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Abstract. The growth of small cloud droplets and ice crys-
tals is dominated by the diffusion of water vapor. Usually,
Maxwell’s approach to growth for isolated particles is used in
describing this process. However, recent investigations show
that local interactions between particles can change diffu-
sion properties of cloud particles. In this study we develop
an approach for including these local interactions into a bulk
model approach. For this purpose, a simplified framework of
local interaction is proposed and governing equations are de-
rived from this setup. The new model is tested against direct
simulations and incorporated into a parcel model framework.
Using the parcel model, possible implications of the new
model approach for clouds are investigated. The results indi-
cate that for specific scenarios the lifetime of cloud droplets
in subsaturated air may be longer (e.g., for an initially water
supersaturated air parcel within a downdraft). These effects
might have an impact on mixed-phase clouds, for example in
terms of riming efficiencies.

1 Introduction

Only recently has the spatial distribution of hydrometeors,
i.e., cloud droplets and ice crystals, attained great attention in
the context of small-scale turbulence in clouds. Idealized nu-
merical simulations and experiments in cloud chambers have
shown that hydrometeors may cluster in some regions of the
clouds, while other regions are relatively void (Shaw et al.,
1998; Wood et al., 2005). Clustered hydrometeors influence
each other in their diffusional growth by modifying the lo-
cal field of supersaturation (see Castellano and Avila, 2011,
for the case of droplet clusters). Although the existence of
such clusters in real clouds remains quite controversial at the

moment (Kostinski and Shaw, 2001; Vaillancourt and Yau,
2000; Devenish et al., 2012), it raises the question of their
importance in the evolution of a whole cloud. The studies by
Vaillancourt et al. (2001) and Vaillancourt et al. (2002) ar-
gue from direct numerical simulations that local effects due
to clustered cloud droplets in warm clouds may indeed mod-
ify the diffusional growth of individual droplets but are not
visible in the overall droplet spectrum. For typical turbu-
lent situations occurring at cloud edge, Celani et al. (2005)
and Celani et al. (2007) found much stronger influences of
the local effects, although they probably excluded the mean
growth of the droplets (Grabowski and Wang, 2013). How-
ever, the treatment of diffusional growth in all numerical
cloud models relies on the diffusional growth theory devel-
oped by Maxwell and therefore assumes that nearby hydrom-
eteors not to affect each other regarding their diffusional
growth behavior (see, for example, Rogers and Yau, 1989;
Lamb and Verlinde, 2011; Wang, 2013; Maxwell, 1877).

In a mixed-phase cloud the picture may change dramat-
ically since an ice crystal has a much more severe impact
on the droplets in its vicinity: it may accelerate the evapo-
ration of nearby droplets by growing at their expense. This
local interaction is not new and is commonly referred to as
the Wegener-Bergeron—Findeisen process (Wegener, 1911;
Bergeron, 1949; Findeisen, 1938). Note that the Wegener—
Bergeron—Findeisen process is different from the Ostwald
ripening, in which bigger particles grow at the expense of
smaller particles due to the curvature dependency of the sat-
uration pressure (the Gibbs—Thomson effect; see, for exam-
ple, Lamb and Verlinde, 2011, chap. 3.4.1). Although the
Wegener—Bergeron—Findeisen process is by definition a lo-
cal process, numerical models do not represent it as such,
since Maxwell’s theory is applied and all hydrometeors grow
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Figure 1. Schematic of the water vapor density field around an ice
crystal with various environmental water vapor values py oo. Wa-
ter vapor density at the ice crystal surface is assumed to equal the
ice saturation density. In all cases, the ice crystal deforms the wa-
ter vapor field locally within a ball of radius Rg. If a droplet has
a distance smaller than Rg from the ice crystal, its growth behav-
ior is determined by the local value of water density instead of the
environmental value py, oo.

according to the environmental rather than the local condi-
tions. In Baumgartner and Spichtinger (2017), we investi-
gated the impacts of local interactions by diffusion between
an ice crystal and surrounding droplets qualitatively using a
reference model that resolves the hydrometeors as well as
the vapor and temperature fields. For convenience, we put
the results from Baumgartner and Spichtinger (2017) into a
“guiding schematic” illustrating the local water vapor field
configurations; see Fig. 1. If a droplet has a distance smaller
than Rg from the ice crystal, only the local value of water
vapor density is seen by the droplet and therefore dictates
its diffusional growth behavior. If the local droplet number
is high enough, it influences the ice crystal and may even
disconnect its growth behavior from the environmental con-
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Figure 2. Conceptual model of local ice—droplet system. In the cen-
ter is an ice crystal with radius R; and at distance Ry from the ice
crystal is a cloud droplet with radius ryq. The presence of the ice
crystal gives rise to an influence sphere with radius Rg around the
ice crystal. Distance Ry is the coupling distance at which the diffu-
sional growth of the hydrometeors is coupled.

ditions. In both cases, Maxwellian growth theory is not ap-
plicable. Apart from numerical simulations, the question of
the solvability of the underlying governing equations is ad-
dressed in Baumgartner and Spichtinger (2018); for a re-
duced model problem existence and uniqueness of solutions
could be proven.

In this study, we focus on a theoretical description of lo-
cal interactions between an ice crystal and nearby droplets
suited to be incorporated into a bulk-microphysical formu-
lation. This study is organized as follows: Sect. 2 contains a
derivation and a discussion of the model equations. In Sect. 3
we describe the incorporation of the new model into a simple
parcel model in order to assess possible implications for a
whole cloud. Finally we end with a summary and concluding
remarks in Sect. 4.

2 Derivation of the model equations

This section is dedicated to the description and derivation
of the model equations describing local interactions between
an ice particle and surrounding cloud droplets. Section 2.1
contains the derivation. We comment on the choice of the
involved parameters in Sect. 2.2 and afterwards present a
model simplification in Sect. 2.3, while Sect. 2.4 contains
a general discussion of the suggested model equations.

2.1 Local ice—droplet system
2.1.1 Description

As a conceptual model for a local configuration of an ice
crystal and a droplet, we consider the schematic shown in
Fig. 2. A spherical ice crystal with radius R; is located in the
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center. Water vapor density and temperature at the surface
of the ice crystal are denoted by py; and T;, respectively.
A droplet with radius rq is located at distance R, from the
ice crystal center. We henceforth call R, the “coupling dis-
tance” of the ice crystal-droplet interaction. Let py g and Ty
denote water vapor density and temperature at the surface of
the droplet, respectively. Radius Rg denotes the “radius of
influence” of the ice crystal, defined as the radius at which
the ice crystal deforms the surrounding fields of water vapor
and temperature in a non-negligible manner. We will discuss
a possible choice of the radius of influence in Sect. 2.2.2,
in which we regard the vapor field as deformed in a non-
negligible manner if the relative deviation of the local value
and the ambient value exceeds 0.1 %. The radius of influence
gives rise to a “sphere of influence” around the ice crystal,
wherein its influence on the fields for water vapor and tem-
perature cannot be ignored. The values for water vapor den-
sity and temperature at the boundary of the influence sphere
around the ice crystal are given by the environmental values
Pv.co and T. The corresponding values at coupling distance
R, are denoted by py 4 and T,. We will describe the local
coupling of both hydrometeors with the help of the values
pv.« and T, so we call them the “coupling values”. Within
this study, we denote variables referring to the properties of
the ice crystal with uppercase letters and variables referring
to the droplet with lowercase letters.

In this study, we always assume a spherical shape of the
ice crystals and a negligible relative sedimentation velocity
between the ice crystal and the neighboring droplet. Both as-
sumptions are modeling assumptions. The assumption of a
spherical ice crystal influences the growth behavior of the ice
crystal and the growth behavior of the surrounding droplet;
see Appendix A for an example. Including the effect of ice
crystal shape on the diffusional growth of the surrounding
droplet is beyond the scope of this study and would require
precise information about the position of the droplet relative
to the ice crystal, which is not available in models. In or-
der to include the effect of the ice crystal shape on its own
growth by diffusion, we could replace the growth Eq. (5a)
with a variant using the ice crystal capacity (Lamb and Ver-
linde, 2011, chap. 8.3.1). Moreover, we could also replace
the Maxwellian growth equation for the ice crystal with the
model given in Chen and Lamb (1994) to model changes in
ice crystal shape. Both modifications could improve the rep-
resentation of the ice crystal growth, but also lead to an in-
consistency in the model because in the following we need
the assumption of spherical symmetry. Therefore we stick to
the simpler growth equations.

As mentioned above, we consider water vapor and tem-
perature fields as spherically symmetric inside the influence
sphere as is done in Maxwellian growth theory. This assump-
tion is not fully consistent with the schematic in Fig. 2, since
spherical symmetry is not able to account for a spatial local-
ized droplet as depicted in the schematic. Assuming spherical
symmetric fields means that the droplet is replaced by a con-
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tinuous source or sink for water vapor and temperature along
the sphere with radius R,. This point of view also allows for
generalization to the case of multiple droplets by appropri-
ately changing the strength of the source or the sink.

As was done for the ice crystal, we may analogously de-
fine a sphere of influence for the droplet with corresponding
radius of influence rg. In order to use Maxwellian growth
theory to describe droplet growth, we have to specify the val-
ues for water vapor density and temperature at the radius of
influence rg. We will use the coupling values py , and T as
the environmental values in the droplet growth equation, i.e.,
as the values at the radius of influence rg. With this choice,
droplet growth responds to the coupling values.

The idea of the model is as follows. The ice crystal first es-
tablishes fields for water vapor and temperature as if it were
isolated, yielding values at the coupling distance R,. These
fields are given by the equilibrium fields for water vapor and
temperature around the ice crystal and serve as background
fields; see Eq. (1). Since the droplet is located at coupling
distance R,, the coupling values py . and T, define the ambi-
ent values for its diffusional growth. We establish an equation
for the coupling values (see Eqs. 7 and 6), causing the droplet
to grow or evaporate. This growth or evaporation feeds back
to the coupling values and will in turn influence the growth
behavior of the ice crystal.

In the following, we will derive the model equations re-
sulting finally in the ODE system Eq. (19), consisting of
the growth equations for the ice crystal (Eq. 19a and b), the
growth equations of the droplet (Eq. 19¢ and d) and the evo-
lution equations for the coupling values (Eq. 19¢e and f).

2.1.2 Derivation

The spherical symmetric solutions of the Laplace equations
Apy =0 and AT =0 for py and T inside the influence
sphere of the ice crystal, describing the water vapor density
and temperature field, are given by

pv,ooRE - PV,iRi (pv,i - Pv,oo)RiRE l

R) = , la

pv(R) — il S
TsoRg — TiR; T, — Txo)RiRE 1

T(R): oo RE iy ( i oo) i E_’ (lb)
Rg — R; Rg — R; R

where R is the radial distance from the ice crystal center.
Equation (1) defines the unperturbed background fields for
an isolated ice crystal, representing the spatial thermody-
namic equilibrium. The corresponding solutions inside the
influence sphere of the droplet are

Pv+lE— Pvdrd | (Pr.d = pvo)rera ]

pv(r) = , (2a)
FE —Id rE — Fd r
~ Trg — T, Tq — T. 1
Ty = e —Tara  (Tq — Ty)rerq 1 (2b)
g —rd e —rd r

where r is the radial distance from the droplet center. Pro-
ceeding as in the derivation of the Maxwellian growth equa-
tions, we obtain from Eq. (2) the following equations for the
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change in droplet mass and temperature

dmyg Pv,x — Pv,d

—< —47agD 3
” magDorarg (3a)

'g —Id
dTy 4 rarg
dt macp1(Ta)(rg — ra)

(Lw(TaaDo(pye = pv) + Ko(T = Tw)), (3b)

where mq denotes the droplet mass, Ty the droplet temper-
ature, g the accommodation coefficient (Davis, 2006), Dg
the diffusivity of air, K the thermal conductivity of air, ¢
the specific heat capacity of liquid water and Lj, the latent
heat of vaporization. Using the representation of the water
vapor field from Eq. (2), the rate J4 of water vapor exchange
through the ball bg with radius rg around the droplet is given
by

Ja= —/Dovﬁv Ndo = —pyrr " a2
g —rd rE
Jbg
1 dmy
__Lldm @
ogq dt

where N denotes the outer normal vector at the surface dbg.
The growth equations for the ice crystal are given by

dM; Pv,x — Pv,i
—— =4nwa; DoRiR———=, 5
dr T Do 3G £ R.— R (5a)
dT; _ 47 R R,
dt  Micpi(Ti) (R« — Ry)

(e DoLiv )Py = o) + Ko(T = T)). (5b)

where M; denotes the ice crystal mass, 7; the ice crystal tem-
perature, «; the accommodation coefficient, ¢ ; the specific
heat of ice and L;, the latent heat for sublimation. Note that
in Egs. (3) and (5) the coupling values py . and T show up to
allow the coupling of the diffusional growth of the hydrome-
teors.

After the description of the respective growth equations,
we proceed to the coupling values. We define

ar. _ g(T(Rk)), (6)

Ty (t) := T (Rx) and consequently ” o

with T being the unperturbed background temperature field
of the ice crystal from Eq. (1). As in Maxwellian growth the-
ory, in definition Eq. (6) we assume temperature fluctuations
to balance quickly and not to affect the droplet growth. We
define the evolution equation for the coupling value py . as

dpy,«

=L+ DL+ 13, 7
m 1+hLh+13 @)

being the sum of three terms /1, /> and /3 representing three
different physical processes:
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Figure 3. Illustration of the spherical shell obtained by extending
the surface of the sphere with interaction radius Ry around the ice
crystal. Within the gray shaded area representing the volume Vg of
the spherical shell, we assume a uniform distribution of water vapor
and temperature.

— I} models the time evolution of the unperturbed water
vapor field of the ice crystal,

— I takes the influence of the droplet on the coupling wa-
ter vapor density into account and

— I3 describes the relaxation of the coupling value back to
the value of the thermodynamic equilibrium py (R.).

The first term [; takes the unperturbed background value
pv(Ry) of an isolated ice crystal into account. As the rate of
change for this value, we define

d
I = — (pv(R*)). 3
dr

If no droplet is present, we will have I = I3 =0 in Eq. (7)
and definition Eq. (8) simply ensures that py . equals the
background value py(R,).

The second term /> considers the change in water vapor
density due to droplet growth or evaporation. The rate of wa-
ter vapor exchange Jg of the droplet is given in Eq. (4). The
released water vapor is assumed to diffuse in unit time into
some volume V to be defined later, leading to the water vapor
exchange rate % Due to the assumed spherical symmetry,

using the exchange rate % directly amounts to assuming the
sphere with radius R, around the ice crystal as being filled up
with droplets and their influence spheres, resulting in a strong
overestimation of the droplet effect, so we have to rescale this
rate. Assume the sphere with radius R, around the ice crys-
tal as being extended to a spherical shell with thickness 2rg
as in Fig. 3. This spherical shell is only introduced for the
derivation of the coupling density Eq. (7). The value

= %” ((R* +7E)° — (R — rE)S)

i_3
37TIg

VA
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3 _ _ 3
_ Rutre? (R —rm) ©)

g

measures the number of droplet influence spheres fitting in-
side the spherical shell. We take this value of Z to rescale
the exchange rate and define the new value of I, as +%. In
reality, influence spheres of droplets may also overlap, lead—
ing to another local competition for water vapor between the
droplets and a larger value for Z. However, our choice as-
sumes a local well-mixed droplet distribution around the ice
crystal and we neglect a possible local competition between
the droplets. If we consider not only a single droplet but in
total Vg4 droplets inside the influence sphere of the ice crystal,
we finally define the exchange rate as
Ja Ng dmg

b= Ny~ — _ ,
2Ty T Tz dr

(10)

where we used Eq. (4). This rate actually neglects local in-
teractions and competitions between the droplets inside the
influence sphere of the ice crystal and assumes all droplets
as identical.

Finally, the third term /3 accounts for the relaxation of the
coupling value for water vapor density py « to py(Ry), pro-
vided by the background field and representing thermody-
namic equilibrium. Motivated by Fick’s law of diffusion, let

_/DOPV,*_)OV(R*) do =
Rg — R,

Pv,x — ov(Ry)

—47R2Dy -
- *

Y
3B

be the rate of water vapor exchange from ball B, to the

outside, where B, denotes the ball with coupling radius R

around the ice crystal. The change in the coupling vapor den-
sity is therefore given by

— R 1
I :=—/D0’OV’* ov(Ry) do
Rg—R %JTRE

:_SDOLPV* PV(R*). (12)
Ry Rg— R«
Definition Eq. (12) represents a possible choice for the re-
laxation rate, but should ideally be reviewed with the help of
measurements.
Altogether, substituting Egs. (8), (10) and (12) into Eq. (7)
yields

d d J. 3D — R
pv,*_ (,Ov(R*))‘l‘Nd—d_ 0 Ov,x pv(Ry) (13)

dr dr A% R, Rg — R,
d Nq dmq  3Dg pys — pv(Ry)
Py(Ry) | = —— == = =
dt agZV dt R, Rg — R,

for the rate of change of coupling water vapor density.

To define the volume V in Eq (10), we first give an alter-
nate interpretation of the rate ZV with the help of the artifi-
cial spherical shell from Fig. 3. Let

4
Vs = 37 ((R* +rE)} — (R — rE)3) (14
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denote the volume of the artificial spherical shell. Using
Eq. (9), the rate may be rewritten as

Jd Jd %ﬂré

ZVv.o Vs V

5)

The first factor represents the rate if all exchanged water
vapor modified the vapor density inside the spherical shell,
where we assume water vapor and temperature as uniform.
The second factor amounts to a scaling of the first factor.
Since V is the volume into which water vapor diffuses in
unit time, we define it as a scaled influence sphere around
the droplet as

4 4
V= 5n(an)3 gnn3ré, (16)

with the scaled influence radius nrg leading to the rate ZJV =

‘],d L With this definition, only a fraction - of the released

water vapor from the droplet will affect the couplmg value in-
side the artificial spherical shell. The choice of the parameter
n will be discussed in Sect. 2.2.4 below. Although we tried
to give some interpretation of the product 3 ﬁ L and particu-

larly the factor 5, this scaling factor may also be interpreted
as a free parameter of our model without a specific physical
meaning.

For the radii of influence Rg and rg we define

Rg := R +1;,

rg :=rq+1a,

(17a)
(17b)

for some positive constants /; and /4. Likewise, we define the
coupling radius by

R, = R + lp, (18)

with 0 < [y < [;. With these definitions we can state the com-
plete ODE system as

dmy Pv,x — Pv,d

— % — 44D 19
5 ogDorarg (19a)

r'E —Id
dTy drrarg

ar macp1(Tq) (rg — ra)
- (aDoLiy(To) (.0 = pv) + Ko(Tu = T)).  (190)

dM; Pv,x = Pv,i
?‘ = 47105,-D0R1R*H, (19¢)
dTi _ 47RiR,
it Micpi(T)(Rx — Ry)
(i DoLin( T (pvs = o) + Ko(To =), (199)
dpy s« d Ja 3Dg pv,« — pv(Ry)
— = R, Ng— — ————7—=, (19
di dt(pV( ))+ 7V TR, Re—k, 19
dT* d
= T(R 19
=3 ( ( *>) (19%)
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Substituting R, from Eq. (18) into the field representations
in Eq. (1) yields an expression of py(R,) and T (R,), allow-
ing us to compute the required derivatives. Keeping Egs. (17)
and (18) in mind, we arrive at

d R R; '\ dpy,
S pro)) = - O S,
dr (pV( *)) RE—Ri( R*) dr

R; R dpy i
I i RE 1 Pv,i (20)
Rg — R; \ R, dt
+:0v,i_)0v,oo Rg+ R; _ RiRg 1 @
Rg — R; R, R% dr
and
d R R\ dT,
—(rRy) =" (1) =2
dr Rg — R; R, /) dt
R; R dT;
L(ZE_ )22 @21
Rg — R; \ R, dr
Ii—Tx (RE+Ri RiRg dR;
Rg — R; R, R?2 dr

The derivative of the ice crystal radius may be calculated
using the equation for the mass of a spherical ice crystal
M; = %n ,oi(Ti)Ri3 with ice density pj, yielding

dRi 1 dM; _ aiDo Ry pvx — pvii

o el L@
&~ drp(T)R? At pi(T) R Ra— R

where we neglected the derivative of the ice density p;.

Neglecting the chemical composition and curvature effects
of the ice crystal, we approximate the saturation vapor den-
sity py,; at the surface by

e pi,sat(Ti)
YR

where pj e denotes the saturation vapor pressure over a
plane ice surface. Using the Clausius—Clapeyron equation
(Lamb and Verlinde, 2011, Eqgs. 4.35 and 4.36), we obtain
the temporal derivative

d,ov,i ~ d (Pi,sat(Ti)) %

: (23)

dt dt R, T; dt
_ pi,sat(? (Liv(Ti) B 1) d7;. 24)
RyT, RVT, de

2.2 Choice of parameters

In this subsection we discuss a possible choice of the pa-
rameters /i, lq, lo, Ng and n from Egs. (17), (18), (19¢) and
(16), respectively. We estimate possible values for these pa-
rameters using typical environmental conditions in a mixed-
phase cloud with ambient temperature 7, = —15°C, ambi-
ent pressure po, = 650hPa, ambient saturation ratio S, =
1.01, ice crystal radius R; = 100pum and droplet radius rg =
10 um.
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2.2.1 Parameter for droplet distance

Parameter [ in Eq. (18) defines the distance from the droplet
center to the ice crystal surface. To estimate this parameter,
we assume a perfectly regular distribution of droplets at the
vertices of a cubic lattice with A" =1000cm™—3 = 10°m~3
droplets inside the cloud volume. This droplet number is
higher than typical observed values, but since our focus is
on local droplet accumulations around ice crystals, we use
this higher value. Let

1
lg ' =———
K IN ZTmt

denote the edge length of a cuboid in the lattice. If the ice
crystal is located in the center of such a cuboid, the dis-

tance from the midpoint of the ice crystal to the midpoint

of the nearest droplet is given by 731 k., yielding an esti-

mate for R, = R;+ly. By substituting values, we arrive at
lp 2 7.67 x 10~*m = 767 um being approximately 7.5 times
the ice radii, so [p = 7.5R;.

(25)

2.2.2 Parameter for radii of the influence spheres

To estimate the distance parameter /; determining the radius
of the influence sphere of the ice crystal, we use the repre-
sentation

Ri(PV,oo - pv,i)

2 (26)

ov(R) = Pv,co —

of the water vapor field obtained from Maxwellian growth
theory. Let £ > 0 denote a chosen maximal relative deviation
of py(R) from the environmental value py oo; We seek the
radius Rg such that

|)OV(R) - pv,oo|

Pv, 00

<é @7

is satisfied for R > Rg. Substituting Eq. (26) into (27) yields
the condition

R;
& Py, 00

|ov.00 — ov.i| < RE. (28)

Neglecting the effects of chemical substances and curva-

ture, we estimate the surface water vapor density as py i =

Rl

Using a maximal relative deviation & = 10’3, we arrive
at [; = 0.0144m being approximately 144 ice radii, so [; =
144R;. Using the same approach for the droplets, we ob-
tain /g ~ 8.9 x 107> m being approximately 9 droplet radii,
s0 Iqg = 9rq. We chose & = 10~ as the maximal relative de-
viation, because the relative deviations

Pv,co — Pv,i| and |,0v,oo — Pv,d (29)

Pv,00 Pv, 00
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are already of the order of 1.4 x 10! and 1072, respectively,
for the conditions stated at the beginning of the subsection.
For the case of a droplet, Reiss and La Mer (1950) and Reiss
(1951) suggest a value of 10 times the droplet diameter for
the radius of influence. With our choice of the relative devia-
tion, we obtain the same order of magnitude.

2.2.3 Number parameter

In order to estimate a typical droplet number Ny within the
influence sphere around the ice crystal, we employ the typical
droplet number concentration A’ = 70cm ™ in mixed-phase
clouds (Korolev et al., 2003; Zhao and Lei, 2014). Using [; =
144 R;, we obtain a droplet number

4 4
Ny :/\/grr(Ri +1)° :J\/gn(l45 - R)? ~ 894. (30)

Not all of these droplets are precisely at coupling distance
R, from the midpoint of the ice crystal and the influence of
droplets decreases with increasing distance from ice crystal
center. Qualitatively, only the droplets closest to the ice crys-
tal influence its growth behavior significantly; see Baumgart-
ner and Spichtinger (2017, their Fig. 6). We employ the con-
servative assumption that all droplets with distances smaller
than % have larger influence on the ice crystal and conse-
quently define the droplet number Ny as

4 (Ri+1)\° 4 (145 \°
Ny=N-~- =N-n|—R;) ~32, 31
d N3n( 3 ) NSn( 3 1) (31)

motivating the choice Ng = 40. We remark that this droplet
number is highly variable in real clouds due to turbulent ef-
fects or sedimentation of the ice crystal. If one knew an ex-
pression describing the change in droplet number inside the
influence sphere, one could also use a variable number in-
stead of a constant.

2.2.4 Distribution parameter

Parameter n in Eq. (16) is a critical parameter of the whole
model, since it directly determines the strength of the inter-
action between the ice crystal and the droplet. According to
the interpretation given above, it describes which fraction of
released water vapor from an evaporating droplet is incorpo-
rated into the artificial spherical shell around the ice crystal
and consequently influences the growth of the ice crystal; see
Eq. (15). If n = 1, all released water vapor is incorporated in
the artificial spherical shell. If n > 1, only a fraction of ’%
is incorporated, and the remaining water vapor is released
to the atmosphere. In this study, we use a value n = 1.8 ob-
tained with the help of direct numerical simulations using the
reference model described in Baumgartner and Spichtinger
(2017), since the authors are not aware of any direct mea-
surements.

We compare the temporal evolution of the ice crystal and
droplet mass obtained from the reference model with results
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from the model presented in Sect. 2.1 using the two droplet
numbers Nq = 14 and Ngq = 38. The choice of these droplet
numbers is due to the existence of Lebedev quadrature for-
mulas because those quadrature points allow a nearly uni-
form distribution along a sphere (Lebedev, 1976). For calcu-
lations with the reference model, we distributed the droplets
along a sphere with radius 7.5R; around the ice crystal. We
conducted several simulations using the new model with dif-
ferent values for the parameter n. Figures 4 and 5 show the
accordance of droplet and ice crystal mass evolution for our
final parameter value n = 1.8 at ambient saturation ratios
Soo =0.86, Soo =0.99 and S = 1.01 for the two droplet
numbers Ng = 14 and Ng = 38. The solid and dashed curves
agree well, although the droplet masses are slightly underes-
timated and the ice crystal mass is slightly overestimated.

Although not shown, numerical experiments with other
values of the parameter n show that we can achieve bet-
ter agreement of either the ice mass or droplet curves, but
not for both simultaneously. Moreover, our choice n = 1.8
also shows satisfactory results in other mass and humidity
regimes.

2.3 Simplifications

The model in Eq. (19) consists of many equations, and it es-
pecially keeps track of the temperature of the individual hy-
drometeors. In Maxwellian growth theory, the equation for
the temperature of a hydrometeor is eliminated. We can sim-
plify the model in Eq. (19) in a similar way. Proceeding as
in the derivation of the Maxwellian growth equations, we
can eliminate the temperature equations of the hydromete-
ors. The modified equations for the hydrometeor masses are
then given by

dmg 4 rdr'E

— = (Sx—1
dr (Lwoo) 1)) | R rg—rg
RyTw KoTwo O‘dDOPI,sa[(Too)
rdre
=: G Sx—1) (32)
FE —71d

for droplet mass and

dM; 4 RiR,

. (S0i-1)
dt (L,-L«Too) _ 1) Li(To) 4 RTw  Ry—Ri
RyTx KoTso a; Do pi sat(Too)
RiR,

=: Gj Sei—1 33
e (8= 1) (33
for ice crystal mass with the saturation ratios Sy = vRiToo
pl,si\t(Too)
and S, ;= pvsRyToo respectively, where pj ¢ denotes the

i Pisat(Too) .
saturation vapor pressure over a plane surface of liquid water.

In addition, we neglect the temperature Eq. (19f) for the cou-
pling temperature T in the governing system Eq. (19). Since
T, also appears in the calculation of the unperturbed value
pv(Ry) through the equilibrium vapor density at the ice crys-
tal surface, we have to modify its calculation from Eq. (1).
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Figure 4. Comparison of the temporal evolution of hydrometeor masses obtained with the new model from Eq. (19) with parameter value
n = 1.8 (dashed) and the reference model (solid) for the case of Ng = 14 droplets per influence sphere. Ambient saturation ratios are Soc =

0.86 (red), Soo = 0.99 (blue) and Soo = 1.01 (green).
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Figure 5. As in Fig. 4, but for the case of Ngq = 38 droplets per influence sphere.

We simplify the vapor density field from Eq. (1) by consider-
ing the case Rg — oo representing the observation R; < RE.
The vapor density at the ice crystal surface is approximated
as in Eq. (23), yielding

R;
pv(Ry) =~ Pv,co + (pv,i - Pv,oo)
R
Di,sat(Too) R;
~ _ — —. 34
Pv,00 + ( RuTo pv,oo) R, 34

Using the Clausius—Clapeyron equation and Eq. (22), we
compute the required time derivative of Eq. (34) as

4 ov(R) )~ (1 - Ri') dov.oo i Ri d (pisa(Too)
dr R* dr R* dr RVTOO
(Pi,sat(Too) ) R, — R; dR;

% s  Pvoo )l T %y

RyTw R2 dr
R\ d

(- Pv, 00 35)
R, dt
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&pi,sat(Too) Liy(Too) -1 dT
R, RVTo2o RyTw dr
Disat(Too) R.—R; dM;
(Lol ) BB
RyTw 47 pi(Tso) RY R2 dt

Accepting those further approximations, we arrive at the
simplified system

d
TG YE (s, 1), (36a)
dr YE —Fd
dM; RiR,
— G S,i—1). 36b
i 1R>k R ( *,1 ) ( )
dovx d Ng dmg
x_d ) - dmq
e~ dr (pV( *)) agZV dr
3D — R
_ 0 Ov,x — Py *), (36¢)
R, Rg — R,
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where only the three prognostic variables mgq, M; and py «
are left. For a bulk model parameterization, we would add
just one additional equation.

2.4 Discussion of the model ansatz

Srivastava (1989) has already criticized the use of
Maxwellian growth theory for the description of droplet
growth by diffusion. He advocated the use of local quan-
tities instead of the environmental conditions, since water
vapor density is spatially variable and the droplet growth
heavily depends on its precise value. By using local vari-
ables, one can take those variations into account and compute
growth rates of hydrometeors more accurately. He connected
the local value for vapor density to the environmental value
through a relaxation of local conditions to the environmental
conditions, similarly as we did in Eq. (12) for /5. Srivastava
proposed considering local volumes around every hydrom-
eteor and computing its individual growth rate by using the
local vapor density. We adopted this approach in our model
by introducing the “spheres of influence”. Similar ideas were
employed in Marshall and Langleben (1954), in which the
authors also consider a local volume around an ice crystal. In
contrast to our formulation, they assume a continuous droplet
distribution inside the local volume. Their method avoids ad-
ditional growth equations for the nearby droplets. Our ap-
proach combines ideas from both former studies, whereby
we focused on a model formulation that only incorporates
values that are typically known in a numerical cloud model.
In Sect. 2.2, we estimated possible values for the parame-
ters of our model. To our best knowledge, there are no direct
measurements of the local interactions of a single ice crystal
with surrounding droplets available, so we cannot compare
our parameter choice with real measurements. Instead we can
consider two separate extreme cases, since Eq. (19e) for the
coupling water vapor density has the generic representation

dpy « d Ngq dmyg
* R))———— — pov(R
dr dr (pv( *)) ZV dt C(pv,* P *)) G

for a constant C > 0. In our model derivation, we set C :=
%. The two extreme cases are constructed by choos-
ing C =0 or C — oo. In the first case C = 0, relaxation of
the coupling value py . to the equilibrium value py (Ry) is ne-
glected and therefore py . is solely changed by the growth or
evaporation of the hydrometeors. The second case C — 0o
corresponds to an instantaneous relaxation to equilibrium.
This is basically the same behavior as in the classical treat-
ment using Maxwellian growth theory. We emphasize that
both extreme cases are rather nonphysical, but they may
serve to assess the possible strength of the local interactions.
However, we believe that the ansatz from Eq. (37) is able to
capture the essential behavior, possibly after considering %
as a single coefficient that is to be determined with the help
of measurements.
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We believe that the most promising measurement technol-
ogy to constrain the parameters in our model is holography
because it is able to measure the spatial distribution and the
size of hydrometeors within an air volume (Fugal and Shaw,
2009; Schlenczek et al., 2017; Beals et al., 2015). Moreover,
if it were possible to track an individual air volume with
holographic imaging, one could possibly infer values for our
model constants from the size evolutions of the hydromete-
ors.

In Sect. 2.2.3 we discussed the choice of the number Ny of
droplets within the influence sphere of the ice crystals. Imag-
ing the influence sphere around the ice crystal as an object
moving with the ice crystal, clearly the number of droplets
inside this region should change as the ice crystal moves
through a cloudy volume. If we could establish an equa-
tion for %, the number Ny of droplets within the influence
sphere could be made dynamic. Such an equation should ac-
count not only for the movement of the ice crystal through the
cloudy volume but also for the influence of turbulence on the
local droplet number. Note that the concept of an influence
sphere around the ice crystal remains meaningful for moving
ice crystals. The presence of the ice crystal distorts the local
water vapor and temperature field and thus defines its influ-
ence sphere. As is well known from Maxwellian growth the-
ory, the fields around the ice crystal very rapidly attain their
steady state (Lamb and Verlinde, 2011, chap. 8.2.2), so we
can define the influence sphere with the help of the steady-
state field.

3 Incorporation into a parcel model

In this section, we incorporate the new model from Sect. 2
into a parcel model. Let po, and T, denote the pressure and
temperature of the air parcel. We divide the total water mass
contained in the air parcel into the mass of water vapor M,
the mass of liquid water M| and the mass of ice Mjce. In ad-
dition, the air parcel contains a mass M, of dry air. Since
the air parcel is assumed as thermodynamically closed, the
mass M, of dry air and the total water mass My + M| + Mice
are constant. Instead of the masses, we consider the mixing
ratios gy 1= %’; for x € {v, 1, ice}.

3.1 Description of the parcel model

Variations in pressure ps, are governed by the equation

d’ﬁzdl?_ood_zz_g_l);.ow’ (38)
dt dz dr RT

which is obtained by applying the equation for hydrostatic
equilibrium. Coordinate z denotes the height, g the accelera-
tion of gravity, w the vertical velocity and R the gas constant
for moist air given by

o l—e¢ qv
R:=R,(1 , 39
d( * € 1+qv) &9
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where ¢ := g—j and R,, R, denote the gas constants for dry
air and water vapor, respectively. A change in the air parcel
temperature T, has two contributions. The first contribution
comes from the adiabatic vertical motion of the air parcel and
is given by (for example Wang, 2013, chap. 12)

dT

=—Zuw, 40
” w (40)

adiabatic

where the specific heat capacity of moist air is given by
(Rogers and Yau, 1989, chap. 2)

_ Cp,v qv
Cpi=cpall+ p——l) ), 41
p p,d( (Cp,a l-I—qv

and ¢p , and cp v denote the specific heat capacity of dry and
moist air, respectively. If the condensation of water vapor
takes place, we have to include latent heat effects. Let wy
be a hydrometeor; its temperature Ty changes as

dT dmy,
=L—+ | KVT-Ndo, 42)

Cp Mg ——
P dr dr

dwy

where my is the mass of hydrometeor wy, L the latent heat
of a phase change, K the thermal conductivity of air and
N the outer normal to the surface of the hydrometeor wy.
The surface integral in Eq. (42) accounts for heat conduction
from the hydrometeor to the air parcel. The amount of heat
—dQconduction delivered from the single hydrometeor wy to
the air parcel is given by the rate

4 .
_wz/KVT-NdU. “3)

dwg

This amount of heat changes the temperature 7, of the air
parcel according to ¢, (My + M) dTo = —d Qconduction- In-
serting Eq. (43) and summing over all hydrometeors yields
the rate

dTs
dt

1
=—_—Z/KVT-Ndo (44)
Cp(Mv“l‘Ma) k 3
k

latent

of latent heating. Combining both contributions from
Egs. (40) and (44) yields the final rate of the temperature
change

Ao dTx dTs
dr dt adiabatic dt latent
g 1

& cp(Mv+Ma>Zk:/

dwy

where the sum expands over all hydrometeors. In the litera-
ture, one finds a slightly different equation in which the sur-
face integral is replaced by —L =% mk (for example Pruppacher
and Klett, 1997, Eq. 12.15). Assummg all hydrometeors to
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have reached their equilibrium temperature, as is done in
classical Maxwellian growth theory, the time derivative on
the left-hand side of Eq. (42) vanishes and Eq. (45) reduces
to the equation from the literature.

We further divide the liquid water mass M) contained in
the air parcel into the mass Mli of all droplets located in an
influence sphere of some ice crystal and the mass M of all
droplets outside of every ice crystal influence sphere. From
now on, we assume a monodisperse mass distribution for the
ice crystals with number concentration Nj¢e for the droplets
inside the ice crystal influence spheres with number concen-
tration Njce Ng (number of ice influence spheres containing
N4 droplets each) and and for the droplets outside of every
ice crystal influence sphere with number concentration .
Therefore, the total droplet number concentration in the air
parcel is Nice Ng +.Nj (number per kilogram of dry air). Be-
cause of the assumption of monodisperse size distributions,
each ice particle has mass M;j, each droplet inside an influ-
ence sphere has mass mij and each droplet outside of every

influence sphere has mass my. Defining the liquid water mix-
M
M , we obtain the relations

= ./\/-(?mg + Nd-/\/‘iccmij (46)

ing ratios ql = 1 - and q

Gice = NiceM; and g = qlo + QII
where Ny is the number of droplets inside the influence
sphere of an ice crystal. As for the liquid water mass, we
divide the corresponding droplet temperatures in Tl and T
and the droplet radii in r}j and rg.

Using this notation and the assumption of spherical
droplets, we can evaluate the surface integrals in Eq. (45)
to obtain
dT g 1

=—2w————— (NM47rSKo(Too — T
dr o G(Mv+Ma)( aMatrraKo(Toe =1a)

+NndeMa4”réK0(Too - le) + Nice Madm Ri Ko (Too — Tl))
4w KoM,
= —éw - _JT#(NEVE(TOO - Tdo)
Cp Cp(My + My)
+ Nnder(ij(Too - TCD +MceRi(Too - Tl))
g 4 Ko

=—:w—_—( 00Ty — T)
Cp cp(1+CIV) didiiee d

+ NaNieerd(Too = T + MeeRi (Too = 1)) (47)

where R; denotes the radius of an ice crystal. The mixing
ratio for water vapor is determined by the conservation of
mass and reads

dﬂ _ dqlo dqll dgice

dr dr dr dr

dm$ dml  dM;

0 d d i

=— icel Nao—+ — ). 48

N, d 5, Mce( d d + dr ) (48)
The equations for the other mixing ratios are given by

dgice dM;
dt = Nice dr’

(49a)
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dg} o dmg

U _ po M 49b
dr N dr (49b)
dgi dm!

d_tl NgNice d (49¢)

3.2 Results

Using the parcel model we carry out several simulations in
which we vary the coupling distance R, = R;+Iy through pa-
rameter [y, the number of droplets inside the influence sphere
of the ice crystals Vg4, the ambient saturation ratio S, and the
vertical velocity w of the air parcel; see Table 1. The choice
of the saturation ratios is motivated by the three regimes in
Fig. 1.

The initial values for ambient temperature and pressure are
Too = —15°C and poo = 650hPa, respectively, resembling
typical environmental conditions for a mixed-phase cloud.
Reliable values for the droplet number Ny inside every influ-
ence sphere of the ice crystals are difficult to estimate, since
this depends heavily on small-scale turbulence. Therefore,
any of the estimated values in Sect. 2.2.3 between Ngq = 30
and Ng = 800 is possible, explaining the choices in Table 1.

Previous studies indicate a large scattering of the mi-
crophysical parameters, especially in liquid water content
(LWC) and ice water content (IWC) (for example, Fleishauer
et al., 2002; Hobbs et al., 2001; Pinto et al., 2001; Noh et al.,
2013; Zhao and Lei, 2014; Lloyd et al., 2015; Verlinde et al.,
2007). We use the typical values LWC = 0.045gm > (Ko-
rolev et al., 2003) and IWC =0.013 gm_3 (Fleishauer et al.,
2002). A typical droplet radius is given as 10 um. Variability
in the size of the ice crystals is much larger, but on average
pristine ice crystals in mixed-phase clouds tend to be smaller
than in ice clouds (Korolev et al., 2003) and we again use a
value of 100 um as the initial radius.

In the subsequent sections, we present simulation results
ordered by vertical velocity. All figures contain three curves:
the red curve represents the solution of the new system
Eq. (19), the cyan and blue curves represent the solutions
of the same system, in which the equation for the coupling
water vapor density Eq. (19e) is replaced by Eq. (37) with
C =0 and C — oo, respectively. Consequently, those two
curves correspond to the extreme cases without local relax-
ation to equilibrium (case C =0) and instantaneous relax-
ation to equilibrium (case C — 00). The spreading between
the two curves shows the spectrum of possible values for dif-
ferent choices of the parameter C.

3.2.1 Vertical velocity w = 0ms™!

In Baumgartner and Spichtinger (2017), the authors doc-
umented the largest effect of surrounding droplets on ice
growth in an ice subsaturated environment because the evap-
orating droplets can deliver enough water vapor towards the
ice crystal to produce a local supersaturation with respect to
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ice, allowing the crystal to grow instead of evaporate. With
the new model, we also observe a similar behavior. Con-
sider, for example, the case of Nq = 40 droplets per influence
sphere of any ice crystal with the small droplet distance [y =
5R; = 5 x 100 um from the ice crystal and ambient saturation
ratio Soo = 0.847, being subsaturated with respect to ice and
water. The first row in Fig. 6 shows the temporal evolution of
the ice mixing ratio ¢; and liquid water mixing ratio g;. We
observe an increasing ice mixing ratio g;, showing the afore-
mentioned local interaction. As long as not all droplets inside
the influence spheres are evaporated, the red curve for the ice
mixing ratio in Fig. 6 coincides with the cyan curve, indi-
cating the extreme case without local relaxation. This means
that the evaporating droplets inside the influence sphere of
the ice crystal provide enough water vapor to mostly com-
pensate diffusion of water vapor to the environment. The red
curve in the upper panel in Fig. 6b shows the temporal evolu-
tion of the liquid water mixing ratio g;. At the first kink of this
curve (at about ¢ = 11 ), all droplets outside of the influence
spheres are evaporated (g’ = 0) and at the second kink (at
about r = 265) the droplets inside the influence spheres are
also evaporated, indicating g; = g = qli = 0. Although the
environment is subsaturated with respect to ice, the evaporat-
ing ice crystals alleviate the local subsaturation, allowing the
droplets inside the influence spheres to exist slightly longer;
see case (c) in the schematic Fig. 1. The kink in the red curve
for the ice mixing ratio in in the upper panel in Fig. 6a at
about t = 26s marks the time instant at which all droplets
are evaporated. From this time on, the local source for wa-
ter vapor vanishes and the ice crystals grow slower. Note that
the evaporated droplets provided enough water vapor to the
whole air parcel to cause an ice supersaturated environment
(see Fig. B1 in the Appendix), explaining why the ice crystals
continue to grow although the air parcel was initially subsat-
urated with respect to ice.

By changing the environmental conditions to water super-
saturation with Sy, = 1.01, local effects on the mixing ra-
tios are almost not visible. Only for small distances such as
lp = 5R; of the droplets in the influence spheres from the ice
crystals or very high droplet numbers Ny is an effect on the
mixing ratios observed; for the case of a droplet—ice distance
of /o =30R; and droplet number Ng = 500, see the middle
row in Fig. 6. The more interesting variable in this humidity
regime is the temperature 7o, of the air parcel shown in the
left panel of Fig. 7 for the aforementioned case. Compared
to the classical treatment, including the local effects yields
a slightly warmer air parcel. The heating is caused by the
release of latent heat from the growing hydrometeors. It per-
sists after 100s at which the droplet mass starts to decrease
and the evaporating droplets tend to cool the air parcel (right
panel in the middle row of Fig. 6). Therefore, the observed
heating is due to the growth of the ice crystals and should
increase for increasing ice growth rate.

This motivates us to consider the case of a small droplet—
ice distance /p = SR; and high droplet number Ng = 500 at
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Table 1. Different parameter values used for the air parcel simulations. The initial ice crystal radius is R; = 100 um for every simulation.

lp SR; 15R; 30R; 50R; 100R; Length parameter for ice—droplet distance
Ng 40 100 200 500 Number of droplets per ice crystal influence sphere
Soo 0.847 0.932 1.01 Ambient saturation ratio with respect to liquid water
Sooi 0.98 1.079 1.169 Ambient saturation ratio with respect to ice
w Oms~! —Ims™! 1ms~! Vertical velocity of the air parcel
(a) x10-5  lce mixing ratio gce (b) <10-5 Water mixing ratio ¢
32 H— No relaxation (C' = 0) J = No relaxation (C = 0)
— Classical (C — o) — Classical (C — o0)
3.0 [| — Local interaction (Eq. 19) 1 4 — Local interaction (Eq. 19)
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Figure 6. Temporal evolution of ice mixing ratio (a) and liquid water mixing ratio (b) for the parcel model simulations with w = Oms~L.

Parameters for the first row are Ny = 40 droplets in each influence sphere of the ice crystals at initial ambient saturation ratio Sec = 0.847
and droplet distance /) = 5R;. The second and third row both have Ng = 500 droplets per influence sphere at Soo = 1.01, while the droplet
distance is /g = 30R; for the second row and /o = 5R; for the third row. Note the different scaling of the axes.
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Figure 7. Temporal evolution of the air parcel temperature Too with w = 0ms~! and Ngq = 500 per influence sphere of the ice crystals at
initial ambient saturation ratio Soo = 1.01 with droplet distance /o = 30R; (a) and [y = 5R; (b). Note the different scaling of the axes.

ambient saturation ratio S = 1.01. The effect on the air par-
cel temperature T, for this case is shown in the right panel of
Fig. 7. The lower row in Fig. 6 shows an increase in ice mix-
ing ratio and a decrease in liquid water mixing ratio already
after a short time. This again confirms that the observed heat-
ing of the air parcel is caused by an increased growth rate of
the ice crystals. The increase of the ice crystal growth rate is
influenced by the number Ny of droplets within the influence
sphere and the ambient saturation ratio. If the air parcel is
initially supersaturated with respect to water, the ice crystal
induces a local subsaturation with respect to water and the
droplets inside the influence sphere start to evaporate; see
case (a) in the schematic in Fig. 1. The evaporation of nearby
droplets enhances the local water vapor density and conse-
quently also the ice growth rate. If the air parcel is initially
subsaturated with respect to water, the droplets inside the in-
fluence sphere of an ice crystal see two sinks of water vapor,
namely the ice crystal and the environment; see case (b) in
the schematic Fig. 1. The released water vapor of an evapo-
rating droplet is therefore partially delivered to the ice crystal
and the environment, and the growth rate of the ice crystal is
less amplified. Consequently, we expect a larger effect of the
local interactions on the air parcel temperature with initially
water supersaturated conditions.

3.2.2 Vertical velocity w = —1ms™!

In a descending air parcel, the saturation ratio decreases
monotonically due to the adiabatic heating, causing an ini-
tially supersaturated air parcel to become subsaturated after
a short time. According to the discussion in the previous sub-
section, we expect only a negligible influence of the local ef-
fects on the temperature T of the air parcel. This was con-
firmed by our conducted simulations.
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Contrary to the case of vanishing vertical velocity dis-
cussed in the previous subsection, local effects are clearly
visible in the mixing ratios for an initially supersaturated air
parcel. In the following, we show two examples, the first with
a small droplet—ice distance and droplet number and the sec-
ond with an increased droplet—ice distance and droplet num-
ber.

As the first example we choose a droplet—ice distance
lop = 5R;, droplet number Ng = 200 and initial ambient sat-
uration ratio Soc = 1.01. The temporal evolution of the mix-
ing ratios is shown in Fig. 8a and b. From the ice mixing
ratio curve in Fig. 8a it is evident that ice crystals evaporate
much slower in comparison with the classical case without
local interactions (blue curve). Also the droplets inside the
influence spheres of ice crystals can exist longer compared
to the classical case; see Fig. 8b. The droplets inside the in-
fluence sphere evaporate slower because their released water
vapor raises the local coupling value py . and consequently
slows down further evaporation. This explains the first kink at
about r = 105 of the red curve in Fig. 8b, in which all outer
droplets are evaporated. The second kink at about t = 197s
marks the complete evaporation of all droplets. In this ex-
ample, the droplets in the influence sphere exist up to 100s
longer than the droplets outside. As is indicated by the cyan
curve, the time span may even be longer if the local relax-
ation rate C is smaller. From Fig. 8a we additionally observe
that the red curve for the ice mixing ratio does not deviate
significantly from the extreme case without local relaxation
(cyan curve) until all droplets in the air parcel are evaporated
(at about t = 197s). Therefore, a smaller local relaxation rate
increases the time until the red curve deviates from the cyan
curve.

In the second example with a moderate droplet—ice dis-
tance [y = 30R;, ambient saturation ratio S, = 1.01 and
Ng =500 droplets, we observe similar effects as before; see

Atmos. Chem. Phys., 18, 2525-2546, 2018
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Figure 8. Temporal evolution of the ice mixing ratio in panels (a) and (c¢) and the liquid water mixing ratio in panels (b) and (d) for the
parcel model simulations with w = —1 ms~! at initial ambient saturation ratio Soc = 1.01. Panels (a) and (b) show the case with Ngq = 200
droplets in each influence sphere of the ice crystals and droplet distance /o = SR;. Panels (¢) and (d) show the case with N3 = 500 and droplet

distance /o = 30R;. Note the different scaling of the axes.

Fig. 8c and d. Using the larger droplet—ice distance it is im-
portant to have more droplets inside the influence spheres to
compensate for the larger distance in order to observe a sim-
ilar effect of the local interactions. In this case, the delay in
the complete evaporation of the droplets inside the influence
spheres is about 50s; see Fig. 8d, in which the first kink is at
about r = 105's and the second kink at about t = 166s.

The longest delay of about 180s in the evaporation of
the droplets was found in the simulations using the small
droplet—ice distance Iy = S5R; and initial saturation ratios
Soo € {0.932, 1.01} (not shown).

3.2.3 Vertical velocity w = 1ms™!

For updrafts, a significant effect of local interactions on the
mixing ratios was not observed in our conducted simulations.
Even in a massively water subsaturated regime Soo = 0.847
with small droplet—ice distance o = 5SR; and high droplet
number Ng = 500, in which we expect the largest effect of
the local interactions, an effect of the local interactions on
the ice mixing ratio was only minor; see the upper left panel
in Fig. 9. Because of the ascent, the air parcel cools and the

Atmos. Chem. Phys., 18, 2525-2546, 2018

saturation ratio increases. Remarkably in this simulation, the
droplets inside the influence spheres of the ice crystals man-
aged to survive the time span until the air parcel became sat-
urated, whereas all droplets outside the influence spheres and
in the classical treatment without the local interactions evap-
orated earlier; see the upper right panel in Fig. 9. The air
parcel became saturated with respect to water at about 200s;
see Fig. 10. From the same figure it is evident that the satu-
ration ratio increased towards unrealistically high values of
about 10 % after 350s because we neglected the activation
of new droplets in our simulations. In reality, such high su-
persaturations are efficiently removed by the activation and
further diffusional growth of new droplets (Lamb and Ver-
linde, 2011, chap. 10).

However, considering only the simulations in which the
saturation ratio stayed within a reasonable realistic range,
we show as an example the case with initial water super-
saturation and saturation ratio S,, = 1.01, droplet distance
lo =5R; and Ng =500 droplets per influence sphere. The
temporal evolution of the mixing ratios is shown in the lower
row in Fig. 9. Compared to the classical case, the ice growth
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and Ngq = 500 droplets in each influence sphere of the ice crystals and droplet distance /g = 5SR;. The upper row is at ambient saturation ratio
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Figure 10. Temporal evolution of saturation ratio Soc with respect
to water for the same simulation as in the upper row of Fig. 9 with
ambient saturation ratio Soo = 0.847.
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rate is slightly increased. This increase is sufficient to raise
the temperature T, of the air parcel by approximately 0.25 K
over the classical case; see the left panel in Fig. 11. The right
panel in this figure confirms that the ambient saturation ratio
stayed within a realistic range. From all conducted simula-
tions with vertical velocity w = 1ms™!, this was the most
pronounced effect on air parcel temperature.

4 Conclusions

In this study, we considered the modeling of local inter-
actions between hydrometeors, specifically the case of an
ice crystal and surrounding cloud droplets. We were inter-
ested in capturing the impact of locality on the diffusional
growth of the hydrometeors. In contrast to the study by
Baumgartner and Spichtinger (2017), we suggested a formu-
lation of the local interaction that may be suited to incor-
porate into a bulk microphysics model. Since this formula-
tion allows for a more physically consistent representation
of the interaction between ice crystals and cloud droplets,
the model may improve the representation of the Wegener—
Bergeron—Findeisen process. Apart from the derivation of the

Atmos. Chem. Phys., 18, 2525-2546, 2018
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Figure 11. Temporal evolution of air parcel temperature 7o and saturation ratio Seo With respect to water for the same simulation as in the

lower row in Fig. 9 with droplet distance [y = 5R;.

Table 2. Summary of the observed effects within the conducted air parcel simulations.

Stationary

Updraft Downdraft

Parameter Ny

Increasing droplet number per ice influence sphere leads to more pronounced

effects.

Parameter /g

Decreasing ice—droplet distance leads to more pronounced effects.

Effect on mixing ratios
Gice and g1

Observed in water sub-
saturated environment.

Mostly no effect, but
compare the case
shown in the upper row
of Fig. 9.

Delay in the evapora-
tion; most pronounced
for initial saturation ra-
tios Seo & 1 and Soo >

1.

Observed in
supersaturated
ronment; air parcel is
warmer compared to
the classical case.

water
envi-

Effect on air parcel
temperature Too

Effects visible; air par- Not observed.
cel is warmer compared

to the classical case.

model, we incorporated the suggested model into an air par-
cel framework in order to assess the impact of local interac-
tions on a mixed-phase cloud.

A summary of the observed effects and trends within our
conducted simulations is given in Table 2. The dependence
on the system parameters Ny and [y, documented in the first
two rows of Table 2, was to be expected by construction of
the model in Sect. 2 and is independent of the choice of the
other parameters. All simulations were carried out with ini-
tial radius R; = 100um for the ice crystal and rq = 10 um
for the cloud droplets. Other choices for the initial radii will
modify the rate of change in the mass of the hydrometeors
and therefore the overall intensity and duration of local ef-
fects but not the qualitative influence of the parameters Ny
and [y.
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The effect of the local interactions is primarily controlled
by the droplet—ice distance and the number of droplets in the
influence spheres of the ice crystals. An enhancement of the
local effects on the mixing ratios is possible through a de-
scending air parcel being initially close to saturation or su-
persaturated with respect to water. This conclusion is con-
sistent with the theoretical study of Korolev (2008). In this
study, various growth regimes of hydrometeors in a mixed-
phase cloud were identified and connected to vertical ve-
locities. In order to identify the different regimes, we also
employed a parcel model with monodisperse size distribu-
tions of the hydrometeors, but excluded local interactions. It
was shown that the Wegener—Bergeron—Findeisen process is
only active in downdrafts and has its maximal efficiency for
vertical velocities around w = Oms™~!. Although these find-
ings were obtained with an idealized air parcel model, they
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seem to be valid in general because similar observations were
made in large-eddy simulations of real clouds (Fan et al.,
2011).

The heating of the air parcel through local interactions ob-
served in our study is due to an enhanced growth rate of the
ice crystals, and therefore the strength of the temperature ef-
fect additionally depends on the number of ice crystals inside
the air parcel. As detailed before, the ice crystal growth rate
also depends on the number Ny of droplets inside the influ-
ence spheres and the droplet—ice distance /y. If the air parcel
has a non-vanishing vertical velocity, local interactions may
influence the air parcel temperature only in the case of an as-
cending parcel for high droplet numbers inside the influence
spheres and small droplet—ice distances.

One may speculate about the influence of a temperature
change in the air parcel on its buoyancy, which depends di-
rectly on the temperature of the parcel (Rogers and Yau,
1989, chap. 3). An additional heating of an air parcel with
zero vertical velocity may trigger a vertical motion in an un-
stable stratification.

Although air parcel models are widely used, they might
overestimate or underestimate the strength of observed ef-
fects. Therefore one should include the suggested local inter-
action model into a large-eddy model framework and again
analyze the influence of the local interactions seen in this
study with the more realistic model, which is left for future
work.

In this study we only considered local interactions regard-
ing the diffusional growth of the ice crystal and surround-
ing cloud droplets. Another aspect of hydrometeors with
only small distances is an enhanced collision probability.
It is known that small-scale turbulence enhances collision
probability. In our context, an enhanced collision probabil-
ity means an enhanced probability for riming of the ice crys-
tals. In addition, the observed delays in the evaporation of
the cloud droplets may also contribute to an increase in rim-
ing efficiencies.

Data availability. The data of this study are available from the cor-
responding author upon request.
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Appendix A
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x1072
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Figure A1. Contour lines of the supersaturation with respect to wa-
ter around the ice crystal at time instant 5s. Although the compu-
tational domain is a cuboid with edge length 6000 um, the figure
shows only a reduced cuboid with edge length 2000 um centered
around the ice crystal. The black dots show the positions of the
droplets with coordinates (£600um, 0, 0) and (0, 600 um, 0).

In this appendix, we show an example of the effect of ice
crystal shape on the diffusional growth behavior of surround-
ing droplets by using the reference model described in Baum-
gartner and Spichtinger (2017). The model is a direct numeri-
cal simulation model and resolves the involved hydrometeors
as well as the water vapor and temperature field. We simu-
late a case as depicted in the schematic Fig. 2 in which the
ice crystal now has an ellipsoidal shape with a major axis
length 150 um and minor axis length 10um. The ice crys-
tal is placed in the center of a cubic computational domain
with edge length 6000 um. We place 38 droplets with radius
10 um along the Lebedev quadrature points (Lebedev, 1976)
and distance R, = 600um, matching the case o = SR; used
in the air parcel simulations in Sect. 3.2. The simulation time
is 5s. Figure A1l shows the contour lines of supersaturation
with respect to water along a slice at height z = 0 through the
computational domain. It is seen that the ice crystal is visible
as a strong sink for water vapor, but the contour lines appear
as almost spherical at some distance from the ice crystal.

Atmos. Chem. Phys., 18, 2525-2546, 2018

Figure A2 shows the temporal evolution of the droplet
masses. In Fig. A2a, the corresponding curves of all 38
droplets are shown and a different growth behavior is ob-
vious. In Fig. A2b, only the temporal evolution of the four
marked droplets in Fig. Al is shown. The droplets with co-
ordinates (+£600um, 0, 0) are closest to the ice crystal and
evaporate (red curves), while the droplets with coordinates
(0, £600 um, 0) have the largest distance from the ice crys-
tal surface and grow (blue curves); i.e., they show different
growth behavior. According to these considerations it is ob-
vious that including this effect requires precise information
not only about the shape of the ice crystal but also about the
relative positions of the droplets with respect to the ice crys-
tal surface. Such information is not available in numerical
models and therefore we neglect this dependence.

www.atmos-chem-phys.net/18/2525/2018/
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Figure A2. Temporal evolution of the droplet masses. (a) The droplet masses of all 38 droplets and (b) the droplet masses of the droplets
with coordinates (£600um, 0, 0) (red curves) and (0, £600 um, 0) (blue curves).
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Appendix B

Figure B1 shows the temporal evolution of the saturation
ratio So,; with respect to ice for the first simulation in
Sect. 3.2.1 with vanishing velocity, Nq = 40 droplets per ice
crystal influence sphere and droplet distance /) = SR;. Al-
though the air parcel is initially subsaturated with respect to
ice, the evaporating droplets release enough water vapor to
the air parcel to cause an ice supersaturated environment.

Atmos. Chem. Phys., 18, 2525-2546, 2018
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Figure B1. Temporal evolution of saturation ratio Sy, ; with respect
to ice for the same simulation as in the upper row in Fig. 6.
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