbers as values. Abstract interpreters in big-step style have
the advantage that they are easy to understand and reason about, while they seamlessly combine
data-flow and control-flow information. However, if we were to add a looping or recursive con-
struct to the language above, the abstract interpreter may not terminate anymore. While for a

65

5. ModulaR Fixpoint AlgoRithms foR Big-Step AbstRact InteRpReteRs

concrete interpreter non-termination is part of the expected language behavior, non-termination
is undesirable for abstract interpreters. To ensure that an abstract interpreter terminates, we can-
not use unbounded recursion like above. Instead, we need to take special care how we compute
the fixpoint of the abstract interpreter.

In this work, we study fixpoint algorithms for big-step abstract interpreters (big-step fixpoint
algorithms for short) and how to describe them modularly. Like most fixpoint algorithms, big-
step fixpoint algorithms apply the abstract interpreter repeatably until the analysis result is stable.
However, the recursive definition of big-step abstract interpreters poses specific termination chal-
lenges that we identified. First, a big-step fixpoint algorithmmust detect recurrent recursive calls
of the abstract interpreter to interrupt cyclic call chains:�eval[𝑥 ↦→ Even] (𝑥 +1) → . . .→�eval[𝑥 ↦→ Odd] (𝑥 +1) → . . .→�eval[𝑥 ↦→ Even] (𝑥 +1) → . . .

Second, not all infinite call chains are cyclic, yet a big-step fixpoint algorithmmust prevent acyclic
diverging call chains as well:�eval[𝑥 ↦→ [0, 0]] (𝑥+1) → . . .→�eval[𝑥 ↦→ [0, 1]] (𝑥+1) → . . .→�eval[𝑥 ↦→ [0, 2]] (𝑥+1) → . . .

Here, a big-step fixpoint algorithmmust introduce a cycle after finite steps, reducing this problem
to the first challenge. The third challenge is standard: the fixpoint algorithm needs to ensure the
analysis result does not grow indefinitely, for example, by relying on a finite abstract domain
or widening operators [Cousot and Cousot 1992b]. We prove that these three challenges are
sufficient to ensure the termination of big-step fixpoint algorithms.

We survey existing solutions to the three individual termination challenges and combine them
into a big-step fixpoint algorithm. This way we obtain the first fixpoint algorithm for big-step
abstract interpreters based on chaotic iteration over strongly-connected components of the call
graph [Bourdoncle 1993]. Even though this initial fixpoint algorithm works and is sound, it has
several short-comings:
• The fixpoint algorithm is language-specific and analysis-specific. In particular, the algorithm
was designed for a functional language with recursion and it references the expressions of
the language and the abstract interpreter directly. This makes it difficult to reuse parts of
the fixpoint algorithm to develop new algorithms for other languages and analyses. For ex-
ample, we may want to reuse the strategy for eliminating acyclic diverging call chains when
analyzing an imperative language with loops.

• The fixpoint algorithm mixes different concerns, which makes it difficult to experiment with
variations or fine-tune the algorithm. For example, the fixpoint algorithm uses a specific it-
eration order, with which it iterates on the analysis result for different parts of the program.
We may want to experiment with different iteration orders, to find orders that are more per-
formant or more precise (akin to using a priority list in worklist algorithms [Hind and Pioli
1998]). However, since the iteration order is baked into the fixpoint algorithm, it is difficult
to change the order without completely reimplementing the algorithm.

• The fixpoint algorithm is implemented as a single monolithic function. Since the soundness
proof of a fixpoint algorithm follows its implementation, a monolithic implementation makes
it difficult to prove soundness and to maintain an existing soundness proof. In particular,
since changes to the algorithm often require a significant restructuring (see previous point),
it is unclear how to reestablish soundness efficiently.

To eliminate these short-comings, we modularize the description of big-step fixpoint algorithms,
which is the core contribution of this work. In particular, we propose to describe fixpoint algo-
rithms modularly with sound and reusable fixpoint combinators.1 These combinators describe, for
example, the order in which the program is analyzed, how deep recursive functions are unfolded
and loops unrolled, or they record auxiliary data such as a control-flow graph. For example, con-
sider the following fixpoint algorithm for an imperative language with while loops. We compose
the fixpoint algorithm from 4 fixpoint combinators (each starting with the letter 𝜑):

1Note that we mean non-standard fixpoint combinators 𝜑 , that do not necessarily satisfy the standard fixpoint prop-
erty 𝜑 (𝑓) = 𝑓 (𝜑 (𝑓)) , but rather 𝜑 (𝑓) w 𝑓 (𝜑 (𝑓)) , which is sufficient for soundness.

66

5.2. Designing Big-Step Fixpoint Algorithms

𝜑filter isWhileLoop (𝜑unroll 10 𝜑joinLoopIterations ◦ 𝜑innermost)

The combinator 𝜑unroll 10 unrolls the first 10 recursive iterations of the abstract interpreter. After
the 10th iteration, 𝜑unroll falls back to the combinator 𝜑joinLoopIterations, that joins the analysis
results of all subsequent loop iterations. The combinator𝜑innermost describes the order with which
the fixpoint algorithm iterates on nested loops, i.e., it iterates on the innermost loop first. Lastly,
the combinator 𝜑filter applies the other combinators only to while loops, because while loops
are the only constructs in the language that can cause the analysis to diverge.

This modular description enables analysis developers to implement their own custom fixpoint
algorithms more easily by reusing existing language-independent and analysis-independent fix-
point combinators. For example, we can extend the fixpoint algorithm from above for a language
with loops and recursive functions as follows:

𝜑filter isFunctionBody (𝜑stackWiden ◦ 𝜑outermost) ◦ 𝜑filter isWhileLoop (. . .)

The combinator 𝜑stackWiden joins the arguments of recursive function calls to avoid infinite re-
cursive call chains. Furthermore, analogous to 𝜑innermost, the combinator 𝜑outermost iterates on
the outermost strongly-connected components of the call graph of the abstract interpreter. This
fixpoint algorithm seamlessly interleaves the intraprocedural analysis of loops with the interpro-
cedural analysis of recursive function calls. Both of these aspects can be individually changed
and fine-tuned by adding, replacing, and reordering fixpoint combinators.

Besides making fixpoint algorithms configurable and composable, our modular approach has
one other advantage: it simplifies the soundness proof. Specifically, we develop a formal theory
for fixpoint combinators that allows us to reason about the soundness of fixpoint combinators
individually and to verify each combinator sound and once and for all. Furthermore, we show
that a composed fixpoint algorithm is sound if all involved fixpoint combinators are sound. This
allows us to reuse the soundness proof of existing fixpoint combinators, such that it becomes easy
to (re)establish the soundness of fixpoint algorithms.

We demonstrate that our approach of modularizing the description of big-step fixpoint algo-
rithms is feasible by implementing it in Haskell as part of the Sturdy framework [Keidel et al.
2018; Keidel and Erdweg 2019]. We developed 11 fixpoint combinators and compose them to ob-
tain fixpoint algorithms for 4 analyses for 4 different languages. This demonstrates the analysis-
independence and language-independence of the fixpoint combinators. Moreover, we demon-
strate that the composed fixpoint algorithms can be easily changed by adapting them to 3 new
use cases. In none of these cases did we need to change the implementation of the combinators,
which demonstrates their reusability. Lastly, we evaluate the performance of our algorithms on
a 0CFA analysis for Scheme, where we find that no single algorithm that performs best for all
analyzed programs. We conclude that configurable fixpoint algorithms are necessary to allow
analysis developers to fine-tune their analyses.

In summary, we make the following contributions:
• We identify three termination challenges for big-step fixpoint algorithms. We survey existing
solutions to these challenges and combine them into a sound big-step fixpoint algorithm.

• We propose an approach to modularize the description of big-step fixpoint algorithms by the
means of sound and reusable fixpoint combinators.

• We develop a formal theory for these combinators that allows us to prove their soundness
separately and once and for all.

• We demonstrate that our approach is feasible and useful by implementing it as part of the
Sturdy framework.

5.2 Designing Big-Step Fixpoint Algorithms

In this section, we first discuss challenges regarding the termination of big-step fixpoint algo-
rithms. In the second half, we survey existing solutions to these challenges and combine these
solutions into a big-step fixpoint algorithm.

67

5. ModulaR Fixpoint AlgoRithms foR Big-Step AbstRact InteRpReteRs

5.2.1 Enforcing Termination of Big-Step Fixpoint Algorithms

There are three challenges that a fixpoint algorithm for big-step abstract interpreters needs to
solve to guarantee termination.

To this end, we first extend the language from the introduction with recursive functions. Now
consider the analysis of the factorial function implemented in this language. The following dia-
gram shows a big-step reduction trace of an abstract interpreter with unbounded recursion, where
𝜌 ` 𝑒 ⇓ 𝑣 evaluates an expression 𝑒 under environment 𝜌 to an abstract value 𝑣 . Such a trace
looks similar to the trace of a concrete big-step interpreter, except that the values are intervals.

n ↦→ [0,0] ` 1 ⇓ [1,1]

...

n ↦→ [0,∞] ` if(n == 0) 1 else fact(n − 1) ∗ n ⇓ ?
n ↦→ [1,∞] ` fact(n − 1) ⇓ ?

n ↦→ [1,∞] ` fact(n − 1) ∗ n ⇓ ?
n ↦→ [0,∞] ` if(n == 0) 1 else fact(n − 1) ∗ n ⇓ ?

n ↦→ [0,∞] ` fact(n) ⇓ ?

The analysis starts at the call fact(n), where n is bound to the interval [0,∞] in the environment.
Because the interval [0,∞] contains 0 and other numbers, the abstract interpreter has to evaluate
both branches of the conditional if(n == 0) and join the results. Whereas the analysis of the first
branch terminates after only one step, the second branch diverges while recurrently calling the
factorial function with the same environment over and over again (see ℎ𝑖𝑔ℎ𝑙𝑖𝑔ℎ𝑡𝑒𝑑 calls). We
write the question mark symbol to represent that the abstract interpreter diverged and did not
produce a result. This leads us to our first challenge:
Challenge 1 A big-step fixpoint algorithm has to detect recurrent recursive calls and cut off recursion

to avoid non-termination.
Detecting recurrent calls allows the fixpoint algorithm to iterate that part of the computation
that spans the initial call and the recurrent call. One way of detecting recurrent recursive calls
is to remember the calls of the abstract interpreter on each branch of the derivation tree. Each
call consists of the inputs of the abstract interpreter, e.g., an expression and an environment. By
remembering the calls, we can easily detect a diverging call, if the exact same call occured earlier,
further down the derivation branch.

However, this way of detecting recurrent recursive calls is error-prone. For example, consider
the analysis of the factorial function for negative arguments. Clearly, the factorial function does
not terminate for negative arguments, and we expect the abstract interpreter to return an analysis
result that represents non-termination. Instead, the abstract interpreter itself diverges:

...
n ↦→ [−∞,−2] ` if(n == 0) 1 else fact(n − 1) ∗ n ⇓ ?

...

n ↦→ [−∞,−1] ` if(n == 0) 1 else fact(n − 1) ∗ n ⇓ ?
n ↦→ [−∞,−1] ` fact(n) ⇓ ?

The abstract interpreter analyzes the factorial function with smaller and smaller intervals, be-
cause factorial decrements its argument on every recursive call. Even though the intervals be-
come smaller, the chain of recursive calls is still infinite. Therefore, the fixpoint algorithm never
encounters a recurrent recursive call. This means that a fixpoint algorithm that solves the first
challenge still may not terminate. This leads us to our second challenge:
Challenge 2 A big-step fixpoint algorithm has to ensure that all possibly infinite call chains have a

recurrent call.
In other words, all call chains are either finite or repeat themselves after finitely many calls. This
ensures that a fixpoint can find a recurrent call even in infinite call chains.

While the first and second challenge concern the inputs of the abstract interpreter, the third
challenge concerns its outputs. To illustrate this challenge, we have to switch to another example,
namely the multiplication of Peano numbers. Consider an interval analysis of the multiplication
function where we initially bind m to [1,∞] and n to [1,1].

68

5.2. Designing Big-Step Fixpoint Algorithms

n ↦→ [1,1] ` n ⇓ [1,1]

m ↦→ [1,∞], n ↦→ [1,1] ` if(m == 1) n else mult(m − 1, n) + n ⇓ 𝑋

m ↦→ [2,∞], n ↦→ [1,1] ` mult(m − 1, n) ⇓ 𝑋

m ↦→ [2,∞], n ↦→ [1,1] ` mult(m − 1, n) + n ⇓ 𝑋 + [1, 1]
m ↦→ [1,∞], n ↦→ [1,1] ` if(m == 1) n else mult(m − 1, n) + n ⇓ [1,1] t (𝑋 + [1,1])

m ↦→ [1,∞], n ↦→ [1,1] ` mult(m, n) ⇓ ?

The right branch of the derivation tree contains a recurrent call of mult. In this example, we
represent the result of the recurrent call with a symbolic variable 𝑋 . By tracing back the result
to the initial call of mult, we end up with the recursive equation 𝑋 = [1,1] t (𝑋 + [1,1]) , which
a fixpoint algorithm needs to solve. An established technique for solving such an equation is to
start with the empty interval ⊥ and then to apply iteratively the equation until the interval does
not change anymore [Cousot and Cousot 1992b]. However, when we apply this technique to the
equation above, we do not reach a fixpoint in a finite number of steps:

𝑋0 = ⊥ 𝑋1 = [1,1] t (𝑋0 + [1,1]) = [1,1] 𝑋2 = [1,1] t (𝑋1 + [1,1]) = [1, 2] . . .

This example shows that even if a big-step fixpoint algorithm ensures and detects recurrent calls,
it still might iterate on the analysis result indefinitely. This leads us to the third and final challenge:
Challenge 3 A big-step fixpoint algorithm may only iterate on a result a finite number of times.
The third challenge is well-known and is not unique to big-step abstract interpreters. There are
standard solutions to this challenge, such as finite abstract domains orwidening operators [Cousot
and Cousot 1992b].

These challenges and one extra condition are sufficient to guarantee termination:
Theorem 5.2.1 (Termination). A big-step fixpoint algorithm terminates if it solves the three termi-
nation challenges and the derivation tree has a finite branching factor.

Proof. Challenge 1 and 2 ensure that each infinite call chain is eventually cut off at a recurrent
call and hence is finite. Finite call chains and a finite branching factor guarantee that the big-step
derivation tree is finite. Lastly, Challenge 3 ensures that the fixpoint algorithm iterates on the
analysis result for each node of the tree finitely many times. Therefore, the fixpoint algorithm
terminates. □

We already explained how a fixpoint algorithm can solve the third challenge. Hence, in the
remainder of this section, we focus on solutions for the first two challenges.

5.2.2 Detecting Recurrent Calls and Cutting off Recursion

The first challenge is to detect recurrent recursive calls of the abstract interpreter within a call
chain and to cut off recursion to avoid non-termination. A solution to this challenge is described
by Schmidt [1995]. In particular, the fixpoint algorithm registers recursive calls of the abstract
interpreter on a stack. Whenever a fixpoint algorithm calls the abstract interpreter recursively,
it first checks if a call with the same arguments already occurs on the stack. If it does, the call
is recurrent and the fixpoint algorithm has to stop recursing deeper to avoid non-termination.
Otherwise, the fixpoint algorithm pushes the call to the stack and continues recursing, popping
the stack upon return.

The key question is what to do when a recurrent call occurs. Recall that the fixpoint algorithm
may not recurse further, yet it must return an analysis result. But which analysis result should
it be? Of course, the fixpoint algorithm could simply return >, which is definitely a sound over-
approximation. However, this would surrender precision of the underlying analysis altogether.
Ideally, we would like to guess the exact analysis result of the recurrent call, but this is impossible
in general. Instead, we return ⊥ at the recurrent call and then repeatedly analyze the program
between the first call and the recurrent call until we reach a fixpoint.

Below we illustrate Schmidt’s solution to this challenge. In particular, we show the first three
iterations of a big-step fixpoint algorithm for the interval analysis of the factorial function.
1. Iteration In the first iteration, the algorithm starts to analyze the program until it detects the

recurrent call on the stack. At this point, the algorithm cuts off recursion by returning the
empty interval ⊥ to avoid non-termination. It then continues normally until it returns to the

69

5. ModulaR Fixpoint AlgoRithms foR Big-Step AbstRact InteRpReteRs

original call with result [1,1] t ⊥ = [1,1]. Stopping fixpoint iteration at this point would be
unsound, because the interval [1,1] underapproximates the correct analysis result [1,∞].

n ↦→ [0,0] ` 1 ⇓ [1,1]

n ↦→ [0,∞] ` if(n == 0) 1 else fact(n − 1) ∗ n ⇓ ⊥
n ↦→ [1,∞] ` fact(n − 1) ⇓ ⊥

n ↦→ [1,∞] ` fact(n − 1) ∗ n ⇓ ⊥
n ↦→ [0,∞] ` if(n == 0) 1 else fact(n − 1) ∗ n ⇓ [1,1] t ⊥

n ↦→ [0,∞] ` fact(n) ⇓ ?
2. Iteration In the second iteration, the fixpoint algorithm reanalyzes the factorial function. How-

ever, this time, at the recurrent call the algorithm returns the result of the previous iteration
[1,1] instead of ⊥. It continues normally until returning to the original call, whose analysis
result now becomes [1,1] t [1,∞] = [1,∞]. Because the new analysis result is greater com-
pared to the previous iteration, the algorithm may not have reached a fixpoint yet and must
iterate again.

n ↦→ [0,0] ` 1 ⇓ [1,1]

n ↦→ [0,∞] ` if(n == 0) 1 else fact(n − 1) ∗ n ⇓ [1,1]
n ↦→ [1,∞] ` fact(n − 1) ⇓ [1,1]

n ↦→ [1,∞] ` fact(n − 1) ∗ n ⇓ [1,∞]
n ↦→ [0,∞] ` if(n == 0) 1 else fact(n − 1) ∗ n ⇓ [1,1] t [1,∞]

n ↦→ [0,∞] ` fact(n) ⇓ ?
3. Iteration In the third iteration, the fixpoint algorithm reanalyze the factorial function again,

using the previous analysis result [1,∞] at the recurrent call. However, the analysis result
does not grow further, which indicates that we have found a fixpoint.

To summarize, the fixpoint algorithm detects recurrent calls of the abstract interpreter by remem-
bering calls of the abstract interpreter on a stack. When the algorithm encounters a recurrent
call, it yields ⊥ at first and then iterates the call until reaching a fixpoint.

5.2.3 Ensuring Recurrent Calls in Infinite Call Chains

The second challenge is to ensure that every infinite call chain has a recurrent call after a finite
amount of steps. Unfortunately, there is no decidable technique for detecting if a call chain is
finite or infinite, due to the halting problem. To solve this problem, we use a technique by Schmidt
[1995], that introduces an artificial recurrent calls into a possibly infinite call chain by exploiting
the monotonicity of the abstract interpreter.

For example, consider the infinite call chain from Section 5.2.1:
(𝑛 ↦→ [−∞,−1], fact(n)) (𝑛 ↦→ [−∞,−2], fact(n)) . . .

We can introduce a recurrent call into this chain by replacing the second call with the first call.
This is sound because the interval [−∞,−1] is greater than [−∞,−2] and monotonicity of the
abstract interpreter guarantees that the analysis result for the call [−∞,−1] overapproximates
the analysis result for the call [−∞,−2].

To ensure that we find such recurrent call, we define a widening operator [Cousot and Cousot
1992b] for stacks:

∇�Stack : �Stack × (Ênv × Expr) →�Stack × (Ênv × Expr)
𝑠 ∇�Stack (𝜌, 𝑒) =

(𝑠, (𝜌 ′, 𝑒)) if 𝑒 ∈ dom(𝑠) ∧ 𝜌 v 𝑠 (𝑒), let 𝜌 ′ = 𝑠 (𝑒)
(𝑠 [𝑒 ↦→ 𝜌 ′], (𝜌 ′, 𝑒)) if 𝑒 ∈ dom(𝑠) ∧ 𝜌 @ 𝑠 (𝑒), let 𝜌 ′ = 𝑠 (𝑒) ∇Ênv (𝑠 (𝑒) t 𝜌)
(𝑠 [𝑒 ↦→ 𝜌], (𝜌, 𝑒)) if 𝑒 ∉ dom(𝑠)

The abstract stack (�Stack = Expr ⇀ Ênv) maps an expression (the body of a function) to an
environment that binds its arguments. In case the expression appeared on the stack and the
environment of the call is smaller than the environment on the stack, the stack widening operator
introduces a recurrent call by reusing the environment on the stack. In case the environment on
the stack is not an upper bound of the environment in the call, the stack widening operator joins
both environments. The least upper bound 𝑠 (𝑒) t 𝜌 ensures that the sequence of environments

70

5.2. Designing Big-Step Fixpoint Algorithms

passed to ∇Ênv is an ascending chain. Lastly, in case the expression did not occur on the stack,
the operator adds the call to the stack without changing it.

The following example illustrates how the stack widening operator introduces a recurrent call
into an otherwise infinite, non-repeating call chain:

n ↦→ [−∞,−2] ∇
�Stack
⇝ n ↦→ [−∞,−1] ` if(n == 0) 1 else fact(n − 1) ∗ n ⇓ ⊥

...
n ↦→ [−∞,−1] ` if(n == 0) 1 else fact(n − 1) ∗ n ⇓ ⊥

n ↦→ [−∞,−1] ` fact(n) ⇓ ⊥

At the second recursive call of factorial, the operator detects that factorial has been called with
a greater environment n ↦→ [−∞,−1] further up the stack and replaces the current environ-
ment. This replacement allows the fixpoint algorithm to terminate with ⊥, which represents
non-termination of the factorial function.

5.2.4 A Big-Step Fixpoint Algorithm that iterates on Strongly-Connected
Components of the Call Graph

In this section, we combine the solutions to the termination challenges to develop a fixpoint
algorithm for big-step abstract interpreters. The fixpoint algorithm targets the simple functional
language from Section 5.2, but we generalize it in Section 5.3 by making it language-independent
and modular.

The fixpoint algorithm iterates on the strongly-connected components (SCCs) of the call graph
of the abstract interpreter [Bourdoncle 1993]. An SCC is a set of calls from which it is possible
to reach all other calls in the same set. For example, consider the following call graph for the
analysis of the fibonacci function:

fib(n) =
if (n==0) 0
else if (n==1) 1
else fib(n-1) + fib(n-2) fib[1,∞] ⇓ . . .

fib[0,∞] ⇓ . . .

fib[0,∞] ⇓ . . .fib[1,∞] ⇓ . . .

fib[1,∞] ⇓ . . .

The graph has an outer SCC and an inner SCC indicated by the differently shaded areas. The
solid arrows indicate calls in the order in which they are executed by the abstract interpreter. The
dotted arrows indicate recurrent calls. We write fib[𝑖,𝑗] as a shorthand for a call n ↦→ [𝑖,𝑗] `
fib(n).

To compute a fixpoint, the algorithm has to iterate on all calls in the body of an SCC.The order
in which the fixpoint algorithm iterates over the calls does not matter for soundness [Bourdoncle
1993]. However, the order matters for performance and precision of the analysis. In this section
we present an algorithm that prioritizes calls in the innermost SCCs, before iterating on the outer
SCCs.

Since we do not know the call graph of the program a priori, our fixpoint algorithm has to
discover SCCs during the analysis. To detect SCCs, our algorithm tracks recurrent calls, because
some recurrent calls are the entry calls of SCCs. For example, in the call graph of the fibonacci
function above the recurrent call fib[0,∞] points to the entry call of the inner SCC (rightmost
dotted arrow), whereas the recurrent calls of fib[1,∞] point to the entry call of the outer SCC.
To detect the innermost SCCs, the algorithm looks for the first recurrent call that it encounters
upon returning.

Function fixmonolithic in Listing 5.1 captures the main fixpoint algorithm. We adapt the ab-
stract interpreter �eval (not shown) to call fixmonolithic in place of recursion, and fixmonolithic
calls �eval. This allows us to encapsulate the fixpoint logic in fixmonolithic, whereas �eval captures
the rest of the abstract language semantics. Our fixpoint algorithm uses three data structures: A
stack to detect recurrent calls, a cache to remember intermediate analysis result, and a set of calls
that are heads of SCCs.

71

5. ModulaR Fixpoint AlgoRithms foR Big-Step AbstRact InteRpReteRs

1 �Stack = Map Expr Env �Cache = Map �Call (Stable,V̂al) ŜCC = Set �Call
2 �Call = (Ênv,Expr) Stable = Stable | Unstable
3
4 fixmonolithic :: �Call � �Stack � �Cache � (V̂al, �Cache, ŜCC)
5 fixmonolithic call stack cache
6 | not (isFunctionBody call) = �eval call stack cache
7 | call∈cache && isStable cache(call) = (cache(call), cache, ∅)
8 | call∈cache && isUnstable cache(call) = (cache(call), cache, {call})
9 | call∉cache && call∈stack = (⊥, cache, {call})

10 | call∉cache && call∉stack = iterate call stack cache
11
12 iterate :: �Call � �Stack � �Cache � (V̂al, �Cache, ŜCC)
13 iterate call stack cache1 =
14 let (stackwidened, callwidened) = stack ∇�Stack call
15 (valnew, cache2, scc) = �eval callwidened stackwidened cache1
16 if callwidened ∈ scc then
17 let valold = if callwidened ∈ cache2 then cache2(callwidened) else ⊥
18 valwidened = valold ∇V̂al valnew
19 stable = if valold a valnew && scc=={callwidened} then Stable else Unstable
20 cache3 = cache2[callwidened ↦→ (stable,valwidened)]
21 if valold ⊏ valwidened
22 then iterate call stack cache3
23 else (valwidened, cache3, scc \ {callwidened})
24 else (valnew, cache2, scc)

Listing 5.1: Big-step fixpoint algorithm iterating on the innermost strongly connected
component. The code uses common mathematical notation for operations on maps and sets
for readability. In particular, the notation cache(call) looks up the key call in the map cache

and the notation cache[call ↦→ res] updates the map entry call to res. Furthermore, {call}
refers to the singleton set with the element call.

The algorithm first checks in line 6, if the expression is a function body and hence a potentially
diverging call. In case the expression is not a function body, for instance, in case of arithmetic or
boolean expressions, the algorithm simply recurses without iteration. This not only saves analysis
time, but also reduces the size of the stack and cache tremendously. In case the expression is a
function body, the algorithm then checks if the cache contains a stable analysis result for the call
and returns this result in line 7. This avoids the redundant reanalysis of this call and is sound
because stable results are guaranteed to overapproximate the least fixpoint of �eval. In case the
cache only contains an unstable or no analysis result, the algorithm checks if the call (env,expr)
is a recurrent call by searching for it on the stack. In case of a recurrent call, the algorithm
solves Challenge 1 by either returning the unstable analysis result (line 8) or returning ⊥ (line 9).
Furthermore, since the analysis result needs to be iterated on, the algorithm adds its call to the
SCC set. If the call does not appear on the stack, the algorithm calls a recursive helper function
iterate (line 10), that iterates the analysis result until it stabilizes.

Function iterate is responsible for iterating on calls in SCCs. The first line of iterate applies
the stack widening operator ∇Stack of Section 5.2.2 to the call. This ensures that all infinite non-
repeating stacks eventually have a recurrent call (Challenge 2). In line 15, the algorithm then calls
the abstract interpreter �eval with the widened inputs. The algorithm then iterates on the call, in
case the call is a head of an SCC (line 16), or otherwise simply returns the result of �eval (line 24).
In line 18, the algorithm uses a conventional widening operator for values ∇V̂al to ensure that the
analysis result does not grow indefinitely (Challenge 3). If the widened value is strictly greater
than the cached value, the algorithm keeps iterating (line 21), otherwise it returns the widened
value (line 23).

The following example illustrates how this algorithm works. In particular, we show the first
four iterations of the fixmonolithic fixpoint algorithm for the analysis of the fibonacci function:

〈fib[1,∞], 𝜎1〉⇓〈⊥ , 𝜎1, 𝜃1〉
〈fib[1,∞], 𝜎1〉⇓〈⊥ , 𝜎1, 𝜃1〉 〈fib[0,∞], 𝜎1〉⇓〈⊥ , 𝜎1, 𝜃0〉
〈fib[0,∞], 𝜎1〉⇓〈 [0,1]t[1,1]t(⊥+⊥) , 𝜎2, 𝜃0∪𝜃1〉

I 〈fib[1,∞], 𝜎1〉⇓ ?

72

5.3. Modularizing the Description of Big-Step Fixpoint Algorithms

〈fib[1,∞], 𝜎1〉⇓〈⊥, 𝜎1, 𝜃1〉
〈fib[1,∞], 𝜎2〉⇓〈⊥, 𝜎2, 𝜃1〉 〈fib[0,∞], 𝜎2〉⇓〈 [0,1] , 𝜎2, 𝜃0〉
〈fib[0,∞], 𝜎2〉⇓〈[0,0]t[1,1]t(⊥+ [0,1]), 𝜎2, 𝜃0∪𝜃1〉

II
〈fib[1,∞], 𝜎1〉⇓〈 [1,1] t (⊥ + [0,1]) , 𝜎3, 𝜃1〉

〈fib[1,∞], 𝜎3〉⇓〈 [1,1] , 𝜎3, 𝜃1〉
〈fib[1,∞], 𝜎3〉⇓〈 [1,1] , 𝜎3, 𝜃1〉 〈fib[0,∞], 𝜎3〉⇓〈 [0,1] , 𝜎3, 𝜃0〉
〈fib[0,∞], 𝜎3〉⇓〈[0,0]t[1,1]t([1,1] + [0,1]), 𝜎4, 𝜃0∪𝜃1〉

III 〈fib[1,∞], 𝜎3〉⇓ ?

〈fib[1,∞], 𝜎3〉⇓〈[1, 1], 𝜎3, 𝜃1〉
〈fib[1,∞], 𝜎4〉⇓〈[1, 1], 𝜎4, 𝜃1〉 〈fib[0,∞], 𝜎4〉⇓〈 [0,∞] , 𝜎4, 𝜃0〉
〈fib[0,∞], 𝜎4〉⇓〈[0,0]t[1,1]t([1,1]+ [0,∞]), 𝜎4, 𝜃0∪𝜃1〉

IV
〈fib[1,∞], 𝜎3〉⇓〈[1,1]t([1,1] + [0,∞]), 𝜎5, 𝜃1〉

𝜎1 = ∅ 𝜎4 = 𝜎3 [fib[0,∞] ↦→ (Unstable, [0,∞])]
𝜎2 = 𝜎1 [fib[0,∞] ↦→ (Unstable, [0, 1])] 𝜎5 = 𝜎4 [fib[1,∞] ↦→ (Unstable, [1,∞])]
𝜎3 = 𝜎2 [fib[1,∞] ↦→ (Unstable, [1, 1])] 𝜎6 = 𝜎5 [fib[1,∞] ↦→ (Stable, [1,∞])]
𝜃0 = {fib[0,∞]} 𝜃1 = {fib[1,∞]}

To make the internals of the fixpoint algorithm visible, we write 〈𝑒, 𝜎〉⇓〈𝑣, 𝜎 ′, 𝜃〉 for a call 𝑒 that
evaluates to the interval 𝑣 , where 𝜎 and 𝜎 ′ are the input and output cache and 𝜃 the SCC. An
iteration starts and ends when the algorithm recursively calls iterate again (line 22). A question
mark indicates that the algorithm did not return from a call within an iteration. For brevity, we
omit the stack and only show the evaluation of function calls. The highlighting indicates what
changed in the analysis result compared to the previous iteration.

To summarize, we combined the solutions to the termination challenges into a big-step fix-
point algorithm, that iterates on the strongly-connected component of the call graph. We prove
soundness of this algorithm in Section 5.4.

5.3 Modularizing the Description of Big-Step Fixpoint Algorithms

In the previous section, we discussed a big-step fixpoint iteration that iterates on the strongly-
connected components of the call graph. Even though the initial fixpoint algorithm works and
is sound, it is hard to reuse parts of its implementation for another analysis, or to experiment
with it and fine-tune it. We can solve these problems by modularizing the description of the
fixpoint algorithm, which we discuss in this section. The modularization description of fixpoint
algorithms is novel and is the core contribution of this paper.

5.3.1 Why Modularization Matters

Before presenting our framework for modular fixpoint algorithms, we motivate the need for mod-
ularization through series of examples.

New language or analysis Imagine we want to implement a sign-analysis for an imperative
language. For example, consider the following trace of the factorial function implemented with
loops and mutable variables:

n ↦→ PosZero ` n > 1 ⇓ >

...

n ↦→ PosZero, x ↦→ Pos ` while(n >= 1) {x = x ∗ n; n = n − 1} ⇓ ?
n ↦→ PosZero, x ↦→ Pos ` x = x ∗ n; n = n − 1; while(n >= 1) {x = x ∗ n; n = n − 1} ⇓ ?

n ↦→ PosZero, x ↦→ Pos ` while(n >= 1) {x = x ∗ n; n = n − 1} ⇓ ?

The analysis calculates the sign of numeric values [Cousot and Cousot 1977], where Pos stands
for a strictly positive number and PosZero for a positive number including zero. In the trace, the
abstract interpreter unrolls the body of the while loop, until it hits the same call of the while loop
again and diverges.

73

5. ModulaR Fixpoint AlgoRithms foR Big-Step AbstRact InteRpReteRs

Implementing a fixpoint algorithm for this analysis requires solving the same termination
challenges that we discussed in the previous section. Ideally, we would like to reuse (parts of) our
initial fixpoint algorithm fixmonolithic from the previous section. Unfortunately, the fixpoint algo-
rithm is language-specific and analysis-specific: it refers to specific data types for environments,
expressions, and values that are incompatible with our imperative language and sign domain.
Moreover, the fixpoint algorithm only considers function calls as a source of non-termination
and thus would ignore while loops altogether.

Fine-tuning fixpoint algorithms Fixpoint algorithms can be fine-tuned to improve performance
and precision. For example, consider a numeric analysis of the following program:

for(i = 0; i < m; i++) {
x = f(i);
for(j = 0; j < n; j++) {

g(x + j);
}

} for(i = 0 . . .) . . .

for(i = 0 . . .) . . .for(j = 0 . . .) . . .

for(j = 0 . . .) . . .g(x + j)

x = f(i)

The call graph of the abstract interpreter for this program consists of two SCCs: One SCC for
the outer loop and one SCC for the inner loop. Our fixpoint algorithm fixmonolithic iterates on
the inner SCC, reanalyzing the function call g(x + j) until its analysis result stabilizes. However,
depending on the functions f and g, it can be faster to iterate on the outermost SCC first. For
example, if x = f(i) yields the analysis result > after the second iteration of the outer loop, then
wewould potentially waste analysis time trying to analyze g(x + j) precisely in the first iteration
of the inner loop.

The example shows that it is difficult to find a single fixpoint algorithm that works best for
all analyzed programs. Therefore, developing a fixpoint algorithm requires experimentation and
careful fine-tuning. Ideally, we would like to configure and fine-tune a fixpoint algorithm with-
out having changing its implementation. Unfortunately, it is difficult to fine-tune our initial fix-
point algorithm fixmonolithic, because it is implemented as a monolithic function. For example,
changing the iteration order of fixmonolithic requires significant and invasive changes to its im-
plementation. This is problematic because fixpoint algorithms are, by the nature of the problem,
difficult to understand and hard to get right. Moreover, by changing the implementation we risk
breaking soundness.

Modular soundness Even small extensions of a fixpoint algorithm risk breaking soundness.
For example, we may want to extend the fixpoint algorithm to log call traces, which is use-
ful for debugging amongst others. However, integrating call traces into our fixpoint algorithm
fixmonolithic requires changes to its signatures and implementation:�Trace = [�TraceElement] �TraceElement = Call �Call | Return V̂al

fixmonolithic :: �Call � �Stack � �Cache � �Trace � (V̂al, �Cache, ŜCC, �Trace)
fixmonolithic call stack cache1 trace1 = ...

let (val, cache2, scc, trace2) = �eval call stack cache1 (Call call : trace1)
in (val, cache1, scc, Return val : trace2)
...

iterate :: �Call � �Stack � �Cache � �Trace � (V̂al, �Cache, ŜCC, �Trace)
iterate call stack cache1 trace1 =

...
let (valnew, cache2, scc, trace2)

= �eval callwidened stackwidened cache1 (Call call : trace1)
trace3 = Return valnew : trace2

...

74

5.3. Modularizing the Description of Big-Step Fixpoint Algorithms

Since we changed the implementation of fixmonolithic, any existing soundness proof becomes
invalid. Indeed, the above code contains a bug: fixmonolithic returns cache1 instead of cache2.

A modularized fixpoint algorithm allows us to implement extensions separately from one
another and separately from the core algorithm. While it is inevitable to prove soundness for
the extension of the fixpoint algorithm, we want to preserve the soundness of other components.
As we will show in Section 5.4, modularized fixpoint algorithms permit compositional soundness
proofs.

5.3.2 A Framework for Modularized Fixpoint Algorithms

In this subsection, we introduce a framework that allows us to modularize the description of fix-
point algorithms. We illustrate this framework by refactoring the function fixmonolithic into
smaller reusable fixpoint combinators. Additionally, this framework will enable us to prove
soundness of the fixpoint algorithm modularly, which we discuss in Section 5.4.

Language-Independence The problem that makes function fixmonolithic language-dependent
is that it refers to the abstract interpreter �eval, environments, expressions, and values from the
analyzed language directly. To make the algorithm language-independent, we first have to re-
move references to language-specific types. As first step, we replace the inputs (Ênv, Expr) and
outputs V̂al of the abstract interpreter with the type variables a and b.�Stack a = Set a �Cache a b = Map a b SCC a = Set a

As second step, we remove the reference to �eval by turning it into an open-recursive style
and passing its body as an argument to fixmonolithic. This allows us to implement fixmonolithic
independently of the analyzed language.

fixmonolithic :: (a ⇓ b � a ⇓ b) � a ⇓ b�eval = fixmonolithic (𝜆ev (env,expr) � case expr of ... ev ...)

To this end, we introduced a type (⇓) to represent the type of fixpoint computation:

a ⇓ b = (a, Stack a, Cache a b) � (Cache a b, SCC a, b)

We refrain from showing the new code of fixmonolithic until after the second refactoring.

Reusable Fixpoint Combinators To make the fixpoint algorithm easier to adapt to a new analy-
sis, we have to make two more changes. First, instead of implementing one single monolithic fix-
point algorithm, we split its functionality across multiple smaller fixpoint combinators 𝜑1, . . . 𝜑𝑛 .
These combinators are then called by a function fix in a round-robin fashion, such that each
combinator has the chance to affect the fixpoint computation:

fix𝜑 :: (a ⇓ b � a ⇓ b) � a ⇓ b
fix𝜑 f = 𝜑 (f (fix𝜑 f))

𝜑 :: a ⇓ b � a ⇓ b
𝜑 = 𝜆𝑥 . 𝜑1 (𝜑2 (. . . 𝜑𝑛 (𝑥) . . .))

In particular, fix𝜑 �eval first invokes combinator 𝜑1, which then may invoke 𝜑2, and so on, until
eventually 𝜑𝑛 calls �eval and the cycle repeats.

Even though this design of fixpoint combinators allows us to separate concerns, their type
a ⇓ b is not fully extensible, as some combinators may need some extra data not present in
the stack or the cache. Therefore, as second change, we generalize the type a ⇓ b to an arrow
type c a b [Hughes 2000]. The arrow type reads as “some effectful computation c that takes
values of type a as input and produces values of type b as output.” Arrows allow us to implement
fixpoint combinators without having to refer to a specific type of fixpoint computation. They are
particularly useful for implementing big-step fixpoint algorithms, because they cleanly separate
the inputs of an effectful computation from the outputs. Moreover, they have proven useful for
modularizing other parts of the abstract interpreter [Keidel et al. 2018; Keidel and Erdweg 2019,
2020].

75

5. ModulaR Fixpoint AlgoRithms foR Big-Step AbstRact InteRpReteRs

1 𝜑innermost :: ∀ c a b. ... ⇒ c a b � c a b
2 𝜑innermost f = proc call � do
3 (stable,resultcached) ← Cache.lookup � call
4 if stable then return � resultcached
5 else do
6 recurrentCall ← Stack.elem � call
7 if recurrentCall then do
8 SCC.add � call
9 return � resultcached

10 else iterate f � call
11
12 iterate :: ∀ c a b. ... ⇒ c a b � c a b
13 iterate f = proc call � do
14 (resultnew) ← Stack.push f � call
15 callInSCC ← SCC.elem � call
16 if callInSCC then do
17 (grown, resultwidened) ←
18 Cache.update � (call, resultnew)
19 if grown then iterate f � call
20 else do
21 sizeSCC ← SCC.size � ()
22 if sizeSCC == 1
23 then Cache.setStable � call
24 else return � ()
25 SCC.remove � call
26 return � resultwidened
27 else return � resultnew

Listing 5.2: Fixpoint combinator that iterates on the innermost SCC of the call graph.

Refactoring the fixpoint algorithm fixmonolithic Based on these principles, we now refactor the
fixpoint algorithm fixmonolithic into three reusable combinators 𝜑chaotic, 𝜑filter, and 𝜑stackWiden.

The combinator 𝜑innermost (Listing 5.2) is a stripped down version of the fixmonolithic algo-
rithm and only solves Challenge 1 and 3. The combinator is parameterized by operations to access
and modify the stack, cache and SCC contained in the effectful arrow computation. Furthermore,
the code uses the following arrownotation: The keyword proc x introduces a new arrow computa-
tion that binds its argument to the variable x. The syntax y ← f � x calls an arrow computation
f with the argument x and binds the result to the variable y. Lastly, the keyword return � x

returns x as result of the arrow computation.
The combinator 𝜑innermost first looks up the call in the cache. If the cached result is stable,

the combinator simply returns the cached entry (line 4). Otherwise, the combinator looks up the
call on the stack (line 6). In case of a recurrent call (line 7), the algorithm adds the call to the
SCC and returns the cached entry. Otherwise, if the call did not appear on the stack (line 10), the
algorithm calls the recursive helper function iterate that updates the analysis result until it does
not grow anymore. The function iterate first calls the computation f while adding the current
call to the stack. Afterwards it checks if the call occurred in the SCC (line 15) and hence needs
to be iterated on. In case the call occurred in the SCC, function iterate updates the cache with
the new result (line 18). The operation Cache.update simultaneously updates the cache, widens
the new result against an existing entry and checks if the result is stable or has grown. In case
the analysis result has grown (line 19) the function iterates again. Otherwise, it sets the cached
result to stable, removes the call from the SCC and returns the widened result.

To solve Challenge 2, we implement a fixpoint combinator that applies a stack widening op-
erator to the current call:
𝜑stackWiden :: ∀ c a b. ... ⇒ (stack � a � (stack,a)) � c a b � c a b
𝜑stackWiden ∇�Stack f = proc call � do

stack ← Stack.ask � ()
let (stackwidened,callwidened) = stack1 ∇�Stack call

76

5.3. Modularizing the Description of Big-Step Fixpoint Algorithms

Stack.local f � (stackwidened, callwidened)

Combinator 𝜑stackWiden first accesses the stack contained in the arrow computation. It then ap-
plies the stack widening operator (∇�Stack) to this stack and current call. Afterwards it passes the
widened call to the computation f and sets the new stack. The stack is the same stack that also
combinator 𝜑innermost uses to track recurrent calls.

Lastly, the higher-order fixpoint combinator 𝜑filter, inspired by Wei et al. [2019] fix_select,
filters out calls not relevant to the rest of the fixpoint algorithm:

𝜑filter :: ∀ c a b. ... ⇒ (a � Boolean) � (c a b � c a b) � (c a b � c a b)
𝜑filter predicate 𝜑 f = proc call � do

if predicate call then 𝜑 f � call else f � call

The combinator 𝜑filter either calls the combinator 𝜑 whenever the predicate holds, or skips the
combinator 𝜑 when the predicate does not hold.

With these three fixpoint combinators, we can recreate the fixpoint algorithm fixmonolithic
from the previous section:

fixmonolithic = fix𝜑 �eval 𝜑 = 𝜑filter isFunctionBody (𝜑stackWiden ∇�Stack ◦ 𝜑innermost)
To summarize, in this section we proposed a framework for developing modular fixpoint

algorithms. In particular, we describe fixpoint algorithms with reusable fixpoint combinators,
where each combinator captures a certain aspect of the fixpoint algorithm.

5.3.3 Applying the Framework to Address the Modularization Challenges

In the previous subsection, we developed a framework for developingmodular fixpoint algorithms
by the means of reusable fixpoint combinators. In this subsection, we showcase how we can use
this framework to address the modularization challenges described in Section 5.3.1.

New language or analysis We can use our framework to develop fixpoint algorithms for new
languages and analyses more easily by reusing existing fixpoint combinators. We demonstrate
this by developing a fixpoint algorithm for an analysis for an imperative language with loops
and mutable variables. To this end, we require that the abstract interpreter is implemented with
arrows:

Statement = Assign String Expr | While Expr [Statement] | ...�eval :: ∀ c. (Arrow c, ...) ⇒ c ([Statement], �Store) �Store�eval = fix𝜑 (𝜆ev � proc (stmts,store) � ... ev ...)

To develop a fixpoint algorithm for this language, we reuse existing fixpoint combinators that we
developed in the previous subsection:

𝜑 = 𝜑filter isWhileLoop (𝜑stackWiden ∇Loop ◦ 𝜑innermost)

The only statements in this language that can diverge are while loops. Therefore, the combinator
𝜑filter isWhileLoop filters out all other statements except for while loops. We can reuse com-
binator 𝜑innermost, because it is language-independent and analysis-independent. However, to
reuse 𝜑innermost, we need to implement a new widening operator ∇�Store that ensures the abstract
store does not grow indefinitely. We can also reuse the combinator 𝜑stackWiden by implementing
a new stack widening operator ∇Loop that works for while loops and is similar to the operator
in Section 5.2.3. The new stack widening operator joins subsequent iterations of the same while
loop with ∇�Store until the store does not grow anymore. When the store does not grow anymore,
the fixpoint algorithm detects a recurrent recursive call of the abstract interpreter and iterates on
the SCC until the analysis result stabilizes.

To summarize, we were able to develop a new fixpoint algorithm for an imperative language,
because we reused language-independent fixpoint combinators. We only needed to implement
new language-specific and analysis-specific widening operators that ensure that the store and
stack do not grow indefinitely.

77

5. ModulaR Fixpoint AlgoRithms foR Big-Step AbstRact InteRpReteRs

Fine-tuning precision With our framework, we can fine-tune existing fixpoint algorithms by
adding, replacing, or reordering fixpoint combinators. For example, the fixpoint algorithm we
developed above is rather imprecise, because it joins subsequent iterations of the same while
loop. A common technique to improve the precision of such an analysis is to unroll the first few
iterations of a loop without joining their stores [Mauborgne and Rival 2005]. We can capture this
loop unrolling with the following higher-order combinator 𝜑unroll:

𝜑unroll :: ∀ c a b. ... ⇒ Int � (c a b � c a b) � (c a b � c a b)
𝜑unroll limit 𝜑 f = proc call � do

n ← getCallCount � call
if n ≤ limit then do

incrementCallCount � call
f � call

else -- Call count exceeds limit
𝜑 f � call

The operator 𝜑unroll recursively calls the computation f, until it has seen the same call a certain
number of times. When the count for a call exceeds the given limit, the operator 𝜑unroll falls back
to the fixpoint combinator 𝜑 .

We integrate this combinator into our fixpoint algorithm from above by preventing stack
widening for the first 10 iterations of a loop:

𝜑filter isWhileLoop (𝜑unroll 10 (𝜑stackWiden ∇Loop) ◦ 𝜑innermost)

Fine-tuning performance Next, we investigate how we can fine-tune the performance of the
fixpoint algorithm above. As we explained in Section 5.3.1, for some programs, it can be faster
to iterate on the outer SCCs instead of the inner SCCs. We can fine-tune our fixpoint algorithm
from above for this use case by adding a fixpoint combinator 𝜑outermost:

𝜑outermost :: ∀ c a b. ... ⇒ c a b � c a b
𝜑outermost = ... iterate ...

where iterate = proc call � do
(resultnew) ← Stack.push f � call
callInSCC ← SCC.elem � call
sizeSCC ← SCC.size � ()
if callInSCC && sizeSCC == 1 then do
(grown,reswidened) ← Cache.update � (call,resnew)
if grown then iterate f � call
else do

SCC.remove � call
return � resultwidened

else return � resultnew

Thecombinator𝜑outermost iterates on the outermost SCC. Its implementation is similar to𝜑innermost,
except that it returns to the head of the outermost component before iterating. The combinator
verifies that a call is the head of the outermost component by checking the size of the calls in
the component (see highlighting). To pick an iteration strategy on a case-by-case basis, we add
another fixpoint combinator 𝜑alternative that dispatches an incoming call based on a predicate:

𝜑alternative :: ∀ c a b. ...
⇒ c a Boolean � (c a b� c a b) � (c a b� c a b) � (c a b� c a b)

𝜑alternative predicate 𝜑1 𝜑2 f = proc call � do
b ← predicate � call
if b then 𝜑1 f � call else 𝜑2 f � call

The predicate is an effectful computation, which allows it to remember a decision for a call and
all subsequent recursive calls. With these new combinators, we fine-tune the algorithm by selec-
tively iterating on the innermost or outermost SCC:

𝜑filter isWhileLoop (𝜑unroll 10 (𝜑stackWiden ∇Loop) ◦ 𝜑alternative metric 𝜑innermost 𝜑outermost)

78

5.4. Soundness of Modular Big-Step Fixpoint Algorithms

Modular soundness Now we want to extend the existing fixpoint algorithm from above such
that it records a control-flow graph (CFG). A CFG describes the order in which statements of the
program are evaluated. Since the control-flow of a program is encoded implicitly in the big-step
abstract interpreter, all we need to do is implement a fixpoint combinator that adds an edge to
the graph whenever the abstract interpreter evaluates a statement:
𝜑CFG :: ∀ c a b. ... ⇒ (c a b � c a b)
𝜑CFG f = proc call � do

pred ← getPredecessor � ()
CFG.addEdge � (pred, call)
withPredecessor f � call

The CFG has calls of type a as nodes. The combinator adds an edge between the most recently
evaluated call and the current call to the CFG. Afterwards it passes control to the computation f.
We can integrate this use-case into the fixpoint algorithm above by adding the 𝜑CFG combinator
to the front:
𝜑CFG ◦ 𝜑filter isWhileLoop (𝜑unroll 10 (𝜑stackWiden ∇Loop) ◦

𝜑alternative metric 𝜑innermost 𝜑outermost)

We can control the granularity of the CFG by changing the position of the 𝜑CFG combinator. For
example, if we would move 𝜑CFG inside the 𝜑filter expression, the CFG would only contain loop
statements as nodes.

Note that we did not change the implementation of any of the combinators to integrate this
use-case. If we had a modular soundness theory for fixpoint combinators, the soundness proofs
of reused combinators would remain valid and we only would have to prove soundness for 𝜑CFG.
Moreover, we could establish soundness for the entire fixpoint algorithm by composition of sound-
ness lemmas about the relevant fixpoint combinators. As it turns out, our modularized fixpoint
algorithms permit a modular soundness theory, which we develop in the next section.

5.4 Soundness of Modular Big-Step Fixpoint Algorithms

In this section, we develop a formal theory to prove soundness of big-step fixpoint algorithms
that consists of fixpoint combinators.

We start by introducing definitions about fixpoints found in literature about domain the-
ory [Abramsky 1994]. Let (𝐷, v) be a complete preorder, where every finite subset 𝑋 ⊆ 𝐷 has a
least upper bound

⊔
𝑋 . Then given a function 𝑓 : 𝐷 → 𝐷 , all elements 𝑥 ∈ 𝐷 with 𝑓 (𝑥) = 𝑥 are

called fixpoints of 𝑓 . If 𝑓 is monotone, then the least fixpoint exists and can be characterized by

lfp 𝑓 =
⊔
𝑛∈N

𝑓 𝑛 (⊥) = ⊥ t 𝑓 (⊥) t 𝑓 (𝑓 (⊥)) t . . .

A fixpoint algorithm is sound if it overapproximates the least fixpoint of the concrete inter-
preter. To prove soundness [Cousot and Cousot 1979] of the fixpoints of a function 𝑓 : 𝐷 → 𝐷
with respect to 𝑓 : 𝐷 → 𝐷 , we first need to define a Galois connection 𝛼 : 𝐷 ⇆ 𝐷 : 𝛾 that relates
the concrete domain 𝐷 with an abstract domain 𝐷 . Function 𝛼 : 𝐷 → 𝐷 is called abstraction
function and function 𝛾 : 𝐷 → 𝐷 is called concretization function. With this Galois connection,
we prove soundness of the least fixpoints of 𝑓 and 𝑓 by showing that 𝛼 (lfp 𝑓) v lfp 𝑓 , i.e. that
lfp 𝑓 overapproximates lfp 𝑓 .

To apply this soundness proposition to big-step fixpoint algorithms, we set the concrete do-
main 𝐷 B 𝐴→ 𝐵2 and abstract domain 𝐷 B 𝐴 ⇓ 𝐵, where𝐴 ⇓ 𝐵 is a computation from inputs𝐴
to outputs 𝐵 of the abstract interpreter. Therefore, for a big-step fixpoint algorithm with multiple
combinators, the soundness proposition from above specializes to

𝛼 (lfp eval) v lfp(𝜑1 (𝜑2 (. . . 𝜑𝑛 (�eval) . . .))) .
2Note that 𝐷 B 𝐴→ 𝐵 does not mean that the concrete semantics needs to be given as a definitional interpreter in

the same metalanguage as the abstract interpreter. The concrete semantics might as well be described as a mathematical
definition in denotational semantics.

79

5. ModulaR Fixpoint AlgoRithms foR Big-Step AbstRact InteRpReteRs

We could attempt to prove this directly, however, the proof would be unnecessarily complicated
and volatile: whenever we change the fixpoint algorithm the soundness proof would become
invalid.

Instead of a volatile monolithic soundness proof, we break down the soundness proof into
smaller soundness lemmas for each combinator. Let us first assume that the fixpoint algorithm is
built from fixpoint combinators over the following grammar:

𝜑 F 𝜑 atomic (atomic combinators)
| 𝜑 ◦ 𝜑 (combinator composition)
| 𝜑 (𝜑 . . . 𝜑) (higher-order combinators)

This grammar allows us to formulate the following soundness lemmas for each type of combina-
tor:

atomic 𝜑 sound iff ∀monotone 𝑓 . 𝜑 ◦ 𝑓 is monotone ∧ lfp 𝑓 v lfp(𝜑 ◦ 𝑓)
𝜑1 ◦ 𝜑2 sound iff 𝜑1 sound ∧ 𝜑1 sound

higher-order 𝜑 sound iff ∀𝜑1 . . . 𝜑𝑛 . 𝜑1 sound ∧ . . . 𝜑𝑛 sound

=⇒ 𝜑 (𝜑1 . . . 𝜑𝑛) sound

That is, an atomic fixpoint combinator is sound if it increases the least fixpoint of a computation
𝑓 . It is important that the computation 𝑓 in this lemma is monotone and universally quantified,
such that the lemma is provable and can be reused in different combinator expressions. The
composition of two combinators is sound if both combinators are sound. Lastly, a higher-order
combinator 𝜑 is sound if for all combinators 𝜑1 . . . 𝜑𝑛 with a soundness lemma, 𝜑 applied to these
combinators is sound.

These soundness lemmas allow us to prove soundness of modular fixpoint algorithms once
and for all with the following main theorem:

Theorem 5.4.1 (Soundness of Modular Fixpoint Algorithms). A modular fixpoint algorithm 𝜑 is
sound, if there is a soundness lemma for each combinator, a soundness proof of the abstract interpreter
𝛼 (eval) v�eval, and the abstract interpreter is monotone.

Proof.

𝛼 (lfp eval) v lfp�eval by 𝛼 (eval) v�eval and [Nielson et al. 1999, Lemma 4.42]
v lfp(𝜑 ◦�eval) by induction over the structure of 𝜑 . □

This way of proving soundness of modular fixpoint algorithms is more flexible than a mono-
lithic proof, because it allows us to reorder and add new combinators without invalidating the
soundness proof.

5.4.1 Soundness Proof Strategies for Fixpoint Combinators

In this subsection, we discuss proof strategies for three different kind of fixpoint combinators.
These strategies allow us to prove soundness lemmas of fixpoint combinators more easily.

Extensive Fixpoint Combinators For our first proof strategy, we look at the example of the
stack widening combinator 𝜑stackWiden of Section 5.3. The combinator 𝜑stackWiden (∇�Stack)(𝑓) calls
𝑓 with an upper bound of the current input, i.e., 𝑓 v 𝜑stackWiden (∇�Stack)(𝑓). This observation
leads us to our first proof strategy:

Theorem 5.4.2 (Soundness of Extensive Combinators). Let 𝜑 be an extensive fixpoint combinator,
i.e., id v 𝜑 , then 𝜑 is sound.

Proof. For all monotone 𝑓 , it holds lfp 𝑓 = lfp(id ◦𝑓) v lfp(𝜑 ◦ 𝑓) because 𝜑 is extensive. □

Corollary 5.4.3. The combinators 𝜑stackWiden and 𝜑CFG are sound by Theorem 5.4.2. □

80

5.4. Soundness of Modular Big-Step Fixpoint Algorithms

Interleaving Fixpoint Combinators For the second proof strategy, we look at the higher-order
combinator 𝜑alternative. The combinator 𝜑alternative (𝑃, 𝜑1, 𝜑2)(𝑓) interleaves the fixpoint com-
putation by either calling 𝜑1 (𝑓) or 𝜑2 (𝑓) depending on predicate 𝑃 . This means, for each call,
we can either prove 𝜑1 (𝑓) v 𝜑alternative (𝑃, 𝜑1, 𝜑2)(𝑓) or 𝜑2 (𝑓) v 𝜑alternative (𝑃, 𝜑1, 𝜑2) (𝑓). This
observation leads us to our second proof strategy:

Theorem 5.4.4 (Soundness of Interleaving Fixpoint Combinators). Let 𝜑 be a higher-order fixpoint
combinator, such that for all 𝜑1, 𝜑2, it holds ∀𝑥 .𝜑1 (𝑥) v 𝜑 (𝜑1, 𝜑2) (𝑥) ∨ 𝜑2 (𝑥) v 𝜑 (𝜑1, 𝜑2) (𝑥), then
𝜑 is sound.

Proof. Since 𝜑 is a higher-order combinator, we can assume that 𝜑1 and 𝜑2 are two sound com-
binators, i.e., lfp 𝑓 v lfp(𝜑1 ◦ 𝑓) and lfp 𝑓 v lfp(𝜑2 ◦ 𝑓) for all monotone 𝑓 . We instantiate the
assumption for 𝜑 with 𝑥 B 𝑓 ◦ lfp(𝜑 (𝜑1, 𝜑2) ◦ 𝑓). In case 𝜑1 (𝑥) v 𝜑 (𝜑1, 𝜑2)(𝑥), it follows

lfp 𝑓 v lfp(𝜑1 ◦ 𝑓) by soundness of 𝜑1

v (𝜑1 ◦ 𝑓)(lfp(𝜑 (𝜑1, 𝜑2) ◦ 𝑓) 𝜑1 ◦ 𝑓 is reductive at lfp(𝜑 (𝜑1, 𝜑2) ◦ 𝑓)
v (𝜑 (𝜑1, 𝜑2) ◦ 𝑓) (lfp(𝜑 (𝜑1, 𝜑2) ◦ 𝑓)) by assumption 𝜑1 (𝑥) v 𝜑 (𝜑1, 𝜑2) (𝑥)
v lfp(𝜑 (𝜑1, 𝜑2) ◦ 𝑓) by fixpoint property of lfp(𝜑 (𝜑1, 𝜑2) ◦ 𝑓).

The other case 𝜑2 (𝑥) v 𝜑 (𝜑1, 𝜑2)(𝑥) is analogous. We conclude 𝜑 is sound. □

Corollary 5.4.5. The combinators 𝜑alternative, 𝜑filter and 𝜑unroll are sound byTheorem 5.4.4. □

Cache-Based Fixpoint Combinators Unfortunately, neither of these strategies applies for the
combinator 𝜑innermost. The problem is the combinator 𝜑innermost (𝑓) is not extensive, because it
may return an intermediate result that does not yet overapproximate lfp 𝑓 . Therefore, we need
to find a different invariant that lets us prove soundness of 𝜑innermost.

The key idea of the invariant is that the only unstable analysis results occur within SCCs and
furthermore, all calls in an SCC appear on the stack:

lfp(𝜑 ◦ 𝑓) stabilizes iff ∀𝑎.
[
𝑓 (lfp(𝜑 ◦ 𝑓)) � 𝑎 v lfp(𝜑 ◦ 𝑓) � 𝑎

]
∨[

SCC.elem(lfp(𝜑 ◦ 𝑓)) � 𝑎 ∧ Stack.elem � 𝑎
]

We use this invariant in the following soundness proof.

Theorem 5.4.6. A cache-based fixpoint combinator 𝜑 is sound, if it stabilizes.

Proof. Let 𝑓 be a monotone function. At the top-most call of the analysis trace, the initial stack
is empty, i.e., the right conjunct ∀𝑎.SCC.elem(lfp(𝜑 ◦ 𝑓)) � 𝑎 ∧ Stack.elem � 𝑎 is false. Because
lfp(𝜑 ◦ 𝑓) stabilizes, this means that at the top-most call 𝑎 the left disjunct 𝑓 (lfp(𝜑 ◦ 𝑓)) � 𝑎 v
lfp(𝜑 ◦ 𝑓) � 𝑎 has to be true. In other words, 𝑓 is reductive at lfp(𝜑 ◦ 𝑓) and hence by Tarski’s
fixpoint theorem [Tarski 1955] we conclude lfp 𝑓 � 𝑎 v lfp(𝜑 ◦ 𝑓) � 𝑎. □

This theorem simplifies the soundness proof of the fixpoint combinator 𝜑innermost:

Theorem 5.4.7. The fixpoint combinator 𝜑innermost is sound.

Proof. In this proof, we write 𝜑 instead of 𝜑innermost for readability. Let 𝑓 be a monotone function.
ByTheorem 5.4.6 all that is left to prove is that lfp(𝜑◦𝑓) stabilizes. We continue by case distinction
on the results of Cache.lookup and Stack.elem.
• In case the cache entry is stable, the combinator 𝜑 returns the cached entry. This satis-
fies the left conjunct of the invariant, because stable cache entries are reductive at 𝑓 , i.e.,
if (Stable, 𝑏) ← Cache.lookup � 𝑎 and 𝑏 ′ ← 𝑓 (lfp(𝜑 ◦ 𝑓)) � 𝑎, then 𝑏 ′ v 𝑏. This is the case
because 𝜑 only marks a cache entry as stable in case the SCC is empty and hence 𝑓 does not
depend on unstable recursive calls. We conclude 𝑓 (lfp(𝜑 ◦ 𝑓)) � 𝑎 v lfp(𝜑 ◦ 𝑓) � 𝑎.

81

5. ModulaR Fixpoint AlgoRithms foR Big-Step AbstRact InteRpReteRs

• In case the call 𝑎 occurs on the stack, i.e., Stack.elem�𝑎, then the combinator 𝜑 adds the call
to the SCC, i.e., SCC.elem(lfp(𝜑 ◦ 𝑓)) � 𝑎. This satisfies the right disjunct of the invariant.

• In case the cache entry is unstable, the call does not occur on the stack, the combinator 𝜑
iterates until the analysis result does not grow anymore. More specifically, it iterates until
𝑓 (lfp(𝜑 ◦ 𝑓)) � 𝑎 v lfp(𝜑 ◦ 𝑓) � 𝑎, which satisfies the left disjunct of the invariant. □

To summarize, in this section we presented a way to prove correctness of fixpoint algorithms
that consist of fixpoint combinators. In particular, a fixpoint algorithm is sound, if all of its com-
binators are sound. This simplifies the soundness proof, as it suffices to prove each combinator
sound individually. Furthermore, we presented three proof strategies that simplify the soundness
proof of different types of fixpoint combinators.

5.5 Evaluation

In this section, we evaluate our framework for modular fixpoint algorithms for big-step abstract
interpreters. The goal of this framework is to enable the development of fixpoint algorithms, that
can be more easily extended, configured, and adapted to new languages, analyses and use cases.
To this end, we examine and verify the following hypotheses (HY):
• HY1: Our framework is able to describe a family of fixpoint algorithms for different languages
and analyses.

• HY2: Our fixpoint algorithms can be easily extended, configured and adapted.
• HY3: There is no single best performing fixpoint algorithm.

To answer these hypotheses, we implemented the fixpoint combinators of this paper in Haskell,
as part of the Sturdy framework [Keidel et al. 2018; Keidel and Erdweg 2019].

5.5.1 HY1: Our framework is able to describe a family of fixpoint algorithms
for different languages and analyses

To verify this hypothesis, we use our approach to develop fixpoint algorithms for the following
analyses:
• A𝑘-CFA [Shivers 1991] and static type analysis for Scheme [Abelson et al. 1998], a dynamically-
typed real-world programming language with first-class functions and mutable state,

• a static type analysis [Keidel and Erdweg 2020] for Stratego [Visser et al. 1998], a dynamically-
typed real-world language for developing program transformations,

• a 𝑘-CFA and interval analysis for PCF [Plotkin 1977], a research language with first-class
functions,

• an interval analysis for aWhile language, a research language with mutable state, exceptions,
conditionals, while loops.

This selection of programming languages covers a variety of common language features, such
as higher-order functions, and uncommon language features, such as generic term traversals of
Stratego. Furthermore, the analyses use popular abstractions for closures and numeric values
with finite and infinite abstract domains. In all of these cases, we were able to create a fixpoint
algorithm with our framework. The fixpoint algorithms all use the 𝜑filter and 𝜑innermost combi-
nators, however, they vary in the combinators they use for stack widening.

These case studies show that our fixpoint combinators are language and analysis-independent.

Furthermore, we ported an existing big-step fixpoint algorithm of Darais et al. [2017] to our
framework. We discuss in more detail how this algorithm works in Section 5.6 and focus on
the process of porting the algorithm in this section. We implemented the algorithm as a fix-
point combinator 𝜑adi. We had to make some changes to the algorithm, to make the combinator
analysis-independent and allow it to interoperate with other combinators in our framework. In
particular, we removed references to the abstract environment and store, as they are passed as

82

5.5. Evaluation

inputs and outputs of the abstract interpreter. Furthermore, in contrast to the original algorithm,
combinator 𝜑adi pushes calls on a stack, which allows us to use the combinator in conjunction
with a stack widening operator. Lastly, we were able to reuse operations of the cache interface,
but needed to add a new interface that operates on the caches of the current and previous fixpoint
iteration.

This case study demonstrates the generality of our framework, as we were able to integrate
an existing algorithm as a reusable fixpoint combinator.

5.5.2 HY2: Our fixpoint algorithms can be easily extended, configured, and
adapted

Section 5.3.3 shows how our technique allows to easily extend, configure and adapt existing fix-
point algorithms.

In contrast to a monolithic algorithm, we were able to integrate these use cases into an ex-
isting algorithm, without needing to change any code. Instead, we added and rearranged
existing combinators. This demonstrates the simplicity of fine-tuning fixpoint algorithms in
our framework.

5.5.3 HY3: There is no single best performing fixpoint algorithm

The previous subsection has shown that there are many ways in which we can extend and fine-
tune a fixpoint algorithm. This leads to the question if there even is a single fixpoint algorithm
that performs best for all analyzed programs. In this subsection, we answer this question by
measuring the performance of 4 different fixpoint algorithms: Two algorithms based on𝜑innermost

and 𝜑outermost that iterate on the innermost and outermost SCCs, an algorithm based on 𝜑adi that
we described in Section 5.5.1, and an algorithm based on 𝜑parallel, a variation of 𝜑adi that always
returns cache entries from the old iteration.

We evaluated these algorithms for a 0CFA analysis for Scheme on 8 programs3 of the Gabriel
benchmark suite [Gabriel 1985] and 5 programs of the Scala-AM benchmark suite [Es et al. 2019].
Figure 5.1 shows the speedup of each algorithm relative to 𝜑parallel.

These benchmarks show that different iteration orders have an impact on the performance
of the algorithm. For example, in case of the “deriv” benchmark, the algorithm 𝜑outermost is 5.1
times faster than 𝜑innermost. This speedup is due to an oscillation between an inner and an outer
SCC, similar to the Fibonacci example above. Even though 𝜑outermost does larger iterations, it
requires fewer iterates to reach a fixpoint in this benchmark. Furthermore, 𝜑parallel and 𝜑adi are
faster than 𝜑innermost and 𝜑outermost in benchmarks where the overhead of tracking the SCC sets
outweighs the cost of larger iterations.

These benchmarks show us that fine-tuning the iteration order of a fixpoint algorithm can
improve its performance.

In the benchmarks, the algorithm 𝜑outermost was always faster than 𝜑innermost. However, iter-
ating on the outermost SCC does not always have to be faster. For example, consider an interval
analysis of the following C program:
while(i < 100) { expensive(i); for(j = 0; j < 10; j++) i += 5; }

A fixpoint algorithm that analyzes only a single iteration of the inner loop for each iteration of
the outer loop, analyzes the function expensive 20 times without widening. In contrast, a fixpoint
algorithm that analyzes 10 iterations of the inner loop per iteration of the outer loop, analyzes
the function expensive only 2 times. In other words, iterating on the inner SCC is faster than
iterating on the outer SCC for this program.

3We did not benchmark all programs in the Gabriel suite, because they use language features, such as callCC, that
our analysis does not support.

83

5. ModulaR Fixpoint AlgoRithms foR Big-Step AbstRact InteRpReteRs

Gabriel Scala-AM

bo
yer

bro
ws
e
cps

tak
der

iv
des

tru
c
div

ite
r
div

rec tak
l

col
lat
z

gci
pd

nq
ue
en
s

pri
mt
est

rsa
0

1

2
sp

ee
du

p
ov

er
𝜑
pa
ra
ll
el

𝜑parallel 𝜑adi 𝜑innermost 𝜑outermost

Figure 5.1: Normalized running times of 4 different fixpoint algorithms for a 0CFA analysis for
Scheme. The plot shows the speedup of each algorithm over the algorithm 𝜑parallel (higher is
better). The error bars show the standard deviation of the ratio distribution for the normalized
running time.

The example shows us that a fixpoint algorithm performs better on some programs, but worse
on others. We conclude that it is hard to find a single fixpoint algorithm that performs best
for all programs.

5.6 Related Work

The focus of this work is the modular description of fixpoint algorithms for big-step abstract
interpreters. In this section, we discuss work related to our approach presented in this paper.

Modularizing the Definition and Soundness Proofs of Big-Step Abstract Interpreters There
have been several works that modularized different parts of the definition and soundness proofs
of big-step abstract interpreters. Keidel et al. [2018] describe an approach that modularizes the
concrete and abstract language semantics and its soundness proof with arrows [Hughes 2000]. In
particular, the concrete and abstract semantics is derived from the same generic interpreter, that
is composed of a number of primitive operations over values, stores, exceptions, etc. The benefit
of this approach is that it guarantees that an entire analysis is sound, as long as each operation is
sound. However, [Keidel et al. 2018] do not show a fixpoint algorithm nor do they describe how
a fixpoint algorithm should be implemented.

Bodin et al. [2019] describe a similar approach that derives both the concrete and abstract
semantics from the same skeletal semantics. However, compared to arrows used by Keidel et al.
[2018], they use amore liberal algebra called skeletons, which consists of hooks, filters, and branch-
ing operations. Yet, they provide similar soundness guarantees: an entire analysis derived from
a skeletal semantics is sound, as long as all of its operations are sound. Bodin et al. [2019, Sec-
tion 5.4] define the abstract semantics as the greatest fixpoint of the abstract collecting semantics.
However, they do not show an algorithm that computes this fixpoint, nor do they explain how
such an algorithm can be described modularly.

Keidel and Erdweg [2019] describe an approach that modularizes the effects of the analyzed
language, such as exceptions and store mutations. More specifically, the approach captures the
analysis of each effect with an analysis component, which consists of a concrete and abstract arrow
transformer. This approach simplifies the analysis of languages with multiple effects, that interact
with each other. Keidel and Erdweg define a single analysis for the fixpoint algorithm. However,
they do not describe the fixpoint algorithm itself, nor do they describe how it can be decomposed
further. In the present work, we make use of arrows and arrow transformers to modularize the
description of fixpoint algorithms by the means of sound and reusable fixpoint combinators. We
use arrows to describe fixpoint combinators, that are independent of the type of the fixpoint

84

5.6. Related Work

computation. This allows us to change the type of the fixpoint computation, without needing to
change the definition of the fixpoint combinators.

Darais et al. [2017] describe an approach that derives several collecting semantics from the
same generic semantics with different combinators. These combinators, for example, collect a
trace of the abstract interpreter, they collect expressions that are dead code, or they compute
a fixpoint. These combinators inspired the style of fixpoint combinators we present in this pa-
per, in that our fixpoint combinators have the same type as Darais et al. combinators. However,
Darais et al. do not describe a formal theory for these combinators, which makes it hard to reason
about their soundness. In this work, we developed a framework for modular fixpoint algorithms
that is based on fixpoint combinators. This framework allows us to describe a family of fixpoint
algorithms that can be configured and fine-tuned more easily, as we show in our evaluation. Fur-
thermore, we developed a formal theory about these algorithms, which allows us to prove their
soundness and termination compositionally.

Fixpoint Algorithms for Big-Step Abstract Interpreters The space of fixpoint algorithms for
big-step abstract interpreters has not been extensively studied yet. Schmidt [1995, 1998] describes
one of the first fixpoint algorithms for big-step abstract interpreters, that operates on the deriva-
tion tree. The fixpoint algorithm unfolds the abstract derivation tree until each branch either
terminates or repeats itself. The algorithm detects recurrent calls of the abstract interpreter by
memoizing parts of the abstract derivation tree. In case the algorithm finds a recurrent node in
a branch, it cuts off recursion to avoid non-termination, which solves Challenge 1. Furthermore,
the fixpoint algorithm sovles Challenge 2 by joining the environments of repeating expressions
with a widening operator, which ensures, that infinite recursive call chains have a recurrent call.
However, the algorithm does not specify an order for iterating on the analysis results. Instead,
the algorithm generates a number of recursive equations, which then can be solved with an ar-
bitrary iteration order to calculate the fixpoint. We combine Schmidt’s solutions to the termina-
tion challenges to implement our initial fixpoint algorithm fixmonolithic in Section 5.2, which we
later modularize. However, instead of generating recursive equations, our algorithm fixmonolithic
specifies an iteration order, i.e., the algorithm iterates on the innermost SCCs of the call graph
[Bourdoncle 1993].

Darais et al. [2017] present another fixpoint algorithm for big-step abstract interpreters, sim-
ilar to parallel fixpoint iteration. We implemented this algorithm in Section 5.5.1 as part of our
evaluation with the combinator 𝜑adi. The algorithm uses two caches to remember the analysis
result of two consecutive fixpoint iterations. The algorithm then iterates over the entire program,
updating the cache of the most recent iteration. If none of the caches changes anymore, the al-
gorithm has reached a fixpoint and terminates. The algorithm solves Challenge 1 by detecting
recurrent calls if they have an existing cache entry. However, the algorithm does not solve the
other two challenges, which means that it does not terminate for infinite abstract domains. In
contrast, our fixpoint combinators 𝜑innermost and 𝜑outermost use only one cache. This cache re-
members only the most recent analysis results and “forgets” about all prior results. Furthermore,
the combinators iterate on small parts of the program, i.e., the SCCs of the call graph. Our evalu-
ation shows that for some programs 𝜑innermost and 𝜑outermost reach a fixpoint faster, but for other
programs 𝜑adi is faster due to less overhead of not needing to track the SCCs of the call graph.

In the present work, we do not propose a single fixpoint algorithm, that is supposed to work
best for all languages, analyses and use cases. Instead, we propose an approach that modularizes
the description of big-step fixpoint algorithms through sound and reusable fixpoint combinators.
This approach allows analysis developers to create their own custom fixpoint algorithms more
easily by combining several fixpoint combinators. Analysis developers can verify that their algo-
rithm terminates by checking that it solves the three termination challenges. Furthermore, they
can verify that their algorithm is sound, if all its fixpoint combinators are sound. This approach
allows analysis developers to experiment with existing fixpoint algorithms more easily and fine-
tune them.

Chaotic Fixpoint Iteration In the past and present [Bourdoncle 1993; Geser et al. 1994; Kim et al.
2020; Amato et al. 2016], chaotic fixpoint iteration has been well-studied and has become the de

85

5. ModulaR Fixpoint AlgoRithms foR Big-Step AbstRact InteRpReteRs

facto standard for efficiently computing fixpoints of abstract interpreters. In a nutshell, chaotic
iteration says that we always reach the same fixpoint, nomatter inwhich orderwe update analysis
results for different statements. However, this does not hold for algorithms with widening, as
some orders yield more precise fixpoint approximations than others. Thus, the challenge is to find
a precise iteration orders, that requires the least amount of updates. Bourdoncle [1993] presents
a chaotic iteration order, that is based on a weak topological ordering of the control-flow graph.
This iteration order improves the precision as it reduces the number of widening points to the
heads of SCCs. Bourdoncle [1993] work inspired the design of the fixpoint combinators 𝜑innermost

and 𝜑outermost, that we developed in this paper, as they use the same widening points.

Fixpoint Algorithms for Small-Step Abstract Interpreters In contrast to big-step abstract inter-
preters, static analyses in small-step style have a longer history of research [Shivers 1991; Might
and Shivers 2006a; Horn and Might 2010; Sergey et al. 2013]. Similar to big-step abstract in-
terpreters, small-step abstract interpreters also seamlessly combine data-flow and control-flow
information, however, they describe the abstract semantics as a small-step relation. A fixpoint
algorithm for such interpreters explores the finite state space of the small-step relation. Unfor-
tunately, it is unclear how small-step fixpoint algorithms apply to big-step abstract interpreters,
because of differences in the style of semantics: While small-step abstract interpreters use contin-
uations to explicitly model control of the interpreter as part of the state space, big-step abstract
interpreters leverage the control of the meta-language (e.g., Haskell). This means that big-step
abstract interpreters cannot ensure termination simply by making the state space finite, because
their interpreter function may diverge nonetheless. To this end, big-step fixpoint algorithms
must detect recurrent recursive calls and iterate on them, which is not necessary for small-step
algorithms.

5.7 Conclusion

In this paper, we studied the modular description of fixpoint algorithms for big-step abstract inter-
preters. We identified three challenges that an algorithm needs to solve to guarantee termination.
Based on these solutions, we developed a fixpoint algorithm for big-step abstract interpreters that
iterates on the strongly-connected components of the call graph. However, since the algorithm
consists of a single monolithic function, it is hard to extend, configure and adapt the fixpoint algo-
rithm. To this end, we refactored the algorithm into small reusable fixpoint combinators, which
allow us to change the algorithm by rearranging and adding new combinators. Furthermore, the
combinators simplify the soundness proof, as each combinator can be proved sound individually
once and for all. Lastly, our evaluation demonstrates that our approach describes an entire family
of fixpoint algorithms for different languages and analyses that can be easily extended, adapted
and configured.

86

6A SYSTEMATIC APPROACH TO ABSTRACT INTERPRETATION

OF PROGRAM TRANSFORMATIONS

This chapter is based on the following peer-reviewed paper:

A Systematic Approach to Abstract Interpretation of Program Transformations.
Sven Keidel and Sebastian Erdweg.
Lecture Notes in Computer Science, Springer, VMCAI (2020), 136–157.
https://doi.org/10.1007/978-3-030-39322-9_7

Abstract — Abstract interpretation is a technique to define sound static analyses. While abstract
interpretation is generally well-understood, the analysis of program transformations has not seen
much attention. Themain challenge in developing an abstract interpreter for program transforma-
tions is designing good abstractions that capture relevant information about the generated code.
However, a complete abstract interpreter must handle many other aspects of the transformation
language, such as backtracking and generic traversals, as well as analysis-specific concerns, such
as interprocedurality and fixpoints. This deflects attention.

We propose a systematic approach to design and implement abstract interpreters for program
transformations that isolates the abstraction for generated code from other analysis aspects. Us-
ing our approach, analysis developers can focus on the design of abstractions for generated code,
while the rest of the analysis definition can be reused. We show that our approach is feasible
and useful by developing three novel inter-procedural analyses for the Stratego transformation
language: a singleton analysis for constant propagation, a sort analysis for type checking, and a
locally-illsorted sort analysis that can additionally validate type changing generic traversals.

6.1 Introduction

Abstract interpretation is a technique to define sound static analyses [Cousot and Cousot 1977].
Static analyses have proved useful in providing feedback to developers (e.g., dead code [Chen
et al. 1997], type information), in finding bugs (e.g., uninitialized read [Xie et al. 2003], type er-
rors [Pierce 2002]), and in enabling compiler optimizations (e.g., constant propagation [Callahan
et al. 1986], purity analysis [Salcianu and Rinard 2005]). It is therefore no surprise that the field
of abstract interpretation and static analysis has seen significant attention both in academia and
industry.

Unfortunately, the analysis of program transformations has not seen much attention so far.
Program transformations are a central tool in language engineering andmodern software develop-
ment. For example, they are used for code desugaring, macro expansion, compiler optimization,
refactoring, migration scripting, or model-driven development. The development of such pro-
gram transformations tends to be difficult because they act at the metalevel and should work for
a large class of potential input programs. Yet, there are hardly any static analyses for program
transformation languages available, and it appears to be difficult to develop such analyses. To
this end, we identified the following challenges:
Domain-Specific Features Program transformation languages such as Stratego [Visser et al. 1998],

Rascal [Klint et al. 2009], and Maude [Clavel et al. 2002] aim to simplify the development of
program transformations. Therefore, they provide domain-specific language features such as
rich pattern-matching, backtracking, and generic traversals. These domain-specific language
features usually cannot be found in other general-purpose languages and the literature on static
analysis provides only little guidance on how to tackle them.

Term Abstraction Programs are first-class in program transformations and are represented as
terms (e.g., abstract syntax trees). Therefore, analysis developers need to find a good abstrac-
tion for terms, such as syntactic sorts or grammars [Cousot and Cousot 1995]. This term ab-
straction heavily influences the precision and usefulness of the analysis andmost of the analysis

87

https://doi.org/10.1007/978-3-030-39322-9_7

6. A Systematic AppRoach to AbstRact InteRpRetation of PRogRam TRansfoRmations

development effort should be spent on the design of this abstraction. We expect analysis devel-
opers to experiment with alternative term abstractions: The design of good abstract domains
is inherent to the development of any abstract interpreter and cannot be avoided.

Soundness Developing an abstract interpreter that soundly predicts the generated code of pro-
gram transformations is difficult. This is because real-world transformation languages have
many edge cases and an abstract interpreter has to account for all of these edge cases to be
sound. Furthermore, transformation languages often do not have a formal semantics, which
makes it hard to verify that the abstract interpreter covered all cases.
In this paper we present a systematic approach to develop abstract interpreters for program

transformation languages that addresses these challenges. It is based on the well-founded theory
of compositional soundness proofs [Keidel et al. 2018] and reusable analysis components [Keidel
and Erdweg 2019]. In particular, our approach captures the core semantics of a transformation
language with a generic interpreter [Keidel et al. 2018] that does not refer to any analysis-specific
details. This simplifies the analysis of the domain-specific language features. Furthermore, our
approach decouples the term abstraction from the remainder of the analysis through an inter-
face. This means that any term abstraction that implements this interface gives rise to a complete
abstract interpreter. Thus, analysis developers can fully focus on developing good term abstrac-
tions. Lastly, our approach reuses language-independent functionality, such as abstractions for
environments, exceptions and fixpoints, from the Sturdy standard library. This not only reduces
the analysis development effort, but also simplifies its soundness proof as we can rely on the
soundness proofs of the Sturdy library [Keidel and Erdweg 2019].

We demonstrate the feasibility and usefulness of our approach by developing abstract inter-
preters for Stratego [Visser et al. 1998]. Stratego is a complex dynamic program transformation
language featuring rich pattern matching, backtracking, generic traversals, higher-order trans-
formations, and an untyped program representation. Despite these difficulties, based on our
approach we developed three novel abstract interpreters for Stratego: We developed a constant
propagation analysis, a sort analysis, which checks that transformations are well-typed, and an
advanced sort analysis, which can even validate type-changing generic traversals which produce
ill-sorted intermediate terms. Our systematic approach was crucial in allowing us to focus on
each of these abstract domains without being concerned with other aspects of the Stratego lan-
guage. We implemented the analyses in Haskell in the Sturdy analysis framework and the code
of the analyses is open-source.1

In summary, we make the following contributions:
• We propose a systematic approach to the development of abstract interpreters for program
transformations, that lets analysis developers focus on designing the term abstraction.

• We show that many features of program transformation languages can be implemented on
top of existing analysis functionality and do not require specific analysis code.

• We demonstrate the feasibility and usefulness of our approach by applying it to Stratego, for
which we develop three novel abstract interpreters.

6.2 Illustrating Example: Singleton Analysis

The static analysis of program transformations can have significant merit helping developers to
understand and debug their code and helping compilers to optimize the code. For example, we
would like to support the following analyses: Singleton analysis to enable constant propagation,
purity analysis to enable function inlining, dead code analysis to discover irrelevant code, sort
analysis to prevent ill-sorted terms. While these and many other analyses would be useful, their
development is complicated. In this section, we illustrate our approach by developing a singleton
analysis for Stratego [Visser et al. 1998].

1https://gitlab.rlp.net/plmz/sturdy/tree/master/stratego

88

https://gitlab.rlp.net/plmz/sturdy/tree/master/stratego

6.2. Illustrating Example: Singleton Analysis

data Pat = Var String | As String Pat | Cons String [Pat]
| StringLit String | NumLit Int | Explode Pat Pat

match :: (IsTerm term c, ArrowEnv String term c,
ArrowExcept () c, …) ⇒ c (Pat,term) term

match = proc (pat,t) � case pat of
Var "_" � returnA � t
Var x � lookup

(proc (t',(x,t)) � do t'' ← equal � (t,t');
insert � (x,t''); returnA � t'')

(proc (x,t) � insert � (x,t); returnA � t) � (x,(x,t))
As v p � do t' ← match � (Var v,t); match � (p,t')
StringLit s � matchStringLit � (s,t)

NumLit n � matchNumLit � (n,t)
Cons c ps � matchCons (zipWith match) � (c,ps,t)
Explode c ts � matchExplode

(proc c' � match � (c,c'))
(proc ts' � match � (ts,ts')) �� t

Listing 6.1: Generic abstract pattern matching for Stratego.

6.2.1 Abstract Interpreter for Program Transformations =
Generic Interpreter + Term Abstraction

The development of analyses for program transformations is complicated for two reasons. First,
each analysis requires a different term abstraction, with which it represents the generated code.
The choice of term abstraction is crucial since it directly influences the precision, soundness, and
termination of the analysis. Second, program transformation languages provide domain-specific
language features such as rich pattern matching, backtracking, and generic traversals. Soundly
approximating these features in an analysis is not easy, and resolving this challenge for each
analysis anew is impractical.

In this paper, we propose a more systematic approach to developing static analyses for pro-
gram transformations. To support static analyses for a given transformation language, we first
develop a generic interpreter that implements the abstract semantics of the domain-specific lan-
guage features in terms of standard language featureswhose abstract semantics is well-understood
already. The generic interpreter is parametric in the term abstraction, such that we can derive
different static analyses in a second step by providing different term abstractions. This archi-
tecture enables analysis developers to separately tackle the challenge of designing a good term
abstraction.

We have developed a generic interpreter for Stratego based on the Sturdy analysis frame-
work [Keidel et al. 2018; Keidel and Erdweg 2019] in Haskell. We explain the full details of generic
interpreters and background about Sturdy in Section 6.3. Here, we only illustrate a small part of
the generic interpreter, namely pattern matching.

Listing 6.1 shows the generic analysis code for pattern matching. We parameterized the
pattern-matching function match using a type class IsTerm as an interface. Pattern matching in-
teracts with the term abstraction to deconstruct terms but implements other aspects generically.
In Listing 6.1, we have highlighted all calls to operations of IsTerm; the remaining code is generic.
We provide a short notational introduction before delving deeper into the analysis code.

Our approach is based on Sturdy, which requires analyses to be written in arrow style [Hughes
2000]. Like monads, arrows (c x y) generalize pure functions (x � y) to support side-effects
in a principled fashion. For users of our approach, this mostly means that they have to use
Haskell’s built-in syntax for arrows, as shown in Listing 6.1. Expression (proc x � e) introduces
an arrow computation similar to the pure (𝜆x � e). Do notation (do cmd∗) denotes a sequence
of arrow commands, where each command takes the form (y ← f � x) or (f � x) [Paterson
2001]. Command (y ← f � x) calls f on x and stores the result in y; (f � x) ignores the resulting
value but not the potential side-effect of f. For a more in-depth introduction to arrows, we refer

89

6. A Systematic AppRoach to AbstRact InteRpRetation of PRogRam TRansfoRmations

to Hughes’s original paper [Hughes 2000] and online resources such as https://www.haskell.
org/arrows.

The generic analysis for patternmatching in Listing 6.1 describes a computation (c (Pat,t) t)

that is parametric in c and t, but restricts these types through type-class constraints. Type tmust
implement the term abstraction interface IsTerm. Type c is an arrow that encapsulates the side-
effects of the computation and must at least support environments and exception handling. We
use these side-effects to implement pattern variables and backtracking in match.

Computation match takes a pattern and the matchee (the term to match) as input and yields
the possibly refined term as output. For a wildcard pattern, we yield the matchee unchanged.
For pattern variables, we look up the variable in the environment and distinguish two cases. If
the variable is already bound to t', we require the matchee t to be equal to t'. If the variable is
not bound yet, we insert a binding into the environment. For named subpatterns (As v p), we
invoke the code for pattern variables recursively. The remaining four cases delegate to the term
abstraction, passing the function for matching subterms as needed. When a pattern match fails,
it throws an exception to reset all bound pattern variables.

The generic analysis code for pattern matching captures the essence of pattern matching in
Stratego and closely follows Stratego’s concrete semantics. In fact, the generic code can be in-
stantiated to retrieve a fully functional concrete interpreter for Stratego. This makes the generic
interpreter relatively easy to develop: no analysis-specific code is required. All analysis-specific
code resides in instances of interfaces like ArrowExcept and IsTerm. Sturdy further exploits this
to support compositional soundness proofs of analyses [Keidel et al. 2018].

6.2.2 A Singleton Term Abstraction

We can derive complete Stratego analyses from the generic interpreter by instantiation. Specif-
ically, we need to provide implementations for the type classes it is parameterized over. For
standard interfaces like ArrowExcept and ArrowEnv, we provide reusable abstract semantics. How-
ever, the term abstraction IsTerm is language-specific and analysis-specific. Thus, this interface
needs to be implemented by the analysis developer.

To illustrate the definition of term abstractions, here we develop a singleton analysis for Strat-
ego. The analysis determines if (part of) a program transformation yields a constant output, such
that the transformation can be optimized by constant propagation. Note that in this paper we are
only concerned with the definition of analyses; the implementation of subsequent optimizations
is outside the scope of the paper.

Each term abstraction needs to choose a term representation. For the singleton analysis, we
use a simple data type �Term with two constructors:
data �Term = Single Term | Any

A term Single ct means that the transformation produces a single concrete Stratego term ct

of type Term. In contrast, Any means that the transformation cannot be shown to produce a single
concrete term.

Based on such term representation, a term abstraction for Strategomust implement the 10 func-
tions from the IsTerm interface. We show the implementation of four of these functions in List-
ing 6.2 that also appeared in Listing 6.1.

Function matchString in Listing 6.2 defines a computation that takes a string value s and a
matchee t of type Term as input. If t denotes a single concrete term, matchString delegates to
the concrete string matching semantics using liftConcrete. However, if the matchee is Any, we
cannot statically determine if the pattern match should succeed or fail. Thus, we join t the two
potential outcomes: Either pattern matching succeeds and we return t unchanged, or pattern
matching fails and we abort the matching by throwing an exception. Function matchNum is analo-
gous to matchString.

Function matchCons distinguishes three cases. The first case checks if matchee t denotes a
single concrete term with constructor c and right number of subterms. If so, we recursively
match the subpatterns against the subterms, converted to singletons. Then, if all submatches
yielded singleton terms again, we refine the matchee accordingly. The second case occurs when
t denotes a singleton term but does not match the constructor pattern. In this case, we simply

90

https://www.haskell.org/arrows
https://www.haskell.org/arrows

6.3. Generic Interpreters for Program Transformations

instance (ArrowExcept () c, ArrowJoin c, …) ⇒ IsTerm �Term c where
matchString = proc (s,t) � case t of

Single ct � liftConcrete matchString � (s,ct)
Any � (returnA � t) t (throw � ())

matchNum = proc (i,t) � case t of
Single ct � liftConcrete matchNum � (i,ct)
Any � (returnA � t) t (throw � ())

matchCons matchSub = proc (c,ps,t) � case t of
Single (Cons d ts) | c == d && eqLen ps ts � do

ts' ← matchSub � (ps,map Single ts)
case allSingle ts' of

Nothing � returnA � Any
Just cts � returnA � Single (Cons c cts)

Single _ � throw � ()
Any � do matchSub � (ps,replicate (length ps) Any)

(returnA � t) t (throw � ())

Listing 6.2: Parts of a singleton term abstraction for Stratego.

abort. Finally, if t is Any, we combine the two cases using a list of Any terms as subterms. Note
that the recursive match on the subpatterns ps is necessary to bind pattern variables that may
occur.

6.2.3 Soundness

Our approach drastically simplifies the soundness proof of the abstract interpreter. In particular,
by factoring the concrete and abstract interpreter into a generic interpreter, we do not have to
worry about soundness of the generic interpreter. Instead, its soundness proof follows by compos-
ing the proof of smaller soundness lemmas about its instances [Keidel et al. 2018]. Furthermore,
because we instantiate the generic interpreter with sound analysis components for environments,
stores and exceptions, we do not have to worry about soundness of these analysis concerns ei-
ther [Keidel and Erdweg 2019]. All that is left to prove, is the soundness of the term operations.

6.2.4 Summary

Our approach to developing static analyses for program transformations consists of two steps.
First, develop a generic interpreter based on standard semantic components and a parametric term
abstraction. Second, define a term abstraction and instantiate the generic interpreter. While the
term abstraction is language-specific and analysis-specific, the generic interpreter can be reused
across analyses and only needs to be implemented once per transformation language. In the
subsequent section, we explain how to develop and instantiate generic interpreters for transfor-
mation languages using standard semantic components. Sections 6.4 and 6.5.1 demonstrate the
development of sophisticated term abstractions.

6.3 Generic Interpreters for Program Transformations

Creating sound static analyses is a laborious and error-prone process. While there is a rich body
of literature on analyzing functional and imperative programming languages, static analysis of
program transformation languages is under-explored. Most work in the area of program transfor-
mations so far focused on type checking, which considers each rewriting separately and is limited
to intra-procedural analysis.

The key enabler of our approach are generic interpreters that can be instantiatedwith different
term abstractions to obtain different analyses. In this section, we demonstrate our approach at
the example of Stratego and show how to develop generic interpreters for Stratego. In particular,

91

6. A Systematic AppRoach to AbstRact InteRpRetation of PRogRam TRansfoRmations

desugar-type: PairType(t1,t2) → ÈPair<~t1,~t2>É
desugar-expr: PairExpr(e1,e2) → Ènew Pair<>(~e1,~e2)É

topdown(s) = s; all(topdown(s)) try(s) = s <+ id
main = topdown(try(desugar-type + desugar-expr))

Listing 6.3: A generic traversal for desugaring pair notation.

we show that the features of program transformation languages do not require specific analysis
code but can be mapped to existing language concepts whose analysis is already well-understood.

6.3.1 The Program Transformation Language Stratego

Stratego is a program transformation language featuring rich pattern matching, backtracking,
and generic traversals [Visser et al. 1998]. For example, consider the following desugaring of
Java extended with pairs [Erdweg et al. 2011] in Listing 6.3. The two rewrite rules of the form
above use pattern matching to select pair types and expressions, respectively. They then gen-
erate representations of pair types and expressions using the Pair class. The main rewriting
strategy traverses the input AST top-down and tries to apply both rewrite rules at every node,
leaving a node unchanged if neither rule applies. We also added the definitions of the higher-
order functions topdown and try from the standard library. The built-in primitive all takes a
transformation and applies it to each direct subterm of the current term. Function topdown uses
all to realize a generic top-down traversal over a term, applying s to every node. Function try
uses left-biased choice <+ to catch any failure in s and to resume with the identity function id
instead. Furthermore, the Stratego compiler translates the rewrite rules of the form r : p → t
to transformations r = ?p; !t:
desugar-type = ?PairType(t1,t2); !ClassType("Pair",[t1,t2])
desugar-expr = ?PairExpr(e1,e2); !NewInstance("Pair",[e1,e2])

The translated rule first matches the pattern p, binding all pattern variables to the respective
subterms and then builds the term t using the abstract syntax of Java.

6.3.2 A Generic Interpreter for Stratego

We demonstrate how to map these language features to standard language concepts and how
this enables static analysis of program transformations. To this end, we developed a generic
interpreter for Stratego.2 The generic interpreter is based on a previous Sturdy case study [Keidel
et al. 2018] that was never described in detail.

We consider fully desugared Stratego code in our interpreter, ignoring Stratego’s dynamic
rules. This core Stratego language [Visser et al. 1998] only contains 12 constructs as defined
by the data type Strat in Listing 6.4. We explain these constructs together with their generic
semantics, shown in the same listing. The semantics is defined by a function eval that accepts
a Stratego program and yields a computation of type (c term term), meaning that a Stratego
program takes a term as input and yields another term as output. That is, Stratego programs are
term transformations as expected. The arrow c captures the side-effects of the computation, as
explained in Section 2.2.

The first two core Stratego constructs deconstruct and construct terms. A (Match pat) trans-
formation is based on a term pattern pat, which it matches against the input term t. Function
match from Listing 6.1 implements the actual patternmatching, as we have discussed in Section 6.2.
Recall that match binds pattern variables in the environment as a side-effect and throws an excep-
tion if the pattern match fails. We will see shortly how these side-effects are supported by the
generic interpreter. A (Build pat) transformation is the dual of match: it constructs a new term
according to the pattern, filling in information from the environment in place of pattern variables.

2https://gitlab.rlp.net/plmz/sturdy/blob/master/stratego/src/GenericInterpreter.hs

92

https://gitlab.rlp.net/plmz/sturdy/blob/master/stratego/src/GenericInterpreter.hs

6.3. Generic Interpreters for Program Transformations

data Strat = Match Pat | Build Pat | Id | Seq Strat Strat
| Fail | GuardedChoice Strat Strat Strat | Scope [String] Strat
| Call String [Strat] [String] | Let [(String,Strategy)] Strat
| One Strat | Some Strat | All Strat

eval :: (IsTerm term c, ArrowEnv String term c, ArrowExcept () c,ArrowFix c, …) ⇒
Strat � c term term

eval = fix $ 𝜆ev strat � case strat of
Match pat � proc t � match � (pat,t)
Build pat � proc _ � build � pat

Id � proc x � returnA � x
Seq s1 s2 � proc t1 � do t2 ← ev s1 � t1; t3 ← ev s2 � t2; returnA � t3
Fail � proc _ � throw � ()
GuardedChoice s1 s2 s3 � try (ev s1) (ev s2) (ev s3)

Scope vars s � scoped vars (ev s)
Call f ss ts � proc t � do

senv ← readStratEnv � (); case Map.lookup f senv of
Just (Closure s@(Strat _ ps _) senv') � do

args ← mapA lookupOrFail � ts
scoped ps (invoke ev) �� (s, senv', ss, args, t)

Nothing � failString � "Cannot find strat"
Let bnds body � let_ bnds body eval'

One s � mapSubterms (one (ev s))
Some s � mapSubterms (some (ev s))
All s � mapSubterms (all (ev s))

scoped vars f = proc t � do
oldEnv ← getEnv � ()
deleteEnvVars � vars
finally (proc (t,_) � f�t) (proc (_,oldE) � restoreEnvVars vars � oldE)� (t,oldEnv)

Listing 6.4: Generic interpreter for Stratego.

The next four core Stratego constructs handle control-flow. The identity transformation Id

returns the input term unchanged. A sequence (Seq s1 s2) of transformations s1 and s2 pipes
the output of s1 into s2. The Fail transformation never succeeds and always throws an exception
using throw, which we also used to indicate failed pattern matches. To catch such exceptions,
core Stratego programs can use guarded choice, written (s1 < s2 + s3) in Stratego notation.
Guarded choice runs s3 if s1 fails (throws an exception) and s2 otherwise. We implemented
guarded choice using the try function. Like throw, try is declared in the ArrowExcept interface
and allows us to catch exceptions triggered by throw. There are two things to note here:
• The implementation of throw and try are not specific to Stratego and are provided as sound
reusable analysis components [Keidel and Erdweg 2019] by the standard library of Sturdy. We
are effectively mapping Stratego features to these pre-defined features of Sturdy.

• We can choose how exceptions affect the variables bound during pattern matching. For Strat-
ego, we need exceptions to undo variable bindings in order to correctly implement backtrack-
ing. However, in other languages we may want to retain the state of a computation even after
an exception was thrown.
The next three constructs handle scoping, strategy calls, and local strategy definitions. We dis-

cuss the first two of these in some detail. Stratego’s scoping is somewhat unconventional, because
Stratego has explicit scope declarations and environments follow store-passing style. Variables
listed in a scope declaration are lexically scoped as usual, but other variables can occur in the
environment and must be preserved. We use function scoped (at the bottom of Listing 6.4) to

93

6. A Systematic AppRoach to AbstRact InteRpRetation of PRogRam TRansfoRmations

class Arrow c ⇒ IsTerm term c where
matchString :: c (String,term) term

matchNum :: c (Int,term) term
matchCons :: c ([p],[term]) [term] � c (String,[p],term) term
matchExplode :: c term term � c term term � c term term

buildString :: c String term

buildNum :: c Int term
buildCons :: c (String,[term]) term
buildExplode :: c (term,term) term

equal :: c (term,term) term

mapSubterms :: c [term] [term] � c term term

Listing 6.5: An interface for operations on terms.

implement this scoping. First, we unbind the scoped variables from the current environment to
allow pattern matching to bind them afresh. Second, after the scoped code finishes, we restore
the bindings of scoped variables from the old environment while retaining other bindings from
the current environment unchanged. Scoping also occurs when calling a strategy. To evaluate
a call, we first find the strategy definition, then lookup the term arguments ts in the current
environment, and then invoke the strategy using scoped for the term parameters ps.

The final three constructs are generic traversals that use mapSubterms to call one, some, or all
on the subterms of the current input term. Function mapSubterms is part of the IsTerm interface
and thus analysis-specific because depends on the term representation. Functions one, some, or
all are part of the generic interpreter and ensure that, respectively, exactly one, at least one, or all
of subterms are transformed by the given strategy s. This way our generic interpreter separates
term-specific operations from operations that can be defined generically.

6.3.3 The Term Abstraction

At this point, all that it takes to define a Stratego analysis is to implement the IsTerm interface for
a new term abstraction. The rest of the analysis is given by the generic interpreter and reusable
functionality from the Sturdy library.

The generic interpreter described in the previous section crucially relies on the term abstrac-
tion. In particular, pattern matching, term construction, and generic traversals must inspect or
manipulate terms. In Section 6.2 we have seen how match used term operations and how we
could implement these for the singleton term abstraction. Here we show the complete interface
for term abstractions.

Stratego terms are strings, numbers, or constructor terms:

data Term = Cons String [Term] | StringLit String | NumLit Int

Our interface must at least provide operations to match and construct such terms. In addition, we
must support Stratego’s generic traversals and explode patterns. Note that Stratego represents
lists using constructors Cons and Nil:

Cons "Cons" [NumLit 1, Cons "Cons" [NumLit 2, Cons "Nil" []]]

We designed an interface for term abstractions of Stratego terms that requires only 10 oper-
ations. Listing 6.5 shows the corresponding type class. The interface contains four functions for
pattern matching, four functions for term construction, one equality function, and one function
to map subterms.

We have discussed the functions for pattern matching Section 6.2 already. Function matchCons

takes a function for matching subterms against subpatterns. Function matchExplode takes func-
tions for matching the constructor name and the subterms. The functions for term construc-
tion are straightforward. While function buildCons takes a String and a list of terms, function

94

6.4. Sort Analysis

buildExplode takes two terms. The first of these terms must be a string term, the second one
must represent a list of terms. Finally, we require functions for checking the equality of two
terms and for mapping a function over a term’s subterms. This last function enables generic
traversals as shown in Listing 6.4.

Our interface for term abstractions can be instantiated in various ways by defining instances
of the type class. We have shown an instance for the singleton term abstraction in Listing 6.2 and
will describe further term abstractions in the upcoming sections. But it is worth noting that the
interface can also be instantiated for concrete Stratego terms:

instance … ⇒ IsTerm Term c where …

This concrete term instance allows us to run the generic interpreter as a concrete Stratego seman-
tics. This is not only great for testing the generic interpreter against a reference implementation
of Stratego, but also crucial for proving the soundness of term abstractions against the concrete
semantics.

To summarize, we implemented the Stratego language semantics as a generic interpreter
based on a few term operations only. The generic interpreter maps many aspects of Stratego
language to standard language concepts such as environments and exceptions. For these lan-
guage concepts, we reuse the abstract semantics found in the Sturdy standard library. In the end,
to design and implement a new analysis for Stratego, all it takes is a new term abstraction. We ex-
ploit this reduction of effort in the next two sections, where we develop two novel static analyses
for Stratego by defining term abstractions.

6.4 Sort Analysis

In this section, we define an inter-procedural sort analysis for Stratego. The analysis checks if a
program transformation generates well-formed programs and to which sort the program belongs.
That is, we implement a term abstraction where we choose to represent terms through their sort.

6.4.1 Sorts and Sort Contexts

We describe the sorts of Stratego terms by the following Haskell datatype:

data Sort = Lexical | Numerical | Sort String | List Sort
| Tuple [Sort] | Option Sort | ⊥ | >

Sort Lexical represents string values, Numerical represents numeric values. We use (Sort s) to
represent named sorts such as (Sort "Exp"). We further include sorts for representing Stratego’s
lists, tuples, and option terms. Finally, ⊥ represents the empty set of terms and > represents all
terms (also ill-formed ones). This means, we can guarantee a term is well-formed if its sort is not
>.

To associate terms to sorts, we parse the declaration of constructor signatures that are part of
any Stratego program. Typically, these declarations are automatically derived from the grammar
of the source and target language.

Num : Int → ArithExp
Add : ArithExp * ArithExp → ArithExp

: ArithExp → PythonExp

Each line declares a constructor, the sorts of its arguments and the generated sort. We allow
overloaded constructor signatures as long as they generate terms of the same sort. That is, if
𝑐 : 𝑠1 . . . 𝑠𝑚 → 𝑠 ∈ Γ and 𝑐 : 𝑠 ′1 . . . 𝑠 ′𝑛 → 𝑠 ′ ∈ Γ, then 𝑠 = 𝑠 ′.

The third signature declares that any term of sort ArithExp should also be considered a term of
sort PythonExp. This is the result of injection production in the grammar and effectively declares
a subtype relation ArithExp <: PythonExp. Dealing with subtyping correctly is one of the major
challenges of developing a sort analysis. Thanks to our separation of concerns, we can fully focus
on that challenge here.

We collect all constructor signatures and the subtyping relation in a sort context:

95

6. A Systematic AppRoach to AbstRact InteRpRetation of PRogRam TRansfoRmations

instance (ArrowExcept () c, ArrowJoin c, …)⇒ IsTerm Sort c where
buildString = proc _ � returnA � Lexical

matchString = proc (_,s) � if subtype Lexical s

then (returnA � s) t (throw � ()) else throw � ()

buildCons = proc (c, ss) � returnA � case (c, ss) of
("Nil",[]) � List ⊥
("Cons",[a,s]) | subtype (List ⊥) s � List a t s
_ � u (> : [t | (ss',t) ← constrSigs c, ss v ss'])

matchCons matchSubs = proc (c,ps,s)� case (c,ps)
("Nil",[]) � if subtype (List ⊥) s

then (buildCons�("Nil",[])) t (throw�()) else throw�()
("Cons",[hd,tl]) � if subtype (List ⊥) s

then do let subterms = [getListElem s, s]
ss ← matchSubs � ([hd,tl],subterms)
(buildCons � ("Cons",ss)) t (throw � ())

else throw � ()
_ � lubA (proc (c',ss) � if c == c' && length ss == length ps

then do ss' ← matchSubs � (ps,ss); cons � (c,ss')
else throw � ()) �� constructorsOfSort s

mapSubterms f = proc s � do lubA (proc (c,ts) �
do ts' ← f � ts buildCons � (c,ts'))� constructorsOfSort s

Listing 6.6: Abstract term operations for the sort analysis.

type Sig = ([Sort], Sort)
data Context = Context {sorts :: Map Sort [(String,Sig)], subtypes :: SubtypeRelation}

Since we require the context when operating on sorts, we actually represent terms abstractly as a
pair (Sort,Context). However, all terms refer to the same context and the context never changes.
To simplify the presentation in this paper, we assume the context is globally known and terms
are represented by Sort alone.

6.4.2 Abstract Term Operations

In the remainder of this section, we explain how to implement the term abstraction for our sort
analysis. To this end, we have to provide an instance of type class IsTerm as shown in Listing 6.6.
We only show the code for lists and user-defined constructor and omit the other cases for tuples
and optionals.

As a warm-up, consider operation buildString that yields sort Lexical independent of the
string literal. When matching a string against sort s in matchString, the match can only succeed
if Lexical terms may be part of s terms. Otherwise the match must fail.

Arguably the most interesting part of the term abstraction is building and matching construc-
tor terms. Let’s start with operation buildCons, which obtains the constructor name c and the list
of subsorts ss. In Stratego, list, tuple, and optional terms use reserved constructor names. We
include one case for each reserved constructor to generate the appropriate sort. For example, con-
structor Nil can be applied to an empty argument list to generate an empty list. This list has sort
(List ⊥). Constructor Cons generates a compound term that has sort list if the second argument
was a list. The sort of the resulting list is the least super-sort (t) of the new head list and the tail.
The empty constructor "" generates tuples; None and Some generate optional terms.

The last case of buildCons handles user-defined constructor symbols c. We use (constrSigs c)

to look up the signatures (ss',t) of c from the sort context. We only retain those signatures that
can accept the constructor arguments ss. Finally, we collect all result sorts t and compute their

96

6.4. Sort Analysis

greatest lower bound. If none of the signatures matches, we return sort >. For example, consider
the call:
buildCons � ("While",[Sort "Exp",Sort "Block"])

If the signature of While is (Exp * Block → Stmt), we obtain Sort "Stmt'' as result. If the
signature is instead declared as (Exp * Exp → Stmt), we obtain > because the constructed
term is ill-formed (unless Block is a sub-sort of Exp).

Operation matchCons is quite complex, although all cases for reserved constructors follow the
same pattern:
1. We check if the sort of the current term s is compatible with the matched constructor. For

example, a match against Nil can only succeed if the sort is a list.
2. We retrieve the subterm sorts if any. For example, for Conswe have two subterms: the head el-

ement and the tail list. Auxiliary function getListElem carefully finds all possible list elements,
taking subtyping into account.

3. We match the subterms against the subpatterns, yielding refined subterms ss.
4. We refine the current term by calling buildCons on the refined subterms and the matched

constructor. Since matching may always fail, we join the result with a call to throw.
The last case of matchCons again handles user-defined constructor symbols c. We use the

function constructorsOfsort s to obtain all constructors c' and their argument types ss. If the
constructor has the required name and the right number of arguments, then the correspond-
ing match might succeed. We match the subterms and refine the current term as in the other
cases, but the we compute the least upper bound over all possible results. For example, when we
match a constructor Add against sort Exp, we would lookup all constructors that generate sort
Exp. For (Add : Exp * Exp → Exp) the match can succeed, but for (Var : Lexical → Exp)
the match must fail. The join operator merges the results to compute a sound approximation.

Lastly, we show the code of mapSubterms, which needs to retrieve the current subterms as a
list and pass them to f. However, sorts do not directly point out their subterms. Again we use
constructorsOfsort s to retrieve the sorts of subterms indirectly by finding all constructors of
the current sort and taking their parameter lists. For example, if we call mapSubterms with sort
"Exp", then computation 𝑓 will be called on [Sort "Exp", Sort "Exp"] for constructor Add and
on [Lexical] for constructor Var.

To summarize, in this section we defined a sort analysis for Stratego, simply by designing
a sort term abstraction which implements the IsTerm interface. The rest of the analysis we get
for free from the generic interpreter and reusable analysis code. As the reader probably noticed,
the term abstraction for sorts is fairly complex in its own right. Being able to focus on the term
abstraction without considering other analysis aspects was crucial.

6.4.3 Sort Analysis and Generic Traversals

In this subsection, we showcase the inter-procedurality of our sort analysis by analyzing generic
traversals. A generic traversal traverses a syntax tree independent of its shape and transforms the
visited nodes. Statically assigning types to a generic traversal is notoriously difficult, because the
type needs to summarize all changes the traversal does to the entire tree. In this subsection, we
will illustrate how our inter-procedural sort analysis can support some generic traversals, before
refining our analysis further in the subsequent section.

Consider the trace of the sort analysis (Figure 6.1) of the pair desugaring from Section 6.3.1.
The trace starts in the main function with an input term of sort Expr. The main function calls
topdown, which calls try(D), which calls the desugaring rules desugar-type + desugar-expr.
The rule desugar-expr either yields a term of sort Expr or fails because pattern PairExpr(...)
matches some but not all terms of sort Expr. Furthermore, the rule desugar-type definitely fails
because no terms of sort Expr match the pattern PairType(...). Even though one of the rules
failed, the call try(D) produces a successful result by applying the input term to the identity
transformation. The function topdown then passes the resulting term of sort Expr to the generic
traversal all(...). Since we know the sort of the current term, we enumerate all relevant con-
structors and the sorts of their direct subterms and recursively analyze the desugaring for them.

97

6. A Systematic AppRoach to AbstRact InteRpRetation of PRogRam TRansfoRmations

desugar-type: PairType(t1,t2) → ÈPair<~t1,~t2>É
desugar-expr: PairExpr(e1,e2) → Ènew Pair<>(~e1,~e2)É

topdown(s) = s; all(topdown(s)) try(s) = s <+ id
main = topdown(try(desugar-type + desugar-expr))

main

topdown(try(D))

try(D)

desugar-expr desugar-type id

all(topdown(try(D))) topdown(try(D))

topdown(try(D))

topdown(try(D))

Input
Output

Expr Expr

Expr Expr

Expr Expr or fail

Expr

Expr

Expr

Expr

Literal

Literal

Ident

Ident

Expr fail Expr Expr

Figure 6.1: A simplified trace of the sort analysis of the pair desugaring, where we abbreviate
desugar-type + desugar-expr with D.

In the example trace of Figure 6.1, we consider three subterm sorts of Expr. The second and third
recursive call to topdown(try(D)) resolve easily, whereas the first recursive call would end up
in a cycle (shaded nodes in Figure 6.1). To this end, we use a fixpoint algorithm with widening to
ensure that the analysis terminates.

The example shows why it is hard to analyze the type of a generic traversal: For different
input sorts, a generic traversal might produce different output sorts. Therefore, our sort analysis
reanalyzes a generic traversal for each input sort, instead of assigning a fixed type like a type
checker would do.

The example is a special case of generic traversals, known as type-preserving. A generic
traversal is type-preserving if the sort of the input and output term are the same at every node.
However, some generic traversals change the sort of the input term. The sort analysis of this
section is not capable of analyzing such type-changing generic traversals. To this end, we require
a more precise analysis, which we develop in the following section.

6.5 Locally Ill-Sorted Sort Analysis

Many program transformations, like a compiler, translate terms from one sort to terms of another
sort. When these program transformations use generic traversals, they produce mixed interme-
diate terms, which contain subterms of the input sort and subterms of the output sort. Because
mixed intermediate terms are not well-sorted, these program transformations are challenging to
type check.

For example, consider the traversal in Figure 6.2 that translates Boolean expressions into
numeric expressions in a bottom-up fashion. The boolean expression And(True(),False()) is
transformed in two steps:

And(True(),False()) ⇝
:::::::
And(1,0) ⇝ Min(1,0)

Even though the input term And(True(),False()) is a valid boolean expression and the out-
put term Min(1,0) a valid numeric expression, the transformation creates an intermediate term
::::::::
And(1,0), which is ill-sorted. The sort analysis of the previous section is only able to check
transformations which produce well-sorted terms and therefore cannot handle this example. To
analyze this example, we need a more precise sort analysis that can represent ill-sorted terms,
which we develop in the remainder of this section

98

6.5. Locally Ill-Sorted Sort Analysis

encode: True → 1
encode: False → 0
encode: And(e1,e2) → Min(e1,e2)
encode: Or(e1,e2) → Max(e1,e2)

bottomup(s) = all(bottomup(s)); s
main = bottomup(encode)

: Int → NExp
Max : NExp * NExp → NExp
Min : NExp * NExp → NExp

: Bool → BExp
And : BExp * BExp → BExp
Or : BExp * BExp → BExp

main

bottomup(E)

E

all(bottomup(try(E)))

bottomup(E)

BExp NExp

{true, false,
And(NExp,NExp),
Or(NExp,NExp)}

{1, 2,
Min(NExp,NExp),
Min(NExp,NExp)}

BExp

{true, false,
And(NExp,NExp),
Or(NExp,NExp)}

BExp NExp

Input
Output

Figure 6.2: The top of the figure contains a type-changing generic traversal that translates boolean
to numeric expressions. The bottom contains the analysis trace of the transformation, where we
abbreviate encode with E.

6.5.1 Term Abstraction for Ill-Sorted Terms

The key idea is to use a term abstraction which can represent terms with well-sorted leafs and an
possible ill-sorted prefix, such as And(NumExp,NumExp). This abstract term represents all terms
with "And" as top-level constructor and two numeric expressions as subterms. We implement
this term abstraction with the following Haskell type:

data Term = Sorted Sort | MaybeSorted (Set (String,[Term]))

The case Sorted s represents well-sorted terms that belong to sort s, and the case MaybeSorted rep-
resents terms with an possibly ill-sorted prefix. For example, this datatype allows us to represent
the ill-sorted term And(1,0) with the abstract term

MaybeSorted [("And",[Sorted "NExp",Sorted "NExp"])].

6.5.2 Abstract Term Operations

We develop an analysis for Stratego by implementing the term operations with the term abstrac-
tion from above. We only discuss the matchCons and buildCons operations (Listing 6.7), because
the remaining functions are similar to the operations of the sort analysis.

The matchCons operation first matches on the term representation and in both cases calls the
matchCons' helper function, which compares the constructors, arity and subterms. The lookupSort'
function, similar to Listing 6.6, looks up all constructor signature for a sort, but additionally con-
verts the signatures to abstract terms. This matchCons operation is more than the matchCons of
the sort analysis, because we may know the top-level constructor of the term. This improved
precision results in more pattern matches which unconditionally succeed or fail.

In contrast to the sort analysis, the buildCons operation in Listing 6.7 does not check if the
constructor and its subterms belong to a valid sort. Instead, it constructs a new abstract term,
which may or may not be well-sorted. The type checking of this term is then delayed until a later
point.

With these definitions, the analysis would be able to check some type-changing generic traver-
sals, however, it might not terminate because the abstract terms might grow arbitrarily large. To
avoid this problem, we reduce the size of abstract terms by type checking their subterms. For
example, we can type check the immediate subterms of Or(And(1,0),1) to obtain the abstract
term Or(>,NumExp). In the new term, the sort > indicates the type checking of And(1,0) failed
and the term is ill-sorted. We use this technique in a widening operator [Cousot and Cousot

99

6. A Systematic AppRoach to AbstRact InteRpRetation of PRogRam TRansfoRmations

matchCons matchSub = proc (c,ps,t) � case t of
MaybeSorted cs � matchCons' �(c,ps,cs)
Sorted s � Sort.matchCons matchSub�(c,ps,lookupSort' ctx s)
where
matchCons' = proc (c,ps,cs) � lubA (proc (c',ss) �

if c == c' && length ss == length ps
then do ss' ← mapSub � (ps,ss); cons � (c,ss')
else throw � ()) �� cs

buildCons = proc (c,ts) � returnA � MaybeSorted [(c,ts)]

widening :: Context � Int � Term � Term � Term
widening ctx k cs1 cs2

| k == 0 = Sorted (typecheck ctx (cs1 t cs2))
| otherwise =

MaybeSorted (zipSubterms (termWidening ctx (k-1)) cs1 cs2)
where typecheck :: Context � Term � Sort

Listing 6.7: Abstract term operations for the locally ill-sorted sort analysis.

1992b] that ensures that the analysis terminates. The operator simply type checks all subterms
deeper than a certain limit 𝑘 , such that the resulting terms are not deeper than 𝑘 .

6.5.3 Analyzing Type-Changing Generic Traversals

In the remainder of this section, we discuss how the analysis of this section checks type-changing
generic traversals. To this end, we discuss an analysis trace of the example at the beginning of
this of this section (Figure 6.2).

The trace in Figure 6.2 shows only the final fixpoint iteration (earlier iterations produce subsets
of the sets shown in the trace). It starts with the analysis of the main function with the boolean
expression sort BExp, which is then passed to bottomup(E). In contrast to the top-down traversal,
the bottom-up traversal first traverses with all(bottomup(E)) over the subterms of boolean
expressions and replaces them by numeric expressions, e.g., And(NExp,NExp). The resulting set
of ill-sorted terms is then passed to the rewrite rule E. The rule E then replaces each top-level
boolean constructor with a numeric constructor without touching the subterms. All terms in the
resulting set are now well-typed and bottomup(E) applies the widening operator to reduce this
set to NExp.

In summary, we defined an advanced sort analysis, which can represent ill-sorted terms. This
analysis is able to check type-changing generic traversals, which produces ill-sorted intermediate
terms.

6.6 Related Work

Transformation languages like Stratego [Erdweg et al. 2014] and PLT Redex [Matthews et al.
2004] have a dynamic type checker for syntactic well-formedness. While dynamic type checking
supports generic traversals, it does not help developers of transformations to understand the code.
In contrast, we developed a static analysis such that program transformations can be checked
before running them.

Other program transformation languages like Ott [Sewell et al. 2007], Maude [Clavel et al.
2002], Tom [Balland et al. 2007] and Rascal [Klint et al. 2009] use static type checking to ensure
syntactic well-formedness. However, these languages do not support or struggle to statically
check arbitrary generic traversals. Ott is a language for specifying rewrite systems and exporting
them to proof assistants such as Coq or Isabelle. However, it does not support generic traversals.
Maude is a language for specifying rewrite systems in membership equational logic. However, it
implements generic traversals with reflection and hence cannot statically check their type. Tom
and Rascal are statically typed transformation languageswith support for type-preserving generic

100

6.7. Conclusion

traversals. However, they do not support type-changing generic traversals. We explained in Sec-
tion 6.5 why conventional static type checkers cannot analyze type-changing generic traversals:
these traversals produce intermediate terms which are ill-sorted. In this work, we aim to analyze
type-preserving as well as type-changing generic traversals. We solve this problem by defining
a static analysis which can represent terms with a finite ill-sorted prefix. In contrast to a con-
ventional type checking, this term abstraction is more precise than regular types, but requires
computing a fixed point.

Lämmel distinguishes two types of generic traversals [Lämmel 2003] as realized in Scrap-Your-
Boilerplate [Jones and Lämmel 2003]: “type-preserving” from “type-unifying” generic traversals.
A unifying generic traversal is a fold over the term that yields a value of the same “unified” type at
each node. These kinds of generic traversals are easier to type statically, however, not all generic
traversals fit in one of these two typing schemes. For example, a generic traversal that translates
code from one language to another is neither type-preserving nor type-unifying. Rather than
developing additional specialized traversal styles, our paper aims to support static analysis for
arbitrary generic traversals.

Most closely related to our work, Al-Sibahi et al. present an abstract interpreter of a subset
of Rascal, including generic traversals [Al-Sibahi et al. 2018]. Al-Sibahi et al. use inductive refine-
ment types as abstract domain. The main difference of our work is that we separated analysis-
independent concerns (the generic interpreter) from analysis-specific concerns (the instances).
This way we can develop different analyses for program transformations with relatively little
effort. Furthermore, it also simplifies the analysis definition, because most of the language com-
plexity is captured in the generic interpreter. Lastly, our work is based on the well-founded
theory of compositional soundness proofs [Keidel et al. 2018] provided by the Sturdy framework.
This allows us to verify that soundness of analyses more easily, as we only need to prove that the
instances are sound.

CompCert [Leroy and Others 2012] is a formally verified C compiler. The compiler guaran-
tees that the compiled program has the same semantics as the input program. To this end, each
program transformation in the compiler passes has to preserve the semantics of the transformed
program. While CompCert focuses on the semantics of the transformed program, the static anal-
yses for program transformations in this work have to satisfy a different correctness property.
Soundness of these static analyses guarantees that the analyses results overapproximate which
programs can be generated by a program transformation. However, soundness does not give any
guarantees about the semantics of the transformed program. In the future, we aim to develop
more precise analyses for program transformation languages that allow us to draw conclusion
about the semantics of transformed programs.

6.7 Conclusion

To summarize, in this work, we presented a systematic approach to designing static analyses for
program transformations. Key of our approach is to capture the core semantics of the program
transformations with a generic interpreter that does not refer to any analysis-specific details. This
lets the analysis developer focus on designing a good abstraction for programs. We demonstrated
the usefulness of our approach by designing three analyses for the program transformation lan-
guage Stratego. Our sort analyses are able to check the well-sortedness of type-preserving and
even type-changing generic traversals.

101

7RELATED WORK

The main contribution of this thesis is the modular specification and compositional soundness
of abstract interpreters. In this chapter, we review how related works ensure soundness and
compare it to our approach. The columns of Table 7.1 give an overview of how this chapter is
organized. We start in Section 7.1 discussing closely related works, which modularize a certain
part of the analysis definition and make its soundness proof compositional. In Section 7.2, we
broaden our scope and discuss other soundness proof techniques and how they can be or have
been implemented in Sturdy.

7.1 Modular Analyses Description and Compositional Soundness
Proofs

Most closely related to our work are approaches that modularize some part of the analysis, such
that the soundness proof of this part becomes compositional. To this end, in this section we dis-
cuss 4 dimensions alongwhich an analysis can bemodularized: language semantics (Section 7.1.1),
and effects (Section 7.1.2), fixpoint algorithms (Section 7.1.3), and values (Section 7.1.4).

7.1.1 Compositional Soundness Proofs of Language Semantics

A language semantics describes how different syntax constructs are interpreted or analyzed. In
this subsection, we discuss existing techniques for defining and modularizing the language se-
mantics of abstract interpreters.

Two-Level Metalanguage Jones and Nielson [1994, Section 3] describe an approach for a mod-
ular description of a language semantics. In particular, the approach first translates the syntax
of the language to algebraic operations. These algebraic operations do not carry any inherent
meaning, but instead can be independently interpreted. These interpretations allow to define dif-
ferent semantics for the same algebraic operations like a concrete semantics or a static semantics.
To prove an analysis sound, Jones and Nielson prove that it suffices to show soundness of the
algebraic operations [Jones and Nielson 1994, Proposition 3.3.3]. To this end, define a logical rela-
tion [Plotkin 1980] that captures the notion of sound approximation. This proposition composes
the soundness proof as no reasoning about the semantic equations is required. However, they
prove this proposition for one specific algebra. This means if another analysis requires a different
algebra, the proposition does not hold.

Jones and Nielson two-level metalanguage is closely related to the generic interpreters we
introduced in Chapter 3. In particular, the generic interpreter maps the syntax of the language
to the algebra of arrows [Hughes 2000]. Furthermore, we prove that an analysis is sound if all
arrow operations of the generic interpreter are sound. This reduces the soundness proof effort
and complexity, because no reasoning about the generic interpreter is necessary. In contrast, we
prove a more general soundness composition theorem that holds for all arrow algebras.

Another difference is that we describe in Chapter 3 how a soundness proof can be composed
with parametricity. This means that generic interpreters can be implemented with a metalan-
guage that enjoys parametricity, such as System-F [Reynolds 1983]. The benefit, compared to
the two-level metalanguage [Jones and Nielson 1994], is that a generic interpreter based on the
metalanguage System-F can capture more shared behavior. For example, imagine a language
semantics that evaluates the arguments of a function in reverse order. This reversing of the ar-
gument list can be implemented as part of the generic interpreter and requires no reasoning in a
soundness proof. In contrast, Jones and Nielson’s two-level metalanguage needs to capture this
behavior as part of an algebraic operation and hence requires more soundness proof work. A
downside of relying on parametricity for soundness proof composition is that not many widely

103

7. Related WoRK

Analysis Approaches and Frameworks

M
odularLanguage

Sem
antics(7.1.1)

M
odularEffects(7.1.2)

M
odularFixpoints(7.1.3)

M
odularValues(7.1.4)

D
erive

Soundness(7.2.2)

A
lt.Concrete

Sem
.(7.2.3)

M
echanized

Proof(7.2.1)

Big-Step Abstract Interpreters

Natural-Semantics-Based AI. [Schmidt 1995] (7.1.1, 7.1.3)
Two-Level Metalang. [Jones and Nielson 1994] (7.1.1)
Skeletal Semantics [Bodin et al. 2019] (7.1.1)
Cert. AI. with Pretty-Big-Step Sem. [Bodin et al. 2015] (7.1.1)
Galois Transformer [Darais et al. 2015] (7.1.2)
Staged Abstract Interpreters [Wei et al. 2019] (7.1.2)
Abstract Definitional Interp. [Darais et al. 2017] (7.1.3)
Astrée [Cousot et al. 2006] (7.1.4)
Verasco [Jourdan et al. 2015] (7.2.1)
Calculational Design [Cousot 1999] (7.2.2)
Sturdy (this work) G#
Small-Step Abstract Interpreters

K framework [Rosu and Serbanuta 2010] (7.1.1)
CFA of Higher-Order Lang. [Shivers 1991]
Monadic Abstract Interp. [Sergey et al. 2013] (7.1.2)
AAM [Horn and Might 2010] (7.2.2)
Scala-AM [Stiévenart et al. 2016] (7.2.2)
Datalog-based and other Logic-based Analyses

Doop [Smaragdakis and Kastrinis 2018] (7.1.1)
Flix [Madsen and Lhoták 2018] (7.2.1)
Rhodium [Lerner et al. 2002] (7.1.4, 7.2.1)
HornDroid [Calzavara et al. 2017] (7.1.1)
KeY [Ahrendt et al. 2016] (7.1.1)

Table 7.1: The table compares different analysis approaches if they modularize parts of the anal-
ysis definition (first 4 columns) and if they support certain soundness proof techniques (last 3
columns). In the first 4 columns, a full circle () means that a part of the analysis definition is
modular and that the soundness proof for this part is compositional. A ring () means that a part
of the analysis definition is modular, but the soundness proof is not compositional. An empty
circle () means that neither the analysis definition is modular nor the soundness proof is com-
positional. In the last 3 columns, a circle indicates if an approach supports (), partially supports
(G#), or is unknown to support () a particular soundness proof technique.

104

7.1. Modular Analyses Description and Compositional Soundness Proofs

used programming languages enjoy parametricity. In particular, many languages were not de-
signed with parametricity in mind and features like ad-hoc polymorphism are known to break
parametricity.

Skeletal Semantics Bodin et al. follow a similar approach compared to Jones and Nielson [1994]
two-level metalanguage. In particular, a skeletal semantics [Bodin et al. 2019] translates the syn-
tax of the language to a specific algebra called bones. These algebraic operations do not carry
inherent meaning, but can be interpreted to obtain a concrete semantics or a static semantics. In
contrast to Jones and Nielson [1994] two-level metalanguage, the skeletal semantics algebra is
more restrictive. In particular, the algebra only allows four types of operations: hooks (recursive
calls to the interpreter), filters (tests which can terminate the execution), branches (parallel execu-
tion paths), and sequencing. This allows Bodin et al. to prove a more general consistency theorem
that holds for all skeletal semantics. This consistency theorem can be used to prove soundness
of a derived static analysis, by proving that the algebraic operations are sound. They prove the
consistency theorem by induction over the structure of the algebra.

In comparison, our generic interpreters are closely related to skeletal semantics, because they
map the syntax of the language to algebraic operations. In contrast, we use arrows as an algebra.
The algebra of arrows is more restrictive than an arbitrary algebra used in a two-level metalan-
guage, but more general than the skeletal semantics algebra. More specifically, arrows allow the
embedding of functions with the arr operation, which the skeletal semantics algebra does not.
This allows us to specify more shared behavior in generic interpreters compared to a skeletal se-
mantics, which needs to capture all behavior within algebraic operations. Furthermore, arrows
are built into Haskell, which natively supports type checking of arrow expressions and provides
a convenient pretty notation. In contrast, the algebra of skeletal semantics does not have built-in
language support. This means that, for example, the type checking of a skeletal semantics need to
be implemented explicitly for each different algebra [Bodin et al. 2019, Section 3.1]. However, the
benefit of implementing type checking explicitly is that it allows to provide stronger guarantees
than what the standard type system of the metalanguage can guarantee.

Another difference to our work is the use of filters in a skeletal semantics. Filters allow a
skeletal semantics, for example, to check if a value has a specific type. If the value does not have
the correct type, the filter fails and propagates the failure. In contrast, our case studies do not use
operations equivalent to filters. Instead, the type checking of values happens within operation
that combine the values, such as an addition operation. The downside of this is that it moves
more behavior into algebraic operations instead of being shared in the generic interpreter, which
requires more proof work. In contrast, filter operations would allow us to capture more behavior
within the generic interpreter and would require less overall proof work. We believe that we
could greatly benefit from using filters and want to investigate this topic in the future.

Certified Abstract Interpretation with Pretty-Big-Step Semantics Bodin et al. [2015] describe
another approach that composes the soundness proof of abstract interpreters. In particular, they
also derive the concrete and abstract interpreter from the same set of semantic rules. However,
they use a flavor of big-step semantics called pretty-big-step semantics (PBS) [Charguéraud 2013].
While in standard big-step semantics each rule may evaluate arbitrarily many subterms, in PBS
each rule may only evaluate one subterm. To compensate for this restriction, PBS rules accumu-
late an evaluation context that carries the values of previously evaluated subterms. The restricted
PBS rule scheme allow Bodin et al. to describe a concrete and an abstractmeta-interpreter for PBS
rules that are independent of the object language that the rules describe. For this concrete and
abstract interpreter, they prove a generic soundness theorem that holds for all object languages.
This generic soundness theorem composes a soundness proof for a given set of PBS rules.

When we compare Bodin et al. approach to our approach, then, a generic interpreter is related
to PBS rules for a particular language. In particular, a generic interpreter allows to derive a
concrete and an abstract semantics for the same language, similar to PBS rules. Furthermore,
the algebra that a generic interpreter uses is related to the rule scheme of PBS. Following this
analogy, then the metalanguage of a generic interpreter would need to be related to the concrete
and abstract meta-interpreter of PBS rules. However, here the analogy breaks down, as we use

105

7. Related WoRK

the samemetalanguage for the generic interpreter to derive a concrete and an abstract interpreter.
Thismakes the proof of our generic soundness theorem easier, as it reduces to structural induction
over the arrow expressions. In contrast, Bodin et al. have a more elaborate proof of the generic
soundness theorem, since it needs to relate two different meta-interpreters.

Big-step Abstract Interpreters Big-step abstract interpreters [Schmidt 1995] are a specific style
of static analysis. More generally, big-step abstract interpreters follow the theory of abstract inter-
pretation by Cousot and Cousot [1977]. Abstract interpretation is a methodology for developing
sound static analyses. In particular, an abstract interpreter is like a standard concrete interpreter,
but it calculates abstract values as result. These abstract values represent properties of programs
we want to analyze. To prove an abstract interpreter sound [Cousot and Cousot 1977], we need
to related it to the concrete interpreter with a galois connection [Ore 1944]. However, abstract
interpretation itself does not specify in which style the language semantics should be described
in. In fact, abstract interpretation can be used to prove soundness for analyses described with
several styles of language semantics.

Schmidt [1995] uses the concepts of abstract interpretation and applies it to a big-step se-
mantics. A big-step abstract interpreter takes an expression as input and recursively evaluates
the expression in one big step to an abstract value [Schmidt 1995]. This is in contrast to small-
step abstract interpreters [Shivers 1991; Horn and Might 2010], that evaluate expressions to an
abstract value in many small steps. Schmidt [1996] discusses both the small-step and big-step ap-
proach to abstract interpretation and compares them to each other. Big-step abstract interpreters
have the benefit, that we can implement them as a recursive function in a metalanguage of our
choice [Darais et al. 2017]. However, in comparison to small-step abstract interpreter, big-step
abstract interpreters require more complicated techniques to ensure termination of the analysis,
while computing a fixpoint [Schmidt 1998]. In the earliest descriptions of big-step abstract in-
terpreters, the abstract interpreter and concrete interpreter are two separate artifacts [Schmidt
1995; Rosendahl 1995; Schmidt 1998]. To prove such abstract interpreters sound, the soundness
proof has to bridge a large gap between the abstract and concrete interpreter. This causes the
soundness proof to become monolithic, because the interpreters differ at various places, as we
explain in Section 1.3.

In this dissertation, we describe all our analyses as big-step abstract interpreters. However,
in contrast to Schmidt [1995], we modularize the language semantics of the abstract interpreter.
In particular, we derive both the concrete and abstract interpreter from the same generic big-step
interpreter (Chapter 3). This approach makes it easier to derive new abstract interpreters for the
same language, as a part of the language semantics is already captured by the generic interpreter.
But more importantly, this generic interpreter provides the necessary structure along which we
compose a soundness proof.

Monotone and Distributive Analysis Frameworks Dataflow analyses are commonly imple-
mented in the Monotone Framework [Nielson et al. 1999; Smits and Visser 2017] or in distributive
frameworks such as IFDS/IDE [Reps et al. 1995; Sagiv et al. 1996]. An analysis implemented in
these frameworks propagates its results along the control-flow graph of the program with the
help of transfer functions. In the IFDS/IDE framework, these transfer functions are encoded in
a way such that the fixpoint algorithm reduces to an efficient graph reachability problem. Using
a monotone or distributive framework to implement dataflow analyses has the benefit that all
analyses share the same infrastructure, fixpoint algorithm, and meta theory. This reduces the ef-
fort of implementing new analyses and reduces the likelihood of making mistakes in the analysis
implementation.

Unfortunately, these frameworks do not simplify the soundness proof of their analyses. For
example, Nielson et al. [1999, Section 2.2.2] show how a live variables analysis implemented in the
monotone framework can be proven sound. The soundness proof relates the analysis results to a
binary correctness relation over a concrete small-step semantics [Nielson et al. 1999, Figure 2.5].
This soundness proof is similar to a preservation lemma for type systems and hence it has many of
the same problems as we discussed above. In particular, the soundness proof is not compositional
and proof parts cannot easily been shared between different analyses in the monotone framework.

106

7.1. Modular Analyses Description and Compositional Soundness Proofs

Datalog-based Analyses Many analyses are implemented in Datalog [Szabó et al. 2016, 2018;
Smaragdakis and Balatsouras 2015; Grech and Smaragdakis 2017], a declarative logic program-
ming language. Datalog is a suitable language because it has built-in support for fixpoint compu-
tations, whereas general purpose programming languages usually have no support. Furthermore,
Datalog programs can be efficiently executed [Antoniadis et al. 2017] and incrementalized [Szabó
et al. 2018].

Analyses in Datalog are defined with a number of logic rules. For example, the following
rules define an intraprocedural points-to analysis [Smaragdakis and Balatsouras 2015]:
VarPointsTo(var, obj) ← AssignAlloc(var, obj)
VarPointsTo(to, obj) ← Assign(to, from), VarPointsTo(from, obj)

These rules define a relation VarPointsTo(var,obj), which expresses that a variable varmay point
to an object obj. The first rule says that a variable x may point to an object obj, if x appears in
an allocation x = new obj. The second rule says that a variable x may point to an object obj, if x
appears in an assignment x = y and the variable y may point to obj.

Proving a Datalog-based analysis sound requires to relate the contents of the relations to the
dynamic semantics of the analyzed language [Smaragdakis and Kastrinis 2018]. For example,
for the pointer analysis above we need to prove that if the evaluation of a program results in a
store and this store has a binding 𝑥 ↦→ obj, then VarPointsTo(𝑥, obj). The difficulty is that one
Datalog rule may relate to multiple rules of the dynamic semantics and vice versa. This requires
asking if the sum of Datalog rules cover all cases of the dynamic semantics. It is unclear how
such a proof can be composed of soundness lemmas for a subset of the rules. This increase the
complexity of the proof and makes it hard to share parts of the proof for a different analysis for
the same language.

Hoare Logic Another popular approach to implement static analysis, is to abstractly interpret a
program in a Hoare logic, whose formulas are solved by an SMT solver [Schneidewind et al. 2020;
Ahrendt et al. 2016; Benton 2004]. A Hoare logic is defined in terms of triples {Pre} expr {Post}.
Such a triple says that the evaluation of the expression expr ensures the post condition Post if
the precondition Pre holds.

The soundness proof usually requires one or two steps. The first (optional) step relates that
the concrete operational semantics to a concrete Hoare logic. The second step shows that the
abstract Hoare logic is an overapproximation of the concrete Hoare logic. This second step tends
to be easier to prove than a soundness proof between operational semantics, because the Hoare
logic abstracts away some operational aspects of the language. However, the soundness proof
is not compositional: Hoare triples mix different concerns of the analysis, such as the analysis
of values, heap, and exceptions. This makes it hard to reuse parts of the soundness proof for a
different analysis for the same language.

7.1.2 Compositional Soundness Proofs of Effect Abstractions

Many languages define effectful operations like store updates, exceptions, or file system accesses.
However, implementing maintainable analyses for effectful operations is challenging, because
effects are usually crosscutting concerns and interact with each other. Therefore, in this section,
we discuss works that modularize the effects of the language and the analysis.

Monads Moggi [1991] describes how monads [Lane 1971] can be used to abstract over the ef-
fects of a programming language. A monad is a type wrapper 𝑀 (𝐴), with an operation inject :
𝐴 → 𝑀 (𝐴) that injects a value into the monad and an operation join : 𝑀 (𝑀 (𝐴)) → 𝑀 (𝐴)
that joins two layers of the monad into one. This abstraction can be used to describe the ef-
fects of backtracking, continuations, exceptions, mutable state, etc [Wadler 1992]. Later, [Liang
et al. 1995] showed how these effects can be described separately withmonad transformers. Each
monad transformer captures a specific type of effect and can be combined with other transform-
ers to compose their effects. Sergey et al. [2013] showed that concepts in static analysis such as
context-sensitivity, poly-variance, flow-sensitivity are analysis- and language-independent and
can be captured by an appropriate monad. This allows building analyses more quickly by reusing

107

7. Related WoRK

existing functionality. However, they do not explain how monadic abstract interpreters can be
proven sound.

Arrows In this work, we use another effect abstraction called arrows [Hughes 2000]. Arrows
are similar to monads in that they describe the type of an effectful computation. However, they
are more general in that every monad is an arrow, but not every arrow is a monad. The main
difference between monads and arrows is that monads only capture the outputs of a computation,
whereas arrows also capture the input. This means arrows can describe both monadic as also
comonadic effects [Hughes 2000]. Furthermore, arrows are described with a different algebra
than monads. In particular, arrows do not have an equivalent to the join operation for monads.
Instead, they are defined with operations that explain how the effects of the arrow commute with
the products and sums of the language. Lastly, similar to monads, arrows have a convenient
pretty notation [Paterson 2001] that makes it easier to write effectful computations.

Galois Transformer Darais et al. [2015] refine the concept ofmonadic abstract interpreters [Sergey
et al. 2013] and describe each type of effect with a galois transformer. A galois transformer is a
monad transformer, which commutes with respect to galois connections between two underlying
monads. Galois Transformer have the benefit, that a sound abstract interpreter can be derived
from a generic monadic interpreter by instantiating it with a stack of galois transformers. Fur-
thermore, this gives the flexibility to derive alternative semantics by reordering or extending the
stack of galois transformers. However, galois transformer make the assumption that the generic
monadic interpreter is sound, for all sound monad instances. Yet, the paper does not explain how
this can be proved. In contrast, we show in Chapter 3 how a generic interpreter can be proven
sound without knowing the underlying instances.

Galois transformers are closely related to the analysis components we introduce in Chapter 4.
More specifically, our analysis components consist of an arrow-based interface that describes the
operations of the component, a concrete and an abstract instance, and a proof that the abstract
instance soundly approximates the concrete instance. The main contribution of Chapter 4 is that
analysis components can be composed into larger components while preserving soundness. Fur-
thermore, the successive composition of analysis components gives us a super component, which
can be used to soundly instantiate a generic interpreter with a compatible interface. However,
in comparison, each of our analysis components consists of a pair of arrow transformers. This
allows us to define different arrow transformers for the concrete and abstract interpreter. In con-
trast, a galois transformer is a single monad transformer. This means, the concrete and abstract
interpreter need to be instantiated with the same stack of monad transformers ([Darais et al. 2015,
Theorem 1]).

Staged Abstract Interpreters Wei et al. [2019] developed an approach that improves the per-
formance of abstract interpreters following the approach of [Darais et al. 2015] and [Darais et al.
2017]. In particular, they specialize an abstract interpreter to a given program, such that it runs
faster. To this end, they derive both the concrete and abstract interpreter from the same generic
interpreter. This allows them to create special versions of operations that stage parts of the in-
put. Furthermore, they use monads [Moggi 1991] to abstract over the effects within the generic
interpreter, and they use monad transformers [Liang et al. 1995] to describe the effects modu-
larly. This allows them to specialize the interpreter for effects such as an environment, by using
versions of monads that stage that part. Lastly, they informally explain why a staged abstract
interpreter remains sound if the unstaged abstract interpreter is sound. However, it is unclear if
these soundness proofs are compositional.

We believe that we can make use of this technique to speed up our abstract interpreters as
well. While the language of the Sturdy Framework, Haskell, does not have a library that allows
staging computations, we believe that the concepts of Wei et al. work translate to Haskell as well.

K framework The K framework [Rosu and Serbanuta 2010] is an approach that allows to de-
scribe formal operational semantics for a language and to derive program verifier for that lan-
guage. The K framework distinguishes itself from other semantic approaches in that it modular-

108

7.1. Modular Analyses Description and Compositional Soundness Proofs

izes the definition of the language semantics and the effects of the language. In particular, the
language semantics is defined with labeled rewrite rules in a small-step style. The rewrite rules
contain labeled cells that each capture a specific effect of the language. These labeled cells allow
adding additional effects to the language, without needing to change existing rules that do not
interact with the new effects. For example, they allow to add a store to an existing language,
without needing to change existing rules to pass around the store explicitly.

Recently, Alam et al. [2018] used the K framework to develop a static taint analysis. The defi-
nition is similar to other small-step abstract interpreters [Shivers 1991]. For example, to analyze
an if statement, the analysis first analyzes the first branch. Then the analysis restores the envi-
ronment to before the if statement and analyzes the second branch. Afterwards the analysis joins
the resulting environments. While the definition of the analysis is modular, the soundness proof
is not compositional. In particular, the analysis is a separate definition, which does not share any
behavior with the dynamic semantics of the language. Because there is no shared behavior, there
is no common structure along which a soundness proof could be composed.

In comparison, in Chapter 4 we define analysis components based on a pair of arrow trans-
formers [Hughes 2000] that modularize the analysis definition of different effects and their sound-
ness proof. Similar to a labeled cell of the K framework, each analysis components encapsulates
a specific effect of the language and multiple components can be composed to combine the under-
lying effects. In contrast, we show that our analysis components are also a suitable abstraction
for soundness proofs. In particular, each analysis component can be proven sound once and for
all and the composition of multiple analysis components remains sound.

Sturdy In Chapter 4, we explain how we can modularize the analysis description of effects with
analysis components. Each analysis components consists of a pair of arrow transformers [Hughes
2000] and a soundness proof. Each arrow transformer encapsulates a particular effect and can
be composed with other transformers to their different effects. Since arrow transformers encap-
sulate the definition of effects, we can prove each analysis component sound once and for all. A
challenge of this approach is to describe the interaction between different effects, e.g., the interac-
tion betweenmutable variables and exceptions. We describe this interactionwith liftings required
for composing multiple arrow transformer of multiple analysis components. Lastly, since every
monad is an arrow via the Kleisli arrow [Lane 1971], we can use existing monads described by
other works [Sergey et al. 2013; Darais et al. 2017; Wei et al. 2019].

7.1.3 Compositional Soundness Proofs of Fixpoint Algorithms

Because of loops and recursion an analysis cannot compute its result in a single step. Instead, it
uses a fixpoint algorithm that successively reanalyzes parts of the program until the result does
not change anymore. Yet, many fixpoint algorithms are monolithic, which makes them harder to
change and harder to prove them sound and terminating.

Natural-Semantics-Based Abstract Interpretation Schmidt [1995] describes one of the first fix-
point algorithms for big-step abstract interpreters, that operates on the derivation tree. The fix-
point algorithm unfolds the abstract derivation tree until each branch either terminates or repeats
itself. The algorithm detects recurrent calls of the abstract interpreter by memoizing parts of the
abstract derivation tree. The algorithm does not specify an order for iterating on the analysis re-
sults. Instead, the algorithm generates a number of recursive equations, which then can be solved
with an arbitrary iteration order to calculate the fixpoint. We use some of the techniques of this
fixpoint algorithm in Chapter 5, but modularize its definition.

Abstracting Definitional Interpreters Darais et al. [2017] propose to define fixpoint algorithms
modularly from reusable fixpoint combinators. For example, Darais et al. describe fixpoint combi-
nators that collect an execution trace, collect dead code, collect abstract garbage, and calculate the
least fixpoint of a big-step abstract interpreter. The fixpoint combinators take the open-recursive
type of the abstract interpreter as input, which allows to compose the combinators by nesting
them. Furthermore, the fixpoint combinators are parameterized by a monad, which allows their

109

7. Related WoRK

effects to compose. While Darais et al. [2017, Section 4.1] prove soundness and termination of
the least fixpoint combinator, they do not explain how a complete modular fixpoint algorithm
can be proven sound and terminating. Furthermore, Darais et al. do not show that their fixpoint
combinators are language-independent and reusable.

Sturdy In Chapter 5, we introduce a notion of fixpoint combinators similar to Darais et al. [2017],
which allow us to implement modular fixpoint algorithms. In particular, our combinators also
take the open-recursive type of the abstract interpreter as input. However, in contrast to Darais
et al., we allow higher order combinators. Furthermore, we formalize the fixpoint combinators
and prove that a modular fixpoint algorithm is sound, if all its combinators are sound. This makes
the soundness proof of the combinators independent of each other and reusable. Moreover, we
show in our evaluation that our fixpoint combinators are language-independent and reusable
across different analyses

7.1.4 Compositional Soundness Proofs of Value Abstractions

A programming language often defines multiple built-in value types such as numbers, strings,
and booleans. Finding a suitable abstraction for values is one of the most important tasks of an
analysis developer. However, this is difficult because there is often not a single value abstractions
that works best in all cases. In particular, some value abstractions are more precise analysis for
some operations, but less precise for other operations. Therefore, it can be beneficial to combine
multiple abstractions into a new abstract domain that is more precise than its constituents.

Cartesian Product Thesimplest composition of value abstractions is the cartesian product [Cousot
and Cousot 1979]. A cartesian product combines two or more value abstractions into a tuple,
while allowing no exchange of information between different abstractions. Disallowing the ex-
change of information has the benefit that different value abstractions can be independently de-
fined and proven sound. However, it has the drawback that the value abstractions cannot improve
each other’s precision.

Lerner et al. [2002] refine the approach of cartesian products. In particular, their approach
allows analyses which not only produce information about the program, but can also transform
the program. For example, a points-to analysis can be combined with a transformation that in-
lines virtual method calls, if the call target can be uniquely determined. The transformations are
applied while the analysis is running. This allows different components of the cartesian product
to indirectly affect each others results. This makes this approach more precise than conventional
cartesian products.

Reduced Product While a cartesian product does not allow the exchange of information be-
tween its components, a reduced product [Cousot and Cousot 1979; Cortesi et al. 2013] lifts this
restriction. In particular, reduced products define a reduction operator that exchanges information
between components and improves their precision. For example, a reduced product of intervals
and congruences improves the precision of an interval analysis of division and a congruence anal-
ysis of less-than operations. Reduced products still allow to define and prove analyses for each
component independently. The only part of a reduced product that cannot be independently
defined is the reduction operator. The reduction operator needs to be defined for each reduced
product and proven sound explicitly.

Network of Domains Cousot et al. [2006] refine the idea of reduced products within the static
analyzer Astrée. In particular, they define a reduced product, whose components are processed in
a specific order. This means that the reduced product is not commutative anymore. The compo-
nents of the reduced product can communicate information to other components with messages.
These messages decouple the components from each other, in contrast to a monolithic reduction
operator. This means that abstract domains of the components can be independently defined and
proven sound, but they can still exchange information via messages.

110

7.2. Other Techniques for Ensuring the Soundness of Static Analyses

Sturdy So far we have not explored modular definitions of value abstractions in Sturdy. How-
ever, we assume that they fit well into our framework. More specifically, the interfaces for value
operations allow the definition of multiple value abstractions. Furthermore, the same interface
allows combining multiple value abstractions with, e.g., a reduced product. However, there are
also open questions. For example, it is unclear how the effects for two value abstractions can be
soundly combined. For instance, imagine a case where an operation for one value abstraction
causes an exception, whereas for another value abstraction it does not.

7.2 Other Techniques for Ensuring the Soundness of Static Analyses

In this section, we broaden our scope and discuss other techniques that analysis developers use
to ensure that their analysis is sound.

7.2.1 Mechanized Soundness Proofs

In particular, many analysis developers prove soundness by using a mechanized proof assistant
such as Agda, Coq or Idris. Such mechanized soundness proofs have the benefit that they are
more trustworthy than pen-and-paper proofs. However, without modularization, mechanized
soundness proofs have the same issues as monolithic proofs we discuss in Section 1.3. To this end,
soundness proof mechanization is orthogonal to the soundness proof modularization we focus on
in this thesis. In the remainder of this subsection, we discuss different works that successfully
mechanized soundness proofs.

Verasco Jourdan et al. [2015] developed a static analyzer for the C programming language, that
was formally verified with the Coq proof assistant [Coq Development Team 2019]. The analyzer
is described as an abstract interpreter over the C#minor intermediate language used in the Com-
pCert compiler. The effort of developing and proving the analysis sound is enormous, owed in
part to the complexity of the C#minor language. The soundness proof consists of two main steps:
The proof first relates the C#minor semantics to a specific Hoare logic and in a second step shows
that the abstract interpreter infers properties of this Hoare logic. The proof consists of 17k lines
of Coq code, which is approximately the same size as the implementation of the abstract inter-
preter itself. This means that the effort of proving the analysis sound (measured in lines of code)
is approx. the same effort as developing the analysis itself.

Flix Madsen and Lhoták [2018] alsomechanize soundness proofs in the Flix analysis framework,
but follow a different approach. Flix uses an SMT solver to prove soundness of some parts of an
analysis automatically. To this end, analysis developers need to add annotations to the analysis
code, that aid the SMT solver in the soundness proof. These annotations describe mathematical
properties that the analysis code satisfies, such as monotonicity. While this approach works well
for proving soundness of value operations, Madsen and Lhoták [2018] have not explored if a
complete analysis can be proven sound with an SMT solver.

Rhodium Similar to Flix, the analysis framework Rhodium [Lerner et al. 2005] mechanizes its
soundness proofs with an automatic theorem prover. In particular, they manually prove that an
analysis implemented in Rhodium is sound, if all its flow functions are sound. Soundness of the
flow functions is then proved automatically with an SMT solver. In contrast to Flix, Rhodium
does not require annotations on flow functions to aid the theorem prover. However, Lerner et al.
[2005] also do not evaluate how many flow functions could be proven sound automatically.

Mechanized Proofs vs. Pen-And-Paper Proofs In the following we discuss the tradeoffs be-
tween mechanized soundness proofs and pen-and-paper proofs. Due to the high complexity of
analyses and languages, conventional soundness proofs require a lot of bookkeeping. For exam-
ple, this bookkeeping includes the substitution of logic variables, verifying that a lemma applies
to the proof goal, and keeping track of available hypotheses. Manual bookkeeping in pen-and-
paper proofs can lead to mistakes, whereas in mechanized proofs the proof assistants takes care

111

7. Related WoRK

of the bookkeeping. This means, in contrast to pen-and-paper proofs, mechanized proofs are
100% trustworthy. The trustworthiness of the soundness proof is especially important for static
analyzes that verify mission-critical software. However, it also significantly increases the effort
of the soundness proof. For example, it takes more effort to convince a proof assistant that a
seemingly trivial property holds, than to make a hand-wavy argument in a pen-and-paper proof.
Furthermore, many other analyses uses cases do not justify the additional effort of a mechanized
soundness proof. For these cases a high-level pen-and-paper proof may be more valuable than a
fully-fledged mechanized proof.

Sturdy The main goal of this work is to simplify the soundness proof by decomposing it into
smaller lemmas. This decomposition reduces the amount of bookkeeping and hence reduces the
likelihood of making a mistake in a pen-and-paper proof. This makes pen-and-paper proofs of
static analysesmore approachable, as we showwith our case studies. That being said, we acknowl-
edge the benefits of mechanized soundness proofs. In particular, we investigated a formalization
of our theory in the Coq proof assistant, which we documented in the master thesis of Jens de
Waard [de Waard 2020].

7.2.2 Deriving the Implementation and Soundness Proof of Static Analyses

Developing a new analysis from scratch and proving it sound is difficult. This is especially the
case if the soundness proof is conducted after the analysis was implemented. In such a case
the analysis often differs significantly from the concrete semantics and hence is hard to relate
in a soundness proof. To address this problem, several approaches systematically derive a static
analysis and alongside a soundness proof.

The Calculational Design of a Generic Abstract Interpreter Cousot [1999] describes an ap-
proach based on abstract interpretation that uses the soundness proof as the guiding principle to
derive an analysis. In particular, analysis developers apply a Galois connection to the collecting
semantics of the concrete interpreter and then perform a series of small soundness proof steps
until the result becomes computable. This approach guides the search for the abstract semantics,
as often there is only one sensible reasoning step possible. This approach is especially useful for
implementing analyses with complicated abstractions, such as Polyhedra [Chen et al. 2008; Singh
et al. 2017] or regular tree grammars [Cousot and Cousot 1995]. Furthermore, it is useful for
implementing analyses for complicated collecting semantics such as backward collecting seman-
tics [Cousot and Cousot 1992a]. However, in our experience it is hard to scale the approach to a
complete analysis for a real-world programming language. In particular, the proof steps for large
language constructs become too complicated.

Our work complements this approach. In particular, we used the calculational approach to
derive the abstract semantics and soundness proof of some operations of generic interpreters in
our case studies. However, in comparison the reasoning steps are easier because the operations
only describe a small piece of functionality. Furthermore, the semantics of each operation can be
derived independently of each other.

Abstracting Abstract Machines (AAM) Horn and Might [2010] describes another systematic
approach for deriving an abstract interpreter from an abstract machine. The derivation starts
from the concrete semantics in form of an abstract machine. The approach then applies a se-
ries of systematic transformations to the abstract machine to derive a corresponding abstract
interpreter. These transformations are easy and systematic because of the restrictiveness of the
abstract machine semantics. In particular, an abstract machine consists of a tuple that captures
the entire state of the machine and a transition relation between states. Each transformation
translates a single transition of the old machine to a transition of a new machine. Furthermore,
since each transformation is systematic, the soundness proof follows systematically as well.

The AAM approach has proven to scale beyond simple calculi to languages like Java.1 How-
ever, using this approach to define analyses for other large languages becomes tedious, due to a

1https://github.com/Ucombinator/jaam/

112

https://github.com/Ucombinator/jaam/

7.3. Testing Soundness

lack of modularization. In particular, there is almost no code reuse between analyses for differ-
ent languages and the same abstractions need to be reimplemented again and again. In contrast,
this work enables a high degree of reuse of analysis functionality. More specifically, Chapter 3
explains how the same generic interpreter can be reused for different analyses for the same lan-
guage and Chapter 4 and Chapter 5 describe how effect abstractions and fixpoint algorithms can
be reused across different languages.

Scala-AM The Scala-AM [Stiévenart et al. 2016] framework closely follows the AAM approach,
but addresses the problem of reusing functionality by modularizing the abstract machine seman-
tics. To this end, Scala-AM separates the concerns of value abstraction, addresses and time stamps,
language semantics, and machine abstractions. This allows analysis developers to reuse existing
functionality or to swap out parts of the analysis without needing to change the rest. While
the Scala-AM framework reduces the development effort of analyses and improves their main-
tainability, it does not explain how analyses can be proved sound. In particular, it is unclear if
new analyses can be derived with soundness preserving steps like with AAM. Furthermore, it is
unclear how parts of the analysis can be swapped out while preserving soundness.

7.2.3 Soundness Proofs via an Alternative Concrete Semantics

Many soundness proofs relate the abstract semantics directly to the concrete semantics in one
step. However, for some analyses this may not be possible, because the concrete semantics may
not be in a form in which a soundness proof is possible. In such a case the concrete semantics first
needs to be related to an alternative concrete semantics and then in a second step to the abstract
semantics.

Abstract Garbage Collection Such a detour is for example necessary for an analysis that per-
forms abstract garbage collection [Might and Shivers 2006b; Es et al. 2019]. Like concrete garbage-
collection, the abstract version frees unused addresses in the analysis store. However, the goal
is not to save space, but to improve the precision of the analysis. It is difficult to relate such
an analysis in a soundness proof directly to a concrete semantics that does not perform garbage
collection. The reason is that the concrete store may contain addresses that the abstract store
removed and hence the stores are not related via a galois connection. To solve this issue, analysis
developers first relate the concrete semantics to an alternative concrete semantics with garbage
collection, and in a second step to the abstract semantics.

Reaching Definitions Analysis Another example is a reaching definitions analysis [Nielson
et al. 1999], a common dataflow analysis that calculates which definitions reach a certain state-
ment. The analysis pairs with every address in the analysis store, the set of statements from
which the address was last modified. Also, for this analysis it is difficult to prove soundness di-
rectly, because this extra information is not present in the concrete interpreter. Instead, analysis
developers prove soundness with respect to a dynamic reaching definition analysis, that is, the
concrete semantics extended with reaching definitions information.

Sturdy Sturdy supports such extra proof step via an alternative concrete semantics. More specif-
ically, in Sturdy the concrete and alternative concrete semantics can be derived from the same
generic interpreter, as we show in our case studies. This allows analysis developers to perform
the first proof step via an alternative concrete semantics with the same techniques as an ordinary
soundness proof.

7.3 Testing Soundness

Testing static analyses is a valuable tool for finding bugs in the analysis code. Testing analyses
is complementary to traditional soundness proofs: Even though tests cannot prove that an anal-
ysis is sound, they often reveal unsoundness bugs faster than a manual soundness proof. This
allows analysis developers to make changes to the analysis, while getting immediate feedback if

113

7. Related WoRK

the change was unsound. There are several techniques for testing soundness of static analyses
effectively.

Andreasen et al. [2017] propose an approach that compares the results of the analysis to a con-
crete execution of a program. If the results of the concrete execution are included in the analysis
results, the test passes. Otherwise, the test fails as the analysis does not soundly overapproximate
the concrete execution. If a test fails, their approach shrinks the analyzed program to a smaller
program on which the test still fails. This reduces the size of the counterexample, which makes it
easier to find the problem in the analysis. While this approach is relatively easy to implement as
concrete language implementations are readily available, it does not work for all types of static
analyses. For example, it does not work for static taint analyses, because the taint information is
not available in the concrete execution of the program.

Klinger et al. [2019] follow a different approach for testing static analyses. They propose to
compare the results of multiple static analyses of the same type to each other. If most analyses
agree on a result, but few analyses underapproximate the result, the few analyses are likely un-
sound. Conversely, if few analyses overapproximate a result agreed upon by most analyses, the
few analyses are likely imprecise. This technique has the benefit that it works for all types of
static analyses. However, it requires that multiple analyses of the same type are available, which
often is not the case.

To summarize, testing effectively discovers cases where the analysis is unsound. However, it
is not sufficient to guarantees soundness of the analysis, as tests could miss soundness bugs.

114

8FUTURE WORK

In this chapter, we discuss possible directions in which this work can be extended and ongoing
efforts in these directions.

8.1 Proof Mechanization

In this work, we considered soundness proofs with pen and paper. While these types of proofs
worked well for our case studies, they do not provide a high enough level of reliance for other
analysis uses cases. However, as we explained in Section 7.2.1, we view our approach as orthogo-
nal to proof mechanization. In particular, a mechanized soundness proof still becomes easier by
using our principles of compositionality. Hence, an interesting direction for future work is the
mechanization of our proof techniques with proof assistants.

Such a mechanization would require to formalize our methodology in a proof assistant. The
fundamental definitions of abstract interpretations, such as partial orders, galois connections and
fixpoint theory, already have been formalized in several prior works [Dubois 2000; Bertot 2008;
Jourdan et al. 2015; Darais and Horn 2019]. The missing piece is the formalization of our core
theorems: Theorem 3.4.1, Theorem 3.5.2 in Chapter 3, and Theorem 4.4.2, Theorem 4.4.1 in Chap-
ter 4. However, these theorems are not straight-forward to formalize in a proof assistant because
of the high-level of abstraction. For example, Theorem 3.4.1, Theorem 4.4.2, and Theorem 4.4.1
are parametric in the type of algebra that the generic interpreter or the analysis component uses.
While mechanized formalizations of F-algebras exist [Timany and Jacobs 2016], it is still an open
question how they can be applied to proof our theorems. As a partial solution, we could use
a proof assistant to prove soundness lemmas of operations and assume that our core theorems
hold without proving them. Such partially mechanized soundness proofs have a higher reliability
compared to pure pen-and-paper proofs, however, they do not give the same level of assurance
as end-to-end mechanized proofs.

As a preliminary step in this direction, we explored proof mechanization in the MSc thesis
of Jens de Waard.1 De Waard’s work implements a part of our methodology in the Coq proof
assistant [Coq Development Team 2019]. In particular, de Waard also derives a concrete and ab-
stract interpreter from a generic interpreter. However, instead of using our core theorems, de
Waard’s work uses the proof automation of Coq to compose a soundness proof. While this proof
automation was able to compose a soundness proof for a small case study, the proof automation
may fail for larger case studies. To this end, it would be more desirable to mechanize our core the-
orems for soundness proof composition, because they hold universally even for the most complex
languages and analyses.

8.2 Backward Analyses

An interesting direction for future work is the extension of our framework to other types of static
analyses, such as analyses that approximate a backward-collecting semantics [Cousot 1999]. For
example, consider the following program:
void safeIncrement(int i, int[] array) {

if(0 ≤ i && i < array.length)
array[i] += 1;

}

A forward interval analysis would first analyze the condition of the if statement and then the
body. However, a forward analysis cannot determine that the array access array[i] is safe, be-
cause it does not refine the interval for the index variable i after the condition. This refinement
can be done by an analysis that approximates a backward-collecting semantics. Such a backward

1https://svenkeidel.de/theses/jens-de-waard.pdf

115

https://svenkeidel.de/theses/jens-de-waard.pdf

8. FutuRe WoRK

analysis takes an abstract value as input and returns an approximation of the environment under
which the analyzed program could have evaluated to this value.

To implement a backward analysis in Sturdy and make its soundness proof compositional,
we would need to derive it from a generic interpreter. Most of the arrow operations are general
enough, that they can be reversed for a backward analysis. Furthermore, our core theorems are
general enough, that they allow us to compose a soundness for a backward analysis. However,
it is unclear how pure functions embedded with arr can be reversed in general. Since functions
are not reversible in general, they may require manually treatment, i.e., all pure functions in the
generic interpreter need to be reversed by hand. This would significantly increase the effort of
implementing backward analyses and proving them sound.

8.3 Performance Scalability

The focus of this work has been the soundness of static analyses. Nonetheless, real-world pro-
grams often pose large analysis problems and it is unclear howwell Sturdy analyses scale to these
larger analysis problems. While we demonstrate in Chapter 4 and Chapter 5, that our modular-
ization does not induce a significant performance penalty, the question of scalability still remains
open. For example, it could be that performant analyses require many optimizations and tweaks,
that make it more difficult to implement the analysis in a modular style. Furthermore, it is unclear
if our style of analysis semantics (big-step abstract interpreters) can be scaled to larger analysis
problems. As of now, there have not been any works that investigated the performance charac-
teristics of big-step abstract interpreters thoroughly.

To investigate the question of scalibility, we are actively working on implementing larger
analyses in Sturdy. In particular, Tobias Hombücher is working on analyses for Jimpl,2 a di-
alect of Java-Byte Code that is easier to analyze [Vallee-Rai and Hendren 1998]. Furthermore,
Katharina Brandl is working on analyses for WebAssembly,3 an assembly language which runs
in browsers [Rossberg et al. 2018]. These case studies allow us to compare the performance of
our analyses to existing state-of-the-art analyses.

2https://gitlab.rlp.net/plmz/sturdy/-/tree/jimple
3https://gitlab.rlp.net/kabrandl/sturdy/-/tree/wasm

116

https://gitlab.rlp.net/plmz/sturdy/-/tree/jimple
https://gitlab.rlp.net/kabrandl/sturdy/-/tree/wasm

9CONCLUSION

In this dissertation, we identified a problem that makes soundness proofs of static analyses dif-
ficult: Their soundness proofs tend to be monolithic, which means that it is hard to decompose
these proofs into smaller soundness lemmas, which can be proven independently. We identi-
fied three key problems that make the soundness proof monolithic: The impedance mismatch
between concrete and abstract semantics, the mixing of concerns in the implementation of dif-
ferent effects, and monolithic fixpoint algorithms. To this end, we presented a methodology for
structuring static analyses, that makes their soundness proof compositional.

The first problem we solved was the impedance mismatch between the concrete and abstract
semantics. This impedance mismatch makes it difficult to decompose the soundness proof into
smaller parts, which can be proven independently. We solved this problem by deriving both the
concrete and abstract semantics from a generic semantics that captures their similarities. This
generic semantics provides a common structure to compose the soundness proof. In particular,
we showed that if the generic semantics is described with arrows, or in a language which enjoys
parametricity, the soundness proof of the entire analysis follows from soundness lemmas for
the concrete and abstract instance. To summarize, generic semantics reduce the complexity of
the soundness proof, because we only need to prove smaller self-contained soundness lemmas.
Furthermore, they reduce the effort of the soundness proof, because we do not need to prove
anything about generic semantics.

The second problemwe addressed is the mixing of concerns in the implementation of different
effects of the language. We solved this problem by constructing analyses from small and reusable
analysis components. Each analysis component is self-contained and captures a different aspect
of the analysis. However, a challenge for making their soundness proofs compositional is the
interaction between different effects. To this end, we defined a specific composition operation for
analysis components, that explicitly describes their interaction. Proving the interactions sound
adds extra proof work. However, we show in our evaluation that most interactions are trivial and
hence their implementation and soundness proof can be derived automatically. To summarize,
analysis components reduce the complexity of the soundness proof, because we can prove each
component sound independently. Furthermore, they also reduce the effort of the soundness proof,
because language-independent components can be proven sound a priori as part of a library.

The third problem we solved was to modularize monolithic fixpoint algorithms. A fixpoint al-
gorithm is one of the most complicated parts of a static analysis and hence difficult to prove sound.
We solve this problem by composing fixpoint algorithms from small and reusable fixpoint combi-
nators. Each of these combinators addresses a specific concern of the fixpoint algorithm. These
combinators allow us to define new fixpoint algorithms more easily and to fine-tune existing
fixpoint algorithms more easily by adding, replacing, or reordering combinators. To summarize,
our fixpoint combinators reduce the complexity of the soundness proof, because each combinator
can be proven sound independently. Furthermore, they reduce the effort of the soundness proof,
because the language-independent combinators can be proven sound a priori as part of a library.

We evaluate our approach by developing the open-source Haskell library Sturdy,1 a library
of 22 reusable analysis components and 14 fixpoint combinators. This library demonstrates how
our approach allows us to split common analysis functionality into smaller reusable pieces. We
use this library to develop several analyses for different languages, which can be found in the
Sturdy code repository. Table 9.1 shows which analyses use analysis components and fixpoint
combinators from the Sturdy library. This table demonstrates that analyses for different languages
require a high amount of customization, since each column only shares some check marks with
other columns. However, there is also a potential for reusing common analysis functionality,
which can be seen when there multiple checkmarks in a row. From this table, we conclude that (1)
analysis functionality can be split into smaller components and (2) many of these components are
language-independent and reusable. Furthermore, this reduces the complexity of the soundness
proof, as components are smaller and easier to prove sound. Lastly, the soundness proof takes

1https://github.com/svenkeidel/sturdy

117

https://github.com/svenkeidel/sturdy

9. Conclusion

While PCF Scheme Stratego

Values�Interval ✓ ✓�Boolean ✓ ✓�Closure ✓ ✓�Term ✓�Powerset ✓
Types ✓

Effects

Ênv ✓ ✓ ✓�FiniteEnv ✓�Store ✓�MonotoneStore ✓�Exception ✓ ✓�PropagateError ✓ ✓ ✓�LogError ✓�Terminating ✓ ✓ ✓ ✓

Fixpoint Data

ŜCC ✓ ✓ ✓ ✓�Stack ✓ ✓ ✓ ✓�Cache ✓ ✓�MonotoneCache ✓ ✓�CallCount ✓�CallContext ✓ ✓

Fixpoint Combinators

𝜑callsiteSensitivity ✓
𝜑loopUnroll ✓
𝜑stackReuse ✓
𝜑filter ✓ ✓ ✓ ✓
𝜑innermost ✓ ✓ ✓ ✓
𝜑outermost ✓

Table 9.1: Reuse of analysis components across different languages and analyses that appeared
as case studies throughout this thesis.

less effort, because the language-independent components can be proven sound a priori as part
of the library.

With our evaluation, we confirm the central thesis of this dissertation:

Compositional soundness proofs are feasible and reduce the effort and complexity of develop-
ing sound static analyses.

118

BIBLIOGRAPHY

Harold Abelson, R. Kent Dybvig, Christopher T. Haynes, Guillermo Juan Rozas, N. I. Adams IV,
Daniel P. Friedman, Eugene E. Kohlbecker, Guy L. Steele Jr., David H. Bartley, Robert H. Hal-
stead Jr., Don Oxley, Gerald J. Sussman, G. Brooks, Chris Hanson, Kent M. Pitman, andMitchell
Wand. 1998. Revised Report on the Algorithmic Language Scheme. High. Order Symb. Comput.
11, 1 (1998), 7–105. https://doi.org/10.1023/A:1010051815785

Samson Abramsky. 1994. Handbook of logic in computer science. Clarendon Press. http://www.
worldcat.org/oclc/312138578

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers: Principles, Techniques, and Tools.
Addison-Wesley. https://www.worldcat.org/oclc/12285707

Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt, and Mat-
tias Ulbrich (Eds.). 2016. Deductive Software Verification - The KeY Book - From Theory to Prac-
tice. Lecture Notes in Computer Science, Vol. 10001. Springer. https://doi.org/10.1007/
978-3-319-49812-6

Ahmad Salim Al-Sibahi, Thomas P. Jensen, Aleksandar S. Dimovski, and Andrzej Wasowski. 2018.
Verification of high-level transformations with inductive refinement types. In Proceedings of the
17th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experi-
ences, GPCE 2018, Boston, MA, USA, November 5-6, 2018, Eric Van Wyk and Tiark Rompf (Eds.).
ACM, 147–160. https://doi.org/10.1145/3278122.3278125

Md. Imran Alam, Raju Halder, Harshita Goswami, and Jorge Sousa Pinto. 2018. K-Taint: An
Executable Rewriting Logic Semantics for Taint Analysis in the K Framework. In Proceedings
of the 13th International Conference on Evaluation of Novel Approaches to Software Engineer-
ing, ENASE 2018, Funchal, Madeira, Portugal, March 23-24, 2018, Ernesto Damiani, George
Spanoudakis, and Leszek A. Maciaszek (Eds.). SciTePress, 359–366. https://doi.org/10.
5220/0006786603590366

Karim Ali and Cristina Cifuentes (Eds.). 2017. Proceedings of the 6th ACM SIGPLAN International
Workshop on State Of the Art in Program Analysis, SOAP@PLDI 2017, Barcelona, Spain, June 18,
2017. ACM. https://doi.org/10.1145/3088515

Gianluca Amato, Francesca Scozzari, Helmut Seidl, Kalmer Apinis, and Vesal Vojdani. 2016.
Efficiently intertwining widening and narrowing. Sci. Comput. Program. 120 (2016), 1–24.
https://doi.org/10.1016/j.scico.2015.12.005

Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. 2016. The Essence
of Dependent Object Types. In A List of Successes That Can Change the World - Essays Dedicated
to Philip Wadler on the Occasion of His 60th Birthday (Lecture Notes in Computer Science), Sam
Lindley, Conor McBride, Philip W. Trinder, and Donald Sannella (Eds.), Vol. 9600. Springer,
249–272. https://doi.org/10.1007/978-3-319-30936-1_14

Nada Amin, Adriaan Moors, and Martin Odersky. 2012. Dependent object types. In 19th Interna-
tional Workshop on Foundations of Object-Oriented Languages.

Nada Amin, Tiark Rompf, and Martin Odersky. 2014. Foundations of path-dependent types. In
Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA, October 20-
24, 2014, Andrew P. Black and Todd D. Millstein (Eds.). ACM, 233–249. https://doi.org/10.
1145/2660193.2660216

Esben Sparre Andreasen, Anders Møller, and Benjamin Barslev Nielsen. 2017. Systematic ap-
proaches for increasing soundness and precision of static analyzers, See [Ali and Cifuentes
2017], 31–36. https://doi.org/10.1145/3088515.3088521

Tony Antoniadis, Konstantinos Triantafyllou, and Yannis Smaragdakis. 2017. Porting doop to
Soufflé: a tale of inter-engine portability for Datalog-based analyses, See [Ali and Cifuentes
2017], 25–30. https://doi.org/10.1145/3088515.3088522

119

https://doi.org/10.1023/A:1010051815785
http://www.worldcat.org/oclc/312138578
http://www.worldcat.org/oclc/312138578
https://www.worldcat.org/oclc/12285707
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1145/3278122.3278125
https://doi.org/10.5220/0006786603590366
https://doi.org/10.5220/0006786603590366
https://doi.org/10.1145/3088515
https://doi.org/10.1016/j.scico.2015.12.005
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1145/2660193.2660216
https://doi.org/10.1145/2660193.2660216
https://doi.org/10.1145/3088515.3088521
https://doi.org/10.1145/3088515.3088522

BibliogRaphy

Robert Atkey. 2012. Relational Parametricity for Higher Kinds. In Computer Science Logic (CSL’12)
- 26th International Workshop/21st Annual Conference of the EACSL, CSL 2012, September 3-6,
2012, Fontainebleau, France (LIPIcs), Patrick Cégielski andArnaudDurand (Eds.), Vol. 16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 46–61. https://doi.org/10.4230/LIPIcs.CSL.
2012.46

Pavel Avgustinov, Elnar Hajiyev, Neil Ongkingco, Oege de Moor, Damien Sereni, Julian Tibble,
and Mathieu Verbaere. 2007. Semantics of static pointcuts in aspectJ. In Proceedings of the
34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2007,
Nice, France, January 17-19, 2007, Martin Hofmann and Matthias Felleisen (Eds.). ACM, 11–23.
https://doi.org/10.1145/1190216.1190221

Nathaniel Ayewah, DavidHovemeyer, J. DavidMorgenthaler, John Penix, andWilliam Pugh. 2008.
Using Static Analysis to Find Bugs. IEEE Software 25, 5 (2008), 22–29. https://doi.org/10.
1109/MS.2008.130

Anya Helene Bagge and Karl Trygve Kalleberg. 2006. DSAL = library+ notation: Program trans-
formation for domain-specific aspect languages. In Proc. Domain-Specific Asp. Lang. Work.

Emilie Balland, Paul Brauner, Radu Kopetz, Pierre-Etienne Moreau, and Antoine Reilles. 2007.
Tom: Piggybacking Rewriting on Java. In Term Rewriting and Applications, 18th International
Conference, RTA 2007, Paris, France, June 26-28, 2007, Proceedings (Lecture Notes in Com-
puter Science), Franz Baader (Ed.), Vol. 4533. Springer, 36–47. https://doi.org/10.1007/
978-3-540-73449-9_5

Anindya Banerjee, Olivier Danvy, Kyung-Goo Doh, and John Hatcliff (Eds.). 2013. Semantics,
Abstract Interpretation, and Reasoning about Programs: Essays Dedicated to David A. Schmidt on
the Occasion of his Sixtieth Birthday, Manhattan, Kansas, USA, 19-20th September 2013. EPTCS,
Vol. 129. https://doi.org/10.4204/EPTCS.129

Nick Benton. 2004. Simple relational correctness proofs for static analyses and program transfor-
mations. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2004, Venice, Italy, January 14-16, 2004, Neil D. Jones and Xavier Leroy
(Eds.). ACM, 14–25. https://doi.org/10.1145/964001.964003

Yves Bertot. 2008. Structural Abstract Interpretation: A Formal Study Using Coq. In Language
Engineering and Rigorous Software Development, International LerNet ALFA Summer School 2008,
Piriapolis, Uruguay, February 24 - March 1, 2008, Revised Tutorial Lectures (Lecture Notes in Com-
puter Science), Ana Bove, Luís Soares Barbosa, Alberto Pardo, and Jorge Sousa Pinto (Eds.),
Vol. 5520. Springer, 153–194. https://doi.org/10.1007/978-3-642-03153-3_4

Al Bessey, Ken Block, Benjamin Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles-Henri
Gros, Asya Kamsky, Scott McPeak, and Dawson R. Engler. 2010. A few billion lines of code
later: using static analysis to find bugs in the real world. Commun. ACM 53, 2 (2010), 66–75.
https://doi.org/10.1145/1646353.1646374

Martin Bodin, Philippa Gardner, Thomas P. Jensen, and Alan Schmitt. 2019. Skeletal semantics
and their interpretations. Proc. ACM Program. Lang. 3, POPL (2019), 44:1–44:31. https://doi.
org/10.1145/3290357

Martin Bodin, Thomas P. Jensen, and Alan Schmitt. 2015. Certified Abstract Interpretation with
Pretty-Big-Step Semantics. In Proceedings of the 2015 Conference on Certified Programs and
Proofs, CPP 2015, Mumbai, India, January 15-17, 2015, Xavier Leroy and Alwen Tiu (Eds.). ACM,
29–40. https://doi.org/10.1145/2676724.2693174

François Bourdoncle. 1993. Efficient chaotic iteration strategies with widenings. In Formal Meth-
ods in Programming and Their Applications, International Conference, Akademgorodok, Novosi-
birsk, Russia, June 28 - July 2, 1993, Proceedings (Lecture Notes in Computer Science), Dines
Bjørner, Manfred Broy, and Igor V. Pottosin (Eds.), Vol. 735. Springer, 128–141. https:
//doi.org/10.1007/BFb0039704

Martin Bravenboer, Arthur van Dam, Karina Olmos, and Eelco Visser. 2006. Program Trans-
formation with Scoped Dynamic Rewrite Rules. Fundam. Inform. 69, 1-2 (2006), 123–178.
http://content.iospress.com/articles/fundamenta-informaticae/fi69-1-2-06

120

https://doi.org/10.4230/LIPIcs.CSL.2012.46
https://doi.org/10.4230/LIPIcs.CSL.2012.46
https://doi.org/10.1145/1190216.1190221
https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1007/978-3-540-73449-9_5
https://doi.org/10.1007/978-3-540-73449-9_5
https://doi.org/10.4204/EPTCS.129
https://doi.org/10.1145/964001.964003
https://doi.org/10.1007/978-3-642-03153-3_4
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/3290357
https://doi.org/10.1145/3290357
https://doi.org/10.1145/2676724.2693174
https://doi.org/10.1007/BFb0039704
https://doi.org/10.1007/BFb0039704
http://content.iospress.com/articles/fundamenta-informaticae/fi69-1-2-06

Bibliography

Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter Hooimeijer, Martino
Luca, Peter W. O’Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma Rodriguez. 2015.
Moving Fast with Software Verification. InNASA FormalMethods - 7th International Symposium,
NFM 2015, Pasadena, CA, USA, April 27-29, 2015, Proceedings (Lecture Notes in Computer Science),
Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi (Eds.), Vol. 9058. Springer, 3–11. https:
//doi.org/10.1007/978-3-319-17524-9_1

David Callahan, Keith D. Cooper, Ken Kennedy, and Linda Torczon. 1986. Interprocedural
constant propagation. In Proceedings of the 1986 SIGPLAN Symposium on Compiler Construc-
tion, Palo Alto, California, USA, June 25-27, 1986, Richard L. Wexelblat (Ed.). ACM, 152–161.
https://doi.org/10.1145/12276.13327

Stefano Calzavara, Ilya Grishchenko, and Matteo Maffei. 2017. HornDroid: Practical and
Sound Static Analysis of Android Applications by SMT Solving. CoRR abs/1707.07866 (2017).
arXiv:1707.07866 http://arxiv.org/abs/1707.07866

Joana Campos and Vasco T. Vasconcelos. 2018. Dependent Types for Class-basedMutable Objects,
See [Millstein 2018], 13:1–13:28. https://doi.org/10.4230/LIPIcs.ECOOP.2018.13

Luca Cardelli. 1996. Type Systems. ACM Comput. Surv. 28, 1 (1996), 263–264. https://doi.org/
10.1145/234313.234418

Arthur Charguéraud. 2013. Pretty-Big-Step Semantics. In Programming Languages and Systems
- 22nd European Symposium on Programming, ESOP 2013, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Pro-
ceedings (Lecture Notes in Computer Science), Matthias Felleisen and Philippa Gardner (Eds.),
Vol. 7792. Springer, 41–60. https://doi.org/10.1007/978-3-642-37036-6_3

Liqian Chen, AntoineMiné, and Patrick Cousot. 2008. A Sound Floating-Point Polyhedra Abstract
Domain. In Programming Languages and Systems, 6th Asian Symposium, APLAS 2008, Bangalore,
India, December 9-11, 2008. Proceedings (Lecture Notes in Computer Science), G. Ramalingam (Ed.),
Vol. 5356. Springer, 3–18. https://doi.org/10.1007/978-3-540-89330-1_2

Yih-Farn Chen, Emden R. Gansner, and Eleftherios Koutsofios. 1997. A C++ Data Model Support-
ing Reachability Analysis and Dead Code Detection. In Software Engineering - ESEC/FSE ’97,
6th European Software Engineering Conference Held Jointly with the 5th ACM SIGSOFT Sympo-
sium on Foundations of Software Engineering, Zurich, Switzerland, September 22-25, 1997, Proceed-
ings (Lecture Notes in Computer Science), Mehdi Jazayeri and Helmut Schauer (Eds.), Vol. 1301.
Springer, 414–431. https://doi.org/10.1007/3-540-63531-9_28

Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, NarcisoMartí-Oliet, JoséMeseguer,
and Jose F. Quesada. 2002. Maude: specification and programming in rewriting logic. Theor.
Comput. Sci. 285, 2 (2002), 187–243. https://doi.org/10.1016/S0304-3975(01)00359-0

Coq Development Team. 2019. The Coq Proof Assistant Reference Manual. Available at https:
//coq.inria.fr/doc/.

Thierry Coquand and Christine Paulin. 1988. Inductively defined types. In COLOG-88, Inter-
national Conference on Computer Logic, Tallinn, USSR, December 1988, Proceedings (Lecture
Notes in Computer Science), Per Martin-Löf and Grigori Mints (Eds.), Vol. 417. Springer, 50–
66. https://doi.org/10.1007/3-540-52335-9_47

Agostino Cortesi, Giulia Costantini, and Pietro Ferrara. 2013. A Survey on Product Operators
in Abstract Interpretation, See [Banerjee et al. 2013], 325–336. https://doi.org/10.4204/
EPTCS.129.19

P Cousot. 1999. The Calculational Design of a Generic Abstract Interpreter. In Calc. Syst. Des.,
M Broy and R Steinbrüggen (Eds.). NATO ASI Series F. IOS Press, Amsterdam.

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages, Los Angeles,
California, USA, January 1977, Robert M. Graham, Michael A. Harrison, and Ravi Sethi (Eds.).
ACM, 238–252. https://doi.org/10.1145/512950.512973

121

https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1145/12276.13327
http://arxiv.org/abs/1707.07866
https://doi.org/10.4230/LIPIcs.ECOOP.2018.13
https://doi.org/10.1145/234313.234418
https://doi.org/10.1145/234313.234418
https://doi.org/10.1007/978-3-642-37036-6_3
https://doi.org/10.1007/978-3-540-89330-1_2
https://doi.org/10.1007/3-540-63531-9_28
https://doi.org/10.1016/S0304-3975(01)00359-0
https://coq.inria.fr/doc/
https://coq.inria.fr/doc/
https://doi.org/10.1007/3-540-52335-9_47
https://doi.org/10.4204/EPTCS.129.19
https://doi.org/10.4204/EPTCS.129.19
https://doi.org/10.1145/512950.512973

BibliogRaphy

Patrick Cousot and Radhia Cousot. 1979. Systematic Design of Program Analysis Frameworks. In
Conference Record of the Sixth Annual ACM Symposium on Principles of Programming Languages,
San Antonio, Texas, USA, January 1979, Alfred V. Aho, Stephen N. Zilles, and Barry K. Rosen
(Eds.). ACM Press, 269–282. https://doi.org/10.1145/567752.567778

Patrick Cousot and Radhia Cousot. 1992a. Abstract Interpretation Frameworks. J. Log. Comput.
2, 4 (1992), 511–547. https://doi.org/10.1093/logcom/2.4.511

Patrick Cousot and Radhia Cousot. 1992b. Comparing the Galois Connection and Widening/-
Narrowing Approaches to Abstract Interpretation. In Programming Language Implementation
and Logic Programming, 4th International Symposium, PLILP’92, Leuven, Belgium, August 26-28,
1992, Proceedings (Lecture Notes in Computer Science), Maurice Bruynooghe andMartinWirsing
(Eds.), Vol. 631. Springer, 269–295. https://doi.org/10.1007/3-540-55844-6_142

Patrick Cousot and Radhia Cousot. 1995. Formal Language, Grammar and Set-Constraint-Based
Program Analysis by Abstract Interpretation. In Proceedings of the seventh international con-
ference on Functional programming languages and computer architecture, FPCA 1995, La Jolla,
California, USA, June 25-28, 1995, John Williams (Ed.). ACM, 170–181. https://doi.org/10.
1145/224164.224199

Patrick Cousot and Radhia Cousot. 2002. Systematic design of program transformation frame-
works by abstract interpretation, See [Launchbury and Mitchell 2002], 178–190. https:
//doi.org/10.1145/503272.503290

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monni-
aux, and Xavier Rival. 2006. Combination of Abstractions in the ASTRÉE Static Analyzer. In
Advances in Computer Science - ASIAN 2006. Secure Software and Related Issues, 11th Asian Com-
puting Science Conference, Tokyo, Japan, December 6-8, 2006, Revised Selected Papers (Lecture
Notes in Computer Science), Mitsu Okada and Ichiro Satoh (Eds.), Vol. 4435. Springer, 272–300.
https://doi.org/10.1007/978-3-540-77505-8_23

Ron K. Cytron and Peter Lee (Eds.). 1995. Conference Record of POPL’95: 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San Francisco, California, USA,
January 23-25, 1995. ACM Press. http://dl.acm.org/citation.cfm?id=199448

David Darais and David Van Horn. 2019. Constructive Galois Connections. J. Funct. Program. 29
(2019), e11. https://doi.org/10.1017/S0956796819000066

David Darais, Nicholas Labich, Phuc C. Nguyen, and David Van Horn. 2017. Abstracting defi-
nitional interpreters (functional pearl). Proc. ACM Program. Lang. 1, ICFP (2017), 12:1–12:25.
https://doi.org/10.1145/3110256

David Darais, Matthew Might, and David Van Horn. 2015. Galois transformers and modular
abstract interpreters: reusable metatheory for program analysis. In Proceedings of the 2015
ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015,
Jonathan Aldrich and Patrick Eugster (Eds.). ACM, 552–571. https://doi.org/10.1145/
2814270.2814308

David Charles Darais. 2017. Mechanizing Abstract Interpretation. Ph.D. Dissertation. University
of Maryland, College Park, MD, {USA}. https://doi.org/10.13016/M2J96097D

Maartje de Jonge and Eelco Visser. 2012. A language generic solution for name binding preserva-
tion in refactorings. In InternationalWorkshop on Language Descriptions, Tools, and Applications,
LDTA ’12, Tallinn, Estonia, March 31 - April 1, 2012, Anthony Sloane and Suzana Andova (Eds.).
ACM, 2. https://doi.org/10.1145/2427048.2427050

Jens de Waard. 2020. Soundness Proofs of Static Analyses in Coq.
Edsgar Dijkstra. 1969. Notes on structured programming. Technische Hogeschool Eindhoven.
Eelco Dolstra and Eelco Visser. 2002. Building Interpreters with Rewriting Strategies. Electron.
Notes Theor. Comput. Sci. 65, 3 (2002), 57–76. https://doi.org/10.1016/S1571-0661(04)
80427-4

122

https://doi.org/10.1145/567752.567778
https://doi.org/10.1093/logcom/2.4.511
https://doi.org/10.1007/3-540-55844-6_142
https://doi.org/10.1145/224164.224199
https://doi.org/10.1145/224164.224199
https://doi.org/10.1145/503272.503290
https://doi.org/10.1145/503272.503290
https://doi.org/10.1007/978-3-540-77505-8_23
http://dl.acm.org/citation.cfm?id=199448
https://doi.org/10.1017/S0956796819000066
https://doi.org/10.1145/3110256
https://doi.org/10.1145/2814270.2814308
https://doi.org/10.1145/2814270.2814308
https://doi.org/10.13016/M2J96097D
https://doi.org/10.1145/2427048.2427050
https://doi.org/10.1016/S1571-0661(04)80427-4
https://doi.org/10.1016/S1571-0661(04)80427-4

Bibliography

Catherine Dubois. 2000. Proving ML Type Soundness Within Coq. In Theorem Proving in Higher
Order Logics, 13th International Conference, TPHOLs 2000, Portland, Oregon, USA, August 14-18,
2000, Proceedings (Lecture Notes in Computer Science), Mark Aagaard and John Harrison (Eds.),
Vol. 1869. Springer, 126–144. https://doi.org/10.1007/3-540-44659-1_9

Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman, Michael Bailey, Frank Li,
Nicholas Weaver, Johanna Amann, Jethro Beekman, Mathias Payer, and Vern Paxson. 2014.
TheMatter of Heartbleed. In Proceedings of the 2014 Internet Measurement Conference, IMC 2014,
Vancouver, BC, Canada, November 5-7, 2014, Carey Williamson, Aditya Akella, and Nina Taft
(Eds.). ACM, 475–488. https://doi.org/10.1145/2663716.2663755

Giorgios Rob Economopoulos and Bernd Fischer. 2011. Higher-order transformations with nested
concrete syntax. In Language Descriptions, Tools and Applications, LDTA 2011, Saarbrücken,
Germany, March 26-27, 2011. Proceeding, Claus Brabrand and Eric Van Wyk (Eds.). ACM, 4.
https://doi.org/10.1145/1988783.1988787

Pär Emanuelsson and Ulf Nilsson. 2008. A Comparative Study of Industrial Static Analysis Tools.
Electron. Notes Theor. Comput. Sci. 217 (2008), 5–21. https://doi.org/10.1016/j.entcs.
2008.06.039

Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Ostermann. 2011. SugarJ:
library-based syntactic language extensibility. In Proceedings of the 26th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2011, part of SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011, Cristina Videira Lopes and
Kathleen Fisher (Eds.). ACM, 391–406. https://doi.org/10.1145/2048066.2048099

Sebastian Erdweg, Vlad A. Vergu, Mira Mezini, and Eelco Visser. 2014. Modular specification
and dynamic enforcement of syntactic language constraints when generating code. In 13th
International Conference on Modularity, MODULARITY ’14, Lugano, Switzerland, April 22-26,
2014, Walter Binder, Erik Ernst, Achille Peternier, and Robert Hirschfeld (Eds.). ACM, 241–252.
https://doi.org/10.1145/2577080.2577089

Noah Van Es, Quentin Stiévenart, and Coen De Roover. 2019. Garbage-Free Abstract Interpre-
tation Through Abstract Reference Counting. In 33rd European Conference on Object-Oriented
Programming, ECOOP 2019, July 15-19, 2019, London, United Kingdom (LIPIcs), Alastair F. Don-
aldson (Ed.), Vol. 134. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 10:1–10:33. https:
//doi.org/10.4230/LIPIcs.ECOOP.2019.10

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie
Stata. 2002. Extended Static Checking for Java. In Proceedings of the 2002 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI), Berlin, Germany, June 17-19,
2002, Jens Knoop and Laurie J. Hendren (Eds.). ACM, 234–245. https://doi.org/10.1145/
512529.512558

Aymeric Fromherz, Abdelraouf Ouadjaout, and Antoine Miné. 2018. Static Value Analysis of
Python Programs by Abstract Interpretation. In NASA Formal Methods - 10th International
Symposium, NFM 2018, Newport News, VA, USA, April 17-19, 2018, Proceedings (Lecture Notes
in Computer Science), Aaron Dutle, César A. Muñoz, and Anthony Narkawicz (Eds.), Vol. 10811.
Springer, 185–202. https://doi.org/10.1007/978-3-319-77935-5_14

Richard P Gabriel. 1985. Performance and Evaluation of LISP Systems. Massachusetts Institute of
Technology, USA.

Alfons Geser, Jens Knoop, Gerald Lüttgen, Bernhard Steffen, and Oliver Ruthing. 1994. Chaotic
fixed point iterations.

Neil Ghani, Patricia Johann, Fredrik Nordvall Forsberg, Federico Orsanigo, and Tim Revell. 2015.
Bifibrational Functorial Semantics of Parametric Polymorphism. In The 31st Conference on the
Mathematical Foundations of Programming Semantics, MFPS 2015, Nijmegen, The Netherlands,
June 22-25, 2015 (Electronic Notes in Theoretical Computer Science), Dan R. Ghica (Ed.), Vol. 319.
Elsevier, 165–181. https://doi.org/10.1016/j.entcs.2015.12.011

Paolo G. Giarrusso, Léo Stefanesco, Amin Timany, Lars Birkedal, and Robbert Krebbers. 2020.
Scala step-by-step: soundness for DOT with step-indexed logical relations in Iris. Proc. ACM
Program. Lang. 4, ICFP (2020), 114:1–114:29. https://doi.org/10.1145/3408996

123

https://doi.org/10.1007/3-540-44659-1_9
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/1988783.1988787
https://doi.org/10.1016/j.entcs.2008.06.039
https://doi.org/10.1016/j.entcs.2008.06.039
https://doi.org/10.1145/2048066.2048099
https://doi.org/10.1145/2577080.2577089
https://doi.org/10.4230/LIPIcs.ECOOP.2019.10
https://doi.org/10.4230/LIPIcs.ECOOP.2019.10
https://doi.org/10.1145/512529.512558
https://doi.org/10.1145/512529.512558
https://doi.org/10.1007/978-3-319-77935-5_14
https://doi.org/10.1016/j.entcs.2015.12.011
https://doi.org/10.1145/3408996

BibliogRaphy

Neville Grech and Yannis Smaragdakis. 2017. P/Taint: unified points-to and taint analysis. Proc.
ACM Program. Lang. 1, OOPSLA (2017), 102:1–102:28. https://doi.org/10.1145/3133926

Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip Wadler. 1996. Type Classes
in Haskell. ACM Trans. Program. Lang. Syst. 18, 2 (1996), 109–138. https://doi.org/10.
1145/227699.227700

Makoto Hamana and Marcelo P. Fiore. 2011. A foundation for GADTs and inductive families:
dependent polynomial functor approach. In Proceedings of the seventh ACM SIGPLAN workshop
on Generic programming, WGP@ICFP 2011, Tokyo, Japan, September 19-21, 2011, Jaakko Järvi
and Shin-Cheng Mu (Eds.). ACM, 59–70. https://doi.org/10.1145/2036918.2036927

Michael Hind and Anthony Pioli. 1998. Assessing the Effects of Flow-Sensitivity on Pointer Alias
Analyses. In Static Analysis, 5th International Symposium, SAS ’98, Pisa, Italy, September 14-16,
1998, Proceedings (Lecture Notes in Computer Science), Giorgio Levi (Ed.), Vol. 1503. Springer,
57–81. https://doi.org/10.1007/3-540-49727-7_4

David Van Horn and Matthew Might. 2010. Abstracting abstract machines. In Proceeding of the
15th ACM SIGPLAN international conference on Functional programming, ICFP 2010, Baltimore,
Maryland, USA, September 27-29, 2010, Paul Hudak and Stephanie Weirich (Eds.). ACM, 51–62.
https://doi.org/10.1145/1863543.1863553

David Hovemeyer, Jaime Spacco, and William Pugh. 2005. Evaluating and tuning a static analy-
sis to find null pointer bugs. In Proceedings of the 2005 ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis For Software Tools and Engineering, PASTE’05, Lisbon, Portugal, September 5-
6, 2005, Michael D. Ernst and Thomas P. Jensen (Eds.). ACM, 13–19. https://doi.org/10.
1145/1108792.1108798

John Hughes. 2000. Generalising monads to arrows. Sci. Comput. Program. 37, 1-3 (2000), 67–111.
https://doi.org/10.1016/S0167-6423(99)00023-4

Alex Jeffery. 2019. Dependent object types with implicit functions. In Proceedings of the Tenth
ACMSIGPLAN Symposium on Scala, Scala@ECOOP 2019, London, UK, July 17, 2019, Jonathan Im-
manuel Brachthäuser, Sukyoung Ryu, and Nathaniel Nystrom (Eds.). ACM, 1–11. https:
//doi.org/10.1145/3337932.3338811

Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for JavaScript.
In Static Analysis, 16th International Symposium, SAS 2009, Los Angeles, CA, USA, August 9-11,
2009. Proceedings (Lecture Notes in Computer Science), Jens Palsberg and Zhendong Su (Eds.),
Vol. 5673. Springer, 238–255. https://doi.org/10.1007/978-3-642-03237-0_17

N Jones and Flemming Nielson. 1994. Abstract interpretation: a semantics-based tool for program
analysis. Handb. Log. Comput. Sci. 4 (1994), 527–636.

Simon L. Peyton Jones and Ralf Lämmel. 2003. Scrap Your Boilerplate. In Programming Lan-
guages and Systems, First Asian Symposium, APLAS 2003, Beijing, China, November 27-29, 2003,
Proceedings (Lecture Notes in Computer Science), Atsushi Ohori (Ed.), Vol. 2895. Springer, 357.
https://doi.org/10.1007/978-3-540-40018-9_23

Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David Pichardie. 2015.
A Formally-Verified C Static Analyzer. In Proceedings of the 42ndAnnual ACMSIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17,
2015, Sriram K. Rajamani and David Walker (Eds.). ACM, 247–259. https://doi.org/10.
1145/2676726.2676966

Aditya Kanade, Amitabha Sanyal, and Uday P. Khedker. 2007. Structuring Optimizing Trans-
formations and Proving Them Sound. Electron. Notes Theor. Comput. Sci. 176, 3 (2007), 79–95.
https://doi.org/10.1016/j.entcs.2006.06.018

Sven Keidel and Sebastian Erdweg. 2017. Toward abstract interpretation of program transforma-
tions. In Proceedings of the 2nd ACM SIGPLAN International Workshop on Meta-Programming
Techniques and Reflection, META@SPLASH 2017, Vancouver, BC, Canada, October 23 - 27, 2017,
Shigeru Chiba, Elisa Gonzalez Boix, and Stefan Marr (Eds.). ACM, 1–5. https://doi.org/10.
1145/3141517.3141855

124

https://doi.org/10.1145/3133926
https://doi.org/10.1145/227699.227700
https://doi.org/10.1145/227699.227700
https://doi.org/10.1145/2036918.2036927
https://doi.org/10.1007/3-540-49727-7_4
https://doi.org/10.1145/1863543.1863553
https://doi.org/10.1145/1108792.1108798
https://doi.org/10.1145/1108792.1108798
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1145/3337932.3338811
https://doi.org/10.1145/3337932.3338811
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1007/978-3-540-40018-9_23
https://doi.org/10.1145/2676726.2676966
https://doi.org/10.1145/2676726.2676966
https://doi.org/10.1016/j.entcs.2006.06.018
https://doi.org/10.1145/3141517.3141855
https://doi.org/10.1145/3141517.3141855

Bibliography

Sven Keidel and Sebastian Erdweg. 2019. Sound and reusable components for abstract interpreta-
tion. Proc. ACM Program. Lang. 3, OOPSLA (2019), 176:1–176:28. https://doi.org/10.1145/
3360602

Sven Keidel and Sebastian Erdweg. 2020. A Systematic Approach to Abstract Interpretation of
Program Transformations. In Verification, Model Checking, and Abstract Interpretation - 21st
International Conference, VMCAI 2020, New Orleans, LA, USA, January 16-21, 2020, Proceedings
(Lecture Notes in Computer Science), Dirk Beyer andDamien Zufferey (Eds.), Vol. 11990. Springer,
136–157. https://doi.org/10.1007/978-3-030-39322-9_7

Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg. 2018. Compositional soundness proofs
of abstract interpreters. Proc. ACM Program. Lang. 2, ICFP (2018), 72:1–72:26. https://doi.
org/10.1145/3236767

Sung Kook Kim, Arnaud J. Venet, and Aditya V. Thakur. 2020. Deterministic parallel fixpoint
computation. Proc. ACM Program. Lang. 4, POPL (2020), 14:1–14:33. https://doi.org/10.
1145/3371082

Christian Klinger, Maria Christakis, and Valentin Wüstholz. 2019. Differentially testing sound-
ness and precision of program analyzers. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2019, Beijing, China, July 15-19, 2019, Dong-
mei Zhang and Anders Møller (Eds.). ACM, 239–250. https://doi.org/10.1145/3293882.
3330553

Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. 2009. RASCAL: A Domain Specific Language
for Source Code Analysis and Manipulation. In Ninth IEEE International Working Conference
on Source Code Analysis and Manipulation, SCAM 2009, Edmonton, Alberta, Canada, September
20-21, 2009. IEEE Computer Society, 168–177. https://doi.org/10.1109/SCAM.2009.28

Jens Knoop and Oliver Rüthing. 1999. Optimization Under the Perspective of Soundness, Com-
pleteness, and Reusability. In Correct System Design, Recent Insight and Advances, (to Hans
Langmaack on the occasion of his retirement from his professorship at the University of Kiel) (Lec-
ture Notes in Computer Science), Ernst-Rüdiger Olderog and Bernhard Steffen (Eds.), Vol. 1710.
Springer, 288–315. https://doi.org/10.1007/3-540-48092-7_13

Ralf Lämmel. 2003. Typed generic traversal with term rewriting strategies. J. Log. Algebraic
Methods Program. 54, 1-2 (2003), 1–64. https://doi.org/10.1016/S1567-8326(02)00028-0

Saunders Mac Lane. 1971. Categories for the Working Mathematician. Graduate Texts in
Mathematics, Vol. 5. Springer New York, New York, NY. https://doi.org/10.1007/
978-1-4612-9839-7

John Launchbury and John C. Mitchell (Eds.). 2002. Conference Record of POPL 2002: The 29th
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Portland, OR, USA, Jan-
uary 16-18, 2002. ACM. http://dl.acm.org/citation.cfm?id=503272

Sorin Lerner, David Grove, and Craig Chambers. 2002. Composing dataflow analyses and transfor-
mations, See [Launchbury and Mitchell 2002], 270–282. https://doi.org/10.1145/503272.
503298

Sorin Lerner, Todd D.Millstein, and Craig Chambers. 2003. Automatically proving the correctness
of compiler optimizations. In Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation 2003, San Diego, California, USA, June 9-11, 2003, Ron
Cytron and Rajiv Gupta (Eds.). ACM, 220–231. https://doi.org/10.1145/781131.781156

Sorin Lerner, Todd D. Millstein, Erika Rice, and Craig Chambers. 2005. Automated soundness
proofs for dataflow analyses and transformations via local rules. In Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2005, Long
Beach, California, USA, January 12-14, 2005, Jens Palsberg and Martín Abadi (Eds.). ACM, 364–
377. https://doi.org/10.1145/1040305.1040335

Xavier Leroy and Others. 2012. The CompCert verified compiler. Doc. user’s manual. INRIA Paris-
Rocquencourt 53 (2012).

Sheng Liang, Paul Hudak, and Mark P. Jones. 1995. Monad Transformers and Modular Inter-
preters, See [Cytron and Lee 1995], 333–343. https://doi.org/10.1145/199448.199528

125

https://doi.org/10.1145/3360602
https://doi.org/10.1145/3360602
https://doi.org/10.1007/978-3-030-39322-9_7
https://doi.org/10.1145/3236767
https://doi.org/10.1145/3236767
https://doi.org/10.1145/3371082
https://doi.org/10.1145/3371082
https://doi.org/10.1145/3293882.3330553
https://doi.org/10.1145/3293882.3330553
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1007/3-540-48092-7_13
https://doi.org/10.1016/S1567-8326(02)00028-0
https://doi.org/10.1007/978-1-4612-9839-7
https://doi.org/10.1007/978-1-4612-9839-7
http://dl.acm.org/citation.cfm?id=503272
https://doi.org/10.1145/503272.503298
https://doi.org/10.1145/503272.503298
https://doi.org/10.1145/781131.781156
https://doi.org/10.1145/1040305.1040335
https://doi.org/10.1145/199448.199528

BibliogRaphy

Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhoták, José Nelson Amaral,
Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders Møller, and Dimitrios Var-
doulakis. 2015. In defense of soundiness: a manifesto. Commun. ACM 58, 2 (2015), 44–46.
https://doi.org/10.1145/2644805

Magnus Madsen and Ondrej Lhoták. 2018. Safe and sound program analysis with Flix. In Proceed-
ings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2018, Amsterdam, The Netherlands, July 16-21, 2018, Frank Tip and Eric Bodden (Eds.). ACM,
38–48. https://doi.org/10.1145/3213846.3213847

Simon Marlow. 2010. Haskell 2010 language report. Technical Report. https://www.haskell.
org/onlinereport/haskell2010/

Jacob Matthews, Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen. 2004. A Visual En-
vironment for Developing Context-Sensitive Term Rewriting Systems. In Rewriting Techniques
and Applications, 15th International Conference, RTA 2004, Aachen, Germany, June 3-5, 2004, Pro-
ceedings (Lecture Notes in Computer Science), Vincent van Oostrom (Ed.), Vol. 3091. Springer,
301–311. https://doi.org/10.1007/978-3-540-25979-4_21

Laurent Mauborgne and Xavier Rival. 2005. Trace Partitioning in Abstract Interpretation Based
Static Analyzers. In Programming Languages and Systems, 14th European Symposium on Pro-
gramming,ESOP 2005, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings (Lecture Notes in Com-
puter Science), Shmuel Sagiv (Ed.), Vol. 3444. Springer, 5–20. https://doi.org/10.1007/
978-3-540-31987-0_2

Fadi Meawad, Gregor Richards, Floréal Morandat, and Jan Vitek. 2012. Eval begone!: semi-
automated removal of eval from javascript programs. In Proceedings of the 27th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012, Gary T. Leavens and
Matthew B. Dwyer (Eds.). ACM, 607–620. https://doi.org/10.1145/2384616.2384660

Tom Mens and Tom Tourwé. 2004. A Survey of Software Refactoring. IEEE Trans. Software Eng.
30, 2 (2004), 126–139. https://doi.org/10.1109/TSE.2004.1265817

Jan Midtgaard. 2012. Control-flow analysis of functional programs. ACM Comput. Surv. 44, 3
(2012), 10:1–10:33. https://doi.org/10.1145/2187671.2187672

MatthewMight andOlin Shivers. 2006a. Environment analysis via Delta CFA. In Proceedings of the
33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2006,
Charleston, South Carolina, USA, January 11-13, 2006, J. Gregory Morrisett and Simon L. Peyton
Jones (Eds.). ACM, 127–140. https://doi.org/10.1145/1111037.1111049

Matthew Might and Olin Shivers. 2006b. Improving flow analyses via GammaCFA: abstract
garbage collection and counting. In Proceedings of the 11th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2006, Portland, Oregon, USA, September 16-21, 2006,
John H. Reppy and Julia L. Lawall (Eds.). ACM, 13–25. https://doi.org/10.1145/1159803.
1159807

Todd D. Millstein (Ed.). 2018. 32nd European Conference on Object-Oriented Programming, ECOOP
2018, July 16-21, 2018, Amsterdam, The Netherlands. LIPIcs, Vol. 109. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik. http://www.dagstuhl.de/dagpub/978-3-95977-079-8

John C. Mitchell. 1990. Type Systems for Programming Languages. See [van Leeuwen 1990],
365–458. https://doi.org/10.1016/b978-0-444-88074-1.50013-5

Eugenio Moggi. 1991. Notions of Computation and Monads. Inf. Comput. 93, 1 (1991), 55–92.
https://doi.org/10.1016/0890-5401(91)90052-4

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 1999. Principles of program analysis.
Springer. https://doi.org/10.1007/978-3-662-03811-6

Oystein Ore. 1944. Galois connexions. Trans. Am. Math. Soc. 55, 3 (1944), 493–513.
David Lorge Parnas. 1972. On the Criteria To Be Used in Decomposing Systems into Modules.
Commun. ACM 15, 12 (1972), 1053–1058. https://doi.org/10.1145/361598.361623

126

https://doi.org/10.1145/2644805
https://doi.org/10.1145/3213846.3213847
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
https://doi.org/10.1007/978-3-540-25979-4_21
https://doi.org/10.1007/978-3-540-31987-0_2
https://doi.org/10.1007/978-3-540-31987-0_2
https://doi.org/10.1145/2384616.2384660
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1145/2187671.2187672
https://doi.org/10.1145/1111037.1111049
https://doi.org/10.1145/1159803.1159807
https://doi.org/10.1145/1159803.1159807
http://www.dagstuhl.de/dagpub/978-3-95977-079-8
https://doi.org/10.1016/b978-0-444-88074-1.50013-5
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1145/361598.361623

Bibliography

Ross Paterson. 2001. A New Notation for Arrows. In Proceedings of the Sixth ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP ’01), Firenze (Florence), Italy, September 3-
5, 2001, Benjamin C. Pierce (Ed.). ACM, 229–240. https://doi.org/10.1145/507635.507664

Benjamin C. Pierce. 2002. Types and programming languages. MIT Press.
Gordon D. Plotkin. 1977. LCF Considered as a Programming Language. Theor. Comput. Sci. 5, 3

(1977), 223–255. https://doi.org/10.1016/0304-3975(77)90044-5

Gordon D Plotkin. 1980. Lambda-definability in the full type hierarchy. To HB Curry Essays Comb.
Logic, Lambda Calc. Formalism (1980), 363–373.

Marianna Rapoport and Ondrej Lhoták. 2019. A path to DOT: formalizing fully path-dependent
types. Proc. ACM Program. Lang. 3, OOPSLA (2019), 145:1–145:29. https://doi.org/10.
1145/3360571

ThomasW. Reps, Susan Horwitz, and Shmuel Sagiv. 1995. Precise Interprocedural Dataflow Anal-
ysis via Graph Reachability, See [Cytron and Lee 1995], 49–61. https://doi.org/10.1145/
199448.199462

John C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. In Information Pro-
cessing 83, Proceedings of the IFIP 9th World Computer Congress, Paris, France, September 19-23,
1983, R. E. A. Mason (Ed.). North-Holland/IFIP, 513–523.

John C. Reynolds. 1998. Definitional Interpreters for Higher-Order Programming Lan-
guages. High. Order Symb. Comput. 11, 4 (1998), 363–397. https://doi.org/10.1023/A:
1010027404223

Henry Gordon Rice. 1953. Classes of recursively enumerable sets and their decision problems.
Trans. Amer. Math. Soc. 74, 2 (1953), 358–366.

Tiark Rompf and Nada Amin. 2016. Type soundness for dependent object types (DOT). In Proceed-
ings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Nether-
lands, October 30 - November 4, 2016, Eelco Visser and Yannis Smaragdakis (Eds.). ACM, 624–641.
https://doi.org/10.1145/2983990.2984008

Mads Rosendahl. 1995. Introduction to abstract interpretation. Computer Science University of
Copenhagen (1995).

Mads Rosendahl. 2013. Abstract Interpretation as a Programming Language, See [Banerjee et al.
2013], 84–104. https://doi.org/10.4204/EPTCS.129.7

Andreas Rossberg, Ben L. Titzer, Andreas Haas, Derek L. Schuff, Dan Gohman, Luke Wagner,
Alon Zakai, J. F. Bastien, and Michael Holman. 2018. Bringing the web up to speed with We-
bAssembly. Commun. ACM 61, 12 (2018), 107–115. https://doi.org/10.1145/3282510

Grigore Rosu and Traian-Florin Serbanuta. 2010. An overview of the K semantic framework. J.
Log. Algebraic Methods Program. 79, 6 (2010), 397–434. https://doi.org/10.1016/j.jlap.
2010.03.012

Alejandro Russo and Andrei Sabelfeld. 2010. Dynamic vs. Static Flow-Sensitive Security Analysis.
In Proceedings of the 23rd IEEE Computer Security Foundations Symposium, CSF 2010, Edinburgh,
United Kingdom, July 17-19, 2010. IEEE Computer Society, 186–199. https://doi.org/10.
1109/CSF.2010.20

Nick Rutar, Christian B. Almazan, and Jeffrey S. Foster. 2004. A Comparison of Bug Finding
Tools for Java. In 15th International Symposium on Software Reliability Engineering (ISSRE 2004),
2-5 November 2004, Saint-Malo, Bretagne, France. IEEE Computer Society, 245–256. https:
//doi.org/10.1109/ISSRE.2004.1

Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Söderberg, and Collin Winter. 2015.
Tricorder: Building a Program Analysis Ecosystem. In 37th IEEE/ACM International Confer-
ence on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1, Antonia
Bertolino, Gerardo Canfora, and Sebastian G. Elbaum (Eds.). IEEE Computer Society, 598–608.
https://doi.org/10.1109/ICSE.2015.76

127

https://doi.org/10.1145/507635.507664
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1145/3360571
https://doi.org/10.1145/3360571
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1023/A:1010027404223
https://doi.org/10.1023/A:1010027404223
https://doi.org/10.1145/2983990.2984008
https://doi.org/10.4204/EPTCS.129.7
https://doi.org/10.1145/3282510
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1109/CSF.2010.20
https://doi.org/10.1109/CSF.2010.20
https://doi.org/10.1109/ISSRE.2004.1
https://doi.org/10.1109/ISSRE.2004.1
https://doi.org/10.1109/ICSE.2015.76

BibliogRaphy

Shmuel Sagiv, ThomasW. Reps, and Susan Horwitz. 1996. Precise Interprocedural Dataflow Anal-
ysis with Applications to Constant Propagation. Theor. Comput. Sci. 167, 1&2 (1996), 131–170.
https://doi.org/10.1016/0304-3975(96)00072-2

Alexandru Salcianu and Martin C. Rinard. 2005. Purity and Side Effect Analysis for Java Pro-
grams. In Verification, Model Checking, and Abstract Interpretation, 6th International Confer-
ence, VMCAI 2005, Paris, France, January 17-19, 2005, Proceedings (Lecture Notes in Computer
Science), Radhia Cousot (Ed.), Vol. 3385. Springer, 199–215. https://doi.org/10.1007/
978-3-540-30579-8_14

David A. Schmidt. 1995. Natural-Semantics-Based Abstract Interpretation (Preliminary Version).
In Static Analysis, Second International Symposium, SAS’95, Glasgow, UK, September 25-27, 1995,
Proceedings (Lecture Notes in Computer Science), Alan Mycroft (Ed.), Vol. 983. Springer, 1–18.
https://doi.org/10.1007/3-540-60360-3_28

David A. Schmidt. 1996. Abstract Interpretation of Small-Step Semantics. In Analysis and Verifica-
tion of Multiple-Agent Languages, 5th LOMAPS Workshop, Stockholm, Sweden, June 24-26, 1996,
Selected Papers (Lecture Notes in Computer Science), Mads Dam (Ed.), Vol. 1192. Springer, 76–99.
https://doi.org/10.1007/3-540-62503-8_4

David A. Schmidt. 1998. Trace-Based Abstract Interpretation of Operational Semantics. LISP
Symb. Comput. 10, 3 (1998), 237–271.

Clara Schneidewind, Ilya Grishchenko, Markus Scherer, andMatteoMaffei. 2020. eThor: Practical
and Provably Sound Static Analysis of Ethereum Smart Contracts. CoRR abs/2005.06227 (2020).
arXiv:2005.06227 https://arxiv.org/abs/2005.06227

Ilya Sergey, Dominique Devriese, Matthew Might, Jan Midtgaard, David Darais, Dave Clarke,
and Frank Piessens. 2013. Monadic abstract interpreters. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013,
Hans-Juergen Boehm and Cormac Flanagan (Eds.). ACM, 399–410. https://doi.org/10.
1145/2491956.2491979

Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Tom Ridge, Susmit Sarkar,
and Rok Strnisa. 2007. Ott: effective tool support for the working semanticist. In Proceed-
ings of the 12th ACM SIGPLAN International Conference on Functional Programming, ICFP 2007,
Freiburg, Germany, October 1-3, 2007, Ralf Hinze and Norman Ramsey (Eds.). ACM, 1–12.
https://doi.org/10.1145/1291151.1291155

Olin Shivers. 1991. Control-flow analysis of higher-order languages. Ph.D. Dissertation. Carnegie
Mellon University.

Warclaw Sierpinski. 1915. Sur une courbe dont tout point est un point de ramification. CR Acad.
Sci. 160 (1915), 302–305.

Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2017. Fast polyhedra abstract domain.
In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.).
ACM, 46–59. https://doi.org/10.1145/3009837

Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis. Found. Trends Program. Lang.
2, 1 (2015), 1–69. https://doi.org/10.1561/2500000014

Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Bravenboer. 2015. More
Sound Static Handling of Java Reflection. In Programming Languages and Systems - 13th Asian
Symposium, APLAS 2015, Pohang, South Korea, November 30 - December 2, 2015, Proceedings
(Lecture Notes in Computer Science), Xinyu Feng and Sungwoo Park (Eds.), Vol. 9458. Springer,
485–503. https://doi.org/10.1007/978-3-319-26529-2_26

Yannis Smaragdakis and George Kastrinis. 2018. Defensive Points-To Analysis: Effective Sound-
ness via Laziness, See [Millstein 2018], 23:1–23:28. https://doi.org/10.4230/LIPIcs.
ECOOP.2018.23

Jeff Smits and Eelco Visser. 2017. FlowSpec: declarative dataflow analysis specification. In Pro-
ceedings of the 10th ACM SIGPLAN International Conference on Software Language Engineering,
SLE 2017, Vancouver, BC, Canada, October 23-24, 2017, Benoît Combemale, Marjan Mernik, and
Bernhard Rumpe (Eds.). ACM, 221–231. https://doi.org/10.1145/3136014.3136029

128

https://doi.org/10.1016/0304-3975(96)00072-2
https://doi.org/10.1007/978-3-540-30579-8_14
https://doi.org/10.1007/978-3-540-30579-8_14
https://doi.org/10.1007/3-540-60360-3_28
https://doi.org/10.1007/3-540-62503-8_4
https://arxiv.org/abs/2005.06227
https://doi.org/10.1145/2491956.2491979
https://doi.org/10.1145/2491956.2491979
https://doi.org/10.1145/1291151.1291155
https://doi.org/10.1145/3009837
https://doi.org/10.1561/2500000014
https://doi.org/10.1007/978-3-319-26529-2_26
https://doi.org/10.4230/LIPIcs.ECOOP.2018.23
https://doi.org/10.4230/LIPIcs.ECOOP.2018.23
https://doi.org/10.1145/3136014.3136029

Bibliography

Quentin Stiévenart, Maarten Vandercammen, Wolfgang De Meuter, and Coen De Roover. 2016.
Scala-AM: A Modular Static Analysis Framework. In 16th IEEE International Working Confer-
ence on Source Code Analysis and Manipulation, SCAM 2016, Raleigh, NC, USA, October 2-3, 2016.
IEEE Computer Society, 85–90. https://doi.org/10.1109/SCAM.2016.14

Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus Voelter. 2018. Incrementalizing
lattice-based program analyses in Datalog. Proc. ACM Program. Lang. 2, OOPSLA (2018), 139:1–
139:29. https://doi.org/10.1145/3276509

Tamás Szabó, Sebastian Erdweg, and Markus Voelter. 2016. IncA: a DSL for the definition of
incremental program analyses. In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, Singapore, September 3-7, 2016, David Lo, Sven Apel,
and Sarfraz Khurshid (Eds.). ACM, 320–331. https://doi.org/10.1145/2970276.2970298

Alfred Tarski. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5,
2 (1955), 285–309.

Amin Timany and Bart Jacobs. 2016. Category Theory in Coq 8.5. In 1st International Conference
on Formal Structures for Computation and Deduction, FSCD 2016, June 22-26, 2016, Porto, Portugal
(LIPIcs), Delia Kesner and Brigitte Pientka (Eds.), Vol. 52. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 30:1–30:18. https://doi.org/10.4230/LIPIcs.FSCD.2016.30

Raja Vallee-Rai and Laurie J Hendren. 1998. Jimple: Simplifying Java bytecode for analyses and
transformations. (1998).

Elmer van Chastelet, Eelco Visser, and Craig Anslow. 2015. Conf.Researchr.Org: towards
a domain-specific content management system for managing large conference websites. In
Companion Proceedings of the 2015 ACM SIGPLAN International Conference on Systems, Pro-
gramming, Languages and Applications: Software for Humanity, SPLASH 2015, Pittsburgh, PA,
USA, October 25-30, 2015, Jonathan Aldrich and Patrick Eugster (Eds.). ACM, 50–51. https:
//doi.org/10.1145/2814189.2817270

Jan van Leeuwen (Ed.). 1990. Handbook of Theoretical Computer Science, Volume B: Formal Models
and Semantics. In van Leeuwen [van Leeuwen 1990]. https://www.sciencedirect.com/
book/9780444880741/formal-models-and-semantics

Arnaud Venet. 1996. Abstract Cofibered Domains: Application to the Alias Analysis of Untyped
Programs. In Static Analysis, Third International Symposium, SAS’96, Aachen, Germany, Septem-
ber 24-26, 1996, Proceedings (Lecture Notes in Computer Science), Radhia Cousot and David A.
Schmidt (Eds.), Vol. 1145. Springer, 366–382. https://doi.org/10.1007/3-540-61739-6_
53

Eelco Visser. 2007. WebDSL: A Case Study in Domain-Specific Language Engineering. In Gener-
ative and Transformational Techniques in Software Engineering II, International Summer School,
GTTSE 2007, Braga, Portugal, July 2-7, 2007. Revised Papers (Lecture Notes in Computer Sci-
ence), Ralf Lämmel, Joost Visser, and João Saraiva (Eds.), Vol. 5235. Springer, 291–373. https:
//doi.org/10.1007/978-3-540-88643-3_7

Eelco Visser, Zine-El-Abidine Benaissa, and Andrew P. Tolmach. 1998. Building Program Op-
timizers with Rewriting Strategies. In Proceedings of the third ACM SIGPLAN International
Conference on Functional Programming (ICFP ’98), Baltimore, Maryland, USA, September 27-29,
1998, Matthias Felleisen, Paul Hudak, and Christian Queinnec (Eds.). ACM, 13–26. https:
//doi.org/10.1145/289423.289425

Philip Wadler. 1989. Theorems for Free!. In Proceedings of the fourth international conference on
Functional programming languages and computer architecture, FPCA 1989, London, UK, Septem-
ber 11-13, 1989, Joseph E. Stoy (Ed.). ACM, 347–359. https://doi.org/10.1145/99370.
99404

Philip Wadler. 1992. Monads for functional programming. In Program Design Calculi, Proceedings
of the NATO Advanced Study Institute on Program Design Calculi, Marktoberdorf, Germany, July
28 - August 9, 1992 (NATO ASI Series), Manfred Broy (Ed.), Vol. 118. Springer, 233–264. https:
//doi.org/10.1007/978-3-662-02880-3_8

129

https://doi.org/10.1109/SCAM.2016.14
https://doi.org/10.1145/3276509
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.4230/LIPIcs.FSCD.2016.30
https://doi.org/10.1145/2814189.2817270
https://doi.org/10.1145/2814189.2817270
https://www.sciencedirect.com/book/9780444880741/formal-models-and-semantics
https://www.sciencedirect.com/book/9780444880741/formal-models-and-semantics
https://doi.org/10.1007/3-540-61739-6_53
https://doi.org/10.1007/3-540-61739-6_53
https://doi.org/10.1007/978-3-540-88643-3_7
https://doi.org/10.1007/978-3-540-88643-3_7
https://doi.org/10.1145/289423.289425
https://doi.org/10.1145/289423.289425
https://doi.org/10.1145/99370.99404
https://doi.org/10.1145/99370.99404
https://doi.org/10.1007/978-3-662-02880-3_8
https://doi.org/10.1007/978-3-662-02880-3_8

BibliogRaphy

Yan Wang, Hailong Zhang, and Atanas Rountev. 2016. On the unsoundness of static analysis
for Android GUIs. In Proceedings of the 5th ACM SIGPLAN International Workshop on State Of
the Art in Program Analysis, SOAP@PLDI 2016, Santa Barbara, CA, USA, June 14, 2016, Charles
Zhang and Xavier Rival (Eds.). ACM, 18–23. https://doi.org/10.1145/2931021.2931026

Gary Wassermann and Zhendong Su. 2007. Sound and precise analysis of web applications for
injection vulnerabilities. In Proceedings of the ACM SIGPLAN 2007 Conference on Programming
Language Design and Implementation, San Diego, California, USA, June 10-13, 2007, Jeanne Fer-
rante and Kathryn S. McKinley (Eds.). ACM, 32–41. https://doi.org/10.1145/1250734.
1250739

Fadi Wedyan, Dalal Alrmuny, and James M. Bieman. 2009. The Effectiveness of Automated Static
Analysis Tools for Fault Detection and Refactoring Prediction. In Second International Confer-
ence on Software Testing Verification and Validation, ICST 2009, Denver, Colorado, USA, April 1-4,
2009. IEEE Computer Society, 141–150. https://doi.org/10.1109/ICST.2009.21

Guannan Wei, Yuxuan Chen, and Tiark Rompf. 2019. Staged abstract interpreters: fast and mod-
ular whole-program analysis via meta-programming. Proc. ACM Program. Lang. 3, OOPSLA
(2019), 126:1–126:32. https://doi.org/10.1145/3360552

David A. Wheeler. 2014. Preventing Heartbleed. IEEE Computer 47, 8 (2014), 80–83. https:
//doi.org/10.1109/MC.2014.217

Yichen Xie, Andy Chou, and Dawson R. Engler. 2003. ARCHER: using symbolic, path-sensitive
analysis to detect memory access errors. In Proceedings of the 11th ACM SIGSOFT Symposium
on Foundations of Software Engineering 2003 held jointly with 9th European Software Engineer-
ing Conference, ESEC/FSE 2003, Helsinki, Finland, September 1-5, 2003, Jukka Paakki and Paola
Inverardi (Eds.). ACM, 327–336. https://doi.org/10.1145/940071.940115

130

https://doi.org/10.1145/2931021.2931026
https://doi.org/10.1145/1250734.1250739
https://doi.org/10.1145/1250734.1250739
https://doi.org/10.1109/ICST.2009.21
https://doi.org/10.1145/3360552
https://doi.org/10.1109/MC.2014.217
https://doi.org/10.1109/MC.2014.217
https://doi.org/10.1145/940071.940115

	Abstract
	Acknowledgements
	Introduction
	What Are Static Analyses and Why Do They Matter
	Soundness of Static Analyses
	Why Existing Analyses Are Difficult to Prove Sound
	Compositional Soundness Proofs of Static Analyses
	Dissertation Outline

	Background on Big-Step Abstract Interpretation and Arrows
	Introduction to Big-Step Abstract Interpreters
	Arrows, an Abstraction for Effectful Computations

	Capturing the Similarities between Concrete and Abstract Interpreters
	Introduction
	Why and How to Make Soundness Proofs Compositional
	Soundness Proposition for Arrows
	Compositional Soundness for Arrow-Based Abstract Interpreters
	Interface Design and Parametricity
	Case Studies
	Related Work
	Conclusion

	Sound and Reusable Components for Abstract Interpretation
	Introduction
	Analysis Components By Example
	Analysis Components And Their Soundness
	Sound Composition Of Analysis Components
	Soundness Of Component-Based Static Analyses
	Sturdy: A Library Of Sound And Reusable Analysis Components
	Experimental Evaluation And Case Studies
	Related Work
	Conclusion

	Modular Fixpoint Algorithms for Big-Step Abstract Interpreters
	Introduction
	Designing Big-Step Fixpoint Algorithms
	Modularizing the Description of Big-Step Fixpoint Algorithms
	Soundness of Modular Big-Step Fixpoint Algorithms
	Evaluation
	Related Work
	Conclusion

	A Systematic Approach to Abstract Interpretation of Program Transformations
	Introduction
	Illustrating Example: Singleton Analysis
	Generic Interpreters for Program Transformations
	Sort Analysis
	Locally Ill-Sorted Sort Analysis
	Related Work
	Conclusion

	Related Work
	Modular Analyses Description and Compositional Soundness Proofs
	Other Techniques for Ensuring the Soundness of Static Analyses
	Testing Soundness

	Future Work
	Proof Mechanization
	Backward Analyses
	Performance Scalability

	Conclusion
	Bibliography

