Incrementalizing Static Analyses in Datalog

Dissertation submitted for the award of the title
"Doctor of Natural Sciences”
to the Faculty of Physics, Mathematics, and Computer Science
of Johannes Gutenberg University Mainz
in Mainz

Tamas Szabo
Master of Science in Computer Science,
Budapest University of Technology and Economics, Hungary,

born in Debrecen, Hungary.

Mainz, June 30, 2020

Referees:

Date of oral examination: January 11, 2021.
An electronic version of this dissertation is available at https://openscience.ub.
uni-mainz.de.

D77

https://openscience.ub.uni-mainz.de
https://openscience.ub.uni-mainz.de

Contents

Summary

Zusammenfassung

Acknowledgments

1

2

3

Introduction

1.1 Trade-offs in the Design of Static Analyses.
1.2 Techniques for Improving the Performance of Static Analyses
1.3 Challenges in Incrementalizing Static Analyses
1.4 Incremental Analysis Framework. 0oL
1.5 Contributions oo
1.6 Outline.

Static Analysis with Datalog

2.1 IntroductiontoDatalog
2.2 Datalogby Example oo
2.3 Recursion and Fixpoint Computation
2.4 Incrementalizing Standard Datalog
2.5 ChapterSummary

The IncA Incremental Analysis Framework
3.1 Introductiono Lo
3.2 Incremental Program Analysis with IncA.
3.3 Syntax and Compilation of IncA Datalog.
3.3.1 SyntaxofIncADatalog.
3.3.2 Compilation to Graph Patterns.
3.4 Compiler Optimizations forIncA.
3.5 Technical Realization and IDE Integration
3.5.1 Architecture Overview
3.5.2 Implementationfor MPS. Lo oL
3.5.3 Applicability inother IDEs.
36 CaseStudies.
3.6.1 Control Flow Analysis
3.6.2 Points-toAnalysis L L
3.6.3 Well-formedness Checks for mbeddrC.
3.64 FindBugsforjava
3.7 Performance Evaluation 000
3.7.1 EvaluationSetup. oo
3.7.2 Evaluating Run Time (Q 3.1) and Optimization Impact (Q3.3) . . .
3.7.3 Evaluating Memory (Q 3.2) and Optimization Impact (Q 3.3). . . .

vii

iv Contents
38 ChapterSummary 47
4 Incrementalizing Lattice-Based Program Analyses 49
4.1 Introduction Lo 50
4.2 Challenges of Incrementalizing Lattice-based Program Analysis 51
4.3 Incremental Lattice-Based Program Analysis withIncA 54
4.3.1 Incremental Execution of Non-Recursive Analyses. 54

4.3.2 Incremental Execution of Recursive Analyses 55

4.4 Incremental Recursive Aggregation with DRed 57
4.4.1 Assumptions of DRed| on the Input Datalog Rules. 57

4.4.2 Support Data Structureso 58

443 DRedp Algorithmo L 59

44.4 Incremental Aggregator Function 63

4.5 Formal Semantics of DRed| and Correctness Proof 63
4.5.1 Semantics of Recursive Aggregation 63

452 Correctness of the Algorithm - Proof Sketch 64

4.6 Integrating Lattices into the IncA Framework 66
4.6.1 ExtensionstoIncA Datalog. 66

4.6.2 RuntimeSystem oo 67

463 Compiler.o 68

4.6.4 IDEIntegrationo 69

4.7 CaseStudies. 69
4.7.1 Jimple as Subject Language L. 69

4.7.2 Strong-update Points-to Analysis 70

473 StringAnalyses oL 71

4.8 Performance Evaluation o000 72
4.8.1 EvaluationSetup. 73

482 EvaluatingRunTime (Q4.1) 73

4.8.3 Evaluating Memory (Q4.2). 74

484 Discussiono 75

49 Chapter Summary 75
5 Incrementalizing Lattice-based Inter-procedural Analyses 77
5.1 Introduction L Lo 78
5.2 Prior Work and Problem Statement 80
5.3 Incremental Lattice-Based Program Analysis with LADDDER 85
5.3.1 Initial Analysis with LADDDER 86

5.3.2 Incremental Analysis with LADDDER 88

5.3.3 Monotonicity, Assumptions, and Guarantees of LADDDER 89

5.4 Incremental Aggregation in LADDDER. 91
5.5 Formal Semantics of LADDDER and Correctness Proof 93
551 Concepts. 93

5.5.2 Refined Assumptions of LADDDER on the Input Datalog Rules . . . 95

553 Semantics Lo 95

5.5.4 Correctness Properties. L. 96

5.5.5 Proofs of Correctness Properties 96

Contents \%
5.5.6 Additional Notes. 98

5.6 Performance Evaluationo 98
5.6.1 EvaluationSetup. 98

5.6.2 Evaluating Incrementalizability (Q5.1). 99

5.6.3 Evaluating Run Time (Q5.2) 100

5.6.4 Evaluating Memory (Q5.3). 101

5.6.5 Evaluating Optimization Impact (Q5.4) 101

5.6.6 Discussion on the Set-based Analysis 102

5.7 Chapter Summary 103
6 A DSL for Incremental Program Analysis 105
6.1 Introductiono 106
6.2 Background: Overload Resolution in Featherweight Java. 107
6.3 Overload Resolution with IncA Datalog 108
6.4 Syntax and Compilation of IncAgy,. o .o oL 112
6.4.1 Syntaxof IncAg,.o 113

6.42 Compilationof IncAgp. o oL 113

6.5 Case Studies with IncAg,,o oo o oo 119
6.5.1 Overload Resolution for Featherweight Java with IncAg,, 119

6.52 Rust Program Analyses with IncAg,.o oo 121

6.6 Chapter Summary L 123
7 Textual Front End for Incremental Program Analysis 125
7.1 Introduction Lo 126
7.2 Requirements for Textual Front Ends and Prior Work 127
7.3 AST Differencing with hdiffs 132
7.4 Integrating hdiffswithIncA 138
7.4.1 Subject Program as Virtual EDB Relations 139

7.42 Requirements for Correct and Efficient EDB Updates 139

7.4.3 Updating EDB Relations 141

744 Language-independent Implementation 146

7.5 Evaluationo 146
7.5.1 Evaluating Ease of Integration (Q7.1) 147

7.5.2 Evaluating Run Time (Q7.2) 148

753 Discussion. Lo 149

76 FutureWorko 149
7.7 Chapter Summary 151
8 Related Work 153
8.1 Incremental Static Analysis 155
8.2 Techniques for Speeding up Static Analyses 160
8.3 Datalog and Its Applications. oL 164
8.4 DSLs for Program Analysis. L L L 169
8.5 Tree Differencing Techniques 172
8.6 ChapterSummary L 174

vi Contents

9 Conclusions and Future Work 177
9.1 Revisiting the Thesis of the Dissertation 177
9.2 Suggestions for Future Work. oL 179
Bibliography 183

Curriculum Vitae 199

vii

Summary

Static analyses are tools that reason about the behavior of computer programs without
actually executing them. They play an important role in many areas of software devel-
opment because they can catch potential runtime errors or reason about the security or
performance of subject programs already at development time. For example, Integrated
Development Environments (IDEs) use a variety of static analyses to provide continuous
feedback to developers, as they edit their programs. IDEs run type checkers to verify that
subject programs are free of type inconsistencies, or they run data-flow analyses to find
security vulnerabilities. In turn, developers can fix or improve their programs before those
go into production, thereby saving significant costs on the harmful effects of failures.

Designing static analyses that provide continuous feedback in IDEs is challenging
because analyses must balance a vexing trade-off between precision and performance. On
the one hand, an analysis must precisely capture the program behavior by considering
all possible concrete executions. On the other hand, an analysis running in an IDE must
update its results after a program change in a fraction of a second, otherwise it interrupts
the development flow, which is counterproductive. However, these two requirements are
in conflict with each other, as more precision comes with more computational cost. Given
that we cannot loosen the timing constraint in an IDE, the challenge is how to speed up
static analyses, so that we sacrifice on precision as little as possible.

We study how to use incrementality to speed up static analyses. Instead of repeatedly
reanalyzing the entire subject program from scratch, an incremental analysis reuses previous
results and updates them based on the changed code parts. An incremental analysis can
achieve significant performance improvements over its non-incremental counterpart if the
computational cost of updating analysis results is proportional to the size of the change
and not the size of the entire program. However, precise static analyses typically use
features that significantly increase computational costs by requiring the re-analysis of more
than just the changed code parts. Moreover, incrementalization requires sophisticated
algorithms and data structures, so specialized solutions often do not pay off in terms of
development effort. We claim that it is possible to automatically incrementalize static
analyses, and incrementality can significantly improve the performance of static analyses.

We design an incremental static analysis framework called IncA. IncA offers a Datalog-
based language for the specification of static analyses. The declarative nature of Datalog
allows analysis developers to focus on the analyses themselves by leaving the incremen-
talization to a Datalog solver. We design Datalog solver algorithms to automatically
incrementalize analyses and deliver the kind of performance that analyses running in IDEs
need. We prove our solver algorithms correct, making sure that analyses incrementalized
by IncA compute the exact same results as their non-incremental counterparts. The archi-
tecture of IncA is generic, as it is independent of any particular subject language, program,
or analysis, enabling the integration of IncA into different IDEs.

We evaluate IncA by incrementalizing existing static analyses for a number of subject
languages. We implement well-formedness checks for DSLs, FindBugs rules, data-flow
analyses, inter-procedural points-to analysis for Java, plus a type checker for Featherweight
Java and Rust. We find that IncA consistently delivers good performance across all of these
analyses on real-world programs. Based on these results, we conclude that IncA enables
the use of realistic static analyses for continuous feedback in IDEs.

Zusammenfassung

Statische Analysen sind Werkzeuge zur Softwareentwicklung, die Informationen zum
Laufzeitverhalten von Programmen liefern, ohne sie auszufithren. Sie spielen eine wichtige
Rolle in vielen Bereichen der Softwareentwicklung. Zum Beispiel konnen statische Analy-
sen frithzeitig mogliche Laufzeitfehler erkennen, oder tiber die Sicherheit und Performanz
von Programmen Auskunft geben. Des Weiteren sind sie Bestandteil von integrierten
Entwicklungsumgebungen (IDEs) um Softwareentwicklern kontinuierlich Riickmeldung
bei der Programmentwicklung zu geben. Zum Beispiel verwenden IDEs Type Checker
um sicherzustellen, dass Programme keine Typinkonsistenzen enthalten, oder sie fithren
Datenflussanalysen aus um Sicherheitsliicken zu finden. Dies erlaubt Entwicklern ihre
Programme zu verbessern bevor sie produktiv eingesetzt werden, um hohe Kosten von
Fehlern im Produktiveinsatz zu vermeiden.

Die Entwicklung von statischen Analysen, die in IDEs kontinuierliches Feedback liefern,
ist eine besondere Herausforderung, da sie einen Kompromiss zwischen Prdzision und
Performanz finden miissen. Auf der einen Seite miissen Analysen prazise das Program-
mverhalten modellieren, indem sie alle moglichen Ausfithrungspfade berticksichtigen. Auf
der anderen Seite miissen Analysen in IDEs ihr Ergebnis in Sekundenbruchteilen aktual-
isieren, um nicht den Arbeitsfluss von Softwareentwicklern zu unterbrechen. Jedoch ist
es schwierig beiden Anforderungen gleichzeitig zu erfiillen: Mit einer hoheren Prazision
erhohen sich haufig auch die Laufzeitkosten der Analyse. Da wir allerdings in IDEs auf
eine niedrig Laufzeit angewiesen sind, ist die Herausforderung herauszufinden, wie man
statische Analysen beschleunigen kann ohne zu viel Prizision aufzugeben.

In dieser Arbeit erforschen wir wie man statische Analysen mit Hilfe von Inkremental-
itdt beschleunigen kann. Anstatt das gesamte Programm bei jeder Programméanderung von
neuem zu analysieren, verwendet eine inkrementelle Analyse das vorherige Analyseergeb-
nis wieder und berechnet das neue Ergebnis basierend auf den Programmdnderungen. Das
verbessert signifikant die Laufzeit einer inkrementellen Analyse im Vergleich zu einer
nicht-inkrementellen Analyse, wenn die Laufzeitkosten der Aktualisierung proportional zur
Grofle der Anderung und nicht zur GroBe des Programms sind. Allerdings miissen prizise
inkrementelle Analysen bei einer Anderung hiufig mehr reanalysieren als nur den Code der
Anderung selbst, was ihre Laufzeit verlangsamen kann. Dazu kommt, dass inkrementelle
Analysen ausgekliigelte Algorithmen und Datenstrukturen benétigen, sodass sich eine
hindische Inkrementalisierung wegen dem hohen Entwicklungsaufwand nicht lohnt. Wir
behaupten, dass es moglich ist statische Analysen automatisch zu inkrementalisieren und
dass Inkrementalisierung die Performanz von statischen Analysen verbessert.

In diesem Zuge haben wir ein inkrementelles statisches Analyse Framework namens
IncA entwickelt. IncA verwendet fiir die Spezifikation von Analysen einen Datalog Dialekt.
Datalog ist eine deklarative Programmiersprache, die es Analyseentwicklern erlaubt sich
auf die Implementierung der Analyse zu konzentrieren, wiahrend die Inkrementalisierung
von einem Datalog Solver tibernommen wird. Das IncA Backend unterstiitzt mehrere
Algorithmen zum Lésen von Datalogregeln, deren Korrektheit wir formal bewiesen haben.
Das bedeutet, dass die inkrementalisierte Analyse dasselbe Ergebnis liefert, wie die nicht
inkrementelle Variante. Des weiteren ist IncA nicht an spezifische Analysen und Program-
miersprachen gekoppelt, was es ermdglicht IncA in verschiedene IDEs zu integrieren.

Zusammenfassung

Wir evaluieren IncA indem wir existierende statische Analysen fiir verschieden Pro-
grammiersprachen inkrementalisiert haben. Insbesondere haben wir eine Wohlgeformtheit-
stiberpriifung fiir DSLs, FindBugs Regeln, Datenflussanalysen, eine Interprozedurale Zeig-
eranalyse fur Java, sowie einen Typechecker fiir Featherweight Java und Rust in IncA
implementiert. In all unseren Experimenten haben die inkrementalisierten Analysen fiir
realistische Programme eine gute Performanz gezeigt. Daraus schlussfolgern wir, dass sich
IncA eignet statische Analysen zu implementieren, die schnell genug sind um Entwicklern
in einer IDE kontinuierliches Feedback zu geben.

xi

Acknowledgments

This dissertation is the result of a long and often difficult journey with many ups and
down along the way. It took me almost 6 years to complete my Ph.D. studies, and I was a
student at three universities in two countries. I had the pleasure to surround myself with a
number of wonderful people who made the struggles easier and who were there to share
the happiness and successes with me. I dedicate this chapter to them.

First of all, I would like to thank INEEEEEE for the years we spent together. When
we started working, I quickly realized that your critical attitude required a completely
different mindset also from me. This was and still is a good thing, but I was just not yet
used to it at that time, so it also required some adjustments on my side. Throughout the
6 years, we essentially worked remotely together, and that also came with its own set of
challenges, until we both learned how we can be productive together. I think you imparted
your critical attitude to me well, and I learned that I should always think before I answer, I
should always dare to ask, and that I should always come prepared. You had a good sense
of how far you can push me, so that I have both freedom and the necessary amount of
guidance at the same time. I still remember the ASE paper writing experience where you
were demanding last minute changes an hour before the deadline, but you were there and
ready to discuss if needed until the last minute. You also know how to have fun, which is
also very important; I will always remember our trip together in Boston, you dancing with
us until the morning during my wedding, or the great night outs in Delft. No doubt, you
had a significant impact on my professional and personal growth, and I thank you for that.

Next in line is INIlll. You have been my secondary supervisor all along, and I thank
you for that. I always enjoyed working with you. You bring a lot of passion into everything
you do. You have this down-to-earth and very practical attitude, which I really like. I
have learned a lot from you about (technical) writing and presenting. It was sometimes
annoying that you could always find more things to improve during revisions, but you
always presented your feedback in a very structured manner. I will always remember the
word scientification: Let them just do their thing with all the Greek symbols. Thank you for
all the years we worked together, and I hope that we will have the chance to work together
again in the future.

I would also like to thank Il for the collaborations. I think I was very lucky that
I got to work together with you after my M.Sc. studies again. Your technical depth and
meticulousness still amaze me, and I thoroughly enjoyed all the detailed discussions we
conducted throughout the years. You never got bored of my questions, and you always
found time to explain all the Datalog details to me.

My Ph.D. journey spanned three countries, as I followed I along. Coupled with
the remote nature of my work, this proved to be the best thing that could happen to me.
Every time I visited the respective research groups at the universities, the trips always
ended up being memorable. Somehow the trips were always a good mixture of intense
research meetings, sight seeings, social outings, and exploration of local cuisine.

xii Acknowledgments

First, I would like to thank I for allowing me to join the Software
Technology Group at TU Darmstadt. Even though, I spent only a year in Darmstadt,
that time was still enough for me to realize that I made a good choice when I decided to
pursue a Ph.D. I got acquainted with a number of people in the group, and I had my first
presentations, reading group participation, and research discussions. I would like to thank
I N BN o nd B for the enlightening discussions we had.

Second, I moved on to TU Delft with INNNEEEE. I would like to thank NI
for allowing me to join the Programming Languages Group. I have actually spent most of my
time in Delft, as I was a student there for 3 years. I enjoyed every visit to Delft. The whole
team was so welcoming every time, and the whole environment fueled my professional
growth a lot. I would like to thank all the group members (Il I EE B
I I N DN BN BN o d B for the interesting discussions
and the fun we had together after work. Illl, I will never forget the bike trip we had to
the sandy beaches of The Hague.

Third and last, I spent two years at JGU Mainz in the Programming Languages group
led by IEEEEEEE. At this point, I would like to say a special thank you to Il for all the
work and fun together. You were there all along during my Ph.D., as we started roughly
at the same time back in Darmstadt. I always admired how meticulous you are and your
solid theoretical foundations in all things programming languages. I also would like to
thank HEEEE for all the discussions we had and the interesting work we did on IncA. It was
funny and interesting to see your professional development as you started your Ph.D., the
struggles you went through (just like I did), and your first successes with accepted papers.
I hope the foundations laid out with IncA will prove to be useful for your future research.

I would also like to thank my Ph.D. defense committee members for their service and
the interesting discussions we conducted during the defense.

Now, on to the industrial side of things. itemis and its key people (I
I o]) dcserve a huge thank you. You all have managed
to build an environment that appreciates and values research and innovation. The 4+1
working scheme has allowed me to spend dedicated work time on doing my Ph.D. I would
also like to thank everybody in the Stuttgart office for all the years we spent together. I
thank you, I, IS, IEEEN BN ond BN for all the work together.

I would also like to thank members of IncQuery Labs. Thank you, Il and Il for
allowing me to build upon VIATRA QUERY in my research and for the work we did together
during the past couple of years.

Finally, I want to finish off in Hungarian to address my family. El6szor is koszonom
szépen a szlileimnek az éveken at tarté tamogatast. Mindig ott voltatok mellettem. Ha
kellett, vigasztaltatok amikor nem ugy sikeriilt valami ahogy szerettem volna, maskor
velem egytt oriiltetek a sikereimnek. Sokszor elmondtatok, hogy sok mindent nem értetek
abbol amit csinalok, ennek ellenére mindig buzditottatok arra, hogy a kutatis nekem valo
lenne.

Legvégiil jutok a legfontosabb személyhez ebben az egész torténetben. Fanni, koszéném
Neked azt, hogy végig mellettem voltal. Szerintem nem is tudod azt, hogy Neked men-
nyire nagy szereped van abban, hogy ez az egész dolog sikerrel végz6dott. Nyugodt
korilményeket teremtettél ahhoz, hogy én azt tudjam csinalni amit szeretek, mindig
ott voltal amikor valami bantott, és mindig volt idéd arra, hogy beszamoljak a legijabb

Acknowledgments xiii

torténésekrdl a programozasi nyelvek teriiletén. Dani, te pedig a legjobb baba vagy a vila-
gon. Pont tudtad, hogy akkor kell megérkezni, amikor én mar a disszertacio irasanak nagy
részén tal voltam. Neked azt koszonom hogy a jo kedveddel mindig minket is felviditottal.

Tamas
Stuttgart, January 2021

Introduction

Static analysis is a method for reasoning about the structure or behavior of a subject program
without actually executing it. This is in contrast to dynamic verification techniques like
software testing or program slicing, which require a subject program to run. Given that
real-world software systems often have complex dependencies or require special hardware
to run (e.g. GPUs or cloud environment), the ability to reason about subject programs
statically has the potential to catch runtime errors early on, already at development time.
In turn, this helps to improve the quality of software, e.g. in terms of safety, security, or
performance, before that software actually goes into production, saving significant costs
on potentially harmful effects of software failures [71].

Static analyses show up in many areas of modern software development. IDEs fre-
quently use static analyses to provide automated feedback to developers about subject
programs by running type checkers or data-flow analyses. They do this by considering all
possible inputs of a subject program to account for all possible executions. Continuous
integration (CI) servers use static analyses to comment on pull requests about violations of
coding standards. Using coding standards is typical in software companies because they
help enforce a uniform coding style or prevent the use of bad coding practices. Compil-
ers use static analyses to enable optimizations such as constant propagation and other
semantics-preserving code transformations.

As a concrete example, consider an IDE that warns programmers about unreachable
(or dead) code in C programs. A part of a program is considered unreachable if it can never
be reached in any execution irrespective of the input. Given a concrete subject program,
an unreachable code analysis reports concrete occurrences of unreachable code parts. A
well-known bug that is related to unreachable code is goto fail that affected all iPhone
devices back in 2014 [1]. The bug was in the implementation of a C function that performed
SSL key verification. The relevant excerpt of the function looks as follows:'

https://opensource.apple.com/source/Security/Security-55471/1libsecurity_
ssl/lib/sslKeyExchange.c.auto.html

https://opensource.apple.com/source/Security/Security-55471/libsecurity_ssl/lib/sslKeyExchange.c.auto.html
https://opensource.apple.com/source/Security/Security-55471/libsecurity_ssl/lib/sslKeyExchange.c.auto.html

2 1 Introduction

o a s W o =

static OSStatus SSLVerifySignedServerKeyExchange(...) {

if (...)
goto fail;
goto fail;

if (...)
goto fail;

err = sslRawVerify (ctx,
ctx->peerPubKey,
dataToSign, /* plaintext */
dataToSignlen, /# plaintext length x*/
signature,
signaturelen) ;

if (err) {
sslErrorLog(...);
goto fail;

}

fail:
SSLFreeBuffer (&signedHashes) ;
SSLFreeBuffer (&hashCtx) ;
return err;

By duplicating line 4, the developer accidentally introduced an unconditional goto in-
struction in line 5. That is, whenever the program execution reaches line 5, the execution
will jump to label fail unconditionally. None of the code in lines 6-17 are reachable,
irrespective of the program input. This is a problem because lines 6-17 would do important
verification steps, particularly the ss1RawVerify function, but the function call is part of
the unreachable code. Without these verification steps, attackers could access sensitive
user data even when the communication was protected by SSL/TLS.

Modern IDEs run unreachable code analysis as developers edit programs, so that
developers can fix their code by eliminating the unreachable parts, thereby improving, for
example, code quality and compilation performance (due to smaller code size). If we open
the above code in the CLion IDE,? lines 6-17 are immediately highlighted (similar to the
gray color in the above listing) with a message indicating that they are unreachable. This
means that we could easily catch the root cause of the goto fail error. Moreover, CLion
updates the highlighting as code gets changed. For the sake of this example, assume we
replace lines 3-4 from above as follows:

static OSStatus SSLVerifySignedServerKeyExchange(...) {

if (false)
goto fail;

The goto fail; in line 4 immediately gets highlighted, indicating that this is also un-
reachable code now. Assume now that we change the code as follows:

’https://www. jetbrains.com/clion/

https://www.jetbrains.com/clion/

L R N ST CH

1.1 Trade-offs in the Design of Static Analyses 3

static OSStatus SSLVerifySignedServerKeyExchange(...) {

if (check())
goto fail;

}

static boolean check () {
return false;

}

Interestingly, there is no highlighting at all, even though it is clear that line 4 is still
unreachable, given that check simply returns false. Why is that the case?

The problem is that this code snippet would now require an inter-procedural analysis,
which is an analysis that reasons across function calls. In contrast, CLion uses an intra-
procedural analysis,> which is not sufficient to precisely reason about the above code.
In turn, CLion cannot prove the above code unreachable, so it chooses to not do any
highlighting. The reason for using an intra-procedural analysis is that it is computationally
much cheaper than an inter-procedural analysis. An inter-procedural analysis would need
to consider the effect of (transitively) called functions. To statically analyze C function
calls, the analysis would need to reason about function pointers, as well. There is also a
range of other program constructs that the analysis would need to consider to precisely
analyze real-world subject programs, like the iOS operating system. Coupled with the
sheer size of realistic subject programs, it is a daunting task to efficiently run the analysis
in IDEs. However, if an analysis takes a long time to compute new results after a program
change, then the development workflow will be interrupted with lengthy pauses.

1.1 Trade-offs in the Design of Static Analyses

The previous example of unreachable code analysis already highlights that an analysis
developer must balance several trade-offs when designing a static analysis. First, there
is the aspect of precision, which entails reliability and accuracy. Accuracy and reliability
are actual quantifiable metrics in the static analysis community, but here we only discuss
their intuitive meaning.* A fully reliable analysis never misses a real bug, therefore we can
always trust the results of such analysis. A fully accurate analysis only reports about bugs
that a real program execution would actually exhibit. We will discuss these terms in more
details later in this section. Second, there is the aspect of performance. A more performant
analysis delivers analysis results faster than a less performant one. The left part of Figure 1.1
shows the design trade-offs graphically. We now discuss how the intra-procedural and
inter-procedural versions of the unreachable code analysis balance these trade-offs, which
we also visualize in the right part of Figure 1.1.

The intra-procedural unreachable code analysis was good at finding unreachable code
parts locally inside a function, but it failed when it was required to reason about the

3 At least, version 2019.3.6, which was used at the time of writing this dissertation.

“Note that the actual terms used in the static analysis literature differ from our terminology. The synonym of our
notion of reliability is recall, while accuracy is the synonym for precision. We chose to not use the traditional
terms because precision is a heavily overloaded word in the context of this dissertation.

4 1 Introduction

Design Trade-offs ! Intra-procedural . Inter-procedural)
! unreachable code analysis unreachable code analysis
1
Reliability E Reliability Reliability
i
i
1
i
i
i
Accuracy Performance | Accuracy Performance Accuracy Performance

Figure 1.1: Trade-offs in the design of static analyses.

effects of function calls. The analysis has low reliability because it is easy for a potential
unreachable code part to go undetected if spotting that would involve inter-procedural
reasoning. If the analysis misses a truly unreachable code part, then we say that the analysis
has a false negative result. A client of the results of the unreachable code analysis is the error
reporter in the editor of CLion. This error reporter was intentionally designed in a way
that it would only mark a code part unreachable if the underlying analysis can guarantee
that the code part is indeed unreachable. Without inter-procedural reasoning, the analysis
could not guarantee this for our last example above, so there was no error highlighting at
all. This is to avoid potential false positive alarms, as those constitute one of the primary
reasons why developers disuse static analyses [65]. In turn, the analysis has high accuracy.
Finally, the intra-procedural analysis has good performance, as CLion could deliver updated
analysis results after every keystroke without interrupting the development flow.

Now, let us consider how the design trade-offs would change with the inter-procedural
unreachable code analysis. First, it would have improved reliability due to the inter-
procedural reasoning, so it could detect more bugs. Second, we could keep accuracy the
same as before by not changing the error reporter, so that we would still aim to rule out
false alarms as much as possible. Third, performance would get a hit, as functions cannot
be analyzed in isolation anymore. We must consider the effect of all transitively reachable
functions when statically examining a function call. As this can easy involve a long chain
of function calls, re-analysis after program changes may incur significant computational
cost, hindering the possibility to provide live feedback to developers.

The perceived reader may wonder about two questions at this point. Why would a
static analysis ever report false (positive or negative) results? Would it be possible to just
maximize all design trade-offs? The answers to these questions lie in a fundamental work
from the field of computability theory called Rice’s theorem [99]. The theorem states
that a fully reliable and fully accurate analysis (regarding a program’s output behavior)
cannot terminate for all possible subject programs. Therefore, a static analysis must
either work in a best-effort manner with reduced reliability, or it must approximate the
program behavior with reduced accuracy. We have already seen how the unreachable
code analysis in CLion works in a best-effort manner; It tries its best to help developers
spot unreachable code parts, as long as the analysis does not require inter-procedural
reasoning. The price of this behavior is that unreachable code parts may go undetected. To
demonstrate approximations, consider that we equip the unreachable code analysis with

1.1 Trade-offs in the Design of Static Analyses 5

the ability to reason about loop conditions, so that it can statically identify unreachable
loop bodies. To this end, the analysis must be able to reason about loop conditions, which
entails e.g. reasoning about the possible runtime values of number-typed variables. Of
course, one option is to accurately track all possible values of such variables, but this can
easily become computationally intractable or lead to nontermination. Instead of reasoning
over the concrete value domain of integers, the analysis could resort to use an abstract
domain that somehow abstracts over the concrete one, e.g. by only telling the smallest
interval that contains all possible values or by only tracking the possible sign of values.
It is important to see that by making the abstract domain capture less information about
the concrete one, we can make the analysis terminate and even achieve good performance.
However, the price of the approximations is that an analysis may not be able to faithfully
reason about all possible concrete executions of a program. For example, a sign domain is
not sufficient to determine the outcome of a parity check. In turn, the analysis may report
false alarms that real executions would not exhibit.

Finding the right balance between reliability, accuracy, and performance typically boils
down to a careful analysis of the needs of analysis clients. Let us look at a few example
application areas and what analysis clients expect in terms of the trade-offs:

« Providing feedback in IDEs: Performance is crucial. Sub-second analysis time is
expected, as interrupting the development flow with lengthy pauses is counterpro-
ductive and hinders the adoption of static analyses, as also demonstrated by Johnson
et al. in their survey with software engineers [65]. While retaining high performance,
reliability and accuracy are to be maximized.

« Optimizations in compilers: Compilers can settle with longer run times of static
analyses because build times on real-world code bases can easily take several minutes,
so adding a few extra minutes to run an analysis may not be an issue. However,
optimizations in compilers require high reliability, otherwise an optimization may
alter the behavior of the subject program.

« Pull requests: CI servers must deliver feedback on pull requests in at most a few
tens of minutes. Sadowski et al. report that the Tricorder analysis framework must
produce feedback as a bot reviewer on a pull request on Google-scale code bases
in less than 5-10 minutes, otherwise developers switch context and start working
on other issues, severely limiting the perceived usefulness of analysis results [103].
Sadowski et al. also argues that high accuracy is of paramount importance because
developers quickly lose trust in static analysis tools if presented with false alarms.

« Major software releases: Certain static analyses may be too expensive to compute on
every commit or build. For example, Jordan et al. perform security analysis on the
entire JDK with the Soufflé analysis framework in around 15 hours, requiring 75 GB
of memory [66]. In return, the analysis has both high accuracy and reliability because
it reasons inter-procedurally. It may be sufficient to perform such an analysis only
for every major release of a software.

Our goal is to speed up static analyses, so that they can serve the basis for continuous
feedback in IDEs, while sacrificing as little as possible on reliability or accuracy. This way
we can shift the landscape of the above examples by delivering sub-second run times for
analyses that were originally not amenable to applications in IDEs.

6 1 Introduction

1.2 Techniques for Improving the Performance of Static
Analyses

There is a long line of research investigating how to improve analysis performance with
different techniques ranging from specialized algorithms to more generic techniques like
parallelism or incrementality. We survey the relevant literature in Chapter 8 in more details,
here we highlight a select few of the approaches. This list is already sufficient to make an
important observation: There is no single best technique for every application domain, as
each one of these techniques come with limitations, as well:

« Specialized algorithms or data structures are frequently used to speed up one-off
static analyses for a specific subject language. For example, Dietrich et al. designed
specialized algorithms for Java to compute the points-to information of variables,
and they managed to analyze the entire JDK in a minute [32]. A limitation of this
approach is that the high development effort of such analyses must be spent on a
case-by-case basis.

« A compositional analysis analyzes parts of a subject program in isolation and then
composes the analysis result from the smaller pieces. For example, enforcing secure
coding standards (e.g. MISRA [56]) falls into this category because individual code
parts (e.g. functions) can be analyzed in isolation, as they do not have dependency
on any other code part. Type checkers are also often composable because typically
functions can be analyzed in isolation by relying on the type signatures of other
functions. A limitation of this approach is that many practically-relevant analyses
do not compose well due to complex dependencies in subject programs.

« Parallelization of analysis subtasks is an obvious idea when running on multi-core
hardware. For example, Méndez-Lojo et al. present an approach for parallelizing a
points-to analysis, and they achieve a three-fold speedup compared to the sequential
version of the same analysis [83]. However, efficient parallelization requires regular
computational problems, that is, when the subtasks can be distributed equally to
processors prior to the computation. In contrast, computational problems are of-
ten irregular where the workload distribution can only be determined at runtime.
Méndez-Lojo et al. devised specialized solutions to make points-to analysis amenable
to parallelization.

+ A demand-driven analysis only produces results that are asked for and when they
are asked for by analysis clients, instead of eagerly performing analysis on the entire
subject program. The Boomerang framework exploits this idea, and it can deliver
highly precise points-to information for Java on the ballpark of few seconds when
asked at a specific call site of a function [118]. Unfortunately, this approach is limited
to certain classes of analyses and cannot be applied generally, as we discuss in
Section 8.2.

« The idea of incrementalization is to efficiently reuse previously computed analysis
results. An incremental analysis entails two steps. First, perform a from-scratch
analysis on an entire subject program to compute the initial analysis result. Then,
when the subject program changes, reuse the previous result and update it based on

1.3 Challenges in Incrementalizing Static Analyses 7

the changed code parts. This is in contrast to repeated re-analysis from scratch on the
entire subject program, and it can lead to significant speed-ups. For example, Erdweg
et al. have shown that incremental type checking can achieve order-of-magnitude
speedups compared to non-incremental re-analysis and deliver update times that
are fast enough for live feedback in IDEs [36]. However, incremental analyses are
often one-off solutions with specialized algorithms, and it is often not obvious how
to achieve good incremental performance in general.

We study how to use incrementality to speed up static analyses in this dissertation. We
chose this technique because of two primary reasons. First, it has been shown both in
the domain of program analysis (see above) and even outside of program analysis that
incrementalization can bring asymptotic performance improvements over non-incremental
computations; e.g. computational geometry [67], machine learning [122], or big data
processing [18]. Second, incrementalization perfectly aligns with analyses running in IDEs,
as developers typically modify subject programs with small changes compared to the size of
the entire subject program. Due to the small changes, we should be able to update analysis
results significantly faster than a non-incremental re-analysis. However, incrementalizing
static analyses entails significant challenges, as we discuss next.

1.3 Challenges in Incrementalizing Static Analyses

The number one challenge for incrementalization is correctness. In response to a program
change, a correct incremental analysis yields the exact same result as its non-incremental
counterpart. We use Figure 1.2 to illustrate how an incremental analysis works in com-
parison to a non-incremental one. Assume that we run the unreachable code analysis on
some C program Program;. The analysis produces the initial results Result; in the form
of a set consisting of labels of statements that are unreachable. Then, a developer changes
Program; by adding or removing statements from the program to obtain Program;. The
delta between the two programs consists of the set of inserted and deleted statements
denoted by A(Program;). A non-incremental unreachable code analysis re-analyzes
Programy from scratch to obtain the new result Resulty. In contrast, an incremental
unreachable code analysis reuses the old results Result; and only re-analyzes the changed
code parts A (Program;) to obtain A (Result;), which also consists of labels of deleted
and inserted statements. Correctness requires that Result; is the same as Result; +
A(Result;). Ensuring correct incremental updates requires dependency tracking. This
means that an incremental analysis must be able to precisely identify which part of an
analysis result depends on which part of the subject program, so that is can invalidate
affected parts of the old results and then compute additional new results.

Assuming correct incremental updates, we can now turn our attention to a number
of other challenges that affect the performance of incremental analyses. An incremental
analysis can only yield performance improvements over the non-incremental counterpart
if the computational effort for computing the output delta is proportional to the size of
the input delta and not the size of the entire input. One may think that there is no problem
here at all, as A (Program;) is guaranteed to be small, given that developers insert and
delete statements in succession, and we could just rerun the incremental analysis after

8 1 Introduction

isinputto | Non-incremental [compute
Programj > analysis > Resulty
{ + +
developer :‘I is input to 1 tal compute
changes | A(Programy) | —— ”Crerl”eﬂ al | 2R [AResulty)
H analysis
the program
4 I I
Y isinputto | Non-incremental | compute
Program, - analysis T Result,

Figure 1.2: Incrementalization visualized. Rectangles concern non-incremental analyses, rounded ones concern
incremental analysis. Red color represents input to the analysis, blue color represents output of the analysis.

every program change. However, practically relevant analyses that deliver on reliability
and accuracy often exhibit features that can significantly increase the computational cost
of updating analysis results even if the program change A (Program;) is small. We discuss
three such features and the challenges they pose for efficient incrementalization:

« Complex recursive dependencies: As we wrote above, an incremental static analysis
requires dependency tracking to identify which part of the analysis result must be
recomputed after a program change. However, precise analyses have many recursive
components that need to work together in an intertwined manner, which significantly
complicates dependency tracking. For example, reasoning about unreachable code
requires the construction of a control flow graph. Given that a C program may use
function pointers, we must also perform a points-to analysis, so that we can keep
track of the potential targets of a pointer variable, which then allows us to resolve the
call targets. Then, the set of targets may change as the call graph is constructed. This
shows that points-to analysis and call graph construction need to go hand in hand,
reinforcing each other through recursive dependencies. When a subject program
changes, we must follow all these recursive dependencies to correctly update the
analysis result.

« Lattices and recursive aggregation: Static analyses routinely use custom lattices for
the representation of the abstract domain [90]. Lattices are partially ordered sets with
aggregation operators to compute the least upper bound or greatest lower bound
of any two abstract values. Aggregation operators play an important role when
analyzing subject programs with cyclic control flow, as it is common to approximate
a set of lattice values computed over the different control flow paths with a single
aggregate lattice value. Due to cyclic control flow, aggregation also becomes recursive,
and the analysis may need to iterate and aggregate repeatedly when analyzing
loops until the analysis result stabilizes. This severely complicates efficient reuse of
previous results in an incremental setting because a change in the subject program
may require a complete unrolling of the previous results, resulting in a complete
re-analysis of loops through several iterations again.

« Inter-procedurality: Analyzing across function calls opens up a whole new realm
of challenges to efficient incrementalization because even a small program change
can have a large impact on the overall analysis result. For example, it can easily

1.4 Incremental Analysis Framework 9

happen that a developer mistake in a frequently used library function makes code
in a large number of call sites unreachable. This shows that the output delta of an
inter-procedural unreachable code analysis may very well be proportional to the
input size rather than the size of the input delta. The large impact of the change
makes it difficult to deliver on the promise that incrementality comes with significant
improvements over a from-scratch analysis.

Although, this list may not be complete, it will become clear when we survey the related
work in Chapter 8 that this list is representative in the sense that state-of-the-art static
analyses often use some or all of these features to reason about realistic subject programs.
In the following, we simply use the word sophisticated to refer to analyses that use the
above features, even if the word itself has a subjective connotation. This dissertation claims
the following thesis:

Incrementalization can significantly improve the performance of sophisticated static
analyses. We can achieve this automatically while shielding analysis developers from
the technical details of incrementalization.

1.4 Incremental Analysis Framework

We show the thesis to be true by designing and implementing an incremental static analysis
framework in this dissertation. We call our framework IncA, which is short for INCremental
Analysis. IncA automatically incrementalizes static analyses, thereby shielding analysis
developers from the technical details of incrementalization. IncA does not make assump-
tions or restrictions about precision aspects (accuracy or reliability) of analyses, finding the
right design trade-off between those is the job of the analysis developer, just like in a non-
incremental analysis. The following requirements guide our design and implementation
throughout this dissertation:

Correctness (R1): An analysis incrementalized by IncA must compute the same result as
its non-incremental counterpart. In other words, incrementally updating an analysis
result with IncA in response to a program change must be the same as if we would run
the non-incremental analysis from-scratch on the entire updated subject program.

Efficiency (R2): An analysis incrementalized by IncA should be significantly faster than
its non-incremental counterpart. We expect to deliver update times on the sub-second
ballpark, as we target applications in IDEs that require live feedback.

Expressiveness (R3): IncA must support sophisticated static analyses, that is, it must
support recursive analysis specifications, custom lattices with aggregation, and
inter-procedural reasoning.

Genericity (R4): IncA must be independent of any particular subject program, subject
language, or static analysis.

Declarativity (R5): IncA must automatically incrementalize analyses and hide the tech-
nical details of incrementalization from analysis developers.

10 1 Introduction

yF~N
han serves as basis for
changes automated feedback

) X,
L.

isinputto |/ Incremental | computes
A(Program) . A(Result) :
—1_analysis

"|Front end Back end|; -

compiles to

Figure 1.3: ngh -level archltecture of IncA with relevant requlrements mapped to components.

Figure 1.3 shows the high-level architecture of IncA. The central element of the architecture
is the incremental feedback cycle highlighted in red: (i) A developer changes a subject
program, (ii) the delta in the subject program is the input to the incremental analysis, (iii)
the incremental analysis computes the delta in the analysis result, and, finally (iv) the
result delta is used as a basis for automated feedback in the IDE. It is crucial that this
feedback cycle is re-evaluated in sub-second time after program changes, so that we can
avoid interrupts in the developer workflow. IncA consists of three main parts, each one
being responsible for satisfying one or more requirements of the thesis statement:

Front end This is the component that software developers interact with; This is where
they develop subject programs. The front end of IncA efficiently computes deltas
in the subject program, thereby enabling incremental analyses. The front end is
independent of any particular subject program or subject language.

Meta end This is the component that analysis developers interact with. To shield anal-
ysis developers from the technical details of incrementalization, IncA provides a
declarative language for analysis specification. As we will show throughout this
dissertation, the specification language is expressive, as it supports a wide range of
static analyses, and it is independent of any particular subject language or analysis.

Back end The back end is responsible for the incrementalization of static analyses. This
component comes with specialized algorithms and data structures for efficient and
correct incremental analyses. The back end is generic because it incrementalizes
whatever analysis the meta end can express.

In the following, we briefly review the concrete contributions of this dissertation.

1.5 Contributions

The current design and features of IncA is the result of several iterations and improvements.
Concretely, we present five contributions that follow the development history of IncA:

1.5 Contributions 11

The IncA incremental analysis framework First, we create a baseline version of IncA.
This is already a complete incremental analysis framework in the sense that it implements
all three “ends”. The primary focus here is on supporting analyses with complex recursive
dependencies.

In the front end, we use projectional editing, which is a generic editor technology
independent of a subject language. Changes in subject programs directly translate to low-
level transformations of the underlying abstract syntax tree (AST) in a projectional editor.
This aligns perfectly with our incremental approach, as AST deltas can be computed with
zero computational overhead in a projectional editor. We use Datalog in the meta end as
the specification language. Datalog is a declarative language that allows to encode analyses
through relations. It allows analysis developers to focus on what to compute in terms
of relations, but incrementalization is left to a Datalog solver. We use a state-of-the-art
solver algorithm in the back end. This algorithm provides efficient and correct incremental
updates for any kind of recursive analyses.

We use IncA to implement practically relevant program analyses: FindBugs for Java
to detect common bug patterns, well-formedness checks for domain-specific languages
(DSLs), and control flow and points-to analysis for C. We show that IncA is efficient because
it delivers sub-second update times for these analyses.

Incrementalizing lattice-based program analyses A limitation of baseline IncA is that
analysis developers can only implement analyses that compute sets of tuples in relations as
the analysis result. This is equivalent to using the powerset lattice for the abstract domain.
While this is sufficient to relate existing entities to each other, for example to construct
a control flow graph, it is not sufficient for many other practically relevant analyses that
also need to compute and aggregate abstract values as the analysis runs. For example, an
interval analysis computes and aggregates interval lattice values at runtime.

We improve the expressive power of IncA by extending its specification language with
support for lattices and aggregation. However, we not only need to extend the language,
but also the IncA compiler and back end to make them lattice-aware, as well. We show
that state-of-the-art solver algorithms are not fit to support lattice-based analyses. To this
end, we design a novel algorithm called DRedp, tailored specifically to this problem.

We use IncA equipped with DRedy, to implement a lattice-based points-to analysis for
Java and analyses that reason about string values in Java. Our benchmarking on real-world
subject programs demonstrate that IncA is efficient, as the analyses deliver millisecond
update times.

Incrementalizing lattice-based inter-procedural analyses We identified three main
obstacles to efficient incrementalization above: recursive dependencies in analyses, lattices
and aggregation, and inter-procedurality. We already discussed the first two, now we
account for inter-procedural analyses. We show that the specification language of IncA
is already expressive enough to implement inter-procedural lattice-based analyses. The
problem is with the back end. As we explained before, inter-procedurality can easily
compromise the potential performance gains over a from-scratch recomputation. We find
that DRed;, and other state-of-the-art solvers have either poor performance or do not even
terminate for realistic implementations of lattice-based inter-procedural analyses.

To efficiently incrementalize lattice-based inter-procedural analyses, we design a novel
solver algorithm called LADDDER. On the one hand, LADDDER uses a non-standard aggrega-

12 1 Introduction

tion semantics compared to prior approaches (including DRedy) which helps to improve
the performance of lattice aggregators. On the other hand, LADDDER performs extra book-
keeping during fixpoint computation, and this helps to better reuse previous results, which
is crucial in an inter-procedural setting.

Inter-procedural analyses need a new approach for benchmarking, as well. Aiming
to deliver sub-second raw performance for any kind of change for an inter-procedural
analysis is hopeless. For example, changing frequently used library functions will always
have a large impact on the overall result. It is exactly this impact that our evaluation takes
into account. We define the impact of a change as the size of the difference between the
old and the new analysis result. In our evaluation, we analyze real-world subject programs
with a lattice-based points-to analysis. We empirically show that, given a random series
of program changes, low-impact changes dominate, and IncA is efficient in handling
those, while, for high impact changes, IncA is at least as fast as a from-scratch re-analysis.
Considering all program changes, the average update time is in the sub-second ballpark.

A DSL for incremental static analyses Throughout the implementation of the case
studies discussed so far, we used Datalog and lattices in IncA. However, we identified
recurring patterns of analysis code and missing language constructs that would make the
analysis implementation more readable and less verbose. Based on these observations, we
design a declarative DSL for incremental static analyses. Compared to Datalog extended
with lattices, our DSL has the same expressive power, it is also generic, but it has several
syntactical differences. For example, an analysis encoded in our DSL reasons in a forward or
backward style with input and output parameters which is common for data-flow analyses.
This is in contrast to computing bare relations with Datalog. Moreover, we add new
language constructs in our DSL, such as pattern matching to easily deconstruct ASTs,
switch-case statement, if statement, and more. We show how these constructs can be
mapped to Datalog.

We demonstrate the use of our DSL through two large-scale case studies. First, we
implement overload resolution for Featherweight Java, and we show how does the new
DSL help to improve readability and conciseness compared to the functionally equivalent
implementation in Datalog. Second, as part of a Master’s thesis [21], the new DSL was used
to implement a type checker for Rust and other static analyses used in the official Rust
compiler. This is the biggest IncA case study so far with 4 KLoC in size for the analysis
implementation. We briefly report on this case study, as well.

Textual front end for incremental program analysis Our last contribution is centered
around making IncA available for textual front ends, as well. This is important because
textual IDEs are the norm rather than projectional editing. However, a major challenge
in moving to a textual front end is that deltas in the subject program are not computed
for free, which was the case with projectional editing. For textual front ends, we must use
a parser to produce the AST, and then we must compute the differences between the old
and new ASTs with tree diffing. If this process takes too long, we cannot deliver efficient
incremental updates.

We show that with existing state-of-the-art techniques, it is not parsing that is the
performance bottleneck, but tree diffing. We find that most tree diffing tools are not
satisfactory for our purposes, as they (i) are either slow, (ii) only work with a particular
subject language, or (iii) encode AST differences imprecisely. Only recently did Miraldo

1.6 Outline 13

et al. introduce a generic tree diffing algorithm called hdiff that does not have any of these
limitations [85]. We adopt hdiff and build a textual front end for IncA that is as efficient as
the version using projectional editing. We show that our approach can deliver AST diffs in
a few tens of milliseconds on average for evolving textual Python code.

We have realized all work described in this dissertation in concrete implementations to
guide the design of IncA and to perform benchmarking with real-world static analyses.
IncA itself and our benchmarks (analyses and harnesses) are available as open source
software at https://github.com/szabta89/IncA.

1.6 Outline

The structure of this dissertation directly follows the historical development of IncA. The
contributions of this dissertation have either been previously published or are currently
under submission by the author in collaboration with others at international conferences
and workshops. In the beginning of each chapter, we indicate which paper was the source
of the chapter.

+ Chapter 2 provides background on Datalog. We review the syntax, semantics, and
algorithms for the incrementalization of standard Datalog. This chapter can be
skipped if the reader is already familiar with Datalog.

+ Chapter 3 presents the design and implementation of the baseline IncA framework.

« Chapter 4 presents our approach for incrementalizing analyses with lattice-based
aggregation. We discuss the DRedy, algorithm in detail.

« Chapter 5 adds support for inter-procedural lattice-based analyses. The chapter is
centered around our LADDDER algorithm.

« Chapter 6 presents the IncA DSL used for incremental static analysis and the case
study on implementing overload resolution for Featherweight Java.

« Chapter 7 presents the design and implementation of a textual front end for IncA.
« Chapter 8 puts IncA and our contributions in context with related work.

« Chapter 9 concludes this dissertation and provides an outlook on possible future
directions.

https://github.com/szabta89/IncA

15

2

Static Analysis with Datalog

This chapter shares material with the ASE’16 paper “IncA: A DSL for the Definition of Incre-
mental Program Analyses” [125].

Abstract — Datalog is a logic programming language that is a popular choice when it comes
to implementing static analyses. IncA is also a Datalog-based analysis framework. This
chapterprovides background material: It reviews the syntax, semantics, and state-of-the-art
algorithms for the incrementalization of standard Datalog.

16 2 Static Analysis with Datalog

2.1 Introduction to Datalog

Datalog is a logic programming language that originates from the 80s from the database
community. Originally, it was used as a specification language for database queries [2].
The language was dormant for a long time, but, in recent years, it started to gain more
and more attention in a number of different domains; e.g. distributed computing [27],
networking [13], security [66], and program analysis [12, 112]. Datalog allows to formulate
queries over relational data in a declarative style. This means that developers focus on what
to compute in terms of relations and tuples instead of how to execute a query. The “how”
is left to a Datalog solver that computes the result of a Datalog program. State-of-the-art
solvers are actually really good at solving the question of “how”, as they implement a range
of optimizations, like multi-threaded execution, incrementality, or automatic tuning of
indexing, that all Datalog programs can benefit from. In the following, we first give an
introductory overview on Datalog through an example static analysis. Then, we review
recursion and fixpoint computation, both being fundamental to Datalog. Finally, we discuss
state-of-the-art algorithms for incrementalizing standard Datalog. For an in-depth overview
on Datalog, we refer the reader to Datalog and Recursive Query Processing [44], we resort
to only discussing details here that are relevant to the contents of this dissertation.

2.2 Datalog by Example

Control flow analysis As an introductory example, we build a simple control flow
analysis for C using Datalog. IDEs and compilers use control flow analysis to reason about
the execution order of statements in a program and as a building block for further analyses
such as uninitialized variables or points-to analysis.

The input of our control flow analysis is a subject program in C, and its output is a
control flow graph (CFG) [90]. As an example, consider the C program and its CFG in
Figure 2.1. Each node in the CFG represents a statement in the program. A source statement
is connected to a target statement in the CFG if there exists an execution trace in which
the execution of the source statement immediately precedes the execution of the target
statement. Note how control can flow from statement 3 both to 3a and 4 in Figure 2.1.
This is because, in the general case, we cannot determine statically what the condition of
the while statement evaluates to, so, to faithfully represent all possible control flows, we
consider both 3a and 4 as potential targets.

int temp = readSensor(...); (1)
int last, err; 2)
while (outOfRange(temp)) { ®)
last = err; Ba)| GGa)
temp = readSensor(...); (8b) /
}
log("Last temperature %d", last); (4) o @

Figure 2.1: A simple C program and its CFG.

® u o o oe W o =

2.2 Datalog by Example 17

CFlow(src, trg) := CSimple(src, trg).

CFlow(src, trg) :- CWhile(src, trg).

CSimple (src, trg) :- PrecedingStatement (src, trg), SimpleStatement (src).
CWhile(src, trg) :- PrecedingStatement (src, trg), WhileStatement (src).
CWhile(src, trg) :- WhileStatement (src), FirstStatement (src, trg).
CWhile(src, trg) :- WhileStatement (trg), LastStatement (trg, src).

Figure 2.2: Control flow analysis for a subset of C in Datalog.

The result of a control flow analysis is the CFG, but, in Datalog, we model the CFG
with a relation consisting of a set of tuples representing CFG edges. For this example, we
restrict ourselves to a subset of C with while statements and simple statements that entail
a sequential control flow such as assignments. We define the relation CFlow for the edges
of the CFG, and we compute it as the union of two helper relations:

1. CSimple consists of those control flow edges (src, trg) where src is a simple
statement that syntactically precedes trg in the source code.

2. CWhile consists of control flow edges (src, trg) thatlead into or out of a while
statement, which is the case if:

2.1. src syntactically precedes trg, and src is a while statement,
2.2. srcisawhile statement, and trg is the first statement in its body,

2.3. src is the last statement in the body of the while statement trg.

In our example, CSimple consists of the tuples (1, 2), (2, 3), and (3a, 3b), and
CWhile consists of (3, 3a), (3, 4),and (3b, 3). The union of the two relations con-
stitutes CFlow. Now, let us implement this analysis with Datalog to compute these tuples.

Analysis implementation in Datalog A Datalog program consists of a set of rules
that compute sets of tuples in relations. In standard Datalog [44], a rule r has the form
h:—ay,...,ap where h is called the rule head, and ay,...,a, form the rule body. h and a;
are called atoms. An atom is a relation name (predicate symbol) and a list of terms as
arguments. A term can either be a constant value or a variable. An atom consisting solely
of constant values is called a ground atom or fact.

Figure 2.2 shows an excerpt of the Datalog rules that compute the tuples of the CFlow
relation. The CFlow rule has two alternative bodies: The first one collects the edges
concerning simple control flow predecessors from the CSimple rule, while the second one
collects the edges concerning while statements from CWhile. The definition of CSimple
and CWhile directly follows the above reasoning about possible control flows.

We turn our attention now to computing the tuples of CFlow. However, first, we
introduce necessary terminology. The set of all predicate symbols appearing in a Datalog
program is called a database. The extensional database (EDB) consists of all those predicate
symbols that represent the subject program, while the intensional database (IDB) is the
collection of derived predicate symbols computed by the Datalog program. For example,
in Figure 2.2, CSimple, CWhile, and CFlow constitute the IDB, while the other predicate

18 2 Static Analysis with Datalog

EDB instance First " IDB instance
Statement CSimple
5 . Simple parent| first src trg CFlow
S:e;:e |ngt Statement 3 3a 1 2 oo | trg
oo | stmt While 2 | 9 I
9 1 Statement 3a 3b
1 2 2 3
2 stmt
2 s 3a 3 CWhile 3 | %
3 4 3 4
3a | ab s Last src | o 3a | 3b
4 Statement 3 3a
3b 3
parent| last 3 4
3 3b 3b 3

Figure 2.3: The minimal model for our control flow analysis and subject program.

symbols represent the EDB. A database instance is a set of facts that constitute the relations
represented by the predicate symbols of a database. The EDB instance consists of facts that
describe the input of the Datalog program. In our example, the constant values in the facts
are statements of the subject program. For example, SimpleStatement is a unary relation
that enumerates statements that are not while statements, while PrecedingStatement
consists of those (src, trg) facts where statement src syntactically precedes statement
trg. It is common in Datalog-based analysis frameworks to extract these facts from the
data structure (e.g. the AST) representing a subject program.

Model-theoretic semantics There are different ways to define the semantics of a Datalog
program. Here, we focus on the model-theoretic semantics, which captures the declarative
nature of Datalog, that is, it explains what the IDB instance consists of, but it does not talk
about how to compute that.

A rule is interpreted as a universally quantified implication: The substitutions of the
variables in the body imply when the head holds. Given a head atom R(fy, ..., t}), the valid
substitutions of the terms f1, ..., # yield the tuples of relation R. Multiple Datalog rules can
share the same predicate symbol, thereby providing alternative ways to infer tuples in the
corresponding relation.

Starting from an (extensional) database instance I, and using a Datalog program P,
the job of a Datalog solver is to compute a minimal model M of P. A model is a database
instance I’ that extends I (that is, I < I’), plus it satisfies all Datalog rules when treated as
constraints. Given that there may be multiple models satisfying this criteria, a Datalog
solver must compute the minimal one, that is, the one that has the least number of tuples
out of all models. It has been shown that for any standard Datalog program and finite EDB
instance, there exists a unique minimal model [132]. Figure 2.3 shows the minimal model
computed by our example analysis in Figure 2.2 on the subject program from Figure 2.1.
The tuples in the EDB instance are simply extracted from the AST of the subject program.
The IDB instance consists of all those CFG edges that satisfy the Datalog rules.

The model-theoretic semantics specifies what to compute as a result of a Datalog
program, which aligns perfectly with the declarative nature of the language. However,
it does not tell us how to actually obtain such a result. To actually compute the minimal
model, we use an alternative semantics called the fixpoint-theoretic semantics. Instead of
continuing with the control flow analysis in itself, we actually build an analysis on top
of the control flow analysis. We do this for two reasons. First, our new example analysis

2.3 Recursion and Fixpoint Computation 19

will use recursion, which is a fundamental improvement in the expressivity of Datalog.
Note that our control flow analysis is not recursive, as there are no recursive dependencies
among its Datalog rules. The fact that the CFG was cyclic for the subject program in
Figure 2.1 was because of the loop in the program itself. Second, fixpoint computation is
much more interesting for a recursive analysis.

2.3 Recursion and Fixpoint Computation

Uninitialized variables analysis We extend our running example with an uninitialized
variables analysis [90], which will be a client of the control flow analysis. The uninitialized
variables analysis collects all those variables that may not be initialized during the execution
of a subject program. Using this information, an error reporter can mark all those reads
erroneous where the variable is not guaranteed to be initialized. We use a flow-sensitive
analysis, which means that the analysis keeps track of the control flow and computes the
set of uninitialized variables per CFG node. Given that subject programs may have cyclic
control flow (as is the case in Figure 2.1), we will use a recursive analysis definition.

Consider the subject program in Figure 2.1. Statement 2 declares variables 1ast and
err, but does not initialize them. From here, the uninitialized state spreads across the CFG
edges. Even though, last gets assigned in statement 3a, due to a developer mistake, it
gets assigned with err instead of with temp. Variable err is uninitialized still, so last
also remains uninitialized. When we reason about the variables at the loop (represented
by statement 3), we must consider both branches 2 — 3 and 3b — 3 that lead to the
condition of the loop. Both last and err are uninitialized on both branches, so the
variables are considered uninitialized at statements 3 and 4. Based on this result, the read
from last at statement 4 is erroneous.

Analysis implementation in Datalog Figure 2.4 shows the implementation of a simple
uninitialized variables analysis in Datalog. The two main rules are UninitializedBefore
andUninitializedAfter, and they are mutually recursive. RuleUninitializedBefore
propagates results from CFG predecessors to CFG successors. A tuple (stmt, var) €
UninitializedBefore means that var is uninitialized before the execution of statement
stmt. Rule UninitializedAfter interprets the different kinds of statements. A tuple
(stmt, var) € UninitializedAfter means that var is uninitialized after the execu-
tion of statement stmt. This can happen in three ways: (i) stmt declares var, but does
not initialize it (e.g. statement 2 in Figure 2.1), (ii) stmt does not declare nor assign to var,
but var was already uninitialized before, and (iii) stmt does not declare var but assigns a
variable reference to it where the referenced otherVar is uninitialized. The new syntax
‘‘not’’ appearing in line 7 stands for negation, while ¢‘_’’ is a wildcard variable that can be
substituted with any value. The whole atom not Assignment(stmt, var, _) means
that var does not get assigned in stmt because there is no value rhs that would yield
(stmt, var, rhs) € Assignment.

Fixpoint-theoretic semantics The fixpoint-theoretic semantics specifies how to compute
the minimal model of a Datalog program given an EDB instance. We apply it to the
uninitialized variables analysis to compute its results on the subject program in Figure 2.1.

Given a Datalog program P, the immediate consequence operator Tp is a function that

20 2 Static Analysis with Datalog

UninitializedBefore (stmt, var) :—
CFlow(src, stmt),
UninitializedAfter (src, var).

UninitializedAfter (stmt, wvar) :—
VariableDeclaration (stmt, var),
not Assignment (stmt, var, _).
UninitializedAfter (stmt, var) :—
not VariableDeclaration (stmt, wvar),
not Assignment (stmt, var, _),
UninitializedBefore (stmt, var).
UninitializedAfter (stmt, wvar) :—
not VariableDeclaration (stmt, wvar),
Assignment (stmt, var, rhs),
VariableReference (rhs, othervVar),
UninitializedBefore(stmt, otherVar).

Figure 2.4: Initialized variables analysis for a subset of C in Datalog.

maps a database instance to a database instance. We say that a database instance I’ is the
immediate consequence of the database instance I if every tuple ¢ in I’ is either already in
I or t can be derived using one of the rules in P based on tuples that are in I. I’ is the result
of applying Tp on I. Tp is a monotone operator, that is, if I; ¢ I then Tp(l1) < Tp(l2). The
process of solving P with Tp based on an EDB instance entails the repeated application
of Tp until a fixpoint is reached, that is, until we cannot infer any new tuples. Assuming
standard Datalog, it can be shown that (i) this process always terminates, (ii) it always
computes the least fixpoint, that is, the smallest among the derivable database instances,
and (iii) the least fixpoint equals to the minimal model defined by the model-theoretic
semantics [44].

Figure 2.5 shows the fixpoint computation for the uninitialized variables analysis on
the subject program in Figure 2.1. Ij is the EDB instance, which does not only contain facts
about the subject program, but also the result of the control flow analysis, as the uninitialized
variables analysis makes use of it. The fixpoint computation finishes in eight steps, the final
IDB instance being Is. We omitted I3 — I, to improve readability. Note that in I3, we obtain re-
dundant derivations UninitializedBefore(3, last) and UninitializedBefore(3,
err) (marked with gray), as they have already been derived in I,. There is no need to
apply Tp again, as we did not infer new tuples in UninitializedBefore in k.

Negation As we explained before, the Tp operator is monotone, that is, repeated ap-
plications of it only ever grows the number of tuples in consecutive database instances.
However, negation applied through recursion can easily violate this property, as it may
require to retract tuples that have already been inferred in a previous application of Tp.
One way to deal with this situation is to restrict the use of negation.

A widely used restriction is to only allow stratified negation in Datalog programs [44].
A strata is a set of mutually recursive predicate symbols. A Datalog program is stratifiable
if there exists an ordering among the strata Si, Sz, ..., Sy, of the program such that

« when arule computing relation R € S; uses relation R’ € S; in its body in a non-negated
atom, then i >=j,

2.4 Incrementalizing Standard Datalog 21

EDB instance IDB instances
Uninitialized Uninitialized
Before After
Variabic |1\ stmt [var | | stmt] var Uninitialized Uninitialized Uninitialized Uninitialized
Declaration CFlow 2 last Before After Before After
stmt ‘ var src g 2 err stmt | var stmt | var stmt | var stmt | var
‘ 1 2 3 last 2 last 3 last 2 last
- 2 3 Uninitialized Uninitialized 3 err 2 err 3 err 2 err
Variable 3 o Before After 3a last 3 last 3a last 3 last
IO ret | var 3 2 |2 stmt | var stmt | var |7 3a | err 3 err |8 3a | er 3 err
3 last 2 last 4 last 3a | last 4 last 3a | last
oo | 3a 3b 3 err 2 err
3b 3 4 err 3a err 4 err 3a err
Uninffialized | [Uninitialized | 30 | last 4 | last Sb | last 4 | tast
Assignment Before After 3b err 4 err 3b err 4 err
stmt ‘ var ‘ rhs stmt | var stmt | var 3b last 3 last 3b last
‘ |3 3 last 2 last 3b err 3 err 3b err
3 err 2 err
3 last
3 err

Figure 2.5: Series of IDB instances during fixpoint computation for the uninitialized variable analysis.

- when a rule computing relation R € S; uses relation R’ € S; in its body in a negated
atom, then i > j.

Stratified negation is a syntactic restriction on Datalog programs, and it helps to keep Tp
monotone, as it cannot happen that negation is used through recursion. Our uninitialized
variables analysis in Figure 2.4 uses stratifiable negation, as it satisfies the above criteria.
Note that there are also other ways to deal with negation in Datalog. For example, re-
searchers have proposed the well-founded semantics [133] that gives meaning to Datalog
programs with unrestricted use of negation.

Note on technical realization The ordering among strata defined by the above stratifi-
cation criteria can also be combined with the fixpoint computation, in contrast to applying
the entire set of rules in each fixpoint iteration. Specifically, for each strata S according
to the computed order, we repeatedly apply Tp[s) until fixpoint in S, where Tp[s) denotes
the set of rules that reference predicate symbols in S. This approach also works well for
programs with stratified negation because at the time we negate an atom, the contents
of the respective relation has already stabilized given that the relation belongs to a lower
strata. Note that in case of non-recursive Datalog programs, all strata will simply consist
of a single predicate symbol.

The way how we apply Tp[s) gives room for optimization. A naive approach is to
repeatedly apply Tp[s) on the entire contents of a database instance. In contrast, in semi-
naive evaluation [14], when applying Tps) at the ith step of the fixpoint computation for
strata S, we only consider the rules that are actually affected by tuples that were newly
derived in step i— 1. This helps to reduce the amount of work, as we avoid applying rules
that could not produce new tuples anyway. In the following, we focus on incremental
fixpoint computation, as our goal is to reuse previously computed analysis results after
program changes.

2.4 Incrementalizing Standard Datalog

Incrementally evaluating a Datalog program entails two steps. First, we run a non-
incremental fixpoint computation based on an EDB instance to compute the IDB instance.
Then, based on changes in the EDB instance in terms of fact deletions or insertions, we

22 2 Static Analysis with Datalog

A(CFlow(src, trg)) :— A(CSimple(src, trg)).

A(CFlow(src, trg)) : - A(CWhile(src, trg)).

A(CSimple (src, trg)):-A(PrecedingStatement (src,trg)),SimpleStatement (src).
A(CSimple (src,trg)) :—PrecedingStatement? (src,trg),A(SimpleStatement (src)) .
A(CWhile(src, trg)):-A(PrecedingStatement (src, trg)), WhileStatement (src).
A(CWhile (src, trg)):-PrecedingStatement?(src, trg),A(WhileStatement (src)).
A(CWhile (src, trg)):-A(WhileStatement (src)), FirstStatement (src, trg).
A(CWhile (src, trg)):-WhileStatement?(src), A(FirstStatement (src, trg)).
A(CWhile(src, trg)):-A(WhileStatement (trg)), LastStatement (trg, src).
A(CWhile (src, trg)):-WhileStatement?(trg), A (LastStatement (trg, src)).

Figure 2.6: Delta rules defined by the Counting algorithm for the control flow analysis.

incrementally update the contents of the IDB instance. We assume that the initial results
are already computed with the techniques presented in Section 2.3. We review techniques
for incrementally evaluating both non-recursive and recursive Datalog programs.

Counting for non-recursive Datalog A well-know algorithm for incrementally main-
taining the results of non-recursive Datalog programs is called Counting [47]. At the core of
the Counting algorithm, every tuple is associated with an incrementally maintained support
count, which equals to the number of alternative derivations a tuple has. For example, in
the results of the control flow analysis (Figure 2.3), every derived tuple has count 1. In the
results of the uninitialized variable analysis, tuples UninitializedBefore(3, last)
and UninitializedBefore(3, err) had count 2, as they were redundantly inferred
again in Figure 2.5 at Is. Incremental maintenance boils down to maintaining the support
counts: A tuple insertion (deletion) increments (decrements) the count by 1. If the support
count drops to 0, the tuple can be removed from the respective relation.

Counting uses delta rules to identify what changes in IDB relations in response to
changes in EDB relations. With every rule r of the form h:- aj, ..., ay, Counting associates
n delta rules where the ith (1 < i < n) rule is of the form

Ai(r) = A(h):—af,....a7 1, M(ai), Gis1, .o an.

A(h) represents the changes in relation h, and h” = hw A(h), that is, the signed union wrt.
support counts of the previous relation contents and the delta in it. Figure 2.6 shows
the delta rules of the control flow analysis from Figure 2.2. Using these delta rules for
incremental maintenance is straightforward. We iterate over the predicate symbols in a
topological order of the (singleton) strata. For each predicate symbol, we store the original
relation contents, compute the delta by either using the changes in the respective EDB
relation or the delta rules of the predicate, and then prepare the updated relations. There
is no need to repeatedly reapply Datalog rules until the results stabilize, as there is no
recursive dependency among the rules, so the computation reaches a fixpoint with a single
application of the rules.

DRed for recursive Datalog Delete and Re-derive (DRed) [47] is an incremental al-

gorithm to maintain the results of recursive Datalog programs. Given a change in EDB
relations, the algorithm uses the following three phases to update the IDB relations. Each

2.4 Incrementalizing Standard Datalog 23

phase runs until fixpoint:

« Delete: This phase computes an over-estimate of the tuples that need to be deleted
based on EDB tuple deletions. There is emphasis on the word “over-estimate”, as DRed
ignores alternative derivations during the delete phase. This means that irrespective
of whether an alternative derivation remains after the deletion of a tuple, the tuple
is still marked for deletion. For this reason, the set of marked tuples may be more
than what actually needs to be deleted. This will be corrected later.

With every rule r of the form h:-aj, ..., a,, DRed associates n delta rules where the
ith (1 < i < n) rule is of the form:

Adel(h) —aq,.., ai_l,Adel(ai), i1, s Ap.

Assume g; references predicate symbol p. Then, a; represents the original contents of
relation p, without incorporating any deletions. If p is an EDB relation, then A%¢!(a;)
consists of the set of facts deleted from p. If p is an IDB relation, then A%¢!(a;)
represents the set of tuples computed by the respective delta rules thus far in the
fixpoint computation. Once all A9€!(q;) stabilizes, we obtain a? by removing A%l(g;)
from the original contents of p. The next phase fixes the potential over-deletion of
the delete phase.

« Re-derive: This phase puts back all those tuples that have alternative derivations
based on the tuples that remained after the delete phase. For each rule r of the form
above, DRed uses one re-derive rule:

AT4(h) = A%(h),a?, ... al.
During the fixpoint computation, we keep augmenting a{ obtained at the end of the
delete phase by adding all those tuples back that get derived in A™¢%(g;).

« Insert: The phase computes the tuples that need to be inserted based on EDB tuple
insertions. DRed uses n delta rules for a rule r of the form above, and the ith rule
looks as follows:

A"™(h) = af,....af 1, A" (a;), afry, . ah-

Again, assume that a; references predicate symbol p. If p is an EDB relation, then
A"S(a;) consists of the set of facts inserted into p and a? refers to the updated
EDB relation with the insertions incorporated. If p is an IDB relation, then A"(a;)
represents the set of tuples computed by the respective delta rules thus far in the
fixpoint computation, and af refers to the union of the tuples obtained for a; at the
end of the re-derive phase and A(a;). Technically, the re-derive and insert phases
are often combined into a single phase, as both of these phases only ever infer new
tuples and never delete any. In this case, the combined re-derive phase also needs to
consider insertions in EDB relations.

24 2 Static Analysis with Datalog

int temp = readSensor(...);

(
int last, err = 0;)
while (outOfRange(temp)) {)

last = err; (3a)
temp = readSensor(...); (3b)

}
log("Last temperature %d", last); (4)

Figure 2.7: The subject program we get after adding an initializer for err in Figure 2.1.

Let us now use DRed to update the results of the uninitialized variables analysis in response
to a program change. Assume we update the subject program in Figure 2.1 as shown in
Figure 2.7 by adding an initializer for err. In response to this change, the CFG of the
subject program does not change, but err becomes initialized at all control flow locations
after statement 2. In turn, last also becomes initialized at statement 3a and 3b, but it is
still uninitialized at statement 3 and 4, as we do not know statically if the loop will be
executed at all.!

We defer from explicitly spelling out all the delta rules used by DRed for our analysis,
instead, we show the results of the delete and re-derive phases in Figure 2.8. There is no
insert phase, as there were no fact insertions. The delete phase invalidates all but one
tuple. On the one hand, this is good because we can invalidate all tuples reporting about
the uninitialized state of err. On the other hand, we invalidate several tuples for last
that need to be put back later in the re-derive phase. This is indicative of a behavior that
happens frequently with DRed: We pay the price for correct incremental updates in the
face of recursive dependencies with a potential over-deletion of tuples. At the end of the
re-derive phase, we obtain the correct updated analysis results: err does not appear as
uninitialized anywhere, while the initialized state of 1ast does not span outside of the
loop body.

Optimizing DRed with Counting An optimization for DRed is to combine it with
Counting. Specifically, we can associate support counts with tuples just like with Count-
ing and incrementally maintain them as tuples get inserted or deleted during the DRed
phases [47]. The benefit of the support counts manifests in the re-derive phase, as all those
tuples that still have a positive support count after the delete phase reached a fixpoint can
be immediately put back into their respective relations. Without the support counts, we
would need to go back to the EDB relations and start applying Datalog rules from there.
However, care should be taken with the incremental maintenance of support counts during
the delete phase because we can easily end up with incorrect analysis results due to cyclic
reinforcements between tuples. Let us demonstrate the problem through the uninitialized
variables analysis from Figure 2.4.

When we ran the uninitialized variables analysis on the subject program in Fig-
ure 2.1, we ended up inferring UninitializedBefore(3, last) and Uninitialized-
Before(3, err) twice, that is, the support count of these tuples were two (as shown
by I3 in Figure 2.5). Now assume the program change in Figure 2.7. In response to this
change, DRed first deletes UninitializedAfter(2, err), which, in turn, invalidates

!We could employ a more sophisticated analysis that reasons about loop conditions and across function calls
inter-procedurally, but this kind of analysis is out of scope here.

2.4 Incrementalizing Standard Datalog 25

End of delete phase

Uninitialized Uninitialized AdeI(UninitiaIized AdeI(UninitiaIized Uninitialized Uninitialized
Before After Before) After) Before¥ After’
stmt var stmt var stmt var stmt var stmt var stmt ‘ var
3 last 2 last 3 last 2 err 2 ‘ last

3 err 2 err 3 err 3 err
3a last 3 last 3a last 3 last
3a err 3 err 3a err 3a err
4 last 3a last 3b last 3a last
4 err 3a err 3b err 3b err
3b last 4 last 4 last 3b last
3b err 4 err 4 err 4 err
3 last 3b last 4 last
3 err 3b err
End of re-derive phase
Ared(UninitiaIized Ared(UninitiaIized Uninitialized Uninitialized
Before) After) BeforeV AfterV

stmt var stmt var stmt var stmt var

3 last 3 last 3 last 2 last

3a last 4 last 3a last 3 last

4 last 4 last 4 last

Figure 2.8: Results of DRed delete and re-derive phases applied to the uninitialized variables analysis in response
to the program change in Figure 2.7.

one derivation of UninitializedBefore (3, err). This means that we must decrement
the support count of the tuple by one, still leaving one alternative derivation. Even though,
the value of the support count tells us that we could stop with the propagation of the dele-
tion, we must not do that because it would lead to incorrect incremental updates. We must
realize that prior to the program change the very reason for deriving Uninitialized-
Before(3, err) through the CFG edge 3b — 3 was that we already derived the same
tuple through the CFG edge 2 — 3. Due to the loop in the CFG, there is cyclic reinforce-
ment between the two derivations. After the program change, we must invalidate both of
these derivations.

To correctly update the analysis result in face of cyclic reinforcements, we cannot
rely on the support counts during the delete phase. A positive support count should
not be used as evidence for a tuple being present in a relation. Instead, support counts
must be temporarily ignored for deletions to spread along recursive dependencies, thereby
invalidating all cyclically dependent derivations. Once the delete phase reached a fixpoint,
we can start re-deriving tuples based on the remaining positive support counts. We refer
the reader to the literature [47] for the correctness proofs of Counting and DRed.

Note on technical realization Both Counting and DRed are high-level algorithms in
the sense that they prescribe how to perform incremental updates to IDB relations through
delta rules and phases of updates, but real-world Datalog solvers still need to take care
of other low-level implementation details. To see this, it is enough to go back to the
description of a Datalog rule. “A rule is interpreted as a universally quantified implication:
The substitutions of the variables in the body imply when the head holds.” This entails
relational algebra operations; e.g. joining, filtering, projecting of relations. In Chapter 3,
we show how IncA solves these technical details.

26 2 Static Analysis with Datalog

2.5 Chapter Summary

We reviewed the syntax, semantics, and incrementalization of standard Datalog through
concrete static analyses. We started off by implementing a simple control flow analysis,
and we used the model-theoretic semantics to give meaning to our Datalog program. Then,
we implemented a flow-sensitive uninitialized variables analysis that used the results of
the control flow analysis. The analysis implementation was recursive, and it used stratified
negation. We used the fixpoint-theoretic semantics to compute the result of our analysis
on a concrete subject program. Finally, we turned our attention to the incrementalization
of standard Datalog. We discussed both the Counting and DRed algorithms. The DRed
algorithm is particularly interesting for the next chapter because we will use it as the
incrementalization algorithm in the back end in the baseline version of IncA.

27

The IncA Incremental Analysis
Framework

This chapter shares material with the ASE’16 paper “IncA: A DSL for the Definition of Incre-
mental Program Analyses” [125].

Abstract — Program analyses support software developers, for example, through error
detection, code-quality assurance, and by enabling compiler optimizations and refactorings.
To provide real-time feedback to developers within IDEs, an analysis must run efficiently
even if the analyzed code base is large.

To achieve this goal, we present the IncA framework for the definition of efficient
incremental program analyses that update their result as the subject program changes.
IncA comes with its own Datalog dialect, compiles analyses into graph patterns, and relies
on existing incremental graph pattern matching algorithms. To scale IncA analyses to large
programs, we describe optimizations that reduce caching and prune change propagation.
Using IncA, we have developed incremental control flow and points-to analysis for C, well-
formedness checks for DSLs, and 10 FindBugs checks for Java. Our evaluation demonstrates
significant speedups for all analyses compared to their non-incremental counterparts.

28 3 The IncA Incremental Analysis Framework

3.1 Introduction

We demonstrated in Chapter 2 that Datalog is a good fit for implementing static analyses:
Due to its declarative nature, the details of efficient evaluation can be left to a Datalog
solver. For example, Whaley et al. develop highly precise points-to analysis in Datalog
in the bddbddb framework [140]. The bddbddb solver uses binary decision diagrams to
represent relations in the back end, which allows bddbddb to scale to large databases with
better performance than hand-tuned versions of the functionally equivalent points-to
analysis. As Whaley et al. write “bddbddb takes advantage of optimization opportunities
that are too difficult or tedious to do by hand”. Backes et al. perform network analysis on
Amazon-scale using Datalog in seconds [13], while Smaragdakis et al. develop a range of
increasingly precise points-to analysis for Java in the Doop framework using Datalog [114].
Both of these use cases are backed by the Soufflé Datalog solver [66]. Again, there is a
range of optimizations that come out of the box from the Soufflé solver; ranging from
partial evaluation for efficient index selection to multi-threaded execution.

Our work improves the performance of program analyses through incrementality:
When part of the subject program changes (for example, through user edits), we only
reanalyze the changed part, plus all the code whose analysis result depends on the changed
results. This way, incremental program analysis can provide significant improvements
compared to reanalyzing the whole code base from scratch. Our goal is to meet the
timeliness requirement of analysis clients in IDEs, that is, to deliver sub-second update
times for analyses on evolving subject programs.

We present IncA, a Datalog-based framework for the definition and efficient incremental
evaluation of program analyses. Compared to other Datalog-based frameworks (such as
Flix [79] or Soufflé [66]), IncA does not use a fact extractor to generate EDB relations from
structured input data (e.g. an AST) prior to an analysis run. Instead, analyses developers
in IncA can directly write Datalog code against the AST of a subject program. To this
end, IncA uses its own Datalog dialect through several extensions over standard Datalog.
Importantly, IncA Datalog uses virtual EDB relations to access types and structural links
of the subject language. This has two benefits for incremental evaluation:

« The EDB relations are close to the original structure of the subject programs which
makes incremental maintenance of EDB relations simpler in face of program changes,
which is an important first step for the efficient incrementalization of analyses.

Analysis developers can precisely capture what information is needed from a subject
program. This is useful information for the incremental evaluation because changes
to program elements not needed by an analysis can be safely ignored, as they cannot
have an impact on an analysis result anyway. IncA exploits this by performing a
meta analysis on IncA analyses to provide hints to the runtime system about which
EDB changes can be ignored, thereby improving incremental performance.

The IncA compiler translates an IncA analysis into a set of graph patterns [101]. Graph
patterns prescribe expected relationships between AST nodes, so, from this perspective,
they are no different from an analysis using virtual EDB relations to access AST nodes.
The reason why we use graph patterns is because there are existing incremental graph
pattern matching libraries readily available. We use the VIATRA QUERY library [129] in

3.2 Incremental Program Analysis with IncA 29

the back end of IncA.! VIATRA QUERY takes care of the efficient incrementalization of the
low-level relational algebra behind Datalog programs. We extend VIATRA QUERY with
DRed-style evaluation to support recursive analyses. The design and implementation
of IncA is independent of a particular subject language or analysis, and we developed a
generic architecture for the integration of IncA into IDEs. We instantiate IncA on top of
the projectional JetBrains MPS IDE.?

To evaluate IncA, we implemented incremental analyses for C and Java programs
and measured their runtime performance. For C, we developed incremental control flow
analysis, flow-sensitive points-to analysis, and domain-specific well-formedness checks.
For Java, we reimplement 10 FindBugs analyses [62]. Our evaluation shows that IncA-based
incremental program analyses yield significant speedups without introducing unacceptable
memory or initialization overheads.

Contributions In summary, we make the following contributions:

« We introduce IncA Datalog, which is tailored to writing static analyses directly
against the AST of subject programs. We translate IncA Datalog code to graph
patterns (Section 3.3).

« We implement compiler optimizations for IncA that reduce the memory required for
incrementalization and the time required for change propagation (Section 3.4).

« We describe the runtime system of IncA as a generic architecture that allows the
integration of IncA analyses into different IDEs. We instantiate this architecture on
top of a projectional IDE (Section 3.5).

« We develop three incremental analyses for C, including an incremental flow-sensitive
points-to analysis, and reimplement 10 FindBugs analyses for Java (Section 3.6).

« We evaluate the memory and runtime performance of IncA through our case studies
on real-world C and Java projects (Section 3.7). We show that program analyses
developed with IncA provide real-time feedback and scale to large code bases.

3.2 Incremental Program Analysis with IncA

This section explains the IncA approach to incremental program analysis. We demonstrate
IncA Datalog and how we use it to encode analysis directly against the AST of a subject
program. Then, we translate IncA Datalog code to graph patterns and use incremental
graph pattern matching to evaluate analyses in response to program changes.

IncA Datalog We already provided an implementation of a control flow analysis in
Section 2.2. We use that analysis as a running example here, too, and we recap what kind of
EDB relations we used earlier. Our earlier implementation of the analysis (Figure 2.2) relied
on EDB relations, such as PrecedingStatement, FirstStatement, and LastStatement
that were prepared by a fact extractor prior to an analysis run. The goal of a fact extractor
is to traverse the AST of a subject program and generate facts that represent the relevant
relationships between AST nodes. This is a typical approach for Datalog-based frameworks

1ViAaTRA QUERY was formerly know as EMF-IncQuery.
’https://www. jetbrains.com/mps

https://www.jetbrains.com/mps

30 3 The IncA Incremental Analysis Framework

CFlow(src : Statement, trg : Statement) := {
CSimple (src, trg)
} alt {

CWhile(src, trg)
}

CSimple(src : SimpleStatement, trg : Statement) :— {
Statement.prev(src, trg)

}

CWhile(src : Statement, trg : Statement) :— {
WhileStatement (src),
Statement.prev(src, trg)
} alt {
FirstStatement (src, trg)
} alt {
LastStatement (trg, src)
}

FirstStatement (loop : WhileStatement, first : Statement) := {
WhileStatement.stmts (loop, first),
not Statement.prev(_, first)

}

LastStatement (loop : WhileStatement, last : Statement) := {
WhileStatement.stmts (loop, last),
not Statement.prev(last, _)

}

Figure 3.1: Control flow analysis for a subset of C in IncA Datalog.

because fact extractors help resolve a mismatch related to input representation: Datalog
can only work with flat tuples in relations, while the data structures representing subject
programs are typically hierarchical, just like the AST. Extracting EDB relations may simply
require the traversal of single structural links in the AST, e.g. to extract parentship be-
tween nodes, but extracting FirstStatement and LastStatement require more complex
reasoning. Statement s is the first/last statement of 1 if 1 is a loop, s is a statement in
the body of 1, and there is no other statement q whose predecessor/successor would be s.
This is essentially pattern matching over the AST of the subject program. Supporting such
patterns is fundamental to the design of IncA Datalog.

IncA analyses do not rely on extracted EDB relations, instead they work directly against
the AST of subject programs (or any other hierarchical data structure used to represent
the subject program). To this end, IncA uses Datalog for analysis specification, but it
extends it with virtual relations that allow to access types and structural links from the
subject language. We say “virtual” because these relations are not modeled explicitly like
EDB relations produced by a fact extractor or IDB relations defined by the rules of an
analysis. Instead, they are defined implicitly by the abstract syntax of the subject language.
We demonstrate this by rewriting the control flow analysis in IncA Datalog as shown in
Figure 3.1. We highlight key implementation details of this analysis:

 Unary EDB relations, such as Statement, SimpleStatement, and WhileStatement
represent types from the subject language.

3.2 Incremental Program Analysis with IncA 31

« Binary EDB relations WhileStatement.stmts and Statement.prev represent
structural links in the AST. Link stmts is defined on the type WhileStatement in
the subject language, and it is the containment link holding the statements in the
body of a while loop. Link prev is a virtual link that allows to access the previous
sibling of a node (if any). IncA supports prev on all types, irrespective whether the
link is defined explicitly in the abstract syntax of the subject language (which usually
is not the case). It does not come up in this example, but next, parent, and index
are also virtual links that IncA supports on all types to access the next sibling, parent
of a node, and index of a node among its siblings, respectively. These virtual links
are fundamental for navigating in the AST of a subject program.

« FirstStatement and LastStatement are now IDB relations, which is in contrast
to using them as extracted EDB relations in Figure 2.2.

+ IncA Datalog allows to use negation on EDB relations, such as not Statement.
prev(last, _). Intuitively, this atom constrains the Statement nodes that will
substitute last by requiring that last does not precede another Statement node,
i.e. it is the last among the sibling statements.

« In IncA, we do not repeat the same rule head for alternative bodies, instead, we
define the head once, and connect the alternative bodies with the alt keyword. This
will play a role when we define visibility for a rule, as we will discuss in Section 3.3.

« IncA allows to define optional type parameters for variables in the head atom. This
is for convenience only. Defining type annotations has the exact same effect as using
unary EDB relations with the respective types in the rule body.

Let us now look at how IncA evaluates this analysis on a concrete subject program. We
start with the initial, non-incremental evaluation.

Evaluation with graph patterns To compute the tuples of the relations CSimple,
CWhile, and CFlow, we must traverse the AST and discover the relevant structural rela-
tions between the AST nodes. A natural representation of such computations is a graph
pattern [101]. Much like the IncA Datalog code in Figure 3.1, graph patterns describe sets
of related entities through structural constraints on AST nodes and on instances of other
graph patterns.

Given a set of interconnected graph patterns, we can compute their results by using a
computation graph. A computation graph performs relational algebra operations, e.g. by fil-
tering, joining, unioning, projecting related entities. First, we provide a high-level view on
the computation graph for our control flow analysis in Figure 3.2. The figure abstracts away
from the low-level relational algebra operations, and purely focuses on data dependencies
defined by the Datalog rules. A computation graph consists of two kinds of nodes, each of
which yields a set of related entities. Input nodes (gray) represent the AST structure directly;
They do not perform any computation, and they do not depend on any other node. In Fig-
ure 3.2, input nodes Statement, SimpleStatement, and WhileStatement enumerate the
different kinds of statement nodes, while WhileStatement.stmts and Statement.prev
enumerate the statements in a loop body and the precedence relationship between nodes.
Computation nodes (white) use the results of input nodes and other computation nodes to re-
late program entities. For example, node CSimple uses information from node Statement,

32 3 The IncA Incremental Analysis Framework

WhileStatement.

Statement WhileStatement . Statement.prev
stmt N loop stmt_ |\ o) “prev next |-
1 3 3a ST 1 2
2 . 3 3b R 2 3 .
3 RO Sa 3b
3a - L : 4 s
3b . '~~:,._
4
PR LastStatement
SimpleStatement e -E--E- .
P : FirstStatement) _
[stmt T AT Coos T st]
3a T y
3b .
4 Lo CFlow)< CWhile
< ’ src trg src trg
CSimple 1 2 3 3a
2 3 3b 3
src trg 3 3a 3 4
1 2 3a 3b
2 3 3b 3
3a 3b 3 4

Figure 3.2: Computation graph of the control flow analysis. Arrows show data dependencies.

Statement.prev SimpleStatement
prev next o "[Cstmt
1 2 o 1
2 3 2
3a 3b 3a
3 4 3b
4
»
X O »p-- > Csimple
stmt src trg src trg src trg
1 1 2 1 2 1 2
2 2 3 2 3 2 3
3a 3a 3b 3a 3b 3a 3b

Figure 3.3: Excerpt of the low-level computation graph for the control flow analysis. The figure shows the
relational algebra operations used for computing the results of the CSimple rule from Figure 3.1.

SimpleStatement, and Statement.prev to identify statements related through simple
control flow. Node CFlow combines the results of the two computation nodes CSimple
and CWhile to produce the complete CFG.

Figure 3.3 shows the low-level relational algebra operations for the CSimple rule from
Figure 3.1. First, we join the results of Statement.prev and SimpleStatement using a
join node (denoted by). Then, we project away the first column using a project node
(denoted by II), which is also the result of CSimple. Transforming a complete analysis to
such low-level computation network is a complex task. In IncA, we use the graph pattern
matching library VIATRA QUERY that turns graph patterns automatically into a computation
network. We discuss how we translate IncA Datalog to graph patterns in Section 3.3.

Incremental evaluation with graph patterns We encode program analyses as graph
patterns and computation graphs because this provides a good basis for incrementalizing
the computation. Suppose the user modifies the subject program and adds a new statement

3.2 Incremental Program Analysis with IncA 33

A B

int last, err; ®\‘

while (outOfRange(temp)) { M
<

last = err;
temp = readSensor(...);
log(“Current temperature %d", temp);
} G
@ €

log("Last temperature %d", last);

int temp = readSensor(...);

L=
k23

(o)}
=

WWwWwnN =

Q
-

AST of the subject program |

traverse updates

Statement WhileStatement bilcsatemens Statement.prev
stmts -
stmt stmts _.--=""|__prev next
1 3a L - 1 2
2 3b R 2 3
3 3c -7 | 3a 3b
3a .t Lo+ 3b 3c
3b 3 4
-+ 3c
4 LastStatement "
SimpleStatement : —p—'°§ —'gff
3 3c
1 . : ..
3a : o "~._~_.\-.
3b :
+[_3c Lo CFlow e CWhile
7 Y, EPSTEE
< src trg src trg
CSimpD 1 2 3 3a
2 3 - 3b 3
src trg 3 3a + 3c 3
1 2 3a 3b 3 4
2 3 - 3b 3
3a 3b + 3b 3c
+ 3b 3c + 3c 3
3 4 (o]

Figure 3.4: Incremental evaluation of the control flow analysis with the computation graph; (A) subject program
after code change, (B) updates in the CFG, (C) computation graph incrementally updating the analysis result.

3c to the loop body of 3 as illustrated in Figure 3.4 A. In turn, the CFG of the subject program
changes as shown in Figure 3.4 B. Using the computation graph, instead of recomputing a
new CFG from scratch, we can incrementally update the existing CFG.

To this end, computation graphs use memoization and perform incremental graph
pattern matching: When code gets changed, we send change events to the input nodes of
the computation graph. The nodes then transitively propagate changes to all dependent
computation nodes and trigger the reanalysis of changed program entities. This way, we
avoid any reanalysis of unchanged parts of the program. In our example, adding the new
statement to the loop body triggers the following changes in the computation graph (as
also shown in Figure 3.4 C):

« Insert 3c to Statement and SimpleStatement, (3, 3c) toWhileStatement.stmts,
and (3b, 3c) to Statement.prev.

« Delete (3, 3b) and insert (3, 3c) to LastStatement because the last statement

34 3 The IncA Incremental Analysis Framework

in the loop body is now statement 3c, not 3b.

« Insert (3b, 3c) to CSimple because there is now a sequential control flow between
statement 3b and 3c.

« Delete (3b, 3) andinsert (3c, 3) toCWhile due tothe changeinLastStatement.
Control now flows from 3c to the loop condition, not from 3b.

« Propagate the insertions and deletions from CSimple and CWhile to CFlow.

The change propagation goes on in the computation network until the result of a compu-
tation node changes. Computation nodes update their results in a topological ordering
based on their data dependencies. For the low-level relational algebra, we use the VIATRA
QUERY library in IncA. To support recursive analyses, we extended VIATRA QUERY with a
DRed-style evaluation (see Section 2.4). Technically, this means that computation nodes
are grouped into strongly connected components and change propagation follows a two
step approach in a topological ordering of the components; first propagating deletions
until fixpoint, and then running the re-derive and insert phases until fixpoint.

In our baseline implementation of IncA, we rely on projectional editing in the front end.
In a projectional editor, we receive change events for user-issued AST changes directly from
the IDE. Fine-grained AST change notifications align perfectly with incrementalization,
and there is no need for a potentially costly parsing step to compute AST differences or to
extract facts prior to the analysis. After an AST change, a projectional editor derives a new
projection from the AST and displays it to the programmer. Later, in Chapter 7, we will
also develop an efficient parser-based front end for IncA. Here, we continue our discussion
with the complete syntax of IncA Datalog, and we show how we translate an IncA analysis
to graph patterns.

3.3 Syntax and Compilation of IncA Datalog

In this section, we discuss IncA Datalog in greater detail. We describe the syntax of the
language and explain how we translate its syntactic constructs to graph patterns.

3.3.1 Syntax of IncA Datalog

Figure 3.5 shows the syntax of IncA Datalog. A module groups related rules. Modules can
import other modules to gain access to their rules. We write a for a sequence of a elements,
which includes the empty list.

An IncA Datalog rule resembles a standard Datalog rule, but there are some key
differences. An IncA rule has an optional visibility specification. By default, the visibility
is public. Public and protected rules are visible to importing modules, but only the public
rules are visible to the clients of an analysis. Private rules are only visible in the module
that defines the rule. IncA allows to define a rule head only once, and rules can have one
or more alternative rule bodies. Allowing to define a head only once is important because
otherwise we could end up with conflicting visibilities for different rules defining the same
head. Only variables can be used in the head of an IncA rule, and these variables can have
an optional type annotation.

3.3 Syntax and Compilation of IncA Datalog 35

(module) m ::=module n import 7 {7}

(rule) r ci=visn(n: T) - alt

(visibility) vis : : = private | protected | public

(alternative) alt ::={a}

(atom) a ::=n(m)|notn(n)|vr|notor|n+(nn)|t==t|t!=t

count n(7n) | count vr

(virtual EDB relation) vr ::= T.L(n,n)|T(n)

(term) t ::=nlc

(constant) ¢ ::=number | string | enum | boolean | AST node

(type) T ::= AST node type (from subject language)

(link) L ::=link of an AST node type (from subject language) |
parent | prev | next | index

(name) : 1= name

S

Figure 3.5: The syntax of IncA Datalog.

A rule body consists of atoms. An atom is either a relation name with a list of variables
possibly in a negated form, a virtual EDB relation name with a single or a pair of variables
(depending on whether the EDB relation is unary or binary) possibly in a negated form,
binary transitive closure of a relation, equality or inequality between terms, or a count
construct. A count is a special form of aggregate that allows to count the number of tuples
in an EDB or IDB relation.

The virtual EDB relations are defined by the subject language. The types defined in
the subject language become unary relations, while the links defined on types become
binary relations. In addition to the explicitly defined links, IncA also supports parent,
prev, next, and index as built-in links, available on all types.

3.3.2 Compilation to Graph Patterns

The theory of graph patterns is well established [101], and we define the semantics of
IncA Datalog through translation to graph patterns. A graph pattern consists of pattern
variables and constraints over these variables. The constraints can refer to other graph
patterns, as well. The process of graph pattern matching is about finding sub-graphs in an
input graph that satisfy the structural constraints prescribed by the graph pattern. We use
the following set of constraints, as these are supported by the VIATRA QUERY library that
we use for graph pattern matching:

« Entity(v,T) holds if variable v has type T.

« Relation(l,v1,v2) holds if there is an edge labeled 1 between variables v1 and
v2.

« Eq(v1,v2) holds if v1 and v2 are the same values. Here, v1 and v2 can either be a
node or a constant value.

« Neq(v1,v2) holds if v1 and v2 are different values. Similar to Eq, v1 and v2 can
either be a node or a constant value.

« PC(p,¥)/NPC(p,¥) holds if the pattern p accepts/rejects the tuple of values v.

36 3 The IncA Incremental Analysis Framework

« TC(p,v1,v2) holds if the transitive closure of the binary pattern p contains the
tuple (v1,v2).

« A1t (p,¥) holds if any of the patterns in p accepts the tuple v.

« Count (p,v) is a special kind of graph pattern that counts the number of matches of
pattern p and stores the count in variable v.

We follow a bottom-up translation process as follows. For each IncA Datalog variable, we
introduce a fresh graph pattern variable. Atoms referencing types from the subject lan-
guage become Entity constraints, while atoms accessing links of types become Relation
constraints. The built-in links parent, prev, next, and index require special runtime
support, as these links are not modeled explicitly in the subject language. We discuss
this later in Section 3.5. In case of negation applied on an EDB relation, we generate a
helper graph pattern containing the (non-negated) access to the EDB relation and reference
the helper pattern in an NPC. Atoms referencing IDB relations become PC constraints, if
negation is applied, we directly use an NPC constraint. For transitive closure, we use the
TC constraint, and equality/inequality is mapped to Eq/Neq. For a count aggregate, we use
the pattern generated for the counted construct and embed that in a Count pattern.

We collect the rules from a module and its transitively imported modules and generate
graph patterns for the rules and their alternatives. Type annotations on variables in head
atoms become Entity constraints. Finally, given the variables v generated for a rule r and
the patterns p generated for the alternatives of r, we generate a constraint A1t (p,v).

The expressive power of IncA Datalog and of the graph patterns presented thus far is
classified as FO(LFP) [63, 96], which stands for First Order logic extended with the Least
Fixed Point operator. In Section 3.6, we demonstrate that this expressive power is already
sufficient for several practically-relevant program analyses.

3.4 Compiler Optimizations for IncA

The performance of IncA depends on both the memory required for caching as well as the
efficiency of change propagation in the computation graph. In this section, we describe
compiler optimizations for IncA that improve both of them.

Our approach for performance improvement relies on the observation that the eval-
uation of a program analysis usually only depends on a relatively small part of an AST.
For incremental analysis, this means that many AST changes do not affect the analysis
result and can be safely ignored. We can use this observation to improve caching and
change propagation. There is no need to write a changed element to the input nodes of
the computation graph if it is known to be irrelevant for the analysis. This saves both
memory and time, because, by discarding irrelevant changes in input nodes, we avoid
subsequent change propagation in the computation graph, which, in turn, also avoids
caching of unneeded results.

To make use of this observation in practice, we must be able to distinguish relevant
from irrelevant changes. To this end, we have developed an analysis for IncA programs,
that is, an analysis of the program analysis code. We use the term meta analysis to refer to
this analysis in the remainder of this chapter. Our meta analysis inspects an IncA analysis
to compute a conservative approximation of all changes that can affect the result of the

3.4 Compiler Optimizations for IncA 37

IncA analysis. We analyze each module of the IncA analysis with its transitive imports
separately because the IncA compiler creates one computation graph for each module.

As a first approximation of the relevant changes, we can collect the declared types of
all variables appearing in a head atom. In the absence of an explicit type annotation, we
just treat a variable as it would have Any type, representing all types from the subject
language. For example, consider again the control flow analysis in Figure 3.1. The IncA
code refers to types Statement, SimpleStatement, and WhileStatement. Since type
Statement is a supertype of the other two statement types, a sound approximation for
the relevant changes is given by the set of changes that modify nodes of type Statement.
Accordingly, when incrementally executing the control flow analysis in the IncA runtime
system, we can ignore changes to expressions, function declarations, and others. We
emphasise that the type annotations are controlled by the analysis developer and that
the subtyping relationship between types is defined by the subject language. Without
explicit type annotations, we cannot infer much from just looking at the head atoms, as
this reasoning would yield Any, meaning that we must consider all changes at runtime.

Using the declared types of AST nodes is a good starting point for optimization; however,
it is rather imprecise. To improve the effectiveness of the optimization, we also need to look
into the rule bodies and take into account the constraints enforced by atoms referencing
EDB relations. Consider an excerpt of a simple points-to analysis for C shown in Figure 3.6.
Rule PointsTo computes pairs of C variables for assignments of the form u = &v. It uses
rule VarInExp to reject expressions that are not variable references (such as additions or
multiplications) and otherwise to extract the referenced variable. If we only consider the
declared types and ignore the constraints enforced by rule bodies, we have to assume that
a change to any node of type Assignment, Var, or Expression may affect the analysis
result. However, we can apply the following reasoning to narrow the set of relevant changes
in Figure 3.6:

« Initially, both variables 1hs and rhs have type Expression because the target of
the links Assignment.1lhs and Assignment.rhs has type Expression based on
the subject language.

« The atom in line 5 accessing AddressO0fExp. exp constrains both rhs and rhsExp,
as the former must be an instance of Address0fExp, while the latter must be an
instance of Expression (assuming that is type of the link target).

« The atom in line 6 references the VarInExp IDB relation and uses variables 1hs
and from. The rule VarInExp has two alternatives, the first one restricting exp to
GlobalVarRef, while the second one restricts it to LocalVarRef. Expressions that
satisfy neither restriction are rejected by VarInExp. In turn, 1hs in rule PointsTo
must be an instance of GlobalVarRef or LocalVarRef. VarInExp also constrains
var, as it must be an instance of LocalVar or GlobalVar, as these are the types of the
links LocalVarRef .var and GlobalVarRef.var. In turn, from in rule PointsTo
must also be an instance of LocalVar or GlobalVar.

« The same reasoning applies to the atom in line 7, which constrains variables rhsExp
and to.

This reasoning shows that we only need to observe changes to statement nodes of type
Assignment, to expression nodes of type Adress0OfExp, GlobalVarRef, and LocalVarRef,

38 3 The IncA Incremental Analysis Framework

1{module pointsTo {

2 public PointsTo(assign : Assignment, from : Var, to : Var) := {
3 Assignment.lhs (assign, lhs),

4 Assignment.rhs(assign, rhs),______ » rhs € AddressOfExpr

5 AddressOfExp.exp (rhs7'fHS'E'xp) ,

6 ,VarInExp (lhs, from),

7 /// VarInExp (rhsExp, to)~\\\

8 I, } \\\

9|\ |hs € GlobalVarRef or LocalVarRef) rhsExp e GlobalVarRef or LocalVarRef
10| <\ from e GlobalVar or LocalVar 7 to € GlobalVar or LocalVar

11 \\\\~_* ‘,—”/

12 private VarInExp (exp : Expression, var : Var) :- {

13 GlobalVarRef.var (exp, var)

14 } alt {

15 LocalVarRef.var (exp, var)

16 }

17| }

Figure 3.6: Identifying types to filter irrelevant program changes in the IncA runtime system.

and to variable nodes of type GlobalVar and LocalVar. Let us put this result into perspec-
tive with a concrete C dialect. mbeddr [135] is a set of extensible languages based on C for
embedded software development. The mbeddr languages contain more than 200 different
kinds of expressions. This means that our optimization can yield significant improvements
in memory and run time in case an IncA analysis only uses a small subset of these different
kinds of expressions. We empirically confirm this in Section 3.7.

Technically, our meta analysis is an inter-procedural data-flow analysis. The input
of the meta analysis is an IncA analysis, and its output is a set of types from the subject
language. The high-level steps of our meta analysis are as follows:

1. Traverse dependency chains: We perform a depth-first traversal of the dependency
graph defined by the IncA rules, starting at publicly visible ones. The meta analysis
is inter-procedural, that is, we pass type information between rules. Different call
chains may result in different type constraints for variables; thus we analyze all call
chains separately.

2. Compute intersection of type constraints per alternative: During traversal, for each
alternative of a rule, we collect the type constraints from atoms referencing EDB rela-
tions or other IDB relations for each variable. An alternative can only succeed if each
variable satisfies all type constraints prescribed for the variable. This corresponds to
constructing the intersection of all type constraints for each variable.

3. Compute union of type constraints per rule: A rule succeeds if at least one of its
alternatives succeeds. Thus, it is sufficient if the variables in the head atom satisfy
the type constraints of at least one alternative. We approximate this by constructing
the union of the type constraints for the variables from all alternatives.

4. Use type constraints for optimization: The analysis result is the union of the type
constraints for the different call chains. Only changes that affect nodes of these types
can affect the analysis result. We prune the propagation of irrelevant changes, thus
avoiding the computation and caching of irrelevant pattern matches.

3.5 Technical Realization and IDE Integration 39

A
rv is for
changes - serves as basis fo

automated feedback

»
[propagates
propagates I
AST delta ; relevant ncremental | computes
Navigator GP evaluator A(Result)
on m L OM traverses [Im]
Front end s put fo AST is input to
(.) IncA emits Analysis as
T hint computes)
ype s compiler GPs
[Jm} /AO O [Im]
Legend Back end
Language-independent O is input to
Language-dependent @
IDE-independent O . \is instance of
IDE-dependent] IncA analysis |------ > IncA Datalog
IDE ®L Meta end ou

Figure 3.7: Architecture for integrating IncA into IDEs. Red color is used for analysis input, while blue is used for
analysis output.

Note that using a declarative language like IncA Datalog for analysis specification is a key
enabler in performing the outlined meta analysis. This is because the analysis code itself is
analyzable, which would not be the case had we used a library-based approach for program
analysis. We also emphasise that our meta analysis is not bound to IncA Datalog: It could
also be applied on the graph patterns, as well.

3.5 Technical Realization and IDE Integration

We elaborate on the architecture of IncA’s runtime system, identifying components that
enable integration of incremental program analyses into IDEs and explain their interactions.

3.5.1 Architecture Overview

Figure 3.7 shows the architecture of IncA as integrated in an IDE. The figure is a refined
version of the architecture shown in Figure 1.3. Throughout the discussion, we emphasise
which component is independent of the subject language and/or the IDE itself.

As detailed in Section 3.5.3, our architecture requires that the front end in the IDE
translates user edits into AST change notifications, which trigger the incremental analysis.
In the front end, we intentionally wrote Program instead of A (Program) (which we used
in Figure 1.3) to emphasise that it is also the runtime system’s responsibility to compute
the initial analysis result, which requires the whole subject program, not just a delta. The
front end technology itself (not a concrete subject program) is language-independent, as it

40 3 The IncA Incremental Analysis Framework

works with any language supported by the IDE. However, the front end needs to be aware
of how the IDE represents a subject program in terms of data structures, so the front end is
an IDE-dependent component.

In the meta end, we use IncA Datalog, which we introduced in Section 3.3. IncA Datalog
is language-independent and IDE-independent. A concrete IncA analysis references types
and links from the subject language, so it is language-dependent, but IDE-independent.

In the back end, the IncA compiler translates an IncA analysis into a set of inter-
connected graph patterns as discussed in Section 3.3. Additionally, the compiler uses
the optimization described in Section 3.4 to compute type hints for the runtime system
that help to filter our irrelevant program changes. The compiler itself is language- and
IDE-independent, but the artifacts produced by the compiler are language-dependent.

The entry point to incremental analysis is the navigator, which acts as an adapter
between the IDE and the incremental graph pattern evaluator. The navigator gets notified
about AST changes by the IDE. It also allows the evaluator to traverse the input AST during
initialization of the computation graph. Later, when the navigator receives an AST change
notification, it notifies the incremental evaluator about relevant AST changes, as determined
by our compiler optimization (Section 3.4). It is also the navigator’s responsibility to
incrementally maintain the parent, prev, next, and index links of AST nodes, as required
by the IncA language (Section 3.3). Since the navigator knows the IDE-internal AST
representation, it constitutes a language-independent but IDE-dependent component.

The incremental evaluator is responsible for the incremental maintenance of the analysis
results. The component is independent of the IDE and of the subject language. The evaluator
uses the navigator to navigate in the AST and to receive notifications about AST changes;
this way, the evaluator does not depend on the internals of the IDE.

The incrementally maintained results of a program analysis can be used to inform the
user about new errors or as part of a refactoring in the IDE. However, as the result delta is
in a format used by the incremental evaluator, an IDE-dependent adapter component may
be needed, which adapts the results to e.g. editor services or an error highlighter. This
connection closes the loop between the user and IncA and shows how incremental analysis
supports continuous feedback in IDEs.

3.5.2 Implementation for MPS

We instantiated the above architecture for the Meta Programming System (MPS). MPS is an
IDE that uses projectional editing [136] instead of a parser-based approach. When editing
the program in a projectional editor, every user edit (for example, inserting an operator)
directly corresponds to an AST change. After an AST change, a projectional editor renders
the new projection from the changed AST based on projection rules of the AST nodes and
displays it to the programmer. Projectional editing is well-suited for incremental program
analysis because the user’s edits directly correspond to incremental AST changes and no
incremental parsing is necessary.

Our system reuses the incremental graph pattern matching component of ViATrA
QueRy. This component realizes the computation graph presented in Section 3.2. We ex-
tended VIATRA QUERY with support for DRed-style evaluation to correctly handle recursive
analyses, as well. VIATRA QUERY expects graph patterns to be specified using the Java API

3.6 Case Studies 41

PSystem.? We implemented the IncA compiler to emit PSystem code from an IncA analysis.
After startup, VIATRA QUERY uses the navigator to initialize its computation graph and to
retrieve AST changes.

3.5.3 Applicability in other IDEs

The applicability of our solution is ultimately determined by the granularity of an IDE’s
incremental change notifications as the subject program changes. We see three kinds
of IDEs where our solution can be applied efficiently. (i) Projectional IDEs (like MPS)
where code manipulations directly correspond to incremental AST change events. (ii)
Graphical IDEs, which, like projectional IDEs, also directly manipulate structures and
can thus easily derive AST changes after a user edit. (iii) Finally, parser-based IDEs with
a front end that can efficiently compute AST deltas. This may require a combination
of incremental parsing [95, 139] and efficient tree diffing algorithms. In this case, the
degree of incrementality that our approach can achieve depends on the granularity of the
incremental AST differences the front end can provide. In Chapter 7, we elaborate on our
own experiments with a parser-based front end for IncA.

3.6 Case Studies

To validate our approach, we have used IncA to implement three program analyses for
mbeddr C [135] and one program analysis for Java. mbeddr C is an extensible C dialect
and IDE for embedded software built on top of MPS. This section describes the program
analyses and provides details about their implementation, while Section 3.7 presents the
performance evaluation.

3.6.1 Control Flow Analysis

The introductory example in Section 3.2 already gave an intuition about control flow
analysis in IncA Datalog. The incremental construction of a CFG is an important building
block for incremental, flow-sensitive analyses such as the flow-sensitive points-to analysis
described next. These two analyses combined enable further analyses such as uninitialized
variables and unused assignment analysis [90].

We implemented an incremental control flow analysis that handles all of mbeddr C,
including conditionals (if and switch), loops (for, while, and do while), and jumps
(break and continue). The implementation follows the style of the introductory example,
extending the CFlow rule with further alternatives to handle all control statements. The
complete control flow analysis produces a CFG where the nodes not only represent state-
ments of the program, but also other control flow points like the alternative case branches
of a switch statement or the else if parts of an if statement.

3https://wiki.eclipse.org/EMFIncQuery/DeveloperDocumentation/PSystem

https://wiki.eclipse.org/EMFIncQuery/DeveloperDocumentation/PSystem

42 3 The IncA Incremental Analysis Framework

1)

u=8&v

X—> v @

XYy, y—*>v
u=x —_—

3
u="x

u—v u—yv u—=>v u—=>v

Figure 3.8: Andersen’s rules for points-to analysis. The arrow u — v means that variable u points to variable v.

3.6.2 Points-to Analysis

Our second case study is a points-to analysis for mbeddr C. Given a variable that stores a
pointer, the goal of a points-to analysis is to identify the possible targets of the variable.
There is a vast amount of research in this area [77, 106, 143] because the precision of
points-to analysis directly benefits optimizations and other analyses.

Our analysis is an Andersen-style analysis [6], which is a well-known formulation
for computing points-to information. The Andersen rules consider four basic kinds of
assignments as shown in Figure 3.8 and derive the points-to relation for the whole program
from them. Our points-to analysis in IncA builds on Andersen’s rules but extends them
in three ways. First, by implementing the analysis in IncA, we immediately improve the
run time after code changes through incrementality. Second, we add flow-sensitivity by
building on top of our incremental control flow analysis. This means that the analysis
computes the points-to targets for variables per CFG node. Third, we do not require the
code to only use the four kinds of assignments in Andersen’s rules, rather support all of
mbeddr C except pointer arithmetics.

We point out though that our analysis is unsound, as it is intra-procedural, and it ignores
the effects of transitively reachable functions through function calls. In other words, our
analysis will compute an under-approximation of the potential points-to targets for the
program variables. This means that the analysis cannot be used for optimization purposes,
but it can still be used for error reporting. Implementing the analysis this way was an
intentional design choice; The baseline version of IncA is simply not powerful enough
to support inter-procedural analyses efficiently. By the end of this dissertation, we will
create a version of IncA that can efficiently support inter-procedural analyses, as well. In
fact, we will keep revisiting points-to analysis as we extend IncA. For now, we settle with
the unsound analysis, as it is still an expensive analysis due to flow-sensitivity, so it is
interesting to see the performance of IncA.

3.6.3 Well-formedness Checks for mbeddr C

We implemented four well-formedness checks for mbeddr C and its language extensions.
While the control flow analysis and the points-to analysis inspected each function declara-
tion in separation, our well-formedness checks require global knowledge about the source
code. The checks are as follows:

CYCLE mbeddr C provides modules for organizing code. This check detects cyclic module
dependencies.

GLOBAL This check detects conflicting global variables with the same name across
modules.

R L TS T

3.7 Performance Evaluation 43

module FindBugs {

public CI_CONFUSED_INHERITANCE (class : Class) :—= {
Class.isFinal (class, isFinal),
isFinal == true,

Class.member (class, member),

Field (member),

Field.visibility (member, visibility),
ProtectedVisibility (visibility)

Figure 3.9: FindBugs CI_CONFUSED_INHERITANCE in IncA.

REC This check detects recursive functions by construction and inspection of a call
graph. In embedded systems with constrained memory, the stack space required for
recursive functions is often unacceptable.

COMP mbeddr C supports interfaces and composable components. This check detects
components that fail to implement all functions declared by their interfaces.

3.6.4 FindBugs for Java

FindBugs [62] is a suite of predefined patterns to detect potential bugs in Java code. To
show that our system is independent of the subject language, we implemented 10 FindBugs
analyses in IncA for MPS’ Java dialect. Apart from a few language extensions, this Java
language is identical to the original Java language. As an example, we show the implemen-
tation of the CI_CONFUSED_INHERITANCE rule in Figure 3.9. It detects final classes that
have at least one protected field. Since the class is final, it cannot be subclassed, and the
field should be private or public. The implementation runs incrementally thanks to IncA.

3.7 Performance Evaluation

This section presents the performance evaluation of IncA using the case studies from
Section 3.6. We answer the following questions:

Run Time (Q 3.1): Are incremental IncA analyses significantly faster than their non-
incremental counterparts? Does this come with an acceptable initialization time?
Memory (Q 3.2): Is the extra memory induced by incrementalization acceptable?

Optimization Impact (Q 3.3): How does our optimization (Section 3.4) affect the run
time and memory requirements?

3.7.1 Evaluation Setup

For each case study, we start with an initial subject program (introduced below). After the
initial, non-incremental run of the analysis, we programmatically make 100 updates in the
subject program and run the analysis after each update. Each update consists of 1 to 20

44

3 The IncA Incremental Analysis Framework

(Re)analysis time (ms) - log scale

(Re)analysis time (ms)

50

Memory req. (MB)

80

Reanalysis time (ms)

30

5000

500

50

10

150

100

120 140 160 180

100

60

40

50 60 70

40

20

10

(A) Points-to run times (B) Well-formedness run tii

mes

—_—— .

10000
1

1000
1

1 —*+

(Re)analysis time (ms) - log scale
00
1

—_—

=

.

i

Non-Inc

Inc w/o opt Inc w/ opt Non-Inc Inc w/o opt

(C) FindBugs run times

Inc w/ opt

(D) Points-to memory req.

R -

290

280
1

Memory req. (MB)
250 260 270
1

240

P

—_— 8
. g

°
8
—
'
'
—_—
T

2

Inc w/o opt Inc w/ opt Inc w/o opt Inc w/ opt

(E)

Well-formedness memory req.

(F) FindBugs memory req.

— —
_— E—

Memory req. (MB)
110
1

P

[— -

JR——

90

Inc w/o opt Inc w/ opt Inc w/o opt Inc w/ opt

(G) Points-to reanalysis times

(H) Well-formedness reanalysis times

20 30 40 50 60
1 1

Reanalysis time (ms)

10
1

0

100

200 300 400 500 600 700 0 500 1000

of affected AST nodes # of affected AST nodes
Figure 3.10: Run time and memory measurements for the case studies.

T
1500

2000

3.7 Performance Evaluation 45

random code changes, such as duplicating a statement, deleting a function, renaming a
variable, or introducing a new import. This approach allows us to imitate how a user would
modify the source code.

We measure the wall-clock time of processing the initial code and of processing each
update step. For the memory measurement, we call the garbage collector after each analysis
run and measure the required heap memory. We subtract the heap memory used before
running the first analysis to obtain the memory usage of IncA. We repeat each measurement
five times and discard the results of the first and second run to account for JVM warm-up.

As the first benchmark, we run the control flow and points-to analysis on the Toyota
ITC code,” a collection of C code snippets with intentional bugs to test the precision of
static analysis tools. The code base comprises about 15,000 lines of C code. We compare
the performance of the incremental analyses to a non-incremental flow-sensitive points-to
analyses that was already available in mbeddr. The two analyses produce exactly the same
results on the benchmark.

The second benchmark was running the well-formedness checks on a commercial Smart
Meter software implemented in mbeddr C [137]. A smart meter is an electric meter that
continuously records the consumption of electrical power, calculates derived quantities,
and sends the data back to the utility provider for monitoring and billing. The whole
project comprises about 44,000 lines of mbeddr C code. For comparison, we implemented
non-incremental well-formedness checks in MPS Java that produce exactly the same results.

Running the 10 FindBugs checks constituted the third benchmark. We ran it on the
Java implementation of the mbeddr importer which is responsible for migrating legacy C
code to mbeddr C. The importer comprises about 10,000 lines of MPS Java code. Because
of the MPS Java code base, we would need to generate textualized Java code after every
code change to be able to use the original FindBugs tool. For our large code base this is
impractical, and thus for this benchmark, we do not have a non-incremental counterpart.

We ran the benchmarks on a 64-bit OSX 10.10.3 machine with an Intel Core i7 2.5 GHz
processor and 16 GB of RAM, using MPS version 3.3 and Java 1.8.0_65.

3.7.2 Evaluating Run Time (Q 3.1) and Optimization Impact (Q 3.3)

Figure 3.10 A-C show the results of our run time measurements. For points-to analysis
and well-formedness checks, we show the results of the incremental and non-incremental
solutions using a logarithmic scale. For FindBugs, we only show the incremental results on
a linear scale.

Box plots A and B immediately show that incremental program analyses in IncA
perform significantly better than non-incremental analyses. Box plots A - C also show that
the optimization has a significant impact on the run time. The following table summarizes
the median run time data:

‘https://github.com/regehr/itc-benchmarks

https://github.com/regehr/itc-benchmarks

46 3 The IncA Incremental Analysis Framework

Non-inc. Inc w/o opt Inc w/ opt
init update init update
Points-to (A) 5.8 5.6s 83.2ms 1.6s 23.3ms

W.-form. (B) 209ms 12.1s 104.8ms 1.2s 12.8ms
FindBugs (C) n/a 45s 40.2ms 2.3s 7ms

The initialization times, especially for the optimized versions, do not pose an unduly run
time requirement. After initialization, incremental analysis without optimization achieves
speedups of A=70x and B=2x compared to non-incremental analysis. With optimization,
we even achieve speedups of A=249x and B=16x. Indeed, the optimization accounts for an
additional speedup of 2 - 10x for initialization and of 3 - 8x for change-processing time.
IncA and its optimization provide good runtime performance across analyses and for both
subject languages.

Figure 3.10 G and H show the points-to and well-formedness analysis times as a function
of the input change size (the number of deleted or added AST nodes). IncA scales well
because the plots remain roughly linear with increasing input change sizes. We conclude:

Run Time (Q 3.1): Incremental program analysis with IncA provides significant
speedups of up to 249x compared to non-incremental analysis. The analyses scale
linearly with increasing input change sizes. The initialization times only take a few
seconds at most, so we consider them acceptable.

Optimization Impact (Q 3.3): The IncA compiler optimization improves initialization
time by 2-10x and change-processing time by 3-8x.

3.7.3 Evaluating Memory (Q 3.2) and Optimization Impact (Q 3.3)

Figure 3.10 D - F show the results of our memory measurements. We measured the memory
required by incrementality for each of the 100 update steps and created the box plots from
this data. We summarize the median memory requirements:

Inc w/o opt Inc w/ opt

Points-to (D) 273MB 242MB
Well-form. (E) 163MB 50MB
FindBugs (F) 124MB 100MB

The points-to analysis is the most complex case study, and it has the biggest memory
requirement. Its computation graph caches a major part of the input AST to compute a
complete CFG and to handle a large variety of assignments, including nested ones. The
optimization helps to reduce the memory requirement with A=11%, B=69%, and C=19%.
Based on our experience with real-world usage of MPS, the IDE typically requires around
1-2GB of memory. If we calculate with the optimized points-to analysis (as points-to
has the highest memory requirement out of all the analyses) and 1GB for MPS, then the
analysis adds an extra ~25% memory. We conclude:

3.8 Chapter Summary 47

Memory (Q 3.2): For real-world scenarios, incremental program analysis with IncA
requires an acceptable amount of 25% additional memory for our most complex case
study.

Optimization Impact (Q 3.3): The IncA compiler optimization reduces the required
memory by 11 - 69%.

3.8 Chapter Summary

We presented a baseline version of the IncA framework. IncA uses its own dialect of Datalog
for analysis specification, which allows to implement analysis directly over the AST of
subject programs using virtual EDB relations for types and links from a subject language.
IncA analyses get compiled into graph patterns, and we use incremental graph pattern
matching to evaluate analyses efficiently. We presented a meta analysis that computes
hints for the runtime system to tell relevant from irrelevant program changes apart, thereby
improving incremental performance. We designed a generic architecture for integrating
IncA into IDEs, and we instantiated this architecture for the projectional MPS IDE. We
demonstrated the applicability of IncA by developing incremental program analyses for
C and Java. Our performance evaluation shows that IncA provides significant speedups
compared to non-incremental analyses, while incurring acceptable memory overhead.

Let us revisit our requirements from Section 1.4 to see where we stand with this
baseline version of IncA. Our projectional editor-based front end satisfies the requirements
Genericity (R4) and Efficiency (R2), as it is language-independent, and it delivers precise
AST deltas for free. However, we note that projectional editing is not a widespread approach
among IDEs. Ideally, we would like to make IncA available also for parser-based IDEs. We
will revisit this later in Chapter 7. In the meta end, the IncA Datalog language satisfies
Genericity (R4) and Declarativity (R5), as it is language-independent, and it hides the
incrementalization details from analysis developers. However, IncA has limited expressive
power at this point (Expressiveness (R3)), as it only supports analysis that relate existing
program elements, but it cannot support analyses that also need to generate abstract values
at runtime. We will discuss this problem in more details in the next chapter. In the back
end, we use a generic incremental evaluator that works with any analysis the meta end
can express (Genericity (R4)). The IncA back end delivers on Efficiency (R2), as it updates
analysis results in milliseconds for our case studies. We did not talk about Correctness (R1)
explicitly, as we reused an existing incremental evaluator, which we extended with the
state-of-the-art DRed algorithm.

49

Incrementalizing Lattice-Based
Program Analyses

This chapter shares material with the OOPSLA’18 paper ‘Incrementalizing Lattice-based
Program Analyses in Datalog” [126].

Abstract — A key characteristic of existing incremental Datalog-based analysis frameworks,
including the previously presented version of IncA, is that they only support the powerset
lattice as the sole abstraction that an analysis can use. This means that analyses can only
work with sets of tuples, but there is no way to generate values from custom lattices at
runtime. This is a limitation because many practically relevant analyses require custom
lattices to represent abstract domains (e.g. number intervals, string values), and they
also aggregate lattice values at runtime. Moreover, aggregation is typically recursive, as
subject programs frequently exhibit cyclic control flow, which severely complicates efficient
incrementalization in face of program changes.

In this chapter, we present a novel algorithm called DRedy, that supports the efficient
incremental maintenance of recursive lattice-based aggregation in Datalog. The key insight
of DRedy, is to dynamically recognize increasing replacements of old lattice values by new
ones, which allows us to avoid the expensive (over-)deletion of the old value. We integrate
DRedy into IncA, and we use IncA to realize incremental implementations of strong-update
points-to analysis and string analysis for Java. As our performance evaluation demonstrates,
both analyses react to code changes within milliseconds.

50 4 Incrementalizing Lattice-Based Program Analyses

4.1 Introduction

Lattices are fundamental in program analyses because they are used to represent abstract
domains. A lattice is a partially ordered set where any two elements from the set have
a least upper bound and a greatest lower bound. These operations are important when
analyzing programs with cyclic control flow (or recursive data structures), as they help to
aggregate multiple lattices values (e.g. computed on different control flow paths) into a
single one. This way an analysis has control over the approximations it uses, as opposed
to keeping track of all possible values.

A key characteristic of existing incremental Datalog solvers, including DRed;, presented
in Chapter 3, is that they only support the powerset lattice as the abstraction an analysis
can use. This means that analyses can only work with sets of tuples, but it is not possible
to use custom lattices, such as a lattice representing number intervals. Moreover, the
powerset lattice only supports set union and intersection as the aggregation operator,
but many practically relevant analyses require custom aggregation operators [90]. For
example, an interval analysis uses union on number intervals to aggregate at control flow
merge points. As subjects programs frequently exhibit cyclic control flow or recursive
data structures, aggregation also becomes recursive. This severely complicates efficient
incrementalization because correctly updating analysis results after a program change may
require the complete unrolling of previous results that were computed through multiple
fixpoint iterations.

In this chapter, we present a new algorithm called DRedy, that incrementally solves
recursive Datalog programs using user-defined aggregations subject to the following
two requirements: (i) aggregations operate on lattices and (ii) recursive aggregations are
monotonic. Both requirements are readily satisfied by program analyses. The key insight
of DRedy, is that the monotonicity of recursive aggregations allows for efficient handling of
monotonic input changes. This is necessary for correctness and essential for efficiency. We
have formally verified that DRedy, is correct and yields the exact same result as evaluating
the Datalog program from scratch.

We add support for custom lattices to every component in IncA. First, we extend IncA
Datalog to support user-defined lattices and aggregations. Then, we modify the IncA
compiler to also support lattices. Finally, we integrate DRedy, into the incremental graph
pattern evaluator in the back end of IncA. The front end remains the same in this chapter,
as we reuse the integration with the MPS language workbench.

To evaluate the applicability and performance of IncA, we have implemented two
Java analyses in IncA adapted from the literature: Strong update points-to analysis [73]
as well as character-inclusion and prefix-suffix string analysis [29]. Our analyses are
intra-procedural, the points-to analysis is flow-sensitive, while the string analyses are
flow-insensitive. We ran performance measurements for both analyses on four real-world
Java projects with up to 70 KLoC in size. We measured the initial non-incremental run time
and the incremental update time in face of random code changes. Our measurements reveal
that the initialization takes a few tens of seconds, while an incremental update takes a few
milliseconds on average. Additionally, we also benchmarked the memory requirement of
IncA because incrementalization relies on extensive caching. Our evaluation shows that
the memory requirement can grow large but not prohibitive.

4.2 Challenges of Incrementalizing Lattice-based Program Analysis 51

Contributions In summary, we make the following contributions:

« We identify and describe the key challenge for incremental lattice-based program
analysis: cyclic reinforcement of lattice values (Section 4.2).

+ We present the IncA approach for incremental lattice-based program analysis by
embedding in Datalog, requiring recursive aggregation (Section 4.3).

+ We develop DRedy, the first algorithm to incrementally solve recursive Datalog rules
containing user-defined aggregations (Section 4.4).

« We provide a formal treatment of DRedy, and prove it correct (Section 4.5).

« We implement DRedy, and the integration into IncA as open-source software (Sec-
tion 4.6).

« We develop two lattice-based program analyses as case studies; strong-update points-
to analysis and a collection of string analyses (Section 4.7).

« We evaluate the run time and memory performance of DRed; through our case
studies on real-world Java subject programs (Section 4.8).

4.2 Challenges of Incrementalizing Lattice-based
Program Analysis

In this section, we introduce a running example to illustrate the challenge of incremental
lattice-based program analysis. The example is a flow-sensitive interval analysis for Java,
which reports the possible value ranges of program variables. As a specification language,
we use IncA Datalog, but we extend it with support for lattices. It will become clear in
this section that incremental program analysis requires incremental recursive aggregation,
which existing solvers fail to support.

Interval Analysis with Datalog An interval analysis reasons about the runtime values
of variables in terms of number intervals. A flow-sensitive interval analysis keeps track of
the value ranges of variables at each control flow location separately. To this end, we need

_ 1 Interval After :

Interval relies on the ! - ! | i i
CFlow relation to deduce ! stmt _ var v ' | i i
control flow ! ~ _ @L/‘T/ -1 Q-0 X 77 b || wa || mn |
77777777777777777777777777 ((ND x = 7,y = 0; @*cond 2 -1 : 0 y .00 || -1 | 100 i 00 |t
i A . X 7 b b | o |
3 CFlow t | (N2) while (read()) { y o) |i| (1) 3) [| o) |
3 src rg : Y. X [9,9] 1 9,91 [| 9.9 || [9.9] |
N1 N2 [j|() x =9 y) [l (1) | (1) |I| [0 i
i N2 N3 i ~] X 1] [oy i o [o |
[nNs Na ||V x = xr 2 y | o) [e f| Ee] o) |
! N4 N5 ! X [11,11] i [11,11] 1| (11,117 [i| [11,11] [i
! 1 _ PNV . | ! ! !
! NG N2 i (NS) y=cond?y:y+1;} y [00) : [1.c0) | 1) | o) |

Figure 4.1: Relations of the running example. (A) CFlow relation encoding the CFG of the subject program. (B)
Interval relation showing the value ranges of variables per CFG node. (C) - (E) Updates in the Interval
relation after changing the initializer of y through the series0 — -1 — cond ? -1 : 0 — 0. Red color
shows the changes compared to previous values.

N o e w o =

N o e W o e

52 4 Incrementalizing Lattice-Based Program Analyses

a control flow analysis for Java first. For now, we just assume that this analysis is already
implemented in a style similar to the one we presented for C in Section 3.6, that is, we can
assume that a relation CFlow(src, trg) isavailable. Each (src, trg) tuple represents
an edge of the CFG. Figure 4.1 B shows an example subject program with statements N1 to
N5. Its CFG as computed by CFlow is shown in Figure 4.1 A.

We now construct a flow-sensitive interval analysis on top of this CFG. We define a rela-
tion IntervalAfter(stmt, var, iv), where a tuple (s, v, i) € IntervalAfter
describes that after the execution of statement s, variable v must take a value in interval i.
Terms s and v are existing program elements, and i is a computed value from the interval
lattice. To compute the interval i of variable v after statement s, the analysis must consider
two cases. If s (re)assigns v, we compute v’s interval based on the assignment expression.
Otherwise v’s interval does not change, and we propagate the interval associated with v
from before the statement:

IntervalAfter (stmt : Stmt, var : Var, iv : Interval) :— {
AssignsNewValue (stmt, var),
AssignedInterval (stmt, var, iv)
} alt {
not AssignsNewValue (stmt, var)
IntervalBefore (stmt, var, iv)

}

In order to figure out this previous interval, we query the CFG to find all control-flow
predecessors of the current statement and collect the variable’s intervals for each of the
predecessors in a relation PredecessorIntervals. As the interval containment partial
order forms a lattice, we can obtain the smallest interval containing all predecessor intervals
of the current statement. It is computed by aggregating such predecessors using the least
upper bound (1ub) lattice operation:

PredecessorIntervals (stmt:Stmt, var:Var, pred:Stmt, iv:Interval) := {
CFlow (pred, stmt),
IntervalAfter (pred, var, iv)

}

IntervalBefore (stmt : Stmt, var : Var, lub(iv : Interval)) :— {
PredecessorIntervals (stmt, var, _pred, 1iv)

}

Note that IntervalAfter and IntervalBefore are mutually recursive and also induce
cyclic tuple dependencies whenever CFlow is cyclic. This is typical for flow-sensitive
program analyses. The term lub(iv:Interval) in the head atom of IntervalBefore
is new syntax; IncA Datalog allows to use aggregation operators this way.

We obtain the final analysis result by computing the (least) fixpoint of the Datalog
rules. The computation always terminates because the rules in our analysis are monotonic
wrt. the partial order of the interval lattice and because we use widening to ensure that
the partial order does not have infinite ascending chains [30]. For example, as shown
in Figure 4.1 B, the interval analysis computes tuples (N2, x, [7, 11]) and (N2, vy,
[0, oo]) for the loop head. Tuple (N2, x, [7, 11]) is the result of joining (N1, x,
[7, 7]1) and (N5, x, [11, 11]). Tuple (N2, y, [0, oo]) isthe result of the fixpoint
computation, joining all intermediate intervals 1ub([0, 0], [0, 1], [0, 2], ...)
of y before N2.

4.2 Challenges of Incrementalizing Lattice-based Program Analysis 53

Incremental Interval Analysis The analysis presented up to here is standard. We
now look at incrementalization. Existing incremental Datalog solvers cannot handle this
analysis because they do not support recursive aggregation over lattices. The root cause
of the limitation is that realistic subject programs typically have loops or recursive data
structures. Analyzing them requires fixpoint iteration over cyclic control flow or data-flow
graphs, which, in turn, requires recursive aggregation.

The goal of an incremental analysis is to update its results in response to changes in
subject programs with minimal computational effort. For illustrative purposes, we consider
three changes @, ®, and ® of the initializer of y in Figure 4.1 B, and then we review what
is expected from an incremental analysis in response to them. First, we change it from 0
to -1. Figure 4.1 C shows the updated iv column of relation IntervalAfter. While this
change does not affect previous results of x, the intervals assigned to y require an update
at all CFG nodes. After a subsequent change from -1 to (cond?-1:0), we expect that
only the interval at N1 gets updated as shown in Figure 4.1 D because the analysis of the
loop already considered y=0 before. Third, consider a final change from (cond?-1:0) to
0. Now the analysis does not have to consider y=-1 anymore, and we expect an update to
all lower bounds of the intervals assigned to y as shown in Figure 4.1 E.

How can we update a previous result with minimal computational effort in response to
changes @, @, and ®? Fundamentally, we propagate program changes bottom-up through
the analysis’ Datalog rules, starting at the changed program element. For example, a change
to a variable’s initializer directly affects the result of AssignedInterval, which is then
used in the first rule of IntervalAfter. If the new initializer has a different interval than
the old initializer, AssignedInterval propagates a derived change to IntervalAfter.
A derived change leads to the deletion of the old interval and the insertion of the new
interval into the relevant relation. In turn, IntervalAfter propagates such a change to
PredecessorIntervals, which propagates it to the aggregation in IntervalBefore,
which propagates it to the second rule of IntervalAfter, and so on. This way we can
handle change @, where we delete (N1, y, [0, 01),insert (N1, y, [-1, -11),and
propagate these changes.

Handling change @ efficiently is more challenging: We must augment our strategy
to avoid deleting (N1, y, [-1, -1]) before inserting (N1, y, [-1, 0]), so that we
can reuse previous results. Failing to do that would result in re-computing the exact same
result, which is unnecessary excess work degrading efficiency.

The toughest problem is change ®, where we delete (N1, y, [-1, 0]) and insert
(N1, y, [0, 0]). The problem manifests at CFG node N2 and is due to the loop in
the CFG and the 1ub aggregation over it. Before change ®, N2’s CFG predecessors N1
and N5 report intervals [-1, 0] and [-1, o) for y, as shown in Figure 4.1 D. When
propagating deletion (N1, y, [-1, 0]) and insertion (N1, y, [0, 0]) to N2, we
expect to replace (N2, y, [-1, o)) by (N2, y, [0, o)). However, the aggregation
in IntervalBefore for N2 also has to consider interval [-1, oo) from N5 and 1ub ([0,
0], [-1, o)) = [-1, o). However, note how this yields the wrong result for N2
because the very reason for [-1, o0) at N5 is the old initializer at N1, which just got
deleted. We call this situation cyclic reinforcement of lattice values. An incremental analysis
must carefully handle cyclic reinforcements to avoid computing incorrect analysis results.
The design of an algorithm for executing program analyses incrementally and correctly is

~

54 4 Incrementalizing Lattice-Based Program Analyses

the central contribution of this chapter.

Problem Statement Our goal is to incrementalize program analyses with custom lattices
and recursive, user-defined aggregations. Given that we design an improved version of
IncA in terms of a framework as a whole, all requirements from Section 1.4 apply. In ??,
we defined Expressiveness (R3), as “The analysis framework must support a wide range
of practically relevant analyses”. We refine this requirement for this chapter to capture
precisely what is our goal here. We require that our solution applies systematically to any
program analyses with lattice-based recursive aggregation.

Note that we intentionally do not mention precision because that is the responsibility
of the analysis developer when designing the lattices and their operations. There is no
limitation on the design of those by our solution. However, a more precise analysis might
take more time to compute (e.g. because we reach a fixpoint in more iterations), so it has
an impact on performance, just like in a non-incremental analysis.

4.3 Incremental Lattice-Based Program Analysis with IncA

We extend the baseline version of IncA by adding support for lattices in all components of
IncA. This section focuses on our extensions to the back end. We recap how we incremen-
talize analyses with IncA, and we add support for lattice-based aggregations in two steps;
first supporting non-recursive aggregations and then recursive ones.

4.3.1 Incremental Execution of Non-Recursive Analyses

Recap how IncA incrementalizes non-recursive analyses IncA incrementalizes anal-
yses encoded with the IncA Datalog language. An IncA analysis uses EDB relations to
access the required elements (instances of types and links) from the AST of a subject
program. The output of an IncA analysis is the tuples in the IDB relations defined by
the IncA Datalog rules. IncA expects from the IDE that, in response to a change in the
subject program, the IDE can efficiently update the contents of the EDB relations. We use a
computation graph to track data dependencies between rules and perform relational algebra
operations defined by an IncA analysis. In response to a change in the EDB relations, IncA
propagates changes in the computation graph, updates the results of computation nodes,
and memoizes the new results. The IncA compiler optimizes the subject analyses to avoid
the propagation of irrelevant changes, as described in Section 3.4.

Adding support for non-recursive aggregation In contrast to other incremental
systems (cf. survey on incremental solvers [46]), IncA supports aggregations over recursive
relations. Here, however, we first review how IncA handles non-recursive aggregations,
which, while much simpler, is an important stepping stone. Formally, an aggregating
Datalog rule has the form:

Agg(ty, ..., tk, a(v)) = |
Coll(ty, ..., ti, _Xi, .y _X[, V)
}

Here, the aggregand column v and aggregate result column a (v) are both lattice-valued,

4.3 Incremental Lattice-Based Program Analysis with IncA 55

and « is an aggregation operator, i.e. a mapping from a multiset of lattice values to a single
lattice value. Without loss of generality (as shown below), we assume this is the only rule
with Agg in the head. We call Agg the aggregating relation and Coll the collecting relation;
t1,...,ty are the grouping variables, while _x1, . . .,_x; are auxiliary variables.

For example, in the interval analysis from Section 4.2, PredecessorIntervals served
the role of Coll whereas IntervalBefore served the role of Agg, while o was 1ub. We
used stmt and var as grouping variables, and we used pred as an auxiliary variable to
enumerate the interval values of all CFG predecessors.

For each substitution of the grouping columns, the aggregand values v in Coll, if any,
are mapped by « into the aggregate result column of the single corresponding tuple in
Agg. Given a set of grouping values ti, . . . , ty, different sets of values _x1,...,_x; can
have the same aggregand v associated with them, so a aggregates over a multiset of values,
instead of just a simple set.

Note that the above form of the aggregating rule does not restrict expressiveness:
IncA Datalog actually allows multiple alternative rule bodies for Agg. The compiler then
introduces a helper relation Col1l that is derived using these multiple rule bodies, and then
aggregates Agg from Coll.

We can incrementalize non-recursive aggregations by (i) incrementally maintaining
Coll as usual and (ii) incrementally maintaining the aggregate result @ (v) of each group
whenever an aggregand v is inserted or deleted from the collecting relation. IncA specifically
supports the latter kind of incrementality for aggregation operators that are induced by
associative and commutative binary operations, e.g. least upper bound or greatest lower
bound (see Section 4.4.4).

The above form of aggregating rules is independent of whether the aggregation is
recursive or not. An aggregation is recursive if Coll also depends on Agg (e.g. see
dependencies between PredecessorIntervals, IntervalAfter, and IntervalBefore
in Section 4.2). This leads us to the next part where we discuss recursive analyses.

4.3.2 Incremental Execution of Recursive Analyses

Recap how IncA incrementalizes recursive analyses In contrast to non-recursive
relations, recursive relations require a fixpoint computation. That is, an insertion into a re-
cursive relation can trigger subsequent insertions, which can trigger subsequent insertions,
and so on. The difficulty comes with handling deletions due to cyclic reinforcement of tu-
ples in the analysis result. We demonstrated this problem in Section 2.4. The essence of the
problem is that if a tuple was derived multiple times within a cycle, deleting one derivation
does not necessarily invalidate the other derivations, but invalidating all derivations is
sometimes necessary to obtain correct results. This is similar to the cyclic reinforcement
of lattice values we discussed in Section 4.2, with an important difference: The cyclic
reinforcement of tuples does not involve aggregations.

To provide correct incremental maintenance for recursive analyses, we employed the
DRed algorithm in IncA in Chapter 3. The basic strategy of DRed is to run in two phases,
each until fixpoint, in response to program changes. First delete everything that transitively
depends on a deleted tuple while temporarily ignoring alternative derivations. This is an
over-approximation and, in general, will delete too much. After the deletion reaches a

56 4 Incrementalizing Lattice-Based Program Analyses

fixpoint, start a re-derive phase to insert back all those tuples that can be derived from the
remaining ones that were left intact during the delete phase. The re-derive phase also uses
the insertions as input to derive new tuples.

Adding support for recursive aggregation The key technical contribution of this
chapter is to develop a novel algorithm for incrementalizing lattice-based recursive ag-
gregation in Datalog. As we explained in Section 4.2, the main challenge is the cyclic
reinforcement of lattice values (in contrast to cyclic reinforcement of tuples, as discussed
above). Specifically, change ® in Figure 4.1 B induced the deletion of tuple (N1, y, [-1,
0]), which should have triggered the deletion of (N2, y, [-1, o)).However, because
N2 occurred in a loop, there was cyclic reinforcement between the lattice values: N5 still
reported the interval [-1, o0), even though the very reason for that value is that the
initial interval was [-1, 0] previously. At this point, we did not know how to proceed.

Why can we not just apply DRed here? How is cyclic reinforcement of lattice values
different from cyclic reinforcement of tuples? The main difference is that updating an
aggregate value induces both a deletion of the old value and an insertion of the new value.
However, DRed first processes all deletions and postpones insertions until the re-derive
phase. Hence, one issue is that lattice values require an interleaving of the delete and
re-derive phases, which violates the contract of DRed. A second issue is more subtle. Let’s
say we allow interleaving. When deleting the old aggregate value, DRed’s delete phase
will delete all tuples derived from it. In particular, it will delete the new aggregate value,
which we were just about to insert.

To resolve these issues, we developed a novel algorithm called DRed; . It generalizes
DRed to support incremental computation of recursive monotonic aggregations over lattices.
Given a partially ordered set (M,E), an aggregation operator « is c-monotonic if (M) £
a(Mu{m})c a(Mu{m’}) for all multisets of values M c M and all values m,m’ € M
with mc m’. That is, the aggregate result of a monotonic aggregation increases with the
insertion of any new tuple or with the increasing replacement of any existing tuple in the
collecting relation.

Crucially, our algorithm recognizes monotonicity at runtime when handling the update
of an aggregate result. Given a c-monotonic aggregator «, whenever DRedy, sees a dele-
tion (t;, ..., tg, old) from arelation and an insertion (t1, ..., ty, new) tothe
same relation with o1d c new, it recognizes that together they represent an increasing
replacement of a lattice value. We call such a change pair a c-increasing replacement, and
deletions that are part of a c-increasing replacement do not need to go through a full delete
phase. This way, deletions of old aggregate results will not invalidate cyclically dependent
lattice values and, in particular, the new aggregate values. This allows DRedy, to perform
correct incremental maintenance even in the presence of recursive aggregation.

We describe the details of DRedy, in Section 4.4 focusing on correctness and efficiency.
While in Section 4.4 we explain DRedy, in its full generality, its main application is the in-
crementalization of program analyses that use custom lattices. Program analyses routinely
use lattices to approximate program behavior [90]. Without recursive aggregation, only the
powerset lattice can be represented, which also limits us to using set union or intersection
as the aggregation operator. DRedy’s support for recursive aggregation lifts this limitation
and enables the incrementalization of program analyses over any user-defined lattice. In
Section 4.7, we implement two lattice-based program analyses, and, in Section 4.8, we show

4.4 Incremental Recursive Aggregation with DRed| 57

how DRedy, performs for these analyses on real-world subject programs.

4.4 Incremental Recursive Aggregation with DRed

We design DRedy, an incremental algorithm for solving Datalog rules that use recursive
aggregation over lattices. Given a set of Datalog rules, DRedy, efficiently and transitively
updates IDB relations upon changes to EDB relations. DRedj, propagates changes to IDB
relations in the four steps described below, which are similar to the earlier DRed algorithm.
However, there are key differences at each step, necessitated by the support for lattice-based
aggregation:

Change splitting: Split incoming changes into monotonic changes (increasing replace-
ments and insertions) and anti-monotonic changes (deletions that are not part of
increasing replacements). The crucial novelty over the older DRed algorithm is
the lattice-aware recognition of increasing replacements at runtime, which heavily
impacts the other three steps, as well.

Anti-monotonic phase: Interleaved with the previous step, we process anti-monotonic
changes by transitively deleting the relevant tuples and everything derived from
them. This is an over-approximation and, in general, will delete too much, but,
importantly, over-deletions guarantee that we compute correct results in the face of
cyclic reinforcements.

Re-derivation: Fix the over-approximation of the previous step by re-deriving deleted
tuples from the remaining tuples.

Monotonic phase: Process monotonic changes. For insertions, we insert the new tuple
and transitively propagate the effects. For increasing replacements, we simulta-
neously delete the old tuple and insert the new tuple and transitively propagate
their effects. By propagating deletions and insertions of increasing replacements to-
gether, we ensure that dependent relations will in turn recognize them as increasing
replacements and handle them accordingly.

In the remainder of this section, we summarize the assumptions of DRedy, on Datalog rules,
introduce necessary data structures for DRedy,, present DRedy, as pseudocode, and explain
how DRedy, incrementalizes aggregations.

4.4.1 Assumptions of DRed| on the Input Datalog Rules

In order to guarantee that DRedy, satisfies the requirements Correctness (R1) and Effi-
ciency (R2), the input Datalog rules must meet the following assumptions:

Monotonic recursion (A 4.1): We call a set of mutually recursive Datalog rules a de-
pendency component. DRedy, assumes that each dependency component respects
a partial order c of each used lattice (either the natural order of the lattice, or its
inverse). Given this order, the relations represented by the rules must only recur
c-monotonically: If they are updated by insertions or c-increasing replacements,

58 4 Incrementalizing Lattice-Based Program Analyses

then recursively derived results may only change by insertions or c-increasing re-
placements. This assumption has important implications: Abstract interpretation
operators and aggregations must be monotonic within a dependency component wrt.
the chosen partial order. The analysis developer must ensure that operators are mono-
tonic. Additionally, recursion through negation is not allowed: IncA automatically
rejects analyses that do not conform to this requirement (Section 4.6).

Aggregation exclusivity (A 4.2) Alternative rules deriving the same (collecting) relation
must produce mutually disjoint results, if the relation is in a dependency component
that uses aggregation at all. This is important for ruling out cyclic reinforcements.

Cost consistency (A 4.3) Assume that R(ty, ..., tj, v) is a non-aggregating rela-
tion, where v is a lattice-typed column. We require that columns (t1, ..., tg)
uniquely determine column v.

No infinite ascending chains (A 4.4) DRed;, computes the least fixpoint of the Datalog
rules. To ensure termination and as is standard in program analysis frameworks,
DRedp, requires that the used lattices do not contain infinite = -ascending chains [11,
Section 6] for any £ that is chosen as part of Monotonic recursion (A 4.1). Fulfilling
this requirement may require widening [30], as also used in our interval analysis in
Section 4.2.

Monotonic recursion (A 4.1) allows a dependency component to use and aggregate over sev-
eral lattices. For each of those, the component must be monotonic; this is the responsibility
of the analysis developer. In many typical lattice-based analyses (e.g. where aggregators
are idempotent like 1ub, glb), the IncA compiler can automatically guarantee Cost con-
sistency (A 4.3) by transforming the IncA analysis code (see Section 4.6.3). In other cases,
it is the responsibility of the analysis developer. For non-aggregating standard Datalog
programs, Aggregation exclusivity (A 4.2) trivially holds.

To prove that DRedy, correctly updates analysis results, we present a proof sketch
in Section 4.5. We also validated that these assumptions do not inhibit expressiveness
(Expressiveness (R3)) for incremental program analyses by integrating DRedy, into IncA
(Section 4.6) and developing lattice-based analyses as case studies (Section 4.7).

4.4.2 Support Data Structures

The anti-monotonic step of DRedy, performs an over-deletion, after which some tuples may
need to be re-derived, and the monotonic phase performs monotonic deletions that do not
always have to be propagated. To make these decisions, we adapt support counts for tuples
from DRed, and we design a new data structure called support multisets for aggregate
results:

« Support count: The support count of a tuple is equal to the number of alternative
derivations a tuple has within a relation (across all alternative rules and local vari-
ables). Support} (t) represents the support count of tuple t in relation R.

« Support multiset: The support multiset of an aggregate result contains the indi-
vidual aggregands that contribute to it. Formally, given an aggregating rule as in

Section 4.3.1, the support multiset Support%;g associates, to each substitution of

4.4 Incremental Recursive Aggregation with DRed| 59

procedure maintainIncrementally(all) {
for C in top. order of dep. components {

effect := immediateConsequences (C, all)

(anti, mon) := changeSplitting(effect)

deleted := @

while (anti !'= @) { // anti-monotonic phase - fixpoint
new := updateAnti (anti); deleted u= new
newEffect := immediateConsequences (C, new)
(anti, mon) := changeSplitting(newEffect u mon)

}

red := directRederive (deleted) // re-derive phase

mon u= immediateConsequences (C, red)

all vu= deleted u red

while (mon != @) { // monotonic phase - fixpoint
new := updateMon (mon); all u= new
mon := immediateConsequences (C, new)

Figure 4.2: DRed;, main procedure.

grouping variables of the aggregating relation Agg, the aggregands in the group
from Coll. In other words, Support%gsg (t1,...,tg) is the multiset of values v

that satisfy Col1(ty,....tg,_X1,...._x},v) for some _xq,...,_x;.

These support data structures are used and incrementally maintained by DRed;. As
Sup;l:)rz% isno larger than R and Support%gsg isno larger than Col1, there is no asymptotic
overhead.

4.4.3 DRed| Algorithm

We present the DRedy, algorithm as pseudocode in the following. The main procedure is
shown in Figure 4.2. The entry point is procedure maintainIncrementally, which takes
a changeset all as input and updates affected IDB relations. In the code, we use italic font
exclusively for variables that store changesets.

As usual for incremental Datalog solvers, DRedy, iterates over the dependency compo-
nents of the analysis in a topological order (line 2). We exploit that recursive changes within
each component are required to be monotonic by Monotonic recursion (A 4.1). We start
in line 3 by computing the immediate consequences of changes in all on the bodies of the
Datalog rules in the current component C. That is, for a Datalog ruleh :-a;,...,a,inC,
we compute the consequences of the changes on aj, . . . ,a, first. We omit the details of
immediateConsequences, but the implementation relies on relational algebra operations
that we discussed in Chapter 3. Technically, the interim result effect is expressed on rule
bodies and not yet projected to rule heads like h (the actual relations to be maintained).
This allows us to maintain support counts and support multisets for alternative body
derivations.

If component C uses aggregation, in line 4 we perform change splitting of changeset
ef fect, according to the c of Monotonic recursion (A 4.1). We compute the set of monotonic

60 4 Incrementalizing Lattice-Based Program Analyses

procedure updateAnti (body) {

head := @
foreach change in body {
R := rel(change); h := mg(change)
if (R is non-aggregating) {
Supporth(ln)) -= 1
if (JhleR) {

head u= {h}
}
} else { // aggregating: R(f,a(v))
let R(f, v) = |n
Support¥S (f) -= {v}
if (3w. (&, w) € R) {
head u= {-R(f, w)}
}
}
}
update stored relation contents by head
return head

Figure 4.3: DRed], anti-monotonic phase.

changes mon from ef fect by collecting all insertions and those deletions that are part of
an increasing replacement:

mon = {+r(t,..., 1) | +r(ty,...,) € ef fect}

U {-r(t1,s tsco1a) | =1t b, co1a) € ef fect,
+1(t, ..., Ik, Crew) € ef fect,
Cold E Cnew)

Here and below we write +r(f1,..., t) for a tuple insertion and -r(ty,..., #;) for a deletion.
The set of anti-monotonic changes consists of all deletions not in mon. Note that for a
component C that does not use aggregation, mon simply consists of all insertions and anti
consists of all deletions.

Next, we perform the anti-monotonic phase on changeset anti iteratively until
reaching a fixpoint (lines 6-10). In each iteration, we first use procedure updateAnti
(discussed below) to update the affected support data structures and relations (line 7). This
yields changes new to rule heads defined in C. We propagate the new changes to deleted
because they are candidates for a later re-derivation. We also propagate the new changes to
C to handle recursive effects (line 8), yielding recursive feedback in newEffect. By design,
the anti-monotonic phase within a dependency component only produces further deletions
and never insertions. We merge the newEffect changes with the monotonic changes
mon and split them again because a new change may cancel out an insertion or form an
increasing replacement. Note that this can be done efficiently by indexing the changesets
for aggregating relations over the grouping variables. This way we can efficiently query
relevant lattice values when deciding if a pair needs to be split up or formed.

Procedure updateAnti (Figure 4.3) processes anti-monotonic changes of rule bodies
and projects them to changes of the rule heads while keeping support counts and support
multisets up-to-date. We iterate over the anti-monotonic body changes, all of which are

4.4 Incremental Recursive Aggregation with DRed| 61

procedure directRederive (deleted) {
red := Q@
foreach change in deleted {
R := rel(change)
if (R is non-aggregating) {
if (Supporth (|change|) > 0) {
red u= {+|change|}
}
} else { // aggregating: R(f,a(v)):—...

let R(f,v) = |change|
if (Support%s(f) 1= @) {
red u= { +R (%, a (Support¥S(¥))) }

}
}
}
update stored relation contents by red
return red

Figure 4.4: DRedy, re-derive phase.

deletions by definition. For each change, we obtain the changed relation symbol R, and
we project with zg the body change to the corresponding change of the relation’s head
h (line 23). While h is a change, we write |h| to obtain the change’s absolute value, that
is, the tuple being deleted or inserted. If R does not aggregate, we decrease the support
count of h, and we propagate a deletion of h if it is currently derivable in R. If instead R
aggregates, we decompose h to obtain the grouping terms ¢ and the aggregand v. We delete
v from the support multiset of #. Furthermore, if R currently associates an aggregation
result w to #, we propagate the deletion of said association from R. Note that the associated
aggregation result w is unique by Cost consistency (A 4.3), and we delete it as soon as any
of the aggregands is deleted. It is important to point out that a positive support count or
non-empty support multiset after deletions is no evidence for the tuple being present in
the relation, due to the possibility of a to-be-deleted tuple falsely reinforcing itself through
cyclic dependencies. We will put back tuples that still have valid alternative derivations,
and we will put back aggregate results computable from remaining aggregands in the
re-derivation step of DRedy . Finally, we update the stored relations and return head for
recursive propagation in the main procedure maintainIncrementally.

Back in maintainIncrementally, we proceed with re-derivation to fix the over-
deletion from the anti-monotonic phase (lines 11-12). To this end, we use procedure
directRederive (Figure 4.4) to re-derive tuples that were deleted during the anti-monotonic
phase but still have support. The input to the procedure is deleted, and we iterate over
the deletions in the changeset. If R does not aggregate, we use the support count: A
positive support count indicates the tuple is still derivable, and we propagate a re-insertion
(lines 45-47). If instead R aggregates, we use the support multiset: A non-empty support
multiset indicates that some aggregand values are left (line 50). In this case, we recom-
pute the aggregation result by applying the aggregation operator @ and propagating a
re-insertion (line 51). Due to the support multiset, we do not need to re-collect aggregand
values, saving precious time. In Section 4.4.4, we explain how we further incrementalize

62 4 Incrementalizing Lattice-Based Program Analyses

procedure updateMon (body) {
head := @
foreach change in body {
R := rel(change); h := mg(change)
if (R is non-aggregating) {
Supporth (|n]) += sign(h)
if (support changed to or from 0) {
head u= {h}
}
} else { // aggregating: R(f,a(v))

let R(, v) = |n|

head u= {*R(f,a(Supportgs(f)))}

if (sign(h) == -1) {
Support¥S (f) -= {v}

} else {

Support%s(f) += {v}
}
head u= {+R(f,a(Support%S(f)))}
}
}
update stored relation contents by head
return head

Figure 4.5: DRed;, monotonic phase.

the aggregation computation (blue highlighting in the code). We return to procedure
maintainIncrementally by storing the re-derived tuples in red. Because these tuples,
together with the previously deleted ones, can trigger transitive changes in downstream
dependency components, we add deleted and mon to all (line 13). We perform a signed
union, so ultimately if a tuple was deleted but then we could re-derive it, then that tuple
will not change all. Note that re-derivation triggers insertions only and hence only entails
monotonic changes that we handle in the final step of DRedy..

Finally, DRedy, runs the monotonic phase until a fixpoint is reached (lines 14-17).
In each iteration, we use procedure updateMon (Figure 4.5) to compute the effect of the
monotonic changes. Procedure updateMon is similar to updateAnti, but updateMon
handles deletions as well as insertions due to increasing replacements. If R does not
aggregate (lines 62-66), we update the support count of h according to the tuple being an
insertion (sign(h)=1) or a deletion (sign(h)=-1). If instead R aggregates (lines 67-76),
we delete the old aggregate result and insert the new one. To this end, we compute the
aggregate result over the support multiset before and after the change to the support
multiset. We collect all tuple deltas and return them to maintainIncrementally, which
continues with the next fixpoint iteration. The implementation also checks if the produced
tuple deltas may cancel each other out, which is quite common with idempotent aggregation
functions such as lub.

Procedure maintainIncrementally executes the four steps of DRedy, for each de-
pendency component C until all of them are up-to-date. While it may seem that a change
requires excessive work, in practice many changes have a sparse effect and only trigger
relatively little subsequent changes. We evaluate the performance of DRedy, in detail in

4.5 Formal Semantics of DRed| and Correctness Proof 63

Section 4.8. One potential source of inefficiency in DRedy is computing the aggregation
result over the support multiset (highlighted in blue in pseudo code). We eliminate this
inefficiency through further incrementalization.

4.4.4 Incremental Aggregator Function

Procedures updateAnti and updateMon recompute the aggregate results based on support
multisets. A straightforward implementation, that reapplies aggregation operator a on
the multiset contents, will require O(N) steps to recompute the aggregate result from a
multiset of N values. For example, a flow-insensitive interval analysis on a large subject
program may write to the same variable N times. For large N, this can degrade incremental
performance as computational effort will linearly depend on input size N, instead of the
change size, which puts our Efficiency (R2) requirement in danger.

Given associative and commutative aggregation operators (like glb or lub), our idea
is to incrementalize the aggregator functions themselves using the following approach.
Independently from the partial order of the lattice we aggregate over, we take an arbitrary
total order of the lattice values (e.g., the order of memory addresses). Using this order, we
build a balanced search tree (e.g. AVL [108, Chapter 3.3]) from the aggregands. At each
node, we store additionally the aggregate result of all aggregands at or below that node.
The final aggregate result is available at the root node. Upon insertion or deletion, we
proceed with the usual search tree manipulation. Then, we locally recompute the aggregate
results of affected nodes and their ancestors in the tree. At each node along the path of
length O(log N) where N is the number of nodes in the tree, the re-computation consist of
aggregating in (1) time the locally stored aggregand with intermediate results. In sum,
this way, we can incrementally update aggregate results in O(log N) steps, while using
O(N) memory.

4.5 Formal Semantics of DRed| and Correctness Proof

We provide a formal treatment of the theory behind DRed; . Our approach relies on the
formal semantics of recursive monotonic aggregation given by Ross and Sagiv [100]. We
recap here the most important semantical aspects (originally introduced by Ross and
Sagiv [100]), and then present a novel proof sketch for the correctness of DRed;..

4.5.1 Semantics of Recursive Aggregation

A database or interpretation assigns actual instance relations to the relation names (predi-
cates) appearing in the Datalog rules. A database is cost consistent if it satisfies the condition
in Cost consistency (A 4.3), i.e. lattice columns are functionally determined by non-lattice
columns in all relations. Let the set of variables that appear in the body (in any of the
atoms) of a Datalog rule r be Vars. Then, given a concrete database, one can evaluate the
body of a rule r to find all substitutions to Vars that satisfy all subgoals in the body.

A model is a cost-consistent database that satisfies all Datalog rules, i.e. any given IDB
relation is perfectly reproduced by collecting or aggregating the derivations of all those

64 4 Incrementalizing Lattice-Based Program Analyses

rules that have this relation in the head. A Datalog semantics assigns a unique model to a set
of Datalog rules (where, technically, EDB relations are also encoded as rules that only use
constants). In the following, we present the semantics of Ross and Sagiv by induction on
dependency components, i.e. when considering the relations defined by a given component,
we assume that we already know the semantics of all other components it depends on, so
they can be equivalently substituted by constants and considered as EDB relations.

For such a single dependency component, by Monotonic recursion (A 4.1), we have a
partial order £ for each lattice used. We can thus lift this notation to define a partial order
(shown to be a lattice as well) on databases; we say that D; £ D iff for each tuple #; € Dy,
there is a tuple f € D; in the corresponding relation such that #; ¢ ;. For cost-consistent
databases, this is equivalent to saying Dy can be reached from D; by tuple insertions and
c-increasing replacements.

It has been shown [100] that if a set of Datalog rules satisfy Monotonic recursion (A 4.1)
and Cost consistency (A 4.3), then there is a unique minimal model Mp,ip, i.e. all models
M have Mp,i, £ M. Thus the minimal model is considered as the semantics of the Datalog
rules with recursive aggregation.

4.5.2 Correctness of the Algorithm - Proof Sketch

We give an informal sketch to prove the proposed DRed;, algorithm correct (Correct-
ness (R1)), given the assumptions from Section 4.4.1.! We do not include proofs for the
correctness of well-known techniques used, such as algebraic differencing [46] or semi-
naive evaluation [44].

Specifically, we will show that DRedy, terminates and produces the minimal model,
while keeping its support data structures consistent, as well. As usual, we will conduct the
proof using (i) induction by update history, i.e. we assume that DRedy, correctly computed
the results before given input changes were applied, and now it merely has to maintain its
output and support data structures in face of the change; as well as (ii) componentwise
induction, i.e. we assume that the result for all lower dependency components have already
been correctly computed (incrementally maintained), and we consider them EDB relations.

Preliminaries Let B°/? be the EDB relations before a changeset A, inducing minimal
model Mgfgl, which DRed; correctly computed by the induction hypothesis; let B = B4y A
be the new input and Mp,;, the new minimal model, which DRedy, shall compute. Let D" be
the c-greatest lower bound of the two minimal models (exists since databases themselves
form a lattice [100]); essentially it is the effect of applying the anti-monotonic changes
only.

Let we denote by Dijp;s = ngi the current database (state of EDB and IDB relations)
when DRedp, starts to process the dependency component (with changes in EDB relations

already applied), by D! . after iteration i of the anti-monotonic phase, by Dé:;?l at the end
of the anti-monotonic phase, by D,.q = D%,,,, after the immediate re-derivations, by D%,

after iteration i of the monotonic phase, and finally by D],;lg,‘: ! after the monotonic phase.

ITo prove general fixpoint convergence, Ross and Sagiv required each lattice to be a complete lattice. We have
dropped this assumption in favor of No infinite ascending chains (A 4.4), which will also suffice for our goals.
Note that we require the finite height of ascending chains only, thus strictly speaking our assumption is neither
stronger nor weaker than the original one.

4.5 Formal Semantics of DRed| and Correctness Proof 65

i

Monotonicity Iterations of the anti-monotonic phase only delete tuples, so Djyi; 2 D} ,,,; 2

inal
Dzn” . Re-derivations are always insertions, and each re-derived tuple ¢,.; compensates

for a tuple tgnti 2 treq (tanti = treq for non-aggregating relations) that was deleted during the
anti-monotonic phase; therefore we also have Dg;’;?l € Dyoq E Dipijt- Finally, by induction
on i and by Monotonic recursion (A 4.1), each iteration i of the monotonic phase performs

. i inal
monotonic changes, thus D,.4 & D}, E D{non .

Termination The anti-monotonic phase must terminate in a finite number of steps as
there are finite number of tuples to delete. The immediate re-derivation affects at most
as many tuples as the anti-monotonic phase, thus it terminates. The monotonic phase
must reach its convergence limit in a finite number of steps, as well, for the following
reasons. Given a finite database of EDB relations, a finite amount of non-lattice values
are available. Due to Cost consistency (A 4.3), it follows that the output of the component
is also finite. As the monotonic phase never deletes tuples, it can only perform a finite
number of insertions to reach this finite output size. Finally, it may only perform a finite
number of c-increasing replacements due to No infinite ascending chains (A 4.4).

Upper bound and support consistency We now show that after the anti-monotonic
phase, intermediate database states are upper bounded by the desired output, and that
support data structures are consistent: A tuple ¢ is (i) contained in the database or (ii) has a
positive support count or nonempty support multiset only if 3" € My, with t et/

The anti-monotonic phase deleted all tuples that, in any way, depended transitively on
the anti-monotonic part of input deletions, therefore those that remained must have had

support not impacted by the deletions, thus DZ;’;?Z £ D" = Myin. As rules are monotonic by
Monotonic recursion (A 4.1), and the support data structures are correctly maintained (using

algebraic differencing [46] by immediateConsequences), any tuple ¢ that has support in

state Dﬁ;’;lal must have a ¢’ that has support in (and thus contained in) M,;,. This means
that re-derivation only inserts tuples upper bounded by the minimal model, so D,,g € Mpin.

A similar argument applies during the monotonic phase. Assume by induction that
Dl Ll € Myin. All tuples t that are to be inserted in iteration i due to having support (as
computed by immediateConsequences and reflected in the support data structures by

updateMon), must have (by Monotonic recursion (A 4.1) and the induction hypothesis) a
corresponding t’ € My,in with t € ¢/, thus D!, | © Myp;y still holds. Eventually, Dﬁ{{},‘f’ E Mmpin.

mon

Cost consistency We will show that the output D];,fg,? !is cost consistent. EDB relations
are considered cost consistent due to Cost consistency (A 4.3) and the assumed correctness
of DRedy, for lower dependency components. Therefore it is sufficient to check the cost
consistency of IDB relations, which we do by indirect proof. By the induction hypothesis,
the state of the algorithm before the change was the cost-consistent model M,‘;llﬁ'l The
change in EDB relations did not directly affect IDB relations and the anti-monotonic phase

only deleted tuples, so D{l;[;?l is cost-consistent as well. During the re-derive and monotonic
phase, tuples are only inserted if they have support, so cost-consistency is only violated if
tuples t # t’, agreeing on all non-lattice columns, both had support. Let us assume such a
situation arises, and we prove that it can actually never happen.

Due to Cost consistency (A 4.3), the Datalog rules themselves are specified to obey cost

consistency, so t and ¢’ both can’t be transitively derivable from EDB relations at the same

66 4 Incrementalizing Lattice-Based Program Analyses

time. Thus one of them, say ¢, must be an error in the support data structure, cyclically
reinforcing itself. Such cyclic reinforcement can form for t if it was previously present,
then one of its derivations is deleted (which is possible in the monotonic phase via an
increasing replacement), but a positive support count still remained, so it was left in the
database.

Because of the way how change splitting is performed, increasing replacements in the
monotonic phase are only permitted for dependency components that use aggregation.
By Aggregation exclusivity (A 4.2), alternative rules for the same relation must produce
disjoint results, so all derivations of t must stem from the same rule, and may only differ in
local variables of the rule. Therefore an increasing replacement that has removed one such
derivation must have removed all of them, decreasing the support count of ¢ to zero. This
contradiction concludes the indirect proof.

Model The monotonic phase acts as a standard bottom-up Datalog evaluation using
semi-naive (differential) iterations [44]. Each iteration i takes the Datalog rules that can be
applied to D%l in order to derive new facts or increase aggregate results to obtain D}, .
If a rule can be applied to a database, its result will contribute to the computed immediate

consequence due to the correctness of differential evaluation. At the final fixpoint, the

immediate consequence is empty; this means that no more rules can be applied to D],(,fg,‘,l l,
therefore the state thus reached (shown above to be cost-consistent) is a model.

Minimality By definition, My, © M for any model M over the same EDB relations.

However, we have shown above that D{nlgg e Mpin which implies that D’;’;‘,‘f . Mpin, 1.€.
the algorithm is correct.

4.6 Integrating Lattices into the IncA Framework

We extend the baseline version of IncA presented in Chapter 3 with support for custom
lattices and aggregation. Our extensions span four layers: IncA Datalog, compiler, runtime
system, and IDE integration. We briefly review each of these extensions.

4.6.1 Extensions to IncA Datalog

We designed a DSL for the definition of lattices, and we extended IncA Datalog, so that
analysis developers can use lattices in their analyses, together with custom aggregation
operators. Figure 4.6 shows the syntax of the new IncA Datalog language, where we
highlight our extensions compared to the version of IncA Datalog presented in Figure 3.5.

The new syntax enforces a clear separation between relational code defined by Datalog
rules and lattice code defined by our Java-based DSL for implementing lattices. A lattice
definition 1 declares the name of the lattice, algebraic data-type constructors for lattice
values, and lattice operations. Each lattice operation has a name and is implemented in Java
extended with calls to lattice constructors and operations. Each lattice must implement the
lattice operations leq, lub, and glb, but other helper logic can also be implemented.

To use a lattice in Datalog rules, first the module of the lattice must be imported. Then,
the type annotation of head variables can also use lattice types in addition to AST node
types. The new term L, .n(#) allows to call lattice operations; e.g. constructors to create

4.6 Integrating Lattices into the IncA Framework 67

(module) m : := module n import 7 {mc}

(module content) mec = 1|r

(lattice) l : := lattice L,{constructors{ctor} lop}

(lattice name) Ly : 1= name

(type in lattice definition) ~ Ty ::= Tygng | Ln|Java type

(constructor) ctor ::= n(Tyy)

(lattice op) lop ::=defn(n: Ty : Tl =lopb

(lattice op body) lopb ::= Java code + lattice constructors and operations
(rule) r s 1= vis n(hv) - alt

(head variable) hv :i=n: Tu| lop(n: Ly)

(visibility) vis ::=private | protected | public

(alternative) alt ::={a}

(atom) a = n(n) | not n(n) | vr |not vr | n+(n,n)|t==t|t!=t

count n(7n) | count vr

(virtual EDB relation) or = Tiang-L(n, n)| T gng(n)

(term) t =n|c| Lp.n(t)

(constant) c : 1= number | string | enum | boolean | AST node
(type in relational code) Tree ::=Tiang| Ln

(type from subject language) T4y : := AST node type (from subject language)

(link) Ly : 1= link of an AST node type (from subject language) |

parent | prev | next | index
(name) n : = name

Figure 4.6: Syntax of IncA Datalog with lattices. The highlighted parts show the additions in comparison to the
prior version of the IncA Datalog from Figure 3.5.

lattice values or other helper operations defined on lattices. Finally, if a head variable has
lattice type Ly, then an analysis developer can also make use of any aggregation operator
lop defined on L, by wrapping the head variable with a call to 1op. IncA only allows
to use lattice operations with the right signature for aggregation: The operation must
take two lattice values and produce one lattice value. However, IncA does not verify that
the aggregator operator is indeed monotonic, ensuring this is the responsibility of the
analysis developer. Note that in contrast to Section 4.3.1, there is no need to define separate
rules that compute relations Coll and Agg. As we discuss later, those are automatically
generated by the IncA compiler based on the type annotations on head variables. We
demonstrate the use of the extended IncA Datalog through case studies in Section 4.7.

4.6.2 Runtime System

IncA still relies on the VIATRA QUERY library for the incremental evaluation. However,
the library did not support incremental lattice-based aggregation before. To this end, we
integrated DRedy, and our optimization for aggregators based on AVL trees into VIATRA
QUERY. We also introduced a new graph pattern constraint Agg(p,c,7.,), where p is a

68 4 Incrementalizing Lattice-Based Program Analyses

graph pattern, c is a lattice-typed column of p, and 77 ,, is the AVL tree used for aggregating
values in column ¢ with aggregation operator L.n. We make use of this new pattern in the
compiler next.

4.6.3 Compiler

Compilation to graph patterns We translate a lattice definition into a Java class,
where lattice constructors become class constructors and lattice operations become static
methods. We allow relations to use instances of these classes as values. For each aggregation
operation L.n used in the IncA program under compilation, we generate an AVL tree
implementation 7y , specialized for L.n, as described in Section 4.4.4.

We use the above aggregating graph pattern Agg(p,c, 71 ,) for translating IncA Data-
log rules that yield an aggregated lattice value. Specifically, for every aggregating rule r,
we generate two graph patterns: An auxiliary pattern r;, that is the result of compiling r
without any aggregation annotation (cf. relation Coll in Section 4.3.1), as well as the main
pattern r, that aggregates the tuples of r;, using our new Agg graph pattern (cf. relation
Agg in Section 4.3.1). This translation naturally extends to more than one aggregating
column.

The compilation of the terms L, .n(#) require special runtime support, as these get
translated to ordinary Java method calls on the class generated for the respective lattice.
VIATRA QUERY supports a special graph pattern that can yield the result of Java expressions,
which we use during compilation.

Checks on IncA analyses The IncA compiler also performs static analyses on IncA
subject analyses to ensure that the assumptions from Section 4.4.1 hold. These analyses
include (i) checking the consistent usage of aggregations and (ii) enforcing stratifiable
negation as per Monotonic recursion (A 4.1), and (iii) Aggregation exclusivity (A 4.2). These
analyses are all implemented in IncA itself, and they all rely on analyzing the strongly
connected components in the call graph of the rules in a subject analysis. The results of the
analyses are used by the compiler, which reports errors to the analysis developer. Currently,
there is no check verifying that a subject analysis satisfies Cost consistency (A 4.3), but
we implemented a transformation (in Java) in the IncA compiler that can automatically
rewrite subject analyses in certain cases to satisfy cost consistency.

Transformation for ensuring Cost consistency (A 4.3) The transformation assumes
that within a single rule body, the lattice-typed variables are already uniquely determined
by the non-lattice typed variables (local or not). This can typically be verified by the
functional dependency solver already implemented in VIATRA QUERY. If the assumption is
satisfied for all bodies of the aggregating rule, the transformation runs in two steps. First,
in order to prevent multiple derivations of the same aggregation group within the same
rule body, we lift up all local variables from the rule body to the head. This way, we can
ensure that the lattice-typed head variables are uniquely determined by the non-lattice
typed head variables (since we have just made all variables head variables). Second, for
rules with multiple rule bodies, we introduce a new intermediate rule per body, and we
discriminate them with a unique (integer) constant value in the rule head. Each such
intermediate rule performs an intermediate aggregation over the “lifted” local variables,

4.7 Case Studies 69

so its head will match that of the original aggregating rule, plus the unique discriminator.
The final transformed rule will then aggregate the union of these intermediate aggregates.

It is important to point out that this transformation preserves the semantics of the
original IncA Datalog rules only because IncA analyses exclusively use lattice aggregators
derived from idempotent, associative, and commutative binary operations (glb, lub). In
contrast, for a generic aggregating rule set (e.g. with summation), lifting would indeed
change the semantics (as some parts would be included in the sum multiple times). We
emphasise that the transformation is specific to IncA, not the underlying DRedy, algorithm,
which assumes that the input Datalog rules satisfy Cost consistency (A 4.3).

4.6.4 IDE Integration

We kept the integration with MPS for the new version of IncA, including all the typical IDE
features, such as syntax highlighting, type system, generators, and validations. Technically,
the new language extension for defining lattices is a DSL in MPS, and we reused MPS’ Java
language for the implementation of the bodies of lattice operations.

4.7 Case Studies

To validate our approach, we have used IncA to implement two lattice-based program
analyses for Jimple, which is an intermediate program representation for Java. Our first
analysis is a lattice-based points-to analysis, while the second one is a collection of analyses
statically approximating the runtime values of string-typed variables. Both of these analyses
use lattice-based aggregation. This section describes the program analyses and provides
details about their implementation, while Section 4.8 presents the performance evaluation.

4.7.1 Jimple as Subject Language

The subject language for our evaluation is Jimple, an intermediate Java representation
defined in the Soot framework [19]. As we discuss in Section 4.8, we analyze Java subject
programs with our analyses. To resolve the gap between the two languages, we use the
Java (bytecode) to Jimple transformer from Soot, which produces functionally equivalent
Jimple code from Java code.

We chose Jimple as subject language because it only uses ifs and gotos to express
control flow, which relieves us from reasoning about more complex control flow. This is
beneficial because it helps with the construction of the CFG, which we need later, as our
points-to analysis is flow-sensitive. Constructing the CFG for a general purpose language
like Java is a complex task, as there are a large number of control constructs that would
need to be considered, plus there is also dynamic dispatch. We already experimented with
implementing control flow analysis for C in Section 3.6, and to deal with the complexity of
the control flow analysis, we also needed to introduce simplifications, such as ignoring
function pointers and pointer arithmetics. Jimple helps us to deal with the complexity of
the control flow analysis for Java, but it does not simplify the follow-up analyses them-
selves (like points-to), as the Jimple code produced by the Soot transformer is functionally

N

e o m

70 4 Incrementalizing Lattice-Based Program Analyses

equivalent to the original Java subject programs. Addressing control flow analysis for Java
itself is an interesting research challenge, but it was beyond the scope of this dissertation.

4.7.2 Strong-update Points-to Analysis

Our first analysis adapts the strong update points-to analysis for C introduced by Lhotak
and Chung [73] to Jimple. We chose this analysis because of its practical relevance; Points-
to analyses are the basis of many other analyses. The strong update points-to analysis is at
the sweet spot between the cheap flow-insensitive and the precise flow-sensitive analysis:
It is flow-sensitive for a variable or field (given that we analyze Jimple) as long as the
target points-to set consists of a singleton object, and then gives up on flow-sensitivity
immediately when the target set has more than one object. At this point, it turns to a flow-
insensitive analysis to answer points-to questions. This makes sense because dereferencing
a non-singleton points-to set does not allow strong updates (that would overwrite the
previous results) anyway, and so in most of the cases the precision gained through flow-
sensitivity is limited. In addition to the mixed flow-sensitivity, our analysis is field-sensitive,
as it reasons about the points-to sets of fields in objects. The analysis is intra-procedural,
as it does not analyze across function calls. The original paper [73] provides details on the
corner cases and precision characteristics. Here, we focus on the implementation in IncA.

First, we start with the flow-insensitive part of the points-to analysis. We use the
following two rules to compute the points-to sets of variables and object fields, respectively:

VarPT (var : Var, obj : Obj)
FieldPT (base : Obj, field : Field, obj : Obj)

Here, the types Var, Field, and Obj all appear in the Jimple subject language, that is, the
flow-insensitive analysis does not use lattices or aggregation. The rule bodies (omitted
here) collect assignments and interpret the left and right hand sides to collect the pointer
variables and the pointed objects. The rules recursively depend on each other.

Next, we define the rules for the flow-sensitive part of the points-to analysis as follows:

VarPTBefore (stmt : Stmt, var : Var, lub(obj : SObj))
VarPTAfter (stmt : Stmt, var : Var, lub(obj : SObj))
FieldPTBefore(stmt : Stmt, base : Obj, field : Field, lub(obj : SObj))
FieldPTAfter (stmt : Stmt, base : Obj, field : Field, lub(obj : SObj))

These rules use the singleton-set lattice SObj to decide when to give up on tracking the
points-to set of a variable. An excerpt of the lattice definition showing the constructors,
less or equals operation, and least upper bound operation is as follows:

lattice SObj {

constructors { Bot | S(Obj) | Top }
def leg(l : SObj, r : SObj) : bool =
return match (1, r) with {
case (S(ol), S(02)) => ol == 02
case ...
}
def lub(l : SObj, r : SObj) : SObj =

return match (1, r) with {

4.7 Case Studies 71

case (S(ol), S(02)) => 0ol == 02 2?2 1 : Top
case ...

The rules for the flow-sensitive analysis follow the same approach as the interval analysis
in Section 4.2 in that they recursively depend on each other to propagate the points-to
information along the subject program’s CFG. The implementation builds on a control flow
analysis for Jimple. The rules all aggregate with 1ub on the lattice SObj, making sure that
the analysis gives up on tracking non-singleton sets (see first case in the body of 1ub).

The final ingredient of the strong update analysis is responsible for combining the
results of the previous two:

VarPT_SU(stmt : Stmt, var : Var, lub(obj : PSObj)) = {
VarPTAfter (stmt, var, trg),
trg != SObj.Top,

obj == PSObj.fromSObj(trg)
} alt {
VarPTAfter (stmt, var, topTrg),
topTrg == SObj.Top,
VarPT (var, trg),
obj == PSObj.fromObj(trg)
}
FieldPT_SU(stmt:Stmt, base:0bj, field:Field, lub(obj:PSObj)) :— {

}

The analysis returns the result of the flow-sensitive analysis in the first alternative if that
returns a non-Top value. The second alternative turns to the flow-insensitive analysis.
Additionally, these two functions aggregate the points-to targets into a single set (a value
in the powerset lattice PSObj). The reason for this is that the flow-sensitive analysis gives
up on tracking non-singleton targets to save memory, so we must not store separate tuples
per target objects here either, otherwise we would lose the memory saving. To query the
points-to information, clients would interact with rules VarPT_SU and FieldPT_SU.

4.7.3 String Analyses

Our second case study concerns string values. Costantini et al. proposed several abstract
domains to keep track of the properties of string values [29]. We implemented with IncA
three distinct string analyses. First, the character inclusion analysis that keeps track of
the definitely-contained and maybe-contained set of characters for a string variable. This,
in turn, can be used to decide whether the return value of operations like index0f (s)
can be negative or not, which is interesting because a negative value causes operations
like split or substring to throw an exception. We also implemented analyses that
compute the longest common prefix and suffix of the strings a variable take; this is useful
to check well-formedness, for example, to ensure that an SQL statement always starts with
a keyword and terminates with a semicolon. Compared to the points-to analysis, the string
analyses are flow-insensitive.

72 4 Incrementalizing Lattice-Based Program Analyses

The interesting part about these analyses is the implementation of the lattices, as they
are more involved than the singleton set lattice used by the points-to analysis. For example,
an excerpt of the prefix lattice implementation is as follows:

lattice Prefix {

constructors { Bot Pre (string) }

def top() : Prefix = Pre("")
def leqg(l : Prefix, r : Prefix) : boolean =
return match (1,r) with
case (Pre(pl),Pre(p2)) => pl.startsWith(p2)
def lub(l : Prefix, r : Prefix) : Prefix =
return match (1, r) with
case (Pre(pl), Pre(p2)) => Pre(lcp(pl, p2))
def interpretSubstring(v : Prefix, s : int, e : int) : Prefix =

return match v with
case Pre(p) => {
final int 1 = p.length();
if (s <= e && e <= 1) {
return Pre (p.substring(s, e));
} else if (s <= e && s < 1 && 1 < e) {
return Pre (p.substring(s, 1));
} else {
return top();

}

}

The Prefix lattice 2 has two kinds of elements: Bot, the bottom of the lattice, is never
used by the analysis, it marks a “failure”. The Pre element wraps a prefix string. The leq
operator performs a prefix-check using Java’s String.startsWith method, while 1ub
uses a helper function, 1cp, that computes the longest common prefix of two strings. The
pattern matching syntax allows us to encode the lattice structure in just a few lines of code.

The Prefix lattice defines a series of functions that abstractly interpret the different
kinds of string manipulation operations in Java. For example, function interpret-
Substring interprets the result of substring calls on strings, in the Prefix abstract
domain. It performs various checks using the start and end indices and returns a slice of
the prefix accordingly, or resorts to the lattice top in case of an empty result.

4.8 Performance Evaluation

This section presents the performance evaluation of IncA using the case studies from
Section 4.7. We answer the following questions:

Run Time (Q 4.1): Is the update time of IncA fast enough for interactive applications in
IDEs, and does this come with an acceptable initialization time?

2This lattice is an interesting example, as it has infinite descending chains (any prefix can be continued to an even
longer prefix), but no ascending ones (any given prefix has a finite number of truncations), hence No infinite
ascending chains (A 4.4) is still satisfied.

4.8 Performance Evaluation 73

Memory (Q 4.2): Is the extra memory requirement induced by incrementalization accept-
able?

4.8.1 Evaluation Setup

We analyze the following Java code bases: (i) Google Truth, an assertion framework (9
KLOC Java code), (ii) Google Gson, a JSON serialization library (14 KLOC), (iii) PGSQL JDBC,
a PostgreSQL-Java binding (45 KLOC), and (iv) BerkeleyDB, an embedded database (70
KLOC). We selected these because they represent widely used real-world applications. We
imported the code into MPS and transformed it to Jimple, which is functionally equivalent
to the original Java programs.

The actual evaluation is as follows. For each subject program, we start the analysis with
an initial, non-incremental run. We then introduce 1,000 incremental program changes
on the Jimple code, simulating the edits of a developer. We use two kinds of changes.
First, we randomly perform generic changes such as copying and deleting expressions,
statements, and methods, or renaming variables. Second, we perform random changes
tailored to each analysis: We change assignments for the points-to analysis and modify
string values for the string analysis. In all cases, we measure the wall clock time of the
initial run and the run time of the incremental updates to answer Run Time (Q 4.1). To
measure memory consumption for Memory (Q 4.2), we subtract MPS’ total memory use
before the initialization of the analyses from the value after the analyses are initialized.
For the points-to analysis, we vary the subject code base when running the measurements.
For the string analyses, we also vary the number of tracked string properties to find out
how much more expensive it is to track not only one string property but two or three at
the same time. We do this in order to see if a developer can simply turn on and off tracked
properties to control the amount of information the analysis provides without incurring
excessive performance overhead.

To validate that our analyses compute correct results, we compared the results of the
incremental analysis with the results of a full re-analysis after every code manipulation,
and we verified that they are the same. We ran the benchmarks on an Intel Core i7 at
2.7 GHz with 16 GB of RAM, running 64-bit OSX 10.12.6, Java 1.8.0_121 and MPS version
2017.3.5. We now show the results of our performance evaluation.

4.8.2 Evaluating Run Time (Q 4.1)

We start the discussion with the points-to analysis. The initialization times of the analysis
are as follows: Google Truth - 6.5s, Google Gson - 9.4s, PostgreSQL JDBC - 57.8s, and
BerkeleyDB - 64.3s. In contrast to these numbers, loading a larger project in MPS easily
takes a few tens of seconds, so even the initialization on BerkeleyDB is not prohibitively
long. We compare the numbers to the MPS project loading time because it is better to
initialize the analyses during start-up, otherwise developers would observe a longer pause
when an analysis is queried first. Figure 4.7 A captures the incremental update times of IncA
for the four subject programs in a box plot (outliers removed). These times are very fast,
exactly the kind of numbers we want in interactive applications. Figure 4.7 B reinforces
this observation because it shows the scaling of the system on BerkeleyDB in terms of

74 4 Incrementalizing Lattice-Based Program Analyses

(A) Points-to analysis run times (B) Points-to scaling on Berkeley (C) String analyses run times on Berkeley
o w |
B B g BN
~ H - = —_— _
ES 7 i E ,go i :
= ' So e '
@2 29 2 :
28 A N £ :
© © - ©
c I <
Se] — T 3 il
o~ j ' o3 1)
14 —— o o«
0
o —— — — — o
T T T T T T T T T T T T
Truth Gson PGSQL Berkeley 0 200 400 600 800 Pre Pre+Suf Pre+Suf+inc

of affected AST nodes

Figure 4.7: Run time measurement results.

update time wrt. the size of the program change. We had multiple data points per change
sizes: The line connects the mean values, and we obtained the red area by subtracting and
adding the standard deviation to the mean. We can also see on this graph that the update
times are fast, even for larger changes. For example, changes affecting ~800 AST nodes
were typically the duplication or removal of complete methods.

Let us now look at the results for the string analyses. We use the notation Pre to refer
to the string analysis that keeps track of the longest common prefix, Pre+Suf tracks the
suffix in addition, while Pre+Suf+Inc also tracks character inclusion. The initialization
times for BerkeleyDB are as follows: Pre - 13.5s, Pre+Suf - 13.8s, and Pre+Suf+Inc -
20.4s. Figure 4.7 C shows the incremental update times on BerkeleyDB. Note that the
string analyses are flow-insensitive, compared to the flow-sensitive points-to analysis, and
this also shows on the run time because the string analyses are cheaper to compute, even
incrementally. We also observe that (i) these run times meet the requirements of interactive
applications, (ii) activating one (Suf) or two more string properties (Suf+Inc) has only
very minor impact on incremental performance.

Run Time (Q 4.1): IncA achieves our goals for run time performance. It requires an
acceptable amount of initialization time even on our largest subject program, and its
update times are a few milliseconds on average.

4.8.3 Evaluating Memory (Q 4.2)

The memory consumption of IncA for the points-to analysis is as follows: Google Truth
- 670MB, Google Gson - 1GB, PostgreSQL JDBC - 4.5GB, and BerkeleyDB - 5GB (these
numbers essentially remain constant as the program changes). To put these numbers into
perspective: (i) At the time of measurements MPS used around 2GB of memory, so the
analysis on BerkeleyDB uses 2.5X of that, and (ii) the points-to analysis is a flow-sensitive
analysis, and the Jimple representation of BerkeleyDB has a few hundred thousand CFG
nodes. To provide a ballpark for the number of tuples we note that the relations of the
points-to analysis on the BerkeleyDB together contain roughly 57 million tuples. These
are high numbers, and they are because of extensive caching, but, in return, we have fast
incremental updates.

The memory requirement of the string analyses on BerkeleyDB are as follows: Pre -
1.6GB, Pre+Suf - 1.7GB, Pre+Suf+Inc - 2.2GB. The overall lower memory use compared
to the points-to analysis is because of flow-insensitivity. An interesting observation is that

4.9 Chapter Summary 75

maintaining the longest common suffix in addition to the prefix requires only a 100MB
extra memory, but activating the character inclusion induces an extra 500 MB compared
to Pre-Suf. This is because the character inclusion lattice wraps two sets of characters,
which is expensive in terms of memory for the large code base.

Memory (Q 4.2): We pay the price for the fast update times with memory. The memory
requirement of IncA can grow large, but it is not prohibitive. In practice, developers
would typically work with smaller parts of projects, reducing the absolute amount of
memory needed. In addition, we have concrete future plans for reducing the memory
requirement (see Section 9.2).

4.8.4 Discussion

On Jimple as the subject language While choosing Jimple as the subject language
of our analyses made the construction of the CFG simpler, it also made our incremental
analysis pipeline (as depicted in Figure 1.3), in fact, non-incremental. This is because
producing the Jimple AST from textual Java code requires several components that are
non-incremental. First, we produce Java bytecode from the textual source code of our
subject programs with the javac compiler. This is a non-incremental process. Then,
we use the Soot Jimple transformer to create the Jimple (in-memory) AST from Java
bytecode. This is yet another non-incremental component. Finally, we use an AST-to-AST
transformation to turn a Soot Jimple AST into an MPS Jimple AST. This is again a non-
incremental transformation. Having all these non-incremental components was the reason
why we programmatically introduced program changes in the MPS Jimple AST throughout
our performance evaluation. We acknowledge that this is not an ideal setup in terms of
aiming for an entirely incremental pipeline. However, for the purposes of our evaluation,
specifically to show the incremental performance of IncA and to measure the memory
overhead, this setup was sufficient already. Additionally, there is a long line of research
work required to efficiently incrementalize all of the above mentioned non-incremental
components, and this was beyond the scope of this dissertation.

On inter-procedurality We have benchmarked IncA on intra-procedural analyses here
because these are relatively easy to express while also requiring significant computation
time as the size of procedures grow. The goal of incrementalization is to make the compu-
tational effort for (re-)analysis proportional to the size of the change, not to the size of the
entire subject program. As we demonstrated above, we have achieved this goal with IncA.
However, as we will demonstrate in the next chapter, the performance of IncA is still not
sufficient to efficiently support inter-procedural analyses. They could already be expressed
with the IncA Datalog language, but the back end is simply not efficient enough to deliver
the update times that applications in IDEs need.

4.9 Chapter Summary

In this chapter, we added support for custom lattices and recursive aggregation in IncA.
This required extensions in every component of the IncA architecture. We first developed

76 4 Incrementalizing Lattice-Based Program Analyses

the DRedy, algorithm that incrementalizes recursive aggregation over lattices in the back
end. Then, we extended IncA Datalog with a DSL to define lattices and with new language
constructs that allow to use lattices in rules. We made our compiler lattice-aware, and we
introduced a new aggregating graph pattern in VIATRA QUERY. We kept the integration
with MPS and implemented full IDE support for lattice-based analyses. Our evaluation on
real-world subject programs shows that IncA provides fast update times for incremental
lattice-based analyses.

We revisit again our requirements from Section 1.4. We did a major step in this chapter
by improving the Expressiveness (R3) of IncA, as custom lattices and aggregation are
fundamental to static analyses. We provided a correctness proof for our DRedy, algorithm
(Correctness (R1)). We still meet the requirements Declarativity (R5) and Genericity (R4),
as the extended IncA Datalog is still a declarative language and also independent of a
particular subject language or analysis. Regarding Efficiency (R2), IncA clearly delivers
the performance interactive applications in IDEs need, as it delivers millisecond update
times for lattice-based analyses. However, while the current back end efficiently supported
the presented benchmark analyses, later (wrt. to the timeline of IncA development), it
became clear to us that it cannot efficiently support inter-procedural analyses. We work
out a solution to this problem in the next chapter.

77

Incrementalizing Lattice-based
Inter-procedural Analyses

This chapter shares material with a paper that is under submission at PLDI’21.

Abstract — Inter-procedurality is key in improving the precision of static analyses, as it
allows to reason across function calls instead of analyzing functions in isolation. However,
efficient incrementalization of inter-procedural lattice-based analyses is particularly chal-
lenging for two reasons. First, in an inter-procedural setting, even a small program change
can have a large impact on the overall analysis result, thereby hindering the potential
for reusing much of the previously computed results. Second, a recursively computed
aggregate result may need to be completely unrolled after a program change, and the
incurred computational overhead is exacerbated by inter-procedurality, as well.

In this chapter, we present an approach that can efficiently incrementalize lattice-based
inter-procedural analyses. We use IncA Datalog for analysis specification, and we develop a
novel incremental solver called LADDDER. Compared to prior approaches including DRed;,
LADDDER uses a non-standard aggregation semantics which allows to loosen monotonicity
requirements on analyses and to improve the performance of lattice aggregators, enabling
more efficient analysis implementations. In our evaluation, we also take a novel approach,
as we quantify changes by their impact on the overall analysis result. We show that most of
the time the impact is low, so there is potential for incremental reuse, but prior approaches
cannot exploit this. In contrast, LADDDER can utilize the potential and deliver update times
on the ballpark of milliseconds on average, with manageable memory overhead.

78 5 Incrementalizing Lattice-based Inter-procedural Analyses

5.1 Introduction

Each previous chapter in this dissertation was a stepping stone for improving the expressive
power of IncA. We built the baseline version of IncA with support for recursive analyses
in Chapter 3. Then, we added support for lattices and recursive aggregation in Chapter 4
given that these are fundamental to static analyses. An important precision aspect of
static analyses is whether they reason about subject programs intra-procedurally or inter-
procedurally. We have not considered inter-procedural IncA analyses as case studies so far.
This was not because of an expressivity limitation: As we will show in this chapter, IncA
Datalog can express inter-procedural analyses already. The reason for this is related to the
back end: Efficient incrementalization and inter-procedurality are at odds with each other.

The idea behind incrementalization is that small program changes typically cause small
changes in the analysis result, so updating the previous result promises significant speedups
over re-computing a completely new result. In reality though, it is difficult to deliver on this
idea for lattice-based inter-procedural analyses. First, in case of inter-procedural analyses,
even a small program change can have a large effect on the previous analysis result. We
define the notion of impact to represent the size of the difference between the analysis
results before and after a change. Clearly, high-impact changes can destroy the performance
gains of incrementality. Second, lattice-based analyses often yield results that are computed
over several fixpoint iterations due to recursive dependencies in the analysis. For example,
this is the case when analyzing loops or recursive data structures. When a subject program
changes, these fixpoint iterations may be completely unrolled and a new result may be
re-computed with new fixpoint iterations. Such cyclic dependencies severely complicate
efficient incrementalization, and inter-procedurality exacerbates this.

The incremental analysis community has long been looking to find the right balance be-
tween efficiently handling high-impact changes and expressiveness in terms of supporting
custom lattices and aggregation. For instance, several frameworks can efficiently deal with
inter-procedural analyses, but, in exchange, they limit the kinds of supported analyses,
as is the case for e.g. incremental set-based [68, 93], compositional [24], or IFDS/IDE [9]
analysis (see Section 8.1 for more details).

Datalog-based frameworks make the opposite trade-off. Plenty of examples demonstrate
that Datalog is expressive for a wide range of analyses, as demonstrated by lattice-based
analyses with IncA in Chapter 4, or other examples including points-to analyses [112],
analysis of concurrent [123] or distributed systems [27]. However, state-of-the-art incre-
mental Datalog solvers struggle to deliver good performance for inter-procedural analyses.
For example, when we benchmarked IncA with an inter-procedural analysis, we discovered
two major scalability problems affecting DRedy, in the back end:

« DRedy, frequently performs unnecessary re-computation after certain deletions,
which is exacerbated by high-impact changes: We frequently measured incremental
update times comparable to from-scratch times.

« DRedj, imposes overly strict monotonicity requirements on lattice-based analyses,
which requires inefficient encodings of important analysis patterns: We observed
that such analyses do not scale inter-procedurally at all.

The limitations of DRed;, and the other prior approaches show that efficient incremental-

5.1 Introduction 79

ization of analyses with custom lattices and recursive aggregation in an inter-procedural
setting is still a significant problem.

In this chapter, we prepare the back end of IncA to efficiently incrementalize lattice-
based inter-procedural analyses. We reuse IncA Datalog (including lattices) for specifying
analyses, but we provide a new incremental Datalog solver specifically for this problem.
We call our incremental solver LADDDER, which is short for Lattice Aggregating Differential
Dataflow-based Datalog EvaluatoR. LADDDER is based on differential dataflow (DDF)[82], a
generic computational model for incrementalizing dataflow-based fixpoint computations.
Prior work [51, 102] demonstrated the use of DDF as an incremental fixpoint algorithm
for Datalog, but it is limited regarding aggregation: (i) lattice aggregation is inefficiently
incrementalized, and (ii) just like DRedy, the monotonicity requirements on analysis def-
initions are too strict to allow an efficient encoding of the analysis. LADDDER improves
on earlier approaches with novel aggregation semantics that allows for (i) efficient in-
crementalization of aggregations, as well as (ii) termination and correctness guarantees
that are valid under more relaxed monotonicity assumptions. What makes efficient incre-
mentalization of aggregators challenging in DDF is that, while other incremental fixpoint
algorithms [47, 88] coalesce results into a single “current” state, DDF maintains a partially
ordered set of intermediate computation states. Incremental aggregators must thus collect
aggregands from, and yield results at, multiple such states. We designed data structures
that enable efficient incrementalization in LADDDER by exploiting the algebraic properties
of lattice-based aggregations.

We answer two separate questions in our evaluation. First, whether the domain of lattice-
based inter-procedural program analyses is at all amenable to efficient incrementalization.
We are the first to formalize a notion of incremental impact: As noted above, high-impact
changes are those where the old and the new analysis result differ significantly, which
entails slower update times. Efficient incrementalization is only possible if high-impact
changes occur infrequently. The second empirical question is whether LADDDER can deliver
efficient incremental updates in this domain. Both experiments measured the effects of a
series of synthetic code changes on an inter-procedural lattice-based points-to analysis with
code from the Qualitas Corpus [128]. We observed that the vast majority of the random
program changes have low impact. This means that there is potential for incremental
reuse of previous results. However, as we will show, prior approaches cannot exploit this.
In contrast, LADDDER manages to handle more than 99% of such changes in sub-second
time, which is exactly the ballpark that applications in IDEs need. We also show that
LADDDER significantly outperforms DRedy . The results confirm that IncA equipped with
LADDDER in the back end provides a practical solution for incrementalizing inter-procedural
lattice-based analyses.

Contributions In summary, we make the following contributions:
« We show why existing Datalog-based incremental fixpoint algorithms are not fit to
support inter-procedural lattice-based analyses (Section 5.2).

« We introduce LADDDER, a novel technique based on DDF to evaluate Datalog with
lattice-based recursive aggregation (Section 5.3).

+ We design optimizations for LADDDER that exploit the algebraic properties of lattices
to improve aggregation performance (Section 5.4).

80 5 Incrementalizing Lattice-based Inter-procedural Analyses

« We formally define the semantics of LADDDER and provide correctness proofs (Sec-
tion 5.5).

« We evaluate the performance of our approach with a lattice-based inter-procedural
points-to analysis on real-world subject programs (Section 5.6).

5.2 Prior Work and Problem Statement

We introduce a running example to illustrate the challenges of incremental lattice-based
inter-procedural analyses. We develop a lattice-based points-to analysis, which reports on
the set of objects a variable can point to at runtime. We use IncA Datalog for the analysis
specification. We review how DRedy, falls short on efficiently supporting our points-to
analysis. We discuss other non-Datalog-based approaches in Section 8.1.

Running example: singleton points-to analysis We introduce a running example
first, which we will use for illustration purposes throughout the chapter. Our running
example is an inter-procedural singleton points-to analysis that distinguishes three kinds
of points-to targets using a lattice: no target (bottom), a single target, or any target (top).
This approximation makes the analysis cheaper to compute because it limits the amount of
information we keep track of precisely. Later in Section 5.6, we will consider a version of
the analysis that keeps track of a set k number of points-to targets precisely. Points-to is
the basis of many other analyses. For example, using this analysis, an IDE can perform
approximate call graph construction (without precisely reasoning about call receivers with
large points-to sets), or a compiler may perform inlining of virtual calls if the number of
call targets is below a certain number.

Figure 5.1 illustrates how the analysis works on a subject program. The analysis starts
in method Executor.run. It has two virtual calls to proc, using variables s1 and s2 as
receivers. The singleton points-to analysis determines that s1 and s2 point to a single
object S via variable s. Thus, we obtain precise call-graph edges for the calls of proc inside
run, targeting Session.proc(). To derive the points-to targets of this within method
proc, we join the points-to targets of the call receivers s1 and s2. Since s1 and s2 point
to the same object S, we conclude this points to the single target S, which allows us to
resolve the recursive call of proc precisely. In contrast, variable f in proc can point to
two different targets, which our singleton lattice approximates as Top. When resolving
f.init (), we therefore must consider all init methods with compatible receiver types.

Points-to analysis in IncA Datalog We use IncA Datalog for the implementation of
our running example. However, to simplify the presentation, we start off with a set-based
points-to analysis and then rewrite the analysis later to use a lattice for controlling the
approximation. Consider the following rules of a points-to analysis implementation in
IncA Datalog motivated by a points-to analysis from the Doop framework [112]:

IThere is similarity between this analysis and the strong-update points-to analysis presented in Section 4.7, as
both analyses use the singleton set lattice. However, the strong-update points-to analysis mixes flow-insensitivity
and flow-sensitivity to find the right precision-performance trade-off, as it tracks points-to sets per CFG node
as long as a set is singleton. The analysis presented in this section is different in this regard because it is an
inter-procedural flow-insensitive analysis that never even tries to precisely track non-singleton points-to sets.
The two analyses could be combined, but we do not consider that here.

5.2 Prior Work and Problem Statement

81

class Executor { class Session {
—»public static_void run Env env) {i_public void proc() {
Session s - g Factory f;::::::" R
ST AR
i (..0) { o
Session sl = S5

sl.proc() f=c;

} else { , Py

Session s2 H \\ Poflinit();
T SR Gl o

if (.. T
/f =|new DefaultFactory();
.} else

Factory c =|new CustomFactory() :

i @0verride void init() { ... }

abstract class Factory {

i abstract void init();
i}

class DefaultFactory extends Factory {
i @verride void init() { ... }

class CustomFactory extends Factory {

: class DelegatingFactory extends Factory {
i @0verride void init() { ... }

;é:proc(), i this.proc();
133 My T ilegend: POINtSTt

Figure 5.1: Example subject program used as input to the smgleton pomts -to analysis.

PT (var, obj) = {

Reach (meth), Alloc(var, obj, meth)
} alt {

Move (var, from), T(from, obj)
} alt {

Resolve(_, _, var, obj)
}
Resolve (invo, meth, this, obj) :=
Reach (meth) := {

Resolve(_, meth, _, _)
} alt {

FuncName (meth, "run")

}

The PT rule computes tuples (var, obj) where var may point to obj at runtime. The first
alternative considers heap objects allocated to variables, the second alternative transitively
computes pointed objects through assignments between variables, while the third alterna-
tive computes the points-to targets of this variables. Resolve relates a virtual call invo,
its target method meth, the this variable in the target method, and its points-to target(s)
obj. We will show the rule body later. Finally, Reach enumerates reachable methods. First
it collects all methods from Resolve that can be the target of a virtual call. Second, the
run method (in Figure 5.1) is considered reachable by default. The other relations, such as
Alloc, Move, or FuncName, appearing in the code are virtual EDB relations enumerating
facts about the subject program.

The previous points-to analysis precisely keeps track of the points-to targets. In our
example, we only track singleton points-to targets precisely, but approximate to Top
otherwise using a singleton lattice. Such lattice-based computations cannot be efficiently
encoded in standard Datalog operating only with sets of tuples. To this end, we reuse the
lattice extensions of IncA Datalog introduced in Chapter 4.

Figure 5.2 shows the implementation of our singleton points-to analysis. The main dif-
ference compared to the analysis from before is that the points-to sets are now represented
with a singleton lattice value. To compute the lattice value, we use the PT¢,jjec; collecting
rule and the PT aggregating rule. We use lattice aggregator 1ub (least upper bound) in PT:
If a variable points-to different singleton sets, the aggregation result will be Top. This is
where the analysis over-approximates. Note that the aggregation is recursive, as PTyject
and PT recursively call each other through Resolve. This is important to point out, as this

82 5 Incrementalizing Lattice-based Inter-procedural Analyses

PTcollect (Var, oSet) := {
Reach (meth), Alloc(var, obj, meth),

oSet == SingletonSet (obj)
} alt {
Move (var, from), PT(from, oSet)
} alt {
Resolve(_, _, var, oSet)
}
PT (var, lub(oSet)) == {

PTcollect (Var, oSet)
}

Resolve (invo, toMeth, this, oSet) :— {
VCall (base, sig, invo, inMeth), Reach (inMeth),
PT (base, oSet), oSet [Top ,

obj == unwrapSingletonSet (oSet) , HeapType (obj, type),
Lookup (type, sig, toMeth), ThisVarInFunc(toMeth, this)
} alt {

vCall (base, sig, invo, inMeth), Reach (inMeth),

PT (base, oSet), oSet = Top ,

Lookup(_, sig, toMeth), ThisVarInFunc (toMeth, this)
}

Reach (meth) = {
Resolve(_, meth, _, _)
} alt {
FuncName (meth, "run")

}

Figure 5.2: Excerpt of the singleton points-to analysis implementation in IncA Datalog. Lattice operations are
highlighted with blue color.

will lead to cyclic reinforcement among aggregate results, which is known to complicate
efficient incrementalization as already discussed in Section 4.2.

We now provide the implementation of Resolve, which must be lattice-aware. We use
two alternative rule bodies. The first one handles the case when the points-to value of the
receiver is a singleton set: oSet [Top. In this case, we look up the target method of the
call with the sought signature on the type of the receiver object. The singleton points-to
value also gets associated with the this variable in the method. The second alternative
handles the Top case: oSet 2 Top.? As we do not have a specific type, we look up all
methods with the right signature, and we also associate Top with the this variable. We
pay the price for giving up the precise tracking of the target objects. Figure 5.1 illustrated
this precision loss for the virtual call £.init ().

Given a set of Datalog rules and facts, a Datalog solver computes the minimal set
(least fixpoint) of tuples that satisfy all rules. The solving process is an iterative fixpoint
computation where rules are applied repeatedly until no new tuples can be inferred. To
ensure termination and minimality, the rules must be monotonic. In standard Datalog,
without custom lattices, this means that each fixpoint iteration can only ever produce new

2Note that we implement the comparisons [and 3 as lattice operations in the real analysis code. Here, we use
graphical symbols for brevity.

Qs W o =

5.2 Prior Work and Problem Statement 83

tuples, never retract previously inferred ones. With lattices, the standard requirement
is E-monotonicity according to the semantics by Ross and Sagiv [100]. Throughout the
fixpoint computation, c-monotonic rules must either infer new tuples or increasingly
replace lattice values (in tuples), which means that a lattice value is replaced by a larger one
wrt. a chosen c order of the respective lattice. This was also the guiding principle when
designing DRedy, in Section 4.4. Meeting this requirement will pose challenges during the
incrementalization of our analysis.

Incremental singleton points-to analysis We consider now an incremental version of
our singleton points-to analysis. Imagine a change in method run in Figure 5.1, where we
replace the initializer of s by s = new EncryptedSession(). An incremental singleton
points-to analysis must propagate the effect of this change to update the previously com-
puted analysis result. However, since our analysis is inter-procedural, the effect can have a
large impact and may affect information in multiple methods. In our example, we have to
fix the points-to targets of s, s1, s2, and this, as well as the targets of all three proc calls.

Our goal was to use IncA with DRedp, for the incrementalization of our analysis. This
is an interesting experiment because we did not benchmark inter-procedural analyses
in previous chapters. We set out to measure the performance of IncA on the source of
the minijavac compiler.> With 6.5 KLoC, the code base is relatively small, but it uses JRE
library methods, so the transitively reachable code size is considerable. Our plan was to
first perform a non-incremental analysis and then introduce program changes to measure
the update times. We set a 10 minute timeout for the initial analysis, and IncA timed out.
Further investigation revealed that DRed;, would not have been able to finish with any
timeout, as the fixpoint computation could not terminate.

We investigated the problem more, and we found that we violated a requirement of
DRedy, regarding Monotonic recursion (A 4.1). Specifically, the problem is with the Resolve
rule in Figure 5.2. When the second points-to target of var is found, oSet switches from a
singleton set to Top. This makes the second alternative body of Resolve applicable. But,
this also means that all call targets of invo inferred in the first alternative now need to be
retracted. However, removing these call targets may again invalidate one of the points-to
targets of var, meaning the first alternative is actually the relevant one. DRedy, prohibits
analysis formulations like this exactly because they lead to non-termination. We observe:

Observation 1: Violations of =-monotonicity naturally occur in definitions of static anal-
ysis when giving special treatment to lattice values such as Top.

In an attempt to obtain a baseline performance estimate with DRed;, anyway, we rewrote
the Resolve rule to satisfy c=-monotonicity. For ease of reference, we name the original for-
mulation of Resolve (in Figure 5.2) branching and the new formulation non-branching.
The non-branching formulation uses a single alternative to handle both singleton and
Top points-to values:

Resolve (invo, toFunc, this, oSet) = {
VCall (base, sig, invo, inFunc), Reach (inFunc),
PT (base, oSet), Heap(obj),
SingletonSet (obj) £ oSet , HeapType (obj, type),
Lookup (type, sig, toFunc), ThisVarInFunc (toFunc, this)

3https://github.com/mtache/minijavac

https://github.com/mtache/minijavac

84 5 Incrementalizing Lattice-based Inter-procedural Analyses

}

The idea of non-branching is to enumerate all heap objects and filter the relevant ones
with SingletonSet(obj) £ oSet. If oSet is a singleton set then this boils down to
an equality check between the contained object and obj, but, if oSet is Top, then the
check always holds. With this formulation, we can ensure that the analysis never retracts
previous inferences.

Again, we tried to measure the performance of IncA on minijavac, now with the non-
branching Resolve formulation. Unfortunately, IncA again timed out after 10 minutes.
Through performance profiling, we learned that our non-branching Resolve formulation
computed tens of millions of intermediate tuples, which led to the time out. What happens
is that the rule queries the points-to set of a variable PT(base, oSet), joins the tuples
with all heap objects Heap (obj), and then filters the tuples with SingletonSet (obj) &
oSet. The join between PT and Heap is intractable and must be avoided. Note that our
branching formulation of Resolve did not need to compute this join because we provided
special treatment for Top.

Observation 2: Encoding computations to satisfy c-monotonicity can make them in-
tractable.

As a last attempt to obtain a performance baseline, we reverted to the set-based points-
to analysis from Door (without singleton sets). This analysis trivially adheres to c-
monotonicity required by DRedy, since there is no lattice aggregation. This measurement
is interesting because even in a lattice-aware computation, most operations are set-based.
For example, Figure 5.2 is lattice-aware but contains only 5 lattice operations, while the
rest is set-based joins, selections, and projections. We again ran IncA on minijavac, now
using the Doop analysis. To measure the performance, we randomly deleted and re-added
assignments to alter the points-to targets. We recorded the following running times:

Initialization: 35.24s
Incremental insertion: 0.02s mean (+0.01s with 95 % confidence) 3.40s max
Incremental deletion: 9.14s mean (+0.57s with 95 % confidence) 21.75s max

The initialization time is a one-off cost, so we deem 35 s unproblematic. More interesting are
the times required for incremental processing. When inserting a new assignment statement
into the code, IncA yields the new results within 20 ms on average. This clearly is fast
enough for generating continuous feedback in an IDE. However, deleting an assignment
reveals poor incremental performance, requiring 9.14 s on average. We found that the
performance problem is actually due to DRed, not even DRedy .. As discussed in Section 2.4,
in response to a deletion, DRed invalidates all results that (transitively) depend on the
deleted code, and then it re-derives results that are still valid after the deletion. This is
to ensure correct updates in face of cyclic dependencies in the analysis result, however it
makes incremental handling of deletions prohibitively slow. For intra-procedural analyses
this problem was not apparent when benchmarking IncA in Section 4.8.

Observation 3: DRed appears unsuitable for incrementalizing inter-procedural analyses.

5.3 Incremental Lattice-Based Program Analysis with LADDDER 85

We are left in a situation where none of our attempts for an incremental singleton points-to
analysis worked out. IncA could support the non-branching encoding, but the analysis is
prohibitively expensive. The branching encoding would avoid the expensive join, but IncA
(through DRedy) requires =-monotonicity. Even though, we considered only IncA here,
the problem is actually more general because other frameworks that support lattice-based
aggregation also face a similar restriction, as we discuss in Section 8.1. We also tried the
set-based analysis, and we found that it is unlikely that any DRed-based framework can
scale to inter-procedural analyses in general due to the excessive over-deletion of tuples.
However, there is also a non-DRed-specific problem with the set-based analysis. By giving
up the lattice abstraction, the analysis also precisely tracks the non-singleton points-to
sets. We examined the results for minijavac, and we found that 30% of the variables have
non-singleton points-to sets. This accrues considerable unnecessary work when we are
only interested in singleton points-to sets. We revisit this observation in Section 5.6.6.

Problem statement Our goal in this chapter is to develop the first solution that can
efficiently incrementalize inter-procedural analyses with recursive aggregation over lattices.
Given that we improve the IncA framework as a whole in this chapter, all of our require-
ments from Section 1.4 are relevant. We provide additional details to Expressiveness (R3)
and Efficiency (R2) though. Regarding Expressiveness (R3), this section demonstrated
that IncA Datalog can already express inter-procedural analyses, even ones that are not
c-monotonic. This is desired; Our solution shall apply to all inter-procedural analyses with
custom lattices. In particular, it should support the branching analysis implementation of
the case study. Regarding Efficiency (R2), our solution shall provide the kinds of update
times that interactive applications in IDEs need, even for inter-procedural analyses.

In the following, we develop a new incremental solver for IncA. Our solver not only
supports recursive lattice-based aggregations but also imposes a weaker monotonicity
requirement compared to prior approaches, including DRedy, thus permitting the branch-
ing implementation from above. We prove correctness and termination guarantees for
our new solver, and we empirically validate that it provides sub-second update times on
average for inter-procedural lattice-based analyses.

5.3 Incremental Lattice-Based Program Analysis
with LADDDER

While IncA Datalog with lattices is a good fit for a wide range of static analyses, Sec-
tion 5.2 revealed two main obstacles to efficient incrementalization, especially in the face of
high-impact changes: cyclic reinforcement among partial analysis results and overly strict
monotonicity requirements on the analysis definition. Our approach to solve these chal-
lenges is based on a new incremental Datalog solver called LADDDER. We use a non-standard
aggregation semantics in LADDDER, which makes it possible to loosen the strict monotonic-
ity requirement enforced by existing incremental solvers including DRedy, thereby allowing
for more efficient analysis definitions (cf. branching). LADDDER builds on differential
dataflow [82] (DDF), which is a generic computational model to incrementally maintain
any iterative dataflow computation. Instead of coalescing the partial results obtained in
each iteration of a fixpoint computation, DDF maintains an ordered set of computation

86 5 Incrementalizing Lattice-based Inter-procedural Analyses

states together with the partial results they compute. Such states are placed along multiple
“time axes”: One axis stands for the epochs of changes in the subject program, and another
one for the fixpoint iterations.

5.3.1 Initial Analysis with LADDDER

We review how LADDDER initializes the analysis result, and we discuss the incremental
maintenance in Section 5.3.2. The input to LADDDER is an analysis encoded as IncA Datalog
rules plus facts encoding the subject program. LADDDER repeatedly applies rules until a
fixpoint is reached, thereby computing the tuples that the relations (defined by the rules)
consist of. LADDDER follows a semi-naive evaluation strategy [44]: In each iteration of
the fixpoint computation, LADDDER only considers new tuples from the previous iteration
instead of re-applying rules on the whole set of tuples computed thus far. LADDDER breaks
up the analysis into dependency components and applies rules according to a topological
ordering of these components: Only after the fixpoint iterations finished in all upstream
components, will LADDDER start evaluating a downstream component.

Figure 5.3 shows the evaluation trace of LADDDER on the subject program from Figure 5.1
focusing on the dependency component that consists of the rules defined in Figure 5.2. The
trace goes from top to bottom along the fixpoint iteration time axis. An increasing timestamp
(denoted by T) value is associated with every iteration, and the figure shows all tuples
inferred at a specific timestamp. The fixpoint computation starts from the tuples produced
by upstream dependency components, which, for our example, are all singleton components
consisting of rules enumerating facts. These facts all appear at timestamp 0. The iteration
time axis in the figure is not a mere visualization aid to follow the fixpoint computation:
DDF-style approaches [51, 89, 102], also including LADDDER, actually remember which
timestamp each tuple was derived at. This is in contrast to other incremental solvers (like
DRedp) that coalesce the sets of tuples into a single “current” state.

Remembering timestamps is key to efficient incrementalization in LADDDER because
they help to rule out cyclic reinforcement between partial results, as we will show in
Section 5.3.2. For example, LADDDER derives tuple Reach(proc) both at timestamp 7
and at timestamp 10. The first derivation is due to the resolution of the s1.proc() and
s2.proc() calls, while the second one is due to the recursive call in proc itself. The latter
is a consequence of the former, therefore it is derived at a later iteration, i.e. with a higher
timestamp. Generally, we must increment timestamps (i.e. postpone for the next iteration)
at least once as we go around a dependency cycle among rules to unroll the recursion. We
chose a simple way to achieve this: Each inferred head tuple gets a timestamp that is one
higher than the highest timestamp of the tuples used in the rule body.

LADDDER also maintains a support count for each tuple per timestamp: The count is
equal to the number of alternative derivations a given tuple has at a specific timestamp.
For example, Reach(proc) has count 2 at timestamp 7 (note the 2x symbol) because it
can be derived in two alternative ways by using the two Resolve tuples from timestamp
6. Support counts play an important role in avoiding unnecessary re-computation during
incremental maintenance because they tell LADDDER if alternative derivations remain for a
tuple after deletions. We demonstrate this in detail in Section 5.3.2.

Based on support counts, LADDDER considers different forms of timelines for each tuple.

5.3 Incremental Lattice-Based Program Analysis with LADDDER 87

T Tuples produced by T;

facts (VCall, Move, Alloc, ...)
Reach(run)

PTcottect(s: {S})

PT(s, {S})

PTcottect (81, {S), PTcoltect(52, {S})
PT(s1, {S}), PT(s2, {S})

—_

Resolve(s1.proc(), proc, thissession, {S}), Resolve(s2.proc(), proc, thisgession, {S})
2xPT coprect(thissessions {S}), 2xReach(proc)

PT(thisgession {S}), PTcotiect(f, {F1}), PTorect(c, {F2})

Resolve(this.proc(), proc, thisgession, {S}), PT(£, {F1}), PT(c, {F2})

PTcoitect(f, {F2}), PTcottect(thissession, {S}), Reach(proc),
Resolve(f.init(), initpef.Factorys thispef.Factory, {F1})

PT(f, Top), PT(thisgession, {S}), ReaCh(initDef.Factory)

O | 0| N[|G| s WD

—
[}

—_
—_

Resolve(f.init(), initpef. Facrorys thispef.Factory> Top)s
12 Resolve(f.init(), initcys Factory, thisCus.Factory’ Top),
Resolve(f.init(), initpe; Factory thisper.Factory Top)

13 ReaCh(initCus.Factory)» ReaCh(initDel.Factory)

Figure 5.3: LADDDER evaluation trace for the singleton points-to analysis on the subject program from Figure 5.1.
{O} represents a singleton set containing abstract object O.

Figure 5.4 shows the timelines of tuple Reach(proc); for now, ignore the dashed lines
in the figure. Cumulative count shows the total number of alternative derivations as a
function of timestamps: There are 2 alternative derivations at timestamp 7, and one more
at timestamp 10. From the cumulative count timeline, a cumulative existence timeline can
be inferred: Its value is 1 if the tuple exists at a specific timestamp, 0 otherwise. Ultimately,
the cumulative existence is the important information for the fixpoint computation: a
Datalog rule can use a tuple only when it “exists". This is straightforward during the
initial semi-naive evaluation because consecutive iterations infer new tuples based on
the tuples from previous iterations, but will gain significance in an incremental setting
(see Section 5.3.2). To maintain the cumulative timelines during semi-naive evaluation,
LADDDER uses differential timelines that reflect the changes in the cumulative ones. The
differential count signals the changes in support counts at specific timestamps, while the
differential existence is either +1 or -1 to signal the appearance or disappearance of a tuple.

The aggregation semantics of LADDDER vastly differs from previous approaches, influ-
encing how timelines are maintained. All existing DDF-based frameworks [51, 82, 102], as
well as non-DDF approaches like DRedy, or Flix [79], use an aggregation semantics that
was introduced by Ross and Sagiv [100]. In this semantics, a change in an aggregate result

88 5 Incrementalizing Lattice-based Inter-procedural Analyses

value

Cumulative count Differential count Cumulative existence Differential existence

1
7l ol >

timestamp

T y
timestamp timestamp i ! timestamp
A

Legend initial analysis (epoch 0) after deletion (epoch 1)

Figure 5.4: Timelines of Reach(proc) as maintained by LADDDER.

is represented with a deletion of the old and an insertion of the new result. In contrast,
LADDDER uses a non-standard inflationary semantics [48]. This means that LADDDER never
retracts old aggregate results, it only ever inflates the set of aggregate results with the newly
computed ones along the iteration time axis. Formally, for an aggregation group g (set
of grouping variables), timestamp ¢, and aggregation operator a, LADDDER computes the
set of tuples {(g, a(M[t])), (g, a(M[t - 1])),...(g, «(M[0]))} where M[T] yields the multiset
of aggregands at timestamp T This is also visible in Figure 5.3 because LADDDER derives
PT(f, {F1}) at timestamp 9 (from M[9] = {F1}) and then PT(f, Top) at timestamp
11 (from M[11] = {F1,F2}), without retracting the former. As we detail in Section 5.3.3,
this semantics allows us to loosen the monotonicity requirements on analysis definitions
compared to the stricter requirements of existing solutions, which we demonstrated in
Section 5.2. With inflationary semantics, once a tuple gets derived at a timestamp, it will
exist at all subsequent timestamps along the iteration axis. In other words, the existential
timelines can actually be represented by a single timestamp, which signals the first moment
when a tuple appears during the fixpoint computation. For example, PT(f, {F1}) has
a validity interval [9, o) according to inflationary semantics, while it would have [9,
11) with other DDF-based approaches.

However, with inflationary semantics, the relations of the analysis will contain ad-
ditional, intermediate, aggregate results. Typically, this is unwanted by downstream
components or analysis clients. Similarly, timestamps do not carry useful information
for downstream components; they are important inside the current component to unroll
recursion. To this end, LADDDER performs two steps of postprocessing on the output of
each component. First, it provides a timeless view of the tuples by simply not writing
timestamps to the output. Second, LADDDER filters out intermediate results and only writes
the final aggregate result to the output for each aggregation group. The final result is either
the largest or smallest value according to the aggregation direction. Let us now take a look
at how all this helps to incrementally update analysis results after input changes.

5.3.2 Incremental Analysis with LADDDER

Orthogonal to the iteration time axis, LADDDER uses a separate time axis to represent
epochs when the input changes. Assume that LADDDER already computed and stored the
results of a semi-naive evaluation based on the input at epoch e; and a change happens at
e2, where ey > e1. The goal of incrementalization is to correct the states of the previous
evaluation based on the diff between the inputs at e; and ey, so that they become as if the
input at e; was evaluated from scratch. LADDDER uses the input diff to trigger a new fixpoint

5.3 Incremental Lattice-Based Program Analysis with LADDDER 89

evaluation that infers which tuples need to be inserted or deleted at higher timestamps.
Let us look at an example.

Assume that we associate epoch 0 with the initial code in Figure 5.1, and we delete
s2.proc() at epoch 1. The input diff is the deletion of a virtual call fact, and LADDDER
uses this to update (compensate) its state to epoch 1:

Tuples produced by T;

-VCall(s2, proc, s2.proc(), run)

-Resolve(s2.proc(), proc, thissessions {S})
-PT coltect(thissessions {S}), -Reach(proc)

SN|jo|lo|H

Concepts presented before, such as timestamps, support counts, and timelines, all come into
play. The compensation starts with the diff appearing at timestamp 0 as a deletion, hence
the minus (-) symbol. The deletion of this fact invalidates a Resolve tuple at timestamp
6, originally derived by the first Resolve rule in Figure 5.2. Among the tuples used in
the rule body during the initial derivation, PT(s2, {S}) was inferred latest at 5, hence
the timestamp 6 for the head. Propagating this, LADDDER deletes one derivation each of
both PTyj1ect (thisgessions {S}) and Reach(proc) at timestamp 7. The support count
of both tuples gets decremented to 1 (c.f. Figure 5.3 at timestamp 7), but this means that
an alternative derivation still remains for each tuple. There is no existential diff, so the
compensating propagation terminates.

The example is indicative of a scenario where DRedy, would not stop in only three steps,
but would rather over-delete and re-derive much of the previous result. The problem is
that DRedy, cannot tell apart the different derivations of the Reach(proc) tuples, having
coalesced them into a single state. Cyclic dependency is possible; a positive support count
remaining after deleting a derivation of a tuple is insufficient evidence for its continued
existence. This is easily demonstrated by deleting the s1.proc() call in run; then the
only justification for proc being reachable is the recursive call in itself, but that recursive
call would not be executed at all if there is no other function calling proc.

While incrementalizing simple relational algebra operations in DDF is a solved prob-
lem [82, 89], the efficient incrementalization of aggregation along two (epoch and iteration)
time axes is challenging. In Section 5.4, we propose novel data structures that can effi-
ciently maintain lattice aggregates in such a setting. But first, we review the assumptions
of LADDDER on analysis definitions.

5.3.3 Monotonicity, Assumptions, and Guarantees of LADDDER

A novel aspect of our work is that LADDDER imposes looser monotonicity requirements on
analysis definitions compared to prior approaches. We first discuss the restrictions in the
state of the art by revisiting the IncA Datalog code in Figure 5.2.

Recall that for the subject program from Figure 5.1 the points-to value associated with £
is updated from {F1} to Top in iteration 11 (c.f. Figure 5.3). The standard non-inflationary
Ross and Sagiv semantics [100] would represent the change in the aggregate result as a
deletion-insertion pair: -PT(f, {F1}) and +PT(f, Top). These tuples have the same

90 5 Incrementalizing Lattice-based Inter-procedural Analyses

grouping values, and the inserted lattice value dominates the deleted one ({F1} = Top).
In Ross and Sagiv semantics, this is considered a c-increasing change of the entire relation;
termination and minimality of the fixpoint computation is guaranteed by the recursion
itself being =-monotonic (cf. Monotonic recursion (A 4.1)).

Existing approaches can only work with c-monotonicity if it is guaranteed that when a
deletion appears at some stage of the fixpoint computation, then the dominating insertion
also appears at the same stage. This can exactly go wrong with the branching analysis
encoding. The first alternative body of the Resolve rule in the branching pattern is
especially problematic because it retracts previous inferences once a points-to set switches
to Top. This was immediately a problem for the old IncA back end with DRedy, because
the solver could not guarantee that the second alternative of Resolve would produce the
dominating insertion at the same stage of the fixpoint computation. As we showed in
Section 5.2, this resulted in a diverging fixpoint computation.* However, this problem also
affects other DDF-based approaches, as it is crucial that the two parts of a =-monotonic
change always line up at the same timestamp, otherwise there is a potential for non-
termination, as well. In practice, we found this hard to guarantee: Very careful control is
required on behalf of both the solver and the analysis specifier regarding when timestamps
are incremented. While the easiest option would be to increment timestamps after each
rule application, this could easily break up the alignment between the two Resolve rules
in the above example. If the c-decreasing rule finishes evaluating the change at a lower
timestamp than the rule deriving the dominating increase, then there is a timestamp range
where the results are c-decreasing. This violates the Ross and Sagiv semantics and can
lead to non-termination.

Solving this non-termination challenge, if possible at all, requires either very clever
preprocessing of the Datalog rules, or input from the analysis developer. The goal is finding
the set of maintained relations where timestamps are increased in a way that (i) avoids
the above mentioned non-c-monotonicity, and yet (ii) the select set of relations is a cut of
the recursion, i.e. each dependency cycle goes through at least one timestamp increase,
in order to avoid cyclic dependencies in the analysis result. Furthermore, such a clever
choice of cut points will restrict the ability of the solver to internally optimize the rules, e.g.
by extracting common sub-rules into auxiliary relations that are separately maintained.
However, this is a frequently used query optimization strategy (cf. higher-order view
maintenance [5]). To this end, LADDDER uses the following looser assumption, enabled by
inflationary aggregation:

Eventual c-monotonicity (A 5.1): Our more relaxed assumption also requires =- mono-
tonicity, but only for one cut, and only in an eventual sense. Each involved rule
may derive the corresponding tuple at any timestamp independently of each other.
The insertion of the c-dominating tuple may be derived at an arbitrary timestamp,
potentially later than the deletion it dominates.

Furthermore, the analysis developer does not need to inform the query engine of a
cut, as in, the developer can just focus on defining the rules of the analysis. As long

4Interestingly, we only learned later on when researching LADDDER that our strong-update points-to analysis
case study in Section 4.7 faced a similar problem, but there the formulation of the Datalog rules happened to
ensure that such deletion-insertion pairs lined up during fixpoint computation.

5.4 Incremental Aggregation in LADDDER 91

as an eventually monotonic cut exists, the solver can choose any other cut and still
get correct results. This allows larger freedom for the analysis developer, but also for
the solver to perform optimizations. In particular, the analysis developer only has to
check that for each non-c-monotonic rule, another rule exists that will eventually
dominate the decrease, so that the end result is c-monotonic. See in Figure 5.2; the
first alternative body of Resolve is non-c=-monotonic, but the second alternative
body eventually dominates it.

LADDDER imposes two further assumptions as well:

Well-behaving aggregators (A 5.2): We call an aggregator well-behaving if it satisfies
the following requirements: (i) it is an associative and commutative binary operation,
(ii) it respects a partial order c, that is, when applied to a (multi)set of aggregands,
the result must c-dominate the aggregands, (iii) it guarantees a stationary output
in a finite number of repeated applications even in case of infinite lattices (i.e. is
a widening [30]). For lattices with finite ascending chains, the lattice operations
lub/glb immediately satisfy these criteria.

Stratified recursion (A 5.3): Non-monotonic recursion is forbidden, which entails two
constraints. First, stratified negation is required. Second, for each lattice that is
produced in a dependency component, all well-behaving aggregators applied on a
specific lattice must agree on the same c ordering direction. We emphasize that
the requirement applies per lattice per component. Note the word produced, as it
can happen that a lattice is produced in an upstream component, and the current
component just treats is relationally without aggregating on it. If a lattice is not
produced in the current component, then the requirement does not apply. Both of
these requirements are standard in Datalog solvers, e.g. DRedy, also expects that
analyses meet these conditions.

Guarantees If an analysis satisfies these requirements, then LADDDER guarantees that the

fixpoint computation terminates and yields the minimal model, i.e. the smallest relations
that are compatible with the rules (Correctness (R1)). LADDDER supports any lattice-
based analysis that is eventually =-monotonic, which also includes c-monotonic analyses
(Expressiveness (R3)). We emphasise that, in case the analysis is c-monotonic according to
the Ross and Sagiv semantics, our eventually c-monotonic semantics yields the exact same
results as the traditional one. In Section 5.6, we also evaluate Efficiency (R2). Note that we
informally refer to our abstract domains as lattices (as is typical in program analysis), but
technically we only require a partial order with a specific kind of aggregation operator. A
formal treatment of the assumptions, semantics, correctness properties, and their proof
sketches are available in Section 5.5.

5.4 Incremental Aggregation in LADDDER

As introduced in Section 5.3, DDF is incremental along multiple time axes: input epochs
and iteration rounds. Therefore an aggregator data structure must yield the aggregate value
(per each aggregation group) as a function of iteration timestamp, and then incrementally
amend this function for each new epoch. We present a number of possible architectures.

92 5 Incrementalizing Lattice-based Inter-procedural Analyses

Naive aggregation The most straightforward approach is to maintain a (multi)set of
aggregands for each iteration round - possibly sparsely, omitting timestamps where the
multiset has not changed. It is easy to maintain the invariant that each aggregand is present
in exactly those of the multisets that correspond to timestamps where the cumulative
existence timeline has the value 1. If this timeline changes for a tuple, the lattice value has
to be added to or removed from a range of timestamps; for each affected multiset, the new
aggregate value has to be computed. For large multisets of aggregands, re-aggregating
them upon each change may take a long time, therefore we have looked into incremental
aggregation techniques.

Parallel incremental aggregation While traditional incremental aggregation algo-
rithms do not support multiple time axes, they can be employed to maintain the aggregate
value of a single multiset valid at a given timestamp (or, sparsely, an interval of timestamps
where the multiset is unchanging). The difference to the naive version is that, upon up-
dating the multiset, the aggregate value is incrementally updated rather than recomputed
from scratch.

The original paper describing DDF [82] uses a similar architecture for simple aggrega-
tions, such as sum, where the sums are maintained directly instead of the multisets. For
LADDDER, we need incremental lattice aggregation though. The approach we used for
DRedy, in Section 4.4.4 is also applicable here. Given an associative and commutative binary
aggregation operation, we can maintain (i) the multiset as a balanced binary tree (e.g. AVL
tree [108, Chapter 3.3]), and (ii) at each node the aggregate of the subtree rooted there.
Copies of a single aggregand will be held in all such trees that are covered by its existential
timeline, hence the word parallel. As this can lead to excessive memory use, we propose a
novel architecture.

Sequential incremental architecture To eliminate the content duplication across the
aggregator states (trees), we take advantage of (i) the binary aggregation operator being
associative and commutative as per Well-behaving aggregators (A 5.2) and (ii) LADDDER
being inflationary so that all aggregands present at a given iteration round are also present
in all subsequent iterations. The multiset of all aggregands valid at a timestamp can
therefore be split into a multiset of “new” aggregands inserted at that timestamp, and
the multiset of “old” aggregands inserted at any previous timestamp (none of which are
removed); the total aggregate would then be the result of the binary aggregation of these
two collections. Since the aggregate of “old” values is known anyways (as the aggregate
value at the previous timestamp), it is sufficient to maintain the “new” aggregands in an
incremental aggregator data structure.

This architecture is depicted in Figure 5.5: At each timestamp, we maintain (as a
tree) the aggregate of values inserted in that iteration, if there is any (A). @ denotes the
aggregation operator, and small r; denotes the aggregate result at the root of a tree. Capital
R; depicts the total aggregate value, which is computed as a sequential roll up of all tree
root aggregates r; up to a specific timestamp. When a new epoch updates one of these trees
(B), its local aggregate is maintained as usual, and the total aggregate at the timestamp is
recomputed. Then the new total aggregate will roll up to each later timestamp to recompute
the totals, stopping early if there is no change at some point (C).

Lazy folding optimization In each architecture, propagating effects to later timestamps

5.5 Formal Semantics of LADDDER and Correctness Proof 93

A
R Ry, r2) =R Ry, r3) =
v 1 0(91,42) 20((V2,<73) Rs
| | | |
(l) t|1 t|2 t|3timestamp
B 0((R1, rn) = R2
R """O((Rn ra) = Rz O((Rz, rs) =Rs

roll up aggregate
result change /

X
| |
t|2 { timestamp
O((Rz, rs) = Rls
4
vh 0(@1, r2) =Ry O((Rz, rrs) =Rs

| | | |
(l) t|1 t|2 {3timestamp

Figure 5.5: Sequential architecture. Triangles represent balanced trees maintaining (intermediate) aggregates.

can be delayed until LADDDER finishes processing all updates at earlier timestamps, so that
each aggregation group is rolled up at most once per epoch.

5.5 Formal Semantics of LADDDER and Correctness Proof

We provide formal treatment of the theory behind LADDDER. After introducing the neces-
sary terminology, we provide a more detailed description of the assumptions of LADDDER
on input analyses. Then, we spell out correctness properties about LADDDER, and we prove
that LADDDER satisfies them, as required by Correctness (R1).

5.5.1 Concepts

Chapter 2 provides an overview on standard Datalog and its incrementalization. Here, we
introduce other advanced or non-standard terminology.

Predicates The predicates in a dependency component are divided into exported and
private predicates, depending on whether they are directly used in downstream dependency

94 5 Incrementalizing Lattice-based Inter-procedural Analyses

components or user-facing results. The former group is denoted Exp(D) for dependency
component D. The Datalog solver is free to introduce new private predicate symbols for
storing auxiliary results and rearrange rules in a way that leaves the meaning of exported
predicates intact. A cut of a dependency component is a subset of its predicates with the
property that all recursive dependency loops in the component must intersect the cut. An
interpretation is an assignment of actual relations to Datalog predicate symbols.

Immediate consequence Fixing the interpretation of the predicates in a cut (as well as
any upstream input predicates) allows the non-recursive evaluation of all rules belonging to
the component. For a cut c of a component D, the immediate consequence operator T¢(I,];)
takes I as an interpretation of upstream dependency components and J; an interpretation
of predicates in the cut, and directly applies the Datalog rules in the component to derive a
collection of tuples. These tuples will form a new interpretation of all predicates in D. By
recursion, this includes the relations in the cut; we denote by T.(I,J.)[c] the restriction of
the results to the predicates in the cut.

In addition to the standard Datalog immediate consequence operator T.(I,J.), LADDDER
also makes use of an alternative immediate consequence operator fC(I ,Jc) referred to as
inflationary consequence, which is obtained by modifying the behavior of aggregators. In
addition to the aggregate value of the current iteration, T also returns (derives as additional
tuples in the aggregating relation) each aggregate result obtained at any earlier iteration
timestamp.

LADDDER iteratively applies the inflationary consequence operator. We denote as Té’”
the effect of k iterations, with (I, J.) = Jo and TS (1, J0) « = To(, T, J)[c])., while
fc‘"(l,jc) consists of all tuples derived in any number of iterations: j"é*’([,]c) 1= fc(l)(l,jc) u
T o).

Lattices and ordering Datalog rules with aggregation or expression evaluation can
compute new values beyond those present in EDB relations. These values belong to
appropriate abstract domains, which are often (practically) infinite. In our use case of
program analysis, such domains are typically lattices. Note, however, that for LADDDER
to work correctly, we only actually require partial orders equipped with binary operators
having certain properties (see Section 5.5.2).

Given that Datalog rules can simply use lattice values produced in upstream dependency
components without aggregating them, we explicitly say that a component produces a
lattice if the value gets derived in the component by expression evaluation or aggregation.

Taking any one of the two partial orderings c for each produced lattice of a dependency
component, they can be naturally extended [100] to: (i) tuples derived by a Datalog rule as
tct/,if t and t’ are c-related on all variables of computed lattices, and agree elsewhere; (ii)
entire interpretations I c I’ if all t € I have a ¢’ € I’ with t £ /. The latter relationship is a
preorder (transitive but not antisymmetric), as it permits I = T ’£1,denoted as I = I/, even if
I # I; for finite interpretations this means agreement in a subset of tuples that c-dominate
all differences.

5.5 Formal Semantics of LADDDER and Correctness Proof 95

5.5.2 Refined Assumptions of LADDDER on the Input Datalog Rules

We refer to Well-behaving aggregators (A 5.2) and Stratified recursion (A 5.3) from Sec-
tion 5.3.3. However, Eventual c-monotonicity (A 5.1) was introduced in Section 5.3.3 only
informally, so a more formal treatment is needed here. We introduce the notion of a well-cut
recursion.

Well-cut recursion (A 5.1): We require that each dependency component D has at least
one such cut c that is well-cut, i.e. has the following properties:

Aggregated cut (A 5.1.1): The cut is placed after aggregations. More precisely, each
predicate in c is the aggregation of a collecting relation along all of its produced
lattice variables.

Observable monotonicity (A 5.1.2): ¢ contains all the exported predicates of D, i.e.
Exp(D) c c. In other words, predicates that may permanently c-decrease (when
c-increasing the input), and hence not part of the well-cut, must not be directly
externally observable, only through their effect on the well-cut. Note that this also
implies that only aggregated predicates are visible externally.

Eventually c-monotonic cut (A 5.1.3): For each lattice produced in it, we require that
the dependency component D be associated with one of the ordering directions =
of the lattice such that for the above mentioned cut also demonstrates eventually
c-monotonic recursion for the inflationary consequence operator of any other ag-
gregated cut. All tuples that will eventually be derived for the predicates in the
well-cut, in any number of iterations, must be c-dominated by at least one tuple
eventually derivable from each possible interpretation that c-dominates the orig-
inal starting interpretation. However, the two tuples need not be derived in the
same iteration. Formally, for well-cut ¢ and any aggregated cut d, J; c J; implies

T9(LJg)cl e TY(LT)Ic).

The above definition of Well-cut recursion (A 5.1) supersedes the informally described
Eventual c-monotonicity (A 5.1) from here on. Clarifying Well-behaving aggregators (A 5.2),
the aggregators of the dependency component are expected to agree with the order c of
the corresponding lattice as mentioned in Eventually c-monotonic cut (A 5.1.3).

5.5.3 Semantics

Note while the existence of a well-cut is assumed, the semantics and the implementation are
based on a more general kind of cuts: an eligible cut is any aggregated cut (as in Aggregated
cut (A 5.1.1)) that contains all of Exp(D) (as in Observable monotonicity (A 5.1.2)). As
eventual monotonicity is not required, it is not necessarily a well-cut. LADDDER performs an
iterative fixpoint computation that computes the analysis result according to the following
semantics. For a dependency component D, take an arbitrary eligible cut and start at an
empty J to compute DEV(I) : = f,f’ (I,®)[c] the least fixpoint of T. Since the inflationary
variant of the immediate consequence operator was used, the result may contain aggregate
results from older iterations, as well. They can be discarded by pruning the results at the cut
by taking the c-maximal (or, equivalently, latest result from each aggregation group). The

96 5 Incrementalizing Lattice-based Inter-procedural Analyses

result of this pruning is denoted DE™M(q) == Prn(D¥(I)). The LADDDER semantics of the
dependency component, as far as downstream components or the end user is concerned,
is the interpretations of the exported predicates Exp(D) (all contained in ¢ by Observable
monotonicity (A 5.1.2)), i.e. D®P(I) := DY ""(I)[Exp(D)].

5.5.4 Correctness Properties

If the assumptions stated above are met, LADDDER guarantees the following correctness
properties:

Termination (P 5.1): The fixpoint computation of T, completes in a finite number of
iterations for any aggregating cut c.

Stability (P 5.2): For any well-cut c, the results are stable under the consequence opera-
tions: both the raw results DF¥(I) and their pruned form D" ""(I) are fixpoints of
the inflationary consequence operator T; while the latter is also a fixpoint of the
conventional immediate consequence operator T,. Informally, this means that the
Datalog rules are satisfied in the final state.

Minimal model (P 5.3): For any well-cut ¢, among all possible T,-stable interpretations,
Di*W(I) and DE™€(]) are both c-minimal (which is only unique up to =, due to the
preorder property). Moreover among such =-minimal interpretations, DY (I) is
set-minimal. In practice, this implies the absence of recursively self-reinforcing false
tuples in the results.

Well-defined semantics (P 5.4): The semantics D®*P(I) is independent from the choice
of the eligible cut used to compute it. In fact, as long as a well-cut exists, any other
cut that satisfies Aggregated cut (A 5.1.1) and Observable monotonicity (A 5.1.2)
(but not necessarily Eventually c-monotonic cut (A 5.1.3) and Observable mono-
tonicity (A 5.1.2)) will yield the same final result as the well-cut. As eligible cuts are
easy to find algorithmically (e.g. just include all aggregations), there is no need for
the user to point out a cut to the evaluator, merely promise that a well-cut exists.
Furthermore, as any eligible cut is acceptable, the evaluator may freely choose one
based on performance considerations.

Compatible semantics (P 5.5): If the standard Ross and Sagiv aggregation semantics is
also defined for a well-cut c of the component (and thus T, is immediately monotonic),
its least fixpoint (minimal model) is D*P(I).

5.5.5 Proofs of Correctness Properties

Correctness of incremental maintenance between epochs is guaranteed by DDF. Here, we
only discuss the correctness of from-scratch derivation.

Proof sketch for Termination (P 5.1) Since recursion through negation is forbidden
by Stratified recursion (A 5.3), the inflationary consequence operator T has the property
that J; c fc(I ,Jo)l¢] (inflationary growth). This means that each tuple in the interpretation
of the cut predicates is derived again by T, so that it will be present in the next iteration
of the fixpoint search. Thus each subsequent fixpoint iteration must set-monotonically

5.5 Formal Semantics of LADDDER and Correctness Proof 97

grow. This iteration will terminate as it is upper bounded by a finite envelope set: There is
a finite number of objects in the upstream relations to serve as aggregation groups for the
cut, and (as the collection of aggregands only grow) the aggregate value of each group can
only c-monotonically grow, and only a finite number of times (given that Well-behaving
aggregators (A 5.2) requires aggregators to be widenings [30]). This is true regardless of
the chosen aggregating cut.

Proof sketch for Stability (P 5.2) Let ¢ be a well-cut. By definition, D?¥(I) is a
fixpoint of T,. DE™M(I) is a fixpoint of T, because (i) aggregators are consistent with
c (Stratified recursion (A 5.3)), so all obsolete aggregate results removed by pruning are
c -dominated by the latest aggregate result tuple, so D% (I)[c] =~ DE"™(I), (ii) by the
fixpoint nature of the former and by applying Eventually c-monotonic cut (A 5.1.3) in both
directions, this implies D% (I) = T(I, DY (I))[c] = T<(I, DX™™(I))[c], so altogether (i)
DE™M(]) = f’c‘" (I, DP™™¢(I))[c]. For set-monotonically growing T,, this implies that each
iteration step is unchanging: DE'""(I) = YA’C(I ,DEM(D)[c).

Note however that YA"C(I ,DEM(I)[c] = To(I, DE™™(I))[c] in this case, as in each aggre-
gation group, it leaves the single dominant aggregate value alone. Thus we have a fixpoint
of the non-inflationary T, as well.

Proof sketch for Minimal model (P 5.3) Any interpretation K has @c K. If K is a
fixpoint of T, for well-cut ¢, then Eventually c-monotonic cut (A 5.1.3) gives by induction
DY(I) = T®(I,)[c] & T(I,K)[c] = K[c]. Thus D™¥(I) is c-minimal, and so is DE"""¢(I) =
D™V (I). Among the ~-equivalence class, Db (I) is set-minimal, as it only contains the
topmost aggregate values.

Proof sketch for Well-defined semantics (P 5.4) Since different cuts ¢, d are just
re-arrangements of the same recursive structure, T(Elz)(l ,Ja)l¢] can be expressed in the
form Tc(I,J;)[c] for some combination J, of J;[c] and T,(I,J;)[c]. The same goes for T.
Consequently, the cuts must share fixpoints, so that for each fixpoint K of T, K[d] is a
fixpoint of fd, and vice versa.

Let ¢ be a well-cut and d be an eligible cut. Since fg‘l"(l ,®) exists by Termination (P 5.1),
it must also be a fixpoint of T,, and thus by Minimal model (P 5.3) it must dominate the
least fixpoint: T(L,@)[c] € T9(L,@)[c].

On the other hand, the argument in the proof for Minimal model (P 5.3) can be repeated
with T, for which Eventually c-monotonic cut (A 5.1.3) applies equally well: for fixpoint
K:= fc‘”(l @), we have fg’([?)cle f”{;"([,K[d])[c]. As discussed above, the two cut-specific
consequence operators share fixpoints, so the latter further equals K[c] = YA'C‘" (I,?)c].

Putting the two inequalities together, we get fc‘" (I,2)[c] = f’é"([,?)[c]. By Observ-
able monotonicity (A 5.1.2), this c-projection contains Exp(D), thus f"c”(l ,O)Exp(D)] =
T9(1,0)[Exp(D)].

While = allows differences, pruning removes them all, so Prn(TC‘I"(I ,D)[Exp(D)]) must
equal Pro(T2(I,@)[Exp(D)]) which further equals Pra(T¢(I,®)[c])[Exp(D)] = D=P(I).
Proof sketch for Compatible semantics (P 5.5) Assume T, is c-monotonic, i.e. J; £
J. implies T.(I,Jc)[c] & Tc(I,J!)[c]. By definition of the inflationary operator, we have
Te(LJo)le] = Pro(Te(L,Je)[e]) = Te(1,Je)[el, so by induction Te’(L,J)[c] = Te°(LJ)[c]. The
latter further equals DP*%¥(I) = DY™(I). Since the last form is a result of pruning, there is

98 5 Incrementalizing Lattice-based Inter-procedural Analyses

at most one tuple per aggregation group, just like in T(, J¢)[c]; the two are =~-related, and
must therefore be equal. Hence they will give the same result for Exp(D).

5.5.6 Additional Notes

The perceptive reader may notice that the inflationary consequence operator T, as defined
above, is only realizable as a function of I and J; if the second argument contains all
aggregating cuts (even those outside c). This is required so that the previous results in these
relations are available as input, which the inflationary aggregators must emit on top of the
current aggregate result. Thus J. would have to be extended to a broader interpretation
that contains extra relations on top of the cut ¢, and can be produced as a projection [cu ¢’]
for extra aggregating predicates ¢’. This way, T(1,J.) is expressible as T(I, J.[c])u .. For the
sake of simplicity, we omitted this complicating detail from the above formalizations, as it is
ultimately inconsequential: it does not affect termination or any other property. Note that
the condition for eventual monotonicity becomes Jc[c] c J/[c] — fé"(l Jo)lcl e YA"C‘“(I JOel-

The above formal arguments were slightly simplified by requiring eligible cuts to
contain all exported predicates. In practice, this requirement can be dropped; it is sufficient
for the well-cut to satisfy Observable monotonicity (A 5.1.2).

5.6 Performance Evaluation

In this section, we evaluate the performance of LADDDER with real-world subject programs.
The first question concerns the whole problem domain rather than a specific solution:

Incrementalizability (Q 5.1): Is the domain of lattice-based inter-procedural analyses
incrementalizable in principle, i.e. are high-impact changes (that affect major parts
of the results) rare?

We evaluate three other research questions related to Efficiency (R2):

Run Time (Q 5.2): Can LADDDER or DRedy, provide quick feedback for lattice-based inter-
procedural analyses?

Memory (Q 5.3): Is the extra memory consumption of LADDDER acceptable for IDE usage?

Optimization Impact (Q 5.4): How does the optimized aggregator architecture (Sec-
tion 5.4) affect the run time and memory use of LADDDER?

5.6.1 Evaluation Setup

Analysis We evaluate an inter-procedural k-update points-to analysis that over-approx-
imates to Top only if a points-to set grows beyond a fixed size k. The running example
from Section 5.2 was a special case with k = 1. The rationale behind this analysis is that
setting a low k value makes the analysis cheaper to compute, while still being useful in
practice (as explained in Section 5.2). Here, we use k = 5, which allowed to infer non-
Top points-to value for around 40% of the program variables. Tuning k to find the best

5.6 Performance Evaluation 99

251 - minijavac 999" antir emma pmd 999- ant
251- 251- 251- J
3 63-
S 63- 63- 63- J
;’-}- 15 15- 15- 15- 15-
[
3- 3- 3- 3
] |||| [[] I 1 il 31
T 6 ot ‘4,«'0'\14,4,5«'»&,1'@“,“."---"-'"-'
% PP A &® »© F & € g W LR N
A é\ & Qé{}a TS & LR

Figure 5.6: Frequency of impact values on the five subject programs.

precision-performance trade-off is an interesting research question, but we do not consider
it here. Our benchmark analysis is based on an inter-procedural points-to analysis from
Doop [112], which precisely keeps track of points-to sets of any size, reasons about fields
and arrays, and constructs a call graph. We imported this analysis to IncA and imposed
k-approximation by lattice aggregation. We implemented the k-update analysis in two
functionally equivalent ways: The branching and non-branching variants are described
in Section 5.2. We ensured that both analyses soundly approximate program behavior in
case Top is associated with a variable. We emphasise that the design of the analysis is
not our contribution and that the precision aspect of the analysis is not of interest for the
purpose of our evaluation. The analysis incrementalized by LADDDER or DRed;, (when
applicable) has the exact same precision and result as the non-incremental version.

Subject program We used code from the Qualitas Corpus [128], which is a collection
of real-world Java code bases that is also used for benchmarking Doop [40]. We selected
four projects: antlr (22 KLoC), emma (26 KLoC), pmd (61 KLoC), and ant (105 KLoC). We
also added the much smaller minijavac (6.5 KLoC) to compare the performance of DRedy,
and LADDDER. We used the Doop fact extractor to produce facts that describe the program
elements (e.g. function signatures) and their relationships (e.g. parameters of function)
from the subject program and the JRE.

Testbed We performed the benchmarks on an Intel Core i7-6820HQ at 2.7 GHz with
16 GB of RAM, running 64-bit OSX 10.15.4, Java 1.8.0_121 and MPS version 2019.1. We
performed each benchmarking scenario 4 times, dropped the result of the first one to
account for JVM warmup, and report numbers as the average over the remaining three.

5.6.2 Evaluating Incrementalizability (Q 5.1)

We must understand the impact of program changes on realistic subject programs. We
first ran a from-scratch analysis on each subject program, and then we programmatically
triggered changes. We randomly selected an allocation instruction in the subject program
(not the JRE) to delete and then re-insert it into the set of facts. We consider all 880
allocations in minijavac itself; from each of the larger subject programs, we randomly
sample 2,000 allocations.

We define the impact metric of a change as the size (in tuples) of the symmetric difference
of the pre- and post-state analysis result relations. Impact is a solver-independent metric
because it defines a lower bound on the amount of work that any solver must perform to
update an analysis result, and it does not take into account the number of tuples changed
internally by the solver. Contrast this with DRedy, over-deleting far more tuples than the

100 5 Incrementalizing Lattice-based Inter-procedural Analyses

440000 - ¥ X
100000 -
50000 = X = . % ¥
L}
zTws . : i <y =
b %
< x I X Aggregator
g 1000-
= E sequential
o
= 100- naive
8 &
3 i X
=) 10- ¥
. —®
== o = = =
minijavac antlr emma pmd ant

Subject program

Figure 5.7: Comparison of update times between naive aggregation and sequential incremental aggregation.

impact of the changes would demand (see Section 5.2).

Figure 5.6 shows the frequency (number of occurrences) of the different impact values
for the five subject programs. For all subject programs, we found that around 98 % of the
deletions have an impact below 1,000, and only around 1 % above 10,000. In contrast, the
overall number of tuples in the relations is in the ballpark of few millions. These numbers
show that there is a lot of potential for reusing previous results.

Incrementalizability (Q 5.1): We find that lattice-based inter-procedural analyses are
indeed amenable to incrementalization.

5.6.3 Evaluating Run Time (Q 5.2)

Non-branching with LADDDER and DRed;, We first tried out the non-branching
analysis implementation with both LADDDER and DRedy. We set a 10 minutes timeout
for the initial analysis. This time frame is too long for developers to wait at IDE startup,
but we did not want to discard a solver too quick given that we analyze over the entire
JRE. Unfortunately, both solvers timed out. We even tried the analysis with a preprocessed
minijavac subject program, where we only generated facts for the reachable parts of the
subject program (including JRE). This is not a realistic scenario because it requires to build
a call graph, which, in turn, requires a points-to analysis prior to our benchmark points-to
analysis. Still, it helps to reduce the number of facts significantly. However, even with the
perprocessed subject program, the solvers timed out.

Branching with LADDDER We then used the branching analysis to measure the perfor-
mance of LADDDER. We emphasise that the branching analysis computes the exact same
result as the non-branching analysis would do, but the analysis formulation requires
eventual monotonicity, which immediately disqualifies DRed; . Note that we do not perform
any preprocessing on the subject programs. We first measured the initialization time. Then,
we triggered the (i) deletion and (ii) re-insertion of each allocation instruction, and we
measured the time it takes to update the results for LADDDER after each change.

The initialization times of the analysis in seconds on the five code bases are as follows:
minijavac - 59.50, antlr - 57.46, emma - 62.16, pmd - 171.93, and ant - 101.21. Though such
delay causes a noticeable break in the development flow, we argue that they are acceptable
because they are (i) one-off costs only and (ii) possibly precomputed. Figure 5.7 shows the
incremental update times of LADDDER on a log scale in a box plot. For now, focus on the

5.6 Performance Evaluation 101

_ 23136 minjjavac * 8770-antir X 11213 emma e X 6325pmd x 42524-5nt X

£ 3100- 1 1736~ xstx 1098- 5045- ¥

o 415 X 232- s Hood 269- o 190- 598- o

£ 55 37- xS0t 41- 33- 714

e 7 6- x% 6 5. g EE o

° 1- % 1 1

s 1- 1 X
P S A S Y O S S
LA A LS LN R g W o © A D PN

S S & WF S W R R

Figure 5.8: Update times as a function of impact on the five subject programs.

red (sequential) boxes and ignore the blue (naive) boxes. Fewer than 1 % of the outliers fall
beyond 1 second, while the average update time is on the millisecond ballpark. These are
the numbers we expect for interactive applications in IDEs. However, we also acknowledge
that there are a few outlier update times reaching up to 50 seconds. To better analyze these
update times, we performed a different measurement. Figure 5.8 shows update time as a
function of impact on a log-log plot for the subject programs. We verify that the outlier
update times indeed belong to the high-impact changes. We fit a linear regression on the
log-log plot, and we found that the relationship time ~ impact' approximately holds
for all subject programs. We believe that dealing with the rare cases of high update times
in practice would be to send the analysis task to the background, while diagnostic markers
in the IDE could either become stale or hidden temporarily. This problem is something
that IDEs already encounter even with non-Datalog-based analyses.

Run Time (Q 5.2): Based on the observation that high-impact changes happen rarely,
we argue that LADDDER can deliver good incremental run times with acceptable
initialization times. It is essential that we use branching encoding (requiring eventual
monotonicity), without that, it is hopeless to scale inter-procedural lattice-based
analyses.

5.6.4 Evaluating Memory (Q 5.3)

We measured the memory use of LADDDER by taking the reachable JVM heap size after
initializing the branching analysis and subtracting the size from before the analysis.
Throughout the program changes, the memory use of LADDDER remained roughly the
same. The memory use of the analysis in GBs is as follows: minijavac - 3.70, antlr - 4.07,
emma - 3.94, pmd - 8.65, and ant 5.71. MPS used around 2 GB before running the analysis,
which means the largest overhead is ~ 4.5 times that. These values may seem high, but we
emphasize that the analysis also runs on the JRE. Furthermore, we have concrete plans for
memory optimizations, which we discuss in Section 9.2.

Memory (Q 5.3): The memory consumption of LADDDER can get large, but not pro-
hibitive. We have concrete plans on our research agenda to reduce the memory
overhead.

5.6.5 Evaluating Optimization Impact (Q 5.4)

We conducted experiments to compare the performance effects of the naive and sequential
aggregator architectures (Section 5.4). We following table summarizes our results:

102 5 Incrementalizing Lattice-based Inter-procedural Analyses

Subject Program

Aggregator Metric

minijavac antlr emma pmd ant
initialization (s) 59.50 57.46 62.16 17193 101.21
Sequential ean update time (ms) 102.62 16.30 36.60 7.83 49.42
4 max update time (s) 23.14 8.77 11.21 6.33 42.52
memory (GB) 3.70 4.07 3.94 8.65 5.71
initialization (s) 52.44 66.28 64.20 159.58 105.44
Naive mean update time (ms) 938.07 234.62 39537 57.10 485.83
max update time (s) 289.36 119.93 11638 29.34 439.90
memory (GB) 4.06 4.20 4.06 8.58 5.98

The table shows that there is no significant difference between the initialization times
and memory use for the two solutions. However, sequential aggregation is an order of
magnitude faster both in terms of mean and maximum update times compared to naive
aggregation (see also Figure 5.7).

Optimization Impact (Q 5.4): The sequential aggregator architecture updates an order
of magnitude faster than the naive one. There is no significant difference between the
initialization times and memory use.

5.6.6 Discussion on the Set-based Analysis

Given that our experiment for comparing the performance of LADDDER and DRedp, failed
with the non-branching analysis, we decided to go back to the original Doop analysis and
use that for comparison. For this scenario, we do not use any preprocessing, but we only
use the smallest minijavac subject program. Even though, we give up on k-approximating,
this is an interesting comparison because both LADDDER and DRedy, build on the same
VIATRA QUERY library, so any performance difference will be due to the differences in
the fixpoint algorithms. Note that without custom lattices, DRedy, is essentially a DRed
implementation, while LADDDER is essentially a DDF implementation. The results of this
comparison are shown in the following table:

DRed DDF
Initialization (s) 35.24 62.79
Ine. insertion (s) mean 0.02 (+0.01 w/ 95 % confidence) 0.13 (x0.10 w/ 95 % c.)
max 3.40 42.93
. mean 9.14 (£0.57 w/ 95 % confidence) 0.15 (£0.10 w/ 95 % c.)
Inc. deletion (s) max 2175 4048
Memory (GB) 2.43 5.35

These numbers show some interesting insights. DRed has lower memory use, smaller
initialization time, and smaller maximum update times compared to DDF. However, DDF
can deliver consistently low average update times, while the over-deletion problem causes

5.7 Chapter Summary 103

unacceptable average update times for deletions with DRed. The DDF numbers also reveal
why the k-approximation is actually practically relevant: Compared to the results for the
k-update analysis on minijavac (see table in Section 5.6.5), the set-based analysis adds an
extra 1.65 GB (+45%) memory use and doubles the maximum update time. We looked at
the points-to results and found that roughly 15% of the program variables in minijavac has
a points-to set larger than 5 targets. Those are all the variables whose points-to sets the
k-update analysis would approximate with Top, thereby avoiding work compared to the
set-based analysis.

We see mixed results with the set-based analysis. DDF is the clear winner in terms of
average update time, but DRed possesses better memory use and initialization time.
We also see that the set-based analysis adds considerable overhead compared to the
k-update analysis, essentially trading off performance for precision.

5.7 Chapter Summary

We presented an approach for the efficient incrementalization of lattice-based inter-proce-
dural analyses. We used IncA Datalog with lattices in the meta end and projectional
editing in the front end. Crucially, our new solver LADDDER uses inflationary aggregation
semantics to loosen the monotonicity requirements on analysis definitions compared to
prior approaches. LADDDER also combines the DDF computation model with efficient
aggregator architecture for improved performance. In our evaluation, we first verified that
lattice-based inter-procedural analyses are amenable to incrementalization because high-
impact changes happen rarely throughout a random series of changes on real-world code
bases. Then, we showed that LADDDER delivers the performance interactive applications
in IDEs need, as it updates results in sub-second time for more than 99 % of all changes,
typically in a few milliseconds. We pay the price for the fast updates with memory: The
overhead can get large, but not prohibitive.

We revisit again our requirements from Section 1.4. In terms of Expressiveness (R3) in
the meta end, we did not make any improvements, as IncA Datalog could already express
inter-procedural lattice-based analyses. However, we extended the back end to efficiently
support such analyses as per Efficiency (R2). We provided a correctness proof for our
LADDDER algorithm to satisfy Correctness (R1). Our solution still satisfies Declarativity (R5)
and Genericity (R4), as we did not change IncA Datalog, and LADDDER is also a generic
solver algorithm. In the following, we focus on a re-design of IncA Datalog to provide
better language abstractions tailored to program analyses.

105

A DSL for Incremental Program
Analysis

This chapter shares material with the ASE’16 paper “IncA: A DSL for the Definition of Incremen-
tal Program Analyses” [125] and with the FTfJP’18 paper “Incremental Overload Resolution
in Object-oriented Programming Languages” [127].

Abstract — IncA Datalog with its relational data model provides a good basis for efficient
incrementalization. As we demonstrated with case studies before, the language itself is also
sufficiently expressive for a range of practically relevant analyses. However, throughout
the development of those case studies, we frequently asked the question if relational
operations are indeed the best abstraction we can provide for analysis implementation in
IncA. Based on the development experience with a large-scale case study on type checking
Featherweight Java, we witnessed that IncA Datalog is often inconvenient to use due to
its verbosity and because it lacks certain language features that would support recurring
patterns in the analysis implementation.

In this chapter, we propose a new analysis DSL called IncAg,,. We create core IncAg,, by
re-designing the syntax of IncA Datalog, and we introduce language abstractions that are
familiar from traditional programming languages: functions, statements, and expressions.
Then, we design a number of language extensions in IncAg,,, such as pattern matching,
control statements, cast expression, that help to improve readability and conciseness of
analysis implementations. We report on two case studies where we used IncAgyp for
analysis implementation. First, we implement a type checker for Featherweight Java, and
we argue about the improved readability of the implementation by comparison to the
functionally equivalent implementation in IncA Datalog. Second, we report on a Master’s
thesis that used IncAg,,, to implement a type checker and borrow checker for Rust. These
Rust analyses constitute the largest IncA case study implemented so far, as they comprise
4 KLoC in size.

106 6 A DSL for Incremental Program Analysis

6.1 Introduction

From the perspective of incrementalization, IncA Datalog with its relational data model
provides a good foundation. Starting from well-known techniques for the incremental-
ization of relational algebra with computation networks as discussed in Chapter 3, and
coupled with our contributions in the back end, we managed to provide sub-second update
times for IncA analyses. Moreover, we demonstrated throughout the previous chapters that
IncA Datalog is expressive enough for a wide range of program analyses. However, based
on the development experience throughout those case studies, we frequently wondered if
reasoning over bare relations with relational operations, such as joins, filters, or projections
is indeed the best abstraction we can provide for the implementation of program analyses.
Typically, program analyses follow a backward or forward style with functions that take
some input values and produce output(s) [90]. Following this style is not possible with IncA
Datalog. Given that there are only minor syntactical differences between IncA Datalog and
standard Datalog (not considering the DSL for lattice definition in IncA Datalog), we started
to formulate a more general question: Is there a better DSL for implementing incremental
static analyses than Datalog?

To better study the adequacy of Datalog as a specification language, we present a
case study on overload resolution for Featherweight Java (FJ). This analysis is interesting
because we have not considered an analysis from the type checking domain before. But,
more importantly, we show that while we can express overload resolution in IncA Datalog,
the language is often inconvenient to use for the implementation due to several reasons.
We demonstrate these reasons in detail in Section 6.3, but we highlight a few of them
upfront. Some of the problems are inherent in the syntax of Datalog: (i) verbosity because
all intermediate variables must be explicitly defined, (ii) code duplication due to the lack of
control structures, and (iii) non-directional analysis definition because there is no difference
between input and output values. Others are missing language features in Datalog that
would support recurring patterns in the analysis code: (i) pattern matching to deconstruct
AST nodes, (ii) loop and if statement, or (iii) cast expression.

In this chapter, we propose a new DSL for incremental program analysis that fixes the
above described shortcomings of Datalog. We call the new DSL IncAg,,. We design IncA g,
in two steps. First, we re-design the syntax of Datalog to create the core IncAy,, language.
The word “fun” in IncAg,, stands for functional, as in, IncAy,, uses functions (instead
of rules) as the main abstraction to specify analyses. In function bodies, IncAg,, uses
constructs that are familiar from typical programming languages; statements, expressions,
input and output parameters of functions. Second, we design language extensions to
concisely support the above described missing language features. We use IncAy,, as an
alternative to IncA Datalog in the meta end of our IncA analysis framework. We compile
the IncAg,, language extensions to core IncAg,, and then that to IncA Datalog.

We evaluate IncAg, through two case studies. First, we use IncAg,,, to reimplement
overload resolution for FJ. We showcase interesting implementation details from the FJ
type checker and compare the implementation to the functionally equivalent IncA Datalog
code. Second, as part of a master thesis [21], IncAy,, was used to implement a type checker
for Rust and the borrow checker used in the Rust compiler to verify ownership of values.
We briefly report on this work, as well.

(2 S T SN

R

6.2 Background: Overload Resolution in Featherweight Java 107

Contributions In summary, we make the following contributions:

« We implement overload resolution for FJ with IncA Datalog. We report on the
developer experience and identify what makes the language inconvenient to use for
the analysis implementation (Section 6.3).

+ We introduce the syntax of our new IncAg,, DSL, including our language extensions,
and we compile IncAg,, to IncA Datalog (Section 6.4).

+ We present two case studies using IncAg,, as the specification language. First,
we implement overload resolution for FJ, and then we briefly discuss the IncAg,,
implementation of a Rust type checker and borrow checker (Section 6.5).

6.2 Background: Overload Resolution in
Featherweight Java

This section provides background material on overload resolution because we will use this
analysis as our motivating case study throughout this chapter. Static method overloading
is an essential feature of object-oriented programming languages. Method overloading
allows developers to provide the same method name to multiple method implementations.
Developers typically use method overloading for one of two reasons. First, they use it
to provide a more flexible interface to a single functionality by accepting different kinds
of parameter types. A common example of this is constructor overloading, which allows
users of a class to construct a class instance in different ways:

class Node {
public Node (int weight, Color color) { ... }
public Node (int weight) { this(weight, Color.BLACK); }
public Node () { this(1l); }

}

Second, developers use method overloading to select one of multiple functionalities by
dispatching over the number and types of arguments. For example, method overloading is
a key component for the visitor pattern:

interface GraphVisitor ({
void visit (Node node);
void visit (Edge edge);
void visit (SubGraph graph);
// add specialized handlers for other elements as needed

}

The downside of method overloading is that it becomes difficult for developers to reason
about method calls. In particular, the name of the called method does not provide sufficient
information to understand which implementation will be invoked. While this is also
true for dynamic dispatch via inheritance and overriding, overloaded methods are not
governed by the Liskov Substitution Principle, such that a developer has to inspect the
exact dispatch target to anticipate the effect of a call. To resolve a call to an overloaded

108 6 A DSL for Incremental Program Analysis

method e.m(ay, . ..,a,) in FJ, a developer has to take all of the following information
into account [16, Section 2]:!

« The compile-time type C of e: All methods named m in C are candidates for the
resolution.

« The superclasses of C: All methods named m in the superclasses of C are candidates
for the resolution.

« The number of arguments aj, . . . ,a,: Only methods with n parameters are candi-
dates for the resolution.

+ The compile-time types Cy, .. .,C, of the arguments a;, . .. ,a,: Only methods
that accept C;, ..., Cpor superclasses thereof are candidates for the resolution.

« The distance in the class hierarchy between the argument types C;, . . . ,Cp, and the
parameter types D1, . . . ,Dp, of candidate methods: Select the unique candidate with
minimal aggregated distance or report an error if no unique candidate with minimal
distance exists.

Since this is a lot of information for a developer to trace manually, IDEs mirror the compiler’s
behavior and resolve overloaded methods automatically. Most editors handle overload
resolution together with name resolution during type checking, since the target method
determines the type of the method invocation. Like all IDE services, overload resolution
has to be incremental and react to changes in subject programs efficiently. That is, when a
code change occurs, the IDE has to incrementally update previously computed overload
resolution results. Our goal is now to implement overload resolution for FJ with IncA
Datalog to automatically incrementalize the analysis.

6.3 Overload Resolution with IncA Datalog

In this section, we discuss our implementation of overload resolution for FJ with IncA
Datalog. On the one hand, our goal is to show the most important building blocks of the
analysis implementation. We do not aim to present the full implementation because it
consists of a few hundred lines of IncA Datalog code. On the other hand, we point out why
we found IncA Datalog inconvenient to use for the implementation, motivating the need
for a new analysis DSL.

Analysis Implementation We start our implementation by defining the entry point,
which is a TypeOf rule that computes the compile-time type of an FJ expression. The input
expression can be of several kinds; e.g. variable reference, field access, cast, method call,
just to name a few. Method call is particularly interesting because the receiver of a method
call is also an expression, and, as we detailed above, the whole overload resolution process
starts from the compile-time type of the receiver. This already suggests that we will need a
recursive analysis implementation.

Figure 6.1 shows an excerpt of the TypeOf implementation, showing three alternatives.
The rule has two head variables, the exp is the expression in question, while type in our

INote that the rules for overload resolution for standard Java are rather different: https://docs.oracle.
com/javase/specs/jls/se8/html/jls-15.html.

https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html

6.3 Overload Resolution with IncA Datalog 109

TypeOf (exp : Exp, type : Type) :— {
Cast (exp) ,
Cast.exp (exp, innerExp),
Cast.type (exp, type),
TypeOf (innerExp, innerExpType),
ContainingModule (exp, module),
ResolveClass (innerExpType, module, innerExpClass),
ResolveClass (type, module, castClass),
IsSubtype (innerExpClass, castClass, module)
} alt {
Cast (exp),
Cast.exp (exp, innerExp),
Cast.type (exp, type),
TypeOf (innerExp, innerExpType),
ContainingModule (exp, module),
ResolveClass (innerExpType, module, innerExpClass),
ResolveClass (type, module, castClass),
IsSubtype (castClass, innerExpClass, module)
} alt {
} alt {
MethodCall (exp),
MethodCall.receiver (exp, receiver),
TypeOf (receiver, receiverType),
ContainingModule (exp, module),
ResolveClass (receiverType, module, class),
MinimalMethod (exp, class, method),
MethodDec.returnType (method, type)

Figure 6.1: Excerpt of the main TypeOf rule which computes the type of an expression.

implementation represents the name of a class. The first two alternatives compute the type
for cast expressions, while the last one handles method calls. The complete implementation
has much more alternatives, as we must handle all kinds of expressions.

We start with cast expressions. Given an expression e = (C) eo where e has type D,
FJ allows either upcast when D<:C, or downcast when C<:D. The first alternative handles
upcasts. We start by computing the type innerExpType of the inner expression innerExp
using TypeOf recursively (lines 2-5). FJ organizes classes into modules, and we use the con-
tainer module to look up the classes innerExpClass and castClass for innerExpType
and type, respectively (lines 6-8). Finally, we check that innerExpClass is a subtype of
castClass (line 9). The second alternative uses the exact same logic except for the last
atom because that checks that the expression is a downcast (line 18).

The last alternative computes the type of a method call. We first recursively use TypeOf
on receiver to obtain the receiverType (lines 22-24). We use the container module of
exp to look up the class that the receiverType represents (lines 25-26). Then, we use
the MinimalMethod (explained next) rule to obtain the MethodDec with the minimum
distance (line 27). Finally, the type of the method call is the returnType of the found
MethodDec (line 28).

Let us now look at the implementation of MinimalMethod through an excerpt shown
in Figure 6.2. MinimalMethod defines three head variables; call represents the method

110 6 A DSL for Incremental Program Analysis

MinimalMethod(call : MethodCall, class : ClassDec, method : MethodDec) :— {
count MinimalMethodLookup(call, class, _) == 1,
MinimalMethodLookup (call, class, method)

MinimalMethodLookup (call:MethodCall, class:ClassDec, method:MethodDec) :- {
CandidateMethod(call, class, method),
MethodDistance (call, method, distance),
MinMethodDistance (call, class, minDistance),
distance == minDistance

MinMethodDistance (call:MethodCall, class:ClassDec, glb(distance:Nat)) :- {
CandidateMethod(call, class, method),
MethodDistance (call, method, distance)

MethodDistance (call:MethodCall, method:MethodDec, sum(distance:Nat)) :— {
MethodDec.parameters (method, param),
MethodCall.arguments (call, arg),
Parameter.index (param, pindex),
Argument .index (arg, aindex),
pindex == aindex,
ArgParamDistance (arg, param, distance)

Figure 6.2: The core overload resolution logic in IncA Datalog.

call, class is the class of the receiver, and method is the target of the call. According to
the overload rules in Section 6.2, method must be the single method with the minimal
distance for the resolution to succeed. To this end, MinimalMethod counts the number of
candidate methods with minimal distance, and only yields a result if the count is one. It
uses MinimalMethodLookup which yields all methods with minimal distance. The helper
rule CandidateMethod (whose implementation is omitted) only enumerates methods that
have the required name and the appropriate number of parameters. MethodDistance
zips arguments and parameters and sums up the distances between their types, while
MinMethodDistance computes the minimum distance out of all distances. To perform
computation on numbers, we define the Nat lattice, which represents natural numbers. An
excerpt of its implementation is shown in Figure 6.3.

Perceived Developer Experience While implementing the above analysis in IncA Dat-
alog, we experienced that certain characteristics of the language make the implementation
overly verbose or difficult to read. We also identified certain features that could have helped
to make the implementation more readable or easier to understand. We summarize our
findings as follows:

Non-directional code The analysis implementation is ultimately non-directional. There
is no difference between input and output parameters. This is a not ideal because
static analyses typically reason about subject programs in a forward or backward
style [90]. This is entirely missing from our implementation, as we simply define
relations with the Datalog rules. It would be natural to implement TypeOf as a

6.3 Overload Resolution with IncA Datalog

111

lattice Nat {

constructors { Value(int) | Top }
def bot () : Nat = return Value (0)
def top() : Nat = return Top
def leg(l : Nat, r : Nat) : boolean = {
match (1, r) with {
case (Value(vl), Value(v2)) => return vl <= v2
case _ => return false
}
}
def glb(l : Nat, r : Nat) : Nat = {
match (1, r) with {
case (Value(vl), Value(v2)) => return Value (Math.min (vl,
case (_, Top) => return 1
case (Top, _) => return r
}
}
def sum(l : Nat, r : Nat) : Nat = {
match (1, r) with {
case (Value(vl), Value(v2)) => return Value (vl + v2)
case _ => return Top

v2))

Figure 6.3: A lattice representing natural numbers as implemented in IncA Datalog.

function that takes an expression as input and computes a type, or MinimalMethod
as a function that takes a call and a class as input and returns the resolved target

method.

Lack of support for pattern matching IncA Datalog uses virtual EDB relations to ac-
cess the necessary parts of the subject program’s AST. However, all links and types
need to be traversed individually, and there is no language feature that would allow
to deconstruct entire subtrees, while introducing variables to refer to relevant parts

of the tree.

Lack of control structures Currently, the only way to provide alternative implementa-
tions for the same rule is to define multiple rule bodies. We ended up duplicating
almost the same rule body twice to handle upcasts and downcasts in Figure 6.1. Of
course, we could have factored out the common atoms into a separate helper rule, but
this obscures the implementation, and it is also inconvenient in general, as the helper
rule may end up having a large number of head variables that are only relevant for

certain rule bodies.

Verbosity In IncA Datalog, every local variable must be declared explicitly. For example,

when implementing TypeOf for cast expression, we wrote:

Cast (exp),

Cast.exp (exp, innerExp),

AW oo e

TypeOf (innerExp, innerExpType),

112 6 A DSL for Incremental Program Analysis

(module) m ::=module n import 7 {mc}

(module content) me ::=1|f

(lattice) l : : = lattice L,{constructors{ctor} lop}
(lattice name) L, ::=name

(type in lattice definition) Ty ::= Tygpg | Ln|Java type

(constructor) ctor ::=n(Ty)

(lattice op) lop ::=defn(n: Tiy): Ty =lopb

(lattice op body) lopb ::=Java code + lattice constructors and operations
(function) f c:=visdef n(n : Ti) : Touw = alt
(visibility) vis ::= private | protected | public
(alternative) alt = {5}

(statement) s ::=7 :=e|assert cond | yield e
(condition) cond ::=e==¢|e!=e|einstanceOf T}y, |

e not instanceOf Ty, | def e | undef e

(expression) e =n|c|eLy|n(e)|n+(e)|count n(e) | L,.n(e)

(constant) c = number | string | enum | boolean

(type of input parameter) ~ Tin ::= Tigpe

(type of output parameter) Tour ::= Tjgng | Ln | Ln/lop

(type from subject language) T4,y : := AST node type (from subject language)

(link) Ly ::=link of an AST node type (from subject language) |
parent | prev | next | index

(name) n : = name

Figure 6.4: Syntax of core IncAf,.

Here, innerExp is a variable that we only refer to once in the rule body. This may
seem like a minor issue, but we emphasise that the full analysis implementation
is a few hundred lines of IncA Datalog code, so all of this verbosity adds up and
negatively affects readability. Being able to write something like exp.innerExp
would help to avoid the declaration of variables that are only referred to once.

Based on these findings, we set out to experiment with an alternative design for a new
specification language in IncA. We present our new approach next.

6.4 Syntax and Compilation of IncAg,,

In this section, we present our new IncAf,, language and its compiler. First, we discuss the
syntax in two steps: We define a core language by re-designing the syntax of IncA Datalog,
and then we present a number of language extensions. Second, we discuss how we compile
IncAgp to IncA Datalog.

6.4 Syntax and Compilation of IncAg, 113

6.4.1 Syntax of IncAg,,

Syntax of core IncAg,,, Figure 6.4 shows the syntax of core IncAg,,. We reuse the
DSL for lattice definitions from IncA Datalog, so we do not discuss that again here. It is
important to emphasise that IncAg,), is still a declarative language, and it has the same
expressive power as IncA Datalog. However, there are several syntactic differences in
IncAp, compared to IncA Datalog, and we highlight those in the following.

IncAg,, uses functions to organize the analysis implementation. A function takes a
set of input values and produces output values. A function can have multiple alternative
bodies, and its result is the union of the results of the individual alternatives. An important
requirement for functions is that they are only allowed to use lattice types or aggregation
on output types. This requirement merely guides analysis developers to think about lattices
as computed values produced by functions. Input parameters must use types from the
subject language.

Instead of atoms accessing relations, the body of a function consists of statements.
Statements can be of three kinds; variable declarations, assertions, and yield statements.
Assertions define constraints that must be satisfied in order for the function to yield an
output. If any of the assertions is violated for a given set of inputs, the function returns an
empty set of results. The conditions in assertions can be one of the following: equality,
inequality, instanceOf check against an AST node type, not instance0f, definedness
and undefinedness testing. The latter two are used to check if a function has an output
or does not have an output given an input. IncAy,, supports the following expressions:
variable reference, constant value, path expression, function call, counting the number of
outputs of a function, transitive closure, and lattice operation call.

Syntax of IncAp,, language extensions Figure 6.5 shows the syntax of our language
extensions. These extensions are purely syntax sugar, as they will be reduced to core
IncAf,,. However, as we will show in Section 6.5, they improve readability and conciseness
of the analysis implementation. We introduce four new kinds of statements. (i) Switch is
used to define alternative statements, potentially in a nested fashion. (ii) Foreach allows to
iterate over a collection of nodes or all instances of an AST node type. (iii) If statement
is a simple conditional statement, optionally with else if and else branches. (iv) Match is
used for pattern matching. Match patterns can be of the following kinds: constant value,
named pattern, named pattern with a nested pattern, AST node type with nested patterns
for select links, and wildcard pattern which matches any node. We also add a new kind of
expression; A cast expression allows to cast an expression to an AST node type. If a cast
fails, the function does not yield an output for the surrounding alternative.

6.4.2 Compilation of IncAg,,
We use a sequence of compilation steps to produce graph patterns from IncAg,, code:

+ We compile IncAg,, language extensions to core IncAg.
+ We compile core IncAg,, to IncA Datalog.

« Finally, we compile IncA Datalog to graph patterns, as described in Section 3.3.2.

[

0

114 6 A DSL for Incremental Program Analysis

(statement) s ::= ... | switch {3} alt |

foreach var in e {5} | foreach varin T}4,, {5} |
if (cond) {5 } elseif else { 5 } |

match (e) with { case }

else if (cond) {5}

(else if branch) elseif ::

(match case) case ::=case(pat){s} |default{s}
(match case pattern) pat =c|n|n: pat|Tigg(Li = pat) | _
(expression) e =...|eTigpg

Figure 6.5: Syntax of IncAg,, language extensions.

Compilation of IncAg,,, Language Extensions to Core IncAg,,

We discuss the compilation of the language extensions (Figure 6.5) through their imple-
mentation in Scala. First, we show an excerpt of the abstract syntax of IncA,,, in the form
of Scala case classes. We use these case classes in the compiler implementation.

// excerpt of the abstract syntax of the core language
case class Alt (stmts: Seqg[Stmt])

case class AssignStmt (v: Var, exp: Exp) extends Stmt
case class AssertStmt (cond: Cond) extends Stmt

case class Equality(left: Exp, right: Exp) extends Cond
case class Inequality(left: Exp, right: Exp) extends Cond
case class InstanceOf (exp: Exp, typ: Type) extends Cond

case class Var (name: String) extends Exp
case class NumLit (v: Int) extends Exp
case class PathExp(exp: Exp, link: Link) extends Exp

// abstract syntax of the language extensions
case class StmtList (stmts: Seqg[Stmt]) extends Stmt
case class SwitchStmt (alternatives: Seq[Alt]) extends Stmt
case class ForeachStmt (itr: Var, exp: Exp, stmts: Seq[Stmt]) extends Stmt
case class ForeachStmt (itr: Var, typ: Type, stmts: Seq[Stmt]) extends Stmt
case class IfStmt (cond: Cond, thenClause: Seqg[Stmt],
elselfClauses: Seq[ElseIfClause],
elseClause : Option[Seqg[Stmt]]) extends Stmt
case class MatchStmt (exps: Seq[Exp], cases: Seqg[MatchCase])

case class ElseIfClause(cond: Cond, stmts: Seqg[Stmt])
case class MatchCase (patterns: Seqg[MatchPattern], stmts: Seq[Stmt])

trait MatchPattern

case class ConstantPattern(value: Exp) extends MatchPattern

case class PatternVariable (name: String) extends MatchPattern

case class NamedPattern (name: String, pattern: MatchPattern)
extends MatchPattern

case class NodePattern(typ: Type, bindings: Seq[(Link, MatchPattern)])
extends MatchPattern

case class WildcardPattern () extends MatchPattern

6.4 Syntax and Compilation of IncAg, 115

33| case class Cast (exp: Exp, typ: Type) extends Exp

O ® Ny A W N =

R -

R

StmtList We start with StmtList, which is a temporary construct used in the compilation

logic of several of the language extensions. It is used in cases when the compiler produces
a collection of statements from a single statement. The compiler replaces a StmtList with
the contained Stmts in the surrounding Alt:

def compileStmtList (alt : Alt) : Alt = {
Alt (
alt.stmts.flatMap(s => {
s match {
case StmtList (stmts) => stmts
case _ => Seq(s)

H)

}

SwitchStmt A SwitchStmt compiles into a series of Alts, where each switch alternative

contributes one A1t containing the statements preceding the SwitchStmt, the statements
of the respective case, and the statements succeeding the SwitchStmt. The following
code shows the compilation of a single SwitchStmt in a single A1t. However, the real
implementation is more involved because it also needs to handle cases when multiple
SwitchStmts are used in the same A1t or when SwitchStmts are nested.

def compileSwitchStmt (alt: Alt): Seq[Alt] = {
alt.stmts.find(s => s.isInstanceOf[SwitchStmt]) match {
case Some (SwitchStmt (alts)) =>
val prevStmts = alt.stmts.takeWhile(s => !s.isInstanceOf[SwitchStmt])
val nextStmts = alt.stmts.reverse.takeWhile (s =>
!'s.isInstanceOf [SwitchStmt]) .reverse
alts.map(alt => Alt (prevStmts ++ alt.stmts ++ nextStmts))
case _ => Seq(alt)

}

ForeachStmt A ForeachStmt compilesintoa StmtList containing either an assignment

to the respective iterator variable or a type constraint on the iterator variable, plus the
original statements from the body.

def compileForeachStmt (stmt: Stmt): StmtList = {
stmt match {
case ForeachStmt (itr, exp: Exp, stmts) =>
StmtList (Seqg(AssignStmt (itr, exp)) ++ stmts)
case ForeachStmt (itr, typ: Type, stmts) =>
StmtList (Seqg(AssertStmt (InstanceOf (itr, typ))) ++ stmts)

}

IfStmt An IfStmt compiles into a SwitchStmt with the following alternatives:

« The first alternative represents the then clause. The statements in the alternative
consist of an AssertStmt with the then condition, plus the original statements
from the body of the then clause. See lines 3-4.

116 6 A DSL for Incremental Program Analysis

« Each else if clause contributes an alternative where the statements in an alter-
native consist of the negated conditions for the preceding clauses (including the
then clause), the condition of the respective else if, plus the statements from
the body of the clause. See lines 5-17. negateCondition is a helper function that
accepts a condition and returns its negated form; e.g. equality becomes an inequality,
instanceOf becomes a not instanceOf, def becomes an undef, and so on.

« The else clause contributes one alternative where the statements consist of the
negated conditions for all preceding clauses, plus the statements from the body of
the clause. See lines 18-26.

def compileIfStmt (stmt: IfStmt): SwitchStmt = {
SwitchStmt (
// then
Seq (Alt (Seg(AssertStmt (stmt.cond)) ++ stmt.thenClause)) ++
// else if
stmt.elselfClauses.zipWithIndex.map(t => {
val elseif = t._1
val index = t._2

val previousConditions = stmt.elseIfClauses.take (index) .map (_.cond)
Alt (
Seq (AssertStmt (negateCondition (stmt.cond))) ++
previousConditions.map (prevCond =>
AssertStmt (negateCondition (prevCond))) ++

Seq (AssertStmt (elseif.cond)) ++
elseif.stmts

)

b)) ++
// else
stmt.elseClause.map (stmts => {
Alt (
Seq (AssertStmt (negateCondition (stmt.cond))) ++
stmt.elselfClauses.map(elseif =>
AssertStmt (negateCondition(elseif.cond))) ++
stmts

4

MatchStmt A MatchStmt compiles into a SwitchStmt. Each match case contributes

one alternative to the SwitchStmt:

def compileMatchStmt (stmt: MatchStmt): SwitchStmt = {
stmt match {
case MatchStmt (exps, cases) =>
SwitchStmt (cases.map (compileMatchCase (_, exps)))

}

AMatchCase first declares new variables for each matched expression (from the MatchStmt).
To this end, it uses the genName helper function which generates fresh unique names.
Each MatchPattern contributes a collection of statements to the alternative. The call to
compileMatchPattern gets as argument the pattern and the variable name introduced

6.4 Syntax and Compilation of IncAg, 117

earlier for the matched expression. Finally, we append the statements originally contained
in the MatchCase:

def compileMatchCase (matchCase: MatchCase, exps: Seql[Exp]): Alt = {

val newNames = exps.map (e => genName (e))

Alt (
// variable declarations for matched expressions
exps.zipWithIndex.map (t => AssignStmt (Var (newNames (t._2)), t._1)) ++
// statements contributed by the match case patterns
matchCase.patterns.zipWithIndex.flatMap (t =>

compileMatchPattern(t._1, newNames(t._2))) ++

// statements of the match case itself
matchCase.stmts

}

MatchPatterns contribute the following collections of Stmts:

+ ConstantPattern simply contributes an equality check between the constant ex-
pression and the variable name.

« PatternVariable introduces a new name for the matched expression.
- NamedPattern is like PatternVariable, but it also contributes more statements
by recursively compiling the nested MatchPattern.

« NodePattern yields a type constraint, introduces new variable declarations through
path expressions accessing the links from the bindings, and recursively contributes
statements from the nested MatchPatterns. Importantly, the call to compile-
MatchPattern now gets the freshly generated names as arguments because these
represent the new matched expressions.

« WildcardPattern does not contribute any statements, as it matches “anything”.

def compileMatchPattern (pattern: MatchPattern, name: String): Seq[Stmt] = {
pattern match {
case ConstantPattern(v) =>
Seq (AssertStmt (Equality (v, Var (name))))
case PatternVariable (n) =>
Seg (AssignStmt (Var (n), Var (name)))
case NamedPattern(n, p) =>
Seq(AssignStmt (Var (n), Var (name))) ++
compileMatchPattern (p, name)
case NodePattern (typ, bindings) =>
val newNames = bindings.map (b => genName (b))
// type constraint for the outer variable
Seq (AssertStmt (InstanceOf (Var (name), typ))) ++
// variable declarations for the path expressions
bindings.zipWithIndex.map (t =>
AssignStmt (Var (newNames (t._2)), PathExp(Var(name), t._1._1))) ++
// statements produced by the inner patterns
bindings.zipWithIndex.flatMap (t =>
compileMatchPattern(t._1._2, newNames(t._2)))
case WildcardPattern() =>
Seq ()

118 6 A DSL for Incremental Program Analysis

CastExp A CastExp compiles into a variable reference, but it also introduces new

statements to declare and constrain the referenced variable. To this end, it must capture
the Stmt context where it is used and replace the Stmt with a StmtList. The following
snippet shows two examples of this rewriting, but the actual implementation is generic, as
it handles all cases:

def compileCastExp (stmt: Stmt): StmtList = {
stmt match {
case AssertStmt (Equality (Cast (exp, typ), right)) =>
val newName = genName (exp)
StmtList (Seq(
AssignStmt (Var (newName), exp),
AssertStmt (InstanceOf (Var (newName), typ)),
AssertStmt (Equality (Var (newName), right))
))
case AssignStmt (v, PathExp (Cast (exp, typ), link)) =>
val newName = genName (exp)
StmtList (Seq(
AssignStmt (Var (newName), exp),
AssertStmt (InstanceOf (Var (newName), typ)),
AssignStmt (v, PathExp (Var (newName), link))
))

Compilation of Core IncAg,, to IncA Datalog

We describe the compilation of core IncAg,, to IncA Datalog in a top-down fashion. We
collect the functions from a module and generate an IncA Datalog rule for each one of
them. Function input parameters become Datalog variables ¥;, and we create designated
variables ¥, for the output tuple. The type annotations on the input parameters and the
return types become type annotations on the respective variables. Each alternative of a
function becomes an alternative of the respective rule.

For statements, we proceed as follows. An assertion simply promotes the compilation
target of its condition. Every expression will be represented with a designated variable,
and an assignment matches up the variables on the left-hand side with the variables that
result from the expression on the right-hand side. We generate atoms with equality for the
pairs of variables from the two sides. To represent the output tuple of a function, we use
designated variables. We handle a yield statement as an assignment to these variables.

Next, we translate IncAg,, conditions. Equality and inequality straightforwardly trans-
late to atoms with equality and inequality. An instanceOf condition becomes an atom
accessing the virtual EDB relation with the respective AST node type. Anot instanceOf
is similar, but uses negation in the atom. Def (undef) also naturally maps to an atom
accessing the rule generated for the respective function (in a negated form).

We proceed with expressions. An IncAg,;, variable becomes a Datalog variable. Every
other expression gets a fresh variable that represents the result of the expression. The
variable introduced for a constant is constrained by an equality. A path expression e.Lj
is mapped into an atom accessing the virtual EDB relation describing the respective link

6.5 Case Studies with IncAz, 119

Li. If a path expression traverses multiple links, then it gets broken up into single path
expressions with intermediate variables. A function call £ (€) becomes an atom f (€¥),
where ¥ are fresh and represent the result of the call (the notation €V means concatenation).
Transitive closure, count, and lattice operation call naturally map to their IncA Datalog
counterpart.

This translation process shows that there is roughly a one-to-one mapping between
core IncAf,, and IncA Datalog, the differences are purely syntactic. The last step of our
compilation pipeline reduces IncA Datalog to graph patterns, which we have already
discussed in Section 3.3.

6.5 Case Studies with IncAg,,

In this section, we present two case studies that used IncAg,,, for analysis implementation.
First, we discuss overload resolution as implemented in IncAy,,, and we highlight how the
language helps to improve the readability and conciseness of the implementation. Second, a
collection of Rust program analyses have been re-implemented with IncAy,, in the context
of a master thesis, and we briefly report on that case study, as well.

6.5.1 Overload Resolution for Featherweight Java with IncAg,,

We already discussed the implementation of the FJ type checker with IncA Datalog in Sec-
tion 6.3. We re-implemented the type checker with IncAy;,, as well. The complete IncAg,,
implementation comprises roughly 600 LoC. Here, we only discuss the re-implementation
of the two main rules that we discussed in Section 6.3, the complete code is available
online.? Figure 6.6 shows the implementation of the getTypeQf function in IncAf,, while
Figure 6.7 shows the core overload resolution logic in IncAg,,. The implementation fol-
lows the same high-level logic as in Section 6.3, but there are several syntactic differences
compared to the IncA Datalog implementation:

Directional analysis implementation Functions in IncAg,, help differentiate between
inputs and outputs instead of computing relations. For example, the getTypeOf
function takes the expression as input and computes the type as output. Similarly,
the functions related to computing the minimal distance method in Figure 6.7 clearly
separate what serves as input and what is a computed value. Importantly, lattice
values always appear as outputs of functions. The bodies of the functions use
statements which clearly define an order of computation steps that derive the output
from the input through the declared local variables.

Pattern matching We use amatch statement in the body of getTypeOf to pattern match
on the input exp. We define multiple match cases to distinguish the different kinds
of expressions and to deconstruct the input AST node. The first case handles cast
expressions, while the last one handles method calls.

Control structures We use a switch statement in the first case body in getTypeOf to
define the two checks for up- and downcasts, while reusing the rest of the case body.

’https://github.com/seba--/inca-experiments

https://github.com/seba--/inca-experiments

120 6 A DSL for Incremental Program Analysis
def getTypeOf (exp : Exp) : Type = {
match (exp) with {
case Cast (type : castType, exp : innerExp) =>
innerExpType := getTypeOf (innerExp)
module := getContainingModule (exp)
innerExpClass := resolveClass (innerExpType, module)
castClass := resolveClass (castType, module)
switch {

assert def isSubtype (innerExpClass, castClass, module)
} alt {

assert def isSubtype(castClass, innerExpClass, module)
}
yield castType

case ...
case MethodCall (receiver : receiver, name : name) =>
receiverType := getTypeOf (receiver)
module := getContainingModule (exp)
class := resolveClass (receiverType, module)
method := getMinimalMethod (exp, class)

yield method.returnType

Figure 6.6: Computing the type of an FJ expression in IncA .

Yield statements are used to specify the output(s) of a function. We use foreach
extensively in Figure 6.7, as we select the output of the functions from a collection
of elements. Finally, if statements help to improve the readability of the conditions
that govern when an output must be returned. It is important to note that the control
flow of an IncA Datalog function does not match that of a traditional programming
language with similar constructs. For example, the yield statement in line 11 in
Figure 6.7 does not return from the function to the caller after the first method
found, instead the function will produce the whole set of methods that satisfy the
constraints. Similarly, it can happen that the if condition in getMethodDistance in
Figure 6.7 may not be satisfied at all, but there is no code that would return a value
in that case. This is not a problem for an IncAﬁm function, as, in this case, an empty
set of result will be returned.

Path expressions Line 20 in Figure 6.6 yields method.returnType as the result of the

match case. The expression method.returnType is called a path expression. A path
expression takes an expression on the left hand side and allows to traverse (multiple)
links (of AST node types), without the need to explicitly declare local variables for
the (intermediate) results. Another example is in line 26 in Figure 6.7, where we
directly formulate the constraint for zipping without the need to explicitly declare
variables for the indices of param and arg. Path expressions play an important role
in reducing the code size for larger analyses.

We argue that the resulting implementation is more readable and easier to understand
compared to the IncA Datalog implementation. After all, our design decisions were directly
governed by our experience with the IncA Datalog implementation. Although, we also note
that this is only our experience as the developers of IncA. We did not perform an empirical

6.5 Case Studies with IncAz, 121

def getMinimalMethod(call : MethodCall, class : ClassDec) : MethodDec = {
if (count lookupMinimalMethod(call, class) == 1) {
yield lookupMinimalMethod(call, class)
}

def lookupMinimalMethod(call : MethodCall, class : ClassDec) : MethodDec ={
minDistance := getMinMethodDistance (call, class)
foreach method in getCandidateMethod(call, class) {
distance := getMethodDistance (call, method)
if (distance == minDistance) {
yield method
}

def getMinMethodDistance (call : MethodCall, class : ClassDec) : Nat/glb = {
foreach method in getCandidateMethod(call, class) {
yield getMethodDistance (call, method)
}

def getMethodDistance(call : MethodCall, method : MethodDec) : Nat/sum = {
foreach param in method.parameters ({
foreach arg in call.arguments {
if (param.index == arg.index) ({
yield getArgParamDistance (arg, param)

Figure 6.7: The core overload resolution logic in IncA Datalog.

user study about the usability of the new language design as part of this dissertation, but a
Master’s student actually used IncAg,, to implement another large case study, which we
discuss next.

6.5.2 Rust Program Analyses with IncAg,,

As part of a Master’s thesis [21], we conducted experiments with IncAg,, and the Rust
programming language [69]. Rust promotes safety and speed as its main goals, and it
accomplishes these goals with a number of language abstractions that incur zero runtime
overhead. The Rust type system and compiler enforces strong guarantees about the
safety of Rust programs to ensure that they are free of concurrency problems (e.g. data
races) or memory access violations (e.g. buffer overflows, dangling pointers, or accessing
uninitialized variables). Given that these analyses are all non-trivial and target a real-world
language, we set out to use IncAg,;, to implement them to see if the language is expressive
enough for this use case. We briefly report on our experiences here.

We started off with implementing a type checker for Rust that handles e.g. functions,
let bindings, structs, enums, and generics with explicit type annotations. This was straight-

122 6 A DSL for Incremental Program Analysis

forward to implement with IncAy,,, and the new syntax of IncAy,, with functions and the
language extensions allowed a natural encoding of the typing rules. A problematic case
was the exhaustiveness checking of pattern matching, which the Rust compiler performs
to ensure that the cases of a pattern matching cover all possible inputs. The problem here
with IncAy,, was that many times the exhaustiveness checker logic must perform inference
(e.g. when a wildcard pattern is used), and this is not possible with IncA because an IncA
analysis can only work with existing AST nodes. The problem is actually more general,
as standard Datalog would face the exact same problem. An idea here was to make use
of lattices in IncAf,, to represent inferred data, but ultimately we failed to handle this
scenario. We refer the interested reader to the Master’s thesis for further details [21].

A second major part of this work revolves around the various analyses that constitute
the Rust borrow checker, which entails three main aspects:

Ownership In Rust, every value has exactly one owner, and the notion of ownership plays
an important role in ensuring the memory safety of Rust programs. When a variable
is assigned a value, that variable becomes the owner of the value. Ownership of the
value can be moved to a new variable when the former variable is assigned to the
new variable. However, at this point, reading from the old variable is not permitted
anymore, as it is not the owner of the value anymore. Reasoning about ownership is
more complicated in the general case, as values can be also passed along e.g. fields
of structs.

Borrows Ownership of a value can be borrowed temporarily either through an immutable
reference of a mutable one. There may be an arbitrary number of immutable refer-
ences at any one time or exactly one mutable reference (and no immutable reference).
There is a number of checks related to borrows. For example, the scope of a bor-
row cannot outlive the scope of the original owner, or no writes may happen to an
immutable reference.

Lifetime The notion of a lifetime defines the scope that a reference is valid for. Lifetimes
appear as generic annotation on types, and the Rust compiler enforces that values
with the same lifetime cannot outlive each other.

With the assumption of certain simplifications such as explicit lifetime annotations or
explicit generic type annotations, we managed to implement all of the analyses in the
borrow checker with IncAg,,,. For the ownership checking, we implemented a flow-sensitive
uninitialized read analysis. Our analysis keeps track of the sets of uninitialized access paths
per CFG location. An access path is in the form var.f1d1.£1d2 where var is a variable
and £1d1 and £1d2 are field accesses. When an access path gets assigned to a variable,
the access path is added to the set of uninitialized ones, as that path is not the owner
of the value anymore. The result of the analysis helps to mark reads from uninitialized
access paths erroneous. We implemented a data-flow analysis for the borrow and lifetime
checking, which keeps track of how values flow inside and across functions. However, the
analysis is not inter-procedural per se because we can just rely on the signature of the
called function when analyzing a function call.

We also performed a benchmark with the IncA,, implementation using synthesized
Rust subject programs. The following table summarizes some key metrics:

6.6 Chapter Summary 123

Subject program 5 KLoC (19000 AST nodes)
IncAg,, analysis implementation 4 KLoC

IncA initialization time 474 s

IncA incremental update time 33.6 ms (avg) / 434 ms (max)
Official non-inc. Rust analysis 6.3s

With 4 KLoC in size, the Rust analysis is the biggest IncAg,, analysis implemented so
far. Interestingly, the incremental update times of the IncAg,, implementation are also
really fast, but we pay the price for this with an order-of-magnitude higher initialization
time compared to the run time of the official Rust analysis. In sum, we argue that our
experiments were ultimately successful: We managed to implement a large part of the
official Rust analyses with IncAy,,, and we obtained fast incremental performance out of
the box with IncA.

6.6 Chapter Summary

We proposed and evaluated a new analysis DSL called IncAy, in this chapter. We first
re-designed the syntax of IncA Datalog to create core IncAg,,. The new DSL uses lan-
guage constructs familiar from typical programming languages; functions, statements,
and expressions. Then, we also designed a number of language extensions that cover
recurring patterns in analysis implementations: pattern matching, control constructs, and
cast expression. We used IncAy,, to implement two case studies: overload resolution for FJ
and a type system and borrow checker for Rust.

The major focus of this chapter was centered around language design, which relates to
our Expressiveness (R3) requirement. However, the goal was not to actually improve the
expressive power, but rather to improve the readability and conciseness of IncA analyses.
We argue that we achieved this goal with IncAy,, and our design was directly guided by
the experiences with two large-scale case studies. However, we also emphasise that this
claim is based on our own developer experience. We leave a more systematic user study
assessing the design of our new DSL as future work. Just like IncA Datalog, IncAg, also
satisfies the requirements Declarativity (R5) and Genericity (R4).

125

Textual Front End for
Incremental Program Analysis

The contents of this chapter has not been published yet at a peer-reviewed conference.

Abstract — In the front end of IncA, we relied on projectional editing so far. This aligned
perfectly with incrementalization, as AST differences can be computed with zero computa-
tional overhead in a projectional editor. The goal of this chapter is to enable IncA in textual
IDEs, as well, given that they can be considered mainstream in comparison to projectional
IDEs. However, computing AST differences in a textual IDE incurs computational overhead.
Given that IncA analyses also incur a sub-second update time, we only have at most a
few tens of milliseconds for computing AST differences after program changes, otherwise
developers will notice pauses in their workflow when using an incremental IncA analysis.

Computing AST differences in a textual IDE entails two steps: parsing and AST dif-
ferencing. Perhaps surprisingly, we found that existing parsers can deliver millisecond
re-parse times. However, most of the existing AST differencing tools are not satisfactory
for our purposes, as they are either slow, only work with a particular subject language,
or encode AST differences imprecisely. Only recently did Miraldo et al. develop an AST
diffing tool called hdiff that does not have any of these three limitations. We adopt hdiff
in this chapter and use it to build a textual front end for IncA. Our benchmarking with
real-world Python code reveals that our approach can compute AST differences in a few
tens of milliseconds, thereby enabling IncA analyses in textual IDEs.

126 7 Textual Front End for Incremental Program Analysis

7.1 Introduction

The main goal of IncA is to enable the use of static analyses for interactive applications
in IDEs. So far, in the front end of IncA, we used projectional editing. This aligned
perfectly with our goal, as IncA relies on fine-grained AST change notifications, and a
projectional editor can deliver these with zero computational cost after program changes.
However, projectional editing can be considered a niche editor technology compared to the
widespread use of text editors in IDEs. Given that we would like to make our contributions
widely applicable, we explore in this chapter how to use IncA with a textual front end.

Unfortunately, our back end contributions do not apply immediately to IDEs with
textual front ends. The problem is that the IncA back end only knows how to react to
AST differences, but developers in a textual IDE modify the contents of a text buffer. This
means that there is a gap between what IncA expects and how the IDE represents a subject
program. To turn textual code changes into AST differences, an IDE must first parse the
contents of the text buffer and then compute the differences between the old and new
version of the AST. Unlike in a projectional editor, this process incurs extra computational
cost. If the process is too slow, then that puts the performance of the entire incremental
analysis pipeline in danger, which ultimately can lead to the dreaded noticeable pauses for
the developer working in the IDE. One may immediately think that there is no challenge
here at all, as both parsing and tree diffing are well studied in the literature. We found that
state-of-the-art parsers are indeed really efficient, as they can re-parse files in milliseconds.
However, we also found that most state-of-the-art tree diffing tools yield unsatisfactory
results because of one or a combination of the following reasons:

« The tool is slow at computing diffs. We experimented with tree diffing tools and
found that some of them require more than a second to compute the diff for a single
file. This is a problem because AST differences must be computed in the ballpark of
milliseconds, as together with an incremental analysis, the update time must remain
in the sub-second ballpark (cf. Efficiency (R2)).

« The tool describes AST changes only in terms of insertions and deletions. This is
unsatisfactory because moved subtrees must be completely deleted and re-inserted.
For example, inserting a statement at the beginning of a method body would yield a
large AST change, where all subsequent statements are deleted and then re-inserted.
In turn, this may result in excess work in the followup incremental analysis, which
then increases the update time (cf. Efficiency (R2)).

« The tool is tailored to a particular subject language. This is a problem because
IncA is a language-independent analysis framework, so its front end must also be
independent of the subject language (cf. Genericity (R4)).

Only recently, did Miraldo et al. present a tree diffing algorithm called Adiff that can also
find and encode moved subtrees [85]. The key idea of hdiff is to assign cryptographic
hashes to subtrees in order to identify clones efficiently. Importantly, hdiff is a generic
algorithm that can compute diffs for arbitrary typed trees. In this chapter, we port hdiff
from Haskell to Scala. We call our implementation hdiffs. We show how to communicate
the output of hdiffs to the back end of IncA, thereby enabling efficient incremental program

7.2 Requirements for Textual Front Ends and Prior Work 127

analysis with a textual front end. Given that the work presented in this chapter is still
in a preliminary state, we also discuss a number of next steps that revolve around the
specialization of Adiffs to incremental analysis pipelines.

To evaluate our approach, we build a complete textual front end, and we benchmark
its performance with Python code. We use an existing parser called fastparse! to parse
Python files, and we employ hdiffs to compute AST differences. Then, we use a series of
commits from the popular django web framework? written in Python and compute AST
differences between consecutive versions. We find that our approach (parsing + diffing)
can compute AST differences in a few milliseconds, which is exactly the kind of run time
we need in the front end of IncA. We have already demonstrated in previous chapters that
the IncA back end can deliver sub-second update times. Based on these two results, we
conclude that we can deliver continuous feedback in textual IDEs with IncA.

Contributions In summary, we make the following contributions:

« We identify requirements for a textual front end in order to enable efficient incre-
mental IncA analyses. We review if and how state-of-the-art parsers and tree diffing
tools can meet these requirements (Section 7.2).

« We port the original Adiff algorithm from Haskell to Scala. We use our implementa-
tion hdiffs to demonstrate the key ideas of the original hdiff algorithm (Section 7.3).

« We translate the output of hdiffs to updates in EDB relations, thereby enabling
incremental IncA analyses on top of the new textual front end (Section 7.4).

« We benchmark the performance of our new textual front end based on hdiffs with
real-world Python code (Section 7.5).

7.2 Requirements for Textual Front Ends and Prior Work

In this section, we revisit the architecture of IncA, but, this time, with a textual front end.
We discuss the high-level components of the new front end, and we formulate requirements
that these components must satisfy in order to enable efficient incremental analyses. We
review state-of-the-art techniques that could be used to build a textual front end and discuss
if and how they satisfy our requirements.

Textual Front End for IncA Figure 7.1 shows an excerpt of the IncA architecture; We
already introduced the complete high-level architecture in Figure 1.3. Here, we only show
the front- and back end, and we drill into the front end to show its main components.
Imagine a scenario where the IncA back end is incrementally maintaining the result of a
program analysis. Instead of working with a projectional editor, developers now interact
with a text buffer in the IDE to edit a subject program. Assume that there is an old version
of the text and a new version after a program change. We can describe the change between
the old and new version of the code in terms of text diffs, e.g. inserted/deleted lines or
ranges of characters. However, the IncA back end works with AST diffs and not with
textual diffs. To bridge this gap, we use a combination of a parser and an AST diffing
tool. The parser takes the contents of the text buffer and constructs the AST of the subject

https://github.com/lihaoyi/fastparse
’https://github.com/django/django

https://github.com/lihaoyi/fastparse
https://github.com/django/django

128 7 Textual Front End for Incremental Program Analysis

serves as basis for
automated feedback

is input to |ncrementa| computes
A(Program) anaIyS|s Result

changes

III

Front end Back end
parse 8 Tt

—\\‘-"‘1

/ old text old AST parent | child | |

i translate 1 2 \

;] [E

! parse 2 2 i‘
/ AST '
EDB updates !
,’/ dlfferences P l‘.
,’I new text new AST \

Flgure 7.1: Textual front end with its components integrated into the architecture of IncA.

program. For now, we are not interested in how this AST is constructed after a program
change; Whether the old AST is incrementally updated via an incremental parser or the
new AST is created from scratch. We just assume that there is an old and a new AST.
Then, the AST differ computes the differences between the two ASTs to yield a change
set that consists of e.g. node/edge insertions/deletions, moves, or updates. We use this
changeset and translate it to insertions and deletions in EDB relations that describe the
subject program and the changes therein for IncA analyses.

Requirements for Textual Front Ends In Figure 1.3, we associated two requirements
with the front end of IncA: Efficiency (R2) and Genericity (R4). We revisit and refine what
they mean for a textual front end.

Genericity (R4): The textual front end (both parser + AST differ) must be independent
of any particular subject program or subject language. This is to ensure that IncA itself
remains generic, as the back end already satisfies this requirement.

Efficiency (R2): In Section 1.4, we stated that we expect to deliver the sub-second update
times with incremental analyses, as we target applications in IDEs. This entails two specific
criteria for the textual front end:

« It must compute AST diffs efficiently with a run time that is in the ballpark of at most
a few tens of milliseconds. So far, with the projectional front end, we did not need to
worry about this criteria, as a projectional editor derives AST diffs with zero overhead.
This is not true anymore in case of a textual front end because both parsing and
AST diffing incur computational overhead. If the time required to compute the AST
diffs is too long, we cannot meet the timeliness requirement. As we demonstrated in
previous chapters, the IncA back end is efficient, as it provides sub-second update
times on average, but to preserve this, the front end must efficiently compute AST
diffs.

« The AST diffs that the front end computes must be as precise as possible and free
of redundant change operations. This is an important requirement to ensure the

7.2 Requirements for Textual Front Ends and Prior Work 129

efficiency of the follow-up incremental analysis. For example, imagine that we insert
a statement at the beginning of a method body, and we incrementalize an analysis
with IncA. If an AST diffing tool only reasons about insertions and deletions, then
the resulting AST diff would be large, as all subsequent statements and their subtrees
are deleted and then re-inserted. In turn, the IncA analysis must invalidate and
then re-compute a large part of the analysis result. If instead, the diff also reasons
about moves, then it could precisely describe the shifting of the statements without
touching any of the subtrees rooted at the statements.

Next, we review state-of-the-art parsing and AST diffing techniques to see if they satisfy
these requirements. Our goal is to find existing tools that we could use to build a textual
front end for IncA. We performed small experiments with many of the following tools. We
performed the benchmarks on an Intel Core i7-6820HQ at 2.7 GHz with 16 GB of RAM and
Java 11.0.5.

State-of-the-art parsers Parsing is a widely researched area, and there is a myriad of
different frameworks readily available. We sample here only a select few frameworks. First,
we consider the following non-incremental parsers:

« ANTLR? is a parser generator framework that is widely used both in industry and
academia. Parr et al. benchmarked the performance of ANTLR for various languages
(e.g. Erlang, Lua, Verilog), and they found that (i) the parse time is on the ballpark of
a few tens of milliseconds for practically relevant file sizes, and (ii) the relationship
between file size and parse time is linear [91].

« fastparse is a parser generator framework for Scala. We used fastparse version 2.2.2
with a Python grammar to parse the source of the django web framework, and we
found that the average parse time is around 10 ms. See more details in Section 7.5.

. JavaParser* is a parser for Java source code. We benchmarked the performance

of JavaParser version 3.15.17 by parsing the sources of JavaParser itself (as the
framework is written in Java). We found that the average parse time is around 6 ms,
while the maximum parse time is 330 ms. A limitation of this tool is that it is tailored
to Java, while the previous tools are generic frameworks.

Based on these results, we conclude that state-of-the-art parser frameworks are already
fast enough to be used in a textual front end for IncA.

Next, we consider incremental parsing. In contrast to re-parsing the textual subject
program repeatedly, an incremental parser constructs the whole AST once for an initial
subject program, and then it incrementally updates parts of the AST in response to text
changes. Assuming that the parser lets us extract the AST updates amid incremental
parsing, this approach aligns perfectly with our use case in IncA. A popular incremental
parsing framework is tree-sitter.’ According to its authors, tree-sitter is generic, as it can
generate an incremental parser from a user-defined grammar, and it so fast that it can

Shttps://www.antlr.org/
‘https://javaparser.org
Shttps://github.com/tree-sitter/tree-sitter

https://www.antlr.org/
https://javaparser.org
https://github.com/tree-sitter/tree-sitter

T S e O

(S RS R SN

130 7 Textual Front End for Incremental Program Analysis

simply re-prase files after every keystroke without interrupting the development flow in
the IDE. Let us briefly look at the C APIs tree-sitter offers for incremental parsing:®

TSTree xts_parser_parse (
TSParser =*self,
const TSTree xold_tree,
TSInput input

)i

void ts_tree_edit (TSTree *self, const TSInputEdit =xedit);

ts_parser_parse parses some text input and creates an AST. If the o1d_tree parameter
is null, then tree-sitter constructs an AST from scratch. If the o1d_tree is not null, then
incremental parsing takes place, and the resulting AST shares unchanged parts with the
old AST. Before triggering an incremental parse, the ts_tree_edit function can be used
to communicate changes in the input text with tree-sitter. An important next step is to
extract the AST diffs after an incremental parse. However, to our surprise, we found that
there is no way to extract this information, as tree-sitter supports only the following API:

TSRange =xts_tree_get_changed_ranges (
const TSTree =*old_tree,
const TSTree *new_tree,
uint32_t xlength

)i

The ts_tree_get_changed_ranges function takes the old and the new ASTs and returns
the ranges of positions in the input text for which the AST structure has changed. Note that
this information in itself is useful, as it is not necessarily the case that every text change
communicated with ts_tree_edit actually results in an AST change. However, this also
means that tree-sitter does not tell what the actual AST diffs are. Unfortunately, this is not
sufficient for our purposes in IncA. Given that we must find a way to extract AST diffs in
the front end, we now look at AST diffing techniques.

State-of-the-art AST diffing tools Just like parsing, AST diffing has also attracted a
lot of research attention. We experimented with a number of frameworks, and we briefly
report on our experience.

JSON Patch’ is a standard defined by the Internet Engineering Task Force that defines
how to represent diffs between two JSON documents, so that the diff can be an input to
an HTTP PATCH operation to apply modifications to a resource. This standard is also
interesting for our purposes because JSON is a popular choice for describing structured
data, including ASTs, so we could use JSON patches to encode AST diffs. Importantly, the
standard specifies not only insertion or deletion as potential change operation in a patch,
but also moves.

The tool json-patch® is an actual Java implementation of the JSON Patch standard. We
used version 1.13 for our experiments. We found that a limitation of json-patch is that
it cannot always identify moves effectively, and often it just resorts to reasoning about

Shttps://github.com/tree-sitter/tree-sitter/blob/master/lib/include/tree_
sitter/api.h

"https://tools.ietf.org/html/rfc6902

8https://github.com/java-json-tools/json-patch

https://github.com/tree-sitter/tree-sitter/blob/master/lib/include/tree_sitter/api.h
https://github.com/tree-sitter/tree-sitter/blob/master/lib/include/tree_sitter/api.h
https://tools.ietf.org/html/rfc6902
https://github.com/java-json-tools/json-patch

7.2 Requirements for Textual Front Ends and Prior Work 131

insertions and deletions. Consider the following two versions of the same JSON document
describing the AST of a function. The old version is shown on the left, and the new version
is on the right where a new statement was inserted:

R

o

B

1| {

2 "name" : "foo",
3 "stmts" : [

4 {

{ 5 "kind" : "VarDecl",
"name" : "foo", 6 "name" : "b",
"stmts" : [7 "value" : {

{ 8 "kind" : "NumLit",
"kind" : "VarDecl", 9 "value" : "3"
"name" : "a", 10 }

"value" : { 1 },
"kind" : "PlusExpr", 12 {
"lhs" : "17, 13 "kind" : "VarDecl",
"rhs" @ "2" 14 "name" : "a",
} 15 "value" : {
e 16 "kind" : "PlusExpr",
17 "lhs" : "1",
"kind" : "Print", 18 "rhs" : "2
"exp" : | 19 }
"kind" : "VarRef", 20 },
"name" : "a" 2
} 22 "kind" : "Print",

} 23 "exp" : {

] 24 "kind" : "VarRef",

} 25 "name" : "a"

26 }
27 }
28]

29| }

json-patch computes the following diff between the above two JSON trees:

replace; path: "/stmts/0/name"; value: "b",
remove; path: "/stmts/0/value/lhs",
remove; path: "/stmts/0/value/rhs",
add; path: "/stmts/0/value/value"; wvalue: "3",
replace; path: "/stmts/0/value/kind"; value: "NumLit",
remove; path: "/stmts/1l/exp",
add; path: "/stmts/1l/name"; value: "a
add; path: "/stmts/1l/value";
value: {"kind":"PlusExpr","lhs":"1","rhs":"2"},
replace; path: "/stmts/1l/kind"; value: "VarDecl",
add; path: "/stmts/-";
value: {"kind":"Print","exp":{"kind":"VarRef", "name":"a"}}]

n
’

Lines 1-5 update the subtree rooted at the first statement through a series of insertions,
deletions, and replacements (which also translate to deletion-insertion pairs). Lines 6-10
do the same for the second statement, while lines 11-12 append the entire subtree rooted
at the print statement to the list of statements. There is a lot of excess change operations
in this diff; If we were to run an IncA analysis on the output of json-patch, IncA would
essentially invalidate most of the analysis result as most of the nodes get deleted, and then

132 7 Textual Front End for Incremental Program Analysis

it would re-compute the results based on the new AST. Ideally, the shifting of the original
two statements should be described with two moves and no change at all to the nodes in
their subtrees, thereby allowing efficient incrementalization.

Next, we considered AST differs that reason about moves, as well. To gauge the
performance of the tools, we did a simple experiment. We took the source code of JavaParser,
and we computed diffs for each file against itself, without introducing a change. First, we
considered GumTree, which is a generic AST diffing framework [37]. We used version
2.1.2, and we found that the average diffing time is around 1.4s without any actual changes
in the files, which is not fast enough for our purposes. Then, we looked at two other tools
that were tailored to Java to see if the specialization brings any performance advantage.
We considered GumTree Spoon (version 1.24), which is a version of GumTree that is
specialized for Java,” and we experimented with ChangeDistiller [38].1° We found that
ChangeDistiller is fast, as the average diffing time is 5ms, while the maximum time is
230ms. GumTree Spoon was slightly slower with an average time of 164ms and a maximum
time of 1.1s. Even though, these numbers are promising, we continued looking for other
language-independent tools.

Finally, we considered hdiff from Miraldo et al. [85],11 which is a fairly new tool, as it
was introduced in 2017. hdiff is an AST diffing library applicable to arbitrary tree-like data
structures, and it can also reason about moves. Miraldo et al. benchmarked the performance
of hdiff on lua software projects, and they reported max 200ms diffing times for ASTs with
up to 10,000 nodes. This number is particularly promising because, when we benchmarked
fastparse with Python on django, we found that the average AST size per file is around
2,366 nodes. This means that hdiff has the potential to satisfy both our requirements.

In sum, AST diffing seemed to be more challenging when it came to meeting our
requirements for a generic and efficient front end for incremental program analysis. hdiff
seemed to be the only approach that we could use for our purposes. We decided to employ
hdiff and build a textual front end for IncA with it. In the following, we port hdiff from its
original Haskell implementation to Scala. We call our implementation hdiffs. We introduce
the main algorithmic concepts through our hdiffs implementation. Then, we explain how
to translate the output of hdiffs to the back end of IncA. Our experiment was actually
successful: As we will report later in this chapter, our approach can compute AST diffs for
Python files in a few tens of milliseconds.

7.3 AST Differencing with hdiffs

In this section, we present our own implementation of the original hdiff algorithm designed
by Miraldo et al.. The original algorithm was implemented in Haskell. We re-implemented
the algorithm in an object-oriented style in Scala, and we call our implementation hdiffs.

Diff representation hdiffs is a generic algorithm that can compute AST differences
between arbitrary tree data structures. We use a running example of 2-3 trees throughout
this section. In this data structure, every intermediate node has 2 or 3 child nodes, and

’https://github.com/SpoonLabs/gumtree-spoon-ast-diff/

OBuilt from sources with the last commit being feee5be in https://bitbucket.org/sealuzh/
tools-changedistiller/src/master/.

Uhttps://github.com/VictorCMiraldo/hdiff

https://github.com/SpoonLabs/gumtree-spoon-ast-diff/
https://bitbucket.org/sealuzh/tools-changedistiller/src/master/
https://bitbucket.org/sealuzh/tools-changedistiller/src/master/
https://github.com/VictorCMiraldo/hdiff

e W o m

e W o m

7.3 AST Differencing with hdiffs 133

leaves simply store a string value. The definition in Scala looks as follows:

trait Tree23

class Leaf (value : String) extends Tree23

class Node2 (tl : Tree23, t2 : Tree23) extends Tree23

class Node3 (tl : Tree23, t2 : Tree23, t3 : Tree23) extends Tree23

Figure 7.2 A shows two instances of Tree23. We are interested in computing the differences
between these two trees. The diff computed by hdiffs is determined by the common subtrees
that need to be copied over from source to target, potentially with extra permutation or
duplication. Concretely, a diff is represented as a pair of deletion-insertion contexts, as
shown in Figure 7.2 B. The deletion context binds subtrees of the source AST to so called
meta variables. Intuitively, the deletion context can be thought of as a pattern to be
matched against the source AST. The insertion context yields the target AST when its
meta variables are substituted by the respective subtrees bound by the deletion context. In
Figure 7.2 B, the deletion context binds meta variable 0 to Leaf (‘‘c’’) and meta variable
1 to Node2(Leaf (‘‘a’’), Leaf (‘*‘p’’)). The insertion context then reuses these meta
variables to efficiently encode the swap of the two subtrees. Had we used only insertions
and deletions, the diff would have deleted and re-inserted the complete subtrees.

source

deletion
context

Figure 7.2: (A) Example 2-3 trees used as input to hdiffs and (B) the resulting diff. The dashed arrows show how
the deletion context binds meta variables to subtrees in the source AST and how the meta variables are substituted
with those subtrees in the insertion context. Edges in the AST are labeled with the name of the containment link.

We model meta variables in Scala by introducing a “hole” for them in the 2-3 tree. A context
is a 2-3 tree which also allows meta variable holes. Finally, a diff consists of a pair of
contexts:

type Context[T] = T // type def for convenience

class Tree23MetaVarHole (mv : MetaVar) extends Tree23

class MetaVar (id : Int)

trait Tree23Diff (delCtx : Context[Tree23], insCtx : Context[Tree23])

The type def for Context may seem useless, but it helps in the following to identify what
kind of data a piece of the diffing logic deals with. Using this AP, the diff between the
source and target ASTs from Figure 7.2 A is described as follows:

134 7 Textual Front End for Incremental Program Analysis

Tree23Diff (

Node3 (
Tree23MetaVarHole (MetaVar (0)),
Tree23MetaVarHole (MetavVar(l)),
Leaf ("d")

) 4

Node3 (
Tree23MetaVarHole (MetaVar (1)),
Tree23MetaVarHole (MetaVar (0)),
Leaf ("e")

)

Next, we discuss how to identify common subtrees among the source and target ASTs.

Identifying common subtrees hdiffs decorates ASTs with cryptographic hashes in the
form of a Merkle tree [84]. Figure 7.3 shows this for an example 2-3 tree. The hash of a
node is composed of the hash of its constructor kind plus the hash of its children. In case
of leaf nodes, we also hash the string value. Finding common subtrees then boils down
to finding nodes with the same hash value in the source and target Merkle trees, as they
correspond to the roots of identical subtrees.

h(h(“Node3”) ® h(n2) ® h(n3) ® h(n4))

h(h(“Leaf”) ® h(“a”) h(h(“Leaf”) ® h(“b”)

Figure 7.3: AST decorated by hdiffs with cryptographic hashes. Nodes are labeled with a unique identifier to refer
to them in the hash computation in the parent node. Symbol @ represents an operator used to compose hashes.

To predict which subtrees are common between two trees, we implement an oracle as
shown in Figure 7.4. HashingOracle takes the source and target ASTs as constructor
arguments. It uses a trie data structure to provide efficient lookups of subtrees based on
hashes. The map srcTrie is used to map hashes to subtrees from the source AST, while
intersectTrie will contain mappings for the common subtrees. In lines 5-8, we iterate
over all nodes of the source AST, and we insert a mapping to the trie where the key is the
hash of the node and the value is a fresh meta variable. Note that we extended here the
class MetaVar to not only store the integer id, but also a reference to the root of the subtree
it represents. This will be important later when we substitute meta variables with subtrees
in the insertion context. In lines 9-15, we iterate over the nodes of the target AST to find
all those nodes whose hashes are already mapped in srcTrie. These nodes will be stored
in the intersectTrie, as they represent the common subtrees. The predict function
takes a subtree and returns the associated meta variable if the subtree is shared among the
two ASTs, otherwise it returns None. The perceived reader may wonder if hash collisions

7.3 AST Differencing with hdiffs

135

class HashingOracle(src: Tree23, trg: Tree23) {

val srcTrie = Trie[MetaVar] ()
val intersectTrie = Trie[MetaVar] ()
var count = 0

src.allNodes.foreach (node => {
srcTrie.put (node.hash, MetaVar (count, node))
count += 1

})

trg.allNodes.foreach (node => {
val key = node.hash
val mv = srcTrie.get (key)
if (mv != null) {

intersectTrie.put (key, mv)

}

})

def predict (node: Tree23): Option[MetaVar] = {
Option (intersectTrie (node.hash))

Figure 7.4: The implementation of the oracle that predicts which subtrees are common between two trees.

can ever happen with this approach: Miraldo et al. propose to use strong cryptographic
hash functions (e.g. SHA-256), so the chance for a potential collision becomes negligible.

Computing diffs Using the above oracle, we use a diff function to compute the diffs
between two trees as shown in Figure 7.5. In lines 5-6, we prepare the deletion and insertion
contexts using the oracle. Function extract is a polymorphic function that is overridden
by the different Tree23 subclasses. For example, for Node2, it looks as follows:

override def extract (oracle: HashingOracle): Context[Tree23]

oracle.predict (this) match {
case Some (mv) => Tree23MetaVarHole (mv)
case _ => Node2 (tl.extract (oracle), t2.extract (oracle))

class HashingDiffer {
def diff(src : Tree23, trg: Tree23): Tree23Diff = {
val oracle = HashingOracle(src, trg)

val delCtx = src.extract (oracle)
val insCtx = trg.extract (oracle)

val commonMetaVars = delCtx.metaVars intersect insCtx.metaVars

val postDelCtx = delCtx.retainMetaVars (commonMetaVars,
val postInsCtx = insCtx.retainMetaVars (commonMetaVars,

Tree23Diff (postDelCtx, postInsCtx)

src)
trqg)

Figure 7.5: Implementation of the diff function that computes the differences between two trees.

136 7 Textual Front End for Incremental Program Analysis

input

source

{ ?
N ~ unbound
————— x _"______—“.‘ meta variable
" diff (before postproc.) B
deletion ’ 3 " insertion
context context
diff (after postproc.)
deletion insertion
context context

patch

Ditf mv(©) ,—p\ MV(O) :,

Diff {_ Leaf(“ ") , — Leaf(“ ”)

Figure 7.6: Steps of obtaining a patch. (A) Input ASTs. (B) Diff before postprocessing the deletion and insertion
contexts. (C) Postprocessed diff where the unbound meta variable MV (1) is replaced by its subtree. (D) Patch
with common spine extracted as prefix. Diff holes display their two contexts as trees with dotted lines.

If the oracle predicts that the current subtree is common between the source and target ASTs,
then extract returns a meta variable hole with the respective meta variable, otherwise it
continues looking for shared subtrees recursively among the children.

In lines 8-10 in Figure 7.5, we perform postprocessing on the two contexts. This step
is necessary because the extracted contexts may contain meta variables that only appear
in one of the contexts. A meta variable only appearing in a deletion context corresponds
to a subtree that will not actually be copied, while a meta variable only appearing in an
insertion context is an unbound variable. Consider the example in Figure 7.6 A-B. The
oracle associates meta variable MV (0) with the Node2 subtree and meta variable MV (1)
with Leaf (‘‘a’’), as these appear both in the source and target ASTs. However, meta
variable MV (1) only appears in the insertion context. This is because the Node2 subtree
contains Leaf (‘‘a’’) in the source AST. In turn, the deletion context only binds meta
variable MV (0). To eliminate unbound meta variables, line 8 in Figure 7.5 computes the
intersection of the variables that appear in the two contexts. The calls to retainMetaVars
in lines 9-10 make sure that all variables that are not common in the two contexts get
replaced by the subtrees that the oracle associated with them. For our example, this replaces
MV (1) with Leaf (‘‘a’’) in the insertion context as shown in Figure 7.6 C.

Computing patches to minimize diffs Although the diff shown in Figure 7.6 C captures

[

7.3 AST Differencing with hdiffs 137

the differences between the two trees through the two contexts, it contains redundant
information. Specifically, the constructor Node2 appears at the roots of both the deletion
and insertion contexts. For real-world subject programs where the ASTs are much larger,
the amount of redundant parts can be significantly larger. To make the diff representation
more compact, hdiffs computes a so called patch from the diff. The main idea is to extract
the common constructors as a prefix forming the spine of the patch and then leave the
actual diffs to the leaves of the patch. Figure 7.6 D shows the patch computed from the diff
in Figure 7.6 C. The Node2 constructor forms the spine, the left leaf encodes the identity
change, while the right leaf is a replacement.

First, we model patches in the form of Scala classes and then briefly discuss how to
compute them:

type Patch[T] = T // type def for convenience
class Tree23DiffHole(diff : Tree23Diff) extends Tree23

Tree23DiffHole is a Tree23 in itself (just like Tree23MetaVarHole), and it wraps a
diff. We introduce a polymorphic function called createPatch which is overridden by all
Tree23 subclasses. For example, the implementation for Node2 looks as follows:

override def createPatch (other: Context [Tree23]): Patch[Tree23] =
other match {
case Node2 (tl, t2) =>

try {
val pl = this.tl.createPatch(tl)
val p2 = this.t2.createPatch(t2)
Node2 (pl, p2)

} catch {

case e: UnboundMetaVarException =>
Tree23DiffHole.create (this, other)
}
case _ => Tree23DiffHole.create(this, other)
}

If the two trees (this and other) share the same constructor, then we extract that, and
we recursively build the spine in the children nodes. If the constructors are different, we
create a diff hole with Tree23DiffHole. create, which wraps the two trees that represent
the deletion and insertion contexts. These contexts may contain Tree23MetaVarHoles.
Lines 9-10 catch UnboundMetaVarException, which is an important sanity check. The
exception may be thrown by nested calls to Tree23DiffHole.create in children nodes.
The function throws the exception if the insertion context contains a meta variable that
does not appear in the deletion context. This is a problem because such variables do not
get bound to a concrete subtree, so the insertion context will not be able to substitute
the meta variable. Note that we compute the patch from the postprocessed diff, so there
cannot be any unbound meta variables when considering the complete (outermost) contexts.
However, as the patch creation recursively descends to children nodes, the contexts shrink,
and this may break bindings for meta variables. For example, consider the following patch
which has an unbound meta variable in the t2 child of Node2:

1| Node?2 (

2
3

Tree23DiffHole (
Tree23Diff (

138 7 Textual Front End for Incremental Program Analysis

Tree23MetaVarHole (MetaVar (0)),
Tree23MetaVarHole (MetaVar (0)
)
) 4
Tree23DiffHole (
Tree23Diff (
Leaf ("a"),
Tree23MetaVarHole (MetaVar (0)) // unbound meta variable
)

To fix the broken binding, the diff must be lifted up, and the spine must shrink to yield the
following patch:

Tree23DiffHole (
Tree23Diff (
Node?2 (
Tree23MetaVarHole (MetaVar (0)),
Tree23MetaVarHole (MetaVar (0)
) 4
Node?2 (
Leaf ("a"),
Tree23MetaVarHole (MetaVar (0)) // bound in lifted context
)

The exception handler in createPatch lifts up the diff creation as needed, potentially
recursively by re-throwing the exception. To make use of createPatch, we can simply
modify diff in Figure 7.5 to not simply return Tree23Diff (postDelCtx, postInsCtx)
but postDelCtx.createPatch(postInsCtx).

In the original paper describing hdiff, Miraldo et al. also describe how to apply patches
on an AST, as their primary use case is in computing and merging diffs in a version control
system. In IncA, this is different, as our goal is to use the computed patches to incrementally
maintain analyses. After computing a patch between a source and target AST, the target
AST can simply be considered as the source AST for the next program change. In the
following, we explain how to translate a patch computed by hdiffs to updates in EDB
relations that IncA analyses use an input.

7.4 Integrating hdiffs with IncA

In this section, we integrate hdiffs with the back end of IncA. First, we recap how IncA
represents subject programs with virtual EDB relations. Then, our goal is to use patches
computed by hdiffs to incrementally update EDB relations. To this end, we define require-
ments that our solution must satisfy to perform correct and efficient updates. Finally, we
present an actual algorithm that performs the updates while satisfying our requirements.

7.4 Integrating hdiffs with IncA 139

source
AST

~
N
)

— { Leaf(“b”

C D
Node2 Node2.t1 Node2 Node2.t1
ni nl [n2 n1 nt [n2
Node2.t2 Node2.t2
n1 | n3 - nl n3
+| ni n4
Leaf Leaf.value Leaf Leaf.value
n2 n2 “a” n2 n2 “a”
n3 n3 “a” - n3 n3 “a’ |-
+ n4 n4 “b” |+

Figure 7.7: Updates in virtual EDB relations as triggered by a patch. (A) Source and target ASTs, (B) patch
representing the diffs between them, (C) initial contents of EDB relations, and (D) updated contents of EDB relations
after applying the patch. Symbols +/- show which tuples get inserted/deleted. This example demonstrates the
problems that lead to requirements Differentiate subtrees of a meta variable (R 7.1) and No dangling trees (R 7.2).

7.4.1 Subject Program as Virtual EDB Relations

As we discussed in Section 3.3, IncA uses virtual EDB relations derived from the AST of a
subject program. Unary EDB relations enumerate the instances of AST node types, while
binary EDB relations enumerate the source and target nodes of structural links. Consider
the 2-3 tree shown on the left of Figure 7.7 A where each node is labeled with a unique
identifier. The same AST is encoded as a collection of EDB relations in Figure 7.7 C. Unary
relations enumerate the nodes of the 2-3 tree per node type, while each binary relation
enumerates the source and target nodes of a containment link in the AST. We initialize
these relations through a traversal of the source AST before any program analysis runs.

7.4.2 Requirements for Correct and Efficient EDB Updates

In response to a textual program change, we re-parse the new contents of the text editor in
the IDE to obtain a target AST. We take the source and target ASTs and use hdiffs to compute
a patch between them. Finally, we use the patch to update EDB relations by deleting and
inserting affected tuples. However, the original design of hdiffs does not immediately lend
itself to correct and efficient EDB updates. On the one hand, meta variables make hdiffs
itself efficient because they help to concisely represent structurally equivalent subtrees. On
the other hand, exactly the fact that a single variable is used to represent multiple subtrees

140 7 Textual Front End for Incremental Program Analysis

makes it difficult to perform EDB updates because we must be able to tell those subtrees
apart when inserting or deleting tuples. For example, n2 and n3 are represented with the
same meta variable in Figure 7.7 B, yet, there are different tuples describing their structure
in the EDB in Figure 7.7 C. This observation leads to three requirements that our update
solution must satisfy:

Differentiate subtrees of a meta variable (R 7.1): Assume that after a textual program
change, we obtain the target AST shown in the right of Figure 7.7 A from the AST
shown in the left. hdiffs computes the patch shown in Figure 7.7 B. The patch uses
MV (0) to represent three occurrences of Leaf (‘‘a’’), including n3 in the source
AST. The deletion context in the right prescribes the detachment of the subtree
represented by MV (0). We intentionally wrote here detachment instead of deletion
because the purpose of meta variables is exactly to reuse subtrees. However, MV (0)
itself does not tell which occurrence of the subtree should be detached by this deletion
context. Both n2 and n3 are candidates, but the right one for this context is n3. One
solution of course is to detach all subtrees represented by MV (0) when a deletion
context prescribes a detachment. The insertion context then can just attach the
necessary amount of detached subtrees. However, this is inefficient, as this way we
may unnecessarily detach and attach some of the subtrees, as would be the case for
n2, given that it is part of an identity change. Instead, what we need is to differentiate
structurally equivalent but otherwise different subtrees represented by the same meta
variable. In other words, we must be able to tell the different subtrees represented
by MV (0) apart. In turn, the tuple (n1, n3) must be deleted from Node2.t2, as
shown in Figure 7.7 D.

No dangling trees (R 7.2): Now that we detached n3 in the previous step, we are ready
to attach it somewhere else. However, we cant, as the insertion context in the
right contains n4. This means that the subtree represented by n3 is a dangling tree,
which must be garbage collected by our solution. This entails the deletion of (n3)
from Leaf and the deletion of (n3, ‘‘a’’) from Leaf.value. The other insertions
appearing in Figure 7.7 D are due to the insertion of n4.

No double attach (R 7.3): Consider now the example in Figure 7.8, which is split up into
subfigures just like Figure 7.7. The difference compared to the previous example
is that Leaf (‘‘b’’) now appears in the source AST, and the target AST contains
Leaf (‘‘a’’) as both leaves. Like before, MV (0) here also represents three occurrences
of Leaf (*“a’’). The deletion context detaches n2 and deletes n3. However, the
problem now is that the insertion context would attach two subtrees represented by
MV (0), but there is only one available. We must not attach the same subtree twice,
instead a copy of n2 must be attached. This copy is represented by n4.

We also formulate a non-requirement which is related to the changes affecting n1 and
nl’ in Figure 7.8. Node n1’ appeared in the patch because the diff must be lifted up to
the Node2 level to avoid MV (0) being unbound, and hdiffs copied n1. Ideally, we should
preserve nl here, but we consider this as an optimization, which we leave to future work.
The end result is correct, but it comes with unnecessary changes.

R

7.4 Integrating hdiffs with IncA 141

7.4.3 Updating EDB Relations

We now present our solution for translating patches to updates in EDB relations. We
introduce an EDB trait with the following API for accepting updates:

trait EDB ({
def insertUnary(ty : Type, instance : Tree23)
def deleteUnary(ty : Type, instance : Tree23)
def insertBinary(link : Link, source : Tree23, target : Tree23)
def deleteBinary(link : Link, source : Tree23, target : Tree23)
}

Type represents an AST node type in the 2-3 tree, while Link is a link in the tree.

The main function of the algorithm that updates EDB relations is shown in Figure 7.9.
Function updateEDB takes an EDB instance and a source and target AST and deletes and
inserts tuples from EDB relations. There are three main steps of the algorithm: (i) compute
the patch with hdiffs between the source and target ASTs, (ii) translate the patch to EDB
updates, and (iii) clean up dangling trees.
hdiffs extensions We already discussed how hdiffs computes patches in Section 7.3.
However, in order to integrate hdiffs with IncA, we needed to add a key extension to
our implementation: Unique identifiers to AST nodes. As we discuss later, being able to
uniquely identify nodes is important to tell apart different instances of the structurally
equivalent subtrees. Technically, identifiers are implemented as randomly generated Java

source
AST

Node2

n3{ Leaf(*b”)

(o] D
Node2 Node2.t1 Node2 Node2.t1
ni nl [n2 - ni ni n2 |-
n1’ ni’ n2 |+
Node2.t2 Node2.t2
ni | n3 - n1 n3
ni’ n4
Leaf Leaf.value Leaf Leaf.value
n2 n2 “a” n2 n2 “a”
n3 n3 “pb” - n3 n3 “p’ | =
+ n4 n4 “a”

Figure 7.8: Example demonstrating the problem that leads to requirement No double attach (R 7.3).

G W o e

142 7 Textual Front End for Incremental Program Analysis

def updateEDB (instance : EDB, src: Tree23, trg: Tree23): Unit = {

// compute patch between src and trg
val (patch, mvs) = HashingDiffer.diff (src, trg)
// apply patch to EDB instance
// (null, null) is the "no context" for root nodes
patch.applyPatchTo (instance, null, null)
// clean up dangling trees
nvs.foreach (mv => ({

mv.detachedTrees.foreach (tree => {

tree.delete (instance, null, null)

}

}

Figure 7.9: Main function of the update algorithm.

URIs set when a Tree23 node is instantiated. We also make sure that Adiffs carries along
the identifiers of nodes when extracting contexts or computing spines of patches. We use
function diff to compute a patch in line 3 in Figure 7.9. The API of this function is slightly
different than presented in Figure 7.5, as the function now also returns the meta variables
from the intersection trie because we use them later in the postprocessing step.

Translating a patch to EDB updates The high-level steps of the patch translation are
as follows:

« Depth-first traversal of the spine until diff holes: Traverse the patch depth first until
diff holes are reached. During traversal, keep track of the parent node and the
containment link of a node, as this information will be key to satisfy Differentiate
subtrees of a meta variable (R 7.1). When reaching a diff hole, extract its deletion
and insertion contexts and update EDB relations based on them.

Delete/insert EDB tuples based on deletion/insertion context: Delete/insert all tuples
from EDB relations that describe the structure of the deletion/insertion context. We
traverse the contexts depth first.

« Tree reuse through meta variable holes: Meta variables represent reused subtrees, so
we must only detach/attach the root of the subtrees they represent. When processing
a meta variable in a deletion context, we ensure to detach the correct instance of
the subtree represented by the meta variable based on the position in the tree, as
required by Differentiate subtrees of a meta variable (R 7.1). When substituting meta
variables with subtrees in the insertion context, we pay attention to attach the right
subtree and to avoid double attaching, as required by No double attach (R 7.3).

We implement this logic now in actual code. We first extend the Tree23 trait with three
new functions, which will be overridden by the different subclasses:

trait Tree23 {
def applyPatchTo(instance: EDB, parent: Tree23, 1link: Link)
def delete(instance: EDB, parent: Tree23, link: Link)
def insert (instance: EDB, parent: Tree23, link: Link)

7.4 Integrating hdiffs with IncA 143

applyPatchTo performs the depth-first traversal of the spine. The function delete/insert
is responsible for recursively deleting/inserting the tuples represented by a concrete Tree23.
Line 6 in Figure 7.9 calls applyPatchTo with the EDB instance and two null values rep-
resenting the absence of a parent and containment link of the root node. We review the
implementation of the new functions for concrete Tree23 classes. We start with Node2:

Qs w

case class Node2 (tl: Tree23, t2: Tree23) extends Tree23 {

override def applyPatchTo (instance: EDB, parent: Tree23, link: Link) {
this.tl.applyPatchTo (instance, this, Link(classOf[Node2], "t1"))
this.t2.applyPatchTo (instance, this, Link(classOf[Node2], "t2"))

override def delete (instance: EDB, parent: Tree23, link: Link) {
instance.deleteUnary (Type (classOf [Node2]), this)
instance.deleteBinary (link, parent, this)
this.tl.delete(instance, this, Link(classOf[Node2], "t1"))
this.t2.delete(instance, this, Link(classOf[Node2], "t2"))

override def insert (instance: EDB, parent: Tree23, link: Link) {
// same as the logic in delete, but with insertions

}

applyPatchTo descends into the left and right subtrees of Node2. In the recursive call, we
update the parent node and containment link, so that the children also work with the right
containment information. Function delete first updates the EDB instance by removing the
tuple reporting that this is an instance of Node2, then it removes the containment link
between parent and this. The contract in our implementation is that the containment
link always gets deleted by the child. Finally, we recursively call delete on the two
subtrees. The implementation of insert is similar, but it uses insertions.
Next, we show the implementation for Leaf:

case class Leaf (value: String) extends Tree23 {

override def applyPatchTo (instance: EDB, parent: Tree23, link: Link) {
// noop - end of recursion

}

override def delete(instance: EDB, parent: Tree23, link: Link) {
instance.deleteBinary (link, parent, this)
instance.deleteUnary (Type (classOf [Leaf]), this)
instance.deleteBinary (Link (classOf[Leaf], "value"), this, this.value)

override def insert (instance: EDB, parent: Tree23, link: Link) {
// same as the logic in delete, but with insertions

}

There is no need for recursive descend in any of the functions, as Leaf represents a leaf
node in the AST. Importantly, tuples describing primitive values associated with nodes

144 7 Textual Front End for Incremental Program Analysis

must be deleted/inserted by the node itself, as we cannot override these methods on the

primitive values themselves.
The implementation for Tree23DiffHole is special, as it represents a boundary be-

tween the spine and a diff:

class Tree23DiffHole(diff : Tree23Diff) extends Tree23 {

override def applyPatchTo(instance: EDB, parent: Tree23, link: Link) {
val dc = this.diff.delCtx
val ic = this.diff.insCtx

if (dc.isInstanceOf[Tree23MetaVarHole] && dc == ic) {
// noop - identity change
} else {

dc.delete (instance, parent, link)
ic.insert (instance, parent, link)

override def delete(instance: EDB, parent: Tree23, link: Link) {
throw ApplyPatchFailed("Should not reach this point")

override def insert (instance: EDB, parent: Tree23, link: Link) {
throw ApplyPatchFailed("Should not reach this point")

Function applyPatchTo switches from the traversal of the spine to the recursive dele-
tion/insertion of subtrees, recursively passing along the containment information. A special
case is when the deletion and insertion contexts represent the same meta variable. This is
an identity change, which does not require any processing. Functions delete and insert
will never be called on a Tree23DiffHole, as diff holes cannot be nested, and exactly diff
holes are the ones that initiate delete and insert in the first place.

The implementation for Tree23MetaVarHole is also special, as we must correctly and
efficiently reuse moved subtrees:

class Tree23MetaVarHole (mv : MetaVar) extends Tree23 {

override def applyPatchTo(instance: EDB, parent: Tree23, link: Link) {
throw ApplyPatchFailed("Should not reach this point")

override def delete(instance: EDB, parent: Tree23, link: Link) {
val occurrence = mv.findOccurrence (parent.uri, link)
instance.deleteBinary (link, parent, occurrence)
mv.detachedTrees.push (occurrence)

override def insert (instance: EDB, parent: Tree23, link: Link) {
val (tree, isReused) = this.mv.makeTreeAvailable ()
if (isReused) {
instance.insertBinary(link, parent, tree)
} else {
tree.insert (instance, parent, link)

7.4 Integrating hdiffs with IncA 145

}

First, applyPatchTo will never be called on Tree23MetaVarHoles, as they are contained
inside diffs, and we switch to recursive delete/insert calls in diff holes. Function delete
finds the right instance of the subtree represented by the meta variable based on the identi-
fier of the parent and the containment link (Differentiate subtrees of a meta variable (R 7.1)).
We discuss later how the occurrences are registered. We detach the found subtree and
register it on the meta variable as a subtree that can be re-attached elsewhere. Function
insert consults the meta variable for a subtree to work with and considers two cases.
First, if there is a previously detached subtree (through a previous call of delete), then we
only attach the returned subtree. Second, if there is no detached subtree available, then
makeTreeAvailable copies the subtree represented by the meta variable, and then we
insert the complete subtree recursively. This is to satisfy No double attach (R 7.3).

As a last piece to our algorithm, we show the extensions to the class MetaVar, as it is
now responsible for managing multiple subtrees:

class MetaVar (id : Int, representedTree : Tree23) {
val treeOccurrences = mutable.Map[(URI, Link), Tree23] ()
val detachedTrees = mutable.Stack[Tree23] ()

def makeTreeAvailable(): (Tree23, Boolean) = {
if (detachedTrees.nonEmpty) {
(detachedTrees.pop, true)
} else {
(representedTree.copy, false)
}
}

def registerOccurrence (parent : URI, link : Link, tree : Tree23) {
treeOccurrences.put ((parent, link), tree)

}

def findOccurrence (parent : URI, link : Link) : Tree23 = {
treeOccurrences.get ((parent, link)).get
}
}

A meta variable does not only store an identifier and the subtree it represents, but also the
concrete structurally-equivalent occurrences of its subtree from the source AST. To this
end, we use a map that is keyed by the pair of the parent URI and the containment link.
Function registerOccurrence is called by HasingOracle when preparing the source
trie. Function findOccurrence is used in the delete function of Tree23MetaVarHole
above to look up a concrete occurrence. Finally, makeTreeAvailable gives priority to
already detached subtrees, if there is none available in the stack, then it copies the subtree
that the meta variable represents and returns that.

Perceived readers may wonder what guarantees that findOccurrence will actually
find a subtree occurrence given a parent URI and a link. We reason as follows:

« HasingOracle registers all occurrences of the structurally equivalent subtrees from

146 7 Textual Front End for Incremental Program Analysis

the source AST under the same meta variable.

« Function findOccurrence is only called from delete on a Tree23MetaVarHole.
This can only happen if the algorithm processes a deletion context of a diff hole.
Deletion contexts capture the changes in the source AST.

« Given that both previous steps concern the source AST, it is guaranteed that there
is an occurrence registered in treeOccurrences for a parent URI and link that are
passed to the function findOccurrence.

Cleaning up dangling trees The last step in our algorithm is the postprocessing in
lines 8-12 in Figure 7.9. Here, we delete all those detached trees that have not been re-
attached when applying a patch, as required by No dangling trees (R 7.2). This can happen if
there are more occurrences of a meta variable in deletion contexts than in insertion contexts.
Technically, we iterate over the trees in the detachedTrees stack of each MetaVar and
call delete on them to recursively delete the tuples that represent their structure. Given
that these trees have already been detached, we can safely use null for the parent and link
in the initial call.

7.4.4 Language-independent Implementation

Throughout the presentation of hdiffs and our integration, we focused on 2-3 trees. We
presented a number of functions (e.g. extract, applyPatchTo, delete, and insert)
that must be overridden by the different Tree23 case classes. The implementation simply
followed the structure of the respective Tree23 subclass. In our concrete implementation,
we avoid all this, and we support any kind of subject language that is encoded with Scala
case classes. To this end, we make use of Scala macros, which are functions called by the
Scala compiler at compilation time. In our integration, macros manifest as annotations
that analysis developers can apply on the case classes of the language definition. When
macros get expanded by the compiler, we rewrite the original Scala classes and inject
the implementation of all the required functions. The actual implementation of all hdiffs-
specific classes, such as meta variable, context, and patch, is in fact parametric over the
subject language, as well.

7.5 Evaluation

In this section, we present a benchmark where we employ hdiffs for a concrete programming
language. We answer the following research questions:

Ease of Integration (Q 7.1): Can hdiffs be used for a custom subject language with low
manual effort?

Run Time (Q 7.2): Can hdiffs deliver AST differences in a few milliseconds? Can it serve
as the basis for a textual front end for incremental static analyses?

The research questions primarily concern hdiffs and not a complete textual front end. The
reason for this is that we plan to reuse existing parsers, and we already demonstrated in

7.5 Evaluation 147

Section 7.2 that they are already fast enough for our purposes. To this end, we focus on
benchmarking hdiffs itself in this section. Our first question is simply concerned about its
general applicability, as the whole reason why we started experimenting with a textual
front end was to enable IncA in textual IDEs in a language-independent manner. The
second question is about performance, which is of paramount importance, as the time
required to compute AST differences directly has an impact on the overall performance of
IncA as a whole. We do not measure the memory overhead of hdiffs, as it does not use any
stationary memory given that it is a non-incremental algorithm.

There is a number of questions that we do not consider in our evaluation; e.g. the
compactness of the computed diffs or the performance of IncA as a whole with a concrete
analysis consuming the computed diffs. The reason for this is that the work presented
in this chapter is still in an early state: We discuss our planned next steps later. For the
benchmark presented in this section, we used a machine with an Intel Core i7 at 2.7 GHz
and 16 GB of RAM, running 64-bit OSX 10.15.4, Java 11.0.5, and Scala version 2.13.1.

7.5.1 Evaluating Ease of Integration (Q 7.1)

To experiment with the applicability of our approach, we integrated hdiffs with Python.
The choice for Python had practical reasons: We found the fastparse library which readily
implements a Python parser in Scala. As we will show later, the parser is fast out of the box,
which is important for our use case, allowing us to focus on the integration with hdiffs.
Additionally, the parser represents the Python grammar as Scala case classes, which allows
us to directly apply our macro annotations (see Section 7.4.4). Consider the following code
snippet from the Python grammar definition with our macro annotations applied:

@DiffableType trait mod

object mod {
case class Module (body: Seqglstmt]) extends mod
case class Interactive (body: Seg[stmt]) extends mod

case class Expression(body: Seg[stmt]) extends mod
}

@DiffableType trait stmt object stmt {

case class FunctionDef(...) extends stmt
case class ClassDef(...) extends stmt
case class Return(...) extends stmt

}

Indeed, the highlighted annotations are the only changes we performed on the grammar
definition. We apply the DiffableType annotation on the traits, and the compiler expands
the macro on all subclasses, thereby generating all boilerplate code that hdiffs relies on
(as explained in Section 7.4). Considering Ease of Integration (Q 7.1), we conclude that
it is straightforward to integrate hdiffs with Python. However, we acknowledge that
this was only possible because (i) a fast parser was readily available and (ii) the parser
implementation used Scala case classes to represent the grammar, so we could apply our
macro annotations. This may be considered a limitation, but we note that parsers are
generally fast enough for our purposes (see Section 7.2) and that Scala is actually a popular
choice for implementing parsers, as demonstrated by the fastparse library or the other

148 7 Textual Front End for Incremental Program Analysis

widely used scala parser combinator framework.'? As we discuss in Section 7.6, we also
have concrete plans to enable easy integration of hdiffs with ANLTR grammars, thereby
further improving the applicability of our approach.

Ease of Integration (Q 7.1): Integrating hdiffs with a Scala-based language implemen-
tation is as easy as applying macro annotations on the case classes of the grammar.

7.5.2 Evaluating Run Time (Q 7.2)

To evaluate the performance of hdiffs, we computed AST differences from textual Python
source code. We used the sources of django,!® which is a popular web framework imple-
mented in Python. The framework comprises roughly 250 KLoC. As a preparatory step,
we took the latest 500 commits of the repository, checked out each one of them, and saved
a snapshot of all the Python source files in the repository. We flattened out the folder
hierarchy in our snapshots by creating file names based on the containing folder hierarchy;
e.g. afileroot/a/b/c.py gets saved as root/a_b_c.py in the snapshot. This makes sure
that even if there is name clash between files, their original container path distinguishes
them. Our actual evaluation happens as follows:

« We take the oldest snapshot and use fastparse to produce a Scala AST from each
textual Python file. We store a mapping from file name to the pair of textual file
content and the AST.

« We start iterating over the commits from older to newer. For each commit snapshot,
we check which files have changed wrt. their textual content. To obtain the old
textual file contents, we use the previously introduced map. We only reparse the
files that have changed textually. This way we imitate a simple form of incremental
parsing. Every time we parse a file with fastparse, we measure how long that takes.

« Given the new AST and the old AST looked up from the map, we use hdiffs to compute
the AST differences between them. We measure the time hdiffs takes. Finally, we
update the map, so that we carry forward the new AST and textual content.

The following table summarizes our benchmark results:

total number of diffed files 819

avg. number of diffed files per commit 1.64

avg./max nodes in the AST 2366.22 (+292 with 95 % confidence) 33116
avg./max parse time (ms) 10.24 (+1.29 with 95 % confidence) 140.00
avg./max diffing time (ms) 1.93 (+0.31 with 95 % confidence) 85.24

The table shows that quite a number of files have changed throughout the 500 commits, but,
on average, a commit only affected 1.64 files. The AST sizes are on the same magnitude as
the sizes reported by Miraldo et al. in the original hdiff paper, as their benchmarking with
lua code also showed that the vast majority of the ASTs consisted of at most 10000 nodes [85].

Zhttps://github.com/scala/scala-parser—combinators
Bhttps://github.com/django/django

https://github.com/scala/scala-parser-combinators
https://github.com/django/django

7.6 Future Work 149

Fastparse is efficient, as it re-parses entire Python files in 10 ms on average. Finally, hdiffs
also delivers the performance IDEs need for interactive applications, as it computes AST
differences in a few milliseconds on average. Taking the sum of the maximum parsing and
diffing times and multiplying that with the average number of changed files per commit
still yields only 369 ms, which shows that our approach can indeed support efficient textual
front ends.

Run Time (Q 7.2): We find that hdiffs computes AST differences in a few milliseconds.

Coupled with an efficient parser, hdiffs is a good fit for building an efficient textual
front end for incremental IncA analyses.

7.5.3 Discussion

On the compactness of the AST diffs Our evaluation did not consider the quality of
the hdiffs output, that is, if the AST differences are actually as small or as precise as possible.
On the one hand, as explained in Section 7.2, reasoning about moves and efficiency were
the primary reasons why we considered adapting hdiff in the first place. Many other
techniques either failed to deliver on efficiency and/or on the support for moves. This
means that hdiff (and by that hdiffs) is at the forefront of what is possible in terms of
AST diffing. On the other hand, it is not obvious how we could actually reason about the
quality of the output of an AST diffing algorithm. We will look at the algorithms behind
other AST diffing tools in Section 8.5, but we can already say upfront that different tools
use different representations for AST diffs, which makes it difficult to compare outputs.
This observation motivates one of our main directions for future work: As we explain in
Section 7.6, we plan to design a language for describing AST differences that could be used
by different diffing tools as a common format, thereby allowing to compare their outputs.

On benchmarking the entire analysis pipeline In the presented benchmark, we did
not actually use an incremental Python analysis consuming the AST diffs computed by
hdiffs. We acknowledge that to fully verify the efficiency of the whole incremental analysis
pipeline, including AST diffing and incremental maintenance of the analysis, we would
need to perform a complete benchmark. However, we already showed throughout this
dissertation that the IncA back end is efficient for a variety of incremental program analyses
(including inter-procedural analysis), delivering sub-second update times on average. Here,
with the textual front end, we add a small overhead of a few tens of milliseconds (including
parsing and diffing) on average to the update times of the analysis, so we argue that the
overall update time will still be in the sub-second ballpark.

7.6 Future Work

We already implemented a preliminary version of hdiffs and reported about that in this
chapter. Nevertheless, we also identified concrete next steps for the development of hdiffs.
We provide a brief overview on our ideas and the planned solution approach.

Adding support for virtual links IncA Datalog provides access to the structure of a
subject program’s AST through virtual EDB relations. See Figure 3.5 for an overview on the

(SR S R SN

150 7 Textual Front End for Incremental Program Analysis

language syntax. The EDB relations enumerate instances of node types and links in the AST.
However, there are also virtual links, such as prev, next, parent, and index, that are not
modeled explicitly in the subject language. IncA still makes these links available because
they are fundamental for navigating in the AST. The incremental maintenance of these
links required special support also in case of the projectional front end (see Section 3.5),
and this is also the case with the textual front end. We plan to extend the logic introduced
in Section 7.4 so that when we translate an hdiffs patch to EDB updates, we also maintain
these virtual links between AST nodes. Adding support for parent is straightforward, as
we can simply extract the old parent from the deletion context and the new parent from
the insertion context when processing a diff hole, so we can just update the corresponding
two tuples in the EDB instance. The links prev and next are only applicable for list-typed
fields, but then they can be handled similarly as parent. The maintenance of the index
link is expensive (just like with the projectional front end), as inserting or deleting a node in
the front of a list shifts the index of all consecutive elements. Just like with the projectional
front end, we plan to add support for index on demand, meaning that the link would only
be maintained in the EDB instance if an analysis actually uses it.

Integration with ANTLR grammars When designing and implementing hdiffs in
Section 7.3 and then the integration with IncA in Section 7.4, we made sure to introduce
interfaces for all operations that are specific to the abstract syntax of a particular subject
language. Recall all the operations related to extracting meta variables, creating patches,
or deleting and inserting tuples representing complete subtrees. Even though, we showed
concrete implementation details for a 2-3 tree, hdiffs can actually generate all of this
boilerplate code with Scala macros. In order to extend the applicability of our approach,
we plan to implement a similar integration with ANTLR [91], which is a popular parser
generator framework. Given the grammar definition of a language, ANTLR can generate
all the machinery needed to parse and process textual programs in that language. The
generated parsing infrastructure uses Java classes to represent the different terms of the
grammar, and we plan to extend the ANTLR generator to also emit all hdiffs-specific
boilerplate code. This way we could use hdiffs to compare ASTs produced by ANTLR. This
is an exciting direction for IncA, as ANTLR grammar implementations are readily available
for many languages online.!*

Changeset language with linear type system In an attempt to create a common

format to describe the output of AST diffing tools, we plan to design a language describing
changesets. We envision the following set of change commands:

trait ChangeCmd

class Detach(parent: URI, link: Link, node: URI) extends ChangeCmd

class Attach(parent: URI, link: Link, node: URI) extends ChangeCmd

class Unload(parent: URI, link: Link, node: URI) extends ChangeCmd

class Load(node: URI, children: Iterable[(Link, Any)]) extends ChangeCmd

Detach and Attach correspond to detaching a node from and attaching a node to a parent
in an AST, without any changes to the subtree of node. Unload is a destructive operation,
as it detaches a node from its parent, plus it also prescribes the removal of the entire
subtree rooted at node. Load is a change command that makes a node available (e.g. by

Yhttps://github.com/antlr/grammars-v4

https://github.com/antlr/grammars-v4

7.7 Chapter Summary 151

loading it from disk), lazily loading its immediate children. Children are contained under
a specific Link and they may either be represented by another URI (that must be loaded
again) or by a literal value. The result of a Load must be attached afterwards to the AST.
The integration of hdiffs with IncA in Section 7.4 revolved exactly around these kind of
operations, so this language is a natural fit to act as an intermediate representation between
a patch and the concrete EDB updates.

We formulated three requirements in Section 7.4 that our patch translation algorithm
must satisfy. First a requirement concerning efficiency:

1. Differentiate subtrees of a meta variable (R 7.1): Differentiate subtrees of the same
meta variable to precisely know which instance to detach/attach.

Then, two safety requirements concerning subtrees that we attach and detach:

2. No dangling trees (R 7.2): No dangling trees to ensure that a detached tree is actually
attached later, otherwise a detached tree must be unloaded.

3. No double attach (R 7.3): No double attach to ensure that a detached tree can only be
attached once, otherwise it first needs to be loaded.

There is another safety requirement that we did not explicitly spell out before, as we just
relied on the correctness of hdiff itself. This concerns the resulting AST after applying
change commands on the source AST:

4. A changeset must yield a well-formed AST, that is, when the change commands are
applied on the source AST, then the resulting AST must conform to the grammar of
the subject language wrt. types and the cardinalities of containment links.

Our goal is to design a type system for the changeset language, so that we can automatically
verify if these requirements are satisfied by a concrete set of change commands. Our idea
is to use a linear type system, which ensures that resources are used exactly once. In our
approach, the resource the type system reasons about would be a containment slot (the
target of a link) in the AST.

Using an incremental parser to speed up AST differencing Even though, we demon-
strated in Section 7.2 that non-incremental parsers are efficient enough to support textual
front ends for incremental static analyses, incremental parsers could take our approach to
the next level. Even with an incremental parser that reports just about the changed parts of
the AST (not the actual changes) after a re-parse, we could speed up our AST differencing
further. This is because hdiffs does not actually require the complete ASTs as input, it
could also work with two companion subtrees from the source and target ASTs. This way
we could significantly reduce the sizes of the compared trees for realistic programs with
several thousand AST nodes. We plan to experiment with this idea in the future.

7.7 Chapter Summary

This chapter focused on designing and implementing a textual front end for IncA. We
found that we can readily use existing parsers, as they are already efficient enough to

152 7 Textual Front End for Incremental Program Analysis

re-parse files after program changes in a live setting. For AST differencing, we considered
the hdiff tool because of its efficiency and because it can also reason about moves. We
ported hdiff from Haskell to Scala and created hdiffs. We integrated hdiffs with the IncA
back end by translating AST differences to updates in EDB relations. Our benchmarking
with real-world Python code revealed that hdiffs is efficient at computing AST differences.
Coupled with an efficient parser, hdiffs provides a practical solution for building a textual
front end for IncA.

From the requirements we formulated in Section 1.4 for IncA, two apply to our new
textual front end: Efficiency (R2) and Genericity (R4). Our solution satisfies both of these
requirements. Our hdiffs-based front end can deliver AST differences in a few tens of
milliseconds on average after textual program changes. Even though, we used Python in
our benchmarking, the design of hdiffs allows easy integration with other subject languages,
as well.

153

Related Work

Our discussion of related work is directly governed by our thesis from Section 1.3. We
identify three main categories of related work in the context of the first part of our thesis
which states “Incrementalization can significantly improve the performance of sophisticated
static analyses™:

« We survey how other researchers used incrementality to speed up analyses. We look
at both one-off incremental algorithms and other incremental analysis frameworks
in Section 8.1.

« As incrementalization is only one approach for speeding up static analyses, we also
look at other techniques that can help to achieve speedups in Section 8.2.

« Given that Datalog plays a central role in this dissertation, we review state-of-the-art
incremental fixpoint algorithms, solvers, and applications of Datalog in Section 8.3.

The second part of our thesis claims “We can achieve this automatically while shielding anal-
ysis developers from the technical details of incrementalization.”. We survey two categories
of related work:

« In IncA, we use declarative DSLs to hide the technical details of incrementalization.
In Section 8.4, we review what kind of other specification languages researchers
proposed for program analyses.

« Incrementalization of static analyses entails an efficient front end that can deliver
program deltas efficiently. To this end, we survey tree diffing algorithms in Section 8.5.

Figure 8.1 provides an overview on a number of tools/approaches and the techniques they
use for speeding up static analyses. The first row shows IncA, which we characterize as an
approach primarily using incrementalization for speeding up static analyses. Additionally,
we presented a meta analysis in Section 3.4 which is based on partial evaluation to compute
hints for the runtime system about irrelevant program changes. In the last column, we use
a full circle, as IncA is an analysis framework that incrementalizes whatever analysis can
be expressed with its specification language.

154 8 Related Work

drivep, eval
.precision eval

Approach

IncA (this dissertation)

Inc. CFLR points-to [77]

Inc. alias analysis [143]

Inc. demand-driven points-to [106]

Inc. MOD analysis [28]

Inc. model validations [22, 34, 45]

Task engine in Spoofax [138]

Set-based analysis frameworks [68, 93]

Magellan [35]

Reviser [9]

Co-contextual type checking [36, 72]

Inc. attribute grammars [31, 55, 116]

i3QL [87]

Self-adjusting computation [4, 52, 53]

Giga-scale points-to [32]

Analyses via graph reachability [97]

Refinement-based points-to [119]

Cauliflower [61]

IFDS [98]

IDE [105]

Soot [19, 131]

Heros [19]

Facebook Flow [25]

Facebook Infer [24]

Boomerang [118]

Just-in-time analysis [33]

SUPA [121]

Client-driven points-to [49]

Combined points-to [145]

Mixed type inference [92]

Precision-guided points-to [74]

Soufflé [66]

Parallel points-to [83]

Replication-based points-to [94]
Figure 8.1: Techniques used for speeding up static analyses. Rows list concrete solution approaches. Columns
except for the last one show techniques used for speeding up analyses. Full (empty) circle in a cell means that a
given approach uses (does not use) a specific technique. Approaches are grouped by their single fundamental
technique, but it is often the case that an approach uses a number of techniques. The last column shows if an
approach targets a specific analysis (empty circle) or if it is a framework applicable to a class of analyses (full
circle).

OOOOOOOOOOOoooooooooooooooooooooooInCrementl
ality
OOOQOOOoooOoooooooooooooooooooooooGraphreh
achapj
111ty

OOOOOOOO.O..OOOOOOOOOOOOOOOOOOOOOOCOmpOs.t.
1101’131'
1ty

OOOOOOO...OOOOOO0.000000000000.000Demand

O O0O|C|l® @ &6 @€ ®§ O O|O OO OO O OC @ OO|]OO O OOOOOOOOOOoOOo Mled
O O|@e|lO O O OO O OO OO O O 0O @€ OO O|]0OC @ OO OO O OOOO0O OO e Partial eval
al.

...OOOOOOO...OO0.00000000000000000Parallehs

m

O0.00000.0.0.....0.0.........OOOO.Framewok
I

8.1 Incremental Static Analysis 155

8.1 Incremental Static Analysis

This section reviews how researchers use incrementality to speed up one-off static analyses
and to build analysis frameworks. It will become clear that the state-of-the-art has limita-
tions either because existing approaches only support specific classes of analyses (e.g. type
checking or well-formedness validations) or because they do not support sophisticated
analyses that would use a combination of (i) recursive dependencies, (ii) custom lattices
and recursive aggregation, or (iii) inter-procedurality.

Incrementalizing individual analyses Lu et al. encode points-to analysis as a CFLR
problem and use incrementality to speed up the analysis [77]. CFLR was introduced by
Yannakakis [142], and its general idea is as follows. Assume there is an input graph with
a set of nodes and edges, where the edges have labels encoding some kind of semantic
information relevant to the problem at hand. Paths in this graph yield a sequence of words
when we read out the labels of the edges in order. We can encode interesting analysis
problems if we only allow paths which yield sentences that are accepted by a context-
free grammar. The goal of CFLR is then to find such paths in the input graph via graph
reachability. Lu et al. derive an auxiliary graph data structure that encodes information
about assignments between variables and heap objects. Then, they define a CFLR problem
over this data structure so that accepted sentences encode when a variable can point to
an object. After a program change, they incrementally recompute the validity of affected
paths to update the solutions of the CFLR problem.

Yur et al. incrementalizes a flow- and context-sensitive alias analysis for C [143]. An
alias analysis computes if two pointer variables can point to the same object (which is
equivalent to checking if their points-to sets intersect). Their approach assumes that the
inter-procedural control flow graph (ICFG) of a subject program is given, and upon program
changes, their analysis gets notified about changes in the ICFG. Their approach uses a
worklist [90, Chapter 6.1.1] to govern the fixpoint computation of alias information along
the ICFG.

Saha and Ramakrishnan define points-to analysis as a logic program using Datalog,
and they build on top of the DRed algorithm to incrementalize its execution [106]. Their
analysis also employs demand-driven evaluation, which means that it only computes
points-to results for the parts of the subject program that are requested by analysis clients,
and it defers from eagerly analyzing entire subject programs.

Cooper and Kennedy develop an algorithm for the incremental maintenance of inter-
procedural and flow-insensitive MOD analysis [28]. A MOD analysis reports about which
variables are affected by which statements in the program. This approach uses a so called
“restarting iteration” technique to derive the new fixpoint of the data-flow information after
a program change. This means that instead of retracting potentially invalid results after a
program change, the analysis starts a new fixpoint computation using the old results as is.
It is guaranteed that the newly computed result yields a safe over-approximation of the
program behavior, but the result may also exhibit a large number of false positives, as well.

All of the above approaches incrementalize a specific static analysis. In contrast, IncA is
an incremental analysis framework that incrementalizes any analysis that can be expressed
with its specification language. We look at other incremental analysis frameworks next.

156 8 Related Work

Incremental analysis frameworks Several systems in model-driven development use
incrementality to speed up the execution of validation rules on models in face of model
changes [22, 34, 45]. However, these approaches can be considered incremental only on
a coarse-grained level, as validation rules that are affected by model changes are re-run
non-incrementally on the entire input. This approach is also frequently called selective
recomputation. This form of incrementalization works well for this use case, as, typically,
validation rules are computationally not that expensive because they can just re-run on
select parts of the input model. Contrast this to data-flow analyses that need to run on the
whole subject program, where selective re-computation would not be sufficient to provide
good incremental performance, and a more fine-grained dependency tracking is needed
(like in IncA).

Wachsmuth et al. design a framework for incremental name binding and type check-
ing [138]. The framework works with any subject language implemented in the Spoofax
language workbench. The evaluation starts by building an index data structure about
information relevant for name binding and type checking, such as scopes, imports, and
static type annotations. This data structure is used to execute analysis tasks. The approach
is similar to the previous model validations in terms of the degree of incrementality, as
tasks are re-executed on a per file basis after program changes.

There is a number frameworks that incrementalize static analyses that operate with the
powerset lattice [35, 68, 93]. It is not surprising that this category of analyses attracted a
lot of attention, as many analyses having practical applications in IDEs and compilers can
be encoded this way. Examples include liveness, very busy expressions, or uninitialized
variables analysis [90]. Frameworks using the powerset lattice as the sole abstraction only
support set union and intersection as a way to aggregate results, which is in contrast
to supporting custom lattices and aggregation as in IncA. Pollock and Soffa present two
approaches for incrementalizing powerset-based analyses [93]. First, the IMMEDIATE
analysis is used to maintain the results of may analysis problems (i.e. when a data-flow
value can occur on any control flow path). Second, the TWO_PHASE algorithm is used
to compute the results of must analyses (i.e. all paths). This algorithm is more complex
than IMMEDIATE, and it is analogous to DRed in Datalog because it considers cyclic
reinforcements that can appear among the nodes of a strongly connected component in
the CFG.

Khedker provides a formal treatment of monotone data flow frameworks and defines
requirements against incremental analyses performed on them [68]. Khedker’s thesis
provides concrete algorithms for the incremental maintenance of analyses using bitvector-
represented (boolean) lattices, which can also be used to encode powersets. However, it
is not possible to efficiently represent arbitrary lattices as bitvectors, as is the case for
example for the string prefix lattice we used in Section 4.7 or the k-approximating points-to
set in Section 5.6. The potential for generalization is mentioned in Khedker’s thesis [68,
Chapter 13.2.1], but it is largely left as future work.

The Magellan system encodes program analyses in Prolog, and it uses incremental tabled
evaluation to update the analysis result in response to changes in the subject program [35].
The framework is integrated into Eclipse, and it can automatically infer input facts based
on the single static assignment form of Java programs. Clients of Magellan analyses can
also mark analyses that are not used anymore, and the framework automatically throws

8.1 Incremental Static Analysis 157

away the caches for the affected relations, thereby freeing up memory. Even though, the
specification language is Prolog, Magellan actually uses a subset of the language to ensure
termination. In terms of the kinds of supported analyses, Magellan targets traditional set-
based data-flow analyses. The paper describing the Magellan system also reports about the
incremental performance of the system using a real-world subject program. The numbers
show that Magellan can deliver sub-second update times for FindBugs-style linter rules or
intra-procedural data-flow analyses. The subject program used as input can be represented
with 400.000 facts. In contrast, we used subject programs in Section 5.6 that are represented
with tens of millions of facts, and we benchmarked an inter-procedural points-to analysis.
This shows that our approach significantly improves the performance of sophisticated
analyses on large code bases compared to the state of the art.

The Reviser framework incrementalizes IFDS/IDE data-flow analyses [9]. IFDS [98] is
a generic framework for expressing inter-procedural, finite, distributive subset problems.
The main idea of IFDS is to define flow functions that transfer and compute data-flow facts
along the edges of the inter-procedural CFG of a subject program. Technically, evaluating
an IFDS analysis boils down to solving a graph reachability problem over the CFG. A
requirement of IFDS is that flow functions are distributive over the merge operator; Given
values x and y from an abstract domain and flow function £, it must hold for a distributive
analysis that £ (x) u £(y) = £(x u y). Note that typically we only require from a static
analysis that £ (x) u £ (y) ££(x u y) holds, so distributive analyses must fulfill a stronger
requirement. Given the graph reachability-based formulation, IFDS allows to summarize
the effects of flow functions in a procedure by caching reachability information. Such
summaries can be reused based on calling contexts of the procedure, thereby improving
performance. One caveat though is that summarization only works efficiently if summaries
capture only procedure-local information, which is often difficult to achieve [20]. In case
of IFDS, the data flow facts computed by the flow functions are elements of the powerset
lattice. An extension of IFDS is the IDE [105] framework, which stands for Inter-procedural
Distributive Environments (not to be confused with Integrated Development Environment).
IDE allows flow functions to compute values from custom lattices, as well. Upon a change
at a CFG node, Reviser re-computes the transitive reachability in the CFG to update analysis
results. There are a number of differences between IncA and Reviser:

« IFDS (thus Reviser) requires that the CFG is provided as input to the analysis. It
is often not straightforward to construct and incrementally maintain the (inter-
procedural) CFG of a subject program. In many of our case studies, we first needed
to use IncA Datalog to define a control flow analysis.

« IFDS/IDE is limited to distributive data-flow analysis problems. IncA imposes no
such restriction.

+ The primary application area of Reviser is to provide feedback at code reviewing time
on pull requests. The update times reported in the Reviser paper are not sufficient
for real-time feedback in IDEs, unlike with IncA.

Erdweg et al. design an approach for systematically incrementalizing type checkers [36].
Traditional type checkers typically traverse an AST top down while passing along and
extending a typing context with new bindings during the recursive descend. Then, at
variables in leaf nodes, the type checker uses the typing context to look up bindings,

158 8 Related Work

and then start propagating computed types upwards in the AST. However, this approach
can easily hamper efficient incremental execution, as it imposes a lot of dependencies
between terms in the syntax tree: A parent expression can only be typed once all of its
sub-expressions are typed. The idea of co-contextual type checking as designed by Erdweg
et al. is to reverse this approach. A co-contextual type checker actually starts at leaf nodes,
and, instead of looking up bindings, it generates context requirements and constraints and
propagates them upwards. After a program change, a co-contextual type checker only
has to reconsider whether the new context satisfies the existing context requirements and
constraints. Based on synthesized benchmarks, Erdweg et al. show that their new approach
can achieve an order-of-magnitude speedup compared to the traditional formulation of the
type checker.

Unfortunately, co-contextual type checking does not always yield good performance.
Problems typically arise when a type checker would require global information (over the
whole program) to make a decision, but co-contextual type checking only provides local
information when checking a node. For example, this is the case for overload resolution, as
typing a function call requires global knowledge about the class table. As we detail in our
FTfJP’18 paper [127], we tried out a co-contextual formulation of overload resolution for FJ,
and we witnessed that the type checker performs considerably worse than the type checker
implemented in IncA. In a followup line of work [72], Kuci et al. actually show that there
is a range of other features used in object-oriented languages (e.g. subtype polymorphism,
nominal typing, or implementation inheritance) that also pose significant challenges in a co-
contextual type checker. They achieve mixed results in terms of incremental performance
with their co-contextual type checker. On synthesized benchmarks they report significant
slowdowns in initialization time compared to the non-incremental type checker, while, on
a real-world benchmark, the incremental performance of the co-contextual type checker
degrades compared to the non-incremental type checker.

Attribute grammars [70] are a common way to derive semantic information about
a subject program. Attribute grammars use declarative rules to compute values of at-
tributes associated with nodes of the subject program’s AST. Attribute values can be of
two kinds: synthesized values are computed during traversal, while inherited values are
passed down from ancestor nodes in the tree. An early work discussing the incremental
evaluation of attribute grammars is from Demers et al. [31]. They show how to incre-
mentalize non-recursively defined attribute grammars. Since then, attribute grammars
and their incremental evaluation have seen a number of extensions. For example, Hedin
have introduced the notion of reference attribute grammars [57]. References allow to
use the values of attributes that originate from outside of the immediate surrounding
context (e.g. its parent) of a node. The benefit of reference attribute grammars is the
improved expressive power. Séderberg and Hedin also show how to incrementally evaluate
reference attribute grammars [116]. Recently, Harkes et al. presented the incremental
IceDust system [55], which is based on attribute grammars that use attributes defined
through recursive aggregation. A limiting factor of attribute grammars when it comes to
using them for static analyses is that ultimately the evaluation is governed by the AST
of the subject program. This is different in IncA: It is true that relations computed by
derived Datalog rules also relate AST nodes (or lattice values in IncA), but we can define
other intermediate representations of the subject program this way. For example, in the

8.1 Incremental Static Analysis 159

case study on the flow-sensitive strong update points-to analysis in Section 4.7, we first
implemented an analysis that computed a CFG for the subject program because we needed
that for flow-sensitivity, and the original AST is not enough for this purpose. The analysis
result then reported about points-to information per CFG node.

i3QL [87] incrementalizes programs developed with an SQL-like language embedded
in Scala. There is a number of other similarities between IncA and i3QL:

« i3QL also uses a relational data model and incrementalizes relational algebra opera-
tions (e.g. joins, selections, filters).

+ Beyond simple aggregation operators like count, min, avg, i3QL supports custom
aggregation operators, as well, but only the evaluation of the simple ones are in-
crementalized. This is different in IncA, as custom aggregation operators are also
incrementalized.

« i3QL also uses a DRED-style evaluation schema for recursive computations, just like
the baseline version of IncA presented in Chapter 3.

« i3QL also constructs a computation network similar to the one used in VIATRA QUERY
in the back end of IncA. IncA uses a meta analysis to optimize incremental evaluation
by computing hints about irrelevant program changes, as discussed in Section 3.4. In
contrast, i3QL uses partial evaluation to perform optimizations in the computation
network, e.g. to tune index selection, push down filter functions, or to share common
sub-computations.

Based on all these feature in i3QL, we could have actually used it as the incremental
evaluator in the baseline version of IncA when we started our research project. However,
the original paper about i3QL only reported about benchmarks on small programs, while
the performance of VIATRA QUERY was already documented on large inputs [129]. Our
back end contributions presented in this dissertation would be applicable to i3QL, as well.

Researchers have also designed systems that use general-purpose programming lan-
guages and automatically incrementalize computations developed with those languages.
Self-adjusting computation falls into this category [4]. The key language abstraction in
self-adjusting computation is a modifiable reference, which marks a variable whose con-
tents may be read by the computation and updated by a mutator. Then, self-adjusting
computation is about building and maintaining a dynamic dependency graph and compu-
tation traces based on the modifiable references. This is in contrast to the computation
network used in IncA, which can be built purely based on an analysis definition. The
idea of self-adjusting computation has already been implemented as an extension of C
in the CEAL system [52] or in the ML-based Adapton system [53]. While, the authors of
CEAL and Adapton demonstrated that self-adjusting computation can bring significant
speedups compared to a from-scratch execution, the presented benchmarks are typically
small in size compared to the subject programs we used in this dissertation. The limitation
of self-adjusting computation lie in its generality, as it is difficult to devise optimizations
based on a dynamic dependency graph. In contrast, IncA uses relational algebra, for which,
well-known optimization techniques exist (e.g. pushing down selections).

160 8 Related Work

8.2 Techniques for Speeding up Static Analyses

While IncA incrementalizes static analyses, we show that this is only one technique out
of many that helps to speed up static analyses. As we will see throughout the discussion,
many of the presented approaches use a combination of techniques, so we try to group
related approaches based on the fundamental technique they use.

Graph reachability We argue that graph reachability and, in particular, computing
transitive closure can be considered a technique for speeding up analyses because transitive
closure of a directed graph is a fundamental problem in all areas of computer science. There
is arange of specialized algorithms and data structures readily available (cf. surveys [23, 64]).
In turn, if an analysis can be reduced to a graph reachability problem, then it can benefit
from all those algorithms and data structures. We already introduced the idea of context-
free language reachability (CFLR) as a way of formulating analyses in Section 8.1. Even
outside the context of incrementality, CFLR has attracted a lot of attention.

Dietrich et al. use CFLR for field-sensitive, flow-insensitive, inter-procedural points-to
analysis for Java [32]. In this case, the input graph is a points-to graph where the nodes
represent the variables and (abstract) heap objects of the subject program, and the edge
labels encode relationships like object allocation, variable assignment, and field loads
and stores. The grammar of the CFLR problem is formulated in a way that it encodes
the semantics of points-to analysis, that is, when can a variable point to a heap object
at runtime. Coupled with specialized data structures for computing transitive closure,
Dietrich et al. analyze the OpenJDK with the points-to analysis in around a minute.

Reps demonstrate how to encode a range of program analyses for C as a CFLR prob-
lem [97]; starting from traditional gen/kill data-flow analyses such as constant propagation,
through program slicing, to points-to analysis. This work is not so much focused on
improving the performance of static analyses, rather it is a foundational work showing
how to formulate the context-free grammar to capture these analyses.

Sridharan and Bodik combine CFLR, demand-driven evaluation, and mixed precision
evaluation in a context-sensitive points-to analysis [119]. First, they define the context-free
grammar as the language of balanced parentheses; e.g. a method call edge denoted with “(“
must be later closed by a return to call site edge denoted with “)” to represent a realizable
control flow path. Second, the demand-driven aspect means that realizable paths are only
sought when requested by the client of an analysis, e.g. by querying the points-to set of
a specific variable. Third, to improve scalability, they also make use of mixed-precision
evaluation. The analysis first computes an over-approximating result by skipping parts
of the points-to graph that likely yield unrealizable paths. Then, upon request from the
analysis client, the analysis tries to improve the precision of the results by inspecting
previously skipped parts of the graph.

Cauliflower is a solver generator for CFLR problems [61]. Cauliflower comes with a
DSL that allows to define the context-free grammar of the analysis problem, and it emits a
parallel C++ executable that solves the CFLR problem given an input graph. Cauliflower
specializes the executable with partial evaluation by selecting an efficient execution plan
at code generation time.

Another large class of analyses based on graph reachability is IFDS/IDE, which we
introduced in detail in Section 8.1. Soot is a widely used IFDS/IDE-based static analysis

8.2 Techniques for Speeding up Static Analyses 161

framework for Java [19]. Soot serves as an optimization framework due to the variety of
intermediate representations it provides. Examples include; (i) Jimple, which is a simplified
representation for Java, as every Jimple statement must have at most three components, or
(ii) Shimple, which is Jimple in single static assignment form. We also used Jimple as the
subject language in Section 4.7. Soot also comes with a handful of built-in inter-procedural
analyses, such as call-graph construction, points-to analysis, or def/use analysis. Heros is a
parallel IFDS/IDE solver for the Soot framework that is available open-source.!

Compositionality The idea is to analyze parts of a subject program in isolation and then
compose the individual results into the full analysis result. The benefit of this approach is
that components can be re-analyzed in isolation after a program change, which can yield
significant speedups if components are small. The difficulty is that many practically relevant
analyses do not compose well based on small units of code (e.g. individual statements).

Facebook Flow is a type checker for JavaScript [25]. Assuming that JavaScript modules
have explicitly typed signatures, Flow analyzes the code per module, and stores a summary
for each module. When code gets changed, Flow only re-analyzes the transitively affected
modules bottom up, also parallelizing as much of the computation as possible, and then
composes the results from the individual summaries. Unfortunately, there is no documented
performance numbers on Flow, but the authors argue that it delivers the performance
needed for interactive type checking in IDEs, plus Flow is really popular among developers
according to GitHub statistics.?

Facebook Infer [24] is a static analysis framework that comes with a range of built-
in analyses (e.g. analysis to find null pointer dereferences, finding resource leaks, race
condition analysis) for a variety of languages (C, Objective-C, and Java). The theoretical
foundation behind Infer is separation logic, which facilitates reasoning about mutations
to the heap. Separation logic uses triplets of the form {pre}prog{post} where {pre}
is a precondition describing the state of the heap before executing a program element
prog, while {post} captures the postcondition. The analysis of an entire program is
about finding the pre- and postconditions for all program elements. However, defining
all these triplets is not the job of an analysis developer. Infer uses a theorem prover that
can automatically infer pre- and postconditions based on some initial set of triplets. To
this end, Infer uses bi-abduction, which is a form of logical reasoning for separation logic.
The power of this technique lies in its compositionality, as inferences only need to be
re-computed for program elements affected by a program change, the rest can be reused.
Importantly, functions only need to be analyzed once, and their effects on the heap can
be efficiently summarized. This allows Infer to efficiently scale to Facebook-scale subject
programs and provide timely feedback on pull requests at code review time.

Demand-driven evaluation The idea of demand-driven evaluation is to only compute
information that is needed by analysis clients and defer from eagerly analyzing entire
subject programs. For example, Boomerang is a highly-precise points-to analysis that
allows analysis clients to query points-to information for a given calling context, which
can be answered much faster than an analysis on the whole program [118]. Boomerang
uses a distributive formulation based on the IFDS framework.

Do et al. present the idea of just-in-time (JIT) static analysis [33], which is about

Inttps://github.com/Sable/heros
’https://github.com/facebook/flow

https://github.com/Sable/heros
https://github.com/facebook/flow

162 8 Related Work

prioritizing the analysis of parts of a subject program that are close to the currently edited
part over the rest of the subject program. This idea builds on the observation that software
developers are “in context” at the currently edited part when working in an IDE, so showing
error messages relevant to the edited part is more important than computing the analysis
result for the entire subject program. This is essentially a form of demand-driven evaluation.
The JIT approach employs a layered architecture for analysis where each layer expands
the scope of the code part being analyzed and the results computed for each layer can
be composed. First, the method of the currently edited code part is analyzed, then the
container class, file, package, and so on. The goal is to quickly compute the results for
the currently edited method, and, while the developer inspects the analysis results, the
analysis can carry on with larger units of code. This kind of layered execution only works
with data-flow analyses that are distributive. This is because distributive analyses allow to
analyze each data flow separately, in any order, and they are also insensitive to the order in
which the merge operator (e.g. lub) is applied, which is important for combining the results
obtained in different layers. Do et al. instantiate the idea of JIT analysis for an Android
taint analysis.

SUPA [121] is another demand-driven points-to analysis, which targets C programs.
SUPA is an involved analysis that combines many techniques presented so far. It starts
with a cheap pre-analysis to compute an over-approximating value flow graph encoding
def-use chains. A def-use chain encodes a definition of a variable and all the uses reachable
from the definition, without any other intervening definition. A points-to query is then
formulated as a graph reachability problem over this graph data structure. SUPA tries to
refine the precision of the value flow graph, thereby improving the quality of its results,
if a time budget allocated by the analysis client allows for that. To this end, it uses a
multi-stage approach; It first starts with a more expensive flow-sensitive and context-
sensitive refinement, but failing to finish with that in the allocated budget, it downgrades
its precision by giving up on context-sensitivity for a second refinement attempt.

Mixed-precision evaluation Giving up on (some) precision typically makes analyses
cheaper to compute, but giving up on too much precision can easily result in a high
amount of false results. Mixed-precision evaluation tries to find the right balance between
precision and performance by automatically tuning the precision characteristics of analyses
depending on user needs or heuristics. Note that mixed-precision analyses compute results
for the entire subject program (potentially by sacrificing precision), but demand-driven
evaluation only runs an analysis on code parts relevant to an analysis client.

Guyer and Lin present a mixed-precision points-to analysis [49]. The analysis runs
in two phases with tight coupling between the points-to analysis and its analysis client.
First, there is a fast context-insensitive, flow-insensitive pass of the points-to analysis on
the subject program. Then, the analysis client examines the results, and it can report back
to the analysis the memory locations or control flow locations where the analysis result
is not sufficiently precise for its purposes. In turn, the analysis does a second pass with
flow-sensitivity and/or context-sensitivity enabled at the requested locations.

A related approach is from Zhang et al., also concerning mixed-precision points-to
analysis [145]. The key idea is to analyze different parts of a subject program with points-to
analyses of different precision characteristics in terms of flow- and context-sensitivity.
Subject programs get divided into program segments based on the aliasing effects of

8.2 Techniques for Speeding up Static Analyses 163

assignments. Then, they use heuristics to decide what kind of points-to analysis to use for
each segment.

Plevyak and Chien present a type inference algorithm for dynamically typed object-
oriented languages that tunes its precision at runtime [92]. Their approach encodes the
type inference problem in the form of set constraints. The idea is to start with a fast
type inference that is context-insensitive in two ways. First, it is call-site insensitive, as
it collapses the information about different call sites of the same method. Second, it is
object-insensitive, as it collapses the information about the different allocation sites of
the receiver objects of method calls. If this imprecision leads to a typing violation, the
algorithm selectively turns on call-site sensitivity and/or object-sensitivity for affected
program variables.

Li et al. present an approach that selectively applies context-sensitivity for a Java
points-to analysis [74]. From the technical perspective, this is also a two phase approach.
First, they run a context-insensitive points-to analysis on the subject program. Based on
its results, they build up a precision flow graph that helps to identify critical value flows
that lead to imprecision without context-sensitivity. Instead of relying on heuristics, they
identify three patterns for these value flows and find matches of these patterns via a graph
reachability problem on the precision flow graph. The result of the pattern matching is a
set of precision-critical methods in the subject program where context-sensitivity shall be
enabled. They demonstrate that with this mixed-precision analysis they can retain almost
all of the precision of the fully context-sensitive analysis while achieving considerable run
time saving.

Partial evaluation A common optimization technique is to partially evaluate an analysis
at compilation time, thereby allowing specializations of data structures and evaluation
logic in the generated executable. We use a similar idea in IncA to compute hints about the
relevant node types, as demonstrated in Section 3.4.

Soufflé is an analysis framework that heavily relies on partial evaluation [66]. Soufflé
defines its own Datalog dialect for the specification of analysis. Soufflé synthesizes an
efficient C++ executable from a set of Datalog rules. The Soufflé compiler partially evaluates
the analysis specification to optimize index selection, specialize data structures, tune join
orders, and more. The generated C++ code also has OpenMP annotations to utilize multi-
threaded execution. The authors of Soufflé have reported good scalability; Highly-precise
security and points-to analyses expressed in Soufflé scale to the entire JDK.

Parallelism An immediate idea for speeding up analyses is to exploit multi-core archi-
tectures, which is commonly used in every kind of hardware nowadays. However, many
practically relevant program analyses do not lend themselves to efficient parallelization
due to complex dependencies in analysis results.

Méndez-Lojo et al. present an approach for executing an Andersen-style points-to
analysis in parallel [83]. The key idea is to encode the different kinds of points-to relevant
instructions (e.g. assignment, allocation, dereferencing) in a graph data structure and treat
Andersen’s rules (see Figure 3.8) as graph rewrite rules. Parallelization of the analysis is
not as straightforward as just applying rewrite rules in parallel because Méndez-Lojo et al.
show that the application of rewrite rules can conflict with each other, which makes the
analysis an irregular computation. This means that the computation depends on runtime
data, and it is not possible to produce a parallel schedule statically. To this end, they make

164 8 Related Work

use of a speculative execution model, and they also develop optimizations to reduce the
number of backtracking needed in face of conflicting rewritings. It is reported that the
approach achieves up to 3X performance improvement compared to sequential execution.

A related approach is designed by Putta and Nasre, which is also based on the parallel
execution of rewrite rules [94]. Their key insight is to reduce the conflicts between rewrite
rules by keeping multiple copies of the points-to set of the same variable, thereby improving
parallelism. Then, the local copies of the points-to sets must be merged after each rule
application. However, as Putta and Nasre argue, care should be taken because this approach
only works with analyses that are unordered in the sense that the order in which statements
are executed in the subject program is not relevant for the analysis. Specifically, for points-
to analysis, this means that flow-insensitivity is required, the approach does not work with
a flow-sensitive analysis.

8.3 Datalog and Its Applications

Given that Datalog plays a central role in this dissertation, we have dedicated Chapter 2
to introduce its key concepts. In this section, we survey more advanced techniques. We
first look at top-down evaluation of Datalog programs. Then, we discuss advanced incre-
mentalization techniques. We present state-of-the-art Datalog solvers and their interesting
technical details. Finally, we discuss a few industrial applications of Datalog.

Top-down evaluation So far in this dissertation, we only considered bottom-up evalua-
tion for Datalog programs. With this approach, we start from a set of facts in EDB relations
and repeatedly apply Datalog rules until fixpoint, thereby computing the minimal model of
the Datalog rules. In contrast, top-down evaluation makes use of a specific user query and
walks backwards from rule head to rule body, only trying to infer tuples that are actually
required to answer the query. Contrast this to deriving all tuples, potentially redundantly,
in bottom-up evaluation.

A widely used top-down approach for evaluating Datalog is called query/subquery
(QSQ) [134]. The evaluation starts with a distinguished rule that describes the user query.
An example is the rule CFlowQuery(nl, trg) :- CFlow(nl, trg) where CFlowisa
relation computing CFG edges for some subject program. The rule head CFlowQuery(ni,
trg) specifies that we are only interested in CFG edges where the source is a specific n1
CFG node (e.g. a specific statement). Intuitively, QSQ tries to find a proof tree for CFG
tuples where the source is nl. To this end, QSQ pushes variable bindings top-down from
rule head to rule body and sideways among atoms in the same rule body. For example, QSQ
would start pushing down a binding {src — n1} to the CFlow rule, thereby limiting
the state space that the proof tree exploration would need to consider. In turn, in the
body of CFlow, the incoming binding would be pushed sideways among atoms, potentially
resulting in more bindings for other variables. QSQ is an iterative process and, for our
example, the result of it would be the set of all those (n1, trg) tuples which can be
derived given a set of facts.

Top-down evaluation has the potential of avoiding redundant derivations and improving
performance by only considering derivations relevant to a user query. In contrast, bottom-
up evaluation computes full results, which is important e.g. for program analyses if we

8.3 Datalog and Its Applications 165

are interested in finding all bugs in a program. Researchers proposed techniques that
help to combine these two evaluation techniques. Magic sets [15] is family of rewriting
techniques for Datalog programs that help to introduce auxiliary rules to make use of
bindings relevant from a user query. This way, an otherwise bottom-up evaluation of the
Datalog program can be governed by the user query, thereby combining the best of the
two evaluation approaches.

Incremental Datalog Gupta and Mumick provide an overview on incremental Datalog
maintenance in their survey [46]. We already discussed the Counting and DRed algorithms
in Chapter 2; Counting is used to incrementally maintain the results of non-recursive
Datalog programs, while DRed is used for recursive programs. When explaining the inner
working of DRed, we emphasized that there is a potential for over-deletion in the delete
phase, as DRed temporarily ignores alternative derivations to transitively mark all those
tuples for deletion that are affected by deletions in EDB relations. DRed follows this
approach to ensure correct results in face of recursive dependencies among rules.

Motik et al. propose an approach to mitigate the potential performance problems of
the over-deletion in DRed. The technique is called backward/forward chaining (B/F for
short) [88]. The key insight is that instead of “blindly” marking tuples for deletion during
the delete phase, B/F tries to find evidence about to-be-deleted tuples still being derivable
from remaining facts, thereby avoiding the deletion altogether. The backward step starts
to build a proof about the existence of a tuple by walking backwards from rule head to
rule body, towards facts in EDB relations (cf. QSQ from above). However, due to potential
recursive dependencies, the backward chaining may end up in a cycle. To remedy this, the
backward chaining merely collects tuples whose existence need to be proved and only visits
each tuple once. Then, the forward chaining tries to prove the existence of the marked
tuples by starting from remaining facts and repeatedly applying rules. The authors argue
that the reason why B/F can be more efficient than DRed is because the set of derivable
tuples is often smaller than the set of over-deleted tuples computed by DRed, so it pays off
to interleave this kind of proof searching amid the delete phase.

Another line of work aims to avoid expensive over-deletions with the use of provenance
information. Provenance can be thought of as meta information associated with tuples that
reasons about why and how a certain tuple was derived during the fixpoint computation.
Liu et al. propose to associate logical expressions as conditions of validity with each derived
tuple [75]. In response to a deletion, the logical formulae can be quickly checked to verify if
the deletion of a certain tuple can be avoided. The authors describe how to actually derive
logical expressions when evaluating different relational algebra operations.

Notes on DRed;, We designed a new incremental fixpoint algorithm called DRedy, in
Chapter 4 to compute the results of Datalog programs with recursive aggregation over
lattices. Our proposed solution DRedy, generalizes DRed for recursive lattice aggregation, so
the two algorithms share many features. In particular, the four steps of DRedy, introduced
in Section 4.4 correspond to the analogous steps of DRed. However, some notable differences
stem from aggregation support:

« For aggregations, tuple insertions may result in increasing replacements, which
DRed cannot correctly handle, as they are not monotonic according to standard set
containment.

166 8 Related Work

« Asits key novelty, DRedy, solves this problem by splitting tuples at runtime according
to c-monotonicity as opposed to simply separating deletions and insertions. This
has far-reaching consequences on all aspects of the algorithm.

« The monotonic phase of DRedy, must thus incrementally process monotonic deletions
(in addition to insertions). This requires a mechanism to determine how to propagate
such deletions that were not present in DRed. For this purpose, we have adapted
support counts and introduced support multisets, neither of which were part of DRed
where only insertions were considered monotonic.

«+ The maintenance of these support data structures required DRedy, to enumerate each
derivation exactly once; this is achieved through semi-naive evaluation.

« As a side effect, such support data structures also enabled the re-derive phase of
DRedy, to avoid recomputation in contrast to DRed.

An alternative to maintaining recursive aggregations would be to rewrite them into a form
supported by DRed [81, 110]: Replicate tuple ¢ with lattice value c to tuples ¢’ with ¢’ for
each ¢’ c ¢, thus mapping c-monotonic changes, aggregations, and recursions into their
classical monotonic counterparts. Depending on the lattice, this transformation may be
prohibitively expensive or even impossible. For example, the (integer) interval analysis in
Section 4.2 would require a quadratic amount of additional interval values (one for each
sub-interval); while an infinite amount of new tuples would have to be produced for an
occurrence of Top in the singleton points-to analysis in Section 4.7. First-class support of
lattice-based aggregation avoids this blowup in DRedy..

Notes on LADDDER To efficiently support lattice-based inter-procedural analyses, we
adopted DDF and designed the LADDDER algorithm in Chapter 5. As we explained already,
DRed-based approaches suffer from a potential over-deletion problem, where a very large
amount of tuples could be deleted only to be later re-derived. This shows especially when
frequently used library functions are affected in an inter-procedural analysis. DDF does not
have this specific problem, but it may also do unnecessary steps if e.g. a program change
leads to a new derivation of an existing tuple at an earlier iteration round: Potentially all
consequences of that tuple will have to be computed again, at a shifted timestamp. Motik
et al. concludes that neither algorithm is universally superior to the other; pathological
inputs can be constructed to force either solution to do significantly more work than
necessary. The study by Motik et al. makes no reference to DDF, but their algorithm
“Recursive Counting” is apparently an independent rediscovery of the core idea of DDF, as
adapted for non-aggregating Datalog.

Regarding memory consumption, DDF clearly needs more space than DRed: DDF
associates each tuple with (a sparsely stored) differential count timeline, as opposed to
no provenance in DRed or support count in DRed;.. DDF would generally also require a
differential existence timeline, but due to its inflationary nature, LADDDER can represent it
as a single timestamp of appearance. This overhead is highly dependent on the number of
different timestamps a tuple is derived at. In both cases, practical implications can only
be determined empirically. Experiments in Section 5.6 reveal LADDDER to be significantly
faster than DRedj, with an acceptable memory cost.

Inflationary semantics [48] is a well-known Datalog concept, but it generally lacks
minimal model guarantees and is often associated with non-determinism [3, 50]. Our

8.3 Datalog and Its Applications 167

application of inflationary semantics in LADDDER is novel in providing, under specific
assumptions, important correctness guarantees, including both minimality and termination.
The equivalence between LADDDER and the conventional Ross and Sagiv semantics, if the
latter exists, can be considered a reverse application of the concept pre-mappability [144].

Solvers There is a large number of Datalog solvers documented in the literature, plus
certain solvers also see widespread use in industrial applications. Here, we review a select
few of them focusing on technical details.

Shkapsky et al. propose the BigDatalog system for data analytics over Apache Spark [111].
BigDatalog uses Datalog for specification, which they argue is a good fit for this application
domain due to its declarative nature and support for recursion. However, they also explain
that, by default, Spark is unfit to efficiently support recursive Datalog. To this end, the
BigDatalog runtime takes care of efficient data management and multi-threaded execution,
plus it employs a range of optimizations to improve query plans. BigDatalog supports
aggregation, but only simple ones like min, max, and sum.

uZ is a Datalog engine that is part of the Z3 SMT solver [59]. Just like BigDatalog, uZ
also heavily optimizes the relational algebra tree behind a Datalog program to improve
performance. A unique feature of pZ is that it also allows input relations to be represented
abstractly via a first-order logic formula. This is where the integration with Z3 comes into
play, as the Datalog program in this case gets evaluated symbolically with SMT solving
techniques.

LogicBlox is a commercial Datalog solver targeted towards data analytics applica-
tions [7]. LogicBlox uses a range of efficient data structures to speed up query evaluation.
For example, it uses persistent immutable data structures to represent relations, which
allows data sharing upon modifications, plus immutability is key in enabling parallel execu-
tion. An interesting aspect of LogicBlox is that it not only allows incremental maintenance
in response to changes in EDB relations, but it also allows to change the Datalog program
itself while reusing as much of the previously computed results as possible.

bddbddb is a Datalog solver that represents relations with binary decision diagrams
(BDDs) [140]. A BDD encodes a boolean function over a set of variables, and bddbddb
uses it to represent the tuples of a relation. BDDs provide space-efficient storage, as a
value domain with n values can be encoded with just logyn bits. Whaley et al. describe
how to obtain the boolean functions behind BDDs from relational algebra operations. It
is important to note that the efficiency of the BDD-based encoding is highly sensitive to
variable ordering. Scholz et al. benchmarked the performance of bddbddb with a context-
sensitive points-to analysis, and they found that bddbddb had both excessive run time
and memory consumption with the variable orderings computed by bddbddb itself [107].
They needed to do a significant amount of manual reorderings to scale bddbddb to the
benchmark analysis.

We have already discussed the Soufflé framework [66] in Section 8.2 as a framework
that uses partial evaluation in its compiler. We discuss two Datalog-specific details about
the Soufflé solver here. Suboti¢ et al. propose an efficient strategy for index selection in
Soufflé [120]. Soufflé uses B-trees to represent relations. B-trees are indexed data structures
providing efficient (range) lookups for an index key. The lookup functionality of B-trees is
used to efficiently perform joins when evaluating a Datalog program in Soufflé. The key
observation of Suboti¢ et al. is that it is unnecessary to construct separate B-trees for each

168 8 Related Work

index key that a Datalog program requires. Instead, index keys can “cover” other index
keys, meaning that under certain conditions a B-tree constructed for an index can be used
to answer queries for other indices, as well. The goal of their work is to find the minimal
set of indices that cover all required indices. They propose a polynomial time algorithm to
do this, which is based on a maximum matching problem in a bipartite graph.

Zhao et al. add support for debugging in Soufflé [146]. Their idea is to generate proof
trees for tuples, which allow developers to inspect the series of rule applications that
resulted in a derivation. They extend the semi-naive bottom-up evaluation of Datalog to
augment each tuple derivation with two pieces of meta information: a reference to the rule
that derives the tuple, plus the “height” of the derivation. Their notion of height directly
corresponds to the existence timestamp of a tuple in LADDDER: A height of a tuple is equal
to the maximum height of the tuples used in a rule body to infer the tuple plus one. Once
the fixpoint computation terminates, developers can issue queries iteratively to explore the
proof tree for a tuple. This boils down to reversing the lookup of tuples that could have
derived another tuple at a certain height, essentially requiring to walk backwards towards
EDB tuples.

In Section 5.6, we used LADDDER to incrementalize inter-procedural program analyses
in IncA. LADDDER is based on DDF, but there are also other solvers that make use of DDF.
DDF has a reference implementation in Rust available open source.® Differential Datalog
(DDLog) is a framework that compiles Datalog programs to the API provided by the DDF
reference implementation [102]. DDLog extends Datalog in several ways; e.g. with an
expression language, rich type system, and module system. 3DF [51] follows a similar
approach, as it also compiles Datalog programs to DDF. The primary application area of 3DF
is to provide live updates in streaming analytics systems. A key difference between these
approaches and LADDDER is in the aggregation support. First, LADDDER uses an inflationary
aggregation semantics which enables looser requirements on analysis definitions (see
Section 5.3.3). Second, these approaches employ naive aggregation architecture compared
to the optimized sequential architecture of LADDDER (see Section 5.4). As we showed in
Section 5.6, both the aggregation semantics and the optimized aggregation play a crucial
role in efficiently scaling to lattice-based inter-procedural analyses.

Applications Door is a collection of Java program analyses implemented in Datalog,
mostly known for its highly precise points-to analyses [112]. The researchers behind
Door constantly push the boundaries in terms of scalability and precision in this domain.
For example, Smaragdakis et al. evaluate a range of context-sensitive points-to analyses
with different precision characteristics in Doop. Smaragdakis and Kastrinis present a
defensive points-to analysis, which provides soundness even in the presence of opaque
code [113]. They define opaque code as code that cannot be analyzed normally, e.g. because
of reflection or dynamic language features. A typical approach for static analyses is to
simply restrict the subject language to not allow opaque code at all. However, Smaragdakis
and Kastrinis argue that this approach essentially rules out all realistic subject programs.
They take a different approach. Instead of aiming to provide full soundness in the presence
of arbitrary opaque code, their analysis computes the claimed domain of soundness, that
is, the program parts for which the analysis result is guaranteed to be sound. They show
that this approach actually yields actionable feedback for the points-to analysis.

Shttps://github.com/TimelyDataflow/differential-dataflow

https://github.com/TimelyDataflow/differential-dataflow

8.4 DSLs for Program Analysis 169

Gigahorse is a decompiler for Ethereum smart contract bytecode [43]. The decom-
pilation logic is implemented in Datalog. The goal is to turn low-level bytecode into a
3-address code representation where control- and data-flow is explicit, unlike in the low-
level representation. The authors show that Gigahorse is able to decompile almost all of
the smart contracts available in the Ethereum blockchain, which significantly outperforms
the decompiling capabilities of other approaches.

A related approach is MadMax, which is a Datalog-based tool for verifying the imple-
mentation of Ethereum smart contracts [42]. In the Ethereum Virtual Machine (EVM),
smart contracts use gas while they run; Gas is the price of the computation. Gas must be
paid upfront based on the estimated cost of the execution of the contract. If the execution
uses more gas than agreed on, the EVM interrupts the contract with an out-of-gas exception.
If the contract is not prepared to correctly handle the interrupt and later restart execution,
attackers can cause denial-of-service attacks. MadMax helps to find these gas-related
vulnerabilities in smart contracts. It identifies constructs in the decompiled 3-address code
representation of smart contracts that can lead to out-of-gas exceptions.

8.4 DSLs for Program Analysis

In Chapter 2, we have presented Datalog in-depth, and we explained that it is a popular
choice for implementing various kinds of static analyses. Given that we also designed the
IncAf,, language as an alternative to IncA Datalog, we look at other approaches that also
come with a tailored DSL for analysis specification.

Frameworks with Datalog-based languages Semmle QL [12] is a programming lan-
guage and runtime system for the implementation of static analyses. The language offers
constructs similar to object-oriented languages, such as classes and methods, but they are
re-interpreted in logical terms, as QL compiles to Datalog. QL comes with fact extractors
for most of today’s mainstream languages, plus it offers a rich standard library of reusable
analyses (e.g. taint analysis for Java). In the back end, QL uses a heavily optimizing compiler
to ensure good performance for batch execution on large code bases. QL is non-incremental,
and it only supports simple aggregators like sum or count.

Flix [79] is a non-incremental analysis framework that uses Datalog and lattices. Anal-
ysis developers in Flix use a Scala-based functional language to define lattice operations.
This language is similar to the DSL that IncA offers for the definition of lattices. Flix puts
emphasis on safe and sound analysis definitions in the meta end because its compiler
automatically verifies the mathematical properties of lattice operations, for example, if a
lub operation is indeed monotone wrt. the partial order of the lattice [78]. An interesting
future work for IncA would be to adopt these techniques in the meta end, as, currently,
IncA offers limited automation to help developers reason about their analyses.

Like in Flix, Conway et al. also combine lattices and logic programming in Bloom® [27].
Bloom" offers built-in lattices (e.g. bool, map) in its standard library, and developers can
also define their own. An interesting back end aspect of Bloom is that it is incremental, but
it only supports insertions of facts. The lack of support for deletions would limit Bloom™’s
applications in IDEs, but the authors actually target distributed application development.
They argue that supporting insertions is sufficient for this use case.

[

170 8 Related Work

Datafun is a functional language inspired by Datalog [8]. The design of the language
is centered around monotone map functions on custom lattices with support for fixed
points. The language was intentionally designed in a way that termination of a Datafun
program can be guaranteed just like in Datalog. Datafun promotes to track monotonicity
of a program through types, instead of e.g. verifying the lattice properties via verification
as in Flix. Regarding expressive power, the support for custom lattices makes Datafun
similar to IncA or Flix, but Datafun actually offers more. There is support for higher-order
functions, that is, functions that can take entire relations as input. This allows for example
to encode a node-reachability computation that is parametric over the edge relation and
the starting node as follows:

reach : Set (Node x Node) — Node — Set Node
reach edge start = fix (1 R. {start} u {y | x € R, (x, y) € edge})

This example is interesting because this is something that Datalog itself does not support.
To support such computations, the authors of Datafun present an approach for extending
the Datalog semi-naive evaluation with support for higher-order functions.

Soufflé defines its own Datalog variant for implementing static analyses. A Soufflé
program works with a relational data model, it computes sets of tuples in relations, just
like IncA. However, the Soufflé language is limited to two primitive data types: symbols
and numbers. Symbols represent the facts extracted from subject programs, and they are
backed by string values. Numbers are computed values. Custom data types can only be
defined in the form of records which are potentially recursive structures consisting of
symbols and numbers. There is no support for custom lattices. Soufflé supports simple
aggregates (e.g. min, max, sum, and count) on numbers.

Non-Datalog-based languages A closely related approach to IncA is the VIATRA QUERY
library (formerly known as EMF-IncQuery) [129], which we rely on in the IncA back end for
incrementalization. Originally, VIATRA QUERY is a library for developing incremental model
queries, which has many applications in the domain of model-driven software development.
VIATRA QUERY comes with its own query language, and IncA Datalog was heavily inspired
by that language. Both of these languages are compiled to the graph pattern matching API
in VIATRA QUERY. There are some important program analysis-related additions in IncA
compared to VIATRA QUERY though: virtual links (e.g. next, prev) to navigate in the AST
and most importantly lattices and aggregation.

Soderberg et al. propose a declarative language based on attribute grammars to define
intra-procedural control flow and data-flow analyses [117]. Attribute grammars are about
associating attribute values to nodes of the subject program’s AST. Attributes can be of
several kinds. Reference attributes are used in the control flow analysis to model CFG
predecessors/successors. Higher-order attributes are used to synthesize virtual CFG nodes,
such as the entry and exit points of functions. Circular and collection attributes are used
for fixpoint computation for data-flow analyses. A similarity with IncA is that analyses are
encoded directly over the AST of the subject program.

FlowSpec is a declarative specification language tailored to intra-procedural and flow-
sensitive data-flow analyses [115]. In FlowSpec, first a control flow analysis must be defined
for a subject language. FlowSpec offers tailored abstractions that allow specifying which
AST nodes constitute the CFG and how control flows between CFG nodes, potentially with

8.4 DSLs for Program Analysis 171

branching and merging. FlowSpec offers a DSL for specifying lattices and their operations,
which is similar to the IncA DSL for lattice definition. The final step in FlowSpec is to
define transfer functions that determine how lattice values get computed/merged along
CFG nodes. The authors demonstrate the use of FlowSpec for several traditional set-based
data-flow analyses.

DCFlow is a declarative language and Rascal library for defining control flow analy-
sis [58]. It comes with tailored abstractions that allow to model straight line control flow,
conditional and unconditional jumps, and exception handling directly over the AST of the
subject program. Similar to IncA, DCFlow supports virtual links on AST nodes such as
first, last, and next, plus control statements like foreach and if. The authors argue
that DCFlow significantly reduces the size of the analysis implementation compared to
implementing the control flow rules directly in Rascal. The authors report a 10X increase
in terms of lines of code with Rascal for their benchmark control flow analysis.

MPS-DF is the data-flow analysis component of the MPS language workbench [124].
MPS-DF comes with two DSLs (with Java embedding): one for specifying data flow graphs
(DFGs) and the other for implementing data-flow analyses. A DFG is a control flow graph
where nodes also encode data-flow-relevant information like reads and writes to variables,
(conditional) jumps, and exception handling. Data flow analyses then run over the DFG of
the subject program. MPS-DF uses so called DFG builders, which are specific to an AST
node type and specify the sub-DFG that is contributed by an instance of the respective
type. Decoupling the creation of an intermediate input representation (the DFG) and the
analysis itself has important consequences. First, MPS-DF analyses becomes extensible over
extensions of the subject language. Second, analyses with different precision characteristics
can be obtained e.g. by defining intra-procedural and inter-procedural builders for function
call AST nodes.

PAG is a framework for generating efficient data-flow analyses from a set of high-level
DSLs [80]. First, there is a DSL for defining the data types and lattices that the analysis
works with. Second, there is an ML-style functional language for defining transfer functions
that compute and propagate data-flow values along CFG nodes. Third, there is a DSL for
specifying the details of the analysis as a whole; for example by defining if it is a forward
or backward analysis or the function to be used for merging data-flow values at CFG merge
points. A PAG analysis is compiled into an efficient C executable.

RML is a programming language that is used to encode analyses over a relational data
model [17], just like Datalog. The primary application area of RML is pattern matching over
graphs, which the authors use to formulate coding standards or to implement syntax-driven
analyses (in the style of FindBugs). RML is integrated into the CrocoPat library, which is a
relational algebra machine that uses binary decision diagrams for efficient data storage.

Alive is a DSL for specifying verified LLVM peephole optimizations [76]. A peephole
optimization considers a small set of instructions and tries to replace them with functionally
equivalent but more efficient instructions. An Alive optimization has a left and right hand
side: The left hand side encodes the pattern of the sought LLVM instructions (while
abstracting over concrete values and types) and the right hand side specifies the output of
the optimization. The semantics of Alive code is defined in terms of logical formulas. The
system uses the Z3 SMT solver to verify the satisfiability of the logical conditions, or to
provide a counterexample if they cannot be satisfied.

172 8 Related Work

CAnDL is a declarative DSL for specifying analyses used in the LLVM compiler [41].
The input to a CAnDL program is the single static assignment form of a subject pro-
gram. A CAnDL analysis can be imagined as a series of constraints that, just like graph
patterns, encode a pattern for sought code fragments that serve as the basis for optimiza-
tions. CAnDL offers a range of features, e.g. atomic constraints to match against LLVM
instructions, looping constructs, logical connectives, and imports for modularization. The
authors demonstrate how to use CAnDL for practically relevant use cases, such as peephole
optimization or the optimization of graphics shader code.

8.5 Tree Differencing Techniques

The front end of IncA is responsible for computing the AST diffs in response to changes
in subject programs because the back end uses those diffs to incrementalize analyses. In
Chapter 3, we used a front end that relied on projectional editing, which can deliver diffs
with no extra computational overhead. Then, we designed an alternative textual front end
in Chapter 7. To provide background on our design decisions, we have already considered
a number of parsers and tree diffing tools in Section 7.2. In this section, we focus on the
inner working of other tree diffing tools.

Several diffing tools make use of the tree differencing algorithm of Chawathe et al. [26].
We review this algorithm in greater detail here because we will refer to the algorithmic
details from other pieces of related work that we discuss in this section. The initial
assumption of the algorithm is that each node in the AST has a label (representing the type
of the AST node) and a primitive value. The algorithm follows a two step approach:

1. Find good matching between the two ASTs.

2. Generate a minimum cost edit script to turn the old AST into the new AST.

Matching is about identifying node pairs that correspond to/similar to each other. Intuitively,
these are nodes that either remain unchanged or only their value gets updated in the new
AST. They call such node pairs a matching or simply say that those node pairs are matched.
They call the process of finding matches between the two ASTs the “Good Matching”
problem. Note that just because two nodes are in a matching, it does not mean that their
respective subtrees are identical. The authors define criteria when two nodes can be
matched. For leaf nodes, the comparison is simply based on the comparison of the node
values. For internal nodes, the score assessing similarity is based on counting the number
of similar leaf nodes and checking if the count is larger than a set threshold.

The matching process itself is about checking the equality of each pair of nodes (modulo
optimizations) based on the above criteria. This means that the matching step has the
complexity @(n?) where n is the size of the larger tree. This is an important difference
compared to hdiff, as hdiff requires several traversal of the trees, but every one of those
operations has O(n) complexity. Finding common subtrees is really efficient in hdiff due to
the use of cryptographic hashes.

An edit script is a sequence of change operations (insert, delete, move, update) that
transform the old AST into the new AST. Importantly, an edit script shall not insert or
delete nodes that are part of a matching. The algorithm relies on the matchings found

8.5 Tree Differencing Techniques 173

in the previous step because matched nodes act as anchors, i.e., intuitively, they are the
reference points where change operations are required to turn one tree into the other.
This is where the criteria used for matching comes into play. If the matching criteria is
loose in the sense that nodes in entirely different parts of the two ASTs are considered
matched, then a lot of edit operations will be required to turn the old tree into the new. If
the matching criteria is too strict, then no nodes will be matched, so we can end up with
the deletion of the entire subtree and the insertion of the new subtree.

To assess the quality of edit scripts, they introduce a cost metric for edit scripts. Insert,
delete, and move all have unit cost, but the cost of update depends on how similar the old
and the new values in the nodes are. If they are very similar, the cost shall be less than
1, while if they differ significantly, the cost shall be more than 1. The intuition is that for
similar nodes, it should be cheaper to use a move/update than an insert/delete pair. The
cost of an edit script is the sum of the costs of the individual change operations. The goal of
the edit script generation is to find an edit script with the minimum cost given a concrete
matching. They present an algorithm for finding the minimum cost edit script, and they
prove that the computed edit script has minimal cost.

Fluri et al. employ the Chawathe algorithm in the context of AST diffing for program-
ming languages [38]. They find that the matching criteria used in the original paper often
result in mismatches that lead to unnecessarily large edit scripts. For example, the original
approach already fails to find a match if a string value gets updated (e.g. when a method
was renamed). Note that the Chawathe algorithm guarantees minimality of the produced
edit script only wrt. a given matching, so the goal of Fluri et al. is to improve the matching
step. To this end, the authors employ more sophisticated string matching algorithms for
leaf nodes based on Levenshtein distance and n-grams. For inner nodes, they employ a
range of optimizations to tune the matching, e.g. so called Dice-coefficient as a measure of
similarity, dynamic thresholds, and similarity weighing. Their evaluation on open source
projects shows a 45% reduction in the size of the edit script with their matching techniques
compared to the original criteria by Chawathe et al..

We considered GumTree as a candidate tool for tree differencing in Section 7.2. GumTree
is also based on the Chawathe algorithm, but the authors of GumTree also improve on the
matching of the original algorithm [37]. Technically, their approach is an involved graph
traversal that identifies matches between nodes, and the process is largely governed by a
number of parameters. Falleri et al. make recommendations for the values of the parameters,
but the users of GumTree have the option to tune them, which may be necessary, as the
quality of the found matches heavily depends on the parameter values. This is an important
difference compared to hdiff, as there is no need to tune any parameters in that algorithm.
When compared to other state-of-the-art diffing algorithms, Falleri et al. found that the
matching technique used in GumTree results in shorter edit scripts than with other tools.
Based on a large collection of commits in Java and JavaScript projects, they found that, on
average, GumTree can compute an edit script for a commit on the ballpark of 10-100 ms,
which is not what we have seen in our experiments (see Section 7.2).

Yang present an algorithm for finding the largest common subtrees between two ASTs
based on dynamic programming [141]. The result of the algorithm is a matching that
describes which nodes are the same and which are different. However, this work does not
describe how to actually obtain an edit script that would turn the non-matched nodes in

174 8 Related Work

the source AST to non-matched nodes in the target AST.

Sager et al. present algorithms that can be used to find similar Java classes in a code
base [104]. First, they prepare a language-independent tree representation of the sources:
They use Eclipse JDT to create the AST of Java source files, and then they transform
the JDT ASTs into a language-independent tree format called FAMIX. The second step is
finding similarity between each pair of subtrees. They employ three kinds of algorithms
already documented in the literature before [130]. Bottom-up maximum common subtree
isomorphism and top-down maximum common subtree isomorphism are two algorithms
that compute similarity scores between two subtrees. If this score is larger than a set
parameter, the two trees are considered similar. The third algorithm is based on tree edit
distance. The goal is to find the minimum set of edit operations based on a cost model that
transforms one tree into the other. If the edit distance (sum of costs) is smaller than a set
value, two trees are considered similar. The authors argue based on a benchmarking with
Java source code that the best results are obtained with the tree edit distance approach.

Asenov et al. use an interesting approach to compute differences between ASTs using
line-based diffing algorithms [10]. Their idea is to encode ASTs in a special text format
where each line represents an AST node with special traceability links that help to identify
the position of the node in the original AST. Given the flattened text representation of the
source and target ASTs, they use a line-based diff tool to compute the differences between
the two files. Then, using the annotations in the textual files, they recover the AST diff
from the textual diff.

8.6 Chapter Summary

We surveyed a number of related approaches in this chapter, ranging from techniques for
speeding up static analyses, through advanced Datalog techniques and other analysis DSLs,
to tree diffing algorithms for the front ends of program analyses. We cannot even aim
for completeness wrt. the number of discussed approaches, as static analyses attract a lot
of research attention due to their importance in the software development pipeline. We
conclude with the following key takeaways.

First, providing efficient incrementalization for sophisticated analyses was still a signifi-
cant problem before this dissertation. Existing state-of-the-art approaches either (i) cannot
deliver sufficiently fast update times for live feedback in IDEs, (ii) cannot handle realistic
subject programs, (iii) specialized to specific static analyses, or (iv) cannot support one or
more of the important features of static analyses in terms of recursive dependencies, custom
lattices and recursive aggregation, or inter-procedurality. We demonstrated throughout
this dissertation with concrete case studies that IncA delivers on all of these requirements.

Second, the design of static analyses is always a balancing act along the precision
(reliability and accuracy) and performance trade-offs. Finding the right balance is often
influenced by specific use cases of analyses. There is no one-size-fits-all solution, as each
one of the techniques used for speeding up analyses come both with pros and cons. For
example, IFDS is highly scalable due to summaries but is limited to distributive problems,
incrementalization can provide millisecond update times but may incur significant memory
overhead, while compositionality can achieve significant speedups only if components are
small.

8.6 Chapter Summary 175

Third, DSLs are becoming increasingly important for the definition of complex analyses,
as (i) they help to shield analysis developers from the low-level details of efficient execution,
and (ii) through tailored abstractions, they help to capture the domain-specific knowledge
of developers, which, in turn, enables further optimizations.

177

Conclusions and Future Work

In this chapter, we revisit our thesis and summarize if any how we proved our thesis
true. Then, we provide an outlook on possible future directions with pointers on relevant
literature that can help to tackle the discussed challenges.

9.1 Revisiting the Thesis of the Dissertation

We formulated the following thesis in Section 1.3: Incrementalization can significantly
improve the performance of sophisticated static analyses. We can achieve this automatically
while shielding analysis developers from the technical details of incrementalization. To prove
this thesis true, we designed and implemented the IncA static analysis framework through
five main contributions:

« We proposed the generic architecture of IncA with projectional editing in the front
end, IncA Datalog in the meta end, and an optimizing compiler and incremental
graph pattern matching in the back end.

« We designed the DRedy, solver algorithm to support lattice-based analyses with
recursive aggregation.

« We designed the LADDDER solver algorithm to support inter-procedural lattice-based
analyses.

+ We proposed the IncAg,, DSL for program analyses.

« We designed a textual front end for IncA based on the hdiffs AST differencing
algorithm.

We defined five main requirements in Section 1.4. Satisfying these requirements directly
leads to proving the thesis true, as we argue in the following.

Efficiency (R2) The ability to provide continuous feedback in IDEs based on IncA
analyses was a guiding principle for the entire dissertation. Efficiency is relevant for
both the back end and front end of IncA. In the back end, we focused on the design and
implementation of efficient solver algorithms. We started off with using an incremental

178 9 Conclusions and Future Work

graph pattern matching library, which we extended with DRed-style evaluation to support
recursive analyses. We designed a meta analysis that partially evaluates IncA analysis
code to compute hints that tell relevant and irrelevant changes apart, thereby improving
incremental performance. Then, we designed and implemented two novel algorithms
DRedy, and LADDDER, each significantly advancing the Datalog state of the art. DRedy,
efficiently supports lattice-based program analyses, and LADDDER pushes this to the next
level by also supporting inter-procedural analyses. In the front end, efficiency became an
important factor when we moved from the projectional IDE to textual IDEs, as computing
AST differences incurs computational overhead in the latter. To this end, we adopted the
hdiff algorithm and implemented hdiffs, which we then integrated with the back end of
IncA. In every chapter, we evaluated the performance of our new additions and found that
IncA consistently provides good incremental performance for a wide range of analyses.
We also saw that the price of sub-second update times is memory. The overhead can get
large, but not prohibitive. We address this issue later in this chapter with a suggestion for
future work.

Expressiveness (R3) Through a number of different case studies, we demonstrated
the expressiveness of IncA. We started off with analyses that even standard Datalog can
express: FindBugs analyses, well-formedness checks for DSLs, and control flow and points-
to analyses. Then, we extended IncA with support for lattices and aggregation, which are
fundamental to static analyses. We implemented strong-update points-to analysis, string
analyses, and static analyses used in Rust. After employing LADDDER in the back end, we
also experimented with inter-procedural points-to analyses. Finally, we used IncAg,, to
implement overload resolution for FJ and a type checker for Rust, which was an entirely
new class of analyses, as it concerns type systems. This demonstrates that IncA is applicable
for a wide range of analyses.

Correctness (R1) To ensure that good incremental performance also comes with correct
incremental updates, we provided correctness proofs whenever we designed a new solver
algorithm in the back end. We provided a formal treatment of the theory behind both
DRedy, and LADDDER. We discussed their semantics, formulated correctness properties,
and proved that the algorithms satisfy those.

Genericity (R4) We designed IncA to be a generic analysis framework that works with
any kind of subject language, subject program, and analyses. Regarding analyses, we
already discussed that we implemented a number of different static analyses. Regarding
subject languages, our experiments ranged from DSLs for embedded software development,
through Featherweight Java and Jimple, to C, Java, Rust, and Python. Regarding subject
programs, we employed generic editor technologies in the IncA architecture. First, with
the projectional editor this posed no problem, as it could deliver AST differences for any
program editable in the IDE. Then, with the textual front end, we intentionally chose hdiff
to serve as the basis for hdiffs, as it can compute AST differences for arbitrary tree-shaped
data. Finally, both DRed;, and LADDDER are generic solver algorithms that work with any
Datalog program and custom lattices.

Declarativity (R5) To shield analysis developers from the incrementalization details in

the back end, IncA provides two declarative DSLs for the specification of analyses. First,
we designed the IncA dialect of Datalog, which extends standard Datalog with virtual EDB

9.2 Suggestions for Future Work 179

relations that allow to precisely capture what types and links an analysis requires from the
AST of a subject program. Then, we re-designed IncA Datalog and created IncAg,,,. The
new DSL comes with constructs that are familiar from typical programming languages,
plus it offers several language extensions that help to succinctly capture common coding
patterns in analyses.

Based on these observations, we argue that we were successful in our attempt to validate
our thesis statement. We managed to advance the state-of-the-art in both static analysis
and in Datalog. For the static analysis community, we showed that Datalog is a good fit
for implementing lattice-based inter-procedural analyses, while supporting interactive
applications in IDEs. For the Datalog community, DRed; and LADDDER significantly
advance the state of the art in terms of what is possible in a solver. Especially with the
textual front end based on hdiffs, we believe that our contributions can enable industrial
applications, as well.

9.2 Suggestions for Future Work

We have already discussed a number of next steps centered around our textual front end
and hdiffs in Section 7.6. However, those were more or less concrete in the sense that
we mostly already know how to tackle the challenges. Here, we discuss a few possible
directions that can be considered more as future research areas.

Reducing the memory overhead of IncA As benchmarking of our case studies in
this dissertation demonstrated, incrementalization can yield significant performance im-
provements in terms of update times, but, often, the price of this is significant memory
overheads due to extensive caching. A major source of memory overhead in IncA is due
to the strategy that our incremental back end VIATRA QUERY uses to break down a large
rule body into subqueries, each performing elementary relational algebra operation. For
instance, aruleh :- aj,as,as,as may be automatically substituted withh :— b;,by
andb; :— aj,apandby :— asz,ay, so that the rule body is decomposed into a tree of
three simple relational joins. The results of these subqueries are each stored, maintained,
and indexed separately. This reduces the run time of change propagation because e.g. when
a3 changes then by can be looked up from the index instead of re-computed. However, it
comes with additional memory because both b; and b, must be stored and indexed. An
alternative approach could be to not break down large rules (like h above) into subqueries,
which saves memory, but increases the time required for incremental maintenance, as we
need to maintain less indices.

An interesting direction for future work would be to design an approach that can
automatically find the right decomposition strategy for an IncA analysis. We can draw
inspiration from several systems. For example, the current approach in VIATRA QUERY is
what the Rete algorithm does [39]. The TREAT system [86] follows a different approach, as
it consumes less memory by using more coarse-grained operations, but it loses efficiency
in maintenance run time. Gator networks [54] form a continuum between Rete and TREAT
by selecting subqueries of various granularities for caching. We envision that finding

180 9 Conclusions and Future Work

the right decomposition strategy for queries could both be based on a static approach
by examining the shape of the computation network built for an analysis, or a dynamic
approach that could tune the caching behavior based on the sizes of relations as the analysis
runs. Relevant literature here includes the approach by Sereni et al. that abstractly interprets
relational algebra operations to influence magic sets rewriting [109] or resource aware
ML by Hoffmann et al. which is about computing quantitative resource consumption for
first-order functional programs [60].

Context-sensitive analyses with IncA In the context of inter-procedural analyses,
precision-performance trade-off is largely influenced by whether the analysis is context-
insensitive or context-sensitive. A context-insensitive analysis does not distinguish the dif-
ferent calling contexts of the same procedure and computes a result that over-approximates
all possible calls of a procedure. Instead, a context-sensitive analysis uses some form
of abstraction to distinguish calling contexts and collapses analysis results only if two
calls have the same context according to the used abstraction. This clearly improves pre-
cision in exchange for computational cost, as the analysis must track more values and
approximate less. Typical abstractions include the allocation site of the receiver object
(i.e. object-sensitivity) or the invocation instruction itself (call-site sensitivity). The work
by Smaragdakis et al. provides a detailed overview on a number of practically interesting
abstractions [114].

An interesting direction for future work would be to experiment with context-sensitive
analysis in IncA. We used the word “sophisticated” in this dissertation to refer to analyses
that use (i) recursive dependencies, (ii) custom lattices and aggregation, and (iii) inter-
procedurality. Context-sensitivity would push “sophistication” to the next level, as it can
significantly improve the precision of an analysis. However, this is not something that
is readily available, even though, IncA Datalog or IncAg,, would already be expressive
enough to implement context-sensitive analyses. We see challenges in the back end. First,
incremental fixpoint algorithms (like DRedy) typically require Cost consistency (A 4.3), but
context-sensitive analyses easily violate this requirement. The problem would immediately
arise if contexts are represented with synthesized values and an analysis result consists
of tuples that only differ in the computed contexts. LADDDER does not have this kind of
limitation, as it does not require Cost consistency (A 4.3). Second, care should be taken
because context-sensitivity can significantly increase the number of tuples in the analysis
results (due to differentiating calling contexts), so memory optimizations may become
more important than ever when tackling this direction.

Designing a more expressive DSL for analysis specification Datalog is a popular
choice for implementing static analyses. We demonstrated this with a number of case
studies throughout this dissertation, and we discussed numerous applications of Datalog
in Section 8.3. However, as Datalog gains more traction in the static analysis community,
so do different variations of the language: We designed IncA Datalog and IncAy, as an
alternative, but other systems also frequently use custom extensions or completely new
syntax instead of standard Datalog (see Section 8.4).

A future research direction for IncA could focus on the development of a more expressive
analysis DSL that consolidates the design decisions from the variations of Datalog. IncAf,y,
was already going in this direction, but its design was not the result of a systematic study of
the different applications of Datalog, as it was more based on our personal experiences with

9.2 Suggestions for Future Work 181

developing static analyses. We envision a DSL that is applicable to a wide range of analyses
with suitable language abstractions (potentially in the form of language extensions): type
checking and inference, data-flow analyses, clone detection, or even general computations.
An added difficulty in the language design is that it would constantly need to be coordinated
with the capabilities of the back end, so that efficient incrementalization can be guaranteed
for all analyses expressible in the new language.

183

(1]

Bibliography

CVE-2014-1266, 2014. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2014-1266.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
ISBN 0-201-53771-0.

S. Abiteboul, D. Deutch, and V. Vianu. Deduction with Contradictions in Datalog. In
International Conference on Database Theory, Athens, Greece, 2014. URL https:
//hal.inria.fr/hal-00923265.

U. A. Acar, G. Blelloch, and R. Harper. Self-adjusting computation. PhD thesis,
Citeseer, 2005.

Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic. Dbtoaster: Higher-order delta
processing for dynamic, frequently fresh views. Proc. VLDB Endow., 5(10):968-979,
June 2012. ISSN 2150-8097. doi: 10.14778/2336664.2336670. URL http://dx.doi.
org/10.14778/2336664.2336670.

L. O. Andersen. Program Analysis and Specialization of the C Programming Language.
PhD thesis, University of Copenhagen, 1994.

M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic, T. L. Veld-
huizen, and G. Washburn. Design and Implementation of the LogicBlox System.
In Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’15, page 1371-1382, New York, NY, USA, 2015. Association for
Computing Machinery. ISBN 9781450327589. doi: 10.1145/2723372.2742796. URL
https://doi.org/10.1145/2723372.2742796.

M. Arntzenius and N. Krishnaswami. Seminaive Evaluation for a Higher-Order
Functional Language. Proc. ACM Program. Lang., 4(POPL), Dec. 2019. doi: 10.1145/
3371090. URL https://doi.org/10.1145/3371090.

S. Arzt and E. Bodden. Reviser: Efficiently Updating IDE-/IFDS-based Data-flow
Analyses in Response to Incremental Program Changes. In Proceedings of the 36th
International Conference on Software Engineering, ICSE 2014, pages 288-298, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2756-5. doi: 10.1145/2568225.2568243.

D. Asenov, B. Guenat, P. Miuller, and M. Otth. Precise Version Control of
Trees with Line-Based Version Control Systems. In Proceedings of the 20th
International Conference on Fundamental Approaches to Software Engineering -
Volume 10202, page 152-169, Berlin, Heidelberg, 2017. Springer-Verlag. ISBN
9783662544938. doi: 10.1007/978-3-662-54494-5_9. URL https://doi.org/
10.1007/978-3-662-54494-5_09.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1266
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1266
https://hal.inria.fr/hal-00923265
https://hal.inria.fr/hal-00923265
http://dx.doi.org/10.14778/2336664.2336670
http://dx.doi.org/10.14778/2336664.2336670
https://doi.org/10.1145/2723372.2742796
https://doi.org/10.1145/3371090
https://doi.org/10.1007/978-3-662-54494-5_9
https://doi.org/10.1007/978-3-662-54494-5_9

184

Bibliography

(11]

(12]

M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra. Westview
press, 1994.

P. Avgustinov, O. de Moor, M. P. Jones, and M. Schéfer. QL: Object-oriented Queries
on Relational Data. In S. Krishnamurthi and B. S. Lerner, editors, 30th European
Conference on Object-Oriented Programming (ECOOP 2016), volume 56 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 2:1-2:25, Dagstuhl, Germany,
2016. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-014-9.
doi: 10.4230/LIPIcs.ECOOP.2016.2. URL http://drops.dagstuhl.de/opus/
volltexte/2016/6096.

[13] J. Backes, S. Bayless, B. Cook, C. Dodge, A. Gacek, A. J. Hu, T. Kahsai, B. Kocik,

[15]

E. Kotelnikov, J. Kukovec, S. McLaughlin, J. Reed, N. Rungta, J. Sizemore, M. A. Stalzer,
P. Srinivasan, P. Subotic, C. Varming, and B. Whaley. Reachability Analysis for AWS-
Based Networks. In Computer Aided Verification - 31st International Conference, CAV
2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part II, pages 231-241,
2019. doi: 10.1007/978-3-030-25543-5_14. URL https://doi.org/10.1007/
978-3-030-25543-5_14.

L. Balbin and K. Ramamohanarao. A Generalization of the Differential Approach to
Recursive Query Evaluation. J. Log. Program., 4(3):259-262, Sept. 1987. ISSN 0743-
1066. doi: 10.1016/0743-1066(87)90004-5. URL https://doi.org/10.1016/
0743-1066(87)90004-5.

C. Beeri and R. Ramakrishnan. On the Power of Magic. In Proceedings of the Sixth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS
’87, page 269-284, New York, NY, USA, 1987. Association for Computing Machinery.
ISBN 0897912233. doi: 10.1145/28659.28689. URL https://doi.org/10.1145/
28659.286809.

L. Bettini, S. Capecchi, and B. Venneri. Featherweight Java with dynamic and static
overloading. Sci. Comput. Program., 74(5-6):261-278, 2009. doi: 10.1016/j.scic0.2009.
01.007. URL https://doi.org/10.1016/j.scico.2009.01.007.

D. Beyer. Relational Programming with CrocoPat. In Proceedings of the 28th Interna-
tional Conference on Software Engineering, ICSE *06, page 807-810, New York, NY,
USA, 2006. Association for Computing Machinery. ISBN 1595933751. doi: 10.1145/
1134285.1134420. URL https://doi.org/10.1145/1134285.1134420.

P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquin. Incoop: Mapre-
duce for incremental computations. In Proceedings of the 2nd ACM Symposium
on Cloud Computing, SOCC 11, New York, NY, USA, 2011. Association for Com-
puting Machinery. ISBN 9781450309769. doi: 10.1145/2038916.2038923. URL
https://doi.org/10.1145/2038916.2038923.

E. Bodden. Inter-Procedural Data-Flow Analysis with IFDS/IDE and Soot. In Pro-
ceedings of the ACM SIGPLAN International Workshop on State of the Art in Java
Program Analysis, SOAP 12, page 3-8, New York, NY, USA, 2012. Association for

http://drops.dagstuhl.de/opus/volltexte/2016/6096
http://drops.dagstuhl.de/opus/volltexte/2016/6096
https://doi.org/10.1007/978-3-030-25543-5_14
https://doi.org/10.1007/978-3-030-25543-5_14
https://doi.org/10.1016/0743-1066(87)90004-5
https://doi.org/10.1016/0743-1066(87)90004-5
https://doi.org/10.1145/28659.28689
https://doi.org/10.1145/28659.28689
https://doi.org/10.1016/j.scico.2009.01.007
https://doi.org/10.1145/1134285.1134420
https://doi.org/10.1145/2038916.2038923

Bibliography 185

[21]

[22]

[26]

[27]

[28]

[29]

Computing Machinery. ISBN 9781450314909 doi: 10.1145/2259051.2259052. URL
https://doi.org/10.1145/2259051.2259052.

E. Bodden. The Secret Sauce in Efficient and Precise Static Analysis: The Beauty of
Distributive, Summary-Based Static Analyses (and How to Master Them). In Com-
panion Proceedings for the ISSTA/ECOOP 2018 Workshops, ISSTA *18, page 85-93, New
York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450359399.
doi: 10.1145/3236454.3236500. URL https://doi.org/10.1145/3236454.
3236500.

S. Bosma. Incremental Type Checking in IncA. Master’s thesis, Delft University of
Technology, 2018.

J. Cabot and E. Teniente. Incremental Integrity Checking of UML/OCL Conceptual
Schemas. J. Syst. Softw., 82(9):1459-1478, Sept. 2009. ISSN 0164-1212. doi: 10.1016/j.
j55.2009.03.009.

F. Cacace, S. Ceri, and M. Houtsma. A Survey of Parallel Execution Strategies for
Transitive Closure and Logic Programs. Distrib. Parallel Databases, 1(4):337-382, Oct.
1993. ISSN 0926-8782. doi: 10.1007/BF01264013. URL https://doi.org/10.
1007/BF01264013.

C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Compositional Shape Analysis
by Means of Bi-Abduction. 7. ACM, 58(6), Dec. 2011. ISSN 0004-5411. doi: 10.1145/
2049697.2049700. URL https://doi.org/10.1145/2049697.2049700.

A. Chaudhuri, P. Vekris, S. Goldman, M. Roch, and G. Levi. Fast and Precise Type
Checking for JavaScript. Proc. ACM Program. Lang., 1(OOPSLA), Oct. 2017. doi:
10.1145/3133872. URL https://doi.org/10.1145/3133872.

S.S. Chawathe, A. Rajaraman, H. Garcia-Molina, and]J. Widom. Change Detection in
Hierarchically Structured Information. SIGMOD Rec., 25(2):493-504, June 1996. ISSN
0163-5808. doi: 10.1145/235968.233366. URL https://doi.org/10.1145/
235968.233366.

N. Conway, W. R. Marczak, P. Alvaro, J. M. Hellerstein, and D. Maier. Logic and
Lattices for Distributed Programming. In Proceedings of the Third ACM Symposium
on Cloud Computing, SoCC ’12, pages 1:1-1:14, New York, NY, USA, 2012. ACM.
ISBN 978-1-4503-1761-0. doi: 10.1145/2391229.2391230.

K. D. Cooper and K. Kennedy. Efficient computation of flow insensitive inter-
procedural summary information. In Proceedings of the 1984 SIGPLAN Sympo-
sium on Compiler Construction, SIGPLAN 84, pages 247-258, New York, NY,
USA, 1984. ACM. ISBN 0-89791-139-3. doi: 10.1145/502874.502898. URL http:
//doi.acm.org/10.1145/502874.502898.

G. Costantini, P. Ferrara, and A. Cortesi. Static Analysis of String Values. In Proceed-
ings of the 13th International Conference on Formal Methods and Software Engineering,

https://doi.org/10.1145/2259051.2259052
https://doi.org/10.1145/3236454.3236500
https://doi.org/10.1145/3236454.3236500
https://doi.org/10.1007/BF01264013
https://doi.org/10.1007/BF01264013
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1145/3133872
https://doi.org/10.1145/235968.233366
https://doi.org/10.1145/235968.233366
http://doi.acm.org/10.1145/502874.502898
http://doi.acm.org/10.1145/502874.502898

186

Bibliography

(30]

(32]

(33]

(34]

(35]

(36]

(37]

ICFEM’11, pages 505-521, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-
3-642-24558-9. URL http://dl.acm.org/citation.cfm?id=2075089.
2075132.

P. Cousot and R. Cousot. Basic Concepts of Abstract Interpretation, pages
359-366. Springer US, Boston, MA, 2004. ISBN 978-1-4020-8157-6.
doi: 10.1007/978-1-4020-8157-6_27. URL https://doi.org/10.1007/
978-1-4020-8157-6_27.

A. Demers, T. Reps, and T. Teitelbaum. Incremental Evaluation for Attribute
Grammars with Application to Syntax-Directed Editors. In Proceedings of the
8th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’81, page 105-116, New York, NY, USA, 1981. Association for Comput-
ing Machinery. ISBN 089791029X. doi: 10.1145/567532.567544. URL https:
//doi.org/10.1145/567532.567544.

J. Dietrich, N. Hollingum, and B. Scholz. Giga-scale exhaustive points-to analysis for
java in under a minute. SIGPLAN Not., 50(10):535-551, Oct. 2015. ISSN 0362-1340.
doi: 10.1145/2858965.2814307. URL https://doi.org/10.1145/2858965.
2814307.

L.N. Q. Do, K. Alj, B. Livshits, E. Bodden, J. Smith, and E. Murphy-Hill. Just-in-Time
Static Analysis. In Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2017, page 307-317, New York, NY, USA, 2017.
Association for Computing Machinery. ISBN 9781450350761. doi: 10.1145/3092703.
3092705. URL https://doi.org/10.1145/3092703.3092705.

A. Egyed. Instant Consistency Checking for the UML. In Proceedings of the 28th
International Conference on Software Engineering, ICSE *06, pages 381-390, New York,
NY, USA, 2006. ACM. ISBN 1-59593-375-1. doi: 10.1145/1134285.1134339.

M. Eichberg, M. Kahl, D. Saha, M. Mezini, and K. Ostermann. Automatic Incremen-
talization of Prolog Based Static Analyses. In Proceedings of the 9th International
Conference on Practical Aspects of Declarative Languages, PADL’07, pages 109-123,
Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 3-540-69608-3, 978-3-540-69608-
7. doi: 10.1007/978-3-540-69611-7_7. URL http://dx.doi.org/10.1007/
978-3-540-69611-7_7.

S.Erdweg, O. Bracevac, E. Kuci, M. Krebs, and M. Mezini. A co-contextual formulation
of type rules and its application to incremental type checking. In J. Aldrich and
P. Eugster, editors, Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015,
part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, pages 880-897. ACM,
2015. doi: 10.1145/2814270.2814277. URL http://doi.acm.org/10.1145/
2814270.2814277.

J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus. Fine-grained
and accurate source code differencing. In ACM/IEEE International Conference on

http://dl.acm.org/citation.cfm?id=2075089.2075132
http://dl.acm.org/citation.cfm?id=2075089.2075132
https://doi.org/10.1007/978-1-4020-8157-6_27
https://doi.org/10.1007/978-1-4020-8157-6_27
https://doi.org/10.1145/567532.567544
https://doi.org/10.1145/567532.567544
https://doi.org/10.1145/2858965.2814307
https://doi.org/10.1145/2858965.2814307
https://doi.org/10.1145/3092703.3092705
http://dx.doi.org/10.1007/978-3-540-69611-7_7
http://dx.doi.org/10.1007/978-3-540-69611-7_7
http://doi.acm.org/10.1145/2814270.2814277
http://doi.acm.org/10.1145/2814270.2814277

Bibliography 187

[38]

[40]

[41]

[44]

[45]

[46]

Automated Software Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014,
pages 313-324, 2014. doi: 10.1145/2642937.2642982. URL http://doi.acm.org/
10.1145/2642937.2642982.

B. Fluri, M. Wuersch, M. PInzger, and H. Gall. Change Distilling: Tree Differencing
for Fine-Grained Source Code Change Extraction. IEEE Trans. Softw. Eng., 33(11):
725-743, Nov. 2007. ISSN 0098-5589. doi: 10.1109/TSE.2007.70731. URL https:
//doi.org/10.1109/TSE.2007.70731.

C. L. Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object Pat-
tern Match Problem. Artif. Intell, 19(1):17-37, Sept. 1982. ISSN 0004-3702.
doi: 10.1016/0004-3702(82)90020-0. URL http://dx.doi.org/10.1016/
0004-3702(82)90020-0.

G. Fourtounis, G. Kastrinis, and Y. Smaragdakis. Static analysis of java dynamic
proxies. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2018, pages 209-220, New York, NY, USA, 2018. ACM.
ISBN 978-1-4503-5699-2. doi: 10.1145/3213846.3213864. URL http://doi.acm.
0org/10.1145/3213846.3213864.

P. Ginsbach, L. Crawford, and M. F. P. O’'Boyle. CAnDL: A Domain Specific Language
for Compiler Analysis. In Proceedings of the 27th International Conference on Compiler
Construction, CC 2018, page 151-162, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450356442. doi: 10.1145/3178372.3179515. URL
https://doi.org/10.1145/3178372.3179515.

N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smaragdakis. MadMax:
Surviving out-of-Gas Conditions in Ethereum Smart Contracts. Proc. ACM Program.
Lang., 2(O0OPSLA), Oct. 2018. doi: 10.1145/3276486. URL https://doi.org/10.
1145/3276486.

N. Grech, L. Brent, B. Scholz, and Y. Smaragdakis. Gigahorse: Thorough, Declarative
Decompilation of Smart Contracts. In Proceedings of the 41st International Conference
on Software Engineering, ICSE *19, page 1176—1186. IEEE Press, 2019. doi: 10.1109/
ICSE.2019.00120. URL https://doi.org/10.1109/ICSE.2019.00120.

T. J. Green, S. S. Huang, B. T. Loo, and W. Zhou. Datalog and Recursive Query
Processing. Found. Trends databases, 5(2):105-195, Nov. 2013. ISSN 1931-7883. doi:
10.1561/1900000017. URL http://dx.doi.org/10.1561/1900000017.

L. Groher, A. Reder, and A. Egyed. Incremental Consistency Checking of Dynamic
Constraints. In D. Rosenblum and G. Taentzer, editors, Fundamental Approaches
to Software Engineering, volume 6013 of Lecture Notes in Computer Science, pages
203-217. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-12028-2. doi: 10.1007/
978-3-642-12029-9_15.

A. Gupta and L. S. Mumick. Maintenance of materialized views: Problems, techniques,
and applications. IEEE Data Eng. Bull., 18(2):3-18, 1995. URL http://sites.
computer.org/debull/95JUN-CD.pdf.

http://doi.acm.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982
https://doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1109/TSE.2007.70731
http://dx.doi.org/10.1016/0004-3702(82)90020-0
http://dx.doi.org/10.1016/0004-3702(82)90020-0
http://doi.acm.org/10.1145/3213846.3213864
http://doi.acm.org/10.1145/3213846.3213864
https://doi.org/10.1145/3178372.3179515
https://doi.org/10.1145/3276486
https://doi.org/10.1145/3276486
https://doi.org/10.1109/ICSE.2019.00120
http://dx.doi.org/10.1561/1900000017
http://sites.computer.org/debull/95JUN-CD.pdf
http://sites.computer.org/debull/95JUN-CD.pdf

188

Bibliography

(47]

(49]

[50]

(53]

(55]

A. Gupta, L. S. Mumick, and V. S. Subrahmanian. Maintaining Views Incrementally.
In Proceedings of the 1993 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’93, pages 157-166, New York, NY, USA, 1993. ACM. ISBN 0-89791-
592-5. doi: 10.1145/170035.170066. URL http://doi.acm.org/10.1145/
170035.170066.

Y. Gurevich and S. Shelah. Fixed-point extensions of first-order logic. In 26th Annual
Symposium on Foundations of Computer Science (sfcs 1985), pages 346353, Oct 1985.
doi: 10.1109/SFCS.1985.27.

S. Z. Guyer and C. Lin. Client-Driven Pointer Analysis. In Proceedings of the 10th
International Conference on Static Analysis, SAS’03, page 214-236, Berlin, Heidelberg,
2003. Springer-Verlag. ISBN 3540403256.

A. Guzzo and D. Sacca. Semi-inflationary datalog: A declarative database language
with procedural features. AI Commun., 18(2):79-92, Apr. 2005. ISSN 0921-7126. URL
http://dl.acm.org/citation.cfm?id=1218852.1218854.

N. Gobel. Incremental datalog with differential dataflows, 09 2018. Re-
trieved 2019-10-11 from https://www.nikolasgoebel.com/2018/09/
13/incremental-datalog.html.

M. A. Hammer, U. A. Acar, and Y. Chen. CEAL: A C-Based Language for Self-
Adjusting Computation. In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI *09, page 25-37, New
York, NY, USA, 2009. Association for Computing Machinery. ISBN 9781605583921.
doi: 10.1145/1542476.1542480. URL https://doi.org/10.1145/1542476.
1542480.

M. A. Hammer, K. Y. Phang, M. Hicks, and J. S. Foster. Adapton: Composable,
Demand-Driven Incremental Computation. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 14, page
156-166, New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450327848. doi: 10.1145/2594291.2594324. URL https://doi.org/10.
1145/2594291.2594324.

E. N. Hanson and M. S. Hasan. Gator: An optimized discrimination network for
active database rule condition testing. Technical Report TR93-036, Univ. of Florida,
1993.

D. C. Harkes, D. M. Groenewegen, and E. Visser. IceDust: Incremental and Eventual
Computation of Derived Values in Persistent Object Graphs. In S. Krishnamurthi
and B. S. Lerner, editors, 30th European Conference on Object-Oriented Programming
(ECOOP 2016), volume 56 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 11:1-11:26, Dagstuhl, Germany, 2016. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik. ISBN 978-3-95977-014-9. doi: 10.4230/LIPIcs. ECOOP.2016.11. URL
http://drops.dagstuhl.de/opus/volltexte/2016/6105.

http://doi.acm.org/10.1145/170035.170066
http://doi.acm.org/10.1145/170035.170066
http://dl.acm.org/citation.cfm?id=1218852.1218854
https://www.nikolasgoebel.com/2018/09/13/incremental-datalog.html
https://www.nikolasgoebel.com/2018/09/13/incremental-datalog.html
https://doi.org/10.1145/1542476.1542480
https://doi.org/10.1145/1542476.1542480
https://doi.org/10.1145/2594291.2594324
https://doi.org/10.1145/2594291.2594324
http://drops.dagstuhl.de/opus/volltexte/2016/6105

Bibliography 189

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[68]

L. Hatton. Safer language subsets: an overview and a case history, MISRA C. Infor-
mation and Software Technology, 46(7):465-472, 2004.

G. Hedin. Reference Attributed Grammars. 24(3):301-317, 2000. ISSN 0868-4952.

M. Hills. Streamlining Control Flow Graph Construction with DCFlow. In B. Combe-
male, D. J. Pearce, O. Barais, and]. J. Vinju, editors, Software Language Engineering,
pages 322-341, Cham, 2014. Springer International Publishing. ISBN 978-3-319-
11245-9.

K. Hoder, N. Bjorner, and L. de Moura. uZ- An Efficient Engine for Fixed Points
with Constraints. In G. Gopalakrishnan and S. Qadeer, editors, Computer Aided
Verification, pages 457-462, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
ISBN 978-3-642-22110-1.

J. Hoffmann, K. Aehlig, and M. Hofmann. Resource Aware ML. In P. Madhusudan and
S. A. Seshia, editors, Computer Aided Verification, pages 781-786, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg. ISBN 978-3-642-31424-7.

N. Hollingum and B. Scholz. Cauliflower: a Solver Generator for Context-Free
Language Reachability. In T. Eiter and D. Sands, editors, LPAR-21. 21st International
Conference on Logic for Programming, Artificial Intelligence and Reasoning, volume 46
of EPiC Series in Computing, pages 171-180. EasyChair, 2017. doi: 10.29007/tbm?7.
URL https://easychair.org/publications/paper/bnvq.

D. Hovemeyer and W. Pugh. Finding Bugs is Easy. SIGPLAN Not., 39(12):92-106,
Dec. 2004. doi: 10.1145/1052883.1052895.

N. Immerman. Descriptive complexity. Springer Science & Business Media, 2012.

Y. Ioannidis and R. Ramakrishnan. Efficient Transitive Closure Algorithms. pages
382-394, 01 1988.

B.Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. Why don’t software developers
use static analysis tools to find bugs? In Proceedings of the 2013 International
Conference on Software Engineering, ICSE "13, page 672-681. IEEE Press, 2013. ISBN
9781467330763.

H. Jordan, B. Scholz, and P. Suboti¢. Soufflé: On synthesis of program analyzers. In
S. Chaudhuri and A. Farzan, editors, Computer Aided Verification, pages 422-430,
Cham, 2016. Springer International Publishing. ISBN 978-3-319-41540-6.

M. Kallay. The complexity of incremental convex hull algorithms in Rd. Information
Processing Letters, 19(4):197, 1984. ISSN 0020-0190. doi: https://doi.org/10.1016/
0020-0190(84)90084-X.

U. Khedker. A Generalised Theory of Bit Vector Data Flow Analysis. PhD thesis,
Department of Computer Science and Engineering, IIT Bombay, 1995.

https://easychair.org/publications/paper/bnVq

190

Bibliography

[69]

[70]

(71]

(72]

(73]

[77]

S. Klabnik and C. Nichols. The Rust Programming Language (Covers Rust 2018). No
Starch Press, 2019.

D. E. Knuth. The Genesis of Attribute Grammars. In Proceedings of the International
Conference WAGA on Attribute Grammars and Their Applications, page 1-12, Berlin,
Heidelberg, 1990. Springer-Verlag. ISBN 3540531017.

H. Krasner. The Cost of Poor Quality Software in the US: A 2018 Report, 2018.
https://perma.cc/TON7-A68B, accessed on January 4, 2020.

E. Kuci, S. Erdweg, O. Bracevac, A. Bejleri, and M. Mezini. A Co-contextual Type
Checker for Featherweight Java (incl. Proofs). 05 2017.

O. Lhotak and K.-C. A. Chung. Points-to Analysis with Efficient Strong Updates. In
Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’11, pages 3-16, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0490-0. doi: 10.1145/1926385.1926389. URL http://doi.acm.
org/10.1145/1926385.1926389.

Y. Li, T. Tan, A. Mgller, and Y. Smaragdakis. Precision-guided context sensitivity
for pointer analysis. PACMPL, 2(OOPSLA):141:1-141:29, 2018. doi: 10.1145/3276511.
URL https://doi.org/10.1145/3276511.

M. Liu, N. E. Taylor, W. Zhou, Z. G. Ives, and B. T. Loo. Recursive Computation of
Regions and Connectivity in Networks. In 2009 IEEE 25th International Conference
on Data Engineering, pages 1108-1119, March 2009. doi: 10.1109/ICDE.2009.36.

N. P. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr. Provably Correct Peephole
Optimizations with Alive. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI "15, page 22-32, New
York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450334686.
doi: 10.1145/2737924.2737965. URL https://doi.org/10.1145/2737924.
2737965.

Y. Lu, L. Shang, X. Xie, and J. Xue. An Incremental Points-to Analysis with CFL-
Reachability. In Proceedings of the 22Nd International Conference on Compiler Con-
struction, CC’13, pages 61-81, Berlin, Heidelberg, 2013. Springer-Verlag. ISBN
978-3-642-37050-2. doi: 10.1007/978-3-642-37051-9_4. URL http://dx.doi.
org/10.1007/978-3-642-37051-9_4.

M. Madsen and O. Lhotak. Safe and Sound Program Analysis with Flix. In Pro-
ceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2018, pages 38-48, New York, NY, USA, 2018. ACM. ISBN 978-1-
4503-5699-2. doi: 10.1145/3213846.3213847. URL http://doi.acm.org/10.
1145/3213846.3213847.

M. Madsen, M.-H. Yee, and O. Lhotak. From Datalog to Flix: A Declarative Language
for Fixed Points on Lattices. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI '16, pages 194-208, New

https://perma.cc/TQN7-A68B
http://doi.acm.org/10.1145/1926385.1926389
http://doi.acm.org/10.1145/1926385.1926389
https://doi.org/10.1145/3276511
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.1145/2737924.2737965
http://dx.doi.org/10.1007/978-3-642-37051-9_4
http://dx.doi.org/10.1007/978-3-642-37051-9_4
http://doi.acm.org/10.1145/3213846.3213847
http://doi.acm.org/10.1145/3213846.3213847

Bibliography 191

[80]

[81]

(82]

(83]

(86]

(87]

[89]

[90]

York, NY, USA, 2016. ACM. ISBN 978-1-4503-4261-2. doi: 10.1145/2908080.2908096.
URL http://doi.acm.org/10.1145/2908080.2908096.

F. Martin. PAG-an efficient program analyzer generator. International Journal on
Software Tools for Technology Transfer, 2(1):46-67, 1998.

M. Mazuran, E. Serra, and C. Zaniolo. Extending the power of datalog recursion. 22,
08 2013.

F. McSherry, D. G. Murray, R. Isaacs, and M. Isard. Differential Dataflow. In CIDR,
2013.

M. Méndez-Lojo, A. Mathew, and K. Pingali. Parallel Inclusion-Based Points-to
Analysis. SIGPLAN Not., 45(10):428-443, Oct. 2010. ISSN 0362-1340. doi: 10.1145/
1932682.1869495. URL https://doi.org/10.1145/1932682.1869495.

R. C. Merkle. A Digital Signature Based on a Conventional Encryption Function.
In C. Pomerance, editor, Advances in Cryptology - CRYPTO ’87, A Conference on
the Theory and Applications of Cryptographic Techniques, Santa Barbara, California,
USA, August 16-20, 1987, Proceedings, volume 293 of Lecture Notes in Computer
Science, pages 369-378. Springer, 1987. doi: 10.1007/3-540-48184-2_32. URL https:
//doi.org/10.1007/3-540-48184-2_32.

V. C. Miraldo, P.-E. Dagand, and W. Swierstra. Type-Directed Diffing of Structured
Data. In Proceedings of the 2nd ACM SIGPLAN International Workshop on Type-Driven
Development, TyDe 2017, page 2-15, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450351836. doi: 10.1145/3122975.3122976. URL
https://doi.org/10.1145/3122975.3122976.

D. P. Miranker. Treat: A better match algorithm for ai production systems; long
version. 1987.

R. Mitschke, S. Erdweg, M. Kohler, M. Mezini, and G. Salvaneschi. I3QL: Language-
Integrated Live Data Views. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Applications, OOPSLA 2014,
part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014, pages 417-432, 2014.
doi: 10.1145/2660193.2660242.

B. Motik, Y. Nenov, R. Piro, and I. Horrocks. Incremental Update of Datalog Mate-
rialisation: The Backward/Forward Algorithm. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, AAAT’15, pages 1560-1568. AAAI Press,
2015. ISBN 0-262-51129-0. URL http://dl.acm.org/citation.cfm?id=
2886521.2886537.

B. Motik, Y. Nenov, R. Piro, and I. Horrocks. Maintenance of Datalog Materialisations
Revisited. Artificial Intelligence, 269, 04 2019. doi: 10.1016/j.artint.2018.12.004.

F. Nielson, H. R. Nielson, and C. Hankin. Principles of program analysis. Springer,
2015.

http://doi.acm.org/10.1145/2908080.2908096
https://doi.org/10.1145/1932682.1869495
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1145/3122975.3122976
http://dl.acm.org/citation.cfm?id=2886521.2886537
http://dl.acm.org/citation.cfm?id=2886521.2886537

192

Bibliography

[91]

[95]

[96]

(98]

T. Parr, S. Harwell, and K. Fisher. Adaptive LL(*) Parsing: The Power of Dynamic
Analysis. In Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA ’14, page 579-598, New
York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450325851.
doi: 10.1145/2660193.2660202. URL https://doi.org/10.1145/2660193.
2660202.

J. Plevyak and A. A. Chien. Precise Concrete Type Inference for Object-Oriented
Languages. SIGPLAN Not., 29(10):324-340, Oct. 1994. ISSN 0362-1340. doi: 10.1145/
191081.191130. URL https://doi.org/10.1145/191081.191130.

L. L. Pollock and M. L. Soffa. An incremental version of iterative data flow analysis.
IEEE Trans. Softw. Eng., 15(12):1537-1549, Dec. 1989. ISSN 0098-5589. doi: 10.1109/
32.58766.

S. Putta and R. Nasre. Parallel Replication-Based Points-To Analysis. In M. O’Boyle,
editor, Compiler Construction, pages 61-80, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg. ISBN 978-3-642-28652-0.

G. Ramalingam and T. Reps. A categorized bibliography on incremental computa-
tion. In Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL *93, pages 502-510, New York, NY, USA, 1993. ACM.
ISBN 0-89791-560-7. doi: 10.1145/158511.158710.

A. Rensink. Representing First-Order Logic Using Graphs. In H. Ehrig, G. Engels,
F. Parisi-Presicce, and G. Rozenberg, editors, Graph Transformations, volume 3256 of
Lecture Notes in Computer Science, pages 319-335. Springer Berlin Heidelberg, 2004.
doi: 10.1007/978-3-540-30203-2_23.

T. Reps. Program Analysis via Graph Reachability. In Proceedings of the 1997
International Symposium on Logic Programming, ILPS *97, page 5-19, Cambridge,
MA, USA, 1997. MIT Press. ISBN 0262631806.

T. Reps, S. Horwitz, and M. Sagiv. Precise Interprocedural Dataflow Analysis via
Graph Reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 95, page 49-61, New York, NY, USA, 1995.
Association for Computing Machinery. ISBN 0897916921. doi: 10.1145/199448.199462.
URL https://doi.org/10.1145/199448.199462.

H. G. Rice. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 74(2):358—-366, 1953.

K. A. Ross and Y. Sagiv. Monotonic Aggregation in Deductive Databases. In Pro-
ceedings of the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, PODS 92, pages 114-126, New York, NY, USA, 1992. ACM.
ISBN 0-89791-519-4. doi: 10.1145/137097.137852. URL http://doi.acm.org/
10.1145/137097.137852.

https://doi.org/10.1145/2660193.2660202
https://doi.org/10.1145/2660193.2660202
https://doi.org/10.1145/191081.191130
https://doi.org/10.1145/199448.199462
http://doi.acm.org/10.1145/137097.137852
http://doi.acm.org/10.1145/137097.137852

Bibliography 193

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation: Volume I Foundations. World Scientific Publishing Co., Inc., River
Edge, NJ, USA, 1997. ISBN 98-102288-48.

L. Ryzhyk and M. Budiu. Differential datalog. In Datalog 2.0 2019 - 3rd International
Workshop on the Resurgence of Datalog in Academia and Industry co-located with the
15th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR 2019) at the Philadelphia Logic Week 2019, Philadelphia, PA (USA), June 4-5,
2019., pages 56—67, 2019. URL http://ceur-ws.org/Vol-2368/paper6.
pdf.

C. Sadowski, J. van Gogh, C. Jaspan, E. Soderberg, and C. Winter. Tricorder: Building
a Program Analysis Ecosystem. In Proceedings of the 37th International Conference on
Software Engineering - Volume 1, ICSE 15, pages 598—608, Piscataway, NJ, USA, 2015.
IEEE Press. ISBN 978-1-4799-1934-5. URL http://dl.acm.org/citation.
cfm?id=2818754.2818828.

T. Sager, A. Bernstein, M. Pinzger, and C. Kiefer. Detecting Similar Java Classes
Using Tree Algorithms. In Proceedings of the 2006 International Workshop on Mining
Software Repositories, MSR ’06, page 65-71, New York, NY, USA, 2006. Association
for Computing Machinery. ISBN 1595933972. doi: 10.1145/1137983.1138000. URL
https://doi.org/10.1145/1137983.1138000.

M. Sagiv, T. Reps, and S. Horwitz. Precise Interprocedural Dataflow Analysis with
Applications to Constant Propagation. In Selected Papers from the 6th International
Joint Conference on Theory and Practice of Software Development, TAPSOFT ’95, page
131-170, NLD, 1996. Elsevier Science Publishers B. V.

D. Saha and C. R. Ramakrishnan. Incremental and Demand-driven Points-to Analysis
Using Logic Programming. In Proceedings of the 7th ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming, PPDP ’05, pages
117-128, New York, NY, USA, 2005. ACM. ISBN 1-59593-090-6. doi: 10.1145/1069774.
1069785. URL http://doi.acm.org/10.1145/1069774.1069785.

B. Scholz, H. Jordan, P. Suboti¢, and T. Westmann. On Fast Large-Scale Program
Analysis in Datalog. In Proceedings of the 25th International Conference on Compiler
Construction, CC 2016, page 196-206, New York, NY, USA, 2016. Association for
Computing Machinery. ISBN 9781450342414. doi: 10.1145/2892208.2892226. URL
https://doi.org/10.1145/2892208.2892226.

R. Sedgewick and K. Wayne. Algorithms. Addison-Wesley Professional, 4th edition,
2011. ISBN 032157351X, 9780321573513.

D. Sereni, P. Avgustinov, and O. de Moor. Adding magic to an optimising datalog
compiler. In Proceedings of the 2008 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’08, page 553-566, New York, NY, USA, 2008. Association
for Computing Machinery. ISBN 9781605581026. doi: 10.1145/1376616.1376673. URL
https://doi.org/10.1145/1376616.1376673.

http://ceur-ws.org/Vol-2368/paper6.pdf
http://ceur-ws.org/Vol-2368/paper6.pdf
http://dl.acm.org/citation.cfm?id=2818754.2818828
http://dl.acm.org/citation.cfm?id=2818754.2818828
https://doi.org/10.1145/1137983.1138000
http://doi.acm.org/10.1145/1069774.1069785
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.1145/1376616.1376673

194

Bibliography

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

A. Shkapsky, M. Yang, and C. Zaniolo. Optimizing recursive queries with monotonic
aggregates in DeALS. In 2015 IEEE 31st International Conference on Data Engineering,
pages 867-878, April 2015. doi: 10.1109/ICDE.2015.7113340.

A. Shkapsky, M. Yang, M. Interlandi, H. Chiu, T. Condie, and C. Zaniolo. Big Data
Analytics with Datalog Queries on Spark. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD 16, page 1135-1149, New York, NY,
USA, 2016. Association for Computing Machinery. ISBN 9781450335317. doi: 10.1145/
2882903.2915229. URL https://doi.org/10.1145/2882903.2915229.

Y. Smaragdakis and M. Bravenboer. Using Datalog for Fast and Easy Program
Analysis. In Proceedings of the First International Conference on Datalog Reloaded,
Datalog’10, pages 245-251, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-
642-24205-2. doi: 10.1007/978-3-642-24206-9_14. URL http://dx.doi.org/
10.1007/978-3-642-24206-9_14.

Y. Smaragdakis and G. Kastrinis. Defensive Points-To Analysis: Effective Soundness
via Laziness. In T. Millstein, editor, 32nd European Conference on Object-Oriented
Programming (ECOOP 2018), volume 109 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 23:1-23:28, Dagstuhl, Germany, 2018. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik. ISBN 978-3-95977-079-8. doi: 10.4230/LIPIcs.ECOOP.2018.
23. URL http://drops.dagstuhl.de/opus/volltexte/2018/9228.

Y. Smaragdakis, M. Bravenboer, and O. Lhotak. Pick Your Contexts Well: Under-
Standing Object-SensitiVity. SIGPLAN Not., 46(1):17—30, Jan. 2011. ISSN 0362-1340.
doi: 10.1145/1925844.1926390. URL https://doi.org/10.1145/1925844.
1926390.

J. Smits, G. Wachsmuth, and E. Visser. FlowSpec: A Declarative Specification
Language for Intra-Procedural Flow-Sensitive Data-Flow Analysis. Journal of
Computer Languages, page 100924, 2019. ISSN 2590-1184. doi: https://doi.org/10.
1016/j.cola.2019.100924. URL http: //www.sciencedirect.com/science/
article/pii/S2590118419300474.

E. Soderberg and G. Hedin. Incremental Evaluation of Reference Attribute Grammars
using Dynamic Dependency Tracking, volume 98 of LU-CS-TR:2012-249. Department
of Computer Science, Lund University, 2012.

E. Soderberg, T. Ekman, G. Hedin, and E. Magnusson. Extensible Intraprocedural
Flow Analysis at the Abstract Syntax Tree Level. Sci. Comput. Program., 78(10):
1809-1827, Oct. 2013. ISSN 0167-6423. doi: 10.1016/].scic0.2012.02.002. URL https:
//doi.org/10.1016/7j.scico0.2012.02.002.

[118] J. Spéth, L. N. Q. Do, K. Ali, and E. Bodden. Boomerang: Demand-Driven Flow- and

Context-Sensitive Pointer Analysis for Java. In S. Krishnamurthi and B. S. Lerner,
editors, 30th European Conference on Object-Oriented Programming (ECOOP 2016),
volume 56 of Leibniz International Proceedings in Informatics (LIPIcs), pages 22:1—
22:26, Dagstuhl, Germany, 2016. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
ISBN 978-3-95977-014-9. doi: 10.4230/LIPIcs. ECOOP.2016.22.

https://doi.org/10.1145/2882903.2915229
http://dx.doi.org/10.1007/978-3-642-24206-9_14
http://dx.doi.org/10.1007/978-3-642-24206-9_14
http://drops.dagstuhl.de/opus/volltexte/2018/9228
https://doi.org/10.1145/1925844.1926390
https://doi.org/10.1145/1925844.1926390
http://www.sciencedirect.com/science/article/pii/S2590118419300474
http://www.sciencedirect.com/science/article/pii/S2590118419300474
https://doi.org/10.1016/j.scico.2012.02.002
https://doi.org/10.1016/j.scico.2012.02.002

Bibliography 195

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

M. Sridharan and R. Bodik. Refinement-based context-sensitive points-to analysis
for java. SIGPLAN Not., 41(6):387-400, June 2006. ISSN 0362-1340. doi: 10.1145/
1133255.1134027. URL https://doi.org/10.1145/1133255.1134027.

P. Suboti¢, H. Jordan, L. Chang, A. Fekete, and B. Scholz. Automatic Index Selection
for Large-Scale Datalog Computation. Proc. VLDB Endow., 12(2):141-153, Oct. 2018.
ISSN 2150-8097. doi: 10.14778/3282495.3282500. URL https://doi.org/10.
14778/3282495.3282500.

Y. Sui and J. Xue. On-Demand Strong Update Analysis via Value-Flow Refinement. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2016, page 460-473, New York, NY, USA, 2016. Association
for Computing Machinery. ISBN 9781450342186. doi: 10.1145/2950290.2950296. URL
https://doi.org/10.1145/2950290.2950296.

O. Sumer, U. Acar, A. T. Ihler, and R. R. Mettu. Efficient Bayesian Inference for
Dynamically Changing Graphs. In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis,
editors, Advances in Neural Information Processing Systems 20, pages 1441-1448.
Curran Associates, Inc., 2008.

C. Sung, S. K. Lahiri, C. Enea, and C. Wang. Datalog-based scalable semantic
diffing of concurrent programs. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE 2018, pages 656666, New York,
NY, USA, 2018. ACM. ISBN 978-1-4503-5937-5. doi: 10.1145/3238147.3238211. URL
http://doi.acm.org/10.1145/3238147.3238211.

T. Szabd, S. Alperovich, M. Voelter, and S. Erdweg. An Extensible Framework
for Variable-Precision Data-Flow Analyses in MPS. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering, ASE 2016,
page 870-875, New York, NY, USA, 2016. Association for Computing Machinery.
ISBN 9781450338455. doi: 10.1145/2970276.2970296. URL https://doi.org/
10.1145/2970276.2970296.

T. Szabd, S. Erdweg, and M. Voelter. IncA: A DSL for the Definition of Incremental
Program Analyses. In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, ASE 2016, pages 320-331, New York, NY, USA,
2016. ACM. ISBN 978-1-4503-3845-5. doi: 10.1145/2970276.2970298. URL http:
//doi.acm.org/10.1145/2970276.2970298.

T. Szabo, G. Bergmann, S. Erdweg, and M. Voelter. Incrementalizing Lattice-based
Program Analyses in Datalog. Proc. ACM Program. Lang., 2(OOPSLA):139:1-139:29,
Oct. 2018. ISSN 2475-1421. doi: 10.1145/3276509. URL http://doi.acm.org/
10.1145/32765009.

T. Szabd, E. Kuci, M. Bijman, M. Mezini, and S. Erdweg. Incremental overload
resolution in object-oriented programming languages. In Companion Proceedings
for the ISSTA/ECOOP 2018 Workshops, ISSTA ’18, pages 27-33, New York, NY, USA,
2018. ACM. ISBN 978-1-4503-5939-9. doi: 10.1145/3236454.3236485. URL http:
//doi.acm.org/10.1145/3236454.3236485.

https://doi.org/10.1145/1133255.1134027
https://doi.org/10.14778/3282495.3282500
https://doi.org/10.14778/3282495.3282500
https://doi.org/10.1145/2950290.2950296
http://doi.acm.org/10.1145/3238147.3238211
https://doi.org/10.1145/2970276.2970296
https://doi.org/10.1145/2970276.2970296
http://doi.acm.org/10.1145/2970276.2970298
http://doi.acm.org/10.1145/2970276.2970298
http://doi.acm.org/10.1145/3276509
http://doi.acm.org/10.1145/3276509
http://doi.acm.org/10.1145/3236454.3236485
http://doi.acm.org/10.1145/3236454.3236485

196

Bibliography

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, and J. Noble.
The Qualitas Corpus: A Curated Collection of Java Code for Empirical Studies. In
2010 Asia Pacific Software Engineering Conference, pages 336—-345, Nov 2010. doi:
10.1109/APSEC.2010.46.

Z. Ujhelyi, G. Bergmann, Abel Hegediis, Akos Horvath, B. Izsé, I. Rath, Z. Szatmari,
and D. Varr6. EMF-IncQuery: An integrated development environment for live
model queries. Science of Computer Programming, 98, Part 1(0):80 — 99, 2015. doi:
http://dx.doi.org/10.1016/j.scico.2014.01.004. Fifth issue of Experimental Software and
Toolkits (EST): A special issue on Academics Modelling with Eclipse (ACME2012).

G. Valiente. Algorithms on Trees and Graphs. Springer-Verlag, Berlin, Heidelberg,
2002. ISBN 3540435506.

R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot - a
Java Bytecode Optimization Framework. In Proceedings of the 1999 Conference of the
Centre for Advanced Studies on Collaborative Research, CASCON ’99, page 13. IBM
Press, 1999.

M. H. Van Emden and R. A. Kowalski. The Semantics of Predicate Logic as a
Programming Language. J. ACM, 23(4):733-742, Oct. 1976. ISSN 0004-5411. doi: 10.
1145/321978.321991. URL https://doi.org/10.1145/321978.321991.

A. Van Gelder, K. A. Ross, and J. S. Schlipf. The Well-Founded Semantics for General
LogiC Programs. 7. ACM, 38(3):619—649,]uly 1991. ISSN 0004-5411. doi: 10.1145/
116825.116838. URL https://doi.org/10.1145/116825.116838.

L. Vieille. Recursive axioms in deductive databases: The query/subquery approach.
In Proc. First Intl. Conf. on Expert Database Systems, Charleston, 1986, pages 179-193,
1986.

M. Voelter, D. Ratiu, B. Kolb, and B. Schaetz. mbeddr: Instantiating a language
workbench in the embedded software domain. Automated Software Engineering, 20
(3):339-390, 2013

M. Voelter, J. Siegmund, T. Berger, and B. Kolb. Towards User-Friendly Projectional
Editors. In B. Combemale, D. Pearce, O. Barais, and J. Vinju, editors, Software
Language Engineering, volume 8706 of Lecture Notes in Computer Science, pages
41-61. Springer International Publishing, 2014. doi: 10.1007/978-3-319-11245-9_3.

M. Voelter, A. v. Deursen, B. Kolb, and S. Eberle. Using C Language Extensions
for Developing Embedded Software: A Case Study. In Proceedings of the 2015
ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2015, pages 655-674, New York, NY, USA,
2015. ACM. ISBN 978-1-4503-3689-5. doi: 10.1145/2814270.2814276.

G. Wachsmuth, G. Konat, V. Vergu, D. Groenewegen, and E. Visser. A Language
Independent Task Engine for Incremental Name and Type Analysis. In M. Erwig,
R. Paige, and E. Van Wyk, editors, Software Language Engineering, volume 8225 of

https://doi.org/10.1145/321978.321991
https://doi.org/10.1145/116825.116838

Bibliography 197

[139]

Lecture Notes in Computer Science, pages 260-280. Springer International Publishing,
2013. doi: 10.1007/978-3-319-02654-1_15.

T. A. Wagner. Practical Algorithms for Incremental Software Development Envi-
ronments. PhD thesis, EECS Department, University of California, Berkeley, Mar
1998. URL http://www2.eecs.berkeley.edu/Pubs/TechRpts/1998/
5885.html.

[140] J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using Datalog with Binary Decision

[141]

[142]

Diagrams for Program Analysis. In K. Yi, editor, Programming Languages and
Systems, pages 97—-118, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN
978-3-540-32247-4.

W. Yang. Identifying Syntactic Differences between Two Programs. Softw. Pract.
Exper., 21(7):739-755, June 1991. ISSN 0038-0644. doi: 10.1002/spe.4380210706. URL
https://doi.org/10.1002/spe.4380210706.

M. Yannakakis. Graph-theoretic methods in database theory. In Proceedings of the
Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
PODS ’90, page 230-242, New York, NY, USA, 1990. Association for Computing
Machinery. ISBN 0897913523. doi: 10.1145/298514.298576. URL https://doi.
org/10.1145/298514.298576.

[143] J.-s. Yur, B. G. Ryder, and W. A. Landi. An Incremental Flow- and Context-sensitive

[144]

[145]

[146]

Pointer Aliasing Analysis. In Proceedings of the 21st International Conference on
Software Engineering, ICSE 99, pages 442-451, New York, NY, USA, 1999. ACM.
ISBN 1-58113-074-0. doi: 10.1145/302405.302676.

C. Zaniolo, M. Yang, A. Das, A. Shkapsky, T. Condie, and M. Interlandi. Fixpoint
semantics and optimization of recursive datalog programs with aggregates. The-
ory and Practice of Logic Programming, 17(5-6):1048-1065, 2017. doi: 10.1017/
51471068417000436.

S. Zhang, B. G. Ryder, and W. A. Landi. Experiments with combined analysis for
pointer aliasing. SIGPLAN Not., 33(7):11-18, July 1998. ISSN 0362-1340. doi: 10.1145/
277633.277635. URL https://doi.org/10.1145/277633.277635.

D. Zhao, P. Subotic, and B. Scholz. Provenance for Large-scale Datalog, 2019.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/1998/5885.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1998/5885.html
https://doi.org/10.1002/spe.4380210706
https://doi.org/10.1145/298514.298576
https://doi.org/10.1145/298514.298576
https://doi.org/10.1145/277633.277635

199

26/03/1989

09/2007 - 01/2011

02/2011 - 02/2013

05/2015 - 01/2021
05/2015 - 04/2016
05/2016 - 04/2019
05/2019 - 01/2021

03/2013 - 09/2020

10/2020 - present

Curriculum Vitae

Tamas Szabo

Date of birth in Debrecen, Hungary

B.Sc. in Computer Science
Budapest University of Technology and Economics, Hungary

M.Sc. in Computer Science
Budapest University of Technology and Economics, Hungary

Ph.D. in Computer Science

Technical University of Darmstadt, Germany

Delft University of Technology, Netherlands
Johannes Gutenberg University of Mainz, Germany

Software Engineer

itemis AG, Stuttgart, Germany
Software Engineer

Workday GmbH, Stuttgart, Germany

	Summary
	Zusammenfassung
	Acknowledgments
	Introduction
	Trade-offs in the Design of Static Analyses
	Techniques for Improving the Performance of Static Analyses
	Challenges in Incrementalizing Static Analyses
	Incremental Analysis Framework
	Contributions
	Outline

	Static Analysis with Datalog
	Introduction to Datalog
	Datalog by Example
	Recursion and Fixpoint Computation
	Incrementalizing Standard Datalog
	Chapter Summary

	The IncA Incremental Analysis Framework
	Introduction
	Incremental Program Analysis with IncA
	Syntax and Compilation of IncA Datalog
	Syntax of IncA Datalog
	Compilation to Graph Patterns

	Compiler Optimizations for IncA
	Technical Realization and IDE Integration
	Architecture Overview
	Implementation for MPS
	Applicability in other IDEs

	Case Studies
	Control Flow Analysis
	Points-to Analysis
	Well-formedness Checks for mbeddr C
	FindBugs for Java

	Performance Evaluation
	Evaluation Setup
	Evaluating Run Time (Q 3.1) and Optimization Impact (Q 3.3)
	Evaluating Memory (Q 3.2) and Optimization Impact (Q 3.3)

	Chapter Summary

	Incrementalizing Lattice-Based Program Analyses
	Introduction
	Challenges of Incrementalizing Lattice-based Program Analysis
	Incremental Lattice-Based Program Analysis with IncA
	Incremental Execution of Non-Recursive Analyses
	Incremental Execution of Recursive Analyses

	Incremental Recursive Aggregation with DRedL
	Assumptions of DRedL on the Input Datalog Rules
	Support Data Structures
	DRedL Algorithm
	Incremental Aggregator Function

	Formal Semantics of DRedL and Correctness Proof
	Semantics of Recursive Aggregation
	Correctness of the Algorithm - Proof Sketch

	Integrating Lattices into the IncA Framework
	Extensions to IncA Datalog
	Runtime System
	Compiler
	IDE Integration

	Case Studies
	Jimple as Subject Language
	Strong-update Points-to Analysis
	String Analyses

	Performance Evaluation
	Evaluation Setup
	Evaluating Run Time (Q 4.1)
	Evaluating Memory (Q 4.2)
	Discussion

	Chapter Summary

	Incrementalizing Lattice-based Inter-procedural Analyses
	Introduction
	Prior Work and Problem Statement
	Incremental Lattice-Based Program Analysis with Laddder
	Initial Analysis with Laddder
	Incremental Analysis with Laddder
	Monotonicity, Assumptions, and Guarantees of Laddder

	Incremental Aggregation in Laddder
	Formal Semantics of Laddder and Correctness Proof
	Concepts
	Refined Assumptions of Laddder on the Input Datalog Rules
	Semantics
	Correctness Properties
	Proofs of Correctness Properties
	Additional Notes

	Performance Evaluation
	Evaluation Setup
	Evaluating Incrementalizability (Q 5.1)
	Evaluating Run Time (Q 5.2)
	Evaluating Memory (Q 5.3)
	Evaluating Optimization Impact (Q 5.4)
	Discussion on the Set-based Analysis

	Chapter Summary

	A DSL for Incremental Program Analysis
	Introduction
	Background: Overload Resolution in Featherweight Java
	Overload Resolution with IncA Datalog
	Syntax and Compilation of IncAfun
	Syntax of IncAfun
	Compilation of IncAfun

	Case Studies with IncAfun
	Overload Resolution for Featherweight Java with IncAfun
	Rust Program Analyses with IncAfun

	Chapter Summary

	Textual Front End for Incremental Program Analysis
	Introduction
	Requirements for Textual Front Ends and Prior Work
	AST Differencing with hdiffS
	Integrating hdiffS with IncA
	Subject Program as Virtual EDB Relations
	Requirements for Correct and Efficient EDB Updates
	Updating EDB Relations
	Language-independent Implementation

	Evaluation
	Evaluating Ease of Integration (Q 7.1)
	Evaluating Run Time (Q 7.2)
	Discussion

	Future Work
	Chapter Summary

	Related Work
	Incremental Static Analysis
	Techniques for Speeding up Static Analyses
	Datalog and Its Applications
	DSLs for Program Analysis
	Tree Differencing Techniques
	Chapter Summary

	Conclusions and Future Work
	Revisiting the Thesis of the Dissertation
	Suggestions for Future Work

	Bibliography
	Curriculum Vitæ

