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Zusammenfassung

Entwicklung eines Modells zur Beschreibung
der Membrandynamik auf der Ebene von Organellen

Biomembranen sind allgegenwärtig in Zellen. Sie umhüllen nicht nur Organellen,
sondern bilden auch hochdynamische, komplexe Strukturen wie z.B. tubuläre,
schlauchartige Ausstülpungen oder verzweigte Netzwerke. Es ist eine heraus-
fordernde Aufgabe, die Dynamik dieser Membranen zu untersuchen, da deren
Deformationsprozesse auf relativ großen Zeit- und Längenskalen ablaufen. In
dieser Arbeit werden dynamische Änderungen der Form von Membranen mithilfe
von Computersimulationen betrachtet. Das verwendete Simulationsmodell ist ein
’dynamisch-trianguliertes’ (dynamically-triangulated) Membranmodell, welches auf
der Kontinuumbeschreibung des Helfrich-Hamiltonians basiert. Dieses Modell
ermöglicht es, größere Zeit- und Längenskalen zu untersuchen als mit atomistischen
oder ’vergröberten’ (coarse-grained) Simulationsmethoden.

Im ersten Teil der Arbeit wird das Modell dazu verwendet, tubuläre Ausstülpungen
von Vesikeln zu untersuchen, welche durch das Anlegen einer externen Kraft erzeugt
werden. Die Ergebnisse werden anschließend mit theoretischen Näherungen und
numerischen Energieminimierungen des Helfrich-Hamiltonians verglichen, welche
sich die Rotationssymmetrie des Systems zunutze machen. Dieser Vergleich zeigt eine
gute Übereinstimmung zwischen Theorie und Simulationen. Zusätzlich untersuchen
wir die Bildung und Verschmelzung mehrerer tubulärer Ausstülpungen an Vesikeln.
Im zweiten Teil der Arbeit liegt der Schwerpunkt auf der Bildung und Stabilität
rein tubulärer und verzweigter tubulärer Strukturen, die ebenfalls durch externe
Kräfte erzeugt werden. Wir beobachten, dass sobald die externe Kraft aufgehoben
wird, beide Systeme instabil sind und sich zurück bilden. Dies deutet darauf hin,
dass es in der Natur weitere Mechanismen zur Stabilisierung geben muss. Wir
können zeigen, dass tubuläre Strukturen in der Tat metastabil sind, wenn das
Oberfläche-zu-Volumen-Verhältnis fixiert wird. Tatsächlich ist dies eine natürlich
vorgegebene Bedingung für geschlossene, undurchlässige Membranen. Verzweigte
Strukturen können so allerdings nicht stabilisiert werden, was auf einen weiteren
Stabilisierungsmechanismus hindeutet. Ein Mechanismus, welchen wir erfolgreich
anwenden konnten, ist es, die Gesamtkrümmung der Strukturen zu fixieren.

Diese Ergebnisse zeigen, dass tubuläre Netzwerke, die in biologischen Zellen beobach-
tet werden, entweder durch die Verankerung an Organellen oder Filamenten, oder
durch die Vorgabe der Gesamtkrümmung stabilisiert werden können. Letzteres
kann auf krümmungsinduzierenden Proteinen oder auf einer Asymmetrie der beiden
Flächen der Lipiddoppelschicht beruhen. Computersimulationen und insbesondere
Kontinuum-Modelle sind demnach ein sehr wertvolles und nützlichen Mittel zur
Interpretation und Ergänzung experimenteller Beobachtungen von Biomembranen.
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Abstract

Modeling Membrane Dynamics
on the Level of Organelles

Biological membranes are omnipresent in cells, not only enclosing organelles but also
in the form of highly dynamical structures such as tubular protrusions or complex
branched networks. Investigating the dynamics of these membranes can be a
challenging task in both experiments and computer simulations, because of the time
and length scales that need to be accessed. In this work, conformational membrane
changes are investigated by performing computer simulations using a dynamically-
triangulated membrane model, which is based on a continuum description of the
Helfrich Hamiltonian. This description is relatively general and allows to access
larger length and time scales than in typical atomistic or coarse-grained simulations.

In the first part of this thesis, the model is applied to study the formation of
tubular structures from vesicles by pulling with an external force. Our findings
are compared to theoretical approximations and minimal-energy solutions of the
Helfrich Hamiltonian, exploiting the rotational symmetry of the structures. We find
a very good agreement between the shapes found in theory and simulations. We also
simulate the formation and coalescence of several tubes protruding from a vesicle.
In the second part, we focus on the formation, energetics and stability of purely
tubular and branched structures under the action of an external field and different
global constraints. We find that both structures are unstable, when releasing the
external force, which means that in nature other types of stabilization mechanisms
must be present. We can show that when fixing the area to volume ratio of the
structure, which is a natural constraint for closed impermeable membranes, tubes
are metastable, while branches are still unstable. To stabilize these branches, an
additional constraint therefore has to be set. One possibility which we successfully
applied in this thesis is fixing the overall curvature of the system.

These findings show that tubular networks observed in biological cells need to be
stabilized by either anchoring to organelles or filaments, or by controlling the overall
curvature through curvature-inducing proteins or an area difference between the
two monolayers of the lipid bilayer. Computer simulations of biological membranes
and in particular continuum models thus provide a very valuable and useful tool
for interpreting and complementing experimental observations.
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1
Introduction

Biological cells, which are the building blocks of all living organisms, and most of

their intracellular components are separated by membranes. These membranes are

not only an important selective barrier between different parts of the cell, but also

serve as a platform for biological and chemical reactions. A detailed understanding

of membranes is therefore essential for a comprehensive understanding of all living

organisms. While the static properties of membranes have been studied extensively

and are well understood, their dynamic properties still raise many questions.

A typical biological membrane consists of a lipid bilayer in which proteins are

embedded. The lipid and protein composition can vary greatly across the membrane,

depending on the location and function of the specific membrane region. On a

microscopic scale it is possible to simulate membranes in full detail, using ab-inito

or atomistic simulations. In atomistic simulations all the atoms of the lipids and

proteins and their interactions can be modeled explicitly and their dynamics can be

investigated. Atomistic simulations are, however, computationally very expensive

and can only be applied to small systems. With current state of the art simulation

models, system sizes of 10− 50 nm can be simulated for about 100− 1000 ns.1 To

go to larger scales, coarse-grained models have to be employed. In these models the

degrees of freedom are reduced by grouping together several atoms or molecules

to one functional unit. Decreasing the degrees of freedom can significantly reduce

computational costs and therefore allow to investigate larger systems on longer

timescales. However, even such mesoscopic coarse-grained models are still a long

way from modeling entire cell organelles with a diameter of ∼ 10µm and more than

109 lipids.

The aim of this thesis is to model and describe dynamical properties of membranes

on even larger scales and model systems up to the size of entire cell organelles, using

a continuum description of the membrane. Special focus lies on the formation of

tubular structures and the branching of tubes. Tubular and branched structures

have been observed experimentally and are omnipresent in cells. Some organelles,

for example the endoplasmic reticulum, are made up almost entirely of a network

of tubular and sheet-like structures. Other organelles like chloroplasts have thin

tubular structures protruding from them. In the case of the chloroplasts, these

protrusions dynamically form and retract and can become very long and narrow.

The formation mechanism and function of these stromules is still a huge point
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of speculation. Our model is therefore used to investigate such structures with

particular focus on their energetics and stability.

Mathematically, our model is based on the Helfrich formalism, in which a membrane

is described as a two-dimensional surface in three-dimensional space, using methods

from differential geometry. The model is rather general and does not contain

information about the exact lipid and protein composition. Instead this information

is condensed and represented by only a few model parameters, e.g. the bending

rigidity of the membrane. In general this model cannot be solved analytically.

One therefore requires a discretized version and relies on numerical solvers. For

performing the simulations in this work, a dynamically-triangulated membrane

model is employed. In this model the surface is discretized by vertices, which are

connected by bonds, forming a triangular network structure. This is an efficient

way to model closed vesicular structures and in addition allows to have control over

the area and volume of the system.

The first objective of this work was to study the formation of tubular structures

due to an external pulling force. In cells such a force could, e.g., be induced by

motor proteins that pull on the membrane. To model this behavior, closed spherical

vesicles were simulated and an external force was applied to one or more points of

the membrane surface, pointing away from the vesicle center, thus deforming it.

For large forces, tubular structures protruding from the vesicle could be observed.

Their lengths and radii were analyzed and agree well with theoretical predictions for

the equilibrium radius of a perfectly symmetric tube with fixed area. In addition,

we have numerically determined the minimal-energy solutions of the system using

shooting methods. These numerical solutions do not give any information about

the tube formation process, which has been studied using the simulation model, but

they allow to determine the final stable configuration of a rotationally symmetric

tube-forming vesicle with an external pulling force. These results were compared to

the computer simulations and we found nearly perfect agreement.

The second aim of this thesis was the investigation of branched structures, with

particular emphasis on their stability and their energetics. First, coalescence of the

tubular structures formed above was investigated. It could be observed that at a

certain angle, which depends on the tube radius and the area to volume ratio of the

system, merging of the tubes occurs. Then branched structures, i.e., structures with

three tubular arms, were simulated and compared to a simple tubular structure. The

simulations indicate that a branched structure is energetically even more favorable

than a simple tube, but it is not stable in our basic model. The reason is that

basically all branched structures are able to transform into a stromatocyte, which is

known to be the global energy minimum for all structures with such a low volume

to area ratio. This implies that branches have to be stabilized by other additional

mechanisms, e.g. curvature inducing proteins, filaments which serve as scaffolds or

an area difference between the individual layers of the lipid bilayer, which induces
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curvature. We modeled the latter mechanism by keeping the overall curvature of

the system fixed, which indeed stabilizes the branched structures.

Additionally, vesicle motion induced by tubule generation was investigated. This

model is motivated by the experimental observation of a correlation between long

jumps in the movement patterns of chloroplasts and the number stromules. For this

a simple model of a small vesicle confined by a big outer sphere was devised. Tubes

protruding from the vesicle exert an external force and pull on the vesicle, creating

a motion that is remotely connected to a continuous-time random walk.

The first part of this thesis is a brief introduction to biological systems and com-

puter simulations. In Chapter 2 the composition of biological membranes and

their properties are discussed. Then an introduction to computer simulations and

simulation methods is given in Chapter 3, including a description of the dynamically-

triangulated membrane model and the necessary mathematical background.

In the second part the simulation procedure is described. Results for vesicular tube

formation due to an external force are presented in Chapter 4. In Chapter 5 these

results are complemented by minimal-energy solutions of the Helfrich Hamiltonian.

Both are compared to theoretical predictions and data from the literature.

In the next part of this thesis the focus lies on branched structures. First the

coalescence of tubes is investigated in Chapter 6. Then branch and tubular structures

are compared in Chapter 7 and the transition between them is simulated. Finally,

the energies of the systems are analyzed to determine the energy of the neck

structure, i.e. the region where the three tubes of the branch meet, and thus draw

important conclusions on the stability of branched vesicular structures. Finally,

in Chapter 8, the thesis is concluded with a summary and an outlook on possible

applications of our results and on further studies that could be performed with the

membrane simulation model. In addition, we present a basic model, which can be

used to simulate vesicle motion due to tubule generation in Appendix C.
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2
Biological Membranes

In this chapter a brief introduction to cell organelles and biological membranes

is given. First, the functions and shapes of cell organelles are described, followed

by the properties of biological membranes and important aspects that need to be

considered for modeling them. Finally, a summary of what is known about tubular

and branched structures in cells is given.

2.1 Biological Background

2.1.1 Cells and Organelles

Cells are the basic structural and functional units of all living organisms. They

are therefore often referred to as their building blocks. Their sizes range from

1− 100µm and depending on the cell type they contain various different organelles.

Organelles are separated regions within the cell that have various specific functions

Figure 2.1: Illustration of the typical structure of a plant cell. It contains various
different organelles, which all have specific functions. Taken from Ref. 2.
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and most of these organelles are enclosed by a biological membrane. A sketch of a

typical plant cell and its organelles is shown in Figure 2.1.

Organelles not just have various different functions, they also have different shapes

and different sizes, all in the µm range. The nucleus is usually the biggest organelle

and contains the DNA. Mitochondria are oval organelles that provide the cell

with energy, whereas the endoplasmic reticulum is an interconnected network of

tubular structures and sacs, where protein folding takes place and which transports

proteins in vesicles. The entire cell is interspersed with the cytoskeleton, a dynamic

network of filaments, which gives the cell its shape and mechanical stability, but is

also involved in transport and signaling processes. In cells there are many more

organelles, the above mentioned are just a few examples. A more detailed description

can be found in standard textbooks, e.g. Ref. 3.

2.1.2 Biological Membranes

Most cells and organelles are enclosed by membranes. Cell membranes are usually

referred to as plasma membranes, whereas the membranes of organelles are referred

to as biological membranes. Membranes not just serve as a selective barrier between

cells or organelles and their surroundings, they are also a platform for biological

and chemical reactions. All membranes consist of a lipid bilayer in which proteins

are embedded.

Lipids are amphiphilic molecules that have a hydrophilic polar head group and a

hydrophobic non-polar tail group. If immersed in water, they automatically form

a bilayer, with the polar heads oriented towards the water and the tails oriented

towards each other, as shown in Figure 2.2. This is the energetically most favorable

arrangement. Since the cytosol, which fills up the interior of the cells, is an aqueous

solution, this formation automatically happens within the cell.

Figure 2.2: Sketch of a typical cell membrane. The lipids form a bilayer in which
proteins (blue) and other molecular structures are embedded (left).
Composition of a phospholipd (right), with its hydorphilic head and hydrophobic
tail. Adapted from Ref. 4.
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A pure lipid bilayer has a thickness of about 5 nm, biological membranes a thickness

of about 7− 10 nm due to the embedded proteins.3 A biological membrane typically

consist of many different types of lipids and proteins. The composition varies greatly

across the different organelles and even within the organelles themselves, depending

on the function of the specific membrane region.

A membrane patch of 1µm2 contains on the order of 106 lipids,3 which is one of the

reasons, why computer simulations of biological membranes can be very challenging.

Another very important aspect of biological membranes is that they behave as

two-dimensional fluids. This means that lipids can freely stream within their side

of the bilayer. Neighboring lipids exchange places about 107 times per second. The

switching of lipids between different layers, called flip-flop, on the other hand is

greatly suppressed.

2.1.3 Branched and Tubular Structures

In biological cells various membrane network structures have been observed and

found to be abundant, especially in the Golgi complex7 and the endoplasmic

reticulum.8 Examples of such a network structure are visualized in Figure 2.3.5;6

Both a pure network structure, c.f. Figure 2.3a, and a system in which the

tubular structures interconnect individual invaginations, c.f. Figure 2.3b, are shown.

Interestingly, it can also be observed that the branches of the network typically

meet at Y-junctions with an angle of 120◦ between the individual tubes. This can

be explained by the fact that the network can in this way minimize the total tube

length and hence the energy of the system. This can be shown mathematically and

(a) The tubular mesh is stabilized by an
underlying network of microtubules. The
branches typically meet at trigonal vertices
with 120◦ angles. The image was taken us-
ing DIC microscopy. Adapted from Ref. 5.

(b) Tubular connections between different
caveolae, which are invaginations of the
plasma membrane, formed by caveolin, a
curvature-inducing protein. Adapted from
Ref. 6.

Figure 2.3: Examples of typical tubular membrane networks.
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(a) Fluorescence micrographs of the time evolution of a surfactant network. The nanotubes
coalesce, forming a three-way junction that propagates towards the state which has the
shortest total tube length, i.e. the Fermat point. Adapted from Ref. 10.

(b) Fluorescence microscopy images of the time evolution of a complex liposome network.
In the final configuration the angles between the nanotubes at the Y-junctions are 120◦.
Adapted from Ref. 13.

Figure 2.4: Experimental observations of the time evolution of complex liposome
network.

the position of the Y-junction where all the angles are exactly 120◦ is referred to as

the Fermat pointa.

The formation of such Y-junctions and network structures has been thoroughly

investigated in artificial networks,10–13 an exemplary time evolution can be found

in Figure 2.4. One can nicely observe the movement of the junctions towards the

Fermat point described above. Interestingly, a similar observation has been made

in dry foams in which the films between bubbles meet in triples, creating a junction

which is usually called a plateau border. The angles between these films are always

120◦.14

The formation of tubular structures and membrane networks can be induced by

various different mechanisms, which can be classified into three different categories:15

(i) formation by curvature-inducing proteins, (ii) formation by scaffolding and (iii)

formation by force. These will be briefly summarized.

aThe problem of finding the point in a triangle that minimizes the sum of the distances to the
vertices was first addressed by the French mathematician Pierre de Fermat in the first half of the
17th century.9
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(i): Curvature-inducing proteins have been widely observed in nature. This is shown

in Fig. 2.3 using the example of caveolin, which anchors on the membrane surface

acting effectively as a wedge, pushing the lipid headgroups apart and thus inducing

spontaneous curvature.6;16 Different mechanisms have been discussed, depending

on the depth of protein insertion, which can induce either positive or negative

curvature.17;18 An important example for curvature-inducing proteins is reticulon

which has been found to induce the tubular network structure in the endoplasmic

reticulum.19;20

(ii): Another mechanism for tube formation is by scaffolding, in which proteins are

polymerizing on the surface of the membrane, effectively forcing the membrane to

adopt the shape of the proteins.21;22 Interestingly, it is still controversial whether

the polymerization actually leads to spontaneous curvature or whether spontaneous

curvature also partly induces the polymerization, as has been observed in Ref. 22.

(iii): The most obvious way of creating tubular structure is by a force acting on a

localized point on the membrane surface. This force can be induced by growing

filaments which are connected to the membrane23;24 or by molecular motors.25–29

An important observation is that the pulling force induced by a single filament or

motor has been shown not to be sufficient for tube formation,25 thus requiring the

formation of filament bundles24 and a complex coordination of molecular motors.26;27

The latter has been studied extensively in Refs. 27; 28 by direct comparison of in

vitro experiments and stochastic simulations. It could be shown that at least 5− 6

motors, independently bound to different protofilaments, are necessary to achieve

growth of membrane tubes.27;28

The function of tubular membrane networks is still under heavy debate and seems

to strongly depend on the organelle. A recent review has intensively discussed

potential physiological roles of the three-dimensional tubular network spanning

the endoplasmatic reticulum,8 including membrane trafficking, lipid metabolism

and autophagy, i.e. the cleaning mechanism of the cell. The function of the

tubular network in the Golgi apparatus appears to be the interconnection of

different building blocks, which can also induce structural rearrangements during

cell differentiation.30 Membrane nanotubes have also been found to generally enhance

intercellular transport.31 In fact, the artificial formation of membrane networks

could be an interesting way to improve intercellular communication and transport.32

The formation and stability of branched and tubular structures have also been

studied via simulations and theory of coarse-grained models, as will be discussed in

detail in Chapter 3 (simulations) and Chapter 5 (theory).
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2.1.4 Stromules

A particular motivation for this work is the observation of tubular structures

protruding from chloroplasts.33–49 Chloroplasts are lens-shaped organelles with a

length of 2−8µm, where photosynthesis takes place, another source of energy for the

cell. These organelles are only present in plant cells. Interestingly, chloroplasts and

other types of plastids can form very narrow and long protrusions, called stromules

(stroma filled tubules). Some snapshots obtained from experiments can be found in

Figure 2.5. Stromules are highly dynamic structures, which constantly form and

retract, rapidly changing shape. They can reach lengths of up to ∼ 200µm and

have a diameter of ∼ 400− 600 nm.40

Stromules have actually been known for a relatively long time. The first observations

were reported around the beginning of the 1900s.50;51 However, stromules only

became the focus of real interest and analysis around the beginning of the 21st

century, where new imaging techniques allowed for better observations.52 But even

the past 20 years of detailed analysis could not answer some fundamental questions

about stromules, namely why and under which conditions they form and what their

function is. There are, of course, several hypotheses, e.g. the exchange of signals

and metabolites42;53 or the communication with the nucleus during environmental

stress.44;47–49 However, up to this point, no consistent theory has been proposed.

(a) Plastids (green blobs) and protruding stromules. Adapted from Ref. 42.

(b) Chloroplasts and branched stromules (blue contour) interacting with microtubules
(white). Taken from Ref. 48.

Figure 2.5: Experimental observations of stromules.
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3
Computer Simulations and

Membrane Models

The era of computer simulations basically started, when the first computers were de-

ployed in the 1940s. Early work by Nicholas Metropolis in 1953 laid the foundation

for the Monte Carlo method,54;55 a simulation technique based on stochastic sam-

pling. A second method was developed around 1957 by Adler and Wainwright.56;57

Their proposed molecular dynamics simulations are based on solving Newton’s

equations of motion to obtain the time evolution of a system. Both techniques are

very commonly used today and applicable to all the different models that will be

presented. They are both also used in this thesis.

Since the early pioneering work in the 1950s there has been a lot of development

not just in simulation methods but also in computational power, making computer

simulations a very powerful tool. Nowadays they play an essential role not just in

physics but basically all fields of research. They have become an integral part of

science, in addition to theory and experiments.

Modeling biological membranes is a very complex task. Processes take place on very

different time and length scales and a typical membrane within a cell can contain

hundreds of different types of lipids and is crowded with proteins. Whereas the lipid

bilayer has a thickness of only 5− 10 nm, a typical cell organelle has a diameter of

about 10µm. To solve such multiscale problems, different types of simulations and

simulation models have been developed and specifically designed to analyze distinct

processes on different scales.

These simulation models range from all-atom molecular dynamic simulations, where

detailed molecular interactions are taken into account, via coarse-grained descrip-

tions, to continuum models based on macroscopic phenomenological equations. The

latter allow for the description of large membrane regions and shape changes, but

in return lack the molecular detail. In the following an overview over the different

simulation models is given and afterwards the two simulation techniques, i.e. Monte

Carlo and molecular dynamics, are described.

The focus of this thesis lies on the description of entire cell organelles and their

deformations, therefore a continuum model had to be employed. In this work a

11



dynamically-triangulated surface model based on the Helfrich formalism is used.

The model and the necessary mathematical background will be described in detail

at the end of the chapter.

3.1 Simulation Models

The graph in Figure 3.1 shows the time and length scales covered by different

simulation techniques. Quantum mechanical simulations and all-atom simulations,

shown in the bottom left, cover only very short time and length scales, but are

therefore very detailed. Continuum descriptions shown in the top right on the other

hand allow to access large time and length scales, but in exchange lack molecular

detail.

Figure 3.1: Overview of the different time and length scales accessible by different
simulation techniques. Starting from quantum mechanical simulations in the bottom
left at very short time and length scales all the way to continuum models in the
top right.
(i) Protein-lipid interaction, taken from Ref. 58.
(ii) Budding induced by proteins, taken from Ref. 59.
(iii) Deformation of a vesicle, simulated using a dynamically-triangulated membrane
model.
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3.1.1 Ab Initio Simulations

Quantum mechanical or ab initio simulations allow to even take nuclei and their

electronic structure into account. They are used for studying, e.g., chemical reactions,

charge distribution and proton transfer,60 but only on very short time and length

scales. Their results, however, can give valuable input for higher-level simulations,

i.e. to create atomistic and coarse-grained models of lipids and proteins.

3.1.2 All-Atom Models

All-atom simulations allow to take into account detailed interactions between atoms

and molecules, i.e. each atom is modeled explicitly. These simulations are therefore

very suited for studying fundamental membrane-related processes in great detail.

Some examples are pore formation,61–63 investigating the function of membrane

proteins,64;65 the interaction of proteins and lipids58 or the dynamic organization

or phase separation in multicomponent membranes.66;67 Details can be found in

recent reviews on modeling the effect of curvature remodeling proteins on vesicle

deformation68;69 (and references therein).

For these simulations usually atomistic force fields are used. These force fields

are basically a set of many-body potentials that describe how atoms, bonds and

molecules interact with each other. Force fields are typically parameterized using ab

initio simulations or experimental data. A detailed overview of the most commonly

used force fields can be found in Ref. 70.

The drawback of this detailed way of modeling, however, is that the time and

length scales accessible are still rather limited. According to Ref. 1, state of the

art atomistic simulations can reach times of 100 − 1000 ns and lengths of about

10− 50 nm. To go to larger scales, coarse-grained models have to be employed.

3.1.3 Coarse-Grained Models

In computer simulations coarse-graining refers to coarsening the level of represen-

tation. This means that instead of considering every atom individually, various

atoms or molecules are combined into functional groups or interaction beads. This

effectively reduces the number of particles in the system and it therefore speeds up

the simulations.

There is a large variety of coarse-grained models, starting from models where 3-6

heavy atoms are grouped together (e.g. the MARTINI model71;72), all the way to

representing one entire lipid or protein by only one single bead. The latter is also

often referred to as super coarse-graining. Depending on the level of detail, these
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simulations can be up to three orders of magnitude faster than all-atom simulations,

however, at the cost of loosing detailed information.

With these models a large variety of processes can be simulated. They are par-

ticularly suited for the investigation of large-scale (protein-induced) membrane

remodeling processes, as e.g. the formation of membrane buds59;73 or tubes.74;75

One can also investigate membrane bilayer self-assembly,76;77 raft formation in

multicomponent membranes78 and the phase behavior of lipid bilayers.79;80

3.1.4 Continuum Descriptions

To access even larger scales, especially for describing membrane shapes and topologi-

cal changes, continuum descriptions are used. These models are based on describing

the membrane as a smoothly curved mathematical surface. Information about the

bilayer properties is only reflected in a few model parameters, such as the stiffness or

bending rigidity, which means these model can only be applied when the molecular

details are negligible.

To implement such a continuum description, there are two main approaches. One

is using dynamically-triangulated surfaces, the other is a particle-based method.

The model used in this thesis belongs to the first group and will be described in

detail in Section 3.4. The necessary mathematical background for this model will

be presented in Section 3.3.

In the particle-based models the surface is discretized by particles interacting via

a set of potentials. These particles are, however, not interconnected by bonds.

One unit segment or particle typically represents hundreds to thousands of lipids

and/or proteins. These models are particularly useful for studying membrane self

assembly81–83 and deformations.84–86 They have also been intensively used to study

tubulation, for example by cooperatively growing filament bundles.87

3.1.5 Multiscale Models

Only very recently a new type of model has been proposed. By combining a

continuum description with a finer atomistic or coarse-grained model it has been

attempted to bridge the large gaps in the length and time scales of biological

processes.88–91

One very promising approach has been proposed in Ref. 92. The authors access the

different levels of resolution through a multi-scale scheme, combining a dynamically-

triangulated membrane model with a coarse-grained model. The dynamically-

triangulated membrane model allows to analyze large-scale conformational changes,
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Figure 3.2: Exemplary simulation using a multiscale scheme. a) Original configura-
tion of the vesicle. b) The vesicle is equilibrated using a dynamically-triangulated
surface simulation. c) A backmapping scheme allows to add information about
lipids using the MARTINI force field.71;72 The system can now be simulated and
checked for stability. Taken from Ref. 92.

while the local properties can be explored at coarse-grained resolution. The authors

were for example able to simulate an entire mitochondrial structure, albeit so far

only for a very short time, with different lipid compositions in the inner and outer

membrane or the formation of a membrane bud as illustrated in Figure 3.2.

3.2 Simulation Techniques

3.2.1 Monte Carlo Simulations

In Monte Carlo (MC) simulations the desired quantities are approximated by

repeated random sampling of a finite configuration space. The most straightforward

sampling technique is direct sampling, in which a random point in the configuration

space is chosen every move, allowing to calculate an ensemble average. Such a

sampling can for example be applied to evaluate multi-dimensional integrals.

The problem when using direct sampling to calculate (canonical) phase space

averages in computer models is that basically all configurations will have zero

probability and therefore not contribute significantly to the phase space average. In

these cases an importance sampling scheme is usually applied. In this technique, one

starts with a certain initial configuration and can then create new configurations by

small changes of the previous configuration. These changes are accepted according

to the law of detailed balance. This ensures both consistency of the algorithm and

efficiency of sampling. One very commonly used method is the Metropolis method.
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The Metropolis algorithm works as follows:

1. calculate the energy of the system Eold

2. select one particle (or something equivalent) of the system at random

3. randomly displace this particle and calculate the new energy of the system Enew

4. if Enew < Eold:

accept the displacement (move)

else:

accept it with the probability P = exp(−(Enew − Eold)/β)

5. return to step 1

This algorithm allows to efficiently switch between different states πn of the sys-

tem and clearly fulfills detailed balance, i.e., P (πn → πn+1)/P (πn+1 → πn) =

ρ(πn+1)/ρ(πn), with the canonical probability density ρ(πn) = e−βH(πn). The canoni-

cal ensemble average of an observable A at temperature T (with inverse temperature

β = 1/(kBT )), can then be computed as 〈A〉 =
∑

nA(πn), see for example Chapter 3

in Ref. 93.

This method can be applied to any kind of ’move’, including simple translations

of individual particles, but also more complicated structural rearrangements of

polymers, making MC a very efficient sampling tool. It is, however, important to

note that the time evolution of the system does not correspond to the real time

evolution as defined by the Liouville operator.

3.2.2 Molecular Dynamics Simulations

To obtain the time evolution of a system, molecular dynamics (MD) simulations

can be employed. In MD simulations, Newton’s equations of motion

~Fi(t) = mi~̈ri(t) with ~Fi(t) = −~∇U({~rj}, t) (3.1)

are solved numerically. Here ~ri denotes the position of particle i and mi its mass.
~Fi is the force acting on this particle, which is determined by the potential U , and t

is the time. The potential U describes the interactions between the particles in the

system and depends on the underlying microscopic or coarse-grained model. The

system corresponds to a microcanonical ensemble.

The quality of the simulations evidently depends on how accurately and efficiently

Newton’s equations of motion can be integrated. Over the years various integration

schemes have been developed. A very popular and efficient one is the Velocity
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Verlet algorithm,94 which is based on the Verlet algorithm proposed by Verlet in

196795 and was then further extended:

~ri(t+ ∆t) = ~ri(t) + ~vi(t)∆t+
~Fi(t)

2mi

∆t2 (3.2)

~vi(t+ ∆t) = ~vi(t) +
~Fi(t) + ~Fi(t+ ∆t)

2mi

∆t (3.3)

where ~vi is the velocity of particle i. This algorithm is symplectic, meaning that it

describes a canonical transformation and conserves the phase space volume. This

property is very important, in particular with respect to energy conservation.

In coarse-grained simulations, the simulation model does often not explicitly include

the solvent, in which the particle, molecule or protein of interest is suspended.

Instead, the solvent is included implicitly by extending the equations of motion and

considering a Langevin equation:96

mi~̈ri(t) = −~∇U({~rj}, t)− λ~vi(t) + FR(t) (3.4)

In this equation λ is the damping coefficient. The damping term, −λ~vi(t), mimics the

systematic, dissipative interactions with the solvent particles, while the stochastic

noise term, FR(t), corresponds to thermal fluctuations, i.e. the random collisions of

solvent particles with the suspended molecule.

The stochastic forces and dissipative interactions are connected by the fluctuation-

dissipation relation, 〈FR(t)FR(0)〉 = 2λkBTδ(t), which allows us to control the

temperature of the system. The configurations in the simulations are now sampled

from a canonical phase space density. The noise is random and uncorrelated and

usually drawn from a Gaussian probability distribution with zero mean, obeying

〈FR(t)〉 = 0.

The description above is just a brief overview of the simulation techniques used in

this work. Both MC and MD simulations can be used in a much wider context and

have many more features and functions. A more detailed description of these two

methods and computer simulations in general can be found in standard textbooks,

for example Refs. 93; 97.

3.3 Continuum Model of Biological Membranes:

Helfrich Hamiltonian

When looking at membranes on large scales, they can be described in a simplified

way as two-dimensional surfaces embedded in three-dimensional space. This sim-
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plification is justified if it is not necessary to consider all the molecular details,

i.e. the exact lipid and protein composition, and if the thickness of the bilayer is

small compared to the overall size of the system. The typical size of an organelle or

vesicle is three to four orders of magnitude larger than the thickness of the bilayer,

therefore this is a valid approximation in our case.

For analyzing these two-dimensional surfaces, methods from differential geometry

can be employed. This was first accomplished by Canham,98 Helfrich99 and Evans100

in the early 1970s. They were able to derive a continuum-mechanical description

to describe membrane surfaces on large scales. This theory is nowadays most

commonly referred to as Helfrich theory, and it will be explained in detail in the

following.

To determine the energy of the membrane, two main contributions are considered.

The first contribution relates to stretching or compressing the membrane. The

second term refers to the energy associated with bending the membrane. The

energy can therefore be expressed by the following equation, commonly referred to

as Helfrich Hamiltonian H:

H = Hstretch +Hbend (3.5)

The stretching term Hstretch describes changes in the area of the membrane due to

stretching and compression. It is given by:

Hstretch = σS

∫
dA (3.6)

with the surface tension σS and the integral over the area of the membrane A. The

contribution of the first term, Hstretch, is assumed to be negligible in our simulations,

because we include an additional constraint on the total surface area, c.f. Equation

3.12, thus this term gives a constant contribution and is omitted in this work.

Figure 3.3: Illustration of the two principal curvatures c1 and c2 at a certain point
on the membrane. The principal curvatures are the inverse of the curvature radii
R1 and R2. Taken from Ref. 101.
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The second terma describes how the membrane is affected by bending deformations:

Hbend =
κ

2

∫
dA(K −K0)2 + κ̄

∫
dAKG (3.7)

where κ and κ̄ are material constants called curvature moduli. K is the total, K0

the spontaneous and KG the Gaussian curvature.

The total curvature is given by the sum over the two principal curvatures c1 and c2,

K = (c1 +c2), and the Gaussian curvature is given by KG = c1c2.b The spontaneous

curvature K0 is a material property that describes any curvature the membrane

might have due to a lipid asymmetry in the bilayer or the shape of the lipids. For

symmetric bilayers this factor is usually zero and would refer to a flat surface.

The two principal curvatures c1 and c2 can be described as the inverse of the

curvature radii R1 and R2, which indicate how strongly the membrane is curved at

a given point, as illustrated in Figure 3.3. The mathematical background and the

derivation of these equations is given in Appendix B.1.

A description based on the Helfrich Hamiltonian given by Equations 3.5 - 3.7 is

still relatively complex, but for closed vesicles and when investigating large scales,

some further simplifications can be made. Throughout this work we will assume

that K0 is negligible, i.e. that there are no bilayer asymmetries. However, we will

later reinstate a similar term, to investigate the effects of such bilayer asymmetries

or curvature-inducing proteins on the stability of the system (see Section 7.4.4).

The second simplification concerns the Gaussian curvature KG. According to

the Gauss-Bonnet theorem,102 integrating this term over a closed surface gives a

constant contribution. Since throughout this work closed vesicles will be analyzed,

this theorem can indeed be applied and this term can therefore be neglected.

Hence, the equation for the bending energy can be simplified and is given by:

Hbend =
κ

2

∫
dAK2 (3.8)

In general, this equation can not be solved analytically. One therefore requires

a discretized version and has to rely on numerical solvers. The discretization

employed in this work, a dynamically-triangulated membrane model, is described

in the subsequent section.

aIn the literature different representations of this equation exist. They mostly vary by a
(historical) factor of two and can all be transformed into each other. Throughout this work, this
definition will be used.

bWe use the convention that c1 and c2 are both positive for a sphere.
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3.3.1 Further Extensions

There are some further extensions that have been made to the ’classical’ Helfrich

Hamiltonian described above over the past decades. For most of this work the

simple model given by Equation 3.8 is used. In the following one potential extension

will be briefly introduced.

The term given by Equation 3.8 is usually referred to as the simple model. When

including the spontaneous curvature K0, as in Equation 3.7, this is referred to as

the spontaneous curvature (SC) model. It is also possible to account for an area

density difference in the two layers of the lipid bilayer, by setting a constraint on

the area difference ∆A between the two monolayers forming a bilayer.

There are two techniques to include this area difference into computer simulations.

In the bilayer couple (BC) model this value is set to the targeted area difference

∆A0,100;103;104 whereas in the area-difference elasticity (ADE) model105–108 deviations

from the targeted area difference are penalized by a nonlocal bending energy which

is proportional to En.l.
bend ∼ (∆A − ∆A0)

2. In the last part of this thesis we will

employ the ADE model to stabilize tubular and branched structures.

3.4 Triangulated Membrane Model

For the simulations performed in this work, a dynamically-triangulated surface

model was used. Similar to the particle-based models the membrane is described as

a smoothly curved mathematical surface. The discretization is, however, slightly

different. The surface is represented by vertices that are connected by bonds or

tethers to form a triangular network structure. Again, one unit segment repre-

sents hundreds to thousands of lipids and proteins and the bilayer properties are

reflected by the values of the model parameters. The model used is based on early

work presented in Refs. 109–111. A good comparison between different ways of

implementing the model can be found in Ref. 112.

A big advantage of this method of discretization is that the area and the volume of the

system, e.g. a closed vesicle, can be easily controlled and fixed. Triangulated surface

models allow to investigate a variety of problems, such as shape changes,113–115

shape changes by adsorption of particles,116–119 multicomponent membranes120 and

even vesicles in flow fields.121 A few examples are shown in Figure 3.4.

In the following, the potentials, parameters and techniques used for the simulations

will be listed.
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(a) Particles (blue) are wrapped by a
membrane tube invagination that points
into the vesicle. Taken from Ref. 116.

(b) Membrane-curvature-modifying prop-
erties are modeled by an in-plane ne-
matic field (red). These nematogens
aggregate and cause conformational
changes. Taken from Ref. 115.

(c) Polymers (red) adsorbed on the membrane cause conformational
changes. Taken from Ref. 117.

Figure 3.4: Some examples for the application of the dynamically-triangulated
membrane model.

3.4.1 Model Parameters

The original code used in this work was written by Prof. H. Noguchi from the

University of Tokyoc, who courteously provided the source code of his program. It

was then further adapted to target our specific problems. The model is described

in detail in Ref. 122 and in the following the most important aspects will be

highlighted.

The surface representing the membrane is discretized by N vertices which are

connected by bonds or tethers to form a triangular network structure. This is

shown in Figure 3.5 for a simple spherical vesicle. These vertices have an excluded

volume and mass. In the simulations N = 2562 vertices were used, which results in

Nbond = 7680 bonds and Nt = 5120 triangles. The latter can be calculated using

Euler’s formulad. If not otherwise specified the numbers above were used. For

cInstitute for Solid State Physics, University of Tokyo, Chiba 277-8581, Japan
dL. Euler (1707-1783) is known to be the first to have discovered the relation between vertices

V , edges E and faces F of a convex polyhedron, where V − E + F = 2.123
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Figure 3.5: Triangulated network structure. The surface is discretized by a triangular
mesh.

validation some simulations were performed with a larger number N = 10242 of

vertices, which results in Nbond = 30720 bonds and Nt = 20480 triangles.

Curvature

The shape of the vesicle is mostly controlled by the curvature energy, which was

described in the previous section and is given by Equation 3.8. This equation is

now discretized as follows:122;124;125

Ucv =
κ

2

∑
i

1

σi

∑
j(i)

σi,j~ri,j
ri,j

2

(3.9)

The value for the bending rigidity for lipid membranes is typically κ = 20 kBT ,126

where kBT is the thermal energy. The first sum goes over all vertices i and the second

sum goes over all neighbors of the vertex i, j(i), that are connected by bonds. The

vector between vertices i and j is denoted by ~ri,j = ~ri−~rj and ri,j = ‖~ri,j‖. σi,j is the

length of the bond in the dual lattice, which is given by σi,j = ri,j [cot(θ1)+cot(θ2)]/2,

where θ1 and θ2 are the angles opposite to the bond connecting i and j in the two

triangles sharing this bond. The parameters are illustrated in Figure 3.6. The area

of the dual cell of vertex i is given by σi = 0.25
∑

j(i) σi,jri,j.

Bond and Repulsive Interactions

In order to perform molecular dynamics simulations a Stillinger-Weber potential127

is used to describe bond and excluded-volume interactions between vertices. All

vertices connected by tethers interact via the following attractive bond potential:

Ubond(ri,j) = b


a exp[a/(lc0 − ri,j)]

lmax − ri,j
(ri,j > lc0)

0 (ri,j ≤ lc0)

(3.10)
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Figure 3.6: Illustration of the parameters needed for the calculation of the discretized
curvature energy. In green the triangulated mesh is shown and in blue the dual
lattice.

and at short distances all particles interact via a repulsive excluded volume potential:

Urep(ri,j) = b


a exp[a/(ri,j − lc1)]

ri,j − lmin

(ri,j < lc1)

0 (ri,j ≥ lc1)

(3.11)

The numerical values for the parameters of the potentials are listed in Table 3.1,

where the parameter a refers to the bond length and the parameter b is a constant

energy prefactor. This bond length is set to one in all simulations. This is common

practice and can be done because the system is scale invariant.

Parameter Value Description

lmax 1.33a maximum bond length

lmin 0.67a minimum distance between two vertices

lc0 1.15a cutoff length for Ubond

lc1 0.85a cutoff length for Urep

Table 3.1: Parameters used for the bond and repulsive interactions.

Area and Volume Control

To keep the area A and volume V of the vesicle constant, constraint potentials are

added:

US =
1

2
kS(A− A0)2 (3.12)

UV =
1

2
kV(V − V0)2 (3.13)

Here kS and kV determine the strength of these constraints. A0 and V0 give the

desired area and volume of the system.
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Overall Potential

Finally, the overall potential used in the simulations is a combination of all the

potentials described above:

Utot = Ucv + Ubond + Urep + US + UV (3.14)

The total Hamiltonian of the system is therefore:

H0 =
N∑
i=1

~p2
i

2m
+ Utot (3.15)

where ~pi are the momenta of the vertices and m their masses.

Application of an External Force

In the simulations an external force ~Fext on individual vertices will often be applied.

This corresponds to a change of the Hamiltonian H0 to:

H = H0 −
∑
j∈Nf

~Fext,j~rj (3.16)

where Nf is the set of vertices to which the external force ~Fext,j is applied and ~rj
are the positions of these vertices.

3.4.2 Implementation

The simulation is a combination of molecular dynamics (MD) and Monte Carlo

(MC) simulations. The vertices are moved using MD, while bond flipping, which

models the fluidity of the membrane, is carried out using MC.

Vertex Dynamics

For integrating Newton’s equations of motion the Velocity Verlet94 formulation

of the BBK integrator128 is used. This corresponds to the discretization of the

Langevin equation 3.4. Therefore, in addition to the force determined by the

potentials, a random noise term and a systematic friction term are introduced. The

new positions and velocities of the vertices are given by:

~v(t+
∆t

2
) =

1− λ∆t
2m

1 + λ∆t
2m

~v(t− ∆t

2
) +

∆t
m

1 + λ∆t
2

[~F (t) + ~FR(t)] (3.17)

~r(t+ ∆t) = ~r(t) + ~v(t+
∆t

2
)∆t (3.18)

24



The integration timestep is ∆t, ~F the force determined by the potentials and ~FR

the force due to random noise. λ is the friction coefficient and m the mass of the

vertex.

The forces acting on the vertices can be determined by calculating the derivatives of

the potentials with respect to the vertex positions {~ri}. The forces due to the bond

and repulsive potentials can be calculated in a relatively straightforward manner,

because they directly and only depend on the distances between two vertices.

Calculating the force caused by the area, volume and curvature potentials is slightly

different, because the potentials depend on overall properties of the system, namely

the total area and volume. For the area contribution, the force acting on particle i

is given by:

~FS,i = −dUS

d~ri
= −dUS

dA

dA

d~ri
(3.19)

The first term can be easily calculated:

−dUS

dA
= −kS(A− A0) (3.20)

The second term, dA
d~ri

, can now be calculated via geometrical relations. The total

area is the sum over the area of each vertex Ai, which is given by the weighted sum

over the area of all neighboring triangles Aα:

A =
N∑
i=1

Ai with Ai =
1

3

∑
α∈neigh. triangles

Aα. (3.21)

Here and in the following quantities with greek indices denote triangles and roman

indices denote vertices. A similar calculation can be performed for the volume

contribution and the curvature potential.

The volume V enclosed by the membrane is calculated as:113

V =
Nt∑
α=1

Vα with signed subvolumes Vα =
1

3
(n̂α · ~Rα)Aα (3.22)

where n̂α is the unit normal vector of triangle α pointing outwards and ~Rα is the

position vector of one of the vertices of the triangle relative to an a reference point.

This reference point can, in fact, be chosen arbitrarily and can even lie outside of

the structure, because any additional contribution from outside the vesicle, will

eventually be subtracted by another subvolume Vα. This, however, only works if

the normal vectors are all pointing outside of the vesicle, i.e. one needs to know,

where the inside and outside of the vesicle are.
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In the very last part of this thesis, we will also consider a renormalized area

differencee ∆a, which is defined as:

∆a =
1

4
√
πA0

∫
dAK =

1

4
√
πA0

N∑
i=1

| ~Hi|
~Hi · n̂i
| ~Hi · n̂i|

(3.23)

where ~Hi is the oriented curvature contribution of vertex i,

~Hi =
∑
j(i)

σi,j~ri,j
ri,j

. (3.24)

Here, the term ~Hi · n̂i/| ~Hi · n̂i| gives the orientation of the curvature, i.e. if it is

convex (+1) or concave (-1) using the surface normal vector n̂i, as the average

orientation of the neighboring triangles. The normalization is chosen such that

a sphere has an area difference of ∆a = 1. The force is given by the respective

derivative.

Bond Flips

Biological membranes behave as two-dimensional fluids, as described in Section

2.1.2. This means that lipids can freely stream within their bilayer and hence

the membrane behaves as a two-dimensional fluid. To model this fluidity, bond

flips are introduced. This means that a bond can be flipped between the two

possible diagonals of two adjacent triangles, as illustrated in Figure 3.7. These

moves are accepted or rejected using the Metropolis Monte Carlo method, described

in Section 3.2.1.

Figure 3.7: Illustration of a bond flip. The red bond was flipped using the Metropolis
Monte Carlos method.

eThe area difference ∆A is usually given by ∆A = 2h
∫

dAK, where h is the thickness of
the membrane.112 However, different conventions exist,100;103–108;112;113 which makes it more
convenient to use the renormalized area difference ∆a that is one for a sphere.
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Every 20 MD steps bond flips are carried out. For this, Nbond edges are randomly

chosen and attempted to be flipped. For each chosen bond, the energy difference

between the configurations is calculated and the flip is then accepted with a certain

probability according to the Metropolis Method.

3.4.3 Units and Parameters

The units in the simulations are given by σ = a (unit of length), ε = κ
20

(unit of

energy) and τ = σ
√
mε−1 (unit of time). In the simulations all units were set to

one. All quantities reported in the following will be given in terms of these units,

except when it is explicitly stated otherwise. In most simulations the remaining

parameters are set to b = 80, λ = 1, kS = 2, kV = 1, ∆t = 10−4 and kBT = 1. Some

simulations were performed at a lower temperature, to reduce thermal fluctuations,

as will be discussed in the respective sections.
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4
Computer Simulations of Vesicles:

Tube Formation

To investigate tubular structures, it was first analyzed how the shape of a closed

vesicle is affected by an external pulling force. For large enough forces the formation

of tubes could be observed and a new final stable configuration, a vesicle with

one or two tubes, was reached. This shape evolution was analyzed with particular

emphasis on the equilibrium tube length and radius. The latter can also be derived

from theory and our simulation results are in good agreement with the theoretical

predictions.

After a brief introduction to our method, the different shapes obtained will be

illustrated. It will then be analyzed how the length and radius of the tubes evolve

over time and depend on the strength of the external force. Finally, our results

obtained from simulations will be compared to theoretical predictions.

4.1 Methodology

A relevant quantity that characterizes our system is the reduced volume ν of the

vesicle. The reduced volume is a dimensionless quantity, which gives the ratio

between the volume V and area A of a closed structure:

ν =
3V

4πR3
s

=
6
√
πV

A3/2
(4.1)

The reduced volume is normalized in such a way that ν = 1 for a perfect sphere.

The radius Rs is the radius of a sphere with given surface area A = 4πR2
s .

The starting configuration for all simulations was a stable closed vesicle. This

configuration was obtained by simulating the vesicle without any external forces.

Since the reduced volume ν of tubular geometries varies from that of a sphere

(ν = 1), all simulations were carried out for three different reduced volumes, namely

ν = 0.6, 0.7 and 0.8.
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(a) ν = 1.0
(b) ν = 0.8 (c) ν = 0.7

(d) ν = 0.6 (e) ν = 0.3
(f) ν = 0.2

Figure 4.1: Shapes of the vesicle for different reduced volumes ν. This Figure and
all following visualizations of membranes were created using ParaView.129

4.2 Equilibration without External Forces

Even without applying an external force, a vesicle can be deformed by varying its

area to volume ratio ν, as shown in Refs. 113; 130. Varying the area to volume

ratio can also be easily achieved in our simulations. Vesicles with different reduced

volumes were simulated and their shapes analyzed. Some snapshots can be found

in Figure 4.1. These shapes nicely match those reported in the literature, both

theoretical and experimental.

For a reduced volume of ν = 1.0, a perfect sphere is obtained. By reducing ν, the

sphere starts to deform. For ν = 0.8 and ν = 0.7, a slightly elongated, prolate

shape is observed. Decreasing the reduced volume to ν = 0.6 leads to the formation

of an oblate shape, the typical shape of a red blood cell. By decreasing the reduced

volume even further, to ν = 0.3 and ν = 0.2, a stromatocyte forms, which is

basically a smaller sphere within a bigger outer sphere with a (small) connective

neck.

All simulations were carried out at a finite temperature T . This causes small thermal

fluctuations of the surface, which can be seen when taking a closer look at the

configurations in Figure 4.1. By decreasing the temperature, these fluctuations

would vanish and the shapes would be perfectly smooth. The focus of this thesis,

however, is the modeling of real biological systems. Simulations were therefore

(mostly) carried out at a finite temperature.
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Figure 4.2: Snapshot of a vesicle; the external forces were applied in opposing
directions, as illustrated by the two red arrows.

4.3 Shape Evolution due to External Forces

It was then investigated how the shape of a vesicle changes, when applying a

constant external force ~Fext, with Fext = |~Fext|. The formation of one or two tubes

was investigated. In the case of one tube an arbitrary point was chosen to which an

external force was applied. In the other case the two points furthest aparta were

chosen and opposing forces applied, as illustrated in Figure 4.2. Either a constant

force or a stepwise increasing force was used, depending on the properties that were

investigated.

Applying an external force on the membrane clearly changes its stable configuration.

An exemplary time evolution of the shape can be found in Figure 4.3. In this case

a constant force was applied on opposing poles. If the force is strong enough the

vesicle first starts to elongate and forms a ’lemon’ shape (see Figure 4.3b). When

simulating longer, the formation of tubes can be observed, which lengthen over time

(see Figure 4.3c). The resulting stable configuration is a sphere with two tubes (see

Figure 4.3d). The final state and length of the tubes depends on the external force.

This dependence will be investigated in detail in the subsequent sections.

Snapshots of the final stable configurations for different forces and different reduced

volumes can be found in Figures 4.4 and 4.5. In Figure 4.4 only one external force

was applied, whereas in Figure 4.5 two forces in opposing directions were applied.

A complete catalog of the shapes for all forces and reduced volumes can be found

in Appendix A.1.

Various shapes formed for the different external forces and reduced volumes. The

onset of the tube formation starts at Fext ≈ 40 − 50. As one would intuitively

expect, the tube length increases for higher forces. In addition one also obtains

longer tubes for smaller reduced volumes. It is also interesting to see that, even

when applying two opposing forces, only one tube forms in the lower force regime,

see Figures 4.5d-4.5f. Only when going to higher forces a vesicle with two tubes is

obtained.

aIt should be noted that it is not relevant which points are initially chosen. Due to the fluidity
of the membrane the first thing that would happen to two arbitrarily chosen vertices is that they
would move as far apart as possible, without deforming the membrane. To speed up the process,
the two points furthest apart were therefore directly picked and the simulations started from there.
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(a) starting configuration

(b) ’lemon’ shape

(c) tube formation

(d) final stable configuration - sphere with two tubes

Figure 4.3: Snapshots of the time evolution of a vesicle with applied external forces.
The new stable configuration consists of a sphere with two tubes and is reached via
a lemon shaped state (ν = 0.8; Fext = 120).
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(a) Fext = 50; ν = 0.6 (b) Fext = 50; ν = 0.7
(c) Fext = 50; ν = 0.8

(d) Fext = 70; ν = 0.6
(e) Fext = 70; ν = 0.7

(f) Fext = 70; ν = 0.8

(g) Fext = 100; ν = 0.6

(h) Fext = 100; ν = 0.7

(i) Fext = 100; ν = 0.8

Figure 4.4: Final stable configurations for a vesicle with one external force applied.
Shapes for different forces Fext and different reduced volumes ν are shown.
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(a) Fext = 50; ν = 0.6 (b) Fext = 50; ν = 0.7 (c) Fext = 50; ν = 0.8

(d) Fext = 70; ν = 0.6
(e) Fext = 70; ν = 0.7 (f) Fext = 70; ν = 0.8

(g) Fext = 100; ν = 0.6

(h) Fext = 100; ν = 0.7

(i) Fext = 100; ν = 0.8

Figure 4.5: Final stable configurations for a vesicle with two opposing external
forces applied. Shapes for different forces Fext and different reduced volumes ν are
shown.
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It should also be noted that our simulation model works really well for forces until

Fext ≈ 130. For higher forces, the tubes get very thin and the maximum resolution

of the triangular mesh is reached. Meaningful results can therefore only be reported

for forces up to Fext ≈ 130. In Section 4.8 simulations with a more detailed mesh

and therefore higher resolution were performed, which confirm this estimate.

4.4 Length of the Tubes

In this section the tube length depending on the external force is investigated. First,

it is analyzed how the tube length evolves over time, when the external force is

applied. Then the dependence of the length of the new final stable configuration on

the strength of the external force is determined. When talking about length in the

subsequent sections, this actually refers to the distance between the ends of the two

tubes, i.e., the distance `T between the two points furthest apart in the vesiclebc.

4.4.1 Length Evolution

It was investigated how the length of the configuration changes over time, with a

constant external force applied. This evolution is shown in Figure 4.6. At first the

length steadily increases until it reaches a plateau value, which indicates that the

new final stable configuration is reached. As to be expected the stronger the forces,

the longer the tubes are. For long times, one can also observe thermal fluctuations

in the length of the final stable configuration.

In Figure 4.7 the force was increased stepwise (red curve) and afterwards decreased

stepwise (blue curve). Every t = 2000 the force was increased or decreased by

∆Fext = 20, starting at Fext = 0 and ending at Fext = 120. One can see that the

plateau values are independent of the length of the previous configuration, thus

there is no hysteresis effect.

4.4.2 Length of the Final Configuration

It was further investigated how the length of the final stable configuration, and hence

the tube length, depends on the strength of the external force. For this a constant

external force Fext was applied and the system was simulated long enough, to ensure

b`T = max({|~ri − ~rj |,∀i,j ∈ N}) with the positions of the vertices ~ri and the total number of
vertices N .

cTo obtain the tube length one simply has to subtract the diameter of the vesicle, which is just
a constant offset. We chose to work with the end-to-end distance because it was easier to handle
and compare to our results obtained from direct minimization and to data from the literature.
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Figure 4.6: Time evolution of the length `T for different applied forces Fext at ν =
0.8. The starting configuration was a relaxed vesicle. The evolution looks similar
for ν = 0.6 and ν = 0.7.

Figure 4.7: Time evolution of the length `T of the structure for increasing (tincrease;
red curve) and then decreasing (tdecrease; blue curve) the force stepwise. Every
t = 2000 the force was increased and then decreased by ∆Fext = 20 (ν = 0.8).
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(a) Pulling in one direction. (b) Pulling in two opposing directions.

Figure 4.8: Length `T of the stable configuration depending on the external force
Fext for pulling in one or two directions for different reduced volumes ν.

that the equilibrium configuration shown in Figure 4.6 is reached. This length

dependence on the force is shown in Figure 4.8a for one tube and in Figure 4.8b for

two tubes. Each data point was averaged over 100 independent runs, to minimize

the effects of thermal fluctuations.

As already seen in Figure 4.6 the length increases for increasing forces. It is also

interesting to see that the lengths differ depending on the reduced volumes ν. For

a lower reduced volume one obtains longer structures. The effect of whether the

force is applied in one or two directions on the total length is very small. The only

difference is that, when pulling in two directions, the structures are slightly more

elongated.

4.5 Tube Radius

In this section the radius of the tubes is studied. For this the stable final config-

urations obtained in the previous section were used. For each data point, it was

again averaged over 100 independent configurations. The equilibrium tube radius

can also be estimated theoretically and the simulation results will be compared to

this theory.

4.5.1 Theoretical Tube Radius

The equilibrium tube radius R0 can be approximated by:25;131

R0 =
2πκ

Fext

∝ 1

Fext

(4.2)

37



and only depends on the external force Fext applied and the bending rigidity κ.

Since κ is a material constant, the equilibrium tube radius is inversely proportional

to the external force Fext.

This equilibrium tube radius can directly be derived from the Helfrich Hamiltonian

given in Equation 3.7, assuming a perfectly axisymmetric tube with fixed area and

open ends. The derivation can be found in Appendix B.2.

4.5.2 Tube Radius from Simulations

To determine the tube radius from the simulations, the vesicle was aligned along an

axis and then divided into slabs. For each slab the average radius was determined

by projecting the slab onto a plane perpendicular to the alignment axis and then

calculating the average distance to the center of mass of the projected vertices

inside one slab. This allowed to find the contour of our system and the radius of

the tubes. The division into slabs is necessary, because of small undulations of the

tube due to the thermal fluctuations, and also useful to remove any contributions

from the vesicular part.

An exemplary contour is shown in Figure 4.9. The red data points represent the

vertices and the blue line the contour determined with the method described above.

To calculate the tube radius, it was averaged over the radii in the tubular part of

the structure.

A comparison between the theoretically predicted tube radius and the results

obtained by simulations is shown in Figures 4.10a and 4.10b. As predicted by the

theory the radius decreases with increasing force. For lower forces the simulation

results are, however, slightly higher than predicted. For intermediate forces the

agreement is quite good and for higher forces the simulation results are a bit too

low.

The deviations for low forces could be due to the fact that the tubes are not yet too

pronounced and have a slight ’lemon’ shape, which would result in a larger radius.

Figure 4.9: Determination of the vesicle contour (blue line). The red points are
the vertices of the vesicle. This contour can be used to determine the average tube
radius (ν = 0.7; Fext = 100).
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(a) Pulling in one direction. (b) Pulling in two directions.

Figure 4.10: Tube radius RT of the final configuration for different external forces
Fext. Shown is the theoretical prediction according to Equation 4.2 (black curve)
and our simulation results for the different reduced volumes ν.

For high forces, the resolution of the mesh is reached, as mentioned previously. This

also shows that for obtaining meaningful results, one should not perform simulations

for forces higher than Fext ≈ 130.

Overall the agreement between theory and simulations is quite good. The simulations

show the same trend as predicted by the theory and are relatively close to the

predicted values. One has to, however, be careful with the interpretation of the

results for too high forces, as discussed above.

4.6 Energies of the System

It is also interesting to study the energies of the different configurations discussed

above. In the following the different energy contributions described in Section 3.4.1

are analyzed. In Figure 4.11 the time-dependent energy is shown for an initially

relaxed vesicle to which an external force is applied. When applying the force, the

vesicle immediately starts to deform and hence the curvature energy increases, until

the system has reached the new final stable configuration. The work necessary to

reach this energetically higher state was generated by the external force as defined

in Equation 3.15. This work will be analyzed in more detail in Section 7.3.

One can clearly see that the energy of the system Utot (black) is dominated by

the curvature energy Ucv (red). All other energies give a small, roughly constant

contribution. The energies from the bond and pair potential (Ubond in turquoise and

Urep in orange) are in the order of 200 and the energies due to the volume and area

potential (UV in blue and US in green) in the order of 10. The small fluctuations in

the energy are again due to thermal fluctuations.

When analyzing the curvature energy of the final stable configurations for different
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Figure 4.11: Time evolution of the energies U when applying an external force
Fext = 100 to a relaxed vesicle (ν = 0.8). The total energy of the system Utot (black)
is dominated by the curvature energy Ucv (red). The inserts show the conformation
of the system.

Figure 4.12: Curvature energy Ucv of the final stable configurations for different
forces Fext, pulling in two directions, and different reduced volumes ν. The data
looks similar for pulling in one direction.
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forces, one expects an increase with increasing force. This is the case, because the

stronger the force, the longer and thinner the tubes get, and hence the system is

curved more strongly. This is confirmed by the data shown in Figure 4.12. For all

reduced volumes the curvature energy increases for increasing forces. It is highest

for ν = 0.6, in which case the vesicle was deformed the most and had the longest

tubes.

This shows that the curvature energy is the most dominant energy contribution and

hence an important characteristic of the system. It will be closely monitored and is

an important quantity for further studies.

4.7 Other Membrane Parameters

In this section we studied several other membrane parameters, namely the surface

pressure Π, the Laplace surface tension γ and the pressure difference between the

inside and the outside of the vesicle ∆P . In the following these parameters will be

briefly motivated and it will be analyzed how they behave in our system.

Pressure Difference ∆P

The volume of the vesicle is constrained by the harmonic potential UV = 1
2
kV(V −

V0)2, c.f. Equation 3.13. Therefore the pressure difference is given by:

∆P = −kV〈V − V0〉 = pin − pout (4.3)

with the volume constraint parameter kV = 1.0, the volume of the vesicle V and

the target volume V0. pin is the pressure inside and pout the pressure outside of the

vesicle.

The pressure difference for the different reduced volumes, for pulling in two opposing

directions, is shown in Figure 4.13. One can observe that the pressure inside the

vesicle is larger than outside and that the pressure difference increases steadily with

increasing force. The fluctuations are relatively high, which is due to the (small)

fluctuations of the volume. The volume constraint parameter kV was set to one in

these simulations. For a more stable volume, one would need to increase the value

of kV.

Surface Pressure Π

Similarly to the pressure difference, the surface pressure can be derived from the

constraints on the surface area US = 1
2
kS(A− A0)2, c.f. Equation 3.12:

Π = −kS〈A− A0〉 (4.4)

In the simulations the area constraint parameter was kS = 2.0, A it the surface area

of the vesicle and A0 the target surface area.
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Figure 4.13: Pressure difference ∆P between the inside and the outside of the
vesicle depending on the external force Fext, for different reduced volumes ν.

(a) Laplace surface tension γ. (b) Surface pressure Π.

Figure 4.14: Laplace surface tension γ and surface pressure Π in the final configura-
tion depending on the external force Fext for different reduced volumes ν.

Laplace Surface Tension γ

The Laplace surface tension γ can be derived from the Young-Laplace equation,132;133

which directly relates it to ∆P :

∆P = pin − pout =
2

RC

γ (4.5)

with

RC =
3V

A
(4.6)

being the effective thermodynamic radius for any closed vesicle.134

Using these equations the Laplace surface tension can be expressed as:

γ = ∆P
3V

2A
(4.7)
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The behavior of both the Laplace surface tension and the surface pressure can

be found in Figure 4.14. The absolute values for both quantities increase with

increasing force, where the Laplace surface tension is slightly above the surface

pressure, however, they have different signs.

4.8 Larger Number of Vertices

To verify that the number of vertices N used, i.e. the discretization of the mesh, is

fine enough to properly resolve the investigated tubular vesicles, simulations with a

larger number of vertices were performed. The number of vertices was increased

to N = 10242. This evidently slows down the simulations significantly, which is

why this setting was only used for control runs and not for performing the entire

analysis.

First, the time evolution of the length of the system was analyzed, when applying

a constant external force. This evolution can be found in Figure 4.15. Similar to

the simulations with smaller N (c.f. Figure 4.6), the length increases until a new

stable final configuration is reached and the length is roughly constant. Values from

this new equilibrium region will be used to compare them to the simulations with

smaller N .

In order to compare the two systems quantitatively, the values for the lengths

and forces had to be rescaled, because in the simulations the bond length a is

set to one, which leads to an increased system size for larger numbers of vertices

N = 10242. Since we require them to have the same size, we rescale the unit of

length σN=10242 =
√
AN=10242

0 /AN=2562
0 = 2 (and similarly the unit of time τN=10242).

This rescaling can be safely performed because the systems investigated are scale

invariant. After rescaling some of the units are not equal to one anymore, therefore

we will explicitly state the units until the end of this section.

A comparison between the lengths and the tube radii can be found in Figures 4.16a

and 4.16b. Both generally show a good agreement for lower forces, but for forces

larger than Fext ≈ 130κσ−1
N there are large deviations. This is exactly the region

where the resolution of the N = 2562 mesh becomes insufficient, as discussed before.

For forces lower than Fext ≈ 130κσ−1
N the lengths and radii for N = 2562 are slightly

above the values for N = 10242. The deviations are, however, relatively small, so

the effect of the discretization in this region is quite small.

For the simulations with N = 10242 the agreement of the tube radius with the

theoretical values is very good until Fext ≈ 220κσ−1
N . For higher forces, the resolution

of the mesh becomes insufficient, which is also confirmed by analyzing simulation

snapshots. As a rough estimate, simulations with N = 10242 could thus be used

for forces of up to Fext ≈ 210− 220κσ−1
N .
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Figure 4.15: Time evolution of the rescaled length `T when applying a rescaled
external force Fext for a larger number of vertices N = 10242 (ν = 0.8). (The values
were rescaled to match the simulation with N = 2562 vertices, as described in the
text.)

(a) Length (b) Radius

Figure 4.16: (Rescaled) length `T and tube radius RT obtained for different (rescaled)
forces Fext from simulations with N = 2562 (red) and N = 10242 (blue) vertices.
The theory corresponds to Equation 4.2. (The values were rescaled to match the
simulation with N = 2562 vertices, as described in the text.)

Finally, the contours of the two systems were compared. This is exemplarily shown

in Figure 4.17 for three different forces. Generally the agreement is very good.

There is only a slight deviation in the total length of the structures. As observed

before, the contours for N = 10242 are slightly shorter than for N = 2562.

From this analysis it can be concluded that a finer discretization leads to slightly

more accurate results. For performing simulations with Fext > 130κσ−1
N the finer

discretization with N = 10242 is necessary to obtain meaningful results. For forces

Fext < 130κσ−1
N the smaller mesh with N = 2562 is sufficient. Since the focus of

this work lies on the regime Fext < 130κσ−1
N , only the discretization with N = 2562

will be used in the following.
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(a) Fext = 40κσ−1
N ; ν = 0.8

(b) Fext = 80κσ−1
N ; ν = 0.8

(c) Fext = 100κσ−1
N ; ν = 0.8

Figure 4.17: Comparison between the contours of simulations with N = 2562 (red)
and N = 10242 (blue) vertices for different (rescaled) external forces Fext. (The
values were rescaled to match the simulation with N = 2562 vertices, as described
in the text.)

4.9 Discussion of the Results

Performing simulations using a dynamically-triangulated surface model enabled

us to model tube formation on closed spherical vesicles due to an external pulling

force. The results obtained for the tubular structures show a good agreement with

theoretical predictions. The model was further validated by performing simulations

with a finer discretization, showing that the model can reliably be applied for

external forces of up to Fext ≈ 130. Our analysis thus indicates that the quality of

the numerical results can be systematically improved using finer discretizations, as

shown in Ref. 112. From this analysis we would assume that all deviations from

the theory could be caused by discretization effects due to the finite number of

vertices N .

The simulations also showed that an important quantity of the system is its curvature

energy. It is the dominant and most important contribution to the total energy of

the system. It will be a relevant quantity for further analysis and monitored closely.

The curvature energy of the vesicles is currently higher than in an idealized system,

due to undulations of the surface caused by thermal fluctuations. To reduce the

effects of these fluctuations, simulations at low temperatures will be performed.

This first analysis showed that the simulation model is well suited for modeling

and analyzing vesicular and tubular structures. To further validate the model,
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minimal-energy solutions of the Helfrich Hamiltonian, which allow to analyze shapes

of vesicles with an external force applied, will be calculated. This method will be

presented in the next chapter and the results compared to the simulations.
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5
Analytical Solutions of Axisymmetric

Tube-Forming Vesicles

To validate the simulation method and results, the problem of obtaining tubular

structures pulled from vesicles was described and investigated analytically and

compared to the results obtained in the previous section. In the literature several

such analytical approaches can be found, e.g. different approaches solving the

shape equations derived from the Helfrich theory described in Section 3.3, see

Refs. 25; 135–145. Other approaches used purely dissipative dynamics,146 interior-

point-methods147;148 or a more direct approach that directly minimizes a target

function.149;150

These methods were originally applied to a simple vesicle to calculate the shapes of

red blood cells or other general shapes, see Refs. 136; 139; 141–145; 151; 152. There

have also been several approaches made to investigate the formation of tubular

structures protruding from vesicles. However, in Refs. 25 and 135 only the tubular

part was considered, while in Ref. 153 the tubular part and the vesicle were analyzed

separately. Our objective in this work, is to treat the tubes and the vesicles as

a combined system. This has been done in Refs. 146–148, where a nanorod was

put into the vesicle to mimic e.g. actin filaments, while others used an external

force.138;149;150;154;155 The latter is what has been done in this thesis.

First, the more traditional approach of solving the shape equations will be discussed.

This approach, however, has some strong limitations for more complex structures.

We therefore had to switch to a more direct method, which allows to minimize the

energy of a deformed vesicle. This method performed very well and we were able to

obtain stable results. These will be compared to the simulation results and data

from the literature.

5.1 Shape Equations

As described in Section 3.3 the bending energy of a vesicle can be described by the

following equation:

Ebend =
κ

2

∫
dA(K −K0)2 (5.1)
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where K and K0 are the mean and spontaneous curvature respectively. κ is a

material constants called curvature modulus.

The energetically most favorable conformation of a structure can in principle be

obtained by minimizing this equation under certain constraints that describe the

state of the system, i.e. constraints on the total area and volume of the vesicle.

As mentioned previously, it is however generally not possible to find an analytical

solution for this minimization problem. One therefore has to make simplifications,

taking properties of the system, like symmetries, into account. In the following the

simplifications that can be made for a closed (spherical) vesicle and a convenient

parameterization will be presented. Both the bending energy and the constraints

will be expressed in this parametrization.

5.1.1 Parametrization

In the following the vesicle tube system is assumed to be axisymmetric. This seems

to be a good approximation, as shown by the simulations performed in the previous

chapter, and it can also be understood from the fluidity of the membrane, which

automatically aligns the symmetry axis of the vesicle with the direction of the

external force. The system can therefore be parameterized by the arc length S of

the contour of the vesicle and the angle ψ(S) between the tangent and the x-axis

as illustrated in Figure 5.1. Similar parameterizations have previously been used in

e.g. Refs. 139; 151.

The parameterization of the vesicle is therefore given by:

r(S, φ) =

x(S) cos(φ)

x(S) sin(φ)

z(S)

 (5.2)

Figure 5.1: Illustration of the parameterization used for the vesicle. The system is
axisymmetric and characterized by the arc length S and the angle ψ(S).
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where the following geometrical relations are required to hold:

ẋ =
∂x

∂S
= cos(ψ) (5.3)

ż =
∂z

∂S
= − sin(ψ) (5.4)

In this and all further expressions the dot denotes the derivative with respect to S.

Using this parameterization, the mean curvature and the differential dA can be

expressed in the following way:139;151

K =
sin(ψ)

x
+ ψ̇ (5.5)

dA = xdφdS (5.6)

A detailed derivation of these equations can be found in Appendix B.3. The term

that has to be minimized therefore simplifies to:

E(ψ, x, z) =
κ

2

∫
(K −K0)2dA = κ

∫ 2π

0

∫ S1

S0

x

2

(
sinψ

x
+ ψ̇ −K0

)2

dSdφ

(5.7)

= 2πκ

∫ S1

S0

x

2

(
sinψ

x
+ ψ̇ −K0

)2

dS (5.8)

5.1.2 Shape Equations

To mimic the simulations performed in the previous section, Equation 5.8 has to be

minimized, while keeping the area A and the volume V of the vesicle constant. In

the given parameterization A and V can be expressed as:

A = 2π

∫ S1

S0

xdS (5.9)

V = π

∫ S1

S0

x2 sinψdS (5.10)

By introducing Lagrange multipliers Σ and P and by solving δF = δ(E + ΣA +

PV ) = 0, with the variation δ, the shape equations can now be obtained.143;151

However, the earlier considered constraints ẋ = cos(ψ) and ż = − sin(ψ) also need

to be taken into account. To obtain this the Lagrange functions γ(S) and η(S) are

introduced.

In the simulations an external force is pulling on the poles of the vesicle in opposing

directions. This is described by a ’force’ f , which acts on the length of the vesicle,

i.e. z(S1)− z(S0). Here f is in fact a Lagrange multiplier.

The shape equations for a general vesicle with external pulling force can now be
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obtained by demanding that the following function has zero variation:

F (ψ, x, z, γ, η) = E(ψ, x, z) +ΣA+ PV + f(z(S1)− z(S0))

+ 2πκ

∫ S1

S0

[γ(ẋ− cosψ) + η(ż + sinψ)] dS

= 2πκ

∫ S1

S0

[
x

2

(
sinψ

x
+ ψ̇ −K0

)2

+ Σ̄x+
P̄

2
x2 sinψ

− f̄ sinψ + γ(ẋ− cosψ) + η(ż + sinψ)

]
dS

=: 2πκ

∫ S1

S0

LdS

(5.11)

Three rescaled parameters were introduced:

Σ̄ =
Σ

κ
, P̄ =

P

κ
and f̄ =

f

2πκ
(5.12)

Using the variational principle one can now derive the following set of differential

equations (derivation see Appendix B.3):

ψ̈ =
sinψ cosψ

x2
+
P̄ x

2
cosψ + γ

sinψ

x
+ η

cosψ

x
− ψ̇ cosψ

x
− f̄ cosψ

x
(5.13)

γ̇ =
1

2
(ψ̇ −K0)2 − sin2 ψ

2x2
+ Σ̄ + P̄ x sinψ (5.14)

η̇ = 0 (5.15)

ẋ = cosψ (5.16)

ż = − sinψ (5.17)

Considering a closed axisymmetric vesicle and taking boundary conditions into

account, these equations simplify to:

ψ̈ =
sinψ cosψ

x2
+
P̄ x

2
cosψ + γ

sinψ

x
− ψ̇ cosψ

x
− f̄ cosψ

x
(5.18)

γ̇ =
1

2
(ψ̇ −K0)2 − sin2 ψ

2x2
+ Σ̄ + P̄ x sinψ (5.19)

ẋ = cosψ (5.20)

ż = − sinψ (5.21)

with the following initial conditions:

ψ(0) = 0; ψ(S1) = π (5.22)

γ(0) = γ(S1) = 0 (5.23)

x(0) = x(S1) = 0 (5.24)

To solve these equations numerically an additional variable U = ψ̇ is introduced.

This reduces the system to a set of five first order differential equations.
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Before one can now solve these equations, there is one more small problem with

the boundary conditions that has to be considered. At S = 0 it is required that

x(0) = 0, which leads to a division by zero in Equation 5.18. To circumvent this the

following new initial conditions ψ(0) = ε and x(0) = sin ε
U(0)

, with ε > 0 and arbitrarily

small, are introduced. The resulting equations we are attempting to solve are thus

given by:

ψ̇ = U (5.25)

U̇ =
sinψ cosψ

x2
+
P̄ x

2
cosψ + γ

sinψ

x
− U cosψ

x
− f̄ cosψ

x
(5.26)

γ̇ =
1

2
(ψ̇ −K0)2 − sin2 ψ

2x2
+ Σ̄ + P̄ x sinψ (5.27)

ẋ = cosψ (5.28)

ż = − sinψ (5.29)

with the modified initial conditions:

ψ(0) = ε (5.30)

U(0) = u (5.31)

γ(0) = 0 (5.32)

x(0) =
sin ε

u
(5.33)

z(0) = 0 (5.34)

5.2 Solutions of the Shape Equations

We have numerically solved the shape equations given by Equations 5.25-5.34 above.

First, we looked at some simple structures without an external force and then

added the external force, to see whether the formation of tubular structures can be

observed. For this analysis the software Mathematica156 was used, as well as my

own implementation of a Runge-Kutta157;158 method. Both solvers led to the same

results.

Without an external force it was relatively easy to obtain some simple basic shapes,

as shown in Figure 5.2. These also match the shapes obtained with our simulations

very well, c.f. Figure 4.1. The solutions were, however, very unstable. A slight

variation in one of the initial conditions could lead to a crash of the solver, or obscure

and unphysical shapes. These instabilities were also reported in Refs. 138 and 154,

in which the tubular part of a tube protruding from a vesicle was approximated.

When trying to reproduce the results for one-component membranes in Ref. 143 a

slight variation of the initial conditions led to contradicting results.

51



These instabilities were even worse, when the term including the external force

f̄ was added and it was not possible to find stable meaningful solutions with a

tubular part. It is of course possible that we simply did not explore a large enough

fraction of the parameter space and a more detailed scan would have led to a set of

parameters that provided a sensible solution. However, even if we had found one

set of parameters that somehow resembled a tubular vesicle, this would not have

been satisfactory. What we had hoped to obtain was a stable system or parameter

range, where increasing f̄ would lead to more elongated structures. However, due

to the instabilities observed, caused by small variations of the initial parameters,

this did not seem possible and plausible.

Another problem of this approach is that the area and volume are only controlled

by Lagrange multipliers, which are a priori unknown. They therefore have to be

adjusted in an optimization procedure to meet the area and volume constraints.

Similar to previous work138 this was done manually, while also more complicated

methods exist.155 However, as in the simulations, we want to keep the volume and

(a) P̄ = 5.0, Σ̄ = −1.0, K0 = −0.1,
u = 5.0, f̄ = 0.0

(b) P̄ = 5.0, Σ̄ = −2.1, K0 = −0.1,
u = −0.9, f̄ = 0.0

(c) P̄ = 5.0, Σ̄ = −1.0, K0 = −0.1,
u = 1.88, f̄ = 0.0

Figure 5.2: Numerical solutions of the shape equations given by Equations 5.25-5.34
without an external force. The parameters used can be found in the captions
(ε = 10−25).
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area (almost) constant and have better control over these parameters. We therefore

changed our method to a technique that allows to do this, as will be discussed in

the next section.

5.3 Direct Minimization

Due to the difficulties encountered in the previous section, we changed our approach

to a more direct method. The objective is the minimization of the energy functional

given in Equation 5.8 with an external force:

E(ψ, x, z) = 2πκ

∫ S1

S0

[
x

2

(
sinψ

x
+ ψ̇ −K0

)2

− f

2πκ
sinψ

]
dS (5.35)

= 2πκ

∫ S1

S0

L̄dS (5.36)

At the same time we want to keep the area A and volume V of the vesicle fixed.

Therefore two additional terms in the form of harmonic potentials are introduced,

that are taken into account during the minimization. The resulting energy functional

that has to be minimized is therefore:

E = 2πκ

∫ S1

S0

L̄dS︸ ︷︷ ︸
Lagrange term

+
1

2
kA(A− A0)2 +

1

2
kV(V − V0)2︸ ︷︷ ︸

Mayer term

(5.37)

A0 and V0 are the target values for the area and volume respectively and kA and kV

are constants determining the strength of the constraints. Minimizing this type of

equation is called a Bolza problema, containing a Lagrange and a Mayer term. The

Lagrange term falls into the same category as the term in the previous section, but

the area and volume constraint are treated differently. In fact, this approach directly

corresponds to the area and volume potentials introduced for the simulations (see

Section 3.4.1).

To describe the axisymmetric vesicle tube system, the aforementioned constraints

still need to hold. Therefore the following constraints in the form of differential

equations have to be added:

ψ̇ = u (5.38)

ẋ = cosψ (5.39)

ż = − sinψ (5.40)

V̇ = πx2 sinψ (5.41)

Ȧ = 2πx (5.42)

aThis type of problem was first formulated by the German mathematician O. Bolza in 1913.159
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Equations 5.41 and 5.42 are directly derived from Equations 5.10 and 5.9. This

type of problem is called an optimal control problem (OCP).160

To solve this problem we used the open source software environment ACADO

Toolkitb.161;162 This software package is specialized on optimal control problems

and provides algorithms for solving them, which makes it ideally suited for our

problem. Our implementation of the equations can be found in Appendix D. The

results of the numerical minimization and a comparison to the simulations can be

found in the next section.

5.4 Results from the Direct Minimization

5.4.1 No External Forces

First, the algorithm was tested without an external force. It performed very well as

shown in Figure 5.3. Similar prolate, oblate and stromatocyte shapes as observed

in simulations and calculated from solving the shape equations could be obtained,

c.f. Figures 4.1 and 5.2.

(a) ν = 1.0

(b) ν = 0.8 (c) ν = 0.7

(d) ν = 0.6

(e) ν = 0.3

Figure 5.3: Numerical solutions of the direct minimization method without an
external force. The system was tested for different reduced volumes ν.

bMore information about the software can be found under http://www.acadotoolkit.org/.
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(a) f = 20 (b) f = 40 (c) f = 45 (d) f = 50

(e) f = 60
(f) f = 70

(g) f = 90

Figure 5.4: Shapes obtained from direct minimization for different forces f . If the
forces are strong enough, tubular structures form (ν = 0.8).

(a) total length (b) tube radius

Figure 5.5: Length `T and tube radius RT of the shapes obtained from direct
minimization for different forces f and different reduced volumes ν. The theory
corresponds to Equation 4.2.
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5.4.2 Vesicles with External Forces Applied

In the next step, the external force f was added, to see whether elongated and

tubular structures can be observed. The minimizer performed in fact very well and

an elongation of the structures for increasing forces could be observed, and for high

enough forces even the formation of tubes. Some exemplary shapes for a reduced

volume of ν = 0.8 are shown in Figure 5.4 and a whole set of shapes obtained for

different reduced volumes and forces can be found in Appendix A.2.

For high enough forces, tubes protruding from the vesicle are obtained, see Figures

5.4c and 5.4d. As observed in the simulations, lower forces lead to the elongation of

the vesicle, but not yet to tubular structures. For forces just before the tube-forming

threshold, the system is again in a ’lemon’ shape, see Figure 5.4b.

One interesting observation is that the vesicle is not always in the center of the

structure, i.e. the system is not entirely mirror symmetric. Instead the vesicle is

closer to one end of the structure. Some slight shifts have also been observed in the

simulations (c.f. Appendix A.1), but using direct minimization this effect seems

to be more prominent. Clearly, the position of the vesicle in Figure 5.4g does not

affect the total energy, as long as the tubes on both sides have the same radius,

which is the case in this system. In Figure 5.4f it is possible that the structure

is not in the absolute energy minimum since the radii of the tubes show a slight

discrepancy, but also in this case the difference to the absolute energy minimum

can be assumed to be very small.

5.4.3 Tube Length and Radius

The lengths of the structures and the radii of the tubes were determined to compare

them to the simulation results. When increasing the external force, the tubes

became more elongated and the radius decreased, as was the case in the simulations.

The lengths and radii for different reduced volumes depending on the force can be

found in Figure 5.5. As it was the case for the simulations, longer structures are

obtained for lower reduced volumes and the radius is again also slightly above the

theoretically predicted value. We explain the latter by slight deviations from the

constraint on the surface area A0. However, increasing kA destabilized the system.
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5.5 Comparison to Simulations

5.5.1 Note on Rescaled Units

The systems investigated are scale invariant, as mentioned previously (c.f. Sec-

tion 3.4.1). In order to compare the simulation results to the results from direct

minimization, the lengths and forces therefore need to be rescaled in the same

manner. The rescaling used in this work is also commonly used in the literature

and will allow us to conveniently compare our results to data reported in previous

work.146;147 The rescaled units that will be introduced in the following will be used

whenever the corresponding quantity is marked with a superscript ′.

The length is typically rescaled by RS, which is the effective radius of the vesicle,

i.e. the radius of a sphere with area A0. In our case A0 will refer to the area of the

vesicle, which is fixed in the simulations and in the numerical solutions presented in

this chapter. The rescaled unit of length is thus:

σ′ =
σ

RS

with RS =

√
A0

4π
(5.43)

The unit of energy is rescaled in the following way:

ε′ =
ε

4πκ
(5.44)

Thus the force f is rescaled as f ′ = fRS

4πκ
. In the simulations RS = 12.92 and κ = 20

were used and for the direct minimization RS = 1.077 and κ = 1. For the rest of

this section these rescaled units will be used for all lengths and forces.

5.5.2 Contour

First, the contours obtained from simulations and direct minimization were com-

pared. Some sample contours can be found in Figure 5.6. The overall agreement is

very good, however when looking in more detail there are some small deviations.

Especially when it comes to the position of the vesicle, there are shifts, as seen in

Figure 5.6c. The overall length and the radius, however, agree nicely.

5.5.3 Length and Radius

Finally, the lengths and tube radii were compared to the simulations and data from

the literature. In Figure 5.7 the results from direct minimization are compared to

the simulations, exemplary for ν = 0.7. The agreement for the length is very good,
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(a) f ′ = 2.57
(Fext = 50; f = 30)

(b) f ′ = 4.63
(Fext = 90; f = 54) (c) f ′ = 5.14

(Fext = 100; f = 60)

Figure 5.6: Comparison of the contours obtained from direct minimization (dm)
and simulations for different rescaled forces f ′ (ν = 0.8). In parenthesis the values
for the fores used in the simulations, Fext, and direct minimization, f , are given.

whereas there are some slight deviations for the tube radius. These are, however,

quite small given the length scales.

To further determine how our numerical model and our simulation model perform,

they were compared to similar numerical optimization tools and analytical solutions

found in the literature. In Ref. 153 the authors derived a theoretical approximate

function for the tube length depending on the force f and the reduced volume ν:

l ' (1− ν2/3)f (5.45)

A comparison can be found in Figure 5.8, where the simulation results are shown in

red, the results from direct minimization in green and the theoretical prediction in

bluec. For ν = 0.6 and ν = 0.7 all three methods agree very well. For ν = 0.8 the

results from the simulations nicely match the theory, but there are some deviations

for the direct minimization results for higher forces. The method might not be

working reliably in this regime.

There is also a strong deviation from the theory for lower forces. This is, however,

cIt should be noted that a constant offset (independent of ν) was added to the theory, to be
able to compare it to our results. This offset is the diameter of the vesicle, which had to be added,
because in the theory only the tubular part is considered, whereas we are looking at the length of
the entire structure.
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to be expected, because in the theory only a tube is considered, whereas in the

simulations and the direct minimization method a vesicle with tubes is modeled.

In this low force regime, the system does not have any tubes yet, but is only an

elongated vesicle. As soon as the formation of tubes starts, the results agree with

the theory very well.

In the literature, we could find two studies of a vesicle tube system, that were similar

to our analysis, but used different methods. Both groups looked at axisymmetric

vesicles with encapsulated rods, that formed tubular structures. In Ref. 146

the system was studied by solving dissipative dynamics for the Lagrangian nodes

of a closed curve to find the energy minimum. Vesicles with an infinitely thin

encapsulated rod, mimicking the cytoskeleton, were analyzed. This rod is introduced

by an external force. The results are shown in orange (Shibuya et. al.) and have

the same trend as our results from simulations, direct minimization and theory.

For lower forces, they match our results very well, but for higher forces, they are

significantly below our data and the theoretical prediction.

In the second study, see Ref. 147, the authors obtained their results by numerical

optimization of the vesicle rod system. They were able to obtain different shapes,

depending on rod diameter and type. Their results are shown in violet (Wu et. al.)

and show the same trend as our results, but predict a slightly shorter length for

high forces, which could be caused by the finite size of the rod in their system.

Overall, the agreement between the simulations and the results obtained from direct

minimization is very good. The results are also consistent with data and theory

reported in the literature.146;147;153 This is another important indicator that the

simulation model is performing well and can be reliably used for modeling vesicles

and tubular structures. In the next chapter it will be employed to simulate the

coalescence of tubes.

(a) total length (b) tube radius

Figure 5.7: Comparison of the lengths `′T and tube radii R′T obtained from direct
minimization and simulations (ν = 0.7). The theory corresponds to Equation 4.2.
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(a) ν = 0.6

(b) ν = 0.7

(c) ν = 0.8

Figure 5.8: Comparison of the length `′T obtained from simulations (red) and direct
minimization (green) to data from the literature for different reduced volumes ν.
The theoretical prediction153 given by Equation 5.45 is shown in blue. Results from
two different optimization methods are shown in violet147 and orange.146
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6
Coalescence and Branching in

Vesicle-Tube Systems

In this chapter we take a closer look at the coalescence and branching of tubular

structures. Using the tubular vesicles simulated in Chapter 4 and a symmetric

vesicle with four tubes, it was investigated at which angle between the tubes

coalescence occurs. We compared these results to the theoretical predictions in

Ref. 163. Afterwards, we studied the reverse process, i.e. branching of one tube

into two.

6.1 Coalescence of Tubes

To investigate the coalescence of tubes, vesicles with two and four tubes respectively

were simulated. By changing the angle αT between two of the tubes, coalescence

of the tubes could be observed at a certain angle αT,c. Whether or not coales-

cence occurs was investigated for different applied external forces Fext and reduced

volumes ν of the system.

6.1.1 Symmetric Vesicles with Four Tubes

First, a symmetric configuration of a vesicle with four tubes was simulated. These

configurations were generated from a closed spherical vesicle by applying external

forces in four different directions. In the starting configuration the angle between the

tubes was exactly αT = 90◦, as illustrated in Figure 6.1a. Then the angle between

each pair of tubes was decreased. For small enough angles coalescence could be

observed, as shown by the exemplary time evolution in Figure 6.1. The tubes start

to merge in a zipper-like mechanism, until only one larger tube is remaining. This

zipper-like merging mechanism has also been observed experimentally10;11;163 and

in simulations.25;164

The angle at which coalescence occurs was then determined for three different forces

and is shown in Figure 6.2. If coalescence occurred, this is marked by a red circle,

and if no coalescence occurred, this is marked by a blue square. One can observe
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(a) Initial configuration

(b) Angle is reduced

(c) Onset of coalescence (d) Continuation of coalescence

Figure 6.1: Time evolution of a coalescence process.

Figure 6.2: Angles αT and forces Fext for which coalescence was investigated
(ν = 0.8). If coalescence occurs, this is marked with a red circle, and no coalescence
with a blue square. In the region between coalescence and no coalescence asymmetric
configurations with only one tube were observed (green triangle).
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a slight shift in the onset of the coalescence region for lower forces. This can be

explained intuitively, because for lower forces the tubes are thicker, which means

that they can touch each other and start to coalesce, where thinner tubes cannot.

In some cases an asymmetric final configuration with only one tube on one side was

reached. This occurred for angles αT in the intermediate region between coalescence

and no coalescence and is marked by a green triangle. For each configuration 10 runs

were performed, to see whether this is an occasionally occurring process or happens

repeatedly. The red square for coalescence indicates that in the majority of the

runs a symmetric end configuration with two tubes was reached, whereas the green

triangle indicates that in the majority of cases an asymmetric end configuration with

only one tube was reached. There was, however, no overlap with the no coalescence

region, i.e. for all the runs performed either coalescence or no coalescence was

observed. To compare these results to the theoretical predictions in Ref. 163, we

had to slightly adapt our methodology and analyzed the coalescence of vesicles with

two tubes.

6.1.2 Vesicles with Two Tubes

In this case the starting configuration was a symmetric tubular vesicle, where the

angle between the tubes was exactly αT = 180◦, as shown in Figure 6.3a. This

angle was then subsequently decreased. Before performing the simulations, however,

it has to be taken into account that changing the angle causes an asymmetry in the

forces, which means that the entire system would be dragged in one direction. To

avoid this vesicle movement, two different approaches were employed.

In the first method a counter force was applied to all vertices, to balance the

asymmetric pulling force on the tubes. The strength of this force depends on the

angle and is the same for all vertices. This method corresponds to the vesicle being

trapped in a viscous environment, which could for example be the cytoplasm or a

dense network of filaments.

In the other approach, some of the vertices were always kept at a fixed position. In

the simulations seven vertices and their neighbors were fixed, while the rest could

move unperturbed. This second method corresponds to parts of the vesicle being

anchored to other larger and heavier parts within the cell, which could also be

filaments or even other cell organelles.165

The time evolution of an exemplary coalescence process of a vesicle with two tubes,

that was stabilized using the first method, can be found in Figure 6.3. The process

looks very similar to the one simulated for the four tube system, but the end-

configuration is a vesicle with (only) one long tube. It could again be observed

that if the angle between the tubes was reduced below a certain critical angle αT,c,
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(a) Initial configuration

(b) Angle is reduced

(c) Angle is reduced further (d) Onset of coalescence

(e) Tubes completely merged

Figure 6.3: Time evolution of a coalescence process for a vesicle with two tubes.
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coalescence occurred. Whether or not coalescence occurs was monitored for various

angles for different forces Fext and reduced volumes ν. The results obtained for

the two different stabilization mechanisms can be found in Figure 6.4. As in the

figure above, the red circles denote the occurrence of coalescence and the blue

squares stand for no coalescence. Both systems show a slight shift in the onset of

the coalescence region to larger angles for lower forces, as was observed in the four

tube system and can be explained by the same mechanism.

One interesting observation is that the angle αT,c for the onset of coalescence is

different for the two systems. It is significantly higher for tubes stabilized using the

second mechanism. At first this might seem counter intuitive, but when taking a

closer look at the evolution of the vesicle, it could be observed that the vesicles that

were only anchored to a few fixed points can become much more stretched than the

ones stabilized by a homogeneous counter force. In this stretched elongated state

the two tubes can get considerably closer than in the less strongly deformed system

obtained by the first method, which means that coalescence can already occur at

larger angles.

We were also able to compare our results for the onset of coalescence, αT,c, to an

approximate analytical solution derived in Ref. 163:

αT,c ≈ 4

√
RT

Rv(1 + Rv

LT
)

(6.1)

where RT is the radius and LT the length of the tube, and Rv the radius of the

vesicle. In our simulations Rv can be approximated by Rv ≈ RS ≈ 12.92 and

the length of the tube is given by LT ≈ 1
2
`T − RS. This derivation is based on

geometrical relations for a system where RT � Rv, and it is assumed that the tube

only deforms the membrane slightly around the contact region.

Given these approximations, the simulation results agree very well with the approx-

imate solution given by Equation 6.1, as shown in Figure 6.4a. Both methods show

the same trend, but differ by ∆αT ≈ 4◦. The biggest factor causing this discrepancy

is most likely the fact that the membrane is deformed relatively strongly around

the tube-vesicle contact point, as can be seen e.g. in Figures 6.3b and 6.3c, while in

the theory of Ref. 163 idealized vesicles are considered.

Finally, the coalescence angle αT,c was investigated for different reduced volumes ν

of the vesicle. This analysis was only performed for the first stabilization method,

but we would expect similar results for the second one. The results are shown in

Figure 6.5. One can observe a clear shift of the boundary to lower angles for lower

reduced volumes, for which the tubes are longer and more pronounced.
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(a) Method 1: Counter force on all vertices. (b) Method 2: Some vertices are fixed.

Figure 6.4: Coalescence angle for the two tube system for ν = 0.8. Two different
methods were applied for keeping the system stationary. The theory corresponds to
Equation 6.1.163

Figure 6.5: Critical angle αT,c for the onset of coalescence for different reduced
volumes ν.
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6.2 Branching of Tubes

After simulating the coalescence of tubes, the reverse process, i.e. the branching

of one tube into two, was investigated. We looked at two different methods, as

illustrated in Figure 6.6. In the first one, two external forces were applied at the

end of the tube, pulling in different directions. In the other, an obstacle was placed

in front of the tube and the tube pulled towards it.

It was, however, not possible to simulate branching of tubes with neither of these

methods. In the first system, the tube simply elongated, slightly deforming the

tip of the tube, as illustrated in Figure 6.7. This was the case for all forces and

angles between the forces. In the second method, the tube simply moved around

the obstacle, no matter whether the obstacle was pointlike or elongated.

With the methods described above, it was therefore not possible to split a tube

protruding from a vesicle into two. This process might be hindered by the fixed

reduced volume ν of the system. In experiments one typically has one large vesicle

that serves as a lipid reservoir, allowing to manipulate tubular structures.26;163;166–168

In the simulations however, the tube and the vesicle are strongly coupled. A second

tube would require a large amount of extra surface area, which would have to

be taken from the vesicular part, modifying the volume and thus be potentially

hindered by our area and volume constraints that fix the area to volume ratio.

To investigate branched structures we therefore slightly adjusted the setup of the

simulations. By removing the constraint on the volume and applying external forces,

branched and tubular structures without a vesicular part can be investigated. This

method will be explained in the next chapter.
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(a) Method 1: Two external forces (illus-
trated by the red arrows), pull at the end
of a tube at a certain angle.

(b) Method 2: An obstacle is positioned
in front of the tube and the vesicle pulled
towards it.

Figure 6.6: Different approaches for simulating the branching of tubes.

Figure 6.7: Intermediate configuration of the branching simulations. The tip of the
tube slightly deforms, but no branch forms (ν = 0.8).
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7
Formation and Stability of Tubular

and Branched Structures

Up until now, vesicles with tubular protrusions generated by external pulling forces

have been analyzed. When removing these forces, the tubular structures immediately

retract and a stable spherical, prolate or oblate vesicle forms, depending on the

reduced volume (c.f. Fig. 4.1). In nature tubular membrane structures, however,

often occur in the form of complex networks, without direct connection to vesicles

(see e.g. Fig. 2.3a). It is now well established in the literature that tubular networks

can be generated under the influence of curvature-inducing proteins (see e.g. the

review paper in Ref. 68), or under the influence of an external force.15 However,

quantitative studies addressing the stability of tubular networks or their building

blocks are very rare.

In 1991, Seifert et al. calculated the phase diagram for spontaneous-curvature

models of lipid bilayers, based on the Helfrich model.130;151 They found a manifold

of interesting shapes that have also been discussed previously in this work. Similarly,

in Ref. 169 the phase behaviour of fluid vesicles for various pressure differences was

calculated. In particular, the authors found that the transition between the prolate

structure and the stromatocyte is of second order, i.e. there is a finite energy barrier

between these structures.

Similar energy barriers have then been observed in membrane tube formation170

via experiments and computer simulations. This opens up the possibility to create

a metastable tubular network using either curvature-inducing proteins or molecular

motors. Metastability of tubes has also been analyzed in detail via computer

simulations, using a similar triangulated membrane model as in this work.113 The

authors have explicitly shown that there is a free energy barrier between the tubular

structures they created and the minimum-energy shapes, which are oblate and

prolate structures for thick tubes and stromatocytes in the case of thin tubes. Under

extreme conditions, these tubular structures can even become stable.171 Keeping

this in mind, it is not surprising that also tubular networks, such as the one observed

in the endoplasmic reticulum, are highly dynamic structures,172 in which new tubes

are constantly created and existing tubes are merged or dissolved.
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While the (meta)stability of tubes has been analyzed in detail, a network has a

second fundamental building block, i.e. the junctions or branches in which several

tubes merge. As already discussed in Chapter 2, it has been observed experimentally

that these branches always consist of three connecting tubes, meeting at an angle

of 120◦.10;11;13 Whenever this constraint is not fulfilled remodeling of the network

occurs. A detailed analysis, similar to the one for cylindrical tubes, however, is

missing.

In this chapter, we therefore analyze the formation, energetics and stability of the

two building blocks of tubular networks discussed above: cylindrical tubes and

branches. Our goal is the extension of the analysis of stability for simple tubular

structures presented in Ref. 113 to branches. This will allow to draw important

conclusions on the (meta)stability of tubular membrane networks.

7.1 Characterization of Tubular and Branched

Structures

At first, we investigated the properties of branch and tubular structures, i.e. we

compared their lengths and radii and then matched these results to theoretical

predictions for a tubular structure. These results were complemented using the

direct minimization method described in Chapter 5. Afterwards, we examined the

energies of both systems, to determine which one is energetically more favorable. In

the following the structure in Figure 7.1a will be referred to as a tubular structure

or tube and the configuration in Figure 7.1b as a branched structure or branch.

To obtain these structures the simulation program and parameters described in

Section 3.4 were used. The only difference compared to the previous simulations

is that the volume constraint was set to zero. This allows the system to freely

(a) Tube

(b) Branch

Figure 7.1: Tubular and branched structures, which will be investigated in the
subsequent sections.
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change its volume, while keeping the area constant. This situation corresponds

to the creation of a tubular network, in which the tube or branch is effectively

permeable. In nature one usually pulls the tubes out of large vesicles, which thus

have a volume and an area reservoir. The tubular and branched structures were

now obtained by simulating a spherical vesicle and applying an external force Fext

in two or three different directions, respectively. The reduced volume can now freely

adjust; one therefore obtains pure tubular structures instead of tubular structures

with a spherical part in the middle, as was the case in Chapter 4.

7.1.1 Length and Radius

First, we determined and analyzed some basic properties of the structures, namely

the tube radius RT and the overall length `T. The radius is again given by

Equation 4.2 as:

RT =
2πκ

Fext

(7.1)

and the length of the tubular structure is given by:

`T =
A

2πRT

(7.2)

=
AFext

4π2κ
(7.3)

using simple geometric relationsa. A is the total area of the structure, Fext is the

strength of the external pulling force and κ is the bending rigidity, a material

constant.

The length and the radius of the tubular structure are simply given by the total

length of the structure and the average radius in the tubular part (removing the

caps at the two ends of the tube). For the branch structure, the overall length was

defined as the total length of all the arms, where the length of one arm is given

by the distance from the center of mass of the branch structure to the tip of the

respective arm. The radius is then calculated by averaging the radii of the tubular

parts in all three arms.

A comparison of the simulation results to the theoretically predicted values can be

found in Figure 7.2. For each force 100 independent simulations were performed.

Length and radius were averaged over the values obtained for the final stable

configuration of each independent run. The simulation results for the tube and the

branch are shown in green and blue respectively and the values from Equations 7.3

and 7.1 are shown in red.

aThe tubular structure consists of a tube with two caps, which are (in good approximation)
half spheres. The total length is therefore given by `T = Ltube + 2Lcap = Ltube + 2RT, and the
total area by A = Atube + 2Acap = 2πRTLtube + 4πR2

T. Using these two relations the total length
can be expressed as `T = A

2πRT
.
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(a) Length (b) Radius

Figure 7.2: Total length `T and tube radius RT of the branch (blue) and tubular
structures (green) for different external forces Fext, compared to the analytical
solutions for the tubular structure (red) given by Equations 7.3 and 7.1. The
geometrical relation from Equation 7.2 is shown in light blue. The same relation
with a correction, accounting for the discretization of the mesh, is depicted in
orange.

The overall length `T and the radius RT of the tube and branch structures match

very well for all external forces Fext. The radii of both structures also match

the theory very well, they are only slightly below the predicted values. There is,

however, a relatively large deviation, when looking at the total tube length for

higher external forces. This can be explained by the slight deviation in the radius,

when looking at Equation 7.2. The surface area A of our structures is very large

compared to the tube radius RT. A small deviation in the radius therefore leads to

large discrepancies in the length.

To check our simulations for consistency, we therefore also calculated the length

by using Equation 7.2 and the radius measured in the simulations. Using this

geometric relation, one obtains the light blue dashed curve in Figure 7.2a, which is

already very close to the determined values for the branch and tube structures.

Additionally, there is one further correction that can be made. For thin tubes, the

resolution of the triangulated mesh used in the simulations might have problems

to properly resolve the structures. When looking at the cross-section of a tube

approximated by a triangular mesh, it is not a perfect circle, but rather a polygon.

The number of sides of the polygon depends on the resolution of the mesh and

the radius of the circle. Because the circumference of the polygon is smaller than

the one of a circle, this leads to longer tubes, since the overall area is fixed. For a

good resoltuion this effect is marginal, but it might become relevant for thin tubes.

This deviation can be calculated and the derivation can be found in Appendix B.4.

With this correction one obtains the dashed orange curve in Figure 7.2a, which

matches the simulations very well. The effect is, however, very small and only

slightly relevant for thin long tubes.
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Figure 7.3: Modified energies Ẽ = Ecv,TRT/lT from simulations for different external
forces, Fext, and the theoretical value for a tube. The latter is given by Ẽ = πκ.
The curvature energy of the tube was calculated using the method that will be
presented in Section 7.2.

The finite resolution of the mesh is likely also the reason for the discrepancy

between the theoretical value of the radius and the results from simulations. When

investigating the energy of the system (see Section 7.2) one can show that the

simulated tube has a lower curvature energy than predicted theoretically for the

same radius (Etube = πκ lT
RT

). This is illustrated in Figure 7.3, where a modified

energy Ẽ = Ecv,TRT/lT is shown for different forces. One can clearly observe that

the simulation values deviate from the theoretical tube value Ẽtube = πκ. While

these results indicate that there are small discretization effects in our simulations,

we can similarly show that they are controllable and will only marginally affect our

results.

The overall agreement between branch and tubular structures is very good. This

is important, because they will be further compared and analyzed in later studies.

The theory and the geometrical corrections respectively also match the simulations

very well.

Lower Temperatures

To determine the effects of small undulations of the membrane surface due to

thermal fluctuations, the analysis described above was also performed at a lower

temperature T . The end-configurations obtained by the simulations above were

cooled down continuously to a temperature of T = 10−6. A comparison between

the lengths `T and radii RT for both temperatures can be found in Figure 7.4.

The results for T = 1 are again shown in green and blue for the tube and branch

structures respectively and the results for T = 10−6 are shown in orange for the

tube and in light blue for the branch. All four curves almost overlap for both the
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(a) Length (b) Radius

Figure 7.4: Comparison of the lengths `T and the tube radii RT of the tube and
branch structures for different external forces Fext at two different temperatures T .

length `T and the tube radius RT. The temperature therefore does not seem to

affect the overall shape of the systems.

7.1.2 Comparison to Results from Direct Minimization

Tubular structures, as shown in Figure 7.1a, can also be calculated using the direct

minimization method derived in Section 5.3. The method was applied as described

above, but no constraint on the volume was set. As in the simulations, this allows

the reduced volume to adjust freely. A comparison of the contours obtained by

the different methods, as well as the tube lengths `′T and radii R′T can be found in

Figures 7.5 and 7.6 respectively. Note that for the comparison the rescaled units

presented in Section 5.5.1 were used. This is again denoted by a superscript ′.

The shapes were compared and are exemplarily shown for three different external

forces f ′. For all forces the agreement between the contours obtained from sim-

ulations and from direct minimization is relatively good. There are some small

deviations in the total length, but the overall shape matches very well. When

directly comparing the lengths `′T and radii R′T one also observes a very good

agreement. The radius in the simulations is slightly below the one obtained from

direct minimization, but the deviations are relatively small.

7.1.3 Curvature Energy

Finally, we compared the curvature energies, Ucv, of the two structures. Since

the tube radius and the overall length are roughly the same, the only difference

between the two structures is the neck structure and an additional cap in the

branch structure. The caps are the end-points of the tube, (roughly) resembling a
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(a) f ′ = 1.54

(b) f ′ = 2.06

(c) f ′ = 2.57

Figure 7.5: Comparison of the contours obtained from simulations (red) and direct
minimization (d.m.) (green) of the tubular structure, for different external forces f ′.

(a) Length (b) Radius

Figure 7.6: Lengths `′T and radii R′T of the tubular structures for different external
forces f ′, as determined by simulations, shown in red, and results from direct
minimization (d.m.), shown in green. The theory corresponds to Equation 7.1.
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hemisphere, and the neck is the part in the branch structure, where the three tubes

meet. This is illustrated in Figure 7.7.

A comparison of the curvature energy, Ucv, for different external forces, Fext, is

shown in Figure 7.8. The energies of both structures are found to be very similar.

Additionally, we calculated the curvature energies for the simulations performed at

T = 10−6, to determine the effects due to thermal fluctuations.

For T = 10−6 the curvature energies for both the branch and the tube structure

are below the energies measured at T = 1. This is not surprising, because small

undulations of the membrane surface, caused by the finite temperature T in the

system, contribute significantly to the curvature energy. At low temperatures, this

is not the case, because the membrane surface is much smoother.

Figure 7.7: Sketch of a tubular and a branched structure. Both can be compart-
mentalized into a tube part and caps, and (for the branched structure) a neck part.

Figure 7.8: Curvature energy, Ucv, for the tube (green; orange for T = 10−6)
and the branch (blue; light blue for T = 10−6) for different forces Fext at two
different temperatures T . The energies of both systems are very similar for both
temperatures, but the curvature energy is reduced at T = 10−6.
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7.2 Curvature Energy of the Tube and Branch

Building Blocks

It is interesting to see that the energies of both systems are very similar, even if

their structure is different. To investigate this further, we split up the systems into

their different components (tube, neck and cap) and determined their individual

curvature energies. We are particularly interested in the neck energy, because the

neck is the component which distinguishes a branch from a simple tube.

The tubular structure can be split into a tube part and two caps, the branch

structure into a tube part, three caps and a neck part, as illustrated in Figure 7.7.

The analysis was carried out at low temperatures, i.e. T = 10−6, to eliminate

additional contributions to the curvature energy due to thermal fluctuations.

7.2.1 Calculation of the Energy of the Components

To determine the energy of the neck and cap structure, one first has to take a look

at the curvature energy, Ecv, of the tube and branch structure. These curvature

energies are given by those of the different components:

Ecv,tube = Et + 2Ecap (7.4)

Ecv,branch = Et + 3Ecap + Eneck (7.5)

Et is the energy of the tubular part, Ecap the energy of a cap and Eneck the energy

of the neck structure.

The curvature energies of the components could in theory be determined by simula-

tions at low temperatures, when defining regions for the cap and the neck structure.

It is, however, difficult to determine where exactly the the neck part and the caps

start, which would make this analysis imprecise and dependent on these cutoff

conditions.

We therefore decided to compare the energy of a component (cap or neck) to

the energy of a corresponding tubular structure. Hence, two new quantities are

introduced:

i) A new length lmod, which refers to the length a component would have if it were

a simple tube with open ends. This is illustrated in Figure 7.9 for the cap and is

done accordingly for the neck. This quantity can be easily calculated from the area

A of the component and the radius of the tube RT, which can be extracted in the
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simulations from the tubular part of the structures:

lmod =
A

2πRT

(7.6)

ii) The energy per tube length e of the tubular part:

e =
Et

lt
(7.7)

where lt is the length of the tubular part illustrated in Figure 7.7 and Et its energy.

This quantity can be easily calculated for the tubular structure. For the branched

structure, it is given by the average over the three connecting tubes: e = 1
3

∑3
i=1

Et,i

lt,i
.

With these two quantities, it is now possible to calculate the energy difference

between having a cap at the end of the tube, compared to this end region being

tubular:

∆Ecap = Ecap − lmode (7.8)

= Ecap −
Acap

2πRT

e (7.9)

The same calculation can be performed for the neck region:

∆Eneck = Eneck − lmode (7.10)

= Eneck −
Aneck

2πRT

e (7.11)

Using these definitions, it is, in principle, irrelevant how the neck and cap regions

were defined, i.e. where the cutoffs were set, because any (potential) additional

tubular part will simply be subtracted later. The only requirement for the cutoff

is that it is large enough to include all parts of the component that are different

from the tubular part. Using this technique, one can therefore determine the pure

energy differences of the cap and neck structures. The cutoff rcut can be determined

empirically, by increasing it stepwise and analyzing the convergence of ∆E with

increasing rcut. This minimum cutoff thus also gives a good estimator of the size of

the individual components. In our simulations we found a minimum cutoff rcut > 7

for the caps and rcut > 18 for the neck structures.

Figure 7.9: Introduction of a new length lmod that characterizes the components.
The modified length is given by Equation 7.6.

78



7.2.2 Cap and Neck Energies

The energy differences obtained for the cap and neck structures using Equations 7.8

and 7.10 are shown in Figure 7.11. The energy per tube length of the tubular part

is shown in Figure 7.10.

The energy per tube length e increases linearly for increasing forces Fext. This is

to be expected, because the tubes are thinner for higher forces and therefore more

strongly curved, which means they have a higher curvature energy. The energy per

tube length is almost the same in the tubular and branched structure, because they

have a very similar tube radius, as shown in Figure 7.4.

The cap energies ∆Ecap, shown in Figure 7.11a for the tube and branch structure,

are also very similar. This is the case, because the cap structure is the same in the

tube and branch system, which therefore confirms the definitions and calculations

discussed above. The slight deviation is due to a small difference in the tube

radius. In an ideal system, one would assume the cap to be a half-sphere. The

cap energy difference would therefore be given by ∆Ecap = 4πκ− πκ lT
RT

. From our

definition of the modified tube length lT = AHS

2πRT
, with AHS = 2πR2

T, one can thus

immediately conclude that ∆Ecap = 3πκ ≈ 188. Due to the external pulling force

in the simulations, however, which produces more pointy caps, we find that the cap

energy is slightly larger than the theoretical expectation. Interestingly, the energy

in the simulations appears to converge against the theoretical value for larger forces.

This is likely due to the small radius of the structure, which does not allow for very

pointy caps any more.

Figure 7.10: Energy per tube length e of the tubular part of the tube (orange) and
branch structures (light blue) for different external forces Fext. The black dashed
line (theory) can be derived from Equation 7.7 and the theoretical tube radius, c.f.
Equation 4.2, and is given by e = Fext

2
.
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(a) Cap energy ∆Ecap. The black dashed line (ideal) corresponds to the theoretical value
for the cap being a perfect half-sphere.

(b) Neck energy ∆Eneck.

Figure 7.11: Energies of cap, ∆Ecap, or neck structures, ∆Eneck, relative to corre-
sponding tubular structures, according to Equations 7.8 and 7.10. The values were
calculated for different external forces Fext and hence tubes of different radii.
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The energy difference of the neck, ∆Eneck, is shown in Figure 7.11b. The most

important observation is that the neck energy is negative, and similarly the quantity

∆E = ∆Eneck + ∆Ecap, which corresponds to the energy difference between the

tubular and the branched structure, since the tube radii of the two structures are

very similar. One can thus conclude that the branch structure is energetically more

favorable due to its neck component. The neck energy itself systematically increases

for increasing forces, mainly because it becomes smaller and thinner and thus more

curved. The non-monotonicity that can be observed at Fext = 50− 60 appears to

be relatively sensitive to the choice of the cutoff rcut.

With this analysis, we can clearly show that the formation of a neck structure and a

cap structure, i.e. the creation of a branch, is energetically favorable. Nevertheless,

simulations indicated that this transition is connected to a significant energy barrier,

as will be discussed in the next sections.
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7.3 Transition between Branch and Tubular Struc-

tures

In the previous sections, it could be shown that branch and tubular structures

have very similar properties. They have the same tube radii and lengths and also

roughly the same curvature energy. In the following the transition between these

two structures and the energy profile for the transition is investigated. These

simulations are now again performed at T = 1.

First, the two simple transitions from a sphere to a tube and from a sphere to a

branch are considered. Then the more interesting and complex transformations

from a branch to a tubular structure and vice versa are investigated. All transitions

are smooth, except for the one from a tube to a branch, which will therefore be

investigated in more detail.

The curvature energy is given by Equation 3.8, as described in the previous chapters.

In addition to this, the contribution from the external pulling force needs to be

determined, which is given by the work performed by the external force to displace

the outermost vertices, i.e. the ones to which the force is applied to:

Wi = ~Fext,i∆~si (7.12)

where ~Fext,i is the external force acting on vertex i and ∆~si the corresponding

displacement of this vertex. The total work is given by the sum over all vertices j

the force is applied to: W =
∑

jWj.

7.3.1 Sphere to Tube/Branch

Starting form a spherical vesicle, opposing forces on two opposite beads were applied

to obtain a tubular structure. The time evolution of the curvature energy, Ecv, due

to this shape change, and the work due to the pulling, W , are shown in Figure 7.12a.

The curvature energy (red) increases, but the overall energy of the system (green),

i.e. the energy difference between the curvature energy and the work performed by

the external force (blue), decreases and reaches a minimum.

For reference the total inner energy of the system is shown in black. This term also

includes the energies from the bond, repulsive and area potentials, c.f. Equation

3.14. These contributions are, however, very small and roughly constant throughout

the shape transformation. This shows that the important and relevant quantity is

the curvature energy. In the further analysis, the curvature energy will therefore be

considered, when comparing it to the work due to the external force W .

It is actually an interesting observation that the transition from the sphere to

a tubular structure is very smooth, without any indicator for an energy barrier.
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(a) Transition: Sphere - Tube

(b) Transition: Sphere - Branch

Figure 7.12: Time evolution of the curvature energy, Ecv, (red) due to the shape
change from a spherical to a tubular/branched structure. The external force was
Fext = 90 and the energy contribution due to the force, W , is shown in blue. The
difference is given by the green curve as Ecv −W .

Experimental results, in which a tube is pulled from a vesicle using optical tweezers

at constant speed, clearly show the existence of a force maximum which has to be

overcome to create the tube.163;173 This is usually an indicator for an energy barrier.

This discrepancy between experiments and simulations could either be connected

to different constraints (Ref. 163 had a lipid reservoir, Ref. 173 was performed at

ν = const.) or to large pulling velocities in experiments. In future studies it would

be interesting to also perform simulations with constant pulling velocities (instead

of constant pulling forces) and investigate this observation in more detail.

For the transition from a sphere to a branch, the time evolution of the energy looks

very similar, as shown in Figure 7.12b. The energy difference between the curvature

83



energy, Ecv, and the work due to the displacement, W , also decreases and reaches a

minimum. For different forces the energy profile looks very similar. The absolute

values of the energies are, of course, different, but the overall shape and behavior is

the same.

7.3.2 Branch to Tube

As a next step, the transition from a branch to a tubular structure is examined.

Starting from a branch-like structure, the external force on one of the branches is

released, while the other two forces pull in opposing directions. This leads to the

retraction and finally absorption of the third branch, as illustrated in Figure 7.14.

The final configuration is a tubular structure.

This transition occurs smoothly, which is reflected in the energy profile shown in

Figure 7.13a. Releasing one of the branches leads to a brief decrease in the curvature

energy, because the released branch and the newly formed tube are thicker and

hence less strongly curved than the original branch structure. As soon as the tube

then starts to elongate and becomes thinner, the curvature energy increases again

and roughly reaches the value it initially had. The energy difference, Ecv −W , is

monotonically decreasing, showing that a new final configuration, minimizing the

overall energy, is reached. Similar structures and profiles where obtained for other

forces.

In Figure 7.13b the time evolution of the curvature for the transition is shown. This

curvature is measured using the renormalized area difference ∆a, c.f. Equation 3.23.

(a) Time evolution of the curvature energy, Ecv,
(red) due to the shape change from a branch
to a tubular structure. The external force was
Fext = 90 and the energy contribution due to
the force, W , is shown in blue. The difference is
given by the green curve as Ecv −W .

(b) Time evolution of the curvature of
the system, measured using the renor-
malized area difference, ∆a, introduced
in Section 3.4.1.
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(a) Initial branch structure (t = 0). (b) Intermediate structure; right tube
starts to retract (t = 200).

(c) Intermediate structure; right tube is
almost absorbed (t = 440).

(d) Final tubular structure (t = 2000).

Figure 7.14: Snapshots of the conformational change from a branch to a tubular
structure.

The time evolution of the curvature has basically the same shape as the curvature

energy, Ecv, shown in Figure 7.13a. The dip in the curvature is an indicator, that

this transition could be suppressed by a constraint on the overall curvature of the

system, which will be further discussed and investigated in Section 7.4.4.

7.3.3 Tube to Branch

The above described transformation from a branch to a tubular structure occurred

smoothly. However, when looking at the transition the other way around it is not

as direct. When attempting to pull out a third tube from a tubular structure, using

the same external force as needed to stabilize the original system, the tube deforms,

but never reaches a branched structure. The system rather gets stuck in a wide

v-shape configuration, as shown in Figure 7.15.
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Figure 7.15: Final configuration for the transition from a tube to a branch structure.
The system gets stuck in this v-shaped configuration, when using the same external
force as needed to stabilize the original system.

Figure 7.16: Time evolution of the curvature energy, Ecv, (red) due to the attempted
shape change from a tube to a branched structure. The external force was Fext = 90
and the energy contribution due to the force, W , is shown in blue. The energy
difference is given by the green curve as Ecv −W .
The tube deforms, but the branch structure is not reached.

This is also confirmed when looking at the time evolution of the energy as shown

in Figure 7.16. Deforming the tube leads to an initial increase in the curvature

energy, but it then settles again on the original value. There seems to be some

kind of energy barrier that has to be overcome to pull out the third tube, and

the force needed to simply stabilize the branch does not seem to be sufficient to

overcome this energy barrier. This is a very important observation, that might have

interesting implications for the branching of tubular networks. The question is how

much additional force has to be invested to overcome this initial energy barrier.

To determine the strength of the force necessary to pull out a tube, Fext was

increased stepwise by increments of ∆Fext = 1, to see for which forces the third
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tube starts to form. Tubes created with external forces between Fext = 60− 100

were investigated. The third force, pulling out the additional tube was then steadily

increased. For all forces, the third tube formed when the third force was increased

by ∆Fext ≈ 3− 4. This is approximately 4− 6 % higher than the force needed for

stabilization. We can therefore identify the existence of an energy barrier, but it

appears that only a slight increase of the pulling force is required to overcome this

barrier.
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7.4 Stability of Tubular and Branched Structures

In this section the stability of the tubular and branched structures is investigated.

First, the angles between the tubes of a branch were varied. Then, the stability of

the tubular and branched structure was tested by releasing the external forces but

keeping the reduced volume ν fixed. Finally, we also studied whether their stability

can be improved by setting a constraint on the overall curvature of the system.

7.4.1 Varying the Angle between the Arms - Fixed Direction

It was analyzed how a branched structure is transformed if the angles between the

three arms of the branch are varied. The stable branches simulated above had a

perfect 120◦ angle between all three branches. By varying this angle, the following

three systems, illustrated in Figure 7.17, were investigated:

(i) The angle of one of the tubes was slightly varied by ∆ϕ.

(ii) The angle between two of the tubes was varied, so that the new angle between

these two tubes is α and the other two angles are 180◦ − α/2.

(iii) Starting from a branched structure, the direction of the pulling force is changed,

so that one angle is now 180◦ and the other two 90◦.

It should be noted that the forces in these systems do not completely balance each

other any more, which means there is a small excess force in one direction. The

respective systems therefore slightly shift towards the direction of this excess force,

this, however, does not affect the outcome with respect to coalescence.

(a) System (i) (b) System (ii) (c) System (iii)

Figure 7.17: Sketch of the different systems used to investigate the stability of
branched structures.
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(a) Initial configuration.
(b) Neck is moving towards
the excess force. (c) Tubes almost coalesced.

Figure 7.18: Intermediate configurations obtained by varying the angle ∆ϕ. The
end configuration is a long tube (∆ϕ = 3◦; Fext = 90).

Figure 7.19: Intermediate configuration, obtained by varying the angel between two
tubes. The two tubes eventually coalesce and the final configuration is one long
tube (α = 108◦; Fext = 90).

System (i)

For large variations of the angle ∆ϕ, coalescence of two of the tubes occurs very

quickly. These are the two tubes with the smallest angle between them. For smaller

angle variations, the system seems stable initially, but coalescence occurs eventually.

This is illustrated in Figure 7.18. One can observe that the neck gradually moves

in the direction of the excess force, trying to minimize the energy of the system, by

preserving the 120◦ angle between all three arms. In the end, this is not possible

because the direction of the forces is fixed, so this point can never be reached and

the neck eventually reaches the end of the tube and vanishes.

System (ii)

In this setup coalescence also quickly occurs for angles α far below 120◦. For smaller

variations the process is much slower, but in the end two tubes coalesce and the

final configuration is one long tube. A snapshot of an intermediate configuration is

shown in Figure 7.19.
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Figure 7.20: Final stable configuration reached in system (iii), Fext = 70.

System (iii)

In this setup, the third tube progressively vanishes and is absorbed by the system.

In this case the final configuration is, however, not a straight long tube, but a bent

tube as shown in Figure 7.20. This happened for all forces analyzed. One can

clearly say that in this case of angle deviation, with an external force fixing the

pulling direction, the branch structure is not stable.

7.4.2 Varying the Angle between the Arms - Fixed Anchor

One could clearly observe that none of the systems analyzed above are stable,

because the neck structure is moving towards the excess force, trying to maintain

a 120◦ angle between the arms, to minimize the overall curvature energy of the

system. The directions of the forces are, however, fixed, which means this point

can never be reached. Instead the neck structure eventually reaches the end of the

tube, hence one long tube forms.

To confirm this hypothesis, we set up another system, where instead of keeping the

directions for the forces fixed, the forces were oriented towards three points chosen

on an imaginary big outer sphere, to see how the system evolves. One can in fact

observe the same movement of the neck as before, but this time the energetically

most favorable configuration with 120◦ between the tubes can in fact be reached.

Some snapshots of the time evolution of this process are shown in Figure 7.21. The

points were positioned in such a way that the initial angles between the forces were

180◦ and 90◦, so similar to the setup in system (iii) discussed above, but with fixed

points instead of directions. This allowed the system to rearrange and reach a

stable configuration with 120◦ between all three arms, as shown in Figure 7.21c.

The outcome of all simulations was the same, wherever the points were placed on

the hypothetical outer sphere. In all setups, the angle between the three tubes in

the final configuration was 120◦, the only difference was the length of the individual

arms.
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(a) Initial configuration.
(b) Neck is moving towards
the center between the three
points.

(c) Final stable configura-
tion.

Figure 7.21: Snapshots of the time evolution of a branched structure, where the
external forces were pointing towards three fixed points on a hypothetical big outer
sphere. The neck structure moves towards the center of these points, such that the
angel between all three arms is 120◦, which minimizes the energy of the system
(Fext = 110).

7.4.3 Fixing the Reduced Volume while Releasing the Ex-

ternal Force

It was further investigated if it is possible to stabilize the tubular and branched

structures by a mechanism other than an external force. Therefore, simulations were

performed starting from a tube or branch for which the reduced volume of the system

was kept fixed, but the external force no longer applied. For the analyzed reduced

volumes (ν < 0.3) the tube and branch structures are not the energetically most

favorable configurations, this would be a stromatocyte (see Figure 4.1f). They could,

nevertheless, be local energy minima in which the system is trapped. Metastable

tubes stabilized with this mechanism have previously been reported in Ref. 113.

Tube

Investigations of the tubular structure indicate that some of the tubes are actually

metastable. In fact, for thicker tubes with ν > 0.19 no transition to a stromatocyte

could be observed, even for very long simulation times. When releasing the pulling

force, the tubes start to bend slightly, but they keep their tubular shape, as

exemplarily shown in Figure 7.22.
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Figure 7.22: Tube stabilized by keeping the reduced volume fixed at ν = 0.19. No
external forces are applied. The tube is not perfectly straight any more, as it was
when applying the force, but it keeps its tubular shape.

Figure 7.23: Time evolution of the energy for the transition from a tube to a
stromatocyte. The reduced volume was kept fixed, while the external force was
released. The force needed to stabilize the original tube was Fext = 90 and the
reduced volume is ν = 0.15. The tube does not transform immediately, but it
eventually starts to flatten and wrap around itself to form a stromatocyte. The
intermediate configuration, a stromatocyte with a tube protruding from it, is stable
for a relatively long time.
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Thinner tubes, with ν . 0.16, seem to be metastable initially. However, at some

point the system starts to form a thin sheet-like structure at one end, which is the

onset for the transformation into a stromatocyte. These sheet structures get broader

and eventually start to wrap around themselves, so that the structure almost looks

like a spoon. This ’spoon’ then evolves into a stromatocyte with a tube protruding

from it. This intermediate configuration can be observed for a long time, until the

tube is eventually completely absorbed into the stromatocyte.

This transition and the corresponding time evolution of the energy are exemplarily

shown in Figure 7.23. The tube is metastable initially, which is confirmed by the

curvature energy being roughly constant at the beginning. At some point, the

formation of the sheet starts, which causes a rapid drop in the curvature energy until

a stromatocyte with a tube protruding from it is formed. This tube is then slowly

absorbed and the energy continues to decrease smoothly, until a pure stromatocyte

is formed and the system is in its energetically most favorable configuration. The

point at which the formation of the sheet started was not always the same, but

varied for each simulation. It is also very interesting to see that, even though the

tubes are instable, they maintain their initial tubular structure for much longer

timescales than the branch structure, where the whole transformation process took

only about t ≈ 1500, as will be discussed below.

Our observation of the formation of stromatocytes from tubes is in contrast to the

simulation results reported in Ref. 113, where (meta)stable tubes were observed for

all reduced volumes. It is possible that the simulations performed in this reference

were simply not long enough to observe the long-time deformation process described

above (c.f. Figure 7.23). It could, however, also be caused by a slightly different

implementation of the triangulated membrane model, which has been reported to

affect some configurations, particularly if the discretization of the membrane is

poor.112 Although it would definitely be interesting to further investigate this, we

are confident to conclude from our model with suitable discretization that the above

described transition is indeed physical and the tube becomes unstable.

Branched Structures

The simulations revealed that the branch structures are actually very unstable.

When releasing the external force, the branch immediately starts to deform and

turn into a stromatocyte. This was the case for all reduced volumes, 0.3 > ν > 0.1,

investigated. An exemplary time evolution of the transformation can be found in

Figure 7.24, which shows the energy profile and the corresponding conformations of

the system.

First, the region around the neck starts to broaden and flatten, which seems to

be the weak spot of the structure. Triggered by this, one of the tubes starts to
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Figure 7.24: Time evolution of the energy for the transition from a branch to a
stromatocyte. The reduced volume was kept fixed, while the external force was
released. The force needed to stabilize the original branch was Fext = 90 and the
reduced volume is ν = 0.15.

get broader and flatter and eventually opens up to wrap around itself to form the

opening for the stromatocyte. Finally, the other two arms get absorbed gradually

into the stromatocyte.

The stromatocytes formed are clearly the energetically most favorable configurations

for the given low reduced volumes. This is confirmed by the time evolution of the

energy profile. The important and nontrivial observation here is that the branch

structure is not even metastable. The fact that it cannot be stabilized by the

reduced volume alone indicates that there has to be another type of stabilizing

mechanism to form (meta)stable tubular membrane networks. In the following we

will show that such a mechanism could be given by bilayer asymmetries or curvature

inducing proteins.

7.4.4 Fixing the Overall Curvature

We have found that the constraint of fixing the reduced volume alone is not sufficient

to stabilize tubular and branched structures. Therefore, an additional constraint on

the overall curvature of the system was set, to further control the system. This can

be motivated by proteins that can induce a spontaneous curvature of the membrane,

as discussed in Chapter 2,6;16–20 or by a difference in the area of the two layers of
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Structure Reduced Volume ν Additional Constraint ∆a
sphere 1.0 - 1.0
prolate vesicle 0.8 - 1.0
oblate vesicle 0.6 - 1.0
stromatocyte 0.3 - 0.8
stromatocyte 0.2 - 0.2
tube 0.44 Fext = 30 1.8
tube 0.26 Fext = 50 2.8
tube 0.19 Fext = 70 3.9
tube 0.14 Fext = 90 4.9
branch 0.5 Fext = 30 1.6
branch 0.27 Fext = 50 2.8
branch 0.19 Fext = 70 3.8
branch 0.14 Fext = 90 4.9

Table 7.1: Typical values for the overall curvature of the structures, represented
by the renormalized area difference ∆a. Higher values indicate stronger overall
curvature.

the lipid bilayer, which also induces curvature. In the simulations, this additional

curvature is introduced by setting a constraint on the renormalized area difference

∆a introduced in Section 3.3.1. This can be modeled by adding an additional

potential to the overall energy of the system. In the ADE model (c.f. Section 3.3.1)

this term has the same shape as the potentials that were used for controlling the

area and volume.

We adopt this model here, therefore the constraint potential has the form:

U∆a =
1

2
k∆a(∆a−∆a0)2 (7.13)

where k∆a indicates the strength of the constraint, ∆a is the renormalized area

difference calculated by Equation 3.23 and ∆a0 the target value. The strength of

the constraint was set to k∆a = 1 in all simulations.

In Table 7.1 some typical values of ∆a for the structures investigated previously

are given. For a sphere the area difference is one (by definition). For the tube and

branch structures ∆a is significantly larger than one, because they are thinner and

thus clearly more strongly curved. Interestingly, ∆a is smaller than one for the

stromatocytes. This is the case because the inner sphere is curved in the other

direction than the outer sphere, so these contributions compensate each other.

In Figure 7.25 the change of the area difference ∆a for the transition from a

tube/branch to a stromatocyte is shown (the corresponding energy profiles are given

in Figures 7.23 and 7.24). As expected, one can observe a clear and significant drop

in the overall curvature, which suggests, that fixing the overall curvature of the

system could suppress this transition.
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(a) Tube to stromatocyte

(b) Branch to stromatocyte

Figure 7.25: Time evolution of the renormalized area difference, ∆a, for the
transition from a tube/branch to a stromatocyte (Original structure: Fext = 90; ν =
0.14).
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(a) branch: ν = 0.27; ∆a0 = 2.8

(b) branch: ν = 0.14; ∆a0 = 4.9

(c) tube: ν = 0.27; ∆a0 = 2.8

(d) tube: ν = 0.14; ∆a0 = 4.9

Figure 7.26: Snapshots of tube and branch structures stabilized by fixing the reduced
volume ν and the overall curvature of the system ∆a.
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We therefore performed simulations with fixed ∆a0, using the potential in Equa-

tion 7.13. The branched and tubular structures were simulated setting ∆a0 to the

corresponding steady state values, determined with the externally applied pulling

forces. This, in fact, stabilizes both the tube and the branch structures. Some

snapshots are shown in Figure 7.26, in which the color indicates the strength of the

curvature.

Both structures are not perfectly straight any more, but slightly bent due to entropic

reasons. The overall conformation (tube or branch), however, is (meta)stable. This

shows that by setting a constraint on the overall curvature via ∆a, one can control

and stabilize structures which were initially unstable. This is a very important

observation, because it explains how tubular networks in nature can exist, although

we have shown that branches become unstable as soon as a fixed anchor is removed.
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8
Conclusions and Outlook

In this thesis, a dynamically-triangulated membrane model was employed to inves-

tigate conformational changes of biological membranes on large scales. The model

is based on a continuum description, in which the membrane is described as a

smoothly curved surface and the energetics are derived from the Helfrich theory.

This general description allows to access significantly larger length and time scales

than typical atomistic or coarse-grained simulations can reach.

In the first part, the model was tested and validated. Tubular structures protruding

from vesicles were simulated by applying an external force. In nature, this is one

possible generation mechanism. We classified the lengths and radii of the tubes

obtained for different forces and validated them using analytical approximations

and other data from the literature. Our results were further complemented using

a direct minimization scheme for the Helfrich Hamiltonian and closed spherical

vesicles, exploiting the rotational symmetry of the problem. All in all, the results

obtained by the different methods were consistent, but the analysis also revealed

small discrepancies and potential limitations of the different models.

In the second part, the focus lay on branched structures, which are omnipresent in

biological cells, mostly in the form of individual branched tubes or complex network

structures. We could clearly show that the neck region of a branched structure,

i.e. the point where the three tubes of a branch meet, is energetically favorable

compared to a simple tubular structure, because the neck is less strongly curved.

We could, however, identify three problems when it comes to the formation and

stability of branched structures. First, the creation of the neck appears to require

the transition over a significant energy barrier, making it more difficult to create

such branches compared to tubular structures, although the latter are energetically

less favorable. Second, in all simulations we could observe that the branches are

only stable if the angle between the incoming tubes is exactly 120◦, in agreement

with experimental observations, where only these angles were found to be stable.

As soon as this constraint was not fulfilled, the neck started to move in a zipper-like

mechanism, which often led to a disintegration of the neck when it reached the end

of the tube. Third, the branched structures are actually very unstable, different from

what is known for most tubular structures. As soon as the force generating them is

released, the arms immediately start to retract, which suggests that there has to be

another stabilizing mechanism. Our first attempt was fixing the area and volume
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ratio, i.e. the reduced volume ν, of the systems and then releasing the external force.

This technique stabilized thick tubular structures, but thin tubes and branches

are still unstable. The latter transform into stromatocytes, the energetically most

favorable configuration for low reduced volumes. We therefore added an additional

constraint to fix and control the overall curvature of the structures. In nature this

could be caused by an area difference between the two layers of the lipid bilayer,

or by proteins that affect the curvature. Fixing both the reduced volume and the

overall curvature allowed, in fact, to stabilize all tubular and branched structures.

These results show that the branched networks observed in nature need to be either

anchored to other structures within the cell (e.g. organelles or filaments), stabilized

by proteins controlling the curvature or have significant bilayer asymmetries. It is

of course likely, that in nature a combination of the different mechanisms occurs.

The model employed is generally very suited for investigating membrane dynamics

on large scales. In this thesis, only a few problems could be addressed, but there are

many more potential applications for the model. One is simulating double walled

vesicles, i.e. one smaller vesicle inside a bigger one, and observing conformational

changes of the inner vesicle by varying its area. This has already been analyzed

briefly in a Bachelor’s thesis written in our group174 and could be expanded upon

further. Another interesting task worth pursuing is adding more detail to the model.

So far it is very general, assuming the same properties (stiffness, bending rigidity

etc.) homogeneously distributed across the whole structure. Biological membranes

are, however, much more detailed and complicated, having various domains with

different properties. This task is, in fact, currently undertaken in a Master’s

thesis in our group, by attributing different stiffnesses and spontaneous curvatures

to individual vertices. This allows to observe the rearrangement of regions, and

can be used for generating (and stabilizing) tubular and sheet like structures. It

could also be worth performing more simulations with a finer discretization, to

investigate thinner structures and get more precise values for the energies of the

different structures and their components. Undoubtedly, membrane dynamics is

a very interesting and active field of research, where computer simulations could

significantly contribute to a better understanding complementary to experiments.
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A
Shapes of Final Configurations

A.1 Simulations of Vesicles - Tube Formation

This is an overview of the shapes of the final stable configuration for a vesicle with

one or two external forces applied.

One External Force

ν = 0.6:

(a) Fext = 40 (b) Fext = 50 (c) Fext = 60 (d) Fext = 70

(e) Fext = 80 (f) Fext = 90 (g) Fext = 100 (h) Fext = 110

Figure A.1: Final stable configurations for a vesicle with one external force Fext

applied (ν = 0.6).
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(i) Fext = 120
(j) Fext = 130

(k) Fext = 140

Figure A.1: Final stable configurations for a vesicle with one external force Fext

applied (ν = 0.6).

ν = 0.7:

(a) Fext = 40
(b) Fext = 50 (c) Fext = 60 (d) Fext = 70

Figure A.2: Final stable configurations for a vesicle with one external force Fext

applied (ν = 0.7).
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(e) Fext = 80 (f) Fext = 90 (g) Fext = 100 (h) Fext = 110

(i) Fext = 120
(j) Fext = 130

(k) Fext = 140

Figure A.2: Final stable configurations for a vesicle with one external force Fext

applied (ν = 0.7).
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ν = 0.8:

(a) Fext = 40
(b) Fext = 50 (c) Fext = 60 (d) Fext = 70

(e) Fext = 80 (f) Fext = 90 (g) Fext = 100 (h) Fext = 110

(i) Fext = 120
(j) Fext = 130

(k) Fext = 140

Figure A.3: Final stable configurations for a vesicle with one external force Fext

applied (ν = 0.8).
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Two External Forces

ν = 0.6:

(a) Fext = 40
(b) Fext = 50

(c) Fext = 60
(d) Fext = 70

(e) Fext = 80
(f) Fext = 90 (g) Fext = 100

(h) Fext = 110

Figure A.4: Final stable configurations for a vesicle with two external forces Fext

applied (ν = 0.6).
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(i) Fext = 120 (j) Fext = 130

(k) Fext = 140

Figure A.4: Final stable configurations for a vesicle with two external forces Fext

applied (ν = 0.6).

ν = 0.7:

(a) Fext = 40 (b) Fext = 50 (c) Fext = 60 (d) Fext = 70

Figure A.5: Final stable configurations for a vesicle with two external forces Fext

applied (ν = 0.7).
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(e) Fext = 80 (f) Fext = 90 (g) Fext = 100 (h) Fext = 110

(i) Fext = 120

(j) Fext = 130

(k) Fext = 140

Figure A.5: Final stable configurations for a vesicle with two external forces Fext

applied (ν = 0.7).
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ν = 0.8:

(a) Fext = 40 (b) Fext = 50 (c) Fext = 60 (d) Fext = 70

(e) Fext = 80 (f) Fext = 90 (g) Fext = 100 (h) Fext = 110

Figure A.6: Final stable configurations for a vesicle with two external forces Fext

applied (ν = 0.8).
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(i) Fext = 120
(j) Fext = 130

(k) Fext = 140

Figure A.6: Final stable configurations for a vesicle with two external forces Fext

applied (ν = 0.8).
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A.2 Vesicle with Tubes - Direct Minimization

This is an overview of the shapes obtained by direct minimization.

ν = 0.6:

(a) f = 10 (b) f = 20 (c) f = 25
(d) f = 30

(e) f = 35
(f) f = 40

(g) f = 50

Figure A.7: Shapes obtained from direct minimization for different forces f (ν = 0.6).
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ν = 0.7:

(a) f = 10 (b) f = 15 (c) f = 20 (d) f = 25

(e) f = 30 (f) f = 35 (g) f = 40 (h) f = 45

(i) f = 50 (j) f = 55 (k) f = 60
(l) f = 70

Figure A.8: Shapes obtained from direct minimization for different forces f (ν = 0.7).
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ν = 0.8:

(a) f = 10 (b) f = 15 (c) f = 20 (d) f = 25

(e) f = 30 (f) f = 35 (g) f = 40 (h) f = 45

(i) f = 50
(j) f = 60

(k) f = 70

(l) f = 90

Figure A.9: Shapes obtained from direct minimization for different forces f (ν = 0.8).
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B
Derivations and Mathematical

Background

B.1 Helfrich Hamiltonian

For calculating the mean and Gaussian curvature of the Helfrich Hamiltonian,

methods from differential geometry are used.

A two-dimensional surface embedded in three-dimensional space can be described

by by a function ~r(x1, x2) with a parameterization of the surface given by x1 and

x2. For each point on the surface (x1, x2) two tangent vectors can be defined:

~ei ≡
∂~r

∂xi
for i = 1, 2 (B.1)

The normal vector is then given by:

~n ≡ ~e1 × ~e2

‖~e1 × ~e2‖
(B.2)

The metric tensor that characterizes the local geometry of the surface, the first

fundamental form, is now given by:

gij = ~ei · ~ej (B.3)

From this the area element of the surface can be calculated:

dA =
√

det gijdx1dx2 (B.4)

The curvature tensor, the second fundamental form, is given by:

hij =
∂2~r

∂xi∂xj
· ~n (B.5)

The mean and Gaussian curvature are then given by the trace and determinant of

the curvature tensor:

K = Tr(hij) = c1 + c2 (B.6)
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KG = Det(hij) = c1c2 (B.7)

where hij is

hij = hikg
kj with gkj = (g−1)kj (B.8)

and c1 and c2 its eigenvalues.

As described in the main part of this thesis, we define c1 and c2 such that they are

positive for a sphere.
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B.2 Equilibrium Tube Radius

The equilibrium tube radius R0 can directly be derived from the Helfrich Hamiltonian

given in Equation 3.8. For the following derivation only the tubular part of the

vesicle is considered. For a constant area, as it is the case for the system in the final

stable configurations, this Hamiltonian simplifies to

H =
κ

2

A

R2
(B.9)

where R is the radius of the tube. For a tube of length L the tube radius is given

by R = A
2πL

. Equation B.9 can therefore be rewritten as

H =
2κπ2L2

A
(B.10)

The external force Fext needed to maintain a tube of stable length L is given by the

derivative of equation B.10 with respect to L:

Fext =
∂H

∂L
(B.11)

=
4κπ2L

A
=

2πκ

R

The equilibrium tube radius is therefore given by:

R0 =
2πκ

Fext

∝ 1

Fext

(B.12)
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B.3 Shape Equations

B.3.1 Mean and Gaussian Curvature

It will be shown that, given the parameterization introduced in Chapter 5.1.1, the

mean and Gaussian curvature can be expressed as follows:

K =
sin(ψ)

x
+ ψ̇ (B.13)

KG =
ψ̇ sin(ψ)

x
(B.14)

For this the derivatives of r with respect to S and φ are needed:

∂r

∂S
=

ẋ cos(φ)

ẋ sin(φ)

ż

 ,
∂r

∂φ
=

−x sin(φ)

x cos(φ)

0

 ,
∂2r

∂S2
=

ẍ cos(φ)

ẍ sin(φ)

z̈

 ,

∂2r

∂φ2
=

−x cos(φ)

−x sin(φ)

0

 and
∂2r

∂S∂φ
=

∂2r

∂φ∂S
=

−ẋ sin(φ)

ẋ cos(φ)

0


(B.15)

This allows to calculate the unit normal:

~n :=

∂r
∂φ
× ∂r

∂S

‖ ∂r
∂φ
× ∂r

∂S
‖

=

ż cos(φ)

ż sin(φ)

−ẋ

 (B.16)

Now the first and second fundamental form I and II can be derived to calculate

the Weingarten map L. This is needed to calculate K and KG. In the following

〈 , 〉 denotes the scalar product.

I =

[
〈 ∂r
∂φ
, ∂r
∂φ
〉 〈 ∂r

∂φ
, ∂r
∂S
〉

〈 ∂r
∂S
, ∂r
∂φ
〉 〈 ∂r

∂S
, ∂r
∂S
〉

]
=

[
x2 0

0 1

]
(B.17)

II =

[
〈n, ∂2r

∂φ2
〉 〈n, ∂2r

∂φ∂S
〉

〈n, ∂2r
∂S∂φ
〉 〈n, ∂2r

∂S2 〉

]
=

[
x sinψ 0

0 ψ̇

]
(B.18)

From this the following Weingarten-map can be determined:

L = (I)−1(II) =

[ sinψ
x

0

0 ψ̇

]
(B.19)

Finally this allows to calculate K and KG:

K = Tr(L) =
sinψ

x
+ ψ̇, KG = Det(L) =

sinψ

x
ψ̇ (B.20)
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The differential dA is given by:

dA =
√
gdφdS = xdφdS (B.21)

with Gram’s determinant g = ‖ ∂r
∂φ
× ∂r

∂S
‖2.

B.3.2 Gauss-Bonnet Theorem

Integrating over the Gaussian curvature on a closed surface gives a constant con-

tribution according to the Gauss-Bonnet theorem.102 In our case one obtains the

following value:∮
KGdA =

∫ 2π

0

dφ

∫ S1

S0

dSx
ψ̇ sinψ

x
= 2π

∫ S1

S0

ψ̇ sinψdS = 2π[− cos(ψ(S))]S1
S0

= 4π

(B.22)

Since one is typically only interested in energy differences and not in absolute values,

this constant contribution can therefore be neglected.

B.3.3 Derivation of the Shape Equations

This calculation has been performed previously in e.g. Refs. 143; 151 without the

additional term −f̄ sinψ and the results including an external force are reported

in Ref. 138. This derivation will be repeated including the contribution from the

external force, to show, how these equations can be obtained and expressed in our

representation.

In order to derive the shape equations the following function has to be minimized:

F = 2πκ

∫ S1

S0

LdS (B.23)

with

L =
x

2

(
sinψ

x
+ ψ̇ −K0

)2

+Σ̄x+
P̄

2
x2 sinψ+γ(ẋ−cosψ)+η(ż+sinψ)− f̄ sinψ

(B.24)

The variation of F thus yields:

δF =

∫ S1

S0

[(
δψ
∂L

∂ψ
+ δψ̇

∂L

∂ψ̇

)
+

(
δx
∂L

∂x
+ δẋ

∂L

∂ẋ

)
+

(
δz
∂L

∂z
+ δż

∂L

∂ż

)
+

(
δγ
∂L

∂γ
+ δγ̇

∂L

∂γ̇

)
+

(
δη
∂L

∂η
+ δη̇

∂L

∂η̇

)]
dS

(B.25)
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Using integration by parts and noting that ∂L
∂γ̇

= ∂L
∂η̇

= 0 this leads to

δF =

∫ S1

S0

[(
∂L

∂ψ
− d

dS

∂L

∂ψ̇

)
δψ +

(
∂L

∂x
− d

dS

∂L

∂ẋ

)
δx+

(
∂L

∂z
− d

dS

∂L

∂ż

)
δz

+ δγ
∂L

∂γ
+ δη

∂L

∂η

]
dS

− [HδS]S1
S0

+

[
δψ
∂L

∂ψ̇

]S1

S0

+

[
δx
∂L

∂ẋ

]S1

S0

+

[
δz
∂L

∂ż

]S1

S0

= 0

(B.26)

with

H := −L+ ψ̇
∂L

∂ψ̇
+ ẋ

∂L

∂ẋ
+ ż

∂L

∂ż
(B.27)

For this relation to hold, the following conditions given in the integral in equation

B.26 need to be fulfilled.

∂L

∂ψ
− d

dS

∂L

∂ψ̇
= 0,

∂L

∂x
− d

dS

∂L

∂ẋ
= 0,

∂L

∂z
− d

dS

∂L

∂ż
= 0,

∂L

∂γ
= 0,

∂L

∂η
= 0 (B.28)

Solving these equations, one obtains the shape equations. From the boundary

conditions in equation B.26, one then obtains additional constraints.

Looking at the first equation in B.28 one obtains:

∂L

∂ψ
= x

(
sinψ

x
+ ψ̇ −K0

)
cosψ

x
+
P̄

2
x2 cosψ + γ sinψ + η cosψ − f̄ cosψ

(B.29)

∂L

∂ψ̇
= x

(
sinψ

x
+ ψ̇ −K0

)
(B.30)

d

dS

∂L

∂ψ̇
= ẋ

(
sinψ

x
+ ψ̇ −K0

)
+ x

(
ψ̇ cosψ

x
− ẋ sinψ

x2
+ ψ̈

)
(B.31)

Equating these relations one obtains the first shape equation:

xψ̈ =
sinψ cosψ

x
+
P̄ x2

2
cosψ + γ sinψ + η cosψ − ψ̇ cosψ − f̄ cosψ (B.32)

From the second equation in B.28 one obtains:

∂L

∂x
=

1

2

(
sinψ

x
+ ψ̇ −K0

)2

− sinψ

x

(
sinψ

x
+ ψ̇ −K0

)
+ Σ̄ + P̄ x sinψ

(B.33)

∂L

∂ẋ
= γ (B.34)

d

dS

∂L

∂ẋ
= γ̇ (B.35)
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Which leads to the second shape equation:

γ̇ =
1

2
(ψ̇ −K0)2 − sin2 ψ

2x2
+ Σ̄ + P̄ x sinψ (B.36)

From the third equation in B.28 one obtains:

∂L

∂z
= 0 (B.37)

∂L

∂ż
= η (B.38)

d

dS

∂L

∂ż
= η̇ (B.39)

Which leads to

η̇ = 0 (B.40)

The fourth and fifth equation in B.28 directly lead to the last two shape equations:

∂L

∂γ
= ẋ− cosψ = 0 (B.41)

∂L

∂η
= ż + sinψ = 0 (B.42)

From the boundary terms in equation B.26 one obtains additional constraints

and boundary conditions. For a closed vesicle with spherical topology we require

x(0) = x(S1) = 0 and ψ(0) = 0, ψ(S1) = π. The second and third boundary term

thus directly vanish.

For the fourth boundary term to vanish, we require

∂L

ż
= η = 0 (B.43)

and for the first boundary term to vanish, we require that H(0) = H(S1) = 0 and

therefore γ(0) = γ(S1) = 0.

Taking all these considerations into account one obtains the shape equations given

in Equations 5.18 - 5.24.
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B.4 Correction to the Tube Length

To determine how good a thin tube can be approximated by a triangular mesh

structure, as it is used in the simulations, one can perform a simple geometric

analysis. This will also allow to calculate a correction for the tube length, for thin

radii.

Let us consider the cross section of a tube as illustrated in Figure B.1. For an ideal

tube this would be a perfect circle. Approximated by a triangular mesh, this cross

section would (roughly) be a regular polygon with n edges, depending on the radius

R of the tube. c is the chord length of a circular segment, s the arc length and α

the central angle of the circular sector.

Let us now assume that the perfect tube and the tube approximated by the mesh

have the same area A. Then we can say that:

A = const. = L©U© = LDUD (B.44)

where L is the tube length, U the circumference of the cross section and © and D
stand for the ideal tube and the approximated tube respectively.

This means that the length of the polygon tube is given by:

LD = L©
U©
UD

= L©
ns

nc
≈ L©s (B.45)

where the chord length is the average bond length in the simulations, which is a ≈ 1.

The arc length is given by s = Rα and the angle α can be determined using simple

trigonometric relations. This leads to:

LD ≈ L©Rα = L©2R arcsin

(
1

2R

)
(B.46)

This way, one obtains a correction term for the tube length depending on the radius.

For a tube of radius R = 2 this correction is ≈ 1%, so quite small. However, for a

thin tube with radius R = 1 it is already ≈ 5%.

(a) Cross section
(b) Circular sector with arc length
s and chord length c

Figure B.1: Cross section of a tube, approximated by a polygon.
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C
Simulation of the Vesicle Movement

A simple model was devised to investigate vesicle motion induced by tubule genera-

tion. This model has been created to investigate a potential correlation between

stromules and chloroplast movement.48 Different chloroplast movement patterns

have also been observed in mutant plants, where a chloroplast anchoring protein

was targeted.175;176 With our simple model we can mimic these movement patterns

which could help to find and characterize the underlying mechanisms and thus

improve our current understanding of stromule formation and function.

The model consists of a small vesicle confined within a larger sphere. Tubes

extending from the vesicle to the outer sphere exert a force on the vesicle and thus

induce motion. The anchoring points of the tubes are randomly created on the small

vesicle’s surface and annihilated with a certain rate. This enables us to investigate

the vesicle mobility depending on the average number of tubes and the creation

rate.

(a) Illustration of the model. (b) 3D snapshot of a simulation.

Figure C.1: A small vesicle is confined within a big sphere to investigate vesicle
movement. Tubes protruding from the vesicle exert a force.
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C.1 Trajectories

The vesicle movement is modeled using overdamped Brownian motion:

~xn+1 = ~xn + ∆t~vn+1 (C.1)

~vn+1 = µ
∑

~Fext +

√
24µkBT

1

∆t
R(t) (C.2)

where ~xn is the position and ~vn the velocity of the small vesicle at step n. The

timestep is ∆t and and the mobility µ = 1
6πηrin

. kB is the Boltzmann constant, T the

temperature of the system and R(t) uniformly distributed random numbers between

-0.5 and 0.5. ~Fext is the external force exerted by the tubes. In our simulations

we have set kBT = 1 (which defines the unit of energy), the radius of the small

vesicle to rin = 1 (which sets the unit of length) and the shear viscosity η = 1

(which indirectly sets the unit of time). In these units we have chosen ∆t = 0.001,

the radius of the outer sphere rout = 10 and the deletion/creation rate 10−2. The

average number of tubes NT will be varied in the following analysis.

The model is illustrated in Figure C.1, in which a small vesicle (red) is confined by

a larger sphere (blue). The tubes protruding from the vesicle exert a force, ~Fext,

and pull it towards the boundary marked by the outer sphere. Figure C.1b shows

an exemplary snapshot of a simulation run with three tubes attached to the vesicle.

To illustrate the motion of the vesicle a projection of the particle trajectory onto a

plane can be found in Figure C.2. One can clearly observe two different scales on

which the motion takes place. Short clustered motion due to thermal fluctuations

and directed motions on larger scales induced by the external pulling of the tubes.

Our model is reminiscent of a continuous-time random walk (CTRW),177 in which

the motion of a particle is described by a stochastic jump process, characterized

by distributions for the jump lengths and the waiting times between individual

jumps. Clearly our model is not equivalent to the CTRW because, first, we have

the diffusive-like motion during the individual jumps, and second, the motion of

the vesicle is confined by the large sphere which serves as the anchoring agent.

Nevertheless in the following we will characterize the dynamics of our model using

waiting time, jump length and jump angle distributions.

C.2 Characterizing the Stochastic Jump Process

When simulating the vesicle with different parameters, e.g. average number of

tubes NT, amplitude of the force |~Fext| or creation rate, one could observe different

behaviors of the trajectories. We therefore started investigating the step length

distribution of different trajectories. For this we first smoothed the trajectories
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(a) NT = 1 (b) NT = 6

Figure C.2: Projection of the vesicle trajectory onto a plane.

using the Ramer Douglas Peucker algorithm178;179 to identify individual jumps. We

then calculate the length of the jumps, the angle between two subsequent jumps

and the waiting time between the jumps.

A histogram of an exemplary jump length distribution can be found in Figure C.3.

One can observe a clear correlation between the number of tubes and the occurrence

of long individual jumps. We find that the smaller the average number of tubes

connected to the vesicle is, the more pronounced is the tail of the jump length

distribution. This is to be expected, because more tubes means that the creation of

an additional tube becomes less significant and thus induces less pronounced jumps.

Different from the idealized CTRW our model shows a pronounced correlation

between individual jumps, which is visible in the probability distribution for the

angle between two subsequent jumps (see Figure C.4). This distribution is clearly

not flat, but shows a pronounced maximum at angles around 60◦. Furthermore, one

can observe a second local maximum at large angles > 160◦. The latter strongly

depends on the average number of tubes connecting to the vesicle making it an

ideal measure to fit the parameter NT to experimental observations.

The waiting time distribution, shown in Figure C.5, appears to be largely in-

dependent of the average numbers of tubes NT and exponential for long times,

corresponding to the Poisson process that was used as input for the creation and

annihilation process. This is important, because it shows that our data analysis is

indeed able to properly extract the jump process. Only for small times, we observe

a deviation from the exponential, which clearly originates from the smoothing

algorithm. The waiting time distribution is therefore ideal to extract properties

of tube formation and annihilation from experiments, e.g. the rates connected to

these processes.
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Figure C.3: Histogram of the jump length distribution for different average numbers
of tubes NT.

Figure C.4: Histogram of the angle between subsequent jumps for different average
numbers of tubes NT.
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Figure C.5: Histogram of the waiting time between jumps for different average
numbers of tubes NT.

The data discussed above is preliminary and will clearly benefit from better statis-

tics, however, we believe that our model is a powerful tool to investigate dynamic

properties of tube/stromule formation in cells by analysis of the anomalous diffu-

sion of individual vesicles and comparisons between our model and experimental

measurements.
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D
Source Code for the Direct

Minimization

This is the source code used for the direct minimization method presented in

Section 5.3. For this the software package ACADO toolkit was used.161;162 More

information and useful examples can be found under http://www.acadotoolkit.

org/.

The input files ’x.txt’, ’u.txt’ and ’p.txt’ contain initial guesses about the configu-

ration. ’x.txt’ contains the coordinates, but it can be empty for the first run. It

can be useful to load a configuration, when going to a finer discretization. ’u.txt’

contains the initial guess for u, which can simply be set to one and ’p.txt’ can

roughly be set to π. These initial guesses can of course be varied and should be

adapted to fit the respective problem.
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Figure D.1: Source code used for the direct minimization method.
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[163] Cuvelier, D.; Derényi, I.; Bassereau, P. Coalescence of Membrane Tethers: Experi-
ments, Theory, and Applications. Biophysical journal 2005, 88, 2714–26.

[164] Li, S.; Yan, Z.; Luo, Z.; Xu, Y.; Huang, F.; Zhang, X.; Yi, X.; Yue, T. Mechanics
of the Formation, Interaction, and Evolution of Membrane Tubular Structures.
Biophysical Journal 2019, 116, 884 – 892.

[165] Stephens, D. J. Functional coupling of microtubules to membranes – implications for
membrane structure and dynamics. Journal of Cell Science 2012, 125, 2795–2804.

[166] Heinrich, M.; Tian, A.; Esposito, C.; Baumgart, T. Dynamic sorting of lipids and
proteins in membrane tubes with a moving phase boundary. Proceedings of the
National Academy of Sciences 2010, 107, 7208–7213.

[167] Dasgupta, R.; Dimova, R. Inward and outward membrane tubes pulled from giant
vesicles. Journal of Physics D 2014, 47, 282001.

[168] Prevost, C.; Zhao, H.; Manzi, J.; Lemichez, E.; Lappalainen, P.; Callan-Jones, A.;
Bassereau, P. IRSp53 senses negative membrane curvature and phase separates
along membrane tubules. Nature Communications 2015, 6 .

[169] Gompper, G.; Kroll, D. M. Phase diagram and scaling behavior of fluid vesicles.
Phys. Rev. E 1995, 51, 514–525.
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