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Abstract

The Standard Model of particle physics has been tested to an unprecedented precision
at the Large Hadron Collider, proving its success as the theory describing the laws of
nature up to very short distances. However, there are still several open questions to
which it cannot provide a viable answer, e.g. the unknown origin of fermion masses and
the hierarchy problem. These questions inevitably point towards the presence of physics
beyond the Standard Model.

Extensions of the Standard Model featuring a warped extra dimension compactified on
an S1/Z2 orbifold offer a convincing mechanism for addressing both the hierarchy prob-
lem and the flavor puzzle of the Standard Model. However, one aspect that has not
been studied in detail so far is the coordinate dependence of bulk fermion masses. We
propose a mechanism for dynamically generating these masses in warped extra dimen-
sions by introducing an odd bulk scalar field, and demonstrate the feasibility of such
proposal. Fermion 5D masses are obtained through Yukawa-like interactions after the
odd bulk scalar acquires a vacuum expectation value. We can naturally reproduce the
observed flavor structure and mass hierarchy of the Standard Model quark sector via
different localizations of the fermion zero modes along the extra dimension, similarly
to the conventional setup. The vacuum expectation value of the scalar field can induce
backreaction effects on the Randal-Sundrum metric and deviations in the bulk fermion
profiles. We study how such modifications can affect electroweak precision and flavor
observables. We use the unsuppressed contributions to these parameters and up-to-date
data to set a limit on the scale of new physics.

In addition, we argue that this extension of the Standard Model, featuring a warped extra
dimension and a Z2-odd scalar singlet, provides a natural explanation, not only to the
hierarchy problem and the nature of fermion bulk masses, but that it also has imprints
in Higgs physics and introduces a new mediator between the Standard Model and any
fermionic dark sector. The Kaluza-Klein excitations of the new scalar particle can be the
leading portal to any fermion propagating in the bulk of the extra dimension playing the
role of dark matter, therefore, contributing to reproduce the observed dark matter relic
abundance. We show that the odd scalar excitations will necessarily mix with the Higgs
boson, leading to modifications of the Higgs couplings and branching ratios and, at the
same time, allowing the Higgs to mediate the coannihilation process of the fermionic
dark matter. We study these effects and explore the viability of fermionic dark matter
in the presence of the new heavy scalar mediators by considering different freeze-out
scenarios.
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Notations and conventions

We summarize here the notations and conventions used throughout this document. We use
natural units, for which the Planck constant, h, and the speed of light, c, are set to the following
values

~ = c = 1, with ~ =
h

2π
.

We use greek indices, e.g. µ, ν = 0, . . . , 3, to denote the four spacetime coordinates. We
introduce Roman indices for denoting coordinates in 5 dimensions, where lower-case symbols
(a, b, . . .) stand for local Lorentz indices, defined in the tangent flat space, while upper-case Roman
indices (M,N, . . .) are used for objects defined in the curved space. In addition, we use Einstein’s
summation convention, i.e. indices that are repeated are summed over unless otherwise stated.

The Levi-Civita symbol is denoted by εijk, and we use the following representation for the pauli
matrices when necessary

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The transpose of a matrix A is denoted by AT , the complex conjugate by A∗ and the Hermitian
adjoint is A† = (A∗)T . The expression +h.c. stands for “plus the hermitian conjugate” of the
precedent quantity. Moreover, we denote the unitary group of degree n by U(n) the special unitary
group of same degree by SU(n).

We employ the time-like convention for the metric tensor, i.e.

ηµν = ηµν =




+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 .

The gamma matrices are denoted as γµ and are defined by the anticommutation relations

{γµ, γν} = γµγν + γνγµ = 2 ηµν .

Given a generic Dirac spinor Ψ, we define its adjoint by Ψ̄ = Ψ†γ0.
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Overview of publications

This thesis is based on the work appearing in the publications and preprints [1, 2]. Here we
provide an overview of the work that is contained in them, and specify the contribution of the
author.

[1] A. Ahmed, A. Carmona, J. Castellano Ruiz, Y. Chung, and M. Neubert, “Dynamical
origin of fermion bulk masses in a warped extra dimension", JHEP 08 (2019) 045,
[1905.09833].

In this work we consider an extension of the Standard Model featuring a warped extra
dimension together with an odd bulk scalar field. We demonstrate the feasibility of
dynamically generating fermion bulk masses with such scalar field. The bulk scalar
acquires a vacuum expectation value, which is odd under the orbifold symmetry and
gives rise to the fermion bulk masses through Yukawa-like interactions.

All authors contributed to the development of the equations of motion in section 3.1.
A. Carmona and the author obtained the equations appearing in section 3.2 from the
litterature and adapted them for our purposes. Sections 3.3, 3.4 and 3.5 are mostly
work of the author, with the last mentioned section being based on a previous work
by M. Neubert. The numerical calculations appearing in this work were all performed
by the author, with the exception of the scans necessary for figures 3.11 and 3.12, that
were performed by both A. Carmona and the author, and the cross-section σ(gg → S)
in section 3.3, that was computed by A.Carmona. Section 3.6 corresponds almost
entirely to M. Neubert’s effort, whereas most of the formulae appearing in appendix C
was derived by A. Carmona. Section 3.5.3 was developed by A. Carmona, M. Neubert
and the author. All authors contributed to the text.

For the calculations the author used the program Mathematica, python and the li-
brary flavio [3]. The cross-section σ(gg → S) in section 3.3, was computed by
A.Carmona using the CT14nlo PDF from LHAPDF6 [4]. Figures were done with TikZ
and Mathematica. The scan necessary for figures 3.11 and 3.12 was done using C++,
Mathematica and the High-Performance Computer, Mogon.
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The majority of chapter 3 has been extracted from the publication (with minor modi-
fications to the text), which can be distributed under the terms of the Creative Com-
mons Attribution License CC-BY 4.0. All figures were remade for this thesis using
matplotlib [5].

[2] A. Carmona, J. Castellano, and M. Neubert, “A warped scalar portal to fermionic dark
matter", [2011.09492]. Accepted for publication in EPJC.

Here, we argue that the extension of the SM with a warped extra dimension together
with a new Z2-odd scalar singlet presented in [1], provides a natural explanation
not only for the hierarchy problem and the flavor puzzle, but also helps reproduce
the observed dark matter relic abundance and can lead to modifications of Higgs
couplings, because of the mixing between both scalars.

The author derived most of the equations from chapter 4 with advice from A. Carmona
and M. Neubert, with the exception of the equations in sections 4.2.3, 4.2.4 and
appendix D, that were extracted from the literature and adapted by the author. The
numerical calculations appearing in this work were all performed by the author. All
authors contributed to the text.

For the calculations the author used the program Mathematica. Figures were done
with TikZ and Mathematica.

The majority of chapter 4 has been extracted from the e-print (with minor modifi-
cations to the text), which can be distributed under the terms of the Creative Com-
mons Attribution License CC-BY 4.0. All figures were remade for this thesis using
matplotlib [5].
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Introduction

In July 2012 a press conference and the release of two preprints by both the ATLAS and CMS
collaborations confirmed the discovery of a Higgs-like particle at the Large Hadron Collider (LHC)
[6, 7]. As the interactions of this scalar seem to point to the SM Higgs boson, this discovery has
been the final piece for establishing the Standard Model (SM) as the theory describing particles
and their interactions, up to the scales so far explored. The SM allows us to understand three of
the four fundamental forces of nature at the quantum level. It is able to combine the strong, the
weak and the electromagnetic interactions within a single theory, where interactions are described
by the exchange of spin-1 particles of the SU(3) × SU(2) × U(1) gauge group. Moreover, chiral
masses are introduced in the theory after spontaneous symmetry breaking (SSB) through the Higgs
mechanism, explaining at the same time the origin of both fermion and gauge boson masses in the
SM.

The origin of particle physics as we know it goes back to the early 1900s. We have gone a
long way from there. We started by deriving the equations of special relativity and setting the
foundation of quantum mechanics, later moving on to develop quantum field theory, necessary
to reach the day we live today. We have built kilometers-long and multimillion-euro experiments
such as the LHC or IceCube, with the aim of testing features of nature we would like to understand.
Features that we initially thought we could never test experimentally. We started by doing a terrible
thing,1 and that led to the conviction of a whole community that this was indubitably the way to
go. Soon after being developed in the early 1970s, the SM has successfully passed almost every
test and correctly predicted a wide variety of phenomena, and is nowadays considered the most
fundamental theory humankind has for describing nature at the smallest lenght scales.

However, the SM is not the last step on this path. Inevitably, questions such as do we only need
SU(3)× SU(2)× U(1) to describe particle interactions? or would there be another sector, at another
scale, accesible to us in the future?, as well as many others, arised: the beyond the SM (BSM)
era began. With the Higgs vacuum expectation value (VEV), at 246 GeV, being the highest scale
in the SM, another question popped up, i.e. what would be the consequences for the SM when
interacting with another sector sitting at a scale Λ � O(102) GeV. This is the so called hierarchy
problem, which can also be presented as the question of how can the Higgs mass be of order GeV
despite being possibly sensitive to any other scale interacting with the Higgs sector. Moreover, in
the SM chiral fermion masses appear because of Yukawa couplings of fermions fields with the Higgs

1In reference to the famous quote by W. Pauli when he postulated the neutrino: “I have done a terrible thing, I have
postulated a particle that can not be detected”.
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Introduction

doublet. However, experimental observations have told us that, even though these masses all share
the same origin within the SM, they can differ by orders of magnitude. In particular, we know that
mass the ratio between two different particles in the lepton sector can be up to O(104),2 while in
the quark sector the difference might be even larger, up to O(105). These features, together with
the hierarchical mixings present in the quark sector are commonly refered to as the flavor puzzle.
Moreover, there is experimental evidence that the amount of matter that can be infered via SM
interactions does not account for all matter interacting gravitationally in the universe. This points
towards the existence of dark matter (DM). What is the nature of the DM particles and how these
sectors interact with the SM particles still remains unknown. These questions, as well as many
others, triggered many different proposals to be studied and considered as candidates for theories
describing physics BSM.

In particular, a class of models that was proposed as a solution of the hierarchy problem and
that became important soon after is the one considering the Higgs as a composite state or addi-
tional spatial dimensions. In the case of composite Higgs models, the Higgs field is described as
a pseudo-Nambu-Goldstone boson of the new sector, expected to lie within the few TeV range.
Here, the dynamics of the model explain the parametrically small mass for the Higgs [8–17]. On
the other hand, in extra dimensional theories the electroweak (EW) scale appears together with
the Planck scale and is often allowed to interact with other sectors, appearing at a similar scale in
the fundamental theory. However, it is the geometry of spacetime that explains the difference of
scales in these models. For example, in theories considering a single extra dimension, the different
coordinate suppressions or enhancements acting on the 5D parameters make these scales emerge
as radically dissimilar effective quantities in the 4D theory [18–27]. Within the models considering
extra spatial dimensions, the Randall and Sundrum (RS) proposal provides a setup with a plethora
of possibilities, especially for addressing scale hierarchies [18]. In the RS model, the 5D EW scale
is set near the Planck scale and presents an exponential suppression in the effective 4D theory
because of the metric describing the 5D coordinate. The RS model considers a compactified fifth
dimension featuring a S1/Z2 symmetry, limited by two branes at the end-points of the extra di-
mension, separated by a bulk where 5-dimensional fields can propagate. When fields are allowed
to propagate in the bulk, their 5D masses determine the shape of their profiles. In this scenario,
SM fermion fields are described by the zero modes of the 5D fermion bulk fields. Therefore, the
couplings of the SM fermions with the Higgs boson, whether the Higgs boson is constrained to live
in the IR brane or we describe it as a bulk field, are determined by the overlap of the different
5D profiles, and consequently they depend exponentially on the 5D masses of such fields. This
mechanism provides a geometrical solution to the SM flavor puzzle. Note thus, the relevance bulk
fermion masses have for solving the flavor puzzle. Since chirality can not be defined in the 5D
theory, in order to achieve a 4D effective chiral theory it is necessary to asign different Z2 transfor-
mations to the 5D fermion fields. The fact that the different 5D field chiralities have opposite Z2

transformations translates into the 5D bulk mass parameters of bulk fermions being odd under the
orbifold coordinate transformation. This, in principle, can be solved by attaching a harmless sign-
function to the mass parameters, guaranteeing the desired Z2-transformation. However, we claim
that this dependence of a parameter on the fifth dimensional coordinate is calling for an origin,
i.e. some dynamical reason behind the mentioned behaviour under the coordinate transformation.

We propose a mechanism for which the coordinate dependence of the bulk fermion masses
is described by an odd bulk scalar field that propagates in the warped extra dimension (WED).
This bulk scalar couples to the 5D fermion fields through Yukawa-like parameters. Once the scalar
acquires a VEV, which is odd under the Z2-symmetry transformation, bulk fermions acquire 5D
odd masses. Therefore, in our model fermion masses are no longer described by a sign-function,
but as a VEV having a dynamical profile, which depends on the parameters of the model. We study
the VEV solutions and encounter that it can induce a non-negligible backreaction on the metric for
natural values of the gravity-scalar coupling, leading to modifications of the warp function in the

2Considering neutrinos as massless. When one considers massive neutrinos this difference could be up to O(107).
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vicinity of both branes. Furthermore, we find that such modifications on the warp factor together
with the different profile for the mass function, which is no longer described by a step-function,
can induce notable deviations of the fermion profiles in our model, when compared to the profiles
obtained in the traditional RS setup. Moreover, like in a conventional RS model, the observed
flavor structure and the mass hierarchy of the SM fermions can be naturally explained by the
different localizations of the fermion zero modes along the extra dimension, as it leads to different
effective Yukawa couplings with the Higgs boson. In addition, we study the phenomenological
implications the modified fermion profiles, as well as the backreaction on the metric caused by the
VEV of the bulk scalar field, may have on the predictions of EW precision and flavor observables.
In particular, we compute the predictions for the Peskin-Takeuchi S and T parameters and the CP
violating flavor observable, εK , and analyze the dependence of the results on the model parameters
and the strength of the backreaction on the metric. Moreover, we discuss possible flavor changing
effects that might arise and discuss why these should not pose a problem in our model. We initially
consider a brane-localized Higgs scenario, for which the portal coupling of the Higgs to the odd
scalar is strongly suppresed.

We continue by analyzing the more general case, where the Higgs boson is allowed to propagate
in the bulk of the extra dimension and for which the mixing between both scalars is unavoidable.
We study the effect of this mixing and try to estimate the footprints such a mixing can have in
Higgs physics, e.g. by leading to modified Higgs couplings. Moreover, since the odd scalar field is
responsible for fermion bulk masses and therefore couples to any fermion field that propagates in
the bulk, we argue that it acts as mediator between the SM model fermions and any femionic dark
sector propagating into the bulk of the extra dimension. Models with extra dimensions already
feature an inexorable mediator between visible and dark sectors, since gravity couples to matter
through the energy-momentum tensor. However, we find that for some values of the dark fermion
masses and model parameters, the odd scalar field becomes the most important mediator for the
DM coannihilation cross section. We study these effects and explore the viability of fermionic dark
matter in the presence of these new heavy scalar mediators both in the usual freeze-out scenario
and in the case where the freeze-out happens during an early period of matter domination.

Structure of the dissertation

We begin this thesis by briefly introducing the SM, with the aim of setting some foundations for
the rest of the text. Some open questions that are not addressed within the SM are also presented,
as these are the main motivations for the rest of this work. This constitutes chapter 1.

Then, we take some time in chapter 2 to present the RS model and the theoretical background
necessary for understanding the following chapters. We introduce the Kaluza-Klein (KK) decom-
positions and the equations of motion (EOM) for the different fields, where a special attention is
payed to the fermion sector. In addition, we discuss how the RS model can naturally explain the
mass and mixing structure of the quark sector of the SM and introduce the tools necessary for this
task.

In chapter 3, we present a dynamical mechanism that can explain the coordinate dependence of
fermion bulk masses by introducing an odd bulk scalar. We analyze the background solutions and
how these solutions modify the profiles of the different fields, and compare it to the solutions we
obtained in chapter 2. Then, we study the phenomenological implications of considering such an
odd scalar in RS models. We understand how having a brane-localized Higgs scenario suppresses
a portal coupling of the Higgs with the odd scalar.

Chapter 4 follows as a natural continuation to chapter 3. We allow the Higgs to propagate in
the bulk and introduce a quartic term coupling it to the odd bulk scalar. We study the mixing that

3



Introduction

could arise between the different scalar modes after the KK expansion and what this could imply
for the Higgs sector, e.g. by modifying the Higgs couplings to other SM particles. We also discuss
the possibility of having the odd bulk scalar acting as a mediatior between the SM and possible
dark sectors containing fermion fields.

Finally, we draw our conclusions in chapter 5.

4



1 | The SM and open questions

It is impossible to point to a moment in the history of physics as the birth of the SM, since
it is a theory that was built based on the effortful contribution of many physicists through many
years, with the second half of the 20th century being of vital importance. Nevertheless, it is not
fool to think of the contribution to the understanding of non-abelian gauge theories by Yang and
Mills [28] in 1954 as a starting point, and of the SM becoming a theoretically complete theory with
the contributions of Gross, Wilczek and Politzer [29, 30] and ’t Hooft and Veltman [31, 32] in the
early 1970s. The development of the SM led to many Nobel prizes being awarded to the field and
to the most complete theory we have for describing particle interactions and physics at the most
fundamental level we have been able to test to the day. Therefore, the SM is one of the greatest
achievements of science in the modern era, within and outside physics. But it was a journey that
theory did not cover without a companion. Experiments were as important and necessary as the
theoretical developments, with the astonishing contributions of collaborations and experiments
such as, first Large Electron-Positron collider (LEP), and then LHC, and with the discovery of the
Higgs boson in 2012 by the CMS and ATLAS collaborations to reafirm the succesfull story of the
SM.

In this chapter, we briefly present the SM of particle physics, with the aim of setting the theoret-
ical background for this thesis, together with some conventions. In case a more detailed introduc-
tion is needed, the reader is encouraged to go to [33–38]. After introducing the SM, some of the
open questions in particle physics are mentioned and discussed, with particular emphasis in the
two problems that prompted the development of models with extra dimensions. In addition, we
give a brief introduction to other open questions that make up the main motivation for the com-
munity to go beyond the SM and trying to understand particle physics at a even more fundamental
level.

1.1 The SM of particle physics

The SM of particle physics [39–41] is a renormalizable gauge theory based on the local symmetry
group GSM = SU(3)C×SU(2)L×U(1)Y . Particles are represented by quantum fields that transform
accordingly under the different representations of GSM and under the Lorentz group, i.e. according
to their spin. The SM gauge group describes the strong, weak and electromagnetic interactions by
the exchange of spin-1 gauge fields corresponding to such groups. This correspond to 8 massless

5



Chapter 1. The SM and open questions

gluons, g, for the strong interaction, 3 massive bosons, Z andW±, and a massless photon, γ, for the
EW interaction. The SU(2)L × U(1)Y gauge symmetry is broken by the Higgs vacuum, triggering
the SSB of the EW group to the electromagnetic subgroup [42–45]. This can be summarized as
follows

SU(3)C × SU(2)L × U(1)Y
SSB−−→ SU(3)C × U(1)QED , (1.1)

where Q = T3 + Y stands for the electric charge generator, with T3 being the third component of
SU(2)L and Y the Hypercharge generator. After SSB the weak gauge bosons Z and W± become
massive and the photon, i.e. the spin-1 gauge field corresponding to U(1)QED, remains masless.
Additionally, the fermion masses and mixings are also introduced, via Yukawa couplings of the
Higgs scalar with the LH and RH fermion fields.

The fermion sector of the theory is chiral with respect to (w.r.t.) the EW gauge group, SU(2)L×
U(1)Y , with the left-handed (LH) and right-handed (RH) irreducible representations of the Lorentz
group transforming as doublets and singlets of SU(2)L, respectively. The fermionic matter is di-
vided between leptons and quarks, which are organized in a three-fold family structure of identical
gauge quantum numbers:

(3, 2, 1/6) (3, 1, 2/3) (3, 1,−1/3) (1, 2,−1/2) (1, 1,−1)

qL =

(
uL
dL

)
uR dR lL =

(
νL
eL

)
eR

where (C,L, Y ) correspond to the gauge quantum numbers for the different families of SM fermions,
according to their chiralities. Above, u, d, ν, e denote the three generations, being

quarks : u = u, c, t, d = d, s, b,

leptons : ν = νe, νµ, ντ , e = e, µ, τ.
(1.2)

Adding a complex scalar doublet H charged under SU(2)L to the SM gauge group and fermion
content and considering all possible renormalizable terms allowed by the symmetries defines the
SM Lagrangian. This Lagrangian can be summarized as

LSM =− 1

4

(
GaµνG

a,µν +W I
µνW

I,µν +BµνB
µν
)

+ Ψ̄ki /DΨk + (DµH)
†

(DµH)− µ2H†H − λ
(
H†H

)2

−
[
λuij q̄iujH̃ + λdij q̄idjH + λeij l̄iejH + h.c.

]
,

(1.3)

with a = 1, ..., 8 and I = 1, 2, 3 being the SU(3)C and SU(2)L gauge indices, while i, j, k are
used for the fermion generations. The first line contains to the kinetic terms of the gauge fields of
each symmetry group. In the second line, the kinetic terms for the fermion fields are presented,
where Ψk runs for all the fermion fields, i.e. Ψk = uk, dk, νk, ek, and additionally the complex
Higgs doublet appears with its corresponding kinetic term and potential. Finally, in the third line
the Yukawa interactions of the Higgs and fermion fields are introduced. There λu,d,eij are the most
general 3 × 3 matrices in flavor space. H̃ is defined as H̃ = iσ2H

∗, with σ2 a Pauli matrix. Here,
/D = Dµγ

µ where Dµ denotes the covariant derivatives, being defined for the SM as

Dµ = ∂µ − igS
λa
2
Gaµ − ig

σI
2
W I
µ − ig′Y Bµ , (1.4)
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1.1. The SM of particle physics

where gS , g and g′ are the SU(3)C , SU(2)L and U(1)Y gauge coupling constants, and λa and σI
the Gell-Mann and Pauli matrices, respectively. For fields that transform as a singlet under a given
gauge group, the covariant derivative corresponds to the one presented in (1.4) but omitting the
corresponding term. The fine-structure constant can be defined as α ≡ e2/(4π), with e the QED
coupling, which can be obtained as a linear combination of g and g′ after EW symmetry breaking
(EWSB). Similarly the strong coupling constant is αS = g2

S/(4π). The corresponding field strengths
for the different gauge fields read

Gaµν = ∂µG
a
ν − ∂νGaµ + gS fabcG

b
µG

c
ν ,

W I
µν = ∂µW

I
ν − ∂νW I

µ + g εIJKW
J
µW

K
ν ,

Bµν = ∂µBν − ∂νBµ.
(1.5)

The complex Higgs doublet has (1, 2, 1/2) quantum numbers, such that it breaks the EW sym-
metry and at the same time couple to the LH and RH fermion pairs. This doublet can be written
as

H(x) = exp

{
i

v
~σ · ~ϕ(x)

}
1√
2

(
0

v + h(x)

)
. (1.6)

The Higgs doublet appears in the SM lagrangian together with a non-trivial potential that triggers
EWSB. This potential reads

V (H) = µ2H†H + λ
(
H†H

)2
= λ

(
H†H − v2/2

)2
, (1.7)

with µ2 < 0, so that a non-trivial VEV develops, and where v, the EW VEV, has been defined as

v =

√∣∣µ2
∣∣

2λ
. (1.8)

After the Higgs doublet prompts EWSB, the weak gauge bosons Z and W± become massive, as
they eat up three goldstone bosons, this becomes explicit in the unitary gauge. The gauge boson
masses are

MW = MZ cos θW =
1

2
gv, (1.9)

where the gauge mixing angle, also known as weak mixing angle or Weinberg angle, sets the
rotation of the Z and γ gauge fields as

(
W 3
µ

Bµ

)
=

(
cos θW sin θW
− sin θW cos θW

)(
Zµ
Aµ

)
, (1.10)

and corresponds to

cos θW =
g√

g2 + g′2
. (1.11)

Note that before EWSB the EW gauge bosons, W± and Z account for 6 degrees of freedom
(d.o.f.), while the complex scalar doublet provides another 4. However, after SSB in the unitary
gauge three d.o.f. from the Higgs doublet are rotated to become the longitudinal polarizations of
the EW gauge bosons W± and Z, these spin-1 particles become massive and therefore account
for 9 d.o.f., while there is a single d.o.f. from the scalar doublet that remains. This neutral scalar
d.o.f. corresponds to the so-called Higgs boson, h. A scalar presenting a Higgs-like behavior was

7



Chapter 1. The SM and open questions

discovered by the ATLAS and CMS collaborations [6,7] at LHC in 2012, and according to the most
updated results no significant deviations from the SM predictions have been observed [46].

Counting parameters from the EW gauge and scalar sectors of the SM Lagrangian, only four are
necessary to fully determine the model, the two gauge couplings g and g′ and the two parameters of
the Higgs potential µ2 and λ. However, it is useful to choose GF , α,mZ and mh as free parameters.
Once these parameters are obtained experimentally, the theory is able to make predictions and any
other parameter or observable can be computed from them. The current experimental values for
these parameters are [46]

GF = (1.1663787± 0.0000006) · 10−5 GeV−2,

α−1 = 137.035999084± 0.000000021,

mZ = 91.1876± 0.0021 GeV,

mh = 125.10± 0.14 GeV,

(1.12)

and the following relations are useful to determine the value of the desired quantities

sin2 θW = 1− m2
W

m2
Z

, m2
W sin2 θW =

πα√
2GF

, v =
(√

2GF

)−1/2

, λ =
m2
h

2v2
. (1.13)

The values derived for these parameters

sin2 θW = 0.212, mW = 80.94 GeV, v = 246 GeV, λ = 0.13, (1.14)

are in good agreement with experimental data [46].

1.1.1 Yukawa interactions in the SM

One of the most interesting pieces of the SM Lagrangian are the terms corresponding to the Yukawa
interactions. These terms of the SM Lagrangian are responsible for chiral fermion masses, which
are obtained after EWSB from the interaction terms of LH and RH fermion fields with the Higgs
doublet. In the unitary gauge, i.e. after substituting H → (0, v)T /

√
2 in (1.3)

− LY ⊃
[
ūiLMu

ijujR + d̄iLMd
ijdjR + ēiLMe

ijejR + h.c.
]
, (1.15)

with
Mk

ij =
v√
2
λkij , (1.16)

where k runs through all the u, d and e generations.

The mixings are introduced once the rotations are performed in the fermion fields, by taking
the fields from the interaction to the mass basis. These rotations can be summarized as

Ψk
iL → (UkL)ijΨ

k
jL, Ψk

iR → (UkR)ijΨ
k
jR, (1.17)

where UkL and UkR are 3×3 unitary matrices in flavor space. These matrices diagonalize the fermion
mass matrices as follows

(UkL)†Mk(UkR) = Dk = diag
(
mk

1 ,m
k
2 ,m

k
3

)
. (1.18)

Note that the whole flavor structure of the SM comes from the interaction of fermions with the
Higgs boson. The SM lagrangian is invariant under U(3)5 = U(3)QL ×U(3)uR ×U(3)dR ×U(3)lL ×
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1.1. The SM of particle physics

U(3)eR until Yukawa interactions of the Higgs boson with the fermion sector are introduced. Ro-
tating the fermion fields from the interaction to the mass basis as presented in (1.17) introduces
the full flavor structure of the SM. In other words, before EWSB the SM is flavor blind. The term in
the lagrangian connecting the LH doublet, i.e. the weak interactions of the W± gauge boson with
uL and dL fields, reads

LCC =
g√
2

[
W †µū

0
Lγ

µd0
L + h.c.

]
=

g√
2

[
W †µūLγ

µV dL + h.c.
]
, (1.19)

where u0 and d0 represent the fields in flavor space, and

V = (UuL)†UdR =



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 , (1.20)

is the Cabibbo Kobayashi and Maskawa (CKM) matrix [47, 48]. The CKM matrix appears as a
consequence of requiring 4 field rotations in matrix form, corresponding to UuR,UdR,UuL and UdL, to
diagonalize the mass matrices, but having only three kinetic terms, i.e. covariant derivative terms,
in the Lagrangian. Note that the piece corresponding to UuL and UdL terms appear in a doublet.
Therefore, it is not possible to fully diagonalize the gauge interaction terms and the mass matrices
at the same time.

The CKM matrix is a 3×3 unitary matrix that can be parameterized by three mixing angles and
a CP-violating phase, using the convention [49]

VCKM '




1 0 0
0 c23 s23

0 −s23 c23






c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13






c12 s12 0
−s12 c12 0

0 0 1


 , (1.21)

where the quantities sij = sin θij , cij = cos θij have been defined. In the SM, the parameter δCP

is the only source of CP-violating processes. It is experimentally known that the CKM presents a
hierarchical structure (this is usually refered to as the flavor puzzle, and will be commented on the
next section in more detail), which makes convenient to use the Wolfstein parametrization [50]

VCKM '




1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4), (1.22)

where the CKM matrix is written in terms of an expansion parameter λ (together with A, ρ and
η). The current experimental value of the Wolfstein expansion parameter is λ = 0.22650± 0.00048
[51,52], therefore justifying the expansion.

Furthemore, the rotations performed to diagonalize the mass matrices are done in the same
fashion with the Yukawa matrices coupling the chiral fermion pairs to the Higgs boson and there-
fore, the Higgs boson has flavor-diagonal couplings to the physical fermions with a couplings
proportional to the fermion masses

− LY =

(
1 +

h

v

)[
ūLDuuR + d̄LDddR + ēLDeeR + h.c.

]
. (1.23)

1.1.2 Oblique parameters

The possibilities that appear in front of us while thinking of enlarging the SM are endless. In this
regard, the Peskin-Takeuchi parameters S, T and U are a set of quantities that can help us constrain
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Figure 1.1: Contours of 68%, 95%, and 99% confidence level in the TS-plane, for a fit done
by constraining U to U = 0. Figure from [57].

some of the contributions of the new physics (NP) [53]. Thus, allowing us to compare these
models, as well as to understand them better. Even if NP appears at a significantly higher scale
than the EW scale, it would contribute to the vacuum polarization corrections of the SM particles.
In particular, corrections to the vacuum polarizations of the SM gauge bosons can become sizeable
enough to be tested at experiments, imposing strong constraints on NP models. The EW precision
parameters S, T and U allow us to measure these deviations from the SM predictions. These
parameters read [53–56]

S =
4s2
W

α
Ŝ, T =

1

α
T̂ , U =

−4s2
W

α
Û, (1.24)

with sW ≡ sin θW . Here, the Ŝ, T̂ and Û quantities are defined as

Ŝ =
Π′W 3B(0)

Π′W+W−(0)
, T̂ =

ΠW 3W 3(0)−ΠW+W−(0)

−ΠW+W−(0)
, Û = 1− Π′W 3W 3(0)

Π′W+W−(0)
. (1.25)

The quantities ΠV1V2
(p2) correspond to the tree level transverse vacuum polarization amplitudes,

with V1V2 = {W+W−,W 3W 3, BB,W 3B}. Moreover, for such expressions to hold we need to
assume that these amplitudes allow for a Taylor series expansion in powers of p2 around p2 = 0, as

ΠV1V2
(p2) = ΠV1V2

(0) + p2Π′V1V2
(0) +O(p4). (1.26)

It can also be helpful to think of S and T as being generated from higher-dimensional operators
OS and OT , e.g.

OS = H†σIHW I
µνB

µν , OT =
∣∣H†DµH

∣∣2, (1.27)

in this case, the contributions to S and T at tree-level are proportional to the Wilson coefficients
for these operators. What one does in this case is to integrate out the new particles before EWSB
of the corresponding NP model one would like to study. Thus, generating the coefficients CS and
CT of the operators OS and OT . In this case, the S and T parameters would have the expression
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Figure 1.2: Leading radiative contributions to the Higgs mass in the SM.

S =
4sW cW v

2

α
CS , T =

−v2

2α
CT . (1.28)

The current contours of the TS-plane at 68%, 95%, and 99% confidence level, for a fit done by
the Gfitter Group by constraining U to U = 0, are shown in figure 1.1, see [58] for the most recent
fit.

1.2 Hints for NP

The SM has been tested with an unprecedented precision at the LHC. The confirmation of the SM-
like nature of the Higgs boson and the measurement of its interactions provides strong evidence of
the robustness of the SM when describing the laws of nature up to very short distances. However,
there are also several fundamental and open questions to which the SM is not able to provide a
successful answer. A natural response is therefore to consider extensions of the SM that can solve
or aliviate these questions or problems. Here, some of these problems that are currently triggering
some interesting research in BSM physics, are presented.

In particular, two puzzles or unanswered questions within the SM provide the main motivation
for the framework in which the work of this thesis has being developped. These two unsolved
mysteries are the hierarchy problem and the flavor puzzle. Moreover, during the development of
this thesis another issue that lacks of an explanation within the SM was addressed. Even if RS was
not initially meant to solve questions on the scope of DM, we will show how it can address some
of the problems in that area. Therefore, these are the first three topics covered here.

• The hierarchy problem: As mentioned before, one puzzeling question is why does the Higgs
boson have a mass of ∼ 100 GeV. This is the so-called hierarchy problem. Within the SM the
main quantum corrections to the tree-level Higgs mass are

δm2
h =

3Λ2

8π2v2

[
2m2

W +m2
Z +m2

h − 4m2
t

]
, (1.29)

which can be derived from the diagrams shown in figure 1.2. There Λ would be the cut-off
scale at which the SM would no longer be valid.1 One could naively argue that this quadratic
divergence is nothing but a byproduct of using a hard cut off, and that such dependency could
simply be avoided by repeating the calculation using dimensional regularization. However,
the main statement is totally independent of the regularization method used. This a con-
sequence of not recovering any symmetry when the mass parameter of the Higgs is set to
zero, as there is in general no symmetry associated to massless scalars with non-derivative

1Note that there is no problem if the SM would be the only theory describing nature.
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Figure 1.3: Observed mass spectrum for SM fermions.

couplings. The situation of the Higgs boson is unique within the SM, since that problem is
not present for fermions or gauge bosons. Fermion masses are protected by chiral symmetry
and gauge boson masses are protected by gauge symmetries. Corrections to the masses of
fermions and gauge fields are proportional to themselves, as their masses are the parame-
ters breaking the symmetry. Therefore, fermion and gauge masses are “technically natural”.
However, for the Higgs boson the story is completely different as no symmetry in the SM
shields the Higgs mass from being sensitive to new heavy states.

Therefore, what this implies is that the Higgs is sensitive to new heavy states that could
couple to it or that, if a new sector is added to the SM, some protection mechanism would
be needed to keep the Higgs mass of order 102 GeV. Note that even if the Higgs would not
couple directly to the new heavy states effective couplings at the loop level do usually appear,
and therefore we still need to prevent these large corrections. In the effective field theory
language this goes down to the fact that the Higgs mass operator, H†H, has mass dimension
two and it is therefore a relevant operator. This implies that it would receive quadratic
contributions from possible heavy states in the UV theory as [59]

δm2
h ∝

1

16π2
|gUV|2m2

UV. (1.30)

If the full theory is not able to protect the Higgs mass from quadratic contributions, a can-
cellation of large numbers m2

h, δm
2
h ∼ O(m2

UV) would be required to give as a result a Higgs
mass of 125 GeV, which would require a high level of fine-tuning.

When this happens in physics we expect to find a mechanism behind such an astonishing
result and therefore, if NP appears at higher scales, we would like to understand why the
value of the Higgs mass is much lower than the NP scale. This is the SM gauge hierarchy
problem.

• The flavor puzzle: The SM presents a strong hierarchy in the fermion mass spectrum and in
the mixing of the quark sector. These unexplained hierarchies receive the name of the flavor
puzzle or flavor problem.

In particular, there is a five orders of magnitud difference between the masses of the heaviest
and lightests quarks in the SM, mu,d/mt ∼ 10−5. Furthemore, neutrinos are much lighter
than any other fermion in the SM, with mν/me . 10−6. This observed difference between
the fermion masses, primarly given that in the SM all masses have the same origin, is an
enigma. The observed fermion masses are schematically shown in figure 1.3.

Moreover, the CKM matrix presents a hierarchical structure, as commented in the previous
section. The angles are such that s13 � s23 � s12 � 1, or equivalently |Vud|/|Vus| ∼
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VCKM ∼ UPMNS ∼

Figure 1.4: Structure of the observed values for the CKM and PMNS matrices.

|Vus|/|Vub| ∼ λ, where λ ' 0.23. Therefore the CKM presents an almost diagonal pattern, as
can be seen in figure 1.4

In the SM fermion masses are given by the product of Yukawa couplings with the Higgs VEV,
v ∼ O(102) GeV. Being Yukawa couplings dimensionless parameters, one would expect them
to have O(1) values. In that case, the SM flavor structure could be obtained after scanning
these order-one parameters, by getting a probability distribution for the fermion masses and
mixing angles. Without the presence of a dynamical mechanism or a symmetry constraint
on the CKM, one would expect it to be obtained from anarchic O(1) entries. However, it
is clear that nature chose Yukawa couplings to be much smaller than 1 and to they present
a hierarchical structure, where only the top quark Yukawa is yt =

√
2mt/v ∼ 1. On the

other hand, the mixings appearing in the lepton sector are sizeable, and the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) [60–63], i.e. the 3×3 unitary mixing matrix that relates the
mass and flavour eigenstates in the lepton sector, presents a more natural structure, totally
different from the observed in the quark sector as can be seen in figure 1.3. Therefore,
such differences in the Yukawa couplings for the different fermions with the Higgs boson are
demanding for an explanation.

• Dark matter: First noticed by Zwicky in 1933, the measurement of rotation curves of galax-
ies did not match the predictions obtained by considering the visible amount of matter that
compose the galaxies [64]. Zwicky’s findings were later confirmed by [65]. Another phe-
nomena such as the collision of two clusters of galaxies, known as bullet clusters, and the
cosmic microwave background power spectrum [66,67] point to the same direction: Newto-
nian gravity and SM predictions are not able to account for the observations. These findings
opened up the possibility that the amount of matter interacting gravitationally in the uni-
verse is higher than the one we can measure from SM interactions. This lead to a large
number of DM models being proposed, which are expected to be tested in current and fu-
ture experiments such as Xenon1T (see [68, 69] for a review). One of the most appealing
candidates for DM are weakly interacting massive particles (WIMPs). An interesting feature
of WIMPs is the fact that their interactions with the SM allow them to be tested at particle
experiments. Moreover, it is not only the nature of the DM candidates that needs to be spec-
ified, we would also have to understand how dark sectors interact with the SM particles. It
is possible that such sectors can interact not only gravitationally, in this case the so-called
mediators would have a non-vanishing coupling with the DM candidates and the SM parti-
cles. One important constraint for determining the suitability of mediators is given by the
DM relic abundance [64, 65, 67]. Unfortunately, no DM has been detected so far and their
nature remains unknown. In addition, models of modified gravity have been proposed too
to solve these issues [70–73].

13



Chapter 1. The SM and open questions

In chapter 2 we will introduce the RS framework and see what are the advantages of working
with such models. We will see what is the solution they provide to the hierarchy problem and why
we find such models to be a natural playground to address the flavor puzzle. In chapter 3, we
will further investigate on the mechanism that is often used to solve the flavor puzzle, proposing
a feature that we think is essential for such mechanism. Moreover, we will see in chapter 4 how
the model we proposed in chapter 3 introduces inevitably a DM mediator candidate, under the
assumption of the existance of dark fermions propagating in the extra dimension.

In addition to these three topics, there are other problems that worth being mentioned but
that have not being addressed in this thesis. These open questions, some of which are due to
experimental observations that cannot be accounted for within the SM, point to the presence of
NP. A brief comment on these topics follows.

• Neutrino masses: Another compelling hint for BSM are neutrino masses. Since within the
SM only LH fields are introduced for neutrinos, neutrinos are massless and strictly left-chiral
particles. With neutrino oscillations being observed, both from solar [74–77] and atmo-
spheric [78] experiments, it is clear nowadays that neutrinos have non-zero masses. Al-
though enlarging the SM trivially by adding three right-handed neutrinos, therefore allowing
Dirac mass term, is allowed by phenomenology, the smallness of neutrino masses compared
to other particles would remain unexplained for this setup. One class of attractive extensions
of the SM that allows for non-zero neutrino masses and also predicts them to be light in com-
parison with the other SM fermions, made use of the so-called see-saw mechanism [79–85].

• The Strong CP problem: The vacuum structure of QCD is compatible with a term LQCD ∼
θG̃G, known as the QCD θ-term. This term leads to strong CP violating effects together with
the prediction of a large value for the electric dipole moment of the neutron (EDMN), unless
θ is tunned to be small. However, we know from EDMN experiments that θ < 10−10 [86].
The question of why θ is so small given that the SM does not have a mechanism to protect this
term or similarly, why does not the strong interaction violate CP maximally, is known as the
Strong CP problem. A solution to the strong CP problem is obtained by promoting the θ term
to a dynamical d.o.f., whose minimum naturally relaxes to θ = 0 after QCD condensation.
This solution predicts a would-be pseudo-Goldstone boson, the axion [87, 88], that appears
after a U(1) Peccei-Quinn symmetry gets spontaneously broken [89].

• Baryogenesis: Another open question in particle physics is baryogenesis, i.e. what is the
origin of the observed matter-antimatter asymmetry in the universe. For this to occur, Baryon
number must be violated, at least for a short period in the early universe, and generally a
significant amount of CP violation is required. In the SM the CKM-matrix is the only source of
CP violation but however, it is not enough for most cases to reproduce the observed matter-
antimatter asymmetry [46,90–92].

There are many other unanswered questions or puzzles such as leptogenesis, whether grand
unification is realized, or how can gravity be incorporated together with the SM into a full theory
of nature. An instructive discussion on some other problems can be found in [93].

Furthemore, some new data might be currently pointing to NP in the flavor area. Some tension
has been observed in semi-leptonic B meson decays, specially in the b → cτν and b → sl+l−

transitions [94–97]. According to the SM the three lepton families are equivalent except for their
masses, this is known as lepton flavor universality (LFU). LFU being violated in nature is an evident
hint for NP. Many BSM models consider particles that do not present this universal behaviour and
therefore could explain these anomalies, being models with leptoquarks of special interest in this
area [98]. However, the experimental data is still not enough to come to a conclusion, since
the current deviations lie at the ∼ 3σ level for individual observables, i.e. below the five sigma
requirement to claim discovery.
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2 | Extra dimensions

The idea of considering extra dimensions, i.e. more dimensions than the usual 3+1 dimensions
we are “used” to, dates back to the second decade of last century when Theodor Kaluza and Oscar
Klein proposed a theory of unification of the electromagnetic (EM) theory and General Relativity
(GR), by extending the latter one to five dimensions. Some of the main ideas had already been
introduced by Gunnar Nordstöm in 1914 [99]. Gunnar’s intended to unify the theories of EM and
gravity by extending Maxwell’s equations from 4 to 5 dimensions, a different perspective to what
was proposed by T. Kaluza and O. Klein in 1921 and 1926 respectively [100,101]. The main reason
of Gunnar’s proposal of extending the EM theory instead of choosing GR as the starting point was
simply due to the fact that his attempt was previous to Einstein’s publishing of his theory of GR.
In the KK theory in 4+1 dimensions EM appears as the new components of the five dimensional
metric tensor. In that case, 4-dimensional gauge invariance could be obtained from a geometrical
theory in 5D, as Kaluza proposed. This was extended in 1926, when Oskar Klein introduced the
concept of compactification, allowing for a Fourier expansion of fields on an S1 circular topology.
However, this theory predicted the EM charge to be quantized and related to the nodes of the fields
and therefore only allowing for modes with n 6= 0 to be charged under U(1)EM. In addition, the
discovery of the nuclear forces shifted the attention away from the attempt of unifying GR and EM,
since they were no longer the only forces to be understood.

Recently, and particularly by the end of the last century, models with an extra dimension gained
importance again. In 1998, Arkani-Hamed, Dimopoulos and Dvali (ADD) [19] came out with a
solution to the hierarchy problem by introducing n compact flat large extra dimensions. In this
model the Planck scale is considered of order the EW scale in the full theory, i.e. in the 4 + n-
dimensional theory, but a suppresion in the strength of gravity appears because of the behaviour
of gravity once these extra dimensions are considered. However, in these models with flat extra
dimensions setting the volume and the number of dimensions could be considered as a fine-tuning
problem by itself.

Later in 1999, Randall and Sundrum [18] proposed a solution to the hierarchy problem by
introducing a single extra dimension without requiring a large volume. In their work, the EW
sector appears together with the Planck mass at a fundamental scale O(1015) TeV and the observed
EW-Planck hierarchy is a result of an exponential suppression of the EW scale performed by the
non-trivial geometry of the additional dimension. Models with a WED provide an elegant solution
to the hierarchy problem, together with an attractive framework for implementing BSM theories.
The geometry of such models is anti-de Sitter (AdS) and consist of two branes, which could be
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Chapter 2. Extra dimensions

understood as the limits of the extra dimension, and a bulk connecting both branes.

In the simplest versions of these models, the SM is confined to one of the branes, known as the
infrarred (IR) or visible brane. In this brane, the fundamental scale, M∗, has been warped down
because of the metric and has an effective value that lies around the EW scale. On the other hand,
the effective Planck mass, MPl, lives near or at the ultraviolet (UV) or hidden brane, and has a
value O(1015) TeV.

Nonetheless, confining the full SM to the IR brane is not a necessary conditions for these mod-
els to reproduce the SM. 5D gauge boson [102–104] and fermion [20,21,25] fields can be allowed
to propagate in the bulk of the extra dimension and still accommodate the SM. In that case SM
fermions are represented by the zero-modes of the 5D fields after the KK-expansion. This configu-
ration could lead to possible modifications of their SM-like behaviour, specially when the mixings
of the zero-modes with the low-lying KK-modes of the SM fields are not suppressed [105–109]. In
some cases, these modifications of the couplings could be large enough to be tested at current and
future colliders [2,105–111].

Once that 5D fermions are allowed to propagate in the bulk and the SM fermion fields corre-
spond to the zero-modes of the 5D fields, the overlap of the fermion zero-mode profiles with the
Higgs boson, whether it lives on the IR brane or propagates in the bulk, determines the SM 4D
masses. These overlaps depend on the localization of the fermion profiles, which are set by their
5D mass parameters [20, 21, 25]. Since the profiles of the fermion zero-modes depend exponen-
tially on their 5D masses, this mechanism provides an explanation of the hierarchy observed in
the SM fermion masses from a geometrical perspective, naturally accommodating the hierarchical
pattern of fermion masses and mixing angles present in the CKM.

Nevertheless, there is an issue concerning this class of models. While having a scale of NP
around of ∼ 1 TeV is preferred for solving the hierarchy problem and, in addition, making these
models testable at the LHC, EW precision tests (EWPT) [1, 108, 109, 112, 113] and flavor [1, 110,
111,114,115] data point to the opposite direction, far out of the reach of current experiments. In
particular, such constraints set the scale of NP, which in RS models corresponds to MKK, commonly
designated as the KK-scale, to be at the 3−5 TeV range, corresponding to new resonances appearing
at theO(10) TeV. Having the scale for NP of 3−5 TeV, whereas the EW scale is known to be 246 GeV
is known as the little hierarchy problem, hard to avoid in models with extra dimensions or for which
the Higgs appears as a pseudo-Nambu Goldstone boson [13, 14, 17, 116–123]. Nonetheless, there
are some techniques that help us alliviate these bounds. The most common approaches are to
introduce a custodial symmetry, for which the bulk gauge group and particle content of the model
is enlarged to reproduce an SO(4) symmetry, and models that consider a modified metric, for
which the warp factor of the minimal RS model is deformed near the IR-brane [1,124–136].

In addition, another aspect that makes these models interesting is that they can be seen as
equivalent to models of conformal field theories (CFT) by means of the AdS/CFT duality [9, 10,
23,137–139]. Such duality implies that a theory with fields living in an (n + 1)-AdS space have a
dual n-dimensional CFT. In the case of the RS model, an AdS geometry with the presence of UV
brane at yUV would correspond to a CFT with a cutoff 1/yUV ∼ MPl, while the presence of an IR
brane at yIR implies the breaking of the CFT at the scale 1/yIR ∼MKK. In other words, the breaking
of the translational invariance in the AdS geometry corresponds to the breaking of scale invariance
of the CFT, and therefore the radion, i.e. the Goldstone boson associated to the breaking of the
translational invariance has a dual field in the broken CFT, the dilation [9,116,119,123,140,141].
Moreover, it has been conjectured that the the scaling dimension of the operators in the 4D picture
is closely related to the 5D bulk mass, i.e. the parameter determining the localization of the profiles
for the bulk fields [9,10,22,112]. Hence, the localization of the bulk fields is linked to the level of
compositeness of the corresponding 4D fields. In particular, a field whose profile along the extra
dimension points towards the IR brane could be considered as a composite field, while a field
living close to the UV brane could be seen as elementary. Therefore, if we consider the SM fields
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2.1. Compactification
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Figure 2.1: Schematic representation of a fifth dimension compactificatified on S1.

to be confined to the TeV brane, such a choice corresponds to a broken CFT where the the SM
fields are purely composite states. The advantage of the 5D theory is that is not strongly coupled
and therefore calculations in the AdS theory are much simpler to perform than in the broken
CFT [9,10,22,112,119,142,143].

Possibly having extra-dimensions arising at the TeV scale provides a strong motivation for a
cutoff to exist near that scale. However, finding such phenomena would not be the end of the
story, as we would still be lacking of an explanation for the separation of the compactification and
EW scales. Nevertheless, it would certainly provide solid step towards a deeper understanding of
particle physics in particular, and nature in general.

In this chapter we will review the most important aspects of RS models. We will start by
describing the geometry of the extra dimension in section 2.1, where we will try to justify the
choice of S1/Z2 as the topology defining the extra dimension. We will introduce the RS metric
in 2.2 showing under which conditions this metric is a solution of Eintein’s equations. In section 2.3
we will analyze how the Higgs field is described in WED and how the hiearchy problem is solved,
for both the brane Higgs and bulk Higgs scenarios. We will then shortly introduce bulk gauge
fields in 2.4 and continue with bulk fermion fields in section 2.5, on which we will ellaborate more
later in section 2.7, where we will describe the flavor structure of RS models and how they can
handle hierarchies in the fermion sector. Section 2.6 will contain a short comment on how the
size of the extra dimension can be stabilized with the presence of a single scalar field, commonly
known as the Goldberger-Wise (GW) scalar. And in 2.8, we will close the chapter by discussing
how important 5D fermion bulk masses are for solving the flavor puzzle, and why we think there
are issues within the RS prescription for solving such a puzzle that should be addressed.

2.1 Compactification

The fact that we are not able to detect extra dimensions directly means that (if they exist) they
have to be of sufficiently small size so that they cannot be directly observed, in other words, they
must be compactified down to a very small length scale. But what does being compactified mean?
It means that the additional dimension(s) must have a finite length.

One possibility would be to consider a periodic extra dimension, in such a way that by moving
along the extra dimension, after a certain length is covered, we must return to our initial posi-
tion. An example of this would be a circle, i.e. an extra dimension defined on an S1 topology.
If the radius of the circle is small enough, we would not be able to access the extra dimension
experimentally, as

√
s ∼ R−1. Therefore, we could imagine that at every point in our well known

Minkowski spacetime, there exists an additional circle of radiusR, orthogonal to the 4D Minkowski
spacetime. We have sketched this in figure 2.3.
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Chapter 2. Extra dimensions

However, for phenomenological purposes it is more interesting to consider an orbifold com-
pactification. In this case an extra constraint is imposed onto the S1, in this case a Z2 symmetry.
This means that we passed from a manifold to an orbifold compactification. The particularity of
the orbifold, in opposition to a manifold, is that it has non-identified points, also known as fixed
points. This is interesting to us because of two reasons. Firstly, the extra Z2 symmetry allows us
to impose parities in the 5D fields, which would lead to different 4D phenomenology. In addition,
the fixed points would correspond to the localization of the branes, with two fixed points in our
particular case.

Therefore, our 5D spacetime can be defined as follows

AdS5 =M4 × S1/Z2 , (2.1)

where M4 is the usual four-dimensional (4D) Minkowski spacetime, and S1/Z2 describes the
topology of the extra spatial dimension, which presents an orbifold compactification. The S1/Z2

orbifold compactification is obtained via R → R/Z ≈ S1 → S1/Z2. This configuration has the
following identifications along the extra dimension

y ∼ y + 2πrn, n ∈ N,
y ∼− y, (2.2)

which are schematically shown in figure 2.2. For an extended discussion on orbifold compactifica-
tions see [144].

2.2 The RS set-up

The idea of the RS model is to explain the hierarchy between the Planck and EW scales without
recurring to a formulation based on gauge interactions, but as the geometrical consequence of
having the field theory defined on a slice of a AdS5 spacetime (see figure 2.3 for a sketch). The
bulk of the extra dimension has two D3-branes localized at the fixed points of the orbifold, a UV-
brane at y = yUV = 0 and an IR-brane at y = yIR = rπ, where y is the coordinate describing the
position along the fifth-dimension and r is the radius of S1. Moreover, the 5D metric is

ds2 = e−2σ(y) ηµνdx
µdxν − dy2, (2.3)

where σ(y) is known as the warp factor and ηµν = diag(+1,−1,−1,−1) is the 4D Minkowski met-
ric. This metric ansatz (2.3) has a non-factorizable form and is the most general 5D metric which
preserves 4D Poincaré invariance. As will become clear, this metric satisfies Einstein’s equations if
appropriate cosmological terms are chosen.

0 πr

y ∼ −y

Figure 2.2: Sketch of the orbifold identification used in RS models.
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Figure 2.3: Schematic representation of a fifth dimension compactificatified on S1.

The action for RS model can be written as

S =

∫
d4x

∫ yIR

0

dy
√
g

{
− R

2κ2
− ΛB −

√
|ĝUV|√
g

λUVδ(y)−
√
|ĝIR|√
g

λIRδ(y − yIR)

}
, (2.4)

where R is the 5D Ricci scalar, κ−2 ≡ 2M3
∗ with M∗ the 5D Planck mass, and ΛB is the bulk

cosmological constant. In addition, λUV and λIR are the brane tensions at the UV and IR fixed points
and ĝUV and ĝIR are the determinant of the 4D induced metrics ĝµνUV and ĝµνIR on the corresponding
brane.

The backround solution for the geometry is obtained by introducing the ansatz (2.3), where σ
is a generic y-dependent warp function, into Einstein’s equations. The action (2.4) leads to

RMN −
1

2
gMNR = κ2 TMN , (2.5)

where the energy-momentum tensor TMN corresponds to

TMN = gMNΛB +

√
|ĝUV|√
g

λUV ĝ
UV
µνδ

µ
Mδ

ν
N δ(y) +

√
|ĝIR|√
g

λIR ĝ
IR
µνδ

µ
Mδ

ν
N δ(y − yIR). (2.6)

Einstein’s equations can be reduced to

σ′2 =
−κ2

6
ΛB ,

σ′′ =
κ2

3
[λUV δ(y) + λIR δ(y − yIR)] ,

(2.7)

where prime stands for the derivative w.r.t. the fifth-dimensional coordinate. Note that the set of
equations in (2.7) satisfy the orbifold symmetry y → −y, as was expected from the ansatz. We can
easily solve the first equation in (2.7), obtaining

σ(y) = k|y|, with k ≡
√
−κ2

6
ΛB . (2.8)

requiring the bulk cosmological constant to be negative, i.e. ΛB < 0.
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Chapter 2. Extra dimensions

Moreover, the above equations have singularities due to the presence of the branes at y = 0
and y = yIR, represented by the delta functions in (2.7). This leads to the warp factor satisfying
the jump conditions

[
σ′(y)

]
i

=
κ2

3
λi, (2.9)

where the jump of a function f(y) is defined as

[
f(y)

]
≡ lim
ε→0

[
f(y + ε)− f(y − ε)

]
. (2.10)

Therefore, (2.9) can be rephrased into the following boundary conditions (BC)

σ′(0+) =
κ2

6
λUV, σ′(π−) =

−κ2

6
λIR, (2.11)

with y± ≡ y ± ε.
Note that in order for the solution to satisfy the BC and the EOM the brane tensions need to be

of equal magnitude and opposite sign, as

λUV = −λIR =
6k

κ2
. (2.12)

The definition of the warp parameter k allows to write the three quantities λUV, λIR and ΛB in
terms of the same scales, k and M∗. Note that the following conditions need to be fulfilled

λUV = −λIR = 12M3
∗k, ΛB = −12M3

∗k
2. (2.13)

It becomes now clear that the brane potentials are crucial to ensure that the ansatz is a solution of
Einstein’s equations.

Now the solution allows to relate the 5D Planck mass M∗ to the 4D effective reduced Planck
mass MPl ' 2.4 · 1015 TeV

M2
Pl = M3

∗

∫ yIR

0

dy e−2σ(y) =
M3
∗

2k

(
1− e−2kyIR

)
. (2.14)

Note that taking k of the same order as the fundamental Planck, k ∼ M∗, leads to MPl ∼ M∗ for
values of kyIR > 1. In addition, (2.14) implies that once kyIR > 1 is satisfied, the 4D Planck mass
depends weakly on the size of extra dimension yIR.

However, yIR, together with k, plays an important role determining the suppresion of the EW
scale and the Higgs mass w.r.t. the fundamental masses of the theory, of order MPl. This will
become clear in section 2.6.

2.3 The Higgs boson

It is understood nowadays that there are many viable prescriptions within RS models, considering
different localizations for the Higgs boson, that are able to solve the hierarchy problem. Initially,
RS models considered the Higgs to be confined to the IR brane [18, 21, 25, 145, 146]. In that
simplified case, one find the Higgs scale to lie at around the IR-brane scale, i.e. ∼ O(1) TeV. A
tuning is therefore needed in these models to realize this little hierarchy problem, but the Higgs is
protected from heavy resonances as these resonances coupling to the Higgs will all appear at the
TeV scale.

However, soon after models in which the Higgs was allowed to propagate in the bulk emerged
[11,109–113,147,148]. It was found that if the Higgs parameters are chosen such that the profile
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2.3. The Higgs boson

of the Higgs describing its behavior along the extra dimension is peaked towards the IR brane, then
the suppresion on the couplings of the Higgs to heavy resonances are more relaxed but similar to
the IR brane case.

Some work consider the case where the Higgs can propagate in a small portion of the bulk
located near the IR, this is known as the narrow bulk Higgs scenario. Such scenario has been
explored e.g. in [149,150], where a relation between the bulk, narrow and brane-localized Higgs
cases have been discussed, and how one can take the limit from one case to the other.

However, to understand how the hierarchy problem is solved in RS for any of the setups we
have just discussed, one needs to understand the role yIR plays for determining the hierarchy. It is
instructive as well to see how the 4D effective Higgs mass and the effective EW scale emerge from
the 5D fundamental parameters. For this, the most illustrative derivation can be done in the case
of a brane-localized Higgs, and this will be therefore the first scenario here presented. In addition,
the φ and t-coordinates will be introduced (see appendix A for a summary of how the different
coordinates are defined), which will become handy for the next sections.

2.3.1 The brane-localized Higgs case

In this section, we will analyze the simplest configuration for the Higgs in RS models. In this set-up
the Higgs is confined to a IR brane and is therefore a pure 4D-field. However, the quantities ap-
pearing in the Higgs action even though they are defined to lie at the Planck scale, get a suppresion
because of the 5D metric and appear as 4D effective parameters at the TeV scale.

To study the brane-localized Higgs we will introduce the φ-coordinates, which will be useful
for the rest of the manuscript. Then, the metric in (2.3) can be rewritten in terms of the new
coordinates as

ds2 = e−2σ(φ) ηµνdx
µdxν − r2dφ2, (2.15)

where the warp factor is now σ(φ) = kr|φ|, and φ ∈ [−π, π]. Here, r is the compactification radius
of the extra dimension, with πr = yIR, and the localization of the branes are now φ = 0 for the UV
brane, and φ = ±π for the IR brane.

In these coordinates, the action for a IR-brane-localized Higgs doublet reads

S
(4D)
H =

∫
d4x
√
|ĝIR|

{
ĝµνIR (DµH)

†
(DνH)−m2

(
H†H

)
− λ

(
H†H

)2}
, (2.16)

where the 4D induced metric on the IR-brane corresponds to ĝµνIR = e2krπηµν . Defining L ≡ krπ
and writing explicitely the metric factors, the previous action reads

S
(4D)
H =

∫
d4x

{
e−2L (DµH)

†
(DµH)−m2e−4L

(
H†H

)
− λe−4L

(
H†H

)2}
. (2.17)

Note that the Higgs doublet is not canonically normalized in (2.17). The following field redefi-
nition is necessary for the Higgs doublet to have a canonically normalized kinetic term

H → HeL. (2.18)

Defining
µ ≡ me−L, λH ≡ λ e−2L, (2.19)

together with the field redefinition in (2.19) leads to
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S
(4D)
H =

∫
d4x

{
(DµH)

†
(DµH)− µ2

(
H†H

)
− λH

(
H†H

)2}
, (2.20)

where µ is the effective Higgs mass parameter at the IR-brane and is related to the fundamental
quantity m in the 5D theory by the warp factor. Therefore, if the fundamental parameter m
is considered to sit at the scale of the Planck mass, i.e. m ∼ O(1015) TeV, it can get warped
down to the EW scale for the appropiate value of L and therefore µ ∼ O(102) GeV for values of
L = krπ ∼ O(30), or kyIR ∼ O(30) in the y-coordinates. Therefore, in the RS model, the hierarchy
between the EW and the Planck scales gets resolved in terms of the curvature and size of the extra
dimension.

Moreover, note that the same suppresion can be obtained for the Higgs VEV

vh ≡ v0 e
−L, (2.21)

which becomes trivial after rewritting the potential appearing in (2.16) as

VH(H) = m2
(
H†H

)
− λ

(
H†H

)2
= λ

(
H†H − v2

0

)2
. (2.22)

2.3.2 The bulk Higgs case

Soon after the RS model was introduced, it was noticed that the Higgs boson could also be pro-
moted to a 5D field if the parameters of the model are such that allow the Higgs to be localized
towards the IR brane [113,149–155]. Once the bulk Higgs is close enough to the IR brane the hier-
archy problem is solved similarly to the brane-Higgs scenario and therefore it presents no problem
from the naturalness perspective.

The action for a 5D complex scalar field, Φ, in generic 5D coordinates, considering a bulk and
brane potentials reads

S
(5D)
Φ =

∫
d5x
√
g

{
gMN (DMΦ)

†
(DNΦ)− V (Φ)−

√
|ĝk|√
g
V k(Φ)δ(x5 − x5k)

}
, (2.23)

where V (Φ) denotes the bulk scalar potential and V k(Φ) the brane potentials at x5k with x5k =
x5,UV and x5,IR. Here, the generic metric is defined as

ds2 = a(x5)2ηµνdx
µdxν − b(x5)2dx2

5, (2.24)

where are writing the metric in a generic form. The factors a(x5) and b(x5) would take appropriate
values for any given choice of the x5-coordinate, e.g. a(y) = e−σ(y) and b(y) = 1 when choosing
the y-coordinate representation for the extra dimension.

Integrating by parts in the action (2.23), the EOM for the scalar field Φ can be obtained. It
reads

a−4b−1∂5

(
a4b−1∂5Φ

)
− a−2�Φ− ∂V

∂Φ
= 0, (2.25)

together with BC

δΦ

{
±b−1∂5Φ +

∂V̂ k

∂Φ

}∣∣∣∣∣
Φ=Φ(x5k)

= 0. (2.26)

Here, the goal of writing (2.25) and (2.26) from the generic metric (2.24) is to have a simple way
of translating EOM from a specific set of coordinates into another.
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2.3. The Higgs boson

For the bulk Higgs scenario it is convenient to introduce the t-coordinates. These coordinates
are defined in terms of the φ-coordinates as t = ε ekrφ, where ε = e−krπ. In this case, the metric
reads

ds2 =
ε2

t2

(
ηµνdx

µdxν − 1

M2
KK
dt2
)
, (2.27)

where MKK = kε, and the metric factors correspond to a(t) = ε/t and b(t) = ε/(tMKK). Here,
t ∈ [ε, 1], with ε ∼ O(10−14) for L = krπ ∼ O(30).

The Higgs doublet in the unitary gauge can be defined as follows

H(x, t) =
t

ε
√

2r

(
0
1

)
[ϕH(t) + h(x, t)] , (2.28)

where ϕH(t) is the profile of the Higgs VEV, which only depend on the coordinates of the extra
dimension, and h(x, t) is the 5D Higgs field [113, 149, 150, 154, 155]. The prefactor t/(ε

√
2r) is

introduced for convenience. This will become clear later when the normalization condition for the
Higgs modes after the KK-expansion is obtained.

In addition, the bulk and brane localized potentials for the bulk higgs field take the following
form

V = µ2
H |H|2,

V UV = σUV|H|2,
V IR = −σIR|H|2 + ρIR|H|4.

(2.29)

Let’s analyze the dimension of the fields and the parameters of the bulk and brane potentials.
First of all, the mass dimension of the bulk scalar fields can be infered from the kinetic term of the
action, in (2.23). Moreover, a similar derivation can be done with the parameters of the potentials
in (2.29), given that the dimension of the potentials are well known. The mass dimensions of the
scalar sector of a 5D bulk theory can be summarized as

[L5D]⇒ [Φ] = 3/2, [V ] = 5,
[
V UV] =

[
V IR] = 4, (2.30)

which leads to
[µ] = [σUV] = [σIR] = 1, and [ρIR] = −2. (2.31)

For simplicity, a quartic term is only introduced at the IR brane, in order to induce EWSB
near that brane [113, 149–155]. However, the same could be done for the bulk and UV branes if
the Higgs is peaked towards the IR brane. In that case, the quartic term contributions would be
negligeable and therefore, could be omitted.

The EOM for the Higgs VEV is derived from (2.25) by omitting the 4D term

[
t2∂2

t + t∂t − β2
] ϕH(t)

t
= 0, (2.32)

where the effective mass parameter β has been defined as

β2 ≡ 4 +
µ2
H

k2
. (2.33)

Note that the effective mass parameter µ2 + 4k2 in (2.33) is precisely the one appearing in the
Breitenlohner-Freedman (BF) bound in AdS space [156,157]. The BF bound

β2 = 4 +
µ2
H

k2
≥ 0, (2.34)
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is related to the absence of tachyonic modes for the scalar fluctuations for a free field. Note that
the Higgs has a quartic parameter located at the IR brane, however and since it has the potential
of a free field in the bulk, it is usually assummed that β is real and positive. Note that this allows
for negative values of µ2

H , as long as (2.34) is satisfied.

Moreover, the BC corresponding to the UV and IR branes are

∂t [t ϕH(t)]t=ε+ = mUV ϕH(ε),

∂t [t ϕH(t)]t=1− = mIR ϕH(1)− 2λIR

M2
KK
ϕH(1)3.

(2.35)

The notation ε+ and 1− refers to the orbifold fixed points, approached from the appropriate side.
In addition, the following quantities have been defined

mUV =
σUV

2k
, mIR =

σIR

2k
, λIR =

ρIRk

4r
. (2.36)

Solving the EOM and BC set leads to the well known solution [149,154,155]

ϕH(t) = Nv
[
t1+β − rvt1−β

]
, (2.37)

with rv and Nv defined as

rv = ε2β
2 + β −mUV

2− β −mUV
,

N2
v =

M2
KK

2λIR

(mIR − 2− β) + rv (mIR − 2 + β)

(1− rv)3
.

(2.38)

Note that, unless β is very small or the denominator in rv is fine-tuned to mUV ∼ 2 − β, it is safe
to consider rv to be small, i.e. rv ∝ ε2β � 1, and therefore can be set to zero for all practical
purposes. In that case, (2.37) simplifies to

ϕH(t) ≈ Nv t1+β , (2.39)

where it comes explicit that the Higgs VEV is peaked towards the IR brane, as it was previously
discussed that β ≥ 0. As can be seen, the fact that the Higgs VEV is localized near the IR brane is
not a consequence of a fine-tuning. On the contrary, it is avoiding the Higgs VEV to point towards
the IR brane that requires such fine-tuning, since it would become necessary to adjust mUV so that
mUV ' 2− β.

In the approximation (2.39), the profile at t = 1 can be indentified as

ϕH(1) ' Nv 'MKK

√
mIR − 2− β

2λIR
, (2.40)

given by the BC at the infrarred brane. Therefore, it follows

ϕH(t) ' ϕH(1) t1+β . (2.41)

Furthemore, the normalization such that the SM W,Z masses are obtained (see [149,150,154,
155]) leads to

v2
4 =

2π

L

∫ 1

ε

dt

t
ϕ2
H(t) =

πN2
v

L

[
1

1 + β
+O(ε)

]
' π

L

ϕ2
H(1)

1 + β
, (2.42)

where the zero-mode profiles of the gauge bosons have been assumed to be flat, up to O(v2
4/M

2
KK)

corrections [150]. The reason why this assumption can be made will become clear in the next
section. In that case, the Higgs VEV reads

ϕH(t) ≈ v4

√
L

π
(1 + β) t1+β , (2.43)
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where v4 corresponds with vSM at leading order in both x4 ≡ v4/MKK and ε.

Let’s move now to the study of the scalar KK excitations. The profiles of these resonances can
be computed by inserting the KK decompositions

h(x, t) =

∞∑

n=0

hn(x)χhn(t), (2.44)

into the action (2.23). They correspond to the solutions of a mass eigenvalue problem for the hn(x)
modes, the 4D resonances satisfying the Klein-Gordon equation, while χhn(t) are their correspond-
ing profiles along the extra dimension. In that expansion, the zero mode h(x) ≡ h0(x) corresponds
to the SM Higgs boson. Demanding these fields to have canonically normalized kinetic terms leads
to the profile orthogonality condition

2π

L

∫ 1

ε

dt

t
χhm(t)χhn(t) = δmn. (2.45)

The EOM for the 5D profiles correspond to the following Sturm-Liouville equation

[
t2∂2

t + t∂t + t2x2
n − β2

] χhn(t)

t
= 0, (2.46)

with BC
∂t
[
t χhn(t)

]
t=ε+

= mUV χ
h
n(ε),

∂t
[
t χhn(t)

]
t=1−

= mIR χ
h
n(1)− 2λIR

M2
KK
χhn(1)3.

(2.47)

where xn, the eigenvalue of the EOM, denotes the mass of the 4D particle in units of MKK, as

xn ≡ mn/MKK . (2.48)

The fact that (2.46) is a Sturm-Liouville equation (as will be the case for the gauge boson
and fermion fields) guarantees that the profiles, corresponding to eigenfunctions of such Sturm-
Liouville problem, are orthogonal to each other. In this case, the most general solution to equa-
tion (2.46) is a linear combination of Bessel functions as

χhn(t) = Nnt [Jβ(xnt)− rnYβ(xnt)] , (2.49)

where the BC on the UV brane does again imply that rn ∝ ε2β is extremely small and can be set to
zero. In this case, the profiles for the n-modes of the 5D Higgs field can be written as

χhn(t) =

√
L

π

tJβ(xhnt)√
J2
β(xhn)− Jβ+1(xhn)Jβ−1(xhn)

, (2.50)

where Jβ(x) is a Bessel function, and χhn(t) satisfy the orthogonality condition and normalization
from (2.45).

The eigenvalues xhn are obtained from the relation

xhnJβ+1(xhn)

Jβ(xhn)
= 2 (mIR − 2− β) ≡ 2δ, (2.51)

which has been derived form the BC at the IR brane, by using properties of the Jβ Bessel functions.
The eigenvalues resulting from equation (2.51) are O(1). However, for the zero-mode a smaller
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Figure 2.4: Left: Representation of the function that sets the eigenvalues xn for the Higgs n-
modes. Right: Profiles of the zero and first KK modes of the Higgs field.

value can be obtained if a fine-tuning is performed. This is equivalent to the little hierarchy prob-
lem appearing in the brane-Higgs scenario, since in these models the intrinsic IR-brane is O(5) TeV,
and therefore to obtain the Higgs mass requires some tuning. In this case, it is δ � 1 the tuning
required to obtain the appropriate x0 so that mh = 125 GeV and therefore x0 = mh/MKK � 1.

In particular, in [150] the authors expanded the zero-mode mass in a power series of δ

x2
0 =

m2
h

M2
KK

= 4(1 + β)δ +O(δ2), (2.52)

making the tunning on δ explicit.

In addition, since the eigenvalue for the zero-mode is a small parameter, it is possible to expand
the zero-mode profile for the Higgs in powers of x2

0. Such expansion reads

χh0 (t) =

√
L

π
(1 + β) t1+β

[
1− x2

0

4

(
t2

1 + β
− 1

2 + β

)]
+O(x4

0), (2.53)

and therefore, at first order it can be approximated as

χh0 (t) '
√
L

π
(1 + β) t1+β . (2.54)

In this limit, the zero-mode profile for the Higgs corresponds with the Higgs VEV profile up to a v4

factor, as can be seen from (2.43).

We show in the left plot of figure 2.4 the ratio of Bessel function from (2.51) that allows
to obtain the mass eigenvalues xn. For x0 � 1, 2δ ∼ 0 and therefore the zeros of that ratio
correspond to the eigenvalues as a good approximation. In particular, for MKK = 5 TeV we find
2δ ∼ O(10−3) for β = 1 and 2δ ∼ O(10−4) for β = 10, if we want to reproduce the SM Higgs mass
for n = 0. Note that in general xn ∼ O(1) and Jβ+1(xn)/Jβ(xn) ∼ O(10−1). In the right plot, we
show the profiles for the zero and first KK modes of the Higgs field for β = 1 and β = 10.
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2.4 Gauge fields

We continue now with the discussion of gauge fields. We will be focusing here on a U(1) gauge
field as our purpose in this section is to give an overview on how the gauge profiles are obtained
and what are their orthogonality conditions and in that case, the derivation for a non-abelian
gauge field is substantially the same. Moreover, we will be only interested in the quadratic part of
the action, where there is no distinction between the abelian and non-abelian cases. Therefore, we
can define our gauge field tensor as FMN = ∂MAN − ∂NAM .

The 5D action for the U(1) gauge field reads

S
(5D)
A =

∫
d4x

∫ π

−π
dφ
√
g

{
− 1

4
gMNgKLFMKFNL

}
+ SGF, (2.55)

where SGF is a gauge-fixing term, necessary to cancel the mixed kinetic terms the gauge bosons,
Aµ, and the scalar components, A5, [110,158]. Such cancellations are not a feature of the abelian
case, and can also be achieved for a non-abelian theory, see [110].

The covariant derivative for a field charged under the U(1) is defined as

DM = ∂M − ig5AM . (2.56)

The mass dimensions of the gauge fields and the coupling constant can be inferred from the
definition of the covariant derivative in (2.57) and the action in (2.55), being

[AM ] = 3/2, [g5] = −1/2. (2.57)

We can now write the KK decomposition for the 5D U(1) gauge field AM in terms of the Aµ
and A5 components, as

Aµ(x, φ) =
1√
r

∑

n

Anµ(x)χAn (φ),

A5(x, φ) =
−1√
r

∑

n

1

mA
n

An5 (x)∂φχ
A
n (φ).

(2.58)

Inserting the KK decomposition into the action leads to the EOM for the χAn profiles
[
∂φ e

−2σ(φ−π)∂φ + (xAn )2(kr)2
]
χAn (φ) = 0, (2.59)

together with BC [
∂φχ

A
n (φ)

] ∣∣
φ=0,π

= 0. (2.60)

Again, being the profiles, χAn , the eigenfunctions of a Sturm-Liouville problem, it is guaranteed
that the profiles are orthogonal to each other. In particular, they satisfy the following orthonormal-
ity condition

∫ π

−π
dφχAm(φ)χAn (φ) = 2

∫ π

0

dφχAm(φ)χAn (φ) = δmn. (2.61)

The solutions for the gauge boson profiles is given in terms of Bessel functions for the KK modes

χAn (φ) = Nne
σ(φ)

[
J1

(
xAn e

σ(φ−π)
)

+ bnY1

(
xAn e

σ(φ−π)
)]
. (2.62)
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However, for the zero-mode the solution is trivially χA0 (φ) = N0, where the value of N0 is set
by the condition (2.61), and therefore [103,104,110]

χA0 (φ) =
1√
2π
. (2.63)

As we can see from the BC in (2.60), the profiles corresponding to the Aµ components satisfy
Neumann BC, while the profiles corresponding to A5 satisfy Dirichlet BC. Note that this only makes
it possible for the Aµ fields to have a non-vanishing zero-mode, while the Dirichlet BCs for the 5D
profiles of the A5 fields do not allow them to have a zero-mode.

As was mentioned in the previous section, for determining the normalization of the Higgs VEV
in (2.43), the zero-modes for the gauge bosons are flat. This is due to the fact that there is no free
parameter that can control the localization of the gauge zero-modes. In addition, the fact that the
zero-mode is flat is necessary for gauge invariance and the universality of gauge interactions. Note
that the effective 4D gauge coupling of the SM gauge bosons, which corresponds to the effective
coupling of the gauge boson zero-modes with the Higgs and the SM fermions, is obtained from
the 5D theory after the profiles of the Higgs boson and fermions are integrated out together with
the profile of the particular gauge boson zero-mode. Since gauge bosons appear in kinetic term of
such fields through the covariant derivative, it is guaranteed that in the absence of a coordinate-
dependent gauge bosons profiles, i.e. when setting χA0 equal a constant, the overlaps with the
Higgs bosons and SM fermions are all normalized the same way and are therefore universal. Notice
however that, if the gauge zero-mode is not flat, the non-trivial localizations of fermions or scalars,
once these are integrated out together with the non-flat profile of the gauge bosons, would lead to
arbitrary 4D gauge couplings for every field.

However, once the gauge bosons have a non-vanishing 5D mass, their profiles deviate from
χA0 = 1/

√
2π. In particular, for the SM gauge fields the Higgs introduces a mass term, and there-

fore one could think that the profiles would no longer be described by the trivial solution given
in (2.63). However, being the scale of the new 5D mass v = 246 GeV much smaller than MKK, such
deviations can be computed as perturbations of O(v4/MKK) and therefore, the flat solutions still
provide a very good approximation [103,104].

Let us consider the case of the brane-localized scalar, φA, that lives in the IR brane and its
charged under the U(1) gauge symmetry. If such scalar acquires a VEV, it would introduce a new
mass term for the AM gauge bosons, and this new term would appear in the BC for the IR brane.
In this case, the BC for the gauge bosons read

[
∂φχ

A
n (φ)

] ∣∣
φ=0

= 0,
[
∂φ + πr2M2

Ae
2σ(π)

]
χAn (φ)

∣∣
φ=π

= 0, (2.64)

where we have introduced

M2
A ≡

g2
A

2πr

v2
φ

4
, (2.65)

with 〈φA〉 ≡ vφ.

Moreover, if we consider now the case where φA is a bulk scalar, the new 5D mass for the gauge
bosons would have a dependence on the fifth dimensional coordinate. In this case, the mass for
the zero-mode becomes

m2
A ≈

2π

L

∫ 1

ε

dt

t
M2
A(t). (2.66)

where we have used the approximation χA0 (φ) ≈ 1/
√

2π and

M2
A(t) ≡ g2

A

2πr

v2
φ(t)

4
, (2.67)

28



2.5. Fermion fields

where now 〈φA〉 ≡ vφ(t). Note that we have changed from φ to t coordinates here. It could
have been shown using the φ coordinates, however it is convenient to have this formulae in t
coordinates, so that the Higgs VEV solution from (2.43) can be inserted directly.

To obtain the masses of the SM gauge bosons, Z,W±, from the previous derivations, it can be
easily done by identifying vφ = v0 for the brane-Higgs case, and v2

φ(t) = ϕ2
H(t) for the bulk Higgs

scenario. In both cases, to derive MZ,W and MZ,W (t), the gauge couplings gA should be traded for
g2
Z = g2

5 + g′25 and g2
W = g2

5 . For photons and gluons the masses are naturally Mγ = Mg = 0 and
the profiles are therefore purely flat, where note that this result holds for all orders in v4/MKK.

2.5 Fermion fields

In 4D fermions are described through an irreducible representation of two-dimensional Weyl
spinors. However, in 5D the smallest irreducible representation for fermions has 4 complex com-
ponents, and therefore the 2-component Weyl spinors are connected through Lorentz transforma-
tions. Another way to understand this is by the fact that in 5D γ5 is part of the five-dimensional
Dirac algebra, therefore it does no longer commute with all the generators of the Lorentz group,
i.e. the 4D chiral components are now connected by the Lorentz transformations. This means that
5D fermions are described by vector-like fields and that we cannot build a chiral gauge theory
in 5D. Even if we initially asign vanishing gauge charges to one of the two components, and a
non-vanishing charge to the opposite chirality, we can always transform the LH modes into the RH
modes and vice versa, and therefore by rotating one chirality into the other we would always be
able to charge both LH and RH fields under the gauge symmetry [143,158,159].

However, we will see that it is still possible to obtain a 4D chiral spectrum from the 5D vector-
like theory. Because the compactification of the extra dimension breaks down the 5D Lorentz
invariance, only one of the massless modes from the 4D chiralities remains, and therefore the 4D
theory differentiates left and right [1,21,24,25,143,158–160].

In particular, the 5D Clifford algebra is given by

{
Γa,Γb

}
= 2ηab, (2.68)

where Γa and Γb are the five 4 × 4 anticommuting Dirac Γ-matrices and the symbols (a, b, . . .)
correspond to local Lorentz indices, defined in the tangent flat space. These Gamma-matrices can
be transformed into quantities defined in the AdS5 space by

ΓM = eMa Γa, (2.69)

where eMa is the inverse fünfbein. We will use upper-case Roman indices (M,N, . . .) to denote
objects defined in the curved space. The fünfbeins are defined so that they satisfy

gMN = eaMe
b
N ηab. (2.70)

Here, the fünfbeins allow to transform quantities from the 4D vector tangent space to the AdS5

spacetime [123,143,158,161]. In addition, the inverse fünfbein must fulfill

eMa e
b
M = δba. (2.71)

For an AdS5 space, these quantities correpond to

eaM = diag(eσ(y)δaα, 1). (2.72)

Therefore, the 5D Clifford algebra in an AdS5 space satisfies
{

ΓM ,ΓN
}

= 2gMN . (2.73)
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To summarize, our 5D Dirac Γ-matrices, which provide a 4D irreducible representation of the 5D
Clifford algebra in flat space, are

Γa = (γα, iγ5) , (2.74)

with α = 0, . . . , 3, and where γα are the usual Dirac matrices and γ5 is defined as γ5 = iγ0γ1γ2γ3.

In addition, for a general backgrounds we need to include a spin connection to define the
covariant derivative. The covariant derivative for an uncharged fermion is defined as

DM = ∂M + ωM = ∂M +
1

8
ωMab

[
Γa,Γb

]
, (2.75)

where ωM is spin connection and the coefficients ωMab are defined as in [123,143,158,161]

ωabM =
1

2
gRP e

[a
R ∂[Me

b]
P ] +

1

4
gRP gTSe

[a
Re

b]
T ∂[Se

c
P ]e

d
Mηcd. (2.76)

For the RS background, given that the metric is diagonal, the spin connection is simply

ωM =

(
−σ(φ)

2r
eσ(φ)γµγ5, 0

)
. (2.77)

Even though we can always rotate the fields of one chirality to the other in 5D, we can still
define the chirality projectors as usual, being PL,R = (1 ∓ γ5)/2. In this case, we can decompose
the five-dimensional Dirac spinor into the two chiralities as Ψ = ΨL + ΨR with ΨL,R ≡ PL,RΨ
and γ5ΨL,R = ±ΨL,R. As we mentioned before, the idea is to asign a different Z2 transformation,
even or odd, to each chirality of Ψ, in such a way that only one of the zero modes can fulfill the
BC and therefore survives. This will be explicitly shown in section 2.5.1, where we will introduce
the zero-mode solutions.

We can now define the action for Dirac fermion fields. Note that in 5D fermions can have a
mass term in the action, since as we mentioned before, 5D fermions are described by vector-like
fields. However, since the opposite-chirality components would transform differently under the Z2

orbifold symmetry, such a mass term needs to appear together with a sign function. Otherwise,
the action would no longer be invariant under the orbifold symmetry. Taking this into account, the
action for 5D fermions can be written as [21,25]

S
(5D)
ψ =

∫
d4x

∫ π

−π
dφ
√
g

{
ENa

[
i

2
Ψ̄ Γa(∂N −

←−
∂N )Ψ +

ωbcN
8

Ψ̄{Γa, σbc}Ψ
]
−mψ sgn(φ)Ψ̄Ψ

}
, (2.78)

where the derivatives have been written such that the action is explicitly hermitian. We are con-
sidering here free fermions, but gauge charges could be considered by replacing the partial deriva-
tives for covariant derivatives. Note however that the spin connection has already been written
explicitely.

The mass dimensions of the fields and the mass parameter in the action are

[Ψ] = 2, [mψ] = 1. (2.79)

Applying the principle of least action and integrating by parts in (2.78) leads to the EOM for the Ψ
field

eσi/∂ΨL + [−∂5 −mψ + 2σ′] ΨR = 0,

eσi/∂ΨR + [+∂5 −mψ − 2σ′] ΨL = 0,
(2.80)

and to the BC
δΨ̄L ΨR

∣∣∣
φ=0,π

= δΨ̄R ΨL

∣∣∣
φ=0,π

= 0. (2.81)
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We now perform the following KK decomposition

ΨL,R(x, φ) =
∑

n

ψL,Rn (x)
e2σ

√
r
fL,Rn (φ), (2.82)

and requiring in (2.83) that the ψL,Rn (x) modes satisfy the 4D Dirac equation for massive fermions
leads to the EOM for the fL,Rn profiles

(
±∂φ
r
−mψ

)
fL,Rn (φ) = −mne

σfR,Ln (φ), (2.83)

where mn are the masses of the 4D resonances. Note that the LH and RH resonances of the same
n-mode have indentical masses. We define the dimensionless mass

c ≡ mψ/k, (2.84)

allowing us to write the EOM in a dimensionless form

(±∂φ − ckr) fL,Rn (φ) = −xn kr eσ(φ−π)fR,Ln (φ), (2.85)

where xn is the dimensionless mass eigenvalue, as defined in (2.48).

The BC (2.81) can be rewritten in term of the profiles of the fermion modes as

δfL∗n (φ) fRn (φ)
∣∣∣
φ=0,π

= δfR∗n (φ) fLn (φ)
∣∣∣
φ=0,π

= 0. (2.86)

The BC guarantees either fL∗n (0)fRn (0) = 0, or fL∗n (π)fRn (π) = 0, i.e. for a given fermion field Ψ
if we assume the same Z2 behavior for the field at both branes, either the LH or the RH component
of the field must be Z2-odd. That allows us to identify the orbifold Z2-parity of the fermion field
with its projection with γ5, in agreement with what was previously discussed.

The set of fLn (φ) and fRn (φ) span two complete and orthonormal eigenfunctions of the just
presented Sturm-Liouville problem. Therefore, they must satisfy the orthonormality conditions

∫ π

−π
dφ eσfL∗m (φ)fLn (φ) =

∫ π

−π
dφ eσfR∗m (φ)fRn (φ) = δmn. (2.87)

2.5.1 Fermion zero-modes

The EOM in (2.85) couples the LH and RH modes of equal n through their eigenvalue mn. There-
fore, when such eigenvalue vanishes, the EOM decouples the LH and RH modes and can be solved
analytically. The zero-modes, i.e. the n = 0 modes with m0 = 0, satisfy

(
± ∂φ − ckr

)
fL,Rn (φ) = 0, (2.88)

which can be easily integrated, giving

fL,R0 (φ) = fL,R0 (0) exp
(
± c kr|φ|

)
, (2.89)

where the normalization condition from (2.87) gets absorbed in fL,R0 (0). We can see that the BC
at the UV brane, fL∗0 (0)fR0 (0) = 0, implies that only one of the two zero-modes remains, i.e. the
Z2-even profiles, while the Z2-odd components of the Ψ zero-mode vanish. In addition, note that
the EOM and the solutions are the same for the LH and RH modes for for c→ −c.
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The value of fL,R0 (0) can be obtained from (2.87), being
∣∣∣fL,R0 (0)

∣∣∣
2

=
kr

2

1± 2c

e(1±2c)krπ − 1
. (2.90)

Therefore, even if the 5D theory is vector-like, we can obtain a 4D chiral theory by relating the
Z2-parity of the fermion fields with the chirality operator, e.g. by assigning ΨL to be Z2-even and
ΨR to be Z2-odd. The theory in 5D remains vector-like but at low energies only one of the two
chiralities is present, i.e. the one whose zero-mode survived. In other words, at

√
s � MKK the

theory is chiral.

Let’s go back to the KK decomposition we proposed in (2.82). The e2σ factor appearing there is
totally arbitrary and is introduced with the purpose of not encountering derivatives of the metric
in the EOM for the profiles. However, if we look at the orthonormalization condition in (2.87), we
can see that the profiles we have defined do not give us a good idea about the “true” localization
of the fermion profiles along the fifth dimension, since the quantities fL,Rn we have defined require
exponential factors of the metric to normalize to 1 in (2.87). Let us see what happens if we choose
a different definition for the profiles. Let us define

f̂L,R0 (φ) = eσ/2fL,Rn (φ), (2.91)

in such a way that the orthogonality condition for such profiles reads
∫ π

−π
dφ f̂L∗m (φ)f̂Ln (φ) =

∫ π

−π
dφ f̂R∗m (φ)f̂Rn (φ) = δmn. (2.92)

In this case, the EOM for the zero modes can be written as
[
∂φ − kr

(
1

2
± c
)]

f̂L,Rn (φ) = 0, (2.93)

leading to the zero-mode profiles

f̂L,R0 (φ) = f̂L,R0 (0) exp
(

(1/2± c) kr|φ|
)
. (2.94)

We can see now that there is a special value of the dimensionless mass parameter c for which the
LH or RH zero-mode profiles are flat, i.e. for c = −1/2 for the LH profiles and c = 1/2 for the RH
profiles. In the case of a LH profiles, for c > −1/2 the zero-modes are pointing towards the IR
brane, while the profile would be UV localized for c < −1/2 [25, 158]. This behavior has been
illustrated in figure 2.5.

It is useful again to present the equations and solutions for the fermion zero-modes in t-
coordinates. Let’s first rescale the fermion profiles as

fL,R0 (t) =
√
krεf̃L,R0 (t). (2.95)

Now, the EOM (2.88) reads (
± t∂t − c

)
f̃L,Rn (t) = 0, (2.96)

and the solution now is simply
f̃L,R0 (t) = f̃L,R0 (1) t±c, (2.97)

where the f̃L,Rn (t) profiles must satisfy the orthonormality condition

2

∫ 1

ε

dt f̃L∗m (t)f̃Ln (t) =

∫ 1

ε

dt f̃R∗m (t)f̃Rn (t) = δmn. (2.98)

Finally, the normalization for the zero modes that satisfies (2.98) is
∣∣∣f̃L,R0 (1)

∣∣∣
2

=
1± 2c

1− ε1±2c
. (2.99)
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Figure 2.5: Schematic representation of the localization of the fermion zero-modes, depending
on the c mass parameter defined in equation (2.84).

2.5.2 Fermion KK-modes

We will focus here on the KK resonances with n ≥ 1. In this case the EOM (2.85) can be decoupled
by taking a derivative w.r.t. the fifth coordinate and inserting the first order EOM. This way, a
second-order EOM for the KK resonances is obtained

[
∂2
φ − kr ∂φ + x2

n(kr)2 e2σ(φ−π) − c (kr)2(c∓ 1)
]
fL,Rn (φ) = 0. (2.100)

This EOM can be written in t-coordinates for the f̃L,Rn (t) profiles, being
[
t2∂2

t + t2x2
n − c (c∓ 1)

]
f̃L,Rn (t) = 0. (2.101)

where the eigenvalues xn are expected to be O(1), corresponding to fermion resonances with
masses of O(MKK) in the 4D theory.

f̃L,Rn (t) =
√
tNψ

[
Jc∓1/2(xnt) + bψYc∓1/2(xnt)

]
, (2.102)

where Nψ is a normalization condition while the eigenvalue xn and the coefficient bψ are obtained
from requiring that (2.102) satisfies the BC (2.86). Moreover, the profile functions for the fermion
KK modes can also be written in terms of only J Bessel functions, as in [25].

In addition, the eigenvalues xn for the heavy fermions can be obtained as the zeroes of Bessel
functions. These Bessel functions correspond to J|1/2−c|(xn) = 0 for even RH-fields and odd
LH-fields, while for even LH-fields and odd RH-fields the eigenvalues are found as zeroes of
J|1/2+c|(xn) = 0 .

We show in figure 2.6 the Bessel function function J|1/2−c|(xn), which defines the eigenval-
ues xn, in the left plot and the profiles of the RH and LH first KK modes, computed using the
eigenvalues obtained from the zeroes of the left-side plot, in the middle and right plots.
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Figure 2.6: In the left plot, we show J|1/2−c|(xn), the function that sets the eigenvalues xn
from demanding the LH-fields to be odd. In the center and right plots we show
the profiles of the first KK modes for LH and RH fields respectively, where the
eigenvalues of xn corresponding to the zeroes of the left plot have been used. The
mass parameter c has been set to c = −0.2 (solid) and c = 0.8 (dot-dashed) for
the three plots.

2.6 GW stabilization

We have seen how the RS model is able to solve the hierarchy problem with a extra dimension of
size yIR = πr. However, in the original set-up no reason is given for why to set the length of the
extra dimension to the value proposed in [18], nor a dynamical mechanism for setting this size
is mentioned. Moreover, in theories with extra dimensions the fluctuations of the radius of the
extra dimension are identified with a 4D scalar field, the so-called radion. In this case, having no
dynamical mechanism explaining why the radius of the extra dimension is fixed to a determined
value of yIR, is associated to this particle being massless in the effective theory, i.e. the radion
represents a flat direction of the theory and any size of the extra dimension becomes possible, since
no particular value for yIR is preferred. This is phenomenologically intolerable, since it would lead
to violations of the equivalence principle by long-range modifications of the Newtonian potential.

In this section, we introduce the mechanism proposed by W. Goldberger and M. Wise [162]
to stabilize the size of the extra dimension in the RS model with a bulk scalar field. In their
work, the bulk scalar field acts as a moduli field and generates an effective potential Vr(kr) which
depends non-trivialy on the size of the extra dimension. It is found that the combination of the
bulk and brane parameters from the scalar action set the minimum of Vr to be found for values
of kr ∼ O(10) for natural values of the model parameters. This section is just a summary of the
findings presented in [162] followed by a discussion of the possible backreaction of the GW field
on the metric. Some pedagogical introductions to this topic can be found in [123,140,158,163].

The scalar action for the bulk real scalar field Φ̂ reads

S
(5D)
GW =

∫
d4x

∫ π

−π
dφ
√
g
{
gMN

1

2
∂M Φ̂∂N Φ̂− m2

2
Φ̂2 −

√
|ĝUV|√
g

λUV

(
Φ̂2 − v2

UV

)2

δ(φ)

−
√
|ĝIR|√
g

λIR

(
Φ̂2 − v2

IR

)2

δ(φ− π)
}
,

(2.103)

34



2.6. GW stabilization

where m is the 5D bulk mass, λUV and λIR are the brane quartic couplings and vUV and vIR are the
VEV of the field at the branes. The parameter have mass dimensions

[λUV] = [λIR] = −2, and [vUV] = [vIR] = 3/2. (2.104)

The EOM for the VEV of 〈Φ̂(x, φ)〉 ≡ Φ(φ) can be derived from the action, reading

Φ′′(φ)− 4 krΦ′(φ)−m2Φ(φ) = 0, (2.105)

for which the most general solution is given by

Φ(φ) = e2σ(φ)
[
Aeβσ(φ) +Be−βσ(φ)

]
, (2.106)

with β =
√

4 +m2/k2, as defined in (2.33).

Integrating over the fifth dimension leads to the effective potential

Vr(kr) = k(β + 2)A2
(
e2βkrπ − 1

)
+ k(β − 2)B2

(
1− e−2βkrπ

)

+ λIRe
−4krπ

(
Φ(π)2 − v2

IR

)2
+ λUV

(
Φ(0)2 − v2

UV

)2
.

(2.107)

The coefficients A and B are determined by the BC, being

A = vIR e
−(2+β)krπ − vUV e

−2βkrπ,

B = vUV
(
1 + e−2βkrπ

)
− vIR e

−(2+β)krπ,
(2.108)

where subleading powers of ε have been neglected. Assumming that m � k in such a way that
β = 2 + δ with δ ' m2/(4k2), and assumming kr � 1, leads to the minimum of the potential Vr to
be located at the values of kr

kr =
4

π

k2

m2
log

(
vUV

vIR

)
, (2.109)

which can be O(10) for m2/k2 ∼ 10, while it only depends logarithmically on the values of vUV and
vIR.

However, in this previous derivation we have not considered the possible modifications that the
GW scalar could induce on the background metric from the RS model. We will see now why in the
case of the GW field such modifications are not important, if the parameters of the model fulfill
certain conditions.

In general, the modifications of the RS metric caused by contributions of fields to the stress
energy tensor are referred as backreaction. In the particular case of the GW field, we find [164]

σ′′ =
κ2

3

[
Φ′2 + λUV

(
Φ2 − v2

UV

)2
δ(φ) + λIR

(
Φ2 − v2

IR

)2
δ(φ− π)

]
,

σ′2 =
κ2

12

[
Φ′2 −m2Φ2

]
,

Φ′′ − 4σ′Φ′ = m2Φ + 4
[
λUVΦ(Φ2 − v2

UV)δ(φ) + λIRΦ(Φ2 − v2
IR)δ(φ− π)

]
,

(2.110)

Note that we are only describing here the modifications of the metric solution of (2.7) as

σ̂ = σ̄ + σ, (2.111)

where σ̂ would be the complete solution and σ̄ is the RS solution. Therefore, we do not consider
here the bulk cosmological constant and the brane tensions.
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The BC for the metric are now

[σ′(φ)]φ=0 =
κ2λUV r

3

(
Φ2 − v2

UV

)2
, [Φ′(φ)]φ=0 = 4λUV rΦ(0)

(
Φ(0)2 − v2

UV

)
,

[σ′(φ)]φ=π =
κ2λIR r

3

(
Φ2 − v2

IR

)2
, [Φ′(φ)]φ=π = 4λIR rΦ(π)

(
Φ(π)2 − v2

IR

)
,

(2.112)

where the jump conditions are defined as in (2.10).

We have three coupled equations involving σ and Φ and at first sight the system might seem to
be overdetermined. However, it can be proven that the system does not require the three of them
since they are not linearly independent. In addition, there is a method that allows to separate the
system of equations (2.110) into a set of first order ordinary differential equations. This is known
as the superpotential method [165].

The only assumption we need to make is that the scalar potential V (Φ) can be expressed in
terms of the superpotential W (Φ) as

V (φ) =
1

8

(
∂W (Φ)

∂Φ

)2

− κ2

6
W (φ)2. (2.113)

If this is the case, then it can be shown that the following ansatz for σ and Φ are solutions of (2.110)

σ′ =
κ2r

6
W (Φ),

Φ′ =
r

2

∂W (Φ)

∂Φ
.

(2.114)

In addition, the superpotential must satisfy the BC

1

2
[W (Φ)]φ=0 = λUV

(
Φ2 − v2

UV

)2
,

1

2

[
∂W (Φ)

∂Φ

]

φ=0

= 4λUV Φ(0)
(
Φ(0)2 − v2

UV

)
,

1

2
[W (Φ)]φ=π = λIR r

(
Φ2 − v2

IR

)2
,

1

2

[
∂W (Φ)

∂Φ

]

φ=π

= 4λIR Φ(π)
(
Φ(π)2 − v2

IR

)
,

(2.115)

as can be derived from (2.112) and (2.113).

In general, finding an ansatz for W (Φ) for any given V (Φ) can be complicated, depending on
the specific model we would like to describe. However, for the GW case we can propose a solution
of the following form

W (Φ) = a− uΦ2. (2.116)

This ansatz leads to

V (Φ) =
u2

2
Φ2 − κ2u2

6
Φ4, (2.117)

which corresponds to the GW potential, see (2.103), for u = m only in the limit of κ2u2Φ4 → 0,
what is required for this to happen will be clear once we get the solutions for Φ and σ.

The solution for Φ can be obtained from

Φ′ =
r

2

∂W (Φ)

∂Φ
= −mrΦ, (2.118)

leading to
Φ(φ) = Φ(0)e−mrφ. (2.119)
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In the large λUV and λIR, we can identify Φ(0) = vUV and Φ(π) = vIR. Therefore, we find [123,140,
158,163,165]

mrπ = log

(
vUV

vIR

)
⇒ kr =

1

π

k

m
log

(
vUV

vIR

)
, (2.120)

along the same lines to what was found in (2.109). The factor 4k/m difference is due to the fact
that in [162], some approximations are performed during the derivation, whereas in [165], the
result obtained by using the super-potential method is exact. The assumption in the potential of
κ2u2Φ4 → 0 is therefore satisfied for m�M∗ as long as v2

UV and v2
IR ≤M3

∗ .

In the case of the metric, we find

σ′ =
κ2

6
W (Φ) = −κ

2mr

6
v2

UVe
−2mrφ, (2.121)

which, once (2.121) is integrated from 0 to φ, to the following solution for σ

σ(φ) =
κ2v2

UV

12
e−2mrφ, (2.122)

where we have been working on φ ∈ [0, π]. The full metric then reads

σ̂(φ) = kr|φ|+ κ2

12
Φ(φ)2, (2.123)

where, since m can be positive or negative, but in both cases Φ is monotonous

max Φ(φ) = max (vUV, vIR) , (2.124)

therefore the contribution of the backreaction of the GW field can be neglected as long as v2
UV/M

3
∗ �

1 and v2
IR/M

3
∗ � 1 is satisfied. Therefore, there is no need to consider possible backreaction effects

on the metric caused by the bulk scalar field and the RS metric σ(φ) = kr|φ| remains as a solution
even when the extra dimension gets stabilized by the GW field.

To study the full theory, one would have to still consider the scalar fluctuations of the back-
ground solutions we have just described. In that case, the linearized Einstein equations of the
following 5D scalar-gravity system need to be solved

ds2 = e−2(σ(φ)+α(x,φ))ηµνdx
µdxν −

[
r2 + β(x, φ)

]2
dφ2,

Φ̂(x, φ) = Φ(φ) + ϕ(x, φ),
(2.125)

where the scalar perturbations to the metric α(x, φ) and β(x, φ), and the scalar field ϕ(x, φ) have
been introduced, these apparently independent fields describe a single d.o.f. , the radion. However,
radion physics is beyond the scope of this thesis. Some interesting references on the radion can be
found in [116,123,140,141,163,166–169].

2.7 The flavor puzzle in WED

We introduced in the section 1.2 the problem of the huge hierarchy present in the masses of the
SM fermions. In addition, we also discussed how the diagonal structure of the CKM matrix is not
explained in the SM. In this section, we will see how these questions are addressed within the
RS framework. For the purpose of presenting in detail the flavor structure of RS models, we will
consider the IR-brane-localized Higgs boson scenario. Even if the mechanism shown here for the
IR-brane case could be extrapolated for the bulk Higgs case, the mathematical derivation becomes
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much more complex, and therefore the solutions and relations would not be as simple and straight
forward as in the ones we will obtain for the brane-localized case. This section will follow the
arguments and for most part the notation of [110,160].

It is usually stated that providing a solution to the hierarchy problem is the main feature of RS
models, leaving aside many times that it can also naturally explain the large hierarchies observed
in the fermion spectrum of the SM, particuarly in the quark sector [21,25,110,114,115,170–172].
By a similar mechanism to the one that solves the hierarchy problem, RS models can naturally
lead to hiearchical structures in the quark masses and the CKM mixing angles. Finding a solution
for the lepton case is a bit more problematic, since the PMNS mixing matrix features large mixing
angles. We will explain why this is tricky later, once the solution for the quark sector has been
presented and understood.

2.7.1 The setup

Let’s explain here how this mechanism works for the quark sector. Consider N generations of 5D
fermions in the bulk interacting with the Higgs doublet, localized on the IR brane. We will consider
SU(2)L doublets and singlets, denoted by Q and qc = uc, dc, respectively. Each of this fields, Q, uc

and dc is an N -component vector in flavor space. Like in the SM, these fields couple to the Higgs
on the IR brane with Yukawa matrices Y (5D)

u and Y (5D)
d . The SM fermions correspond to the zero

modes of the 5D theory. However, after EWSB takes place on the IR brane, the zero-modes acquire
a non-zero mass.

The action for the SM fermion fields in 5D can be written as [1,21,25,110]

S(5D)
ψ =

∫
d4x

∫ π

−π
dφ
√
g

{
i

2
ENa

(
Q̄Γa(DN −

←−
DN )Q+

∑

q=u,d

q̄c Γa(DN −
←−
DN )qc

)

− sgn(φ)

(
Q̄MQQ+

∑

q=u,d

q̄cMq q
c

)

− δ(|φ| − π)

√
|ĝi|
g

vh e
σ(π)

√
2

[
ūL Y

(5D)
u ucR + d̄L Y

(5D)
d dcR + h.c.

]}
,

(2.126)

where vh ≈ 246 GeV has already been defined in (2.21). Here, MQ and Mq stand for the 5D real
bulk masses, which can be taken to be diagonal. The choice can be justified as follows. In the
most general definition of (2.126), the action would contains positive hermitian matrices ZA and
MA, with A = Q, u, d, corresponding to the kinetic and bulk mass terms respectively. The matrices
ZA are not only hermitian but positive, necessary to guarantee that the kinetic terms are positive.
Making the kinetic terms diagonal would require an unitary transformation of the form

U †AZAUA = diag(ZA1
, . . . , ZAN ) ≡DA, (2.127)

with ZAi > 0. This transformation defines the canonically normalized fields, after the appropiate
rescaling. At the same time, the bulk mass matrices get rotated into

MA →M ′
A = D

−1/2
A U †AMAUAD

−1/2
A . (2.128)

These new mass matrices can be diagonalized by another set of unitary transformations, as

U ′†AM
′
AU
′
A = diag(MA1

, . . . ,MAN ). (2.129)

Therefore, it is always possible to switch to a basis in which the bulk mass terms are diagonal in
flavor space without loss of generality. Such basis is usually known as the bulk mass basis. For the
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rest of this document, we will consider diagonal bulk mass matrices, which we will denote byMA.
Consequently, the Yukawa matrices of the bulk fermions with the Higgs doublet, Y (5D)

u and Y (5D)
d ,

will correspond to the Yukawa matrices in this particular basis, unless otherwise stated.

Remember that the chiral components of each spinor field are defined as usual, i.e. Ψ = ΨL +
ΨR, as discussed in section 2.5 and note that the 5D bulk mass terms in (2.126) consider LH and
RH fields belonging to the same 5D field. This implies that, unlike in the 4D theory, bulk masses
can be positive or negative, since a complex phase transformation of the 5D fields cannot reverse
the sign of the Dirac mass. The consequence of having both positive and negative masses is that
it allows for different localizations of the fermion profiles. Phenomenologically, we will find that
the dimensionless mass parameters cQi = MQi/k ≈ −0.5, while cqi = Mqi ≈ 0.5. The LH (RH)
components of the SU(2)L doublet Q are even (odd) under the Z2 orbifold symmetry and the
opposite assignment is performed for the 5D fields corresponding containing the RH SM fields,
i.e. the RH (LH) components of the uc and dc singlet fields are even (odd).

As was discussed previously, before the Yukawa interactions with the Higgs are turned on and
EWSB takes place, each 5D fermion would lead to the presence of a massless mode in the effective
4D theory accompanied by a tower of massive KK excitations (mn ∼ MKK). However, after EWSB
the Yukawa couplings give mass (mn � MKK) to the zero-modes and now they are accompanied
by two chiral towers of KK modes.

Moreover, if we analyze the mass dimension of the 5D Yukawa couplings we find

[Y (5D)
u ] = [Y

(5D)
d ] = 1, (2.130)

therefore, it is convenient to define a dimensionless Yukawa couplings as

Yq =
k

2
Y (5D)
q , with q = u, d . (2.131)

We would like to obtain the profiles for the different modes corresponding to the KK decom-
position of the 5D fields. For doing so we need to solve the eigenvalue problem. We will show
here the derivation only for the case of the up-type quarks, however a similar discussion holds for
down-type quarks.

We write the KK decomposition of the 5D fields in the form

uL(x, φ) =
e2σ(φ)

√
r

∑

n

C(Q)
n (φ) a(U)

n u
(n)
L (x) , uR(x, φ) =

e2σ(φ)

√
r

∑

n

S(Q)
n (φ) b(U)

n u
(n)
R (x) ,

ucL(x, φ) =
e2σ(φ)

√
r

∑

n

S(u)
n (φ) b(u)

n u
(n)
L (x) , ucR(x, φ) =

e2σ(φ)

√
r

∑

n

C(u)
n (φ) a(u)

n u
(n)
R (x) ,

(2.132)

where mn > 0 are the masses of the Dirac fermions and u(n)(x) = u
(n)
L (x) + u

(n)
R (x) are spinor

fields. We useC(Q,u)
n to denote the Z2 even profiles and S(Q,u)

n for the odd profiles. In addition, the
uL,R(x, φ) and ucL,R(x, φ) spinors denote N -component vectors in flavor space. This information

is contained on the a(U,u)
n and b(U,u)

n on the RH side of the equation. Note that the N × N profile
matrices C(Q,u)

n and S(Q,u)
n are diagonal in the bulk mass basis, where each entry corresponds to a

different bulk mass parameter cQ,u. Moreover, the index n labels the mass eigenstates correspond-
ing to the eigenvalues mn and to the Dirac spinors u(n)(x). In our notation n = 1, 2, 3 denote the
3 SM u-type quarks u, c and t, while the KK excitations correspond to n ≥ 4.

In (2.132) note that u(x, φ) = uL(x, φ)+uR(x, φ) corresponds to the 5D field whose zero mode
will correspond to a LH u-type quark, while uc(x, φ) = ucL(x, φ) + ucR(x, φ) is such that its zero
mode will be RH. One remark should be done here. In (2.132), the bulk profiles for the u and d
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quarks from to the same SU(2)L doublet, C(Q)
n and S(Q)

n are the same. However, the vectors a(U)
n

and a(D)
n associated with these profiles in the KK decomposition are different, as they contain the

flavor information (they will become the coefficients of the flavor eigenvectors).

Inserting the decomposition (2.132) into the action, and restricting the analysis to the region
of the orbifold defined by φ ∈ [0, π], the following EOM are obtained

[
1

r
∂φ −M

]
FnL(φ) =−mn e

σ(φ) FnR(φ) + δ(φ− π) eσ(φ)

√
2 vh
kr
YuFnL(φ)

[
−1

r
∂φ −M

]
FnR(φ) =−mn e

σ(φ) FnL(φ) + δ(φ− π) eσ(φ)

√
2 vh
kr
YuFnR(φ)

(2.133)

where we have defined

FnL(φ) =

(
C

(Q)
n (φ) a

(U)
n

S
(u)
n (φ) a

(u)
n

)
, FnR(φ) =

(
S

(Q)
n (φ) a

(U)
n

C
(u)
n (φ) a

(u)
n

)
, (2.134)

and M = diag (MQ,Mu) and Yu = σ1diag (Y †u ,Yu), with σ1 the first Pauli matrix [150, 173].
Requiring the u(n)

L,R(x) spinors to satisfy the 4D Dirac equation has allowed us to use a(U,u)
n = b

(U,u)
n .

In addition, the following relations need to be fulfilled [110]

a(U)†
n a(U)

n + a(u)†
n a(u)

n = 1 ,

a(U,u)†
m ∆C(Q,u)

mn a(U,u)
n + a(u,U)†

m ∆S(u,Q)
mn a(u,U)

n = 0.
(2.135)

Away from the branes, i.e. for φ 6= π, and for the special case of a single generation, these EOM are
equivalent to (2.85), and the solutions for such EOM are Bessel functions, as shown in section 2.5.
The effect of the IR brane-localized terms is only present through the BC at this brane. Therefore
at φ = 0 we still find

S(Q,u)
n (0) = 0 . (2.136)

For deriving the BC at the IR brane we integrate the EOM around φ = π. The IR BC read [110]
(

1 − vh√
2MKK

Yu

)
FR(π) = 0,

(
− vh√

2MKK
Y †u − 1

)
FL(π) = 0, (2.137)

where the odd profiles in FR(π) and FL(π) are evaluated at φ = π−. We solved the EOM for
the fermion profiles in section 2.5 and we obtained that, without the presence of brane-localized
Yukawa terms, the profiles C(Q,u)

n (φ) and S(Q,u)
n (φ) form complete sets of even and odd functions

on the orbifold, satisfying the orthonormality conditions given in (2.87). However, introducing the
brane terms with a delta function in the EOM together with these orthonormality conditions leads
to inconsistencies. Therefore, we need to introduce the generalized orthonormality conditions

∫ π

−π
dφ eσ(φ)A(Q,u)

m (φ)A(Q,u)
n (φ) = δmn 1 + ∆A(Q,u)

mn , with A = C,S. (2.138)

The derivation of the quantities ∆C
(Q,u)
mn and ∆S

(Q,u)
mn was done in [110] and we gather the

explicit expressions in appendix B.

The BC (2.137) can be written as a system of 2N linear equations for the vectors a(U,u)
n , for

which the eigenvalues are obtained from the resulting 2N × 2N matrix. Using that the matrices
C

(Q,u)
n , S(Q,u)

n are non-singular, we can write the system of linear equations as

S(Q)
n (π−) a(U)

n =− v2
h

2M2
KK
YuC

(u)
n (π)

[
S(u)
n (π−)

]−1

Y †u C
(Q)
n (π) a(U)

n ,

S(u)
n (π−) a(u)

n =− v2
h

2M2
KK
Y †u C

(Q)
n (π)

[
S(Q)
n (π−)

]−1

YuC
(u)
n (π) a(u)

n .

(2.139)
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Therefore, the mass eigenvalues are found from the roots of the following equation

det

(
1− v2

2M2
KK

[
S(Q)
n (π−)

]−1

YuC
(u)
n (π)

[
−S(u)

n (π−)
]−1

Y †u C
(Q)
n (π)

)
= 0 , (2.140)

whereC(Q,u)
n (φ) and S(Q,u)

n (φ) are the solutions of EOM (2.133). Finally, the solutions from (2.140)
allow us to compute the eigenvectors a(U,u)

n using (2.139).

We introduce now the expression for the functions (C
(Q,q)
n )ii and (S

(Q,q)
n )ii, corresponding to

the profiles associated with bulk mass parameters MQi,qi (with q = u, d), see [25, 110]. For the
SM fermions, i.e. in the approximation xn � 1, these functions read

C(Q,q)
n (t) ≈

√
Lε

π

F (cQ,q)√
1 + δn(cQ,q)

[
tcQ,q − δn(cQ,q) t

1−cQ,q] ,

S(Q,q)
n (t) ≈±

√
Lε

π

xnF (cQ,q)√
1 + δn(cQ,q)

t1+cQ,q − ε1+2cQ,q t−cQ,q

1 + 2cQ,q
,

(2.141)

where we have dropped the i-index and switched to t-coordinates, since the expressions for the
profiles have a simple dependence on t. We will do so for the remaining piece of the section. We
have as well defined the function

F (c) ≡ sgn[cos(πc)]

√
1 + 2c

1− ε1+2c
, (2.142)

known as the “zero-mode profile” [21,25,110], and the parameter

δn(c) ≡ x2
n

4c2 − 1
ε1+2c . (2.143)

whose definition is valid for any value of c but for |c| = 1/2.

The quantities F (c) and δn(c) depend strongly on the parameters c and xn. In particular, one
finds that for −1/2 < c < 1/2

F (c) ≈
√

1 + 2c , δn(c) ≈ 0 , (2.144)

is a good approximation. On the other hand, if one limits itself to the range −3/2 < c < −1/2

F (c) ≈ −
√
−1− 2c ε−c−1/2, (2.145)

which is exponentially suppresed by positive powers of ε. In that same case however, δn is a
positive quantity and can be large for some combinations of c and xn. Therefore, dropping the
δ-terms in (2.141) cannot be justified, as happened for −1/2 < c < 1/2. However, it was discussed
in [110] that (only when considering more than one generation of fermions), after the fermion
profiles appear together with the corresponding mixing parameters a(U,u)

n , these terms can only
lead to very small effects on the fermion masses and on the flavor-changing couplings of the model.

2.7.2 Quark masses and mixings

For studying the quark sector of the SM, it can be illustrative to analyze how the mechanism we
have presented for the RS model works for the lightest generations. Therefore we will shorten
the expansion down to N = 3. In this case, the n = 1, 2, 3 terms correspond to the zeroth-order
terms in a series expansion of the bulk profiles in powers of v2

h/M
2
KK. The advantage of doing so

is that the profile expression from (2.141) for these fields simplify notably, as δn appears there
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as a O(v2
h/M

2
KK) quantity. This approach is commonly known as the zero-mode approximation

(ZMA), [21,25,110,171].

In this approximation we can solve for the fermion bulk profiles without taking into account
the Yukawa couplings, since these appear as a first order perturbation in v2

h/M
2
KK. In particular, if

we evaluate the profiles from (2.141) at the IR brane, using this approximation we find

C(Q,q)
n (1) ≈

√
Lε

π
F (cQ,q) , S(Q,q)

n (1−) ≈ ±
√
Lε

π

xn
F (cQ,q)

. (2.146)

We can now define the 4D effective Yukawa matrices
(
Y eff
u

)
ij
≡ F (cQi) (Yu)ij F (cuj ), (2.147)

in such a way that we can demand the BC (2.137) to fulfill
√

2mn

vh
â(U)
n = Y eff

u â(u)
n ,

√
2mn

vh
â(u)
n = (Y eff

u )† â(U)
n , (2.148)

where we have used the expressions of the profiles at the IR brane from (2.146) and we have
rescaled the a(A)

n vectors to â(A)
n ≡

√
2 a

(A)
n . The rescaled vectors obey the normalization conditions

[110]
â(U)†
n â(U)

n = â(u)†
n â(u)

n = 1 . (2.149)

In addition, note that in the ZMA the a(A)
n and â(A)

n vectors belonging to different n are orthogonal
on each other, which does not hold in the general case.

From (2.148), we can obtain the equations for the â(A)
n vectors

(
m2
n 1− v2

h

2
Y eff
u (Y eff

u )†
)
â(U)
n = 0 ,

(
m2
n 1− v2

h

2
(Y eff

u )† Y eff
u

)
â(u)
n = 0 , (2.150)

which can be written into matrix form, leading to the following eigenvalue equation

det

(
m2
n 1− v2

h

2
Y eff
u (Y eff

u )†
)

= 0 , (2.151)

determining the masses of the SM quarks at first order in v2
h/M

2
KK.

Note that the derivation we have shown here also holds for d-type quarks. Therefore, we show
now the results for the general case, i.e. by identifying U → Q and u→ q. We find that the vectors
â

(Q)
n and â(q)

n are the eigenvalues of the matrices Y eff
q

(
Y eff
q

)†
and

(
Y eff
q

)†
Y eff
q , respectively, where

we have Q = U,D and q = u, d, where remember that we are restricting to n = 1, 2, 3 with
mn = mu,mc,mt for q = u and mn = md,ms,mb for q = d. Moreover, the eigenvalues â(Q)

n and
â

(q)
n correspond to the columns of the unitary matrices Uq and Wq appearing in the singular-value

decomposition (SVD)
Y eff
q = Uq λqW

†
q , (2.152)

with

λu =

√
2

vh
diag (mu,mc,mt) , λd =

√
2

vh
diag (md,ms,mb) . (2.153)

Finally, the CKM mixing matrix is defined as in the 4D as

VCKM = U †uUd , (2.154)

where the matrices Uq and Wq in the RS model and in our approximation rotates between the
original 5D fields into the SM mass eigenstates.
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Now, one would expect that we are in a similar situation to that of the SM, where we can
obtain the CKM matrix from the Yukawa matrices and masses, with the drawback of having three
fundamental parameters, i.e. cQi , (Y )ij and cuj , for every value of the 4D Yukawa. Therefore one
could think that the model is only losing some predictivity. However, the idea of the RS model
when addressing the hierarchies within the flavor sector is to avoid building in the hierarchies
into the model as a choice, but to generate the flavor structure starting by O(1) parameters. To
do so we can start with anarchic Yukawa matrices with O(1) inputs, and requiring the model to
reproduce the correct quark masses and CKM elements; we fit the dimensionless mass parameters,
which can always be found to have values of |c| ∼ 1. Therefore, with both Yukawa inputs and
c-parameters of O(1) we can replicate the hierarchical structure of the quark sector present in the
SM [110,114,119].

Hence, we will consider anarchic 5D Yukawa couplings with complex-valued entries. In par-
ticular, we make use of the Froggat-Nielsen mechanism [174], as it allows to reproduce the SM
quark mass hierarchies by assuming the zero-mode profiles evaluated at the IR brane to have a
hierarchical structure, as

|F (cA1
)| < |F (cA2

)| < |F (cA3
)| . (2.155)

This is a natural assumption in our model, as it can be easily obtained by considering similar values
of cAi .

Looking at (2.152), we can see that the products of the quark masses can be written as

mumcmt =
v3
h

2
√

2
|det (Yu)|

∏

i=1,2,3

|F (cQi)F (cui)|,

mdmsmb =
v3
h

2
√

2
|det (Yd)|

∏

i=1,2,3

|F (cQi)F (cdi)|.
(2.156)

The assumption |F (cAi)| <
∣∣F (cAi+1

)
∣∣ allows us to consider hierarchic eigenvalues. Thus, we can

write

mu =
vh√

2

|det(Yu)|
|(Mu)11|

|F (cQ1
)F (cu1

)| , md =
vh√

2

|det(Yd)|
|(Md)11|

|F (cQ1
)F (cd1)| ,

mc =
vh√

2

|(Mu)11|
|(Yu)33|

|F (cQ2)F (cu2)| , ms =
vh√

2

|(Md)11|
|(Yd)33|

|F (cQ2)F (cd2)| ,

mt =
vh√

2
|(Yu)33| |F (cQ3)F (cu3)| , mb =

vh√
2
|(Yd)33| |F (cQ3)F (cd3)| ,

(2.157)

where (Mq)ij denotes the minor of the Yq matrix. Moreover, the matrices Uq and Wq can be
defined at leading order in the hierarchies as

(Uq)ij = (uq)ij





F (cQi)

F (cQj )
, i ≤ j ,

F (cQj )
F (cQi)

, i > j ,

(Wq)ij = (wq)ij e
iφj





F (cqi)
F (cqj )

, i ≤ j ,

F (cqj )
F (cqi)

, i > j .

(2.158)

Note that at leading order the matrices Uq do not depend on the localization of the RH profiles
F (cqi), i.e. on the dimensionless 5D bulk masses of the 5D fields whose zero modes are RH. There-
fore, the CKM entries do not depend on the cqi parameters at first order [110,114].

Furthermore, using the Wolfenstein parametrization of the CKM matrix one can write the values
of the parameter (λ, A, ρ̄ and η̄) in terms of the projections of the 5D fermion profiles at the IR
brane, F (cAi), together with the Yukawa matrix elements (Yq)ij , or the corresponding minors. The
necessary formulae is summarized in appendix B.
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In particular, one finds the following hierarchical structure for the quark LH profiles [110,114,
119]

|F (cQ1)|
|F (cQ2

)| ∼ λ ,
|F (cQ2)|
|F (cQ3

)| ∼ λ
2 ,

|F (cQ1)|
|F (cQ3

)| ∼ λ
3 , (2.159)

while for the RH quark these hierarchies are set by the observed quark-masses, being

|F (cu1)|
|F (cu3

)| ∼
mu

mt

1

λ3
,

|F (cu2)|
|F (cu3

)| ∼
mc

mt

1

λ2
,

|F (cd1)|
|F (cu3)| ∼

md

mt

1

λ3
,

|F (cd2)|
|F (cu3)| ∼

ms

mt

1

λ2
,

|F (cd3)|
|F (cu3)| ∼

mb

mt
.

(2.160)

We have found that this mechanism, which we will implement in the following chapter for
our own model, allows us to describe the observed hierarchies of the CKM matrix from O(1)
fundamental parameters of the 5D theory and by starting from anarchic Yukawa matrices.

One could then think that this is an appealing mechanism for describing the masses and mixing
in the lepton sector of the SM. However, this mechanism would not be able to reproduce the PMNS
matrix if we apply it directly. The lepton sector of the SM features large mixings and therefore,
for this mechanism to work, it would require ratios of the fermion profiles at the IR brane of
|F (cLi)|/

∣∣F (cLj )
∣∣ ∼ O(1), which could be understood as requiring a fine-tuning of the different

cLi parameters [119]. Therefore, for this mechanism to work for describing the lepton fields of
the SM we would have to introduce some constraints on the dimensionless masses cLi , e.g. by
imposing some symmetries for these fields.

2.8 Short commment on fermion bulk masses

In the previous section, we have shown how important 5D bulk masses are to reproduce the SM
model from a 5D theory, and how we can explain the hierarchical structure of the quark sector in
the SM departing from anarchic Yukawa matrices. However, one important question arises when
examining this mechanism more closely. We have seen how this whole mechanism relies on a term
of the action that was introduced by hand, as we can see from (2.78). We discussed that fermion
bulk mass terms need to be odd under the orbifold Z2 symmetry and that, in order to incorporate
such a behaviour, we attached a sign-function (i.e. a function of the fifth-dimensional coordinate)
to the mass parameter. However, this feature feels completely unnatural and it demands for a
better explanation, and maybe for a more fundamental origin. Studying this possibility is the goal
of the next chapter.
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3 | A dynamical origin of fermion masses in WED

The bulk fermion localization mechanism we introduced in the previous chapter relies on the
fact that hierarchical 4D Yukawa couplings can be generated via different localizations of the zero-
mode profiles, corresponding to the SM chiral fermions, along the extra dimension. We have
explained that such localizations are controlled by the values of the fermion bulk masses in such
a way that starting with an anarchic 5D Yukawa matrix, we can compensate the different entries
through exponentially different overlaps of the fermion profiles with the IR brane, where the Higgs
field is localized, leading to a completelly hierarchical effective Yukawa matrix, providing therefore
a natural explanation of the SM fermion mass hierarchy.

However, the 5D bulk masses must be Z2-odd functions on the orbifold, which implies that
they should be fields on the extra dimension. The reason is that the 5D Dirac fermion bilinear
Ψ̄iΨi is odd under the orbifold Z2 symmetry and therefore a constant mass term is forbidden by
the orbifold symmetry. In existing implementations of RS models, these Z2-odd bulk masses are
introduced by hand simply by multiplying constant mass parameters with a sign function of the
5D coordinate. However, we consider that in any consistent field-theoretic implementation of the
fermion localization mechanism one should obtain the coordinate-dependent 5D mass parameters
from the VEV of a Z2-odd bulk scalar field. Here, we will show how the VEV of such scalar can
be dynamically generated and that, by coupling it to the bulk fermions, the corresponding zero
modes can reproduce the observed SM fermions masses with O(1) parameters. Consider a bulk
scalar field Σ(x, φ) which develops a non-trivial φ-dependent VEV. This scalar field couples to 5D
Dirac fermions through Yukawa interactions such that when the scalar acquires a VEV the bulk
fermion masses are generated dynamically, i.e.

YiΣ(x, φ)Ψ̄i(x, φ)Ψi(x, φ)
〈Σ(x,φ)〉−−−−−→Mi(φ)Ψ̄i(x, φ)Ψi(x, φ), (3.1)

where now Mi(φ) ≡ Yi 〈Σ(x, φ)〉, in contrast to Mi(φ) = Mi sgn(φ).

We will first discuss the vacuum solutions of the odd bulk scalar in a flat geometry, where
intuition allows us to understand how the problem can be solved and where we can compare our
solutions to the ones presented in [24], where a similar approach to generate the bulk fermion
masses was discussed in the context of flat extra dimensions. Then, we will extend the discussion
to the warped geometry. Moreover, we will study the possible effects on the background geometry
that adding a scalar field with a non-trivial VEV may have on the metric. In some previous work,
without any connection to generating bulk fermion masses, odd bulk scalars acquiring a non-trivial
VEV were studied in the context of both flat and WED in [175–177].

45



Chapter 3. A dynamical origin of fermion masses in WED

The phenomenological implications of our mechanism are important and lead to modifications
w.r.t. the conventional RS model (in this chapter we will refer as conventional RS to the RS models
considering a sign-function in front of the fermion bulk masses) in the fermion zero-mode profiles
of the SM fermions, the spectrum of KK modes, and on the background geometry through back-
reaction on the metric, i.e. the warp factor). These effects are potentially important for deriving
constraints on the model from precision measurements, such as EWPT [105, 106, 117] and flavor
observables [119,170,178–181]. We stress that the existence of a Z2-odd bulk scalar field should
be seen as a generic feature of any realistic WED model with bulk matter fields. As a consequence,
such models predict the existence of a new type of scalar KK states, whose masses are significantly
larger than the masses of other KK resonances.

This chapter is based on what was initially published in [1]. Here, it is organized as follows:
In section 3.1, we study the background solution of the odd bulk scalar field in flat and WED,
while backreaction effects on the background geometry are discussed in 3.1.3 for the warped case.
In section 3.2, we discuss the KK decomposition of the gauge sector assuming minimal, i.e. non-
custodial, and custodial bulk gauge symmetries to study the implications on the EWPT due to the
backreaction on the metric by the bulk scalar field. Furthermore, in appendix C we complement the
conventions and derivation of EW precision observables for the custodial case. The scalar sector is
analyzed in section 3.3, where we study the dependence of the profiles of its KK modes in terms of
the model parameters. In section 3.4, we show how fermion bulk masses can be generated from an
odd bulk scalar and we examine the fermion zero modes and the corresponding KK modes of the
fermion fields. The phenomenological implications of our model on the fermion mass hierarchies
and mixings and on flavor observables are presented in section 3.5. In particular, we take a look
at how the new features of our model can affect our prediction for εK . In section 3.6, the Higgs
portal coupling to the bulk scalar is briefly discussed. Finally, section 3.7 contains a summary of
the chapter.

3.1 Non-trivial background solution for an odd bulk scalar field

We consider a RS model with an odd bulk scalar in a warped extra-dimensional geometry. We will
work in φ-coordinates in this chapter. Therefore, we define the 5D metric as

ds2 = e−2σ(φ) ηµνdx
µdxν − r2 dφ2, (3.2)

with σ(φ) the warp factor and r is the compactification radius of the extra dimension. In the case,
when the backreaction of the bulk fields is neglected the warp factor is given by the RS solution,
i.e. σ(φ) ≡ kr|φ|, where k is curvature of the AdS space. We assume that both k and r are set by
the 5D Planck scale M∗, and that the product of both quantities is kr ' O(10), which is needed in
order to solve the gauge hierarchy problem, as was discussed previously in chapter 2. Note that
taking the limit k → 0 recovers the flat case of an extra dimension.

As mentioned in the introduction, our goal is to generate the Z2-odd bulk fermion masses
dynamically through Yukawa interactions with a Z2-odd scalar field Σ(x, φ) which develops a φ-
dependent VEV. The scalar action for the Z2-odd real bulk scalar on a slice of a AdS spacetime
reads

S
(5D)
Σ =

∫
d4x

∫ π

−π
dφ
√
g
{1

2
gMN (∂MΣ)(∂NΣ)− V (Σ)−

∑

i

√
|ĝi|√
g
Vi(Σ)δ(φ− φi)

}
, (3.3)

where g is the determinant of the 5D metric and ĝi are the determinant of 4D metric defined on
the branes, as defined in section 2.2. Vi are possible brane-localized potentials and V (Σ) is the
bulk scalar potential. Note that the bulk scalar field Σ is Z2-odd w.r.t. the orbifold fixed points,
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3.1. Non-trivial background solution for an odd bulk scalar field

therefore it must vanish at both brane locations. Hence, the brane potentials Vi(Σ) could only be
constants, which we choose to be the same as in the original RS setup [18]. As we will see later,
the bulk scalar potential V (Σ) induces a background solution for the scalar field in the bulk, i.e. a
φ-dependent VEV. Taking this into account, the scalar field can be defined as

Σ(x, φ) = ω(φ) +
eσ(φ)

√
r
S(x, φ), with 〈Σ(x, φ)〉 ≡ ω(φ), (3.4)

where S(x, φ) is the scalar fluctuation around the VEV. Now we can rewrite the above scalar action
as

S
(5D)
Σ = 2

∫
d4x

∫ π

0

dφ e−4σ

{
1

2
e4σ ∂µS ∂

µS − 1

2r

[
1

r

(
∂φ e

σS
)2

+ (∂φ ω)2

]

+
e5σ

r3/2
S ∂φ

(
e−4σ ∂φ ω

)
− rV (Σ)

}
−
∫
d4x e−4σ

{
2eσ

r3/2
S ∂φ ω +

∑

i

Vi

}∣∣∣∣
π

φ=0

.

(3.5)

In the tadpole term an integration by parts has been performed. However, since Σ(x, φ) is odd, the
corresponding boundary terms simply vanish. We now introduce the explicit form for the scalar
potential

V (Σ) = ΛB +
µ2

2
Σ2 +

λ

4!
Σ4, (3.6)

where ΛB is the bulk cosmological constant required for having the RS metric as a solution of
Einstein’s equations and µ2 < 0 is required for non-trivial background solutions being realized
by the scalar field. From here on, we use the notation |µ| ≡

√
|µ2|. The parameters have mass

dimension [µ] = 1 and [λ] = −1, while the scalar field has mass dimension [Σ] = 3/2 (which
implies [S] = 1 and [ω] = 3/2).

We now use the variational principle to obtain the following EOM for the background field

ω′′(φ)− 4σ′(φ)ω′(φ)− r2 ∂V (Σ)

∂ω

∣∣∣
S=0

= 0, (3.7)

where primes denote derivatives w.r.t. the fifth-coordinate φ. It can be easily seen that the trivial
ansatz, ω(φ) = 0, is a solution of (3.7). However, our goal is to find out if there exists a non-trivial
solution with a lower energy, while still satisfying the Dirichlet BC

ω(0) = ω(π) = 0. (3.8)

One can define a 4D energy density from the Hamiltonian associated with the scalar action (3.5).
Using the EOM (3.7), we find

ρE = −λr
12

∫ π

0

dφ e−4σ(φ)ω4(φ). (3.9)

This implies that if a non-trivial VEV is developed, it will always correspond to a lower energy state
than that of the trivial solution ω(φ) = 0.

In order to understand the dynamics leading to a non-trivial background solution for the bulk
odd scalar field Σ, we need to solve (3.7). This is the equation of a damped anharmonic oscillator,
however with a “wrong sign” damping term for σ′(φ) > 0. In order to fix this, we can redefine the
coordinate of the orbifold to ϕ ≡ π − φ, such that the UV and IR branes are located at ϕ = π and
ϕ = 0, respectively. Without loss of generality we can restrict our study to ϕ ∈ [0, π]. Denoting
derivatives w.r.t. ϕ by dots, we can rewrite (3.7) with (3.6) as

ω̈(ϕ)− 4σ̇(ϕ) ω̇(ϕ) + |µr|2ω(ϕ)− λr2

6
ω3(ϕ) = 0, (3.10)
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V(ω)

ω

µ2>0
V(ω)

ω

µ2<0

Figure 3.1: Illustration of the upside-down potential V(ω) for µ2 > 0 (left) and µ2 < 0 (right).

with the damping term having opposite sign in the RS case, σ̇(ϕ) = −kr, while the BC remain
unchanged. This EOM can be understood as

ω̈(ϕ) = 4σ̇(ϕ) ω̇(ϕ)− r2 dV(ω)

dω
, (3.11)

where we have defined the upside-down potential

V(ω) ≡ −µ
2

2
ω2 − λ

4!
ω4 = −V (Σ)

∣∣
S=0

. (3.12)

Equation (3.10) describes the damped motion of a particle in the potential V(ω), see figure 3.1.
The BC in (3.8) imply that the particle starts at the origin (ω = 0) at “time” ϕ = 0 and returns to
the origin after a time ϕ = π. For positive µ2 the only solution satisfying the BC is the trivial one
ω(ϕ) = 0, since once it is displaced from the origin, the particle will roll down the potential and
never return. Having a non-trivial solution thus requires µ2 < 0, as might have been expected from
the start. However, as we will see later, this condition is not yet sufficient in the case of non-zero
curvature.

It is instructive to rewrite (3.10) through the rescaling

ω(ϕ) =

√
6
∣∣µ2
∣∣

λ
v(ϕ), (3.13)

where v(ϕ) is a dimensionless field. With this rescaling the quartic coupling λ disappears from the
EOM, contributing now just to the normalization factor. In terms of the dimensionless field v(ϕ),
relation (3.10) becomes

v̈(ϕ)− 4σ̇(ϕ) v̇(ϕ) + |µr|2
[
v(ϕ)− v3(ϕ)

]
= 0. (3.14)

Note that the maximum of the inverted potential is now located at v = ±1. Moreover, the 4D
energy density (3.9) takes the following form

ρE = −3r
|µ|4
λ

∫ π

0

dϕ e−4σv4(ϕ). (3.15)

In the following two subsections we consider two special cases where σ(ϕ) = 0, i.e. a flat extra
dimension, and σ(ϕ) = kr(π−ϕ), the RS warp factor (AdS geometry). In section 3.1.3 we employ
a general warp function σ(ϕ), which takes into account the backreaction due to the bulk scalar
field.
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V(v)= |µr|2
[
1
2
v2 − 1

4
v4
]

v

1−1

|µr|≥1

Figure 3.2: Sketch of the potential V(v) and the motion of the particle in the flat case.

3.1.1 Flat extra dimension

In order to build up intuition about the structure of the solutions for the VEV of an odd bulk scalar
field, it is useful to review first the case of a flat metric, σ(ϕ) = 0. Similar studies for the flat
extra dimension can be found in [24,175,176]. In this case there is no damping, since the σ̇ term
in (3.14) vanishes, as σ̇ = 0. The EOM for the dimensionless background field v(ϕ) reads now

v̈(ϕ) + |µr|2
[
v(ϕ)− v3(ϕ)

]
= 0. (3.16)

This equation describes the undamped motion of a particle exposed to a non-linear conservative
force. In the absence of the quartic term in the potential the motion would be harmonic,

v(ϕ) = N sin (|µr|ϕ) , (3.17)

where N is an arbitrary normalization constant. The BC at ϕ = 0 is trivially satisfied. However, the
BC at ϕ = π is only satisfied for the very special parameter values |µr| = n ∈ N and therefore only
specific values of µ are solutions of our boundary-value problem. However, the anharmonic term
in (3.16) has the effect of slowing down the motion as the particle climbs further up the potential,
and hence the BC at ϕ = π can always be satisfied as long as |µr| ≥ 1, see figure 3.2. More
generally, if [|µr|] = n with some integer n ≥ 1, with [x] denoting the largest integer smaller than
x, there will be exactly n solutions of (3.16) satisfying the BC, and the one with the lowest energy
density is the one with the largest amplitude, corresponding to the motion where the particle
climbs exactly once up the potential and has a turning point at ϕ = π/2.

In the flat case we can solve for the motion explicitly, using the energy conservation law (a first
integral of the EOM)

E =
1

2
v̇2(ϕ) +

|µr|2
2

[
v2(ϕ)− 1

2
v4(ϕ)

]
=
|µr|2

2

[
v2
m −

1

2
v4
m

]
, (3.18)

where vm < 1 is the height of the turning point. Note that we cannot have vm > 1, as in that case
the particle would roll over the maximum of the inverted potential and roll away to infinity, thus
violating the BC at ϕ = π. For vm = 1 the particle would come to rest at the maximum of the
inverted potential and stay there forever, violating as well the BC at ϕ = π.

We can integrate the above first-order differential equation, obtaining

|µr|ϕ =

∫ v(ϕ)
vm

0

dx
1√

1− x2 − v2
m

2
(1− x4)

=

√
2

2− v2
m

F

(
arcsin

v(ϕ)

vm

∣∣∣∣
v2
m

2− v2
m

)
(3.19)
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where F (x|z) is the elliptic integral of the first kind. The condition that ϕ = π/2 at the turning
point, i.e. where v = vm, yields

|µr| π
2

=

√
2

2− v2
m

K

(
v2
m

2− v2
m

)
, (3.20)

where K(z) = F (π2 |z) is the complete elliptic integral of the first kind. In the limit where |µr| � 1,
relation (3.20) implies

vm ≈ 1− 4 exp

(
− π√

2
|µr|

)
, (3.21)

up to exponentially suppressed terms. Solution (3.19) can then be approximated as (for 0 ≤ ϕ <
π/2)

|µr|ϕ ≈ arctanh
v(ϕ)

vm
, (3.22)

and the reversed motion applies for π/2 < ϕ ≤ π. Using (3.13), we recover for the original VEV
Georgi et al.’s approximate solution [24]

ω(φ) ≈

√
6
∣∣µ2
∣∣

λ
tanh

( |µr|√
2
φ

)
tanh

( |µr|√
2

(π − φ)

)
, (3.23)

which holds up to exponentially small terms.

3.1.2 Warped space

We now turn to the case of a WED and consider the RS metric with σ(ϕ) = kr(π − ϕ). In this
geometry the EOM for the background field ω(φ) takes the form

ω̈(ϕ) + 4kr ω̇(ϕ) + |µr|2ω(ϕ)− λr2

6
ω3(ϕ) = 0, (3.24)

where the damping term is now a linear function of ω̇. We can redefine ω(ϕ) = e−2σ ω̄(ϕ), such
that the single derivative term in the above equations is canceled. Therefore, the EOM for ω̄ reads

¨̄ω = (µ2 + 4k2) r2 ω̄ +
λr2

3!
e−4σ ω̄3 , (3.25)

which is analogous to the flat case of previous subsection. Analyzing solutions of (3.25) with small
amplitude one finds that due to the damping term oscillations are possible only if µ2 + 4k2 < 0.
This is only a necessary condition for the problem to have a non-trivial solution, however, it is
not a sufficient condition, as we will see below. For −4k2 < µ2 < 0 there are no oscillations but
exponentially damped motion, in which the particle returns to the origin only at infinite time.

Note that the effective mass parameter (µ2 + 4k2) in (3.25) corresponds to the BF bound in AdS
space, as we discussed in section 2.3. However, the BF bound was obtained for a free bulk scalar
theory, whereas in our case the scalar field has quartic interactions leading to the appearance of
a non-trivial VEV in the bulk. As we argued above, the violation of the BF bound is a necessary
condition for this to happen. Only in this case, the bulk scalar field condenses and acquires a
φ-dependent VEV, which leads to emergence of a scale related to the bulk scalar and the loss of
conformality of the dual theory [182].

It is instructive to recast (3.24) in terms of v(ϕ), such that in the RS geometry we get

v̈(ϕ) + 4kr v̇(ϕ) + |µr|2
[
v(ϕ)− v3(ϕ)

]
= 0. (3.26)
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Figure 3.3: Solutions for the scalar VEV v(φ), with φ = π − ϕ, for different choices of ∆ν =
ν − 1 and fixed values of kr (left) and |µr| (right).

In the absence of the quartic term in the potential the motion would be a damped harmonic
oscillation,

v(ϕ) = Ne−2krϕ sin(ν ϕ), (3.27)

where the frequency ν ≡
√
|µr|2 − 4(kr)2 is real and N is again an arbitrary normalization factor.

While the BC at ϕ = 0 is trivially satisfied, the BC at ϕ = π is only satisfied for the very special
parameter values ν = n ∈ N . By the same arguments as for the flat case, but now for another
definition of ν, the BC at ϕ = π can always be satisfied as long as ν ≥ 1. More generally, for [ν] = n
with some integer n ≥ 1 there will be exactly n solutions of (3.26) satisfying the BC, and the one
with the lowest energy density (3.15) is the one with the largest amplitude, corresponding to the
motion where the particle climbs exactly once up the potential and then falls down to satisfy the
BC at ϕ = π. Note that in this case the turning point will not be placed at ϕ = π/2 but will be
slightly shifted onto a lower value of ϕ due to the damping. It follows from this discussion that the
correct condition for having a non-trivial background solution reads

ν2 = |µr|2 − 4(kr)2 > 1, (3.28)

as for the values in 1 > |µr|2−4(kr)2 > 0 the movement can not be completed by the particle, and
it will not be able to come back to v = 0 at “time” ϕ = π.

In a natural setup, one would assume that the dimensionless quantities |µr| and kr are chosen
to be of O(1), leading therefore to values of ν ∼ O(1). Some representative solutions for the
scalar VEV v(φ) in this case are shown in figure 3.3 for fixed values of kr (left) and |µr| (right)
and different values of ∆ν ≡ ν − 1. Note that the maximum possible value of the VEV, vm = 1,
is only approached for values of ∆ν & 1, whereas the amplitude of the oscillation gets smaller
as ∆ν gets closer to zero. One can also see that small values of ∆ν not only result in smaller
amplitudes, but also lead to very asymmetric VEV profiles, which look rather different from a
step function. However, in realistic versions of RS models the product kr is chosen such that the
hierarchy problem is solved, leading to the condition that L = krπ ≈ 33. In this case the quantities
|µr| and kr on the left-hand side of the bound (3.28) are both much larger than 1. It is then useful
to rewrite ν2 ≡ (kr)2 b2, such that the bound is recast in the form

b =

√
|µ2|
k2
− 4 >

1

kr
, (3.29)
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Figure 3.4: Solutions for the scalar VEV v(φ) for different choices of kr and b > 1/kr. In the
legend, we show in brackets the values of b used for the different figures, from left
to right, such that the constraint b > 1/kr is satisfied.

where the right-hand side is close to 0.1 for L ≈ 33. This bound is reminiscent of the BF bound
β =

√
µ2/k2 + 4 > 0 for a free bulk scalar without SSB. Likewise, we can rewrite the differential

equation (3.26) as
d2v(z)

dz2
− 4

dv(z)

dz
+
(
4 + b2

) [
v(z)− v3(z)

]
= 0 , (3.30)

where z = krφ = kr(π − ϕ). It is natural to assume that the parameter b2 in this equation, which
is given in terms of a ratio of two Planck-scale parameters µ and k, is of O(1). The equation must
then be solved with the BC v(zi) = 0 for zUV = 0 and zIR = L. Note that the large parameter
L ≈ 33 only enters via the size of the interval on which one solves the differential equation, while
the parameter b2 is still naturally of O(1). Under these conditions, we can see that the quantity
ν2 = (kr)2 b2 � 1 is naturally much larger than 1, and consequently the VEV develops a profile
with a broad plateau approaching the value vm = 1, resulting in a shape that closely resembles a
step function, with an asymmetric behavior near the branes. In figure 3.4, we show solutions for
the scalar VEV v(φ) for different values of b consistent with the bound (3.29) for kr = 1, 5 and 10.
While the first plot is just a different representation of figure 3.3, in the last two plots the presence
of the large parameter L = krπ � 1 gives rise to a prominent plateau, whereas the behavior close
to the boundaries is only controlled by the parameter b. Note that the asymmetries near the branes
reduce as b increases. If we plotted these results as functions of z = krφ, the behavior of the
various lines in the last two plots near the two branes would be identical, and only the width of
the plateau would be different. In the mechanical analogue of figure 3.1, solutions with a wide
plateau correspond to fine-tuned motions where the point-mass comes to rest infinitesimally close
to the maximum of the potential, staying there for a long time before coming down. Therefore, the
motion from the origin to the maximum and back are independent of how long the particle stays
at the top. We find the solutions obtained for large kr to look much closer to the traditional case of
a step function, showing that solving the hierarchy problem helps to obtain kink-like solutions for
the VEV. While this is particularly true near the IR brane (for φ . π), to obtain a kink-like solution
also near the UV brane (for φ & 0) requires large values of b. Indeed, there is a decoupling limit, in
which b→∞ and the scalar VEV v(φ) approaches sgn(φ), such that one recovers the Z2-odd bulk
masses of the conventional RS model.
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3.1. Non-trivial background solution for an odd bulk scalar field

3.1.3 Warped space with backreaction on the metric

The presence of a non-zero VEV of the bulk scalar field has an impact on the background geometry
of the warped space, in the same fashion as we discussed in section 2.6 for the GW field. In this
section, we calculate the backreaction caused by the bulk scalar by solving the coupled scalar-
gravity system, the action of which reads

S
(5D)
Σ =

∫
d4x

∫ π

−π
dφ
√
g

{
− R

2κ2
+

1

2
gMN (∂MΣ)(∂NΣ)−V (Σ)−

∑

i

√
|ĝi|√
g
Vi(Σ)δ(φ−φi)

}
, (3.31)

where R is the 5D Ricci scalar, κ−2 ≡ 2M3
∗ with M∗ being the 5D Planck mass, V (Σ) is the bulk

scalar potential for scalar field Σ(x, φ), and Vi(Σ) are the brane potentials. We consider (3.2) as an
ansatz for the metric where σ(φ) is a generic φ-dependent warp function. Note that the 5D Planck
mass M∗ is related to the reduced 4D Planck mass MPl ' 2 · 1015 TeV by

M2
Pl = M3

∗ r
∫ π

0

dφ e−2σ(φ) =
M3
∗

2k

(
1− e−2krπ

)
, (3.32)

where the second equality only holds for the RS case σ(φ) = kr|φ|.
Here we focus on the background solutions for the metric and bulk scalar field, i.e. Σ(x, φ) =

ω(φ). The Einstein’s equation and the EOM for ω(φ) resulting from the action (3.31) are

RMN −
1

2
gMNR = κ2 TMN ,

− 1√
g
∂M

(√
ggMN∂Nω

)
=
∂V (ω)

∂ω
+
∑

i

√
|ĝi|√
g

∂Vi(ω)

∂ω
δ(φ− φi),

(3.33)

where the energy-momentum tensor TMN for ω(φ) is,

TMN = ∂Mω∂Nω − gMN

[
1

2
gPQ∂Pω∂Qω − V (ω)

]
+
∑

i

√
|ĝi|√
g
Vi(ω)ĝiµνδ

µ
Mδ

ν
Nδ(φ− φi), (3.34)

with ĝiµν and ĝi being the 4D induced metric and its determinant at the brane i, respectively. From
equation (3.33), we get the EOM for the warp function σ(φ) and scalar VEV ω(φ) as

σ′′2 =
κ2

6

[1

2
ω′2 − r2V (ω)

]
,

σ′′ =
κ2

3

[
ω′2 + r

∑

i

Vi(ω) δ(φ− φi)
]
,

ω′′ − 4σ′ω′ = r2 ∂V (ω)

∂ω
+ r

∑

i

∂Vi(ω)

∂ω
δ(φ− φi),

(3.35)

where the scalar potential has been given in (3.6) and includes the 5D bulk cosmological constant
ΛB . The brane localized potentials are constant brane tensions, since the odd bulk scalar field
vanishes on the branes, and therefore

VUV(ω) = VUV, VIR(ω) = VIR. (3.36)

These brane potentials are crucial in order to ensure that the 4D cosmological constant vanishes,
so that the proposed RS metric in (3.2) is a solution of Einstein’s equations, as was previously
discussed in section 2.2. The above equations have singularities due to the presence of 3-branes at
φ = 0 and φ = π, therefore the warped function σ(φ) and the scalar field ω(φ) satisfy the conditions

[
σ′(φ)

]
i

=
κ2

3
rVi,

[
ω′(φ)

]
i

= 0, (3.37)
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Chapter 3. A dynamical origin of fermion masses in WED

where the “jump” of a function, [f(x)], was defined in (2.10).

The evolution of the fields in the bulk is described by (3.35) after dropping the brane-localized
terms. However, the three resulting equations are not independent. Indeed, the background
solution is completely determined by

σ′′ − κ2

3
ω′2 = 0,

ω′′ − 4σ′ω′ − r2 ∂V (ω)

∂ω
= 0.

(3.38)

Note that σ(φ) only appears through its derivatives both in (3.37) and (3.38). Hence, we have a
system of two coupled differential equations of first order in σ′(φ) and second order in ω(φ), which
only requires three integration constants to be solved. However, note that we have four constraints
coming from BC and the jump conditions (3.37). Three of these constraints fix the three integration
constants, whereas the remaining one corresponds to the usual fine-tuning required to make the
ansatz (3.2) a solution, which guarantees in particular a vanishing 4D cosmological constant. This
should not come as a surprised as it was a feature in the original RS model, as can be seen in (2.12)
and (2.13). The relations between the 5D bulk cosmological constant and brane tensions, which
is required by 4D Poincaré invariance, gets modified in our case compared with the original RS
model. In particular, for a non-trivial scalar VEV the RS relation V RS

UV = −V RS
IR = 6k/κ2 is in

conflict with the bulk EOM (3.38). This can be seen by integrating (3.38) over the extra dimension
φ. One obtains

σ′(π−) = σ′(0+) +
κ2

3

∫ π−

0+

dφω′2(φ), (3.39)

which implies that the RS solution with σ′(π−) = σ′(0+) = kr will no longer solve the system of
equations in the presence of a non-trivial VEV. As a consequence, the first jump condition in (3.37)
implies that the two brane tensions

VUV =
6σ′(0+)

rκ2
, VIR = −6σ′(π−)

rκ2
(3.40)

are not longer equal and opposite as in the RS case. One can fix one of the integration constants
by choosing the boundary value of the warp function on the UV brane, such that in the UV the
background geometry asymptotes to the AdS space, i.e. σ′(0+) = kr. Hence, the brane tensions in
our model are

VUV =
6k

κ2
, VIR = −VUV −

2

r

∫ π−

0+

dφω′2(φ). (3.41)

The bulk cosmological constant ΛB introduced in (3.6) can now be obtained by inserting the
solutions from (3.38) into (3.35) and evaluating the fields near the UV brane, leading to

σ′′2(0+) =
κ2

6

[1

2
ω′2(0+)− r2ΛB

]
. (3.42)

Doing the replacement σ′(0+)→ kr, we get

ΛB = −6k2

κ2
− ω′2(0+)

2r2
. (3.43)

This new contribution to ΛB leads to modifications of the background geometry in the IR w.r.t. the
case of a RS space.

Summarizing, for a non-trivial scalar VEV with Dirichlet BC we need to solve the coupled
equations (3.38), which in terms of the dimensionless VEV v(φ) take the form

σ′′(φ)− γ v′2(φ) = 0,

v′′(φ)− 4σ′(φ) v′(φ) + |µr|2
[
v(φ)− v3(φ)

]
= 0,

(3.44)
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Figure 3.5: Illustration of the parametric values of the dimensionful parameters of our model
in units of the fundamental scale MPl ' M∗. Note that the small hierarchy be-
tween k and 1/r ≈ 0.1 k is required for the model to address the gauge hierar-
chy problem. The relation between the parameters k, |µ| and M∗ is in principle
arbitrary, however our dynamical mechanism requires that |µ| > 2k with good
approximation, see (3.28).

along with BC,
v(0) = v(π) = 0, σ′(0) = kr. (3.45)

For (3.44) we have defined the dimensionless parameter

γ ≡ |µ|
2

λM3∗
=

2|µ|2κ2

λ
, (3.46)

which parametrizes the scalar-gravity interaction, i.e. the strength of the backreaction. The limit
γ → 0 corresponds to the case of zero backreaction on the metric, where we recover the solutions
of section 3.1.2 for the odd scalar VEV and the RS solution for the metric.

The value of γ is a free parameter of our model, which depends on a ratio involving three
parameters that are naturally set by the Planck scale. Assuming that |µ| and λ−1 are not trans-
Planckian, i.e. the values of |µ| and λ−1 are not greater than M∗, values of γ moderately smaller
than 1 can be arranged without much fine tuning. For our analysis we will consider the scenarios
of strong and negligible backreaction, for which we will set γ = 0.5 and γ = 0, respectively. During
our numerical study, we found the results obtained for γ . 0.1 to be very close to those found for
γ = 0.

Before discussing the numerical solutions of the coupled scalar-gravity system a few comments
could help the reader understand our strategy for solving the coupled system of equations as well
as for setting the values for the parameters of the model. In this work, we obtain the numerical
solutions by the shooting method of initial conditions, using equation (3.44). In particular, we
choose the initial conditions by varying the values of σ′(0) and v′(0) at the UV brane, i.e. for
φ = 0, such that our boundary-value problem is solved. The choices of values for other parameters
appearing in this chapter are natural in the sense that all the dimensionless parameters have O(1)
values, whereas the dimensionful parameters (e.g. µ, k, . . .) have O(1) values in units of the 5D
Planck mass M∗, which we may identify with the physical Planck scale MPl. Furthermore, the
value of the compactification radius r of the extra dimension is chosen such that it solves the gauge
hierarchy problem. In particular, we take r = 40M−1

Pl , such that k ∼ 33/(πr) and |µ| ∈ [20, 40]/r
are both below MPl. In figure 3.5 we schematically summarize the different choices for the values
of the parameters appearing in the model.

In figure 3.6, we show the numerical solutions for the coupled system (3.44) for different
values of γ, in particular we plot results using γ = 0 (no backreaction limit, dashed lines) and
γ = 0.5 (strong backreaction, solid lines), for input values of |µr| = 25 (red), 30 (light blue) and
40 (dark blue). The upper panels show the profile of the scalar VEV v(φ) for these cases, together
with the RS case of a sgn(φ) function (black dashed), both in the whole extra dimension (left
panel) and in a “zoomed” region near the branes (right panels). The lower panels show the warp
function, σ(φ) (left panel), and the ratio of the warp function w.r.t. the RS solution, σ(φ)/(krφ)
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Figure 3.6: Background solutions for γ = 0 (no backreaction limit) and γ = 0.5 (strong
backreaction) and different values of |µr|. Upper panels show the scalar VEV
solutions for RS (with sgn(φ) function) and |µr| = 25, 30 and 40, with the upper
right figure emphasizing the behavior of the VEV near the branes. Analogous plots
are shown for the warp function σ(φ) in the lower panels, where on the right
panels we show the ratio σ(φ)/(krφ) instead of just σ(φ).

(right panels), again the latter only showing values of φ close to the branes. Note that again for
µ → ∞ (corresponding to b → ∞ if no tuning is assumed) we reach the decoupling limit where
v(φ) → sgn(φ), i.e. the dynamics of the bulk scalar freezes. Therefore, for a generic case with a
fixed value of radius of extra dimension r, with increasing |µr| the solutions in the bulk get closer
to the original RS assumption.

Furthermore, it is instructive to set the scale of the model parameters in terms of some TeV-scale
observable. It is common in the literature to define the so-called KK mass scale

MKK ≡
σ′(π)

r
e−σ(π), (3.47)

which in the context of RS models sets the mass scale for low-lying KK excitations of the SM
particles. For the non-backreaction case, MKK has the well-known expression

MKK = ke−krπ. (3.48)

However, as we will show in section 3.2.3, once the backreaction is taken into account the ratio
between e.g. the first vector resonance in the spectrum andMKK changes dramatically, which makes
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the use of MKK for phenomenological studies problematic. Therefore, for the rest of this chapter
we will use a physical mass instead of MKK to define the scale of NP. In particular, we chose the
mass of the first KK gluon, mg

1, as it does not depend on other input parameters, but is fixed only
by the metric. This will become clear later in section 3.2, where the gluon mass appears as the
eigenvalue solution of equation (3.56). For all solutions shown in figure 3.6 this mass is set to
mg

1 = 10 TeV.

Comments on the stability of the WED with an odd bulk scalar field

We briefly comment here on the issue of stability of the extra dimension once an odd bulk scalar
field is introduced to the theory. In any realistic warped extra-dimensional model that solves the
gauge hierarchy problem, it is essential to have a dynamical mechanism to stabilize the radius r of
the extra dimension, i.e. the distance between the two branes, as this size is the main parameter
that sets to which scale MPl gets “warped-down” to. Without such a mechanism, the quantum per-
turbations of the metric (3.2), the so-called radion, remain massless, as as discussed in section 2.6.
However, as shown by GW [162], the radius of extra dimension can be dynamically stabilized by
a 5D bulk scalar which has non-trivial potentials in the bulk and at both branes (see section 2.6).
Given the fact that the bulk scalar field Σ(x, φ), which we have introduced in our model to generate
the fermion bulk masses, affects the background geometry in a non-trivial way, it is natural to ask
whether such a bulk scalar could also serve as a stabilizing GW field.

In order to answer this question, one needs to solve Einstein equations to linear order in per-
turbations of the metric as well as the bulk scalar field, see e.g. [116]. After this exercise, one
ends up with a bulk scalar, which is a linear combination of metric and scalar field perturbations,
and it has a zero mode, corresponding to the light radion, and a tower of KK modes. However, it
was shown in [183] that a scalar field with an extremum point in the bulk of the extra dimension
cannot stabilize the size of the extra dimension and that, in fact, it introduces an instability in
the system as it develops a tachyonic mode. We have explicitly verified this result and found a
tachyonic mode in the spectrum of scalar perturbations. Hence, an odd bulk scalar alone cannot
stabilize the extra dimension. However, one can argue that introducing a second bulk scalar acting
as a GW stabilizing field can not only stabilize the size of extra dimension but also remove the
tachyonic mode from the scalar spectrum. This analysis was beyond the scope of our work, but we
note that partial progress has been made along these lines in [177], see also [176,184].

Hence, for simplicity we study the backreaction of the background solutions assuming the
geometry to be static, for both the weak and strong backreaction scenarios, i.e. we do not consider
the scalar perturbations of the metric but only consider the fluctuations of the odd bulk scalar
around its background VEV as in (3.4). We simplify the problem this way, as considering the scalar
perturbations of the metric would require us to introduce, in addition, a GW field to get rid of any
possible tachyons appearing in the system. This would make our system too complicated to be
solved using the techniques we previously discussed, while it is also beyond the scope of our work.

3.2 Gauge bosons and EW precision tests

In this section we calculate the impact on EW precision observables due to the backreaction from
the Z2-odd bulk scalar on the metric. We consider both the minimal RS case and its custodial
extension in the presence of a brane-localized Higgs sector. Moreover, we present the EOM for the
gauge bosons, necessary for us to use mg

1 as the scale of NP throughout the rest of the chapter.
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Chapter 3. A dynamical origin of fermion masses in WED

3.2.1 Minimal case

We closely follow the treatment of the KK decomposition for the EW sector from [110, 111]. We
start by considering a SU(2)L × U(1)Y bulk gauge group, spontaneously broken to U(1)Q by the
VEV of an IR-localized Higgs. In order to have SM gauge bosons as the zero modes of bulk gauge
bosons, we require the vector components W a

µ and Bµ to be even under the Z2 orbifold symmetry,
whereas for the scalar components W a

φ and Bφ we require them to be odd. We can write the
gauge-sector bulk action as

S
(5D)
V =

∫
d4x

∫ π

−π
dφ
√
g gKMgLN

(
− 1

4
W a
KLW

a
MN −

1

4
BKLBMN

)
+SHiggs +SGF +SFP , (3.49)

where W a
MN and BMN are the 5D field strength tensors for SU(2)L and U(1)Y . SGF and SFP are

the gauge fixing and the Faddeev-Popov ghost actions, respectively. For simplicity, the Higgs-sector
is localized on the IR brane. The action for the canonically normalized Higgs doublet H(x) reads

S
(4D)
H =

∫
d4x

{
(DµH)† (DµH)− (me−σ(π))2

(
H†H

)
− λH

(
H†H

)2}
, (3.50)

see section 2.3 for a detailed explanation. After the EWSB, H(x) can be decomposed as

H(x) =
1√
2

(
−i
√

2G+(x)
vh + h(x) + iG3(x)

)
, (3.51)

with vh ' 246 GeV the SM Higgs VEV, h(x) is the Higgs field and G± and G3 the associated
Goldstone bosons. The covariant derivative Dµ is defined as

Dµ = ∂µ − i
g5

2
τaW a

µ − ig′5Bµ, (3.52)

in similarity with (1.4), with τa the Pauli matrices, and g5 and g′5 the 5D gauge couplings of SU(2)L
and U(1)Y , respectively. Note that now [g5] = [g′5] = −1/2 (see section 2.4). How we can define
the 4D effective gauge couplings from these quantities will become clear later this section.

We write the KK decomposition of the 5D gauge fields in the form of 4D vector bosons and
scalars as [110]

Aµ(x, φ) =
1√
r

∑

n

A(n)
µ (x)χA

n(φ) , Aφ(x, φ) =
−1√
r

∑

n

1

mA
n

A(n)
φ (x) ∂φ χ

A
n(φ) , (3.53)

where A = A,Z,W± are the usual field redefinitions of the EW gauge bosons, as

W±M =
1√
2

(
W 1
M ∓ iW 2

M

)
,

ZM =
1√

g2
5 + g′25

(
g5W

3
M − g′5BM

)
,

AM =
1√

g2
5 + g′25

(
g′5W

3
M + g5BM

)
.

(3.54)

Above A(n)
µ (x) and A(n)

φ (x) are the 4D KK mass eigenstates, and the dimensionless χA
n(φ) are the

KK wave-functions, which form a complete basis on the orbifold. These KK wave-functions satisfy
the orthonormality condition

2

∫ π

0

dφχA
m(φ)χA

n(φ) = δmn . (3.55)

Note that both the kinetic terms for the gauge fields and the Higgs field in the action (3.49)
contain mixed terms involving the gauge bosons with their scalar companions and the Goldstone
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3.2. Gauge bosons and EW precision tests

fields, respectively. These mixings can be removed by introducing appropriate gauge-fixing terms
in the Lagrangian, see for instance [110]. Inserting the KK decompositions into the action (3.49)
leads to the EOM

− 1

r2
∂φ

(
e−2σ(φ) ∂φ χ

A
n(φ)

)
= (mA

n)2 χA
n(φ) , (3.56)

along with the BC
∂φ χ

A
n(0) = 0 ,

(
∂φ + πr2m̃2

Ae
2σ(φ)

)
χA
n(π−) = 0. (3.57)

The parameter appearing in the BC from (3.57), m̃A, corresponds to the mass term arising from
the interaction with the brane-localized Higgs field, being

m̃2
W =

g2
5

2πr

v2
h

4
, m̃2

Z =
(g2

5 + g′25 )

2πr

v2
h

4
, m̃2

A = 0. (3.58)

As we discussed previously in section 2.4, this term will make the zero-mode solution deviate from
the flat profile for the fields with non-vanishing m̃A. However, this can be treated as a O(vh/MKK)
perturbation and the effects are expected to be small. Moreover, we can define the 4D gauge
couplings as

g2
4 ≡

g2
5

2πr
, g′24 =

g′25
2πr

. (3.59)

The equations for the gluon and the photon are trivially the same, and they only depend on the
metric, therefore the possible importance of the backreaction effects on the gauge boson profiles.
For the case of negligeable backreacion, we have

χA0 (φ) = χg0(φ) =
1√
2π
. (3.60)

For A = Z,W±, we obtain the following expressions for the physical zero-mode masses

mA,2
0 = m̃2

A

[
1− r2m̃2

A
π

∫ π

0

dφ1e
2σ(φ1)φ2

1 +O
(

v4
h

M4
KK

)]
, (3.61)

while the photon and the gluon remains massless, as expected.

The momentum-space 5D gauge boson propagator for Aµ is defined by the EOM [150, 185]
(see also [12,124,172])

[
1

r2
∂φe
−2σ(φ) ∂φ + p2

]
DA(φ, φ′; p) = δ(φ− φ′), (3.62)

together with the BC

∂φDA(φ, φ′; p)
∣∣∣
φ=0

= 0,
(
∂φ + πr2m̃2

Ae
2σ(φ)

)
DA(φ, φ′; p)

∣∣∣
φ=π−

= 0, (3.63)

where similar EOM and BC apply for φ′. Equivalently, the 5D propagator is defined by its KK
decomposition [103,104,110]

DA(φ, φ′; p) =
∑

n

χA
n(φ)χA

n(φ′)
p2 − (mA

n)2
= D

(0)
A (φ, φ′; p) + D̃A(φ, φ′; p), (3.64)

where in the last step we have separated the propagator into the contribution coming from the
zero mode (massless before EWSB) and the contributions of the rest of the KK tower [56]. This
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Chapter 3. A dynamical origin of fermion masses in WED

separation is useful since only the term D̃A(φ, φ′; p), evaluated at zero-momentum p = 0 and in the
limit m̃A → 0, is relevant for EWPT at the level of dimension-6 operators. This quantity reads

D̃A(φ, φ′; 0) =
r2

2

[∫ φ>

0

dφ1e
2σ(φ1) − 1

π

(∫ φ

0

+

∫ φ′

0

)
dφ1e

2σ(φ1)φ1

−
∫ π

0

dφ1e
2σ(φ1)

(
1− φ1

π

)2
]

+O
(
m̃2

A
M2

KK

)
,

(3.65)

where φ> = max(φ, φ′). This expression can be obtained by integrating over the EOM for the
profiles and then using the definition in (3.64) together with the orthogonality condition (3.55).

Using this expression for the 5D propagator we get

GF√
2

=
1

2v2
h

[
1 + πr2m̃2

W

∫ π

0

dφ1e
2σ(φ1) +O

(
v4
h

M4
KK

)]
, (3.66)

as well as the following expressions for the oblique parameters T and S [54,56,124]

S = 8v2
hπ

2r2

∫ π

0

dφ1e
2σ(φ1)

(
1− φ1

π

)
, T =

v2
hπ

2r2

c2w

∫ π

0

dφ1e
2σ(φ1) . (3.67)

Note that at zeroth-order in vh/MKK, the contribution to the S and T parameters only depend on
the metric and on the radius of extra dimension r.

3.2.2 Custodial case

One possibility of reducing the tree-level contribution to the T parameter [133] and at the same
time relaxing the deviations on the Zb̄LbL coupling usually predicted in RS models [134] is to
enlarge the bulk gauge symmetry to include the custodial group SU(2)L×SU(2)R [132,135,136].
In particular, one can assume an SU(2)L×SU(2)R×U(1)X bulk gauge symmetry that gets broken
to SU(2)L×U(1)Y at the UV brane by the UV BC, and to SU(2)V ×U(1)X by the VEV of the Higgs
at the IR, as

UV Brane IR Brane

SU(2)L × U(1)Y

SU(2)L×SU(2)R×U(1)X

SU(2)V × U(1)X

In this case, one obtains the following relations for the 4D masses for A = Z,W±

m2
A = m̃2

A

[
1− r2m̃2

A
π

∫ π

0

dφ1e
2σ(φ1)

(
φ2

1 + π2ρA
)

+O
(

v4
h

M4
KK

)]
, (3.68)

where now

m̃2
W =

g2
5L

2πr

v2
h

4
, m̃2

Z =
(g2

5L + g2
5Y )

2πr

v2
h

4
, (3.69)
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Figure 3.7: Values of the S and T parameters for the scan performed on the mass of the first
KK gluon mg

1. The color bar shows the values of the mass of the first KK gluon
mg

1 in TeV. The blue contours show the 68% and 95% CL regions in the TS-plane
allowed by EWPT. We fix |µr| = 25 for both plots. For the left panel we have
fix γ = 1 and the right panel shows the no backreaction limit, i.e. γ = 0. The
horizontal T = 0 points refer to the custodial case, whereas vertically inclined
points are for the minimal case.

and we have defined for convenience ρW = t2W and ρZ = t2W c
2
wc

2
θ (see Appendix C for more

details). The different mixing angles are defined as

tW =
g5R

g5L
, tθ =

g5X

g5R
, tw =

g5Y

g5L
, (3.70)

with
g5Y =

g5Rg5X√
g2

5R + g2
5X

. (3.71)

One also obtains

GF√
2

=
1

2v2
h

[
1 + πr2m̃2

W (1 + ρW )

∫ π

0

dφ1e
2σ(φ1) +O

(
v4
h

M4
KK

)]
, (3.72)

whereas the T parameter now vanishes and the S parameter remains unchanged as in (3.67).

3.2.3 Numerical study

We now derive the constraints on the KK mass scale from the prediction of the S and T parameters,
for both the minimal and the custodial RS models and considering the backreaction on the metric
from the VEV of the bulk scalar field. In figure 3.7, we show contours the 68% and 95% CL contours
allowed by the S and T parameters, as reported by Gfitter group [58]. For the fit performed by
fixing U = 0, this corresponds to the values

S|U=0 = 0.04± 0.08, T |U=0 = 0.08± 0.07, (3.73)
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mg
1 (TeV) mg

1 (TeV) MKK (TeV)
γ Minimal case Custodial case Minimal case

1 14.3 9.6 21.5
0.5 14.0 9.6 12.9
0.1 13.9 9.6 7.0
0.01 13.8 9.5 5.8

0 13.6 9.5 5.6

Table 3.1: Mass of the lightest KK gluon satisfying the constraints from EWPT at 95% CL for
the minimal case and the custodial case. The parameter γ, which is varied between
1 and 0, determines the strength of the backreaction. We fixed |µr| = 25 and
r = 40M−1

Pl . The last column shows MKK as defined in (3.47) for the minimal case.

with a correlation coefficient of +0.92, see [58].

As mentioned earlier, we use the mass of the first KK gluon resonance, mg
1, to display the

bounds, where mg
1 is obtained from the solution of the gauge boson EOM (3.56) with Neumann

BC. We perform a numerical scan, where for given values of |µr|, kr and γ we determine the KK
gluon mass, as well as the warp function and the VEV of the bulk scalar from the coupled equations
(3.44). We then obtain S and T from (3.67) for the minimal model, and the corresponding ones for
the custodial case, i.e. using the same value for the S parameter and setting T = 0. In figure 3.7,
the colored legend shows the values of the first KK-gluon mass. The size of the extra dimension is
fixed to r = 40M−1

Pl . For both plots we have fixed |µr| = 25 and we use γ = 1 for the left panel,
whereas the right panel corresponds to the case where no backreaction is considered, i.e. γ = 0.
Comparing the two plots one sees that backreaction only has a minor impact on the numerical
results. Also, the results are rather insensitive to changes in |µr|, as one can infere from figure 3.6.

We collect the EWPT 95% CL bounds on the lightest KK-gluon mass mg
1 in table 3.1. One

observes that regardless of the model parameters the bounds on mg
1 are rather stringent and out

of the reach of LHC. Note that custodial versions of the RS model are favored over models with
minimal particle content in that they allow for lighter KK resonances, minimal versions of the RS
model are favored by Higgs phenomenology [109, 150, 186]. We should emphasize however that
our analysis of EWPT bounds was based on tree-level calculations. In some regions of parameters
space, positive one-loop corrections to the T parameter could help to eliminate the bounds. For
the custodial RS model, this has been studied in [107, 108]. The backreaction of the scalar VEV
on the metric only has a minor impact on the bounds on mg

1. Note, however, that this would not
be true if one considers the “unphysical” KK mass scale as defined in terms of the derivative of
the metric in (3.47), which varies strongly with γ. However, we know that physical masses are
not directly dependent on MKK, which is a parameter defined strictly at the IR brane, but that also
depend strongly on the value of the metric th the bulk, therefore the results of table 3.1 should not
be considered as surprising.

3.3 KK excitations of the bulk scalar field

The profiles of the scalar KK resonances can be computed by inserting the KK decomposition

S(x, φ) =

∞∑

n=1

Sn(x)χSn(φ), (3.74)
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Pl , with strong (no) backreaction - solid (dashed)

Figure 3.8: Profiles of the first KK resonance of the bulk scalar field for |µr| = 25 (red) and
40 (blue), for γ = 0.5 (solid lines) and γ = 0 (dashed lines). The different mass
eigenvalues are shown in the legend. In all cases we have fixed mg

1 = 10 TeV.

into the action (3.5) and keeping the quadratic terms in the field. This allows us to obtain the EOM
[
∂2
φ − 4σ′(φ) ∂φ − |µr|2

(
3v2(φ)− 1

)
+ r2(mS

n)2e2σ(φ)
]
eσχSn(φ) = 0, (3.75)

that together with the normalization condition for the scalar profiles

2

∫ π

0

dφ χS†n (φ)χSm(φ) = δmn , (3.76)

defines the Sturm-Liouville problem.

In figure 3.8 we show the numerical solutions of the lightest odd scalar KK modes for strong
(solid) and no (dashed) backreaction for the input values |µr| = 25 (red) and |µr| = 40 (blue). We
have fixed the mass of first KK gluon mg

1 = 10 TeV, whereas the corresponding eigenvalue, i.e. the
mass of the first KK scalar mode, which is obtained as a solution of the Sturm-Liouville problem,
is shown in the legend for each case considered. Note that the Dirichlet BC for the scalar field
are incompatible with the existence of a zero-mode solution. We find the first KK excitation of the
scalar field to have a mass of order 30 TeV for the input parameters leading to mg

1 = 10 TeV. This
means, in particular, that the masses of the scalar KK resonances are out of the reach of the LHC
and that the fermion and vector KK resonances would be the first to be accesible for future direct
search experiments. Note that the main difference both in the profiles and the scalar masses are
caused by the different values of the dimensionless parameter |µr|, with −|µ| the scalar 5D mass
parameter, whereas the solutions do not seem to notice whether backreaction effects on the metric
are present or not.

Even if our estimates for the mass of the lowest-lying scalar resonances are beyond the kine-
matic reach of the LHC, it is illustrative to investigate which are the main decay channels. There-
fore, we computed some of the relevant decay modes for the first KK mode of the bulk scalar,
which from now on we will denote by S ≡ S1, and show the different branching ratios (BR) in
table 3.2. We work in the massless quark limit vh → 0 and use the notation where q stands for
the (u, d, c, s, b) quarks, while Q denotes the KK excitations of all SM fermion chiral fields besides
tR, whose KK excitation is denoted by T . This is justified by the fact that, for the cases at hand,
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(|µr|, γ) S → qQ S → tQ S → tT S → QQ S → TT S → gg mS (TeV) mT (TeV)

(25, 0) 0.07 0.04 0.01 0.86 2 · 10−5 0.011 28 14
(40, 0) 0.06 0.03 0.01 0.89 7 · 10−4 0.008 35 14

(25, 0.5) 0.16 0.05 0.03 0.75 0 0.009 27 20
(40, 0.5) 0.06 0.03 0.12 0.77 0 0.007 34 22

Table 3.2: Main BR for the first KK resonance of the Z2-odd scalar, S, for all cases under
consideration. Last two columns show the values of mS and mT while mQ ∼ O(10)
TeV for all the cases shown, see main text for more details.

all the KK resonances besides T share approximately the same mass mQ ≈ 10 TeV. Remember
that the tree-level decay into two SM quarks is forbidden in the massless quarks limit, i.e. when
vh/MKK → 0, as in this case there is no mixing between the zero modes and KK fermions, and the
S scalar field only couples to modes belonging to the same 5D field.

We find the preferred decay channel to be the one where S decays into two KK resonances, with
BR(S → QQ) ∼ 80− 90%. Decays into one SM quark and the KK quark have significantly smaller
BR. The decay channel S → TT is open for γ = 0 and closed for γ = 0.5, where 2mT > mS .
For the decay into gluons, S → gg, we have estimated the BR by summing over the first few KK
fermions in the loop. As one can see from the table, this mode has a small BR of approximately
1%. In principle, the decay channel S → GG, with G being the first KK excitation of the gluon, is
kinematically open and should be taken into account. While its calculation is highly non trivial we
expect a BR not much larger than that for S → gg, which is already pretty small. We also neglect
EW loop processes like S → γγ, S → W+W−, S → ZZ, S → γZ, and similar ones involving
their KK resonances. We find the total decay width of the scalar to be Γ/mS ∼ (2 − 4) · 10−4 for
the different cases presented in table 3.2, due to the small couplings of the scalar to the different
fermions. For computing 3.2 we have solved the background solutions resulting in m1

g = 10 TeV
and set λ/r = 1, for computing the couplings of the S scalar to the different particles. Note that
the ratio Γ/mS can be adjusted by changing the value of λ/r, which defines the effective coupling
of the 4D fermion resonances to the S scalar (this will become relevant next chapter).

The discovery of such particle, even at a possible 100 TeV collider [187], seems extremely
challenging. We have checked that the leading-order cross-section σ(gg → S) for a center-of-
mass energy

√
s = 100 TeV and the PDF set CT14nlo is of the order of O(10−7) pb. Associated Q

production pp → SQ via the t-channel exchange of a Q resonance and the subsequent S → QQ
decay seems the more promising channel to discover such an elusive resonance. However, the
collider study necessary to precisely address this question is beyond the scope of our work.

3.4 Dynamical bulk fermion masses

As previously mentioned, one of the main motivations behind this work is to provide a dynamical
mechanism to generate fermion bulk masses and therefore to solve the flavor puzzle using the
mechanism described in section 2.7. The bulk fermion bilinear Ψ̄Ψ has to be odd under φ → −φ
transformations in order to respect the Z2 symmetry of the model. What we have proposed is
that these masses arise à la bulk “Higgs mechanism”, i.e. through the coupling to Z2-odd scalar
field which acquires a VEV along the extra dimension 〈Σ〉 = ω(φ). Contrary to the usual ad-hoc
approach, where the bulk mass parameters are multiplied by sgn(φ) to make the 5D mass term of
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the Lagrangian Z2 invariant, now both the profile along the extra dimension and the parity of the
VEV are a byproduct of the parity assignment and the dynamics of the 5D field. In this section, we
present this mechanism of generating bulk fermion masses for a single fermion Ψ, singlet under
the gauge group. We will generalize it to the three-generation case and the SM gauge group in the
next section.

Taking the terms involving the sgn(φ) from the action (2.78), and replacing them for Yukawa
coupling terms of the fermion 5D fields with the bulk scalar, the fermion action can be written as

S
(5D)
Ψ = 2

∫
d4x

∫ π

0

dφ
√
g

{
ENa

[
i

2
Ψ̄ Γa(∂N −

←−
∂N )Ψ +

ωbcN
8

Ψ̄{Γa, σbc}Ψ
]
− YΨ̄ΣΨ

}
, (3.77)

where again ΓA = (γµ, iγ5) are the 5-dimensional Dirac matrices, ENa is the inverse fünfbein,
and ωbcN is the spin connection, as in section 2.5. The last term in the action is the 5D Yukawa
interaction of the fermion Ψ with the odd scalar Σ with Yukawa coupling Y. Remember that the
mass dimensions of the fields and couplings in the above action are [Ψ] = 2, [Σ] = 3/2, and
[Y] = −1/2.

After the scalar field develops its VEV, the above action for the fermion field can be rewritten
as

S
(5D)
Ψ = 2

∫
d4x

∫ π

0

dφ
√
g

{
ENa

[
i

2
Ψ̄Γa(∂N −

←−
∂N )Ψ

]
− ω(φ)YΨ̄Ψ

}
+ S

(5D)
Ψ,int , (3.78)

where S(5D)
Ψ,int contains the terms defining the fermion interactions with the odd scalar fluctuation

S(x, φ).

We KK-decompose the bulk fermions into the 4D chiral fermion modes as in (2.82),

Ψ(x, φ) =

∞∑

n=0
A=L,R

ψAn (x)
e2σ(φ)

√
r
fAn (φ) , (3.79)

where ψL,Rn (x) are the left- and right-handed 4D chiral fermions with their corresponding φ-
dependent profiles fL,Rn (φ). The prefactor e2σ(φ)/

√
r is introduced to ensure the canonical normal-

ization of the KK modes and to make the wave-functions fL,Rn (φ) dimensionless. As a consequence
of the above KK decomposition, the f(φ)-profiles satisfy the orthogonality condition

2

∫ π

0

dφ eσ(φ)fL,R∗m (φ) fL,Rn (φ) = δmn . (3.80)

Using the variational principle and integrating by parts in the action (3.78), we obtain the EOM
for the fermion profiles

[
±1

r
∂φ − Yω(φ)

]
fL,Rn (φ) = −mn e

σ(φ)fR,Ln (φ) , (3.81)

along with BC
e−4σδΨ̄γ5Ψ

∣∣∣
φ=0,π

= 0. (3.82)

The plus (minus) sign on the left-hand side of (3.80) refers to fLn (fRn ). The masses of the KK
resonances are denoted by mn. It is instructive to introduce a dimensionless quantity

c ≡ Y
√

6

λ

|µr|
σ′(π)

(3.83)

such that (3.81) can be recast in the dimensionless form
[
± ∂φ − c σ′(π) v(φ)

]
fL,Rn (φ) = −rmne

σ(φ)fR,Ln (φ) , (3.84)
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where we have replaced ω(φ) with v(φ) as in (3.13). Note that the definition of c has been done so
that in the case where v(φ) is replaced by sgn(φ), we recover the conventional dimensionless bulk
mass parameter c = m/k, as was introduced in (2.84).

Following the same arguments as in section 2.5, the BC in (3.82) guarantees either fL∗m (0) fRn (0)
= 0, or fL∗m (π) fRn (π) = 0, i.e. for a given field and assuming the same Z2 behavior at both branes,
either the LH or the RH component of the field has to be Z2-odd. That allows us to define a Z2-
parity on the orbifold to be given by ±γ5. The zero-mode profiles are obtained by solving (3.81)
with mn = 0. The equation then determines the Z2-even profile functions, while the Z2-odd
functions vanish.

3.4.1 Fermion zero modes

The fermion profiles are now given by (3.84) and, in contrast to what was obtained in section 2.5.1,
they can only be obtained numerically. From (3.84) the expression for the zero-mode profiles read

fL,R0 (φ) = fL,R0 (0) exp

(
±c σ′(π)

∫ φ

0

v(z) dz

)
. (3.85)

As usual, the chirality chosen to vanish for a given fermion field at one of the branes, e.g. fR0 (0) =
0 or fL0 (0) = 0, will not have a zero mode, since the differential equation along with the BC
from (3.84) cannot be satisfied for a non-trivial solution.

We would like to compare the solutions for the fermion zero modes computed using the back-
ground solutions shown in figure 3.6, including strong and no backreaction effects on the metric.
With this idea in mind we will define the profile “tilde” and “hat” functions, f̃UV,IR(φ) and f̂UV,IR(φ),
where UV and IR denote the brane at which the profile has a stronger presence, while f̃(φ) and
f̂(φ) will be defined in (3.86) and (3.87), respectively. We show these profile functions in figure 3.9
for values of the dimensionless 5D mass parameter c such that the fermion profiles have the same
value on the IR brane. This will be particularly pertinent for the next section, where we would like
to study the impact on the flavor structure of the model arising from the non-trivial VEV profile,
v(φ), and the modification of the metric, σ(φ), since the values of the fermion profiles at the IR
brane are the relevant parameters to reproduce the quark masses and mixing angles, for a given
5D Yukawa matrix in the brane-localized Higgs scenario. Note that for a bulk Higgs scenario the
mechanism would be similar but, however, fermion masses would be given by the integral of the
overlap of the different profiles. Moreover, we represent in the upper panels the rescaled profiles

f̃L,R(φ) ≡
√

2

σ′(π)
eσ(π)/2 fL,R0 (φ) , (3.86)

defined in such a way that their values at the IR brane, f̃(π) ≡ F (c), are the factors responsible for
the exponential hierarchies expected in the 4D effective Yukawa matrices, obtained after weighting
these factors with the different entries of the anarchic 5D Yukawa couplings, see (3.93) below. On
the other hand, the lower panels represent the “properly normalized” fermion profiles

f̂L,R(φ) = eσ(φ)/2fL,R(φ), with
∫ π

−π
f̂L,R(φ)2dφ = 1 , (3.87)

see (2.91). Such profiles are useful to visualize the changes on flavor observables, since are pre-
cisely these functions the ones that enter (convoluted with the corresponding 5D gauge propaga-
tors) in ∆F = 1 and ∆F = 2 processes [119,178–180]. Since these convolutions are very sensitive
to the behavior of the functions near the IR brane, observing the change of these profiles in the
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Figure 3.9: Profiles of fermion zero modes obtained in the original RS model (black), i.e. us-
ing a sgn(φ) function in front of the bulk masses, and in our model, where bulk
masses are generated dynamically through the VEV of a scalar field, considering
both strong and no backreaction (solid and dashed lines, respectively) and using
the background solutions shown in figure 3.6. The left (right) panels show profiles
which are localized near the UV (IR) brane. In each case, we adjust the dimen-
sionless couplings c such that the values of the profiles on the IR brane are the
same in all cases, with F (c) = f̃(π) = 0.01 and 1.1 for the left and right pan-
els, respectively. In the upper panels we show the rescaled profiles, f̃(φ), defined
in (3.86), whereas the lower panels display the “properly normalized” solutions,
f̂(φ), defined in (3.87). See text for more details.

vicinity of the IR brane gives a good idea of the impact the scenarios examined here may have on
flavor-violating processes.

The black dashed line in the different panels shows, for comparison, the profiles obtained in the
conventional RS model without the bulk scalar field, i.e. the case for which fermion 5D bulk masses
are simply multiplied by sgn(φ). We observe that in the case of no backreaction our solutions lie
rather close to the black dashed line, meaning that our dynamical mechanism for generating brane-
localized fermion profiles succeeds to give profile functions which are numerically close to those
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Figure 3.10: Profiles of the first KK resonances of a fermion 5D field with a LH zero mode,
obtained in the original RS model (black), i.e. using a sgn(φ) and in our model,
where 5D bulk masses are generated dynamically through the VEV of a scalar
field, considering strong and no backreaction (solid and dashed lines, respec-
tively). We use the background solutions shown in figure 3.6. The left (right)
panels show the profiles for the LH (RH) chiralities.

of the conventional RS model. However, in contrast to what we found in the previous section for
the scalar field, the backreaction on the metric can have a significant impact on the shapes of the
profiles. This is specially noticeable for the profiles pointing towards the IR brane, see the right
panels in figure 3.9. The phenomenological consequences of this observation will be studied later.

3.4.2 Fermion KK modes

As discussed previously in section 2.5 the EOM for higher KK resonances can be obtained from (3.84)
by taking a derivative w.r.t. the fifth coordinate. This decouples the EOM and gives

[
∂2
φ − σ′(φ) ∂φ ∓ c σ′(π)v′(φ) + r2m2

n e
2σ(φ)

± c σ′(π)σ′(φ)v(φ)− c2 σ′2(π)v2(φ)
]
fL,Rn (φ) = 0.

(3.88)

As an example, we present in figure 3.10 numerical solutions for the RH and LH profile functions
for the first KK excitation of a fermion with LH zero mode. The meaning and labeling of the various
curves is the same as in figure 3.9. For each choice of parameters, we also give the value of the
corresponding KK fermion mass.

3.5 A dynamical solution to the flavor puzzle

One of the major strengths of RS models is that they not only provide a solution to the hierarchy
problem but also naturally explain the large hierarchies observed in the spectrum of SM quark
masses and mixing angles. We introduced the mechanism that allows us to reproduce the ob-
served quark structure in section 2.7. Moreover, we commented that for the leptonic sector such a
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3.5. A dynamical solution to the flavor puzzle

mechanism is not directly applicable, since the PMNS mixing matrix features large mixing angles.
However, in section 2.7 we implemented this framework using sgn(φ) for making the fermion bulk
masses Z2 dependent. In this section, we will investigate whether this continues to be the case in
scenarios where the bulk masses are generated dynamically. We will also study the implications
of the dynamical approach for flavor physics. In particular, we will explore how the modifications
of the fermion profiles affect the usual RS-GIM mechanism [21, 170, 188] and study their impact
on the ∆F = 2 observable εK , measuring CP violation in K − K̄ mixing, which typically sets the
strongest flavor constraint in models with WED [119,178–180].

The Yukawa interactions with the Higgs field, localized on the IR brane, induce a mixing be-
tween the would-be zero modes and the KK excitations of different 5D fields. These contributions
are of O(v2

h/M
2
KK) for both the mass eigenvalues and the CKM mixing matrix. In order to simplify

the calculations and have approximate expressions describing fermion mixings we will restrict our-
selves to the ZMA, in a similar manner as we presented it in section 2.7. Remember that in this
approximation fermion bulk profiles are solved with the Yukawa couplings “switched-off”, and
these couplings are included as a O(v2

h/M
2
KK) perturbation. Actually, since the overlaps of the dif-

ferent quark profiles with the Higgs profiles are proportional to the corresponding quark masses,
up to some common multiplicative factor. Therefore this approximation holds best for the light SM
quarks, for which the neglected terms are indeed much smaller than O(v2

h/M
2
KK).

3.5.1 Hierarchies of fermion masses and mixings

We now consider three generations of 5D fermions in the bulk interacting with a scalar sector
consisting of the odd scalar in the bulk and the Higgs doublet on the IR brane. If we denote by
Q and qc the three-component vectors in flavor space belonging to SU(2)L doublets and singlets,
respectively, the quadratic terms in the 5D action can be written in the form

S(5D)
ferm, 2 =

∫
d4x

∫ π

−π
dφ
√
g




i

2
ENa

[
Q̄Γa(DN −

←−
DN )Q+

∑

q=u,d

q̄c Γa(DN −
←−
DN )qc

]

− ω(φ)

[
Q̄YQQ−

∑

q=u,d

q̄cYqq
c

]

−δ(|φ| − π)

√
|ĝi|
g

vh e
σ(π)

√
2

[
ūL Y

(5D)
u ucR + d̄L Y

(5D)
d dcR + h.c.

]}
,

(3.89)

similar to (2.126), where now the 5D fermion masses have a dynamical origin. Without loss of
generality we work in the “bulk-mass basis”, where YQ,q denote diagonal matrices leading to real
bulk masses, see the discussion in section 2.7, and Y (5D)

q are the 5D Yukawa matrices which couple
different 5D fermion fields to the Higgs field.

The 5D up-type quarks can be KK-decomposed as follows

uL(x, φ) =
e2σ(φ)

√
r

∑

n

C(Q)
n (φ)u

(n)
L (x) , uR(x, φ) =

e2σ(φ)

√
r

∑

n

S(Q)
n (φ)u

(n)
R (x) ,

ucL(x, φ) =
e2σ(φ)

√
r

∑

n

S(u)
n (φ)u

(n)
L (x) , ucR(x, φ) =

e2σ(φ)

√
r

∑

n

C(u)
n (φ)u

(n)
R (x) ,

(3.90)

where the diagonal matrices C(Q,u)
n denote Z2-even profiles, while S(Q,u)

n are also diagonal matrices
and correspond to odd profiles. The index n labels the mass eigenstates, with fermion masses mn

and spinor fields u(n)
L,R(x). The spinor fields on the left-hand side of the equations are three-

component vectors in flavor space. The equations of motion for the different profiles in the ZMA
correspond to those presented in section 3.4.
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Inserting these decompositions into the action, the Yukawa interaction on the IR brane reads

S(4D) ⊃ −
∫
d4x

vh e
σ(π)

√
2 r

[
ū

(n)
L (x)C(Q)

n (π)Y (5D)
u C(u)

m (π)u
(m)
R (x) + h.c.

]
, (3.91)

where it is convenient to use the fermion fields normalized as in (3.86). It is clear from (3.85)
that, for a given pair of background solutions σ(φ) and v(φ), the values of the profiles of the
different zero modes on the IR brane depend only on the dimensionless quantity c, defined in
(3.83). Therefore, it is useful to define the functions

F (cX,i) =
(
C̃X0 (π)

)
ii
, (3.92)

i.e., the value of the zero-mode profile of the field X = Q, u, d on the IR brane, which depend
only on the parameter cX,i. Using this convention, we define the dimensionless Yukawa and the
effective 4D Yukawa of the SM fields

Y (5D)
q =

2Yq r

σ′(π)
, (Y eff

q )ij = F (cQ,i) (Yq)ij F (cq,i), (3.93)

as in [110], but with the subtlety of trading kr for σ′(π). The Yukawa entries Yq are again consid-
ered to have modulo of order unity, i.e. |Yq| ∼ O(1). Once the Yukawa couplings on the IR brane
are “switched on” a mass matrix is obtained for the SM fields. The physical masses are obtained
by solving the eigenvalue equation

det
(
Im2

n −
v2
h

2
(Y eff

q )(Y eff
q )†

)
= 0 . (3.94)

The eigenvectors of the matrices Y eff
q

(
Y eff
q

)†
and

(
Y eff
q

)†
Y eff
q (with n = 1, 2, 3 and Q = U,D,

q = u, d) form the columns of the unitary matrices Uq and Wq appearing in the singular-value
decomposition

Y eff
q = Uq λqW

†
q , (3.95)

where

λu =

√
2

vh
diag(mu,mc,mt) , λd =

√
2

vh
diag(md,ms,mb) . (3.96)

In this approximation, the fields are mixed because of the Yukawa interactions on the IR brane.
The 5D mass eigenstates and the SM mass eigenstates are related through the matrices Uq and
Wq, and the CKM mixing matrix is given by

VCKM = U †uUd . (3.97)

We fit the bulk mass parameters cX from the values of F (cX) for a randomly generated Yukawa
matrices Yu and Yd. Assuming a hierarchical structure of the zero-mode profiles on the IR brane,
i.e.

|F (cX1
)| < |F (cX2

)| < |F (cX3
)| , (3.98)

the system is not determined and the different F (cX,i) parameters can be expressed in terms of a
single one, which we chose to be F2 ≡ F (cQ2

), as in [110]. See section 2.7 and appendix B, for
the complete formulae.

3.5.2 Impact on flavor constraints: εK

We now explore how the changes in the fermion profiles caused by the non-trivial φ dependence
of the VEV of the bulk scalar field, see e.g. figure 3.9, affect physical observables in flavor physics.
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3.5. A dynamical solution to the flavor puzzle

Because of the RS-GIM mechanism, most of the flavor violating observables are suppressed below
the current experimental limits, see [114, 119, 181, 189, 190]. However, this mechanism is not
enough to suppress NP contributions to CP violation in the Kaon sector below it current experi-
mental limits. Therefore, we will focus our study to the particular case of the εK parameter, since
CP violation in K–K̄ mixing, as measured by this parameter, provides the most stringent flavor
constraint in models with WED [119,178–180,191].

We follow closely the analyzes on εK in RS models from [110,179–181] and adopt the following
parametrization for NP [192]

L∆S=2
eff =

5∑

i=1

CiQi +

3∑

i=1

C̃i Q̃i , (3.99)

where the operators relevant for K–K̄ mixing are

Q1 = (d̄Lγ
µsL) (d̄LγµsL) , Q̃1 = (d̄Rγ

µsR) (d̄RγµsR) ,

Q4 = (d̄RsL) (d̄LsR) , Q5 = (d̄αRs
β
L) (d̄βLs

α
R) .

(3.100)

A summation over color indices α, β is understood. In our convention the Wilson coefficients
include only the NP contributions, i.e. Ci ≡ CNP

i . For simplicity we only consider the leading
contribution, arising from the tree-level exchange of KK gluons, and neglect contributions involving
the exchange of other gauge bosons or scalar fields. In the ZMA, these contributions take the form

C1 = 4π2αs r
2

(
1− 1

Nc

)
(∆̃D)12 ⊗ (∆̃D)12 , C̃1 = C1

∣∣
D→d ,

C4 = −4π2αs r
2 (∆̃D)12 ⊗ (∆̃d)12 , C5 = −C4

Nc
,

(3.101)

where αs is the strong coupling constant and Nc = 3 stands for the number of colors. The notation
(∆̃X)12 ⊗ (∆̃Y )12 is defined as

(∆̃X)12 ⊗ (∆̃Y )12 = (U†X)1j(UX)j2(U†Y )1k(UY )k2

×
∫ π

0

dφ

∫ π

0

dφ′
∫ φ<

0

dφ̄ e2σ(φ̄)eσ(φ)eσ(φ′)
(
C̃X0,j(φ)

)2 (
C̃Y0,k(φ′)

)2

,
(3.102)

where UD = Ud and Ud = Wd. Note that in this limit the Wilson coefficients relevant for com-
puting εK only depend on the background solutions and the fermion profiles, and therefore on
the Yukawa couplings. It can be seen from (3.65) that only the first term in the gauge propagator
appears in (3.102), since the other terms cancel due to orthogonality and unitarity of the fermion
profiles and the U -matrices, respectively. It is clear from (3.102) that the more a particular fermion
has its “properly normalized” profile eσ(φ)/2C0(φ) shifted away from the IR brane, the smaller its
contribution to the Wilson coefficients would be. Moreover, one can readily conclude from this
and from the behavior of the fermion profiles shown in the lower panels of figure 3.9, that large
values of the backreaction tend to worse the RS-GIM mechanism. This is the case as the “properly
normalized” profiles grow in the vicinity of the IR brane for both UV-localized and IR-localized
fermions, when compared to the profiles obtained for none or negligeable backreaction.

In terms of the effective Lagrangian (3.99), the quantity εK is given by

εK =
−κε eiϕε√

2 (∆mK)exp

Im 〈K0| L∆S=2
eff |K̄0〉 . (3.103)

The current experimental value [46] and SM prediction [3,193] for |εK | are

|εK |exp
= (2.228± 0.011)× 10−3 , |εK |SM

= (2.16± 0.18)× 10−3 . (3.104)
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Figure 3.11: |∆εK | as a function of F2, computed with fermion profiles obtained by using
sgn(φ) (black) and in our model, i.e. with dynamical 5D fermion masses, for
different values of |µr| and considering strong and no backreaction (solid and
dashed lines, respectively). In the left (right) figure we have fixed mg

1 = 15 TeV
(25 TeV). We show in blue the area allowe from

To get a better understanding for the different contributions playing a role in εK , it is useful to
note that

|εK − εSM
K | ∝ Im

[
C1 + C̃1 + 213

(
C4 +

C5

Nc

)]
(3.105)

for a matching scale µNP = 15 TeV.

For our numerical analysis we generate random Yukawa matrices with complex entries of norm
in the interval [1/3, 3] and use a χ2 distribution to select parameter sets for which the quark masses
and CKM parameters are reproduced within 95% CL. In figure 3.11 we plot the prediction for
∆εK ≡ |εK |−|εK |exp assuming different values of |µr|, for strong and no backreaction, as a function
of F2. The left and right panels correspond to mg

1 = 15 TeV and 25 TeV, respectively. Moreover, for
comparison we also show with a black dashed line the conventional RS case, corresponding to bulk
fermion masses multiplied by a sgn(φ) function. We also show with a blue band the constraint

∆εK . 4.2× 10−4 , (3.106)

note that this quantity corresponds to the 2σ uncertainty of the SM prediction for εK derived
in [3, 193]. We use this value as the main uncertainty for our prediction and demand that the
central value of the experimental measurement lies within that range. Note that the uncertainty of
the SM prediction is one order of magnitude larger than the experimental error, as can be seen in
(3.104). We chose this uncertainty rather than the experimental error as in the defintion of ∆εK
we are already carrying such an uncertainty, and therefore the NP contribution is sensitive to this
value, even if its not the origin.
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3.5. A dynamical solution to the flavor puzzle

For the purposes of making this figure, we consider a benchmark point defined by the following
Yukawa matrices

Yu =




0.109 + 1.865 i 2.000− 1.324 i −0.706 + 1.514 i
−2.163− 0.615 i −0.695− 0.483 i 2.299− 1.604 i
1.517 + 1.399 i −0.928 + 0.065 i 2.204 + 0.970 i


 ,

Yd =




1.888− 1.915 i 1.181− 2.696 i 0.294 + 0.530 i
1.827− 0.057 i 2.210− 0.413 i 0.591 + 0.951 i
1.264 + 2.004 i −0.829− 1.309 i −1.326 + 0.510 i


 .

(3.107)

One can see from the left plot in figure 3.11 (i.e. for mg
1 = 15 TeV) that large values of the

backreaction are disfavored by the current experimental measurement of εK . However, if we in-
crease the KK scale to mg

1 = 25 TeV (right plot in figure 3.11), we find that it is only the model
with |µr| = 40 and when we take the strong backreaction limit that remains in slight tension with
the measured value of εK for a wide range of F2 values. Note that our modified case without
backreaction slightly improves the εK constraints as compared to the conventional RS case. How-
ever, as one can see from the above figure, considering a strong backreaction (we show results for
γ = 0.5) leads to a larger contribution to εK and hence to more stringent constraints on the mass
of the first KK gluon mode. This is a direct consequence of the behavior of the different “prop-
erly normalized” profiles shown in the lower panels of figure 3.9. For both UV and IR-localized
fermions (corresponding to the lower left and right panels in figure 3.9, respectively), the inclusion
of the backreaction results in an increase of the profiles in the vicinity of the IR brane. The values
of these profiles near the IR brane play a central role for flavor-violating processes, because the
different vector mediators inducing flavor-changing interactions are localized near the IR brane
(when weighted with the appropriate powers of the metric). Thus, this results in a smaller flavor
protection and hence a weakening of the RS-GIM mechanism [21, 170, 188], in agreement with
figure 3.11. On the other hand, the shape of all curves in Figure 3.11 can be easily understood by
taking into account that, for small values of F2, all LH doublets are more and more UV localized,
which makes their RH counterparts more and more IR localized in order to still produce the ob-
served spectrum of fermion masses. Therefore, very small values of F2 correspond to values where
C̃1 gets arbitrarily large to the point that can overcome the factor 213 in front of C4 in (3.105). On
the contrary, large values of F2 correspond to values where exactly the opposite happens, leading
to more and more IR-localized LH doublets and therefore to very large values of C1. Note however,
that both of these limits are constrained by reproducing the top-quark mass. For values where this
arbitrary enhancement of one particular chirality ceases to occur, the dominant contributions to
εK arise from C4 and C5, both of which are more or less constant, since they involve both fermion
chiralities and are therefore expected to be controlled by the different fermion masses. This is
due to the fact that, as one can readily see from (3.93), the effective Yukawa couplings and the
corresponding SM fermion masses depend on the product of the profiles of both fermion chiralities
on the IR brane. In the RS case, this leads to [119,180]

C4 = −NcC5 ∼ 4παs(krπ/M
2
KK)(2msmd/v

2
h), (3.108)

which explains the large plateau obtained for intermediate values of F2 in all curves. Finally, the
dips present in ∆εK for some values of F2 are the result of a cancellation between Im(C1) and
Im(C4), which turn out to have opposite signs for our particular choice of Yukawa matrices.

Finally, in order to have a broader picture of the flavor impact of the non-trivial φ dependence of
the bulk scalar VEV and the changes in the warp factor due to the backreaction, we computed the
value of εK for a set of randomly generated Yukawa matrices. We choose a value of F2 = 0.01, such
that C4 and C5 give the leading contributions to εK and no large cancellations among the different
contributions occur. Again, we used a χ2 distribution for the generation of the Yukawa matrices.
In figure 3.12 we show the histograms for the values of |εK | obtained from a set of NT = 500
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Figure 3.12: Histogram showing the values of |εK | in the original RS model, and in our model
for |µr| = 25 and 40, both in the case of zero and strong backreaction (blue and
yellow bins respectively). In all these figures we fix F2 = 10−2 and mg

1 = 15 TeV.

pairs of Yukawa matrices Yu and Yd, for the different values of |µr| and γ under consideration.
For generating these points we have fixed mg

1 = 15 TeV. It can be seen that, as we found for the
benchmark point given in (3.107), a small backreaction on the metric leads to a better agreement
with |εK |exp, whereas the strong backreaction case leads to a broader distribution and therefore to
larger tension with data.

3.5.3 Flavor structure of low-lying scalar resonances

In extensions of the SM featuring a WED, the presence of TeV-scale KK resonances offers new
possibilities for inducing flavor-changing interactions among the fermions of the SM. The flavor-
changing couplings of KK gluons and other KK gauge bosons have been explored in detail in the
literature, see e.g. [110, 119, 170, 178, 180, 191, 194]. At low energies, they give rise to various
dimension-6 interactions in the effective weak Hamiltonian, whose contributions are suppressed
by two powers of the KK mass scale (∼ 1/M2

KK).

In our model, the presence of scalar KK excitations provides a new source of flavor violation,
and it is interesting to study the low-energy manifestations of this effect. The couplings of the
lowest-lying scalar KK resonance S1 to SM quarks can be parameterized in the form

Lferm = −
∑

q=u,d

∑

m,n

S1(x)
[
g(q)
mn q̄

(m)
L (x) q

(n)
R (x) + h.c.

]
, (3.109)

where m,n = 1, 2, 3 are generation indices. Analogous couplings can be written in the lepton
sector. An explicit expression for the quantities g(q)

mn has been presented in equation (3.26) of [154],
where a model profile χS1 (φ) ∝ exp{(1 + βS) kr|φ|} was assumed, with a free parameter βS . For
our purposes, all we need to do is to replace this profile by the function χS1 (φ) we have obtained
from the solution to the EOM (3.75). For simplicity, we will neglect the effects of backreaction in
the following discussion. Using the ZMA for the SM fermion profiles and using the fermion profiles
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computed using sgn(φ) as the φ-dependence function for their 5D masses, we obtain

g(u)
mn =

∫ 1

ε

dt χS1 (t)

[
xn â

(U)†
m F (cQ) tcQ

YQ√
r
F (cQ)

t1+cQ − ε1+2cQ t−cQ

1 + 2cQ
â(U)
n

− xm â(u)†
m F (cu)

t1+cu − ε1+2cu t−cu

1 + 2cu

Yu√
r
F (cu) tcu â(u)

n

]
.

(3.110)

Here xn = mn/MKK, with mn denoting the masses of the three up-type quarks. An analogous
expression holds for the couplings g(d)

mn. Using the expressions for the various objects valid in the
ZMA [110], combined with the fact that the profile function χS1 (t) ≡ χS1 (φ(t)) peaks for values
t = O(1), it is straightforward to derive the scaling laws

g(u)
mn = O(1)

vh
MKK

F (cQm)F (cun) ,

g(d)
mn = O(1)

vh
MKK

F (cQm)F (cdn) .
(3.111)

The above couplings display the familiar RS-GIM mechanism [170], which states that the cou-
plings of low-lying KK resonances to light SM fermions are suppressed by an overlap factor F (ci)
for each fermion, which is much smaller than 1 if the fermion is light compared with the weak scale
and O(1) for the heavy fermions. Importantly, however, the couplings of scalar KK resonances are
in addition suppressed by a factor vh/MKK, since for these coupling to be present a mass inser-
tion for the fermions is needed. As a result, the exchange of a scalar resonance between four SM
fermions gives rise to interactions proportional to

v2
h

M4
KK
F (cQn1

)F (cqn2
)F (cQn3

)F (cqn4
) , (3.112)

which are suppressed by four powers of MKK and hence correspond to dimension-8 operators in
the low-energy effective weak Hamiltonian. With MKK in the range of 10 TeV, these effective
interactions are highly suppressed and irrelevant for all practical purposes.

3.6 Higgs portal coupling to the bulk scalar and modified Higgs
couplings

An interesting possibility which we have omitted so far is to add a portal coupling λΣ2H†H to
the integrand of the 5D action in (3.3), connecting the new the Z2-odd bulk scalar with the Higgs
doublet. After EWSB and once the odd scalar develops a VEV ω(φ), such an interaction induces a
mixing between the Higgs field h of the SM and the first scalar KK resonance S1 (as well as higher
KK resonances). This, in turn, has the effect of reducing the couplings of the Higgs boson to SM
particles by a factor cos θhS , where θhS denotes the corresponding mixing angle.

In the setup discussed in this chapter, where the 5D Higgs field is confined to live on the IR
brane, the portal coupling in the Lagrangian vanishes, since the Z2-odd bulk scalar field is strictly
zero on the IR brane. However, such a coupling is inevitably induced by loops involving bulk
fermions, which couple to the scalar field Σ as well as to the Higgs field, residing on the IR brane.
Figure 3.13 shows some representative diagrams. For the mixing angle relating the physical Higgs
boson hphys to the Higgs field h in the Lagrangian, we then expect

tan θhS ∼
Nc

16π2

vhω̂

M2
S

∼ Nc
16π2

vh
MKK

. (3.113)
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Figure 3.13: Loop diagrams leading to effective interactions of the first KK resonance of the
bulk scalar, S1, to the higgs boson, in the brane-localized Higgs scenario.

The parameter ω̂ ∼ MKK is given in terms of an angular integral of the relevant profile functions
appearing in the loops, and is naturally of order the KK mass scale, MKK. The mixing angle is thus
expected to be very small in this setup, due to the double suppression by a loop factor and the ratio
vh/MKK. It was therefore justified to neglect this mixing for our purposes in this chapter.

We emphasize, however, that the assumption of a brane-localized Higgs sector is neither re-
quired nor particularly natural in the context of RS models and it is by now well known that one
can construct realistic RS models in which the Higgs doublet, like all other fields, lives in the bulk
of the extra dimension [2,112,113,149,151,152,195,196]. In the context of such bulk-Higgs mod-
els, the portal interaction between the Higgs field and the Z2-odd scalar fields becomes a generic
feature, and one expects the mixing angle to appear without a loop factor suppresion. In this case
the mixing angle can naturally be of order a few percent, which might bring it to the sensitivity
level of future precision Higgs measurements, see e.g. [197, 198]. As from a phenomenological
point of view, this may be the most significant imprint of this class of models, we would explore
this possibility in the next chapter.

3.7 Discussion

The RS model was originally proposed to solve the gauge hierarchy problem. However, soon after
its inception, it was realized that it also allows for an explanation of the flavor puzzle, by means of
a specific pattern of localization of the SM fermions in the bulk of the RS geometry, thus connecting
the hierarchy of fermion masses to the one existing between the EW and Planck scales.

Notwithstanding, the issue concerning the coordinate dependence of the bulk fermion mass
parameters has not been assessed carefully. As discussed in section 2.5, fermion bulk masses
have to be odd under the Z2 orbifold symmetry of the RS geometry, and have been traditionally
implemented as a constant parameter appearing together with an ad-hoc sgn(φ) function. In this
chapter, we demonstrated that it is indeed possible to obtain these masses dynamically, via the VEV
of a Z2-odd scalar with bulk Yukawa couplings to the different 5D fermion fields. In particular, we
have shown in section 3.1 that an odd bulk scalar can develop a non-trivial background solution
both for flat and WED. We have shown that kink-like solutions are only found for realistic scenarios,
where the hierarchy problem is solved and the product kr � 1, and that these solutions approach
the sgn(φ) for large values of |µr|. We have considered non-trivial effects of the φ-dependent VEV
on the background geometry in the case of a WED, solving the coupled gravity-scalar Einstein
equations and computing the background solutions for both the warp factor and the scalar field.
It turns out that a non-negligible backreaction is induced on the AdS metric, which modifies the
warp function in the vicinity of the UV and IR branes for reasonable values of the gravity-scalar
coupling, γ = |µ|2/(λM3

∗ ). This is a consequence of the profile of the odd bulk scalar VEV being
approximately constant in the bulk, while strongly changing in the vicinity of both branes. Hence,
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the effects of the backreaction are especially visible in those regions. Moreover, we also briefly
discussed the stability of the background geometry in the presence of an odd bulk scalar.

In section 3.2, we have analyzed the gauge sector of the minimal RS model with an SU(2)L ×
U(1)Y bulk gauge symmetry and the custodial case, where the bulk symmetry is enlarged. We have
calculated the oblique parameters S and T in the presence of a general warp function σ(φ) and
considering backreaction effects, and compared the results with those obtained in the conventional
RS model, i.e. using the linear AdS warp function krφ. We have shown that presently allowed
values of the S and T parameters set a stringent constraint on the masses of the first KK resonances.
In particular, the mass of the first KK gluon state (which is often the lightest KK resonance in the
model) has to be O(10) TeV, irrespectively of whether the backreaction on the metric is included
or neglected in the study. We have also calculated the KK spectrum of the Z2-odd bulk scalar and
studied its main decay channels for several benchmark cases.

Our mechanism for dynamically generating the fermion bulk masses has been presented in
section 3.4, where for simplicity we consider a single 5D Dirac fermion Ψ which couples to the
bulk odd scalar Σ through a 5D Yukawa coupling, YΨ̄ΣΨ. After the KK decomposition of the bulk
fermion, a KK tower of LH and RH chiral fermions is generated, where a zero mode exists for only
one of the two chiralities, due to the BC. As usual, SM fermions correspond to the chiral zero modes
of these bulk fermion fields. We show how the zero-mode profiles of the bulk fermions depend on
the Yukawa coupling along with the φ-dependent VEV of the bulk scalar. By choosing appropriate
values of the bulk Yukawa couplings, the zero-mode fermions can be localized towards either one
of the branes, as is common in RS models. We have calculated the deviations of the zero-mode
and KK-mode profiles in our model as compared to the conventional RS case, finding that these
deviations can become sizable when the effects of the backreaction are taken into account. This
deviations are particularly interesting since they can have an impact on flavor observables, and
therefore on flavor bounds.

We then study the viability of our model when the full SM fermion content is considered,
and reproduce the SM fermion masses after EWSB. The localization of the zero-mode profiles
determines these masses in the effective theory. In section 3.5, we illustrated this mechanism for
the case of a φ-dependent VEV and a modified warp factor, obtaining the hierarchical SM quark
masses and mixing angles. Furthermore, we studied the impact of the dynamical generation of
bulk fermion masses on flavor observables and the RS-GIM mechanism. We have examined, in
particular, the flavor observable εK , which typically sets one of the most stringent bounds on
models with a WED. We have compared our predictions with those obtained in the conventional
RS model. We have also studied the dependence of our results on the model parameters and the
strength of the backreaction on the metric. We have shown that the current experimental value of
εK puts a severe constraint on the mass of the first KK gluon state, which has to be aboveO(10) TeV.
Moreover, we have also shown that the presence of a non-negligible backreaction slightly tends to
weaken the RS-GIM mechanism and, in particular, enhances the NP contribution to εK . However,
the impact is very modest overall, showing that the dynamical origin of the different fermion
masses via an odd scalar field is not only an appealing possibility, but also a phenomenologically
viable one. In extensions of the SM with a WED, the presence of TeV-scale KK resonances introduces
new sources of flavor-changing interactions among the SM fermions. In our particular model,
scalar mediated four SM fermions can be described by effective dimension 8 interactions, which
are v4

h/M
4
KK suppressed and can therefore be neglected for practical purposes.

Finally, in section 3.6 we briefly comment the portal coupling of the bulk scalar to the Higgs
doublet, which in our model only appears at loop level. However, we pointed out that in realistic
RS models the Higgs doublet should be allowed to propagate in the bulk of the extra dimension
and. Therefore, in the context of such bulk-Higgs models the portal interaction between the Higgs
field and the Z2-odd scalar fields becomes a generic feature. We should thus move on to the next
chapter.
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We have shown in the previous chapter that extending the SM with a WED featuring a Z2-odd
scalar singlet can provide a natural explanation to the hierarchy problem and at the same time
explain the nature of fermion bulk masses, where the odd scalar plays the key role of giving an
origin to such bulk masses. Here, we introduce another striking example of the SM not being
able of accommodating some of the observed phenomena, i.e. the nature of DM and the necessary
existence of a mediator connecting the DM sector with the SM. We know as a fact that there is no
viable DM candidate in the SM, thus requiring the presence of NP. Moreover, together with any DM
sector, there should be an intermediary connecting the dark sector with the SM. In this chapter,
we argue that extensions of the SM with a WED compactified on an S1/Z2 orbifold together with
the odd scalar field not only introduce a geometrical origin to the previously presented issues,
i.e. the flavor puzzle and the hierarchy problem, but that it simultaneously addresses the problem
of the absence of a viable DM mediator within the SM. In particular, the KK excitations of the
new scalar particle can be the leading portal to any fermion propagating into the bulk of the extra
dimension, fields that could act as a suitable DM candidate, therefore, contributing to reproduce
the observed DM relic abundance. Since the odd scalar field is responsible for all fermion bulk
masses, it represents a unique window into any femionic dark sector propagating into the bulk
of the WED. Models with WEDs already feature an irreducible mediator between visible and dark
sectors, since gravity couples to matter through the energy-momentum tensor. However, as we
will see, when the DM candidates are fermionic weakly interacting particles (WIMPs) with masses
of O(TeV), the resonances arising from the 5D Z2-odd scalar field can provide the most important
mediators for the DM coannihilation cross section.

Moreover, we are aware that the derivations that took place in chapter 3 were restricted to the
brane localized Higgs scenario, where the Higgs boson does not mix at tree-level with the Z2-odd
scalar field. We argue that in a more general case the Higgs should be promoted to a bulk field and
thus a natural question which arises concerns the possible interplay between the two scalar fields.
The presence of the Higgs boson in the bulk will lead to the scalar excitations the Higgs boson
to necessarily mix with the odd scalar. We study the modifications of the Higgs couplings and
BR in this chapter, together with the new contributions to the relic density from Higgs-mediated
coannihilations of the fermionic DM. Due to the scalar mixing, we will see that the fermionic
dark sectors considered here are mostly Higgs-mediated for DM masses below the TeV scale. We
examine thoroughly the resulting model of scalar-mediated fermionic DM for a large range of DM
masses. We focus on the case where the DM particle is a vector-like (VL) fermion, corresponding
to the first KK excitation of a 5D dark fermion. However, most of our results also hold in the case
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where the DM candidate gets an external mass, which can be chiral, VL or even of Majorana type.
We analyze these effects and explore the viability of fermionic DM in the presence of these new
heavy scalar mediators both in the usual freeze-out scenario and in the case where the freeze-out
happens during an early period of matter domination.

This chapter is organized as follows: we solve the coupled system of field equations in sec-
tion 4.1, obtained after switching on the portal coupling between the two bulk scalar fields, by
diagonalizing the resulting 4D mass matrix perturbatively. In section 4.2 we proceed to discuss the
phenomenology assuming a non-negligible portal coupling and the presence of Nχ dark fermion
bulk fields. First, we discuss the impact of the scalar mixing on the SM Higgs couplings. We then
continue by examining the impact of the dark fermions on the Higgs invisible decay width. Then,
we discuss the predictions for the DM coannihilation cross-section mediated by the Higgs field and
the first KK resonance of the Z2-odd scalar field, comparing these contributions with the ones me-
diated by KK gravitons. We compute the prediction for the DM relic abundance as a function of
the velocity-averaged coannihilation cross section in the usual freeze-out scenario as well as in the
case of a matter-dominated universe [199–201]. Finally, we compute the constraints arising from
direct detection using data from the Xenon1T experiment, showing that for a O(10 TeV) fermionic
WIMP we can reproduce the observed DM relic abundance in the scenario of matter domination,
without conflicting with current data from Xenon1T. In the case of radiation domination and DM
masses of ∼ 15 TeV, these scalar mediators can provide a non-negligible fraction of the required
coannihilation cross section, even though additional mediators would be required.

4.1 Bulk Higgs and Odd scalar mixing

We are here interested in the case where the two bulk scalar fields, i.e. the Higgs and the new
Z2-odd scalar, mix with each other. In this case the action reads

S =

∫
d5x
√
g

{
gMN (DMH)

†
DNH +

1

2
gMN (DMΣ) (DNΣ)− V (H,Σ)

−
√
|ĝUV|√
g

V̂ UV(H) δ(t− ε)−
√
|ĝIR|√
g

V̂ IR(H) δ(t− 1)

}
.

(4.1)

We consider mixed BCs for the Higgs field, while the odd scalar field satisfies Dirichlet BCs. Such
BCs for the bulk Higgs are a consequence of the brane-localized potentials, which are forbidden for
the odd scalar, since it vanishes on the two branes. In our model, both bulk scalar fields develop
a VEV. We can express the two 5D scalar in terms of their background configurations, ϕH(t) and
ϕS(t), and their 5D excitations, h(x, t) and S(x, t), as

H(x, t) =
t

ε
√

2r

(
0
1

)
[ϕH(t) + h(x, t)] , Σ(x, t) = ϕS(t) +

t

ε
√
r
S(x, t). (4.2)

The bulk potential now reads

V (H,Σ) = µ2
H |H|2 −

µ2
S

2
Σ2 +

λS
4

Σ4 + λHS |H|2Σ2, (4.3)

where µH , µS are the mass parameters and λS , λHS the quartic couplings. Note that in (4.3), in
contrast to the convention we chose in chapter 3, µS appears in the potential with a minus sign,
thus in this convention µS > 0. We use the same definition for the brane-localized potentials of the
bulk Higgs doublet as in (2.29). Following the same lines as in section 2.3, a quartic term for the
Higgs field is only introduced at the IR brane. This configuration is enough to induce EWSB near
that brane. The assumption that the profile of the Higgs is peaked towards the IR brane makes
other quartic term contributions negligible and therefore, the UV and bulk quartic couplings can
be omitted for any practical purpose [113,149–155].
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4.1.1 Background solutions

First, we want to determine the profiles of the two VEVs. We can derive the coupled EOM
from (4.1) and (4.3), reading

[
t2∂2

t − 3t∂t +
µ2
S

k2

(
1− v2

S − λ̄
k4

µ4
S

λS
r
t2
ϕ2
H

M2
KK

)]
vS(t) = 0,

[
t2∂2

t + t∂t − β2 − λ̄v2
S

] ϕH(t)

t
= 0,

(4.4)

where we have defined the dimensionless coupling

λ̄ ≡ µ2
S

k2

λHS
λS

, (4.5)

and redefined the VEV of the odd field as in [1], i.e.

ϕS(t) =
µS√
λS

vS(t). (4.6)

In order to obtain an inverted one-dimensional Mexican-hat potential for vS and guarantee the
existence of non-trivial solutions, we demand that

λ̄
k4

µ4
S

λS
r
t2
ϕ2
H(t)

M2
KK

∣∣∣∣∣
t=1

≤ 1. (4.7)

Since the Higgs VEV is monotonic in t (at least at leading order in λ̄), once this condition is fulfilled
it will also hold for t < 1. Therefore, in practice, we can translate (4.7) into an upper bound on the
combination λ̄λS/r. Plugging in the solution for the free Higgs VEV from (2.41), i.e. the solution
for the VEV obtained for a vanishing portal coupling, this constraint translates into

λ̄
λS
r
.

x−2
4

10(1 + β)

(µS
k

)4

, (4.8)

with x4 = v4/MKK and v4 defined as in (2.42).

We can solve the coupled system of equations iteratively. The starting point are the solutions we
already know for the decoupled equations, which we denote by vS,0(t) and ϕH,0(t). These solutions
correspond to the ones previously obtained. In particular, vS,0(t) was computed in sections 3.1.2
and 3.1.3 (see e.g. figure 3.6), and the solution for the free case, ϕH,0(t), was introduced in
section 2.3, reading

ϕH(t) ' ϕH(1) t1+β , (4.9)

as in (2.41). Then, at every step, we insert the solution from the previous iteration for each VEV in
the EOM corresponding to the other one in (4.4). This method is convenient, since the potential
for the odd VEV and the strategy to solve its EOM is well understood to us, being the one we
presented in chapter 3, see also [1]. Indeed, as we can see from figure 4.1, the potential does not
differ much from the potential obtained in the decoupled case, i.e. for λ̄ = 0. Moreover, we have
checked numerically that the solution obtained for vS(t) fits the one obtained for the decoupled
case with high accuracy.

We display in figure 4.1 the one-dimensional effective potential Ṽ (vS) defined by

δṼ (vS)

δvS
=
(

1− v2
S(t)− λ̄ k

4

µ4
S

λS
r
t2
ϕ2
H(t)

M2
KK

)
vS(t), (4.10)
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Figure 4.1: Effective potential Ṽ (vS) computed using the leading-order solution ϕH,0(t), for
different values of t and MKK = 5 TeV, k/MPl = 1/8 and λ̄λS/r = 100, for β = 2
(dark blue) and β = 8 (light blue).

which determines the EOM for vS once a known profile for ϕH is used as an input, see (4.4).
We show this potential for λ̄λS/r = 100 and different values of t, µS and β, using the leading-
order solution for the Higgs profile ϕH = ϕH,0, in order to explore how its maxima change with
increasing t and different values of µS and β. Here and below we choose MKK = 5 TeV, which
is motivated to avoid tensions with EW precision data, see chapter 3 or [1] for more details.
Similarly, we take k = MPl/8 where MPl = 2.4 · 1018 GeV is the reduced Planck mass. This
value corresponds to kr ≈ 10.1, or equivalently Λπ ≡ MPl e

−krπ = 40 TeV. We observe that both
maxima decrease for increasing t. These two maxima would eventually collapse into the maximum
of an inverted parabola if values of λ̄λS/r larger than the ones given by equation (4.8) were
considered. In that case, only the trivial solution would exist and the study and discussion of the
previous chapter will no longer be valid. In practice, we will never reach such large values due to
perturbativity constraints on the first KK excitation of S, since the Yukawa couplings of this particle
to the different fermions scale with

√
λS/r, see below. On the other hand, reproducing a value of

the DM coannihilation cross section required to account for the observed relic abundance demands
a large portal coupling between the different fermion sectors. For this reason, we will consider
λS/r . O(100) for phenomenological reasons hereafter. In particular, we choose λ̄λS/r = 100 for
figure 4.1, in order to saturate the bound given by equation (4.8).

4.1.2 Scalar excitations

We now move on to the study of the scalar KK excitations. The profiles of these resonances can be
computed by inserting the KK decompositions

h(x, t) =

∞∑

n=0

hn(x)χhn(t),

S(x, t) =

∞∑

n=1

Sn(x)χSn(t)

(4.11)

into the action (4.1) and keeping quadratic terms in the fields.
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Our approach for solving the coupled system would be to compute the 4D mass matrix, ob-
tained after integrating the quadratic terms in the action. Then, we can determine the eigenmodes
and eigenvalues of the coupled system by diagonalizing the resulting matrix. Besides the KK scalar
masses for the non-mixed case, non-diagonal entries only arise because of the terms in the poten-
tial, once we integrate the profiles over the fifth dimension. These terms are

∫
d5x
√
g V (H,Σ) ⊃ λ̄

∫
d4x

∫ 1

ε

dt

t3

[
M2

KK

kr
v2
S(t)h(x, t)2 +

kr

(µSr)2

λS
r
t2ϕ2

H(t)S(x, t)2

+ 4
MKK

µSr

√
λS
r
t ϕH(t)vS(t)h(x, t)S(x, t)

]
.

(4.12)

Inserting the KK decompositions for h(x, t) and S(x, t), and using the profiles for the decoupled
case, we can write down the mass matrix to first order in λ̄. In this case, the profiles need to satisfy
the following EOM

[
t2∂2

t + t∂t + x2
nt

2 − β2
] χhn
t

=0,
[
t2∂2

t + t∂t + x2
nt

2 +
µ2
S

k2
(1− 3v2

S)− 4

]
χSn
t

=0,

(4.13)

together with BC

∂t
[
t χhn(t)

]
t=ε+

= mUV χ
h
n(ε), χSn(ε) = 0

∂t
[
t χhn(t)

]
t=1−

= mIR χ
h
n(1)− 6λIR

M2
KK
ϕH(1)2χhn(1), χSn(1) = 0.

(4.14)

The profile for the KK modes of the Higgs, χhn(t) at zeroth order in λ̄ were given in (2.50),
reading

χhn(t) =

√
L

π

tJβ(xhnt)√
J2
β(xhn)− Jβ+1(xhn)Jβ−1(xhn)

, (4.15)

where Jβ(x) is a Bessel function and the eigenvalues xhn satisfy

xhnJβ+1(xhn)

Jβ(xhn)
= 2 (mIR − 2− β) ≡ 2δ. (4.16)

In particular, we saw that in the special case of the Higgs zero-mode, χh0 (t), the expression for the
profile is approximately given by

χh0 (t) '
√
L

π
(1 + β) t1+β , (4.17)

up to O(x2
h0

) corrections. In the case of the odd scalar, the solutions for the profiles need to be ob-
tained numerically, because of the presence of v2

S in the EOM, which has no analytical expression.
The solutions were presented in the previous chapter for φ-coordinates. The translation is straight-
forward. In both cases, the orthogonality condition for the scalar profiles is given by [113,150]

2π

L

∫ 1

ε

dt

t
χhm(t)χhn(t) = δmn. (4.18)

We can now write the mass matrix to first order in λ̄ as

M2 =







x2
h0

0 0 · · ·
0 x2

S1
0 · · ·

0 0 x2
h1
· · ·

...
...

...
. . .




+ λ̄




κ2
h0

κ2
h0S1

κ2
h0h1

· · ·
κ2
h0S1

κ2
S1

κ2
h1S1

· · ·
κ2
h0h1

κ2
h1S1

κ2
h1

· · ·
...

...
...

. . .






M2

KK. (4.19)
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Here, xhn and xSn correspond to the unperturbed mass eigenvalues in units of MKK of the de-
coupled system, i.e. for λ̄ = 0. Note that only light zero mode of the model corresponds to the
profile with eigenvalue xh0 , since the odd scalar field can have no zero modes, see section 3.3. One
could argue that at zeroth order in λ̄ non-diagonal terms should appear in terms relating different
modes of the Higgs boson. However, since the Higgs zero-mode and VEV profiles are equivalent
up to O(v2

4/M
2
KK), these corrections appear at the same order and are neglected in our study, see

e.g. [202].

Diagonalizing the mass matrix once the mixing is switched on, i.e. for λ̄ 6= 0, the mass of the
lightest scalar becomes

m2
h ≈

(
x2
h0

+ λ̄ κ2
h0

)
M2

KK . (4.20)

The contributions to the mass matrix at first order in λ̄ can be computed from (4.12). Using
the parametrization from (4.19), these terms read

κ2
Sm =

2 kr

(µSr)2

λS
r

∫ 1

ε

dt

t

ϕ2
H(t)

M2
KK

[χSm(t)]2 ,

κ2
hnSm =

4

µSr

√
λS
r

∫ 1

ε

dt

t2
ϕH(t)

MKK
vS(t)χhn(t)χSm(t) ,

κ2
hnhm =

2

kr

∫ 1

ε

dt

t3
v2
S(t)χhn(t)χhm(t) ,

(4.21)

where used κ2
hn
≡ κ2

hnhn
. The different powers of t in the denominator result from our particular

normalization of the VEV of the odd scalar field in (4.2), which differs from the normalization of
the Higgs VEV.

A priori, both xh0
and κh0

are naturally O(1) numbers, so in order to obtain a 125 GeV Higgs
boson one needs to tune

m2
h

M2
KK
≈ x2

h0
+ λ̄ κ2

h0
∼
(

0.125

5

)2

∼ 10−3, (4.22)

where we have used our benchmark value ofMKK = 5 TeV. Independently of the exact value ofMKK,
this is a well-known feature of bulk Higgs models in WEDs [112,113,150–152,195,196] and it is
commonly referred to as the little hierarchy problem. In our model we can achieve such a value in
two different ways. For positive values of λ̄, both terms in the sum need to be small simultaneously.
In the case of x2

h0
, this can be achieved by tuning the parameters in the Higgs potential accordingly

in (4.16), as it is customary for bulk Higgs models with no additional scalars, see e.g. [113, 150].
For λ̄ κ2

h0
the only possibility is to make λ̄ small enough, since κ2

h0
is an O(1) number unless very

large values of β are chosen. The limit β → ∞ corresponds to a brane-localized Higgs and the
particular implementation of this limit not be considered here. Therefore, for positive values of λ̄
we have

0 ≤ λ̄ κ2
h0
∼ λ̄ . 10−3. (4.23)

As a result, in this case values of λ̄ larger than 10−3 are not allowed, regardless of the value for
x2
h0

.

One could also entertain the possibility of considering solutions in which both quantities x2
h0

and κ2
h0

are simultaneously O(1), but they cancel each other out leading to a light Higgs mass.
Since κ2

h0
> 0 by definition, one would need to have either x2

h0
or λ̄ negative. The first possibility

corresponds to a tachyonic Higgs field in the free case, i.e. before turning on the mixing with the
odd scalar. This particular choice leads to the following requierement for the BC

xhnIβ+1(xhn)

Iβ(xhn)
= −2 (mIR − 2− β) ≡ −2δ (4.24)
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4.1. Bulk Higgs and Odd scalar mixing

on the IR brane, where In(x) are modified Bessel functions. This condition is similar to that in
(4.16), but with a relative minus sign. However, such a path leads nowhere since, as can be
proven, this equation is incompatible with the presence of a Higgs VEV [112,113]. Therefore, the
only viable option is to allow for negative values of λ̄. In that case, equation (4.20) becomes

m2
h ≈

(
x2
h0
− |λ̄|κ2

h0

)
M2

KK, (4.25)

and we can always reproduce the Higgs mass regardless of the value of λ̄ < 0, by choosing the
appropriate value of x2

h0
.

For any choice of the model parameters, we can always parametrize the mixing between the
even and odd bulk scalars as

h0(x) = hphys(x) + sin θhS S(x) + sin θhHH(x), (4.26)

where H(x) = h1(x) +O(λ̄) and S(x) = S1(x) +O(λ̄) are the profiles of the first KK modes in the
limit where λ̄ = 0, and the mixing angles in our model are defined as

sin θhS = λ̄
κ2
h0S1

x2
S1
− x2

h0

≈ λ̄κ
2
h0S1

x2
S1

,

sin θhH = λ̄
κ2
h0h1

x2
h1
− x2

h0

≈ λ̄κ
2
h0h1

x2
h1

.

(4.27)

In general, the mixing of the lightest Higgs eigenmode with the first odd excitation can be ex-
pressed as

sin θhS ' 4λ̄

√
λS
r

x4

x2
S1

kr

µSr
(1 + β)

∫ 1

ε

dt t2βvS(t)χS1 (t) , (4.28)

and a similar expression can be derived for sin θhH, i.e.

sin θhH '
2λ̄

x2
h1

√
1 + β

kr

∫ 1

ε

dt tβ−2v2
S(t)χh1 (t). (4.29)

As we can see, when λ̄ is positive the constraint set by the physical Higgs mass does not allow
for a large mixing. Its upper bound is saturated when one assumes that the whole contribution to
the Higgs mass is given by the λ̄ κ2

h0
term in (4.22). Then, we can infer the maximum value for λ̄

from (4.22), being

λ̄max =
x2
h

κ2
h0

=
x2
h

2(β + 1)

[∫ 1

ε

dt t2β−1v2
S(t)

]−1

. (4.30)

In this case, plugging in the expression for κ2
h0S1

and x2
S1

in (4.28), we get

(sin θhS)max ' 2
x2
hx4

x2
S1

k

µS

√
λS
r

∫ 1

ε
dt t2βvS(t)χS1 (t)
∫ 1

ε
dt t2β−1v2

S(t)
. (4.31)

Now, we can use the upper bound on λS/r that we derived in (4.8), necessary for the potential of
the odd VEV to allow for non-trivial solutions, in the equation for λ̄max to saturate its upper bound.
In other words, we can insert (4.30) into equation (4.8) to obtain

λS
r
≤ µ4

S

k4

2

kr x2
4 x

2
h

∫ 1

ε

dt t2β−1v2
S(t). (4.32)

This inequality for λS/r leads to

(sin θhS)max '
xh
x2
S1

23/2 µSr

(kr)
3/2

∫ 1

ε
dt t2βvS(t)χS1 (t)

(∫ 1

ε
dt t2β−1v2

S(t)
)1/2

, (4.33)
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Figure 4.2: Maximum allowed value for the parameter sin θhS describing the mixing between
the lightest Higgs mode and the first KK resonance of the Z2-odd scalar, as a
function of β and for fixed values of MKK and k/MPl. In the left and middle plots,
we show this dependence for different values of µSr and positive λ̄. In the left plot,
we consider the maximum possible values of λ̄ > 0 and λS/r, whereas we fix λS/r
to 100 in the middle plot, while still saturating the resulting upper bound for λ̄.
Finally, in the right plot we fix both µSr and λS/r and consider three different
negative values of λ̄.

which only depends on β and µSr, given that kr ∼ O(10) in order to solve the hierarchy problem
and that the eigenvalues xi and the scalar profiles are determined once these parameters have
been fixed.

When λ̄ is negative, on the other hand, λS/r is unconstrained by relation (4.8). In this case, an
upper bound on λS/r arises if one wants to prevent the theory from becoming strongly coupled,
since the couplings of the KK scalar field S to the different fermions are proportional to

√
λS/r, as

one can see from equation (4.41), see also section 4.2.1. Moreover, in this case sizable values of
|λ̄| ∼ O(1) are allowed, since constraint (4.22) and therefore (4.23) do not apply anymore. For all
these reasons, we find that sin θhS can be much larger than in the case of a positive λ̄.

In figure 4.2, we show the different predictions for the maximum allowed value of the parame-
ter sin θhS , which measures the mixing between the lightest Higgs scalar and the first KK mode of
the Z2-odd scalar as a function of β. In the left plot, we show this dependence for different values
of µSr after saturating the upper bounds on λS/r and λ̄, where positive values of λ̄ have been con-
sidered. In the middle plot, we display the maximum allowed value of sin θhS for the same values
of µSr and a fixed value λS/r = 100, together with λ̄ = λ̄max > 0. Note that for µSr = 25 and
β ∼ 50, λS/r = 100 takes its maximum value. This explains why, in this case, the line stops before
one can reach β = 100, as using larger values for β requires making λS/r smaller, because of the
constraint (4.32). Moreover, the reason why the values of sin θhS increase for smaller values of µSr
can be easily understood from equation (4.31), where µSr appears in the denominator when λS/r
is not saturated. Finally, in the right plot we show (sin θhS)max for different values of λ̄ < 0 and
fixed values µSr = 25 and λS/r = 100. In all these plots we assume MKK = 5 TeV and k = MPl/8.
One can readily see that, for a given value of λS/r, the maximum allowed value for sin θhS is much
more significant in the case λ̄ < 0, since larger values of |λ̄| can be taken. In addition, when λ̄ is
negative one could also consider higher values of λS/r than in the λ̄ > 0 case. All this results into
larger mixing angles when λ̄ is negative compared to the λ̄ > 0 case.
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Figure 4.3: Maximum allowed value for the parameter sin θhH, describing the mixing between
the lightest Higgs mode with its first KK resonance, as a function of β. In the
left figure, we exhibit three different values of µSr for λ̄ = λ̄max > 0, whereas
in the right panel we consider three different negative values for λ̄ and fixed the
parameter µSr = 25.

For the Higgs mixing with its first KK mode, which we have parametrized by sin θhH, we find
a monotonic behavior, with sin θhH getting smaller for large values of β independently of the µSr
parameter. This can be seen in figure 4.3, where we show (sin θhH)max as a function of β for
MKK = 5 TeV and k = MPl/8. In particular, we display on the left panel this functional dependence
for three different values of µSr, after saturating λ̄ to its upper bound. In the right panel we exhibit
the case where µSr = 25 is kept fixed, while λ < 0 takes different negative values. Comparing
this panel with the right panel of the previous figure, we can see that (sin θhH)max is a steeper
function of β than (sin θhS)max when λ̄ < 0. For the choice of parameters at hand, and depending
on the value of |λ̄|, sin θhH becomes bigger than sin θhS for β smaller than values between 1 and
10, depending on the other parameters of the model, whereas the opposite happens when β takes
larger values.

4.2 Phenomenology

We have seen that once the Higgs boson is allowed to propagate into the bulk of the extra dimen-
sion, its mixing with the Z2-odd scalar becomes unavoidable. This mixing will leave its imprint
on different aspects of the phenomenology, studying the possible signatures is the scope of this
section. Firstly, it can lead to effects that could be tested at high-energy collider experiments, both
present and future ones. Moreover, as we will see, assuming the presence of dark fermions, it can
naturally contribute to reproduce the observed DM relic abundance and leave its imprint on DM
direct-detection experiments.

We have seen how the quartic coupling leads to a mass mixing of the Higgs-boson zero mode
with both its first KK resonance h1 and the lowest-lying Z2-odd scalar, S1. In this section, for
practical purposes, we will neglect the differences between S and S1, as well as between H and
h1, when discussing the phenomenology and couplings of the scalars to other particles, since the
errors we would be making are proportional to the (small) mixing angles sin θhS and sin θhH,
respectively. Moreover, these mixing induce modifications on the Higgs-boson couplings to SM
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Chapter 4. A warped scalar portal to fermionic DM

particles, we will explore these modifications and study its impact on current and future colliders
in section 4.2.1.

A key aspect of our model is that the odd scalar field constitutes a unique window into dark
sectors featuring fermions propagating into the bulk. Indeed, since all the 5D fermion bulk masses
are generated through Yukawa-like interactions with the odd scalar, the scalar KK modes neces-
sarily connect any dark fermionic sector with the SM if the former is genuinely five dimensional.
Such a connection is ineludible and constitutes a defining feature of the model. In the presence
of a dark fermionic sector, the required Yukawa couplings between the odd scalar field and the
bulk fermions have two interesting consequences. On the one hand, for light enough dark fermion
masses, it contributes to enhance the Higgs invisible decay width, therefore, setting a constraint on
the size of the scalar mixing between both 5D scalar fields. We study this in detail in section 4.2.2.
On the other hand, as the dynamical generation of the 5D fermion masses naturally connects the
visible and the invisible sectors via the KK resonances of the odd scalar field, it introduces an effi-
cient coannihiliation channel for the lightest dark fermion, which is naturally stable and therefore
a good DM candidate, where S can provide the leading contribution. We study this possibility
both in the regular freeze-out scenario and in the case of a matter-dominated freeze-out in sec-
tion 4.2.3. Finally, in section 4.2.4 we study in detail the constraints coming from direct-detection
experiments using recent Xenon1T data [203,204].

4.2.1 Modified Higgs couplings

As we have seen in the previous section, the physical Higgs boson can be expressed with very good
approximation as a linear combination of the interaction eigenstates h0, h1 and S1, as in (4.26).
Since these interaction eigenstates couple differently to the SM particles, this mixing induces modi-
fications of the SM Higgs couplings. Here, we study in detail the implications of such modifications.

The 4D effective couplings of the different scalars to fermions are obtained by integrating the
profiles of the different fields over the fifth dimension and a subsequently rotation into the mass
basis. In particular, the coupling of the Higgs-boson zero and KK modes to a pair of fermion chiral
zero modes, Ψ̄aΨb, is given by

yabhn =
y∗√
kr

2 + β√
2(1 + β)

∫ 1

ε

dtf̃a(t)f̃b(t)χ
h
n(t) , (4.34)

where the EOM for a fermion field with a 5D bulk mass generated dynamically, in t-coordinates,
reads [

± t∂t − c vS(t)
]
f̃L,R0 (t) = 0, (4.35)

for n = 0 and [
t2∂2

t + x2
nt

2 ∓ c t v′S(t) + c vS(t)
(
± 1− c vS(t)

)]
f̃L,Rn (t) = 0, (4.36)

for the heavier KK modes, where c is the usual dimensionless 5D mass, as introduced in (3.83).
Here, we are following the definition from section 2.5.1 where f0(t) =

√
krεf̃(t). Moreover, the

KK decomposition now reads

ΨL,R =
∑

n=0

ΨL,R
n (x)

(
t

ε

)2√
MKK f̃

L,R
n (t), (4.37)

where these profiles must fulfill the following normalization conditions

2

∫ 1

ε

f̃L∗m (t)f̃Ln (t) = 2

∫ 1

ε

f̃R∗m (t)f̃Rn (t) = δmn. (4.38)
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The quantity y∗ in (4.34) is defined as a function of the 5D dimensionful Yukawa coupling
Y5D [110,150]

y∗ =

√
k(1 + β)

2 + β
Y5D, (4.39)

Note that for an up-type quark field ΨRb, the Higgs-boson fieldH must be replaced by H̃. In (4.39),
the parameter Y5D is defined by

SY ⊃ −
∫
d5x
√
g Y5DΨ̄La(x, t)H(x, t)ΨRb(x, t) + h.c. . (4.40)

On the other hand, the coupling of two light SM fermions to the scalar S only appears through
a mass insertion. Indeed, before EWSB there is no direct coupling between S and two SM-like
fermion fields, as the odd bulk scalar only couples to modes belonging to the same 5D field. Such
a coupling is only generated after taking into account the fermion mixing induced by the Higgs
VEV, vSM.1 We will compute the corresponding coupling perturbatively, as it is expected to be
suppressed by a factor of O(vSM/MKK). This effective coupling arises from the interactions of the
S scalar to the different fermion zero modes and the first KK resonance with opposite chirality,
once we rotate to the fermion mass basis after EWSB. Specifically, the coupling between S, a chiral
fermion zero mode a, and its first KK resonance A with opposite chirality, is given by

yaAS = 2 ca

√
λS
r

k

µS

∫ 1

ε

dtf̃a(t)f̃RA (t)χS1 (t), or

yAaS = 2 ca

√
λS
r

k

µS

∫ 1

ε

dtf̃LA(t)f̃a(t)χS1 (t),

(4.41)

depending on the zero-mode chirality, where the dimensionless coupling ca was defined in (3.83)
for our model and in (2.84) for the original RS setup. Then, after rotating the fermion fields to the
mass basis, we induce an interaction term yfSS f̄LfR between the SM-like chiral fields, fL and fR,
and S.

We can write

δyphys
fh ≡ 1−

yphys
fh

ySM
fh

' (1− κf ) + ∆fH + ∆fS , (4.42)

where we have defined κf ≡ yfLfRh0
/ySM
fh . Here, yphys

fh is the resulting Higgs Yukawa coupling

L ⊃ − 1√
2
yphys
fh hf̄LfR + h.c., (4.43)

and ySM
fh denotes the corresponding parameter in the SM. Moreover

∆fH = sin θhH
yfLfRh1

yfLfRh0

, ∆fS = sin θhS
yfS

yfLfRh0

. (4.44)

The quantity κf measures the ratio of the Yukawa coupling of the Higgs-boson zero mode relative
to that of the SM Higgs boson, whereas the parameters ∆fH and ∆fS describe the admixtures of
the Higgs-boson and Z2-odd scalar KK modes into the physical Higgs. At this order in λ̄, κf is blind
to the Higgs mixing with the odd scalar, since the contributions to this quantity in our model are a
second order effect in the λ̄ expansion. However, the quantity κf receives non-zero contributions
that are independent of λ̄, these are a byproduct of the induced light-heavy fermion mixing after
EWSB and the shift in the 5D Higgs VEV. Such effects have been studied e.g. in [113], for the RS
case. In particular, for MKK = 5 TeV, κb never exceeds 2.5 · 10−2 when 1 ≤ β ≤ 10. In the case of

1Note that v4 = vSM at first order in v4/MKK and ε.
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Figure 4.4: ∆bH and ∆bS as functions of β for two different values of y∗ and fixed values of λ̄,
λS/r, MKK and k/MPl. For each case, we have generated Npoints = 3000 random
values of ctR ∈ [−0.6, 0.2] and obtained cq3L and cbR by correctly reproducing the
top- and bottom-quark masses.

lighter quarks, even smaller values are expected. In this work we concentrate on ∆fS and ∆fH,
since they are direct probes of the mixing of the bulk Higgs field with the Z2-odd scalar field. Note
that we have taken ySM

fh equal to yfLfRh0 in the denominator of ∆fH and ∆fS , since the difference
here would be O(λ̄ v2

SM/M
2
KK), and thus subleading.

Hereafter, we will focus on the bottom quark. The reasons for this are twofold. On the
one hand, we expect the modifications of the Yukawa couplings to be larger for heavier quarks,
while on the other hand, the bottom Yukawa coupling is among those measured most accu-
rately, having in addition the most promising prospects [198, 205]. Indeed, existing measure-
ments of the h → bb̄ signal strength (relative to the SM expectation) lead to µh→bb = 1.01 ±
0.12 (stat.) +0.16

−0.15 (syst.) [205]. Assuming SM-like production, this translates into a measurement
of (yphys

bh /ySM
bh )2 with an uncertainty of about 20%. However, the expected relative precision to be

reached at future particle colliders such as the ILC, CLIC and the FCC is projected to be about 1%
for the initial stages, reaching the 0.5% level in later stages of the experiments [198].

Figure 4.4 shows a scatter plot with values of ∆bH and ∆bS as a function of β, for λ̄ = −0.5 and
λS/r = 100. For both quantities we display two different scenarios, corresponding to y∗ = 3 and
y∗ = 1.5, where y∗ is taken the same for both third-generation quarks, i.e. y∗ = yt∗ = yb∗. For each
case, we have generated random values of ctR ∈ [−0.6, 0.2], and obtained cq3L and cbR by fitting
the top- and bottom-quark masses. One can see that for small values of β the impact on ∆bH of
changing y∗ is magnified. This is expected since, for values of β ∼ O(1), the Higgs boson profile,
χh0 , is less IR-localized and changes in β have a stronger effect in the overlap integrals in (4.34).
Indeed, regardless of the value of y∗, the prediction for the bottom mass mb ≈ v4 ybLbRh0

/
√

2 needs
to remain unchanged. Since ybLbRh0

is proportional to y∗, see (4.34), changes in y∗ have to be com-
pensated by different fermion localizations and therefore a different value of the overlap integral
in that relation, in such a way that ybLbRh0

remains approximately constant. The integral present
in ybLbRh1

will change accordingly, but will deviate from the other integral as β decreases. This
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effect is reversed for ∆bS , since y∗ is not explicitly present in the numerator of (4.44), and the ef-
fect of changing y∗ is solely transfered to ∆bS via the different localizations of the third-generation
fermion profiles. Since a smaller value of y∗ requires a more IR-localized q3

L to reproduce the
top-quark mass, one expects a bigger overlap between S and the third-generation LH doublet q3

L,
together with its first KK mode. This leads to a larger value of ybS and ∆bS , as one can see in the
figure. Note that ∆bS scales with

√
λS/r, so one can readily obtain ∆bS for alternative choices of

this parameter. Moreover, to a good approximation, both quantities scale linearly with λ̄ for small
values of λ̄, because sin θhX ∝ λ̄, as can be seen from (4.27).

Taking into account the projected sensitivity for the bottom Yukawa coupling, one can see that
we will be able to probe sizable values of the scalar portal coupling λ̄ for moderately small values
of β. In particular, as can be seen from figure 4.4, for our chosen value λ̄ = −0.5, the predicted
modifications ∆bH and ∆bS can be probed as long as β is less than about 4. The smaller the
parameter λ̄ gets, smaller would be the values of β that could be accessed at experiments.

If we analyze the couplings of the Higgs KK modes to the SM gauge bosons W and Z, which
are described as zero modes of some corresponding 5D bulk gauge fields, we find that the effective
4D couplings are proportional to the integrals

ghnVV ∝
∫ 1

ε

dt

t
ϕH(t)χhn(t) , (4.45)

where we have used that, to a good approximation, these zero-mode profiles are flat along the
extra dimension, as we showed in section 2.4 (see also [103, 104, 110]). Since ϕH(t) ' v4χ

h
0 (t),

the orthogonality condition for the scalar profiles given in (4.18) makes this integral vanish for
n 6= 0, therefore only allowing the coupling of the SM gauge bosons to the Higgs-boson zero mode
to be non-vanishing, whereas couplings of higher KK modes of the Higgs boson to the gauge-
boson zero modes only appear as O(v4/MKK) corrections. Therefore, modifications of the Higgs
couplings to gauge bosons caused by the mixing of the zero mode with heavier KK modes are
strongly suppresed, being at most O(λ̄v2

4/M
2
KK). For the case of the S1 scalar, which is a SM singlet,

the couplings to EW gauge bosons would only appear at the loop level. Therefore, it will not modify
the Higgs couplings to gauge bosons in an noticeable way, since these changes are suppressed by a
small mixing angle O(10−2), see figure 4.2, and a loop factor.

4.2.2 Invisible Higgs decays

The mixing between the Higgs and the Z2-odd bulk scalar field induces an effective coupling of the
Higgs boson to any 5D bulk fermion present in the theory which is not localized on the UV or IR
brane. This includes the possibility of fermions not charged under the SM group, the so-called dark
fermions. Hereafter, we will consider such a sector exists and will study its potential signatures,
including its role in explaining the observed DM relic abundance.

We could consider two different scenarios, depending on the origin of the dark fermion masses.
In the first scenario, the dark fermion mass arises purely from orbifolding, i.e. from the compactifi-
cation of the WED, and it is thus proportional to its curvature, mχ ∝MKK. The simplest possibility
is to add a 5D fermion with no zero mode, whose first KK resonance is automatically stable and
a good DM candidate. In the case where one of the chiralities of the corresponding 5D field has
a Dirichlet (Neumann) BC on the UV (IR) brane, the first KK mode can be parametrically lighter
than MKK [206], potentially light enough to be accessible in Higgs-boson decay. In this case, the
DM candidate is VL even though it can have non-trivial quantum numbers under a possible new
dark group. We thus allow for Nχ copies of such VL fermion. In the second scenario the fermion
mass term connects two zero modes with opposite chiralities, arising from two different 5D fields.
In this scenario, the fermion mass can either come through a dark Higgs mechanism or a brane-
localized VL mass. If the dark Higgs is localized towards the IR brane, or alternatively the VL
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Figure 4.5: Diagrams responsible for the generation of the Higgs coupling to dark fermions in
the two main scenarios discussed in the text. The left figure corresponds to the case
where the DM candidate is the first KK mode of a single 5D fermion field. The right
figure corresponds to the case where the different chiralities of the DM candidate
are zero modes of different 5D fields and the mediation via heavy KK modes is
required.

mass is localized on the IR brane, the fermion mass is proportional to MKK, even though a large
hierarchy can arise for UV-localized dark fermions. Either way, in this case S1 does not interact
directly with these two chiral zero modes (in the same way S1 does not couple directly to bL and
bR, as discussed previously), since they are zero modes of two different 5D fields. However, such
a coupling can be generated after a mass insertion through the mediation of the heavy KK modes
(whether the mass comes from the spontaneous breaking of the dark gauge group or a VL mass is
irrelevant to this discussion), as we described in the previous section. We also assume a possible
multiplicity of dark fermions given by Nχ as before. We illustrate these two scenarios in figure 4.5.
Note that in the second case we expect the coupling of the Higgs boson to the dark fermion to
be O(mχ/MKK) suppressed. Moreover, this calculation is rather model dependent. Alternatively,
one could leave the nature of the dark fermion mass unspecified and define an effective Yukawa
coupling, taking into account the mixing of the heavy modes with the zero mode.

There is an additional instance, which can be thought of as an intermediate scenario between
the previous two cases. There one adds a 5D gauge-singlet fermion field with no additional flavor
quantum numbers, which has a chiral zero mode and a Majorana mass term localized on the IR
brane. The coupling of this field to S is generated analogously to the second case described above,
via the involvement of a heavy KK mode and a mass insertion. Therefore, at the end of the day, this
case is rather similar to the previous one, besides the difference in the multiplicities of fermionic
d.o.f. for a Majorana field.

We have computed the mass of the first KK mode for a 5D field with mixed BC, i.e. for VL
dark fermions as in the first case described above. This result is well known for non-dynamical
bulk masses but has never been explored when these are generated by the VEV of a Z2-odd scalar.
Therefore, we show here the results obtained in the model at hand, where the different fermion
bulk masses are generated by the VEV of the odd scalar field, and compared it to the non-dynamical
case, where such bulk fermion masses are introduced by hand and where the dimensionless mass
parameter reads cχ = Mχ/k, with Mχ the 5D bulk mass. We show in the left panel of figure 4.6 the
first mass eigenvalue x1 ≡ mχ

1 /MKK, as a function of the usual dimensionless bulk-mass parameter,
which we denote by cχ for the dark fermions. In the common RS scenario, the first KK mass mχ

1

can be made arbitrarily light by adjusting the cχ parameter [206]. However, in our model a lower
bound on the mass value arises due to behavior of vS close to the branes, where it vanishes. We
find this bound to be x1 ∼ 6 · 10−3, corresponding to 30 GeV for our reference value MKK = 5
TeV. We also show in the right panel of figure 4.6 the coupling of the VL fermions to the scalar S,
defined analogously to (4.41), but now involving two KK profiles instead of one,

yχS = 2 cχ

√
λS
r

k

µS

∫ 1

ε

dtf̃L1,χ(t)f̃R1,χ(t)χS1 (t), (4.46)
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Figure 4.6: Left panel: Mass fraction x1 = m1/MKK of the first VL fermion KK mode in terms
of the 5D dimensionless bulk-mass parameter cχ for the case of a LH chirality,
with Dirichlet and Neumann BC on the UV and the IR brane, respectively, for two
different values of µSr. The black-dashed line corresponds to the case where the
fermion bulk masses are obtained as it is customary in RS models. We also show
the value for which mχ = mh/2 with a dashed gray line. Higgs decays into a
pair of DM particles χ1χ̄1 are kinematically allowed only if x1 falls below this line.
Right panel: Value of yχS as a function of cχ for the same choice of BC and values
of µSr. Note that there is no black-dashed line, as the odd bulk scalar is not a
feature of the traditional RS model.

as a function of cχ for different values of µSr. In both panels we have set MKK = 5 TeV, k = MPl/8
and λS/r = 100. We can see that, for large values of mχ, sizable values of yχS are expected. Note
that the VL fermions could also have a contribution to their mass coming from the dark sector, for
instance because of an IR-localized Majorana mass term. However, such modifications would not
affect their couplings to the scalar S.

Once we have determined the coupling of the VL dark fermions to the odd scalar, S, we can
proceed to compute the effective coupling to the Higgs boson. This coupling, to the first dark KK
fermion, reads

yχh ≡ yχS sin θhS . (4.47)

It is now straightforward to compute the decay width of the Higgs boson into dark fermions, as it
is given by

Γ(h→ χ̄χ) =
y2
χhNχ

8π
mh

(
1− 4m2

χ

m2
h

)3/2

. (4.48)

Using that B(H → inv) < 0.33 at 95% CL [207] and ΓSM
H ≈ 4 MeV, we can set an upper limit

on the effective coupling of the Higgs boson to dark fermions. We find the upper bound on yχh to
be yχh . 0.02/

√
Nχ for DM candidates with mass mχ < mh/2. Note that this constraint does not

apply to heavier fermions.
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Figure 4.7: Diagrams contributing to the DM coannihilation cross section with SM fermions in
the final state. The diagrams shown in the first line correspond to the case where
the DM candidate is a (potentially light) KK fermion χ1, whereas the diagrams in
the second line correspond to the case where a mass insertion on a dark fermion
line is needed in order to generate an effective interaction S1χ̄0χ0.

4.2.3 Scalar-mediated fermionic DM

As discussed in the previous section, the Z2-odd scalar field will couple to any fermion field propa-
gating in the bulk of the WED. This provides a robust bridge between the SM and any dark sector
having fermions arising from 5D bulk fermion fields. In the case where these dark fermions are
stable and make for a viable DM candidate, the KK excitations of the odd scalar field thus constitute
efficient mediators for DM coannihilation into SM particles. Moreover, as we have already seen,
the mixing between both scalar bulk fields induces a Higgs coupling to dark fermions, thereby
turning the Higgs boson into an additional scalar mediator. We will explore these contributions
here.

We illustrate in figure 4.7 the relevant diagrams for the coannihilation χ̄χ → f̄f in the two
cases, with and without a “dark mass insertion”, that were discussed in the previous section. We
represent by a blue blob the heavy-light mass mixing induced after EWSB in the visible sector,
whereas the possible light-heavy mass mixing in the dark sector is depicted by a pink blob. For the
sake of concreteness, we will focus on the first scenario (top row of figure 4.7), i.e. of Nχ copies
of a 5D VL dark fermion field, which could potentially have parametrically light KK modes. We
assume that these potentially light KK modes – the lightest dark particles – are stable and therefore
a viable DM candidate. In this case, both the mass of the DM candidate mχ and its couplings to
the physical Higgs and the Z2-odd scalar, yχh and yχS , respectively, depend only on a single cχ
parameter from the dark sector (in addition to other model parameters such as e.g. MKK, kr or
µSr), as shown in figure 4.6. This is the main advantage of this scenario, as there is no need of
specifying any further dynamics in the dark sector. Considering the alternative case, where the
interaction of S to the dark fermions requires a mass insertion on a dark fermion line, would just
lead to a different shape of the curve yχS = F (mχ) and, by virtue of (4.47), also the value of
yχh = sin θhS yχS (modulo a different count of d.o.f., in the case of Majorana fermions), but the
new curve would have to specified in term of new parameters, and would depend on the nature of
the dark sector.

For Higgs-mediated processes, the dominant coannihilation final state will be tt̄, if kinematically
accessible (i.e. for mχ > mt), or bb̄, together with the vector final states W+W− and ZZ. In the
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case of diagrams mediated by S1, tt̄ or bb̄ are the dominant coannihilation channels for moderately
small values of mχ. However, for larger values of mχ, coannihilation into a SM fermion and its
first KK resonance is also possible and can become the dominant coannihilation channel.

The relic abundance for a radiation-dominated freeze-out regime can be computed using [199]
(see also e.g. [208,209])

Ωχh
2 ' xf

2
√
g?S(mχ/xf )

10−9GeV−2

〈σv〉 , (4.49)

where Ωχh
2 = 0.120±0.001 [210]. Here, g?S(Tf ) denotes the effective number of d.o.f. in entropy

as function of the freeze-out temperature Tf , and we have defined a parameter xf = mχ/Tf , to be
determined below. 〈σv〉 is the velocity-averaged cross section at the freeze-out temperature, which
can be calculated as [199]

〈σv〉 =
1

8m4
χTfK

2
2 (mχ/Tf )

×
∫ ∞

4m2
χ

ds σ(s)
(
s− 4m2

χ

)√
sK1(

√
s/Tf ),

(4.50)

where Kn(x) are modified Bessel functions. The parameter xf in (4.49) is obtained by solving the
implicit equation

xf = ln

(
gχ
mχ

2π3

√
45

8xf g?S(mχ/xf )
MPl〈σv〉

)
, (4.51)

where gχ = 4Nχ is the number of DM d.o.f..

Alternatively, one can also consider that DM freeze-out happens in an early period of matter
domination, as proposed in [200,201]. Indeed, nothing prevents this from happening if radiation
becomes dominant again before big-bang nucleosynthesis. The fact that DM decoupling happens
during matter domination changes the freeze-out dynamics, since the Hubble rate has a different
parametric dependence compared to the usual case, with H ∝ T 3/2 versus H ∝ T 2. We do
not elaborate here in detail on the dynamics behind this scenario, as it is not crucial for our
current analysis. We assume the existence of a scalar field φ (in our setup, one possibility would
be to have this scalar localized on the UV brane) which starts behaving like matter at a critical
temperature T? ∼ mφ, much larger than MKK. If φ is sufficiently long-lived, its contribution to
the energy density grows until it ultimately dominates the total energy density regardless of its
initial contribution (1 − τ) at T?, where τ ∈ [0, 1] denotes the fraction of energy in radiation at
T = T?. Following [200,201] we will take τ = 0.99 as a benchmark value. Freeze-out happens at a
temperature Tf , in a matter-dominated universe, before φ instantaneously decays at TΓ < Tf < T?,
reheating the bath to TRH and further diluting the DM freeze-out abundance. Hereafter we will
assume TRH ∼ 1 GeV. See appendix D.2 for more details.

We show in figure 4.8 the velocity averaged coannihilation cross section 〈σv〉 at the freeze-out
temperature as a function of mχ, for Nχ = 1, MKK = 5 TeV and k = MPl/8. In the top panels,
we consider benchmarks with different values of β, y∗ as well as ctR , the parameter fixing the
localization of the RH top. In both top panels, we consider sin θhS = 10−5 and λS/r = 75, as
well as two different values of β and ctR . In particular, we show β = 2 (orange), β = 10 (blue),
ctR = −0.2 (dashed line) and ctR = −0.4 (solid line). In the top-left panel we fix y∗ = 3 for both the
up and the down third-generation quark sector, with cq3L and cbR being determined by reproducing
the top and bottom quark masses for a given choice of ctR . The same is done in the top-right
panel but this time for y∗ = 1.5. In both cases, for the sake of simplicity, light quark masses
are reproduced with UV localized fermions with identical bulk mass parameters (modulo a sign
difference between opposite chiralities) and different values of y∗ compared to the third generation
quarks, in particular we set ys∗ = 1/2 (for our purposes, such a not-so-refined study is more than
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Figure 4.8: Velocity-averaged coannihilation cross section 〈σv〉 at the freeze-out temperature
as a function of the DM mass mχ, for Nχ = 1, MKK = 5 TeV and k = MPl/8.
In the top panels, we fix sin θhS and λS/r and consider two different values of y∗.
In both cases, we take two different values of β and ctR . In the bottom panels,
we fix β, y∗ and ctR and consider different values of λS/r for sin θhS = 10−5

(left) and sin θhS = 10−6 (right). In all four panels, we show in dot-dashed
gray the 〈σv〉 prediction for diagrams mediated by the exchange of the first KK
graviton. We also show the velocity averaged cross section reproducing the relic
density experimental value from Planck with a black line, and the equivalent for
a matter dominated freeze out in gray, for two different values of TRH, after using
T? = 105 GeV and τ = 0.99. For these lines the section in dashed gray corresponds
to predictions for which xf < 3, and therefore in this regime the DM decouples
relativistically [200,201].

enough). We can see that increasing the IR localization of the RH top, i.e. having bigger values of
|ctR |, leads to a bigger cross section for most DM masses when y∗ = 3. Since y∗ is large enough
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in this case, changes in ctR does not have a dramatic impact on cq3L and cbR , which remain almost
unchanged. Therefore, the increase of the coannihilation cross section is mostly due to a larger
StLtR coupling, which is indeed the leading one for DM masses below about 10 TeV. Such a larger
coupling is the consequence of a bigger overlap with S and the increase in the Yukawa coupling Y
coming with c. In the case of y∗ = 1.5, on the contrary, changes in |ctR | do have a dramatic impact
on cq3L , since the RH top can not account for the top mass alone, requiring a fairly IR-localized
third-generation quark doublet. Therefore, the contribution to StLtR coming from the mixing of
both top chiralites are similar, which results in bigger changes in the cross section for the region
of DM masses between 1 and 4 TeV as one can see from figure 4.8 top-right panel. On the other
hand, bigger values of β lead in general to a larger mixing between fermion-zero modes and their
KK resonances after EWSB, increasing the effective coupling yfS after diagonalization. Therefore,
in general, one expects a larger coannihilation cross section for mχ . 10 TeV and increasing values
of β. Changing β also affects the StLtR coupling indirectly, since reproducing the observed quark
masses results in different values of the mass parameters c. This explains why the dashed blue
line in the top-right panel of figure 4.8 is below the other ones, since c3qL accidentally gets close
to zero and thus reduces the LH doublet contribution to the StLtR coupling, as can be seen in
equation (4.41).

In the bottom panels of figure 4.8, on the other hand, we show 〈σv〉 for different values of
λS/r as a function of mχ. In both bottom panels, we fix β = 2, y∗ = 3 for both third-generation
quark sectors, as well as ctR = −0.2. The left-bottom panel corresponds to the choice sin θhS =
10−5, whereas for the bottom-right one we take sin θhS = 10−6. By reducing the mixing, one
effectively suppress the Higgs mediated contribution to the coannihilation cross section, which is
mostly relevant for small DM masses, specially around mχ ≈ mh/2. This will have an impact
on direct detection as we will see later, since the Higgs provides the leading contribution in such
experiments, and therefore larger values of sin θhS will typically lead to more severe bounds from
these experiments. The parameter λS/r controls the effective Yukawa coupling of the S scalar to
fermions yχS , see equations (4.41) and (4.46). We consider λS/r = 50 (orange), λS/r = 100
(blue) and λS/r = 150 (purple). Increasing λS/r has the effect of increasing the coannihilation
cross section in general, besides for values of mχ . mS/2 where the rise in the coupling is offset by
the increase of its decay width. One should note that the resonant-like peak starting around 7− 8
TeV is not only due to the S resonance but also to the fact that new heavy-light final states become
kinematically accessible in the coannihilation process. They consist of a first KK fermion resonance
of mass ∼ 15 TeV together with a SM-like fermion. We do not show values of mχ beyond ∼ 15 TeV
since the DM mass can not be made heavier than this value for MKK = 5 TeV, as in our model the
DM candidate is the first KK mode of a VL field and these fields cannot be made heavier by tuning
the parameters of the model, see the plateau for large negative values of cχ in figure 4.6. One
could entertain the possibility of adding brane-localized masses or kinetic terms for this to happen,
but for the sake of concreteness we do not explore such possibilities here. At any rate, for such
large values of mχ, one would need to eventually include the decays of S to a pair of low-lying KK
fermions, which will make S much wider of what is sensible in a perturbative theory.

In addition, we display for comparison the contribution due to diagrams mediated by the first
KK graviton, which are also irreducible in models with WEDs (see e.g. [209,211] for useful expres-
sions). We can see that, for the chosen values of MKK and k/MPl, corresponding to MKK = 5 TeV
and Λπ = MPle

−kπr = 40 TeV, the contribution of the odd scalar resonance S dominates over the
KK graviton one. In particular, this happens for all values of mχ, with the exception of the small
regions where the coupling yχS goes to zero and, in some cases depending on the model parame-
ters, at the peak appearing for mχ ∼ mG

1 /2. The relative importance of each contribution and the
location of the graviton peak can be changed by modifying the ratio Λπ/MKK and/or by including
brane kinetic terms [212]. We will not explore such possibilities, being our aim here to show that
the scalar contribution can naturally be the leading one, as one can readily see from the figure.
In addition to the KK-graviton contribution, one also expects a contribution to the coannihilation
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cross section arising from the radion exchange. However, such contribution is rather model de-
pendent, since the radion mass is subject to the specifics of the stabilization mechanism. A natural
expectation is that the radion will be much lighter than the first KK graviton. Such exchange has
been discussed e.g. in [211,213]. In particular, the authors of [213] found the radion contribution
to be mostly irrelevant for a rather light radion and IR-localized matter. A similar result is expected
here, for a light radion that does not mix with the other bulk scalars (that one can always assume).
The interesting case where the stabilizing scalar mixes with both the Higgs and the Z2-odd scalar
leads to an extensive case study that was out of the scope of this thesis.

Finally, we also show the values of the velocity averaged cross section for which the observed
DM relic abundance is reproduced, both in the usual scenario and in the case of an early period
of matter domination. In particular, we show with a solid black line the values of 〈σv〉 for which
a value of Ωχh

2 = 0.12 is reproduced, in the case of a regular freeze-out mechanism, and in the
scenario of matter domination in gray, for τ = 0.99, T? = 105 GeV and two values of TRH, 1 and 102

GeV, respectively. The lines in dashed gray correspond to regions where xf < 3, i.e. for a region in
parameter space where the DM is expected to decouple relativistically and the current treatment
loses validity, see [200, 201] for more details. We can see that the observed relic abundance can
be reproduced in the case of matter domination for masses mχ ∼ 8 − 10 TeV. In the usual case
of radiation domination, 〈σv〉 can be a non-negligible fraction of the total averaged cross section
required to reproduce the observed relic abundance for mχ ∼ 15 TeV, which is in the ballpark of
the naturally expected fermion masses in RS models.

4.2.4 Direct detection

Direct detection experiments can also set very important constraints on the parameter space in
scalar-mediated models of DM. In fact, these experiments can constrain most of the parameter
space in the case of Higgs-mediated DM, with the exception of a small region around the Higgs
resonance, see e.g. [210, 214]. We study here the constraints from direct detection experiments
in our model. In particular, we will compare our predictions with the current constraints from the
Xenon1T experiment [203,204].

We are interested in the spin-independent cross section. This quantity can be computed as

σχN ≈
4

π
µ2
χN [Zfp + (A− Z)fn]

2 ' 4

π
µ2
χNA

2f2
n, (4.52)

with Z and A the atomic number and atomic mass of the target nucleus, respectively, and µχN
the reduced mass of the DM and nucleus system [208, 209, 215]. In order to compute such cross
section we use following effective Lagrangian

Leff = fp(χ̄χ)(p̄p) + fn(χ̄χ)(n̄n). (4.53)

The terms fp and fn in (4.52) and (4.53) are effective coupling constants and can be written
as

fp,n
mp,n

=
∑

q=u,d,s

f
(p,n)
Tq

αq
mq

+
2

27
f

(p,n)
Tg

∑

q=c,b,t

αq
mq

, (4.54)

where αq stands for the effective four-fermion interaction vertex, obtained by considering the
scalar t-channel exchange. In our model αq has the following form

αq = yχS

{
yqS
m2
S

+
yqh sin θhS

m2
h

}
. (4.55)
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Finally, f (p,n)
Tg is defined as

f
(p,n)
Tg = 1−

∑

q=u,d,s

f
(p,n)
Tq , (4.56)

and the values for fqp and fqn are [209,216]

fup = (20.8± 1.5) · 10−3, fdp = (41.1± 2.8) · 10−3,

fun = (18.9± 1.4) · 10−3, fdn = (45.1± 2.7) · 10−3,

fsp = fsn = 0.043± 0.011.

(4.57)

One can compare the contribution of each scalar to the direct detection cross section by comput-
ing the ratio between the terms appearing in equation (4.55). We find that the channel mediated
by the Higgs boson is dominant provided that

sin θhS >
m2
h

m2
S

yqS
yqh
∼ 10−7, (4.58)

i.e. we expect the Higgs mediated interaction to be the leading contribution for sin θhS > 10−7.
This tells us in particular that we can relax the constraints coming from direct detection by making
this mixing smaller, while keeping the same coupling yχS to the DM fermions. However, this is
only possible up to the point when the odd scalar contribution becomes dominant. In this case

αq ≈
yχSyqS
m2
S

, (4.59)

which can be considered as the minimum value of αq, depending just on these three quantities.

We show in figure 4.9 the constraints from direct detection and invisible Higgs decays on the
velocity averaged coannihilation cross section 〈σv〉 as a function of mχ. We used Nχ = 1, MKK = 5
TeV, k = MPl/8 and different values for the mixing angles between the odd scalar and the Higgs
boson, in particular sin θhS = {10−3, 10−4, 10−5, 10−6}, ordered from top left to bottom right. The
first two mixing angles, i.e. the two largest ones, can only be achieved for λ̄ < 0, whereas the last
two can be obtained for positive and negative values of λ̄. We display in each figure the prediction
from our model with blue lines for two different benchmarks, corresponding to the choices of
y∗ = 3 (solid line) and y∗ = 1.5 (dot-dashed line) for the third generation quarks t and b. As we
did in previous sections, light generations have identical bulk mass parameters in absolute value
and different values of y∗, starting with ys∗ = 1/2). In both cases, we have set β = 2 and ctR = −0.2,
while λS/r has been chosen in such a way that ΓS/mS ≈ 0.7. More specifically, we have taken
λS/r = 120 and λS/r = 65, for y∗ = 3 and y∗ = 1.5, respectively. Since the width is mostly given
by the decay of S into a third generation quark and its first KK resonance, such assignment ensures
that the overall coupling of the odd scalar field to the visible sector is roughly the same in both
cases. However, the smaller value of y∗ in the benchmark {y∗ = 1.5, λS/r = 65} leads to a more
IR-localized third-generation LH doublet q3

L and to a much larger coupling of S to b̄LbR and q̄3
L

plus its first KK resonance, even with a smaller value of λS/r. At the end of the day, however,
the solid lines are above the dashed ones for most values of mχ, since the DM coupling yχS is
smaller by a factor

√
120/65 ∼ 1.4, which makes up for the small differences existing among the

couplings to the visible sector. The differences between both benchmarks are magnified once the
purely S-mediated channel, corresponding to the right column of figure 4.7, is the most dominant
one. This happens in particular for large DM masses and/or small values of sin θhS , as one can
readily see by comparing the different panels in figure 4.9.

The gray region shows the area excluded by the LHC experimental limits on the Higgs invisible
decay width, whereas the purple region corresponds to the Xenon1T constraints, where we are
using the same convention as for our predictions, i.e. the solid line corresponds to the values of
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Figure 4.9: Velocity averaged coannihilation cross section at the freeze-out temperature for
different values of the mixing between the odd scalar and the Higgs boson,
sin θhS = {10−3, 10−4, 10−5, 10−6}, from top left to bottom right. The first two
cases correspond to negative values of λ̄. We have set Nχ = 1, MKK = 5 TeV
and k = MPl/8. We show in blue the predictions for two different benchmarks
with different values of y∗ and λS/r (see the text). In both cases, we have fixed
ctR = −0.2 and β = 2. We show the constraints coming from the Higgs invisible
decay width in gray and the limits from Xenon1T in purple. Moreover, we include
the velocity averaged cross section reproducing the relic density experimental value
from Planck in black, and the equivalent for a matter dominated freeze out in gray,
for two different values of TRH, where we used T? = 105 GeV and τ = 0.99. For
these lines the section in dashed gray corresponds to predictions for which xf < 3,
and therefore in this regime the DM decouples relativistically [200,201].

y∗ = 3 and the dot-dashed line stands for y∗ = 1.5. The latter are found by plotting the velocity
averaged coannihilation cross section obtained after rescaling yχS such that σχN saturates the
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Xenon1T experimental bound, what we could denote as 〈σv〉Xenon1T. For the values of sin θhS
shown in this figure, the leading contribution to the DM-nucleon cross section is by far the one
arising from the t-channel exchange of a Higgs boson, with the exception of the last case where
sin θhS = 10−6 and the S contribution, while still being subleading, starts to become relevant. This
explains why the Xenon1T bound for the {y∗ = 3, λS/r = 120} benchmark is weaker than the limit
obtained for {y∗ = 1.5, λS/r = 65}, whenever the coannihilation cross section is dominated by
the S contribution. Indeed, in the former case, the couplings of S to the visible sector are slightly
larger. This leads to a larger value of 〈σv〉Xenon1T after rescaling yχS and to a weaker bound from
direct detection. When 〈σv〉 is dominated by the Higgs exchange, direct detection bounds become
indistinguishable for both benchmarks, since the Higgs couplings to the SM quarks are mostly fixed
and SM-like.

We also show the velocity averaged cross section reproducing the observed relic density both in
the usual freeze-out scenario (black) and in the case of an early period of matter domination, for
values of TRH = 102 GeV (dark gray) and 1 GeV (light gray). For both gray lines, we used T? = 105

GeV and τ = 0.99. Similarly to figure 4.8, lines in dashed gray correspond to regions where xf < 3
and the DM is expected to decouple relativistically. We can see that for sin θhS = 10−3, one can
not explain the observed relic abundance without exceeding the bounds from Xenon1T. However,
this is not the case in the matter dominated scenario with TRH = 1 GeV, where the required
coannihilation cross section to explain the DM relic abundance does not exceed the Xenon1T bound
for y∗ = 3. In the case of y∗ = 1.5, the required cross section is excluded by the Xenon1T bound.
In the case of sin θhS = 10−4 we can reproduce the correct amount of DM for both values of
TRH, in a scenario of matter domination, being the values of 〈σv〉 corresponding to the top of
the resonant peak excluded by direct detection bounds. For even smaller values of sin θhS like
10−5 or 10−6, the data from Xenon1T never constrains the predictions for the coannihilation cross
section obtained in both benchmarks, since the Higgs coupling to DM yχh becomes too small for
such mixing angles. Therefore, by assuming an early period of matter domination, we are able to
explain the observed DM relic abundance for moderately small values of sin θhS without conflicting
current direct detection experiments. Even in the case of radiation domination, we can get to
values of 〈σv〉 relatively close to the ballpark of what is needed. In that case, S could potentially
contribute with a non-negligible fraction to the coannihilation cross section necessary to reproduce
the experimental value of the relic density. Nevertheless, additional mediators accounting for most
of the coannihilation are certainly needed in the scenario of radiation domination.

4.3 Summary

In realistic models the Higgs scalar field should propagate in the bulk of the WED. We have seen
that in this context a mixing of the Higgs with the odd bulk scalar responsible for bulk fermion
masses is then unavoidable. In this chapter, we have studied the impact of the scalar mixing on
precision measurements of Higgs couplings. In particular, we have computed the modifications
of the Higgs couplings to EW gauge bosons and the bottom quark as a consequence of the mixing
between the SM-like Higgs boson and the first KK resonances of both bulk fields,H and S. We have
demonstrated that planned future colliders could probe the induced modifications on the b-quark
Yukawa in the case where β . 4, values for which the Higgs boson has a strong presence into the
bulk.

In addition, we have demonstrated that the addition of a Z2-odd scalar field developing a
VEV in extra-dimensional models can provide a unique window into any 5D fermionic dark sector.
Given that the scalar field generates fermion bulk masses through Yukawa-like interactions with
the different 5D fermions, it will also irrevocably connect the SM with any possible dark sector
featuring bulk fermions. We have studied in detail the phenomenological consequences of such a
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portal, showing that the lightest KK dark fermion is stable and can coannihilate efficiently thanks
to the mediation of the odd-scalar resonances as well as the Higgs boson. Indeed, we have demon-
strated that it is possible to reproduce the observed DM relic abundance for an O(10) TeV KK dark
fermion assuming that freeze-out occurs during an early period of matter domination, and that we
can naturally avoid the constraints from direct-detection experiments, which only become relevant
when the parameter sin θhS controlling the mixing between the SM-like Higgs boson and the first
KK resonance S of the Z2-odd scalar field is & 10−4. For smaller values of the mixing angle, the
Higgs contribution to the direct-detection cross section gets reduced and loses importance, becom-
ing comparable at some point to the one from the t-channel exchange of the S resonance, which is
beyond the reach of current direct detection experiments. Even in the regular case of a radiation
dominated freeze-out, this irreducible contribution to the coannihilation cross-section can account
for a non-negligible part of the required value when the DM mass is ∼ 15 TeV. We have also shown
that these scalar contributions to the coannihilation cross section can be more important than those
arising from the exchange of KK gravitons. We have also studied the constraints on the Higgs ef-
fective Yukawa coupling to DM when its mass is light enough to allow for the Higgs boson to decay
into a pair of DM particles. We conclude that the effective Yukawa coupling to the dark fermions
yχh . 0.02/

√
Nχ, with Nχ being the multiplicity of the 5D dark fermion.
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5 | Conclusions

Research in particle physics focused on BSM have received lots of attention during the last
decades, leading to many extensions of the SM being carefully analyzed. Motivated initially by the
gauge hierarchy problem, scenarios such as supersymmetry, composite-Higgs models and models
with extra dimensions arised, playing an important role. However, the current absence of any sign
of NP at the LHC (the discrepancies in the flavour sector are not yet sufficient to claim evidence
for physics BSM) lead to a broader diversification of both the motivations triggering the search for
BSM physics both from the theoretical and experimental perspective. In this regard, models with
extra dimensions, and in particular those considering a WED, offer a beautiful solution to several
of the current open questions, as e.g. the flavor puzzle and DM. The RS model, even though it was
originally proposed as a solution of the gauge hierarchy problem, also allows for an explanation
of the flavor puzzle, as was realized soon after its birth. In this model, the flavor structure of the
quark sector of the SM can be easily reproduced by means of a specific pattern of localization of
the SM fermions in the bulk of the RS geometry. In other words, a similar mechanism provides
a natural explanation of both the hierarchy of fermion masses and mixings, and the one existing
between the EW and Planck scales. In addition, because of the AdS/CFT correspondence, models
with WED offer a precious window into strongly interacting sectors. This correspondence offers a
suitable framework where many predictions, that otherwise could only be pursued using a lattice
approach, can be made.

However, as we point out, an important question that has not received much attention in RS
models with bulk matter fields is why do 5D fermion masses, which are responsible for the dif-
ferent fermion localizations along the extra dimension and therefore for solving the flavor puzzle,
have such a coordinate dependence. Fermion bulk masses have to be odd under the Z2 orbifold
symmetry, and commonly they are introduced as a constant parameter with an ad-hoc sgn(φ) func-
tion, in RS models. The main scope of this thesis has been to demonstrate whether it is possible to
obtain these masses dynamically, and analyze the phenomenological viability.

In chapter 3, we have demonstrated that it is indeed possible to do so, via the VEV of a Z2-
odd scalar with bulk Yukawa couplings to the different 5D fermion fields. In this chapter we have
shown that an odd bulk scalar can develop non-trivial background solutions in a WED and that the
background solutions resemble the sign function in realistic scenarios, i.e. for the same values of
the model parameters that solve the hierarchy problem. In addition, we considered the possible
backreaction effects of the VEV on the metric, and found that the RS warp function gets modified
in the vicinity of the UV and IR branes for natural values of the gravity-scalar coupling. Moreover,
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we analyzed the gauge sector of the minimal RS model with an SU(2)L × U(1)Y bulk gauge
symmetry and its extension to a bulk custodial symmetry. We calculated the oblique parameters
S and T and set constraints on the masses of the first KK resonances considering both gauge
sectors, and under different configurations of our model. We found that the mass of the first KK
gluon state, which is often the lightest KK resonance in the model, must be at least O(10) TeV,
irrespectively of whether backreaction effects on the metric are included or neglected. We have
also calculated the KK spectrum of the Z2-odd bulk scalar, and found that it corresponds to one of
the heaviest first KK resonances of the model, with mS ∼ 30 TeV. We studied how fermion bulk
masses are generated in our dynamical mechanism, where 5D bulk fermions couple to the bulk
odd scalar through 5D Yukawa couplings, and how the fermion profiles depend on these Yukawa
couplings together with the shape of the scalar VEV profile. We checked that, similarly to the usual
RS setup, fermion zero-modes can be localized towards either of the branes. We calculated the
deviations of the fermion zero-mode and KK-mode profiles in our model when compared to the
traditional case, where a sgn(φ) function is used. We find that these deviations can become sizable
when backreaction effects are taken into account. Moreover, the magnificence of dynamically
generating bulk fermion masses is manifested when one considers the full SM fermion content and
calculates the SM fermion masses after EWSB. As usual, the idea is to describe SM fermions with
corresponding chiral zero modes of the bulk fermion fields. In that case, the localization of the
zero-mode profiles determines the 4D masses spectrum. Using the idea of the framework presented
previously for the traditional RS setup, we have illustrated how this mechanism works for the case
of a φ-dependent VEV and a modified warp factor, by reproducing the hierarchical structure of SM
quark masses and mixing angles. Given that the deviations in the fermion profiles can potentially
affect the model predictions, we studied the impact of such behavior on flavor observables and
on the RS-GIM mechanism. In particular, we computed the flavor observable εK , which typically
sets one of the most stringent bounds on models with a WED, under different configurations of
the model parameters and different strengths of the backreaction on the metric, and compared
our predictions with those obtained in the conventional RS model. The experimental values of
εK put constrain the mass of the first KK gluon state to be above O(10) TeV, in agreement with
the S and T bounds. Moreover, we saw that the presence of a non-negligible backreaction tends
to slightly weaken the RS-GIM mechanism, enhancing the NP contribution to εK . Moreover, we
checked if the presence of new TeV-scale KK resonances could lead to flavor-changing interactions
among the SM fermions. The exchange of the scalar KK resonances between four SM fermions
gives rise to effective dimension 8 interactions which are suppressed by four powers of vh/MKK,
and are therefore negligible.

In chapter 4, we demonstrated that the inclusion of the Z2-odd scalar field in WED models
not only provides a viable origin for the 5D fermion masses, but that it can also act as a mediator
connecting the SM with any 5D fermionic dark sector. Being the odd bulk scalar responsible for
the bulk mass of any fermion propagating in the WED, the bulk scalar will inevitably connect the
SM with such other 5D field. Therefore, assuming that the lightest KK fermion is stable and can
coannihilate efficiently due to the mediation of the odd-scalar resonance, it would automatically
become a DM candidate. In addition, in realistic models the Higgs scalar field propagates into the
bulk of the WED, and thus a mixing with the new scalar field becomes unavoidable. Not only this
could lead to modifications of the SM-like behavior for the Higgs boson, but it makes the Higgs
become another potential mediator of the fermionic DM. We studied the impact of the scalar mixing
on precision measurements of Higgs couplings. In particular, we have computed the modifications
of the Higgs couplings to EW gauge bosons and the bottom quark as a consequence of the mixing
between the SM-like Higgs boson and the first KK resonances of both bulk fields, finding that
planned future colliders could probe the induced modifications on the b-quark Yukawa for some
values of the model parameters, specially as the Higgs moves away from the IR brane. We have
also studied the constraints on the Higgs effective Yukawa coupling to DM when its mass is light
enough to allow for the Higgs boson to decay into a pair of DM particles. We also demonstrated
that the mediation of the first odd-scalar resonance together with the Higgs boson contribution
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can reproduce the observed DM relic abundance for an O(10) TeV KK dark fermion, assuming that
freeze-out occurs during an early period of matter domination. On the other hand, for the regular
case of a radiation dominated freeze-out, the scalar contribution to the coannihilation cross section
can account for a non-negligible part of the required value, when the DM mass is∼15 TeV. We have
also compared the scalar contributions to the coannihilation cross section with those arising from
the exchange of KK gravitons, finding that the odd scalar contribution be more important for most
DM masses. Moreover, we have shown that our predictions are not in conflict with current data
from direct-detection experiments, for most of the chosen benchmarks. In particular, we found
that these bounds are only relevant when the scalar mixing parameter, sin θhS , takes values larger
than O(10−4), whereas for smaller values, the contribution to the direct-detection cross section
given by t-channel Higgs exchange becomes less and less important, finding a lower limit at the
moment the S exchange t-channel takes over, at around sin θhS ∼ O(10−7).

In summary, the results presented in this work put RS models with bulk matter fields on firmer
theoretical ground. They provide a viable mechanism for dynamically generating a crucial ingre-
dient for the RS solution of the flavor puzzle, i.e. 5D fermion bulk masses, which here appear as
the VEV of a bulk scalar field. This mechanism comes together with the prediction of the existence
of heavy scalar KK resonances, much heavier than the other KK states, being this a feature of the
model. These scalar resonances are too heavy to be produced in possible high-energy extensions
of the LHC. However, they would infer modifications on Higgs couplings when both scalars are
allowed to mix, therefore, offering a promising window into the model, and making it testable
at future colliders. Moreover, we have shown that models with a WED naturally feature a DM
mediator, as the odd scalar can connect any fermion dark sector to the SM. This scalar, together
with the Higgs boson, can contribute to explain of the observed relic abundance of DM, specially
when we consider heavy VL fermions, without conflicting with current data from colliders, flavor
experiments and cosmology and while still providing natural solutions to the hierarchy problem
and the flavor puzzle.
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A | Coordinates dictionary

We discussed in section 2.1 that the WED is described by an S1/Z2 topology, i.e. that it is
compactified on an orbifold, and that therefore, the coordinates must satisfy the identifications
appearing in (2.2). This allows for a different choice of coordinates, all of them satisfying the
requirements from (2.2). We summarize here the different choice of coordinates that have been
used throughout this thesis. This appendix could serve as a dictionary for translating from any one
choice of coordinates to another.

We know that a generic 5D metric that respects 4D Poincaré invariance can be written as

ds2 = a(x5)2ηµνdx
µdxν − b(x5)2dx2

5. (A.1)

From (A.1), we can easily summarize some of coordinate choices for describing the AdS5 spacetime

ds2 = e−2k|y|ηµνdx
µdxν − dy2

= e−2kr|φ|ηµνdx
µdxν − r2dφ2

=
ε2

t2

(
ηµνdx

µdxν − 1

M2
KK
dt2
)
,

(A.2)

where the translations between them are

y = rφ, and t = ε ekr|φ|, with ε = e−krπ, (A.3)

and MKK = kε = ke−krπ.

Knowing that the extra dimension has end-points at y = yUV = 0 and y = yIR = rπ, corre-
sponding to the UV and IR branes respectively, we can infer the brane positions for the different
coordinates. We summarize this in table A.1, together with the expressions for

√
g.

Moreover, the derivatives are related by

∂y

∂φ
= r, and

∂t

∂φ
= sgn(φ) krε ekrφ = sgn(φ) krt, (A.4)

in such a way that

dy = rdφ, sgn(φ) dφ =
dt

krt
, (A.5)

107



Appendix A. Coordinates dictionary

Coordinates UV brane IR brane
√
g

y 0 yIR = rπ e−4k|y|

φ 0 π re−4kr|φ|

t ε 1 ε5/
(
t5MKK

)

Table A.1: Dictionary for the different coordinates.

and
∂y =

1

r
∂φ, ∂φ = sgn(φ) krt∂t , (A.6)

where ∂x ≡ ∂/∂x.

We can now check how the integrals on the fifth dimensions can be performed using these
coordinates. Starting from the integral in y

∫ yIR

−yIR

dy
(
. . .
)

= 2

∫ yIR

0

dy
(
. . .
)
, (A.7)

where we have denoted by (. . .) any possible term of the action, which has to be invariant under
Z2 transformations, and therefore it allows for the integral to be only performed in the [0, yIR]
interval. In term of the other coordinates, this reads

∫ yIR

−yIR

dy
(
. . .
)

= 2

∫ π

0

rdφ
(
. . .
)

=
2

k

∫ 1

ε

dt
(
. . .
)

=
2πr

L

∫ 1

ε

dt
(
. . .
)
, (A.8)

where we have used L ≡ krπ. In addition, we can see that the δ-functions must transform with
opposite factor as the differential, therefore they come together with a factor b(x5)−1, as

δ(y − yz) ←→ r−1δ(φ− φz) ←→ δ(t− tz) kt , (A.9)

where, e.g. z might stand for the IR brane location, leading to yIR = rπ, φIR = π and tIR = 1.
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B | Complementary formulae for fermions in WED

In this appendix we want to complement section 2.7 of the text with some useful formulae.
Most of this formulae has been obtained from [110].

First of all, in that section we discussed how dealing with brane-localized Yukawa interactions
for the 5D fermions make the usual orthonormality conditions not valid anymore, because of
inconsistencies caused by the delta function. Therefore, we need to promote such conditions to
the following

∫ π

−π
dφ eσ(φ)A(Q,u)

m (φ)A(Q,u)
n (φ) = δmn 1 + ∆A(Q,u)

mn , with A = C,S. (B.1)

Here, we sumarize the results for ∆C
(Q,u)
mn and ∆S

(Q,u)
mn obtained in [110], where these quantities

were derived, reading

∆C(Q,u)
mn =± 2

r

mmC
(Q,u)
n (π)S

(Q,u)
m (π−)−mnC

(Q,u)
m (π)S

(Q,u)
n (π−)

m2
m −m2

n

,

∆S(Q,u)
mn =∓ 2

r

mmC
(Q,u)
m (π)S

(Q,u)
n (π−)−mnC

(Q,u)
n (π)S

(Q,u)
m (π−)

m2
m −m2

n

,

(B.2)

for m 6= n, while for m = n we have

∆C(Q,u)
nn = −∆S(Q,u)

nn = ± 1

mnr
C(Q,u)
n (π)S(Q,u)

n (π−) . (B.3)

Moving forward to the implementation of the Froggat-Nielsen mechanism [110, 174], we as-
sumed the projection of the zero-mode profiles at the IR brane to have the following hierarchical
structure

|F (cA1
)| < |F (cA2

)| < |F (cA3
)| . (B.4)

which is a natural assumption for us, that can be easily obtained even by considering small dif-
ferences in the cAi parameters. Then, we showed the explicit formulae for how the products of
up- and down-type quark masses can be written in terms of the dimensionless 5D Yukawa and
the F (cAi) parameters in (2.156), in such a way that we obtained the expression for the different
quark masses in terms of these entries, which we presented in (2.157). Moreover, we introduced
the recipe for computing elements of the Uq andWq matrices in (2.158), where we did so in terms
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of uq and wq coefficientes plus phases, which we denoted by φj . We would like to ellaborate on
this idea here and complement the results presented in section 2.7.

We can rewrite the uq and wq elements in terms of the entries of the dimensionless 5D Yukawa
matrices, (Yq)ij , and their minors (Mq)ij , [110]. In this case, the matrices uq and wq read

uq =




1
(Mq)21

(Mq)11

(Yq)13

(Yq)33

− (Mq)
∗
21

(Mq)
∗
11

1
(Yq)23

(Yq)33
(Mq)

∗
31

(Mq)
∗
11

− (Yq)
∗
23

(Yq)
∗
33

1



, wq =




1
(Mq)

∗
12

(Mq)
∗
11

(Yq)
∗
31

(Yq)
∗
33

− (Mq)12

(Mq)11

1
(Yq)

∗
32

(Yq)
∗
33

(Mq)13

(Mq)11

− (Yq)32

(Yq)33

1



, (B.5)

while the phases φj are given by

eiφj = sgn
[
F (cQj )F (cqj )

]
e−i(ρj−ρj+1) , (B.6)

with

ρ1 = arg (det(Yq)) , ρ2 = arg ((Mq)11) , ρ3 = arg ((Yq)33) , ρ4 = 0. (B.7)

Now, the leading-order expressions for λ, A, ρ̄, and η̄ can be derived in terms of the entries
for the matrices we just defined. Recalling definitions of the Wolfenstein parameters of the CKM
matrix

λ =
|Vus|√

|Vud|2 + |Vus|2
, A =

1

λ

∣∣∣∣
Vcb
Vus

∣∣∣∣, ρ̄− iη̄ = −V
∗
udVub
V ∗cdVcb

, (B.8)

we have

λ =
|F (cQ1

)|
|F (cQ2)|

∣∣∣∣
(Md)21

(Md)11

− (Mu)21

(Mu)11

∣∣∣∣ ,

A =
|F (cQ2

)|3

|F (cQ1)|2 |F (cQ3)|

∣∣∣∣∣

(
(Yd)23

(Yd)33

− (Yu)23

(Yu)33

)/( (Md)21

(Md)11

− (Mu)21

(Mu)11

)2
∣∣∣∣∣,

ρ̄− iη̄ =
(Yd)33 (Mu)31 − (Yd)23 (Mu)21 + (Yd)13 (Mu)11

(Yd)33 (Mu)11

[
(Yd)23

(Yd)33

− (Yu)23

(Yu)33

]
×
[

(Md)21

(Md)11

− (Mu)21

(Mu)11

] .

(B.9)

We see that the relation ρ̄− iη̄ is independent of the zero-mode profiles F (cAi) to first order.

We would like now to determine the zero-mode profiles in terms of the quark masses and
Wolfenstein parameters from the expressions (2.157) and (B.9). However, it was shown in [110]
that the model is not determined and that we have the freedom to express the different F (cAi)
parameters in terms of a single one, which we chose to be F (cQ2

), following their recipe.

Therefore, expressing the F (cAi) parameters of the different quark fields in terms of F (cQ2),
we find

|F (cQ1
)| = λ∣∣∣∣

(Md)21

(Md)11

− (Mu)21

(Mu)11

∣∣∣∣
|F (cQ2

)| , |F (cQ3
)| =

∣∣∣∣
(Yd)23

(Yd)33

− (Yu)23

(Yu)33

∣∣∣∣
Aλ2

|F (cQ2
)| , (B.10)
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for the LH fields and

|F (cu1)| =
√

2mu

vh

|(Mu)11|
∣∣∣∣
(Md)21

(Md)11

− (Mu)21

(Mu)11

∣∣∣∣
λ|det(Yu)|

1

|F (cQ2)| ,

|F (cu2
)| =
√

2mc

vh

|(Yu)33|
|(Mu)11|

1

|F (cQ2
)| ,

|F (cu3
)| =
√

2mt

vh

Aλ2

|(Yu)33|
∣∣∣∣
(Yd)23

(Yd)33

− (Yu)23

(Yu)33

∣∣∣∣

1

|F (cQ2
)| ,

|F (cd1)| =
√

2md

vh

|(Md)11|
∣∣∣∣
(Mu)21

(Mu)11

− (Md)21

(Md)11

∣∣∣∣
λ|det(Yd)|

1

|F (cQ2)| ,

|F (cd2)| =
√

2ms

vh

|(Yd)33|
|(Md)11|

1

|F (cQ2
)| ,

|F (cd3)| =
√

2mb

vh

Aλ2

|(Yd)33|
∣∣∣∣
(Yu)23

(Yu)33

− (Yd)23

(Yd)33

∣∣∣∣

1

|F (cQ2)| ,

(B.11)

for the RH fields.

These relations lead to a hierarchical structure between the quark profiles evaluated at the IR
brane, as was shown in (2.159) and (2.159).

However, note that all the relations in (B.10) and (B.10) have a dependence on |F (cQ2)|, being
opposite for the LH profiles and RH profiles. This makes the system invariant under the following
transformations

F (cQi)→ η F (cQi) , F (cqi)→
1

η
F (cqi) , (B.12)

where the SU(2)L doublet fields are rescaled by a η factor, and at the same time the singlet fields
are rescaled with an opposite factor 1/η. Note that this relation holds while leaving the 5D Yukawa
couplings invariant.

Moreover, there are more transformations that can be implemented leaving the system invariant
if we allow the 5D dimensionless Yukawa couplings to rescale. One possibility would be

F (cQi)→ η F (cQi) , F (cqi)→ η F (cqi) , Yq →
1

η2
Yq, (B.13)

for which we rescale all of the RH fields with the same factor. However, we could rescale them
using different ηq for each q, and absorb that factor with the 5D Yukawas as follows

F (cQi)→ η F (cQi) , F (cqi)→ ηq F (cqi) , Yq →
1

ηηq
Yq. (B.14)

Note that this set of transformations (or any combination of them) leave the masses and mixing
angles in the quark sector unchanged. However, they could lead do completely different bulk
profiles for the fermions, and therefore the prediction for any possible observable that depends on
the bulk profiles would change accordingly, as e.g. observables for flavor-changing interactions or
the prediction for ∆εK , see section 3.5.2.
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C | EW precision observables in the custodial model

Here we expand on the discussion from section 3.2, where we have studied the impact of the
deviations from the original RS metric (caused by the backreaction) on EWPT and present general
expressions for the gauge boson masses, the Fermi constant and the EW observables. Since the
minimal case has been presented in greater detail on section 3.2 and analogous expressions for
this case can be found in the literature (see e.g. [124]), we focus here on the extended model with
a custodial symmetry in the bulk. In this case the gauge-sector bulk action reads [111]

Sgauge
5D =

∫
d4x

∫ π

−π
dφ
√
g gKMgLN

[
− 1

4
LaKLL

a
MN −

1

4
RaKLR

a
MN −

1

4
XKLXMN

]

+ SHiggs + SGF + SFP ,

(C.1)

where LMN , RMN , and XMN are the field-strength tensors for the bulk gauge groups SU(2)L,
SU(2)R, and U(1)X respectively, and a = 1, 2, 3. Employing the usual redefinition of the Higgs
field to canonically normalize its kinetic term, the action for the Higgs sector SHiggs takes the form

SHiggs =

∫
d4x

∫ π

−π
dφ

[
1

2
Tr
[
(DµH)† (DµH)

]
− V (H)

]
δ(φ− π) , (C.2)

where the Higgs bi-doublet can be represented as

H(x) =
1√
2

(
vh + h(x)− iG3(x) −i

√
2G+(x)

−i
√

2G−(x) vh + h(x) + iG3(x)

)
. (C.3)

The covariant derivative on the Higgs field is defined as

iDµH = i∂µH +
g5L

2
Laµτ

aH − g5R

2
HτaRaµ , (C.4)

with g5L and g5R denoting the 5D gauge couplings of SU(2)L and SU(2)R, respectively. By means
of the field redefinitions

L±µ =
1√
2

(L1
µ ∓ iL2

µ), R±µ =
1√
2

(R1
µ ∓ iR2

µ), (C.5)

the EOM for the charged gauge bosons can be brought to the same form as for the minimal case,
c.f. (3.56). We obtain

− 1

r2
∂φ

(
e−2σ(φ) ∂φ χ

W
n (φ)

)
= (m±n )2 χW

n (φ) ; W = L±, R±, (C.6)
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with non-diagonal BC

∂φ χ
L±

n (0) = 0

χR
±

n (0) = 0
,

[
I ∂φ + πe2σ(π)r2m̃2

Ã

(
c2W −sW cW

−sW cW s2
W

)](
χL
±

n (π−)

χR
±

n (π−)

)
= 0, (C.7)

where we have defined

m̃2
Ã

=
1

2πr

(g2
L5 + g2

R5)v2
h

4
, sW =

g5R√
g2

5L + g2
5R

. (C.8)

Similarly, if one defines
(
ZM
AM

)
=

(
cw −sw
sw cw

)(
L3
M

BM

)
,

(
Z ′M
BM

)
=

(
cθ −sθ
sθ cθ

)(
R3
M

XM

)
, (C.9)

with

sθ =
g5X√

g2
5R + g2

5X

, sw =
g5Y√

g2
5L + g2

5Y

, g5Y =
g5Rg5X√
g2

5R + g2
5X

, (C.10)

the bulk EOM for the neutral gauge fields become

− 1

r2
∂φ

(
e−2σ(φ) ∂φ χ

Z
n(φ)

)
= (mn)2 χZ

n(φ) ; Z = Z ′, Z, (C.11)

− 1

r2
∂φ

(
e−2σ(φ) ∂φ χ

A
n (φ)

)
= (mA

n )2 χAn (φ) , (C.12)

with BC

∂φ χ
A
n (0) = ∂φ χ

A
n (π−) = 0 , ∂φ χ

Z
n (0) = 0 , χZ

′

n (0) = 0 ,
[
I ∂φ + πe2σ(π)r2m̃2

Ã

(
c2W /c

2
w −sW cW cθ/cw

−sW cW cθ/cw s2
W c

2
θ

)](
χZn (π−)

χZ
′

n (π−)

)
= 0 .

(C.13)

We can solve the EOM for the zero modes of the charged and neutral gauge bosons perturbatively
in powers of v2

h/M
2
KK. For the masses of the zero-mode gauge bosons, we then obtain

m2
W = m̃2

Ã
c2W

[
1−

r2m̃2
Ã

π

∫ π

0

dφ1e
2σ(φ1)

(
c2Wφ

2
1 + π2s2

W

)
]

+O
(
v6
h

M4
KK

)
, (C.14)

m2
Z = m̃2

Ã

c2W
c2w

[
1−

r2m̃2
Ã

π

∫ π

0

dφ1e
2σ(φ1)

(
c2W
c2w

φ2
1 + π2s2

W c
2
θ

)]
+O

(
v6
h

M4
KK

)
, (C.15)

while the photon remains massless and has a constant profile in the bulk. Moreover, we find for
the Fermi constant

GF√
2

=
g2

5L

8rm2
W

[
(χL±0 (0))2 −m2

W D̃W (0, 0; 0)
]

=
1

2v2
h

[
1 + r2m̃2

Ã
π

∫ π

0

dφ1e
2σ(φ1) (1 + ρW ) +O

(
v4
h

M4
KK

)]
.

(C.16)

The oblique parameters Ŝ, T̂ , Ŵ and Ŷ defined in [54] can be expressed in terms of the quantities
[56]

α̂ = 2π
[
D̃A(π, π; 0)−D(−)(π, π; 0)

]
= πr2

∫ π

0

dφ1 e
2σ(φ1)

(
1− φ2

1

π2

)
, (C.17)

β̂ = 2πD̃A(0, π; 0) = πr2

∫ π

0

dφ1 e
2σ(φ1)φ1

π

(
1− φ1

π

)
, (C.18)

γ̂ = 2πD̃A(0, 0; 0) = −πr2

∫ π

0

dφ1e
2σ(φ1)

(
1− φ1

π

)2

, (C.19)
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where D̃A(φ, φ′; p) was defined in (3.64), and D(−)(φ, φ′; 0) is the 5D propagator for bulk gauge
fields with UV Dirichlet BC, evaluated at zero momentum and before EWSB. One finds

D(−)(φ, φ′; 0) = −r
2

2

∫ φ<

0

dφ1 e
2σ(φ1) , (C.20)

where φ< = min(φ, φ′). This leads to

Ŝ =
g2v2

h

2

(
β̂ − γ̂
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2απv2
h

s2
w

πr2

∫ π
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(
1− φ1
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)
, (C.21)

T̂ =
g′2v2

h

4

(
−α̂+ 2β̂ − γ̂

)
= 0, (C.22)

Ŵ = Ŷ = −g
2v2
h

4
γ̂ =

αv2
h

s2
w

π2r2

∫ π

0

dφ1e
2σ(φ1)

(
1− φ1

π

)2

, (C.23)

where g ≡ g5L/
√

2πr and g′ ≡ g5Y /
√

2πr are the EW gauge couplings of the SM.

In the limit of negligible backreaction on the metric, these low-energy observables in (C.14)
and (C.16) take the familiar form

m2
W = c2W m̃

2
Ã
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1−
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2
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, (C.24)
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, (C.25)
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KK
L+O
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h
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KK
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1

2v2
SM

, (C.26)

where L ≡ krπ. On the other hand, the expressions for the oblique parameters S and T simplify
to

S =
4s2
w

α
Ŝ =

2πv2
h

M2
KK

, T =
T̂

α
= 0 . (C.27)
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freeze-out

D.1 Cross section expressions

The different coannihilation cross sections of a couple of DM fermion fields, χ̄χ, into a pair of SM
particles are given by (see e.g. [201])

σ(χ̄χ→ f̄f) =
Nf y

2
χS

16π
s

(
1−

4m2
f

s

)3/2(
1− 4m2

χ

s

)1/2

×
[
y2
fh sin2 θhS

(s−m2
h)

2 +
y2
fS

(s−m2
S)

2 +
2 yfhyfS sin θhS

(s−m2
S) (s−m2

h)

]
,

(D.1)
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32π
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)1/2
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1− 4m2
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4 (s−m2
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sin2 θhSx4
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KK

v2
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S)
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6m2
h sin2 θhSx2

S1
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KK
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4 (s−m2

S) (s−m2
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]
,

(D.2)

σ(χ̄χ→ V V ) =
δV y

2
χS sin2 θhS

8π

(
1− 4m2

V

s

)1/2
(

1− 4m2
χ
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)1/2

× m4
V

v2
4 (s−m2

h)
2

[
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(s− 2m2
V )2

4m4
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]
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(D.3)

σ(χ̄χ→ Q̄q) =
NQ y

2
χSy

2
Qq

16π

s

(s−m2
S)

2

(
1−

m2
Q

s

)3/2(
1− 4m2

χ

s

)1/2

, (D.4)

with δV = 1, 1/2 for V = W±, Z.
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D.2 Matter dominated freeze-out

We review here the relevant formulae for the calculation of the current DM relic abundance after
freeze-out during an early period of matter domination (see [200,201] for more details).

We assume the presence of a long-lived heavy scalar field φ, which starts behaving like matter
at a critical temperature T? ∼ mφ, which we assumme to be much larger than MKK, i.e. T? �
MKK. If φ is long-lived enough, its contribution to the energy density ρφ will grow until ultimately
monopolize the total energy density regardless of its initial contribution at T?, given by (1 − τ),
with τ ∈ [0, 1]

τ =
ρR + ρχ

ρR + ρχ + ρφ

∣∣∣∣
T=T?

, (D.5)

and ρχ, ρR, the energy density of DM and the visible sector of the extra-dimensional theory.

Using the Friedmann equation

H2 =
1

3m2
Pl

[ρR + ρχ + ρφ] , (D.6)

and defining H? = H(T?) we obtain

H2 = H2
?

[
g∗τ

g∗ + gχ

(a?
a

)4

+ (1− τ)
(a?
a

)3

+
gχτ

g∗ + gχ

(a?
a

)4
]
, (D.7)

where g∗ is the effective number of relativistic degrees of freedom of the visible sector of the extra-
dimensional theory. Assuming that the entropy is conserved in this sector and taking into account
that g∗ � gχ, we can write

H = H?

√
1− τ

(x?
x

)3/2
[

r

1− τ
(x?
x

)
+ 1

]1/2

, (D.8)

where we have defined x = mχ/T and x? = x(T?).

The annihilation rate Γann can be written as

Γann =
gχm

3
χ

(2πx)3/2
e−x〈σv〉, (D.9)

where 〈σv〉 is the velocity-averaged coannihilation cross section. In our scenario of scalar mediated
fermionic DM, after Taylor expanding (σv) with respect to v2

r , we can write

(σv) ' a+ bv2
r = bv2

r , (D.10)

since a = 0 for the scalar-mediated cross sections considered in this thesis. Therefore, one can
write the velocity-averaged coannihilation cross section as

〈σv〉 ' 6b

x
, (D.11)

which leads to

Γann =
gχm

3
χ

(2π)3/2
e−x

6b

x5/2
. (D.12)

We can define the freeze-out temperature by asking H(xf ) = Γann(xf ), with xf = mχ/Tf . This
leads to
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xf = log

(
gχ

(2π)3/2

m3
χ6b

H?x
3/2
?

(1− τ)−1/2

(
x2
f +

rx?
1− τ xf

)1/2
)
. (D.13)

The yield Y = nχ/s, with s the entropy density, is given at freeze-out by

Yf =

(
λ

∫ ∞

xf

dx

(
1 +

τ

1− τ
x?
x

)−1/2

x−7/2

)−1

, (D.14)

where

λ =
2π2g∗Sm3

χ6b

45H?x
3/2
?

, (D.15)

with g∗S the number of effective entropic degrees of freedom. More explicitly, it reads

1

Yf
≈ π2g∗Sm3

χ〈σv〉
90H?x4
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1− τ
τ
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3xf sinh−1
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[
2x? − 3xf

(1− τ)

τ

])
,

(D.16)

where we have approximated 〈σv〉 ≈ 6b/xf . Finally, the prediction for the DM relic abundance,
assuming a matter dominated universe during freeze-out, reads

Ωχh
2 = ζ

s0mχYf
ρcritical

, (D.17)

where ρcritical = 8.13 ·10−47 GeV4, s0 ' 2.29 ·10−38 GeV3. In the above equation, ζ parametrizes the
dilution of the DM abundance after freeze-out due to the decays of φ and the subsequent entropy
injection

ζ =
sbefore

safter
=

Ωχ

Ωfχ
, (D.18)

which can be expressed with good approximation as follows

ζ ≈ 45

4π3

1

(1− τ)g∗

TRH

T?
. (D.19)
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