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Zusammenfassung

Tensornetzwerk Simulationen mit Globaler SU(2) Symmetrie

Die theoretische Beschreibung und Untersuchung von Quanten-Vielteilchensystemen
ist ein essentieller Bestandteil der Erforschung von Quantensystemen bei niedrigen
Temperaturen, in denen das Zusammenspiel vieler individueller Teilchen zu erstaun-
lichen kollektiven Effekten führt. Aufgrund des exponentiellen Anstiegs der An-
zahl an Parametern, die zur Beschreibung solcher Systeme nötig sind, kann ein Ver-
ständnis dieser Phänomene oftmals nur mit Hilfe numerischer Simulationstechniken
gewonnen werden. In den letzten Jahren haben sich Tensornetzwerke als hochen-
twickelte numerische Techniken etabliert, die auf der Lokalität der Wechselwirkungen
und Symmetrien von physikalischen Systemen basieren. Tensornetzwerke erfassen
die genaue Struktur der Quantenkorrelationen der Vielteilchensysteme bei niedrigen
Temperaturen und machen sie daher zur natürlichen Sprache, um Quantenzustände
zu beschreiben und neue exotische Phasen von Quantenmaterialien zu simulieren.
In dieser Dissertation werden Tensornetzwerk-Algorithmen eingesetzt, um Vielteilchen-
systeme auf ein-, zwei- und dreidimensionalen Gitterstrukturen zu simulieren. Die
physikalischen Modelle unterscheiden sich in der Art der Wechselwirkung zwischen den
Teilchen, der Geometrie des Gittersystems, sowie der lokalen Freiheitsgrade. Insbeson-
dere untersuchen wir verschiedene Spinmodelle mit einer globalen SU(2)-Symmetrie,
d.h. einer Invarianz unter einer globalen Rotation der Spins. Die Tensornetzwerke
mit SU(2) Symmetrie werden für die Untersuchung eines quasi eindimensionalen
Leitermodells mit chiraler drei-Spin Wechselwirkung, des bilinearen-biquadratischen
Modells auf einem zweidimensionalen Rechtecksgitter und des rätselhaften antiferro-
magnetischen Heisenberg Modells auf einem Kagome Gitter genutzt. Unsere Unter-
suchungen der zuvor genannten physikalischen Modelle erlauben es, den Nutzen der
Implementierung physikalischer Symmetrien in zweidimensionalen Tensornetzwerk-
Algorithmen zu beurteilen. Zusätzlich stellen wir einen neuen Tensornetzwerk-Algo-
rithmus für Gittersysteme mit hoher Konnektivität vor. Dessen Vorteile und Nützlich-
keit wird Anhand von mehreren magnetischen und bosonischen Quantensystemen auf
zwei- und dreidimensionalen Dreiecksgittern demonstriert. Abschließend konstruieren
wir das SU(2)-invariante Tensornetzwerk, das die Partitionsfunktion des klassischen
Heisenberg Modells analytisch darstellt. Unser Tensornetzwerk Ansatz erlaubt es,
das Heisenberg Modell direkt im thermodynamischen Grenzfall zu simulieren und
hilft dabei, die seit langem geführte Diskussion über einen möglichen Phasenübergang
bei endlichen Temperaturen zu klären.
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Abstract

Tensor Network Simulations with Global SU(2) Symmetry

The theory of quantum many-body systems plays an important role in the study of
quantum systems at low temperatures. In such settings the interplay of many indi-
vidual constituents stimulates remarkable, collectively emergent phenomena. Due to
an inherent exponential scaling of required resources in the number of constituents,
insights can oftentimes be achieved only with the help of numerical simulation tech-
niques. In recent years, tensor networks have emerged as sophisticated numerical
techniques that are based on locality and symmetry, two concepts deeply rooted in
physical theories. Tensor networks faithfully capture the structure and amount of
quantum correlations in the system, making them the natural language to describe
quantum states and study new exotic phases of matter.
In this thesis we employ tensor network algorithms in one, two and three spatial
dimensions to study many-body lattice models with different kinds of interactions,
lattice geometries and local degrees of freedom. In particular, we study different spin
models with a global SU(2) symmetry, i.e. an invariance under a global rotation
of spins that is directly incorporated into the tensor network. The algorithms are
applied to study a quasi one-dimensional ladder model with chiral three-spin inter-
action, the bilinear-biquadratic model on a two-dimensional square lattice, and the
enigmatic antiferromagnetic Heisenberg model on a Kagome lattice. Our studies of the
aforementioned physical models allow us to assess the utility of implementing physical
symmetries in two-dimensional tensor network algorithms. Additionally, we propose a
new tensor network algorithm for lattices with high connectivity, and prove its useful-
ness for several magnetic and bosonic models on triangular lattices in two and three
dimensions. Finally, we construct analytically the SU(2)-invariant tensor network
that represents the partition function of the classical Heisenberg model. Our tensor
network approach allows to study the system directly in the thermodynamic limit
and helps to resolve the long-standing discussion about a possible finite-temperature
phase transition.
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Chapter 1

Introduction

Important developments and achievements that facilitate and accelerate the evolution
of mankind are often linked to new ideas and applications of fabricated materials. It is
not by chance that particular eras of human evolution are named after commonly used
basic materials, such as the three-age system including the Stone Age, Bronze Age
and Iron Age. On a more recent time scale though, the evolution of our society has
been advanced due to many groundbreaking inventions and developments of synthetic
plastic materials, and even more so due to the digital revolution in the field of micro-
electronic devices. Alongside, the new field of quantum information and technology
is on a rise since the beginning of the 21st century, and we are currently experiencing
the start of a new technological era based on quantum mechanical principles.

From a technological perspective, there is hardly anything modern society relies
on more than microelectronic devices – they found their way into almost every utensil
we use on a daily basis. The immense success and capabilities of available microelec-
tronic technologies is due to the astonishing miniaturization of components. While
early computer processors contained several thousand transistors, state of the art pro-
cessors host several billion transistors. This trend, commonly described by Moore’s
law [1], is however expected to exhaust the limit of technological feasibility in the
years to come. The ongoing miniaturization of electronic components also surfaces
quantum mechanical effects such as the tunneling effect, that need to be controlled to
avoid a stagnancy of the technological advancement. An alternative approach however
would be to use those quantum effects to our advantage. New technologies that take
over and pave the way for future applications could be found in quantum technologies,
a flourishing field of physics and engineering. In this respect, the search for appro-
priate materials with suitable properties is an important step in the development of
such quantum devices. Moreover, it is also possible to engineer so-called synthetic
quantum matter that features the desired, tailored characteristics [2]. The quest for
new materials is pursued in the field of quantum many-body physics, which has al-
ready found and produced a variety of highly complex and interesting materials with
promising properties for future quantum applications.

The idea to exploit quantum effects is by no means recent, and the consequences
of quantum mechanics have already been used in some of our everyday devices for
more than fifty years. Particular examples are light-emitting diodes (LEDs), lasers
or magnetic resonance imaging scanners (MRIs). Those systems make use of quan-
tum mechanical effects of individual particles, such as discrete energy levels and the
alignment of magnetic moments in external magnetic fields. However, quantum me-
chanics offers far more than just individual effects and reveals its full richness only
in the setting of many-body quantum physics. While properties of the individual
constituents are generally well understood, the collective behaviour of many particles
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is oftentimes drastically different and far less understood. This concept of collective
emergence leads to remarkable phenomena such as superconductivity, superfluidity,
quantum magnetism or exotic quasi-particle excitations. The key ingredient for the
stimulation and appearance of such effects is quantum entanglement, a multipar-
tite phenomenon that describes non-local correlations and causes stunning interplay
among the quantum particles. The disparity between classical and quantum physics is
to be found precisely in the absence of entanglement in classical mechanics. Nowadays
entanglement is even seen as a resource that will fuel the so-called second quantum
revolution. Importantly, the most interesting effects in quantum matter are found in
low-dimensional systems due to the presence of strong quantum fluctuations. One-
dimensional (1d) quantum many-body systems bear a great potential of interplay
between quantum objects and have helped to build a better understanding of how
microscopic interactions of particles can lead to collective behaviour. In two spatial
dimensions (2d) there is even a greater richness of possible effects, stimulated by the
second extended dimension and the accrual of the notion of topology [3]. So-called
topologically-ordered quantum states [4] could be a key ingredient for the successful
implementation of quantum computation [5, 6], one of the ultimate goals in quan-
tum technology [7]. The interest and fundamental importance of such topological
phases has been highlighted by the 2016 Nobel Price in Physics, awarded for the
theoretical discovery of topological phases of quantum matter and topological phase
transitions [8]. Certainly, there are also interesting properties in 3d materials that
are oftentimes linked to topology. One particular instance are topological insulators,
which exhibit edge or surface conductivity while being insulating in the bulk.

A proper understanding of the quantum many-body theory is crucial in order to
utilize quantum phenomena to our advantage. Unfortunately, the study of quantum
many-body systems is naturally impeded by the curse of the system size, which implies
that the number of parameters required to study realistic materials scales exponen-
tially in the number of constituents. Since the number of constituents in realistic
materials is of the order of the Avogadro number N0 ≈ 6.022× 1023, exact calcu-
lations are impossible in most cases, with only a few exceptions of exactly solvable
systems. The understanding is therefore oftentimes acquired by numerical simulations
of the systems under certain approximations, that can be systematically refined. Sim-
ulations are an essential tool in modern computational and theoretical research due
to the great flexibility in the microscopic settings of the systems, such as local degrees
of freedom (e.g. different particles), geometric structure or nature and range of the
interactions. In recent years tensor networks have been developed for the description
and simulation of low-dimensional quantum many-body systems [9]. They have been
immensely successful due to their intrinsic structure and properties that permit to ac-
curately capture the relevant physical information [10]. Additionally, tensor networks
naturally allow the preservation of symmetries [11] which are ubiquitous in nature and
hence in physical theories. For instance, the hydrogen atom, one of the few exactly
solvable quantum mechanical systems, has an SO(4) rotational symmetry [12] in the
non-relativistic case. In the field of condensed matter physics, and more specifically
in quantum-many body physics, the systems often exhibit lattice symmetries such as
invariance under (discrete) translations and rotations, particle number conservation
or invariance under spin rotations. On a conceptual level the preservation of sym-
metries in tensor networks allows for a complete classification of gapped phases of
matter in 1d [13] using Matrix Product States, and a partial classification in 2d [14].
For numerical simulations the preservation of symmetries does not only guarantee to
target the correct structure of the model at hand, it also leads to a large gain in
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computational efficiency. The increased computational efficiency goes hand in hand
with an enhanced precision of the tensor network simulations, which in turn improves
the accuracy of the results.

In this thesis we implement standard tensor network simulation techniques with
a global symmetry of the Hamiltonian. While Abelian symmetries like U(1) or Zn
have been used in tensor network studies for several years now, there are much fewer
instances of tensor network simulations with non-Abelian symmetries, whose imple-
mentations are considerably more involved. We will focus on one of the most relevant
non-Abelian symmetries in quantum mechanics, which is SU(2). The SU(2) symme-
try describes invariance under spin rotation and is inherent to many quantum many-
body lattice models [15]. For instance, one of the most studied, yet most enigmatic
models of frustrated quantum antiferromagnetism – the spin-1/2 nearest-neighbour
Heisenberg model on the Kagome lattice – possesses an SU(2) symmetry. Its ground
state is conjectured to be a type of spin liquid, which in turn provides a possible
mechanism to explain high-temperature superconductivity [16]. While symmetries
have been extensively and successfully leveraged in 1d tensor network simulations [17],
their implementation in 2d versions fall behind due to the higher overall complexity
of algorithms. In this respect, we develop a general SU(2)-symmetric tensor network
framework which is used to implement SU(2)-symmetric versions of the famous Den-
sity Matrix Renormalization Group and the Projected Entangled Pair State methods.
These two tensor network representations are well-established tools for the simula-
tion of one- and two-dimensional lattice systems respectively. The symmetric tensor
network framework is expected to be crucial for future studies of strongly correlated
materials using tensor networks, especially when expanded to include other symme-
tries and products of symmetries. In the following we will outline the organization of
the thesis.

In Chapter 2 we introduce general concepts of quantum many-body systems and
tensor networks. In particular, we discuss the concept of quantum entanglement and
its quantification with the help of the Schmidt decomposition, an important tool in
tensor network algorithms. The concept of quantum phase transitions and local order
parameters is introduced and exemplified for a 1d quantum Ising model. Furthermore,
we introduce tensor networks, a sophisticated representation of quantum states and
classical partition functions. We outline the historical development and motivation
behind the technique and present two of the most prominent families of tensor network
states, namely the Matrix Product State as well as the Projected Entangled Pair State.

In Chapter 3 we describe the general procedure to implement physical symmetries
in tensor networks and focus on the group SU(2). The symmetry will constrain the in-
dividual tensors, which decompose into a part that includes the remaining variational
parameters and a part that is completely specified by the underlying symmetry. The
symmetry part will be represented by a fusion tree, an analytic form of the Clebsch-
Gordan coefficients of the group. We describe how standard tensor operations can be
implemented for symmetric tensors. Furthermore, extensions to other symmetries and
products of symmetries, as well as the incorporation of anyonic theories, are discussed.

Chapter 4 reports the results for a quasi-1d spin system on a two-leg ladder, that
is studied with an SU(2)-invariant version of the Density Matrix Renormalization
Group algorithm. A preliminary analysis with Kadanoff coarse-graining provides a
first physical intuition, which is supported by numerical simulations. We study the
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ground state energy, as well as different entanglement properties and correlation func-
tions that uncover the nature of the ground state. A comparison to the entanglement
spectrum of the spin-1/2 Heisenberg model in 1d reveals the Conformal Field Theory
underlying the ladder model.

Chapter 5 presents the results we obtained for tensor network simulations in two
spatial dimensions with SU(2) symmetry. The Projected Entangled Pair State ansatz
is used to simulate a bilinear-biquadratic spin-1 Hamiltonian on the square lattice.
Our results are compared to non-symmetric and U(1)-symmetric simulations. Fur-
thermore, the Projected Entangled Simplex State ansatz is used to study a spin-1/2
and a spin-2 model on the Kagome lattice. Based on the study of the three models
we evaluate the utility of implementing the symmetry in 2d tensor network algorithms.

In Chapter 6 we introduce a new tensor network algorithm for the simulation of
lattices with a high connectivity, i.e. a large number of nearest-neighbour lattice sites.
Reversing the established procedure of coarse-graining, our fine-graining approach rep-
resents local degrees of freedom in terms of smaller entities. A suitable transformation
of this kind leads to a tensor network that is more amenable to standard simulation
techniques. The utility of the proposed method is demonstrated for different mag-
netic and bosonic models on the 2d triangular and the 3d stacked triangular lattice.
A discussion of the efficiency of the algorithms and further applications is presented.

In Chapter 7 we investigate a classical spin model by writing its partition function
in terms of a 2d tensor network. In particular, we construct analytically the SU(2)-
invariant tensors representing the partition function of the classical Heisenberg model,
which can therefore be studied directly in the thermodynamic limit. We address the
long-standing question of a finite-temperature phase transition with our tensor net-
work approach.

Finally, the thesis is concluded in Chapter 8 and an outlook for future applications
of the symmetric tensor network framework is presented. In addition to the main part
of the thesis we elaborate details for SU(2)-symmetric tensors, as well as a review
about the employed 2d tensor network algorithms in the appendix.
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Chapter 2

Entanglement and Tensor
Networks

Several highly interesting systems in condensed matter physics, typically involving
interactions between many quantum particles, are not fully understood. Prominent
examples are fractional quantum Hall states [18], topologically ordered quantum spin
liquids [4] or frustrated quantum antiferromagnets [19]. Current investigations of these
systems essentially rely on numerical methods which all have specific limitations. In
recent years new numerical and theoretical techniques to treat those kind of problems
in quantum many-body physics have been developed in the field of tensor networks.
Based on quantum information concepts, tensor networks overcome many of the limi-
tations of other methods and will be introduced in this chapter. Nowadays they have
applications beyond condensed matter in related fields such as the AdS/CFT cor-
respondence in quantum gravity, machine learning, high-energy physics or quantum
chemistry [9].

2.1 Entanglement and Quantum Many-Body Systems

Entanglement is a quantum-mechanical property that occurs in situations where indi-
vidual parts of a composite quantum system can no longer be described independently
of one another. Thus the quantum state of the whole system needs to be considered
and it is said to be entangled. Contrary to classical phenomena, entanglement has
been a strongly debated topic after its first discussion in a paper by Einstein, Podolski
and Rosen in 1935 [20]. With the construction of the famous Einstein-Podolski-Rosen
paradox (EPR) they concluded that quantum mechanics was incomplete. Einstein
even referred to entanglement as a "spooky action at a distance" [21]. In 1964 Bell
proved that one of the key assumptions in the EPR paper, the principle of locality,
is not compatible with a quantum theory. Furthermore he derived a set of Bell in-
equalities based on local realism and predicted a quantum theory to violate the limits
in the inequalities for certain entangled systems [22]. Experimental tests of Bell’s
predictions showed indeed a violation of the limits, all proving that the theory of local
realism is not correct [23, 24]. As a consequence, the quantum theory is complete and
entanglement is a valid concept.
Nowadays entanglement is even seen both as a resource and a necessary ingredient in
new technological ideas based on the principles of quantum mechanics. For instance,
it makes quantum protocols such as quantum key distribution [25, 26] or the first
quantum teleportation [27] experiments possible. Full quantum algorithms such as
Grover’s search [28] or Shor’s factorization algorithm [29] are able to outperform any
classical algorithms because they fall into completely different complexity classes [7].
While the lack of independence of different particles is precisely what leads to remark-
able phenomena, it is also at the root of the success of tensor networks. Therefore,
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we will give a more concise definition of entanglement in the following. Consider two
quantum states |ψA〉 ∈ HA and |ψB〉 ∈ HB defined in two separate Hilbert spaces. A
generic state in the composite system is an element of the tensor product of the two
subspaces, i.e.

|ψAB〉 ∈ HA ⊗HB . (2.1)

The dimension of the composite Hilbert space HAB = HA ⊗ HB is the product of
the dimensions of the individual Hilbert spaces, dim(HAB) = dim(HA) · dim(HB). In
terms of basis states |iA/B〉 ∈ HA/B, the state |ψAB〉 can be generally written as

|ψAB〉 =

pA∑

iA=1

pB∑

iB=1

ciA,iB |iA〉 ⊗ |iB〉 , (2.2)

where pA and pB are the physical dimensions of the two subsystems respectively.
Eq. (2.2) can now be used to define separable and entangled states.

Definition of Entangled and Separable States
Given an arbitrary quantum state |ψAB〉 of a composite system we say that the wave
function is entangled, if it is not a product state of the wave functions of the subsys-
tems. This implies

|ψAB〉 ∈ HA ⊗HB is entangled ←→ |ψAB〉 6= |ψA〉 ⊗ |ψB〉 . (2.3)

In contrast the wave function is called separable, if ciA,iB = ciAciB for all values of
(iA, iB) such that Eq. (2.2) becomes

|ψAB〉 =

pA∑

iA=1

ciA |iA〉 ⊗
pB∑

iB=1

ciB |iB〉 = |ψA〉 ⊗ |ψB〉 . (2.4)

Due to Eq. (2.4), separable states are also called product states since they are simply
a tensor product of the two quantum states of the subsystems.

In order to illustrate several concepts and relations throughout this section we consider
two p = 2 level systems (e.g. spin-1/2 particles) as a recurring example. For this
composite system a complete set of basis states is given by the eigenstates of the
Pauli σz operator as

{|0A〉 , |1A〉} ∈ HA {|0B〉 , |1B〉} ∈ HB
{|0A〉 ⊗ |0B〉 , |0A〉 ⊗ |1B〉 , |1A〉 ⊗ |0B〉 , |1A〉 ⊗ |1B〉} ∈ HAB .

(2.5)

Let us now define two paradigmatic states in the composite Hilbert space HAB given
by

|ψ〉 =
1√
2

(|0〉 |0〉+ |0〉 |1〉) ,

|φ〉 =
1√
2

(|0〉 |0〉+ |1〉 |1〉) ,

(2.6)

where we have used a shorthand for the tensor product of two quantum states to
simplify the notation. According to the definition in Eq. (2.3) we see that |φ〉 is an
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entangled state, whereas |ψ〉 is a separable state since it can be written as

|ψ〉 =
1√
2

(|0〉 |0〉+ |0〉 |1〉) =
1√
2
|0〉 (|0〉+ |1〉) = |0〉 |+〉 . (2.7)

Here {|+〉 , |−〉} with |±〉 = 1/
√

2 (|0〉 ± |1〉) are the eigenvectors of the Pauli σx op-
erator. In this thesis we focus on bipartite entanglement only, e.g. the entanglement
between two subsystems like defined above. There are however also more general con-
cepts of entanglement for multipartite systems, like the geometric entanglement [30]
or "three-way tangle" [31] for tripartite systems.
Entanglement comes as a binary concept, i.e. a quantum state can either be separa-
ble or entangled – the amount of entanglement can however be quantified. In general
separability of a quantum system can be determined using a Schmidt decomposition,
which will be explained in the next section. From the Schmidt decomposition we can
further define a measure of entanglement known as the von Neumann entropy, an ex-
tension of the classical Gibbs entropy. It quantifies entanglement in a bipartite system
as a continuous measure and is therefore also called the entanglement entropy. For
a pure state |ψAB〉 ∈ HA ⊗ HB we can define the reduced density matrices for each
subsystem by tracing out the degrees of freedom of the other subsystem according to

ρA = trB (|ψAB〉 〈ψAB|) ρB = trA (|ψAB〉 〈ψAB|) . (2.8)

The trace of a subsystem is given by trx(·) =
∑px

ix=1 〈ix| · |ix〉, for a orthonormal set
of basis states |ix〉 ∈ Hx and x = {A,B}. The von Neumann entropy for both of the
subsystems is defined by

S(ρA) ≡ −tr (ρA ln ρA) = −tr (ρB ln ρB) ≡ S(ρB) . (2.9)

The equality holds because the entanglement is only shared between two partitions,
so that the entanglement entropy for each partition has to be the same. Making use
of the spectral decomposition we can write the reduced density matrices as

ρi =

χ∑

α=1

να |αi〉 〈αi| (2.10)

where να is the eigenvalue for the eigenvector |αi〉 with i = {A,B} and χ is the rank
of the reduced density matrix. Inserting this equation in Eq. (2.9) yields the von
Neumann entropy

S(ρA) = −
χ∑

α=1

να ln να . (2.11)

One important property of the von Neumann entropy is that it is upper bounded by

S(ρA) ≤ lnχ . (2.12)

In the two limiting cases of separable states and maximally entangled states it yields
S = 0 and S = lnχ respectively, as we will show below. There are also different
measures for the entanglement such as the Rényi entropies

Sα =
1

1− α ln tr(ραA) with α ≥ 0 , (2.13)
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which approaches the von Neumann entanglement entropy for α → 1 [32], or the
single copy entanglement [33, 34].

2.1.1 Schmidt Decomposition and Singular Value Decomposition

The Schmidt decomposition can be used to compute the reduced density matrix for
a bipartite system, which in turn can be used to obtain the entanglement entropy or
its spectrum.

Theorem: Schmidt Decomposition
Given a pure quantum state |ψAB〉 of a bipartite system with subsystems A and B,
there exist orthonormal states |αA〉 for system A and orthonormal states |αB〉 for
system B such that

|ψAB〉 =

χ∑

α=1

λα |αA〉 |αB〉 (2.14)

with non-negative Schmidt coefficients λα satisfying
∑

α λ
2
α = 1. The Schmidt rank χ

is the number of non-zero Schmidt coefficients and |αA〉 and |αB〉 are called the
Schmidt vectors.

The Schmidt coefficients are closely related to the eigenvalues of the reduced den-
sity matrix in Eq. (2.10). The relation unfolds as we use Eq. (2.8) and insert the
Schmidt decomposition, which yields

ρA = trB(|ψAB〉 〈ψAB|) =

χ∑

α=1

|λα|2 |αA〉 〈αA| ,

ρB = trA(|ψAB〉 〈ψAB|) =

χ∑

α=1

|λα|2 |αB〉 〈αB| .
(2.15)

The Schmidt coefficients να of a bipartition are therefore the square roots of the eigen-
values of the reduced density matrix for both subsystems.

Coming back to the example introduced previously we can now compute the Schmidt
decomposition for the quantum states in Eq. (2.6), for which we find

|ψ〉 : χ = 1 λ1 = 1

|φ〉 : χ = 2 λ1 = λ2 = 1/
√

2 .
(2.16)

The separable quantum state |ψ〉 has a Schmidt rank of χ = 1, a property which
is valid for all separable states. Furthermore the entanglement entropy is given by
S|ψ〉 = 0 and S|φ〉 = ln 2, so that |φ〉 is a maximally-entangled state.

The Schmidt decomposition can be proven using a singular value decomposition
(SVD), a mathematical tool in linear algebra to factorize real and complex matrices.

Theorem: Singular Value Decomposition
Any rectangular matrix M ∈ Cm×n of arbitrary size can be decomposed into

M = UΛV † , (2.17)
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where U ∈ Cm×m and V † ∈ Cn×n are unitary matrices and Λ ∈ Rm×n is a diagonal
matrix containing the singular values of M . The singular values are arranged in de-
scending order λ1 ≥ λ2 ≥ . . . λr and r = min(m,n). In an economic version of the
SVD the lower part of Λ is discarded, so that Λ is diagonal and square. A graphical
representation of the SVD is shown in Fig. 2.1.

M

=

U Λ V †

Figure 2.1: Graphical representation of the SVD of an (m× n)-dimensional ma-
trix M . The diagonal matrix Λ contains the singular values in descending order,

indicated as a green line.

The singular value decomposition can be used to compute the Schmidt decomposi-
tion of a bipartition. Furthermore it represents an essential tool in tensor network
simulations because it provides a method to extract the relevant physical information
of quantum states based on their entanglement properties. Using an SVD to form
a bipartition enables the approximation of quantum states by selecting the largest
singular values, and therefore the most relevant part of the system in terms of con-
tributions to the entanglement. Less important information encoded in very small
singular values can be discarded to keep tensor network simulations manageable.

Proof of the Schmidt Decomposition
Consider a system consisting of two subsystems A and B. Similarly as before, the
composite quantum state can be written as

|ψAB〉 =

pA∑

iA=1

pB∑

iB=1

ciA,iB |iA〉 |iB〉 , (2.18)

where |iA〉 and |iB〉 are orthonormal basis states. Here ciA,iB is a matrix containing
the (complex) probability amplitudes of the expansion. Naturally, this matrix can be
decomposed using an SVD so that Eq. (2.18) becomes

|ψAB〉 =

pA∑

iA=1

pB∑

iB=1

χ∑

α=1

UiA,α Λα,α V
†
α,iB
|iA〉 |iB〉 , (2.19)

where χ = min(pA, pB). Since U and V † are unitary matrices we can define rotated
bases for subsystem A and B according to

|αA〉 =

pA∑

iA=1

UiA,α |iA〉 , |αB〉 =

pB∑

iB=1

V †α,iB |iB〉 , (2.20)

and with Λα,α = λα the quantum state takes the form of the Schmidt decomposition
as in Eq. (2.14).
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2.2 Quantum Phase Transitions

Quantum phase transitions (QPT) describe transitions between different phases of
matter at zero temperature. They are driven by quantum fluctuations and can be
provoked by varying physical parameters of the system, such as the magnetic field. A
transition appears at a quantum critical point (QCP), at which the energy gap between
the lowest-energy state – the ground state – and the first excited state vanishes [35].
At the QCP the system is said to be critical, it exhibits scale-invariance that comes
with a large amount of entanglement at all length scales.
To illustrate the phenomenon of a quantum phase transition we will briefly present
the one-dimensional Ising model in a transverse field (TFIM) [36]. This example of
a quantum many-body system is well-understood in condensed matter physics. It is
exactly solvable and often serves as a benchmark. Consider a 1d chain of spin-1/2
degrees of freedom that are subject to nearest-neighbour interaction and a transverse
magnetic field. The Hamiltonian is given by

HTFIM = −
∑

〈i,j〉

σzi σ
z
j − hx

∑

i

σxi , (2.21)

where σx,zi are the spin-1/2 Pauli matrices for site i and 〈i, j〉 denotes interaction
between nearest neighbours, e.g. between site i and site j = i+1. The quantum phase
transition occurs due to competing terms in the Hamiltonian. The first, interacting
term favors parallel alignment of neighbouring spins along the z-direction to lower
the total energy, due to the ferromagnetic coupling whose coupling strength is set to
unity. The second term tends to align the spins parallel to the magnetic field along the
x-direction to lower the total energy. Therefore tuning the strength of the transverse
magnetic field hx can drive the phase transition, as we will explain now.
Consider the two limiting cases of hx = 0 and hx → ∞. For hx = 0 the interacting
term remains and the ground state is a product state of all spins pointing either up
or down (a product state of eigenstates of the σz operator), i.e.

|ψ(hx = 0)〉 =
⊗

i

|↑〉i or |ψ(hx = 0)〉 =
⊗

i

|↓〉i . (2.22)

The two-fold degeneracy reveals a Z2 symmetry of the model at hx = 0 which is
generally broken in the thermodynamic limit, so that one of the two ground states is
selected. This is known as spontaneous breaking of the Z2 symmetry. In the second
limit hx →∞ the interacting term can be neglected and the ground state is a product
state of +1 eigenstates of the σx operator

|ψ(hx →∞)〉 =
⊗

i

|+〉i =
⊗

i

1√
2

(|↑〉i + |↓〉i) . (2.23)

The two ground states for the limiting cases cannot be adiabatically connected without
closing the gap in the energy spectrum. Therefore a quantum phase transition occurs
at the quantum critical point hc, at which the model is gapless and critical. The QPT
can be identified by a suitable local order parameter1 that detects the spontaneous
symmetry breaking. For the TFIM a possible local order parameter is the σz operator.
The expectation value 〈ψ|σz|ψ〉 should be non-zero in the ordered phase (hx < hc)
and zero for the disordered phase (hc < hx). However not only the transition between

1There are quantum phase transitions that cannot be detected by local order parameters – these
are called topological phase transitions (TPT).
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hx

〈ψ|σz|ψ〉

hc

1

Figure 2.2: Sketch of the order parametermz = 〈ψ|σz|ψ〉 for the 1d Ising model in
a transverse field. The one-dimensional phase diagram exhibits a QCP at hx = hc.

different phases, but also the phases themselves can spark a lot of interest and we
will investigate an example of a highly debated spin liquid phase in Chapter 5. In
general, quantum many-body systems can also comprise more than one QPT and we
will encounter models with multiple phases transitions in Chapter 6.

2.3 Tensor Network Theory

Numerical techniques are essential in many areas of modern research since often rele-
vant problems are far too complex to be solved analytically. Some important problems
like high-temperature superconductivity even lack a complete theoretical understand-
ing [37], so that numerical simulations can provide tools to study these kind of systems
and build that understanding. Additionally an inherent problem of quantum many-
body systems is the exponential scaling of the complexity in the number of particles
involved. Over time many different techniques have been developed to study a wide
range of problems in condensed matter physics, but every method comes with its limi-
tations. Exact diagonalization [38] is limited to only small systems sizes far away from
the thermodynamic limit where quantum phase transitions occur, mean-field theory
fails to capture very important quantum correlations between the particles in one and
two dimensions and quantum Monte Carlo [39] suffers from the infamous sign prob-
lem for fermionic and frustrated systems. Certainly there are many more numerical
techniques like Density Functional Theory (DFT) [40], Dynamical Mean-Field The-
ory (DMFT) [41], series expansion [42] or continuous unitary transformations [43], to
name a few.
Tensor networks (TNs) include different families of numerical methods originally de-
veloped in the context of condensed matter physics that overcome several of the afore-
mentioned limitations of other methods. Based on quantum information concepts, the
systems are described by networks of interconnected tensors that convey the correla-
tions in the system. Nowadays tensor networks are applied beyond their original scope
of quantum many-body physics in fields like quantum chemistry [44], mathematics,
machine learning [45], relations to quantum gravity [46] or even linguistics [47].
The most prominent tensor network algorithm is the Density Matrix Renormalization
Group (DMRG) introduced by White [48, 49]. It is the foundation of almost all recent
results for 1d gapped quantum systems and is also applied to 1d critical systems and
used to study 2d systems on cylinder geometries. Besides DMRG there are various
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other important tensor network algorithms to study 1d and 2d quantum matter, such
as Time Evolving Block Decimation (TEBD) [50, 51], Projected Entangled Pair States
(PEPS) [52], the Multiscale Entanglement Renormalization Ansatz (MERA) [53], Tree
Tensor Networks (TTN) [54, 55, 56], continuous MPS [57] or MERA [58], and many
more. Importantly, tensor networks also provide methods to simulate lattice systems
in the thermodynamic limit without suffering from finite-size effects. Furthermore,
in recent years tensor networks became more and more important to compute clas-
sical partition functions and study classical spin models with very high accuracy. In
this thesis we will primarily focus on MPS and PEPS tensor networks to study 1d
and 2d systems respectively. The following review on tensor networks is based on
Refs. [59, 10, 60, 9].

2.3.1 The Importance of Tensor Networks

Tensor networks are able to simulate systems in the thermodynamic limit where phase
transitions occur [35], they are able to simulate fermionic systems by including addi-
tional constraints that account for the fermionic exchange statistics and they can also
handle frustration2. The only limitation inherent to tensor networks is the amount of
entanglement they can capture, which translates to a limitation due to finite compu-
tational power. This makes them widely applicable and very competitive to strongly
tailored methods. For instance, simulations of the 2d Hubbard model using projected
entangled pair states provide one the best variational energies to date [61].
The success of tensor network methods is not by chance. It has been noticed that they
are the natural language to describe quantum states of many-body systems based on
quantum information arguments. The wave function of a system of N particles lives
in an exponentially large Hilbert space which sets an early limit for the approachable
system sizes. Fortunately perspectives from the field of quantum information revealed
very strong restrictions on the physically meaningful size of the Hilbert space. In fact,
Hamiltonians of physical states appearing in nature are usually strongly constrained
by locality of the interactions and symmetry – two concepts we will be using to our
advantage in this thesis. For the low-energy states of local and gapped Hamiltonians
in 1d one can show that the constraints are manifested in an area-law for the entan-
glement entropy. In 2d, this statement is even true for all temperatures. For these
area-law states the entanglement entropy for any sub-region scales with the boundary
S ∼ ∂A between the region and its environment rather than with its volume. This is
illustrated in Fig 2.3. The strong constraint of area-law entanglement confines phys-

(a)

Product states
Area-law states

Many-body
Hilbert space

(b)

A B S ∼ ∂A

Figure 2.3: (a) Exponentially large Hilbert space with a tiny corner of area-law
states. Most tensor networks satisfy the area-law by construction. (b) Area-law for

the entanglement entropy for a region A of some general quantum system.

2Frustration in quantum lattice systems can arise due to geometric conditions (geometric frustra-
tion) or due to competing interaction terms in the Hamiltonian (exchange frustration). See Chapter 5
for details of frustration on the Kagome lattice.
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ical states of quantum many-body systems to live in an exponentially small corner
of the whole Hilbert space. Therefore they can often be efficiently represented in a
sense that they do not need an exponential number of parameters to be accurately
approximated, thus overcoming the exponential barrier.
Besides representing the physically relevant corner of the Hilbert space, tensor net-
works also have the correct structure of the entanglement in the system. Moreover
they are beautifully simple in a sense that the physical structure is revealed naturally
and everything can be drawn pictorially, as we will show in the next section.

2.3.2 Tensor Network Representation of the Wave Function

For our purposes a tensor is defined as a multi-dimensional array of complex numbers,
whose rank is the number of its indices. A 0-index tensor is therefore a scalar, a
1-index tensor is a vector, a 2-index tensor is a matrix, and so on. We can introduce
a more convenient diagrammatic representation that gives us a powerful visualization
for tensor networks. Elementary tensors with up to three indices are depicted in
Fig. 2.4. The ball represents the tensor, its legs represent the indices of the tensor.
For now we will assume that every index of a tensor can take up to D different values,

scalar vector

matrix 3-index tensor

Figure 2.4: Diagrammatic notation of elementary tensors up to rank-3, i.e. with
at most three indices.

so that a 1-index tensor would be a D-dimensional vector, a 2-index tensor a (D×D)-
dimensional matrix and so on. Using this diagrammatic notation we can write down
basic tensor operations very conveniently. Let us define an index contraction, which is
a sum over all possible values of repeated indices in a tensor network. For the simple
example of a matrix-matrix multiplication we have

Cik =

D∑

j=1

AijBjk = AijBjk , (2.24)

where we have used Einstein’s summation convention in the last equation. In Eq. (2.24)
one has to sum over or contract the single common index j. More complicated contrac-
tions of tensor networks could for example involve the summation over three indices
as in

Fijkl =
D∑

m,n,o=1

AijmnBmokConl (2.25)

resulting in a four-index tensor. This can be visualized using the pictorial represen-
tation introduced above as shown in Fig. 2.5, where the ordering of indices is fixed
without following a labeling convention. Common indices in a set of tensors are the
ones to contract over, unconnected or so-called open indices define the resulting rank.
For simplicity we assumed that every index has a dimension of D, this is typically
not the case in realistic applications. Clearly, the pictorial representation is an el-
egant way to write down equations in the form of Einstein’s summation convention
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(a)

A Bi
j

k

(b)

A

B

C

i

j

k

l

m

n

o

Figure 2.5: Example of a matrix-matrix multiplication written as a contraction
in (a) and a contraction over three indices in a set of three tensors in (b), resulting
in a matrix and a four-index tensor respectively. The ordering of indices is fixed

and does not follow any convention in these examples.

and makes the operations directly visible. A quantum state written in the form of a
tensor network will therefore directly reflect the system’s entanglement structure, as
we will see below.
At this point we would like to mention that the order in which contractions are
performed affects the efficiency of algorithms significantly. Therefore consider the ex-
ample in Fig. 2.6, a contraction of a set of four tensors. While the leading cost of the

O(D5) O(D5) O(D4)

O(D3) O(D4) O(D4)

Figure 2.6: The order in which contractions of a tensor network are carried out
is not unique and may result in different efficiencies of the overall operation. A
contraction of two tensors that involves n indices has a cost that scales as the

product of all n bond dimensions.

summations in the first row is O(D5), it is only O(D4) in the second row which is
therefore more efficient. A general proceeding to find the optimal contraction sequence
is a very hard problem, in fact it is known to be an NP-complete problem [62, 63].

We now turn to the representation of quantum many-body states as tensor net-
works. The wave function for the whole composite system can be expressed as a
superposition of tensor products of all the N single-particle states according to

|ψ〉 =
∑

i1,i2,...,iN

ci1,i2,...,iN |i1〉 ⊗ |i2〉 ⊗ . . .⊗ |iN 〉 . (2.26)

Assuming that every particle lives in a finite dimensional Hilbert space Hi of dimen-
sion p, the expansion has at the order of O(pN ) terms. Therefore we need just as many
complex coefficients ci1,i2,...,iN to represent the many-body quantum state. Those co-
efficients can be seen as the entries of an N -index tensor C, where every index has
dimension p. This tensor includes all the physical information of the quantum state,
yet it is a very inefficient representation thereof due to the exponential scaling in the
number of particles.
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In the motivation of tensor networks we claimed that they can be an efficient repre-
sentation that overcomes this exponential barrier. In what follows we will elaborate
on how this is manifested in the tensor network and where this property is rooted.
Tensor networks have been developed for the description and simulation for quantum
lattice systems. The lattice morphology is now used to give the condensed tensor C an
inner structure resembling the lattice. To this end the large tensor C is decomposed
into smaller local tensors for the sites of the lattice, which are connected among each
other. This transformation is exact and does not eliminate the exponential scaling
of parameters per se. However by making the connection to the area-law for the en-
tanglement entropy (see Sec. 2.3.1) we will explain the reduction. In the following
sections we will introduce two of the most common tensor networks, Matrix Product
States (MPS) in one spatial dimension and Projected Entangled Pair States (PEPS)
in two spatial dimensions.

2.4 Matrix Product States (MPS)

Matrix Product States are one of the most famous tensor networks. They are tailored
for the representation and simulation of quantum states of 1d gapped Hamiltonians
with methods like the Density Matrix Renormalization Group (DMRG) [48, 49], Time-
Evolving Block Decimation (TEBD) [50, 51] or variational methods like Variational
Uniform MPS (VUMPS) [64]. The MPS consists of an array of local tensors, where
each tensor represents a lattice site or a collection of lattice sites for the simulation
of ladder systems. An examples for a six-site system with open boundary conditions
is shown in Fig. 2.7. The physical indices, those that label the single particle basis

Figure 2.7: Matrix product state for a lattice of six sites with open boundary
conditions. By connecting the first and the last site the MPS can also be used with

periodic boundary conditions.

|ik〉 with ik = 1, . . . , p are given by the vertical tensor indices. The horizontal indices
connecting the tensors are called virtual indices or bond indices and the maximum
value of these indices is referred to as the bond dimension χ of the MPS. For a finite
MPS the number of parameters contained in the tensors is therefore O(Npχ2). The
exponential scaling of the number of parameters O(pN ) is now hidden in the bond
dimension χ, which needs to be exponentially large in order to reconstruct the exact
expansion in Eq. (2.26) and explore the full Hilbert space. However, due to the
constraint of the area-law it can be shown that the bond dimension χ only scales
polynomially in the system size [65] for low-energy states of gapped Hamiltonians (see
also Fig. 2.3), so that MPS can really be an efficient representation of quantum states
that overcomes the exponential scaling. Matrix product states obey the area-law for
the entanglement entropy by construction. Forming a bipartition by cutting one link
in the tensor network of an open system, the entanglement entropy is upper-bounded
by the rank of the reduced density matrix. This rank is determined by the bond
dimension of the cut open link, so that S ≤ lnχ (see also Fig. 2.8). In 1d the area-law
is just a constant because the area is of order O(1).
Matrix product states cannot represent quantum states of critical or gapless systems
exactly, since those states violate the area-law and overshoot the capabilities of the
MPS. Critical states come with a diverging correlation length and a scale-invariance,
meaning that the quantum state and the entanglement structure is similar on all
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L N − LL N − LL N − LL N − LL N − LL N − LL N − LL N − LL N − LL N − L

Figure 2.8: A bipartition of an MPS can be formed by cutting one link only. The
entanglement entropy for a subsystem of size L is therefore independent of its size
and only bounded by S(L) ≤ lnχ. Since S(L) is a constant it fulfills an area-law in

1d, where the area of the region is of O(1).

length scales. Matrix product states however are known to have a finite correlation
length [66], so that correlations always decay exponentially over distance. Nevertheless
the scope of MPS is not limited to gapped systems. By increasing the bond dimension
it is possible to approach and to study gapless, critical systems [65, 67, 68] and also
two-dimensional systems [69]. Furthermore matrix product states can be used to study
systems in the thermodynamic limit by repeating a unit cell of tensors periodically.
An algorithm that makes use of this translational invariance will be used in Chapter 4.
A geometric generalization of MPS to two spatial dimensions will be described in the
next section.

2.5 Projected Entangled Pair States (PEPS)

Projected Entangled Pair States are the generalization of MPS to two spatial dimen-
sions [52]. In principle tensor networks are not limited to any dimension, and any
graph with vertices and edges can be treated as a tensor network. However quantum
fluctuations are less important in higher dimensions, so that TNs are mostly used
in one and two dimensions [70]. Again, the local tensors represent one lattice site

Figure 2.9: Projected entangled pair state for a square lattice of four times four
sites with open boundary conditions. It is also possible to apply periodic boundary
conditions in both directions, which results in a non-trivial torus geometry. How-

ever, the PEPS ansatz is typically used as an ansatz for infinite systems.

each and the virtual bond indices connecting the tensors resemble the structure of the
underlying lattice. The square lattice is particularly convenient to work with from an
algorithmic perspective, but PEPS states can also be defined on honeycomb, triangu-
lar, Kagome or other lattices. For a square lattice PEPS as in Fig. 2.9 the number
of coefficients in the ansatz for the wave function is in the order of O(NpD4), where
D is used for the bond dimension of the PEPS and p is again the dimension of the
physical Hilbert space. Just as for matrix product states, projected entangled pair
states can represent low-energy states of local Hamiltonians with only a polynomial
number of coefficients. They obey the area-law by construction which can be seen
for a bipartition of a patch of size L × L and the rest of the system, as visualized
in Fig. 2.10. Assuming a uniform bond dimension of D, the entanglement entropy is
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L

L

Figure 2.10: Bipartition of a PEPS into a patch of size L×L and the rest of the
system. The entanglement entropy is upper bounded by the rank of the reduced
density matrix for the inner system that is at mostD4L. Therefore the entanglement
entropy is S(L) ≤ 4L ln(D) and scales as the area of the inner system, and not with

its volume (volume-law entanglement scales as S(L) ∝ L2).

upper bounded by S(L) ≤ 4L lnD, which is proportional the length of the boundary.
In contrast, volume-law entanglement would scale extensively as S(L) ∝ L2. Con-
trary to MPS, PEPS can represent critical quantum states and algebraically decaying
correlations – already for a bond dimension of D = 2 [60].
Most PEPS algorithm can be sorted into two groups. The first group of algorithms
concerns the simulation of PEPS wave functions, i.e. obtaining the coefficients in
the PEPS tensors that represent the target state. Important algorithms are schemes
based on iTEBD [71, 72] and variational methods [73, 74]. The second group describes
algorithms concerned with the contraction of the PEPS network to calculate physical
observables, such as different tensor renormalization schemes (Tensor Renormaliza-
tion Group (TRG) [75], Second Renormalization Group (SRG) [76], Higher-Order
TRG (HOTRG) [77]), and other techniques based on Corner Transfer Matrices and
Corner Tensors [78, 79, 80, 81]. Of particular interest to us will be the infinite PEPS
(iPEPS) ansatz which we will use in Chapters 5, 6 and 7 together with a Corner
Transfer Matrix scheme.

2.6 Summary

In this chapter we introduced a numerical simulation technique that is based on the
structure and amount of entanglement in many-body systems. These so called tensor
networks resemble the physical lattice in terms of local interconnected tensors that
contain the variational parameters to represent the wave function of the system. The
ability to capture the correct entanglement pattern as well as the amount of quantum
correlations is a limitation of the method. TNs can be written in a very convenient
pictorial form which makes the description of quantum states, algorithms and various
calculations intuitive.
Two prominent families of tensor networks have been presented. While matrix product
states are a tool for quantum many-body systems in one spatial dimension, projected
entangled pair states are the generalization to two or higher dimensions. Both tensor
networks obey the area-law for the entanglement entropy which makes them well
suited for the simulation of Hamiltonians with local interactions.
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Chapter 3

Symmetry-Preserving Tensors

The concepts of locality of interactions and symmetry are deeply rooted in physical
systems appearing in nature. Locality has already been exploited in the formulation of
the area-law which is the basis for the efficient representation of quantum many-body
states using tensor networks. Additionally, the symmetry of certain systems can be
exploited too, and will impose even more constraints on the Hilbert space in which
the quantum states can live. One of the most important symmetries is the invariance
under a rotation of spins, described by the continuous symmetry group SU(2) (the
special unitary group of degree two). It appears frequently in quantum mechanics for
several important spin models and it is also present in the standard model of particle
physics, which has a local SU(3)× SU(2)× U(1) gauge symmetry [82].
Physical symmetries can be directly incorporated into tensor networks. The basic idea
is to use symmetry preserving tensors, which causes the whole quantum state to be
invariant under the action of the symmetry group. In the following sections we will
describe a formalism to implement general symmetries in tensor networks following
Refs. [11, 83], and we will focus then on the case of the non-Abelian group SU(2).
The disparity to Abelian groups like U(1) is briefly discussed in Sec. 3.7 and for an
introduction to the representation theory of SU(2) we refer to Appendix A.1.

3.1 Implementation of Symmetries

Considering a lattice L made of N sites, where each lattice site is described by a finite
Hilbert space V of dimension p. A pure state |ψ〉 ∈ V⊗N in the total Hilbert space
can always be expanded in terms of the single-particle states |ik〉 with k = 1, . . . , p
according to

|ψ〉 =
∑

i1,i2,...,iN

ci1,i2,...,iN |i1〉 ⊗ |i2〉 ⊗ . . .⊗ |iN 〉 . (3.1)

A tensor network description of the state |ψ〉 consists of a set of tensors and a graph
or network of edges which determines how the tensors can be contracted together to
recover the probability amplitudes ci1,i2,...,iN . Furthermore we consider a compact,
completely reducible group G with U : G → L(V) a unitary matrix representation of
G on the space V of one site. For each element g of the group, Ug : V→ V denotes a
unitary matrix and Ug1Ug2 = Ug1g2

1. The vector space V on each site decomposes as

V ∼=
⊕

j

djVj ∼=
⊕

j

(Dj ⊗ Vj) (3.2)

1We do not consider projective representations here, for which Ug1Ug2 = ω(g1, g2)Ug1g2 holds. If
projective representations are needed, one could use the corresponding covering group R(G), where
the projective representations of G are linear representations of R(G).
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under the action of the symmetry. Here j are the charges or quantum numbers of G,
Vj denotes a subspace for the corresponding irreducible representation (irrep) and dj
counts the copies of Vj in V. The decomposition can also be conveniently written in
terms of a dj-dimensional degeneracy subspace Dj (see Eq. (3.2)). Instead of using
the single-particle basis |ik〉 with ik = 1, . . . , p, we can now use the basis |j, tj ,mj〉
in V, where tj denotes states within the degeneracy space Dj and mj label states
within the irrep space Vj . This formalism is very general, for the concrete example of
G = SU(2) we will be focusing on the charges j correspond to the total spin, and mj

corresponds to the spin projection along a quantization axis.
We are interested in quantum states |ψ〉 ∈ V⊗N that are invariant under a global
on-site symmetry, so that

(Ug)
⊗N |ψ〉 = |ψ〉 ∀ g ∈ G . (3.3)

Here Ug is an element of the group G that acts on the vector space of the physical
degrees of freedom, as visualized for an MPS in Fig. 3.1. The invariance under the

Ug Ug Ug Ug Ug

=

Figure 3.1: A global on-site symmetry for an MPS, where Ug acts on the vector
space of the physical degrees of freedom. The invariance under the action of a group

G is achieved by purely symmetric tensors in the representation of |ψ〉.

action of G will be achieved by a representation of |ψ〉 in terms of purely symmetric
tensors. A tensor is a multi-linear map between tensor product vector spaces, and
each index of the tensor labels a basis on one of these spaces. In order to introduce the
action of a symmetry, we will also assign a direction wi ∈ {−1,+1} to each index i
using the convention

wi =

{
−1 if i is an incoming index
+1 if i is an outgoing index . (3.4)

The direction determines how the symmetry acts on the index. Since an outgoing
index of one tensor needs to be connected with an incoming index of another one, the
symmetry acts as the identity on the link between the tensors. A symmetric tensor
is defined by being invariant under the simultaneous action of G on all its indices,
that is, on the vector spaces associated with these indices. This is shown in Fig. 3.2,

T

ja jb

jc

V †g W †g

Ug

= T

ja jb

jc

Figure 3.2: A symmetric tensor is invariant under the simultaneous action of G
on all its indices for fixed values of the charges ja, jb and jc. The directions of the

tensor indices determine how the group acts on them.

where we use the convention that the group acts with its adjoint representation on
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incoming indices. We now fix the basis of symmetric tensors to the one corresponding
to the irrep basis {|j, tj ,mj〉} for all tensor indices. Instead of simply labeling the
basis states, every index i then corresponds to a set of triples i ≡ (ji, tji ,mji), i.e.
each index can carry multiple irreps ji that come with degeneracies tji and mji . The
symmetric bond dimension of an index i is then the number of different irreps counting
multiple copies separately, given by

χsym =
∑

ji

tji . (3.5)

The total, effective bond dimension |i| can however be larger if the irreps of the group
G are degenerate. Generally, it is given by

χeff =
∑

ji

tji × |mji | , (3.6)

where |mji | is the size of indexmji . For the case of SU(2) we havemji = [−ji, . . . ,+ji]
and therefore |mji | = 2ji + 1, so that the effective bond dimension will generally be
larger than the symmetric one. In the chosen basis a symmetric tensor can be de-
composed according to the Wigner-Eckart theorem. This implies that the degrees of
freedom that are not fixed by the present symmetry can be isolated in a set of de-
generacy tensors {P}, while everything that is entirely determined by the symmetry
is transferred into a set of structural tensors {Q}. In practice, this means that only
the degeneracy tensors P encode the variational parameters in a symmetric tensor
network optimization, which implies a reduction in memory cost as well as a compu-
tational speed-up in TN algorithms.

Let us consider the case of a three-index tensor Tabc, where each index carries
a set of quantum numbers with corresponding degeneracies (ji, tji ,mji). By fixing
particular values of the charges ja, jb and jc we can select one block of components
from the tensor, denoted by Tjajbjc . The Wigner-Eckart theorem separates this block
into a tensor product of its variational parameters and the structural parameters of
the symmetry according to

Tjajbjc = Pjajbjc ⊗Qjajbjc . (3.7)

Here the dimensions of P and Q are determined by the dimensions of the degenerate
subspaces Dji and the dimensions of the irrep spaces Vji respectively. The decom-

T

ja jb

jc

= P

(ja, tja) (jb, tjb)

(jc, tjc)

⊗ Q

(ja,mja)(jb,mjb)

(jc,mjc)

Figure 3.3: For fixed values of the charges a symmetric tensor decomposes into
a degeneracy part P and a structural part Q, where P holds the unconstrained
parameters of T and Q is entirely determined by the symmetry (it is an intertwiner
of the symmetry group). Both P and Q are labeled by the quantum numbers ja,
jb, jc, their dimensions are however specified by tja , tjb , tjc and mja , mjb , mjc .
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position in Eq. (3.7) is visualized in Fig. 3.3. The full symmetric tensor Tabc can be
written in terms of block of components Tjajbjc as

Tabc =
⊕

jajbjc

(Pjajbjc)tja tjb tjc
⊗ (Qjajbjc)mjamjb

mjc
(3.8)

for compatible combinations of (ja, jb, jc), which are determined by the fusion rules
of the symmetry. Exploiting the decomposition of symmetric tensor is crucial in im-
proving existing tensor network implementations and will lead to reduced memory
requirements and computational speedup, as we will demonstrate later.

This formalism can be used to decompose tensors of arbitrary rank. It is important
to notice however that the decomposition is generally no longer unique for tensors with
more than three indices. This is due to the pairwise combination of vector spaces.
Consider a four-index tensor for which the three vector spaces Va, Vb and Vc merge
into Vd. The composite vector space Vd can be constructed as (Va ⊗ Vb) ⊗ Vc or as
Va⊗(Vb ⊗ Vc). Since the intermediate vector spaces Vi = Va⊗Vb or Vj = Vb⊗Vc can
again be decomposed as a direct sum of vector spaces as in Eq. (3.2), it is necessary to
keep the intermediate quantum numbers to identify the tensor blocks. A symmetric
tensor with k indices can generally be written as a direct sum of symmetric blocks

T
jint
1 ,...,jint

l
j1,...,jk

= P
jint
1 ,...,jint

l
j1,...,jk

⊗Qj
int
1 ,...,jint

l
j1,...,jk

, (3.9)

where each block is labeled by the charges j1, . . . , jk associated to the k indices and
additional l = k − 3 internal charges jint1 , . . . , jintl . Even though P and Q are labeled
by the full set of quantum numbers

(
jint1 , . . . , jintl , j1, . . . , jk

)
, they only have k indices

each with dimensions given by tji and |mji | respectively.
Notice that in the presented description of symmetric tensors we implicitly assumed
a multiplicity-free group G, this is however not the most general case. Generally, the
tensor product of two irreps with charges ja and jc decomposes as

Vja ⊗ Vjb ∼=
⊕

jc

N jc
jajb

Vjc , (3.10)

where N jc
jajb

counts the copies of Vjc that appear in the direct sum. If N jc
jajb
≥ 2 for any

combination of irreps, one needs to extend the formalism by introducing additional
indices for the multiplicities at each intersection of two vector spaces.
This completes the theoretical description of symmetric tensors. From now on we
will focus on the group G = SU(2), an infinite non-Abelian group that does not have
multiplicities. We will show how the ambiguity of combining vector spaces can be
resolved by the formalism of fusion trees - a kind of a tree graph decorated with
charge labels - which completely specify the structural part of a symmetric tensor.

3.2 SU(2)-Symmetric Tensors

For G = SU(2) the charges j correspond to the total spin, e.g. j ∈ 0, 1
2 , 1, . . . and

mj corresponds to a projection along a quantization axis. The effect of the symme-
try will be incorporated into the structural tensors Q, which describe the coupling
of different spins in terms of Clebsch-Gordan coefficients. The coupling coefficients
〈j1m1 j2m2 | j m〉 then appear as entries of the structural tensors Q, which can be
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stored as standard numerical arrays. Alternatively, the structural part can be de-
scribed by a fusion tree decorated by quantum numbers of the group. This has sev-
eral advantages compared to a regular implementation. First of all, since the fusion
trees are an algebraic construct they are memory-efficient and no actual coefficients
for structural tensors have to be stored. Second, manipulation of tensors are mostly
impacted by manipulations of the fusion trees which are exact and virtually free of
numerical errors that could occur when manipulating structural tensors as numeri-
cal arrays. Additionally, fusion trees are the natural language to describe anyonic
systems, so that an implementation based on fusion trees can be readily extended to
support so called quantum groups, that underly anyonic theories (see Sec. 3.6).

3.2.1 Fusion Trees

The structural tensors are the intertwiners of the symmetry group G [84]. The elemen-
tary objects - three-index structural tensors - are tensors whose components are the
Clebsch-Gordan coefficients of the group. They are connected to the unique mapping
between three vector spaces Vja ⊗ Vjb ∼= Vjc . We refer to these elementary three-
index tensors as Clebsch-Gordan tensors. A Clebsch-Gordan tensor C fuse describes a
(unitary) change of basis from the tensor product of two irreps ja and jb to a total
irrep jc according to

|jcmjc〉 =
∑

mjamjb

(
C fuse

)(jc,mjc )

(ja,mja ),(jb,mjb
)
|ja,mja〉 ⊗ |jb,mjb〉 . (3.11)

This is denoted by ja× jb → jc. The Clebsch-Gordan coefficients in Eq. (3.11) vanish
unless the fusion rules of the symmetry

jc ∈ ja ⊗ jb = {|ja − jb|, . . . , ja + jb} (3.12)

are satisfied. The possible symmetric blocks labeled by (ja, jb, jc) that appear in the
decomposition of a three-index symmetric tensor are therefore determined by compat-
ible configurations where jc belongs to the set above. The inverse operation, where

C fuse

1 2

3

(ja,mja) (jb,mjb)

(jc,mjc)

Csplit

(jc,mjc)

(ja,mja) (jb,mjb)

1

2 3

Figure 3.4: Graphical representation of the elementary three-index Clebsch-
Gordan tensors that fuse two irreps ja × jb → jc or split an irrep jc → ja × jb.

The blue labels indicate the order in which the legs will to be specified.

irrep jc splits into a tensor product of irreps ja and jb (jc → ja × jb) is denoted by
a Clebsch-Gordan tensor Csplit. The definitions of these elementary building blocks
of fusion trees are shown in Fig. 3.4. Structural tensors (or intertwiners) with more
than three indices can always be decomposed in terms of these elementary tensors,
which corresponds to a pairwise combination of vector spaces. Every intertwiner can
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be described in terms of directed trivalent tree graphs that are generated by combi-
nations of fusion and splitting tensors. Therefore C fuse and Csplit are the trivalent
nodes of the fusion tree, and the irreps that are being fused or split are those carried
by the indices of the symmetric tensor. The Clebsch-Gordan tensors obey some useful

(jc,mjc)

(jc,mjc)

(ja,mja) (jb,mjb)

C fuse

Csplit

=

(jc,mjc)

(jc,mjc)

∑

jc

(ja,mja) (jb,mjb)

(ja,mja) (jb,mjb)

(jc,mjc)

Csplit

C fuse

=

(ja,mja) (jb,mjb)

(ja,mja) (jb,mjb)

Figure 3.5: Identity relations for the Clebsch-Gordan tensors Cfuse and Csplit.
The sums over all spin projections mja , mjb and mjc are implicit.

identity relations depicted in Fig. 3.5 which will be utilized in Sec. 3.2.3 to transform
different fusion trees into each other.

In order to store a fusion tree for a general tensor one needs a list of nodes specifying
which indices intersect at the given vertex, and a list of node types specifying whether
the node is a fusion or a splitting node. This is necessary to avoid ambiguities as we
will show below. To this end, we label incoming and outgoing edges of the symmetric
tensor by negative numbers −1,−2, . . ., whereas edges carrying the intermediate irreps
(the various pairwise fusion outcomes) are labeled by positive numbers 1, 2, . . .. The
edges labeled by negative integers correspond to the indices of the corresponding
structural tensors while edges labeled by positive numbers are the additional quantum
numbers that occurred in the general decomposition of Eq. (3.9). Each node i of the
tree is specified by a three-component vector τi, whose entries correspond to the labels
of the three edges that intersect at the node. The position in the node is fixed for
both elementary nodes and the position is indicated in Fig. 3.4 by blue numbers. The
label to distinguish fusion nodes from splitting nodes is stored in a separate vector σ
where for each node

σi =

{
−1 if node i is a fusion node
+1 if node i is a splitting node . (3.13)

Therefore, for σi = −1 the first and the second edge of τi fuse to the third edge, and
for σi = +1 the first edge of τi is split into the second and the third edge. A complete
fusion tree is then specified by a list of nodes τ and the corresponding vector σ. As
an example let us consider the possible fusion trees for a four-index tensor. Their
structural parts are special in so far, as they represent combinations of two fusion
and/or splitting nodes which form a full list of all possible tree structures available.
They are also the smallest possible trees for which the ambiguity of combining vec-
tor spaces appears and will allow us to establish transformations between differently
coupled vector spaces. First we make the observation that we can further classify
trees according to the property of separating incoming and outgoing edges. Fig. 3.6
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−1 −2 −3

−4

1

−1

−2 −3 −4

1

−1 −2

−3 −4

1

−1

−2 −3 −4

1

−1 −2 −3−3

−4

1

Figure 3.6: Different fusion trees representing the structural part of a four-index
tensor. Since all incoming edges are separated from outgoing edges either immediate

or by cutting only one internal edge, these trees are called simple trees.

lists all four-index fusion trees for which incoming and outgoing edges are either au-
tomatically separated, or can be separated by cutting a single edge of the tree. We
refer to these kind of structures as simple trees. However the set in Fig. 3.6 is not
the most general one, since we can also build the trees in Fig. 3.7. Cutting a single

−1 −2

−3 −4

1

−1

−2

−3

−4

1

−1

−2

−3

−4

1

−1 −2

−3 −4

1

Figure 3.7: Different fusion trees representing the structural part of a four-index
tensor. Since incoming and outgoing edges can no longer be separated by cutting

one internal edge, these trees are called advanced trees.

branch of those trees will no longer separate incoming and outgoing edges, and we
refer to those structures as advanced trees. We now make some concrete examples for
the specification of the fusion trees using our convention in terms of τ and σ vectors
and the labelling of nodes defined in Fig. 3.4. The first, third and the fourth fusion
tree in Fig. 3.6 are constructed by

τ1 = {[−1,−2, 1], [1,−3,−4]} σ1 = [−1,−1]

τ3 = {[−1,−2, 1], [1,−3,−4]} σ3 = [−1,+1]

τ4 = {[−1,−2, 1], [1,−3,−4]} σ4 = [+1,+1] .

(3.14)

Here the importance of the σ vector becomes apparent since the trees are all specified
by the same τ vectors. Using this convention it is possible to construct arbitrary trees,
and also more general graphs that can contain loops2.

2For symmetric tensors graphs are a less efficient representation of the structure of the group and
we will be confined to only using fusion trees without the loss of generality. However graphs with
loops can occur for the contraction of several tensors, which we will address in a dedicated chapter.
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3.2.2 Decorations of Fusion Trees with Quantum Numbers

The internal structure and the symmetric part of symmetry-preserving tensors can
be conveniently described in terms of fusion trees. Moreover, the fusion rules of the
group in Eq. (3.12) also determine the possible symmetric blocks that appear in the
decomposition of the full tensor

T =
⊕

j1,...,jk
jint
1 ,...,jint

l

T
jint
1 ,...,jint

l
j1,...,jk

=
⊕

j1,...,jk
jint
1 ,...,jint

l

P
jint
1 ,...,jint

l
j1,...,jk

⊗Qj
int
1 ,...,jint

l
j1,...,jk

. (3.15)

Each block of the symmetric tensor is labeled by the set of all quantum numbers
{jint1 , jint2 , . . . , jintl , j1, j2, . . . , jk}, which is a complete decoration of the fusion tree in
terms of quantum numbers of the group. For such a decoration the irreps intersecting
at any node obey the fusion rules. Each block in the tensor is labeled by one unique
decoration, which we also refer to as charge sector.

In order to find the possible charge sectors it is necessary to determine the quan-
tum numbers on internal edges first. For the case of G = SU(2) the intermediate
vector spaces can always be constructed with non-degenerate vector spaces of irre-
ducible representations since there are no multiplicities. Once all quantum numbers
in the fusion tree are known (external ones specified by the initialization of the sym-
metric tensor and internal ones obtained by pairwise fusion), one can apply the fusion
rules of the symmetry to each node individually. The final set of tree decorations is
obtained by combining the possible quantum numbers for every node in such a way
that the quantum numbers on the connecting, internal edges are in agreement. An
example for a four-index fusion tree with different quantum numbers on incoming and
outgoing edges is given in Fig. 3.8. Here the intermediate vector space would carry
jint1 = [0, 1, 2] for the fusion of the two incoming vector spaces, however due to the
splitting into the two outgoing spaces V3 and V4 it is limited to carry only spin zero
and one. A symmetric four-index tensor initialized with the external quantum num-

j1 =

[
0
1

] [
0
1

]
= j2

j3 =

[
0

1/2

][
0

1/2

]
= j4

jint1 =

[
0
1

]




j1 j2 jint1

0 0 0
0 1 1
1 0 1
1 1 0
1 1 1







jint1 j3 j4
0 0 0
0 1/2 1/2
1 1/2 1/2




T =




jint1 j1 j2 j3 j4
0 0 0 0 0
0 0 0 1/2 1/2
0 1 1 0 0
0 1 1 1/2 1/2
1 0 1 1/2 1/2
1 1 0 1/2 1/2
1 1 1 1/2 1/2




Figure 3.8: Construction of all fusion tree decorations (charge sectors) that label
the blocks of a symmetric tensor with chosen external quantum numbers. Once the
irreps for all internal edges are determined one can construct possible decorations
for every node using the fusion rules of the group. These are then assembled to the

full list of charge sectors.
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bers ji as in Fig. 3.8 would therefore consist of seven separate blocks, each of which
labeled by one row of the matrix T . The individual dimensions of the degeneracy
tensors {P} then corresponds to the degeneracies tji of ji that are not specified here.

Building Structural Tensors
One of the main advantages of the fusion tree approach is that no actual Clebsch-
Gordan coefficients have to be stored, and tensor manipulations are rendered as ana-
lytic operations on the trees. However it is always possible to build the actual struc-
tural tensors from the information that is stored, namely the fusion tree itself and the
decorated quantum numbers. For every tree decoration - i.e. every symmetric block
in the tensor - a Clebsch-Gordan tensor is assigned to each fusion and splitting node
respectively. The structural tensor is then obtained by contracting all the numerical
fusing and splitting tensors according to the fusion tree. This operation is required
when computing the full tensor from the symmetric tensor decomposition.

3.2.3 F-Moves

In this section we will describe how different fusion trees can be transformed into each
other via so-called F -moves. This is an important operation since the decomposition
of tensors with more than three legs is not unique and the vector spaces can be pair-
wise fused in different ways. All these possibilities are equivalent from the perspective
of the symmetric tensor - i.e. it does not matter which fusion tree is chosen as an in-
ternal structure - but some tree decompositions are more useful than others in certain
situations.

A given fusion tree can be transformed into another fusion tree by applying a
sequence of elementary transformations known as F -moves. They act on fusion trees
with four open edges, leaving their direction as well as their ordering unaffected.
Therefore not all of the elementary four-index fusion trees in Figs. 3.6 and 3.7 can

jf

je

ja

jb jc

jf

jd

= F jdjejajbjcjf
jf

Figure 3.9: Evaluating the spin network on the left is proportional to the identity
on the right, with a factor given by the recoupling coefficients F , that relate two

differently coupled bases to one another.

be transformed into each other. An F -move is a (unitary) change of basis for the
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structural tensors that relates two fusion trees to one another via the recoupling co-
efficients of the group. For SU(2) they are defined in Fig. 3.9 via the overlap of
differently coupled bases. They are also closely related to the Wigner 6-j symbols
according to

F jdjejajbjcjf
= (−1)ja+jb+jc+jf

√
(2jd + 1) (2je + 1) ·

{
ja jb jd
jc jf je

}
, (3.16)

where {. . .} denotes a 6-j symbol. In total there are ten different types of F -moves
which are necessary to transform among different internal structures of symmetric
tensors. They are listed in Fig. 3.10. The actual relation between differently coupled
bases for all F -moves can be deduced by applying different resolutions of the identity
and using Fig. 3.9. A detailed chapter about F -moves can be found in Appendix A.2.
For general fusion trees with more than four indices, the tree transformation can al-

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Figure 3.10: Full set of possible F -moves to transform different fusion trees into
each other.

ways be reduced to a concatenation of single F -moves like the ones in Fig. 3.10. In
doing so the sequence of F -moves is not unique and the same overall transformation
may even require a different number of single moves. It is therefore important to find
an optimal transformation sequence.

Finding the Optimal Sequence of F -Moves
In general a given fusion tree can be transformed into a final fusion tree with different
concatenations of F -moves. The determination of the best suitable F -moves and their
sequence is one of the core tasks for the transformation of trees and we will outline
how this operation can be performed. For every fusion tree we can define a clockwise
(anticlockwise) ordering of the open edges by starting at one leaf and traversing the
tree. Every leaf is connected to its neighbour by a certain path inside the tree that
consists of different nodes to be traversed. Collecting this information for all open
edges, one can define a measure of distance between two fusion trees, e.g. the difference
in the path length to traverse every edge to its clockwise or anticlockwise neighbours.
As a concrete example let us consider the five-index fusion tree in Fig. 3.11, where it is
obvious that the sequence of F5 on internal edge 1 and F4 on internal edge 2 yields the
desired final tree. The optimal sequence should be found automatically for all possible
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Figure 3.11: The sequence of F -moves to transform an input tree into an output
tree can be found using a kind of cost function that measures how far two trees are

apart from each other. More details are given in the text.

trees using the cost function mentioned previously. For the two trees in Fig. 3.11 we
have the set of data for a traversal in clockwise order shown in Table 3.1. The first cost
function C1 is the collective difference in path lengths between the initial and the final
tree which needs to be zero when the correct sequence of F -moves has been found.
This information is however not sufficient. Consider for example the two fusion trees
that can be transformed into each other by only F9 (or F10 equivalently) in Fig. 3.10.
The cost function C1 for these two trees is already zero because the distance between

pathID 1 2 3 4 5
connected edges -1 → -2 -2 → -5 -5 → -4 -4 → -3 -3 → -1
path length I 2 2 1 3 1
path length F 1 2 2 1 3

path difference (C1) 1 0 1 2 2
node types I +1,−1 −1,+1 +1 +1,−1,+1 +1
node types F −1 −1,+1 +1,+1 +1 +1,+1,−1

node difference (C2) [1 0] [0 0] [0 0] [0 0] [0 1]

Table 3.1: Tree traversal information that is used to define a cost function to min-
imize the distance between two fusion trees. Both trees are traversed in clockwise

order.

neighbouring edges is identical, however the full trees are not identical. Therefore
a second cost function C2 is required that measures the distance of the two trees in
terms of node types that need to be traversed, i.e. whether the nodes along the path
are in the same sequence of fusion and/or splitting nodes. Since the number of nodes
in the paths is in general not the same, the cost function C2 measures the agreement
of nodes in clockwise and anticlockwise order. This results in two values for C2 as
shown in Table 3.1, where a discrepancy of node types is penalized. In the automated
process all possible F -moves for the internal edges are tested successively, the distance
measures C1 and C2 are computed for the resulting tree and compared against the
initial tree. If the cost functions improve, e.g. lower collective distance or better
overlap in terms of node types the F -move is accepted. Otherwise it is rejected and
the next F -move is tested. The most efficient transformation is then the one with the
smallest number of individual transformations.
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3.3 Handling of Symmetric Tensors

Summarizing the description in the previous sections, a symmetric tensor is an object
with a given set of quantum numbers and corresponding degeneracies for every tensor
index, and a fusion tree that represents the internal structure of the tensor in terms
of Clebsch-Gordan coefficients of the underlying symmetry group G. The fusion rules
of G determine the possible symmetric blocks in the tensor, each of which factorizes
into a part P holding the remaining variational parameters of the symmetric tensor
and a structural part Q represented by a decorated fusion tree instead of a numerical
array filled with Clebsch-Gordan coefficients.

For the discussion of tensor network algorithm and the application of SU(2)-
symmetric tensors therein we can treat them essentially as elementary building blocks.
Notice however that the standard set of tensor operations, such as reshaping or per-
muting tensor indices, factorizing matrices (using e.g. an SVD or an eigendecom-
position) and ultimately multiplications and general tensor contractions have to be
adapted for symmetric tensors and are significantly more involved. For a very detailed
description of the complete set of tensor operations we refer the interested reader to
Ref. [85], a programming guide for tensor networks with SU(2) symmetry. Here we
briefly describe the operations and highlight where the symmetry puts additional
complications. In the following, all tensor operations that are used in tensor net-
works algorithm will be presented. Notice that the transformation of fusion trees in
terms of F -moves is not listed below, since it only affects the internal decomposition
of the tensor which should be dealt with automatically in actual algorithms. Tensor
manipulations applied by the programmer are the ones listed below.

3.3.1 Reversal of Indices

Reversal of indices is a trivial operation for non-symmetric tensors which have no
directions assigned to them. For symmetric tensors however, a reversal acts on the
structural part and changes a fusion node into a splitting node (or vice versa) for the
node where the index is attached. This in turn changes the Clebsch-Gordan coefficients
for this particular node. In the fusion tree picture the change of the node type results
in an algebraic factor derived from the recoupling coefficients of the group, that can
be absorbed into the associated degeneracy part. The reversal of tensors with many

T

i j

k

index reversal
T ′

j

i k

Figure 3.12: Reversing the incoming index i for a three-index tensor T transforms
the fusion node into a splitting node. The resulting numerical factors are absorbed

into the set of updated degeneracy tensors of T ′.

indices works similarly because the factors for the symmetric blocks can be derived
only from the node that is affected. Detailed information about the reversal factors
can be found in Ref. [85].
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3.3.2 Permutation of Indices

The second important operation which is frequently used in tensor network algorithms
is the permutation of indices. We limit the discussion here to indices that have the
same direction, e.g. that are both incoming or both outgoing. If this is not preexisting,
a reversal operation is performed before and after the permutation. A permutation
of a regular numerical array is simply a reshuffling of the tensor entries. This is the
case for the degeneracy part of the symmetric blocks as well, however permutations
of the quantum numbers in the decorated fusion trees leads to additional numerical
factors3. These factors are given by the R-symbols of SU(2)

Rja×jb→jc = Rjc→ja×jb = (−1)ja+jb−jc . (3.17)

As for reversal, a permutation of indices introduces a single factor per symmetric block
that can again be absorbed into the degeneracy parts. For tensors with an arbitrary

T

i j

k

index permutation
T ′

j i

k

Figure 3.13: Permutation of two incoming indices of a three-index tensor T . The
corresponding R-factors are absorbed into the updated degeneracy tensors of T ′.

number of indices, a general permutation of indices with the same direction can always
be composed of pairwise permutations. However, since the pairwise permutations need
to be performed on indices belonging to the same node in the fusion tree, there are
additional F -moves necessary to ensure this property. Details are given in Ref. [85].

3.3.3 Reshaping of Indices

A tensor is treated as a multidimensional array in the language of tensor networks.
In order to be able to use them properly in algorithms it is necessary to reshape ten-
sors, e.g. combine several indices to one or split a certain index into others. This
can for example be required prior to matrix factorizations or contractions. Reshaping
of non-symmetric tensors is a simple operation which changes the dimensions of the
array. In the symmetric counterpart, a reshaping operation leads to a concatenation
of multiple individual blocks for a fusion, or a separation of a single block into multi-
ple ones for a splitting operation. Typically, a splitting of tensor indices is the exact
inverse operation to a preceding fusion operation and does not occur as a standalone
process. We will therefore make an example of a fusion operation to demonstrate the
reshaping of SU(2)-symmetric tensors. Due to the underlying fusion tree structure,
the fusion of indices is restricted to indices with the same direction. In this way the
splitting of a previously fused index with given direction results in separate indices
with the same direction. General reshaping operations can be constructed out of index
reversal, index permutations and index reshaping as described below.

3For anyonic theories the permutation is described in terms of braiding operations, for which
clockwise and anticlockwise braidings generally correspond to different factors.
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Fusion of Two Indices
We demonstrate an elementary fusion operation of two indices for the example of a
three-index tensor. In this way the two indices that will be fused are already attached
to the same node in the fusion tree. The handling of tensors with more than three

T

i

j k

index fusion
T ′

i

j ⊗ k

Figure 3.14: Fusion of the two outgoing indices of a three-index tensor. The
symmetric blocks of T ′ result from a concatenation of reshaped symmetric blocks

of T , as demonstrated in the main text.

indices is explained in detail in our programming guide [85]. For the concrete example
we choose the arbitrary irreps and degeneracies for each index of tensor T in Table 3.2.
Applying the fusion rules of the symmetry group (see Eq. (3.12)) determines the list

index irreps with degeneracies {jtj}
i [01, 12, 23]
j [01, 14]
k [01, 16]

Table 3.2: Quantum numbers and degeneracies for a three-index tensor whose
outgoing indices will be fused together.

of possible charge sectors of T , which in turn label the various degeneracy tensors

{P0,0,0, P0,1,1, P1,0,1, P1,1,0, P1,1,1, P2,1,1} . (3.18)

Fusing outgoing indices j × k → l results in a new index that carries the fused quan-
tum numbers shown in Table 3.3. Here the degeneracies of the fused quantum num-
bers are determined by all combinations leading to a specific fusion outcome, e.g.
134 = (01 ⊗ 16) + (14 ⊗ 01) + (14 ⊗ 16). Again, the list of possible charge sec-

index irreps with degeneracies {jtj}
i [01, 12, 23]
l [025, 134, 224]

Table 3.3: Quantum numbers and degeneracies for the two-index tensor obtained
by fusing two indices of the three-index tensor of Table 3.2.

tors determines and labels the degeneracy blocks of tensor T ′, which are given by
{P ′0,0, P ′1,1, P ′2,2}. In order to relate the degeneracy tensors of Tijk to the ones of T ′il
one has to identify which input charge sectors will be assigned to which output charge
sector according to the fusion rules. This assignment is however not unique due to
the non-Abelian character of SU(2), it is shown in Table 3.4. In the fusion operation
an output degeneracy tensor is composed by reshaping the contributing degeneracy
tensors and concatenating them. For the degeneracy block P ′0,0 the contributing de-
generacy tensors P0,0,0 and P0,1,1 are reshaped by fusing together indices tj and tk
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output charge sector contributing input charge sector
[0, 0] [0, 0, 0], [0, 1, 1]
[1, 1] [1, 0, 1], [1, 1, 0], [1, 1, 1]
[2, 2] [2, 1, 1]

Table 3.4: Map between the input charge sectors of T and the output charge
sectors of T ′ for the fusion of two indices. Each output degeneracy tensor corre-
sponding to an output charge sector is composed of transformed input degeneracy

tensors associated to the contributing input charge sectors.

and the resulting matrices are concatenated. This operation is denoted by

P ′0,0 = P0,(0,0) ◦ P0,(1,1) , (3.19)

where the indices in brackets denote the fusion of these two indices and ◦ denotes
the concatenation of the resulting arrays along the fixed dimensions. In this example
P0,(0,0) yields a (1× 1)-dimensional array, P0,(1,1) yields a (1× 24)-dimensional array
which are concatenated along the fixed row. This yields the final (1×25)-dimensional
degeneracy tensor P ′0,0 for the output tensor. Similarly the remaining degeneracy
tensors are constructed by

P ′1,1 = P1,(0,1) ◦ P1,(1,0) ◦ P1,(1,1)

P ′2,2 = P2,(1,1) .
(3.20)

This formalism can be extended to tensors with an arbitrary number of indices, for
which a generic fusion operation can be performed by pairwise fusion of indices. The
transformation on the fusion tree is done by removing the node where the two indices
are attached, and promoting the internal edge connected to the removed node to an
external edge (special treatment for tensors less than four indices is required).

Splitting of Indices
The splitting of indices is the inverse operation to the fusion of indices. The elemen-
tary split operation separates an index – that was previously fused – into the two
original indices. On the level of the fusion tree this corresponds to promoting the split
index to an internal edge, and attaching a new node for the two separate indices. In
terms of the degeneracy tensors one can use the same map as for the fusion opera-
tion (see Table 3.4), only now the input degeneracy tensors have to be broken into
different pieces, that are reshaped according to the degeneracies of the corresponding
quantum numbers and associated to the output charge sectors. Due to the possibility
of concatenated fusion operations one needs to keep track of the fusion history, which
is unraveled again in the split operations.

3.4 Contractions of Symmetric Tensors

One of the most important operations in tensor network algorithms is the efficient
contraction of two tensors or generally larger networks of tensors. For regular, non-
symmetric tensors contractions can be implemented via matrix-matrix or matrix-
vector multiplications using permutation and reshaping operations to prepare the
input tensors and transform the output tensor to the desired form. For symmetric
tensors however, contractions are more involved due to the internal structure of the
tensors and the underlying fusion trees. Here we will explain the essential procedure



34 Chapter 3. Symmetry-Preserving Tensors

and steps, but we will spare technical details that – though being very relevant –
strongly depend on the actual implementation.

3.4.1 Matrix-Matrix Multiplication

One of the most elementary operation is the multiplication of two matrices, to which
every general contraction of two tensors can be related. We will present this example
here to exemplify some first complications due to the symmetry. Additionally this op-
eration unveils the core benefit of implementing symmetries, as we will see below. Con-
sider two SU(2)-symmetric matrices carrying quantum numbers jtj = [04, 1/26, 13] on
both indices respectively. The decomposition based on the fusion rules leads to a
block-diagonal structure, because the only possible blocks are the ones for which the
quantum numbers on the indices match. Therefore both matrices look like

T =




(
P0,0

)
4×4 (

P 1
2
, 1
2

)
6×6 (

P1,1

)
3×3


 , (3.21)

where the dimensions of the blocks are given by the degeneracies of the quantum
numbers. The multiplication of the full matrices is now reduced to the multiplica-
tion of the individual blocks of the symmetric decomposition. This is clear from the
block-diagonal structure, however it implies that only blocks with matching quantum
number on the contracted leg are multiplied. This is a general property for the con-
traction of arbitrary tensors, where all quantum numbers on the contracted indices
need to match.
Before going to more general contractions let us note that the computational speedup
obtained by implementing symmetries originates precisely in the matrix-matrix mul-
tiplication or generally in contractions. The symmetric decomposition reduces the
computational cost by trading the operation on full, non-symmetric tensors with mul-
tiple, but much cheaper operations on small blocks of tensors.

3.4.2 General Tensor Contractions

One important contribution of the symmetric tensor could be neglected in the previous
example of a matrix-matrix multiplication – the fusion tree. For general contractions
however, the so called spin network, i.e. the network of fusion trees of the contracted
tensor leads to numerical factors for the degeneracy tensors. Since a fully general
contraction can always be achieved by sequential contractions of only two tensors we
will restrict to that case. Furthermore, the possible contractions of two tensors can
be classified into a class that does not exhibit loops in the contracted fusion tree and
a class that exhibits loops in the spin network.

Loop-Free Contractions
Loop-free contractions always involve only one contracted index. An example of this
is the matrix-matrix multiplication in Sec. 3.4.1, or the contraction of two four-index
tensors as shown in Fig. 3.15. In the case of loop-free contractions the final fusion
tree is a direct combination of both input fusion trees. The charge sectors labeling
the new degeneracy blocks (i.e. the fusion tree decorations) are constructed by the
quantum numbers of the input blocks where the contracted index is promoted to an
additional internal edge. In the present example, new blocks are the combination of
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j′3 j′4

j1 j2 j′2

j3 j′3 j′4

Figure 3.15: Contraction of two four-index tensors resulting in a six-index tensor.
No loops appear in the contractions when only one index is summed over.

input blocks for which j4 = j′1. Here the new degeneracy tensors originate from a
contraction of a single pair of input degeneracy tensors.

Contractions with Loops
The general and common case is a contraction of two or more indices, resulting in
loops in the spin networks. This operation is different from loop-free contractions in-

j1 j2

j3 j4

jint1

j′3

j′1 j′2

j1 j2

j3 j4

jint1

j′3

j1 j2

j′3

Figure 3.16: Contraction of a four-index tensor and a three-index tensor. The
loop in the spin network can always be eliminated by exploiting the orthogonality

relation for Clebsch-Gordan coefficients, resulting in a three-index tensor.

sofar, as loops can lead to additional numerical factors for the contracted blocks, and
the map between pairs of input degeneracy tensors and output degeneracy tensors is
no longer in one-to-one correspondence. We will demonstrate the two intricacies with
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some examples in the following. First, let us again consider the contraction of a four-
index with a three-index tensor, this time along two indices. This is shown in Fig. 3.16
where the resulting spin network exhibits a loop. Spin networks that include loops
are commonly referred to as graphs, they are however an inefficient representation of
the symmetric tensor and a reduction to a fusion tree without loops is desirable. The
loop appearing in the present contraction is the smallest one possible, consisting of
only one splitting and one fusion node. It is denoted as a bubble. Making use of the
orthogonality relation for Clebsch-Gordan coefficients this loop reduces exactly to the
identity for jint1 = j′3, and vanishes otherwise (refer to Fig. 3.5). It can therefore be
removed from the spin network, which then results in a simple three-index Clebsch-
Gordan tensor. However, as stated above, loops in the network lead to a many-to-one

jint1

j3 j4

j′3

chargeSectors =




jint1 j3 j4 j′3
0 0 0 0
0 1 1 0
1 0 1 1
1 1 0 1
1 1 1 1




Figure 3.17: Possible charge sectors for the diamond shaped loop consisting of a
splitting and a fusion node. The orthogonality relation for Clebsch-Gordan coeffi-

cients enforces jint1 = j′3 and has already been applied for the charge sectors.

correspondence for the charge sectors and therefore the degeneracy tensors as well.
To demonstrate this let us consider a concrete example in which we choose to assign
j = [0, 1] to all external indices. For input tensor A corresponding to the upper fusion
tree, the internal edge can carry jint1 = [0, 1, 2]. In order to illustrate the relation
between input and output charge sectors we can focus on the loop in the network.
The table of charge decorations for this structure is shown in Fig. 3.17, where the
orthogonality of Clebsch-Gordan coefficients has already been exploited. Due to the
elimination of the loop the two first charge sectors in the list will be assigned to the
same charge sector in the contracted tensor, and the same goes for the last three
charge sector. For instance, the final charge sector [0, 0, 0] of the contracted tensor
consists of sectors [0, 0, (0, 0, 0, 0)] and [0, 0, (0, 1, 1, 0)], where the quantum numbers
in parenthesis are the ones for the loop configuration, and the other ones are for j1
and j2. Consequently, it follows that the corresponding degeneracy tensor P0,0,0 is the
sum of two pairs of tensors that are contracted along the marked indices each.

For arbitrary contractions the loops in the spin networks are however not always
simple loops, in the sense that the corresponding Clebsch-Gordan coefficients reduce
to the identity. Instead the evaluation or simplification of the spin network yields
additional numerical factors that can be absorbed into the degeneracy tensors, as we
have done before. As a more involved example we consider the contraction of two
five-index tensors depicted in Fig. 3.18. Here the spin network exhibits two loops,
which are not easily removable. However, the resulting loop structure is precisely the
one which defines an F -move (see also Fig. 3.9). Therefore, applying the appropriate
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Figure 3.18: Contraction of two five-index tensors that results in non-trivial loops
in the spin network. These structures can be simplified to simple loops (bubbles)

using F -moves, afterwards they can be easily eliminated.

F -move to either one of the input tensors simplifies the loops to two nested bubbles,
which can be removed. Here the first, small bubble implies jint2 = j′int1 and the second,
large bubble implies jint1 = j′int2 . This discussion sums up the challenges arising for the
contraction of SU(2)-symmetric tensors. There are some more subtleties and special
cases which can occur, and we refer the interested reader to Ref. [85] for a detailed
elaboration of the subject.

3.5 Matrix Factorizations

Matrix factorizations are an important part of tensor network calculations. As shown
in Sec. 2.1.1, decompositions like the singular value decomposition enable the calcu-
lation of relevant properties like the entanglement entropy. Besides that the SVD has
a high significance for the approximation of matrices and quantum states based on
the spectrum of singular values. It is frequently used in TN algorithms to implement
truncation schemes that discard irrelevant degrees of freedom to keep simulations
manageable [86]. The SVD has already been introduced along with its visual inter-
pretation in Fig. 2.1. Let us consider an SU(2)-invariant matrix with one incoming
and one outgoing index that can be written in a block-diagonal form

M =
⊕

j

(Mj ⊗ I2j+1) . (3.22)

Due to the fusion rules the quantum numbers on both indices need to match, so that
j is the only relevant quantum number and the Clebsch-Gordan coefficients simplify
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to the (2j + 1)-dimensional identity. The matrix blocks Mj and therefore the whole
matrix does not need to be square.

3.5.1 Symmetric Singular Value Decomposition

Exploiting the block-diagonal structure of an SU(2)-invariant matrix as in Eq. (3.22),
the SVD of the full matrix reduces to an individual SVD for each degeneracy block.
This is illustrated in Fig. 3.19 for the case of an economic SVD, that discards all
vanishing singular values. This procedure can be equivalently applied to other matrix

= · ·

M U Λ V †

Figure 3.19: The SVD of an SU(2)-symmetric matrix can be performed on indi-
vidual blocks leading to increased performance for large matrices. The green line

indicates the singular values in the block-diagonal matrix Λ.

factorizations, such as eigenvalue decomposition, polar decomposition, and others.

3.5.2 SVD Based Truncation

As mentioned previously, the SVD can be used to approximate a matrix by another
matrix with fewer singular values. To this end, singular values that are smaller than
a given error ε are discarded and the matrices U and V † are truncated accordingly,
as visualized in Fig. 3.20. The truncated matrix M ′ is a good approximate to the

M

=

U Λ V †

Figure 3.20: Truncation of the matrices U , Λ and V † obtained from an SVD.
Only the largest singular values are retained and the parts right of and below the

dotted lines are deleted.

original matrix M if the error ε is small. The accuracy of the approximation – called
the discarded weight – is typically given by the normalized sum of the discarded
squared singular values.
Similarly to the symmetric version of the SVD, the truncation of a symmetric tensor
containing the singular values can be performed on each block. However it is important
to remember that the truncation needs to be performed in a way that minimizes the
trace loss of the total matrixM . Let λj,k denote the k-th singular value in the various
blocks labeled by quantum number j. According to the decomposition of an SU(2)-
invariant matrix in Eq. (3.22), every singular value λj,k appears (2j + 1) times in the
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singular value spectrum of M . The trace of M †M is therefore given by

tr(M †M) =
∑

j,k

(2j + 1)λ2
j,k . (3.23)

The approximation in the singular values λj,k then needs to take the weight of (2j+1)
into account, because a small singular value with a large weight can contribute more
to the trace than a larger singular value with smaller weight. Ultimately this may
lead to a different amount of truncation in the various blocks. Some blocks might
require no truncation at all, in other blocks all the singular values might be irrelevant
and therefore discarded. In this case the corresponding irrep j can be removed from
U , Λ and V †.
In the SVD based truncation we see yet another advantage of keeping the symmetry
in tensor network simulations. Based on the singular values, algorithms can auto-
matically determine relevant symmetry sectors and discard others, e.g. keeping only
integer and discarding half-integer spin sectors. This can be useful to determine differ-
ent phases of matter based on the quantum numbers on the virtual legs of a TN [87].

3.6 Extension to Anyonic Theories

On of the main advantages of working with algebraic fusion trees as described in
Sec. 3.2.1 is that the formalism can be readily generalized to anyonic systems as well.
Anyons are quasi-particle excitations of many-body systems that can only be found
in two-dimensional systems, exhibiting extended particle exchange statistics. This
means that anyons neither behave as bosons nor as fermions, for which the phase
of the wave function is +1 or −1 for a particle exchange respectively. Anyons can
be classified as Abelian or non-Abelian. For Abelian anyons the phase for the wave
function can be anything |ψ1ψ2〉 = eiθ |ψ2ψ1〉, hence their name. For non-Abelian
anyons the exchange statistics is even more involved and leads to a linear unitary
transformation in the space of necessarily degenerate ground states.
Non-Abelian anyonic theories are described by so called quantum symmetries or quan-
tum groups. Those groups will generally include multiplicities which is not treated
in this thesis. There are however examples of multiplicity-free quantum groups, for
instance deformations of the group SU(2) denoted by SU(2)k. Here the usual fusion
rules are altered to be

ja × jb ∈ {|ja − jb|, . . . , k − ja − jb} . (3.24)

As an example we consider Fibonacci anyons described by SU(2)3. Fibonacci anyons4

are the simplest anyons with non-Abelian braiding statistics [88]. The charges of the
group are now called topological charges instead of irreducible representations. There
are two different quasi-particles (charges) labeled 1 for the vacuum and τ for the only
non-trivial particle. The fusion rules are given by

1⊗ τ = τ

τ ⊗ 1 = τ

τ ⊗ τ = 1⊕ τ ,
(3.25)

4The name ’Fibonacci’ originates from the number Fn of decorated fusion trees for the fusion of n
of such anyons. This results in a recursive relation Fn+1 = Fn+Fn−1, which is exactly the Fibonacci
sequence [88].
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here the non-Abelian property is manifested in the last equation. As demonstrated in
Fig. 3.21 the underlying structure is conveniently represented in terms of fusion trees.
The fusion rules can be incorporated by representing the trivial particle by a spin-0

τ τ τ

τ

1

Figure 3.21: Fusion trees are the natural language to describe the Hilbert space
and fusion rules of anyonic systems. Here an example of Fibonacci anyons is given.

and the τ particle by a spin-1. In order to adapt the SU(2)-symmetric implemen-
tation to SU(2)k there are some more changes in order. Contrary to the irreducible
representations of SU(2), the topological charges of anyonic theories typically come
with a quantum dimension different from one. Here we have

d1 = 1 dτ =
(

1 +
√

5
)
/2 , (3.26)

where the value for dτ is also called the golden ratio. They have to be included for
certain operations, such as reversal or fusion and splitting of tensor indices. Further-
more, the permutation of charges needs to be described in terms of a braiding tensor
Rabc which is generally different for a clockwise or anticlockwise swap operations. Ad-
ditionally the recoupling coefficients, described by F -moves have to be adapted (they
replace the Wigner 6-j symbols).

3.7 Comments on Abelian Symmetries

The implementation of non-Abelian symmetries in TNs poses a significantly more
complex challenge than the implementation of Abelian symmetries. A comparison
with one of the most common Abelian symmetries in quantum many-body physics,
the conservation of the number of particles in the system described by the symmetry
group U(1), shows the disparity. Similarly to the case of SU(2), the single-particle
basis |ik〉, with k = 1, . . . , p can be labeled by |n, tn,mn〉, where n are the charges,
tn labels the states in the degeneracy subspace Dn, and mn labels the states in the
irrep space Vn (see also Sec. 3.1). For the group U(1) the charges n correspond to
the particle number and since all irreducible representations are non-degenerate, i.e.
mn = 1 for all n, we can omit the last quantum number. The three-index structural
tensors again describe the unique mapping between the vector spaces Vna⊗Vnb

∼= Vnc ,
denoted by na×nb → nc. Here the fusion rules of the symmetry group U(1) are given
by

nc = na + nb , (3.27)

so that the structural tensors are simply given by Qnanbnc = δna+nb,nc . As a conse-
quence, the full formalism of fusion trees described for SU(2)-symmetric tensors is not
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required when dealing with U(1), or generally with Abelian symmetries [17]. Never-
theless, our implementation of SU(2) symmetry can be readily extended to include
Abelian symmetries as well.

3.8 Summary

In this chapter we have presented a general formalism to include arbitrary symmetries
in tensor networks. Focusing on G = SU(2) we demonstrated how the structure of
the group can be accounted for by fusion trees decorated with charge labels, that are
an analytic representation for the coupling of different spins. For numerical purposes
the functions contained in the regular tensor network toolbox, e.g. permutation and
reshaping of tensor indices, tensor contractions and factorizations have to be modified
to respect the internal decomposition of symmetric tensors. The symmetric blocks
of the tensors are determined by the fusion rules of the symmetry and factorize into
degeneracy tensors holding the variational parameters, and decorated fusion trees
representing the structural part of the symmetry. The formalism can be readily ex-
tended to deal with anyonic theories and also to groups with multiplicities, if required.

The SU(2)-invariant tensor network framework developed during the time of the
PhD is utilized to study a quasi-1d spin-1/2 ladder model in Chapter 4, as well as
different spin models on 2d lattices using different tensor network techniques in Chap-
ter 5. Furthermore, the symmetric framework is also suitable for the representation of
partition functions of classical spin models, with a demonstrative example presented
in Chapter 7.
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Chapter 4

Quantum Criticality on a Chiral
Ladder

The SU(2)-invariant tensor network framework was first used to implement a symmet-
ric version of the famous infinite Density Matrix Renormalization Group algorithm
(iDMRG), used to study one-dimensional quantum lattice systems predominantly.
The plain spin-1/2 antiferromagnetic Heisenberg model described by the Hamiltonian

HHB = J
∑

j

~Sj ~Sj+1 (4.1)

served as a validation and benchmark of the SU(2)-symmetric code. In principle other
models could serve as a benchmark as well, the 1d Heisenberg model is however one
of the simplest interacting models with SU(2) symmetry. Consider the operator

Sz =
∑

j

Szj , (4.2)

which measures the number of up and down spins, e.g. the total magnetization along
the z-axis. This operator commutes with the Hamiltonian HHB so that one can
restrict to a fixed total magnetization, which corresponds to a U(1) symmetry of
the model. Targeting an U(1)-symmetric ground state selects a state with vanishing
magnetization 〈Sz〉 = 0. The Heisenberg Hamiltonian also commutes with the total
spin operator

~S =
∑

j

~Sj , (4.3)

which reveals the SU(2)-symmetry mentioned above. The ground state of the spin-1/2
Heisenberg model is known to be critical [89]. In critical systems the energy gap be-
tween the ground and the first excited state vanishes [35]. This has profound con-
sequences as compared to gapped systems, such as scale-invariance, violation of the
area-law for the entanglement entropy, and long-range correlations in the system. We
have argued that gapped quantum states are efficiently represented by an MPS due
to the fulfillment of the area-law (refer to Sec. 2.4). In symmetric tensor network
simulations the bond dimension can be exhausted far more than in non-symmetric
simulations, hopefully enough to represent even critical quantum states accurately.
Critical quantum states are therefore challenging applications for TNs, and as a more
interesting physical model beyond the Heisenberg model we studied a spin-1/2 model
on a ladder geometry, as presented in this chapter.
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4.1 Motivation and Model

The Hubbard model, a minimal microscopic description for interacting electrons is
often the starting point for the study of electronic lattice systems. The ordinary
Hubbard Hamiltonian takes the form

HHubbard = −t
∑

〈i,j〉,σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑

i

ni↑ni↓ . (4.4)

Here σ = {↑, ↓} are the spin projections of the electrons and 〈i, j〉 denotes nearest
neighbours. The first term describes hopping of both species on the lattice, the second
term is a repulsive interaction if two electrons occupy the same site. Consider the
Hubbard model to live on a Kagome lattice that is subject to a magnetic field. Due to
the magnetic field the Hamiltonian is extended by a Zeeman term hz as well as complex
hopping amplitudes tij , that generate a flux Φ through each elementary plaquette of
the lattice. The extended Hubbard Hamiltonian is now given by

HHubbard = −
∑

〈i,j〉,σ

(
tc†iσcjσ + t∗c†jσciσ

)
+ U

∑

i

ni↑ni↓ +
hz
2

∑

i

(ni↑ − ni↓) . (4.5)

In the particular limit of large on-site interaction U the Hamiltonian can be expanded
in terms of t/U at half-filling which results in the spin Hamiltonian

H = JHB
∑

〈i,j〉

~Si~Sj + hz
∑

i

Szi + Jχ
∑

i,j,k

~Si ·
(
~Sj × ~Sk

)
, (4.6)

where JHB ∼ t2/U and Jχ ∼ Φt3/U2 to lowest order in perturbation theory [90]. The
three-spin term χijk = ~Si · (~Sj × ~Sk) is denoted as the scalar spin chirality [91], it
breaks time-reversal symmetry and parity but preserves SU(2) symmetry. Without
any time-reversal symmetry breaking, e.g. hz = 0 and Jχ = 0 the Hamiltonian in
Eq. (4.6) reduces to the standard Heisenberg Hamiltonian and the resulting model on
the Kagome lattice is a paradigmatic example of a frustrated quantum antiferromag-
net. This model will be subject to analysis in Chapter 5, exploiting SU(2) symmetry
in a 2d tensor network algorithm.
Tuning the spin Hamiltonian to the opposite limit, e.g. JHB = 0 and hz = 0 yields
a chiral spin liquid phase on the Kagome lattice that is not time-reversal symmetric,
as explained in Ref. [91]. The isolated study of the scalar spin chirality term is quiet
unrealistic in existing materials. However, it could be implemented in a tight-binding
model with density-assisted hopping terms [68], which has been realized experimen-
tally in the framework of ultracold atoms [92]. Here we want to pick up the chiral part
χijk of the Hamiltonian and study it in a one-dimensional limit of a two-dimensional
lattice, namely on a ladder geometry as shown in Fig. 4.1. Unlike the Kagome lattice,

Figure 4.1: The chiral Hamiltonian of Eq. (4.7) is defined on a ladder geometry
with side-sharing triangles (instead of corner-sharing triangles as in the Kagome

lattice).

the spin ladder features side-sharing triangles, however it can serve as a starting point
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to study chiral interactions in spin chains with increasing number of legs in order to
reveal the transition to true 2d physics. Due to the quasi-1d form of the ladder we can
label the sites in a snake-like pattern, as shown in the details of the ladder in Fig. 4.2.
The model that we want to study is then described by the chiral Hamiltonian

H =
∑

i

Ji ~Si ·
(
~Si+1 × ~Si+2

)
(4.7)

with ~Si the spin-1/2 operator at site i and individual coupling constants Ji for each
triangle. Focusing on the smallest unit cell of four sites we will consider the cases
where Ji ∈ {−1,+1} and choose the coupling coefficients depending on the traver-
sal of the triangles. A triangle consisting of sites i, i + 1 and i + 2 is traversed in

H1 = +~S1 ·
(
~S2 × ~S3

)
− ~S2 ·

(
~S3 × ~S4

)

H2 = −~S1 ·
(
~S2 × ~S3

)
+ ~S2 ·

(
~S3 × ~S4

)

H11

2

3

4

H21

2

3

4

H3 = −~S1 ·
(
~S2 × ~S3

)
− ~S2 ·

(
~S3 × ~S4

)

H4 = +~S1 ·
(
~S2 × ~S3

)
+ ~S2 ·

(
~S3 × ~S4

)

H31

2

3

4

H41

2

3

4

Figure 4.2: The chiral Hamiltonian of Eq. (4.7) for clockwise and anticlockwise
configurations of the triangles. For H1 and H2 the orientation is the same, e.g. both

clockwise or anticlockwise, for H3 and H4 the orientation is opposite.

(against) the direction of the labels if Ji = +1 (Ji = −1). This can be recast into
a clockwise/anticlockwise ordering of triangles. For Ji = (−1)i all triangles in the
ladder are in a clockwise configuration, and for Ji = −(−1)i they are all anticlock-
wise. In contrast, Ji = 1 or Ji = −1 results in a staggered distribution of triangles.
In Fig. 4.2 the four possible Hamiltonians on a unit cell of two triangles are shown.
Since H1 = −H2 and H3 = −H4 both pair of Hamiltonians have the same spectrum
and only the relative orientation between the two triangles matters. We can therefore
restrict to H1 and H3 as different cases.
Let us analyze the symmetries of the Hamiltonian. Clearly it has an SU(2) symmetry
which we will exploit in the numerical analysis. Both Hamiltonians are however odd
under time-reversal symmetry (~Si → −~Si), which results in T HiT −1 = −Hi. The in-
version at the center of the chain leaves H1 invariant, whereas PH3P−1 = −H3. This
leads to a different behaviour between the two cases with different relative triangle
orientations (H1 and H3) for observables and the eigenstates. For instance, the spin
currents of H1 are expected to be counter-propagating (even under parity), whereas
they propagate in the same direction for H3 (odd under parity) [68].

4.1.1 Effective Low-Energy Physics with Kadanoff Coarse-Graining

As a first step to analyze the model we perform a Kadanoff coarse-graining procedure
to expose the dominant physics. To this end the 23-dimensional Hilbert space of the
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spins on a triangle n starting at site i = 3n− 2 is projected onto the two-dimensional
subspace with lowest energy using the isometry

Wn :
1

2
⊗ 1

2
⊗ 1

2
−→ 1

2
. (4.8)

Using this isometry we can construct the operators in the relevant spin-1/2 subspace
and find the emerging effective Hamiltonian. Let us start by writing the chiral Hamil-
tonian for one triangle in terms of projectors

~S1 ·
(
~S2 × ~S3

)
=
∑

α=±
α

√
3

4
P1/2,α + 0P3/2 . (4.9)

The three spins on every triangle can couple according to (1/2)⊗3 = 1/2−⊕1/2+⊕3/2,
where 1/2± denotes subspaces of spin-1/2 with positive and negative energy. In order
to project onto the subspace with lowest energy the sought-after isometry depends on
the sign of the triangle n and becomes

WnW
†
n = P1/2,−sign(J3n−2). (4.10)

Using this isometry we can construct the coarse-grained spin operators involved in the
interaction between triangle n and n + 1. Using a suitable unitary transformation it
turns out that the projectors can be chosen such that for all sites j ∈ {3n−2, 3n−1, 3n}
and α ∈ {±}

W1/2,α
~SjW

†
1/2,α =

1

3
~̃Sn

W1/2,α

(
~Sj × ~Sj+1

)
W †1/2,α =

α√
3
~̃Sn ,

(4.11)

where ~̃Sn is the spin-1/2 operator in the relevant subspace. The effective spin-1/2
model resulting from the coarse-graining procedure is then given by

Heff = −sign(J1J2)
|J1|+ |J2|

3
√

3

N∑

n=1

~̃Sn ~̃Sn+1 −
√

3

4

|J1|+ |J2|
2

N (4.12)

with an additive constant that can be omitted. Here N ' L/3 is the number of
effective triangles in the original model. In the low-energy subspace we obtain an
effective spin-1/2 Heisenberg model, whose magnetic character (ferromagnetic or an-
tiferromagnetic) depends on the mutual sign of the couplings J1 and J2 of the two
triangles in the unit cell. We can now resort to known properties of the Heisenberg
model to foresee the behaviour of the triangle model.
Configuring all triangle to be (anti)clockwise (H1 and H2) leads to an antiferromag-
netic model, which is expected to be gapless with central charge1 c = 1, and the
ground state tends to minimize the total spin of the chain. Thus for N even it will be
in the total spin zero sector. In contrast, choosing a uniform pattern of coupling coef-
ficients (H3 and H4) yields an effective ferromagnetic model so that the ground state
is likely to maximize the total spin of the chain. Although this low-energy projection
is a strong simplification we will confirm the predictions for H1 with our numerical

1The central charge c is an important property of the Conformal Field Theory describing the
scale-invariant critical ground state of the 1d spin-1/2 quantum Heisenberg model, or models in the
same universality class.
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findings. Additional analysis with exact diagonalization as well as bosonization for
H1 and H3 further validates the first intuition, these results are presented in Ref. [68].

4.2 Density Matrix Renormalization Group

The Density Matrix Renormalization Group (DMRG) and its version for infinite lat-
tices (iDMRG) are numerical simulation techniques to approximate low-energy eigen-
states of quantum many-body systems, mostly used to simulate ground states [48, 49].
It is based on the idea that these quantum states can be described efficiently by the
degrees of freedom that are most important for the target state. For short-range and
gapped Hamiltonians there is always an efficient representation due to the area-law for
the entanglement entropy, so that DMRG naturally operates on the family of matrix
product states and is nowadays the standard tool in 1d [66, 93]. Its application is
however not limited to gapped 1d quantum states. (i)DMRG is also widely used to
study critical systems that are approximable by sufficiently large bond dimensions as
we will show in this chapter, and can also be used to study 2d quantum states. Here
the local interactions in 2d are mapped to long-range interactions in the 1d represen-
tation, in which one lattice direction is chosen to be periodic instead of infinite.

The standard DMRG algorithm is based on finite MPS, the idea behind it however
extends to infinite systems as well. Based on a Hamiltonian with local interactions,
the idea of DMRG is to find a quantum state |ψ0〉 written as an MPS, that minimizes
the energy

E0 = min|ψ〉
〈ψ|H|ψ〉
〈ψ|ψ〉 . (4.13)

This problem can be expressed as finding the state |ψ〉 for which 〈ψ|H|ψ〉 is minimal
under the constrained that the state is normalized, i.e. 〈ψ|ψ〉 = 1. Using Lagrangian
multipliers to enforce normalization we find

E0 = min|ψ〉 (〈ψ|H|ψ〉 − λ 〈ψ|ψ〉) . (4.14)

Importantly this optimization does not need to be performed globally. Instead the
tensors in the MPS representation can be optimized sequentially, fixing everything ex-
cept one or only a few tensors and optimizing the parameters of these tensors at a time.

Here we will give an introduction to the infinite DMRG algorithm used in the
present chapter. It is strictly speaking not a true algorithm in the thermodynamic
limit but rather approximates the translational invariant state by the center of a finite
chain that is grown extensively. Figure 4.3 illustrates the two-site MPS ansatz, where
the unit cell consisting of tensors A = (ΓΛ)A and B = (ΓΛ)B is repeated all over the
lattice. Here the diagonal tensors Λ contain the singular values for a bipartition along

ΓA ΓAΛA ΛAΓB ΓBΛB ΛB

Figure 4.3: Two-site SU(2)-symmetric MPS ansatz used for the iDMRG study in
this chapter. The unit cell consists of two MPS tensors ΓA and ΓB with correspond-
ing diagonal matrices ΛA and ΛB containing the singular values for a bipartition
along the respective link. In this case the MPS is said to be in canonical form.
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the respective cut and the MPS is in its canonical form [66]. Notice that an MPS
ansatz with two different tensors is mandatory to represent antiferromagnetic states,
e.g. one tensor for each sublattice site. The iDMRG algorithm we use is a two-site
growing DMRG code. Starting from two initial sites the system is grown towards both
directions by inserting a pair of spins at the center of the chain, extending the chain
to length L = 4, 6, 8, . . .. After sufficiently many absorption steps the central tensors
of the chain are assumed to represent the translational invariant state. Since those
central tensors are of particular interest, the rest of the chain is represented by an
effective environment on both sides. This is shown in Fig. 4.4 where the Hamiltonian
is written in the form of a four-index Matrix Product Operator (MPO), the extension
of MPS to operators (see for instance Ref. [60]). At each growing step the two in-

LH H H

A B

A∗ B∗

RH

Figure 4.4: Two-site iDMRG algorithm. The expectation value 〈ψ|H|ψ〉 written
in terms of left and right environment tensors (LH , RH), two local tensors A and

B as well as the Hamiltonian in the form of a matrix product operator.

serted tensors are optimized collectively with a two-site update in the vicinity of the
surrounding tensors. The key problem here is to find the optimized tensors by solving
a two-site eigenvalue problem. Differentiating the expectation value in Fig. 4.4 with
respect to the complex conjugate tensors yields an eigenvalue problem of the form

HeffM = λM , (4.15)

whereHeff denotes the effective Hamiltonian. It is shown as the collection of white ten-
sors in Fig. 4.5, where the eigenvalue problem is written as a tensor network. Eq. (4.15)
is solved for the eigenvector M with smallest eigenvalue λ to find a better approxima-
tion to the true ground state. In order to split the new eigenvector M back into two

LH H H RH

α
β γ δ

α′
β′ γ′

δ′

Mα

β γ

δ

Figure 4.5: Two-site iDMRG algorithm. The optimized MPS tensors are con-
structed by solving an eigenvalue problem for the effective Hamiltonian, written in
tensor network form. Arrows due to the SU(2) symmetry are omitted in this figure.

MPS tensors it can be reshaped into a matrix (M)(αβ),(γδ) of dimension (χd) × (dχ)
and an SVD separates it into tensors A and B. In general one needs to truncate the
singular values in this step due to the enlarged index between tensor A and B back to
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the bond dimension χ. The two-site update with truncation is particularly useful in
an iDMRG implementation with symmetries because it allows the algorithm to adapt
to the relevant symmetry sectors necessary to describe the target state automatically
(the truncation of the singular values controls which quantum numbers are kept on
the virtual indices, as described in Sec. 3.5.2). To grow the chain further the newly
optimized tensors are then absorbed into the left and right environment respectively.
Repeating these steps in an iterative procedure yields better approximations of the
two-site translational invariant state in each iteration2, and the ground state search
can be terminated once the difference in singular values falls below a certain threshold.

The SU(2)-symmetric iDMRG implementation is based on the fusion tree formal-
ism presented in Chapter 3. In order to represent the two-legged ladder as an MPS,
the two sites on each rung of the ladder are coarse-grained into one physical site, see
Fig. 4.6. Therefore the physical indices of the resulting MPS tensors carry quantum

0⊕ 1 0⊕ 1 0⊕ 1 0⊕ 1 0⊕ 1

Figure 4.6: The sites of the spin-1/2 chiral ladder are labeled consecutively, indi-
cated by the blue line. Two sites on the rungs are coarse-grained for the simulation

with an MPS, whose physical indices carry 1/2⊗ 1/2 = 0⊕ 1.

numbers 0 ⊕ 1. The SU(2)-invariant matrix product operator, the formulation of
the Hamiltonian in the language of MPS, is presented in Appendix A.3. Since we

χsym χ virtual bond irreps
50 148 014 ⊕ 124 ⊕ 211 ⊕ 31

100 312 026 ⊕ 146 ⊕ 224 ⊕ 31

150 480 037 ⊕ 168 ⊕ 238 ⊕ 37

200 652 048 ⊕ 189 ⊕ 252 ⊕ 311

250 834 058 ⊕ 1110 ⊕ 265 ⊕ 316 ⊕ 41

300 1008 069 ⊕ 1130 ⊕ 280 ⊕ 320 ⊕ 41

350 1184 080 ⊕ 1149 ⊕ 296 ⊕ 324 ⊕ 41

Table 4.1: Symmetric and effective bond dimensions for several simulations to-
gether with the quantum numbers and their degeneracies jtj on the virtual bonds

of the MPS.

target an SU(2)-invariant ground state, the symmetric simulations are restricted to
an antiferromagnetic configuration of the triangle ladder, and we choose to work with
H1. Simulations were performed with symmetric bond dimensions up to χsym = 350,
which amounts to an effective bond dimension of χ ∼ 1200 due to the intrinsic de-
generacies of SU(2) quantum numbers (refer to Sec. 3.1). In Table 4.1 we list the

2Provided that the landscape of the optimization is sufficiently simple, so that the algorithm does
not get trapped in local minima.
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distribution of singular values in the different spin sectors for some of the simulations
performed. In the next section we will report on numerical results.

4.3 Results

4.3.1 Ground State Energy

At first we analyze the energy of the SU(2)-invariant ground state. A low energy gen-
erally indicates a reasonable approximation to the ground state due to the variational
principle

〈ψ|H|ψ〉 ≥ E0 ∀ |ψ〉 . (4.16)

Here E0 is the true ground state energy, i.e. the lowest energy eigenvalue in the
spectrum ofH. It is therefore a useful quantity to compare between different numerical
methods and verify that the bond dimension of the tensor network is sufficient to
extract accurate physical information. Fig. 4.7 shows the ground state energy versus
the inverse MPS bond dimension. In the figure convergence is only reached for large
bond dimensions χ ≥ 1000, a value that would be very difficult to reach without
exploiting SU(2) symmetry. An estimation of the error of the energy data points is
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Figure 4.7: Ground state energy E0 versus the inverse MPS bond dimension
1/χ. The estimation of the error for the data points is based on the discarded
weight, as explained in the text. The inset shows the convergence of the error

∆E0
= E0 − E0(χ→∞).

given by the discarded weight δ of each simulation, i.e. the amount of entanglement
that needs to be truncated in order to comply with the specified bond dimension. It
is a measure of the accuracy of the simulation and the true ground state is reached for
δ → 0, also refer to Sec. 3.5.2. In Fig. 4.8 the ground state energy is plotted directly
against the discarded weight. In both of the figures the ground state energy is fitted
with a polynomial function of the form E0(x) = a · xb + c to extract the extrapolated
energy at infinite bond dimension E0(χ → ∞) and E0(δ → 0) respectively. This
results in an averaged value of

E0 = −0.578 978(2) . (4.17)
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Figure 4.8: Ground state energy E0 versus the discarded weight δ. In the inset
we show the convergence of the error ∆E0 = E0 − E0(δ → 0).

The inset of Fig. 4.7 and Fig. 4.8 show the convergence of the ground state energy
towards the extrapolated value E0. According to Ref. [66] the convergence of the
ground state energy with respect to the discarded weight ∆E0(δ) should be fitted
with a linear function. This is in good agreement with our power-law fit showing an
exponent of 0.973(3). Concluding the ground state energy analysis, the chosen bond
dimension of χ ∼ 1200 is sufficiently large to even represent the critical ground state
of H1 despite the intrinsic gapped nature of the matrix product state.

4.3.2 Entanglement Properties

The description of the low-energy physics of the chiral ladder in Section 4.1.1 resulted
in an effective Heisenberg model on coarse-grained triangles. Based on the mutual
sign of the coupling coefficients of H1 – which was chosen in the iDMRG study – the
model is expected to be critical, with a central charge of c = 1. These prospects are
now complemented by a more sophisticated analysis of entanglement properties. First
we study the scaling of the entanglement entropy S(L) of a block of length L with two
open edges. Typically one would have to construct the reduced density matrix for the

ΛB ΓA ΛA ΓB ΛB

ΛB Γ∗A ΛA Γ∗B ΛB

L

Figure 4.9: Extracting the entanglement entropy S(L) of a block of length L. The
MPS is in canonical form, written in terms of tensors Γ and diagonal matrices Λ.

L sites by tracing over the complement part, which causes an exponential growth in
L. Fortunately, since the entanglement entropy needs to be the same for both parts
of the bipartition one can trace over the relevant part of the system and exploit the
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canonical form of the MPS to compute the entanglement entropy. The block is then
grown by multiplying the transfer matrix multiple times as visualized in Fig. 4.9. The
computational cost of this operation is O(χ5), in contrast to the O(χ3) cost of the
infinite DMRG algorithm. An eigenvalue decomposition of the transfer matrix of L
sites with respect to upper and lower indices yields the eigenvalue spectrum, from
which the entanglement entropy is computed according to

S = −
χ2∑

α=1

να ln να . (4.18)

The intrinsic degeneracies of the eigenvalues να due to the spin sectors have to be
considered here. As expected from Conformal Field Theory (CFT) predictions the
entanglement entropy should follow a scaling [94, 95, 96]

S(L) ∼ c

3
logL . (4.19)

Here c is the central charge of the underlying conformal theory of the Heisenberg and
the chiral ladder model. As introduced in Sec. 2.3.1, matrix product states obey the
area-law for the entanglement entropy by construction. Separating a block of size L
from the infinite chain can be achieved by cutting two bond indices of the MPS, so
that the entanglement entropy is expected to be a constant. This is however only
the case for gapped quantum states and for the critical state of the chiral ladder the
entanglement entropy is expected to scale logarithmically in the size of the block ac-
cording to Eq. (4.19). This behaviour is indeed found in our simulations for moderate
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Figure 4.10: Scaling of the entanglement entropy S(L) of a block of size L for
different bond dimensions. Due to the intrinsic area-law behaviour of the MPS the
entanglement entropy saturates for large L, the central charge can be extracted

from the slope of the curves.

block sizes L. However for large block sizes the entanglement entropy saturates due to
the finite amount of entanglement in the system and the intrinsic area-law. The larger
the bond dimension of the MPS the more quantum correlations can be captured and
the predicted behaviour is recovered for larger block sizes. A fitted logarithm with an
O(1/L) correction is used to extract the central charge of the ground state, which is
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determined to be c = 0.981(4). This value is in very good agreement with a central
charge of c = 1 expected for the ground state of the antiferromagnetic Heisenberg
model. The same information can be extracted from the scaling of the entanglement
entropy of half an infinite chain with the MPS correlation length ξ, a calculation that
scales as O(χ3). The correlation length measures how far correlations can spread in
the lattice and for an MPS it is always finite due to its intrinsic properties. However
by increasing the bond dimension we can approach critical states and therefore larger
correlations lengths. Here, results from CFT [97] predict a behaviour that is given by

S(ξ) ∼ c

6
log(ξ) . (4.20)

In the numerical simulations the entanglement entropy for half an infinite chain is
readily available due to the canonical form of the MPS, it can be computed from the
diagonal tensors Λ. The correlation length is determined by

1

ξ
= − log

∣∣∣∣
λ2

λ1

∣∣∣∣ , (4.21)

where λ1 and λ2 are the two largest eigenvalues computed by an eigenvalue decom-
position of the transfer matrix [60] in Fig. 4.11. The result is shown in Fig. 4.12 and

ΓA ΛA ΓB ΛB

Γ∗A ΛA Γ∗B ΛB

Figure 4.11: Transfer matrix of the MPS used to compute the correlation length.

nicely resembles the expected logarithmic behaviour. A fit reveals a central charge of
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Figure 4.12: Scaling of the entanglement entropy of half an infinite chain S(ξ)
with the MPS correlation length ξ. The expected logarithmic growth is found in

the numerical data, from which the central charge can be extracted.
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c = 0.985(5) that is again in good agreement with c = 1. The critical nature of the
ground state can be further fortified by calculations of correlation functions, presented
in the next section.

4.3.3 Correlation Functions

In order to characterize different phases of matter one can compute correlation func-
tions, which uncover how particles at different positions in space are related3. In
particular, correlation functions are expected to behave very differently for gapped
and gapless quantum states. While gapped phases typically have short-range, ex-
ponentially decaying correlations, those of critical, gapless systems are expected to
decay polynomially over distance. Several correlations functions have been computed
for the critical ground state of the triangle model. The first measured observable is
the spin-spin correlation 〈ψ|~Si~Sj |ψ〉 for spins in the same and in different legs of the
ladder. The ground state |ψ〉 is the one with highest bond dimension of χsym = 350.
Results are shown in Fig. 4.13 and Fig. 4.14. The algebraic decay is fitted with a
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Figure 4.13: Spin-spin correlation function for spins in the same leg of the ladder.
The expected behaviour of C(r) ∼ (log r)1/2/r is well reproduced by the numerical

data, for the fit we fixed the exponent of the short-distance term.

polynomial function with logarithmic corrections as shown in the figures. Our nu-
merical findings agree well with the expected behaviour C(r) ∼ (log r)1/2/r derived
for the Heisenberg model [98, 89], the effective low-energy model. The decay of the
correlation functions follows the prediction for very large distances indicating a good
approximation of the critical ground state. Furthermore we computed the expectation
value of the dimer-dimer correlation function on different rungs of the ladder. The
four-body expectation value is corrected by all disconnected parts according to

〈ψ|(~Sui ~Sdi )(~Suj ~S
d
j )|ψ〉

c
= 〈ψ|(~Sui ~Sdi )(~Suj ~S

d
j )|ψ〉 − 〈ψ|~Sui ~Sdi |ψ〉 〈ψ|~Suj ~Sdj |ψ〉

−1

3
〈ψ|~Sui ~Suj |ψ〉 〈ψ|~Sdi ~Sdj |ψ〉 −

1

3
〈ψ|~Sui ~Sdj |ψ〉 〈ψ|~Sdi ~Suj |ψ〉 .

(4.22)

3In dynamic systems one can and also compute time-dependent correlation functions at the same,
or at different positions in space.
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Figure 4.14: Spin-spin correlation function for spins in different legs of the ladder.
The expected behaviour of C(r) ∼ (log r)1/2/r is well reproduced by the numerical

data, for the fit we fixed the exponent of the short-distance term.

The result is shown in Fig. 4.15, again with a polynomial fit and a logarithmic cor-
rection as suggested in Ref. [98] for four-body expectation values. Plotting the same
quantity for smaller bond dimensions reveals the intrinsic finite correlation length of
the MPS, which causes an exponential decay of correlations eventually. Summarizing
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Figure 4.15: Dimer-dimer correlation function for the vertical rungs of the ladder.
The data points are fitted with a polynomial function with a logarithmic correction,

as suggested in Ref. [98].

the results in this section the correlation functions follow an algebraic decay expected
for criticality, also in good agreement with analytic predictions. This further supports
our analysis of the entanglement properties and matches all known characteristics of
the low-energy effective Heisenberg model.
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4.3.4 Entanglement Spectrum

In order to further characterize the chiral spin-1/2 ladder model and demonstrate its
similarities to the plain Heisenberg model, we investigate the entanglement structure
of half an infinite chain. In Sec. 4.3.2 we have analyzed the entanglement entropy,
a collective quantity that discards the structure of the spectrum. The entanglement
spectrum is directly obtained from the singular values of the MPS and their distri-
bution is according to the virtual bond irreps shown in Table 4.1. Each spin sector
j in this table comes with a (2j + 1)-fold degeneracy and by construction j is an
integer due to the coarse-graining of the two spin-1/2 degrees of freedom on each
rung. In Fig. 4.16 we plot the entanglement energies εα ≡ − log λ2

α with λα the
Schmidt coefficients. The data points are sorted according to the different spin sec-
tors j = 0, 1, 2, 3, 4, and each points is actually (2j + 1)-fold degenerate. Data points
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Figure 4.16: Entanglement spectrum for the triangle ladder model (TM, triangles)
and the Heisenberg spin chain (HM, circles), with multiplets organized according

to their spin sector j. Every point is a (2j + 1)-plet.

for the triangle model (TM) shown as triangles are compared to the corresponding
spectrum of entanglement energies for the ground state of the regular spin-1/2 Heisen-
berg model (HM). A coarse-graining of two lattice sites similarly to the triangle model
ensures integer quantum numbers on the virtual legs, and the same iDMRG algorithm
is used for the simulation of the Heisenberg model. Up to an overall rescaling the two
entanglement spectra show exactly the same features. In particular the structures for
the lowest part of the spectrum, i.e. the largest singular values resemble each other
in appearance. This is a numerical verification that the effective low-energy theory of
both models is the same, and that both models are likely to be described by the same
boundary CFT [99]. Accordingly, this is a strong indication that the triangle model
in configuration H1 is described by the (1 + 1)-dimensional CFT of the Heisenberg
spin-1/2 chain, i.e. an SU(2)1 WZW theory (Wess–Zumino–Witten). This would be
in agreement with our previous findings and also with the SU(2) symmetry of the
triangle ladder model.
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4.4 Conclusion and Outlook

The iDMRG study of the spin-1/2 chiral ladder described in this chapter was the first
concrete application of our SU(2)-invariant tensor network framework. The ground
state of the antiferromagnetic Hamiltonian H1 is found to be critical with a central
charge that is compatible with c = 1. This can be concluded from the results we
obtained for the scaling of entanglement entropies, the entanglement spectrum as well
as different correlation functions that all decay algebraically. It is also in good agree-
ment with previous studies of the continuum limit [100]. Our analysis of the model
is complemented by exact diagonalization results studying ground state degeneracies
and edge currents, as well as bosonization results revealing the critical nature of the
ground state and the origin of the edge currents for both H1 and H3 [68].
This work motivates further investigations along different directions. Extensions to
multi-leg ladders and higher spin systems would be straightforward. In this context
it would be interesting to study how the gapped/gapless nature of the chiral system
depends on both the spin and the number of chains. Ultimately one could study the
transition to 2d physics. Since the SU(2)-symmetric iDMRG code can only access
the configuration H1, investigation of H3 possibly with U(1)-symmetric or SU(2)-
covariant MPS methods would complement the analysis of the chiral ladder model.
Moreover, configuration H3 with the same couplings J1 = J2 for the two triangles is
expected to be exactly solvable by Bethe ansatz.
The chiral Hamiltonian of Eq. (4.7) can also be defined and explored on different
lattice geometries, such as on the thin-torus limit of the Kagome lattice, illustrated in
Fig. 4.17. The motivation for this project originated in the study of the chiral Hamil-
tonian on the Kagome lattice that revealed a chiral spin liquid, a type of ground state
that features chiral edge modes. These chiral modes have been found in the triangle
model as well [68], however in order to study the transition of a quasi-1d strip to two
spatial dimensions and the behaviour of the edge currents, it could be beneficial to
use corner-sharing triangles right away.

Figure 4.17: Thin-torus limit of the Kagome lattice which could serve as a starting
point to study the cross-over between quasi-1d and 2d physics.
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Chapter 5

Global SU(2) Symmetry in 2d

The implementation of the SU(2) symmetry of the chiral ladder model presented in
Chapter 4 has clearly proven the benefits. Exploiting the symmetry and representing
tensors as symmetric blocks allows to simulate much larger bond dimensions com-
pared to non-symmetric TN simulations, which in turn increases the accuracy of the
results. Exploiting physical symmetries in 1d TN simulations is widespread these
days, whereas the statement does not apply for 2d TN simulations. At the same
time, 2d TN computations are computationally much more expensive [9] due to more
complicated algorithms and tensors with many indices, so that the implementation of
physical symmetries is expected to be greatly beneficial.

In this chapter we apply the SU(2)-invariant tensor network framework to tensor
network algorithms in two spatial dimensions, namely in the famous infinite Projected
Entangled Pair State (iPEPS) and the infinite Projected Entangled Simplex State
(iPESS) ansatz. In order to assess the utility of implementing the symmetry, the two
simulation tools are benchmarked for three different spin systems on different lattice
geometries with unexpected outcomes. In Sec. 5.1 we will present the iPEPS and
iPESS algorithms, with more details given in Appendix B. Sec. 5.2 reports the results
for the spin-1 bilinear-biquadratic model on the square lattice using iPEPS, with a
comparison to U(1)-symmetric simulations. Finally, in Sec. 5.3 the iPESS algorithm
is used to simulate a spin-1/2 and a spin-2 Heisenberg model on the Kagome lattice.

5.1 Tensor Network Algorithms in 2d

Matrix product states have been immensely successful in the study of one-dimensional
quantum many-body systems. Due to their intrinsic properties and the canonical form,
expectation values can be computed exactly in a very efficient way, and even without
symmetries the accessible bond dimensions are reasonably high to extract precise re-
sults. In two dimensions the situation is somewhat different. First of all, due to the
second dimension and the increased number of nearest neighbours involved, tensor
network simulations in 2d are considerably more computationally expensive. This is
especially true for the computation of expectation values, where approximations are
inevitable in order to avoid an exponential scaling.

The infinite Projected Entangled Pair State (iPEPS) ansatz has already been in-
troduced in Sec. 2.5. In this chapter we use iPEPS on a square lattice to study a
spin-1 model, where a unit cell of 2 × 2 tensors is repeated periodically to construct
the infinite lattice. The iPEPS tensors are optimized with a simple update proce-
dure to represent the ground state of the model Hamiltonian [71]. The simple update
provides an efficient algorithm also when combined with SU(2) symmetry. It falls
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⊗

Figure 5.1: Symmetric decomposition of a 2× 2 unit cell of iPEPS tensors into a
network of degeneracy and structural tensors. The structural tensors are described

by a spin network, where arrows describe incoming and outgoing indices.

behind more sophisticated update schemes like the full update [72] or variational up-
date schemes [73, 74], but serves our purpose here to benchmark the utility of SU(2)
symmetry in 2d TN algorithms. Expectation values for the infinite PEPS network
are computed with a Corner Transfer Matrix Renormalization Group (CTM) scheme,
that approximates the contraction of the infinite lattice with effective fixed-point en-
vironment tensors. The simple update and the CTM procedure are explained in detail
in Appendix B.

The second algorithm used in this chapter to study two spin systems on the
Kagome lattice is the infinite Projected Entangled Simplex State (iPESS) ansatz [101].
Contrary to iPEPS, here the local tensors do not resemble the lattice structure. In-

Figure 5.2: The 2d Kagome lattice in black, with its dual honeycomb lattice
shown in gray. While the lattice sites reside on the vertices of the original Kagome

lattice, they reside on the links in the honeycomb lattice.

stead of assuming local iPESS tensors on the lattice sites of the Kagome lattice, one
can imagine the tensors to sit on the links of the dual honeycomb lattice (see Fig. 5.2).
Consequently, the tensors for the physical sites of the Kagome lattice now only have
two instead of four virtual indices. However, in order to connect them together the
ansatz requires additional three-index simplex tensors, which are the ones in the tri-
angles of the Kagome lattice. An iPESS ansatz with a three-site unit cell is shown
in Fig. 5.3, where the three lattice site tensors are connected by two simplex tensors
to build the honeycomb lattice. The iPESS ansatz on the honeycomb lattice does
not resemble the original Kagome lattice and therefore its entanglement structure.
Nevertheless it has been noted that it captures the correlation on the triangles in the
Kagome lattice, thus being a suitable tool for its simulation. As for the iPEPS ansatz
we use a simple update scheme to optimize the tensor coefficients that is presented in
detail in Sec. B.3. For the computation of observables a coarse-graining to a regular
square lattice is used, where the structure shown in Fig. 5.4 is contracted together
to form an iPEPS tensor. More details for the computation of expectation values
are given in Appendix. B.4. For some simulations with SU(2) symmetry a three-site
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Figure 5.3: Symmetric decomposition of a three-site iPESS tensors into a network
of degeneracy and structural tensors. The structural tensors are described by a spin
network, where arrows describe incoming and outgoing indices. Apart from the
three tensors on the lattice sites, the ansatz includes two simplex tensors connecting

them.

1
2

3
coarse-graining

Figure 5.4: The full unit cell of three site tensors together with two simplex
tensors is coarse-grained into a single iPEPS tensor. This iPEPS tensor can then
be used in standard CTM procedures. The coarse-grained physical index represents

the fusion of the three physical subspaces on the left.

unit cell iPESS is not adequate and the ansatz needs to be extended. The problem
occurs if the iPESS unit cell is not compatible with a decoration in terms of SU(2)
quantum numbers, explained in Sec. B.3.2. As a resort we employ a six-site iPESS
ansatz for the simulation of the spin-1/2 Heisenberg model, and a coarse-graining of
this structure leads to two different iPEPS tensors as demonstrated in Sec. B.4.

5.2 Spin-1 Bilinear-Biquadratic Model

In this section we study the spin-1 bilinear-biquadratic model (BLBQ) on a square
lattice using SU(2)-symmetric iPEPS. This model features two kinds of competing
nearest-neighbour interactions, the regular bilinear Heisenberg coupling and the bi-
quadratic coupling, which is a squared Heisenberg term. The Hamiltonian reads

H =
∑

〈i,j〉

(
cos(θ)

(
~Si · ~Sj

)
+ sin(θ)

(
~Si · ~Sj

)2
)
, (5.1)

where 〈i, j〉 denotes nearest neighbour interactions, ~Si is the vector of spin-1 operators
on site i, and θ tunes the relative coupling strength of the bilinear and biquadratic
terms. The spin-1 BLBQ model is the most general lattice model with lattice ro-
tation, lattice translation and spin rotation symmetry1. It has generated a lot of

1All higher powers of ~Si · ~Sj can be recast into bilinear and biquadratic interaction terms for a
system of spin-1 particles.
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interest in recent years due to the presence of high symmetry points at θ = π/4, 5π/4
and θ = π/2, 3π/2, for which the Hamiltonian is SU(3)-symmetric [102]. Also, some
phases of the BLBQ model on the triangular lattice might be realized in materials
such as NiGa2S4 [103] and Ba3NiSb2O9 [104]. For the parameter range 0 < θ < π the
model is inaccessible for quantum Monte Carlo simulations due to the negative sign
problem, however TN simulations can be used to explore the full phase diagram.
Let us now concentrate on the present spin rotation symmetry. Even though the
Hamiltonian is fully SU(2)-symmetric, the ground state |ψ(θ)〉 can break the sym-
metry spontaneously and is not necessary symmetric as well. The model has been
studied in Ref. [102] for all angles θ ∈ [0, 2π). For instance, the ground state of the
plain spin-1 Heisenberg model (θ = 0) on the square lattice is in an antiferromagnetic
phase, it is however only U(1)-symmetric around the axis of magnetization. For our
investigation the BLBQ model is tuned to θ = 0.21π, for which the ground state is
believed to be in an SU(2)-symmetric phase reminiscent of a Haldane phase of cou-
pled one-dimensional chains. In this phase, realized for 0.189(2)π ≤ θ ≤ 0.217(4)π,
the magnetization vanishes exactly which is also an indication of an SU(2)-symmetric
ground state. The iPEPS simulations were performed with a simple update on a unit
cell of 2 × 2 tensors and a corner transfer matrix renormalization group scheme for
the computation of observables (refer to Sec. B.1 and Sec. B.2 for details about the
simple update and CTM respectively).

5.2.1 Ground State Energy

We computed the ground state energy of the BLBQ model to benchmark the sym-
metric implementation to a non-symmetric one. In Fig. 5.5 the ground state energy
is shown as a function of the inverse bond dimension 1/Deff. Additional numbers
computed with U(1) symmetry are shown in comparison (provided by the authors
of Ref. [102] and replotted with permission). The expectation values for the SU(2)-
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Figure 5.5: Ground state energy of the spin-1 BLBQ model on a square lattice as
a function of 1/Deff. Data points with U(1) symmetry provided by the authors of

Ref. [102] and replotted with permission.

symmetric simulations have been computed both with the mean-field environment, as
well as with the variational CTM environment tensors explained in Sec. B.2.3. Even
though the mean-field values are not variational they can provide a trend for larger
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bond dimensions that are currently not accessible with a CTM procedure. Clearly,
non-symmetric simulations yield lower energies for small bond dimensions, however
due to the implementation of symmetries it is possible to access regimes that are
impossible to reach without symmetries. Here the symmetric simulations produce
lower overall results. Importantly, the SU(2) CTM data points are slightly higher
than those with lower U(1) symmetry. This can be an indication that the SU(2)-
symmetric iPEPS ansatz may be too restrictive, and the optimization to find an
accurate ground state could be very limited. Before investigating the restrictiveness
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Figure 5.6: Ground state energy of the spin-1 BLBQ model on a square lattice
as a function the inverse number of variational parameters 1/N (left) and of the

discarded weight δ (right).

of the iPEPS ansatz, let us plot the data points in Fig. 5.5 versus the inverse number
of variational parameters and the discarded weight [61]. In Fig. 5.6 we find that the
SU(2)-symmetric simulations produce lower energies when compared with the number
of free parameters in the ansatz. This behaviour is expected, since irrelevant degrees
of freedom are eliminated due to the symmetry, which in turn captures the correct
structure of the ground state. The discarded weight δ is the amount of discarded
squared singular values [93] in the simple update truncation step and rates the ap-
proximation of the ground state (see Sec. 3.5.2 for SVD based truncation and Sec. B.1
for the truncation in the iPEPS simple update). Fig. 5.6 reveals that the simulations
without symmetries are not converged yet, so that an energy extrapolation of the data
points is meaningless. For the extrapolation of the SU(2) CTM data we find

e0(1/Deff → 0) = 0.309± 0.003

e0(1/N → 0) = 0.311± 0.004

e0(δ → 0) = 0.310± 0.002 ,

(5.2)

and the extrapolation of the U(1) data points yields e0(1/Deff → 0) = 0.307± 0.001.
The numbers are very close, yet it is noticeable that the SU(2)-symmetric data points
are systematically higher than the U(1)-symmetric ones. This could be rooted in the
fact that a simple update scheme is used and overcome by more elaborate simulation
schemes like the full update [72]. However, we also noticed that the iPEPS ansatz in 2d
is very much restricted due to the implementation of the symmetry. In Fig. 5.7 we show
the ratio between the remaining variational parameters in the symmetric iPEPS ansatz
and the number of free parameters in the corresponding unconstrained TN, alongside
the same information for the iDMRG study of the chiral ladder presented in Chapter 4.
The comparison clearly shows a strong restriction of 1d iDMRG simulations, but even
more so in 2d iPEPS simulations with only about 1 % of variational parameters left
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Figure 5.7: The ratio of parameters between an SU(2)-symmetric iDMRG and
iPEPS ansatz and their corresponding unconstrained tensor networks, as a function

of the effective bond dimension χeff and Deff respectively.

compared to an unconstrained ansatz. A priori this is expected and also desired when
implementing the symmetry, and this also enables access to large bond dimensions
in the first place. However, the trajectories in the space of remaining variational
parameters are limited just as much. A ground state search in the unconstrained
space of parameters might be better at circumnavigating local minima and finding
low variational ground states, and therefore energies.

5.2.2 Structure of the Ground State

In order to explain the nature of the SU(2)-invariant ground state we plot the en-
ergy on each link of the iPEPS unit cell in Fig. 5.8. Our results indicate that the
ground state cultivates anisotropic bonds, thus breaking lattice rotation symmetry.
This yields different energies in x- and y-directions which is compatible with vertical
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Figure 5.8: Bond energies for the ground state of the BLBQ model at θ = 0.21π
and Dsym = 5. The pattern with different energies on x- and y-bonds is compatible
with a system of coupled one-dimensional Haldane chains, as reported in Ref. [102].

coupled Haldane chains, and in accordance with the findings in Ref. [102]. This dif-
ference in energy is caused by having different spin quantum numbers on horizontal
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x- and vertical y-bonds, to which the algorithm is converged. In detail we have

x-links: 01 ⊕ 12 ⊕ 22 , y-links:
1

22
⊕ 3

22
⊕ 5

21
(5.3)

and therefore different effective bond dimensions Dx = 17 and Dy = 18. The dif-
ferences in the numbers between link energies in the horizontal and vertical direction
respectively is probably due to truncation effects.

5.3 Heisenberg Model on the Kagome Lattice

In this section we investigate two spin models on the Kagome lattice using the in-
finite projected entangled simplex state ansatz. In particular we study the spin-1/2
and the spin-2 nearest-neighbour antiferromagnetic Heisenberg model. The Kagome
Heisenberg antiferromagnet (KHAF) is currently the defining problem in the research
field of frustrated quantum antiferromagnetism, and the nature of the ground state
has been under debate for a long time [105, 106, 107, 108, 109, 110]. The reason for
this is the large amount of frustration generated by the corner-sharing triangles of the
Kagome lattice. Frustration already arises for a single triangle, where the antiferro-
magnetic spin interaction can not be fulfilled simultaneously for all three bonds, as
shown in Fig. 5.9. This generates so-called geometric frustration that originates due

?

Figure 5.9: Antiferromagnetic interaction on the triangle leads to geometric frus-
tration, because the spins can not satisfy the AF exchange interaction for all bonds
simultaneously. Antiferromagnetic interaction on the square lattice, or any other

bipartite lattice does not lead to frustration.

to the Kagome lattice structure. An antiferromagnetic Heisenberg model on a square
lattice, or any other bipartite lattice does not exhibit frustration, in contrast. The
large amount of frustration in the KHAF causes strong quantum fluctuations around
the ground state. Therefore, many quantum states are very close in energy and com-
pete to be the true ground state, which makes the numerical simulation of the model
challenging. There are two competing proposals for the ground state of the model, the
first one being a Quantum Spin Liquid (QSL), the second one being a Valence Bond
Crystal (VBC). Quantum spin liquids, proposed by Anderson [16], refer to quantum
phases of matter that do not show any form of magnetic ordering down to zero tem-
perature, therefore not breaking any kind of lattice symmetry. This, in turn, means
that the state can not be detected with any local order parameter, and the identifi-
cation of QSL phases proves to be difficult both in theory and experiment. Moreover
these kind of states typically show long-range entanglement and exotic fractionalized
excitations [111]. The second nominee, the valence bond crystal, is a state where all
spins on the lattice are in a pairwise singlet configuration due to their antiferromag-
netic interaction. Since every spin is paired in a singlet configuration, the overall state
is SU(2)-invariant and non-magnetic, however it lacks the long-range order. Further-
more, by forming a specific arrangements of these valence bonds this state breaks
the lattice symmetries. However, an equal superposition of all possible valence bond
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crystal lattice decorations restores the lattice symmetries, and is known as a Resonat-
ing Valence Bond (RVB) state. In principle a quantum spin liquid can therefore be
constructed by a superposition of valence bond crystals, where quantum fluctuations
prevent the ground state to choose any specific VBC configuration. The nature of
the spin-1/2 KHAF is still not fully clear. The study that obtained the energetically
lowest ground state claims it is a Z2 quantum spin liquid [112], while others studies
favor a valence bond crystal [113]. Recent works on the KHAF show that the ground
state could actually be a gapless spin liquid [114]. Experimental studies are based on
investigations of different kind of materials such as Herbertsmithite (ZnCu3(OH)Cl2),
Volborthite (Cu3V2O7(OH)2 · 2H2O) and Vesignieite (BaCu3V2O8(OH)2), that have
a dominant spin-1/2 Heisenberg interaction and a Kagome lattice structure.
Different tensor network simulation tools have been applied to study the ground state
of the spin-1/2 KHAF, such as DMRG [115, 112], PEPS [116] and the Multiscale En-
tanglement Renormalization Ansatz (MERA) [110]. Additionally, the iPESS ansatz
has proven to be a suitable TN because it captures correctly the multipartite entan-
glement for the triangles in the Kagome lattice [117, 114]. Here we employ a six-site
iPESS ansatz to study the ground state of the spin-1/2 KHAF and a three-site iPESS
ansatz to study the ground state of the spin-2 KHAF. The Hamiltonian is given by

H =
∑

〈i,j〉

~Si · ~Sj , (5.4)

where 〈i, j〉 denotes nearest-neighbours on the Kagome lattice, and ~Si is the spin
operator at site i. A simple update scheme is used for the optimization of the iPESS
tensors, for the evaluation of expectation values we use a coarse-graining of the iPESS
unit cell and a standard CTM procedure, as described in Appendix. B.

5.3.1 Spin-1/2 Heisenberg Antiferromagnet

For the simulation of a spin-1/2 system a three-site iPESS unit cell is not compatible
with a decoration in terms of SU(2) quantum numbers. Therefore a six-site ansatz
is used. The issue here is that there is a conflict between the SU(2) symmetry and
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Figure 5.10: The six-site iPESS ansatz on the honeycomb lattice used to study
the spin-1/2 KHAF. The unit cell consists of six lattice site tensors and four simplex
tensors connecting them. Physical indices of the iPESS tensors are not shown.
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translational invariance of the three-site iPESS ansatz for half-integer spin systems,
much like the case for 1d MPS. More details are given in Appendix B.3.2. The six-site
iPESS ansatz is shown in Fig. 5.10. Simulations were performed with a maximum
symmetric bond dimension of Dsym = 7, which yields an effective bond dimension
of Deff = 17.75. The fractional value is due to an averaging of the different bond
dimensions in the network. In Fig. 5.11 we plot the ground state energy versus the
inverse bond dimension, and compare the values against non-symmetric three-site and
six-site iPESS simulations. The ground state energy of the SU(2)-symmetric simu-
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Figure 5.11: Ground state energy of the spin-1/2 KHAF as a function of the
inverse bond dimension, computed with a six-site iPESS and SU(2) symmetry, and

with a three-site and six-site iPESS without symmetry.

lation is compatible with the non-symmetric ones, which reinforces the observation
that the ground state is indeed SU(2)-invariant and a quantum spin liquid. However,
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Figure 5.12: Ground state energy of the spin-1/2 KHAF as a function of 1/N ,
computed with a six-site iPESS and SU(2) symmetry, and with a three-site and

six-site iPESS without symmetry.
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it is noticeable that the energies for the six-site iPESS simulations lie above those
with a three-site unit cell for large bond dimensions. This is explainable with the
analysis of spin-spin correlations on the bonds, which will be presented after the en-
ergy assessment. In Fig. 5.12 we show the ground state energy versus the number of
free variational parameters in the ansatz. A polynomial fit is used to determine the
extrapolated ground state energy in both figures, whereat the limit of infinite bond
dimension is slightly better achieved in the SU(2)-invariant simulations as a function
of 1/N . For the extrapolated energy we find

e0(1/Deff → 0) = −0.435± 0.004

e0(1/N → 0) = −0.435± 0.002 .
(5.5)

Unfortunately, a scaling in the discarded weight as performed for the iPEPS simula-
tions in Sec. 5.2 can not be done, because the discarded weight was always too small.
In both of the previous figures we show the comparison with the energetically lowest
iDMRG energy of Ref. [112]. In the introduction of the frustrated Heisenberg model
on the Kagome lattice we stated that the ground state is believed to be a quantum spin
liquid that does not break any lattice symmetry. In order to investigate the very first
check for this claim, we computed the spin-spin correlation on all the different bonds
in the iPESS unit cells. Fig. 5.13 shows the nearest-neighbour spin correlations for
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Figure 5.13: Nearest-neighbour spin-spin correlations on the bonds in the three-
site iPESS for the spin-1/2 KHAF.

the three-site iPESS. As expected for a spin liquid, the ground state has very uniform
bonds. Certainly this is not yet a proof for a spin liquid, and a lot of quantities could
be checked to substantiate the claim [111]. However, it is a first indication for the ex-
pected nature of the ground state, and a numerical verification that iPESS is a suitable
simulation tool. Moreover, we plot the spin correlations, or equivalently the bond en-
ergies, for the six-site iPESS with and without SU(2) symmetry in Fig. 5.14. For the
non-symmetric simulation, the six-site iPESS state seems to produce a valence-bond
crystal structure with strong and weak links, thus breaking invariance under lattice
translations and rotations. This is however not unusual, since TN algorithms favor
injective quantum states2 over symmetric ones. In this respect, the symmetric ground
state constructed from a superposition of all valence bond configurations would be
non-injective and is therefore impossible to find in practice, unless lattice symmetries
are explicitly conserved. For the SU(2)-symmetric simulations the spin-spin correla-
tions are even more skewed without any recognizable pattern. Presumably this is due
to the non-uniform bond dimensions caused by the mixture of integer and half-integer

2A PEPS is injective in a region R, if different linearly independent boundary conditions on the
boundary ∂R lead to different linearly independent quantum states.
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Figure 5.14: Nearest-neighbour spin-spin correlations on the bonds in the six-site
iPESS ansatz, without symmetry (left) and with SU(2) symmetry (right).

quantum numbers on the virtual bonds. In any case, we observe that the valence bond
crystal tends to melt as higher bond dimensions are reached. In Fig. 5.15 we show
the correlator skewness, i.e. the difference between the strongest and the weakest link
in the network for both six-site iPESS simulations. Clearly, in the SU(2)-symmetric
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Figure 5.15: Difference between the strongest and the weakest link (correlator
skewness) in the six-site iPESS unit cell with and without SU(2) symmetry.

simulations of the ground state the valence bond crystal tends to melt slower. This
is again due to the mixed spin representations, and the difference in bond dimensions
caused by the intrinsic degeneracies of the quantum numbers is expected to balance
out with their degeneracies, as larger bond dimensions are accessible. The dip in the
non-symmetric data is likely caused by the strong quantum fluctuation. For D = 4
and D = 5 the algorithm converges to a state that is close in energy to the remaining
ones, with more pronounced valence bonds though.
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5.3.2 Spin-2 Heisenberg Antiferromagnet

Although the spin-1/2 Heisenberg model on the Kagome lattice has generated a lot
of research interest, there are also studies of spin-S versions of the models. For in-
stance, Ref. [118] studied the spin-1 KHAF with the conclusion that the ground state
is a gapped simplex valence-bond crystal (SVBC). That is, the two simplexes or tri-
angles in the Kagome lattice have different energies, therefore breaking the lattice
inversion symmetry. In order to apply our implementation of the iPESS ansatz with
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Figure 5.16: Ground state energy of the spin-2 KHAF as a function of the inverse
bond dimension, computed with a three-site iPESS.

SU(2) symmetry to an integer spin system, we instead settled for the spin-2 KHAF.
Therefore we use the Hamiltonian in Eq. (5.4) and a three-site iPESS unit cell. The
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Figure 5.17: Ground state energy of the spin-2 KHAF as a function of 1/N ,
computed with a three-site iPESS.

mismatch between symmetry and translational invariance does not appear for integer
spin systems, and in principle the bond indices can carry mixed spin representations.
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The ground state however converges to a configuration where only integer quantum
numbers are kept, and the ground state energy for the non-symmetric and SU(2)-
symmetric simulations is shown in Fig. 5.16. Due to the large local spin, the maximal
symmetric bond dimension is Dsym = 5, corresponding to an effective bond dimen-
sion Deff = 19. Although the local spins are non-degenerate, i.e. jphysical = 21, the
large spin-2 produces many more internal symmetric blocks compared to the case with
jphysical = (1/2)1, therefore slowing down the calculations. In Fig. 5.16 the symmetric
simulations can handle larger bond dimensions and produce lower variational energies
compared to the non-symmetric simulations. The same data is plotted versus the
inverse number of parameters 1/N in Fig. 5.17. Here the difference between non-
symmetric and symmetric simulations is very large, and the implementation of SU(2)
leads to better results at a fraction of variational parameters. This is mainly owed to
the three-site iPESS ansatz, which is able to represent the ground state well with a
uniform distribution of only integer quantum numbers. The extrapolation to infinite
bond dimension is only shown for completeness, since the simulations do not yet show
convergence in the achievable bond dimensions.

Similarly to the spin-1/2 KHAF we computed the nearest-neighbour spin-spin
correlations, i.e. the bond energies that are shown in Fig. 5.18. The observed pattern
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Figure 5.18: Nearest neighbour spin-spin correlations on all the bonds in the three-
site iPESS unit cell for the ground state of the spin-2 KHAF, without symmetry

(left) and with SU(2) symmetry (right).

is again compatible with a quantum spin liquid, supported by vanishing expectation
values for the spin chiral operator ~Si · (~Sj × ~Sk) on all of the Kagome triangles.

5.4 Conclusion and Outlook

In this chapter we implemented tensor network algorithms in two spatial dimensions
with a global SU(2) symmetry. The iPEPS and iPESS TNs were used to study
ground state properties of different spin models on the square and the Kagome lattice.
Rather than surpassing existing studies of the models, the implementations provide
an assessment of the utility of SU(2) symmetry in 2d. For the extraction of the most
accurate numbers the simple update is anyway too inaccurate, and more sophisticated
algorithms are needed. In this respect further investigations of the restrictiveness of
the simulations is also required. The effects we observe for the spin-1 BLBQ model
simulated with a simple update might disappear for full update iPEPS simulations,
that are known to be more accurate [72].
Our studies generally show that the utility of the symmetry strongly depends on
the problem at hand, and also on the nature of the ground state. With the currently
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available computational power it seems that we are just at the border between a benefit
and an equilibrium of symmetric versus non-symmetric simulations. For instance,
implementing the SU(2) symmetry in iPESS simulations for half-integer models on
the Kagome lattice leads to increased imbalances in the system due to the different
intrinsic degeneracies of integer and half-integer quantum numbers. This effect is
expected to decrease as larger bond dimensions become available, so that the full
potential of symmetries in 2d becomes accessible. For the specific case of the spin-1/2
KHAF it would also be beneficial to exploit the point group symmetries of the lattice,
such as invariance under rotation.
Concluding, the implementation of SU(2) symmetry in 2d TN algorithms allows to
study the physical systems with a higher bond dimension compared to non-symmetric
simulations. The net effect however strongly depends on the type of algorithm, the
unit cells used to simulate the model, the model itself and the nature of the ground
state.
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Chapter 6

Fine-Grained Tensor Networks

In this chapter we study different quantum many-body systems using regular, non-
symmetric infinite PEPS methods in two and three spatial dimensions. The systems
under consideration are defined on a triangular lattice, a lattice structure that can host
highly interesting phases of matter due to possible geometric frustration. In general
though, lattices with high connectivity, i.e. a high number of nearest neighbours are
very interesting since they are usually linked to exotic phases of quantum matter such
as topological quantum spin liquids [119, 111]. Even though frustration will not be
present in our analysis, the triangular lattice itself can pose some difficulties for tensor
network simulations. Due to the high connectivity, tensor networks that resemble the
lattice structure have to deal with many-index tensors that slow down calculations.
This is especially relevant for simulations in three dimensions. Moreover the triangular
lattice structure makes it complicated to define and compute effective environments
needed to contract the whole 2d network, such as in CTM methods.
Based on our proposal in Ref. [120] we will introduce a physically motivated strategy
to improve the utility of tensor network methods on lattices with high connectivity.
To this end the Hilbert space of the physical degrees of freedom is fine-grained so
that a tensor network ansatz with a lower connectivity is natural. This comes at the
expense of increasing the range of the interactions in the original model, but has the
additional advantage that standard 2d tensor network methods, such as CTM can be
directly applied in the new fine-grained tensor network.
In this chapter we will describe the idea of the general fine-graining procedure for
the specific example of a triangular lattice. In order to demonstrate its usefulness
we study a spin model and a bosonic model using infinite PEPS and corner transfer
matrix methods. As a first application of the procedure in 3d we consider a spin
model on a stacked triangular lattice as well.

6.1 Fine-Graining of the Physical Sites

6.1.1 General Fine-Graining Procedure

The idea of fine-graining is quite simple yet very powerful. The physical degree of
freedom on each lattice site is decomposed into smaller, more fundamental entities
which, when coarse-grained again reproduce the original ones. The physical Hilbert
space Hp can therefore be understood as the coarse-grained space of multiple other
fine-grained Hilbert spaces H[i]

f via an isometry

W :
N⊗

i=1

H[i]
f −→ Hp , (6.1)
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where N is the number of fine-grained spaces. In this sense fine-graining is the inverse
operation of coarse-graining, where multiple physical sites are combined as e.g. used
in Chapter 4 and Chapter 5. The isometry W is given by

W =
∑

f1,f2,...,fN

∑

fp

|f1〉 |f2〉 . . . |fN 〉 〈fp| (6.2)

withW †W = Ip and Ip the identity in the physical Hilbert space Hp. The isometryW
can be seen as an (N+1)-index tensor that maps the fine-grained spaces to the physical
space and vice-versa. An example for N = 2 is provided in Fig. 6.1. Importantly,
operators in the physical Hilbert space Op are mapped to operators on the fine-grained
lattice Of by

Of = WOpW
† . (6.3)

Naturally the support of operators, i.e. the region where an operator acts is increased
due to the application of W . Particularly, an m-site operator on the original lattice is
mapped to an (m×N)-site operator on the fine-grained lattice. As long as the isometry

W

Hp

H[1]
f H[2]

f

W

W †

= Ip

W †

W

Op = Of

Figure 6.1: Isometry W with N = 2 for the fine-graining of the physical Hilbert
space Hp into two other Hilbert spaces H[1]

f and H[2]
f and its identity relation. A

one-site operator Op on the original lattice is transformed to a two-site operator Of

on the fine-grained lattice.

W is local, locality is also preserved by this mapping. Importantly, tensor network
optimizations and evaluation of local expectation values can be fully performed in the
fine-grained picture.
In order to utilize the presented idea, the isometry to fine-grain the physical degrees of
freedom should be chosen such that the resulting tensor network structure is simpler,
in a sense that it is more amenable to standard simulation techniques. The actual
choice of W however depends on the problem at hand, and in general W can even
have a tensor network structure itself.

6.1.2 Application to the Triangular Lattice

The fine-graining procedure presented in Sec. 6.1.1 is now applied to the paradigmatic
example of a triangular lattice. The triangular lattice has a connectivity of six, i.e.
every lattice site has six nearest neighbours which is already high enough to benefit
from our method. Using an isometry that maps one physical lattice site to two fine-
grained sites transforms the triangular lattice to the square lattice, as demonstrated
in Fig. 6.2. A PEPS tensor for the triangular lattice with six virtual indices is thereby
decomposed into two PEPS tensors with four virtual indices each with the help of
an isometry as presented in Fig. 6.1. The choice of mapping is very convenient since
the resulting fine-grained lattice is square. In particular we can exploit this simpler
structure in standard algorithms to contract the infinite tensor network, such as CTM
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Figure 6.2: Fine-graining of the triangular lattice with an N = 2 isometry as
shown in Fig. 6.1. The resulting square lattice is more amenable for standard
tensor network techniques. Notice that also the operator support is increased due

to the fine-graining isometry.

methods. This is required to compute accurate expectation values, and also for more
sophisticated iPEPS update schemes such as the full update. For the study of the
different models in subsequent sections we used a non-symmetric simple update iPEPS
scheme [51], the same type of algorithm used in the SU(2)-symmetric iPEPS study in
Chapter 5. A comprehensive description of the simple update algorithm is presented in
Appendix B.1, and we refer the unacquainted reader to this section before proceeding
with the present description of the fine-grained simple update.
Choosing a unit cell ofNx×Ny tensors on the triangular lattice results in anNx×(2Ny)
tensor unit cell on the square lattice (for a fine-graining along the y-direction). In the
triangular lattice there are three different directions along which the simple update
steps have to be applied, and generally there are 3NxNy different links. Due to the
fine-graining of the lattice the simple update on the square lattice involves four fine-
grained iPEPS tensors in every update step. Horizontal links in the triangular lattice
are updated as shown in Fig. 6.3. The diagonal tensors in blue represent the mean-

A B C D

Figure 6.3: Simple update step of horizontal bonds in the fine-grained square
lattice. The trotterized Hamiltonian gate show in light gray acts on all four sites

due to the isometries shown in deep gray.

field environment of the iPEPS tensors. For a computationally cheaper update scheme
we can again collect all links that are not affected by the update and split them away
to both sides. For this purpose tensors A and B on the left as well as tensors C
and D on the right can be decomposed as shown in Fig. 6.4, so that the four-body
gate can be applied to the middle tensors of smaller rank. These additional steps
greatly benefit the efficiency of the simple update, as explained in detail in Sec. B.1.
Nevertheless, the fine-grained simple update implicates some amount of overhead due
to the maintenance of the fine-grained TN structure, and a discussion of the efficiency
of the whole algorithm is presented in Sec. 6.5.1. The two other types of links – the
diagonal links of the triangular lattice – are updated in a similar way.
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UAB

SAB

V †AB UCD

SCD

V †CD

SBC

Figure 6.4: Simple update step of horizontal bonds applied to the reduced tensors
in order to lower the computational cost. A certain amount of overhead is however

introduced due to the maintenance of the fine-grained form of tensors.

6.1.3 Corner Transfer Matrix Scheme and Expectation Values

In order to fully utilize the fine-graining procedure it is convenient to choose an isom-
etry that maps the original lattice to the square lattice. Thus one can directly apply
standard tensor network techniques to contract the whole 2d network to e.g. compute
expectation values. Notice that the unit cell on the square lattice does not repro-

Figure 6.5: A unit cell of 2×2 tensors on the triangular and the fine-grained unit
cell on the square lattice. The unit cell does not reproduce a translational invariant

state with respect to the orthogonal x- and y-directions on the square lattice.

duce a translational invariant state with respect to the orthogonal x- and y-lattice
directions. This is however typically the case for systems on the square lattice and
exploited in standard CTM procedures. In the fine-grained lattice we can easily fix
this by doubling the unit cell to 4× 4 tensors, which are then absorbed directionally
to compute the effective environment, illustrated in Fig. 6.6. A detailed description

Figure 6.6: The unit cell of the fine-grained PEPS (gray borders) is not trans-
lational invariant with respect to the x- and y-directions of the square lattice. An
extension of the unit cell (blue border) is therefore used in the CTM procedure.

about the CTM procedure can be found in Sec. B.2. For the computation of local
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observables one can then use the fixed-point environment tensors. Due to the map-
ping via the isometry W , the range of the interaction increases as demonstrated in
Fig. 6.1. Computing one-body expectation values such as the local magnetization or
particle number results in the evaluation of a two-site operator. Two-body operators
such as the energy per link are obtained by a contraction of tensor networks as shown
in Fig. 6.7. The increased range of interactions is clearly disadvantageous for com-

Figure 6.7: A two-site operator for the original triangular lattice results in a four-
site operator for the fine-grained lattice. Gray tensors represent the fixed-point

environment tensors, as computed with a CTM procedure.

putational reasons. However it is traded for the benefit of working on a lattice with
lower connectivity compared to the original triangular lattice, which makes accurate
calculations that involve the full environment much more amenable.
In the following sections we apply the fine-graining procedure to study the spin-1
transverse-field Ising model and two versions of the Bose Hubbard model on the tri-
angular lattice. The fine-graining method will also be referred to as fine-PEPS.

6.2 Transverse-Field Ising Model

In this section we study the spin-1 ferromagnetic transverse-field Ising model (TFIM)
on the triangular lattice. The model is described by the Hamiltonian

HTFIM = −
∑

〈i,j〉

σzi σ
z
j − hx

∑

i

σxi , (6.4)

where σαi describes the (3×3)-dimensional spin-1 Pauli matrices at site i and hx is the
magnetic field along the x-direction. As argued in Sec. 2.2 the Ising model realizes a
polarized phase for hx > hc and a symmetry-broken ordered phase for hx < hc, sepa-
rated by a quantum phase transition. The precise value of the quantum critical point
hc depends on the lattice dimension and geometry. A perturbative Continuous Uni-
tary Transformation (pCUT) series of the one-particle gap in the polarized phase using
Dlog Pandé extrapolation yields a very accurate estimation of hpCUTc = 5.269(3) [120].
For the numerical fine-PEPS simulations we choose an isometry that represents the
spin-1 degrees of freedom in terms of two spin-1/2 degrees of freedom projected into
the spin-1 subspace in the coupled basis. Due to the SU(2) fusion rules we have
1/2⊗ 1/2 = 0⊕ 1, i.e. a four-dimensional Hilbert space where the singlet state needs
to be projected out. The actual isometry is then given by

Wm
m1,m2

= 〈1/2,m1, 1/2,m2|1,m〉 (6.5)

with m1/2 = ±1/2 and m = −1, 0,+1. It is therefore a (2× 2× 3)-dimensional array
filled with standard Clebsch-Gordan coefficients 〈j1,m1, j2,m2|j,m〉. The fine-PEPS
simulations were performed for bond dimensions up to D = 6 and the results are
compared to a tensor network method called graph-based PEPS (gPEPS) [121]. This
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method is particularly suited since it can simulate arbitrary lattice structures with a
simple update, but it uses only the mean-field environment to compute observables.
Therefore, the benefit of using a CTM scheme in fine-PEPS simulations can be di-
rectly assessed. In Fig. 6.8 we show the ground state energy per site obtained by the
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Figure 6.8: Ground state energy per site for the ferromagnetic spin-1 transverse-
field Ising model on a triangular lattice compared to gPEPS and pCUT results.

two tensor network methods and compare it to a pCUT series expansion up to order
O(12). The series expansion for the pCUT results is done in the polarized phase and
the overlap with fine-PEPS for small 1/hx is perfect. Compared with gPEPS, fine-
PEPS performs much better for magnetic fields slightly larger then hpCUTc = 5.269(3)
due to the inclusion of the whole environment using CTM. In this regime the system
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Figure 6.9: Longitudinal and transversal magnetization per site for the ferromag-
netic spin-1 transverse-field Ising model on a triangular lattice. The observables

correspond to 〈σx〉 and 〈σz〉 respectively.

is close to criticality and the correlation length becomes very large. Those correlations
are much better captured by fine-PEPS and neglected in the gPEPS ansatz. For large
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1/hx the amount of entanglement is again manageable by both TN approaches so that
the energies coincide.

The phase transition can be determined very accurately by pCUT. In order to
determine the transition in the TN simulations we computed the local transverse
magnetization 〈σz〉, that can act as an order parameter to detect the spontaneous
breaking of the Z2 symmetry in the ordered phase (refer to Sec. 2.2). The results of
the longitudinal magnetization 〈σx〉 and transversal magnetization 〈σz〉 for both fine-
PEPS and gPEPS at D = 6 are shown in Fig. 6.9, which agree very well. Computing
expectation values with the full CTM environment has again a small effect so that
the quantum critical point is extracted from fine-PEPS to be hc = 5.60(5). The
discrepancy to the value obtained by pCUT lies in the simple update method that
is used for both TN simulations. A more sophisticated procedure that utilized the
full environment already in the simulation of the ground state is known to work
more accurately near QCPs, and should reproduce the precise location of the phase
transition.

6.3 Bose Hubbard Model

In order to test our approach for a bosonic system we consider two limiting cases of the
bosonic Hubbard model on the triangular lattice. The general Bose-Hubbard model
describes interacting spinless bosons on a lattice and is known to capture superfluid-
insulator transitions [122]. The Bose-Hubbard Hamiltonian is given by

HBH = −t
∑

〈i,j〉

(
b†ibj + b†jbi

)
+
U

2

∑

i

ni (ni − 1)− µ
∑

i

ni , (6.6)

with the hopping parameter t, the repulsive density-density interaction strength U and
a chemical potential µ that controls the filling fraction. Here b†i and bi are bosonic
creation and annihilation operators at site i and ni = b†ibi. In the limit of large
interaction U →∞, each site can be either occupied or empty but a double occupancy
is suppressed – this is called the hardcore limit where the Hamiltonian simplifies to

HHC = −t
∑

〈i,j〉

(
b†ibj + b†jbi

)
− µ

∑

i

ni . (6.7)

The hardcore Bose-Hubbard model has a U(1) particle number symmetry, mean-
ing that the Hamiltonian commutes with the total number operator. Transforming
the bosonic operators bj → b†j on all sites (duality transformation) maps HHC(µ) to
HHC(−µ) up to an irrelevant additive constant. Therefore, for µ = 0 the model is
self-dual and the model’s properties for e.g. µ > 0 can be obtained from those for
µ < 0. The chemical potential µ controls the ground state density

ρ =
1

N

∑

j

〈b†jbj〉 . (6.8)

For µ � 0 the chemical potential forces the lattice sites to be unoccupied, i.e. the
ground state is in a Mott phase with zero density. Contrary, and as expected from
the duality transformation the case µ � 0 leads to a completely filled lattice, so
that the ground state is in a Mott phase with density one. Both limits represent
gapped phases, whereas in the intermediate phase with 0 < ρ < 1 the hopping terms
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dominates and the cost of adding or removing bosons vanishes. The system is then
in a gapless superfluid phase [122] that is characterized by a finite fraction of bosons
in the lowest momentum mode

b̃k=0 =
1

N

∑

j

bj , (6.9)

where the phase in the Fourier transformation is always one due to vanishing momen-
tum. This fraction of superfluid bosons is given by the condensate fraction

ρ0 = 〈b̃†k=0b̃k=0〉 =
1

N2

∑

j,j′

〈b†jbj′〉 . (6.10)

It is known that in thermodynamic limit a finite value of ρ0 is only possible in the
presence of off-diagonal long-range order (ODLRO) [123], so that 〈b†jbj′〉 6= 0 for large
distances of |j − j′| and therefore

ρ0 = lim
|j−j′|→∞

〈b†jbj′〉 . (6.11)

At large distances the condensate fraction reduces to ρ0 = | 〈bj〉 |2 and can be used as
an order parameter to determine the spontaneous breaking of the U(1) symmetry in
the superfluid phase.

Using the fine-graining as introduced in Sec. 6.1.2 every hardcore boson is repre-
sented in terms of two hardcore bosons via the isometry

W 0
0,0 = 1 W 1

1,0 = W 1
0,1 =

1√
2
. (6.12)

Therefore the physical site is empty if both fine-grained sites are empty and if the
physical site is occupied, the hardcore boson can be in either of the fine-grained sites.
In order to identify the phase transitions of the hardcore Bose-Hubbard model we
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Figure 6.10: Particle density ρ and condensate fraction ρ0 for the hardcore Bose-
Hubbard model on the triangular lattice. Both TN simulations use t = 1 for the

hopping amplitude.
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compute numerically the particle density per site ρ = 〈b†jbj〉, as well as the condensate
fraction ρ0 = | 〈bj〉 |2 using fine-PEPS up to D = 5. The hopping amplitude is set
to t = 1. Results are shown in Fig. 6.10 in comparison with gPEPS data for D = 6.
Both TN approaches show excellent agreement and identify the location of the phase
transitions at (µ/t)c = ±6. This value matches the exact location of the phase tran-
sitions computed from first-order perturbation theory for the one-particle gap of the
two Mott phases [120].

Relaxing the hardcore constraint yields a softcore version of the Bose-Hubbard
model, for which we consider at most two particles per lattice site. The Hamiltonian
for the softcore model is the one in Eq. (6.6) where the local Hilbert space is of di-
mension three. The ground state is expected to have three gapped Mott phases with
integer densities nj ∈ {0, 1, 2} and two intermediate superfluid phases. Again we can
use the particle density ρ as well as the condensate fraction ρ0 as order parameters to
determine the phase transitions. The completely empty (nj = 0) and the completely
filled (nj = 2) Mott states are exact eigenstates of the Hamiltonian and the corre-
sponding one-particle gap ∆p

n=0 = −µ−6t and the one-hole gap ∆h
n=2 = −U+µ−12t

can be calculated exactly. For the fine-PEPS simulations we choose the same fine-
graining as for the hardcore version only now with the possibility of double occupancy
of the physical site via the isometry

W 0
0,0 = 1 W 1

1,0 = W 1
0,1 =

1√
2

W 2
1,1 = 1 . (6.13)

Results are shown in Fig. 6.11, again in good agreement with compared gPEPS data.
Near the critical points the fine-PEPS simulations show a better precision because
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Figure 6.11: Particle density ρ and condensate fraction ρ0 for the softcore Bose-
Hubbard model on the triangular lattice with t = 0.01 and U = 1. The comparison
with gPEPS shows a better accuracy of fine-PEPS results especially near the QCPs.

correlations are fully incorporated in the environment. The three gapped Mott phases
with integer densities are clearly identified and the condensate fraction is non-zero only
in the gapless superfluid phases in between.



82 Chapter 6. Fine-Grained Tensor Networks

6.4 Extension of the Fine-Graining to Three Dimensions

The fine-graining procedure was introduced as a physically motivated strategy to im-
prove the utility of tensor networks on lattices with a high connectivity. In order to
demonstrate that this approach works in three-dimensional TN simulations as well,
we will consider a 3d stacked triangular lattice made of 2d triangular layers. The
lattice sites are connected to six neighbours in plane and to two neighbours among
the planes as shown in Fig. 6.12. This lattice structure is directly used in the gPEPS
simple update, where each local tensor has one physical and eight virtual indices. For

Figure 6.12: The 3d stacked triangular lattice consisting of layered triangular
planes. Only the lattice structure is shown and not the tensor network, hence there

are no physical indices.

fine-PEPS we employ the same fine-graining isometry as used for the 2d triangular
TFIM in Sec. 6.2, and the local iPEPS tensors are split into two fine-grained tensors
carrying five virtual indices each. The two virtual indices connecting the 2d planes are
separated as shown in Fig. 6.13. Physical indices are drawn in snake form for a better

Figure 6.13: Fine-graining of the local iPEPS tensors on the stacked triangular
lattice. Physical indices are drawn in snake form to distinguish them from virtual

indices.

distinction with virtual indices. For the numerical simulations we consider a unit cell
of Nx × Ny × Nz tensors with two tensors in each direction. This corresponds to a
unit cell of Nx× (2Ny)×Nz tensors on the fine-grained cubic-type lattice, and a total
number of 4NxNyNz different links to be considered in the simple update. Notice
that the fine-graining does not result in a regular cubic lattice since every fine-grained
tensor connects only to one other tensor in the z-direction.

The ferromagnetic spin-1 transverse-field Ising model serves again as a bench-
marking model. Due to the reduced importance of quantum fluctuations in three
dimensions [70] we compute all fine-PEPS expectation values using the mean-field
environment, as done for the gPEPS simulations. Fig. 6.14 shows the ground state
energy per site for fine-PEPS and gPEPS together with an O(12) pCUT expansion.
Due to the pCUT expansion in the polarized phase the overlap with both TN methods
is excellent for magnetic field values above the critical point. The quantum critical
point for the 3d stacked triangular lattice can be estimated precisely by pCUT to be
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Figure 6.14: Ground state energy per site for the ferromagnetic spin-1 transverse-
field Ising model on a stacked triangular lattice. The energy is compared to gPEPS

and pCUT results at order twelve in the series expansion.

hpCUTc = 7.45(1) [120]. Using TN methods we can again compute the order parame-
ters to determine the location of the phase transition. The longitudinal and transverse
magnetization is shown in Fig. 6.15. In both TN simulations the critical point is at
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Figure 6.15: Longitudinal and transversal magnetization per site for the ferro-
magnetic spin-1 transverse-field Ising model on a stacked triangular lattice. The

observables correspond to 〈σx〉 and 〈σz〉 respectively.

hc ≈ 7.59, which is still not in agreement with pCUT. The reason lies again in the
approximations introduced in the simple update, that neglects the full correlations
while finding the iPEPS tensors representing the wave function. Nevertheless, the
fine-graining procedure and the mapping to a cubic-like structure is very convenient
for the implementation of a 3d corner transfer matrix renormalization group scheme,
which is expected to unveil even larger differences in computational costs compared
to a CTM for gPEPS or a fine-grained version of gPEPS.
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6.5 General Comments and other Applications

6.5.1 Efficiency of the Method

One of the most important characteristics of new algorithms and methods is their
computational efficiency. Since the accuracy of TN simulations is mostly controlled
via the bond dimension, a smaller computational cost automatically implies the pos-
sibility of improved precision. Here we will comment on the efficiency of fine-PEPS
and compare it to gPEPS.

Simple Update
The simple update for the fine-graining is explained in Sec. 6.1.2. For a reduced com-
putational cost it is beneficial to split away uninvolved virtual indices and apply the
gate only to the reduced tensors. The same preparation can and should be done for the

A B UL V †L UR V †R

Figure 6.16: Simple update of a horizontal link in the original triangular lattice.
An SVD can be used to split off uninvolved virtual indices and apply the gate on

the reduced tensors only.

simple update on the triangular lattice, as used in gPEPS. The cost for an SVD of an
(m×n)-dimensional matrix with m ≥ n scales as O(mn2), so that the decomposition
in Fig. 6.16 is O(D7d2

p). This is the leading cost in the gPEPS algorithm. A naive
implementation without reduced tensors would instead scale as bad as O(D15d3

p). In
contrast, the leading cost of the fine-graining simple update is O(D7d4

f ) with df < dp
typically. The leading costs are therefore comparable, however the fine-graining al-
gorithm has additional steps that scale as O(D7d2

f ) in the worst case. Due to the
overhead of keeping and restoring the fine-grained structure in fine-PEPS, gPEPS is
slightly more efficient for the simple update.

Corner Transfer Matrix Schemes
CTM procedures are essential to compute accurate expectation values taking the full
environment into account. In fine-PEPS we can readily apply CTM schemes due to
the simplified square lattice structure. In order to make a comparison to gPEPS we
can use the gPEPS tensors obtained from the simple update, and use a regular SVD
to split the tensors similarly to fine-graining. Generally the link connecting the two

Figure 6.17: Splitting of an iPEPS tensor on the triangular lattice using isometry
W and e.g. an SVD. In general the link between the two tensors can not be truncated
without losing important physical information and its bond dimension is O(D3df ).

separate tensors cannot be truncated without losing important physical information,
so that the bond dimension for this link is O(D3df ). The leading computational cost
of a regular CTM procedure as used in the fine-PEPS algorithm is O(D7χ2df ), where



6.6. Further Applications 85

D is the iPEPS bond dimension and χ the bond dimension of the environment tensors.
In contrast, the leading computational cost of a CTM for fine-grained gPEPS tensors
scales asO(D11χ2d3

f ) due to the enlarged link. This limits calculations to smaller bond
dimensions D and slows down CTM procedures significantly. Native CTM schemes
on the triangular lattice are more involved and are expected to perform worse than
square lattice CTM procedures due to the high connectivity of iPEPS tensors.

6.5.2 Choice of Isometries

In all applications provided in this chapter the isometry was chosen such that both
fine-grained sites are embraced equally, i.e. we chose a symmetric fine-graining. In
principle a spin-1 degree of freedom could also be fine-grained as 1 → 0 ⊗ 1, so that
one of the additional sites is trivial. For practical purposes we noticed however that
a symmetric splitting is indeed favorable, and imbalances due to the isometry may
negatively affect convergence of the simulations.

6.6 Further Applications

The two dimensional triangular lattice is a paradigm example that benefits from fine-
graining. However there are other lattice structures where our method can be applied.
For instance consider the lattice shown in Fig. 6.18, which is classified as the D(4, 82)
Laves lattice [124] and also called the Tetrakis square tiling or Union Jack lattice. In

Figure 6.18: Application of the fine-graining procedure to the D(4, 82) Laves
lattice. All lattice sites that connect to eight neighbours are decomposed using a

1-to-3 isometry which results in a square lattice.

order to map it to the square lattice a 1-to-3 isometry is used on all lattice sites that
connect to eight neighbours.

6.7 Conclusion and Outlook

In this chapter we have introduced and described a new physically motivated strategy
to deal efficiently with tensor network simulations of lattices with high connectivity.
Based on the idea of fine-graining, the physical degrees of freedom are decomposed
into smaller entities in such a way that the resulting tensor network structure is
simpler and more suitable for standard simulation techniques. The method has been
applied for different magnetic and bosonic models on the 2d triangular and 3d stacked
triangular lattice, showing excellent agreement with other TN methods and pCUT
results. The fine-graining technique is believed to advance the tensor network study
of high-connectivity lattices, which can host highly interesting quantum phases.
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Chapter 7

Classical Partition Function for the
Heisenberg Model

Besides the established application of tensor networks as representations of quantum
states and operators, it has been recently noted that they can provide an accurate
portrayal of partition functions of classical models. For instance, two-dimensional
PEPS-like tensor networks have been used to study the classical XY model of sta-
tistical mechanics [125, 126]. In Ref. [126] the TN ansatz exploited the full O(2)
symmetry of the model by preserving explicitly the U(1) and charge conjugation sym-
metry C in the tensors. In this respect, the symmetric tensor network framework
developed during the time of the PhD can be used to study classical models of statis-
tical mechanics with an SU(2) symmetry, such as the Heisenberg model. We restrict
to the classical Heisenberg model on the square lattice to utilize all the algorithms
developed in Chapter 5. This model has sparked a lot of interest since the 1960s.
During that time, one of the most striking results was the Mermin-Wagner theo-
rem [127], which states that continuous symmetries in one and two spatial dimensions
cannot be spontaneously broken at finite temperatures. This rules out the possibil-
ity of spontaneous magnetization in the 2d classical Heisenberg model, and therefore
phase transitions based on symmetry breaking. Around the same time, some stud-
ies found indications of a possible finite-temperature transition in the 2d Heisenberg
model based on spin-wave arguments and high temperature expansions [128, 129].
The contradiction with the Mermin-Wagner theorem could be resolved by the possi-
bility of a Berezinsky–Kosterlitz–Thouless transition [130, 131], where the absence of
spontaneous symmetry breaking does not automatically imply the absence of quasi-
long-range order. In fact, some studies indeed found evidences of a finite-temperature
transition at Tc ∼ 0.6 with features similar to a Berezinsky–Kosterlitz–Thouless tran-
sition [132]. Although topological defects are likely to play an important role in the
system, the mechanism behind a possible transition is fully unclear at the moment.
More recent studies of the classical Heisenberg model using finite size scaling suggest a
pseudo critical region [133] and quasi-long-range order [134]. With our method based
on symmetric tensor networks we provide a fresh approach to this long-standing prob-
lem, which may in future help to resolve this question.
In the present chapter we will develop a strategy to write the partition function for
the classical Heisenberg model in terms of SU(2)-symmetric tensors and compute
different local and thermodynamic quantities from it. Besides providing a new line
of action to simulate this delicate model, it is also a beautiful demonstration of the
potential of symmetry-preserving tensors and the formalism developed in Chapter 3.
Moreover, our tensor network study works directly in the thermodynamic limit, and
does not suffer from finite-size effects.
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7.1 The Partition Function as a Tensor Network

The classical antiferromagnetic Heisenberg model on the square lattice is defined by
the Hamiltonian

H =
∑

〈i,j〉

~Si · ~Sj , (7.1)

where 〈i, j〉 denotes nearest-neighbours and ~Si is the three-dimensional spin vector
of unit length at site i, i.e. ~Si = (sin θi cosφi, sin θi sinφi, cos θi)

>. Let us note that
one can also study the ferromagnetic Heisenberg model instead, since the two versions
can be mapped into each other via a suitable lattice transformation for the case of
bipartite lattices. Our discussion therefore applies in large parts to both models. We
now want to write the partition function

Z = e−βH =
∏

k

∫
dΩk e−β

∑
〈i,j〉

~Si·~Sj =
∏

k

∫
dΩk

∏

〈i,j〉

e−β
~Si·~Sj (7.2)

at inverse temperature β = 1/T for the model as a tensor network. In order to shorten
the notation we write dΩk = dθk dφk sin θk. Using a plane wave expansion

ei
~k·~r = eikr cos θ =

∞∑

`=0

(2`+ 1) (i)`
√
π

2

1√
kr
J`+ 1

2
(kr)P`(cos θ)

=

∞∑

`=0

+∑̀

m=−`
(i)`(2π)3/2 1√

kr
J`+ 1

2
(kr)Y ∗`,m(k̂)Y`,m(r̂)

(7.3)

we can write the Boltzmann factors on every link in the lattice as a linear combination
of spherical harmonics. Here J`+1/2(kr) are Bessel functions of the first kind, and
Y`,m(θ, φ) are the spherical harmonics, i.e., the representations of the 3d rotation
group in terms of functions. Using β′ = kr and making the substitution β′ → iβ
yields the plane wave expansion for the Boltzmann factors for the Heisenberg model,
which become

e−β
~Si·~Sj = e−β cos θij =

+∞∑

`=0

(2`+ 1)(i)`
√
π

2

1√
iβ
J`+ 1

2
(iβ)P`(cos θij)

=
+∞∑

`=0

+∑̀

m=−`
(i)`(2π)3/2 1√

iβ
J`+ 1

2
(iβ)Y ∗`,m(Ŝi)Y`,m(Ŝj) ,

(7.4)

with θij as the angle between spin ~Si and spin ~Sj . This can also be written in terms
of the modified Bessel function of the first kind Il+1/2(β) to simplify the expression.
Finally, the Boltzmann factors can be written according to

e−β
~Si·~Sj =

+∞∑

`=0

+∑̀

m=−`
(i)2`(2π)3/2 1√

β
I`+ 1

2
(β)Y ∗`,m(Ŝi)Y`,m(Ŝj) . (7.5)

7.1.1 Application to a 1d Chain

Consider first the case of a 1d classical Heisenberg model, where the spins on the
chain are coupled to their left and right neighbours. The one-dimensional Heisenberg
model is known to have an exact solution [135, 136, 137]. For every site j of the chain
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there are two Boltzmann factors in the partition function, one for the left and one for
the right bond. Using the plane wave expansion in Eq. (7.5) the partition function
contains terms like

∑

`,m

∑

`′,m′

I`+ 1
2
(β)I`′+ 1

2
(β)

∫
dθj dφj sin θj Y`,m(θj , φj)Y

∗
`′,m′(θj , φj) . (7.6)

Using the orthogonality relation for spherical harmonics
∫ π

θ=0

∫ 2π

φ=0
dθ dφ sin θ Y`,m(θ, φ) Y ∗`′,m′(θ, φ) = δ`,`′δm,m′ (7.7)

we find that the angular momenta must coincide on both links, so that the δ functions
reduce to the identities on the lattice sites. Finally, the partition function for the 1d
antiferromagnetic chain of Heisenberg spins can be written as

Z =
∏

l∈L



∞∑

`l=0

+`l∑

m=−`l

(i)2`l(2π)3/2(β)−1/2I`l+ 1
2
(β)


 , (7.8)

i.e. the partition function reduces to a product over sums of Bessel functions on
every link l in the chain. The partition function in Eq. (7.8) has been derived for
the antiferromagnetic Boltzmann terms. For completeness, the partition function for
ferromagnetic version of the Heisenberg chain is given by

Z =
∏

l∈L



∞∑

`l=0

+`l∑

m=−`l

(2π)3/2(β)−1/2I`l+ 1
2
(β)


 . (7.9)

Ultimately, the expressions in Eq. (7.8) and Eq. (7.9) are the same, since the factors of
(i)2`l cancel for an even number of links in the 1d chain. The expression in Eq. (7.9)
furthermore matches the derivations in Refs. [136, 137].

7.1.2 Application to the 2d Square Lattice

If we now make the same transformation on all the links of the 2d square lattice, there
are four terms per lattice site instead of only two. In Fig. 7.1 we show a square lattice
vertex, with arrows labeling the direction of the two-body interaction ~Si · ~Sj . Again,

j

1

2 3

4

Figure 7.1: The four bonds in the square lattice connected to every lattice site j.
Here the arrows indicate the direction of the two-body interaction.

by integrating over the two continuous variables θj and φj parameterizing the unit
vector Ŝj at site j, we write the partition function as

Z =
∏

l∈L



∞∑

`l=0

+`l∑

m=−`l

(i)2`l(2π)3/2(β)−1/2I`l+ 1
2
(β)


∏

s

F
`s3 ,`s4
`s1 ,`s2

. (7.10)
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Here the first product runs over all links l in the lattice and the second product runs
over all lattice sites s. Notice that the two terms are not independent of each other,
the angular momenta appearing on the links are also the ones that are coupled on the
sites. The object F on each lattice site is a four-index tensor given by

F `3,`4`1,`2
=

∫
dΩs Y`1,m1(θs, φs)Y`2,m2(θs, φs)Y

∗
`3,m3

(θs, φs)Y
∗
`4,m4

(θs, φs) , (7.11)

where `sk in Eq. (7.10) are the angular momenta appearing in the plane wave expansion
on the links surrounding site s, see also Fig. 7.1. Tensor F ensures the coupling of
angular momenta at each vertex of the lattice as prescribed by the product of spherical
harmonics, i.e. are the two incoming values compatible with the two outgoing values.
We now want to write the whole partition function as the contraction of an iPEPS
tensor network on the 2d plane. Therefore we want to use SU(2)-symmetric tensors,
whose group structure is described in terms of Clebsch-Gordan coefficients, i.e. the
recoupling coefficients for SU(2) quantum numbers. The conservation of quantum
numbers is natural in an SU(2)-invariant tensor network, where a four-index tensor
on the lattice site incorporates only these symmetric blocks for which the fusion rules
of the symmetry are satisfied. So far we have only worked with classical angular
momenta and the corresponding spherical harmonics. Although both the spherical
harmonics as well as the Clebsch-Gordan coefficients implement the fusion rules of
angular momenta and spin quantum numbers respectively, we have to use the precise
relation to convert between the two representations. The connection is established by

∫
dΩY`1,m1 Y`2,m2 Y

∗
`3,m3

= fSHCG(`1, `2, `3)

(`1,m1)

(`2,m2)

(`3,m3)

∫
dΩY`1,m1 Y

∗
`2,m2

Y ∗`3,m3
= fSHCG(`2, `3, `1) (`1,m1)

(`2,m2)

(`3,m3)
(7.12)

for fusion and splitting vertices. Here fSHCG are additional factors that appear and
the three-index fusion and splitting nodes denote Clebsch-Gordan coefficients. The
conversion factors are given by

fSHCG(`1, `2, `3) =

√
(2`1 + 1)(2`2 + 1)

4π(2`3 + 1)
〈`1 0 `2 0 | `3 0〉 . (7.13)

Since every iPEPS tensor consists of two vertices (one fusion vertex fusing the incom-
ing edges to an intermediate spin and a splitting vertex splitting the intermediate spin
into the outgoing edges) the relation for one lattice site is given by

∫
dθ dφ sin θ Y`1,m1(θ, φ)Y`2,m2(θ, φ)Y ∗`3,m3

(θ, φ)Y ∗`4,m4
(θ, φ)

=
∑

`

fSHCG(`1, `2, `) fSHCG(`3, `4, `) 〈`1m1 `2m2 | `m〉〈`3m3 `4m4 | `m〉 .
(7.14)

The correct prefactor for every block in the SU(2)-invariant tensor is then the product
of two conversion factors, that will be absorbed into the degeneracy tensors. The sums
over Bessel functions that appear on the links in Eq. (7.10) can also be absorbed into
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the entries of the tensors sitting on the lattice sites. Finally we can construct the fully
SU(2)-invariant iPEPS tensors on the square lattice, that represent the partition
function of the Heisenberg model. The conservation of angular momentum quantum
numbers is taken care of by the structural part of the tensor, so that the fusion of `1
and `2 is compatible with the splitting into `3 and `4. The corresponding degeneracy
tensors are defined by

(`1,m1)

(`2,m2) (`3,m3)

(`4,m4)

` = (i)2(`1+`2)
4∏

i=1

(
(2π)3/2(β)−1/2I`i+ 1

2
(β)
)1/2

×fSHCG(`1, `2, `) fSHCG(`3, `4, `)

. (7.15)

Here ` is the quantum number on the internal leg of the four-index fusion tree and the
phase factors (i)2` are accounted for on incoming links. The infinite sum on the links
of the square lattice can be truncated in practice, the number of SU(2) quantum
numbers kept on the virtual indices is then the parameter to refine the precision.
The explicit sums over ` and m in Eq. (7.10) is performed due to the contraction
of the network of the iPEPS tensors, defined in Eq. (7.15). The degeneracy tensors
to construct the partition function of the ferromagnetic Heisenberg model in 2d are
similar to the ones in Eq. (7.15), just without the phase factors (i)2`.

7.2 Computing the Partition Function with CTM

The classical partition function, written as a network of four-index iPEPS tensors can
be computed approximately with a standard CTM procedure (for a detailed descrip-
tion of the CTM procedure see Appendix B.2.2). We initialize a single-site iPEPS
tensor according to the prescription in Eq. (7.15). This tensor is exact due to the ana-
lytic construction and it directly enters the CTM procedure. Due to integer quantum
numbers on the virtual indices of the iPEPS network, the CTM environment bond
indices can generally carry integer, half-integer or mixed spin representations. The
natural choice of only integer spin irreps worked out to be the best one, with smooth
convergence of the environment tensors. The full partition function is then given by
the expression in Fig. 7.2. Since the network is constructed out of a single iPEPS

Z = =

C1 C2

C3C4

T1

T2

T3

T4

Figure 7.2: Computing the full partition function implies the contraction of the
full 2d plane, which is approximated with fixed-point CTM tensors, shown in gray.

tensor, there is only one set of eight environment tensors representing the contraction
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of the four corners, as well as the four half-infinite rows and columns. We have com-
puted the partition function for several temperatures T ∈ [0.01, 100]. From the Bessel

0 5 10 15
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10 -10

10 -5

100

Figure 7.3: Decay of the Bessel functions I`+1/2(β) normalized to I1/2(β) as a
function of the angular momentum `, for several values of the inverse temperature
β = 1/T . For large β more values of the angular momentum ` have to be kept on

the virtual bond indices of the iPEPS tensors to achieve sufficient precision.

functions I`+1/2(β) that enter the analytic construction it is expected that more spin
representations have to be kept on the virtual indices of the network the larger β, or
the smaller the temperature is. This is shown in Fig. 7.3. Therefore, for large T only
a few spin irreps will be sufficient, while for small T a convergence of the plane wave
expansion in ` will not be achievable with available computational power.

In order to test if the classical antiferromagnetic Heisenberg model exhibits some
interesting behaviour we first compute the corner entropy from the eigenvalue decom-
position of the fixed-point tensors C ≡ C1 ·C2 ·C3 ·C4. This quantity is equivalent to
the entanglement entropy of the ground state for the 1d quantum Heisenberg model.
This is due to a general mapping between d-dimensional classical statistical mechanics
models and (d− 1)-dimensional quantum models [35]. The corner entropy is given by

S = −
∑

α

ωα logωα , (7.16)

where the degeneracies of the eigenvalues ωα in each spin sector need to be taken
into account. The analytic iPEPS tensors were constructed with a maximum of six
spin irreps, i.e. jmax = 5 on the virtual indices. Results are shown in Fig. 7.4. For
temperatures T ≥ 0.2 the corner entropy is essentially converged in the virtual spin
irreps, however for T ≤ 0.2 more quantum numbers would be needed to achieve con-
vergence, as indicated by the separation of the data points. The environment bond
dimension is fixed to χE = 50, i.e. a maximum of fifty singular values are kept dur-
ing the SU(2)-symmetric CTM procedure. This environment bond dimension is not
sufficient for larger jmax, as we demonstrate in the general discussion of the approxi-
mations in Sec. 7.5. The spin sectors on the CTM environment tensors are fixed to be
integer and the truncation procedure adapts to the most relevant sectors. A collection
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Figure 7.4: Corner entropy of the fixed-point CTM corner tensors for different
maximal values of the spin in the plane wave expansion and the virtual bond indices.
The slow decay of Bessel functions for small T is manifested in a slow convergence

of the entropy with increasing jmax.

of the SU(2) CTM data is provided in Table 7.1, where the fifty singular values are
distributed across all sectors jE = 0, 1, ..., jE,max. For larger χE the algorithm will also
keep more spin sectors on the CTM bond indices, therefore increasing the precision.
The trend of the corner entropy shows an onset of a finite amount of correlations for

iPEPS jmax iPEPS Deff CTM jmax CTM χeff
1 4 4 208
2 9 7 302
3 16 9 392
4 25 11 452
5 36 13 520

Table 7.1: Maximal spin and effective bond dimension for the indices of the
analytic iPEPS tensors, and for the CTM bond indices at T = 0.01 and for χE = 50.

temperatures in the interval 0.1 ≤ T ≤ 1. In the following sections we compute local
and thermodynamic quantities, to further investigate the behaviour of the classical
Heisenberg model.

7.3 Computation of Expectation Values

We are mainly interested in one-site and two-site observables, like magnetization, the
energy on the links of the lattice or spin-spin correlation functions. Therefore, we will
describe the calculation of expectation values in the TN formalism first, before moving
on to concrete quantities. For a general one-site operator O(Ŝi) the expectation value
is given by

〈O(Ŝi)〉 =
1

Z

∏

k

∫
dΩk e−βE({Ŝk})O(Ŝi) . (7.17)
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By integrating over all continuous variables θk and φk except at site i, the one-site
expectation value can be written as

〈O(Ŝi)〉 =
1

Z
, (7.18)

where the round tensors are the analytic iPEPS tensors of Eq. (7.15) and the one-site
operator is given by the expression in Eq. (7.19).

(`1,m1)

(`2,m2) (`3,m3)

(`4,m4)

= (i)2(`1+`2)
4∏

i=1

(
(2π)3/2(β)−1/2I`i+ 1

2
(β)
)1/2

×
∫

dΩiO(Ŝi)Y`1,m1(Ŝi)Y`2,m2(Ŝi)Y
∗
`3,m3

(Ŝi)Y
∗
`4,m4

(Ŝi)

(7.19)

The only possible single-site operator is the local magnetization given by the expec-
tation value of O(Ŝi) = Ŝi. We can write the spin operator as

Ŝ =




sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)


 =

√
4π

3




1√
2
(Y1,−1(θ, φ)− Y1,+1(θ, φ))

i√
2
(Y1,−1(θ, φ) + Y1,+1(θ, φ))

Y1,0(θ, φ))


 . (7.20)

From the expansion in terms of spherical harmonics we can see that every component
of Ŝ implies another spherical harmonics function Y1,x(θ, φ) that enters the integra-
tion in Eq. (7.19). This integration leads to an altered form of the spin fusion, and
a fifth index appears in the tensor representation which necessarily carries a spin-1
representation. Due to the preservation of SU(2) symmetry, the resulting local ten-
sor is no longer invariant (the spin operator is not a scalar operator), and the local
magnetization has to vanish.

In a similar way we can compute two-site observables O(Ŝi, Ŝj) using the tensor
network representation of the partition function. Let us first describe the general
procedure to compute the expectation value, and then focus on concrete quantities
we can compute. The two-site observable is computed by

〈O(Ŝi, Ŝj)〉 =
1

Z

∏

k

∫
dΩk e−βE({Ŝk})O(Ŝi, Ŝj) . (7.21)
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By integrating over all spins except the ones at position i and j, we can write the
two-site operator as a contraction of the tensor network

〈O(Ŝi, Ŝj)〉 =
1

Z
, (7.22)

which can be approximated with the fixed point CTM tensors. Again, the round
tensors are the analytic iPEPS tensors of Eq. (7.15) and the two-site operator is given
by the expression in Eq. (7.23).

`1`2

`3 `4

`5`6

`x = (i)2(`1+`2+`3)
6∏

i=1

(
(2π)3/2(β)−1/2I`i+ 1

2
(β)
)1/2

×
∫

dΩi

∫
dΩj O(Ŝi, Ŝj)



∞∑

`x=0

+`x∑

mx=−`x

(i)2`x(2π)3/2(β)−1/2I`x+ 1
2
(β)




×Y`1,m1(Ŝj)Y`2,m2(Ŝi)Y`3,m3(Ŝi)Y
∗
`4,m4

(Ŝj)Y
∗
`5,m5

(Ŝj)Y
∗
`6,m6

(Ŝi)

(7.23)

The index connecting site i and site j still carries the plane wave expansion of the
Boltzmann term, and the spherical harmonics have to be evaluated at the two different
sites now. The only two SU(2)-invariant scalar operator are Ii · Ij and Ŝi · Ŝj . If the
two-site operator O(Ŝi, Ŝj) is equal to the identity Ii · Ij , the expression in Eq. (7.23)
simplifies to the contraction of two regular iPEPS tensors as defined in Eq. (7.15).
For O(Ŝi, Ŝj) = Ŝi · Ŝj we can compute bond energies and spin-spin correlations, as
demonstrated in Sec. 7.3.1 and Sec. 7.3.2 respectively.

7.3.1 Bond Energy

While the two-body operator Ii · Ij is trivial and recovers the analytic expression for
the partition function, the interesting case is the dot product Ŝi ·Ŝj . This measures the
bond energy between nearest neighbours, and can also be used to compute correlations
at a distance as described in Sec. 7.3.2. The dot product can be written in terms of
spherical harmonics according to

Ŝi · Ŝj =
4π

3

∑

m=−1,0,+1

Y ∗1,m(θi, φi) Y1,m(θj , φj) . (7.24)

The spherical harmonics can be affiliated to either side and an integration of the free
parameters (θi, φi) and (θj , φj) yields an additional index carrying spin-1 for both of
the tensors on site i and site j. Combining the steps, we can define the left tensor
(site i) and the right tensor (site j) as shown in Fig. 7.5 and Fig. 7.6. Shown are
only the entries for the degeneracy tensors, the corresponding fusion trees ensure spin
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(`1,m1)

(`2,m2)
(`3,m3)

(1,m)

(`4,m4)

=

√
4π

3
(i)2(`1+`2)

4∏

i=1

(
(2π)3/2(β)−1/2I`i+ 1

2
(β)
)1/2

×fSHCG(`1, `2, `a,1) fSHCG(`a,2, `4, `a,1) fSHCG(1, `3, `a,2)

Figure 7.5: Left tensor for the scalar product Ŝi · Ŝj . The additional channel
(1,m) mediates the interaction, the other four indices carry the quantum numbers

of the plane wave expansion for the Boltzmann terms.

coupling rules and mediate the Ŝi · Ŝj interaction via the additional spin-1 channel.
The factors converting between spherical harmonics and Clebsch-Gordan coefficients

(`1,m1)

(`2,m2)

(1,m)
(`3,m3)

(`4,m4)

=

√
4π

3
(i)2(`1+`2)

4∏

i=1

(
(2π)3/2(β)−1/2I`i+ 1

2
(β)
)1/2

×fSHCG(1, `2, `b,1) fSHCG(`1, `b,1, `b,2) fSHCG(`3, `4, `b,2)

Figure 7.6: Right tensor for the scalar product Ŝi · Ŝj . The additional channel
(1,m) mediates the interaction, the other four indices carry the quantum numbers

of the plane wave expansion for the Boltzmann terms.

are determined by the internal fusion tree decomposition shown in Fig. 7.7. We

(`1,m1)

(`2,m2)

(`3,m3)

(1,m)

(`4,m4)

`a,1
`a,2

(`1,m1)

(`2,m2)

(1,m)

(`3,m3)

(`4,m4)

`b,1
`b,2

Figure 7.7: Fusion trees for the two tensors that generate the two-body scalar
product Ŝi · Ŝj via the additional spin-1 channel.

have computed the nearest-neighbour spin-spin correlation on horizontal and vertical
bonds in the iPEPS network, using the two operators defined in Fig. 7.5 and Fig. 7.6.
The nearest-neighbour spin-spin correlation is equivalent to the bond energy, and as
expected from the analytic construction of the iPEPS tensors it should be rotational
symmetric. This is indeed confirmed by the numerical simulation, and the bond energy
is shown in Fig. 7.8 for the accessible bond dimensions. The behaviour of 〈~Si · ~Sj〉 for a
fixed jmax only depends very weakly on the environment bond dimension χE , so that
the same results are already obtained for the smallest value of χE = 10. However,
it strongly depends on the number of angular momenta in the plane wave expansion
of the Boltzmann terms, which leads to the spread of the data curves. The bond
energy follows the expected behaviour. For large temperatures the classical Heisenberg
model is completely disordered, and the bond energy is expected to vanish. In the
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Figure 7.8: Bond energy on horizontal and vertical links in the iPEPS network of
the partition function.

opposite limit of small temperatures, the antiferromagnetic spin interaction leads to
an antiferromagnetic configuration, shown in Fig. 7.9. The total orientation is however

Figure 7.9: The ground state of the classical Heisenberg model for T → 0 is in
an antiferromagnetic configuration. The orientation of the spins is not fixed, they
can be rotated on the unit sphere collectively without loosing the antiferromagnetic

character.

not necessarily aligned with any coordination axis as shown in the figure, a possible
rotation of all spins on the unit sphere is a likewise ground state. For the ferromagnetic
Heisenberg model, the bond energy is exactly mirrored along the horizontal axis, and
it converges to +1 for large jmax due to the parallel alignment of spins. The bond
energy should be equivalent to the internal energy U , a thermodynamic quantity that
can be computed directly from the partition function Z(β). Those calculations can
readily be performed using the CTM fixed-point tensors and are presented in Sec. 7.4.

7.3.2 Spin-Spin Correlations

The two operators in Figs. 7.5 and 7.6 can be used to compute the spin-spin correlation
at a distance. In order to do this, the regular iPEPS tensor for the partition function
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is inserted in between the sites where the spin operators act. Therefore, the actual
spin-spin correlations are then computed by a contraction of the TN in Fig. 7.10,
divided by the norm, i.e. the same network without any operators. We have computed

. . .

. . .

. . .

. . .

Figure 7.10: Computation of the spin-spin correlation function at site i and j. The
expectation value has to be divided by the same expressions without the operators.

the spin-spin correlation function for the accessible bond dimensions and a maximal
separation distance of Lmax = 50. The correlations have alternating signs for the
antiferromagnetic, and positive signs for the ferromagnetic Heisenberg model, with
the same rate of decay for both versions. The absolute values of the expectation
values match an exponential decay of correlations for large temperatures, and an
quasi-algebraic decay of correlations for low temperatures. It is important to keep
in mind that the results for low temperatures are strongly approximated due to the
limited number of angular momenta in the plane wave expansion. The scaling of the
correlations at low T with the iPEPS bond dimension however indicates a shift to
a cleaner algebraic decay at larger jmax. The most interesting features is the cross-
over between exponential and power-law correlations, which indicates a change in
fundamental properties. The clear exponential decay for large temperatures is blurred
out when lowering T , so that we use a fit in the form of

C(r) ∼ c · e−r/ξ · r−κ . (7.25)

Here ξ is the correlation length and κ is the exponent of the power-law fit. The
combination of both terms is necessary especially in the temperature range T ≤ 1.
For high temperatures one expects a strong exponential decay due to the disordered
alignment of spins. In contrast, for low temperatures Fig. 7.8 clearly shows an antifer-
romagnetic alignment of spins, so that the correlation length is expected to increase.
The spin-spin correlation functions for all available jmax and χE = 50 have been com-
puted and fitted to extract the relevant information, which is shown in Fig. 7.11. In
the figure the upper curves show the correlation length ξ(T ), while the lower curves
show the power-law exponent κ(T ). The correlation length increases towards lower
temperatures, and saturates to a finite value eventually. This saturation can have
different explanations. First, let us assume that the model features quasi-long-range
order as reported for instance in Ref. [134]. The correlation length is then expected
to diverge, before saturating to a large, but finite value. While this scenario is within
the possibilities of our numerical outcome, it is certain that the saturation is also due
to the approximations in the TN study. An actual diverging correlation length could
only be observed in the limit jmax →∞ and χE →∞, as expected from Fig. 7.3. The
maximal bond dimension of jmax = 5 is not sufficient, so that even quasi-long-range
order would likely not be fully captured by our approximation. Furthermore the wob-
bly behaviour of ξ(T ) for T ≤ 0.3 and jmax ≥ 4 is probably due to the fact that the
simulations are not yet fully converged in the environment bond dimension χE (see
also Sec. 7.5 for a detailed discussion of the approximations).
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Figure 7.11: Correlation length ξ(T ) and power-law exponent κ(T ) extracted
from the fits of the spin-spin correlation functions, using Eq. (7.25).

With our current numerical simulations it is too vague to speculate about a possible
finite temperature transition in the model. Moreover, due to the strong approxima-
tions in the low temperature regime we cannot distinguish between a large, but finite
correlations length and a truly diverging, i.e. infinite correlation length in the limit
jmax →∞. To gain more evidence or disproof of a finite temperature transition, one
could for instance study the spin stiffness of the Heisenberg model. This is however
not possible in an SU(2)-invariant setting, because the required magnetic field would
break the continuous symmetry [126]. A small magnetic field could only be intro-
duced in non-symmetric simulations, where the access to large angular momenta is
even more restricted due to the loss of the efficient symmetric form of the tensors.
Ultimately, if more evidence for a finite temperature transition is found, it would be
extremely interesting to identify a possible mechanism behind it. Due to the limited
expressiveness of the presented data, we postpone concrete conclusions until further
study has been conducted.

7.4 Thermodynamic Quantities

7.4.1 Partition Function per Site

Performing the contraction of the infinite 2d lattice as shown in Fig. 7.2 yields the full
partition function as a function of the inverse temperature β. The problem however
is the normalization of the environment tensors, which is necessary in every CTM
step to prevent a divergence of the tensor entries. Without this normalization the
contraction of the infinite lattice would be infinite, consistent with what one would
expect for the full partition function Z(β). Since we are working directly in the
thermodynamic limit, the relevant quantity is the partition function per site, from
which we can compute thermodynamic properties like the free energy F , the internal
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energy U or the thermodynamic entropy S, also per site. Let us denote the partition
function per site as z(β), defined by

ln(z(β)) = lim
NxNy→∞

1

NxNy
ln(Z(β)) . (7.26)

The partition function can be computed from the transfer operator T (β) according to

Z(β) =
∣∣tr
(
T (β)Nx

)∣∣ , (7.27)

where T (β) is the a column of PEPS tensors and Nx the number of horizontal copies.
For Nx � 1 the partition function is expected to scale with the dominant eigenvalue
µ of T (β), so that Z(β) ∼ |µNx |. This expression can be written in terms of the
dominant left and right eigenvectors of the transfer operator according to

Z(β) ≈
∣∣∣∣
〈ΨL|T (β)|ΨR〉
〈ΨL|ΨR〉

∣∣∣∣
Nx

. (7.28)

We can express this equation in tensor network form, as illustrated in Fig. 7.12.
Here 〈ΨL| and |ΨR〉 are the left and right eigenvectors, which are not necessarily

Nx

Ny

T (β)

≈

〈ΨL| |ΨR〉T (β)

C1 C2

T2

T2

T2

C3C4

T4

T4

T4

〈ΨL| |ΨR〉

C1 C2

T2

T2

T2

C3C4

T4

T4

T4

Nx

Figure 7.12: Equation (7.28) written as a tensor network.

normalized. Therefore, the denominator is required. The numerator in Eq. (7.28) can
be understood as the expectation value of an MPO for the one-dimensional transfer
operator, computed with an MPS given by the eigenvectors. This yields

〈ΨL|T (β)|ΨR〉 = tr(ENy) , (7.29)

where E is the zero-dimensional transfer operator defined in Fig. 7.13. In the limit
Ny � 1 this can be formulated in terms of the dominant eigenvalue ν of E, and
〈ΨL|T (β)|ΨR〉 ∼ νNy . Using the corresponding dominant eigenvectors we find

〈ΨL|T (β)|ΨR〉 ≈
(〈ΣU |E|ΣD〉
〈ΣU |ΣD〉

)Ny

, (7.30)

where 〈ΣU | and |ΣD〉 denote the left and right eigenvectors of E respectively. They
are again not necessarily normalized, hence we have to divide by 〈ΣU |ΣD〉. The
tensor network expression of Eq. (7.30) is shown in Fig. 7.13. A similar reformulation
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Figure 7.13: Equation (7.30) written as a tensor network.

can be performed for the denominator of Fig. 7.12. Here, the tensor network can
be interpreted as a product of two MPS, equivalent to the overlap of the left and
right eigenvalue of the 1d transfer operator T (β). With the definition of the second
zero-dimensional transfer operator K in Fig. 7.14, the denominator becomes

〈ΨL|ΨR〉 = tr(KNy) . (7.31)

Using the dominant eigenvalue σ of K, this expression scales as 〈ΨL|ΨR〉 ∼ σNy in
the limit Ny � 1. We can therefore express the denominator in terms of the left and
right dominant eigenvector of K denoted by 〈ΩU | and |ΩD〉, which yields

〈ΨL|ΨR〉 ≈
(〈ΩU |K|ΩD〉
〈ΩU |ΩD〉

)Ny

. (7.32)

Since also 〈ΩU | and |ΩD〉 are not necessarily normalized, we have to divide by the
product of all four CTM corner tensors, as shown in Fig. 7.14. The steps outlined
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C3C4
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〈ΩD|

Ny
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C3C4

Figure 7.14: Equation (7.32) written as a tensor network.

above can be combined and inserted into Eq. (7.26), which then becomes

ln(z(β)) = lim
NxNy→∞

1

NxNy
ln

(∣∣∣∣
〈ΣU |E|ΣD〉 〈ΩU |ΩD〉
〈ΣU |ΣD〉 〈ΩU |K|ΩD〉

∣∣∣∣
NxNy

)
. (7.33)
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Finally, the relevant quantity, the partition function per site z(β) is simply given by

z(β) =

∣∣∣∣
〈ΣU |E|ΣD〉 〈ΩU |ΩD〉
〈ΣU |ΣD〉 〈ΩU |K|ΩD〉

∣∣∣∣ , (7.34)

or equivalently by the contraction shown in Fig. 7.15. Fortunately, by doing the

z(β) =
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Figure 7.15: The partition function per site can be computed conveniently from
the CTM tensors. In this equation all normalizations in the environment tensors

cancel.

derivation above, the normalization in the CTM tensors is canceled out.

7.4.2 Thermodynamic State Functions

From the partition function we can compute thermodynamic properties such as en-
tropy S, the free energy F and internal energy U . First, let us show the behaviour for
ln(z(β)) in Fig. 7.16, computed according to Fig. 7.15. The curves are smooth, and

10 -2 10 -1 100 101 102

101

102

Figure 7.16: Partition function per site ln(z(β)) computed as shown in Fig. 7.15.

as expected from the Bessel functions the partition function diverges exponentially
for low temperatures. The free energy is readily available from the partition function
by F = − ln(z)/β, and its behaviour is shown in Fig. 7.17. It is known that ther-
modynamic potentials are concave functions of their intensive variables, and convex
functions of their extensive variables [138]. Although this is satisfied in Fig. 7.17 for
larger jmax (the temperature is an intensive variable), the free energy is also expected
to decrease monotonically a priori. This is rooted in the fact that the thermodynamic
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Figure 7.17: Free energy F computed from the partition function ln(Z(β)).

entropy S, obtained by S = −∂F/∂T is positive semidefinite. Therefore, temper-
atures below T = 0.2 are directly disqualified, as already expected from the rather
rough approximations in the plane wave expansion.

Taking the first derivative U = −∂ ln(z)/∂β yields the internal energy per site.
The derivative is performed numerically and the result is shown in Fig. 7.18. The
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Figure 7.18: Internal energy U computed from the partition function ln(z(β)).

simulations converge to U(T → 0) → −2 for low temperatures, which is twice the
value we have found for the expectation value of the bond energies (see Sec. 7.3.1).
The factor of two is simply the number of independent nearest neighbours in the
square lattice. Due to the single-site iPEPS unit cell, there are only two independent
lattice links and the results are therefore consistent. Interestingly, the bond energy
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in Fig. 7.8 shows a separation of the data curves for low temperatures, whereas the
internal energy shows a spread around the mid-temperature range. This discrepancy
is due to the different approximations performed in the calculations, and they are
expected to give the same result for the correct limits of jmax →∞ and χE →∞. In
particular, the internal energy is given by

U = lim
NxNy→∞

1

NxNy
E = lim

NxNy→∞

1

NxNy
〈H〉

= 〈hx〉+ 〈hy〉 =
1

Z
tr
(

(hx + hy)e
−βH

)
.

(7.35)

This is precisely equal to the derivative of the partition function

U = − lim
NxNy→∞

1

NxNy

∂ logZ

∂β
. (7.36)

Finally, we can compute the thermodynamic entropy S from the free energy F by
S = −∂F/∂T , shown in Fig. 7.19. For large temperatures, the entropy saturates
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Figure 7.19: Thermodynamic entropy S computed from the free energy in
Fig. 7.17. Negative entropies for T < 0.2 are unphysical, and a consequence of

the approximations in the TN ansatz.

to S(T → ∞) = ln(z(T → ∞)), whereas the entropy becomes negative for low
temperatures. This seems to be unphysical at first sight, however it is a typical
pathology for classical models. For instance, the entropy for a classical 1d Heisenberg
chain follows S(T → 0) → −∞ [138]. Nevertheless, temperatures below T = 0.2 are
untrustworthy in our tensor network simulations. We can only assess the behaviour
in jmax, which indicates a convergence towards S(T → 0)→ 0.

7.5 Discussion of the Approximations

The tensor network approach to study the classical Heisenberg model in 2d has the
particular advantage, that it does not suffer from finite size effects. Nevertheless, there
are two main approximations necessary in order to keep the calculations manageable.
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The first, and obvious approximation is the bond dimension of the TN, which controls
how many spin representations are used in the plane wave expansion of the Boltzmann
terms. As demonstrated in Fig. 7.3, the lower the temperature is, the more terms are
relevant due to the slow decay of the Bessel functions. Therefore, setting jmax = 5 is
a rather rough approximation for T < 1. As it turns out, the approximation seems to
be still well justified down to T = 0.2, supported by calculations of the corner entropy
in Fig. 7.4, and the bond energy in Fig. 7.8.
Besides the approximations in jmax, a second refinement parameter is introduced by
the bond dimension χE of the CTM environment tensors. Since the CTM tensors
represent the approximation of the infinite 2d lattice, it is important to converge
the simulations in χE for any fixed jmax. Again, the required environment bond
dimensions depend on the temperature, and for low T it was not possible to reach
full convergence due to a high computational cost of the methods. This is shown in
Fig. 7.20 for a fixed jmax = 5. In this figure, the corner entropy is essentially converged
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Figure 7.20: Convergence of the corner entropy S with the environment bond
dimension χE , at a fixed jmax = 5. At low temperatures, the maximal bond dimen-

sion χE = 50 is not yet sufficient to reach convergence.

for T ≥ 0.2, and starts to separate below that. Combining the observations for both
the approximations in jmac as well as χE , we can conclude that the calculations for
T ≥ 0.2 are to be trusted.
Certainly, the limit β → ∞ is of particular interest. Unfortunately, simulations in
this limit are too inaccurate in our tensor network approach, and the results need to
be interpreted carefully. On the other hand, and fortunately for our study, the most
interesting and disputed property is a possible thermal phase transition of the classical
Heisenberg model in the temperature range 0.1 ≤ T ≤ 1.0. Here, the accessible
bond dimensions are sufficiently large to extract accurate results, and an increase in
quantum numbers for the Boltzmann terms is not expected to change the outcomes
significantly.



106 Chapter 7. Classical Partition Function for the Heisenberg Model

7.6 Conclusion and Outlook

In this chapter we have applied the SU(2)-invariant tensor network formalism to study
a classical spin model in the thermodynamic limit. In particular, we derived an ana-
lytic form of tensors, that represent the partition function of the classical Heisenberg
model on the square lattice. The bond dimension of the resulting infinite PEPS net-
work controls the precision of the simulations, due to the maximal spin used in the
plane wave expansion of the Boltzmann terms. We applied a standard CTM method
to contract the whole 2d plane and obtain the partition function, from which we com-
puted local, non-local and thermodynamic properties.
The results of our numerical investigation of the 2d classical Heisenberg model re-
veals a strong increase for the correlation length of the spin-spin correlations in a
temperature range 0.1 ≤ T ≤ 1.0. Due to the unavoidable approximations in the TN
representation of the partition function, it is purely speculative whether the correla-
tion length tends to diverge for larger bond dimensions, or if it is an indication for
the presence of quasi-long-range order. Moreover, an adequate mechanism behind a
possible thermal phase transition is unknown for the Heisenberg model. Therefore,
further analysis of the low temperature properties is in order. The behaviour of the
correlation length could be studied with boundary MPS methods [71]. Provided that
our observations hold true for low temperatures, the boundary MPS is expected to
represent a (quasi-)critical state with a very large correlation length. Naturally, an
MPS has an intrinsic finite correlation length, but hopefully the MPS bond dimension
can be increased sufficiently to not suffer from a finite-χ approximation like the CTM
procedure. Furthermore, it would be interesting to identify a mechanism and an order
parameter for a possible transition, if further evidence for such a transition is found.
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Chapter 8

Final Conclusion and Outlook

8.1 Thesis Overview

In this thesis we have applied tensor network algorithms for the study of different spin
systems, with a focus on the preservation of the non-Abelian SU(2) symmetry. As
a concrete output of the PhD, we developed an SU(2)-symmetric tensor network li-
brary that is able to deal with arbitrary-rank tensors, therefore providing an essential
and flexible tool for numerical simulations. The implementation of the symmetry is
based on a fusion tree approach, in which the structural part of symmetric tensors is
encoded in analytic descriptions of the Clebsch-Gordan coefficients of the symmetry
group. The chosen approach offers a memory-efficient solution that is virtually free
from floating-point errors that could accumulate in an opposing numerical implemen-
tation of Clebsch-Gordan coefficients. Moreover, the approach is readily extensible to
include other symmetries, such as U(1), Zn or SU(3), and products of symmetries. It
is also capable of accommodating so-called quantum groups, e.g. deformed versions of
regular symmetry groups such as SU(2)k, that underly anyonic theories. The SU(2)-
invariant formalism has been recapitulated in a programming guide (P. Schmoll et al.,
Annals of Physics 419, 168232 (2020)), and the corresponding SU(2)-invariant tensor
network framework is planed to be made public.

The physical part of the thesis consists of four independent parts, three of which
are based on the SU(2)-invariant tensor formalism. We will draw a final conclusion
of the chapters below, and give further directions of research in Sec. 8.2.

Using the SU(2)-invariant tensor network framework we have studied a spin-1/2
ladder with chiral three-spin interactions in Chapter 4. The preservation of symme-
try allows us to reach bond dimensions of χ ∼ 1200, a value that would be nearly
impossible to reach without the symmetry. As a result, the physical information we
extracted is very precise and the ground state of the model is found to be critical, with
a central charge compatible with c = 1. This finding is supported by an algebraic
decay of correlations, and backed by detailed studies of the model using Kadanoff
coarse-graining, exact diagonalization and Abelian bosonization. The ladder system
considered can provide a good starting point to study the cross-over to 2d systems
with chiral interactions. The main results of the study have been published in P.
Schmoll et al., Physical Review B 99, 205121 (2019).

Based on the experience we gained in the previous project, the SU(2)-invariant
tensor network framework was used to implement symmetric versions of the two-
dimensional iPEPS and iPESS algorithms in Chapter 5. Using an efficient update
scheme to optimize the tensor coefficients and a CTM scheme to compute expectation
values, the algorithms were used to study a spin-1 bilinear-biquadratic model on the
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square lattice, as well as the spin-1/2 and spin-2 Heisenberg antiferromagnets on the
Kagome lattice. The overall results are compatible with other studies of the mod-
els, and with non-symmetric tensor network simulations we performed alongside the
symmetric ones. The ground state of the spin-1 BLBQ model was found to cultivate
anisotropic bond energies, thus breaking lattice rotation symmetry. Preserving the
SU(2) symmetry in iPESS algorithms causes undesirable imbalances for half-integer
systems, which counteract the benefits of the enlarged bond dimensions. For integer
spin systems the iPESS algorithm with SU(2) symmetry is well suited, and predicts a
quantum spin liquid for the spin-2 KHAF. Although the symmetry allows us to reach
larger bond dimensions, the utility of its implementation and exploitation strongly de-
pends on the model and the gap in the energy spectrum, as well as the tensor network
ansatz. With more computational power and further optimized implementations, the
full potential of symmetries in 2d tensor network algorithms is expected to unfold.
These results are published in the preprint P. Schmoll and R. Orús, arXiv:2005.02748
(submitted to journal).

In Chapter 6 we proposed a new tensor network algorithm for the simulation of
lattices with a high connectivity, i.e. a large number of neighbouring sites. A fine-
graining approach is used to decompose the local degrees of freedom into more funda-
mental units in a way that allows to use a more convenient tensor network ansatz. The
usefulness has been demonstrated for several magnetic and bosonic lattice models on
two- and three-dimensional triangular lattices, showing excellent agreement with pre-
vious tensor network simulations and continuous unitary transformation results. The
proposed method could be very relevant for the study of high-connectivity lattices,
which are predestined for the cultivation of exotic phases of quantum matter. Our
results are published in P. Schmoll et al., Physical Review Letters 124, 200603 (2020).

Tensor networks can also be applied to study classical spin models. In Chapter 7
we use SU(2)-symmetric tensors to write the partition function of the classical Heisen-
berg model on the square lattice, and compute its relevant properties. The partition
function can be represented by a contraction of an infinite 2d lattice of tensors. The
tensors can be constructed analytically, their bond dimension controls the precision.
The study demonstrates the versatile application of tensor networks beyond the rep-
resentation of quantum states. Our tensor network approach works very well for the
high-temperature limit of the Heisenberg model, it is however less conclusive in the
low temperature regime due to strong, unavoidable approximations. The study of
the Heisenberg model reveals a strong enhancement for the correlation length of the
spin-spin correlations in the temperature range 0.1 ≤ T ≤ 1. Further analysis of this
delicate temperature region is currently performed, and the results are expected to be
concluded in a soon to appear publication.

Summarizing, the SU(2)-symmetric framework has been deployed to implement
well established and predominantly used tensor network algorithms for the study of
one- and two-dimensional quantum many-body systems. This provides an assessment
of the utility of symmetric implementations of the methods. While symmetries have
enormous benefits in 1d TN algorithms, their exploitations in 2d TNs depends more
on the physical settings and related factors.
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8.2 Prospects and Outlook

The research carried out throughout the time of the PhD motivates further investiga-
tions along different directions. First and foremost, there are some technical improve-
ments and extensions in order. An extension of the existing SU(2)-symmetric tensor
network library to other commonly found symmetries – especially U(1) symmetry
– is obvious. This adds valuable flexibility to the tool, which can then be used to
study various symmetric phases, and also phase transitions between them. Moreover,
symmetry-preserving tensor network states can be used to detect spontaneous sym-
metry breaking [116]. The extension of the library is also required for the simulation
of lattice gauge theories, a flourishing area for the application of tensor networks [139].

Furthermore, the symmetric tensor library with the aforementioned extensions
could be combined with state of the art tensor network algorithm to provide a full
tensor network toolkit, that is suitable and convenient for a large audience of users.
While iDMRG is certainly one of the most well-known and applied algorithms in 1d,
future simulations would greatly benefit from the implementation of refined algorithms
such as VUMPS [64], a fully translational invariant algorithm in the thermodynamic
limit. Similarly, recent developments in 2d TN algorithms should be incorporated as
well, including several proposals and refinements that increase the accuracy [72, 73],
convergence [140] or stability of simulations. Particularly, more sophisticated tensor
update schemes are expected to overcome the strong limitations in the space of vari-
ational parameters in symmetric TN simulations, that we have encountered in this
thesis. To be more precise, they are expected to navigate better on the manifold of
remaining variational parameters, therefore finding improved approximations to the
ground state and surfacing the full potential of symmetric numerical simulations.

With all the proposed extensions and optimizations in place, the symmetric ten-
sor network toolkit would provide a flexible, powerful and general utensil for future
TN studies. It could be applied to study long-lasting problems in condensed matter
physics, like for instance the simulation of the Hubbard model [141] in 2d. It is of
particular interest since the Hubbard model might incorporate the mechanism behind
high-temperature superconductivity. The ground state phase diagram is still not fully
determined, and at half-filling of the lattice the Hubbard Hamiltonian has a global
SO(4) = SU(2) × SU(2) symmetry. Furthermore, a variety of different models in
frustrated quantum antiferromagnetism or interacting topological materials could be
embarked on with the help of symmetries.
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Appendix A

Details for Symmetric Tensors

A.1 Representation Theory of SU(2)

Group theory is a mathematical subject that has applications in physics in the form
of symmetries. In this thesis we presented a formalism to exploit general symmetries
in tensor network algorithms in order to reduce the variational space, and describe
symmetric quantum states efficiently. To complement the discussion, we present the
representation theory of the group SU(2) in this section, partly following Ref. [83].
In general, the special unitary group SU(n) denotes the group of unitary complex
(n× n)-dimensional matrices with determinant one, and matrix multiplication as the
group operation. It is a subgroup of U(n), the group of all unitary complex (n× n)-
dimensional matrices. Let us consider the case of degree n = 2, which consists of
unitary matrices in the form of

U :=

(
α β
γ δ

)
. (A.1)

Since U is a complex square matrix with det(U) = 1 it is invertible with U−1 = U †.
This leads to

(
δ −β
−γ α

)
= U−1 = U † =

(
α∗ γ∗

β∗ δ∗

)
, (A.2)

which constraints the free parameters due to the conditions δ = α∗ and γ = −β∗.
Therefore, the group SU(2) takes the form

SU(2) =

{(
α β
−β∗ α∗

)
∈ Mat(2,C) : |α|2 + |β|2 = 1

}
. (A.3)

The matrices U ∈ SU(2) can be conveniently parametrized by means of the Caylay-
Klein parameters according to α = x0 + ix3 and β = x2 + ix1, so that we can rewrite
U according to

U = U(x0, ~x) = x0I2 + i~x~σ , (A.4)

where ~x = (x1, x2, x3)> ∈ R3 and ~σ = (σ1, σ2, σ3)> is the vector of Pauli matrices. In
order to find representations of SU(2) it is helpful to consider the representations of
su(2), the Lie algebra of SU(2). To this end we consider the exponential map – let
X ∈ su(2), then

exp(tX) ∈ SU(2) ∀ t ∈ R . (A.5)
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Using exp(tX)† exp(tX) = I and det(exp(X)) = exp(tr(X)) = 1, the Lie algebra
su(2) of SU(2) consists of all traceless, (2× 2)-dimensional skew-Hermitian matrices

su(2) =
{
X ∈ Mat(2,C) : X = −X†, tr(X) = 0

}
. (A.6)

However, instead of using the basis of skew-Hermitian matrices one can work in the
space of traceless, Hermitian matrices

H2 =
{
X ∈ Mat(2,C) : X = X†, tr(X) = 0

}
. (A.7)

In this space the generators of the su(2) Lie algebra can be chosen to be

Jα =
1

2
σα , (A.8)

so that the group SU(2) acts on a finite dimensional vector space unitarily by means
of the transformation

W (~r) = ei~r
~J = ei(rxJx+ryJy+rzJz) . (A.9)

Here σα are the Pauli matrices, ~J = (Jx, Jy, Jz)
> and the coefficients r = (rx, ry, rz)

> ∈ R3

parametrize the group elements. The traceless Hermitian operators are said to gen-
erate the representation W (~r). Therefore they are the generators of the Lie algebra
su(2) and follow

[Jα, Jβ] =
∑

γ=x,y,z

εαβγJγ α, β ∈ x, y, z , (A.10)

with εαβγ being the fully antisymmetric Levi-Civita symbol. Jx, Jy and Jz can be
associated to the projection of angular momentum along the respective real space
axis. Furthermore, they fulfill the equations

J2 =
∑

α=x,y,z

J2
α

[
J2, Jα

]
= 0 . (A.11)

A.1.1 Irreducible Representations

Consider a vector space V to transform as an irreducible representation (irrep) of
SU(2) with spin-j, so that the dimension of V is 2j + 1. Since J2 commutes with
all generators Jα one can choose a simultaneous eigenbasis of e.g. J2 and Jz as an
orthonormal basis in V. This leads to

J2 |j,mj〉 = j(j + 1) |j,mj〉
Jz |j,mj〉 = mj |j,mj〉 ,

(A.12)

wheremj is the spin projection along the z-axis that can take valuesmj ∈ {−j, ...,+j}.
In the chosen basis we can express Jx and Jy conveniently in terms of ladder operators,
i.e. raising and lowering operators J± = (Jx ± iJy) as

J± |j,mj〉 =
√
j(j + 1)−mj(mj ± 1) |j,mj ± 1〉 . (A.13)

Let us make a connection to the physical spin systems that are investigated in this
thesis. Consider the two-dimensional vector space V that transforms as a spin-1/2.
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The states within this vector space can be constructed from the orthonormal basis
states

|j = 1/2,mj = +1/2〉 =

(
1
0

)
, |j = 1/2,mj = −1/2〉 =

(
0
1

)
. (A.14)

Choosing this basis, the operators Jx, Jy, Jz and J2 are given by

Jx =

(
0 1

2
1
2 0

)
, Jy =

(
0 − i

2
+ i

2 0

)
, Jz =

(
+1

2 0
0 −1

2

)
, J2 =

(
3
4 0
0 3

4

)
. (A.15)

Furthermore consider a three-dimensional vector space V that transforms as a spin-1.
Again, by choosing a simultaneous eigenbasis of J2 and Jz we can write an orthonor-
mal basis

|j = 1,mj = +1〉 =




1
0
0


 , |j = 1,mj = 0〉 =




0
1
0


 , |j = 1,mj = −1〉 =




0
0
1


 .

(A.16)

In this basis the operators Jx, Jy and Jz are given by the spin-1 Pauli matrices, and
J2 = j(j + 1)I2j+1 = 2I2j+1.

A.1.2 Reducible Representations

As a generalization of irreducible representations, SU(2) can act reducibly on a vector
space V. The vector space then generally decomposes as a direct sum of irreducible
representations

V ∼=
⊕

j

djVj ∼=
⊕

j

(Dj ⊗ Vj) , (A.17)

as already introduced in Sec. 3.1. Here Vj is the vector space of the irreducible repre-
sentation j, and dj counts the copies of Vj in V. The decomposition can also written
in terms of a dj-dimensional degeneracy subspace Dj , so that irrep j is dj-fold degen-
erate. The total dimension of the vector space V is given by

∑
j dj(2j + 1).

A convenient choice of a basis of V is the set of orthonormal vectors |j, tj ,mj〉,
where j is the irreducible representation, tj labels the states within the dj-dimensional
degeneracy subspace Dj and mj labels the states in the vector space Vj . The values
of j are the ones that appear in the decomposition of Eq. (A.17). The action of SU(2)
on the full vector space V is given by

W (~r) =
⊕

j

(
Idj ⊗Wj(~r)

)
, (A.18)

i.e. it acts trivially with the (dj×dj)-dimensional identity on the degeneracy subspaces
Dj and only non-trivially with Wj(~r) on Vj . Furthermore, the action is generated by
the operators

Jα =
⊕

j

(
Idj ⊗ Jα,j

)
α = x, y, z , (A.19)
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where the operators Jα,j generate the unitary transformationsWj(~r) on Vj . The total
spin operator J2 now takes the form

J2 =
⊕

j

j(j + 1) (Ijd ⊗ I2j+1) . (A.20)

As an example that appears also in Chapter 5 for the simulation of the Kagome
Heisenberg antiferromagnet, consider the combination of three spin-1/2s, resulting in

(
1

2

)⊗3

= (01 ⊕ 11)⊗ 1

21
=

1

22
⊕ 3

21
, (A.21)

where the subscript indicates the degeneracy of the irrep. The coupled vector space
V hence decomposes into the two irreps 1/2 and 3/2, with degeneracies two and one
respectively. Therefore we have

V ∼=
(
D1/2 ⊗ V1/2

)
⊕
(
D3/2 ⊗ V3/2

)
, (A.22)

with D1/2 the two-dimensional degeneracy subspace of j = 1/2, and D3/2 the one-
dimensional degeneracy subspace of j = 3/2. A suitable orthonormal basis for V is
given by

(
1 0 0 0 0 0 0 0

)>
= |j = 1/2, t1/2 = 1,m1/2 = +1/2〉

(
0 1 0 0 0 0 0 0

)>
= |j = 1/2, t1/2 = 1,m1/2 = −1/2〉

(
0 0 1 0 0 0 0 0

)>
= |j = 1/2, t1/2 = 2,m1/2 = +1/2〉

(
0 0 0 1 0 0 0 0

)>
= |j = 1/2, t1/2 = 2,m1/2 = −1/2〉

(
0 0 0 0 1 0 0 0

)>
= |j = 3/2, t3/2 = 1,m3/2 = +3/2〉

(
0 0 0 0 0 1 0 0

)>
= |j = 3/2, t3/2 = 1,m3/2 = +1/2〉

(
0 0 0 0 0 0 1 0

)>
= |j = 3/2, t3/2 = 1,m3/2 = −1/2〉

(
0 0 0 0 0 0 0 1

)>
= |j = 3/2, t3/2 = 1,m3/2 = −3/2〉 .

(A.23)

Following Eq. (A.19), the operators Jα can be written in terms of generators Jα,1/2
and Jα,3/2 for irrep j = 1/2 and j = 3/2 as

Jα =
(
Id1/2 ⊗ Jα,1/2

)
⊕
(
Id3/2 ⊗ Jα,3/2

)
. (A.24)

For instance, Jz becomes

Jz =

((
1 0
0 1

)
⊗
(

+1
2 0

0 −1
2

))
⊕



(
1
)
⊗




+3
2 0 0 0

0 +1
2 0 0

0 0 −1
2 0

0 0 0 −3
2





 . (A.25)

The operators Jx and Jy are constructed similarly, and following Eq. (A.20) we find

J2 =
3

4
I4 ⊕

15

4
I4 . (A.26)
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A.2 Fusion Tree Transformations

In Sec. 3.2.3 the F -move was introduced as a unitary change of basis for the fusion
tree, that represents the group structure for the symmetric tensor. Here we are going
to make the connection to the transformation of a full symmetric tensor, rather than
just for the isolated fusion tree. Let us show how the F -move act on simple trees,
i.e. fusion trees where incoming and outgoing indices are distinct. Fig. A.1 shows the

ja

1
jb

2
jc

3

jabc
4

jd
Qjd =

∑
je
F jdjejajbjcjabc

Q′je

ja

1
jb

2
jc

3

jabc
4

je

Figure A.1: F -move that transforms two simple trees into each other. The numer-
ical coefficients are closely related to the Wigner 6-j symbols according to Eq. (3.16).
Blue labels indicate the labeling of external quantum numbers, green labels denote

internal quantum numbers.

explicit relation for the transformation F1, the remaining F -move transformations F2,
F3 and F4 can be derived from Fig. 3.9 (see also Fig. 3.10 for the full set of possible F -
moves). As stated multiple times throughout the thesis, the structural tensors Q are
never explicitly stored in the symmetric tensor, and only a fusion tree in analytical
form is used. Consequently, the effect of an F -move has to be incorporated into
the degeneracy tensors, which are the only variational parameters. In order to show
how the effect of the F -move is accounted for, consider a general decomposition of a
four-index symmetric block

T =
∑

jd

Pjd ⊗Qjd , (A.27)

for which all external quantum numbers are fixed. Here jd is the internal quantum
number in the four-index fusion tree. The fusion tree corresponding to tensor Qjd can
be written in terms of new fusion trees Q′je using an F -move as in Fig. A.1, so that

Qjd =
∑

je

F jdjeQ′je . (A.28)

Since this transformation is formally applied on the structural part of the symmetric
block T , the degeneracy part Pjd can be considered constant and we find

T =
∑

jdje

Pjd ⊗ F jdjeQ′je . (A.29)

This transformation acts exclusively on the structural tensor and it is shown in
Fig. A.2. In turn, the transformed symmetric block can again be decomposed into
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degeneracy and structural parts according to

T =
∑

je

P ′je ⊗Q′je . (A.30)

Therefore, by writing the symmetric block T in terms of the new internal quantum
numbers je and fusion trees Qje , the effect of the F -move is transferred to the degen-
eracy tensors according to

P ′je =
∑

jd

F jdjePjd . (A.31)

This leaves the overall symmetric block T unchanged. Notice that the structural part

ta tb tc

tabc

jd

Pjd

ja jb jc

jabc

jd

Qjd

=
∑

je

F jdjejajbjcjabc

ta tb tc

tabc

jd

Pjd

ja jb jc

jabc

je

Q′je

Figure A.2: An F -Move that solely acts on the structural part of a symmetric
block.

of the symmetric tensors cannot be manipulated numerically due to its analytic array
form. Therefore, the initial fusion trees Qjd will be simply replaced by the new ones
Q′je . The change of basis for the degeneracy tensors is then the inverse operation to
the one of the fusion tree, in order to compensate the action. Finally, the transformed
tensor T can be written as

T =
∑

je


∑

jd

F jejdPjd


Q′je , (A.32)

where the expression in parenthesis ensures that the degeneracy tensors suit the up-
dated fusion tree.

The actual numerical factors that have to be used for the different F -moves in
Fig. 3.10 can be derived from the defining spin network in Fig. 3.9.

A.3 Construction of Matrix Product Operators

In this section we will describe in details how to construct the SU(2)-symmetric Ma-
trix Product Operators (MPOs) used in this thesis. While matrix product states
represent the actual quantum state, matrix product operators are their generaliza-
tion to operators. Contrary to MPS tensors, MPO tensors have two physical indices
and two virtual indices, as shown in Fig. A.3. They will be described in the same
SU(2)-invariant fusion tree formalism presented in Chapter. 3. We will start with the
simple Heisenberg interaction ~S · ~S, that can be extended to the three-body chiral
spin term ~S · (~S× ~S) used in the study of the chiral ladder in Chapter 4. Furthermore
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Figure A.3: An operator written as an MPO is applied to a quantum state written
as an MPS. The absorption of the MPO into the MPS on each site yields a new
MPS with enlarged bond dimensions. The MPO tensors are connected by virtual

bond indices to the left and right, in complete analogy to MPS tensors.

we consider the spin-1 bilinear-biquadratic Hamiltonian used in Chapter 5 and show
how the additional biquadratic interaction can be implemented. An introduction to
matrix product operators can be found in Refs. [93, 60].

For the SU(2)-symmetric TN algorithms implemented in this thesis, the operators
need to be written in this formalism as well, which implies a decomposition in terms
of degeneracy tensors and fusion trees that represent the structure of the symmetry
group. For the MPOs we will consider the action due to the structural part first, and
determine afterwards the degeneracy tensors that need to give the correct weights
in order to construct the interactions in the Hamiltonian. The elementary building

(jD,mD)

(jL,mL) (jR,mR)

(jU ,mU )

Figure A.4: Internal fusion tree structure for an SU(2)-symmetric MPO.

block of the SU(2)-invariant MPOs is a generic object shown in Fig. A.4, where the
horizontal indices are the virtual MPO indices, and the vertical indices are those of
the physical system. Due to the internal structure there are two nodes in the fusion
tree, and the quantum number on the internal edge is another degree of freedom that
influences the interactions that can be generated. This internal quantum number of
the fusion tree will be important for the chiral spin interaction.

A.3.1 Bilinear Interaction

Let us start with the construction of the SU(2)-invariant spin-spin interaction ~S · ~S.
This is a two-site operator that acts as a scalar, so that the corresponding MPOs
need to transform as a scalar as well. Therefore the left and right ends of the two-site
MPO need to have spin-0. Assuming a physical spin-1/2, the bond index connecting
the two MPOs can only carry spin-0 and spin-1. Choosing spin-0 on the connecting
bond index generates the trivial application of the identity operator on both spins,
so that a spin-1 necessarily generates the desired dot product. The reason for this
is that there are only two possible scalar operators for a spin-1/2, namely I ⊗ I and
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~S · ~S = Sx ⊗ Sx + Sy ⊗ Sy + Sz ⊗ Sz. We can now determine the interaction that is
generated by the fusion trees, or equivalently by the Clebsch-Gordan coefficients for
the left and the right MPO focusing on the spin-1 channel. The left part of the MPO is

(S,m′S)

(0, 0) (1,m)

(S,mS)

S =





−
√

1
2S(S+1) Ŝ

+ for m = −1

+
√

1
S(S+1) Ŝ

z for m = 0

+
√

1
2S(S+1) Ŝ

− for m = +1

Figure A.5: Matrices for the MPO tensor with the left bond index fixed to spin-0
and the right bond index fixed to spin-1, leaving the freedom of choosingm. Physical

indices have spin S = 1/2, the internal edge also carries spin-S.

shown in Fig. A.5 and the right part of the MPO is shown in Fig. A.6. For both MPOs
the internal edge can only carry the physical spin S. A contraction of the two MPOs

(S,m′S)

(1,m) (0, 0)

(S,mS)

S =





+
√

1
2S(S+1) Ŝ

− for m = −1

−
√

1
S(S+1) Ŝ

z for m = 0

−
√

1
2S(S+1) Ŝ

+ for m = +1

Figure A.6: Matrices for the MPO tensor with the left bond index fixed to spin-1
and the right bond index fixed to spin-0, leaving the freedom of choosingm. Physical

indices have spin S = 1/2, the internal edge also carries spin-S.

yields the desired ~S · ~S interaction with a prefactor of −1/(S(S+1)), as demonstrated
in Fig. A.7. This prefactor is due to the Clebsch-Gordan coefficients and has to be
compensated by corresponding weights in the degeneracy tensors of the full MPO.
We can now proceed to the construction of the final MPO for the SU(2)-invariant

(0, 0)
(1,m)

(0, 0)

= − 1

S(S + 1)

(
1

2
S+
i S
−
i+1 + Szi S

z
i+1 +

1

2
S−i S

+
i+1

)
= −

~Si · ~Si+1

S(S + 1)

Figure A.7: The contraction of the two MPOs in Figs. A.5 and A.6 produces the
Heisenberg interaction with a factor of −1/(S(S + 1)), that has to be compensated

for in the degeneracy tensors.

Heisenberg spin chain

HHB = J
∑

i

~Si · ~Si+1 . (A.33)
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Since the term ~Si · ~Si+1 implies the application of the identity to all sites left of site
i and right to site i+ 1, i.e. ~Si · ~Si+1 = . . . Ii−2Ii−1

~Si · ~Si+1Ii+2Ii+3 . . ., one needs
two trivial spin-0 representations on the virtual bond indices, denoted by 01 and 02.
Combined with the non-degenerate spin channel 11, the MPO can be written as a
matrix-operator, i.e. a matrix of operators according to

full MPO =

I γ~S 0

0 0 Jγ~S

0 0 I







01

11

02

01 11 02

. (A.34)

In Fig. A.8 we show the full construction of the SU(2)-invariant MPO in terms of
its degeneracy tensors. Here the parameter γ = i

√
S(S + 1) cancels the unavoidable

factor that appears due to the contraction of Clebsch-Gordan tensors.

chargeSector
jintjD jL jR jU

dimensionality degeneracyTensor MPO

S S 0 0 S [ 1 , 2 , 2 , 1 ]
1 0

0 1





01

02
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0 0S

S S 0 1 S [ 1 , 2 , 1 , 1 ]
γ

0





01

02

11

0 1S

S S 1 0 S [ 1 , 1 , 2 , 1 ] 0 Jγ

( )
11

01 02

1 0S

Figure A.8: Symmetric blocks of the MPO for the Heisenberg quantum spin-S
chain. Each charge sector comes with a degeneracy tensor and the correspond-
ing fusion tree generating the interaction. Spin sectors not shown have vanishing
degeneracy tensors. The internal spin for every block is shown at the center of
the MPOs. The labels of the MPO indices follow the convention in Fig. A.4 and

γ = i
√
S(S + 1).

A.3.2 Chiral Three Spin Interaction

Building on the construction of the bilinear Heisenberg interaction we can now con-
struct the chiral three spin interaction used for the simulation of the ladder in Chap-
ter 4. For concreteness and a better clearness of the presented construction we will
consider S = 1/2 now. The MPO for the chiral interaction ~S · (~S × ~S) needs to
span over three sites and a termination with spin-0 on both ends since it is a scalar
operator. For S = 1/2 it is clear that the interaction on the second site can only be
generated by having a spin-1 representation on both virtual legs of the central tensor.
A spin-2 representation is not possible since the operator can not be terminated with
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a spin-0 after the third site. In contrast to the two MPOs in Sec. A.3.1, the central
MPO can have different quantum numbers on the internal edge, namely

1

2
⊗ 1 =

1

2
⊕ 3

2
. (A.35)

For the chiral interaction we can reuse the bilinear MPOs for the left and the right site.
The full three-spin interaction can then again be constructed by evaluating the possible
Clebsch-Gordan coefficients for the central MPO with fixed virtual quantum numbers.
The interaction mediated by the two different internal spins is presented in Fig. A.9.
In order to construct the three-site interaction one can take linear combinations of
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=
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−
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Figure A.9: Interactions on the central site mediated by the Clebsch-Gordan
coefficients with fixed spin one representations on the virtual indices, and varying

spin projections. The internal quantum number can take values 1/2 and 3/2.

matrices A and B, together with the bilinear MPOs in Fig. A.5 and A.6 on both ends.
This is visualized in Fig. A.10 where the interaction on the central site is given by

(0, 0)
(1,m1)

M
(1,m2)

(0, 0)

Figure A.10: Construction of a general three-site MPO with the linear combina-
tionM = αA+ βB. Summation over the common indices m1 and m2 is assumed.

M = αA+ βB. The two free parameters can now be tuned to reproduce the desired
interaction. For instance, the choice α = −1 and β = +1 simplifies the central MPO
to

−A+ B =



I 0 0
0 I 0
0 0 I


 . (A.36)

The full MPO is then in fact a scalar operator that acts trivially on the central
site, and implements a next-to-nearest neighbour bilinear interaction ~S1 · ~S3. For
the reconstruction of the chiral triple product it is necessary to choose α = −i and
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β = −i/2. The central MPO tensor then becomes

M = −i
(
A+

1

2
B
)

=



−Sz −

√
2

2 S
− 0

−
√

2
2 S

+ 0 −
√

2
2 S
−

0 −
√

2
2 S

+ Sz


 . (A.37)

For this choice of parameters the three-site MPO in Fig. A.10 then evaluates to

H = −4i

6

(
SzS+S− − SzS−S+ + S+S−Sz − S+SzS− + S−SzS+ − S−S+Sz

)

= −4

3
~S1 ·

(
~S2 × ~S3

)
. (A.38)

The factor 1/γ2 = −1/(S(S + 1)) from the Clebsch-Gordan terms of the bilinear
MPOs in Sec. A.3.1 arises again, and it can be compensated with the corresponding
factor γ2 in the degeneracy tensors.

We will now construct the MPO for a more general Hamiltonian of a quantum
spin chain, that has both bilinear as well as a chiral three-site interaction. It is given
by

H = J
∑

i

~Si · ~Si+1 +K
∑

i

~Si ·
(
~Si+1 × ~Si+2

)
, (A.39)

where J and K are the coupling constants respectively. Similarly to the plain bilinear
MPO in Eq. (A.34), the MPO for the combined Hamiltonian has two spin-0 channels
in the bond dimension of the MPO. These two channels apply the identity to all sites
left and right of the sites where the interaction is applied. Furthermore we now need
two spin-1 channels, one that mediates the bilinear interaction and one that mediates
the three-spin interaction. The matrix-operator is given by

full MPO =

I γ~S 0 0

0 0 M Jγ~S

0 0 0 Kγ~S

0 0 0 I







01

11

12

02

01 11 12 02

. (A.40)

The factor γ2 cancels the unavoidable factor in the bilinear and the chiral three-spin
term, as described above. In Fig. A.11 we show the full construction of the SU(2)-
invariant MPO for the triangle ladder model, with additional bilinear terms.

A.3.3 Bilinear-Biquadratic Interaction

In this section we will explain how the SU(2)-invariant MPO, or the two-body gate
for the simple update of the spin-1 bilinear-biquadratic (BLBQ) model can be con-
structed. The Hamiltonian is given by

H =
∑

〈i,j〉

(
cos θ

(
~Si · ~Sj

)
+ sin θ

(
~Si · ~Sj

)2
)
. (A.41)
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Figure A.11: Symmetric blocks of the MPO for the triangle model on a spin-1/2
ladder. Each charge sector comes with a degeneracy tensor and the corresponding
fusion tree generating the interaction. The internal spin for every block is shown
at the center of the MPOs. The labels of the MPO indices follow the convention in

Fig. A.4 and γ = i
√
S(S + 1).

It is a scalar operator over two sites and it can be represented by two MPOs that
are terminated with a spin-0 at both ends, as shown in Fig. A.12. We can construct

S

0

S

S

0

S

Figure A.12: Two-site MPO for the spin-S BLBQ model, where both ends are
terminated with a spin-0 to obtain a scalar operator on two sites.

the MPOs similarly to the two MPOs in the previous sections. The Clebsch-Gordan
or structural tensors generate the interaction, and the degeneracy tensors give the
correct weights to reproduce the exact Hamiltonian terms. In general the virtual
link between the MPOs in Fig. A.12 can carry quantum numbers jv = 0, . . . , 2S in
integer steps, so that for the spin-1 BLBQ model the virtual bond quantum numbers
are jv = 0, 1, 2. In Sec. A.3.1 we have demonstrated how the identity on both sites is
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generated by a spin-0 in the virtual bond index, whereas a spin-1 mediates the bilinear
interaction ~S · ~S. For a system of spin-1/2 there is no biquadratic interaction and the
only scalars on two sites are the ones mentioned previously. For S = 1 however,
the virtual MPO bond index can carry a spin-2 which leads to the interactions in
Fig. A.13 and Fig. A.14. The prefactors are explicitly written for S = 1 and not
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)
for m = +1

+
√

3
20

(
Ŝ−
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Figure A.13: Matrices for the MPO tensor with the left bond index fixed to
spin-0 and the right bond index fixed to spin-2, leaving the freedom of choosing m.

Physical indices have spin S = 1, the internal edge also carries spin-S.

for a general spin-S, because of lengthy expressions. Contracting together these two

(S,m′S)

(2,m) (0, 0)

(S,mS)

S =





+
√

3
20

(
Ŝ−
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zŜz for m = 0

+
√

3
20

(
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Figure A.14: Matrices for the MPO tensor with the left bond index fixed to
spin-2 and the right bond index fixed to spin-0, leaving the freedom of choosing m.

Physical indices have spin S = 1, the internal edge also carries spin-S.

MPO objects yields not only the desired biquadratic interaction. The resulting terms
include a bilinear and even a constant term as well, which have to be compensated
to reproduce the correct terms in the Hamiltonian. For the full MPO one then needs
a degenerate channel 03, as well as two non-degenerate channels 11 and 21 mediating
the bilinear and biquadratic interaction. The constant coming from the contraction
of Figs. A.13 and A.14 is compensated by one of the spin-0 channels. Working out
the details one can obtain the final MPO for the Hamiltonian in Eq. (A.41) written
in terms of a matrix-operator

full MPO =

I γ1~S γ0 γ2 ~Q 0

0 0 0 0 γ1~S

0 0 0 0 γ0

0 0 0 0 γ2 ~Q

0 0 0 0 I







01

11

02

21

03

01 11 02 21 03

. (A.42)
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While the spin-1 channel generates the bilinear interaction ~Si · ~Sj , the spin-2 channels
generates the biquadratic interaction ~Qi · ~Qj ∼ (~Si · ~Sj)2. Here ~Q is the quadrupolar
vector [142] with components as specified in Figs. A.13 and A.14. Finally, the full
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Figure A.15: Symmetric blocks of the MPO for the spin-1 BLBQ model. Each
charge sector comes with a degeneracy tensor and the corresponding fusion tree
generating the interaction. The internal spin for every block is shown at the center
of the MPOs. The labels of the MPO indices follows the convention in Fig. A.4.

MPO with its degeneracy tensors need to be constructed as shown in Fig. A.15. The
constants are given by

γ0 =
[
1/3 · sin θ · S2(S + 1)2

]1/2

γ1 =
[
1/2 · (sin θ − 2 cos θ) · S(S + 1)

]1/2

γ2 =
[
2/3 · sin θ · (S − 1/2)S(S + 1)(S + 3/2)

]1/2
.

(A.43)

As one can see from the prefactor used in the Hamiltonian, all terms except from the
cos θ-dependent bilinear term belong to the spin-2 sector generating the biquadratic
interaction.
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Appendix B

Tensor Network Algorithms in 2d

B.1 iPEPS Simple Update

Infinite projected entangled pair states are tensor network representations of quantum
many-body systems in two and possibly higher spatial dimensions. The assumption
of an infinite lattice is the closest approximation to a 2d slice of real materials that
come with a certain lattice structure and a number of particles in the order of the
Avogadro number N0 ≈ 6.022× 1023. iPEPS can be used as an analytic ansatz
and as a numerical tool. Some ground states of particular models such as the Toric
Code [60] can be written as an exact iPEPS state, i.e. a network of tensors where the
entries in the tensors are given as analytic expressions. On the other hand, iPEPS are
widely used as ansätze for numerical studies, in which the entries in the tensors are
optimized to represent the target state accurately. There are different algorithms to do
this, such as the simple update [71] and the full update [72] based on iTEBD [50, 51],
and variational update schemes [73, 74]. These methods differ in the accuracy of the
ground state approximation, computational cost of the simulations and also in the
complexity of the implementation. Here we focus on and describe in detail the simple
update scheme, an easy to implement algorithm that is oftentimes sufficient to extract
the overall physical picture, but fails to reproduce the most accurate numbers.
The simple update is based on iTEBD, a simulation technique for 1d quantum lattice
systems in the thermodynamic limit. In 1d, the underlying MPS can be in its canonical
form, so that the Schmidt coefficients of a bipartition of the chain appear on the
links between MPS tensors (refer to Fig. 4.3). The Schmidt coefficients contain all
the information about the bipartition and the diagonal tensors holding them can be
interpreted as an effective environment for the MPS sites. This idea is also transferred
to the 2d version of the iTEBD algorithm called the simple update, as we will describe
below. Consider a Hamiltonian that is translational invariant and has the form

H =
∑

〈i,j〉

hij , (B.1)

i.e. it is a sum of local terms. For simplicity we will assume only nearest-neighbour
interactions, but the method can be adapted to interactions that span multiple sites
as well. The ground state search now starts with some initial state |ψi〉 written in
terms of a 2d iPEPS. For the explanation of the simple update we consider a unit
cell consisting of two tensors A and B that are arranged in a checkerboard pattern,
shown in Fig. B.1. Here each link of the lattice carries a diagonal tensor Λi containing
singular values. Contrary to an MPS, cutting one link in the iPEPS network does not
form a bipartition of the network due to the presence of loops, so that the singular
values on the links are not directly related to the Schmidt coefficients of a bipartition.
However the tensors Λ are treated as such, and they describe a sort of mean-field
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Λ2 Λ3 Λ2

Λ3 Λ2 Λ3

Λ1

Λ4

Λ1

Λ4

Λ1

Λ4

ΓA ΓB

ΓB ΓA

Figure B.1: Simple update iPEPS ansatz with a unit cell of Nx = 1 and Ny = 2
tensors in a checkerboard pattern.

environment for the tensors towards the four directions. A time evolution of the
initial state |ψi〉 with the Hamiltonian H is performed by

|ψ(t)〉 = e−iHt |ψi〉 . (B.2)

If however the real time t is replaced by an imaginary time by making the transition
t → −iτ , the evolution of the quantum state converges to the ground state in the
limit of infinite imaginary time. This can be seen from a spectral decomposition of
the imaginary time operator

e−Hτ =
∑

j

e−Ejτ |ψj〉 〈ψj | = e−E0τ


∑

j

e−(Ej−E0)τ |ψj〉 〈ψj |




= e−E0τ
(
|ψ0〉 〈ψ0|+ e−∆τ |ψ1〉 〈ψ1|+ . . .

)
(B.3)

with ∆ = E1 − E0. Using a proper normalization of the quantum state and the
assumption that the initial state |ψi〉 has a finite overlap with the true ground state
|ψ0〉 (〈ψi|ψ0〉 6= 0), we find

|ψ0〉 = lim
τ→∞

e−τH |ψi〉√
〈ψ(τ)|ψ(τ)〉

. (B.4)

The basic idea of iTEBD and therefore also the simple update is to decompose the
full imaginary time evolution into many small time steps δτ according to

e−Hτ =
(

e−Hδτ
)m

(B.5)

with m = τ/δτ . Furthermore, the particular form of the Hamiltonian in Eq. (B.1)
can be exploited too, so that the imaginary time evolution can be written as

e−Hδτ = exp


−δτ

∑

〈i,j〉

hij


 . (B.6)

Since the individual terms hij do not commute in general we can use a Suzuki-Trotter
expansion to first (or also higher) order and rewrite Eq. (B.6) to

e−Hδτ =
∏

〈i,j〉

exp (−δτhij) +O(δτ2) . (B.7)
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For simplicity we made the assumption that H only contains nearest-neighbour terms,
so that gij = exp(−δτhij) is a two-body gate. The full imaginary time evolution can
then be approximated by applying

U(δτ) =
∏

〈i,j〉

exp(−δτhij) (B.8)

repeatedly many times (m � 1) to all two-site pairs in the tensor network. This
can be easily visualized for the case of a 1d MPS that consists of a two-site unit cell
as shown in Fig. B.2. The application of U(δτ) then corresponds to applying the

U(δτ)

U(δτ)

Figure B.2: The iTEBD two-body gate gij applied to a 1d infinite MPS with a
two-site unit cell. One iTEBD step corresponds to the application of the gate to

both types of links in the TN.

two-body gate gij to all different links in the network, e.g. on even and odd links in
the present example. Coming back to the simple update and the iPEPS ansatz in
Fig. B.1, the gates gij have to be applied to all four links in the network as shown in
Fig. B.3. Now that we have described the principle setup of the iTEBD and simple
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Figure B.3: Simple update scheme for an iPEPS ansatz with two different tensors
in the unit cell. The diagonal tensors Λ are not shown here, they do however enter

the update procedure as demonstrated in Fig. B.4 and following.

update algorithm, we can turn to the application of the two-body gate gij . We will



128 Appendix B. Tensor Network Algorithms in 2d

describe the procedure for both the 1d iTEBD case as well as for the 2d simple
update because the steps are nearly identical. In two dimensions, the application of
one gate gij is shown in Fig. B.4. A contraction of the full network results in an

gij

Λ1 Λ4

Λ2 Λ3 Λ2

Λ4 Λ1

ΓA ΓB

Figure B.4: The trotterized gate gij is applied on a horizontal link of the iPEPS
network in order to update the link containing singular values Λ3.

eight-index tensor that is numerically very costly. A cheaper alternative contraction
and update of the link is possible if all virtual indices that are not affected, i.e. all
links except for the link carrying Λ3 are disconnected from the update process. This

gij

ΛA Λ3 ΛB
AL BRAR BL

Figure B.5: Using a suitable decomposition, the links that are not affected by
the simple update can be split away, and the two-body gate can be applied to the
reduced tensors. The simple update is then similar to the 1d iTEBD algorithm.

is shown in Fig. B.5 where the gate gij can be applied to the reduced tensors AR
and BL. From this step onwards the simple update and the 1d iTEBD algorithm
are the same. Instead of working with tensors (ΛAAR Λ3BL ΛB) as in Fig. B.5, one
can imaging to have a two-site translational invariant MPS with tensors (ΓΛ)A and
(ΓΛ)B as shown in Fig. B.2. In order to update both three-index tensors as well as the
singular values on the connecting link we perform the two steps in Fig. B.6. Absorbing

gij

ΛA Λ3 ΛB
AR BL (a)

Θ

SVD and truncation

(b) Λ′3
A′R B′L

Figure B.6: (a) The two-body gate gij is contracted with the reduced tensors to
obtain a four-index tensor Θ. (b) Using an SVD with successive truncation in the

symmetry sectors yields the updated tensors A′
R, Λ′

3 and B′
L.

the gate in Fig. B.6 (a) yields a four-index tensor Θ. Notice that without splitting
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away unaffected links the tensor Θ would have eight indices instead of four. In the
second step this tensor Θ is decomposed again to retrieve the updated tensors A′R,
Λ′3 and B′L after reshaping them, see Fig. B.6 (b). This can be achieved by an SVD,
where the connecting index needs to be truncated to keep a maximum of D singular
values, D being the desired bond dimension. Due to the truncation, the algorithm
can decide which quantum numbers are kept on the virtual index (see also Sec. 3.5.2
about SVD based truncation). In the 1d iTEBD algorithm tensors A′R and B′L need to
be re-gauged, i.e. remove ΛB on the left virtual index of A′R and on the right virtual
index of B′L, which then represent the updated MPS tensors. For the 2d algorithm

AL A′R Γ′A B′L BR Γ′B

Figure B.7: Reconstruction of the iPEPS tensors for the simple update using
reduced tensors. Notice that both Γ′

A and Γ′
B need to be re-gauged, i.e. the diagonal

tensors Λi that have been absorbed while preparing the reduced tensors (see also
Fig. B.4) need to be removed from the links that were split off.

the updated iPEPS tensors are constructed as demonstrated in Fig. B.7. Notice that
both tensors Γ involved in the update need to be re-gauged as well, meaning that the
diagonal tensors Λi have to be removed on all links that were not affected, similarly
to the 1d iTEBD case.
One simple update step is completed after running the described procedure on all
different links in the iPEPS ansatz, so that the singular values in all four tensors Λ
have been updated once. This process is repeated until the change in singular values
falls below a certain threshold, indicating that the imaginary time evolution can be
refined by decreasing the Trotter step δτ . Running the simple update for smaller values
of the Trotter step yields better approximations to the ground state. In practice we
mainly used Trotter steps of δτ = [0.1, 0.01, 0.001, 0.0001] and a convergence threshold
of ∆ = 10−6 in the singular values. When converged, the iPEPS tensor network
represents the ground state of the model described by Hamiltonian H. In the final
step one can absorb the singular values into the iPEPS tensors as shown in Fig. B.8.
Notice that the simple update can be applied to different lattice geometries as well.

√
Λi1

√
Λi2

√
Λi3

√
Λi4

Γi
≡

Γi

Figure B.8: The diagonal tensors Λ containing the singular values on the links
are absorbed into the iPEPS tensors.

An application to a triangular lattice in two and three spatial dimensions is provided
in Chapter 6.

B.2 Effective Environments and Expectation Values

The simple update described in the previous section is an algorithm to determine
the tensor network representation of the ground state of a certain lattice model. In
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order to extract physical information it is necessary to compute observables in this
representation. These can be local observables such as magnetization, particle den-
sity or energy, as well as non-local observables such as correlation functions. In one
dimensions, expectation values of systems in the thermodynamic limit can be ex-
actly computed due to the canonical form of the MPS. This is no longer true for
two-dimensional systems, where the whole 2d plane needs to be contracted and ap-
proximations are inevitable [60]. In principle there are two different ways to compute
expectation values, that are fundamentally different and vary in the accuracy of the
result as well as in the computational cost.

B.2.1 Mean-Field Environment

The iPEPS tensor network ansatz chosen for the simple update resembles the exact
canonical form of 1d translational invariant MPS tensor networks. However due to
the lack of a canonical form in 2d the diagonal tensors Λ carrying the singular values
are not in direct relation to the Schmidt coefficients of a bipartition. Nevertheless
the tensors represent weights on the bonds and can be interpreted as some mean-field
environment surrounding every tensor. This ansatz can be readily used to compute

Γi Γj

Γ∗i Γ∗j

Λi4 Λj4

Λj3

Λj1Λi1

Λi2

Figure B.9: The diagonal tensors Λ are used as a mean-field environment sur-
rounding every tensor to compute expectation values.

expectation values based on this mean-field environment. An example of a two-site
observable is shown in Fig. B.9. The environments of Γi and Γj are approximated by
the corresponding tensors Λ. Since Λ1/2 has already been absorbed into each tensor
Γ (see Fig. B.8), there is only one diagonal tensor Λ on the links connecting the wave
function and its conjugate, and no additional tensor between the two iPEPS tensors. If
only the mean-field environment is used, the network does not incorporate important
quantum correlations between different sites. This way of computing expectation
values should therefore only be used to get an idea of the outcome for the observables,
however not to extract accurate numbers. Notice also that the mean-field ansatz is
worse the more quantum correlations are present in the ground state. For a more
sophisticated method we will introduce the corner transfer matrix renormalization
group scheme in the following section.



B.2. Effective Environments and Expectation Values 131

B.2.2 Corner Transfer Matrix Renormalization Group Scheme

Accurate expectation values of operators can be computed if the whole 2d iPEPS ten-
sor network is contracted. An exact procedure to perform this contraction is exponen-
tially hard already for finite PEPS networks, i.e. a PEPS ansatz with open boundary
conditions and no translational invariance [60]. In the translational invariant case we
are considering here, the situation is even more complicated and approximations are
inevitable. Let us consider the computation of the norm of an iPEPS quantum state
according to N = 〈ψ|ψ〉. Written as a contraction of the tensor network, the computa-
tion of the norm involves two infinite layers of the iPEPS as demonstrated in Fig. B.10.
In order to make the description of the contraction scheme for the infinite lattice more

Figure B.10: Computing the norm of an iPEPS involves two copies of an infinite
2d lattice that need to be contracted.

clearly we will contract together the iPEPS tensor and its conjugate on every lattice
site. This is shown in Fig. B.11, where the resulting lattice is a regular square lattice
with a larger bond dimension of the tensors due to the index fusion. The contraction

Γ

Γ∗

Figure B.11: Combining the iPEPS tensors with their conjugate version on all
lattice sites results in a regular square lattice that needs to be contracted.

of the infinite lattice will be approximated by an effective environment surrounding
every tensor in the unit cell. This environment consists of a set of fixed-point tensors
that represent the contraction from infinite towards a certain lattice site. For the Cor-
ner Transfer Matrix Renormalization Group scheme (CTMRG) [80] used in this thesis
we can define the environment as shown in Fig. B.12. It consists of four corner tensors
{C1, C2, C3, C4} as well as four half-infinite row/column tensors {T1, T2, T3, T4}, that
represent the contractions of all tensors in the eight areas indicated in gray. The con-
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Figure B.12: Definition of the CTM environment tensors {C1, C2, C3, C4} and
{T1, T2, T3, T4} that represent the approximated contraction of the infinite tensor
network. Here P [x,y] denotes the reduced tensor at position [x, y] in the unit cell.

traction of the infinite lattice is achieved by an iterative coarse-graining procedure, in
which the reduced unit cell tensors P [x,y] are absorbed into the environment tensors
towards all lattice direction, until the environment converges to a fixed-point. In this
process one has to approximate the enlarged environment tensors with a fixed bond
dimension χE . Without this truncation step the environment bond dimension would
rapidly grow to infinity. The CTM method used in this thesis is called a directional
CTM algorithm since the coarse-graining steps are performed sequentially in all four
lattice directions. In the following we describe a left move of the CTM procedure, i.e.
the absorption of a full unit cell into the left environment. This will grow and update
the tensors C [x,y]

1 , T [x,y]
4 and C [x,y]

4 for all x, y in the unit cell, that consists of Nx×Ny

tensors. The description of the CTM algorithm follows Refs. [143, 140].

The first step is to compute the truncation projectors which are used to reduce
the enlarged bond dimension back to the desired one after the absorption. In order to

[x,y] [x,y+1]

[x+1,y] [x+1,y+1]

P P

PP

C1 C2

C3C4

T1 T1

T2

T2

T3T3

T4

T4

≈

UU SU V †U

UDSDV †D

Figure B.13: Tensor network of 2×2 reduced iPEPS tensors with the correspond-
ing environments is cut along the green lines, and an SVD is performed on each
half individually. The gray areas indicate the position of tensors P in the unit cell.
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do this, the tensor network in Fig. B.13 is divided along the green lines, and an SVD
is performed on each individual part. The gray areas indicate the position of tensors
P in the unit cell as well as their corresponding environment tensors in relation to
Fig. B.12. The right tensors in Fig. B.13 can be approximated if one truncates in the
singular values to the desired precision. In practice we found that a truncation in SU
and SD is however not necessary and does not improve the speed of the procedure
significantly. The singular values in SU and SD are absorbed into the unitary tensors
U and V †, as shown in Fig. B.14. Here we define FUL = UUS

1/2
U , FUR = S

1/2
U V †U,

UU SU V †U

UDSDV †D

=

FUL FUR

FDRFDL

Figure B.14: The singular values SU and SD are absorbed into the corresponding
unitary tensors U and V †.

FDR = UDS
1/2
D and FDL = S

1/2
D V †D. In the next step we compute the projectors by

using a biorthogonalization of the tensors FUL and FDL according to Fig. B.15. In

FUL

FDL

≈

V †L

SL

UL

Figure B.15: In order to compute the projectors to truncate the environment
we use a biorthogonalization procedure that involves the SVD of FDL · FUL. The
singular values SL are truncated to the desired environment bond dimension χE .

this step the singular values SL are truncated to the desired environment bond di-
mension χE and the tensor SL needs to be inverted. In the following figure we define
S+

L = inv(S
1/2
L ), where a pseudo-inverse with a fixed threshold is used. Finally, the

projectors P can be computed as shown in Fig. B.16. In order to compute all the

PUL = FUL VL S+
L

PDL = FDL U †L S+
L

Figure B.16: Projectors to truncate the environment bond dimension for a left
CTM move.

projectors necessary for the absorption of one column at fixed y, one can run over
all tensors in the unit cell in x-direction, such that the projectors for every row, and
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therefore for every subspace is computed. After this first step one can continue with
the actual absorption of the tensors, as described below.

By absorbing more and more unit cell tensors into the environment in each di-
rection, the environment tensors eventually represent the contraction of the infinite
lattice once they are converged to a fixed-point. A left CTM move absorbs all columns
of the iPEPS unit cell to the left environment, one after the other. Using the projec-
tors computed in the first step, the updated and approximated corner tensors C ′1 can
be computed as shown in Fig. B.17. In the same way we can absorb a reduced iPEPS

C1 T1

PDL

= C ′1

Figure B.17: Update of the upper corner tensor C1 in the left CTM step.

tensor into the environment tensor T4, and use two projectors of different environment
subspaces to truncate the enlarged bond dimension back to the desired one. In this

T4 P

PUL

PDL

= T ′4

Figure B.18: Update of the half-infinite row tensors T4 in the left CTM step.
Here PUL and PDL belong to different subspaces.

update step every tensor P [x,y] has to be absorbed into the corresponding tensor T [x,y]
4

for fixed y. The last update is for the bottom corner tensor C4, using again the projec-
tors. Performing one complete left CTM moves involves the absorption of a complete

C4 T3

PUL

= C ′4

Figure B.19: Update of the lower corner tensor C4 in the left CTM step.

unit cell into the environment. So far we have only absorbed one column, i.e. tensors
P [x,y] for all x and one fixed y. The updated tensors C ′1, T ′4 and C ′4 are then the new
environment tensors for tensors P [x,y+1]. Therefore one also has to iterate over all
y to complete the left CTM step. After one left absorption step the environment is
grown to the top, right, bottom and this full procedure is iterated until convergence
is reached. A good, yet not the cheapest way to determine convergence is to check
the spectrum of singular values of the corner tensors C [x,y]

i , for all i, x and y. Once
the difference between successive CTM steps falls below a certain threshold one can
stop the iteration. We noticed that the ground state energy, computed from the CTM
tensors as described below, can also serve as an indication of convergence. However,
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since the ground state energy typically converges rather quickly compared to other
observables it might not be the best check.

B.2.3 Computation of Expectation Values using CTM Environments

Expectation values for the iPEPS ground state can now be readily computed. Since
operators typically only act on a limited number of iPEPS sites, the rest of the whole
2d network is similar to the one of the norm of the state, and can therefore be ap-
proximated by the CTM tensors. Expectation values of local observables are then
computed as shown in Fig. B.20. Since the iPEPS wave function is not necessarily

Γi Γj

Γ∗i Γ∗j

Ci1 T i1 T j1 Cj2

T j2

Cj3T j3T i3Ci4

T i4

Figure B.20: Expectation values can be computed by sandwiching the operator
between the iPEPS tensors and their fixed-point environment tensors, that represent
the contraction of the whole 2d plane around that particular link or patch of tensors.

normalized we have to divide the expectation value by the norm of the state, given
by the contraction in Fig. B.20 without the operator. Expectation values for one-site
or multi-site operators are computed in a similar way.

B.3 iPESS Simple Update

The Kagome lattice is a particularly interesting structure. It features corner-sharing
triangles, which can lead to geometric frustration and hence an extended number of
competing ground state configurations. For numerical tensor network simulations one
typically favors an ansatz that resembles the lattice structure, in order to capture the
correct entanglement pattern. Often though a mapping is used that transforms the
original lattice to a more convenient structure that is more amenable to tensor network
techniques. For instance, the Kagome lattice can be mapped to the square lattice by
a coarse-graining of three physical sites into one, as done for instance in Ref. [116].
This mapping is however not very suitable, at least not for the optimization of the
iPEPS tensors. Here we will present a mixed approach, in which the ground state
wave function is obtained on the honeycomb lattice, the dual of the original Kagome
lattice. This does not preserve the direct entanglement structure but proves to be
very beneficial. In order to compute effective environments and expectation values a
suitable coarse-graining to the square lattice is adopted.
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B.3.1 General iPESS Algorithm

The infinite Projected Entangled Simplex State (iPESS) tensor network has been pro-
posed in Ref. [101]. It exploits the honeycomb lattice structure for the simulation of
the Kagome lattice. The two structures are shown in Fig. B.21. Although this ansatz

Figure B.21: Kagome lattice shown in black and its dual honeycomb lattice shown
in gray.

does not resemble the entanglement pattern of the original lattice, it is well suited
because it captures the correlation on the triangles in the Kagome lattice, i.e. the
correlations between three sites at a time. The iPESS ansatz consists of three-index
tensors for the lattice sites, as well as additional three-index simplex tensors that
connect them among each other. The smallest unit cell of three-sites is shown in

1
2

3

2
1

Figure B.22: iPESS ansatz with a unit cell of three tensors. The three-index
tensors for the physical sites are connected by three-index virtual simplex tensors.

Fig. B.22, where one simplex builds the upper triangle and another simplex tensor
builds the lower triangle. Both simplex tensors carry only virtual indices. In order to
determine the tensor coefficients that represent the ground state of a certain Hamil-
tonian we use again a simple update scheme, illustrated in Fig. B.23. This time the
simple update acts on all three sites connected to one simplex with the Hamiltonian

HS = h12 + h13 + h23 . (B.9)

In order to reconstruct the iPESS tensors a higher-order SVD is used. Based on the
singular values of this decomposition we can use a subsequent truncation to obtain
the updated iPESS tensors. Importantly, the algorithm can be adapted to symmetry-
preserving tensors as well, so that the truncation is performed in the individual sectors
on the virtual indices. Both the non-symmetric and the SU(2)-symmetric version of
the iPESS algorithm have been implemented for a three-site and a six-site unit cell.
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Figure B.23: Simple update in the iPESS scheme. A three-body Trotter gate
(gray triangle) is applied to three sites attached to a simplex tensor. Using a higher-
order SVD the resulting six-index tensor is decomposed again, and a truncation to
the desired bond dimension yields the updated iPESS tensors. The second type of

simplex tensor and its surrounding lattice sites are updated similarly.

B.3.2 SU(2)-Symmetric iPESS Algorithm

The iPESS algorithm presented in the previous section can be implemented using
symmetry-preserving tensors in terms of networks of degeneracy tensors and corre-
sponding fusion trees, that account for the group structure.

Integer Spin Systems
For the simulations of integer spin systems we can directly use the three-site iPESS
ansatz with either only integer representations or both integer and half-integer rep-
resentations on the virtual bond indices. Choosing only half-integer representations
on the virtual bonds is not possible here due to the three-index simplex tensors, that
could not satisfy the fusion rules in this case.

Half-Integer Spin Systems
For a half-integer spin system the three-site iPESS ansatz is not suitable. The reason
for this is that the fusion rules cannot be satisfied simultaneously on all nodes in the
network. This is illustrated in Fig. B.24, where the translational invariance of the unit
cell fixes all spins on the virtual indices to a spin-0. The translational invariance is

0
0
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2

1

2

1

2
0

0

coarse-graining

(
1

2

)⊗3

0
0

0
0

Figure B.24: Conflict between a decoration of the three-site iPESS with SU(2)
quantum numbers and translational invariance. The problem can only be solved by

enlarging the unit cell. Physical indices are drawn upwards for more clarity.

however not compatible with half-integer quantum numbers on the physical degrees of
freedom. A coarse-graining of the iPESS tensors into a single iPEPS tensor with only
integer spins on the virtual indices and half-integer spins on the physical indices makes
the problem more evident. The mismatch for half-integer spins can only be resolved
by enlarging the unit cell of iPESS tensors to an even number of sites, e.g. a six-site
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unit cell. In this case the virtual bond indices necessarily carry both integer and
half-integer quantum numbers. A possible implementation for six lattice site tensors
in the unit cell alongside four different simplex tensors is shown in Fig. B.25. The
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Figure B.25: Unit cell and lattice structure for the six-site iPESS. Four different
simplex tensors connect the tensors on the lattice sites.

simple update for a six-site unit cell involves the update of all four simplex tensors
together with their surrounding lattice site tensors.

B.4 Effective Environments and Expectation Values

B.4.1 iPESS Coarse-Graining

The simulation of ground states using iPESS as a TN ansatz has been described in
Sec. B.3. In order to compute effective environments and expectation values ulti-
mately, we resort to a coarse-graining to a square lattice iPEPS. Here we present one
possible coarse-graining of the original TN ansatz on the honeycomb lattice, however
the mapping is not unique. Consider the six-site iPESS ansatz shown in Fig. B.26.
A coarse-graining of tensors in the gray-shaded areas leads to two different iPEPS

3
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1

3

2
1

6

5
4

6

5
4

coarse-graining

Figure B.26: Coarse-graining of the six-site iPESS ansatz into a two-site iPEPS
ansatz with a checkerboard pattern of the tensors. The coarse-graining is performed

for the gray-shaded regions.
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tensors, one for iPESS sites (1, 2, 3) with two simplex tensors, and one for iPESS sites
(4, 5, 6) with the remaining two simplex tensors. For the three-site iPESS network in
Fig. B.22 the coarse-graining results in a translational invariant iPEPS network with
a single tensor in the unit cell instead. The coarse-grained tensors can then be used
in standard TN techniques to contract the infinite 2d layer, for instance in a CTM
procedure as presented in Sec. B.2.

B.4.2 Computation of Expectation Values using CTM Environments

The computation of expectation values for coarse-grained iPESS tensors is very similar
to regular iPEPS tensors as described in Sec. B.2.3. Since the contraction of the infinite
lattice is approximated by the CTM environment tensors, evaluating local observables
can be done efficiently. Let us consider the energy per Kagome triangle, a three-body
operator similar to the Trotter gate in the iPESS simple update. Measuring the energy
on sites (1, 2, 3) or sites (4, 5, 6) in Fig. B.26 involves the evaluation of a single-site
operator in the fine-grained picture, shown in Fig. B.27. If instead the energy is

Figure B.27: A three-body iPESS operator becomes a single-site iPEPS operator
if it acts on three sites that are coarse-grained together.

computed for sites (3, 5, 4) or sites (6, 2, 1) on the second type of triangles, the three-
body iPESS operator remains a three-body operator for the coarse-grained tensors.
This is shown in Fig. B.28, and the expectation value then includes the four iPEPS
tensors and their respective environment. Two-body operators like the bond energy

Figure B.28: A three-body iPESS operator that acts on three different coarse-
grained iPEPS tensors.

~Si · ~Sj for nearest neighbours 〈i, j〉 become either a single-site operator, or they remain
a two-site operator in the coarse-grained picture.
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