
Metaheuristics for Pattern Mining
in Big Sequence Data

A thesis submitted for the degree of

Doktor der Naturwissenschaften

at the Department of Physics, Mathematics and Computer
Science at the Johannes Gutenberg University

in Mainz

Atif Raza
born in Rawalpindi, Pakistan

Mainz, February 20, 2021



Examination date: April 13, 2021 D77







Abstract

An ever-growing list of human endeavors in a variety of domains results in the
generation of time-series data, i.e., data that are time-resolved and measured
in equidistant time intervals. The continued developments in sensor and stor-
age technology and the availability of database systems specifically designed
for time-series data have also made it possible to record an exorbitant amount
of such data. The vast yet readily available data places ever-increasing de-
mands on data mining methods for fast and efficient knowledge discovery,
which establishes the need for exceedingly fast algorithms.

The data mining research community has been actively investigating various
avenues to develop algorithms for time series classification. Most research has
focused on optimizing accuracy or error rate, although runtime performance
and broad applicability are as important in practice. The result is a plethora
of algorithms that have quadratic or higher computational complexities.
Consequently, the algorithms have little to no use for deployment on a large
scale.

This thesis addresses the complexity issue by introducing several time-series
classification methods based on metaheuristics and randomized approaches
to improve the state-of-the-art in time-series mining. We introduce three
subsequence-based time series classification algorithms and an approximate
distance measure for time series data. One subsequences-based time series
classifier explicitly employs random sampling for subsequence discovery. The
other two subsequences-based classifiers employ discretized time series data
coupled with (i) a linear time and space string mining algorithm for extracting
frequent patterns and (ii) a novel pattern sampling approach for discovering
frequent patterns. The frequent patterns are translated back to subsequences
for model induction. Both of these algorithms are up to two orders of
magnitude faster than previous state-of-the-art algorithms. An extensive set
of experiments establishes the effectiveness and classification accuracy of
these methods against established and recently proposed methods.

v





Acknowledgments

Acknowledgments have been removed from the online version.

vii





Publications and
Manuscripts

The research work carried out for this thesis culminated in the following
articles and manuscripts. Items marked with an asterisk (∗) indicate that the
specific articles/manuscripts constitute this thesis.

1.∗ Atif Raza, Jörg Wicker, and Stefan Kramer. “Trading off Accuracy for
Efficiency by Randomized Greedy Warping”. In: Proceedings of the 31st
Annual ACM Symposium on Applied Computing, 883–890. ACM, 2016.
https://doi.org/10.1145/2851613.2851651

2.∗ Atif Raza, and Stefan Kramer. “Ensembles of Randomized Time Series
Shapelets Provide Improved Accuracy While Reducing Computational
Costs”. ArXiv:1702.06712 [CS], February 22, 2017.
http://arxiv.org/abs/1702.06712

3.∗ Atif Raza, and Stefan Kramer. “Accelerating Pattern-based Time Series
Classification: A Linear Time and Space String Mining Approach”. In:
Knowledge and Information Systems 62(3), March 2020: 1113–1141.
https://doi.org/10.1007/s10115-019-01378-7

4. Nora Zannoni, Martin Wikelski, Anna Gagliardo, Atif Raza, Stefan
Kramer, Chiara Seghetti, Nijing Wang, Achim Edtbauer, and Jonathan
Williams. “Identifying Volatile Organic Compounds Used for Olfactory
Navigation by Homing Pigeons”. In: Scientific Reports 10(1), September
28, 2020: 15879.
https://doi.org/10.1038/s41598-020-72525-2

5.∗ Atif Raza, and Stefan Kramer. “Pattern Sampling for Shapelet-Based
Time Series Classification”. ArXiv:2102.08498 [CS], February 16, 2021.
http://arxiv.org/abs/2102.08498

ix

https://doi.org/10.1145/2851613.2851651
http://arxiv.org/abs/1702.06712
https://doi.org/10.1007/s10115-019-01378-7
https://doi.org/10.1038/s41598-020-72525-2
http://arxiv.org/abs/2102.08498


6. Julian Vexler, Atif Raza, and Stefan Kramer. “Integrating LSTMs with
Online Density Estimation for the Probabilistic Forecast of Energy Con-
sumption”. Under Review for Machine Learning Journal. (2021).

x



Contents

List of Figures xv

List of Tables xvii

List of Algorithms xix

1. Introduction 1
1.1. Motivation and Problem Statement . . . . . . . . . . . . . . 4
1.2. Thesis Contributions and Structure . . . . . . . . . . . . . . 6

2. Related Work 11
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2. Time Series Data . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3. Time Series Similarity Measures . . . . . . . . . . . . . . . . 14

2.3.1. Lock-step Measures . . . . . . . . . . . . . . . . . . . 15
2.3.2. Feature-based Measures . . . . . . . . . . . . . . . . 17
2.3.3. Elastic Measures . . . . . . . . . . . . . . . . . . . . 19

2.4. Time Series Classification . . . . . . . . . . . . . . . . . . . 23
2.4.1. Classification based on Whole Matching . . . . . . . 23
2.4.2. Classification based on Subsequence Matching . . . . 24

2.5. Recent Trends in Time Series Mining . . . . . . . . . . . . . 31

3. Randomized Time Warping for Full-length Similarity Search 35
3.1. Randomized Time Warping . . . . . . . . . . . . . . . . . . 36

3.1.1. Methodology . . . . . . . . . . . . . . . . . . . . . . 36
3.1.2. Design and Parameter Choices . . . . . . . . . . . . . 41

3.2. Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . 43
3.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1. Classification Accuracy . . . . . . . . . . . . . . . . . 45
3.3.2. Running Times . . . . . . . . . . . . . . . . . . . . . 47
3.3.3. Unified Comparison of Accuracy and Runtime . . . . 49

xi



3.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4. Random Shapelet Ensembles 55
4.1. Background and Motivation . . . . . . . . . . . . . . . . . . 55
4.2. Randomized Shapelet Ensembles . . . . . . . . . . . . . . . 56

4.2.1. Random Shapelets . . . . . . . . . . . . . . . . . . . 56
4.2.2. Random Shapelet Ensembles . . . . . . . . . . . . . 60
4.2.3. Algorithmic Optimizations . . . . . . . . . . . . . . . 62

4.3. Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . 63
4.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5. Leveraging String Mining for Shapelet Discovery for Random-
ized Learning Schemes 73
5.1. Background and Motivation . . . . . . . . . . . . . . . . . . 73
5.2. String Mining – A Primer . . . . . . . . . . . . . . . . . . . . 74
5.3. Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.2. Time Series Discretization . . . . . . . . . . . . . . . 80
5.3.3. Frequent Patterns Extraction . . . . . . . . . . . . . . 81
5.3.4. Selecting Discriminative Patterns . . . . . . . . . . . 83
5.3.5. Creating Feature Sets . . . . . . . . . . . . . . . . . . 85
5.3.6. Merging Feature Sets . . . . . . . . . . . . . . . . . . 86
5.3.7. Complexity Analysis . . . . . . . . . . . . . . . . . . 88

5.4. Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . 90
5.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5.1. Runtime Breakdown . . . . . . . . . . . . . . . . . . 98
5.5.2. Results using a conservative parameter set . . . . . . 99

5.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6. Pattern Sampling as an Alternative to Pattern Extraction 103
6.1. Motivation and Background . . . . . . . . . . . . . . . . . . 103

6.1.1. Pattern Explosion Problem . . . . . . . . . . . . . . . 104
6.1.2. Pattern Sampling . . . . . . . . . . . . . . . . . . . . 104

6.2. Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2.2. Creating the Pattern Sampler . . . . . . . . . . . . . 107

xii



6.2.3. Creating Feature Sets . . . . . . . . . . . . . . . . . . 111
6.2.4. Merging Feature Sets . . . . . . . . . . . . . . . . . . 112
6.2.5. Complexity Analysis . . . . . . . . . . . . . . . . . . 113

6.3. Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . 114
6.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7. Conclusion 125
7.1. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.1.1. Randomized Time Warping . . . . . . . . . . . . . . 125
7.1.2. Randomized Shapelet Ensembles . . . . . . . . . . . 126
7.1.3. Mining Strings for Time Series Classification . . . . . 127
7.1.4. Pattern Sampling for Time Series Classification . . . 128

7.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A. Calculating Independence Test Statistics 131
A.1. Calculating the χ2 Test Statistic . . . . . . . . . . . . . . . . 131
A.2. Calculating the Information Gain value . . . . . . . . . . . . 132

Bibliography 135

xiii





List of Figures

1.1. A Nilometer dating back to 861 AD . . . . . . . . . . . . . . . . 2

2.1. A real-valued binary class time series dataset . . . . . . . . . . . 13

2.2. Illustration of unit “circles” in different p-norms . . . . . . . . . 16

2.3. Two time series instances in their raw and z-normalized forms . 17

3.1. Visual comparison of DTW and RTW warping paths plotted on a
heatmap of global distance matrix . . . . . . . . . . . . . . . . . 39

3.2. RTW warping path plotted on a heatmap of local distance matrix 40

3.3. Comparing the classification accuracy of RTW against ED . . . . 47

3.4. Comparing the classification accuracy of RTW against LTW . . . 48

3.5. Comparing the classification accuracy of RTW against DTW . . 49

3.6. Comparison of running times required for DTW, LTW, and RTW 50

3.7. Unified comparison of the classification accuracy and runtime
performance of RTW against ED . . . . . . . . . . . . . . . . . . 51

3.8. Unified comparison of the classification accuracy and runtime
performance of RTW against LTW . . . . . . . . . . . . . . . . . 52

3.9. Unified comparison of the classification accuracy and runtime
performance of RTW against DTW . . . . . . . . . . . . . . . . 53

4.1. Difference between sequential and randomized candidate subse-
quence generation . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2. Average ranks for YK-shapelets, Fast-Shapelets, Random-Shapelets,
and variants of the Random-Shapelets Ensembles . . . . . . . . 66

4.3. Comparison of Random-Shapelets Ensembles against YK-shapelets
regarding classification accuracy and runtime . . . . . . . . . . 69

4.4. Comparison of Random-Shapelets Ensembles against Fast-Shapelets
regarding classification accuracy and runtime . . . . . . . . . . 70

4.5. Comparison of Random-Shapelets Ensembles against Random-
Shapelets regarding classification accuracy and runtime . . . . . 71

xv



5.1. PAA version of time series instances superimposed on their real-
valued counterparts . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2. Average ranks for MiSTiCl variants based on classification accuracy
and runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3. Average ranks for MiSTiCl, BoP, BOSS and SAX-VSM regarding
classification accuracy and runtime . . . . . . . . . . . . . . . . 94

5.4. Comparison of MiSTiCl against BoP regarding classification accu-
racy and runtime . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5. Comparison of MiSTiCl against BOSS regarding classification ac-
curacy and runtime . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6. Comparison of MiSTiCl against SAX-VSM regarding classification
accuracy and runtime . . . . . . . . . . . . . . . . . . . . . . . . 97

5.7. Breakdown of the time spent per processing phase for the MiSTiCl
algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8. Average ranks for MiSTiCl (using conservative set of parameters),
BoP, BOSS and SAX-VSM regarding classification accuracy . . . 100

6.1. Illustration of a weighted trie with shared edges between multiple
strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2. Average ranks for comparing PS2C against different algorithms
regarding classification accuracy and runtime . . . . . . . . . . 118

6.3. Comparison of PS2C against BoP regarding classification accuracy
and runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4. Comparison of PS2C against BOSS regarding classification accu-
racy and runtime . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.5. Comparison of PS2C against SAX-VSM regarding classification
accuracy and runtime . . . . . . . . . . . . . . . . . . . . . . . . 121

6.6. Comparison of PS2C against MiSTiCl regarding classification ac-
curacy and runtime . . . . . . . . . . . . . . . . . . . . . . . . . 122

xvi



List of Tables

5.1. The suffix array and longest common prefix of a string database 77
5.2. Breakpoints look-up table for α = 2 to 6 . . . . . . . . . . . . . 82
5.3. Symbolic representation of time series instances shown in Figure

5.1 with α = 6 and ω = 7 . . . . . . . . . . . . . . . . . . . . . . 82
5.4. Examples of base patterns and their variants . . . . . . . . . . . 84
5.5. Pairwise win/tie/loss comparison of MiSTiCl and other algorithms 98

xvii





List of Algorithms

2.1. The Lucky Time Warping (LTW ) algorithm . . . . . . . . . . . 22
2.2. Creating a Shapelets based Decision Tree Model . . . . . . . . . 27
2.3. Shapelet Discovery Procedure . . . . . . . . . . . . . . . . . . . 29
2.4. Distance between a Shapelet and a Time Series with Early Aban-

doning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1. The Randomized Time Warping (RTW) algorithm . . . . . . . . 38
3.2. Ranking procedure for RTW . . . . . . . . . . . . . . . . . . . . 42

4.1. The Randomized Shapelet Discovery Procedure . . . . . . . . . 58
4.2. Creating Bagging Ensembles . . . . . . . . . . . . . . . . . . . . 60
4.3. Creating Boosted Ensembles . . . . . . . . . . . . . . . . . . . . 61

5.1. The main MiSTiCl algorithm . . . . . . . . . . . . . . . . . . . 79
5.2. Extracting frequent patterns from discretized data . . . . . . . . 83
5.3. Determining the discriminative power of extracted frequent patterns 85
5.4. Creating feature sets from extracted frequent patterns . . . . . . 87
5.5. Finding the set of single-resolution feature sets whose combination

gives the best training set accuracy . . . . . . . . . . . . . . . . 89

6.1. The main PS2C algorithm . . . . . . . . . . . . . . . . . . . . . 107
6.2. Creating a weighted trie based pattern sampler . . . . . . . . . 111
6.3. Creating feature sets from sampled frequent patterns . . . . . . 112

xix





Introduction 1
Nature has bestowed upon the human species the gift of intellectual supe-
riority over all other life forms on this planet. The human intellect is the
most important aspect which enables our species to discern and adapt to its
surroundings, innovate, and progress above and beyond any other species
on earth. One of the many exceptional abilities of the human species is the
ability to identify patterns in complex scenarios. This ability, coupled with
an innate curiosity about the environment helped in the development of our
species in more ways than imaginable. The pursuit of discovering repeat-
ing patterns in the processes encountered in our lives has been a human
endeavor since time immemorial. The earliest surviving examples of the
various ways our ancestors kept track of environmental observations include
devices and constructions used to record the relative positions of celestial
objects, river or lake water levels, etc. Most of these observations would
usually be recorded over several weeks, months, or years, therefore, they
can be attributed as the earliest known time series observations. The ability
to correlate repeated patterns in environmental observations with various
aspects of human life led to further advancements and enabled the human
civilization to flourish. An excellent example is that of the ancient Egyptians
who used an ingenious structure to record the yearly inundation levels of the
Nile flood plain to forecast the quality of the harvest based on the amount
of silt sedimentation that resulted from the annual flood. Figure 1.1 shows
a Nilometer that dates back to 861 AD and was based on ancient Egyptian
designs [1]. The nilometers were so effective that their derived forms were
still in use in the late 20th century.

Fast forwarding to the current day and age, we see that human development
over the past few centuries has led to an exorbitant evolution in all walks of
life. The developments in computing and storage technologies have made it

1



Fig. 1.1. A Nilometer dating back to 861 AD. Photo by B. Werner (CC-BY-SA).

possible for us to observe and record an enormous number of quantities that
would have been unimaginable even a few decades ago. Almost every field
of human endeavor is producing chronological data, and we are generating
and amassing it at an exponential rate from fields as diverse as activity
logs, business and finance, economics, medical records, natural processes,
research, etc. [2–4]. The sheer scale of the time series data being generated
today can be estimated by the amount of data produced in the medical
domain alone. Every day electrocardiograms (ECG), electroencephalograms
(EEG), and many other medical diagnostic observations are recorded as time
series data. In most cases, the observations are recorded at a constant and
equidistant interval over time. An ECG examination of a single patient can
generate time series data with several million data points. Repeated medical
diagnoses of a person can also be treated as time series data since they
present the levels of the investigated value over the course of time, although,
in this case the time series data is not equidistant over time. In addition
to explicit time series data, sequential data without a temporal aspect, like
DNA sequences and gene expression data, can also be treated as time series
and the close resemblance of the two data types allows to employ the same
algorithms for certain applications and tasks.

2 Chapter 1 Introduction

https://commons.wikimedia.org/wiki/File:Kairo_Nilometer_BW_1.jpg
https://creativecommons.org/licenses/by-sa/3.0/legalcode


The pace of data generation is also increasing with large scale availability
of better instruments. Thankfully, we have also transitioned from paper
based archives kept in libraries to online digital archives, which has enabled
us to extract the required observations at the click of a button. Weather
observations provide a prime example of the scale of this transition: just over
half a century ago, it was only feasible to keep track of the minimum and
maximum temperatures of a city per day, whereas it is now possible to get
the temperature of almost any location on earth at per minute granularity.

Time series mining and sequential pattern mining are two closely related
subfields of data mining. Both these fields aim for repeated pattern discovery
in the given chronological data so that the discovered patterns can subse-
quently be employed for exploration of the data by a human expert or various
machine learning tasks [2–4]. The importance of both these fields stems
from the fact that they have large scale applicability in diverse fields [5].
The main difference between the two fields is that sequential pattern mining
deals with discrete/symbolic data, while time series mining is concerned with
real-valued data. Sequential pattern mining can be applied to any data oc-
curring in a sequence with or without a concrete notion of time, e.g., DNA or
protein sequences, gene expression data, items sold, web links clicked, and so
forth [6]. Similarly, time series mining can be applied to any data with some
form of logical ordering irrespective of the fact that the ordering is temporal
or otherwise, e.g., motion capture data, chemical composition data obtained
from spectral analyses, images converted to series using shape outlines, and
so forth. Discrete-valued sequences can have exact matches, whereas finding
a perfect match for real-valued sequences is highly improbable due to the
continuous nature of the data at hand [3].

The omnipresence of time series data has led to the initiation of several
research efforts for the development of machine learning and data mining
techniques specifically targeting this data type. Time series data comprises
chronological real-valued sequences, which are inherently high-dimensional,
and large in size. The temporal order of these sequences characterizes the
varying behavior of the recorded process and allows to find patterns which
can identify similar or anomalous behavior over time, therefore, it is vital to
keep this order intact to infer information about time-dependent features,
e.g., pattern discovery, visualization, summarization, etc. [2–4].

3



The various applications of time series mining include: dimensionality reduc-
tion [7–11], indexing [7, 12–15], classification [7, 12, 16–18], clustering [17,
19–21], segmentation [17, 22], anomaly detection [22–24], summarization
[25, 26], etc. Indexing is necessary for efficient retrieval of time series in-
stances in a database and plays a significant role in reducing the search space
for similarity search. Dimensionality reduction can be employed for efficient
storage, indexing, or matching time series instances. Subsequence matching
has its applications in finding subsequences in a long time series that are
similar to a given reference sequence. Segmenting is necessary to divide
the data based on some domain-specific criterion to limit the number of
data points per time series instance so that these instances can be processed
with some algorithm. Summarization is often used to visually present the
time series data such that the overall characteristics are preserved. Finally,
anomaly detection is used to detect the occurrence of extraordinary events.

1.1 Motivation and Problem Statement

The availability of large quantities of highly accessible time series data also
highlights new challenges regarding the extraction of useful information
from these resources. The continuous nature of time series data dictates
that the time series mining algorithms aim to find similar rather than exact
matches of a given reference instance. Searching for similar instances is also
more practical because it allows to query a time series database for:

• grouping experiments with similarly behaving result parameters,

• identifying products with similar sale trends,

• discovering stocks with similar price cadence, etc.

Time series similarity is determined based on some suitable distance measure
coupled with a similarity threshold. The distance measure provides a distance
value for a pair of time series instances. Thereafter, similarity of the time se-
ries pair is determined based on a threshold that can either be user-specified,
automatically determined, or relative to the distance values obtained for all
the evaluated time series instances. If the distance between the pair of time
series instances is below the threshold, then the two instances are treated

4 Chapter 1 Introduction



as similar to each other. Indexing and clustering often make explicit use
of a distance measure, while many approaches to classification, prediction,
association detection, summarization, and anomaly detection make implicit
use of a distance measure.

The process of finding similar time series instances involves a huge number of
distance measure calculations. In the case of matching full length instances,
similarity search involves exhaustively comparing all pairs of time series
instances. On the other hand, subsequence search involves an exhaustive
comparison of all possible subsequences of all lengths that can be generated
for the time series instances in the database. Consequently, many time series
mining algorithms are plagued with very high computational complexity,
therefore, a number of research efforts have focused on countering this
problem [27–39].

Metaheuristics is a major subfield of stochastic optimization. The algorithms
which fall under this category are highly effective for problems with no
obvious solutions and incomplete or imperfect information, or for problems
with extremely large search spaces. These algorithms employ guiding heuris-
tics coupled with some degree of randomness to steer the search process
towards sufficiently good solutions to an optimization problem. The two
main tactics of metaheuristics that make them so effective are exploitation
and exploration. Exploitation carries out searches in the vicinity of existing
solutions by making small variations to existing solutions. Exploration, on
the other hand, randomly creates new solutions or modifies existing solutions
such that the resulting solution is cast to a random location in the search
space. Exploitive algorithms are faster and useful for problems with relatively
stable search spaces, while explorative algorithms are relatively slower and
useful in case the search space is riddled with local optima. Metaheuristics
help in finding good enough solutions, therefore, the obtained solutions
might be near-optimal given the constraints, but it is impossible to prove the
optimality. The solutions provided by stochastic algorithms can vary based
on the initial conditions, however, stable algorithms provide results with the
same average accuracy levels. Metaheuristics also enable to search over a
large set of solutions concurrently, which makes them even more appealing in
multi-threaded environments. Examples of popular metaheuristic algorithms
include hill climbing, simulated annealing (SA), tabu search (TS), variable

1.1 Motivation and Problem Statement 5



neighborhood search (VNS), ant colony optimization (ACO), particle swarm
optimization (PSO), genetic algorithms (GA), genetic programming (GP),
and stochastic local search (SLS) [40–43].

A number of research efforts have employed metaheuristics to augment the
process of data mining for sequential data [44–46]. Examples of metaheuris-
tics based sequential pattern mining methods include: (i) genetic algorithms-
based negative sequential pattern mining [44], (ii) genetic algorithm-based
fuzzy pattern mining from gene expressions [45], (iii) genetic programming-
based sequence mining from DNA microarray datasets [46], etc. However,
metaheuristics have not been employed for time series mining extensively.
Martínez-Ballesteros et al. proposed to extract quantitative association rules
using evolutionary algorithms [47]. The successful application of metaheuris-
tics for sequential data mining indicates that there is an opportunity to benefit
from the pros of metaheuristics in the field of time series mining as well.
Therefore, this research focused on the application of metaheuristics and
randomization to the time series data mining problem.

1.2 Thesis Contributions and Structure

The principal contribution of this thesis is the development of time series
classification algorithms based on metaheuristics and randomization. The
proposed algorithms have been developed such that they require considerably
less computational effort compared to the existing exact algorithms while
providing on par classification accuracy. The efficiency and accuracy aspects
are complementary to each other, since an algorithm that greatly reduces
the required computational cost at the expense of the provided accuracy is
of little use to the community. Therefore, designing these algorithms is a
careful balancing act. The introduction of too much randomness can have
detrimental effects on accuracy, while very little randomness might only
shave off a fraction of the required computational effort.

Chapter 2 provides an overview of time series data mining in general, as well
as providing the background and related work for time series classification in
particular. The chapter presents the necessary details about the notation used
in this text. Next, an introduction to the most common time series distance

6 Chapter 1 Introduction



measures is provided. Subsequently, the chapter discusses previous research
work to provide a context and groundwork for the following chapters, specif-
ically the nearest neighbor based classification using whole matching, and
the feature extraction based classification using subsequence matching.

The initial phase of this research focused on the development of a warping
similarity measure for matching whole time series instances. Dynamic Time
Warping (DTW) is the most widely used warping distance measure for time
series data. It was introduced as a distance measure for time series data
by Berndt and Clifford [16]. The computational complexity of the DTW
distance measure is quadratic in the lengths of the two time series instances
being compared [48, p. 72]. The quadratic computational cost of DTW
coupled with increasing time series database sizes has warranted the design
of algorithms which calculate an approximate version of the DTW distance
measure to reduce its computational requirements. Chapter 3 provides
the details about our proposed algorithm, which is based on a look-ahead
approach, augmented with a heuristic to steer the distance measure to be as
close as possible to the exact warping path traversed by the DTW algorithm.
This research work was published as:

Atif Raza, Jörg Wicker, and Stefan Kramer. “Trading off Accuracy for
Efficiency by Randomized Greedy Warping”. In: Proceedings of the 31st
Annual ACM Symposium on Applied Computing, 883–890. ACM, 2016.

Subsequently, we focused on feature-based time series classification, because
it offers faster and more accurate classification of time series data. Sub-
sequences which are representative of a class are referred to as Shapelets.
Shapelet-based time series classification was proposed by Ye and Keogh [32].
Extracting shapelets is not trivially efficient, because the shapelet extraction
process has to evaluate all possible subsequences of all lengths in a time
series database to determine the best representative subsequences for each
class of time series instances in the dataset. Chapter 4 provides the details of
our research work that reduces the computational complexity of the shapelet-
based classification algorithm by randomly selecting shapelet candidates for
evaluation instead of exhaustively evaluating all candidates. In addition,
we created ensembles to provide diversity to the classification step of our
algorithm. This chapter is based on the following manuscript:

1.2 Thesis Contributions and Structure 7



Atif Raza, and Stefan Kramer. “Ensembles of Randomized Time Series
Shapelets Provide Improved Accuracy While Reducing Computational
Costs”. ArXiv:1702.06712 [CS], February 22, 2017.

Our next proposed algorithm is discussed in Chapter 5 and is based on a
linear time string mining algorithm for extraction of frequent patterns from
discretized versions of the time series data [49–51]. The frequent patterns
can be extracted in time linear to the cumulative length of the discretized time
series data, which provides a drastic reduction in the overall computational
cost of the algorithm, since the most time consuming process in a subsequence
based time series mining algorithm is usually the subsequence extraction
process. This chapter is based on the following journal article:

Atif Raza, and Stefan Kramer. “Accelerating Pattern-based Time Series
Classification: A Linear Time and Space String Mining Approach”. In:
Knowledge and Information Systems 62(3), March 2020: 1113–1141.

Chapter 6 provides details about an algorithm based on random sampling
to alleviate the exhaustive search of patterns in the discretized time series
data. The premise is that the pattern explosion problem can be mitigated
if a pattern sampler can be used to draw patterns instead of evaluating all
possible patterns. This chapter is based on an article currently under review
for an upcoming conference.

Atif Raza, and Stefan Kramer. “Pattern Sampling for Shapelet-based
Time Series Classification”. ArXiv:2102.08498 [CS], February 16, 2021.

Finally, Chapter 7 provides the concluding remarks.

In addition to the above mentioned research work that is included in this the-
sis, the following two articles were co-authored as well during this research
work.

Nora Zannoni, Martin Wikelski, Anna Gagliardo, Atif Raza, Stefan
Kramer, Chiara Seghetti, Nijing Wang, Achim Edtbauer, and Jonathan
Williams. “Identifying Volatile Organic Compounds Used for Olfactory
Navigation by Homing Pigeons”. In: Scientific Reports 10(1), September
28, 2020: 15879.

8 Chapter 1 Introduction



Julian Vexler, Atif Raza, and Stefan Kramer. “Integrating LSTMs with
Online Density Estimation for the Probabilistic Forecast of Energy Con-
sumption”. Under Review for Machine Learning Journal. (2021).

1.2 Thesis Contributions and Structure 9





Related Work 2
2.1 Introduction

Time series data is so predominant that almost every human activity leads
to some form of time series data being saved to the ever-growing databases.
These huge amounts of time series data have a hidden wealth of useful infor-
mation which, once extracted, can definitely lead to further advancements in
the related fields which generate this data. Consequently, time series data
mining research has seen an explosion of interest due to the substantial im-
plications and applicability of the field. Time series data mining is generally
concerned with, but not limited to, the following tasks:

• Indexing: Given a time series database, indexing allows to quickly and
efficiently find the most similar time series instances in the database
given a query time series [12–15].

• Clustering: Given an unlabeled set of time series instances, clustering
allows to group similar instances into disjoint groups based on a given
similarity measure [17, 19–21].

• Classification: Given a database with labeled time series instances and
an unlabeled query time series instance, classification is the task of
labeling the query instance as belonging to one or more classes in the
database given a similarity measure [17, 18].

• Forecasting: Given a time series of length n, forecasting aims to predict
the value for the n+ 1th time point in the most basic case.

• Summarization: Given a time series instance, create an approximation
(graphic or otherwise) which retains the general shape and characteris-
tics of the original time series instance [25, 26].

11



• Anomaly detection: Given a database of “normal” time series instances
and an unlabeled time series instance, find all sections of the unlabeled
time series instance which have unexpected values given the values for
the preceding time points [22–24].

• Segmentation: (a) Given a time series Q containing n data points,
construct a model Q′, from K piecewise segments where K � n,
such that Q′ closely approximates Q [17]. (b) Given a time series Q,
partition it into K internally homogeneous sections (also known as
change detection [22].

This chapter provides an overview of the related work in the time series
classification domain. Section 2.2 introduces the notation used for repre-
senting real-valued time series data along with an introduction to the time
series datasets used by the time series mining community for benchmarking
their proposed research work. Section 2.3 introduces the most commonly
employed time series distance measures. Section 2.4 provides details about
previous research regarding time series classification based on whole match-
ing and subsequence matching. Specifically, seminal or widely used research
work is described in detail, while other research work is described briefly
to provide a reasonable introduction of the subject. Any research work that
is specifically relevant to our own research is introduced in the respective
chapter. Finally, Section 2.5 provides a brief introduction to the recent trends
in time series mining research.

2.2 Time Series Data

A time series is an ordered, real-valued sequence of observations which can
be denoted as T = (t1, t2, . . . , tn), where each ti is an observation data point
and n is the length of the time series instance. When a time series belongs
to a specific class of instances, it is assigned the corresponding label y ∈ C,
where C is the set of all possible class labels. A set of N labeled time series
instances forms a time series dataset D = {(T1, y1), (T2, y2), . . . , (TN , yN)}. An
implicit time stamp corresponding to each data point ti ∈ T is assumed since
time series observations are usually recorded at a fixed interval. Similarly,
for time series derived from observations with a non-temporal ordering,

12 Chapter 2 Related Work



Fig. 2.1. Illustration of a real-valued binary class time series dataset obtained from the Diffuse
Reflection Infrared Fourier Transform (DRIFT) spectrographs of freeze-dried samples
of the coffee species Arabica (Class 0) and Robusta (Class 1). Each class has 14 time
series instances and each instance is 286 time points long.

the data points are usually separated by discrete steps, therefore, explicitly
identifying the ordering variable is usually not necessary. Figure 2.1 illustrates
a popular time series dataset that is made up of the Diffuse Reflection Infrared
Fourier Transform (DRIFT) spectrographs of freeze-dried samples of the
coffee species Arabica and Robusta, respectively [52].

The field of time series mining took off in the 1990s, especially after the
publication of the research work by Agrawal, Faloutsos, and Swami on simi-
larity search for sequence databases [7]. Early research efforts in time series
mining evaluated the proposed algorithms on either a private dataset or a few
datasets from a specific application domain only [53]. The lack of generally
available benchmark datasets also made it difficult for other researchers to
systematically ascertain the efficacy of the proposed algorithms. In order to
address the above stated concerns and inspired by the UCI Machine Learning
Repository [54], the UCR Time Series Classification Archive was established as
a central repository for time series datasets from various application domains,
including instrumentation data (medical, environmental, industrial, etc.),
spectral analyses, motion capture, astronomy, shape contours, traffic, power
consumption profiles, and simulated events [56].1 Many researchers and
groups have contributed datasets to the UCR Archive. Some noteworthy
contributors include the UCR Archive team itself, and the team behind the
UEA Time Series Repository.2 Over the years, the UCR Archive has seen a

1UCR Archive webpage: https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
2UEA TSML Repository: https://www.timeseriesclassification.com

2.2 Time Series Data 13

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.timeseriesclassification.com


number of expansions: by 2014 the repository had reached 47 datasets [58],
the 2015 refresh increased the number of datasets to 85 [59], while the
latest refresh in 2018 has increased the number of datasets to 128 [55]. The
2018 update also introduced variable length time series datasets as well as
datasets that consist of time series with missing data.

The UCR Archive only consists of univariate time series datasets, although
a number of datasets are actually made up of individual dimensions of
inherently multivariate time series datasets, e.g., the UWaveGestureLibrary
or Cricket datasets are actually 3-D motion capture datasets, but the UCR
Archive has split the X, Y , and Z dimensions of these datasets to create
individual datasets for each dimension. Recently, a multivariate time series
dataset archive was made available by the UEA TSML Repository.

The UEA TSML Repository also provides a Java-based time series classification,
clustering, and transformation framework, that is also Weka-compatible.3

This framework provides implementations of many time series mining algo-
rithms. In addition to the availability of cross-domain datasets, the provision
of open source implementations of most time series mining algorithms has
enabled the research community to effectively determine the efficacy of the
existing and newly proposed time series mining algorithms.

2.3 Time Series Similarity Measures

Time series mining tasks rely on determining the time series similarity either
directly or indirectly, therefore, a number of approaches have been proposed
for finding time series similarity. These approaches can generally be divided
into four main families: lock-step, elastic, feature-based, and model-based.
This section aims to introduce the most commonly used similarity measures
for time series data without an extensive discussion or comparison of the
similarity measures. For a detailed analysis of the different similarity mea-
sures, the reader is encouraged to refer to the extensive reviews carried out
about the field [3, 61–63].

3Weka is an open source machine learning framework that can be accessed through a
graphical user interface, standard terminal applications, or a Java API. It contains a
plethora of built-in tools for standard machine learning tasks [60].

14 Chapter 2 Related Work



2.3.1 Lock-step Measures

A lock-step distance measure calculates the distance between two equi-sized
time series instances by aggregating the distance between the data points
that coincide with each other. The most commonly used lock-step distance
measure for time series data is the Euclidean distance (ED) that belongs to the
Lp family of norms. Mathematically, the Lp norm of a vector X = (x1, . . . , xn)
is defined as:

‖X‖p =
(

n∑
i=1
|xi|p

) 1
p

,

where n is the length of the vector and p ≥ 1.4 Two well-known cases of
the Lp norm are the L1 and the L2 norms, which are also referred to as the
Manhattan norm and the Euclidean norm, respectively. The L∞ norm is a
special case of the Lp norm and is referred to as the Maximum norm or the
Chebyshev distance that is mathematically defined as:

‖X‖∞ = max (|x1|, . . . , |xn|) .

Figure 2.2 shows the unit circles for different Lp norms given an R2 space
and p ≥ 1.

The Lp norm can also be used to calculate the distance between two equi-
sized vectors by aggregating the distances between the coinciding points.
Mathematically, the Lp norm between vectors S and T is defined as:

‖S − T‖p =
(

n∑
i=1
|si − ti|p

) 1
p

,

where n is the length of the two vectors. In practice, the pth root can be
safely ignored because it is a concave and monotonous function. This allows
to incorporate early abandoning into the distance calculation procedure,
i.e., when the running distance between two instances exceeds the current
minimum distance, the computation can be aborted. This allows to move on
to comparing the next instance without wasting computational power.

4For 0 < p < 1, the Lp norm does not satisfy the properties of the “length function”,
therefore, it is not used for distance calculations.

2.3 Time Series Similarity Measures 15



Fig. 2.2. Unit circles in different p-norms for a two-dimensional vector. Every vector from the
origin to the unit circle has a length of one, the length being calculated with the
length-formula of the corresponding p. Illustration by cmglee (CC-BY-SA).

The L2 norm or the Euclidean distance (ED) between two time series in-
stances is easy to understand, implement, and compute, which has ensured
that it is the most widely used time series distance measure. The simplic-
ity of ED, however, also leads to a couple of disadvantages. First, ED is a
lock-step measure, therefore, it loses its efficacy for time series instances
with many time shifted data points, or many segments which are stretched
or compressed in the time domain. Second, ED is susceptible to amplitude
scaling, i.e., if the amplitude of a time series fluctuates between -1 and 1,
while the amplitude of the other time series fluctuates between 0 and 10, the
distance obtained will be much larger even if the two time series have a very
similar shape. In most cases, amplitude variation is irrelevant for similarity
search, therefore this problem can be alleviated by normalizing the time
series instances before calculating the distance [64]. There are two main
normalization approaches: (i) normalize the time series instances to a fixed
range [65], or (ii) normalize the time series instances to a zero mean and

16 Chapter 2 Related Work

https://commons.wikimedia.org/wiki/File:Vector-p-Norms_qtl1.svg
https://creativecommons.org/licenses/by-sa/3.0/legalcode


(a) Raw (b) z-normalized

Fig. 2.3. Two time series instances in their (a) raw and (b) z-normalized forms. The overall
shape of the two time series instances is remarkably similar, however, the distance
obtained for both the versions is drastically different due to the large difference in
the magnitudes of the raw time series instances.

unit variance (also referred to as z-normalization) [14]. For a time series T ,
the z-normalized time series T ′ is given as:

T ′ = T − µ(T )
σ(T ) ,

where µ(T ) and σ(T ) give the mean and standard deviation of the data points
in the time series, respectively, and the subtraction and division operations
are performed element-wise. Figure 2.3 shows the raw and z-normalized
versions of two time series instances, which illustrates the magnitude of the
difference between the time series in the raw and z-normalized forms.

2.3.2 Feature-based Measures

The high dimensionality of time series data implies that similarity search
based on raw time series instances can become daunting even if the distance
measure being used is as simple as the Euclidean distance. This problem
presents itself when the number of time series instances in the database
becomes exceedingly large. One way to address this problem is to create and
store such representations of the time series instances that allow efficient
calculation or approximation of the distance between different instances. In
the context of databases, indexing is the primary method for tackling this
problem. It involves extracting salient features from the data, which can be

2.3 Time Series Similarity Measures 17



used to divide the database into small subgroups of similar instances. If the
time series instances can be indexed based on a low cost and low storage
overhead method, then the querying process can be optimized using indexing.
When a query is made, the same features are extracted for the query time
series instance and the most similar subgroup is fetched from the database,
which can then be sequentially scanned for exact matches.

The most widely used transformation method, which allows to extract fea-
tures that can be used for calculating approximate distance values between
time series instances, is the Discrete Fourier Transform (DFT). It maps a
sequence from time domain to the frequency domain. A frequency domain
mapping allows to represent the time series much more concisely, since only
a few frequency components are enough to represent (and reconstruct) the
time series such that the overall shape of the time series is kept intact while
higher frequency components may be filtered out. Another benefit of the
DFT is due to the Parseval’s theorem, which states that the Fourier transform
preserves the Euclidean distance in time and frequency domains. This prop-
erty allows efficient calculation of a lower bounded distance between time
series instances. A DFT based frequency domain transformation of the time
series instances S and T of length n results in a sequence of n complex-value
pairs Ś and T́ . Mathematically, the Euclidean distance between the frequency
domain transformations and the time domain instances is defined as:

ED
(
Ś, T́

)
= ED

(
S, T

)
√√√√√n−1∑
f=0

∣∣∣Śf − T́f ∣∣∣2 =

√√√√√ n∑
i=1

∣∣∣Si − Ti∣∣∣2.
Limiting the number of complex-value pairs for the frequency components
gives the following:

√√√√√ θ∑
f=0

∣∣∣Śf − T́f ∣∣∣2 ≤
√√√√√ n∑
i=1

∣∣∣Si − Ti∣∣∣2,
where θ is the number of first few frequency components used to approximate
the distance between the instances such that θ � n. Fast Fourier Transform
(FFT) is the most well-known algorithm for DFT and requires O(n log n)
time for transforming a time domain sequence into a frequency domain

18 Chapter 2 Related Work



sequence. The time series instances in a very large database are saved along
with their DFT transformations. The storage overhead associated with this
strategy is negligible as compared to the size of the real-valued time series
instances. When a query time series is presented to the database, the DFT
transformation of the query instance is calculated, and the ED based similarity
search can be carried out with significantly less computational cost, since
the number of points required to determine the ED in the frequency domain
is much less than the number of points in the time domain. A number of
time series mining methods have been based on DFT transformation of time
series data [7, 12]. In addition to employing DFT, the research community
has also used other feature-based measures for time series similarity and
indexing, including Discrete Wavelet Transform (DWT) [13, 15, 23, 66–68]
and Chebyshev polynomials [69].

2.3.3 Elastic Measures

The Euclidean distance is calculated using a one-to-one lock-step mapping of
the data points, which makes ED an inappropriate distance measure for prob-
lem domains that involve similarly shaped, but misaligned, stretched, and/or
compressed time series instances. Since ED cannot “align” the sequences,
this results in a superficial distance contribution from the deformities and
misalignments. In such cases, an elastic distance measure is a better option
for determining time series similarity. Elastic distance measures allow to
warp the time axis such that there is a proper alignment of the overall shape
of the data points between the time series instances even if it requires consid-
ering some data points more than once for calculating the distance. Some
noteworthy elastic distance measures include Dynamic Time Warping [16],
Time Warp Edit Distance [70], Longest Common Subsequence Similarity
[71], Minimum jump cost dissimilarity [72], Edit Distance on real sequences
[62], Lucky Time Warping [73], and Gliding Elastic Match [74].

Dynamic Time Warping (DTW) is the most widely used elastic distance
measure for time series data. DTW was already being used by the speech
recognition research community when it was introduced to the time series
data mining community by Berndt and Clifford [16]. For time series instances
C = (c1, . . . , cm) and Q = (q1, . . . , qn) of length m and n, respectively, the

2.3 Time Series Similarity Measures 19



DTW distance measure is calculated as follows. First, a “local” cost matrix
dm×n is calculated, where each cell (i, j) corresponds to the squared distance
between the data points qi and cj, i.e., di,j = (ci − qj)2. Next, the local cost
matrix is used to compute an accumulated (global) cost matrix Dm×n using
dynamic programming. The first element of the local cost matrix makes up
the first element of the global cost matrix, i.e., D1,1 = d1,1. The remaining
elements of the global cost matrix Dm×n are calculated as follows: Di,j =
di,j + min{(Di−1,j), (Di−1,j−1), (Di,j−1)},∀ i ∈ [1 . .m], j ∈ [1 . . n]. Elements
outside the allowed range of the matrix indices i and j are assumed to have a
value of∞. Once the entire global cost matrix Dm,n is calculated, the element
Dm,n is returned as the distance between the two time series instances.

The DTW warping path is calculated using the global cost matrix Dm,n and is
governed by three constraints. The boundary condition requires the warping
path to start at cell (1, 1) and end at cell (m,n) of the global cost matrix. The
monotonicity condition requires all elements of a warping path to have the
property i1 ≤ i2 ≤ . . . ≤ im−1 ≤ im and j1 ≤ j2 ≤ . . . ≤ jn−1 ≤ jn. Finally,
the continuity condition restricts the number of cells that can be traversed
in one move, i.e., Wl − Wl−1 ∈ {(1, 0), (1, 1), (0, 1)}, where Wl and Wl−1

are consecutive elements in the warping path and each element is a vertex
pair corresponding to a cell of the global cost matrix. The warping path is
determined in reverse order, i.e., from cell (m,n) to cell (1, 1), therefore the
global cost matrix has to be calculated beforehand. Starting from the last
cell in the global cost matrix Dm,n, the warping path W is determined as
follows.

Wk = (m,n)

Wk−1 =


(1, n− 1), if m = 1
(m− 1, 1), if n = 1
argmin{Dm,n−1, Dm−1,n−1, Dm−1,n}, otherwise

A naïve implementation of DTW has two main drawbacks, (i) the straight-
forward DTW implementation requires memory for two matrices of size
m×n, and (ii) the computational complexity of DTW is O(mn). The memory
requirements can be halved by implementing the DTW distance calculation
in such a way that the local and global distance values for each cell are

20 Chapter 2 Related Work



calculated in a single step instead of the two-step approach listed above.
The first element of the global cost matrix is calculated using q1 and c1

data points, i.e., D1,1 = (c1 − q1)2. Next, each Di,j element is calculated as:
Di,j = (ci− qj)2 + min{(Di−1,j), (Di−1,j−1), (Di,j−1)},∀ i ∈ [1 . .m], j ∈ [1 . . n],
alleviating the first problem. The second problem has been researched exten-
sively, and a number of approaches have been proposed. The computation
of the global cost matrix can be restricted to a warping window that cov-
ers a reasonable space on both sides of the main diagonal. The two main
warping window approaches are the Sakoe-Chiba Band [27] and the Itakura
Parallelogram [28]. The DTW distance can also be lower bound to enable
early abandoning [29–31, 75]. In addition to the vanilla DTW algorithm, a
number of variations of the DTW distance measure have also been proposed
for various application areas, e.g., Derivative DTW [76], Weighted DTW
[77], Sparse DTW [78], etc. Finally, and to a lesser degree of effectiveness,
FastDTW calculates the DTW distance with variable resolution [79].

Lucky Time Warping (LTW) is a greedy algorithm for finding warping time
series distances [73]. It is governed by the same three constraints as DTW,
i.e., boundary, continuity, and monotonicity conditions. DTW is a dynamic
programming based approach which relies on the calculation of a global cost
matrix to determine the distance between the given time series instances. On
the other hand, LTW relies on a look-ahead approach based on local squared
distances for finding a good enough warping path between the time series
instances and, in doing so, also estimates the distance between the time
series instances.

Algorithm 2.1 provides the details about distance calculation using LTW. First,
the algorithm initializes the starting (i and j) and ending (m and n) indices,
and calculates the distance d for the data points corresponding to the starting
indices (Line 2.1-1). Next, the algorithm enters the loop which determines
the LTW distance (Lines 2.1-2 to 2.1-16). The current cell is indicated by the
(i, j) index pair, while its immediate neighbors have the index pairs (i, j + 1),
(i+ 1, j + 1), and (i+ 1, j), and are referred to as the right, diag, and down
cells, respectively. At each iteration, the three distance values dright, ddiag
and ddown are initialized with large values to mimic an infinite distance if the
respective cells are outside the valid range (Line 2.1-3). Next, the algorithm
calculates the dright, ddiag and ddown distance values for the respective valid

2.3 Time Series Similarity Measures 21



Algorithm 2.1 LTW (C, Q, w)

1: i,← 1, j ← 1, m← |C|, n← |Q|, d← (ci − qj)2

2: while (i ≤ m) ∧ (j ≤ n) do

3: dright ←∞, ddiag ←∞, ddown ←∞

4: if (j + 1) ≤min(w + i, n) then

5: dright ← (ci − qj+1)2

6: end if

7: if (i+ 1 ≤ m) ∧ (j + 1 ≤ n) then

8: ddiag ← (ci+1 − qj+1)2

9: end if

10: if (i+ 1) ≤min(w + j,m) then

11: ddown ← (ci+1 − qj)2

12: end if

13: dmin = min(dright, ddiag, ddown)
14: i, j ← index(dmin)
15: d← d+ dmin

16: end while

17: return d

neighboring cells. Now, the accumulated distance value d is incremented
with the minimum of dright, ddiag and ddown distance values, while the indices
i and j are updated to point to the cell which has the minimum distance
from the current cell (Lines 2.1-13 to 2.1-15). The loop is terminated when
the (i, j) index pair equals (m,n) and the accumulated distance d is reported
as the distance between the two time series instances.

Gliding Elastic Match (GEM) is another elastic distance measure for time
series data [74]. GEM is designed to be an application specific distance
measure, but it can also perform equally well in the general time warping
case. In addition to being translation invariant and scale invariant in the time
domain for a given lower and upper bound of a given scaling factor, GEM is
specifically designed to handle amplitude variations along the measurement
axis. Amplitude variations can often lead the DTW algorithm astray, which

22 Chapter 2 Related Work



results in an incorrect warping path, and consequently the wrong distance
between the time series instances. z-normalization is also of little use in
the presence of amplitude variations due to the relative differences between
the peaks and/or troughs in the measurement axis. Many real-world time
series exhibit subtle artifacts, e.g., a sudden change in the sampling rate,
local drift, or sensor failure, that can lead to the introduction of aspects that
can not be handled effectively by DTW. Such artifacts are rarely observed
in the heavily preprocessed datasets of the UCR Archive. The empirical
evaluations carried out by Hundt et al. show that, GEM is a significantly better
warping distance measure for time series that exhibit amplitude variations.
The overall classification accuracy results also show that the GEM distance
measure provides on par classification accuracy compared to DTW. GEM is
also a highly parallelizable algorithm unlike DTW. In this regard, the authors
showed that parallelizing GEM provides a significant speedup against the
UCR Suite as the length of time series instances increases.

2.4 Time Series Classification

Time series classification can be divided into two categories depending on
the methodology. The classification can be carried out after matching the
entire length of the time series instances or based on the presence of small
subsequences in the time series instances.

2.4.1 Classification based on Whole Matching

Time series classification based on whole-matching is suitable for problems
where each class of instances has a basic underlying shape spanning the
entire length of the time series. The shape can be time shifted, stretched
and/or compressed, or distorted due to noise. For these problems, the
best known approach is to use the Nearest Neighbor (1-NN) algorithm
coupled with a suitable distance measure. The ED (Section 2.3.1) and DTW
(Section 2.3.3) distance measures are the two most widely used time series
distance measures. For datasets having a small number of instances, the
1-NN algorithm coupled with an elastic distance measure, e.g., Dynamic Time

2.4 Time Series Classification 23



Warping (DTW), performs best, however, for datasets with a large number of
instances, the accuracy of 1-NN with an elastic distance measure converges
to that of 1-NN with Euclidean distance (ED) [80].

In order to use the 1-NN algorithm, the query time series instance is compared
against all the time series instances in the database to determine the instance
that has the shortest distance from the query instance. Once this is done, the
query instance is classified as belonging to the same class as the instance that
has been identified in the previous step. The computational cost of a DTW
based 1-NN approach is O(Nn2), where N is the total number of time series
instances in the database and n is the length of the time series instances.

2.4.2 Classification based on Subsequence Matching

Many time series classification problems are concerned with data for which
small subsequences are indicative of the class of a time series instance, while
the overall shape provides little to no information about the classification.
These particular subsequences are (i) much smaller than the overall length
of the time series, (ii) phase independent, and (iii) can occur at any point
in the time series. For such problems, determining the presence or absence
of the particular subsequences in the time series instances is a better suited
classification approach. Ye and Keogh proposed an algorithm to handle
problems of this nature and referred to the discriminative subsequences as
Shapelets [32].

Effectively, shapelets are subsequences occurring frequently in a specific class
of time series instances while being absent or infrequent in the instances of
other classes. A subsequence S is a contiguous chunk of data points of a time
series T , such that S = (tp, tp+1, . . . , tp+l−1), where n is the length of the time
series, l is the length of the subsequence, and p is the starting point of the
subsequence in T such that 1 ≤ p ≤ n− l+1. A more specific notation for the
subsequence S can be Slp, where the starting point and length are explicitly
mentioned. The set of all subsequences of length l for a time series of length
n can be denoted as Sl = {Sl1, Sl2, . . . , Sln−l+1}, where the number of possible
subsequences of length l in a time series of length n is |Sl| = n− l + 1. For a

24 Chapter 2 Related Work



dataset with N time series instances, each having length n, the total number
of subsequences of length l ∈ [min . .max] is equal to:

N ×
max∑
l=min

(n− l + 1).

The presence of a shapelet in a time series is determined based on whether
the distance between the shapelet and the time series is less than a threshold
value. The distance between a shapelet S and a time series T is defined as
the minimum observed distance between the shapelet and all shapelet-length
subsequences of the time series instance, i.e.,

dist(S, T ) = min(sdist(S,R)), ∀R ∈ Sl,

where sdist(S,R) denotes the distance between two subsequences of equal
length. Mathematically, the distance between two subsequences S and R is
defined as:

sdist(S,R) =
l∑

i=1
(si − ri)2,

which is simply the squared Euclidean distance. The square root can be safely
ignored because it is a concave and monotonous function, which also allows
early abandoning the distance calculations.

The original shapelets based algorithm [32], referred to as YK-shapelets in
this text, creates a classification model by embedding shapelets and their
corresponding distance thresholds in the internal nodes of a decision tree.
Each node of the decision tree splits the incoming time series dataset split
into “purer” subsets to be passed on to the subsequent nodes until the purity
criterion is satisfied and the node can be marked as a leaf node. The YK-
shapelets algorithm determines the purity of the dataset splits using the
Information Gain (IG), although other approaches can also be used [33]. For
each internal node, the shapelet and its corresponding distance threshold
are selected such that splitting the dataset split on the basis of the selected
shapelet maximizes the IG. For a given shapelet and distance threshold, the
incoming dataset split D can be split into two subsets DL and DG, such
that all instances whose distance compared to the shapelet is less than the

2.4 Time Series Classification 25



distance threshold are grouped together as DL, while the instances whose
distance compared to the shapelet is greater than the distance threshold form
another group DG. The IG for the dataset D and the respective splits DL and
DG is given as:

IG = H(D)−
(
|DL|
|D|
×H(DL) + |DG|

|D|
×H(DG)

)
,

where H denotes the entropy of a given dataset split, and is defined as:

H(split) = −
∑
c∈C

(pc × log(pc)),

where C is the set of all class labels in the dataset split and pc is the fraction
of instances belonging to class c.

Algorithm 2.2 lists the steps involved in creating an internal node of the
shapelet based classification model. The recursive calls to the procedure
result in the creation of a decision tree. If the incoming dataset split satisfies
the purity criterion (Line 2.2-1), the procedure returns a leaf node with the
majority class of the instances reaching that node (Line 2.2-2). Otherwise,
the procedure searches for a shapelet S and a corresponding split distance δ,
which maximize the IG when used to split the dataset (Line 2.2-4). Next, D
is split into DL and DG on the basis of the split distance δ and the order line
dmap (Line 2.2-5). Next, calls are initiated for the creation of the subsequent
decision tree nodes (Lines 2.2-6 and 2.2-7). Finally, an internal node is
returned that consists of the shapelet S, distance threshold δ, and the two
subsequent nodes nodeL and nodeG (Line 2.2-8). The shapelet S and split
distance δ constitute the decision criterion of the node while the nodes nodeL
and nodeG form the child nodes of the created node.

The process of classifying a given time series instance starts at the root
node and involves (i) calculating the distance between the time series and
the shapelet specific to the current node, (ii) moving to a subsequent node
depending on whether the distance value is less than or greater than the
threshold value, and (iii) repeating the previous steps until a leaf node is
reached, at which point the class label specific to the leaf node is reported
as the classification label for the given time series instance. The induction
of a shapelet based classification model may lead to the identification of a

26 Chapter 2 Related Work



Algorithm 2.2 CreateNode (D, lmin, lmax)

1: if ISPURE(D) then

2: return LEAFNODE(D)

3: else

4: (S, δ, dmap)← FINDSHAPELET(D, lmin, lmax)

5: (DL, DG)← SPLITDATA(D, δ, dmap)

6: nodeL ← CREATENODE(DL, lmin, lmax)

7: nodeG ← CREATENODE(DG, lmin, lmax)

8: return INTERNALNODE(S, δ, nodeL, nodeG)

9: end if

number of shapelets, whose presence ultimately determines a specific class
of instances. This also indicates that a class of instances can have multiple
representative shapelets and the order of the discovered shapelets depends
on the initial conditions used to initiate the shapelet discovery process.

Shapelet Discovery

Algorithm 2.3 lists the brute force shapelet discovery procedure that takes as
input a time series dataset split D and the minimum and maximum allowed
shapelet lengths lmin and lmax, respectively. The first loop iterates over the
range of shapelet candidate lengths (Lines 2.3-2 to 2.3-20), the second loop
iterates over the time series instances in the dataset (Lines 2.3-3 to 2.3-19),
the third loop iterates over all possible subsequence start positions in a time
series instance (Lines 2.3-4 to 2.3-18), while the fourth loop iterates over the
time series instances again in order to determine the distance between the
shapelet candidate and the time series instances (Lines 2.3-7 to 2.3-10). A
shapelet candidate S of length l is extracted from the ith time series instance
starting at time point p (Line 2.3-5). Next, the procedure calculates the
distance between the shapelet candidate S and each time series instance
in the dataset in order to populate the order line (Lines 2.3-7 to 2.3-10).
The order line is a priority queue with time series instances inserted on the
basis of their distance from the shapelet candidate. It is used to determine
the best distance threshold to be used for the current shapelet and the

2.4 Time Series Classification 27



corresponding IG value (Line 2.3-11). The process of determining the best
split distance involves an exhaustive evaluation of the possible splitting points
of the dataset based on the obtained order line. For a given order line with r
entries, where r ≤ |D| and each entry contains either one or more time series
instances, r − 1 distance values are evaluated to determine the best distance
threshold for the current shapelet candidate, i.e., for each pair of consecutive
distance values in the order line, the procedure calculates a mean distance
value and determines the IG using this value as the split distance for splitting
the dataset. The procedure keeps track of the best IG and the corresponding
distance threshold values, which are returned once all the distance value
pairs have been evaluated. If the new IG is greater than the “best so far” IG,
the values for “best so far” IG IGbest, split distance δbest, shapelet Sbest and
order line dbest are updated (Lines 2.3-12 to 2.3-17). Once all candidates
have been evaluated, the best-found shapelet Sbest, the corresponding split
distance δbest, and the best order line dbest are returned.

Computational Challenges and Speed-up Strategies

Despite its many advantages, the huge computational cost of shapelets based
classification is a major drawback of shapelet based time series classification.
For a dataset with N instances of length n, the number of all possible shapelet
candidates of all lengths is 1

2Nn(n + 1), which is on the order of O(Nn2).
Evaluating each candidate requires its comparison with all the candidates
in the dataset, that is, on average, on the order of O(Nn). Each comparison
(using squared Euclidean Distance) on average requires O(n) operations.
Aggregating the above yields the computational complexity of a single call
to the brute force shapelet discovery procedure, which is on the order of
O(N2n4). The nested loops in Algorithm 2.3 also confirm the estimated
computational cost. Since the shapelet discovery procedure is called at each
node of the decision tree, the overall computational cost is a multiple of
the estimated computational cost, where the multiple depends on the depth
of the decision tree. Therefore, the computational complexity of training
a shapelets based classifier can become untenable even for relatively small
datasets. Consequently, a number of techniques have been proposed to
reduce the computational complexity of the shapelet discovery process. The
authors of the YK-shapelets algorithm proposed early abandoning distance

28 Chapter 2 Related Work



Algorithm 2.3 FindShapelet (D, lmin, lmax)
1: IGbest ← 0
2: for l ∈ [lmin . . lmax] do

3: for i ∈ [1 . . |D|] do

4: for p ∈ [1 . . (|D[i]| − l + 1)] do

5: S ← D[i]lp
6: order_line← ∅

7: for j ∈ [1 . . |D|] do

8: distj ← dist(S,D[j])
9: place D[j] on the order_line at position distj

10: end for

11: IG, δ ←CHECKCANDIDATE(order_line)

12: if IG > IGbest then

13: IGbest ← IG

14: δbest ← δ

15: Sbest ← S

16: dbest ← order_line

17: end if

18: end for

19: end for

20: end for

21: return Sbest, δbest, dbest

calculations and early candidate pruning using an upper-bound on the IG in
their seminal paper on shapelets and reported a speed-up of three orders of
magnitude compared to the brute force approach [32].

The Euclidean Distance calculations can be abandoned as soon as the distance
between the shapelet candidate and the current subsequence exceeds the
running “best so far” distance value. A “best so far” value is maintained while
calculating the distance for a shapelet candidate and each window in the
time series. Whenever the distance between the shapelet and the current
window exceeds this “best so far” value, the computation is abandoned for

2.4 Time Series Classification 29



Algorithm 2.4 dist (S, T )
1: dbsf ←∞

2: for i ∈ [1 . . (|T | − |S|+ 1)] do

3: isPruned← False

4: d← 0
5: for j ∈ [1 . . |S|] do

6: d← d+ (Sj − Ti+j)2

7: if d > dbsf then

8: isPruned← True

9: BREAK

10: end if

11: end for

12: if isPruned = False then

13: dbsf ← d

14: end if

15: end for

16: return dbsf

the window. Algorithm 2.4 provides the details of distance calculation with
early abandoning.

The shapelet candidates can also be pruned based on an inexpensive IG
computation. The idea is to compute an optimistic IG value after placing
each time series instance on the order line to estimate whether such a
placement of the remaining instances will provide a better IG than the “best
so far” value. For a C class problem, we need to calculate at most 2 × C
optimistic IG values. For each class c in the dataset, there are two possible
scenarios to be checked. One, we place the remaining class c instances in the
dataset on the order line at distance position 0 while placing all remaining
instances on the current maximum distance position on the order line and
calculate the IG to check if it is greater than the “best so far” value, and two,
we place the c class instances on the current maximum distance position
on the order line and all other instances on distance position 0 to check if
we get a better IG value than the “best so far”. If either of the above tests

30 Chapter 2 Related Work



gives a greater IG than the “best so far” IG value, we terminate the optimistic
IG calculation and evaluate the next time series instance in the dataset. If
placing the instances of each class on the extremes of the current order line
does not provide an improvement for the current “best so far” IG value, then
it will not be possible to achieve a better value with the current shapelet
candidate, because we have already tried all of the “most optimistic” cases
of time series instance placement resulting in no improvement. Therefore,
the current shapelet candidate can be safely discarded. Computing an IG
is much less computation intensive than calculating the distance between
the time series instances and the current shapelet, therefore, this procedure
provides an effective speedup.

A number of subsequent research efforts have focused on reducing the compu-
tational complexity of the shapelet discovery algorithm. The Logical-Shapelets
algorithm reduces computational costs by reusing previously calculated dis-
tances and pruning candidates using the triangular inequality [81]. It can
reduce the computational complexity to O(N2n3), however, caching the com-
putations imposes a memory requirement on the order of O(Nn2) which
limits the use of this algorithm for large datasets in memory constrained
environments. The Fast-Shapelets algorithm reduces the dimensionality of the
data using Symbolic Aggregate Approximation (SAX) [10] and then performs
a random projection based shapelet discovery using this lower dimensional
data [34]. It uses a heuristic approach and provides a huge reduction in com-
putational costs, but requires tuning a number of parameters according to the
dataset characteristics or performance requirements. The Random-Shapelets
algorithm performs a uniform random sampling of candidates to reduce the
number of evaluated candidates, however, the asymptotic complexity of the
algorithm is still O(N2n4) [82].

2.5 Recent Trends in Time Series Mining

Time Series Classification using Discretized Data

Over the last decade, the time series community has focused on employ-
ing text mining algorithms to tackle the time series classification problem

2.5 Recent Trends in Time Series Mining 31



by discretizing the time series instances and treating the symbolic data as
strings. The Bag of Patterns (BoP) approach builds a histogram of SAX
words for each time series [35]. A new sample is classified by comparing
the histograms to find the nearest neighbor in the training set. Symbolic
Aggregate Approximation - Vector Space Model (SAX-VSM) is another
SAX-based classifier which also uses the BoP framework [36]. It first builds a
dictionary of distinct SAX words from training data (a vector space represen-
tation) and for efficiency reasons, instead of building histograms, it computes
a single vector of tf-idf weights for each class. In addition, it employs an
optimization algorithm to search for the optimal parameters for discretizing
the time series data using SAX. However, the tuning cost is substantial due
to the need for cross-validation. The SAX-VSM authors also analysed the
interpretability of SAX-VSM models by mapping SAX words having high tf-idf
scores back to the original time series. A DFT based symbolic representation
was introduced by Schäfer and Högqvist for indexing time series, that is
aptly called Symbolic Fourier Approximation (SFA) [11]. Several time series
classification algorithms have been proposed on the basis of SFA, includ-
ing Bag of SFA Sequences (BOSS) [37], Bag of SFA Sequences in Vector
Space (BOSS VS) [38], and Word Extraction for Time Series Classifica-
tion (WEASEL) [39]. BoP, SAX-VSM, and BOSS are ensemble methods based
on text mining algorithms. BOSS uses ensembles of histograms of SFA-words
and 1-NN classifiers, while BOSS VS uses tf-idf class centroids and 1-NN for
classification. In the SFA-based family of TSC algorithms, WEASEL is the
most recent work on univariate time series. WEASEL is more accurate than
the BOSS and BOSS VS algorithms, but suffers from memory efficiency issues
since it does not include effective methods for pruning features early, and
hence also needs to carefully restrict the feature space (e.g., by restricting
the SFA parameters and the type of features). The authors of WEASEL do
not discuss the interpretability of these methods, arguably because of the
nonlinear characteristics of the SFA transformation. Nguyen, Gsponer, and
Ifrim also proposed a SAX-based time series classification algorithm [83] that
combines a fixed symbolic representation (SAX) and two adaptations of a se-
quence classifier (SEQL by Ifrim and Wiuf (2011)). An improved variation of
the above algorithm was proposed by Nguyen et al., which is called Mr-SEQL
[84]. This algorithm is also an ensemble method and creates multi-resolution
SAX-based features to be used for classification with a sequence classifier.

32 Chapter 2 Related Work



Time Series Classification using Deep Learning

Deep learning based strategies have also started gaining traction for time
series classification. The use of text mining approaches or shapelets-based
classification algorithms was aimed at interpretable knowledge discovery
from time series data, however, the dominance of deep learning in other
application domains has also lured in the time series mining community.
In 2019, Ismail Fawaz et al. published a review of various deep learning
architectures for time series mining [85]. The following year, two indepen-
dently developed deep learning-based time series classification approaches
were proposed by Dempster, Petitjean, and Webb (ROCKET [86]) and Is-
mail Fawaz et al. (InceptionTime [87]). Both these approaches currently
mark the state-of-the-art in deep learning-based time series classification.
Overall, the deep learning-based classification schemes have caught up with
the previous approaches, and it is safe to say that a lot of future research
regarding time series mining will employ the ever evolving deep learning
architectures.

Time Series Mining using Matrix Profile

Apart from time series classification, the all-pairs-similarity-search problem
for time series has also been extensively researched in the last few years. The
basic problem statement for the all-pairs-similarity-search problem can be
stated as follows: “provided a collection of objects, retrieve the nearest neigh-
bor for each object in the collection”. A scalable algorithm for performing
an all-pairs-similarity-search for time series data can enable a vast array of
time series data mining tasks, e.g., motif discovery, discord discovery, density
estimation, etc. Given a time series instance, a subsequence that occurs
multiple times in the time series (possibly with slight variations) is called a
“motif”, while a subsequence that occurs rarely in the time series is called a
“discord”. The high dimensionality of time series data makes the all-pairs-
similarity-search problem a daunting task. The usual speed-up techniques
of indexing, lower-bounding, triangular inequality-based pruning, and early
abandoning, also provide a one to two orders of magnitude speedup at best,
and that too when all these techniques are being used in conjunction with
each other.

2.5 Recent Trends in Time Series Mining 33



The state-of-the-art in time series all-pairs-similarity-search is the Matrix
Profile (MP) algorithm [88]. The MP algorithm is “simple, parameter free,
exact, space efficient, anytime, incrementally maintainable, scalable, invari-
ant to missing data, and embarrassingly parallelizable” [88]. MP is the
name of the algorithm as well as the data structure that is created when
performing the all-pairs-similarity-search. MP is, in essence, a data structure
that annotates the original time series such that it is possible to determine
the nearest neighbor of any subsequence using a single lookup of the Matrix
Profile data structure. A fascinating aspect of the MP algorithm is that, once
the MP data structure is calculated for a time series, the different data min-
ing tasks become trivial, e.g., tasks like extracting top k motifs or discords,
density estimation, rule discovery, clustering, etc. become extremely easy
and efficient. The Matrix Profile algorithm has been refined and adapted for
a number of different scenarios and applications. In this regard, we refer the
interested reader to the corresponding article for a detailed analysis of the
Matrix Profile algorithm and its various applications [89].

34 Chapter 2 Related Work



Randomized Time
Warping for Full-length
Similarity Search

3

Many time series classification problems are concerned with data which has a
specific underlying shape for each class of instances, however, the individual
instances might be time shifted, stretched/compressed, or distorted due to
noise. The best known approach for such problems is the Nearest Neighbor
(NN) algorithm coupled with a suitable distance measure [90]. Specifically,
for datasets with a relatively small number of training instances, the NN
algorithm coupled with an elastic distance measure performs best compared
to the NN algorithm coupled with a lock-step distance measure [80].

Unconstrained Dynamic Time Warping (DTW) has a quadratic computational
complexity, therefore, classifying a time series instance using NN-DTW can
lead to a large computational cost because any given test instance has to
be compared against all the training instances based on a computationally
expensive DTW distance measure. Many techniques have been developed for
reducing the computational complexity of DTW, which include:

• limiting the required computations using windowing [27, 28, 91],

• lower bounding techniques [29, 30, 75],

• numerosity reduction [92, 93],

• calculating DTW for abstract representations of the data [79], and

• calculating an approximate warping distance [73].

35



3.1 Randomized Time Warping

A number of application areas can accept a tentative, quick, and reason-
ably accurate classification even if there is a small chance that the exact
classification may turn out to be different afterwards. Examples of such
application areas may include real-time or early classification systems. Early
classification systems aim to predict a classification as early as possible, while
being accurate enough that the decisions based on the early classification
are not drastically different than those taken on the basis of an exact classifi-
cation [94]. In this context, a couple of research efforts have focused on a
greedy approach in order to approximate the warping time series distance
values [73, 95]. LTW is a greedy warping time series distance measure that
was introduced in Section 2.3.3. The main advantage of LTW compared to
DTW is the reduced computational cost. In terms of classification accuracy,
LTW fares much better against ED than against DTW. The LTW authors also
noted that it was faster than DTW for a majority of datasets, however, the
number of datasets where LTW was faster and more accurate was less than a
quarter of the UCR Archive (2014) datasets.

Randomized Time Warping (RTW) is a time series distance approximation
algorithm based on a randomized greedy approach. It complies with the
three constraints governing DTW and allows to warp the time series instances.
RTW relies on a look-ahead approach based on local squared distances for
finding an approximate warping path between the time series instances.
However, unlike the purely greedy approach of LTW, the distances to the
right, diag, and down neighboring cells are used to make a probabilistic
decision about choosing the next cell. The cell with the shortest distance
from the current cell has the highest chance of getting selected as the next
cell, however, a distant cell may also be chosen which provides an exploratory
aspect to an exploitive (greedy) algorithm.

3.1.1 Methodology

DTW calculates the entire global cost matrix before finding the warping path.
For constrained DTW, a windowed portion of the global cost matrix has to

36 Chapter 3 Randomized TimeWarping for Full-length Similarity Search



be calculated before determining the warping path. RTW can determine
the warping path during the process of the RTW distance calculation itself.
The warping path W is a sequence of (i, j) vertex pairs starting at (1, 1) and
ending at (m,n), such that W = {(1, 1), . . . , (i, j), . . . , (m,n)}, where m and
n are the lengths of the given time series instances, respectively. The RTW
distance between a time series pair C and Q is defined as:

RTW (C,Q) =
K∑
k=1

d(Wk)

= d(W1) + · · ·+ d(Wk) + · · ·+ d(WK)
= d(1, 1) + · · ·+ d(i, j) + · · ·+ d(m,n)
= (c1 − q1)2 + · · ·+ (ci − qj)2 + · · ·+ (cm − qn)2

where d(Wk) is the distance between the time series data points represented
by the kth element of the warping path and K is the warping path length.

Algorithm 3.1 lists the steps involved in the calculation of the RTW distance
between two time series instances. The inputs to the algorithm include the
two time series instances C and Q, along with a window size parameter w, a
random number generator RNG, and the required scaling type rankType.
First, the algorithm initializes the starting (i and j) and ending (m and n)
indices, and calculates the distance d for the data points corresponding to
the starting indices (Line 3.1-1). Now the procedure enters the loop which
determines the RTW distance (Lines 3.1-2 to 3.1-25). The current cell is
indicated by the (i, j) index pair, while its immediate neighbors have the
index pairs (i, j + 1), (i+ 1, j + 1), and (i+ 1, j), and are referred to as the
right, diag, and down cells, respectively. At the start of each iteration, the
three neighboring distance values dright, ddiag and ddown, are initialized with
large values to mimic an infinite distance if the respective cells are out of
bounds (Line 3.1-3). Next, the algorithm calculates the dright, ddiag, and
ddown distance values for the respective valid neighboring cells (Lines 3.1-4
to 3.1-12). Next, the distance values are scaled and normalized so that their
sum equals one (Line 3.1-13). Next, a random number is drawn in the range
[0, 1) (Line 3.1-14). In the case of a Gaussian random number generator
(or a similarly behaving random number generator), the drawn random
numbers are restricted to the [0, 1) range by discarding any random numbers
outside the allowed range to handle the edge case that can cause repeated

3.1 Randomized Time Warping 37



Algorithm 3.1 RTW (C, Q, w, RNG, rankType)

1: i,← 1, j ← 1, m← |C|, n← |Q|, d← (ci − qj)2

2: while (i ≤ m ∧ j ≤ n) do

3: dright ←∞, ddiag ←∞, ddown ←∞

4: if (j + 1) ≤min(w + i, n) then

5: dright ← (ci − qj+1)2

6: end if

7: if (i+ 1) ≤ m ∧ (j + 1) ≤ n then

8: ddiag ← (ci+1 − qj+1)2

9: end if

10: if (i+ 1) ≤min(w + j,m) then

11: ddown ← (ci+1 − qj)2

12: end if

13: {rright, rdiag, rdown} ← RankDistances(dright, ddiag, ddown, rankType)
14: x ∼ RNG . RNG range is restricted to [0,1)

15: if (j + 1) ≤min(w + i, n) ∧ x < rright then

16: d← d+ dright

17: j ← j + 1
18: else if (i+ 1) ≤ m ∧ (j + 1) ≤ n ∧ x < rdiag then

19: d← d+ ddiag

20: i← i+ 1, j ← j + 1
21: else if (i+ 1) ≤min(w + j,m) ∧ x < rdown then

22: d← d+ ddown

23: i← i+ 1
24: end if

25: end while

26: return d

iterations of the main loop without any updates to the (i, j) index pair. The
exact procedure and possible design options for scaling the distance values
as well as for the random number generators are discussed in Section 3.1.2.

38 Chapter 3 Randomized TimeWarping for Full-length Similarity Search



Fig. 3.1. Visual comparison of the DTW (white) and RTW (red) warping paths for two time
series instances plotted on a heatmap of the global distance matrix. The global
distance matrix is calculated using DTW. The RTW warping path approximates the
DTW warping path and avoids any high difference points from the two time series.

The next cell as well as the update value for the accumulated distance d are
calculated based on the drawn random number (Lines 3.1-15 to 3.1-24). The
outermost loop continues until the index reaches (m,n), at which point the
accumulated distance d is reported as the distance between the given time
series instances.

Figure 3.1 shows an example of the DTW and RTW warping paths obtained
for two time series instances. The DTW warping path is shown in white
while the RTW warping path is shown in red. The background shows a
heatmap based on the global distance matrix obtained from calculating the
DTW distance measure. For a global distance matrix, each cell value Di,j

is equal to the sum of the squared difference between the ith and jth data
points of the two time series instances (di,j), and the smallest cell distance
value from the three neighboring cells (i− 1, j), (i− 1, j − 1), and (i, j − 1),

3.1 Randomized Time Warping 39



Fig. 3.2. An RTW warping path for two time series instances plotted on a heatmap of the
local distance matrix.

i.e., Di,j = di,j + min(Di−1,j, Di−1,j−1, Di,j−1). A numerical comparison of the
distance values contained in the global distance matrix shows that (i) the
warping path starts from a high distance value at cell (m,n) and goes to the
smallest distance value at cell (1, 1), (ii) the slope of the optimal warping
path is always decreasing or zero, and (iii) the global distance values on
either side of the optimal warping path tend to increase very fast and reach
very high values on either extremes of the global distance matrix, i.e., at cells
(m, 1) and (1, n).

In the case of a local distance matrix, each cell represents the squared dif-
ference between the ith and the jth data points for the two time series
instances. The local distance matrix can be visualized as a highly irregular
terrain. Regions of time series instances which have diverging trends intro-
duce increasing distance values to the local distance matrix, while regions
with converging trends introduce decreasing distance values. Time series

40 Chapter 3 Randomized TimeWarping for Full-length Similarity Search



data points which are at alternate extremes of each other will contribute the
largest distance values. Figure 3.2 shows a heatmap generated from the local
distance matrix of the time series instances used to determine the DTW and
RTW warping paths in Figure 3.1. The RTW warping path can be traversed
on the basis of the above stated properties of the local distance matrix. The
local distance matrix based warping path traversal is done in a look-ahead
manner, i.e., at each step of the process, the algorithm jumps to either the
right, diag, or down cell based on the scaled distance and a randomized
decision. This causes the warping path to steer away from high distance cells.
This can also be seen in Figure 3.2, as the RTW warping path avoids those
cells which have larger values corresponding to the larger difference regions
of the time series instances, traversing a low difference path towards the cell
(m,n).

3.1.2 Design and Parameter Choices

The two main aspects of the RTW algorithm which can affect its performance
are the scaling method and the random number generator. In this regard,
the following sections present the design choices and their effects on the
performance of RTW.

Scaling Method

The distance values between the data points of the time series instances in-
clude all non-negative real numbers (R≥0), therefore, we scale and normalize
the distance values to restrict their range such that the sum of the scaled
distance values is equal to one. There are two scaling methods that we have
tested for RTW, namely, linear and exponential scaling. Linear scaling is an
unbiased method which results in scaled values that are directly proportional
to the original distance values. Using an unbiased scaling method allows
higher exploration at the cost of longer and highly jagged warping paths. On
the other hand, exponential scaling is a biased scaling method which scales
the distance values such that the cell with the smallest distance from the
current cell has the highest chance of selection. The γ parameter controls
the bias of the exponential scaling. γ = 0 is a special case of the exponential

3.1 Randomized Time Warping 41



Algorithm 3.2 RankDistances (dright, ddiag, ddown, rankType)

1: γ ← 2, c← 0, I ← {right, diag, down}
2: if rankType = Exponential then

3: for all i ∈ I do

4: di ← e−γdi

5: end for

6: end if

7: dsum ←
∑
i∈I

di

8: for all i ∈ I do

9: if rankType = Exponential then

10: ri ← (di/dsum) + c

11: else

12: ri ← ((dsum − di)/(2× dsum)) + c

13: end if

14: c← c+ ri

15: end for

16: return (rright, rdiag, rdown)

scaling method that ignores the distance values entirely and assigns an equal
value to each scaled distance, effectively making the decision of choosing
the next cell completely random. As the value of γ increases, the inter-cell
distances start taking effect and each segment of the scaling factor starts
getting adjusted accordingly. Additionally, the biasing effect also starts to
show up and smaller distances get a larger scaling. However, the γ parame-
ter cannot be increased limitlessly because at larger values of γ, all scaled
distances become very close to zero, effectively breaking the scaling method.
Algorithm 3.2 details the scaling and normalizing procedure.

Random Numbers

RTW relies on random numbers to integrate an explorative aspect to the
process of choosing the next cells of the warping path. The random numbers

42 Chapter 3 Randomized TimeWarping for Full-length Similarity Search



are drawn in the range [0, 1), since the range of the scaled and normalized
inter-cell distances is [0, 1]. We evaluated the performance of RTW using
the Uniform U(a, b), Normal N (µ, σ2), and Skewed Normal SN (ξ, ω2, α)
distributions for drawing random numbers. Drawing random numbers from
the Uniform distribution U(0, 1) provides equal probability of selection for
each of the right, diag, and down cells. Drawing random numbers from the
Normal distribution N (0.5, 0.1) provides a higher probability of obtaining
random numbers close to 0.5 and hence favoring the selection of the diagonal
cell1, because 68.27% of the numbers drawn will lie within one standard
deviation of the mean.2 Drawing the random numbers from the Skewed
Normal distribution, we adjusted the parameters of the distribution in each
iteration of the main RTW algorithm, so that a warping path close to the
main diagonal would be selected. The skewness of the distribution was
coupled with the number of cells that the warping path diverged from the
main diagonal. Therefore, when the warping path shifted towards one side
of the main diagonal, the random numbers generated would be in favor
of moving in the other direction, which pulls the warping path back to the
main diagonal of the cost matrix, basically restricting the amount of warping.
However, it was observed that the use of a Skewed Normal distribution
gave consistently similar results as the Normal distribution, but at twice the
computational cost of using the Normal distribution. Therefore, the Skewed
Normal distribution was not considered further for the empirical evaluation
of the algorithm.

3.2 Empirical Evaluation

An extensive set of experiments was performed for the evaluation and com-
parison of RTW against Euclidean distance (ED), Dynamic Time Warping
(DTW), and Lucky Time Warping (LTW). The different algorithms were im-
plemented using a consistent program structure to avoid any implementation
or optimization bias. The source code for the different algorithms and the

1The word diagonal should not be confused with the main diagonal of the local distance
matrix, rather it is referring to any cell which is located diagonally from the current cell
and can be reached as (i, j)→ (i+ 1, j + 1).

2The specific µ and σ2 parameters for the Gaussian distribution are chosen to generate
99.7% of the random numbers between the allowed range of [0, 1).

3.2 Empirical Evaluation 43



scripts for generating the different plots are available online.3 The main goal
of the experimental evaluation is to investigate the classification accuracy and
computational cost of the proposed algorithm compared to ED, DTW, and
LTW. Nearest neighbor coupled with the respective distance measures was
used to determine the classification accuracy for each dataset. The runtime
of each algorithm was monitored within the program.

The time series datasets available from the UCR Archive (2014) were used
for the empirical evaluation [58]. We also present the results for the same
training and testing splits provided by the UCR Archive (2014) for the sake of
reproducibility.

We have intentionally avoided a learning strategy (e.g., parameter tuning
by grid search and interval cross-validation) for finding the Sakoe-Chiba
band for any warping technique. We have presented the results at specific
window sizes for all the competing techniques. This way we can compare the
classification accuracy of the different techniques using the same criteria.

Early abandoning allows to stop a distance calculation as soon as the accumu-
lated distance value exceeds the current best so far value. Early abandoning
ED, LTW, and RTW is trivial, however, DTW requires the introduction of
lower bounding techniques before early abandoning can be incorporated.
The inclusion of lower bounding for DTW can introduce a bias in the compu-
tational comparisons as well, therefore, we have refrained from investigating
early abandoning in our experimentation.

Since RTW is a randomized algorithm, we evaluated each dataset ten times
and compare the competing algorithms based on the average classifica-
tion accuracy and runtime performance of the ten runs. The runtime of
the algorithms was monitored using standard timing utilities provided by
the implementation platform. The experiments were performed on a high
performance cluster, so the variation in the runtime performance of the
deterministic methods, i.e., DTW, LTW, and ED, is a result of the load factor
of the processing node at different times. In the case of RTW, the variation
is a combination of the variability introduced due to the shared execution
platform as well as the randomized nature of the algorithm.

3RTW Repository: https://github.com/kramerlab/randomized-time-warping.

44 Chapter 3 Randomized TimeWarping for Full-length Similarity Search

https://github.com/kramerlab/randomized-time-warping


The empirical evaluation was carried out on the basis of the following experi-
mental and parameter settings:

• The warping window size was set to 100, 20, 10, and 5 percent of the
time series length for each of RTW, LTW, and DTW.

• Random numbers were generated based on the Uniform and Normal
distributions. It was observed that the classification accuracy was
always better when using the Normal distribution rather than the
Uniform distribution, therefore, the following results are based on the
Normally distributed random numbers.

• Scaling was performed using both exponential and linear methods. The
γ parameter for exponential scaling can be tuned for individual datasets,
however, we always kept it constant at 2. Overall, the exponential scal-
ing method always resulted in a better classification accuracy, therefore,
we only consider exponential scaling for the following discussion.

3.3 Results

Our empirical evaluation showed that using Normally distributed random
numbers with exponential scaling provided the best classification accuracy.
On the other hand, window size can have a significant effect on the overall
accuracy, therefore, we only show the results when using the maximum
window size to eliminate unintentional bias against any algorithm. The
following discussion is based on the experimental evaluation using a warping
window size of 100, using exponential scaling, while the random numbers are
drawn from a Gaussian distribution with the mean and standard deviation
set to the values already discussed in the previous section.

3.3.1 Classification Accuracy

Previous research has shown that 1NN is quite competitive and both the 1NN-
ED and 1NN-DTW are hard to beat [96]. Since RTW has been proposed as
an approximating distance measure, the main aspect that will be considered

3.3 Results 45



regarding classification accuracy is that RTW should be able to perform on
par compared to ED and DTW. Since RTW is an explorative as well as an
exploitive algorithm, it is expected that it will perform better compared to
the LTW algorithm since LTW is only an exploitive algorithm.

Figures 3.3, 3.4, and 3.5 present a comparison of the classification accuracy
obtained by RTW compared to ED, LTW, and DTW, respectively. The average
classification accuracy obtained for each dataset after ten runs of RTW is
plotted along the vertical axis while the classification accuracy for the other
algorithm is plotted along the horizontal axis. Data points lying on the
diagonal and plotted using blue “.” markers are for those datasets for which
both algorithms provided almost equal classification accuracy (±0.5%). The
data points plotted using a green “+” sign indicate that RTW achieves higher
classification accuracy. Finally, data points plotted with a red “×” are for
datasets where the other algorithm performs better than RTW.

Figures 3.3 and 3.4 show that more than half of the datasets in the UCR
Archive get better classification accuracy when using RTW compared to ED
or LTW. The classification accuracy of RTW is on par compared to ED, since
the data points are clustered around the main diagonal. When comparing
RTW against LTW, the results are in favor of RTW since the data points move
away from the main diagonal in favor of RTW and the number of datasets
with better classification accuracy when using RTW is also increased. When
comparing RTW against DTW, Figure 3.5 shows that the majority of datasets
get better classification accuracy using DTW, but the clustering of almost all
datasets near the upper right corner and close to the main diagonal suggests
that RTW performs very well in approximating the correct classification
here as well. There is a group of four datasets which get less than 50%
accuracy when using RTW but the classification accuracy with the competing
algorithms is higher than 50%. The classification accuracy for this group of
datasets is also quite consistent among the other algorithms, i.e, ED, LTW,
and DTW. Two of these datasets are spectral analyses while the other two
are image outline datasets. The severely degraded classification accuracy for
these datasets does not, however, indicate that RTW is ill-suited for spectral
analyses or image outline datasets because there are other datasets from
these categories which get better results.

46 Chapter 3 Randomized TimeWarping for Full-length Similarity Search



0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Accuracy−Accuracy plot − Window size:100%

ED

R
T

W
−

G
a
u

s
s
ia

n

Fig. 3.3. Comparing the classification accuracy of RTW against ED obtained using a 100%
window size. Each marker represents the classification accuracy obtained by the two
algorithms for a single dataset.

3.3.2 Running Times

LTW and DTW are deterministic algorithms, so the time required to evaluate
a given dataset is the same over multiple runs. On the other hand, RTW is
a randomized algorithm, therefore, we can observe a slight variation in its
runtime requirements over different runs while evaluating the same dataset.
Therefore, we have reported an average runtime requirement for each dataset
when evaluating with RTW. The runtime of the LTW algorithm is used as a
baseline for comparing the runtime performance of the different algorithms.
For each dataset, the time required by LTW is used to normalize the runtime
requirements of the other algorithms, therefore the runtime requirements
of RTW and DTW are reported as multiples of the runtime requirements for

3.3 Results 47



0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Accuracy−Accuracy plot − Window size:100%

LTW

R
T

W
−

G
a
u

s
s
ia

n

Fig. 3.4. Comparing the classification accuracy of RTW against LTW obtained using a 100%
window size. Each marker represents the classification accuracy obtained by the two
algorithms for a single dataset.

LTW. Figure 3.6 shows a comparison of the running times of DTW, LTW and
RTW for the evaluated datasets. The LTW runtime for each dataset shows
up as one due to the normalization. For almost all datasets, RTW is one to
two times slower than LTW, however, a highly unexpected observation is
that for some datasets RTW is faster than LTW. On the other hand, RTW is
always faster than DTW except for one dataset. For smaller datasets, the
computational advantage of RTW compared to DTW is minimal, but for
larger datasets we can see that RTW performs much better in terms of the
required computational effort and is two to eight times faster than DTW. The
advantage of being less computationally intensive than DTW along with a
better classification approximation than LTW allows RTW to perform much
better than LTW as a greedy warping algorithm.

48 Chapter 3 Randomized TimeWarping for Full-length Similarity Search



0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Accuracy−Accuracy plot − Window size:100%

DTW

R
T

W
−

G
a
u

s
s
ia

n

Fig. 3.5. Comparing the classification accuracy of RTW against DTW obtained using a 100%
window size. Each marker represents the classification accuracy obtained by the two
algorithms for a single dataset.

3.3.3 Unified Comparison of Accuracy and Runtime

In order to further illustrate the performance gains offered by RTW compared
to the other algorithms, Figures 3.7, 3.8, and 3.9 present a unified comparison
of RTW against ED, LTW, and DTW regarding classification accuracy and
runtime. The figures show the comparison of the different algorithms based
on the “scaled” ratios of classification accuracy (along the horizontal axis)
and run-times (along the vertical axis) for all datasets. The value of “1” on
the respective axes indicates that the accuracy or runtime of the competing
algorithms is equal. A value greater than “1” for the ratio of classification
accuracies means that RTW has a better classification accuracy than the other
algorithm, while a value greater than “1” for the ratio of run-times means

3.3 Results 49



0 2 4 6 8 10 12 14 16

ItalyPower

SonyAIBO

Coffee

ECG200

SonyAIBO_II

Gun_Point

2LeadECG

MoteStrain

Beef

Plane

FaceFour

OliveOil

synt_cont

ECG5Days

CBF

Lighting7

DiatomSz

Trace

Car

Lighting2

Med_Imgs

Symbols

Adiac

Swed_Leaf

FISH

FacesUCR

OSULeaf

WordsSyns

Cricket_X

Cricket_Y

Cricket_Z

50words

FaceAll

Chlo_Conc

Haptics

2_Pttrns

MALLAT

wafer

CinC_ECG

yoga

InlineSkt

uWaveGL_X

uWaveGL_Y

uWaveGL_Z

FetalECG_1

FetalECG_2

StarLight

Fig.3.6.
Run

tim
es

ofD
TW

(green),LTW
(orange)

and
R

TW
(violet)

for
allU

CR
Archive

(2014)
datasets.

Run
tim

e
ofLTW

is
set

as
the

baseline
and

D
TW

and
R

TW
run

tim
es

are
reported

as
m

ultiples
ofLTW

run
tim

e
so

that
ifLTW

takes
“x”

units
oftim

e
to

com
pute

the
w

arping,
D

TW
and

RTW
take

a
m

ultiple
ofthat

“x”
value.

D
atasets

are
listed

in
the

order
ofincreasing

size
in

term
s

ofinstances
to

be
com

pared
and

the
size

ofcost
m

atrix
to

be
com

puted.

50 Chapter 3 Randomized TimeWarping for Full-length Similarity Search



Fig. 3.7. Comparing the classification accuracy and runtime performance of of RTW against
ED using scaled ratios of the two quantities. Each point represents the ratio of
classification accuracy and runtime obtained by the two algorithms for a single
dataset.

that RTW has a longer running time than the other algorithm. Figure 3.7
shows that RTW is always on par with ED regarding classification accuracy
while its runtime is always greater than ED. Figure 3.8 shows the comparison
of RTW and LTW, where the majority of data points lie in the x > 1; y > 1
region. This implies that RTW is computationally demanding than LTW. On
the other hand, RTW also obtains better classification accuracy as compared
to LTW. Figure 3.9 compares RTW against DTW, where we see that almost
all data points lie around the x = 1 line, which means that the difference
between the classification accuracy of RTW and DTW is relatively small even
though RTW fails to obtain a better classification accuracy than DTW for
most datasets. Regarding the computational requirements of RTW and DTW,
almost all data points lie below the y = 1 line, proving that RTW takes less
computation effort than DTW.

3.3 Results 51



Fig. 3.8. Comparing the classification accuracy and runtime performance of of RTW against
LTW using scaled ratios of the two quantities. Each point represents the ratio of
classification accuracy and runtime obtained by the two algorithms for a single
dataset.

3.4 Conclusion

We proposed Randomized Time Warping (RTW) for time series similarity
search, which uses a randomized greedy approach and has a near-linear space
and time complexity. The comparison of classification accuracy and computa-
tional complexity of RTW against DTW and LTW shows that RTW provides a
very balanced trade-off between classification accuracy and computational
complexity. It provides a reasonably good approximation of classification
as compared to DTW, while its computation time is much less than that of
DTW.

We proposed the Randomized Time Warping (RTW) distance for an efficient
1-NN time series classification approximation, which determines a warping
path using a randomized greedy approach. In this work we have shown that
RTW:

52 Chapter 3 Randomized TimeWarping for Full-length Similarity Search



Fig. 3.9. Comparing the classification accuracy and runtime performance of of RTW against
DTW using scaled ratios of the two quantities. Each point represents the ratio of
classification accuracy and runtime obtained by the two algorithms for a single
dataset.

• approximates time series distance at the cost of classification accuracy,

• can perform better classification than a simple greedy approach via
stochastic search,

• is a simple, but effective algorithm with linear time and space require-
ments,

• has a less computationally intensive warping process than DTW,

• can trade off computational effort in favor of classification accuracy
and vice versa, and

• is able to provide a consistent distance approximation at varying warp-
ing window sizes and hence, is unaffected by warping constraints.

The algorithms in this research work were tested in quite a “pure" setting,
without specific optimizations, like for instance with respect to the win-

3.4 Conclusion 53



dow size parameter. Also, it should be noticed that for a subset of the
UCR data sets, Euclidean distance cannot be beaten by warping distance
measures. Those cases could easily be determined in practice by a simple
cross-validation. In other words, it would be easy to filter those cases in
which a trivial warping path (or, equivalent, minimal window size) gives
the best results, and only use the more involved variants in the non-trivial
cases. For the non-trivial cases, for which larger window sizes pay off, RTW
could offer an intriguing possibility: DTW is often used with a parameter
optimization step using leave-one-out cross-validation for finding the most
suitable window. This incurs a hidden computation cost, which is mostly
not mentioned. Since RTW is computationally less expensive, we could use
RTW to create an irregular window for enhancing the accuracy of RTW.
RTW can be used multiple times to figure out the most traversed paths for
each class in the training set, and then these paths can be used to create
irregular windows for each class’s instances. Afterwards, RTW can run for
each irregular window only once instead of evaluating the time series pair
multiple times to figure out the best classification.

It would be tempting to measure success not by mere prediction accuracy
(fraction of correctly predicted classes), but also taking into consideration
the confidence in the predictions (for instance, the margin, the difference in
the confidence in the most probable and the second most probable class). It
is quite likely that some of the results for the variants of DTW will appear in
a different light then.

We have discussed the use of different design parameters that affect the
performance and/or accuracy of our algorithm including different prob-
ability distributions, using different ranking strategies and the effects of
re-evaluations. There is potential for adopting early abandoning for speed
improvements. Further improvements in classification accuracy may be
achieved using weighting strategies for the choice of directing the warping
path based on diverging or converging time series.

54 Chapter 3 Randomized TimeWarping for Full-length Similarity Search



Random Shapelet
Ensembles

4

4.1 Background and Motivation

Many time series classification problems are concerned with data for which
the overall shape of the time series instances provides little to no information
about the class, but small subsequences present in the data are indicative
of the class of the time series instances. These subsequences are (i) much
smaller than the overall length of the time series, (ii) phase independent,
and (iii) can occur at any point in the time series instances. These problem
characteristics imply that determining the presence or absence of discrimina-
tive subsequences in the time series instances is a better suited classification
approach compared to whole-matching. Ye and Keogh proposed an algo-
rithm to handle problems of this nature and referred to the discriminative
subsequences as Shapelets [32]. The proposed algorithm is referred to as the
YK-shapelets algorithm in this text. An introduction of the shapelets based
classification approach as well as the YK-shapelets algorithm is provided in
Section 2.4.2.

Shapelets based classification is much faster compared to the 1-NN approach
because, for a given time series instance, shapelet based classification only
needs to compute a few inexpensive distance values for the given time se-
ries instance and the shapelets encountered in the nodes of the decision
tree, whereas the 1-NN approach needs to compare the given time series
instance with all available reference time series instances before finalizing the
classification decision. On the other hand, shapelet based model induction
can become untenable for larger datasets because shapelet discovery is an
exhaustive process of evaluating all possible candidate subsequences in the

55



time series dataset to determine the best shapelet and its corresponding
distance threshold at each node of the shapelet based decision tree model.
At each level of the decision tree, the time required for shapelet discovery
is on the order of O(N2n4), where N represents the number of time series
instances in the dataset, while n is the length of the time series instances.
Hence, the overall time required for shapelet based model induction can
become unreasonably high. A number of approaches were already proposed
by Ye and Keogh to reduce the computational complexity of the YK-shapelets
algorithm [32], however, these approaches only reduce the computational
cost by a fraction of the total cost since the asymptotic cost of the algorithm
remains the same. Further research efforts aimed at reducing the computa-
tional complexity include Logical-Shapelets [81], Fast-Shapelets [34], Learning
Shapelets [97], etc.

4.2 Randomized Shapelet Ensembles

The YK-shapelets algorithm generates the shapelet candidates with a unit
step size (see Algorithm 2.3-4), therefore, each candidate almost entirely
overlaps its immediate neighboring candidates. The neighboring candidates
have, therefore, been aptly named trivial matches in the research literature
and it has been established that such overlap is undesirable for multiple
reasons [98]. Since the overlapping subsequences are almost identical and
have very similar distances to the time series instances, if a subsequence is
pruned because it is not a useful candidate, the algorithm still evaluates its
immediate neighbors, which leads to considerable wasted computational
effort.

4.2.1 Random Shapelets

The Random-Shapelets algorithm aims to reduce the computational cost of
the YK-shapelets algorithm by intentionally skipping shapelet candidates
based on a uniform random sampling approach. Algorithm 4.1 shows
the details of the randomized shapelet discovery procedure used in the
Random-Shapelets algorithm. The overall shapelet discovery procedure of

56 Chapter 4 Random Shapelet Ensembles



the Random-Shapelets and YK-shapelets algorithms is the same except for
the introduction of a control flow block which skips the evaluation of a given
candidate shapelet based on a uniform random number and a user provided
sampling percentage (Lines 4.1-7 to 4.1-9).

Figure 4.1 illustrates the candidate generation approaches of the YK-shapelets
and Random-Shapelets algorithms, respectively. It shows the first ten shapelet
candidates generated for a time series instance using both the approaches.
The candidates generated using the unit step size approach of YK-shapelets
have a very high overlap and only cover a small section of the time series,
while the candidates generated using a uniform random sampling approach
of Random-Shapelets have lesser overlap and the same number of candidates
also covers a longer section of the time series. Using an m% sampling,
the number of possible shapelet candidates of length l ∈ [min . .max] is
approximately equal to:

m

100 ×N ×
max∑
l=min

(n− l + 1),

where N is the size of the dataset and n is the length of the time series
instances. Therefore, the Random-Shapelets algorithm reduces the total
number of evaluated shapelet candidates while also avoiding the significant
candidate overlap problem.

The Random-Shapelets algorithm skips a large percentage of all possible
shapelet candidates at each node of the decision tree. This drastically re-
duces the computational cost, but also leads to deeper decision tree models
compared to the models induced by the YK-shapelets algorithm. The deeper
decision tree models can often lead the Random-Shapelets based classifica-
tion models to overfit the problem.

Ensemble methods are based on the idea of combining the opinions of dif-
ferent experts to obtain a decision about a given problem. Members of an
ensemble can have a different view of the data, or they can use different
features for making their decision, or they can be totally different algorithms.
This provides diversity in the ensemble decisions, which often makes them
more accurate than individual models because ensemble methods inherently
tend to reduce variance and sometimes also bias. Ensembles of machine learn-
ing models have been shown to often outperform individual models, provided

4.2 Randomized Shapelet Ensembles 57



Algorithm 4.1 FindShapelet (D, lmin, lmax)
1: IGbest ← 0
2: for l ∈ [lmin . . lmax] do

3: for i ∈ [1 . . |D|] do

4: n← |D[i]|
5: for p ∈ [1 . . (n− l + 1)] do

6: x ∼ U(0, 1)
7: if m < x then . m is a globally defined variable

8: continue

9: end if

10: S ← D[i]lp
11: order_line← ∅

12: for j ∈ [1 . . |D|] do

13: distj ← dist(S,D[j])
14: place distj on order_line

15: end for

16: IG, δ ←CHECKCANDIDATE(order_line)

17: if IG > IGbest then

18: IGbest ← IG

19: δbest ← δ

20: Sbest ← S

21: dbest ← order_line

22: end if

23: end for

24: end for

25: end for

26: return Sbest, δbest, dbest

the models constituting the ensemble are (i) accurate, i.e., provide better
results than random guessing, and (ii) diverse, i.e., make different errors for
an unseen problem [99]. The Random-Shapelets algorithm’s approach of

58 Chapter 4 Random Shapelet Ensembles



Fig. 4.1. The first ten shapelet candidates generated using the unit step approach of YK-
shapelets (top), and the randomized approach of Random-Shapelets (bottom). The
time series is also shown for reference while the candidates are shown with an offset
for clarity.

creating good-enough but inexpensive models makes it a prime candidate
for incorporating an ensemble of Random-Shapelets based models.

The various proposed combinations in the literature regarding ensembles
make it possible to experiment with a number of options. A basic ensemble
of classifiers can simply be obtained by combining multiple diverse models all
trained using the same data. Another approach for constructing ensembles
is that of Bagging, which trains Q models, each with a different bootstrap
sample of data such that |D| instances are sampled with replacement from
the original dataset [100]. This introduces a diversification effect and a
duplication of instances also allows individual models to be focused on the
duplicated instances. Algorithm 4.2 provides the pseudo-code for bagging.

4.2 Randomized Shapelet Ensembles 59



Algorithm 4.2 Creating Bagging Ensembles
1: M ← ∅

2: for q ∈ [1 . . Q] do

3: Dq ← sample |D| instances from D with replacement

4: Mq ← train classifier on Dq

5: M ←M ∪Mq

6: end for

7: return M

Another approach for constructing ensembles is that of Boosting that relies on
weighted instances [101]. All training instances are assigned equal weights
so that the sum of instance weights equals one. A model is trained and a
classification of training data using this model identifies the misclassified
instances, whose weights are increased. Next, the weights of all instances are
normalized to keep the sum of weights equal to one. This, in turn, decreases
the weights of correctly classified instances and provides emphasis on the
misclassified instances in the next iteration and in many cases leads to an
improved overall accuracy of the ensemble. Algorithm 4.3 provides the
pseudo-code for the AdaBoost.M1 algorithm.

4.2.2 Random Shapelet Ensembles

The Random-Shapelets algorithm is computationally less expensive than the
YK-shapelets algorithm, however, the induced models have suboptimal results
since the randomization can introduce variability into the models. The small
computational cost and inherent randomization of the Random-Shapelets
algorithm make it a well-suited candidate for incorporation in an ensemble
as a base classifier. This combines the strengths of ensemble learning with
the efficient but non-exact shapelet discovery process of Random-Shapelets
to provide a cost effective alternative to the exact YK-shapelets approach.
Another benefit of choosing Random-Shapelets as the base classifier is that it
requires a single parameter, i.e. the sampling ratio, which allows to reduce
the number of evaluated candidates and directly corresponds to the amount
of computation we are willing to spend for finding the shapelets. Using a

60 Chapter 4 Random Shapelet Ensembles



Algorithm 4.3 Creating Boosted Ensembles
1: M ← ∅

2: w1i ← 1
|D| , ∀xi ∈ D

3: for q ∈ [1 . . Q] do

4: Mq ← train classifier on D with wq

5: calculate weighted error εt

6: if εn ≥ 0.5 then

7: Q← q − 1
8: BREAK

9: else

10: αq ← 1
2 × ln

1−εq
εq

11: wi(q+1) ←
wiq
2εq , ∀ misclassified xi ∈ D

12: wj(q+1) ← wjq, ∀ correctly classified xj ∈ D

13: re-normalize w(q+1)

14: end if

15: M ←M ∪Mq

16: end for

17: return M(x) = ∑Q
t=1 αqMq

small value for the sampling ratio provides speed-up while a higher value
provides results which are more consistent with those of the brute force
YK-shapelets approach.

Our proposed method is referred to as the Random-Shapelets Ensembles
(RSE). The model generation within the ensemble methods use the decision
tree construction from Algorithm 2.2, which in turn uses the randomized
shapelet discovery process detailed in Algorithm 4.1. The simple RSE creates
an ensemble of Random-Shapelets based models using the original training
set and only relies on the diversification provided by the Random-Shapelets
classifier. The RSE-Bagging approach is based on the bootstrap aggrega-
tion algorithm detailed in Algorithm 4.2. RSE-Bagging employs different
boots-traps of the training data to train the models that constitute the en-
semble. This incorporates randomization at two levels in the overall process,

4.2 Randomized Shapelet Ensembles 61



i.e., the shapelet discovery process and the input data for each model. The
bootstrapping process also provides instance duplication, which allows the
shapelet discovery process to quickly identify and separate the duplicated in-
stances that allows to efficiently perform the search for shapelets in the other
instances. The RSE-Boosting approach is based on the boosting approach
detailed in Algorithm 4.3. For RSE-Boosting, the training set instances are
weighted and the weights of the instances are updated after each iteration
so that the subsequent iteration trains a model that is focused on the mis-
classified instances from the previous iterations. This approach calculates
the Information Gain using the instance weights instead of simply the class
counts in the current split.

4.2.3 Algorithmic Optimizations

Algorithm 2.4 provides the details for calculating the distance between a
shapelet candidate and a time series instance. This involves computing the
distance between the shapelet candidate and all possible subsequences of
the time series instance whose length is equal to the shapelet candidate.
Normalizing the subsequences before calculating their distance from the
shapelet candidate improves the similarity search process, however, this
requires the calculation of mean and standard deviation values for each
subsequence prior to the distance calculation. Calculating these properties
for all possible subsequences becomes prohibitively expensive, therefore,
subsequence normalization was not employed by YK-shapelets or Random-
Shapelets. The RSE approach, however, employs an extremely efficient
approach for subsequence normalization. This allows to improve the overall
accuracy without any serious impact on the computational cost of the RSE
approach.

Sakurai, Papadimitriou, and Faloutsos introduced a constant time method
for calculating the mean and standard deviation values of arbitrarily long
subsequences that have been extracted from a time series instance whose
“sufficient statistics” are available [102]. For a time series X of length n, the
sufficient statistics are the cumulative sum of the individual data points Σ X,
and the cumulative sum of the individual data points squared Σ X2. Both
these vectors have the same length as the time series X, and they can be

62 Chapter 4 Random Shapelet Ensembles



efficiently precomputed as part of the time series data loading procedure.
Mathematically, the sufficient statistics for X can be defined as:

Σ X[i] =
i∑

k=1
xk, for i = 1, 2, . . . , n

Σ X2[i] =
i∑

k=1
x2
k, for i = 1, 2, . . . , n

A subsequence Slp that is extracted from X can be z-normalized as follows:

Si = Si − µS
σS

, for i = 1, 2, . . . , l.

where µS and σS are the mean and standard deviation of the subsequence,
respectively, and are calculated as follows:

µS = xp + Σ Xp+l−1 − Σ Xp

l

σS =
√
x2
p + Σ X2

p+l−1 − Σ X2
p

l
− µ2

S

where l is the length of the subsequence while p denotes the starting point
of the subsequence in the original time series instance such that l ≤ n and
1 ≤ p ≤ n − l + 1. The above calculations only require a few lookups for
precomputed values followed by a couple of mathematical operations, which
makes the entire calculation constant time and independent of the length of
the subsequence Slp.

4.3 Empirical Evaluation

An extensive set of experiments have been performed for an empirical evalu-
ation of our proposed approach. Specifically, we want to evaluate whether
the proposed approach provides on par classification accuracy compared
to the other approaches. On the other hand, we also want to determine
the required computational cost compared to the other algorithms, in par-
ticular the YK-shapelets algorithm. The YK-shapelets, Random-Shapelets,

4.3 Empirical Evaluation 63



and the Random-Shapelets Ensembles variants are implemented using a
consistent program structure to avoid any platform or implementation bias.
The source code for our implementation of these algorithms is available
online.1 The Fast-Shapelets implementation was obtained from the UEA
TSML Repository.

The different algorithms were evaluated using the original train and test
splits of the 47 real-world and synthetic time series datasets provided by the
2014 version of the UCR Archive [58]. YK-shapelets is an exact algorithm and
provides the same results given the same input parameters, therefore, the
experiments for YK-shapelets were carried out only once to avoid the high
computational costs for large datasets. For the randomized algorithms, each
dataset was evaluated 100 times with the random number generator seed
set to an integer corresponding to the evaluation number, and the mean and
standard deviation of the classification accuracy and runtime are used for
the comparison. The number of classification models per ensemble was set
to ten for each ensemble variant and majority voting is used for classification.
The ensembles are created using fully grown decision tree models without
pruning, i.e., the decision trees are allowed to grow until the entropy of the
incoming dataset split drops below a very small value or the incoming split
has been reduced to a single time series instance.

The shapelet discovery process evaluates all possible shapelet candidates
in the range lmin and lmax, therefore, setting these values to the extreme
cases, i.e., lmin = 1 and lmax = n, makes the algorithm search over the
entire candidate set, resulting in a huge computational cost. A reasonable
alternative is to specify the range of shapelet candidate lengths, however,
setting these parameters incorrectly can be detrimental to the shapelet dis-
covery process. Setting the parameters to a very small window can cause
the shapelet discovery process to miss important features because they are
not covered by the window size, while setting the window to a very large
size can incur huge computational costs. The best lmin and lmax parameter
values could be determined via a parameter optimization step, however, this
strategy can contribute a significant runtime overhead for the YK-shapelets
algorithm. Therefore, instead of setting the parameter values to the extreme
cases or making any assumptions about the possible shapelet lengths, or

1RSE repository: https://github.com/kramerlab/random-shapelet-ensembles.

64 Chapter 4 Random Shapelet Ensembles

https://github.com/kramerlab/random-shapelet-ensembles


setting the parameter values after a parameter optimization step, we set the
parameters to a constant fraction of the time series length for all datasets
such that lmin = b0.25 × ne and lmax = b0.67 × ne. This allows to cover all
the candidates with lengths ranging from a quarter of the time series all the
way up to two-thirds of the time series length.

One final aspect is that of the sampling ratio for the randomized shapelet
discovery procedure. In this regard, all experiments based on the Random-
Shapelets algorithm and the Random-Shapelets Ensembles and its variants
were performed with a 1% sampling ratio.

4.4 Results

Figures 4.2a and 4.2b show the critical differences diagrams [103] based
on the classification accuracy and runtime performance of the different
algorithms, respectively. The RSE variants gain a clear advantage regarding
classification accuracy by significantly outperforming the other algorithms,
although the individual models in the ensembles were created using only
1% of all the possible shapelet candidates. The average ranks of the RSE
variants also indicate that, compared to each other, the classification accuracy
provided by either ensemble approach does not differ by much. It was
also observed that the classification accuracy improved by as much as 20%
for a number of datasets when using the RSE variants compared to the
classification accuracy obtained using the YK-shapelets algorithm. The YK-
shapelets algorithm achieves the fourth position according to the classification
accuracy-based average ranks, and is significantly different than either the
best and the worst performing groups of algorithms. The Random-Shapelets
algorithm was slightly better than the Fast-Shapelets algorithm, but both
these algorithms were placed together in the group of the worst performing
algorithms regarding classification accuracy.

In terms of the runtime performance, the Fast-Shapelets and Random-
Shapelets algorithms are the fastest with the first and second average ranks,
respectively, while the YK-shapelets algorithm is the slowest coming in at
last place. RSE-Bagging, RSE, and RSE-boosting take the third, fourth, and
fifth places, respectively. In this regard, there is no clear separation between

4.4 Results 65



(a) Average ranks for different algorithms based on classification accuracy.

(b) Average ranks for different algorithms based on runtime performance.

Fig. 4.2. Average ranks for YK-shapelets (YK), Fast-Shapelets (FS), Random-Shapelets (RS),
and variants of the Random-Shapelets Ensembles (Simple Combination: RSE, Bag-
ging: RSE-Bagging, and Boosting: RSE-Boosting). Groups of classifiers not signifi-
cantly different at p = 0.05 are connected. The critical difference is 1.124.

the different algorithms as was seen regarding the classification accuracy
results. RSE-Bagging is the fastest RSE variant due to the duplicated time
series instances in the bootstrap samples of the data that are created for each
individual model in the ensemble. The duplicated instances can be separated
very early because it is much easier for the shapelet discovery process to iden-
tify a shapelet specific to the duplicated instances. RSE-Bagging also manages
to gain further speed-ups as a result of the candidate pruning strategy based
on the optimistic Information Gain, etc. (see Section 2.4.2). Finally, the ex-
clusion of multiple instances very early in the decision tree induction process
also reduces the required computational costs. RSE-Boosting, however, is
surprisingly not significantly faster than the YK-shapelets algorithm, which is
shown by the clique connecting the average ranks of the two algorithms. The

66 Chapter 4 Random Shapelet Ensembles



RSE-Boosting approach performs slower because weighting the individual
instances increases the computation required for performing data splits, and
hence, candidate pruning. Since the candidate pruning strategy creates opti-
mistic splits in each call, this becomes a limiting factor for the RSE-Boosting
approach.

RSE provides almost the same average rank as RSE-Boosting and RSE-
Bagging when comparing the different algorithms in terms of classification
accuracy, while it also provides a balanced performance regarding the run-
time requirements, therefore, the following comparison is based on RSE
against the other algorithms. The aim of the following discussion is to pro-
vide a unified and head-to-head comparison of the classification accuracy
and runtime performance of the different algorithms. Figures 4.3, 4.4, and
4.5 present the comparisons in terms of classification accuracy and runtime
performance of Random-Shapelets Ensembles against YK-shapelets, Fast-
Shapelets, and Random-Shapelets, respectively. Each evaluated dataset is
represented by a marker. The relationship between the runtimes of the com-
pared algorithms is shown using the position of the markers, while the color
and shape of the markers show the relationship between the classification
accuracy results. The x- and y-axes show the runtime required for training
a classification model for RSE and the other algorithm, respectively. Both
axes are based on a log scale to clearly establish the performance gains in
terms of orders of magnitude. The figures also have a boxed background
to emphasize the scale of difference between the runtimes of the compared
algorithms. A dotted line, drawn for y = x, divides the plot area to indicate
which algorithm requires less time for evaluating a specific dataset compared
to the other. A marker on the dotted line indicates that both algorithms have
the same runtime requirements, while a marker which resides off the dotted
line indicates otherwise. Markers above the dotted line show that RSE is
faster, while markers below the dotted line indicate otherwise. Upward facing
green colored markers indicate that RSE provides better accuracy, whereas
downward facing red colored markers indicate otherwise. Marker size corre-
sponds to the absolute difference between the classification accuracy values
of the compared algorithms, i.e., larger markers indicate a greater difference
between the accuracy of the two algorithms. We can see that RSE provides an
improvement of almost an order of magnitude with respect to runtime when
compared against YK-shapelets, while it is almost an order of magnitude

4.4 Results 67



slower than Fast-Shapelets, and Random-Shapelets. Since the randomized
shapelet discovery process evaluated 1% of all the shapelet candidates, while
ten individual models are used for each ensemble, therefore, the overall
performance gains compared to the YK-shapelets algorithm are consistent.
When compared to Random-Shapelets, we see that RSE has to induce ten
models similar to Random-Shapelets, therefore, RSE is an order of magnitude
slower. In terms of classification accuracy, RSE is clearly dominating all the
other algorithms.

4.5 Conclusion

The use of an inexpensive but reasonably accurate base learner for creating
ensembles of shapelet based classifiers proved to be highly effective. The
benefits of the proposed approach include better classification accuracy for
almost all the evaluated datasets and reduced computational costs compared
to the exact YK-shapelets algorithm. The proposed approach can also be used
in a contractual setup where individual models can be added to the ensemble
until the required classification accuracy is not achieved, or we do not run
out of the computational quota.

There are a number of possible variations that can be employed for a Random-
Shapelets based ensembling approach. The sampling ratio for individual
ensemble members can be varied, or the individual models can be trained
using different shapelet candidate lengths. The simplicity and added benefits
of the approach make it very suitable for shapelet discovery and classification.
Using RSE-Bagging can reduce the required computation, however, in some
cases the classification accuracy of the obtained model is slightly worse
than the RSE classifiers trained on the original training dataset, albeit not
significantly. Ensembles of Random-Shapelets classifiers provide higher
accuracy and therefore, can be used as an alternative to the YK-Shapelets
algorithm to improve the overall classification accuracy.

Currently, the Random-Shapelets algorithm can only evaluate candidates with
a sampling ratio set at the start of the process. The possibility of changing
the fraction of evaluated candidates and use the results in an additive fashion
to the already obtained results could prove beneficial. This would require

68 Chapter 4 Random Shapelet Ensembles



Fig. 4.3. Comparing Random-Shapelets Ensembles against YK-shapelets regarding classifi-
cation accuracy and runtime. Each marker represents one dataset. The x- and
y-axis show the runtime requirements (for training) in seconds. Markers above the
dotted line indicate that RSE is faster than the other algorithm. A green marker indi-
cates that RSE provides better classification accuracy while red indicates otherwise.
Marker sizes correspond to the absolute difference between the mean classification
accuracy provided by the competing algorithms for a particular dataset, i.e., larger
markers indicate greater difference in classification accuracy of the two algorithms.
An upward facing triangle indicates that the difference was greater than 2% in favor
of RSE, while a downward facing triangle shows that the difference was greater
than 2% in favor of the other algorithm. Bubbles indicate that the difference in
classification accuracy was only 1%.

4.5 Conclusion 69



Fig. 4.4. Comparing Random-Shapelets Ensembles against Fast-Shapelets regarding classi-
fication accuracy and runtime. Each marker represents one dataset. The x- and
y-axis show the runtime requirements (for training) in seconds. Markers above the
dotted line indicate that RSE is faster than the other algorithm. A green marker indi-
cates that RSE provides better classification accuracy while red indicates otherwise.
Marker sizes correspond to the absolute difference between the mean classification
accuracy provided by the competing algorithms for a particular dataset, i.e., larger
markers indicate greater difference in classification accuracy of the two algorithms.
An upward facing triangle indicates that the difference was greater than 2% in favor
of RSE, while a downward facing triangle shows that the difference was greater
than 2% in favor of the other algorithm. Bubbles indicate that the difference in
classification accuracy was only 1%.

70 Chapter 4 Random Shapelet Ensembles



Fig. 4.5. Comparing Random-Shapelets Ensembles against Random-Shapelets regarding clas-
sification accuracy and runtime. Each marker represents one dataset. The x- and
y-axis show the runtime requirements (for training) in seconds. Markers above the
dotted line indicate that RSE is faster than the other algorithm. A green marker indi-
cates that RSE provides better classification accuracy while red indicates otherwise.
Marker sizes correspond to the absolute difference between the mean classification
accuracy provided by the competing algorithms for a particular dataset, i.e., larger
markers indicate greater difference in classification accuracy of the two algorithms.
An upward facing triangle indicates that the difference was greater than 2% in favor
of RSE, while a downward facing triangle shows that the difference was greater
than 2% in favor of the other algorithm. Bubbles indicate that the difference in
classification accuracy was only 1%.

4.5 Conclusion 71



some book keeping about the already evaluated candidates and the obtained
results, but if the storage requirements can be kept low, this could turn out
to be a refinement step for an approximate solution. Another future research
avenue could be the use of Random-Shapelets based classification models
trained using randomly chosen window length parameters and combining
the models in an ensemble. This should, theoretically, enhance the diversity
of the individual models and also remove the need to perform parameter
tuning before model generation.

The Fast-Shapelets algorithm is also a heuristic method and can be used as a
base learner in the ensemble learning approach, however, the Fast-Shapelets
algorithm does not provide much diversity in the models, which makes its
use in ensembles less effective than the Random-Shapelets algorithm.

72 Chapter 4 Random Shapelet Ensembles



Leveraging String Mining
for Shapelet Discovery
for Randomized
Learning Schemes

5

5.1 Background and Motivation

In order to scale up pattern-based time series classification to massive
amounts of data, the algorithmic complexity has to be reduced to linear
time at most. One way of addressing this issue is by transforming the time
series to symbolic (i.e. string) representations. Although the time series
community has recognized and acknowledged the benefits of transforming
time series data to strings by discretization and quantization for some time
[34–38], the approaches are still suffering from high computational com-
plexity: the complexity of the Fast Shapelets approach is O(Nn2) [34], the
one of BoP (Bag of Patterns) is O(Nn3) [35], the one of SAX-VSM (Symbolic
Aggregate approXimation - Vector Space Model) O(Nn3) [36], the one of
BOSS (Bag of SFA Symbols) O(N2n2) [37], and the complexity of BOSS VS
(Bag of SFA Symbols in Vector Space) is O(Nn 3

2 ) [38]. Overall, it seems that
the opportunities arising from the positive results from the string mining
literature have not yet been fully realized. Notably, string mining was the
first and still remains, the only area of pattern mining, where, in terms
of time complexity, optimal results can be guaranteed. Therefore, modern
string mining algorithms can extract almost arbitrary frequency-related string
patterns in linear time. The first algorithms in this line of research were
proposed by Fischer, Heun, and Kramer in 2005 and 2006 [49, 50]. Further

73



research has optimized the practical running times and theoretical properties
of the aforementioned linear time string mining algorithms [51].

Transforming numeric time series to symbolic sequences can, of course, lead
to a loss of information, and it is evident that using one such transformation
might lead to incorrect or suboptimal results due to badly chosen or just
nearly missed interval boundaries. However, we argue that the advantage
in terms of time complexity (linear vs. higher-order polynomials) enables
exploring the space of transformations much more efficiently and effectively
than with any other more costly transformation: It becomes feasible to
explore a multitude of parameterizations, for instance, multiple alphabet
sizes and discretization schemes, given that the basic underlying algorithm
has linear time complexity. Moreover, since classification is statistical and
not a “precise science” anyway, the imperfection of any well-chosen string
transformation does not harm and may even improve the results in noisy
application domains.

5.2 String Mining – A Primer

String mining is concerned with the discovery of statistically relevant sub-
strings from data sequences, which are characteristic of the given string
database [6]. For a binary class problem, the patterns of interest could be the
ones which are frequent in one class and infrequent in the other, hence the
extracted patterns could help in distinguishing between the two classes, or
they could be patterns which are common in the two classes, in which case
the patterns could identify similarities between the two classes, etc.

Given a pair of symbolic datasets D+ and D−, each representing a positive
and a negative class respectively, extracting patterns which can discriminate
between the two datasets is referred to as the Emerging Substrings Mining
problem. Formally, the problem of emerging substrings mining is to report all
patterns in D+ and D− such that each reported pattern occurs in at least f+

different strings in D+, but does not occur in more than f− different strings
in D−, where f+ and f− are the relative support values of the pattern in the
respective datasets.

74 Chapter 5 Leveraging String Mining for Shapelet Discovery for Ran-
domized Learning Schemes



During the last couple of decades, concerted research efforts in the fields of
bioinformatics and natural language processing have led to the development
of several string mining algorithms for extracting frequent patterns from
symbolic datasets. The first time-optimal algorithms for string mining were
proposed by Fischer, Heun, and Kramer [49, 50] and required O(m) time
and O(m log m) bits of space for extracting frequent patterns from symbolic
datasets, where m = ∑|M|

i=1 |si| is the total length of all strings in the dataset
concatenated and |M| is the number of strings in the database. The authors
showed how suffix arrays and longest common prefix (lcp) tables could be
used to efficiently solve string mining problems under frequency constraints.
Later, an improved version of the algorithm was proposed by Dhaliwal,
Puglisi, and Turpin, which constructs the internal data structures in fixed size
blocks instead of constructing them all at once, which allows to reuse memory
and reduce the overall space requirements to only O(m log α) bits, while
increasing the worst case computational complexity to only O(m log2 m),
where α is the size of the alphabet used [51].

Let x = aaba#1
1abaaab#1

|D+|bbabb#2
1abba#2

|D−| be a string of length q made
up of all the strings in D+ = {aaba, abaaab} and D− = {bbabb, abba} con-
catenated. The #r

s symbols mark the end of individual strings and have
the lexicographic property that #1

1 < . . . < #1
|D+| < #2

1 < . . . < #2
|D−|.

A substring of x is denoted by x[i, j], where i and j represent the start-
ing and ending positions of the substring. A suffix array (SA) is an array
of integers which is used to describe the lexicographic order of all suf-
fixes of x, such that x[SA[k], q] < x[SA[k + 1], q] for all 1 ≤ k < q. The
lcp array (LCP ) contains the lengths of the longest common prefixes of
x’s suffixes that are consecutive in lexicographic order, and is defined as
LCP [i] = lcp(x[SA[i], q], x[SA[i − 1], q]) for all 1 < i ≤ q, and LCP [1] = 0.
The algorithm starts with the construction of the suffix array and the lcp array.
Both of these data structures can be constructed in time linear in the length
of x. Once the suffix array and the lcp array have been created, the string
mining algorithm processes the lcp array to answer any “range minimum
queries” (RMQs) in constant time. Formally, for any two indices i and j,
the query RMQLCP (i, j) asks for the position of the minimum element in
LCP [i, j], i.e., RMQLCP (i, j) := argmink∈{i,...,j}{LCP [k]}. If the minimum
value is not unique, then the smallest index is returned. Finally, the algo-
rithm calculates correction terms for establishing the occurrence frequency

5.2 String Mining – A Primer 75



of the different substrings based on the lcp array values. Table 5.1 shows the
suffix array and the lcp array for the string x being used as in our example.
For further details of the algorithm, we refer the interested reader to the
respective papers [49–51].

5.3 Design

Mining Strings for Time Series Classification (MiSTiCl) is a subsequences
based time series classification algorithm which employs string mining for effi-
cient extraction of discriminative subsequences from the time series data. The
subsequences are used as features to create a transformed dataset similar to
the shapelet transform approach. The main steps involved are: (i) time series
discretization, (ii) frequent pattern extraction, (iii) determining indepen-
dent and highly discriminative frequent patterns, (iv) creating a transformed
dataset using the best K frequent patterns, and finally (v) model induction.
Looking at steps (ii) and (iii) in a bit more detail, we aim for patterns that
are frequent enough in the positive class and not too frequent in the negative
class. From the patterns that pass this filter, we choose the most discrimina-
tive ones, and from those with the same discriminative power, we choose
the most general ones. Step (ii) makes sure that the patterns are statistically
meaningful in the first place. Step (iii) picks from the remaining those that
are predictive individually. To reduce their number, the most general ones are
actually used in case of equal discriminative power, to obtain high coverage
on unseen cases.

Algorithms based on discretized time series data are faced with a significant
challenge regarding the information and feature loss due to discretization,
therefore, we would like to address a crucial design aspect before going into
the details of our proposed algorithm. Although SAX can preserve the overall
shape of the time series instances, using a predefined window size to reduce
the dimensionality of data can still lead to undesired feature loss due to
inadvertent splitting of important features. A possible approach to counter
this problem is to use those values of the parameters α and ω which result in
minimum information loss. Usually, a brute force parameter tuning approach

76 Chapter 5 Leveraging String Mining for Shapelet Discovery for Ran-
domized Learning Schemes



Ta
b.

5.
1.

T
he

su
ffi

x
ar

ra
y

fo
r
x

an
d

it
s

lc
p

ta
bl

e.
Fo

r
ea

ch
in

de
x

po
si

ti
on

i,
th

e
st

ri
ng

x
[S
A

[i]
,q

]i
s

sh
ow

n
un

ti
lr

ea
ch

in
g

th
e

fir
st

en
d-

of
-s

tr
in

g
m

ar
ke

r.
Th

e
ex

am
pl

e
ha

s
be

en
ta

ke
n

fr
om

a
pr

ev
io

us
pu

bl
ic

at
io

n
[5

0,
p.

6]
.

In
de

x
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

x
a

a
b

a
#

1 1
a

b
a

a
a

b
#

1 2
b

b
a

b
b

#
2 1

a
b

b
a

#
2 2

S
A

5
12

18
23

4
22

8
9

1
10

2
6

15
19

11
17

3
21

7
14

16
20

13
L
C
P

0
0

0
0

0
1

1
2

3
1

2
3

2
3

0
1

1
2

2
2

1
2

3
#

1 1
#

1 2
#

2 1
#

2 2
a

a
a

a
a

a
a

a
a

a
b

b
b

b
b

b
b

b
b

#
1 1

#
2 2

a
a

a
b

b
b

b
b

#
1 2

#
2 1

a
a

a
a

b
b

b
a

b
b

#
1 2

a
a

b
b

#
1 1

#
2 2

a
b

#
2 1

a
a

b
#

1 2
a

#
1 1

a
#

2 1
a

a
b

#
2 2

b
#

1 2
#

1 1
a

#
2 2

b
#

2 1
b

b
#

2 1
#

1 2

#
1 2

5.3 Design 77



is used to come up with such parameters. This can incur a significant up-
front computational cost depending on the number of evaluated parameter
combinations and the size of the dataset split used to perform the search,
still, the research community has generally opted for this approach. There is,
however, another approach, which can be beneficial in two ways, specifically
(i) improved model accuracy, and (ii) reduced wasted computation. Instead
of using a single discretized version of the data created with optimized pa-
rameters, creating multiple discretized versions of the data using a number
of arbitrary α and ω parameters allows to extract discriminative patterns
from a multi-resolution perspective and helps to capture different features at
each resolution. Using this approach, a feature-based dataset can be created
with multi-cardinality and multi-dimensionality properties, which allows to
incorporate a diverse set of features in a single feature set that can be ex-
ploited by complex classification algorithms to provide better generalization
and improved classification accuracy. Moreover, using a linear time string
mining algorithm for feature extraction from multiple discretized versions of
the data only increases the computational complexity by a constant factor.
Therefore, we have opted for the latter approach to tackle the challenge
mentioned at the beginning of this paragraph.

5.3.1 Overview

MiSTiCl is a powerful and extremely efficient time series classification al-
gorithm which brings together highly effective approaches from the string
mining and time series mining domains. This subsection provides a general
overview of the algorithm, while the following subsections provide details of
the individual steps. Algorithm 5.1 lists the steps involved in the creation of
feature based dataset splits using MiSTiCl. The input parameters include the
real-valued training and testing splits (Dtrain and Dtest), a set of alphabet and
window sizes (A and Ω), the minimum positive and maximum negative fre-
quency for the extracted frequent patterns (f+ and f−), and a parameter K
to limit the number of features used per class. The procedure starts with the
initialization of associative arrays for the standalone feature sets which will
be merged later to form the multi-resolution feature sets (Line 5.1-1). Next,
the class labels are enumerated from the training split (Line 5.1-2). Next,

78 Chapter 5 Leveraging String Mining for Shapelet Discovery for Ran-
domized Learning Schemes



Algorithm 5.1 MiSTiCl (Dtrain, Dtest, A, Ω, f+, f−, K)

1: FStrain ← {},
FStest ← {}

. Init. map objects for single-resolution feature sets

2: C ←EXTRACTCLASSLABELS(Dtrain)

3: for all (α, ω) ∈ A× Ω do

4: D̂train, D̂test ←DISCRETIZE(Dtrain, Dtest, α, ω)

5: FP ←GETDISCRIMINATIVEFREQUENTPATTERNS(D̂train, f+, f−, C)

6: FSα,ωtrain, FS
α,ω
test ←CREATEFEATURESETS(Dtrain, Dtest, D̂train, FP , K)

7: end for

8: ParamCombo← FINDBESTPARAMCOMBO(FStrain, FStest, A, Ω, |Dtrain|)

9: MultiResFStrain ← φ,
MultiResFStest ← φ

. Initialize multi-resolution feature sets

10: for all (α, ω) ∈ ParamCombo do

11: MultiResFStrain ←MultiResFStrain || FSα,ωtrain

12: MultiResFStest ←MultiResFStest || FSα,ωtest

13: end for

14: return MultiResFStrain,MultiResFStest

feature sets corresponding to each (α, ω) ∈ A × Ω parameter combination
are created (Lines 5.1-3 to 5.1-7). The real-valued training and testing splits
are discretized corresponding to the current α and ω parameters (Line 5.1-4).
Next, frequent patterns are extracted from the discretized training split (Line
5.1-5). Now, training and testing feature sets are created using the top K

frequent patterns for the current α and ω parameters (Line 5.1-6). Once the
individual feature sets have been created for all (α, ω) ∈ A×Ω, the procedure
to determine the best parameter combination is called, which returns a list of
(α, ω) parameters (Line 5.1-8). Finally, the training and testing feature sets
corresponding to the (α, ω) pairs in the list of best parameter combination
are concatenated horizontally to create multi-resolution training and testing
feature sets, respectively (Lines 5.1-10 to 5.1-13). The multi-resolution fea-
ture sets transform the time series classification problem into a feature-based
classification problem, which allows to employ any off-the-shelf classification
algorithm for model induction.

5.3 Design 79



Fig. 5.1. PAA version of time series instances superimposed on their real-valued counterparts.
The original time series (shown in light grey) are 286 time points long and have
been reduced to 40 time points based on a dimensionality reduction factor ω = 7.
The PAA versions have been stretched (along the x-axis) to emphasize the retention
of the overall shape of time series instances.

5.3.2 Time Series Discretization

Symbolic aggregate approximation (SAX) is a widely used time series dis-
cretization algorithm [9, 10]. It combines multiple time series observations
into single averaged values to reduce the dimensionality and then maps
these averaged values to characters from an alphabet to reduce the cardi-
nality. A time series T of length n can be converted to a symbolic string
T̂ =

(
t̂1, t̂2, . . . , t̂p

)
of length p =

⌊
n
ω

⌉
such that p � n, where ω ∈ Z≥1 rep-

resents the dimensionality reduction factor (or the averaging window size).
The presented mathematical notation is for the simple case of integer values
of ω, later SAX refinements can use non-integer window sizes as well. First,
T is converted to a reduced dimensionality version T̄ =

(
t̄1, t̄2, . . . , t̄p

)
of

length p such that each non overlapping sequence of ω observations of T is
averaged to provide one observation. T̄ is also referred to as a Piecewise
Aggregate Approximation (PAA). Mathematically, we can get each t̄i using
the equation:

t̄i = ω

n

n
ω
i∑

j=n
ω

(i−1)+1
tj

Figure 5.1 shows the reduced dimensionality version of time series instances
superimposed on their real-valued counterparts.

80 Chapter 5 Leveraging String Mining for Shapelet Discovery for Ran-
domized Learning Schemes



For cardinality reduction, each observation t̄i ∈ T̄ is mapped to a character
from an alphabet of size α ∈ Z≥2. A small value of α leads to large quanti-
zation blocks and vice versa. The quantization blocks for each character in
the alphabet are chosen based on breakpoints B = (β0, β1, . . . , βα), where
β0 and βα are defined as −∞ and ∞, respectively, while the other break-
points are chosen such that area under the N(µ = 0, σ2 = 1) curve from βi

to βi+1 equals 1
α

ensuring an equiprobable selection of every character in
the alphabet. Table 5.2 shows the breakpoints for different values of α. A
Gaussian curve with µ = 0 and σ2 = 1 is used because z-normalized time
series instances have the same mean and standard deviation [10, p. 8]. For
the minority of datasets which are not Normally distributed, selecting the
breakpoints using the Gaussian curve can deteriorate the efficiency of SAX,
however, the “correctness of the algorithm is unaffected” [10]. All observa-
tions t̄i ∈ T̄ , which have their values in the range [β0, β1), are mapped to the
first character in the alphabet. Similarly, all observations t̄i ∈ T̄ with values
in the range [β1, β2) are mapped to the second character in the alphabet, and
so on. Mathematically, we get each t̂i as follows:

t̂i = alphaj, iff βj−1 ≤ t̄i < βj

Continuing with the example time series instances shown in Figure 5.1 for
illustrating the real-valued time series and their PAA version, Table 5.3 shows
the symbolic representations obtained by mapping the PAA versions to the
corresponding characters in the alphabet based on a cardinality reduction
factor α = 6. For a detailed analysis of the SAX algorithm and a review of its
diverse applications, we refer the reader to the corresponding article [10].

5.3.3 Frequent Patterns Extraction

The next step in the MiSTiCl algorithm is to extract the frequent patterns
from the discretized training split as detailed in Algorithm 5.2. The input
parameters of the procedure include the discretized training split (D̂), the
minimum positive and maximum negative frequency for accepting candidate
frequent patterns (f+ and f−), and the set of class labels in the training
dataset split (C). The procedure returns an associative array (FP ) indexed
with the class labels and containing the most discriminative frequent patterns

5.3 Design 81



Tab. 5.2. Breakpoints look-up table for dividing the N(µ = 0, σ2 = 1) Gaussian curve into
equiprobable regions for α = 2 to 6.

Cardinality level, α
2 3 4 5 6

β0 −∞ −∞ −∞ −∞ −∞
β1 0.00 −0.43 −0.67 −0.84 −0.97
β2 ∞ 0.43 0.00 −0.25 −0.43
β3 ∞ 0.67 0.25 0.00
β4 ∞ 0.84 0.43
β5 ∞ 0.97
β6 ∞

Tab. 5.3. Symbolic representation of time series instances (shown in Figure 5.1) obtained
using a dimensionality reduction factor ω = 7 and a cardinality reduction factor
α = 6.

b b a a a b b c e e e e e e d d e e d d e f e e c c c e f f f f f c a a a a a a
b b b a a b b c d e e e e e d d e e d d e f e e c c c e f f f f f c a a a a a a

· · ·
b b a a a b b c e e e e e e d e e e d d e e e d c c c e f f f f f c a a a a a a
b a a a a b b c e e e e e e d d e e d d e e e d c c c e f f f f f c a a a a a a

· · ·

per class. The string mining algorithm extracts frequent patterns from binary
class datasets, therefore, multi-class problems are transformed into multiple
binary problems using a one-vs-all approach. The procedure initializes an
empty associative array for the frequent patterns extracted per class (Line
5.2-1). For each class c ∈ C, a pair of datasets is created such that all
instances with class label c are assigned to the positive class dataset P̂ , while
all remaining instances are assigned to the negative class dataset N̂ (Lines
5.2-3 and 5.2-4). The string mining algorithm extracts all those patterns from
P̂ and N̂ which satisfy the f+ and f− frequency constraints, and provides
a list of frequent patterns along with actual occurrence frequencies of each
pattern in the P̂ and N̂ splits (Line 5.2-5). Next, the discriminative power of
the frequent patterns for the current class c is determined, and the frequent
patterns are placed on the map FP along with their discriminative power
(Line 5.2-6). Once all the one-vs-all data splits have been processed, the map
containing the discriminative frequent patterns is returned.

82 Chapter 5 Leveraging String Mining for Shapelet Discovery for Ran-
domized Learning Schemes



Algorithm 5.2 GetDiscriminativeFrequentPatterns (D̂, f+, f−, C)

1: FP ← {}

2: for all c ∈ C do

3: P̂ ← {T̂ | ∀ T̂ ∈ D̂, T̂ .y = c}

4: N̂ ← {T̂ | ∀ T̂ ∈ D̂, T̂ .y 6= c}

5: Z ←EXTRACTALLFREQUENTPATTERNS(P̂ , N̂ , f+, f−)

6: FP [c]← SELECTDISCRIMINATIVEPATTERNS(Z, |P̂ |, |N̂ |)

7: end for

8: return FP

5.3.4 Selecting Discriminative Patterns

The discriminative power of a given pattern regarding correctly identifying
a specific class of instances can be assessed using the χ2 independence test,
or Information Gain among other methods. The occurrence frequency of
a pattern in the positive and negative class datasets can be used to create
a confusion matrix for calculating either the χ2 independence test or the
Information Gain value. The χ2 test assesses whether the observations,
expressed as a contingency table, are statistically independent of each other.
A higher value of the test statistic indicates a greater level of independence
and vice versa. Information Gain measures the difference between two
probability distributions and can be used to assess the association between
features. For a binary problem, the Information Gain value of one indicates
perfect class purity, while a value of zero indicates the opposite.

Setting the frequency constraints such that 0 / f− < f+ ≤ 1 allows to
extract frequent patterns which are maximally representative of the positive
class. The strictness of frequency constraints directly affects the number of
frequent patterns extracted by the string mining algorithm. A very small
value for the f+ constraint can result in the extraction of a huge number of
frequent patterns, whereas a large value can result in no frequent patterns
being extracted at all. The huge number of frequent patterns extracted with
a lower f+ constraint is attributed to the presence of various prefix and/or
suffix based variants of base patterns (see Table 5.4 for examples). The
occurrence frequency of a base pattern is always greater than or equal to the

5.3 Design 83



Tab. 5.4. Examples of base and variant patterns.

Base Variants

dccb dccbb
adccb

bdcd abdcdcc
abdcdbd

occurrence frequency of its variants. In case a variant pattern has the same
occurrence frequency as its base pattern, the independence tests rank the
two patterns equally, however, duplicate detection can be used to discard
the variant pattern. Hence, using reasonably lenient frequency constraints
and ranking the extracted patterns using an independence test followed
by filtering for duplicates can provide independent, highly discriminative,
and diverse frequent patterns.12 Algorithm 5.3 lists the pseudocode for
selecting such frequent patterns. The procedure receives a list containing all
the extracted frequent patterns along with their corresponding occurrence
frequencies (Z), and the instance counts for the positive and negative dataset
splits (NP̂ and NN̂). The output of the procedure is an ordered associative
array of lists containing the filtered frequent patterns. The associative array
is ordered in decreasing order of the independence test statistic, where each
slot in the associative array contains a list of all the frequent patterns which
have the same value of the test statistic. After initializing the array, the
procedure iterates over all the patterns provided as input (Lines 5.3-2 to
5.3-8). An independence test is used to obtain a value for the test statistic
for the current pattern (Line 5.3-3).3 Next, the list of patterns corresponding
to the current test statistic is retrieved from the array OL, and if no such
list exists, one is initialized and placed in the location pointed to by the test
statistic (Line 5.3-5). Next, the current pattern f is compared against all the
patterns in listOfFPs to see whether the list already contains its base pattern

1This criterion and procedure is not to be confused with closed or open/free patterns [104].
2Note that there can be two patterns p and q, with one pattern p being more general than

the other, p ≺ q, both having the same value of χ2 (χ2(p) = χ2(q)), but yet occurring in
different sets of positive and negative examples. However, this should be expected to be
a rather infrequent case. The overall filtering procedure of patterns just makes sure that
the patterns are frequent enough in the positives, infrequent enough in the negatives,
highly discriminative and, given the same discriminative power, as general as possible.

3A discussion about calculation of the χ2 test statistic and the Information Gain is provided
in Appendix A.

84 Chapter 5 Leveraging String Mining for Shapelet Discovery for Ran-
domized Learning Schemes



Algorithm 5.3 SelectDiscriminativePatterns (Z, NP̂ , NN̂)

1: Initialize OL← {} . Initialize an ordered associative array

2: for all z ∈ Z do

3: indV al←GETINDEPENDENCEVALUE(z, NP̂ , NN̂)

4: f ← z.pattern . z contains the frequent pattern z.pattern, and its

. occurrence frequencies z.fP̂ and z.fN̂ in P̂ and N̂ .

5: Retrieve listOfFPs corresponding to indV al,
if none exists, add a new list to OL at location indV al

6: for all p in listOfFPs,
if p is a substring of f continue outer loop

7: add f to listOfFPs . Since f has been determined to be unique

8: end for

9: return OL

(Line 5.3-6). If a base pattern is found, f is discarded, otherwise it is inserted
in the list (Line 5.3-7). Once all the patterns have been evaluated, the
ordered array of lists containing the filtered frequent patterns is returned.

5.3.5 Creating Feature Sets

Once the discriminative frequent patterns have been identified, the next step
is the creation of feature-based datasets. One approach is to create real-
valued datasets, such that real-valued subsequences corresponding to the
symbolic frequent patterns are used as features in the transformed datasets,
while the distance values between the said subsequences and the real-valued
time series instances are used as feature values. Alternatively, binary-valued
datasets can be created using the extracted frequent patterns as features
and zeros/ones as feature values representing the absence/presence of a
feature in the discretized instances. The latter approach is straightforward
and highly efficient because the discretized time series data is already at
hand and searching for the presence of frequent patterns in discretized
time series instances also requires very little overhead. On the downside,
preliminary experiments showed that classification models based on the

5.3 Design 85



binary-valued transformation almost always performed inferior to their real-
valued counterparts. Algorithm 5.4 lists the pseudocode for creating real-
valued feature sets. The input parameters include the real-valued training
and testing splits Dtrain and Dtest, the discretized training split D̂train, the
set of class labels C, the parameter K for maximum number of patterns to
use per class, and the associative array FP containing the discriminative
frequent patterns filtered for duplicates and sorted in descending order of
discriminative power. The procedure starts with initializing the training and
testing feature based splits (Line 5.4-1). Next, the procedure iterates over
all class labels c ∈ C to add the top K features for each class (Lines 5.4-2
to 5.4-12). The loops in Lines 5.4-4 and 5.4-5 iterate over the frequent
patterns for the current class c (in order of their independence test ranks).
For each frequent pattern f , a reverse lookup is performed to extract the
best corresponding subsequence from the real-valued training split (Line
5.4-6). Next, the procedure iterates over all instances of the training and
testing splits to populate the respective feature set columns. Once the top K
features have been added for the current class, the procedure breaks out of
the feature adding loop and the process repeats itself for the next class.

5.3.6 Merging Feature Sets

MiSTiCl aims to mitigate the problem of feature loss by combining multiple
single-resolution feature sets, each created with its own α and ω parameter,
thus creating a multi-resolution feature set. A multi-resolution feature set is
simply a horizontal concatenation of multiple single-resolution feature sets
and requires zero computational overhead. Finding the best multi-resolution
feature set, however, involves (i) creating all possible multi-resolution feature
sets, (ii) model induction, and finally (iii) performance testing for each
candidate feature set, all of which can incur a significant computational cost.
A naïve approach would be to combine all available single-resolution feature
sets, however, this could potentially introduce redundant features in the
multi-resolution feature set. This presents an optimization problem where
a minimum number of single-resolution feature sets should be combined to
form the multi-resolution feature set which provides maximum classification
accuracy. For a cardinality reduction factor set A and a dimensionality

86 Chapter 5 Leveraging String Mining for Shapelet Discovery for Ran-
domized Learning Schemes



Algorithm 5.4 CreateFeatureSets (Dtrain, Dtest, D̂train, FP , C, K)

1: FStrain ← TABLE (|Dtrain|, K × |C|),
FStest ← TABLE (|Dtest|, K × |C|)

2: for all c ∈ C do

3: k ← 0
4: for all listOfFPs ∈ FPc do . Outer loop

5: for all f ∈ listOfFPs do . Inner loop

6: s←PERFORMREVERSELOOKUP(Dtrain, D̂train, f)

7: For each T ∈ Dtrain

populate the respective row and column of FStrain
with the distance value between T and s

8: For each T ∈ Dtest

populate the respective row and column of FStest
with the distance value between T and s

9: Increment k and if k equals K break Outer loop

10: end for

11: end for

12: end for

13: return FStrain, FStest

reduction factor set Ω, the total number of single-resolution feature sets
created by MiSTiCl equals |A| × |Ω|. Using the brute force approach to find
the best multi-resolution feature set is the most computation intensive option
because it would require creating and evaluating a staggering

(
2|A|×|Ω|

)
− 1

candidate multi-resolution feature sets. We can think of our optimization
problem as a set cover problem since we want to cover all training set
instances (the universe, U) with the minimum number of single-resolution
feature sets (subset of a collection, S), where each single-resolution feature
set covers some arbitrary training set instances. Formally, the set cover
problem aims to identify the smallest subset of a collection S whose union
equals the universe U . It is a classical question in combinatorics, however, it
is an NP-complete problem, which implies that we need a heuristic approach.
The steps involved in finding the best combination of feature sets to combine
are listed in Algorithm 5.5. First, the procedure creates a set of integers
{1, 2, . . . , N}, where each element of the set corresponds to the indices of the

5.3 Design 87



instances in the actual training set split. This set of indices is split into two
disjoint sets (Trn and V al), which will be used as the training and validation
sets during the parameter optimization process (Line 1). Next, the procedure
initializes a list ParamsList, and a multimap (dual-key associative array) S.
The ParamsList is used to keep track of the number of instances correctly
classified by a feature set along with the α and ω parameters while the
multimap S is used to keep track of the specific instances correctly classified
by a feature set based on the α and ω parameters. The procedure iterates
over all the (α, ω) ∈ A×Ω parameter combinations (Lines 5.5-3 to 5.5-8) and
performs the following steps for each single-resolution feature set FSα,ωtrain.

• Train a classification model M using those instances from FSα,ωtrain whose
indices occur in the Trn set.

• Test the classification model M using those instances of FSα,ωtrain whose
indices occur in the V al set.

• Save the indices of all correctly classified instances in the V al set into
the multimap S using α and ω.

• Add the number of correctly classified V al instances and the current α
and ω parameters to the ParamsList.

Next, an empty set is initialized for the best found parameters BestParams.
The procedure iterates over the associative array containing the ParamsList
(Lines 5.5-11 to 5.5-19). If the difference between the Cal set and the set
Sα,ω (correctly classified V al instances by the FSα,ωtrain) is not empty, then (i)
the current (α, ω) pair is added to the set of best parameters, and (ii) the
V al set is updated with the still uncovered indices. When the V al set gets
empty, i.e., all validation instances have been covered, or the number of
parameter pairs in the BestParams set is equal to some preset limit, the
loop is terminated. Finally, the BestParams set is returned.

5.3.7 Complexity Analysis

The asymptotic time complexity of MiSTiCl can be calculated by aggregating
the time complexities of the individual steps. MiSTiCl creates multiple single-
resolution feature sets and the creation of each feature set contributes equally

88 Chapter 5 Leveraging String Mining for Shapelet Discovery for Ran-
domized Learning Schemes



Algorithm 5.5 FindBestParamCombo (FStrain, FStest, A, Ω, N)

1: Trn, V al ←RANDOMSPLIT({1, 2, . . . , N})
2: ParamsList← [ ],
S ← TABLE (|A|, |Ω|)

3: for all (α, ω) ∈ A× Ω do

4: Train M using {inj|j ∈ Trn ∧ inj ∈ FSα,ωtrain}

5: Test M using {ink|k ∈ V al ∧ ink ∈ FSα,ωtrain}

6: Save indices of correctly classified validation instances in Sα,ω

7: Add (|Sα,ω|, (α, ω)) to ParamsList

8: end for

9: Sort ParamsList in descending order

10: BestParams← {}

11: for all (|Sα,ω|, (α, ω)) ∈ ParamsList do

12: if V al \ Sα,ω 6= ∅ then

13: BestParams← BestParams ∪ {(α, ω)}
14: V al← V al \ Sα,ω

15: if V al = ∅ or |BestParams| ≥ |A|×|Ω|
3 then

16: break

17: end if

18: end if

19: end for

20: return BestParams

towards the overall complexity, therefore, we shall first consider a single
iteration for an arbitrary combination of α and ω. The time taken by SAX
to discretize a dataset is on the order of O(Nn). The time taken by the
string mining algorithm for frequent pattern extraction is on the order of
O(m). Rewriting m in terms of N and n gives m = N n

ω
, therefore, the

time complexity of string mining is on the order of O(N n
ω

). To calculate
the time complexity of filtering the frequent patterns for obtaining highly
independent patterns, we first need to approximate the number of extracted
frequent patterns. For a given α and ω, the number of all possible frequent
patterns of all lengths is approximately equal to α2 + α3 + · · · + αp, which

5.3 Design 89



can be simplified using a geometric progression as 1−α(p+1)

1−α , where p =
⌊
n
ω

⌉
.

Since all the terms in this expression are constant, we can approximate the
time complexity of filtering the frequent patterns to be constant. Creating
a feature set requires adding K features for each class c ∈ C. For each
feature, N feature values have to be calculated, where each feature value
calculation takes O(ns), where s is the length of a subsequence and s� n.
Since K and |C| are constant and much smaller than N and n, the time
required for creating a feature set is on the order of O(Nns). Aggregating
the time complexity of the individual steps, the overall time complexity of
creating a feature set for a given α and ω parameter combination is on the
order of O(Nn) + O(N n

ω
) + O(1) + O(Nns) ≈ O(Nns). Creating |A| × |Ω|

many feature sets multiplies the complexity by a factor of |A| × |Ω|, therefore,
the asymptotic time complexity of the MiSTiCl algorithm is on the order of
O(Nns). Comparing the time complexity of MiSTiCl with the time complexity
of some other state-of-the-art symbolic time series algorithms indicates that
MiSTiCl is the fastest symbolic representation based time series classification
algorithm. The reported time complexity for the BoP, SAX-VSM, BOSS and
BOSS VS algorithms is on the order of O(Nn3), O(Nn3), O(N2n2), and
O(Nn 3

2 ), respectively [38].

5.4 Empirical Evaluation

An extensive set of experiments was carried out to compare different symbolic
representation-based time series classification algorithms, namely, BoP, BOSS,
SAX-VSM, and MiSTiCl. The main goal of our experimental evaluation is
twofold. First, we want to ascertain whether the classification accuracy of
MiSTiCl is on par with that of state-of-the-art symbolic representation-based
approaches for time series classification, and second, whether the theoretical
computational gains can be achieved in practice as well.

The UEA TSML Repository provides a Weka based framework for the develop-
ment of time series data mining algorithms, as well as providing implementa-
tions of a number of time series mining algorithms including BoP, BOSS, and
SAX-VSM. MiSTiCl has been implemented using the same framework so that
any platform or implementation bias can be minimized. The complete source

90 Chapter 5 Leveraging String Mining for Shapelet Discovery for Ran-
domized Learning Schemes



code is available online.4 The different algorithms were evaluated using 85
real-world and synthetic time series datasets provided by the 2015 expansion
of the UCR Archive [56]. For each dataset, 100 random shuffles were created
such that the class distribution and the total number of instances in the train-
ing/testing splits of each shuffle were kept the same as in the original splits.
The random number seeds used to create the different shuffles were kept the
same when creating the shuffles for different algorithms. Each classification
algorithm was then used to evaluate all 100 shuffles of each dataset to obtain
a comprehensive set of measurements regarding classification accuracy and
runtime requirements.

Parameter settings play a critical role in getting optimal results for almost all
machine learning algorithms. Therefore, each algorithm was provided a pre-
defined set of starting parameters, while the algorithms performed parameter
optimization to choose the best parameters for each run, i.e., each shuffle of
each dataset was evaluated with optimized parameters. This also allows to
account for the time required for parameter optimization. We have also taken
great care towards using a consistent set of parameters, wherever possible. In
this regard, the SAX based MiSTiCl, BoP, and SAX-VSM algorithms were pro-
vided default cardinality levels of {2, 3, . . . , 8} and dimensionality reduction
levels of {2, 3, . . . , 6}. MiSTiCl also requires minimum positive and maximum
negative frequency values (f+ and f−), and a parameter K for limiting the
per-class frequent pattern count. In all the MiSTiCl experiments, both f+ and
f− were kept fixed at 0.2 and 0.1, respectively, while the parameter K was
set using optimization from {1, 2, 4}. The BoP and SAX-VSM implementations
provided by the UEA Repository require an interval count per window in
addition to the cardinality and dimensionality level parameters, which is also
determined during parameter optimization. The BOSS algorithm is based
on the Symbolic Fourier Approximation (SFA) [11]. We used the parameters
already specified in the UEA implementation assuming the best set of possible
parameters is provided. The alphabet size (or cardinality level) is fixed at
four characters, while the word lengths are selected using parameter opti-
mization from the possible values of {8, 10, 12, 14, 16}. Compared to the 35
parameter combinations evaluated for BoP, SAX-VSM, and MiSTiCl, the BOSS
algorithm is only evaluated using five combinations, therefore it already has
an advantage in terms of the required runtime.

4MiSTiCl repository: https://github.com/kramerlab/MiSTiCl.

5.4 Empirical Evaluation 91

https://github.com/kramerlab/MiSTiCl


MiSTiCl transforms a time series classification problem into a feature-based
classification problem incorporating a number of diverse time series features,
therefore, any off-the-shelf classification algorithm can be used for model
induction. Ensemble techniques can be extremely effective for creating accu-
rate classification models given numerous diverse features, so we employed
Random Forests (RF) [105], Extremely Randomized Trees (ET) [106], and
AdaBoost.M1 (AB) [101] for creating classification models using a maximum
of 1000 trees per ensemble, while keeping all other parameters unchanged.

5.5 Results

This section provides an empirical analysis of the classification accuracy
and runtime performance of MiSTiCl, BoP, BOSS, and SAX-VSM based on
averaged values of the statistics collected for each dataset. We have also
included the classification accuracy results for the Shapelet Transform (ST)
algorithm [33, 107] to establish a baseline comparison with a real-valued
shapelet based classification algorithm.5 For statistical comparison of differ-
ent algorithms, we employ the Friedman test followed by Nemenyi post-hoc
test based on the average ranks attained by the different algorithms and
show the comparisons as critical difference (CD) diagrams [103].

MiSTiCl can employ either the χ2 independence test or the Information Gain
for selecting independent and discriminative frequent patterns, therefore,
we carried out all the MiSTiCl experiments using both these methods. In
addition, we used Random Forests (RF), Extremely Randomized Trees (ET),
and AdaBoost.M1 (AB) for model induction. Figures 5.2a and 5.2b show the
critical difference diagrams for different MiSTiCl variants based on classifica-
tion accuracy and total runtime, respectively. MiSTiCl variants using the χ2

independence test yield better overall results both in terms of classification
accuracy and runtime, therefore, the following analysis will be based on the
results obtained using the χ2 independence test.

Figures 5.3a and 5.3b show the average ranks of the different algorithms
based on classification accuracy and runtime, respectively. Regarding the

5The results for ST have been taken from the UEA TSML Repository (https://www.
timeseriesclassification.com/results.php).

92 Chapter 5 Leveraging String Mining for Shapelet Discovery for Ran-
domized Learning Schemes

https://www.timeseriesclassification.com/results.php
https://www.timeseriesclassification.com/results.php


(a) Average ranks for different MiSTiCl variants based on classification accuracy.

(b) Average ranks for different MiSTiCl variants based on total runtime.

Fig. 5.2. Average ranks for different MiSTiCl variants based on (a) classification accuracy,
and (b) runtime. CS and IG represent χ2 independence test and Information Gain
based pattern selection, respectively. ET, AB, and RF represent the three ensemble
classifiers. MiSTiCl variants which are not significantly different at p = 0.05 are
connected. The critical difference (CD) for significantly different algorithms is 0.81.

classification accuracy, MiSTiCl is placed on par with ST and BOSS with
average ranks of 2.92, 3.25, and 3.68 for the ET, AB and RF based variants,
respectively, while SAX-VSM and BoP are significantly different compared
to the other algorithms. Regarding the runtime, the MiSTiCl variants easily
achieve the top three spots with average ranks of 1.33, 2.13 and 3.09 for
ET, RF, and AB, respectively, making it significantly faster than any of its
competitors.

Figures 5.4, 5.5, and 5.6 present the comparisons in terms of classification ac-
curacy and runtime performance of MiSTiCl against BoP, BOSS, and SAX-VSM,
respectively. Each dataset is represented by a marker. The marker positions
show the relationship between the runtimes of the compared algorithms,

5.5 Results 93



(a) Average ranks of the different algorithms based on classification accuracy. The critical
difference (CD) for significantly different algorithms is 0.97.

(b) Average ranks of the different algorithms based on total runtime. The critical difference
(CD) for significantly different algorithms is 0.81.

Fig. 5.3. Average ranks for different algorithms based on (a) classification accuracy, and
(b) runtime. Algorithms which are not significantly different at p = 0.05 are
connected.

while the color and shape of the markers show the relationship between the
classification accuracy results. The x- and y-axes show the runtime required
to train and test a classification model using MiSTiCl and the other algorithm,
respectively. A dotted line, drawn for y = x, divides the plot area to indicate
which algorithm requires less time for evaluating a specific dataset compared
to the other. A marker on the dotted line indicates that both algorithms have
the same runtime requirements, while a marker which resides off the dotted
line indicates otherwise. Markers above the dotted line show that MiSTiCl is
faster, while markers below the dotted line indicate otherwise. The figures
also have a boxed background to emphasize the scale of difference between
the runtimes of the compared algorithms. Green colored markers indicate
that MiSTiCl provides better accuracy, whereas red colored markers indicate

94 Chapter 5 Leveraging String Mining for Shapelet Discovery for Ran-
domized Learning Schemes



Fig. 5.4. Comparing MiSTiCl against BoP regarding classification accuracy and runtime. Each
marker represents one dataset. The x- and y-axis show the total runtime (training
+ testing) in seconds. Markers above the dotted line indicate that MiSTiCl is faster
than the other algorithm. A green marker indicates that MiSTiCl provides better
classification accuracy while red indicates otherwise. Marker sizes correspond
to the absolute difference between the mean classification accuracy provided by
the competing algorithms for a particular dataset, i.e., larger markers indicate
greater difference in classification accuracy of the two algorithms. An upward facing
triangle indicates that a significant difference was found in favor of MiSTiCl, while
a downward facing triangle shows a significant difference in favor of the other
algorithm. Bubbles indicate there was no significance determined.

5.5 Results 95



Fig. 5.5. Comparing MiSTiCl against BOSS regarding classification accuracy and runtime.
Each marker represents one dataset. The x- and y-axis show the total runtime
(training + testing) in seconds. Markers above the dotted line indicate that MiSTiCl
is faster than the other algorithm. A green marker indicates that MiSTiCl provides
better classification accuracy while red indicates otherwise. Marker sizes correspond
to the absolute difference between the mean classification accuracy provided by
the competing algorithms for a particular dataset, i.e., larger markers indicate
greater difference in classification accuracy of the two algorithms. An upward facing
triangle indicates that a significant difference was found in favor of MiSTiCl, while
a downward facing triangle shows a significant difference in favor of the other
algorithm. Bubbles indicate there was no significance determined.

96 Chapter 5 Leveraging String Mining for Shapelet Discovery for Ran-
domized Learning Schemes



Fig. 5.6. Comparing MiSTiCl against SAX-VSM regarding classification accuracy and runtime.
Each marker represents one dataset. The x- and y-axis show the total runtime
(training + testing) in seconds. Markers above the dotted line indicate that MiSTiCl
is faster than the other algorithm. A green marker indicates that MiSTiCl provides
better classification accuracy while red indicates otherwise. Marker sizes correspond
to the absolute difference between the mean classification accuracy provided by
the competing algorithms for a particular dataset, i.e., larger markers indicate
greater difference in classification accuracy of the two algorithms. An upward facing
triangle indicates that a significant difference was found in favor of MiSTiCl, while
a downward facing triangle shows a significant difference in favor of the other
algorithm. Bubbles indicate there was no significance determined.

5.5 Results 97



Tab. 5.5. Pairwise win/tie/loss comparison of different algorithms using 85 datasets. The
margin for wins/losses was set to ±2%.

ST BoP BOSS SAX-VSM

MiSTiCl-ET 30/29/26 69/4/12 29/22/34 67/10/8
MiSTiCl-RF 28/36/21 64/6/15 28/32/25 63/11/11
MiSTiCl-AB 28/32/25 65/6/14 30/28/27 65/10/10

otherwise. Marker size corresponds to the absolute difference between the
classification accuracy values of the compared algorithms, i.e., larger markers
indicate a greater difference between the accuracy of the two algorithms. For
each dataset, we also performed Wilcoxon’s signed-ranks test to establish
whether one algorithm performs significantly better or worse compared to
the other. In this regard, an upward facing triangle indicates that MiSTiCl
is significantly better, a downward facing triangle indicates that the other
algorithm is significantly better, while a circle indicates that the difference
between the classification accuracy obtained for the two algorithms was
insignificant. We can see that MiSTiCl provides an improvement of at least
an order of magnitude with respect to runtime, while it is on par with BOSS
and dominates BoP and SAX-VSM regarding classification accuracy.

A pairwise win/tie/loss analysis was also performed for a head-to-head com-
parison between the different MiSTiCl variants and other algorithms. A win
was registered if the difference between the classification accuracy achieved
by MiSTiCl and the competing algorithm was greater than +2%, a loss was
registered if the difference was less than -2%, while a tie was registered
otherwise. The numbers of wins/ties/losses are reported in Table 5.5.

5.5.1 Runtime Breakdown

A breakdown of the time required for training and testing a classification
model using MiSTiCl is provided in Figure 5.7. This includes the time required
for (i) discretizing the training and testing sets, (ii) extracting frequent
patterns from the discretized training data, (iii) creating transformed datasets,
(iv) parameter optimization, and (v) model training and testing. The time
required for each phase of the algorithm is converted to a percentage of the

98 Chapter 5 Leveraging String Mining for Shapelet Discovery for Ran-
domized Learning Schemes



Fig. 5.7. A breakdown of the time spent for individual phases as a percentage of total runtime.
The box plots show the aggregated data for all the evaluated datasets when using
MiSTiCl (CS + ET).

total time required and box plots are created using the data for all evaluated
datasets. We can see that the median time required for data discretization,
data transformation, parameter optimization, and model training/testing is
less than 10% of the total time required to process a given dataset, while
the median time required for pattern extraction is still almost 80%, despite
using a string mining algorithm with a linear time complexity. Therefore,
the pattern extraction phase still overshadows the other phases in terms of
runtime requirements. This breakdown analysis was carried out purely for
the MiSTiCl algorithm, and a similar analysis for the other algorithms was
not possible due to a monolithic implementation structure.

5.5.2 Results using a conservative parameter set

We also carried out experiments for evaluating the classification and runtime
performance of the MiSTiCl algorithm using a conservative parameter set. In
these experiments, we provided MiSTiCl with cardinality and dimensionality
reduction levels of only {3, 4, 5, 6} and {2, 3, 4, 5}, respectively. This reduces

5.5 Results 99



Fig. 5.8. Average ranks of the different algorithms based on classification accuracy. The
critical difference (CD) for significantly different algorithms is 0.97. Algorithms
which are not significantly different (at p = 0.05) are connected.

the number of evaluated parameter combinations to only 16 as compared
to the 35 parameter combinations evaluated in the full set of experiments.
This results in a further reduction in the total runtime for MiSTiCl as well
as a slight reduction in the classification accuracy, however, the overall
performance is generally the same. Figure 5.8 shows the average ranks of the
MiSTiCl variants, BoP, BOSS, and SAX-VSM based on classification accuracy,
when using a conservative set of parameters for the MiSTiCl algorithm.

5.6 Conclusion

MiSTiCl is a time series classification algorithm using a linear time string
mining algorithm for feature extraction. Using the string mining algorithm
for feature extraction allows to drastically reduce the runtime of the whole
classification task compared to many other state-of-the-art approaches. On
average, MiSTiCl achieved an order of magnitude speed-up over the most
accurate state-of-the-art algorithm, BOSS, while still being robust enough to
provide a classification accuracy that is statistically not discernible from it. We
used a multi-cardinality and multi-dimensionality approach to incorporate a
multi-resolution aspect to the discretized time series classification algorithm.
One alternative to using this multi-cardinality and multi-dimensionality ap-
proach is to use a form of stacking (or meta-ensemble approach), where
each individual base model constituting the ensemble is induced using a

100 Chapter 5 Leveraging String Mining for Shapelet Discovery for Ran-
domized Learning Schemes



single-resolution feature set. However, stacking usually leads to a more
complex classification model.

MiSTiCl can also be extended in a couple of ways: Instead of creating
the feature based dataset using only the SAX based frequent patterns, we
can incorporate features extracted from different time series discretization
algorithms. One such algorithm is the Symbolic Fourier Approximation
(SFA) used in BOSS and BOSS VS. Incorporating a frequency-based symbolic
representation could potentially provide a dual feature based dataset. The
local shape-based features can be extracted from SAX representations, while
the frequency components dominating the whole shape of the time series
can be obtained from a frequency decomposition-based representation. This
could provide a local and global view to a single classification algorithm, and
the efficiency of the string mining based feature extraction process ensures
that the approach could scale well for a variety of problems with large and
complex data.

5.6 Conclusion 101





Pattern Sampling as an
Alternative to Pattern
Extraction

6

6.1 Motivation and Background

Over the last decade, the time series data mining community started develop-
ing algorithms that utilized discretized time series data and relied on already
established text mining approaches [35–38, 83, 84]. These approaches were
mostly based on creating bag-of-words representations of the time series data
such that each word was, in essence, a discretized time series subsequence
extracted via a sliding window approach. The asymptotic time complexity
of these algorithms is cubic or higher-order polynomial, which is only a
marginal improvement compared to the O(N2n4) computational complexity
of real-valued shapelet-based algorithms.

On the other hand, the asymptotic time complexity of MiSTiCl is only O(Nns)
(see Section 5.3.7), which makes it one to two orders of magnitude faster
than BoP, BOSS, and SAX-VSM (see Section 5.5). Section 5.5.1 provides a
breakdown analysis of the time required for model induction using MiSTiCl.
It was observed that the pattern extraction phase for MiSTiCl consumes
approximately 80% of the total time required for model induction, although
the string mining algorithm used as the pattern extractor has a linear time
complexity in the length of all discretized time series instances concatenated.
This can be attributed to the pattern explosion problem when searching
for frequent patterns, since the number of possible subsequences in an m

character long string based on an alphabet size α is equal to 1−αm+1

1−α . Similar
arguments can be made regarding the other algorithms since they also rely

103



on the enumeration of vast quantities of patterns. In fact, the sliding window
approach adopted by BoP, BOSS, SAX-VSM, and Mr-SEQL implies that the
pattern explosion problem haunts these algorithms even more so than it does
MiSTiCl.

6.1.1 Pattern Explosion Problem

Pattern mining methods rely on enumerating all possible combinations of a
set of base items to find interesting patterns or itemsets. As the number of
base items increases, the number of possible pattern combinations increases
exponentially, which is commonly referred to as the infamous pattern ex-
plosion problem. The exponential rise in the number of candidate patterns
consequently leads to a proportional increase in the time required to eval-
uate all the candidate patterns. Various approaches have been proposed
to address this phenomenon, however, these approaches have their own
associated drawbacks. Condensed representations can be mined efficiently but
may result in a large number of patterns nonetheless [108]. Top-k mining
is efficient, but results in strongly related and redundant patterns lacking
diversity [109]. Constrained mining can result in either too few or too many
patterns depending on the user-provided constraints [110]. Pattern set min-
ing considers the intra-pattern relationships and provides a small solution
set, but the approach is computationally expensive [111].

6.1.2 Pattern Sampling

Pattern sampling has been proposed as an alternative to the exhaustive
pattern enumeration approach [112]. It allows to sample patterns one
by one based on a probability distribution that is proportional to a given
quality measure. The benefits of using this approach are: (i) flexibility of
using a broad range of quality measures and constraints, (ii) ‘anytime’ data
exploration that allows to generate a representative set of patterns which
can be further grown and inspected at any time, (iii) diversity of generated
sets of patterns due to sampling from different regions in the solution space.
Pattern samplers also have to provide some theoretical guarantees regarding

104 Chapter 6 Pattern Sampling as an Alternative to Pattern Extraction



sampling accuracy to be reliable, i.e., there should be an estimate of how
accurate the empirical probability of sampling a pattern will be compared to
the actual (generally unknown) target probability.

Formally, the pattern sampling problem is defined as follows: given a dataset
D, a pattern language L, a set of constraints C, and a quality measure
ϕ : L → R+, generate random patterns that satisfy constraints in C with
probability proportional to their qualities:

Pϕ(p) =


ϕ(p)
Zϕ
, if p ∈ L satisfies C

0, otherwise

where Zϕ is an (often unknown) normalization constant. A quality measure
quantifies the domain-specific interestingness of a pattern. The choice of a
quality measure and constraints allows to express specific analysis require-
ments. The sampling procedure meets these requirements by satisfying the
constraints and generating high-quality patterns more frequently. Thus, sam-
pled patterns are a representative subset of all interesting regularities in the
dataset.

The benefits offered by pattern sampling make it an enticing option to reduce
the computational requirements of the pattern extraction procedure for
pattern based time series classification. A rudimentary pattern sampler could
be grown based on a limited number of instances of the discretized time
series data or a limited set of pattern combinations to kick off the process,
allowing a continued improvement of the sampler. This also allows to stop
investing any more resources into improving the sampler once an acceptable
level of sampling accuracy has been achieved.

6.2 Design

Pattern Sampling for Shapelet-based Time Series Classification (PS2C) em-
ploys pattern sampling instead of enumerating all candidate patterns to
determine the most discriminative patterns for a given time series dataset.
The basic structure of the PS2C algorithm is similar to other feature/pattern
based time series classification algorithms, e.g., ST [107], MiSTiCl, etc. The

6.2 Design 105



main steps of the algorithm include: (i) time series discretization, (ii) pattern
sampler creation, (iii) feature set creation using K sampled patterns, (iv) cre-
ating a transformed dataset, and finally (v) model induction. Steps (ii) and
(iii) leverage the power of pattern sampling to generate highly discriminative
and diverse patterns. The quality measure for pattern acceptance ensures
that only highly discriminative patterns are ingested in the sampler, which
enables quick convergence of the sampler and better sampling accuracy.

The PS2C algorithm discretizes the data using the SAX algorithm, therefore,
the details regarding the time series discretization are the same as described
in Section 5.3.2. SAX preserves the overall shape of the time series instances,
however, it can also lead to loss of features. This is an artifact of inadvertent
feature splitting due to the use of an arbitrary window size ω. One effective
way of dealing with this problem is to initiate multiple independent feature
extraction pipelines, each based on a different combination of the α and ω
parameters, and merging the results of each individual feature extraction
problem into one aggregate feature-based dataset. This results in a diverse
feature set that leads to better overall accuracy when using an ensemble
classifier for model induction, because ensemble methods inherently tend to
reduce variance and sometimes also bias. MiSTiCl was modeled to create such
a multi-resolution feature set to identify features at various dimensionality
and cardinality levels. This approach provides a significant boost to the
overall accuracy, therefore, PS2C is also modeled similarly to create a multi-
resolution feature set.

6.2.1 Overview

Algorithm 6.1 lists the main PS2C algorithm. The input parameters include
the real-valued training and testing splits (Dtrain and Dtest), a set of alphabet
and window sizes (A and Ω), the maximum allowed length of the patterns
used for generating the pattern sampler (lmax), the minimum allowed quality
measure value per pattern used for generating the pattern sampler (smin), a
scaling factor τ for scaling the quality measure values, and a parameter K
for patterns sampled per parameter combination. The procedure starts with
the initialization of associative arrays for the standalone feature sets which
will be merged later to form the multi-resolution feature sets (Line 6.1-1).

106 Chapter 6 Pattern Sampling as an Alternative to Pattern Extraction



Algorithm 6.1 PS2C (Dtrain, Dtest, A, Ω, lmax, smin, τ , K)

1: SVtrain ← {}, SVtest ← {} . Initialize associative arrays for feature sets

2: for all (α, ω) ∈ A× Ω do

3: D̂train, D̂test ←DISCRETIZE(Dtrain, Dtest, α, ω)

4: D̂′train ←CREATESUFFIXTREES(D̂train)

5: PS ←FITPATTERNSAMPLER(D̂train, D̂′train, lmax, smin, τ)

6: SV α,ω
train, SV

α,ω
test ←CREATEFEATURESET(Dtrain, Dtest, D̂train, PS, K)

7: end for

8: MultiResFStrain ← φ,
MultiResFStest ← φ

. Initialize multi-resolution feature sets

9: for all (α, ω) ∈ A× Ω do

10: MultiResFStrain ←MultiResFStrain || FSα,ωtrain

11: MultiResFStest ←MultiResFStest || FSα,ωtest

12: end for

13: return MultiResFStrain,MultiResFStest

The first step is the discretization of the train and test splits corresponding to
the current (α, ω) parameter combination (Line 6.1-3). Next, the discretized
training set instances are used to create suffix tree representations for efficient
substring search (Line 6.1-4), however, the choice of suffix trees is rather
superficial, since there are a number of other data structures that can be
utilized to efficiently search a given string for the presence of query substrings.
Next, a probabilistic pattern sampler is induced based on the discretized
training data (Line 6.1-5), followed by the creation of transformed training
and testing feature sets based on the sampled patterns (Line 6.1-6). Finally,
the train and test feature sets corresponding to all the (α, ω) ∈ A× Ω pairs
are concatenated horizontally to create the multi-resolution training and
testing feature sets, respectively (Lines 6.1-9 to 6.1-12).

6.2.2 Creating the Pattern Sampler

A pattern sampler can be modeled in several ways, e.g., graphs (MCMC),
trees, XOR constraints, etc. [112]. In the case of PS2C, the pattern sam-

6.2 Design 107



pler has been envisaged as a trie with weighted edges, since this allows
incorporating constraints into the sampler generation and pattern sampling
processes as well as allowing fast, iterative updates to the sampler. A trie is a
data structure used to store strings in order to support fast pattern matching.
Formally, if S is a set of s strings from an alphabet Σ, then a standard trie for
S is an ordered tree with the following properties:

• Each node of a trie, except the root, is labeled with a character of Σ.

• The children of an internal node of the trie have distinct labels.

• The trie has s leaves, each associated with a string of S, such that the
concatenation of the labels of the nodes on the path from the root to a
leaf v of the trie yields the string of S associated with v.

Thus, a trie represents the strings of S with paths from the root to the leaves.
Strings with a common prefix share the edges for the common prefix, while
a split is created when the characters in the strings differ. The edges are
augmented with weights such that inserting a string in the trie also associates
a corresponding weight to all the inserted edges. An edge shared between
multiple strings has a weight equal to the aggregate of the weights associated
with all the strings that share the particular edge.

Edge weights are calculated on the basis of the discriminative capability of
the inserted patterns. The χ2 statistic can be used to determine whether there
is a statistically significant difference between the expected and observed
counts for a given contingency table consisting of two or more categories.
In case of a symbolic time series dataset, the categories are the different
classes, while the counts are the numbers of instances belonging to each
class in which the given pattern is present or absent. The range of values
for the χ2 statistic is (0, |Dtrain|]. For a binary class problem, if a pattern
occurs in all instances of one class, whereas it is absent in all instances of the
other class, then the χ2 statistic will be maximized, whereas if the pattern is
present/absent in most of the instances, then the χ2 statistic will be close to
0. In order to simplify subsequent calculations, the χ2 statistic is normalized
with |Dtrain| so that the effective range becomes (0, 1], where the value of 1
indicates that the given pattern is a perfect discriminator, while a value close
to 0 indicates otherwise.

108 Chapter 6 Pattern Sampling as an Alternative to Pattern Extraction



The normalized χ2 statistics can be directly used as weights for the edges,
however, we can introduce a bias towards highly discriminative patterns
using temperature scaling. The scaled edge weights are calculated as q(1/τ),
where q is the normalized χ2 statistic and τ is the temperature scaling factor.
During pattern sampling, the probability of selecting an edge is given as

fτ (q)i = q
(1/τ)
i∑
j
q

(1/τ)
j

, where
∑
j q

(1/τ)
j is the sum of all edge weights originating

from the node. When τ = 1, the edge weights are linearly proportional to
the normalized χ2 statistics. As τ decreases, the bias towards patterns with
higher normalized χ2 statistics increases, e.g., a quadratic scaling is applied
to the values for τ = 0.5. As τ → 0, the function turns into an argmax
function. Therefore, a very small value of τ will almost always lead to the
selection of the most discriminative patterns in the trie, while a value close
to one will lead to a fair selection. Figure 6.1 shows an example trie created
from a set of words extracted from a discretized dataset. The figure is based
on a binary class dataset with 14 instances in each class. The scaling factor τ
is set to 0.33, the alphabet size α is set to 6, and the dimensionality reduction
factor ω is set to 4. The pattern ffe occurs in all instances of one class but is
absent in all instances of the other class, therefore, its normalized χ2 statistic
is equal to 1.0 that translates into a scaled weight of 1.0 as well. The pattern
ffc occurs in 13 of the 14 instances of one class but is absent in all instances
of the other class, therefore, its normalized χ2 statistic is equal to 0.867 and
the scaled weight is equal to 0.65. Inserting the first pattern into the trie
creates the required edges and associates the corresponding scaled weight to
all the created edges. When the second pattern is inserted, the edges that
correspond to the substring ff have their weight updated to be the sum of
the previously assigned weight and the weight associated with the current
pattern, while a new edge is inserted for the suffix c with the respective
weight for the pattern. The remaining patterns are also inserted similarly.

Algorithm 6.2 lists the steps involved in the creation of a weighted trie based
on patterns up to a user-specified maximum length. The procedure iterates
over the allowed pattern lengths to extract and evaluate patterns of a given
length for subsequent insertion in the trie (Lines 6.2-2 to 6.2-10). First, all
patterns of a given length are extracted using the suffix trees created during
the preprocessing phase (Line 6.2-3). Next, each candidate pattern from the
list of patterns extracted in the previous step is evaluated to determine its
discriminative capability using the χ2 test statistic (Line 6.2-5). The number

6.2 Design 109



0.25 1.65

*

0.25

e

0.08

0.11

e

c

0.08

c

1.65
f

e

0.65
1.00

f

0.08

d

f

0.11

f

c

eedcc
(0.433)

eeff
(0.474)

ffc
(0.867)

ffe
(1.000)

Fig. 6.1. An illustration of a weighted trie with shared edges between multiple strings. The
edges are weighted using the scaled quality measures of the strings. The weight of a
shared edge is equal to the aggregated weights contributed by all strings sharing
that edge. The leaf nodes point to the patterns added to the trie along with their
normalized χ2 test statistic.

of evaluated candidate patterns can be reduced by randomly sampling the list
of candidate patterns. In case the candidate patterns are randomly sampled,
the procedure can be initiated multiple times to update the pattern sampler.
In this case, the procedure can be altered to keep track of the already
evaluated patterns so that subsequent calls do not waste computational
resources on re-evaluating the same candidate patterns repeatedly. The
candidate pattern is inserted into the trie if its normalized χ2 statistic is
greater than or equal to the minimum allowed discriminative value (Lines
6.2-6 to 6.2-8). Starting from the root node, the insertion procedure checks
if an edge corresponding to the first character in the candidate pattern is
present or not. If the edge is absent, the procedure creates the corresponding
edge and sets its weight equal to the scaled quality measure of the current
pattern. If an edge corresponding to the character is already present, then
the edge weight is updated by adding the scaled quality measure of the
current pattern to the existing edge weight. The node weight is also set to the
updated aggregate value of the edge weights. The procedure then traverses
down the edge corresponding to the first character and the same procedure
is repeated for the second character in the pattern and so on, until all the
characters have been inserted.

110 Chapter 6 Pattern Sampling as an Alternative to Pattern Extraction



Algorithm 6.2 FitPatternSampler (D̂train, D̂′train, lmax, smin, τ)

1: trie← φ . Initialize an empty trie

2: for l← 2 to lmax do

3: S ←FINDALLPATTERNSWITHLENGTH(l, D̂′train)

4: for s ∈ S do

5: q ←CALCULATECHISQSTATISTIC(s, D̂′train)

6: if q ≥ smin then

7: INSERT(s, q, τ, trie)

8: end if

9: end for

10: end for

11: return trie

6.2.3 Creating Feature Sets

Algorithm 6.3 lists the pseudocode for creating the real-valued feature
datasets from K sampled patterns. After initialization of the necessary
data structures, K patterns are sampled from the pattern sampler and their
corresponding subsequences are used to generate the feature sets (Lines
6.3-2 to 6.3-7). Sampling a pattern involves traversing the weighted trie
from the root node to a leaf node using the fitness proportionate (roulette
wheel) selection method. At any node, the probability of selecting the ith
edge is calculated by dividing the edge weight q1/τ

i by the sum of all edge
weights for the current node

∑
j q

1/τ
j . First, a uniformly distributed random

number r is drawn in the range
[
0,∑j q

1/τ
j

)
. Next, all the edge weights are

compared with the random number r based on the lexical order of the edges.
For an edge i, if the random number r is less than the edge weight q1/τ

i

then the ith edge is selected as the next edge, otherwise q1/τ
i is subtracted

from r and the next edge weight is compared. If a node has child nodes as
well as being a leaf node, the decision to return the string terminating at
the current node or to traverse the trie further is also based on a random
number. In this case, a uniform random number is drawn in the range [0, 1)
and the procedure continues trie traversal if the random number is less than
0.5. For each sampled pattern, a reverse lookup is performed to extract the

6.2 Design 111



Algorithm 6.3 CreateFeatureSets (Dtrain, Dtest, D̂train, Sampler, K)

1: SVtrain ←MATRIX(|Dtrain|, K), SVtest ←MATRIX(|Dtest|, K)
2: for k ← 1 to K do

3: f ←SAMPLEPATTERN(Sampler)

4: s←PERFORMREVERSELOOKUP(Dtrain, D̂train, f)

5: For each T ∈ Dtrain

populate the respective row and column of SVtrain
with the distance value between T and s

6: For each T ∈ Dtest

populate the respective row and column of SVtest
with the distance value between T and s

7: end for

8: return SVtrain, SVtest

real-valued subsequence from the original time series data corresponding
to the symbolic pattern (Line 6.3-4). Next, the kth column of the feature
sets SVtrain and SVtest are populated with the distance values between the
time series instances and the shapelet discovered after the reverse-lookup
procedure (Lines 6.3-5 and 6.3-6).

6.2.4 Merging Feature Sets

Discretization-based time series mining algorithms can often have deterio-
rated performance due to information and feature loss. A multi-resolution
feature set based on feature sets created using different discretization and
quantization parameter combinations can mitigate the feature loss problem.
It was shown in the previous chapter that concatenating various feature sets
that have been created using different (α, ω) ∈ A×Ω parameter combinations
can solve the feature loss problem, as well as improve the overall accuracy
due to the inclusion of features obtained from different discretization and
quantization levels.

In case of MiSTiCl, at most |A|×|Ω|3 feature sets are used to create a multi-
resolution feature set. A greedy set cover approach is used to combine the
feature sets so that the resulting multi-resolution feature set will correctly

112 Chapter 6 Pattern Sampling as an Alternative to Pattern Extraction



classify as many training instances as possible (see Section 5.3.6). This
approach provides better overall results as well as keeping the number of
features in the multi-resolution feature set to a minimum, however, it also
requires significant computational resources. MiSTiCl creates feature sets
using class-correlated frequent patterns, therefore, each feature set can have
K features based on as many frequent patterns specific to a given class,
where K is a user-provided parameter. This approach can sometimes result
in expansive feature sets when the number of classes in the dataset is large,
and K is also set to a large value. Therefore, combining a small number of
feature sets allows to restrict the overall number of features in the multi-
resolution feature sets.

In case of the PS2C algorithm, a different merging strategy has been adopted.
Instead of concatenating a few feature sets, PS2C concatenates all the feature
sets created for each (α, ω) ∈ A×Ω parameter combination to form the multi-
resolution training and testing feature sets. It was observed that merging
all the feature sets results in a multi-resolution feature set that allows to
create classification models that are as accurate as the classification models
created using the multi-resolution feature set created after the greedy set
cover optimization. The pattern sampling approach employed for PS2C is
not restricted to providing patterns for each class individually, therefore,
only a few patterns can be used to create the individual feature sets. This
also allows to concatenate a larger number of feature sets together without
running into the problem of a multi-resolution feature set with a very large
number of features. This insight also allows PS2C to forgo the optimization
step based on the expensive greedy set cover approach.

6.2.5 Complexity Analysis

The overall computational complexity of the PS2C algorithm can be deter-
mined by investigating the creation of an individual feature set and then
aggregating the impact of all pipelines since the creation of feature sets
(based on individual (α, ω) parameter combinations) contributes equally to-
wards the overall complexity. SAX requires O(Nn) operations to discretize a
dataset with N instances each having length n. The time taken for creating a
pattern sampler depends on: (i) the time taken to extract candidate patterns,

6.2 Design 113



and (ii) the time taken in finding the candidate pattern in each discretized
instance of the training set. The suffix trees allow to search the candidate
patterns in time linear to the length of the discretized time series, while
extracting the patterns from N instances results in the time required for both
these steps to be O(Nm), where m is the length of the discretized time series.
Sampling a pattern using the trie is proportional to the maximum pattern
length in the trie O(lmax). For a feature corresponding to a symbolic pattern,
N feature values have to be calculated, where each feature value calculation
takes O(ns) time, where s is the length of a subsequence and s� n. Since K
is a constant and much smaller than N and n, the time required for creating a
complete feature set is on the order of O(Nns). The overall time complexity
of creating a feature set for a given α and ω parameter combination is on the
order of O(Nn) + O(N n

w
) + O(1) + O(Nns) ≈ O(Nns). Since the quantity

|A| × |Ω| is a constant, the asymptotic time complexity of the algorithm is
on the order of O(Nns). PS2C and MiSTiCl have the same asymptotic time
complexity, which makes these algorithms the fastest symbolic representation
based time series classification algorithms.

6.3 Empirical Evaluation

An extensive set of experiments was conducted to evaluate the performance
of our proposed algorithm compared to other symbolic representation based
time series classification algorithms. The empirical evaluation is based on
the same strategy as employed for MiSTiCl (see Section 5.4). The different
algorithms were evaluated using 85 real-world and synthetic time series
datasets provided by the 2015 expansion of the UCR Archive [56]. For each
dataset, 100 random shuffles were created such that the class distribution
and the total number of instances in the training and testing splits of each
shuffle were kept the same as in the original splits. The random number seeds
used to create the different shuffles were kept the same when creating the
shuffles for different algorithms. Each classification algorithm was then used
to evaluate all 100 shuffles of each dataset to obtain a comprehensive set of
measurements regarding classification accuracy and runtime requirements.
In order to compare PS2C against other well-known algorithms regarding
classification accuracy, we have used the results provided by the UEA TSML

114 Chapter 6 Pattern Sampling as an Alternative to Pattern Extraction



Repository and the Mr-SEQL repository. The runtime requirements of the
different algorithms, however, are not provided by the UEA TSML Repository,
therefore, the runtime requirements for MiSTiCl, BOSS, BoP, and SAX-VSM
were taken from the evaluation carried out for MiSTiCl and a comparison of
the PS2C algorithm against these four algorithms was carried out regarding
runtime requirements. The Mr-SEQL implementation is based on a different
programming language and framework, therefore, we have not compared the
runtime requirements directly and only restrict the evaluation to a theoretical
comparison of the asymptotic time complexity requirements. The PS2C
algorithm has also been implemented using the same framework used for
implementing MiSTiCl, and the complete source code is available online.1

All experiments were performed with a fixed set of parameters for all datasets.
The cardinality levels A and the dimensionality reduction factors Ω were set
to the same combination as used for the evaluation of MiSTiCl. The A and Ω
parameters were set to {2, 3, . . . , 8} and {2, 3, . . . , 6}, respectively. The seed
for the random number generator was explicitly set for each experiment. The
maximum allowed pattern length lmax was set to 20, the minimum acceptable
discriminative power smin (normalized χ2 statistic) was set to be 0.05, the
scaling factor τ was set to 0.5, and maximum patterns K per (α, ω) param-
eter combination was set to 4. PS2C transforms a time series classification
problem into a feature-based classification problem incorporating a diverse
set of time series features, therefore, any off-the-shelf classification algorithm
can be used for model induction. Ensemble techniques can be extremely
effective for creating accurate classification models given numerous diverse
features, and we already employed Random Forests (RF) [105], Extremely
Randomized Trees (ET) [106], and AdaBoost.M1 (AB) [101] for creating clas-
sification models for the empirical evaluation of the MiSTiCl algorithm. Since
the results reported for MiSTiCl are based on the Extremely Randomized
Trees (ET) [106] ensemble creation approach, the PS2C algorithm was also
evaluated using the same ensemble technique. In this regard, a maximum
of 1000 trees per ensemble were used, while keeping all other parameters
unchanged. For statistical comparison of different algorithms, we employ the
Friedman test followed by Nemenyi post-hoc test based on the average ranks
attained by the different algorithms, and show the comparisons as critical
difference (CD) diagrams [103].

1PS2C repository: https://github.com/kramerlab/ps2c.

6.3 Empirical Evaluation 115

https://github.com/kramerlab/ps2c


6.4 Results

In terms of classification accuracy, the PS2C algorithm performs on par
with other algorithms for datasets with two to six classes, however, the
classification accuracy deteriorates as the number of classes in a dataset goes
beyond eight. This behavior is due to the fact that a single pattern sampler
is created and there is no provision for sampling class-correlated patterns.
An obvious alternative is to create samplers for each class individually in a
one-vs-all fashion, however, another alternative is to incorporate additional
information into the samplers along with the patterns, which could enable
class-correlated pattern sampling. The minimum acceptable discriminative
power smin for a candidate pattern allows to adjust the acceptance threshold
for candidate patterns. A high value allows to accept only the very best
patterns, while a value close to zero allows to accept almost all patterns.
Accepting a large number of patterns can lead to a densely populated trie, but
a stringent scaling factor τ can help deal in this case by heavily weighting the
useful patterns and diminishing the chances of sampling less useful patterns.
Therefore, smin and τ are complementary parameters and a slight adjustment
is all that is needed to get the best results. The maximum allowed pattern
length lmax is used to limit the number of patterns inserted into the trie. In
most cases, the discriminative patterns are much shorter than the length of
the discretized time series instances, however, many discriminative patterns
can have a huge number of variants with either a prefix or a suffix. The lmax
parameter allows to restrict the inclusion of too many variant patterns in
the trie, and in doing so, helps to keep the trie balanced since the inclusion
of too many variants with the same discriminative power would cause the
sampling procedure to return related and/or redundant patterns.

Figure 6.2a shows a critical differences diagram for different time series
classification algorithms regarding classification accuracy. Overall, PS2C
performs impressively and is on par with algorithms like ST and Flat.COTE.
HIVE.COTE and Flat.COTE are two hybrid ensemble classifiers which base
their classification on the basis of various types of classifiers, including ST,
BOSS, etc. Both these algorithms have an extremely high computational cost
due to their dependence on training several different types of classification
algorithms. Among the pattern-based time series classification algorithms,

116 Chapter 6 Pattern Sampling as an Alternative to Pattern Extraction



SAX-VSM and BoP perform worse, while MiSTiCl, Mr-SEQL, BOSS and PS2C
perform similarly and are not significantly different from each other. PS2C
is not significantly different from ST or Flat.COTE, however, its average
rank is slightly worse than BOSS which causes PS2C to also miss the group
that forms the cohort of the best performing time series algorithms in this
comparison.

Figure 6.2b shows the critical differences diagram for pattern-based time
series classification algorithms regarding runtimes. MiSTiCl was a clear
winner and PS2C was the second fastest, while BoP/BOSS and SAX-VSM
were significantly slower than either of the two algorithms. Overall, PS2C
was 1.1 to 1.3 times slower than MiSTiCl on average, however, since MiSTiCl
was shown to be significantly faster than the other algorithms, we can infer
that PS2C is also substantially faster than the remaining algorithms. This is
backed up by complexity considerations (see Section 6.2.5).

Figures 6.3, 6.4, 6.5, and 6.6 present the comparisons in terms of classifica-
tion accuracy and runtime performance of PS2C against BoP, BOSS, SAX-VSM,
and MiSTiCl, respectively. The figures have been created using the same
approach as used for creating the figures for comparing MiSTiCl against the
other algorithms. Each dataset is represented by a marker. The marker posi-
tions show the relationship between the runtimes of the compared algorithms,
while the color and shape of the markers show the relationship between the
classification accuracy results. The x- and y-axes show the runtime required
to train and test a classification model using PS2C and the other algorithm,
respectively. A dotted line, drawn for y = x, divides the plot area to indicate
which algorithm requires less time for evaluating a specific dataset compared
to the other. A marker on the dotted line indicates that both algorithms have
the same runtime requirements, while a marker which resides off the dotted
line indicates otherwise. Markers above the dotted line show that PS2C is
faster, while markers below the dotted line indicate otherwise. The figures
also have a boxed background to emphasize the scale of difference between
the runtimes of the compared algorithms. Green colored markers indicate
that PS2C provides better accuracy, whereas red colored markers indicate
otherwise. Marker size corresponds to the absolute difference between the
classification accuracy values of the compared algorithms, i.e., larger markers
indicate a greater difference between the accuracy of the two algorithms. For

6.4 Results 117



(a) Average ranks based on classification accuracy for different time series classification
algorithms. The critical difference (CD) for significantly different algorithms is 1.46.

(b) Average ranks based on runtime performance for PS2C, MiSTiCl, BoP, BOSS, and SAX-VSM.
The critical difference (CD) for significantly different algorithms is 0.6.

Fig. 6.2. Average ranks for comparing PS2C against different algorithms based on classifi-
cation accuracy and runtime. Algorithms which are not significantly different at
p = 0.05 are connected.

each dataset, we also performed Wilcoxon’s signed-ranks test to establish
whether one algorithm performs significantly better or worse compared to the
other. In this regard, an upward facing triangle indicates that PS2C is signifi-
cantly better, a downward facing triangle indicates that the other algorithm
is significantly better, while a circle indicates that the difference between the
classification accuracy obtained for the two algorithms was insignificant. We
can see that PS2C performs similar to MiSTiCl when comparing BoP, BOSS,
and SAX-VSM. Figure 6.6 shows a comparison between PS2C and MiSTiCl.
Regarding the classification accuracy, almost all datasets have a very small
difference. The number of datasets with significantly different classification
accuracy are also quite few. Regarding the runtime performance, we can
see that there are two groups of datasets, one group of datasets requires

118 Chapter 6 Pattern Sampling as an Alternative to Pattern Extraction



Fig. 6.3. Comparing PS2C against BoP regarding classification accuracy and runtime. Each
marker represents one dataset. The x- and y-axis show the total runtime (training
+ testing) in seconds. Markers above the dotted line indicate that PS2C is faster
than the other algorithm. A green marker indicates that PS2C provides better
classification accuracy while red indicates otherwise. Marker sizes correspond to
the absolute difference between the mean classification accuracy provided by the
competing algorithms for a particular dataset, i.e., larger markers indicate greater
difference in classification accuracy of the two algorithms. An upward facing triangle
indicates that a significant difference was found in favor of PS2C, while a downward
facing triangle shows a significant difference in favor of the other algorithm. Bubbles
indicate there was no significance determined.

6.4 Results 119



Fig. 6.4. Comparing PS2C against BOSS regarding classification accuracy and runtime. Each
marker represents one dataset. The x- and y-axis show the total runtime (training
+ testing) in seconds. Markers above the dotted line indicate that PS2C is faster
than the other algorithm. A green marker indicates that PS2C provides better
classification accuracy while red indicates otherwise. Marker sizes correspond to
the absolute difference between the mean classification accuracy provided by the
competing algorithms for a particular dataset, i.e., larger markers indicate greater
difference in classification accuracy of the two algorithms. An upward facing triangle
indicates that a significant difference was found in favor of PS2C, while a downward
facing triangle shows a significant difference in favor of the other algorithm. Bubbles
indicate there was no significance determined.

120 Chapter 6 Pattern Sampling as an Alternative to Pattern Extraction



Fig. 6.5. Comparing PS2C against SAX-VSM regarding classification accuracy and runtime.
Each marker represents one dataset. The x- and y-axis show the total runtime
(training + testing) in seconds. Markers above the dotted line indicate that PS2C is
faster than the other algorithm. A green marker indicates that PS2C provides better
classification accuracy while red indicates otherwise. Marker sizes correspond to
the absolute difference between the mean classification accuracy provided by the
competing algorithms for a particular dataset, i.e., larger markers indicate greater
difference in classification accuracy of the two algorithms. An upward facing triangle
indicates that a significant difference was found in favor of PS2C, while a downward
facing triangle shows a significant difference in favor of the other algorithm. Bubbles
indicate there was no significance determined.

6.4 Results 121



Fig. 6.6. Comparing PS2C against MiSTiCl regarding classification accuracy and runtime.
Each marker represents one dataset. The x- and y-axis show the total runtime
(training + testing) in seconds. Markers above the dotted line indicate that PS2C is
faster than the other algorithm. A green marker indicates that PS2C provides better
classification accuracy while red indicates otherwise. Marker sizes correspond to
the absolute difference between the mean classification accuracy provided by the
competing algorithms for a particular dataset, i.e., larger markers indicate greater
difference in classification accuracy of the two algorithms. An upward facing triangle
indicates that a significant difference was found in favor of PS2C, while a downward
facing triangle shows a significant difference in favor of the other algorithm. Bubbles
indicate there was no significance determined.

122 Chapter 6 Pattern Sampling as an Alternative to Pattern Extraction



the same computational effort with either of the two datasets, while the
other group requires less computational cost when evaluated with MiSTiCl
although the difference is less than an order of magnitude. Overall, we see
that PS2C also provides an improvement of at least an order of magnitude
with respect to runtime, while it is on par with BOSS and dominates BoP and
SAX-VSM regarding classification accuracy similar to MiSTiCl.

6.5 Conclusion

We have introduced a pattern sampling algorithm for time series classification.
This is, to the best of our knowledge, the first algorithm for time series
classification to be based on pattern sampling. The pattern sampler is used in
a shapelet based classification algorithm. It was demonstrated that pattern
sampling can be an effective alternative to the exhaustive shapelet/pattern
discovery processes, since it enables to extract frequent patterns based on a
quality measure to counteract the pattern explosion phenomenon. We used
a multi-resolution feature set creation approach in our experiments, since
it is proven to be highly effective. Our pattern sampling based algorithm
was mostly on par with other similarly structured algorithms regarding
classification accuracy. In terms of computational cost, our approach is
slightly slower than MiSTiCl, however, the complexity analysis indicates the
asymptotic complexity for our approach is similar to that of MiSTiCl, implying
that the proposed method is also faster than the other algorithms.

Shapelet based time series classification gives rise to explainable classifica-
tions by construction. Therefore, the proposed pattern sampler is another
option for constructing interpretable feature sets for time series. Interest-
ing combinations with deep neural networks, especially for smaller sized
datasets, remain a topic for future research [113].

There are a few optimizations that have been identified as further future
avenues to be explored. We need to explore class-correlated pattern sampling
in order to improve the accuracy in cases where the pattern sampler keeps
providing patterns for one or a few classes rather than for the majority of
classes. We can also experiment with fuzzy pattern sampling to diversify the
identified feature set per pattern sampler.

6.5 Conclusion 123





Conclusion 7
Time series data is ubiquitous, and the digital age has enabled us to record
gargantuan amounts of this data. The readily available time series data
underscores the development of fast and efficient yet widely applicable data
mining algorithms. Most research work in time series mining overwhelm-
ingly emphasizes accuracy metrics but fails to report the (usually huge)
runtime requirements. The development of efficient algorithms will enable
the deployment of knowledge discovery infrastructures on a large scale.

This thesis is on the premise that metaheuristics and randomized approaches
can provide the underpinnings for efficient yet accurate data mining algo-
rithms for time series data. We introduced four such algorithms targeting time
series classification, with a specific aim to reduce computational costs while
being on par with previously developed methods. The proposed methods
were evaluated on the datasets constituting the UCR Archive since the archive
has attained the de facto status of a “touchstone” for time series classification
research. The empirical evaluations showed that our proposed algorithms
are one to two orders of magnitude faster than the previous state-of-the-art
methods while providing on par or better classification accuracy.

7.1 Contributions

7.1.1 Randomized Time Warping

Dynamic Time Warping (DTW) is an exact distance measure for time series
data. Its quadratic computational cost can become a limiting factor in deploy-
ing it in resource-limited scenarios. Many applications require reasonably

125



accurate but fast time series classification, therefore, a quick and approximate
distance measure is more useful in these cases than a slow and exact one.
Examples of such scenarios include time series classification on low power
edge computing devices, e.g., smart watches, heart rate monitors, etc.

Chapter 3 introduced Randomized Time Warping (RTW) for calculating an
approximate distance between time series instances. RTW employs a greedy
look-ahead approach to calculate the warping distance between two time
series instances. Compared to the pure greedy approach of Lucky Time
Warping (LTW), RTW provides much better accuracy without a considerable
increase in the runtime requirements. On the other hand, RTW provides
on par classification accuracy compared to DTW as well as being two to
eight times faster than the exact algorithm. Therefore, it can act as a perfect
drop-in replacement for DTW in applications that require fast and reasonably
accurate results.

7.1.2 Randomized Shapelet Ensembles

The YK-shapelets algorithm is the seminal method for subsequences-based
time series classification. It provides interpretable classification models that
have better classification accuracy compared to the 1NN algorithm coupled
with ED or DTW. The only downside of the YK-shapelets algorithm is the
O(N2n4) training time complexity, where N is the number of time series
training instances and n is the length of each time series.

Chapter 4 introduced Random-Shapelets Ensembles (RSE) to mitigate the
huge computational complexity of the YK-shapelets algorithm. RSE employs
a randomized sampling approach for evaluating candidate subsequences.
A sampling ratio controls the amount of afforded computational resources,
however, exceedingly small sampling ratios can lead to deteriorated classifi-
cation accuracy. Therefore, RSE creates an ensemble of multiple randomized
shapelet-based classifiers to offset the accuracy loss. An incremental ap-
proach towards the creation of the ensemble also allows to employ the RSE
algorithm in a contractual manner, i.e., create the ensemble until achieving
an acceptable level of accuracy or reaching the imposed limits on the com-
putational cost. Compared to the YK-shapelets algorithm, RSE is one to two

126 Chapter 7 Conclusion



orders of magnitude faster and provides on par classification accuracy as
well.

7.1.3 Mining Strings for Time Series Classification

Early shapelet-based classification algorithms classified time series instances
by determining the presence or absence of shapelets in a time series instance.
Shapelet Transform (ST) introduced the idea of using shapelets to transform
a time series classification problem into a feature-based classification problem.
This novel idea allowed to create classification models with any off-the-shelf
algorithm. Since ST relied on the same shapelet discovery procedure as the
YK-shapelets algorithm, its asymptotic time complexity was also O(N2n4).

In order to scale up shapelet-based time series classification to massive
amounts of data, the algorithmic complexity of the shapelet discovery pro-
cess has to be reduced drastically. The time series mining community has
been exploring text mining algorithms for time series classification using dis-
cretized time series data in the hopes of reducing the overall computational
costs. The dictionary-based approaches have been of little help though, as
the asymptotic complexity of the proposed methods is still on the order of a
cubic or higher-order polynomial.

Chapter 5 introduced the MiSTiCl algorithm (short for Mining Strings for
Time Series Classification) that also transforms the time series classification
problem into a feature-based classification problem. MiSTiCl extracts fre-
quent patterns from discretized time series data using a linear time and space
string mining algorithm. The frequent patterns are further filtered on the
basis of their discriminative power, and the most discriminative patterns end
up as features in the transformed dataset. The linear time complexity of
the underlying pattern miner allowed us to incorporate a multi-resolution
approach into the MiSTiCl algorithm without any noticeable impact on its
runtime performance. MiSTiCl is one to two orders of magnitude faster
than any other state-of-the-art pattern-based time series classifier while its
classification accuracy is on par or better than the competition.

7.1 Contributions 127



7.1.4 Pattern Sampling for Time Series Classification

Pattern-based time series classification algorithms provide accurate and in-
terpretable classification models, but training these models is extremely
computation intensive. MiSTiCl has been shown to be the fastest pattern-
based time series classification algorithm, however, the pattern extraction
phase of MiSTiCl can also become a bottleneck for larger datasets because
the string mining algorithm underlying MiSTiCl performs a simple enumera-
tion of all the possible patterns in the discretized dataset. The exponential
increase in the possible patterns that have to be enumerated is called the
pattern explosion problem.

Pattern sampling is an effective technique for mitigating the pattern explosion
problem. It allows to sample patterns one by one based on a probability
distribution that is proportional to a given quality measure. A pattern sampler
can be grown incrementally as well, therefore, it allows to sample patterns
while it learns from more data.

Chapter 6 introduced the PS2C algorithm (short for Pattern Sampling for
Shapelet-based Time Series Classification) which is based on a pattern sam-
pling approach for feature extraction from discretized time series data. PS2C
is, to the best of our knowledge, the first time series algorithm that has a
pattern sampler at its core for feature extraction. The pattern sampler is used
to sample patterns that end up as features in the transformed dataset. The
PS2C algorithm is also a multi-resolution approach. PS2C is one to two orders
of magnitude faster than previous state-of-the-art pattern-based time series
classifiers while its classification accuracy is on par with the other algorithms.
Compared to MiSTiCl, PS2C provides on par classification accuracy using
roughly the same computational resources.

7.2 Outlook

This thesis is concerned with the development of fast and efficient time series
classification algorithms using metaheuristics and randomized approaches.
In this regard, we developed several methods targeting univariate time series
data and showed that metaheuristics and randomized approaches can indeed,

128 Chapter 7 Conclusion



be used to design efficient algorithms for time series data. Time series mining
is still a growing field, although the first research regarding time series data
appeared almost three decades ago. This leaves a lot of room for future work
as well.

A logical continuation of this research work is the adaptation of the developed
methods for multivariate time series data. The bulk of previous research work
in the field has targeted univariate time series data, however, multivariate
time series data is getting considerable attention now, and rightly so, because
developing data mining algorithms aimed at this data type is not trivial.
Multivariate time series data usually has an intricate set of interactions within
the different data channels. The current time series mining algorithms aimed
at multivariate time series data handle the different channels independently
of each other, however, this ignores the intra-channel interactions. Future
algorithms would have to figure out ways to incorporate the intra-channel
interactions in the knowledge discovery process.

The emergence of newer technologies, e.g., the Internet of Things and sensor
networks, introduces even further challenging tasks from a data mining
perspective. Knowledge discovery from streaming time series data is one
such challenge. Streaming data requires real-time analysis and involves
messy, large-scale, intermittent, and/or volatile data. Handling these aspects
and any other challenges, will require the use of ideas from various domains
of data mining research. Matrix Profile and its various application-specific
variants have gained a lot of attention since the introduction of the algorithm
in 2016 [88]. The versatility of the Matrix Profile algorithm, coupled with
its ability to be employed in a parameter-free setting, allows to evaluate
any given time series to gain insights and extract motifs and discords, etc.
Evaluating the streaming time series data using Matrix Profile can help to
create systems that rely on edge computing to extract knowledge without
requiring a large-scale central computing infrastructure.

Time series mining using deep learning strategies has also started gaining
traction. The dominance of deep learning in other application domains has
also lured in the time series mining community. A review of the deep learning
architectures for time series mining was provided by Ismail Fawaz et al. in
2019 [85]. In 2020, two deep learning-based time series classification algo-
rithms, namely ROCKET and InceptionTime, were proposed independently,

7.2 Outlook 129



and mark the state-of-the-art in deep learning-based time series classifica-
tion algorithms [86, 87]. Overall, the deep learning-based schemes have
caught up with previously developed approaches in terms of classification
accuracy, and it is safe to assume that a lot of future research regarding
time series mining will employ deep learning architectures. Shapelet-based
time series classifiers provide simple and easily interpretable results, while
neural network-based methods lack this ability altogether. The output of
neural networks has to be presented and interpreted separately using various
techniques specifically developed for this task. The current NN-based models
do not offer simple explanations for classifying certain instances. On the
other hand, interpreting and explaining shapelet-based classifiers is trivial.
For a given time series, the presence or absence of one or more shapelets is
enough to classify the instance. Domain experts can dissect entire classifica-
tion models to verify the significance of shapelets used for model induction.
In this regard, shapelet-based time series classifiers will continue to hold
relevance until NN-based models can directly and intuitively explain their
results.

130 Chapter 7 Conclusion



Calculating
Independence Test
Statistics

A

The discriminative power of a given pattern can be determined using a
number of tests including, but not limited to, the χ2 independence test, Infor-
mation Gain values, etc. The discriminative power of a pattern tells us how
effectively it can identify the instances of a given class. This section elabo-
rates the procedure of calculating these statistics based on the occurrence
frequency of a pattern in the positive and negative class dataset splits.

Let us consider a binary class problem where the positive and negative
class dataset splits are represented by P̂ and N̂ , respectively. Let p be a
candidate pattern which occurs in P̂ and N̂ with relative frequencies fP̂ and
fN̂ , respectively.

A.1 Calculating the χ2 Test Statistic

The χ2 test statistic is calculated based on observed (Oij) and expected (Eij)
values for the given categorical variables. The formula for calculating the χ2

statistic is given below.

χ2 =
∑ (Oij − Eij)2

Eij

Observed values (Oij) correspond to the number of instances observed as
belonging to a certain categorical variable. In our case, the categorical vari-
able is the presence or absence of the candidate pattern p and the observed

131



values are the number of instances in P̂ and N̂ containing and not containing
the candidate pattern p. These values can be determined using the instance
counts of P̂ and N̂ and occurrence frequency values of the given pattern in
the respective dataset splits. Based on these values, a contingency table can
be created as follows.

Dataset split

Positive, P̂ Negative, N̂

With(p) O11 =
⌊
fP̂ × |P̂ |

⌉
O12 =

⌊
fN̂ × |N̂ |

⌉
WithOut(p) O21 = |P̂ | −O11 O22 = |N̂ | −O12

The expected values (Eij) are calculated as follows:

Eij =
∑
i∗×

∑
∗j

n
,

where
∑
i∗ = Oi1 + Oi2 represents the sum of the cells in row i and

∑
∗j =

O1j +O2j represents the sum of cells in column j.

The combined total of row and column sums equals the total number of
instances in the positive and negative dataset splits. The χ2 test statistic
determines if any relationship between the positive and negative dataset
splits exists given the frequent pattern. If the pattern occurs in both datasets,
then the χ2 value will be close to zero which signifies a relationship exists
between the two dataset splits. We can order the frequent patterns based
on their χ2 statistic and select only those for which the dataset splits do not
exhibit any mutual relationship.

A.2 Calculating the Information Gain value

Entropy (H) is a measure for establishing whether a dataset has a uniform
or varying distribution in terms of the different classes of instances. Given a

132 Appendix A Calculating Independence Test Statistics



dataset with positive and negative class instances, the entropy of the dataset
can be calculated using the following formula.

H = −
 |P̂ |
|P̂ |+ |N̂ |

× log2
|P̂ |

|P̂ |+ |N̂ |

−
 |N̂ |
|P̂ |+ |N̂ |

× log2
|N̂ |

|P̂ |+ |N̂ |


If a pattern p occurs frequently in either class of instances in the dataset,
we can create positive and negative class subsets based on the presence or
absence of this pattern in each of the instances. The entropy of these subsets
can then be calculated using the following equations.

HP̂ =−
 fP̂ × |P̂ |
fP̂ × |P̂ |+ fN̂ × |N̂ |

× log2
fP̂ × |P̂ |

fP̂ × |P̂ |+ fN̂ × |N̂ |


−

 fN̂ × |N̂ |
fP̂ × |P̂ |+ fN̂ × |N̂ |

× log2
fN̂ × |N̂ |

fP̂ × |P̂ |+ fN̂ × |N̂ |



HN̂ =−
 fN̂ × |P̂ |
fN̂ × |P̂ |+ fP̂ × |N̂ |

× log2
fN̂ × |P̂ |

fN̂ × |P̂ |+ fP̂ × |N̂ |


−

 fP̂ × |N̂ |
fN̂ × |P̂ |+ fP̂ × |N̂ |

× log2
fP̂ × |N̂ |

fN̂ × |P̂ |+ fP̂ × |N̂ |


Using the entropy values of the source dataset and the positive and negative
subsets, we can calculate the Information Gain value using the following
formula.

IG = H −

fP̂ × |P̂ |+ fN̂ × |N̂ |
|P̂ |+ |N̂ |

×HP̂ + fN̂ × |P̂ |+ fP̂ × |N̂ |
|P̂ |+ |N̂ |

×HN̂


If the frequent pattern effectively distinguishes between the two classes, the
positive and negative class subsets will have very few or no instances of the
other class, resulting in a smaller value of entropy for the two subsets. This in
turn will cause a higher Information Gain value, indicating that the pattern
is a good candidate for distinguishing between the two classes of instances.
If, however, the converse is true, then the pattern is not a good candidate.
This way, the candidates can be selected on the basis of their discriminative
power.

A.2 Calculating the Information Gain value 133





Bibliography

[1] Zaraza Friedman. “Nilometer”. In: Encyclopaedia of the History of Science,
Technology, and Medicine in Non-Western Cultures. Ed. by Helaine Selin.
Dordrecht: Springer Netherlands, 2016, pp. 3386–3404. ISBN: 978-94-007-
7747-7. DOI: 10.1007/978-94-007-7747-7_9644 (cit. on p. 1).

[2] Chotirat Ann Ratanamahatana et al. “Mining Time Series Data”. In: Data
Mining and Knowledge Discovery Handbook. Boston, MA: Springer US, 2009,
pp. 1049–1077. ISBN: 978-0-387-09823-4. DOI: 10.1007/978- 0- 387-
09823-4_56 (cit. on pp. 2, 3).

[3] Tak-chung Fu. “A Review on Time Series Data Mining”. In: Engineering
Applications of Artificial Intelligence 24.1 (Feb. 2011), pp. 164–181. ISSN:
0952-1976. DOI: 10.1016/j.engappai.2010.09.007 (cit. on pp. 2, 3, 14).

[4] Philippe Esling and Carlos Agon. “Time-Series Data Mining”. In: ACM
Computing Surveys. CSUR 45.1 (Nov. 2012), p. 34. ISSN: 0360-0300. DOI:
10.1145/2379776.2379788 (cit. on pp. 2, 3).

[5] Qiang Yang and Xindong Wu. “10 CHALLENGING PROBLEMS IN DATA
MINING RESEARCH”. In: International Journal of Information Technology &
Decision Making 5.4 (2006), pp. 597–604. ISSN: 1793-6845. DOI: 10.1142/
S0219622006002258 (cit. on p. 3).

[6] Nizar R. Mabroukeh and C. I. Ezeife. “A Taxonomy of Sequential Pattern
Mining Algorithms”. In: ACM Computing Surveys 43.1 (Nov. 2010), pp. 1–41.
ISSN: 0360-0300. DOI: 10.1145/1824795.1824798 (cit. on pp. 3, 74).

[7] Rakesh Agrawal, Christos Faloutsos, and Arun Swami. “Efficient Similarity
Search in Sequence Databases”. In: Foundations of Data Organization and
Algorithms, FODO ’93. Ed. by D.B. Lomet. Vol. 730. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer Berlin Heidelberg, Oct. 1993,
pp. 69–84. ISBN: 978-3-540-48047-1. DOI: 10.1007/3-540-57301-1_5
(cit. on pp. 4, 13, 19).

[8] Eamonn Keogh et al. “Dimensionality Reduction for Fast Similarity Search in
Large Time Series Databases”. In: Knowledge and Information Systems. KAIS
3.3 (Aug. 2001), pp. 263–286. ISSN: 0219-3116. DOI: 10.1007/PL00011669
(cit. on p. 4).

135

https://doi.org/10.1007/978-94-007-7747-7_9644
https://doi.org/10.1007/978-0-387-09823-4_56
https://doi.org/10.1007/978-0-387-09823-4_56
https://doi.org/10.1016/j.engappai.2010.09.007
https://doi.org/10.1145/2379776.2379788
https://doi.org/10.1142/S0219622006002258
https://doi.org/10.1142/S0219622006002258
https://doi.org/10.1145/1824795.1824798
https://doi.org/10.1007/3-540-57301-1_5
https://doi.org/10.1007/PL00011669


[9] Eamonn Keogh, Jessica Lin, and Ada Fu. “HOT SAX: Efficiently Finding
the Most Unusual Time Series Subsequence”. In: Fifth IEEE International
Conference on Data Mining (ICDM’05). ICDM. Houston, TX: IEEE, Nov. 2005,
pp. 226–233. ISBN: 0-7695-2278-5. DOI: 10.1109/ICDM.2005.79 (cit. on
pp. 4, 80).

[10] Jessica Lin et al. “Experiencing SAX: A Novel Symbolic Representation of
Time Series”. In: Data Mining and Knowledge Discovery. DMKD 15.2 (Oct.
2007), pp. 107–144. ISSN: 1573-756X. DOI: 10.1007/s10618-007-0064-z
(cit. on pp. 4, 31, 80, 81).

[11] Patrick Schäfer and Mikael Högqvist. “SFA: A Symbolic Fourier Approxi-
mation and Index for Similarity Search in High Dimensional Datasets”. In:
Proceedings of the 15th International Conference on Extending Database Tech-
nology. EDBT ’12. ACM, Mar. 2012, pp. 516–527. ISBN: 978-1-4503-0790-1.
DOI: 10.1145/2247596.2247656 (cit. on pp. 4, 32, 91).

[12] Christos Faloutsos, Mudumbai Ranganathan, and Yannis Manolopoulos.
“Fast Subsequence Matching in Time-Series Databases”. In: SIGMOD Records.
SIGMOD 23.2 (June 1994), pp. 419–429. ISSN: 0163-5808. DOI: 10.1145/
191843.191925 (cit. on pp. 4, 11, 19).

[13] T. Kahveci and A. Singh. “Variable Length Queries for Time Series Data”.
In: 2013 IEEE 29th International Conference on Data Engineering (ICDE).
Los Alamitos, CA, USA: IEEE Computer Society, Apr. 2001, p. 0273. DOI:
10.1109/ICDE.2001.914838 (cit. on pp. 4, 11, 19).

[14] Kaushik Chakrabarti et al. “Locally Adaptive Dimensionality Reduction for
Indexing Large Time Series Databases”. In: ACM Transactions on Database
Systems 27.2 (June 1, 2002), pp. 188–228. ISSN: 0362-5915. DOI: 10.1145/
568518.568520 (cit. on pp. 4, 11, 17).

[15] I. Popivanov and R. J. Miller. “Similarity Search over Time-Series Data Using
Wavelets”. In: Proceedings 18th International Conference on Data Engineering.
Los Alamitos, CA, USA: IEEE Computer Society, Mar. 2002, p. 0212. DOI:
10.1109/ICDE.2002.994711 (cit. on pp. 4, 11, 19).

[16] Donald J. Berndt and James Clifford. “Using Dynamic Time Warping to Find
Patterns in Time Series”. In: Proceedings of the 3rd International Conference
on Knowledge Discovery and Data Mining. AAAIWS’94. Seattle, WA: AAAI
Press, July 1994, pp. 359–370. DOI: 10.5555/3000850.3000887 (cit. on
pp. 4, 7, 19).

136 Bibliography

https://doi.org/10.1109/ICDM.2005.79
https://doi.org/10.1007/s10618-007-0064-z
https://doi.org/10.1145/2247596.2247656
https://doi.org/10.1145/191843.191925
https://doi.org/10.1145/191843.191925
https://doi.org/10.1109/ICDE.2001.914838
https://doi.org/10.1145/568518.568520
https://doi.org/10.1145/568518.568520
https://doi.org/10.1109/ICDE.2002.994711
https://doi.org/10.5555/3000850.3000887


[17] Eamonn Keogh and Michael J Pazzani. “An Enhanced Representation of
Time Series Which Allows Fast and Accurate Classification, Clustering and
Relevance Feedback”. In: Proceedings of the Fourth International Conference
on Knowledge Discovery and Data Mining. KDD-98. New York, NY: AAAI
Press, 1998, pp. 239–243. DOI: 10.5555/3000292.3000335 (cit. on pp. 4,
11, 12).

[18] Pierre Geurts. “Pattern Extraction for Time Series Classification”. In: Princi-
ples of Data Mining and Knowledge Discovery. Ed. by Luc De Raedt and Arno
Siebes. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2001, pp. 115–127. ISBN: 978-3-540-44794-8. DOI: 10.1007/3-540-44794-
6_10 (cit. on pp. 4, 11).

[19] Anne Debregeas and Georges Hebrail. “Interactive Interpretation of Koho-
nen Maps Applied to Curves”. In: (1998), p. 5 (cit. on pp. 4, 11).

[20] John Aach and George M. Church. “Aligning Gene Expression Time Series
with Time Warping Algorithms”. In: Bioinformatics 17.6 (June 1, 2001),
pp. 495–508. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/17.6.495
(cit. on pp. 4, 11).

[21] K. Kalpakis, D. Gada, and V. Puttagunta. “Distance Measures for Effective
Clustering of ARIMA Time-Series”. In: Proceedings 2001 IEEE International
Conference on Data Mining. Nov. 2001, pp. 273–280. DOI: 10.1109/ICDM.
2001.989529 (cit. on pp. 4, 11).

[22] Valery Guralnik and Jaideep Srivastava. “Event Detection from Time Series
Data”. In: Proceedings of the Fifth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. KDD ’99. New York, NY, USA:
Association for Computing Machinery, Aug. 1, 1999, pp. 33–42. ISBN: 978-
1-58113-143-7. DOI: 10.1145/312129.312190 (cit. on pp. 4, 12).

[23] C. Shahabi, X. Tian, and W. Zhao. “TSA-Tree: A Wavelet-Based Approach to
Improve the Efficiency of Multi-Level Surprise and Trend Queries on Time-
Series Data”. In: Proceedings. 12th International Conference on Scientific and
Statistica Database Management. July 2000, pp. 55–68. DOI: 10.1109/SSDM.
2000.869778 (cit. on pp. 4, 12, 19).

[24] Eamonn Keogh, Stefano Lonardi, and Bill ’Yuan-chi’ Chiu. “Finding Sur-
prising Patterns in a Time Series Database in Linear Time and Space”. In:
Proceedings of the Eighth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. KDD ’02. New York, NY, USA: Association
for Computing Machinery, July 23, 2002, pp. 550–556. ISBN: 978-1-58113-
567-1. DOI: 10.1145/775047.775128 (cit. on pp. 4, 12).

Bibliography 137

https://doi.org/10.5555/3000292.3000335
https://doi.org/10.1007/3-540-44794-6_10
https://doi.org/10.1007/3-540-44794-6_10
https://doi.org/10.1093/bioinformatics/17.6.495
https://doi.org/10.1109/ICDM.2001.989529
https://doi.org/10.1109/ICDM.2001.989529
https://doi.org/10.1145/312129.312190
https://doi.org/10.1109/SSDM.2000.869778
https://doi.org/10.1109/SSDM.2000.869778
https://doi.org/10.1145/775047.775128


[25] J. J. Van Wijk and E. R. Van Selow. “Cluster and Calendar Based Visu-
alization of Time Series Data”. In: Proceedings 1999 IEEE Symposium on
Information Visualization (InfoVis’99). Oct. 1999, pp. 4–9. DOI: 10.1109/
INFVIS.1999.801851 (cit. on pp. 4, 11).

[26] Piotr Indyk, Nick Koudas, and S. Muthukrishnan. “Identifying representative
trends in massive time series data sets using sketches”. In: Proceedings
of the 26th International Conference on Very Large Data Bases, VLDB’00.
Proceedings of the 26th International Conference on Very Large Data Bases,
VLDB’00. 2000, pp. 363–372. ISBN: 1-55860-715-3 (cit. on pp. 4, 11).

[27] H. Sakoe and S. Chiba. “Dynamic Programming Algorithm Optimization
for Spoken Word Recognition”. In: IEEE Transactions on Acoustics, Speech,
and Signal Processing 26.1 (Feb. 1978), pp. 43–49. ISSN: 0096-3518. DOI:
10.1109/TASSP.1978.1163055 (cit. on pp. 5, 21, 35).

[28] F. Itakura. “Minimum Prediction Residual Principle Applied to Speech Recog-
nition”. In: IEEE Transactions on Acoustics, Speech, and Signal Processing
23.1 (Feb. 1975), pp. 67–72. ISSN: 0096-3518. DOI: 10.1109/TASSP.1975.
1162641 (cit. on pp. 5, 21, 35).

[29] Byoung-Kee Yi, H.V. Jagadish, and Christos Faloutsos. “Efficient Retrieval
of Similar Time Sequences under Time Warping”. In: Proceedings 14th
International Conference on Data Engineering. ICDE ’98. IEEE Comput. Soc,
Feb. 1998, pp. 201–208. ISBN: 0-8186-8289-2. DOI: 10.1109/ICDE.1998.
655778 (cit. on pp. 5, 21, 35).

[30] Sang-Wook Kim, Sanghyun Park, and Wesley W. Chu. “An Index-Based
Approach for Similarity Search Supporting Time Warping in Large Se-
quence Databases”. In: Proceedings 17th International Conference on Data
Engineering. ICDE ’01. IEEE Comput. Soc, Apr. 2001, pp. 607–614. ISBN:
0-7695-1001-9. DOI: 10.1109/ICDE.2001.914875 (cit. on pp. 5, 21, 35).

[31] Eamonn Keogh. “Exact Indexing of Dynamic Time Warping”. In: Proceedings
of the 28th International Conference on Very Large Data Bases. VLDB ’02.
Aug. 2002, pp. 406–417 (cit. on pp. 5, 21).

[32] Lexiang Ye and Eamonn Keogh. “Time Series Shapelets: A New Primitive
for Data Mining”. In: Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’09. ACM Press,
June 2009, pp. 947–956. ISBN: 978-1-60558-495-9. DOI: 10.1145/1557019.
1557122 (cit. on pp. 5, 7, 24, 25, 29, 55, 56).

138 Bibliography

https://doi.org/10.1109/INFVIS.1999.801851
https://doi.org/10.1109/INFVIS.1999.801851
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1109/TASSP.1975.1162641
https://doi.org/10.1109/TASSP.1975.1162641
https://doi.org/10.1109/ICDE.1998.655778
https://doi.org/10.1109/ICDE.1998.655778
https://doi.org/10.1109/ICDE.2001.914875
https://doi.org/10.1145/1557019.1557122
https://doi.org/10.1145/1557019.1557122


[33] Jason Lines et al. “A Shapelet Transform for Time Series Classification”. In:
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’12. ACM, Aug. 2012, pp. 289–297. ISBN:
978-1-4503-1462-6. DOI: 10.1145/2339530.2339579 (cit. on pp. 5, 25,
92).

[34] Thanawin Rakthanmanon and Eamonn Keogh. “Fast Shapelets: A Scalable
Algorithm for Discovering Time Series Shapelets”. In: Proceedings of the
2013 SIAM International Conference on Data Mining. SDM. Society for
Industrial and Applied Mathematics, May 2013, pp. 668–676. ISBN: 978-
1-61197-283-2. DOI: 10.1137/1.9781611972832.74 (cit. on pp. 5, 31, 56,
73).

[35] Jessica Lin, Rohan Khade, and Yuan Li. “Rotation-Invariant Similarity in
Time Series Using Bag-of-Patterns Representation”. In: Journal of Intelligent
Information Systems 39.2 (Oct. 2012), pp. 287–315. ISSN: 1573-7675. DOI:
10.1007/s10844-012-0196-5 (cit. on pp. 5, 32, 73, 103).

[36] Pavel Senin and Sergey Malinchik. “SAX-VSM: Interpretable Time Series
Classification Using SAX and Vector Space Model”. In: 13th International
Conference on Data Mining. ICDM ’13. IEEE, Dec. 2013, pp. 1175–1180.
ISBN: 978-0-7695-5108-1. DOI: 10.1109/ICDM.2013.52 (cit. on pp. 5, 32,
73, 103).

[37] Patrick Schäfer. “The BOSS Is Concerned with Time Series Classification in
the Presence of Noise”. In: Data Mining and Knowledge Discovery. DMKD
29.6 (Nov. 2015), pp. 1505–1530. ISSN: 1573-756X. DOI: 10.1007/s10618-
014-0377-7 (cit. on pp. 5, 32, 73, 103).

[38] Patrick Schäfer. “Scalable Time Series Classification”. In: Data Mining and
Knowledge Discovery. DMKD 30.5 (Sept. 2016), pp. 1273–1298. ISSN: 1573-
756X. DOI: 10.1007/s10618-015-0441-y (cit. on pp. 5, 32, 73, 90, 103).

[39] Patrick Schäfer and Ulf Leser. “Fast and Accurate Time Series Classifi-
cation with WEASEL”. In: Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management - CIKM ’17. New York, New
York, USA: ACM Press, 2017, pp. 637–646. ISBN: 978-1-4503-4918-5. DOI:
10.1145/3132847.3132980 (cit. on pp. 5, 32).

[40] Christian Blum and Andrea Roli. “Metaheuristics in Combinatorial Op-
timization: Overview and Conceptual Comparison”. In: ACM Computing
Surveys. CSUR 35.3 (Sept. 2003), pp. 268–308. ISSN: 0360-0300. DOI:
10.1145/937503.937505 (cit. on p. 6).

Bibliography 139

https://doi.org/10.1145/2339530.2339579
https://doi.org/10.1137/1.9781611972832.74
https://doi.org/10.1007/s10844-012-0196-5
https://doi.org/10.1109/ICDM.2013.52
https://doi.org/10.1007/s10618-014-0377-7
https://doi.org/10.1007/s10618-014-0377-7
https://doi.org/10.1007/s10618-015-0441-y
https://doi.org/10.1145/3132847.3132980
https://doi.org/10.1145/937503.937505


[41] Leonora Bianchi et al. “A Survey on Metaheuristics for Stochastic Combina-
torial Optimization”. In: Natural Computing 8.2 (June 1, 2009), pp. 239–
287. ISSN: 1572-9796. DOI: 10.1007/s11047-008-9098-4 (cit. on p. 6).

[42] Franz Rothlauf. Design of Modern Heuristics. Natural Computing Series.
Springer-Verlag Berlin Heidelberg, July 15, 2011. ISBN: 978-3-540-72962-4.
DOI: 10.1007/978-3-540-72962-4 (cit. on p. 6).

[43] Sean Luke. Essentials of Metaheuristics. 2nd ed. 2013. ISBN: 978-1-300-
54962-8 (cit. on p. 6).

[44] Zhigang Zheng et al. “An Efficient GA-Based Algorithm for Mining Negative
Sequential Patterns”. In: Advances in Knowledge Discovery and Data Min-
ing, PAKDD 2010. Vol. 6118. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, June 2010, pp. 262–273. ISBN:
978-3-642-13657-3. DOI: 10.1007/978-3-642-13657-3_30 (cit. on p. 6).

[45] Debahuti Mishra et al. “Genetic Algorithm Based Fuzzy Frequent Pattern
Mining from Gene Expression Data”. In: Soft Computing Techniques in Vision
Science. Vol. 395. Studies in Computational Intelligence. Springer Berlin
Heidelberg, 2012, pp. 1–14. ISBN: 978-3-642-25507-6. DOI: 10.1007/978-
3-642-25507-6_1 (cit. on p. 6).

[46] Zakaria Suliman Zubi and Marim Aboajela Emsaed. “Sequence Mining in
DNA Chips Data for Diagnosing Cancer Patients”. In: Proceedings of the
10th International Conference on Applied Computer Science. ACS ’10. 2010,
pp. 139–151. ISBN: 978-960-474-231-8 (cit. on p. 6).

[47] M. Martínez-Ballesteros et al. “An Evolutionary Algorithm to Discover Quan-
titative Association Rules in Multidimensional Time Series”. In: Soft Com-
puting 15.10 (Oct. 2011), pp. 2065–2084. ISSN: 1433-7479. DOI: 10.1007/
s00500-011-0705-4 (cit. on p. 6).

[48] Meinard Müller. “Dynamic Time Warping”. In: Information Retrieval for
Music and Motion. Springer Berlin Heidelberg, 2007, pp. 69–84. ISBN: 978-
3-540-74048-3. DOI: 10.1007/978-3-540-74048-3_4 (cit. on p. 7).

[49] Johannes Fischer, Volker Heun, and Stefan Kramer. “Fast Frequent String
Mining Using Suffix Arrays”. In: 5th International Conference on Data Mining.
ICDM ’05. IEEE, Nov. 2005, pp. 609–612. ISBN: 0-7695-2278-5. DOI: 10.
1109/ICDM.2005.62 (cit. on pp. 8, 73, 75, 76).

[50] Johannes Fischer, Volker Heun, and Stefan Kramer. “Optimal String Min-
ing Under Frequency Constraints”. In: Knowledge Discovery in Databases,
PKDD 2006. Vol. 4213. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, Sept. 2006, pp. 139–150. ISBN: 978-3-540-46048-0. DOI: 10.
1007/11871637_17 (cit. on pp. 8, 73, 75–77).

140 Bibliography

https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1007/978-3-540-72962-4
https://doi.org/10.1007/978-3-642-13657-3_30
https://doi.org/10.1007/978-3-642-25507-6_1
https://doi.org/10.1007/978-3-642-25507-6_1
https://doi.org/10.1007/s00500-011-0705-4
https://doi.org/10.1007/s00500-011-0705-4
https://doi.org/10.1007/978-3-540-74048-3_4
https://doi.org/10.1109/ICDM.2005.62
https://doi.org/10.1109/ICDM.2005.62
https://doi.org/10.1007/11871637_17
https://doi.org/10.1007/11871637_17


[51] Jasbir Dhaliwal, Simon J. Puglisi, and Andrew Turpin. “Practical Efficient
String Mining”. In: IEEE Transactions on Knowledge and Data Engineering.
TKDE 24.4 (Apr. 2012), pp. 735–744. ISSN: 1041-4347. DOI: 10.1109/
TKDE.2010.242 (cit. on pp. 8, 74–76).

[52] Romain Briandet, E. Katherine Kemsley, and Reginald H. Wilson. “Discrim-
ination of Arabica and Robusta in Instant Coffee by Fourier Transform
Infrared Spectroscopy and Chemometrics”. In: Journal of Agricultural and
Food Chemistry 44.1 (Jan. 18, 1996), pp. 170–174. ISSN: 0021-8561. DOI:
10.1021/jf950305a (cit. on p. 13).

[53] Eamonn Keogh and Shruti Kasetty. “On the Need for Time Series Data
Mining Benchmarks: A Survey and Empirical Demonstration”. In: Data
Mining and Knowledge Discovery. DMKD 7.4 (Oct. 2003), pp. 349–371. ISSN:
1573-756X. DOI: 10.1023/A:1024988512476 (cit. on p. 13).

[54] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017. URL:
http://archive.ics.uci.edu/ml (cit. on p. 13).

[55] Hoang Anh Dau et al. UCR Time Series Classification Archive. Oct. 2018. URL:
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/ (cit. on
pp. 13, 14, 23, 46, 64, 91, 114, 125).

[56] Hoang Anh Dau et al. The UCR Time Series Archive. Sept. 8, 2019. arXiv:
1810.07758 [cs, stat]. URL: http://arxiv.org/abs/1810.07758
(visited on 09/27/2020) (cit. on pp. 13, 91, 114).

[57] Anthony Bagnall et al. UEA Time Series Repository. URL: https://github.
com/uea-machine-learning/tsml (cit. on pp. 13, 14, 64, 90, 92, 114,
115).

[58] Eamonn Keogh et al. UCR Time Series Classification Archive. 2014. URL:
http://www.cs.ucr.edu/~eamonn/time_series_data/ (cit. on pp. 14,
36, 44, 50, 64).

[59] Yanping Chen et al. UCR Time Series Classification Archive. July 2015. URL:
http://www.cs.ucr.edu/~eamonn/time_series_data/ (cit. on p. 14).

[60] Mark Hall et al. “The WEKA Data Mining Software”. In: SIGKDD Explorations
11.1 (2009), pp. 10–18 (cit. on p. 14).

[61] T. Warren Liao. “Clustering of Time Series Data—a Survey”. In: Pattern
Recognition. PatCog 38.11 (Nov. 2005), pp. 1857–1874. ISSN: 0031-3203.
DOI: 10.1016/j.patcog.2005.01.025 (cit. on p. 14).

Bibliography 141

https://doi.org/10.1109/TKDE.2010.242
https://doi.org/10.1109/TKDE.2010.242
https://doi.org/10.1021/jf950305a
https://doi.org/10.1023/A:1024988512476
http://archive.ics.uci.edu/ml
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://arxiv.org/abs/1810.07758
http://arxiv.org/abs/1810.07758
https://github.com/uea-machine-learning/tsml
https://github.com/uea-machine-learning/tsml
http://www.cs.ucr.edu/~eamonn/time_series_data/
http://www.cs.ucr.edu/~eamonn/time_series_data/
https://doi.org/10.1016/j.patcog.2005.01.025


[62] Xiaoyue Wang et al. “Experimental Comparison of Representation Methods
and Distance Measures for Time Series Data”. In: Data Mining and Knowl-
edge Discovery. DMKD 26.2 (Mar. 2013), pp. 275–309. ISSN: 1573-756X.
DOI: 10.1007/s10618-012-0250-5 (cit. on pp. 14, 19).

[63] Joan Serrà and Josep Lluis Arcos. “An Empirical Evaluation of Similar-
ity Measures for Time Series Classification”. In: Knowledge-Based Systems.
KnoSys 67 (Sept. 2014), pp. 305–314. ISSN: 0950-7051. DOI: 10.1016/j.
knosys.2014.04.035 (cit. on p. 14).

[64] Dina Q. Goldin and Paris C. Kanellakis. “On Similarity Queries for Time-
Series Data: Constraint Specification and Implementation”. In: Principles
and Practice of Constraint Programming — CP ’95. Ed. by Ugo Montanari
and Francesca Rossi. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 1995, pp. 137–153. ISBN: 978-3-540-44788-7. DOI: 10.1007/3-
540-60299-2_9 (cit. on p. 16).

[65] Rakesh Agrawal et al. “Fast Similarity Search in the Presence of Noise,
Scaling, and Translation in Time-Series Databases”. In: Proceedings of the
21th International Conference on Very Large Data Bases. VLDB ’95. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., Sept. 11, 1995,
pp. 490–501. ISBN: 978-1-55860-379-0 (cit. on p. 16).

[66] Kin-Pong Chan and Ada Wai-Chee Fu. “Efficient Time Series Matching by
Wavelets”. In: Proceedings 15th International Conference on Data Engineering
(Cat. No.99CB36337). Proceedings 15th International Conference on Data
Engineering (Cat. No.99CB36337). Mar. 1999, pp. 126–133. DOI: 10.1109/
ICDE.1999.754915 (cit. on p. 19).

[67] Changzhou Wang and X. Sean Wang. “Supporting Content-Based Searches
on Time Series via Approximation”. In: Proceedings. 12th International Con-
ference on Scientific and Statistica Database Management. Proceedings. 12th
International Conference on Scientific and Statistica Database Management.
July 2000, pp. 69–81. DOI: 10.1109/SSDM.2000.869779 (cit. on p. 19).

[68] Yi-Leh Wu, Divyakant Agrawal, and Amr El Abbadi. “A Comparison of DFT
and DWT Based Similarity Search in Time-Series Databases”. In: Proceed-
ings of the Ninth International Conference on Information and Knowledge
Management. CIKM ’00. New York, NY, USA: Association for Computing
Machinery, Nov. 6, 2000, pp. 488–495. ISBN: 978-1-58113-320-2. DOI:
10.1145/354756.354857 (cit. on p. 19).

142 Bibliography

https://doi.org/10.1007/s10618-012-0250-5
https://doi.org/10.1016/j.knosys.2014.04.035
https://doi.org/10.1016/j.knosys.2014.04.035
https://doi.org/10.1007/3-540-60299-2_9
https://doi.org/10.1007/3-540-60299-2_9
https://doi.org/10.1109/ICDE.1999.754915
https://doi.org/10.1109/ICDE.1999.754915
https://doi.org/10.1109/SSDM.2000.869779
https://doi.org/10.1145/354756.354857


[69] Yuhan Cai and Raymond Ng. “Indexing Spatio-Temporal Trajectories with
Chebyshev Polynomials”. In: Proceedings of the 2004 ACM SIGMOD In-
ternational Conference on Management of Data. SIGMOD ’04. New York,
NY, USA: Association for Computing Machinery, 2004, pp. 599–610. ISBN:
1-58113-859-8. DOI: 10.1145/1007568.1007636 (cit. on p. 19).

[70] P. Marteau. “Time Warp Edit Distance with Stiffness Adjustment for Time
Series Matching”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 31.2 (Feb. 2009), pp. 306–318. ISSN: 1939-3539. DOI: 10.1109/
TPAMI.2008.76 (cit. on p. 19).

[71] Lei Chen and Raymond Ng. “On the Marriage of Lp-Norms and Edit Dis-
tance”. In: Proceedings of the Thirtieth International Conference on Very Large
Data Bases - Volume 30. VLDB ’04. Toronto, Canada: VLDB Endowment,
Aug. 31, 2004, pp. 792–803. ISBN: 978-0-12-088469-8 (cit. on p. 19).

[72] Joan Serrà and Josep Lluís Arcos. “A Competitive Measure to Assess the
Similarity between Two Time Series”. In: Case-Based Reasoning Research and
Development. Ed. by Belén Díaz Agudo and Ian Watson. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2012, pp. 414–427. ISBN:
978-3-642-32986-9. DOI: 10.1007/978-3-642-32986-9_31 (cit. on p. 19).

[73] Stephan Spiegel, Brijnesh-Johannes Jain, and Sahin Albayrak. “Fast Time
Series Classification Under Lucky Time Warping Distance”. In: Proceedings
of the 29th Annual ACM Symposium on Applied Computing. SAC ’14. ACM,
Mar. 2014, pp. 71–78. ISBN: 978-1-4503-2469-4. DOI: 10.1145/2554850.
2554885 (cit. on pp. 19, 21, 35, 36).

[74] Christian Hundt et al. “GEM: An Elastic and Translation-Invariant Similarity
Measure with Automatic Trend Adjustment”. In: Proceedings of the 29th
Annual ACM Symposium on Applied Computing. SAC ’14. ACM, Mar. 2014,
pp. 105–112. ISBN: 978-1-4503-2469-4. DOI: 10.1145/2554850.2555041
(cit. on pp. 19, 22, 23).

[75] Eamonn Keogh and Chotirat Ann Ratanamahatana. “Exact Indexing of
Dynamic Time Warping”. In: Knowledge and Information Systems. KAIS 7.3
(Mar. 2005), pp. 358–386. ISSN: 0219-3116. DOI: 10.1007/s10115-004-
0154-9 (cit. on pp. 21, 35).

[76] Eamonn Keogh and Michael J. Pazzani. “Derivative Dynamic Time Warping”.
In: Proceedings of the 2001 SIAM International Conference on Data Mining.
SDM. Society for Industrial and Applied Mathematics, Apr. 2001, pp. 1–11.
ISBN: 978-1-61197-271-9. DOI: 10.1137/1.9781611972719.1 (cit. on
p. 21).

Bibliography 143

https://doi.org/10.1145/1007568.1007636
https://doi.org/10.1109/TPAMI.2008.76
https://doi.org/10.1109/TPAMI.2008.76
https://doi.org/10.1007/978-3-642-32986-9_31
https://doi.org/10.1145/2554850.2554885
https://doi.org/10.1145/2554850.2554885
https://doi.org/10.1145/2554850.2555041
https://doi.org/10.1007/s10115-004-0154-9
https://doi.org/10.1007/s10115-004-0154-9
https://doi.org/10.1137/1.9781611972719.1


[77] Young-Seon Jeong, Myong K. Jeong, and Olufemi A. Omitaomu. “Weighted
Dynamic Time Warping for Time Series Classification”. In: Pattern Recog-
nition. PatCog 44.9 (Sept. 2011), pp. 2231–2240. ISSN: 0031-3203. DOI:
10.1016/j.patcog.2010.09.022 (cit. on p. 21).

[78] Abdullah Mueen et al. “AWarp: Fast Warping Distance for Sparse Time
Series”. In: 16th International Conference on Data Mining. ICDM ’16. IEEE,
Dec. 2016, pp. 350–359. ISBN: 978-1-5090-5473-2. DOI: 10.1109/ICDM.
2016.0046 (cit. on p. 21).

[79] Stan Salvador and Philip Chan. “Toward Accurate Dynamic Time Warping
in Linear Time and Space”. In: Intelligent Data Analysis 11.5 (Oct. 2007),
pp. 561–580. ISSN: 1088-467X. DOI: 10.3233/IDA-2007-11508 (cit. on
pp. 21, 35).

[80] Hui Ding et al. “Querying and Mining of Time Series Data: Experimental
Comparison of Representations and Distance Measures”. In: Proceedings of
the VLDB Endowment 1.2 (Aug. 2008), pp. 1542–1552. ISSN: 2150-8097.
DOI: 10.14778/1454159.1454226 (cit. on pp. 24, 35).

[81] Abdullah Mueen, Eamonn Keogh, and Neal Young. “Logical-Shapelets: An
Expressive Primitive for Time Series Classification”. In: Proceedings of the
17th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. KDD ’11. ACM Press, Aug. 2011, pp. 1154–1162. ISBN: 978-1-
4503-0813-7. DOI: 10.1145/2020408.2020587 (cit. on pp. 31, 56).

[82] Xavier Renard et al. “Random-Shapelet: An Algorithm for Fast Shapelet
Discovery”. In: 2015 IEEE International Conference on Data Science and
Advanced Analytics. DSAA ’15. IEEE, Oct. 2015, pp. 1–10. ISBN: 978-1-4673-
8273-1. DOI: 10.1109/DSAA.2015.7344782 (cit. on p. 31).

[83] Thach Le Nguyen, Severin Gsponer, and Georgiana Ifrim. “Time Series
Classification by Sequence Learning in All-Subsequence Space”. In: 2017
IEEE 33rd International Conference on Data Engineering (ICDE). IEEE, Apr.
2017, pp. 947–958. ISBN: 978-1-5090-6543-1. DOI: 10.1109/ICDE.2017.
142 (cit. on pp. 32, 103).

[84] Thach Le Nguyen et al. “Interpretable Time Series Classification Using Linear
Models and Multi-Resolution Multi-Domain Symbolic Representations”. In:
Data Mining and Knowledge Discovery 33.4 (May 21, 2019), pp. 1183–1222.
ISSN: 1573-756X. DOI: 10.1007/s10618-019-00633-3 (cit. on pp. 32,
103).

144 Bibliography

https://doi.org/10.1016/j.patcog.2010.09.022
https://doi.org/10.1109/ICDM.2016.0046
https://doi.org/10.1109/ICDM.2016.0046
https://doi.org/10.3233/IDA-2007-11508
https://doi.org/10.14778/1454159.1454226
https://doi.org/10.1145/2020408.2020587
https://doi.org/10.1109/DSAA.2015.7344782
https://doi.org/10.1109/ICDE.2017.142
https://doi.org/10.1109/ICDE.2017.142
https://doi.org/10.1007/s10618-019-00633-3


[85] Hassan Ismail Fawaz et al. “Deep Learning for Time Series Classification:
A Review”. In: Data Mining and Knowledge Discovery 33.4 (July 1, 2019),
pp. 917–963. ISSN: 1573756X. DOI: 10.1007/s10618-019-00619-1. arXiv:
1809.04356 (cit. on pp. 33, 129).

[86] Angus Dempster, François Petitjean, and Geoffrey I. Webb. “ROCKET: Ex-
ceptionally Fast and Accurate Time Series Classification Using Random
Convolutional Kernels”. In: Data Mining and Knowledge Discovery (July 13,
2020), pp. 1–42. ISSN: 1573756X. DOI: 10.1007/s10618-020-00701-z.
arXiv: 1910.13051 (cit. on pp. 33, 130).

[87] Hassan Ismail Fawaz et al. “InceptionTime: Finding AlexNet for Time Series
Classification”. In: Data Mining and Knowledge Discovery 34.6 (Nov. 1, 2020),
pp. 1936–1962. ISSN: 1573-756X. DOI: 10.1007/s10618-020-00710-y
(cit. on pp. 33, 130).

[88] Chin-chia Michael Yeh et al. “Matrix Profile 1: All Pairs Similarity Joins for
Time Series: A Unifying View That Includes Motifs, Discords and Shapelets”.
In: 16th International Conference on Data Mining. ICDM ’16. IEEE, Dec. 2016,
pp. 1317–1322. ISBN: 978-1-5090-5473-2. DOI: 10.1109/ICDM.2016.0179
(cit. on pp. 34, 129).

[89] Chin-chia Michael Yeh et al. “Time Series Joins, Motifs, Discords and
Shapelets: A Unifying View That Exploits the Matrix Profile”. In: Data
Mining and Knowledge Discovery 32.1 (Jan. 24, 2018), pp. 83–123. ISSN:
1384-5810. DOI: 10.1007/s10618-017-0519-9 (cit. on p. 34).

[90] Anthony Bagnall and Jason Lines. “An Experimental Evaluation of Nearest
Neighbour Time Series Classification”. In: CoRR abs/1406.4 (June 2014),
p. 7. arXiv: 1406.4757 (cit. on p. 35).

[91] Chotirat Ann Ratanamahatana and Eamonn Keogh. “Making Time-Series
Classification More Accurate Using Learned Constraints”. In: Proceedings
of the 2004 SIAM International Conference on Data Mining. SDM. Society
for Industrial and Applied Mathematics, Apr. 2004, pp. 11–22. ISBN: 978-1-
61197-274-0. DOI: 10.1137/1.9781611972740.2 (cit. on p. 35).

[92] Xiaopeng Xi et al. “Fast Time Series Classification Using Numerosity Re-
duction”. In: Proceedings of the 23rd International Conference on Machine
Learning. ICML ’06. ACM Press, June 2006, pp. 1033–1040. ISBN: 1-59593-
383-2. DOI: 10.1145/1143844.1143974 (cit. on p. 35).

Bibliography 145

https://doi.org/10.1007/s10618-019-00619-1
https://arxiv.org/abs/1809.04356
https://doi.org/10.1007/s10618-020-00701-z
https://arxiv.org/abs/1910.13051
https://doi.org/10.1007/s10618-020-00710-y
https://doi.org/10.1109/ICDM.2016.0179
https://doi.org/10.1007/s10618-017-0519-9
https://arxiv.org/abs/1406.4757
https://doi.org/10.1137/1.9781611972740.2
https://doi.org/10.1145/1143844.1143974


[93] Krisztian Buza, Alexandros Nanopoulos, and Lars Schmidt-Thieme. “IN-
SIGHT: Efficient and Effective Instance Selection for Time-Series Classifica-
tion”. In: Advances in Knowledge Discovery and Data Mining. Ed. by Joshua
Zhexue Huang, Longbing Cao, and Jaideep Srivastava. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2011, pp. 149–160. ISBN:
978-3-642-20847-8. DOI: 10.1007/978-3-642-20847-8_13 (cit. on p. 35).

[94] Zhengzheng Xing, Jian Pei, and Philip S. Yu. “Early Prediction on Time Se-
ries: A Nearest Neighbor Approach”. In: Proceedings of the 21st International
Joint Conference on Artificial Intelligence. IJCAI ’09. July 2009, pp. 1297–
1302 (cit. on p. 36).

[95] Scott MacLean and George Labahn. “Elastic Matching in Linear Time and
Constant Space”. In: International Workshop on Document Analysis Systems.
2010, p. 4 (cit. on p. 36).

[96] Gustavo E.A.P.A. Batista, Xiaoyue Wang, and Eamonn Keogh. “A Complexity-
Invariant Distance Measure for Time Series”. In: Proceedings of the 2011
SIAM International Conference on Data Mining. SDM. Society for Industrial
and Applied Mathematics, Apr. 2011, pp. 699–710. ISBN: 978-1-61197-281-
8. DOI: 10.1137/1.9781611972818.60 (cit. on p. 45).

[97] Josif Grabocka et al. “Learning Time-Series Shapelets”. In: Proceedings of the
20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. KDD ’14. ACM, Aug. 2014, pp. 392–401. ISBN: 978-1-4503-2956-9.
DOI: 10.1145/2623330.2623613 (cit. on p. 56).

[98] Abdullah Mueen et al. “Exact Discovery of Time Series Motifs”. In: Pro-
ceedings of the 2009 SIAM International Conference on Data Mining. SDM.
Society for Industrial and Applied Mathematics, Apr. 2009, pp. 473–484.
ISBN: 978-1-61197-279-5. DOI: 10.1137/1.9781611972795.41 (cit. on
p. 56).

[99] L. K. Hansen and P. Salamon. “Neural Network Ensembles”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 12.10 (Oct. 1, 1990),
pp. 993–1001. ISSN: 0162-8828. DOI: 10.1109/34.58871 (cit. on p. 58).

[100] Leo Breiman. “Bagging Predictors”. In: Machine Learning. ML 24.2 (Aug.
1996), pp. 123–140. ISSN: 1573-0565. DOI: 10.1007/BF00058655 (cit. on
p. 59).

[101] Yoav Freund. “Boosting a Weak Learning Algorithm by Majority”. In: Infor-
mation and Computation 121.2 (Sept. 1995), pp. 256–285. ISSN: 0890-5401.
DOI: 10.1006/inco.1995.1136 (cit. on pp. 60, 92, 115).

146 Bibliography

https://doi.org/10.1007/978-3-642-20847-8_13
https://doi.org/10.1137/1.9781611972818.60
https://doi.org/10.1145/2623330.2623613
https://doi.org/10.1137/1.9781611972795.41
https://doi.org/10.1109/34.58871
https://doi.org/10.1007/BF00058655
https://doi.org/10.1006/inco.1995.1136


[102] Yasushi Sakurai, Spiros Papadimitriou, and Christos Faloutsos. “BRAID:
Stream Mining through Group Lag Correlations”. In: Proceedings of the 2005
ACM SIGMOD International Conference on Management of Data. SIGMOD ’05.
New York, NY, USA: Association for Computing Machinery, June 14, 2005,
pp. 599–610. ISBN: 978-1-59593-060-6. DOI: 10.1145/1066157.1066226
(cit. on p. 62).

[103] J Demšar. “Statistical Comparisons of Classifiers over Multiple Data Sets”.
In: Journal of Machine Learning Research. JMLR 7 (Dec. 2006), pp. 1–30.
ISSN: 1533-7928 (cit. on pp. 65, 92, 115).

[104] Hannu Toivonen. “Frequent Pattern”. In: Encyclopedia of Machine Learning
and Data Mining. Ed. by Claude Sammut and Geoffrey I. Webb. Boston, MA:
Springer US, 2017, pp. 524–529. ISBN: 978-1-4899-7687-1. DOI: 10.1007/
978-1-4899-7687-1_318 (cit. on p. 84).

[105] Leo Breiman. “Random Forests”. In: Machine Learning. ML 45.1 (Oct. 2001),
pp. 5–32. ISSN: 1573-0565. DOI: 10.1023/A:1010933404324 (cit. on pp. 92,
115).

[106] Pierre Geurts, Damien Ernst, and Louis Wehenkel. “Extremely Randomized
Trees”. In: Machine Learning 63.1 (Apr. 2006), pp. 3–42. ISSN: 1573-0565.
DOI: 10.1007/s10994-006-6226-1 (cit. on pp. 92, 115).

[107] Jon Hills et al. “Classification of Time Series by Shapelet Transformation”.
In: Data Mining and Knowledge Discovery. DMKD 28.4 (July 2014), pp. 851–
881. ISSN: 1573-756X. DOI: 10.1007/s10618-013-0322-1 (cit. on pp. 92,
105).

[108] Toon Calders, Christophe Rigotti, and Jean-François Boulicaut. “A Survey on
Condensed Representations for Frequent Sets”. In: Constraint-Based Mining
and Inductive Databases. Ed. by Jean-François Boulicaut, Luc De Raedt,
and Heikki Mannila. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 64–80. ISBN: 978-3-540-31351-9 (cit. on p. 104).

[109] Albrecht Zimmermann and Siegfried Nijssen. “Supervised Pattern Mining
and Applications to Classification”. In: Frequent Pattern Mining. Ed. by Charu
C. Aggarwal and Jiawei Han. Cham: Springer International Publishing,
2014, pp. 425–442. ISBN: 978-3-319-07821-2. DOI: 10.1007/978-3-319-
07821-2_17 (cit. on p. 104).

[110] Siegfried Nijssen and Albrecht Zimmermann. “Constraint-Based Pattern
Mining”. In: Frequent Pattern Mining. Ed. by Charu C. Aggarwal and Jiawei
Han. Cham: Springer International Publishing, 2014, pp. 147–163. ISBN:
978-3-319-07821-2. DOI: 10.1007/978-3-319-07821-2_7 (cit. on p. 104).

Bibliography 147

https://doi.org/10.1145/1066157.1066226
https://doi.org/10.1007/978-1-4899-7687-1_318
https://doi.org/10.1007/978-1-4899-7687-1_318
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10618-013-0322-1
https://doi.org/10.1007/978-3-319-07821-2_17
https://doi.org/10.1007/978-3-319-07821-2_17
https://doi.org/10.1007/978-3-319-07821-2_7


[111] Björn Bringmann et al. “Mining Sets of Patterns”. In: Tutorial at ECMLPKDD
(2010) (cit. on p. 104).

[112] Vladimir Dzyuba, Matthijs van Leeuwen, and Luc De Raedt. “Flexible Con-
strained Sampling with Guarantees for Pattern Mining”. In: Data Mining and
Knowledge Discovery 31.5 (Sept. 2017), pp. 1266–1293. ISSN: 1573-756X.
DOI: 10.1007/s10618-017-0501-6. arXiv: 1610.09263 (cit. on pp. 104,
107).

[113] Stefan Kramer. “A Brief History of Learning Symbolic Higher-Level Rep-
resentations from Data (And a Curious Look Forward)”. In: Proceedings
of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
IJCAI-20. Ed. by Christian Bessiere. International Joint Conferences on
Artificial Intelligence Organization, July 2020, pp. 4868–4876. DOI: 10.
24963/ijcai.2020/678 (cit. on p. 123).

148 Bibliography

https://doi.org/10.1007/s10618-017-0501-6
https://arxiv.org/abs/1610.09263
https://doi.org/10.24963/ijcai.2020/678
https://doi.org/10.24963/ijcai.2020/678





	Titlepage
	Abstract
	Acknowledgments
	Publications and Manuscripts
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Thesis Contributions and Structure

	2 Related Work
	2.1 Introduction
	2.2 Time Series Data
	2.3 Time Series Similarity Measures
	2.3.1 Lock-step Measures
	2.3.2 Feature-based Measures
	2.3.3 Elastic Measures

	2.4 Time Series Classification
	2.4.1 Classification based on Whole Matching
	2.4.2 Classification based on Subsequence Matching

	2.5 Recent Trends in Time Series Mining

	3 Randomized Time Warping for Full-length Similarity Search
	3.1 Randomized Time Warping
	3.1.1 Methodology
	3.1.2 Design and Parameter Choices

	3.2 Empirical Evaluation
	3.3 Results
	3.3.1 Classification Accuracy
	3.3.2 Running Times
	3.3.3 Unified Comparison of Accuracy and Runtime

	3.4 Conclusion

	4 Random Shapelet Ensembles
	4.1 Background and Motivation
	4.2 Randomized Shapelet Ensembles
	4.2.1 Random Shapelets
	4.2.2 Random Shapelet Ensembles
	4.2.3 Algorithmic Optimizations

	4.3 Empirical Evaluation
	4.4 Results
	4.5 Conclusion

	5 Leveraging String Mining for Shapelet Discovery for Randomized Learning Schemes
	5.1 Background and Motivation
	5.2 String Mining – A Primer
	5.3 Design
	5.3.1 Overview
	5.3.2 Time Series Discretization
	5.3.3 Frequent Patterns Extraction
	5.3.4 Selecting Discriminative Patterns
	5.3.5 Creating Feature Sets
	5.3.6 Merging Feature Sets
	5.3.7 Complexity Analysis

	5.4 Empirical Evaluation
	5.5 Results
	5.5.1 Runtime Breakdown
	5.5.2 Results using a conservative parameter set

	5.6 Conclusion

	6 Pattern Sampling as an Alternative to Pattern Extraction
	6.1 Motivation and Background
	6.1.1 Pattern Explosion Problem
	6.1.2 Pattern Sampling

	6.2 Design
	6.2.1 Overview
	6.2.2 Creating the Pattern Sampler
	6.2.3 Creating Feature Sets
	6.2.4 Merging Feature Sets
	6.2.5 Complexity Analysis

	6.3 Empirical Evaluation
	6.4 Results
	6.5 Conclusion

	7 Conclusion
	7.1 Contributions
	7.1.1 Randomized Time Warping
	7.1.2 Randomized Shapelet Ensembles
	7.1.3 Mining Strings for Time Series Classification
	7.1.4 Pattern Sampling for Time Series Classification

	7.2 Outlook

	A Calculating Independence Test Statistics
	A.1 Calculating the Chi-squared Test Statistic
	A.2 Calculating the Information Gain value

	Bibliography

