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Summary

We study families of logarithmic varieties with mild singularities, the log toroidal families.
They generalize and unify various classes of spaces with controlled singularities, including
toroidal varieties, toroidal embeddings, semistable degenerations, log smooth morphisms,
and toric log Calabi–Yau spaces. Starting from Kato’s toroidal characterization of log
smoothness and Gross–Siebert’s local models for the singularities of a toric log Calabi–
Yau space, we construct elementary log toroidal families from combinatorial data as étale
local models for the singularities which we allow in a log toroidal family. We study the
reflexive de Rham complex W ●

X/S of a log toroidal family and prove the Hodge–de Rham

degeneration for proper log toroidal families over a log point S = Spec (Q → k). This in
particular settles a conjecture of Danilov on the cohomology of toroidal pairs (X,D). This
thesis is an expanded version of the article [22], where we prove the Hodge–de Rham degen-
eration and apply it to obtain a smoothing of a normal crossing space as well as a toroidal
crossing space.

Zusammenfassung

Wir untersuchen Familien logarithmischer Varietäten mit leichten Singularitäten, die log-
toroidalen Familien. Diese verallgemeinern und vereinheitlichen verschiedene Begriffe eines
Raumes mit kontrollierten Singularitäten, unter anderem toroidale Varietäten, toroidale
Einbettungen, halbstabile Entartungen, logarithmisch glatte Morphismen und torische log-
Calabi-Yau-Räume. Ausgehend von Katos toroidaler Charakterisierung der logarithmischen
Glattheit und den lokalen Modellen des Gross-Siebert-Programms für die Singularitäten
torischer log-Calabi-Yau-Räume konstruieren wir elementare log-toroidale Familien aus kom-
binatorischen Daten, welche als lokale Modelle für die Singularitäten dienen, die wir in log-
toroidalen Familien zulassen. Wir untersuchen den reflexiven de-Rham-Komplex W ●

X/S einer
log-toroidalen Familie und beweisen die Entartung der Hodge-de-Rham-Spektralfolge an E1

für eigentliche log-toroidale Familien über einem logarithmischen Punkt S = Spec (Q → k).
Insbesondere ist damit eine Vermutung Danilovs über die Kohomologie toroidaler Paare
(X,D) gezeigt. Diese Dissertation ist eine erweiterte Version der Arbeit [22], in der wir
die Entartung der Spektralfolge zeigen und als Anwendung die Glättung vieler Räume mit
normalen oder toroidalen Kreuzungen erhalten.





Foreword

This is the final version of my PhD thesis. It has undergone minor revision since I submitted
the first version in March 2020. Thanks to the reporter kind comments, many
typographical and grammatical and even some mathematical errors have been removed.

Simon Felten, February 2021
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1 Introduction

In this PhD Thesis we develop the concepts of generically log smooth family and of log
toroidal family as tools to study degenerations of varieties. The concepts are generalizations
of log smooth morphisms and deeply rooted both in log geometry and in the Gross–Siebert
approach to mirror symmetry. This thesis is an expanded version of parts of the paper [22]
on smoothing toroidal crossing spaces. There we introduce log toroidal families for the
first time, prove the degeneration of a Hodge–de Rham spectral sequence, and apply it to
obtain smoothings of toroidal crossing spaces. Some of the ideas are already contained in
my Master thesis [20] and developed here further. We will indicate throughout the text
what is taken from earlier works. Whereas [22] heads to the application—the smoothing of
toroidal crossing spaces and in particular normal crossing spaces—here we delve into the
details of the basic theory with a special focus on cohomology and spectral sequences as well
as connections to related concepts. In the main part, we assume the reader to be acquainted
with log geometry, but we drop this assumption in the Introduction to make it accessible to
a wider audience.

Cohomology of Varieties

Given a compact complex Kähler manifold X, one of the key results in complex geometry
is the Hodge decomposition

Hk(X,C) ≅ ⊕
p+q=k

Hq(X,ΩpX),

which relates cohomology of the topological space X to sheaf cohomology of the Kähler
differential forms ΩpX . The quasi-isomorphism C ≃ Ω●

X shows that the former is isomorphic
to the hypercohomology Hk(X,Ω●

X), so the Hodge decomposition implies that the Hodge–de
Rham spectral sequence

Ep,q1 ∶=Hq(X,ΩpX) ⇒ Hp+q(X,Ω●
X) ≅Hp+q(X,C)

associated to the Hodge filtration on Ω●
X degenerates at E1. More generally, an open—i.e.,

non-compact—Kähler manifold X○ can be embedded into a compact Kähler manifold X as
an open subset such that the complement D =X∖X○ ⊂X is a (reduced) divisor with normal
crossings. After choosing local coordinates z1, ..., zn on X such that D = {z1 ⋅ ... ⋅ zr = 0}
for r ≤ n, we find that the sheaf Ω1

X(log D) of differential forms with log poles in D
is locally free on generators dz1

z1
, ..., dzr

zr
, dzr+1, ..., dzn. There is a canonical isomorphism

Hk(X○,C) ≅ Hk(X,Ω●
X(log D)), allowing the study of the cohomology of X○ via the spectral

sequence
Ep,q1 ∶=Hq(X,ΩpX(log D)) ⇒ Hp+q(X,Ω●

X(log D)),
which degenerates at E1 as well.

The algebro-geometric analog of a compact Kähler manifold is a smooth projective
scheme X/C, and a reduced divisor D ⊂X is normal crossing if it is isomorphic to

{z1 ⋅ ... ⋅ zr} ⊂ An

locally in the étale topology. One of the key ingredients in the above results is the easy
local structure of the embedding D ⊂X; it is generalized by toric geometry—we say (X,D)
is a toric pair if X is a toric variety and D ⊂ X is a union of reduced toric prime divisors,
e.g. D = ∅. Following Danilov’s foundational work [14] in toric geometry, (X,D) is a toroidal
pair if it is locally isomorphic to a toric pair (Y,E) in the étale topology (where we might
choose different pairs at different points). If we can choose E to be the full toric boundary,
i.e., the union of all toric Weil divisors, then X ∖D ⊂X is a toroidal embedding in the sense
of [56]. In any case, there is an open j ∶ U ⊂ X with codim(X ∖ U,X) ≥ 2 such that U is
smooth and D∣U ⊂ U is a smooth divisor, in particular it has normal crossings. It allows
Danilov to define the de Rham complex as the direct image

Ω●
X(log D) ∶= j∗Ω●

U(log D∣U)
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from the normal crossing pair (U,D∣U). As a consequence of the theory we develop in this
thesis, we obtain:

Theorem 1.1. Let (X,D) be a toroidal pair with X proper. Then the Hodge–de Rham
spectral sequence

Ep,q1 ∶=Hq(X,ΩpX(log D)) ⇒ Hp+q(X,Ω●
X(log D))

degenerates at E1.

This has been conjectured by Danilov in [14, §15]. The case D = ∅ has been settled
by Danilov himself in [15], and the case where X ∖D ⊂ X is a toroidal embedding follows
from earlier results in logarithmic geometry as we shall see below. Related results are also
contained in [72].

Hodge Numbers in Mirror Symmetry

For X as above, the numbers hp,q(X) ∶= dimC Hq(X,ΩpX) are called the Hodge numbers
of X. Mirror symmetry in its most basic form of numerical mirror symmetry predicts
the existence of pairs (X, X̌) of Calabi–Yau manifolds of dimension n such that hp,q(X) =
hn−p,q(X̌). If f ∶ X → S is a family of compact Kähler manifolds, then the relative Hodge–de
Rham spectral sequence

Ep,q1 ∶= Rqf∗ΩpX/S ⇒ Rp+qΩ●
X/S

degenerates at E1 and the sheaves Ep,q1 are locally free (of constant rank), a fact that—in the
algebraic setting—was first proven by Deligne in [16]. Thus, the Hodge numbers hp,q(Xs)
of the fibers Xs = f−1(s) are constant in the family. If X ′, X̌ ′ are deformations of X, X̌ and
(X, X̌) is a (numerical) mirror pair, then (X ′, X̌ ′) is one as well.

Degenerations

A degeneration is a flat family f ∶ X →∆ of complex spaces over the unit disk

∆ = {z ∈ C ∣ ∣z∣ < 1}

which is smooth over the punctured disk ∆∗ = ∆ ∖ {0}. We shall be especially interested in
the behavior of Hodge numbers in a degeneration.

The simplest type of degenerations is a semistable degeneration, i.e., a degeneration
which is locally of the form

Cn → C, (z1, ..., zn) → z1 ⋅ ... ⋅ zr,

for r ≤ n. If π ∶ Y →∆ is an algebraic degeneration (obtained by analytification of a map of
varieties), then by the Semistable Reduction Theorem of [56], there is a map ∆→∆, z ↦ zk,
and a diagram

X
φ //

f

��

Ỹ //

��

Y

π

��
∆

z↦zk // ∆

with Cartesian square such that φ ∶ X → Ỹ is a blow-up isomorphic over ∆∗ and f ∶ X → ∆
is semistable. Thus in some sense, every degeneration has a semistable model, explaining
the relevance of semistable degenerations.

A generalization of Deligne’s above mentioned degeneration result to semistable families
f ∶ X → ∆ was obtained by Steenbrink in [71]. Namely, the variation of Hodge structures
on ∆∗ obtained from the smooth family X ∗ → ∆∗ cannot be extended to ∆ as a variation
of Hodge structures, but one gets an abstract limiting mixed Hodge structure in 0 ∈ ∆ by a
purely Hodge-theoretic analysis started in [70]. In order to obtain a geometric interpretation
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of the limiting mixed Hodge structure, Steenbrink studies the relative differential forms
Ω1
X/∆(log X0) with log poles in X0 = f−1(0) and finds on the cohomology of

Ω●
X/∆(log X0) ⊗OX OX0

a mixed Hodge structure. In the course of this, he proves that the Hodge–de Rham spectral
sequence

Ep,q1 ∶= Rqf∗ΩpX/∆(log X0) ⇒ Rp+qf∗Ω●
X/∆(log X0)

degenerates at E1. If we consider

hp,q(X0) ∶= dimC H
q(X0,Ω

p
X/∆(log X0) ⊗OX OX0)

the Hodge number of X0, it remains constant in the degeneration by [71, Thm. 2.8].

Log Geometry

Logarithmic geometry studies schemes (X,OX) endowed with a sheaf of monoids MX and
a monoid homomorphism α ∶ MX → (OX , ⋅) such that α−1(O∗

X) → O∗
X is an isomorphism.

The morphism α is called a log structure and (X,OX ,MX , α) is called a log scheme. Every
scheme X carries the trivial log structure MX = O∗

X . A pair (X,D) consisting of a variety
X and a Weil divisor D ⊂X gives rise to a log scheme by taking the divisorial log structure
associated to D ⊂X, i.e.,

MX(V ) = {f ∈ OX(V ) ∣ f ∣V ∖D ∈ O∗
X(V ∖D)}

is the sheaf of functions invertible on X ∖D. Given a morphism f ∶ X → S of log schemes,
a log derivation with values in a coherent sheaf E is a pair (D,∆) where D ∶ OX → E is a
relative derivation and ∆ ∶ MX → E is a monoid homomorphism satisfying some relation.
As in the classical setting, there is a universal log derivation (d, δ) ∶ (OX ,MX) → Ω1

X/S
with the analogous universal property. The sheaf Ω1

X/S is called the sheaf of log differential

forms. If (X,D) is a normal crossing pair, then Ω1
(X,D)/k ≅ Ω1

X(log D). This justifies the
name log structure and explains the relevance of differential forms with log poles from a
more conceptual perspective.

The prototypical example AP of a log scheme is constructed from a sharp toric monoid
P , i.e., P is the intersection of a rational polyhedral cone with the lattice and 0 ∈ P is its only
invertible. We obtain AP by endowing the affine toric variety Spec C[P ] with the divisorial
log structure defined by the union DP of all toric divisors. Homomorphisms θ ∶ Q → P of
monoids induce homomorphisms Aθ ∶ AP → AQ of log schemes since A−1

θ (DQ) ⊂DP .
Translating Grothendieck’s geometric-functorial characterization of smoothness, i.e., the

infinitesimal lifting criterion, to log geometry yields the notion of log smoothness. Under
mild assumptions on θ ∶ Q→ P , e.g. injective and θgp has a torsion-free cokernel, the induced
morphism Aθ ∶ AP → AQ is log smooth. Conversely, by Kato’s toroidal characterization of
log smoothness in [50], every log smooth morphism f ∶X → S is locally in the étale topology
a base change of some composition

Ar ×AP
πÐ→ AP

AθÐ→ AQ,

where Ar×AP carries the divisorial log structure induced by the divisor Ar×DP = π−1(DP ).
Given a geometric point x̄ ∈X, this can be done in such a way that x̄ maps to (0,0) ∈ Ar×AP .
Note that Ar × AP is not the same as ANr⊕P because the latter carries a different log
structure, which is induced by the divisor DNr⊕P . If f ∶ X → S is log smooth, then Ω1

X/S
is locally free. If a pair (X,D) is normal crossing or if X ∖D ⊂ X is a toroidal embedding,
then the structure morphism (X,D) → Spec k (the latter with the trivial log structure) is
log smooth. This explains why Ω1

X(log D) is locally free in these situations. Similarly, if
f ∶ X → ∆ is a semistable degeneration, then f ∶ (X ,X0) → (∆,0) is log smooth, and we
have Ω1

(X ,X0)/(∆,0) ≅ Ω1
X/∆(log X0). Steenbrink’s degeneration result for semistable families

f ∶ X →∆ is a special case of the more general degeneration of the Hodge–de Rham spectral
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sequence for log smooth morphisms, which is proven by Illusie–Kato–Nakayama in [47,
Cor. 7.2]. Illusie–Kato–Nakayama gives—under additional technical hypotheses—a natural
generalization of Deligne’s degeneration result in the smooth case to the logarithmic setting:

Theorem 1.2 ([47]). Let S�/Q and f ∶X� → S� be a proper, exact, and log smooth morphism
of fs log schemes. Then the Hodge–de Rham spectral sequence

Ep,q1 ∶= Rqf∗Ωp
X�/S� ⇒ Rp+qf∗Ω●

X�/S�

degenerates at E1, the sheaves Epq1 are locally free, and their formation commutes with base
change.

The theorem implies the constancy of log Hodge numbers in log smooth degenerations.
E.g. the hypotheses are satisfied for semistable degenerations. Moreover, if (X,D) is a pair
such that X ∖D ⊂ X is a toroidal embedding, then it implies Danilov’s conjecture in that
special case.

Toric Degenerations

Whereas more traditional approaches to mirror symmetry relate a variety X to its mirror
X̌, the Gross–Siebert approach in [29, 30, 31, 32] relates a toric degeneration X → S over
the base S = Spec kJtK to its mirror degeneration X̌ → S. Roughly speaking, this is a
proper flat morphism X → S where the generic fiber Xη corresponds to the variety X
and the central fiber X0 is obtained by gluing toric varieties along toric divisors. A toric
degeneration becomes a log morphism (X ,X0) → (S,0) using the corresponding divisorial
log structures. As a matter of definition, it is log smooth outside a closed subset Z ⊂ X of
relative codimension ≥ 2. The central fiber X0 is considered a combinatorial model of Xη
and mirror symmetry becomes essentially a question of finding invariants that are shared
by Xη and X0, dualizing the combinatorial data and studying these invariants under the
duality. A precise definition of a toric degeneration is given in [29].

Example 1.3. This is the standard example of a toric degeneration, given e.g. in the
introduction of [30]. We consider the degeneration of a smooth quartic surface

E = {X4 + Y 4 +Z4 +W 4 = 0} ⊂ P3

into an arrangement of four planes D ∶= {XY ZW = 0} ⊂ P3. The pencil defined by D,E has
the total space

X = {T0(X4 + Y 4 +Z4 +W 4) − T1XY ZW = 0} ⊂ P1 × P3,

where X,Y,Z,W are homogeneous coordinates of P3, and T0, T1 are homogeneous coordi-
nates of P1. The space X is the blow-up of P3 in D ∩ E via the second projection, and
the first projection defines a flat projective family ϕ ∶ X → P1. We denote by S ⊂ P1 some
neighborhood of 0 = [0 ∶ 1] such that D = ϕ−1(0) is the only singular fiber of the restricted
family, which we denote by f ∶ X → S. The singular fiber D consists of four copies of P2

intersecting in a union L of six lines P1 like the faces of a tetrahedron, exhibiting D as four
toric varieties P2 glued along toric divisors. It is depicted in Figure 1.1. The set

Z ∶= L ∩ {X4 + Y 4 +Z4 +W 4 = 0} ⊂ P3

consists of 24 points, four on each line. It is the singular locus of the total space X, i.e.,
U =X∖Z is regular. The divisor D∣U ⊂ U is a simple normal crossing divisor whereas D ⊂X
is not a normal crossing divisor since X is not regular in the points z ∈ Z. The log morphism
(X,D) → (S,0) is log smooth outside Z because there it is a semistable family, but not log
smooth in Z. We obtain a toric degeneration by base change to a formal neighborhood of
0 ∈ S.
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Figure 1.1: The central fiber D consists of four copies of P2 intersecting in a union
L of six copies of P1. On each P1 there are 4 singularities of X. This picture is also
contained in my Master Thesis.

The most important problem in the Gross–Siebert approach has been, until its solution
in [32], the reconstruction problem. This is the question if, given a toric log Calabi–Yau space
X0—i.e., a potential central fiber of a toric degeneration—there is a toric degeneration with
this central fiber. Namely, given a toric degeneration X → S, there is a candidate X̌0 for the
mirror central fiber, but a priori no toric degeneration X̌ → S. Whereas the solution in [32]
goes another way, the original attempt in [31] has been to mimic the deformation theory of
log smooth morphisms and obtain the toric degeneration via a Bogomolov–Tian–Todorov
result. In this original approach, Gross–Siebert addresses the problem of controlling the
log singularities in toric degenerations by introducing local models for the singularities in
very much the same way as the morphisms Aθ ∶ AP → AQ are local models for log smooth
morphisms by Kato’s toroidal characterization.

Example 1.4. Let Q = N and let P ⊂ N3 be the submonoid generated by

T ∶= (1,0,0), X ∶= (1,0,1), Y ∶= (1,1,0), W ∶= (1,1,1)

which is depicted in Figure 1.2. The associated monoid ring is Ast ∶= C[x, y, t,w]/(xy − tw).
We set θ(1) ∶= T and write

f ∶Xst ∶= Spec Ast → A1

for the geometric morphism. It is log smooth if we use the full toric boundary to define
the log structure, but if we use {t = 0} on both spaces, it is log smooth only away from the
origin, cf. [31, Ex. 1.11] or the author’s Master thesis for a detailed analysis. It turns out
that étale locally around the 24 singularities, the family of Example 1.3 is isomorphic as a
log morphism to the above f ∶ Xst → A1, cf. also Example 4.30 below. Thus to study the
singularities of the degeneration, it is sufficient to study the singularities of f ∶ Xst → A1.
The subscript is due to the fact that we consider f ∶Xst → A1 the standard example of this
type of structure.

The local models yield the notion of a divisorial deformation of a toric log Calabi–Yau
space X0; these deformations correspond to infinitesimal thickenings of X0 induced by a
toric degeneration X → S. Among other partial results toward the reconstruction theorem,
Gross–Siebert proves in [31, Thm. 4.1] the degeneration at E1 of the Hodge–de Rham spectral
sequence associated to a divisorial deformation fA ∶ XA → Spec A over an Artinian ring A.
When we write j ∶ XA ∖ Z ⊂ XA for the inclusion, this spectral sequence is constructed

13



(0,0,1)-axis

(0,1,0)-axis

(1,0,0)-axis

T X
Y W

0

T -ray X-ray

Y -ray W -ray

Figure 1.2: The four rays generated by the vectors span the cone in blue. The monoid
P consists of the marked points, which are the integral points within the cone. The
(1,0,0)-axis goes upwards. The picture is also included in my Master Thesis.

from the direct image de Rham complex j∗Ω●
(XA∖Z)/A, similarly to the de Rham complex of

toroidal pairs (X,D). This original approach has been completed recently in [22]—partially
as a consequence of the theory developed in this PhD thesis. Beyond the reconstruction
theorem, the degeneration shows that hp,q(X0) = hp,q(Xη), i.e., log Hodge numbers of X0

coincide with Hodge numbers of Xη. Since in many cases hp,q(X0) = hn−p,q(X̌0), this proves
a form of numerical mirror symmetry, see [31, 69] for precise statements.

Generically Log Smooth Families

The example of toric degenerations shows that many interesting geometric degenerations are
not log smooth, but can nonetheless be studied with tools of logarithmic geometry. In this
thesis, we develop a systematic theory out of Gross–Siebert’s idea to control log singularities
with local models obtained from toric morphisms. This gives rise to the notions of generically
log smooth family and of log toroidal family.

Roughly speaking, a generically log smooth family is a flat morphism f ∶ X → S of
schemes together with a distinguished open j ∶ U ⊂X, with log structures on U and S, and
with the structure of a log morphism on f ∣U such that f ∣U is log smooth and saturated. There
need not even a log structure on Z ∶=X ∖U be defined. This is the essential structure in the
degeneration of the smooth quartic in Example 1.3. The precise definition of a generically
log smooth family is Definition 2.2.

To define Hodge numbers of the fibers of a generically log smooth family f ∶ X → S,
we need to define its de Rham complex. Our strategy—taken from Gross–Siebert—can be
motivated most easily by the situation for normal varieties. Namely, if Y is a normal variety,
then the regular locus j ∶ U ∶= Yreg ⊂ Y forms an open subset whose complement Ysing has
codimension ≥ 2. Reflexive differentials forms

Ω
[p]
Y ∶= j∗ΩpU = (ΩpY )∗∗

have turned out to be better behaved than Kähler differentials, so we just copy the definition
to generically log smooth families and define the (log) de Rham complex W ●

X/S ∶= j∗Ω●
U/S .

The good properties of Ω
[p]
Y (in particular coherence) crucially depend on the fact that

j∗OU = OY . To imitate this construction in the relative setting, we require that, for a
generically log smooth family, Z has codimension ≥ 2 in every fiber, and that f ∶ X → S is
a Cohen–Macaulay morphism, such that we have indeed j∗OU = OX . With this definition,
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we expect log Hodge numbers to be constant under suitable hypotheses. As in the case of
smooth families, we need a spectral sequence to study this question. The Hodge filtration
on W ●

X/S is given by F pWm
X/S = Wm

X/S if m ≥ p and F pWm
X/S = 0 otherwise. It induces a

filtration F ●Hn on Hn(X/S) ∶= Rp+qf∗W ●
X/S as the images of Rp+qf∗F

pW ●
X/S . Moreover, it

gives rise to the Hodge–de Rham spectral sequence

E(X/S) ∶ Epq1 = Rqf∗W p
X/S ⇒ Rp+qf∗W

●
X/S

with abutment
Epq∞ = F pHp+q(X/S)/F p+1Hp+q(X/S)

the subquotients of F ●Hp+q(X/S).

Philosophy 1.5. Let f ∶ X → S be a reasonable generically log smooth family. Then the
Hodge–de Rham spectral sequence E(X/S) should degenerate at E1. The sheaves Rqf∗W

p
X/S

and Rnf∗W
●
X/S should be locally free, and their formation should commute with base change.

A proof of this statement in some special cases is the heart of this thesis, see the discussion
below. Log toroidal families as explained below in characteristic 0 are certainly reasonable
in the sense of the philosophy, but we will not determine its meaning beyond.

Log Toroidal Families

It is difficult to approach Philosophy 1.5 in full generality since in a generically log smooth
family f ∶ X → S we have very few control over the log singularities in Z = X ∖ U . To
illustrate just one point, we consider a Cartesian diagram

Y
c //

g

��

X

f

��
T

b // S

of generically log smooth families. In view of Philosophy 1.5, we expect the canonical
homomorphism c∗W p

X/S → W p
Y /T to be an isomorphism. In fact this is a key step in those

cases where we will prove the statement of Philosophy 1.5, but a priori we only know it to be
an isomorphism on c−1(U). To prove the isomorphism, it is sufficient to show that c∗W p

X/S
is reflexive, which is a local property. Thus, in order to approach Philosophy 1.5, we need to
control the local structure of f ∶X → S around points z ∈ Z. We define a log toroidal family
to be a generically log smooth family whose log singularities are controlled by a local model
in the same way as the local structure of log smooth morphisms is controlled by AP → AQ.

Let us introduce the local models. Given an injective (and saturated) homomorphism
θ ∶ Q→ P of sharp toric monoids, we turn the geometric family

Aθ ∶ AP = Spec Z[P ] → Spec Z[Q] = AQ

into a generically log smooth family by endowing AP with the divisorial log structure associ-
ated to a toric divisor D ⊃ A−1

θ (DQ). When we choose D =DP , this yields the local models
of log smooth morphisms. In the Gross–Siebert program, every local model has Q = N and
D = A−1

θ (0). The family f ∶ Xst → A1 in Example 1.4 has this form. Since we consider the
local models as building blocks of log toroidal families, we call them elementary log toroidal
families.

Definition 1.6 (provisional). A log toroidal family f ∶ X → S is a generically log smooth
family which is étale locally of the form (Spec Z[P ],D)×AQS → S for some map S → AQ and
some generically log smooth family (Spec Z[P ],D) → AQ with a toric divisor D ⊂ Spec Z[P ]
as above.

This is not the precise definition, which is rather intricate and contained in Section 4.
The degeneration of the smooth quartic in Example 1.3 is a log toroidal family. If (X,D)
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is a toroidal pair, then endowing X with the divisorial log structure yields a log toroidal
family over S = Spec C (with the trivial log structure) as well. The name “log toroidal” is
in analogy with toroidal varieties, which are étale locally isomorphic to toric varieties, but
accounts for the fact that we have introduced a log structure.

After studying the de Rham complex of elementary log toroidal families in Section 6,
one of our key results is that the formation of W ●

X/S commutes with base change.

Theorem 1.7. Let k be a field, and let S/k be an fs log scheme defined over k. Let f ∶X → S
be a log toroidal family, and let g ∶ Y → T be the base change along a strict morphism
b ∶ T → S. Then the canonical map c∗W p

X/S →W p
Y /T is an isomorphism.

In general, the formation of W ●
X/S does not commute with base change even for elemen-

tary log toroidal families, see Example 6.8.

The Hodge–de Rham Spectral Sequence

Having the base change Theorem 1.7, which allows us to specify the meaning of “reasonable”,
we upgrade Philosophy 1.5 to a conjecture.

Conjecture 1.8. Let k ⊃ Q be a field, let S/k be an fs log scheme over it, and let f ∶X → S
be a proper log toroidal family of relative dimension d. Then E(X/S) degenerates at E1.
The sheaves Rqf∗W

p
X/S and Rnf∗W

●
X/S are locally free, and their formation commutes with

base change.

The main result of this thesis is that Conjecture 1.8 holds in several important cases.
Let S = Spec (Q → k) be the log structure on the point induced by the inclusion S → AQ
of the origin. We say f ∶ X → S is a log toroidal family with respect to S → AQ if we can
always choose this particular map in Definition 1.6, i.e., if the family is locally isomorphic
to base changes of (Spec Z[P ],D) → AQ along this map S → AQ.

Theorem 1.9. Let S = Spec (Q → k) for a sharp toric monoid Q and a field k ⊃ Q, and
let f ∶X → S be a proper log toroidal family of relative dimension d with respect to S → AQ.
Then E(X/S) degenerates at E1.

We prove this result by an adaptation of the method of Deligne–Illusie in [17]. The de-
generation comes down to a dimension count. In positive characteristic, this can be achieved
by a decomposition in the derived category induced by the Cartier isomorphism. Then we
compare the characteristic-0 case and the positive-characteristic case via a spreading out of
f ∶ X → S to a base of finite type over Z. We construct the spreading out in Section 4.3
and the Cartier isomorphism and the decomposition in the log toroidal setting in Section 7.
The second partial result is Conjecture 1.8 over one-dimensional infinitesimal bases.

Theorem 1.10. Let S = Sm ∶= Spec (N 1↦t→ C[t]/(tm+1)) and let f ∶ X → S be a proper log
toroidal family of relative dimension d with respect to S → AN. Then:

1. Rqf∗W
p
X/S is a free C[t]/(tm+1)-module whose formation commutes with base change.

2. The spectral sequence Rqf∗W
p
X/S ⇒ Rp+qf∗W

●
X/S degenerates at E1.

We prove this with an idea of Steenbrink in [71] in the guise of Gross–Siebert’s adaptation
in [31]. The key point is Lemma 8.4, which implies that a certain map of complexes is a quasi-
isomorphism. The proof of this statement in [31] has a gap because the differential in the
complex is not OX -linear. From Theorem 1.10, we deduce the statement of Conjecture 1.8
in some more cases, e.g. some particular higher-dimensional bases. Note that Kawamata–
Namikawa states—using Steenbrink’s idea as well—in [55, Lemma 4.1] a degeneration result
over more general (Artinian) bases. However, their proof fails for some bases, so we restrict
to the above mentioned ones.
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Relatively Log Smooth Families

Example 1.3 shows us that at least some interesting degenerations are not log smooth. We
introduce in this thesis the concept of log toroidal family to study them, but this is not the
only possible approach. Nakayama–Ogus introduce in [64] the concept of relatively (log)
smooth morphism. Essentially, a morphism

f ∶ (X,MX) → (S,MS)

of log schemes is relatively log smooth if there is a second log structure H on X and an
embedding MX ⊂ H such that (X,H) → (S,MS) is log smooth.

Example 1.11. The family f ∶ Xst → A1 of Example 1.4 is relatively log smooth, where
MX is the divisorial log structure of {t = 0} and H is the divisorial log structure of the full
toric boundary.

In Section 5, we introduce a variant of this concept, the relatively log smooth family.
It turns out that this variant is closely related to log toroidal families in the sense that,
given a relatively log smooth family f ∶ X → S, there is an open subset U ⊂ X such that
the generically log smooth family obtained by restricting the log structure of X to U is log
toroidal. Conversely, though there are log toroidal families that do not arise from relatively
log smooth ones, many log toroidal families are in fact relatively log smooth (after extension
of the log structure to the whole of X).

Outlook

The smoothing application in our article [22] heavily depends on the deformation theory of
log toroidal families over Spec (N → C). There we used the intricate approach of Gross–
Siebert to divisorial deformations of toric log Calabi–Yau spaces developed in [31]. This
approach certainly does not fit all log toroidal families: For example it is an open problem,
if in general, log toroidal deformations are locally unique. A systematic deformation theory of
log toroidal families is thus subject to future studies. Once local uniqueness is established,
we expect that log toroidal deformations are controlled by a CJQK-linear predifferential
graded Lie algebra in the sense of [21], generalizing our recent adaptation of the method of
Chan–Leung–Ma of [12] in the smoothing result.

Classically, for a smooth family f ∶ X → S, there is a variation of Hodge structures on
Rkf∗Ω●

X/S . Hodge structures have been generalized to log Hodge structures, see e.g. [53,

24], but the problem of constructing log Hodge structures is notoriously difficult and only
achieved in a few special cases, see [52, 23, 24]. It would be interesting to construct a
variation of log Hodge structures on Rkf∗W

●
X/S for a log toroidal family f ∶X → S.

Given a log analytic space X its Kato–Nakayama space Xlog is a topological realization
of X in the sense that it translates log geometric features of X into topological features
of Xlog. Since in a log toroidal family f ∶ X → S the space X is a log scheme only on
U , a priori it has no Kato–Nakayama space. However, Nakayama–Ogus study in [64] the
topological realization for relatively log smooth morphisms, which turns out to be well-
behaved. It might be possible to adapt the construction to the log toroidal setting. This is
interesting for us because the construction of log Hodge structures heavily depends on the
topological realization. Another direction is to study the relationship between the fibers of
flog ∶ Xlog → Slog and the topology of a smoothing. For first results in this direction, see
Ogus’ book [67].

Another approach to the log Hodge structures is via resolution of the log singularities.
Given a log toroidal family f ∶X → S, we search for a proper map h ∶ X̃ →X of log schemes
which is an isomorphism on U ⊂ X and has the property that f ○ h ∶ X̃ → S is log smooth.
We then expect that

Rh∗W
●
X̃/S =W ●

X/S ,

so we may consider a log Hodge structure of f ○ h ∶ X̃ → S as a log Hodge structure of
f ∶X → S. In the spirit of Voevodsky’s h-topology of [76] and the study of differential forms
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in the h-topology by Huber–Jörder in [43], it might even suffice to have the resolution only
locally on X. Moreover, in case Rh∗W

●
X̃/S /=W ●

X/S , we might consider Rh∗W
●
X̃/S the better

differential forms—cf. also the recent preprint [68] for the case of positive characteristic.

Comparison with [22]

Let us indicate how this thesis relates to our paper [22]. Section 2 on generically log smooth
families is an expansion of §2 in [22]. Subsections 2.1 and 2.2 containing the definition
and basic properties of generically log smooth families and their de Rham complex are
essentially the content in [22]. Only [22, Prop. 2.8] on the dualizing sheaf and the results on
analytification have been moved to their own Subsections 2.3 respective 2.7. Subsection 2.4
is essentially contained in my paper [21] on the use of Gerstenhaber algebras in log smooth
deformation theory, the remaining subsections are new. Section 3 on elementary log toroidal
families is in its core identical to §3 in [22]. Besides some additional remarks, it has been
extended by a study of the horizontal locus, the non-strict base change, and many examples.
Section 4 is an expansion of §4 in [22]. A study of the possibility to find local models such
that any given one point corresponds to the origin in the local model has been added as
Subsection 4.2. §9 in [22] on spreading out has been moved to Section 4 as Subsection 4.3.
Furthermore, examples have been added. Section 5 on relatively log smooth families is
completely new. Section 6 on differential forms on log toroidal families consists of the
essentially unchanged content of §7 and §8 of [22]. In Subsection 6.4 on the local analytic
theory, a proof has been added which is omitted in [22]. Section 7 on the theory in positive
characteristic contains the essentially unchanged contents of §10 and §11 in [22]. Section 8
on the Hodge–de Rham degeneration contains—besides the essentially unchanged content
of §12 in [22]—a slight generalization to higher-dimensional infinitesimal and formal base
spaces. All sections from [22] which I have included in this thesis as well as §5 are my own
contribution to [22]. The remaining sections §§1,6,13 are my coauthors’ Helge Ruddat and
Matej Filip’s contribution.
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guten Rat wann immer ich ihn brauchte. Er hat mich mit spannenden Forschungsfragen und
brauchbaren Ansätzen seit meiner Bachelorarbeit bereichert. Ich danke
der mich gelehrt hat, eine gute Einleitung für meine Masterarbeit zu schreiben. Ich danke

der mir gerade in den ersten Studienjahren ein Vorbild war. Ich danke
und

für Einladungen, Empfehlungsschreiben und inspirierende Diskussionen. Ich danke
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2 Generically Log Smooth Families

A generically log smooth family f ∶ X → S is a generalization of a saturated log smooth
morphism in the sense that it needs to be log smooth and saturated only on some open
U ⊂ X. This notion is a technical framework for our study of log toroidal families below.
Log structures in this section are assumed to be in the étale topology.

2.1 Definition and Basic Properties

This section follows closely §2 in our paper [22]. If f ∶ X → S is a finite type morphism of
Noetherian schemes, we say a Zariski open U ⊂X satisfies the codimension condition (CC)
if the relative codimension of Z ∶= X ∖ U is ≥ 2, i.e., for every point s ∈ S with Xs, Us the
fibers over the residue field κ(s), we have

codim(Xs ∖Us,Xs) ≥ 2. (CC)

Remark 2.1. Since dim(OXs,z) = codim({z},Xs), we have codim(Xs ∖ Us,Xs) ≥ 2 if and
only if dim(OXs,z) ≥ 2 for all z ∈Xs ∖Us. In particular, if g ∶X ′ →X is surjective and étale,
then U ⊂X satisfies (CC) if and only if g−1(U) ⊂X ′ satisfies (CC).

Recall that a Cohen–Macaulay morphism is a flat morphism with Cohen–Macaulay fibers.

Definition 2.2. A generically log smooth family f ∶X → S consists of:

� a finite type Cohen–Macaulay morphism f ∶X → S of Noetherian schemes,

� a Zariski open j ∶ U ⊂X satisfying (CC), and

� a saturated and log smooth morphism f ∶ (U,MU) → (S,MS) of fine saturated log
schemes.

To the complement Z ∶=X∖U , we refer as the log singular locus even though f might extend
log smoothly to it. We say two generically log smooth families f, f ′ ∶ X → S with the same
underlying morphism of schemes are equivalent if there is some Ũ ⊂ U ∩U ′ satisfying (CC)
with MU ∣Ũ ≅M′

U ′ ∣Ũ compatibly with all data.

The notion of equivalence is due to the fact that we do not care about the precise U .
However, for technical simplicity we assume some U fixed. The name log singular locus is
in analogy with [30].

Example 2.3. Let f ∶ X → S be a log smooth and saturated morphism of Noetherian fine
saturated log schemes. Then f is flat by [50, 4.5] and has Cohen–Macaulay fibers by [73,
II.4.1]. We see that f ∶X → S gives a generically log smooth family for U =X.

Remark 2.4. Not every log smooth morphism is saturated, e.g. see [48, Rem. 9.1] for a log
smooth morphism that is not even integral.

Example 2.5. Let f ∶ X → S be the degeneration of the smooth quartic surface from
Example 1.3. Endow S with the divisorial log structure defined by 0 ∈ S and X with the
divisorial log structure defined by D ⊂ X. Then with U = X ∖ Z, we have a generically log
smooth family f ∶X → S.

If T → S is a morphism of Noetherian fine saturated log schemes, then the base change
fT ∶ XT → T as a generically log smooth family is defined in the obvious way: We take the
fiber product fT ∶ XT → T of underlying schemes, and we form the fiber product UT → T
in the category of all log schemes. This has the effect that the underlying scheme of the
log fiber product UT is indeed the fiber product of underlying schemes, so UT ⊂ XT is a
Zariski open subset which satisfies (CC). The log scheme UT is fine and saturated because
f ∶ U → S is saturated.

Remark 2.6. If f ∶ U → S is not saturated, the fiber product UT in the category of all log
schemes might not be saturated. When we take the fiber product UT in the category of fine
saturated log schemes instead, the map UT → XT might not be an open immersion, cf. [67,
III, Cor. 2.1.6]. Thus we require f ∶ U → S to be saturated.
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It is well-known that on a Cohen–Macaulay scheme X, for a closed subset Z ⊂X of codi-
mension ≥ 2, every regular function g ∈ OX(X ∖Z) can be extended to X. The codimension
condition (CC) is what we need for a relative version. This relative version is crucial for all
structures that we will construct as a direct image from U to be well-behaved.

Lemma 2.7. Let f ∶ X → S be a Cohen–Macaulay morphism of Noetherian schemes, and
let j ∶ U ⊂X satisfy (CC). Then j∗OU ≅ OX .

Proof. This is a special case of [41, 3.5]. Note that our (CC) is a stronger assumption than
the condition on the codimension in [41, 3.5].

Let f ∶ X → S be a generically log smooth family. Using the language of EGA in [35,
Def. 5.9.9], we call a sheaf F Z-closed (resp. Z-pure) if the natural map F → j∗(F∣U) is
an isomorphism (resp. injective). Most notably, two Z-closed sheaves that agree on U are
entirely equal. Furthermore, every reflexive sheaf is Z-closed.

Remark 2.8. Since j∗OU = OX , the direct image j∗MU → j∗OU = OX yields a log structure,
which is compatible with S, so every generically log smooth family is canonically a log
morphism X → S. However, we do not know if this is independent of the choice of U , and if
this is compatible with base change. Thus we consider the log structure only defined on U .

Example 2.9. Toric degenerations as defined in [30, 29] are generically log smooth families.
Indeed, let k be an algebraically closed field, let R be a k-algebra which is a discrete valuation
ring with residue field k (e.g. R = kJtK), and let f ∶ X → S = Spec R be a toric degeneration
(with X a scheme). Since X is Gorenstein and f is flat, f is not only a Cohen–Macaulay, but
even a Gorenstein morphism. Setting U = X ∖Z the complement of the log singular locus Z,
we find that the open U satisfies (CC). We endow X with the divisorial log structure defined
by X0 ⊂ X as in [30, Prop. 4.6]. Since the local models fx̄ ∶ Yx̄ → A1 for neighborhoods Ux̄
of points x̄ ∈ U are log smooth and saturated, so is f ∶ U → S. There is a small technical
issue in showing that the (divisorial) log structure on Ux̄ is indeed the inverse image of the
(divisorial) log structure on Yx̄. We expect that this can be settled by a careful analysis
using Deligne–Faltings log structures as in [67, III, 1.7].

2.2 The de Rham Complex W ●
X/S

This section follows [22, §2]. We define a de Rham complex W ●
X/S for every generically

log smooth family f ∶ X → S as explained in the Introduction. Since we assumed the log
structure to be defined only on U ⊂X, we cannot just take the usual log de Rham complex.
Moreover, when we take the global log structure of Remark 2.8, its de Rham complex might
be badly behaved:

Example 2.10. Consider the family f ∶ Xst → A1 of Example 1.4 with the divisorial log
structure defined by t = 0 on source and target. It is a generically log smooth family. The
sheaf Ω1

Xst/A1 of log differential forms is not a coherent sheaf at the origin, see [31, Ex. 1.11]
or my Master Thesis. In particular the divisorial log structure on Xst is not coherent.

Instead, we follow the philosophy of Zariski–Steenbrink–Danilov and define the de Rham
complex as the direct image from U .

Definition 2.11. For a generically log smooth family f ∶ X → S, the de Rham complex is
defined as W ●

X/S ∶= j∗Ω●
U/S , where Ω●

U/S denotes the log de Rham complex of f ∶ U → S.

The OX -module of degree m log polyvector fields is Θm
X/S ∶= j∗⋀

mDerU/S(OU).

Remark 2.12. The use of j∗Ω1
U as differential forms has a long history. Danilov uses them in

[14] as differential forms on toric varieties, cf. Example 2.16 below. Steenbrink uses them for
orbifolds in [71]. In [2] Ambro calls them Zariski–Steenbrink differentials, and in [8], Blickle
calls j∗Ω●

U the Zariski–de Rham complex. It seems that the name Zariski differentials for
j∗Ω1

U was first introduced by Knighten in [57] in his study of differential forms on quotients
of varieties. The name refers to Zariski’s book [78] on algebraic surfaces, where the idea
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is more or less implicit. Reflexive differential forms are also intensely studied on normal
varieties in the context of the Minimal Model Program, cf. [27, 26] and related work. The
famous Lipman–Zariski conjecture, tracing back to [60], states that a normal complex space
with locally free tangent sheaf Θ1

X is smooth. This is of course equivalent to j∗Ω1
U being

locally free. An early reference studying reflexive sheaves (essentially for their own sake) is
[40]. Here Z-closed sheaves are called normal in the sense of Barth, referring to [7]. Our
inspiration to use reflexive sheaves comes from the Gross–Siebert program, where they are
used e.g. in [31] to study toric log Calabi–Yau spaces and their deformations.

Lemma 2.13. The OX-modules Wm
X/S and Θm

X/S are coherent and reflexive, and they de-
pend only on the equivalence class of f ∶X → S.

Proof. Let Ũ ⊂ U also satisfy (CC). Lemma 2.7 shows that j∗Ω●
Ũ/S = j∗Ω●

U/S since ΩmU/S is

finite locally free, so W ●
X/S depends only on the equivalence class of f . It is clear that it

is quasi-coherent. For any sheaf G on U , the direct image j∗G is Z-closed, so in particular
Wm
X/S is Z-closed. Writing F∨ ∶= HomOX (F ,OX) for the dual, Lemma 2.7 shows that

F∨ is Z-closed for all F . In particular (Wm
X/S)

∨∨ is a Z-closed sheaf and coincides with

Wm
X/S on U , hence (Wm

X/S)
∨∨ = Wm

X/S , and Wm
X/S is reflexive. By the extension theorem

[33, 9.4.8], there is a coherent sheaf G that restricts to Wm
X/S on U . Now G∨∨ =Wm

X/S since
both are Z-closed and agree on U ; hence Wm

X/S is also coherent. The argument for Θm
X/S is

similar.

Lemma 2.14. We have Wm
X/S = Hom(Θm

X/S ,OX) and Θm
X/S = Hom(Wm

X/S ,OX).

Proof. The statement is clear on U , where all sheaves are locally free. The statement follows
since all sheaves are Z-closed.

Remark 2.15. As we will see in Lemma 4.9, there is a dense open subset Ustr ⊂ U where
f ∶ U → S is strict. Thus, if f has relative dimension d, then rk W 1

X/S = d. This shows

that W 1
X/S indeed has expected rank d. In full generality this fails, for there are non-strict

log morphisms where the rank of Ω1
X/S is not the relative dimension of underlying schemes,

e.g. Spec (N → C) → Spec (0 → C) (which is ideally log smooth once endowed with the
appropriate sheaves of ideals).

Example 2.16. Toric pairs give generically log smooth families. Let X/Spec R be a toric
variety over a Noetherian base ring R. The fibers over points in Spec R are normal (and
Cohen–Macaulay), so there is a regular open U ⊂ X whose complement has relative codi-
mension ≥ 2 over Spec R. Now U → Spec R is log smooth and saturated for the trivial log
structure on Spec R and any divisorial log structure on X coming from a toric divisor D
on X. Hence X → Spec R is a generically log smooth family. The differential forms W ●

X/S
coincide with what is called reflexive or Danilov or Zariski–Steenbrink differentials with log
poles in D, i.e., they coincide with the complex

Ω●
X(log D)

which we considered in the Introduction. If D is taken to be empty, then we recover the
differential forms considered by Danilov in [14, §4].

2.3 The Log Canonical Bundle W d
X/S

A Cohen–Macaulay morphism f ∶ X → S admits a relative dualizing sheaf ωX/S . The
morphism f is Gorenstein if and only if ωX/S is a line bundle (cf. [5, 0C08]), and we say
it is Calabi–Yau if ωX/S ≅ OX . Recall that for a smooth morphism f ∶ X → S of relative

dimension d of schemes, the relative dualizing sheaf is ωX/S ≅ ΩdX/S . In analogy, we define:

Definition 2.17. Let f ∶ X → S be generically log smooth of relative dimension d. Then
f ∶X → S is
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� log Gorenstein if W d
X/S is a line bundle.

� log Calabi–Yau if W d
X/S ≅ OX .

Remark 2.18. By Remark 2.15, the sheaf W d
X/S is reflexive of rank 1, so our definition makes

sense.

The (classical) relative dualizing sheaf ωX/S is closely related to W d
X/S as well. To make

the relationship precise, let us recall the horizontal locus HX/S ⊂ X, which was introduced
by Tsuji in [75].

Construction 2.19. We construct the horizontal locus. For θ ∶ Q → P a homomorphism
of monoids, a prime p ⊂ P is horizontal with respect to θ if θ(Q) ⊂ P ∖ p. Following [75, §2],
this gives rise to an ideal

IP /Q ∶= {p ∈ P ∣ p ∈ p for all horizontal p ⊂ P with ht(p) = 1} ⊂ P,

and, for a log smooth morphism f ∶ X → S of fs log schemes, to a sheaf of ideals If ⊂ MX

defined by
If(U) ∶= {m ∈ MX(U) ∣ ∀x̄ ∈ U ∶mx̄ ∈ IMX,x̄/MS,f(x̄)

} .

The induced ideal Jf ∶= IfOX ⊂ OX is quasi-coherent and defines a closed subscheme
HX/S ⊂ X, which is flat over S. We call it the horizontal locus, or, in case it is a divisor,
the horizontal divisor of f ∶ X → S. If f ∶ X → S is vertical, i.e., the induced morphisms on
the ghost stalks are vertical in the sense of [67, I, Def. 4.3.1], then If =MX and Jf = OX ,
so HX/S = ∅.

Remark 2.20. If π ∶ P → P̄ = P /P ∗ is the projection, then IP /Q = π−1(IP̄ /Q̄). Thus, if
b ∶ T → S is strict and g ∶ Y → T the fiber product, then Ig is generated by the image of
c−1If → MY . In particular, the ideal Jg is generated by the image of c−1Jf → OY , and
thus HY /T =HX/S ×S T . We do not know if this still holds for more general b ∶ T → S.

Given a generically log smooth family f ∶ X → S of relative dimension d, we apply the
above theory to the log smooth morphism f ∶ U → S. We then obtain an ideal sheaf Jf ⊂ OU
and a closed subset HX/S ⊂ U , which is flat over S. We define JfWm

X/S ∶= j∗(JfΩmU/S). The

following result is also contained in our paper [22] and essentially goes back to Tsuji’s work
[75].

Proposition 2.21. Let f ∶ X → S be a generically log smooth family of relative dimension
d over the standard log point S = Spec (N → k) (where 1 ↦ 0). Assume X is Gorenstein.
Then ωX/S ≅ JfW d

X/S. In particular, if f ∶ U → S is vertical, then ωX/S ≅W d
X/S.

Proof. The dualizing sheaf ωX/S is locally free by the Gorenstein assumption. On U , the
isomorphism is [75, Theorem 2.21, (ii)], and since both sheaves are Z-closed, the statement
follows.

Corollary 2.22. Let f ∶ X → S = Spec (N → k) be generically log smooth and vertical. If
X is Gorenstein, then f ∶X → S is log Gorenstein, and if X is Calabi–Yau, then f ∶X → S
is log Calabi–Yau.

Proof. Recall that X Gorenstein means ωX/S is a line bundle, and X Calabi–Yau means
ωX/S ≅ OX .

2.4 The Gerstenhaber Algebra G●
X/S

Gerstenhaber algebras carry a structure both of graded commutative and of graded Lie
algebra. To our knowledge, they first appeared in Gerstenhaber’s famous work [25] on the
cohomology of an associative algebra. Here, we endow the graded commutative algebra
of polyvector fields with a variant of the Schouten–Nijenhuis bracket and thus obtain a
structure of Gerstenhaber algebra on it. For log smooth morphisms, this is also done in my
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paper [21], where we use the Gerstenhaber algebra of polyvector fields to study deformation
theory. It follows ideas of Chan–Leung–Ma in [12], where an abstract deformation theory
based on Gerstenhaber algebras is developed. Since this theory is also important for the
smoothing application in our paper [22], we follow here the conventions of [12]. For a
generically log smooth family f ∶X → S, we set

G●
X/S ∶= j∗

−●
⋀Θ1

U/S

concentrated in negative degrees −d ≤ ● ≤ 0, i.e., we have G−m
X/S = Θm

X/S . We follow the

grading convention of Chan–Leung–Ma in [12]. We use the new symbol G●
X/S in analogy

with [12] and to distinguish it from Θ●
X/S . The construction of the Gerstenhaber algebra

structure should be viewed as a preliminary to construct the Batalin–Vilkovisky structure
below in the log Calabi–Yau case. This in turn is important for the deformation-theoretic
results of [12].

Definition 2.23. A Gerstenhaber algebra on X is a graded abelian sheaf G● together with
two bilinear operations

− ∧ − ∶ Gp × Gq → Gp+q and [−,−] ∶ Gp × Gq → Gp+q+1

satisfying the relations

� x ∧ (y ∧ z) = (x ∧ y) ∧ z and x ∧ y = (−1)∣x∣∣y∣(y ∧ x),

� [x, y ∧ z] = [x, y] ∧ z + (−1)(∣x∣+1)∣y∣y ∧ [x, z],

� [x, y] = −(−1)(∣x∣+1)(∣y∣+1)[y, x],

� [x, [y, z]] = [[x, y], z] + (−1)(∣x∣+1)(∣y∣+1)[y, [x, z]],

where ∣x∣ is the degree of a homogeneous element x. Moreover, (G●,∧) is unital, i.e., there
is 1 ∈ G0 such that 1 ∧ x = x.

A morphism of Gerstenhaber algebras is a graded map φ● ∶ G●1 → G●2 that is compatible
with ∧ and [−,−] and such that φ0(1) = 1.

Remark 2.24. Often Gerstenhaber algebras are defined with [−,−] having degree −1 instead
of +1. In this case, the polyvector fields ⋀p T 1

X on a smooth manifold X form a Gerstenhaber
algebra with their natural grading. However, as explained above, we follow [12] for the
grading, so we have functions in degree 0, vector fields in degree −1 etc.

Remark 2.25. Note that (G●,∧) is a graded commutative algebra and (G●[−1], [−,−]) is a
graded Lie algebra. By the odd Poisson identity (which is the second identity above) [x,−]
acts as a derivation of degree ∣x∣ + 1.

Remark 2.26. The odd Poisson identity is symmetric. Indeed, by skew-symmetry it is
equivalent to

[x ∧ y, z] = x ∧ [y, z] + (−1)(∣z∣+1)∣y∣[x, z] ∧ y .
On differential forms and vector fields, we have the evaluation pairing

⟨−,−⟩ ∶W 1
X/S ×G

−1
X/S → OX

induced by the homomorphism hθ ∶ Ω1
X/S → OX associated to a derivation θ ∈ Θ1

X/S , and
the Lie bracket

[−,−] ∶ G−1
X/S ×G

−1
X/S → G−1

X/S

as e.g. defined in [67, V, Prop. 2.1.2]. It can be extended to a bracket on the whole of G●
X/S ,

namely the Schouten–Nijenhuis bracket.

Lemma 2.27. Let f ∶ X → S be a morphism of finite type of coherent Noetherian log
schemes. Then there is a unique f−1(OS)-bilinear bracket

[−,−]sn ∶ Θp
X/S ×Θq

X/S → Θp+q−1
X/S

called the Schouten–Nijenhuis bracket such that
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� [x, y]sn = −(−1)(∣x∣+1)(∣y∣+1)[y, x]sn (skew-symmetry),

� [x, y ∧ z]sn = [x, y]sn ∧ z + (−1)(∣x∣+1)∣y∣y ∧ [x, z]sn (odd Poisson identity),

� [g, h]sn = 0 for g, h ∈ OX ,

� [θ, g]sn = ⟨dg, θ⟩ for θ ∈ Θ1
X/S , g ∈ OX ,

� [θ, ξ]sn = [θ, ξ] for θ, ξ ∈ Θ1
X/S (Lie bracket).

Proof. For existence, we define a bracket via the formulas [g, h]sn = 0 and

[θ0 ∧ ... ∧ θn, h]sn ∶=
n

∑
i=0

(−1)n−i⟨dh, θi⟩θ0 ∧ ... ∧ θ̂i ∧ ... ∧ θn,

[θ0 ∧ ... ∧ θn, ξ0 ∧ ... ∧ ξm]sn

∶=
n

∑
i=0

m

∑
j=0

(−1)i+j[θi, ξj] ∧ θ0 ∧ ... ∧ θ̂i ∧ ... ∧ θn ∧ ξ0 ∧ ... ∧ ξ̂j ∧ ... ∧ ξm

for g, h ∈ OX , θi, ξi ∈ Θ1
X/S . These formulas are taken from [61]. Uniqueness holds by the

odd Poisson identity since Θp
X/S is generated by elements θ1 ∧ ... ∧ θp with θi ∈ Θ1

X/S .

Remark 2.28. The Schouten–Nijenhuis bracket satisfies the Jacobi identity

[x, [y, z]sn]sn = [[x, y]sn, z]sn + (−1)(∣x∣+1)(∣y∣+1)[y, [x, z]sn]sn;

this shows that Θ●
X/S[1] is a graded Lie algebra, cf. [62, Lemma VII.13].

The Schouten–Nijenhuis bracket [−,−]sn induces two Gerstenhaber algebra structures
on G●

X/S :

Definition 2.29. On G●
X/S we define a bracket [−,−]sn = j∗[−,−]sn as the direct image

of the Schouten–Nijenhuis bracket on Θ●
U/S , and a second bracket [−,−]g ∶= (−1) ⋅ [−,−]sn.

Both turn G●
X/S into a Gerstenhaber algebra.

We consider [−,−]g the natural bracket for the Gerstenhaber algebra structure, again
following [12].

2.5 The Batalin–Vilkovisky Module W ●
X/S

The de Rham complex W ●
X/S forms some sort of module over the Gerstenhaber algebra

(G●
X/S ,∧, [−,−]g), a so-called Batalin–Vilkovisky module. Then the pair (G●

X/S ,W
●
X/S) of

algebra and module is considered a differential calculus for the generically log smooth family
f ∶ X → S, cf. [58] in the abstract context or any textbook on differential geometry for the
original context of these structures. To construct the module structure essentially means to
define a contraction of polyvector fields with differential forms. This contraction map also
plays an important role in the deformation-theoretic results of [12]. More abstractly such a
contraction is used in Iacono’s abstract Bogomolov–Tian–Todorov theorem of [45] which can
be used to prove homotopy abelianity of dglas. Beyond the scope of this thesis we expect
this to be relevant for the deformation theory of log toroidal families.

Roughly following [58], but adjusting for the signs in [12], if G● is a Gerstenhaber algebra,
then by a Gerstenhaber module we mean a Z-graded sheaf M● of abelian groups with two
bilinear maps

⨼ ∶ Gp ×Mq →Mp+q and L−(−) ∶ Gp ×Mq →Mp+q−1

such that the following identities hold:

� 1 ⨼ m =m and (x ∧ y) ⨼ m = x ⨼ y ⨼ m,

� L[x,y](m) = Lx(Ly(m)) − (−1)(∣x∣+1)(∣y∣+1)Ly(Lx(m)),
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� x ⨼ Ly(m) = (−1)∣y∣+1([x, y] ⨼ m) + (−1)∣x∣(∣y∣+1)Ly(x ⨼ m).

The last condition is called the mixed Leibniz rule. We call a Gerstenhaber module a
Batalin–Vilkovisky module over the Gerstenhaber algebra G● if we have a linear differential
d ∶ Mp →Mp+1 with d2 = 0 and such that the so-called Lie–Rinehart homotopy formula

(−1)∣x∣Lx(m) = d(x ⨼ m) − (−1)∣x∣(x ⨼ dm) (1)

holds.

Remark 2.30. Our version of the Lie–Rinehart homotopy formula as well as the so-called
mixed Leibniz identity in our definition of a Gerstenhaber module differ from [58] by signs.

Remark 2.31. If (M●, d) is a complex and ⨼ ∶ Gp×Mq →Mp+q a (G●,∧)-module structure,
then a candidate for L can be defined via the Lie–Rinehart formula (1). It turnsM● into a
Batalin–Vilkovisky module if and only if

{Lx, y ⨼}(m) ∶= Lx(y ⨼ m) − (−1)(∣x∣+1)∣y∣(y ⨼ Lx(m)) = [x, y] ⨼ m

holds. Indeed, this is equivalent to the mixed Leibniz identity, and the remaining iden-
tity follows since the graded commutator {−,−} of operators is a Lie bracket, i.e., we find
{d,Lx} = 0 from (1) and thus L[x,y] = {Lx,Ly} again using (1).

Lemma 2.32. Let f ∶ X → S be a morphism of finite type of coherent Noetherian log
schemes. Then there is a unique family of homomorphisms of sheaves of abelian groups

⨼k ∶ Θ1
X/S ×ΩkX/S → Ωk−1

X/S

satisfying θ ⨼ ω = ⟨ω, θ⟩ for ω ∈ Ω1
X/S, and

θ ⨼ (ω ∧ η) = (θ ⨼ ω) ∧ η + (−1)∣ω∣ω ∧ (θ ⨼ η) .

This map is called the contraction map.

Proof. Uniqueness is obvious. For θ ∈ Θ1
X/S , the map θ ⨼ is induced by

(Ω1
X/S)

⊗k → Ωk−1
X/S , ω1 ⊗ ...⊗ ωk ↦

k

∑
i=1

(−1)i+1⟨ωi, θ⟩ω1 ∧ ... ∧ ω̂i ∧ ... ∧ ωk,

which maps ω1 ⊗ ...⊗ ωk to 0 as soon as ωi = ωj for i /= j.

Remark 2.33. The contraction ⨼k is OX -linear and satisfies the two relations

θ ⨼ (θ′ ⨼ ω) = −[θ′ ⨼ (θ ⨼ ω)],
[θ, θ′] ⨼ ω = [θ ⨼ d(θ′ ⨼ ω)] + [θ ⨼ (θ′⨼ dω)]

− [d(θ′ ⨼ θ ⨼ ω)] − [θ′ ⨼ d(θ ⨼ ω)].

An elegant way to see that the second relation holds is by considering the right hand side
a map Pθ,θ′ ∶ Ω●

X/S → Ω●−1
X/S . It satisfies the bilinearity assumption of the lemma, and for

ω a closed 1-form, we easily see Pθ,θ′(ω) = h[θ,θ′](ω). Because Ω1
X/S is generated by closed

forms, the uniqueness statement (applied to [θ, θ′]) yields the relation.

Following e.g. [62], we can iteratively apply the contraction to obtain a contraction

⨼ ∶ Θq
X/S ×Ωp

X/S → Ωp−q
X/S , (θq ∧ ... ∧ θ1) ⨼ ω = θq ⨼ ... ⨼ θ1⨼ ω,

of polyvector fields for q ≤ p. For p = q, it induces a pairing

⟨−,−⟩ ∶ Ωp
X/S ×Θp

X/S → OX , ⟨ω, θ⟩ = θ ⨼ ω,

given by the explicit formula

⟨ωp ∧ ... ∧ ω1, θ1 ∧ ... ∧ θp⟩ = ∑
σ∈Sp

(−1)σ
p

∏
i=1

⟨ωi, θσ(i)⟩;

the pairing is perfect if Ω1
X/S is locally free.
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Remark 2.34. Be aware of the indexing of inputs in ⟨−,−⟩. The pairing ⟨−,−⟩ does not

correspond to plugging in p vector fields in a p-form, but differs from that by a sign (−1)
(p−1)p

2 .

Definition 2.35. Let f ∶X → S be a generically log smooth family. Then the contraction

⨼ ∶ G−q
X/S ×W

p
X/S →W p−q

X/S

is defined as the direct image j∗⨼ of the contraction on U . For θ ∈ G−q
X/S , the Lie derivative

is defined by the Lie–Rinehart homotopy formula

(−1)∣θ∣Lθ(ω) = d(θ ⨼ ω) − (−1)∣θ∣(θ ⨼ dω)

as an operator Lθ ∶W p
X/S →W p−q+1

X/S .

We show now that W ●
X/S together with the contraction and Lie derivative is a Batalin–

Vilkovisky module over G●
X/S . We have 1 ⨼ ω = ω and θ ⨼ θ′ ⨼ ω = (θ∧θ′) ⨼ ω by definition,

and moreover
Lθ∧θ′(ω) = (−1)∣θ

′∣Lθ(θ′ ⨼ ω) + θ ⨼ Lθ′(ω) (2)

and {d,Lθ} = 0 by direct computation, where {−,−} is the graded commutator of operators.

Lemma 2.36. The identity {Lθ, θ′ ⨼}(ω) = −[θ, θ′]sn ⨼ ω = [θ, θ′]g ⨼ ω holds, where

{Lθ, θ′ ⨼}(ω) ∶= Lθ(θ′⨼ ω) − (−1)(∣θ∣+1)∣θ′∣ (θ′ ⨼ Lθ(ω))

is the graded commutator. In particular, the complex W ●
X/S is a Batalin–Vilkovisky module

over G●
X/S with bracket [−,−]g.

Proof. The identity is obvious for ∣θ∣ = ∣θ′∣ = 0. For θ ∈ G−1
X/S and a function f ∈ G0

X/S , we
have

{Lθ, f ⨼}(ω) = −df ∧ (θ ⨼ ω) − (θ ⨼ (df ∧ ω)) = −(θ ⨼ df) ∧ ω
by Lemma 2.32, and similarly {Lf , θ ⨼}(ω) = (θ ⨼ df)∧ω = −[f, θ]sn ⨼ ω since Lf(ω) = df∧ω.
For θ, θ′ ∈ G−1

X/S , we have

{Lθ, θ′ ⨼}(ω) = −[θ, θ′]sn ⨼ ω
by Remark 2.33. Now, if the identity that we want to show holds for θ, θ′, ξ, ξ′, then also

[θ ∧ θ′, ξ] ⨼ ω = θ ⨼ Lθ′(ξ ⨼ ω) − (−1)∣ξ∣(∣θ
′∣+1)(θ ⨼ ξ ⨼ Lθ′(ω))

+ (−1)(∣ξ∣+1)∣θ′∣Lθ(ξ ⨼ θ′ ⨼ ω) + (−1)∣ξ∣(∣θ∣+∣θ
′∣+1)+∣θ′∣ξ ⨼ Lθ(θ′ ⨼ ω)

= {Lθ∧θ′ , ξ ⨼}(ω)

by (2), and

[θ, ξ ∧ ξ′] ⨼ ω = Lθ(ξ ⨼ ξ′ ⨼ ω) − (−1)(∣ξ∣+∣ξ
′∣)(∣θ∣+1)(ξ ⨼ ξ′ ⨼ Lθ(ω))

= {Lθ, ξ ∧ ξ′ ⨼}(ω),

which prove the identity by induction since on U , the sheaf G−p
X/S is locally generated by

sections that are products of vector fields. For the corollary, use Remark 2.31.

2.6 Log Calabi–Yau Families

In case f ∶ X → S is log Calabi–Yau, the Gerstenhaber algebra G●
X/S of polyvector fields

can be enhanced to a Batalin–Vilkovisky algebra. These algebras form an important tool in
deformation theory since they often allow to prove a deformation functor unobstructed, see
e.g. [6, Lemma 2.1]. In particular, they are used in [12] to prove a logarithmic unobstruct-
edness result. For us, a Batalin–Vilkovisky algebra is a Gerstenhaber algebra G● together
with an operator ∆ ∶ Gp → Gp+1 such that ∆(1) = 0 and ∆2 = 0, and such that

(−1)∣x∣[x, y] = ∆(x ∧ y) −∆(x) ∧ y − (−1)∣x∣x ∧∆(y)

holds.
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Remark 2.37. Again, we follow [12]. In the terminology of [45], what we defined is a Batalin–
Vilkovisky algebra of degree −1 (however, we do not have a differential, so it is not a
differential Batalin–Vilkovisky algebra). Instead of introducing the Lie bracket on its own,
one can equivalently require ∆ to be a second order differential operator, i.e., it satisfies
an explicit identity which can be found e.g. in [45], and then define the Lie bracket via the
above formula.

If Ω ∈W d
X/S is a volume form, then we obtain an isomorphism

η = ηΩ ∶ G−p
X/S ≅W d−p

X/S , θ ↦ (θ ⨼ Ω),

which depends on Ω.

Definition 2.38. For f ∶ X → S a log Calabi–Yau generically log smooth family and
Ω ∈W d

X/S a volume form, the Batalin–Vilkovisky operator

∆ ∶= ∆Ω ∶ G−p
X/S → G−p+1

X/S

is given by ∆ = η−1 ○ d ○ η, where d ∶W d−p
X/S →W d−p+1

X/S is the de Rham differential.

Remark 2.39. In general, the operator ∆Ω depends on Ω. Indeed, the formula

⟨Ω, ξ ∧ θ⟩ = ξ ⨼ θ ⨼ Ω = ⟨η(θ), ξ⟩

implies ∆gΩ(θ) = ∆Ω(θ) + g−1 ⋅ η−1(dg ∧ ηΩ(θ)) for a function g ∈H0(X,O∗
X). In particular,

if f∗OX = OS , then ∆ is independent of Ω.

Remark 2.40. The isomorphism η gives an isomorphism

(G●X/S[−d], (−1)d∆) ≅ (W ●
X/S , d)

of complexes. Here we need the factor (−1)d to account for the factor introduced by the
shift functor.

Before we proceed, we express ∆ at x̄ ∈ U in an explicit basis. Let ω1, ..., ωd ∈ (W 1
X/S)x̄

be a basis with dωi = 0, and let θ1, ..., θd ∈ (Θ1
X/S)x̄ be the dual basis, i.e., ⟨ωi, θj⟩ = δij

for the perfect pairing. For I = {i1, ..., ip} with i1 < ... < ip, we set ωI = ωi1 ∧ ... ∧ ωip and
θI = θi1∧...∧θip to denote the canonical induced bases of the exterior powers, which moreover
satisfy

⟨ωI , θJ⟩ = (−1)
(p−1)p

2 δIJ ,

where p = ∣I ∣. There is a sign function ε(I, J) depending on two disjoint indices defined by
ωI ∧ ωJ = ε(I, J) ⋅ ωI∪J , which satisfies the identity

ε(I, J) ⋅ ε(I ∪ J,K) = ε(I, J ∪K) ⋅ ε(J,K).

For Φ ∈ OX,x̄ the function such that the volume form is Ω = Φ ⋅ ω1 ∧ ... ∧ ωd, we have

η(θI) = (−1)
(p−1)p

2 ⋅ ε(I, Ic) ⋅Φ ⋅ ωIc ,

where Ic is the complement of I in {1, ..., d} and p = ∣I ∣. The equation η∆(gθI) = dη(gθI) is
satisfied by

∆(gθI) = (−1)p+1∑
i∈I
ε(I ∖ {i},{i}) ⋅Φ−1 ⋅ ⟨d(gΦ), θi⟩ ⋅ θI∖{i},

which thus gives ∆(gθI).

Remark 2.41. Our sign (−1)
(p−1)p

2 ε(I, Ic) in the formula for η is precisely the sign given
explicitly in [59, p. 11]. Moreover, since sorting θI ∧θIc requires ∑pk=1(ik − ik−1 −1)(p−k+1)
transpositions (once we set i0 = 0), we have

ε(I, Ic) = (−1)(∑k ik)−
p(p+1)

2 ;

this shows that our sign is equal to (−1)(∑ ik)−p, the sign given explicitly in [44, 6.1].
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Lemma 2.42 (Tian–Todorov Lemma). We have

−(−1)∣x∣[x, y]sn = ∆(x ∧ y) −∆(x) ∧ y − (−1)∣x∣x ∧∆(y).

In particular, the algebra (G●X/S ,∧, [−,−]g,∆) is a Batalin–Vilkovisky algebra.

Proof. It suffices to show the identity at points x̄ ∈ U . Denoting the right hand side by
G(x, y), for functions g, h ∈ OX,x̄ we have G(g, h) = 0 = −[g, h]sn. Moreover,

G(gθI , h) = (−1)p+1g∑
i∈I
ε(I ∖ {i},{i})⟨dh, θi⟩θI∖{i} = −(−1)p[gθI , h]sn,

where p = ∣I ∣, and for I ∩ J = ∅, we have

G(gθI , hθJ) = (−1)p+q+1∑
i∈I
ε(I ∪ J ∖ {i},{i}) ⋅ ε(I, J) ⋅ ⟨gdh, θi⟩θI∪J∖{i}

+ (−1)p+q+1 ∑
j∈J

ε(I ∪ J ∖ {j},{j}) ⋅ ε(I, J) ⋅ ⟨hdg, θj⟩θI∪J∖{j}

= −(−1)p[gθI , hθJ]sn,

where q = ∣J ∣, and where we use [θi, θj] = 0, which follows from [67, V, Prop. 2.1.2] (though
the bracket there in equation (2.1.2.) uses another sign convention). In case I ∩ J = {m},
we find

G(gθI , hθJ)
= −(−1)p+q+1 ⋅ ε(J ∖ {m},{m}) ⋅ ε(I, J ∖ {m}) ⋅ ⟨gdh − hdg, θm⟩ ⋅ θI∪J
= −(−1)p[gθI , hθJ]sn,

and for ∣I ∩ J ∣ ≥ 2, we have G(gθI , hθJ) = 0 as well as [gθI , hθJ]sn = 0.

Remark 2.43. The most elegant approach would be to check the conditions of Lemma 2.27,
but the odd Poisson identity is hard.

2.7 Analytification

Let f ∶ X → S be a generically log smooth family with S/C of finite type. Then by the
general GAGA results in [37, Exposé XII], the analytification fan ∶ Xan → San is a flat
morphism of complex analytic spaces with Cohen–Macaulay fibers. According to [67, V,
1.1], we obtain also a log smooth and saturated morphism fan ∶ Uan → San of fs log analytic
spaces. If S = Spec A for a local Artinian C-algebra A, then S = San as locally ringed spaces,
and moreover S is itself Cohen–Macaulay, so X and Xan are Cohen–Macaulay.

Lemma 2.44. If X is a Cohen–Macaulay complex space of pure dimension d and Z ⊂X is
a closed analytic subset of codimension ≥ 2, then setting U ∶=X ∖Z, we have j∗OU = OX .

Proof. It is sufficient to prove HiZ(OX) = 0 for i = 0,1. When we write

Sm ∶= Sm(OX) ∶= {x ∈X ∣ depth OX,x ≤m},

by [9, Thm. 3.6], it is sufficient to prove dim(Z ∩ Sk+2) ≤ k for all k ≥ 0. This holds since
depth OX,x = dim OX,x = d.

Remark 2.45. We do not know if there is a relative version as in the algebraic case.

The analytic log de Rham complex Ω●
Uan/San on Uan gives rise to the de Rham complex

W ●,an
X/S ∶= (jan)∗Ω●

Uan/San . The reflexive coherent analytic sheaf (Wm
X/S)

an is Zan-closed by

the lemma, so it is isomorphic to Wm,an
X/S , which is thus coherent. If f ∶ X → S is proper,

then there is an isomorphism

Rq(fan)∗W p,an
X/S ≅ Rqf∗W p

X/S , (3)

where we do not need to analytify the right hand side since S = San.
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Lemma 2.46. If f ∶X → S is proper, we have an isomorphism

Rm(fan)∗W ●,an
X/S ≅ Rmf∗W ●

X/S

of hypercohomologies.

Proof. Let W ● ∶=W ●,Zar
X/S be the de Rham complex in the Zariski topology, and let W ● → L●●

be an injective Cartan–Eilenberg resolution. After writing ε ∶ Xan → X for the comparison
map, functoriality yields a map f∗(L●●) → f∗ε∗ε

−1(L●●) = fan∗ (ε−1L●●) of double complexes.
Because ε−1 is exact, the discussion in [34, p. 33] yields, given an injective Cartan–Eilenberg
resolution W ●,an

X/S → L′●●, a map ε−1L●● → L′●● of resolutions. In total, we obtain an in-

duced map f∗(L●●) → fan∗ (L′●●) of double complexes, which gives a morphism of associated
(Hodge–de Rham) spectral sequences. On the E1 page, this is the comparison map (3),
which is an isomorphism. Thus, we obtain an isomorphism of abutments. The comparison
between the étale and the Zariski hypercohomology is analogous.

Remark 2.47. One cannot construct a comparison map L●● → ε∗L
′●● directly for the latter

might not be a Cartan–Eilenberg resolution (since ε∗ might not be exact).

3 Elementary Log Toroidal Families

In this section, we study elementary log toroidal families f ∶ AP,F → AQ constructed from
elementary toroidal data (Q ⊂ P,F). After specifying an appropriate open UP /Q ⊂ AP,F ,
they are examples of generically log smooth families and serve as models for the singularities
that we allow in a log toroidal family. Unlike in the introduction, here for a sharp toric
monoid Q we write AQ ∶= Spec (Q → Z[Q]) for the associated log scheme, i.e., we are
working over Z. The notation AQ is taken from Ogus’ book [66, 67]. Elementary log
toroidal families are generalizations of the log morphism AP → AQ in the sense that we
allow another log structure on Spec Z[P ] which is specified by the set F of toric prime
divisors. We denote Spec Z[P ] with this log structure by AP,F .

Remark 3.1. Since this is important for the construction of f ∶ AP,F → AQ, we briefly recall
the geometry of Spec Z[P ]. For a face F ⊂ P , there is a closed embedding

VF ∶= Spec Z[F ] ⊂ Spec Z[P ]

defined by zp ↦ 0 for p ∉ F . If F ⊂ P is a facet, then VF is called a toric divisor, and the
union of all toric divisors is denoted by DP . For a face F ⊂ P , we also have the localization
PF of P in F , which equals the submonoid in P gp generated by P and −F . It gives an open
embedding

UF ∶= Spec Z[PF ] ⊂ Spec Z[P ]

via the inclusion P ⊂ PF in P gp. The two constructions are related by the set-theoretic
formula

Spec Z[P ] ∖UF = ⋃
F /⊆K

VK ,

where the union is over faces K such that F /⊆K.

3.1 Definition and Basic Properties

Definition 3.2. An elementary (log) toroidal datum (Q ⊂ P,F) (ETD for short) consists
of a saturated injection Q→ P of sharp toric monoids and a set F of facets of P containing
all facets that do not contain Q. Set

Fmin ∶= {F ⊂ P a facet ∣Q /⊂ F}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

vertical facets

,

so Fmin ⊂ F ⊂ Fmax, where Fmax is the set of all facets.
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FWX

FWY

FTX

FTY

(0,0,1)-axis

(0,1,0)-axis

(1,0,0)-axis

T -ray X-ray

Y -ray W -ray

Figure 3.1: We see the four facets of the monoid P in Example 3.6. We have the two
faces FTX = ⟨T,X⟩, FTY = ⟨T,Y ⟩ containing Q in blue, and the two maximal essential
faces FWX = ⟨X,W ⟩, FWY = ⟨Y,W ⟩ in orange. The elements of the facets are the
lattice points on the intersection of the lines of the grid. We also see E = FWX ∪ FWY

in orange. This picture is also contained in my Master Thesis.

Remark 3.3. The homomorphism Q → P being saturated is equivalent to P being a free
Q-set whose canonical basis is a union of faces of P , cf. [67, I, Cor. 4.6.11, Thm. 4.8.14,
Cor. 1.4.3]. Below, we denote the union of the faces giving the basis by E.

We interpret an ETD (Q ⊂ P,F) geometrically as the morphism

f ∶ Spec Z[P ] → Spec Z[Q]

of schemes. We have

f−1(DQ) = ⋃
F ∈Fmin

VF ⊂ Spec Z[P ],

whereas for a facet F ∉ Fmin the composition VF ⊂ Spec Z[P ] → Spec Z[Q] is flat and
surjective. Thus we call the divisors VF vertical if F ∈ Fmin, and we call them horizontal if
F ∉ Fmin. Endowing Spec Z[Q] with the divisorial log structure from DQ and Spec Z[P ]
with the divisorial log structure from ⋃F ∈F VF , we obtain a log morphism f ∶ AP,F → AQ,
which we call an elementary log toroidal family. We work here with Zariski log structures,
which however coincide with the direct image of the corresponding étale log structures by
[67, III, Prop. 1.6.5].

Remark 3.4. We denote the (reduced) union of horizontal divisors in F by

Dh
F = ⋃

F ∈F∖Fmin

VF ⊂ Spec Z[P ] .

We will see below in Lemma 3.21 that this gives indeed the horizontal locus (in the sense of
Construction 2.19) of f ∶ AP,F → AQ on the log smooth locus UP /Q of f . Besides, note that

Dh
F is defined by the ideal ⋂F ∈F∖Fmin

Z[P ∖ F ].

Example 3.5. Let P be a sharp toric monoid. Then (0 ⊂ P,Fmax) is an ETD. Its elementary
log toroidal family is the affine toric variety AP with its standard log structure given by the
full toric boundary.
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Example 3.6. Consider the map θ ∶ N→ P of Example 1.4 and let

F = {⟨X,W ⟩, ⟨Y,W ⟩}

where ⟨⋅⟩ denotes the generated face. Then F equals Fmin and corresponds to the orange
faces in Figure 3.1. We obtain an ETD (Q ⊂ P,F) whose geometric realization is the family
f ∶Xst → A1 with the divisorial log structure defined by t = 0 on source and target.

Example 3.7. If (Q ⊂ P,F) is an ETD and r ≥ 0, then we obtain another ETD

(Q × {0} ⊂ P ×Nr,F ′),

where F ′ = {F × Nr ∣F ∈ F}. The canonical morphism AP×Nr,F ′ → AP,F is smooth (on
underlying schemes) and strict on the log smooth locus UP /Q ×Ar (defined below).

Following Remark 3.3 above, we denote the union of faces of P that gives the generating
set of the free Q-action by E. We call a face F of P contained in E an essential face. Every
p ∈ P has a unique decomposition p = e + q with e ∈ E, q ∈ Q, hence

E ×Q→ P, (e, q) ↦ e + q, (4)

is bijective ([67, I, Thm. 4.8.14], cf. [49, Lemma 1.1]). Furthermore, E = P ∖ (Q+ +P ) where
Q+ = Q ∖ 0 is the maximal ideal. Moreover, projecting E to P gp/Qgp is injective and its
image P̄ ⊂ P gp/Qgp is a monoid since it is also the image of P . Note that P̄ gp = P gp/Qgp.
A choice of splitting P gp ≅ P̄ gp ⊕ Qgp yields a unique map of sets ϕ ∶ P̄ → Qgp so that
id × ϕ ∶ P̄ → P̄ ⊕Qgp is a section of the projection P → P̄ with the property that its image
is E, so

P = {(p̄, q) ∈ P̄ ⊕Qgp ∣ ∃q̃ ∈ Q ∶ q = ϕ(p̄) + q̃}. (5)

Lemma 3.8. The morphism f ∶ Spec Z[P ] → Spec Z[Q] induced by the injection Q ⊂ P of
monoids is a Cohen–Macaulay morphism of relative dimension d = rk(P gp/Qgp).

Proof. Since P is free as a Q-set (generated by E), Spec Z[P ] is flat over Spec Z[Q]. By
[35, Cor. 6.3.5] the total space of a faithfully flat morphism of Noetherian schemes is Cohen–
Macaulay if and only if the base and all fibers are. By Hoechster’s theorem (see [42]) the
fibers of Spec Z[P ] → Spec Z are Cohen–Macaulay, hence Spec Z[P ] and Spec Z[Q] are
Cohen–Macaulay. Now flatness of f implies that it is Cohen–Macaulay.

The composition

AP = AP,Fmax → AP,F
fÐ→ AQ

is saturated since Q → P is saturated. Because AP → AP,F is given by embedding one
log structure as a sheaf of faces into another, it is exact, so by [67, I, Prop. 4.8.5(2)], the
morphism f is saturated.

Remark 3.9. Indeed, AP → AQ is integral resp. saturated if and only if Q → P is. This
follows from the fact that the ghost stalks of AP ,AQ are quotients of P,Q by faces.

We next want to define an open set U = UP /Q in the domain of f that satisfies (CC).
Below, f will turn out to be log smooth on U . We will actually define its complement, and
for this we need a good understanding of the faces of P .

Lemma 3.10. Let F ⊆ P be a face. Set F̄ ∶= F ∩E, Q′ ∶= Q ∩ F , then

F = F̄ +Q′ ∶= {f̄ + q′∣f̄ ∈ F̄ , q′ ∈ Q′}.

Since E is a union of faces of P , so is F̄ . Note also that Q′ is a face of Q.

Proof. By the decomposition (4), any element in F has the form f̄ + q with f̄ ∈ E, q ∈ Q.
Since F is a face, f̄ , q are both in F , hence F ⊆ F̄ +Q′. The reverse inclusion is clear.
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Consider the set of bad faces of P defined as

B = {F̄ +Q′ ∣ F̄ is a union of essential faces of rank at most d − 2

Q′ is a face of Q, F̄ +Q′ is a face of P
} .

As explained in Remark 3.1 there is a 1-1 correspondence between faces F ⊂ P and torus
orbit closures VF ⊂ Spec Z[P ]. Similarly, for Q′ a face of Q, we have a torus orbit closure
VQ′ ⊂ Spec Z[Q].

Lemma 3.11. Given F̄ +Q′ ∈ B, we find that VF̄+Q′ is flat over VQ′ ⊂ Spec Z[Q]. Further-
more, if X is a fiber of f , then codim(X ∩ VF̄+Q′ ,X) ≥ 2.

Proof. Since F̄ + Q′ is free as a Q′-set, Z[F̄ + Q′] is a free Z[Q′]-module, so the flatness
statement follows. The origin 0 given by the prime ideal (zq ∣q ∈ Q+) is contained in VQ′ ,
let X0 be the fiber over it. It suffices to check the codimension condition for this particular
fiber. But note that X0∩VF̄+Q′ = ⋃F⊂F̄ VF , where the union runs over faces F of P contained
in F̄ , and we have dimVF ≤ d − 2 by the assumption on F̄ .

Set

U ∶= UP /Q ∶= Spec Z[P ] ∖ ( ⋃
B∈B

VB) . (6)

As explained in Remark 3.1, for every face F ⊂ P , we have an open subset UF ⊂ Spec Z[P ].

Lemma 3.12. We find U = ⋃F UF where the union is over the essential faces F of rank
d − 1.

Proof. Since U is a union of torus orbits, it suffices to check that any torus orbit contained
in U is contained in some UF for F essential of rank d − 1. Every torus orbit is given by
OG ∶= Spec Z[Ggp] for G a face of P . Assume OG ⊆ U . We use Lemma 3.10 to write
G = Ḡ +Q′. If rk Ḡ ≤ d − 2, then G ∈ B, so OG /⊂ U . Hence, dim Ḡ ≥ d − 1 and Ḡ contains
some essential face F of rank d−1. Then F is also contained in G, and thus OG is contained
in UF . Conversely, since OF is not in any VB , the assertion follows.

Lemma 3.13 (Theorem 3.5 in [50] or Theorem 4.1 in [48]). If F = Fmax, then f is log
smooth.

Proposition 3.14. The map f ∶ AP,F → AQ is a generically log smooth family when we use
U = UP /Q as the specified dense open of log smoothness.

Proof. The assertion is clear if d = 0—which is equivalent to P = Q—, so assume d > 0.
Given Lemma 3.8 and the saturatedness, it remains to verify that U satisfies (CC) and
that f is log smooth on U . Note that Lemma 3.11 implies that U satisfies (CC) since the
complement of U is the union of closed sets each of which has codimension at least two in
each fiber.

To see that f is log smooth on U , by Lemma 3.12, it suffices to check that f is log smooth
on UF for F essential of rank d − 1. Let F be such a face. Set P̄F ∶= PF /F gp and note that
the projection of Q to P̄F is injective because F gp ∩ Q = {0}. There is an isomorphism
PF ≅ F gp × P̄F commuting with the injection of Q that is {0} ×Q on the right.

The log structure on UF is a divisorial log structure given by a set of divisors each of
which pulls back from Spec Z[P̄F ], so we may consider the corresponding divisorial log
structure on Spec Z[P̄F ] to upgrade this to a log scheme ŪF . We have a factorization
UF → ŪF → AQ with the first map a smooth projection from a product, that is therefore
strict, hence log smooth. It thus suffices to show that ŪF → AQ is log smooth. Note that
ŪF → AQ is the log morphism of an ETD with d = 1. The following lemma finishes the
proof.

Lemma 3.15. Assume that f ∶ AP,F → AQ has one-dimensional fibers, i.e., d = 1. Then f
is log smooth.
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Proof. We are done by Lemma 3.13 if F = Fmax, and this always holds if Q meets the interior
of P . So assume Q is contained in a proper face of P , then by Lemma 3.10 it is in fact a
facet of P , and then P̄ = N, and consequently P = N ×Q. A facet of P that is not Q is in
Fmin = {N × F ∣F is a facet of Q}. Hence F ⊊ Fmax implies F = Fmin, and thus f is strict.
Since f is smooth, we find that f is log smooth.

Remark 3.16. The third situation of Figure 3.2 below is an example of this situation.

Corollary 3.17. It is possible to find open subsets U1 and U2 so that UP /Q = U1 ∪ U2 and
AP ∣U1 = AP,F ∣U1 and f ∶ U2 ⊂ AP,F → AQ is strict and smooth.

Proof. Let E1 be the set of essential faces of rank d − 1 such that, when applying the proof
of Lemma 3.15 to ŪF → AQ from the proof of the proposition, we are in the case F = Fmax,
and let E2 be the set of faces where we are in case F = Fmin. Then for F ∈ E1, we have
AP ∣UF = AP,F ∣UF , and for F ∈ E2, the morphism UF → AQ is strict and smooth. Now we
define U1 = ⋃F ∈E1

UF and U2 = ⋃F ∈E2
UF .

Remark 3.18. If F ⊂ P is a face, we can easily determine whether AP ∣UF = AP,F ∣UF or not:
Equality holds if and only if for every facet H ⊂ P with F ⊂H, we have H ∈ F . Indeed, the
facets with F ⊂ H correspond to the toric divisors intersecting UF . Moreover, we need to
test only facets with Q ⊂ H, too. In case F is an essential face of rank d − 1, the generated
face ⟨F,Q⟩ is at least a facet by a dimension argument, so we need to test at most one facet:
Thus AP ∣UF = AP,F ∣UF for ⟨F,Q⟩ = P or ⟨F,Q⟩ ∈ F , and UF → AQ is strict and smooth
otherwise.

Remark 3.19. Every elementary log toroidal family f ∶ AP,F → AQ is generically strict, by
which we mean that there is an open Ustr ⊂ U , dense in every fiber, on which f is strict.
Indeed, for an essential face F of rank d, i.e., a maximal essential face, we have ⟨F,Q⟩ = P ,
so AP,F ∣UF = AP ∣UF . Moreover, the map UF → AQ is the projection from the product
AQ ×AP gp

F
, so it is strict and smooth. Using Remark 3.1 and the proof of Lemma 3.11, we

find that the complement of ⋃F ∈E UF has dimension ≤ d − 1 in every fiber where the union
is over the essential faces of rank d.

Remark 3.20. Let R be a regular ring. Then base change along Spec R → Spec Z gives a
generically log smooth family AP,F ×R → AQ ×R. Since R is regular, AQ ×R is log regular
and hence carries a compactifying log structure by [51, Thm. 11.6]. We see that it is the
divisorial log structure induced by DQ ×R. Similarly, UP /Q ×R is log regular, so it carries
the divisorial log structure induced by ⋃F ∈F Spec R[F ]. This means that the construction
of f ∶ AP,F → AQ can be carried out with any regular domain R instead of Z, yielding a
generically log smooth family AP,F ×R → AQ ×R. We do not know (and do not care) if the
two log structures (from base change and from the direct divisor construction) also coincide
outside UP /Q × R. This holds in the relatively log smooth case studied in Section 5 since
both the base change to R and the log structure defined by divisors over R are relatively
coherent with the same relative chart.

The Horizontal Locus

We use the decomposition U = U1 ∪ U2 of Corollary 3.17 to determine the horizontal locus
HP,F ⊂ U of f ∶ U → S in the sense of Construction 2.19.

Lemma 3.21. The horizontal locus HP,F ⊂ UP /Q is

HP,F = UP /Q ∩ ⋃
F ∈F∖Fmin

Spec Z[F ] = UP /Q ∩Dh
F .

Proof. Any horizontal prime p ⊂ P is of the form p = P ∖ F for a facet F ⊂ P with Q ⊂ F
(and vice versa), so for F = Fmax, Tsuji’s result [74, Cor. 2.6] gives that H ∶= HP,Fmax is
defined by the ideal ⋂F ∈Fmax∖Fmin

Z[P ∖ F ]. More generally, we have HP,F ∩ U1 = H ∩ U1

and HP,F ∩ U2 = ∅ (because U2 → AQ is strict, hence vertical) as an equality of defining
ideals. Since also Dh

F ∩U1 = U1 ∩H and Dh
F ∩U2 = ∅, the claim follows.
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Remark 3.22. The morphism AP → AQ is vertical if and only if Q→ P is vertical. Thus for
F = Fmax, the map f ∶ AP,F → AQ is vertical if and only if Q is not contained in any proper
face. Furthermore, the morphism AP → AQ is vertical on UG for an essential face G of rank
d − 1 if and only if ⟨G,Q⟩ = P . Thus in view of Remark 3.18, the family f ∶ AP,F → AQ is
vertical (on UP /Q) if and only if for all essential faces G of rank d − 1, we have ⟨G,Q⟩ ∉ F .
In particular, for F = Fmin, the family f ∶ AP,F → AQ is vertical. This is of course what
we expect from a notion of verticality since AP,Fmin

has the divisorial log structure given
by f−1(DQ). Conversely, if f ∶ AP,F → AQ is vertical on UP /Q, then F = Fmin. Indeed,
if H ∈ F ∖ Fmin, then H ∩E = ⋃iGi decomposes into essential faces Gi of rank d − 1, and
⟨Gi,Q⟩ =H for each of them.

The Base Change of Elementary Log Toroidal Families

If (Q ⊂ P,F) is an ETD and β ∶ Q→ Q′ a homomorphism to a sharp toric monoid, then the
fiber product

g ∶ AP,F ×AQ AQ′ → AQ′

is a generically log smooth family. If it is the elementary log toroidal family of some ETD
(Q′ ⊂ P ′,F ′), then P ′ = Q′ ⊕Q P is the pushout of monoids.

Example 3.23. For (Q → P ) = (N → N2, 1 ↦ (1,1)) and β ∶ N → 0, we have P ′ = Z. Thus,
in general, P ′ is not sharp.

Therefore, in general, g is not the elementary log toroidal family of any ETD. Never-
theless, we can get very closely: The pushout P ′ ∶= Q′ ⊕Q P is a fine and saturated monoid
since Q → P is saturated. In view of (5), writing ϕ′ ∶ P̄ → Qgp → Q′gp, we make an explicit
ansatz

P ′ = {(p̄, q′) ∈ P̄ ⊕Q′gp ∣ ∃q̃ ∈ Q′ ∶ q′ = ϕ′(p̄) + q̃}.

This ansatz has the universal property of the pushout. In particular, the monoid P ′ is toric,
and Q′ → P ′ is injective. We find a canonical basis E′ of P ′ as a Q′-set, which is in bijection
with E via the canonical map γ ∶ P → P ′. Moreover, mapping F ′ ↦ γ−1(F ′) is a bijection
between the facets F ′ ⊂ P ′ containing Q′ and the facets F ⊂ P containing Q. Indeed, via
projection both are in bijection with the facets of P̄ = im(P → P gp/Qgp). We define a set of
facets

F ′ ∶= {F ′ ⊂ P ′ a facet ∣ Q′ /⊂ F ′ or γ−1(F ′) ∈ F}

of P ′ and a divisor D′ = ⋃F ′∈F ′ Spec Z[F ′]. This gives rise to a log morphism which we
denote f ′ ∶ AP ′,F ′ → AQ′ by abuse of notation. In view of Lemma 3.12, we define an open
U ′ = ⋃UG′ ⊂ AP ′,F ′ , where the union is over the essential rank d − 1 faces G′ ⊂ E′. We
decompose

U ′ = U ′
1 ∪U ′

2,

where, in analogy with Corollary 3.17, U ′
1 = ⋃F ′ UF ′ is the union over those essential faces

F ′ of rank d−1 which have the property that, for every facet F ′ ⊂H ′, we have H ′ ∈ F ′, and
where U ′

2 is the union over the remaining faces.

Remark 3.24. We get a log morphism c ∶ AP ′,F ′ → AP,F . Indeed, for D = ⋃F ∈F Spec Z[F ]
and D′

vert = f ′−1(DQ′) the union of the vertical divisors, we get D′ = c−1(D) ∪D′
vert as an

equality of subsets, so c−1(D) ⊂D′.

Proposition 3.25. We have U ′ = c−1(U), and with these opens,

AP ′,F ′

cÐÐÐÐ→ AP,F
×××Ö
f ′

×××Ö
f

AQ′

bÐÐÐÐ→ AQ

is a Cartesian diagram of generically log smooth families. There is an ETD (Q′ ⊂ P ′′,F ′′)
and a strict open immersion k ∶ AP ′,F ′ ⊂ AP ′′,F ′′ compatible with the morphism to the base
such that U ′ = k−1(UP ′′/Q′).

34



Figure 3.2: Three examples of a saturated injection Q ⊂ P and the projection P̄ , the
outer two are log smooth, the middle one gives Example 2.10. This picture is also
included in [22].

Proof. We choose a splitting of P ′ → P ′/P ′∗ over Q′, which then induces an isomorphism
P ′ ≅ P ′/P ′∗ ⊕ P ′∗, and a submonoid Nr ⊂ P ′∗ such that (Nr)gp = P ′∗. Then the monoid
P ′′ ∶= P ′/P ′∗ ⊕Nr ⊂ P ′ and the collection

F ′′ ∶= {F ′/P ′∗ ⊕Nr ∣F ′ ∈ F ′}

of faces form an ETD (Q′ ⊂ P ′′,F ′′); the strict open immersion k is given by the localization
in the face L ∶= 0⊕Nr ⊂ P ′′. Intersection with P ′′ ⊂ P ′ induces a bijection between the facets
of P ′ and the facets of P ′′ containing L, under which F ′ corresponds to F ′′.

We find k−1(UP ′′/Q′) = U ′. Indeed, for an essential face G ⊂ E′′ of rank d− 1 with L ⊂ G,
the localization L−1G ⊂ E′ is an essential face of rank d − 1 in P ′, and every such face is
of this form. Now k−1(UG) = UL−1G, and for G with L /⊂ G, we can find an essential face
L ⊂ G̃ ⊂ E′′ of rank d − 1 with k−1(UG) ⊂ k−1(UG̃). Next, applying the criterion of Remark
3.18 to essential faces G ⊃ L, we find that AP ′,F ′ ∣U ′

1
= AP ′ ∣U ′

1
and that U ′

2 → AQ′ is strict
and smooth.

Turning to the morphism c, if F ′ is a rank d−1 essential face, then, in view of Lemma 3.10,
γ−1(F ′) = F̄ + ker(β) and F̄ is a union of rank d − 1 essential faces of P . If G is any one of
them, then c−1(UG) = UF ′ . We say G is of first type, and we write Ũ = ⋃GUG, where the
union is over faces of first type. In the other event, if F is an essential face of P of rank d−1
and γ(F ) ⊂ E′ is not contained in a rank d − 1 essential face of P ′, then it hits the interior
of a rank d essential face G′ of P ′, and then for any facet F ′ of G′, c−1(UF ) ⊂ UF ′ . This
shows U ′ = c−1(Ũ) = c−1(U). Looking only at faces of first type, we decompose Ũ = Ũ1 ∪ Ũ2

according to the criterion of Remark 3.18 and find U ′
1 = c−1(Ũ1) and U ′

2 = c−1(Ũ2). Because
the diagram is Cartesian in the category of log schemes both on Ũ1 and on Ũ2, it is a
Cartesian diagram of generically log smooth families.

Remark 3.26. We have c−1(Dh
F) = k−1(Dh

F ′′) as closed subschemes. After denoting the
horizontal locus of f ′ ∶ AP ′,F ′ → AQ′ by H ′, this means H ′ = AQ′ ×AQ HP,F .

3.2 Examples

Figure 3.2 shows some examples of saturated injections Q ⊂ P . Below, we give some more
concrete examples of ETDs.

Example 3.27. The saturated injection N→ N2,1↦ (1,1), satisfies Fmin = Fmax and gives
an ETD (N ⊂ N2,F). Geometrically, this is

f ∶ Spec Z[x, y] → Spec Z[t], f∗t = xy
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with the divisorial log structure defined by {t = 0} respective {xy = 0}. Applying the
construction from Example 3.7 with r = 1 to it, we obtain a log smooth and saturated
morphism

f ∶ (A3,{xy = 0}) → (A1,{0}),

which is associated to the ETD with homomorphism N→ N3,1↦ (1,1,0), and set of facets
Fmin = {N × 0 ×N,0 ×N ×N}.

Non-Example 3.28. The map N→ Nr,1↦ (a1, ..., ar), is saturated if and only if 0 ≤ ai ≤ 1
for all i. Thus, if ai ≥ 2 for some i, then (N ⊂ Nr,F) is not an ETD. Indeed, e.g.

f ∶ A2 → A1, (x, y) ↦ x2y,

has a non-reduced fiber f−1(0) ≅ Spec k[x, y]/(x2y), which is not possible for an elementary
log toroidal family.

Example 3.29. Generalizing Example 3.6, the family {tw − z1 ⋅ ... ⋅ zk = 0} → A1
t has

the structure of an elementary log toroidal family. Let k ≥ 1 and let P kpnc ⊂ Nk+1 be the
submonoid spanned by

T = e0, W = (k − 1) ⋅ e0 + e1 + ... + ek, Zi = e0 + ei (1 ≤ i ≤ k),

where e0, ..., ek is the standard basis of Nk+1. Since

P kpnc =
⎧⎪⎪⎨⎪⎪⎩
p ∈ Zk+1 ∣ ∀1 ≤ i ≤ k ∶ ⟨ei, p⟩ ≥ 0, ⟨e0 − ∑

j/=0,i

ej , p⟩ ≥ 0

⎫⎪⎪⎬⎪⎪⎭
,

it is a sharp toric monoid. The homomorphism θ ∶ N → P kpnc,1 ↦ T, is locally exact by the

exactness criterion [67, I, Prop. 2.1.16(5)]. Because the complement of the ideal J = T +P kpnc
is

Ekpnc =
k

⋃
i=1

⎧⎪⎪⎨⎪⎪⎩
p ∈ P kpnc ∣ ⟨e0 − ∑

j/=0,i

ej , p⟩ = 0

⎫⎪⎪⎬⎪⎪⎭
=∶

k

⋃
i=1

F veri ,

it is a radical ideal, and θ ∶ N → P kpnc is saturated by [67, I, Thm. 4.8.14(5)]. Every facet

of P kpnc is h−1(0) for a function h ∶ P kpnc → N that evaluates 0 on at least k elements of

the set {T,W,Z1, ..., Zk}, so the facets of P kpnc are F veri defined by the formula above and

Fhori = {p ∈ P kpnc ∣ ⟨ei, p⟩ = 0}. Thus, setting

Fmin ∶= {F ver1 , ..., F verk },

we obtain an ETD (N ⊂ P kpnc,Fmin). Geometrically, we have a log morphism

Xk
pnc = Spec Z[t,w, z1, ..., zk]/(tw − z1 ⋅ ... ⋅ zk) → A1,

where both schemes carry the divisorial log structure defined by {t = 0}. The subscript ’pnc’
is short for ’pencil of normal crossing divisors’, a name by which we emphasize the role of
P kpnc in showing that certain pencils of normal crossing divisors are log toroidal families, see
Example 4.30 below.

Example 3.30 (ETDs of Gross–Siebert type). As explained in the Introduction, the local
models that are used by Gross–Siebert to control the singularities of toric log Calabi–Yau
spaces have been a major inspiration for elementary log toroidal families. In fact, the
constructions in [31, Constr. 2.1] of the local models yield ETDs. For a lattice M ′ with dual
lattice N ′ and a convex lattice polytope τ ⊂M ′

R with dim τ = dim M ′
R, we get a cone

C ′(τ) ∶= {(rm, r) ∣ r ≥ 0,m ∈ τ} ⊂M ′
R ⊕R

and a (dual) sharp toric monoid P ′ ∶= C ′(τ)∨∩(N ′⊕Z). The projection M ′⊕Z→ Z induces
an element ρ′ ∈ P ′, which gives a saturated injection N → P ′,1 → ρ′, and thus for q ≥ 0 a
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saturated injection N → P ′ ⊕ Nq. We turn it into an ETD by choosing F = Fmin. With
∆0 ∶= τ and q (Newton) polytopes ∆1, ...,∆q ⊂M ′

R, we define functions

ψ̌i(n) ∶= −inf{⟨n,m⟩ ∣ m ∈ ∆i}

on N ′ for 0 ≤ i ≤ q. They give a sharp toric monoid

P ∶= {n +
q

∑
i=0

aie
∗
i ∣ ∀0 ≤ i ≤ q ∶ ai ≥ ψ̌i(n)} ⊂ N ′ ⊕Zq+1,

where e∗0, ..., e
∗
q ∈ Zq+1 is the standard basis, and the saturated injection is N → P,1 ↦ e∗0.

We turn it into an ETD by choosing F = Fmin. If we set ∆1 = ... = ∆q = {0}, then
ψ̌1 = ... = ψ̌q = 0, and we recover P = P ′ ⊕ Nq from above. We say an ETD (N ⊂ P,Fmin)
that arises from this construction is of Gross–Siebert type. Indeed, all local models that are
relevant to [31] have this form. Setting

K ∶= ⟨
q

⋃
i=0

∆i × {ei}⟩ ⊂M ′
R ⊕Rq+1

the cone generated by the set, we have P =K∨ ∩ (N ′ ⊕Zq+1) and Spec Z[P ] is Gorenstein.

4 Log Toroidal Families

A log toroidal family f ∶ X → S is a generically log smooth family whose singularities in
z ∈ Z are controlled by elementary log toroidal families. Whereas in the context of the
Gross–Siebert program, the local models happen to control a log singularity that arises
from another construction—see [31, Thm. 2.6]—we turn this property into a definition.
This is analogous to the situation of toroidal varieties: A variety is toroidal if it is étale
locally isomorphic to a toric variety. As explained in the Introduction, controlling the local
structure of the singularities in z ∈ Z provides powerful tools for a log toroidal family that
we do not have for a generically log smooth family. Namely, to study the global cohomology
of W ●

X/S , it is insufficient to know only what happens on U ⊂ X. We will see this in the
forthcoming sections when we study e.g. differential forms and the Cartier isomorphism.

4.1 Definition and Basic Properties

We give our precise definition of a log toroidal family. It is slightly technical and intricate.
We start with the definition of a local model.

Definition 4.1 (Local Models). Let f ∶ X → S be a generically log smooth family. For a
geometric point s̄ ∈ S, a base chart at s̄ is a strict étale morphism (S̃, s̄) → (S, s̄) and a map
a ∶ S̃ → AQ given by a chart Q→MS̃ of the log structure which is neat at s̄. For a geometric
point x̄ ∈X and a base chart at f(x̄), a local model at x̄ is a diagram

(V, g−1(U))
g

tt
h
**

��
(X,U)

f

��

(L,UL)

tt
c
**

S̃

tt
a

**

(AP,F , UP /Q)

tt
S AQ,

(LM)

where g ∶ V →X is an étale neighborhood of x̄ (of underlying schemes) and the bottom right
diagonal map is given by an ETD (Q ⊂ P,F). The solid arrows are morphisms of schemes
and log morphisms on the specified opens, whereas h ∶ V → L is an étale morphism only of
underlying schemes. The bottom right diamond is Cartesian, in particular UL = c−1(UP /Q).
Moreover, we have an open Ũ ⊂ V satisfying (CC), such that Ũ ⊂ g−1(U)∩h−1(UL) and there
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is an isomorphism g∗MX ≅ h∗ML of the two log structures on Ũ such that the composed
maps to S̃ coincide. Finally, we have c ○ h(x̄) = 0 ∈ AP,F .

For a base chart S ← S̃ → AQ and a Zariski open W ⊂ X, a local model is a diagram
(LM) as above with g(V ) =W (and no requirement on some x̄ ∈X).

Definition 4.2 (Log Toroidal). A log toroidal family is a generically log smooth family
f ∶ X → S such that there is a Zariski cover X = ⋃iWi and local models for the Wi (over
various base charts S ← S̃i → AQi).

If S ≅ Spec (Q → B), then S̃ = S and a ∶ S → AQ given by the chart Q → B is a base
chart. We say f ∶X → S is log toroidal with respect to a ∶ S → AQ, if we can choose the local
models over this base chart.

Example 4.3. Every elementary log toroidal family f ∶ AP,F → AQ is log toroidal.

Example 4.4. Toric varieties X are log toroidal families over a trivial base. Indeed, let X
be a toric variety over S = Spec Z and D ⊂ X a reduced toric divisor. Let X be the log
space X with divisorial log structure defined by D and let S have the trivial log structure,
then X → S is a log toroidal family since it is locally in the Zariski topology Example 4.3
with Q = 0.

We give much more examples below in Section 4.4. We recommend to browse through
the examples before reading on. In particular, we will prove that saturated log smooth
morphisms are log toroidal families. This is essentially a consequence of Kato’s toroidal
characterization of log smoothness.

Remark 4.5. We use Ũ since we do not care about the precise chosen log smooth locus
U ⊂ X. In this way, e.g. f ∶ AP → AQ with U = AP instead of U = UP /Q can be considered
a log toroidal family. However, this definition means we cannot easily understand the local
structure of constructions that do depend on the precise U just by considerations in the
local models. This applies in particular to the horizontal locus HX/S ⊂ U as well as to the
deformation theory of log toroidal families, which we do not consider in this thesis.

Remark 4.6. There are three natural options to define a log toroidal family: First, we
could require a local model at every point x̄ ∈ X, i.e., we require (c ○ h)(x̄) = 0 ∈ AP,F .
Secondly, we could require finitely many points x̄i ∈ X and local models at them such that
X = ⋃i gi(Vi). For the definition above we decided to use the third option employing local
models for Zariski opens W ⊂ X. This gives us (compared to the second option) more
flexibility since we do not need to give a point mapping to 0 ∈ AP,F . With our definition,
the family f ∶ AP,F ∖ {0} → AQ is obviously log toroidal, and this flexibility is also crucial
for the proof of Proposition 4.7 below. However, we prove in Proposition 4.15 that, over an
algebraically closed base field k, there is no difference between the three options. I.e., in this
situation, we actually have local models controlling the local geometry around every point
(which is the first option).

Base Change

We study under which conditions the notion of log toroidal family is stable under base
change. If f ∶ X → S is a log toroidal family, and b ∶ S′ → S is strict, then the fiber product
f ′ ∶X ′ → S′ of generically log smooth families is easily seen to be a log toroidal family: The
map T̃ = T ×S S̃ → AQ is a base chart, and the local models carry over to f ′ ∶ X ′ → S′. If
b ∶ S′ → S is not strict, the situation is more involved:

Proposition 4.7. Let f ∶ X → S be a log toroidal family, and let b ∶ S′ → S be a morphism
from a Noetherian fs log scheme S′. Assume that for every geometric point s̄′ ∈ S′, the
order of the torsion subgroup of Mgp

S′/S,s̄′ is invertible in k(s̄′). Then the fiber product

f ′ ∶X ′ =X ×S S′ → S′ is a log toroidal family.

Proof. The family f ′ ∶X ′ → S′ is generically log smooth with U ′ = U ×S S′. For a geometric
point s̄′ ∈ S′, there is some base chart on S with s̄′ → S̃i, so we can find some étale
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neighborhood S̃′ → S′ of s̄′ fitting into a chart for S′ → S, i.e., into a commutative diagram

S̃′ //

��

S̃i

��
AQ′

// AQi ,

where S̃′ → AQ′ is an exact chart at s̄′. Because the order of the torsion subgroup ofMgp
S′/S,s̄′

is invertible in k(s̄′), we can assume that Q′ → MS̃′ is neat at s̄′ by [67, III, Thm. 1.2.7].
In particular, Q′ is a sharp toric monoid, and we obtain local models via base change along
AQ′ → AQi using Proposition 3.25.

Remark 4.8. The order of the torsion subgroup ofMgp
S′/S,s̄′ being invertible in k(s̄′) is a very

technical condition. We need it here to ensure the existence of a chart for S′ → S which is
neat—not only exact—at s̄′. We expect that a stronger version of Proposition 3.25 would
render the assumption superfluous. However, the condition is virtually always satisfied,
e.g. when S′ → S is strict or (more generally) saturated or if S/Q.

Generic Strictness

As we have seen in Remark 3.19, every elementary log toroidal family is generically strict.
This easily generalizes to log toroidal families and even generically log smooth families.

Lemma 4.9. Let f ∶ X → S be a log toroidal family. Then there is an open Ustr ⊂ U dense
in every fiber on which f is strict. The same holds for generically log smooth families.

Proof. In a local model (LM), denote the strict locus of Remark 3.19 by W ⊂ UP /Q, and

take the union over all g((c ○ h)−1(W ) ∩ Ũ) ⊂ X for all local models. For generically log
smooth families, note that the saturated log smooth morphism f ∶ U → S is a log toroidal
family by Example 4.25 below.

Corollary 4.10. Let f ∶ X → S be a generically log smooth family. Then the forgetful map
Θ1
X/S → Θ1

X/S forgetting the log part of the derivation is injective.

Proof. Since OX → j∗OUstr is injective, this follows from [31, Prop. 1.3].

Corollary 4.11. Let f ∶ X → S be a generically log smooth family of relative dimension d.
Then rk Ω1

U/S = d.

Remark 4.12. In general, if f ∶ X → S is a flat finite type morphism of Noetherian schemes
with reduced fibers and j ∶ U → X is an open subset which is dense in every fiber, then
OX → j∗OU is injective. For lack of reference, we briefly indicate the proof: It suffices
to assume S = Spec R and X = Spec A affine. First, let R = k be a field. Then prime
avoidance implies that there is a non-zero divisor a ∈ A such that Xa ∶= {a /= 0} ⊂ U is a
principal dense open subset. In particular, the localization map A → Aa is injective; hence,
the restriction OX → j∗OU is injective as well. Next, let R be a local Artinian ring with
residue field R/m = k. We find a non-zero divisor a0 ∈ A/mA, which defines a principal dense
open (X ×R k)a0 ⊂ U ×R k, and lift it to a ∈ A. This a is a non-zero divisor as well; namely,
the base change from R to k of the multiplication map µa ∶ A → A is injective and has
flat cokernel, so this holds for µA as well. Thus, the localization map A → Aa is injective.
From here, we easily generalize to complete local Noetherian, local Noetherian, and finally
arbitrary Noetherian bases S = Spec R.

Vertical Families

We study under which conditions a log toroidal family is vertical (in the sense of [67]).
Verticality is closely related to the condition F = Fmin. For a saturated log smooth morphism
f ∶ X → S and a point x̄ ∈ X at which f is not vertical, consider a local model at x̄ as in
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Example 4.25 with ETD (Q ⊂ P,F). Since f is not vertical at x̄, we have F /= Fmin, so
HP,F ⊂ AP,F is a non-empty divisor flat over AQ. In particular, the horizontal locus

HV /S̃ = h−1(c−1(HP,F)) ⊂ V

is pure of codimension 1 in every fiber and non-empty, and the same holds for HX/S ⊂ X.
If U ⊂ X satisfies (CC), then f ∶ U → S is not vertical, for HX/S ∩ U /= ∅. This shows that
a generically log smooth family f ∶ X → S is vertical (on U) if and only if it is vertical on
some Ũ ⊂ U satisfying (CC).

Lemma 4.13. A log toroidal family f ∶ X → S is vertical if there is a Zariski covering
X = ⋃iWi and a local model for every Wi with F = Fmin. Conversely, if f ∶ X → S is
vertical, then for every local model at some x̄ ∈ X (i.e., such that 0 ∈ Im(c ○ h)), we have
F = Fmin.

Proof. For an ETD (Q ⊂ P,Fmin), the map AP,Fmin
→ AQ is vertical on UP /Q, so if we

have such a local model for Wi, then f ∶ U → S is vertical on g(Ũ) ⊂Wi. Since their union
satisfies (CC), we find f ∶ U → S vertical. Conversely, for a local model at x̄ with F /= Fmin,
the horizontal locus HP,F is a non-empty divisor. In particular, we have h−1(c−1(HP,F)) a
non-empty divisor, contradicting HU/S = ∅ by f ∶ U → S being vertical.

Remark 4.14. A vertical log toroidal family can have local models not satisfying F = Fmin if
there is no point x̄ ∈ X mapping to 0 ∈ AP,F . Consider e.g. (0 ⊂ N,{N}) and X = AN ∖ {0},
which is log-trivial—hence vertical—over the log-trivial point.

4.2 Local Models at Points

As we have seen in Remark 4.6, a priori there is a difference between local models for open
subsets W ⊂X and local models at points x̄. The first one is easier to check, the second one
is more convenient to study the local structure of log toroidal families. In this section, we
show that, given a log toroidal family f ∶ X → S over an algebraically closed field k (which
has local models for opens Wi ⊂ X by definition), there exist local models at points x̄ ∈ X.
This is important for the relative degeneration in Theorem 8.2 since it depends on a local
computation that we carry out on 0 ∈ AP,F of a local model. The key ideas of the result
seem to be standard. In particular, the situation is similar for toroidal varieties—Danilov
defines them in [14] via a local isomorphism to 0 ∈ Spec C[P ], and [14, Rem. 13.2] just says
that toric varieties are toroidal.

Proposition 4.15. Let k be an algebraically closed field, let S/k, let f ∶ X → S be a log
toroidal family, and let x̄ ∈ X be a k-valued point. Then there is a base chart S ← S̃ → AQ
at f(x̄) and a local model at x̄.

Proof. The claim follows from a local construction: Let (Q ⊂ P,F) be an ETD, and let
x̄ ∈ AP,F × k be a k-valued point with defining ideal p ⊂ k[P ]. We construct a diagram
starting on the left with the base change along Spec k → Spec Z of f ∶ AP,F → AQ:

AP,F × k

f

��

UF × k
γ //? _oo

��
Aσ

))
(S)

AP̄ ,F̄ ×Grm × k �
� i //

��

φ

%%

AP̄×Nr,F̄×Nr × k

��
qqAQ × k UG × k? _oo β // AQ̄ × k AP̄ ,F̄ × koo

For the face F ∶= {p ∈ P ∣ zp ∉ p}, we find x̄ ∈ UF × k = Spec k[PF ] ⊂ AP,F × k, and setting
G ∶= F ∩ Q ⊂ Q, we have f(UF × k) ⊂ UG × k = Spec k[QG]. The natural projections
QG → Q̄ ∶= QG/Ggp and PF → P̄ ∶= PF /F gp admit splittings σ′ ∶ Q̄ → QG and σ ∶ P̄ → PF
which fit into a commutative diagram with the maps QG → PF and Q̄ → P̄ . Indeed, the
quotient P̄ gp/Q̄gp is torsion free, so P̄ gp ≅ Q̄gp ⊕ P̄ gp/Q̄gp. Thus we can choose a splitting
Q̄gp → QgpG and a compatible splitting P̄ gp → P gpF . Since QG → Q̄ and PF → P̄ are exact,
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we obtain σ′, σ by restriction. Since QG ≅ Ggp ⊕ Q̄, the map β ∶ UG → AQ̄ induced by
σ′ ∶ Q̄→ QG is strict and smooth. With

F̄ ∶= {K/F gp ∣ K ∈ F , F ⊂K},

we obtain an ETD (Q̄ ⊂ P̄ , F̄) and thus a morphism AP̄ ,F̄×k → AQ̄×k. Because PF ≅ F gp⊕P̄ ,
the map Aσ ∶ UF → AP̄ ,F̄ is smooth (on underlying schemes)—indeed, it is the projection
UF ≅ Spec Z[P̄ ] × Spec Z[F gp] → Spec Z[P̄ ]. Moreover, since

A−1
σ (D̄) ∶= A−1

σ ( ⋃
K∈F̄

Spec Z[K]) = UF ∩ ( ⋃
K∈F

Spec Z[K]) ,

the map Aσ is a log morphism. It is strict on A−1
σ (UP̄ /Q̄) since there, the inverse image

log structure from AP̄ ,F̄ is log regular, hence divisorial, and they have the same log-trivial
locus. Choosing a splitting F gp/Ggp → F gp of the projection, we obtain a factorization

UF
γÐ→ AP̄ ,F̄ ×Grm

φÐ→ AP̄ ,F̄

with r = rk(F gp/Ggp), where we endow AP̄ ,F̄ ×Grm with the divisorial log structure defined

by φ−1(D̄). With the opens φ−1(UP̄ /Q̄) and A−1
σ (UP̄ /Q̄), the square (S) in the middle of the

above diagram becomes a Cartesian square of generically log smooth families.
By definition of F , we have Aσ(x̄) = 0 ∈ AP̄ ,F̄ . Let ȳ ∈ Grm × k ⊂ Ar × k be the image of

γ(x̄) ∈ AP̄ ,F̄ ×Grm × k under the projection to Grm. Because k is algebraically closed, there
is a (unique) translation morphism λ ∶ Ar × k → Ar × k with λ(ȳ) = 0, which gives rise to
an open immersion i ∶ AP̄ ,F̄ ×Grm × k → AP̄ ,F̄ ×Ar × k with i(γ(x̄)) = 0. The latter space is
AP̄×Nr,F̄×Nr × k, where we use the construction of Example 3.7.

Corollary 4.16. Let k be an algebraically closed field, let A be an Artinian kJQK-algebra,
and let S = Spec (Q → A). Let f ∶ X → S be a log toroidal family with respect to S → AQ,
and let x̄ ∈X be a k-valued point. Then there is a local model at x̄ with base chart S → AQ.

Proof. We keep the notation from the above proof. Since S has only one (set-theoretic)
point, we find G = 0, so Q̄ = Q. Thus the construction does not change the base chart.

Remark 4.17. For a log toroidal family f ∶X → S with respect to S → AQ, where S is not a
punctual scheme, there is no analog of the Corollary—some points might not map to 0 ∈ AQ,
so we need to change the base chart.

4.3 Spreading Out

To spread out a Q-variety X means to find a finitely generated subring B ⊂ Q and a B-
scheme XB such that X ≅ XB ×B Q. The scheme XB can be considered an integral model
of X. This allows to reduce problems about X to positive characteristic; it is proven for
schemes in EGA, see [36]. For log smooth morphisms, spreading out was done by Tsuji in
[74]. Here we prove the analogous result for log toroidal families, another step toward the
Degeneration Theorem 8.1.

We fix a sharp toric monoid Q, a field k ⊃ Q and set S = Spec (Q → k) where the map
Q→ k is q ↦ 0 except 0↦ 1. We choose distinct subrings Bλ ⊆ k for all λ in some index set
Λ so that any two Bλ1 ,Bλ2 are both contained in a third Bλ. We say λ1 ≤ λ2 if Bλ1 ⊆ Bλ2 .
Furthermore, we require limÐ→λBλ = k and that each Bλ is of finite type over Z. We get log

schemes Sλ = Spec (Q→ Bλ) each with a strict map S → Sλ, and in fact we have S = lim←Ðλ Sλ.

Proposition 4.18. Let f ∶ X → S be a log toroidal family of relative dimension d. Then
there is λ ∈ Λ and a log toroidal family fλ ∶ Xλ → Sλ so that f is obtained by base change
from fλ, i.e., there is a Cartesian square

X ÐÐÐÐ→ Xλ

f
×××Ö

×××Ö
fλ

S ÐÐÐÐ→ Sλ
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of generically log smooth families. If f is separated and/or proper, we can assume fλ to be
so, too.

Proof. By classical spreading out—see [36, Thm. 8.8.2 (ii)], [36, Thm. 8.10.5] and [36,
Thm. 11.2.6 (ii)]—we can find a λ ∈ Λ and a morphism fλ ∶ Xλ → Sλ that is finitely
presented and flat, and an isomorphism S ×Sλ Xλ ≅ X over S. If f ∶ X → S is separated
respective proper, we can choose fλ moreover separated respective proper. Using [36, Corol-
laire 12.1.7(iii)] and [36, Thm. 8.10.5], we can choose λ such that fλ is a Cohen–Macaulay
morphism. Since these decompose disjointly over the relative codimension, again by increas-
ing λ if needed, we may assume that fλ has relative dimension d.

We next spread out U such that Uλ ⊂Xλ satisfies (CC). We do this by spreading out its
complement Z. Indeed, by [5, 05M5, Lemma 31.16.1], we can increase λ so that every fiber
of Zλ → Sλ has dimension ≤ d − 2 and then define Uλ ∶=Xλ ∖Zλ.

Now a straightforward generalization of the method employed in [74, 4.11.1] yields that,
for appropriate λ, we can find a log structure on Uλ and upgrade fλ to a log morphism
such that Uλ is fs and fλ is log smooth and saturated. While Tsuji uses absolute charts to
construct the log structure, we choose relative charts APi → AQ with saturated injections
Q ⊂ Pi.

Finally—again by possibly increasing λ—we show that the family fλ ∶ Xλ → Sλ is log
toroidal. We fix a finite covering {Vi → X} with local models (Q ⊂ Pi,Fi) as in Definition
4.2, and for each of them, we construct a diagram

Vi
g��

//

h

��

Vi,λ

hλ

��

gλ||
X

f

��

pλ
// Xλ

fλ

��

Li
r

��

// Li,λ
rλ||

// APi,Fi

zz
S qλ

// Sλ aλ
// AQ

Namely, we first spread out Vi → S to Vi,λ → Sλ. Then Li,λ is defined by base change,
and we construct the étale morphisms of schemes gλ ∶ Vi,λ → Xλ and hλ ∶ Vi,λ → Li,λ also

by spreading out. We can assume that Xλ is covered by {Vi,λ → Xλ} and that Ũi ⊂ Vi
spreads out to an open Ũi,λ ⊂ Vi,λ satisfying (CC). We get two log structures (gλ)∗logMXλ

and (hλ)∗logMLi,λ on Ũi,λ, which we identify by [74, 4.11.3]. By the same Lemma, the two
morphisms (g ○ f)∗logMSλ → MŨi,λ

coming from fλ ○ gλ respective rλ ○ hλ coincide. Since

{Vi → X} is a finite covering, we can find λ that admits the above construction for all Vi
simultaneously.

Remark 4.19. The proof shows that, if f ∶ X → S is only a generically log smooth family,
then we can find a generically log smooth spread out. If the generically log smooth family
is vertical, then the spread out is vertical. Indeed, in this case the local models on U as
constructed in Example 4.25 are vertical. Similarly, if f ∶ X → S is relatively log smooth,
then we can find a relatively log smooth spread out.

4.4 Examples

We illustrate the scope where log toroidal families occur. This includes toroidal varieties
which are not log smooth as well as toroidal embeddings and the saturated log smooth
morphisms. Most interestingly, many degenerations are log toroidal families.

Toroidal Varieties

Toroidal varieties X and toroidal pairs (X,D) (see e.g. [14, §15] for a definition, cf. also the
Introduction) are log toroidal families over a trivial base. Indeed, fix a normal domain R,
and let X be a normal variety over Spec R and D ⊂ X a Weil divisor such that (X,D) is
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étale locally (over Spec R) isomorphic to a pair (Y,E), where Y is an affine toric variety
and E a toric divisor—not necessarily the entire toric boundary! Then X → Spec R is a
log toroidal family; here, X is X with the divisorial log structure given by D (in the étale
topology), and Spec R has the trivial log structure.

Example 4.20. A toroidal curve is smooth. Indeed, every toroidal curve is normal hence
smooth.

Example 4.21. Toroidal surfaces are given by sharp toric monoids of rank 2; the latter
are completely classified. By taking the dual of [13, Prop. 10.1.1], they are all given by
Cone(e1, de2 + ke1) ∩ Z2 for parameters d, k satisfying d > 0,0 ≤ k < d, and gcd(d, k) = 1,
where e1, e2 is the standard basis of Z2. All of them are cyclic quotient singularities. In
particular, every toroidal surface is an orbifold.

Taking k = d − 1, we obtain the du Val singularities of type Ak defined by

{xy − zk+1 = 0} ⊂ A3,

cf. [13, Ex. 10.1.5]. The du Val singularities of types Dk,E6,E7,E8 are not toroidal since
they are non-abelian quotient singularities.

Remark 4.22. Du Val singularities are precisely the ADE-singularities as given e.g. in the
list [28, p. 145]. They are isolated surface singularities, and they are precisely the simple
hypersurface singularities in dimension 2. Since surface singularities of types Dk,E6,E7,E8

are not toroidal, we can give explicit examples of non-toroidal surfaces immediately—the
surfaces {w2 + x3 + y4 = 0} and {w2 + x3 + y5 = 0} are not toroidal.

Example 4.23. In [65], Namikawa studies deformations of (complex) Calabi–Yau threefolds
X with terminal singularities. Such a threefoldX is a toroidal variety if and only if it has only
A1-rational double points as singularities. In particular, none of the Kleinian singularities
in [65, Def. 5.4] except A1 can appear if X is toroidal.

Proof. Since X is Cohen–Macaulay (because it is toroidal) and the canonical divisor KX

is Cartier, X is Gorenstein. Thus, by the classification of three-dimensional terminal toric
singularities ([13, Thm. 11.4.21]), every singularity is given by xy − tw = 0, hence an A1-
rational double point.

Remark 4.24. The cone defining the monoid from Example 3.6, i.e., the variety {xy−tw = 0},
is not simplicial, so a toroidal variety is not an orbifold at A1-rational double points. In
particular, there are toroidal threefolds which are not orbifolds.

Saturated Log Smooth Morphisms

Example 4.25. If f ∶X → S is a saturated log smooth morphism, it is a log toroidal family
with U = X. Indeed, there is a local model AP̃ ,F → AQ at every geometric point x̄ → X. It
is everywhere log smooth, not only on UP̃ /Q, and the map V → AP̃ ,F is everywhere strict.

Proof. Let S → AQ be a chart which is neat at f(x̄) (possibly after shrinking S). Then in
a neighborhood V of x̄, we obtain the diagram

V //

��

--
AP

��

AP×Nr,F ′

zz

oo

S // AQ

by [67, IV, Thm. 3.3.3], where V → AP is a chart which is neat at x̄. In particular, we have
a saturated injection Q → P of sharp toric monoids (injectivity follows from the fact that
integral local maps are exact and hence s-injective). The map AP×Nr,F ′ → AP obtained from
Example 3.7 applied to (Q ⊂ P,Fmax) is the map constructed in [67, IV, Thm. 3.3.3]. Since
V → AP×Nr,F ′ ×AQ S is strict étale, we have a local model with ETD (Q ⊂ P ×Nr,F ′).
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Remark 4.26. This is not a trivial consequence of Kato’s toroidal characterization of log
smoothness in [50, Thm. 3.5]. For, this yields a smooth map X → AP ×AQ S, but not an
étale map.

Example 4.27. Semistable degenerations are saturated log smooth morphisms, hence log
toroidal families.

Toroidal Embeddings

Let us work over an algebraically closed field k ⊃ Q. A toroidal embedding U ⊂ X, which
has been originally defined in [56], gives rise to log smooth and saturated log schemes over
Spec k by endowing X with the divisorial log structure defined by X∖U . As observed e.g. in
[2], the definition is equivalent to the existence of an étale roof

(X,x) u←Ð (X ′, x′) vÐ→ (AP , p)

for every closed point x ∈ X, where AP is an affine toric variety, p ∈ AP is a point, and we
have u−1(U) = v−1(A∗

P ). A toroidal morphism f ∶ (X,UX) → (S,US) of toroidal embeddings
has been defined e.g. in [1]. Using [4, Cor. 2.6], we can find étale roofs as above, a toric
morphism AP → AQ, and the middle map such that we have a commutative diagram

(X,x)

��

(X ′, x′)

��

//oo (AP , p)

��
(S, f(x)) (S′, s′) //oo (AQ, q).

Since f is dominant and ÔS,f(x) is a domain, the induced map ÔS,f(x) → ÔX,x is injective by
[38, I. Cor. 3.9.8]. We find k[Q] → k[P ] injective, so the kernel and the torsion part of the
cokernel of Qgp → P gp are finite groups of order invertible in k. This proves f ∶ X → S log
smooth, a fact that has been also observed e.g. in [18] with a slightly different definition. On
the other hand, not every toroidal morphism is saturated, e.g. k[t] → k[t], t↦ t3. However,
weakly semistable families in the sense of Abramovich–Karu as defined in [1] are. They have
been introduced to generalize semistable reduction to higher dimensional bases. To us, they
are just another example illustrating the wide range where log toroidal families occur. We
recall the definition for convenience of the reader.

Definition 4.28 ([1]). A weakly semistable family is a flat morphism f ∶X → S of projective
varieties with connected fibers together with structures of toroidal embeddings US ⊂ S and
UX ⊂X such that f−1(US) = UX and f is toroidal, equidimensional, and has reduced fibers.
Moreover, S is nonsingular. The family f ∶X → S is semistable if additionally X is smooth.

Note that this definition of semistability is more general than the classical one—we do
not assume S to be one-dimensional.

Example 4.29. Weakly semistable families are log smooth and saturated.

Proof. The log smooth map AP → AQ is log flat. Since X ′ → S′ is flat and S′ is log regular,
the result [67, IV, Thm. 4.3.5] yields X ′ → S′ integral. It has reduced fibers, so it is saturated
by [67, IV, Thm. 4.3.6].

Degenerations

Recall that we consider the theory of log toroidal families a tool to study degenerations of
varieties. We give here some evidence that in fact many degenerations carry the structure of
a log toroidal family. The following construction generalizes the degeneration of the smooth
quartic surface in Example 1.3.

44



Example 4.30. Pencils of normal crossing divisors are log toroidal families. Let k = k̄ be an
algebraically closed field, let D = {F = 0} ⊂ Pnk be a normal crossing divisor of degree d, let
E = {G = 0} ⊂ Pnk be a smooth hypersurface of degree d, and assume that D ∪E = {FG = 0}
is a normal crossing divisor. Defining

Y ∶= {TF − SG = 0} ⊂ P1
k × Pnk ,

where [S ∶ T ] are the variables of P1
k, we obtain a morphism f ∶ Y → P1

k via projection.
Then there is a neighborhood S ⊂ P1

k of 0 = [0 ∶ 1] and an open U ⊂ X ∶= f−1(S) such that
f ∶X → S with the divisorial log structures defined by f−1(0) and 0 is a proper log toroidal
family.

Proof. For a k-valued point x̄ ∈ Pnk , let H = Hx̄ be a homogeneous polynomial of degree d
such that x̄ ∈ {H /= 0}. Since D ∪E is normal crossing, we can find étale morphisms

Pnk
γ←Ð Vx̄

ηÐ→ Ank

such that γ∗(F /H ⋅ G/H) = η∗(z1 ⋅ ... ⋅ zk) for some 0 ≤ k ≤ n (where the empty product
is 1). Because zi is a prime in the étale local ring (Ank)0̄, we can choose Vx̄, γ, η such that
γ∗(F /H) = η∗(z1 ⋅ ... ⋅ z`) and γ∗(G/H) = η∗(z`+1 ⋅ ... ⋅ zk). In particular, by using [19,
Prop.-IV-25], the second projection π ∶ Y → Pnk can be identified with the blow-up of Pnk in
D ∩E. In particular, the scheme Y is integral and f ∶ Y → P1

k is flat because Y dominates
the smooth curve P1

k.
Because f ∶ Y → P1

k is proper and has a non-singular fiber E = f−1(∞), there is an open
neighborhood S ∋ 0 such that f−1(0) =D is the only singular fiber over S. We take this S as
the base of f ∶ X → S. Denoting D2 ⊂ D the double locus of the normal crossing divisor D,
we set U =X∖(D2∩E) under the identification D = f−1(0). The scheme π−1(Pnk ∖(D2∩E))
is étale locally the blow-up of An−2 ⊂ An, so it is a regular scheme; this shows that U is a
regular scheme. Thus f ∶ U → S is a semistable degeneration and hence saturated and log
smooth with the given log structures. Around a point x̄ ∈ X ∖U , on A1

k × Vx̄ the scheme X
is locally given by the equation

γ∗(F /H) − s ⋅ γ∗(G/H) = η∗(z1 ⋅ ... ⋅ zk−1) − sη∗(zk) = 0,

where γ∗(G/H) = η∗(zk), i.e., ` = k − 1 because E is a smooth hypersurface. Thus a local
model is given by the ETD (N ⊂ P k−1

pnc ,Fmin) from Example 3.29.

Example 4.31. Setting D = {xyz = 0} and E = {x3+y3+z3 = 0} we obtain the Hesse pencil

λ(x3 + y3 + z3) + µxyz = 0

of cubic curves, cf. [3]. Since it is a log toroidal family with fiber dimension 1, it is actually
log smooth.

Example 4.32. Setting D = {x0x1x2x3 = 0} ⊂ P3 the union of the four coordinate planes
and E = {x4

0+x4
1+x4

2+x4
3 = 0} ⊂ P3 the Fermat quartic, we obtain the degeneration of quartic

surfaces of Example 1.3. For

D = {x0x1x2x3x4 = 0} ⊂ P4 and E = {x5
0 + x5

1 + x5
2 + x5

3 + x5
4 = 0} ⊂ P4,

we obtain essentially the famous family of quintic threefolds, which is often studied in mirror
symmetry, e.g. in [10, 63].

Question 4.33. The construction in Example 4.30 can be easily generalized as follows: Let
P /k be a scheme, let L be a line bundle on P , and let F,G ∈ H0(P,L) be sections defining
hypersurfaces D,E. Let P1 = Proj k[S,T ], and let p ∶ P ×P1 → P, q ∶ P ×P1 → P1 be the two
projections. Then

T ⊗ F − S ⊗G ∈H0(P × P1, p∗L⊗ q∗O(1))

defines a hypersurface Y ⊂ P × P1 and a family f ∶ Y → P1 via projection. What are the
conditions on P,L, F,G to make f a log toroidal family?
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Remark 4.34. When we take P = P∆ for a reflexive polytope ∆ and L = OP (1), this
construction is closely related to the construction of toric degenerations out of the data of
Batyrev duality, see [29]. Here one takes F corresponding to 0 ∈ ∆ such that D is the toric
boundary divisor in P = P∆, and G to be general. The result is a (in good cases) smooth
variety E, which degenerates to a union of toric varieties.

Example 4.35. Many structures of the Gross–Siebert program are log toroidal families. If
(B,P) is a positive and simple integral affine manifold with singularities and a polyhedral
decomposition, and if s are lifted open gluing data, then the toric log Calabi–Yau space
X�

0(B,P, s) is a log toroidal family over Spec (N → C) by [31, Thm. 2.6]. Indeed, the
local models are the ETDs of Example 3.30. More generally, by Ruddat’s generalization
in [69, Prop. 2.8], log Calabi–Yau spaces of complete intersection type are log toroidal over

Spec (N → C). Divisorial deformations of X�
0(B,P, s) are log toroidal families essentially

by definition.

5 Relatively Log Smooth Families

We introduce in this section a variant of the concept of relatively (log) smooth family.
Relatively log smooth families take into account the incoherencies occuring in “nature” (as
in the family f ∶Xst → A1 in Example 1.4, see the Introduction) by weakening the coherence
assumption of the log structure on X to relative coherence. This notion is discussed in Ogus’
book [67], but has been used earlier in Nakayama–Ogus work [64] and, relying on this, by
Gross–Siebert in [31]. We review it here and give some new elementary results which are
important for our further study. Relatively (log) smooth families f ∶ X(F) → Y have
been introduced by Nakayama-Ogus in [64] in the context of studying the Betti realizations
(also called Kato–Nakayama spaces) of log smooth morphisms. It is shown there ([64,
Thm. 3.7]) that smooth as well as relatively smooth families are submersive on the level of
Betti realizations Xlog(F) → Ylog. In particular, if f ∶ X(F) → Y is proper, then flog is a
topological fiber bundle with nice fibers. We give a slightly different definition of relatively
log smooth family and show that the concept is intimately related to log toroidal families.
Indeed, Proposition 5.13 below shows that every relatively log smooth family can be endowed
with an open U ⊂X which turns it into a log toroidal family.

Relative Coherence

Relative coherence generalizes the notion of coherence of a log structure. Let (X,H) be a
fine log scheme, and let β ∶ P →H be a chart. For a face G ⊂ P , we have a sheaf GG of faces
in H given by

GG(U) = ⟨β(G)⟩ ⊂ H(U)

for an open U ⊂ X, where ⟨β(G)⟩ is the face in H(U) generated by β(G). The sheaf GG is
itself a log structure. A sheaf of faces M⊂ H is relatively coherent if (étale) locally we can
find charts and faces such that M = GG. Globalizing this, we call a log structure M on a
scheme X relatively coherent—without reference to a global H—if (étale) locally on X, the
log structure is isomorphic to some GG as above. In this case, the chart β ∶ P →H together
with G ⊂ P is called a relative chart.

Remark 5.1. The construction of GG works as well for the Zariski and the étale topology. If
GG ⊂ H is in the étale topology and G ⊂ P →H is a relative chart, then the chart also defines
Zariski log structures G̃G ⊂ H̃ whose associated étale log structures are GG ⊂ H. Thus, if
convenient, étale locally we can assume a relatively coherent log structure to be defined in
the Zariski topology.

Remark 5.2. If GG ⊂ H is defined by the relative chart G ⊂ P βÐ→ H, then (GG)x̄ ⊂ Hx̄ is the
face generated by β(G), and the same holds for the ghost sheaves.

Remark 5.3. By definition,M⊂H is relatively coherent ifM= GG for some chart β ∶ P →H.
By [67, II, Prop. 2.6.5], if β ∶ P →H is any chart around a point x ∈X (with H fixed), there
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is a face G ⊂ P such that G ⊂ P → H is a relative chart for M in some neighborhood of x.
We can choose G = β−1(Mx).

For a fine log scheme (X,H) and a (fine) chart β ∶ P → H, there is equivalently a strict
morphism b ∶ (X,H) → AP . If M⊂ H is relatively coherent with relative chart G ⊂ P → H,
then it fits into a commutative diagram

(X,H) //

b

��

(X,M) //

bG

��

(X,O∗
X)

��
AP // AP,G // Spec Z[P ]

(RC)

because (b♭)−1(b∗M) ⊂MP is a sheaf of faces in the log structure of AP which contains the
image of G ⊂ P →MP .

Lemma 5.4. The diagram (RC) is Cartesian. In particular, the map bG ∶ (X,M) → AP,G
is strict. Conversely, if we have a Cartesian diagram (RC) with P fine, then M ⊂ H is
relatively coherent.

Proof. Denoting the log structure on AP,G by MP,G, we have log structures

T = b∗logMP,G →M→H

on X. Because T ⊂ H is a sheaf of faces, also T ⊂ H is a sheaf of faces. Since T contains
the image of β(G), we have M⊂ T , so T =M; this shows that bG is strict and the squares
are Cartesian. The converse is obvious: There is a relatively coherent log structure GG ⊂ H
defined by G ⊂ P →H, which satisfies GG ≅ b∗logMP,G ≅M.

Corollary 5.5. Let g ∶ Y →X be a strict morphism of log schemes, and assume X relatively
coherent. Then Y is relatively coherent.

Let us relate relatively coherent log structures to ETDs. Therefore, let P be a sharp
toric monoid, and let G ⊂ P be a face. Then X ∶= AP = Spec (P → Z[P ]) is a fine log
scheme, and β ∶ P →MX is a chart. We denote X with the relatively coherent log structure
GG by AP,G.

Lemma 5.6. Let G ⊂ P be a face in a sharp toric monoid P , and let

F(G) ∶= {F ⊂ P a facet ∣ G /⊂ F} .

Then AP,G carries the divisorial log structure defined by ⋃F ∈F(G) Spec Z[F ].

Proof. Let H be the log structure on AP (which is divisorial for the union of all toric
divisors) with a chart β ∶ P → H, and let M ⊂ H be the divisorial log structure defined by
D = ⋃F ∈F(G) Spec Z[F ], which is a sheaf of faces. For a (geometric) point x̄ ∈ AP , setting
Kx̄ = β−1(O∗

x̄) ⊂ P , we have

{zp /= 0} ∩U ⊇ Spec Z[PG] ∩U

in some neighborhood U ∋ x̄ if and only if p ∈ ⟨G,Kx̄⟩. Because Spec Z[P ]∖D = Spec Z[PG],
this shows β(p)x̄ ∈ Mx̄ if and only if p ∈ ⟨G,Kx̄⟩. In particular, for g ∈ G, we have

{zg /= 0} ⊇ Spec Z[PG];

this implies β(g) ∈ M, so GG ⊂ M. Now assume m ∈ Mx̄ for the ghost sheaf. Because

P /Kx̄ ≅ Hx̄ via β, we can find p ∈ P with β(p)x̄ = m. Then p ∈ ⟨G,Kx̄⟩ and therefore

m ∈ GGx̄, so GG =M.

Example 5.7. Let Q ⊂ G ⊂ P be sharp toric monoids such that G ⊂ P is a face and Q ⊂ P
is saturated. Then we get an ETD (Q ⊂ P,F(G)). The lemma shows AP,F(G) = AP,G
everywhere, not only on UP /Q, so AP,F(G) is relatively coherent. Because Fmax = F(P ) and
Fmin = F(⟨Q⟩), where ⟨Q⟩ ⊂ P is the face generated by Q, these two elementary log toroidal
families carry always a relatively coherent log structure.
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Relatively Log Smooth Families

Definition 5.8. A relatively log smooth family is a morphism f ∶X → S of log schemes such
that:

� f ∶X → S is a finite type morphism of Noetherian schemes.

� S is fine and saturated.

� There is an étale covering {Vi} of X such that we can find an embeddingMX ∣Vi ⊂ Hi
as a relatively coherent sheaf of faces in a fine and saturated log structure Hi such
that (Vi,Hi) → S is log smooth and saturated.

Example 5.9. Let Q ⊂ G ⊂ P be as in Example 5.7 with associated ETD (Q ⊂ P,F(G)).
Then f ∶ AP,F(G) → AQ is a relatively log smooth family. Since we have Fmax = F(P ) and
Fmin = F(⟨Q⟩), these two elementary log toroidal families are always relatively log smooth
families.

Remark 5.10. Our definition differs from the one given by Nakayama–Ogus in [64, Def. 3.6].
Namely, they do not require any saturatedness condition, and we do not require any condition
on the quotients Hi/MX (which however has in [64] mainly the purpose of making the
fibers in the Betti realization topological manifolds instead of topological spaces with toric
singularities). Moreover, [64] is working in the category of log analytic spaces whereas we
are using schemes.

Unlike generically log smooth families, relatively log smooth families are actual mor-
phisms of log schemes. However, we will see below that we can find an open U ⊂ X which
makes them generically log smooth (and even log toroidal). Relatively log smooth families
are stable under strict base change, i.e., for f ∶ X → S a relatively log smooth family and
b ∶ T → S a strict morphism with T Noetherian, the log morphism g ∶ X ×S T → T is a
relatively log smooth family. In fact, Lemma 5.4 shows the log structure on X ×S T rela-
tively coherent. We do not know if the notion of relatively log smooth family is stable under
non-strict base change.

Lemma 5.11. Let f ∶ X → S be a relatively log smooth family. Then f ∶ X → S is a
Cohen–Macaulay morphism with reduced fibers. The log morphism f ∶ X → S is saturated,
exact, and s-injective.

Proof. The statement about f follows from [67, IV, Thm. 4.3.5, Thm. 4.3.6] applied to
(Vi,Hi) → S. Since M ⊂ Hi is exact, the statement about f follows from the respective
properties of (Vi,Hi) → S.

If (Q ⊂ P,F) is an ETD and MF ,MP are the log structures of AP,F ,AP , then the log
structureMF ⊂MP is relatively coherent if and only if F = F(G) for some face G ⊂ P such
that Q ⊂ G. Indeed, if it is relatively coherent, then by Remark 5.3 there is some face G ⊂ P
with MF = GG in a neighborhood of 0 ∈ AP,F , so MF = MF(G). We conclude F = F(G).
Since G = ⋂F ∈Fmax∖F(G) F, we find Q ⊂ G.

Non-Example 5.12. There is an ETD (Q ⊂ P,F) such that MF ⊂ MP is not relatively
coherent. Namely, take the monoid P from Example 3.6, the inclusion 0 ⊂ P , and the two
opposite facets F = {⟨X,W ⟩, ⟨Y,T ⟩}. Then there is no face G ⊂ P with F = F(G). We
conjecture that AP,F is not relatively coherent at all, but strictly speaking, we have no
proof because MF might be relatively coherent in another coherent log structure.

A relatively log smooth family f ∶ X → S admits local models like a log toroidal family.
To construct it, let x̄ ∈ X, let s̄ = f(x̄), and let S ← S̃ → AQ be a chart which is neat at s̄.
Choosing some (Vi,Hi) such that x̄ ∈ Vi and applying [67, IV, Thm. 3.3.3] to the log smooth
morphism (Vi,Hi) → S, we find a neighborhood V ∋ x̄ and the dashed quadrilateral in the
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diagram

LP ×Ar //

��

&&

AP ×Ar

&&

��

&&
(V,H) ,,

��

��

77

LP //

��

AP

��

��

LP,G ×Ar //

��

&&

AP,G ×Ar

&&

��

(V,M) ,,

77

&&

LP,G //

yy

AP,G

xx
S̃ // AQ

such that (V,H) → AP is a neat chart at x̄. By Remark 5.3 and Lemma 5.4, we can find
a face G ⊂ P and a strict map (V,M) → AP,G fitting into the diagram (after shrinking V ).
The projections AP ×Ar → AP and AP,G×Ar → AP,G are strict. By [67, IV, Thm. 3.3.3], we
have a morphism V → Ar inducing the maps (V,H) → AP ×Ar and (V,M)→ AP,G×Ar. The

spaces LP , LP,G are defined as the fiber product along S̃ → AQ, and by [67, IV, Thm. 3.3.3],
the morphism (V,H) → LP ×Ar is strict and étale, so (V,M)→ LP,G×Ar is strict and étale.
Since the charts are neat, the homomorphism Q→ P of sharp toric monoids is injective and
saturated. The morphism AP,G×Ar → AQ is associated to the ETD (Q ⊂ P ×Nr,F(G)×Nr)
from Example 3.7. Therefore we have a local model at x̄ in the sense of Definition 4.2.

Proposition 5.13. Let f ∶ X → S be a relatively log smooth family. Then there is an open
U ⊂X satisfying (CC) such that f ∶X → S is a log toroidal family.

Proof. By the above construction, for every geometric point x̄ ∈ X, we get an open Ux̄ ⊂ V
on which f ∶ X → S is log smooth as the preimage of UP /Q ×Ar ⊂ AP,G ×Ar. After writing
gx̄ ∶ V →X for the étale maps and defining

U ∶= ⋃
x̄∈X

gx̄(Ux̄),

this U ⊂ X is a Zariski open satisfying (CC) since the property (CC) is local in the étale
topology. By Remark 5.11, the family f ∶X → S is generically log smooth. Since we already
have constructed local models, it is a log toroidal family.

Question 5.14. Is it possible to reconstruct the relatively log smooth family from the log
toroidal family? I.e., given a log toroidal family f ∶ X → S, is there at most one possibility
to extend the log structure from U to X such that it is relatively log smooth? What are
conditions for a log toroidal family to be induced from a relatively log smooth one? By
Lemma 4.13 and Example 5.9, if f ∶X → S is vertical, then it comes locally from a relatively
log smooth family. Are these extensions compatible?

From a technical perspective, relatively log smooth families are more satisfactory than
log toroidal families because there is no ambiguity in the log structure on Z. Sometimes, it
is slightly easier to check that a family is relatively log smooth than log toroidal because we
do not need to care about U .

Example 5.15. Let f ∶ X → A1 be a toroidal morphism, i.e., étale locally on X given by
AP → A1 (for saturated injections N ⊂ P ). Endowing X with the divisorial log structure
defined by f−1(0) and A1 with the divisorial log structure defined by 0 ∈ A1 turns f ∶X → A1

into a relatively log smooth family. In particular, the pencils of normal crossing divisors in
Example 4.30 are relatively log smooth families. Concretely, we see that the degeneration
of smooth quartics in Example 1.3 is relatively log smooth.
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6 Differential Forms of Log Toroidal Families

We study the de Rham complex W ●
X/S of a log toroidal family f ∶X → S and prove two base

change results, namely Theorems 6.15 and 6.16 below. These results depend on a careful
analysis of differential forms on elementary log toroidal families f ∶ AP,F → AQ. In fact,
the base change property defined in Definition 6.14 is local in the étale topology, and some
elementary log toroidal families have it by explicit computation. To this end, we start with
an explicit computation of W ●

X/S on elementary log toroidal families.

6.1 Differential Forms on Elementary Log Toroidal Families

We fix a principal ideal domain R as a base ring, e.g. R = Z or R = C. Given an ETD
(Q ⊂ P,F), the construction of f ∶ AP,F → AQ carries through when replacing Z by R as
explained in Remark 3.20 because R is regular. We compute the differential forms W ●

f of
this elementary log toroidal family, using the following elementary lemma.

Lemma 6.1. Let n,m ≥ 0 and G1, ...,Gr ⊂ Rn be submodules each of which is a direct
summand, then the natural map ⋀mR (⋂iGi) → ⋂i⋀mR Gi is an isomorphism.

Proof. The case of a field R is given by Danilov in [14]. For the general case, compare to
the situation over K = Quot(R) and use the summand intersection property, cf. [77]: Let R
be a principal ideal domain and let H,H ′ ⊂ Rs be direct summands. Then H ∩H ′ ⊂ Rs is a
direct summand.

First consider the absolute case, i.e., an ETD (Q ⊂ P,F) with Q = 0, and denote by
f ∶ AP,F → Spec R the associated log toroidal family. One checks that U = UP /0 from (6) is
simply the complement of codimension two strata. Recall from Example 2.16 that

Wm ∶=Wm
AP,F /Spec R

are just the Danilov differentials with log poles in the divisor given by the facets in F .
Danilov already computed these in [14, Proposition 15.5] over a field, but because of
Lemma 6.1, the same calculation works over R, and we obtain the following result.

Proposition 6.2 (absolute case). We have a grading Γ(AP ,Wm) = ⊕p∈P (Wm)p with

(Wm)p =
m

⋀
R

⎛
⎜
⎝

⋂
F ∈Fmax∖F

p∈F

F gp ⊗Z R
⎞
⎟
⎠
,

where the intersection is P gp ⊗Z R if the index set is empty.

Remark 6.3. See Remark 6.7 below for an explanation how this relates to derivations and
what the differential is.

Let us next assume we have a general ETD (Q ⊂ P,F), and let again f denote the
associated log toroidal family and Wm

f ∶= Wm
AP,F /AQ the differentials. Note that, since F

contains all vertical facets, every facet in Fmax ∖ F contains Q. We obtain the following
generalization.

Proposition 6.4 (general case). We have a grading Γ(AP ,Wm
f ) = ⊕p∈P (Wm

f )p with

(Wm
f )p =

m

⋀
R

⎛
⎜
⎝

⎛
⎜
⎝

⋂
F ∈Fmax∖F

p∈F

F gp ⊗Z R
⎞
⎟
⎠
/(Qgp ⊗Z R)

⎞
⎟
⎠
,

where the intersection is P gp ⊗Z R if the index set is empty. Since Qgp ⊂ P gp splits, we can
equivalently take the quotient before the intersection.
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Proof. We can compose f with the projection to Spec R to relate the current situation to
that of Proposition 6.2. The open set Uabs in the absolute case is the complement of Zabs,
the union of all codimension two strata. Hence, Uabs is covered by UF where F runs over
the facets of P . On the other hand, the open set U for f as given in (6) has a cover UF
where F runs over the essential faces of rank d − 1 by Lemma 3.12. Obviously, Uabs ⊆ U .
Note that, since Wm

f is locally free on U and OU is Zabs-closed, we find that Wm
f is not

only Z-closed, but also Zabs-closed. Consider the commutative diagram of solid arrows

0 // f∗ΩAQ/Spec R
ι // W 1

AP,F /Spec R
//

��

W 1
f

��

// 0

0 // f∗ΩAQ/Spec R
// W 1

AP /Spec R
//

gg

W 1
AP /AQ

// 0,

(7)

where the top row is obtained by pushing it forward from Uabs. The bottom sequence
is obtained from tensoring the sequence 0 → Qgp → P gp → P gp/Qgp → 0 with OAP , in
particular, it is exact and splits. Hence the dotted diagonal arrow exists and commutes
with the other maps. Therefore, coker(ι) is a direct summand of W 1

AP,F /Spec R, in particular

Zabs-closed. Moreover, coker(ι) → W 1
f is an isomorphism on Uabs, and since both sheaves

are Zabs-closed, we have coker(ι) =W 1
f , and thus the top row is exact and splits.

Let ⟨f∗ΩAQ/Spec R⟩ denote the homogeneous ideal in the sheaf of exterior algebras
W ●
AP,F /Spec R generated by f∗ΩAQ/Spec R. The split exactness above gives the split exactness

of the following sequence

0→ ⟨f∗ΩAQ/Spec R⟩m →Wm
AP,F /Spec R →Wm

f → 0.

Since AP is affine and ⟨f∗ΩAQ/Spec R⟩ coherent, applying Γ(AP , ⋅) to this sequence yields
another exact sequence, which already gives that Γ(AP ,Wm

f ) is P -graded. We have

Γ(AP , f∗ΩAQ/Spec R) = Qgp ⊗Z R[P ] .

Set

Fp ∶=
⎛
⎜
⎝

⋂
F ∈Fmax∖F

p∈F

F gp ⊗Z R
⎞
⎟
⎠
,

and let ⟨Qgp ⊗R⟩ ⊆ ⋀●RFp be the homogeneous ideal generated by Qgp ⊗R. One computes
Γ(AP , ⟨f∗ΩAQ/Spec R⟩m)p = ⟨Qgp ⊗R⟩m. Using Proposition 6.2, in degree p ∈ P , we obtain
the exact sequence

0→ ⟨Qgp ⊗R⟩m →
m

⋀
R

Fp → (Wm
f )p → 0.

Using a splitting of the injection (Qgp ⊗R) ⊆ Fp and comparing lead to the assertion.

Example 6.5. For the elementary log toroidal family f ∶Xst → A1 of Example 1.4, Propo-
sition 6.4 yields the following: The monoid P is divided into four regions

P0 ∶= P ∖ (FTX ∪ FTY ), PX ∶= FTX ∖Q, PY ∶= FTY ∖Q, PXY ∶= Q

on which the graded piece (W 1
f )p is constant. Here FTX and FTY denote facets of P as in

Figure 3.1 at Example 3.6. Using the isomorphism P gp ⊗ k/Qgp ⊗ k ≅ k ⊕ k, we get:

(W 1
f )p = (P gp ⊗ k)/(Qgp ⊗ k) = k ⊕ k for p ∈ P0,

(W 1
f )p = (F gpTX ⊗ k)/(Qgp ⊗ k) = 0⊕ k for p ∈ PX ,

(W 1
f )p = (F gpTY ⊗ k)/(Qgp ⊗ k) = k ⊕ 0 for p ∈ PY ,

(W 1
f )p = (Qgp ⊗ k)/(Qgp ⊗ k) = 0⊕ 0 for p ∈ PXY .

This is visualized in Figure 6.1. For the result, cf. also my Master Thesis.
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Q = PXY

k ⊕ k

0⊕ k

k ⊕ 0

0⊕ 0

Figure 6.1: We see the four regions PXY , PX , PY , P0 of P of Example 6.5 with the
respective graded pieces (W 1

f )p. This figure is also contained in my Master Thesis.

Corollary 6.6. For all m, the module Wm
f is flat over AQ.

Proof. By Proposition 6.4, we find that Γ(AP ,Wm
f ) is a free R[Q]-module.

Remark 6.7. We explain the meaning of our description of W 1
f . We have the open subscheme

A∗
P = Spec R[P gp] ⊂ AP,F , which is log trivial. The R-linear derivations on it are given by

Der(A∗
P ) = ⊕

p∈P gp
zp ⋅Hom(P gp,R),

acting as (zpφ)(zq) = φ(q)zp+q ∈ R[P gp]. The R[Q]-linear derivations are those derivations
with φ(q) = 0 for q ∈ Q, so they are given by ⊕p∈P gp z

p ⋅Hom(P gp/Qgp,R). The restriction
map

Γ(AP,F ,Θ1
f) → ⊕

p∈P gp
zp ⋅Hom(P gp/Qgp,R)

is injective and thus identifies Θ1
f with some submodule. The differentials W 1

f are the dual

of Θ1
f and are thus identified with a submodule of the module ⊕p∈P gp z

p ⋅ (P gp/Qgp)⊗R via
the pairing

⊕
p∈P gp

zp ⋅Hom(P gp/Qgp,R) × ⊕
p∈P gp

zp ⋅ (P gp/Qgp) ⊗R → R[P gp]

given by (zpφ, zqr) ↦ φ(r)zp+q. Indeed, it is possible but very tedious to compute W 1
f along

these lines, cf. my Master Thesis. Within this framework, one can compute the differential
of the de Rham complex: We find first d(zp) = zp ⋅ [p] for functions zp ∈ W 0

f and then
d(zp ⋅ n) = zp ⋅ [p] ∧ n for zp ⋅ n ∈Wm

f .

6.2 Base Change for Elementary Log Toroidal Families

We study under which conditions the formation of W ●
X/S commutes with base change, for

f ∶ X → S an elementary log toroidal family AP,F → AQ. Thus, let T be a Noetherian ring
and T = Spec T → Spec R[Q] be any map. Denote by σ the composition Q → R[Q] → T ,
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which makes T a coherent log scheme. Define Y by the fiber diagram of log toroidal families

Y
c //

��

AP,F

f

��
T // AQ.

(8)

Concretely, we study when the natural map c∗Wm
f →Wm

Y /T is an isomorphism. This holds
if f is log smooth since then Wm

f = Ωmf are the ordinary log differentials, which satisfy this
isomorphism property by their universal property. In particular, c∗Wm

f → Wm
Y /T is always

an isomorphism on the open set V ∶= c−1(U). The following example shows that it is not an
isomorphism in general. For a subset I ⊂ P , let ⟨I⟩ be the smallest face of P containing I.

Example 6.8. Let P be the submonoid of Z2 generated by (1,0), (1,1), (1,2), and let
Q = 0. The monoid P has two facets H1 = ⟨(1,0)⟩ and H2 = ⟨(1,2)⟩, and setting F = ∅
yields an ETD. Let f ∶ AP,F → AQ = Spec Z be the corresponding map. Now set T = Z/2Z,
inducing the natural map T = Spec T → Spec Z and a fiber diagram as above. One checks
that c∗W 1

f →W 1
Y /T is not an isomorphism by computing both terms via Proposition 6.2. It

suffices to check the degree p = 0, indeed, (W 1
f )0 =Hgp

1 ∩Hgp
2 = 0 but

(W 1
Y /T )0 = (Hgp

1 ⊗Z/2Z) ∩ (Hgp
2 ⊗Z/2Z) = Z/2Z ⋅ (1,0) ⊂ (Z/2Z)2.

Hence, ((W 1
f ) ⊗Z Z/2Z)0 = 0, but (W 1

Y /T )0 ≠ 0.

The example teaches that base change is related to the (non-)commuting of intersection
and tensor product. The following lemma (that is an elementary exercise in Tor groups)
will help us. We say a ring T is of characteristic ≥ p0 if, for all of its residue fields κp, it
holds that charκp ≥ p0 or charκp = 0.

Lemma 6.9. Let G be a finitely generated Z-module and H,H ′ ⊂ G be two submodules.
Then there is p0 ≥ 0 such that, for every ring T of characteristic ≥ p0, we have

(H ∩H ′) ⊗ T = (H ⊗ T ) ∩ (H ′ ⊗ T ),

and each term here is a submodule of G⊗ T .

In the general situation, observe that we have Γ(Y,OY ) = ⊕e∈E z
e ⋅T with multiplication

ze1 ⋅ ze2 = ze ⋅ σ(q) whenever e1 + e2 = e + q

with e ∈ E, q ∈ Q under the canonical decomposion from (4). Similarly, Proposition 6.4 gives

Γ(Y, c∗Wm
f ) = ⊕

e∈E
ze ⋅ ((Wm

f )e ⊗R T ). (9)

Lemma 6.10. Recall V = c−1(U). Equivalent are

1. the map c∗Wm
f →Wm

Y /T is an isomorphism,

2. c∗Wm
f is reflexive,

3. the restriction map ρ ∶ Γ(Y, c∗Wm
f ) → Γ(V, c∗Wm

f ) is surjective.

Proof. (1)⇒(2): Wm
Y /T is reflexive; (2)⇒(3): c∗Wm

f is (Y ∖ V )-closed; (3)⇒(1): Consider
the commutative square

Γ(Y, c∗Wm
f )

ρ

��

// Γ(Y,Wm
Y /T )

��
Γ(V, c∗Wm

f ) // Γ(V,Wm
Y /T ),
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where the right vertical map is an isomorphism because Wm
Y /T is reflexive by Lemma 2.13.

The bottom horizontal map is an isomorphism by what we said just before Example 6.8.
Now (1) holds if the top horizontal map is an isomorphism, which follows from (3) if ρ
is additionally injective. This injectivity is a general fact that we prove next. Recall that
AP,Fmax = AP and we have a map AP → AP,F that gives us another commutative square

Γ(Y, c∗Wm
f )

ρ

��

// Γ(Y, c∗Wm
AP /AQ)

��
Γ(V, c∗Wm

f ) // Γ(V, c∗Wm
AP /AQ).

(10)

Since AP → AQ is log smooth and Wm
AP /AQ = ΩmAP /AQ a free sheaf, the right vertical map is

an isomorphism. We get that ρ is injective if the top horizontal map is injective. The latter
can be computed from Proposition 6.4. Indeed, this follows from (9) since for every e ∈ E,
the cokernel of (Wm

f )e → (Wm
AP /AQ)e is a free R-module.

We next provide a useful criterion for the surjectivity of ρ. Let E be the set of essential
faces of P of rank d− 1. By Lemma 3.12, U is covered by {UF ∣F ∈ E}. Set VF = c−1(UF ), so
these cover V . For each F ∈ E , choose eF ∈ F in the relative interior, i.e., ⟨eF ⟩ = F .

Theorem 6.11. Write Mp ∶= (Wm
f )p for short, and assume that, for every subset E ′ ⊂ E

and every e ∈ E, the natural map

( ⋂
F ∈E ′

Me+eF ) ⊗R T → ⋂
F ∈E ′

(Me+eF ⊗R T )

is an isomorphism. Then ρ is surjective.

Proof. We write M = Γ(AP ,Wm
f ), N = Γ(AP ,Wm

AP /AQ) and Np for the degree p part of N .

By Proposition 6.4, Mp and Np only depend on ⟨p⟩. We are going to use that, for p1, p2 ∈ P ,
it holds

⟨p1 + p2⟩ = ⟨⟨p1⟩ ∪ ⟨p2⟩⟩. (11)

We have a natural injection M ⊆ N by Proposition 6.4. Given µ ∈ Γ(V, c∗Wm
f ), we want to

show it has a preimage under ρ. We do have a unique preimage ν under the right vertical
map of (10), so in N⊗R[Q]T and we are going to show that this preimage lies in M⊗R[Q]T .
Say ν = ∑e ze ⋅ ne with ne ∈ Ne ⊗ T is such that ν∣V = µ. In particular, ν∣VF = µ∣VF for all
F ∈ E . There is some large a ≥ 1 so that, for each F ∈ E , there are mF,e ∈Me ⊗ T such that

µ∣VF = z−aeF ∑
e

ze ⋅mF,e,

and therefore ν∣VF = µ∣VF implies

zaeF ∑
e

ze ⋅ ne ∈ ⊕
e∈E

ze ⋅ (Me ⊗R T ) ⊂ ⊕
e∈E

ze ⋅ (Ne ⊗R T ).

If e + aeF = ẽ + q is the decomposition P = E ×Q, then ne ⋅ σ(q) ∈Mẽ ⊗R T . By (11),

e + aeF ∈ E ⇐⇒ ⟨e + eF ⟩ ⊂ E ⇐⇒ e + eF ∈ E

and if this holds, then σ(q) = 1, so setting

Ee ∶= {F ∈ E ∣ e + eF ∈ E},

we obtain ne ∈ ⋂F ∈Ee(Me+aeF ⊗R T ) and Me+aeF = Me+eF . Note that Ee does not depend
on the chosen eF . Using the assumption, we get

ne ∈ ⋂
F ∈Ee

(Me+eF ⊗R T ) = ( ⋂
F ∈Ee

Me+eF ) ⊗R T .
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For the next step, define Fe = {H ∈ Fmax ∖ F ∣ ∃F ∈ Ee ∶ e + eF ∈ H}. We use Lemma 6.1 to
compute

⋂
F ∈Ee

Me+eF =
m

⋀
R

( ⋂
H∈Fe

Hgp ⊗Z R

Qgp ⊗Z R
) .

We finally claim that Fe = {H ∈ Fmax ∖F ∣ e ∈H}; indeed, given an H in the latter, we just
need to exhibit an F ∈ E that is also contained in H with ⟨e,F ⟩ ⊂ E, which can be done
since H ∩E is a union of faces in E . Thus, ne ∈Me ⊗R T , so indeed ν ∈M ⊗R[Q] T , and we
are done.

Corollary 6.12. Let (Q ⊂ P,F) be an ETD, T a Noetherian ring and T = Spec T → AQ a
strict morphism of log schemes. Then c∗Wm

f is reflexive and c∗Wm
f →Wm

Y /T an isomorphism
provided that the composition

R → R[Q] → T
is flat, e.g. when R is a field.

As Example 6.8 shows, the conditions of Lemma 6.11 are not always satisfied in case
R = Z. However, we do get close:

Corollary 6.13. Let (Q ⊂ P,F) be an ETD, and assume f ∶ AP,F → AQ to be defined
over R = Z. Then there is a p0 = p0(Q ⊂ P,F) such that, for T = Spec T → AQ with a
Noetherian ring T of characteristic ≥ p0, the sheaf c∗Wm

f is reflexive, and c∗Wm
f → Wm

Y /T
is an isomorphism.

Proof. Apply Lemma 6.9 recursively and use that the modules Mp ⊂ ⋀mZ (P gp/Qgp) are free
direct summands and that the set of situations to consider for the assumption of Theo-
rem 6.11 is finite.

6.3 Global Base Change

We globalize the base change results that we obtained for elementary log toroidal families.
Since W ●

X/S is not always compatible with base change by Example 6.8, we give a name to
the situation in which it is.

Definition 6.14 (BC). A generically log smooth family f ∶ X → S has the base change
property if, for every strict morphism T → S of Noetherian fs log schemes, every m ∈ Z and
c the map given by the Cartesian diagram

Y
cÐÐÐÐ→ X

g
×××Ö

f
×××Ö

T
bÐÐÐÐ→ S,

(BC)

the sheaf c∗Wm
X/S is reflexive, or equivalently, the natural map c∗Wm

X/S → Wm
Y /T is an

isomorphism.

Theorem 6.15 (Base Change over Fields). Let f ∶ X → S be a log toroidal family defined
over a field k, then f has the base change property.

Proof. Reflexivity is étale local and S is defined over k, so we can assume S,T affine and
that we have a diagram

Y
c //

��

X

h

��
LT //

��

L
d //

��

AP,F × k

f

��
T

b // S // AQ × k
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with Cartesian squares and h étale. Now Corollary 6.12 shows Wm
X/S ≅ (d ○ h)∗Wm

f and

Wm
Y /T ≅ (d ○ h ○ c)∗Wm

f , so we conclude c∗Wm
X/S ≅Wm

Y /T .

Theorem 6.16 (Generic Base Change). Let f ∶X → S be a log toroidal family. Then there
is a finite set of prime numbers p1, ..., pN ∈ Z such that if f○ ∶ X○ → S○ is obtained from
f by inverting p1, ..., pN (i.e., base change to Spec Zp1...pN ), then f○ has the base change
property.

Proof. This follows analogously from the local statement Corollary 6.13. Since there is a
finite cover by local models, we need to invert only finitely many primes.

Remark 6.17. In case f ∶ X → S is log Gorenstein, we have locally W d
X/S ≅ OX . Thus,

locally Θm
X/S ≅W d−m

X/S and therefore c∗Θm
X/S is reflexive as well.

An application of the above theorems is the following lemma, which is crucial for the
degeneration of the Hodge–de Rham spectral sequence.

Lemma 6.18 (cf. Prop. 6.6 in [46]). Let f ∶ X → S be a proper log toroidal family with S
affine, and let b ∶ T → S with T affine. Assume c∗Wm

X/S = Wm
Y /T holds for all m. Then we

have isomorphisms

Lb∗Rf∗W
p
X/S → Rg∗W

p
Y /T , (12)

Lb∗Rf∗W
●
X/S → Rg∗W

●
Y /T (13)

in Db(T ). If, for fixed p, all Rqf∗W
p
X/S are locally free of constant rank, then (12) induces

an isomorphism

b∗Rqf∗W
p
X/S

≅Ð→ Rqg∗W
p
Y /T .

If, for all n, the sheaf Rnf∗W
●
X/S is locally free of constant rank, then (13) induces an

isomorphism

b∗Rnf∗W
●
X/S

≅Ð→ Rng∗W
●
X/S .

Proof. Since we know the flatness of Wm
X/S over S, which is Corollary 6.6, the proof becomes

identical to that in [46, Prop. 6.6].

The Tangent Sheaf Θ1
X/S

We briefly indicate the behavior of the tangent sheaf Θ1
X/S and of the Gerstenhaber algebra

G●
X/S under base change. Let f ∶ X → S be a generically log smooth family with the base

change property, and consider a base change diagram (BC). We obtain an OX -module
homomorphism

Tc ∶ Θ1
X/S → c∗Θ1

Y /T

by pulling back homomorphisms ϕ ∶W 1
X/S → OX since c∗W 1

X/S ≅W 1
Y /T . This means Tc(ϕ)

is the unique OY -module homomorphism which renders the diagram

W 1
X/S

ϕ //

��

OX

��
c∗W

1
Y /T

c∗Tc(ϕ) // c∗OY

commutative. Using notation from Section 2.4 we find:

Lemma 6.19. Assume f ∶ X → S has the base change property. Then, for θ, ξ ∈ Θ1
X/S and

ω ∈ W 1
X/S, we have [Tc(θ), Tc(ξ)] = Tc[θ, ξ] and ⟨c∗ω,Tc(θ)⟩ = c∗⟨ω, θ⟩. In particular, we

have an induced morphism G●
X/S → c∗G

●
Y /T of Gerstenhaber algebras.
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Proof. Use the unicity of Tc(φ) for the first identity and the commutative diagram for
the second identity. The last statement follows from the construction of the Gerstenhaber
structure, especially Lemma 2.27.

Remark 6.20. One might wonder to what extent the Gerstenhaber algebra is functorial (like
the de Rham complex). Unlike differential forms, for morphisms c ∶ Y →X,f ∶X → S, there
is no (natural) morphism Θ1

X/S → c∗Θ1
Y /S in general. Thus the Gerstenhaber algebra is less

functorial than the de Rham complex.

In the log Gorenstein case, i.e., when W d
X/S is a line bundle, Remark 6.17 yields:

Corollary 6.21. Let f ∶ X → S be a log Gorenstein generically log smooth family with the
base change property. Then we have an isomorphism c∗Θm

X/S ≅ Θm
Y /T .

Question 6.22. Is the log Gorenstein assumption necessary?

6.4 Absolute Differential Forms and the Analytic Theory

For a log toroidal family Y → T , where T is defined over a field k, absolute differential
forms are defined as W ●

Y ∶= j∗Ω●
V /k. Here j ∶ V ⊂ Y is the specified open of log smoothness.

Absolute differential forms over T = Spec C[t]/tk+1 play an important role in Steenbrink’s
method to deduce the relative degeneration from the absolute one. We employ this method in
Section 8 to prove Theorem 8.2. Here, we study absolute differential forms both algebraically
and analytically on families Y → T which are base changes of AP,F → AQ for an ETD
(Q ⊂ P,F). More precisely, consider a monoid ideal K ⊂ Q, let (K) ⊂ k[Q] denote the
corresponding monomial ideal of k[Q], and set T = k[Q]/(K). The map T = Spec T → k[Q]
is the natural one, and Y → T is defined by (8) as before. For the analytic part, we will
assume k = C.

Absolute Differential Forms on Y → T

Setting EK ∶= P ∖ (P +K), we generalize the union of essential faces E, indeed we have
E = EQ∖{0}. Combining Proposition 6.4 with Corollary 6.12 (for R = k) gives the following
result, which also generalizes [31, Corollary 1.13].

Corollary 6.23. We have

Γ(Y,Wm
Y /T ) ≅ ⊕

e∈EK
ze ⋅

m

⋀( ⋂
H∈Fmax∖F∶e∈H

(Hgp ⊗ k)/(Qgp ⊗ k))

with differential d(ze ⋅ n) = ze ⋅ [e] ∧ n.

With c ∶ Y → AP,F the notation from before, we apply c∗ to the split exact sequence
given by the top row of (7) and obtain another split exact sequence. The left term is free
and c∗Wm

f is reflexive by Corollary 6.12. Hence c∗Wm
AP,F /k is reflexive. With V = c−1(U),

we find the natural surjection c∗Ω●
U/k → Ω●

V /k to be an isomorphism (e.g. by local freeness

of both). We thus have c∗Wm
AP,F /k ≅ Wm

Y . Plugging this into Proposition 6.2 yields the

following result.

Corollary 6.24. We have

Γ(Y,Wm
Y ) ≅ ⊕

e∈EK
ze ⋅

m

⋀( ⋂
H∈Fmax∖F∶e∈H

Hgp ⊗ k)

with differential d(ze ⋅ n) = ze ⋅ e ∧ n.

Remark 6.25. This description of differential forms is inspired by [31, Prop. 1.12], which is
essentially the same result in less generality.
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Local Analytic Theory

We keep the setup and notation from before (with k = C), so (Q ⊂ P,F) is an ETD and
K ⊂ Q a monoid ideal. We additionally assume that Q ∖K is finite, so T = C[Q]/(K) is an
Artinian local ring. For P + = P ∖ {0}, let CJP K be the completion of C[P ] in (P +). It is
the complete local ring of AP at 0. Ogus determines the analytic local ring inside CJP K as
follows:

Lemma 6.26 (V, Prop. 1.1.3 in [67]). For every local homomorphism h ∶ P → N, i.e., we
have h−1(0) = {0} and we may view h as a grading, it holds

OAan
P
,0 =

⎧⎪⎪⎨⎪⎪⎩
∑
p∈P

αpz
p
RRRRRRRRRRR
αp ∈ C, supp∈P+ {

log ∣αp∣
h(p)

} < ∞
⎫⎪⎪⎬⎪⎪⎭
⊂ CJP K.

We have Γ(Y,OY ) ≅ C[EK] ∶= ⊕e∈EK C ⋅ze with ze ⋅ze
′

= ze+e
′

if e+e′ ∈ EK and ze ⋅ze
′

= 0
otherwise. By [39, Cor. 3.2] and Lemma 6.26, the complete local ring at the origin in Y an is

ÔY,0 ≅ (C[Q]/(K)) ⊗CJQK CJP K ≅
⎧⎪⎪⎨⎪⎪⎩
∑
e∈EK

αez
e
⎫⎪⎪⎬⎪⎪⎭
=∶ CJEKK.

Lemma 6.26 together with Krull’s intersection theorem and the surjectivity of the map
OAan

P
,0 → OY an,0 yields

OY an,0 =
⎧⎪⎪⎨⎪⎪⎩
∑
e∈EK

αez
e ∈ CJEKK

RRRRRRRRRRR
supe∈EK∖0 { log∣αe∣

h(e)
} < ∞

⎫⎪⎪⎬⎪⎪⎭
. (14)

The next lemma describes the analytic stalks of OY -modules of a particular form. Note
that the differential forms Wm

Y /T and Wm
Y are of this form by Corollaries 6.23 and 6.24.

Lemma 6.27. Let (V, ⟨⋅, ⋅⟩) be a finite-dimensional C-vector space with a Hermitian inner
product. For every e ∈ EK , let Ve ⊂ V be subvector spaces so that

Ṽ ∶= ⊕
e∈EK

ze ⋅ Ve ⊂ V [EK]

is a C[EK]-module. Assume moreover that Ve ⊂ V depends only on the set

F (e) ∶= {H ⊂ P a facet ∣ Q ⊂H,e ∈H}.

Set V JEKK ∶= ∏e∈EK z
e ⋅ Ve, and let Van ∶= Ṽ ⊗C[EK] OY an be the coherent analytic sheaf

associated to Ṽ . We find its stalk at the origin to be

Van0 ≅
⎧⎪⎪⎨⎪⎪⎩
∑
e∈EK

ze ⋅ ve ∈ V JEKK
RRRRRRRRRRR

supe∈EK∖0 { log ∥ve∥
h(e)

} < ∞
⎫⎪⎪⎬⎪⎪⎭
,

where ∥ ⋅ ∥ denotes the absolute value on V induced by ⟨⋅, ⋅⟩.

Proof. For brevity, we denote the right hand side of the claim by M . By definition, we
have Van0 = Ṽ ⊗C[EK] OY an,0. Denoting the completed stalk by V̂0, we get a sequence of

injections Ṽ an0 → V̂0 → V JEKK and find the image of Van0 → V JEKK to be in M by a direct
computation.

For every set G of facets of P containing Q, we set

SG ∶= {e ∈ P ∣ F (e) = G} ⊂ ⋂
F ∈G

F =∶ FG ,

so FG ⊂ P is a face, and SG ⊂ FG is an ideal. There are s1
G , ..., s

k
G ∈ SG with SG = ⋃ki=1(siG+FG),

and we can find subsets T iG ⊂ siG + FG such that SG = ∐k
i=1 T

i
G disjointly. Given an element

v = ∑ zeve ∈M , we want to show it in the image of Van0 → V JEKK. We decompose v as

v = ∑
G
∑
i

∑
e∈EK∩T i

G

zeve.
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Choosing one orthonormal basis v1
G , ..., v

`
G of all Ve with e ∈ EK∩SG , we expand ve = ∑j αjev

j
G .

Without loss of generality, we assume siG ∈ EK for otherwise EK ∩T iG = ∅. Setting δip = 1, if
siG + p ∈ EK ∩ T iG and δip = 0 otherwise, we write

∑
e∈EK∩T i

G

zeve = ∑
p∈FG

zs
i
G
+pδip

`

∑
j=1

αj
si
G
+pv

j
G =

`

∑
j=1

⎛
⎝ ∑p∈FG

zpδipα
j

si
G
+p

⎞
⎠
⋅ zs

i
GvjG .

Defining fG,i,j ∶= ∑p∈FG z
pδipα

j

si
G
+p ∈ CJEKK, we have

supp∈EK∖0

⎧⎪⎪⎪⎨⎪⎪⎪⎩

log ∣αj
si
G
+p∣

h(p)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
< ∞,

hence fG,i,j ∈ OY an,0. Namely ∣αj
si
G
+p∣ ≤ ∥vsi

G
+p∥ since the basis is orthonormal, and further-

more 1
h(p) ≤

1
h(si

G
+p) ⋅ (1 + h(s

i
G)), so the set is bounded. Hence Van0

≅Ð→M ⊂ V JEKK.

7 Differential Forms in Characteristic p > 0

We adapt the positive characteristic part of Deligne–Illusie’s approach to the Hodge–de
Rham spectral sequence in [17] to our setting. To this end, we introduce the Cartier isomor-
phism for log toroidal families. It is a key ingredient for the Decomposition Theorem 7.11
below, which lies at the heart of the E1-degeneration of the Hodge–de Rham spectral se-
quence and is an analog of [17, Thm. 2.1].

7.1 The Cartier Isomorphism

In this section, we define the Cartier homomorphism for a generically log smooth family
f ∶ X → S in characteristic p > 0. We then prove that it is an isomorphism if f is log
toroidal. Similar to [8], we first study the situation on U and then examine its extension to
all of X. Let FS ∶ S → S be the absolute log Frobenius on the base, i.e., given by taking p-th
power in MS and OS respectively. Similarly, FX ∶ X → X is the absolute log Frobenius on
X (with log part defined on U). We define f ′ ∶X ′ → S and the relative Frobenius F by the
Cartesian square

X

f   

F //

FX

$$
X ′

f ′

��

s // X

f

��
S

FS // S.

Set U ′ ∶= s−1(U) and Z ′ =X ′ ∖U ′.

Theorem 7.1 ([50]). We have a canonical (Cartier) isomorphism of OU ′-modules

C−1
U ∶ ΩmU ′/S →H

m(F∗Ω●
U/S),

which is compatible with ∧ and satisfies C−1(a) = F ∗(a) for a ∈ OX′ and
C−1(dlog(s∗q)) = dlog(q) for q ∈ MU .

Proof. This is [50, Thm. 4.12(1)] once we identify U ′′ = U ′: Kato considers the factorization

U
g→ U ′′ h→ (U ′)int i→ U ′ of F ∣U , where i is the integralization of U ′ and g ○ h is the unique

factorization of this weakly purely inseparable morphism, where h is étale and g purely
inseparable, using [50, Prop. 4.10(2)]. Now i is an isomorphism because f is integral. By
[67, III, Cor. 2.5.4], since f ∶ U → S is saturated, the relative Frobenius F ∶ U → U ′ is exact.
The uniqueness of the factorization g ○ h implies that h is an isomorphism.
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Since Wm
X′/S is Z ′-closed, pushing forward the inverse of C−1

U to X ′, we obtain a homo-
morphism

C ∶ Hm(F∗W ●
X/S) →Wm

X′/S ,

which is an isomorphism on U ′. We obtain the following lemma.

Lemma 7.2. The map C is an isomorphism if and only if Hm(F∗W ●
X/S) is Z ′-closed.

Definition 7.3. We say that a generically log smooth family f ∶X → S in positive charac-
teristic has the Cartier isomorphism property if C is an isomorphism for all m ≥ 0.

By Theorem 7.1, the cohomology sheaf Hm(F∗W ●
X/S) is locally free on U ′, hence it is

Z ′-closed if and only if it is reflexive. Reflexivity can be checked étale locally.

Lemma 7.4. Let (Q ⊂ P,F) be an ETD, let b ∶ T → AQ be strict with T = Spec T , and
consider the Cartesian diagram

Y
c //

g

��

AP,F

f

��
T

b // AQ.

Then Hm(F∗W ●
Y /T ) is reflexive.

Corollary 7.5. Every log toroidal family f ∶ X → S over Fp has the Cartier isomorphism
property.

Proof of Lemma 7.4. Set V ∶= c−1(UP ) and let Y ′, V ′ be the base changes by the absolute
Frobenius FT . Let F ∶ Y → Y ′ be the relative Frobenius. Inspired by the Frobenius de-
composition [17, Thm. 2.1], we construct a homomorphism φ● ∶ ⊕mW

m
Y ′/T [−m] → F∗W

●
Y /T

of complexes of OY ′-modules, which induces an isomorphism in cohomology. Since the left
hand side has zero differentials, the assertion then follows from the reflexivity of Wm

Y ′/T given
by Lemma 2.13.

Similar to Section 6.2, we find explicitly that R′ ∶= Γ(Y ′,OY ′) = ⊕e∈E z
e ⋅ T with

ze1 ⋅ ze2 = ze ⋅ σ(q)p whenever e1 + e2 = e + q

with e ∈ E, q ∈ Q. We have s∗(ze ⋅ t) = ze ⋅ tp and F ∗(ze ⋅ t) = zp⋅e ⋅ t. After writing
Wm
e ∶= (Wm

f )e ⊗Fp T , the module Γ(Y ′,Wm
Y ′/T ) is given by the T -module ⊕e∈E z

e ⋅Wm
e , on

which R′ acts as

(ze1 ⋅ t1) ⋅ [ze2 ⋅ (w ⊗ t2)] = ze ⋅ (w ⊗ σ(q)pt1t2) whenever e1 + e2 = e + q

with e ∈ E, q ∈ Q. Similarly, Γ(Y ′, F∗W
m
Y /T ) is given by the same T -module, however now

R′ acting via F ∗ as

(ze1 ⋅ t1) ⋅ [ze2 ⋅ (w ⊗ t2)] = ze ⋅ (w ⊗ σ(q)t1t2) whenever p ⋅ e1 + e2 = e + q.

Note the subtle difference. The differential on F∗W
●
Y /T is given by

d(ze ⋅ (w ⊗ t)) = ze ⋅ ([e] ∧w ⊗ t).

We define
φ● ∶ ⊕

m

Wm
Y ′/T [−m] → F∗W

●
Y /T , ze ⋅ (w ⊗ t) ↦ zp⋅e ⋅ (w ⊗ t)

and claim that Hm(φ●) is an isomorphism. Indeed, first note that φ● itself is injective. Then
set Ep = {p ⋅ e∣e ∈ E}. We have im(φm) = ⊕e∈Ep z

e ⋅Wm
e because Wm

e = Wm
e/p for e ∈ Ep by

Prop. 6.4. Denoting the coboundaries of F∗W
m
Y /T by Bm, we have im(φm) ∩Bm = 0 since

0 = [e] ∈W 1
e for e ∈ Ep because e = pe′ and p is zero in T . This readily gives that Hm(φ●)

is injective. For surjectivity, if e ∉ Ep, observe that [e] /= 0, so if w ∈Wm
e , then [e] ∧w = 0 if

and only if there is some w′ ∈Wm−1
e with [e] ∧w′ = w.

Remark 7.6. We believe that Hm(φ●) is the log Cartier isomorphism on V ′, but we did not
prove it and do not need it.
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7.2 The Decomposition of F∗W ●
X0/S0

We prove Theorem 7.11 below, which is a log version of the Decomposition Theorem [17,
Thm. 2.1] in the setting of generically log smooth families. Though rather technical, it is the
key ingredient in the proof of the Degeneration Theorem 8.1. The assumption for f ∶X → S
to be saturated on the log smooth locus allows a simpler approach than [50, Thm. 4.12].

Our setting is as follows: Let k be a perfect field with char k = p, and let Q be a sharp
toric monoid. We set

S0 = Spec (Q→ k) and S = Spec (Q→W2(k))

where in both cases Q ∋ q ↦ 0 except 0 ↦ 1. Here W2(k) is the ring of second Witt
vectors, which is flat over Z/p2Z since k is perfect. The Frobenius endomorphism on k
becomes an endomorphism F0 of S0 via Q ∋ q ↦ pq. Similarly, its lift to W2(k) defined
via (a1, a2) ↦ (ap1, a

p
2) becomes1 an endomorphism FS of S that restricts to F0 on S0. Let

f ∶ X → S be a generically log smooth family and let f0 ∶ X0 → S0 be its restriction to S0.
We consider the commutative diagram of generically log smooth families

X0
F //

f0

((

i

~~

X ′
0

f ′0

��

s //

i′

~~

X0

f0

��

~~
X

f

((

G // X ′ //

f ′

��

X

f

��

S0
F0

//

~~

S0
//

��

Spec Fp

S
FS // S // Spec Z/p2Z,

��

where X ′
0,X

′ are defined by requiring the front and back square to be Cartesian and F is the
relative Frobenius, i.e., F is induced by the back square’s Cartesianness using the Frobenius
endomorphisms on X0 and S0. Since X does not have a Frobenius, we do not easily obtain
the dotted arrow G in a similar way, and in general, it does not exist globally. We call a
locally defined morphism G that fits into the diagram a local Frobenius lifting. Because the
(Zariski or étale) topologies are identified along F and i, we can define Frobenius liftings
simply at the level of sheaves:

Definition 7.7. Let Y ′ →X ′ be an étale open. Then a Frobenius lifting G ∶ Y → Y ′ on Y ′

consists of a ring homomorphism G∗ ∶ OY ′ → G∗OY yielding a morphism of schemes and a
monoid homomorphism G∗ ∶ MY ′ ∣V ′ → G∗MY ∣V ′ defined on some V ′ ⊂ Y ′ satisfying (CC),
yielding a log morphism. Two Frobenius liftings are considered equal if they are equal on
some smaller (Zariski) open satisfying (CC). The Frobenius liftings form an étale sheaf of
sets Frob(X,X ′).

Remark 7.8. We need the flexibility of V ′ in the definition of Frob(X,X ′) to construct
Frobenius liftings from local models as they occur for log toroidal families. We will see
below that we could have as well required the log part to be defined on Y ′∩U ′, see the proof
of Proposition 7.10.

Let j ∶ U ′ ⊂ X ′ denote the pullback of U ⊂ X and Z ′ = X ′ ∖ U ′. By Lemma 2.7,
Frob(X,X ′) = j∗Frob(X,X ′)∣U ′ . Let I ⊂ OX be the ideal sheaf defining X0 ⊂ X. Because
X is flat over Z/p2Z (in particular because k is perfect), we have I = p ⋅ OX ≅ OX0 . Using
I2 = 0, one checks that F∗I is an OX′-module. Considering derivations on U ′ with values
in F∗I, we obtain a sheaf of groups

G ∶= j∗DerU ′/S(F∗I) = j∗Hom(Ω1
U ′/S , F∗I),

which agrees with Hom(W 1
X′/S , F∗I) because F∗I is Z ′-closed by Lemma 2.7.

1Warning: This is not the pth power map on W2(k) and thus depends on the chosen chart.
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Lemma 7.9. The restriction Frob(X,X ′)∣U ′ is a G∣U ′-torsor, so Frob(X,X ′) is a G-
pseudo-torsor.

Proof. Let D be the sheaf of sets on U ′ given by étale local deformations of the diagram

U0
i′○FÐÐÐÐ→ U ′

i
×××Ö

f ′
×××Ö

U
fÐÐÐÐ→ S

in the sense of [67, IV, Def. 2.2.1], i.e., D is the sheaf of morphisms U → U ′ making the
diagram commute. The sheaf D is a G∣U ′-pseudo-torsor by [67, IV, Thm. 2.2.2], and because
f ′ ∶ U ′ → S is smooth, it is a torsor. Because Ω1

U ′/S is locally free, D is locally isomorphic

to (F∗I)⊕d. By Lemma 2.7, D is Z̃-closed for every Z̃ ⊂X ′ satisfying codim(Z̃,X ′) ≥ 2. By
this property, the obvious homomorphism D → Frob(X,X ′)∣U ′ is an isomorphism of sheaves
of sets making Frob(X,X ′)∣U ′ a G∣U ′-torsor.

Proposition 7.10. Let Y ′ → X ′ be an étale open and G ∶ Y → Y ′ a local Frobenius lifting.
Then there is a canonical homomorphism of complexes

φG ∶W 1
Y ′

0/S0
[−1] → F∗W

●
Y0/S0

inducing the Cartier isomorphism in first cohomology on U ′
0∩Y ′

0 . If h ∈ G(Y ′), then φG and
φh⋅G are related by

φh⋅G = φG + (F∗d) ○ h̃,

where h̃ ∶W 1
Y ′

0/S0
→ F∗I ≅ F∗W 0

Y0/S0
is the induced homomorphism.

Proof. We choose V ′ = U ′ ∩ Y ′ for the representative of G. The straightforward log version
of the construction of [46, Prop. 3.8] yields a homomorphism Ω1

V ′

0/S0
→ F∗Ω1

V0/S0
, and this

has also been used implicitly by Kato in [50, Thm. 4.12]. Applying j∗ yields (φG)1, and we
define the other (φG)m to be 0. The resulting φG does not depend on V ′ since the involved
sheaves are Z̃-closed for every Z̃ ⊂ Y ′

0 satisfying codim(Z̃, Y ′
0) ≥ 2, so φG is well-defined. The

construction yields that H1(φG) is the Cartier isomorphism of Theorem 7.1 on V ′
0 = U ′

0∩Y ′
0 .

The second statement is similar to [46, Lemma 5.4,(5.4.1)] except that we use the more
elegant language of torsors (as already remarked in [17, Rem.2.2 (iii)]) which renders the
analog of [46, Lemma 5.4,(5.4.2)] trivial.

Theorem 7.11 (Decomposition Theorem). Let f ∶X → S be a generically log smooth family,
assume that f0 ∶X0 → S0 has the Cartier isomorphism property (Def. 7.3), and assume that
Frob(X,X ′) is a G-torsor. Then we have a quasi-isomorphism

⊕
m<p

Wm
X′

0/S0
[−m] → τ<pF∗W

●
X0/S0

in Db(X ′
0), where τ<p means the truncation of a complex.

Proof. Because Frob(X,X ′) is a torsor, we can find an étale cover Y = {Y ′
α} of X ′ such

that we have a local Frobenius lifting Gα ∶ Yα → Y ′
α. We obtain an induced cover Y0 of

X ′
0. On the log smooth locus U ′

0 ⊂ X ′
0, we can apply an argument as implicitly used in

[50, Thm. 4.12]: using Proposition 7.10, the gluing method of Step B in the proof of [46,
Thm. 5.1] yields a homomorphism

ϕ ∶ Ω1
U ′

0/S0
[−1] → Č●(Y0 ∩U ′

0, F∗Ω●
U0/S0

) =∶ Č●U

of complexes of sheaves, where Č●(U,F●) refers to the total sheaf Čech complex for a cover
U and a complex of sheaves F●. We also have the natural quasi-isomorphism

ψ ∶ F∗W ●
X0/S0

→ Č●(Y0, F∗W
●
X0/S0

).
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When we use ψ and that the question is local, Proposition 7.10 gives that ϕ induces the
Cartier isomorphism on U ′

0 for H1. Now let 0 ≤m < p. With the antisymmetrization map

am ∶ ΩmU ′

0/S0
[−m] → (Ω1

U ′

0/S0
[−1])⊗m

defined by am(ω1 ∧ ... ∧ ωm) = 1
m! ∑σ∈Sm sgn(σ)ωσ(1) ⊗ ...⊗ ωσ(m), we obtain a morphism

ϕm ∶ ΩmU ′

0/S0
[−m] amÐÐ→ (Ω1

U ′

0/S0
[−1])⊗m ϕ⊗mÐÐ→ (Č●U)⊗m → Č●U ,

where the last map is induced by the wedge product on F∗Ω●
U0/S0

. Note that the various

ϕm are compatible with the wedge product of Ω●
U ′

0/S0
and of the cohomology of F∗Ω●

U0/S0
,

hence ϕm induces the Cartier isomorphism in cohomology. Taking the sum, we obtain a
quasi-isomorphism

ϕ● ∶ ⊕
m<p

ΩmU ′

0/S0
[−m] → τ<pČ●U .

Since j∗Č●U = Č●(Y0, F∗W
●
X0/S0

), we obtain the desired homomorphism in Db(X ′
0) as the

composition ψ−1 ○ j∗ϕ●. It is a quasi-isomorphism because f0 ∶ X0 → S0 has the Cartier
isomorphism property by assumption.

Remark 7.12. Assuming a lifting of f0 ∶ X0 → S0, this is a generalization of [17, Thm. 2.1].
The results [17, Cor. 3.7] and [46, Thm. 5.1] assume a lifting of f ′0 ∶X ′

0 → S0 instead. These
results do not generalize well to the generically log smooth setting.

We like to apply this theorem to the case of a log toroidal family. It remains only to
show that Frob(X,X ′) is a torsor:

Proposition 7.13. In the above situation, assume f ∶ X → S is a log toroidal family with
respect to S → AQ. Then Frob(X,X ′) is a G-torsor, i.e., Frobenius liftings exist locally.

Proof. Let (Q ⊂ P,F) be an ETD from a local model of f ∶X → S, and consider the diagram

L

��

F // L

��

c // AP,F

��
S

FS // S
a // AQ.

For the local existence of a Frobenius lifting, it suffices to show that there is a scheme
morphism F ∶ L→ L and a log morphism on c−1(UP ) such that the diagram commutes and
the induced map F ×S S0 on L0 = L×S S0 is the absolute Frobenius. Then F plays the role of
an absolute Frobenius on L, and its induced relative Frobenius gives rise to a local Frobenius
lifting on X ′ via the local model. The scheme L is affine with O(L) = ⊕e∈E z

e ⋅W2(k),
allowing us to define F ∶ L→ L via F ∗(ze ⋅w) ∶= zpe ⋅ F ∗

S(w). Note the maps

M ∶= Spec (P → O(L)) → L→ Spec (Q→ O(L)) =∶ N,

and by using Wi ∶= c−1(Ui) with the notation of Corollary 3.17, observe that M ∣W1 = L∣W1

and L∣W2 = N ∣W2 . On N and M , we get morphisms FN ∶ N → N and FM ∶ M → M by
mapping q ↦ p ⋅ q on the monoids and using F ∗ on the rings. They are compatible with
each other and with the maps to S, and moreover, FN ×S S0 and FM ×S S0 are the absolute
Frobenii on N0,M0. We define partially F ∣W1 ∶= FM ∣W1 and F ∣W2 ∶= FN ∣W2 . Because
N ∣W1∩W2 = L∣W1∩W2 = M ∣W1∩W2 , these definitions agree on W1 ∩W2, and we obtain a log
morphism defined on c−1(UP ) =W1 ∪W2. This gives the desired map.

8 The Hodge–de Rham Spectral Sequence

In this section, we prove the degeneration of the Hodge–de Rham spectral sequence for log
toroidal families.
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The Absolute Case

We start with the absolute case over S = Spec (Q→ k).

Theorem 8.1. Let S = Spec (Q → k) for a sharp toric monoid Q and a field k ⊃ Q, and
let f ∶X → S be a proper log toroidal family of relative dimension d with respect to S → AQ.
Then E(X/S) degenerates at E1.

Proof. The proof is analogous to [17, 46]. Because Epq∞ is a subquotient of Epq1 , it suffices
to show

∑
p+q=n

dim Rqf∗W
p
X/S = dim Rnf∗W

●
X/S . (15)

We spread out f ∶X → S to a proper log toroidal family fλ ∶Xλ → Sλ of relative dimension d
with respect to Sλ → AQ using Proposition 4.18. Shrinking Sλ, we can assume Rqfλ∗W

p
Xλ/Sλ

and Rnfλ∗W
●
Xλ/Sλ locally free of constant rank and that Sλ → Spec Z is smooth. By

Theorem 6.16, we can assume furthermore that Wm
Xλ/Sλ commutes with every base change,

and inverting all primes that are smaller than d, we can assume char κ(s) > d for every
residue field of a closed point s ∈ Sλ (which is necessarily a finite field by [46, Prop. 6.4]).

For a closed point κ = κ(s) → Sλ, the geometric-functorial characterization of smoothness
provides a splitting

T0 = Spec κ→ T = Spec W2(κ) → Sλ,

which induces by strict base change a diagram

X ÐÐÐÐ→ Xλ ←ÐÐÐÐ Y ←ÐÐÐÐ Y0

f
×××Ö

fλ
×××Ö

g
×××Ö

g0

×××Ö
S ÐÐÐÐ→ Sλ ←ÐÐÐÐ T ←ÐÐÐÐ T0

of proper log toroidal families. By Lemma 6.18, it suffices to prove the equality (15) for
g0 ∶ Y0 → T0. Since g ∶ Y → T is log toroidal with respect to T → AQ, we have a decomposition

⊕Wm
Y ′

0/T0
[−m] ≅ (F0)∗W ●

Y0/T0

in Db(Y ′
0) by Theorem 7.11 (where our notation is analogous to Section 7.2). Indeed,

char κ = p > d. Since F0 ∶ Y0 → Y ′
0 is a homeomorphism, we have

Rng0∗W
●
Y0/T0

= Rng′0∗F0∗W
●
Y0/T0

≅
d

⊕
m=0

Rng′0∗W
m
Y ′

0/T0
[−m].

The field κ is perfect, so we have by flat base change

Rng′0∗W
m
Y ′

0/T0
[−m] = Rn−mg′0∗s∗Wm

Y0/T0
= F ∗

κR
n−mg0∗W

m
Y0/T0

,

where Fκ ∶ T0 → T0 is the absolute Frobenius, and s ∶ Y0 → Y0 is its base change.

The Relative Case over a One-Dimensional Base

In this case, we need analytic methods, so we restrict to k = C. Let Am ∶= C[t]/(tm+1) and

Sm ∶= Spec (N 1↦t→ Am).

Theorem 8.2. Let S = Sm, and let f ∶ X → S be a proper log toroidal family of relative
dimension d with respect to S → AN. Then:

1. Rqf∗W
p
X/S is a free Am-module whose formation commutes with base change.

2. The spectral sequence Rqf∗W
p
X/S ⇒ Rp+qf∗W

●
X/S degenerates at E1.
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Proof. By Corollary 6.12, the formation of W p
X/S commutes with base change, which is an

ingredient for the classical base change theorem, e.g. [16, §3], [54, Theorem (8.0)]. It thereby
suffices to show the surjectivity of

Hk(X,W ●
X/S) → Hk(X0,W

●
X0/S0

).

We prove this with the idea of [71, Section (2.6)], cf. [55, Lemma 4.1] and [31, Thm. 4.1].
We define a complex

L● ∶=W ●,an
X [u] =

∞
⊕
s=0

W ●,an
X ⋅ us, d(αsus) = dαs ⋅ us + sδ(ρ) ∧ αs ⋅ us−1,

of analytic sheaves, where ρ = f∗(1) ∈ MXan and δ ∶ MXan → W 1,an
X is the log part of

the universal derivation. Here W ●,an
X denotes absolute differentials as in Corollary 6.24.

Projection to the u0-summand composed with W ●,an
X → W ●,an

X/S yields a map L● → W ●,an
X/S ,

whose composition with W ●,an
X/S →W ●,an

X0/S0
fits into an exact sequence

0→ K● → L● φ●Ð→W ●,an
X0/S0

→ 0

of complexes, which defines K●. By Corollary 4.16, we find for every C-valued point x̄ ∈ X
a local model at x̄, so we may use Corollaries 6.23, 6.24 and Lemma 6.27 to have a local
description of this sequence. Lemma 8.4 below verifies that K● is acyclic for all ETDs over
N, so φ● is a quasi-isomorphism and the theorem follows by the discussion in Section 2.7.

Remark 8.3. There are problems with similar theorems in earlier works: The generalization
from a one-dimensional base to higher dimensions in [55, p. 404] is flawed, which then also
affects [31, Theorem 4.1]. In addition, there is a gap in the proof of [31, Theorem 4.1]
related to the fact that the de Rham differential of Ω●

X/S is not OX -linear. Since our result

encompasses the one-parameter base case of [31, Theorem 4.1], Theorem 8.2 closes the latter
gap.

Lemma 8.4. Let (N ⊂ P,F) be an ETD, and let f ∶ X → S = Sm be the base change of
AP,F → AN along Sm → AN. With 0 ∈ AP,F denoting the origin, we have Hk(K●)0 = 0 for
all k.

Proof. We choose Hermitian inner products on the two vector spaces L ∶= P gp ⊗ C and
W ∶= (P gp ⊗C)/(Ngp ⊗C). With K = (m + 1) +N ⊂ N, we recall EK from §6.4. For e ∈ EK ,
we define

Le ∶= ⋂
H∈Fmax∖F∶e∈H

Hgp ⊗C and We ∶= ⋂
H∈Fmax∖F∶e∈H

(Hgp ⊗C)/(Ngp ⊗C).

By Lemma 6.27, elements of Lk0 are formal sums

(`e,s) ∶=
N

∑
s=0

∑
e∈EK

usze`e,s , `e,s ∈
k

⋀Le , supe∈EK∖0
1≤s≤N

{log∥`e,s∥/h(e)} < ∞,

and elements of W k,an
X0/S0,0

are formal sums

(we) ∶= ∑
e∈E

ze ⋅we, we ∈
k

⋀We , supe∈E∖0 {log∥we∥/h(e)} < ∞.

Note that (`e,s) is summed over EK , whereas (we) is summed over E. We denote the kernel
of π ∶ ⋀k Le → ⋀kWe by Kk

e and observe φ((`e,s)) = (π(`e,0)), so (`e,s) ∈ Kk0 if and only if
`e,0 ∈Kk

e for all e ∈ E. With ρ̄ ∶= 1⊗ 1 ∈ Ngp ⊗C we have δ(ρ) = z0 ⋅ ρ̄ ∈W 1
X and thus

d((`e,s)) = (e ∧ `e,s + (s + 1)ρ̄ ∧ `e,s+1). (16)

Let (`e,s) ∈ K0
0 and assume d((`e,s)) = 0. Since `e,s ∈ C, for e /= 0 by descending induction

in s starting from `e,N , we find `e,s = 0. We have `0,0 = 0, and ascending induction yields
`0,s = 0. Thus H0(K●)0 = 0.

Next, let (`e,s) ∈ Kk+1
0 for k ≥ 0 with d((`e,s)) = 0. Starting with e = 0, we construct

(τe,s) ∈ Kk0 with d((τe,s)) = (`e,s) using the following claim.
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Claim 8.5. Let (L, ⟨⋅, ⋅⟩) be a C-vector space of finite dimension with a Hermitian inner
product. Let 0 /= p ∈ L and k ≥ 0, and assume ` ∈ ⋀k+1L with p ∧ ` = 0. Then there is a
˜̀∈ ⋀k L with p ∧ ˜̀= ` and ∥p∥ ⋅ ∥˜̀∥ = ∥`∥.

Proof. Let `1 ∶= p
∥p∥ , `2, ..., `n be an orthonormal basis of L, and {`i1...ik} the induced basis

of ⋀k L. If ` = ∑αi1...ik+1
`i1...ik+1

satisfies the assumption, then ˜̀= 1
∥p∥ ∑α1i2...ik+1

`i2...ik+1
is

a solution.

We set τ0,0 = 0. Writing out (16) for e = 0 yields

d(`0,0 + `0,1u + `0,2u2 + ...) = ρ̄ ∧ `0,1 + 2ρ̄ ∧ `0,2u + 3ρ̄ ∧ `0,3u2 + ...

and therefore ρ̄∧`0,i = 0 for i > 0. Since `0,0 ∈K0
0 , we also have ρ̄∧`0,0 = 0. By Claim 8.5, there

is τ0,s+1 ∈ ⋀k L0 with ρ̄∧τ0,s+1 = `0,s, and we are done with the case e = 0. For e ≠ 0, we need
to care about convergence. Without loss of generality, N ≥ 1. Since e∧ `e,N = 0, we can find
by Claim 8.5 an element τe,N ∈ ⋀k Le with e∧ τe,N = `e,N and ∥τe,N∥ ⋅ ∥e∥ = ∥`e,N∥. For s ≥ 1,
we construct τe,s ∈ ⋀k Le by descending induction. Because of e∧(`e,s−(s+1)ρ̄∧τe,s+1) = 0,
there is τe,s with e ∧ τe,s = `e,s − (s + 1)ρ̄ ∧ τe,s+1 and

∥τe,s∥ ⋅ ∥e∥ = ∥`e,s − (s + 1)ρ̄ ∧ τe,s+1∥. (17)

For e ∉ E, we go one step further and construct τe,0 ∈ ⋀k Le with the same method, but for
e ∈ E, the construction of τe,0 ∈Kk

e is more intricate. We need another claim:

Claim 8.6. Let (L, ⟨⋅, ⋅⟩) be a C-vector space of finite dimension with a Hermitian inner
product. Let 0 /= V,Y ⊂ L be subspaces with V ∩ Y = 0. Then there is a constant γ > 0 with
the following property: For every subspace H with V ⊂H ⊂ L and k ≥ 0, let Kk

H be the kernel
of ⋀kH → ⋀k(H/V ). Then for every 0 /= p ∈ Y ∩H and every ` ∈Kk+1

H with p ∧ ` = 0, there

is a ˜̀∈Kk
H with p ∧ ˜̀= ` and γ ⋅ ∥p∥ ⋅ ∥˜̀∥ ≤ ∥`∥.

Proof. Let p = (p1, p2) be the decomposition of p under L = V ⊕ V ⊥, so ∥p∥2 = ∥p1∥2 + ∥p2∥2.
Since V ∩ Y = 0, we have for γ2 ∶= inf0/=p∈Y ∥p2∥2/∥p∥2 that 0 < γ ≤ 1. Let `0 ∶= p2

∥p2∥ , `1, `2, ...

be an orthonormal basis of H; then ¯̀
0 = p

∥p∥ , ¯̀
i ∶= `i for i > 0, is an ordinary basis of H.

For ` = ∑αi0...ik ¯̀
i0...ik ∈Kk+1

H with p ∧ ` = 0, we define ˜̀ ∶= 1
∥p∥ ∑α0i1...ik

¯̀
i1...ik ∈Kk

H to have

p ∧ ˜̀= `. We also find

∥`∥2 = ∥∑α0i1...ik

p

∥p∥
∧ `i1...ik∥

2

≥ ∥∑α0i1...ik

p2

∥p∥
∧ `i1...ik∥

2

≥ γ2 ⋅ ∥p∥2 ⋅ ∥˜̀∥2.

We apply Claim 8.6 to L = P gp⊗C. Let Fe ⊂ P be the face generated by e and Y = F gpe ⊗C.
Let V = Ngp ⊗C and H = Le, so Kk

H =Kk
e . Then e∧ (`e,0 − ρ̄∧ τe,1) = 0, so we find τe,0 ∈Kk

e

with e ∧ τe,0 = `e,0 − ρ̄ ∧ τe,1 and

γ ⋅ ∥τe,0∥ ⋅ ∥e∥ ≤ ∥`e,0 − ρ̄ ∧ τe,1∥. (18)

The factor γ depends on Y , but there are only finitely many faces generated by elements
e ∈ E, so we take for γ the minimum over them and furthermore γ < 1. Applying the triangle
inequality to the right hand side of (18) and using induction and (17) yields

∥τe,s∥ ≤
1

γ
⋅ 1

∥e∥

N

∑
k=s

(∥ρ̄∥
∥e∥

)
k−s

⋅ k!

s!
⋅ ∥`e,k∥

for all e /= 0. Because infe/=0{∥e∥} > 0, there is a bound M > 1 independent of e such that
∥τe,s∥ ≤M ⋅maxk{∥`e,k∥}, which proves

supe∈EK∖0 {log∥τe,s∥/h(e)} < ∞

and thus (τe,s) ∈ Kk0 . By construction, d((τe,s)) = (`e,s), so Hk(K●)0 = 0.
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Similar to Deligne’s classical work [16], the degeneration over infinitesimal bases extends
to families over S = Spec (N → CJtK). Since [16] explains only very roughly how it works,
we do it here in more detail.

Corollary 8.7. Let S = Spec (N → CJtK), and let f ∶ X → S be a proper log toroidal family
of relative dimension d with respect to S → AN. Then the Hodge–de Rham spectral sequence
E(X/S) degenerates at E1, and Rqf∗W

p
X/S is locally free.

Proof. Let Sm be as above and define proper log toroidal families fm ∶ Xm → Sm by base
change. Let bm ∶ Sm → S and cm ∶Xm →X as well as bmn ∶ Sm → Sn and cmn ∶Xm →Xn be
the closed immersions. Choose injective Cartan–Eilenberg resolutions W ●

Xm/Sm → L●●m and

W ●
X/S → L●● (in the category of e.g. f−1OS modules). Similar to the proof of Lemma 2.46,

we find maps
L●● → cn∗L

●●
n → cm∗L

●●
m

of resolutions that are unique up to homotopy (in particular, these maps are compatible
with composition only up to homotopy). Applying f∗, taking the spectral sequence of a
double complex, using f∗cm∗ = bm∗g∗ and the exactness of bm∗ we find maps of spectral
sequences

E(X/S) → bn∗E(Xn/Sn) → bm∗E(Xm/Sm)

of OS-modules. A priori, these maps are not unique, but [11, XV. Prop. 6.1] shows them
unique from E2 on. However, on E1 the maps are the canonical maps

Rqf∗W
p
X/S → bm∗R

qfm∗W
p
Xm/Sm

since the double complexes are Cartan–Eilenberg resolutions (hence the rows are injective
resolutions of the pieces). Therefore, we have maps of spectral sequences that are compat-
ible with composition. The spectral sequences bm∗E(Xm/Sm) degenerate at E1, so their
limit lim←Ðk bm∗E(Xm/Sm) is a spectral sequence (though inverse limits are not exact) which

moreover degenerates at E1. The induced map

E(X/S) → lim←Ð
k

bm∗E(Xm/Sm)

is an isomorphism since it is on E1 by [34, III. Thm. 4.1.5]. (Note that Rqf∗W
p
X/S is already

a complete module.) Thus E(X/S) degenerates at E1. The modules Rqfm∗W
p
Xm/Sm are

flat, and the maps between them are surjective, so their limit Rqf∗W
p
X/S is flat (hence locally

free) by [5, 0912, Lemma 15.27.4].

Remark 8.8. The spectral sequence E(X/S) also degenerates for proper log toroidal families
over S = Spec (N → C[t](t)). Namely, denoting by X̂ → Ŝ the base change along the

completion C[t](t) → CJtK, the natural map E(X/S) → E(X̂/Ŝ) is injective (by the Krull

intersection theorem). The cohomologies Rqf∗W
p
X/S are locally free since Ŝ → S is faithfully

flat.

The Relative Case over a Higher-Dimensional Base

The case of a higher-dimensional base can be reduced to the one-dimensional case by an idea
of Chan–Leung–Ma in [12]. Let Q be a sharp toric monoid with maximal ideal Q+ = Q∖{0},
and set Am = C[Q]/(Q+)m+1.

Lemma 8.9. Let (Q+)n ⊂ I ⊂ J ⊂ C[Q] be monomial ideals with dimC(J/I) = 1. Let
h ∶ Q → N be a homomorphism such that I = h−1(zk+1) and J = h−1(zk). Moreover, let
S′ = Spec (Q → C[Q]/I), let f ′ ∶ X ′ → S′ be a proper log toroidal family with respect to
S′ → AQ, let S = Spec (Q → C[Q]/J), and let f ∶ X → S be the base change along S → S′.
Then

Hi(X ′,W ●
X′/S′) → Hi(X,W ●

X/S)

is surjective.
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Proof. Let
T = Spec (N→ C[z]/zk), T ′ = Spec (N→ C[z]/zk+1),

and let g ∶ Y → T, g′ ∶ Y ′ → T ′ be the log toroidal families induced by base change along
AN → AQ. Note that all four log toroidal families now have the same underlying topology.
We obtain a diagram

0 // W ●
X0/S0

⊗ J/I ιX //

≅
��

W ●
X′/S′

��

πX // W ●
X/S

//

��

0

0 // W ●
Y0/T0

⊗ (zk)/(zk+1) // W ●
Y ′/T ′

πY // W ●
Y /T

// 0

of complexes where πX and πY are surjective due to Theorem 6.15. The left vertical map is an
isomorphism. Namely, T0 → S0 is the identity on underlying schemes, so W ●

X0/S0
≅W ●

Y0/T0
,

and J/I ≅ (zk)/(zk+1) since dimC(J/I) = 1. Theorem 8.2 shows H●(Y ′, πY ) surjective, so
H●(X ′, ιX) is injective, and therefore H●(X ′, πX) is surjective.

Remark 8.10. Note that we do not use any base change results along non-strict morphisms
(besides T0 → S0).

Lemma 8.11. Let I = (Q+)n. Then there is a finite sequence of monomial ideals

Q+ = I0 ⊃ I1 ⊃ ... ⊃ I

such that dimCIk/Ik+1 = 1, and such that, for every k, there is a homomorphism hk ∶ Q→ N
with Ik = h−1

k (zi) and Ik+1 = h−1
k (zi+1).

Proof. This follows straightforwardly from the discussion just below [12, Lemma 4.16].

Theorem 8.12. Let S = Sm ∶= Spec (Q → Am), and let f ∶ X → S be a proper log toroidal
family with respect to S → AQ. Then:

1. Rqf∗W
p
X/S is a free Am-module whose formation commutes with base change.

2. The spectral sequence Rqf∗W
p
X/S ⇒ Rp+qf∗W

●
X/S degenerates at E1.

Corollary 8.13. Let S = Spec (Q→ CJQK) and let f ∶X → S be a proper log toroidal family
of relative dimension d with respect to S → AQ. Then the Hodge–de Rham spectral sequence
E(X/S) degenerates at E1, and Rqf∗W

p
X/S is locally free.

Proof. The proof is literally the same as of Corollary 8.7.
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[9] Constantin Bănică and Octavian Stănăşilă. Algebraic methods in the global theory of
complex spaces. Editura Academiei, Bucharest; John Wiley & Sons, London-New York-
Sydney, 1976. Translated from the Romanian.

[10] Philip Candelas, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes. A pair of
Calabi-Yau manifolds as an exactly soluble superconformal theory. Nuclear Phys. B,
359(1):21–74, 1991.

[11] Henri Cartan and Samuel Eilenberg. Homological algebra. Princeton University Press,
Princeton, N. J., 1956.

[12] Kwokwai Chan, Naichung Conan Leung, and Ziming Nikolas Ma. Geometry of
the Maurer-Cartan equation near degenerate Calabi-Yau varieties. arXiv preprint
arXiv:1902.11174, 2019.

[13] David A. Cox, John B. Little, and Henry K. Schenck. Toric varieties, volume 124 of
Graduate Studies in Mathematics. American Mathematical Society, Providence, RI,
2011.

[14] V. I. Danilov. The geometry of toric varieties. Akademiya Nauk SSSR i Moskovskoe
Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk, 33(2(200)):85–134,
247, 1978.

[15] V. I. Danilov. de Rham complex on toroidal variety. In Algebraic geometry (Chicago,
IL, 1989), volume 1479 of Lecture Notes in Math., pages 26–38. Springer, Berlin, 1991.
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Abstract. We prove the existence of a smoothing for a toroidal crossing space

under mild assumptions. By linking log structures with infinitesimal deforma-

tions, the result receives a very compact form for normal crossing spaces. The

main approach is to study log structures that are incoherent on a subspace of

codimension two and prove a Hodge to de Rham degeneration theorem for such

log spaces. We show that new developments of Bogomolov-Tian-Todorov theory

can be applied to obtain smoothings. The theory relates to recent work in mirror

symmetry and the construction of Frobenius manifold structures. It has potential

applications to the classification of Fano fourfolds.
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1. Introduction

For two smooth components Y1, Y2 meeting in a smooth divisor D a folkloristic

statement says that a necessary condition for X = Y1 ∪ Y2 to have a smoothing is

that the two normal bundles are dual to each other, i.e. ND/Y1⊗ND/Y2
∼= OD. This

statement is actually incorrect. It is true only with the further requirement that

the total space of the smoothing be itself smooth. Conceptually, ND/Y1 ⊗ND/Y2
∼=

This work was supported by DFG research grant RU 1629/4-1 and the Carl Zeiss foundation.
1

ar
X

iv
:1

90
8.

11
23

5v
1 

 [
m

at
h.

A
G

] 
 2

9 
A

ug
 2

01
9



2 SIMON FELTEN, MATEJ FILIP, HELGE RUDDAT

Ext1(ΩX ,OX) =: T 1
X and Friedman famously coined the notion of d-semistability

which is saying T 1
X
∼= OD [12]. We are going to generalize the situation by only

requiring T 1
X to be generated by global sections (and beyond). For a choice of s ∈

Γ(D, T 1
X), the total space of the smoothing will then be of the local form xy = tf

where t is the deformation parameter, Y1 = V (x), Y2 = V (y) and f represents s

in a local trivialization of T 1
X . The total space of the smoothing has singularities

precisely along s = 0. The local form xy = tf has been found to be abundant in

mirror symmetry applications [7, 14, 15, 16, 6, 13, 1, 21].

We work more generally with a normal crossing space, that is a connected variety

X over C étale locally of the form z1 · ... · zk = 0 for varying k ≤ dimX + 1. We call

a flat map X → D for D a holomorphic disk a smoothing of X if the central fiber is

isomorphic to X and the general fiber is smooth. If a smoothing exists, then we call

X smoothable. We say that a normal crossing space has effective anti-canonical class

if the dual of its dualizing sheaf ωX can be represented by a reduced divisor E that

meets the strata of X transversely, that is, étale locally along E, X is equivalent to

E × A1. We prove the following theorem.

Theorem 1.1. Let X be a proper normal crossing space with effective anti-canonical

class. If T 1
X is generated by global sections and Xsing is projective, then X is smooth-

able.

The only purpose of the projectivity condition is to apply Bertini’s theorem to

have available a “nice” section of the line bundle T 1
X on Xsing. Both the projec-

tivity assumption as well as the global generatedness assumption on T 1
X can thus

be removed if there exists a schön section of T 1
X , that is a section whose vanish-

ing locus Z is reduced and Xsing is locally along Z equivalent to Z × A1. We also

prove a more general theorem for toroidal crossing spaces that we give down below

(Theorem 1.7). Theorem 1.1 provides a lot more flexibility than existing smooth-

ing results, notably Friedman’s [12] for surfaces, Kawamata-Namikawa’s [31] for

d-semistable Calabi-Yaus and Gross-Siebert’s [16] allowing a singular total space

but with much stronger requirements on X.

Example 1.2. The union X of d hyperplanes in general position in Pn is smoothable

to a degree d hypersurface but none of the existing results is able to predict the

smoothability of X abstractly. Indeed, the total space of the smoothing is singular

since it requires blowing up the base locus of the smoothing pencil. On the other

hand, T 1
X is generated by global sections. Theorem 1.1 predicts the smoothability if

d ≤ n+ 1.

Example 1.3. The simplest type of normal crossing space is one with two smoothly

intersecting components: let Y be a smooth Fano manifold with −KY very ample,

let D be a smooth section of −KY and X be the normal crossing space obtained by

identifying two copies of Y alongD. Then T 1
X
∼= N⊗2

D/Y is generated by global sections
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andX is Calabi-Yau, so Theorem 1.1 provides a smoothing ofX. For Fano threefolds

Y that are complete intersections in products of weighted projective spaces the

smoothing gives Calabi-Yau threefolds of Euler numbers −106,−122,−138,−156,

−128,−156,−176,−256,−260,−296. While double intersection situations can be

birationally modified to be tractible by the smoothing result in [31], this is no longer

true for triple (and higher) intersection situations [32] but Theorem 1.1 provides

smoothings.

Theorem 1.1 considerably facilitates the construction of Calabi-Yau and Fano

manifolds. Our work generalizes the Gross-Siebert program towards allowing non-

toric components in the central fiber as well as more flexibility in the local structure,

cf. Example 1.8. While we work with toroidal local models, Alessio Corti commu-

nicated to us he also finds non-toric local models to be relevant when smoothing

singular Fanos for the classification of Fano fourfolds by means of their Landau-

Ginzburg mirrors, cf. [8]. If push-forward of differentials from the log smooth locus

can be verified to commute with base change for such local models, then we would

be able to treat the models considered by these other authors by the methods of

this paper and obtain smoothings for the relevant degenerate Fanos.

Furthermore, our results enable the construction of versal Calabi-Yau families and

conjecturally a logarithmic Frobenius manifold structure in a formal neighborhood

of the extended moduli space, see [3], [25, Theorem 1.3]. Since the smoothing

deformations are given by Maurer-Cartan solutions in the Gerstenhaber algebra

of (log) polyvector fields §13.1, we expect the combination of our work with [25] to

make maximal degenerations amenable to deformation quantization and homological

mirror symmetry.

1.1. Method of Proof. The first step towards proving Theorem 1.1 is to furnish

X with a log structure, an idea already found in [31, 16]. We build a connection

between these two works. A sheaf of sets LSX on X classifying log smooth structures

locally on X over the standard log point S has been defined and studied in [14]. We

show in §5 there is a canonical map LSX → T 1
X with the property that a section

s ∈ Γ(Xsing, T 1
X) yields a log smooth structure on U := X \V (s), i.e. we obtain a log

smooth morphisms U → S. Note that the complement Z := V (s) has codimension

two in X. Using Bertini’s theorem with the projectivity of Xsing, we can assume

that Z is schön as defined above.

In the fashion of Zariski-Steenbrink-Danilov, we consider the differential forms

W k
X/S := j∗Ω

k
U/S for j : U ↪→ X the inclusion. A key ingredient for the smoothing

of X is the knowledge that the Hodge to de Rham spectral sequence for W •
X/S

degenerates at E1. This requires close control over W k
X/S along Z which we gain by

using [15, 35] to obtain a particular type of elementary log toroidal local models for

the log structure near Z. For the proof of the Hodge to de Rham degeneration, we

adapt the one by Deligne-Illusie [11]: spreading out to finite characteristic and using
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the Cartier isomorphism. The hardest technical part is to show that the sheaves

W •
X/S commute with base change because j∗ and ⊗ don’t commute in general. We

show this holds if the characteristic of the base field is large enough by explicit

computation in the elementary log toroidal local models. (Base change may fail for

low characteristics by Example 7.5.) We settle a conjecture by Danilov [9, 15.9]

along the way (Theorem 1.4 below).

To show the unobstructedness of log deformations of X, we use recent advance-

ments of the Bogomolov-Tian-Todorov theory motivated by the study of mirror sym-

metry, starting with [30] and [3] which got cultivated to work in algebraic geometry

by [23]. All these works however produce equisingular deformations (because they

are intended for deforming smooth spaces). The crucial difference to our setup is

that while we prescribe local deformations by the log structure, these are not locally

trivial deformations. Most recently, this difficulty in the theory has been addressed

in [25] which adapts perfectly to our situation to produce a formal deformation in the

prescribed local models, see §13. We found the framework of Gerstenhaber algebras

to be the most effective to think about the theory which governs our way of pars-

ing [25] in §13.1. At this point, the assumption about effectiveness of ω−1
X enters

the proof, so that one obtains an isomorphism of W •
X/S(logE) with the Gersten-

haber algebra of log polyvector fields PV• and has the Batalin-Vilkovisky operator

∆ available by transporting the de Rham differential to PV• which is used in §13.2.

To improve the resulting formal smoothing to an analytic smoothing, we use the

Grauert-Douady space and Artin approximation as already done in [21].

1.2. Toroidal Pairs and Danilov’s Conjecture. A toroidal pair (X,D) is a

variety X over a field k of characteristic zero with Weil divisor D ⊂ X such that X

is étale locally equivalent to an affine toric variety with D identified with a reduced

toric divisor (not necessarily the entire toric boundary). Danilov defined the sheaf

of differentials Ω̃p
X(logD) as the push-forward of the usual Kähler differentials with

log poles Ωp
X(logD) from the locus where X is regular.

Theorem 1.4 (Danilov’s conjecture). Given a proper toroidal pair (X,D), the

Hodge to de Rham spectral sequence

Ep,q
1 = Hq(X, Ω̃p

X(logD))⇒ Hp+q(X, Ω̃•X(logD))

degenerates at E1.

Special cases of this theorem were known before: when X has at worst orbifold

singularities [38], for D = ∅ [4] and for D locally the entire toric boundary [40, 24].

We believe that our methods can be extended to prove generalizations of the Akizuki-

Nakano-Kodaira vanishing theorem.

1.3. Toroidal Crossing Spaces, their Log Structures and Orbifold Smooth-

ings. If V = Speck[P ] is an affine toric variety given by some toric monoid P ,
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consider the map of sheaves a : P → OV , p 7→ zp with P denoting the constant

sheaf. We obtain a sheaf of monoids PV = P/a−1(O×V ). Now V is Gorenstein if and

only if the toric boundary D in V is a Cartier divisor, hence given as the zero locus

of a monomial 1 ∈ P .

Definition 1.5 (Siebert, Schröer [37]). A toroidal crossing space is an algebraic

space X over k together with a sheaf of monoids P with global section 1 ∈ Γ(X,P)

such that for every point x ∈ X, étale locally at x, X permits a smooth map to the

toric boundary Dx in Vx = Speck[Px] so that P is isomorphic to the pullback of

PVx and mapping 1x to the monomial in Px whose divisor is Dx.

A toroidal crossing space X is automatically Gorenstein, we denote its dualizing

line bundle by ωX . The boundary divisor in a Gorenstein toric variety is naturally a

toroidal crossing space. General hyperplane sections of projective toroidal crossing

spaces are again naturally toroidal crossing spaces.

Lemma 1.6. A normal crossing space is naturally a toroidal crossing space by set-

ting Px := Nk and 1x = (1, 1, ..., 1) ∈ Nk whenever X is locally at x given by

z1 · ... · zk = 0. (This isn’t the only way to turn a normal crossing space into a

toroidal crossing one but we will always refer to this one.)

The class of toroidal crossing spaces is closed under forming products (but not so

the class of normal crossing spaces). The sheaf P provides what Gross and Siebert

call a ghost structure for X ([14, Definition 3.16]), an ingredient to define the sheaf

LSX ([14, Definition 3.19]) whose sections are in bijection with log structures on

X together with a log smooth map to the standard log point S. By [14], LSX
embeds into the coherent sheaf

⊕
C jC̃,∗NC̃ where the sum is over the irreducible

components C of Xsing, jC : C̃ → C → X the composition of normalization and

closed embedding and NC̃ is a line bundle on C̃. The sheaf LSX often doesn’t

have global sections. It suffices however to give a section s of LSX on a dense

open set U that contains the generic points of the minimal strata of X so that

each component sC ∈ Γ(U ∩ C,NC) of s extends to a section of NC on all of C by

acquiring simple zeros. The zeros define a reduced Cartier divisor ZC̃ for each C̃.

Set Z =
⋃
C jC(ZC̃) ⊂ X. The construction of local models along Z in [15] was

generalized in [35]: locally the coherent log structure given by s on U , extends to

an incoherent log structure on X that is still given by certain toric local models,

namely from a divisor in an affine toric variety that is not the entire toric boundary,

e.g. like in the definition of toroidal pair above. A section s of LSX on a dense

open set U will be called simple if it extends to X by simple zeros and the resulting

ZC satisfy the simpleness criterion in §6. Our most general smoothing result is the

following.

Theorem 1.7. Let X be a proper toroidal crossing space with a simple section s of

LSX on a dense open set U . Assume that ω−1
X permits a section whose divisor of
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zeroes E meets all strata of X and Z transversely (e.g. when ω−1
X
∼= OX , E = ∅),

then X is smoothable to an orbifold with terminal singularities.

There is a precise derivation of the types of singularities of the orbifold smoothing

from knowing P and Z, e.g. for a normal crossing space there will be no singularities

in the smoothing and thus combined with the Bertini argument and linking LSX
with T 1

X , we find that Theorem 1.7 implies Theorem 1.1 (see Proposition 6.12). The

definition of c.i.t. in [35] permitted more general singularities and in fact we can still

obtain a log toroidal morphism from such a section but don’t have the uniqueness of

local deformations (Theorem 6.13) which is an ingredient for the smoothing method.

Example 1.8. Following [14], let (B,P, ϕ) be a closed oriented tropical manifold

with singular locus combinatorially c.i.t. then the associated space X0(B,P , s) with

its vanilla gluing data and log structure satisfies the assumptions of Theorem 1.7

for E = ∅. Smoothings for such spaces had been constructed in [16] under the

stronger assumption of local rigidity (e.g. the quintic threefold degeneration in P4 is

not locally rigid but c.i.t.).

1.4. The Hodge-to-de-Rham Spectral Sequence. We refer to [28, 26, 14, 34]

for basic notions of log geometry. Let f : X → S be a log toroidal family as defined

in Definition 4.1 below. A toroidal pair (X,D) yields an example by giving X the

divisorial log structure from D and making S the log-trivial point. The families X

over the standard log point featured in Theorem 1.7 give further examples. Also,

a saturated relatively log smooth morphism f : X → S in the sense of [33] is an

example. The complex W •
X/S (see page 3) gives rise to a spectral sequence

E(X/S) : Epq
1 = Rqf∗W

p
X/S ⇒ Rp+qf∗W

•
X/S.

Let Q be a sharp toric monoid and k be a field of characteristic zero. We prove the

following theorems.

Theorem 1.9. Let S = Spec(Q→ k) and f : X → S be a proper log toroidal family

(with respect to S → AQ). Then E(X/S) degenerates at E1.

Theorem 1.9 implies Theorem 1.4 since W p
X/S = Ω̃p

X(logD) whenever f comes

from a toroidal pair. We conjecture the statement of Theorem 1.9 to hold also for

an arbitrary coherent base S over a field of characteristic zero. To prove Theorem 1.9,

we adapt the proof of the degeneration in [11] as follows: since f is proper, it suffices

to verify

(∗)
∑
p+q=n

dim Rqf∗W
p
X/S = dim Rnf∗W

•
X/S.

In §9, we show that f : X → S spreads out to a log toroidal family φ : X →
S = Spec(Q → B) where Z ⊂ B ⊂ k is a subring such that B/Z is of finite type.

Spreading out of log smooth morphisms over a log-trivial base has been done before
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in [40, 4.11.1] but f is only generically log smooth. Then for suitable fields k ⊃ Fp,
with W2(k) denoting the ring of second Witt vectors, we obtain by base change a

diagram with Cartesian squares

(SO)

X //

f

��

X

φ

��

XW
oo

φW
��

Xk
oo

φk
��

S // S SpecW2(k)oo Spec k.oo

In §8 we investigate the behavior of W • under base change which leads to equal-

ities like dimkR
qf∗W

p
X/S = dimkR

q(φk)∗W
p
Xk/k

, i.e. it suffices to show (∗) for φk :

Xk → Spec k. In §10 we construct the Cartier isomorphism for log toroidal families

in positive characteristic which we then apply in §11 to obtain the Frobenius de-

composition of F∗W
•
Xk/k

where F is the relative Frobenius. Finally, in §12, we put

the pieces together and prove Theorem 1.9.

We prove a modest but important generalization of Theorem 1.9 to the relative

case using Katz’s method that first appeared in [38]. This requires a detailed un-

derstanding of the analytification of the absolute differentials W •,an
X with respect to

base change as given in §7.2 and §12.1.

Theorem 1.10. Let S = Sm := Spec(N 17→t→ C[t]/(tm+1)) and let f : X → S be a

proper log toroidal family with respect to S → AN. Then:

(1) Rqf∗W
p
X/S is a free C[t]/(tm+1)-module whose formation commutes with base

change.

(2) The spectral sequence Rqf∗W
p
X/S ⇒ Rp+qf∗W

•
X/S degenerates at E1.

There are problems with similar theorems in earlier works: the generalization from

a one-dimensional base to higher dimensions in [31, p. 404] is flawed which then also

affects [15, Theorem 4.1]. In addition, there is a gap in the proof of [15, Theorem 4.1]

related to the fact that the de Rham differential of Ω•X/S isn’t OX-linear. Since our

result encompasses the one-parameter base case of [15, Theorem 4.1], Theorem 1.10

closes the latter gap.

Acknowledgement. The last author feels indebted to Arthur Ogus for almost a decade

of communication on the challenges in proving Theorem 1.9. We thank Mark Gross for

connecting the authors with K. Chan, C. Leung and Z.N. Ma whom we also thank for

supportive communication and synchronization of our projects. We thank Hélène Esnault

and Bernd Siebert for valuable communication and Stefan Müller-Stach for bringing the

first and last author together. Our gratitude for hospitality goes to JGU Mainz and what

concerns the last author also to IAS Princeton and Univ. Hamburg.

Conventions. We use X to refer to the underlying scheme of a log scheme X.

Given a map P → A from a monoid P into the multiplicative monoid of a ring A,

we refer to the associated log scheme by Spec
(
P → A

)
.
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2. Generically Log Smooth Families

A log toroidal family will be a generalization of a saturated log smooth morphism.

We first introduce the weaker notion of a generically log smooth family that already

enjoys some useful properties. Log structures in this section are assumed to be in

the étale topology. If f : X → S is a finite type morphism of Noetherian schemes,

we say a Zariski open U ⊂ X satisfies the codimension condition (CC) if the relative

codimension of Z := X \ U is ≥ 2, i.e. for every point s ∈ S with Xs, Us the fibers,

(CC) codim(Xs \ Us, Xs) ≥ 2.

Recall that a Cohen-Macaulay morphism is a flat morphism with Cohen-Macaulay

fibers.

Definition 2.1. A generically log smooth family consists of:

• a finite type Cohen-Macaulay morphism f : X → S of Noetherian schemes,

• a Zariski open j : U ⊂ X satisfying (CC),

• a saturated and log smooth morphism f : (U,MU)→ (S,MS) of fine satu-

rated log schemes.

The complement Z := X \ U we refer to as the log singular locus even though

f might extend log smoothly to it. We say two generically log smooth families

f, f ′ : X → S with the same underlying morphism of schemes are equivalent, if

there is some Ũ ⊂ U ∩U ′ satisfying (CC) withMU |Ũ ∼=M′
U ′|Ũ compatibly with all

data.

If T → S is a morphism of fine saturated log schemes, then the base change

XT → T as a generically log smooth family is defined in the obvious way, taking

fiber products in the category of all log schemes. Note that we need f : U → S

saturated to ensure that UT is again a fine saturated log scheme. The notion of

equivalence is due to the fact that we don’t care about the precise U . However,

for technical simplicity we assume some U fixed. The name log singular locus is in

analogy with [14].

Definition 2.2. For a generically log smooth family f : X → S, the de Rham

complex is defined as W •
X/S := j∗Ω

•
U/S where Ω•U/S denotes the log de Rham com-

plex. We also define the OX-module of degree m log polyvector fields Θm
X/S :=

j∗
∧mDerU/S(OU).

Lemma 2.3. Let f : X → S be a Cohen-Macaulay morphism of Noetherian

schemes, and let j : U ⊂ X satisfy (CC). Then j∗OU ∼= OX .

Proof. This is a special case of [22, 3.5]. Note that our (CC) is a stronger assumption

than the condition on the codimension in [22, 3.5]. �

Let X → S be a generically log smooth family. Using the language of [18, Def.

5.9.9], a sheaf F we call Z-closed if the natural map F → j∗(F|U) is an isomorphism.
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Most notably, two Z-closed sheaves that agree on U are entirely equal. By their

definition, Wm
X/S as well as Θm

X/S are Z-closed. Furthermore, every reflexive sheaf is

Z-closed.

Lemma 2.4. The OX-modules Wm
X/S and Θm

X/S are coherent and reflexive and these

depend only on the equivalence class of f : X → S.

Proof. Let Ũ ⊂ U also satisfy (CC). We have by Lemma 2.3 that j∗Ω
•
Ũ/S

= j∗Ω
•
U/S

since Ωm
U/S is finite locally free. Thus W •

X/S depends only on the equivalence class

of f . It is clear that it is quasi-coherent. For every sheaf G on U , j∗G is Z-closed,

so in particular Wm
X/S is Z-closed. Set F∨ := HomOX (F ,OX). By Lemma 2.3, F∨

is Z-closed for all F , so in particular (Wm
X/S)∨∨ is a Z-closed sheaf and it coincides

with Wm
X/S on U , hence (Wm

X/S)∨∨ = Wm
X/S and Wm

X/S is reflexive. By the extension

theorem [17, 9.4.8], there is a coherent G that restricts to Wm
X/S on U . Now G∨∨ =

Wm
X/S since both are Z-closed and agree on U , hence Wm

X/S is also coherent. The

argument for Θm
X/S is similar. �

Lemma 2.5. Wm
X/S = Hom(Θm

X/S,OX) and Θm
X/S = Hom(Wm

X/S,OX).

Proof. The statement is clear on U where all sheaves are locally free and then it

follows since all sheaves are Z-closed. �

Remark 2.6. The pushforward j∗MU → j∗OU = OX to X yields a log structure

which is compatible with S, so every generically log smooth family is canonically a

log morphism X → S. We don’t know whether this pushforward is compatible with

base change (and we don’t care).

Remark 2.7. In view of Remark 2.6, neither the so defined log structure MX nor

the associated sheaf of log differentials ΩX/S will be coherent in general, see Exam-

ple 2.11. On the the other hand, Wm
X/S and Θm

X/S are coherent and have further

good properties in the case of log toroidal families as we will see.

Let X → S be a generically log smooth family. One defines for the log smooth

morphism U → S the horizontal divisor DU ⊂ U (see e.g. [41, Definition 2.4], also

Remark 3.2 below). This is only a Weil divisor in general. We denote by D its

closure in X and by ID the corresponding ideal sheaf. We define Wm
X/S(−D) :=

j∗((IDW
m
X/S)|U). (This doesn’t need to agree with IDW

m
X/S.)

Proposition 2.8. Let S = Spec(N→ k) for k a field where 1 7→ 0. Let f : X → S

be a generically log smooth family of relative dimension d and let ωf = f !OS denote

the (globally normalized) relative dualizing sheaf, then

W d
X/S(−D) = ωf .

Proof. On U , this is [41, Theorem 2.21, (ii)] and since both sheaves are Z-closed,

the statement follows. �
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Example 2.9. Let f : X → S be a log smooth and saturated morphism of Noether-

ian fine saturated log schemes. Then f is flat by [28, 4.5] and has Cohen-Macaulay

fibers by [42, II.4.1]. We see that f : X → S gives a generically log smooth family

for U = X and W •
X/S is the ordinary log de Rham complex.

Not every log smooth morphism is saturated, e.g. see [26, Rem. 9.1] for a log

smooth morphism that is not even integral.

Example 2.10. Let X/ SpecR be a toric variety over a Noetherian base ring R.

The fibers over points in SpecR are normal (and Cohen-Macaulay), so there is a

regular open U ⊂ X whose complement has relative codimension ≥ 2 over SpecR.

For every divisorial log structure on X coming from a torus invariant divisor D

on X, the map U → SpecR is log smooth and saturated when using the trivial

log structure on SpecR. Hence X → SpecR is a generically log smooth family.

The differentials W •
X/S coincide with what is called reflexive or Danilov or Zariski-

Steenbrink differentials with log poles in D. This example extends to toroidal pairs

(X,D) over SpecR.

Example 2.11. The Z[t]-algebra A = Z[x, y, t, w]/(xy − tw) defines a map f :

SpecA→ A1 that is log smooth and saturated away from the origin when using the

divisorial log structure given by t = 0 on source and target, hence a generically log

smooth family. The log structure on SpecA is not coherent at the origin, so f is not

log smooth. Even worse, Ωf is not a coherent sheaf at the origin, see [15, Example

1.11].

2.1. Analytification. Given a generically log smooth family f : X → S of finite

type over C, we denote the associated family of complex analytic spaces by fan :

Xan → San. Induced by f , the open Uan ⊂ Xan carries an fs log structure so that

Uan → San is a log smooth and saturated morphism of fs log analytic spaces. The

analogue of Lemma 2.3 holds if Xan, San are Cohen-Macaulay by [5, Thm. 3.6]. For

S = Spec(Q→ A) with A an Artin ring and

W •,an
X/S := jan∗ Ω•Uan/San ,

we have Wm,an
X/S

∼= (Wm
X/S)an since both are reflexive coherent OXan-modules that

coincide on Uan. If f is proper then GAGA gives Hq(Xan,W p,an
X/S ) ∼= Hq(X,W p

X/S)

and also

Hp+q(Xan,W •,an
X/S ) ∼= Hp+q(X,W •

X/S),

e.g. via the comparison of the Hodge-to-de Rham spectral sequences.

3. Elementary Log Toroidal Families

For basic notions and constructions of monoids, see [34].

Definition 3.1. An elementary (log) toroidal datum (Q ⊂ P,F) (ETD for short)

consists of an injection Q ↪→ P of sharp toric monoids that turns P into a free Q-set
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Figure 3.1. Three examples of a saturated injection Q ⊂ P and the
projection P̄ , the outer two are log smooth, the middle one gives
Example 2.11.

whose canonical basis is a union of faces of P . We furthermore record a set F of

facets of P containing all facets that don’t contain Q. Set

Fmin := {F ⊂ P a facet |Q 6⊂ F}︸ ︷︷ ︸
vertical facets

,

so Fmin ⊂ F ⊂ Fmax where Fmax is the set of all facets.

Remark 3.2. The facets in F \Fmin will give the horizontal divisor that we referred

to as D before.

Lemma 3.3. ([34, Corollary I.4.6.11, Theorem I.4.8.14, Corollary I.1.4.3]) The

requirement on the injection Q ↪→ P in Definition 3.1 is equivalent to saying this

map is saturated.

See Figure 3.1 for examples. Even the case Q = 0 can be interesting since then

Fmin = ∅. We denote the union of faces of P that gives the generating set of the

free Q-action by E. A face F of P contained in E we call an essential face. Every

p ∈ P has a unique decomposition p = e+ q with e ∈ E, q ∈ Q, hence

(3.1) E ×Q→ P, (e, q) 7→ e+ q,

is bijective ([34, Theorem I.4.8.14], cf. [27, Lemma 1.1]). Furthermore, we see that

E = P \ (Q+ + P ) where Q+ = Q \ 0 is the maximal ideal. Moreover, projecting E

to P gp/Qgp is injective and the set of essential faces gives a fan in P gp/Qgp whose

support P̄ is convex in (P gp/Qgp)⊗Z R since it is the convex hull of the projection

of P . Note that P̄ gp = P gp/Qgp. A choice of splitting P gp ∼= P̄ gp ⊕ Qgp yields a

unique map of sets ϕ : P̄ → Qgp so that id×ϕ : P̄ → P̄ ⊕ Qgp is a section of the

projection P → P̄ with the property that its image is E, so

(3.2) P = {(p̄, q) ∈ P̄ ⊕Qgp | ∃q̃ ∈ Q : q = ϕ(p̄) + q̃}.
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Lemma 3.4. The injection Q ⊂ P induces a Cohen-Macaulay morphism f :

SpecZ[P ]→ SpecZ[Q] with fiber dimension d = rk(P gp/Qgp).

Proof. Since P is free as a Q-set (generated by E), SpecZ[P ] is a flat SpecZ[Q]-

module. By [18, Cor.6.3.5] the total space of a faithfully flat morphism of Noetherian

schemes is Cohen-Macaulay if and only if the base and all fibers are. By Hoechster’s

theorem, the fibers of SpecZ[P ]→ SpecZ are Cohen-Macaulay, hence SpecZ[P ] and

SpecZ[Q] are Cohen-Macaulay. Now flatness of f implies it is Cohen-Macaulay. �

We next want to define an open set U in the domain of f that satisfies (CC). We

will actually define its complement and for this we need a good understanding of

the faces of P .

Lemma 3.5. Let F ⊆ P be a face. Set F̄ := F ∩ E, Q′ := Q ∩ F , then

F = F̄ +Q′ := {f̄ + q′|f̄ ∈ F̄ , q′ ∈ Q′}.

Since E is a union of faces of P , so is F̄ . Note also that Q′ is a face of Q.

Proof. By the decomposition (3.1), any element in F has the form f̄ + q with f̄ ∈
E, q ∈ Q. Since F is a face, f̄ , q are both in F , hence F ⊆ F̄ + Q′. The reverse

inclusion is clear. �

Consider the set of bad faces of P defined as

B =

{
F̄ +Q′

∣∣∣∣ F̄ is a union of essential faces of rank at most d− 2

Q′ is a face of Q, F̄ +Q′ is a face of P

}
.

Recall that there is a 1-1 correspondence between faces F of P and torus orbits

closures VF := SpecZ[F ] in SpecZ[P ]. Similarly, for Q′ a face of Q, we have a torus

orbit closure VQ′ := SpecZ[Q′] ⊆ SpecZ[Q].

Lemma 3.6. Given F̄ + Q′ ∈ B, we find that VF̄+Q′ is flat over VQ′ ⊂ SpecZ[Q].

Furthermore, if X is a fiber of f , then codim(X ∩ VF̄+Q′ , X) ≥ 2.

Proof. Since F̄ + Q′ is free as a Q′-set, Z[F̄ + Q′] is a free Z[Q′]-module, so the

flatness statement follows. The origin 0 given by the prime ideal (zq|q ∈ Q+) is

contained in VQ′ , let X0 be the fiber over it. It suffices to check the codimension

condition for this particular fiber. But note that X0 ∩ VF̄+Q′ =
⋃
F⊂F̄ VF where the

union runs over faces F of P contained in F̄ and we have dimVF ≤ d − 2 by the

assumption on F̄ . �

Set

(3.3) UP := SpecZ[P ] \

(⋃
B∈B

VB

)
.

For every face F of P , we have an open subset SpecZ[PF ] of SpecZ[P ] where PF is

the localization of P in F , i.e. PF is the submonoid of P gp generated by P and −F .
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Lemma 3.7. We find UP =
⋃
F UF where the union is over the essential faces F of

rank d− 1.

Proof. Since UP is a union of torus orbits, it suffices to check that any torus orbit

contained in UP is contained in some UF for F essential of rank d− 1. Every torus

orbit is given by OG := SpecZ[Ggp] for G a face of P . Assume OG ⊆ U . We use

Lemma 3.5 to write G = Ḡ + Q′. If rk Ḡ ≤ d− 2, then G ∈ B, so OG 6⊂ U . Hence,

dim Ḡ ≥ d− 1 and Ḡ contains some essential face F of rank d− 1. Then F is also

contained in G and thus OG is contained in UF . Conversely, since OF is not in any

VB, the assertion follows. �

Let AQ := Spec(Q→ Z[Q]) denote the log scheme with standard toric log struc-

ture and let AP,F be the log scheme with underlying scheme SpecZ[Q] and divisorial

log structure given by the divisor
⋃
F∈F SpecZ[F ]. The map f : AP,F → AQ induced

by θ is naturally a log morphism by the condition on F to contain the vertical faces.

We work here with Zariski log structures which however coincide with the pushfor-

ward of the corresponding étale log structures by [34, Prop. III.1.6.5].

Lemma 3.8 (Theorem 3.5 in [28] or Theorem 4.1 in [26]). If F = Fmax, then f is

log smooth.

Proposition 3.9. The map f : AP,F → AQ is a generically log smooth family with

UP serving as the specified dense open of log smoothness.

Proof. If F = Fmax then f is saturated since θ is saturated. More generally, since

AP,Fmax → AP,F is locally given by embedding a face, it is exact. Now by [34,

I.4.8.5(2)], f is saturated.

The assertion is clear if d = 0 ⇐⇒ P = Q, so assume d > 0. Given Lemma 3.4,

we still need to verify that U satisfies (CC) and that f is log smooth on UP . Note

that Lemma 3.6 implies that UP satisfies (CC) since the complement of UP is the

union of closed sets each of which has codimension at least two in each fiber.

To see that f is log smooth on UP , by Lemma 3.7, it suffices to check that f is log

smooth on UF for F essential of rank d−1. Let F be such a face. Set P̄F := PF/F
gp

and note that the projection of Q to P̄F is injective because F gp∩Q = {0}. There is

an isomorphism PF ∼= F gp × P̄F commuting with the injection of Q that is {0} ×Q
on the right.

The log structure on UF is a divisorial log structure given by a set of divisors

each of which pulls back from SpecZ[P̄F ], so we may consider the corresponding

divisorial log structure on SpecZ[P̄F ] to upgrade this to a log scheme ŪF . We have

a factorization UF → ŪF → AQ with the first map a smooth projection from a

product that is therefore strict, hence log smooth. It thus suffices to show that

ŪF → AQ is log smooth. Note that ŪF → AQ is the log morphism of an ETD with

d = 1. The following lemma finishes the proof. �
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Lemma 3.10. Assume that f : AP,F → AQ has one-dimensional fibers (i.e. d = 1),

then f is log smooth. (The third situation of Figure 3.1 is an example.)

Proof. We are done by Lemma 3.8 if F = Fmax and this always holds if Q meets the

interior of P . So assume Q is contained in a proper face of P , then by Lemma 3.5

it is in fact a facet of P and then P̄ = N and consequently P = N × Q. A facet of

P that is not Q is in Fmin = {N × F |F is a facet of Q}. Hence F ( Fmax implies

F = Fmin and thus f is strict. Since f is smooth, we find f is log smooth. �

Corollary 3.11. It is possible to find open subsets U1 and U2 so that UP = U1 ∪U2

and AP |U1 = AP,F |U1 and f : U2 ⊂ AP,F → AQ is strict and smooth.

Proof. Let E1 be the set of essential faces of rank d− 1 such that when applying the

proof of Lemma 3.10 to ŪF → AQ from the proof of the proposition, we are in the

case F = Fmax, and let E2 be the set of faces where we are in case F = Fmin. Then

for F ∈ E1 we have AP |UF = AP,F |UF , and for F ∈ E2, the morphism UF → AQ is

strict and smooth. Now we define U1 =
⋃
F∈E1 UF and U2 =

⋃
F∈E2 UF . �

Example 3.12. If (Q ⊂ P,F) is an ETD and r ≥ 0, then we obtain another ETD

(Q× {0} ⊂ P × Nr,F ′) where F ′ = {F × Nr |F ∈ F}.

4. Log Toroidal Families

We define log toroidal families and investigate their basic properties.

Definition 4.1. We say that a generically log smooth family f : X → S is log

toroidal if for every geometric point x̄→ X, we have a commutative diagram

(LM)

(V, g−1(U))
g

uu
h

))

��

(X,U)

f

��

(L,UL)

uu

c
))

S̃

uu

a

))

(AP,F , UP )

uu
S AQ

where g : V → X is an étale neighborhood of x̄, S̃ → S is a strict étale neighborhood

of f(x̄) and a is given by a chart Q→MS̃ of S̃. The bottom right diagonal map is

required to be given by an ETD (Q ⊂ P,F) and UP ⊂ AP,F denotes the open set

from (3.3). The solid arrows are morphisms of schemes and log morphisms on the

specified opens, whereas h : V → L is an étale morphism only of underlying schemes.

The bottom right diamond is Cartesian, in particular UL = c−1(UP ). Moreover, we

have an open Ũ ⊂ V satisfying (CC), such that Ũ ⊂ g−1(U) ∩ h−1(UL) and there

is an isomorphism g∗MX
∼= h∗ML of the two log structures on Ũ compatible with

the maps to S.
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The diagram (LM) is called a local model for f : X → S at x̄. If S ∼= Spec(Q→
B), every point has a local model with S̃ = S and a is given by the chart Q → B

then we say f : X → S is log toroidal with respect to a : S → AQ.

Log toroidal families are stable under strict base change.

Remark 4.2. Note that Definition 4.1 only requires a covering of X by (LM) but

does not say that an arbitrary geometric point x̄ ∈ X permits a diagram (LM) that

identifies x̄ with the origin in AP . However, if k is algebraically closed, one can

show that by localizing the ETD in (LM) and using Example 3.12 one can assume

that x̄ ∈ X becomes the origin in AP . We will make use of this fact in the proof of

Theorem 1.10.

Example 4.3. Every elementary log toroidal family f : AP,F → AQ is log toroidal.

Example 4.4. The generically log smooth families given in Example 2.10 are log

toroidal families with Q = 0 in every ETD.

Example 4.5. A saturated log smooth morphism f : X → S is log toroidal with

U = X. Indeed, locally starting from a neat chart of f , set F = Fmax and then apply

Example 3.12 to have local models. That this works is not a trivial consequence of

Theorem 3.5 in [28]. Instead, use [34, Theorem VI.3.3.3].

Example 4.6. In the setting and notation of the Gross-Siebert program, [15, Theo-

rem 2.6] shows that if (B,P) is positive and simple, and s is lifted open gluing data,

then X†0(B,P , s)→ Spec(N→ k) is log toroidal. More generally, it was shown in [35,

Proposition 2.8] that c.i.t. log Calabi-Yau spaces are log toroidal over Spec(N→ k).

The divisorial deformations defined in [15] are also log toroidal families.

5. Log Structures and Infinitesimal Deformations

Let X be a toroidal crossing space over a field k. As mentioned in the intro-

duction, X can be equipped with a sheaf of sets LSX which we recall now. Let

S = Spec(N 17→0→ k) be the standard log point. The pair (P ,1) gives a ghost struc-

ture in the sense of [14, Definition 3.16]. Indeed, the type of the ghost structure

is fixed by requiring it to be the one given by the local chart that comes with the

definition of a toroidal crossing space. We will refer to this type as the given type

below. By [14, Definition 3.19 and Proposition 3.20], there is a sheaf LSX (denoted

LSXg in loc.cit.) with the property that for every étale open U ⊂ X, there is a

natural bijection

Γ(U,LSX) =


MU → OU a log structure of

the given type, 1̃ ∈ Γ(U,MU),

MU
∼→ P an isomorphism

∣∣∣∣∣∣∣
(U,MU)→ S via 1 7→ 1̃ is a

log smooth morphism and

MU →MU → P sends 1̃ to 1


where the set on the right is to be taken modulo isomorphisms. The support of P/1
agrees with Xsing, so the sheaf LSX is supported on Xsing.



16 SIMON FELTEN, MATEJ FILIP, HELGE RUDDAT

Set Sε := Spec(N 17→ε→ k[ε]/(ε2)). If V → S is a log smooth morphism with V

affine, then there is a unique log smooth lifting Vε → Sε up to isomorphism. For

(M, 1̃) ∈ LSX(U) and an affine V ⊂ U , the deformation i : V → Vε yields an

extension

(5.1) 0→ OV → i∗Ω1
Vε → Ω1

V → 0

where on the left 1 7→ i∗dε. The classes of such local extensions glue to a well-defined

class in Ext1(Ω1
U ,OU) (though neither the extensions nor the deformations need to

glue). We have thus defined a map of sheaves of sets

(5.2) η : LSX → Ext1(Ω1
X ,OX) = T 1

X .

A relationship between log structures and infinitesimal deformations had been

observed before [31, Prop. 1.1], [39, Remark (3.11)], [26, Thm 11.7], [14, Example

3.30] though the existence of the map η seems not to have been noticed so far. Both

sheaves in (5.2) have a natural action of O×X : indeed, T 1
X because it is coherent and

LSX for we let a section λ of O×X act by 1̃ 7→ λ−1
1̃.

Proposition 5.1. The map η is O×X-equivariant.

Proof. At a geometric point x̄ ∈ X with M = (M, 1̃) ∈ LSX,x̄ for M defined on

some étale U → X that contains x̄, let µM : OX,x̄ → T 1
X,x̄ denote the connecting

homomorphism at x̄ in the long exact se-

quence obtained from applying Hom(−,OX)

to (5.1). By a general fact for extensions,

we have µM(1) = η(M). For λ ∈ O×X,x̄, let

Mλ ∈ LSX,x̄ denote the element (M, λ−1
1̃).

The statement of the lemma comes down to

the following claim.

U1

��

i1 //

��

(U1)ε

��

Uλ

χ

OO

~~

iλ//

$$

(Uλ)ε

##
S Soo // Sεjj

Claim 1. µM(λ) = η(Mλ).

To prove the claim, let U1, Uλ denote the log smooth schemes over S respectively

obtained from the log scheme U and the map to S given by 1 7→ 1 and 1 7→ λ−1
1

respectively. Let (U1)ε and (Uλ)ε be the unique deformations of U1, Uλ over Sε
respectively. Let χ : Uλ → U1 be the canonical isomorphism over S = Spec

(
0→ k).

We are now going to use facts about idealized log schemes, see [34, III.1.3 &

Variant 3.1.21] for an introduction. We give Sε the ideal 〈2〉 generated by 2 ∈ N
and (U1)ε and (Uλ)ε the pullback ideals K1, Kλ respectively so that ((U1)ε, K1) and

((Uλ)ε, Kλ) are ideally log smooth over (Sε, 〈2〉). The map (Sε, 〈2〉)→ (AN, ∅) is an

étale map of idealized log schemes and AN → S is log smooth, hence the composition

π : ((U1)ε, K1) → (Sε, 〈2〉) → S is log smooth. We apply the infinitesimal lifting
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property to the diagram

(U,K)
i1 //

iλ��

((U1)ε, K1)
π��

((Uλ)ε, Kλ) // S

where (U,K) is the idealized log scheme U = U1
χ
= Uλ with ideal given by (1̃)2

or equivalently (λ−1
1̃)2. The left vertical map iλ is strict for the log structure and

ideal and given by a square-zero-ideal. We obtain a morphism χ̃ : (Uλ)ε → (U1)ε
of log schemes that preserves the ideals and is an isomorphism on ghost sheaves.

Consequently, with ρλ ∈ M(Uλ)ε,x̄ and ρ1 ∈ M(U1)ε,x̄ the images of the generator

1 ∈ MSε respectively, we have χ̃∗ρ1 = λ̃ · ρλ for some λ̃ ∈ O(Uλ)×ε ,x̄
that restricts to

λ ∈ O×U,x̄. This implies that χ̃ becomes an isomorphism after shrinking (Uλ)ε, (U1)ε
if needed. Using i1 ◦ χ = χ̃ ◦ iλ, we obtain the commutative diagram

η(Mλ) : 0 −−−→ OU
1 7→i∗λdα(ρλ)
−−−−−−−→ i∗λΩ

1
(Uλ)ε

−−−→ Ω1
U −−−→ 0yλ−1·

∥∥∥ ∥∥∥
η(M1) : 0 −−−→ OU

1 7→i∗λd(λ̃α(ρλ))
−−−−−−−−→ i∗λΩ

1
(Uλ)ε

−−−→ Ω1
U −−−→ 0

and we conclude η(Mλ) = µM(λ) via standard homological algebra. �

Lemma 5.2. Let x̄ ∈ X be a geometric point with k[Px̄] smooth, then

(1) for M ∈ LSX,x̄, the map µM,x̄ : OX,x̄ → TX,x̄ is surjective,

(2) O×X,x̄ acts transitively on LSX,x̄,

(3) ηx̄ : LSX,x̄ → TX,x̄ is injective.

Proof. Set P := Px̄. For (1), let U → X be an étale affine neighborhood of x̄ where

M = (MU ,1U) is defined and h : (U,MU) → Spec
(
P → k[P ]/(z1x̄)

)
the strict S-

morphism whose underlying map is smooth. Possibly after shrinking U , via ε 7→ 1x̄,

we obtain a strict map of extensions over Sε,

hε : (Uε,MUε)→ Spec
(
P → k[P ]/(z(1x̄+1x̄))

)
whose underlying morphism is also smooth and hence ΩUε is locally free. This

implies that the corresponding term Ext1(ΩUε ,OX)x̄ in the long exact sequence for

(5.1) vanishes and thus µM,x̄ is surjective.

To show (2), note that it suffices to show that any two elements in LSX,x̄ are

isomorphic over S. Equivalently by [14, Definition 3.19 & Corollary 3.12], the com-

position

LSX,x̄ ⊂ Ext1(Pgp
x̄ /Z1x̄,O×X,x̄)→ Ext

1(Pgp
x̄ ,O×X,x̄)

needs to be the constant map. By assumption, P is free and then (2) follows from

the description of Ext1(Pgp
x̄ ,O×X,x̄) in [14, Proposition 3.14].
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For (3), if x̄ 6∈ Xsing both stalks are trivial and there is noting to show, so assume

x̄ ∈ Xsing. By [12, Proposition 1.10], we have T 1
X,x̄
∼= OXsing,x̄, so the kernel of

the action of O×X,x̄ on T 1
X,x̄ is K := ker

(
O×X,x̄ → O

×
Xsing,x̄

)
. If we show that K is

contained in the kernel of the action of O×X,x̄ on LSX,x̄, then (3) follows from (2) and

Prop. 5.1. By assumption, X is normal crossings at x̄. Let X1, ..., Xr be the local

components of X at x̄, r ≥ 2. Let λ ∈ K be given and write λ = 1 +
∑r

i=1 fi where

fi|Xj = 0 for i 6= j. We observe that λ =
∏

i(1 + fi) because fifj = 0 for i 6= j.

If Nr → OX,x̄, ei 7→ hi is a chart of X at x̄ representing an element of LSX,x̄ with

1 =
∑

i ei and V (hi) = Xi, then ei 7→ (1 + fi)ei defines an automorphism of MX,x̄

compatible with the map to OX,x̄ because (1 + fi)hi = hi. It takes 1 to λ1, so λ

acts trivially on LSX,x̄. �

Remark 5.3. For κ ≥ 2, consider the monoid Pκ = 〈e1, e2,1|e1 + e2 = κ1〉 and the

toroidal crossing space X = Spec
(
Pκ → k[Pκ]/(z

1)
)
. The map η : LSX → T 1

X is

the zero map k× → k, so the smoothness assumption in Lemma 5.2 is necessary.

Theorem 5.4. Let X be a toroidal crossing space with Px̄ ∼= N2 whenever x̄ is the

generic point of a component of Xsing then η : LSX → T 1
X is injective. On the

open set V ⊂ X of points x̄ with Px̄ ∼= Nr for some r, we have η(LSV ) = (T 1
V )×

where (T 1
X)× ⊂ T 1

X denotes the subsheaf of those elements that generate T 1
X as an

OX-module.

Proof. The second statement is Lemma 5.2. For the first statement also follows from

the Lemma combined with the fact that for every open U ⊂ X, the restriction map

LSX(U) → LSX(U ∩ V ) is injective which is

a consequence of Corollary 6.2 below. Indeed,

in view of the diagram on the right, that the

composition of the left vertical and bottom hor-

izontal arrow is injective implies the injectivity

LSX(U)

��

η
// T 1
X(U)

��

LSX(U ∩ V )
η
// T 1
X(U ∩ V ).

of the top horizontal arrow. �

6. Toroidal Crossing Spaces as Log Toroidal Families

Let X be a toroidal crossing space. Let x̄ be geometric point and Vx̄ the étale

neighborhood with a smooth map Vx̄ → Spec k[Px̄]/z1 that exists by the definition

of X. Set N = Pgp
x̄ and MR = Hom(N,R). We obtain a lattice polytope σx̄ = {m ∈

MR |m|Px̄ ≥ 0,1(m) = 1} (we use that X is reduced here). For a face τ ⊂ σx̄, we

denote by Vτ the inverse image of the closed subset Speck[τ⊥∩Px̄] of Spec k[Px̄]/z1

in Vx̄. Theorem 3.22 in [14] says the following.

Theorem 6.1 (Gross-Siebert). LSX |Vx̄ is isomorphic to a subsheaf of ⊕ωO×Vω where

the sum is over the edges of σx̄. The sections of the subsheaf on an open V ⊂ Vx̄
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are given as the tuples (fω)ω so that for every two-face τ of σx̄ holds

(6.1)
∏
ω⊂τ

dω ⊗ f ετ (ω)
ω |Vτ = 1.

as an equality in M ⊗Z Γ(V,O×Vτ ) where dω is a primitive generator of the tangent

space to ω and ετ (ω) ∈ {−1,+1} is such that (ετ (ω)dω)ω⊂τ gives an oriented bound-

ary of τ .

Corollary 6.2. Given an étale open U → X, the natural map LSX(U)→
∏

x̄ LSX,x̄,

for the product running over the generic points x̄ of the components of Using, is

injective.

The isomorphism in the theorem naturally depends on the morphism Vx̄ →
Spec k[Px̄]/z1 in a way that enables the following result.

Corollary 6.3. For each irreducible component Xω of Xsing there is an O×
X̃ω

-torsor

N×ω on its normalization X̃ω so that

LSX ⊆
⊕
Xω

qω,∗N×ω

for qω : X̃ω → Xω the normalization and the subsheaf is locally characterized by

Theorem 6.1 when using suitable local trivializations of the torsors.

Let Nω denote the associated line bundle so that N×ω is its O×
X̃ω

-torsor of gen-

erating sections. We therefore obtain an injection of LSX in the coherent sheaf⊕
Xω
qω,∗Nω.

Lemma 6.4. Under the hypothesis of Theorem 5.4, the injection LSX ↪→
⊕

Xω
qω,∗Nω

is O×X-equivariant.

Proof. We borrow the notation Pκ from Remark 5.3. From a careful analysis of the

proof of [14, Theorem 3.22] one finds that the action 1 7→ λ−1
1 becomes fω 7→ λκωfω

where κω is such that Px̄ ∼= Pκω at the generic point x̄ of Xω. Indeed, if a local

model at x̄ is given by xy = fω(z1)κω , this is equivalent to xy = λκωfω(λ−1z1)κω

which explains the action. The hypothesis of Theorem 5.4 says that κω = 1 for all

ω, so indeed the action of O×X on LSX is compatible with the ordinary action on the

coherent sheaf
⊕

Xω
qω,∗Nω. �

Theorem 6.5. If X is a normal crossing space, then the injection in Lemma 6.4

factors as the composition of η : LSX → T 1
X and a uniquely determined injection of

coherent sheaves T 1
X ↪→

⊕
Xω
qω,∗Nω.

Proof. Given Lemma 6.4 and Theorem 5.4 and noting that V = X for a normal

crossing space and that the annihilator of T 1
X is contained in the annihilator of⊕

Xω
qω,∗Nω, the statement becomes an elementary lemma about a cyclic module

whose proof we omit. �
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Definition 6.6. For a point x̄ ∈ X, let X◦x̄ ⊂ X genote the Zariski locally closed

subset where P is locally constant with stalk Px̄, so that X is the disjoint union of

X◦ȳ for suitable points ȳ. We call the closure Xx̄ of X◦x̄ the stratum of x̄ which again

decomposes into X◦ȳ . We infer the notion of strata to the normalization of X.

A section of s ∈ Γ(U,LSX) for a Zariski open U ⊂ X is called schön if it extends

to a section (sω)ω ∈ Γ(X,
⊕

Xω
qω,∗Nω) so that, for each ω, the vanishing locus Z̃ω

of sω in X̃ω is reduced, doesn’t contain any strata and has regular intersection with

each stratum inside X̃ω (in particular Z̃ω ∩ X◦ω is smooth). We also assume that

Z =
⋃
ω qω(Z̃ω) is the complement of U (otherwise U can be enlarged).

Definition 6.7. A schön section is called simple if for every closed point x̄ ∈ X with

Vx̄ → Spec k[Px̄]/z1 the smooth map from a neighborhood, we have the following

situation. Let Z ∩ Vx̄ =
⋃
ω∈Ω Zω be the local decomposition of Z into irreducible

components where we may assume each Zω contains x̄.

(1) There is a disjoint union Ω = Ω1 t ... t Ωq with q < rkPx̄ such that Zi :=

Zω ∩Xx̄ = Zω′ ∩Xx̄ whenever ω, ω′ are in the same Ωi.

(2) Z1, ..., Zq form a collection of normal crossing divisors in Xx̄ at x̄.

(3) for each i, the primitive vectors dω for ω ∈ Ωi are the set of edge vectors

of an elementary simplex ∆i ⊂ NR. (A lattice simplex is elementary if its

vertices are the only lattice points contained in it.)

We remark that if qω : X̃ω → Xω is not an embedding, the zero set Z̃ω of sω may

locally contribute two or more components of Z at a point x̄ which may or may not

lie in different Ωi.

Theorem 6.8 (Gross-Siebert). A toroidal crossing space X over an algebraically

closed field k together with simple section s ∈ Γ(U,LSX) gives X the structure of a

log toroidal family over S = Spec
(
N→ k

)
with U the locus of log smoothness.

Proof. Using assumptions in Definition 6.7, the proof is the same as the one of [15,

Theorem 2.6]. See also Example 4.6. �

We remark that the ∆i give the local structure of the singularities in the nearby

fiber, cf. [15, Proposition 2.2]. We also remark that all ETDs have F = Fmin,

i.e. there is no horizontal divisor. Proposition 2.8 implies W dimX
X/S = ωX/S.

Proposition 6.9. A normal crossing space X with Xsing projective and T 1
X generated

by global sections permits a dense open U and a simple section s ∈ Γ(U,LSX). In

view of 6.7, we have q = 1 at every point in Z and ∆1 in each ETD is a standard

simplex which means all ETDs have smooth nearby fibers.

Proof. Applying Bertini’s theorem to the line bundle T 1
X on Xsing, we obtain a section

ŝ ∈ Γ(Xsing, T 1
X) that gives a simple section s ∈ Γ(X \ V (ŝ),LSX) by Theorem 6.5.

�
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Lemma 6.10. Let f : X → S be a log toroidal family with empty horizontal divisor.

Let E ⊂ X be a Cartier divisor that meets all strata and Z transversely, i.e. locally

along E the triple (X,Z,E) is étale equivalent to (E ×A1, (E ∩ Z)×A1, E × {0}).

There is a new log toroidal family X(logE)→ S that has E as its horizontal divisor

and factors through f (by forgetting E), so in particular W dimX
X(logE)/S(−E) = ωX/S.

Proof. On U the result is straightforward and along Z we use the product description

to make E the horizontal divisor in the ETDs by adding a summand N to P and

the unique new facet gets included in F . That these give local models follows the

same proof as [15, Theorem 2.6] noting that we may treat the local equation for E

as one of the fi in the notation of loc.cit.. �

Lemma 6.11. Let f : X → S be a projective log toroidal family with empty hor-

izontal divisor and assume that ω−1
X/S is generated by global sections, then ω−1

X/S
∼=

OX(E) for a divisor E that satisfies the assumption of Lemma 6.10. In particular,

W dimX
X(logE)/S

∼= OX .

Proof. This follows via an application of Bertini’s theorem. �

Proposition 6.12. Theorem 1.1 follows from Theorem 1.7.

Proof. We are given E that is transverse to the strata of X. We apply a slight variant

of Proposition 6.9 by making sure the zero locus Z of the section ŝ generated by

Bertini is transverse also to E. Theorem 1.7 gives an orbifold smoothing but we

know it is an actual smoothing from the fact that each ∆1 is standard. �

Theorem 6.13 (Gross-Siebert). Let Y := X(logE) → S be a log toroidal family

obtained from a toroidal crossing space X via a simple section s ∈ Γ(U,LSX) and a

divisor E as in Lemma 6.10. The analogue of Theorem 2.11 in [15] holds for Y → S,

in particular if V ⊂ Y is affine open, then any two infinitesimal deformations of

V/S are isomorphic.

Proof. The proof works precisely as in loc.cit. We remark that in Lemma 2.14,

the exact sequence in (2) becomes 0 → ΘY/S → ΘX/k(logE) → B → 0 where

ΘX/k(logE) denotes ordinary derivations that preserve the ideal of E. In other

words, for the ordinary deformations, we consider the ones of the pair (X,E) rather

than just X. �

7. Differentials for Elementary Log Toroidal Families

We fix a principal ideal domain R as base ring. The constructions in §3 carry

through when replacing Z by R. We will use the following elementary lemma.

Lemma 7.1. Let n,m ≥ 0 and G1, ..., Gr ⊂ Rn be submodules each of which is a

direct summand, then the natural map
∧m
R (
⋂
iGi)→

⋂
i

∧m
R Gi is an isomorphism.
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First consider the absolute case, i.e. an ETD (Q ⊂ P,F) with Q = 0 and let

f : AP,F → SpecR be the associated log morphism. One checks that U from (3.3) is

simply the complement of codimension two strata. Recall from Example 2.10 that

Wm := Wm
AP,F/ SpecR are just the Danilov differentials with log poles in the divisor

given by the facets in F . Danilov already computed these in [9, Proposition 15.5]

over a field but because of Lemma 7.1 the same calculation works over R and we

obtain the following.

Proposition 7.2 (absolute case). We have a grading Γ(AP ,W
m) =

⊕
p∈P (Wm)p

with

(Wm)p =
m∧
R

 ⋂
F∈Fmax\F

p∈F

F gp ⊗Z R


where the intersection is P gp ⊗Z R if the index set is empty.

Let us next assume we have a general ETD (Q ⊂ P,F) and let again f denote

the associated log toroidal family and Wm
f := Wm

AP,F/ SpecAQ
the differentials. Note

that since F contains all vertical facets, every facet in Fmax \ F contains Q. We

obtain the following generalization.

Proposition 7.3 (general case). We have a grading Γ(AP ,W
m
f ) =

⊕
p∈P (Wm

f )p
with

(Wm
f )p =

m∧
R


 ⋂

F∈Fmax\F
p∈F

F gp ⊗Z R

/ (Qgp ⊗Z R)


where the intersection is P gp⊗ZR if the index set is empty. Since Qgp ⊂ P gp splits,

we can equivalently take the quotient before the intersection.

Proof. We can compose f with the projection to SpecR to relate the current sit-

uation to that of Proposition 7.2. The open set Uabs in the absolute case is the

complement of Zabs, the union of all codimension two strata. Hence, Uabs is covered

by UF where F runs over the facets of P . On the other hand the open set U for f as

given in (3.3) has a cover UF where F runs over the essential faces of rank d− 1 by

Lemma 3.7. Obviously, Uabs ⊆ U . Note that since Wm
f is locally free on U and OU

is Zabs-closed, we find that Wm
f is not only Z-closed but also Zabs-closed. Consider

the commutative diagram of solid arrows

(7.1)

0 // f ∗ΩAQ/ SpecR
ι // W 1

AP,F/ SpecR
//

��

W 1
f

��

// 0

0 // f ∗ΩAQ/ SpecR
// W 1

AP /SpecR
//

gg

W 1
AP /AQ

// 0

where the top row is obtained by pushing it forward from Uabs. The bottom sequence

is obtained from tensoring the sequence 0 → Qgp → P gp → P gp/Qgp → 0 with
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OAP , in particular, it is exact and splits. Hence the dotted diagonal arrow exists

and commutes with the other maps. Therefore, coker(ι) is a direct summand of

W 1
AP,F/ SpecR, in particular Zabs-closed. Moreover, coker(ι)→ W 1

f is an isomorphism

on Uabs and since both sheaves are Zabs-closed, we have coker(ι) = W 1
f and thus the

top row is exact and splits.

Let 〈f ∗ΩAQ/SpecR〉 denote the homogeneous ideal in the sheaf of exterior algebras

W •
AP,F/ SpecR generated by f ∗ΩAQ/ SpecR. The split exactness above gives the split

exactness of the following sequence

0→ 〈f ∗ΩAQ/SpecR〉m → Wm
AP,F/SpecR → Wm

f → 0.

Since AP is affine and 〈f ∗ΩAQ/ SpecR〉 coherent, applying Γ(AP , ·) to this sequence

yields another exact sequence which already gives that Γ(AP ,W
m
f ) is P -graded. We

have Γ(AP , f
∗ΩAQ/ SpecR) = Qgp ⊗Z R[P ]. Set Fp :=

(⋂
F∈Fmax\F

p∈F
F gp ⊗Z R

)
and let

〈Qgp⊗R〉 ⊆
∧•
R Fp be the homogeneous ideal generated by Qgp⊗R. One computes

Γ(AP , 〈f ∗ΩAQ/ SpecR〉m)p = 〈Qgp ⊗R〉m. Using Proposition 7.2, in degree p ∈ P , we

obtain the exact sequence

0→ 〈Qgp ⊗R〉m →
m∧
R

Fp → (Wm
f )p → 0.

Using a splitting of the injection (Qgp ⊗ R) ⊆ Fp and comparing leads to the

assertion. �

Corollary 7.4. For all m, Wm
f is flat over AQ.

Proof. Inspecting the result in Proposition 7.3, we find Γ(AP ,W
m
f ) is a free R[Q]-

module. �

7.1. Change of Base. Let (Q ⊂ P,F) be an ETD, T be a Noetherian ring and

T = Spec T → SpecR[Q] be any morphism. Denote by σ the composition Q →
R[Q]→ T which turns T into a coherent log scheme. Define Y by the fiber diagram

of log toroidal families

(7.2)

Y
c //

��

AP,F

f

��
T // AQ

We want to study when the natural map c∗Wm
f → Wm

Y/T is an isomorphism. This

holds if f is log smooth since then Wm
f = Ωm

f are the ordinary log differentials

which satisfy this isomorphism property by their universal property. In particular,

c∗Wm
f → Wm

Y/T is always an isomorphism on the open set V := c−1(U). The

following example shows that it is not an isomorphism in general. For a subset

I ⊂ P , let 〈I〉 be the smallest face of P containing I.
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Example 7.5. Let P be the submonoid of Z2 generated by (1, 0), (1, 1), (1, 2) and

let Q = 0. The monoid P has two facets H1 = 〈(1, 0)〉 and H2 = 〈(1, 2)〉 and

setting F = ∅ yields an ETD. Let f : AP,F → AQ = SpecZ be the corresponding

map. Now set T = Z/2Z inducing the natural map T = Spec T → SpecZ and a

fiber diagram as above. One checks that c∗W 1
f → W 1

Y/T is not an isomorphism by

computing both terms via Proposition 7.2. It suffices to check the degree p = 0,

indeed, (W 1
f )0 = Hgp

1 ∩H
gp
2 = 0 but

(W 1
Y/T )0 = (Hgp

1 ⊗ Z/2Z) ∩ (Hgp
2 ⊗ Z/2Z) = Z/2Z · (1, 0) ⊂ (Z/2Z)2.

Hence, ((W 1
f )⊗Z Z/2Z)0 = 0 but (W 1

Y/T )0 6= 0.

The example teaches that base change is related to the (non-)commuting of inter-

section and tensor product. The following lemma (that is an elementary exercise in

Tor groups) will help us. We say a ring T is of characteristic ≥ p0 if for the residue

field κp of every point p holds charκp ≥ p0 or charκp = 0.

Lemma 7.6. Let G be a finitely generated Z-module and H,H ′ ⊂ G be two sub-

modules. Then there is p0 such that for every ring T of characteristic ≥ p0 we

have

(H ∩H ′)⊗ T = (H ⊗ T ) ∩ (H ′ ⊗ T )

and each term here is a submodule of G⊗ T .

In the general situation, observe we have Γ(Y,OY ) =
⊕

e∈E z
e · T with multipli-

cation

ze1 · ze2 = ze · σ(q) whenever e1 + e2 = e+ q

with e ∈ E, q ∈ Q under the canonical decomposition from (3.1). Similarly, Propo-

sition 7.3 gives

(7.3) Γ(Y, c∗Wm
f ) =

⊕
e∈E

ze · ((Wm
f )e ⊗R T ).

Lemma 7.7. Recall V = c−1(U). Equivalent are

(1) the map c∗Wm
f → Wm

Y/T is an isomorphism,

(2) c∗Wm
f is reflexive,

(3) the restriction map ρ : Γ(Y, c∗Wm
f )→ Γ(V, c∗Wm

f ) is surjective.

Proof. (1)⇒(2): Wm
Y/T is reflexive; (2)⇒(3): c∗Wm

f is (Y \ V )-closed; (3)⇒(1):

Consider the commutative square

Γ(Y, c∗Wm
f )

ρ

��

// Γ(Y,Wm
Y/T )

��
Γ(V, c∗Wm

f ) // Γ(V,Wm
Y/T )
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where the right vertical map is an isomorphism becauseWm
Y/T is reflexive by Lemma 2.4.

The bottom horizontal map is an isomorphism by what we said just before Exam-

ple 7.5. Now (1) holds if the top horizontal map is an isomorphism which follows

from (3) if ρ is additionally injective. This injectivity is a general fact that we

prove next. Recall that AP,Fmax = AP and we have a map AP → AP,F that gives us

another commutative square

(7.4)

Γ(Y, c∗Wm
f )

ρ

��

// Γ(Y, c∗Wm
AP /AQ

)

��
Γ(V, c∗Wm

f ) // Γ(V, c∗Wm
AP /AQ

).

Since AP → AQ is log smooth and Wm
AP /AQ

= Ωm
AP /AQ

a free sheaf, the right vertical

map is an isomorphism. We get that ρ is injective if the top horizontal map is

injective. The latter can be computed from Proposition 7.3. Indeed, this follows

from (7.3) since for every e ∈ E, the cokernel of (Wm
f )e → (Wm

AP /AQ
)e is a free

R-module. �

We next provide a useful criterion for the surjectivity of ρ. Let E be the set of

essential faces of P of rank d − 1. By Lemma 3.7, U is covered by {UF |F ∈ E}.
Set VF = c−1(UF ) so these cover V . For each F ∈ E , choose eF ∈ F in the relative

interior, i.e. 〈eF 〉 = F .

Theorem 7.8. Write Mp := (Wm
f )p for short, and assume that for every subset

E ′ ⊂ E and every e ∈ E the natural map(⋂
F∈E ′

Me+eF

)
⊗R T →

⋂
F∈E ′

(Me+eF ⊗R T )

is an isomorphism. Then ρ is surjective.

Proof. We write M = Γ(AP ,W
m
f ), N = Γ(AP ,W

m
AP /AQ

) and Np for the degree p

part of N . By proposition 7.3, Mp and Np only depend on 〈p〉. We are going to use

that for p1, p2 ∈ P holds

(7.5) 〈p1 + p2〉 = 〈〈p1〉 ∪ 〈p2〉〉.

We have a natural injection M ⊆ N by Proposition 7.3. Given µ ∈ Γ(V, c∗Wm
f ), we

want to show it has a preimage under ρ. We do have a unique preimage ν under

the right vertical map of (7.4), so in N ⊗R[Q] T and we are going to show that this

preimage lies in M ⊗R[Q] T . Say ν =
∑

e z
e · ne with ne ∈ Ne ⊗ T is such that

ν|V = µ. In particular ν|VF = µ|VF for all F ∈ E . There is some large a ≥ 1 so that

for each F ∈ E there are mF,e ∈Me ⊗ T such that

µ|VF = z−aeF
∑
e

ze ·mF,e
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and therefore ν|VF = µ|VF implies

zaeF
∑
e

ze · ne ∈
⊕
e∈E

ze · (Me ⊗R T ) ⊂
⊕
e∈E

ze · (Ne ⊗R T ).

If e + aeF = ẽ + q is the decomposition P = E ×Q, then ne · σ(q) ∈ Mẽ ⊗R T . By

(7.5),

e+ aeF ∈ E ⇐⇒ 〈e+ eF 〉 ⊂ E ⇐⇒ e+ eF ∈ E
and if this holds, then σ(q) = 1, so setting

Ee := {F ∈ E | e+ eF ∈ E}

we obtain ne ∈
⋂
F∈Ee(Me+aeF ⊗R T ) and Me+aeF = Me+eF . Note that Ee does not

depend on the chosen eF . Using the assumption, we get

ne ∈
⋂
F∈Ee

(Me+eF ⊗R T ) =

( ⋂
F∈Ee

Me+eF

)
⊗R T .

For the next step, define Fe = {H ∈ Fmax \ F | ∃F ∈ Ee : e + eF ∈ H}. We use

Lemma 7.1 to compute

⋂
F∈Ee

Me+eF =
m∧
R

( ⋂
H∈Fe

Hgp ⊗Z R

Qgp ⊗Z R

)
.

We finally claim that Fe = {H ∈ Fmax \ F | e ∈ H}, indeed given an H in the

latter, we just need to exhibit an F ∈ E that is also contained in H with 〈e, F 〉 ⊂ E

which can be done since H ∩ E is a union of faces in E . Thus, ne ∈ Me ⊗R T , so

indeed ν ∈M ⊗R[Q] T and we are done. �

Corollary 7.9. Let (Q ⊂ P,F) be an ETD, T a Noetherian ring and T = Spec T →
AQ a strict morphism of log schemes. Then c∗Wm

f is reflexive and c∗Wm
f → Wm

Y/T

is an isomorphism provided that the composition

R→ R[Q]→ T

is flat, e.g. when R is a field.

As Example 7.5 shows, the conditions of Lemma 7.8 are not always satisfied in

case R = Z. However, we do get close:

Corollary 7.10. Let (Q ⊂ P,F) be an ETD, and assume f : AP,F → AQ to be

defined over R = Z. Then there is a p0 = p0(Q ⊂ P,F) such that for T = Spec T →
AQ with a Noetherian ring T of characteristic ≥ p0, the sheaf c∗Wm

f is reflexive,

and c∗Wm
f → Wm

Y/T is an isomorphism.

Proof. Apply Lemma 7.6 recursively and use that the modules Mp ⊂
∧m

Z (P gp/Qgp)

are free direct summands and that the set of situations to consider for the assumption

of Theorem 7.8 is finite. �
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For a field k, consider a monoid ideal K ⊂ Q, let (K) ⊂ k[Q] denote the

corresponding monomial ideal of k[Q] and set T = k[Q]/(K). The map T =

Spec T → k[Q] is the natural one and Y → T is defined by (7.2) as before. We set

EK := P \ (P +K) and note this generalizes the union of essential faces E from §3,

indeed E = EQ\{0}. Combining Proposition 7.3 with Corollary 7.9 (for R = k) gives

the following.

Corollary 7.11. Γ(Y,Wm
Y/T ) ∼=

⊕
e∈EK z

e·
∧m

(⋂
H∈Fmax\F :e∈H(Hgp ⊗ k)/(Qgp ⊗ k)

)
with differential d(ze · n) = ze · [e] ∧ n.

With c : Y → AP,F the notation from before, we apply c∗ to the split exact

sequence given by the top row of (7.1) and obtain another split exact sequence. The

left term is free and c∗Wm
f is reflexive by Corollary 7.9. Hence, c∗Wm

AP,F/k is also

reflexive. With V = c−1(U), we find the natural surjection c∗Ω•U/k � Ω•V/k to be

an isomorphism (e.g. by local freeness of both). For j : V ↪→ Y the inclusion and

W •
Y := j∗Ω

•
V/k we thus have c∗Wm

AP,F/k
∼= Wm

Y . Plugging this into Proposition 7.2

yields the following.

Corollary 7.12. Γ(Y,Wm
Y ) ∼=

⊕
e∈EK z

e ·
∧m

(⋂
H∈Fmax\F :e∈H H

gp ⊗ k
)

with differ-

ential d(ze · n) = ze · e ∧ n.

7.2. Local Analytic Theory. We keep the setup and notation from before (with

k = C), so (Q ⊂ P,F) is an ETD and K ⊂ Q a monoid ideal. We additionally

assume that Q \ K is finite, so T = C[Q]/(K) is an Artinian local ring. For

P+ = P \ {0}, let CJP K be the completion of C[P ] in (P+).

Lemma 7.13. ([34, Prop. V.1.1.3.]) For every local homomorphism h : P → N,

i.e. h−1(0) = {0} and we may view h as a grading, it holds

OAanP ,0 =

{∑
p∈P

αpz
p

∣∣∣∣∣ αp ∈ C, supp∈P+

{
log |αp|
h(p)

}
<∞

}
⊂ CJP K.

We have Γ(Y,OY ) ∼= C[EK ] :=
⊕

e∈EK C · ze with ze · ze′ = ze+e
′

if e + e′ ∈ EK
and ze · ze′ = 0 otherwise. By [20, Cor. 3.2.] and Lemma 7.13, the complete local

ring at the origin in Y an is

ÔY,0 ∼= (C[Q]/(K))⊗CJQK CJP K ∼=

{∑
e∈EK

αez
e

}
=: CJEKK

Lemma 7.13 together with Krull’s intersection theorem and the surjectivity ofOAanP ,0 →
OY an,0 yields

(7.6) OY an,0 =

{∑
e∈EK

αez
e ∈ CJEKK

∣∣∣∣∣ supe∈EK\0

{
log|αe|
h(e)

}
<∞

}
.
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Lemma 7.14. Let (V, 〈·, ·〉) be a finite-dimensional C-vector space with a Hermitian

inner product. For every e ∈ EK, let Ve ⊂ V be subvector spaces so that

Ṽ :=
⊕
e∈EK

ze · Ve ⊂ V [EK ]

is a C[EK ]-module. Assume moreover that Ve ⊂ V depends only on the set F (e) :=

{H ⊂ P a facet | Q ⊂ H, e ∈ H}. Set V JEKK :=
∏

e∈EK z
e · Ve and Van :=

Ṽ ⊗C[EK ] OY an. We find its stalk at the origin to be

Van0
∼=

{∑
e∈EK

ze · ve ∈ V JEKK

∣∣∣∣∣ supe∈EK\0

{
log ‖ve‖
h(e)

}
<∞

}

Proof. The set of possible F (e) is finite, so there is only a finite set of different Ve.

Choosing orthonormal bases for all Ve allows to reduce the assertion to (7.6). We

leave the technical details to the reader. �

Remark 7.15. We can use Lemma 7.14 to compute the stalk at 0 of the analytification

of Wm
Y/T and Wm

Y by using Corollary 7.11 and Corollary 7.12 respectively.

8. Base Change of Differentials for Log Toroidal Families

Definition 8.1 (BC). We say that a generically log smooth morphism f : X → S

satisfies the basechange property if for every strict morphism T → S of Noetherian

fs log schemes, m ∈ Z and c the map given by the Cartesian diagram

(BC)

Y
c−−−→ X

g

y f

y
T

b−−−→ S,

the sheaf c∗Wm
X/S is reflexive or equivalently, the natural map c∗Wm

X/S → Wm
Y/T is an

isomorphism.

Theorem 8.2 (Base Change over Fields). Let f : X → S be a log toroidal family

over a field k, then f satisfies (BC).

Proof. This follows directly from the local statement Corollary 7.9. �

Theorem 8.3 (Generic Base Change). Let f : X → S be a log toroidal family.

Then there is a finite set of prime numbers p1, ..., pN ∈ Z so that if f ◦ : X◦ → S◦

is obtained from f by inverting p1, ..., pN (i.e. basechange to SpecZp1...pN ), then f ◦

satisfies (BC).

Proof. Again, this follows directly from the local statement Corollary 7.10 combined

with the fact that we can use a finite cover by local models. �

An application of the above theorems is the following lemma which is crucial for

the degeneration of the Hodge-to-de-Rham spectral sequence.
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Lemma 8.4. (cf. [24, Prop. 6.6]) Let f : X → S be a proper log toroidal family

with S affine, and let b : T → S with T affine. Assume c∗Wm
X/S = Wm

Y/T holds for

all m. Then we have isomorphisms

Lb∗Rf∗W
p
X/S → Rg∗W

p
Y/T(8.1)

Lb∗Rf∗W
•
X/S → Rg∗W

•
Y/T(8.2)

in Db(T ). If, for fixed p, all Rqf∗W
p
X/S are locally free of constant rank, then (8.1)

induces an isomorphism

b∗Rqf∗W
p
X/S

∼=−→ Rqg∗W
p
Y/T

If, for all n, the sheaf Rnf∗W
•
X/S is locally free of constant rank, then (8.2) induces

an isomorphism

b∗Rnf∗W
•
X/S

∼=−→ Rng∗W
•
X/S

Proof. Knowing the flatness ofWm
X/S over S which is Corollary 7.4, the proof becomes

identical to that in [24, Prop. 6.6]. �

9. Spreading Out Log Toroidal Families

We fix a sharp toric monoid Q, a field k ⊃ Q and set S = Spec(Q → k) where

the map Q→ k is q 7→ 0 except 0 7→ 1. We choose distinct subrings Bλ ⊆ k for all

λ in some index set Λ so that any two Bλ1 , Bλ2 are both contained in a third Bλ.

We say λ1 ≤ λ2 if Bλ1 ⊆ Bλ2 . Furthermore, we require lim−→λ
Bλ = k and that each

Bλ is of finite type over Z. We get log schemes Sλ = Spec(Q → Bλ) each with a

strict map S → Sλ and in fact S = lim←−λ Sλ.

Proposition 9.1. Let f : X → S be a log toroidal family of relative dimension

d = rk Ω1
U/S. Then there is λ ∈ Λ and a log toroidal family fλ : Xλ → Sλ, so that f

is obtained by base change from fλ, i.e. there is a Cartesian square

X −−−→ Xλ

f

y yfλ
S −−−→ Sλ.

If f is separated and/or proper, we can assume fλ to be so, too.

Proof. By [19, Thm. 8.8.2 (ii)], [19, Thm. 8.10.5] and [19, Thm. 11.2.6 (ii)] we can

find a λ ∈ Λ and a morphism fλ : Xλ → Sλ that is finitely presented and flat, and an

isomorphism S×SλXλ
∼= X over S. If f : X → S is separated respective proper, we

can choose fλ moreover separated respective proper. Using [19, Corollaire 12.1.7(iii)]

and [19, Thm. 8.10.5], we can choose λ such that fλ is a Cohen-Macaulay morphism.

Since these decompose disjointly over the relative codimension, again by increasing

λ if needed, we may assume that fλ has relative dimension d.
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We next spread out U such that Uλ ⊂ Xλ satisfies (CC). We do this by spreading

out its complement Z. Indeed, by [2, 05M5, Lemma 31.16.1], we can increase λ so

that every fiber of Zλ → Sλ has dimension ≤ d− 2 and then define Uλ := Xλ \ Zλ.
Now a straightforward generalization of the method employed in [40, 4.11.1] yields

that for appropriate λ, we can find a log structure on Uλ and upgrade fλ to a log

morphism such that Uλ is fs and fλ is log smooth and saturated. While Tsuji uses

absolute charts to construct the log structure, we choose relative charts APi → AQ
with saturated injections Q ⊂ Pi.

Finally - again by possibly increasing λ - we show the family fλ : Xλ → Sλ log

toroidal. We fix a finite covering {Vi → X} with local models (Q ⊂ Pi,Fi) as in

Definition 4.1, and for each of them, we construct a diagram

Vi
g��

//

h

��

Vi,λ

hλ

��

gλ||
X

f

��

pλ
// Xλ

fλ

��

Li
r��

// Li,λ
rλ}}

// APi,Fi

{{
S

qλ
// Sλ aλ

// AQ

Namely we first spread out Vi → S to Vi,λ → Sλ. Then Li,λ is defined by base change,

and we construct the étale morphisms of schemes gλ : Vi,λ → Xλ and hλ : Vi,λ → Li,λ
also by spreading out. We can assume that Xλ is covered by {Vi,λ → Xλ} and that

Ũi ⊂ Vi spreads out to an open Ũi,λ ⊂ Vi,λ satisfying (CC). We get two log structures

(gλ)
∗
logMXλ and (hλ)

∗
logMLi,λ on Ũi,λ which we identify by [40, 4.11.3]. By the same

Lemma, the two morphisms (g ◦ f)∗logMSλ →MŨi,λ
coming from fλ ◦ gλ respective

rλ ◦ hλ coincide. Since {Vi → X} is a finite covering, we can find λ that admits the

above construction for all Vi simultaneously. �

10. The Cartier Isomorphism

In this section, we define the Cartier homomorphism for a generically log smooth

family f : X → S in characteristic p > 0. We then prove that it is an isomorphism if

f is log toroidal. Similar to [4], we first study the situation on U and then examine

its extension to all of X. Let FS : S → S be the absolute log Frobenius on the

base, i.e. given by taking pth power inMS and OS respectively, we similarly define

FX : X → X. We define f ′ : X ′ → S and the relative Frobenius F by the Cartesian

square

X

f   

F //

FX

%%
X ′

f ′

��

s // X

f
��

S
FS // S.
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Set U ′ := s−1(U) and Z ′ = X ′ \ U ′.

Theorem 10.1 ([28]). We have a canonical (Cartier) isomorphism of OU ′-modules

C−1
U : Ωm

U ′/S → Hm(F∗Ω
•
U/S)

which is compatible with ∧ and satisfies C−1(a) = F ∗(a) for a ∈ OX′ and

C−1(dlog(s∗q)) = dlog(q) for q ∈MU .

Proof. This is [28, Theorem 4.12(1)] once we identify U ′′ = U ′: Kato considers the

factorization U
g→ U ′′

h→ (U ′)int i→ U ′ of F |U where i is the integralization of U ′

and g ◦ h is the unique factorization of this weakly purely inseparable morphism

where h is étale and g purely inseparable, using [28, Proposition 4.10(2)]. Now i

is an isomorphism because f is integral. By [34, Cor. III.2.5.4], since f : U → S

is saturated, F : U → U ′ is exact. The uniqueness of the factorization g ◦ h now

implies that h is an isomorphism. �

Since Wm
X′/S is Z ′-closed, pushing forward the inverse of C−1

U to X ′, we obtain a

homomorphism

C : Hm(F∗W
•
X/S)→ Wm

X′/S

which is an isomorphism on U ′. We obtain the following lemma.

Lemma 10.2. The map C is an isomorphism if and only if Hm(F∗W
•
X/S) is Z ′-

closed.

Definition 10.3. We say that a generically log smooth family f : X → S in positive

characteristic has the Cartier isomorphism property if C is an isomorphism for all

m ≥ 0.

By Theorem 10.1, Hm(F∗W
•
X/S) is locally free on U ′, hence it is Z ′-closed if and

only if it is reflexive. Reflexivity can be checked étale locally.

Lemma 10.4. Let (Q ⊂ P,F) be an ETD, let b : T → AQ be strict with T = Spec T
and consider the Cartesian diagram

Y
c //

g

��

AP,F

f

��
T

b // AQ

Then Hm(F∗W
•
Y/T ) is reflexive.

Corollary 10.5. Every log toroidal family f : X → S over Fp has the Cartier

isomorphism property.

Proof of Lemma 10.4. Set V := c−1(UP ) and let Y ′, V ′ be the base changes by the

absolute Frobenius FT . Let F : Y → Y ′ be the relative Frobenius. Inspired by

the Frobenius decomposition [11, Theorem 2.1.], we construct a homomorphism
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φ• :
⊕

mW
m
Y ′/T [−m] → F∗W

•
Y/T of complexes of OY ′-modules which induces an

isomorphism in cohomology. Since the left hand side has zero differentials, the

assertion then follows from the reflexivity of Wm
Y ′/T given by Lemma 2.4.

Similar to §7.1, we find explicitly that R′ := Γ(Y ′,OY ′) =
⊕

e∈E z
e · T with

ze1 · ze2 = ze · σ(q)p whenever e1 + e2 = e+ q

with e ∈ E, q ∈ Q. We have s∗(ze · t) = ze · tp and F ∗(ze · t) = zp·e · t. Writing Wm
e :=

(Wm
f )e ⊗Fp T , the module Γ(Y ′,Wm

Y ′/T ) is given by the T -module
⊕

e∈E z
e ·Wm

e on

which R′ acts as

(ze1 · t1) · [ze2 · (w ⊗ t2)] = ze · (w ⊗ σ(q)pt1t2) whenever e1 + e2 = e+ q

with e ∈ E, q ∈ Q. Similarly, Γ(Y ′, F∗W
m
Y/T ) is given by the same T -module, however

now R′ acting via F ∗ as

(ze1 · t1) · [ze2 · (w ⊗ t2)] = ze · (w ⊗ σ(q)t1t2) whenever p · e1 + e2 = e+ q.

Note the subtle difference. The differential on F∗W
•
Y/T is given by d(ze · (w ⊗ t)) =

ze · ([e] ∧ w ⊗ t). We define

φ• :
⊕
m

Wm
Y ′/T [−m]→ F∗W

•
Y/T , ze · (w ⊗ t) 7→ zp·e · (w ⊗ t)

and claim Hm(φ•) is an isomorphism. Indeed, first note that φ• itself is injective.

Then set Ep = {p ·e|e ∈ E}. We have im(φm) =
⊕

e∈Ep z
e ·Wm

e because Wm
e = Wm

e/p

for e ∈ Ep by Prop. 7.3. Denoting the coboundaries of F∗W
m
Y/T by Bm, we have

im(φm) ∩ Bm = 0 since 0 = [e] ∈ W 1
e for e ∈ Ep because e = pe′ and p is zero in T .

This readily gives that Hm(φ•) is injective. For surjectivity, if e /∈ Ep, observe that

[e] 6= 0, so if w ∈ Wm
e , then [e]∧w = 0 if and only if there is some w′ ∈ Wm−1

e with

[e] ∧ w′ = w. �

Remark 10.6. We believe that Hm(φ•) is the log Cartier isomorphism on V ′.

11. The Decomposition of F∗W
•
X0/S0

We prove a log version of the decomposition theorem [11, Thm. 2.1] in the setting

of generically log smooth families. (We noticed that [11, Cor. 3.7] alias [24] doesn’t

generalize well to the generically log smooth setting.) The assumption for f : X → S

to be saturated on the log smooth locus allows a simpler approach than [28, Thm.

4.12]. Our setting is as follows: let k be a perfect field with char k = p (thus

Z/p2Z→ W2(k) is flat), and let Q be a sharp toric monoid. Set S0 = Spec(Q→ k)

and S = Spec(Q → W2(k)) where in both cases Q 3 q 7→ 0 except 0 7→ 1. The

Frobenius endomorphism on k becomes an endomorphism F0 of S0 via Q 3 q 7→ pq.

Similarly, its lift to W2(k) defined via (a1, a2) 7→ (ap1, a
p
2) becomes1 an endomorphism

FS of S that restricts to F0 on S0. Let f : X → S be a generically log smooth family

1Warning: This is not the pth power map on W2(k) and thus depends on the chosen chart.



SMOOTHING TOROIDAL CROSSING SPACES 33

and let f0 : X0 → S0 be its restriction to S0. We consider the commutative diagram

of generically log smooth families

X0
F //

f0

((

i

~~

X ′0

f ′0

��

s //

i′

~~

X0

f0

��

~~
X

f

''

G // X ′ //

f ′

��

X

f

��

S0
F0

//

~~

S0
//

��

SpecFp

S
FS // S // SpecZ/p2Z

��

where X ′0, X
′ are defined by requiring the front and back square to be Cartesian and

F is the relative Frobenius, i.e. F is induced by the back square’s Cartesianness using

the Frobenius endomorphisms on X0 and S0. Since X doesn’t have a Frobenius, we

don’t easily obtain the dotted arrow G in a similar way and in general it does not

exist globally. We call a locally defined morphism G that fits into the diagram a

local Frobenius lifting. Because the (Zariski or étale) topologies are identified along

F and i, we can define Frobenius liftings simply at the level of sheaves:

Definition 11.1. Let Y ′ → X ′ be an étale open. Then a Frobenius lifting G : Y →
Y ′ on Y ′ consists of a ring homomorphism G∗ : OY ′ → G∗OY yielding a morphism

of schemes and a monoid homomorphism G∗ : MY ′|V ′ → G∗MY |V ′ defined on

some V ′ ⊂ Y ′ satisfying (CC), yielding a log morphism. Two Frobenius liftings are

considered equal if they are equal on some smaller (Zariski) open satisfying (CC).

The Frobenius liftings form an étale sheaf of sets Frob(X,X ′).

Remark 11.2. We need the flexibility of V ′ in the definition of Frob(X,X ′) to con-

struct Frobenius liftings from local models as they occur for log toroidal families.

We will see below that we could have as well required the log part to be defined on

Y ′ ∩ U ′, see the proof of Proposition 11.4.

Let j : U ′ ↪→ X ′ denote the pullback of U ⊂ X and Z ′ = X ′ \ U ′. By

Lemma 2.3, Frob(X,X ′) = j∗(Frob(X,X ′)|U ′). Let I ⊂ OX be the ideal sheaf

defining X0 ⊂ X, flatness gives I = p · OX ∼= OX0 . Using I2 = 0, one checks

that F∗I is an OX′-module. Considering derivations on U ′ with values in F∗I, we

obtain a sheaf of groups G := j∗DerU ′/S(F∗I) = j∗Hom(Ω1
U ′/S, F∗I) which agrees

with Hom(W 1
X′/S, F∗I) because F∗I is Z ′-closed by Lemma 2.3.

Lemma 11.3. The restriction Frob(X,X ′)|U ′ is a G|U ′-torsor and hence Frob(X,X ′)
is a G-pseudo-torsor.
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Proof. Let D be the sheaf of sets on U ′ given by étale local deformations of the

diagram

U0
i′◦F−−−→ U ′

i

y f ′

y
U

f−−−→ S
in the sense of [34, Def. IV.2.2.1], i.e. D is the sheaf of morphisms U → U ′ making

the diagram commute. The sheaf D is a G|U ′-pseudo-torsor by [34, Thm. IV.2.2.2]

and because f ′ : U ′ → S is smooth, it is a torsor. Because Ω1
U ′/S is locally free, D

is locally isomorphic to (F∗I)⊕d. By Lemma 2.3, D is Z̃-closed for every Z̃ ⊂ X ′

satisfying codim(Z̃,X ′) ≥ 2. By this property, the obvious homomorphism D →
Frob(X,X ′)|U ′ is an isomorphism of sheaves of sets making Frob(X,X ′)|U ′ a G|U ′-
torsor. �

Proposition 11.4. Let Y ′ → X ′ be an étale open and G : Y → Y ′ a local Frobenius

lifting. Then there is a canonical homomorphism of complexes

φG : W 1
Y ′0/S0

[−1]→ F∗W
•
Y0/S0

inducing the Cartier isomorphism in first cohomology on U ′0∩Y ′0 . If h ∈ G(Y ′), then

φG and φh·G are related by

φh·G = φG + (F∗d) ◦ h̃

where h̃ : W 1
Y ′0/S0

→ F∗I ∼= F∗W
0
Y0/S0

is the induced homomorphism.

Proof. We choose V ′ = U ′ ∩ Y ′ for the representative of G. The straightforward

log version of the construction of [24, Prop. 3.8] yields a homomorphism Ω1
V ′0/S0

→
F∗Ω

1
V0/S0

and this has also been used implicitly by Kato in [28, Thm. 4.12]. Applying

j∗ yields (φG)1, and we define the other (φG)m to be 0. The resulting φG does not

depend on V ′ since the involved sheaves are Z̃-closed for every Z̃ ⊂ Y ′0 satisfying

codim(Z̃, Y ′0) ≥ 2, so φG is well-defined. The construction yields that H1(φG) is the

Cartier isomorphism of Theorem 10.1 on V ′0 = U ′0 ∩ Y ′0 . The second statement is

similar to [24, Lemma 5.4,(5.4.1)] except that we use the more elegant language of

torsors (as already remarked in [11, Rem. 2.2 (iii)]) which renders the analogue of

[24, Lemma 5.4,(5.4.2)] trivial. �

Theorem 11.5. Let f : X → S be a generically log smooth family, assume that

f0 : X0 → S0 has the Cartier isomorphism property (Def. 10.3), and assume that

Frob(X,X ′) is a G-torsor. Then we have a quasi-isomorphism⊕
m<p

Wm
X′0/S0

[−m]→ τ<pF∗W
•
X0/S0

in Db(X ′0) where τ<p means the truncation of a complex.
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Proof. Because Frob(X,X ′) is a torsor, we can find an étale cover Y = {Y ′α} of X ′

such that we have a local Frobenius lifting Gα : Yα → Y ′α. We obtain an induced

cover Y0 of X ′0. On the log smooth locus U ′0 ⊂ X ′0, we can apply an argument as

implicitly used in [28, Thm. 4.12]: using Proposition 11.4, the gluing method of

Step B in the proof of [24, Thm. 5.1] yields a homomorphism

ϕ : Ω1
U ′0/S0

[−1]→ Č•(Y0 ∩ U ′0, F∗Ω•U0/S0
) =: Č•U

of complexes of sheaves where Č•(U,F•) refers to the total sheaf Čech complex for a

cover U and a complex of sheaves F•. We also have the natural quasi-isomorphism

ψ : F∗W
•
X0/S0

→ Č•(Y0, F∗W
•
X0/S0

).

Using ψ and that the question is local, Prop. 11.4 gives that ϕ induces the Cartier

isomorphism on U ′0 for H1. Now let 0 ≤ m < p. With the antisymmetriza-

tion map am : Ωm
U ′0/S0

[−m] → (Ω1
U ′0/S0

[−1])⊗m defined by am(ω1 ∧ ... ∧ ωm) =
1
m!

∑
σ∈Sm sgn(σ)ωσ(1) ⊗ ...⊗ ωσ(m), we obtain a morphism

ϕm : Ωm
U ′0/S0

[−m]
am−→ (Ω1

U ′0/S0
[−1])⊗m

ϕ⊗m−−→ (Č•U)⊗m → Č•U

where the last map is induced by the wedge product on F∗Ω
•
U0/S0

. Note that the

various ϕm are compatible with the wedge product of Ω•U ′0/S0
and of the cohomology

of F∗Ω
•
U0/S0

hence ϕm induces the Cartier isomorphism in cohomology. Taking the

sum, we obtain a quasi-isomorphism

ϕ• :
⊕
m<p

Ωm
U ′0/S0

[−m]→ τ<pČ•U .

Since j∗Č•U = Č•(Y0, F∗W
•
X0/S0

), we obtain the desired homomorphism in Db(X ′0)

as ψ−1 ◦ j∗ϕ•. It is a quasi-isomorphism because f0 : X0 → S0 has the Cartier

isomorphism property by assumption. �

We like to apply this theorem to the case of a log toroidal family. It remains only

to show that Frob(X,X ′) is a torsor:

Proposition 11.6. In the above situation assume f : X → S log toroidal with

respect to S → AQ. Then Frob(X,X ′) is a G-torsor, i.e. Frobenius liftings exist

locally.

Proof. Let (Q ⊂ P,F) be an ETD from a local model of f : X → S, as given in

(LM) with S = S̃. Consider the diagram

L

��

F // L

��

c // AP,F

��
S

FS // S
a // AQ.

We claim that for the local existence of a Frobenius lifting, it suffices to show that

there is a scheme morphism F : L → L that is the underlying morphism of a
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log morphism on c−1(UP ) such that the diagram commutes and the induced map

F ×S S0 on L0 = L×S S0 is the absolute Frobenius. Indeed, then F plays the role of

an absolute Frobenius on L, and its induced relative Frobenius gives rise to a local

Frobenius lifting on X ′ via the local model.

The scheme L is affine with O(L) =
⊕

e∈E z
e ·W2(k) allowing us to define F :

L→ L via F ∗(ze ·w) := zpe · F ∗S(w). It remains to extend F to the log structure on

c−1(UP ). Consider the maps of log schemes

M := Spec(P → O(L))→ L→ Spec(Q→ O(L)) =: N.

With the notation of Corollary 3.11, we define Wi := c−1(Ui). Observe that M |W1 =

L|W1 and L|W2 = N |W2 . On N and M , we get morphisms FN : N → N and

FM : M →M by mapping q 7→ p ·q on the monoids and using F ∗ on the rings. They

are compatible with each other and with the maps to S, and moreover FN×S S0 and

FM ×S S0 are the absolute Frobenii on N0,M0. We define partially F |W1 := FM |W1

and F |W2 := FN |W2 . Because N |W1∩W2 = L|W1∩W2 = M |W1∩W2 these definitions

agree on W1 ∩W2 and we obtain a log morphism defined on c−1(UP ) = W1 ∪W2

which gives the desired map. �

12. The Hodge-to-de-Rham Spectral Sequence

We put the pieces together to prove Theorem 1.9 from the introduction. Let

S = Spec(Q → k) for a field k ⊃ Q with Q 3 q 7→ δq0, and let f : X → S be a

proper log toroidal family of relative dimension d with respect to S → AQ. Setting

hpq = dimkR
qf∗W

p
X/S and hn = dimkR

nf∗W
•
X/S, it suffices to prove

∑
p+q=n h

pq = hn.

By Proposition 9.1, we can find an Sλ = Spec(Q→ Bλ) and a proper log toroidal

family with respect to Sλ → AQ. Since Bλ is integral, by shrinking Sλ, we can find

a spreading out φ : X → S such that Rqφ∗W
p
X/S and Rnφ∗W

•
X/S are locally free

of constant rank rpq respective rn and such that S/Z is smooth as schemes. By

Theorem 8.3 we can furthermore assume that Wm
X/S is compatible with any base

change, and we can assume that charκ(s) > d for the residue field κ(s) of every

closed point s ∈ S. Now let Spec k → S be a closed point. Since S/Z is smooth, we

can find a factorization

Spec k → SpecW2(k)→ S
which induces diagram (SO) from the introduction by strict base change. Setting

gpq := dimkR
q(φk)∗W

p
Xk/k

and gpq := dimkR
n(φk)∗W

•
Xk/k

, Lemma 8.4 yields hpq =

rpq = gpq and hn = rn = gn hence it suffices to show
∑

p+q=n g
pq = gn. Note that

in diagram (SO) on the right, we are in the situation of Proposition 11.6, so by

Theorem 11.5 we have a quasi-isomorphism⊕
m

Wm
X′k/k

[−m] ' (F0)∗W
•
Xk/k

.
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Now a computation as in [11, Cor. 2.4] yields
∑

p+q=n g
pq = gn concluding the proof

of Theorem 1.9.

12.1. The Relative Spectral Sequence. Proof of Theorem 1.10. By Corol-

lary 7.9, the formation of W p
X/S commutes with base change which is an ingredient

for the classical base change theorem, e.g. [10, §3], [29, Theorem (8.0)]. It thereby

suffices to show the surjectivity of

Hk(X,W •
X/S)→ Hk(X0,W

•
X0/S0

).

We prove this with the idea of [38, section (2.6)], cf. [31, Lemma 4.1] and [15, Thm.

4.1]. We define a complex

L• := W •,an
X [u] =

∞⊕
s=0

W •,an
X · us, d(αsu

s) = dαs · us + sδ(ρ) ∧ αs · us−1

of analytic sheaves where ρ = f ∗(1) ∈MXan and δ :MXan → W 1,an
X is the log part

of the universal derivation. Here W •,an
X denotes absolute differentials as in Corollary

7.12. Projection to the u0-summand composed with W •,an
X → W •,an

X/S yields a map

L• → W •,an
X/S whose composition with W •,an

X/S → W •,an
X0/S0

fits into an exact sequence

0→ K• → L• φ•−→ W •,an
X0/S0

→ 0

of complexes that defines K•. Since f : X → S has ETD local models, we may use

Corollaries 7.12,7.12 and Remark 7.15 to have a local description of this sequence.

Lemma 12.1 below verifies that K• is acyclic for all ETDs with one-dimensional

base, so φ• is a quasi-isomorphism and Theorem 1.10 follows by the discussion in

§2.1. �

Lemma 12.1. Let (N ⊂ P,F) be an ETD, and let f : X → S = Sm be the base

change of AP,F → AN along Sm → AN. With 0 ∈ AP,F denoting the origin, we have

Hk(K•)0 = 0 for all k.

Proof. We choose Hermitian inner products on the vector spaces L := P gp ⊗C and

W := (P gp ⊗ C)/(Ngp ⊗ C). With K = (m + 1) + N ⊂ N, we recall EK from §7.2.

For e ∈ EK , we define

Le :=
⋂

H∈Fmax\F :e∈H

Hgp ⊗ C and We :=
⋂

H∈Fmax\F :e∈H

(Hgp ⊗ C)/(Ngp ⊗ C).

By Remark 7.15 and Lemma 7.14, elements of Lk0 are formal sums

(`e,s) :=
N∑
s=0

∑
e∈EK

usze`e,s , `e,s ∈
k∧
Le , supe∈EK\0

1≤s≤N
{log‖`e,s‖/h(e)} <∞
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and elements of W k,an
X0/S0,0

are formal sums

(we) :=
∑
e∈E

ze · we, we ∈
k∧
We , supe∈E\0 {log‖we‖/h(e)} <∞

Note that (`e,s) is summed over EK whereas (we) is summed over E. We denote the

kernel of π :
∧k Le →

∧kWe by Kk
e and observe φ((`e,s)) = (π(`e,0)), so (`e,s) ∈ Kk0

if and only if `e,0 ∈ Kk
e for all e ∈ E. With ρ̄ := 1 ⊗ 1 ∈ Ngp ⊗ C we have

δ(ρ) = z0 · ρ̄ ∈ W 1
X and thus

(12.1) d((`e,s)) = (e ∧ `e,s + (s+ 1)ρ̄ ∧ `e,s+1)

Let (`e,s) ∈ K0
0 and assume d((`e,s)) = 0. Since `e,s ∈ C, for e 6= 0 by descending

induction in s starting from `e,N we find `e,s = 0. We have `0,0 = 0 and ascending

induction yields `0,s = 0. Thus H0(K•)0 = 0.

Next, let (`e,s) ∈ Kk+1
0 for k ≥ 0 with d((`e,s)) = 0. Starting with e = 0, we

construct (τe,s) ∈ Kk0 with d((τe,s)) = (`e,s) using the following claim.

Claim 2. Let (L, 〈·, ·〉) be a C-vector space of finite dimension with a Hermitian

inner product. Let 0 6= p ∈ L and k ≥ 0, and assume ` ∈
∧k+1 L with p ∧ ` = 0.

Then there is a ˜̀∈
∧k L with p ∧ ˜̀= ` and ‖p‖ · ‖˜̀‖ = ‖`‖.

Proof. Let `1 := p
‖p‖ , `2, ..., `n be an orthonormal basis of L, and {`i1...ik} the in-

duced basis of
∧k L. If ` =

∑
αi1...ik+1

`i1...ik+1
satisfies the assumption, then ˜̀ =

1
‖p‖
∑
α1i2...ik+1

`i2...ik+1
is a solution. �

We set τ0,0 = 0. Writing out (12.1) for e = 0 yields

d
(
`0,0 + `0,1u+ `0,2u

2 + ...
)

= ρ̄ ∧ `0,1 + 2ρ̄ ∧ `0,2u + 3ρ̄ ∧ `0,3u
2 + ...

and therefore ρ̄ ∧ `0,i = 0 for i > 0. Since `0,0 ∈ K0
0 , we also have ρ̄ ∧ `0,0 = 0.

By Claim 2, there is τ0,s+1 ∈
∧k L0 with ρ̄ ∧ τ0,s+1 = `0,s and we are done with

the case e = 0. For e 6= 0 we need to care about convergence. Without loss of

generality, N ≥ 1. Since e ∧ `e,N = 0, we can find by Claim 2 τe,N ∈
∧k Le with

e ∧ τe,N = `e,N and ‖τe,N‖ · ‖e‖ = ‖`e,N‖. For s ≥ 1, we construct τe,s ∈
∧k Le by

descending induction. Because of e ∧ (`e,s − (s+ 1)ρ̄ ∧ τe,s+1) = 0, there is τe,s with

e ∧ τe,s = `e,s − (s+ 1)ρ̄ ∧ τe,s+1 and

(12.2) ‖τe,s‖ · ‖e‖ = ‖`e,s − (s+ 1)ρ̄ ∧ τe,s+1‖.

For e /∈ E, we go one step further and construct τe,0 ∈
∧k Le with the same method,

but for e ∈ E, the construction of τe,0 ∈ Kk
e is more intricate. We need another

claim:

Claim 3. Let (L, 〈·, ·〉) be a C-vector space of finite dimension with a Hermitian

inner product. Let 0 6= V, Y ⊂ L be subspaces with V ∩ Y = 0. Then there is a

constant γ > 0 with the following property: for every subspace H with V ⊂ H ⊂ L
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and k ≥ 0, let Kk
H be the kernel of

∧kH →
∧k(H/V ). Then for every 0 6= p ∈

Y ∩ H and every ` ∈ Kk+1
H with p ∧ ` = 0, there is a ˜̀ ∈ Kk

H with p ∧ ˜̀ = ` and

γ · ‖p‖ · ‖˜̀‖ ≤ ‖`‖.

Proof. Let p = (p1, p2) be the decomposition of p under L = V ⊕ V ⊥, so ‖p‖2 =

‖p1‖2+‖p2‖2. Since V ∩Y = 0, we have for γ2 := inf06=p∈Y ‖p2‖2/‖p‖2 that 0 < γ ≤ 1.

Let `0 := p2

‖p2‖ , `1, `2... be an orthonormal basis of H and then ¯̀
0 = p

‖p‖ ,
¯̀
i := `i for

i > 0 is an ordinary basis of H. For ` =
∑
αi0...ik

¯̀
i0...ik ∈ Kk+1

H with p ∧ ` = 0, we

define ˜̀ := 1
‖p‖
∑
α0i1...ik

¯̀
i1...ik ∈ Kk

H to have p ∧ ˜̀= `. We also find

‖`‖2 =

∥∥∥∥∑α0i1...ik

p

‖p‖
∧ `i1...ik

∥∥∥∥2

≥
∥∥∥∥∑α0i1...ik

p2

‖p‖
∧ `i1...ik

∥∥∥∥2

≥ γ2 · ‖p‖2 · ‖˜̀‖2

�

We apply Claim 3 to L = P gp ⊗ C. Let Fe ⊂ P be the face generated by e and

Y = F gp
e ⊗C. Let V = Ngp⊗C and H = Le, so Kk

H = Kk
e . Then e∧(`e,0−ρ̄∧τe,1) = 0,

so we find τe,0 ∈ Kk
e with e ∧ τe,0 = `e,0 − ρ̄ ∧ τe,1 and

(12.3) γ · ‖τe,0‖ · ‖e‖ ≤ ‖`e,0 − ρ̄ ∧ τe,1‖

The factor γ depends on Y , but there are only finitely many faces generated by

elements e ∈ E, so we take for γ the minimum over them and furthermore γ < 1.

Applying the triangle inequality to the right hand side of (12.3) and using induction

and (12.2) yields

‖τe,s‖ ≤
1

γ
· 1

‖e‖

N∑
k=s

(
‖ρ̄‖
‖e‖

)k−s
· k!

s!
· ‖`e,k‖

for all e 6= 0. Because infe 6=0{‖e‖} > 0, there is a bound M > 1 independent of e

such that ‖τe,s‖ ≤M ·maxk{‖`e,k‖} which proves

supe∈EK\0 {log‖τe,s‖/h(e)} <∞

and thus (τe,s) ∈ Kk0 . By construction, d((τe,s)) = (`e,s), so Hk(K•)0 = 0. �

13. Smoothings via Maurer-Cartan Solutions

We adapt the methods of [25] to our setup in §13.1 and §13.2 and then argue how

to obtain an analytic smoothing from a formal one in §13.3. The combination of all

these sections gives a proof of Theorem 1.7. The main ingredients are Theorem 6.13,

Theorem 1.9 and Theorem 1.10. A key ingredient is also Lemma 6.11 to know that

W d
X/S is trivial for d = dimX.

13.1. Constructing a Formal Deformation from a Solution to the Maurer-

Cartan Equation. We define kS = Spec(N 1 7→t−→ C[t]/tk+1) and assume to be given

a proper log toroidal family 0X → 0S. Let {0Vα}α be an affine cover of 0X. For

fixed α, let {kVα → kS}k be a system of deformations, compatible with restriction
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from k to k − 1 as obtained from Theorem 6.13. Note that Vαβ := 0Vα ∩ 0Vβ is

affine because 0X is separated. We give names to the restrictions of thickenings via
kVα;αβ := kVα|Vαβ . Again by Theorem 6.13, we find isomorphisms

kφαβ : kVα;αβ → kVβ;αβ

of generically log smooth families over kS which are compatible with the restrictions

to the base changes via k−1S → kS but do not necessarily satisfy a cocycle condition.

We now analytify kX → kS as well as kVα,
kVα;αβ. We keep using the same symbols

though now refer to the analytifications respectively.

Let {Ui}i∈I be a cover of 0X by Stein open sets that is also a basis for the analytic

topology of 0X with I countable and totally ordered. Set Ui0...il :=
⋂l
k=0 Uik . We

obtain the sheaves of Gerstenhaber algebras

kGpα := Θ−p
(kVα)/kS

concentrated in non-positive degrees via the negative Schouten-Nijenhuis bracket

−[·, ·] and ∧. Set Nl = Spec(C[x0, . . . , xn]/(x0 + · · · + xn − 1)) and Aq(Nl) = Ωq
Nl

and let dj,l : Nl−1 → Nl be given by xj 7→ 0. One constructs the Thom-Whitney

bicomplex

(TW) kTW p,q
α;α0...αl

=

(ϕi0...il)i0<···<il

∣∣∣∣∣∣∣
Uij ⊂ Vα0 ∩ ... ∩ Vαl for 0 ≤ j ≤ l,

ϕi0...il ∈ Aq(Nl)⊗C
kGpα(Ui0...il),

d∗j,l(ϕi0...il) = ϕi0...̂ij ...il |Ui0...il

 .

The differential for the index p is trivial and the differential ∂̄α for the index q is

induced by the de Rham differential on Aq(Nl). Furthermore, −[·, ·] and ∧ turn TW

into a Gerstenhaber algebra. For W ⊂ Vα, let kTW p,q
α;α|W be given by (TW) but with

the additional requirement to have Uij ⊂ W . The presheaf W 7→ kTW p,•
α;α|W gives a

resolution of the sheaf kGpα on Vα, so kGpα(W ) = H0
∂̄α

(kTW p,•
α;α|W ).

The isomorphisms kφαβ induce isomorphisms kψαβ : kG•α|Vαβ → kG•β|Vαβ of sheaves

of Gerstenhaber algebras which can be used ([25, Key Lemma 3.21]) to construct

isomorphisms
kgαβ : kTW p,q

α;αβ →
kTW p,q

β;αβ

that satisfy the cocycle condition kgγα
kgβγ

kgαβ = id and are compatible with restric-

tion from k to k−1 and with −[·, ·] and ∧. The cocycle condition allows one to glue

{kTW p,q
α }α to a presheaf kPVp,q on 0X compatible with restricting from k to k − 1.

We set kPVn :=
⊕

p+q=n
kPVp,q.

While kgαβ are not necessarily compatible with the differentials ∂̄α, ∂̄β, there exist
kdα ∈ kTW−1,1

α such that (∂̄α + [kdα, ·])α gives a system of maps compatible with
kgαβ ([25, Theorem 3.34]). This system glues to an operator ∂̄ on kPVp,q compatible

with restriction from k to k − 1. However, ∂̄ is not a differential because

∂̄2 =
[
klα, ·

]
for klα := ∂̄α(kdα) +

1

2
[kdα,

kdα] ∈ kTW−1,2
α .
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The {klα}α glue to a global element kl ∈ kPV−1,2 that is compatible with restricting

from k to k − 1. If kφ ∈ kPV−1,1 solves the Maurer-Cartan equation

(MC1) ∂̄(kφ) +
1

2
[kφ, kφ] + kl = 0

then (∂̄ + [kφ, ·])2 = 0. In this case the cohomology H•
(∂̄+[kφ,·])(

kPV•) is a presheaf of

Gerstenhaber algebras on 0X that is locally isomorphic to kG•α. The sheafification of

its degree zero part gives a sheaf OXk of C[t]/tk+1-algebras on 0X which we take as

the kth order deformation of 0X. Taking the limit OX := lim←−kOXk yields a flat and

proper morphism X→ S with S := Spf(CJtK).

13.2. Constructing a Solution to the Maurer-Cartan Equation using the

Batalin-Vilkovisky Operator. Let kωα ∈ Γ(0Vα,W
d
kVα/kS

) be a choice of genera-

tor, each being a lift to k of a global generator 0ω ∈ Γ(0X,W d
0X/kS

). The Batalin-

Vilkovisky operator k∆α is the transfer of the de Rham differential d to the polyvec-

tor fields, i.e. k∆α is the composition

Θp
(kVα)/kS

x(kωα)−→ W d−p
(kVα)/kS

d−→ W d−p+1
(kVα)/kS

x(kωα)−1

−→ Θp−1
(kVα)/kS

and thus a differential kGpα → kGp+1
α . Choosing kωα compatible with restricting

from k to k − 1, also the k∆α share this property. For W ⊂ 0Vα ∩ 0Vβ there is

λαβ ∈ Γ(W, kG0
α) with kωα|W = λαβ · kωβ|W . Setting kwαβ := log(λαβ) yields

kψβα ◦ k∆β ◦ kψαβ − k∆α = [kwαβ, · ]

and then {kwαβ}αβ can be upgraded ([25, Theorem 3.34]) to a Čech cocycle for
kTW 0,0

α;αβ which by exactness lifts to a collection kfα ∈ TW 0,0
α . The collection is

compatible with restricting from k to k − 1 and satisfies

kgβα ◦ (k∆β + [kfβ, ·]) ◦ kgαβ = (k∆α + [kfα, ·]).

Since kfα lives in degree (0, 0), one has (k∆α + [kfα, ·])2 = 0, so we can glue the

collection {k∆α + [kfα, ·]}α to an operator ∆ : k PVp,q → k PVp+1,q with ∆2 = 0.

Now,

∆∂̄ + ∂̄∆ = [ky, ·] for kyα := k∆α(kdα) + k∂̄α(kfα) + [kdα,
kfα]

and ky ∈ kPV0,1 is glued from the collection kyα. By construction,

d̆ := ∂̄ + ∆ + (l + y)∧

satisfies d̆2 = 0 and furthermore (l + y) ≡ 0 mod (t).

Theorem 13.1. The natural maps H i
d̆
(kPV•) → H i

d̆
(k−1PV•) are surjective for all

i and k.

Proof. As in [25, Proposition 4.8], the elements exp(kfα x)kωα glue to a global ele-

ment kω in the Thom-Whitney de Rham complex (k‖A•, d) (constructed from W •
kVα/kS

in our case) compatible with restricting from k to k − 1. Contracting kω gives
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an isomorphism of complexes kPV• → k
‖A•, so it suffices to prove surjectivity of

H i
d(k‖A•) → H i

d(k−1
‖A•). This follows from Theorem 1.10 as argued in [25, Lemma

4.17]. �

Remark 13.2. For a formal variable u
1
2 , consider on PV•Ju

1
2 K the differential d̆u :=

∂̄ + u∆ + u−1(l + uy)∧. A direct computation gives d̆u = u
1
2 I−1
u ◦ d̆ ◦ Iu where

Iu is defined by Iu(ϕ) = u
p−q−2

2 ϕ for ϕ ∈ PVp,qJu
1
2 K[u−

1
2 ] (cf. [25, Notation 5.1]).

Theorem 13.1 thus implies that

(13.1) H i
d̆u

(kPV•Ju
1
2 K[u−

1
2 ])→ H i

d̆u
(k−1PV•Ju

1
2 K[u−

1
2 ])

is surjective for all i, k.

Theorem 13.3. For all i, H i
∂̄+u∆

(0PV•JuK) is a free CJuK-module of finite rank.

Proof. Note that k = 0. With ∂̄ the Čech differential for the cover {Vα}α, the

degeneration of the Hodge to de Rham spectral sequence for (W •
0X/0S, d) at E1 by

Theorem 1.9 is equivalent to H i
∂̄+ud

({Vα}α,W •
0X/0SJuK) being a free CJuK-module of

finite rank. The quasi-isomorphisms W •
0X/0SJuK → 0

‖A•JuK and 0PV•JuK → 0
‖A•JuK

yield the assertion. �

Theorem 13.4. For every ψ ∈ 0PV•JuK with (∂̄ + u∆)(ψ) = 0, there exist kϕ ∈
kPV0JuK for all k ≥ 0 with kϕ ≡ k+1ϕ mod tk+1 and 0ϕ = ψ solving

(MC2) (∂̄ + u∆)(kϕ) +
1

2
[kϕ, kϕ] + (kl + u ky) = 0.

Furthermore, the solution can be given so that, setting kφ := (kϕ mod u) with
kφ =

∑
j
kφj and kφj ∈ kPV−j,j, it holds kφ0 = 0 and thus kφ1 ∈ kPV−1,1 solves

(MC1).

Proof. The first assertion becomes [25, Theorem 5.5] after checking that we have the

ingredients for its proof available. The proof goes by induction over k and uses (i)

the surjectivity in Theorem 13.1 for k = 0, (ii) the surjectivity in Equation (13.1)

for all k and (iii) Theorem 13.3 in each step to get rid of negative powers of u in kϕ.

The second statement is [25, Lemma 5.11]. �

13.3. From a Formal Deformation to an Analytic Deformation. Let S be

the completion of an analytic variety S in a non-zerodivisor t ∈ Γ(S,OS). Let Sk be

the closed analytic subvariety defined by tk. If X → S is flat, we denote by Xk → Sk
the base change to Sk, similarly for a flat map X→ S.

Theorem 13.5 ([21], Theorem B.1). Given a proper and flat formal analytic mor-

phism ϕ̂ : X → S, for every k > 0 there is a proper flat analytic morphism

ϕ : X → S together with an Sk-isomorphism Xk → Xk of the base changes of

ϕ̂ and ϕ to Sk.
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Theorem 13.6 ([36], Theorem 5.5 (1)). In the situation of Theorem 13.5, given

s ∈ S0 and Xs = ϕ−1(s), there exists an integer K > 0 such that whenever ϕ : X →
S is obtained for k > K then every point x ∈ Xs has a neighborhood in X whose

t-completion is formally isomorphic to a neighborhood of x in X, in particular if X

is a smoothing of a fiber Xs for t 6= 0 then so is X.

Theorem 13.7 ([36], Theorem 5.5 (3)). In the situation of Theorem 13.6, for X0 the

base change to S0, the maps of pairs (X,X0)→ (S, S0) and (X,X0)→ (S, S0) turn ϕ̂

and ϕ into log morphisms via the divisorial log structures. There is an isomorphism

of the log fibers over s ∈ S whose underlying morphism is restriction to the fiber Xs

of the Sk-isomorphism Xk → Xk.
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[41] Takeshi Tsuji. Poincaré duality for logarithmic crystalline cohomology. Compositio Math.,

118(1):11–41, 1999.

[42] Takeshi Tsuji. Saturated morphisms of logarithmic schemes. Tunis. J. Math., 1(2):185–220,

2019.

JGU Mainz, Institut für Mathematik, Staudingerweg 9, 55128 Mainz, Germany

E-mail address: sfelten@students.uni-mainz.de

E-mail address: mfilip@uni-mainz.de

E-mail address: ruddat@uni-mainz.de

Universität Hamburg, Fachbereich Mathematik, Bundesstraße 55, 20146 Ham-

burg, Germany

E-mail address: helge.ruddat@uni-hamburg.de


	1. Introduction
	2. Generically Log Smooth Families
	3. Elementary Log Toroidal Families
	4. Log Toroidal Families
	5. Log Structures and Infinitesimal Deformations
	6. Toroidal Crossing Spaces as Log Toroidal Families
	7. Differentials for Elementary Log Toroidal Families
	8. Base Change of Differentials for Log Toroidal Families
	9. Spreading Out Log Toroidal Families
	10. The Cartier Isomorphism
	11. The Decomposition of F*WX0/S0
	12. The Hodge-to-de-Rham Spectral Sequence
	13. Smoothings via Maurer-Cartan Solutions
	References

