
Statistical Inference for Stochastic Processes (2021) 24:35–59
https://doi.org/10.1007/s11203-020-09226-0

Polynomials under Ornstein–Uhlenbeck noise and an
application to inference in stochastic Hodgkin–Huxley
systems

Reinhard Höpfner1

Received: 31 March 2020 / Accepted: 3 August 2020 / Published online: 13 September 2020
© The Author(s) 2020

Abstract
We discuss estimation problems where a polynomial s → ∑�

i=0 ϑi si with strictly positive
leading coefficient is observed under Ornstein–Uhlenbeck noise over a long time interval.
We prove local asymptotic normality (LAN) and specify asymptotically efficient estimators.
We apply this to the following problem: feeding noise dYt into the classical (deterministic)
Hodgkin–Huxleymodel in neuroscience,withYt = ϑ t+Xt and X someOrnstein–Uhlenbeck
process with backdriving force τ , we have asymptotically efficient estimators for the pair
(ϑ, τ ); based on observation of the membrane potential up to time n, the estimate for ϑ

converges at rate
√
n3 .

Keywords Diffusion models · Local asymptotic normality · Asymptotically efficient
estimators · Degenerate diffusions · Stochastic Hodgkin–Huxley model

Mathematics Subject Classification 62F12 · 60J60

1 Introduction

Problems of parametric inference when we observe over a long time interval a process Y of
type

dYt =
⎛

⎝
m∑

j=1

ϑ j f j (t) − τ Yt

⎞

⎠ dt + √
c dWt , τ > 0

with unknown parameters (ϑ1, . . . , ϑm) or (ϑ1, . . . , ϑm, τ ) and with ( f1, . . . , fm) a given
set of functions have been considered in a number of papers; alternatively, such models can
be written as
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Yt =
m∑

j=1

ϑ j g j (t) + Xt , dXt = −τ Xt dt + √
c dWt

with related functions (g1, . . . , gm). Also, driving Brownian motion W in the Ornstein–
Uhlenbeck type equations above has been replaced by certain Lévy processes or by fractional
Brownianmotion.Many papers focus on orthonormal sets of periodic functions [0,∞) → R

with known periodicity. To determine estimators and limit laws for rescaled estimation errors
in this case, periodicity allows to exploit ergodicity or stationarity with respect to the time grid
of multiples of the periodicity. We mention Dehling et al. (2010), Franke and Kott (2013)
and Dehling et al. (2017) where limit distributions for least squares estimators and maxi-
mum likelihood estimators are obtained. Rather than in asymptotic properties, Pchelintsev
(2013) is interested in methods which allow to reduce squared risk—i.e. risk defined with
respect to one particular loss function—uniformly over determined subsets of the parame-
ter space, at fixed and finite sample size. Asymptotic efficiency of estimators is the topic
of Höpfner and Kutoyants (2009), where sums

∑
ϑ j f j as above are replaced by peri-

odic functions S of known periodicity whose shape depends on parameters (ϑ1, . . . , ϑm).
When the parametrization is smooth enough, local asymptotic normality in the sense of
LeCam (see Le Cam 1969; Hajek 1970; Davies 1985; Pfanzagl 1994; Le Cam and Yang
2002; with a different notion of local neighbourhood see Ibragimov and Khasminskii (1981)
and Kutoyants (2004)) allows to identify a limit experiment with the following property:
risk—asymptotically as the time of observation tends to ∞, and with some uniformity over
small neighbourhoods of the true parameter—is bounded below by a corresponding mini-
max risk in a limit experiment. This assertion holds with respect to a broad class of loss
functions.

With a view to an estimation problem which arises in stochastic Hodgkin–Huxley models
and which we explain below, the present paper deals with parameter estimation when one
observes a process Y

Yt =
p∑

j=0

ϑ j t
j + Xt , dXt = −τ Xt dt + √

c dWt , τ > 0 (1)

with leading coefficient ϑp > 0 so that paths of Y almost surely tend to ∞. Then good
estimators for the parameters based on observation of Y up to time n show the following
behaviour: whereas estimation of parameters τ and ϑ0 works at the ’usual’ rate

√
n , param-

eters ϑ j with 1 ≤ j ≤ p can be estimated at rate
√
n2 j+1 as n → ∞. With rescaled time

(tn)t≥0, we prove local asymptotic normality as n → ∞ in the sense of LeCam with local
scale

ψn :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1√
n
0 . . . . . . 0

0 1√
n3

. . . . . . 0

0
. . .

. . .
. . . 0

0 . . . . . . 1√
n2p+1

0

0 . . . . . . 0 1√
n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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and with limit information process J = (Jt )t≥0

J (t) = 1

c

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

τ 2

1 t τ 2

2 t2 . . . τ 2

p+1 t p+1 0
τ 2

2 t2 τ 2

3 t3 . . . τ 2

p+2 t p+2 0
...

...
. . .

...
...

τ 2

p+1 t p+1 τ 2

p+2 t p+2 . . . τ 2

2p+1 t2p+1 0
0 . . . . . . 0 c

2 τ
t

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, t ≥ 0

at every θ := (ϑ0, . . . , ϑp, τ ). As a consequence of local asymptotic normality, there is a local
asymptotic minimax theorem (Ibragimov and Khasminskii 1981; Davies 1985; Le Cam and
Yang 2002; Kutoyants 2004; Höpfner 2014) which allows to identify optimal limit distribu-
tions for rescaled estimation errors in the statistical model (1); the theorem also specifies a
particular expansion of rescaled estimation errors (in terms of the central sequence in local
experiments at θ ) which characterizes asymptotic efficiency.We can construct asymptotically
efficient estimators for the model (1), and these estimators have a simple and explicit form.

We turn to an application of the results obtained for model (1). Consider the problem of
parameter estimation in a stochastic Hodgkin–Huxley model for the spiking behaviour of a
single neuron belonging to an active network

⎧
⎪⎪⎨

⎪⎪⎩

dVt = dYt − F(Vt , nt ,mt , ht ) dt
dnt = {αn(Vt )(1 − nt ) − βn(Vt )(1 − nt )} dt
dmt = {αm(Vt )(1 − mt ) − βm(Vt )(1 − mt )} dt
dht = {αh(Vt )(1 − ht ) − βh(Vt )(1 − ht )} dt

(2)

where input dYt received by the neuron is modelled by the increments of the stochastic
process

Yt = ϑ t + Xt , dXt = −τ Xt dt + √
c dWt , (ϑ, τ ) ∈ (0,∞)2 . (3)

The functions F(., ., ., .) and α j (.), β j (.), j ∈ {n,m, h} are those of Izhikevich (2007) pp.
37–39. The stochastic model (2) extends the classical deterministic model with constant rate
of input a > 0 ⎧

⎪⎪⎨

⎪⎪⎩

dVt = a dt − F(Vt , nt ,mt , ht ) dt
dnt = {αn(Vt )(1 − nt ) − βn(Vt )(1 − nt )} dt
dmt = {αm(Vt )(1 − mt ) − βm(Vt )(1 − mt )} dt
dht = {αh(Vt )(1 − ht ) − βh(Vt )(1 − ht )} dt

(4)

by taking into account ’noise’ in the dendritic tree where incoming excitatory or inhibitory
spike trains emitted by a large number of other neurons in the network add up and decay.
See Hodgkin and Huxley (1952), Izhikevich (2007), Ermentrout and Terman (2010) and the
literature quoted there for the role of this model in neuroscience. Stochastic Hodgkin–Huxley
models have been considered in Höpfner et al. (2016a), (2016b), (2017) and Holbach (2020).
For suitable data sets, membrane potential data hint to the existence of a quadratic variation
which indicates the need for a stochastic modelization.

In systems (2) or (4), the variable V = (Vt )t≥0 represents the membrane potential in the
neuron; the variables j = ( jt )t≥0, j ∈ {n,m, h}, are termed gating variables and represent—
in the sense of averages over a large number of channels—opening and closing of ion channels
of certain types. The membrane potential can be measured intracellularly in good time reso-
lution whereas the gating variables in the Hodgkin–Huxley model are not accessible to direct
measurement.
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In a sense of equivalence of experiments as in Holbach (2019), the stochastic Hodgkin
Huxley model (2)+(3) corresponds to a submodel of (1). This is of biological importance.
Under the assumption that the stochastic model admits a fixed starting point which does not
depend on θ := (ϑ, τ ), we can estimate the components ϑ > 0 and τ > 0 of the unknown
parameter θ = (ϑ, τ ) in equations (2)+(3) from the evolution of the membrane potential
alone, and have at our disposal simple and explicit estimators θ̆ (n) = (ϑ̆(n), τ̆ (n)) with the
following two properties (i) and (ii).

(i) With local parameter h = (h1, h2) parametrizing shrinking neighbourhoods of θ =
(ϑ, τ ), risks

sup
|h|≤C

E(
ϑ+h1/

√
n3 , τ+h2/

√
n
)

(

L

(√
n3 ( ϑ̆(n) − (ϑ + h1/

√
n3 ) )√

n ( τ̆ (n) − (τ + h2/
√
n ) )

) )

(5)

converge as n → ∞ to

E

⎛

⎝ L

⎛

⎝
3
√
c

τ

∫ 1
0 s dW̃ (1)

s√
2 τ W̃ (2)

1

⎞

⎠

⎞

⎠ (6)

where W̃ = (W̃ (1), W̃ (2)) is two-dimensional standard Brownian motion. Here C is an
arbitrary constant, and L : R2 → [0,∞) any loss function which is continuous, subconvex
and bounded.

(ii) We can compare the sequence of estimators θ̆ (n) = (ϑ̆(n), τ̆ (n)) for θ = (ϑ, τ )

in (5) to arbitrary estimator sequences T (n) = (T (1)(n), T (2)(n)) which can be defined
from observation of the membrane potential up to time n, provided their rescaled estimation
errors—using the same norming as in (5)—are tight. For all such estimator sequences,

sup
C↑∞

lim inf
n→∞ sup

|h|≤C
E(

ϑ+h1/
√
n3 , τ+h2/

√
n
)

(

L

(√
n3 ( T (1)(n) − (ϑ + h1/

√
n3 ) )√

n ( T (2)(n) − (τ + h2/
√
n ) )

) )

is always greater or equal than the limit in (6). This is the assertion of the local asymptotic
minimax theorem. Itmakes sure that asymptotically as n → ∞, it is impossible to outperform
the simple and explicit estimator sequence θ̆ (n) = (ϑ̆(n), τ̆ (n)) which we have at hand.

The paper is organized as follows. Section 2 collects for later use convergence results for
certain functionals of the Ornstein–Uhlenbeck process. Section 3 deals with local asymptotic
normality (LAN) for the model (1): proposition 1 and theorem 1 in Sect. 3.1 prove LAN, the
local asymptotic minimax theorem is corollary 1 in Sect. 3.1; we introduce and investigate
estimators for θ = (ϑ, τ ) in Sects. 3.2 and 3.3; theorem 2 in Sect. 3.4 states their asymptotic
efficiency. The application to parameter estimation in the stochastic Hodgkin–Huxley model
(2)+(3) based on observation of the membrane potential is the topic of the final Sect. 4: see
theorem 3 and corollary 2 there.

2 Functionals of the Ornstein Uhlenbeck process

We state for later use properties of some functionals of the Ornstein Uhlenbeck process

dXt = −τ Xt dt + σ dWt , t ≥ 0 (7)

with fixed starting point x0 ∈ R. τ > 0 and σ > 0 are fixed, and ν :=N (0, σ 2

2τ ) is the
invariant measure of the process in (7); X is defined on some (�,A, P).
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Lemma 1 For X defined by (7), for every f ∈ L1(ν) and � ∈ N, we have almost sure
convergence as r → ∞

�

r�

∫ r

0
s�−1 f (Xs) ds −→ ν( f ) .

Proof (Höpfner and Kutoyants 2011, lemma 2.2; Holbach 2019, lemma 2.5, compare to
Bingham et al. 1987 theorem 1.6.4 p. 33)

(1) We consider functions f ∈ L1(ν) which satisfy ν( f ) 	= 0. The case � = 1 is the well
known ratio limit theorem for additive functionals of the ergodic diffusion X (Kutoyants
2004; Höpfner 2014 p. 214). Assuming that the assertion holds for � = �0 ∈ N, define
Ar = ∫ r

0 s�0−1 f (Xs) ds . Stieltjes product formula for semimartingales with paths of locally
bounded variation yields

∫ r

0
s d As = r Ar −

∫ r

0
As ds, 0 < r < ∞ .

Under our assumption, both terms on the right hand side are of stochastic order O(r�0+1):
since �0

s�0
As converges to ν( f ) 	= 0 almost surely as s → ∞, the second term on the right

hand side behaves as ν( f )
∫ r
0

s�0
�0
ds = ν( f ) r�0+1

�0(�0+1) as r → ∞; the first term on the right

hand side behaves as ν( f ) r
�0+1

�0
. This proves the assertion for �0 + 1.

(2) We consider functions f ∈ L1(ν) such that ν( f ) = 0, f 	= 0. Writing f + ≥ 0
for the positive part of f and f − ≥ 0 for the negative part, we have f = f + − f − and
α := ν( f +) = ν( f −) > 0. For N arbitrarly large but fixed, step (1) applied to functions
hN := [ f + − (1− 1

N ) f −] and gN := [(1− 1
N ) f + − f −] yields almost sure convergence

lim
r→∞

�

r�

∫ r

0
s�−1 hN (Xs) ds =

∫

hNdν = α

N

lim
r→∞

�

r�

∫ r

0
s�−1 gN (Xs) ds =

∫

gNdν = − α

N

as r → ∞. Thus, letting N tend to ∞, comparison of trajectories
∫ r

0
s�−1 gN (Xs) ds ≤

∫ r

0
s�−1 f (Xs) ds ≤

∫ r

0
s�−1 hN (Xs) ds

establishes the desired result for functions f ∈ L1(ν) with ν( f ) = 0. 
�
Lemma 2 For X as above we have for every � ∈ N

1

r�

∫ r

0
s� dXs = Xr + ρ�(r), lim

r→∞ ρ�(r) = 0 almost surely .

Proof This is integration by parts
∫ r

0
s� dXs = r� Xr −

∫ r

0
Xs �s�−1 ds, r > 0 (8)

and lemma 1 (with f (x) = x and ν = N (0, σ 2

2τ )) applied to the right hand side. 
�
Lemma 3 For X defined by (7), for every � ∈ N0, we have convergence in law

1√
n2�+1

∫ n

0
s� Xs ds
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as n → ∞ to the limit

σ

τ

∫ 1

0
s� dBs

where B is standard Brownian motion.

Proof Rearranging SDE (7) we write

τ Xs ds = −dXs + σ dWs

and have for every � ∈ N0

τ

∫ r

0
s� Xs ds = −

∫ r

0
s� dXs + σ

∫ r

0
s� dWs, r ≥ 0 . (9)

In case � = 0, the right hand side is−(Xr −X0)+σWr , and the scaling property of Brownian
motion combined with ergodicity of X yields weak convergence as asserted. In case � ≥ 1,
lemma 2 transforms the first term on the right hand side of (9), and we have

τ

∫ r

0
s� Xs ds = −r� ( Xr + ρ�(r) ) + σ

∫ r

0
s� dWs . (10)

The martingale convergence theorem (Jacod and Shiryaev 1987, VIII.3.24) shows that
(

1√
n2�+1

∫ tn

0
s� dWs

)

t≥0
(11)

converges weakly in the Skorohod path space D([0,∞)R) to a continuous limit martingale
with angle bracket t → 1

2�+1 t
2�+1 , i.e. to

(∫ t

0
s� dBs

)

t≥0
.

Scaled in the same way, the first term on the right hand side of (10)

− 1√
n

(Xtn + ρ�(tn)) t�

is negligible in comparison to (11), uniformly on compact t-intervals, by ergodicity of X . 
�
Lemma 4 (a) For every � ∈ N we have an expansion

1√
n2�+1

∫ n

0
s� Xs ds = σ

τ

1√
n2�+1

∫ n

0
s� dWs − 1

τ
√
n

(Xn + ρ�(n)) (12)

where lim
n→∞ ρ�(n) = 0 almost surely. In case � = 0 we have

1√
n

∫ n

0
Xs ds = σ

τ

1√
n
Wn − 1

τ
√
n

(Xn − X0) .

(b) For every � ∈ N, we have joint weak convergence as n → ∞
(

1√
n

∫ n

0
s0 Xs ds , . . . ,

1√
n2�+1

∫ n

0
s� Xs ds

)

(13)

with limit law

σ

τ

(∫ 1

0
s0 dBs , . . . ,

∫ 1

0
s� dBs

)

.
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Proof Part (a) is (10) plus scaling as in the proof of lemma 3. For different � ∈ N0, the
expansions (12) hold with respect to the same driving Brownian motion W from SDE (7):
this gives (b). 
�

3 The statistical model of interest

Consider now a more general problem of parameter estimation from continuous-time obser-
vation of

Yt = R(t) + Xt , t ≥ 0 (14)

where R(·) is a sufficiently smooth deterministic function which depends on some finite-
dimensional parameter ϑ , and where the Ornstein Uhlenbeck process X = (Xt )t≥0, unique
strong solution to

dXt = −τ Xt dt + √
c dWt , (15)

depends on a parameter τ > 0. The starting point X0 ≡ x0 is deterministic. Then Y solves
the SDE

dYt = ( S(t) − τ Yt ) dt + √
c dWt , t ≥ 0 (16)

where S depending on ϑ and τ is given by

S(t) = [ R′ + τ R ](t) where R′ := d

dt
R . (17)

Conversely, if a process Y is solution to an SDE of type (16), then solving R′ = −τ R + S
with suitable initial point r0 we get a representation (14) for Y where

R(t) = r0 e
−τ t +

∫ t

0
S(s) e−τ(t−s) ds . (18)

For examples of parametric models of this type, see e.g. Dehling et al. (2010), Franke and
Kott (2013), Höpfner and Kutoyants (2009), Pchelintsev (2013), and example 2.3 in Höpfner
andKutoyants (2011). The constant c > 0 in (15) is fixed and known: observing the trajectory
of Y continuously in time, 〈Y 〉t = c t equals the limit in probability lim

n→∞
∑2n

j=1(Yt j/2n −
Yt( j−1)/2n )

2 of squared increments, thus c is known almost surely and cannot be considered
as a parameter.

We wish to estimate the unknown parameter θ := (ϑ, τ ) based on time-continuous obser-
vation of Y in (14) over a long time interval, in the model

Rϑ(t) =
p∑

j=0

ϑ j t
j (19)

with real coefficients where we assume a leading coefficient ϑp > 0 such that trajectories
of Y tend to ∞ almost surely as t → ∞. Thus our parametrization is

θ := (
ϑ0, ϑ1, . . . , ϑp−1, ϑp , τ

)� ∈  :=Rp×(0,∞)×(0,∞) (20)

and in SDE (16) which governs the observation Y , S depending on θ = (ϑ, τ ) has the form

Sθ (t) = [R′
ϑ + τ Rϑ ](t) = τ ϑ0 +

p∑

j=1

ϑ j t
j−1( j + τ t ) . (21)
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3.1 Local asymptotic normality for themodel (14)+(19)

Let C :=C([0,∞),R) denote the canonical path space for continuous processes; with π =
(πt )t≥0 the canonical process (i.e. πt ( f ) = f (t) for f ∈ C , t ≥ 0) and C = σ(πt : t ≥ 0),

G = (Gt )t≥0, Gt :=
⋂

r>t

σ (πs : s ≤ r) , t ≥ 0

is the canonical filtration. Let Qθ denote the law on (C, C,G) of the process Y in (14) under
θ ∈ , cf. (20). By (14), (15), (16), (19) and (21), the canonical process π = (πt )t≥0 on
(C, C) under Qθ solves

dπt =
⎛

⎝

⎡

⎣ τ ϑ0 +
p∑

j=1

ϑ j t
j−1( j + τ t )

⎤

⎦ − τ πt

⎞

⎠ dt + √
c dWt . (22)

For pairs θ ′ 	= θ in , probability measures Qθ ′ , Qθ are locally equivalent relative toG, and
we write

γ ′(s, y) = Sθ ′(s) − τ ′y
c

= [R′
ϑ ′ + τ ′Rϑ ′ ](s) − τ ′y

c

γ (s, y) = Sθ (s) − τ y

c
= [R′

ϑ + τ Rϑ ](s) − τ y

c
.

With mπ,θ = √
c dWs the martingale part of π under θ , the likelihood ratio process of Qθ ′

w.r.t. Qθ relative to G (Lipster and Shiryaev 2001; Ibragimov and Khasminskii 1981; Jacod
and Shiryaev 1987; Kutoyants 2004; Höpfner 2014 p. 162) is

Lθ ′/θ
t = exp

(∫ t

0
(γ ′ − γ )(s, πs)

√
c dWs − 1

2

∫ t

0
(γ ′ − γ )2(s, πs) c ds

)

. (23)

In the integrand,

c (γ ′ − γ )(s, πs) = (R′
ϑ ′ − R′

ϑ)(s) − (τ ′ − τ)πs + τ ′Rϑ ′(s) − τ Rϑ(s)

= (R′
ϑ ′ − R′

ϑ)(s) − (τ ′ − τ)(πs − Rϑ(s)) + τ(Rϑ ′ − Rϑ)(s) + (τ ′ − τ)(Rϑ ′ − Rϑ)(s) ,

so we exploit (14) to write for short

c (γ ′−γ )(s, πs) = [
(R′

ϑ ′ − R′
ϑ) + τ(Rϑ ′ − Rϑ)

]
(s) − (τ ′−τ)Xs+(τ ′−τ)(Rϑ ′ −Rϑ)(s)

(24)
where X under θ = (ϑ, τ ) is the Ornstein Uhlenbeck process (15), and where

[
(R′

ϑ ′ − R′
ϑ) + τ(Rϑ ′ − Rϑ)

]
(s) = τ(ϑ ′

0 − ϑ0) +
p∑

j=1

(ϑ ′
j − ϑ j ) s

j−1 [ j + τ s] .

Localization at θ ∈  will be as follows: with notation

ϑ ′
0(n, h) :=ϑ0 + 1√

n
h0, τ ′(n, h) := τ + 1√

n
h p+1 ,

ϑ ′
j (n, h) := ϑ j + 1√

n2 j+1
h j , 1 ≤ j ≤ p

123



Statistical Inference for Stochastic Processes (2021) 24:35–59 43

we insert

θ ′(n, h) =

⎛

⎜
⎜
⎜
⎜
⎝

ϑ ′
0(n, h)

ϑ ′
1(n, h)

. . .

ϑ ′
p(n, h)

τ ′(n, h)

⎞

⎟
⎟
⎟
⎟
⎠

where h =

⎛

⎜
⎜
⎜
⎜
⎝

h0
h1
. . .

h p

h p+1

⎞

⎟
⎟
⎟
⎟
⎠

is such that θ ′(n, h) ∈ 

in place of θ ′ into (23); finally we rescale time. Define

ψn :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1√
n
0 . . . . . . 0

0 1√
n3

. . . . . . 0

0
. . .

. . .
. . . 0

0 . . . . . . 1√
n2p+1

0

0 . . . . . . 0 1√
n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (25)

With local parameter h and local scale (25) at θ , we obtain from (23)+(24)

L(θ+ψnh) / θ
tn = exp

(

h�Sn,θ (t) − 1

2
h�Jn,θ (t) h + ρn,θ,h(t)

)

(26)

where ρn,θ,h is some process of remainder terms, Sn,θ a martingale with respect to Qθ and
(Gtn)t≥0

Sn,θ (t) := 1√
c

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1√
n

∫ tn
0 τ dWs

1√
n3

∫ tn
0 (1 + τ s) dWs

...
1√

n2 j+1

∫ tn
0 s j−1( j + τ s) dWs

...
1√

n2p+1

∫ tn
0 s p−1(p + τ s) dWs

− 1√
n

∫ tn
0 Xs dWs

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(27)

(again by (14), Xs stands for πs − Rθ (s) under θ ), and Jn,ϑ the angle bracket of Sn,θ under
θ .

Proposition 1 (a) For fixed 0 < t < ∞, components of Jn,θ (t) converge Qθ -almost surely
as n → ∞ to those of the deterministic process

J (t) = 1

c

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

τ 2

1 t τ 2

2 t2 . . . τ 2

p+1 t p+1 0
τ 2

2 t2 τ 2

3 t3 . . . τ 2

p+2 t p+2 0
...

...
. . .

...
...

τ 2

p+1 t p+1 τ 2

p+2 t p+2 . . . τ 2

2p+1 t2p+1 0
0 . . . . . . 0 c

2 τ
t

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, t ≥ 0 . (28)

For every 0 < t < ∞, the matrix J (t) is invertible.
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(b)Let W̃ denote a two-dimensional standardBrownianmotionwith components W̃ (1) and
W̃ (2). In the cadlag path space D = D([0,∞),Rp+2) (Jacod and Shiryaev 1987, chapters
VI and VIII), martingales Sn,θ under Qθ converge weakly as n → ∞ to the limit martingale

S(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

τ√
c

∫ t
0 s

0 dW̃ (1)
s

τ√
c

∫ t
0 s

1 dW̃ (1)
s

...
τ√
c

∫ t
0 s

p dW̃ (1)
s

1√
2 τ

W̃ (2)
t

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, t ≥ 0 . (29)

Proof The proof is in several steps. (1)We specify the angle bracket (or predictable quadratic
covariation) process Jn,ϑ of Sn,ϑ under Qθ . Its state at time t

Jn,θ (t) :=
(
J (i, j)
n,θ (t)

)

i, j=0,1,...,p+1

is a symmetric matrix of size (p+2)×(p+2). Taking into account the norming factor in front
of Sn,θ in (27) we consider throughout cJn,θ . The entries are given as follows. We have

cJ (i, j)
n,θ (t) = 1

ni+ j+1

∫ tn

0
si+ j−2 (i+τ s)( j+τ s) ds

n→∞∼ τ 2
1

i+ j+1
t i+ j+1

for all 1 ≤ i, j ≤ p. In the first line of cJn,θ (t) we have

cJ (0,0)
n,θ (t) = τ 2 t, cJ (0,p+1)

n,θ (t) = −1

n

∫ tn

0
τ Xs ds

in first and last position, and in-between for 1 ≤ j ≤ p

cJ (0, j)
n,θ (t) = 1

n j+1

∫ tn

0
τ s j−1( j + τ s) ds

n→∞∼ τ 2
1

j+1
t j+1 .

For the last column of cJn,θ (t), the first entry cJ (0,p+1)
n,θ (t) has been given above, the last

entry is

cJ (p+1,p+1)
n,θ (t) = 1

n

∫ tn

0
X2
s ds ,

in-between we have for 1 ≤ j ≤ p

cJ ( j,p+1)
n,θ (t) = − 1

n j+1

∫ tn

0
s j−1( j + τ s) Xs ds .

It remains to consider the three integralswhich are not deterministic: here lemma1 establishes
almost sure convergence

1

n

∫ tn

0
X2
s ds −→ c

2τ
t,

1

n

∫ tn

0
τ Xs ds −→ 0,

1

n j+1

∫ tn

0
s j−1( j + τ s) Xs ds −→ 0

as n → ∞ under Qθ . This proves almost sure convergence of the components of Jn,θ (t) to
the corresponding components of J (t) defined in (28).

(2) We prove that for every 0 < t < ∞, the matrix J (t) defined in (28) is invertible. For
this it is sufficient to check invertibility of (p+1)×(p+1) matrices

J̃ (t) :=
(

1

i+ j+1
t i+ j+1

)

i, j=0,...,p
. (30)
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which up to the factor τ 2

c represent the upper left block in J (t). We have to show that
min|u|=1

u� J̃ (t) u is strictly positive. In case t = 1, the rows of J̃ (1) are linearly independent

vectors in Rp+1, thus the assertion holds. For t 	= 1, associate v(u) = √
t ( ui t i )0≤i≤p to

u ∈ Rp+1. Thenwe have u� J̃ (t) u = v(u)� J̃ (1) v(u) , fromwhichwe deduce the assertion.
Part a) of the proposition is proved.

(3) As an auxiliary step, we determine a martingale S̃ which admits J̃ defined in (30)

J̃ = ( J̃ (t))t≥0, J̃ (t) =
(
J̃ (i, j)(t)

)

i, j=0,1,...,p

as its angle bracket. In integral representation we have

J̃ (i, j)(t) =
∫ t

0
si+ j ds =

∫ t

0
(�s�s)

(i, j) ds

where �s is a square root

�s := 1√
q(s)

(si+�)i,�=0,...,p with q(s) :=
p∑

�=0

s2�

for the matrix (si+ j )i, j=0,...,p (note that for fixed s, this matrix is not invertible). From this
representation for the angle brackets J̃ we obtain a representation of the martingale S̃ (Ikeda
and Watanabe 1989, theorem 7.1’ on p. 90):

S̃ = (
S̃0 , . . . , S̃ p ) , S̃i (t) =

p∑

j=0

∫ t

0
�

(i, j)
s d B̃ j

s , 0 ≤ i ≤ p

with some (p+1)-dimensional standard Brownian motion

B̃ = (
B̃0 , . . . , B̃ p ) .

Given the simple structure of the�s , we can define a new one-dimensional Brownian motion
W̃ (1) by

W̃ (1)
s :=

p∑

�=0

∫ t

0

1√
q(s)

s� d B̃�
s

and end up with

S̃ = (
S̃0 , . . . , S̃ p ) , S̃i (t) =

∫ t

0
si dW̃ (1)

s , 0 ≤ i ≤ p . (31)

(4)Nowwecandetermine themartingale Swhich admits J defined in (28) as angle bracket.
Since J (t) has a diagonal block structure where (up to multiplication with a constant in every
block) the upper left block has been considered in step 3 whereas we have for the lower right
block

lim
n→∞

1

n

∫ tn

0
X2
s ds = c

2τ
t
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Qθ -almost surely by lemma 1, the desired representation is

S(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

τ√
c

∫ t
0 s

0 dW̃ (1)
s

τ√
c

∫ t
0 s

1 dW̃ (1)
s

...
τ√
c

∫ t
0 s

p dW̃ (1)
s

1√
2 τ

W̃ (2)
t

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, t ≥ 0

with W̃ (1) from (31), and with another one-dimensional Brownian motion W̃ (2) which is
independent from W̃ (1). This is the form appearing in (29) of the proposition.

(5) On the basis of part (a) of the proposition, the martingale convergence theorem
(Jacod and Shiryaev 1987, VIII.3.24) establishes weak convergence (in the path space
D([0,∞),Rp+2), under Qθ , as n → ∞) of the martingales Sn,θ under Qθ to the limit
martingale S which has been determined in step (4). This finishes the proof of proposition 1.


�
As a consequence of proposition 1, we obtain local asymptotic normality (Le Cam 1969;

Hajek 1970; Ibragimov and Khasminskii 1981; Davies 1985; Le Cam and Yang 2002; Pfan-
zagl 1994; Kutoyants 2004; Höpfner 2014, section 7.1).

Theorem 1 (a)At θ ∈ , with local scale at θ given by (ψn)n from (25), quadratic expansions

log L( θ+ψnhn) / θ
n = h�

n Sn,θ (1) − 1

2
h�
n Jn,θ (1) hn + o(Qθ )(1), n → ∞

hold for arbitrary bounded sequences (hn)n inRp+2; since  is open, θ +ψnhn belongs to
 for n large enough. Eventually as n → ∞, Jn,θ (1) takes its values in the set of invertible
(p+2)×(p+2)-matrices, Qθ -almost surely.

(b) For every θ ∈ , we have weak convergence in D([0,∞),R(p+2)×R(p+2)×(p+2)) as
n → ∞

L ( (
Sn,θ , Jn,θ

) | Qθ

) −→ L ( S , J )

with S the martingale in (29) and J its angle bracket in (28).
(c) There is a Gaussian shift limit experiment E(S, J ) with likelihood ratios

exp

(

h�S(1) − 1

2
h� J (1) h

)

, h ∈ Rp+2 .

Proof (1) As a first step, weak convergence of Sn,θ to S under Qθ in proposition 1 implies
(Jacod and Shiryaev 1987, theoremVI.6.1) joint weak convergence of themartingale together
with its angle bracket. This is part (b) of the theorem. For 0 < t < ∞ fixed, invertibility
of Jn,θ (t), Qθ -almost surely for sufficiently large n, follows from invertibility of J (t) and
componentwise almost surely convergence Jn,θ (t) → J (t) by proposition 1.

(2)We can represent the limit experiment E(S, J ) in (c) as {N (J (1)h, J (1)) : h ∈ Rp+2}.
(3) Fix a bounded sequence (hn)n inRp+2, take n large enough so that θ + ψnhn is in ,

and define

ρn,θ,hn (t) := log L( θ+ψnhn) / θ
tn −

{

h�
n Sn,θ (t) − 1

2
h�
n Jn,θ (t) hn

}

, t ≥ 0 . (32)

Usingnotation θ ′(n, h) = θ+ψnh as in (23)–(26),we split θ ′(n, hn)=:(ϑ ′(n, hn), τ ′(n, hn))
into a bloc ϑ ′(n, hn) = (ϑ ′

0(n, hn), . . . , ϑ ′
p(n, hn)) and the last component τ ′(n, hn). We
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write hn,0, hn,1, . . . , hn,p+1 for the components of the local parameter hn . Comparing (26)
to (23), we see that out of

c(γ ′ − γ )(s, πs) = G(n, hn)(s) + H(n, hn)(s)

to be considered in (23)+(24) we did consider

H(n, hn)(s) :=
[
(R′

ϑ ′(n,hn)
− R′

ϑ) + τ(Rϑ ′(n,hn) − Rϑ)
]
(s) − (τ ′(n, hn) − τ)Xs

= hn,0
1√
n

τ +
p∑

i=1

hn,i
1√

n2i+1
si−1(i + τ s) − hn,p+1

1√
n
Xs

under the integral signs, whereas we did neglect contributions

G(n, hn)(s) := (τ ′(n, hn) − τ)(Rϑ ′(n,hn) − Rϑ)(s)

under the integral signs, both in the martingales and in the quadratic variations. With these
notations, the remainder terms (32) have the form

ρn,θ,hn (t) = 1√
c

∫ tn

0
G(n, hn)(s) dWs − 1

2c

∫ tn

0

[
2G(n, hn)H(n, hn) + G2(n, hn)

]
(s) ds .

Recall that (hn)n is a bounded sequence. By choice of the localization and by (19) we have

G(n, hn)(s) = O

(
1√
n

)

·
p∑

i=0

hn,i
1√

n2i+1
si .

Transforming the convergence arguments in the proof of proposition 1 into tightness argu-
ments, the random objects

∫ tn

0
H2(n, hn)(s) ds = OQθ (1)

remain tight under Qθ as n → ∞, for every t fixed. The deterministic sequence
∫ tn

0
G2(n, hn)(s) ds = O

(
1

n

)

vanishing as n → ∞,
∫ tn

0
[G(n, hn)H(n, hn)](s) ds = OQθ

(
1√
n

)

vanishes under Qθ as n → ∞ by Cauchy-Schwarz. The sequence of martingales
(∫ tn

0
G(n, hn)(s) dWs

)

t≥0

has angle bracketswhich vanish as n → ∞ for every t fixed, so themartingales itself vanish in
Qθ -probability, uniformly over compact t-intervals as n → ∞. With 0 < t0 < ∞ arbitrary,
this proves

sup
0≤t≤t0

∣
∣ρn,θ,hn (t)

∣
∣ vanishes in Qθ -probability as n → ∞
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for the remainder terms (32). Since we did consider arbitrary bounded sequences (hn)n , we
can reformulate the last assertion in the form

sup
|h|≤C

sup
0≤t≤t0

∣
∣ρn,θ,h(t)

∣
∣ vanishes in Qθ -probability as n → ∞

for arbitrary 0 < C < ∞. We thus have proved part (a) of the theorem. The proof is finished.

�

The local asymptotic minimax theorem arises as a consequence of theorem 1, see Ibragi-
mov and Khasminskii (1981), Davies (1985), Le Cam and Yang (2002), Kutoyants (2004),
or Höpfner (2014) theorem 7.12. Note that it is interesting to consider quite arbitrary Gn-
measurable random variables Tn taking values in R(p+2) as possibly useful estimators for
the unknown parameter θ ∈ .

Corollary 1 For θ ∈ , for arbitrary estimator sequences (Tn)n whose rescaled estimation
errors

L (
ψ−1
n (Tn − θ) | Qθ

)

at θ are tight as n → ∞, for arbitrary loss functions L : R(p+2) → [0,∞) which are
continuous, bounded and subconvex, the following local asymptotic minimax bound holds:

sup
C↑∞

lim inf
n→∞ sup

|h|≤C
Eθ+ψnh

(
L
(
ψ−1
n (Tn − (θ + ψnh) )

) ) ≥ E
(
L
(
J−1(1) S(1)

) )
.

Estimator sequences whose rescaled estimation errors at θ admit as n → ∞ a representation

ψ−1
n (Tn − θ) = [

Jn,θ (1)
]−1

Sn,θ (1) + oQθ (1) = J−1(1) Sn,θ (1) + oQθ (1) (33)

have the property

lim
n→∞ sup

|h|≤C
Eθ+ψnh

(
L
(
ψ−1
n (Tn − (θ + ψnh) )

) ) = E
(
L
(
J−1(1) S(1)

) )

for every 0 < C < ∞ fixed, and thus attain the local asymptotic minimax bound at θ .

Remark 1 In theorem 1, the limit experiment E(S, J ) at θ = (ϑ, τ ) ∈  depends on the com-
ponent τ (the constant c is not a parameter), by (28), but not on ϑ = (ϑ0, ϑ1, . . . , ϑp). The
τ -component of E(S, J ) is thewell-known limit experimentwhen an ergodicOrnsteinUhlen-
beck process (15) with backdriving force τ is observed over a long time interval (Kutoyants
2004; Höpfner 2014 section 8.1).

3.2 Estimating (#0, . . . ,#p) in themodel (14)+(19)

By abuse of language, we write in this subsection Y for π on (C, C) under Qθ , X for π − Rθ

under Qθ ; as before
√
c W denotes the martingale part of Y or X under Qθ relative toG. To

estimate ϑ = (ϑ0, . . . , ϑp) ∈ Rp×(0,∞) in the model (14)+(19), consider

ϑ̃(t) := arginf
ϑ ′=(ϑ ′

0,...,ϑ
′
p)

∫ t

0
(Y (s) − Rϑ ′(s))2 ds . (34)
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Least squares estimators (34) are uniquely determined—see (37) below—and have an explicit
and easy-to-calculate form; we discuss their asymptotics under θ = (ϑ, τ ). Define martin-
gales S̃n,θ with respect to Qθ and (Gtn)t≥0

S̃n,θ (t) := 1√
c

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1√
n

∫ tn
0 τ dWs

1√
n3

∫ tn
0 (1 + τ s) dWs

...
1√

n2p+1

∫ tn
0 s p−1(p + τ s) dWs

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, t ≥ 0 (35)

which coincide with Sn,θ of (27) whose last component has been suppressed. Let J̃n,θ denote
the angle bracket of S̃n,θ under Qθ . We consider also

ψ̃n :=

⎛

⎜
⎜
⎜
⎜
⎝

1√
n
0 . . . 0

0 1√
n3

. . . 0
...

. . .
...

0 0 . . . 1√
n2p+1

⎞

⎟
⎟
⎟
⎟
⎠

(36)

which coincides with local scale ψn of (25) whose last row and last column have been
suppressed, and invertible deterministic (p+1)×(p+1) matrices as defined in (30) in the
proof of proposition 1:

J̃ (t) :=
(

1

i+ j+1
t i+ j+1

)

i, j=0,...,p
.

Proposition 2 For every θ = (ϑ, τ ) ∈ , rescaled estimation errors of the least squares
estimator (34) admit a representation

ψ̃−1
n

(
ϑ̃(n) − ϑ

) = [
J̃n,θ (1)

]−1
S̃n,θ (1) + oQθ (1) =

[
τ 2

c
J̃ (1)

]−1

S̃n,θ (1) + oQθ (1)

as n → ∞. 
�

Proof (1) Almost surely as n → ∞, angle brackets J̃n,θ of S̃n,θ under Qθ converge to

τ 2

c

( ∫ t

0
si+ j ds

)

i, j=0,...,p
= τ 2

c
J̃ (t)

for fixed 0 < t < ∞. This has been proved in proposition 1.
(2) Least squares estimators ϑ̃(t) in (34) are uniquely defined and have the explicit form

⎛

⎜
⎜
⎝

∫ t
0 Ys ds∫ t
0 s Ys ds

. . .∫ t
0 s

p Ys ds

⎞

⎟
⎟
⎠ = J̃ (t)

⎛

⎜
⎜
⎝

ϑ̃0(t)
ϑ̃1(t)
. . .

ϑ̃p(t)

⎞

⎟
⎟
⎠ = J̃ (t) ϑ̃(t) : (37)

to check this, take derivatives under the integral sign in (34), use (19) for i = 0, 1, . . . , p

d

dϑ ′
i

(Y (s) − Rϑ ′(s))2 = −2 (Y (s) − Rϑ ′(s))
d

dϑ ′
i
Rϑ ′(s) = −2 (Y (s) − Rϑ ′(s)) si ,
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put integrals equal to zero and use the definition (30) of J̃ (t). On the other hand, (19) shows

⎛

⎜
⎜
⎝

∫ t
0 Rϑ(s) ds∫ t
0 s Rϑ(s) ds

. . .∫ t
0 s

p Rϑ(s) ds

⎞

⎟
⎟
⎠ = J̃ (t)

⎛

⎜
⎜
⎝

ϑ0

ϑ1

. . .

ϑp

⎞

⎟
⎟
⎠ . (38)

Thus (14) allows to write

J̃ (t)
(
ϑ̃(t) − ϑ

) =

⎛

⎜
⎜
⎝

∫ t
0 Xs ds∫ t
0 s Xs ds

. . .∫ t
0 s

p Xs ds

⎞

⎟
⎟
⎠ . (39)

The scaling property
ψ̃n J̃ (n) ψ̃n = J̃ (1) (40)

applied to (39) then yields the representation

ψ̃−1
n

(
ϑ̃(n) − ϑ

) = [ J̃ (1)]−1

⎛

⎜
⎜
⎜
⎝

1√
n

∫ n
0 Xs ds

1√
n3

∫ n
0 s Xs ds

. . .
1√

n2p+1

∫ n
0 s p Xs ds

⎞

⎟
⎟
⎟
⎠

. (41)

(3) Representations (12) in lemma 4 combined with the definition of S̃n,θ in (35) show
that under Qθ as n → ∞, the vector on the right hand side of (41) can be written as

√
c

τ

⎛

⎜
⎜
⎜
⎝

1√
n

∫ n
0 dWs

1√
n3

∫ n
0 s dWs

. . .
1√

n2p+1

∫ n
0 s p dWs

⎞

⎟
⎟
⎟
⎠

+ oQθ (1) =
√
c

τ

[√
c

τ
S̃n,θ (1) + oQθ (1)

]

+ oQθ (1) .

Taking into account step (1) this allows to write representation (41) of rescaled estimation
errors as

ψ̃−1
n

(
ϑ̃(n) − ϑ

) =
[

τ 2

c
J̃ (1)

]−1

S̃n,θ (1) + oQθ (1) = [
J̃n,θ (1)

]−1
S̃n,θ (1) + oQθ (1)

which concludes the proof. 
�

3.3 Estimating � in themodel (14)+(19)

Also in this subsection, Y stands for π on (C, C) under Qθ , X for π − Rθ under Qθ , and√
c W for the martingale part of Y or X under Qθ relative to G. To estimate τ > 0 in the

model (14)+(19) based on observation of Y up to time n, define

τ̃ (n) =
∑p

i=0 ϑ̃i (n)
∫ n
0 si dYs − ∫ n

0 Ys dYs
∫ n
0 Y 2

s ds − ϑ̃(n)� J̃ (n) ϑ̃(n)
(42)

where ϑ̃(n) is the least squares estimator (34), and J̃ (n) is given by (30).
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A motivation is as follows. With notations of Sect. 3.1 write the log-likelihood surface

θ ′ → log Lθ ′/θ
n under Qθ in the form

log L(ϑ ′,τ ′)/(ϑ,τ )
t =

∫ t

0
(γ ′ − γ )(s, Ys) dYs − 1

2

∫ t

0
([γ ′]2 − γ 2)(s, Ys) c ds ;

neglect contributions which do not depend on θ ′ = (ϑ ′, τ ′); maximize in τ ′ > 0 on ϑ ′-
sections ϑ ′ :={(ϑ ′, τ ′) : τ ′ > 0} ⊂  on which ϑ ′ remains fixed; finally, insert the
estimate ϑ̃(n) in place of ϑ ′. Making use of (37) the resulting estimator for the parameter
τ > 0 is τ̃ (n) as specified in (42).

Proposition 3 As n → ∞, rescaled estimation errors of the estimator (42) admit an expan-
sion

√
n ( τ̃ (n) − τ ) = − 2 τ

1√
c n

∫ n

0
Xs dWs + oQθ (1) =

− 1√
c n

∫ n
0 Xs dWs

1
c n

∫ n
0 X2

s ds
+ oQθ (1)

under θ = (ϑ, τ ) ∈ , with X solution to the Ornstein Uhlenbeck SDE (15) driven by W.

Proof Combining (42) with (37) we have

τ̃ (n) − τ =
∑p

i=0 ϑ̃i (n)
∫ n
0 si (dYs + τYsds) − ∫ n

0 Ys (dYs + τYsds)
∫ n
0 Y 2

s ds − ϑ̃(n)� J̃ (n) ϑ̃(n)
. (43)

(1) Consider the numerator
p∑

i=0

ϑ̃i (n)

∫ n

0
si (dYs + τYsds) −

∫ n

0
Ys (dYs + τYsds) (44)

on the right hand side of (43). (37) and (38) allow to write
∫ n

0
Ys τ Rϑ(s) ds =

p∑

i=0

ϑi

∫ n

0
si τYs ds = τ ϑ� J̃ (n) ϑ̃(n) = τ ϑ̃(n)� J̃ (n) ϑ

=
p∑

i=0

ϑ̃i (n)

∫ n

0
si τ Rϑ(s) ds .

Adding and substracting this expression, (44) takes the form
p∑

i=0

ϑ̃i (n)

∫ n

0
si ( dYs + τYsds − τ Rϑ(s)ds ) −

∫ n

0
Ys ( dYs + τYsds − τ Rϑ(s)ds ) .

(45)
Exploiting first (19) and then (37) and (30) we can write

∫ n

0
Ys R′

ϑ (s) ds =
p∑

j=1

ϑ j

∫ n

0
js j−1 Ys ds =

p∑

j=1

ϑ j j
p∑

k=0

1

( j−1) + k + 1
n( j−1)+k+1 ϑ̃k(n)

=
p∑

k=0

ϑ̃k(n)

p−1∑

j=0

1

k + j + 1
nk+ j+1 ( j+1)ϑ j+1

=
p∑

k=0

ϑ̃k(n)

∫ n

0
sk

p∑

j=1

jϑ j s
j−1 ds = ϑ̃(n)�

⎛

⎜
⎜
⎜
⎝

∫ n
0 s0 R′

ϑ (s) ds∫ n
0 s1 R′

ϑ (s) ds
.
.
.∫ n
0 s p R′

ϑ (s) ds

⎞

⎟
⎟
⎟
⎠

.
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Adding and subtracting this expression to (45) we thus can write (44) as

p∑

i=0

ϑ̃i (n)

∫ n

0
si

(
dYs + τYsds − [R′

ϑ (s)+τ Rϑ (s)]ds ) −
∫ n

0
Ys

(
dYs + τYsds − [R′

ϑ (s)+τ Rϑ (s)]ds )

which in virtue of (21) and (16) equals

p∑

i=0

ϑ̃i (n)

∫ n

0
si

√
c dWs −

∫ n

0
Ys

√
c dWs .

Using again (14), we have reduced the numerator (44) on the right hand side of (43) to

p∑

i=0

(ϑ̃i (n) − ϑi )

∫ n

0
si

√
c dWs −

∫ n

0
Xs

√
c dWs . (46)

As in lemma 4, joint laws

L
( (

1√
n

∫ tn

0
s0 dWs , . . . ,

1√
n2p+1

∫ tn

0
s p dWs

)

t≥0

)

do not depend on n, whereas by proposition 2 rescaled estimation errors
(√

n2i+1 (ϑ̃i (n) − ϑi )
)

i=0,1,...,p
under Qθ

converge in law as n → ∞, and thus are tight as n → ∞. Terms
∫ n
0 Xs dWs in (46) are

of stochastic order OQθ (
√
n ) as n → ∞, by proposition 1. As a consequence, our final

representation (46) of the numerator (44) on the right hand side of (43) allows to write the
rescaled estimation error as

τ̃ (n) − τ = − ∫ n
0 Xs

√
c dWs + OQθ (1)∫ n

0 Y 2
s ds − ϑ̃(n)� J̃ (n) ϑ̃(n)

. (47)

(2) We consider the denominator
∫ n

0
Y 2
s ds − ϑ̃(n)� J̃ (n) ϑ̃(n) (48)

on the right hand side of (47)—i.e. on the right hand side of (43)—which we write as
∫ n

0
Y 2
s ds − (ϑ̃(n) − ϑ)� J̃ (n) (ϑ̃(n) − ϑ) − 2ϑ� J̃ (n) (ϑ̃(n) − ϑ) − ϑ� J̃ (n) ϑ .

From (14)+(19) we have

∫ n

0
Y 2
s ds =

∫ n

0
X2
s ds + 2

p∑

i=0

ϑi

∫ n

0
si Xs ds + ϑ� J̃ (n) ϑ

whereas (39) shows

ϑ� J̃ (n) (ϑ̃(n) − ϑ) =
p∑

i=0

ϑi

∫ n

0
si Xs ds .
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Thus we have reduced the denominator (48) to
∫ n

0
X2
s ds − (ϑ̃(n) − ϑ)� J̃ (n) (ϑ̃(n) − ϑ) .

The first summand in this expression is OQθ (n), by lemma 1, whereas the second summand

(ϑ̃(n) − ϑ)� J̃ (n) (ϑ̃(n) − ϑ) = (
ψ̃−1
n (ϑ̃(n) − ϑ)

)�
J̃ (1)

(
ψ̃−1
n (ϑ̃(n) − ϑ)

)

converges in law as n → ∞ under Qθ , by (40) and proposition 2, and thus is tight as n → ∞.
Taking all this together, the denominator (48) on the right hand side of (43) under Qθ satisfies

∫ n

0
Y 2
s ds − ϑ̃(n)� J̃ (n) ϑ̃(n) =

∫ n

0
X2
s ds + OQθ (1), n → ∞ . (49)

(3) The proof is finished: taking together (43), (47) and (49), we have

( τ̃ (n) − τ ) = − ∫ n
0 Xs

√
c dWs + OQθ (1)∫ n

0 X2
s ds + OQθ (1)

and thus

√
n ( τ̃ (n) − τ ) =

− 1√
cn

∫ n
0 Xs dWs + OQθ (

1√
n

)

1
cn

∫ n
0 X2

s ds + OQθ (
1
n )

.

By lemma 1, 1
n

∫ n
0 X2

s ds converges Qθ -almost surely to c
2τ : so proposition 3 is proved. 
�

3.4 Efficiency in themodel (14)+(19)

We can put together the results of subsections 3.2 and 3.3 to prove that for every θ ∈  as
n → ∞,

θ̃ (n) := (ϑ̃(n), τ̃ (n))

is an asymptotically efficient estimator sequence in the sense of the local asymptotic minimax
theorem.

Theorem 2 Observing Y in (14)+(19) over the time interval [0, n] as n → ∞, the sequence

θ̃ (n) := (
ϑ̃(n), τ̃ (n)

)

defined by (34) and (42) is such that representation (33) of corollary 1 in Sect. 3.1 holds as
n → ∞:

ψ−1
n (θ̃(n) − θ) = [

Jn,θ (1)
]−1

Sn,θ (1) + oQθ (1) = J−1(1) Sn,θ (1) + oQθ (1) .

The estimator sequence (θ̃(n))n is thus efficient at θ in the sense of the local asymptotic
minimax theorem. This holds for all θ = (ϑ, τ ) ∈ .

Proof If we compare the set of definitions for Sn,θ in (27), J in (28), ψn in (25) to the set of
definitions for S̃n,θ in (35), J̃ in (30), ψ̃n in (36), we canmerge the assertions of propositions 2
and 3

ψ̃−1
n

(
ϑ̃(n) − ϑ

) =
[

τ 2

c
J̃ (1)

]−1

S̃n,θ (1) + oQθ (1)
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√
n ( τ̃ (n) − τ ) = − 2 τ

1√
c n

∫ n

0
Xs dWs + oQθ (1)

under Qθ as n → ∞ into one assertion

ψ−1
n (θ̃(n) − θ) = J−1(1) Sn,θ (1) + oQθ (1) .

Together with proposition 1 (a) in Sect. 3.1, this shows that condition (33) of corollary 1
in Sect. 3.1 is satisfied. But the last condition implies asymptotic efficiency of an estimator
sequence for the unknown parameter in the model (14)+(19) at θ = (ϑ, τ ) ∈ . 
�

4 Application: inference in stochastic Hodgkin–Huxleymodels

Hodgkin–Huxley models play an important role in neuroscience and are considered as real-
istic models for the spiking behaviour of neurons (see Hodgkin and Huxley 1952; Izhikevich
2007; Ermentrout and Terman 2010). The classical deterministic model with constant rate of
input is a 4-dimensional dynamical system with variables (V , n,m, h)

⎧
⎪⎪⎨

⎪⎪⎩

dVt = a dt − F(Vt , nt ,mt , ht ) dt
dnt = [αn(Vt )(1 − nt ) − βn(Vt )nt ] dt
dmt = [αm(Vt )(1 − mt ) − βm(Vt )nt ] dt
dht = [αh(Vt )(1 − ht ) − βh(Vt )nt ] dt

(50)

where a > 0 is a constant. The functions (V , n,m, h) → F(V , n,m, h) and V → α j (V ),
V → β j (V ), j ∈ {n,m, h}, are those of Izhikevich (2007) pp. 37–38 (i.e. the same as in
Höpfner et al. (2016a), section 2.1). V takes values inR and models the membrane potential
in the single neuron. The variables n, m, h are termed gating variables and take values in
[0, 1]. Write E4 :=R × [0, 1]3 for the state space.

Depending on the value of the constant a > 0, the following behaviour of the deterministic
dynamical system is known, see Ermentrout and Terman (2010) pp. 63–66. On some interval
(0, a1) there is a stable equilibrium point for the system. There is a bistability interval Ibs =
(a1, a2) on which a stable orbit coexists with a stable equilibrium point. There is an interval
(a2, a3) on which a stable orbit exists together with an unstable equilibrium point. At a = a3
orbits collapse into equilibrium; for a > a3 the equilibrium point is again stable. Here
0 < a1 < a2 < a3 < ∞ are suitably determined1 endpoints for intervals. Equilibrium
points and orbits depend on the value of a. Evolution of the system along an orbit yields a
remarkable excursion of the membrane potential V which we interprete as a spike.

In simulations, the equilibrium point appears to be globally attractive on (0, a1), the orbit
appears to be globally attractive on (a2, a3); on the bistability interval Ibs = (a1, a2), the
behaviour of the system depends on the choice of the starting value: simulated trajectories
with randomly chosen starting point either spiral into the stable equilibrium, or are attracted
by the stable orbit.

We feednoise into the system.Prepare anOrnstein–Uhlenbeckprocess (15)with parameter
τ > 0

dXt = −τ Xt dt + √
c dWt (51)

1 Note that the constants of Ermentrout and Terman (2010) are different from the constants of Izhikevich
(2007) which we use for the Hodgkin–Huxley model (50). With constants from Izhikevich (2007), simulations
localize a1 = inf Ibs between 5.24 and 5.25, and a2 = sup Ibs close to 8.4; the value of a3 is ≈ 163.5 and
thus far beyond any ’biologically relevant’ value for the parameter a. Numerical calculations and simulations
related to the bistability interval have been done in Hummel (2019).
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and replace input a dt in the deterministic system (50) above by increments (16)

dYt = ϑ(1 + τ t) dt − τ dYt + √
c dWt (52)

of the stochastic process Y in (14) which depends on the parameter ϑ > 0:

Yt = ϑ t + Xt , t ≥ 0 . (53)

This yields a stochastic Hodgkin–Huxley model
⎧
⎪⎪⎨

⎪⎪⎩

dVt = dYt − F(Vt , nt ,mt , ht ) dt
dnt = [αn(Vt )(1 − nt ) − βn(Vt )nt ] dt
dmt = [αm(Vt )(1 − mt ) − βm(Vt )nt ] dt
dht = [αh(Vt )(1 − ht ) − βh(Vt )nt ] dt

(54)

with parameters ϑ > 0 and τ > 0. By (54), the 5-dimensional stochastic system

X = (Xt )t≥0, Xt := (Vt , nt ,mt , ht , Yt )

is strongly Markov with state space E5 :=R × [0, 1]3 × R. Stochastic Hodgkin–Huxley
models where stochastic input encodes a periodic signal have been considered in Höpfner
et al. (2016a), (2016b), (2017) and in Holbach (2019). A biological interpretation of the
model (54) is as follows. The structure dYt = ϑdt + dXt of input reflects superposition of
some global level ϑ > 0 of excitation through the network with ’noise’ in the single neuron.
Noise arises out of accumulation and decay of a large number of small postsynaptic charges,
due to the spikes—excitatory of inhibitory, and registered at synapses along the dendritic
tree— in spike trains which the neuron receives from a large number of other neurons in the
network.

In simulations, the stochastic Hodgkin–Huxley model (54) which we consider in this
section exhibits the following behaviour. For values of ϑ in neighbourhoods of the bistability
interval Ibs of (50), the system (54) alternates (possibly long) time periods of seemingly
regular spiking with (possibly long) time periods of quiet behaviour. ’Quiet’ means that the
system performs small random oscillations in neighbourhoods of some typical point. For
smaller values of ϑ , quiet behaviour prevails, for larger values of ϑ we see an almost regular
spiking.

The aim of the present section is estimation of an unknown parameter

θ = (ϑ, τ ) ∈ ,  := (0,∞)2

in the system (54) with stochastic input (52), based on observation of the membrane potential
V over a long time interval. For this, our standing assumption will be:

a starting value X0 ≡ (V0, n0,m0, h0, Y0) ∈ int(E5) is deterministic, fixed and known.
(55)

Assuming (55) we recover first, for the internal variables j ∈ {n,m, h}, the state jt at time
t from the trajectory of V up to time t

j̆t := j0 e
− ∫ t

0 (α j+β j )(Vr ) dr +
∫ t

0
α j (Vs) e

− ∫ t
s (α j+β j )(Vr ) dr ds, t ≥ 0 , (56)

and then, in virtue of the first equation in (54), the state Yt at time t of the process (53) of
acccumulated dendritic input from the trajectory of V up to time t :

Y̆t = Y0 + (Vt − V0) +
∫ t

0
F(Vt , n̆t , m̆t , h̆t ) dt, t ≥ 0 ; (57)
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here and below we write ’̆ ’ to distinguish reconstructed variables. Thus (V , n̆, m̆, h̆, Y̆ )

reconstructs the trajectory of the 5-dimensional stochastic system X from observation of the
membrane potential V and given starting point satisfying assumption (55). The motivation is
from biology. For single neurons in active networks, themembrane potential can bemeasured
intracellularly with very good time resolution, whereas the gating variables j ∈ {n,m, h} in
the stochastic system (54) represent averages over large numbers of certain ion channels and
are not accessible to measurement.

Under assumption (55), the problem of estimating the unknown parameter θ = (ϑ, τ ) ∈
 in the stochastic Hodgkin–Huxley system (54) based on observation of the mem-
brane potential can be formulated as follows. Consider the canonical path space (C, C),
C :=C([0,∞),R5), equipped with the canonical process π = (πt )t≥0 and the canonical
filtration G = (Gt )t≥0, and also the smaller filtration

G
(1) = (G(1)

t )t≥0, G(1)
t :=

⋂

r>t

σ
(

π0 , π(1)
s : 0 ≤ s ≤ r

)

generated by observation of the first component π(1) of the canonical process π knowing the
starting point π0 of π . For θ ∈ , let Qθ denote the law of the process X under θ = (ϑ, τ )

on (C, C), with starting point (55) not depending on θ . On (C, C) we write for short

ζ = (ζt )t≥0, ζ := π̆ (5) (58)

for the reconstruction π̆ (5) of the fifth component π(5) of π (which under Qθ represents
accumulated dendritic input Yt = ϑ t + Xt , t ≥ 0) from the first component π(1) (which
under Qθ represents the membrane potential V ) and the starting point π0; on the lines of
(57) we have

ζt = π
(5)
0 + (π

(1)
t − π

(1)
0 ) +

∫ t

0
F(π(1)

s , π̆ (2)
s , π̆ (3)

s , π̆ (4)
s ) ds, t ≥ 0 . (59)

By definition of G(1), the observed process π(1) and the reconstructed processes ζ , π̆ ( j),
j ∈ {2, 3, 4}, are G

(1)-semimartingales. Write
√
c W for the G

(1)-martingale part of ζ or
of π(1) under Qθ . The likelihood ratio process of Qθ ′ with respect to Qθ relative to G

(1) is
obtained in analogy to (23)+(24), special case Rϑ(s) = ϑs. Then the following is proposition
3.2 in Holbach (2020):

Proposition 4 (Holbach 2020) For pairs θ ′ = (ϑ ′, τ ′), θ = (ϑ, τ ) in  = (0,∞)2, writing

Mθ ′/θ
t := 1√

c

∫ t

0

{
(ϑ ′ − ϑ)(1 + τ s) − (τ ′ − τ)(ζs − ϑs) + (τ ′ − τ)(ϑ ′ − ϑ)s

}
dWs , t ≥ 0 ,

likelihood ratios in the statistical model
(
C , C , G(1) , {Qθ : θ ∈ }

)

are given by

Lθ ′/θ
t = exp

(

Mθ ′/θ
t − 1

2
〈Mθ ′/θ 〉t

)

, t ≥ 0 (60)

where 〈Mθ ′/θ 〉 denotes the angle bracket of the martingale Mθ ′/θ under Qθ relative toG(1).

Note that under Qθ , the G
(1)-adapted process (ζt − ϑ t)t≥0 in the integrand of Mθ ′/θ

represents the Ornstein Uhlenbeck process X of equation (51); the constant c is known from
quadratic variation of ζ .
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We know everything about the likelihoods (60): they are the likelihoods in the submodel
where ϑ0 ≡ 0 is fixed of the model considered in Sect. 3, case p := 1. As a consequence, in
the statistical model associated to the stochastic Hodgkin Huxley model, we have LAN at θ ,
with local scale 1√

n3
for the ϑ-component and 1√

n
for the τ -component, θ = (ϑ, τ ) ∈ .

We have a characterization of efficient estimators by the local asymptotic minimax theorem,
and we did construct asymptotically efficient estimators. Since ζ is a G(1)-semimartingale,
common G

(1)-adapted determinations for θ ∈  of the stochastic integrals
∫
s dζs and∫

ζs dζs exist. According to (34), (37) and (42), we estimate the first component of the
unknown parameter θ = (ϑ, τ ) in  = (0,∞)2 in the system (54) by

ϑ̆(t) := arginf
ϑ ′

∫ t

0
(ζs − ϑ ′s)2 ds = 3

t3

∫ t

0
s ζs ds (61)

and then the second component by

τ̆ (t) := ϑ̆(t)
∫ t
0 s dζs − ∫ t

0 ζs dζs
∫ t
0 ζ 2

s ds − [ϑ̆(t)]2 t3/3 . (62)

The estimators ϑ̆(t), τ̆ (t) are G(1)
t -measurable, t ≥ 0. The structure of the likelihoods (60)

is the structure of the likelihoods in Sect. 3 with p := 1, submodel ϑ0 ≡ 0. The structure of
the pair (ϑ̆(t), τ̆ (t)) in (61)+(62) is the structure of the estimators (ϑ̃(t), τ̃ (t)) in Sect. 3 with
p := 1, submodel ϑ0 ≡ 0. Under Qθ , we have from (27) and (28) and theorem 2 in Sect. 3.4
a representation

(√
n3 ( ϑ̆(n) − ϑ )√
n ( τ̆ (n) − τ )

)

=
(

τ 2

3 c 0
0 1

2 τ

)−1 ( 1√
c n3

∫ n
0 (1 + τ s) dWs

−1√
c n

∫ n
0 (ζs − ϑs) dWs

)

+ oQθ (1) (63)

of rescaled estimation errors as n → ∞, and proposition 1 in Sect. 3.1 shows convergence
in law

(√
n3 ( ϑ̆(n) − ϑ )√
n ( τ̆ (n) − τ )

)

−→
(

3
√
c

τ

∫ 1
0 s dW̃ (1)

s√
2 τ W̃ (2)

1

)

under Qθ as n → ∞, with some two-dimensional standard Brownian motion W̃ . Consider
on (C, C, (G(1)

tn )t≥0, {Qθ : θ ∈ }) martingales

S̆n,θ (t) :=
(

1√
c n3

∫ tn
0 (1 + τ s) dWs

−1√
c n

∫ tn
0 (ζs − ϑs) dWs

)

under Qθ , and let J̆n,θ denote their angle brackets under Qθ . Define local scale

ψ̆n :=
(

1√
n3

0

0 1√
n

)

and limit information

J̆ (t) :=
(

τ 2

3 c t
3 0

0 1
2 τ

t

)

.

With these notations, theorem 1 in Sect. 3.1 and theorem 2 in Sect. 3.4 yield:
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Theorem 3 In the sequence of statistical models

(C, C, (G(1)
tn )t≥0, {Qθ : θ ∈ })

the following holds at every point θ = (ϑ, τ ) in  = (0,∞)2:
(a) we have LAN at θ with local scale (ψ̆n)n and local parameter h ∈ R2:

log Lθ+ψ̆nh / θ
tn = h� S̆n,θ (t) − 1

2
h�J̆n,θ (t) h + oQθ (1), n → ∞ ;

(b) by (63), rescaled estimation errors of θ̆ (n) := (ϑ̆(n), τ̆ (n)) admit the expansion

ψ̆−1
n (θ̆ (n) − θ) = [ J̆ (1)]−1 S̆n,θ (1) + oQθ (1) = [ J̆n,θ (1)]−1 S̆n,θ (1) + oQθ (1), n → ∞ .

When we observe—for some given starting point of the system—the membrane potential in
a stochastic Hodgkin–Huxley model (54) up to time n, with accumulated stochastic input
defined by (53) together with (51) which depends on an unknown parameter θ = (ϑ, τ ) in
 = (0,∞)2, the following resumes in somewhat loose language the assertion of the local
asymptotic minimax theorem, corollary 1 in Sect. 3.1:

Corollary 2 For loss functions L : R2 → [0,∞) which are continuous, subconvex and
bounded, for 0 < C < ∞ arbitrary, maximal risk over shrinking neighbourhoods of θ

lim
n→∞ sup

|h|≤C
E(

ϑ+h1/
√
n3 , τ+h2/

√
n
)

(

L

(√
n3 ( ϑ̆(n) − (ϑ + h1/

√
n3 ) )√

n ( τ̆ (n) − (τ + h2/
√
n ) )

) )

converges as n → ∞ to

E

(

L

(
3
√
c

τ

∫ 1
0 s dW̃ (1)

s√
2 τ W̃ (2)

1

) )

.

Within the class of (G(1)
n )n-adapted estimator sequences (Tn)n whose rescaled estimation

errors at θ = (ϑ, τ ) are tight—at rate
√
n3 for the ϑ-component, and at rate

√
n for the τ -

component—it is impossible to outperform the sequence (ϑ̆(n), τ̆ (n)) defined by (61)+(62),
asymptotically as n → ∞.

Note that we are free to measure risk through any loss function which is continuous,
subconvex and bounded.
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