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Abstract. The aim of this article is to deepen the understanding of the derivation of Lp-estimates of non-
local operators. We review the Lp-extrapolation theorem of Shen (2005) which builds on a real variable
argument of Caffarelli and Peral (1998) and adapt this theorem to account for non-local weak reverse
Hölder estimates. These non-local weak reverse Hölder estimates appear, for example, in the investigation
of non-local elliptic integrodifferential operators. This originates from the fact that here only a non-local
Caccioppoli inequality is valid, see Kuusi, Mingione, and Sire (2015). As an application, we prove resolvent
estimates and maximal regularity properties in Lp-spaces of non-local elliptic integrodifferential operators.

1. Introduction

Non-local phenomena play a major role in many different areas in the study of par-
tial differential equations [1,7,9,10,12,25,31,33]. In particular, in mathematical fluid
mechanics non-local phenomena arise naturally due to the presence of the pressure and
the imposed solenoidality of the velocity field. One prominent example of a non-local
operator in the study of mathematical fluid mechanics is the Stokes operator that is
given—if the underlying domain is regular enough—by the Helmholtz projection P

applied to the Laplacian −�.
Another prominent example is the so-called dissipative surface quasi-geostrophic

equation. It is often studied as a model equation to understand nonlinear mechanisms
[11,25] connected to the Navier–Stokes equations. The dissipative surface quasi-
geostrophic equation involves the fractional Laplacian which is given in the whole
space for α ∈ (0, 1) and u ∈ C∞

c (Rd) by

[(−�)αu](x) := Cd,α p.v.
ˆ
Rd

u(x) − u(y)

|x − y|d+2α dy. (1.1)

Here, Cd,α > 0 denotes a suitable normalization constant.
For both types of operators, certain mapping properties cease to exist in irregular

situations. Indeed, it iswell known that the Stokes operator does not generate a strongly
continuous semigroup on Lp

σ if p > 2 is large enough and if it is considered in
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a bounded Lipschitz domain [14]. Also, the Riesz transform ∇(−�D)−1/2 is not
bounded in general on Lp for p > 3 if it is considered in an arbitrary bounded
Lipschitz domain [19]. Here, −�D denotes the Dirichlet Laplacian on the underlying
domain. Such phenomena do not only occur in the presence of an irregular boundary,
but also in smooth geometric constellations in the presence of irregular coefficients. For
example, if A = −∇ ·μ∇ denotes an elliptic operator with complex L∞-coefficients,
an example by Frehse [16,18] shows that for any p > 2d/(d − 2) there exists a
complex-valued, strongly elliptic matrix μ ∈ L∞ such that (Id+A)−1 does not map
Lp into itself. Here, the dimension d satisfies d ≥ 3.
Important tools to reveal for which numbers p ∈ (1,∞) certain Lp-mapping prop-

erties do still hold are so-called p-sensitive Calderón–Zygmund theorems. Amongst
others, there is the Lp-extrapolation theorem of Shen [27] which builds on a real
variable argument of Caffarelli and Peral [8, Sec. 1]. This argument was already suc-
cessfully applied to reveal properties of the Stokes operator in Lipschitz domains,
Riesz transforms of elliptic operators, homogenization theory of elliptic operators,
maximal regularity properties of elliptic operators, and elliptic boundary value prob-
lems [8,15,21,27–30,34,37]. In itswhole space version, thisLp-extrapolation theorem
reads as follows, cf. [27, Thm. 3.1]. For its formulation we denote by L(E, F) set of
all bounded linear operators between two Banach spaces E and F and by

ffl
B dx the

mean value integral over a measurable set B with 0 < |B| < ∞.

Theorem 1.1. (Shen) Let T ∈ L(L2(Rd),L2(Rd)) be a bounded linear operator.
Assume there exist p > 2, ι2 > ι1 > 1, and C > 0 such that for all x0 ∈ R

d , r > 0,
and all compactly supported functions f ∈ L∞(Rd) with f ≡ 0 in B(x0, ι2r) the
inequality

( 
B(x0,r)

|T f |p dx

) 1
p ≤ C

{(  
B(x0,ι1r)

|T f |2 dx

) 1
2 + sup

B′⊃B

(  
B′

| f |2 dx

) 1
2
}

(1.2)

holds. Here, the supremum runs over all balls B ′ containing B.
Then, for all 2 < q < p the restriction of the operator T to L2(Rd) ∩ Lq(Rd)

extends to a bounded operator on Lq(Rd). Furthermore, the Lq-operator norm of T
can be quantified by the constants above.

See [27, Thm. 3.3] for a version of this theorem in bounded Lipschitz domains and
[34, Thm. 4.1] for an extension to Lebesgue measurable sets and the vector-valued
case. If an estimate of the form (1.2) can be established but without the term involving
the supremum, the corresponding inequality is called a weak reverse Hölder estimate.
In [34] and [15] one finds applications of Shen’s Lp-extrapolation theorem to

establish mapping properties of resolvents of elliptic operators in divergence form
with irregular coefficients and in irregular domains. The ingredients to establish the
requiredweak reverse Hölder estimates in the corresponding situations arewell known
as only Sobolev’s embedding, Caccioppoli’s inequality, andMoser’s iteration are used.
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However, these basic ingredients suffice to unveil optimal mapping properties for the
resolvent operators. Unfortunately, these basic techniques cease to work to establish a
weak reverse Hölder estimate suitable for Theorem 1.1 if the elliptic operator in diver-
gence form is replaced by an operator that is non-local as, for example, the Stokes
operator. Motivated by this fact, we study here as “toy operators” non-local elliptic
integrodifferential operators of order 2α, where α ∈ (0, 1). These operators generalize
the fractional Laplacian in the whole space given by (1.1) and are defined via the form
method as follows:

Define the for α ∈ (0, 1) the fractional Sobolev space Wα,2(Rd) by

Wα,2(Rd) := { f ∈ L2(Rd) : ‖ f ‖Wα,2(Rd ) < ∞}

where

‖ f ‖2Wα,2(Rd )
:= ‖ f ‖2L2(Rd )

+
ˆ
Rd

ˆ
Rd

| f (x) − f (y)|2
|x − y|d+2α dx dy.

Having second-order elliptic operators in divergence form inmind, we generalize (1.1)
the variational definition of by considering the sesquilinear form defined by

a : Wα,2(Rd) × Wα,2(Rd) → C

(u, v) →
ˆ
Rd

ˆ
Rd

K (x, y)(u(x) − u(v))(v(x) − v(y)) dx dy,

(1.3)

where K : R
d × R

d → C is measurable and satisfies for some 0 < � < 1 the
ellipticity and boundedness conditions

0 <
�

|x − y|d+2α ≤ Re(K (x, y)) ≤ |K (x, y)| ≤ �−1

|x − y|d+2α (a.e. x, y ∈ R
d).

(1.4)

Define the realization A of a on L2(Rd) by

D(A) := {u ∈ Wα,2(Rd ) : ∃ f ∈ L2(Rd ) such that a(u, v) = 〈 f, v〉L2 ∀v ∈ Wα,2(Rd )}

and for u ∈ D(A) with associated function f the image of A under u is defined as

Au := f.

Recently, there was a brisk interest in such operators and in certain nonlinear coun-
terparts [2,4–6,20,23,24,26].Wewould like to highlight thework ofKuusi,Mingione,
and Sire [23] where the following non-local Caccioppoli-type inequality was proven
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ˆ
B(x0,2r)

ˆ
B(x0,2r)

|u(x)η(x) − u(y)η(y)|2
|x − y|d+2α

dx dy

≤ C

(
1

r2α

ˆ
B(x0,2r)

|u(x)|2 dx +
ˆ

B(x0,2r)
|u(x)| dx

ˆ
Rd \B(x0,2r)

|u(y)|
|x0 − y|d+2α

dy

)

for functions u ∈ Wα,2(Rd) that satisfy

a(u, v) = 0 (v ∈ C∞
c (B(x0, 3r))) (1.5)

and for any smooth function η with 0 ≤ η ≤ 1, η = 1 in B(x0, r), η ≡ 0 in
R

d \ B(x0, 2r), and ‖∇η‖L∞ ≤ C/r . The authors in [23] proved this inequality under
slightly different assumptions on the sesquilinear form, the most important is that they
considered even nonlinear equations. In contrast to the results in [23], we consider
here also complex-valued coefficients K what can be seen as a minor improvement
to [23]. Additionally, we do not consider solutions to (1.5), but we prove that the
same Caccioppoli-type inequality is valid for solutions to the homogeneous resolvent
problem

λ〈u, v〉L2 + a(u, v) = 0 (v ∈ C∞
c (B(x0, 3r))),

where λ ∈ Sθ := {z ∈ C \ {0} : |arg(z)| < θ} for some θ ∈ (π/2, π) depending
on �. It is important to note that the constant C in the Caccioppoli-type inequality
is uniform with respect to λ. This is proven in Proposition 3.1. This allows us by an
application of Sobolev’s embedding theorem to establish in Lemma 3.2 a non-local
weak reverse Hölder estimate for such solutions. In particular, this enables us to apply
to each of the resolvent operators Tλ := λ(λ + A)−1 the following Lp-extrapolation
theorem for non-local operators which is proven in Sect. 2.

Theorem 1.2. Let X, Y , and Z be Banach spaces, M,N > 0, and let

T ∈ L(L2(Rd ; X),L2(Rd; Y )) with ‖T ‖L(L2(Rd ;X),L2(Rd ;Y )) ≤ M
and C ∈ L(L2(Rd ; X),L2(Rd; Z)) with ‖C‖L(L2(Rd ;X),L2(Rd ;Y )) ≤ N .

Suppose that there exist constants p > 2, ι > 1, and C > 0 such that for all balls
B ⊂ R

d and all compactly supported f ∈ L∞(Rd ; X) with f = 0 in ιB the estimate

(  
B

‖T f ‖p
Y dx

) 1
p ≤ C sup

B′⊃B

(  
B′

(‖T f ‖2Y + ‖C f ‖2Z
)
dx

) 1
2

(1.6)

holds. Here, the supremum runs over all balls B ′ containing B.
Then, for each 2 < q < p there exists a constant K > 0 such that for all f ∈

L∞(Rd; X) with compact support it holds

‖T f ‖Lq (Rd ;Y ) ≤ K
(‖ f ‖Lq (Rd ;X) + ‖C f ‖Lq (Rd ;Z)

)
.

In particular, if C is bounded from Lq(Rd ; X) into Lq(Rd ; Z), then the restriction of
T onto L2(Rd ; X)∩Lq(Rd; X) extends to a bounded linear operator from Lq(Rd; X)

into Lq(Rd ; Y ). The constant K depends only on d, p, q, ι, C, M, and N .
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Notice that in the original formulation of Shen, the operator C is simply the identity.
In many applications—as also in ours—the operator C is zero. We hope, however, that
a theorem of this form can be applied in fluid mechanics with C being the Helmholtz
projection. Our application reads as follows.

Theorem 1.3. Let d ≥ 1, α ∈ (0, 1), and K : Rd × R
d → C be subject to (1.4)

for some 0 < � < 1. Let A denote the operator associated with the sesquilinear
form (1.3). Then, for � := π − arccos(�2) one has that S� is contained in the
resolvent set of −A. Moreover, for each θ ∈ (0,�) there exists ε > 0 such that for all
numbers p satisfying

∣∣∣ 1
p

− 1

2

∣∣∣ <
α

d
+ ε

and for all λ ∈ Sθ the restriction of the resolvent operator (λ + A)−1 onto L2(Rd) ∩
Lp(Rd) extends to a bounded operator onLp(Rd). In particular, there exists a constant
C > 0 such that for all λ ∈ Sθ and all f ∈ L2(Rd) ∩ Lp(Rd) the inequality

‖λ(λ + A)−1 f ‖Lp(Rd ) ≤ C‖ f ‖Lp(Rd ) (1.7)

holds. Here, the constant ε depends on d, θ , and � and the constant C depends on d,
θ , �, and p.

It is well known that the resolvent estimate presented in Theorem 1.3 forms the
basis to a rich parabolic theory of the operator A. Indeed, since� > π/2 the resolvent
estimate (1.7) is equivalent to the fact that the Lp-realization of −A generates a
bounded analytic semigroup (e−t A)t≥0 on Lp(Rd).
An important notion in the parabolic theory is the notion of maximal regularity, cf.

[13,22,38]. To this end, consider the Cauchy problem{
u′(t) + Au(t) = f (t), (t > 0)

u(0) = 0.
(1.8)

Let 1 < r < ∞ and let f ∈ Lr (0,∞;Lp(Rd)). The unique mild solution to (1.8) is
given by the variation of constants formula

u(t) :=
ˆ t

0
e−(t−s)A f (s) ds (t > 0).

We say that A has maximal Lr -regularity if for all f ∈ Lr (0,∞;Lp(Rd)) one has
that

u′, Au ∈ Lr (0,∞;Lp(Rd)).

In this situation, it is well known that the closed graph theorem implies that there exists
a constant C > 0 such that for all g ∈ Lr (0,∞;Lp(Rd)) the estimate

‖u′‖Lr (0,∞;Lp(Rd )) + ‖Au‖Lr (0,∞;Lp(Rd )) ≤ C‖ f ‖Lr (0,∞;Lp(Rd ))

holds. That A has indeed maximal Lr -regularity is formulated in the last theorem.
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Theorem 1.4. Let d ≥ 1, α ∈ (0, 1), and K : Rd × R
d → C be subject to (1.4)

for some 0 < � < 1. Let A denote the operator associated with the sesquilinear
form (1.3). Then, there exists ε > 0 such that for all numbers p satisfying

∣∣∣ 1
p

− 1

2

∣∣∣ <
α

d
+ ε

and for all 1 < r < ∞ the operator A has maximal Lr -regularity.

For the fractional Laplacian, i.e., if the kernel K satisfies the 2K (x, y) = Cd,α/|x −
y|d+2α , a similar theorem on finite time intervals was proven by Biccari, Warma, and
Zuazua [6].

We shortly outline the structure of the paper. As mentioned above, Theorem 1.2 is
proven in Sect. 2. Sect. 3 is reserved to prove the Caccioppoli-type estimate and the
non-local weak reverse Hölder estimate. In the final Sect. 4, we prove Theorems 1.3
and 1.4.

2. An L p-extrapolation theorem for non-local operators

This section is devoted to prove a non-local version of the Lp-extrapolation theo-
rem of Shen [27, Thm. 3.1]. The proof follows Shen’s original argument and is only
modified slightly. However, for the convenience of the reader, we present the complete
argument here. The proof carries out a good-λ argument and bases on the following
version of the Calderón–Zygmund decomposition which was proven by Caffarelli and
Peral [8, Lem. 1.1].

Lemma 2.1. Let Q be a bounded cube in R
d and A ⊂ Q a measurable set satisfying

0 < |A| < δ|Q| for some 0 < δ < 1.

Then, there is a family of disjoint dyadic cubes {Qk}k∈N obtained by suitable selections
of successive bisections of Q, such that for all k ∈ N

a)

∣∣∣∣∣A \
⋃
l∈N

Ql

∣∣∣∣∣ = 0, b) |A ∩ Qk | > δ|Qk |, c) |A ∩ Q∗
k | ≤ δ|Q∗

k |,

where Q∗
k is the dyadic parent of Qk.

Here and in the following, we denote for ι > 0 and a ball B ⊂ R
d or a cube Q ⊂ R

d

the by ι dilated ball and cube with the same center by ιB and ιQ.

Proof. For this proof, we denote a generic constant that depends solely on d, p, q,
ι, or the constant C in inequality (1.6) by Cg . We abbreviate the operator norms
‖T ‖L(L2(�;X),L2(�;Y )) and ‖C‖L(L2(Rd ;X),L2(Rd ;Z)) by ‖T ‖ and ‖C‖.
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Let x0 ∈ R
d , r > 0, and Q be a cube in R

d with diam(Q) = 2r and midpoint x0.
Let B := B(x0, r). One directly verifies that

1√
d

B ⊂ Q ⊂ B and |Q| =
( 2r√

d

)d
.

Thus, without loss of generality we can assume that estimate (1.6) is valid for cubes
centered in x0 instead of balls and for some possibly different ι.
Fix q ∈ (2, p) and take f ∈ L∞(Rd ; X) with compact support. For λ > 0 consider

the set

E(λ) := {x ∈ R
d : M(‖T f ‖2Y )(x) > λ},

where M denotes the Hardy–Littlewood maximal operator. Since ‖T f ‖2Y ∈ L1(Rd),
the weak-type estimate of the maximal operator [32, Thm. I.1] implies

|E(λ)| ≤ Cg

λ

∥∥‖T f ‖2Y
∥∥
L1(Rd )

= Cg

λ
‖T f ‖2L2(Rd ;Y )

. (2.1)

Let A := 1/(2δ2/q) > 5d , where δ ∈ (0, 1) is a small constant to be determined.
Decompose Rd into a dyadic grid. Then, by (2.1) we find a mesh size such that each
cube Q0 from the grid satisfies

|E(Aλ)| < δ |Q0| .

Note that the mesh size is allowed to depend on λ, δ, f , and T . If the case
|Q0 ∩ E(Aλ)| = 0 applies, do nothing. In the other case, the set defined by
A := Q0 ∩ E(Aλ) together with the cube Q0 satisfy the assumptions of Lemma 2.1.
Proceeding in that way for every cube Q0 in the grid and enumerating all cubes
obtained in this way by Lemma 2.1 by {Qk}k∈N yields a countable family of mutually
disjoint cubes satisfying for all k ∈ N

(i) |E(Aλ) \
⋃
l∈N

Ql | = 0, (ii) |E(Aλ) ∩ Qk | > δ|Qk |, and

(iii) |E(Aλ) ∩ Q∗
k | ≤ δ|Q∗

k |.

Note that as in Lemma 2.1, Q∗
k denotes the dyadic parent of Qk .

Claim 1. The operator T is Lq -bounded, once there are constants δ, γ > 0 such that
for all λ > 0

|E(Aλ)| ≤ δ|E(λ)| + |{x ∈ R
d : M(‖ f ‖2X + ‖C f ‖2Z )(x) > λγ }| (2.2)

holds.
To see this, first note that (2.1) and q > 2 imply that the function λ → λq/2−1|E(λ)|

is in L1
loc([0,∞)). The premise of Claim 1 and the definition of A imply that for all

λ0 > 0
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ˆ Aλ0

0
λ

q
2 −1|E(λ)| dλ ≤ δ

ˆ Aλ0

0
λ

q
2 −1|E(A−1λ)| dλ

+
ˆ Aλ0

0
λ

q
2 −1|{x ∈ R

d : M(‖ f ‖2X + ‖C f ‖2Z )(x) > A−1λγ }| dλ

≤ 2− q
2

ˆ λ0

0
λ

q
2 −1|E(λ)| dλ

+
ˆ ∞
0

λ
q
2 −1|{x ∈ R

d : M(‖ f ‖2X + ‖C f ‖2Z )(x) > A−1λγ }| dλ.

Perform a linear transformation in the second integral and notice that the resulting
integral coincidesmodulo a factor by ageneric constant times δγ −q/2 with‖M(‖ f ‖2X +
‖C f ‖2Z )‖q/2

Lq/2(Rd )
, cf. [17, Prop. 1.1.4]. By virtue of the boundedness of the maximal

operator on Lq/2 [32, Thm. I.1], this results in the estimate

ˆ Aλ0

0
λ

q
2 −1|E(λ)| dλ ≤ 2− q

2

ˆ λ0

0
λ

q
2 −1|E(λ)| dλ + δγ

− q
2 Cg

(‖ f ‖q
Lq (Rd ;X)

+ ‖C f ‖q
Lq (Rd ;Z)

)
.

Using that A > 1, the first term on the right-hand side can be absorbed by the left-hand
side. This yields

ˆ Aλ0

0
λ

q
2 −1|E(λ)| dλ ≤ δγ − q

2 Cg
(‖ f ‖q

Lq (Rd ;X)
+ ‖C f ‖q

Lq (Rd ;Z)

)
.

Taking λ0 → ∞ and using ‖[T f ](x)‖2Y ≤ M(‖T f ‖2Y )(x) for almost every x ∈ R
d

yields together with [17, Prop. 1.1.4] that

‖T f ‖q
Lq (Rd ;Y )

≤ γ − q
2 Cg

(‖ f ‖q
Lq (Rd ;X)

+ ‖C f ‖q
Lq (Rd ;Z)

)
.

The conclusion of the theorem follows by density (note that simple functions with
bounded support are dense in all Lq(�; X)-spaces by construction of the Bochner
integral).
Claim 2. The premise of Claim 1 follows if there are constants δ, γ > 0 such that for
all dyadic parents Q∗

k of the family of cubes {Qk}k∈N constructed before (i)-(iii) the
following statement is valid:

Q∗
k ∩ {x ∈ R

d : M(‖ f ‖2X + ‖C f ‖2Z )(x) ≤ λγ } �= ∅ implies Q∗
k ⊂ E(λ).

Since (2.2) is trivial, if |E(Aλ)| = 0 assume that |E(Aλ)| > 0. Let I ⊂ N be the
index set of all l ∈ N such that {Q∗

l }l∈I is a maximal set of mutually disjoint cubes
satisfying Q∗

l ∩ {x ∈ R
d : M(‖ f ‖2X + ‖C f ‖2Z )(x) ≤ λγ } �= ∅. Then,

|E(Aλ)| = |E(Aλ) ∩ {x ∈ R
d : M(‖ f ‖2X + ‖C f ‖2Z )(x) ≤ λγ }|

+ |E(Aλ) ∩ {x ∈ R
d : M(‖ f ‖2X + ‖C f ‖2Z )(x) > λγ }|.

Dealing the first term on the right-hand side by the maximality of {Q∗
l }l∈I together

with (i) and the second term by using themonotonicity of the Lebesguemeasure yields

|E(Aλ)| ≤
∑
l∈I

|E(Aλ) ∩ Q∗
l | + |{x ∈ R

d : M(‖ f ‖2X + ‖C f ‖2Z )(x) > λγ }|.
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Next, use (iii) first and then the mutual disjointness of the family {Q∗
l }l∈I together

with the assertion of Claim 2 to get

|E(Aλ)| ≤ δ|E(λ)| + |{x ∈ R
d : M(‖ f ‖2X + ‖C f ‖2Z )(x) > λγ }|.

Claim 3. There exist δ, γ > 0 such that

Q∗
k ∩ {x ∈ R

d : M(‖ f ‖2X + ‖C f ‖2Z )(x) ≤ λγ } �= ∅ implies Q∗
k ⊂ E(λ).

To conclude this statement, we argue by contradiction. For this purpose, suppose
that there exists a Qk with {x ∈ Q∗

k : M(‖ f ‖2X + ‖C f ‖2Z )(x) ≤ γ λ} �= ∅ and
Q∗

k \ E(λ) �= ∅. We show that the existence of such a cube contradicts (ii). In this
situation, for every cube Q that contains Q∗

k , we have

1

|Q|
ˆ

Q

(‖ f ‖2X + ‖C f ‖2Z
)
dx ≤ γ λ and

1

|Q|
ˆ

Q
‖T f ‖2Y dx ≤ λ. (2.3)

Next, let x ∈ Qk and Q′ be a cube with x ∈ Q′ and Q′ �⊂ 2Q∗
k . Then, we find for the

side length of Q′ that �(Q′) > �(Qk). If y ∈ Q∗
k , 1 ≤ i ≤ d, and if x ′ denotes the

center of Q′, then

∣∣yi − x ′
i

∣∣ ≤ |yi − xi | + ∣∣xi − x ′
i

∣∣ ≤ 2�(Qk) + 1

2
�(Q′) <

5

2
�(Q′).

Consequently, we have Q∗
k ⊂ 5Q′ and thus by virtue of (2.3) we have for x ∈ Qk

M(‖T f ‖2Y )(x) = max

{
M2Q∗

k
(‖T f ‖2Y )(x), sup

Q′�x
Q′ �⊂2Q∗

k

1

|Q′|
ˆ

Q′
‖T f ‖2Y dy

}

≤ max{M2Q∗
k
(‖T f ‖2Y )(x), 5dλ},

where M2Q∗
k
denotes the localized maximal operator

(M2Q∗
k
g)(x) := sup

x∈R⊂2Q∗
k

R cube

 
R
|g(y)| dy (x ∈ 2Q∗

k).

Since A = 1/(2δ2/q) > 5d , we derive

|E(Aλ) ∩ Qk | ≤ |{x ∈ Qk : M2Q∗
k
(‖T f ‖2Y )(x) > Aλ}|.

Use (a + b)2 ≤ 2(a2 + b2) together with [17, Prop. 1.1.3] to estimate

|E(Aλ) ∩ Qk | ≤
∣∣∣{x ∈ Qk : M2Q∗

k
(‖T ( f χ2ιQ∗

k
)‖2Y )(x) >

Aλ

4

}∣∣∣
+

∣∣∣{x ∈ Qk : M2Q∗
k
(‖T ( f χRd\2ιQ∗

k
)‖2Y )(x) >

Aλ

4

}∣∣∣
=: A + B.

(2.4)
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By means of the weak-type estimate of M2Q∗
k
in the first inequality below, and the

boundedness of T from L2(Rd ; X) into L2(Rd; Y ) together with (2.3) in the second
inequality below, we derive

A ≤ Cg

Aλ

ˆ
2Q∗

k

‖T ( f χ2ιQ∗
k
)‖2Y dx ≤ |Qk |‖T ‖2 Cgγ

A
. (2.5)

Next, the continuous embedding Lp/2(2Q∗
k) ⊂ Lp/2,∞(2Q∗

k) and the Lp/2-
boundedness of M2Q∗

k
yield

(Aλ)
p
2 B ≤ Cg

∥∥M2Q∗
k
(‖T ( f χRd\2ιQ∗

k
)‖2Y )

∥∥ p
2
Lp/2(2Q∗

k )
≤ Cg

ˆ
2Q∗

k

‖T ( f χRd\2ιQ∗
k
)‖p

Y dx .

An application of (1.6) yields

(Aλ)
p
2 B

≤ |Qk |Cg

{
sup

Q′⊃2Q∗
k

(
1

|Q′|
ˆ

Q′

(‖T ( f χRd\2ιQ∗
k
)‖2Y + ‖C( f χRd\2ιQ∗

k
)‖2Z

)
dx

) 1
2
}p

.

Add and subtract f χ2ιQ∗
k
in the arguments of T and C and use ‖ f χRd\2ιQ∗

k
‖X ≤ ‖ f ‖X

together with (2.3) to obtain

(Aλ)
p
2 B ≤ |Qk |Cg

{
sup

Q′⊃2Q∗
k

(
1

|Q′|
ˆ

Q′

(‖T ( f χ2ιQ∗
k
)‖2Y + ‖C( f χ2ιQ∗

k
)‖2Z

)
dx

) 1
2

+ ((γ + 1)λ)
1
2

}p

.

Use the L2-boundedness of T and C to get

(Aλ)
p
2 B ≤ |Qk |Cg

{(‖T ‖ + ‖C‖) sup
Q′⊃2Q∗

k

(
1

|Q′|
ˆ
2ιQ∗

k

‖ f ‖2X dx

) 1
2 + ((γ + 1)λ)

1
2

}p

.

Notice that |2ιQ∗
k |/|Q′| ≤ ιd so that another application of (2.3) finally yields

(Aλ)
p
2 B ≤ |Qk |Cgλ

p
2
{
(‖T ‖ + ‖C‖)γ 1

2 + (γ + 1)
1
2
}p

. (2.6)

Recall that A = 1/(2δ2/q), that ‖T ‖ ≤ M, and that ‖C‖ ≤ N . Thus, a combination
of (2.5) and (2.6) yields

|E(Aλ) ∩ Qk | ≤ A + B ≤ Cgδ|Qk |
{

γM2

Aδ
+

{
(M + N )γ

1
2 + (γ + 1)

1
2
}p

A
p
2 δ

}

≤ Cgδ|Qk |
{
γ δ

2
q −1M2 + {

(M + N )γ
1
2 + (γ + 1)

1
2
}p

δ
p
q −1}

.

Since p > q, we can choose δ small enough such that {M + N + √
2}pδ

p
q −1 ≤

1/(2Cg). For this fixed value of δ choose γ ≤ min{1, δ1− 2
q /(2M2Cg)}. Then, we

obtain |E(Aλ) ∩ Qk | ≤ δ|Qk | which is a contradiction to (ii) of the Calderón–
Zygmund decomposition. �
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Remark 2.2. In the third part of the proof above, we performed one particular choice.
Indeed, in (2.4)we needed to decompose the function T f in the cube 2Q∗

k as the sumof
two functions. Due to the linearity of T , this decompositionwas given by T ( f χ2ιQ∗

k
)+

T ( f χRd\2ιQ∗
k
). Thus, the decomposition of the function T f was done by decomposing

f suitably. In some situations, however, it can be helpful to decompose T f = v + w

by another choice of functions that might not be induced by a decomposition of f into
a sum of two functions. This happens, for example, if T is considered on a subspace of
L2 that is not stable under multiplication by characteristic functions. Such an argument
was used, for example, in [36].

3. Verification of the non-local weak reverse Hölder estimate

The main ingredient for the verification of the non-local weak reverse Hölder esti-
mate is the following proposition. In this proposition a non-local Caccioppoli inequal-
ity for the resolvent equation is proved. The proof follows the ideas of the proof for the
special case λ = 0 and for real-valued kernel functions K (x, y) which can be found
in the work of Kuusi, Mingione, and Sire [23, Thm. 3.2].

Proposition 3.1. Let x0 ∈ R
d , r > 0, and α ∈ (0, 1). Let further θ ∈ (0,�),

where � := π − arccos(�2) and let u ∈ Hα(Rd) be a function that satisfies for all
v ∈ C∞

c (B(x0, 3r/2)) the equation

λ

ˆ
Rd

u(x)v(x) dx +
ˆ
Rd

ˆ
Rd

K (x, y)(u(x) − u(y))(v(x) − v(y)) dx dy = 0.

(3.1)

Let η ∈ C∞
c (B(x0, 3r/2)) be a function that satisfies 0 ≤ η ≤ 1 and ‖∇η‖L∞ ≤ Cd/r

for some constant Cd > 0 depending only on d. Then, there exists a constant C > 0
depending only on d, α, �, and θ such that

|λ|
ˆ
Rd

|u(x)|2η(x)2 dx +
ˆ
2B

ˆ
2B

|u(x) − u(y)|2(η(x)2 + η(y)2)

|x − y|d+2α dx dy

+
ˆ
2B

ˆ
2B

|u(x)η(x) − u(y)η(y)|2
|x − y|d+2α dx dy

+
ˆ
2B

ˆ
Rd\2B

|u(y)|2η(y)2

|x − y|d+2α dx dy +
ˆ
Rd\2B

ˆ
2B

|u(x)|2η(x)2

|x − y|d+2α dx dy

≤ C

(
1

r2α

ˆ
2B

|u(x)|2 dx +
ˆ
2B

|u(x)| dx
ˆ
Rd\2B

|u(y)|
|x0 − y|d+2α dy

)
.

Proof. Write B := B(x0, r). Since C∞
c (Rd) is dense in Hα(Rd), it is possible to

choose v := uη2 as a test function. Thus, by virtue of (3.1) the following identity
holds
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λ

ˆ
Rd

|u(x)|2η(x)2 dx

+
ˆ
Rd

ˆ
Rd

K (x, y)(u(x) − u(y))(u(x)η(x)2 − u(y)η(y)2) dx dy = 0. (3.2)

Decompose the double integral into

ˆ
Rd

ˆ
Rd

K (x, y)(u(x) − u(y))(u(x)η(x)2 − u(y)η(y)2) dx dy

=
ˆ
2B

ˆ
2B

K (x, y)(u(x) − u(y))(u(x)η(x)2 − u(y)η(y)2) dx dy

−
ˆ
2B

ˆ
Rd\2B

K (x, y)(u(x) − u(y))u(y)η(y)2 dx dy

+
ˆ
Rd\2B

ˆ
2B

K (x, y)(u(x) − u(y))u(x)η(x)2 dx dy.

After rearranging the terms, we find by (3.2) that

λ

ˆ
Rd

|u(x)|2η(x)2 dx +
ˆ
2B

ˆ
2B

K (x, y)(u(x) − u(y))(u(x)η(x)2 − u(y)η(y)2) dx dy

+
ˆ
2B

ˆ
Rd\2B

K (x, y)|u(y)|2η(y)2 dx dy

+
ˆ
Rd\2B

ˆ
2B

K (x, y)|u(x)|2η(x)2 dx dy

=
ˆ
2B

ˆ
Rd\2B

K (x, y)u(x)u(y)η(y)2 dx dy

−
ˆ
Rd\2B

ˆ
2B

K (x, y)u(y)u(x)η(x)2 dx dy.

(3.3)

To rewrite the second term on the left-hand side of (3.3), calculate

(u(x) − u(y))(u(x)η(x)2 − u(y)η(y)2)

= |u(x) − u(y)|2η(x)2 + (u(x) − u(y))u(y)(η(x) − η(y))(η(x) + η(y)).

(3.4)

Switch the roles of x and y, perform the same calculation as in (3.4), and add the
resulting identity to (3.4) to obtain

2(u(x) − u(y))(u(x)η(x)2 − u(y)η(y)2)

= |u(x) − u(y)|2(η(x)2 + η(y)2) + (u(x) − u(y))

(u(x) + u(y))(η(x) − η(y))(η(x) + η(y)).

(3.5)
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Now, plug (3.5) into (3.3) and rearrange terms to obtain

λ

ˆ
Rd

|u(x)|2η(x)2 dx

+ 1

2

ˆ
2B

ˆ
2B

K (x, y)|u(x) − u(y)|2(η(x)2 + η(y)2) dx dy

+
ˆ
2B

ˆ
Rd\2B

K (x, y)|u(y)|2η(y)2 dx dy

+
ˆ
Rd\2B

ˆ
2B

K (x, y)|u(x)|2η(x)2 dx dy

=
ˆ
2B

ˆ
Rd\2B

K (x, y)u(x)u(y)η(y)2 dx dy

−
ˆ
Rd\2B

ˆ
2B

K (x, y)u(y)u(x)η(x)2 dx dy

− 1

2

ˆ
2B

ˆ
2B

K (x, y)(u(x) − u(y))(u(x) + u(y))(η(x) − η(y))(η(x) + η(y)) dx dy.

(3.6)

Notice that on the left-hand side, the complex number λ is multiplied by a nonnega-
tive real number and that in all other integrals on the left-hand side, the complex-valued
function K (x, y) is multiplied by nonnegative real functions. The condition (1.4)
implies that

arg(K (x, y)) ∈ Sπ−� with � = π − arccos(�2).

Sinceπ −� < π/2, λ ∈ Sθ , and θ is chosen such that θ +(π −�) < π , an elementary
trigonometric argument shows that there exists a constant Cθ,� > 0 depending only
on θ and � such that for all z ∈ Sθ and all w1, w2, w3 ∈ Sπ−� it holds

|z| + |w1| + |w2| + |w3| ≤ Cθ,�|z + w1 + w2 + w3|.
Apply this inequality to (3.6) together with (1.4) to obtain

|λ|
ˆ
Rd

|u(x)|2η(x)2 dx + �

2

ˆ
2B

ˆ
2B

|u(x) − u(y)|2(η(x)2 + η(y)2)

|x − y|d+2α
dx dy

+�

ˆ
2B

ˆ
Rd \2B

|u(y)|2η(y)2

|x − y|d+2α
dx dy

+�

ˆ
Rd \2B

ˆ
2B

|u(x)|2η(x)2

|x − y|d+2α
dx dy

≤ Cθ,�

(
�−1

ˆ
2B

ˆ
Rd \2B

|u(x)||u(y)|η(y)2

|x − y|d+2α
dx dy

+�−1
ˆ
Rd\2B

ˆ
2B

|u(y)||u(x)|η(x)2

|x − y|d+2α
dx dy

+�−1

2

ˆ
2B

ˆ
2B

|u(x) − u(y)|(|u(x)| + |u(y)|)|η(x) − η(y)|(η(x) + η(y))

|x − y|d+2α
dx dy

)
. (3.7)
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First, we will rewrite the second term on the left-hand side of (3.7). To this end, use
|z + w|2 = |z|2 + |w|2 + 2Re(zw) for z, w ∈ C and calculate

|u(x)η(x) − u(y)η(y)|2 = |(u(x) − u(y))η(x) + u(y)(η(x) − η(y))|2
= |u(x) − u(y)|2η(x)2 + |u(y)|2|η(x) − η(y)|2

+ 2Re([u(x) − u(y)]u(y))η(x)(η(x) − η(y)).

(3.8)

Now, switch the roles of x and y, perform the same calculation as in (3.8), and add
the resulting identity to (3.8) to obtain

2|u(x)η(x) − u(y)η(y)|2
= |u(x) − u(y)|2(η(x)2 + η(y)2) + (|u(x)|2 + |u(y)|2)|η(x) − η(y)|2

+ 2Re([u(x) − u(y)](u(y)η(x) + u(x)η(y)))(η(x) − η(y)).

(3.9)

Notice that the first term on the right-hand side of (3.9) appears in the second term
on the left-hand side of (3.7). Replace half of the second term on the left-hand side
of (3.7) by employing (3.9) and leave the other half as it is. After rearranging the
terms, one gets

|λ|
ˆ
Rd

|u(x)|2η(x)2 dx + �

4

ˆ
2B

ˆ
2B

|u(x) − u(y)|2(η(x)2 + η(y)2)

|x − y|d+2α dx dy

+ �

2

ˆ
2B

ˆ
2B

|u(x)η(x) − u(y)η(y)|2
|x − y|d+2α dx dy

+ �

ˆ
2B

ˆ
Rd\2B

|u(y)|2η(y)2

|x − y|d+2α dx dy

+ �

ˆ
Rd\2B

ˆ
2B

|u(x)|2η(x)2

|x − y|d+2α dx dy

≤ Cθ,�

(
�−1

ˆ
2B

ˆ
Rd\2B

|u(x)||u(y)|η(y)2

|x − y|d+2α dx dy

+ �−1
ˆ
Rd\2B

ˆ
2B

|u(y)||u(x)|η(x)2

|x − y|d+2α dx dy

+ �−1

2

ˆ
2B

ˆ
2B

|u(x) − u(y)|(|u(x)| + |u(y)|)|η(x) − η(y)|(η(x) + η(y))

|x − y|d+2α dx dy

)

+ �

4

ˆ
2B

ˆ
2B

(|u(x)|2 + |u(y)|2)|η(x) − η(y)|2
|x − y|d+2α dx dy

+ �

2

ˆ
2B

ˆ
2B

Re([u(x) − u(y)](u(y)η(x) + u(x)η(y)))(η(x) − η(y))

|x − y|d+2α dx dy.

(3.10)

The first two terms on the right-hand side are estimated by using Fubini’s theorem
first and second, if x0 denotes the midpoint of B, by using that for x ∈ supp(η) and
y ∈ R

d \ 2B one has due to |x − y| ≥ r/2
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|x0 − y| ≤ |x0 − x | + |x − y| ≤ 3r

2
+ |x − y| ≤ 4|x − y|.

This yields

ˆ
2B

ˆ
Rd\2B

|u(x)||u(y)|η(y)2

|x − y|d+2α dx dy +
ˆ
Rd\2B

ˆ
2B

|u(y)||u(x)|η(x)2

|x − y|d+2α dx dy

= 2
ˆ
Rd\2B

ˆ
2B

|u(y)||u(x)|η(x)2

|x − y|d+2α dx dy

≤ 2 · 4d+2α
ˆ
Rd\2B

ˆ
2B

|u(y)||u(x)|η(x)2

|x0 − y|d+2α dx dy

≤ 2 · 4d+2α
ˆ
2B

|u(x)| dx
ˆ
Rd\2B

|u(y)|
|x0 − y|d+2α dy.

For the third term on the right-hand side of (3.10), employ Young’s inequality together
with (a + b)2 ≤ 2(a2 + b2) for a, b ≥ 0 to deduce

ˆ
2B

ˆ
2B

|u(x) − u(y)|(|u(x)| + |u(y)|)|η(x) − η(y)|(η(x) + η(y))

|x − y|d+2α dx dy

≤ �2

8Cθ,�

ˆ
2B

ˆ
2B

|u(x) − u(y)|2(η(x)2 + η(y)2)

|x − y|d+2α dx dy

+ 8Cθ,�

�2

ˆ
2B

ˆ
2B

(|u(x)|2 + |u(y)|2)|η(x) − η(y)|2
|x − y|d+2α dx dy.

(3.11)

For the time being, the fourth term on the right-hand side of (3.10) is not estimated
further. Concerning the fifth term on the right-hand side of (3.10), employ again
Young’s inequality to deduce

ˆ
2B

ˆ
2B

Re([u(x) − u(y)](u(y)η(x) + u(x)η(y)))(η(x) − η(y))

|x − y|d+2α dx dy

≤ 1

8Cθ,�

ˆ
2B

ˆ
2B

|u(x) − u(y)|2(η(x)2 + η(y)2)

|x − y|d+2α dx dy

+ 2Cθ,�

ˆ
2B

ˆ
2B

(|u(x)|2 + |u(y)|2)(η(x) − η(y))2

|x − y|d+2α dx dy.

(3.12)

Now, absorb each of the first terms on the right-hand sides of (3.11) and (3.12) to the
left-hand side of (3.10).
The following terms remain on the right-hand side:

ˆ
2B

ˆ
2B

(|u(x)|2 + |u(y)|2)(η(x) − η(y))2

|x − y|d+2α dx dy and
ˆ
2B

|u(x)| dx
ˆ
Rd\2B

|u(y)|
|x0 − y|d+2α dy.
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The second term is already one of the desired terms, so we analyze the first term.
Notice that by symmetry and the condition ‖∇η‖L∞ ≤ Cd/r we find

ˆ
2B

ˆ
2B

(|u(x)|2 + |u(y)|2)(η(x) − η(y))2

|x − y|d+2α dx dy

= 2
ˆ
2B

ˆ
2B

|u(x)|2(η(x) − η(y))2

|x − y|d+2α dx dy

≤ 2C2
d

r2

ˆ
2B

|u(x)|2
ˆ
2B

|x − y|2(1−α)−d dy dx

≤ Cd,α

r2α

ˆ
2B

|u(x)|2 dx .

Here, Cd,α > 0 is a constant that depends only on d and α.
Summarizing everything, there exists a constant C > 0 depending only on d, α, �,

and θ such that

|λ|
ˆ
Rd

|u(x)|2η(x)2 dx +
ˆ
2B

ˆ
2B

|u(x) − u(y)|2(η(x)2 + η(y)2)

|x − y|d+2α dx dy

+
ˆ
2B

ˆ
2B

|u(x)η(x) − u(y)η(y)|2
|x − y|d+2α dx dy

+
ˆ
2B

ˆ
Rd\2B

|u(y)|2η(y)2

|x − y|d+2α dx dy +
ˆ
Rd\2B

ˆ
2B

|u(x)|2η(x)2

|x − y|d+2α dx dy

≤ C

(
1

r2α

ˆ
2B

|u(x)|2 dx +
ˆ
2B

|u(x)| dx
ˆ
Rd\2B

|u(y)|
|x0 − y|d+2α dy

)
.

This proves the proposition. �

The following lemma brings the right-hand side of Caccioppoli inequality in Propo-
sition 3.1 into a suitable form for the non-local weak reverse Hölder estimate.

Lemma 3.2. Let x0 ∈ R
d , r > 0, α ∈ (0, 1), and u ∈ L2

loc(R
d). Then, there exists a

constant C > 0 depending only on d and α such that

ˆ
2B

|u(x)| dx
ˆ
Rd\2B

|u(y)|
|x0 − y|d+2α dy ≤ Crd−2α

∞∑
k=1

2−2αk 1

|2k+1B|
ˆ
2k+1B

|u(y)|2 dy.

Proof. Jensen’s inequality applied to the first integral followed by Young’s inequality
ensures for some constant C > 0 depending only on d that

ˆ
2B

|u(x)| dx
ˆ
Rd\2B

|u(y)|
|x0 − y|d+2α dy

≤ C

{
1

r2α

ˆ
2B

|u(x)|2 dx +
(

r
d
2 +α

ˆ
Rd\2B

|u(y)|
|x0 − y|d+2α dy

)2}
.
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Furthermore, decomposing the second integral on the right-hand side into dyadic
annuli yields

ˆ
Rd\2B

|u(y)|
|x0 − y|d+2α dy =

∞∑
k=1

ˆ
2k+1B\2k B

|u(y)|
|x0 − y|d+2α dy.

Now, apply Jensen’s inequality to each of the integrals and further use that

2k−1r ≤ (2k − 1)r ≤ |x0 − y| (y ∈ 2k+1B \ 2k B)

to establish for some constant C > 0 depending only on d and α

ˆ
Rd\2B

|u(y)|
|x0 − y|d+2α dy ≤ C

∞∑
k=1

2−2αkr−2α
(

1

|2k+1B|
ˆ
2k+1B

|u(y)|2 dy

) 1
2

.

Finally, Hölder’s inequality for series together with α > 0 yield

(
r

d
2 +α

ˆ
Rd\2B

|u(y)|
|x0 − y|d+2α dy

)2

≤ Crd−2α
∞∑

k=1

2−2αk 1

|2k+1B|
ˆ
2k+1B

|u(y)|2 dy.

This readily yields the desired estimate. �

4. Proofs of Theorems 1.3 and 1.4

Let A denote the operator associated with the sesquilinear form

a : Wα,2(Rd) × Wα,2(Rd) → C

(u, v) →
ˆ
Rd

ˆ
Rd

K (x, y)(u(x) − u(v))(v(x) − v(y)) dx dy.

Define � := π − arccos(�2). Notice that (1.4) implies that

a(u, u) ∈ Sπ−� ∪ {0} (u ∈ Wα,2(Rd)).

Thus, if 0 < θ < � and if λ ∈ Sθ , then an elementary trigonometric consideration
shows that the sesquilinear form

aλ : Wα,2(Rd) × Wα,2(Rd) → C, (u, v) → λ

ˆ
Rd

uv dx + a(u, v)

is bounded and coercive. Thus, by the Lax–Milgram lemma, we find that λ ∈ ρ(−A),
the resolvent set of −A. Thus, for f ∈ L2(Rd) there exists a unique u ∈ D(A) with
λu+Au = f . Testing this equation by u yields by the same trigonometry consideration
as above for a constant C > 0 depending only on θ and λ that

|λ|‖u‖2L2(Rd )
+
ˆ
Rd

ˆ
Rd

|u(x) − u(y)|2
|x − y|d+2α dx dy ≤ C‖ f ‖L2(Rd )‖u‖L2(Rd ).
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Now, forgetting about the double integral on the left-hand side and dividing by
‖u‖L2(Rd ) shows that the L

2 resolvent estimate

‖λ(λ + A)−1 f ‖L2(Rd ) = |λ|‖u‖L2(Rd ) ≤ C‖ f ‖L2(Rd ) (4.1)

is valid.
We remark that for an operator A, the property of having maximal Lr -regularity on

the time interval (0,∞) is in general stronger than the property that −A generates
a bounded analytic semigroup. Indeed, combining the characterization of maximal
Lr -regularity via the notion ofR-boundedness [38, Thm. 4.2] and using the reformu-
lation of R-boundedness via square function estimates if operators on Lp-spaces are
considered [22, Rem. 2.9] we arrive at the following statement. Namely, for any given
1 < r < ∞ the operator A has maximal Lr -regularity if there exists θ > π/2 and a
constant C > 0 such that for all n0 ∈ N, (λn)

n0
n=1 ⊂ Sθ , and ( fn)∞n=1 ⊂ Lp(Rd) one

has

∥∥∥[ n0∑
n=1

|λn(λn + A)−1 fn|2
]1/2∥∥∥

Lp(Rd )
≤ C

∥∥∥[ n0∑
n=1

| fn|2
]1/2∥∥∥

Lp(Rd )
. (4.2)

Notice that C has to be uniform with respect to n0, (λn)
n0
n=1 ⊂ Sθ , and ( fn)∞n=1 ⊂

Lp(Rd). Regarding the square root over the sum of squares as an Euclidean norm, this
statement is equivalent to the boundedness of the following family of operator Tθ in
the space L(Lp(Rd ; �2))

Tθ := {(λ1(λ1 + A)−1, . . . , λn0(λn0 + A)−1, 0, . . . ) : n0 ∈ N, (λn)
n0
n=1 ⊂ Sθ }.

Here, an operator T ∈ Tθ acts on a function f = ( fn)n∈N ∈ Lp(Rd; �2) via

T f = (λ1(λ1 + A)−1 f1, . . . , λn0(λn0 + A)−1 fn0 , 0, . . . ).

Notice that the square function estimate (4.2) is in the case p = 2 equivalent to the
uniform resolvent estimate in (4.1). Thus, we already know that the family of operators
Tθ is bounded in L(L2(Rd; �2)). Let θ ∈ (0,�). We show in the following that there
exists ε > 0 such that for all p ≥ 2 that satisfy

∣∣∣ 1
p

− 1

2

∣∣∣ <
α

d
+ ε (4.3)

the family Tθ is bounded in L(Lp(Rd ; �2)). To this end, we verify that each operator
in Tθ fulfills the assumptions of Theorem 1.2 with uniform constants for all operators
in Tθ . As the knowledge of the Lq -operator norm in Theorem 1.2 is known to depend
only on the quantities at stake, this will imply that Tθ is bounded inL(Lp(Rd; �2)). As
the L2(Rd; �2)-boundedness is already established, we concentrate on the non-local
weak reverse Hölder estimate, i.e., estimate (1.6).
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To this end, let x0 ∈ R
d and r > 0. Choose the operator C to be constantly zero.

Let further n0 ∈ N, λ1, . . . , λn0 ∈ Sθ , and let f1, . . . , fn0 ∈ L∞(Rd) have compact
support and be such that fn ≡ 0 in B(x0, 2r) for all n = 1, . . . , n0. Define

un := (λn + A)−1 fn (n = 1, . . . , n0).

Let 2 < p < ∞ satisfy

0 <
1

2
− 1

p
≤ α

d
.

Choose 0 < ϑ ≤ α such that

1

2
− 1

p
= ϑ

d
, i.e., Wϑ,2(Rd) ↪→ Lp(Rd).

Choose β ∈ (0, 1] that satisfies αβ = ϑ . With this choice, the interpolation inequality

‖v‖Lp(Rd ) ≤ C‖v‖1−β

L2(Rd )
‖v‖β

Wα,2 (v ∈ Wα,2(Rd))

holds. Notice that by scaling, even the homogeneous counterpart of this interpolation
inequality is valid, namely,

‖v‖Lp(Rd )
≤ C

(ˆ
Rd

|v|2 dx

) 1−β
2

(ˆ
Rd

ˆ
Rd

|v(x) − v(y)|2
|x − y|d+2α

dx dy

) β
2

(v ∈ Wα,2(Rd )).

Let η ∈ C∞
c (B(x0, 3r/2)) with 0 ≤ η ≤ 1, η ≡ 1 in B(x0, r), and ‖∇η‖L∞ ≤ Cd/r

for some constant Cd > 0 depending only on d. Define

v :=
[ n0∑

n=1

|λn|2|unη|2
] 1

2

.

Applying the interpolation inequality above tov thenyields togetherwith the properties
of η

( ˆ
B(x0,r)

[ n0∑
n=1

|λn|2|un(x)|2
] p

2

dx

) 1
p

≤
(ˆ

Rd

[ n0∑
n=1

|λn|2|un(x)η(x)|2
] p

2

dx

) 1
p

≤ C

(ˆ
Rd

n0∑
n=1

|λn|2|un(x)η(x)|2 dx

) 1−β
2

( n0∑
n=1

|λn|2
ˆ
Rd

ˆ
Rd

|un(x)η(x) − un(y)η(y)|2
|x − y|d+2α dx dy

) β
2

.
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Now, use that supp(η) ⊂ B(x0, 3r/2) and deduce by symmetry that
ˆ
Rd

ˆ
Rd

|un(x)η(x) − un(y)η(y)|2
|x − y|d+2α

dx dy =
ˆ
2B

ˆ
2B

|un(x)η(x) − un(y)η(y)|2
|x − y|d+2α

dx dy

+ 2
ˆ
Rd \2B

ˆ
2B

|un(x)|2η(x)2

|x − y|d+2α
dx dy.

Apply Proposition 3.1 together with Lemma 3.2 to each of these summands and finally
deduce (ˆ

B(x0,r)

[ n0∑
n=1

|λn|2|un(x)|2
] p

2

dx

) 1
p

≤ Cr
d
2 −αβ

( ∞∑
k=1

2−2αk
 

B(x0,2k+1r)

n0∑
n=1

|λn|2|un(x)|2 dx

) 1
2

.

Now, since

d

2
− αβ = d

(1
2

− ϑ

d

)
= d

p

one can divide the previous estimate by rd/p and obtain the desired non-local weak
reverse Hölder estimate. The non-local Gehring lemma proven in [3, Thm. 2.2] now
implies the existence of ε > 0 depending only on d, α, θ , �, and p such that

( 
B(x0,r)

[ n0∑
n=1

|λn|2|un(x)|2
] p+ε

2

dx

) 1
p+ε

≤ C

( ∞∑
k=1

2−2αk
 

B(x0,2k+2r)

n0∑
n=1

|λn|2|un(x)|2 dx

) 1
2

holds. Clearly, the right-hand side can be estimated by

( ∞∑
k=1

2−2αk
 

B(x0,2k+2r)

n0∑
n=1

|λn|2|un(x)|2 dx

) 1
2

≤ C sup
B′⊃B(x0,r)

(  
B′

n0∑
n=1

|λn|2|un(x)|2 dx

) 1
2

.

By B ′ we denote here an arbitrary ball in Rd containing B(x0, r).
This implies that each operator T ∈ Tθ fulfills a non-local weak reverse Hölder

estimate with uniform constants. We conclude the statements of Theorems 1.3 and 1.4
in the case p ≥ 2. Remark that the conclusion of Theorem 1.3 follows from above by
taking n0 = 1.
To conclude the statements of the theorems for p ≤ 2 satisfying (4.3), we argue by

duality. Notice that the adjoint operator of A belongs to the same class of operators as
it is associated with the sesquilinear form

b : Wα,2(Rd) × Wα,2(Rd) → C,
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(u, v) →
ˆ
Rd

ˆ
Rd

K (y, x)(u(x) − u(y))(v(x) − v(y)) dx dy.

In particular, K (y, x) fulfills the ellipticity assumption (1.4) for the same constant
� as K did. Now, since the dual space of Lp(Rd ; �2) is Lp′

(Rd; �2) and p′ > 2
satisfies (4.3), we conclude the statements of Theorems 1.3 and 1.4 in the case p < 2
as well. �
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