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Abstract
In this article, the periodic version of the classical Da Prato–Grisvard theorem on maximal 
Lp-regularity in real interpolation spaces is developed, as well as its extension to semi-
linear evolution equations. Applying this technique to the bidomain equations subject to 
ionic transport described by the models of FitzHugh–Nagumo, Aliev–Panfilov, or Rogers–
McCulloch, it is proved that this set of equations admits a unique, strong T-periodic solu-
tion in a neighborhood of stable equilibrium points provided it is innervated by T-periodic 
forces.
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1 Introduction

Given a sectorial operator A on a Banach space X, the problem of maximal regularity for 
the inhomogenous Cauchy problem

received a lot of attention since the pioneering articles by Da Prato–Grisvard [10], 
Dore–Venni [13] and Lunardi [22]. Nowadays, due to a result due to Weis [26], it is well 
known that for X being a UMD-space and 1 < p < ∞ , maximal Lp-regularity of (ACP) can 
be characterized in terms of the R-boundedness of the resolvent of A . For further informa-
tion, see also[11, 12] and [23].

The aim of this article is twofold: we first study maximal regularity of the inhomogene-
ous Cauchy problem within the periodic setting

as well as for its semilinear counterpart. The results are then applied to the bidomain equa-
tions with FitzHugh–Nagumo transport. This is a well-established system of equations 
describing the electrical activities of the heart, see, e.g., Colli Franzone et al. [7] and the 
monograph by Keener and Sneyd [21].

Let us start by describing the problem of maximal periodic regularity for the period 
T = 2� . We say that A admits maximal periodic Lp-regularity, if for all f ∈ Lp(0, 2�;X) 
Eq. (PACP) with T = 2� admits a unique solution u within the class

It was proved by Arendt–Bu [4] that, given 1 < p < ∞ , X a UMD-space, and 
A ∶ D(A) → X a closed operator, A admits maximal periodic Lp-regularity if and only if

For definitions of UMD-spaces and R-bounded families of operators as well as their prop-
erties, we refer, e.g., to [11] or [20].

In this article, we have the following two extensions of this result in mind: The first 
is, that some situations make it necessary to handle the case p = 1 . However, it is known 
that if maximal regularity holds for (ACP) for p = 1 , then X is necessarily a non-reflexive 
space and that contradicts the UMD-property. The second extension we have in mind is 
to provide an elegant way to treat polynomial nonlinearities. These can be estimated eas-
ily if the ground space X is a Banach algebra. The largest Banach algebra within the scale 
of Sobolev spaces is the Besov space Bn∕p

p,1
 , which is again not reflexive and thus does not 

enjoy the UMD-property. In the classical maximal regularity theory for  (ACP), a result 
accounting for these issues is the well-known theorem of Da Prato and Grisvard. In fact, 
let −A be the generator of a bounded analytic semigroup e−tA on a Banach space X with 
domain D(A) . For � ∈ (0, 1) and 1 ≤ p < ∞ , we denote by DA(�, p) the space defined as

(ACP)
{

u�(t) +Au(t) = f (t), 0 < t < T

u(0) = 0

(PACP)
{

u�(t) +Au(t) = f (t), t ∈ ℝ,

u(t) = u(t + T), t ∈ ℝ

u ∈ W1,p(0, 2�;X) ∩ Lp(0, 2�;D(A)).

iℤ ⊂ 𝜚(A) and k(ik −A)−1 isR-bounded.

(1.1)DA(𝜃, p) ∶=
�
x ∈ X ∶ [x]𝜃,p ∶=

�
∫

∞

0

‖t1−𝜃Ae−tAx‖p
X

dt

t

�1∕p

< ∞
�
.
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When equipped with the norm ‖x‖�,p ∶= ‖x‖ + [x]�,p , the space DA(�, p) becomes a 
Banach space. It is well known that DA(�, p) coincides with the real interpolation space 
(X,D(A))�,p and that the respective norms are equivalent. If 0 ∈ �(A) , then the real interpo-
lation space norm is equivalent to the homogeneous norm [⋅]�,p , see [17, Corollary 6.5.5].

Let now � ∈ (0, 1) , 1 ≤ p < ∞ , and 0 < T < ∞ . Then, for f ∈ Lp(0,T;DA(�, p)) we 
consider

which is the unique mild solution to the abstract Cauchy problem (ACP) and fulfills, thanks 
to the classical Da Prato and Grisvard theorem [10], the following maximal regularity 
estimate.

Theorem 1.1 ([10, Da Prato–Grisvard]) Let 𝜃 ∈ (0, 1), 1 ≤ p < ∞ , and 0 < T < ∞ . Then 
there exists a constant C > 0 such that for all f ∈ Lp(0,T;DA(�, p)) , the function u given 
by (1.2) satisfies u(t) ∈ D(A) for almost every 0 < t < T  and

As counterpart to the Arendt–Bu theorem characterizing maximal periodic Lp-regu-
larity for 1 < p < ∞ and X being a UMD-space, we provide a short derivation of a peri-
odic version of Theorem 1.1. As the classical Da Prato–Grisvard theorem, it holds for 
1 ≤ p < ∞ and arbitrary Banach spaces X.

To formulate this result, we define the periodicity of a measurable function as fol-
lows. For 0 < T < ∞ , we call a measurable function f ∶ ℝ → X periodic of period T if 
f (t) = f (t + T) holds true for almost all t ∈ (−∞,∞) . Then, formally, a candidate for a 
solution u to (PACP) is given by

The periodic version of the Da Prato–Grisvard theorem now states that, under certain 
assumptions on A and f, u is indeed well-defined, continuous, and periodic and satis-
fies a maximal regularity estimate in the sense of Da Prato–Grisvard. More precisely, let 
−A be the generator of a bounded analytic semigroup on X with 0 ∈ �(A) , let � ∈ (0, 1) , 
1 ≤ p < ∞ , and 0 < T < ∞ . We then show that there exists a constant C > 0 such that for 
all T-periodic functions f ∶ ℝ → DA(�, p) with f|(0,T) ∈ Lp(0, T;DA(�, p)) the function u 
defined by  (1.3) lies in C(ℝ;DA(�, p)) , is periodic of period T, satisfies u(t) ∈ D(A) for 
almost every t ∈ ℝ , and satisfies

Our second aim is to apply the above technique to the bidomain equations with 
FitzHugh–Nagumo (or related) transport terms as well as to the Allen–Cahn equations. 
Note that these equations are, however, semilinear evolution equations. Hence, in order to 
follow the above strategy, we first need to develop a semilinear version of the periodic Da 
Prato–Grisvard theorem. This will be done in Sect. 3.

The bidomain system is given by

(1.2)u(t) ∶= ∫
t

0

e−(t−s)Af (s) ds, 0 < t < T ,

‖Au‖Lp(0,T;DA(�,p))
≤ C‖f‖Lp(0,T;DA(�,p))

.

(1.3)u(t) ∶= ∫
t

−∞

e−(t−s)Af (s) ds.

‖Au‖Lp(0,T;DA(�,p))
≤ C‖f‖Lp(0,T;DA(�,p))

.
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subject to the boundary conditions

and the initial data

Here 𝛺 ⊂ ℝ
n denotes a domain describing the myocardium, the functions ui and ue model 

the intra- and extracellular electric potentials, u ∶= ui − ue denotes the transmembrane 
potential, and � denotes the outward unit normal vector to �� . The anisotropic properties 
of the intra- and extracellular tissue parts will be described by the conductivity matrices 
�i(x) and �e(x) . Furthermore, Ii and Ie stand for the intra- and extracellular stimulation cur-
rent, respectively. The variable w, the so-called gating variable, corresponds to the ionic 
transport through the cell membrane.

Mathematical models describing the propagation of impulses in electrophysiology have 
a long tradition starting with the classical model by Hodgkin and Huxley in the 1950s, 
see, e.g., [1, 3, 8, 14, 24] and the recent survey article of Stevens [25]. In this article, we 
consider the bidomain model subject to various models for the ionic transport includ-
ing the models by FitzHugh–Nagumo, Aliev–Panfilov, and Rogers–McCulloch. The 
FitzHugh–Nagumo model reads as

where 0 < a < 1 and b, c > 0 . The Aliev–Panfilov model as well as the Rogers–McCulloch 
model are described in detail in Sect. 4.

Note that the so-called bidomain operator is a very non-local operator, which makes 
the analysis of this equation seriously more complicated compared, e.g., to the classical 
Allen–Cahn equation.

The rigorous mathematical analysis of this system started with the work of Colli 
Franzone and Savaré [9], who introduced a variational formulation of the problem 
and showed the global existence and uniqueness of weak and strong solutions for the 
FitzHugh–Nagumo model. In 2009, a new approach to this system was presented by Bour-
gault, Coudière, and Pierre in [6]. They introduced for the first time the so-called bidomain 
operator A within the L2-setting and showed that it is a nonnegative and self-adjoint opera-
tor. They further showed the existence and uniqueness of a local strong solution and the 
existence of a global, weak solution to the system above for a large class of ionic models.

New impetus to the field was recently given by Giga and Kajiwara [15], who investi-
gated the bidomain equations within the Lp-setting for 1 < p ≤ ∞ . They showed that the 
negative of bidomain operator A is the generator of an analytic semigroup on Lp(�) for 
p ∈ (1,∞] and constructed a local, strong solution to the bidomain system within this 
setting.

Very recently the bidomain operator A was shown to admit a bounded H∞-calculus on 
L
p

0
(�) , see [19]. Moreover, using the theory of critical spaces, it was shown in [18] that the 

(BDE)

⎧
⎪⎨⎪⎩

�tu + F(u,w) − ∇ ⋅ (�i∇ui) = Ii in (0,∞) ×�,

�tu + F(u,w) + ∇ ⋅ (�e∇ue) = −Ie in (0,∞) ×�,

�tw + G(u,w) = 0 in (0,∞) ×�,

(1.4)�i∇ui ⋅ � = 0, �e∇ue ⋅ � = 0 on (0,∞) × ��,

(1.5)u(0) = u0, w(0) = w0 in �.

F(u,w) = u(u − a)(u − 1) + w = u3 − (a + 1)u2 + au + w,

G(u,w) = bw − cu,
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bidomain equations admit global, strong solutions for d = 2, 3 for initial data lying in criti-
cal Besov spaces.

In this context, it is now a natural question to ask, whether the bidomain equations 
admit time-periodic solutions. Of course, periodic solutions can be formulated in vari-
ous ways and various regularity classes, ranging from weak over mild to strong solu-
tions. In this article, we are interested in unique, strong periodic solutions. We show 
that the innervated system admits a unique, strong time-periodic solution of period T 
provided the outer forces Ii and Ie are both time-periodic of period T > 0 . Our approach 
to the existence of unique, strong T-periodic solutions to the bidomain equations in a 
neighborhood of stable equilibrium points is the semilinear version of the periodic Da 
Prato–Grisvard theorem in Sect. 3.

Let us emphasize that we consider here the full bidomain model taking into account 
the anisotropic phenomena and not only the so-called monodomain approximation.

Recently, a very different approach to periodic solutions to the bidomain equations 
was developed by Giga, Kajiwara, and Kress [16]. They showed the existence of a 
strong, periodic solution to the bidomain equations for arbitrary large f ∈ L2(�) based 
on a weak-strong uniqueness argument. Observe, however, that this approach does, by 
its nature, not yield uniqueness of the periodic solution. On the other hand, the semi-
linear version of the periodic Da Prato–Grisvard theorem given in Sect. 3 yields exist-
ence and uniqueness of a periodic solution and allows also to consider forcing terms 
f ∈ Lp(0,T;DA(�, p)).

This paper is organized as follows: Sect.  2 presents the periodic version of the Da 
Prato–Grisvard theorem, which will be extended in Sect. 3 to the semilinear setting. In 
Sect. 4, we present our second main result, the existence of a unique, strong T-periodic 
solution to the bidomain equations subject to a large class of models for the ionic trans-
port. The proofs of the main results concerning the bidomain equations will be given in 
Sect. 5.

2  A periodic version of the Da Prato–Grisvard theorem

Let X be a Banach space and −A be the generator of a bounded analytic semigroup on 
X, i.e., A is closed and densely defined and there exists � ∈ (�∕2,�) and C > 0 such that 
𝛴𝜃 ∶= {𝜆 ∈ ℂ⧵{0} ∶ |arg𝜆| < 𝜃} ⊂ 𝜌(−A) and such that for all � ∈ �� we have

In order to formulate the periodic version of the Da Prato–Grisvard theorem let � ∈ (0, 1) 
and 1 ≤ p < ∞ and recall the space DA(�, p) defined in (1.1). Let 0 < T < ∞ and assume 
that f ∶ ℝ → DA(�, p) is periodic of period T. We recall that the periodic version of (ACP) 
reads as

Formally, a candidate for a solution u to (PACP) is given by (1.3). The following lemma 
shows that, under certain assumptions on A and f, u is indeed well-defined, continuous, and 
periodic.

‖�(� +A)−1‖L(X) ≤ C.

(PACP)
{

u�(t) +Au(t) = f (t), t ∈ ℝ,

u(t) = u(t + T), t ∈ ℝ.
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Lemma 2.1 Let f ∶ ℝ → DA(�, p) be a T-periodic function satisfying 
f|(0,T) ∈ Lp(0, T;DA(�, p)) and assume that 0 ∈ �(A) . Then, the function u defined by (1.3) 
is well-defined, satisfies u ∈ C(ℝ;DA(�, p)) , and is T-periodic.

Proof Let k0 ∈ ℤ be such that −k0T < t ≤ −(k0 − 1)T  . Using Hölder’s inequality, the peri-
odicity of f, and the exponential decay of e−tA , we obtain

for some 𝜔 > 0 . It follows that u is well defined. For the continuity of u, we write for h > 0

By the boundedness of the semigroup it suffices to consider the second integral. This 
resembles the expression from the first part of the proof but with f being replaced by 
[e−hA − Id ]f  . Thus,

and the right-hand side tends to zero as h → 0 by Lebesgue’s theorem. The periodicity of u 
directly follows by using the transformation s� = s + T  and the periodicity of f.   ◻

We now state the periodic version of the Da Prato–Grisvard theorem.

Proposition 2.2 Let X be a Banach space and −A be the generator of a bounded ana-
lytic semigroup on X with 0 ∈ �(A) . Let � ∈ (0, 1) , 1 ≤ p < ∞ , and 0 < T < ∞.

Then there exists a constant C > 0 such that for all T-periodic functions 
f ∶ ℝ → DA(�, p) with f|(0,T) ∈ Lp(0, T;DA(�, p)) the function u defined by  (1.3) lies in 
C(ℝ;DA(�, p)) , is periodic of period T, satisfies u(t) ∈ D(A) for almost every t ∈ ℝ , and 
satisfies

Proof The continuity and periodicity of u are proven in Lemma 2.1. Let t ∈ [0, T) and use 
the transformation s� = s + (k + 1)T  for k ∈ ℕ0 as well as that f is periodic to write

�
t

−∞

‖e−(t−s)Af (s)‖DA(�,p)
ds

= �
t

−k0T

‖e−(t−s)Af (s)‖DA(�,p)
ds +

∞�
k=k0

�
−kT

−(k+1)T

‖e−(t−s)Af (s)‖DA(�,p)
ds

≤ C

�
�

t+k0T

0

‖f (s)‖p
DA(�,p)

ds

� 1

p

+ C

∞�
k=k0

e−�kT �
T

0

‖e−(T−s)Af (s)‖DA(�,p)
ds

≤ C
�
1 +

∞�
k=k0

e−�kT
��

�
T

0

‖f (s)‖p
DA(�,p)

ds

� 1

p

u(t + h) − u(t) = ∫
t+h

t

e−(t+h−s)Af (s) ds + ∫
t

−∞

e−(t−s)A[e−hA − Id ]f (s) ds.

����
t

−∞

e−(t−s)A[e−hA − Id ]f (s) ds
���DA(�,p)

≤ C

�
�

T

0

‖[e−hA − Id ]f (s)‖p
DA(�,p)

ds

� 1

p

‖Au‖Lp(0,T;DA(�,p))
≤ C‖f‖Lp(0,T;DA(�,p))

.
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Set � ∶= ∫ T

0
e−(T−s)Af (s) ds . Since Theorem 1.1 implies

and

the exponential decay of the semigroup implies that it suffices to prove the estimate

Following Lemma 4.14 and Theorem  4.15 of [10], estimate  (2.2) holds true provided � 
belongs to the space of traces T  at 0 of functions belonging to the maximal regularity 
class MR ∶= {u ∈ Lp(0,T;D(A)) ∶ u�,Au ∈ Lp(0,T;DA(�, p))} . Observe that the function 
v ∶ [0,T] → X, t ↦ ∫ t

0
e−(t−s)Af (s)ds belongs to MR and hence so does v(T − ⋅) . Conse-

quently, � = v(T) ∈ T  and the proof is complete.   ◻

Remark 2.3 We remark that estimate  (2.2) can be obtained not only by interpolation 
methods as explained in the proof above but also by elementary considerations based 
on Hölder’s inequality and Fubini’s theorem. For the convenience of the reader, we pre-
sent here also this elementary proof. To this end, let �1, �2 ∈ (0, 1) with �1 + �2 = 1 and 
1∕p� < 𝛾2 < 1 − 𝜃 + 1∕p� , where p′ denotes the Hölder conjugate exponent to p. Then, the 
boundedness and the analyticity of the semigroup and Hölder’s inequality imply

Next, t > 0 implies

An application of (2.3) and Fubini’s theorem yields

as well as

(2.1)u(t) = ∫
t

0

e−(t−s)Af (s) ds +

∞∑
k=0

e−(t+kT)A ∫
T

0

e−(T−s)Af (s) ds.

∫
t

0

e−(t−s)Af (s) ds ∈ D(A) (a.e. t ∈ (0, T))

���t ↦ A�
t

0

e−(t−s)Af (s) ds
���Lp(0,T;DA(�,p))

≤ C‖f‖Lp(0,T;DA(�,p))
,

(2.2)‖t ↦ Ae−tA�‖Lp(0,T;DA(�,p))
≤ C‖f‖Lp(0,T;DA(�,p))

.

‖Ae−�AAe−tA�‖X ≤ C �
T

0

1

(T + � + t − s)�1

1

(T + � + t − s)�2
‖Ae−(T+�+t−s)∕2Af (s)‖X ds

≤ C(� + t)1∕p
�−�2

�
�

T+t

t

1

(� + s)�1p
‖Ae−(�+s)∕2Af (T + t − s)‖p

X
ds

� 1

p

.

(2.3)

‖Ae−�AAe−tA�‖X ≤ C�1∕p
�−�2

�
�

T+t

t

1

(� + s)�1p
‖Ae−(�+s)∕2Af (T + t − s)‖p

X
ds

� 1

p

.

�
T

0

‖Ae−�AAe−tA�‖p
X
dt ≤ C�p(1∕p

�−�2) �
2T

0 �
min{T ,s}

max{0,s−T}

1

(� + s)�1p
‖Ae−(�+s)∕2Af (T + t − s)‖p

X
dt ds.

(2.4)

‖t ↦ Ae−�AAe−tA�‖p
Lp(0,T;X)

≤ C�p(1∕p
�−�2) �

2T

0 �
T

max{0,T−s}

1

(� + s)�1p
‖Ae−(�+s)∕2Af (t)‖p

X
dt ds.
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Another application of Fubini’s theorem yields

where � = p(1 + 1∕p� − � − �2) and

We finally obtain

Now, let �1, �2, �3 ∈ (0, 1) with �1 + �2 + �3 = 1 , 𝜗1 < 𝜃 , 𝜗2p′ < 1 and 𝜗3p < 1 . Since 
DA(�, p) ↪ D(A�1 ) the bounded analyticity of e−tA , Hölder’s inequality, and the above 
embedding implies

Consequently,

  ◻

We conclude this section by showing that, under the assumptions of Proposition  2.2, u 
defined by (1.3) indeed is the unique strong solution to (PACP).

Proposition 2.4 Under the hypotheses of Proposition 2.2 the function u defined by (1.3) 
is the unique strong solution to (PACP) , i.e., u is the unique periodic function of period 
T in C(ℝ;X) that is for almost every t ∈ ℝ differentiable in t, satisfies u(t) ∈ D(A) , and 
Au ∈ Lp(0, T;X) , and u solves

Proof First of all, u is periodic by Lemma 2.1 and since DA(�, p) continuously embeds into 
X the very same lemma implies u ∈ C(ℝ;X).

Assume first that f|(0,T) ∈ Lp(0, T;D(A)) . Then, by a direct calculation, u defined 
by (1.3) is differentiable, satisfies u(t) ∈ D(A) , and solves

for every t ∈ ℝ . The density of Lp(0, T;D(A)) in Lp(0, T;DA(�, p)) and the estimate proven 
in Proposition  2.2 imply that all these properties carry over to all right-hand sides in 
Lp(0, T;DA(�, p)) (but only for almost every t ∈ ℝ ) by an approximation argument.

For the uniqueness, assume that v ∈ C(ℝ;X) with v�,Av ∈ Lp(0,T;X) is another periodic 
function of period T which satisfies the equation for almost every t ∈ ℝ . Let w ∶= u − v . 
Then w satisfies

�
T

0

[Ae−tA�]
p

�,p
dt ≤ C �

∞

0

��−1 �
2T

0 �
T

max{0,T−s}

1

(� + s)�1p
‖Ae−(�+s)∕2Af (t)‖p

X
dt ds d�,

�
T

0

[Ae−tA�]
p

�,p
dt ≤ C �

T

0 �
∞

0

��−1 �
2T+�

T+�−t

1

s�1p
‖Ae−s∕2Af (t)‖p

X
ds d� dt.

�
T

0

[Ae−tA�]
p

�,p
dt ≤ C

� �
T

0 �
∞

T−t

s�−�1p‖Ae−s∕2Af (t)‖p
X
ds dt.

‖Ae−tA�‖X ≤ Ct−�3‖f‖Lp(0,T;DA(�,p))
.

�
T

0

‖Ae−tA�‖p
X
dt ≤ C‖f‖p

Lp(0,T;DA(�,p))
.

u�(t) +Au(t) = f (t).

u�(t) +Au(t) = f (t)
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In this case, for t > 0 , w can be written by means of the semigroup as 
w(t) = e−tA(u(0) − v(0)) . Now, the exponential decay of the semigroup and the periodicity 
of w imply that w must be zero for all t ∈ ℝ .   ◻

For 0 < T < ∞ , we define the solution space �per

A
 as

with norm

which corresponds to the data space

Combining Propositions  2.2 and 2.4 shows that for each periodic f with period T and 
f|(0,T) ∈ Lp(0, T;DA(�, p)) also u�|(0,T) ∈ Lp(0, T;DA(�, p)) . The same is true for u since 
0 ∈ �(A) . Summarizing, there exists a constant C > 0 such that

3  Time‑periodic solutions for semilinear equations

In this section, we use the periodic version of the Da Prato–Grisvard theorem to construct 
time-periodic solutions to semilinear parabolic equations by employing Banach’s fixed 
point theorem.

3.1  An existence theorem for general types of nonlinearities

Let −A be the generator of a bounded analytic semigroup e−tA on a Banach space X with 
the domain D(A) and 0 ∈ �(A) . For T > 0 , � ∈ (0, 1) , and 1 ≤ p < ∞ let f ∶ ℝ → DA(�, p) 
be periodic of period T with f|(0,T) ∈ Lp(0, T;DA(�, p)) . We are aiming for the strong solv-
ability of

under some smallness assumptions on f. The solution u will be constructed in the space of 
maximal regularity �per

A
 defined in (2.5). Recall the corresponding data space

and let �� ∶= �
�
per

A (0, �) denote the ball in �per

A
 centered at 0 and with radius 𝜌 > 0 . For the 

nonlinear term F, we make the following standard assumption.

w�(t) = −Aw(t) (a.e. t ∈ ℝ).

(2.5)�
per

A
∶= {u ∈ W1,p(0, T;DA(�, p)) ∶ Au ∈ Lp(0, T;DA(�, p)) and u(0) = u(T)}

‖u‖
�
per

A

∶= ‖u‖W1,p(0,T;DA(�,p))
+ ‖Au‖Lp(0,T;DA(�,p))

,

�A ∶= Lp(0, T;DA(�, p)).

(2.6)‖u‖
�
per

A

≤ C‖f‖Lp(0,T;DA(�,p))
.

(NACP)
{

u�(t) +Au(t) = F[u](t) + f (t), t ∈ ℝ,

u(t) = u(t + T), t ∈ ℝ

�A = Lp(0, T;DA(�, p))
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Assumption N There exists R > 0 such that the nonlinear term F is a mapping from �R 
into �A and satisfies

where DF ∶ �R → L(�
per

A
, �A) denotes the Fréchet derivative.

The following theorem proves existence and uniqueness of solutions to (NACP) in the 
class �per

A
 for small forcings f.

Theorem 3.1 Let T > 0 , 0 < 𝜃 < 1 , 1 ≤ p < ∞ , and F and R > 0 subject to Assumption N. 
Then there is a constant r ≤ R and c = c(T , 𝜃, p, r) > 0 such that if f ∶ ℝ → DA(�, p) is 
T-periodic with ‖f‖

�A
≤ c , then there exists a unique solution u ∶ ℝ → DA(�, p) of (NACP) 

with the same period T and u|(0,T) ∈ �r.

Proof Let S ∶ �R → �
per

A
, v ↦ uv be the solution operator of the linear equation

with uv(0) = uv(T) . This is well-defined since F[v] ∈ �A by Assumption  N, so that, by 
Proposition 2.4 and the remarks at the end of Sect. 2, uv uniquely exists and lies in �per

A
.

We prove that this solution operator is a contraction on �r for some r ≤ R . Let M > 0 
denote the infimum of all constants C satisfying (2.6). Choose r > 0 small enough such that

which is possible by Assumption N. By virtue of (2.6) as well as the mean value theorem, 
estimate for any v ∈ �r and f satisfying ‖f‖

�A
≤ r∕(2M) =∶ c,

So S(�r) ⊂ �r . Similarly, for any v1, v2 ∈ �r,

Consequently, the solution operator S is a contraction on �r and the contraction mapping 
theorem is applicable. The solution to (NACP) is defined as follows. Let u be the unique 
fixed point of S. Since Su = u , u satisfies u(0) = u(T) and thus can be extended periodically 
to the whole real line. This function solves (NACP) .   ◻

4  Periodic solutions to the bidomain equations

Let the space dimension n ≥ 2 be fixed and let 𝛺 ⊂ ℝ
n denote a bounded domain with 

boundary �� of class C2 . For the conductivity matrices �i and �e , we make the following 
assumptions.

F ∈ C1(�R;�A), F(0) = 0, and DF(0) = 0,

u�
v
(t) +Auv(t) = F[v(t)] + f (t) in (0, T)

sup
w∈�r

‖DF[w]‖L(�per

A
,�A)

≤ 1

2M
,

‖S(v)‖
�
per

A

≤ M(‖F[v]‖
�A

+ ‖f‖
�A
) ≤ M( sup

w∈�r

‖DF[w]‖L(�per

A
,�A)

‖v‖
�
per

A

+ ‖f‖
�A
) ≤ r.

‖S(v1) − S(v2)‖�per

A

≤ M sup
w∈�r

‖DF[w]‖L(�per

A
,�A)

‖v1 − v2‖�per

A

≤ 1

2
‖v1 − v2‖�per

A

.
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Assumption E The conductivity matrices �i, �e ∶ � → ℝ
n×n are symmetric matrices and 

are functions of class C1(�) . Ellipticity is imposed by means of the following condition: 
there exist constants � , � with 0 < 𝜎 < 𝜎 such that

for all x ∈ � and all � ∈ ℝ
n . Moreover, it is assumed that

It is known that (4.2) is a biological reasonable assumption.
Next, we define the bidomain operator in the Lq-setting for 1 < q < ∞ . To this end, let 

L
q
av(�) ∶= {u ∈ Lq(�) ∶ ∫

�
u dx = 0} and let Pav be the canonical projection from Lq(�) 

to Lqav(�) , i.e., Pavu ∶= u −
1

|�| ∫� u dx . We then introduce the operators Ai and Ae by

where Ai,e and �i,e indicates that either Ai and �i or Ae and �e are considered. Due to condi-
tion (4.2), we obtain D(Ai) = D(Ae) , and thus, it is possible to define the sum Ai + Ae of 
Ai and Ae with the domain D(Ai) = D(Ae) . Note that the inverse operator (Ai + Ae)

−1 on 
L
q
av(�) is a bounded linear operator.

Following [15], we define the bidomain operator as follows. Let �i and �e satisfy 
Assumption E. Then the bidomain operator A is defined as

with domain

The following result for A was proven by Giga and Kajiwara in [15] using a contradiction 
argument. For a direct proof and the H∞-calculus property of A, see [19].

Proposition 4.1 [15, Theorem 4.7, Theorem 4.9], [19] Let 1 < q < ∞ , � be a bounded 
C2-domain and let �i and �e satisfy Assumption E. Then −A generates a bounded analytic 
semigroup e−tA on Lq(�).

Under the assumption of the conservation of currents, i.e.,

and assuming moreover ∫
�
ue dx = 0 , the bidomain equations (BDE) may be equivalently 

rewritten as an evolution equation [6, 15] of the form

(4.1)����2 ≤ ⟨�i(x)�, �⟩ ≤ ����2 and ����2 ≤ ⟨�e(x)�, �⟩ ≤ ����2

(4.2)
�i∇ui ⋅ � = 0 ⇔ ∇ui ⋅ � = 0 on ��,

�e∇ue ⋅ � = 0 ⇔ ∇ue ⋅ � = 0 on ��.

Ai,eu ∶= −∇ ⋅ (𝜎i,e∇u),

D(Ai,e) ∶=
{
u ∈ W2,q(𝛺) ∩ Lq

av
(𝛺) ∶ 𝜎i,e∇u ⋅ 𝜈 = 0 a.e. on 𝜕𝛺

}
⊂ Lq

av
(𝛺),

(4.3)A = Ai(Ai + Ae)
−1AePav

D(A) ∶= {u ∈ W2,q(�) ∶ ∇u ⋅ � = 0 a.e. on ��}.

(4.4)�
�

(Ii(t) + Ie(t)) dx = 0, t ≥ 0

(ABDE)

⎧⎪⎨⎪⎩

�tu + Au + F(u,w) = I, in (0,∞),

�tw + G(u,w) = 0, in (0,∞),

u(0) = u0,

w(0) = w0,
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where

is the modified source term. The functions ue and ui can be recovered from u by virtue of 
the following relations

For the situation of the bidomain operator A, the solution space for u reads as

The solution space for the gating variable w is defined as

Then, the solution space for the periodic bidomain system is defined as the product space

Finally, for a Banach space X we denote by �X(u∗,R) the closed ball in X with center 
u∗ ∈ X and radius R > 0 , i.e.,

We now state our main results concerning the existence and uniqueness of strong T-peri-
odic solutions to the bidomain equations subject to various models of the ionic transport. 
Notice that the respective models treated here are slightly more general as described in the 
introduction, as an additional parameter 𝜀 > 0 is introduced, that incorporates the phenom-
enon of fast and slow diffusion.

Additionally to Assumption E on the conductivity matrices of the bidomain operator A, we 
require the following regularity and periodicity conditions on the forcing term I.

Assumption P Let 2� ∈ (0, 1) , 1 ≤ p < ∞ , and 1 < q < ∞ satisfy 2𝜃 > n∕q or, if p = 1 
let 2� ≥ n∕q . Assume I ∶ ℝ → DA(�, p) is a T-periodic function satisfying I|(0,T) ∈ �A for 
some � ∈ (0, 1∕2) and T > 0.

Remark 4.2 If � has a C4-boundary and if the conductivity matrices �i and �e lie in 
W3,∞(�;ℝn×n) , then Assumption P is satisfied by virtue of (4.5) if Ii, Ie ∶ ℝ → DA(�, p) are 
T-periodic functions satisfying Ii|(0,T) and Ie|(0,T) ∈ �A . Indeed, this follows by real interpola-
tion since Ai(Ai + Ae)

−1 is bounded on Lqav(�) and from D(A) into W2,q(�) ∩ L
q
av(�).

We start with the most classical model due to FitzHugh and Nagumo.

4.1  The periodic bidomain FitzHugh–Nagumo model

For T > 0 , 0 < a < 1 , and b, c, 𝜀 > 0 , the periodic bidomain FitzHugh–Nagumo equations are 
given by

(4.5)I ∶= Ii − Ai(Ai + Ae)
−1(Ii + Ie)

ue = (Ai + Ae)
−1{(Ii + Ie) − AiPavu},

ui = u + ue.

�
per

A
= {u ∈ W1,p(0,T;DA(�, p)) ∶ Au ∈ Lp(0, T;DA(�, p)) and u(0) = u(T)}.

�
per
w

∶= {w ∈ W1,p(0,T;DA(�, p)) ∶ w(0) = w(T)}.

� ∶= �
per

A
× �

per
w
.

�
X(u∗,R) ∶= {u ∈ X ∶ ‖u − u∗‖X ≤ R}.
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This system has three equilibrium points, the trivial one (u1,w1) = (0, 0) and two others 
given by (u2,w2) and (u3,w3) , where

and d =
√

(a + 1)2 − 4(a +
c

b
) . We assume that the following stability condition (SFN) on 

the coefficients is satisfied:

Our result on strong periodic solutions to the bidomain FitzHugh–Nagumo equations reads 
then as follows.

Theorem  4.3 Let 𝛺 ⊂ ℝ
n , n ≥ 2 , be a bounded C2-domain and suppose that Assump-

tions E and P hold true.

(a) Then there exist constants R > 0 and C(R) > 0 such that if ‖I‖
�A

< C(R) , Eq. (4.6) 
admits a unique T-periodic strong solution (u, w) with (u,w)|(0,T) ∈ �

�((0, 0),R).
(b) If condition (SFN) is satisfied, then there exist constants R > 0 and C(R) > 0 such 

that if ‖I‖
�A

< C(R) , Eq. (4.6) admits a unique T-periodic strong solution (u, w) with 
(u,w)|(0,T) ∈ �

�((u3,w3),R).

4.2  The periodic bidomain Aliev–Panfilov model

For T > 0 , 0 < a < 1 , and d, k, 𝜀 > 0 , the periodic bidomain Aliev–Panfilov equations are 
given by

This system has only one stable equilibrium point, namely the trivial solution 
(u1,w1) = (0, 0) . Our theorem on the existence and uniqueness of strong, periodic solutions 
to the periodic bidomain Aliev–Panfilov equations reads as follows.

Theorem  4.4 Let 𝛺 ⊂ ℝ
n , n ≥ 2 , be a bounded C2-domain and suppose that Assump-

tions  E and  P hold true. Then, there exist constants R > 0 and C(R) > 0 such that 

(4.6)

⎧
⎪⎨⎪⎩

�tu + �Au = I −
1

�
[u3 − (a + 1)u2 + au + w] in ℝ ×�,

�tw = cu − bw in ℝ ×�,

u(t) = u(t + T) in ℝ ×�,

w(t) = w(t + T) in ℝ ×�.

(4.7)
u2 =

1

2
(a + 1 − d), w2 =

c

2b
(a + 1 − d),

u3 =
1

2
(a + 1 + d), w3 =

c

2b
(a + 1 + d),

c < b

�
(a − 1)2

4
− a

�
and u3 >

1

3

�
a + 1 +

√
(a + 1)2 − 3a

�
. (SFN)

(4.8)

⎧⎪⎨⎪⎩

�tu + �Au = I −
1

�
[ku3 − k(a + 1)u2 + kau + uw] in ℝ ×�,

�tw = −(ku(u − 1 − a) + dw) in ℝ ×�,

u(t) = u(t + T) in ℝ ×�,

w(t) = w(t + T) in ℝ ×�.
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if ‖I‖
�A

< C(R) ,  Eq.  (4.8) admits a unique T-periodic strong solution (u,  w) with 
(u,w)|(0,T) ∈ �

�((0, 0),R).

4.3  The periodic bidomain Rogers–McCulloch model

For T > 0 , 0 < a < 1 , and b, c, d, 𝜀 > 0 , the periodic bidomain Rogers–McCulloch equa-
tions are given by

This system has three equilibrium points, the trivial one (u1,w1) = (0, 0) and two others 
given by (u2,w2) and (u3,w3) , where

and e =
√(

a + 1 −
c

bd

)2

− 4a . We assume that the following stability condition (SRM) on 
the coefficients is satisfied:

Our theorem on the existence and uniqueness of strong periodic solutions to the periodic 
bidomain Rogers–McCulloch equations reads as follows.

Theorem  4.5 Let 𝛺 ⊂ ℝ
n , n ≥ 2 , be a bounded C2-domain and suppose that Assump-

tions E and P hold true.

(a) Then there exist constants R > 0 and C(R) > 0 such that if ‖I‖
�A

< C(R), Eq. (4.9) 
admits a unique T-periodic strong solution (u, w) with (u,w)|(0,T) ∈ �

�((0, 0),R).
(b) If condition (SRM) is satisfied, then there exist constants R > 0 and C(R) > 0 such 

that if ‖I‖
�A

< C(R), Eq. (4.9) admits a unique T-periodic strong solution (u, w) with 
(u,w)|(0,T) ∈ �

�((u3,w3),R).

4.4  The periodic bidomain Allen–Cahn equation

For T > 0 , the periodic bidomain Allen–Cahn equation is given by

(4.9)

⎧⎪⎨⎪⎩

�tu + �Au = I −
1

�
[bu3 − b(a + 1)u2 + bau + uw] in ℝ ×�,

�tw = cu − dw in ℝ ×�,

u(t) = u(t + T) in ℝ ×�,

w(t) = w(t + T) in ℝ ×�.

(4.10)u2 =
1

2
(a + 1 −

c

bd
− e), w2 =

c

2d
(a + 1 −

c

bd
− e),

(4.11)u3 =
1

2
(a + 1 −

c

bd
+ e), w3 =

c

2d
(a + 1 −

c

bd
+ e),

√(
a + 1 −

c

bd

)2

− 4a −
c

bd
> 0. (SRM)

(4.12)
{

�tu + Au = I + u − u3 in ℝ ×�,

u(t) = u(t + T) in ℝ ×�.
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This system has three equilibrium points, u1 = −1 , u2 = 0 , and u3 = 1 and our theorem 
on the existence and uniqueness of strong, periodic solutions to the periodic bidomain 
Allen–Cahn equation reads as follows.

Theorem  4.6 Let 𝛺 ⊂ ℝ
n , n ≥ 2 , be a bounded C2-domain and suppose that Assump-

tions E and P hold true. 

(a) Then, there exist constants R > 0 and C(R) > 0 such that if ‖I‖
�A

< C(R)  Eq. (4.12) 
admits a unique T-periodic strong solutions u with u|(0,T) ∈ �

�
per

A (−1,R).
(b) Then, there exist constants R > 0 and C(R) > 0 such that if ‖I‖

�A
< C(R)  Eq. (4.12) 

admits a unique T-periodic strong solutions u with u|(0,T) ∈ �
�
per

A (1,R).

5  Proofs of the theorems related to the bidomain equations

The proofs of the results presented in Sect. 4 will be subdivided in several subsections. We 
start with a result on the linear part of the bidomain systems. The linear part of the bido-
main system will be represented as an operator matrix and it will be eminent that the nega-
tive of this operator matrix generates a bounded analytic semigroup.

5.1  Linear theory

Let −B be the generator of a bounded analytic semigroup on a Banach space X1 with 
0 ∈ �(B) , 1 ≤ p < ∞ , and � ∈ (0, 1) . Let X2 = DB(�, p) and define for d > 0 and b, c ≥ 0 
the operator A ∶ X ∶= X1 × X2 → X with domain D(A) ∶= D(B) × X2 by

Lemma 5.1 Then −A generates a bounded analytic semigroup on X with 0 ∈ �(A).

Proof Let �� , � ∈ (�∕2,�] , be a sector that satisfies 𝜌(−B) ⊂ 𝛴𝜔 with

First note that 0 ∈ �(A) ; its inverse being

Note that the choice X2 = DB(�, p) is used here as A−1 is only an operator from X1 × X2 
onto D(B) × X2 if D(B) ⊂ X2 ⊂ X1 and if B(bc + dB)−1 maps X2 into X2 . By the definition of 
DB(�, p) in (1.1) this latter is satisfied.

For the resolvent problem let � ∈ �� , � ∈ (�∕2,�) to be chosen. Then,

A ∶=

(
B b

−c d

)
.

‖�(� + B)−1‖L(X1)
≤ C (� ∈ ��).

A
−1 =

(
d − b

c B

)
(bc + dB)−1.
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whenever � +
bc

�+d
∈ �(−B) . To determine the angle � for which � +

bc

�+d
∈ �(−B) distin-

guish between the cases |𝜆| < M and |�| ≥ M for some suitable constant M > 0 . Notice 
that only the case b, c > 0 is of interest. Let C𝜔 > 0 be a constant depending solely on � 
such that |� + d| ≥ C�(|�| + d) . Choose M such that |�| ≥ M if and only if

This implies

and thus that � +
bc

�+d
∈ �� . Moreover,

Next, choose � that close to �∕2 such that

Notice that M itself depends on � , however, it depends only uniformly on its distance to � 
by  (5.1). In the case |𝜆| < M the validity of  (5.3) together with trigonometric considera-
tions implies that Re

(
� +

bc

d+�

) ≥ 0 proving that under conditions (5.1) and (5.3) we have 
� +

bc

d+�
∈ �� whenever � ∈ �� . We conclude that � ∈ �(−A) . To obtain the resolvent esti-

mate, we calculate

The first term on the right-hand side is directly handled by the resolvent estimate of B. The 
second is treated by this resolvent estimate as well and by noting that X2 ⊂ X1 . The fourth 
term is estimated by using that the definition of X2 in (1.1) implies resolvent estimates in X2 
[the resolvent commutes with the semigroup appearing in  (1.1)]. For the third term, the 
estimate follows from the invertibility of B and the interpolation inequality 
‖x‖X2

≤ C‖x‖1−�
X1

‖Bx‖�
X1

 . Altogether, this yields

The resolvent estimate for |�| ≥ M follows by means of the uniform boundedness of the 
term |�∕(� + d)| and by (5.2).

For |𝜆| < M the function � ↦ �(� +A)−1 is continuous on �� ∩ B(0,M) since 0 ∈ �(A) . 
This implies the resolvent estimate also for small � .   ◻

(� +A)−1 = (� + d)−1
(
� + d − b

c � + B

)(
� +

bc

� + d
+ B

)−1

(5.1)C� sin(� − �)[|�|2 + d|�|] ≥ 2bc.

|||
bc

� + d

||| ≤ bc

C�(|�| + d)
≤ |�| sin(� − �)

2

(5.2)|||� +
bc

d + �

||| ≥ |�|
(
1 −

sin(� − �)

2

)
.

(5.3)M sin(� − �∕2) ≤ bcd

bc + (d +M)2
.

‖�(� +A)−1‖L(X) ≤ ����
�
� +

bc

� + d
+ B

�−1���L(X1)
+
���

�b

� + d

���
���
�
� +

bc

� + d
+ B

�−1���L(X2,X1)

+
���

�c

� + d

���
���
�
� +

bc

� + d
+ B

�−1���L(X1,X2)
+
���

�

� + d

���
���(� + B)

�
� +

bc

� + d
+ B

�−1���L(X2)
.

‖�(� +A)−1‖L(X) ≤ C

�
��� + ���

�b

� + d

��� +
���

�c

� + d

���
���� +

bc

� + d

���
�

+
���

�2

� + d

���
����� +

bc

� + d

���
−1

+ C
���

�

� + d

���.
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5.2  The bidomain equations as semilinear evolution equations

A short glimpse toward the models presented in Sects. 4.1–4.4 reveals that one of the fol-
lowing situations occurs:

• The bidomain operator A appears only in the first but not in the second equation of 
the bidomain models and the nonlinearity depends linearly on the gating variable w. 
(Sects. 4.1–4.3)

• The ODE and the gating variable w are omitted. (Sect. 4.4)

As a consequence, in the first situation the operator associated with the linearization 
of the bidomain models can be written as an operator matrix whose first component 
of the domain embeds into a W2,q-space. Since the dynamics of the gating variable is 
described only by an ODE, there appears no smoothing in the spatial variables of w. 
However, as we aim to employ Theorem 3.1 and as the nonlinearity of the first equation 
depends linearly on w, at least in the models of Aliev–Panfilov and Rogers–McCulloch, 
w must be contained in DA(�, p) . Otherwise, one cannot view the nonlinearity as a suit-
able right-hand side as it is done in Sect. 3.1. Hence, we choose DA(�, p) as the ground 
space for the gating variable.

To describe this situation in our setup, assume in the following, that −A is the gen-
erator of a bounded analytic semigroup on a Banach space X = X1 × X2 , with domain 
D(A) = D(A1) × D(A2) , and 0 ∈ �(A) . We further set for some 1 < q < ∞ , 1 ≤ p < ∞ , and 
� ∈ (0, 1)

Furthermore, define two types of nonlinearities as follows: For a1, a2, a3, a4 ∈ ℝ let

and for b1 , b2 ∈ ℝ let

Here, F1 will be a prototype of the nonlinearities considered in Sects. 4.1–4.3 and F2 for the 
one considered in Sect. 4.4. For the moment, the condition 0 ∈ �(A) seems inappropriate 
as 0 ∉ �(A) . However, we will linearize the bidomain equations around suitable stable sta-
tionary solutions and in this situation 0 ∈ �(A) will be achieved.

In the following, we concentrate only on F1 , since the results for F2 may be proved in a 
similar way. To derive conditions on p, q, and � ensuring that F1 satisfies Assumption N, 
the following lemma is essential.

Lemma 5.2 Let 𝛺 ⊂ ℝ
n be a bounded C2-domain. Let s > 0 and p, q ∈ [1,∞) with 

s > n∕q or, in the case p = 1 , let s ≥ n∕q . Then Bs
q,p
(�) is a Banach algebra.

Proof If � = ℝ
n and s > n∕q this readily follows by Sobolev’s embedding combined 

with [5, Cor. 2.86]. If s = n∕q and p = 1 , then [5, Cor. 2.86] has to be combined with [5, 
Prop. 2.39]. Finally, the algebra property on domains is directly transferred from the whole 
space since bounded C2-domains are Sobolev extension domains.   ◻

X1 = Lq(�), D(A1) = D(A), and X2 = D(A2) = DA(�, p).

F1[u1, u2] ∶=

(
a1u

2
1
+ a2u

3
1
+ a3u1u2

a4u
2
1

)

F2[u1] ∶= b1u
2
1
+ b2u

3
1
.
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Proposition 5.3 Let 2� ∈ (0, 1) , 1 ≤ p < ∞ , and 1 < q < ∞ satisfy 2𝜃 > n∕q or, if p = 1 
let 2� ≥ n∕q . Then there exists a constant C > 0 such that

for all u1 ∈ �
per

A1
 and u2 ∈ �

per

A2
.

Proof Let � ∈ {1, 2, 3} and � ∈ {0, 1} . By [2] and [17, Corollary 6.5.5], we have 
DA(�, p) = B2�

q,p
(�) . Lemma 5.2 implies that

for some constant C > 0 . Using that W1,p(0, T;B2𝜃
q,p
(𝛺)) ⊂ L∞(0, T;B2𝜃

q,p
(𝛺)) delivers

By definition of �per

A1
 and �per

A2
 this readily proves the proposition.   ◻

Finally, by definition of F1 it is clear that F1(0, 0) = 0 . Moreover, due to the polynomial 
structure of F1 it is clear that F1 is Fréchet differentiable with DF1(0, 0) = 0 . Hence, we 
have the following proposition.

Proposition 5.4 With the definitions of this subsection the nonlinearities F1 and F2 sat-
isfy Assumption N.

Now, we are ready to prove the main results presented in Sect. 4. To do so, the equilib-
rium points of the nonlinearities are calculated for the respective models. Afterward, the 
solutions to the bidomain models are written as the sum of the equilibrium solution and 
a perturbation. This results in an equation for the perturbation which is shown via Theo-
rem 3.1 to have strong periodic solutions for suitable equilibrium points.

5.3  The periodic bidomain FitzHugh–Nagumo equation

Recall the periodic bidomain FitzHugh–Nagumo equation

In order to calculate the equilibrium points, we consider

Then, the equilibrium points are (u1,w1) = (0, 0) and assuming c < b
( (a+1)2

4
− a

)
 , we 

obtain furthermore

‖F1(u1, u2)‖�A ≤ C
�‖u1‖2�per

A1

+ ‖u1‖3�per

A1

+ ‖u1‖�per

A1

‖u2‖�per

A2

�

‖u�
1
u
�

2
‖Lp(0,T;DA(�,p))

≤ C‖u1‖Lp(0,T;DA(�,p))
‖u1‖�−1L∞(0,T;DA(�,p))

‖u2‖�L∞(0,T;DA(�,p))

‖u�
1
u
�

2
‖Lp(0,T;DA(�,p))

≤ C‖u1‖�W1,p(0,T;DA(�,p))
‖u2‖�W1,p(0,T;DA(�,p))

.

(5.4)

⎧⎪⎨⎪⎩

�tu + �Au = I −
1

�
[u3 − (a + 1)u2 + au + w] in ℝ ×�,

�tw = cu − bw in ℝ ×�,

u(t) = u(t + T) in ℝ ×�,

w(t) = w(t + T) in ℝ ×�.

(5.5)u3 − (a + 1)u2 + au + w = 0,

(5.6)cu − bw = 0.
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with d =
√

(a + 1)2 − 4(a +
c

b
) . In the following, we use the results from Sects. 2 and 3 to 

obtain periodic solutions in a neighborhood of these equilibrium points. For this purpose, 
we use Taylor expansion at the equilibrium points and perform the following change of 
variables

for i = 1, 2, 3 . Then, functions F and G describing the ionic transport defined as in the 
introduction read as follows

Plugging this into Eq. (5.4) and shifting the linear parts of F and G to the left-hand side 
yields

First of all, notice that Proposition  5.4 implies that the nonlinearity in  (5.9) satisfies 
Assumption  N. Next, regarding the system with respect to the equilibrium point (0,  0), 
then −(�A +

a

�
) generates a bounded analytic semigroup by Proposition  4.1 and since 

0 ∈ �(�A +
a

�
) , we may apply Lemma  5.1 to conclude that the negative of the operator 

matrix in (5.9) has zero in its resolvent set and generates a bounded analytic semigroup. 
Consequently, Theorem 3.1 is applicable in the case of the equilibrium point (0,  0) and 
delivers a unique strong periodic solution (v, z) to (5.9) in the desired function space for 
small periodic forcings I.

For the second equilibrium point, we have 3u2
2
− 2(a + 1)u2 + a < 0 . Since 0 ∈ �(A) 

the operator −(�A +
1

�
[3u2

2
− 2(a + 1)u2 + a]) does not generate a bounded analytic semi-

group so that Lemma 5.1 is not applicable.
If

we obtain 3u2
3
− 2(a + 1)u3 + a > 0 . Thus, −(�A +

1

�
[3u2

3
− 2(a + 1)u3 + a]) generates a 

bounded analytic semigroup by Proposition 4.1 and 0 ∈ �(�A +
1

�
[3u2

3
− 2(a + 1)u3 + a]) . 

Hence, we can apply Lemma  5.1 to conclude that the negative of the operator matrix 
in  (5.9) has zero in its resolvent set and generates a bounded analytic semigroup. 

(5.7)(u2,w2) =
(
1

2
(a + 1 − d),

c

2b
(a + 1 − d)

)
,

(5.8)(u3,w3) =
(
1

2
(a + 1 + d),

c

2b
(a + 1 + d)

)
,

(
v

z

)
∶=

(
u − ui
w − wi

)

F(v, z) =
1

�
[v3 + (3ui − a − 1)v2 + (3u2

i
− 2(a + 1)ui + a)v + z],

G(v, z) = −cv + bz.

(5.9)

⎧⎪⎪⎨⎪⎪⎩

�t

�
v

z

�
+

�
�A +

1

�
[3u2

i
− 2(a + 1)ui + a]

1

�

−c b

��
v

z

�
=

�
I −

1

�
[v3 + (3ui − a − 1)v2]

0

�
,

v(t) = v(t + T),

z(t) = z(t + T).

u3 >
a + 1 +

√
(a + 1)2 − 3a

3
,
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Consequently, Theorem 3.1 is applicable in this case of the equilibrium point (u3,w3) and 
delivers a unique strong periodic solution (v, z) to (5.9) in the desired function spaces for 
small periodic forcings I. This proves Theorem 4.3.

5.4  The periodic bidomain Aliev–Panfilov equation

Recall the periodic bidomain Aliev–Panfilov equation

In order to calculate the equilibrium points, we consider

Then, the equilibrium points are (u1,w1) = (0, 0) and, if we assume (a+1)2

4
+

da

1−d
> 0 , 

furthermore

with e =
√

(a+1)2

4
+

da

1−d
 . In the following, we want to use the results from Sects. 2 and 3 to 

obtain periodic solutions in a neighborhood of these equilibrium points. For this purpose, 
we use Taylor expansion at the equilibrium points and perform the following change of 
variables

for i = 1, 2, 3 . Then, functions F and G describing the ionic transport defined as in the 
introduction read as follows

Plugging this into Eq. (5.10) and shifting the linear parts of F and G to the left-hand side 
yields

(5.10)

⎧⎪⎨⎪⎩

�tu + �Au = I −
1

�
[ku3 − k(a + 1)u2 + kau + uw] in ℝ ×�,

�tw = −(ku(u − 1 − a) + dw) in ℝ ×�,

u(t) = u(t + T) in ℝ ×�,

w(t) = w(t + T) in ℝ ×�.

(5.11)ku3 − k(a + 1)u2 + kau + uw = 0,

(5.12)ku(u − 1 − a) + dw = 0.

(5.13)(u2,w2) =
(
a + 1

2
− e,−ku2

2
+ k(a + 1)u2 − ka

)
,

(5.14)(u3,w3) =
(
a + 1

2
+ e,−ku2

3
+ k(a + 1)u3 − ka

)
.

(
v

z

)
∶=

(
u − ui
w − wi

)

F(v, z) =
1

�
[kv3 + (3kui − k(a + 1))v2 + (3ku2

i
− 2k(a + 1)ui + ka + wi)v + uiz + vz],

G(v, z) = (2kui − k(a + 1))v + dz + kv2.
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According to Proposition 5.4, the nonlinearity in  (5.15) satisfies Assumption N. Moreo-
ver, considering the system for the equilibrium point (0, 0), then −(�A +

ka

�
) generates a 

bounded analytic semigroup by Proposition  4.1 and since 0 ∈ �(�A +
ka

�
) , we can apply 

Lemma 5.1 to conclude that the negative of the operator matrix in  (5.15) has zero in its 
resolvent set and generates a bounded analytic semigroup. Consequently, Theorem 3.1 is 
applicable in the case of the equilibrium point (0, 0) and delivers a unique strong periodic 
solution (v, z) to (5.15) in the desired function space for small periodic forcings I.

For the second equilibrium point, we see that u2 < 0 , so that the component in the upper 
right component of the operator matrix is negative. Therefore, we cannot apply Lemma 5.1 for 
(u2,w2).

Similarly, for (u3,w3) it is

Hence, Lemma 5.1 is not applicable in this case. Altogether, Theorem 4.4 follows.

5.5  The periodic bidomain Rogers–McCulloch equation

The reasoning is literally the same as in Sect. 5.4 and is therefore omitted.

5.6  The periodic bidomain Allen–Cahn equation

Recall the periodic bidomain Allen–Cahn equation

The equilibrium points of this system are u1 = −1 , u2 = 0 , and u3 = 1 . In the following, we 
want to use the results from Sects. 2 and 3 to obtain periodic solutions in a neighborhood 
of these equilibrium points. For this purpose, we use Taylor expansion at the equilibrium 
points and perform the change of variables v = u − ui for i = 1, 2, 3 . Then, the function 
F(u) = u3 − u reads as follows

Plugging this into Eq. (5.16) and shifting the linear parts of F to the left-hand side yields

(5.15)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�t

�
v

z

�
+

�
�A +

1

�
[3ku2

i
− 2k(a + 1)ui + ka + wi]

ui

�

2kui − k(a + 1) d

��
v

z

�

=

�
I −

1

�
[kv3 + (3kui − k(a + 1))v2 + vz]

−kv2

�
,

v(t) = v(t + T),

z(t) = z(t + T).

2ku3 − k(a + 1) = 2ke > 0.

(5.16)
{

�tu + Au = I + u − u3 in ℝ ×�,

u(t) = u(t + T) in ℝ ×�.

F(v) = v3 + 3uiv
2 − (1 − 3u2

i
)v, i = 1, 2, 3.

(5.17)
{

�tv + (A − 1 + 3u2
i
)v = I − v3 − 3uiv

2 in ℝ ×�,

u(t) = u(t + T) in ℝ ×�
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for i = 1, 2, 3 . According to Proposition 5.4, the nonlinearity in  (5.17) satisfies Assump-
tion  N. Since −(A + 2) generates a bounded analytic semigroup by Proposition  4.1 and 
since 0 ∈ �(A + 2) , Theorem 3.1 is applicable in the case of the equilibrium points u1 and 
u3 and delivers a unique strong periodic solution v to (5.17) in the desired function space 
for small forcings I. Thus, we obtain Theorem 4.6.
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