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Abstract
Folding grid value vectors of size 2L into Lth-order tensors of mode size 2× · · · × 2,
combined with low-rank representation in the tensor train format, has been shown
to result in highly efficient approximations for various classes of functions. These
include solutions of elliptic PDEs on nonsmooth domains or with oscillatory data. This
tensor-structured approach is attractive because it leads to highly compressed, adaptive
approximations based on simple discretizations. Standard choices of the underlying
bases, such as piecewise multilinear finite elements on uniform tensor product grids,
entail the well-known matrix ill-conditioning of discrete operators. We demonstrate
that, for low-rank representations, the use of tensor structure itself additionally intro-
duces representation ill-conditioning, a new effect specific to computations in tensor
networks. We analyze the tensor structure of a BPX preconditioner for a second-order
linear elliptic operator and construct an explicit tensor-structured representation of
the preconditioner, with ranks independent of the number L of discretization lev-
els. The straightforward application of the preconditioner yields discrete operators
whose matrix conditioning is uniform with respect to the discretization parameter, but
in decompositions that suffer from representation ill-conditioning. By additionally
eliminating certain redundancies in the representations of the preconditioned discrete
operators, we obtain reduced-rank decompositions that are free of both matrix and
representation ill-conditioning. For an iterative solver based on soft thresholding of
low-rank tensors, we obtain convergence and complexity estimates and demonstrate
its reliability and efficiency for discretizations with up to 250 nodes in each dimension.
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1 Introduction

The direct textbook treatment of elliptic PDEs by low-order discretizations on uniform
grids becomes unaffordable for many important problem classes. The high computa-
tional costs are due to the prohibitively large number of degrees of freedom required to
resolve specific features of solutions, such as singularities and high-frequency oscil-
lations, that arise in problems with nonsmooth or oscillatory data. More efficient
discretizations can be obtained with basis functions that are adapted to the given prob-
lem and require fewer degrees of freedom. However, the construction and analysis
of such methods (for instance, of hp-adaptive solvers) generally depends on specific
features of the considered problemclasses and accordingly specialized analytical tools.

By the approach considered in this work, efficiency is achieved in a different way:
extremely large arrays of coefficients parametrizing simple, uniformly refined low-
order discretizations are themselves parametrized as nonlinear functions of relatively
few effective degrees of freedom. The latter parametrization is based on representing
the coefficient arrays, reshaped into high-order tensors, in the tensor train decompo-
sition with low ranks. This representation exploits low-rank structure with respect to a
hierarchy of dyadic scales, providing, at each scale, a problem-adapted basis that can
be computed using standard techniques of numerical linear algebra. In other words,
for the identification of suitable degrees of freedom, this approach avoids relying
on problem-specific a priori information; instead, suitable degrees of freedom are
found by the low-rank tensor compression of generic, conceptually straightforward
discretizations.

In numerical solvers for PDE problems that operate on such highly compressed,
nonlinear representations of basis coefficients, new difficulties arise compared to a
standard entrywise representation. As we demonstrate in this contribution, specific
types of ill-conditioning in such tensor representations can dramatically affect the
numerical stability of solvers. We show how a special low-rank representation of a
BPX preconditioner allows to overcome these difficulties and obtain estimates for
the total computational complexity of computing solutions with low-rank tensor train
structure.

1.1 Low-Rank Tensor Approximations

The development of low-rank tensor representations [18,25,45,47,50], such as the
tensor train format, has originally beenmotivated by applications to high-dimensional
PDEs. As observed in [19,37,43,44], the artificial treatment of coefficient vectors in
lower-dimensional problems as high-dimensional quantities, known in the literature as
quantized tensor train (QTT) decomposition or tensorization, leads to highly efficient
approximations in many problems of interest. See [38] for a general overview and, for
instance, [29,36] for further applications.
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To briefly illustrate this concept, let us suppose that a function u has an accurate
approximation u ≈ ∑N

j=1 u jφ j in terms of the basis functions {φ j } j=1,...,N with

the coefficient vector u = (u j ) j=1,...,N ∈ R
N . The basic idea is to reinterpret u

as a higher-order tensor of mode sizes n1 × · · · × nL with
∏L

�=1 n� = N via the
identification

j ↔ (i1, . . . , iL) ∈ {0, . . . , n1 − 1} × · · · × {0, . . . , nL − 1}

provided by the unique decomposition

j − 1 =
L∑

�=1

i�

L∏

k=�+1

nk with i� ∈ {0, . . . , n� − 1} for all � = 1, . . . , L .

We assume a simple choice of basis functions, such as low-order splines, combined
with a compressed, nonlinearly parametrized approximation of the corresponding
coefficients u in the tensor train format,

ui1,...,iL ≈
r1∑

α1=1

· · ·
rL−1∑

αL−1=1

U1(1, i1, α1)U2(α1, i2, α2) · · · UL(αL−1, iL , 1). (1)

The actual degrees of freedom are now the entries of the third-order tensors U� ∈
R
r�−1×n�×r� with � ∈ {1, . . . , L}, which are referred to as cores (where r0 = rL = 1

for notational convenience). In the case of n� = n ∈ N for all �, which we con-
sider in this work, the total number of parameters defining this approximation equals∑L

�=1 n� r�−1 r� � (log N )max{r21 , . . . , r2L−1}.
For certain representative approximation problems (such as functions with isolated

singularities or high-frequency oscillations), as shown in [19,31,34,37], one obtains
approximations where the rank parameters r1, . . . , rL−1 grow at most polylogarithmi-
cally in the corresponding error. This suggests the possibility of constructing numerical
methods with complexity scaling as (log N )α for a fixed α.

1.2 Multilevel Low-Rank Approximations for Elliptic Boundary Value Problems

In this work, we focus on the application of low-rank tensor techniques for solving
second-order elliptic boundary value problems on domains Ω ⊂ R

D , where we are
mainly interested in the cases of D ∈ {1, 2, 3}. First, consider the exact solution u and
finite element solutions uh , where h > 0 is a mesh-size parameter, that are simple,
low-order finite element functions with coefficient vectors uh . These are given by
suitable linear systems of the form Ahuh = f h . For each mesh size h, one can seek
instead uLRh from the same finite element space whose coefficient vector uLRh is a
low-rank approximation in form (1) of uh . In order to benefit from the complexity
reduction afforded by representation (1), the vector uLRh needs to be computed directly
in this low-rank representation. Using corresponding representations of Ah and f h ,
this can be achieved by iteratively solving the nonlinear problem in terms of the cores
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U1, . . . ,UL of uLRh in (1). In our setting, the binary indexing (i1, . . . , iL) used in the
interpretation of uh as a tensor of order L corresponds to uniform grid refinement with
L levels, and thus h ∼ 2−L . The separation of variables expressed by (1) therefore
applies not to the spatial dimensions but rather to the dyadic scales of uLRh .

In our model problem, the underlying discretization uses piecewise D-linear finite
elements. Using the triangle inequality, we can decompose the error u − uLRh into a
discretization error u − uh , for which on uniform meshes one obtains bounds of the
form

‖u − uh‖H1 ≤ Cuh
s, (2)

with Cu > 0 depending only on u and 0 < s ≤ 1, and the computation error uh −uLRh
including the error of low-rank approximation. In problems where u exhibits, for
instance, singularities or high-frequency oscillations, one may be dealing with Cu

extremely large or with s 	 1. Thus, achieving reasonable total errors may require
values of h that are so small that the entrywise representations of coefficient vectors
and matrices are computationally infeasible.

Under natural assumptions on the data and on the underlying mesh, the problem of
finding uh remains well-conditionedwith respect to the problem data independently of
h. However, for very small h as considered here, it becomes a nontrivial issue to ensure
numerical stability of algorithms, since these are affected by the condition numbers
O(h−2) of Ah . Regardless of the type of solver that is employed, preconditioning Ah

becomes a necessity for avoiding numerical instabilities even for moderately small
h. As a first step, we therefore construct a preconditioner for Ah that can be applied
directly in low-rank form,where both the resultingmatrix condition numbers after pre-
conditioning and the tensor representation ranks are uniformly bounded with respect
to the discretization level L .

However, we also find that when such a preconditioner is applied as usual by the
standardmatrix-vector multiplication in the tensor format, numerical solvers still stag-
nate at an error ‖uh−uLRh ‖H1 of orderO(h−2ε), where ε is themachine precision. This
shows that ensuring uniformly bounded matrix condition numbers by preconditioning
is not sufficient for low-rank tensor methods to remain numerically stable for very
small h. It turns out that tensor representations of vectors in the form of (1) generated
by the action of Ah can be extremely sensitive to perturbations of each single core.
This new type of ill-conditioning cannot be eradicated by simply multiplying by the
preconditioner, and any further numerical manipulations of the resulting tensor rep-
resentations are prone to large round-off errors. To quantify this effect, we introduce
the notion of representation condition numbers.

Without addressing the issue of representation ill-conditioning, one can therefore
only expect ‖u− uh‖H1 = O(Cuhs + h−2ε). With the optimal choice of h, this yields

a total error of order O(C2/(2+s)
u εs/(2+s)); even in the ideal case s = 1, one thus has

a limitation to O(ε1/3). In the present paper, by analytically combining the low-rank
representations of the preconditioner and of the stiffness matrix, we obtain a tensor
representation that retains favorable representation condition numbers also for large
L and leads to solvers that remain numerically stable even for h on the order of the
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machine precision ε. For the problems preconditioned in this manner, we can apply
results from [4,6] to obtain bounds for the number of operations required for computing
uLRh , in terms of the ranks of low-rank best approximations of uh with the same error.
Since the costs depend only weakly on the discretization level L , one may then in
fact simply choose L so large that h ≈ ε. This ensures that the discretization error
‖u − uh‖H1 is negligible in all practical situations and only the explicitly controllable

low-rank approximation error ‖uh − uLRh ‖H1 remains.

1.3 Conditioning of Tensor Train Representations

Let us now briefly outline the source of numerical instability that we need to mitigate
here. Subspace-based tensor decompositions such as the Tucker format, hierarchical
tensors [25] or the presently considered tensor train format [45] share the basic stability
property that the existence of low-rank best approximationswith fixed-rank parameters
is guaranteed. In contrast, such best approximation problems for canonical tensors are
in general ill-posed [14], and one has the well-known border rank phenomena where
given tensors can be approximated arbitrarily well by tensors of lower canonical ranks.
In subspace-based formats, such pathologies of the canonical rank are avoided by
working only with matrix ranks of certain tensor matricizations. This leads to natural
higher-order generalizations of the singular value decomposition (SVD), in particular
the TT-SVD algorithm for tensor trains.

However, when performing computations in such tensor formats, tensors in general
do not remain in orthogonalized standard representations, such as those given by the
TT-SVD. For instance, the action of low-rank representations of finite element stiffness
matrices in iterative solvers may create tensor train representations with substantial
redundancies that are far from their respective SVD forms.A return to the rank-reduced
SVD form can then in principle be accomplished by applying standard linear algebra
operations (such as QR decomposition and SVD) to the representation components.

As we demonstrate in what follows, in relevant cases, tensor train representations
can become so ill-conditioned that performing this rank reduction with machine pre-
cision no longer produces useful results. To our knowledge, this particular point has
not received attention in the literature so far. As we consider in further detail in Sect. 4,
a particular instance where this effect occurs is multilevel low-rank representations of
discretization matrices of differential operators.

In order to illustrate these issues, let us consider a low-rank matrix M = ABTwith
A ∈ R

m×r and B ∈ R
n×r . Performing numerical manipulations of A, for instance a

QR factorization with machine precision, amounts to replacing M by M̃ = ÃBTwith
‖A − Ã‖F ≤ δ‖A‖F , where δ will ideally be close to the relative machine precision.
Similarly to standard perturbation estimates for matrix products (see, e.g., [27, Sec.
3]), one obtains the generally sharp worst-case bound

‖M − M̃‖F ≤ δ‖A‖F‖B‖2→2.

In the case of high-order tensor train representations, one may think of B as composed
of many individual cores. Even when each of these cores looks completely innocent,
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their cumulative effect can lead to very large ‖B‖2→2. In cases where cancellations
occur in the product with A, the size of ‖M‖F , however, can be small compared to
‖B‖2→2, and perturbations to A are strongly amplified. This means that any numerical
manipulation of such representations (such as orthogonalization, which is also the first
step in performing a TT-SVD, see Sect. 3.6) can introduce extremely large errors in
the represented tensor.

We define the representation condition number of an operator in low-rank represen-
tation as the factor by which its action may deteriorate the conditioning of tensor train
representations. In the case of the finite element stiffness matrices Ah , we find that this
condition number scales (matching the standard matrix condition number) asO(h−2),
which agrees with the numerically observed loss of precision. One may regard this
as a tensor-decomposition analogue of the classical amplification of relative errors by
ill-conditioned matrices. However, this error amplification manifests itself not in the
action of the tensor representation of Ah on any single tensor core, which by itself is
harmless, but rather in the cumulative effect that emerges when further operations are
performed on the resulting output cores.

1.4 Novelty and Relation to PreviousWork

As amain contribution of thiswork,we introduce basic notions and auxiliary results for
studying the representation conditioning of tensor train representations. In particular,
our finding that the stiffnessmatrix represented in low-rank format has a representation
condition number of order 22L explains numerical instabilities in its direct application
for large L as observed in tests in [11]. We prove a new result on a BPX preconditioner
for second-order elliptic problems that is tailored to our purposes, and we construct
a low-rank decomposition of the preconditioned stiffness matrix with the following
properties: it is well-conditioned uniformly in discretization level L as a matrix; its
ranks are independent of L; and its representation condition numbers remain mod-
erate for large L . Based on these properties, we establish an estimate for the total
computational complexity of finding approximate solutions in low-rank form. These
complexity bounds are shown for an iterative solver based on the soft thresholding of
tensors [6], for which the ranks of approximate solutions can be estimated in terms
of the ranks of the exact Galerkin solution. We identify appropriate approximability
assumptions on solutions in the present context, which are slightly different from those
proved in [34].

Difficulties with the numerical stability of solvers for large L have also been noted
previously in [34]. In [11,46], a reformulation as a constrained minimization problem
with Volterra integral operators is proposed. It is demonstrated numerically in [11] up
to L ≈ 20 to lead to improved numerical stability, compared to a direct finite difference
discretization, for Poisson-type problems with D = 2 dimensions. However, in this
reformulation, which so far has been studied only experimentally, the matrix condition
number still grows exponentially with respect to L , and numerical stability is still
observed to be lacking for larger values of L .

A different class of preconditioners based on approximate matrix exponentials has
been proposed for QTT decompositions in [39]. In the different context of separation
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of spatial coordinates in high-dimensional problems, tensor representations have been
combined with multilevel preconditioners based on multigrid methods [8,23], BPX
preconditioners [1] and wavelet Riesz bases [5]. There the required representation
ranks of preconditioners have been observed to increase with discretization levels, in
contrast to the uniformly bounded ranks that we obtain in our present setting of tensor
separation between scales.

1.5 Outline

In Sect. 2, we consider the structure of discretization matrices in detail and establish
a result on symmetric BPX preconditioning. In Sect. 3, we recapitulate basic notation
and operations for the tensor train format. In Sect. 4, we introduce notions of represen-
tation condition numbers of tensor decompositions and investigate some of their basic
properties. Building on these concepts, in Sect. 5 we construct well-conditioned mul-
tilevel low-rank representations of preconditioned discretization matrices. In Sect. 6,
we discuss the implications of our findings on the complexity of finding approximate
solutions and illustrate the performance of numerical solvers in Sect. 7.

We use the following general notational conventions: A � B denotes A ≤ CB
with C independent of any parameters explicitly appearing in the expressions A and
B, and A ∼ B denotes A � B ∧ A � B. We use ‖·‖2 to denote the �2-norm both
of vectors and of higher-order tensors, and ‖·‖2→2 to denote the associated operator
norm. In addition, ‖·‖F denotes the Frobenius norm of matrices. By 〈·, ·〉, we denote
the �2-inner product of vectors and tensors or the L2-inner product of functions, as
well as the corresponding duality product.

2 Discretization and Preconditioning

The model problem that we focus on in what follows is posed on the product domain
Ω = Ω̂D ⊂ R

D with Ω̂ = (0, 1). With Γ = {x ∈ ∂Ω : x1 · · · xD = 0}, we consider
the corresponding Sobolev space of functions defined on Ω and vanishing on Γ ,

V = {v ∈ H1(Ω) : v|Γ = 0}, (3)

with norm ‖v‖V = ‖v‖H1
0(Ω) ∼ ‖v‖H1(Ω). On this space, we consider the variational

problem

find u ∈ V such that a(u, v) = f (v) for all v ∈ V , (4)

where a : V × V → R is the bilinear form given by

a(w, v) =
∫

Ω

(∇v)TA∇w +
∫

Ω

cvw for all w, v ∈ V , (5)

and f ∈ V ′ is a given linear form. We assume the diffusion and reaction coeffi-
cients A ∈ L∞(

Ω, R
D×D

)
and c ∈ L∞(Ω) to be strongly elliptic and nonnegative,
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respectively:

A = ess inf
Ω

inf
ξ∈RD�{0}

ξTAξ

ξTξ
> 0 and c ≥ 0 a.e. on Ω .

Problem (4) is a variational formulation of a boundary value problem for a reaction-
diffusion equation with homogeneous mixed boundary conditions: of Dirichlet type
on Γ and of Neumann type on ∂Ω� Γ .

Under the assumptions on the data made so far, the bilinear form a is continuous
and coercive and the linear form f is continuous. By the Lax–Milgram theorem, (4)
has a unique solution satisfying

‖u‖V ≤ A−1 ‖ f ‖V ′ . (6)

Additional assumptions on the data of problem (4), essential for its tensor-structured
preconditioning and solution, are stated in Sects. 2 and 5.

In what follows, we consider a hierarchy of discretizations based on piecewise D-
linear nodal basis functions on a sequence of uniform grids with cell sizes 2−� ×· · ·×
2−�, � = 0, 1, 2, . . .; the basis functions can be written as tensor products of standard
univariate hat functions.

In this section, we describe V� with � ∈ N0, nested finite-dimensional subspaces of
V introduced in (3). We will use these subspaces to approximate the solution of the
variational problem stated in (4).

2.1 Finite Element Spaces for ˆ̋ = (0, 1)

Throughout this section, we assume that an arbitrary number � ∈ N0 of refine-
ment levels is fixed. We consider a uniform partition of Ω̂ into 2� subintervals and
corresponding 2� continuous piecewise linear functions defined on Ω̂ . Then, by ten-
sorization, we introduce basis functions defined on Ω .

First, we consider the uniform partition of Ω̂ that consists of the 2� intervals

Ω̂�,i = (τ̂�,i−1, τ̂�,i ) with i ∈ Ĵ� = {1, . . . , 2�} (7)

given by the 2� + 1 nodes

τ̂�, j = 2−� j with j = 0, . . . , 2� . (8)

For each i ∈ Ĵ�, we introduce an affine mapping φ̂�,i from (−1, 1) onto Ω̂�,i :

φ̂�,i (t) = 1

2
(τ̂�,i + τ̂�,i−1) + t

2
(τ̂�,i − τ̂�,i−1) = 2−� i + 2−�−1(t − 1) (9)

for all t ∈ (−1, 1).
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Further, we consider nodal functions defined on Ω̂ and associated with these nodes:
for each j ∈ Ĵ�, by ϕ̂�, j we denote the function that is linear on each Ω̂�,i with
i ∈ Ĵ�, continuous on Ω̂ and such that

ϕ̂�, j (τ̂�, j ′) = 2
�
2 δ j j ′ for all j ′ = 0, . . . , 2� . (10)

The �-dependent normalization factor in the right-hand side of (10) results in the
uniform normalization

‖ϕ̂�, j‖L2(Ω̂)
∼ 1 . (11)

By the above construction of basis functions, each ϕ̂�, j with j ∈ Ĵ� is a degree-one
polynomial on every Ω̂�,i with i ∈ Ĵ�. This implies that, for α = 0, 1, there exist
matrices M̂�,α with rows and columns indexed by Ĵ� × {α, 1} and Ĵ�, respectively,
such that

∂αϕ̂�, j ◦ φ̂�,i =
∑

β=α,1

(M̂�,α)iβ j ψ̂β on (−1, 1) (12a)

for all i, j ∈ Ĵ�, where ψ̂0 and ψ̂1 are the standard monomials of degree zero and
one,

ψ̂0(t) = 1 and ψ̂1(t) = t for all t ∈ (−1, 1) . (12b)

We note that the matrix M̂�,0 is rectangular of size 2�+1 × 2� and the matrix M̂�,1 is
a square matrix of order 2�.

For the basis functions defined in (12b), since ψ̂ ′
1 = ψ̂0, the odd rows of M̂�,0 form

a multiple of M̂�,1: for β = 1 and all i, j ∈ Ĵ�, we have

(M̂�,1)iβ j = 2�+1(M̂�,0)iβ j . (12c)

Furthermore, the matrices M̂�,0 and M̂�,1 have the following explicit form, which
will be used below:

M̂�,0 = 2
1
2 �−1

{

( Î� + Ŝ�) ⊗
(
1
0

)

+ ( Î� − Ŝ�) ⊗
(
0
1

)}

,

M̂�,1 = 2
1
2 �−1+(�+1) ( Î� − Ŝ�) ,

(12d)

where

Î� =

⎛

⎜
⎜
⎜
⎜
⎝

1

0
. . .

. . .
. . .

0 1

⎞

⎟
⎟
⎟
⎟
⎠

and Ŝ� =

⎛

⎜
⎜
⎜
⎜
⎝

0

1
. . .

. . .
. . .

1 0

⎞

⎟
⎟
⎟
⎟
⎠

(12e)
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are square matrices of order 2�.
The finite element spaces span{ϕ̂�, j } j∈Ĵ�

with � ∈ N0 are nested: for all L, � ∈ N0

such that � ≤ L , we have

ϕ̂�, j =
∑

j ′∈ĴL

( P̂�,L) j ′ j ϕ̂L, j ′ for all j ∈ Ĵ� , (13)

where P̂�,L is the matrix of the identity operator from span{ϕ̂�, j } j∈Ĵ�

to span{ϕ̂L, j ′ } j ′∈ĴL
with respect to the bases defined in (10):

P̂�,L = 2(�−L)/2( Î� ⊗ η̂L−� + Ŝ� ⊗ (ξ̂ L−� − η̂L−�)
)

(14)

where

ξ̂ k =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
1
...

1
1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and η̂k = 2−k

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
2
...

2k − 1
2k

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(15)

are 2k-component vectors for each k ∈ N0.

2.2 Finite Element Spaces for˝ = (0, 1)D

Partition (7) induces a uniform tensor product partition of Ω that consists of the 2D�

elements

Ω�,i =
Dą

d=1

Ω̂�,id with i = (i1, . . . , iD) ∈ J� = Ĵ D
� = {1, . . . , 2�}D . (16)

Tensorizing (10), we obtain the 2D� functions

ϕ�, j =
D⊗

d=1

ϕ̂�, jd with j = ( j1, . . . , jD) ∈ J� , (17)

which are continuous on Ω and D-linear on each of the partition elements given
by (16). We will use these functions as a basis of a finite-dimensional subspace of V ,

V� = span{ϕ�, j } j∈J�
⊂ V . (18)

The normalization of univariate factors in (11) implies

‖ϕ�, j‖L2(Ω) ∼ 1 , (19)
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and hence
∥
∥
∥
∥

∑

i∈J�

vi ϕ�,i

∥
∥
∥
∥
L2(Ω)

∼ ‖v‖�2 for all v ∈ R
J� ,

with equivalence constants independent of � ∈ N. Also, relationship (12a) results in

∂αϕ�, j ◦ φ�,i =
∑

β∈{α1,1}×···×{αD ,1}
(M�,α)iβ j ψβ on (−1, 1)D (20a)

for all α = (α1, . . . , αD) ∈ {0, 1}D and i, j ∈ J� with

φ�,i =
D⊗

d=1

φ̂�,id and ψβ =
D⊗

d=1

ψ̂βd (20b)

for all i = (i1, . . . , iD) ∈ J� and β = (β1, . . . , βD) ∈ {0, 1}D and with M�,α given
by

(M�,α)iβ j =
D∏

k=1

(M̂�,αk )ikβk jk (20c)

for all i = (i1, . . . , iD) ∈ J�, j = ( j1, . . . , jD) ∈ J� and β = (β1, . . . , βD) ∈
{0, 1}D . Note that, for each α ∈ {0, 1}D , the rows and columns of ML,α are indexed
byJL ×{α1, 1}× · · ·×{αD, 1} andJL , respectively. The embedding (12c) implies

(M�,α′)iβ j = 2|α′−α|(�+1)(M�,α)iβ j (20d)

for all i, j ∈ J� and α, α′, β ∈ {0, 1}D such that αk ≤ α′
k ≤ βk for each k =

1, . . . , D.
The finite element spaces V� with � ∈ N0 are also nested: for all L, � ∈ N0 such that

� ≤ L , we have V� ⊂ VL . In particular, the basis functions of V� and VL introduced
in (17) satisfy the refinement relation

ϕ�, j =
∑

j ′∈JL

(P�,L) j ′ j ϕL, j ′ for all j ∈ J� , (21)

where

P�,L =
D⊗

k=1

P̂�,L (22)

with P̂�,L given by (14).
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The stiffness matrix for the bilinear form a and discretization level � is given by

A� = (
a(ϕ�,i , ϕ�, j )

)
j,i∈J�

. (23)

Note that due to (19),

〈A�v, v〉 ∼
∥
∥
∥
∑

i∈J�

vi ϕ�,i

∥
∥
∥
2

V
for all v ∈ R

J� .

For the right-hand side, we set f � = (
f (ϕ�,i )

)
i∈J�

.

2.3 Representation of Differential Operators

The bilinear form a : V × V → R in (5) can be rewritten in the form

a(u, v) =
∑

(α,α′)∈D

∫

Ω

cαα′ (∂αv)(∂α′
u) for all u, v ∈ V (24a)

with aD ⊂ {0, 1}D×{0, 1}D .We assume that each coefficient function cαα′ ∈ L∞(Ω)

with (α, α′) ∈ D is given by

cαα′ ◦ φL,i =
∑

γ∈Γαα′
(cL,α,α′)i γ χαα′γ on (−1, 1)D for all i ∈ JL (24b)

in terms of the affine transformations φL,i with i ∈ JL defined by (9) and (20b), a
finite index set Γαα′ of cardinality Rαα′ = |Γαα′ |, functions χαα′γ ∈ L∞((−1, 1)D)

with γ ∈ Γαα′ and a coefficient vector cL,α,α′ ∈ R
JL×Γαα′ � R

2DL Rαα′ .
In this section, we analyze the dimension structure of the matrix AL of a restricted

to VL × VL with respect to the basis of ϕL, j with j ∈ JL , whose entries are

(AL) j j ′=a(ϕL, j , ϕL, j ′)=
∑

(α,α′)∈D

∫

Ω

cαα′ (∂αϕL, j )(∂
α′
ϕL, j ′) with j, j ′ ∈ JL ,

(25a)

induced by the tensor product dimension structure of the basis. Splitting integration
over the elements Ω�,i with i ∈ JL , given by (16), and applying (20a), we obtain

(AL) j j ′ =
∑

(α,α′)∈D

∑

i∈JL

∫

ΩL,i

cαα′ (∂αϕL, j )(∂
α′
ϕL, j ′)

=
∑

(α,α′)∈D

∑

i∈JL

∑

γ∈Γαα′
2−D(L+1) (cL,αα′)i γ

∫

(−1,1)D

χαα′γ
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∑

β∈{α1,1}×···×{αD,1}
(ML,α)iβ j ∂αψβ

∑

β ′∈{α′
1,1}×···×{α′

D ,1}
(ML,α′)iβ ′ j ′ ∂α′

ψβ ′ .

(25b)

Let us now, for all α, α′ ∈ D , introduce a matrix ΛL,α,α′ of size 2D(L+1)−|α| ×
2D(L+1)−|α′|:

(ΛL,α,α′)iβ i ′β ′ = δi i ′ 2
−D(L+1)

∑

γ∈Γαα′
(cL,α,α′)i γ

∫

(−1,1)D

χαα′γ (∂αψβ) (∂α′
ψβ ′)

(26a)

for all i, i ′ ∈ JL , β ∈ {α1, 1}×· · ·×{αD, 1} and β ′ ∈ {α′
1, 1}×· · ·×{α′

D, 1}. Using
these matrices, we can rewrite (25b) as

AL =
∑

(α,α′)∈D
MT

L,α ΛL,α,α′ ML,α′ . (26b)

Example 1 In the case of the negative Laplacian, we deal with a bilinear form given
by (24a) withD = (

(δk1, . . . , δkD), (δk1, . . . , δkD)
)D
k=1 and cαα′ = 1 for all (α, α′) ∈

D . For each (α, α), the corresponding coefficient is of form (24b) with Γαα′ = {0},
χαα′0 = 1 and (cL,αα′)i 0 = 1 for all i ∈ JL . The corresponding matrixΛL,α,α given
by (26a) takes the Kronecker product form

ΛL,α,α =
⊗D

k=1
Λ̂L,αk ,αk , (27a)

where the factors Λ̂L,0,0 and Λ̂L,1,1 are diagonal matrices independent of (α, α′) ∈ D
whose rows and columns are indexed by JL ⊗ {0, 1} and JL ⊗ {1}, respectively.
Specifically, their nonzero entries are

(Λ̂L,0,0)i,0 i,0 = (Λ̂L,1,1)i,1 i,1 = 2−L and (Λ̂L,0,0)i,1 i,1 = 1

3
2−L , i ∈ JL .

(27b)

The multilevel tensor structure of the factorization (26b) and, in particular, of
ΛL,α,α′ with (α, α′) ∈ D is investigated in Sect. 5. This analysis applies to the case
of general nonconstant coefficients cαα′ with (α, α′) ∈ D under the assumption that
each of them exhibits the multilevel low-rank structure in the sense of Sect. 3. Specif-
ically, in Sect. 5, we analyze the low-rank structure of every factor matrix ML,α with
α ∈ {0, 1}D and also show how the low-rank structure of cαα′ with (α, α′) ∈ D trans-
lates into that of ΛL,α,α′ . First, however, in the remainder of Sect. 2 we turn to the
multilevel preconditioning of AL . This gives rise to the preconditioned operator BL

and matrices QL,α with α ∈ {0, 1}D , defined in (33c), which relate to BL as ML,α

with α ∈ {0, 1}D to AL . The low-rank multilevel structure of BL and QL,α with
α ∈ {0, 1}D is the main topic of Sect. 5.
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Remark 1 In the case of one dimension (D = 1), let us consider a diffusion operator
with a coefficient c that is piecewise constant: c ◦ φ̂L,i = (ĉL)i on (−1, 1) for all
i ∈ ĴL , cf. (24b). Such coefficients appear, for example, as approximations in the
midpoint quadrature rule. Then, representation (25b) takes the form

AL = 2−L M̂
T
L,1 (diag ĉL) M̂L,1 = 22L

[
diag

(
( Î L + Ŝ

T
L ) ĉL

)

−Ŝ
T
L(diag ĉL) − (diag ĉ) ŜL

]
, (28)

where M̂L,1 = 2
3
2 L( Î� − Ŝ�) is defined by (12a) and is given explicitly by (12d).

The representation (28) has been used for this one-dimensional case in [15,16,31];
representation (26b) provides a generalization to higher dimensions and general coef-
ficients.

2.4 Multilevel Preconditioning

Among the various existing methods for preconditioning discretization matrices of
second-order elliptic problems, we are especially interested in approaches that pro-
vide optimal preconditioning and at the same time lead to favorablemultilevel low-rank
structures. A choice that meets these criteria is based on the classical BPX precondi-
tioner [10]. For our particular purposes, in what follows we also obtain a new result
on symmetric preconditioning by this method.

The BPX preconditioner requires a hierarchy of nested finite element spaces V0 ⊂
V1 ⊂ · · · ⊂ VL ⊂ V , which in the present case are the uniformly refined spaces
defined in (18). The standard implementable form of the preconditioner (cf. [10,53])
is then given by

C2,L v =
L∑

�=0

2−2�
∑

j∈JL

〈v, ϕ�, j 〉ϕ�, j , v ∈ VL .

Interpreting C2,L as a mapping of coefficient sequences (〈v, ϕL, j 〉) j∈JL to nodal
values of finite element functions, one obtains the correspondingmatrix representation

C2,L =
L∑

�=0

2−2�P�,L PT
�,L , (29)

where P�,L is as in (21), (22). The following result on the BPX preconditioner (29)
was established in [12,48], see also [9,54].

Theorem 1 Let AL and C2,L be as in (23) and (29). Then, there exist c,C > 0
independent of L such that

c 〈C−1
2,Lv, v〉 ≤ 〈ALv, v〉 ≤ C 〈C−1

2,Lv, v〉, v ∈ R
JL .
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This preconditioner is therefore optimal; that is, the condition numbers of precon-
ditioned systems remain bounded uniformly in the discretization level. It is usually
applied in the form of a left-sided preconditioning: it implies in particular that
cond(C1/2

2,L AL C1/2
2,L) is uniformly bounded with respect to L and that there exists

ω > 0 such that the iteration uk+1 = uk − ω C2,L
(
ALuk − f L

)
converges at an

L-independent rate. Also standard implementations of the preconditioned conjugate
gradient method use only the action of C2,L .

For our purposes, for several reasons explained in further detail in what follows, we
require symmetric preconditioning, that is, an implementable operator CL such that
CL ALCL is well-conditioned. Although C1/2

2,L provides optimal symmetric precondi-
tioning by Theorem 1, this is not directly numerically realizable.

We thus instead consider two-sided preconditioning by the implementable operator

CL =
L∑

�=0

2−� P�,L PT
�,L . (30)

For bounding the condition number of the symmetrically preconditioned operator
CL ALCL , we need to establish spectral equivalence of AL andC

−2
L . This is not a direct

consequence of Theorem 1. Although relying mainly on adaptations of established
techniques as in [26,51,54], the following result appears to be new. The proof is given
in “Appendix A.”

Theorem 2 With AL as in (23) and CL as in (30), there exist c,C > 0 independent
of L such that

c‖v‖22 ≤ 〈CL ALCLv, v〉 ≤ C‖v‖22, v ∈ R
JL . (31)

Remark 2 As an immediate consequence of Theorem 2,

‖v‖H1 ∼ ‖C−1
L v‖2 for v =

∑

j∈JL

v j ϕL, j , v ∈ R
JL , (32)

which means that the functions
∑

i∈JL
(CL)i jϕL,i , j ∈ JL , form a Riesz basis of

the subspace VL ⊂ H1(Ω) with bounds independent of L .

In what follows, we consider the symmetrically preconditioned problem of finding
uL such that

BLuL = gL where BL = CL ALCL and gL = CL f L . (33a)

Then, ūL = CLuL satisfies AL ūL = f L ; that is, ūL are the (rescaled) nodal values
of the Galerkin solution at level L . Using (26b), we obtain

BL =
∑

(α,α′)∈D
QT

L,α ΛL,αα′ QL,α′ , (33b)

123



1190 Foundations of Computational Mathematics (2020) 20:1175–1236

where

QL,α = ML,α CL (33c)

for all α ∈ {0, 1}D .
For our purposes, the symmetrically preconditioned operator is preferable mainly

for two reasons. On the one hand, an important advantage of the symmetric pre-
conditioning (33b) consists in the norm equivalence (32), since ultimately we are
interested in numerical schemes with guaranteed convergence in the H1 norm. With
low-rank methods using SVD-based rank truncations, as considered in further detail
in Sect. 6, for any ε > 0 we can find v such that ‖uL − v‖2 ≤ ε with uL as
in (33a). With the nodal basis coefficients v̄ = CLv, for the corresponding finite
element functions v = ∑

j∈JL
v̄ j ϕL, j and uL = ∑

j∈JL
ūL, j ϕL, j we have

‖uL − v‖H1 � ‖C−1
L (ūL − v̄)‖2 = ‖uL − v‖2 ≤ ε by (32). On the other hand,

the symmetric preconditioning (33b) allows for the explicit assembly of the precon-
ditioned operator BL directly in the low-rank form, as considered in detail in Sect. 5.

3 Tensor Train Decomposition

In this section, we recapitulate the definition of the tensor train (TT) decomposition
of multidimensional arrays and present the notation that we need for the following
sections.

3.1 Tensor Train Decomposition of Multidimensional Arrays

Throughout this section, we assume that L ∈ N. Let n1, . . . , nL ∈ N and u be
a multidimensional vector of dimension n1 · · · nL . Let r1, . . . , rL−1 ∈ N and, for
� = 1, . . . , L , let U� be arrays of size r�−1 × n� × r�, where r0 = 1 and rL = 1. The
vector u is said to be represented in the tensor train (TT) decomposition [45,47] with
ranks r1, . . . , rL−1 and cores U1, . . . ,UL if

u j1,..., jL =
r1∑

α1=1

· · ·
rL−1∑

αL−1=1

U1(α0, j1, α1) · · · UL(αL−1, jL , αL) (34a)

for all j� = 1, . . . , n� with � = 1, . . . , L , where α0 ≡ 1 and αL ≡ 1 are dummy
indices.

TheTTdecomposition formatrices is defined analogously.Assume thatm1, n1, . . . ,
mL , nL ∈ N and that A is a matrix of size (m1 · · ·mL) × (n1 · · · nL). Let
p1, . . . , pL−1 ∈ N and, for each � = 1, . . . , L , let A� be an array of size
p�−1 × m� × n� × p�, where p0 = 1 and pL = 1. Then, the representation
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Ai1,...,iL j1,..., jL =
p1∑

β1=1

· · ·
pL−1∑

βL−1=1

A1(β0, i1, j1, β1) · · · AL(βL−1, iL , jL , βL)

(34b)

for all i� = 1, . . . , n� with � = 1, . . . , L , where β0 ≡ 1 and βL ≡ 1 are dummy
indices, is called a tensor train decomposition of thematrix Awith ranks p1, . . . , pL−1
and cores A1, . . . , AL .

The TT decomposition uses one of many possible ways to separate variables in
multidimensional arrays; see, e.g., the survey [40] and the monograph [22]. The TT
decomposition is a particular case of the more general hierarchical tensor represen-
tation, also known as the hierarchical Tucker representation [18,25]. Both the TT and
hierarchical tensor representations can be interpreted as successive subspace approxi-
mation or low-rank matrix factorization, and this relation allows for the quasi-optimal
low-rank approximation of tensors built upon standard matrix algorithms.

The number of parameters of the representation, formally linear in L , is mainly
governed by the ranks, such as r1, . . . rL−1 in (34a) and p1, . . . , pL−1 in (34b). In
many applications, the complexity is observed, theoretically as well as numerically,
to depend moderately on L (see, e.g., [20]), which allows to lift or completely avoid
the so-called curse of dimensionality associated with the entrywise storage of high-
dimensional arrays.

The use of L for the dimensionality of tensors in this section is not accidental:
in the present paper, the “dimension” index � ∈ {1, . . . , L} enumerates the levels of
discretization, and each of the mode indices (i� and j� with � ∈ {1, . . . , L} above)
represents the corresponding D bits of the D “physical” dimensions. In this case, the
TT format separates not “physical” dimensions of tensors but rather the levels of the
“physical” dimensions and adaptive low-rank approximation allows to resolve this
multilevel structure in vectors and matrices. In this setting, the TT decomposition is
known as the quantized tensor train (QTT) decomposition [21,37,43,44]. This idea is
further explained in Sect. 3.7.

3.2 Core Notation

In this section, we present the notation developed in [30,32,35], which we extensively
use to work with TT representations. For the sake of brevity, several definitions and
properties will be stated for cores with two mode indices, which naturally arise in
TT representations of matrices. The setting with a single mode index per core can be
considered a particular case in the same way as vectors can be considered one-column
matrices.
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If U [α,β] with α = 1, . . . , p and β = 1, . . . , q are tensors of size m × n, we call
the array U of size p × m × n × q given by

U (α, i, j, β) = U [α,β]
i j (35)

for all α = 1, . . . , p, i = 1, . . . ,m, j = 1, . . . , n and β = 1, . . . , q a core of rank
p × q and mode size m × n. Conversely, for any core U of rank p × q and mode size
m × n, we refer to each tensor U [α,β] with α = 1, . . . , p and β = 1, . . . , q as block
(α, β) of the core U .

For explicitly defining a core U , as a tensor of order four as in (35), in terms of its
blocks (which in turn can be matrices or vectors), we use the notation

U =
⎡

⎢
⎣

U [1,1] · · · U [1,q]
...

. . .
...

U [p,1] · · · U [p,q]

⎤

⎥
⎦ , (36)

where square brackets are used for distinction from matrices. The following matrices
are examples of blocks that we frequently use in this paper:

I =
(
1 0
0 1

)

, J =
(
0 1
0 0

)

and I1 =
(
1 0
0 0

)

, I2 =
(
0 0
0 1

)

. (37)

To apply the usual matrix transposition to TT decompositions of matrices, we will
use the transposition of mode indices of cores:

U T(α, i, j, β) = U (α, j, i, β) , i.e.,
(
U T)[α,β] = (

U [α,β])T (38)

in terms of matrix transposition, for all values of the indices.
Similarly to (35), for any core U of rank p × q and mode size m × n, we refer to

each matrix U {i j} with i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} given by

U (α, i, j, β) = U {i, j}
αβ (39)

for all α = 1, . . . , p and β = 1, . . . , q as slice (i, j) of the core U .

3.3 Strong Kronecker Product

We are interested in cores as factors of TT decompositions, and now we present
how decompositions of forms (34a)–(34b) can be expressed in terms of cores. For
that purpose, we use the strong Kronecker product, introduced for two-level matrices
in [13]. In order to avoid confusion with the Hadamard and tensor products, we denote
this operation by ��, as in [35, Definition 2.1], where it was introduced specifically for
connecting cores into TT representations.
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Definition 1 (StrongKronecker product of cores)Let p, q, r ∈ N andm1,m2, n1, n2 ∈
N. Consider cores U and V of ranks p × r and r × q and of mode size m1 × m2 and
n1 × n2, respectively. The strong Kronecker product U �� V ofU and V is the core of
rank p × q and mode size m1m2 × n1n2 given, in terms of the matrix multiplication
of slices (of size p × r and r × q), by

(U �� V ){i1 i2, j1 j2} = U {i1, j1} V {i2, j2}

for all combinations of ik ∈ {1, . . . ,mk} and jk ∈ {1, . . . , nk} with k = 1, 2.

In other words, we defineU �� V as the usual matrix product of the corresponding core
matrices, their entries (blocks) being multiplied by means of the Kronecker product.
For example, we have

[
V11 V12
V21 V22

]

��

[
W11 W12
W21 W22

]

=
[
V11 ⊗W11 + V12 ⊗W21 V11 ⊗W12 + V12 ⊗W22
V21 ⊗W11 + V22 ⊗W21 V21 ⊗W12 + V22 ⊗W22

]

(40)

for two cores of rank 2× 2. Using the strong Kronecker product, we can rewrite (34a)
and (34b) as follows:

u = [u] = U1 �� · · · ��UL and A = [A] = A1 �� · · · �� AL , (41)

where the first equalities indicate that any tensor of dimensionm×n can be identified
with a core of rank 1 × 1 and mode size m × n.

3.4 RepresentationMap

Since many different tuples of cores may represent (or approximate) the same tensor,
we need to distinguish representations as tuples of cores. We denote such tuples by
sans-serif letters; for example,

U = (U1, . . . ,UL) and A = (A1, . . . , AL) (42a)

for the decompositions given by (34a) and (34b). Further, we denote by τ the function
mapping tuples of cores into cores (in particular, into tensors when the rank of the
resulting core is 1 × 1):

τ(U1, . . . ,UL) = U1 �� · · · ��UL (42b)

for any cores U1, . . . ,UL such that the right-hand side exists in the sense of Defini-
tion 1. Under (42a), this allows to rewrite (34a)–(34b) and (41) as

u = [u] = τ(U) and A = [A] = τ(A) . (42c)
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For the sets of all tuples of L ∈ N coreswith compatible ranks,wewriteTTL = TT1
L

in the case of blocks with one mode index, and TT2
L in the case of two mode indices

as in (35).
Furthermore, let us assume that U = (U1, . . . ,UL) ∈ TTL , i.e., that U1, . . . ,UL

are cores such that τ(U1, . . . ,UL) is a core of rank r0 × rL and mode size n, where
r0, rL , n ∈ N. Then, by τ− and τ+, we denote the matrices of size r0n × rL and
r0 × nrL , respectively, given as follows:

(
τ−(U1, . . . ,UL)

)
β0i βL

= (
τ(U1, . . . ,UL)

)
(β0, i, βL ) (43a)

and

(
τ+(U1, . . . ,UL)

)
β0 iβL

= (
τ(U1, . . . ,UL)

)
(β0, i, βL ) (43b)

for allβ0 = 1, . . . , r0, i = 1, . . . , n andβL = 1, . . . , rL . Thesematricesmay be called
matricizations of the core τ(U1, . . . ,UL): they are obtained by interpreting the rank
indices as row and column indices, which is consistent with (36), and by interpreting
all mode indices as either row or column indices. For notational convenience, we set
τ−(∅) = 1 and τ+(∅) = 1 for empty lists of cores.

Moreover, for each � = 1, . . . , L , we define

τ−
� (U) = τ−(U1, . . . ,U�−1) for each � = 1, . . . , L + 1 (43c)

and

τ+
� (U) = τ+(U�+1, . . . ,UL) for each � = 0, . . . , L . (43d)

In particular, we have τ−
1 (U1, . . . ,UL) = 1, τ−

L+1(U1, . . . ,UL) = τ−(U1, . . . ,UL)

and τ+
L (U1, . . . ,UL) = 1, τ+

0 (U1, . . . ,UL) = τ+(U1, . . . ,UL).

3.5 UnfoldingMatrices, Ranks and Orthogonality

Let us consider a vector u of size n1 · · · nL and amatrix A of sizem1 · · ·mL×n1 · · · nL .
For every � = 1, . . . , L−1, we denote by U�(u) andU�(A) the �th unfolding matrices
of u and A, which are the matrices of size n1 · · · n�×n�+1 · · · nL andm1n1 · · ·m�n�×
m�+1n�+1 · · ·mLnL given by

(
U�(u)

)
j1,..., j� j�+1,..., jL

= u j1,..., j�, j�+1,..., jL , (44a)
(
U�(A)

)
i1 j1,...,i� j� i�+1 j�+1,...,iL jL

= Ai1,...,i�,i�+1,...,iL j1,..., j�, j�+1,..., jL (44b)

for all ik = 1, . . . ,mk and jk = 1, . . . , nk with k = 1, . . . , L . For the ranks of the
unfolding matrices, we use the notation

rank�(u) = rank U�(u) and rank�(A) = rank U�(A) (44c)
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for each � = 1, . . . , L − 1.
The decompositions given by (34a)–(34b) or, equivalently, by (42c) imply

rank�(u) ≤ r� and rank�(A) ≤ p� for each � = 1, . . . , L − 1; furthermore, the
decompositions provide low-rank factorizations of the unfolding matrices with the
respective numbers of rank-one terms. For example, in the case of a vector, using the
notation introduced in (43c)–(43d), we can write U�(u) = τ−

�+1(U)τ+
� (U).

Conversely, if u and A are such that, for every � = 1, . . . , L − 1, the unfolding
matrices U�(u) and U�(A) have approximations of ranks r� and p�, respectively, and
of accuracy ε� in the Frobenius norm, then representations U = (U1, . . . ,UL) and
A = (A1, . . . , AL) of ranks r1, . . . , rL−1 and p1, . . . , pL−1 such that

‖τ(U) − u‖22 ≤ ε2 and ‖τ(A) − A‖2F ≤ ε2

with ε2 = ε21 + · · · + ε2�−1 exist [45, Theorem 2.2] and can be constructed by the
TT-SVD algorithm [45, Algorithm 1].

Next, we recapitulate the notion of orthogonality of decompositions in terms of
the matricization operators defined in (43a)–(43d). If a core U is such that the matrix
τ−(U ) has orthonormal columns, then the core is called left-orthogonal. Similarly,
if the matrix τ+(U ) has orthonormal rows, then the core is called right-orthogonal.
Further, ifU ∈ TTL is such that the columns of eachmatrix τ−

� (U)with � = 2, . . . , L+
1 are orthonormal, then the decomposition is called left-orthogonal. Analogously, if
the rows of each matrix τ+

� (U) with � = 0, . . . , L − 1 are orthonormal, then the
decomposition is called right-orthogonal. It is easy to see that any core U of the
form U = U1 ��U2 is left- or right-orthogonal if both U1 and U2 are left- or right-
orthogonal, respectively. As a result, any decomposition U = (U1, . . . ,UL) is left- or
right-orthogonal if each of the cores U1, . . . ,UL is left- or right-orthogonal.

Moreover, we say thatU is in left-orthogonal TT-SVD form if τ−
�+1(U) has orthonor-

mal columns and τ+
� (U) has orthogonal rows for each � = 1, . . . , L−1; in otherwords,

these matrices provide the SVD of U�(u) for each �, where the norms of the rows of
τ+
� (U) are the corresponding singular values, and ‖u‖2 = ‖UL‖2. Analogously, U is
in right-orthogonal TT-SVD form if τ−

�+1(U) has orthogonal columns and τ+
� (U) has

orthonormal rows. These TT-SVD forms can be obtained numerically for any given
U by the procedure [45, Algorithm 1] without rank truncation.

3.6 Operations on Cores

We require several further operations, which are explained in this section. We start
with the mode product of cores, which was introduced in [30, Definition 2.2] and
which generalizes matrix multiplication to the case of cores.

Definition 2 (Mode product of cores) Let p, p′, r , r ′ ∈ N and m, n, k ∈ N. Consider
cores A and B of ranks p× p′ and r×r ′ and ofmode sizem×k and k×n, respectively.
The mode core product A • B of A and B is the core of rank pq × p′q ′ and mode
size m × n given, in terms of the matrix multiplication of blocks (of sizes m × k and
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k × n), by

(A • B)[αβ, α′β ′] = A[α,α′] B[β,β ′]

for all combinations of α = 1, . . . , p, α′ = 1, . . . , p′, β = 1, . . . , q and β =
1, . . . , q ′. If B has only one mode index, we apply the above definition, introducing a
dummy mode size n = 1 in B and discarding it in A • B.

For example, for a core A with two mode indices and a core B with one or two mode
indices, each core being of rank 2 × 2, we have

[
A11 A12
A21 A22

]

•
[
B11 B12
B21 B22

]

=

⎡

⎢
⎢
⎣

A11B11 A11B12 A12B11 A12B12
A11B21 A11B22 A12B21 A12B22
A21B11 A21B12 A22B11 A22B12
A21B21 A21B22 A22B21 A22B22

⎤

⎥
⎥
⎦ (45)

if the first mode size of B equals the second of A.
The mode product and the strong Kronecker product inherit distributivity from the

usual matrix product and from the Kronecker product: for A = (A1, . . . , AL) and
U = (U1, . . . ,UL) such that the products A� • U� with � = 1, . . . , L are all defined,
we have that the product τ(A) • τ(U) is defined and is given by

τ(A) • τ(U) ≡ (A1 �� · · · �� AL) • (U1 �� · · · ��UL)

= (A1 •U1) �� · · · ��(AL •UL) ≡ τ(A1 •U1, . . . , AL •UL) . (46)

When τ(A) and τ(U) are both of rank 1 × 1 and can therefore be identified with
matrices, τ(A) • τ(U) is the core of rank 1 × 1 identified with the matrix–matrix
product of these matrices, and (46) gives a representation for the product of a matrix
A = τ(A) and a vector u = τ(U) given by (34b) and (34a).

Finally, our derivations involve Kronecker products of cores, which are defined
as the Kronecker product of the corresponding arrays. For any p, p′, q, q ′ ∈ N and
m, n,m′, n′ ∈ N, let A be a core of rank p × p′ and mode size m × n and let B be a
core of rank q × q ′ and mode size m′ × n′. Then, the Kronecker product A⊗ B of A
and B is the core of rank pq × p′q ′ and mode size mm′ × nn′ given by

(U ⊗ V )[αβ, α′β ′] = U [α,α′] ⊗ V [β,β ′] (47a)

in terms of the Kronecker products of all pairs of block tensors or, equivalently, by

(U ⊗ V ){i i ′, j j ′} = U {i, j} ⊗ V {i ′, j ′} (47b)

in terms of the Kronecker products of all pairs of slice matrices. Similarly to (46), we
have
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τ(A)⊗ τ(B) ≡ (A1 �� · · · �� AL)⊗ (B1 �� · · · �� BL)

= (A1 ⊗ B1) �� · · · ��(AL ⊗ BL) ≡ τ(A1 ⊗ B1, . . . , AL ⊗ BL)

(48)

for any representation A = (A1, . . . , AL) and B = (B1, . . . , BL). Relations (46)
and (48) indicate the well-known fact that the matrix and Kronecker products can be
recast core-wise; see, e.g., [22,40,45].

One of the most important properties of the TT decomposition of tensors is that
any representation can be made left- or right-orthogonal in the sense of Sect. 3.5 by
the successive application of the QR decomposition [18,22,25,41,45]. We now briefly
present an algorithm for the left-orthogonalization of a decomposition, which we use
as an example in the discussion of representation conditioning. This scheme is also
the first step in the computation of the TT-SVD form of a TT representation, as in [45,
Algorithm 2].

Algorithm 3.1 left-orthogonalization orth− of a TT representation (right-
orthogonalization orth+ can be performed analogously)
1: function V = orth−(U)
input: a representation U = (U1, . . . ,UL ) ∈ TTS

L with L, S ∈ N

output: a left-orthogonal representation V = (V1, . . . , VL ) ∈ TTS
L such that τ(V) = τ(U)

2: set W1 = U1 � U1 ��U2 �� · · · ��UL = W1 ��U2 �� · · · ��UL
3: for � = 1, . . . , L − 1 � sweep through the representation from left to right
4: compute a matrix QR decomposition: τ−(W�) = Q�R�

5: define V�, of same dimensions as U�, so that τ
−(V�) = Q�

6: define W�+1, of same dimensions as U�+1, so that τ+(W�+1) = R�τ
+(U�+1)

� V1 �� · · · �� V�−1 ��W� ��U�+1 �� · · · ��UL = V1 �� · · · �� V� ��W�+1 ��U�+2 �� · · · ��UL
7: end for
8: set VL = WL � V1 �� · · · �� VL−1 ��WL = V1 �� · · · �� VL−1 �� VL
9: end function

In exact arithmetic, we have τ(V) = τ(U) for any U ∈ TTS
L with L, S ∈ N and

V = orth−(U), and this is the view adhered to in the references cited above. However,
the situation is drastically different when errors are introduced (e.g., due to round-off)
in the course of orthogonalization, namely in lines 4 and 6 of Algorithm 3.1.

3.7 Low-RankMultilevel Decomposition of Vectors andMatrices

Here, we discuss how we use the tensor train decomposition for the resolution of
low-rank multilevel structure in vectors and matrices involved in the solution of (4).

To reorder the entries ofKronecker products,we use particular permutationmatrices
defined as follows. First, for every L ∈ N, we define ΠL as the permutation matrix of
order 2DL such that

(ΠL) i1,1 ,..., iD,1,......, i1,L ,..., iD,L i1,1 ,..., i1,L ,......, iD,1 ,..., iD,L = 1 (49)
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for all ik,� = 1, 2 with k = 1, . . . , D and � = 1, . . . , L . In our present setting, we are
interested in functions

uL =
∑

j∈JL

(ūL) j ϕL, j ∈ VL (50a)

whose coefficients admit low-rank TT representations in the following sense:

ΠL ūL = τ(U) = U1 �� · · · ��UL (50b)

with some U = (U1, . . . ,UL).
The set JL , which is defined by (16), is isomorphic to {1, 2}DL . The matrix ΠL ,

when applied to a vector whose components are indexed byJL , folds the vector into
a DL-dimensional array, transposes the DL indices according to the transformation
of ordering in the product {1, . . . , D} × {1, . . . , L} from big-endian to little-endian
and unfolds the resulting array back into a vector.

In other words, the matrix ΠL , acting on a vector whose entries are enumerated
so that the indices corresponding to each dimension and all of the levels occur one
after another, rearranges the entries in such a way that the indices corresponding to
each level and all of the dimensions occur one after another. In the present paper, we
will use ΠL to permute the rows and columns of matrices, as the following example
illustrates.

Example 2 In the case of D = 2 and L = 3, the following relation holds:

ΠL
(
I ⊗ J ⊗ J T︸ ︷︷ ︸
dimension 1

⊗ I ⊗ I1 ⊗ I2︸ ︷︷ ︸
dimension 2

)
ΠT

L = I ⊗ I︸ ︷︷ ︸
level 1

⊗ J ⊗ I1︸ ︷︷ ︸
level 2

⊗ J T⊗ I2︸ ︷︷ ︸
level 3

,

where we use the matrices that we defined in (37) above.

Similarly, for every L ∈ N and α ∈ {0, 1}D , we introduce Π̃L,α as a permutation
matrix of order 2D(L+1)−|α| with rows and columns indexed byJL ×{α1, 1}× · · ·×
{αD, 1}, where JL is given by (16). Specifically, we define Π̃L,α by

(Π̃L,α) i1,1 ,..., i1,D ,......, i1,L ,..., iD,L , β1,...,βD i1,1 ,..., i1,L , β1,......, iD,1 ,..., iD,L , βD = 1 (51)

for all ik,� = 1, 2 with k = 1, . . . , D and � = 1, . . . , L and for all βk ∈ {αk, 1} with
k = 1, . . . , D.

4 Representation Conditioning

Since the TT decomposition is based on low-rank matrix factorization, redundancy
(linear dependence) in explicit TT representations can be eliminated analytically. This
is illustrated in “Appendix B”: see (114a)–(114c) and, for more practical examples,
the proof of Lemma 5. On the other hand, in the course of computations, this reduction
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has to be done numerically. In exact arithmetic, it can always be achieved by the TT
rounding algorithm [45, Algorithm 2] using the TT-SVD. In practice, however, it may
fail due to round-off errors: a small perturbation of a single core in a TT decomposition
may, through catastrophic cancellations, introduce a large perturbation in the repre-
sented tensor. This can occur even in the course of orthogonalization (Algorithm 3.1),
which is essential for ensuring the stability of the TT rounding algorithm. We now
turn to an analysis of the potential for such error amplification, which we refer to as
representation conditioning.

4.1 Examples of Ill-Conditioned Tensor Representations

We first consider a simple example of a tensor where relative perturbations on the
order of the machine precision can lead to large changes in the represented tensors.

Example 3 Take D = 1 (so that I = {0, 1}) and let x be the tensor with all entries
equal to one, xi1,...,iL = 1 for i1, . . . , iL ∈ I . Clearly, x can be represented by
X = (X�)�=1,...,L with ranks(X) = (1, . . . , 1), where X� = [(1, 1)T] for each �.
However, we also have an alternative representation Ywith ranks(Y) = (2, . . . , 2): for
any fixed R > 0 and y0 = (0, 0)T, yR = (R, R)T, we instead set

Y1 = [
(1 + R−L)yR −yR

]
, Y2 = . . . = YL−1 =

[
yR y0
y0 yR

]

, YL =
[
yR
yR

]

. (52)

For ε > 0, consider a perturbation of Y by replacing Y� for some fixed 1 < � < L by

Ỹ� =
[
(1 + ε)yR y0

y0 yR

]

.

This corresponds to a relative error of order ε with respect to ‖Y�‖2. The resulting
perturbed tensor xε is again constant with entries 1+(RL +1)ε, and therefore satisfies

‖x − xε‖2
‖x‖2 = (RL + 1)ε. (53)

For instance, with R = 4 and L ≥ 25, we obtain RL > 1015. Consequently, any
numerical manipulation of the representations can then lead to very large round-off
errors that leave no significant digits in the output; in particular, an automatic rank
reduction of the representation by SVD will in general not produce any useful result.

To illustrate this numerically, we consider the left-orthogonalization orth−(Y) with
R = 4 and machine precision ε ≈ 2×10−16, which is also the first step in computing
the TT-SVD. In exact arithmetic, the tensor τ(orth−(Y)) is identical to τ(Y); however,
in inexact arithmetic, this can be far from true. The associated relative numerical
errors are compared to bound (53) in Table 1. We consider two ways of evaluating the
difference in �2-norm: by extracting all tensor entries and computing the norm of their
differences directly, or by assembling the difference in TT format and computing its
norm using another orthogonalization. Due to numerical effects, the resulting values
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Table 1 Relative errors ‖τ(Y)−τ(orth−(Y))‖2/‖τ(Y)‖2 for Y as in Example 3 with R = 4, with difference
computed using two different methods: (a) entrywise, (b) in TT format; compared to (RL + 1)ε

L = 5 L = 10 L = 15 L = 20 L = 25

diff. (a) 4.17×10−13 6.06×10−10 6.95×10−07 9.64×10−04 9.48×10−01

diff. (b) 3.51×10−13 3.82×10−10 7.10×10−07 7.02×10−04 1.07×10+00

(RL + 1)ε 2.28×10−13 2.33×10−10 2.38×10−07 2.44×10−04 2.50×10−01

are not identical, but agree in their order of magnitude, which is also the same as
predicted for a particular perturbation by (53).

The type of instability observed in Example 3 occurs in a similar way in other
operations, for instance in the computation of inner products, or even in the extraction
of a single entry of the tensor. Due to its fundamental importance in many algorithms,
we use orthogonalization as an illustrative example in what follows.

Example 3 may seem artificial, since in the explicit construction of tensor repre-
sentations one will usually try to avoid such redundant representations that can cause
cancellations. However, redundancies of this kindmay also be generated whenmatrix-
vector products are performed. We next consider an example of practical relevance
where amatrix and a vector are each given in amultilevel tensor representation ofmini-
mal ranks, but the resulting representation of their product has a similar ill-conditioning
as the previous example.

Example 4 We consider the negative Laplacian with homogeneous Dirichlet boundary
conditions on (0, 1), discretized by piecewise linear finite elements on a uniform
grid with 2L interior nodes. The resulting stiffness matrix ADD

L ∈ R
2L×2L satisfies

ADD
L = A1 �� · · · �� AL with A1 = 4

[
I J T J

]
,

A2 = · · · = AL−1 = 4

⎡

⎣
I J T J

J
J T

⎤

⎦ and AL = 4H2

⎡

⎣
2I − J − J T

−J
−J T

⎤

⎦ , (54)

as derived in [35, Cor. 3.2], where H = 1 + 2−L and the elementary blocks are as
defined in (37). The first eigenvector of ADD

L , corresponding to the lowest eigenvalue
λmin,L ≈ π2, is xmin,L = (

sin(π i2−L/H)
)
i=1,...,2L = X1 �� · · · �� XL , where

X1 = [
x1c x1s

]
, X� =

[
x�
c x�

s
−x�

s x�
c

]

for � = 2, . . . , L − 1, XL =
[
x̂�
s
x̂�
c

]

,

(55)

with t� = π2−�/H ,

x�
c =

(
1

cos(t�)

)

, x�
s =

(
0

sin(t�)

)

, x̂�
c =

(
cos(tL)

cos(2tL)

)

, x̂�
s =

(
sin(tL)

sin(2tL))

)

.
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Table 2 Relative errors eA•V = ‖τ(A • V) − τ(orth−(A • V))‖2/‖τ(A • V)‖2 compared to eV =
‖τ(V) − τ(orth−(V))‖2/‖τ(V)‖2, for A, V as in Example 4

L = 20 L = 25 L = 30 L = 35 L = 40

eV 1.70×10−15 1.42×10−15 1.92×10−15 3.15×10−15 2.73×10−15

eA•V 2.97×10−05 4.50×10−02 4.21×10+01 3.46×10+04 4.05×10+07

22Lε 2.44×10−04 2.50×10−01 2.56×10+02 2.62×10+05 2.68×10+08

Then, the representation A • X of the matrix-vector product ADD
L xmin,L in exact arith-

metic satisfies τ(A • X) = ADD
L xmin,L = λmin,L xmin,L = λmin,Lτ(X).

We consider a similar numerical test as in Example 3, comparing the relative error
in orth−(A•X) to that of orth−(X). The results are given in Table 2, where differences
are computed in the TT format. Whereas the numerical manipulation of X leads to
errors close to the machine precision ε, in orth−(A • X) we observe large relative
errors of order 22Lε. Note that the representation (54) of ADD

L has a similar structure
as the redundant representation (52) in the previous example: the cores A1, . . . , AL−1
have only positive entries, whereas AL can introduce cancellations, in particular when
the matrix is applied to low-frequency grid functions as above.

4.2 Representation Amplification Factors and Condition Numbers

We now introduce a quantitative measure for the stability of TT representations under
numerical manipulations. To first order in the size of the perturbation, it is determined
by the relative condition numbers of the multilinear mapping τ with respect to the
component tensors in its argument. Here, we use the appropriate metric on the compo-
nents that corresponds to the above-considered perturbations arising in linear algebra
operations.

Definition 3 We define the representation amplification factors of X ∈ TTL , for � =
1, . . . , L , by

ramp�(X) = lim
ε→0

1

ε
sup

{
‖τ(X̃) − τ(X)‖2 : X̃ ∈ TTL ,

‖X̃� − X�‖2 ≤ ε‖X�‖2 and X̃k = Xk for k �= �
}
, (56)

and the representation condition numbers by

rcond�(X) = ramp�(X)

‖τ(X)‖2 . (57)

By the multilinearity of τ , if X, X̃ ∈ TTL with x = τ(X), x̃ = τ(X̃) are such that
‖X̃� − X�‖2 ≤ ε‖X�‖2 for each �, then for such relative perturbations of size ε of
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cores we have the bounds

‖x − x̃‖2 ≤
L∑

�=1

ramp�(X) ε + O(ε2),
‖x − x̃‖2

‖x‖2 ≤
L∑

�=1

rcond�(X) ε + O(ε2).

In the following characterization, we use the notation τ−
� and τ+

� for left and right
partial matricizations as introduced in (43c)–(43d).

Proposition 1 For any X ∈ TTL and � = 1, . . . , L,

ramp�(X) = ‖τ−
� (X)‖2→2‖X�‖2‖τ+

� (X)‖2→2.

Proof For fixed � in (56), let X, X̃ satisfy the conditions in the supremum. Then,

‖τ(X̃) − τ(X)‖22 =
∑

i1,...,iL

[
X {i1}
1 · · ·

(
X {i�}

� − X̃ {i�}
�

)
· · · X {iL }

L

]2

=
∑

i�

∥
∥τ−

� (X)(X {i�}
� − X̃ {i�}

� )τ+
� (X)

∥
∥2
2 .

The claim thus follows by taking the supremum over X̃� such that
∑

i∈I ‖X̃ {i}
� −

X {i}
� ‖2F ≤ ε2‖X�‖22, which is in fact attained. ��

Remark 3 The quantities in Definition 3 measuring the amplification of perturbations
can be defined in an analogous way for more general tensor networks by considering
perturbations in the respective components; see [7,22,42,49] for an overview on such
more general tensor formats.

We have the following general observations concerning possible representation
condition numbers, where in certain special cases, we can also give bounds that depend
only on the TT ranks. Here, we use the notion of TT-SVD forms introduced in Sect. 3.5.

Proposition 2 Let X ∈ TTL , then the following hold for � = 1, . . . , L.

(i) One has rcond�(X) ≥ 1.
(ii) If rank�−1(X) = rank�(X) = 1, then rcond�(X) = 1.
(iii) If X is in right-orthogonal TT-SVD form, then rcond�(X) ≤ √

rank�−1(X); if it is
in left-orthogonal TT-SVD form, then rcond�(X) ≤ √

rank�(X).

Proof Statement (i) follows by estimating ‖τ(X)‖2 as in the proof of Proposition 1; (ii)
follows directly from properties of the Kronecker product. To show (iii), it suffices to
consider the right-orthogonal case. With x = τ(X) and r� = rank�(X) for each �, we
need to show that ramp�(X) ≤ √

r�−1‖x‖2 for each �. Since τ+
� (X) has orthonormal

rows, ‖τ+
� (X)‖2→2 = 1 for each �. For � = 1, we also have ‖τ−

� (X)‖2→2 = 1 by
definition and ‖X�‖2 = ‖x‖2. For � > 1, by right-orthogonality of X� we have
‖X�‖2 = √

r�−1. In this case, since the representation is in TT-SVD form, τ−
� (X)

has orthogonal columns whose �2-norms are the singular values of U�(x), and thus
‖τ−

� (X)‖2→2 ≤ ‖x‖2. ��
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Modifications to the components of a TT representation that leave the represented
tensor unchanged can still lead to a change in the representation condition numbers.
This change can be bounded from above as follows.

Proposition 3 For given X ∈ TTL , 1 ≤ � < L, and invertible R ∈ R
r�×r� , where

r� = rank�(X), let X̃ be identical to X except for X̃ {i}
� = X {i}

� R, X̃ {i}
�+1 = R−1X {i}

�+1 for

i ∈ I . Then, τ(X) = τ(X̃) and

ramp�(X̃) ≤ cond(R) ramp�(X), ramp�+1(X̃) ≤ cond(R) ramp�+1(X). (58)

In the particular case when the matrix τ+
� (X̃) has orthonormal rows, one has the

stronger bound

ramp�(X̃) ≤ ramp�(X). (59)

If X̃�+1 is right-orthogonal, then

ramp�+1(X̃) ≤ √
r� ramp�+1(X). (60)

Proof The estimates (58) follow from

‖X̃�‖2 ≤ ‖X�‖2‖R‖2→2, ‖τ+
� (X̃)‖2 ≤ ‖R−1‖2→2‖τ+

� (X)‖2
for the first, and analogous estimates for the second inequality. To see (59), observe
that Rτ+

� (X̃) = τ+
� (X) and that under the given additional assumption, ‖τ+

� (X̃)‖2→2 =
1 and ‖τ+

� (X)‖2→2 = ‖R‖2→2. Under the further assumption for (60), we have
‖X�+1‖2 = ‖R‖F , and thus

ramp�+1(X̃) = ‖τ−
�+1(X)R‖2→2‖X̃�+1‖2‖τ+

�+1(X)‖2→2

≤ ‖τ−
�+1(X)‖2→2‖R‖F√

r�‖τ+
�+1(X)‖2→2

≤ √
r� ramp�+1(X).

��
Note that the improved bounds (59) and (60), which do not depend on the par-

ticular transformation R, correspond to the transformations made in algorithms
for right-orthogonalizing X ∈ TTL . When the roles of X̃�, X̃�+1 and the corre-
sponding orthogonality requirements are reversed, (59) and (60) are replaced by
ramp�+1(X̃) ≤ ramp�+1(X) and ramp�(X̃) ≤ √

r�+1 ramp�(X).

4.3 Orthogonalization as an Example of a Numerical Operation

Orthogonalization of tensor train representations is usually done via QR decom-
positions of matricized cores. When performed at machine precision ε, these
decompositions are affected by round-off errors: applied to M ∈ R

m×n , where mnε
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is sufficiently small, as shown in [27, §19] the standard Householder algorithm yields
Q̃, R̃ such that

‖M − Q̃ R̃‖F ≤ CQRmn3/2ε‖M‖F . (61)

As a consequence of Proposition 3, we obtain a statement on the numerical errors
incurred by orthogonalization of TT representations. As a simplifying assumption,
let us suppose that the QR factorizations in orth−(X), orth+(X) of X ∈ TTL are
computed with machine precision ε up to the error bound (61), but that matrix–matrix
multiplications are performed exactly (and hence the computedHouseholder reflectors
act as exactly orthogonal matrices). Then, recursively using (59), (60), we obtain

‖τ(orth+(X)) − τ(X)‖2 ≤ CQR

L∑

�=2

(2Dr�−1r�)
3/2 ramp�(X) ε + O(ε2), (62)

‖τ(orth−(X)) − τ(X)‖2 ≤ CQR

L−1∑

�=1

(2Dr�−1r�)
3/2 ramp�(X)ε + O(ε2), (63)

where r� = rank�(X) for � = 1, . . . , L . The analogous statements for the relative
errors ‖τ(orth+(X)) − τ(X)‖2/‖τ(X)‖2 and ‖τ(orth−(X)) − τ(X)‖2/‖τ(X)‖2 hold
with ramp replaced by rcond.

Taking into account further numerical effects due to inexactmatrix–matrixmultipli-
cations leads to substantiallymore complicated bounds involving additional prefactors
depending more strongly on intermediate steps in the algorithms. As our numerical
illustrations in Sect. 4.1 demonstrate, however, the order of magnitude of the resulting
errors is typically already very well predicted by the bounds (62), (63).

4.4 Representations of Operators

Definition 4 For � = 1, . . . , L , we define the representation amplification factor and
representation condition number of the matrix representation A ∈ TT2

L by

mramp�(A) = sup
X∈TTL

ramp�(A • X)

ramp�(X)
, mrcond�(A) = sup

X∈TTL

rcond�(A • X)

rcond�(X)
. (64)

In other words, these are the largest factors by which the action of the matrix rep-
resentation A can possibly change the representation amplification factors and the
condition numbers of a vector representation. By definition, these functions are sub-
multiplicative:

mramp�(A • B) ≤ mramp�(A)mramp�(B),

mrcond�(A • B) ≤ mrcond�(A)mrcond�(B).

We do not have an explicit representation of these quantities as in Proposition 1, but
we obtain the following upper bound in terms of the components of representations.
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Proposition 4 For A ∈ TT2
L , we define the matrices

A−
�,k = (

(A1 �� · · · �� A�−1)(1, i, j, k)
)
i∈I �−1, j∈I �−1 , k = 1, . . . , R�−1,

A+
�,k = (

(A�+1 �� · · · �� AL)(k, i, j, 1)
)
i∈I L−�, j∈I L−� , k = 1, . . . , R�.

Then, mramp�(A) ≤ β�(A) for � = 1, . . . , L, where we define

β�(A) =
( R�−1∑

k−=1

‖A−
�,k−‖22→2

R�∑

k+=1

‖A+
�,k+‖22→2

R�−1∑

k−=1

R�∑

k+=1

∥
∥A[k−,k+]

�

∥
∥2
2→2

) 1
2
, (65)

and if τ(A) is invertible,

mrcond�(A) ≤ ‖τ(A)−1‖2→2 mramp�(A). (66)

Proof By Proposition 1, with Y = A • X,

mramp�(A) = sup
X∈TTL

‖τ−
� (Y)‖2→2‖τ+

� (Y)‖2→2‖Y�‖2
‖τ−

� (X)‖2→2‖τ+
� (X)‖2→2‖X�‖2

.

The first statement follows with the estimates

‖Y�‖22 =
R�−1∑

K−=1

R�∑

K+=1

r�−1∑

k−=1

r�∑

k+=1

‖A[K−,K+]
� X [k−,k+]

� ‖22

≤
R�−1∑

K−=1

R�∑

K+=1

∥
∥A[K−,K+]

�

∥
∥2
2→2 ‖X�‖22

and

‖τ−
� (Y)‖22→2 ≤ sup

‖y‖2=1

R�−1∑

k=1

∥
∥A−

�,k τ−
� (X) y

∥
∥2
2 ≤

R�−1∑

k=1

‖A−
�,k‖22→2‖τ−

� (X)‖22→2,

as well as the analogous bound for τ+
� (Y). For (66), note that if τ(A) is invertible, then

mrcond�(A) ≤
(

sup
X∈TTL

‖τ(X)‖2
‖τ(Y)‖2

)

mramp�(A) = ‖τ(A)−1‖2→2 mramp�(A).

��
In certain situations, Proposition 4 provides qualitatively sharp bounds. We now

demonstrate this in the simple example of the stiffness matrix for the Dirichlet Lapla-
cian on (0, 1). Similar results are observed numerically for direct representations of
more general stiffness matrices of second-order elliptic problems.
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Proposition 5 Let ADD
L be as in Example 4, and let A with τ(A) = ADD

L be as in (54).
Then, for � = 1, . . . , L, one has mramp�(A) ∼ 22L and 2(3L+�)/2 � mrcond�(A) �
22L .

Proof The upper bounds follow by direct computation from Proposition 4 via evalua-
tion of the auxiliary matrices in (65). For the lower bound on mramp�(A), we estimate
the supremum from below using the representation Xmax analogous to (55) of the
eigenvector xmax,L = (

sin(π i/H)
)
i=1,...,2L corresponding to the largest eigenvalue

λmax,L ∼ 22L . To this end, it suffices to evaluate ramp�(A • Xmax)/ ramp�(Xmax) via
Proposition 1 in a direct but tedious calculation. For the lower bound on mrcond�(A),
we instead use xmin,L = (

sin(π i2−L/H)
)
i=1,...,2L in the representation (55). ��

Thus, applying thematrix representationA to the tensor decompositionX of a vector
may in general increase its representation condition number by a factor proportional to
22L . For instance, if X is given in TT-SVD form with representation condition number
close to one, the further numerical manipulation of A • X can cause errors of order
O(22Lε‖τ(X)‖2). This effect is observed also in the numerical tests in Sect. 7.1.

5 Multilevel Low-Rank Tensor Structure of the Operator

In this section, we analyze the low-rank structure of the preconditioner CL , given
by (30), and of the preconditioned discrete differential operator BL in the form
of (33b). The resulting low-rank representations are designed specifically to have
small representation condition numbers in the sense of Definition 4, which is not
generally the case for low-rank decompositions of BL .

The central idea for obtaining well-conditioned representations is to directly com-
bine the representations of differential operators M̂L,α as in (12d) with those of the
averaging matrices P̂�,L in the preconditioner. This leads to a natural rank-reduced
representation of the products M̂L,α P̂�,L , where the cancellations causing representa-
tion ill-conditioning that are present in the tensor decomposition of M̂L,α are explicitly
absorbed by the preconditioner and thus removed from the final representation.

5.1 Auxiliary Results

In this section, for � ∈ N, we present explicit joint representations of the identity
matrix Î� and of the shift matrix Ŝ�, given by (12e), and of the linear vectors ξ̂ �

and η̂�, defined in (15). These representations will be presented here in terms of the
following cores:

Û =
[
I J T

J

]

, X̂ = 1

2

⎡

⎢
⎢
⎣

(
1
2

) (
0
1

)

(
1
0

) (
2
1

)

⎤

⎥
⎥
⎦ and P̂ =

[
1
0

]

. (67)
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Our derivations will also involve the square Kronecker product matrices

Ĵ� = J ⊗ � =
⎛

⎜
⎝

0 1
. . .

0

⎞

⎟
⎠ (68)

with � ∈ N and iterated strong Kronecker products, such as Û�� � = U �� · · · ��U with
� ∈ N factors.

We start with the following auxiliary result, which appeared in slightly different
forms in [30,35]. The brief derivation, in the form given here, provides an illustration
and simplifies further proofs given below.

Lemma 1 For every � ∈ N, the matrices Î�, Ŝ� and Ĵ�, given by (12e) and (68),
satisfy

[
Î� Ŝ�

Ĵ�

]

= Û�� � ≡
[
I J T

J

]�� �

, (69)

where the blocks I and J are given by (37) and the core Û is as defined in (67).

Proof For � = 1, the claim is trivial. Let us assume that � > 1. Then, splitting each
of the matrices Ŝ�, Î� and Ĵ� into four blocks, we obtain the following recurrence
relations:

Î� = I ⊗ Î�−1 = [
I
]
��

[
Î�−1

]
,

Ŝ� = I ⊗ Ŝ�−1 + J T⊗ Ĵ�−1 = [
I J T

]
��

[
Ŝ�−1

Ĵ�−1

]

,

Ĵ� = J ⊗ Ĵ�−1 = [
J
]
��

[
Ĵ�−1

]
.

(70)

Using the core product, these relations can be recast as

[
Î� Ŝ�

Ĵ�

]

= Û ��

[
Î�−1 Ŝ�−1

Ĵ�−1

]

. (71)

Applying (71) recursively, we obtain (69). ��
As the following auxiliary result shows, a similar technique applies to cores whose

blocks are vectors.

Lemma 2 For every � ∈ N0, the vectors ξ̂ � and η̂�, given by (15), satisfy

[
η̂�

ξ̂ � − η̂�

]

= X̂�� �
�� P̂ , (72)

where X̂ is given by (67).
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Proof For � = 0, 1, the claim is trivial. Let us assume that � > 1. Splitting each of the
vectors ξ̂ � and η̂� into two blocks, we arrive at the recursion

ξ̂ � =
(
1
1

)

⊗ ξ̂ �−1, η̂� =
(
1/2
1/2

)

⊗ η̂�−1 +
(

0
1/2

)

⊗ ξ̂ �−1, (73a)

from which it is easy to see that

η̂� =
(
1/2
1

)

⊗ η̂�−1 +
(

0
1/2

)

⊗ (ξ̂ �−1 − η̂�−1) ,

ξ̂ � − η̂� =
(
1/2
0

)

⊗ η̂�−1 +
(

1
1/2

)

⊗ (ξ̂ �−1 − η̂�−1) .

(73b)

Using the core product, relations (73a) and (73b) can be recast as

[
η̂�

ξ̂ � − η̂�

]

= X̂ ��

[
η̂�−1

ξ̂ �−1 − η̂�−1

]

. (74)

Applying (74) recursively and comparing ξ̂1 and η̂1 with the first column of the
core X̂ , which is given by X̂ �� P̂ , we obtain (72). ��

5.2 Explicit Analysis of Univariate Factors

In this section, we show how the auxiliary results of Sect. 5.1 translate into low-
rank decompositions of the univariate factors M̂L,α with α ∈ {0, 1} and P̂�,L with
� = 0, . . . , L , where L ∈ N. These matrices are introduced in (12d) and (14). Let

Â = [
1 0

]
, T̂0 =

[
1 1
1 −1

]

,

V̂ = 1

2
T̂0 �� Û �� T̂0 = 1

2

[
I + JT+ J I − JT− J
I + JT− J I − JT+ J

]

, M̂0 = 1

2

⎡

⎢
⎢
⎣

(
1
0

)

(
0
1

)

⎤

⎥
⎥
⎦ , M̂1 =

[
0
1

]

. (75)

Lemma 3 For every L ∈ N and for α = 0, 1, the matrix M̂L,α , given by (12d),
satisfies

M̂L,α = 2(α+ 1
2 )L Â�� Û�� �

�� T̂0 �� V̂��(L−�)
�� M̂α (76)

for every � = 0, . . . , L, where the cores Â, Û , V̂ , T̂0 and M̂α with α = 0, 1 are given
by (67) and (75).

Proof Consider L ∈ N and α ∈ {0, 1}. Immediately from (12d), we obtain the repre-
sentation
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M̂L,α = 2(α+ 1
2 )L Â��

[
Î L ŜL

Ĵ L

]

�� T̂0 �� M̂α .

Applying Lemma 1, we arrive at the claimed decomposition in the case of � = L ,

M̂L,α = 2(α+ 1
2 )L Â�� Û�� L

�� T̂0 �� M̂α .

Using that T̂0 �� T̂0 = 2 Î , we obtain

M̂L,α = 2(α+ 1
2 )L Â�� Û�� �

�� T̂0 ��

(
1

2
T̂0 �� Û �� T̂0

)��(L−�)

�� M̂α

for every � = 0, . . . , L − 1, which completes the proof due to (75). ��
Lemma 4 For all L ∈ N0 and � = 0, . . . , L, the matrix P̂�,L , given by (14), has the
representation

P̂�,L = 2− 1
2 (L−�) Â�� Û�� �

�� X̂��(L−�)
�� P̂ , (77)

where Â, Û , X̂ and P̂ are the cores given by (67) and (75).

Proof We start with rewriting (14) in terms of the core product as

P̂�,L = 2− 1
2 (L−�) Â��

[
Î� Ŝ�

Ĵ�

]

��

[
η̂L−�

ξ̂ L−� − η̂L−�

]

,

where the middle core should be omitted when � = 0. Applying Lemma 1 (for � > 0)
and Lemma 2 to expand the middle and the last cores, we prove the claim. ��

5.3 Explicit Analysis of Univariate Factors Under Preconditioning

Here, obtain an optimal-rank representation of the product ML,α P�,L and note how

the products M̂L,α P̂�,L P̂
T
�,L and P̂�,L P̂

T
�,L can be represented, all for L ∈ N, α ∈

{0, 1}D and � = 0, . . . , L .
The optimal-rank representation of the product ML,α P�,L is obtained in terms of

the following cores:

T̂1 =
[
1

−1

]

, Î =
[
1 0
0 1

]

, Ŷ0 = 1

2

⎡

⎢
⎢
⎣

(
2
2

)

(−1
1

) (
1
1

)

⎤

⎥
⎥
⎦ ,

Ŷ1 = 1

2

[(
1
1

)]

, N̂1 = [
1
]

and N̂0 = 1

2

⎡

⎢
⎢
⎣

(
1
0

)

(
0
1

)

⎤

⎥
⎥
⎦ . (78)
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The proof of the following lemma is rather technical and is therefore given in
“Appendix B.”

Lemma 5 For all L, � ∈ N0 such that � ≤ L, the matrices M̂L,α P̂�,L with α = 0, 1,
where the factors are given by (12d) and (14), admit the representation

M̂L,α P̂�,L = 2(α+ 1
2 )� Â�� Û�� �

�� T̂α �� Ŷ��(L−�)
α �� N̂α , (79)

where the cores Â, Û and T̂α , Ŷα , N̂α with α = 0, 1 are as in (67) and (75).

Combining decomposition (77) and its transpose, we can rewrite the product

P̂�,L P̂
T
�,L core-wise:

P̂�,L P̂
T
�,L = 2−(L−�) Â� �� Û�� �

� �� X̂��(L−�)
� �� P̂� , (80)

where the factors are

Â� = Â • Â , Û� = Û • Û T, X̂� = X̂ • X̂T, P̂� = P̂ • P̂ . (81)

We remark that the ranks of the decomposition (80) are 4, . . . , 4.

Applying the same argument to the product M̂L,α ( P̂�,L P̂
T
�,L), the factors M̂L,α

and P̂�,L P̂
T
�,L being taken in the form of (76) and (80), we could obtain its explicit

decomposition with ranks 23, . . . , 23. Instead, we multiply M̂L,α P̂�,L and P̂
T
�,L

using the representations (79) and (77) to form a representation of the same prod-

uct M̂L,α P̂�,L P̂
T
�,L. This representation has the ranks 22, . . . , 22, 22−α, . . . , 22−α ,

which means that the ranks of unfolding matrices 1, . . . , � − 1 and �, . . . , L − α are
bounded by 4 and 22−α , respectively. As we discuss in Sect. 5.4, this reduction is
substantial in the case of multiple dimensions, when the exponents (2 or 2−α instead
of 3) that correspond to the dimensions are summed.

Specifically, combining (79) and (77), we arrive at

M̂L,α P̂�,L P̂
T
�,L = 2(α+ 1

2 )L−(L−�) Â� �� Û�� �
� �� Ŵα �� Ẑ��(L−�)

α �� K̂α , (82)

where

Ŵα = T̂α • Î , Ẑα = Ŷα • X̂T, K̂α = N̂α • P̂ with α = 0, 1 . (83)

Decomposition (82) is exact and explicit, the latter meaning that all the cores
involved are provided in closed form. Since Û� and Ŷα are of ranks 22×22 and 22−α ×
22−α , respectively, the ranks of decomposition (82) are 22, . . . , 22, 22−α, . . . , 22−α .
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Direct calculation with expressions given in (67)–(75) leads to Â� = [
1 0 0 0

]
,

P̂� =

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦ , Ŵ0 =

⎡

⎢
⎢
⎣

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤

⎥
⎥
⎦ and Ŵ1 =

⎡

⎢
⎢
⎣

1 0
0 1

−1 0
0 −1

⎤

⎥
⎥
⎦ . (84)

Explicit expression for Û�, X̂� and Ẑα , K̂α with α = 0, 1 can be likewise calculated
based on (67) and (75), from which we refrain to keep exposition concise.

5.4 Analysis in DDimensions by Tensorization

In this section, we generalize the results of Sect. 5.3 to the case of multiple dimensions
and analyze the low-rank tensor structure of the preconditioner CL , given by (30),
and of the preconditioned discrete differential operator BL in the form of (33b). For
the latter, we first derive a representation of the matrices QL,α with L ∈ N and
α ∈ {0, 1}D , which are defined in (33c).

The representations derived below are composed from the following cores:

A� = Â⊗D
� , U� = Û⊗D

� , X� = X̂⊗D
� , P� = P̂⊗D

� ,

Wα = ⊗D
k=1 Ŵαk , Zα = ⊗D

k=1 Ẑαk , Kα = ⊗D
k=1 K̂αk (85)

for all α ∈ {0, 1}D , where the factors are given by (81) and (83).
Tensorizing (80) core-wise and distributing the scaling factor over the cores, we

obtain the decompositions

2−�ΠL P�,L PT
�,LΠT

L = 2−�−D(L−�) A� ��U�� �
� �� X��(L−�)

� �� P�

= 2−� A� ��U�� �
� ��(2−D X�)

��(L−�)
�� P�

(86)

of ranks 22D, . . . , 22D , where the cores are given by (85) and the permutation matrix
ΠL is as defined in (49). Applying [35, Lemma 5.5] to the sum of such matrices with
� = 1, . . . , L and adding the term corresponding to � = 0, we obtain the following
result.

Theorem 3 For any L ∈ N, the matrix CL , defined by (30), admits the decomposition

ΠLCLΠT
L = [

A� A�

]
��C1 �� · · · ��CL ��

[

P�

]

(87)

of ranks 22D + 22D, . . . , 22D + 22D, all equal to 22D+1, where the middle cores are

C� =
[
U� 2−� U�

2−D X�

]

with � = 1, . . . , L ,

the subcores being as in (85).
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For any L ∈ N, � = 0, 1 . . . , L and α ∈ {0, 1}D , tensorizing (82) core-wise and
distributing the scaling factor over the cores result in the decompositions

2−�
˜ΠL,α ML,α P�,L PT

�,LΠT
L

= 2−�+(|α|+ 1
2 D)L−D(L−�) A� ��U�� �

� ��Wα �� Z��(L−�)
α �� Kα

= 2−(1−|α|)� A� ��(2
1
2 D U�)

�� �
��Wα ��(2|α|− 1

2 D Zα)��(L−�)
�� Kα (88)

of ranks 22D, . . . , 22D, 22D−|α|, . . . , 22D−|α|, where ML,α and P�,L are given
by (20c) and (22), the cores are given by (85) and the permutation matrices ΠL

and ˜ΠL,α are as defined in (49) and (51).
Similarly as for CL above, we can apply [35, Lemma 5.5] to the sum of the matrices

given by (88) with � = 1, . . . , L and add the term corresponding to � = 0. This leads
to the following result, which is analogous to Theorem 3.

Theorem 4 For any L ∈ N and α ∈ {0, 1}D, the matrix QL,α , given by (33c), admits
the decomposition

˜ΠL,α Q�,L,αΠT
L = [

A� A� ��Wα

]
�� Q1 �� · · · �� QL ��

[

Kα

]

(89)

of ranks 22D + 22D−|α|, . . . , 22D + 22D−|α|, all bounded from above by 22D+1, where
the middle cores are

Q� =
[
U� 2−(1−|α|)� U� ��Wα

2|α|− 1
2 D Zα

]

with � = 1, . . . , L ,

the subcores being defined by (85).

InExample 1, the case of theLaplace operatorwas considered and the factorsΛL,αα′
with (α, α′) ∈ D for the suitable D were explicitly given in the Kronecker product
form (27a). That form immediately leads to a multilevel TT decomposition of ranks
1, . . . , 1 for eachΛL,αα′ . Here, we analyze the structure ofΛL,αα′ with (α, α′) ∈ D in
the general setting of Sect. 2.3, for an arbitrary D ⊂ {0, 1}D × {0, 1}D of differential
indices, under the additional assumption that the coefficient functions (24b) exhibit
low-rank structure.

Specifically, for each (α, α′) ∈ D , we assume that the coefficient vector cL,αα′ ∈
R
JL×Γαα′ � R

2DL Rαα′ parametrizing the coefficient function cαα′ through (24b) is
given in a multilevel TT representation of ranks r0,αα′, . . . , rL,αα′ :

˜ΠL,α cL,αα′ = CL,0,α,α′ ��CL,1,α,α′ �� · · · ��CL,L,α,α′ ��CL,L+1,α,α′ , (90a)

where each of CL,1,α,α′ , . . . ,CL,L,α,α′ is of mode size 2D , whereas CL,0,α,α′ is of
mode size 1 and CL,L+1,α,α′ is of mode size Rαα′ = |Γαα′ |. Then, the corresponding
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factorΛL,αα′ , given by (26a), can as well be representedwith ranks r0,αα′, . . . , rL,αα′ :

˜ΠL,α ΛL,α,α′ ˜Π
T
L,α = ΛL,0,α,α′ �� ΛL,1,α,α′ �� · · · �� ΛL,L,α,α′ �� ΛL,L+1,α,α′ ,

(90b)

where the cores are defined in terms of those appearing in (90a) as follows. First, one
sets ΛL,0,α,α′ = CL,0,α,α′ and defines each core ΛL,�,α,α′ with � = 1, . . . , L by

(ΛL,�,α,α′)γ�−1 i� i ′� γ�
= 2−D δi� i ′� (CL,�,α,α′)γ�−1 i� γ�

(90c)

for all γ�−1 = 1, . . . , r�−1,αα′ , γ� = 1, . . . , r�,αα′ and i�, i ′� = 1, 2. Then, the last core
should be defined by

(ΛL,L+1,α,α′)γL β β ′ = 2−D
∑

γ∈Γαα′
(CL,L+1,α,α′)γL γ

∫

(−1,1)D

χαα′γ (∂αψβ) (∂α′
ψβ ′)

(90d)

for all γL = 1, . . . , rL,αα′ ,β ∈ {α1, 1}×· · ·×{αD, 1} andβ ′ ∈ {α′
1, 1}×· · ·×{α′

D, 1},
cf. (26a).

Using the fact that the ranks add under addition and multiply under multiplica-
tion [45], we obtain the following result.

Theorem 5 For D ⊂ {0, 1}D × {0, 1}D and L ∈ N, consider a bilinear form of
the type (24a)–(24b), where each coefficient vector cL,αα′ with (α, α′) ∈ D admits
a multilevel TT decomposition of the form (90a) with ranks r0,αα′ , . . . , rL,αα′ not
exceeding r ∈ N. Then, the preconditioned matrix BL of a, defined by (25a), (30)
and (33a), admits a multilevel TT decomposition

ΠL BLΠT
L = BL,0 �� BL,1 �� · · · �� BL,L �� BL,L+1

of ranks R0, . . . , RL, where

R� = 24D
∑

(α,α′)∈D

(
1 + 2−|α|)2 r�,αα′ ≤ 24D+2

∑

(α,α′)∈D
r�,αα′ ≤ 12D2 24D r (91)

for � = 0, . . . , L.

Remark 4 (Sharper bounds in specific cases) The last inequality of (91) is given for
a general case with D2 second-order terms (no symmetry is assumed), D first-order
terms and a zero-order term. However, for the Laplacian in the case D = 2, the first
equality given in (91) results in R� = 1152, which is a marked reduction from the
bound R� ≤ 12288 obtained for a general second-order bilinear form with constant
coefficients.
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Remark 5 (Inexact application) In computations, algorithms using products of BL

with vectors rather than explicit representations of BL may be expected to be more
efficient. Indeed, such products can be formed by adding the products of the terms in
the sum (33b), and for each term the product can be computed by threemultiplications.
On the intermediate results obtained between thesemultiplications and additions, low-
rank re-approximation can be performed, as explained further in the example of the
discretized Laplacian in Sect. 5.5. The given bounds for TT ranks appear to be highly
pessimistic for such inexact schemes.

Remark 6 The analysis in D dimensions is given here for the most generic discretiza-
tion obtained by tensorization. The approach can be applied to discretizations that are
not of tensor product form in order to mitigate the growth of the rank bounds with
respect to D.

5.5 Numerical Illustrations

In summary, we obtain a combined tensor representation BL with τ(BL) =
ΠL BLΠT

L = ΠL (CL ALCL)ΠT
L. Similarly, from Theorem 3, we also have CL with

τ(CL) = ΠLCLΠT
L. With a representation AL of the stiffness matrix AL , such that

τ(AL) = ΠL ALΠT
L, one can alternatively consider the simple product representation

CL • AL • CL , which corresponds to performing the action of the preconditioner CL

separately from that of AL .
Note that, in Sect. 4.4, we have assumed decompositions consisting of L cores.

The decompositions in Theorems 3, 4 and 5 comprise L + 2 cores, with first and last
playing special roles since they can be merged with the respective adjacent cores. The
cores in these extended decompositions are thus indexed by � = 0, . . . , L + 1 in what
follows, so that again the bounds for � = 1, . . . , L are relevant.

One benefit of the combined representation BL is the rank reduction compared to
CL •AL •CL . More importantly, however, the decomposition BL is constructed so that
the representation condition numbers mrcond�(BL), � = 1, . . . , L , remain moderate
even for large L . In contrast, the representation condition numbers of CL •AL •CL are
in general of the same order of magnitude as those of AL – in other words, whereas
the matrix condition number of CL ALCL is uniformly bounded, for improving also
the representation condition number, applying the preconditioner CL separately is
insufficient and one instead needs a carefully constructed combined representation
BL .

We now present numerical observations that illustrate how different the decom-
positions AL , CL • AL • CL and BL are in terms of representation conditioning
and demonstrate the improvement afforded by our findings presented in Sects. 4,
5.2 and 5.4. As in Example 1, we consider the case of the Laplacian: AL = DL

with DL as in (103). Using (37), for D = 1 we have AL = A1 �� · · · �� AL with
A1 = 4 [ I J T J I2 ],
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A2 = · · · = AL−1 = 4

⎡

⎢
⎢
⎣

I J T J
J

J T

I2

⎤

⎥
⎥
⎦ , AL = 4

⎡

⎢
⎢
⎣

2I − J − J T

−J
−J T

−I2

⎤

⎥
⎥
⎦ ,

as derived in [35]; similar representations can be obtained for D > 1 by tensorization.
We first consider the upper bounds β�, defined in (65), for mramp� fromProposition

4. Since both ‖A−1
L ‖ and ‖B−1

L ‖ are bounded independently of L , by (66), up to fixed
constants the respective β� are also upper bounds of the corresponding representation
condition numbers mrcond�.

For BL , instead of directly computing the estimates for mramp�(BL) with � =
1, . . . , L given by Proposition 4, we will do this for the factors of a decomposition
that is equivalent to BL and is also based on (33b). Let us note that the equality

BL =
D∑

k=1

�T
L,k • �L,k (92)

of decompositions holds in terms of the factors �L,k with k = 1, . . . , D given as
follows: for every k, we set �L,k = �

1/2
L,k • QL,α with α = (δk1, . . . , δkD), where

�
1/2
L,α,α is the decomposition of �

1/2
L,α,α , which is diagonal and of Kronecker product

form (27a); thus, its decomposition with ranks 1, . . . , 1 is obtained by element-wise
application of the square root to each core. Equality (92) results in the second of the
following inequalities:

max
�=1,...,L

mrcond�(BL) � max
�=1,...,L

mramp�(BL) � max
�=1,...,L

[β�(�L,1)]2 , (93)

where the equivalence is uniform with respect to L ∈ N and, for each L ∈ N, β� with
� = 1, . . . , L are as defined in (65). As well as in (93), the alternate form (92) of BL
is used to improve the efficiency of residual approximation in the numerical tests of
Sect. 7.

Figure 1a shows the computed values of max� β�(�L,1) for different values of L
and D = 1, 2, wherewe observemax� β�(�L,1) = O(L) in both cases, corresponding
to

max
�=1,...,L

mrcond�(BL) � max
�=1,...,L

mramp�(BL) � max
�=1,...,L

β�(BL) � L2.

In contrast, as shown in Fig. 1b, both max� β�(AL) andmax� β�(CL •AL •CL) increase
exponentially with respect to L .

Although Proposition 5 shows that they can lead to useful qualitative statements,
the upper bounds provided by β� cannot be expected to be quantitatively sharp. The
direct evaluation of the suprema in the definitions (64) is in general infeasible, but
testing with concrete V ∈ TTL can provide some further insight. For D = 1, we use
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(b)(a)

Fig. 1 Upper boundsmax�=1,...,L β� as in (65) formax�=1,...,L mramp� fromProposition 4, in dependence
of L: a max� β�(�L,1) for D = 1 (circles) and D = 2 (squares), with dashed lines representing 10(L + 1)
and 120(L − 1), respectively; b max�[β�(�L,1)]2 (circles), max� β�(AL ) (crosses), and max� β�(CL •
AL • CL ) (plusses), for D = 1, with dashed lines representing (11L)2 and 25 × 22L , respectively. The
quantities max�[β�(�L,1)]2 bound max�[β�(BL )] up to a constant independent of L , see (93)

TT-SVD representations V1, Vmin, Vmax (of maximum ranks 1, 2, and 2, respectively)
of the vectors

v1 = (
c1
)
k=1,...,2L , vmin = (

cmin sin(π
2 xi )

)
i=1,...,2L ,

vmax = (
cmax sin(π

2 (1 + 2L+1)xi )
)
i=1,...,2L ,

with xi = 2−Li and with constants c1, cmin, cmax chosen so that ‖v1‖2 = ‖vmin‖2 =
‖vmax‖2 = 1. By Proposition 2(iii), rcond�(V1) = 1 and 1 ≤ rcond�(Vmin) ≤ √

2,
1 ≤ rcond�(Vmax) ≤ √

2. Consequently, as in the examples of Sect. 4.1, for each such
a choice of V and any representation of a matrix M, the absolute and relative errors
incurred by the orthogonalization ofM•V give an indication of the order of magnitude
of ramp�(M • V) and rcond�(M • V).

The results are summarized in Tables 3 and 4. We see that in all cases, the absolute
and relative errors for BL are close to machine precision ε ≈ 2.2 × 10−16, which
is quantitatively better than indicated by the upper bounds in Fig. 1. For AL and
CL • AL • CL , we observe an amplification of relative errors that is exponential in L
(and in fact slightly worse for CL • AL • CL ). The absolute errors for CL are close
to ε, which is important for the evaluation of preconditioned right-hand sides; the
corresponding relative errors increase with L in the case of Vmax, which is to be
expected since CL damps high-frequency oscillations.

6 Complexity of Solvers

We now consider the numerical computation of uL solving BLuL = f L with BL =
CL ALCL and gL = CL f L as in (33a). Here, the objective is to find uε ∈ VL(ε) such
that ‖u − uε‖H1 � ε, and we obtain an estimate for the computational complexity of
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Table 3 Absolute errors ‖τ(M • V) − τ(orth−(M • V))‖2 with M = BL , CL , CL • AL • CL , AL and
V = V1,Vmin,Vmax, as given in Sect. 5.5

V M L = 20 L = 30 L = 40

V1 BL 1.47×10−14 2.08×10−14 3.30×10−14

CL 1.16×10−15 2.05×10−15 5.70×10−15

CL • AL • CL 3.06×10−04 2.65×10+02 3.27×10+08

AL 2.66×10−04 2.08×10+02 2.13×10+08

Vmin BL 1.89×10−14 3.78×10−14 2.96×10−14

CL 2.69×10−15 1.70×10−15 2.20×10−15

CL • AL • CL 4.58×10−04 3.60×10+02 5.23×10+08

AL 4.99×10−04 5.96×10+02 4.27×10+08

Vmax BL 1.31×10−14 1.20×10−14 9.29×10−15

CL 9.82×10−17 1.20×10−16 1.07×10−16

CL • AL • CL 1.08×10−04 1.80×10+02 1.26×10+08

AL 6.62×10−03 1.43×10+04 1.12×10+10

Table 4 Relative errors ‖τ(M • V) − τ(orth−(M • V))‖2/‖τ(M • V)‖2 with M and V as in Table 3

V M L = 20 L = 30 L = 40

V1 BL 2.87×10−15 4.06×10−15 6.44×10−15

CL 1.11×10−15 1.95×10−15 5.44×10−15

CL • AL • CL 5.97×10−05 1.89×10+00 2.18×10+00

AL 2.48×10−13 5.92×10−12 1.85×10−10

Vmin BL 4.17×10−15 8.32×10−15 6.52×10−15

CL 2.40×10−15 1.52×10−15 1.97×10−15

CL • AL • CL 1.01×10−04 1.50×10+00 5.41×10+00

AL 2.02×10−04 7.22×10−01 6.59×10−01

Vmax BL 3.28×10−15 3.00×10−15 2.32×10−15

CL 6.91×10−11 8.61×10−08 7.91×10−05

CL • AL • CL 2.70×10−05 6.32×10+00 2.78×10+00

AL 1.51×10−15 3.10×10−15 2.31×10−15

achieving this goal. Assuming that L(ε) ∼ |log ε| is suitably chosen a priori and that
the TT singular values of uL satisfy a natural decay estimate, we show that the number
of arithmetic operations for computing a tensor train representation of uε is of order
O(|log ε|θ ), where θ > 0 depends only on the low-rank approximability of the uL .

Remark 7 Themethodswe consider rely on the accurate evaluation of residuals BLv−
CL f L . As we have seen in Sect. 5.5, for the representations BL and CL of BL and
CL that we have constructed, the quantities mramp�(BL) and mramp�(CL) grow only
moderatelywith respect to L . Indeed, the results of Table 3 indicate that provided that v
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and f L are given in well-conditioned representations, the corresponding residuals can
be evaluated with an absolute error close to machine precision, which is corroborated
also by our further numerical tests in Sect. 7. For the convergence analysis of this
section, we assume exact arithmetic.

6.1 Estimates of Ranks and Computational Costs

To estimate the computational complexity of finding approximate solutions, we use the
quasi-optimality properties of an iterative method using soft thresholding of hierarchi-
cal tensors introduced in [6]. This construction directly carries over to the special case
of the TT format, leading to a soft thresholding operation Sα that is non-expansive
with respect to the �2-norm. It can be realized numerically for TT representations,
described in [6, Sec. 3], at essentially the same cost as the TT-SVD.

Note that since BL is well-conditioned uniformly with respect to L , as a conse-
quence of Theorem 1 we can choose ω > 0 such that ξ = supL>0‖I −ωBL‖ satisfies
ξ < 1. The basic iterative method applied to the present problem has the form

un+1
L = Sαn

(
unL − ω(BLunL − gL)

)
, n ≥ 0, (94)

with u0L = 0 and αn → 0 determined (according to [6, Alg. 2]) as follows: set
α0 = ω‖gL‖2/(d − 1), and for a fixed B̄ > ‖BL‖2→2, take

αn+1 =
{

1
2αn, if ‖un+1

L − unL‖2 ≤ 1−ξ

ξ B̄
‖BLu

n+1
L − gL‖2,

αn, else.
(95)

In what follows, we refer to the algorithm given by (94), (95) as STSolve.
Recall that uL = ∑

j∈JL
(CLuL) jϕL, j , with analogous notation for the iterates,

where ‖uL‖V ∼ ‖uL‖2. Our convergence analysis is based on the following assump-
tion on uniform decay of singular values, which is discussed further in Sect. 6.2.

Assumption 1 For all L ∈ N and � = 1, . . . , L , let the singular values σ�, j (uL) with
j = 1, . . . , 2D max(�,L−�) of the �th unfolding matrix U�(uL), defined as in (44a),
satisfy the bound

σ�, j (uL) ≤ Ce−cjβ for all j = 1, . . . , 2D max(�,L−�) (96)

with C, c, β > 0 independent of � and L .

Theorem 6 Let ε > 0. Then, STSolve stops with uL,ε such that

‖uL − uL,ε‖H1 � ‖uL − uL,ε‖2 ≤ ε

after finitelymany steps. In addition, let Assumption 1 hold. Then, there exist c1, c2 > 0
and ρ ∈ (0, 1) independent of L and n such that with εn = ρn/ log L ,

‖uL − unL‖H1 ≤ c1Lεn, max
�=1,...,L−1

rank�(unL) ≤ c2L
2(1 + |log εn|

) 1
β .
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Proof This is the statement of [6, Thm. 5.1(ii)] applied to our setting, combinedwith [6,
Rem. 5.6] concerning the dependence of εn on L . ��

The above statement makes assumptions on the low-rank approximability of the
approximations uL . We next relate this, by an appropriate choice of L , to the approx-
imability of the exact solution u ∈ V of (4).

Corollary 1 Assume that there existC1 > 0 and s > 0 such that‖u−uL‖H1 ≤ C12−sL .

Then, for given ε ∈ (0, 1), taking L = 1
s (1+|log ε|), with c1, c2 > 0 and εn = ρn/ log L

as in Theorem 6, for n > 0 we have

‖uL − unL‖H1 ≤ c1s
−1(1 + |log ε|)εn,

max
�=1,...,L−1

rank�(unL) ≤ c2s
−2(1 + |log ε|)2(1 + |log εn|

) 1
β ,

and for N = (|log ε| + log L) log L � (1 + |log ε|) log(1 + |log ε|), we obtain

‖u − uN
L ‖H1 ≤ C2ε, max

�=1,...,L−1
rank�(uN

L ) ≤ C3(1 + |log ε|)2+ 1
β ,

where C2,C3 > 0 depend on c1, c2, ρ, C1, and s.

Remark 8 (Complexity bounds) If BL has fixed representation ranks, as in the case of
the Laplacian, the costs of each step are dominated by those of applying Sαn , which
are of order O(L(max� rank�(unL))3). By Corollary 1, the total number of operations
for N steps to guarantee an H1-error of order ε is thus bounded by

C(1 + |log ε|)8+ 3
β log(1 + |log ε|) (97)

with a uniform constant C > 0.

In cases with variable coefficients such that BL does not have an exact low-rank
form, but needs to be applied approximately, the iteration given in (94) and (95) can
be adapted to residual approximations with prescribed tolerance as given in [6, Alg.
3], which preserves the statement of Theorem 6 as shown in [6, Prop. 5.9]. Depending
on the L- and ε-dependent rank bounds for BL , one may then obtain additional factors
in estimate (97).

Remark 9 Complexity estimates are also given in [4] for a similar iterative method
based on hierarchical SVD truncation (which in the present setting translates to a
direct TT-SVD truncation). A simplified version of this method operating on fixed
discretizations is given in [6, Alg. 4]. Based on the theory for this method, one can also
derive rank and complexity bounds similar to (97), but with a less favorable exponent:

for this method, one arrives at a number of operations bounded by C(1 + |log ε|)t+ 3
β

for some C > 0, where t > 0 now depends on the representation ranks and condition
number of BL , and the bound can be substantially worse than (97). The practical
performance of the scheme from [4], however, tends to be comparable to the one of
STSolve considered above.
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Remark 10 Alternatively, the linear systems BLuL = gL can be solved by the AMEn
methods introduced in [17]. The basic version analyzed in [17, Sec. 5] relies on resid-
ual approximations of a certain quality and increases approximation ranks in each
iteration. However, the available convergence results only lead to a complexity bound
that increases faster than exponentially in L . In the practical implementation that we
also consider for comparison in Sect. 7, the basic method is combined with a faster
heuristic residual approximation scheme based on the alternating least squares (ALS)
method and with additional rank reduction steps. Although no convergence analysis is
available for this version, the method performs well in our tests with well-conditioned
BL .

6.2 Low-Rank Approximability Assumptions

For the case of one or two dimensions, a low-rank approximation analysis for the
solution of problem (4) under certain analyticity assumptions on the coefficients and
right-hand side, following from the regularity analysis developed in [2,3], is available
in [28,33,34]. The following result can be obtained as an immediate consequence of
[34, Theorem 5.16].

Theorem 7 Consider problem (4) with D = 2 dimensions under the ellipticity and
regularity assumptionsmade in Sect. 2. Assume additionally that the data (the diffusion
coefficient and the right-hand side) are analytic on Ω . Then, the following holds
with positive constants C,C ′, b, b′. For all L, R ∈ N, the exact solution u admits
an approximation uL,R ∈ VL that can be exactly represented in the multilevel TT
decomposition in the sense of (50a)–(50b), with ranks not exceeding R and such that

‖u − uL,R‖H1(Ω) ≤ Ce−bL + C ′e−b′√R . (98)

Theorem 7 and analogous results for highly oscillatory solutions [31] cover the
tensor approximation of exact solutions in the nodal basis, described in Sect. 2.2. The
requirements of Assumption 1 are somewhat different: they refer to the solution of the
Galerkin discretization (uniformly in the discretization level L), and the application of
C−1

L to the corresponding coefficient ūL (which iswith respect to the nodal basis) yields
the coefficient uL = C−1

L ūL with respect to the preconditioned basis. Nevertheless,
the H1-errors bounded implicitly by the decay of singular values in Assumption 1
and explicitly by the second term in the right-hand side of (98) both correspond to
low-rank tensor approximation within the underlying finite element space VL .

The verification of the low-rank approximability of uL , L ∈ N, stipulated in
Assumption 1 requires the result of Theorem 7 to be complemented by two further
ingredients: bounds on the ranks ofGalerkin discretizations (as opposed to interpolants
of the exact solution); and suitable low-rank approximations of C−1

L , (which, unlike
CL , does not have an explicit low-rank form).

In the present work, we restrict ourselves to studying the resulting approximability
of uL numerically. We are not aware of existing analysis that would allow to arrive
at conclusions on Galerkin solution ranks, covering also the convergence behavior
for accuracies below the size of the Galerkin discretization error; this appears to be a
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(a) (b)

Fig. 2 Singular values of unfolding matrices (see Assumption 1) for u solving −�u = 1 on (0, 1)2 with
boundary conditions according to (3), for L = 2, . . . , 12

question of independent interest. In certain special cases, such as Poisson problems in
D = 1, the Galerkin solution can in fact be shown to be the nodal interpolant of the
exact solution. For more general problems and for D > 1, however, this is in general
not the case.

The numerically observed decay of matricization singular values of the precondi-
tioned solution coefficients uL (with ‖uL‖2 ∼ ‖uL‖H1) and of the vector of scaled
nodal values ūL = CLuL (with ‖ūL‖2 ∼ ‖uL‖L2) for a Poisson problem in spatial

dimension D = 2 is illustrated in Fig. 2. We find that the action of C−1
L on the vector

of nodal values preserves the exponential decay of singular values, but at a slightly
modified rate. This is consistent with the further numerical tests for this problem in
Sect. 7.4. Similar results are also observed in further experiments presented in Sect. 7.

7 Numerical Experiments

In our numerical tests, we apply the preconditioned discretization matrices in well-
conditioned tensor representations obtained in Sect. 5 to different problems of type
(4), both with constant and with highly oscillatory diffusion coefficients A in (5).

For solving the resulting systems of equations, on the one hand we use STSolve
analyzed in Sect. 6, implemented in the Julia programming language; on the other
hand, we compare to results obtained using a Fortran implementation of the AMEn
solver [17] wrapped by the Python version of the TT Toolbox by I. Oseledets.

These two solvers have quite distinct characteristics. The parameters for STSolve
are chosen such that the convergence and complexity estimates of Theorem 6 are
guaranteed, which leads to a very conservative control of the iteration. Since residuals
are approximated with guaranteed accuracy, this method yields rigorous error bounds.
In contrast, the considered version of AMEn uses several heuristic extensions, as
described in [17, Sec. 6]. In particular, it uses a simplified ALS-type residual approx-
imation that has strongly reduced complexity, but does not give any error guarantees.
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Moreover, in the given results, iteration numbers for AMEn need to be interpreted
differently, where each iteration in the convergence plots comprises several substeps
with local residual evaluations for each core.

7.1 ResultsWithout Preconditioning

We first illustrate the results obtained by a direct application of multilevel tensor rep-
resentations of stiffness matrices AL without preconditioning. Such representations
have been derived, for instance, in [35]. In the present case ofmixedDirichlet andNeu-
mann boundary conditions, this leads to representations similar to the pure Dirichlet
case in (54). Here, we consider the case D = 1, where for simplicity we take reaction
coefficient c = 0 and right-hand side f = 1, that is, we solve the weak formulation
of

− u′′ = 1, u(0) = 0, u′(1) = 0. (99)

Using AMEn directly with system matrix AL and right-hand side f L , we observe
that the resulting residual indicators stagnate at values above 22Lε, where ε ≈ 2.2 ×
10−16 is the relative machine precision. This is to be expected in view of the matrix
and representation ill-conditioning of AL .

If we instead implement the preconditioned matrix CL ALCL by pre- and post-
multiplying with a separate tensor representation CL of the preconditioner, we still
obtain essentially the same type of stagnation at approximately 22Lε. Since the rep-
resented matrix CL ALCL is now well-conditioned, these remaining catastrophic
round-off errors and the resulting stagnation are entirely due to representation ill-
conditioning, which is not removed by simply multiplying by the preconditioner. This
effect is observed both with AMEn and with STSolve. The results are shown in
Fig. 3, with the residual values with respect to the system matrices AL and CL ALCL ,
respectively.

7.2 Constant Coefficient Diffusion, D = 1

We now consider the same basic test case (99), but with BL = CL ALCL in the
combined tensor representation constructed in Sect. 5. In this and the following tests,
residual values always refer to the preconditioned residuals ‖BL · −gL‖2, which
is proportional to the H1-errors in the corresponding grid functions. With a target
residual of 10−12, both AMEn and STSolve converge unaffected by any round-off
errors for very large values of L (Fig. 4). Indeed, this remains true for values L that are
substantially larger than in the case L = 50 shown here, but since the corresponding
mesh widths are then smaller than machine precision, the results are more difficult to
interpret.

For the AMEn solver, we assemble the complete representation of BL . In exact
arithmetic, this would in fact be equivalent to applying representations AL and CL

separately, and differences are entirely due to the different tensor decomposition in the
previous case. With STSolve, we have the additional option of using error-controlled
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N with AL N with CLALCL(a) AME (b) AME

(c) STSOLVE with CLALCL

Fig. 3 Results for Sect. 7.1, computed residual bounds in dependence on iteration count: a AMEn
applied directly to AL , b AMEn with directly multiplied CL ALCL , (c) STSolve with directly multi-
plied CL ALCL ; each for L = 10, 15, 20, 25, 30 (by increasing line thickness)

inexact residual evaluations as in [6, Alg. 3] to reduce the arising ranks of intermediate
results; as shown in [6, Prop. 5.9], the statement of Theorem 6 still applies to this
modification. To this end,we use that the tensor representation can be directly rewritten
in the form BL = ΘT

L,1Θ L,1 as in (92), where ‖Θ L,1‖ is uniformly bounded with
respect to L , and apply an additional recompression by TT-SVD after applying Θ L,1.

7.3 Highly Oscillatory Diffusion Coefficients, D = 1

We next consider the family of problems with oscillatory diffusion coefficients on
Ω = (0, 1) given by

− (aK u
′)′ = 1, u(0) = 0, u′(1) = 0, aK (x) = (

2 + cos(Kπx)
)−1

(100)

for large values of K . The exact solution reads
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(a) STSOLVE (b) AMEN

Fig. 4 Results for Sect. 7.2: residual bounds (black) and maximum approximation ranks (gray), with well-
conditioned combined representation of BL = CL ALCL for L = 10, 15, 20, 25, 30, 35, 40, 45, 50 (by
increasing line thickness)

u(x) = x(2 − x) + (Kπ)−1[(1 − x) sin(Kπx) + (Kπ)−1(1 − cos(Kπx)
)]

.

(101)

For K ∈ 4N, we represent the vectors uex and vex of nodal values of u and u′ in the
multiscale TT format with ranks bounded by seven and six, respectively.

The coefficient aK does not have an explicit low-rank form, and we com-
pute approximations as follows: using the explicit rank-three representation of
c(x) = 2 + cos(Kπx), using STSolve we solve the equation c(xi ) aK (xi ) =
1 in the points xi = 2−L(i − 1

2 ), i = 1, . . . , 2L , as an elliptic problem on
�2({1, . . . , 2L}) for aK ; the tolerance is chosen to ensure a sufficient uniform error
bound.

We compare the results for the values K = 210, 220, 230, 240 with L = 50
in Fig. 5. The observed convergence patterns of both methods show hardly any
influence of the value of K . Note that the computed preconditioned coefficients
uL do not satisfy the same rank bound as (101) (which holds for CLuL , the
corresponding vector of scaled nodal values). In each case, comparison with the
explicit low-rank form of uex, vex shows that the expected total error bounds are
achieved.

More specifically, approximations of theH1-error in the solutions can be obtained in
a numerically stable way by evaluating ‖uex −CLuL‖2 and ‖vex −Θ L,1uL‖2, where
Θ L,1 is the factor of the preconditioned Laplacian stiffness matrix as in Sect. 7.2. In
Table 5, we summarize the obtained approximations of H1-errors for different solver
tolerances and parameters L . We observe an effect that is particular to the present
one-dimensional setting, where the accuracy in the nodal values is limited only by the
solver tolerance as soon as L is sufficiently large for resolving the oscillations in the
solution.
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OLVE(a) STS (b)AMEN

Fig. 5 Results for Sect. 7.3: residual bounds (black) and maximum approximation ranks (gray), with well-
conditioned representation of BL for oscillatory coefficient aK with K = 210, 220, 230, 240 (by increasing
line thickness) and L = 50

Table 5 H1-errors in
approximations computed by
AMEn with K = 230, solver
tolerances 10−4, 10−6, 10−8

and discretization parameters L

Tol. L = 10 L = 20 L = 30 L = 40

10−4 3.65×10−01 3.65×10−01 3.21×10−05 3.45×10−05

10−6 3.65×10−01 3.65×10−01 2.89×10−07 2.88×10−07

10−8 3.65×10−01 3.65×10−01 3.73×10−08 2.71×10−08

7.4 Constant Coefficient Diffusion, D = 2

On Ω = (0, 1)2, we consider (4) with A = 1, c = 0 and f = 1, that is, the weak
form of

− �u = 1, u|Γ = 0, ∂nu|∂Ω\Γ = 0, (102)

with Γ as in (3). Both STSolve and AMEn show the expected convergence for
L = 50 (Fig. 6), with ranks that are consistent with the singular value decay of
discretized solutions of Fig. 2b.

Similarly to Sect. 7.2, STSolve is used with inexact residual evaluation, now using
that the tensor representation of BL can be written in the form BL = ΘT

L,1 Θ L,1 +
ΘT

L,2 Θ L,2 as in (92). Here, Θ L,1 and Θ L,2 are uniformly bounded, and each has
maximum representation rank 24. Although these ranks remain independent of L ,
additional rank reductions in this decomposition are important from a quantitative
point of view: since BL has maximum representation rank 1152, applying it directly
would lead to very large ranks. In the available version of AMEn, the decomposition
of BL needs to be used directly, but the impact of large residual ranks is limited due
to the ALS-type residual approximation. In this case, the main downside of the direct
assembly of BL is in the higher memory requirements for large L .

In terms of computational costs, the error-controlled full residual approximation
used by STSolve is substantially more expensive in all considered tests than the
heuristic ALS-based residual approximation used byAMEn. The precise CPU timings
are of limited significance due to the different implementations, butweobserve running
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OLVE(a) STS (b) AMEN

Fig. 6 Results for Sect. 7.4: residual bounds (black) and maximum approximation ranks (gray), for well-
conditioned representation of BL , L = 50

times on the order of several minutes with STSolve and of seconds with AMEn in
the tests with D = 1, and of several hours with STSolve and several minutes with
AMEn in the case of D = 2. Although no convergence analysis is available for this
AMEn implementation, especially for the present well-conditioned representations it
is thus an interesting practical choice.

8 Conclusion and Outlook

We have identified notions of condition numbers of tensor representations that deter-
mine the propagation of errors in numerical algorithms. In the application tomultilevel
tensor-structured discretizations of second-order elliptic PDEs, the careful construc-
tion of tensor representations of preconditioned system matrices guided by these
notions leads to solvers that remain numerically stable also for very large discretization
levels. For one such method based on soft thresholding of tensors, we have shown that
the total number of arithmetic operations scales like a fixed power of the logarithm of
the prescribed bound on the total solution error.

The new variant of BPX preconditioning that we have analyzed leads to a very
natural low-rank structure of the symmetrically preconditioned stiffness matrix.
Remarkably, unlike the rank increase with discretization levels observed in the case
of separation of spatial coordinates [5], in the present case of tensor separation of
scales, we obtain preconditioner representation ranks that remain uniformly bounded
with respect to the discretization level. Similar results can be obtained for related
preconditioners based on wavelet transforms, which are the subject of ongoing work.

For the preconditioned solvers, the relevant approximability properties of solutions
we have identified are slightly different from the ones for nodal basis coefficients
studied, e.g., in [34]. The numerically observed favorable decay of TT singular values
of preconditioned quantities thus requires further investigation; it also depends on the
particular choice of preconditioner.

The practical application tomore general problemswas not considered here to avoid
further technicalities, but one can similarly treat different boundary conditions, more
general coefficients (such as highly oscillatory diffusion coefficients in D > 1) or
more general domains by techniques developed in [28]. We also expect that our basic
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considerations concerning the combined low-rank representations of preconditioners
and discretization matrices of differential operators can be applied, with potentially
more technical effort, to other types of basis expansions and to different classes of
PDE problems.

Although the representation ranks of preconditioned matrices that we obtain are
bounded independently of the discretization level, they are fairly large for D > 1.
This suggests the further investigation of solvers with improved quantitative perfor-
mance, in particular the combination of AMEn-type methods with efficient residual
approximation strategies for preconditioned operator representations.

We expect that the framework we have proposed here for studying the conditioning
of tensor representations can be developed further to provide more detailed informa-
tion, as well as sharper computable bounds for representations of matrices.
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A Preconditioner Optimality

In preparation of the proof of Theorem 2, we define the square matrix DL of order
2DL by

(DL) j j ′ = 〈∇ϕL, j ,∇ϕL, j ′
〉
L2(Ω)

for all j, j ′ ∈ JL . (103)

Since the bilinear form a is elliptic on V with ‖·‖V = ‖∇· ‖L2(Ω)d , we obtain

〈CL ALCLv, v〉 = a
( L∑

�=0

2−�
∑

j∈J�

ϕ�, j (PT
�,Lv) j ,

L∑

�=0

2−�
∑

j∈J�

ϕ�, j (PT
�,Lv) j

)

∼
∥
∥
∥∇

( L∑

�=0

2−�
∑

j∈J�

ϕ�, j (PT
�,Lv) j

)∥
∥
∥
2

L2
= 〈CL DLCLv, v〉,

and it thus suffices to show (31) for DL in place of AL .
For � = 0, . . . , L , we introduce the nested subspaces V� = ran P�,L ⊆ R

JL ; that
is, the spaces V� are spanned by vectors of finest-grid nodal values of the functions
ϕ�, j , j ∈ J�. In particular, VL = R

JL .
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Lemma 6 For �, �′ ∈ {0, . . . , L}, let

L�,�′ = 2−�−�′
PT

�,L DL P�′,L . (104)

Then, for 0 ≤ k ≤ �, 0 ≤ k′ ≤ �′,

∣
∣
〈
L�,�′ PT

�′,Lwk′ , PT
�,Lwk

〉∣
∣ � 2− 1

2 |�′−�| 2
1
2 (k′−�′) ‖wk′ ‖2 2 1

2 (k−�) ‖wk‖2 (105)

for all wk ∈ Vk and wk′ ∈ Vk′ .

Proof The matrices defined in 104 can also be expressed in terms of

L̂�,�′ = (
2−�−�′ 〈ϕ̂′

�, j , ϕ̂
′
�′, j ′ 〉L2(0,1)

)
j∈Ĵ�, j ′∈Ĵ�′

,

Ê�,�′ = (〈ϕ̂�, j , ϕ̂�′, j ′ 〉L2(0,1)
)
j∈Ĵ�, j ′∈Ĵ�′

(106)

as

L�,�′ =
D∑

d=1

(d−1⊗

i=1

Ê�,�′
)

⊗ L̂�,�′ ⊗
( D⊗

i=d+1

Ê�,�′
)
. (107)

The matrices L̂�,�′ for � > �′ can be written in terms of L̂�′,�′ as follows: since ϕ̂′
�, j

for j ∈ Ĵ� with j < 2� are L2-orthogonal to constants, the inner products of these
functions with ϕ̂′

�′, j ′ , j
′ ∈ Ĵ�′ , can be nonzero only when j = 2�−�′

j ′. For � ≥ �′,
we thus define Ξ̂ ∈ R

Ĵ�×Ĵ�′ by

(
Ξ̂ �,�′

)
j j ′ = δ j, 2�−�′ j ′ for all j ∈ Ĵ�, j ′ ∈ Ĵ�′ .

Additionally taking into account the difference in L2-normalization factors between
levels � and �′, we obtain

L̂�,�′ = 2− 1
2 |�′−�|Ξ̂ �,�′ L̂�′,�′ .

Let V̂k,� = ran P̂k,� ⊆ R
Ĵ� and V̂k = ran P̂k,L . For k ≤ � andw ∈ V̂k,�, letw ∈ Vk

be the function represented byw. Then, by (106) and the standard inverse estimate for
Vk (see, e.g., [24, Sec. 8.8.3]), we have 〈L̂�,�w,w〉 = 2−2�|w|2

H1
0

� 22(k−�)‖w‖2
L2 ,

and thus

〈L̂�,�w,w〉 ≤ 22(k−�)‖w‖22, k ≤ �, w ∈ V̂k,�; (108)

in particular, we also have ‖L̂�,�‖2→2 � 1. Moreover, one has

〈Ξ̂ �,�′ L̂�′,�′Ξ̂
T
�,�′w,w〉 ≤ 2k−�+min{k−�′,0}‖w‖22, k, �′ ≤ �, w ∈ V̂k,�. (109)
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To see this, denote again by w ∈ Vk the function represented by w, and consider

first �′ ≤ k ≤ �. Then, w̃ := Ξ̂
T
�,�′w corresponds to evaluations of w on the grid of

level �′, which is coarser than the one on which it is piecewise linear, and consequently
2�−k ∑

j ′∈Ĵ�′
|w̃ j ′ |2 �

∑
j∈Ĵ�

|w j |2. Thus, ‖w̃‖2 = ‖Ξ̂T
�,�′w‖2 � 2

1
2 (k−�)‖w‖2, and

(109) follows in this case. If k < �′ ≤ �, w̃ ∈ V̂k,�′ corresponds to a reinterpolation of

w that is still on a finer level than k, and thus ‖w̃‖2 ≤ 2
1
2 (�′−�)‖w‖2. Using (108), we

thus obtain 〈L̂�′,�′w̃, w̃〉 � 22(k−�′)‖w̃‖22 � 22k−2�′+�′−�‖w‖22, which gives (109).
We next show that

‖ P̂T
�,LP̂k,L − P̂k,�‖2→2 � 2

1
2 (k−�), k ≤ �. (110)

Let s j i := ( P̂
T
�,LP̂k,L) j i , v j i := ( P̂k,�) j i , j ∈ Ĵ�, i ∈ Ĵk . Recalling (10), and

taking into account that supp ϕ̂�, j = [2−�( j − 1), 2−�( j + 1)] ∩ [0, 1],

s j i = 2−L
min{2L−�( j+1),2L }∑

n=2L−�( j−1)

ϕ̂�, j (2
−Ln) ϕ̂k,i (2

−Ln), v j i = 2− 1
2 �ϕ̂k,i (2

−� j).

Whenever ϕ̂k,i is linear on supp ϕ̂�, j , one has s j i = v j i by the symmetries in the
summation in s j i . This fails to hold only when j = 2�−ki . In these cases, one easily

verifies that |s j i − v j i | � 2
3
2 (k−�) when j < 2� and |s j i − v j i | � 2

1
2 (k−�) for i = 2k ,

j = 2�, with L-independent constants. Using interpolation to bound ‖ P̂T
�,LP̂k,L −

P̂k,�‖2→2 by the corresponding row- and column-sum norms, where the number of
nonzero entries in each row and column is uniformly bounded, we obtain (110).

Note that for any w ∈ V̂k there exists a unique z ∈ R
Ĵk such that w = P̂k,L z,

where ‖w‖2 ∼ ‖z‖2 with constants independent of k, L . As a consequence, using this
with (110), we obtain ‖ P̂T

�,Lw − P̂k,�z‖2 � 2
1
2 (k−�)‖w‖2 for such w and z. Since

〈L̂�,� P̂
T
�,Lw, P̂

T
�,Lw〉 = 〈L̂�,� P̂k,�z, P̂k,�z〉

+ 2〈L̂�,�( P̂
T
�,Lw − P̂k,�z), P̂k,�z〉

+ 〈L̂�,�( P̂
T
�,Lw − P̂k,�z), ( P̂

T
�,Lw − P̂k,�z)〉,

using (108) for P̂k,�z ∈ V̂k,�, ‖L̂�,�‖2→2 � 1, and the Cauchy–Schwarz inequality
for the middle term on the right, we obtain

〈L̂�,� P̂
T
�,Lw, P̂

T
�,Lw〉 � (22(k−�) + 2

3
2 (k−�) + 2k−�)‖w‖22 � 2k−�‖w‖22,

and similarly, using (109) in the same manner,

〈Ξ̂ �,�′ L̂�′,�′Ξ̂
T
�,�′ P̂

T
�,Lw, P̂

T
�,Lw〉 � 2k−�‖w‖22,
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for any w ∈ V̂k , k ≤ �.
Consequently, with 0 ≤ k ≤ �, 0 ≤ k′ ≤ �′, � ≤ �′, for all wk ∈ V̂k and wk′ ∈ V̂k′ ,

∣
∣
〈
L̂�,�′ P̂

T
�′,Lwk′ , P̂

T
�,Lwk

〉∣
∣ = 2− 1

2 |�′−�| ∣∣〈L̂�′,�′ P̂
T
�′,Lwk′ , Ξ̂

T
�,�′P̂

T
�,Lwk

〉∣
∣

≤ 2− 1
2 |�′−�| 〈L̂�′,�′ P̂

T
�′,Lwk′ , P̂

T
�′,Lwk′

〉 1
2

×〈L̂�′,�′Ξ̂
T
�,�′ P̂

T
�,Lwk, Ξ̂

T
�,�′P̂

T
�,Lwk〉 1

2

≤ 2− 1
2 |�′−�| 2

1
2 (k′−�′)‖wk′ ‖2 2 1

2 (k−�)‖wk‖2 . (111)

By (107), since ‖Ê�,�′ ‖2→2 ≤ 1, this implies (105). ��
Proof (Theorem 2) Theorem 1 implies in particular that 〈C2,Lv, v〉 ∼ 〈D−1

L v, v〉 for
all v, that is,

〈D−1
L v, v〉 ∼

L∑

�=0

∥
∥2−�PT

�,Lv
∥
∥2
2. (112)

We use this in the following proof of the lower bound in (31), which is inspired by
arguments using frame theory from [26]. Let V̄L = ŚL

�=0 R
J� . We consider the

mappings F : VL → V̄L and FT : V̄L → VL given by

F : v �→ (
2−�PT

�,Lv
)
�=0,...,L , FT : (v�)�=0,...,L �→

L∑

�=0

2−�P�,Lv�.

For any w = (w�)�=0,...,L ∈ ran F, where w = Fv for v ∈ VL , we obtain

‖FTw‖DL = sup
z �=0

〈FTw, z〉
‖z‖D−1

L

= sup
z �=0

〈Fv, Fz〉
√

〈D−1
L z, z〉

∼ ‖Fv‖2 = ‖w‖2

by (112). Now let G : VL → V̄L , v �→ (
PT

�,Lv
)
�=0,...,L . Then, ran G ⊂ ran F, and

thus

〈CL DLCLv, v〉 = ‖FTGv‖2DL
∼ ‖Gv‖22 � ‖v‖22,

which shows the lower bound in (31).
Arguing along similar lines to obtain the upper bound in (31) would lead to a

constant depending linearly on L , and we thus now turn to a different approach using
Lemma 6. Let R� = P�,L(PT

�,L P�,L)−1PT
�,Lbe the discrete orthogonal projector onto

V�. For any w ∈ VL , setting w0 = R0w and w� = (R� − R�−1)w for � = 1, . . . , L ,
we obtain the decomposition

w =
L∑

�=0

w� with ‖w‖22 =
L∑

�=0

‖w�‖22 , (113)
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which yields

〈CL DLCLw,w〉 =
L∑

�,�′=0

〈
L�,�′ PT

�′,L

�′
∑

k′=0

wk′ , PT
�,L

�∑

k=0

wk

〉
.

For n = 0, 1, . . . , L , by Lemma 6,

L−n∑

�=0

〈
L�,�+n PT

�+n,L

�+n∑

k′=0

wk′ , PT
�,L

�∑

k=0

wk

〉

� 2− 1
2 n

L−n∑

�=0

�+n∑

k′=0

�∑

k=0

2
1
2 (k′−�−n) 2

1
2 (k−�) ‖wk‖2 ‖wk′ ‖2

≤ 2− 1
2 n

L−n∑

�=0

{ �+n∑

k′=0

2
1
2 (k′−�−n) ‖wk′ ‖22 +

�∑

k=0

2
1
2 (k−�) ‖wk‖22

}

.

We thus arrive at

〈CL DLCLw,w〉 �
L∑

n=0

2− 1
2 n

L∑

�=0

‖w�‖22 � ‖w‖22,

completing the proof of the upper bound in (31) and hence of Theorem 2. ��
Remark 11 Although we have used some simplifications due to the tensor structure in
our particular setting, the proof of Theorem 2 carries over to more general hierarchies
of finite element spaces, provided that one can establish a corresponding strengthened
Cauchy–Schwarz inequality as in (105), see, e.g., [9,52,54].

B Rank-Reduced Decomposition

The following proof of Lemma 5 relies on properties of the strong Kronecker product
inherited from thematrix and Kronecker products: linearity, associativity and distribu-
tivity. In particular, products of cores can be transformed into products of smaller cores
by eliminating linear dependence from the decomposition, as the following example
illustrates.

For any scalar coefficients α, β and blocks or subcores V11, V12, V21, V22, W11,
W12 of suitable rank and mode size, we have

[
V11 V12
V21 V22

]

��

[
αW11 αW12
βW11 βW12

]

=
[
V11 V12
V21 V22

]

��

([
α

β

]

��
[
W11 W12

]
)

(114a)

=
[
V11 V12
V21 V22

]

��

[
α

β

]

��
[
W11 W12

]

(114b)

123



1232 Foundations of Computational Mathematics (2020) 20:1175–1236

=
([

V11 V12
V21 V22

]

��

[
α

β

])

��
[
W11 W12

] =
[
αV11 + βV12
αV21 + βV22

]

��
[
W11 W12

]
.

(114c)

When the partitioning shown in (114a)–(114c) is in terms of blocks (which, by our
identification convention, are subcores of rank 1× 1), the rank of the product is 2× 2.
The left-hand side of (114a) and the right-hand side of (114c) represent this core
“in the TT format,” which has only one rank parameter and happens to be nothing
else than low-rank matrix factorization in these two cases. The “ranks” of the first
decomposition, equal to 2, are larger than the “ranks” of the last decomposition, equal
to 1.

The TT representation (114b) consists of three cores and has ranks 2, 1. However,
all mode indices of its middle core are dummy indices (the mode size of the middle
core is 1 × 1), so the middle core can be merged with either of the neighboring cores
without changing the decomposition scheme (by the latter we mean the set and the
ordering of the variables separated by the TT format).

Proof (Lemma 5) Let N̂�,L,α = M̂L,α P̂�,L and c�,L = 2(α+ 1
2 )L− 1

2 (L−�). Applying
Lemma 3 with the same � as fixed here, we obtain

M̂L,α = 2(α+ 1
2 )L Â�� Û�� �

�� T̂0 �� V̂��(L−�)
�� Î �� M̂α , (115a)

where Î is as defined in (78). On the other hand, Lemma 4 gives the decomposition

P̂�,L = 2− 1
2 (L−�) Â�� Û�� �

�� Î �� X̂��(L−�)
�� P̂ ��

[
1
]

. (115b)

Rewriting matrix multiplication core-wise, we combine the rank 2 decompositions
given by (115a)–(115b) into a rank 4 decomposition for the product:

N̂�,L,α = c�,L Â� �� Û�� �
� �� Ŵ0 �� Ŷ��(L−�)

� �� E �� M̂α , (115c)

where Â� and Ŵα with α = 0, 1 are as in (81) and (83) and E = Î • P̂ , Û� = Û • Û
and Ŷ� = V̂ • X̂ are newly introduced cores. Direct calculation with expressions given
in (67), (75) and (78) yields

E =

⎡

⎢
⎢
⎢
⎢
⎣

1

0

1

0

⎤

⎥
⎥
⎥
⎥
⎦

, Û� =

⎡

⎢
⎢
⎢
⎢
⎣

I JT JT

J I2

J I1

⎤

⎥
⎥
⎥
⎥
⎦

, Ŷ� = 1

4

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
3

3

) (
1

1

) (−1

1

) (−1

1

)

(
1

1

) (
3

3

) (
1

−1

) (
1

−1

)

(−1

3

) (−1

1

) (
3

1

) (
1

1

)

(
1

1

) (
1

3

) (
1

−1

) (
3

−1

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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in terms of the blocks I , I1, I2 and J defined in (37).
Sweeping from level L to level 1. Let us define the following cores:

C =

⎡

⎢
⎢
⎣

1
1

1
1 0

⎤

⎥
⎥
⎦ and G =

⎡

⎢
⎢
⎣

1
1

1
0

⎤

⎥
⎥
⎦ .

First, we note that the second and fourth rows in each of the cores E and Ŷ� ��C
are equal. This implies that E = C �� E and Ŷ� ��C = C �� Ŷ� ��C . Further, in each
of the cores Ŵ0 ��C and Û�, the last row is zero, so that Ŵ0 ��C = G �� Ŵ0 ��C and
Û� = G �� Û�. These equalities allow to sweep the cores C and G through the last
L − � and first � levels, respectively: starting from (115c), we obtain

N̂�,L,α = c�,L Â� �� Û�� �
� �� Ŵ0 �� Ŷ��(L−�)

� ��C �� E �� M̂α

= c�,L Â� �� Û�� �
� �� Ŵ0 ��C ��(Ŷ� ��C)��(L−�)

�� E �� M̂α

= c�,L Â� �� Û�� �
� ��G �� Ŵ0 ��C ��(Ŷ� ��C)��(L−�)

�� E �� M̂α

= c�,L Â� ��(Û� ��G)�� �
�� Ŵ0 ��C ��(Ŷ� ��C)��(L−�)

�� E �� M̂α .

(115d)

Sweeping from level 1 to level L . Further, we notice that the cores

F =
[
1
1 1 0

]

and H =
[
1 1

−1 1 0

]

satisfy the relations Â� = Â�� F , F �� Û� ��G = Û �� F , F �� Ŵ0 ��C = T̂0 �� H ,
H �� Ŷ� ��C = Ŷ0 �� H and H �� E = Î . These relations allow to sweep the cores F
and H through the first � and last L − � levels respectively: continuing (115c), we
derive

N̂�,L,α = c�,L Â�� F ��(Û� ��G)�� �
�� Ŵ0 ��C ��(Ŷ� ��C)��(L−�)

�� E �� M̂α

= c�,L Â�� Û�� �
�� F �� Ŵ0 ��C ��(Ŷ� ��C)��(L−�)

�� E �� M̂α

= c�,L Â�� Û�� �
�� T̂0 �� H ��(Ŷ� ��C)��(L−�)

�� E �� M̂α

= c�,L Â�� Û�� �
�� T̂0 �� Ŷ��(L−�)

0 �� H �� E �� M̂α

= c�,L Â�� Û�� �
�� T̂0 �� Ŷ��(L−�)

0 �� M̂α .

(115e)

This proves the claim in the case of α = 0 since M̂0 = N̂0 by (75) and (78).
Sweeping from level L to level �. In the decomposition (115e), the ranks involved in

the core products to the right of T̂0 (in particular, those bounding the ranks of unfolding
matrices �, . . . , L−1+α) are all equal to two. To prove the claim, it remains to consider
the case ofα = 1 and obtain a reduced decomposition inwhich those ranks are all equal
to one instead of two. To this end, we note that Ŷ0 �� M̂1 = M̂1 �� Ŷ1 = M̂1 �� Ŷ1 �� N̂1
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and T̂0 �� M̂1 = T̂1. Applying these relations to (115e), we obtain the claim in the case
of α = 1. ��
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