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Abstract

The ever-increasing data traffic by a growing number of communicating wireless devices

calls for a larger bandwidth and for its efficient use in the fifth (5G) and sixth (6G)

mobile communication generations. The bandwidth is extended by utilizing higher

frequencies. However, a phenomenon that troubles the efficient use of bandwidth is

passive intermodulation (PIM). PIM leads to channel cross talk and has its origin in

any kind of nonlinear response. One such source is the nonlinear electric susceptibility

of dielectrics in microwave devices.

This work deals with the characterization of the nonlinear electric susceptibility of

glasses and glass-ceramics at microwave frequencies. Glasses and glass-ceramics exhibit

advantageous properties for microwave devices compared to classically employed sintered

ceramics or PTFE compounds, such as better metal adhesion and higher homogeneity.

The nonlinear susceptibility of a Ba4Al2Ti10O27 glass-ceramic was determined to

|χ3| = (4± 2)× 10−16 m2/V2 at 1 GHz. The intermodulation level observed during this

measurement cannot be adequately described by a classical power-law representation of

the nonlinearity. While the power-law description is only applicable within its radius

of convergence, an alternative approach based on Fourier coefficient integrals allows

accurate description of the dependency of intermodulation levels on input power over

a wider range. Using established physical nonlinear response models, this description

additionally allows determining previously inaccessible model parameters, such as the

linear contribution of the nonlinear mechanism (χ1 = 10−8).

The experimental setup was extended to also characterize materials with lower permit-

tivity, including a glass. SiO2 immiscibilities in the glass were found to increase the

nonlinear microwave response significantly without having a measurable impact on the

linear dielectric properties.

For comparison, the nonlinear susceptibility of the Ba4Al2Ti10O27 glass-ceramic was

measured with a 1 kHz ultra-high precision capacitance bridge under a high DC voltage

bias, resulting in a nonlinear susceptibility, which is higher by three orders of magnitude

than in the GHz range. The kHz nonlinear susceptibility was shown to increase with

the crystallite size in the glass-ceramic.

In summary, both the experimental method as well as the theoretical description of

intermodulation open new prospects in understanding dielectrics and nonlinear responses

in general and thus laying a foundation for higher performance microwave devices.



Kurzfassung

Der stetig steigende Datenverkehr einer wachsenden Zahl von drahtlos kommunizie-

renden Geräten erfordert eine größere Bandbreite und deren effiziente Nutzung in

der fünften (5G) und sechsten (6G) Mobilfunkgeneration. Die Bandbreite wird durch

die Erweiterung zu höheren Frequenzen erreicht. Ein Effekt, der jedoch die effiziente

Nutzung der Bandbreite beeinträchtigt, ist passive Intermodulation (PIM). PIM verur-

sacht Übersprechen zwischen Kanälen und wird von jeglicher Art nichtlinearer Antwort

hervorgerufen. Eine davon ist die nichtlineare elektrische Suszeptibilität von Dielektrika

in Mikrowellengeräten.

Diese Arbeit beschäftigt sich mit der Charakterisierung der nichtlinearen elektrischen

Suszeptibilität von Gläsern und Glaskeramiken bei Mikrowellenfrequenzen. Gläser und

Glaskeramiken weisen im Vergleich zu gewöhnlich eingesetzten gesinterten Keramiken

oder PTFE-Verbindungen vorteilhafte Eigenschaften für Mikrowellengeräte auf, wie

eine bessere Metallhaftung und eine höhere Homogenität.

Die nichtlineare Suszeptibilität einer Ba4Al2Ti10O27 Glaskeramik wurde bei 1 GHz zu

|χ3| =(4± 2)× 10−16 m2/V2 bestimmt. Das bei dieser Messung beobachtete Intermodu-

lationslevel kann nicht angemessen durch eine Nichtlinearität in Form einer klassischen

Potenzreihe beschrieben werden. Während diese Potenzreihe nur innerhalb ihres Konver-

genzradius anwendbar ist, kann ein alternativer, auf einem Fourierkoeffizientenintegral

basierender Ansatz die Abhängigkeit des Intermodulationslevels von der Eingangsleis-

tung präzise über einen größeren Leistungsbereich vorhersagen. Die Anwendung dieser

Beschreibung auf etablierte physikalische nichtlineare Modelle ermöglicht zusätzlich die

Bestimmung von vorher unzugänglichen Modelparametern wie dem linearen Anteil des

nichtlinearen Mechanismus (χ1 = 10−8).

Der Messaufbau wurde für die Charakterisierung von kleineren Permittivitäten erweitert.

Dies ermöglichte die Charakterisierung eines Glases. Es wurde festgestellt, dass SiO2

Entmischungen in dem Glas die Nichtlineariät signifikant erhöhen, ohne dabei einen

messbaren Einfluss auf die linearen dielektrischen Eigenschaften zu haben.

Vergleichsmessungen an der Ba4Al2Ti10O27 Glaskeramik mit einer 1 kHz Präzisions-

kapazitätsbrücke unter einer zusätzlichen Gleichspannung ergaben eine um drei Größen-

ordnungen höhere Nichtlinearität im Vergleich zu den GHz Messungen. Es wurde

festgestellt, dass die kHz-Nichtlinearität mit der Kristallitgröße in der Glaskeramik

ansteigt.

Zusammenfassend lässt sich sagen, dass sowohl die experimentelle Methode als auch die

theoretische Beschreibung von Intermodulationen neue Perspektiven im Verständnis von

Dielektrika und Nichtlinearitäten im Allgemeinen eröffnet und damit eine Grundlage

für leistungsfähigere Mikrowellengeräte legt.
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Chapter 1

Introduction and Motivation

Society in the 21st century is increasingly relying on digitization and data [MLa19].

An ever-rising number of communicating devices (the “Internet of Things”) and the

enormous amount of data (“Big Data”) call for a growing high speed data volume. This

demand challenges various fields of science. Besides software solutions to tackle the

data volume (e.g. “Neural Networks”), hardware issues that arise from the increasing

data traffic need to be addressed. Generally, higher data rates are obtained by resorting

to higher frequencies. This favors optical devices. However, it is a futile endeavor to

connect all devices by optical fibers, especially mobile devices. The other window that

nature offers for wireless information transfer are microwave frequencies. This band

is home to cell phone standards (GSM, UMTS, LTE, 5G), global navigation satellite

systems (GPS, GLONASS, Galileo, Beidou) and other more localized systems (WLAN,

Bluetooth). The rapid growth in mobile data traffic of such techniques is visualized in

Figure 1.1.

All these players need to be arranged in a limited bandwidth. The separation of user

communication channels can occur in the time domain (time division multiple access,

TDMA) or in the frequency domain (frequency division multiple access, FDMA). In

TDMA, the devices need to be synchronized to assign at which point which device

transmits or receives. FDMA assigns each device a transmitting and receiving band that

it can use all the time. The same issue arises for uplink and downlink communication of

just two devices and can be addressed by time or frequency division duplexing (TDD and

FDD). To handle the enormous data traffic and number of devices, the usable bandwidth

needs to be extended, especially to higher frequencies, and the available frequencies have

to be made efficient use of. Higher frequencies make use of the fundamental relation

between available bandwidth and data rate [Har28].

As visible in the increasing number of publications in relation to “microwave materials”

in Figure 1.2, the materials for microwave devices have gained interest. Dielectrics are

one class that plays a key role. They are found in various roles such as substrates having

a low permittivity or as dielectric resonators with a high permittivity. The substrates

are used as a basis for printing metal lines to obtain integrated circuits. Besides the

low permittivity, substrate materials are mostly required to have low dielectric loss,

1
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Figure 1.1: Global mobile network data traffic and year-on-year growth [JDL+20].

a good metal adhesion and suitable thermal properties. Dielectric resonators, on the

other hand, are a basis for filters. Filters are the backbone of FDMA/FDD as they

carry signals of specific frequencies and block signals from adjacent bands. Here, low

loss is essential for frequency selectivity. Dielectric resonators are preferred to metal

cavity resonators because they outperform metal cavities in their temperature stability

and size [Seb08]. Substrates usually are material composites of (sometimes glass-

reinforced) epoxy laminates. Dielectric resonators, on the other hand, are commonly

made of sintered ceramics. Even though these materials have been optimized for current

applications and exhibit outstanding dielectric properties, glasses and glass-ceramics

offer some advantages over both classically employed material classes when advancing to

higher frequencies: as the devices decrease in size together with the wavelength, tighter

absolute tolerances on both the dielectric and geometric properties are required. Glasses

possess a highly homogeneous permittivity. For instance, optical glasses having a

homogeneity ∆εr/εr < 5× 10−5 over lenses of 20 cm diameter are standard in industrial

production [Opt20]. Additionally, glasses can be machined with high precision (i.e. a few

µm) and the feasibility of structuring glass of 50 µm thickness has been demonstrated

[LZV+18]. Finally, the lower porosity of glasses and glass-ceramics allow better metal

adhesion than PTFE substrates and sintered ceramics [BMH+17]. The glass passes these

properties onto the glass-ceramic. The homogeneity of the permittivity is especially

critical for filter applications, as batch-to-batch variations of the permittivity impose

the necessity of post-processing due to the lack of reproducibility.

However, even with small bandwidth filters, the efficient use of the frequency spectrum
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Figure 1.2: “Microwave materials” entries in Web of Science.

is limited by spurious mixing signals (termed “passive intermodulation”, PIM) that

arise from signal distortions in nonlinear components [Sta80]. These mixing signals can

fall in a neighboring band, a phenomenon called adjacent channel cross talk.

The trouble of PIM becomes more prominent with the order of magnitudes in power

that needs to be covered. For instance, cell phone base stations typically transmit

40 dBm, while the received signal coming from a cell phone is only in the range of a

−110 dBm. Thus, the base station needs to handle signals with a difference of about 15

orders of magnitude. Here, even tiny nonlinearities can lead to significant PIM, which

in turn results in apparently occupied channels, a smaller coverage or a loss of data rate

due to an increased bit error rate. Tests have revealed an approximate 18 % drop in

download speed when the PIM level increases from −125 dBm to −105 dBm [TW16].

For current digital standards, no well-defined linearity requirement exists. However, the

analogue GSM (2G) standard allowed a maximum PIM level of −112 dBm at 43 dBm

input power [HCC09a].

The sources of PIM are diverse [Lui90]. Figure 1.3 illustrates the different sources that

have been addressed in literature. PIM is extensively investigated on a device level, which

gives rise to instruments with the sole task to characterize PIM [EKS19, Yag16, Bra14].

For example, PIM is a major challenge in microstrip lines [SKS18]. PIM reduction has

been achieved by using high permittivity coatings to mitigate locally enhanced electric

fields at the fringed etched edges [KSB+20]. Other approaches include canceling of

PIM with another PIM source [JGHB20]. A different approach even uses liquid metal

antennas to avoid active tuning, as active devices generally result in much larger PIM

than solely passive ones [WKSA18].

To mitigate PIM on a more fundamental level, it is necessary to investigate the
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Figure 1.3: Overview of PIM sources as collected in [Sta80] and [Lui90], including the
thermo-electric effect from [WKGS15].

mechanisms collected in Figure 1.3 separately. However, the dielectric nonlinearity

remains a property that is hardly accessible in an isolated manner. The authors of

[NIH88] were the first to isolate and characterize their sintered ceramics’ nonlinear

dielectric response [THNW89], which allowed them to use their sintered ceramics for

cross talk reduced filters for cellular base stations [ITNW92]. Since so little data is

available on dielectric nonlinearities in the microwave range, the description of the

microscopic origins is limited to vague conjectures, e.g. electrostriction in [Sta80] and

nonlinear phonons in [THNW89].

Nevertheless, tackling the challenge of dielectric nonlinearities in the microwave range

can profit from related fields that have already been studied more extensively. Figure 1.4

puts these topics into context by overlapping adjacent fields of science that share common

qualities. The fields of microwave dielectrics and PIM have already been mentioned

above. Although dielectric nonlinearities have been sparsely examined at microwave

frequencies so far, they have indeed been studied intensively at optical frequencies in the

Figure 1.4: Topic of this work with its adjacent fields.
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broad field of nonlinear optics [Boy08, BCD18] and in terms of nonlinear capacitance

at low frequencies [JACJ+19]. Further adjacent fields are ferroelectrics, which naturally

show a large nonlinear susceptibility [MDK11], and the nonlinear susceptibility of polar

liquids [Ric17]. At optical frequencies, lasers easily enable high electric field amplitudes,

where nonlinear dielectric responses become relevant. Despite the recent advent of

continuous wave masers [BSS+18], high power phenomena are still difficult to investigate

at microwave frequencies. As losses in the microwave range are orders of magnitudes

larger than in optics, large microwave power dissipation gives rise to effects which are

much more dominant than the nonlinear response. However, the emergence of low loss

microwave dielectrics opens the field of nonlinear microwave dielectrics.

Hence, the aim of this work is the characterization of the dielectric nonlinearity of glasses

and glass-ceramics at microwave frequencies. Furthermore, the connection between

the macroscopic nonlinearity and the microscopic material structure is investigated to

identify nonlinear mechanisms.



Chapter 2

Background

2.1 Material Classes

This section introduces the material classes that are investigated in this work, glasses

and glass-ceramics. Basic physical properties are discussed together with an overview

of the manufacturing process.

2.1.1 Glasses

The term “glass” refers to a special class of amorphous solids. Their atomic structure

resembles that of a liquid in the sense of lacking a long-ranged order. On the other

hand, they exhibit elastic properties like a solid [Pfa97]. It is helpful to observe the

formation process of a glass to understand this material class better. Figure 2.1 sketches

a solidification process of a liquid in a volume-temperature diagram.

Generally, the volume decreases together with the temperature. If the cooling happens

sufficiently slowly (on a longer time scale than the atomic diffusion), there is a discontin-

uous phase transition at the melting temperature Tm. A glass is obtained by cooling on

a smaller time scale than the atomic diffusion. This process accounts for the description

of a glass as an “undercooled liquid” [Sch88]. Thermodynamically speaking, the glass

is in a metastable state, because a state with a higher vibrational entropy exists at the

temperature of concern. However, the classical terms of equilibrium thermodynamics

do not apply to the out-of-equilibrium system “glass”. Higher cooling rates result in

a lower density glass. In contrast to the crystallization, the glass transition does not

take place at a single temperature but rather in a certain range, which makes the glass

transition temperature an interval. Even more so, the interval is dependent on the

cooling rate. This is illustrated by the different glass transition temperatures Tgs and

Tgf .

In theory, all atomic matter can form a glass, though the formation is practically limited

by the cooling rate. Nevertheless, even metals have been shown to form glasses at

sufficient cooling rates [Gre95].

6
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Figure 2.1: Sketch of the temperature dependency of the volume for crystal formation
(solid line) and glass formation (dashed lines) [CN+07].

2.1.2 Glass-Ceramics

The term “glass-ceramic” refers to a polycrystalline solid that has been obtained by

controlled crystallization of a glass [CN+07]. It therefore differs from a sintered ceramic

in its manufacturing process. The term “controlled” distinguishes the crystallization

from spontaneous crystallization (called “devitrification”). The base glass is also termed

“green glass”.

As discussed in subsection 2.1.1, a glass is in a metastable state. Under appropriate heat

treatment, it can be transformed into a thermodynamically more favorable, crystalline

state. This treatment of controlled partial crystallization is called “ceramization”. The

ceramization process consists of two steps [Pfa97]. The first step is the formation of

stable crystallization nuclei. In the second step, crystallites start to grow from those

nucleation sites.

Even though the crystalline phase has a favorable free enthalpy compared to the glass

phase, the formation of crystallites is also associated with a surface that requires energy

[Vog92]. The free enthalpy is proportional to the crystallite volume ∆GV ∼ r3 while the

free enthalpy of the surface is proportional to the area ∆GS ∼ r2. At some threshold

radius r0 the drop in free enthalpy of the volume dominates the gain in free enthalpy of

the surface tension.

Ceramized glasses differ from devitrified glasses by higher nucleation rates, a homoge-

neous distribution of crystallites and a uniform crystallite size [McM79].

The nucleation rate is more or less proportional to the diffusion coefficient [CN+07].

Furthermore, the diffusion constant is proportional to the temperature and inversely

proportional to the viscosity [Ein05]. As the viscosity can increase after nucleation, the

growth needs to be supported by higher temperatures. The resulting typical temperature

process to produce a glass-ceramic is shown in Figure 2.2.
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Figure 2.2: Sketch of the temperature profile to obtain a glass-ceramic [CN+07]. At
the glass stage, the process can be interrupted and cooled down far below the glass
transition temperature Tg to ambient temperature.

2.2 Macroscopic Dielectric Properties

This section introduces the necessary concepts for the description of dielectrics. Besides

the permittivity and the loss, this includes the description of the macroscopic electric

field in a dielectric. Finally, different notations for nonlinear dielectric responses are

compared, as this is the central quantity that this work aims to measure and describe.

2.2.1 Relative Permittivity

An electric field E acting upon a dielectric causes the local displacement of charges.

This displacement of charges is summarized in the macroscopic polarization P. The

susceptibility χ is the macroscopic material property that connects these two fields

[Jac99]:

P = ε0χE (2.2.1)

Here, ε0 is the vacuum permittivity. The sum of the polarization P and the electric field

E is the electric displacement field D = ε0E + P. It defines the relative permittivity

ε = χ+ 1:

D = ε0εE (2.2.2)

However, the relation in Equation 2.2.1 is subject to several assumptions. First, it is

generally time dependent:

P(t) = ε0

∫ t

−∞
χ(t− t′) E(t′) dt′ (2.2.3)
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It depends on the previous history of χ(t) and E(t). Equation 2.2.1 assumes that the

displacement of charges follows the applied electric field instantaneously, expressed

by χ(t − t′) = χ δ(t − t′) with δ(t) representing the Dirac delta distribution. As

Equation 2.2.3 is a convolution χ ∗ E, it is convenient to take the Fourier transform

F{χ ∗ E} and apply the convolution theorem F{f ∗ g} = F{f}F{g}:

P(ω) = ε0χ(ω)E(ω) (2.2.4)

The susceptibility χ(ω) is a complex quantity. The imaginary part, which is usually

much smaller than the real part for dielectrics, corresponds to a loss. It is discussed in

subsection 2.2.3.

Equation 2.2.1 furthermore tacitly assumed that the polarization P points into the same

direction as the applied electric field E. This is not necessarily the case. Promoting the

susceptibility χ to tensor eliminates this restriction:

Pi = ε0

∑
j

χijEj (2.2.5)

Here, Pi and Ei correspond to the ith component of P and E, respectively.

2.2.2 De-electrification Field

An external electric field Eext induces a surface polarization in a dielectric [Kit73]. In

return, this polarization gives rise to an opposing electric field inside the dielectric, the

de-electrification field Edel. The resulting electric field is labeled Emac, the macroscopic

electric field:

Emac = Eext − Edel = Eext −N
P

ε0

(2.2.6)

Here, N is the geometry dependent de-electrification factor. Together with the definition

P = ε0χEmac this gives:

P =
χε0

1 +Nχ
Eext (2.2.7)

Three examples for the de-electrification factor N are: N = 1 if all field lines penetrate

the surface perpendicular to the surface, as in a thin dielectric sheet like a classic

capacitor, N = 1/3 for a sphere, and N = 0 if the field lines are parallel to the surface.

Hence, the macroscopic electric fields for these geometries are:

Emac =
1

1 +N(εr − 1)
Eext =


(1/εr) Eext for N = 1

3/(εr + 2) Eext for N = 1/3

Eext for N = 0

(2.2.8)

An external electric field parallel to a surface between two dielectrics extends continu-

ously, while a perpendicular electric field is discontinuous.
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2.2.3 Dielectric Loss

The quantities χ(ω) and ε(ω) introduced in subsection 2.2.1 are complex quantities.

However, the imaginary part is much smaller than the real part for low loss dielectrics.

It is therefore convenient to state the real and the imaginary part as a magnitude εr
and an angle δ [KG86]:

ε = ε′ + i ε′′ = ε′(1 + i ε′′/ε′) = εr(1− i tanδ) (2.2.9)

Here, tanδ is the imaginary part of the permittivity normalized to its real part:

tanδ = −Im(ε)

Re(ε)
(2.2.10)

The loss corresponds to an AC-conductivity σ by [Hun09]

σ = ε0εrω tanδ. (2.2.11)

For comparability with quality factors of resonators (see subsection 3.2.3), it is common

to use the inverse of the loss tangent tanδ, the dielectric quality factor:

Qd = 1/tanδ (2.2.12)

The notations for dielectric loss are completed by the extinction coefficient κ defined by

I = I0 e
−2κz. Here, I is the intensity of a wave after traveling for the length z through

the lossy dielectric. The extinction coefficient κ is related to the loss tangent tanδ via

tanδ =
λ

2π
κ (2.2.13)

Here, λ is the wavelength in the dielectric. The extinction coefficient κ is the common

measure for dielectric loss at optical frequencies. Typical extinction coefficients in

optical fibers of ∼ 10 dB/km [KH66] result in much smaller losses in the order of ∼
tanδ ≈ 10−10 than usually observed in the microwave range.

2.2.4 Perturbative Nonlinear Dielectric Responses

Equation 2.2.1 is a linear relation. A standard phenomenological approach to include

nonlinear responses is their treatment as a perturbation. The perturbation assumes

that the polarization P can be written in terms of a power series expansion of E.

Even though this is a very appealing approach, it has a limited validity due to the

radius of convergence of the power series expansion (see section 2.3). The most general

formulation of this perturbation approach is the tensor expansion as in Equation 2.2.5

[Bö73]:

Pi/ε0 =
∑
j

χijEj +
∑
jk

χijkEjEk +
∑
jkl

χijklEjEkEl + ... (2.2.14)
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χij is the linear susceptibility that can account for anisotropy while the following terms

χijk and χijkl also take into account anisotropic nonlinearities. For isotropic materials,

Equation 2.4.3 can be simplified considerably. Isotropy imposes high requirements on

the susceptibility tensors: All off-diagonal elements vanish and the remaining diagonal

elements are equal to each other. Furthermore, reversing the electric field E should also

reverse the polarization P:

E(t)→ −E(t)
!⇒ P(t)→ −P(t) (2.2.15)

This implies that all even order terms of E vanish. Taking into account these implications

of isotropy, Equation 2.4.3 can be written as a scalar equation:

P/ε0 = χ1E + χ3E
3 + χ5E

5 + ... (2.2.16)

Here, P and E denote the amplitudes of the vectors P and E, respectively.

While the linear susceptibility χ1 is certainly isotropic for glasses and glass-ceramics, it

is generally unwary to assume the same for the nonlinear susceptibilities without the

knowledge of the nonlinear mechanism. For instance, if the nonlinearity turned out

to be mainly due to surface effects, the symmetry is broken. Nevertheless, for a large

number of nonlinear dipoles in a homogeneous and isotropic medium, it is reasonable

to assume that the nonlinear polarizabilities are distributed homogeneously and hence

isotropically as well.

Depending on the problem, it is appropriate to rewrite the linear and the nonlinear

susceptibilities. Besides the susceptibility χ, two other notations are common for linear

responses: the relative permittivity εr = χ+ 1 and its square root, the refractive index

n =
√
εr (assuming µr = 1). The relative permittivity is usually preferred at static

fields, as it constitutes the ratio by which the de-electrification field reduces the electric

field in the dielectric. In optics, the refractive index is commonly preferred because it

directly gives the ratio of the speed of light in vacuum and the medium. Equivalently,

analogous notations are adopted for the third order nonlinear responses:

• the nonlinear susceptibility χ3, which already has been introduced in Equa-

tion 2.2.16,

• the nonlinear refractive index n2, defined by n(I) = n0 + n2I, with I being the

beam intensity [Boy08],

• the change in the permittivity ∆εr, which is given by D(E) = ε0 (εr,E=0 +

[∆εr/E
2]E2) E [Bö73].

The two notations χ3 and ∆εr/E
2 are both given in m2/V2, while n2 is usually given

in cm2/W. Actually, the notations χ3 and ∆εr/E
2 are equivalent to each other. The

nonlinear refractive index n2 can be related to the other notations by:

n2 =
1

n2
0ε0c

χ3 (2.2.17)



12

Besides those notations, it is sometimes convenient to normalize the absolute change in

the permittivity to the relative permittivity. Following [THNW89], it is labeled α:

α =
∆εr

εr,E=0 E2
=

χ3

εr,E=0

(2.2.18)

2.3 Nonlinear Signal Theory

The general aim of this section is to compare different approaches to describe the

frequency response of nonlinearities. The discussion relies on the experience of two

fields: Nonlinear microwave circuits in engineering [Maa03, PC03] and nonlinear optics

in physics [Boy08]. The general task is to relate an input signal x(t) and an output

signal y(t). In nonlinear microwave circuits, the approaches separate into two classes:

Time and frequency domain analysis. Time-domain analysis takes the differential

equations of the nonlinear circuit and solves them in a transient numerical way. The

main drawback of this method is that components are usually best characterized in

the frequency domain [Maa03]. In frequency-domain analysis, three options are to be

considered: Harmonic Balance Analysis, Volterra Series Analysis and analysis by a

power series expansion. The Volterra Series Analysis is also a power series; however, it

includes memory kernels.

In nonlinear optics, there are mainly two approaches: for resonant systems, a two-level

(or few-level) approximation can be made. For non-resonant systems, the perturbative

power series expansion approach is commonly relied on.

This section focuses on relations of x(t) and y(t) that can be represented as a function

y(x) in the mathematical sense: every input amplitude is assigned to exactly one output

amplitude. In other words, the output amplitude depends solely on the present input

amplitude. In particular, this approach excludes memory effects:

x(t)
y(x)→ y(t) = y(x(t)) (2.3.1)

Typical problem settings require to find one out of x(t), y(t) and y(x) with the knowledge

of the other two. The following discussion is restricted to odd1 nonlinear responses

y(x) (see Equation 2.2.15). Even though the third order nonlinear responses, which

are in the focus of this work, actually allow four wave mixing [Boy08], the following

scope is restricted by dealing with input signals consisting of only two frequencies. This

is motivated by microwave engineering, were a two-tone signal is a classic method to

detect nonlinear responses.

x(t) = A1 sin(ω1t) + A2 sin(ω2t) (2.3.2)

Here, Ai are the amplitudes at the respective frequencies ωi. Without loss of generality,

ω2 > ω1 is assumed from now on. Furthermore, the frequencies are assumed to be

1An odd function exhibits inversion symmetry at the origin, y(−x) = −y(x).
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closely spaced ω2 − ω1 � ω1, which means that the nonlinear system reacts to both

frequencies in the same manner. Applying this signal to the nonlinear response function

y(x) results in a signal of the form:

y(t) =
∞∑

m+n>0

Bmn sin[(mω1 + nω2)t] (2.3.3)

The natural multiples of the original frequencies are called harmonics. The mixing

frequencies of two frequencies are referred to as intermodulations. The most relevant

frequencies for this work will be labeled B1 = B1,0, B2 = B0,1, BH3,1 = B3,0, BH3,2 = B0,3,

BIM3+ = B−1,2, and BIM3− = B2,−1:

y(t) = B1 sin(ω1t) +B2 sin(ω2t)

+BH3,1 sin(3ω1t) +BH3,2 sin(3ω2t)

+BIM3+ sin((2ω2 − ω1)t)

+BIM3− sin((2ω1 − ω2)t)

+ ...

(2.3.4)

The more specific aim of this section is the calculation of the input power dependency

of the intermodulation level; that is to find the amplitude at the (upper) third order

intermodulation product BIM3+ as a function of the input amplitudes of the two signals

A1 and A2. Figure 2.3 sketches the resulting spectrum if a nonlinear system is exited

with a two-tone signal as in Equation 2.3.2.
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Figure 2.3: A spectrum of a two-tone signal that has been distorted by a nonlinearity.
The sketch shows distortion products up to the fifth order.
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2.3.1 Perturbative Intermodulation Generation

A common approach in both electrical engineering [Maa03] and nonlinear optics [Boy08]

is the description of a nonlinear response as a power series expansion. The response

function is assumed to be of the form:

y(x) = a0 + a1x+ a2x
2 + a3x

3 + ... (2.3.5)

As discussed in subsection 2.2.4, the even order terms disappear for odd functions:

y(x) = a1x+ a3x
3 + a5x

5 + ... (2.3.6)

Applying the two-tone signal from Equation 2.3.2 to this response function leads to

intermodulation products at m+ n = odd. Truncating the power series after the ith

term leads to frequencies products with m+ n ≤ i. For the sake of clearness, only the

original frequency components ω1 and ω2 and their third harmonics are shown, together

with two of their third order intermodulations, 2ω2 − ω1 and 2ω1 − ω2:

y(t) =

[
a1A1 + a3

(
3

4
A3

1 +
3

2
A1A

2
2

)
+ a5

(
5

8
A5

1 +
15

4
A3

1A
2
2 +

15

8
A1A

4
2

)]
sin(ω1t)

+

[
a1A2 + a3

(
3

4
A3

2 +
3

2
A2

1A2

)
+ a5

(
5

8
A5

2 +
15

4
A2

1A
3
2 +

15

8
A4

1A2

)]
sin(ω2t)

+

[
3

4
a3A

2
1A2 + a5

(
5

4
A4

1A2 +
15

8
A2

1A
3
2

)]
sin[(2ω1 − ω2)t]

+

[
3

4
a3A1A

2
2 + a5

(
5

4
A1A

4
2 +

15

8
A3

1A
2
2

)]
sin[(2ω2 − ω1)t]

−
[

1

4
a3A

3
1 + a5

(
5

16
A5

1 +
5

4
A3

1A
2
2

)]
sin(3ω1t)

−
[

1

4
a3A

3
2 + a5

(
5

16
A5

2 +
5

4
A2

1A
2
3

)]
sin(3ω2t)

+ ...

(2.3.7)

For a5A
2 � a3 and a3A

2 � a1 , the amplitudes at the selected frequencies become

much simpler:

Bi = a1 Ai

BIM3+ =
3

4
a3 A1A

2
2

BIM3− =
3

4
a3 A

2
1A2

BH3,i =
1

4
a3 A

3
i

(2.3.8)

The power series approach allows several insights: It produces the frequencies at which

amplitudes different from zero are expected and it can - in theory - be extended to

infinite input frequencies. It furthermore relates the order of nonlinearity ai to the
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frequency components. For instance, the fifth order nonlinearity a5 has a contribution

at third order frequency components 2ω2 − ω1 and 2ω1 − ω2.

Equation 2.3.8 motivates the classical expectation of intermodulation in weakly nonlinear

systems: the linear components Bi rise linearly with its corresponding input amplitude

Ai and the harmonics and intermodulation amplitudes rise with the third power of

the input amplitude, AiA
2
j ∼ A3. In the logarithmic dB representation, all power-laws

become a straight line. This straight line has a slope of 1 dB/dB for the linear relation

and a slope of 3 dB/dB for the cubic dependency of the intermodulation amplitude. The

term “level” refers to this logarithmic representation (e.g. power level and amplitude

level):

A[dB] = 20 log10(A) (2.3.9)

The logarithmic representation is also used to give a figure of merit for the nonlinearity of

a device, the third order intercept point IP3. It is the intersection of the linear response

with a slope of 1 dB/dB and the intermodulation response with slope 3 dB/dB. The point

is given by the pair (IIP3,OIP3), the input power level and the corresponding output

power level. The same definition can be extended to higher order intermodulations,

e.g. IP5. Fifth order intermodulations exhibit a 5 dB/dB slope. Figure 2.4 sketches the

idealized intermodulation behavior of a nonlinear device.
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Figure 2.4: Graphical definition of IP3 and IP5.

However, the power series approach is only applicable as long as the power series

converges [DP99, Boy08, PC03]. This restriction is obvious for non-analytic functions2.

However, there are smooth functions (infinitely differentiable, all derivatives are contin-

uous) where the power series expansion converges only within a finite radius. Examples

of such functions are discussed in subsection 2.3.5. Even before the convergence limit,

the amplitude terms may become ridiculously inflated with an unwieldy number of free

parameters ai. To conclude, the power series approach is applicable within a sufficient

small amplitude range, and even then only for analytic response functions.

2A function is analytic if it is locally given by a convergent power series.
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2.3.2 Harmonic Fourier Coefficient Method

The Harmonic Fourier Coefficient Method relies on the fact that any periodic function can

be obtained by adding harmonically related sinusoids. This method is not limited to any

convergence of a power series. Therefore, it is even applicable to non-analytic functions3

(see subsection 2.3.5). This method has been applied to explain intermodulation behavior

in high temperature superconductors [DS99]. However, in contrast to the Power Series

Expansion Method, it actually only allows the calculation of higher harmonics, not of

intermodulations. A signal of the form

x(t) = A sin(ωt) (2.3.10)

is applied to a response function y(x). The resulting signal y(t) can be expressed as a

sum of sinusoids with their corresponding Fourier coefficients:

y(t) =
a0

2
+
∞∑
k=1

(Bksin(kωt) + Ckcos(kωt)) (2.3.11)

For odd response functions y(x), cosines and even order sines disappear:

y(t) =
∞∑

k=1,3,5...

Bk sin(kωt) (2.3.12)

The Fourier coefficient Bk at the frequency of interest is classically obtained via:

Bk =
1

π

∫ π

−π
dϕ y(x(ϕ)) sin(kϕ) (2.3.13)

Here, the substitution ϕ = ωt was used to eliminate the specific time and frequency

dependency. The third harmonic amplitude is just the Fourier coefficient at k = 3,

BH3 = B3. The integral in Equation 2.3.13 does not necessarily need to have an analytic

solution. Still, this method allows the numerical calculation of the third harmonic

amplitude. However, it is not generally possible to apply this method to calculate

intermodulation amplitudes.

2.3.3 Harmonic Balance Analysis

While the perturbative approach discussed in subsection 2.3.1 finds application in small

nonlinear systems, Harmonic Balance Analysis constitutes a more generally applicable

method, even incorporating memory effects [Maa03]. It is a frequency domain method

to find the steady state response of a nonlinear system. The basic idea is to start

with a certain set of frequencies (usually harmonics) and solve for the amplitudes of

these frequencies so that the equations of the nonlinear system are sufficiently fulfilled.

The concept is extendible to Multitone Harmonic Balance Analysis [Maa03, CMO01].

3remaining condition: the function is continuous and derivative square integrable [TS76].
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The analysis can start from the nonlinear equation of motion including forth and back

Fourier transformation from time to frequency domain and vice versa. However, for the

discussion here, the scope is limited to the application of a known nonlinear response

function as in Equation 2.3.1. This allows the application of a strongly simplified

Multitone Harmonic Balance Analysis: a signal of two frequencies Equation 2.3.2

undergoes a nonlinear transformation. The resulting signal is fitted with a set of

frequencies consisting of the original frequencies (2 parameters) and the third order (+6

parameters) and fifth order (+10 parameters) intermodulation frequencies. It becomes

clear that this method requires an early truncation to handle the number of parameters.

Figure 2.5 depicts a corresponding fit. Here, the effect of the truncation becomes visible:

at the larger amplitude, the signal is not appropriately modeled with the underlying

set of frequencies.
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Figure 2.5: Simple Multitone Harmonic Balance Analysis applied to a two-tone signal
of the form in Equation 2.3.2 with amplitude A = 0.5 and A = 5. The figure shows
the signal y(t) after nonlinear processing. In this example, the underlying nonlinear
response function is the saturable absorber from Equation 2.3.17.

2.3.4 Intermodulation Fourier Coefficient Method

The Harmonic Fourier Coefficient Method can be extended to intermodulations. The

author of [Ben33] proposed a Fourier coefficient integral that can be used to calculate

intermodulation amplitudes. For IM3+, it is a 2-dimensional integral of the form:

BIM3+ =
1

2π2

∫ π

−π

∫ π

−π
sin(2ϕ2 − ϕ1) y

(
A1 sinϕ1 + A2 sinϕ2

)
dϕ1dϕ2 (2.3.14)

Here, y(x) again represents the nonlinear response function. In principle, this integral

is sufficient to calculate the intermodulation amplitudes for a given nonlinear response

function y(x) [VdV68, PC03, DP99]. However, this integral generally cannot be solved

analytically and the numerical solution of this 2-dimensional integral may become
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tedious. Based on the discussion in [WKD99] and [Vel04], a different approach can be

taken. It is a 1-dimensional integral of the form:

BIM3+ =
1

u/2

∫ u/2

−u/2
sin(2ϕ2 − ϕ1) y

(
A1 sin(ϕ1) + A2 sin(ϕ2)

)
dϕ (2.3.15)

The relation between the general variable ϕ, the input signal frequencies ϕ1, ϕ2 and

the period u need to fulfill a crucial condition to obtain a valid integral: The integrand

is required to be periodic. This is only the case for rational ratios of ϕ1 and ϕ2. In

general, signals consisting of at least two frequencies do not need to show a periodicity

anymore [Maa03]. However, for nonlinear relations x(t)→ y(t) that can be written as a

function y(x), the intermodulation amplitude does not depend on the specific frequency

choice4. Especially, it does not depend on the ratio of the frequencies. Hence, one

can choose ϕ1 and ϕ2 in a rational ratio without the loss of generality. Furthermore,

it is advisable to choose a small denominator, because the period of the integrand

increases with increasing denominators of this rational ratio. A larger period with an

increasing number of zero crossings requires an increasing sampling and is therefore

of disadvantage if the integral is to be solved numerically. Figure 2.6 illustrates this

phenomenon.
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Figure 2.6: Integrands for different choices of frequency spacing.

On the other hand, the frequencies cannot be chosen in a deliberately small rational

ratio, as they must not be harmonically related to each other. Otherwise, the integral

returns the harmonic contributions of the input signal additionally to the intermodu-

lation contribution. Table 2.1 lists small rational ratios of frequencies. The smallest

denominator without harmonic relation between the frequencies is 4. The choice of

ϕ1 = 3ϕ2/4 = 3ϕ/4 results in:

BIM3+ =
1

4π

∫ 4π

−4π

y

(
A1 sin

(
3

4
ϕ

)
+ A2 sin

(
4

4
ϕ

))
sin

(
5

4
ϕ

)
dϕ (2.3.16)

4This is true for the mechanisms discussed here. Generally, there are PIM mechanisms that depend
on the frequency spacing (e.g. thermal IM [WKGS15]).
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Table 2.1: List of rational ratios starting from small denominators. The choice ϕ1 = 3
4
ϕ2

has the smallest denominators with no harmonic relation between the frequencies.

ϕ1 ϕ2 2ϕ2 − ϕ1 u Relation
1
2
ϕ 2

2
ϕ 3

2
ϕ 2× 2π ϕ3 and ϕ2 are harmonics of ω1

2
3
ϕ 3

3
ϕ 4

3
ϕ 3× 2π ϕ3 is harmonic of ω1

3
4
ϕ 4

4
ϕ 5

4
ϕ 4× 2π no harmonic relation

4
5
ϕ 5

5
ϕ 6

5
ϕ 5× 2π no harmonic relation

n−1
n
ϕ ϕ n+1

n
ϕ n× 2π (general)

A similar intermodulation Fourier coefficient method has been used in [WKD99]. How-

ever, the author of [Vel04] remarks that the method made some critical assumptions:

First, the authors of [WKD99] use a sum of exponents exp(iωt). The author of [Vel04]

argues that instead a sines/cosines representation is necessary for nonlinear problems.

Second, the author of [Vel04] argues that the integration for the Fourier coefficient is

evaluated over a certain period, but the argument in the integral is not periodic in the

chosen period. The author of [Vel04] therefore questions the validity of the results in

[WKD99]. The approach presented above compensates for the remarks in [Vel04].

The method presented here is of course still very limited in its application. [PC03]

includes a very detailed discussion of more general nonlinear analysis techniques for

distortion prediction.

2.3.5 Exemplary Comparisons of Methods

This section discusses the applicability of the previously introduced methods to calculate

intermodulation amplitudes BIM3+(A1, A2).

Polynomial

For some functions y(x) the integral in Equation 2.3.16 can be solved analytically. For

instance, choosing f(x) = a3 x
3 returns BIM3+ = 3

4
a3A1A

2
2. This conforms to the result

of the Power Series Expansion Method.

Non-analytic

In contrast to the Power Series Expansion Method, the Fourier Coefficient Method can

be applied to non-analytic response functions, e.g. y(x) = a2 sgn(x)x2. An analytic

solution for a similar problem can be found in [WKD99] though the result has been

questioned by [Vel04]. However, the numerical result can be easily calculated for a

large amplitude range. Assuming A := A1 = A2, this results in BIM3+ ∼ A2 or in a

2 dB/dB slope. For comparison, the nonlinear response function y(x) = a2x
2 does not

return any amplitude contribution at IM3+. Another example is the cube root function

y(x) = 3
√
x, which leads to a 1/3 dB/dB slope. Figure 2.7 displays the intermodulation

amplitudes for those two functions.
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Figure 2.7: Intermodulation amplitude BIM3+ as a function of the input amplitude A
for two nonlinear response functions: y(x) = a2|x|x and y(x) = 3

√
x. y(x) = a2|x|x

results in a 2 dB/dB slope (squares), y(x) = 3
√
x in a 1/3 dB/dB slope (circles).

Limited convergence

This example deals with an intermediate case of the two examples discussed above.

It can be locally described by a polynomial, allowing an analytic intermodulation

calculation with the Power Series Expansion Method. However, the convergence of the

polynomial is limited and the Power Series Expansion Method ceases to be valid. The

exemplifying function discussed here is the abstract saturable absorber (for the concrete

physical saturable absorber, see subsection 2.4.5). It has the form:

y(x) =
x√

1 + x2
(2.3.17)

It is sketched in Figure 2.8a together with some of its truncated power series expansions

at x = 0. The radius of convergence (RoC) of the power series around x = 0 is

x = 1 = 0 dB [Boy08]. The fifth order power series of this function is:

y(x) ≈ x− 1

2
x3 +

3

8
x5 (2.3.18)

For low amplitudes, the power series converges. It is therefore expected that the

Power Series Expansion Method returns the same results as the more general Fourier

Coefficient Method. The Power Series Expansion Method up to the third order returns:

BIM3+ =
3

8
A1A

2
2 (2.3.19)

The third intermodulation level is shown in Figure 2.8b for the Power Series Expansion

Method and the Intermodulation Fourier Coefficient Method. As expected, the two

methods agree for low amplitudes. However, beyond a certain amplitude, the Power

Series Expansion Method does not correctly predict the intermodulation level anymore.

Instead, the Intermodulation Fourier Coefficient method predicts a saturating intermod-

ulation level. Furthermore, Figure 2.8 illustrates that simple extension of the power

series description to higher order terms does not improve the predictive power of the

Power Series Expansion Method.
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Figure 2.8: Nonlinear response function from Equation 2.3.17 (left) and its intermodula-
tion level as a function of input amplitude (right). RoC marks the radius of convergence
(xRoC = 1 = 0 dB). For low amplitudes, the power series expansion gives the correct
response but diverges from both the function and the intermodulation calculated by
the Intermodulation Fourier Coefficient Method. The inclusion of higher order terms
does not lead to better agreement.

The example of the saturable absorber is suitable to compare the Harmonic Balance

Analysis and the Intermodulation Fourier Coefficient Method. Figure 2.9 shows the

intermodulation amplitude level BIM3+ for different computations: Figure 2.9a com-

pares two different numerical integration methods for two different frequency spacing:

Numerical Quadrature (NQ) and Monte Carlo (MC)5. In the medium amplitude range,

all methods agree within numerical precision. For low amplitudes, the Monte Carlo

integration fails and deviates from the analytical perturbation solution, while the

Numerical Quadrature conforms to the analytical solution. However, the low power

range is not of interest because analytical perturbation descriptions exist. At the high

amplitude end, all methods show similar qualitative behavior. However, they produce

significantly different results. For smaller frequency spacing, the Numerical Quadrature

becomes unstable at smaller amplitudes than for larger frequency spacing. This is likely

to be explained by the geometry of the integral (see Figure 2.6). The Monte Carlo

integration seems continuing being stable. However, the different frequency spacing

return distinguishable intermodulation amplitudes as well.

Figure 2.9b compares the Monte Carlo integration to the Harmonic Balance Anal-

ysis. The Harmonic Balance Analysis is performed on the basis of all third order

intermodulation frequencies (HB3) and then also including all fifth order intermod-

ulation frequencies (HB5). As visible in Figure 2.9b, the inclusion of the fifth order

intermodulation frequencies does not lead to a visible change.

As the Monte Carlo integration fails at low amplitudes, they are only compared at

intermediate and high amplitudes. They agree in the intermediate amplitude range

within numerical precision. At high amplitudes, they deviate from each other, though

5For NQ, the Mathematica default function NIntegrate was used, for MC the QuasiMonteCarlo

option.
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Carlo (MC) integration of Equation 2.3.16.
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Figure 2.9: Comparison of methods to predict the input amplitude dependency of the
intermodulation amplitude. n is the denominator of the frequency ratio, see Table 2.1.
Hence, n = 40 corresponds to close frequency spacing, n = 4 to far frequency spacing.

the first distinction is due to the frequency spacing while Monte Carlo integration and

Harmonic Balance still agree. Only at even higher amplitudes, the Harmonic Balance

Analysis deviates from the Monte Carlo integration. It is supposed that the Harmonic

Balance Analysis does not include sufficient terms to model the distorted signal at high

amplitudes accurately (see Figure 2.5).

Still, the major discrepancy is due to the choice of the frequency spacing. For the

frequency spacing ϕ1 = 3
4
ϕ2, an 11th order intermodulation coincides with the upper

third order intermodulation (7ϕ1− 4ϕ2 = 7 · 3ϕ− 4 · 4ϕ = 5ϕ). This gives an additional

unwanted contribution to the integrand. In summary, the prediction of the discussed

methods should not be applied beyond the intermediate amplitude range, i.e. only

within the saturation of the intermodulation level and not in the range when the signal

is already saturated. As long as they agree, the methods allow the determination

of intermodulation levels beyond the analytical perturbative Power Series Expansion

Method.

Inverse polynomial

This example is a special of case of limited convergence. It shows the critical differences

that the choice of modeling nonlinear circuits can make. The nonlinear response function

y(x) shall be given by the implicit equation:

x = y(x) + a y(x)3 (2.3.20)

Its explicit form is:

y(x) =
2 3
√

3− 3
√

2
(√

81a x2 + 12− 9
√
a x
)2/3

62/3a
3
√√

81a x2 + 12− 9a2 x
(2.3.21)

Again, the convergence of the power series of this nonlinear response function is limited.
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Figure 2.10: Nonlinear response of four different circuits: an isolated decreasing nonlinear
resistor Ra3>0 characterized by I = a1VNL + a3V

3
NL, an isolated increasing nonlinear

resistor RR3>0 characterized by VNL = R1I + R3I
3 and each of them in series with a

linear resistor, for the arbitrary choice R1 = 1/a1 = 1/aL =1 Ω and R3 = 1/a3 =1 Ω/V2.

It is xRoC = 2/(3
√

3) for a=1 (see Equation A.0.13).

The function in Equation 2.3.21 is equivalent to the model discussed in [HCC09b] and

[HCC10], termed “linear-nonlinear interaction”: a nonlinear resistor is connected in

series with a linear resistor. The nonlinear resistor is characterized by I = a1VNL +a3V
3

NL

and the linear resistor by I = aLVL, V being the voltage and I the current. The resistor

of the nonlinear resistor decreases with increasing voltage. The resulting response

function of this system produces a saturation in the intermodulation level. The authors

of [HCC09b] argue that this is the result of a decreasing voltage share of the overall

voltage at the nonlinear resistor when the overall voltage is increased. This voltage

share is sketched in Figure 2.10.

However, the intermodulation level also decreases for an increasing nonlinear resistor,

which is characterized by V = R1I + R3I
3. For an increasing overall voltage, the

voltage share at the nonlinear resistor increases. Following the argument in [HCC09b],

this should lead to an increasing nonlinear response, rather than a saturation. The

increasing nonlinear resistor even results in a saturation of the intermodulation level

by its own, without being connected in series with a linear resistor. Instead, all three

response functions have one thing in common: The power series has a limited radius of

convergence for all those functions. Just in the case of the isolated decreasing nonlinear

resistor, the radius of convergence of the power series is infinite. This suggest that the

cause of the saturating intermodulation level in the model of [HCC09b] is rather the

mathematical behavior of the chosen function than a physical one [4].

Finally, it is worth noting that the intermodulation slope tends towards 1/3 dB/dB,

which is consistent with the slope of the cubic root function y(x) = 3
√
x. On the other

hand, the intermodulation of the saturable absorber saturates completely to 0 dB/dB.
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Saturating intermodulation of a positive nonlinearity

So far, the presented models that show a saturating intermodulation all exhibit negative

third order nonlinear responses. The upcoming model is an example for a positive

nonlinearity, which still shows a saturation in the intermodulation. Thereby it shows

that saturating intermodulation is not connected to the “saturation” (i.e. negative

curvature) of the nonlinear response function itself. The model is based on a mechanical

spring system [DH04] and is sketched in Figure 2.11. Its restoring force is given by:

F (x) =
2Fvx√
l2 + x2

+ 2cx

(
1− l√

l2 + x2

)
(2.3.22)

Here, l is half the length between the holding plates, c is the spring constant and Fv
is preload force. These parameters can be adjusted so that the restoring force either

saturates with increasing displacement x (Fv > cl) or instead overdrives with increasing

displacement x (Fv < cl), which can be easily seen in the power series expansion:

F (x) ≈ 2Fv
l
x+

cl − Fv
l3

x3 (2.3.23)

However, both nonlinear response functions result in a saturating intermodulation trend,

even the one with the positive nonlinear third order term.

Figure 2.11: Sketch of mechanical geometric nonlinearity [DH04]

Separate amplitudes variation

In the examples above, the excitation signal was chosen to have two frequencies of equal

amplitudes, x(t) = A [sin(ω1t) + sin(ω2t)]. Generally, the amplitudes are independent,

x(t) = A1 sin(ω1t) + A2 sin(ω2t). The Intermodulation Fourier Coefficient Method

allows the calculation of the intermodulation level for independent amplitudes. The

result for the saturable absorber of Equation 2.3.17 (xRoC = 1) is plotted in Figure 2.12.

Three domains can be distinguished:

BIM3+ ∼


A1A

2
2 ∼ A3 for A1 � xRoC and A2 � xRoC

A1A
−1
2 ∼ A0 for A2 � xRoC and A2 � A1

A−2
1 A2

2 ∼ A0 for A1 � xRoC and A1 � A2

(2.3.24)
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Figure 2.12: Upper third intermodulation level BIM3+ as a function of two input
amplitudes A1 and A2 in a triple logarithmic plot. The area facing towards the
contemplator is the regime in which the power series expansion model is applicable.

The inverse polynomial defined by Equation 2.3.20 with xRoC = −4.1 dB (see Equa-

tion A.0.13) even results in broken exponent scaling:

BIM3+ ∼


A1A

2
2 ∼ A3 for A1 � xRoC and A2 � xRoC

A1A
−2/3
2 ∼ A1/3 for A2 � xRoC and A2 � A1

A
−5/3
1 A2

2 ∼ A1/3 for A1 � xRoC and A1 � A2

(2.3.25)

2.3.6 Conclusions for Dielectric Nonlinearities

So far, the intermodulation response of nonlinear systems has been discussed in an

abstract manner. However, there are concrete physical nonlinear response functions,

which have a limited convergence of their power series and a saturating intermodulation

response. Figure 2.13 shows intermodulation responses for three nonlinear response

functions: Langevin-like polarization PLgv, the polarization of a saturable absorber

Psat and the polarization of a binary state system Pbin. They will be associated with

physical models in section 2.4. All presented nonlinear response functions show a

similar saturating intermodulation trend, 3 dB/dB at low amplitudes, 0 dB/dB at high

amplitudes. Nevertheless, the intermodulation trends are distinct from each other.

Measuring a classical 3 dB/dB slope of an intermodulation allows extracting the non-

linear susceptibility χ3 (details in subsection 3.5.3). However, measuring χ3 offers a

limited interpretation only: with the sole knowledge of χ3, it is impossible to decide if

the nonlinearity stems from a highly nonlinear mechanism, which is barely present in

the material, or if it is actually due to a less nonlinear but more abundant mechanism.
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Figure 2.13: Comparison of the intermodulation response of different mechanisms: The
saturable absorber, the Langevin function Lgv(x) and tanh(x). They are scaled by the
radius of convergence of their corresponding power series: it is x = 1 = 0 dB for all
three models. The mechanisms show a distinct intermodulation trend, which becomes
most obvious in the curvature of the intermodulation signal. However, as discussed
in subsection 2.3.5, the derivative and curvature data beyond 10 dB is not reliable
anymore.

In more mathematical terms, e.g. for a Langevin response, (Equation 2.4.27) it is only

possible to determine the product Np4, not the separate density N of dipoles p.

The observation of a saturating intermodulation level allows determining an additional

parameter. This parameter can be chosen somewhat deliberately, however, the “bending

electric field amplitude of the intermodulation level” Eb seems to be the best-suited

choice. Eb offers a second parameter to determine both N and p and therefore helps

to identify the nonlinear mechanisms. Eb is a suitable parameter, as all arguments of

the nonlinear response models can be written in terms of the applied field amplitude E

normalized to the bending field strength Eb:

PLgv(E) ∼ Lgv

(
π
E

Eb

)
Pbin(E) ∼ tanh

(
π

2

E

Eb

)
Psat(E) ∼ E/Eb√

1 + (E/Eb)2

(2.3.26)

The factors in the functions are chosen such that Eb furthermore represents the radius

of convergence of the power series of each function, π for the Langevin function, π/2 for

tanh(x) [Zuc72] and 1 for the saturable absorber [Boy08]. Then, Eb can be extracted

by comparing the arguments to Equation 2.4.27, Equation 2.4.66 and Equation 2.4.44,

respectively. The relation for the saturable absorber is already simplified under the

assumptions of no detuning (∆ = 0) and similar life times t1 = t2 = t:
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ELgv
b =

π

L

kBT

pper

Ebin
b =

π

2L

kBT

qd/2

Esat
b =

~
2L

√
1 + ∆2t22
p21

√
t1t2

≈ ~
2L

1

p21t

(2.3.27)

This shows that Eb is independent of the density N of the mechanism. Hence, Eb turns

out to be a characteristic footprint for a mechanism.

Together with χ3, which actually depends on the density N of the mechanism in the

material, the linear contribution χ1 of the respective mechanism can be determined:

χLgv
1 = −15

π2
χ3E

2
b

χbin
1 = −12

π2
χ3E

2
b

χsat
1 = −2χ3E

2
b

(2.3.28)

2.4 Microscopic Description of Dielectrics

This section deals with microscopic concepts and models of dielectric polarization.

The connection of microscopic polarizability to the macroscopic dielectric response is

discussed. In this framework, various local electric field models are introduced, which

are crucial for addressing nonlinear polarization. The linear and nonlinear response

of classical main polarization mechanisms is evaluated. Various additional nonlinear

polarization models are introduced. Despite of being macroscopic effects, electrostriction

and Maxwell stress are discussed together with these microscopic mechanisms for

comparability. The section concludes with a literature review on the microscopic

descriptions of linear microwave and nonlinear low frequency dielectric responses.

2.4.1 Polarizability and Local Electric Field

The electric field locally displaces charges by inducing (or orientating) dipoles. The

polarization is the density of those dipoles [Bö73]:

ε0χEmac = P =
∆p

∆V
(2.4.1)

The polarizability γ connects the charge displacement in a certain local electric field:

p = γEloc (2.4.2)

The actual local electric field Eloc that a charge experiences in a dielectric differs from

the macroscopic applied electric field Emac. Comparable to the susceptibility χ (see
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Equation 2.4.3), the polarizability γ generally is a tensor and is written as a power

series for nonlinear polarizabilities:

pi =
∑
j

γijE
loc
j +

∑
jk

γijkE
loc
j Eloc

k +
∑
jkl

γijklE
loc
j Eloc

k Eloc
l + ... (2.4.3)

In contrast to the susceptibility χ, the macroscopic symmetry of Equation 2.2.16 does

not apply to the microscopic polarizabilities γi. However, for simplicity, the polarizability

and the susceptibility are written in equivalent manners:

p = γ1Eloc + γ3E
3
loc

P/ε0 = χ1Emac + χ3E
3
mac

(2.4.4)

By relating p and P via the density N , P = Np, comparison of coefficients leads to:

χ1 =
N

ε0

L γ1

χ3 =
N

ε0

L3 γ3

(2.4.5)

Here, L is the local electric field correction factor, given by:

Eloc = L Emac (2.4.6)

The most common way to account for the electric field of all other charges in the

dielectric is an imaginary sphere around a point in the dielectric, a concept introduced

by Lorentz [Kit73]. This sphere is sufficiently large so that the dielectric can be assumed

to be homogeneously polarized outside of the sphere. The field from the surface charge

density gives rise to the Lorentz field in the center of this sphere:

ELor =
1

3

P

ε0

(2.4.7)

If the atoms have a surrounding with cubic lattice, it can be shown that the resulting

field from the dipoles within that sphere vanishes. The Lorentz field leads to the local

electric field:

Eloc =

(
εr + 2

3

)
Emac (2.4.8)

To arrive at this classic field correction factor, two assumptions were made: First,

cubic symmetry was presumed. For other symmetries, the field within the sphere

is different from zero [Kit73]. In the perovskite structure, the local field correction

can even significantly deviate from the simple Lorentz model [Sla50]. However, the

authors of [AOK19] claim that the Lorentz relation can be derived by just assuming a

homogeneous and isotropic dielectric.

The Clausius-Masotti equation relies on the local field factor by Lorentz. It connects

the polarizability γ with the relative permittivity εr:
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εr = 1 +
3Nγ

3ε0 −Nγ
(2.4.9)

Here N is the density of the polarizabilities γ. From the denominator, it is clear that

this model fails for Nγ ≥ 3ε0. [AOK19] collects other field correction factors, which

can be obtained as special cases of the Onsager-Böttcher (OB) model:

LOB =
LL

1− 2 (εr−1)2

9εr
δ
α

(2.4.10)

Here, δ = γ − α, and γ is the polarizability of the dipole of interest and α is the

polarizability of the removed sphere around that dipole. For γ � α this leads to the

empty cavity (EC) model:

LEC =
3εr

2εr + 1
(2.4.11)

Another special case (γ = α) is the classical Lorentz field correction (L):

LL =
εr + 2

3
(2.4.12)

Of course, the validity of the Onsager-Böttcher model is also limited, as can be seen

from the denominator. It is only applicable as long as the following relation holds:

α

δ
<

9εr
2(εr − 1)2

(2.4.13)

In conclusion, the calculation of the local electric field that is experienced by the actual

charges is anything but trivial, especially for nonhomogeneous dielectrics. The effect of

the local electric field is just a minor correction in optics where εr ≈ 2. However, in

the microwave range, the local electric field correction factor can lead to differences of

several orders of magnitude in the nonlinear susceptibility. The nonlinear mechanism

crucially depends on the local electric field and can lead to different results [BCA06].

This needs to be taken into account when discussing nonlinear mechanisms.

2.4.2 Overview of Polarization Mechanisms

Figure 2.14 sketches a standard representation of the frequency dependency of the

relative permittivity. Every mechanism has its characteristic frequency response. There

are three basic polarization mechanisms [Bö73]:

• Dipolar polarization represents the orientation of permanent electric dipoles. It

is therefore only present in materials containing permanent dipoles. Dipolar

polarization contributes up to the microwave range.

• Ionic polarization summarizes the displacement of ions from their equilibrium

position. Though most condensed matter dielectrics rely on some kind of bond
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with ionic character, there are materials (e.g. diamond) with covalent bonds.

Those materials lack ionic polarization. Ionic polarization contributes up the

infrared range.

• Electronic polarization summarizes electronic contributions, such as the displace-

ment of the electrons against their appended atomic nucleus or band transitions

in a solid. Electronic polarization contributes up to the ultraviolet range and is

present in all dielectrics.

All these polarization mechanisms exhibit a nonlinear response that becomes relevant

at high electric fields. An overview of nonlinear dielectric responses is given in [Bö73]

with the focus on static fields. [Boy08] on the other hand collects nonlinear mechanisms

at optical frequencies. The following list sums up all the effects. The list does not

include secondary effects such as change of the permittivity due to heating and thermal

expansion.

• Permanent dipole alignment: The orientation of dipoles contributes to the polar-

izability as long as they are not completely aligned. This saturation leads to a

negative nonlinear susceptibility χ3.

• Hyperpolarizabilities: Higher order polarizabilities of the constituents directly

translate into higher order susceptibilities, including χ3. This effect can return

both negative and positive susceptibilities.

• Equilibrium shifting: If the constituents of a material have an anisotropic polariz-

ability or there is an equilibrium between constituents of different polarizability,

they are directed with their axis of high polarizability in the direction of the

electric field or the equilibrium is shifted towards more polar constituents. In

this case, higher electric fields lead to higher polarizability of the material, so the

susceptibility χ3 is positive.

• Electrostriction: The applied electric field increases the density of the material,

leading to a larger permittivity, corresponding to a positive χ3.

• Saturable atomic absorption: A photon is resonantly absorbed by an electron,

which thereby transits into a different electronic state. As this is a resonant effect,

it does not appear at static fields, and depending on the detuning, the resulting

χ3 can be either positive or negative.

In the following, the mechanisms from the list are compared in their theoretical linear

and nonlinear response. First, the hyperpolarizabilities are discussed in the framework

of an anharmonic oscillator as a first approach.

In nonlinear processes, many frequencies can be involved. These frequencies can lie

in very different frequency ranges. For simplicity, however, the following discussion,

assumes that the applied frequencies and the resulting mixing frequencies of interest
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Figure 2.14: Sketch of the real and imaginary parts of the dielectric function illustrating
the main polarization mechanisms. The dipolar polarization is a relaxation process,
which lacks a restoring force to exhibit resonant behavior.

all lie in a small region around a single frequency ω. The region is so small that the

material properties can be expected to be constant. A discussion of more general

frequency mixing can be found in e.g. [Boy08].

2.4.3 The Anharmonic Oscillator

In the surrounding of a potential minimum the potential’s derivative vanishes and the

first nonzero term is a linear restoring force F = kx with x being the displacement from

the potential minimum. The corresponding potential reads:

U(x) =
1

2
kx2 (2.4.14)

For a particle in such a potential with mass m and charge q in an electric field E(t) the

equation of motion is that of the driven harmonic oscillator:

ẍ+ 2αẋ+ ω2
0x =

q

m
E(t) (2.4.15)

Here, the resonance frequency is given by ω2
0 = k

m
and the phenomenological damping

α was introduced. For larger amplitudes, the harmonic oscillator can be extended with

a symmetric nonlinearity to a classical anharmonic oscillator [Boy08]. Its potential is

given by:

U(x) =
1

2
mω2

0x
2 − 1

4
mbx4 (2.4.16)

Here, b is a weighting parameter for the nonlinear term. The minus is introduced to
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obtain a positive nonlinear susceptibility χ3 for a positive b. The equation of motion is

thus modified accordingly:

ẍ+ 2αẋ+ ω2
0x− bx3 =

q

m
E(t) (2.4.17)

The equation of motion is solved in a perturbative manner by replacing E(t) with λE(t).

The solution for x(t) shall have the form of power series in λn:

x(t) = λx1(t) + λ2x2(t) + λ3x3(t) + ... (2.4.18)

The equations of motion can be separated for each exponent n of λ:

ẍ1 + 2αẋ1 + ω2
0x1 =

q

m
E(t)

ẍ2 + 2αẋ2 + ω2
0x2 = 0

ẍ3 + 2αẋ3 + ω2
0x3 = b x3

1

(2.4.19)

The solution of the first equation is the damped harmonic oscillator. Setting E(t) =

E exp(−iωt), the solution is x1(t) = x̂1 exp(−iωt), with the amplitude

x̂1 =
q

m

E

D(ω)
. (2.4.20)

Here, D(ω) = ω2
0 − ω2 − i 2αω. The steady state solution of the second equation is

zero, x2(t) = 0. The solution x1(t) of the first equation can be inserted into the third

equation. Here, the solution appears to the power of three, x1(t)
3. In general, these

three solutions are independent, having distinct amplitudes xl, xm, xn and frequencies

ωl, ωm, ωn:

ẍ3 + 2αẋ3 + ω2
0x3 = b

q3

m3

El
D(ωl)

Em
D(ωm)

En
D(ωn)

e−i(ωl+ωm+ωn)t (2.4.21)

Denoting ωj = ωl + ωm + ωn, the ansatz x3(t) = x̂3 exp(−iωjt) yields:

x̂3 =
b

D(ωj)

q3

m3

El
D(ωl)

Em
D(ωm)

En
D(ωn)

(2.4.22)

For equal amplitudes and similar frequencies, this becomes:

x̂3 = b
q3

m3

E3

D(ω)4
(2.4.23)

The linear and nonlinear polarizability are obtained by translating the displacement x

into the induced dipole p = qx, γ1 = qx̂1/Eloc and γ3 = qx̂3/E
3
loc, respectively:

γ1 =
q2

mD(ω)

γ3 =
b q4

m3D(ω)4

(2.4.24)
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Figure 2.15: Response of an anharmonic oscillator for frequencies far below the resonance
frequency. Re(χ3) and Re(χ1) are normalized to their magnitude at ω = 0.

The linear and nonlinear susceptibility are obtained by correcting for the local electric

field using Equation 2.4.5

χ1 =
N q2

ε0 m D(ω)
L

χ3 =
b N q4

ε0 m3 D(ω)4
L3

(2.4.25)

Depending on the sign of b, χ3 may take different signs as well. However, it is important

to note the limitations of that model. Even though D(ω) suggest a broad frequency

range applicability of the model, this perturbative approach holds for small amplitudes

χ3E
2 � χ1 only. This is only the case far below the resonance frequency ω0.

Figure 2.15 sketches the frequency trend of the linear imaginary and real susceptibilities.

For frequencies far below the resonance frequency, the real parts of the susceptibilities are

constant while the imaginary part increases linearly. For the nonresonant mechanism

discussed above, the nonlinear susceptibility Re(χ3) can be assumed to be weakly

frequency dependent comparable to the linear susceptibility Re(χ1). The nonlinear

imaginary susceptibility Im(χ3) scales linearly with the frequency comparable to the

linear imaginary susceptibility Im(χ1).

2.4.4 Saturating Dipole Orientation

The frequency response of permanent dipoles in an alternating electric field is described

by Debye relaxation [Kit73]:

χ(ω) =
χstat

1− iωτ
(2.4.26)

Here, χstat is the static susceptibility, given by the Langevin function [Kit73]. The

Langevin function arises from the Boltzmann distribution in the potential W = pper ·
Eloc = pperE cos θ of the permanent dipole pper in the electric field Eloc:
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pind = pperLgv(x) (2.4.27)

Here, x = pperEloc/(kBT ), kB being the Boltzmann constant and T the temperature.

The Langevin function and its power series’ first terms read

Lgv(x) = coth(x)− 1

x
≈ x

3
− x3

45
(2.4.28)

Hence, the third order power series of the induced dipole pind returns:

pind =
p2
per

3 kBT
Eloc −

p4
per

45 (kBT )3
E3
loc (2.4.29)

Thus, the polarizabilities of the dipole relaxing system are:

γrelax1 =
1

3

p2
per

kBT

γrelax3 = −
p4
per

45 (kBT )3

(2.4.30)

And finally translating to the macroscopic susceptibility using Equation 2.4.5:

χ1 =
Np2

3ε0kBT
L

χ3 = − Np4

45ε0(kBT )3
L3

(2.4.31)

The static susceptibility χstat in Equation 2.4.26 is the sum of the linear and all nonlinear

susceptibilities. In contrast to the anharmonic oscillator discussed further above, the

sign of the relaxation nonlinearity is certainly negative.

Estimation of the nonlinear susceptibilities

The magnitude of the effects discussed above shall be calculated for typical dielectrics.

The magnitude of the nonlinear parameter b in Equation 2.4.25 is estimated by assuming

the nonlinear restoring force mbx3 to have an comparable magnitude to the linear

restoring force mω2
0x when the displacement x is in the order of d. In optics, d is the

size of an atom [Boy08]. This distance is also chosen for estimation in the microwave

range. b then turns out to be:

b = ±ω
2
0

d2
(2.4.32)

So far, no choice for the sign of b has been made. The sign is discussed in more

concrete models later in this section. The resonant model is only applicable far below

the resonances. Setting ω = 0 in Equation 2.4.25 and hence D(ω) = ω2
0 leads to the

estimates in Table 2.2.

The estimate for optics is rather good for both the linear and nonlinear susceptibility

[Boy08]. However, the model is highly sensitive to the assumptions (∼ ω6
0, q

4,m3, d2).
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Table 2.2: Estimates for the linear and nonlinear susceptibility in optics, the microwave
range and the radio wave range. mp = 1.67× 10−27 kg and me = 9.1× 10−31 kg. The
L = 1 line neglects local field corrections to calculate both the linear and the nonlinear
susceptibility, while the L = Lor line takes experimental dielectric permittivity to
calculate the nonlinear susceptibility with the Lorentz field model.

dipolar ionic electronic

model N = 4× 1028 m−3 N = 4× 1028 m−3 N = 4× 1028 m−3

para- p = 6.15× 10−30 C m ω0 = 7× 1012 s−1 ω0 = 7× 1015 s−1

meters T = 300 K m = 50 mp m = me

d = 3× 10−10 m d = 3× 10−10 m

χ1,L=1 20 28 2.6

χ3,L=1 −2× 10−18 m2/V2 ±5× 10−19 m2/V2 +4× 10−22 m2/V2

χ1,exp 80 20 2

χ3,L=Lor −4× 10−14 m2/V2 ±2× 10−16 m2/V2 +2× 10−21 m2/V2

Still, the oscillator model allows predicting the nonlinear optical response of a glass

from its linear ones [ACP87]. To translate this estimation into the microwave range,

d and N are chosen equal, and ω0 is shifted to a typical magnitude of optical phonon

resonances. m is chosen to be close to that of a medium sized atom, Titanium (m = 47 u).

The magnitude of the nonlinearity also depends strongly on the local field correction,

χ3 ∼ L3. This results in estimates of several orders of magnitude larger than when

simply assuming L = 1. Applying the Clausius-Masotti equation with its Lorentz

correction factor L = (εr + 2)/3 leads to meaningless negative linear susceptibilities

χ1, beyond the validity of Clausius-Masotti. As the Clausius-Masotti model fails for

high permittivity, the final line in Table 2.2 uses typical experimental permittivity

as a basis to estimate L and hence the magnitude of the nonlinearity (80 for water

[MM56]). However, the L = 1 model should be reasonable for a gas. For a typical value

of 10 g/m3 of water vapor (p = 6.15× 10−30 C m) in air at ambient temperature this

yields χ1 = 10−4 and χ3 = 1.7× 10−23 m2/V2.

Instead of just estimating the nonlinear parameter b by assuming the nonlinear term

to be equal to the linear term at certain displacements, real data of other nonlinear

phenomena are consulted. These models also give a prediction of the sign of the

nonlinearity. For instance, thermal expansion is a phenomenon of nonlinear interactions.

Hence, there is already data on the nonlinear potential of atoms in a solid.

Before the discussion of this model, the force constants k of the potential U(x) =
1
2
k1x

2 + 1
4
k3x

4 are related to the polarizabilities γ. The restoring force reads:

F (x) = k1x+ k3x
3 (2.4.33)

The restoring force F (x) is balanced by the electrical force F (x) = qEloc. Solving for x

and considering the power series’ first nonlinear term only returns:
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p =
q2

k1

Eloc −
q4 k3

k4
1

E3
loc (2.4.34)

Comparing this to Equation 2.4.4 yields:

γ1 =
q2

k1

γ3 = −q
4 k3

k4
1

(2.4.35)

Returning to a model for thermal expansion, a very simplistic estimation is performed

by taking a repellent potential of the form λ exp(−r/ρ) and an attractive Coulomb

potential ∼ 1/r. The parameters of the potential are deduced from the equilibrium

distance and the bulk modulus [Kit73]:

Φ(r) = 2.4× 104 eV exp(−r/0.3 Å)− 25.2 Å/r (2.4.36)

The power series of this potential at r0 up to the fourth term is:

Φ(r− r0) = 3.53 eV/Å2(r− r0)2− 4.59 eV/Å3(r− r0)3 + 3.97 eV/Å4(r− r0)4 (2.4.37)

Neglecting the local field correction factor and using the relations in Equation 2.4.5

yields

χ1 =
N

ε0

q2

k1

= 2

χ3 = −N
ε0

q4k3

k4
1

= −2× 10−21 m2/V2

(2.4.38)

A more elaborate model deduces the interatomic potential for lead from measured phonon

widths [MF62]. Lead is a metal and hence the bonding is of metal character. In general,

it is wrong to conclude properties for ionic bonds. Nevertheless, it gives a comparative

point. From the data given in [MF62], the potential reads (see Equation A.0.1 for

explicit calculation):

Φ(r − r0) = 0.56 eV/Å2(r − r0)2 − 1.01 eV/Å3(r − r0)3 + 1.04 eV/Å4(r − r0)4

(2.4.39)

Neglecting the local field correction factor and using the relations from Equation 2.4.5

χ1 =
N

ε0

q2

k1

= 13

χ3 = −N
ε0

q4k3

k4
1

= −7× 10−19 m2/V2

(2.4.40)

These two estimations of the nonlinear characteristics of a nonlinear polarization are
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very simplistic. Especially the former example needs to be treated carefully, as it is

originally only used to estimate thermal expansion, which is a result of the Φ ∼ r3

term, not of the Φ ∼ r4 term, which is relevant for χ3. However, they lead to results

of similar order of magnitude and are even comparable to the anharmonic oscillator,

summarized in Table 2.2. In contrast to optics, it is worth noting that the nonlinear

restoring constants k3 are positive in both models, resulting in a negative χ3. While in

optics, the hand-waving argument for positive nonlinearities was a decreasing restoring

force when the electron is moved from the nucleus, an opposing argument can be offered

for ionic responses: The further the ion is displaced, the stronger the repulsion from its

neighboring ion becomes.

The neglect of the local field correction factor underestimates the nonlinear susceptibility

by a factor of L3. Assuming a Lorentz field correction factor from Equation 2.4.7, this

corresponds to a factor of 103 in the nonlinear susceptibility for εr = 28.

To complete the different ranges for the nonlinearities, it shall be mentioned that even

the vacuum permittivity ε0 becomes nonlinear at some point due to photon-photon

scattering [EK35]. However, the effect is tremendously small: χ3 = 3.4× 10−41 m2/V2

[Boy08].

2.4.5 Saturating Resonant Absorbtion

While the discussion of the anharmonic oscillator in subsection 2.4.3 is suitable for far

off-resonance description, the resonant response of a two level system [Boy08] is better

described by:

χ =
N

ε0

(ρ2 − ρ1)p2
21

t2
~

∆ t2 − i
1 + ∆2t22 + E2/E2

s

(2.4.41)

Es is the saturation field amplitude and reads:

E2
s =

~2

4p2
21t1t2

(2.4.42)

The detuning factor is given by ∆ = ω − ω21 with ω21 being the resonant transition

frequency. t1 is the lifetime of the upper level, t2 the characteristic dephasing time.

(ρ2 − ρ1) is the difference of the occupation of the two states in equilibrium, p21 is the

transition dipole moment. Defining E2
b = E2

s (1 + ∆2t22) returns:

χ =
N

ε0

(ρ2 − ρ1)p2
21

t2
~

∆ t2 − i
1 + ∆2t22

1

1 + E2/E2
b

(2.4.43)

So both the imaginary and the real part of the susceptibility are proportional to 1/(1 +

E2/E2
b ). However, [HHH+03] and [HvS81] arrive at a proportionality to 1/

√
1 + E2/E2

b .

The small amplitude linear response of both systems is the same; however, they certainly

qualitatively deviate from each other at high field amplitudes: While the polarization of

1/
√

1 + E2/E2
b tends towards a constant value for high field amplitudes, the polarization

of the 1/(1 + E2/E2
b ) susceptibility goes to zero. This seems physically implausible.
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Hence, this work continues with the formulation including the square root, though the

contradiction remains unsolved. The following notation will be used:

P/ε0 =
χ1E√

1 + (E/Eb)2
(2.4.44)

The saturating resonant absorption can result in highly nonlinear responses. Following

the estimate for optical nonlinearities in [Boy08] and setting N = 1020 m−3, (ρ2− ρ1) =

−1, p21 = 2× 10−29 Cm, t1 = 16 ns, t2 = 2t1 and ∆t2 = 6000 (corresponding to

∆ = 2πc 1 cm−1) results in χ3 = 10−16 m2/V2. A resonant two level system has

been considered to be the source of nonlinearity in high temperature superconductor

microwave devices [HOH+02, HHH+03]. Depending on the detuning ∆, this mechanism

generates both negative and positive nonlinear susceptibilities.

2.4.6 Electrostriction and Maxwell Stress

Electrostriction connects the dielectric properties of a material with its mechanical

properties, namely its bulk modulus K = −V ∂p
∂V

[Bö73]. In contrast to the piezoelectric

effect, electrostriction is quadratic in the applied electric field and thus corresponds to

a third order nonlinear susceptibility χ3:

χ∆ε
3 =

(εr − 1)2

3

ε0

K
(2.4.45)

The ∆ε emphasizes a real change in the permittivity. This distinction is important in a

capacitor geometry, as electrostriction additionally induces a change in the thickness d

of the dielectric [WLL+08]:

∆d

d
= ε =

σ

Y
= −ε0

Y

3ε2
r − εr − 2

10
E2
ext (2.4.46)

Here, ε is the strain, σ the stress and Y the Young’s modulus of elasticity. By attributing

the change in capacitance ∆C = C∆d/d to an equivalent dielectric nonlinearity χ∆d,eq.
3 ,

it is possible to compare the order of magnitude of those effects:

χ∆d,eq.
3 E2

mac

εr
=

∆C

C
= −∆d

d
=
ε0

Y

3ε2
r − εr − 2

10
E2
ext (2.4.47)

Solving for χ∆d,eq.
3 yields:

χ∆d,eq.
3 =

ε0

Y

3ε2
r − εr − 2

10
ε3
r (2.4.48)

In a capacitor geometry, the electric field additionally gives rise to an attraction between

the electrodes. This attraction (Maxwell stress) leads to a compression of the dielectric.

In contrast to the electrostrictive change in thickness, this effect only occurs with

charged electrodes attached to the surface of the dielectric [WLL+08]:
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∆d

d
= ε =

σ

Y
= −ε0

Y

εr
2
E2
ext (2.4.49)

Comparable to Equation 2.4.47, this chance in capacitance is attributed to an equivalent

nonlinear susceptibility χMxw.,eq.
3 :

χMxw.,eq.
3 =

ε0

Y

ε4
r

2
(2.4.50)

To estimate the magnitude, the values for Fused Silica (K = 37 GPa, εr = 3.75, Poisson

number ν = 0.17) are taken [Mun02]. With Y = 3(1− 2ν)K = 73 GPa, this yields:

χ∆ε
3 = 6× 10−22 m2/V2

χMxw.,eq.
3 = 1× 10−20 m2/V2

χ∆d,eq.
3 = 6× 10−21 m2/V2

(2.4.51)

These values are of the same order of magnitude as electronic hyperpolarizabilities

and all exhibit a positive sign. Electrostriction has been expected to be the principal

source of nonlinearity in good nonpolar dielectrics in the microwave range [Sta80]. All

estimates strongly depend on the permittivity εr because of the de-electrification field

that relates Emac and Eext.

2.4.7 Equilibrium Shift

Among the models discussed so far, only the permanent dipole orientation included

nonzero temperature. For electronic resonance nonlinearities, it is reasonable to neglect

thermal effects, as the thermal energy kBT = 25 meV is much smaller than the energies

of interest (some eV). In contrast to the optical range, the thermal energy at room

temperature is way above the optical phonon energy, which contribute to the polarization

in the microwave range.

In analogy to the Doulong-Petit law for heat capacity, a rough estimation of thermal

time length scales is possible. According to the virial theorem, the thermal energy is

equally distributed between potential and kinetic energy:

1

2
kBT =

1

2
mv2 =

1

2
k∆x2 (2.4.52)

The spring constant k can be estimated by the frequency of the optical phonon resonance

ω0 =
√
k/m with the mass of the ions known. For fopt.Ph. = 1012 Hz and m = 47 u, this

yields k = 3 N/m. Then, inserting this k into Equation 2.4.52 gives:

∆xtherm. =

√
kBT

k
=

√
kBT

m ω2
= 40 pm. (2.4.53)

This is 20 % of a typical interatomic distance of 200 pm.

A typical displacement by an electric field is estimated by comparing P = ε0χE and

P = Np = Nq∆x. For an electric field of 1 V/mm, a susceptibility χ = 10, a density
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N = 1028 m−3 and a single elementary charge q, this yields:

∆xdielec. =
ε0χE

q N
= 10−4 pm (2.4.54)

This is five orders of magnitude smaller than the thermal displacement, ∆xtherm. �
∆xdielec.. On the other hand, ttherm. � tdielec., as the frequency of interest felec. = 1 GHz

is far below fopt.Ph..

Those two estimates, ∆xtherm. � ∆xdielec. and ttherm. � tdielec. imply that it is appro-

priate to consider the thermal mean values rather than the trajectory x(t). On the

other hand, it is also necessary to consider the thermal mean values instead of just the

values at absolute zero, as the ions experience a much wider range of the potential than

under an electric field at absolute zero.

This is especially crucial for nonlinear restoring forces: When a linear restoring force

counterbalances an electric force, the thermal mean value of the displacement at a

finite temperature T , 〈xT>0〉, is just equal to the displacement at absolute zero, xT=0.

However, this does not hold any longer for a nonlinear restoring force:

〈xT>0〉 6= xT=0 (2.4.55)

Boltzmann distribution in an anharmonic potential

As discussed above, it is possible but also necessary to consider thermal mean values in

the microwave range. A potential with a third order nonlinear restoring force and an

electric field reads:

U(x) = qElocx+
1

2
k1x

2 +
1

4
k3x

4 (2.4.56)

Eloc is the local electric field. The expectation value of x in this potential cannot

be computed analytically. However, setting k1 = 0 and k3 > 0 enables analytic

solutions that are helpful to observe the dependencies on different variables. Under

these assumptions, 〈x〉 has the form:

〈x〉 =

∫
dx x exp[−β(k3

4
x4 + qxEloc)]∫

dx exp[−β(k3
4
x4) + qxEloc)]

(2.4.57)

Here, β = 1/(kBT ) For simplicity, the intricate explicit form of 〈x〉 is omitted and only

the power series expansion up to the third order is stated:

p = q〈x〉 = 2
Γ(3/4)

Γ(1/4)

√
β

k3

q2Eloc −
(

2
Γ(3/4)2

Γ(1/4)2
− 1

6

)
β2

k3

q4E3
loc (2.4.58)

Here, Γ is the Euler Gamma-function. In a numerical representation, the polarizabilities

of this system yield:
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Figure 2.16: Nonlinear response of an anharmonic oscillator in the low temperature and
high temperature limit. The response at temperatures different from zero is smaller
than the nonlinear response at T = 0.

γ1 = 0.676
q2

√
k3kBT

γ3 = −0.062
q4

k3(kBT )2

(2.4.59)

Even though the original potential had no linear response at all, the effective potential,

which the particle experiences at T > 0, has a linear restoring force. Even more so,

the nonlinear polarizability γ3 decreases stronger than the linear polarizability γ1 with

increasing k3. Hence, steepening the potential leads to a more linear response. The

restoring force due to the thermal occupation of the nonlinear potential can dominate

the actual linear restoring k1. This is the case for high temperatures. Here, the linear

contribution k1 can be neglected, as in Equation 2.4.57. For low temperatures, the T = 0

model (Equation 2.4.35) becomes more appropriate. This is sketched in Figure 2.16.

This calculation suggest that the nonlinearities originating from nonlinear potentials

are largest at T = 0 and that thermal occupation “linearizes” the nonlinear response,

even though the thermal energy allows the particle to experience more of the potential

landscape with larger amplitudes, which intuitively would result in a more nonlinear

response.

Still, taking the values from Equation 2.4.37 and Equation A.0.4 reveals kBT � k2
1/k3 ≈

10 eV for ambient temperature. Hence, for the nonlinear response it is appropriate to

assume T = 0, even though ∆xtherm. � ∆xdielec.

Charge in a box

This model is motivated by a locally free charge that diffuses on a much smaller time

scale than the period of the applied electric field. Such locally mobile charges are known

to exist in glasses in form of electrons or even ions [Ste80]. The potential is assumed to

be of the form of a box of width b:
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U(x) =


∞ for x < −b/2
0 for − b/2 < x < b/2

∞ for x > b/2

(2.4.60)

Under an electric field Eloc, the partition function of this potential is:

Z =

∫ b/2

−b/2
dx exp(−βqxEloc) (2.4.61)

The expectation value 〈x〉 is obtained via:

〈x〉 =
1

qEloc

∂

∂β
ln(Z), (2.4.62)

which results in the Langevin function Lgv(a) with a = bqE
2kBT

. The induced dipole p

becomes:

p = q〈x〉 =
bq

2
Lgv(a) (2.4.63)

The polarizabilities are obtained from the power series expansion of the polarization p

and read:

γ1 =
1

12

b2q2

kBT

γ3 = − 1

720

b4q4

(kBT )3

(2.4.64)

Binary state system

A very similar model is a flipping model between just two states: a charge q can be

either at position −d/2 or d/2. These states have opposing dipoles qd/2. For simplicity,

there is no a priori energy difference, so if no field is applied, the two states are equally

occupied. The model is equivalent to any standard two state thermal population model.

The heat capacity anomaly at low temperatures in glasses motivates the existence of

such states [SRTO94]. Its total dipole is given as the sum of the two opposed dipole

states:

p = q
d

2

(
exp(−βdqE)

1 + exp(−βdqE)

)
− qd

2

(
1

1 + exp(−βdqE)

)
(2.4.65)

p =
1

2
d q

(
exp(−βdqE)− 1

exp(−βdqE) + 1

)
=
d

2
q tanh

(
d
2
qE

kBT

)
(2.4.66)

The polarizabilities γ are obtained from the power series expansion of the polarization

p and read:
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γ1 =
1

4

d2q2

kBT

γ3 = − 1

24

d4q4

(kBT )3

(2.4.67)

2.4.8 Magnetic Nonlinearity

So far, the discussion dealt with dielectric nonlinear responses. However, the method

of coupled dielectric resonators (subsection 3.5.1) does not allow a strict separation

between dielectric and magnetic properties, as magnetic and electric fields alternate

(see subsection 3.2.2). Therefore, intermodulation generation by magnetic nonlinearities

cannot be excluded: If all magnetic dipole moments in the material are aligned, the

magnetization is saturated, corresponding to a strong nonlinear response. Similar to

Equation 2.2.16, the magnetization M can be written in terms of the magnetic field H

and the magnetic susceptibilities χmi :

M(H) = χm1 H + χm3 H
3 + ... (2.4.68)

The magnetic nonlinear response is compared with the electric nonlinearity by intro-

ducing a equivalent electric nonlinearity χe,eq.3 :

χe,eq.3 E2 = χm3 H
2 (2.4.69)

To translate the magnetic field into an electric, comparable energy densities are assumed,

which is reasonable for dielectric resonators:

1

2
µrµ0H

2 =
1

2
εrε0E

2 (2.4.70)

Inserting Equation 2.4.70 into Equation 2.4.69 gives:

χe,eq.3 =
εrε0

µrµ0

χm3 (2.4.71)

For the estimation, a paramagnetic material with noninteracting spins is assumed. Thus,

the magnetization M is given by:

M = NmLgv(x) (2.4.72)

Here, N is the density of magnetic dipoles and Lgv(x) the Langevin function, with

x = mB/(kBT ). m is a single magnetic dipole moment. Assuming µr = 1, the magnetic

flux density can be written as B = µ0H. Hence, the power series of the magnetization

including the first nonlinear term of the Langevin function reads:

M = Nm2 µ0

3kBT
H −Nm4 µ3

0

45(kBT )3
H3 (2.4.73)

This allows obtaining the nonlinear magnetic susceptibility χm3
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χm3 = −Nm4 µ3
0

45(kBT )3
(2.4.74)

Equation 2.4.71 is used to translate the magnetic into the equivalent nonlinear electric

susceptibility χe,eq.3 . Again, µr is set to unity.

χe,eq.3 = −Nm4 εrε0µ
2
0

45(kBT )3
(2.4.75)

To estimate the influence of the magnetic nonlinear response by magnetic dipole

saturation, fused silica (density ρ = 2203 kg/m3, molar mass Mm = 0.030 kg/mol,

relative permittivity εr = 3.75) is contaminated with x = 1000 ppm of iron. Iron

has a magnetic dipole moment corresponding to m = 6µB, with µB being the Bohr

magneton. With these values, the density of magnetic dipoles can be estimated with N =

xNAρ/Mm with the Avogadro constant NA. One obtains χe,eq.3 = −5× 10−27 m2/V2.

This nonlinearity is far below dielectric nonlinearities discussed so far, despite assuming

a high proportion of iron doping. From this estimate, it seems reasonable to neglect

nonresonant magnetic nonlinearities.

2.4.9 Linear Microwave Dielectric Properties

A brief introduction into the linear properties of microwave dielectric is necessary

before dealing with nonlinear responses. The linear properties of microwave materials,

the relative permittivity εr and the loss tanδ, have already been thoroughly studied

theoretically and experimentally. The permittivity εr can be influenced by only a few

parameters [RI06]: It increases with either greater ionic polarizability or a smaller unit

cell volume, corresponding to packing more charges in the same volume. The dielectric

loss tanδ on the other hand has far more complex causes and is therefore still subject

to research [RI06], especially for low losses dielectrics.

The very baseline for damping is the anharmonicity of the ionic potentials. These

anharmonicities cause coupling to acoustic modes and transfer energy to these modes,

corresponding to energy conversion into heat [GT91]. This fundamental relation of

nonlinearity and loss was also proposed by [THNW89] to be the source of the dielectric

nonlinearity that they measured in their sintered ceramics.

Although this fundamental loss is always present, usually other types dominate the

dielectric loss [Seb08]. Dominant losses are due to lattice defects, such as impurities,

microstructural defects, grain boundaries, porosity, microcracks, disorder [ZWKU97,

Sch64, MTHT95, Tam06], random crystalline orientation, dislocations, and oxygen

vacancies [RI06]. Additionally, electronic spin flips were found to be responsible for

dielectric loss [LFN12].
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2.4.10 Low Frequency Nonlinear Dielectric Properties

Nonlinear dielectric responses have been investigated at low frequencies (∼ kHz) for

applications of metal-isolator-metal capacitors (MIMs). In contrast to voltage tunable

varactors, which can be realized with ferroelectrics, MIMs based on dielectrics are

designed for linear applications. MIMs can be found in integrated circuits (IC) serving

for analog-to digital converters, DC voltage decoupling, electrostatic discharge protection

and dynamic random access memory [JACJ+19]. The nonlinear voltage response of

MIMs is especially critical for radio frequency analog and mixed signal ICs and the

fundamental origin of the nonlinear response is still under debate [JACJ+19].

MIMs are required to show a high capacitance density, which favors thin isolator sheets

(7 nm ∼ 30 nm). These sheets are bottom-up manufactured by physical vapor deposition.

In return, the thin sample leads to high electric fields, which provoke nonlinear responses

even at low voltages (1 V/10 nm = 100 kV/mm). The capacitance of MIMs is usually

characterized with a DC bias voltage and a kHz test signal. The figure of merit that is

used to describe the nonlinear response is based on the change in capacitance C with

the applied voltage V :

∆C

C0

= βVCCV + αVCCV
2 (2.4.76)

Here, C0 is the capacitance at V = 0 V. For setups with inversion symmetry, βVCC is

expected to be zero (see subsection 2.2.4). Most measurements confirm a negligible

βVCC [AHHC17, PSW+11, BDB09, WLL+08].

Comparing the nonlinear capacitance relation in Equation 2.4.76 to the nonlinear

susceptibility in Equation 2.2.16 leads to the following translation:

χ3 = εr

(
Eext
Emac

)2
αVCC

d2
= ε3

r

αVCC

d2
(2.4.77)

Here, it is important to include the de-electrification field in the capacitor geometry

(see subsection 2.2.2). Typical nonlinear voltage responses lie in the order of αVCC ≈
100 ppm/V2. For an estimate with εr = 10 and d = 10 nm, this leads to a nonlinear

susceptibility of χ3 ≈ 10−17 m2/V2. This estimate is especially sensitive to εr (see

Equation 2.4.77). In [BCA06], a value of χ3 ≈ 10−16 m2/V2 for an Al2O3 based MIM

was presented, which was reproduced by [AHHC17] though [WLL+08] obtained half

their value. [WLL+08] furthermore presents the nonlinear response of further metal

oxides up to χ3 = 10−14 m2/V2 for Pr2Ti2O7 (εr = 27) with a linear correlation of

higher nonlinearity for higher permittivity.

A majority of dielectrics exhibit a positive αVCC [JACJ+19]. However, SiO2 (χ3 ≈
−10−18 m2/V2), crystalline SrTiO3 and a few other materials are known to show a

negative αVCC [PSW+11, BDB09]. The sign of αVCC in SrTiO3 was even shown to

reverse after crystallization [BDB09] (amorphous χ3 ≈ 10−14 m2/V2 , crystallized

χ3 ≈ −10−11 m2/V2). By compensating the nonlinear responses of different dielectrics,

highly linear MIMs were obtained [KCL+04].
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A variety of mechanisms has been proposed for being responsible for nonlinear voltage

response in MIMs: metal oxygen bond polarizability [BCA06], thermodynamic relation

of the susceptibility similar to that of the thermal expansion [Blo07], electrostriction

and Maxwell stress [WLL+08], dipolar orientation [PSW+11] and interface effects such

as double layer formation [VGJEK10] and lateral expansion induced stress [AHHC17].

MIMs are based on dielectrics and are designed for a linear response. However, nonlinear

dielectric responses are also investigated at material classes that show nonlinearity as

a dominant property: Ferroelectrics, relaxors and dipolar glasses [MDK11]. All these

material classes consist of permanent electric dipoles, which form domains on different

spatial scales. The larger the domain size, the larger the nonlinearity. The materials

measured in [MDK11] exhibit a χ3 ≈ 10−6 m2/V2 for ferroelectrics, χ3 ≈ 10−7 m2/V2

for relaxor ferroelectrics and χ3 ≈ 10−9 m2/V2 for dipolar glasses. In contrast to other

nonlinear measurements, [MDK11] does not use static bias field but instead probes at

AC electric field amplitudes of 0.5 V/mm ∼ 5 V/mm and measures harmonics.

Finally, a brief summary of nonlinear dielectric spectroscopy at polar liquids shall be

given. These measurements are usually performed in the Hz to kHz range, though

extensions to the MHz range and even beyond have been developed [HDM75, VH88].

Typically, relative changes in the capacitance of 10−3 at electric field amplitudes of

10 kV/mm are measured over samples of 10 µm [Ric17]. This corresponds to nonlinear

susceptibilities in the order of χ3 ≈ 10−17 m2/V2. Two major effects that contribute to

the nonlinear response with opposite signs have been identified: Langevin-like dipole

orientation saturation (negative) and chemical equilibrium shift (positive) [Ric17].

The re-entrant cavity developed in [VH88] enabled measuring nonlinear dielectric

responses up to 3 GHz with quasi-static bias field of 10 kV/mm and a sensitivity of

10−5 to the relative change in the permittivity [DSKJH96, KJDH98, KJH01, KJH02].

For εr = 10, this corresponds to a sensitivity down to χ3 = 10−16 m2/V2.



Chapter 3

Methods

3.1 Microwave Techniques

This section introduces the methodology of microwave equipment, such as signal

generators and amplifiers, network analyzers, signal analyzers and filters.

3.1.1 Signal Generators and Amplifiers

Classical microwave sources are electron tubes such as the magnetron, klystron and

gyrotron. They were first used to produce microwaves and are still used for high

power microwaves. Nevertheless, they are unsuitable for narrowband and phase stable

microwave generation. Instead, microwave signals are produced by active nonlinear

devices such as diodes or transistors in conjunction with a passive circuit such as crystal

resonators [Poz11]. Higher frequencies are achieved by phase locked loops or nonlinear

frequency multipliers. Amplifiers used to be vacuum tubes but today transistor (solid

state) devices can be used to frequencies above 100 GHz.

Figure 3.1: Solid-state amplifier mounted on air cooled heat sink for cooling.

47
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Figure 3.1 shows a ZHL-100W-13+ amplifier by Mini Circuits with a nominal frequency

span from 750 to 1050 MHz and a typical gain of 50 dB delivering up to 100 W corre-

sponding to 50 dBm. Together with the noise discussed in subsection 3.1.3, this limits

the range of the main setup in this work.

3.1.2 Network Analyzers and S-Parameters

Networks are usually described by ratios between their input waves ai and output waves

bi. This ratio can be formulated in a variety of different parameters. For this work, the

classical scattering parameters (or just S-parameters) Sji are best suited. S-parameters

are directly displayed by Vector Network Analyzers (VNA). They are ratios of incoming

power wave ai and the outgoing power wave bj at port i and j [Poz11]. The power

waves are measured in
√

W. An abstract two-port network is sketched in Figure 3.2.

Figure 3.2: A two-port network with ports 1 and 2 and incoming power waves a and
outgoing power waves b.

In general, the scattering parameters are complex as the incoming and outgoing signals

have a phase. A two-port system can be described by four S-parameters:(
b1

b2

)
=

(
S11 S12

S21 S22

)(
a1

a2

)
(3.1.1)

If a signal is applied at port 1 and no signal at port 2 (a2 = 0), Equation 3.1.1 can be

simplified to a transmission parameter S21 and a reflection parameter S11 only:

S21 =
b2

a1

∣∣∣∣
a2=0

, S11 =
b1

a1

∣∣∣∣
a2=0

(3.1.2)

S-parameters are dimensionless. The square of the S-parameters corresponds to the

power ratio:

|Sji|2 =
Pj,out
Pi,in

(3.1.3)

S-parameters are usually represented on the dB-scale. Applying the logarithm to

Equation 3.1.3 yields:

20 log(Sji) = 10 log(Pj,out)− 10 log(Pi,in) (3.1.4)
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Together with Sji[dB] = Pj,out[dBm]−Pi,in[dBm] the transformation of the S-parameter

from linear to logarithmic is:

Sji[dB] = 20 log(Sji) (3.1.5)

If no signal is applied at port j, the output power Pi,out is just the reflected power

Pi,ref = Pi,out = S2
ii Pi,in. Energy conservation leads to the absorbed power Pi,abs:

Pi,abs = Pi,in − Pi,out = (1− |Sii|2) Pi,in (3.1.6)

3.1.3 Signal Analyzers and Bandwidth

This work aims to perform high sensitivity measurements with noise limiting the

sensitivity. Therefore, the most important terms of noise and bandwidth are briefly

introduced in this section. Together with the maximum amplifier power introduced in

subsection 3.1.1, this limits the range of the main setup in this work.

Thermal Noise and Displayed Average Noise Level (DANL)

The ultimate limit for measuring small signals is the thermal noise. For frequencies

smaller than kBT/h, which lies at about 6 THz at room temperature, the energy per

frequency bandwidth is rather constant [Poz11]. At ambient temperature, it is given

by:

P/∆f = kBT = −174 dBm/Hz (3.1.7)

Due to additional noise sources, spectrum analyzers however have a higher noise floor, the

Displayed Average Noise Level (DANL). The Analyzer N9020A by Agilent Technologies

used in this work enables to detect signals down to −140 dBm/Hz in FTT-mode (see

below).

Resolution Bandwidth (RBW)

The DANL is given in dBm/Hz. It incorporates a dependency on the bandwidth of

the filter that is used for scanning the signal, the resolution bandwidth (RBW). Larger

RBW allow quicker measurements with an increased noise floor. Smaller RBW decrease

the noise level, however, the scanning time increases. Furthermore, the RBW sets the

resolution limit at which two signals can be separated in frequency.

Video Bandwidth (VBW)

The VBW averages the noise after detection. A small VBW leads to a smoother

displayed signal and can be used to distinguish noise peaks from permanent peaks.

Both larger RBW and VBW decrease the sensitivity of the analyzer. However, a tradeoff

needs to be found, as the scanning time increases rapidly with the bandwidth [Key14]:

tsweep ∼
∆f

RBW VBW
(3.1.8)
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For small bandwidths, the analyzer can change to a FFT mode. A time series of the

signal is digitally stored in the signal analyzer and analyzed with Fast-Fourier-Transform.

It increases sensitivity but with the cost of a reduced dynamic range.

3.1.4 Filters

Filters are essential components in microwave techniques. While lumped components

filter techniques are still feasible up to several hundred MHz, their performance decreases

at higher frequencies. Microwave filters are based on planar filters, cavity or dielectric

resonators (see subsection 3.2.2) and electroacoustic filters such as surface acoustic

wave (SAW) or bulk acoustic wave (BAW) structures [DCS+19]. Filters are mainly

characterized by their center frequency, insertion loss and bandwidth. As long as space is

not a limiting factor, cavity resonators outperform all other resonators in insertion loss,

tunability and power handling, though dielectric resonators show better temperature

stability [Seb08]. For this work, a 5BT-500/1000-1N/N cavity resonator by K&L with

a tunable 1% nominal 3 dB bandwidth between 500 MHz and 1000 MHz being able to

handle continuous wave power up to 10 W = 40 dBm was best suited. Figure 3.3 shows

an image of this filter.

Figure 3.3: Tunable band pass filter (BPF) with manual dial for tuning.

3.2 Microwave Resonators

This section deals with the concepts of waveguides, cavities and dielectric resonators.

The central experimental setup of this work (see subsection 3.5.1) is based on these

concepts. Resonator losses and excitation is discussed. At the end of the section, the

Split Post Dielectric Resonator, which is used for linear dielectric characterization in

this work, is introduced.
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3.2.1 Waveguides and Cavities

Maxwell’s equations induce Helmholtz equations for the electric field E and magnetic

field H in a homogeneous medium [KG86]. These are:

(∇2 + k2)ϕ = 0 (3.2.1)

Here, ϕ is either the electric field E or the magnetic field H. The time dependency

e−iωt has already been separated. k is the material dependent wave vector:

k =
2π

λ
=

2π
√
εr

c0

f (3.2.2)

Here, εr is the relative permittivity, c0 the vacuum velocity of light and f the frequency of

the wave. As the experimental setup (see subsection 3.5.1) reveals cylindrical symmetry,

the Laplace operator in Equation 3.2.1 is written in cylindrical coordinates. The radial

direction is termed r, the axis of rotation z and the angle of rotation φ:

1

r
∂r(r ∂rϕ) +

1

r2
∂2
φϕ+ ∂2

zϕ+ k2 ϕ = 0 (3.2.3)

By using the separation ansatz ϕ(r, z, φ) = P (r)Z(z)Φ(φ) the equation rearranges to:

1

r
∂r(r ∂rP ) + ((krr)

2 −m2) = 0 (3.2.4)

Here, kr is the radial wave vector. The wave vector in z direction is usually called

propagation constant kz, separated in the following equation:

d2Z

dz2
= −k2

zZ (3.2.5)

This differential equation is solved by a plain wave Z(z) = e−ikzz. For kz being imagi-

nary, this will correspond to an exponential attenuation. m represents the tangential

wave number, separated in the following equation:

d2Φ

dφ2
= −m2Φ (3.2.6)

Equation 3.2.4 is a Bessel differential equation of degree m solved by Bessel functions

of the first kind Jm(krr). For kr becoming imaginary, they change to the modified

Bessel functions of the second kind Km(krr). The squares of kr and kz add up to the

total wave vector k:

k2 = k2
r + k2

z (3.2.7)

A certain frequency f is put in the system, resulting in a certain wave vektor k. This

k needs to be distributed between kr and kz. In a circular waveguide with metallic

boundary conditions allowing only certain values of kr, there are two possibilities: Either

kr < k and kz is a real number, resulting in a propagating wave in z, or kr > k, forcing
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kz to be imaginary. Thus, the wave is attenuated in z, a so-called evanescent wave.

Hence, only wave vectors above a certain value kcut lead to a propagating wave within a

waveguide. The corresponding frequency is called cutoff frequency fcut. The modes can

be separated into two classes: transverse electrical (TE) with Ez = 0 and transverse

magnetic (TM) with Hz = 0. Each mode has its own cutoff frequency:

fmn =
c0

2π

1
√
εr

xmn
R

(3.2.8)

Here, xmn stands for the nth root of the mth degree Bessel functions Jm for TM-modes

and of the derivative of the mth degree Bessel function J ′m for TE-modes. The modes

are therefore given two subscripts m and n, e.g. TE01. R is the radius of the cylindrical

waveguide. A cross section of two important modes is shown in Figure 3.4. Inserting

numerical values for the Bessel roots, the cutoff frequencies of a cylindrical waveguide

filled with vacuum (or air) are given by:

fcut(TE11) =
c0 1.841

2πR

fcut(TE01) =
c0 3.832

2πR

(3.2.9)

By closing the waveguide at both ends, also the z direction is restricted to certain kz.

The created cavity of length d has a set of resonance frequencies:

fmnp =
c0

2π

1
√
εr

√
x2
mn

R2
+
p2π2

d2
(3.2.10)

The resonant modes are again labeled TE or TM, but with a third subscript p. The

pπ/d term originates from sinusoidal field distribution along the z-axis.

(a) Electric field E of the TE01-mode. (b) Electric field E of the TE11-mode.

Figure 3.4: Simulated fields of two modes in a cylindrical waveguide.
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3.2.2 Dielectric Resonators

It was already shown in 1939 that dielectric objects of the size comparable to the

microwave wavelength can serve as resonators at these frequencies [Ric39]. Moreover,

dielectric objects radiate energy into free space. In contrast to the potential well and

the Schrödinger equation in quantum mechanics, no bound state exists. Hence, the

eigenvalues cannot be purely real but always have an imaginary part [KG86]. The

resonances are then defined as the minima of the imaginary part, the loss 1/Q, or

maxima in Q. This loss due to radiation is labeled 1/Qr.

Nevertheless, under metallic boundary conditions, the radiation loss is zero. The

eigenvalues become real, which makes bound states possible, comparable to the potential

well in quantum mechanics. As the setup in this work has a complete metal enclosure,

this case is discussed in more detail below.

Going back to Equation 3.2.7 and Equation 3.2.2, k depends on the relative permittivity

εr. In a dielectric with εr > 1, a lower frequency f is needed to exceed the cutoff wave

vector kcut. Hence, it is possible that a solution for the electric and magnetic field with

real wave vectors kr and kz exists within the dielectric, while outside the dielectric the

fields are still evanescent.

The modes of dielectric resonators are named similarly to the cavity modes. However,

as fields extend outside the resonator, the dielectric contains less than a half wavelength.

This is denoted by a third subscript δ being smaller than unity. In contrast to cavity

resonators, it is no longer possible to separate in TE and TM modes for m 6= 0. As

higher modes include both transverse magnetic and transverse electric fields, they are

called hybrid electromagnetic (HEM). Field plots for two important modes are shown

in Figure 3.5.

In spite of the cylindrical symmetry, the solution of the Helmholtz equation for dielectric

resonators turns out to be very complex [KG86]. Various analytical approaches try

to model the system as close as possible with suitable assumptions [Coh68, She07].

However, all models require numerical solutions of an implicit equation in the end.

Nevertheless, finite element methods (FEM) predict field distributions and resonance

frequencies with sufficient precision. The field distributions in Figure 3.5 originate

from such FEM simulations with CST Microwave Studio. Figure 3.6 shows a more

quantitative picture of the TE01δ-mode field distribution.

A rule of thumb for the TE01δ-mode resonance frequency of a free dielectric resonator

[KG86] is given by:

f =
34 mm GHz

a
√
εr

( a
L

+ 3.45
)

(3.2.11)

Here, a and L are the radius and the length of the cylindrical resonator, respectively.

This rule has an accuracy of 2 % within 0.5 < a/L < 2 and 30 < εr < 50. When

metallic shields are brought towards the resonator, it can be shown with perturbation

calculations that the resonance frequency shifts upwards if the excluded volume contains

more magnetic than electric energy [KG86]. As the electric energy is mostly located in
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(a) Magnetic field H of the TE01δ-mode. (b) Electric field E of the TE01δ-mode.

(c) Magnetic field H of the HEM11δ-mode. (d) Electric field E of the HEM11δ-mode.

Figure 3.5: Simulated fields of the two lowest modes of a cylindrical dielectric resonator
for a dielectric of εr = 32 of length L = 24 mm and of radius a = 30 mm in a cylindrical
waveguide of radius R = 75 mm. The resonance frequency of the TE01δ-mode is
971.6 MHz and 1100.5 MHz for the HEM11δ-mode. The center hole has mechanical
support reasons in the experiment.

the resonator itself (εr � 1) while the magnetic energy is rather distributed all over the

volume (µr = 1), the resonance frequency is expected to be higher than the estimate

with the rule of thumb for a free resonator.

Comparing the fields in Figure 3.4 and Figure 3.5, the TE01-mode of the waveguide has

a similar field distribution as the TE01δ-mode of the dielectric resonator. This leads to a

strong coupling of the TE01-mode of the resonator to the TE01δ-mode of the resonator.

In the same way, the field distributions of the TE11-mode of the waveguide and the

HEM11δ-mode are akin and excite each other.

For the dielectric resonator, the TE01δ-mode has a lower frequency than the HEM11δ-

mode. On the other hand, the cutoff frequency of the TE11-mode of the waveguide is

lower than of the TE01-mode. This seems contradictory; however, this is due to the
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different aspect ratios of the waveguide and the dielectric resonator. Elongating the

dielectric resonator leads to the HEM11δ-mode to be lower [KG86].

The HEM11δ-mode reveals a degeneracy in the angle. This has a major drawback, as

the mode will split into distinct modes when the cylindrical symmetry is broken. One

advantage of the TE01δ-mode is its non-degeneracy [Kru06].

To determine the nonlinear susceptibility, the electric field amplitude in the resonators

needs to be known. This section completes by relating the electric field amplitude E

to the stored energy Ws in the dielectric resonator. This energy Ws oscillates between

the electric and the magnetic field. At a point in time, the energy is only stored in the

electric field and the energy W is just the integral of the electric energy density:

W =

∫
Cav.

w(x) dV =

∫
Cav.

1

2
ε0εr(x) E(x)2 dV

=
1

2
ε0 Ê

2

∫
Cav.

εr(x) ϕ(x)2 dV

(3.2.12)

Here, ϕ(x)2 = (E(x)/Ê)2 was introduced. Ê is the maximum absolute value of E(x),

hence −1 < ϕ(x) < 1. It is useful to introduce the geometric parameter cEW that

relates the electric field maximum Ê in the resonator to the stored energy Ws.

Ê = cEW

√
Ws (3.2.13)

This geometric parameter is:

cEW =

√
2

/(
ε0

∫
Cav.

εr(x) ϕ(x)2 dV

)
(3.2.14)

The TE01δ-mode has an electric field component in êφ direction only (E = Eφêφ) with

no component in z nor r. The component Eφ is plotted in Figure 3.6.
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Figure 3.6: Simulated electric field of the TE01δ-mode of a cylindrical dielectric resonator
with outer diameter D = 60 mm, inner drilling Di = 10 mm and L = 24 mm and
εr = 32.0 in a cylindrical cavity with diameter DC = 150 mm. The vertical lines
represent the size of the dielectric resonator.
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3.2.3 Resonator Losses

Besides its resonance frequency ω0, a resonator is characterized by its quality factor

Q. It is defined as the ratio between the stored energy W and dissipated energy V per

cycle [Jac99]:

Q = 2πW/V (3.2.15)

Q is the resonance enhancement, the ratio between the amplitude at resonance ω0 and

the amplitude at ω = 0. By replacing V = −2π/ω0
dW
dt

in Equation 3.2.15, it merges

into the differential equation:

P =
dW

dt
= −ω0

Q
W (3.2.16)

This equation is solved by W (t) = W0e
−ω0t/Q. For the amplitude of the electric field,

this means:

E(t) = E0 e
−ω0t/(2Q)e−iω0t (3.2.17)

Here, it is assumed, that there is no essential frequency shift due to damping. This is

appropriate for Q > 300, as the shift is about 1 kHz at a 1 GHz resonance frequency

(∆ω ≈ ω0/(8Q
2)). The Fourier transform of Equation 3.2.17 is given by:

E(ω) ∼ 1

(ω − ω0)2 + (ω0/(2Q))2
(3.2.18)

This corresponds to a Lorentzian profile around the resonance frequency ω0 with FWHM1

ω0/Q. The stronger the system is damped, the broader the peak becomes. So Q can be

deduced by measuring the width of the resonance peak when performing a frequency

sweep.

There are several factors contributing to the resonator losses: Radiation (1/Qr), finite

metallic conductivity (1/Qc) and dielectric losses (1/Qd). All these losses add up to

the resonator loss (1/Q0):

1/Q0 = 1/Qr + 1/Qc + 1/Qd (3.2.19)

Additionally, any external coupling also shows up as loss 1/Qext. The new loss is called

the loaded loss 1/Ql of the resonator, in contrast to the unloaded loss Q0:

1/Ql = 1/Q0 + 1/Qext (3.2.20)

For a dielectric resonator with no metallic boundaries, the radiation loss Qr usually

accounts for the largest loss. However, in closed metallic cavity the radiation loss is

essentially zero [KG86].

1Full Width Half Maximum: Peak width at half the maximum level. On the dB scale, this is at
−3 dB from the peak maximum.



3.2 Microwave Resonators 57

3.2.4 Resonator Excitation

Among the different methods to excite a resonator, the inductive coupling by a loop is

looked at in more detail. A resonator excited by a loop can be modeled by a lumped

element circuit. Such representations are shown in Figure 3.7. As a resonator usually

has several modes, each single resonator circuit represents a mode of the resonator.

Both the descriptions of Figure 3.7a and Figure 3.7b are valid and can be transformed

into each other [MDP48].

(a) Series resonators with Ls, Rs, Cs (b) Parallel resonators with Lp, Rp, Cp

Figure 3.7: Two valid lumped element circuit representations of a multimode resonator
excited by a loop.

The transformation requires definitions of adjusted circuit elements. However, the

resonance frequency and the quality factor remain the same:

ω2
s = ω2

p =
1

LpCp
=

1

LsCs

Qs = Qp = ωpRpCp =
ωsLs
Rs

Rp =
(ωM)2

Rs

Lp =
M2

Ls

(3.2.21)

Here, M is the exchange inductance of the exciting loop and the resonator inductance.

While the representation in Figure 3.7a is more intuitive, the representation in Fig-

ure 3.7b is more suitable for calculations. It is a series circuit of parallel resonators.

Each parallel resonator contributes with its impedance:

1

Z(ω)
=

1

Rp

+
1

iωLp
+ iωCp (3.2.22)

Replacing ω2
0 = 1/(LpCp) and Q0 = ω0RpCp in a parallel circuit yields:

Z(ω) =
1

1 + iQ0

(
ω
ω0
− ω0

ω

)Rp =
iω0ω/Q0

ω2
0 − ω2 + iω0ω/Q0

Rp (3.2.23)
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This result allows calculating the reflection Sii of a signal that is fed into the resonator.

The reflection depends on the impedance matching:

|Sii| =
∣∣∣∣Z2 − Z1

Z1 + Z2

∣∣∣∣ =

∣∣∣∣∣
Z2

Z1
− 1

Z2

Z1
+ 1

∣∣∣∣∣ =

∣∣∣∣κ− 1

κ+ 1

∣∣∣∣ (3.2.24)

Here, κ is the so-called coupling parameter2. For impedance matching, κ = 1. κ < 1

is called subcritical coupling and κ > 1 overcritical coupling. The transmission line

impedance is usually set to 50 Ω. The resonator impedance at resonance is Z(ω0) = Rp.

While Rs is fixed, Rp is adjustable by varying the exchange inductance M . M depends

on the perturbation of the resonator mode by the coupling loop. It usually increases

with further insertion of the loop to the resonator.

Coupling the resonator to the exterior results in an additional loss:

Q0 =
ω0Lp
Rp

Ql =
ω0Lp
Rp + Z

(3.2.25)

The loaded loss Ql is related to the unloaded loss Q0 by:

Ql =
1

1 + Z/Rp

Q0 =
1

1 + κ
Q0 (3.2.26)

Inverting the relation of Sii and κ in Equation 3.2.24 returns:

κ =
1∓ |Sii|
1± |Sii|

(3.2.27)

The upper sign holds for subcritical coupling, the lower sign for overcritical coupling.

To obtain the loaded loss Ql as a function of Sii instead of the coupling parameter κ,

insert Equation 3.2.27 in Equation 3.2.26:

Ql =
1± |Sii|

2
Q0 (3.2.28)

Here, “+” applies to subcritical coupling and “−” to overcritical coupling.

Application

As described in subsection 3.5.4, the loaded Ql of the f2-mode of the coupled resonators

needs to be known to determine the dielectric nonlinearity of the material under test.

However, the experimental setup (see subsection 3.5.1) does not allow the determination

of Ql of the f2-mode by measuring the FWHM of the resonance peak. Instead, it is

deduced from S22 and the unloaded Q0. To validate this indirect approach and to

check the proper working of the input, the loaded loss Ql is determined for a single

dielectric resonator by measuring the FWHM of the resonance. It is then compared to

2The coupling κ is not to be confused with c introduced in subsection 3.4.1. Both are dimensionless
but κ ≈ 1 and c� 1.
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the result obtained by Equation 3.2.28. The comparison is shown in Figure 3.8. The

agreement is good for low couplings. At high couplings, the FWHM measurements

shows a systematic deviation from the prediction by Equation 3.2.28. It is suspected

that this is due an onset of additional loss processes that do not contribute to the

coupling. The conduction loss of the input system is such a non-contributing loss. If

κ > 1 had been reached, a decrease in Q0/Ql would be accompanied by increasing

reflection Sii. This was not observed.
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Figure 3.8: Control of the coupling/loss relation Equation 3.2.28. The lines are the
prediction for Q0 = 1985. The dots are measured reflections S11 and corresponding Ql

determined with the FWHM of the resonance. Q0 was chosen to match with the small
coupling measurements. For strong couplings, the data deviates from the prediction
towards lower Q.

3.3 Split Post Dielectric Resonator Method

There is a broad field of linear dielectric characterization setups for the microwave range,

each being best suited for different material properties and precision requirements [Seb08].

Besides Fabry-Ferot setups [KSKK18, YMM+15], the Split Post Dielectric Resonator

method is most suitable for high precision loss measurements of low permittivity

materials [MKJL04]. The principle is sketched in Figure 3.9.

The sample is a thin disc that is inserted via a slit in the fixture into the cavity. A

split dielectric resonator is positioned in the center of the cavity. The sample shifts the

resonance frequency and the quality factor of the resonance toward lower values. From

the shift, the permittivity and the loss of the sample material are determined:

εr = 1 +
f0 − fs

hf0Kε(εr, h)

tanδ = (1/Qu + 1/QDR + 1/Qc) /ϕe

(3.3.1)
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Figure 3.9: Sketch of the split post dielectric resonator dielectric characterization
principle [MKJL04].

Here, f0 is the resonance frequency of the empty cavity, fs is the resonance frequency

with the sample with thickness h. Kε is a function that corrects for the changes in the

electric field geometry in the cavity. The equation for εr is solved iteratively. Qu and

QDR denote the quality factor without and with the sample. Q−1
c is the conduction loss

and ϕe is an electric energy filling factor from the sample. Being a resonant method,

each frequency point requires a differently sized fixture.

3.4 Coupled Resonators

The central experimental setup of this work (see subsection 3.5.1) consists of coupled

dielectric resonators. Hence, the concept of coupling is discussed in this section. Two

models are considered: The coupling of three lossless dielectric resonators and the

coupling of two lossy dielectric resonators. Each model is appropriate to describe a

particular part of the setup. The model of coupled lossy resonators focuses on the

determination and maximization of the amplitudes in the resonators, which is required

for experimental evaluation and optimal experimental conditions.

3.4.1 Resonance Splitting of Coupled Resonators

The central setup in this work consists of three coupled dielectric resonators. This

section discusses the effect of the coupling on resonance splitting. For simplification, loss

is neglected and the resonance frequencies of the single resonators are assumed equal

to each other. The coupled equations of motion for three resonators with respective

amplitudes I(t), J(t) and K(t) with resonance frequency ω0 and a dimensionless

coupling3 c between next neighbors read:

Ï(t) + ω2
0I(t)− cω2

0J(t) = 0

J̈(t) + ω2
0J(t)− cω2

0I(t)− cω2
0K(t) = 0

K̈(t) + ω2
0K(t)− cω2

0J(t) = 0

(3.4.1)

3The coupling c is not to be confused with κ introduced in subsection 3.2.4. Both are dimensionless
but κ ≈ 1 and c� 1.
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Taking I(t) = I eiωt, J(t) = J eiωt, and K(t) = K eiωt as an ansatz and writing the

equations as a matrix yields:
ω2

0 − ω2 −cω2
0 0

−cω2
0 ω2

0 − ω2 −cω2
0

0 −cω2
0 ω2

0 − ω2



I

J

K

 = 0 (3.4.2)

The eigenvalues for ω2 are the resonance frequencies of the coupled system:

ω1 = ω0

√
1−
√

2c ≈ ω0(1− c/
√

2)

ω2 = ω0

ω3 = ω0

√
1 +
√

2c ≈ ω0(1 + c/
√

2)

(3.4.3)

For couplings c� 1, the three resonances are equally distanced (∆ω = ω3−ω2 = ω2−ω1)

and thereby follow the intermodulation relation ω3 = ωIM3+ = 2ω2−ω1 (see section 2.3).

The coupling coefficient c can then be directly related to the frequency splitting

c =
√

2∆ω/ω0. The corresponding eigenvectors v = (I, J,K) read:

v1 = (1,
√

2, 1)

v2 = (1, 0,−1)

v3 = (1,−
√

2, 1)

(3.4.4)

Equivalently, the coupling of two equal and lossless resonators return the resonance

frequencies:

ω1 = ω0

√
1− c ≈ ω0(1− c/2)

ω2 = ω0

√
1 + c ≈ ω0(1 + c/2)

(3.4.5)

The distance between the resonances of just two resonators is therefore c = ∆ω/ω0.

The eigenvectors yield:

v1 = (1, 1)

v2 = (1,−1)
(3.4.6)

v1 and v2 correspond to a symmetric and anti-symmetric mode, respectively.

Application

The core of the measurement setup (see subsection 3.5.1) consists of three coupled

dielectric resonators. Figure 3.10 depicts the detection of the mode splitting in the

transmission S31 and a variation of the coupling by changing the distance between the

dielectric resonators. The experimental results are compared to finite element (FEM)

electromagnetic field simulations that were performed with CST Microwave Studio. The

simulated data returned slightly elevated resonances, 972 MHz for a single resonator

versus 951 MHz observed in the experiment. The simulated data in Figure 3.10 was
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(a) Mode detection in transmission
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Figure 3.10: Realization of resonance splitting. Left: Transmission S31 with visible
resonances of a single resonator and three coupled resonators. Right: Resonance
frequencies for different resonator distances and hence different couplings.

adjusted by that constant factor of 2 %. After this correction, the simulation and the

experiment match, which is a good indicator for the control of the TE01δ-mode.

The model above assumed equal resonance frequencies and equal coupling and nearest

neighbor coupling only. The most critical assumption turned out to be equal resonance

frequencies [Ber18]. Unequal couplings do not influence the equal splitting relation,

however unequal frequencies indeed lead to a violation of the equal splitting relation

and hence to a violation of the intermodulation relation (ω3 = 2ω2 − ω1). The violation

can partly be mitigated by arranging the resonators according to the their resonance

frequency.

3.4.2 Coupling of Lossy Resonators

The model discussed in subsection 3.4.1 does not account for losses in the coupling.

In theory, the tiniest coupling between two resonators at any distance would result

in an equal amplitude in both resonators. However, this is not the case in a lossy

system. This section has the aim to describe the relative amplitudes in weakly coupled

resonators in a more appropriate way. Figure 3.11 depicts a lumped element circuit of

two coupled resonators. One of them is excited inductively.

The coupling of the excited resonator I and the exciting loop A can be described by a

lumped element circuit that is directly driven. The new circuit is depicted in Figure 3.12.

The equivalence of the two circuits is shown with Equation A.0.7.

The new lumped element circuit has a modified resonance frequency and a modified

Figure 3.11: Lumped element circuit of two coupled dielectric resonators. Circuit I is
inductively excited.
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Figure 3.12: Modified Lumped element circuit of the model. It is equivalent to the
circuit in Figure 3.11 and is taken as a basis for Equation 3.4.7.

loss. This model can now be used to investigate the influence of different couplings

between the resonators. The corresponding set of differential equations looks like:

Ï + 2γIİ + ω2
I I − cω2

I J = A eiωt

J̈ + 2γJJ̇ + ω2
JJ − cω2

JI = 0
(3.4.7)

with periodic driving A eiωt. I, J , and A are complex numbers corresponding to an

amplitude with phase that allows a phase shift between the amplitudes. For γI = γJ

and ωI = ωJ these equations decouple. Here, however, a more general solution is of

interest. To solve this general case, the time dependence is separated:

ω2I + 2iωγI + ω2
I (I − cJ) = A

ω2J + 2iωγJ + ω2
J(J − cI) = 0

(3.4.8)

Solving the latter equation leads to the relation between the amplitudes in the circuits

I and J :

J =
ω2

Jc

ω2
J − ω2 + 2iωγJ

I (3.4.9)

Hence, the ratio of the amplitudes J and I does not depend on the properties of the

circuit I. Instead, it depends on the damping γJ, the frequency matching ω2
J − ω2 and

the coupling factor c. The phase between I and J is not of interest and the relation for

the amplitudes is:

|J | = c√(
ω2

ω2
J
− 1
)2

+
(
ω
ωJ

1
Q

)2
|I| (3.4.10)

Here, the relation between the damping and the quality factor γJ = ωJ/(2QJ) was used.

Eventually, by inserting Equation 3.4.9 into the former equation of Equation 3.4.8, I

can be calculated:

I =
1

ω2
I − ω2 + 2iωγI −

ωIω
2
Jc

2

ω2
J−ω2+2iωγJ

A (3.4.11)

There are five frequencies that need to be distinguished: The resonance frequency of

the inductively excited circuit I, ωI, the resonance frequency of the second resonator

ωJ, the new eigenfrequencies of the two modes that appear due to the coupling, ω1 and
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ω2, and finally the frequency that the system is actually excited with, ωe.

From now on, only the case of equal resonances ω0 := ωI = ωJ = ωe is of interest:

First, ωI can be accurately adjusted to the frequency ωJ by changing the coupling to

the input inductance. Then, ωe can be accurately adjusted to (ω2 + ω1)/2. For low

couplings c, the new eigenfrequencies are simply given by ω2,1 = (1± c/2)ω0. Under

these circumstances, Equation 3.4.10 simplifies to:

|J | = c QJ |I| (3.4.12)

With this equation, a known QJ and coupling c, which can be determined by the

frequency splitting, the amplitude ratio J/I can be determined. It is important to note

that the amplitude distribution between two coupled resonators does not change if the

two resonators have different losses. It solely depends on the coupling c and QJ. It is

handy to term the coupling c of equal amplitudes:

cI=J =
1

QJ

(3.4.13)

Besides the bare knowledge of the amplitudes in the resonators, the amplitude J is to

be maximized. Equation 3.4.11 simplifies with ω0 := ωI = ωJ = ωe in the following way:

|I| = |A|
ω2

0

1

QJ

1

c2 + 1/(QIQJ)
(3.4.14)

Plugging this into Equation 3.4.12 leads to:

|J | = |A|
ω2

0

c

c2 + 1/(QIQJ)
(3.4.15)

Equation 3.4.14 and Equation 3.4.15 are the result of the relative amplitudes in coupled

resonators with loss. They are visualized in Figure 3.13: No energy is forwarded to

resonator J at low couplings, corresponding to large distances. For strong couplings

(c� 1/QJ), the amplitudes at ω1 and ω2 approach another and the loss can be neglected,

as done in subsection 3.4.1. The maximum of |J | in terms of the coupling c is given at:

c J→max =
1√
QIQJ

(3.4.16)

Comparing this to cI=J in Equation 3.4.13, the two special couplings are equal, c J→max =

cI=J for QI = QJ.

For QI = QJ, the maximum of the amplitude |J | in the resonator mode coincides with

the amplitude |I|. In fact, the loading of the excited resonator reduces its quality

factor QI < QJ. This results in a slightly stronger coupling to maximize |J | (see

Equation 3.4.16).
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Figure 3.13: The amplitude of the driven resonator |I| and the resonator |J | for different
couplings, represented by the splitting between the symmetric and the antisymmetric
mode ∆ω = cω0. Smaller couplings correspond to larger distances. Hence, large
distances are found on the left hand side of the plot. The solid lines correspond to the
amplitude at the center frequency ω0 = (ω1 + ω2)/2 while the dashed lines amplitudes
are at amplitudes at ω1 and ω2.

Application

The determination of the nonlinear susceptibility requires the knowledge and prefer-

ably the optimization of the electric field amplitude in the dielectric resonators (see

subsection 3.5.4). The amplitude distribution cannot be probed directly; however, the

coupling cI=J is visible in the reflection parameter S11 and therefore accessible.

Equation 3.2.23 introduced the impedance of a single mode in series circuit repre-

sentation. Therefore, the impedance of two modes is just given by the sum of the

impedances:

Z(ω) =
1

1 + iQ
(
ω
ω1
− ω1

ω

)Rp +
1

1 + iQ
(
ω
ω2
− ω2

ω

)Rp (3.4.17)

The resulting reflection S11 of Equation 3.4.17 using Equation 3.2.24 is sketched in

Figure 3.14. Strong couplings lead to separated resonances. Weak couplings result in a

single peak. The coupling cI=J has the least reflection.

To maximize the electric field amplitude, the coupling needs to be arranged to c J→max.

However, this coupling cannot be qualitatively determined experimentally. Moreover,

the gain associated with the optimization c J→max is comparatively small to the coupling

cI=J. Hence, the coupling cI=J is sufficient for optimization.

Still, cI=J coupling is also hard to achieve experimentally, as some reflection always

remains and the reflection does not drop to zero (see Figure 3.15). Hence, cI=J coupling

cannot be qualitatively distinguished from lower coupling, as both result in just a single

peak. Instead, the coupling is chosen slightly above cI=J so that the peaks are just

distinguishable.
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Figure 3.14: Theoretical reflection parameter S11 for couplings c < 1/QJ, c = 1/QJ and
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Figure 3.15: Experimental reflection S-parameters, adjusted to a coupling slightly above
cI=J coupling. The two peaks are barely distinguishable.

3.5 Coupled Dielectric Resonator Method

3.5.1 Setup Principle

The challenge of measuring dielectric nonlinearities lies in the separation from other

nonlinearities. A corresponding setup solving that challenge was designed by the authors

of [NIH88]. The principle mainly relies on a favorable property of intermodulation

generation in comparison to harmonic generation: Intermodulation only takes place

in the presence of two tones. By designing a setup that restricts the two tones to a

designated part of the setup, any measured intermodulation signal can be attributed to

this part. A sketch of the setup is given in Figure 3.16.

Three cylindrical dielectric resonators made of the material under test (MuT) and of the

same resonance frequency f0 are lined up in a cutoff waveguide. The cutoff waveguide

ensures that the energy transfer between the resonators happens only by coupling of

the resonators and no traveling waves exist in the system. Assuming sufficiently weak
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Figure 3.16: Sketch of the coupled dielectric resonator (CDR) setup. The core consists
of three coupled resonators made from the material under test (MuT). This system is
flanked by a filter resonator (“trap”) on each side. The two tones are separately fed via
the loops at both ends of the cavity. The intermodulation signal is probed above the
resonator at the very center.

coupling between next neighbors, the system has three eigenfrequencies f1, f2, and

f3 following the relation f3 = 2f2 − f1 (see subsection 3.4.1). These equally spaced

frequencies correspond to the upper third order intermodulation product at frequency

f3 = fIM3+, generated by the tones f1 and f2 (or tones f2 and f3 with the lower third

order intermodulation frequency f1 = fIM3−). As the “coupled dielectric resonators”

are the core of the setup, it will be referred to as the CDR setup. Based on the

eigenvectors in Equation 3.4.4, the three modes are visualized in their theoretical and

their experimental realization in Figure 3.17.

The resonant structure enables high sensitivity measurements by two manners: First,

the field amplitudes of frequencies f1 and f2 are enhanced by the quality factor of the

(a) Detection of the three central modes in S31

f1-mode

f2-mode

f3-mode

z

EΦ

centerouter
probing

(b) Sketch of the three central modes

Figure 3.17: Comparison of the three central modes in experiment (left) and in theory
(right). The signal of the f2-mode is suppressed above the center resonator.
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resonance. Second, the intermodulation signal is also enhanced by the quality factor of

the resonance.

While classic PIM setups use two tone excitation from one common port (e.g. [KSB+20,

WKSA18]), this setup feeds the tones from different inputs. To prevent leakage of the

signal from the opposed input and thereby intermodulation generation in the inputs,

the three MuT dielectric resonators are flanked by an additional dielectric resonator at

each input. These “trap” resonators are tuned to the frequencies of their corresponding

input and block the frequency from the opposed input.

Overall, the setup consists of five dielectric resonators, three of which are coupled with

distinctive frequency splitting. The trap resonators are weakly coupled to the three

MuT resonators without significant splitting. Hence, the resonances of the traps fT1

and fT2 coincide with the resonance frequency f1 and f2, respectively. The five resulting

modes are sketched in Figure 3.18.

The intermodulation frequency f3 is blocked by both trap resonators. Instead, the

symmetric f1-mode

anti-symmetric f1-mode

symmetric f2-mode

anti-symmetric f2-mode

f3-modeEΦ

z

Figure 3.18: Sketch of five modes by five coupled dielectric resonators, ordered by their
frequency (low to high).
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intermodulation signal is probed above the center MuT resonator. Above this resonator,

the amplitude of the second base frequency is suppressed due to the node of the second

mode at the center resonator. This ensures that no intermodulation occurs in the

output system (see Figure 3.17a). The f1 and the f3-mode have equivalent energy

distributions and their amplitude above the center resonator can directly be compared.

subsection 3.5.3 deals with the extraction of the material nonlinear susceptibility from

the measurands.

3.5.2 Extension to Split Dielectric Resonators

The very general requirement for materials to be tested in the CDR setup is their

suitability for dielectric resonators. Mostly, these requirements are a high permittivity

and low dielectric loss. However, materials that are suitable for single dielectric

resonators are not necessarily suitable for the CDR setup. This is mostly due to the

HEM11δ-mode resonance frequency approaching the TE01δ-mode resonance frequency

for the same geometry as the permittivity of the material goes down. This is further

discussed later in this section when covering the limit of the “coupled split dielectric

resonator method” (CsDR): that is to say, it is nevertheless possible to combine certain

materials in a CsDR setup. This method relies on the properties of very suitable

materials and the fact that the nonlinear response goes with the electric field to the

power of three [3]: the MuT, which is unsuitable for the CDR method, is introduced

as a slice between two discs of a material that is suitable for the CDR setup (see

Figure 3.26b). Thereby, it uses the linear properties of the resonator material while

probing the nonlinear properties of the MuT disc. The quantitative description can

be found in subsection 3.5.3. With the knowledge of the nonlinearity of the resonator

material, the MuT disc nonlinearity can be determined. The TE01δ-mode is especially

suited for this method, as the electric field is parallel to the surface and the electric

field amplitude is not reduced in the MuT with lower εr.

Still, it is unavoidable to lower the average permittivity of the dielectric resonator and

hence lowering the frequency of the HEM11δ-mode. In addition, the HEM11δ-mode has a

larger energy ratio outside of the resonator than the TE01δ-mode. This leads to a stronger

coupling and hence a larger splitting of the modes, which drives the lowest HEM11δ-mode

to even lower frequencies. The simulation results in Figure 3.19a visualize this behavior.

Three dielectric resonators with a MuT slice of 14 mm of εr = 5 between discs of 14 mm

thickness of a εr = 33 material are coupled at different separations. In contrast to

the TE01δ-mode, the HEM11δ-mode does not split symmetrically. Furthermore, the

splitting already starts at much larger distances. As the HEM11δ-modes lead to larger

transmissions, they dominate the TE01δ-modes, which hinders the proper functioning

of the setup. The HEM11δ-mode can be tamed by keeping a larger distance to the

cutoff with larger dielectric resonators. This is shown in Figure 3.19b. In this way, the

TE01δ-modes can be nicely separated from the influence of the disturbing HEM11δ-modes.

However, the lower average εr does not only change the behavior of the HEM11δ-modes,
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Figure 3.19: Simulated TE01δ-modes and HEM11δ-modes of three coupled dielectric
resonators. Solid horizontal lines: Respective TE01δ-mode and HEM11δ-mode of a single
dielectric resonator. Dashed horizontal line: waveguide cutoff frequency fcut. At low
distances, the highest resonance originates from an even higher mode and not from the
HEM11δ-mode. Lowering the resonance frequency of the dielectric resonator enables
the separation of the HEM11δ-modes and the TE01δ-modes.
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Figure 3.20: Simulated splitting in the CDR setup (solid) and the CsDR setup (dashed)
for the TE01δ-mode. ∆f = f2−f1, δf = 1

2
(f1+f3)−f2. Symmetric splitting corresponds

to δf = 0. For very low coupling (corresponding to large distances), the simulation
returns unstable results. However, it is clear that the asymmetric splitting in the CsDR
setup starts at smaller splitting than in the CDR setup.

but also of the TE01δ-modes: the TE01δ-modes do not split sufficiently symmetric

anymore. Figure 3.20 plots the violation of symmetric splitting as a function of the

frequency splitting. For the split dielectric resonators, the symmetry is violated at

much smaller splitting than for non-split dielectric resonators. This violation was also

observed experimentally for a εr = 5 glass. However, the symmetric splitting is a

prerequisite for the setup to work. Still, the CsDR method extends the measurable

range towards lower εr > 15 than the CDR setup.
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3.5.3 Resonator Nonlinearity

This section aims at obtaining the nonlinear susceptibility χ3 from the electric field

amplitude Ê2 and the intermodulation power ratio at the output IM3M = P3,out/P1,out

for both the CDR and the CsDR method. It is different to the calculation proposed in

[NIH88] and [1], as they base their calculation on the electric displacement field D(E).

It turned out that an approach based on the polarization P (E) and thereby the dipole

p(E) gives more general results, especially for compensating nonlinearities. To obtain

χ3, it is assumed that the polarization has the form:

P (E)/ε0 = χ1E + χ3E
3 (3.5.1)

The applied electric field consists of two frequencies:

E(t) = E1 sin(ω1t) + E2 sin(ω2t) (3.5.2)

Inserting the electric field into the polarization yields:

P (E1, E2, t)/ε0 = ...+
3

4
χ3E1E

2
2 sin(ωIM3+t) + ... (3.5.3)

Here, only the frequency component of interest, the upper third order intermodulation,

is considered explicitly. The local formulation at this frequency reads:

P3(E1, E2, x) =
3

4
ε0χ3(x)E1(x)E2(x)2 (3.5.4)

In the TE01δ-mode all fields E1(x), E2(x) and P3(x) have a component in êφ only. It

is therefore convenient to introduce an electric dipole pφ in êφ direction as a dipole

moment amplitude for the resonator:

pφ =

∫
P(x) · êφ dV (3.5.5)

The dipole component at ωIM3+ drives the f3-mode:

p3,drv(E1, E2, t) =
3

4
ε0

∫
χ3(x)E1(x)E2(x)2dV sin(ωIM3+t) (3.5.6)

The amplitude p̂3,drv(Ê1, Ê2) can be written in terms of the normalized field distributions

Ei(x) = Êiϕ(x):

p̂3,drv(Ê1, Ê2) =
3

4
ε0Ê1Ê

2
2

∫
χ3(x)ϕ(x)3 dV

=
3

4
ε0Ê1Ê

2
2(χ3Aϕ3A + χ3Rϕ3R + χ3Dϕ3D)

(3.5.7)

Here, the field distribution factors ϕi and ϕ3i are defined as:
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ϕi =

∫
i

ϕ(x) dV

ϕ3i =

∫
i

ϕ(x)3 dV

(3.5.8)

The subscripts i represent a volume with constant dielectric properties, the surrounding

air (A), the dielectric resonator material (R) and the disc material (D). In the CDR

setup, no disc material is included and the MuT is the resonator material (R). For

the CsDR setup, the disc material (D) is the MuT. p̂3,drv(Ê1, Ê2) is the driving dipole

moment of one resonator. The resulting p̂res is enhanced by the resonance:

p̂3,res(Ê1, Ê2) = Q p̂3,drv(Ê1, Ê2) (3.5.9)

This dipole p̂3,drv(Ê1, Ê2) can be rewritten as the electric field amplitude Ê3 at the

center resonator:

p̂3,res(Ê3) = ε0

∫
χ1(x)E3(x) dV

= ε0(χAϕA + χRϕR + χDϕD)Ê3

(3.5.10)

Solving for Ê3 results in:

Ê3 =
p̂3,res(E3)

ε0(χAϕA + χRϕR + χDϕD)
(3.5.11)

Inserting Equation 3.5.7 returns:

Ê3

Ê1

=
3

4
ε0Q

(χ3Aϕ3A + χ3Rϕ3R + χ3Dϕ3D)

ε0(χAϕA + χRϕR + χDϕD)
Ê2

2 (3.5.12)

Using the definition IM3M = P3,out/P1,out, which is the ratio of the two powers at f1 and

f3 at the probe, and defining the resonator nonlinearity

ξ =
χ3Aϕ3A + χ3Rϕ3R + χ3Dϕ3D

χAϕA + χRϕR + χDϕD

(3.5.13)

leads to:

IM3M =

(
Ê3

Ê1

)2

=

(
3

4
Q ξ Ê2

2
)2

(3.5.14)

Measuring IM3M gives two solutions for ξ, a positive and a negative. Nevertheless, the

resonator nonlinearity ξ is assumed positive. Instead, the choice of sign is introduced

for the material nonlinear susceptibility χ3R:

χ3R = ± ϕR

ϕ3R

χR ξ (3.5.15)

Here, the linear and the nonlinear susceptibility of the air are both set to zero. In
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Figure 3.21: Sketch for deducing the MuT nonlinear susceptibility χ3D. There are
generally four possible values for χ3D for one measured resonator nonlinearity ξ. ξ < ξ0

induces opposite signs of χ3D and χ3R.

the CsDR setup, the determination of the MuT nonlinearity additionally requires the

knowledge of the resonator material:

χ3D = ±χRϕR + χDϕD

ϕ3D

ξ − ϕ3R

ϕ3D

χ3R (3.5.16)

Figure 3.21 sketches the possible realizations of χ3D for certain resonator nonlinearities

ξ. The reference resonator nonlinearity ξ0 is defined by setting χ3D = 0.

ξ0 =
χ3Rϕ3R

χRϕR + χDϕD

(3.5.17)

Now, the overall resonator nonlinearity ξ can be normalized to ξ0. Shortening Equa-

tion 3.5.16 to χ3D = ±ζ1 − ζ2χ3R yields:

ξ

ξ0

=
ζ1

ζ2χ3R

(3.5.18)

Besides some geometric corrections and the quality factor of the resonance, Equa-

tion 3.5.14 mainly requires the knowledge of the electric field amplitude Ê2 and the

power ratio IM3M. While the power ratio is obtained straight forward by comparing

the output powers at f1 and f3, the calculation of Ê2 is more elaborate and will be

discussed separately in subsection 3.5.4.

3.5.4 Electric Field Amplitude

As mentioned in subsection 3.5.3, the calculation of the nonlinear susceptibility requires

the knowledge of the absolute electric field amplitude Ê2, the maximum in both space

and time of the electric field in either of the outer resonators of the three MuT resonators.

To obtain Ê2, the entire setup is modeled as a system of lumped element circuit. Each
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Figure 3.22: The setup represented by lumped element circuits. The three oscillating
circuits correspond to the three MuT dielectric resonators (SA, SB, SC) and the two
outer circuits to the traps (T1,T2). There is an input from each side. The output probes
the magnetic field above the center resonator. Each circuit is only assumed to couple
inductively with its next neighbors. Strong and weak coupling is visualized by solid
and dashed lines between the inductances, respectively.

resonator is represented by a lumped element resonance circuit. They are inductively

coupled to their next neighbors. The entire system is depicted in Figure 3.22.

This general system can be divided in several subsystems. For each system, it is

appropriate to make different assumptions. The coupling between the three MuT

resonators is strong in the sense that the loss can be neglected (c � 1/Q0) and the

description presented in subsection 3.4.1 holds.

On the other hand, the coupling of the trap/MuT resonator system is weak (c ≈ 1/Q0)

and loss needs to be taken into account. This is discussed in subsection 3.4.2. Never-

theless, the description can be simplified because all modes except for the symmetric

and antisymmetric f2-mode are far away and can be neglected. Hence, this mode can

then be modeled by a single lumped element circuit, coupled to its corresponding trap

resonator, as pictured in Figure 3.11. Finally, as long as a perturbation description of

the resonator system is valid, the field distributions can be calculated for each dielectric

resonator separately and can then be linearly superposed.

The coupled resonators are excited with f2 = (f2,sym + f2,asy)/2, where f2,sym and

f2,asy are the frequencies of the symmetric and the anti-symmetric mode in Figure 3.18.

This results in an excitation of the trap resonator and the f2-mode of the MuT

resonators being phase shifted by π/2. The energy in this mode is labeled WM+T. Using

Equation 3.2.16 and then Equation 3.1.6 yields:

WM+T(P2,in) =
QM+T

ω2

P2,abs =
QM+T

ω2

(1− |S22|2)P2,in (3.5.19)

The quality factor of the mode is reduced by coupling into the mode (the loading of the

output can be neglected, in comparison the loading at the inputs). This is expressed by

Equation 3.2.28:

WM+T(P2,in) =
Q0

ω

1 + |S22|
2

(1− |S22|2)P2,in (3.5.20)
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Here, Q0 is the unloaded quality factor of the mode, which corresponds to the quality

factor of a single dielectric resonator if trap and resonator all have the same quality factor.

Furthermore, it is assumed that the coupling to the T+M mode is subcritical. The

measurements presented in Figure 3.8 confirm that model. For coupling cI=J between

the trap and the MuT resonators, the energy is just equally distributed between the

two (see subsection 3.4.2). Hence, the MuT resonator mode stores half of the overall

energy:

WM =
1

2
WM+T (3.5.21)

Next, the energy in the f2-mode is stored in the outer resonators of the three MuT

resonators. The energy is equally distributed between the two, so the energy in one

resonator is just half the energy stored in the f2-mode:

WR =
1

2
WM (3.5.22)

Finally, the field distribution of a single resonator needs to be considered. Using the

conversion from Equation 3.2.14, the amplitude is given by:

Ê2 = cEW

√
WR (3.5.23)

Overall, the electric field amplitude Ê2 results in:

Ê2 = cEW

√
1

4

Q0

ω2

1 + |S22|
2

(1− |S22|2)P2,in (3.5.24)

3.5.5 Setup Realization

Figure 3.23 shows an image of the cavity. It is manufactured from a copper pipe with an

inner diameter of 15 cm (cutoff frequency at 1.172 GHz). The copper pipe has a length

of 80 cm. The cavity closures with the input loops are shown in Figure 3.24. The loops

are soldered to the center conductor of the flange. The other end is connected to the

cavity closure, which is itself grounded to the outer conductor of the coaxial interface.

Following the recommendation by [NIH88], the copper pipe itself is not connected to

the cavity closure, though connecting them did not lead to a different behavior of the

setup.

Figure 3.25 shows the realization of the probe system. A semi-rigid coaxial cable is

inserted into the cavity though a hole in the cavity pipe. A loop is formed to be sensitive

to the magnetic field. The loop is placed so that the normal vector of the area points

along the cavity length, which is the direction of the magnetic field of the TE01δ-mode

(turning the probe by 90◦ significantly reduced the coupling, as expected). The fixture

to hold the probe was designed to be adjustable to find a compromise between sufficient

coupling for sensitivity and not disturbing the system. However, it turned out that the

perturbation is negligible even if the probe is completely immersed in the cavity.
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Figure 3.23: Picture of the cavity. The two tones are fed from both sides while the
output signal is taken in the middle of the cavity’s length.

(a) View inside of the cavity, loaded with the
five dielectric resonators.

(b) Input, consisting of the input coupling loop
and the cavity closure.

Figure 3.24: Open setup. The diameter of the cavity is 15 cm.

Figure 3.26 shows the central part of the setup, the three MuT dielectric resonators.

They are all put in one vessel. The vessel is made of the aerofoam Rohacell 31 HF

[Evo11], having negligible linear dielectric properties (εr = 1.04, tanδ < 0.2× 10−3).

The resonator discs are mounted on a rod of Rohacell. Further rods through the sheets

result in sufficient rigidity to position the dielectric resonators and then inserting them

into the cavity. For the CsDR setup, additional discs of the MuT are inserted between

two resonator discs (see Figure 3.26b). This is also done for the very center resonator,

though no nonlinear signal actually originates from this resonator. Still, this is the

simplest way to achieve the same linear properties of all three resonators, which is

necessary to fulfill the intermodulation relation. The traps are mounted on separate

vessels so their distance to the MuT resonators can also be adjusted after insertion into

the cavity. Figure 3.27 sketches the connections of the cavity.
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(a) Fixture (b) Magnetic field probe

Figure 3.25: Output system. Left: Fixture for holding the probe. The screw enables to
determine the penetration depth precisely. Right: close-up view of the probe consisting
of a semi-rigid cable and a loop for coupling to the magnetic field and a SMA connector
as interface to the spectrum analyzer.

(a) CDR setup (b) CsDR setup

Figure 3.26: Dielectric resonators mounted on the support vessel. The diameter of the
dielectric resonators is 6 cm.

3.5.6 Measurement Procedure

Determination of εr and tanδ

To set the dimensions for manufacturing the dielectric resonators of the MuT, the

permittivity in the frequency range of interest (∼ 1 GHz) needs to be known. A char-

acterization of the loss is not necessarily required but is helpful for comparison with

the resonator loss. The dielectric characterization was performed with SPDR (see

section 3.3).
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Field simulation with CST Microwave Studio

With the known permittivity, a dielectric resonator with a resonance frequency close to

1 GHz can be designed. The aspect ratio is chosen such that the interfering HEM-mode

is far enough from the splitting TE01δ-modes.

Preparation of the setup with the VNA

A Keysight ENA 20GHz was used for preparing the setup. 16,000 points are taken in

one sweep with a bandwidth of 70 kHz as a compromise of noise level and sweep time

for feasible feedback to manually adjust the setup. A simple reflection and transmission

response calibration is sufficient, ranging from 850 MHz to 1050 MHz. The reference

planes is at the end of the coaxial cables.

The MuT dielectric resonators (SA, SB and SC) are placed on a Rohacell vessel (see

Figure 3.26). The distance between the dielectric resonators is set to 33 mm with a

ruler. This results in a splitting of about 30 MHz. The precise distance setting is not of

relevance for the equal frequency spacing between the modes, a positioning of ±1 mm

is sufficient.

The vessel with the MuT dielectric resonators is placed in the center of the cavity with

a ruler. The center resonator SB can be placed within 5 mm beneath the output probe.

The output probe is then moved radially towards the center MuT dielectric resonator

to about 1 cm distance.

T2 is placed about 10 cm away from the closest of the three MuT dielectric resonators,

SC. Then, input 2 is inserted while observing S22. When moving the input closer to T2,

a dip for the trap and the f2-mode appears. If the dip for f2-mode is not visible, the

coupling between T2 and f2-mode is too low and T2 needs to be moved towards the

resonator SC. If the two dips do not merge into one when moving the input loop closer

to T2, the coupling is too strong and T2 needs to be moved away from the resonators.

This procedure is repeated until splitting of the resonances just becomes visible (cI=J

coupling, see Figure 3.15). Empirically, this requires a precision of 1 mm in positioning

T2. It is advisable to rather go for a slightly over-coupled adjustment, because actual

Figure 3.27: Sketch of the connected setup. Signal Generators: Keysight MXG 6GHz
and Keysight PSG 40GHz, Signal Analyzer: Keysight MXA 26GHz.
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Figure 3.28: Measured S-parameters of the CDR setup. Ports 1 and 2 are inputs and
port 3 is the probe. Close-up views of the S11 and S22 peaks are plotted in Figure 3.15.
The ports are isolated from each other by at least −50 dB, except for S31 at f1.

cI=J coupling cannot be distinguished from under-coupling. The frequency f2 is recorded.

The frequency of the f3-mode is visible as a slight bump in S33, as in Figure 3.28. Next,

T1 is introduced at the opposite side of the cavity. it is placed about 10 cm away

from the closest of the three MuT dielectric resonators, SA. Input 1 is inserted while

observing S11. The same repetitive procedure as with input 2 is performed. When

cI=J coupling is achieved, the reference value of f1, f ref1 = 2f2 − f3 is compared to its

actual value fact1 . The deviation must not exceed f0/Q0 (about 1 MHz for Q0 ≈ 1000).

If the frequencies do not match, this is most likely due to the dielectric resonators not

(a) Foreground: cI=J coupling at fact1 , Back-

ground: fT1 set to f ref1 .

(b) Temperature shift: Before (background)
and after (foreground) application of high
power.

Figure 3.29: f1-matching and temperature shift effect. The arrows in the left figure
visualize the change from fT1 = fact1 to fT1 = f ref1 : The minimum in S11 shifts about

1 MHz to lower frequencies. S33 keeps its minimum at fact1 while f ref1 and fact1 become
visible separately in the transmission S31. The drop in S31 is accompanied by a drop in
the electric field amplitude E1 in the MuT resonators.



80

having sufficient similar resonance frequencies. The problem can be partly addressed

by changing the order of the MuT dielectric resonators [Ber18].

Of course, perfect matching is unlikely. Input 1 is finally moved so that the reflection

is minimal for f ref1 . The frequency of the f1 signal generator is set to f1 := f ref1 . A

mismatch in f1 is easiest to tolerate in comparison to f2 and f3, as a mismatch in f3

leads to a reduction of the smallest signal and the power at f3 depends stronger on the

power at f2 than at f1. Furthermore, the electric field amplitude E2 needs to be known

to deduce χ3, so the relation of P2,in and E2 needs to be known, which is easiest to

model when fT2 = f2.

Now, the tunable filter is adjusted in such a way that the intermodulation frequency f3

lies at the lower end of its pass band, i.e. the insertion loss at f3 is 1 dB. This ensures

optimal suppression of the input frequencies f1 and f2. As the VNA itself does not

cover the dynamic range to measure the suppression at those frequencies (typically

−80 dB at f2 and −110 dB at f1), the filter characterization at f2 and f1 is performed

with the use of the amplifier together with the spectrum analyzer. As this system is

not calibrated and includes cable losses, the insertion loss at f3 measured with the

amplifier and the spectrum analyzer is compared to the insertion loss measured with

the calibrated VNA.

Recording of the intermodulation

The tunable filter is connected to the output probe and the amplifiers to the corre-

sponding inputs. The high power should be applied for a short time (few seconds)

only to avoid heating of the resonators. The signal analyzers power levels P1,sig, P2,sig

and P3,sig at respective frequencies f1, f2 and f3 are recorded for different input power

levels, together with the input power levels of the signal generators P1,gen and P1,gen at

respective frequencies f1 and f2. To control for unexpected changes in the setup, two

overlapping power sweeps are preformed (low power range and high power range). The

powers should should be consistent. After exposing the dielectric resonators to the high

power, the S-parameters are checked again with the VNA to exclude changes in the

resonances due to heating (see Figure 3.29b).

3.6 Capacitance Bridge

3.6.1 Static Bias Nonlinear Response

A qualitative different technique to measure a nonlinear behavior consists of a static

high amplitude signal and a superposed small amplitude probing signal, which is used

to test the local slope. This is depicted in Figure 3.30. The static high amplitude signal

gives rise to the nonlinear response. Nevertheless, the nonlinear response depends on

the test frequency. Concerning dielectric nonlinear response, materials have been tested

in the kHz range [KGV+14, BDB09] but also in the GHz range [KJH02, DSKJH96]

with DC bias.
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Figure 3.30: Comparison of two qualitatively different methods to detect a nonlinear
response. Similar representation can be found in e.g. [MDK11].

3.6.2 Voltage Dependent Capacitance

A nonlinear permittivity εr(E) directly leads to a voltage dependent capacitance C(V )

of a capacitor made from the nonlinear dielectric. The capacitance of a thin (A� d2)

capacitor with area A and thickness d is given by

C = ε0εr
A

d
(3.6.1)

For the thin capacitor geometry, the de-electrification factor turns out to be N = 1.

Hence, the magnitude of the macroscopic electric field Emac in the dielectric is

Emac =
Eext
εr

=
V

εr d
(3.6.2)

Electrostriction leads to dependencies A(E) and d(E). However, as the sensitivity of

the setup is too low to detect electrostrictive effects (discussed in subsection 2.4.6), it is

neglected in this discussion. Hence, the change of the capacitance is fully explained by

the change of the permittivity as follows:

∆εr =
d

Aε0

∆C (3.6.3)

The third order nonlinear susceptibility χ3 can be derived from ∆εr via:

χ3 =
∆εr
E2
mac

=
d3ε2

r

Aε0V 2
∆C (3.6.4)

It becomes clear that the determination of χ3 critically depends on the thickness d.
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3.6.3 Bridge Circuit

Generally, a bridge circuit is a circuit with two parallel branches that are connected at

some point in-between. The elements of the circuit are then modified in such a way that

the voltage and current at this connection are zero. For the presented measurements, a

AH2550A 1 kHz Ultra-Precision Capacitance Bridge by Andeen-Hagerling is used.

In the capacitance bridge, the two branches are a known impedance and the unknown

impedance, the device under test (DuT) (see Figure 3.31). The known impedance

consist of a parallel circuit of a temperature-stabilized fused-silica capacitor and a

resistor. Potential dividers in form of ratio transformers allow adjusting the voltage

over the known impedance and the unknown impedance in such a way that the detector

measures no voltage. The detector measures both in-phase and π/2-shifted voltages

relative to the generator signal. From the ratio at the potential dividers, the unknown

complex impedance can be determined.

To measure the voltage dependent impedance, a DC bias voltage is fed into the LOW

terminal via a series resistance. The bridge allows choosing between two internal

resistances, 100 MΩ and 1 MΩ. A large resistance leads to a larger time constant and

therefore reduced noise, but the charging time for the capacitor increases as well. In

case of a DC conducting sample, a voltage divider is created additionally. In this case,

the DC voltage at the DuT is smaller than the applied bias voltage. For a capacitance of

around 100 pF and a resistance of 100 MΩ, the time constant τ = 10 ms for charging is

still small enough for the measurement procedure discussed in section 4.2. Additionally,

the DuTs do not exhibit a DC conductance. Hence, the large series resistance can be

Figure 3.31: Bridge circuit sketch. The bridge circuit consists of two branches with a
known impedance in one branch and with the DuT in the other. Figure taken from
[AH02], modified.
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chosen to obtain the best signal to noise ratio. For handling safety reasons, another

external 100 kΩ is connected in series just after the voltage supply to limit the current

to 1 mA. Without DC bias voltage, the bridge drives the voltage at the detector to

zero. With a DC voltage, the voltage at the detector cannot be driven to zero anymore

and the voltage is minimized instead.

The bridge circuit already enables to detect nonlinear susceptibilities χ3 > 10−14 m2/V2.

However, an even more sensitive method claims to be able to detect nonlinearities down

to χ3 > 10−16 m2/V2 by detecting the frequency shift of a resonance circuit with a

capacitance of the MuT [FFK+93].

3.6.4 Equivalent Circuit of a Lossy Capacitance

The DuT is a lossy capacitor. There are loss mechanisms in parallel and in series with

the capacitance. A representative circuit is shown in Figure 3.32. Usually, either the

series resistance Rs or parallel resistance Rp dominates. So the circuit can be simplified

to either a series or a parallel circuit.

However, the bridge sees only a complex impedance and therefore cannot decide between

the two models. The following equation convert between the two models:

Cs = (1 +D2)Cp

Rs =
D2

1 +D2
Rp

(3.6.5)

Cs and Cp are the capacitance in series and in parallel, respectively. D is the dissipation

factor:

D =
1

ωCpRp

(3.6.6)

For small dissipation factors D � 1, the conversion can be simplified:

Figure 3.32: Different representations of a lossy capacitance [AH02].
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Cs = Cp

Rs = D2Rp =
Rp

(ωCpRp)2
=

Gp

(ωCp)2

(3.6.7)

For small dissipation factors D � 1, both Cs and Cp return the capacitance C. Hence,

the capacitance can be easily determined independent of the underlying circuit model.

This is different for the resistance. Equation 3.6.7 shows that Rs and Rp are even

inversely proportional to each other. The measurement itself does not allow deciding

between the two. Even a DC conductance measurement does not allow deciding for

one model, as the parallel resistance Rp represents an AC conductance, e.g. a lossy

dielectric has a parallel AC conductivity but no DC conductivity.

(a) Closed setup with capacitance bridge and DC voltage
source in the background.

(b) Open setup with sample (c) Close-up view Contacts with no sample

Figure 3.33: Capacitance bridge setup.
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3.6.5 Shielding Setup and Sample Preparation

The bridge’s resolution is best for a capacitance in the order of 100 pF to 1000 pF and

conductance below 1 nS. The nominal resolution in this range is at least 10−6 or even

10−7. The signal ∆C for a certain χ3 increases strongly with decreasing thickness d,

∆C ∼ d3. To maximize the signal, the samples should be as thin as possible. The limit

is the mechanical stability in the manufacturing process. The stability is dependent on

the material and the thicknesses in the order of 150 µm are possible. A metallized area

of about 1 cm2 results in the required capacitance range.

The electric shielding was realized with an aluminum box, grounded via the BNC outer

conductor. Magnetic shielding is not necessary. Thereby, the resolution limit is reached

with less than 0.05 fF/150 pF = 3.3× 10−7. The accuracy after calibration is at least

10−3 in the order of 1 pF to 10.000 pF. However, the accuracy is not critical for the

precise measurement of the voltage dependent capacitance. A temperature-stabilized

room at (21± 1) ◦C was found to be sufficient.

The samples for the capacitance bridge measurements are thin metallized samples of the

test material. After grinding to the desired thickness and polishing (surface roughness

less than 1 µm), the samples are cleaned in an ultrasonic distilled water bath and then

sputtered with a contact layer of 20 nm chromium and 500 nm silver on top. One sample

that was instead sputtered with gold and no chromium adhesion layer turned out to

have an increased loss and scratching simply allowed removing the gold layer. The

samples are metallized completely from one side and only in a circular area on the other

side. This avoids any mismatch of metallization areas but also avoids metallization at

the edges, which can result in leakage currents. The metallization diameter is chosen

sufficiently large in comparison with the thickness (approx. 200 µm/8 mm = 2.5 %) to

have the model of a thin capacitor be applicable.



Chapter 4

Results and Discussion

4.1 GHz Dielectric Nonlinearities

4.1.1 Ba4Al2Ti10O27 Glass-Ceramic

A suitable material to be characterized with the CDR setup was found in the glass-

ceramic “Poweramic GHz33” [HLK15]. Its main crystalline phase, Ba4Al2Ti10O27

[SMB81], has been identified by X-ray diffraction [Mar13]. It combines sufficiently

large dielectric constant (εr = 32.65± 0.05) and low loss (tanδ = (5.6± 0.1)× 10−4 )

at 1 GHz (measured with the SPDR method [Eng20]). Moreover, it has excellent

mechanical properties, which allows dielectric resonators with an outer radius of 30 mm

and a thickness of 24 mm with a center hole of 5 mm radius to be manufactured with a

precision of 50 µm. This precision is required for the CDR method. As the glass-ceramic

cannot be produced with a thickness of 24 mm, the dielectric resonator was composed

of two discs with 12 mm thickness each (see Figure 3.26).

Figure 4.1 visualizes a typical output spectrum and Figure 4.2 shows an input power

sweep. The powers P1,sig and P2,sig are recorded at the respective tones f1 and f2

together with the power P3,sig at the third order intermodulation frequency f3 = fIM3+.

Furthermore, the figure compares the powers displayed on the signal analyzer Pi,sig and

the signal generator Pi,gen to the input powers into the fixture Px,in and output powers

at the probe Px,out. This exemplifies the power range that is covered with this nonlinear

measurement: the tunable filter causes the power levels to be closer together at the

signal analyzer than at the probe. While the power levels P1,sig and P2,sig at the signal

analyzer are of comparable order of magnitude, the power level P2,out is about 20 dB

lower than P1,out due to the suppression of the f2-mode. The intermodulation power

P3,out lies far below the tone powers P1,out and P2,out. The power of both tones scales

with 1 dB/dB over the full measured range. This is a positive control for the amplifier

gain not reaching its saturation power. The intermodulation power P3,out shows the

expected 3 dB/dB slope for low powers. At high powers, it deviates significantly from

this trend.

Several arguments suggest that the saturation towards higher powers is not due to a

86
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Figure 4.1: Example of a spectrum at the signal analyzer, with powers at the tones f1

and f2 and the intermodulation frequency f3. For the actual data recording, only the
powers at the frequencies of interest are recorded instead of a whole spectrum.
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Figure 4.2: Power levels before and after the band pass filter at the output. The filter
attenuates the tone powers P1,out and P2,out so that the dynamic range at the signal
analyzer is much smaller than before the filter (60 dB versus 170 dB).

systematic experimental error. First, transient oscillations of the CDR system can be

ruled out as the transient time is about Q 1/f ≈ 1 µs and recording the three power levels

takes about 1 s, depending on the bandwidth. The recording is additionally delayed

by 0.1 s after applying the power. Moreover, the powers P1,sig and P2,sig show that the

amplifier delivers in time and the intermodulation level is recorded after recording the

tone powers. Second, heating of the samples and therefore a shift in the resonance

cannot be neglected. A frequency mismatch increasing with time would indeed lead

to an apparent saturating intermodulation level. However, this effect can be ruled

out by applying the power for a limited time and checking the frequency match after

the recording of the intermodulation (see Figure 3.29). Additionally, the saturation

due to heating should depend on the deposited energy; however, the saturation is
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Figure 4.3: Input power dependence of the intermodulation power PIM3+ = P3,out,
together with intermodulation trends for polynomials of up to the seventh order and
the intermodulation Fourier coefficient integral from Equation 2.3.16 applied to the
saturable absorber from Equation 2.4.44. P2,b marks the input power corresponding to
Eb in the saturable absorber model, which is the radius of convergence of the power
series. This figure is the diagonal cross section of Figure 4.4.

observed independently of the data point acquisition order. Furthermore, erroneous

characteristics of the signal analyzer can be excluded as P3,sig reaches comparable levels

as P1,sig and P2,sig resulting in a small dynamic range. Finally, the observation of similar

intermodulation trends in literature [HCC09b, OAW+08] suggest that the saturation is

not due to erroneous experimental conditions.

The tone power dependency of intermodulation signals has been discussed in sec-

tion 2.3. Figure 4.3 shows the intermodulation power P3,out together with slope trends

expected for polynomial nonlinear response up to the seventh order. Despite achieving

a slightly better agreement with the data at low powers for higher order polynomials,

the polynomial description clearly does not give a satisfying description. Saturating

intermodulation trends have been observed for several nonlinear response functions in

section 2.4, such as the function for describing the saturable absorber, the charge in a

box or the binary state system. All these mechanisms show distinct intermodulation

trends. Still, the data does not allow distinguishing between them unambiguously.

Hence, the fit in Figure 4.3 is arbitrarily based on the saturable absorber model from

Equation 2.4.44. As discussed in subsection 2.3.6, the resulting material parameters

χ3 and Eb can nevertheless be interpreted in the frame of the different models. This

discussion is moved to the very end of this section.

Strictly speaking, the intermodulation amplitude is a function of two electric fields E1

and E2 (see subsection 2.3.5). Hence, a complete description requires separate variation

of E1 and E2, resulting in a three parameter fit. In the logarithmic representation, these

three parameters are offsets in P1,in, P2,in and P3,out. The data presented in Figure 4.4

includes independent variation of the two input powers.

To obtain the nonlinear susceptibility χ3, The P3,out offset is evaluated together with
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determination of the fit is R2 = 0.999977.

the P1,out level and the knowledge of the electric field amplitude E2 according to

Equation 3.5.14. In contrast to the unknown relation of P1,in and E1, the relation of E2

and P2,in is known (Equation 3.5.24). Hence, the power P2,b can be directly translated

to the electric field amplitude E2,b. Finally, the parameter Eb in the saturable absorber

model is present in both E1 and E2, Eb = E2,b = E1,b. The microscopic interpretation

of Eb will be discussed at the very end of this section.

Low power limit

In the low power limit, the description with a simple χ3 nonlinear susceptibility is

appropriate and Equation 3.5.14 can be used to calculate χ3. The electric field amplitude

is obtained via Equation 3.5.24. For an εr = 32 dielectric resonator with an outer

diameter of 60 mm, an inner diameter of 5 mm and a thickness of 24 mm, the field

simulation returns ϕR/ϕ3R = 1.52 and cEW = 12.9 kV/(mm
√
J). Further measurement

parameters are listed in Figure A.5.

Figure 4.5 compares the resulting nonlinearity χ3 to the measurements in [THNW89]:

the authors were the first to use the CDR method to extract the microwave nonlinearity

for their sintered ceramics. However, the data given in their publications does not

allow inferring χ3 for their sintered ceramics [NIH88, THNW89, ITNW92]. They only

specify P3,in/P1,out though IM3M = P3,out/P1,out is required together with the electric

field amplitude E2 to obtain χ3. The conversion is:

P3,out

P1,out

=
P1,in

P1,out

P3,out

P1,in

(4.1.1)

The conversion factor P1,in/P1,out is the transmission of the setup from input to out-

put. Although this factor is not given, the transmission can be estimated from the

transmission of the setup in this work. It is about −40 dB and is assumed to be within
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(−40± 20) dB for their work. As the nonlinear susceptibility χ3 depends on the square

root of IM3M, this results in a uncertainty of ±10 dB or two orders of magnitude.

For the estimate of the order of magnitude, the material nonlinearity χ3 is assumed to

be given by χ3 = χ1ξ, so the geometric correction is ϕR/ϕ3R ≈ 1 (see subsection 3.5.3).

The estimate in Figure 4.5 furthermore assumes that the quality factor of the resonance

Q0 is given by the inverse dielectric loss Qd. As the fields leak into the surrounding air,

the resonance quality factor Q0 is underestimated. Finally, Q0 does not necessarily need

to be limited by the dielectric loss, especially for the low loss sintered ceramics. Instead,

the metallic loss of the cavity cannot be neglected and can dominate the loss for the

low loss sintered ceramics, as the calculations in [NIH88] suggests. Still, the effects of

those erroneous assumptions are much smaller than the uncertainty of the guess of the

transmission. The saturation of the intermodulation, which was described previously,

was not observed in [THNW89] (see Figure 4.5). However, their data is rather sparse.

Overall, the nonlinear susceptibility of the glass-ceramic lies in the same range as the

previously measured sintered ceramics. Despite showing a larger dielectric loss than all

sintered ceramics, the nonlinear response is comparable. Thus, the glass-ceramic does

not fit in the tanδ ∼ χ3 correlation found in [THNW89]. In [ITNW92], the high purity

(Zr,Sn)TiO3 was found to serve in filters with sufficient isolation, which suggests that

χ3 ≈ 10−17 m2/V2 is suitable for resonant structures. The glass-ceramic, which has not

been optimized at all for such purposes yet, lacks only about one order of magnitude to

meet this benchmark.

Reproducibility, uncertainties and sources of errors

The uncertainty for the Ba4Al2Ti10O27 glass-ceramic displayed in Figure 4.5 is a factor

of two, the reproducibility of the measurements. The histograms in Figure 4.6 visualize

this reproducibility. All 13 measurements lie within a factor of 8 and 60 % of the

measurements lie within a factor of two. Both the distribution for χ3 and Eb exhibit an

asymmetry towards lower values. The 13 measurements were performed over a period
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Figure 4.6: Histograms for the two fit parameters.

of 18 months. In-between each measurement, the samples were removed from the cavity

and newly adjusted.

As previously mentioned in this section, the input power dependency fit has three free

parameters. However, the offset in P1,in does not contain valuable information except

for checking the quality of the fit. Hence, a simple two-parameter fit of a single constant

ratio power sweep is sufficient to determine both χ3 and Eb. The underlying fit is based

on E1 = E2. Although this is not realized in the experiment, the resulting χ3 is not

at all influenced by that simplification and Eb is only influenced within about 1 dB.

This simplification works because the intermodulation trend for a fixed amplitude ratio

E2/E1 is mostly independent of the actual amplitude ratio (3 dB/dB at low amplitudes,

0 dB/dB at high amplitudes) and only shows a slight distinctive feature in the curvature

in the intermediate power range.

Figure 4.7 illustrates the reproducibility of the direct measurands P1,out, P2,out and

P3,out as a time series of the output powers at P1,in = P2,in = 28 dBm input power. As

expected, P2,out is always smaller than P1,out. The measurements with close P1,out and

P2,out levels coincide with low P1,out levels. These measurements #1 and #5 also show

a large asymmetric splitting with a frequency mismatch δf =0.9 MHz and 1.0 MHz,
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respectively. Therefore, this could be related to the mismatch; however, mismatch δf

and P2,out/P1,out do not show any further correlation.

The power ratio IM3M has a larger variation than the absolute intermodulation power

P3,out and the variation in IM3M is dominated by the variation of P1,out. This contradicts

the model assumption of having comparable amplitudes E1 and E3 above the center

resonator, which should lead to strongly correlated power levels P1,out and P3,out. A

parallel f1 transmission that does not happen via the dielectric resonators and therefore

does not contribute to intermodulation generation could be a possible source of that

variation. A large variation in P2,out on the other hand does not surprise, as a match

with the anti-resonance of the center resonator SB crucially influences the power level

that is detected above it, because the second mode frequency f2 of the coupled system

almost matches the mode of the isolated dielectric resonator fB (see Figure 3.17a).

All parameters that are needed to deduce the nonlinear susceptibility χ3 can be de-

termined with higher precision than the reproducibility suggests. This includes the

input power P2,in (±0.1 dB ≈ 2%, the reflection parameter S22 (±0.1 dB), the resonance

quality factor of the resonance (less than 2%) and the resonance frequency (less than

1 ppm). The intermodulation ratio IM3M can be determined with even higher precision

due to the regression. The field simulations produce resonance frequencies conforming to

those from the experiment within a few MHz, which suggest that the field distributions

are accurate enough to be neglected in comparison to the error sources, which have

been proposed so far. Overall, these uncertainties cannot account for the reproducibility

that is actually observed. However, the underlying model has several assumptions that

can be sources of error:

• Assumption: All absorbed power P2,abs goes into the TE01δ-mode of the coupled

system (T2, SC, SB, SA).

Validity: Indeed, Figure 3.8 perfectly supports this assumption. While the

excitation of the HEM11δ-modes was observed to be strongly dependent on the

angle of the input coupling loop, the TE01δ-mode has been clearly identified and

found to be independent of the angle. The off-resonance reflection parameter S22

is about −1 dB (after calibration). This means that, even off-resonance, about

20 % of the power are not reflected but are lost in the cavity or input system.

However, this loss is accounted for by subtracting the plateau from the input

S-parameter.

• Assumption: The stored energy is equally distributed between the trap resonator

T2 and the sample resonators SC and SA .

Validity: This is only the case for cI=J coupling. This coupling can be arranged

within ∆ω = 0.5 MHz corresponding to less than 0.1 %. As visible in Figure 3.13,

the energy distribution does not strongly depend on the coupling around the cI=J

(the derivative at the maximum is zero). Hence, the amplitude distribution is

expected to hold within a few percent.
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• Assumption: The stored energy is distributed between the three resonators SA,

SB and SC according to the amplitudes calculated in subsection 3.4.1.

Validity: Strictly, this is only the case for equal coupling between the sample

resonators SA-SB and SB-SC. However, a brief calculation shows that the amplitude

ratio EA/EC is not very sensitive to unequal coupling (see Equation A.0.11). The

resonators can be positioned with a precision of 1 mm at 33 mm. Hence, the model

is expected to hold within a few percent.

Overall, the uncertainties in the model cannot account for the variance that has been

observed in the measurements. This suggest that further model parameters exist, which

have not been controlled for. Nevertheless, based on the reproducibility, it is reasonable

to declare that the nonlinearity has been determined to

|χ1GHz
3 | = (4± 2)× 10−16 m2/V2

For dielectrics with similar linear properties, the setup is expected to have a sensitivity

at least one order of magnitude smaller, |χ3| > 10−17 m2/V2.

Eb and microscopic interpretations

As discussed in subsection 2.3.6, the bending electric field amplitude Eb is a convenient

characteristic of a nonlinear mechanism. The measurement of Eb enables comparing

predictions of various models.

The authors of [THNW89] proposed nonlinear interatomic forces to be the source of

the nonlinear susceptibility. As introduced in subsection 2.4.3, such optical phonons

can indeed reach 10−16 m2/V2 nonlinearities. Moreover, subsection 2.4.7 motivated

that the underlying model, even though assuming T = 0 K, is appropriate at ambient

temperatures. Still, this phononic model corresponds to a distributed (large N small p)

nonlinearity: As such, it cannot account for the saturating intermodulation at electric

field amplitudes of 10 V/mm. Instead, some localized (small N large p) models, which

have been introduced in subsection 2.4.7, indeed produce a saturating intermodulation

response. These shall be discussed in the following. Moreover, the following discussion

is based on a field correction factor of L = 10, which is the factor based on the Lorentz

field for εr = 28 (see subsection 2.4.1).

Both orienting dipoles (Equation 2.4.27) and the charge in the box model (Equa-

tion 2.4.63) result in a Langevin-like response. Although freely rotating permanent

dipoles seem unlikely in a solid with ionic bonds, [PSW+11] takes them as a basis to

explain the low frequency nonlinear response of SiO2. On the other hand, the charge

in a box potential, which also results in a Langevin response, can be interpreted as a

locally free charge. In this model, the dipole that is required to obtain a saturation field

of Eb = 10 V/mm is in the order or 10−25 C m, which is about 104 atomic dipoles (eÅ).

For a single electric charge, this would require a box of 1 µm. This length corresponds to

the size of the crystallites in the glass-ceramic Figure 4.21. However, assuming typical

diffusion velocities of 100 µm/s (in metals), single charges do not cover such distances
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within the reversal of the electric field at 1 GHz. On the other hand, grain boundaries

have already been associated with dielectric losses [SSTNS+18], which could also exhibit

a strong nonlinear response. In addition, inhomogeneous dielectric properties alter

the local electric field, presumably leading to field peaks and thereby enhancing the

nonlinear response [PCGM12].

The same order of magnitude of a dipole (104 eÅ) is also required for the binary state

model (Equation 2.4.66). Such a binary state system could for instance originate from a

local ferroelectric behavior with a correlated switching of 104 atomic dipoles. Although

Ba4Al2Ti10O27 is not ferroelectric, its perovskite structure is very similar to that of

the ferroelectric BaTiO3. The large permittivity of Ba4Al2Ti10O27 already points in

the direction of a (compositional) phase transition to a ferroelectric. Furthermore, the

perovskite structure is known to exhibit an exceptional high local electric field [Sla50].

All the mechanisms so far rely on a dipole that that is sufficiently large to balance the

thermal energy (pEloc ≈ kBT ). A model that does not require such a large dipole is

the saturable absorber (see subsection 2.4.5). In return, it requires a resonant system

in the order of 1 GHz. Taking an atomic dipole as a basis, the model requires a mean

lifetime of 0.1 ns of the upper state of the resonant system. Larger dipoles proportionally

allow shorter lifetimes. Such microwave saturable absorbers have been discussed as the

source of nonlinearity in MgO substrates in high temperature superconducting devices

[HHH+03].

While Eb is characteristic for a nonlinear mechanism and independent of the mechanism’s

abundance in the dielectric, Eb in combination with χ3 allows the determination of

the linear contribution of the nonlinear mechanism χ1 (see Equation 2.3.28). The

linear susceptibilities are in the same order of magnitude independent of the underlying

model. Hence, it is possible to estimate the nonlinear susceptibility independently of

the concrete model: The contribution to the linear susceptibility is in the order of

χ1 ≈ 10−8. This shows that the nonlinear mechanism is barely present in the material;

however, it dominates the nonlinear response. This is crucially different from linear

dielectric properties: while a high loss mechanism that is barely present in the dielectric

does only lead to a small loss, a fractional nonlinear mechanism can dominate the overall

nonlinear response. This argument also works in the other direction: the mechanism

that is responsible for the nonlinearity can be invisible in both loss and relative dielectric

constant, i.e. Im(χ1) ≈ Re(χ1) ≈ 10−8 will not be visible in the loss tanδ ≈ 10−3.

From the linear susceptibility χ1, the density N of the mechanisms in the dielectric can

be estimated. For the binary state model and the charge in a box model, a density of

N ≈ 109 m−3 is required; still, based on a local electric field correction L = 10. This

is much smaller than the density of e.g. the crystallites in the glass-ceramic (about

1 µm distance between the crystallites leads to a density of 1018 m−3). For the saturable

absorber, the required density is much larger (N ≈ 1025 m−3), as a resonant system with

1 GHz splitting is almost equally occupied (hf � kBT ) and does not lead to a strong

polarizability. This large density makes the saturable absorber seem rather improbable.



4.1 GHz Dielectric Nonlinearities 95

4.1.2 N-SF66 Glass Dopant Series

Motivated by the observation of a dependency of the nonlinearity on the purity of

the minerals in [THNW89], a dielectric is systematically doped with typical impurities

found in minerals: iron, and sodium as a representative of alkali metals.

However, doping a glass-ceramic has two disadvantages: First, the respective green

glass is usually prone to spontaneous crystallization (devitrification). Hence, the green

glass cannot be deliberately doped while still obtaining a suitable glass for ceramization.

Second, a glass-ceramic always requires an additional comparatively time intense

production step, the ceramization of the green glass.

Therefore, a glass is more suitable, preferably a “stable” glass that will not devitrify

easily under doping. Furthermore, a high εr is required to enable dielectric resonators.

A corresponding glass was found in N-SF66. Originally, it is a high refractive index

(n = 1.9) optical glass [Opt20]. However, it also possesses a large permittivity at 1 GHz

(εr = 21.1).

Still, as discussed in subsection 3.5.2, not all materials that enable dielectric resonators

are suitable for the CDR method. The glass N-SF66 turned out to be one of those.

However, the range of testable materials can be extended with the CsDR method. This

method was found to work for the N-SF66 glass in combination with the glass-cermic
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Figure 4.8: Normalized resonator nonlinearity ξ/ξ0 for different samples. L: N-SF66
laboratory sample, P: N-SF66 production sample, Fe: N-SF66 doped with Fe2O3

(concentration in mass-ppm), Na: N-SF66 doped with Na2O (concentration in mass-
ppm), E: N-SF66 streak probes, GG: Poweramic GHz33 green glass, GHz33: Poweramic
GHz33 glass-ceramic. The E samples are also doped samples with 500 wt ppm Fe2O3.
ξ0 is calculated with the arithmetic mean of χ3 of Poweramic GHz33 obtained with the
CDR method. The Fe10k results consists of two columns. The left column (squares)
represents measurements with 2 test discs (2× 4 mm) between the resonator discs. The
sets of data points for each sample show the reproducibility.
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Poweramic GHz33 as the resonator material. Additionally, the green glass of Poweramic

GHz33 was also found to be suitable for characterization with the CDR setup (dielectric

properties in Figure A.6). Figure 4.8 summarizes the measured normalized resonator

nonlinearity ξ/ξ0 (see subsection 3.5.3) of the dopant series. All samples have the same

geometry: a disc of 4 mm thickness and an outer diameter of 60 mm. They are mounted

between two Poweramic GHz33 discs of 12 mm each, as depicted in Figure 3.26b.

Strictly speaking, all samples except for the streak samples (E) lie within the repro-

ducibility of the resonator material and are therefore consistent with χ3D = 0. However,

this still allows specifying an upper limit, |χ3| < 10−15 m2/V2. This sensitivity of the

CsDR setup is limited by the precision of the CDR method. While the laboratory

sample L and production sample P seem to really be consistent with χ3D = 0, the Na

samples exhibit only values ξ < ξ0. This is also applies to the Fe10k and Fe20k samples.

One ξ/ξ0 value can be interpreted as originating from two χ3D values. Furthermore, the

unknown sign of the resonator nonlinearity χ3R gives again a multiplicity of two. Hence,

there are four possible values for χ3D. Figure 4.9 arbitrarily assumes that χ3R > 0, so

negative values in Figure 4.9 should be interpreted as having an opposing sign to χ3R

and positive values as having the same sign as χ3R.

For the Fe10k samples, enough discs were available to measure two test discs (2× 4 mm)

inserted between the resonator discs. These measurements can be used to check whether

the minus sign branch or the plus sign branch in Equation 3.5.16 is more reasonable.

The comparison in Figure 4.9 shows that in the plus sign branch, both geometries agree

with a single χ3D, while the minus sign branch interpretation leads to nonconforming

χ3D. Of course, these interpretations need to be treated carefully, as strictly speaking,

all values are anyway consistent with χ3D = 0. The ambiguity of the sign furthermore

does not allow deciding if the nonlinearity increases or decreases with added Na or Fe.

While both series show a trend of decreasing ξ/ξ0 with increasing dopant content, this

can be interpreted as both an increasing or a decreasing nonlinearity with increasing

dopant content. Underlying the measurements with two Fe10k discs, the increased

dopant content leads to an increasing absolute nonlinearity χ3D.

The influence of the dopants on the linear properties was characterized with the SPDR

method (section 3.3). The results can be found in Figure A.7. Adding Na or Fe both

decreases the dielectric constant and the loss, though in a way that is negligible for

the CsDR setup. Fe was suspected to be a source of magnetic nonlinearity and loss

acting as a pseudo-dielectric nonlinearity and loss. However, this conjecture has been

theoretically ruled out in subsection 2.4.8 and now has been shown experimentally

to have no measurable effect on the nonlinearity. An increased Fe content even leads

to lower dielectric loss in the N-SF66 glass. The limited sample size did not allow

measuring the dielectric properties with the SPDR at the explicit frequency of the CsDR

setup (∼ 1 GHz). Nevertheless, the qualitative trends are expected to be independent

of the frequency so that they can be extrapolated towards lower frequencies.

A decreasing ξ/ξ0 was observed for an increased dopant concentration. Still, it is not

possible to correlate lower loss to lower nonlinearity because of the ambiguousness in
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Figure 4.9: Nonlinear susceptibility χ3D of the MuT for the plus and the minus sign
branch of Equation 3.5.16 visualized in Figure 3.21. The scale for the streak samples
(E) is different and can be seen on the right of each plot.

the sign of the nonlinearity. Basing the interpretation on the measurements with two

Fe10k discs, the absolute nonlinearity even increases with decreasing loss.

Next, Figure 4.10 summarized the second fit parameter, the saturation electric field

amplitude Eb. First, the saturation of the intermodulation power is observed in all

measurements and the resulting Eb all lie within a factor of two. Even though the Na

samples show both a low Eb and a low ξ/ξ0, there is no general correlation between

ξ/ξ0 and Eb. Even the streak samples (E), which exhibit a significantly larger ξ/ξ0,

show a similar Eb.

The next paragraph resumes the discussion on the sign of the nonlinearity. Measurements

in the CsDR setup resulting in ξ < ξ0 certainly lead to opposing signs of χ3D and χ3R.

This is the case for all Na samples and the highly doped Fe samples. Of course, the

ξ < ξ0 effect is not significant, the possibility of compensating nonlinearities shall be
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Figure 4.10: Saturation field amplitude Eb for the glass dopant series. The x-axis lists
the different samples as in Figure 4.8.

addressed anyway.

For third order nonlinear responses, the compensation works over the complete power

range: y(x) = −ax3 and z(x) = +bx3 just yield y(x) + z(x) = (b− a)x3. Naturally, a

and b are required to be of the same order of magnitude to observe the compensation.

However, for more general nonlinearities, the situation is more intricate: to obtain an

intermodulation trend like the observed one while assuming different signs requires

the Eb of the two mechansims to be precisely the same. Otherwise, there would be

always a power at which both nonlinearities compensate completely, resulting in a dip

in the intermodulation trend. Clearly, this was not observed. This further supports the

hypothesis that the ξ < ξ0 effect is not significant and hence not due to compensating

nonlinearities.

The physical models discussed so far that have a saturating intermodulation only had

negative third order nonlinearities. However, the intermodulation signal can also saturate

for positive nonlinearities, as in the geometric nonlinearity in Equation 2.3.22. However,

this model is rather artificial and no other physically plausible positive saturating

nonlinearity model was found. Still, it is possible that the macroscopic nonlinear

susceptibility stems from compensating mechanisms within a single material. Metal-

insolator-metal capacitors already take advantage of such compensating nonlinearities

[JACJ+19] and [BCD18] uses this theoretical construct to propose optical fibers that

are tailored to zero nonlinearity. The same might be possible in the microwave range, if

mechanisms of different signs are identified.
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(a) streaks E1 (b) streaks E2 (c) streaks E3

Figure 4.11: N-SF66 streak samples (E). E1 does not actually show any visible streaks,
however, it was fabricated from the same melt as the samples E2 and E3, which exhibit
clearly visible streaks. The outer diameter of the samples is 60 mm.

Streak samples

The most significant increase in the nonlinearity correlates with the streaks in the sample

(see Figure 4.11), resulting in a |χ3| = (1.0± 0.5)× 10−14 m2/V2. Figure 4.12 depicts an

exemplary output signal of the streak samples, showing that the intermodulation power

can even cross the tone power. Although the increase in the resonator nonlinearity is

significant for the streak samples, no significant correlation with the amount of streaks

was found neither by permuting the streak sample nor by combining the streak samples

(E) with laboratory samples of N-SF66 (L). As long as at least one sample with streaks

(E2 or E3) is mounted either in resonator SA or SC, the intermodulation level increases.

Figure 4.13 shows two microscope images of the streaks. The optical image shows

the milky phenomenology of the streaks and their localized structure. The scanning

electron microscopy (SEM) image shows a section with streaks as an overview and

as a close-up image of some drops. The regions with streaks were investigated with

energy-dispersive X-ray spectroscopy (EDX) and were found to have an excess of Si.

This fact suggests that the drops are composed of SiO2. As SiO2 is not a component of
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Figure 4.12: Exemplary intermodulation trend of the streak samples (E). The displayed
powers are powers at the signal generator and the signal analyzer. It shows that the
power at the intermodulation frequency f3 can be even larger then the power at ff .
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(a) Optical microscopy of the streaks (b) SEM image of the streaks

Figure 4.13: Microscope images of the streaks [Val21].

N-SF66, the SiO2 most likely originates from the crucible that was used to melt the

glass. The small and monodisperse drop size (∼250 nm) suggest that the SiO2 particles

were not mechanically separated from the crucible. Instead, the SiO2 was first solved

into the glass melt and then separated due to immiscibility at lower temperatures. The

local occurrence of the streaks can be explained by a higher concentration of SiO2

at the bottom of the crucible, which can only be partly stirred. The drop form does

not allow distinguishing a crystalline or an amorphous state of SiO2, even though the

drops suggest some six-fold symmetry, which is expected for crystalline SiO2. However,

measurements at kHz frequencies propose that SiO2 has a nonlinear response below

the sensitivity of the CsDR setup (χ3 ≈ −10−18 m2/V2) [PSW+11]. Instead, the drops

suggest that the increased nonlinearity might actually originate from the interface of

the drops to the bulk N-SF66 glass. It is remarkable that the streaks neither induce a

measurable change in the dielectric constant nor in the loss (no detectable shift and no

change in the quality factor of the dielectric resonator’s resonance), while the influence

on the nonlinearity is significant. This conforms to the discussion of the microscopic

sources in subsection 4.1.1, which are visible in the nonlinearity but too small to be

detected in either permittivity or loss.

The nonlinear response of the streak glass sample and the glass-ceramic do not neces-

sarily originate from the same mechanism; however, the increased nonlinearity in the

streak samples suggest that the nonlinearity in the glass-ceramic might stem from a

similar mesoscopic mechanism associated with inhomogeneity such as grain boundaries.

Moreover, the streak samples (E) also show the saturating intermodulation trend with

a comparable saturation amplitude Eb. A comparable Eb with increased χ3 could for

instance result from the same mechanism, which is more abundant in the streak samples

than in the Ba4Al2Ti10O27 glass-ceramic.

The streak sample measurement has one more implication that is important. In

subsection 3.5.1 it was qualitatively argued how the setup prevents intermodulation

generation in the input and the output system. The S-parameter measurements

(high isolation S21 between the inputs, suppression of f2 at the output) support the
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argumentation. Still, a measurement of a single material does not allow ascribing the

intermodulation generation to that material with certainty. Nevertheless, from the set of

material measurements, it is certain to attribute the intermodulation generation to the

material: The CsDR streak samples (E), the laboratory (L) and the production samples

(P), all having the indistinguishable linear dielectric properties and the same geometric

properties, lead to a distinct intermodulation response. This allows ascribing the

nonlinear response to the material with high certainty. On the other hand, for the CDR

method, an experimental proof that the intermodulation originated from the dielectric

itself is still lacking, as the CDR method does not allow reference measurements without

a test material.

4.2 kHz Dielectric Nonlinearities

The nonlinear susceptibility of several glass samples and the Ba4Al2Ti10O27 based glass-

ceramic Poweramic GHz33 was measured with the kHz ultra-high precision capacitance

bridge introduced in section 3.6. Besides the nonlinear response to the voltage, the

change in capacitance is dominated by the temperature drift. To compensate for that

drift, a time series of the capacitance is recorded and the DC bias voltage is switched

on and off in regular intervals. A representative time series of the capacitance and the

conductance is shown in Figure 4.14. It depicts the decrease of the capacitance due to

the temperature drift as well as the fall and rise of the capacitance when the bias voltage

is turned on and off, respectively. This change in capacitance ∆C upon application

of the bias voltage is in the range of a about 4 fF for a capacitance of C0 = 180.9 pF,

corresponding to a relative change of 22 ppm. The capacitance change ∆C is extracted

by offsetting the data recorded with the bias voltage V and fitting a polynomial to the

adjusted data. The offset is chosen such that the sum of the residuals of the polynomial

fit is minimized. This procedure is repeated for a set of voltages. The resulting ∆C(V )

shows a parabolic form (see Figure 4.18), which can be fitted with Equation 3.6.4 to

obtain the nonlinear susceptibility χ3.
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Figure 4.14: Time series of the Poweramic GHz33 sample #0-3 at 100 V.
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Figure 4.15: Glassy samples investigated with the high sensitivity capacitance bridge:
(B) Borofloat (nominal thickness 100 µm), (G) Poweramic GHz33 green glass (nominal
thickness 250 µm), and (N) N-SF66 (nominal thickness 250 µm). The metallization
diameter for all samples is 12 mm.

Two features shall be mentioned briefly, but they will not be further discussed in this

work. First, the nonlinear response of the capacitance partly consists of a contribution

with an exponential-like relaxation with a time constant in the order of 10 s. It is

supposed that the relaxation response originates from the metallization/dielectric

interface. However, this effect is dominated by an instant (< 1 s) change in the

capacitance. Second, the conductance also shows a voltage dependency. As the loss

is expected to originate from the metallization contact, this nonlinear response is not

further investigated.

Several samples have been investigated with this method, including the glasses Borofloat,

N-SF66 and the green glass of Poweramic GHz33 (samples depicted in Figure 4.15).

However, only the glass-ceramic Poweramic GHz33 showed a measurable nonlinear

response.

4.2.1 Ba4Al2Ti10O27 Thickness Series

The glass-ceramic Poweramic GHz33 showed a significant, though only a few ppm,

decrease in capacitance if a bias voltage was applied. To check if the nonlinear response

conforms to a single bulk property χ3, both the area A and the thickness d of the

samples are varied. Varying A and d lead to different ∆C, however, they all should

result in the same χ3. Figure A.12 shows the fabricated samples and Table A.1 lists

their properties.

Figure 4.16 shows the linear permittivity and the loss for samples of different thicknesses.

The permittivity varies within the measurement uncertainty of ∼ 1.5 %, though samples

#0-3, #1-1 and #1-2 exhibit an elevated permittivity. Sample #0-3 has a smaller

metallization diameter. As the simple capacitor model neglects all fields outside the

capacitor, the elevated permittivity for the small metallization might originate from

the non-negligible contribution of these outer fields. Samples #1-1 and #1-2 are round

discs. The metallization area was evaluated by counting pixels on the images. The

round samples were evaluated differently than the rectangular samples, which could

therefore lead to the systematic error. Besides that, samples #0-1, #0-2 #0-3, #1-1
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Figure 4.16: Linear dielectric properties of Poweramic GHz33 samples as a function of
sample thickness.

and #1-2 belong to a different production batch than the other samples (see Table A.1).

Still, #0-1 matches in the trend of the majority of the samples.

Next, the loss significantly varies between the samples. Such significant deviations are

more likely to originate from to varying metallization interface resistances than from

the bulk dielectric loss. Sample #0-2 was excluded from further evaluation because it

showed large changes in the capacitance that are uncorrelated with the applied voltage.

It is suspected that fractures beneath the metallization lead to such a behavior.

Figure 4.17 summarizes the nonlinear susceptibility measurements for the thickness

series. All samples show a negative susceptibility in the order of 10−13 m2/V2. The

majority of the samples agree within the measurement uncertainty, though some samples

significantly deviate. For instance, the deviating samples #5 and #10 exhibit a fracture

that is close to the circular metallization and a metallization on that fractures itself

(see Figure A.9). Samples #0-3, #1-1, #1-2 showed the elevated permittivity.

The independence of the sample thickness and the symmetric response is a necessary
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Figure 4.17: Nonlinear susceptibility of Poweramic GHz33 samples for different sample
thicknesses. The lighter data points were excluded from the mean value calculation as
discussed in the text.
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condition for attributing the effect to a bulk material nonlinear susceptibility; still,

it is not sufficient to exclude an interface nonlinear response. On the other hand,

there is no systematic trend with the sample thickness either, which would clearly

suggest an interface effect. The significant difference in the nonlinear susceptibility

can be explained either by different interface properties or even with a difference in

bulk dielectric properties, which would mean that the glass-ceramic samples are not as

homogeneous as assumed. Additionally, the negative nonlinear susceptibility is opposed

to most MIM measurements, where interface effects are expected to lead to increase in

capacitance upon an applied voltage [VGJEK10].

Modeling the interface by a capacitance CI in series to the bulk capacitance CB leads

to an overall capacitance CG of the form:

CG =
CICB

CI + CB

(4.2.1)

In this series circuit, CG is always smaller than both CI and CB. Measuring a CG that

conforms to the expected CB is a good indicator that CI is sufficiently shortened (GI >

ωCI). This is the case for the linear capacitance measurements: the permittivity is even

3.6 % higher than the one measured with the SPDR at 1 GHz. This theoretically allows

assigning the voltage dependent capacitance of this series circuit to the nonlinearity to

the bulk capacitance itself.

Still, to investigate the effect of the interface more thoroughly, a gold metallization

instead of the chromium/silver metallization was planed. However, the mechanical

contact of the gold was not sufficient for the characterization. Another way to investigate

the interface could be a controlled series with different degrees of polishing of the surface

before metallization.

The following paragraph briefly summarizes the sources of uncertainties: the uncertainty

in εr is dominated by the geometric properties of the capacitor. The uncertainty in

the thickness d is the standard deviation of five measurements at different spots on

the sample (about 0.5 %) that were taken with a Heidenhain probe. The area A is

determined by image processing the sample pictures. The uncertainty is taken to be the

standard deviation of different samples of same nominal area. This is a very conservative

guess, which is most likely the reason for the comparatively large uncertainty. The

uncertainty of Qd is dominated by the noise in the conductance (1 % at 100 pF and

0.1 nS). The uncertainty of χ3 is based on the uncertainty of the fit ∆εr(E) (about

10 %). The uncertainty of ∆εr is dominated by ∆C. The uncertainty ∆C is estimated

from the residuals of a fit with a large number of voltage points (Figure 4.18). At a

∆C of about −4 fF, the residuals deviate by about ±0.1 fF, corresponding to 2.5 % of

the ∆C signal and 0.6 ppm of the absolute capacitance C0 = 180.9 pF. The uncertainty

in the electric field is dominated by the uncertainty in εr.

Overall, the majority of the samples agree with a bulk nonlinear susceptibility of

χ1kHz
3 = (−7.5± 0.2)× 10−13 m2/V2.
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Figure 4.18: Voltage dependent capacitance measurement at sample #0-3. Positive and
negative voltages are overlaid to give a visual comparison.

As discussed above, it seems more likely that the significant deviations are due to

inhomogeneous bulk properties than influences of the interface. Still, it cannot be said

with final certainty that the measured nonlinearity actually stems from the bulk material

instead of the interface. For the qualitative comparison to the microwave nonlinearity

from subsection 4.1.1 and for the comparison of samples of different crystallite size

in subsection 4.2.2, the order of magnitude of 10−13 m2/V2 for all measurements is

sufficient.

In contrast to the saturating intermodulation trend that was observed in the microwave

measurements, the dependency of the capacitance on the voltage is perfectly described

by a symmetric parabola with a single fitting parameter. Additionally, the capacitance

method allows the determination of the sign of the nonlinearity in contrast to the

intermodulation measurement.

As a microscopic origin, any resonant effect can directly be excluded because the DC

voltage induces the nonlinear response. This also excludes the saturable absorber
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(b) Charge in a box (Langevin)

Figure 4.19: Estimation of the density N of dipoles p for the measured constraints,
under the assumption of the binary state system (Equation 2.4.66) and the charge in a
box model (Equation 2.4.63). The solid line represents the measured χ3 (N ∼ p−4), the
dashed lines are conditions in form of inequalities (N ∼ p−2, p < pmax).
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(Equation 2.4.44). Negative nonlinear susceptibilities in MIMs have been attributed to

dipolar orientation [PSW+11] or based on entropic far distance interactions [BDB09].

Additionally, both the binary state system (Equation 2.4.66) and the charge in a box

model (Equation 2.4.63) can be adjusted in their parameters to result in the required

order of magnitude of the nonlinear susceptibility χ3. Furthermore, the charge in a box

model is not limited by a diffusion velocity compared to the field reversal time as in the

microwave range. However, χ3 alone only allows the determination of the product of

the density N and the dipole p in these models, Np4. Nevertheless, further constrains

can be derived: First, the fact that the data is perfectly described by a parabola

reveals that the saturation field amplitude Eb is not reached under the experimental

conditions. This minimum possible value in Eb gives an upper limit for p according to

Equation 2.3.27. Second, the linear contribution of the nonlinear mechanism is expected

not to exceed χ1 = 0.1, otherwise it would had been observed in dielectric spectroscopy

[5]. Figure 4.19 visualizes these constrains. The value for Eb is chosen for 500 V over

100 µm, including the de-electrification field. The resulting window of possible values

is rather narrow. For the charge in a box model it is even on the edge of returning

any possible combination of parameters at all. For both models, the dipole can be

constrained to about 103 atomic dipoles (eÅ) with a density of N ≈ 1020 m−3.

4.2.2 Ba4Al2Ti10O27 Ceramization Series

The Poweramic GHz33 glass-ceramic samples of the thickness series all showed a

significant nonlinear response. On the other hand, its green glass did not exhibit a

measurable nonlinear response. This suggest a dependency of the nonlinear response

on the degree of crystallinity of the dielectric. To further elaborate this conjecture, a

sample series with different degrees of ceramization and hence degrees of crystallinity

are investigated. The crystallite size shall serve as a measure of degree of crystallinity.

Figure 4.22 shows four block samples with different degrees of ceramization. They are

clearly distinguishable by visual inspection. Their SEM images in Figure 4.21 show the

different degree of ceramization in the crystallite size, though neither sample K1 or K2

exhibit detectable crystallites.

To achieve high electric fields, the blocks were grinded down to about 160 µm. Under

the pressure of polishing, the samples turned out to be fragile. Nevertheless, some

Figure 4.20: Ceramized blocks for four different ceramization programs. Their geometry
is 28× 28× 5 mm3.
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(a) Sample K1 (b) Sample K3

(c) Sample P (Production GHz33) (d) Sample K4

Figure 4.21: Scanning Electron Microscopy images for four ceramized samples with
different crystallite sizes. The dark areas have been identified as Ba4Al2Ti10O27 via
energy dispersive X-ray spectroscopy.

Figure 4.22: Metallized samples with different degrees of ceramization.

fragments were sufficiently large to be metallized. These selected samples are shown in

Figure 4.22. Furthermore, the samples turned out to be unsuitable for cleaning in the

ultrasonic bath due to their fragility. Instead, they were simply wiped with ethanol

before metallization.

Figure 4.23 summarizes the linear and the nonlinear dielectric response for the dif-

ferent degrees of ceramization for the samples with measurable nonlinear response

and measurable crystallite size. The crystallite sizes are visually estimated based on

Figure 4.21 and are hence equipped with large uncertainties. The samples that do not

show any measurable nonlinear response (K1 and K2) are also the samples with no

detectable crystallites. Samples K3, P (GHz33 from production) and K4 on the other

hand show a positive correlation of nonlinear susceptibility and crystallite size. The

uncertainty of the K3 sample is larger due to the asymmetric response to negative and
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Figure 4.23: Dielectric properties for different crystallite sizes. Both the linear suscepti-
bility and the nonlinear susceptibility increase with the crystallite size. In contrast to
the linear susceptibility, the nonlinear susceptibility changes over order of magnitudes.
The uncertainty of the 0.2 µm sample is much larger as this sample actually exhibited a
significant asymmetric response (see Figure A.11).

positive voltages (see Figure A.11), which is clearly not compatible with a bulk χ3. As

this sample shows the smallest nonlinear response, it is possible that this sample is

dominated by an interface nonlinear response, while the others are dominated by a bulk

nonlinear response. However, more samples are needed to support such conjectures.

Overall, a correlation of the nonlinear response of MIM capacitors made from the

Ba4Al2Ti10O27 glass-ceramic and the crystallite size has been observed. Still, this

nonlinear response cannot be unambiguously attributed to a bulk χ3.



Chapter 5

Conclusion and Outlook

The aim of this work was the characterization of the nonlinear susceptibility of dielectric

glasses and glass-ceramics in the microwave range and to relate their nonlinear sus-

ceptibility to microscopic mechanisms. The coupled dielectric resonator (CDR) setup

from [Ber18] was extended, including a model and a measurement procedure for the

measurement setup, and tested for reproducibility. The CDR setup allows measuring

nonlinear susceptibilities of high permittivity εr > 30 and low loss dielectrics Qd > 1000

with a sensitivity of at least |χ3| > 10−17 m2/V2.

A glass-ceramic with Ba4Al2Ti10O27 as its main crystalline phase was character-

ized. The nonlinear susceptibility of the glass-ceramic was found to be |χ1GHz
3 | =

(4± 2)× 10−16 m2/V2, which is comparable to previously measured high quality sin-

tered ceramics.

The dependency of the intermodulation level on the input power observed in this

measurement was found to be incompatible with a power-law description classically

used for phenomenological description of small nonlinearities. To describe the inter-

modulation response, a method based on Fourier coefficients was developed to predict

intermodulation for more general nonlinear responses: while the power-law description

is only applicable within the radius of convergence of the power series, the Fourier

coefficient integral allows numerical calculation of intermodulation responses of any

square integrable nonlinear response function.

The Fourier coefficient integral method was applied to several established nonlinear

polarization models: amongst these, the locally free charge model, the resonant saturable

absorber and the binary state system were found to exhibit precisely the intermodulation

behavior that was observed experimentally.

On this basis, microscopic realizations of these models were discussed. In this context,

it was found that microscopic interpretation crucially depends on local electric field

models. The locally free charge model results in lengths that coincide with the size

of the crystallites in the glass-ceramic. The binary state system on the other hand

could stem from a local ferroelectric behavior. A definite determination of model is not

possible, however, several previous conjectures could be ruled out. In any case, the

mechanism that dominates the nonlinear response was found to contribute barely to

109
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the linear dielectric properties (χ1 = 10−8) and therefore cannot be detected by linear

dielectric spectroscopy measurements.

The CDR setup was extended to coupled split dielectric resonators (CsDR), allowing

the characterization of dielectrics with lower permittivity. This enabled measuring the

εr = 21 glass N-SF66. The glass was used to investigate the influence of typical mineral

impurities. Iron doping was found to have no measurable influence on the nonlinear

dielectric response, which was originally suspected to exhibit a magnetic nonlinear

response. The absence of measurable changes was further supported by modeling the

nonlinear response of magnetic impurities. Instead, SiO2 immiscibilities were found to

increase the nonlinear response of the glass significantly, which supports the discussed

microscopic origins related to inhomogeneity.

For comparison, the nonlinear dielectric response was measured in the kHz range in a

capacitor geometry with an ultra-high precision capacitance bridge. Several glassy sam-

ples were found to show no measurable nonlinear response (|χ3| < 10−14 m2/V2). The

Ba4Al2Ti10O27 glass-ceramic, on the other hand, showed a significant negative nonlinear

response. The majority of the samples conformed to χ3 = (−7.5± 0.2)× 10−13 m2/V2.

Finally, the nonlinear response of the capacitor could be shown to increase with the

crystallite size in the glass-ceramic.

In summary, the SiO2 immiscibility and the crystallite size dependency point towards

an inhomogeneous source of the nonlinearity at microwave frequencies and below,

in contrast to previous homogeneous conjectures such as phonon nonlinearity and

electrostriction.

Outlook

First, the characterization of the ceramization series that was characterized with the kHz

capacitance bridge motivates a similar series for the CDR setup. The SiO2 immiscibilities

were already shown to enhance the microwave nonlinear response. Both the crystalline

phase or its interface are a potential candidate for the nonlinear microwave response of

the glass-ceramic.

The εr-range of the CDR/CsDR setup could be extended even further by a tuning

gadget for the resonators. Nevertheless, the applicability was found to be limited.

Moreover, it is advisable to compare the outcomes to results obtained with different

methods. For instance, the re-entrant cavity method developed in [VH88] has sufficient

sensitivity and seems to be extendable for the characterization of solid dielectrics. It

allows nonlinear dielectric characterization up to the microwave range, although with a

quasi-static bias field that induces the nonlinear response.

For characterization of kHz nonlinear responses, metal-isolator-metal (MIM) structures

with thin dielectric films ∼ 10 nm and high electric fields show an easily measurable

change in capacitance. While MIM capacitors are bottom-up manufactured, a resonant

circuit setup comparable to the one used in [FFK+93] seems more suitable for top-down

manufactured samples. It allows the detection of smaller changes in the dielectric
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constant at lower fields.

Moreover, the discussion on local electric field models motivates to identify nonlinear

mechanisms in a different manner than the applied electric field, e.g. by temperature and

frequency dependent measurements. Especially higher frequencies are of technological

interest, as applications further proceed to tens of GHz, including automotive systems.

In addition, as the power range for observing the intermodulation is limited, higher

powers can be addressed with the aim to differentiate various intermodulation trends.

Finally, the proposed Fourier coefficient integral method seems to be applicable in

various different fields of science that use intermodulation measurements for nonlinear

characterization. For instance, so far unexplained intermodulation trends in high tem-

perature superconductors, microstrip lines, and even intermodulation in the mammalian

ear can be accurately modeled with this method based on the well-known nonlinear

response functions. Figure 5.1 gives three examples. Based on this model, new insights

into nonlinear responses may become possible.

(a) High Temperature Superconductors [AO05]

(b) Microstrip lines [SZS09] (c) Mammalian ear [RRR97]

Figure 5.1: Examples for intermodulation data that can be explained with the proposed
Fourier coefficient integral for intermodulation prediction. In all cases, the underlying
model is the saturable absorber, though other models produce similar trends. In
[RRR97], one input tone is held constant in power, which gives rise to the 2 dB/dB
slope. In [AO05], both the actual intermodulation level and its derivative are shown.
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Additional Calculations

Potential Estimate

The potential in [MF62] is given in the form:

r0 = 3.472× 10−8 cm

Φ(r0) = 0

Φ′(r0) = 0

Φ′′(r0) = 1.819× 104 erg/cm2

Φ′′′(r0) = −9.693× 1012 erg/cm3

Φ′′′′(r0) = 4.016× 1021 erg/cm4

(A.0.1)

This formulation shall be translated into a potential of the form:

Φ(r) = Φ0r + Φ1r
2 + Φ2r

3 + Φ3r
4 (A.0.2)

This translation occurs with:

Φ3 = Φ′′′′(r0)/24

Φ2 = Φ′′′(r0)/6− Φ′′′′(r0) r0/6

Φ1 = Φ′′(r0)/2− Φ′′′(r0) r0 + Φ′′′′(r0)r2
0/4

Φ0 = −Φ′′(r0) + Φ′′′(r0)r2
0/2− Φ′′′′(r0)r3

0/6

(A.0.3)

This leads to

Φ(r − r0) = 9.10× 103 erg/cm2(r − r0)2

− 1.62× 1012 erg/cm3(r − r0)3

+ 1.67× 1020 erg/cm4(r − r0)4

(A.0.4)

Circuit Modeling

The circuit depicted in Figure 3.11 can be modeled by two coupled differential equations:
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Lc Ḧ + LI Ï +R İ +
1

C
I = 0

Lcİ + LHḢ = UH

(A.0.5)

Solving the latter equation after differentiating once returns Ḧ = (UH − LcÏ)/LH.

Inserting this into the former equation of Equation A.0.5 after dividing by LI and

replacing 2γ = R/LI and ω2
0 = 1/(LIC) gives:(

1− L2
c

LHLI

)
Ï + 2γİ + ω2

0I = − Lc
LHLI

U̇H (A.0.6)

This equation can be simplified by introducing the dimensionless coupling factor

k = Lc/(LHLI). Remembering the physical meaning of Lc, LH and LI leads to the

constrains LH > Lc < LI and hence k < 1. Dividing Equation A.0.6 by 1− k2 leads to:

Ï + 2
γ

1− k2
İ +

ω2
0

1− k2
I =

k

1− k2

−U̇H√
LHLI

(A.0.7)

This is just the differential equation of a damped and excited harmonic oscillator with

modified resonance frequency and damping and excitation A:

γ′ =
γ

1− k2
> γ and ω′0 =

ω0√
1− k2

> ω0 and A =
k

1− k2

−U̇H√
LHLI

(A.0.8)

Effect of Unequal Coupling on Amplitudes

For unequal coupling c and k, the system of three coupled resonators is described by:
ω2

0 − ω2 −kω2
0 0

−kω2
0 ω2

0 − ω2 −cω2
0

0 −cω2
0 ω2

0 − ω2



I

J

K

 = 0 (A.0.9)

The eigenvalues for ω2 are:

ω1 = ω0

√
1−
√
c2 + k2

ω2 = ω0

ω3 = ω0

√
1 +
√
c2 + k2

(A.0.10)

This shows that unequal coupling k 6= c does not influence the intermodulation relation

ω3 = 2ω2 − ω1. The corresponding eigenvectors v = (I, J,K) read:

v1 = (c,
√
c2 + k2, k)

v2 = (k, 0,−c)
v3 = (1,−

√
c2 + k2, 1)

(A.0.11)
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Estimation for χ3 Benchmark

For non-resonant structures, [Sta80] offers a calculation to estimate the influence of a

nonlinear substrate on PIM generation in a microstrip line. The intermodulation power

is derived to be:

PIM3 =
π2

4
Z2

0P
3α2

V

(
Y

λIM

)2

(A.0.12)

Here, αV is defined by εr(V ) = εr(1 + αVV
2) so αV = (εr d)2αE and αE = χ3/εr

Choosing Z0 = 50 Ω, an input power of P = 43 dBm in a substrate of εr = 5 of

thickness d = 1 mm over a length of Y = 10 cm at 1 GHz yields |χ3| < 10−15 m2/V2

if the intermodulation power was restricted to PIM3 < −112 dBm. The powers P and

PIM3 were chosen to fulfill the limit given in [HCC09a].

For resonant structures, the authors of [ITNW92] proposed a filter based on their high

quality (Zr,Sn)TiO4 sintered ceramic that achieves 50 dB isolation. This suggest a

stricter limit on the material nonlinearity for resonant structures |χ3| < 10−17 m2/V2

(see Figure 4.5).

Calculation of the RoC for the inverse polynomial

The radius of convergence (RoC) of the power series of the functions of interest,

Lgv(x) = coth(x)− 1/x, tanh(x) and x/
√

1 + x2 are given in [Zuc72] and [Boy08]. For

y(x) defined by x = y(x) + y(x)3 (see Equation 2.3.21), the radius of convergence is

discussed here. The radius of convergence can be obtained with the follwing Mathematica

code:

Solve[x == y + y^3, y]; (*Solve inverse polynomial equation*)

y/.%[[1]](*Take real solution only*);

Normal[Series[%,{x,0,15}]] (*Calculate series at x=0 up to the 15th order*);

CoefficientList[%,x] (*Take Coefficients*);

%[[2;; ;;2]] (*Take odd terms only*);

a[n_] = FindSequenceFunction[%,n] (*Recognize pattern of coefficients*);

b[n_]:= If[EvenQ[n], 0, a[(n+1)/2]] (*Reconstruct even terms*);

1/Limit[Abs[b[n]]^(1/n), n->Infinity] (*Calculate RoC*)

15 terms in the power series are sufficient to recognize the pattern of the coefficients.

The output is

xRoC = 2/(3
√

3) = −4.1 dB. (A.0.13)

This method can also be applied to the saturable absorber in Equation 2.4.44 and

conforms to the RoC given in [Boy08].
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Additional Experimental Data

CsDR Samples

(a) Laboratory sample (L) (b) Production sample (P) (c) GHz33 green glass (GG)

Figure A.2: Disc samples (thickness 4 mm, outer diameter 60 mm)

(a) no added Fe2O3 (b) 200 wt ppm (c) 500 wt ppm

(d) 2000 wt ppm (e) 10000 wt ppm (f) 20000 wt ppm

Figure A.3: N-SF66 dopant series Fe2O3.

(a) 1000 wt ppm (b) 10000 wt ppm

Figure A.4: N-SF66 dopant series NaO.
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Q0 f2HMHzL S22f2 S22p F3nwa F3spc F2spc F1spc f1soll f1ist

1 1870 950.7 -22.9 -1. -1. -3.7 -87 -116 917.9 917.

2 1870 951.1 -22.7 -1. -1. -3.5 -87 -114 918. 918.1

3 1870 950.15 -16.7 -1. -1. -3.7 -88 -116 917.3 917.65

4 1870 950.1 -15.6 -0.9 -1. -3.6 -88 -115 917.4 917.7

5 1870 951. -20.2 -0.9 -1. -3.6 -84.7 -113 921. 920.

6 1870 950 -18.9 -0.9 -1. -3.7 -85 -112 920.75 920.

7 1870 950.7 -16.3 -1.1 -1. -3.9 -88.3 -116 917.7 917.2

8 1870 950.75 -15.5 -1. -1. -3.8 -89 -114 917.5 916.9

9 1870 950.2 -12.6 -1. -1. -4. -87 -115 918. 918.4

10 1870 950.2 -11.6 -0.9 -1. -4.2 -87 -114 918.5 918.7

11 1870 950.2 -11.6 -1. -1. -4. -86.6 -115 918.2 918.4

12 1785 950.4 -11.8 -1.1 -1. -4.2 -86.15 -115 918.5 918.5

13 1870 950.25 -12.1 -1. -1. -4. -86.6 -115 918.2 918.3

(a) Settings GHz33
splitHMHzL missHMHzL P2inHdBmL P1outHdBmL P2outHdBmL P3outHdBmL IM3MHdBL E2HV�mmL chi3Hm2�V2E-16L E2bHV�mmL

1 32.8 0.9 -20. -0.3 -3.1 -145.2 -144.9 2.09 4.45 16.4

2 33.1 -0.1 -20. 12.8 -13.2 -138.1 -150.9 2.09 2.24 14.5

3 32.85 -0.35 -20. 14.3 1.4 -134.3 -148.6 2.15 2.77 15.2

4 32.7 -0.3 -20. 10.1 -2. -130.9 -141. 2.16 6.6 13.9

5 30. 1. -20. 2.7 -1.8 -138.8 -141.5 2.11 6.48 15.5

6 29.25 0.75 -20. 13.5 1.3 -137.3 -150.8 2.13 2.19 14.6

7 33. 0.5 -20. 6.9 -17.9 -137.5 -144.5 2.15 4.43 18.1

8 33.25 0.6 -20. 0.5 -10.5 -139.3 -139.8 2.16 7.55 20.3

9 32.2 -0.4 -20. 17.4 -1. -132.8 -150.2 2.19 2.23 17.5

10 31.7 -0.2 -20. 11.8 -4.3 -136. -147.7 2.2 2.93 16.3

11 32. -0.2 -20. 11.1 -20.6 -136.5 -147.6 2.2 2.96 15.5

12 31.9 0 -20. 20.3 -10.7 -137.6 -157.9 2.14 1. 18.3

13 32.05 -0.1 -20. 17.5 -9.1 -137.6 -155.1 2.19 1.26 16.7

(b) Results GHz33
Q0 f2HMHzL S22f2 S22p F3nwa F3spc F2spc F1spc f1soll f2ist

1 1238 942.7 -9.6 -0.9 -1. -3.8 -84 -111 911.5 912.3

2 1238 942.8 -9.8 -0.9 -1. -3.8 -84 -111 913.5 914.3

3 1238 943.3 -10.7 -0.8 -0.9 -3.8 -83 -110 914.05 913.9

4 1238 942.5 -10.8 -0.8 -1. -3.9 -82 -108 915.5 914.9

5 1230 943. -9.8 -1.1 -1. -4. -85.5 -112 912.6 912.5

6 1240 943.1 -9.9 -1.1 -1. -4. -85.5 -112 911.8 911.9

7 1250 942.9 -7.4 -1.1 -1. -3.9 -84.2 -112 913.9 914.3

8 1250 942.6 -6.9 -1. -1. -3.9 -84.2 -112 913.7 914.6

9 1250 942.75 -7.4 -1. -1. -3.9 -84.2 -112 914. 914.8

10 1250 942.6 -7.2 -1. -1. -3.9 -84.2 -112 913.6 914.35

11 1250 942.55 -7.1 -1. -1. -3.9 -84.2 -112 914.1 914.9

12 1250 942.8 -7.4 -1. -1. -3.9 -84.2 -112 913.95 914.6

(c) Settings streak samples (E)
splitHMHzL missHMHzL P2inHdBmL P1outHdBmL P2outHdBmL P3outHdBmL IM3MHdBL E2HV�mmL z1Hm2�V2E-16L E2bHV�mmL z2

1 31.2 -0.8 -20. 5.1 -4.6 -132.7 -137.8 1.77 102.19 14.7 4.34

2 29.3 -0.8 -20. 0.3 -7.5 -131.3 -131.6 1.77 208.21 14.4 4.34

3 29.25 0.15 -20. 7.9 -11.3 -124.1 -132. 1.77 198.54 15.7 4.34

4 27. 0.6 -20. 9.6 -9. -132.8 -142.4 1.77 59.87 13.4 4.34

5 30.4 0.1 -20. 7.9 -8.6 -131.4 -139.4 1.76 85.96 19.6 4.34

6 31.3 -0.1 -20. 8.7 -11.7 -127.1 -135.8 1.77 127.8 16.3 4.34

7 29. -0.4 -20. 6.7 -9.9 -132.7 -139.4 1.74 86.33 22.8 4.34

8 28.9 -0.9 -20. -1.5 -11. -134.6 -133.1 1.73 181.27 22.4 4.34

9 28.75 -0.8 -20. -3.6 -12.1 -136.2 -132.6 1.75 188.01 24. 4.34

10 29. -0.75 -20. 6.9 -14.8 -140.6 -147.6 1.74 33.92 23.4 4.34

11 28.45 -0.8 -20. 14.4 -16.3 -137.7 -152.1 1.74 20.22 21.5 4.34

12 28.85 -0.65 -20. 7. -20. -138.8 -145.8 1.75 41.14 21.7 4.34

(d) Results streak samples (E)

Figure A.5: Settings and resulting measurands of the CDR/CsDR measurements for
GHz33 and the streak samples (E). z1 and z2 columns correspond to ζ1 and ζ2 in
Equation 3.5.18.
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SPDR Linear Dielectric Characterization

0 2 4 6 8 10
17.0

17.5

18.0

18.5

19.0

Frequency f @GHzD

Pe
rm

itt
iv

ity
¶

r

GG

(a) Permittivity

0 2 4 6 8 10
3.5

4.0

4.5

5.0

5.5

6.0

frequency f @GHzD

L
os

s
ta

n∆
�10

-
3

GG

(b) loss

Figure A.6: Poweramic GHz33 green glass.
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(b) Permittivity Fe series
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(c) Loss Na series
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(d) Loss Na series

Figure A.7: SPDR of Na and Fe series. The uncertainty in εr for the Fe series is the
uncertainty of the setup while the uncertainty in the Na series is based on the standard
deviation of several samples and is therefore smaller than that of the Fe measurements.
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Capacitance Bridge Samples

(a) Before (b) After

Figure A.8: GHz33 green glass block samples before and after the ceramization.
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Figure A.9: High sensitivity capacitance bridge GHz33 Samples.
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Table A.1: GHz33 thickness series samples. “277E” and the like denote the production
batch.

Sample # 0-1 0-2 0-3

Material GHz33 (277E) GHz33 (277E) GHz33 (277E)

d [µm] 98.7±0.3 99.0±0.2 100.7±0.5

A [cm2] 1.19±0.01 1.20±0.01 0.59±0.01

Sample # 2 3 4

Material GHz33 (304M) GHz33 (304M) GHz33 (304M)

d [µm] 215.9±0.6 218.2±0.8 215.0±0.9

A [cm2] 1.19±0.01 1.17±0.01 1.19±0.01

Sample # 5 6 7

Material GHz33 (304M) GHz33 (304M) GHz33 (304M)

d [µm] 185.3±0.5 184.5±0.3 158.8±0.2

A [cm2] 1.17±0.01 1.19±0.01 1.18±0.01

Sample # 8 9 10

Material GHz33 (304M) GHz33 (304M) GHz33 (304M)

d [µm] 153.8±0.7 151.5±0.9 135.8±0.6

A [cm2] 1.18±0.01 1.15±0.01 1.19±0.01

Sample # 11 1-1 1-2

Material GHz33 (304M) GHz33 (277E) GHz33 (277E)

d [µm] 138.8±0.2 248.0±2.5 251.1±0.5

A [cm2] 1.18±0.01 1.15±0.01 1.16±0.01

Table A.2: GHz33 ceramization series samples.

Sample # K1 K2a K2b

Material GHz33-K1 GHz33-K2 GHz33-K2

d [µm] 145±1 146.0±0.8 153.1±0.4

A [cm2] 1.19±0.01 0.40±0.01 0.40±0.01

Sample # K3 K4a K4b

Material GHz33-K3 GHz33-K4 GHz33-K4

d [µm] 154±1 156.0±0.4 153.9±0.8

A [cm2] 1.13±0.01 0.39±0.01 0.39±0.01
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Figure A.10: Change of capacitance with respect to the applied voltage for the thickness
series.
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Figure A.11: Change of capacitance with respect to the applied voltage for the ce-
ramization series.
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Figure A.12: Time series of sample K2a at 100 V. The dotted line marks the times
with applied DC bias voltage.
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Publications and Conferences

Publications

• [5] Article: M. Letz, M. Hovhannisyan, F. Bergmann, Xiaofei Bai, H. Engelmann,

and G. Weidmann, ”Ba4Al2Ti10O27 based glass ceramic as dielectric in high frequency

applications”, Applied Physics Letters 119, 052903 (2021)

• [4] Article: F. Bergmann, M. Letz, H. Maune, and G. Jakob, ”Description of inter-

modulation generation of nonlinear responses beyond the validity of the power series

expansion”, Applied Physics Letters 118, 012902 (2021)

• [3] Patent: F. Bergmann, M. Letz, ”Device and method for determining the nonlinearity

of a dielectric material”, Publication No. WO 2020/127199 A1 (2020)

• [2] Conference Proceeding: F. Bergmann, M. Letz, H. Maune, and G. Jakob, ”Setup

for Characterization of the Non-Linear Electric Susceptibility in the Microwave Range

Applied to a Glass Ceramic” in 2019 IEEE MTT-S International Microwave Workshop

Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP),

pp. 16–18 (2019)

• [1] Article: F. Bergmann, M. Letz, H. Maune, and G. Jakob, ”High sensitivity charac-

terization of the nonlinear electric susceptibility of a glass ceramic in the microwave

range”, Applied Physics Letters 114, 212903 (2019)

Conferences

• Contributed talk: “High sensitivity characterization of the nonlinear electric suscep-

tibility of glasses and glass-ceramics in the microwave range”, Electroceramics XVII,

Darmstadt (online), Germany, Aug. 24-28 (2020)

• Invited talk: “High sensitivity characterization of the nonlinear electric susceptibility of

glasses and glass ceramics in the microwave range” , Advanced Ceramic and Application

Conference VIII, Belgrade, Serbia, Sep. 23-25 (2019)

• Contributed talk: “Nonlinear dielectric responses in the microwave range”, IEEE MTT-

S International Microwave Workshop Series on Advanced Materials and Processes,

Bochum, Germany, Jul. 16-18 (2019)

• Poster: “Glasses and glass ceramics in wireless communication applications: Nonlinear

dielectric response”, SCHOTT Materials Day, Mainz, Germany, Jun. 4 (2019)

• Contributed talk: “Tiny nonlinear dielectric responses in the microwave range”, DPG

Frühjahrstagung, Regensburg, Germany, Mar. 31 - Apr. 5 (2019)

• Contributed talk: “Characterization of extremely small nonlinearities in the dielectric re-

sponse of glass-ceramics in the microwave range”, Electronic Materials and Applications,

Conference, Orlando, Florida, USA, Jan. 23-25 (2019)
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surface acoustic waves roadmap. Journal of Physics D: Applied Physics,

52(35):353001, 2019.

[DH04] H Dresig and F Holzweißig. Einfache nichtlineare und selbsterregte

Schwinger. In Maschinendynamik. Springer, 2004.

[DP99] N B De Carvalho and J C Pedro. Large- and small-signal IMD behavior

of microwave power amplifiers. IEEE Transactions on Microwave Theory

and Techniques, 47(12):2364–2374, 1999.



126

[DS99] T Dahm and D J Scalapino. Nonlinear current response of a d-wave

superfluid. Physical Review B, 60:13125–13130, 1999.
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