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Abstract
The Stokes resolvent problem λu−�u+∇φ = f with div(u) = 0 subject to homogeneous
Dirichlet or homogeneous Neumann-type boundary conditions is investigated. In the first
part of the paper we show that for Neumann-type boundary conditions the operator norm of
L2

σ (�) � f �→ φ ∈ L2(�) decays like |λ|−1/2 which agrees exactly with the scaling of the
equation. In comparison to that, the operator norm of this mapping under Dirichlet boundary
conditions decays like |λ|−α for 0 ≤ α ≤ 1/4 and we show optimality of this rate, thereby,
violating the natural scaling of the equation. In the second part of this article, we investigate
the Stokes resolvent problem subject to homogeneous Neumann-type boundary conditions if
the underlying domain � is convex. Invoking a famous result of Grisvard (Elliptic problems
in nonsmooth domains. Monographs and studies in mathematics, Pitman, 1985), we show
that weak solutions u with right-hand side f ∈ L2(�;Cd) admit H2-regularity and further
prove localized H2-estimates for the Stokes resolvent problem. By a generalized version
of Shen’s Lp-extrapolation theorem (Shen in Ann Inst Fourier (Grenoble) 55(1):173–197,
2005) we establish optimal resolvent estimates and gradient estimates in Lp(�;Cd) for
2d/(d + 2) < p < 2d/(d − 2) (with 1 < p < ∞ if d = 2). This interval is larger than
the known interval for resolvent estimates subject to Dirichlet boundary conditions (Shen in
Arch Ration Mech Anal 205(2):395–424, 2012) on general Lipschitz domains.
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1 Introduction

The main object under investigation is the Stokes resolvent problem in a bounded domain
� ⊂ R

d

{
λu − �u + ∇φ = f in �

div(u) = 0 in �.
(Res)

The resolvent parameter λ is supposed to be contained in a sector Sθ , θ ∈ [0, π), in the
complex plane, i.e., Sθ := {z ∈ C \ {0} : |arg(z)| < θ} if θ ∈ (0, π) and S0 := (0,∞). In
this article, this system is complemented with two different types of boundary conditions.
There are the homogeneous Dirichlet boundary conditions

u = 0 on ∂� (Dir)

and a family of homogeneous Neumann-type boundary conditions which read

{Du + μ[Du]
}n − φn = 0 on ∂�. (Neu)

Here μ ∈ (−1, 1] is a parameter, n denotes the outward unit normal to �, and Du the
Jacobi-matrix of u. There is a tremendous literature on these equations on different types
of domains, see, e.g., [1,6,7,16,17,23,26,35,42,43,50,56,58] to mention only a few. Notice
that the Neumann-type boundary condition with μ = 1 plays an eminent role in the study
of problems involving a free boundary [2,4,29,48,53] and that the condition with μ = 0
is central in the study of inhomogeneous boundary value problems involving the Stokes
equations [14,44,50] but also in the modelling of flows in pipes [38, Sec. 4.2]. In this article,
we investigate two different questions:

Question 1:

The first question deals with the behavior of the operator norm of the mapping f �→ φ with
respect to λ, i.e., we seek an inequality of the form

‖φ‖L2(�) ≤ C(λ)‖ f ‖L2(�;Cd ) ( f ∈ L2
σ (�))

and the exact dependence of the constant C(λ) with respect to λ. Notice that in the case
of homogeneous Dirichlet boundary conditions the pressure φ is unique up to an additive
constant so thatwe assume itsmeanvalue to be zero.Notice further that the space of solenoidal
L2-integrable functions differs depending onwhether (Res) is consideredwith condition (Dir)
or (Neu), cf. Sect. 2.

Pressure estimates of the Stokes resolvent problem are studied in the engineering literature
[37] and they also appear in the study of the Stokes operator [21,23,47,58].Another interesting
application can be found in the analysis of the discrete Stokes resolvent problem, comparable
to the Poisson case in [36,54], where the pressure appears in the derivation of weighted norm
estimates.

To obtain an idea of what the right behavior of C(λ) with respect to λ would be, set for a
moment � = R

d . In this case, the solutions u and φ satisfy the following scaling property:
Let r > 0 and assume that u and φ solve (Res) for some resolvent parameter λ and right-hand
side f . Then, ur := u(r ·) and φr := rφ(r ·) solve (Res) for the resolvent parameter r2λ and
right-hand side fr := r2 f (r ·). Put r := |λ|−1/2 so that |r2λ| = 1. If there would be a
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constant C > 0 (which on the whole space certainly does not have to be true) such that

‖φr‖L2(Rd ) ≤ C‖ fr‖L2(Rd ;Cd )

holds, then the substitution rule ensures the estimate

‖φ‖L2(Rd ) ≤ C |λ|−1/2‖ f ‖L2(Rd ;Cd ). (1.1)

We will show in Sect. 3 that this behavior of C(λ) is false on bounded C4-domains and
if homogeneous Dirichlet boundary conditions are imposed. More precisely, it is known
[31,47,58] that C(λ) satisfies for each 0 ≤ α ≤ 1/4 and some constant C > 0 independent
of λ

C(λ) ≤ C |λ|−α, (1.2)

see also Proposition 3.3 for the case 0 ≤ α < 1/4. In Proposition 3.4 we show that the
condition α ≤ 1/4 is sharp in the sense that for no α > 1/4 there exists a constant C > 0
independent of λ such that (1.2) is valid. This shows that the presence of a boundary causes
the pressure to behave differently than its natural scaling would dictate.

In contrast to that, under boundary condition (Neu), then on each domain � with a suf-
ficiently nice boundary, e.g., bounded C1,1-domains or bounded convex domains, we show
thatC(λ) satisfies (1.2) with α = 1/2, see Proposition 3.1. Thus, depending on the particular
boundary condition at stake, the behavior of the pressure with respect to λ might differ.

For both boundary conditions, we perform a similar analysis in which the L2-norm of f
on the right-hand side is replaced by the H−1-norm of f , see Propositions 3.6 and 3.8. For
simplicity, we considered only L2-based spaces. An extension to the Lp-situation should be
straightforward. Notice that the exponent α for which the pressure estimates in Lp are valid
satisfies the relation α ≤ 1/2−1/(2p), see [31,47], so that the decay estimate with exponent
α > 1/2 − 1/(2p) should fail.

Question 2:

If � ⊂ R
d , d ≥ 3, is a bounded Lipschitz domain the resolvent estimate

|λ|‖u‖Lp(�;Cd ) ≤ C‖ f ‖Lp(�;Cd ) ( f ∈ Lp
σ (�)) (1.3)

was proven for solutions to (Res) subject to the boundary condition (Dir) in the seminal paper
of Shen [50]. Here, p satisfies ∣∣∣ 1

p
− 1

2

∣∣∣ <
1

2d
+ ε (1.4)

for some ε > 0 depending only on d , θ , and the Lipschitz geometry. A special class of
bounded Lipschitz domains are bounded convex domains and one might wonder, whether
the condition (1.4) on p improves if convexity of � is imposed. It was for example proven
by Geng and Shen [24] that on bounded and convex domains the Helmholtz projection
gives rise to a bounded projection on Lp(�;Cd) for all 1 < p < ∞. Moreover, a work
of Geissert, Heck, Hieber, and Sawada [22] formalizes the philosophy that the boundedness
of the Helmholtz projection implies functional analytic properties of the Stokes operator
like (1.3) at least under the condition that � is a (not necessarily bounded) uniform C3-
domain. Combining the result of [24] with this philosophy leads to the conjecture that the
resolvent estimate (1.3) should be valid for all 1 < p < ∞ if � is convex. This is a question
that was raised by Maz’ya in [39, Prob. 66].
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We give first results in this direction for the Stokes resolvent problem (Res) subject to the
Neumann-type boundary condition (Neu), however, we restrict the interval of parameters μ

to be (−1,
√
2 − 1). Although this still includes the case μ = 0 the physically important

case μ = 1 is excluded. The corresponding results are explained as follows. We remark
that on general bounded Lipschitz domains the Stokes operator subject to the Neumann-
type boundary condition (Neu) was investigated by Mitrea, Monniaux, and Wright [43] who
established a rich L2-theory, see also the survey article by Monniaux and Shen [46].

By virtue of a famous formula of integration by parts by Grisvard [28, Thm. 3.1.1.1] we
establish the estimate

|λ|
∫

�

|∇u|2 dx +
∫

�

|∇2u|2 dx +
∫

�

|∇φ|2 dx ≤ C

(∫
�

| f |2 dx + |λ|2
∫

�

|u|2 dx
)
(1.5)

for some constant C > 0 depending only on d , θ , and μ, see Theorem 4.4. In particular, this
implies that solutions u and φ to −�u + ∇φ = f and div(u) = 0 for some f ∈ L2

σ (�)

and subject to the boundary condition (Neu) satisfy u ∈ H2(�;Cd) and φ ∈ H1(�). This
should be comparedwith the results of Kellogg andOsborn [34], Dauge [10], andMaz’ya and
Rossmann [40] in the case of the boundary condition (Dir) and convex polygonal/polyhedral
domains. For general bounded and convex domains this higher regularity property in the case
of homogeneous Dirichlet boundary conditions is unknown.

We continue by establishing a localized version of (1.5) which can be found in Proposi-
tion 4.12. Combining this with a Caccioppoli type estimate, see Lemma 6.1, and Sobolev’s
embedding yields the validity of a weak reverse Hölder estimate of the form(

1

rd

∫
�∩Q(x0,r)

{|λ||u| + |λ|1/2|∇u| + |λ|1/2|φ|}p dx

)1/p

≤ C

(
1

rd

∫
�∩Q(x0,2r)

{|λ||u| + |λ|1/2|∇u| + |λ|1/2|φ|}2 dx)1/2

,

(1.6)

where Q(x0, r) is a cube in R
d with midpoint x0 and diameter r > 0, where p satisfies

2 < p < ∞ if d = 2 and p = 2d/(d − 2) if d ≥ 3, and where u and φ solve the Stokes
resolvent problem with a right-hand side f ∈ L2(�;Cd) that vanishes on � ∩ Q(x0, 2r).
One could now conclude by an Lp-extrapolation theorem of Shen [49] that the family of
(sublinear) operators

Lq(�;Cd) � f �→ |λ||u| + |λ|1/2|∇u| + |λ|1/2|φ|
is uniformly bounded with respect to λ on Lq for 2 < q < 2d/(d − 2) if(!) the family of
operators

Tλ : L2(�;Cd) → L2(�), f �→ |λ|1/2φ (1.7)

is uniformly bounded on L2. This gives a connection to Question 1 discussed above. Unfor-
tunately, only the restriction of Tλ to solenoidal vector fields satisfies this uniform bound,
whereas the operators on all of L2(�;Cd) grow like |λ|1/2. This fact can be easily seen
by noting that the pressure φ solving (Res) for general f ∈ L2(�;Cd) is the sum of the
pressure associated to (Res) but with the right-hand side Q f ∈ L2

σ (�) and the function g
which satisfies (Q − Id) f = ∇g. Here, Q denotes the Helmholtz projection on L2(�;Cd).
Notice that the function g does not depend on λ at all, which explains that the family defined
in (1.7) is not uniformly bounded on L2.
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To circumvent this problem, we discuss in Sect. 5 a version of Shen’s Lp-extrapolation
theorem, which is valid for subspaces of Lp . This allows us to employ the uniform bound-
edness of the restriction of the operators Tλ to solenoidal spaces and delivers the following
theorem which is proven in Sect. 6.

Theorem 1.1 Let � ⊂ R
d , d ≥ 2, be a bounded and convex domain and r0 > 0 be such that

B(0, r0) ⊂ 1
2 [� − {x0}] for some x0 ∈ �. Let further θ ∈ [0, π), μ ∈ (−1,

√
2− 1), and let∣∣∣ 1

p
− 1

2

∣∣∣ <
1

d
.

Then there exists a constant C > 0 such that for all λ ∈ Sθ and all f ∈ L2(�;Cd) ∩
Lp(�;Cd) satisfying div( f ) = 0 in the sense of distributions the solutions u ∈ H1(�;Cd)

and φ ∈ L2(�) to ⎧⎪⎨
⎪⎩

λu − �u + ∇φ = f in �

div(u) = 0 in �

{Du + μ[Du]
}n − φn = 0 on ∂�

satisfy

|λ|‖u‖Lp(�;Cd ) + |λ|1/2‖∇u‖Lp(�;Cd2 )
≤ C‖ f ‖Lp(�;Cd ).

If p ≥ 2 it additionally holds

|λ|1/2‖φ‖Lp(�) ≤ C‖ f ‖Lp(�;Cd ).

Here, the constant C > 0 depends only on d, θ , μ, diam(�), and r0.
Furthermore, there exists a constant C > 0 such that for all λ ∈ Sθ and all F ∈

L2(�;Cd×d) ∩ Lp(�;Cd×d) the solutions u ∈ H1(�;Cd) and φ ∈ L2(�) to⎧⎪⎨
⎪⎩

λu − �u + ∇φ = div(F) in �

div(u) = 0 in �

{Du + μ[Du]
}n − φn = 0 on ∂�

satisfy

|λ|1/2‖u‖Lp(�;Cd ) + ‖∇u‖Lp(�;Cd2 )
+ ‖φ‖Lp(�) ≤ C‖F‖Lp(�;Cd×d ).

If p ≥ 2 it additionally holds

‖φ‖Lp(�) ≤ C‖F‖Lp(�;Cd×d ).

Again, the constant C > 0 depends only on d, θ , μ, diam(�), and r0.

2 The Stokes operator on L2�(Ä) and H−1
� (Ä)

In the following, we will assume that � ⊂ R
d , d ≥ 2, is a bounded and open domain whose

boundary is at least Lipschitz regular, i.e., locally represented as the graph of a Lipschitz
continuous function. This section is devoted to present results concerning the Stokes resolvent
problem (Res) subject to no-slip boundary conditions (Dir) and subject to Neumann-type
boundary conditions (Neu).
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2.1 Function spaces

We define the space of compactly supported smooth and solenoidal vector fields in � as

C∞
c,σ (�) := {ϕ ∈ C∞

c (�;Cd) : div(ϕ) = 0}
and the space of solenoidal vector fields that are smooth up to the boundary as

C∞
σ (�) := {ϕ|� : ϕ ∈ C∞

c,σ (Rd)}.
As usual, we define for 1 < p < ∞

Lp
σ (�) := C∞

c,σ (�)
Lp

and W1,p
0,σ (�) := C∞

c,σ (�)
W1,p

endowedwith their natural norms. These spaces are usually introduced if the Stokes equations
subject to no-slip boundary conditions are studied, e.g., see [20,42,51]. If one is interested
in Neumann-type boundary conditions, then one defines the spaces

Lp
σ (�) := {u ∈ Lp(�;Cd ) : div(u) = 0} and W1,p

σ (�) := {u ∈ W1,p(�;Cd ) : div(u) = 0}

endowed with their natural norms, see, e.g., [43,52]. If p = 2 we write H1
0,σ (�) := W1,2

0,σ (�)

andH1
σ (�) := W1,2

σ (�)henceforth.Notice thatL2
σ (�) andL2

σ (�)do in general not coincide.
Indeed, elements u ∈ L2

σ (�) satisfy n · u = 0 on ∂� whereas the mean value of n · u on
∂� vanishes for elements u in L2

σ (�). Furthermore, notice that C∞
σ (�) embeds densely into

L2
σ (�), by [43, Lem. 2.1, Rem. 2.2]. We define the antidual spaces

H−1
σ (�) := H1

0,σ (�)∗ and H−1
0,σ (�) := H1

σ (�)∗,

where we consider antilinear functionals instead of linear functionals, i.e., they satisfy
f (α·) = α f (·) for α ∈ C instead of the usual homogeneity condition. We further define
H−1(�;Cd) := H1

0(�;Cd)∗ andH−1
0 (�;Cd) := H1(�;Cd)∗. Notice that due to the embed-

dings

H1
0,σ (�) ↪→ H1

0(�;Cd) and H1
σ (�) ↪→ H1(�;Cd)

one can identify an element in H−1(�;Cd) and in H−1
0 (�;Cd) with an element in H−1

σ (�)

and in H−1
0,σ (�), respectively, by restriction to the respective subspace. Notice further, that

an element u ∈ L2(�;Cd) can be considered as an element in the spaces of negative order
by identifying u with the functional

�(u)(v) :=
∫

�

u · v dx

endowed with the respective domain of definition.
For 0 < s < 1 we consider as intermediate spaces the scale of L2-based Bessel potential

spacesHs(�) = Hs,2(�)which are defined as the restriction spaces ofBessel potential spaces
on the whole space. The solenoidal counterparts are denoted by Hs

σ (�) and are defined to
be Hs(�;Cd) ∩ L2

σ (�). If s > 1/2 we also define the corresponding spaces with vanishing
trace, i.e., Hs

0,σ (�) := Hs
0(�;Cd) ∩ L2

σ (�). In the case of negative indices, we define for
0 < s < 1/2 the space H−s

σ (�) := Hs
σ (�)∗.

Having introduced all required function spaces, we will introduce the Stokes operators
subject to no-slip and Neumann boundary conditions following [42,43].
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2.2 The Stokes operator subject to no-slip boundary conditions

Define the sesquilinear form

a : H1
0,σ (�) × H1

0,σ (�) → C, (u, v) �→
∫

�

∇u · ∇v dx .

The weak Stokes operatorA on H−1
σ (�) subject to no-slip boundary conditions is defined as

D(A) := H1
0,σ (�),

〈Au, v〉H−1
σ ,H1

0,σ
:= a(u, v) for u ∈ D(A) and v ∈ H1

0,σ (�).

The Stokes operator A on L2
σ (�) subject to no-slip boundary conditions is then defined as

the part of A in L2
σ (�), i.e.,

D(A) := {u ∈ L2
σ (�) : u ∈ D(A) and Au ∈ L2

σ (�)},
Au := Au (u ∈ D(A)).

Elements u ∈ D(A) satisfy no-slip boundary conditions. Notice that the symmetry of a
implies that A is a self-adjoint operator on L2

σ (�), see [33, Thm. VI.2.23]. Furthermore,
the definition of A implies for the resolvent sets the inclusion ρ(A) ⊂ ρ(A) and that for
λ ∈ ρ(−A) it holds

(λ + A)−1 = (λ + A)−1|L2
σ (�). (2.1)

2.3 The Stokes operator subject to Neumann-type boundary conditions

Define forμ ∈ (−1, 1] the coefficients aαβ
jk (μ) := δ jkδαβ +μδ jβδkα , where δαβ denotes Kro-

necker’s delta. Notice that the divergence form operator with coefficients aαβ
jk (μ) is formally

given by (here and below we sum over repeated indices)

∂ j a
αβ
jk (μ)∂kuβ = �uα + μ∂α div(u).

Hence, if this operator acts only on solenoidal functions, this in merely the Laplacian. Con-
sequently, defining the sesquilinear form

bμ : H1
σ (�) × H1

σ (�) → C, (u, v) �→
∫

�

aαβ
jk (μ)∂kuβ · ∂ jvα dx

gives still rise to an operator associated to the Stokes equations. The weak Stokes operator
Bμ on H−1

0,σ (�) subject to Neumann-type boundary conditions is defined as

D(Bμ) := H1
σ (�),

〈Bμu, v〉H−1
0,σ ,H1

σ
:= bμ(u, v) for u ∈ D(Bμ) and v ∈ H1

σ (�).

For the Stokes operator subject to Neumann-type boundary conditions on the negative scale
one has to understand the boundary condition very carefully as right-hand sides in H−1

0,σ (�)

could induce inhomogeneous boundary terms. For example the functional

H1
σ (�) � v �→

∫
∂�

f · v dσ =: F(v)
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for a smooth function f lies inH−1
0,σ (�). Thus, the solution to the problem Bμu = F would

satisfy an inhomogeneous boundary condition.
The Stokes operator Bμ on L2

σ (�) subject to Neumann-type boundary conditions is then
defined as the part of Bμ in L2

σ (�), i.e.,

D(Bμ) := {u ∈ L2
σ (�) : u ∈ D(Bμ) and Bμu ∈ L2

σ (�)},
Bμu := Bμu (u ∈ D(Bμ)).

Elements u ∈ D(Bμ) formally satisfy the boundary conditions stated in (Neu). Notice that the
symmetry of bμ implies that Bμ is a self-adjoint operator on L2

σ (�), see [33, Thm. VI.2.23].
Furthermore, the definition of Bμ implies for the resolvent sets the inclusion ρ(Bμ) ⊂ ρ(Bμ)

and that for λ ∈ ρ(−Bμ) it holds

(λ + Bμ)−1 = (λ + Bμ)−1|L2
σ (�).

2.4 The Laplace operators

Similarly, we introduce the weak Laplace operators −�D on H−1(�) and −�N on H−1
0 (�)

via the sesquilinear form

V × V → C, (u, v) �→
∫

�

∇u · ∇v dx .

The domain of the sesquilinear form V is taken to be H1
0(�) for the Dirichlet Laplacian and

H1(�) for the Neumann Laplacian. Recall that by Poincaré’s inequality �D is invertible and
that �N is invertible if considered on the factor space (H1(�)/const)∗. Finally, recall that if
the boundary of � is C1,1-regular or if � is convex the operators �−1

D : L2(�) → H2(�)

and �−1
N : L2

0(�) → H2(�) are bounded, see [28, Sec. 3.2.1] for the particular statements
on convex domains, see also the discussion at the beginning of Sect. 4. Here L2

0(�) denotes
the L2-space of average free functions. In the following, we do not distinguish the notation
between the weak Laplacians defined on negative spaces or the strong Laplacians defined on
L2(�).

2.5 The Bogovski operator

Let us consider the divergence problem

{
div(u) = f in �

u = 0 on ∂�,

where f ∈ L2
0(�) and � is a bounded Lipschitz domain. It is well-known that there exists

a bounded and linear operator B : L2
0(�) → H1

0(�;Cd) which satisfies div(B f ) = f , see,
e.g., [20, Ch. III.3] and the references therein. This means that u := B f solves the divergence
problem posed above. Clearly, B is a highly non-unique operator as one can always add a
function v ∈ H1

0,σ (�) to the solution u and still have a solution to the problem. Here and
below, the operator B is called the Bogovskiı̆ operator.
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2.6 The Helmholtz projection

TheHelmholtz projectionP : L2(�;Cd) → L2(�;Cd) is introduced as being the orthogonal
projection of L2(�;Cd) onto L2

σ (�). Analogously, letQ : L2(�;Cd) → L2(�;Cd) denote
the orthogonal projection of L2(�;Cd) onto L2

σ (�). It is well-known, see [15, Sec. 11], that
the range of Id−P is given by

R(Id−P) = ∇H1(�) := {∇ϕ : ϕ ∈ H1(�)} (2.2)

and that the range of Id−Q is given by

R(Id−Q) = ∇H1
0(�) := {∇ϕ : ϕ ∈ H1

0(�)}. (2.3)

Notice that P andQ can be realized by employing the Neumann and the Dirichlet Laplacian
as follows. Define a distribution

〈d̃iv(u), v〉H−1
0 ,H1 := −

∫
�

u · ∇v dx for u ∈ L2(�;Cd) and v ∈ H1(�),

which acts as the distribution generated by the divergence operator but ignores the bound-
ary values that would arise due to the integration by parts. Furthermore, define the usual
divergence as

〈div(u), v〉H−1,H1
0

:= −
∫

�

u · ∇v dx for u ∈ L2(�;Cd) and v ∈ H1
0(�).

Then, P and Q can be represented as

P = Id+∇(−�N )−1d̃iv and Q = Id+∇(−�D)−1 div . (2.4)

A calculation verifying this identity for P can be found in [55, Lem. 5.1.3] and for Q in the
proof of [43, Lem. 2.1]. We record the following lemma.

Lemma 2.1 Let � be a bounded Lipschitz domain such that �−1
D : L2(�) → H2(�)

and �−1
N : L2

0(�) → H2(�) are bounded. Then P : H1
0(�;Cd) → H1(�;Cd) and

Q : H1(�;Cd) → H1(�;Cd) are bounded operators. In particular, if � is convex, then
these operator norms depend at most on the dimension d.

Proof Notice that if u ∈ H1
0(�;Cd), then d̃iv(u) = div(u) and the average of div(u) in � is

zero. Thus, the statements concerning the boundedness of P and Q directly follow by (2.4)
and the assumption that �−1

D : L2(�) → H2(�) and �−1
N : L2

0(�) → H2(�) are bounded.
Concerning the dependence of the constants for � being convex, see [28, Eq. (3.1.2.2),
Eq. (3.1.2.7)].

By (2.4) it should be clear that P does not map H1
0(�;Cd) into H1

0(�;Cd), i.e., that it
does not preserve zero boundary values (if the boundary is merely Lipschitz, then also the
differentiability is not preserved). A formal proof on bounded C4-domains is given in the
next lemma. The proof uses so-called Fermi coordinates. These coordinates are introduced
following the exposition in [12, Sec. 2.3].

Let δ(x) denote the oriented distance function, i.e.,

δ(x) :=
{
dist(x, ∂�), x ∈ �

− dist(x, ∂�), x ∈ �
c
.
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If � has a Ck-boundary with k ∈ N with k ≥ 2, one verifies by virtue of uniform inner and
outer ball properties of ∂�, that there exists ε > 0 such that with

Uε := {x ∈ R
d : |δ(x)| < ε}

one has δ ∈ Ck(Uε) and that for every point x ∈ Uε there exists a unique point a(x) ∈ ∂�

such that

x = a(x) + δ(x)n(a(x)),

where n denotes the outward unit normal to ∂�. Thus, in the neighborhood Uε, every point
x can be represented uniquely by the new coordinates a(x) and δ(x). To proceed, we intro-
duce some further geometric notions. A function u ∈ L1(∂�) is weakly differentiable if its
composition with the coordinate chart is weakly differentiable in R

d−1. For such functions
one can define the tangential gradient ∇Tu of u (see, e.g., the exposition in [55, Sec. 1.3]).
The tangential gradient has the property, that for functions u which are smooth enough and
defined in a neighborhood of ∂� one has

∇u(x) = ∇Tu(x) + (n(x) · ∇u(x))n(x) (x ∈ ∂�).

Notice that ∇Tu(x) for x ∈ ∂� always lies in the tangent space at x if ∂� is smooth enough.
Similarly, we define a vector v ∈ C

d and x ∈ ∂� its tangential component vT to satisfy

vT = v − (n(x) · v)n(x). (2.5)

This will be used in Sect. 4.
Given a function g ∈ C1(∂�), then g can be extended to a function G on Uε by setting

G(x) := g(a(x)) (x ∈ Uε)

and [12, Eq. (2.14)] shows that

∇G(x) = (1 − δ(x)H(x))∇Tg(a(x)). (2.6)

Here, H denotes the extended Weingarten map, which is given by

H(x) = (Hi, j (x))
d
i, j=1 := ei · ∇Tn j (x)

and which is C2-regular if � has a C4-boundary. Notice that ei denotes the i th standard basis
vector of Rd .

Lemma 2.2 Let� be a bounded domain withC4-boundary. Then there exists u ∈ H1
0(�;Cd)

such that the trace of Pu to ∂� is a non-zero function.

Proof Notice that div : H1
0(�;Cd) → L2

0(�) is surjective by [20, Thm. III.3.1]. Conse-
quently, the range of �−1

N div is given by

R(�−1
N div) = R(�−1

N |L2
0(�)) = {u ∈ H2(�) : n · ∇u = 0 on ∂�}.

Now, if there exists u ∈ H2(�) with n · ∇u = 0 on ∂� and ∇u �= 0 on ∂�, set f := B�Nu
(with B being the Bogovskiı̆ operator) which lies in H1

0(�;Cd) and by virtue of (2.4) P f
satisfies R∂�(P f ) �= 0, where R∂� denotes the trace operator to ∂�. To construct such a
function u, let g : ∂� → C be a non-constant and smooth function and let η ∈ C∞

c (Uε) with
η = 1 in a neighborhood of ∂�. Extend g to Uε by setting

u(x) := g(a(x))η(x).
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The gradient of u is calculated by virtue of (2.6), leading to

∇u(x) = η(x)(1 − δ(x)H(x))∇Tg(a(x)) + g(a(x))∇η(x).

Clearly, the normal derivative of u vanishes on ∂�while its full gradient is non-zero since g is
non-constant on ∂�. Since η, δ, andH are at least C2-regular, it follows that u ∈ R(�−1

N div)
with ∇u not being constantly zero on ∂�.

2.7 Resolvent estimates

We continue by discussing some classical resolvent estimates in L2
σ (�) and H−1

σ (�) for the
operators A andA, and for Bμ and Bμ on L2

σ (�) andH−1
0,σ (�). In the case of Neumann-type

boundary conditions, we restrict ourselves to parameters that satisfy μ ∈ (−1, 1]. This is
due to the fact, that this ensures a certain coercivity of the sesquilinear form bμ. Indeed, by
[44, Prop. 4.1.2], for |μ| < 1 there exists κμ > 0 such that

Re(aαβ
jk (μ)ξβkξα j ) ≥ κμ|ξ |2 (ξ ∈ C

d×d). (2.7)

Here, we used the notation |ξ |2 := ∑d
α,β=1|ξαβ |2. Moreover, the same result ensures that in

the case μ = 1 there exists κ1 > 0 such that

Re(aαβ
jk (1)ξβkξα j ) ≥ κ1|ξ + ξ
|2 (ξ ∈ C

d×d). (2.8)

To proceed, define for θ ∈ [0, π) the sector in the complex plane

Sθ :=
{

(0,∞), if θ = 0

{z ∈ C \ {0} : |arg(z)| < θ}, if θ ∈ (0, π).

Notice, that by elementary trigonometry, one can prove that there exists Cθ > 0 depending
only on θ , such that

|z| + α ≤ Cθ |z + α| (z ∈ Sθ , α ≥ 0). (2.9)

Proposition 2.3 Let � ⊂ R
d , d ≥ 2, be a bounded Lipschitz domain and θ ∈ [0, π).

(1) It holds {0} ∪ Sθ ⊂ ρ(−A) ∩ ρ(−A). Moreover, there exists C > 0 depending only on
d and θ such that for all f ∈ L2

σ (�), all F ∈ H−1
σ (�), and all λ ∈ Sθ it holds

|λ|‖(λ + A)−1 f ‖L2
σ (�) + |λ|1/2‖∇(λ + A)−1 f ‖L2(�;Cd2 )

≤ C‖ f ‖L2
σ (�)

and

|λ|‖(λ + A)−1F‖H−1
σ (�)

+ |λ|1/2‖(λ + A)−1F‖L2
σ (�)

+ ‖∇(λ + A)−1F‖L2(�;Cd2 )
≤ C‖F‖H−1

σ (�)
.

(2) For all μ ∈ (−1, 1) it holds Sθ ⊂ ρ(−Bμ) ∩ ρ(−Bμ). Moreover, there exists C > 0
depending only on d, θ , and μ such that for all f ∈ L2

σ (�), all F ∈ H−1
0,σ (�), and all

λ ∈ Sθ it holds

|λ|‖(λ + Bμ)−1 f ‖L2
σ (�) + |λ|1/2‖∇(λ + Bμ)−1 f ‖L2(�;Cd2 )

≤ C‖ f ‖L2
σ (�)

and

|λ|‖(λ + Bμ)−1F‖H−1
0,σ (�)

+ |λ|1/2‖(λ + Bμ)−1F‖L2
σ (�)

+ ‖∇(λ + Bμ)−1F‖L2(�;Cd2 )
≤ C‖F‖H−1

0,σ (�)
.
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(3) For μ = 1 it holds Sθ ⊂ ρ(−B1) ∩ ρ(−B1). Moreover, there exists C > 0 depending
only on d, θ , the Lipschitz character of �, and diam(�) such that for all f ∈ L2

σ (�), all
F ∈ H−1

0,σ (�), and all λ ∈ Sθ it holds

|λ|‖(λ + B1)
−1 f ‖L2

σ (�) + |λ|1/2‖(D + D
)(λ + B1)
−1 f ‖L2(�;Cd×d ) ≤ C‖ f ‖L2

σ (�)

and

|λ|‖(λ + B1)
−1F‖H−1

0,σ (�)
+ |λ|1/2‖(λ + B1)

−1F‖L2
σ (�)

+ ‖(D + D
)(λ + B1)
−1F‖L2(�;Cd×d ) ≤ C‖F‖H−1

0,σ (�)
.

Recall that Du := (∂i u j )
d
i, j=1 denotes the Jacobian matrix of some function u.

Proof The statements on the resolvent set follow by the Lemma of Lax–Milgram. Indeed,
for λ ∈ Sθ one defines new sesquilinear forms

aλ(u, v) := λ

∫
�

u · v dx + a(u, v)

and analogously one defines bμ,λ. By (2.9), aλ becomes coercive. If |μ| < 1, then (2.9)
together with (2.7) implies the coercivity of bμ,λ. Finally, in the case μ = 1, one uses a
Korn-type inequality proved in [44, Prop. 11.4.2], to define an equivalent normonH1(�;Cd),
which is given by

‖u‖ := ‖u‖L2(�;Cd ) + ‖Du + [Du]
‖L2(�;Cd×d ).

Notice that the constants implicit in the equivalence of the norms depend on the Lipschitz
character of� and its diameter. In this case, the coercivity of b1,λ follows from (2.9) and (2.8).
The first inequalities of (1), (2), and (3) follow as usual by testing the resolvent equation by
the solution u and by employing (2.9), see, e.g., [55, Prop. 5.2.5]. Also the estimates on the
second and third terms in the second inequalities of (1), (2), and (3) follow by testing the
resolvent equations by the solution u. Finally, theH−1

σ (�)-estimate on |λ|(λ+A)−1F =: |λ|u
follows by virtue of the resolvent equation and the estimates that were already established
before by

sup
v∈H1

0,σ (�)

‖v‖
H10≤1

∣∣∣λ ∫
�

u · v dx
∣∣∣ = sup

v∈H1
0,σ (�)

‖v‖
H10≤1

∣∣∣〈F, v〉H−1
σ ,H1

0,σ
−

∫
�

∇u · ∇v dx
∣∣∣ ≤ C‖F‖H−1

σ (�)
.

In (2) and (3) the remaining estimates follow analogously.

Remark 2.4 Notice that if � has a C∞-boundary and if f ∈ C∞
σ (�), then one shows by the

method of difference quotients (by using (2.7)) and localization that for μ ∈ (−1, 1) it holds
u ∈ C∞(�;Cd) and φ ∈ C∞(�).

2.8 Analytic semigroups and fractional powers

It is well-known, see, e.g., [13], that the resolvent estimates presented in Proposition 2.3 (1)
imply that −A and −A generate bounded analytic semigroups (e−t A)t≥0 and (e−tA)t≥0 on
L2

σ (�) or H−1
σ (�), respectively. By the real characterization of analytic semigroups [13,

Thm. II.4.6] it further holds

sup
t>0

‖t Ae−t A‖L(L2
σ (�)) < ∞ and sup

t>0
‖tAe−tA‖L(H−1

σ (�))
< ∞. (2.10)
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For ϑ ∈ (0, π/2) and r > 0 let γϑ,r denote the path that parameterizes B(0, r) ∪ Sϑ in
the counterclockwise direction. For t > 0 the operators e−t A and e−tA are then given by the
contour integrals

e−t A = 1

2π i

∫
γϑ,1/t

e−tλ(λ − A)−1 dλ and e−tA = 1

2π i

∫
γϑ,1/t

e−tλ(λ − A)−1 dλ.

(2.11)

These integrals converge in L(L2
σ (�)) and L(H−1

σ (�)), respectively, due to Proposi-
tion 2.3 (1). Using this representation also gradient estimates of the resolvent, cf. Proposi-
tion 2.3 (1), translate into gradient estimates of the corresponding semigroups, i.e., following
for example [58, Prop. 3.7] there exists C > 0 depending only on d and θ such that for all
t > 0

t1/2‖∇e−t A‖L(L2
σ (�),L2(�;Cd2 ))

+ t1/2‖e−tA‖L(H−1
σ (�),L2

σ (�))
≤ C . (2.12)

Besides analytic semigroups one can define for α > 0 the fractional powers Aα and Aα .
There is a counterpart of (2.10) for fractional powers reading for 0 < α < 1 as

sup
t>0

‖(t A)αe−t A‖L(L2
σ (�)) < ∞ and sup

t>0
‖(tA)αe−tA‖L(H−1

σ (�))
< ∞, (2.13)

which follows for example by (2.10) combined with the moment inequality [30, Prop. 6.6.4].
Since the sesquilinear form that is associated to A is symmetric [33, Thm. VI.2.23] yields
that

D(A1/2) = H1
0,σ (�). (2.14)

Moreover, [42, Thm. 5.1] implies that

D(Aα) = H2α
0,σ (�) if 1

4 < α < 1
2 and D(Aα) = H2α

σ (�) if 0 < α < 1
4 . (2.15)

To determine the fractional power domains of Aα for 1/4 < α ≤ 1/2 one can argue as
follows: As A is bijective, it follows that A1/2 is an isomorphism from H1

0,σ (�) onto L2
σ (�)

and by duality, (A1/2)∗ is an isomorphism from L2
σ (�) onto H−1

σ (�). A quick calculation,
cf. [9, Lem. 5.1] for the case d = 3, reveals that

A = (A1/2)∗ ◦ A ◦ (A−1/2)∗.

In other words, A and A are similar with respect to the isomorphism (A1/2)∗. Now, D(Aα)

is given by definition by R(A−α). The similarity implies that

A−α = (A1/2)∗ ◦ A−α ◦ (A−1/2)∗ ( 14 < α ≤ 1
2 ).

Thus, since (A−1/2)∗ is an isomorphism from H−1
σ (�) onto L2

σ (�), (2.14) and (2.15) imply
that

R(A−α) = (A1/2)∗H2α
0,σ (�).

Thus, v ∈ D(Aα) if and only if there exists u ∈ H2α
0,σ (�) such that v = (A1/2)∗u. To char-

acterize these functionals in terms of Sobolev regularity, notice that by the self-adjointness
of A on L2

σ (�), v is the functional

〈v,w〉H−1
σ ,H1

0,σ
= 〈u, A1/2w〉L2

σ ,L2
σ

= 〈Aαu, A1/2−αw〉L2
σ ,L2

σ
(w ∈ H1

0,σ (�)).
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By (2.15) it now follows that

|〈v,w〉H−1
σ ,H1

0,σ
| ≤ C‖Aαu‖L2

σ (�)‖w‖H1−2α
σ (�)

.

This implies that v ∈ H2α−1
σ (�). Finally, if v ∈ H2α−1

σ (�), define u := (A−1/2)∗v and
conclude that u ∈ H2α

0,σ (�) by an interpolation argument (the case α = 1/2 is clear so that

we assume 1/4 < α < 1/2). Indeed, (A−1/2)∗ is bounded from H−1
σ (�) onto L2

σ (�) and
its restriction to L2

σ (�) (this restriction is the operator A−1/2) is bounded from L2
σ (�) onto

H1
0,σ (�). The complex interpolation space [H−1

σ (�),L2
σ (�)]2α is calculated by the duality

rule (notice that we identify L2
σ (�) � L2

σ (�)∗) and [42, Thm. 2.12] by[
H−1

σ (�),L2
σ (�)

]
2α = [

L2
σ (�),H1

0,σ (�)
]∗
1−2α = H2α−1

σ (�).

Moreover, employing [42, Thm. 2.12] again yields[
L2

σ (�),H1
0,σ (�)

]
2α = H2α

0,σ (�).

It follows that (A−1/2)∗ is bounded fromH2α−1
σ (�) onto H2α

0,σ (�) and thus that u ∈ H2α
0,σ (�).

As a consequence, this reveals

D(Aα) = H2α−1
σ (�) if 1

4 < α ≤ 1
2 , (2.16)

where H0
σ (�) is identified with L2

σ (�).

3 On uniform pressure estimates

Having the theory on the Stokes operator from Sect. 2 at hand, one associates a pressure
function φ to a solution u as follows. Assume that F ∈ H−1(�;Cd), notice that F |H1

0,σ (�) ∈
H−1

σ (�), and let λ ∈ Sθ for some θ ∈ [0, π). By Proposition 2.3 there exists a unique
u := (λ + A)−1F |H1

0,σ
such that

〈G, v〉H−1,H1
0

:= 〈F, v〉H−1,H1
0
− λ

∫
�

u · v dx −
∫

�

∇u · ∇v dx = 0 (v ∈ H1
0,σ (�)).

Then G is a functional in H−1(�) which vanishes on C∞
c,σ (�) so that G must in fact be a

gradient. Indeed, by [51, Lem. II.2.2.2] there exists φ ∈ L2(�) with mean value zero such
that

λ

∫
�

u · v dx +
∫

�

∇u · ∇v dx −
∫

�

φ div(v) dx = 〈F, v〉H−1,H1
0

(v ∈ H1
0(�;Cd)).

(3.1)

In the case of Neumann-type boundary conditions, one proceeds similarly. As above, for
F ∈ H−1

0 (�;Cd) and u := (λ + Bμ)−1F |H1
σ
one finds ϑ ∈ L2(�) such that

λ

∫
�

u · v dx +
∫

�

aαβ
jk (μ)∂kuβ∂ jvα dx −

∫
�

ϑ div(v) dx = 〈F, v〉H−1
0 ,H1 (v ∈ H1

0(�;Cd )).

However, it would be desirable to lift this identity to hold for all v ∈ H1(�;Cd). As one
can expect, by the boundary condition given in (Neu), the pressure function is unique (in the
case of no-slip boundary conditions the pressure is unique up to an additive constant). Thus,
one must find a constant c ∈ C such that the identity above with ϑ replaced by φ := ϑ + c
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holds for all v ∈ H1(�;Cd). In fact, a way of how to construct this constant c is described
in the proof of [43, Thm. 6.8]. Thus, we record that there exists φ ∈ L2(�) such that

λ

∫
�
u · v dx +

∫
�
aαβ
jk (μ)∂kuβ∂ jvα dx −

∫
φ div(v) dx = 〈F, v〉H−1

0 ,H1 (v ∈ H1(�;Cd )).

(3.2)

Finally, notice that L2(�;Cd) naturally embeds into H−1(�;Cd) and H−1
0 (�;Cd). If F1

denotes the functional in H−1(�;Cd) identified with f ∈ L2(�;Cd) and if F2 denotes its
identification with an element in H−1

0 (�;Cd), we find by virtue of (2.2) and (2.3)

〈F1, v〉H−1,H1
0

=
∫

�

f · v dx =
∫

�

P f · v dx −
∫

�

g1 div(v) dx (v ∈ H1
0(�;Cd))

and

〈F2, v〉H−1
0 ,H1 =

∫
�

f · v dx =
∫

�

Q f · v dx −
∫

�

g2 div(v) dx (v ∈ H1(�;Cd)) (3.3)

for functions g1 ∈ H1(�) and g2 ∈ H1
0(�). Absorbing the functions g1 and g2, respectively,

into the pressure functions, one finds the identities

(λ + A)−1F1|H1
0,σ

= (λ + A)−1
P f and (λ + Bμ)−1F2|H1

σ
= (λ + Bμ)−1

Q f .

Consequently, solving the Stokes resolvent problem with a right-hand side f ∈ L2(�;Cd)

is the same as solving the Stokes resolvent problem with right-hand side P f (orQ f , respec-
tively) and one only changes the pressure by the gradient part inherent in f .

Given F ∈ H−1(�;Cd), we say that φ is the associated pressure to (Res) subject to (Dir)
with right-hand side F if φ ∈ L2

0(�) and if u := (λ + A)−1F |H1
0,σ

and φ satisfy (3.1).

Analogously, we proceed for Neumann-type boundary conditions but with the relation (3.2)
and without the requirement on the mean value.

For Neumann-type boundary conditions we have the following estimates on the pressure.

Proposition 3.1 Let � be a bounded Lipschitz domain such that �−1
D : L2(�) → H2(�) is

bounded. Let θ ∈ (0, π ] and μ ∈ (−1, 1]. There exists a constant C > 0 such that for all
f ∈ L2

σ (�) and λ ∈ Sθ the associated pressure φ ∈ L2(�) to (Res) subject to (Neu) with
right-hand side f satisfies

|λ|1/2‖φ‖L2(�) ≤ C‖ f ‖L2
σ (�). (3.4)

Furthermore, there exists a constant C > 0 such that for all F ∈ H−1
0 (�;Cd) and λ ∈ Sθ

the associated pressure φ ∈ L2(�) to (Res) subject to (Neu) and right-hand side F satisfies

‖φ‖L2(�) ≤ C‖F‖H−1
0 (�;Cd )

. (3.5)

Here, if � is bounded and convex and |μ| < 1, then the constants C > 0 depend at most
on d, θ , and μ. Furthermore, if μ = 1, then the constants further depend on the Lipschitz
character of � and its diameter.

Proof To prove (3.4) consider the test function v := ∇(−�D)−1φ, which lies in the orthog-
onal space to L2

σ (�) by (2.3). Thus, by (3.2) and the boundedness property of the Laplacian,
we infer in the case |μ| < 1∫

�

|φ|2 dx =
∫

�

φ div(v) dx =
∫

�

aαβ
jk (μ)∂kuβ∂ jvα dx ≤ C‖∇u‖L2(�;Cd2 )

‖φ‖L2(�).
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Ifμ = 1 one obtains the same but with ‖∇u‖L2(�;Cd2 )
replaced by ‖Du+[Du]
‖L2(�;Cd×d ).

The estimate is concluded by dividing by ‖φ‖L2(�) and by employing Proposition 2.3 (2)
or (3).

To establish (3.5) use the same test function. The only difference to the calculation above
is the behavior in λ of the terms ‖∇u‖L2(�;Cd2 )

and ‖Du + [Du]
‖L2(�;Cd×d ) and the fact,
that 〈F, v〉H−1

0 ,H1 does not vanish. However, it is estimated by the boundedness assumption
of the Laplacian as

|〈F, v〉H−1
0 ,H1 | ≤ ‖F‖H−1

0 (�;Cd )
‖v‖H1(�;Cd ) ≤ C‖F‖H−1

0 (�;Cd )
‖φ‖L2(�)

and the term ‖φ‖L2(�) is handled again by division.
Concerning the dependence of C on the quantities d , θ , and μ, notice that the only critical

quantity is the operator norm of ∇2�−1
D on L2. That this is bounded by a constant depending

only on d follows by [28, Eq. (3.1.2.2)].

Remark 3.2 (1) Notice that (3.4) does not hold if f ∈ L2(�;Cd) \L2
σ (�) since in this case

the pressure part g2 defined in (3.3) does not vanish. This gives a contribution that does
not even depend on λ.

(2) Since ∇u and the pressure are connected via the imposed boundary condition in (Neu),
it seems natural that the pressure and ∇u both have the same behavior in the resolvent
parameter λ.

To find out how the corresponding estimates for the Stokes resolvent problem subject to
no-slip boundary conditions look like will occupy the rest of this section. Notice that the
following proposition was proven (also in the Lp-situation) on bounded and smooth domains
in [47, Lem. 13] and on bounded Lipschitz domains in [58, Prop. 4.3]. We remark, that in
the case of bounded and smooth domains even the endpoint case α = 1/4 is known to be
true by an argument of Hishida and Shibata. This can be seen by following the proof of [31,
Eq. (3.12)].

Proposition 3.3 Let � be a bounded Lipschitz domain and θ ∈ (0, π]. For all 0 ≤ α < 1/4,
there exists a constant C > 0 such that for all f ∈ L2

σ (�) and λ ∈ Sθ the associated pressure
φ ∈ L2

0(�) to (Res) subject to (Dir) with right-hand side f satisfies

max{1, |λ|α}‖φ‖L2(�) ≤ C‖ f ‖L2
σ (�).

Proof. Let f ∈ L2
σ (�) and u ∈ D(A) with λu + Au = f . Notice that by (3.1) it holds

−�u + ∇φ = Au in the sense of distributions. Let B : L2
0(�) → H1

0(�;Cd) denote the
Bogovskiı̆ operator and define the test function v := Bφ. Then∫

�

|φ|2 dx =
∫

�

φ div(Bφ) dx = 〈∇u,∇Bφ〉L2,L2 − 〈Au, Bφ〉L2,L2 .

The first term on the right-hand side is estimated by the boundedness of B and by Proposi-
tion 2.3 (1) as

|〈∇u,∇Bφ〉L2,L2 | ≤ C |λ|−1/2‖ f ‖L2
σ (�)‖φ‖L2(�).

To bound the second term, use that Au = PAu, that P is self-adjoint, and that P maps the
Bessel potential space H2α(�;Cd) boundedly into D(Aα) whenever 0 ≤ α < 1/4 (this
follows by combining [42, Prop. 2.16] with [42, Thm. 5.1]). Thus, for 0 ≤ α < 1/4 it holds

|〈Au, Bφ〉L2,L2 | = |〈A1−αu, Aα
PBφ〉L2,L2 | ≤ C |λ|−α‖ f ‖L2

σ (�)‖φ‖L2(�).
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Notice that the estimate on A1−αu follows by writing u = (λ + A)−1 f and by using the
moment inequality [30, Prop. 6.6.4].

For the improved inequality for small λ, use the invertibility of the Stokes operator and
estimate

〈∇A−1Au,∇Bφ〉L2,L2 − 〈Au, Bφ〉L2,L2 ≤ C‖Au‖L2
σ (�)‖φ‖L2(�)

≤ C‖ f ‖L2
σ (�)‖φ‖L2(�).

Comparing this estimate with the corresponding estimate for Neumann-type boundary
conditions, one sees that there is a lack of an exponent of 1/4 in the decay rate as |λ| → ∞.
As the proof for the decay estimate for no-slip boundary conditions relied on the construc-
tion of an appropriate test function, one might wonder whether the test function was just a
“bad choice” and whether one could do better by choosing a more subtle test function. The
following proposition shows that this is not the case, i.e., the decay rate above is optimal.

Proposition 3.4 Let� be a bounded domain with C4-boundary, θ ∈ (π/2, π), and α > 1/4.
Then for all n ∈ N there exist fn ∈ L2

σ (�) and λn ∈ Sθ with |λn | ≥ 1 such that the pressure
function φn ∈ L2

0(�) corresponding to the problems (Res) and (Dir) with right-hand side fn
satisfies

|λn |α‖φn‖L2(�) > n‖ fn‖L2
σ (�).

Proof We argue by contradiction and assume without loss of generality that 1/4 < α ≤ 1/2.
Assume that there exists C > 0 such that for all f ∈ L2

σ (�), λ ∈ Sθ with |λ| ≥ 1, and the
to (Res) and (Dir) associated pressure φ it holds

|λ|α‖φ‖L2(�) ≤ C‖ f ‖L2
σ (�). (3.6)

Let u ∈ D(A) with λu + Au = f and notice by (3.1) that −�u + ∇φ = Au holds in the
sense of distributions. Employing Proposition 2.3 (1) and (3.6) it follows

|λ|α‖Au‖H−1(�;Cd ) ≤ |λ|α‖∇u‖L2(�;Cd2 )
+ |λ|α‖φ‖L2(�) ≤ C‖ f ‖L2

σ (�).

By duality, there exists C > 0 such that for all g ∈ H1
0(�;Cd) and λ ∈ Sθ with |λ| ≥ 1 it

holds

|λ|α‖A(λ + A)−1
Pg‖L2

σ (�) ≤ C‖g‖H1
0(�;Cd ). (3.7)

Similarly to [58, Prop. 3.7], use (3.7) and (2.11), to deduce a semigroup estimate of the form

t1−α‖Ae−t A
Pg‖L2

σ (�) ≤ C‖g‖H1
0(�) (0 < t ≤ 1). (3.8)

Next, we estimate for a natural number n ∈ N the term (t A)ne−t A
Pg. To this end, write

(t A)ne−t A
Pg = tαe− 1

n+1 t A(t Ae− 1
n+1 t A)n−1t1−αAe− 1

n+1 t APg. (3.9)

The first semigroup term in the product on the right-hand side is estimated by a combination
of the interpolation inequality ‖ · ‖H2α ≤ C‖ · ‖1−2α

L2 ‖∇ · ‖2α
L2 with the uniform boundedness

of the semigroup e−t A as a family on L2
σ (�) and the gradient estimate (2.12) as

tα‖e− 1
n+1 t Ah‖H2α(�;Cd ) ≤ C‖e− 1

n+1 t Ah‖1−2α
L2

σ (�)

(
t1/2‖∇e− 1

n+1 t Ah‖L2(�;Cd2 )

)2α
≤ C(n + 1)α‖h‖L2

σ (�).

(3.10)
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This holds for all h ∈ L2
σ (�). The term in the center of the product on the right-hand side

of (3.9) is estimated by (2.10) by

‖(t Ae− 1
n+1 t A)n−1h‖L2

σ (�) ≤ (C(n + 1))n−1‖h‖L2
σ (�) (h ∈ L2

σ (�)). (3.11)

Finally, the last term in (3.9) is estimated by using (3.8) yielding

‖t1−αAe− 1
n+1 t APg‖L2

σ (�) ≤ C(n + 1)1−α‖g‖H1
0(�;Cd ). (3.12)

Combining (3.9), (3.10), (3.11), and (3.12) and using that nn ≤ n!en (this follows from
Stirling’s formula) finally yields

‖(t A)ne−t A
Pg‖H2α(�;Cd ) ≤ (C(n + 1))n+1‖g‖H1

0(�;Cd ) ≤ (n + 1)!(Ce)n+1‖g‖H1
0(�;Cd ).

(3.13)

To proceed, let 0 < t ≤ 1 and s ∈ R with |s| being small enough. Since e−t A is an analytic
semigroup, it can be written by its Taylor expansion

e−(t+s)A =
∞∑
n=0

(−1)nsn

n! Ane−t A.

Combining this with (3.13) one finds by using (n + 1)! = (n + 1) · n! and (n + 1) ≤ 2n that

‖e−(t+s)A
Pg‖H2α(�;Cd ) ≤

∞∑
n=0

(n + 1)!(Ce)n+1

n!
|s|n
tn

‖g‖H1
0(�;Cd ) ≤ Ce

∞∑
n=0

(
2|s|Ce

t

)n

‖g‖H1
0(�;Cd ).

Now, assume that s satisfies the smallness condition |s| < t/(4Ce) to deduce that

‖e−(t+s)A
Pg‖H2α(�;Cd ) ≤ 2Ce‖g‖H1

0(�;Cd ).

Especially, if s = 0, this shows that the family of operators (e−t A
P)0<t≤1 is uniformly

bounded in the space L(H1
0(�;Cd),H2α(�;Cd)). To conclude the argument, let (tn)n∈N ⊂

(0, 1] converge to zero. Notice that e−t A
Pg → Pg in L2

σ (�) as t → 0 by the strong continuity
of the semigroup. Since (e−tn APg)n∈N is uniformly bounded in the space H2α(�;Cd), for
any 0 < ε ≤ 2α there exists a convergent subsequence in the space H2α−ε(�;Cd) by the
Theorem of Rellich and Kondrachov. Denoting the subsequence again by (tn)n∈N we have
that e−tn APg → Pg as n → ∞ in H2α−ε(�;Cd). Notice that 2α > 1/2 and choose ε small
enough such that 2α − ε > 1/2 holds. Now, the trace operator R∂� is well-defined on the
space H2α−ε(�;Cd) and it is continuous from H2α−ε(�;Cd) to L2(∂�;Cd). Consequently,

0 = lim
n→∞ R∂�(e−t A

Pg) = R∂�(Pg).

We thus proved that for any g ∈ H1
0(�;Cd) the trace of Pg to ∂� is zero. This contradicts

Lemma 2.2.

In the following, we do the same analysis for right-hand sides in H−1(�;Cd). We start
with the following lemma, relating an estimate on the L2-norm of φ to a corresponding
estimate on the H−1-norm of u.

Lemma 3.5 Let θ ∈ [0, π) and 0 ≤ α ≤ 1/2. Then the following are equivalent:

(1) There exists a constant C > 0 such that for all F ∈ H−1(�;Cd) and λ ∈ Sθ with
|λ| ≥ 1 the associated pressure φ ∈ L2

0(�) to (Res) subject to (Dir) and right-hand side
F satisfies

‖φ‖L2(�) ≤ C |λ|α‖F‖H−1(�;Cd ).
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(2) There exists a constant C > 0 such that for all F ∈ H−1(�;Cd) and λ ∈ Sθ with |λ| ≥ 1
the function u := (λ + A)−1F |H1

0,σ
satisfies

‖u‖H−1(�;Cd ) ≤ C |λ|α−1‖F‖H−1(�;Cd ).

Proof To prove (2)⇒ (1), use (3.1) and choose as a test function v := Bφ with B : L2
0(�) →

H1
0(�;Cd) being the Bogovskiı̆ operator. Indeed, this together with Proposition 2.3 (1) yields∫

�

|φ|2 dx = λ

∫
�

u · Bφ dx +
∫

�

∇u · ∇Bφ dx − 〈F, Bφ〉H−1,H1
0

≤ C
(
|λ|‖u‖H−1(�;Cd ) + ‖∇u‖L2(�;Cd2 )

+ ‖F‖H−1(�;Cd )

)
‖φ‖L2(�)

≤ C |λ|α‖F‖H−1(�;Cd )‖φ‖L2(�).

(3.14)

The estimate is concluded by dividing by ‖φ‖L2(�).
To prove (1) ⇒ (2), write by virtue of (3.1)

|λ| sup
v∈H1

0(�;Cd )

‖v‖
H10

≤1

∣∣∣ ∫
�

u · v dx
∣∣∣

= sup
v∈H1

0(�;Cd )

‖v‖
H10

≤1

∣∣∣ ∫
�

∇u · ∇v dx −
∫

�

φ div(v) dx − 〈F, v〉H−1,H1
0

∣∣∣

and conclude bymeans of Hölder’s inequality, Proposition 2.3 (1), and the presumed estimate
on the pressure.

We start by establishing of the actual estimates being valid and prove their sharpness
afterwards.

Proposition 3.6 Let�beaboundedLipschitz domain and θ ∈ (0, π]. For all1/4 < α ≤ 1/2,
there exists a constant C > 0 such that for all F ∈ H−1(�;Cd) and λ ∈ Sθ the associated
pressure φ ∈ L2

0(�) to (Res) subject to (Dir) and right-hand side F satisfies

‖φ‖L2(�) ≤ C max{1, |λ|α}‖F‖H−1(�;Cd ).

Proof First of all, notice that the calculation carried out in (3.14) already gives the uniform
boundedness of the constant for all λ ∈ Sθ with |λ| < 1 and thus, leaving us with the task to
prove estimates in the case |λ| ≥ 1. In this case, Lemma 3.5 reduces the problem to bound
the H−1-norm of u.

To this end, let F ∈ H−1(�;Cd) and u := (λ + A)−1F |H1
0,σ

. Since u ∈ L2
σ (�) and P is

self-adjoint one finds

λ

∫
�

u · v dx = λ

∫
�

u · Pv dx .

By [42, Prop. 2.16], P maps H1−2α(�;Cd) boundedly into H1−2α
σ (�), so that∣∣∣λ ∫

�

u · Pv dx
∣∣∣ ≤ C |λ|‖u‖H2α−1

σ (�)
‖v‖H1

0(�;Cd ).

Since the space H2α−1
σ (�) coincides with D(Aα), compare (2.16), one finds

|λ|‖u‖H2α−1
σ (�)

≤ C |λ|‖Aα(λ + A)−1F |H1
0,σ

‖H−1
σ (�)

≤ C |λ|α‖F |H1
0,σ

‖H−1
σ (�)

.

Now, the continuous inclusion H−1(�;Cd) ↪→ H−1
σ (�) concludes the proof.
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Remark 3.7 Whether or not the bound in Proposition 3.6 holds for α = 1/4 in bounded and
smooth domains is to the best knowledge of the author not known.

Finally, we prove that this bound is in fact sharp.

Proposition 3.8 Let � be a bounded domain with C4-boundary, θ ∈ (π/2, π), and 0 ≤ α <

1/4. Then for all n ∈ N there exist Fn ∈ H−1(�;Cd) and λn ∈ Sθ with |λn | ≥ 1 such
that the pressure function φn ∈ L2

0(�) corresponding to the problems (Res) and (Dir) with
right-hand side Fn satisfies

‖φn‖L2(�) > n|λn |α‖Fn‖H−1(�;Cd ).

Proof We argue by contradiction. Hence by virtue of Lemma 3.5, we assume that there exists
0 ≤ α < 1/4 and C > 0 such that for all F ∈ H−1(�;Cd) and λ ∈ Sθ with |λ| ≥ 1 it holds

‖(λ + A)−1F |H1
0,σ

‖H−1(�;Cd ) ≤ C |λ|α−1‖F‖H−1(�;Cd ).

By duality and (2.1), there exists C > 0 such that for all λ ∈ Sθ with |λ| ≥ 1 and all
g ∈ H1

0(�;Cd) it holds

|λ|1−α‖(λ + A)−1
Pg‖H1

0,σ (�) ≤ C‖g‖H1
0(�;Cd ). (3.15)

Following the proof of [58, Prop. 3.7], the estimate (3.15) in combination with (2.11) lead to
the semigroup estimate

tα‖e−t A
Pg‖H1

0,σ (�) ≤ C‖g‖H1
0(�;Cd ) (0 < t ≤ 1). (3.16)

Next, we estimate the term (t A)ne−t A
Pg as in the proof of Proposition 3.4 for a natural

number n ∈ N and 0 < t ≤ 1. To this end, write

(t A)ne−t A
Pg = t1−αA1/2e− 1

n+1 t A(t Ae− 1
n+1 t A)n−1A1/2tαe− 1

n+1 t APg. (3.17)

The first term in the product on the right-hand side is estimated by means of the interpolation
inequality ‖ · ‖H1−2α ≤ C‖ · ‖2α

L2‖∇ · ‖1−2α
L2 , the uniform boundedness of the semigroup e−t A

as a family on L2
σ (�), the gradient estimate (2.12), and (2.13). Indeed, for all h ∈ L2

σ (�),
we have

t1−α‖A1/2e− 1
n+1 t Ah‖H1−2α(�;Cd )

≤ C
(
t1/2‖e− 1

2(n+1) t A A1/2e− 1
2(n+1) t Ah‖L2

σ (�)

)2α(
t‖∇e− 1

2(n+1) t A A1/2e− 1
2(n+1) t Ah‖L2(�;Cd2 )

)1−2α

≤ C(n + 1)1/2−α
(
t1/2‖A1/2e− 1

2(n+1) t Ah‖L2
σ (�)

)2α(
t1/2‖A1/2e− 1

2(n+1) t Ah‖L2
σ (�)

)1−2α

≤ C(n + 1)1−α‖h‖L2
σ (�).

(3.18)

The second term in the product in (3.17) was already estimated in (3.11). The third term in
the product in (3.17) is finally estimated, by using (2.14) and (3.16) by

‖A1/2tαe− 1
n+1 t APg‖L2

σ (�) ≤ tα‖e− 1
n+1 t APg‖H1

0,σ (�) ≤ C(n + 1)α‖g‖H1
0(�;Cd ). (3.19)

Combining (3.17), (3.18), (3.11), (3.19), and using nn ≤ n!en (this follows from Stirling’s
formula) finally yields

‖(t A)ne−t A
Pg‖H1−2α(�;Cd ) ≤ (C(n + 1))n+1‖g‖H1

0(�;Cd ) ≤ (n + 1)!(Ce)n+1‖g‖H1
0(�;Cd ).
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The rest of the contradiction argument follows exactly the lines below (3.13) in the proof of
Proposition 3.4 and is thus omitted.

Recall that in order to derive the estimates in the case of Neumann-type boundary condi-
tions in Proposition 3.1 it was needed that solutions to the Poisson problem with right-hand
side in L2(�) admit H2-regularity. Thus, this proof cannot be carried out on general bounded
Lipschitz domains. However, as all objects appearing in the estimate in Proposition 3.1 exist
if the boundary of � is merely Lipschitz. Thus, one might wonder whether Proposition 3.1
is true on general Lipschitz domains. Unfortunately, it seems hard to deduce the validity of
these estimates by approximating the Lipschitz domain by smooth domains as the constants
in the respective estimate blow up. If one wants to prove Stokes resolvent estimates in Lp

for Neumann-type boundary conditions on mere Lipschitz domains, it would be tempting to
imitate Shen’s proof [50] carried out for no-slip boundary conditions. As it was described in
the introduction, a corresponding weak reverse Hölder estimate might look as (1.6) but on
general Lipschitz domains with p := 2d/(d−1). It was further described in the introduction,
that an estimate of the form presented in Proposition 3.1 would help to achieve these resol-
vent estimates. In view of this, it would be interesting to know the answer to the following
problem.

Problem 3.9 Prove or disprove the validity of (3.4) if � is a bounded Lipschitz domain.

4 Regularity estimates in convex domains

If � is a bounded and convex domain, it is well-known that weak solutions to the Poisson
problem with homogeneous Dirichlet or Neumann boundary conditions and right-hand side
in L2(�) admit H2-regularity. To understand a rough sketch of its proof, we need to introduce
some notions from geometry.

If � ⊂ R
d is a bounded domain with C2-boundary (not necessarily convex), and if after

a suitable translation and rotation of � the function ϕ : Rd−1 → R locally describes the
boundary of � around the point p = (0, ϕ(0)), then, if the rotation is chosen such that
∇ϕ(0) = 0, the second fundamental form Ip at this boundary point is the sesquilinear form
given by

Ip(ξ ; η) = ∂2ϕ(0)

∂x j ∂xk
ξ jηk (ξ, η ∈ C

d−1).

Notice that Ip(·; ·) is conjugate symmetric and thus Ip(ξ ; ξ) is a real number for each ξ ∈
C
d−1. If � is convex and if � locally lies below the graph of ϕ, then −ϕ is convex and thus

the second fundamental form is non-positive, which means that

Ip(ξ ; ξ) ≤ 0 (ξ ∈ C
d−1). (4.1)

Furthermore, if Ip denotes the matrix associated to the sesquilinear form Ip(·; ·), then con-
vexity of � implies that its trace satisfies

tr(Ip) ≤ 0. (4.2)

In the following, we skip the subscript p and keep in mind, that the second fundamental form
varies from boundary point to boundary point.

To understand why the domain of the Laplacian embeds into H2 in convex domains, the
following formula of integration by parts due to Grisvard is eminent [28, Thm. 3.1.1.1].
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Notice that in [28, Thm. 3.1.1.1] this formula is derived for real-valued functions, however,
a short analysis of its proof reveals the following formulation for complex-valued functions.
Here and below, σ generically denotes the surfacemeasure of a set with a Lipschitz boundary.
Recall further the notation vT for the tangential component of a vector v introduced in (2.5).

Theorem 4.1 Let � ⊂ R
d be a bounded domain with C2-boundary and let v ∈ C∞(�;Cd).

Then, ∫
�

|div(v)|2 dx −
∫

�

∂ jvi∂iv j dx = −
∫

∂�

2Re(vT · ∇T(v · n)) dσ

−
∫

∂�

(
I(vT; vT) + (tr I)|v · n|2) dσ.

There is also a counterpart of Theorem 4.1 for piecewise C2-domains, see [28,
Thm. 3.1.1.2] for real-valued functions. To state the theorem, we adopt the definition by
Grisvard, that a bounded Lipschitz domain � is said to be piecewise C2-regular if there exist
�0, �1 ⊂ ∂� with ∂� = �0 ∪ �1 and where �0 has surface measure zero and for each
x ∈ �1 the boundary of ∂� can be described as the graph of a C2-function in a neighborhood
of x .

Theorem 4.2 Let � ⊂ R
d be a bounded domain with a piecewise C2-boundary and let

v ∈ C∞(�;Cd). Then,∫
�

|div(v)|2 dx −
∫

�

∂ jvi∂iv j dx =
∫

�1

(
divT([v · n]vT) − 2Re(vT · ∇T(v · n))

)
dσ

−
∫

�1

I(vT; vT) + (tr I)|v · n|2 dσ.

To deduce that weak solutions to the equation −�u = f with Dirichlet or Neumann
boundary conditions lie in H2(�) if � is bounded and convex, let first � be a bounded,
convex, and smooth domain. If f ∈ C∞(�;R), then u ∈ C∞(�;R) by higher regularity of
the Laplacian. Take v := ∇u and apply Theorem 4.1 together with (4.1) and (4.2) to deduce∫

�

|div(v)|2 dx ≥
∫

�

∂ jvi∂iv j dx − 2
∫

∂�

vT · ∇T(v · n) dσ.

A computation of the first term on the right-hand side yields∫
�

∂ jvi∂iv j dx =
d∑

i, j=1

∫
�

|∂i∂ j u|2 dx

and since div(v) = − f , it remains to understand what the boundary integral does. Here,
the boundary conditions enter the game. If u satisfies homogeneous Dirichlet boundary
conditions, i.e., u = 0 on ∂�, then vT = ∇Tu = 0 and if u satisfies homogeneous Neumann
boundary conditions, then v · n = n · ∇u = 0. Hence, by Theorem 4.1, we infer that∫

�

| f |2 dx ≥
d∑

i, j=1

∫
�

|∂i∂ j u|2 dx .

By density, one obtains this estimate for all f ∈ L2(�). Finally, since the constant in
this inequality is one, in particular, it is independent of properties of the boundary, one
can conclude the H2-regularity for general bounded convex domains by an approximation
argument.
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Remark 4.3 Let us explain the approximation of a bounded and convex domain by a sequence
of smooth, bounded, and convex domains (�k)k∈N with �k ⊂ �k+1 and

⋃
k∈N �k = � in

more detail.
Let� be a bounded and convex domain and assume without loss of generality that 0 ∈ �.

For k ∈ N let Kk denote the closure of (1−2−k)� and notice that Kk ⊂ (1−2−(k+1))� and
that Kk is a compact and convex set. In this situation, [32, Lem. 2.3.2] provides us with a
compact and convex set Ck with smooth boundary that satisfies Kk ⊂ Ck ⊂ (1−2−(k+1))�.
Now, let �k be defined as the interior of Ck .

One could also ask, whether the sets are uniform in certain properties. For example,
for all k ∈ N it holds 1

2� ⊂ �k ⊂ � so that diam(�)/2 ≤ diam(�k) ≤ diam(�).
Another property is a uniform d-set property, which is the following: Let r0 > 0 be such
that B := B(0, r0) ⊂ 1

2� so that B ⊂ �k for all k ∈ N. Let x0 ∈ ∂�k . Since �k is
convex, for all t ∈ [0, 1) and x ∈ B the points (1 − t)x + t x0 are contained in �k . This
implies that �k contains a cone with vertex at x0, height h = |x0| ≥ r0, and opening angle
ω = 2 arctan(r0/|x0|). Since |x0| ≤ diam(�) we find ω ≥ 2 arctan(r0/ diam(�)). Thus, if
Q(x0, r) is a cube centered in x0 and diameter 0 < r ≤ 2r0, then there exists a constant
C > 0 depending only on r0, diam(�), and d such that

|Q(x0, r) ∩ �k | ≥ Crd . (4.3)

Notice that if R0 > r0, then for all 2r0 < r ≤ 2R0 it holds

|Q(x0, r) ∩ �k | ≥ |Q(x0, r0) ∩ �k | ≥ Crd0 = Crd0
(2R0)d

rd .

Thus, we can assume that for all R0 > 0 there exists a constant C > 0 depending only on
r0, R0, diam(�), and d such that for all k ∈ N and all x0 ∈ ∂�k the inequality (4.3) holds.

Let � again be a bounded convex domain with smooth boundary. If u and φ satisfy⎧⎪⎨
⎪⎩

−�u + ∇φ = f in �

div(u) = 0 in �

u = 0 on ∂�,

with f being smooth up to the boundary, one could try to imitate the calculations for the
Laplacian above. To this end, there are at least two obvious choices for v. Fix 1 ≤ β ≤ d .
For the first choice, define vβ := ∇uβ . Clearly, all boundary integrals as well as the integral
involving the mixed product can be handled as above. However, div(vβ) = − fβ + ∂βφ, so
that the gradient of the pressure appears on the right-hand side of the inequality, which is an
unfortunate situation.

Another choice for v should incorporate that div(v) = − fβ . For the βth component of
the equation, this is accomplished by choosing vβ := ∇uβ − φeβ , where eβ denotes the βth
unit basis vector. Moreover, convexity deals with the terms involving the second fundamental
form, and one directly verifies that the mixed product (for β fix) computes as

∂ j (vβ)i∂i (vβ) j = ∂i∂ j uβ∂i∂ j uβ + |∂βφ|2 − 2∇∂βuβ · ∇φ.

Next, a summation over β yields due to the solenoidality of u (notice that we now sum over
repeated indices as usual)

∂ j (vβ)i∂i (vβ) j = ∂i∂ j uβ∂i∂ j uβ + |∇φ|2.
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Altogether, we find

∫
�

| f |2 ≥
d∑

i, j,β=1

∫
�

|∂i∂ j uβ |2 dx +
∫

�

|∇φ|2 dx − 2
∫

∂�

(vβ)T · ∇T(vβ · n) dσ.

Unfortunately, one cannot simply conclude that the boundary integral vanishes as nothing is
known about the trace of the pressure on the boundary of�. However, imposing for example
the Neumann-type boundary condition

n · ∇u − φn = 0

seems to be better suited for this approach as in this case the function vβ turns out to have
the additional property that vβ · n = 0 on ∂�. For more general Neumann-type boundary
conditions and the resolvent problem this is made precise in the following theorem.

Theorem 4.4 Let � ⊂ R
d , d ≥ 2, be a bounded convex domain, μ ∈ (−1,

√
2 − 1), and

θ ∈ (0, π). Then for all λ ∈ Sθ and all f ∈ L2(�;Cd) the weak solutions u and φ to (Res)
subject to (Neu) satisfy u ∈ H2(�;Cd) and φ ∈ H1(�). Moreover, there exists C > 0
depending only on d, μ, and θ such that

|λ|
∫

�

|∇u|2 dx +
∫

�

|∇2u|2 dx +
∫

�

|∇φ|2 dx ≤ C

( ∫
�

| f |2 dx + |λ|2
∫

�

|u|2 dx
)

.

Proof Assume first that � has a C∞-boundary and that f ∈ C∞
c (�;Cd). Then, by virtue of

Remark 2.4, the functions u and φ are smooth up to the boundary. Fix 1 ≤ β ≤ d and define

vβ := ({δlkδαβ + μδlβδkα}∂luα − δkβφ
)d
k=1. (4.4)

Since u and φ solve (Res) one readily verifies that

div(vβ) = {δlkδαβ + μδlβδkα}∂k∂luα − δkβ∂kφ = ∂l∂luβ + μ∂β∂αuα − ∂βφ = λuβ − fβ.

(4.5)

Moreover,

n · vβ = nk{δlkδαβ + μδlβδkα}∂luα − nkδkβφ = nk∂kuβ + μnk∂βuk − φnβ, (4.6)

which coincides with the βth component of

{Du + μ[Du]
}n − φn

and thus vanishes on the boundary. The mixed product is calculated as follows (note that we
also sum over β in this calculation so that in particular ∂βuβ = 0)

∂ j (vβ)i∂i (vβ) j = {[δli δαβ + μδlβδiα]∂ j∂l uα − δiβ∂ jφ
}{[δl ′ j δα′β + μδl ′βδ jα′ ]∂i∂l ′uα′ − δ jβ∂iφ

}
= ∂ j∂i uβ∂i∂ j uβ + 2μRe(∂ j∂i uβ∂i∂βu j ) + μ2∂ j∂βui∂i∂βu j − 2μRe(∂β∂βui∂iφ)

+ ∂βφ∂βφ.

Relabelling the index variables yields

∂ j∂βui∂i∂βu j = 1

2
∂ j∂βui∂i∂βu j + 1

2
∂i∂βu j∂ j∂βui = Re(∂ j∂βui∂i∂βu j ).
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Next, use that ∂β∂βui = λui − fi + ∂iφ to deduce

∂ j (vβ)i∂i (vβ) j = ∂ j∂i uβ∂i∂ j uβ + (2μ + μ2)Re(∂ j∂i uβ∂i∂βu j ) + (1 − 2μ)∂βφ∂βφ

+ 2μRe( fi∂iφ) − 2μRe(λui∂iφ).

(4.7)

Finally, Young’s inequality implies

(2μ + μ2)Re(∂ j∂i uβ∂i∂βu j ) ≥ −|2μ + μ2|
2

∂ j∂i uβ∂ j∂i uβ − |2μ + μ2|
2

∂i∂βu j∂i∂βu j

= −|2μ + μ2|∂ j∂i uβ∂ j∂i uβ .

(4.8)

Use the two rightmost representations of div(vβ) in (4.5) and an integration by parts together
with the fact that n · vβ = 0 on ∂� (due to (4.6) and the imposed boundary condition), the
representation of vβ in (4.4), and the solenoidality of u to deduce

d∑
β=1

∫
�

|div(vβ)|2 dx =
∫

�

div(vβ){λuβ − fβ} dx

= −λ

∫
�

(vβ)k∂kuβ dx −
∫

�

{∂l∂luβ + μ∂β∂αuα − ∂βφ} fβ dx

= −λ

∫
�

{∂kuβ + μ∂βuk}∂kuβ dx −
∫

�

{∂l∂luβ − ∂βφ} fβ dx .

(4.9)

Finally, apply Theorem 4.1 with v = vβ and sum over β. By (4.7) and since the term in (4.6)
vanishes on the boundary one finds after rearranging terms

λ

∫
�

{∂kuβ + μ∂βuk}∂kuβ dx +
∫

�

∂i∂ j uβ∂i∂ j uβ dx + (2μ + μ2)

∫
�

Re(∂ j∂i uβ∂i∂βu j ) dx

+ (1 − 2μ)

∫
�

∂βφ∂βφ dx −
∫

∂�

I((vβ)T; (vβ)T) dσ

= −
∫

�

{∂l∂l uβ − ∂βφ} fβ dx − 2μ
∫

�

Re( fi∂iφ) dx + 2μ
∫

�

Re(λui∂iφ) dx .

(4.10)

Now, notice the following facts: if λ ∈ Sθ , then λ ∈ Sθ . If |μ| ≤ 1, then

{∂kuβ + μ∂βuk}∂kuβ = |∇u|2 + μRe(∂βuk∂kuβ) ≥ (1 − |μ|)|∇u|2 ≥ 0. (4.11)

If |2μ+μ2| < 1, then the sum of the second and third integrals on the left-hand side of (4.10)
is non-negative due to (4.8). If 1 − 2μ > 0, then the fourth integral on the left-hand side
of (4.10) is non-negative and finally, the convexity of � implies that the fifth integral is non-
positive. This results in the condition −1 < μ <

√
2− 1, which is the imposed condition on

μ. Thus, the left-hand side is of the form z + α for some z ∈ Sθ and α ≥ 0. Consequently,
by (2.9) there exists a constant Cθ > 0 depending only on θ , such that

|λ|
∫

�

{∂kuβ + μ∂βuk}∂kuβ dx +
∫

�

∂i∂ j uβ∂i∂ j uβ dx + (2μ + μ2)

∫
�

Re(∂ j∂i uβ∂i∂βu j ) dx

+ (1 − 2μ)

∫
�

∂βφ∂βφ dx −
∫

∂�

I((vβ)T; (vβ)T) dσ

≤ Cθ

(∫
�

(|�u| + (1 + 2|μ|)|∇φ|)| f | dx + 2|λ||μ|
∫

�

|u||∇φ| dx
)

.

123



154 Page 26 of 40 P. Tolksdorf

By virtue of (4.11), (4.8), and the convexity of � one finds

|λ|(1 − |μ|)
∫

�

|∇u|2 dx + (1 − |2μ + μ2|)
∫

�

|∇2u|2 dx + (1 − 2μ)

∫
�

|∇φ|2 dx

≤ Cθ

( ∫
�

(|�u| + (1 + 2|μ|)|∇φ|)| f | dx + 2|λ||μ|
∫

�

|u||∇φ| dx
)

.

The desired inequality now follows for f ∈ C∞
c (�;Cd) by an application ofYoung’s inequal-

ity and for f ∈ L2(�;Cd) by density.
To conclude the proof, we approximate an arbitrary bounded and convex domain � by

smooth, bounded, and convex domains �k as described in Remark 4.3. Let R�k denote the
restriction operator to�k ,Qk be theHelmholtz projection on�k , and Bμ,k the Stokes operator
subject to Neumann-type boundary conditions on �k . Define fk := R�k f ∈ L2(�k;Cd),
uk := (λ + Bμ,k)

−1
Qk fk , and define u := (λ + Bμ)−1

Q f . Then

λ

∫
�k

(u − uk) · (u − uk) dx +
∫

�k

aαβ
jl (μ)∂l (uβ − (uk)β)∂ j (uα − (uk)α) dx

= λ

∫
�k

u · u dx + (λ − λ)

∫
�k

uk · uk dx + λ

∫
�k

uk · uk dx − λ

∫
�k

uk · u dx − λ

∫
�k

u · uk dx

+
∫

�k

aαβ
jl (μ)∂l uβ∂ j uα dx +

∫
�k

aαβ
jl (μ)∂l(uk)β∂ j (uk)α dx

−
∫

�k

aαβ
jl (μ)∂l uβ∂ j (uk)α dx −

∫
�k

aαβ
jl (μ)∂l (uk)β∂ j uα dx

=
∫

�\�k

f · u dx −
(

λ

∫
�\�k

u · u dx +
∫

�\�k

aαβ
jl (μ)∂l uβ∂ j uα dx

)

+ (λ − λ)

∫
�k

(u − uk) · (u − uk) dx − (λ − λ)

∫
�k

(u − uk) · u dx −
∫

�k

(u − uk) · f dx .

Rearranging terms yields

λ

∫
�k

|u − uk |2 dx +
∫

�k

aαβ
jl (μ)∂l(uβ − (uk)β)∂ j (uα − (uk)α) dx

=
∫

�\�k

f · u dx −
(

λ

∫
�\�k

u · u dx +
∫

�\�k

aαβ
jl (μ)∂l uβ∂ j uα dx

)

− (λ − λ)

∫
�k

(u − uk) · u dx −
∫

�k

(u − uk) · f dx .

(4.12)

Since u ∈ H1(�;Cd) and f ∈ L2(�;Cd), we find by (2.7) and (2.9), that (u − uk)k∈N
defines a bounded sequence in L2(�;Cd) and (∇u − ∇uk)k∈N defines a bounded sequence
in L2(�;Cd2). Here, we regard u − uk and ∇u − ∇uk to be zero on � \ �k . Thus, there
exist subsequences (again denoted by the same indices) and weak limits v ∈ L2(�;Cd) and
w ∈ L2(�;Cd2), such that u − uk⇀v and ∇u − ∇uk⇀w as k → ∞. One directly verifies
that v is weakly differentiable with ∇v = w and that the distributional divergence of v is
zero. It follows that v ∈ H1

σ (�). Now, for ϕ ∈ H1
σ (�) one finds, since u and uk solve their
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respective equations, that

λ

∫
�

v · ϕ dx +
∫

�

aαβ
jl (μ)∂lvβ · ∂ jϕα dx

= λ lim
k→∞

∫
�k

(u − uk) · ϕ dx + lim
k→∞

∫
�k

aαβ
jl (μ)∂l(uβ − (uk)β) · ∂ jϕα dx

= 0.

In follows that v is zero. Going back to (4.12), one even finds that uk → u in H1
loc(�;Cd).

Since due to the first part of the proof, also the sequence (∇2uk)k∈N is bounded in L2(�;Cd3),
where ∇2uk is regarded to be zero in � \ �k , we find again by picking a weakly convergent
subsequence that u is in H2(�;Cd) and that

‖∇2u‖L2(�;Cd3 )
≤ lim inf

k→∞ ‖∇2uk‖L2(�k ;Cd3 )
. (4.13)

If φk denotes the pressure such that λuk − �uk + ∇φk = fk holds in �k (and satisfies the
appropriate boundary condition), thenwefindbyvirtue of (3.2)withϕk := ∇�−1

D χ�k (φ−φk)

where �D denotes the Dirichlet Laplacian on � that∫
�k

|φ − φk |2 dx

=
∫

�k

(φ − φk) div ϕk dx

= −
∫

�\�k

φ div ϕk dx + λ

∫
�

u · ϕk dx +
∫

�

aαβ
jl (μ)∂l uβ∂ j (ϕk)α dx

−
∫

�

f · ϕk dx −
(

λ

∫
�k

uk · ϕk dx +
∫

�k

aαβ
jl (μ)∂l(uk)β∂ j (ϕk)α dx

)

+
∫

�k

f · ϕk dx

= −
∫

�\�k

φ div ϕk dx + λ

∫
�\�k

u · ϕk dx +
∫

�\�k

aαβ
jl (μ)∂l uβ∂ j (ϕk)α dx

−
∫

�\�k

f · ϕk dx + λ

∫
�k

(u − uk) · ϕk dx+∫
�k

aαβ
jl (μ)∂l(uβ − (uk)β)∂ j (ϕk)α dx .

Since � is convex, it holds ‖∇ϕk‖L2(�;Cd2 )
≤ ‖φ − φk‖L2(�k )

. This implies by Poincaré’s
inequality and �k ⊂ � that ‖ϕk‖L2(�;Cd ) ≤ C diam(�)‖φ − φk‖L2(�k )

, where C > 0
depends only on d . Thus, by virtue of Young’s inequality, one can absorb ‖φ − φk‖L2(�k )

to the left-hand side of the inequality above so that the convergences proven above together
with the facts that φ, u, and f are L2-integrable on � yield that φ − φk → 0 as k → ∞ in
L2(�), where φ − φk is defined to be zero in � \ �k . Finally, since each φk lies in H1(�k)

and respects the estimate from the formulation of the theorem, we find that φ ∈ H1(�) and
that

‖∇φ‖L2(�) ≤ lim inf
k→∞ ‖∇φk‖L2(�k )

.

This proves the desired estimate for u and φ.
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Remark 4.5 For a similar approximation scheme in the case of no-slip boundary conditions
see [45].

Notice that the sectoriality of Bμ (by Proposition 2.3) implies the validity of the algebraic
and topological decomposition L2

σ (�)

L2
σ (�) = ker(Bμ) ⊕ R(Bμ),

where ker(Bμ) denotes the kernel of Bμ and R(Bμ) the range of Bμ. See [30, Prop. 2.2.1]
for the corresponding statement on the decomposition.

Corollary 4.6 Let� ⊂ R
d , d ≥ 2, be a bounded convex domain andμ ∈ (−1,

√
2−1). Then

for all u ∈ D(Bμ)∩R(Bμ) and the associated pressure φ one finds that u ∈ H2(�;Cd) and
φ ∈ H1(�). Moreover, there exists C > 0 depending only on d and μ such that∫

�

|∇2u|2 dx +
∫

�

|∇φ|2 dx ≤ C
∫

�

|Bμu|2 dx .

Proof First of all, notice that the statement below concerning the strong convergence of
resolvent operators follow from [30, Prop. 2.2.1]. Define f := Bμu. The solution u is
approximated by uλ := (λ+ Bμ)−1 f as λ ∈ Sπ/2 tends to zero. Indeed, since f = Bμu and
since u ∈ R(Bμ) by assumption, one has due to the sectoriality of Bμ, see Proposition 2.3,
that

uλ = Bμ(λ + Bμ)−1u → u in L2
σ (�) as λ → 0.

Furthermore, the sectoriality implies that Bμuλ tends to f inL2
σ (�) and aswell that λuλ → 0

tends to zero in L2
σ (�) as λ ∈ Sπ/2. The convergence of the associated pressures φλ in

L2(�) is proven as before by invoking Bogovskiı̆’s operator. Finally, the convergence in
the H2(�;Cd)- and H1(�)-norms of the respective sequences follows by employing the
inequality proven in Theorem4.4 and the fact that the “right-hand side” Bμuλ of the equations
for uλ and φλ tend to f inL2

σ (�). The desired inequality follows from Theorem 4.4 by taking
limits.

Problem 4.7 Prove or disprove Theorem 4.4 for μ ∈ {−1} ∪ [√2 − 1, 1].

In the case of no-slip boundary conditions, the H2-regularity is known in two and three
dimensions if convex polygonal/polyhedral domains are considered, see [10,34,40]. It would
be interesting to know if this property holds on arbitrary convex domains.

Problem 4.8 Prove or disprove Theorem 4.4 in the case of no-slip boundary conditions.

In the following, we start by working with cubes inRd . By this we mean a non-degenerate
cube of the form (a, b)d , i.e., its Lebesgue measure is non-zero and its sides are parallel to
the axes. Sometimes we will use the notation Q(x0, r) to denote a cube with center x0 and
diameter r . We continue by deriving local H2-estimates and start with a technical lemma.

Lemma 4.9 Let� ⊂ R
d be a bounded convex domain withC2-boundary and let Q be a cube.

Then Q ∩ � is piecewise C2-regular, i.e, there exist sets �0 and �1 such that ∂[Q ∩ �] =
�0 ∪ �1, where �0 has surface measure zero and where for each x ∈ �1 the boundary part
of Q ∩� is C2-regular in a neighborhood of x. In particular, �1 satisfies �1 ∩� ⊂ ∂Q ∩�.
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Proof First of all, notice that Q ∩ � is a bounded convex domain and thus in particular a
bounded Lipschitz domain, see [28, Cor. 1.2.2.3]. Notice that due to the Lipschitz boundary
of Q ∩� the surface measure is equivalent to the (d − 1)-dimensional Hausdorff measure in
R
d . To decompose the boundary of Q∩�, notice that elementary set theoretic manipulations

yield

∂(Q ∩ �) ⊂ ((∂Q) ∩ �) ∪ (Q ∩ (∂�)) = ((∂Q) ∩ �) ∪ (Q ∩ (∂�)).

Notice that any point in Q ∩ (∂�) has a neighborhood with an at least C2-regular boundary.
Thus, we consider (∂Q) ∩ � more closely.

LetN ⊂ ∂Q denote the edges of the cube Q. Clearly, its (d − 1)-dimensional Hausdorff
measure is zero. Let F ⊂ ∂Q be a face of Q (we consider F to be closed). Since F and �

are convex, also F ∩ � is convex. Notice that F ∩ � is congruent to a convex set in R
d−1.

As convex sets are Lipschitz regular, the boundary of F ∩ � (with respect to the subspace
topology of F) has zero (d − 1)-dimensional Hausdorff measure. If x is in the interior of
F ∩ � (with respect to the subspace topology of F) and if x /∈ N , then there is ε > 0 such
that F ∩ � ∩ B(x, ε) = F ∩ B(x, ε). Thus, in this neighborhood, F ∩ � can be represented
as the graph of a smooth function. Denote the boundary of F ∩ � taken with respect to the
subspace topology by ∂F (F ∩ �) and the interior by intF (F ∩ �) and define

�0 :=
(
N ∪

⋃
F face of Q

∂F (F ∩ �)
)

∩ ∂(Q ∩ �)

and

�1 :=
{ ⋃

F face of Q

(intF (F ∩ �) \ N ) ∪ (Q ∩ (∂�))

}
∩ ∂(Q ∩ �).

Notice that �1 ∩ � ⊂ ∂Q ∩ � holds by construction.

Lemma 4.10 Let � ⊂ R
d , d ≥ 2, be a bounded, convex, and smooth domain, θ ∈ (0, π),

and μ ∈ (−1,
√
2 − 1). Then there exists C > 0 depending only on d, μ, and θ such that

smooth functions (smooth up to the boundary) u : Q∩� → C
d and φ : Q∩� → C solving

λu−�u+∇φ = 0 and div(u) = 0 in Q ∩� and which satisfy {Du+μ[Du]
}n−φn = 0
on Q ∩ ∂� satisfy

|λ|
∫
Q∩�

|∇u|2 dx +
∫
Q∩�

|∇2u|2 dx +
∫
Q∩�

|∇φ|2 dx

≤ C

(
|λ|2

∫
Q∩�

|u|2 dx +
∫

(∂Q)∩�

(|∇2u||∇u| + |∇2u||φ| + |∇φ||∇u|

+ |∇φ||φ|) dσ)
.

Proof By Lemma 4.9, Q ∩ � is piecewise C2-regular with corresponding set �1 satisfying
�1 ∩ � ⊂ (∂Q) ∩ �. Thus, we are in the situation to apply Theorem 4.2 on the underlying
domain Q ∩ � and v := vβ defined by (4.4). The same calculation as in the first part of the
proof of Theorem 4.4 (but with an application of Theorem 4.2 instead of Theorem 4.1) yields
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the existence of a constant C > 0 depending only on d , μ, and θ such that

|λ|
∫
Q∩�

|∇u|2 dx +
∫
Q∩�

|∇2u|2 dx +
∫
Q∩�

|∇φ|2 dx

≤ C

(
|λ|2

∫
Q∩�

|u|2 dx +
∫

(∂Q)∩�

|∇vβ ||vβ | dσ
)

.

By definition of vβ this readily concludes the proof.

In the previous proposition we saw that a local H2-estimate can be achieved with the
drawback that highest-order terms appear in boundary integrals on the right-hand side of
the inequality. The following lemma (the so-called ε-lemma) will help us to absorb these
terms to the left-hand side and can be found in [25, Lem. 0.5]. Notice that the notation of
cubes Q(x0, r) used here differs from the one used in [25], so that our formulation is slightly
different.

Lemma 4.11 Let f , g, and h be non-negative functions inL1(Q), whereQ is a cube inRd and
let α > 0. There exists ε0 > 0, depending only on d and α, such that if for some 0 ≤ ε ≤ ε0
and some C1 = C1(ε) > 0 the estimate∫

Q(x0,r)
f dx ≤ C1

{
1

rα

∫
Q(x0,2r)

g dx +
∫
Q(x0,2r)

h dx

}
+ ε

∫
Q(x0,2r)

f dx

holds for all x0 ∈ Q and 0 < r <
√
d dist(x0, ∂Q), then there exists a constant C > 0,

depending only on d, α, and C1, such that∫
Q(x0,r)

f dx ≤ C

{
1

rα

∫
Q(x0,2r)

g dx +
∫
Q(x0,2r)

h dx

}
.

The following proposition finally provides us with a local higher-order estimate. For a
cubeQ with diameter R > 0 and center x0 and α > 0 we adopt the notation αQ for the cube
with same center and diameter αR.

Proposition 4.12 Let� ⊂ R
d , d ≥ 2, be a bounded, convex, and smooth domain, θ ∈ (0, π),

μ ∈ (−1,
√
2 − 1) and let Q be a cube with Q ∩ � �= ∅ and diameter R > 0. Then there

exists C > 0 depending only on d, μ, and θ such that smooth functions (smooth up to the
boundary) u : (2Q) ∩ � → C

d and φ : (2Q) ∩ � → C solving λu − �u + ∇φ = 0 and
div(u) = 0 in (2Q)∩� and which satisfy {Du +μ[Du]
}n−φn = 0 on (2Q)∩ ∂� satisfy

|λ|
∫
Q∩�

|∇u|2 dx +
∫
Q∩�

|∇2u|2 dx +
∫
Q∩�

|∇φ|2 dx

≤ C

(
|λ|2

∫
(2Q)∩�

|u|2 dx + 1

R2

∫
(2Q)∩�

(|∇u|2 + |φ|2) dx).

Proof Fix a cube Q ⊂ R
d with Q ∩ � �= ∅. Let Q := Q(x0, r) ⊂ R

d be a cube with center
x0 ∈ Q and diam(Q) = r that satisfies 0 < r <

√
d dist(x0, ∂Q). Let 1 < s < 2. By

Lemma 4.10 one finds

|λ|
∫
Q∩�

|∇u|2 dx +
∫
Q∩�

|∇2u|2 dx +
∫
Q∩�

|∇φ|2 dx

≤ |λ|
∫

(sQ)∩�

|∇u|2 dx +
∫

(sQ)∩�

|∇2u|2 dx +
∫

(sQ)∩�

|∇φ|2 dx

≤ C

(
|λ|2

∫
(2Q)∩�

|u|2 dx +
∫

(∂sQ)∩�

(|∇2u||∇u| + |∇2u||φ| + |∇φ||∇u| + |∇φ||φ|) dσ)
,
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where the constant C > 0 depends only on d , μ, and θ . An application of Young’s inequality
(this produces the factors rε and (rε)−1 for some ε > 0) followed by an integration over s
yields

|λ|
∫
Q∩�

|∇u|2 dx +
∫
Q∩�

|∇2u|2 dx +
∫
Q∩�

|∇φ|2 dx

≤ C |λ|2
∫

(2Q)∩�

|u|2 dx + C

rε

∫ 2

1

∫
(∂sQ)∩�

(|∇u|2 + |φ|2) dσ ds

+ rε
∫ 2

1

∫
(∂sQ)∩�

(|∇2u|2 + |∇φ|2) dσ ds.

Now, notice that the co-area formula, see [18, Thm. 3.2.12], implies that∫ 2

1

∫
∂sQ

g dσ ds ≤ Cco-area

r

∫
2Q

g dx

for all representatives g of a function g ∈ L1(Rd), whereCco-area > 0 is an absolute constant.
Choosing g in the first integral as E0(|∇u|2+|φ|2) and in the second integral as E0(|∇2u|2+
|∇φ|2), where E0 extends functions outside of (2Q) ∩ � by zero delivers

|λ|
∫
Q∩�

|∇u|2 dx +
∫
Q∩�

|∇2u|2 dx +
∫
Q∩�

|∇φ|2 dx

≤ C |λ|2
∫

(2Q)∩�

|u|2 dx + CCco-area

r2ε

∫
(2Q)∩�

(|∇u|2 + |φ|2) dx
+ εCco-area

∫
(2Q)∩�

(|∇2u|2 + |∇φ|2) dx .
The proof is concluded for ε small enough by an application of Lemma 4.11.

5 An Lp-extrapolation theorem suitable for subspaces of Lp

In classical Calderón–Zygmund theory, operators T associated to an integral kernel K (·, ·)
give rise to an Lp-bounded operator for all 1 < p < ∞ if T is bounded on L2 and if the kernel
K is a so-called standard kernel. The standard kernel property is some kind of cancellation
property of K , see [11, Def. 5.11]. If the operator T is either not associated to a kernel or
if one is only interested in whether T is bounded on Lp for p being merely in an interval
I ⊂ (1,∞), then one can replace the property that T is associated to a standard kernel by
weaker cancellation properties.

In this context, there are for example the Lp-extrapolation theorems of Shen [49] (if one
is interested to conclude the Lp-boundedness on an interval (2, q) with q > 2) or of Blunck
and Kunstmann [5] (if one is interested to conclude the Lp-boundedness on an interval (q, 2)
with q < 2). In the following, we will consider Shen’s theorem more closely and begin with
a formulation of his theorem which can be found in [55,57]. For its formulation, we denote
for a ball B with center x0 and radius r > 0 the ball with the same center and radius αr by
αB.

Theorem 5.1 Let � ⊂ R
d be Lebesgue-measurable, M > 0, and let T ∈ L(L2(�;Cm),

L2(�;Cn)) with ‖T ‖L(L2(�;Cm ),L2(�;Cn)) ≤ M.
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Suppose that there exist constants q > 2, R0 > 0, α2 > α1 > 1, and C > 0, where
R0 = ∞ if diam(�) = ∞, such that the following holds. Namely, for all B = B(x0, r)
with 0 < r < R0, whose center x0 is either such that x0 ∈ ∂� or satisfy α2B ⊂ �, and all
compactly supported f ∈ L∞(�;Cm) with f = 0 on � ∩ α2B the estimate

(
1

rd

∫
�∩B

|T f |q dx

) 1
q ≤ C

{(
1

rd

∫
�∩α1B

|T f |2 dx
) 1

2 + sup
B′⊃B

(
1

|B ′|
∫

�∩B′
| f |2 dx

) 1
2
}
(5.1)

holds. Here the supremum runs over all balls B ′ containing B.
Then for each 2 < p < q the restriction of T onto L2(�;Cm) ∩ Lp(�;Cm) extends to a

bounded linear operator from Lp(�;Cm) into Lp(�;Cn), with operator norm bounded by
a constant depending on d, p, q, α1, α2, C, and M, and additionally on R0 and diam(�) if
� is bounded.

In this theorem, the standard kernel property is replaced by the validity of (5.1). If� = R
d ,

then the proof builds on a good-λ argument. If � is not Rd , one can define an appropriate
operator on the whole space given by S f := E0T R� f , where E0 extends functions on �

by zero and R� restricts functions on the whole space to �. One can show, that if T satisfies
the assumptions of Theorem 5.1 on �, then S satisfies the assumptions of the same theorem
with � set to R

d , cf. [55, p. 78f]. If � = R
d , an analysis of the good-λ argument reveals

that (5.1) is used exactly once, namely, in order to deduce an inequality of the form

|{x ∈ Q : M2Q∗ (|T f |2)(x) > ι}|

≤ C

ι

∫
2α2Q∗

| f |2 dx + C |Q|
ιq/2

{(
1

|Q|
∫
2α2Q∗

|T f |2 dx
) 1

2 + sup
Q′⊃2Q∗

(
1

|Q′|
∫
Q′

| f |2 dx
) 1

2
}q

,

(5.2)

cf. [55, p. 76f]. Here, ι > 0 is arbitrary, Q is a cube in R
d , Q∗ is its “parent”, i.e., Q arises

from Q∗ by bisecting its sides, and M2Q∗ is the localized maximal operator

M2Q∗g(x) := sup
x∈R

R⊂2Q∗

1

|R|
∫
R
|g| dy (x ∈ 2Q∗),

where in the supremum R denotes a cube in R
d . To derive (5.2) from (5.1) and the L2-

boundedness of T , notice that (5.1) can equivalently be formulatedwith cubes instead of balls.
Then, f is decomposed as f = f χ2α2Q∗ + f χRd\2α2Q∗ , where χ denotes the characteristic
function of a set. This decomposition is used on the left-hand side of (5.2) to estimate

|{x ∈ Q : M2Q∗(|T f |2)(x) > ι}| ≤ |{x ∈ Q : M2Q∗(|T f χ2α2Q∗ |2)(x) > ι/4}|
+ |{x ∈ Q : M2Q∗(|T f χRd\2α2Q∗ |2)(x) > ι/4}|.

(5.3)

The first term on the right-hand side is controlled by the weak type-(1, 1) estimate of the
localized maximal operator and the L2-boundedness of T , yielding the first term on the right-
hand side of (5.2). The second term on the right-hand side is controlled by the embedding
Lq/2 ↪→ Lq/2,∞ and the Lq/2-boundedness of the localized maximal operator followed
by (5.1) and the L2-boundedness of T yielding the remaining terms on the right-hand side
of (5.2), cf. [55, p. 76f].
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Essentially, the only thing that happened in (5.3) was that T f was decomposed by means
of

T f = T f χ2α2Q∗ + T f χRd\2α2Q∗ . (5.4)

We would like to emphasize here that this decomposition of T f is induced by the linearity of
T and a decomposition of f . Clearly, one could imagine that other suitable decompositions
of T f into a sum of two functions exist and that these might not have anything to do with
a decomposition of f . Taking this into account in the formulation of the Lp-extrapolation
theoremmight yield a more flexible result. This could be an advantage if a certain structure of
f (such as solenoidality) is eminent andwhich is destroyed bymultiplication by characteristic
functions. This happens for example if one considers themap T : f �→ φ, where f is mapped
to the pressure function corresponding to the Stokes resolvent problem (Res) and (Neu). If f is
for example divergence-free, then T f enjoys the decay estimate presented in Proposition 3.1
while T f χ2α2Q∗ and T f χRd\2α2Q∗ enjoy no decay estimates at all by Remark 3.2. This
indicates the need of a formulation of Shen’s Lp-extrapolation theorem that does not rely on
a particular decomposition of T f and is presented below.

In the rest of this section, we discuss an adapted version of Theorem 5.1, where (5.1) is
replaced essentially by the validity of (5.2) (which has to be modified if � �= R

d ). To this
end, we say that Q∗ is the parent of a cube Q ⊂ R

d if Q arises from Q∗ by bisecting its
sides. Moreover, for x0 ∈ R

d and r > 0 let Q(x0, r) denote the non-degenerated cube in Rd

with center x0 and diam(Q(x0, r)) = r . Finally, for a number α > 0 denote by αQ the cube
Q(x0, αr). The discussion above together with an analysis of the proof of [49, Thm. 3.1]
readily shows the validity of the following theorem.

Theorem 5.2 Let 2 < p < q, f ∈ L2(Rd ;Cm) ∩ Lp(Rd ;Cm), and let T be an operator
(not necessarily linear) such that T ( f ) is defined and contained in L2(Rd ;Cn).

Suppose that there exist constants α > 1 and C > 0 such that for all ι > 0, all Q =
Q(x0, r) with r > 0 and x0 ∈ R

d , and all parents Q∗ of Q the estimate

|{x ∈ Q : M2Q∗ (|T ( f )|2)(x) > ι}|

≤ C
ι

∫
2αQ∗

| f |2 dx + C|Q|
ιq/2

{(
1

|Q|
∫
2αQ∗

|T ( f )|2 dx
) 1

2 + sup
Q′⊃2Q∗

(
1

|Q′|
∫
Q′

| f |2 dx
) 1

2
}q

,

(5.5)

holds. Here the supremum runs over all cubes Q′ containing 2Q∗.
Then there exists a constant C > 0 depending on d, p, q, α, and C such that

‖T ( f )‖Lp(Rd ;Cn) ≤ C‖ f ‖Lp(Rd ;Cm ).

Let T be an operator acting on functions defined on � for some Lebesgue-measurable
set � ⊂ R

d and let f ∈ L2(�;Cm) ∩ Lq(�;Cm). The following theorem is a direct
consequence of Theorem 5.2 when applied to the operator S := E0T R� and the function
E0 f ∈ L2(Rd ;Cm) ∩ Lq(Rd ;Cm).

Theorem 5.3 Let � ⊂ R
d be Lebesgue-measurable, 2 < p < q, f ∈ L2(�;Cm) ∩

Lp(�;Cm), and let T be an operator (not necessarily linear) such that T ( f ) is defined
and contained in L2(Rd ;Cn).
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Suppose that there exist constants α > 1 and C > 0 such that for all ι > 0, all Q =
Q(x0, r) with r > 0 and x0 ∈ R

d , and all parents Q∗ of Q with (2Q∗)∩� �= ∅ the estimate

|{x ∈ Q : M2Q∗(|E0T ( f )|2)(x) > ι}| ≤ C
ι

∫
(2αQ∗)∩�

| f |2 dx

+ C|Q|
ιq/2

{(
1

|Q|
∫

(2αQ∗)∩�

|T ( f )|2 dx
) 1

2 + sup
Q′⊃2Q∗

(
1

|Q′|
∫
Q′∩�

| f |2 dx
) 1

2
}q

,

(5.6)

holds. Here the supremum runs over all cubes Q′ containing 2Q∗.
Then there exists a constant C > 0 depending on d, p, q, α, and C such that

‖T ( f )‖Lp(�;Cn) ≤ C‖ f ‖Lp(�;Cm ).

6 Estimates on the resolvent on convex domains

In this section we verify the assumptions of Theorem 5.3 for a particular choice of operators
T . In the case of elliptic operators, a common way to do so is to establish the validity of
a Caccioppoli type estimate, which we establish now for the Stokes resolvent problem, see
also [55, Prop. 5.3.2], [8, Lem. 3.8], and [25, Thm. 1.1].

Lemma 6.1 Let θ ∈ [0, π), λ ∈ Sθ , x0 ∈ R
d , r > 0, and μ ∈ [−1, 1). Let u ∈

H1
σ (Q(x0, 2r) ∩ �) and φ ∈ L2(Q(x0, 2r) ∩ �) solve

λ

∫
Q(x0,2r)∩�

u · ϕ dx +
∫
Q(x0,2r)∩�

∇u · ∇ϕ dx −
∫
Q(x0,2r)∩�

φ div(ϕ) dx = 0

for all ϕ ∈ H1(Q(x0, 2r) ∩ �;Cd) with ϕ = 0 on (∂Q(x0, 2r)) ∩ �. Then there exists a
constant C > 0 depending only on θ and d such that

|λ|
∫
Q(x0,r)∩�

|u|2 dx +
∫
Q(x0,r)∩�

|∇u|2 dx

≤ C

r2

(
1

|λ|
∫
Q(x0,2r)∩�

|φ|2 dx +
∫
Q(x0,2r)∩�

|u|2 dx
)

.

Proof The proof follows literally the lines of [55, Prop. 5.3.2] (which proves this inequality
in the case of homogeneous Dirichlet boundary conditions on ∂�).

Another ingredient that is needed in the verification of the assumptions of Theorem 5.3
is Sobolev’s inequality on convex domains. This is obtained by combining [27, Lem. 7.16]
with either [27, Lem. 7.12] (in the case |1/p − 1/q| < 1/d) or [3, Thm. 3.1.4] (in the case
|1/p − 1/q| = 1/d).

Proposition 6.2 Let � ⊂ R
d be bounded and convex and let 1 ≤ p < q < ∞ satisfy

|1/p − 1/q| ≤ 1/d. Then there exists a constant C > 0 depending only on d, p, and q such
that for all u ∈ W1,p(�)( ∫

�

|u|q dx

) 1
q ≤ |�| 1q − 1

p

( ∫
�

|u|p dx

) 1
p

+ C |�| 1d −( 1
p − 1

q )−1 diam(�)d
( ∫

�

|∇u|p dx

) 1
p

.
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Now, we are in the position to present the proof of Theorem 1.1.

Proof of Theorem 1.1 We distinguish the cases 2 < p < 2d/(d − 2), 2d/(d + 2) < p < 2,
and p = 2. Notice that the case p = 2 readily follows by Propositions 2.3 and 3.1.

Case 1: It holds 2 < p < 2d/(d − 2)

Let � be a bounded and convex domain and let (�k)k∈N be the sequence of bounded,
convex, and smooth domains introduced in Remark 4.3. Let f ∈ C∞

σ (�k), let u be given
by u := (λ + Bμ,k)

−1 f , and let φ denote the associated pressure. Here Bμ,k denotes the
Stokes operator subject to Neumann-type boundary conditions on �k . Notice that u and φ

are smooth up to the boundary by Remark 2.4. We show that

Tλ f :=
⎛
⎝ |λ|u

|λ|1/2∇u
|λ|1/2φ

⎞
⎠

is uniformly bounded with respect to λ from Lp
σ (�k) to Lp(�k;Cd+d2+1)). To this end, we

show in the following that Tλ f satisfies (5.6) with q := 2d/(d − 2) in the case d ≥ 3 and
q > 2 arbitrary in the case d = 2. To obtain the uniform boundedness with respect to λ, we
need to verify (5.6) with involved constants independent of λ. Let Q = Q(x0, r) ⊂ R

d be a
cube with center x0 and diam(Q) = r that satisfies (2Q∗) ∩ � �= ∅. Then, we consider the
following three cases.

Case 1.1: It holds 2r >
√
d diam(Ä)

The conditions imposed on Q∗ and r imply that for all k ∈ Nwe have�k ⊂ 4Q∗. In this case,
use the weak-type (1, 1) estimate of the localized maximal operator and the L2-boundedness
of Tλ (cf. Propositions 2.3 and 3.1, notice that the constants only depend on d , θ , and μ) to
obtain

|{x ∈ Q : M2Q∗(|E0Tλ f |2)(x) > ι}| ≤ C

ι

∫
�k

|Tλ f |2 dx ≤ C

ι

∫
(4Q∗)∩�

| f |2 dx .

Case 1.2: It holds 2r ≤ √
d diam(Ä) and (2Q∗) ∩ @Äk �= ∅

Let y ∈ (2Q∗)∩∂�k and letQ := Q(y, 4r) ⊂ R
d be the cube with center y and diam(Q) =

4r . In this case, it holds 2Q∗ ⊂ Q. Define functions v and w as follows. Let B̃μ,k denote the
Stokes operator subject to Neumann-type boundary conditions on (8Q) ∩ �k . Notice that
the restriction of f to (8Q) ∩ �k is still in C∞

σ ((8Q) ∩ �k) and thus define

v := (λ + B̃μ)−1R(8Q)∩�k f and w := u − v,

where R(8Q)∩�k denotes the restriction operator to (8Q) ∩ �k . Analogously, define the
pressuresϑ associated to v and R(8Q)∩�k f andψ := φ−ϑ . Thus, in the sense of distributions
it holds ⎧⎪⎨

⎪⎩
λv − �v + ∇ϑ = R(8Q)∩�k f in (8Q) ∩ �k

div(v) = 0 in (8Q) ∩ �k

{Dv + μ[Dv]
}n − ϑn = 0 on ∂[(8Q) ∩ �k]
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and ⎧⎪⎨
⎪⎩

λw − �w + ∇ψ = 0 in (8Q) ∩ �k

div(w) = 0 in (8Q) ∩ �k

{Dw + μ[Dw]
}n − ψn = 0 on (8Q) ∩ ∂�k .

Here, n denotes the outward unit normal vector corresponding to the set (8Q) ∩ �k . Notice
that in (8Q) ∩ �k the identities u = v + w and φ = ϑ + ψ hold and that w and ϑ

are in general non-zero as there is no boundary condition on the remaining boundary part
∂[(8Q) ∩ �k] \ [(8Q) ∩ ∂�k] imposed. Let ṽ, ∇̃v, ϑ̃, w̃, ∇̃w, and ψ̃ denote the extensions
by zero to Rd . Then for ι > 0, we have

|{x ∈ Q : M2Q∗(|E0Tλ f |2)(x) > ι}|
≤ |{x ∈ Q : M2Q∗(||λ|̃v|2 + ||λ|1/2∇̃v|2 + ||λ|1/2ϑ̃ |2)(x) > ι/4}|

+ |{x ∈ Q : M2Q∗(||λ|w̃|2 + ||λ|1/2∇̃w|2 + ||λ|1/2ψ̃ |2)(x) > ι/4}|
=: I + II.

The first term is controlled by theweak-type (1, 1) estimate of the localizedmaximal operator
followed by Proposition 2.3 (2) and Proposition 3.1 yielding

I ≤ C

ι

∫
(2Q∗)∩�k

(||λ|v|2 + ||λ|1/2∇v|2 + ||λ|1/2ϑ |2) dx ≤ C

ι

∫
(32Q∗)∩�k

| f |2 dx,

where C > 0 depends only on d , θ , and μ.
Recall that q was chosen to be q := 2d/(d − 2) if d ≥ 3 and q > 2 arbitrary if d = 2.

The second term, II, is controlled by the embedding Lq/2(2Q∗) ↪→ Lq/2,∞(2Q∗), the Lq/2-
boundedness of the localized maximal operator, and the fact 2Q∗ ⊂ Q. Notice that the
constants in these estimates depend only on d and q so that

II ≤ C

ιq/2

∫
Q∩�k

(||λ|w|q + ||λ|1/2∇w|q + ||λ|1/2ψ |q) dx .
Next, apply Proposition 6.2 with � := Q ∩ �k combined with (4.3), to deduce

II ≤ C

ιq/2 r
d
{
r1−d/2|λ|1/2

( ∫
Q∩�k

(|λ||∇w|2 + |∇2w|2 + |∇ψ |2) dx) 1
2

+ r−d/2
( ∫

Q∩�k

(||λ|w|2 + ||λ|1/2∇w|2 + ||λ|1/2ψ |2) dx) 1
2
}q

.

(6.1)

Due to (4.3) the constant C > 0 also depends on diam(�) and on r0 > 0, where r0 is such
that B(0, r0) ⊂ �−{x} for some x ∈ �. The second term on the right-hand side is estimated
by virtue of u = v + w and φ = ϑ + ψ , Propositions 2.3 (2) and 3.1, and 8Q ⊂ 32Q∗ as

( ∫
Q∩�k

(||λ|w|2 + ||λ|1/2∇w|2 + ||λ|1/2ψ |2) dx) 1
2

≤
( ∫

Q∩�k

|Tλ f |2 dx
) 1

2 +
( ∫

Q∩�k

(||λ|v|2 + ||λ|1/2∇v|2 + ||λ|1/2ϑ |2) dx) 1
2

≤ C

{( ∫
(32Q∗)∩�k

|Tλ f |2 dx
) 1

2 +
( ∫

(32Q∗)∩�k

| f |2 dx
) 1

2
}
.

(6.2)
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The first term on the right-hand side in (6.1) is estimated by virtue of Proposition 4.12 as∫
Q∩�k

(|λ||∇w|2 + |∇2w|2 + |∇ψ |2) dx
≤ C

(
|λ|2

∫
(2Q)∩�k

|w|2 dx + 1

r2

∫
(2Q)∩�k

(|∇w|2 + |ψ |2) dx).

Employing Caccioppoli’s inequality, Lemma 6.1, to the first term on the right-hand side
finally delivers∫

Q∩�k

(|λ||∇w|2 + |∇2w|2 + |∇ψ |2) dx
≤ C

( |λ|
r2

∫
(4Q)∩�k

|w|2 dx + 1

r2

∫
(4Q)∩�k

(|∇w|2 + |ψ |2) dx).

(6.3)

Combining (6.1) and (6.3) one finds analogously to (6.2) that

II ≤ C

ιq/2

{( ∫
(32Q∗)∩�k

|Tλ f |2 dx
) 1

2 +
( ∫

(32Q∗)∩�k

| f |2 dx
) 1

2
}q

.

Case 1.3: It holds 2r ≤ √
d diam(Ä) and 2Q∗ ∩ @Äk = ∅

This case is treated similar as the previous case. The only difference is that there is no need to
introduce the cube Q, thus, by setting Q := 2Q∗ in Case 1.2, the proof is literally the same.

Conclusion of the proof of Case 1

Notice that the family {Tλ}λ∈Sθ is uniformly bounded from L2
σ (�k) into L2(�k;Cd+d2+1)

and that all estimates proven in Case 1 are uniform with respect to λ. Thus we conclude
by Theorem 5.3 that for all 2 < p < 2d/(d − 2) the family {Tλ}λ∈Sθ satisfies a uniform

boundedness estimate from Lp
σ (�k) into Lp(�k;Cd+d2+1) for all f ∈ C∞

σ (�k) and by
density for all f ∈ Lp

σ (�k). In particular, this holds true for each of the mappings

T 1
λ : f �→ |λ|u, T 2

λ : f �→ |λ|1/2∇u, and T 3
λ : f �→ |λ|1/2φ.

Now, by the approximation argument carried out in the proof of Theorem 4.4, the uniform
boundedness of these mappings also follows on the domain �.

Case 2: It holds 2d/(d + 2) < p < 2

To deduce the second case we argue by duality. Thus, let q := 2d/(d − 2) if d ≥ 3 and
let q > 2 if d = 2. Let again �k be a bounded, convex, and smooth domain introduced in
Remark 4.3. Let F ∈ C∞

c (�k;Cd×d) and let u be given by u := (λ + Bμ,k)
−1 div(F) and

let φ denote the associated pressure. Consider the operator

SλF :=
⎛
⎝|λ|1/2u

∇u
φ

⎞
⎠ .
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Notice that Sλ extends to a bounded operator from L2(�k;Cd×d) to L2(�k;Cd+d2+1) by
Propositions 2.3 and 3.1 and that its operator norm is bounded by a constant depending
merely on d , μ, and θ . For such a smooth F , the assumptions of Theorem 5.3 are verified
analogously to Case 1. It follows that each of the mappings

S1λ : F �→ |λ|1/2u, S2λ : F �→ ∇u, and S3λ : F �→ φ

gives rise to a uniformly bounded family of operators on Lr (�k) for each 2 < r < q . The
approximation argument carried out in the proof of Theorem 4.4, implies the uniform bound-
edness of these mappings on the domain �. By duality, we conclude from the boundedness
properties of the mapping T 1

λ from Case 1 and from the boundedness properties of S1λ that
there exists C > 0 such that for all λ ∈ Sθ and all f ∈ Lp

σ (�) it holds

‖λ(λ + Bμ)−1 f ‖Lp
σ (�) + |λ|1/2‖∇(λ + Bμ)−1 f ‖Lp(�;Cd2 )

≤ C‖ f ‖Lp
σ (�). (6.4)

The estimate on ∇(λ + Bμ)−1 div follows from the boundedness of S2λ and duality.

Remark 6.3 To control the pressure in Lp for 2d/(d + 2) < p < 2 is difficult. Intuitively,
one would employ (3.2) to write

‖φ‖Lp(�) = sup
g∈Lp′ (�)

‖g‖
Lp

′
(�)

≤1

∣∣∣ ∫
�

φ div∇�−1
D g dx

∣∣∣ = sup
g∈Lp′ (�)

‖g‖
Lp

′
(�)

≤1

∣∣∣ ∫
�

∇u · ∇∇�−1
D g dx

∣∣∣.

However, it is impossible to control ∇∇�−1
D g in Lp′

due to the counterexample in [19,
Prop. 2].
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