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Parts of this work were used as contributions for the following preprints:

• The rate of photon production in the quark-gluon plasma from lattice QCD [64].

I contributed the generation of the X7 gauge ensemble (see chapter 4).

• Lattice QCD estimate of the quark-gluon plasma photon emission rate [94].

I contributed the generation of the X7 gauge ensemble (see chapter 4).

• An estimate for the thermal photon rate from lattice QCD [90].

I contributed the generation of the X7 gauge ensemble (see chapter 4), the inves-

tigation of the parameter landscape for the fitting of the continuum data using

an ansatz for the spectral function, and cross-checks for the adaption of the

Backus-Gilbert formalism to our problem (see chapter 6).

• Static and non-static vector screening masses [67].

I contributed the generation of the Y7 gauge ensemble (see chapter 4), the calcu-

lation of correlators, the extraction of thermal screening masses and amplitudes

from the correlators as well as the computation of the effective screening mass

and amplitude from the effective approach (see chapter 5).



Abstract

In this work, properties of the quark-gluon plasma are studied, in particular thermal

screening masses and the photon production rate. We employ the numerical realization

of Quantum Chromodynamics (QCD) called lattice QCD. To the end of calculating

screening masses and the rate of photon emission we generate lattice gauge ensembles

at temperatures of 254 and 508 MeV well above the chiral and deconfinement phase

transition temperature Tc ≈ 155 MeV at vanishing net baryon chemical potential and

measure the relevant observables on the gauge configurations. The lattice regularized

action contains the Wilson gauge action and the O(a) improved Wilson fermions with

Nf = 2 mass degenerate light flavors. The generation of the finite-temperature en-

sembles is performed after careful tuning of the lattice and algorithmic parameters.

The ensemble at 254 MeV enables a continuum extrapolated estimation of the photon

emission rate from the quark-gluon plasma where we use two further ensembles at the

same temperature that were previously generated within the Mainz lattice group.
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Chapter 1

Heavy-ion Collisions and Quantum

Chromodynamics

One of the main research avenues for fundamental research in the area of strongly in-

teracting matter is the quest to understand the emergence of hadronic matter from its

constituents - the so-called quarks and gluons. Research in the late 1960s showed that

nucleons are composites of three valence quarks. The masses of the quarks inside a nu-

cleon, however, sum up to ∼ 10MeV, while the mass of the nucleon lies at ∼ 940MeV.

Thus, one concluded, about 99% of the nucleon’s mass is generated dynamically by

the strong interaction [1]. The theory that describes strongly interacting particles is

called Quantum Chromodynamics (QCD) with its fundamental degrees of freedom be-

ing quarks and gluons. These elementary particles carry a color charge which makes

them sensitive to the strong interaction. Hence, the underlying quantum field theory is

named Quantum Chromodynamics from the Greek χ%óµoς meaning ’color’.

1.1 Motivation and the QCD phase diagram

When it comes to the emergence of hadrons from quarks and gluons, one has to face

the phenomenon that no free quarks have yet been found in nature, they are confined

into composite objects called hadrons. This color confinement and the dynamical mass

generation take place in the regime of low momentum transfer where αs (the coupling of

the strong interaction) is large and non-perturbative techniques need to be applied [1].

One remarkably successful non-perturbative technique is lattice QCD which is reviewed

in chapter 2.

The QCD vacuum is filled with a number of condensates related to the origin of
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hadronic masses [1]. The chiral condensate is one such condensate and serves as

an order parameter for chiral symmetry restoration. When examining QCD at finite

temperature (i.e., not in vacuum) one observes that the chiral phase transition occurs at

the same temperature as the deconfinement phase transition (at least for zero baryon-

chemical potential) [1]. Far above this temperature, quarks and gluons are indeed

deconfined and can move quasi-freely. This deconfined phase is called the quark-gluon

plasma (QGP). According to most cosmological models concerning the history of the

universe, deconfined matter has been realized in nature as a QGP only from about a

picosecond to about a few microseconds after the Big Bang in extreme conditions at

temperatures greater than 150 MeV/kB
1. Therefore, free quarks have not yet been

detected in nature around humans. Nonetheless, the properties of the QGP at finite

temperature and density have sparked active research endeavors around the globe and

are also the subject of this work. In particular, I want to estimate the photon production

rate of the quark-gluon plasma by computing and reconstructing the spectral function

related to the vector channel within the framework of lattice QCD. The QGP is probed

in experiments so that theoretical predictions can be confronted with data. Apart from

the deconfined QGP phase of QCD there is also a confined hadronic phase.

The phase diagram of QCD

The thermodynamic phases of QCD can be mapped to the plane spanned by tempera-

ture T and net baryon chemical potential µB ≡ µ. The resulting arrangement is called

the phase diagram of QCD, see fig. 1.1.

There are two phenomena in QCD that are responsible for the shape of the QCD

phase diagram, deconfinement and the spontaneous breaking of chiral symmetry [2].

The latter is addressed in subsection 1.5.2, the former is a consequence of the so-

called asymptotic freedom of QCD. Asymptotic freedom describes that the coupling αs

runs from large values at low momentum transfers or, equivalently, large distances to

low values at large momentum transfers/short distances. In 2004, the Nobel Prize in

Physics was awarded to Xxxxx and Xxxxxxx [3] as well as Xxxxxxxx [4] for the discovery

of the running of the QCD coupling. In the low-energy phase of QCD, the hadron gas,

the constituent quarks in the hadrons interact strongly because the coupling is strong.

1The universe might have been populated by free quarks and gluons even before that but only after

the inflation period had ended. In that period between the end of inflation and 10−12 sec after the Big

Bang the electromagnetic and weak interactions would have still been unified and all particles would

have been massless. The physics governing this primordial soup is not yet understood.
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Figure 1.1: Schematic phase diagram of QCD in the plane of temperature T and net

baryon chemical potential µ.

When a quark-antiquark pair, for example, is separated, that costs energy and at some

point, it becomes energetically favorable for a new quark-antiquark pair to form such

that the original pair is again bound into a compound object. This is the phenomenon

of confinement of quarks and gluons into hadrons. At vanishing chemical potential

µ = 0, the coupling between quarks decreases for increasing temperature and above

a critical temperature Tc, quarks and gluons are deconfined. The corresponding phase

is the quark-gluon plasma phase where quarks and gluons can move freely. A striking

observation is that at Tc, not only are quarks and gluons deconfined, but the chiral

symmetry is restored while it is spontaneously broken in the hadronic phase below Tc

[2]. As discussed in subsection 1.5.2, chiral symmetry is explicitly broken due to small

finite quark masses. Thus, the phase transition at vanishing chemical potential between

the hadron gas and the quark-gluon plasma is a rapid, but smooth crossover rather than

a true phase transition [2]. In the Nf = 2 chiral limit (with the up and down quark

masses set to zero), the phase transition is of second order.

At nonvanishing chemical potential µ > 0, however, the phase transition is thought

to change its type. It is first-order above some critical baryon-chemical potential µc.

The first-order phase transition line (blue line in fig. 1.1) must therefore end at a

critical endpoint [2]. The existence and the position of this critical endpoint is subject

of current research activities both from the theoretical and the experimental side, see

Ref. [2] for a recent review. At lower temperatures and intermediate baryon-chemical

potential, the matter that is described there could be studied in the core of neutron
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stars [2]. Finally, at low temperatures and very large chemical potential, it is possible

for a superconducting phase to appear. The quarks then would form BCS pairs with

color-flavor locking [2].

The hadron gas predominantly consists of pions and is rather dilute compared to

the dense QGP phase. At sufficiently low temperatures, the hadron gas behaves as a

nearly ideal gas; and at sufficiently high temperatures, the coupling between quarks and

gluons is so weak (because of asymptotic freedom) that the QGP can approximately

be described as an ideal gas, too [2]. Along the curve of first-order phase transitions

in the T − µ plane, the pressure and energy density of the two phases must be equal

according to Gibbs’s criterion. The two phases coexist on the first-order phase transition

line [2]. One consequence of the coexistence of the two thermodynamic phases is the

occurrence of large fluctuations at the critical point [2]. It is important to remark that

the fluctuations in the physical systems are accompanied by long-range correlations [2].

1.2 The photon rate in heavy-ion collisions

In order to study hot and dense strongly interacting matter in the laboratory, one has

to produce it by colliding heavy ions in particle colliders such as the LHC at CERN

and RHIC at Brookhaven. There is evidence that the matter created in such heavy-ion

collisions is equilibrated [1], therefore one concludes that it reproduces the matter that

the universe consisted of ∼ 10−6 sec after the Big Bang. Thus, experiments at LHC

and RHIC are employed to study the properties of this primordial matter.

In recent studies (e.g. [5, 6]), however, even non-equilibrium effects like, for instance,

momentum anisotropies during the very early stages of the heavy-ion collision are getting

more and more attention. In Ref. [5], the authors study the dilepton production rate

and elliptic flow using models for relativistic anisotropic hydrodynamics. It is believed

that dileptons with intermediate masses of M ∼ 1 . . . 3 GeV created in the medium

convey information about the earlier stages of the QGP above the deconfinement phase

transition temperature whereas dileptons with a mass of less than about 1 GeV are

created predominantly from hadronic matter below the critical temperature and can

give insight about the spectral functions of vector mesons [5].

The QGP produced in the initial stages of the collision (τ . 1 fm/c) at LHC or RHIC

energies is driven out of equilibrium due to a fast longitudinal expansion of the system.

This results in a state which is only pseudo-thermalized but is used in phenomenological

calculations as initial stage of a dissipative hydrodynamic evolution until freeze-out and
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hadronization (1 fm/c . τ . 10 fm/c) [5]. Dissipative relativistic hydrodynamics was

successful so far in describing thermodynamic quantities, collective flow and transport

properties of the expanding QGP at RHIC and LHC energies [5].

Anisotropies in collective flow observed in heavy-ion collisions are due to a spatial

asymmetry of the collisions and fluctuations in the initial shape of the system. Ad-

ditionally, when the system undergoes a rapid longitudinal expansion, the momentum

distribution functions on the parton level become anisotropic, too [5]. Thus, they will

affect the emission rates of electromagnetic probes from the early QGP stages. In or-

der to account for these anisotropies in the momentum distribution, one has to extend

ideal hydrodynamics models. On top of that, the authors of Ref. [5] study the effect

of the shear viscosity over entropy density ratio for the hydrodynamical evolution of the

medium. Their findings suggest that it is important not to neglect effects of anisotropies

connected to non-equilibrium thermodynamics in the very early stages of a relativistic

heavy-ion collision when examining dilepton emission and elliptic flow.

Although the QGP created at the LHC or RHIC has not yet equilibrated locally or

thermally during the early stages of the collisions, dissipative hydrodynamical models

are quite successful in describing the evolution of the energy-momentum tensor2 already

after ∼ 1 fm/c [6]. XXXXX [6] explains this by introducing a non-equilibrium attrac-

tor, a solution of the dynamical equations onto which all solutions collapse during the

evolution of the system. As soon as a solution collapses onto the attractor, it becomes

pseudo-thermalized, i.e. while information about its exact initial conditions is obscured,

the solution has not yet reached local thermal equilibrium [6]. Thus, results from hy-

drodynamical models assuming local thermal equilibrium still provide valuable insights

for understanding the evolution of a heavy-ion collision.

The medium that is generated during a heavy-ion collision evolves rapidly starting

from the initial nuclear impact until the dissolution of the medium [1]. Historically,

measuring photon and dilepton rates was suggested as a means to probe whether a

QGP has actually formed during a relativistic heavy-ion collision [7]. Because the

thermal dilepton yield from a QGP should exceed the one from a hadron gas far below

the ρ mass, an observation of photon excess below this mass was considered proof of

QGP formation [8]. The temperature of this medium then could be inferred from the

photons that escape at the early stages of the collision [7]. As was shown in Ref. [9] by

including two-loop diagrams in the calculation of the photon emission rate, the dominant

2On astrophysical scales, large anisotropic fluctuations in the energy-momentum tensor can give

rise to gravitational waves, see section 1.3.
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contribution at large transverse momenta comes from quark-antiquark annihilation and

quark-gluon rescattering. This gives rise to an excess photon yield compatible with the

one observed in experiments [8, 10].

When electrically charged particles scatter off each other inside the medium, real

photons can be produced while virtual photons are created by particle-antiparticle anni-

hilation processes; these virtual photons then later decay into dilepton pairs [7]. Once

real or virtual photons are produced in the medium, they interact with the constituents

of the hot and dense matter only through the electromagnetic interaction [7]. This

results in a mean free path typically larger than the extent of the fireball. Hence, the

photons and dileptons can escape the medium without secondary re-scatterings and

provide direct information on the early stages of the heavy-ion collision because the

photon rates are largest at the beginning of the collision [7]. They are nonetheless

produced throughout the entire evolution of the collision. Hadronic probes, however,

mainly probe the later stages of the collision after they have undergone multiple re-

scatterings as a consequence of their short mean free path inside the hot and dense

medium. They can escape the medium only after it has cooled down and the freezeout

stages have begun [7]. These rapid changes during the entire history of the fireball

constitute a challenge when one wants to reconstruct the events from the initial impact

to the dissolution of the medium [1]. Therefore, even under the assumption of local

thermal equilibrium it is important to have a good understanding of the evolution of the

medium with respect to temperature and baryon-density when one wants to connect

dilepton or photon emission rates to space-time integrated spectral functions in the vec-

tor channel [1]. Many intricate models have been developed and tested to this end and

one can see that model calculations reproduce dilepton spectra from heavy-ion collisions

[1]. The goal of this work, however, does not consist in applying a suitable model but in

managing to calculate spectral functions and production rates from the ab initio theory

of QCD itself. This endeavor faces as its main challenge the numerical computation of

the relevant correlation functions and the solution of an inverse problem.

Other sources of photons in heavy-ion collisions

One of the main tasks of phenomenologists trying to describe the physics of relativistic

heavy-ion collisions consists in including the complex processes occurring before, during

and after equilibration of the medium. Various phenomenological aspects of thermal

photon emission in the QGP have been addressed. Apart from the above mentioned
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annihilation with rescattering [9], there are other sources of (direct) single photons

from quark matter: In the QGP, single photons arise from Compton scattering, annihi-

lation and bremsstrahlung processes, and before equilibrium, the parton cascade model

describes a sizeable amount of photons generated by the branching of quarks with

timelike kinematics (q → qγ) [11]. In a series of papers [12, 13, 14], Xxxxxx, Xxxxx

and Xxxxx derive the photon (and gluon) emission rate of a relativistic quark-gluon

plasma to leading order. They include bremsstrahlung, inelastic pair annihilation and

the Landau-Pomeranchuk-Migdal effect rigorously. This was a seminal achievement as

most state-of-the art models for relativistic hydrodynamics rely on their results to evalu-

ate the photon rate in heavy-ion collisions. The authors of Ref. [15] mainly consider the

origin of photons from hot hadronic matter. This is important because during a heavy-

ion collision, the matter produced before the fireball and after the phase transition from

the QGP phase to the (partly mixed and then purely) hadronic phase is predominantly

composed of hadronic degrees of freedom. In Ref. [15], the photon production of light

pseudo-scalar, vector and axial vector mesons is accounted for including strange and

non-strange mesons. The evolution of the collision is modelled via integrating over

the spatial and temporal history of the reaction. The expansion and cooling rates of

a relativistic heavy-ion collision are governed by the equations of state (EOS) of the

QGP or the hadron gas formed during the collision. Therefore it is crucial to know the

EOS very precisely and study the effects of the initial conditions of the reaction. The

convolution is performed under the constraint of conservation of net baryon number NB

and total entropy S; the ratio of S/NB, however, must be fixed to match experiments

[15]. Hard photons from nucleon-nucleon collisions come in three types: direct photons,

fragmentation photons, background photons [16]. Two incoming partons can produce

direct photons by Compton scattering and annihilation. Fragmentation photons are

created when final state partons emit bremsstrahlung. When hadrons decay after the

collision, they produce background photons, these originate mainly in the decay of

π0 → γγ. Sometimes, direct and fragmentation photons are subsumed under the term

prompt photons3 [15]. In order to accurately assess the prompt photon contribution

to the observed spectra, one must understand the in-nucleus effects occurring during

the collisions. Since photon production in p-p collisions is not yet fully understood, it

is difficult to account for nuclear corrections (like the Cronin effect4, for instance) in

3See also chapter 6.
4The Cronin effect describes modifications in the transverse momentum distribution of partons in

a heavy-ion collision due to the scattering of partons within one colliding nucleon off partons within
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heavy-ion collisions [15]. Nonetheless, the authors of Ref. [15], e.g, are able to repro-

duce the thermal photon emission rate measured in relativistic heavy-ion collisions [10]

by including detailed knowledge of thermal emissions from the QGP and hadron gas

as well as hadron reactions in the resonance gas. They also estimate the contribution

of prompt photons. The thermal emission rates of photons and dileptons are tightly

connected as they are both derived from the vector current correlator evaluated either

at lightlike (for photons) or timelike (for dileptons) kinematics [15].

Survey of photon and dilepton spectra in heavy-ion collisions

In Ref. [18] and their follow-up work [11], results from the WA80 collaboration at CERN

SPS are discussed. The authors compare different models describing a) a hot hadronic

gas as initial state which cools and does not undergo a phase transition, and b) a QGP

phase as initial state which evolves into a mixed phase of QGP and hadronic gas with

a completely hadronic phase as final state and a first-order phase transition in between

the initial and final states. They conclude that an evolution of the system starting from

a hot hadronic gas cooling down without a QCD phase transition can be ruled out as

it clearly overshoots the observed photon emission rate; and it would imply an initial

hadron density that is rather unphysical [11].

In phenomenological analyses of the photon yields in Pb + Pb collisions at the

WA98 experiment located at CERN SPS, the authors of Ref. [19], for instance, find

evidence that QGP is formed for a short time period, but the evidence is not strong.

In Ref. [20], the authors are able to distinguish between hard and thermal photons to

the photon yield in the WA98 experiment. They point out strong hints towards the

creation of QGP for a very short time period (∼ 1 fm/c) mixed with a hot hadronic

gas. It is important to note that one of the main intricacies consists in identifying

the direct photons of the photon yield. In Ref. [21], one method is discussed how to

separate contributions to the photon yield from direct and from decay photons. This

method is applied by the authors of Ref. [22]. They present the contributions of hard

(i.e. prompt) and thermal photons to the single photon yield in the WA98 experiment

at CERN SPS and are able to reproduce the experimental data by solving relativistic

hydrodynamical equations in 3 + 1 dimensions. Similar to the previous work of [18, 11],

the EOS must be determined in order to describe the expansion and cooling rate of the

medium during the relativistic heavy-ion collision; and again they assume as initial state

another nucleon participating in the collision [17].
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a) a hadronic gas without a phase transition, and b) a QGP phase with a first-order

phase transition. It is important to note that the authors use two-loop perturbative

calculations of the correlation functions entering the photon emission rate. When the

static emission rate is known, one needs to perform a space-time convolution in order

to calculate the total photon yield from a relativistic heavy-ion collision. For this, the

EOS used contains hadronic degrees of freedom with masses of up to ∼ 2.5 GeV. In

particular, the reactions between the π, ρ, ω, η and the a1 meson as well as their decay

processes are considered. Even in-medium effects are included in the calculation of the

yield. Their results, however, do not allow for a conclusive answer whether a QGP has

formed or not.

This is different for the work of Ref. [23]. The authors include two-loop perturbative

results and in agreement with Ref. [9], explain the results of the WA98 experiment [10]

by the formation of a hot and dense quark-gluon plasma which enters a mixed phase

of QGP and hot hadronic gas and finally undergoes a phase transition and freeze-out

towards a purely hadronic state. In addition, they can rule out a hot hadronic gas

as initial state formed in the collision. In fig. 1.2, the contributions of thermal and

prompt photons to the single photon yield at the WA98 experiment are shown. For the

discussion of prompt photons, see references in [23]. The thermal photons are described

as originating from hot and dense quark matter in a QGP and a later mixed phase as

well as from hadronic matter during the mixed phase and the final hadronic phase. The

sum of prompt and thermal photons describes the expermiental data very well.

The WA98 experiment located at CERN consists of photon and hadron spectrom-

eters with large acceptance [7]. The results relevant for the photon emission rates are

derived from data taken at the experiment in 1995 and 1996. For a detailed explanation

of the experiment’s setup and the data analysis, the reader is kindly referred to Ref.

[7].

In this experiment, particles are identified by a time-of-flight method and their

momentum is also measured by means of a dipole magnet. Because one wants to

minimize the photon background contribution, the beam travels in an evacuated pipe

and the detector is designed such that there is only little amount of detector material

in the flight path of the particles [7]. The actual photon spectrometer is called the

lead-glass detector array, LEDA. About 97% of the photon yield comes from the decay

processes of π0 and η mesons [7]. Therefore it is crucial to accurately determine these

decay yields in order to assess the yield of (thermal and prompt) direct photons. In

the WA98 experiment, they are determined via the π0 → γγ and η → γγ channels
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FIG. 1. Single photon production in Pb + Pb collision
at the CERN SPS. A chemically and thermally equilibrated
quark-gluon plasma is assumed to be formed at τ0 = 1/3T0

which expands, cools, enters into a mixed phase and under-
goes freeze-out from a hadronic phase. QM stands for radia-
tions from the quark matter in the QGP phase and the mixed
phase. HM, likewise denotes the radiation from the hadronic
matter in the mixed phase and the hadronic phase. Prompt
photons are estimated using NLO pQCD with the inclusion
of intrinsic kT of partons (Wong and Wang [18]). The (tail)
ends of the arrows denote the upper limit of the production
at 90% confidence limit.

FIG. 2. The sensitivity of single photon spectrum to crit-
ical temperature. The solid curve is for TC = 180 MeV, while
the upper (lower) dashed curve is for 160 (200) MeV.

FIG. 3. The sensitivity of single photon (a) and pion
spectrum [26] (b) to initial time (temperature). The curves,
from top to bottom, correspond to initial times of 0.2, 0.4,
0.6, 0.8, and 1.0 fm/c for (a) and to 0.2 and 1.0 fm/c for (b).

6

Figure 1.2: Plot of thermal and prompt photon emission rate from experiment [10]

as a function of transverse momentum [23]. The data points stem from the WA98

collaboration at CERN SPS. QM indicates the contribution from thermal radiation of

quark matter during a QGP and the mixed phase, see the dashed line. HM indicates

the contribution from thermal radiation of hadronic matter during the mixed and the

hadronic phase. The sum of the two are depicted by the solid black line. The contri-

bution of prompt photons is displayed as the dashed-dotted curve. Finally, the total of

thermal and prompt photons is shown by the solid red line.

only [7]. Then the background decay distribution is also calculated based on these

radiative decays via a fit ansatz and finally, the difference between the measured and

the calculated inclusive photon distribution is used to determine the excess of direct

photon production [7]. For central collisions, a significant excess was found [7]. This

excess is explained by the effect of annihilation with rescattering that can only occur in

dense quark matter [9]. Because only the 10% most central collisions exhibit the direct

photon excess and because the initial temperature at the CERN SPS collisions was

not sufficiently high, the phenomenological analyses discussed above [19, 20, 22] could

only state strong hints towards a formation of QGP for a short time period rather than

conclusively showing evidence for QGP formation. But upon including the higher-order

effects explained in Ref. [9], the observed excess could be attributed to QGP formation
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[23].

The role of dileptons

Additionally, apart from photons, also dilepton pairs probe the complete space-time

evolution of the medium created in a relativistic heavy-ion collision and do not suffer

from final-state interactions with strongly interacting collision participants [24]. There-

fore, measuring dileptons provides direct insight into the dynamics of the QGP. In the

confined phase, the thermal dilepton production in the mass region below 1 GeV is me-

diated by the light vector mesons ρ, ω and φ [24]. The ρ with a mass of 770 MeV plays

the dominant role as it strongly couples to the ππ channel and has a lifetime of about

1.3 fm/c which is short compared to the lifetime of the fireball (about 5 . . . 10 fm/c)

[24]. Furthermore, dileptons can be utilized for probing reactions inside the nucleus as

well as photon-nucleus reactions because the electrons emitted from the nucleus do not

re-scatter within the nuclear matter via the strong interaction [25]. When a photon hits

a nucleus inside the medium, the photon more likely interacts with the nucleons inside

the nucleus that are facing towards the photon whereas the nucleons on the opposite

side of the nucleus are less likely to interact with the photon through the vector channel

[25]. This phenomenon is called shadowing and is addressed in Ref. [25] in order to

accurately assess in-medium photon reactions.

Photon rate in heavy-ion collisions at the highest energies

When considering the photon production from relativistic heavy-ion collisions at RHIC or

LHC energies, one has to take into account effects from jet formation and jet-quenching.

In Ref. [26], the authors address the photon production due to jets from high-energy

quarks traversing the QGP. Because the photon yield from quark jets depends on the

density of the medium traversed by the quark, the photon yield may provide information

about the medium’s density [26]. Although the photon radiation by a fast quark in the

medium due to Compton scattering off thermal gluons and annihilation with a thermal

antiquark is of higher order in αs (compared to prompt photons, e.g.), the contribution

is not subleading and needs to be accounted for when describing the photon rate at

RHIC or LHC energies [26].

In Ref. [27], the authors calculate the spectra of real and virtual photons including

effects of jets in the medium at RHIC energies. Bremsstrahlung processes of jets in the

medium radiating gluons and photons are addressed by several authors, e.g. [28, 16].

14



)c (GeV/
T

p
0 2 4 6 8 10 12 14

)2
c

-2
 (

G
eV

yd
T

pd
T

p
d

ir
γ

N2 d
 

ev
.

N π2
1

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1

10

210

310

2x 10

1x 10

0x 10

 = 2.76 TeVNNsPb-Pb 
  0-20% ALICE
20-40% ALICE
40-80% ALICE

PDF: CTEQ6M5, FF: GRV 
(n)PDF: CTEQ6.1M/EPS09,
FF: BFG2

JETPHOX
PDF: CT10, FF: BFG2
nPDF: EPS09, FF: BFG2

)collN(all scaled by 

Figure 1.3: Plot of direct photon spectra as a function of transverse momentum from

the ALICE collaboration at CERN for three centrality classes and a comparison to NLO

predictions [29] and references therein. The data are well described by models assuming

the formation of a QGP, see Ref. [29] for details.

The photon spectra measured by the ALICE collaboration in Pb− Pb collisions at

CERN [29] agree with perturbative QCD results and are well described by state-of-the-

art models concluding the formation of a QGP. Fig. 1.3 shows the measured photon

spectrum: Prompt direct photons dominate at high transverse momenta (pT & 5 GeV)

while thermal direct photons dominate at lower transverse momenta (pT . 4 GeV) and

convey information about temperature, collective behavior and the space-time evolution

of the QGP [29]. Additionally, direct photons are created when hard scattered partons

interact with the medium, which is also known as jet-photon conversion [29]. This

mechanism occurs mainly at transverse momenta pT . 10 GeV [29] and is dominated

by Compton or annihilation processes of a fast quark with a thermal parton [16]. In

their work [29], the ALICE collaboration finds that there is a correlation between the

slope of direct photon spectra and the initial temperature which is, however, hard to

extract, see [29].
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The decay photons in the experiment originate predominantly from π0, η and ω

decays. Again, an excess photon yield is observed in mid-central and central collisions

for transverse momenta below pT ∼ 4 GeV/c connected to the production of thermal

photons [29].

1.3 Connection to cosmology

On a cosmological scale, large anisotropies in the energy-momentum tensor can give rise

to gravitational waves as was briefly mentioned in section 1.2. Additionally, momentum

anisotropies are also studied in the context of dilepton production in the quark-gluon

plasma. The spectral functions associated with dilepton and photon production also

appear in cosmological calculations introducing sterile neutrinos, possible warm dark

matter candidates. Finally, the epoch of formation and eventual dissolution of the QGP

is embedded in a series of cosmological epochs that comprise the history of the universe.

In general, one can state that the comparison of the expansion (or Hubble) rate

of the universe and the equilibration rate provides insight to cosmological phenomena

[30]. The equation of state (EOS) of the matter that the universe consists of governs

the expansion rate while the equilibration rate is determined by the physical interactions

and processes experienced by a certain particle or excitation [30]. Typically, when the

equilibration rate falls below the expansion rate, the relic of a certain epoch starts to

form [30]. The cosmic microwave background, for instance, stems from the time of

recombination when photons effectively ceased to interact with the rest of the matter

in the universe [30].

Similar mechanisms take place in relativistic heavy-ion collisions: the expansion of

the medium is governed by the EOS of QCD and microphysical processes determine the

response and coupling of certain probes to the medium [30]. Due to this parallelism,

developments in either field have sparked progress in the other, see Ref. [30] for details.

In the following, connections of the spectral function in the vector channel to sterile

neutrinos as well as of anisotropies in the QGP to gravitational waves will be addressed.

Sterile neutrinos

One of the most important tasks of modern cosmology is to explain the apparent asym-

metry of baryons over antibaryons. There are several scenarios that try and realize

the Sakharov conditions for the baryon-antibaryon asymmetry [31]. One path is to ex-
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tend the standard model by heavy right-handed Majorana neutrinos within leptogenesis

scenarios [31, 32]. Because the Majorana neutrinos are unstable, they will decay into

leptons and antileptons. And since the Sakharov conditions imply that CP symmetry

be violated, the decay rates are different which results in an excess of antileptons over

leptons. This then can generate a baryon over antibaryon excess via sphaleron interac-

tions that conserve B − L, but not B + L [31, 32]. It is interesting to note that the

self-energy of the Majorana neutrinos has a similar form as the one for the production

of photons.

Furthermore, it is convincingly evident from neutrino experiments that neutrinos

have a small, yet detectable mass and that there are mixings between the three neutrino

families [33]. In order to incorporate these phenomena into the minimal standard model

(MSM) it is proposed that one add 3 sterile right-handed neutrinos to the MSM [33].

This is called the νMSM. The authors of Ref. [33] show that the extension by 3 sterile

neutrinos is a natural choice if the sterile neutrinos are simultaneously required to act as

possible warm dark matter candidates and to satisfy constraints from neutrino oscillation

data. The main production mechanism of dark matter through oscillations between

active and sterile neutrinos is explored in Ref. [33]. For the case of 3 additional sterile

neutrinos, the νMSM might be testable by experiments dedicated to observing dark

matter. In this way, the νMSM can be thought of as a very simple and ”experimentally

motivated extension of the MSM” [33]. In Ref. [34], the exact mechanism that leads

to a baryon-antibaryon asymmetry within the νMSM is explained.

Once the νMSM is formulated, it is possible to derive the sterile neutrino production

rate within it [35]. This rate, however, exhibits a peak for temperatures around the

QCD crossover where strong interactions are dominant, and consequently perturbative

approaches are not applicable [35]. Hence, the authors of Ref. [35] establish an analytic

relation between the sterile neutrino production rate and the active neutrino spectral

function. These spectral functions can be expressed in terms of flavor non-singlet vector

as well as axial vector currents accessible via QCD [35]. The vector correlator is directly

connected to the photon production rate (see also chapter 6). Therefore the spectral

function that is associated with the vector correlator is not only relevant for the photon

production rate, but also for the production of sterile neutrinos, i.e. possible candidates

of warm dark matter particles as well as possible explanations for neutrino oscillations

and the baryon-antibaryon asymmetry within leptogenesis scenarios.

The possibility of encompassing many beyond standard model phenomena such as

neutrino masses, warm dark matter candidates, and the asymmetry between baryonic
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and antibaryonic matter in the universe within one simple extension of the standard

model by 3 right-handed sterile neutrinos has sparked very recent research activity, see

e.g. Ref. [36], where the corresponding cosmological evolution equations are solved

numerically. A lattice estimate for certain quantities such as rate coefficients occurring

in the dark matter production would be a very valuable cross-check.

Gravitational waves

Similar to electromagnetic radiation being emitted by moving charges inside the QGP,

when point masses are accelerated in the hot and dense medium, they act as sources

for gravitational waves. While the photon radiation from the QGP is detectable, the

very light masses and the comparably weak gravitational interaction cannot produce

gravitational waves that are detectable by today’s means.

One known and plausible mechanism for creating gravitational waves that are de-

tectable consists in the strong perturbations out of equilibrium that could take place

in the early universe as a consequence of a possible first order phase transition. When

rapid and violent phenomena like a first order phase transition appear in the early uni-

verse, they can cause anisotropic fluctuations in the energy-momentum tensor which

then give rise to detectable gravitational waves [37]. Phase transitions take place at

a critical temperature T∗ when the universe evolves from a symmetric phase with a

temperature above T∗ to a state of broken symmetry at a temperature below T∗.

In Ref. [37], a few models exhibiting a strong first order phase transition are re-

viewed. When a first order phase transition takes place, gravitational waves can be

created both by bubble collisions and magnetohydrodynamical turbulence inside the

primordial plasma because they constitute fluctuations in the energy-momentum ten-

sor. Their gravitational wave spectra due to the phase transition are presented and

compared to the sensitivity limits of experiments that are currently ongoing or planned.

It is interesting to note that most of the models discussed in [37] introduce dark matter

candidates. Thus, the search for gravitational wave signals is an endeavor complemen-

tary to the search for dark matter candidates already conducted at the LHC.

Axions

Apart from the photon production rate of the QGP, the quest for dark matter candidates

is subject to ongoing research activities applying lattice quantum field theory in the field

of early universe phenomena, see Ref. [38] as an example of motivating axions as dark
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matter candidates. Progress in this direction heavily relies on the determination of

the topological susceptibility (being connected to the axion’s mass and decay constant

as χtop ∼ m 2
af

2
a [38]) in the temperature range T ∼ 540 MeV . . . 1150 MeV which

constitutes a formidable task for the lattice community.

1.4 Quantum Chromodynamics

The standard model of elementary particle physics organizes three interactions and the

corresponding particles sensitive to these interactions. They are called the electromag-

netic, the weak and the strong interaction (or force). Quantum Electrodynamics (QED)

is the quantum field theory describing the interaction of the electromagnetic force with

leptonic degrees of freedom. When one extends the symmetry group of QED from U(1)

to SU(2)×U(1), it is possible to unify the electromagnetic and the weak forces within

a single theory for which Xxxxxxx, Xxxxxxxx and Xxxxx received the Nobel prize in

physics in 1979. The interaction of particles sensitive to the strong force is subsumed in

the theory of Quantum Chromodynamics (QCD). There are six known so-called quarks,

massive fermionic degrees of freedom that carry a color charge. The bosonic massless

particles that mediate the color charge are called gluons.

u d s c b t

Q/e 2/3 −1/3 −1/3 2/3 −1/3 2/3

m 2.2 MeV 4.7 MeV 95 MeV 1.275 GeV 4.18 GeV 173 GeV

Table 1.1: The six quark flavors and their respective electromagnetic charges and

masses. The masses are quoted in the MS scheme at scale µ = 2 GeV from [39].

The Lagrangian density of QCD reads

LQCD = −1

4
Tr [F µνFµν ] +

Nf∑
f=1

ψ̄f (iγµDµ −mf )ψf , (1.1)

where the trace is taken over color indices. The Dirac γ-matrices are Hermitian uni-

tary matrices and satisfy the anticommutation relation {γµ, γν} = 2ηµν where ηµν is

the mostly negative Minkowski metric (+,−,−,−). The quark spinors ψf with their

corresponding masses mf come in Nf = 6 flavors as given in table 1.1 and Nc = 3

colors, the spinor and color indices are suppressed. The gluons appear in the covariant
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derivative Dµ as the gauge fields Aaµ,

Dµ = ∂µ − ig
λa

2
Aaµ, (1.2)

where a is the color index, g the QCD coupling constant and λa are the eight Gell-

Mann matrices. The gluon fields Aaµ transform in the adjoint representation. The field

strength tensor for the gluons is given by

F a
µν = ∂µA

a
ν − ∂νAaµ + igfabcAbµA

c
ν (1.3)

=
i

g
[Dµ, Dν ] (1.4)

with fabc the totally antisymmetric QCD structure constant. The third term in eq.

(1.3) occurs because the underlying symmetry group of the Lagrangian density SU(Nc)

is non-Abelian. It gives rise to cubic and quartic gluon terms in the action that is

∼ FµνF
µν . This represents the fact that gluons have a color charge and hence self-

interact. Due to the self-interaction of gluons the static quark-antiquark potential

increases linearly for large distances. This feature is mirrored in the running of the QCD

coupling constant αs. It is small at short distances/large momentum scales, and large

at large distances/low momentum scales:

α−1
s (Q2) =

33− 2Nf

12π
log

(
Q2

Λ2
QCD

)
, (1.5)

where Λ2
QCD ≈ 200 − 400 MeV and Nf is the number of quark flavors [3, 4]. A

consequence of the former is asymptotic freedom [3, 4], whereas the latter leads to color

confinement [40]: When a quark-antiquark pair is separated, the production of a second

quark-antiquark pair between the original one may become energetically favorable as the

potential energy between the original pair increases with distance. Thus, free quarks or

gluons have never been observed in experiments. It seems that only composite objects

with overall vanishing net color charge appear in nature. These color singlet states

are called hadrons which come in two types, quark-antiquark pairs are called mesons

and systems of three quarks or three antiquarks are called baryons or antibaryons,

respectively. Recent experiments claim the observation of resonances that are consistent

with pentaquark states [41] as well as the production of a possible candidate for a

tetraquark state [42].

The running of the QCD coupling is determined by the renormalization group equa-

tion

µ2dαs
d µ2

= β(αs) (1.6)
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at a given energy scale µ. The QCD β function can be computed in perturbation theory,

see eqn. (3.3). It is negative at leading order which shows that QCD becomes asymp-

totically free at large couplings. While asymptotic freedom implies that perturbative

calculations are applicable in the high energy sector of QCD, the low-energy sector,

however, needs to be addressed by non-perturbative frameworks such as lattice QCD,

briefly introduced in chapter 2, or effective models.

The hadronic phase where quarks are confined is accompanied by another thermody-

namic phase of strongly interacting matter called the quark-gluon plasma (QGP) where

quarks become deconfined within the medium and chiral symmetry is restored. This

QGP phase is expected to have existed in the very early stages of the universe, about

10−5 sec, i.e. a couple of microseconds after the Big Bang. The QGP is subject of ac-

tive ongoing experimental research conducted at particle accelerators such as the LHC

or RHIC. The goal of the theoretical and experimental research endeavors regarding the

QGP is, e.g., to understand the phase transiton between the hadronic and the QGP

phases, particularly the physcial mechanisms involved in the formation of composite

hadrons, as well as to understand the mere properties of the QGP itself. This work

focuses on the investigation of questions related to the screening masses of in-medium

excitations and to real-time properties of the QGP related to the photon production

rate.

1.5 Symmetries of QCD

An essential aspect of examining the thermodynamic phases of a theory lies in under-

standing the symmetries of the system. In this section, the exact color gauge symmetry

and the chiral symmetry of the QCD Lagrangian density are discussed. The presentation

follows [43].

1.5.1 Color gauge symmetry

The color gauge transformations leaving the QCD Lagrangian (1.1) invariant, belong to

the SU(3) symmetry group. For a general SU(N) group, there are N2− 1 generators.

So in the case of N = Nc = 3, we see 8 generators represented by the eight Gell-Mann

matrices λa in the fundamental representation. They correspond to eight gluons within

QCD. In the continuum, the quarks transform in the fundamental representation of

color SU(3) whereas the gluons are in the adjoint representation. On the lattice, the
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gauge fields are not elements of the algebra, but of the group.

1.5.2 Chiral symmetry

The fermionic part of the QCD action reads

SF
[
ψ̄, ψ, A

]
=

∫
d4x ψ̄ (iγµDµ −M)ψ, (1.7)

where we omitted the flavor indices f and introduced a vector notation instead [43].

Then the mass matrix M takes the form M = diag (m1,m2, . . . ,mNf ). In the chiral

limit (M ≡ 0), the action (1.7) is invariant under the N2
f vector transformations

ψ′ = eiαiTi ψ, ψ̄′ = ψ̄ e−iαiTi (1.8)

ψ′ = eiα ψ, ψ̄′ = ψ̄ e−iα. (1.9)

The symmetry under (1.9) still holds when the masses mi are arbitrary, and the corre-

sponding conserved Noether charge is the baryon number.

The axial vector or chiral rotations are given by

ψ′ = eiαiγ5Ti ψ, ψ̄′ = ψ̄ eiαiγ5Ti (1.10)

ψ′ = eiαγ5 ψ, ψ̄′ = ψ̄ eiαγ5 (1.11)

and the fermionic action (1.7) is invariant under those in the chiral limit. The left- and

right-handed components of the spinor fields transform independently under SU(Nf )

transformations. So for the case of M = 0, the overall symmetry of the fermion QCD

action is [43]

SU(Nf )L × SU(Nf )R × U(1)V × U(1)A. (1.12)

Albeit the action is invariant under U(1)A, a chiral flavor singlet rotation like eqn.

(1.11) introduces a symmetry breaking term, the topological charge, into the fermion

integration measure of the QCD path integral [43]. This is the famous axial anomaly

and the symmetry of massless QCD is reduced to

SU(Nf )L × SU(Nf )R × U(1)V . (1.13)

When one allows for nonvanishing, but degenerate masses, M = diag(m,m, . . . ,m),

then SU(Nf )L × SU(Nf )R reduces to its subgroup SU(Nf )V because the left- and
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right-handed fermions must be phase-rotated identically in order for the action to remain

invariant. The remaining

SU(Nf )V × U(1)V (1.14)

does not survive when M = diag(mu 6= md 6= ms 6= . . . ). One is left with

U(1)V × U(1)V × · · · × U(1)V (1.15)

with Nf factors corresponding to independent phase changes for each quark.

The small masses of the up and down quark introduce only a very small explicit chiral

symmetry breaking and (1.13) would be an exact symmetry if the up and down quark

were massless. As a consequence of the small explicit breaking due to the masses of the

up and down quark, one would expect chiral symmetry to be reflected in the spectrum

of hadron masses. This would, e.g., imply nearly degenerate masses of the ρ meson and

its parity partner, the a1 meson. The mass of ρ meson is given by 770 MeV, the mass

of the a1, however, amounts to 1260 MeV. This difference observed in nature for the

masses of parity partners is too big to be explained by the explicit symmetry breaking

of the up and down quark. It is the spontaneous symmetry breaking mechanism that

gives rise to the huge mass difference.

In order to understand this for a classical analogue, one can consider a ferromagnetic

spin system. The action of the system is invariant under O(3) rotations of the spins.

When one cools the system below its Curie temperature while an external magnetic field

is present, all spins within the system will align along the external magnetic field. And

even when there is no external magnetic field present, all spins will eventually point in

the same direction in the ground state when we consider the system in the thermody-

namic limit. The result is an overall (spontaneous) magnetization of the system and a

spontaneous breaking of the O(3) symmetry. In this example, the magnetization plays

the role of an order parameter.

In QCD, the action is invariant under chiral rotations of the fields but the ground

state of the theory is not. One can also say that chiral symmetry is hidden when one

examines the ground state of QCD. The order parameter for chiral symmetry is called

the chiral condensate 〈
ψ̄ψ
〉
. (1.16)

It transforms exactly like a mass term and mixes left- and right-handed components

of the fermion fields. Thus, in the case of a vanishing chiral condensate, the system’s
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chiral symmetry is restored whereas chiral symmetry is spontaneously broken when the

chiral condensate is non-zero.

1.6 Path integral quantization

in Euclidean space-time

The general idea of Feynman’s path integral formulation [44] is described in many

standard textbooks. This section briefly sketches a few basic formulae and stresses the

need for the Wick rotation.

The expectation value of an operator Ô in QCD is given by〈
Ô
〉

=
1

Z

∫
D[ψ̄, ψ, A]O(ψ̄, ψ, A) exp

(
iSQCD

[
ψ̄, ψ, A

])
(1.17)

where the partition function reads

Z =

∫
D[ψ̄, ψ, A] exp

(
iSQCD

[
ψ̄, ψ, A

])
(1.18)

and the QCD action

SQCD

[
ψ̄, ψ, A

]
=

∫
d4xLQCD (1.19)

with LQCD given by (1.1), is an integral over Minkowski space. The exponential in the

integrand of (1.17) oscillates because its argument is imaginary. Hence, it cannot act

as a weight factor for numerical simulations which require a real and positive factor. A

way around this is the Wick rotation of real time t to imaginary time τ = ix0, x0 ∈ R.

Then the expectation value is calculated by〈
Ô
〉

=
1

Z

∫
D[ψ̄, ψ, A]O(ψ̄, ψ, A) exp

(
−SEQCD

[
ψ̄, ψ, A

])
(1.20)

with

SEQCD

[
ψ̄, ψ, A

]
=

∫
d4xLEQCD and (1.21)

LEQCD =
1

4
Tr [FµνFµν ] +

Nf∑
f=1

ψ̄f
(
γEµDµ +mf

)
ψf (1.22)

where the γEµ are the Euclidean γ-matrices satisfying the anticommutation relation
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{γµ, γν} = 2δµν . In the chiral representation, the Euclidean γ-matrices are given as

γ0 =


0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0

 , γ1 =


0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

 , γ2 =


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

 ,

γ3 =


0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0

 , γ5 = γ0γ1γ2γ3 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 . (1.23)

Due to the gauge invariance of (1.20), one needs to apply a gauge fixing method,

for example the one of Xxxxxxx and Xxxxx, otherwise (1.20) is divergent. As discussed

in chapter 2, the lattice version of this integral is formulated using link variables that are

members of the compact group SU(3). Therefore and because the theory is formulated

in a finite volume with a finite number of variables, the integral is finite even when one

does not choose one gauge trajectory as favored gauge. Gauge-fixing methods on the

lattice, however, do exist and can serve as a helpful tool for complex computations or

renormalization procedures, for instance.

1.7 QCD at finite temperature

Bulk properties of hot and dense matter near and in equilibrium can be addressed by

thermodynamics [45]. Quantities such as pressure or energy density are easily deter-

mined by applying the fundamental tools of thermodynamics. For a system where

particles and energy can be exchanged with a reservoir, the grand canonical ensem-

ble describes the statistical processes and is the best suited choice for describing the

thermodynamics of relativistic heavy-ion collisions where particles can be created and

destroyed. When such a system is described by the Hamiltonian H and a set of con-

served number operators Ni (e.g. baryon number), then the statistical density matrix

of this system is given by [45]

ρ̂ = exp [ β (H − µiNi)] . (1.24)

The inverse temperature is indicated by β = T−1 and µi are the chemical potentials

related to the conserved number operators. Repeated indices are understood to be

summed over. The statistical densitiy matrix ρ̂, as it describes an ensemble of states, is
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a crucial object in quantum statistics when one replaces the usual vacuum expectation

value of any quantity A by its ensemble average [45]:

Ā = 〈A〉 =
TrAρ̂

Tr ρ̂
. (1.25)

Then the grand canonical partition function is given by [45]

Z = Tr ρ̂ = Tr exp [−β (H − µiNi)] (1.26)

and can be used to determine the pressure or entropy of a system, i.e. [45]

P =
∂ (T lnZ)

∂V
,

Ni =
∂ (T lnZ)

∂µi
,

S =
∂ (T lnZ)

∂T
. (1.27)

One takes the logarithmic derivative because lnZ is the generating functional from

which one can derive only connected propagators or Greens functions. Disconnected

ones do not contribute to the T -matrix, hence one does not compute them in thermo-

dynamics.

In order to describe relativistic systems and include Lorentz invariance, one needs to

make the transition from states to fields. The partition function can then be expressed

as [45]

Z = Tr exp [−β (H − µiNi)] =
∑
a

∫
dφa 〈φa| e−β(H−µiNi) |φa〉 , (1.28)

where one has performed Wick rotation under the integral, τ = it. The sum runs

over all states a and one integrates over all fields φa. After Wick rotation, the upper

integration bound for τ is given by the inverse temperature 1/T ≡ β. Bosonic degrees

of freedom obey periodic boundary conditions, fermionic degrees of freedom are subject

to antiperiodic boundary conditions. The thermal Greens or correlation function is then

given by [45]

G(x, y, τ1, τ2) = Z−1 Tr {ρ̂ Tτ [φ(x, τ1)φ(y, τ2)]} , (1.29)

where Tτ denotes the time ordering operator. The fields φ can be Fourier transformed

as [45]

φ(x, τ) =
1√
β

∑
n

∑
p

ei(p·x+ωnτ)φn(p) (1.30)
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with the so called Matsubara frequencies ωn = 2πn/β for bosons with periodic and

ωn = (2n+ 1)π/β for fermions with antiperiodic boundary conditions.

The following depiction follows Ref. [46].

At finite temperature, one can define the Wightman correlators as [46]

GAB
> (t) ≡ Tr {ρ̂ A(t)B(0)},

GAB
< (t) ≡ Tr {ρ̂ B(0)A(t)}. (1.31)

The Euclidean correlator which is calculated within lattice QCD (see chapter 2), is

related to these by

GAB
E (t) = GAB

> (−it). (1.32)

The expectation value of the commutator is given as

GAB(t) = iTr {ρ̂ [A(t), B(0)]} = i(GAB
> (t)−GAB

< (t)) (1.33)

and is identically zero outside the light cone due to the causality of the theory. The

spectral function is then obtained by Fourier transformation of the commutator,

ρAB(ω) =
1

2πi

∫ ∞
−∞

dt eiωtGAB(t), (1.34)

while integration over the positive half-axis yields the retarded correlator,

GAB
R (ω) =

∫ ∞
0

dt eiωtGAB(t). (1.35)

The retarded correlator is a key figure of linear response theory which deals with the

response of a medium to small and adiabatic perturbations out of equilibrium [46]. In

the case of B = A†, the retarded correlator relates to the spectral function via

ρAA
†
(ω) =

1

π
ImGAA†

R (ω). (1.36)

Furthermore, the retarded correlator can be analytically continued to the frequency-

space Euclidean correlator which proves very useful for lattice QCD calculations, and

as an important conclusion, we can relate the configuration-space Euclidean correlator

to the spectral function by [46]

GAA†

E (t) =

∫ ∞
−∞

dω ρAA
†
(ω)

cosh(ω(β/2− t))
sinh(βω/2)

. (1.37)

Further discussion on the relation of spectral functions and Euclidean as well as

retarded correlators can be found in section 6.1. How to extract transport properties

from these objects is briefly sketched in section 6.3.
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Chapter 2

Lattice QCD

This chapter is based on the discussion in [43]. According to Ref. [43], the quantization

of a system by a path integral over classical fields follows four steps:

• Continuous space-time is replaced by a Euclidean lattice in four dimensions with

lattice spacing a. The classical fields Φ defined on the lattice now comprise the

role of degrees of freedom of the system.

• One reformulates the lattice version of the Euclidean action SE[Φ] in such a way

that it reaches the continuum Euclidean action for a→ 0.

• The operators inserted into the Euclidean correlators of interest are translated

into functionals whereby one uses the classical field variables instead of the field

operators.

• After generating a lattice field configuration, the Euclidean correlators are com-

puted by measuring the functionals on the configuration. One has to integrate

over all possible field configurations, the weight is given by the Boltzmann factor

exp (−SE[Φ]).

2.1 QCD on the lattice

The first step towards a lattice formulation of QCD is to discretize the Euclidean con-

tinuous space-time by introducing a four-dimensional Euclidean lattice

Λ =
{
xµ ∈ R4 |xµ = a nµ; n0 = 0, 1, . . . , Nt − 1; ni = 0, 1, . . . , Ns − 1

}
(2.1)
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where a denotes the lattice spacing1. The lattice Λ extends to the finite spatial volume

V3 = (Ns a)3 with the temporal extent being β = Nt a. For lattice ensembles at finite

temperature T , the temporal extent is identified with the inverse temperature via

β ≡ 1

T
= Nt a. (2.2)

The continuum limit a → 0 and V3 → ∞ is necessary for providing results that are

physically meaningful.

The fermionic degrees of freedom are represented by spinors that are defined on the

lattice sites only

ψ(n), ψ̄(n) (2.3)

with n ≡ nµ ∈ Λ. For convenience, only the coordinate nµ is used rather than the full

physical vector xµ. Consider the free fermionic action in the continuum

Sfree
F [ψ, ψ̄] =

∫
d4x ψ̄(x)(γµ∂µ +m)ψ(x). (2.4)

The discretization of the integral is realized as a sum over Λ whereas the derivative can

be written as

∂µψ(n)→ 1

2a
(ψ(n+ µ̂)− ψ(n− µ̂)) (2.5)

where µ̂ denotes a unit vector on the lattice in µ direction. Then the free fermionic

part of the Euclidean lattice QCD action reads

Sfree
F [ψ, ψ̄] = a4

∑
n∈Λ

ψ̄(n)

(
4∑

µ=1

γµ
(ψ(n+ µ̂)− ψ(n− µ̂)

2a
+mψ(n)

)
. (2.6)

Just as in the continuum case, where gauge fields are needed for the invariance of the

action under SU(3) rotations in color space, it is necessary to introduce gauge fields

defined as link variables on the lattice. Consider the transformations of the fermion

spinors

ψ′(n) = Ω(n)ψ(n), ψ̄′(n) = ψ̄(n)Ω†(n) (2.7)

with Ω(n) ∈ SU(3). On the right hand side of Eq. (2.6) there will be terms such as

ψ̄(n)ψ(n+ µ̂). But they transform as

ψ̄′(n)ψ′(n+ µ̂) = ψ̄′(n)Ω†(n)Ω(n+ µ̂)ψ(n+ µ̂), (2.8)

1Throughout this work only isotropic lattices were considered, i.e. the lattice spacings in all spatial

and the temporal direction are equal and all spatial extents of the lattice are equal.

29



which is not gauge invariant. To the end of making the fermionic action gauge invariant

let us now introduce a field Uµ(n) as link variable that is attached to the link of the

lattice Λ and points from n to n + µ̂. It is not part of the algebra but actually an

element of the group SU(3). Thus, if we require its transformation property to be

U ′µ(n) = Ω(n)Uµ(n)Ω†(n+ µ̂),

U ′†µ (n) = Ω(n+ µ̂)U †µ(n)Ω†(n+ µ̂), (2.9)

then the modified term

ψ̄′(n)U ′µ(n)ψ′(n+ µ̂) = ψ̄(n)Ω†(n)Ω(n)Uµ(n)Ω†(n+ µ̂)Ω(n+ µ̂)ψ(n+ µ̂)

= ψ̄(n)Uµ(n)ψ(n+ µ̂) (2.10)

is gauge invariant. Thus, we can also modify (2.6) and introduce the naive fermion

action

SF [ψ, ψ̄, U ] = a4
∑
n∈Λ

ψ̄(n)

(
4∑

µ=1

γµ
Uµ(n)ψ(n+ µ̂)− U †µ(n− µ̂)ψ(n− µ̂)

2a
+mψ(n)

)
≡ a4

∑
n∈Λ

ψ̄(n)Dψ(n) (2.11)

which satisfies SF [ψ′, ψ̄′, U ′] = SF [ψ, ψ̄, U ] under gauge transformations. This holds

true for Nf = 1. But dressing the spinors as well as the mass term with a flavor label

(ψ̄f , ψf ,mf ) and summing over the number of flavors generalizes this expression in a

straightforward fashion. In the second line of eq. (2.11), we have introduced the naive

lattice Dirac operator. This can be done because the action is bilinear in the quark

fields. It is important to note that the link variable Uµ(n) is intrinsically connected to a

gauge transporter known from continuum field theory. The resemblance is easily seen

when defining

Uµ(n) ≡ exp(iaAµ(n)) (2.12)

with Aµ(n) being the lattice version of gauge fields defined in the Lie algebra of su(3).

In Ref. [43], it is shown that the Euclidean version of the fermion action (1.7) is indeed

recovered from (2.11) in the continuum limit a→ 0.

The gluon action is discretized on the lattice employing the plaquette variable (see

fig. 2.1)

Uµν(n) ≡ Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)U †ν(n). (2.13)
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Figure 2.1: Schematic depiction of the plaquette Uµν(n) in the (µ̂−ν̂) plane representing

the smallest closed loop of four link variables. Here µ̄ = µ̂ and ν̄ = ν̂ are unit vectors

on the lattice in µ̂ and ν̂ directions, respectively.

It is the smallest, nontrivial closed loop of link variables on the lattice [43]. We use

U †µ(n − µ̂) = U−µ(n). It can easily be shown that the trace of the plaquette is gauge

invariant because (using (2.13) and (2.9))

Tr
[
U ′µν(n)

]
= Tr

[
Ω(n)Uµν(n)Ω†(n)

]
= Tr [Uµν(n)] . (2.14)

Following Wilson’s idea [47], one can represent the gluon action by the sum over all

plaquettes on the lattice, in particular

SG[U ] =
2

g2

∑
n∈Λ

∑
µ<ν

Re Tr [1− Uµν(n)] . (2.15)

One may insert the representation (2.12) for the link variables into (2.13) and rewrite

the product of exponentials of matrices in (2.15) with the help of the Baker-Campbell-

Hausdorff formula. Then, after applying a Taylor expansion of the gauge fields

Aν(n+ µ̂) = Aν(n) + a ∂µAν(n) +O(a2), (2.16)

one can find

Uµν(n) = exp
{
ia2 (∂µAν(n)− ∂νAµ(n) + i [Aµ(n), Aν(n)]) +O(a3)

}
= exp

{
ia2Fµν(n) +O(a3)

}
. (2.17)
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For the second line of (2.17) one uses the Euclidean version of the continuum field

strength tensor, see also (1.3). Inserting (2.17) into (2.15) and expanding the expo-

nential yields

SG[U ] =
2

g2

∑
n∈Λ

∑
µ<ν

Re Tr [1− Uµν(n)]

=
a4

2g2

∑
n∈Λ

∑
µ<ν

Tr
[
Fµν(n)2

]
+O(a2). (2.18)

Thus, the plaquette action recovers the Euclidean version of FµνF
µν present in the

gluonic part of the QCD action up to terms of O(a2). In the continuum limit a → 0,

a4
∑

n∈Λ corresponds to the integral over space-time. And therefore, one can recover

the continuum version of the gluon action from (2.18). One may remark, however, that

there are infinitely many more such lattice actions that recover the continuum gluon

action in the naive continuum limit. The Wilson plaquette action is just the simplest

one [48].

In eq. (2.11), we have introduced the naive lattice Dirac operator. For trivial gauge

where all link variables Uµ are set to the identity matrix (that corresponds to all gauge

fields Aµ being set to zero, i.e. the case of free fermions), one can perform a Fourier

transform of the naive Dirac operator, yielding

D̃(p) = m+
i

a

4∑
µ=1

γµ sin(pµa). (2.19)

For the construction of the quark propagator, one needs to invert the Dirac operator in

coordinate space. Since it is diagonal in momentum space, one can simply invert D̃(p)

and Fourier transform it back to coordinate space. The inverse reads

D̃(p)−1 =
m− ia−1

∑
µ γµ sin(pµa)

m2 + a−2
∑

µ sin(pµa)2
. (2.20)

For the case of free massless fermions, the solution (2.20) has 16 poles within the

first Brillouin zone of the lattice and 15 of them are unphysical. Therefore, Wilson

introduced a term to the Dirac operator to deal with this so-called doubling problem:

D̃W (p) = m+
i

a

4∑
µ=1

γµ sin(pµa) +
1

a

4∑
µ=1

(1− cos(pµa)). (2.21)

At the physical pole pµ = (0, 0, 0, 0), the additional Wilson term vanishes, but it

introduces a factor 2/a for each pole π/a at the edges of the Brillouin zone:

D̃W (p)
pµ=pole

= m+
2l

a

a→0→ ∞, (2.22)
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where l counts the number of unphysical poles, which sends the mass of the doublers

to infinity in the naive continuum limit such that they decouple from the theory. In the

limit of massless fermions, the inverse Wilson Dirac operator is given as[
D̃W (p)

]−1

= a ·
∑

µ (1− cos(pµa))− i∑µ γµ sin(pµa)[∑
µ (1− cos(pµa))

]2

+
∑

µ sin(pµa)2

(2.23)

which shows clearly that only the physical pole at pµ = (0, 0, 0, 0) remains whereas

all the unphysical doublers vanish. In position space, the Wilson term corresponds to

a lattice discretization of the Laplace operator. Taking this into account, the Wilson

fermion action is then given by (employing the common notation of γ−µ ≡ −γµ)

SWF [ψ, ψ̄, U ] =

Nf∑
f=1

a4
∑
n∈Λ

ψ̄f (n)

{(
mf +

4

a

)
ψ(n)− 1

2a

±4∑
µ=±1

(1− γµ)Uµ(n)ψ(n+ µ̂)

}
.

(2.24)

Thus, the Wilson Dirac operator enables a formulation of lattice QCD with dynamical

fermions without doublers which reproduces the correct continuum limit. There is

a fly in the ointment, however. The Wilson term breaks chiral symmetry explicitly.

Moreover, the famous theorem by Nielsen and Ninomiya states that, on the lattice, the

action cannot be free of fermion doublers and simultaneously preserve chiral symmetry

in the form of

γ5Dγ5 = −D (2.25)

which states that the Dirac operator anti-commutes with γ5. The Ginsparg-Wilson

equation led to a solution of this problem and the result was the introduction of the over-

lap Dirac operator as one solution of the Ginsparg-Wilson equation for chiral fermions

without doublers. Nonetheless, almost all Dirac operators obey γ5-hermiticity, i.e.

γ5Dγ5 = D†. (2.26)

This has a remarkable consequence on the spectrum of the Dirac operator: the eigenval-

ues are either real or appear as complex conjugate pairs. This implies that the fermion

determinant is real which is a crucial property for the feasibility of Monte Carlo simula-

tions. Furthermore, one can show that the Dirac operator has zero modes (eigenmodes

with vanishing eigenvalue) which come with positive or negative chirality, they are right-

or left-handed, respectively. The difference n− − n+ of the number of left- and the

number of right-handed zero modes counts the so called topological charge of a gauge
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field. When one conducts certain computations only on gauge configurations with the

same topological charge, one sticks to one specific topological sector. This technique

underlies one method to compute the chiral condensate on the lattice which involves at

first an infinite volume limit as well as a chiral limit afterwards. When including Wilson

fermions the chiral symmetry may be broken but the spectrum is O(a) improved. One

would expect that the chiral condensate
〈
ψ̄ψ
〉

vanishes. But for a finite lattice spac-

ing a > 0, a residual mass always remains although one may work in the chiral limit.

Even the masses extracted from the vector and the axial vector correlators should be

degenerate above the chiral critical temperature but there are O(a) violations. These

violations can be overcome by a continuum extrapolation.

The full QCD lattice action with Wilson fermions is thus expressed as

S[ψ, ψ̄, U ] = SG[U ] + SWF [ψ, ψ̄, U ] (2.27)

with SG[U ] given by (2.15) and SWF [ψ, ψ̄, U ] by (2.24). The vacuum expectation value

of an observable O then reads

〈O〉 =
1

Z

∫
D[ψ, ψ̄]D[U ] exp

(
−S[ψ, ψ̄, U ]

)
O[ψ, ψ̄, U ] (2.28)

where the partition function is given as

Z =

∫
D[ψ, ψ̄]D[U ] exp

(
−S[ψ, ψ̄, U ]

)
. (2.29)

The measure of the gauge links

D[U ] =
∏
n∈Λ

4∏
µ=1

dUµ(n) (2.30)

is called the Haar measure, and for

D[ψ, ψ̄] =
∏
n∈Λ

∏
f

dψf dψ̄f (2.31)

the rules of Grassmann integration apply because the fermion fields are realized as

Grassmann numbers.

For the calculation of 2-point functions one needs to evaluate fermionic expectation

values. Wick’s theorem for Grassmann algebra implies that the inverse of the Dirac

operator yields these expectation values. It is convenient to rewrite the inverse Wilson

Dirac operator and expand it for large quark mass, resulting in the hopping parameter

representation

D−1 =
∞∑
n=0

κnfH
n =

1

1− κf H
(2.32)
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such that the Dirac operator D and the hopping parameter are given as

D = 1− κf H, κf =
1

2amb,f + 8
(2.33)

where the hopping parameter κf is connected to the bare quark mass mb,f of flavor

f and can be used in lattice simulation to tune the bare quark mass of the dynamical

fermions. The series (2.32) converges if κ||H|| < 1. It can be shown that ||H|| ≤ 8,

that means that the convergence of (2.32) is secured for κ < 1/8. The hopping matrix

H collects nearest-neighbor terms of the Dirac matrix and establishes quark propagation

as paths of link variables and the fermion determinant det[D] = det[1 − κH] can be

shown to be gauge invariant [43].

The explicit breaking of chiral symmetry on the lattice leads to a mass shift mc which

depends on the lattice spacing and is generated dynamically by the term proportional to

∼ ψ̄f (n)Uµ(n)ψf (n+ µ̂) in (2.24). It is not known a priori by how much the bare quark

mass is shifted such that one has to measure mc along the way during the simulation.

Relating the mass shift to the hopping parameter, one finds a critical hopping parameter

κc and the bare subtracted quark mass is then given as

mf = mb,f −mc =
1

2a

(
1

κf
− 1

κc

)
. (2.34)

In the non-interacting theory, κc = 1/8. The Wilson term gives rise to cutoff effects of

O(a). This is a lattice artifact which can be dealt with by a new term discussed in the

next section.

2.2 Lattice artifacts and Symanzik improvement

In general, lattice artifacts come in three varieties:

• Finite size effects: Because the four-dimensional lattice box fills a finite volume,

all results from lattice QCD are affected. The effect drops in in the infrared

regime at low energies and the leading contribution to spectral properties stems

from the lightest hadron mass, the pion mass Mπ, proportional to O(e−MπL): A

rule of thumb suggests that one can neglect finite size corrections when one stays

in the regime where MπL > 4.

• Cutoff effects: This is the most striking error source for lattice calculations. Cutoff

effects are present in the ultraviolet regime ∼ 1
a

. A lattice spacing a > 0 acts as
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a regularization of QCD (with the highest momentum projected onto a correlator

being ∼ π
a

). Thus, all quantities measured on the lattice exhibit corrections that

depend on a. Simply setting a → 0 is not possible unless one also cranks up

the number of lattice sites towards infinity. This increases the numerical cost and

hence, one has to be content with a continuum extrapolation. Nonetheless, the

improvement of the fermion action reduces the dependence of observables on the

lattice action. This is achieved by the Symanzik improvement program.

• Chiral extrapolation: Usually, lattice caluclations are performed for unpysically

high quark masses which makes numerical calculations much cheaper. If one is

interested in the extrapolation of the results towards physical quark masses, one

needs to apply chiral perturbation theory to provide guidance.

The key idea behind Symanzik improvement exploits the fact that one may add terms

to the action that are of higher dimension and thus, vanish in the continuum limit. As

a start, one comes up with an effective action

Seff =

∫
d4x

(
L(0)(x) + aL(1)(x) + a2L(2)(x) + . . .

)
(2.35)

where L(0) is the usual QCD Lagrangian (1.1) and the other terms are ordered according

to their dimension: With Seff being dimensionless, all terms L(k) are of dimension 4+k.

When one adds discretized versions of the correction terms L(k) to the original action

with the appropriate coefficients, one attains improvement to order O(ak), i.e. all

discretization effects of O(ak) are gone. One requires that all additional terms still

obey the original symmetries of L(0). For the case of QCD, it is possible to show that

only linear combinations of five different dimension-5 operators may enter L(1). With

the help of the field equations one can see that two of them are not actually linearly

independent. And one can even eliminate two more terms by absorbing them in the

bare mass and the bare coupling. Then what is left, is the so called Pauli term

L
(1)
1 (x) = ψ̄(x)σµνFµνψ(x) (2.36)

where σµν = [γµ, γν ] /2i. The O(a) improved action then reads

SW,imp
F [ψ, ψ̄, U ] = SWF [ψ, ψ̄, U ] + cSWa

5
∑
n∈Λ

∑
µ<ν

ψ̄(n)
1

2
σµνFµν(n)ψ(n) (2.37)

with the Sheikholeslami-Wohlert term cSW that has to be tuned according to the lattice

spacing one is working at. A suitable choice of discretizing the field strength tensor is
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Figure 2.2: Schematic depiction of the clover term Qµν(n) in the (µ̂− ν̂) plane.

expressed by

Fµν(n) =
−i
8a2

(Qµν −Qνµ) (2.38)

where Qµν stands for a sum of plaquettes Uµν called the clover term (see fig. 2.2)

Qµν(n) = Uµ,ν(n) + Uν,−µ(n) + U−µ,−ν(n) + U−ν,µ(n). (2.39)

The tuning of cSW is done non-perturbatively and cSW is expressed as a Padé ratio, see

chapter 3.

Not only the action, but also the correlators need to be improved. The most

important local operators that enter the expectation values of interest for this work

are given as the pseudoscalar density, the vector current and the axial vector current,

respectively:

P a(x) = ψ̄(x) γ5
τa

2
ψ(x)

V a
µ (x) = ψ̄(x) γµ

τa

2
ψ(x)

Aaµ(x) = ψ̄(x) γ5 γµ
τa

2
ψ(x), (2.40)

where the τa are the two-dimensional Pauli matrices. The pseudoscalar density is already

free of lattice artifacts to O(a). Along the lines of the Symanzik improvement program,

one identifies the correction terms for the improved currents as

V a,imp
µ (x) = V a

µ (x) + acV ∂νT
a
µν(x) (2.41)

Aa,imp
µ (x) = Aaµ(x) + acA∂µP

a(x). (2.42)
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In this case, ∂µ denotes the symmetric version of the lattice derivative which is free of

O(a) artifacts and T aµν = iψ̄(x)σµν
τa

2
ψ(x) is the tensor current. Just like the clover

term cSW , the coefficients cA and cV need to be tuned in a suitable fashion. For further

information, the inclined reader is referred to the literature. The key ingredient for

determining improvement coefficients non-perturbatively is the exploitation of Ward-

Takahashi identities. They also play a role for the renormalization of lattice quantities.

2.3 Renormalization and scale setting

On the lattice, all quantities such as the action or observables are given as dimension-

less objects. Only once one relates them to physical quantities, one establishes the

determination of the lattice spacing a in physical units. An example is the dimension-

less quantitiy am: after identifying m with some physical mass (usually the mass of

a hadron such as the pion), one obtains a in physical units. An outdated way of set-

ting the scale is through the Sommer parameter r0 which is extracted from the lattice

calculation of the static quark-antiquark potential and assumes the physical value of

r0 ≈ 0.5 fm.

The parameters that enter the lattice action such as the coupling constant g or

the quark masses mf are actually only bare parameters. They do not amount to the

actual values of physical quantities observed in experiments. In order to establish the

connection between bare parameters and the corresponding physical objects, one needs

to compute lattice observables such as hadron masses, for example, and identify them

with the physical parameters in the continuum. This task is rather complicated. There

are, for example, various implementations of lattice actions, the derivatives may differ,

the lattice grid itself can have different structures. Nonetheless, all these differences

must vanish once one reaches the continuum limit a → 0 and the observables should

become independent of the lattice spacing. All of this means that the way bare param-

eters depend on the lattice spacing, must be given by nontrivial functions - g(a) and

mf (a), for instance. The renormalization group takes care of this running of the bare

parameters and ensures one uses the correct values of the bare parameters for the given

lattice structure. And finally, the Callan-Symanzik equation expresses the requirement

that physics stays constant while changing the scale with the lattice parameter a. As an

example, consider the pysical observable P (mf (a), g(a), a) defined on the lattice that
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assumes the physical continuum value P0 as one lets a go to 0:

lim
a→0

P (mf (a), g(a), a) = P0. (2.43)

Then the Callan-Symanzik equation reads

dP (mf (a), g(a), a)

d ln a
=

(
∂

∂ ln a
+

∂g

∂ ln a

∂

∂g
+
∂mf

∂ ln a

∂

∂mf

)
P (mf (a), g(a), a)

=

(
∂

∂ ln a
− β(g)

∂

∂g
+
∂mf

∂ ln a

∂

∂mf

)
P (mf (a), g(a), a)

= 0. (2.44)

In the second line we have introduced the lattice β function which determines how the

coupling depends on the lattice spacing. From perturbation theory, one obtains two

universal coefficients for an expansion of the β function around g = 0 with Nc colors

and Nf flavors:

β(g) = − ∂g

∂ ln a
= −β0 g

3 − β1 g
5 +O(g7) (2.45)

β0 =
1

(4π)2

(
11

3
Nc −

2

3
Nf

)
β1 =

1

(4π)2

(
34

3
N2
c −

10

3
NcNf −

N2
c − 1

Nc

Nf

)
.

By separation of observables one can solve the differential equation (2.45) and gain

an analytic expression for the coupling g as a function of the lattice spacing a. One

important finding is that g(a) vanishes for the continuum limit a → 0, this feature of

QCD is called asymptotic freedom. While the lattice regularization of QCD enables us

to obtain results in the infrared limit of the field theory (where the coupling is of order 1),

perturbative calculations are valid in the ultraviolet (where the coupling is much smaller

than 1). Thus, the perturbative renormalization schemes are not applicable to lattice

calculations and there exist lattice renormalization schemes such as the Schrödinger

functional scheme.

When a quark bilinear is renormalized only multiplicatively, one can write its nor-

malized version as

ΨR = ZRS
Ψ (µ, g0)Ψ (2.46)

where the multiplicative renormalization factor ZRS
Ψ (µ, g0) may depend on the renor-

malization scale µ, the bare coupling g0 and the particular renormalization scheme (RS)
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of choice. The renormalized coupling and the renormalized mass are given by

g2
r = Zg(µ, g0) (1 + bgamf ) g

2
0 (2.47)

mr = Zm(µ, g0) (1 + bmamf )mf (2.48)

where mf is given by (2.34). The renormalized currents then take the form

P a
r (x) = ZP (µ, g0) (1 + bPamf )P

a (2.49)

V a
µ,r(x) = ZV (g0) (1 + bV amf )V

a,imp
µ (2.50)

Aaµ,r(x) = ZA(g0) (1 + bAamf )A
a,imp
µ (2.51)

2.4 PCAC mass

At the end of section 2.2, we already mentioned the important role of Ward-Takahashi

identities for improving and renormalizing lattice quantities. When it comes to quark

masses, one may use an operator identity that is strictly valid only as an expectation

value in Euclidean space-time. The relation〈
∂µA

a
µ,r(x)O

〉
= 2mr 〈P a

r (x)O〉 (2.52)

holds for a suitable choice of the operator O which is nonzero at x and is chosen

such that 〈P a
r (x)O〉 does not vanish. Then this relation states that the axial current

is conserved only in the chiral limit mr = 0. Therefore, this is called the partially

conserved axial current or PCAC relation. Then one can solve for mr:

mr =
ZA(1 + bAamf )

ZP (1 + bPamf )
·
〈
∂µA

a,imp
µ (x)O

〉
2 〈P a(x)O〉 (2.53)

where we identify 〈
∂µA

a,imp
µ (x)O

〉
2 〈P a(x)O〉 ≡ mPCAC. (2.54)

In practice, one uses O = P a and quotes mr in a particular renormalization scheme,

typically the MS scheme. It is important to keep in mind that the value of mr depends

on the renormalization scheme it is quoted in, see subsection 3.4.1.

As a final remark, it is noteworthy to say that improved derivatives also occur

in current calculations [49]. They are employed to the end of keeping all occurring

terms free of discretization effects up to the same order O(an). The symmetric lattice

derivative is already O(a) improved. It involves values of the function at the site where
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it is defined and at two neighboring sites f(n), f(n ± µ̂). The improved derivative is

constructed from values the function takes even two sites away from the definition site,

so it involves f(n), f(n ± µ̂), f(n ± 2µ̂). The improvement of derivatives is therefore

achieved at the cost of reducing the degree of locality.

2.5 Monte Carlo simulations

For the caclulation of expectation values according to eq. (2.28) where one inserts the

O(a) improved Wilson fermion action (2.37) and the Wilson gauge action (2.15), one

utilizes Monte Carlo integration. The improved full QCD action on the lattice is given

by

Slat
QCD[ψ, ψ̄, U ] = SG[U ] + SW,imp

F [ψ, ψ̄, U ] (2.55)

and the partition function reads accordingly:

Z =

∫
D[ψ, ψ̄]D[U ] exp

(
−Slat

QCD[ψ, ψ̄, U ]
)
. (2.56)

So far, there is no known way to implement Grassmann-valued fields in a numer-

ical simulation. Therefore one denotes the fermionic part in the general form as

SW,imp
F [ψ, ψ̄, U ] =

∑
n∈Λ ψ̄(n)D[U ]ψ(n), integrates out the Gaussian integral over the

Grassmannians and obtains the fermion determinant in the calculation of the expecta-

tion value

〈O〉 =
1

Z

∫
D[U ] det(D[U ]) Õ[U ] exp (−SG[U ]) . (2.57)

Upon this integration, the probability weight changes to

dP (U) =
det(D[U ]) e−SG[U ]D[U ]∫
D[U ] det(D[U ]) e−SG[U ]

. (2.58)

It is easy to see that a pure gauge simulation corresponds to setting the fermion de-

terminant equal to one. The fermion determinant, however, generally depends on the

field values U . That means that one has to calculate the determinant for each U which

is simply not feasible in numerical simulations because the Dirac operator D is usually

very large. One solution is to evaluate the determinant by the introduction of pseud-

ofermion fields φ†, φ which respect Bose-Einstein instead of Fermi-Dirac statistics but

otherwise carry the same Dirac, color and flavor indices as the original fermion spinor
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fields ψ̄, ψ. Because we use an even number (two) of mass-degenerate light flavors in

our simulations, the fermion determinant can be expressed as

det [D[U ]] = det
[
M †[U ]M [U ]

]
(2.59)

where M [U ] is given by the Dirac operator for only half the number of flavors in the

system. Then the Gaussian integral over the complex bosonic fields φ†, φ yields∫
D[φ†, φ] e−φ

†M†Mφ =
1

det [M †M ]
. (2.60)

Now one can utilize that the Dirac operator is free of zero modes, i.e. det [D] =

1/ det [D−1]. That means one can evaluate the fermion determinant using the bosonic

fields as pseudofermions∫
D[ψ̄, ψ] e−ψ̄D[U ]ψ = det [D[U ]]

= det
[
M †[U ]M [U ]

]
=

1

det [(M †[U ]M [U ])−1]

=

∫
D[φ†, φ] e−φ

†(M†[U ]M [U ])−1φ (2.61)

where we can now identify the pseudofermionic action

SPF [φ†, φ, U ] =
∑
n∈Λ

φ†(n) (M †[U ]M [U ])−1 φ(n) (2.62)

2.5.1 Importance sampling

The naive Monte Carlo sample summation to evaluate the integral in (2.28) can be

given as

〈O〉 = lim
N→∞

1

N

N∑
n=1

O[Un] (2.63)

where Un denotes a sequence of field configurations sampled according to the probability

distribution (2.58). The path integral contains the Boltzmann factor exp(−S). This

means that certain field configurations are given more importance than others depending

on the action in the Boltzmann factor. When the integral in (2.28) is determined by a

sum over field configurations, it is more important to include configurations with a large

weight than those with a small weight [43]. Thus, in importance sampling methods one

samples the sum according to the same weight factor. Obviously, the limit of N →∞

42



is numerically not feasible, so one has to restrict oneself to an approximation of this

sum by a subset of Ñ field configurations, typically this number is of the order of several

hundreds for finite temperature simulations with Nf = 2 Wilson-type fermions. The

infinite Monte Carlo sum of (2.63) is then reduced to the ensemble average

〈O〉 =
1

Ñ

Ñ∑
n=1

O[Un] (2.64)

Now the task is to generate an ensemble of field configurations Un according to the

probability weight. This is achieved by generating them as a Markov chain, i.e. one

proposes a new configuration Un on the basis of the previous one Un−1 (update). Then

this candidate configuration is accepted or rejected in a Metropolis accept-reject step.

There is one important aspect to consider: the change of the action resulting from

updating the configuration needs to be large enough to sample a representative subset

of the entire configuration space (ergodicity), simultaneously one wants to keep the

acceptance rate high enough such that the configuration will be accepted which means

that the change cannot be too large. After enough equilibrating updates, one starts

allowing the subsequent configurations to contribute in the Monte Carlo sum. Whether

a chain has equilibrated or not, can be determined from autocorrelation times and the

behavior of the plaquette observable, for example.

2.5.2 Hybrid Monte Carlo

The hybrid Monte Carlo algorithm is used to find suitable updates for the configurations

in simulations that include dynamical fermions. Introducing the computer time τ , we

want to consider a microcanonical ensemble of a nonrelativistic system described by the

Hamiltonian

H[U, P, φ†, φ] =
P 2

2
+ SG[U ] + SPF [φ†, φ, U ] (2.65)

with the pseudofermionic fields φ†, φ and the conjugate momenta P of the bosonic

fields U . The equations of motion are given by

Ṗ = −∂H
∂U

= −∂(SG + SPF )

∂U

U̇ =
∂H

∂P
= P (2.66)

where the time derivative is understood to be taken with respect to computer time

τ . The equations (2.66) describe the time evolution of a classical system of particles,
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hence they are called molecular dynamics (MD) equations [43]. One standard numerical

integration technique to solve (2.66) is the leapfrog integrator, see e.g. [50].

This results in an update procedure which is not ergodic. One way to deal with this

is a random momentum refreshment at the beginning of each configuration update. In

this step, the initial momentum P is chosen from a Gaussian distribution∝ exp(−P 2/2)

and then used for the integration of (2.66). The numerical integration introduces an

error because of the finite step size

ε =
τ

Nstep

(2.67)

where Nstep denotes the number of smaller substeps in the leapfrog integrator and τ is

also referred to as one molecular dynamics unit (mdu).

The integration error can be compensated when one applies a Metropolis accept-

reject step after the end of the integration: The resulting candidate configuration U ′

is accepted if a pseudorandom rumber r that is uniformly distributed within [0, 1] is

smaller than exp(−∆H),

r ≤ exp(−∆H) (2.68)

where ∆H = H ′ − H denotes the difference of the action with the updated config-

urations and momenta (H ′ = H[U ′, P ′]) and the initial action (H = H[U, P ]). This

is equivalent to say that the candidate configuration is accepted with the acceptance

probability

Pacc = min

[
1,

exp(−H ′)
exp(−H)

]
. (2.69)

Through the Metropolis accept-reject step one not only corrects for the fact that the

MD integration is not exact due to the step size ε. One even builds in the effect of

quantum fluctuations into the otherwise deterministic MD evolution by the combination

of the Metropolis step and the random choice of conjugate momenta as initial momenta

for the integration. It is also due to the acceptance probability (2.69) that a candidate

configuration that results in a change of the action ∆H > 0 may be accepted from

time to time which again improves ergodicity. The combination of the MD evolution

with the Metropolis step is then referred to as hybrid Monte Carlo (HMC) algorithm.

In each small substep of the trajectory one has to compute the inverse of the

Dirac operator which takes up the most time in the entire algorithm. The inversion is

implemented as the solution of an equation of the form

Dφ = η. (2.70)
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The Dirac operator D is a large matrix and the solution of (2.70) is constructed utilizing

iterative solvers such as the GCR (generalized conjugate residual) or the CG (conjugate

gradient) solver, for instance. There are other solvers, too, and they all have in common

that they are based on the method of searching for the solution of (2.70) within a

Krylov space, see e.g. [50]. In order to improve a solver’s convergence properties,

one may implement certain preconditioning techniques which may reduce the number

of necessary iterations. Two of them - the Schwarz alternating procedure (SAP) and

deflation (DFL) - can be effectively combined and the resulting ’DFL-SAP-GCR’ solver

is the basis for many successful algorithms such as the one used in this work.

Apart from speeding up the solver, the performance of the algorithm can be improved

even further when the Dirac operator itself is preconditioned suitably within the HMC

algorithm. This is achieved by factorizing the fermion determinant after splitting the

Dirac operator into pieces with structures that are easier to handle numerically. One

such preconditioning concept is the mass preconditioning (MP) by Xxxxxxxxxx where

one reduces the condition number of the Dirac operator by performing the inversions first

for intermediate masses larger than the target mass and then decreasing the intermediate

masses until one reaches the target mass. The Xxxxxxxxxx masses need to be chosen

carefully, see also 3.5.1.

2.5.3 Euclidean 2-point functions

In order to obtain information about the spectral properties of low-lying mesons like their

mass, one uses the spectral decomposition of the meson correlator. After an insertion

of a complete set of eigenstates the correlator or 2-point function is represented by its

spectral decomposition:〈
O(nτ )O

†(0)
〉

=
∑
k

〈0|O|k〉
〈
k|O†|0

〉
e−nτEk

= Ae−nτE0 + . . . (2.71)

where E0 is the energy of the ground state. The most important meson propagators

that are usually considered in many lattice QCD calculations are given by (2.40).

And then Wick’s theorem states that the expectation value of an n-point function

is determined by the sum over all possible Wick contractions. A Wick contraction is of

the form

ψf (n) ψ̄f ′(m) = D−1
f (n,m) δff ′ , (2.72)
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that is, it yields the propagator or inverse Dirac operator for flavor f . For meson

operators with Dirac structure Γ, we write

OM(n) = ψ̄f ′(n) Γψf (n), ŌM(n) = ψ̄f (n) Γ̄ψf ′(n). (2.73)

Then the 2-point function for general meson-meson correlators is given by〈
O2(n) Ō1(m)

〉
=

〈
ψ̄f ′2(n) Γ2 ψf2(n) ψ̄f1(m) Γ̄1 ψf ′1(m)

〉
=

〈
ψf2(n) Γ̄1 ψ̄f1(m) (−1)3 ψf ′1(m) Γ2 ψ̄f ′2(n)

〉
+(−1)2

〈
ψf2(n) Γ2 ψ̄f ′2(n)

〉 〈
ψf ′1(n) Γ̄1 ψ̄f1(m)

〉
= −Tr

[
D−1
f2

(n,m)δf2f1 Γ̄1D
−1
f ′1

(m,n)δf ′1f ′2 Γ2

]
+ Tr

[
D−1
f2

(n, n)δf2f ′2
Γ2

]
Tr
[
D−1
f ′1

(m,m)δf ′1f1
Γ̄1

]
.

(2.74)

The first term in the last line of (2.74) is called the connected piece while the second

one is the disconnected piece. The cost of a numerical computation of disconnected

pieces is usually very high. And they actually cancel out for isovecor operators in the

isospin symmetric (mu = md ≡ mlight) theory which we consider for the remainder of

this thesis.

Since the Wilson Dirac operator satisfies γ5-hermiticity (2.26), we can rewrite

D−1
f (m,n) = γ5

(
D−1
f (n,m)

)†
γ5 (2.75)

und use that in the connected piece of (2.74) such that

〈
O2(n) Ō1(m)

〉
C

= −Tr

[
D−1
f2

(n,m)δf2f1 Γ̄1 γ5

(
D−1
f ′1

(n,m)
)†
γ5δf ′1f ′2 Γ2

]
.

(2.76)

With this form, one needs to calculate the propagator from m to n only instead of both

the backwards and the forwards propagators. One often sets m = 0 for convenience.

So far all the correlators are defined at zero momentum. For correlators at finite

momentum one has to project them according to

O(p, nτ ) =
∑
n∈Λ3

O(n, nτ ) e
−in·p (2.77)

where ni = 0, . . . , N−1 and pi = 2πki
N
, ki = −N

2
+1, . . . , N

2
are defined in the Brillouin

zone. The operator at the source is placed at the origin (0, 0) and the finite momentum
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correlator reads〈
O(p, nτ ) Ō(0, 0)

〉
=

∑
n∈Λ3

e−in·p
〈
O(n, nτ ) Ō(0, 0)

〉
= Ae−nτE(p) + . . . (2.78)

The energy is given by E(p) =
√
mM + p2 where mM denotes the rest mass of the

meson we are examining.

As a concluding remark for this subsection one may state that it is important to

keep in mind that the quarks that appear in the fermion determinant are sea quarks

while the quarks in the correlators are the valence quarks making up the quark content

of the mesons under consideration.

2.5.4 Calculation of the propagator using sources

The Dirac operator is in general a very large matrix and inverting it is very costly.

Nonetheless this is the essential task for computing (2.76) where the inverse Dirac

operator or quark propagator

D−1(n,m)abαβ (2.79)

connects a source at (m,α, a) to a sink at (n, β, b) where n,m are the respective lattice

sites, α, β denote Dirac indices and a, b stand for the color indices. For the computation

of connected pieces in 2-point functions, however, one does not need the ”all-to-all”

propagator but can work with a ”point-to-all” propagator. Thus, one introduces point

sources of the form

η(m,m0)aa0
αα0

= δ(m−m0)δaa0δαα0 (2.80)

and considers only the corresponding column of the full inverse Dirac operator

D−1(n,m0)a0b
α0β

=
∑
m,α,a

D−1(n,m)abαβ δ(m−m0)δaa0δαα0 , (2.81)

that is the propagator from the point source at fixed (m0, α0, a0) to all points of the

lattice. Then the numerical cost is reduced to 12 inversions (for three color and four

Dirac indices) which is much more feasible than inverting the full propagator. The point

sources are usually placed randomly on the lattice and depending on the lattice size the

number of random sources can be as high as 16 or even 64 in rare cases. This is all

done for one single configuration. Then for the next configuration within the ensemble

one repeats the aforementioned operations. Thus a statistical average can be formed.
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Chapter 3

Tuning of bare parameters

for lattice QCD simulations

For convenient readability, the author follows the notation given in the references cited

below throughout this chapter. In order to connect the results given in this chapter with

the quantities described above, one may keep in mind that we identify these quantities

as following:

quantity this chapter previous chapters

bare quark mass m0 mb,f

bare subtracted quark mass mq mf

PCAC mass m12 mPCAC

hopping parameter κc κf

Table 3.1: Table of quantities introduced in previous chapters and used within this

chapter with different notation according to the references cited below.

3.1 Fits for the lattice spacing a
Lmax

(
g2

0

)
From Ref. [51], one can learn that any physical quantity P should be independent of

the renormalization scale µ. The Callan-Symanzik or renormalization group equation

expresses this: {
µ
∂

∂µ
+ β(ḡ)

∂

∂ḡ
+ τ(ḡ) m̄

∂

∂m̄

}
P = 0, (3.1)
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where the β-function is given by

β(ḡ) = µ
∂ḡ(µ)

∂µ
. (3.2)

For weak couplings the β-function can asymptotically be expanded as

β(ḡ) = −ḡ3(b0 + b1ḡ
2 + b2ḡ

4 + . . . ). (3.3)

Only mass independent renormalization schemes shall be considered in the following,

such as the Schrödinger functional and the MS scheme. If the coupling of one such

scheme can be expanded as a Taylor series of the other and vice-versa, then the 1- and

2-loop coefficients are universally given by [51]

b0 =
1

(4π)2

(
11− 2

3
Nf

)
(3.4)

b1 =
1

(4π)4

(
102− 38

3
Nf

)
.

A special exact solution of the Callan-Symanzik eqn. (3.1) is the renormalization group

invariant Λ-parameter [51]

Λ = µ
(
b0 ḡ

2(µ)
)−b1/(2b20) · exp

{
−1/

(
2b0 ḡ

2(µ)
)}
×

× exp

{
−
∫ ḡ(µ)

0

dx

[
1

β(x)
+

1

b0 x3
− b1

b2
0 x

]}
.

(3.5)

With µ = 1
L

the inverse box size of the lattice and − log(ΛLmax) = 1.09 at umax =

ḡ2(Lmax) ≡ 5.5 (see Ref. [51]) we can rewrite eqn. (3.5) as

Λ

µ
= ΛL = ΛLmax

L

Lmax

=
(
b0ḡ

2(µ)
)−b1/(2b20)

e−1/(2b0ḡ2(µ)) exp

{
−
∫ ḡ(µ)

0

dx

[
1

β(x)
+

1

b0x3
− b1

b2
0x

]}
(3.6)

and make the following fit ansatz for the Λ-parameter, eqn. (3.5):

− log

(
L

Lmax

)
= − log

{
(ΛLmax)−1

(
b0ḡ

2(µ)
)−b1/(2b20)

e−1/(2b0ḡ2(µ)) exp

(
p(ḡ2,m)

p(ḡ2, n)

)}
,

(3.7)

where we substitute the argument in the last exponential of eqn. (3.5) with a rational

function. Here p(x, k) is a polynomial in x of order k with p(0, ·) = 1.
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In Table 5 of Ref. [51] we find in the two columns labeled i the number of recursions

and ui = ḡ2(Li), Li = 2−iLmax and u0 = umax = 5.5. This provides us with data

{ḡ2(Li),− log
(

Li
Lmax

)
} = {ḡ2,− log(2−i)} for our fit. With m = 3 and n = 2 in (3.7)

we obtain the form

− log

(
L

Lmax

)
= − log

{
9.355 · ḡ−2· 345

841 · e−
24π2

29ḡ2×

× exp

(
1− 1.89402 ḡ2 + 1.13921 ḡ4 − 0.174503 ḡ6

1− 0.0669224 ḡ2 + 2.54696 ḡ4

)}
.

(3.8)

This result (3.8) is strictly valid only for ∼ 1.0 ≤ ḡ2 ≤∼ 5.5 (tables 10 and 11 of Ref.

[51]). The Schrödinger functional coupling ḡ is a renormalized quantity and at fixed

L/a depends on the bare coupling g0. The dependence is given by Taylor expansion of

the Schrödinger functional in terms of the bare coupling [51]:

ḡ2 = g2
0 +

k=∞∑
k=2

ckg
2k
0 . (3.9)

Table 10 and 11 in [51] provide us with data {β = 6/g2
0, ḡ

2}, where we fix L/a = 6

and stick with the data points corresponding to L/a = 6. There is one ambiguity for

u = 1.5031: Table 10 states β = 7.5 and Table 11 states β = 7.5457. Although only

Table 11 includes the 2-loop corrections, the fit is better when we use β = 7.5 instead

of β = 7.5457. With a polynomial ansatz (3.9) truncated at k = 4 we find the form

ḡ2 = g2
0 + 3.07442 g4

0 − 6.92164 g6
0 + 5.52135 g8

0 (3.10)

which is valid at least for 5.6215 ≤ β = 6
g2
0
≤ 9.5. The fit for ḡ2(g2

0) (3.10) can be

inserted into (3.8) and we massage the result to obtain an expression for the quantity

we look for, a
Lmax

(g2
0):

We know that L
Lmax

= f(ḡ2) and ḡ2 = h(g2
0). Now, L

Lmax
= L

a
· a
Lmax

, where we fixed
L
a

= 6. So a
Lmax

(g2
0) = 1

6
f(h(g2

0)).

Finally, we write down the normalized quantity a′ as

a′(g2
0) =

a(g2
0 = 6/β)

Lmax

·
(
a(g2

0 = 6/5.5)

Lmax

)−1

=
a(g2

0 = 6/β)

a(g2
0 = 6/5.5)

. (3.11)

3.2 Fits for the hopping parameter κc

The hopping parameter can be used to tune the masses of the quarks or, equivalently,

the mass of the pions on the lattice. It depends on the bare quark mass, the lattice

50



spacing and the Wilson parameter r, which is set to r = 1 for our purposes [52]:

κc =
1

2mca+ 8r
(3.12)

⇔ amc =
1

2κc
− 4.

The chiral limit corresponds to mc = 0 and it is achieved for the critical value of

the hopping parameter at 1/8 in the free case. Terms proportional to r in the action

and clover terms explicitly break chiral invariance. When ΣL(p,mc, g0) denotes the

truncated, 1PI fermionic two-point function, one requires that the renormalized mass

vanish. Then the explicit breaking of chiral invariance is restored. This leads to [52]

mc = ΣL(0,mc, g0). (3.13)

Eqn. (3.13) is a recursive equation and can be solved by perturbation theory. The loop

expansion reads [52]

ΣL(0,mc, g0) = g2
0Σ(1) + g4

0Σ(2) + . . . , (3.14)

where the coefficients read (cf. eqn. (11) in [52])

Σ(1) =
N2 − 1

N
(−0.162857 + 0.043483 cSW + 0.018096 c2

SW ) (3.15)

and (cf. eqn. (15) in [52])

Σ(2)(N = 3, Nf = 2) = − 0.11924 + 0.0174 cSW + 0.008368 c2
SW

− 0.004857 c3
SW − 0.0011562 c4

SW (3.16)

with the Sheikholeslami-Wohlert or clover term cSW .

In [53], the clover term is given by

cSW = c
(0)
SW + c

(1)
SWg

2
0 + c

(2)
SWg

4
0 + . . . , (3.17)

where c
(0)
SW = 1 and c

(1)
SW = 0.267 for N = 3 [53]. XXXX and XXX state the numbers

obtained by Xxxxxxx as c
(1)
SW = 0.2659 for N = 3, but we will stay with the parameters

found by XXXX and XXX.

For the 2-loop critical mass, i.e. keeping terms only up to order g4
0 (only including
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c
(0)
SW and c

(1)
SW ) we find

am(2)
c =

1

2κ
(2)
c

− 4 (3.18)

= a
(
g2

0 Σ(1) + g4
0 Σ(2)

)
= a

[
g2

0 ·
8

3
(−0.15493339023106021− 0.00792366847979+

0.04348303388205 cSW + 0.01809576878142 c2
SW )

+g4
0(−0.11924 + 0.0174 cSW + 0.008368 c2

SW − 0.004857 c3
SW − 0.0011562 c4

SW )
]

= a

[
g2

0 ·
8

3
(−0.15493339023106021− 0.00792366847979+

0.04348303388205(1 + 0.267 g2
0) + 0.01809576878142(1 + 2 · 0.267 g2

0))

+g4
0(−0.11924 + 0.0174 · 1 + 0.008368 · 1− 0.004857 · 1− 0.0011562 · 1)

]
= −0.270075 g2

0 − 0.0661046 g4
0

with a = 1.

One source for data points {g2
0, amc = 1

2κc
−4} is Ref. [51], where in Tables 10 and

11 we use the κc-values with the corresponding β-values for L/a = 8 (not 6), because

the tuning was apparently best achieved for L/a = 8. Now we can fit a polynomial

ansatz to the data points {g2
0, amc = 1

2κc
− 4} and make sure that the slope and

curvature (the first- and second-order coefficients of the polynomial ansatz) match the

2-loop coefficients found in eqn. (3.18). In [54] we find that Table 14 yields three more

values for the critical value of the hopping parameter κc at β = 5.2, 5.3, 5.5, and so the

fit ansatz

amc(g
2
0) = −0.270075 g2

0 − 0.0661046 g4
0 +

∞∑
k=3

ck g
2k
0 (3.19)

yields

amc(g
2
0) = −0.270075 g2

0 − 0.0661046 g4
0 + 0.64402 g6

0 − 1.56168 g8
0

−1.46995 g10
0 + 7.43682 g12

0 − 7.54832 g14
0 + 2.50277 g16

0

(3.20)

truncated at k = 8. It is valid for β values in the range of 5.2 ≤ β = 6
g2
0
≤ 9.7341.

And it is very easy now to write down the form of κc(β):

κc(g
2
0 = 6/β) =

1

2amc(g2
0 = 6/β) + 8

. (3.21)
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In Ref. [55] we find an estimate for the hopping parameter κc:

κc(g
2
0) =

1

8
+ 0.008439857 g2

0 + 0.0085 g4
0 − 0.0272 g6

0 + 0.042 g8
0 − 0.0204 g10

0

(3.22)

which is compared to our result in fig. 3.5. The red curve does not describe the data

as well as our Padé fit (insert the polynomial (3.20) into (3.21)) does.

3.3 Fits for Zrm(g2
0)

From [54] we quote equation (E.1)

m12(1 + b̃ram12) = Zm
ZP
ZA

rmmq ≡ Zrmmq. (3.23)

In Table 14 of [54] we find values for Zrm at β = 5.2, 5.3, 5.5, so that we can use

the one-loop result Zrm = 1 + 0.090514g2
0 [54] and references therein to make the

non-perturbative fit ansatz for Zrm(g2
0)

Zrm(g2
0) = (1 + 0.090514g2

0) · 1 +
∑

m=2 amg
2m
0

1 +
∑

n=2 bng
2n
0

, (3.24)

inspired by

Z = (1 + 0.090154 g2
0)

1− 0.3922 g4
0 − 0.2145 g6

0

1− 0.6186 g4
0

, (3.25)

which comes from [54] and references therein. The ansatz (3.24) results in

Zrm(g2
0) = (1 + 0.090514 g2

0) · 1− 0.636193 g4
0 − 0.057574 g6

0

1− 0.713871 g4
0

(3.26)

which is strictly valid only for 5.2 ≤ β = 6
g2
0
≤ 5.7. The findings of Ref. [56], however,

suggest that such a Padé fit is still reliable for β ≤ 6.6. There is a pole in this expression

but it lies outside the area of interest (at values of β < 5.2).

3.4 Parameters obtained from the literature

For future lattice calculations we will need ensembles of gauge field configurations over

which we can form the ensemble average. These configurations are obtained from

production runs. Production runs are run at a certain temperature to which belongs a

certain value of β, of κ and κc, as well as of the clover term cSW .
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In Mainz, there were configurations produced at T = 254 MeV where β = 6/g2
0 =

5.5. So from eqn. (3.11) we can deduce the lattice spacing in relation to the lattice

spacing at β = 6/g2
0 = 5.5. Now, the plan is to produce configurations at temperatures

Ti = Tstart · 2i, i ∈ {1, 2, 3, 4, 5} , (3.27)

with Tstart = 254 MeV, i.e. for temperatures up to 8128 MeV. The lattice spacings

will be divided by two since

βi =
1

Ti
· 197 MeVfm

ai =
βi
Nt

=
197 MeVfm

16 · Ti
. (3.28)

The values for ai can be plugged into

log(a′(g2
0)) = log(2−i) (3.29)

and the solutions for g2
0 are used for finding all the parameters at the respective tem-

peratures Ti.

3.4.1 Mass

Since we want to stay on a line of constant physics at all temperatures, we set the

quark mass in the MS scheme to

mMS(µ = 2GeV) = 12.8 MeV = const. (3.30)

throughout all the configurations at all temperatures, where µ = 1/L is the scale. All

subsequent explanations follow the discussion in [54] and references therein.

Now from the MS scheme one can convert to the RGI mass

mMS = 0.740(12) ·M (3.31)

and from the RGI mass to the Schrödinger functional scheme via

M = 1.308(16)m. (3.32)

The renormalization factor that converts from the Schrödinger functional mass to the

PCAC mass, is given by

m(µ) =
ZA

ZSF
P (µ)

m12, (3.33)
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where ZA is given by

ZA(g2
0) = 1− 0.116458 g2

0 + 0.0116 g4
0 − 0.0721 g6

0 (3.34)

and

ZP = 0.5184(53), for 5.2 ≤ β =
6

g2
0

≤ 6.0. (3.35)

The bare subtracted quark mass mq is related to the PCAC mass via

mq =
1

Zrm(g2
0)
m12(1 + b̃ram12)

=
1

Zrm(g2
0)
m12

(
1 +

(
1

2
+ 0.05g2

0

)
am12

)
, (3.36)

where the fit for Zrm(g2
0) is given in section 3.3.

So now we know how to convert our constant and fixed mass in the MS scheme

of mMS = 12.8 MeV to the bare subtracted quark mass mq at the different values

of β = 6/g2
0 corresponding to different lattice spacings/different temperatures. The

lattice parameter, however, that tunes the bare subtracted quark mass, is κ. For each

and every value of β we know the corresponding hopping parameter κc, cf. section 3.2.

So with amq and κc at hand we find the parameter values for κ by (around eqn. (E.1)

in [54])

amq = am0 − amc

=
1

2κ
− 1

2κc
. (3.37)

3.4.2 Clover or Sheikholeslami-Wohlert term

Also the clover term has a g2
0-dependence which was fitted by Xxxxxx and Xxxxxx [55]

to

cSW =
1− 0.454 g2

0 − 0.175 g4
0 + 0.012 g6

0 + 0.045 g8
0

1− 0.720 g2
0

(3.38)

with a pole outside our range of interest (pole at β < 5.2).

3.5 Summary of all lattice parameters

In this section, all the parameters for the different temperatures are presented. They are

obtained by fits to the relevant data sets found in the literature or they were calculated
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T/MeV g2
0 β κc κ cSW

254 1.09091 5.5 0.13677530 0.13671046 1.7515

508 0.993712 6.03796 0.13627057 0.13623795 1.51726

1016 0.921294 6.51258 0.13542605 0.13541002 1.41088

2032 0.86062 6.97172 0.13463322 0.13462535 1.34611

4064 0.806692 7.43779 0.13390756 0.13390369 1.30072

8128 0.757069 7.92531 0.13323188 0.13322997 1.26614

Table 3.2: Lattice parameters for V/a4 = Nτ ·N3
σ = 16 · 643 at different temperatures.

The parameters at T = 254 MeV are used as input for the extrapolations and fits and

were obtained during ensemble productions by Xxxxxxx X. Xxxxxx. Out of the other

ensembles at different temperatures only the one at T = 508 MeV was produced to

date.

T/MeV g2
0 β κc κ cSW

254 1.02966 5.82716 0.13658765 0.13654396 1.58782

Table 3.3: Lattice parameters for V/a4 = Nτ · N3
σ = 24 · 963 at T = 254 MeV. The

parameters are obtained in the same way as the ones in table 3.2, but at a lattice

spacing 2/3 the one of the V/a4 = Nτ · N3
σ = 16 · 643 ensemble at T = 254 MeV.

Then the temperature is kept the same but the lattice is finer.

using the formulae already presented in the literature as can be seen in the previous

sections.

For the lattice of V/a4 = Nτ ·N3
σ = 16 · 643 we find the parameters shown in table

3.2 and for the lattice of V/a4 = Nτ · N3
σ = 24 · 963 we find them displayed in table

3.3.

3.5.1 Tuning algorithmic parameters

For the MP-HMC code, one needs three values of κ one of which being the target

κtarget and the other two being smaller values κi corresponding to higher masses. With

the highest mass one can solve the Hybrid Monte Carlo equation more easily and then

solve it again with the slightly lower mass until one reaches the target mass with the

target κtarget. In order to calculate the two mass-preconditioning κi values we avail
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ourselves of the values previously used within the group and use the same mass ratios:

amq(κi,D)

amq(κtarget,D)
!

=
amq(κi,A)

amq(κtarget,A)
(3.39)

1
κi,D
− 1

κc,D
1

κtarget,D
− 1

κc,D

=

1
κi,A
− 1

κc,A
1

κtarget,A
− 1

κc,A

where D denotes the previously used values of the group and A indicates the values of

κ of this work. Hence, we find

κi,A =

[
1

κc,A
+

(
1

κtarget,A

− 1

κc,A

)( 1
κi,D
− 1

κc,D
1

κtarget,D
− 1

κc,D

)]−1

(3.40)

with i = 1, 2.

Outlook

Since most of the temperatures we are interested in correspond to values of β much

higher than 6, it is important to determine ZP as a function of g2
0 in that parameter

region, but this is subject to future work.

3.6 Plots

In the following, some of the fitted functions with data from the literature are shown.

The fits were performed using Mathematica 10 and the χ2 values are compatible with

zero.
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Figure 3.1: Plot of data and fitted curve for − log (L/Lmax), cf. eqn. (3.8).
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Figure 3.2: Plot of data and fitted curve for ḡ2(g2
0), cf. eqn. (3.10).
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Figure 3.4: Plot of data and fitted curve for amc(g
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0) with data points from [51] and

[54].
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(3.22) (red), with data points from [51] and [54].
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Figure 3.6: Plot of data and fitted curve for Zrm(g2
0), cf. eqn. (3.26), with data points

from [54].
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Chapter 4

Gauge ensembles, correlators and

continuum limit

After having tuned both the lattice and the algorithmic parameters as presented in

the previous chapter we can summarize the generation of the lattice gauge ensembles,

the measurement of the relevant 2-point functions as well as the construction of their

continuum limit.

4.1 Gauge ensembles at Nf = 2 flavors

Over the course of this work two lattice gauge ensembles with twoO(a) improved Wilson

quarks with degenerate light quark masses at temperatures of T = 508 MeV and T =

254 MeV were generated using the MP-HMC algorithm [57, 58] in the implementation

of Xxxxxxxxxx and Xxxxxxxx [59] which is based on XXXX’s DD-HMC package found

at http://xxxxxxx.web.cern.ch/xxxxxxx/DD-HMC/index.html.

The Y7 ensemble

The lattice group at Uni Mainz has generated a finite temperature ensemble at T =

254 MeV with a lattice volume of V/a4 = Nτ ×N3
σ = 16× 643. This ensemble labeled

O7 was described in Refs. [60, 61] and had a lattice spacing of a ≈ 0.048 fm. It is

based on a zero temperature ensemble of the same label described, e.g., in Ref. [54].

By using the same number of lattice sites in the temporal direction, but only half the

lattice spacing and tuning the lattice parameters accordingly as demonstrated in the

previous chapter (see table 3.2), one can produce a lattice ensemble at double the
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temperature (i.e. 508 MeV) according to

T =
1

Nτa
. (4.1)

Since the Nτ = 16 ensemble at T = 254 MeV was already in a thermalized state, we

were able to start a new production run from one of these thermalized configurations

rather than from a hot start (all gauge links of the initial configuration set to random

values) or a cold start (all gauge links of the initial configuration set to one). That meant

that the thermalization of the new gauge ensemble with Nτ = 16, but at T = 508 MeV

was achieved rather quickly. Studying the autocorrelation of the average plaquette of

this ensemble showed that the autocorrelation time was given by about 20 mdu where

mdu stands for ’molecular dynamics unit’. With the solver time set to τ = 2 that means

one may measure the correlation functions only on every tenth trajectory. Therefore

only every tenth trajectory was saved as configuration in the gauge ensemble. The

label of this ensemble is Y7. The history of the average plaquette of Y7 is shown in fig.

4.1. It progresses stably and can be considered thermalized from the beginning. The

vertical dashed lines indicate where continuation runs were started1. This is particularly

interesting for both the acceptance rate, fig. 4.2, and ∆H the difference between the

action with updated configurations and momenta and the initial action, see eqn. (2.68)

and fig. 4.3. For the case of the acceptance rate, one can see that the rate can drop

(or sometimes rise) considerably after a continuation run starts because the acceptance

rate counter is set to zero at the beginning of each continuation run. The acceptance

rate Racc(mdu) of a (new/continuation) run is defined as the number of accepted

trajectories locally averaged over all trajectories generated within the respective run up

to a given molecular dynamics unit (mdu).

Racc(mdu) =
Nacc

N
(mdu) (4.2)

where Nacc is the number of accepted trajectories and N is the number of all trajectories

within one (new/continuation) run evaluated at a given mdu. Thus, a single config-

uration that is not accepted at the beginning of a (new/continuation) run, has much

more weight in the rate. When the generation lasts for a longer amount of molecular

dynamics units, the acceptance rate stabilizes around 0.95. The ∆H seems to vary

within a narrower window for mdu/2 < 1100 than for larger mdu (third vertical dashed

1New continuation runs start after adjusting algorithmic parameters such as deflation space, number

of Krylov vectors, etc. in order to enhance the performance with respect to the physical time one

trajectory takes to be generated.
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Figure 4.1: The average plaquette of the Y7 ensemble.

line from the left), fig. 4.3. The continuation run starting from mdu/2 = 1100 has a

reduced N3 = 18 as compared to N3 = 30 or N3 = 27 before this continuation run2,

which might have resulted in the broader window for the ∆H variance.

The X7 ensemble

In Table 3.3 we show the parameters as they were tuned for the generation of another

ensemble at T = 254 MeV which we label X7. This ensemble has a lattice volume

of V/a4 = Nτ × N3
σ = 24 × 963 such that it preserves the aspect ratio of L/β =

4 where β = 1/T that was also given for the O7 ensemble. In order to keep the

temperature the same, one has to decrease the lattice spacing when increasing the

number of lattice sites. So for the X7 ensemble with Nτ = 24 the lattice spacing

has to be 2/3 the one of O7. With a third and coarse ensemble at T = 254 MeV

and V/a4 = Nτ × N3
σ = 12 × 483 labeled F7 at hand (see also [60, 61]), one can

then measure observables on all three lattices and construct a continuum limit for

these observables. The bare parameters of the finite-temperature ensembles F7 and O7

2N3 is related to Nstep the number of substeps in the integrator and thus to the finite step size,

eqn. (2.67).
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Figure 4.2: The acceptance rate of the Y7 ensemble, see eqn. (4.2).

are identical to the bare parameters of the corresponding zero-temperature ensembles

with the same labels. The generation of X7 was more involved. At first, Xxx Xxxxxx

generated and thermalized a pure glue (quenched) ensemble with the corresponding

parameters calculated by Xxxxxx Xxxxx. And only then we could start a production run

from a thermalized, albeit purely quenched configuration. Since the quenched theory

corresponds to all quark masses being sent to infinity, starting a production run from a

quenched configuration but now with a κ value corresponding to the target MS mass

of about 12.8 MeV means that the solvers for inverting the Dirac operator will fail to

converge. Therefore we ran intermediate production runs with bare subtracted quark

masses that were deliberately set to substantially larger values than the target bare

subtracted quark mass corresponding to an mMS(µ = 2 GeV) = 12.8MeV. When the

average plaquette of such an intermediate run had nearly or already thermalized, we

initated a new intermediate production run with a bare subtracted quark mass lower than

the previous one but closer to the target bare subtracted quark mass. This procedure

was repeated until the target bare subtracted quark mass could be simulated without

convergence issues of the solver. The actual MS mass was found to be mMS ≈ 16MeV.
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Figure 4.3: The ∆H (see around eqn. (2.68)) of the Y7 ensemble.

That is slightly higher than what we aimed for but the ratio mMS/T ≈ 6% is still small

enough so that one can safely neglect the effect of unphysically high quark masses.

Xxxxx XX pointed out that the autocorrelation time for gluonic or topological ob-

servables becomes very large for lattices with very small lattice spacing such as the one

of X7. This is due to the known critical slowing down of the HMC algorithm [62, 63].

Xxxxx XX observed an integrated autocorrelation time of 540 mdu for the observable

of the topological charge Q,

Q =

∫
d4x q(x), q(x) =

1

64π2
εµνρσ F

a
µν(x)F a

ρσ(x). (4.3)

This means that the finest ensemble is seriously affected by topological charge freez-

ing. Fortunately, our observables of interest presented in the next section 4.2 have

little coupling to the topological or gluonic observables. Hence, we may neglect the

effect of topological charge freezing and extremely long autocorrelation times for these

observables.

In an analysis [64] conducted after the analyses in this work, we accounted for the

effects of autocorrelation and thermalization by excluding the first 200 configurations

of the chain. We were able to do this because there were around 700 configurations
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produced on X7 such that we could drop the first two hundred from the chain whereas

at the time the analysis of this work was conducted, there were only about one hundred

configurations available. Dropping the first 200 configurations resulted in an improve-

ment of the quality of the continuum limit.

In fig. 4.4, the average plaquette for the X7 ensemble is shown during thermal-

ization. The thermalization run starts from a thermalized, quenched configuration and

the value of the average plaquette drops considerably after a few trajectories (or mdu).

The vertical dashed lines indicate where a new (slightly higher) κ value was chosen.

This corresponds to choosing slightly lower masses because we approached the target

bare subtracted quark mass after gradually lowering the bare subtracted quark mass to

accommodate for the effect that the quark masses are sent to infinity in the quenched

theory. One can see that at each vertical dashed line, the average plaquette rises and

plateaus. This is a sign that the average plaquette might have thermalized, and a new

run was started with a higher κ value. The vertical lines correspond to the follow-

ing intermediate κ values: start κ = 0.120001, 1 κ = 0.120001, 2 κ = 0.125000, 3

κ = 0.129000, 4 κ = 0.130332, 5 κ = 0.131133, 6 κ = 0.132353, 7 κ = 0.133387, 8

κ = 0.134437, 9 κ = 0.135719, 10 κ = 0.136152, 11 κ = 0.136239, 12 κ = 0.136326,

13 κ = 0.136369, 14 κ = 0.136448, 15 κ = 0.136492, 16 κ = 0.136513, 17

κ = 0.136526, 18 κ = 0.136535, 19 κ = 0.136535, 20 κ = 0.136540, 21 κ = 0.136544

(target κ reached!). The history of the corresponding acceptance rate and ∆H are

displayed in fig. 4.5 and fig. 4.6, respectively.

The thermalization of the X7 ensemble was pursued further while the values for

κ = 0.136544 and τ = 2.0 are held fixed now. Plots of the average plaquette, the

acceptance rate and ∆H are given in fig. 4.7, fig. 4.8 and fig. 4.9, respectively. Here,

the vertical dashed lines indicate where new runs were started. The only exception is

the last vertical line at 1148mdu where we had to change the seed and the processor

grid because the generation of the ensemble was migrated from JUQUEEN in Jülich to

MOGON II in Mainz.

Finally, the last chain labeled ’id115’ resulted in the final ensemble on which we

measured the correlators relevant for this study and studies conducted afterwards. As

mentioned above, we dropped the first 200 configurations (i.e. 2000mdu) due to

autocorrelation effects which is indicated by single dashed line in figs. 4.10, 4.11 and

4.12 which show the average plaquette, the acceptance rate and ∆H, respectively. It is

noteworthy that, while the average plaquette seems to be thermalized, we do encounter

low acceptance rates as well as high values of ∆H indicating that the ensemble has not
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Figure 4.4: The average plaquette of the X7 ensemble during the initial thermalization

phase starting from a thermalized, quenched configuration.

yet thermalized.

4.2 Correlators

For the computation of the photon production rate we examine a particular linear

combination of the correlator according to eq. (6.6) in chapter 6 given by

G(x0,k) ≡
(
δij −

3kikj

k2

)
Gij(x0,k) + 2G00(x0,k) (4.4)

with the isovector vector correlator

Gµν(x0,k) =

∫
d3x e−ik·x

〈
Vµ(x0,x)V †ν (0,0)

〉
(4.5)

and the vector current

Vµ(x) = ψ̄(x)γµψ(x). (4.6)

We can also define the static susceptibility

χs ≡
∫ L0=1/T

0

dx0G
00(x0,0). (4.7)
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Figure 4.5: The acceptance rate of the X7 ensemble (see eqn. (4.2)) during the initial

thermalization phase starting from a thermalized, quenched configuration.

The vector current can be defined with two different discretizations being the local and

the conserved current

V l
µ(x) = ψ̄(x)γµψ(x)

V c
µ (x) =

1

2

[
ψ̄(x+ aµ̂) (1 + γµ)U †µ(x)ψ(x)

−ψ̄(x) (1− γµ)Uµ(x)ψ(x+ aµ̂)
]
. (4.8)

The conserved vector current classically corresponds to the continuum version of the

charge density evaluated at xµ+aµ̂/2, i.e. in the middle of two corresponding adjacent

lattice points. This has to be dealt with carefully as described below.

Using the local and the conserved currents there are two discretizations of the

correlator with only the local or only the conserved currents

Gll
µν(x0,k) =

∫
d3x e−ik·x

〈
V l
µ(x0,x)V †,lν (0,0)

〉
(4.9)

Gcc
µν(x0 + aδµ0 − aδν0,k) =

∫
d3x e−ik·(x+aµ̂/2−aν̂/2)

〈
V c
µ (x0,x)V †,cν (0,0)

〉
(4.10)
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Figure 4.6: The ∆H (see around eqn. (2.68)) of the X7 ensemble during the initial

thermalization phase starting from a thermalized, quenched configuration.

and the mixed discretization

Glc
µν(x0 + aδν0,k) =

∫
d3x e−ik·(x−aν̂/2)

〈
V l
µ(x0 + aδν0,x)V †,cν (0,0)

〉
. (4.11)

Then the local-conserved correlator transforms into the conserved-local correlator as

Glc
µν(x0)

T→ Gcl
νµ(−x0).

For the linear combination (4.4) we need to combine the component of the correlator

with µ = ν = 0 with components having µ = i and ν = j located at the same temporal

distance x0. In case of the local-local or the conserved-conserved discretizations we can

use (4.9) and (4.10) without further modifications. For the mixed local-conserved3

discretization, however, there are two possible combinations for the computation of

(4.4),

Glc,site
00 (x0,k) =

1

2

[
Glc

00(x0 + a/2,k) +Glc
00(x0 − a/2,k)

]
Glc,site
ij (x0,k) = Glc

ij(x0,k) (4.12)

3The conserved-local discretization behaves analogously. So we restrict the discussion to the local-

conserved discretization for brevity.
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Figure 4.7: The average plaquette of the X7 ensemble during thermalization.

where the different components are added when evaluated at the site, as well as

Glc,link
00 (x0 + a/2,k) = Glc

00(x0 + a/2,k)

Glc,link
ij (x0 + a/2,k) =

1

2

[
Glc
ij(x0,k) +Glc

ij(x0 + a,k)
]

(4.13)

where the components are evaluated at the midpoint of the links before adding them.

Now we have four different discretizations at hand X = {ll, cc, (lc, site), (lc, link)}.
The corresponding correlators GX(x0,k) are then symmetrized and averaged over their

momentum orientations, the symmetrized correlators are denoted as ḠX(x0, k). We

have to take into account the normalization of the local currents. This can be circum-

vented when we divide the bare correlators by the bare static susceptibility of the same

discretization, i.e.

hX(x0, k) =
ḠX(x0, k)

2χ̄Xs (x0)T
(4.14)

where χ̄Xs (x0) = L0Ḡ
X
00(x0,0). Then the renormalization factors cancel out and (4.14)

is dimensionless.

In order to account for finite-volume effects, one may define the tree-level improved
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Figure 4.8: The acceptance rate of the X7 ensemble during thermalization, see eqn.

(4.2).

version of hX(x0, k) as

hXTLI(x0, k) =
hcont(x0, k)

hXlat(x0, k)
hX(x0, k) (4.15)

where hcont is the tree-level continuum quantity of h and hXlat is the respective tree-level

lattice version of it, both were computed by Xxxxxx Xxxxx.

The correlators at zero and finite momentum used for the analysis presented in

chapter 5 were produced by the author using the measure code that was implemented

by Xxxxxxxx, Xxxxxxxxxxx, Xxxxxxxx, and modified within the Mainz lattice group by

XXXX and XXX. The discretization of the isovector vector correlators was the local-

conserved one. The correlators at different discretizations, the normalized quantity

(4.14) as well as (4.15) that are relevant for the analysis presented in chapter 6, were

produced, studied and analyzed by Xxx Xxxxxx. He also produced the continuum limit

presented in the following section.
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Figure 4.9: The ∆H (see around eqn. (2.68)) of the X7 ensemble during thermalization.

4.3 Continuum limit

For the continuum limit a → 0 in general, the physical volume of the lattice box we

are studying would shrink as a4, unless one also sends Ns → ∞ as well as Nt → ∞
which is called the thermodynamic limit. This cannot be achieved within numerical

simulations, so one restricts the continuum limit to the scaling analysis where one

computes correlators at three different lattice spacings but with the same fixed physical

box sizes and performs a cubic spline fit to extrapolate the lattice data to the continuum.

What is presented in the following, is work done entirely by Xxx Xxxxxx.

The three lattice gauge ensembles labeled F7, O7, X7 can be used to form such a

scaling analysis and subsequently a continuum limit of the quantity (4.14) with and with-

out tree-level improvement. The lattice sizes of the three ensembles (Nτ = 12, 16, 24

for F7, O7, X7, respectively) are not integer multiples of each other. Hence, one must

construct an interpolator in x0 for (4.14) and (4.15) at each fixed momentum k. This

interpolation was performed using a cubic spline fit as implemented in the Python pack-

age python.interpolate. We choose to interpolate at the sites x0 that correspond
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Figure 4.10: The average plaquette of the X7 ensemble with the final phase of ther-

malization and the final gauge ensemble. This chain is labeled ’id115’.

to the sites of the finest ensemble X7 in temporal direction.

Once the interpolants for the smaller lattices are determined, one can formulate a

global least-squares problem for the continuum limit ĥ(x0, k) for all four discretizations

of hX(x0, k). At a fixed momentum k and a fixed distance x0, one assumes the quadratic

ansatz

hX(x0, k) = ĥ(x0, k) +
a2

L2
0

sX(x0, k) (4.16)

where the left-hand side is understood to be the interpolant while ĥ(x0, k) and sX(x0, k)

are the five fit parameters of the global fit. The fitting range is x0 = L0/4 . . . , L0/2

in steps of a/N
(X7)
τ = a/24. Since the theory and the correlators are O(a) improved,

we presume that the lattice estimator of hX equals the continuum expression up to

O(a2) effects. That is why the ansatz (4.16) is well motivated. In general, there

are O(a) effects due to spontaneous chiral symmetry breaking. At our temperature

of T = 254 MeV, however, the system resides above the transition region around the

chiral critical temperature of Tc ≈ 211(5) MeV [65, 66] (for O7 parameters) where

chiral symmetry is restored by definition. We can therefore safely neglect such effects

as they are absent or at least strongly suppressed.

73



0 1000 2000 3000 4000 5000 6000 7000
mdu

0.0

0.2

0.4

0.6

0.8

1.0
a
cc

e
p
ta

n
ce

 r
a
te

thermalization final ensemble

X7 production id115

Figure 4.11: The acceptance rate of the X7 ensemble (see eqn. (4.2)) with the final

phase of thermalization and the final gauge ensemble. This chain is lableed ’id115’.

For the observable given in eq. (4.14), the continuum extrapolation obtained via

the ansatz (4.16) for the four discretizations at fixed temporal distance and momentum

is shown in fig. 4.13. One can observe that the continuum limit for each of the four

discretizations agrees such that discretization effects should be under control. While

the upper panel of fig. 4.13 shows the data without tree-level improvement, the effect

of multiplicatively improving the correlator according to (4.15) is depicted in the lower

panel. Although the lattice data are corrected substantially, it is very reassuring that

the continuum limit is not changed.

Finally, fig. 4.14 shows the continuum extrapolated correlators as functions of tem-

poral distance τ/β (β equals inverse temperature) including tree-level improvement as

open black symbols as well as the data at finite lattice spacing for the Nτ = 12, 16, 24

ensembles (respectively F7, O7, X7) in red, green and blue for one fixed momentum

kβ =
√

4π/2. The corresponding interpolating functions are depicted as shaded bands

and the three panels display the three discretizations conserved-conserved, local-local

and local-conserved (site-centered), respectively. With the exception of points at dis-

tances τ/β < 0.25, the data from the finest lattice X7 (blue) is already very close to the
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Figure 4.12: The ∆H (see around eqn. (2.68)) of the X7 ensemble with the final phase

of thermalization and the final gauge ensemble. This chain is labeled ’id115’.

continuum extrapolated data set. Therefore the inclusion of this fine lattice is rather

valuable for the study of cutoff effects. The results presented in chapter 6 are obtained

from analyzing the continuum extrapolated data including tree-level improvement using

the discretization with the site-centered local-conserved currents.
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Figure 4.13: Continuum extrapolation of the observable (4.14) for all four discretizations

at fixed temporal distance and momentum. The upper panel shows the non-improved

quantity, while the lower one displays the tree-level improved one.
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Figure 4.14: Plot of the lattice data at finite lattice spacing as well as the continuum

extrapolated data for fixed momentum as a function of temporal distance τ/β where

β = 1/T stands for the inverse temperature. The three panels depict the three dis-

cretizations including the conserved-conserved, the local-local and the local-conserved

(site-centered) currents, respectively.
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Chapter 5

Thermal (screening) masses

This chapter is based on my previous work of Ref. [67] and most passages are kept

unchanged for scientific clarity. The contribution of Xxxxxxx X. Xxxxxx and of Xxxxxxx

Xxxxxxx comprises the providing of previously measured data used for comparisons and

the introduction of the author to the MP-HMC algorithm as well as the measure code.

The contribution of Xxx Xxxx consisted in multiple cross-checks of the fitting results

and in pointing out a precision error in the fitting code as it was implemented by the

author. The contribution of Xxxxxx Xxxxx was the supervision of the entire project.

5.1 The quark-gluon plasma

At vanishing baryon chemical potential, the phase transition from hadronic matter to

the quark-gluon plasma (QGP) is predicted to be a rapid, but still continuous crossover.

The hadrons in the medium undergo certain modifications as the temperature increases,

this reflects the chiral and deconfinement properties of the system. The real-time,

or transport properties of the medium, however, are connected to the correlators of

conserved currents [68]. The spectral function in the channel of the conserved vector

current can yield the thermal dilepton production rate and, when studied in the low

frequency region, provides information about transport coefficients like the electrical

conductivity or the diffusion coefficient by applying Kubo formulae. It is worth noticing

that when one describes screening masses as a bound state of a non-relativistic quark-

antiquark pair, one encounters the same effective potential that enters the calculation

of the dilepton production rate [61, 69]. This will be discussed in more detail in section

5.2 and 5.4.

The thermal screening mass associated to the conserved vector current provides
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an estimate for the inverse correlation length over which an electric field is screened

in a strongly interacting medium, e.g. the QGP. Screening masses can as well be

computed perturbatively in the high temperature regime of QCD and thus allow for a

comparison between lattice and perturbative results. In terms of spectral functions, an

analytic continuation of the screening pole in the Euclidean correlator to the diffusion

pole in the retarded correlator establishes a link between screening masses and real-

time quantities of QCD [70]. As described in section 6.3, relativistic hydrodynamics

and linear response theory give a functional form for the retarded correlator at small

frequency and momentum [70]

GR(ω, k)
ω,k→0

=
χsDk

2

−iω +Dk2
, (5.1)

where χs is the static susceptibility and D the diffusion constant. Continuing to imagi-

nary frequencies one obtains the Euclidean correlator GE(ωn, k) = GR(iωn, k) and the

poles of (5.1) in k correspond to iE(ωn), where E(ωn) is the screening mass. Then,

the poles are given by k2 = −ωn/D and the screening mass relates to the diffusion

constant as [70]

E(ωn)
ωn→0∼

√
ωn
D
. (5.2)

In [71], another motivation for studying screening states is given. It was shown that

the lowest levels of transverse screening masses contribute to the vector correlator at

light-like kinematics and therefore to the spectral function of interacting quarks. It is

interesting to note that the difference of the screening mass from 2πTn is relevant in

that context, see also subsection 5.3.1 for further discussion. According to the findings

in [61], it is argued that the photon emission rate discussed in chapter 6, recieves a

strong contribution from infrared physics.

Within different gauge theories, there are different ways to define the Debye screen-

ing mass. In QED, for example, k2 + Π00(0, k)|k2=−m2
E

= 0 defines mE, the static

Debye screening mass as the pole of the longitudinal static photon self-energy [72].

For QCD, however, one extracts the chromo-electric Debye mass from the correlation

function of the imaginary part of the trace of the Polyakov loop which is odd under

Euclidean time-reversal [73]. Finally, the vector screening mass MV explored in this

work corresponds to the inverse of the screening length of an external U(1) electric

field in the QGP. One can extract it from the flavor non-singlet vector correlator de-

termined from lattice QCD. The longest correlation lengths are gluonic at very high

T, and the flavor-singlet quark bilinears have a very small overlap onto those states.
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Thus, the disconnected contribution, i.e. the difference between singlet and non-singlet

correlator, at high temperature, is expected to be negligible.

5.2 The effective formalism

It is of interest to investigate the screening of a U(1) electric field inside the QGP where

the intermediate screening state can be described by either an effective field theory or

a lattice QCD approach. As discussed in Refs. [61, 74], an effective description of

the system is motivated where one can exploit a scale hierarchy usually expressed as

g2T � gT � 2πT . Thus, the non-perturbative ultrasoft chromo-magnetic modes at

scale ∼ g2T are separated from the intermediate soft chromo-electric modes at ∼ gT

[75]. Both these scales are integrated in the dimensionally-reduced effective theory we

will employ whereas the hard scale ∼ 2πT enters through perturbative matching. The

chromo-electric Debye screening mass mE connected to the gT scale enters into an

effective one-gluon exchange potential. One finds [75]

m2
E = g2T 2

(
Nc

3
+
Nf

6

)
. (5.3)

The chromo-magnetic field, unlike in Abelian plasmas, is also screened on a scale of

order g2T determined by non-perturbative physics.

In accordance to the derivation in Ref. [61], the thermal flavor non-singlet vector

current correlator is defined as

G(kn)
µν =

∫ β

0

dτ eiknτ

∫
x

〈(
ψ̄γµψ

)
(τ,x, z)

(
ψ̄γνψ

)
(0)
〉
, (5.4)

where x = (x1, x2)T constitutes a transverse plane orthogonal to the z direction. After

decomposing the quark fields into their Matsubara modes as

ψ̄(τ) = T
∑
pn

e−ipnτ ψ̄pn , ψ(τ) = T
∑
pn

eipnτ ψpn , (5.5)

the screening correlator can be re-expressed as

G(kn)
µν (z) = T

∫
x

〈
V (kn)
µ (x, z)V (−kn)

ν (0)
〉
, (5.6)

where

V (kn)
µ (x, z) = T

∑
pn

ψ̄pn(x, z) γµ ψpn−kn(x, z). (5.7)
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Figure 5.1: Non-relativistic auxiliary fields in the transverse plane exchanging one gluon.

The quark-antiquark pair propagates in the z direction.

From [76], I quote the thermal masses for gluons and quarks, respectively,

m2
eff,g =

1

6

(
CA +Nf CF

dF
dA

)
g2 T 2 ≡ 1

2
m2
D, (5.8)

m2
eff,f =

1

4
CF g

2 T 2 ≡ 2m2
F . (5.9)

Fig. 5.1 depicts the quark and antiquark in the transverse plane. With the quark modes

carrying frequencies of order ∼ πT , the fields can be dimensionally reduced resulting in

2 + 1-dimensional non-relatvistic fields,

ψ =
1√
T

(
χ

φ

)
. (5.10)

This motivates a hydrogen-atom inspired picture for the two-quark bound state in an

effective one-gluon exchange potential. In the transverse plane that is orthogonal to

the screening direction z, the quarks perform a rotation around each other. Their

chromo-electric Debye mass mE enters in the one-gluon exchange potential,

V +
LO(y) =

g2
ECF
2π

[
log
(mEy

2

)
+ γE +K0(mEy)

]
, (5.11)

where g2
E = g2T is the effective coupling of our dimensionally reduced theory, CF =

N2
c−1

2Nc
, y = |y| and K0 is a modified Bessel function. The same potential also occurs

in the calculation of the dilepton production rate as was shown in [61, 69] and can be

defined non-perturbatively. Following the steps carried out in [61], the determination of

the effective screening mass requires the solution of the radial part of a homogeneous

Schrödinger equation:{
− d2

dȳ2
− 1

ȳ

d

dȳ
+
l2

ȳ2
+ ρ

(
2πV +

LO

g2
ECF

− Ê(l)

)}
Rl = 0 (5.12)
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Figure 5.2: Left: static case (n = 0) with both quarks carrying momenta of πT each in

opposing directions. Right: non-static case (n = 1) with both quarks carrying momenta

of πT each in the same direction.

with dimensionless quantities ȳ = mEy, ρ = g2
ECFMr/(πm

2
E) and g2

E = g2T . At first,

one needs to find the (physical) ground-state energy Ê(l) of eqn. (5.12), which is used

to compute the full energy Efull via

Efull = Mcm +
g2
ECF
2π

Ê(l) , (5.13)

Mcm = kn +
m2
∞

2Mr

, m2
∞ =

g2T 2CF
4

, Mr =

(
1

pn
+

1

kn − pn

)−1

.

Finally, Efull can be regarded as the effective screening mass of the U(1) electric field

in the medium.

In addtion to the screening masses, one can study the screening amplitude. It is an

estimate of how much the quark and the antiquark are overlapping. A large screening

amplitude corresponds to a a tightly-bound screening state. For large distances, the

screening correlator exhibits the behavior

−G
(kn)
00 (z)

T 3
≈ Ncm

2
EA+

0

πT 2
e−|z|E

(l=0)
0 ,

−G
(kn)
T (z)

T 3
≈ Ncm

4
EA+

1

πT 2

[
1

p2
n

+
1

(kn − pn)2

]
e−|z|E

(l=1)
0 (5.14)

with

A+
0 =

|R0(0)|2∫∞
0

dȳȳ|R0(ȳ)|2 , A+
1 =

|R′1(0)|2∫∞
0

dȳȳ|R1(ȳ)|2 (5.15)

for S-wave (l = 0) and P -wave (l = 1) channels, respectively.

In the static case, the situation is rather similar because both quarks carry momenta

of πT but in opposing directions as illustrated in fig. 5.2. One needs to keep in mind

that in the static and non-static sectors the role of the longitudinal and transverse
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compontents of the current correlator are reversed and the interaction of the quark-

antiquark pair is described by a different potential.

5.3 Lattice calculation

We simulate the system of interest on a lattice of space-time volume V = (Nτa) ×
(Nσa)3 = 16a × (64a)3. Using previous lattice simulations with O7 parameters (see

[61] and references therein) and the running of the coupling g2
0 with the lattice spacing

extrapolated from the data in Ref. [51], the lattice spacing is estimated to be a ≈
0.024 fm corresponding to a temperature of T = (Nτa)−1 ∼= 508 MeV. The lattice

was generated with Nf = 2 non-perturbatively O(a)-improved Wilson fermions. We

use the plaquette gauge action with β = 6/g2
0 = 6.038 [51]. The critical hopping

parameter κc is extrapolated from the data in [54] keeping the 2-loop coefficients for

amc = 1/(2κc) − 4 obtained from [52, 53]. The clover term is set to csw = 1.51726

using the non-perturbative tuning relations of [55]. With the chosen hopping parameter

κ = 0.136238 we measure an MS mass of mMS(µ = 2GeV)/T ≈ 0.04, whereby we

follow the conversion of the bare subtracted quark mass to the MS mass of [54]. The

measurements were carried out exploiting Ncfg = 345 configurations and Nsrc = 64

random sources.

We describe the screening correlator of eqn. (5.4) by a two-state fit,

G(kn)
µν (z) =

2∑
n=1

An
cosh[Mn(z − Lz/2)]

sinh[MnLz/2]
. (5.16)

The effective screening mass M1 we extract from the fit is an estimate for the inverse

screening length of the U(1) electric field in the QGP and the excited-state mass M2

corrects for the leading excited-state contamination at long distances.

5.3.1 Comparison of results

We are now in the position to compare the results of the two approaches in order to

determine how well the effective perturbative description coincides with the lattice data.

In a previous study [61] this comparison was done for temperatures of T = 254 MeV

and T = 338 MeV. In the static transverse channel the lattice result lies below the 2πT -

line for both temperatures whereas the perturbative result lies above it. The tendency,

however, of the lattice data is to eventually cross the 2πT -line at a certain temperature.

This behaviour is confirmed by the new lattice data set at T = 508 MeV, shown in the
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upper panel of fig. 5.3. This observation is consistent with the expectation that, the

higher the temperature, the more accurate the perturbative description becomes. The

agreement is less good in the static longitudinal channel, see fig. 5.3, while in both

cases the perturbative results differ from the lattice data by less than 10%. The results

obtained by the two different approaches in the non-static longitudinal channel with

n = 1 agree quantitatively, see fig. 5.4 (upper panel). Both values are above 2πT and

are compatible within errors. In the transverse channel of the non-static vector screening

correlator the two effective masses are close although the lattice signal deteriorates as

z approaches Lz/2, see also fig. 5.4.

Figure 5.5 gives an overview of the spectra at T = 254, 338 and 508 MeV. It

is evident that the agreement between lattice field theory and effective field theory is

improved for higher temperatures. For the highest temperature, in the static sector,

n = 0, the transverse effective mass lies above the 2πT -line, in qualitative agreement

with perturbation theory, and in the non-static sector, n = 1, the longitudinal effective

masses obtained from an effective and a lattice approach agree quantitatively. Since the

coupling is smaller for higher temperatures, the difference from 2πT for the perturbative

results decreases with higher temperatures whereas the lattice data stays the same, as

can be seen in the longitudinal channel of the static sector, n = 0. The perturbative

results in both the longitudinal and the transverse channel of the non-static sector,

n = 1, at T = 508 MeV are systematically shifted to lower values compared to the

same data at the lower temperatures T = 254 and 338 MeV. For these temperatures a

non-perturbative EQCD potential enhanced the agreement of lattice QCD and effective

field theory results in the non-static sector, n = 1, whereas only a leading order potential

was available for the comparison at T = 508 MeV.

Interpreting the amplitudes, as obtained from eqn. (5.15) and the lattice formu-

lation, eqn. (5.16), in terms of the quark-antiquark picture, they give an estimate on

how tightly bound the quark-antiquark pair is. At the lower temperatures examined in

Ref. [61] the amplitudes were higher compared to the present study. In this picture,

this indicates that at higher temperatures the two quarks are more loosely bound; the

bound state is more extended in the (x, y) plane. Although the agreement between

lattice and effective field theory is worse than for the masses (see fig. 5.6), there is

noticeable improvement when comparing to the results gained for the amplitudes in the

previous study [61] at a lower temperature. As compared to the masses, it is more

difficult to establish good agreement between lattice and perturbative results for the

amplitudes. This is because the leading order value of the mass scales as 2πT whereas

84



T/MeV = 254 T/MeV = 338 T/MeV = 508

n = 0 n = 1 n = 0 n = 1 n = 0 n = 1

ET/(2πT ) 0.917(6) 1.488(32) 0.970(2) 1.509(21) 1.012(2) 1.296(75)

E00/(2πT ) 1.272(32) 1.186(10) 1.261(14) 1.154(2) 1.259(12) 1.136(2)

AT/T
3 10.3(4) 9.2(16) 10.63(13) 10.0(12) 10.972(181) 1.642(1.430)

A00/T
3 7.9(7) 6.0(4) 4.1(16) 4.78(7) 5.472(645) 3.751(137)

Table 5.1: Lattice results for the energies and matrix elements. The results for T =

254, 338 MeV are from Ref. [61], the results for T = 508 MeV are from this work.

T/MeV = 254 T/MeV = 338 T/MeV = 508

n = 0 n = 1 n = 0 n = 1 n = 0 n = 1

ET/(2πT ) 1.082(16) 1.464(32) 1.066(16) 1.416(32) 1.068(5) 1.183(8)

E00/(2πT ) 1.210(16) 1.273(32) 1.194(16) 1.241(16) 1.172(8) 1.130(6)

AT/T
3 17.8(22) 1.2(4) 15.7(14) 1.0(2) 14.091(399) 0.084(6)

A00/T
3 0.7(2) 3.8(5) 0.5(1) 3.3(3) 0.429(28) 1.225(58)

Table 5.2: Perturbative results for the energies and matrix elements. The results for

T = 254, 338 MeV are from Ref. [61], the results for T = 508 MeV are from this work.

the amplitudes scale as ∼ g2 or ∼ g4, and are thus more sensitive to uncertainties in

the value of the running coupling.

For the three different temperatures T = 254, 338, 508 MeV, the results of the

energies and matrix elements are given in Table 5.1 as obtained from the lattice, and in

Table 5.2 as obtained from the perturbative theory. In both cases, the left and middle

columns show results for T = 254, 338 MeV as presented in Ref. [61], while the right

column displays the results from this work.

Finally, one can compare all the results from the lattice and the peturbative treat-

ment with N = 4 SYM theory at infinite coupling. There the non-static screening

energy in the n = 1 Matsubara sector at 2πT in the longitudinal (S-wave) channel lies

at [77]

E
(n=1)
L = 1.338 · 2πT. (5.17)

Because AdS/CFT is scale invariant, this result is valid for all temperatures. Comparing

to the corresponding screening masses obtained from the lattice theory at different

temperatures, one observes that for all three temperatures discussed here, the N = 4

SYM result differs from the lattice results by at least 10% to about 15%, a substantial

85



amount compared to the given precision. The same comparison with respect to the

screening masses obtained from the perturbative theory leads to a different conclusion.

In this case, the N = 4 SYM results differ from the PT results by at most 5% for the

temperatures T = 254, 338 MeV. This shows how high the precision in the lattice and

the perturbative appraches needs to be so that one can actually distinguish between the

weak-coupling and the AdS/CFT prediction. At the highest temperature T = 508 MeV,

however, the perturbative result is compatible with the lattice result within error bars

and therefore the deviation from the AdS/CFT value is again about 15%. The reason

for this discrepancy is that there was an EQCD potential used to determine the EFT

screening masses at the two lower temperatures but it is the LO perturbative potential

that provides the screening masses at the highest temperature, see Ref. [61] and

references therein for further discussion of the two potentials.

5.4 Connecting screening masses

to the photon emission rate

Let us denote the transverse part of the spectral function evaluated on the light cone as

σ(ω) ≡ ρT(ω, |k| = ω), this is in fact the naturally relevant component of the spectral

function directly proportional to the photon emission rate. We can also denote the

momentum-space Euclidean correlator in the Matsubara sector ωn at imaginary spatial

momentum k = iωn as HE ≡ GE(ωn, k = iωn). Then both these objects are related

by a dispersion relation

HE(ωn)−HE(ωr) =

∫ ∞
0

dω

π
ω σ(ω)

[
1

ω2 + ω2
n

− 1

ω2 + ω2
r

]
. (5.18)

When the Fourier transformed Euclidean screening correlator is expressed via a sum of

screening states with energies En as

G̃E(ωr, x3) = −
2∑
i=1

∫ β

0

dx0 e
iωrx0

∫
dx1dx2 〈Ji(x)Ji(0)〉

=
∑
n

A(r)
n e−E

(r)
n |x3| , (5.19)

then HE is given as

HE(ωr) ≡
∫ ∞
−∞

dx3 G̃E(ωr, x3) eωrx3

= 2ω2
r

∞∑
n=0

A(r)
n

1

E
(r)
n (E

(r)2
n − ω2

r)
. (5.20)
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Thus, with eqns. (5.18) and (5.20), one establishes a connection between the spectral

function related to the photon emission rate and non-static screening masses. This

helps to understand why the same effective potential occurs both in the computation

of quark-antiquark screening states and the Landau-Pomeranchuk-Migdal resummation

contributions to dilepton production rates [78], as was mentioned earlier in Ref. [61].

5.5 Brief summary and outlook

A general result of this study is that a quark-antiquark pair in the flavor non-singlet

vector channel can be described as a non-relativistic bound state (bound by an effective

one-gluon exchange potential) with the size of O(m−1
E ) where mE is the chromo-

electric Debye screening mass. The corresponding screening amplitudes indicate that

the quark-antiquark pair is more loosely bound at high temperatures than at lower ones.

The effective screening mass determined for this intermediate state is an estimate for

the inverse correlation length over which a U(1) electric field is screened in the medium.

While both the static and non-static sectors probing the momentum scale gT can be

represented by an effective theory in 2 + 1 dimensions, only the non-static sector can

be clearly connected to real-time phenomena, see Ref. [61] and section 5.4. The same

effective potential that appears in the description of non-static screening masses also

enters the computation of the dilepton production rate.

The agreement between lattice and effective theory results confirms the applica-

bility of the perturbative treatment at temperatures that are relevant for heavy-ion

phenomenology. A previous study [61] implies that the lattice results in the transverse

channel of the static sector would cross the 2πT line from below for increasing tem-

peratures, thereby improving agreement with results from perturbation theory which

lie above the 2πT line, see fig. 5.5. This behavior was observed in an earlier study

using staggered fermions [79] and is confirmed by the results of this work using O(a)

improved Wilson fermions, see right columns of Tables 5.1 and 5.2.

One possible future application of this study is an analytic continuation of the re-

tarded correlator in the Matsubara frequency in order to extract the diffusion coefficient,

see Refs. [70, 69] and Eq. 5.2. Finally, and in view of the following chapter 6, it is note-

worthy that the so-called reconstructed correlator is of interest when examining thermal

correlators and their corresponding spectral functions [80, 81]. The reconstructed cor-

relator can be thought of as the Euclidean correlator at temperature T for which the

spectral density is not affected by thermal effects [80].
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Figure 5.3: Static (n = 0) screening masses at a temperature of T = 508 MeV. Upper

panel: transverse (S-wave) channel. Lower panel: longitudinal (P-wave) channel.
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Figure 5.4: Non-static (n=1) screening masses at a temperature of T = 508 MeV.

Upper panel: longitudinal (S-wave) channel. Lower panel: transverse (P-wave) channel.
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Figure 5.5: Comparison of the masses at different T . Results of the upper and middle

panels are from [61].

90



AT, n= 0 AL, n= 0 AL, n= 1 AT, n= 1
0
2
4
6
8

10
12
14
16

A
/T

3

LAT

EFT

Figure 5.6: Comparison of the amplitudes at T = 508 MeV.
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Chapter 6

The photon production rate

As described in [82], particles that interact electromagnetically, such as photons or

dileptons, have little cross sections with the QGP. In plasmas of the extent produced in

relativistic heavy-ion collisions, the photons probe the entire medium without too many

rescatterings before they are detected. In contrast, strongly interacting constituents of

the plasma suffer many rescatterings with the medium over their lifetime in the QGP,

and therefore information about the initial properties of these constituents is obscured.

Hence, it is important to study direct photons, which are produced from the very

early stages of a collision onward and escape the medium without having thermalized

or rescattered [83]. In this way, the information they carry about the initial stages of

the collision is not wiped out. Direct photons can be grouped into prompt and thermal

photons. Prompt photons are produced when the partons that make up the heavy ions

collide. Thermal photons are emitted by the hot quark or hadronic matter generated

during the collision process [83]. When the hadrons in the medium decay radiatively, this

gives rise to a background contribution of decay photons that are not direct photons.

Only thermal photons, however, provide information about the early stages of the QGP

[83], so they are the ones we want to study.

6.1 Correlators and spectral functions

Information about the response of an observable to the influence of an external source is

usually extracted from a retarded correlator [46]. Linear response theory deals with the

response of an equilibrated thermal medium to small perturbations out of equilibrium.

When studying the expectation value of a commutator and exploiting time-translation

invariance of the equilibrium density matrix, the spectral function is directly related to
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the retarded correlator [46]. It can be shown that one obtains the frequency-space

Euclidean correlator by an analytic continuation of the retarded correlator [46].

In order to reconstruct the spectral function, ρ, from a discrete Euclidean correlator,

G, it is necessary to invert an integral equation [68] (see also eqn. (1.37)),

G(τ, T ) =

∫ ∞
0

dω

2π
ρ(ω, T )K(ω, τ, T ), (6.1)

where the finite temperature integration kernel reads

K(ω, τ, T ) =
cosh (ω (τ − β/2))

sinh (ωβ/2)
. (6.2)

This inversion problem becomes numerically ill-posed when there are only about O(10)

data points available on the l.h.s. of eqn. (6.1) but one would need many more points

to resolve the spectral function, ρ [68]. Two alternate ways of dealing with this ill-posed

numerical situation are discussed in sections 6.4 and 6.5.

6.2 Definitions

The differential photon production rate per unit volume of plasma is given, to leading

order in the electromagnetic coupling αem, by [82, 84]

k
dΓγ(k)

d3k
=

(
Nf∑
f=1

Q2
f

)
αem

4π2
nB(ω = k) ρµ µ(ω = k,k), (6.3)

where nB(ω) is the Bose-Einstein distribution. This rate is determined by the vector-

vector spectral function, ρµ µ evalutated on the light cone, ω = k.

The Ward identity connected with vector current conservation reads

ω2ρ00 − kikjρij = 0. (6.4)

Thus, on the light cone

ρ00 − kikj

k2
ρij = 0. (6.5)

It proves helpful to consider the linear combination

ρλ(ω,k) =

(
δij − kikj

k2

)
ρij − λ

(
ρ00 − kikj

k2
ρij
)
. (6.6)

For λ = 1 one recovers the spectral function ρµ µ. This diagonal channel, however,

suffers from a UV divergence of order ω2 for large ω. From the longitudinal part, it also
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gets a contribution containing a diffusion pole. Both these obstacles are hard to deal

with simultaneously which is why many authors choose to examine the purely transverse

channel (corresponding to the case λ = 0) where there is no diffusion pole [46]. In this

work, however, we set λ = −2 which amounts to the difference of the longitudinal and

the transverse channel whereby one cancels the UV divergence for large frequencies but

keeps the diffusion pole. For λ = −2, eqn. (6.6) becomes

ρλ=−2 =

(
δij − 3kikj

k2

)
ρij + 2ρ00. (6.7)

With the definitions of PµνL/T from Ref. [85],

PµνT = ηµ k η
ν
l

(
ηkl +

KkKl
k2

)
PµνL = ηµν − K

µKν
K2

− PµνT , (6.8)

where Kµ = (k0, k1, k2, k3)T and ηµν = (+−−−), one can decompose ρµν into

ρµν = PµνT ρT + PµνL ρL. (6.9)

It follows that

ρij = PijTρT + PijL ρL

ρ00 = P00
T ρT + P00

L ρL. (6.10)

One can show that [85]

ρµ µ = 2ρT + ρL. (6.11)

When one inserts eqns. (6.10) into eqn. (6.7), however, one ought to calculate(
δij − 3kikj

k2

)
PijL/T ρL/T and

2 P00
L/T ρL/T. (6.12)

At first, we compute (
δij − 3kikj

k2

)
PijT ρT

=

(
δij − 3kikj

k2

)
ηi k η

j
l

(
ηkl +

KkKl
k2

)
ρT

=

(
δij − 3kikj

k2

)(
ηij +

KiKj
k2

)
ρT

=

(
−3 +

k2

k2
+

3k2

k2
− 3k4

k4

)
ρT

= −2ρT. (6.13)
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The second term is (
δij − 3kikj

k2

)
PijL ρL

=

(
δij − 3kikj

k2

)(
ηij − K

iKj
K2

− PijT

)
ρL

=

(
−3− k2

K2
+

3k2

k2
+

3k4

k2K2
− PijT

)
ρL

=

(
2
k2

K2
+ 2

)
ρL. (6.14)

The third term is

2P00
T ρT = 0. (6.15)

And the last term is computed to

2P00
L ρL

= 2

(
η00 − K

0K0

K2

)
ρL

= 2

(
1− k0k0

K2

)
ρL. (6.16)

Putting these four terms together, one gets

ρλ=−2 = −2ρT + 2ρL + 2

(
1 +
−k0k0 + k2

K2

)
ρL

= −2ρT + 2ρL + 2

(K2 − k0k0 + k2

K2

)
︸ ︷︷ ︸

=0.

ρL

= 2 (ρL − ρT) . (6.17)

6.2.1 Perturbative treatment

In subsection 6.5.3, we want to constrain the lattice fit result by results obtained from

a perturbative treatment. Therefore these results are briefly displayed here.

In Ref. [85], the author provides the leading order (LO) expressions for the transverse

and longitudinal part of the spectral function. These read1

ρLO
T = −4NcK2

k2

[
k2

0 + k2

2
〈1〉 − 2 〈 p (k0 − p)〉

]
ρLO

L = +
8NcK2

k2

[
k2

0 − k2

2
〈1〉 − 2 〈 p (k0 − p)〉

]
, (6.18)

1The expressions given here and in Ref. [85] differ by a factor 2 because the spectral representation

of the correlator, eqn. (6.1), includes a factor 1/2 which is not present in the corresponding definition

in Ref. [85].
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where

〈. . . 〉 ≡ 1

16πk

{
θ(k−)

∫ k+

k−

dp− 2θ(−k−)

∫ ∞
k+

dp

}
[nF(p− k0)− nF(p)] (. . . ).

(6.19)

The values of 〈1〉 and 〈 p (k0 − p)〉 are given in Ref. [85]. In terms of the LO expressions

(6.18), the spectral function ρµ µ reads

ρLO,µ
µ = 2ρLO

T + ρLO
L = −4NcK2 〈1〉 . (6.20)

Using the projection (6.17) we find

ρLO
λ=−2 =

8NcK2

k2

[
3k2

0 − k2

2
〈1〉 − 6 〈 p (k0 − p)〉

]
. (6.21)

6.3 Transport coefficients

The line of argumentation is based on the review by Xxxxx [46].

When a system in equilibrium is perturbed out of equilibrium by small amplitude

perturbations, linear response theory teaches us that the response of an observable A

in the system to the perturbation is determined by the correlator associated with A. In

particular, the retarded correlator associated to A encodes the information about how

the observable A relaxes back to its equilibrium value.

In order to describe the relaxation at late times, hydrodynamic predictions are appli-

cable. Therefore, hydrodynamics provide a functional form of the retarded correlator at

small frequencies ω. These analytic expressions establish the so-called Kubo formulae

for transport coefficients.

Transport coefficients are the coefficients of a derivative expansion and encode the

information about the real-time properties of the system at hand. Thus, relativistic

hydrodynamics plays the role of a low-energy effective theory for the correlations of

strongly interacting particles in a thermal medium and the ’low-energy constants’ of

this effective theory are the transport coefficients. As a simple example, one can look

at the diffusion of a certain type of particle in a thermal bath which is described by the

diffusion equation [46]

∂tn(x) = D∇2n(x) (6.22)

with n being the particle number density and D the diffusion coefficient. Its solution

reads [46]

ñ(ω,k) =
n(0,k)

−iω +Dk2
, (6.23)
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where ñ is the Fourier transform of θ(t) · n,

ñ(ω,k) =

∫ ∞
0

dt eiωt
∫

dx e−ik·x n(t,x). (6.24)

Here, θ(t) denotes the Heaviside step function. The initial condition n(0,k) is given

by the associated static susceptibility [46]. The solution (6.23) exhibits a pole in the

complex ω plane at ωpole(k
2) = −iDk2 which indicates the relaxation rate of the

perturbed particle density. The imaginary part of the density-density correlator in Fourier

space provides the spectral function [46],

ρnn(ω,k)

ω
=
χs(k)

π

Dk2

ω2 + (Dk2)2
, (6.25)

where χs is the static susceptibility, see also eqn. (1.36). From eqn. (6.25) one can

infer how the low-frequency and low-momentum part of the spectral function contains

information about transport coefficients and other real-time quantities. The longitudinal

part of the current correlator is related to the density-density correlator, ρSL(ω,k) =
ω2

k2 ρ
nn(ω,k), which results in the Kubo formula

DχNs = π lim
ω→0

lim
k→0

ρSL(ω,k)

ω
(6.26)

with the particle number susceptibility χNs = β
∫

dxn(t,x)n(0). Eqn. (6.26) shows

that the diffusion coefficient D is defined in the limit (ω,k) → 0. After a slow and

adiabatic perturbation in particle density, the particle density (6.23) will relax back to

equilibrium [45]. The dispersion relation of this relaxation process is given by the pole

of the response function, i.e. ω = −iDk2. Furthermore, the function ρSL(ω,k)/ω is

expected to be smooth [45] which can be used to define an effective diffusion coefficient

evaluated at (ω,k) 6= 0 as is done below, see eqn. (6.27).

Transport properties, like the viscosity, diffusivity or electric conductivity, describe

the dynamics of weak and adiabatically changing fluctuations in a medium [76] as

well as the medium’s response induced by slowly varying inhomogeneities or external

forces. When considering weakly coupled quantum field theories, it should be possible

to calculate the transport coefficients from the theory itself. In Ref. [76], the authors

show how transport coefficients are computed in an effective kinetic theory by solving

a linear integral equation.

When a medium is weakly coupled, excitations with momenta p � gT are long-

lived and well-defined quasiparticles and their typical momenta can be called “hard”

[76]. Furthermore, the conserved charges of the system are usually carried by these

excitations.
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In Ref. [86], the author shows that it is possible to compute transport coefficients

diagrammatically in a weakly-coupled relativistic scalar field theory when the starting

point are Kubo formulae involving current-current or stress-stress correlators.

From Ref. [87] we learn that it is important for lattice computations to be able to

discriminate between the weak-coupling and the strong-coupling scenarios for the QGP.

When the plasma is weakly coupled, the two time scales of the inverse temperature

∼ 1/T and the typical relaxation time ∼ 1/(g4 T ) are clearly distinct [87]. Therefore,

kinetic theory is apt to study the real time properties of the plasma. For the strongly

coupled case, however, in the AdS/CFT picture, one cannot distinguish between those

time scales and a quasi-particle picture is not applicable [87]. The constituents of the

medium behave as a single collective system or resonance. Furthermore, one does not

see a transport peak in the spectral densities of such strongly coupled theories [87].

The relevant channels appearing in the correlation functions of the energy-momentum

tensor can be determined similarly to those of the vector current. With momentum k

along the z axis, the complete set of response functions reads (GR is the retarded

correlator) [87]

• Gzxzx
R (ω, k), Shear mode

• Gzzzz
R (ω, k), Sound mode

• Gxyxy
R (ω, k), Tensor mode

• ηµν ηαβ Gµναβ
R (ω, k), Bulk mode.

The following two sections 6.4 and 6.5 are dedicated to proposing two alternate

approaches for reconstructing spectral functions from Euclidean data. Via the Kubo

formula (6.26), the diffusion coefficient can be determined. And following the definition

in Ref. [84], we are going to compute an effective diffusion coefficient

Deff(k) =
ρλ=−2(ω = k,k)

4χsk
, (6.27)

where the estimated and reconstructed spectral function is evaluated on the light cone,

ω = k.

6.4 Backus-Gilbert method

One way of dealing with a numerically ill-posed inversion problem, as given by eqn.

(6.1), is the Backus-Gilbert method, introduced in Ref. [88] and first applied within

lattice QCD in Refs. [66, 89, 81].
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With a given integral representation of the Euclidean correlator, GE(τ), in terms of

a spectral function, ρ(ω), in frequency space and an integration kernel, K(ω, τ),

GE(τ) =

∫ ∞
0

dω

2π

cosh(ω(β/2− τ))

sinh(βω/2)︸ ︷︷ ︸
K(ω,τ)

ρ(ω), (6.28)

the goal of the inversion problem consists in finding a set of coefficients qi(ω̄) in order

to construct an estimator ρBG such that

ρBG(ω̄) =

∫ ∞
0

dω

2π
δ̂(ω̄, ω)ρ(ω), δ̂(ω̄, ω) =

Nf∑
i=1

qi(ω̄)K(ω, τi). (6.29)

The estimator ρBG should have maximal overlap with the true spectral function at a

given frequency, ω̄. The resolution function, δ̂(ω̄, ω) is constructed with respect to the

given kernel and normalized to ∫ ∞
0

dω δ̂(ω̄, ω) = 1. (6.30)

When the coefficients qi(ω̄) are known, it is easy to construct the estimator via

ρBG(ω̄) =
Nτ∑
i=1

qi(ω̄)GE(τi), Var [ρBG] =
Nτ∑
i,j=1

qi(ω̄)Cijqj(ω̄), (6.31)

where the variance of the estimator is given according to the statistical interpretation

of the covariance matrix of the original Euclidean data, Cij.
The Backus-Gilbert method faces two challenges of the inversion problems:

• maximize the stability of estimator ρBG

• maximize the agreement of estimator ρBG and “true” solution ρ subject to the

normalization constraint (6.30).

In order to maximize the stability of the estimator one will minimize the variance,

Var [ρBG]. The maximization of agreement between estimator and true spectral function

is obtained by minimizing the second moment of the resolution function. Imposing the

normalization constraint this amounts to minimizing the functional (for the remainder

of this section, the summation convention is used for better readability)

F [qi(ω̄)] =

∫
dω (ω − ω̄)2

[
δ̂(ω̄, ω)

]2

− λ1

(∫
dω δ̂(ω̄, ω)− 1

)
= qi(ω̄) ·

∫
dωK(ω, τi) (ω − ω̄)2K(ω, τj) · qj(ω̄)

−λ1

(
qi(ω̄)

∫
dωK(ω, τi)− 1

)
≡ qi(ω̄)Wij(ω̄) qj(ω̄)− λ1 (qi(ω̄)Ri − 1) , (6.32)
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where

Wij =

∫
dωK(ω, τi) (ω − ω̄)2K(ω, τj),

Ri =

∫
dωK(ω, τi). (6.33)

In total, one minimizes

α · F [q(ω̄)] + (1− α) · Var [ρBG] , α ∈ (0, 1) (6.34)

and obtains the set of coefficients

q(ω̄) =
[α · W(ω̄) + (1− α) · C]−1 ·R

R · [α · W(ω̄) + (1− α) · C]−1 ·R
, (6.35)

Thus, one knows all the components of

ρBG(ω̄) = qi(ω̄)GE(τi) (6.36)

in terms of the original data and the given kernel.

In the course of performing the Backus-Gilbert reconstruction for the spectral func-

tion ρλ(ω,k), eqn. (6.6), one finds that for small frequencies 2π � ω̄/T > 0 the

resolution function (6.29) picks up spectral weight from the origin. One can prevent

this from happening by imposing a second constraint in the form of a node for the

resolution function at the origin,

0
!

= δ̂(ω̄, 0) = qi(ω̄)K(0, τi). (6.37)

Then the functional (6.32) becomes

F [qi(ω̄)] = qi(ω̄)Wij(ω̄) qj(ω̄) − λ1 (qi(ω̄)Ri − 1)

− λ2 (qi(ω̄)Ki) (6.38)

with Ki = K(0, τi). The coefficients are calculated to

q(ω̄) = [α · W(ω̄) + (1− α) · C]−1 ·
[

B

BC− A2
·R− A

BC− A2
·K
]
, (6.39)

where

A = K · [α · W(ω̄) + (1− α) · C]−1 ·R
B = K · [α · W(ω̄) + (1− α) · C]−1 ·K
C = R · [α · W(ω̄) + (1− α) · C]−1 ·R. (6.40)
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variation values

τmin/β {0.1, . . . , 0.25}
with δ̂(ω̄, 0) = 0 {yes, no}
BG regularization parameter α {10−2, · · · , 10−4}
tree-level improved {yes, no}

Table 6.1: Variations of the BG method used to estimate a systematic uncertainty,

taken from [90].

The Backus-Gilbert method does not provide a systematic error, hence we performed

many variations giving rise to a systematic uncertainty estimate. Table 6.1 shows all

variations that entered the BG analysis. One usually omits several of the lowest time

separations of the Euclidean correlator in any analysis because of cut-off effects and

lattice artifacts near the source. So we varied the lowest time separation, τmin/β for

which to start the BG method. Whether or not one imposes the additional constraint

(6.37), also enters the systematic uncertainty. The BG regularization parameter α in

eqn. (6.34) is a free parameter and therefore varied. And finally, we also perform the

variation over tree-level improvement or not for the continuum correlator. As clarified in

Ref. [90], the final estimate for the effective diffusion constant, eqn. (6.27), is quoted

as the median of this distribution under all variations. The 68% interval serves as overall

systematic uncertainty. The statistical error is small compared to the systematic one at

the lower momenta k < 1 GeV.

6.5 Ansatz for the spectral function

This section is heavily based on my previous work in Ref. [90] and contains passages

from there that I kept for scientific clarity. The contribution of XXXXX X. XXXX and

of XXXXX XXXXX was to provide data for the continuum limit as discussed in 4.3.

The contribution of Xxx Xxxxxx was to measure the correlators and to perform the

continuum limit, also discussed in 4.3, and to perform the analysis using the Backus-

Gilbert method as displayed in the previous section. The contribution of Xxxxxx Xxxxx

was the supervision and conceptualization of the entire project.

In the previous section 6.4, a model-independent, linear method for estimating a

spectral function from Euclidean data is discussed that heavily relies on the circumstance

that the spectral function one wants to reconstruct, is actually slowly varying and

101



smooth. In this section, however, we want to introduce a rational function ansatz in

form of a Padé approximant that also allows for poles in the spectral function and

incorporates information from perturbation theory as well as relativistic hydrodynamics

and from physics constraints. Before discussing the ansatz, it is useful to derive a sum

rule for the spectral function ρλ=−2(ω,k).

6.5.1 Sum rule

In the vacuum theory, Lorentz invariance and transversity of Gµν(τ,k) lead to

ρλ=−2(ω,k) =

(
δij − 3kikj

k2

)
ρij(ω,k) + 2ρ00(ω,k) = 0. (6.41)

At finite temperature T > 0 no new divergences arise and the combination stays UV

finite. Therefore we can employ an operator product expansion (OPE) for the spectral

function: by power counting, ρλ=−2(ω,k) ∼ 〈O4〉
ω2 + · · · as ω → ∞, where O4 is a

dimension-four operator. Moreover, ρλ=−2(ω,k = 0) = 0 at ω > 0 because of charge

conservation and so we expect from the OPE

ρλ=−2(ω,k) ∝ k2 〈O4〉
ω4

, ω � πT, k. (6.42)

In frequency-momentum space, the spectral representation of the Euclidean correlator

can be expanded about ωn =∞,

G̃(ωn,k) =

∫ ∞
0

dω

π
ω
ρλ=−2(ω,k)

ω2 + ω2
n

ωn→∞−→ 1

π ω2
n

∫ ∞
0

dω ω ρλ=−2(ω,k) +O(ω−4
n ). (6.43)

From the OPE, however, one determines the first non-vanishing contribution to be of

O(ω−4
n ), see Eq. (6.42). Thus, the first coefficient in Eq. (6.43) is required to vanish

exactly, and we deduce the superconvergent sum rule∫ ∞
0

dω ω ρλ=−2(ω,k) = 0. (6.44)

6.5.2 Padé ansatz

The tanh-regulated spectral function can be modelled by a rational function as a com-

bination of two Padé approximants,

ρans(ω, k)

tanh(ωβ/2)
=

A

[ω2 + a2]︸ ︷︷ ︸
part I

· (1 +Bω2)

[(ω + ω0)2 + b2] [(ω − ω0)2 + b2]︸ ︷︷ ︸
part II

(6.45)
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Figure 6.1: Complex ω-plane with the poles of the retarded correlator. There is the

diffusion pole on the imaginary axis (red) and a pair of generic poles in the lower

half-plane (blue) which model the pole structure of the AdS/CFT current correlator.

with two linear parameters A and B as well as three nonlinear parameters a, ω0, and

b. Part I models the diffusion pole as it arises in the hydrodynamics prediction for the

infrared limit; when one identifies a ↔ Dk2 for small k, part I resembles the known

expression [77]

ρ(ω, k)

ω
≈ 4χsDk

2

ω2 + (Dk2)2
, ω, k � D−1. (6.46)

Part II is inspired by the pole structure of the AdS/CFT current correlator, see Ref.

[91] for details. When one wants to satisfy the superconvergent sum rule (6.44), it is

necessary to introduce the second linearly independent parameter B in part II of Eq.

(6.45). After imposing Eq. (6.44), however, the second linear parameter B becomes a

function of (a, ω0, b). Not only do the two poles at (±ω0,−b) model the quasinormal

modes of the retarded correlator as discussed in Ref. [91], they also match the 1/ω4

behavior at large ω which is dictated by the operator product expansion (6.42), see also

figure 6.1.

The remainder of this section deals with the straightforward uncorrelated and cor-

related fits and a physical exclusion criterion which was already discussed in Ref. [90].

For the sake of clarity, I stick to the exact words of this reference.

In the fit ansatz (6.45), we are left with four independent fit parameters after

determining B for given (a, ω0, b) via the sum rule (6.44). Then there are three degrees

of freedom when we use seven data points between τmin/β = 0.25 and τmax/β = 0.5

on the continuum-extrapolated correlators. There is a huge subspace in the parameter
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k/T=3.85

a/T=5

ω
0
/T

b/T
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Figure 6.2: Uncorrelated χ2-landscape in the (ω0, b)-plane at photon momentum k/T ≈
3.85 for fixed values of a. The valley of χ2 < 4 is shown whereas the area with χ2 > 4

is marked in white, only solutions with uncorrelated χ2 < 1 are accepted. When the

diffusion pole is fixed to be far from the origin, a/T = 20 (left panel), the generic pole

at (ω0, b) can move close to the real axis. In case the diffusion pole dominates the

shape of the spectral function, a/T = 5 (right panel), the second pole is pushed into

the complex plane.

space (A, a, ω0, b) for which the uncorrelated χ2 is smaller than one. χ2 stands for χ2

divided by the degrees of freedom throughout this work. Fig. 6.2 depicts the χ2-valley

in the (ω0, b)-plane at photon momentum k/T ≈ 3.85 where χ2 < 1 at two fixed values

of a.

Because there is no local minimum in the uncorrelated χ2-landscape, this results

in a plethora of acceptable solutions. In other words, there are many shapes of the

spectral function, none of which can be strongly ruled out by our data as they all

satisfy χ2(A, a, ω0, b) < 1. So rather than minimizing the correlated χ2, we try and

find bounds to the effective diffusion constant by taking the min and max values of all

photon rates with χ2(A, a, ω0, b) < 1.

We exclude all solutions that result in a negative photon rate from this procedure.

This is due to the known positivity of the spectral function below the light cone,

ρ(ω) ≥ 0, ω ≤ k. (6.47)
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When one allows the second pole at (ω0, b) to get too close to the real axis, the result

is a very pronounced peak in the spectral function. This can happen when the nonlinear

parameter a becomes large and the diffusion peak does not dominate the analyticity

of the retarded correlator. For illustration see fig. 6.2: at a/T = 20 (left panel) the

diffusion pole is far from the origin and the second pole at (ω0, b) can approach the

real axis. In fig. 6.4, the result is seen as a sharp peak below the light cone (dashed

blue curve). For a/T = 5 (right panel of fig. 6.2), however, the second pole at (ω0, b)

is pushed into the complex plane and does not dominate the shape of the spectral

function.

Such an additional peak from a pole close to the real axis corresponds to a very

long-lived excitation in the medium which is unphysical if it survives longer than the

largest possible relaxation times in the system. So we constrain the imaginary parts of

both poles, i.e. the fit parameters a and b, to fulfil the exclusion criterion [77, 76]

min(a, b) > min(DAdS/CFT · k2, D−1
PT), (6.48)

where DAdS/CFT · k2 describes the diffusion of an electric charge with DAdS/CFT =

1/(2πT ) and D−1
PT accounts for the damping of a static current with D−1

PT = O(α2
s) ·T ,

αs = 0.25. We claim that the exclusion criterion (6.48) amounts to a conservative

constraint based on physics considerations. One assumes that for small frequencies, the

photon production rate - and the corresponding diffusion coefficient - is actually largest

in the most weakly coupled theory [77]. At these frequencies, the wavelength of the

photon becomes larger than the mean free path in the medium and so the charges are

diffusing. When the system is weakly coupled, charges can diffuse faster and so the

current on the long photon wavelength scales is higher and the photon production, too.

6.5.3 Dealing with correlations and including

constraints from perturbation theory

It is widely known that a naive spectral function fit to Euclidean data can result in

spectral functions with arbitrary features and shapes. Therefore it is important to

perform correlated fits and to take into account information from perturbation theory

(PT) to reduce the outcome of the fit to those spectral functions that comply with PT.
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Taking into account correlations

In the course of fitting an ansatz for the spectral function to the Euclidean data one

encounters several obstacles. One problem we saw was the fact that an uncorrelated fit

results in a χ2-landscape that does not exhibit a unique global or local minimum. On

the other hand, taking into account correlations between lattice sites has the result that

for some momenta no solutions can be found that satisfy the exclusion criteria. As was

argued in Ref. [92], performing a fully correlated fit improves the resolution in the low-

frequency region that we are interested in. Additionally, including the covariance may

yield a stronger exclusion and likelihood criterion than a naive uncorrelated fit. There

is the possibility, however, that one over-interprets the correlations by considering the

covariance matrix without a grain of salt and therefore no solutions are found. In order

to make up for this we introduced a regularization factor x ∈ (0, 1) such that

C → x · C + (1− x) · diag(C). (6.49)

The case x = 1 corresponds to a fully correlated fit while with x = 0, one neglects all

correlations in an uncorrelated fit. One needs to vary x between 0 and 1 such that one

finds the largest possible value of x that yields substantial weight to the correlations

and drives the χ2 but does not rule out every possible solution as unacceptable due

to its too large χ2. We find the optimal value to be x = 0.8. Fig. 6.3 depicts the

correlated χ2-landscape in the (ω, b)-plane for photon momentum k/T ≈ 3.85. The

valley of acceptable χ2 is substantially reduced compared to the uncorrelated case, fig.

6.2. Still, there is no global minimum in the interior of the parameters’ domain of

definition. Hence, we will quote the min and max values of the resulting photon rate.

This distribution will be much smaller, though.

Applying perturbative constraints

In Ref. [85], the thermal dilepton rate is determined to NLO in a perturbative treatment

at non-zero momentum. The same vector current correlators enter the calculation of

both the dilepton rate and the photon rate. Hence, we can use these results to further

constrain our determination of the photon production rate. One expects that the shape

and the features of the spectral function at small frequencies ω < πT is reliably inferred

from a perturbative approach. Therefore we want to rule out all such solutions to our

fit ansatz (6.45) for which the curvature of the correlator at the origin ω = 0 does

not match the corresponding perturbative value obtained from Ref. [85] within a 30%-

interval. More concisely: After scanning through the parameter space of the fit ansatz
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Figure 6.3: Correlated χ2-landscape with x = 0.8 in the (ω0, b)-plane at photon mo-

mentum k/T ≈ 3.85 for fixed values of a. The valley of χ2 < 4 is shown whereas

the area with χ2 > 4 is marked in white, only solutions with correlated χ2 < 2 are

accepted. When the diffusion pole is fixed to be far from the origin, a/T = 20 (left

panel), the generic pole at (ω0, b) can move close to the real axis. In case the diffusion

pole dominates the shape of the spectral function, a/T = 5 (right panel), the second

pole is pushed into the complex plane.

(6.45) using the regularized covariance matrix (6.49) and applying the exclusion criterion

(6.48) one requires ∣∣∣∣∣∣
∫∞

0
dω ω2ρans(ω, k)

cosh(ω(β2−τ))
sinh(ωβ/2)∫∞

0
dω ω2ρLO

λ=−2(ω, k)
cosh(ω(β2−τ))

sinh(ωβ/2)

− 1

∣∣∣∣∣∣ < 0.3, (6.50)

where ρans is given by eqn. (6.45) and ρLO
λ=−2 is given by eqn. (6.21). Unfortunately,

this procedure has no sizeable impact on the distribution of allowed solutions.

In fig. 6.4 one can see example spectral functions for k/T =
√

8 · π/2 ≈ 4.44

(vertical black line) as functions of the frequency, ω/T . Shown are the spectral functions

that yield the median (solid green), the minimal (dashed blue) and the maximal (dotted

purple) values of the photon rate distribution. The median spectral function, e.g.,

exhibits an unphysical bump in the timelike region, ω > k. The other two spectral

functions have rather pronounced peaks and features, too. Nonetheless, they all agree
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Figure 6.4: Example spectral functions for k/T ≈ 4.44 (vertical black line) correspond-

ing to the median, minimal and maximal values of the photon rate distribution. The

spectral functions result from a correlated fit with x = 0.8.

with the data and therefore cannot be ruled out. As such, they represent typcial

solutions of the inverse problem (6.1).

6.6 Results for the effective diffusion coefficient

After having discussed two independent approaches for estimating the spectral function

from Euclidean data in sections 6.4 and 6.5, we can now display the results for the

effective diffusion coefficient, eqn. (6.27) from both methods and compare them. Figure

6.5 shows the results both from the BG method and the spread from the distribution of

solutions to the correlated fit at T = 250 MeV. As discussed in section 6.4, performing

the BG method while implementing or not implementing the constraint on the resolution

function yields a large spread at lower momenta. At higher momenta the two variations

become compatible and the systematic and statistical error shrinks considerably. The

red bars indicate the bounds we find from quoting the minimal and maximal value of

the distribution of the effective diffusion constant that have correlated χ2 < 2 with a

regularization parameter of x = 0.8 and the median of this distribution. Ruling out

all such solutions of this distribution that deviate from the perturbative scenario by
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Figure 6.5: Estimate of the effective diffusion constant at T ≈ 250 MeV. The results

from the BG method are plotted as green dots. Their error bars represent the systematic

uncertainty obtained through the 68% interval of the distribution of all results under

the BG variations described in section 6.4. The bounds from the correlated model fit

with a regularization factor x = 0.8 and the median of the distribution of all results

compatible with the fit ansatz are displayed as red bars. After applying the perturbative

constraint one obtains the purple bars. Additionally, the strong-coupling result from

N = 4 SYM and a weak-coupling result from leading-order (LO) perturbative QCD

with αs = 0.25 are shown.

more than 30%, results in a distribution indicated by the purple bars and the respective

median. Since the purple and red bars coincide with each other at nearly all momenta,

one can conclude that the curvature at the origin of the results found before applying

the perturbative constraint already agree with the perturbative curvature at the origin

within 30%. Nonetheless, it is still of great interest to see what one might infer from

higher-order perturbative calculations that have come up recently [93]. Furthermore,

the strong-coupling result from N = 4 supersymmetric Yang-Mills theory (SYM) and

a weak-coupling result from leading-order (LO) perturbative QCD with αs = 0.25 are

plotted as comparison.

Apart from two exceptions around photon momentum kβ ≈ 5.0 and kβ ≈ 5.2, the
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median of the correlated fit distribution and the BG estimator are remarkably close and

agree within the systematic and statistical error of the BG estimator. For the whole

momentum range, the bounds of the effective diffusion constant from examining the

minimum and maximum values of the maximum likelihood estimator consistent with

the data, cover a big interval and it is not possible to discriminate between the weak-

coupling and the strong-coupling scenarios. Applying the prior from perturbation theory

does not have a big impact on the spread of the effective diffusion coefficient. At photon

momenta 1.0 GeV ≤ k ≤ 1.4 GeV which are relevant for heavy-ion phenomenology,

however, our study excludes photon rates larger than twice the weak-coupling predic-

tion. Thus, the results of hydrodynamical predictions that use the leading-order photon

emission rate as an ingredient, are confirmed by our study.

In a recent analysis [64], further progress was made and important studies were

conducted. As mentioned above in section 4.1, Xxxxx Xx studied autocorrelation times

of gluonic observables for the X7 ensemble and found strong autocorrelation. This was

dealt with by dropping the first two hundred configurations out of a total of Nconf ∼ 700

configurations that had become available at the time of the analysis presented in [64].

For the analysis of this work, there were only Nconf ∼ 100 configurations available.

Additionally, Xxxxx Xx even produced another very fine ensemble labeled W7 at T =

254 MeV with V/a4 = Nτ×N3
σ = 20×803 such that the continuum limit extrapolation

was constructed from (O7, W7, X7) rather than (F7, O7, X7). The result was that the

quality of the continuum limit could be substantially improved.

The validity range of the Padé ansatz (6.45) with respect to the two different

scenarios of weakly interacting quarks in the perturbative regime and of strongly coupled

quarks in the regime of N = 4 SYM theory with infinite coupling is tested using mock

data [64]. The spectral functions in both scenarios are known and the Padé ansatz

reproduces the known solutions of the effective diffusion coefficient in both scenarios

with a p-value above 0.32 such that is is not ruled out by likelihood criteria. In order to

keep the mock data study realistic, the covariance matrices of the lattice QCD data are

re-used after rescaling in a way to keep the relative error on the correlator the same.

Furthermore, the effect of correlations between data obtained at neighboring mo-

menta can be studied. This study was performed by Xxxxxxx Xxxxxxx [64, 94]. The

importance of estimating the effect of correlations among the input data relevant for

the inverse problem has been addressed previously [92]. One can express the three non-

linear parameters a, b, ω0 of the ansatz (6.45) as functions of the momentum k, both

linear and quadratic in k. The covariance matrix is constructed in a fashion similar to
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(6.49). The recent study presents the dependence on whether one chooses a linear or

a quadratic ansatz. It resolves the distribution of solutions with acceptable χ2 with

respect to their corresponding χ2 values and states the p-values. For the highest mo-

menta kβ ≥∼ 4.5, both the weakly-interacting and strongly-coupled theories cannot

be ruled out, similar to the result found in this work, see fig. 6.5. At intermediate

momenta one can even find values of the effective diffusion coefficient of up to twice

the N = 4 SYM result and at the lowest momenta, we observe that the lattice data

is not sensitive to the photon emission rate anymore. This is largely confirming all the

results found in this work. As a motivation for future endeavors, one may remark that

a study in the theory of non-interacting quarks has revealed that including data points

at shorter distances in the inverse problem can have the effect of ruling out large values

of Deff , especially at lower photon momenta [64]. This means one has to produce even

finer lattices with even higher precision which constitutes a formidable challenge.
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Chapter 7

Conclusion

Quantum Chromodynamics describes the interaction of particles that are sensitive to

the strong force. One observes that the quarks and gluons are deconfined only at finite

temperatures above the chiral critical temperature of QCD. The matter that exists

above this temperature is called the quark-gluon plasma (QGP). This QGP matter is

examined thoroughly in relativistic heavy-ion collision experiments. One of the most

striking phenomena observed, is the ability of the plasma to form collective excitations

despite its rapid expansion.

Other observables of interest are electromagnetic probes as they do not interact

strongly with the medium created in a relativistic heavy-ion collision. Hence, they can

serve as probes of the early (and later) stages of the collision because they escape the

medium without very many rescatterings. One such observable is the rate of photon

emission by the QGP. This photon production rate is intrinsically connected to the

dilepton production rate which is important for heavy-ion phenomenology. Additionally,

the production of photons or of weakly-interacting probes by the QGP in general may be

relevant for validating or ruling out dark matter candidates. Being a real-time quantity,

the rate of photon emission from the quark-gluon plasma can be addressed within the

framework of Euclidean path integrals only by applying an analytic continuation. This

translates to an ill-conditioned inverse problem when employing the numerical realization

of QCD called lattice QCD. Attempting at a solution of the inverse problem constitutes

a formidable task and the main body of this work.

Within the course of this work two fine lattices at finite temperatures of T =

508 MeV and T = 254 MeV (labeled Y7 and X7, respectively) were generated using

the O(a) improved Wilson gauge action and the O(a) improved Wilson fermion action

with Nf = 2 mass degenerate light quarks. The bare lattice parameters as well as
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algorithmic parameters had to be tuned in order to simulate at a line of constant physics

where the MS mass was set to ∼ 13 MeV. With two more ensembles at 254 MeV a

continuum limit extrapolation of the relevant 2-point functions could be performed

using the configurations of the X7 ensemble.

Thermal screening masses corresponding to the conserved vector current are of in-

terest as they give an estimate about the inverse correlation length over which an electric

field is screened in a strongly interacting medium. The present study of the static and

non-static screening masses of the isovector vector correlator shows very good agree-

ment with perturbative results in the S-wave channels, i.e. the transverse channel of the

static sector and the longitudinal channel of the non-static sector at a temperature of

T = 508 MeV. A previous study using staggered fermions observed that lattice results

in the transverse channel of the static sector cross the 2πT line from below which is

confirmed by the present study using O(a) improved Wilson fermions. Because of the

agreement between lattice and effective theory results, the applicabilty of the perturba-

tive treatment at temperatures relevant for heavy-ion phenomenology is confirmed as

well. The corresponding amplitudes can tell whether a quark-antiquark pair is bound

tightly or not. The agreement between the lattice and the perturbative approach for the

calculated amplitudes is less good although there was improvement made with regard

to previous studies. The present study indicates that the quark-antiquark pair is more

loosely bound at higher temperatures than at lower ones. One can establish a connec-

tion between real-time phenomena of the QGP and non-static screening masses because

one encounters the same effective potential in the description of non-static screening

masses as when calculating the dilepton production rate. Moreover, the screening pole

occurring in Euclidean data can be analytically continued to the diffusion pole in the

retarded correlator. Thus, a future application of this study may consist in extracting

the diffusion coefficient using non-static screening masses, see Eq. (5.2).

The inverse problem occurring at the heart of the calculation of the photon rate from

Euclidean lattice data is tackled in a twofold way. Firstly, the Backus-Gilbert method

consists in finding a set of coefficients that depend only on the spectral representation

of the Euclidean correlator with a given kernel and the original data points in order to

construct an estimator for the spectral function connected to the correlator. One as-

sumes that the true spectral function one wants to estimate, is only slowyly varying and

smooth. Thus, the applicability of the Backus-Gilbert method is limited. And secondly,

a model ansatz in form of a rational Padé approximant is employed. It allows for a pole

structure which is inspired by both the diffusion pole as it arises in the prediction of
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hydrodynamics and the quasinormal modes of the retarded correlator in the AdS/CFT

picture. Additionally, it satisfies the ultraviolet behavior ∼ ω−4 as dictated by the op-

erator product expansion and a superconvergent sum rule. Finally, we impose spectral

positivity below the light cone and constraints for the widths of the poles reflecting the

fact that there cannot be excitations with arbitrarily long relaxation times in the system.

The results for the effective diffusion coefficient are in agreement with previous studies

in the quenched limit of lattice QCD and with both the weakly-interacting scenario from

perturbation theory and the strongly-interacting scenario from the N = 4 SYM theory

at infinite coupling. At photon momenta 1.0 GeV ≤ k ≤ 1.4 GeV, we rule out photon

rates twice as large as the weak-coupling prediction. This consolidates results obtained

from perturbation theory and hydrodynamic models at these momenta.
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