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Abstract

Photosynthesis, the biochemical process responsible for our survival on earth, is still rife
with unknowns more than half a century after its discovery. These unknowns include its
modes of function and the role of the key processes taking place apart from its regenera-
tive Calvin cycle. It seems that the knowledge of its chemical mechanism suffices plant
physiologists, who usually assume that such a natural phenomenon must work in a steady
state mode, where all concentrations of molecules are almost constant throughout time or
if they change, they do so between definite concentrations depending on external influences
like sunlight. This uncertainty prompted us to model this phenomenon in its key elements
without implementing sudden changes in external factors. We were motivated to show that
such a phenomenon might possess in its inherent nature a diversity in its mode of function.
For instance, multiple steady states or periodic orbits might be provable for photosynthesis
models.
First, we considered two already proposed models for photosynthesis and we studied the
behavior of the different species thoroughly upon changing the parameters. Both models
focus on unfolding the role of photorespiration, seen as a hindrance toward a better yield
in crops and both models had shown maximally a single positive steady state and a single
stable zero steady state signifying the collapse of the cycle.
In our new model, we incorporate, apart from photorespiration, the translocation of one of
the Calvin cycle species beyond the chloroplast inner membrane compensated by the entry
of a phosphate group into the chloroplast from the cytosol. This exchange sets a conservation
quantity bounding all concentrations, something that abides with nature's order. Throughout
the analysis, we use algebraic tools like the resultant and pure analytic ones like monotoni-
city of solutions starting from ordered initial data. The latter feature will guarantee that no
stable oscillations will be present. Also we profit from the Singular Perturbation Theory to
reduce our model from a four-dimensional model into a three-dimensional model with dy-
namics taking place over a two-dimensional manifold. We were able to discover a domain
of parameters for which two positive stable steady states exist. This breaks with the tradition
of many mathematical models' results, which conclude a single positive steady state and it
anticipates then multiple inherent modes of photosynthesis functions.
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Note
i. Through this thesis, the reader will encounter words that refer to the same thing. Here,

we list some of these words or notions:

i.1. We use the word steady state and the following words as equivalent: equilibrium
and stationary solution.

i.2. We use the word sustained oscillation as equivalent to periodic orbit. Although,
the term sustained oscillation is more general than the term periodic orbit. For
example, it includes relaxation oscillation as well. However, it will be pointed
out if this term is used more generally.

i.3. We use the term future time as equivalent to forward time or later in time. They
all mean that a property is satisfied, depending on the context, either for some or
for all time sequences {tn}n with tn ≥ t0.

ii. The reader will encounter theorems, propositions and definitions that are labeled in
blue inside the text, which is mainly written in black font. These correspond to theo-
rems, propositions and definitions taken from literature and research papers. All other
theorems, propositions and definitions are then the work of the author.
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Chapter 1

Introduction

Photosynthesis is one of the essential biological processes for sustaining life throughout
the history of geological time on earth. It is the usage of the energy captured from sun-
light to synthesize organic compounds from inorganic ones, such as CO2. Photosynthesis
of plants and cyanobacteria1 creates biomass2 on earth. The latter is the source of energy
for animals as well as humans. It includes the deposits of fossil fuels and atmospheric oxy-
gen. Perhaps the best way to appreciate the importance of photosynthesis is to examine
the crucial consequences of its absences. According to many serious research items, the
catastrophic event called the Cretaceous–Paleogene Extinction Event, which caused the ex-
tinction of dinosaurs and most others species on earth, was caused by a huge amount of dust
which covered sunlight for years and halted photosynthesis. Although in [83], the author
argues about the contribution of dust which halted photosynthesis, he never denies that it
was the main cause of extinction. Photosynthesis is divided by plant physiologists into two
phases: light reactions and dark reactions. Light reactions start by capturing sunlight in a
purely physical process to bring chlorophyll-typed pigments into a higher electronic excited
state. The excited pigments are then used in two parallel ways: First, as a generator of a
proton-motive force to drive ATP synthesis and second as a water oxidizer, leaving oxygen
as waste and using the electron gained from water to reduce NADP+ into NADPH. The
ATP and NADPH produced are essential components of the dark reactions to reduce carbon
dioxide into sugars. It is worth mentioning that the nomenclature dark and light reactions
are misleading since both reactions are ultimately driven by light3. The conversion of solar
energy into carbohydrates in dark reactions was identified in the middle of the last century
by Melvin Calvin4, Andrew Benson and James Bassham. Their discovery accounts mainly
for the dark reactions, while light reactions were later discovered mainly by Louis Duysens5

and his team upon the introduction of Photosystems I and II. Figure 1.1 shows a scheme of
the key processes taking place in the dark reactions, namely: Carboxylation, Reduction, Re-
generation and Photorespiration. RuBisCO, the enzyme catalyzing both the carboxylation

1 Cyanobacteria are single-celled organisms (Prokaryotes). They live in colonies in water and manufacture
their food through photosynthesis.

2 Biomass, according to EIA (U.S. Energy Information Administration), is organic material that comes
from plants and animals and it is a renewable source of energy. Examples include crops and waste materials
burned as a fuel or converted to liquid biofuels.

3 The interested reader may consult the book Molecular Mechanisms of Photosynthesis by Robert Blan-
kenship or the standard reference Plant Biochemistry by Hans-Walter Heldt.

4 It was the discovery of this mechanism which earned Melvin Calvin the 1961 Nobel Prize for chemistry:
See “The Path of Carbon in Photosynthesis 1951” or the Nobel lecture 1961 holding the same title.

5 See Duysens et al. 1961, Two Photochemical Systems in Photosynthesis.
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Chapter 1 Introduction

reaction and photorespiration, is considered the most abundant enzyme to exist on earth.
Plant physiologists describe photorespiration as an unwanted side reaction and they support
this claim because it is an energy-consuming reaction. In reality, the overall cost of photo-
respiration is five ATP molecules and three NADPH molecules for each oxygenation event.
If otherwise used by carboxylation, this energy could add up to 50 % of the actual car-
boxylation efficiency. We refer solely to the reactions forming the carboxylation, reduction
and regeneration as the Calvin cycle, while we refer to the whole process, including photo-
respiration and export as photosynthesis. However, the claim does not provide an ultimate
explanation of the purpose of photorespiration, which is supposed to have evolved during
a time where carbon dioxide was much more concentrated in the atmosphere than oxygen.
Plant physiologists solve this confusion by assuming that in ancient times RuBisCO had
not yet evolved a mechanism to discriminate between the two similar substrates (O=C=O
and O=O)1. Needless to say, the claim has yet to be scientifically proven. Mathematical mo-
dels have been utilized to study population biology, epidemiology, economics, cell biology,
immunology, plant physiology and ecology. Motivations for this were to conclude results,
imagine possible scenarios, undergo experiments in silico and provide or confirm explanati-
ons for phenomena that experimenters could not confirm. The main tool for that has always
been writing the system as a system of ordinary differential equations describing the change
of concentrations, volumes, speed, or configuration of some unknowns x ∈ Rn as time
changes. An ODE system depending on some parameters λ's reads:

ẋ = F (x, λ, t)

where t denotes time. It often happens that dynamics are described using autonomous sys-
tems, systems where the right-hand side of the above equation is written in terms of phase
space variables, namely the independent concentrations denoted by 'x'. In other words, the
velocities of such concentrations are dependent on time, yet not explicitly. A mathema-
tician studying such systems for biology is essentially interested not in their time soluti-
ons for a special set of parameters, as much as he is interested in unfolding the changes
which might be experienced by these solutions as some or all of the parameters enter or
exit some domains. The qualitative change in the portrait (mathematically phase portrait)
concerns him the most. It is not likely that a biologist hands a mathematician some para-
meter values to work on, but more likely, a mathematician asks a biologist if an interval of
choice is meaningful [15]. The simplest types of bifurcations are those described by one
equation of parameters. The equation is zero exactly at the boundary of bifurcation. Other-
wise, it is signed when the bifurcation appears and disappears alternatively. If, in addition,
some non-degeneracy conditions are satisfied, these bifurcations are called codimension-
one bifurcations. For example, when one of the parameters approaches a bifurcation value,
a stable equilibrium combines with an unstable equilibrium and they disappear together.
Alternatively, stating it from the other direction, two equilibria are born out of the ''blue
sky''. This is the saddle-node bifurcation (equivalently fold bifurcation), encountered of-
ten in bistable systems2. Another simple bifurcation occurs when a parameter value causes
changes in the quality of equilibrium (i.e., from stable to unstable) and a periodic orbit is
born hereupon. This is the Hopf bifurcation, suspected usually in systems that admit oscil-
lations [79],[65],[5]. For instance, Hopf bifurcation often appears in autocatalytic systems,

1 See Koning, Ross E. 1994. “Photorespiration”. Plant Physiology Information Website:
http://plantphys.info/plant_physiology/photoresp.shtml.

2 Systems having two stable equilibria are referred to as bistable systems (exhibiting bistability).
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Figure 1.1: The main processes in the Calvin cycle

like the glycolytic oscillator or the calcium-induced calcium release models (see [21]). This
type of bifurcation is expected usually in systems where a negative feedback mechanism is
present but is neither necessary nor sufficient1. Interesting models that exhibit saddle-node
bifurcation behavior include neural systems models [104] and cell cycles [81]. In analyzing
the dynamics of a system of reactions, as it is evidently the case for photosynthesis, con-
centrations reach a steady state if they reach fixed values after some time from the start.
Concentrations may also evolve in a simple rhythm represented by a waveform that repeats
with time, or equivalently as a closed curve in the phase portrait. This rhythm is of the su-
stained oscillation type (in contrast to damped oscillations). It exists either as a limit cycle
or as conservative oscillations, where the Lotka-Volterra model provides a good example
([70],[113],[42],[117]). In the limit cycle case, points near the periodic solution either con-
verge to it or diverge from it. In talking about photosynthesis, it is not intended that the
dynamics would demonstrate complex dynamical behavior (i.e., chaotic behavior). Chaotic
behavior in chemical systems means: Concentrations would follow an infinite path, never
passing through the same values twice and neither reaching a steady state nor behaving peri-
odically. However, this avenue requires analytic exclusion rather than a predictive one since
it has been proven already that chemical reaction systems are not refrained from demonstra-
ting Chaos. In this sense, the famous Belousov–Zhabotinsky reaction was the first example
of chemical systems behaving chaotically. Later on, other examples popped up ([23],[92]).
The convergence into a steady state claim is supported by a biochemical model of photo-
synthetic CO2 assimilation in C-3 leaves, which embraces such assumptions and which was
successful in producing a good approximation of measured gas exchange rates in leaves
and in predicting the CO2 assimilation rate as a multiple of nitrogen density at different
temperatures ([24], [25]). Nevertheless, it could not be claimed that photosynthesis does not
regenerate periodically since experiments have not followed concentrations in leaf for a long
duration. Thus the fairness of any conclusion made in favor or against oscillations is highly

1 The model in [21] is a positive feedback model. Nevertheless, it admits oscillations in a parameter
domain.
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Chapter 1 Introduction

questionable [86]. Beyond this, simplified models have indeed shown the existence of dam-
ped oscillations ([87],[32],[90]). Moreover, in [32],[90] and [88], authors agree partially on
the reactants responsible for oscillations being the kinases competing for ATP in the Calvin
cycle. In [87], the author assumes a conformational change in RuBisCO to an inactive form,
in which slow reverting activation leads to the observation of damped oscillations. However,
this observation does not deviate from those obtained by exposing photosynthetic apparatus
to the sudden transition from darkness to light in [66], or upon elevating CO2 in [91] and
[30].
Several hypotheses have been made to remedy the substrate-unspecific catalyzing of Ru-
BisCO in the framework of Evolution [86]. In [106], the authors propose an interesting
interpretation which fits the ''Darwin's parlance'', which states that natural selection has re-
sponded to reducing atmospheric CO2:O2 ratios by developing an advanced transition state
for CO2 in which CO2 resembles a six-carbon Carboxyketone intermediate. CO2 in this
form awakes a more discriminatory RuBisCO but at the expense of tight binding, making
cleavage to products like PGA slow down. This draws the attention toward genetic engi-
neering attempts to enhance CO2-fixation solely by introducing more specialized RuBisCO,
rather than exploiting these complementary reactions [116].

General Settings

The following notations are adopted throughout the discussion: Square brackets denote con-
centrations, dots and primes above the variables denote the time derivative and the following
abbreviations are used for the different species: RuBP, ribulose 1,5-bisphosphate; PGA, 3-
phosphoglycerate; ADP, adenosine diphosphate; Pi, inorganic orthophosphates; ATP, ade-
nosine triphosphate; TP, triose phosphate; CO2, carbon dioxide; O2, oxygen; GAP, glyceral-
dehyde 3-phosphate; DHAP, dihydroxyacetone phosphate; FBP, fructose 1,6-bispho
sphate; F6P, fructose 6-phosphate; S7P, sedoheptulose 7-phosphate; SBP, sedoheptulose
1,7-bisphosphate; E4P, erythrose 4-phosphate; X5P, xylulose 5-phosphate; R5P, ribose 5-
phosphate; Ru5P, ribulose 5-phosphate. Notice that triose phosphate is a notation for both
GAP and DHAP since both species exist as a pool (the reaction is reversible). Starch and
sucrose will not be written in their chemical names.
We will investigate in Chapters 3 and 4 successively two variants of a model of photosynthe-
sis according to Hahn [44]. The first is two-dimensional and the second is three-dimensional.
The chemical reactions of Hahn's model are written under the Law of Mass Action (see
[16]). The model is mechanistic because the qualitative behaviors of solutions are tracked
and not only the final result. The results will not be compared with real measurements since
no extensive measurements and coherent data are known. Substrates in the leaf are opti-
mally known to exist within a range of concentrations. Moreover, no complete database for
a specific leaf exists to our knowledge. The Calvin cycle is a network of thirteen reactions
involving a large number of species. The reactions are shown in Figure 1.3. We notice the
consumption of ATP and NADPH, the energy components formed during the light phase of
photosystems II and I in sequence. A plant cannot be sustained depending on these energy
carriers enzymes in the dark. This necessitated the evolution of a sophisticated mechanism
to save this energy in storage compartments where it can be used later again using a me-
chanism that releases this energy at night, so the plant stays alive. This physio-chemical
energy formed by the interaction with light is mainly consumed in the second step follo-
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Chapter 1 Introduction

Figure 1.2: RuBisCO is involved in both carboxylation and oxygenation reactions

wing carboxylation, namely during the reduction phase in the form of ATP and NADPH.
Another ATP is later (not chronologically but chemically) consumed in the regeneration
phase. However, the main loss of this energy takes place in the reduction phase. Five out
of six carbons assimilated in the carboxylation phase are recovered to generate RuBP and
thus driving the cycle, while one of the carbons is lost in the breakage at the triose phos-
phate, where it is used to manufacture starch in the chloroplast and sucrose in the cytoplasm.
Another breakage happens at RuBP itself, undergoing oxygenation and utilizing the same
enzyme utilized for carboxylation, namely RuBisCO. Oxygenation is also called photore-
spiration and it is significantly perplexing to adhere to the evolutionary scheme of nature.
This is because it competes with carboxylation for RuBisCO and follows its first yield PGA
and phosphoglycolate PG with a series of reactions, taking place in no one compartment of
the leaf and costing energy. The question of why such a reaction evolved in the past where
the air was full of CO2 is partially remedied if we hypothesize that RuBisCO had never
been a smart enzyme, as it could not discriminate between both species oxygen and car-
bon dioxide. However, it is not clear that such a hypothesis is provable at all. This opened
the door for other more concrete hypotheses. The authors in [106] proposed an interesting
explanation that RuBisCO has already responded to this inefficiency by forming a special
RuBP, a six-carbon compound which is more affinity specific. Other authors suppose that
photorespiration is necessary to transform phosphoglycolate PG, a deadly compound for
the plant. Another hypothesis suggests that photorespiration evolved to shrink water loss in
C3 plants. C3 plants, in contrast to C4 plants, do not store water efficiently [17]. C4 plants,
growing mainly in water-stressed environments, have a better affinity for water than C3
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plants, whose channels for passing water are tighter although their stomata open for a shor-
ter period. C3 plants have their channels more relaxed and lose water easier than C4 plants
[22]. This loss could have been greater if H2O had not been utilized in the same manner
as photorespiration. Hahn's model explicitly considers the role of photorespiration, starch
and sucrose synthesis, but it is still incomplete regarding two missing important processes.
The first is the translocation of TP from the chloroplast to the cytoplasm substituted by the
entry of the inorganic phosphate Pi and vice versa. This translocation is recommended to be
modeled explicitly in any model for photosynthesis. The other process is the lack of con-
servation law. Conservation law is a natural, realistic feature of the leaf on a big scale and
it is believed that such a law exists [50]. However, when talking about the chloroplast, it
is unclear whether such a law exists or not and it is unclear concerning which compound
it is: is it concerning the carbons or the phosphates? For instance, the author in [90] was
able to establish this law but in an extended chloroplast. Moreover, Hahn's model does not
study the variations of CO2, O2 pressures or ATP, NADPH concentrations as the authors in
[66],[33] and [68] do and as it is typical to test the photosynthetic response to a presumed
favorable or unfavorable variation. The motivation of studying a model lacking the natural
bound set manifested by a conservation law is testing the limitations set by the breakages to
starch and sucrose synthesis and by photorespiration on the photosynthetic rate of photosyn-
thesis if an abundant uptake of phosphate is guaranteed. It is shown that photorespiration
is a huge obstacle limiting any improvement in the crops' biomass. The model considers
photosynthesis in its working mode when light is present. Any shut down during the night
was not studied. However, this restriction is satisfactory since photosynthesis itself during
its working period is a quite sophisticated phenomenon so that any extra sophistication risks
groping in a very tolerant erroneous field where any detail is exposed to model-disqualifying
errors. Check [49] for a comparison between over-simplified and over-sophisticated models
in science and technology.

Main Results

In Chapter 3, we consider a two-dimensional model according to Hahn [44] capturing the
main events in photosynthesis. In the absence of any conservative law, we investigate the
role of photorespiration. Many plant physiologists aim to increase crop yield and devise
tools to reach this goal and one of the approaches utilized for this purpose was increasing
the efficiency of photosynthesis over photorespiration. Not all results were promising, alt-
hough research is still in an early stage (see [99]). The model is studied for an open set of
parameters, which has the advantage of not getting stuck in inaccurate kinetic data (e.g., the
a priori fixing of the range of the reaction rates). It is well-known that determining reaction
rates is a challenging task backed by inaccurate technologies.
At this point, we are interested in studying the model in two variants, once with photore-
spiration and again without photorespiration. In the former case, no stable positive steady
states were found. Moreover, it was shown that some solutions diverged toward infinity.
While nature did not implement a mechanism in plants that allows them to produce an inde-
finite amount of sugar and starch, two conclusions can be drawn hereupon. It is either that
the modeler overlooked some limiting process in the Calvin cycle (e.g., a conservation law),
or it is photorespiration which halts overproduction in the cycle. However, the last expres-
sion stands on shaky ground since it is not known whether halting photorespiration without
killing the cycle is possible at all. Contrary to this belief, some hypotheses [8] claim that
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Figure 1.3: The reactions of Calvin cycle. In red are the species that will be utilized in
Hahn's model
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photorespiration is essential for the cycle itself to get rid of poisonous phosphoglycerate PG,
which otherwise might break the cycle.
The case with photorespiration shows a stable positive solution in an open set of parameters,
together with an unstable steady state and a trivial stable one corresponding to the origin.
The latter is when concentrations of all species are exhausted at a later time. The existence
of an unstable equilibrium simultaneously with the other stable ones might be interpreted
as though the cycle is indeed shifted from its stable routine for a while, probably due to a
kind of ''weak'' feedback, which then loses its control later, allowing the cycle to return to
its natural behavior. The boundedness of solutions under photorespiration is also one reason
to believe that conclusions are plausible. While some solutions diverge to infinity in the ab-
sence of photorespiration, it was interesting to determine their rates of accumulation. It was
convenient to know the rates of accumulation of the different species, which could be si-
gnificant for specialists to know once they have an opportunity to increase the main players'
concentrations up to a higher limit. At the end of the chapter, it will be explained how the
three-dimensional model of Hahn was reduced to the already studied two-dimensional one,
thus easing the burden of having considered a simple two-dimensional model. This was
done by making use of Singular Perturbation Theory in an obvious yet plausible way. It is
worth mentioning that big models are not generally a sign of rigor. Being aware of the large
number of reactions taking place in the leaf compartments, research is left to flounder in a
gray area since many of these reactions are not known for certain to operate for a long time
or whether they shortly reach their balance between the forth and back reactions.

A two-dimensional model for photosynthesis limits the possible modes of functioning to
steady states. Species in photosynthesis do not compete in general. Thus a rise in one of
the concentrations does not cause the decline of other concentrations. This feature is crucial
for the existence of periodic solutions. Especially in two-dimensional models, the lack of
this property prohibits sustained rhythms (periodic orbits). For that reason, it was interes-
ting to study the three-dimensional variant of Hahn's model for photosynthesis in Chapter
4. The model was investigated when photorespiration was shut down. However, interesting
behavior arises when photorespiration is present. It was shown that only in that case and
with two positive steady states can sustained oscillations occur, although at the cost of being
unstable. The instability of sustained oscillations is the direct outcome of the monotonicity
that prevails in partially ordered sets. The union of these sets is dense in the domain of
interest, namely the non-negative orthant. It is only near the basin of attraction of the unsta-
ble equilibrium that such ''rebellious'' oscillations may be born. Everywhere else, solutions
tend infinitely to a rest point (steady state). It is shown that solutions approaching a stable
equilibrium form a dense set, whose complement admits a zero measure. It was shown that
''rebellious'' periodic orbits exist singularly. That is, they do not form a disk in R3

≥0.
Despite this limitation, once they exist, they exist evenly (i.e., only an even number of pe-
riodic orbits is plausible). Just like in Tango, it seems it takes two periodic orbits at least to
rebel against the monotone ''well-behaved'' dynamics converging to equilibrium. Although
it is concluded that no periodic orbits exist for the model, it is, however, a model-specific
feature and it does not infer anything about models sharing the same qualitative properties
with the three-dimensional model of Hahn. Periodic orbits have never been found in photo-
synthesis models and no conformity is ever assumed between the nomenclature 'cycle' and
periodic orbits seen as cycles in the phase portrait. In reality, the Calvin cycle is said to pro-
perly operate infinitely reproducing itself if solutions converge to a stable equilibrium. It is
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Chapter 1 Introduction

Figure 1.4: Cusp bifurcation happens at the meeting point of the two branches of the red
curve. Simple fold bifurcation happens anywhere else once the parameters are on one of the
branches

believed that two essential processes should be explicitly modeled in addition to the closed
cycle processes. These are the translocated phosphate from and to the cytosol and photore-
spiration and the latter isn't disguised by being modeled indirectly through the increase of
the former's rate.
In the absence of a clear-cut conservation law, it is recommended to assume that the trans-
located phosphate entering and leaving the stroma exercise a regulatory influence on the
Calvin cycle reactions and photorespiration. Adopting this perspective is expected to de-
liver more complex dynamics, including periodic orbits backed by the cycle's seemingly
intrinsic functioning, namely working with constant concentrations for all species.

Our new model for photosynthesis, introduced in Chapter 5, focuses on the main events ta-
king place beside the Calvin cycle. These are photorespiration and the translocation of triose
phosphate/inorganic phosphate. The model is then a four-dimensional model satisfying a
conservation law. Hence, in reality, dynamics take place on a three-dimensional manifold
and thus the degree of complexity of possible dynamics is that of a three-dimensional model.
Writing the model in the Singular Perturbation Theory setting legitimizes the considering of
the dynamics on a two-dimensional manifold. Similar behavior as that witnessed in Hahn's
three-dimensional model was detected in the new model for certain domains of parameters,
namely, fold bifurcation. In fold bifurcation, a non-hyperbolic equilibrium (i.e., Jacobian

17
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Figure 1.5: Hysteresis is when a stable equilibrium is lost via fold bifurcation. There remains
then a single stable equilibrium either on the upper layer (projection of dotted lines) or over
the lower layer

matrix admits a zero eigenvalue at this equilibrium) is born when changing a single parame-
ter. A further slight change pushes this equilibrium to bifurcate into two hyperbolic equili-
bria, one of them is stable and the other is unstable. We might call this bifurcation simple
fold bifurcation whenever the reduction to the one-dimensional centre manifold maintains
a non-zero second-order term. Simple fold bifurcation is a codim-1 bifurcation because it
depends on what is equivalent to the bias of a single parameter. We refer to the general fold
bifurcation by fold-type bifurcation. Another interesting behavior is encountered in the new
model; this is the cusp bifurcation. Again we are dealing with fold-type bifurcation, yet this
time the second-order term in the equation governing the centre manifold vanishes at the
bifurcation moment. Cusp bifurcation is a codim-2 bifurcation since it requires two degrees
of freedom (i.e., two parameters must vary independently). Cusp bifurcation is always ac-
companied by a phenomenon called hysteresis. Hysteresis is when two stable equilibria and
another unstable one coexist. In reality, a cusp bifurcation is on the extremity of hysteresis.
Upon varying two parameters called control parameters, a simple fold bifurcation occurs in
an alternative fashion whenever the control parameters touch one of two different branches
of the bifurcation curve, meeting exactly where the cusp point is located. Thus a cusp point
is eventually the meeting of the three equilibria at one single equilibrium.
To make things concrete, we provide an example that shows how cusp bifurcation can pos-
sess a relevant interpretation of real-life phenomena.
Authors in [89] approach self-determination in social life and job by referring to what they
call three basic intrinsic needs: The need for autonomy, competency and relatedness. Accor-
ding to them, self-determination depends on the degree these needs are fostered or thwarted
by the leader in the job, society, culture, or group to which the individual belongs. The
fulfillment of these needs enhances performance and consistency in functioning. We adopt
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this perspective in our example for an employer and we assume he is autonomous in the
sense that his job represents an authentic interest and a volitional act from his side. Also he
is well-connected and feels socially involved in his work environment. Normally, he feels
able to operate effectively and contribute to his work-team in the majority of situations they
encounter. This last feature is called competency. In our real-life example, competency will
serve as the main characteristic that influences the employer's self-determination, yet impli-
citly, either positively or negatively. Thus, only the sum total of fulfillment of these three
needs will be considered in the model as a variable under self-determination. Competency
and then self-determination are easily threatened, for example, by increasing challenges, by
negative feedback from the boss, or by exaggerated self-criticism. Nevertheless, we exclude
challenges from this list of factors and we let it be the other variable. A criterion depen-
dent on these two variables, self-determination and challenges, is what we call achievement
function. It must increase if both variables increase.
In short, our example will utilize: i) challenges and self-determination1 acting as the va-
riables (or control parameters), ii) achievement as an evaluation function, whose plot is
depicted in Figure 1.4. Additionally, we coarsely dissect the plot of the achievement func-
tion into two descriptive areas. The lower area corresponds to a low performer at work and
the higher one to a high performer. A low performer might put to good use stressful chal-
lenges in the job if he succeeds at being better self-determined. If he continues to do well,
facing escalating challenges with a greater ability to concentrate on main issues and to make
good decisions, he might become a high performer at some point. This could be interpreted
as a jump from one category to another and mathematically, is interpreted as a jump from
a lower layer position in achievement function to a higher layer position (see Figures 1.4
and 1.5). Such sudden change in achievement when this jump takes place is justified by the
fact that a low performer might have the same mental readiness that a high performer has,
yet achievement is not directly influenced by mental abilities as much as it is influenced by
the psychological strength of overcoming stress and utilizing these abilities. Once partly at-
tained, this psychological strength, named self-determination, requires no time to influence
achievements. We consider now the other way round, having initially a high performer who
usually faces the career challenges which get more stressful as he climbs the ladder and
aspires to reach a higher post. Suppose that he at some point loses his self-determination,
for example, due to some incident when one of his direct reports proves to have better
decision-making abilities than him in a crucial job situation. If this experience recurs, he
starts then to ponder losing the trust of his direct boss and colleagues, especially if he was
reprimanded. In this situation, he either tends to recover a good level of self-determination
or, worse, lose it more. Assuming the second scenario, our high performer turns into a low
performer at some point in his career, unable to handle difficulties and prove his superior
decision-making abilities. He does not feel competent anymore and so he is less motivated,
less self-determined, thus making a jump into a lower position and mathematically into a
lower layer of his career achievements. This is exactly what is meant by hysteresis. It means
a sudden switch from a stable equilibrium into another stable equilibrium. In our example,
both individuals resemble stable equilibria. This is because a failure of remaining a high
performer and the success of becoming one are changes that both do not happen overnight.
Concretely, there coexist initially two stable equilibria and another unstable one. When the
control parameters touch one of the red curve branches, seen in Figures 1.4 and 1.5, one of

1 Not to be confused with self-determination, the highly debated principle in modern international law.
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Figure 1.6: Record of the dynamics taking place on every region of the control parameters
in cusp bifurcation' space

the stable equilibria coincide with the unstable equilibrium and a fold equilibrium is born.
If control parameters keep changing in a certain direction, crossing the branch, the fold
equilibrium withers away and we are left with a single stable equilibrium. Which of the
stable equilibria undergoes the fold bifurcation with the unstable equilibrium depends on
which branch of the red curve is approached from the control parameters. The projection of
the red curve on the control parameters space gives a better recognition of these branches.
It is exactly at the meeting point of these two branches that all equilibria join together,
forming a single fold equilibrium, yet with second-order degeneracy. This point is called
the cusp. Figure 1.6 shows a detailed record of dynamics taking place upon crossing from a
region to another in the control space. F1 and F2 designate the bifurcation curves on which
fold bifurcation happens. They split the control space into two connected regions, where
either one stable equilibrium or two stable equilibria are present. This interesting behavior is
proven to hold in our new model, signifying photosynthesis working in two different stable
modes and the switch between them depending on exactly two parameters of the system.
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Chapter 2

Introduction to Monotone Dynamical Systems

Monotone dynamical systems are the systems that preserve partial order upon starting from
partially ordered initial data. This property guarantees that almost all solutions converge to
steady states in future time. Monotonicity has been fruitful in proving general results. For
instance, the most complex behavior possible for a model is the complement of a convergent
residual set. This universality of essential behavior has led to devising several criteria that
help check for monotonicity in a model, regardless of the significance of the parameters
involved or their values. For example, it is solely important to check the non-diagonal entries
of the Jacobian matrix for positivity. Alternatively, the authors in [1] and [64] derived graph-
theoretic approaches, which require knowing only the signs of the chosen parameters and
the sets of substrates and products.
This chapter provides the basic definitions and some chosen ramifications, which build the
necessary material required for further analysis in the following chapters.

Definition 2.0.1 A flow φt generated by

ẋ = f(x)

x ∈ Ω , Ω ⊂ Rn ,Ω open

is a strongly monotone flow if u0 ≤ v0 and u0 6= v0 =⇒ φt(u0)� φt(v0), for t ≥ 0.

We write u0 ≤ v0 if ui ≤ vi, for all i and write u0 � v0 if ui < vi, for all i.
A general monotonicity is then whenever u0 ≤ v0 =⇒ φt(u0) ≤ φt(v0), which is obviously
weaker. We notice that the above definition works nicely with orthants in Rn. For instance,
a monotone flow starting in the positive orthant of Rn, namely Rn

+, would never leave it
in future time if the solution starting at the origin O does not leave it in future time. This
property is called positive invariance1 and is especially relevant in systems where the varia-
bles represent a quantity which is supposed to be non-negative, like concentrations. Then
the violation of this property disqualifies a proposed model from being representative of
such quantities. A generalized version of monotonicity is defined on a pointed2 cone K if
the forward flow satisfies v0 − u0 ∈ K \ {0} =⇒ φt(v0) − φt(u0) ∈ K \ {0}. The same
system is said to be strongly monotone if v0 − u0 ∈ K \ {0} =⇒ φt(v0)− φt(u0) ∈ intK
instead. The latter condition is according to Hirsch [51] and it requires non-emptiness of
intK. Before that, Matano [71] introduced a weaker hypothesis compared to strong mono-
tonicity. It is based on a neighborhood-strong order preserve notion, assumingly allowing

1 a set A is positively invariant under the application of the flow φt if φtA ⊂ A, for t ≥ 0.
2 a pointed cone is a cone K that satisfies K ∩ {−K} = {0}.
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more flexibility in choosing the state space [96]. From now on, these symbolic equivalences
will be adopted u0 ≤K v0 ⇔ v0 − u0 ∈ K, u0 <K v0 ⇔ v0 − u0 ∈ K \ {0} and
u0 �K v0 ⇔ v0 − u0 ∈ intK.

Definition 2.0.2 A flow φt generated by

ẋ = f(x)

x ∈ X ⊃ K (K pointed cone)

is strongly order preserving over the Banach spaceX if it is monotone with respect to K and
whenever u0 ≤K v0 implies the existence of t0 ≥ 0 and δ > 0 such that φt0(u) ≤K φt0(v)
for all u and v that satisfy: ‖u− u0‖ < δ , ‖v − v0‖ < δ.

A continuous-time system admits a well-known fundamental dynamics if its forward flow
φt satisfies the following properties: First, φt is strongly monotone (or strongly order pre-
serving) over X . Second, φt of any compact subset C ⊂ X has a compact closure. Such
systems do not have a chaotic attractor. Even if a monotone system demonstrates chaos,
these dynamics would not be noticed since they are extremely unstable.
A fundamental property of continuous monotone systems is the Order Interval Trichotomy.
This property enables the direct recognition of dynamics in intervals bounded by equilibria.
The dynamics will be so confined that one of the equilibria is reached from any point inside
the interval. If both equilibria are stable, then a third equilibrium in between both is implied,
thus being the origin of stability. This geometric characterization of monotone systems faci-
litates the next-to-be-done Search for more complex behavior upon locating the equilibria.
The importance of trichotomy is accentuated because omega limits sets of comparable initial
starting points x and y are consequently comparable. In other words, equilibria of monotone
systems are ordered (dichotomy) if reached from ordered points. The latter generally fails to
hold for continuous monotone systems that satisfy a milder monotonicity condition, namely
just monotone (non-strongly monotone) [98].
Recall that the orbit of x ∈ X under the forward flow is defined as O(x) := {φt(x) : t ≥ 0}
and the omega limit set is then ω(x) := ∩t≥0∪s≥tφs(x) well defined for orbits with compact
closure. In an analogous way, we define α(x) := ∩t≤0∪s≤tφs(x). An equilibrium is a point
x ∈ X for which O(x) = {x} . The set of equilibria is then : E = {x ∈ X | O(x) = {x}}.
The set of convergent points C in X is defined by C := {x ∈ X | ω(x) = {e} , e ∈ E} and
the set of quasiconvergent points is defined by Q := {x ∈ X | ω(x) ⊂ E}. Clearly C ⊂ Q.
It is assumed throughout the following discussion, that the orbit O(U) of any compact set
U ⊂ X has a compact closure and we use the following notation for<,≤,�, >,≥,� in Rn

x ≤ y denotes that xi ≤ yi, ∀i, 1 ≤ i ≤ n.

x < y denotes that xi ≤ yi, ∀i, 1 ≤ i ≤ n and ∃j, 1 ≤ j ≤ n such that xj < yj.

x� y denotes that xi < yi, ∀i, 1 ≤ i ≤ n.

By analogy, this definition is generalized for any order with respect to a pointed cone K =
K1 ×K2 × · · · ×Kn. This means that:

22



Chapter 2 Introduction to Monotone Dynamical Systems

x ≤K y denotes that xi ≤Ki yi, ∀i, 1 ≤ i ≤ n, meaning y − x ∈ K.
x <K y denotes that xi ≤Ki yi, ∀i, 1 ≤ i ≤ n and ∃j, 1 ≤ j ≤ n such that xj <Kj yj,

meaning yi − xi ∈ K, ∀i 6= j und yj − xj ∈ K \ {0} .
x�K y denotes that yi − xi ∈ intKi, ∀i

However, checking for monotonicity as it is stated in Definitions 2.0.1 and 2.0.2 requires
solving the system of differential equations, which is mostly not in reach. This prompts
characterizing this property with its generalization for ordered cones K by using the right-
hand side of the system of differential equations. A famous condition was earlier introduced
by Kamke and Müller in [62] and [73], which requires, however, a kind of weak convexity
for the Banach space (or a subset of Banach space) X . Usually, it suffices that this criterion
is valid for the interior of X . Here we consider p-convexity for X .

Definition 2.0.3 A set Ω ⊂ Rn is said to be p-convex if it contains the entire line segment
between any two points x and y such that x ≤ y x, y ∈ Ω.

Remark 1 Kamke-Müller Condition Let Ω be a p-convex domain. If for each choice i,
let x, y ∈ Ω such that xi = yi, and x ≤ y then it follows that fi(x) ≤ fi(y).

This condition follows from the realization that for x and y in p-convex domain Ω, the
difference fi(y) − fi(x) can be otherwise characterized by The Fundamental Theorem of
Calculus: whenever xi = yi, then

fi(y)− fi(x) =

1∫
0

∑
i 6=j

∂fi
∂xj

(x+ t(y − x)) (yj − xj)dt

Then the connection between the Kamke-Müller condition and monotonicity is demonstra-
ted by the following result [56]

Proposition 1 Let f be satisfying the Kamke-Müller condition on an open subset D ⊂ Rn.
Let <r denotes one of the relations ≤, < or �. If x <r y, t > 0 and if φtx and φty are
defined then φtx <r φty.

It is a direct implication that Kamke-Müller condition is satisfied with respect to the non-
negative orthant R≥0 (i.e., the usual ≤) whenever ∂fi

∂xj
≥ 0 ∀i ∀j, i 6= j. The system is

then called cooperative in the sense that an increase in any of the concentrations has a
positive impact on all the other concentrations' growth rates. Cooperativity generates, in
general, a monotone flow, derived from the above formula and Propostion 1. However, most
of the monotone systems framework's advanced results require more than just monotonicity,
namely either strong order preserving SOP or strong monotonicity.
In order to elaborate at the point of monotonicity with respect to general pointed cone K
(see [115]), we consider the following toy system of differential equations in R2 borrowed
(with modifications) from [2]:
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ẋ = −θ1(x) + θ2(1− x− y)

ẏ = θ3(1− x− y)− θ4(y)

with θi's continuous increasing functions. If we denote the right-hand sides by f1 and f2

respectively and check for the following inequalities with≤ and≥ to mean the usual partial
order in R: Let (x1, y1), (x2, y2) ∈ R2 with x1 ≤ x2 and y1 ≥ y2. It is obvious that this
conclusion cannot imply monotonicity in the sense of Definition 2.0.1 since it does not
suit the formulation there. However, it could be possible to establish monotonicity with
respect to a generalized pointed cone in R2 which suits then the formulation. This cone is
K = R≥0 × R≤0. We notice

x1 ≤ x2 ⇔ x2 − x1 ≥ 0⇔ x2 − x1 ∈ R≥0 ⇔ x1 ≤R≥0
x2

y1 ≥ y2 ⇔ y2 − y1 ≤ 0⇔ y2 − y1 ∈ R≤0 ⇔ y1 ≤R≤0
y2

If we check now the Kamke-Müller condition, it follows that f1(x, y1) ≤ f2(x, y2) and
f2(x1, y) ≥ f2(x2, y). This could be formulated with the partial order in K

f1(x, y1) ≤ f1(x, y2)⇔ f1(x, y2)− f1(x, y1) ≥ 0⇔ f1(x, y2)− f1(x, y1) ∈ R≥0

⇔ f1(x, y1) ≤R≥0
f1(x, y2)

f2(x1, y) ≥ f2(x2, y)⇔ f2(x2, y)− f2(x1, y) ≤ 0⇔ f2(x2, y)− f2(x1, y) ∈ R≤0

⇔ f2(x1, y) ≤R≤0
f2(x2, y)

Hence (x1, y1) ≤K (x2, y2) ⇒ φt(x
1, y1) ≤K φt(x

2, y2) and the system is monotone with
respect to the pointed cone K = R≥0 × R≤0.

Ordering Properties of Monotone Flows
Theorem 1 Non-ordering of Limit sets and Dichotomy
Let φt be strongly order preserving on X . It follows

i) If O(x) contains two ordered points then u converges to an equilibrium e ∈ E. We
write ω(u) = e.

ii) Non-ordering of Limit sets: no two points of ω(u) for any u ∈ X are related by <.

iii) Limit set dichotomy: if u < v then either ω(u) < ω(v) or ω(u) = ω(v) ⊂ E.

The non-ordering of limit sets serves as a geometric constraint on the existence of periodic
orbits or non-steady state limit sets in general. It guarantees that no such behaviors would
exist over manifolds where points are generally partially ordered. For instance, it prohibits
the existence of periodic orbits for plane monotone systems. This idea is illustrated in Figure
2.1, showing a periodic orbit on the plane in R2, which upon a suitable choice of fixed x0, the
projection of two points of the periodic orbit on the x-axis shows that their ordinates do not
escape order. This order between the two points leads to a strict order of their future solution,
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Figure 2.1: Periodic orbit on plane has ordered points

which, however, contradicts the fact that each of them is met by the solution starting at the
other at some future time.
There is ground reasoning for why systems in biology are likely to behave monotonically.
This feature guarantees under easy-to-be-checked conditions the generic1 convergence to
equilibria. These results are manifested in the sequential papers of Hirsch ([52],[53],[54],[55],
[56],[57]) and the works of Kamke and Hadeler [43]. For example, it is quite a traditional
result to talk about global asymptotic stability when only one steady state (equilibrium)
exists. This is illustrated in the next theorem.

Theorem 2 Global Asymptotic Stability Let φt be strongly order preserving on X and
suppose that X contains exactly one equilibrium e and that every point of X \ e can be
approximated from above and from below in X. Then ω(x) = e ∀x ∈ X .

A point x ∈ X is approximated from below (respectively from above) in X if there is a
sequence {xn}n ∈ X such that xn < xn+1 < x (resp. x < xn+1 < xn) for n ≥ 1 and
xn → x as n → ∞. This property is natural for the non-negative orthant R≥0, which is
the domain of interest for many biochemical systems. It is also impossible for such systems
to exhibit stable oscillations in the other cases. This is due to the fact that convergent and
quasiconvergent points are dense in X .

Theorem 3 Let φt be strongly order preserving on X and suppose that every point x ∈ X
can be approximated from below or from above. Then X = intQ ∪ intC. In particular,
intQ is dense in X .

This reinforces the chemists' orthodox view of stable oscillations in chemical systems as
a perpetual motion, which contradicts the Second Law of Thermodynamics, stating that

1 Generic in the sense of almost everywhere in state space.
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processes in nature are irreversible (see [23]). Although this view is surpassed by many ex-
amples and measurements, which confirm that many natural processes are eventually oscil-
latory (see [35]), stable equilibrium remains the intrinsic component of systems in biology
or chemistry. The intuition that many non-monotone systems in biology contain a monotone
structure has led to huge theory advancements. It is suggested that biological systems are
at least decomposable into small monotone systems [2] and the interaction between these
systems is then studied in the light of control theory in the next section.
We state now an essential trichotomy, which proves to be useful in the later discussions.
This trichotomy tells that a flow is either uni-directed in an interval [u, v] (with respect to
a partial order cone K) whenever u and v are equilibria or there exists a third equilibrium
somewhere in between u and v. The latter implies stability for generic u and v in finite-
dimensional spaces since if each of u and v admits one dimensional stable manifold. They
admit then an n− 1 unstable manifold, which is approximated from above and from below
by points that converge to u or v, which is impossible by strongly order preserving property.

Theorem 4 Trichotomy
Let φt be strongly order preserving on X = [u, v] where u and v belong to the set of
equilibria. If φt ([u, v]) is compact for each t > 0, then one of the following holds:

i) ∃w ∈ [u, v] , w is an equilibrium and w 6= u, v.

ii) φt(x)→ u as t→∞, ∀x ∈ [u, v] \ {v}.

iii) φt(x)→ v as t→∞, ∀x ∈ [u, v] \ {u}.

To conclude the section, we state an important result due to Hirsch, which resembles Poincaré-
Bendixson Theorem for planar vector fields.

Theorem 5 Let g be a cooperative vector field with respect to the partial order induced by
the non-empty cone K ⊂ R3 in a p-convex domain D ⊂ R3. Then a compact limit set of g
that contains no equilibrium points is a periodic orbit.

This theorem, combined with the fact that no periodic orbit of a cooperative system can be
attracting (i.e., then ω−limit set of it's neighborhood), conserves its meaning for compact
ω−limit sets of competitive systems and equivalently compact α−limit sets of cooperative
ones. Notice that cooperative systems are competitive systems in reverse times and vice
versa. Therefore, an ω−limit set of one is an α−limit set of the other. Thus the theorem
might suit the models discussed in the next chapters, generators of cooperative dynamics if
we will come across a compact limit set, which is not an equilibrium. It will also be easier
to track repelling limit sets of a cooperative system. Equivalently the model can be studied
in negative time by multiplying the differential equations with a minus. Then the search
turns out to attracting sets in the new forward time, which is easier to simulate. We hope
this theorem could be an efficient tool for discovering periodic orbits for photosynthesis
models. Although interesting by itself, finding an ω− limit set for a competitive system
away from equilibria is a kind of severe demand, to the point that more counterexamples
exist for models in biology resembling periodic orbits, which are not compact ω−limits
sets. However, the authors in [119] do succeed in setting the ground hypothetically for a
competitive system that does have an attracting periodic orbit.
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Monotone Dynamics in Control Theory
Two small monotone systems with one of them considered as negative feedback for the first
would exhibit monotone system's behaviors' traits, like global convergence, if the negative
feedback does not dominate the positive feedback exercised by the first system on the se-
cond. Figure 2.2 shows two systems Σ1 and Σ2 connected by a loop of feedback. A system
Σ has an input u where u is a Lebesgue-measurable function u(·) : R≥0 → U that takes
values in a compact subset of U for bounded intervals. Similarly, Σ has an output function y
taking values in some compact subset in Y for bounded real non-negative intervals. Under
the assumption that the input of Σ2 is the output of Σ1 and vice versa, the loop could be
written as:

ẋ = f(x,w), y = h1(x) (2.1)
ż = g(z, y), w = h2(z) (2.2)

where y and w are now the outputs of x and z respectively. In order to utilize a Small Gain
Theorem [2] which generalizes monotone system's generic convergence to systems with
negative feedbacks, we need first to introduce some natural definitions.

Definition 2.2.1 A controlled dynamical system, as in (2.1-2.2), is endowed with the static
Input/State characteristic

kx(·) : U → X

if for each constant input u(t) ≡ u there exists a unique globally asymptotically stable
equilibrium kx(u). For systems with an output map y = h(x), we also define the static In-
put/Output characteristic as ky(u) := h(kx(u)), provided that an Input/State characteristics
exists and that h is continuous.

In this section, we demonstrate the strength of monotone systems in control theory by provi-
ding two examples. The first is a well understood dynamical system with global asymptotic
stability, while the second is a generalization of the main result for which multi-stability
is allowed. We consider now the following system to illustrate the strong implications of
Theorem 2 in [2]:

ẋ1 =
1

1 + xm3
− αx1 m ∈ N,m ≥ 1

ẋ2 = x1 − βx2 (2.3)
ẋ3 = x2 − γx3

Although the system itself is not monotone shown by the signs of the partial derivatives
∂ẋi
∂ẋj
, i 6= j, however if we consider x1 as a parameter in the subsystem defined by ẋ2 and

ẋ3, we obtain the following partial derivatives signs:

∂ẋ2

∂x3

= 0,
∂ẋ3

∂x2

= 1 > 0

We remark that non-negative partial derivatives ∂ẋi
∂xj
≥ 0, i 6= j for a system Ẋ over a

p-convex domain (p-convexity is convexity satisfied for partially ordered points in a set)
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Σ1

Σ2

y1u1

u2y2

Figure 2.2: Feedback loop of two systems Σ1 and Σ2

define cooperative systems in the non-negative orthant Rn
≥0. This cooperativity generates

a monotone dynamical system but not a strongly monotone one (we will see later that ir-
reducibility of Jacobian matrix is needed for cooperative systems to generate a strongly
monotone dynamics). Therefore, the subsystem of (2.3) defined by Σ2 = {ẋ2, ẋ3} over the
non-negative orthant R≥0 × R≥0 is monotone (the non-negative orthant is convex). Moreo-
ver, the three-dimensional non-negative orthant R≥0 × R≥0 × R≥0 is positively invariant
under the flow of (2.3) for positive choice of parameters. We will break (2.3) down into two
systems connected with a feedback loop.

Σ1 : ẋ1 =
1

1 + xm3
− αx1, u1 = x3, y1 = x1 (2.4)

Σ2 :

{
ẋ2 = x1 − βx2,

ẋ3 = x2 − γx3

, u2 = x1, y2 = x3 (2.5)

Due to continuity of the right-hand side of (2.3) and the positive invariance of the non-
negative orthant R≥0 × R≥0 × R≥0, both u1(·) : R≥0 → R≥0 and u2(·) : R≥0 → R≥0 are
continuous and hence Lebesgue-measurable functions and essentially compacts as required.
We call U1 and U2 the input spaces of Σ1 and Σ2 respectively. Similarly, Y1 and Y2 are their
output spaces. Moreover, it is assumed by definition that U1 = Y2 and U2 = Y1. For the
sake of simplification, we choose m = 1.
The characteristics are well-defined as:

kx1(u1) =
1

α(1 + u1)
, ky1(u1) =

1

α(1 + u1)
(2.6)

kx2(u2) =
u2

β
, ky2(u2) =

u2

γβ
(2.7)

Solutions of Σ1 are bounded. Consider: ẋ1 < 0 ⇔ 1
1+x3

− αx1 < 0 ⇒ x1 > 1
α(1+x3)

.
Hence, all solutions approach x1 ≤ 1

α(1+x3)
at a later time and thus boundedness follows.

Similarly consider: d(x2+βx3)
dt

= x1 − βγx3 < 0 ⇒ x3 > x1
βγ

and then all trajectories
approach x3 ≤ x1

βγ
at a later time. Therefore, solutions of the closed loop are all bounded.

Actually, the boundedness of trajectories and the uniqueness of equilibrium for each system
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implies then the global asymptotic stability of their equilibria and hence, the characteristics
are well-defined according to Definition 2.2.1.
Σ1 is monotone (see [2]) because ∂ẋ1

∂u1
= − 1

(1+u1)2
< 0 and simultaneously ∂ky1

∂u1
< 0. A

generalized Kamke-Müller condition in Theorem 1 in [2] tells that Σ1 is monotone whe-
never the input u1 of Σ1 is ordered with respect to the non-positive cone R≤0 and its out-
put y1 with respect to the usual cone R≥0 i.e. u1

1 ≥ u2
1, x

1
1 = x2

1 ⇒ φΣ1(t, x
1
1, u

1
1) ≤

φΣ1(t, x
2
1, u

2
1), ky1(u

1
1) ≤ ky1(u

2
1).

Σ2 is monotone with respect to its input and initial values because ∂ẋ2
∂x3

= 0, ∂ẋ3
∂x2

= 1 > 0

and ∂ẋ2
∂u2

= 1 > 0, ∂ẋ3
∂u2

= 0 and then it is anti-monotone with respect to its output (i.e., the
input u1 of Σ1) since the order was reversed by the output of y1 of Σ1. It follows then by
Theorem 2 in [2] (later called Small Gain Theorem SGT for monotone systems) that (2.3)
admits a globally attracting equilibrium if the following discrete dynamical system evolving
in U1 the input space of Σ1 admits a globally attractive equilibrium:

uk+1 = ky2 ◦ ky1(uk)

Knowing that the mapping uk+1 = ky2 ◦ ky1(uk) = 1
αβγ(1+uk)

has the following first de-
rivative shown by using the chain rule u′k+1 = k′y2 (ky2 ◦ ky1(uk)) k′y1 (uk) = 1

γβ
−1

α(1+uk)2
.

Then for uk > 1√
αβγ
− 1, it follows that

∣∣u′k+1

∣∣ < 1 and the mapping is a contraction in the
relevant interval. Moreover, the mapping is single-valued and decreasing, which, besides
the fact that limit cycles1 are ruled out for (2.3) when m = 1, implies that existence of a
unique equilibrium u0, which is globally attracting. We now perturb 2.3 by adding the terms
ζx2

2 − εx3
2 to ẋ2 and choosing m = 1.

ẋ1 =
1

1 + x3

− αx1

ẋ2 = x1 − βx2 + ζx2
2 − εx3

2 (2.8)
ẋ3 = x2 − γx3

We can again break (2.8) down into two systems just as we did for (2.3) and the subsystems
will look like:

Σ̃1 : ẋ1 =
1

1 + x3

− αx1, u1 = x3, y1 = x1 (2.9)

Σ̃2 :

{
ẋ2 = x1 − βx2 + ζx2

2 − εx3
2

ẋ3 = x2 − γx3

, u2 = x1, y2 = x3 (2.10)

The decomposition is still that of Single-Input-Single-Output type and flow of the closed
loop is bounded. −εx3

2 is a term which is added to keep trajectories bounded. Σ̃1 and its
output function y1 are monotone for initial data and input u1 with respect to the non-positive
cone K = R≤0. Characteristics are now:

kx1(u1) =
1

α(1 + u1)
, ky1 =

1

α(1 + u1)
(2.11)

1 In fact, (2.3) does not admit periodic solutions for m < 8. This is a well-known feature of such models
which was proven first in [39] and appears later in [74].
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kx2(u2), ky2(u2) =
kx2 (u2)

γ
are not in general single-valued since ẋ2 has a third order po-

lynomial on its right-hand side and consequently are only defined implicitly. ∂ẋ2
∂x3

= 0 and
∂ẋ3
∂x2

= 1 > 0, hence Σ̃2 is monotone for partially ordered initial data.
We choose now ε = 0.01, α = 1, ζ = 1, γ = 1 and β = 3 to guarantee that ẋ2 admits
three real positive roots for all values of input u2. The choice is motivated by the search
for a model where the discrete system uk+1 = ky2 ◦ ky1(uk) converges to more than one
equilibrium and still implies the convergence of the original system to more than one equi-
librium as proven in [18]. ε is small enough to be considered just as a small perturbation of
the second-order truncation of ẋ2, hence not destroying its existing roots for suitable para-
meters. Moreover, the roots exist in this case for all valid inputs u2 where inputs u2 are all
bounded from above by 1

α
. Due to the fact that ẋ2 = x1−βx2 + ζx2

2− εx3
2 has a finite num-

ber of solutions and no cycles for each choice of x1, it follows that every solution of both
subsystems is an equilibrium. It could then be easily checked that the set of equilibria of
characteristics of each subsystem contain no chain and hence all sequence solutions {uk} of
ky2 ◦ ky1 converge. Hence, the model differs from that discussed in [18] that inputs u2 here
does not approach a single invariant interval where the characteristic kx2 is single-valued
and then a unique equilibrium is concluded. Rather, there are two invariant intervals for in-
puts u2. Substituting kx2 = γky2 in the right-hand side of ẋ2 and setting it to zero and then
differentiating with respect to u2, we obtain:

−3εγ3ky2(u2)2k′y2(u2) + 2ζky2(u2)k′y2(u2)− βk′y2(u2) + 1 = 0

Then k′y2(u2) = −1
−3εγ3ky2 (u2)2+2ζky2 (u2)−β and consequently:

∣∣k′y2 (ky2 ◦ ky1(uk)) k′y1(uk)
∣∣ =

∣∣∣∣ −1

α(1 + uk)2 (−3εγ3u2
k + 2ζuk − β)

∣∣∣∣
−3εγ3u2

k + 2ζuk− β is strictly increasing and negative in the interval [0, 2
5
], hence it attains

its minimum exactly at uk = 0.4, then for all uk ∈ [0, 2
5
]:

∣∣k′y2 (ky2 ◦ ky1(uk)) k′y1(uk)
∣∣ < 1

2

Then uk+1 = ky2 ◦ ky1 is a contraction over the invariant interval [0, 2
5
] and single-valued

(because it is strictly decreasing), hence it admits there a unique attracting equilibrium. Si-
milarly, for uk > 80, the polynomial−3εγ3u2

k+2ζuk−β is strictly decreasing and negative,
thus it attains its minimum at uk = 80. Consequently,

∣∣k′y2 (ky2 ◦ ky1(uk)) k′y1(uk)
∣∣ < 1

35
and

the mapping is again a contraction over the invariant interval [80,∞[ and strictly decreasing
and then single-valued. Hence, it admits there a unique attracting equilibrium. Therefore,
multistability of (2.8) is implied by the multistability of the discrete system uk+1 = ky2 ◦ky1 ,
which shows the dominance of monotone systems behavior illustrated in generic conver-
gence over the influence of the negative feedback connection.
The goal of this example is to demonstrate an efficient method (SGT) of treating systems
with a negative feedback term 1

1+xmn
, a term which can be incorporated in models of photo-

synthesis if we assume that one of the three essential metabolites RuBP, PGA or TP listed in
Figure 1.1 exerts negative feedback on the cycle. This is the case in many cellular metabolic
processes (e.g., mRNA transcription models (see [111])). In the given example, the mRNA
M encoding for a protein E is repressed by a metabolite produced by the protein itself. We
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Figure 2.3: The two attracting equilibria of system (8)

might believe that this is the case in photosynthesis for a finite interval of time. Knowing
that once TP accumulates in the chloroplast, the chloroplast's membrane obligates its exit
in correspondence with inorganic phosphate Pi entry. The latter is known to reduce the car-
bon reduction cycle's efficiency by inhibiting key enzymes like fructose 1,6-bisphosphate,
sedoheptulose 1,7-bisphosphate and erythrose-4-phosphate. Although this interpretation as-
sumes an efficient TP/Pi translocation between the sides of the membrane, it resembles the
only scenario-to our knowledge-where negative feedback mechanism is witnessed in pho-
tosynthesis (see [31]). If we replace 1

1+xmn
by xmn

1+xmn
(see [94], [39], [40]), we will be back in

the positive feedback scenario, which holds for all models discussed later. Hence photosyn-
thesis modeling lies between these two ''standard'' modelings, which resemble convergence
to steady states as key feature. Griffith in [39] and Tyson in [110] had shown already that
negative feedback models with the term 1

1+xmn
can resemble sustained oscillations (i.e., peri-

odic orbits) provided that m > 8. However, this is far from being satisfied in photosynthesis
models due to the fact that only one of six TPs will be translocated out of the chloroplast
each time the cycle runs. Accumulated TP in the chloroplast is known for enhancing starch
production but is not known as inhibiting the cycle.

Singularly Perturbed Monotone Systems

It is well-known that Quasi-Steady State Assumption was always one of the major tools for
chemists to simplify the settings in search of useful approximate measurements. This me-
thod was utilized by chemists Michaelis and Menten to write the velocities of Enzyme/Substrate
reaction. Let's consider the famous Michaelis-Menten Kinetics (see [10]):

S
Substrate

+ E
Enzyme

k1−−⇀↽−−
k−1

SE
Complex

k2−−→ P
Product

+ E
Enzyme
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This reaction mechanism generates the following system of differential equations written in
Mass-Action kinetics:

ds

dt
= −k1e0 + (k1s+ k−1)c

(2.12)
dc

dt
= k1e0s− (k1s+ k−1 + k2)c

where e0 is the initial enzyme concentration. There are many Quasi-Steady State assump-
tions which all lead to setting one of the equations in (2.12) to zero and thus reducing
the dimension of the system. The general assumption tells that catalyzing enzyme quantity
stands in no relation to the substrate concentration, to the extent that after a short time in-
terval, the entire amount of enzyme would be saturated by the substrate. Due to the low
initial concentration of enzyme, it is assumed that substrate almost does not change during
the first phase (Pre-Steady State phase) while the complex c is assumed to be reaching an
equilibrium dc

dt
≈ 0, where it stays for a considerable interval of time in a Quasi-Steady State

of the system in the second phase. In fact, the relatively slow change in substrate s in the
transient phase together with the product reaction k2 once a recognized quantity of complex
is formed leads us to consider the complex c as keeping up with the substrate. Hence, ċ is
the outcome of the dynamics of s on the manifold dc

dt
≈ 0. Experimenters usually like then

to reduce the system to a single differential equation of the substrate

ds

dt
= − k2e0s

s+Km

, (2.13)

where Km = k−1+k2
k1

is the Michaelis Menten constant. (2.13) could be reestablished in the
light of Singular Perturbation Theory if there is good reasoning to consider some ratios of
parameters as too small. The works of Fenichel [27], [28], Tikhonov [108] and Gradshtein
[36] provided the rigorous foundation of Singular Perturbation Theory with the basic idea
that species -after a suitable non-dimensionalization- work on different time scales. For
example, some reactions might yield much faster than the others, which requires that the
reaction kinetics resemble a huge discrepancy. In this sense, a parameter ε is defined to be,
in the simplest case, the ratio of two reactions' rates (e.g., ε = k1

k−1
) and is required to be

small enough ε� 1. A non-dimensionalization of the concentrations is then utilized so that
a system like:

Ẋ = f(X, Y )

Ẏ = g(X, Y ) (2.14)

where (X, Y ) ∈ Rn × Rm, m, n ∈ N is rescaled upon the non-dimensionalization1 into:

ẋ = f(x, y)

εẏ = g(x, y) (2.15)

1 For notational ease, the same naming f and g is kept after non-dimensionalization. f and g in 2.15 is
just a rescaled version of those in 2.14.

32



Chapter 2 Introduction to Monotone Dynamical Systems

(2.15) is the slow-time system formulation of (2.14) in O(t) in contrast to the fast-time
system1 formulation done by scaling t = ετ :

x′ = εf(x, y)

y′ = g(x, y) (2.16)

where x′ instead of ẋ is the usual notation of velocity for x(τ), y(τ). Writing the solu-
tions of (2.15) as a regular Taylor Expansion with respect to ε, x(ε; t) :=

∑
n≥0

εnxn(t) ,

y(ε; t) :=
∑
n≥0

εnyn(t) will not satisfy arbitrary initial conditions x(0) and y(0) (see [74]).

This motivates considering the system in fast-settings as in (2.16) and comparing the terms
of the ansatz x(ε; τ) :=

∑
n≥0

εnxn(τ) , y(ε; τ) :=
∑
n≥0

εnyn(τ) for which the system admits

two degrees of freedom for each coefficient (not reduced) and leads to consistent calculati-
ons up to higher degrees as long as the right-hand sides are smooth enough. (2.16) serves to
describe the dynamics in the fast-transient phase 0 < t � 1 (a layer of time), while for the
larger interval during the slow-phase, approximations based on (2.15) are used. Solutions of
both systems are then unified by matching the first coefficients according to the following
identity:

lim
τ→∞

[x0(τ); y0(τ)] = lim
t→0

[x0(t); y0(t)] (2.17)

under the implicit condition that both t and ε approach zero and the latter is faster as noticed
from τ → ∞. This matching establishes the solution for t for all t > 0, regardless of how
tiny it could be. However, it is ε dependent, which does not reflect the relative freedom
of choosing initial values for x, y. Hence, another matching is needed for the exact moment
t = 0 and where ε does not come into play. We may suppose ε > 0, it is then straightforward
to check that for t = τ = 0, the solutions x(ε; τ) and y(ε; τ) satisfy:

x(ε; 0) = x(0), y(ε; 0) = y(0)

[x(ε, τ); y(ε, τ)] is then used for the time scale 0 < ε < t � 1 and for late time, the so-
lution [x(ε, τ); y(ε, τ)] provides already a good approximation, which usually suffices the
chemists. Quasi-Steady State Assumption does not imply necessarily the existence of time
scales as presented by the Singular Perturbation Theory. Actually, QSS remains heuristic,
whereas SPT is based on rigorous mathematical foundations and interpreting QSS in the
light of singular perturbation was not always a success. For instance, if we consider k2 as
our small parameter ε in (2.12) (or k2

k1
= ε at least), applying the QSS Assumption for the

complex dc
dt
≈ 0 leads to ds

dt
≈ 0 since velocities' ratio is a constant in case k2 = 0. Hence,

both variables are of the same quality (i.e., both are slow variables), which is essentially an
oversimplification not intended by the Singular Perturbation motive (see [34]). Neverthe-
less, successful efforts have been devoted to regenerate QSS from the Singular Perturbation
Theory (see [93]) upon choosing a suitable scaling2 and which resembled a significant cor-
respondence between the dynamics of (2.12), for example and the physical assumption, on

1 The naming is justified by the fact that ε multiplied with f(x, y) for ε� 1 significantly slows down the
velocity of x.

2 There is no prescribed way of how scaling should be chosen. General insights as well as 'unmature'
methods are listed in [93].
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which the QSS is based. Authors in [93] were able to broaden the typical assumption of
small parameter, namely e0

s0
= ε � 1 into e0

Km+s0
= ε � 1, where same results hold. As

mentioned before, Singular Perturbation Theory is based on Fenichel's fundamental work,
among others. Their work has shown the ability to reduce the study of a dynamical system
into investigating the dynamics of an invariant manifold of lower dimension. This manifold
is called the critical manifold and is defined as

C0 := {(x, y) ∈ Rn × Rm | 0 = f(x, y, 0)} (2.18)

if we switch to the prevalent notation of systems, namely the fast system being described
by:

x′ = f(x, y, ε)

y′ = εg(x, y, ε) (2.19)

and the slow system by the following

εẋ = f(x, y, ε)

ẏ = g(x, y, ε) (2.20)

and where ε adjoined the variables x, y on the right-hand sides to emphasize that this for-
mulation is equally valid to that in (2.15) and (2.16). (2.19) and (2.20) are called the layer
problem and the reduced problem whenever ε = 0. Then C0 is the manifold where dynamics
of the reduced problem are taking place. Stability analysis of C0 is then studied with respect
to the layer problem. For instance, if the Jacobian of the layer problem admits exactly ns
eigenvalues of negative real part at C0 then C0 admits locally a stable invariant manifold
of dimension ns + m because m stable dimensions are guaranteed from C0 itself being in-
variant for the reduced flow. The Critical Manifold C0 does not disappear if 1 � ε > 0
provided that it is normally hyperbolic in addition to smoothness. C0 is normally hyperbolic
whenever the Jacobian ∂f

∂x
|C0,ε=0 has all eigenvalues bounded away from the imaginary axis.

Here is an accurate definition of normal hyperbolicity:

Definition 2.3.1 A subset S ⊂ C0 is called normally hyperbolic if the n×nmatrix (Dxf) (p, 0)
of first partial derivatives with respect to the fast variables has no eigenvalues with zero real
part for all p ∈ S.

Violation of normal hyperbolicity by the invariant manifold C0 is independent of the dyna-
mics taking place on it or by those dynamics which are considered as parallel to them in a
close neighborhood. In other words, an invariant manifold of some equilibrium lying on C0

shifting nearby trajectories in a direction tangent to C0 does not contribute to the violation
of the property. f(x, y, 0) = 0 is solved by x = h0(y) by the Implicit Function Theorem if
∂f
∂x
|(x0,y0) 6= 0 leading to the reduced system over the critical manifold C0

ẏ = g(h0(y), y, 0) (2.21)

The existence of such h0 : Rm → Rn is essential by itself for checking for normal hyper-
bolicity, although it is not surprising that such locality arises in the discussion. This locality
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Figure 2.4: S0 perturbs to Sε within a Hausdorff distanceO(ε). Moreover, bothW u(S0) and
W s(S0) perturb

is inherited from the Centre Manifold Theory, on which the singular perturbation scheme
is based. Hence, in reality normal hyperbolicity will be locally checked at some compact
subset S0 of C0. Urged by the propensity for completion, we state the two following main
theorems of Fenichel's work.

Theorem 6 For f, g Ck in (x, y, ε) and S0 a normally hyperbolic compact subset of the
critical manifold C0 given by S0 = {(h0(y), y) | y ∈ U}, there exists ε0 > 0 such that for
ε ∈ (0, ε0] there exists a locally invariant n-dimensional Ck manifold Sε given as a graph
Sε = {(h(y, ε), y)}, where h is Ck in x and ε and h(y, 0) = h0(y).

The theorem states that S0 perturbs locally into an invariant manifold Sε for ε > 0. The next
question is: How far is Sε from S0? Does the (ns+m)-dimensional stable manifoldW u(S0)
of S0 and consequently, its (nu + m)-dimensional unstable manifold W s(S0) continuously
perturb into stable and unstable manifolds of Sε. The next theorem confirms this assumption.

Theorem 7 Fenichel's Theorem Suppose S = S0 is a compact normally hyperbolic sub-
manifold (probably with boundary) of the critical manifold C0 of System (2.20) and that
f, g ∈ Ck(k < +∞). Then for ε > 0 sufficiently small, the following hold:

(F1): There exists a locally invariant manifold Sε diffeomorphic to S0. Local invariance
means that trajectories can enter or leave Sε only through its boundaries.

(F2): Sε has Hausdorff distance O(ε) (as ε→ 0) from S0.

(F3): The flow on Sε converges to the slow flow as ε→ 0.
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(F4): Sε is Ck smooth.

(F5): Sε is normally hyperbolic and has the same stability properties with respect to the fast
variables as S0 (attracting, repelling or of saddle type).

(F6): Sε is usually not unique. In regions that remain at a fixed distance from ∂Sε, all
manifolds satisfying (F1)−(F5) lie at a Hausdorff distanceO(e−

K
ε ) from each other

for some K > 0, K = O(1).

Note that all asymptotic notation refers to ε → 0. The same conclusions as for S0 hold
locally for its stable and unstable manifolds

W s
loc(S0) =

⋃
p∈S0

W s
loc(p) W u

loc(S0) =
⋃
p∈S0

W u
loc(p)

where we view points p ∈ S0 as equilibria for the fast system. These manifolds also persist
for ε > 0 sufficiently small: There exists local stable and unstable manifoldsW s

loc(Sε),W
u
loc(Sε),

respectively, for which conclusions (F1) − (F6) hold if we replace S0 and Sε by W s
loc(Sε)

and W s
loc(S0) (or similarly by W u

loc(Sε) and W u
loc(S0)).

To make things better understandable, we provide the following example. We consider the
following simple linear system of differential equations written in fast-slow settings:

εẋ1 = −x1 − 3x2 (2.22)
ẋ2 = 2x2

with ε > 0 sufficiently small. If we substitute by ε = 0, we obtain the reduced problem:

0 = −x1 − 3x2 (2.23)
ẋ2 = 2x2

The slow flow generated by System (2.23) is restricted over the critical manifold given by:

C0 =
{

(x1, x2) ∈ R2 | −x1 − 3x2 = 0
}

(2.24)

Notice that x1 represents the fast variable in the above notation and Dx1f(x1, x2, ε)|ε=0

represents the Jacobian matrix of the fast variable equation at ε = 0. We conclude that C0 is
normally hyperbolic manifold with respect to the fast flow since Dx1f(x1, x2, ε)|ε=0 = −1.
It remains then to study the slow flow on C0, which is a one-dimensional invariant manifold
and geometrically a line in R2. Clearly, any solution starting on C0 near O(0, 0), the unique
equilibrium, diverges eventually from it as t → ∞. It suffices to consider the differential
equation ẋ2 = 2x2, whose solutions is x2(t) = c2e

2t with c2 being the initial point. Hence,
O is a repelling equilibrium on C0. To see how C0 perturbs, let us consider System (2.22)
and solve it explicitly. The solutions are given by:

x1(t) = c1e
− t
ε − 3c2

2ε+ 1
e2t +

3c2

2ε+ 1
e−

t
ε (2.25)

x2(t) = c2e
2t (2.26)
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A direct candidate for Cε the perturbed invariant manifold is x1(t) + 3x2(t) + R(t, ε) with
R(t,ε)→0

ε→0

. It is given by the following implicit equation:

x1(t) + 3x2(t)− 3c2

(
2ε

2ε+ 1

)
e2t −

(
2εc1 + c1 − 3c2

2ε+ 1

)
e−

t
ε = 0 (2.27)

This equation can be written in terms of x1, x2 and ε solely by:

x1(t) + 3x2(t)− 3c2

(
2ε

2ε+ 1

)
log

(
x2(t)

c2

)2

−
(

2εc1 + c1 − 3c2

2ε+ 1

)
log

(
x2(t)

c2

)− 1
ε

= 0 (2.28)

Both terms log
(
x2(t)
c2

)2

and log
(
x2(t)
c2

)− 1
ε

are bounded as ε → 0 since x2(t)
c2
≥ 1, ∀t ≥ 0.

Eventually, the Hausdorff distance betweenC0 andCε, dH(C0, Cε) = O
(∣∣∣∣3c2

(
2ε

2ε+1

)
log
(
x2(t)
c2

)2
∣∣∣∣)

= O (ε). Notice that in this example W s(C0) = C0 and it perturbs then into W s(Cε) = Cε
by the same given perturbation equation.
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Chapter 3

Hahn's Two-Dimensional Model

The Calvin cycle is a part of photosynthesis. There are many mathematical models for this
biochemical system in the literature. Reviews of these can be found in [3], [4] and [59]. This
is an interesting example in which the relations between different mathematical models for
the same biological situation can be investigated. Mathematical comparison of a number of
these models was carried out in [84]. There it was pointed out that it would be desirable to
look more closely at the minimal model of the Calvin cycle introduced by Hahn [44]. Hahn's
paper contains several related systems of ordinary differential equations of dimensions two
and three and the present chapter aims to obtain an understanding of the dynamics of the
two-dimensional models of Hahn, which is as complete as possible. There is also a brief
discussion of the relation of the two-dimensional models to the three-dimensional one. The
latter will be thoroughly discussed in the next chapter.
The function of the Calvin cycle is to use carbon dioxide to produce sugars. This process
is fuelled by ATP and NADPH produced in the light reactions of photosynthesis, where
the energy contained in light is captured as chemical energy. A comprehensive introduc-
tion to the biochemistry of photosynthesis can be found in [50]. The Calvin cycle's primary
step, resulting in the production of PGA (phosphoglycerate), is catalyzed by the enzyme
RuBisCO. Interestingly, this enzyme has dual functionality. It can catalyze the reaction of
carboxylation, which is the primary way carbon dioxide is fixed in the Calvin cycle and an
oxidation reaction. This second reaction competes with the first and reduces the efficiency
with which the Calvin cycle produces sugar. The reason for the existence of this seemin-
gly wasteful alternative reaction is not clear. One possible explanation, for which the Hahn
model is relevant, is that photorespiration stabilizes the system - it creates the possibility
of the existence of a stable positive steady state. Moreover, it has been recently argued [8]
that such a seemingly wasteful process is, in reality, an essential evolution process to get
rid of the intermediate 2-phosphoglycolate (2PG), which, if not converted into phosphogly-
cerate, practices inhibition [29] on necessary enzymes and would obstruct RuBP ribulose
1,5-bisphosphate regeneration.
This chapter is organized as follows: In Section 3.1, the two-dimensional system of Hahn

is introduced. In dimensionless form, the equations depend on two non-negative parameters
α and β. The case β > 0 corresponds to including photorespiration in the model. The dyna-
mics of the model are first analyzed in the case without photorespiration (β = 0). The main
result is Proposition 5, which describes the global asymptotic behavior of general solutions
in detail. There exists a unique positive steady state S1, which is unstable. For an open set
of initial data, which will be described in detail, all concentrations tend to zero as t → ∞.
For another open set of initial data, all concentrations tend to infinity as t → ∞. The com-
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Figure 3.1: The main reactions in photosynthesis considered by Hahn

plement of these two sets' union is the stable manifold of the steady state S1. A formula is
derived for the leading order asymptotics of the solutions, which tend to infinity. In Section
3.2, the case β > 0 will be addressed. The main result is Proposition 8. In one open set of
parameter space, for which an explicit formula is given, all solutions' concentrations tend
to zero as t → ∞. In the interior of the complement of that set, more interesting behavior
is observed. There are two positive steady states, one stable and one unstable. For an open
set of initial data, all concentrations tend to zero as t → ∞. For another open set of initial
data, the solutions tend to the stable positive steady state as t → ∞. Many models of the
Calvin cycle contain the fifth power of the concentration of the substance GAP (glyceral-
dehyde phosphate). This is because in the usual coarse-grained descriptions of the Calvin
cycle, where many elementary reactions are combined, there is an effective reaction where
five GAP molecules with three carbon atoms each go in and three molecules of a five-carbon
sugar come out. Applying mass-action kinetics to this leads to the fifth power. In deriving
the model studied in Sections 3.1 and 3.2, Hahn replaces the fifth power with the second
power. His motivation is to make the model analytically more tractable. He implicitly as-
sumes that this change makes no essential difference to the solutions' qualitative behavior
but gives no justification for this assumption. In Section 3.3, we will show that the solutions
of the model with the fifth power do indeed behave in a way which is very similar to the
behavior of the model with the second power. The main difference in the analysis is that no
explicit formula is obtained for the boundary between the two generic behaviors in parame-
ter space for the fifth power. The results are summarized in Propositions 10 and 11. In [44],
the two-dimensional systems are obtained from a three-dimensional one by informal argu-
ments. In Section 3.4, it will be shown how the relationship between the three-dimensional
system and the two-dimensional system with the fifth power can be formalized in a rigo-
rous way using the theory of fast-slow systems (for an introduction to this theory, we refer
to [63]). This also gives some limited information about the dynamics of solutions of the
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three-dimensional system. In Section 3.5, we provide a theoretical basis for some proposi-
tions and conclusions demonstrated in the previous sections. This will be pointed out every
time the results from Section 3.5 are used. The main content of this chapter was treated and
published in [76].

The System of Hahn

It is beneficial at this point to reconsider the set of reactions which highlight the significance
of the model.

CO2

Carbon dioxide

+ RuBP
Ribulose 1,5-bisphosphate

k1 2 PGA
Phosphoglycerate

2 O2
Oxygen

+ 2 RuBP
Ribulose 1,5-bisphosphate

k2 3 PGA
Phosphoglycerate

+ CO2

Carbon dioxide

PGA
Phosphoglycerate

k3 TP
Triose phosphate

5 TP
Triose phosphate

k4 3 RuBP
Ribulose 1,5-bisphosphate

TP
Triose phosphate

k5 3 CO2

Carbon dioxide

TP
Triose phosphate

k6 Sucrose + Starch

These reactions generate the following system of differential equations if the law of mass
action kinetics is used.

d[RuBP]

dt
= −k1[RuBP]− 2k2[RuBP]2 + 3k4[TP]5

d[PGA]

dt
= 2k1[RuBP] + 3k2[RuBP]2 − k3[PGA]

d[TP]

dt
= k3[PGA]− 5k4[TP]5 − (k5 + k6)[TP] (3.1)

Hahn has first simplified the system by setting the second of the differential equations to
zero and reducing TP's power to two instead of five. This simplified system is what will be
examined in what follows and consists of the equations (41)-(42) in [44]:

dx

dt
= −αx− 2βx2 + 3y2, (3.2)

dy

dt
= 2αx+ 3βx2 − 5y2 − y. (3.3)

Due to the biological interpretation of the solutions, we are interested in solutions which lie
in the positive quadrant, which is forward invariant. In addition to the system with α > 0
and β > 0, which we will call the full system, we also address the cases where α = 0
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Figure 3.2: The main reactions in photosynthesis considered by Hahn shown with their
kinetic rates

(no photosynthesis), β = 0 (no photorespiration) or both. Note for future reference that the
derivative of the right-hand side of this system at the point (x, y) is[

−α− 4βx 6y
2α + 6βx −10y − 1

]
(3.4)

with determinant α + 4βx − 2αy + 4βxy. Consider first the case α = β = 0. There, any
solution satisfies the inequality dy

dt
≤ −y and thus y decays exponentially at late times. In

particular, there are no positive steady states. The non-negative steady states are precisely the
points on the x-axis. Apart from the zero eigenvalue, due to the continuum of steady states,
the other eigenvalue of the linearization at any of these points is −1 and this manifold is
normally hyperbolic [63]. It follows that given any x0 > 0, there exists a positive solution
with limt→∞ x(t) = x0.

Consider next the case α = 0, β > 0. Any positive steady state satisfies y =
√

2β
3
x by

(3.2). Substituting this into (3.3) gives y(−1
2
y − 1) = 0. Thus, there is no positive steady

state. The only non-negative steady state is at the origin. In fact, d
dt

(3x + 2y) = −y2 − 2y.
Thus, 3x + 2y is a strict Lyapunov function on the positive quadrant and it follows that all
solutions converge to the origin as t→∞.
In the case α > 0, β = 0, we have the inequality d

dt
(5x + 3y) ≤ 1

5
α(5x + 3y) so that all

solutions exist globally in the future. Equation (3.2) shows that for a steady state x = 3
α
y2.

Substituting this into (3.3) gives y2 − y = 0. Thus the steady states are S0 = (0, 0) and
S1 =

(
3
α
, 1
)
.

Now we carry out a nullcline analysis, as described in Section 3.5. The nullclines are given
by x = 3

α
y2 and x = 1

2α
(5y2+y). These are the graphs of functions of y and it is clear that the

complement of the union of the nullclines has four connected components (cf. Figure 3.3).
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Figure 3.3: Nullclines (solid lines) and direction field (arrows) in the absence of photorespi-
ration

These are:

G1 = (−,−) = {(x, y) | x > 3

α
y2, x <

1

2α
(5y2 + y)}, (3.5)

G2 = (+,−) = {(x, y) | x < 3

α
y2, x <

1

2α
(5y2 + y)}, (3.6)

G3 = (−,+) = {(x, y) | x > 3

α
y2, x >

1

2α
(5y2 + y)}, (3.7)

G4 = (+,+) = {(x, y) | x < 3

α
y2, x >

1

2α
(5y2 + y)}. (3.8)

The complement of S1 in one of the nullclines has two connected components, which can
be distinguished by the sign of the time derivative, which does not vanish. We write:

N1 = S0 ∪ (0,−) ∪ S1 ∪ (0,+), (3.9)
N2 = S0 ∪ (−, 0) ∪ S1 ∪ (+, 0). (3.10)

Note that (for general α and β) if ẋ = 0 at some point in time then ẍ = 6yẏ and that if ẏ = 0
at some point then ÿ = (2α + 6βx)ẋ.

Proposition 2 A solution of (3.2)-(3.3) belongs to one of the following three cases.

i) It converges to S0 as t→∞.

ii) It converges to S1 as t→∞.

iii) There is a time t1 such that it belongs to G4 for t ≥ t1.
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Proof: Consider a solution which starts at a point on the boundary of G1 rather than S0 or
S1. If it is onN1, then ẏ < 0 and using the equation for ẍ shows that ẋ immediately becomes
negative. If a solution starts on N2 then ẋ < 0 and ẏ immediately becomes negative. It
follows that any solution which starts in G1 remains in G1 and any solution that starts at
a point on the boundary of G1 other than a steady state immediately enters G1. Since y
is decreasing for solutions in G1, any solution which is ever in G1 converges to the origin
as t → ∞. Consider next a solution which starts in G2. Since y is decreasing on G2, this
solution is bounded. By Proposition 12 of Section 3.5, it either converges to S0 or S1 as
t → ∞, or it reaches another point of the boundary of G2 after a finite time. In the latter
case, it reaches a point of the boundary of G1 or G4 after a finite time. By an analogous
argument, we can reach a similar conclusion about a solution which starts in G3: Either it
converges to S0 or S1 or it reaches another point of the boundary of G1 or G4 after a finite
time. An analysis similar to that done for G1 can be carried out for G4: A solution that starts
in G4 must remain there and a solution that starts on the boundary of G4 must immediately
enterG4. Thus any solution which does not belong to case (i) or case (ii) must enterG4 after
a finite time and then it stays there. �

Proposition 3 The stable manifold of S1 intersects both axes. If a solution starts below the
stable manifold of S1, it converges to S0 as t→∞. If it starts above the stable manifold, it
eventually lies in G4.

Proof: Consider the derivative of the right-hand side of the system at S1. This matrix has
trace −α − 11 < 0 and determinant −α < 0. Thus, it has one positive and one negative
eigenvalue. Its stable manifold Vs is one-dimensional and lies in G2 ∪ G3. Along this ma-
nifold ẏ

ẋ
is negative. It follows that Vs is the graph of a function of x. As x decreases along

the part of Vs to the left of S1 the derivative of this function remains bounded. We have
dy
dx

= 2αx+3βx2−5y2−y
−αx−βx2+3y2

. In the given situation, x is bounded. Hence, at a point where y is suf-
ficiently large, |−αx− βx2| ≤ y2 and the modulus of the denominator is bounded below by
2y2. This implies that dy

dx
is bounded. It follows that Vs intersects the y-axis. As x increases

along the part of Vs to the right of S1, the derivative of the function of which it is, the graph
remains bounded away from zero. The proof is analogous to that just given for the other part
of Vs. It follows that Vs intersects the x-axis. It can be concluded that the complement of Vs
in the positive quadrant has two connected components: H1 and H2, where H1 has compact
closure. A point is said to lie below the stable manifold if it belongs to H1 and above the
stable manifold if it belongs to H2. A solution that starts in one of these two components
remains in it. A solution which starts in H1 cannot reach G4 and one which starts in H2

cannot reach G1. Thus Proposition 3 follows from Proposition 2. �

Proposition 4 A solution of (3.2)-(3.3) which is eventually contained in G4 has, after a
suitable translation of t, the asymptotics x = α

5
e
αt
5 + · · ·, y =

√
2α
5
e
αt
10 + · · · for t→∞.

Proof: If a solution is eventually contained in G4 then r =
√
x2 + y2 must tend to infinity

as t → ∞. For r is an increasing function of t and if it were bounded, the solution would
have to converge to a steady state. However, there are no steady states in G4. It then follows
from the defining equations for G4 that both x and y tend to infinity as t → ∞. We now
consider the Poincaré compactification of the system [79]. This compactification is usually
constructed using two charts, covering neighborhoods of the x- and y-axes, respectively. For
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a solution which is in G4 for t ≥ t1, we have seen that y tends to infinity for t → ∞ and
hence x

y
tends to infinity. This means that the solution eventually leaves a neighborhood of

the origin in the chart covering a neighborhood of the y-axis and lies in the chart covering
a neighborhood of the x-axis. Moreover, it tends to the origin in the latter chart as t → ∞.
The chart we are talking about is defined by the coordinates X = 1

x
and Z = y

x
. We define

a new time coordinate τ which satisfies dτ
dt

= x. The transformed system is

dX

dτ
= αX2 − 3XZ2, (3.11)

dZ

dτ
= 2αX + (α− 1)XZ − 5Z2 − 3Z3. (3.12)

Both eigenvalues of the linearization at the origin are zero and so we must blow up the
origin to get more information. This will be done employing a quasihomogeneous blow-
up following [19]. In the notation used there, the exponents calculated using the Newton
polygon are (2, 1). There are two transformations to be done, corresponding to the two
coordinates. The first of these is given by the correspondence (X,Z) = (u2, uv). We have

dX

dτ
= 2u

du

dτ
= αu4 − 3u4v2 (3.13)

and hence,
du

dτ
=

1

2
(αu3 − 3u3v2). (3.14)

Furthermore,

dZ

dτ
= u

dv

dτ
+ v

du

dτ
= 2αu2 − 5u2v2 + (α− 1)u3v − 3u3v3 (3.15)

and hence,

dv

dτ
= 2αu− 5uv2 − (α− 1)u2v + 3u2v3 − 1

2
(αu3v − 3u3v3). (3.16)

If we now introduce a new time coordinate s satisfying ds
dτ

= u then the system becomes

du

ds
=

1

2
(αu2 − 3u2v2), (3.17)

dv

ds
= 2α− 5v2 + (α− 1)uv − 3uv3 − 1

2
(αu2v − 3u2v3). (3.18)

When v = 0, the derivative of v is positive. Thus, no solution can have an ω-limit point
on the u-axis. Hence the solution must eventually be contained in the chart defined by the
second transformation, which is given by (X,Z) = (uv2, v). In this case,

dZ

dτ
=
dv

dτ
= 2αuv2 − 5v2 + (α− 1)uv3 − 3v3. (3.19)

Furthermore,
dX

dτ
= v2du

dτ
+ 2uv

dv

dτ
= αu2v4 − 3uv4 (3.20)

and hence,

du

dτ
= αu2v2 − 3uv2 − 4αu2v + 10uv − 2(α− 1)u2v2 + 6uv2. (3.21)
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If we now introduce a new time coordinate s satisfying ds
dτ

= v then the system becomes

du

ds
= 10u+ 3uv − 4αu2 − (α− 2)u2v, (3.22)

dv

ds
= −5v + 2αuv + (α− 1)uv2 − 3v2. (3.23)

The u- and v-axes are invariant. The origin is a steady state, which is a hyperbolic saddle
and there is an additional steady state ( 5

2α
, 0). The latter steady state has one negative and

one zero eigenvalues. If we transform any positive solution then in the blown-up Poincaré
compactification, it must tend to that point. To get more details, we translate the steady state
to the origin using a coordinate transformation. Let w = u− 5

2α
be a new coordinate. Then

the equations become

dw

ds
= −10w − 4αw2 + 3wv +

15

2α
v − (α− 2)

(
w +

5

2α

)2

v, (3.24)

dv

ds
= 2αwv + (α− 1)

(
w +

5

2α

)
v2 − 3v2. (3.25)

The first can be rewritten as:

dw

ds
= −10w +

5(α + 10)

4α2
v − 4αw2 − 2(α− 5)

α
wv − (α− 2)w2v. (3.26)

We now apply Centre Manifold Theory (cf. [79], Section 2.7). The centre manifold can be
written in the form w = α+10

8α2 v + r(v) with a remainder term r which is at least quadratic.
Consider the contributions to the right-hand side of the evolution equation for v which are
quadratic in v. We get

dv

ds
=

[
α + 10

4α
+

5α− 5

2α
− 3

]
v2 + · · ·

= −1

4
v2 + · · · (3.27)

After translating s, if necessary, we get v = 4
s

+ · · ·. Since all solutions on the centre
manifold starting near the steady state converge to it and the non-zero eigenvalue is negative,
all solutions starting near the steady state converge to it. Moreover, by Theorem 2 on p. 4
of [14], any such solution is exponentially close to a solution on the centre manifold. Thus,
it has the same leading order asymptotics for v as a solution on the centre manifold and
the leading order asymptotics for u is obtained by substituting this into the equation of the
centre manifold. Substituting the asymptotic expression for v into the defining equation for

s gives τ = 1
8
s2 and v =

√
2
τ

+ · · ·. It follows that X = 5
ατ

+ · · · and Z =
√

2
τ

+ · · ·.
Next we compute the transformation from τ to t. We have dt

dτ
= 5

ατ
+ · · · and hence, up to a

translation of the time coordinate, t = 5
α

log τ + · · · and τ = e
αt
5 + · · ·. When written in the

original variables, these relations give x = α
5
e
αt
5 + · · ·, y =

√
2α
5
e
αt
10 + · · ·. �

Proposition 5 A positive solution of (3.2)-(3.3) with α > 0 and β = 0 belongs to one of the
following three classes.

i) It starts below the stable manifold of S1 and x and y converge to zero as t→∞.
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ii) It starts on the stable manifold of S1 and converges to S1 as t→∞.

iii) It starts above the stable manifold of S1 and x and y tend to infinity as t → ∞, with
the asymptotics given in Proposition 4.

In particular, every bounded solution converges to a steady state as t→∞.

Proof: This is obtained by combining Proposition 2 - Proposition 4. �
Note that because after transformation to the Poincaré compactification, each solution con-
verges to a steady state, there exist no periodic solutions. In other words, the system does
not exhibit sustained oscillations. The eigenvalues of the system's linearization about S0 are
real because the axes are invariant manifolds. The steady state S1 has been shown to be
hyperbolic with the linearization's eigenvalues about that point being real. Thus, damped
oscillations decaying to one of the steady states are also ruled out.

The Case with Photorespiration
In this section, we will consider the full system where α and β are both positive.

Proposition 6 Corresponding to positive initial data for (3.2)-(3.3) with α > 0 and β > 0
given at t = t0, there exists a solution on the interval (t0,∞) and it is bounded.

Proof: Taking a suitable linear combination of the equations gives d
dt

(5x+3y) = −βx2 +
αx − 3y. If x ≥ α/β, then the right-hand side is negative. If x ≤ α/β, then αx ≤ α2/β.
Thus if also y ≥ α2/3β the right hand side is negative. If a solution satisfies 5x + 3y >
β−1(5α + α2) at some point in time then it must be in one of the regions where the time
derivative of 5x+ 3y is negative. Thus, the value of 5x+ 3y is bounded by the maximum of
its initial value and β−1(5α+α2). It follows that all solutions of this system can be extended
to exist globally in the future and are bounded. �
Consider now steady states of (3.2)-(3.3):

Proposition 7 i) For α2/β < 32, the only non-negative steady state is the origin, which
we once again denote by S0.

ii) For α2/β = 32, there is precisely one positive steady state, which we call S1.

iii) For α2/β > 32, there are precisely two positive steady states. For one of these, which
we call S1, both coordinates are smaller than the corresponding coordinates of the
other steady state, which we call S2.

Proof: Any steady state satisfies αx = y2 + 2y so that its y-coordinate determines its
x-coordinate. In fact, the y-coordinate is a monotone function of the x-coordinate. At the
same time, βx2 = y2 − y. Squaring the first of these equations and substituting it into the
second gives

β(y2 + 2y)2 = α2(y2 − y) (3.28)

and hence,
y[βy3 + 4βy2 + (4β − α2)y + α2] = yp(y) = 0. (3.29)
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The positive steady states are in one to one correspondence with the positive roots of the
cubic p(y). Since p(0) > 0, there is at least one negative root and there are at most two
positive roots. If 4β−α2 ≥ 0, then there are no positive roots. Further information about the
number of positive roots can be obtained by looking at the discriminant of the polynomial
p. It is given by

∆ = α2β[96β2 − 131α2β + 4α4]. (3.30)

There are two positive values of α2/β for which ∆ vanishes, namely ζ± = 131±125
8

. We have
ζ− = 3

4
and ζ+ = 32. When ∆ < 0, the polynomial p has only one real root and it must

be negative. When ∆ ≥ 0, all roots are real. Only in this case can there be more than one
positive root. For α2/β = 32, there is a root that is at least double. If this root was negative,
then it would follow that 4β−α2 > 0, a contradiction. Thus, the double root is positive. For
α2/β > 32, there are two positive roots. �
Both of the nullclines of this system are of the form f(x) = g(y) for monotone increasing
functions f and g. Thus, we can write them as graphs of functions of x or functions of y.
Due to Proposition 7, we know that the two nullclines intersect at the origin and at no, one
or two points in the positive region, depending on the parameters. It can then be concluded
that when there are no, one and two positive steady states, the complement of the nullclines'
union has three, four and five connected components, respectively. As in the previous sec-
tion, these components can be labeled with the signs of ẋ and ẏ. In case (i) of Proposition
7, there is one component with each of the labels (−,−), (−,+) and (+,−). In case (ii),
there are two components with the label (−,−) and one component with each of the labels
(−,+) and (+,−). In case (iii) (cf. Figure 3.4), there are two components with the label

Figure 3.4: Nullclines (solid lines) and direction field (arrows) in the presence of photore-
spiration

(−,−) and one component with each of the labels (−,+), (+,−) (+,+). The components
of the complements of the set of steady states in the nullclines can be labeled as (−, 0),
(0,−), (+, 0) and (0,+). At a point where the nullclines cross, they are tangent if and only
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if the linearization at the point has a zero eigenvalue. This happens precisely when the de-
terminant of the linearization at that point is zero. This is the only way a steady state can
fail to be hyperbolic since the trace is negative rules out the possibility of a pair of complex
conjugate imaginary eigenvalues. With the information we already have about steady states,
it can be concluded that the determinant is zero precisely when:

q(y) = 4βy3 + 12βy2 + (8β − 2α2)y + α2 = 0. (3.31)

Now we take linear combinations of the equations p(y) = 0 and q(y) = 0 in order to obtain
simpler equations. The equation q(y) − 4p(y) = 0 is a quadratic equation for y. On the
other hand, q(y) − p(y) = yr(y) for a quadratic polynomial r so that non-zero solutions y
satisfy the quadratic equation r(y) = 0. The two quadratic equations can be combined to
give a linear equation for y and substituting this back into the equation r(y) = 0 leads to the
equation

9γ(−4γ2 + 131γ − 96) = 0 (3.32)

where γ = α2

β
. It follows that all steady states are hyperbolic when γ > 32. It can be con-

cluded that except in case (ii), the steady states are hyperbolic. In case (ii), the linearization
at S1 has one zero and one negative eigenvalue. In case (iii), it has one positive and one
negative eigenvalue.

Proposition 8 Any positive solution of (3.2)-(3.3) with α > 0 and β > 0 converges a steady
state as t→∞ according to the following scheme.

i) If α
2

β
< 32, there are no points S1 and S2 and all solutions converge to S0.

ii) If α2

β
= 32, there is no point S2 and points above or on and below the unique centre

manifold of S1 converge to S1 and S0 respectively.

iii) If α2

β
> 32, then points above, on or below the stable manifold of S1 converge to S2,

S1 and S0 respectively.

Proof: Note that the stable manifold of S1 is always one-dimensional. By the same argu-
ments as in the case of β = 0, it can be shown that this manifold is the graph of a function of
x and that it intersects both axes and that its complement is the union of two componentsH1

and H2. Components with the sign combination (−,−) have boundaries with the sign com-
binations (−, 0) and (0,−). Using the information on the signs of ẍ and ÿ shows that these
components are invariant. For instance, a solution which satisfies ẋ = 0 and ẏ < 0 at some
point satisfies ẍ < 0. Similarly, components with the sign combination (+,+) are invariant.
It can be shown as in the case of β = 0 that any solution which starts in a component with
one of the sign combinations (+,−) or (−,+) and does not converge to a steady state as
t→∞ must enter one of the components with the sign combination (−,−) or (+,+) after
a finite time. Once it enters a component of this type, it must stay there and converge to a
steady state as t→∞. Thus, every solution converges to a steady state as t→∞. It is then
straightforward to determine which steady state it converges to in different cases. �
Note that since every solution converges to a steady state, the system exhibits no sustained
oscillations. As in the previous section, we can argue that there are no damped oscillations
close to the point S0. Using Proposition 13 of Section 3.5, we get the corresponding con-
clusion for S1 and S2. Consider what happens if β tends to zero while α has a fixed positive
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value. The polynomial p defined in (3.29) converges. In the limit, there is a unique root,
which is S1. It is a hyperbolic saddle. Thus, it is the limit of a steady state of the system
in the general case as β → 0. The approximating solution must coincide with the point S1

in the general system. Let γ = α2

β
and define z = γ−1/2y and q(z) = p(y). If β tends to

zero while α has a fixed positive value, the polynomial q converges. Again there is a unique
positive root in the limit with z = 1. It is approximated by a root for positive β > 0, which
corresponds to the steady state S2. We conclude that as β tends to zero the coordinates of
S2 have the asymptotic behavior x = αβ−1 + · · · and y = αβ−

1
2 + · · ·.

The System with the Fifth Power
In this section, we will study the system where y2 is replaced in (3.2)-(3.3) by y5. This is

dx

dt
= −αx− 2βx2 + 3y5, (3.33)

dy

dt
= 2αx+ 3βx2 − 5y5 − y. (3.34)

The aim is to see to what extent the results obtained for (3.2)-(3.3) generalize to (3.33-(3.34).
In the case α = 0, the analysis of (3.2)-(3.3) extends without essential changes to (3.33)-
(3.34) to give the same qualitative results. When α > 0 and β = 0, the analysis up to and
including Proposition 3 extends easily. Of course, the explicit formulae in the definitions of
the invariant regions Gi are modified by replacing y2 by y5.

Proposition 9 A solution of (3.33)-(3.34) which is eventually contained in G4 has, after a
suitable translation of t, the asymptotics x = (4α

5
)
1
4 e

αt
5 + · · ·, y = 2

1
20

(
2α
5

) 1
4 e

αt
25 + · · · for

t→∞.

Proof: That the arguments from the case of (3.2)-(3.3) extend easily is also true of the first
part of the proof of Proposition 4, which shows that the late time behavior can be analyzed
in one of the charts of the Poincaré compactification. In this case, the time coordinate must
be rescaled in a different way from what was done previously. Let dτ

dt
= x4. In the case of

(3.33)-(3.34), the transformation to this chart gives

dX

dτ
= αX5 − 3XZ5, (3.35)

dZ

dτ
= 2αX4 + (α− 1)X4Z − 5Z5 − 3Z6. (3.36)

The linearization of the system at the origin is identically zero. To get more information, we
do a quasi-homogeneous blow-up. The exponents calculated using the Newton polygon are
(5, 4). Once again, there are two transformations to be done. The first of these is given by
the correspondence (X,Z) = (u5, u4v). We have

dX

dτ
= 5u4du

dτ
= αu25 − 3u25v5 (3.37)

and hence,
du

dτ
=

1

5
(αu21 − 3u21v5). (3.38)
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Furthermore,

dZ

dτ
= u4 dv

dτ
+ 4u3v

du

dτ
= 2αu20 − 5u20v5 + (α− 1)u24v − 3u24v6 (3.39)

and hence,

dv

dτ
= 2αu16 − 5u16v5 − (α− 1)u20v + 3u20v6 − 4

5
(αu20v − 3u20v6). (3.40)

If we now introduce a new time coordinate s satisfying ds
dτ

= u16, then the system becomes

du

ds
=

1

5
(αu5 − 3u5v5), (3.41)

dv

ds
= 2α− 5v2 + (α− 1)u4v − 3u4v6 − 4

5
(αu4v − 3u4v6). (3.42)

Just as in the case with the quadratic nonlinearity, we see that the solution must eventually
be contained in the chart defined by the second transformation, which is given by (X,Z) =
(uv5, v4). In that case

dZ

dτ
= 4v3 dv

dτ
= 2αu4v20 − 5v20 + (α− 1)u4v24 − 3v24. (3.43)

Hence,
dv

dτ
=

1

4

(
2αu4v17 − 5v17 + (α− 1)u4v21 − 3v21

)
. (3.44)

Furthermore,
dX

dτ
= v5du

dτ
+ 5uv4 dv

dτ
= αu5v25 − 3uv25 (3.45)

and hence,

du

dτ
= αu5v20 − 3uv20 − 5

4

(
2αu5v16 − 5uv16 + (α− 1)u5v20 − 3uv20

)
. (3.46)

In terms of the time coordinate s with ds
dτ

= v16, we get

du

ds
= αu5v4 − 3uv4 − 5

4

(
2αu5 − 5u+ (α− 1)u5v4 − 3uv4

)
, (3.47)

dv

ds
=

1

4

(
2αu4v − 5v + (α− 1)u4v5 − 3v5

)
. (3.48)

The axes are invariant and the origin is a hyperbolic saddle. There is a steady state at the
point (u0, 0) with u0 =

(
5

2α

) 1
4 . If we transform any solution in the blown-up Poincaré

compactification, it must converge to this point. To get more details, we translate the steady
state to the origin using a coordinate transformation. Let w = u − u0. Then the equations
become:

dw

ds
= −1

2
u0v

4 − 5

4

(
[2α(u0 + w)4 − 5](u0 + w)− α + 5

2α
u0v

4

)
+O(v4w), (3.49)
dv

ds
=

1

4

(
[2α(u0 + w)4 − 5]− α + 5

2α
v4

)
v +O(v5w). (3.50)
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Chapter 3 Hahn's Two-Dimensional Model

Here we have explicitly retained only those terms which are required for the calculation
which will now be done. It follows from the definition of the centre manifold that w = h(v)
for a function h with h(v) = O(v2). The derivative of this relation with respect to time
also holds. Hence, ẇ = h′(v)v̇. It follows from (3.50) that v̇ = O(v3) and so ẇ = O(v4). It
follows from (3.50) thatw = O(v4). Hence, v̇ = O(v5) and ẇ = O(v6). It can be concluded
from the evolution equation for w that

[2α(u0 + w)4 − 5]− α + 5

2α
v4 = −2

5
v4 + · · · . (3.51)

It follows that dv
ds

= − 1
10
v5 + · · ·. We see that the flow on the centre manifold is towards the

steady state. After translating s, if necessary, we get v =
(

5
2s

) 1
4 + · · ·. Substituting this into

the defining equation for s gives s = 5
1
5

(
5
2

) 4
5 τ

1
5 + · · · and v =

(
1
2τ

) 1
20 + · · ·. Substituting

for the original variables gives X = u0

(
1
2τ

) 1
4 + · · · and Z =

(
1
2τ

) 1
5 + · · ·. Next we compute

the transformation from τ to t. We have dt
dτ

=
(
u40
2τ

)
+ · · ·. Hence, t =

(
u40
2

)
log τ + · · · and

τ = e4αt/5 + · · ·. Finally, we get x = (4α
5

)
1
4 e

αt
5 and y = 2

1
20

(
2α
5

) 1
4 e

αt
25 . �

Proposition 10 Any positive solution of (3.33)-(3.34) with α > 0 and β = 0 belongs to one
of the following three classes.

i) It starts below the stable manifold of S1 and x and y converge to zero as t→∞.

ii) It starts on the stable manifold of S1 and converges to S1 as t→∞.

iii) It starts above the stable manifold of S1 and x and y tend to infinity as t → ∞, with
the asymptotics given in Proposition 9.

In particular, every bounded solution converges to a steady state as t→∞.

Proof: The proof is identical to that of Proposition 5 except that Proposition 4 is replaced
by Proposition 9. �
It is interesting to compare the asymptotics in Proposition 9 with those obtained in [85] for
a more elaborate model of the Calvin cycle. In Proposition 9, we see that both unknowns
have growing exponential asymptotics but that the exponent for GAP is one-fifth of that for
the other variable. The main system considered in [85] has five unknowns and has solutions
for which all unknowns have growing exponential asymptotics. In that case, the exponent
for GAP is one-fifth of that for the other four unknowns. These four unknowns satisfy a
system of the form dx̄

dt
= Ax̄+R, where R is considered as a remainder term and the larger

exponent is an eigenvalue of A. There is a natural analogue of this equation for the system
(3.33)-(3.34) with β = 0. It is the equation d

dt
(5x+ 3y) = α

5
(5x+ 3y)− 3

(
α
5

+ 1
)
y. Here

the last term is to be considered as the remainder. Note that in the asymptotics of Proposi-
tion 9, y is much smaller than x at late times so that this treatment as a remainder term is
reasonable. Since there is only one unknown growing at the maximal rate, in this case, the
matrix A is replaced by a number and that number is α/5. Thus we see that on a heuristic
level, the exponents in the two cases agree. The statement of Proposition 10 is stronger than
the analogous statement in [85] in the following sense. The description of the asymptotic
behavior in [85] is only obtained for some non-empty subset of initial data which is not
further characterized, while the set of initial data giving rise to this asymptotic behavior
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Chapter 3 Hahn's Two-Dimensional Model

in Proposition 10 is much more explicit. Consider next the case where the coefficients α
and β in (3.33)-(3.34) are both positive. The solutions are bounded using the same argu-
ment as in the proof of Proposition 6. As in the case of (3.2)-(3.3), the nullclines are of the
form f(x) = g(y) for monotone increasing functions f and g. A steady state satisfies the
equations

y =
1

3
(αx− βx2), (3.52)

x =
1

α
(y5 + 2y). (3.53)

Substituting the second of these equations into the first gives:

p(y) = βy10 + 4βy6 − α2y5 + 4βy2 + α2y = 0. (3.54)

By Descartes' rule of signs, this equation can have at most two positive solutions. Since
the derivative of the polynomial p at zero is positive, p(y) > 0 for y slightly larger than
zero. Thus, if p(y) < 0 for some y > 0, the polynomial has two positive roots. Now
p(2) = 1296β − 28α2. Thus, for fixed β if α is large enough, we have p(2) < 0 and p
has two positive roots. If we define values of x corresponding to these two values of y, we
obtain two positive steady states of the system (3.33)-(3.34). On the other hand, if β > α2,
there are no positive steady states. We have not succeeded in obtaining information about
the hyperbolicity of steady states of this system, which is as complete as the information
which we obtained in the case of a quadratic nonlinearity. However, it is possible to show
that for generic values of the parameter γ = α2

β
, all steady states are hyperbolic. We can

calculate polynomials p and q as in the case with quadratic nonlinearity, but it is impossible
to solve explicitly for their common roots y. Instead, we can proceed as follows. For any
non-hyperbolic steady state, we obtain equations of the form:

p(y) = p1(y)− γ(y − 1) = 0,

q(y) = q1(y)− γ(5γ4 − 1) = 0 (3.55)

for certain polynomials p1 and q1 which do not depend on γ. Hence,

s(y) = (5γ4 − 1)p1(y)− (y − 1)q1(y) = 0. (3.56)

Since the polynomial s is non-constant, this equation has only finitely many solutions y.
For any given solution y, there is at most one corresponding value of γ. Hence, for all but
finitely many values of γ, all steady states are hyperbolic. With the information on steady
states just obtained, we can prove an analog of Proposition 8 for the system with the fifth
power using the same techniques. The result is:

Proposition 11 Any positive solution of (3.33)-(3.34) with α > 0 and β > 0 converges to a
steady state as t→∞. If α

2

β
< 1, there are no points S1 and S2 and all solutions converge to

S0. If α
2

β
is large enough, then points above, on or below the stable manifold of S1 converge

to S2, S1 and S0 respectively.

By scaling the unknowns x and y by the same factor and t by another factor, it is possible to
transform the more general system:

dx

dt
= −αx− 2βx2 + 3Ay5, (3.57)

dy

dt
= 2αx+ 3βx2 − 5Ay5 −By. (3.58)
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for general positive constants A and B into the system (3.33)-(3.34). Thus, the results ob-
tained for (3.33)-(3.34) imply analogous results for (3.57)-(3.58). This observation will be
used in the next section.

Derivation from the Three-Dimensional System

The System (3.2)-(3.3) was derived by Hahn from a three-dimensional system but he did
not give a mathematical formulation of the relation between the two systems. The three-
dimensional system is, in a modified notation,

dx

dt
= −k1x− 2k2x

2 + 3k4z
5, (3.59)

dy

dt
= 2k1x+ 3k2x

2 − k3y, (3.60)

dz

dt
= k3y − 5k4z

5 − (k5 + k6)z. (3.61)

We now consider a limit where k3 becomes large. This means that the reaction producing
triose phosphate from PGA is very fast. Let k3 = ε−1k̃3 and introduce a new variable by
w = y + z. Then the equations above are equivalent to the system

dx

dt
= −k1x− 2k2x

2 + 3k4z
5, (3.62)

dw

dt
= 2k1x+ 3k2x

2 − 5k4z
5 − (k5 + k6)z, (3.63)

ε
dz

dt
= k̃3(w − z)− 5εk4z

5 − ε(k5 + k6)z. (3.64)

This is a fast-slow system in standard form with fast variable z and slow variables x and w.
The critical manifold is given by z = w and the slow system is

dx

dt
= −k1x− 2k2x

2 + 3k4w
5, (3.65)

dw

dt
= 2k1x+ 3k2x

2 − 5k4w
5 − (k5 + k6)w. (3.66)

Replacing w by y and setting k1 = α, k2 = β, k4 = A and k5 + k6 = B gives the System
(3.57)-(3.58). The critical manifold is normally hyperbolic and the one normal eigenvalue
is negative. We know that for certain values of the parameters the system (3.33)-(3.34)
has three steady states S0, S1 and S2. Moreover, for generic values of γ, the steady states
S0 and S2 are hyperbolic sinks while S1 is a hyperbolic saddle with a one-dimensional
stable manifold. There are heteroclinic orbits connecting S0 to S1 and S1 to S2. Putting
this together with the fact that the normal eigenvalue is negative, shows that for suitable
parameters with ε small, the three-dimensional system has three steady states S0, S1 and
S2, which converge to those with the corresponding names as ε = 0. Moreover, S0 and S2

are hyperbolic sinks and S1 is a hyperbolic saddle with a two-dimensional stable manifold.
Heteroclinic orbits are connecting S0 to S1 and S1 to S2.

53



Chapter 3 Hahn's Two-Dimensional Model

Nullcline Analysis
In this section, we will discuss how nullclines can be used to obtain information about the
global behavior of solutions of a two-dimensional dynamical system. Consider the following
system of ordinary differential equations

ẋ = f(x, y), (3.67)
ẏ = g(x, y), (3.68)

where the functions f and g are C1 and defined on an open subset U ⊂ R2. The nullclines
N1 and N2 are the zero sets of f and g respectively. Let G = U \ (N1 ∪ N2). The open set
G is a countable union of connected components Gi. In what follows, we will assert in this
case that the following assumption is satisfied.
Assumption 1 The complement of the nullclines has only finitely many connected com-
ponents.
When the system satisfies Assumption 1, it defines a directed graph as follows: There is one
node for each component Gi and there is a directed edge from the node corresponding to
Gi to that corresponding to Gj when there is a solution which starts from a point of Gi and
later entersGj without entering any component ofG other thanGi andGj at an intermediate
time. Let us call this the succession graph. A cycle in a directed graph is a finite sequence
of directed edges such that the initial node of each edge is the final node of the previous one
and the final node of the last edge is the initial node of the first one. We now assert in this
case that the following assumption is satisfied.
Assumption 2 There exist only finitely many steady states. Whenever a steady state Si is in
the closure of a component Gj , there is a continuous curve joining a point of Gj to Si which
does not intersect any other Gk.

Proposition 12 Consider a solution (x(t), y(t)) on a time interval [t0, t1) which lies in Gi

for some i when t = t0 and which lies entirely in Ḡi. Then x(t) and y(t) are monotone. They
are strictly monotone as long as the solution lies in Gi. Suppose that t1 is maximal. If the
solution is bounded then it converges to a point (x∗, y∗) for t→ t1 which is either a point of
N1 ∪N2 or a point of Ḡ \G. If (x∗, y∗) ∈ G, then (x∗, y∗) ∈ N1 ∩N2 if and only if t1 =∞.

Proof: On a component Gi, the signs of ẋ and ẏ are constant and this implies the mo-
notonicity statements. It follows that the limits of x(t) and y(t) as t → ∞ exist, either as
real numbers or as ±∞. If the solution is bounded, then these limits are real numbers x∗

and y∗. The point (x∗, y∗) belongs to the closure of G. Suppose now that t1 is maximal and
that (x∗, y∗) ∈ G. We claim that if t1 = ∞ then (x∗, y∗) is a point of N1 ∩ N2 and hence,
a steady state. Otherwise, at least one of ẋ or ẏ would tend to a non-zero value, say c, as
t → t1. Suppose w.l.o.g. that ẋ has this property and that c > 0. It follows that if t2 is
sufficiently large then ẋ(t) ≥ 1

2
ct for all t ≥ t2. Thus, x is unbounded, a contradiction. We

conclude that if the interval [t0, t1) is infinite (x∗, y∗) ∈ N1 ∩N2. Suppose now conversely
that (x∗, y∗) ∈ N1 ∩N2. If t1 were finite, it would be possible to extend the solution beyond
t = t1 but then this solution would have to coincide with the time-independent solution
x(t) = x∗, y(t) = y∗, a contradiction. Thus, if (x∗, y∗) ∈ N1 ∩ N2, the interval [t0, t1) is
infinite. �
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Proposition 13 Let Si be a steady state. Suppose that Assumption 2 is satisfied, there is
more than one component Gj having Si as a limit point and no cycle in the succession
graph. Then there is no damped oscillation converging to Si.

Proof: Suppose there is a solution exhibiting a damped oscillation. Due to Assumption 2,
it must intersect each Gj having Si as a limit point more than once. Hence, the succession
graph contains a cycle, a contradiction. �

In this chapter, we have obtained detailed information on minimal models of the Calvin
cycle introduced by Hahn in [44]. A rather complete analysis of Hahn's two-dimensional
models was given and the relation of the two-dimensional to the three-dimensional model
of Hahn was discussed. A comprehensive analysis of the three-dimensional model will be
covered in the next chapter. The models in [44] originated by formal simplification of earlier
models due to the same author. The first is a model with 19 chemical species defined in [45].
It did not implement a detailed description of photorespiration and a description of this kind
was added in the model of [46] with 33 species. It would be desirable to understand the
relations between these different models on a better mathematical footing in the future. This
should also allow conclusions about the dynamics of the higher-dimensional systems to be
obtained. Note that there are some general references in the literature about the inheritance
of dynamical features from reduced systems (see, e.g., [7], [26]).
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Hahn's Three-Dimensional Model

In [44], the author has considered a simple model which captures the main events in the Cal-
vin cycle from his perspective: carboxylation, reduction and regeneration. The author also
implemented a sink for triose phosphate TP and modeled photorespiration explicitly and not
indirectly through the increase of sink reaction flux (i.e., the export of triose phosphate). It
was shown in [59] that this approach is favored when validating and correcting many of the
models for photosynthesis. Among these models, some incorporate a relatively big number
of variables while aiming to simulate in detail the huge number of reactions taking place
in the main compartments of the plant leaf. Unfortunately, many of these models (i.e., [67],
[82], [80], [118]) made either kinetic mistakes, such as to compute the velocity of some
reaction or to recognize the true stoichiometric coefficients. Even some results are not re-
producible, perhaps due to technical limitations when these models were studied. This shifts
our attention to photosynthesis's simple modeling, which does not promise to produce plau-
sible kinetic parameters when solving the inverse problem. The best option is then to unravel
the complex possible but robust qualitative functioning of photosynthesis. This functioning
can be either one or many stable steady states or even periodic orbits. This motivates recon-
sidering a three-dimensional model of [44], whose reduced version was studied already in
Chapter 3. This system of reactions generates the differential equations in (3.59-3.61) by
using mass action kinetics. The goal in this chapter is then to mathematically unfold the
dynamics taking place in the three-dimensional model of Hahn in [44] and to investigate
the existence of sustained oscillations as the usual stepping stone toward investigating more
complex dynamics. Let's consider the same rescaled model of Hahn in [44]:

dx

dt
= −ax− 2bx2 + 3z5, (4.1)

dy

dt
= 2ax+ 3bx2 − y, (4.2)

dz

dt
= y − 5z5 − cz. (4.3)

where a = k1
k3

, b = k2

k
3
4
3 k

1
4
4

and c = k7
k3

. This model deviates from the one considered in Chap-

ter 3 (3.2-3.3) only in its dimension. The reduction of this model by setting the formation of
PGA to equilibrium (i.e., by setting dy

dt
= 0) regenerates (3.2-3.3). This increase in dimen-

sion enables more complex dynamics [96] [97] [95] and consequently a richer bifurcation
analysis.
The chapter is organized into four sections. In the first section, we categorize the non-
negative orthant in open sets which differ according to the signs of the components of the
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vector (ẋ, ẏ, ż). This enables concluding the feasible flows between these sets and finally
about positioning the periodic orbit. In the second section, an analysis of the number of equi-
libria possible for the model is conducted. This includes proving the global boundedness of
solutions starting in the non-negative orthant then the analysis is done by using the algebraic
properties like the resultant and the discriminant of the generated polynomials. Scaling of
the parameters unfolds the number of real solutions. In the third section, the oscillations in
the model are studied. A useful realization at this point is that the model satisfies the mono-
tonicity property in a set of relevance. Strong monotonicity has then strong implications for
the abstract location of the equilibria and the assumed periodic orbits. A generalization of
Bendixson Criterion for manifolds in R3 disqualify the hypothesis of sustained oscillations.
Turning photorespiration off in the fourth section by setting b = 0 causes solutions in an
unbounded open set to diverge toward infinity. The dynamics are then persistent (i.e., inde-
pendent of variations in the other parameters). Regarding oscillations, similar conclusions,
as in the case when b > 0, are proven. The unbounded flow toward infinity was studied in
the fifth section with a detailed computation of the species' rates of accumulation, which
might influence any future modeling of the Calvin cycle.

Characterization of Dynamics
We examine first the case when a = b = 0. One of the equations the system satisfy is
dy
dt

= −y and therefore y decays exponentially. Consequently, z converges to zero at later
time. Let us look at dz

dt
: dz
dt

= y− 5z5− cz, hence d(y+z)
dt

= −5z5− cz and then (y(t) + z(t))
converges to zero as t→∞ because of the negative term on the right-hand side and the fact
that all solutions do not leave the non-negative orthant R3

≥0 if they start there. Therefore,
y(t) and z(t) are both non-negative for all t ≥ 0 and then it follows from y(t) −−−→

t→∞
0 and

y(t) + z(t) −−−→
t→∞

0 that z(t) −−−→
t→∞

0. For z = 0 and y = 0, any (x0, 0, 0) ∈ R3
≥0 is a

steady state. Thus all points on the x-axis are steady states. Let's consider the Jacobian of
the system

Df(x) =

 −a− 4bx 0 15z4

2a+ 6bx −1 0
0 1 −25z4 − c


The linearization at any of the steady states (x0, 0, 0) generates a characteristic polynomial
with one zero eigenvalue due to the continuum of equilibria and two negative eigenvalues.
Just as in the case of two-dimensional model, any x0 is then indefinitely approached by
some solution x(t).
In the case when a = 0 and b > 0, the origin is again, as in the two-dimensional model, the
only equilibrium and its stability is implied by the Lyapunov function V (X) = 3

2
x+ y + z

whose V̇ (X) = −1
2
z5 − cz < 0 in intR3

≥0. In the case without photorespiration when

b = 0, the model admits a single positive stationary solution at C0 =
(

3
a
c

5
4 , 6c

5
4 , c

1
4

)
. The

characteristic polynomial evaluated at C0

λ3 + (1 + a+ 26c)λ2 + (a+ 26c+ 26ac)λ− 4ac = 0

One eigenvalue is positive and the other two are of non-positive real part. Moreover, they
are of non-vanishing negative real part because the existence of pure imaginary roots of the
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characteristic polynomial at C0 requires that (1 + a+ 26c)(a+ 26c+ 26ac)− (−4ac) = 0
which is not satisfied for any choice a, c > 0. This condition was proven later in Proposi-
tion 22, which is purely technical and independent of the context. The origin O is always
attracting with three negative real eigenvalues for b ≥ 0. Let

Ω :=
{
X ∈ R3

≥0 | (ẋ, ẏ, ż)��≤0, (ẋ, ẏ, ż)��≥0, ẋ 6= 0, ẏ 6= 0, ż 6= 0
}
, (4.4)

where ��≤ (respectively ��≥) means not less than or equal (not greater than or equal). Let us
define Π by:

Π :=
{
X ∈ R3

≥0 | (ẋ, ẏ, ż) ≥ 0 or (ẋ, ẏ, ż) ≤ 0
}

(4.5)

We will split Ω into six different sets according to the signs of velocities and so we will split
Π as well into two different sets. We define:

Ω1 = (+,+,−) =
{
X ∈ R3

≥0 | ẋ > 0, ẏ > 0, ż < 0
}

(4.6)

Ω2 = (−,+,−) =
{
X ∈ R3

≥0 | ẋ < 0, ẏ > 0, ż < 0
}

(4.7)

Ω3 = (−,+,+) =
{
X ∈ R3

≥0 | ẋ < 0, ẏ > 0, ż > 0
}

(4.8)

Ω4 = (−,−,+) =
{
X ∈ R3

≥0 | ẋ < 0, ẏ < 0, ż > 0
}

(4.9)

Ω5 = (+,−,+) =
{
X ∈ R3

≥0 | ẋ > 0, ẏ < 0, ż > 0
}

(4.10)

Ω6 = (+,−,−) =
{
X ∈ R3

≥0 | ẋ > 0, ẏ < 0, ż < 0
}

(4.11)

Π1 = (−,−,−) =
{
X ∈ R3

≥0 | ẋ < 0, ẏ < 0, ż < 0
}

(4.12)

Π2 = (+,+,+) =
{
X ∈ R3

≥0 | ẋ > 0, ẏ > 0, ż > 0
}

(4.13)

N1 =
{
X ∈ R3

≥0 | ẋ = 0
}

(4.14)

N2 =
{
X ∈ R3

≥0 | ẏ = 0
}

(4.15)

N3 =
{
X ∈ R3

≥0 | ż = 0
}

(4.16)
N1,2 = N1 ∩N2 (4.17)
N1,3 = N1 ∩N3 (4.18)
N2,3 = N2 ∩N3 (4.19)

Then

Ω =
6⋃
i=1

Ωi (4.20)

Π = Π1 ∪ Π2 (4.21)

The three nullclines are given by N1, N2 and N3 and the union of Ωi's and Πi's form the
complement of the union of the nullclines. We assert that both Assumptions 1 and 2 from
Chapter 3 are satisfied. These assumptions will be evidently satisfied in all the cases dis-
cussed later for Hahn's three-dimensional model. Any of the Ωi's and Πi's will be at most a
finite union of connected components.

Proposition 14 Π1 and Π2 are positively invariant and every solution starting in N1,2, N1,3

or N2,3 enters either Π1 or Π2 at a later time. Moreover, every solution starting at ∂Πj ∩
Ni, 1 ≤ j ≤ 2, 1 ≤ i ≤ 3 enters Πj, 1 ≤ j ≤ 2 immediately.
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Proof: Notice first that ∂Π1 and ∂Π2, the boundary sets of Π1 and Π2 respectively, are
subsets of

⋃
1≤i≤3

Ni. For a solution starting at t0 in Π2, we have:

(ẋ(t0), ẏ(t0), ż(t0))� (0, 0, 0)

We will consider the second and third time derivatives

ẍ = −aẋ− 4bxẋ+ 15z4ż

ÿ = 2aẋ+ 6bxẋ− ẏ (4.22)
z̈ = ẏ − 25z4ż − cż

...
x = −aẍ− 4bẋ2 − 4bxẍ+ 60z3ż2 + 15z4z̈
...
y = 2aẍ+ 6bẋ2 + 6bxẍ− ÿ (4.23)
...
z = ÿ − 100z3ż2 − 25z4z̈ − cz̈

Suppose at some t1 > t0, we have ẋ(t1) = ẏ(t1) = 0 and ż(t1) > 0. That is, the solution
lies on N1,2 ∩ ∂Π2 at t1. It follows then that ẍ(t1) = 15z4(t1)ż(t1) > 0, ÿ(t1) = 0,

...
y (t1) =

2aẍ(t1) + 6bxẍ(t1) > 0. Therefore, there exists t2 > t1 such that ẋ(t2), ẏ(t2), ż(t2) > 0
and the solution leaves N1,2 ∩ ∂Π2 and reenters Π2. In a similar fashion, let there exist
t1 > t0 > 0 such that ẋ(t1) = ż(t1) = 0 and ẏ(t1) > 0. It follows that ẍ(t1) = 0, ÿ(t1) =
−ẏ(t1) < 0, z̈(t1) = ẏ(t1) > 0,

...
x (t1) = 15z4(t1)z̈(t1) > 0.Therefore, there exists t2 > t1

such that ẋ(t2), ẏ(t2), ż(t2) > 0 and the solution leaves N1,3 ∩ ∂Π2 and reenters in Π2.
Let for t1, t1 > t0 > 0 the velocities ẏ(t1) = ż(t1) = 0 and ẋ(t1) > 0. It follows that
ÿ(t1) = 2aẋ(t1) + 6bx(t1)ẋ(t1) > 0, z̈(t1) = 0,

...
z (t1) = ÿ(t1) > 0 and therefore there

exists t2 > t1 such that ẋ(t2), ẏ(t2), ż(t2) > 0 and the solution leaves N2,3 ∩ ∂Π2 and
reenters in Π2.
In an analogous way, every solution which starts in ∂Π1 at some time t0 leaves Ni,j ∩
∂Π1, ∀i, j and reenters in Π1 at future time. It is proven here that every solution staring
at Π1 or Π2 maximally bounces on the intersection of nullclines and reenters Π1 and Π2

respectively.
Let us examine now the case when a solution starting at t0 in Π2 reaches exactly one of
the nullclines at t1 > t0. We let first ẋ(t1) = 0, ẏ(t1) > 0, ż(t1) > 0. The solution lies
on N1 ∩ ∂Π2. It follows from ẍ(t1) = 15z4(t1)ż(t1) > 0 that the solution immediately
reenters Π2 at t2 > t1. Now let ẋ(t1) > 0, ẏ(t1) = 0, ż(t1) > 0 at t1 > t0. ÿ(t1) =
2aẋ(t1) + 6bxẋ(t1) > 0 and the solution moves back from N2 ∩ ∂Π2 into Π2 immediately
at some t2 > t1. Similarly, if we let ẋ(t1) > 0, ẏ(t1) > 0, ż(t1) = 0 at t1 > t0 and
consider z̈(t1) = ẏ(t1) > 0, we reach then essentially the same conclusion that ż(t2) > 0
immediately for some t2 > t1 and the solution reenters into Π2 from N3 ∩ ∂Π2. �

Proposition 15 Assume that R3
≥0 is positively invariant for the flow of System (4.1-4.3) and

that solutions starting in R3
≥0 globally exist for all t ≥ 0. Then, a solution starting in int Ω

at time t0 belongs to one of the following three classes in future time:

i) It is a stationary solution.

ii) It changes two velocities' signs simultaneously entering through one of the nullclines
into either Π1 or Π2. Moreover, any solution starting in Π1 converges to an equili-
brium. The same conclusion holds for solutions starting in Π2 provided that Π2 is
bounded.
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iii) It changes one sign at a time according to the following scheme:

Ω6 Ω1 Ω2 Π1

Ω3Ω4Ω5Π2

Moreover, if a solution starts in some Ωi at t0 ≥ 0 and remains in it for all t ≥ t0, it must
eventually converge into a stationary solution. Otherwise, it must leave it in future finite
time even if it reentered it again later.

Proof: Suppose that a solution starts at t0 in Ω1 (i.e., signs of the differential equations are
(+,+,−)). Since the nullclines are not tangent, generically, one sign change will take place
each time (i.e., (+,+,−) changes to (−,+,−),(+,−,−) or (+,+,+)). Consider System
(4.22) and suppose that (+,+,−) changes to (−,+,−), then ∃t1 > t0 such that ẋ(t1) =
0 and therefore ẍ(t1) = 15z4(t1)ż(t1) < 0 and the change is valid. Now suppose that
(+,+,−) changes to (+,−,−), this requires similarly that at some time t1 > t0 , ẏ(t1) = 0.
However, ÿ(t1) = 2aẋ(t1) + 6bx(t1)ẋ(t1) > 0, thus the change is not valid. Similarly,
if (+,+,−) changes to (+,+,+) then at some time t1 > t0 we have ż(t1) = 0. Then
z̈(t1) = ẏ(t1) > 0 and the change is valid. For the non-generic case when (+,+,−) enters
into one of the Ni,j 's at some time t1 > t0, Proposition 14 shows that a solution starting at
some nullcline Ni,j enters Π2 if the third velocity is positive and Π1 if it is negative.
Suppose that a solution starts at Π2 at time t0. This solution may bounce on one of the
nullclines at a future time, but then it reenters Π2. Now suppose that a solution starts in Π2

at time t0. Suppose, in addition, that Π2 is bounded. Then Π2 is bounded and by Proposition
14, it is positively invariant. Hence, by the generalization of Proposition 12 for solutions in
R3, it must converge into a steady state, located at its boundary. A solution starting in Π1 has
negative velocities (ẋ, ẏ, ż)� (0, 0, 0). It is decreasing in the non-negative orthant R3

≥0 and
thus it is bounded from above. Hence, it is bounded since we assume that R3

≥0 is positively
invariant for the flow of the system. In addition to the assumption that solutions exist for all
t ≥ 0 and that Π1 is positively invariant (Propositon 14), it follows from the generalization
of Proposition 12 for solutions in R3 that it converges into a steady state, located at its
boundary. We prove now that all solutions remaining in some Ωi for all t ≥ t0 > 0 must
eventually converge into a steady state. Without loss of generality, we assume that a solution
starts in Ω2. That is, it has the velocities' signs (−,+,−). Assume that the solution is not
bounded as t → ∞. Unboundedness must be then in its y−component y(t) since both
x(t) and z(t) are decreasing and then they remain bounded in R3

≥0 as t → ∞. However
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ẏ(t) > 0 ⇔ 2ax(t) + 3bx(t)2 > y(t), which requires that x(t) → ∞ as t → ∞, which
contradicts the boundedness of x(t). Therefore, all solutions remaining in Ω2 for all t ≥ t0
must be bounded. In an analogous way, we can prove this property for a solution starting
in any of the Ωi 's and remaining there for all t ≥ t0. The boundedness of the solution
implies then by the generalization of Proposition 12 for solutions in R3 that it converges
into a steady state in Ω2. This implies, in addition, that all unbounded solutions starting in
some Ωi either interchange between the Ωi 's for all t ≥ 0 or they enter Π2 at some t0 > 0 if
it is unbounded. �

Proposition 16 Any non-empty connected component G of Π1 or Π2 has a steady state at
its boundary. Moreover, if G is bounded then G ⊆ [S1, S2] with S1 and S2 steady states at
the boundary of G.

Proof: Any connected component G of Π1 or Π2 has by its definition a steady state at
its boundary even if this steady state is not a limit point for solutions starting in it. We
prove now that G must lie either on the non-negative orthant or the non-positive orthant
of the orthonormal system centered at this steady state that we call S = (xS, yS, zS). This
is equivalent to say that every point of G is partially ordered with respect to S. Suppose
this is not true and let G ⊂ Π2. We can assume without loss of generality that a point
R = (xG, yG, zG) ∈ G has zG > zS . It suffices to consider the interior of G since any
solution bounces on one nullcline or on an intersection of two nullclines and reenters Π2

later as proven in Proposition 14. Then, R has the velocities' signs (+,+,+) which are
equivalent to the following inequalities:

3z5 > ax+ 2bx2

2ax+ 3bx2 > y (4.24)
y > 5z5 + cz

It follows that the following relations are valid: yG > 5z5
G + czG > 5z5

S + czS = yS , 2axG +
3bx2

G > yG > yS = 2axS + 3bx2
S . Hence, R > S, which contradicts our claim. Similarly,

we can show that for Π1. Therefore, any of these sets must lie either in the non-positive
orthant or in the non-negative orthant centered at its bounding steady state. Moreover, if G
is bounded, then it lies inside an interval [S1, S2] with S1 and S2 two steady states. We take
G as above and we assume without loss of generality that G ≥ S1 and that it is bounded.
For ε > 0 arbitrarily small, the set ∂(G \B(S1, ε)) ⊂ ∂(G \B(S1, ε)) ∩ (

⋃
1≤i<j≤3

Ni) and

no steady state S2 ∈ ∂(G \B(S1, ε)). Any X = (x, y, z) ∈ ∂(G \B(S1, ε)) is defined by
satisfying one of the inequalities in (4.24) since ∂(G \B(S1, ε))∩ (

⋂
1≤i<j≤3

Ni) = ∅. Since

G is bounded, the following values exist:

K3 := sup
{
z | (x, y, z) ∈ ∂(G \B(S1, ε))

}
K2 := sup

{
y | (x, y, z) ∈ ∂(G \B(S1, ε))

}
K1 := sup

{
x | (x, y, z) ∈ ∂(G \B(S1, ε))

}
The point (K1, K2, K3) must satisfy all the inequalities in (4.24). Otherwise, it is a steady
state at ∂(G \B(S1, ε)), which is assumed false. Then 5K5

3 +cK3 < K2 < 2aK1 +3bK2
1 <
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2aK1 + 4bK2
1 < 6K5

3 . However, there is a suitable small ε′ > 0 such that the inequality
5(K3 +ε′)5 + c(K3 +ε′) < K2 < 2aK1 +3bK2

1 < 2aK1 +4bK2
1 < 6(K3 +ε′)5 holds. This

contradicts the definition of K3. Hence, either G is unbounded, or it is bounded, but with a
steady state S2 at its upper boundary. � Note that it is not guaranteed that G ∩ R3

≥0 6= ∅.

Number of Positive Steady States
We will consider first the case with photorespiration (i.e., when b > 0). It is not obvious how
many positive stationary solutions System (4.1-4.3) allows. This is due to the fact that fifth
power is present in the system. Determining the number of positive stationary solutions is
essential here since it facilitates unfolding the dynamics taking place. In this respect, it is ex-
pected that the variation of parameters will lead to a different number of stationary solutions
and consequently different phase portraits. A direct outcome of assuming photorespiration
is the boundedness of all flows (solutions) through time. This is a very plausible scenario
since nothing in plant physiology resembles what could be interpreted mathematically as
unboundedness. We begin by stating a famous theorem of LaSalle.

Theorem 8 LaSalle's Lagrange Stability Theorem
Let Θ be a bounded neighborhood of the origin and let Θ{ be its complement. Assume that
V (X) is a scalar function with continuous first partials in Θ{ and satisfying:

i) V (X) > 0 for all x ∈ Θ{,

ii) V̇ (X) ≤ 0 for all x ∈ Θ{,

iii) V (X)→∞ as ‖x‖ → ∞.

Then each solution of Ẋ = f(X) is bounded for all t ≥ 0.

(see [69])

Proposition 17 Solutions of System (4.1-4.3) starting in the non-negative orthant globally
exist and remain there for all t ≥ 0. Moreover, (4.1-4.3) has all its solutions starting in the
non-negative orthant bounded.

Proof: Notice first that a solution starting at the origin O(0, 0, 0) stays at the origin for all
t ≥ 0, hence it cannot escape R3

≥0 through the origin. A solution of (4.1-4.3) might leave
the non-negative orthant R3

≥0 from one of the boundary planes. We consider the case when
it leaves through a boundary plane, but not through an axis. For instance, if it leaves R3

≥0

through the y − z plane, then there is some t0 ≥ 0 such that x(t0) = 0. It is enough then
to check ẋ(t0) = 3z(t0)5 > 0, which is however positive. Then any solution of (4.1-4.3)
cannot escape R3

≥0 through the y − z-plane. Now suppose that a solution escapes through
the x − y plane then there is some t0 ≥ 0 such that z(t0) = 0. However, it follows from
ż(t0) = y(t0) > 0 that z(t) the z component of the solution instantly increases and the
solution reenters the interior of R3

≥0. In an analogous way, a solution of (4.1-4.3) cannot
escape through the x− z plane.
A solution of (4.1-4.3) might also leave the non-negative orthant R3

≥0 through an axis.
Suppose that a solution escapes through the x− axis. There is a moment t0 > 0 such
that y(t0) = z(t0) = 0. Equations ẏ(t0) = 2ax(t0) + 3bx(t0)2 > 0, ż(t0) = 0 and
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z̈(t0) = ẏ(t0) > 0 show that the solution immediately leaves the x− axis toward the in-
terior of R3

≥0. Similarly, it might leave through the y− axis and then there exists t0 > 0 such
that x(t0) = z(t0) = 0. However, the following equations ẋ(t0) = 0, ż(t0) = y(t0) > 0 and
ẍ(t0) = 15z(t0)4ż(t0) > 0 show that it reenters again to the interior of R3

≥0. Analogously, a
solution of (4.1-4.3) cannot escape through the z− axis. Hence it remains in R3

≥0 for all t in
its maximal interval of existence.
We prove now that all solutions starting in R3

≥0 remain bounded for all finite time t. For in-
stance, if we consider the linear combination of variables 5x+3y+3z, it satisfies d(5x+3y+3z)

dt
≤

a(5x+ 3y+ 3z) and from that follows the existence of solutions in the non-negative orthant
for all t ≥ 0 since solutions does not leave it as seen before. This is equivalent to the global
existence of solutions for all t ≥ 0 for ordinary differential equations (see [48]). No blow-up
solutions will be present.
Consider the following Lyapunov-type function defined by V : R3

≥0 → R3
≥0, V (X) =

31
10
x+ 2y + 19

10
z. It has then the following time derivative:

V̇ (X) = (9a
10
− 2b

10
x)x− 1

5
z5− 19c

10
z− 1

10
y. V̇ (X) ≤ 0 for x ≥ 9a

2b
. Moreover, (9a

10
− 2b

10
x)x is

the only term in V̇ (X) which might make it positive since the other terms are non-positive
for z and y non-negative. (9a

10
− 2b

10
x)x ≥ 0 over the interval [0, 9a

2b
] and it admits its roots at

0 and 9a
2b

. Hence, its maximum is attained when its first derivative with respect to x vanishes
(i.e., at x = 9a

4b
with a maximum value 81a2

80b
).

Therefore, we have the following upper bound of V̇ (X) over the whole R3
≥0:

V̇ (X) ≤ 81a2

80b
− 1

5
z5 − 19c

10
z − 1

10
y

It follows then that V̇ (X) ≤ 0 whenever 81a2

80b
− 1

5
z5 − 19c

10
z − 1

10
y ≤ 0. If we now adopt the

same notation as in LaSalle's Theorem, we define the following set:

Θ{ =

{
(x, y, z) ∈ R3

≥0 | x ≥
9a

2b
, y ≥ 0, z ≥ 0

}
∪{

(x, y, z) ∈ R3
≥0 | x ≤

9a

2b
,
81a2

80b
≤ 1

5
z5 +

19c

10
z +

1

10
y

}
Θ{ defines then a complement of a neighborhood of the origin, where V (X) > 0 and
V̇ (X) ≤ 0. The third condition of the theorem is obvious. It follows then by LaSalle's
Theorem that all solutions of (4.1-4.3) starting in the non-negative orthant are bounded. �

Definition 4.2.1 Given two polynomials f(x) = anx
n + · · · + a1x + a0, g(x) = bmx

m +
· · ·+ b1x+ b0 ∈ C[x], their resultant relative to the variable x is a polynomial over the field
of coefficients C of f(x) and g(x) and is defined as:

Resx(f, g) := amn b
n
m

∏
i,j

(αi − βj),

where f(αi) = 0 for all 1 ≤ i ≤ n and g(βj) = 0 for all 1 ≤ j ≤ m.

Proposition 18 Number of solutions of Model (4.1-4.3) is equivalent to the number of so-
lutions of the polynomial: qq(z) = bz10 + 4bcz6 − a2z5 + 4bc2z2 + a2cz. That is, for every
z∗ ∈ R≥0 root of qq(z) there exists x∗, y∗ ∈ R≥0 such that (x∗, y∗, z∗) is a solution of
(4.1-4.3) and vice versa.
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Proof: A typical method for solving a system of polynomials is implemented by using the
repeated resultant to eliminate n−1 variables except xi from a system with n variables. The
result is a polynomial p(xi) ∈ K[xi]. For instance, given the following naming of differential
equations of System (4.1-4.3):

f := −ax− 2bx2 + 3z5

g := 2ax+ 3bx2 − y
h := y − 5z5 − cz

We start by eliminating the variable y by considering Resy(h, g) = 2ax+ 3bx2 − 5z5 − cz,
the resultant of the third and second polynomials with respect to the variable y. Then the
resultant of the first and the second Resy(f, g) = −ax− 2bx2 + 3z5. Obtained are now two
polynomials with respect to the remaining variables x and z:

Resy(h, g) = 2ax+ 3bx2 − 5z5 − cz
Resy(f, g) = −ax− 2bx2 + 3z5

In order to eliminate x, we will consider now Resx (Resy(h, g),Resy(f, g)).

Resx (Resy(h, g),Resy(f, g)) = b
[
bz10 + 4bcz6 − a2z5 + 4bc2z2 + a2cz

]
= b [qq(z)] (4.25)

We take advantage of the fact that the resultant of two polynomials is zero, if and only
if they have a common root in an algebraically closed field containing the coefficients to
generate a solution of the system of polynomials. Generally, these equivalences are proven
for polynomials considered existing in C[x, y, z] (i.e., while working over C). However, they
might hold for the polynomials when considered in R[x, y, z] depending on the geometry of
the polynomials (check [102] for a record of theorems concerning the number of real roots
of a polynomial). This is the case here, where if qq(z) admits a non-negative root z then
a non-negative common root x for Resy(h, g) and Resy(f, g) is implied and consequently,
a non-negative solution (x, y, z) for the whole system exists. The existence of such non-
negative x and y could be easily checked by using Descartes' Rule of Signs. Hence, the idea
is retracing the steps from a partial solution of a small system back to establish a solution
for the whole system. One can easily conclude from Definition 4.2.1 that a double root
z∗ of Resx (Resy(h, g),Resy(f, g)) generates (x∗, z∗) a multiple solution of the system of
polynomials of Resy(h, g) and Resy(f, g) and consequently a multiple solution (x∗, y∗, z∗)
of the whole system1 . This is shown in the following proposition: �

Proposition 19 Let F (X,Z, λ) =
n∑
i=1

fi(X,λ)Zi = 0 and G(X,Z, λ) =
m∑
j=1

gj(X,λ)Zj =

0 with F and G smooth enough. If ResZ(F,G) admits a double root at some X0, then the
system of polynomials {

F (X,Z, λ)

G(X,Z, λ)

admit a solution (X0, Z0) with at least one zero eigenvalue with respect to the linearization
of the system. The converse is true.

1 Notice that equivalence of roots of qq(z) and System (4.1-4.3) holds in C in general. However, for
non-negative roots it holds also in R≥0.
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Proof: As in Definition 4.2.1, the resultant of F and G with respect to Z and its first
derivative with respect to X are given by

ResZ(F,G) = fmn g
n
m

∏
i,j

(Zi
1 − Z

j
2)

dResZ(F,G)

dX
= mfm−1

n gnmf
′
n

∏
i,j

(Zi
1 − Z

j
2) + nfmn g

n−1
m g′n

∏
i,j

(Zi
1 − Z

j
2)

+fmn g
n
m

(∑
i0,j0

(
dZi0

1

dX
− dZj0

2

dX

) ∏
i 6=i0,j 6=j0

(Zi
1 − Z

j
2)

)

Where Z1 and Z2 denote the roots of F and G respectively. That is for each X0, Z1 is a

root of F and Z2 is a root of G. We denote by dZ
i0
1

dX
and dZ

j0
2

dX
the first derivatives of the

functions Z1 and Z2 at X0 if they are defined. If the resultant ResZ(F,G)|X0 = 0 at X0,
then Zi0

1 = Zj0
2 for some i0, j0, 0 ≤ i0 ≤ n, 0 ≤ j0 ≤ m. Considering an open bounded

interval of Z1 and Z2 near Zi0
1 and Zj0

2 respectively and assuming that dF
dZ
|
(X0,Z

i0
1 )
6= 0 and

dG
dZ
|
(X0,Z

j0
2 )
6= 0, the Implicit Function Theorem implies then that Z1 and Z2 are described as

functions of X locally with Z1(X0) = Zi0
1 and Z2(X0) = Zj0

2 . If we let dResZ(F,G)
dX

|X0 = 0,
we get the following identity: dZ1

dX
(X0) = dZ2

dX
(X0). Let us denote by Z0 the common root of

F and G at X0. Consider now the linearization of the system:{
F (X,Z, λ)

G(X,Z, λ)

at (X0, Z0) given by  ∂F
∂X

∂F
∂Z

∂G
∂X

∂G
∂Z


|(X0,Z0)

(4.26)

At the same time, we have the following identities for the implicit equations in the system

dF

dX
|(X0,Z0) =

(
∂F

∂X
+
∂F

∂Z1

dZ1

dX

)
|(X0,Z0) = 0 (4.27)

dG

dX
|(X0,Z0) =

(
∂G

∂X
+
∂G

∂Z2

dZ2

dX

)
|(X0,Z0) = 0 (4.28)

provided that Z = Z1 in F = 0 and Z = Z2 in G = 0. This is equivalent to differentiating
F and G along the roots functions Z1 and Z2 at the point (X0, Z0). We denote by dZ1

dX
|(X0,Z0)

the first derivative of both Z1 and Z2 at X0. The following equality holds: ∂F
∂X

∂F
∂Z

∂G
∂X

∂G
∂Z


|(X0,Z0)

 1

dZ1

dX


|(X0,Z0)

=

 0

0


which implies that the determinant of the matrix (4.26) is zero. Hence, at least one eigenva-
lue of the Jacobian is zero at (X0, Z0). Similarly, if we let dF

dZ
|(X0,Z0) = 0 and dG

dZ
|(X0,Z0) = 0,

the determinant is again zero.

65



Chapter 4 Hahn's Three-Dimensional Model

In order to prove the validity of the converse of the forward statement, we suppose that the
following matrix has a zero determinant at (X0, Z0): ∂F

∂X
∂F
∂Z

∂G
∂X

∂G
∂Z


|(X0,Z0)

(4.29)

It follows then that its rank is less than or equal to one. Let us suppose that the rank of the
above matrix is one. The other case is trivial. Without loss of generality let it be that the first
row is a multiple of the second row. That is,(

∂F
∂X

∂F
∂Z

)
|(X0,Z0)

= η
(

∂G
∂X

∂G
∂Z

)
|(X0,Z0)

(4.30)

If we now reconsider Equations (4.27) and (4.28), the derivatives of F and G along the
solutions functions Z1 and Z2 respectively, we can easily establish the equality dZ1

dX |(X0,Z0)
=

dZ2

dX |(X0,Z0)
, which turns dResZ(F,G)

dX |X0

to zero. �

Note that starting from a system of two polynomials, multiple solutions are transferred to
a three polynomial system, at least if the system keeps being determined. Equivalence bet-
ween the number of non-negative roots of qq(z) and System (4.1-4.3) could also be shown
using elementary steps. It was proven in [44] that a solution (x∗, y∗, z∗) of (4.1-4.3) is one
whose components satisfy the following equations:

ax∗ = 2y∗ − 9z∗
5

(4.31)
y∗ = 5z∗

5

+ cz∗ (4.32)
bx∗

2

= 6z∗
5 − y∗ (4.33)

We will assume that the first two identities hold and prove the third by regrouping the terms
of qq(z) in the following manner:

qq(z∗) = bz∗
10

+ 4bcz∗
6 − a2z∗

5

+ 4bc2z∗
2

+ a2cz∗ = 0

= (81bz∗
10 − 180bz∗

10

+ 100bz∗
10

) + 4bcz∗
6 − a2z∗

5

+ 4bc2z∗
2

+ a2(y∗ − 5z∗
5

) = 0

= 81bz∗
10 − 36bz∗

5

(5z∗
5

) + 4b(25z∗
10

) + 4bcz∗
6 − a2z∗

5

+ 4bc2z∗
2

+ a2y∗ − 5a2z∗
5

= 0

= 81bz∗
10 − 36bz∗

5

(y∗ − cz∗) + 4b(y∗
2 − c2z∗

2 − 10cz∗
6

) + 4bcz∗
6 − a2z∗

5

+4bc2z∗
2

+ a2y∗ − 5a2z∗
5

= 0

= 81bz∗
10 − 6a2z∗

5 − 36bz∗
5

y∗ + a2y∗ + 4by∗
2

= 0

= −9bz∗
5

(2y∗ − 9z∗
5

)− a2(6z∗
5 − y∗) + 2by∗(2y∗ − 9z∗

5

) = 0

= b(2y∗ − 9z∗
5

)2 − a2(6z∗
5 − y∗) = 0

=⇒ bx∗
2

= 6z∗
5 − y∗

as required.
According to Descartes' Rule of Signs, qq(z) has maximally two positive solutions counted
by multiplicity and a persistent solution for z = 0. The zero solution z∗ = 0 of qq(z)
is equivalent to the trivial solution (0, 0, 0) of System (4.1-4.3). We are investigating the
existence of positive roots of qq(z), hence we divide by z and consider instead of qq(z),
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which we will call q(z) := qq(z)
z

. The geometry of q(z) shows that lim
z→+∞

q(z) = +∞
and lim

z→−∞
q(z) = −∞. Moreover, it has maximally two positive solutions, hence there

exists an interval where the graph of q(z) resembles a convex curve. If q(z) might ever
admit two positive solutions for some choice of parameters, there is then, by the continuous
dependence of q(z) on z and its parameters, a parameters choice for which it admits a double
root. This double root is then attained for the values of parameters when the local minimum
of this convex section of the graph of q(z) touches the x-axis. To make the matter concrete,
we define the following function ξ and we call it ''depth '' function.

ξ : R3
≥0 → R≥0

(a, b, c)→ ξ(a, b, c)

ξ(a, b, c) is the orthogonal distance between the local minimum of the convex section of
graph of q(z) and the x-axis upon taking the parameters triplet (a, b, c). ξ(a, b, c) = 0 for
the choice of parameters (a, b, c) exactly when q(z) admits a double root.

Remark 2 Tschirnhaus Transformation
We will use next a transformation of the quintic polynomial in order to write it in its reduced
form. Reduced, Principal and Bring-Jerrard are the names of a quintic P (x) after the eli-
mination of {x4}, {x4, x3}, {x4, x3, x2} respectively. By the end of the seventeenth century,
Ehrenfried Walther von Tschirnhaus was able to eliminate the terms xn−1 and xn−2 from
any polynomial P (x) of order n by using a change of variables of the form y = x2 +αx+β
[109]. The progress he initiated was like a rain after a long drought in the solving of poly-
nomials. His ability to show this reduction awakened his desire to eliminate one more term,
namely xn−3, by means of cubic transformation instead of quadratic. However, we had to
wait until the end of the eighteenth century when E.S. Bring [11] (and independently G. B.
Jerrard [60], [61]) devised a general transformation which eliminates the mentioned terms
from any n-th degree polynomial. The Tschirnhaus Transformation used in the subsequent
context is based on the realization that the second term xn−1 of any n-th order polyomial
p(x) = xn + an−1x

n−1 + · · · + a1x + a0 could be easily removed by the simple change of
variable y = x+ an−1

n
and this will suffice. (see [47])

Proposition 20 If (4.1-4.3) has two positive solutions counted by multiplicity, then the fol-
lowing system has exactly one positive solution and no negative solution:


q(z) + ξ(a, b, c) = 0

d
dz

(q(z) + ξ(a, b, c)) = 0

(4.34)

Proof: By definition, the system admitting one positive solution, corresponds to the exis-
tence of a positive multiple root of q(z) and consequently to a repeated solution of (4.1-4.3)
whenever ξ(a, b, c) = 0 or to the existence of two simple positive roots of q(z) and conse-
quently to a two simple solutions of (4.1-4.3) whenever ξ(a, b, c) > 0. System (4.34) does
not assume negative solutions since otherwise q(z) would have two negative roots counting
multiplicity, which is not the case. Same conclusion could have also been drawn, had we
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considered the resultant Resz(q,
dq
dz

) = 0. Nevertheless, presenting the result in the written
scheme is very informative, as we will see soon. �
Substituting one polynomial into the other generates the following quintic:

q̃(z) = 16bcz5 − 5a2z4 + 32bc2z − 4bc2 + 9a2c+ 9ξ(a, b, c) = 0

Depending on the sign of the last coefficient, q̃(z) has either one negative root and ma-
ximally two positive roots or maximally three positive roots. A solution of System (4.34)
is essentially a root of q̃(z) but not vice versa. The goal is to unfold the case where q̃(z)
has no positive roots (i.e., to determine the parameters' domains where no positive roots of
q̃(z) exist implying that System (4.34) and consequently System (4.1-4.3) has no positive
solutions. We can test the equation with some kinds of transformation to realize which re-
lation between the parameters a, b and c is controlling the number of positive roots of q̃(z)
and then of q(z). Consider the deletion of the second term of q̃(z) using the Tschirnhaus
Transformation in Remark 2 defined by:

z̃ = z − a2

16bc

and generating the following reduced quintic:

˜̃q(z̃) = z̃5 − (
5a4

128b2c2
)z̃3 − (

5a6

1024b3c3
)z̃2 + (2c− 15a8

65536b4c4
)z̃ + (

9a2c+ 9ξ

16bc
+ 32bc2 − 4a5) = 0

(4.35)

In contrary to q̃(z), the reduced quintic ˜̃q(z̃) shows a power proportionality relation between
the parameters a, b and c which possibly control the number of positive roots it possesses.
For instance, if the last two coefficients of ˜̃q(z̃) are non-positive, it assumes then one positive
root, which is probably a solution of System (4.34). The second to last of the coefficients is
2c − 15a8

65536b4c4
≤ 0 ⇔ 131072b4c5 ≤ 15a8. That is, the parameters are compared according

to the following proportionality ratio a8

b4c5
. This leads to adopting the ansatz a2 = mbc

5
4 and

to test it with the resultant of q(z) and q′(z)

Resz(q, q
′) = −800000a24b5c3 + 58342275625a16b9c8 + 695784701952a8b13c13

(4.36)

Now we substitute the ansatz: a2 = mbc
5
4 . The resultant simplifies to :

Resz(q, q
′) = b17c18m4

[
−800000m8 + 58342275625m4 + 695784701952

]
(4.37)

The equation is then solvable for m with one positive solution m◦ and one negative solution
which is not of interest. For a2 = m◦bc

5
4 , where:

m◦ = 4

√(
143404379

64000

√
5
√

53 +
93347641

2560

)
(4.38)
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q(z) has a multiple root and consequently by Propositions 18 and 19, System (4.1-4.3) has
a single positive stationary solution. Notice that the discriminant of q(z) is given by:

Discz(q) =
Resz(q, q

′)

b

Hence Discz(q) and Resz(q, q
′) have the same sign.

Remark 3 Discriminant and Number of Real Roots of a Polynomial
Let P ∈ R[x] be a monic polynomial with real coefficients. P splits into a product of linear
factors over C so that P = (x − u1) · · · (x − un) for some ui ∈ C. Assume that the roots
u1, · · · , un of P are pointwise distinct and denote by r the number of real roots among
u1, · · · , un and by d the discriminant of P . It is a fact that n− r is divisible by 4 if and only
if d > 0. Suppose this is the case then the number of complex roots denoted by nc = n − r
is divisible by four. If we write nc = 4k for some non-negative integer k then k = n−r

4
.

However, most of the time r is not known, then k is controlled by the upper bound n
4

and by
0 as lower bound. For instance, if a cubic polynomial has a positive discriminant, then k ≤ 3

4

and k is then 0. That is, no pair of complex roots exists. The negation of the proposition i.e.
for d < 0 implies that n − r is not divisible by four. Hence n − r ≡ 2 (mod 4) i.e. there
exists a non-negative integer k such that n− r = 4k+ 2. Then k+ 1 designates the number
of pairs of complex roots and is controlled by the upper bound n−2

4
. (see [107])

Proposition 21 i) For m > m◦, System (4.1-4.3) has two simple positive stationary
solutions.

ii) For m = m◦, System (4.1-4.3) has one double positive stationary solution.

iii) For m < m◦, System (4.1-4.3) has no positive stationary solutions.

Proof: m > m◦ ⇒ Discz(q) < 0 hence the number of real roots is not divisible by four
(Remark 3). It is a fact in this case that there exists a non-negative integer k ≤ n−2

4
(n is

the degree of the polynomial) such that 2k + 1 pairs of complex roots exist. Consequently,
the number of real roots is n−4k−2. Therefore, k is bounded above by n−2

4
= deg(q(z))−2

4
=

9−2
4

= 7
4
. Hence, k is either zero or one. If k = 0 then q(z) assumes one pair of complex roots

and seven real roots. However, according to Descartes' Rule of Signs, q(z) has exactly one
negative root and allows maximally two positive roots making a sum of maximally three real
roots. We conclude that k 6= 0 and then k = 1. It follows that q(z) has three real roots, one
negative and two positive. All the roots are simple in this case since the resultant is negative.
For m = m◦, Resz(q, q

′) = 0 and then q(z) admits a double root which is essentially
positive because its negative root is persistent (i.e., independent of the choice of m). We
then extend this double root to a double solution of (4.1-4.3) as shown in Propositions 18
and 19. Finally, for m < m◦, Discz(q) > 0 and by (Remark 3) there is a non-negative
integer k, k ≤ n

4
= 9

4
such that 2k pairs of complex conjugate roots and n − 4k real roots

exist. k is to be chosen from the set {0, 1, 2}. Only k = 2 leads to a feasible scenario, in
which q(z) admits a unique real root, a negative root. Hence, q(z) has no positive roots and
(4.1-4.3) has no positive solutions. �
Knowing the number of stationary solutions of System (4.1-4.3) is not informative about
their nature. There are already known examples for systems that admit as many equilibria
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as System (4.1-4.3), though none of them is stable. Stability is an essential component of
dynamical systems in biology since otherwise, a dynamical system fails to resemble nature,
which is robust in its functions. We address this question by considering q(z) and substitu-
ting for a2 by mbc

5
4 and for z by µc

1
4 . The equation simplifies to:

q(µc
1
4 ) = bc

9
4

(
µ9 + 4µ5 −mµ4 + 4µ+m

)
= 0 (4.39)

A further simplification is required and will be done by substituting for m by kµ. It turns
out then that q(µc

1
4 ) is a quadratic polynomial:

q(µc
1
4 ) = bc

9
4µ
(
µ8 + (4− k)µ4 + (4 + k)

)
= 0 (4.40)

Substitute η = µ4, then

q(η
1
4 c

1
4 ) = bc

9
4µ
(
η2 + (4− k)η + (4 + k)

)
= 0 (4.41)

and its discriminant

Discη

(
q(η

1
4 c

1
4 )
)

= k(k − 12)

The characterization of the parameter m as a function of µ leads to different values of m.
That is, solving the system the way it is in (4.41) is in reality finding roots of q(z) for
generally two different values of the parameter m. We are obviously finding some and not
all of the roots µ's for different values of parameter m. To make the matter more concrete,
let's consider the following example: Consider, for instance, the case when k = 16, (4.41)
has two roots. The first root is µ1 = 4

√
10 whenm = 16 4

√
10 and the second root is µ2 = 4

√
2

when m = 16 4
√

2. We then complete the roots into stationary solutions of (4.1-4.3) in the
following manner: Substitute µi, i ∈ {1, 2} in z∗i = µic

1
4 then y∗i = 5z∗

5

i + cz∗i and x∗i =
2
a
y∗i − 9

a
z∗i . Considering the characteristic polynomial of (4.1-4.3) at both (x∗i , y

∗
i , z
∗
i ) , i ∈

{1, 2}. It admits three eigenvalues with negative real part at (x∗1, y
∗
1, z
∗
1) and two eigenvalues

of negative real part and one eigenvalue with positive real part at (x∗2, y
∗
2, z
∗
2). Hence, the

first is asymptotically stable, while the second is unstable. We conclude that there are some
values of m for which q(z) has two roots (m > m0), where at least one of them is stable
or unstable. Generally, this does not suffice to conclude that for m > m0, always one of
the roots is stable and the other is unstable because each of these roots might undergo a
bifurcation and changes its stability nature as m changes. Here, a plausible bifurcation is
that which does not induce a change in the number of positive stationary solutions since
a maximal number of two positive roots counting multiplicity was proven in Proposition
21. Hopf bifurcation is, for example, plausible here when one of the equilibria changes its
nature from stable to unstable or vice versa.

Proposition 22 Let P (z) := a0z
3 + a1z

2 + a2z + a3 with a0 6= 0 then P (z) admits pure
imaginary roots if and only if a2 6= 0, a0a3 − a1a2 = 0, sign a2 = sign a0. Moreover if
a3, a1 6= 0 then sign a3 = sign a1.
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Proof: Let ib and −ib, b ∈ R∗ be the two imaginary roots of P (z), it follows then:

P (ib) = −a0ib
3 − a1b

2 + a2ib+ a3 = 0

P (−ib) = a0ib
3 − a1b

2 − a2ib+ a3 = 0

In both cases, the assumption requires that:

a3 − a1b
2 = 0

b(a2 − a0b
2) = 0

Simultaneously, a3, a1 = 0 or a3, a1 6= 0. b(a2 − a0b
2) = 0 ⇒ a2 − a0b

2 = 0 ⇒ a2 6= 0.
Suppose a3, a1 6=, 0, it follows then that b2 = a3

a1
= a2

a0
and both > 0. Consequently,

sign a2 = sign a0, sign a3 = sign a1 and a0a3 − a1a2 = 0. Proving the other direction,
given that a2 6= 0, a0a3 − a1a2 = 0, sign a2 = sign a0. It follows that a3 = a1a2

a0
and

P (z) = a0z
3 + a1z

2 + a2z +
a1a2

a0

= (a0z + a1)

(
z2 +

a2

a0

)
and then −a1

a0
is one root and ±

√
−a2
a0

are the two other roots. The existence of pure imagi-

nary roots require then that a2 6= 0 and sign a2 = sign a0, which are given. It follows then
a1 = 0 ⇔ a3 = 0. Suppose now that a1, a3 6= 0 then from a0a3 − a1a2 = 0 follows the
relation a0

a2
= a1

a3
as a natural consequence and implies that sign a3 = sign a1. The proof is

complete. �

Proposition 23 Only fold-type bifurcation can occur in System (4.1-4.3).

Proof: Consider the characteristic polynomial of System (4.1-4.3) at some positive equi-
librium (x∗, y∗, z∗)

P (λ) = λ3 + (1 + a+ c+ 25z∗
4

+ 4bx∗︸ ︷︷ ︸
µ1

)λ2

+(a+ c+ 25z∗
4

+ 4bx∗︸ ︷︷ ︸
µ1

+ ac+ 25az∗
4

+ 100bx∗z∗
4

+ 4bcx∗︸ ︷︷ ︸
µ2

)λ

+(ac+ 25az∗
4

+ 100bx∗z∗
4

+ 4bcx∗︸ ︷︷ ︸
µ2

−(30az∗
4

+ 90bx∗z∗
4︸ ︷︷ ︸

µ3

))

The coefficients of the characteristic polynomial are now:

a0 = 1 a1 = 1 + µ1 a2 = µ1 + µ2 a3 = µ2 − µ3

Moreover, a0, a1, a2 > 0 because µ1, µ2, µ3 > 0. Only the last term a3 can be signed.
Suppose P (λ) admits pure imaginary roots at (x∗, y∗, z∗), it follows then by Proposition 22
that a3 > 0 and a0a3 − a1a2 = 0. However,

a0a3 − a1a2 =

∣∣∣∣a0 a1

a2 a3

∣∣∣∣ =

∣∣∣∣ 1 1 + µ1

µ1 + µ2 µ2 − µ3

∣∣∣∣ = µ2 − µ3 − µ1 − µ2
1 − µ2 − µ1µ2 < 0
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Figure 4.1: The bifurcation diagram of Hahn's model. Green plots represent stable steady
states, while red plots represent unstable steady states

Therefore, a stable equilibrium (x∗, y∗, z∗), for which the last coefficient a3 > 0 by Des-
cartes' Rule of Signs, can never change stability by a Hopf bifurcation because a Hopf
bifurcation occurs when the eigenvalues of the characteristic polynomial passes through the
imaginary axis to the other half-plane. For an unstable positive equilibrium (x∗, y∗, z∗), the
last coefficient a3 < 0. Therefore, the characteristic polynomial at this equilibrium cannot
admit pure imaginary roots by Proposition 22. We conclude that no Hopf bifurcation can
occur in System (4.1-4.3). In addition, no double zero eigenvalue can occur due to the po-
sitivity of a0, a1 and a2. The only plausible scenario is then when the last coefficient a3

vanishes. Here, we talk about simple fold bifurcation or cusp bifurcation (i.e., fold-type
bifurcation). �
In fact, we can already conclude from the existence of the two equilibria with different sta-
bility nature in the aforementioned example that fold bifurcation will occur. This is because
a simple stable positive equilibrium implies that the other existing positive equilibrium is
unstable and vice versa. Moreover, for some range of parameters, System (4.1-4.3) has no
positive equilibria, which shows that for some parameters' values the equilibria disappear.
Since only fold-type bifurcation can occur, then it will eventually occur, then the existing
equilibria blend and disappear. Therefore, we can already conclude from Proposition 23 and
a concrete example that System (4.1-4.3) experiences a fold-type bifurcation.

Proposition 24 Model (4.1-4.3) has the following spectrum of non-negative stationary so-
lutions for the ansatz representation a2 = mbc

5
4 :

i) m < m◦: O(0, 0, 0) asymptotically stable equilibrium.

ii) m = m◦: O asymptotically stable equilibrium and F > 0 fold equilibrium.
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iii) m > m◦: O,A and B such that O,B are asymptotically stable equilibria. A is an
unstable equilibrium. Moreover, O < A < B.

Proof: It is easy to check from the characteristic polynomial of (4.1-4.3) that O the origin
is always an asymptotically stable stationary solution. Model (4.1-4.3) admits a number of
positive stationary solutions, which coincides with the number of positive roots of q(z) as
the ratio of parameters m = a2

bc
5
4

varies. For m > m◦, (4.1-4.3) has two positive stationary
solutions, while for m < m◦ no positive stationary solution exists. It remains to explicitly
validate the conclusion that at m = m◦, there exists exactly one positive stationary solution
with exactly one zero eigenvalue. Consider the last coefficient in the characteristic polyno-
mial P (λ) at any equilibrium (x∗, y∗, z∗)

a3 = ac− 5az∗
4

+ 10bx∗z∗
4

+ 4bcx∗

= ac− 5az∗
4

+ 10b

(
1

a
z∗

5

+ 2
c

a
z∗
)
z∗

4

+ 4bc

(
1

a
z∗

5

+ 2
c

a
z∗
)

=
10b

a
z∗

9

+
24bc

a
z∗

5 − 5az∗
4

+
8bc2

a
z∗ + ac

=
1

a
(q(z∗) + z∗q′(z∗))

For m = m◦, a3 vanishes and then P (λ) admits zero root. The other roots have a negative
real part. Hence, for m = m◦, a fold equilibrium exists and then a fold-type bifurcation
occurs as m varies in the margin of m◦. The fold bifurcation is simple. That is, it is not a
cusp bifurcation. The latter implies the existence of hysteresis phenomenon, for which the
two stable equilibria alternatively meet with the unstable equilibrium at some parameters'
values and disappear, undergoing a fold bifurcation each time. This is excluded here since,
for all choices of positive parameters, O persists as an asymptotically stable equilibrium.
Notice that the nullclines set to zero generate the following functions of z

y = 5z5 + cz

x =
−a+

√
a2 + 24bz5

4b

which are obviously monotone with respect to z. Hence all equilibria are ordered following
the total order in R≥0. Specifically, we have O < A < B since all equilibira are connected
to each other by a one-dimensional manifold, which is the centre manifold for m = m0. �
At m◦ a fold equilibrium is born with one zero eigenvalue as seen in Figure 4.1. For
m > m◦, two stable equilibria exist and are shown in green and one unstable equilibrium
lies between them is shown in red. We will focus in the next sections on the case when pho-
torespiration is present and m > m◦. Later we study the case when photorespiration is set
to zero. The latter case analysis is independent of m and is characterized by the existence of
a single positive steady state, which is unstable and persistent.

Oscillations in the Model
Throughout the discussion, we denote by φt(x) the unique solution of ẋ = f(x), f ∈
C1(Ω),Ω ⊂ Rn in x at time t ∈ I(x), where I(x) = [0,∞[ is the maximal interval of
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existence of any solution starting in R3
≥0 for Hahn's three-dimensional model (Proposition

17). It is common to write φtx instead of φt(x) and this we follow here. The stable manifold
at some equilibrium S is a k−dimensional (with k ≤ n) invariant manifold with k corre-
sponding to the number of eigenvalues with a negative real part of the Jacobian matrix of
the system at point S. It is invariant with respect to the flow. For example, if we denote this
manifold by U then φt(U) ⊂ U, t ≥ 0. Moreover, it is tangent to the stable subspace usually
denoted by Es. The stable subspace of a steady state in Rn is the space spanned by the set of
eigenvectors corresponding to the eigenvalues with a negative real part of the linearization
at the steady state. Additionally, we define the set B(S) as the set of all points in Rn that
converge later in time toward the steady state S. We call this set the basin of attraction of
S. Naturally, we confine the definitions on the non-negative orthant of Rn. Analogously,
we might define the unstable manifold at some equilibrium S as the k′−dimensional (with
k′ ≤ n) invariant manifold with k′ corresponding to the number of eigenvalues with a posi-
tive real part of the Jacobian at S. It is tangent to the unstable subspace denoted by Eu.
We consider here Hahn's three-dimensional model for m > m0. As proven in Section 4.2,
three equilibria are present in this case: O, A and B. In addition to an eigenvalue of a
positive real part, the linearization at the steady stateA admits two eigenvalues with negative
real parts. Hence, A possesses a two-dimensional stable manifold W s(A). We define the
extension of W s(A) named W̃ s(A) as the intersection of all solutions starting within the
closure of basins of attraction of O and B. Explicitly, W̃ s(A) = B(O) ∩ B(B), where
B(B) (respectively B(O)) designates the subspace of all points in R3

≥0 that converge to B
(respectively to O) later in forward time. Besides solutions converging to A over W s(A),
solutions starting on W̃ s(A) are those not converging toA yet forming a geometric extension
to its stable manifold. For example, solutions converging to periodic orbits lying on the
boundary of W s(A). We assume for the moment that this equivalence between W̃ s(A) =
B(O) ∩ B(B) and the geometric extension of W s(A) does make sense. We will call it the
geometric extension of the stable manifold W s(A) of A, knowing that none of the next
propositions appearing before establishing this definition depends necessarily on it.
For m > m0, the complement of the nullclines for System (4.1-4.3) is the union of Ωs and
Πs. That is, the intersections of Ωi ∩ R3

≥0 6= ∅, 1 ≤ i ≤ 6 and Πi ∩ R3
≥0 6= ∅, i = 1, 2.

Proposition 25 i) A solution starting in Π1∩]O,A[ converges to O. A solution starting
in Π1∩]B,∞[ converges to B.

ii) A solution starting in Π2∩]A,B[ converges to B.

Proof: Notice first that for m > m0, Π1 is the union of two connected components:(
Π1∩]O,A[

)⋃(
Π1∩]A,B[

)
.

Notice also that O,A ∈ Π1

⋂
[O,A] and A,B ∈ Π2

⋂
[A,B]. Both conclusions are profited

from Proposition 16. By Proposition 14, a solution starting in Π1 is positively invariant.
Then, each of Π1∩]O,A[ and Π1∩]B,∞[ is positively invariant since they are disjoint sets.
Hence, a solution starting in Π1∩]O,A[ remains bounded as t → ∞ and has either all
velocities negative or immediately all of velocities will be negative at any time t0. Hence,
by the generalization of Proposition 12 for solutions in R3 and as t → ∞, all solutions
converge into a steady state at the boundary of Π1∩]O,A[. That is, solutions converge either
to A or to O. However, A is unstable while O is asymptotically stable. Hence, all solutions
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starting there converge into O.
Any solution starting in Π1∩]B,∞[ remains bounded because of its non-positive velocities'
signs and the positive invariance of Π1. It must then converge to B as t→∞.
Now suppose that a solution starts in Π2∩]A,B[ and notice that for m > m0 we have
Π2 ⊂ [A,B], a unique connected component of non-negative velocities' signs. Therefore,
Π2∩]A,B[ is positively invariant as proven in Proposition 14. Any solution starting there
other than A and B has all velocities either positive or immediately positive. Hence, any
solution converges to a limit point, which is a steady state at the boundary by the above
mentioned generalization of Proposition 12. It must then converge to the upper boundary of
Π2

⋂
]A,B[ namely to B. These sets are drawn in Figure 4.2. �

Corollary 8.1 A periodic orbit of (4.1-4.3) with m > m0 if it exists, it revolves over all the

Ωi's. Moreover, the two-dimensional stable manifold W s(A) of A belongs to Ω =
6⋃
i=1

Ωi.

Proposition 26 The stable manifold W s(A) (or rather its extension W̃ s(A)) intersects all
the axes and all the planes x− y, y − z and x− z in a bounded region.

Proof: Let x be bounded. A solution starting in W s(A) for x small enough, starts either in
Ω5 where the velocities have the following signs (+,−,+) or in Ω6 with the signs (+,−,−).
Without loss of generality, assume that a solution starts in W s(A) in Ω5. It follows sign ẏ

ẋ
=

−1 and sign ż
ẋ

= +1. That is both y and z can be locally written as functions h(x) and g(x)

respectively. Notice that dy
dx

= 2ax+3bx2−y
−ax−2bx2+3z5

and dz
dx

= y−5z5−cz
−ax−2bx2+3z5

. Any point in W s(A)
except for A is at a positive Euclidean distance from any of the nullclines. Therefore, the
denominator of both dy

dx
and dz

dx
is bounded away from zero. In reality, this denominator is

bounded by 2z5 for z large enough (i.e., |−ax− 2bx2| < |z5| for z large enough). Then as
x decreases over that side of W s(A), both y = h(x) and z = g(x) must intersect the y − z
plane. By analogy, it follows that W s(A) intersects the x − z plane and the x − y plane.
Hence it is bounded in R3

≥0. The result holds for any existing invariant two-dimensional
manifold belonging to Ω for the given model. In particular, it holds for W̃ s(A). �

Proposition 27 The directed graph Γ(A) of a matrix A ∈ Mn(R) is strongly connected if
and only if A is irreducible.

(see [58],[12]) We call a system ẋ = f(x) irreducible in an open set D ⊂ Rn whenever its
Jacobian matrix Df(x) is an irreducible matrix for all x ∈ D.

Proposition 28 Let ẋ = f(x) be cooperative and irreducible over a p-convex domain Ω ⊂
Rn then it generates a strongly monotone positive semi-flow in D when the latter is defined.

Consider the Jacobian matrix of System (4.1-4.3)

Df(x) =

 −a− 4bx 0 15z4

2a+ 6bx −1 0
0 1 −25z4 − c

 (4.42)

The matrix has all its non-diagonal entries positive for (x, y, z) ∈ Υ =
{

(x, y, z) ∈ R3
≥0 | z 6= 0

}
for both cases when b = 0 or when b > 0. The digraph of Df(x) over Υ with vertices 1, 2
and 3 corresponding to the vertices v1, v2 and v3 respectively:
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Figure 4.2: The equilibria are shown in the figure. In green, O designates the stable equi-
librium at (0, 0, 0) and B is another stable equilibrium. Drawn in yellow in between is the
unstable equilibrium A. In green is the set Π2, while in red are the two connected com-
ponents of Π1

1

2 3

+

-

+

-

+

-

Proposition 29 System (4.1-4.3) is strongly monotone over Υ = {(x, y, z) ∈ R≥0 | z 6= 0}.

Proof: We notice that ∂fi
∂xj
≥ 0, i 6= j, hence System (4.1-4.3) is cooperative. In addition,

the digraph of the Jacobian matrixDf(x) is strongly connected over Υ, it is then irreducible
over this set. Besides the fact that Υ is p-convex, it follows from Proposition 28 that System
(4.1-4.3) is strongly monotone over Υ. If we consider a point (x, y, 0) ∈ R3

≥0 then ż|(x,y,0)=
y ≥ 0. Therefore, for any solution starting at (x, y, 0) ∈ R3

≥0, the solution leaves this set and
enters Υ in a finite time. �
We can now recollect the definition W̃ s(A) = B(O) ∩ B(B) and check Theorem 3. After
establishing the fact that (4.1-4.3) is strongly monotone, which is stronger than the property
strongly order preserving, we state the fact that any point in intR3

≥0 can be approximated
from below and above. Knowing that any solution starting at the boundary ∂R3

≥0\{O} leaves
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it instantly toward the interior and knowing also that O itself is a stable steady state, we can
easily see based on the mentioned theorem that R3

≥0 = intQ ∪ intC. That is, the interiors
of quasiconvergent points and convergent points are dense in R3

≥0. The equilibrium A being
the unstable steady state with a two-dimensional unstable manifold splitting a dense subset
of B(B) from a dense subset of B(O) and whose stable manifold is nowhere dense in R3

≥0,
must lie eventually on the boundary of their closures. Therefore, W̃ s(A) is indeed the geo-
metric extension of W s(A) especially that the former describes by its definition a Lipschitz
two-dimensional manifold. This will be shown later. Notice that the set of quasiconvergent
points is the set of all points x ∈ R3

≥0, whose ω(x) contains more than one point. In general,
ω(x) is not simply lim

t→∞
φtx since it is not guaranteed that this limit exists. It might be the

case that for two different time sequences {tn}n and {t′n}n, lim
n→∞

φtnx 6= lim
n→∞

φt′nx. This is

not the case in Hahn's model. By the total order of the set of equilibria E = {O,A,B} with
O < A < B, it is true, based on Non-ordering of Limit Sets in Theorem 1, that Q = C.
Hence, in reality R3

≥0 = intC. Next, we illustrate this order of equilibria O < A < B,
which we have shown already in Proposition 24, by using trichotomy (Theorem 4).

Proposition 30 All equilibria of System (4.1-4.3) are partially ordered (i.e., O < A < B).

Proof: It is obvious that A > 0 and B > 0. Consider now the interval [O,B] and sup-
pose that A /∈ [O,B], it follows then by trichotomy (Theorem 4) that for all x ∈]O,B[,
either φtx −−−→

t→∞
O or φtx −−−→

t→∞
B. In both cases, one of the equilibria is unstable, which

contradicts the fact that both O and B are asymptotically stable. Hence, A ∈ [O,B]. �

Proposition 31 The following sets are positively invariant:

SAL :=
{
x ∈ R3

≥0 | x ≤ A
}

= [O,A] (4.43)

SAU =
{
x ∈ R3

≥0 | x ≥ A
}

= [A,∞[ (4.44)

SBL :=
{
x ∈ R3

≥0 | x ≤ B
}

= [O,B] (4.45)

SBU =
{
x ∈ R3

≥0 | x ≥ B
}

= [B,∞[ (4.46)

[A,B] = SAU ∩ SBL (4.47)

Moreover,

φtx −−−→
t→∞

O ∀x ∈ [O,A[

φtx −−−→
t→∞

B ∀x ∈]A,B]

φtx −−−→
t→∞

B ∀x ∈ [B,∞[

Proof: By dichotomy from Theorem 1, the results follow:

∀x ∈ SAL , x ≤ A =⇒ w(x) ≤ w(A) = A

∀x ∈ SAU , x ≥ A =⇒ w(x) ≥ w(A) = A

∀x ∈ SBL , x ≤ B =⇒ w(x) ≤ w(B) = B

∀x ∈ SBU , x ≥ B =⇒ w(x) ≥ w(B) = B
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Figure 4.3: The dynamics in the box with verticies O and A are well-known. All points
except A converge to O. Similarly, all solutions starting in the box with verticies A and B
converge to B except for A. All solutions starting in non-negative orthant centered at B
converge to B

This implies then that the mentioned sets are positively invariant. ∀x ∈ [O,A],��∃e ∈ [O,A]
such that e ∈ E. It follows then by trichotomy from Theorem 4 that at any x ∈]O,A[
either φtx −−−→

t→∞
O or φtx −−−→

t→∞
A. However, O is asymptotically stable whereas A is

unstable, hence φtx −−−→
t→∞

O, ∀x ∈]O,A[. By a similar argument, we conclude that ∀x ∈
]A,B[, φtx −−−→

t→∞
B.

The set [B,∞[ is positively invariant under the flow of System (4.1-4.3). Therefore, if we
translate B to the origin, it follows that B is the unique equilibrium in the non-negative
orthant R3

≥0 and by boundedness of orbits at any x ∈ R3
≥0 follows the asymptotic stability

of B in R3
≥0 (see Theorem 3.1 p.18 in [96]). The sets are illustrated in Figure 4.3. �

Proposition 32 Let Ψ := {x ∈ R≥0 | x��≤A, x��≥A} denoting the set of incomparable points
to A in R3

≥0. Suppose the model admits a periodic orbit P then P ∈ Ψ ∩ [0, B].

Proof: Suppose for some p ∈ P the inequality Xp = (xp, yp, zp) ≤ XA = (xA, yA, zA)
holds. By strong monotonicity, we have :

φt(Xp)� φt(XA) = XA, ∀t > t◦ =⇒ w(Xp) ≤ w(XA) = XA

Hence, all points of the periodic orbit P are less than A. Therefore, P ∈ [0, A], which is
false since [O,A[ belongs to the basin of attraction ofO. By a similar argument, we conclude
that Xp��≥XB = (xB, yB, zB) since [B,∞[ belongs to the basin of attraction of B.
Suppose now that ∀p ∈ P, Xp��≤B. That is, all points of the periodic orbit are incomparable
with B. However, P is a bounded set of points then ∃M ∈ [B,∞[ such that Xp < XM for
some p ∈ P . By dichotomy (Theorem 1) and the unidirectional flow in [B,∞[, we conclude:
ω(Xp) ≤ ω(XM) = XB a contradiction.
Therefore, ∀p ∈ P, Xp < XB. Now if we suppose Xp > XA for some p ∈ P , we get that
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Figure 4.4: The construction shows that the projection into the hyperplane H defines a
homeomorphism

P ∈ [A,B], whereas in [A,B] by trichotomy from Theorem 4, the solution at any x ∈]A,B]
converges to B (i.e., a contradiction). Therefore, P ∈ Ψ ∩ [O,B]. �

Definition 4.3.1 A set S is called balanced if no two distinct points of S are related.

We mimic here a proof by Morris Hirsch in [54].

Proposition 33 W s(A) (or rather its extension W̃ s(A)) is balanced.

Proof: Suppose two points of W s(A), X and Y are related by X < Y . Recall that W s(A)
lies on the boundary of the basin of attraction of the equilibrium B (i.e., W s(A) ⊂ ∂B(B)).
This is because of the density of convergent points in R3

≥0 as it is clear by Theorem 3 for
Hahn's model. Especially convergent points to O or B form a dense set in R3

≥0. Therefore,
there are sequences {xn}n and {yn}n, both in B(B), such that xn→X

n→∞
and yn→Y

n→∞
. For n

large enough, there is n◦ such that xn◦ < X0 < yn◦ for some X0 ∈ W s(A) such that
X ≤ X0 ≤ Y . For solutions starting at xn◦ , X0 and yn◦ respectively, we have φtxn◦ �
φtX0 � φtyn◦ for all t > 0, implied by strong monotonicity. However, φtxn◦→B

t→∞
and

φtyn◦→B
t→∞

and then φtX0→B
t→∞

, which is false since X0 ∈ W s(A). Therefore, no two points

on W s(A) are related. �

Proposition 34 W̃ s(A) defines a Lipschitz manifold in R3
≥0.
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Figure 4.5: The unstable equilibrium A possesses a two-dimensional stable manifold seen
in cayenne. Periodic orbits, if they exist, exist evenly on W̃ s(A)

Proof: We will use the unrelatedness of W̃ s(A) proved in Proposition 33 to show that it
is homeomorphic to a two-dimensional manifold. Moreover, the homeomorphism is Lip-
schitz. It follows from this that W̃ s(A) defines a two-dimensional Lipschitz manifold in
R3
≥0. Here, we mimic a construction by Hirsch [54] in a rather variant situation. Let us de-

note by PH : R3 → H the orthogonal projection into hyperplane H . That is, H ⊂ R3 is
the orthogonal hyperplane of some vector −→u > 0. We want to show that g = PH |W̃ s(A) is a
homeomorphism onto an open subset of H .
We prove first that g is a bijection. Evidently, g is a surjection from W̃ s(A) onto its image.
It suffices to show that g is injective. Suppose s, r ∈ W̃ s(A) with g(s) = g(r). By definition
of the projection, there exists α, β > 0 such that g(s) = s − α−→u and g(r) = r − β−→u . It
follows that s = r+(α−β)−→u . However,−→u > 0 and then it follows that s and r are ordered
to each other, which contradicts the balanced property proved in Proposition 33. Hence, g is
injective and then bijective.
We show now that the image of g is open. Suppose for instance that g(a) = b. Choose c� a
then PH(]a, c[) forms a neighborhood around b. This is shown for the two-dimensional case
in Figure 4.4. Now let y ∈ PH(]a, c[) and consider the line parallel to−→u through y and let us
denote it by Ly. This line meets ]a, c[ because of the way it is defined. The intersection of Ly
with B(B) has a greater lower bound w, which lies eventually on W̃ s(A). Hence y = g(w)
and then g(Nε(a)) = Nε′(b) and the map is open. Hence, g−1 is continuous. Additionally, g
is continuous by construction.
We conclude then that g is a homeomorphism. g has a Lipschitz constant 1 since it is just
the restriction of the orthogonal projection PH . We could also show that g−1 has a Lip-
schitz constant 1 + µ for some µ > 0 (see Proposition 2.6 in [54]). Hence g is a Lipschitz
homeomorphism. The conclusion follows. �
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Figure 4.6: The stable manifold of A with the possible periodic orbits seen from different
angle

Figure 4.7: The stable manifold of A does not intersect any of the neighboring boxes except
at A itself
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Proposition 35 There lies maximally an even number of periodic orbits counting multipli-
city on W̃ s(A) and the existence of a periodic orbit in W̃ s{(A) implies the existence of
another periodic orbit on W̃ s(A).

Proof: We refer to Theorem 4.1 in [52]. Under the assumption of cooperativity, no com-
pact limit set of a cooperative or competitive system can be an annulus of closed orbits.
Let Q+

A and Q−A represent respectively the non-negative and non-positive orthants cente-
red at A. Suppose that a periodic orbit γ exists above the extension W̃ s(A) \ W s(A), it
belongs to Ω̃ := Ω ∩ Q+{

A ∩ Q
−{

A . This is equivalent to saying: There exists p ∈ γ and
q ∈ W̃ s(A) such that q < p. By strong monotonicity follows that φtq � φtp, ∀t ≥ 0.
Because q ∈ W̃ s(A) \W s(A) and O(q) is bounded, ω(q) ∈ W̃ s(A) \W s(A). The gene-
ralized Poincaré-Bendixson Theorem can be applied. It's application for two-dimensional
manifolds is conditioned by the applicability of Jordan Curve Theorem (see [48], p. 182),
which is valid for the Lipschitz two-dimensional manifold W̃ s(A). The theorem guarantees
that an ω−limit set on a two-dimensional Lipschitz manifold is a periodic orbit, a homocli-
nic or heteroclinic connection of equilibria, or an equilibrium. By definition, no equilibria
are in W̃ s(A) \W s(A), then any ω(q) ∈ W̃ s(A) \W s(A) must be eventually a periodic or-
bit. Hence, ω(q) is a periodic orbit. If we call it ι, then ι� γ. Now choose any point x ∈ Ω̃
such that q � x � p with q ∈ ι and p ∈ γ. Then φtq � φtx � φtp for all t ≥ 0. Hence,
ω(x) is then either a periodic orbit since all equilibria are identified and E = {O,A,B}, or
ω(x) ∈ {ι, γ}. In the latter case, solutions spiral from either ι or γ toward the other periodic
orbit. Hence, there are two possibilities: Either a cylinder of periodic orbits or spiraling so-
lutions bounded from below by ι and from above by γ. The important consequence is that
in both cases, a periodic orbit ι ∈ W̃ s(A) is implied. Analogously, a periodic orbit existing
below W̃ s(A) implies the existence of periodic orbit above it in W̃ s(A).
That any periodic orbit of the model does not lie directly above or below W s(A) is clear by
the limit set dichotomy from Theorem 1. Let's look at this in a little more detail: Suppose
there is a periodic orbit γ disjoint from W s(A), roughly saying above W s(A) then: ∃p ∈ γ
and ∃q ∈ W s(A) such that q < p =⇒ A = ω(q) < ω(p) = γ and then implies that A
is comparable to every point in γ, which is false. Actually, no point in γ is comparable to
A (Proposition 32). This establishes that periodic orbits if they exist, are to be traced on an
extension of W s(A). There is a generalization of this feature in Theorem 6.1 in [103].
Suppose the existence of exactly one periodic orbit on W̃ s(A) and call it ι. ι revolves around
A over W s(A). ι splits the extension of W s(A) into two subsets: inner and outer. The inner
set is defined by W s(A) is the only set of initial data which converges to A in forward time.
The outer part is the intersection of closures of all basins of attraction of O, A and B. All
solutions starting in the outer part converge to ι at a later time and all solutions starting
in the inner part converges to A at a later time. Thus, ι is semi-stable over the extension
of W s(A). Hence one of its eigenvalues (Floquet multiplier) is exactly one. ι occurs then
for some parameters' values, when two periodic orbits undergo a saddle-node bifurcation.
Hence, two periodic orbits exist generically revolving around A. If we assume the exis-
tence of an odd number of periodic orbits, analogous to the case above, one of the periodic
orbits is semi-stable with respect to W̃ s(A). All existing subsequent periodic orbits must
have a periodic-to-periodic connection between each other since a direct connection to A is
impossible as the stable manifold W s(A) is two-dimensional. The proof is complete. �

Theorem 9 Busenberg and van den Driessche
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Let f : R3 7 −→ R3 be a Lipschitz vector field and let γ(t) be a closed piecewise C1 curve
bounding an orientable C1 surface S ⊂ R3 with unit normal vector ~n. If there is a vector
field g : R3 7 −→ R3, defined and C1 in a neighborhood of S such that:

i) g · f ≤ 0 (≥ 0) on γ,

ii) (curl g) · ~n ≥ 0 (≤ 0) on S,

iii) either g · f 6≡ 0 on γ or (curlg) · ~n 6≡ 0 on S,

then γ(t) is not a cycle of ẋ = f(x) traversed in the positive direction with respect to ~n.

(see [13])

Proposition 36 System (4.1-4.3) with m > m0 does not admit a periodic orbit.

Proof: Theorem 9 can be fairly applied to Lipschitz manifolds since the proof in [13] de-
pends on Stoke's Theorem, which applies eventually to Lipschitz manifolds. This is then a
direct generalization which follows from the fact the Lipschitz functions are almost ever-
ywhere differentiable. Consider W̃ s(A), which is a compact Lipschitz orientable manifold
(see Proposition 34) and suppose that W̃ s(A) has a normal vector ~n = (n1, n2, n3) with
negative and positive components simultaneously.
Without loss of generality, let n1 > 0, n2, n3 < 0. The vector ~τ = (n2 + n3,−n1,−n1) is
perpendicular to ~n:

~τ · ~n = (n2 + n3,−n1,−n1) · (n1, n2, n3) = 0

However, ~τ < 0 and ~τ ∈ Tp for some p ∈ W̃ s(A), where Tp denotes the tangent space of
W̃ s(A) at some point p ∈ W̃ s(A). Hence, ∃x, y ∈ W̃ s(A) such that x < y , which is false
because W̃ s(A) is balanced by Proposition 35. Therefore, depending on the orientation of
W̃ s(A), only positive or negative normal vector ~n of W̃ s(A) exists.
Introduce the function g : R3 7 −→ R3 defined by g(X) = f(X)× v(X), where :

v(X) =

 1
1
1


Assume that ~n > 0. The first condition of Busenberg's Theorem is evident as g · f ≡ 0.
Moreover,

curl g(X) =

 1 + c+ 15z4 + 25z4

3a+ c+ 10bx+ 25z4

2 + a+ 4bx


which implies that (curl g) · ~n > 0 on W̃ s(A) and thus no periodic orbit lies on W̃ s(A). In
Proposition 35, a periodic orbit of System (4.1-4.3) implies the existence of a periodic orbit
over W̃ s(A). Hence, the model admits no periodic orbit. Here ends the proof. �
Since the fact is interesting by itself, we prove here that the neighboring surface on which
the assumed periodic orbit γ lies is indeed C1 smooth hence fulfilling the exact require-
ments of Busenberg's theorem. A 3× 3 non-singular matrix satisfying the system φ′(t, x) =
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Df(x)φ(t, x) with Df(x) being the Jacobian matrix of Hahn's model is called a fundamen-
tal matrix solution of System (4.1-4.2) (see [79]). Since System (4.1-4.2) is autonomous,
this matrix is given by H(t, x) = exp(Df(x)t). This matrix characterizes the derivative of
the Poincaré map at a point x0 ∈ γ by the following identity ‖DP (x0)‖ = ‖H(T, x0)‖ with

T the period of γ and ‖·‖ denoting the determinant. We have ‖H(T, x0)‖ = exp(
3∑
i=1

λiT ) =

exp(Trace(Df(x0))T ) with λis the eigenvalues of Df(x0). However, Trace(Df(x)) <
0, ∀(x, y, z) ∈ R3

≥0. Hence, ‖DP (x0)‖ < 1 and then at least one of the characteristic multi-
pliers of γ(t) is less than one. This property guarantees that any periodic orbit γ of Hahn's
model possesses a two-dimensional C1 surface of solutions converging to it in forward time
(Theorem 11.2, p. 255 in [48], see also [94]).

Proposition 37 A solution of (4.1-4.3) with m > m0 belongs to one of the following:

i) It starts below W s(A) and converges then to O.

ii) It starts above W s(A) and converges then to B.

iii) It starts on W s(A) and converges then to A.

Proof: The result is an outcome of the combination of Propositions 31, 32 and 36. Soluti-
ons starting in ]O,A[ converge toO, while solutions starting in ]A,B[ and ]B,+∞[ converge
to B. A solution starting at x with x��≤B and x��≥B (i.e., at an incomparable point with B)
is bounded from above by some q ∈]B,+∞[. It follows then by strong monotonicity that
ω(x) ≤ B. Hence, at some time t1 > 0, the solution enters [O,B]. The solution will be
then above W̃ s(A) at some future time. All non-trivial limit sets1 above or below W̃ s(A),
including periodic orbits, are projected into non-trivial limit sets over W̃ s(A) as shown in
Proposition 35. W̃ s(A) is a two-dimensional Lipschitz manifold, on which the generalized
Poincaré-Bendixson Theorem can be applied since Jordan Curve Theorem is applicable on
W̃ s(A). The theorem guarantees that an ω−limit set of an orbit on W̃ s(A) is either (1) a pe-
riodic orbit, (2) a homoclinic or heteroclinic connection of equilibria or (3) an equilibrium.
There are no equilibria exceptA on W̃ s(A). Hence, heteroclinic connection is not an option.
Moreover, A is asymptotically stable on its stable manifold W s(A). Hence, no homoclinic
connection is possible. (1) is precluded in Proposition 36. Hence, the ω−limit set of any
solution on W̃ s(A) is eventually the equilibrium A. That is, W̃ s(A) = W s(A). It follows
that all solutions converge to equilibria. For solutions starting above W s(A), it must be then
that ω(x) = B. Similarly, for solutions starting below W s(A), they converge to O. �
In reality, Proposition 37 explains the meaning of Theorem 4. While the proof of Theorem
4 considers a general projection to a hyperplane perpendicular to a radial vector, the proof
of Proposition 37 considers a projection of non-trivial dynamics into W̃ s(A) by a radial
positive vector, a normal vector of W̃ s(A). This projection shows that non-trivial dynamics
are projected particularly into periodic orbits. Hence, non-trivial dynamics of a cooperative
system in R3 are equivalent to periodic orbits that do not form an annulus. This is the tenor
of Theorem 4. Its proof uses a very significant property of limit sets, namely Non-Ordering
of Limit sets mentioned in Theorem 1.
The dynamics in the case when m < m◦ are given by the next proposition.

1 we mean by non-trivial limit sets all limit sets that are not equilibria or connections of equilibria.
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Figure 4.8: The set of non-negative velocities Π2 is in green. The set of non-positive velo-
cities Π1 is in red. C0 is the unique positive equilibrium and it is unstable, whereas O is the
stable equilibrium at (0, 0, 0). The nullclines are apparent in the figure

Proposition 38 Let m < m◦ then System (4.1-4.3) admits a single steady state O(0, 0, 0)
in the non-negative orthant R3

≥0 and it is globally asymptotically stable.

Proof: It was already shown in Proposition 24 that for m < m◦, System (4.1-4.3) admits
a single steady state O(0, 0, 0), which is asymptotically stable. It follows by Theorem 2 that
O is globally asymptotically stable in R3

≥0. Then all solutions starting in R3
≥0 converge to O

later in forward time. �
Notice that form < m0, not all the Ωs or the Πs have a non-empty intersection with R3

≥0. At
least Π2 ∩R3

≥0 = ∅ since otherwise a solution starting in an arbitrarily small neighborhood
of O, leaves it at t > t0 for some t0 > 0. This is false since O is asymptotically stable.

The Model without Photorespiration

We will let b = 0 and a > 0. It is clear then that the complement of the union of the
nullclines has eight components denoted by Ωi, 1 ≤ i ≤ 6 and Πi, 1 ≤ i ≤ 2. Figure
4.8 shows the intersection of the nullclines N1,2, N1,3 and N2,3. While the Ωis, 1 ≤ i ≤ 6
lie in the complement of Πis, 1 ≤ i ≤ 2 and the nullclines; It was already shown by
Proposition 14 that a solution entering Π1 or Π2 never leaves it except to bounce on the
nullclines. In this section, we carry the definition of the extension of the unstable steady
state's two-dimensional stable manifold. Since the name of this steady state here is C0, we
call it W̃ s(C0). We abuse the notation as in [54] and we treat∞ as an equilibrium defining
the basin of attraction of∞ by the set of all solutions that diverge (notationally converge)
toward infinity later in time. This will be denoted by B(∞). W̃ s(C0) is then defined as the
intersection of all solutions starting within the closure of the basins of attraction of O and
∞. Explicitly W̃ s(C0) = B(O) ∩B(∞).
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For b = 0, the complement of the nullclines for System (4.1-4.3) is still the union of Ωs and
Πs. That is, the intersections of Ωi ∩ R3

≥0 6= ∅, 1 ≤ i ≤ 6 and Πi ∩ R3
≥0 6= ∅, i = 1, 2.

Proposition 39 R3
≥0 = intC for System (4.1-4.3) with b = 0. C is the set of convergent

points, possibly toward infinity. It is given by:

C :=
{
X = (x, y, z) ∈ R3

≥0 | ω(X) ∈ E = {O,C0,∞ = (∞,∞,∞)}
}
.

Proof: Let X0 ∈ intR3
≥0 \ intQ. Since the set of all convergent points C ⊂ Q, we have

O(X0) is bounded. By closedness of Q, there must be a sequence {Yn}n ∈ intR3
≥0 \ Q

such that Yn→X0
n→∞

. We assume that for every n, Yn can be approximated from below. Then,

for every n, Yn is the limit point of a sequence Xn
m → Yn with Xn

m < Xn
m+1 < Yn. Howe-

ver, O(Yn),∀n is bounded since Yn /∈ Q. Hence, O(Xn
m),∀m,n is bounded by dichotomy

(Theorem 1). By Sequential Limit Set Trichotomy (Theorem 4.1 in [96]), it follows that
ω(Xn

m) = U0 < ω(Yn), ∀m. That is, {Xn
m} ∈ C, ∀m, particularly ω(Xn

m) ∈ {O,C0}.
Hence Yn ∈ intC,∀n. Hence, X0 ∈ intC. Same argument holds if Yn is approximated
from above except that ω(Xn

m) might be equal to ∞. Solutions that start on ∂R3
≥0 except

for O, the persistent stable steady state, leave it immediately toward the interior of R3
≥0.

Therefore, it suffices considering X0 ∈ intR3
≥0 \ intQ. �

We conclude from Proposition 39 that W̃ s(C0) is a nowhere-dense set in R3
≥0. It extends

W s(C0) in R3
≥0 if it defines a two-dimensional sufficiently smooth manifold in R3

≥0. We will
show later this.

Proposition 40 i) A solution starting in Π1∩]O,C0[ converges to O.

ii) A solution starting in Π2∩]C0,∞[ diverges toward infinity.

Proof: Notice that for b = 0, each of Π1 and Π2 has a single connected component. Mo-
reover, Π1 ⊂ [O,C0] and Π2 ⊂ [C0,+∞[. Notice also that O,C0 ∈ Π1, profited from
Proposition 16. By Proposition 14, a solution starting in Π1 is positively invariant. Any so-
lution starting there remains bounded for all t ≥ 0 and it has negative velocities' signs.
Hence, by the generalization of Proposition 12 for solutions in R3 and as t → ∞, all solu-
tions converge into a steady state at the boundary of Π1. The solution must then converge
either to O or to C0. However, O is asymptotically stable while C0 is unstable. Hence it
converges to O as t→∞.
Now, consider a solution starting in Π2, which is positively invariant. Hence, this solution
does not leave it for all t0 > 0. Moreover, it has positive velocities' signs. It increases then
indefinitely and diverges toward infinity. If we suppose it converges to some limit point S,
which is then a steady state, it requires then that S � C0. However, no other steady state,
other than O and C0 is identified for System (4.1-4.3) when b = 0. Hence, it eventually
diverges. �

Proposition 41 The stable manifold of C0 (respectively its extension W̃ s(C0)) intersects
the planes x− y, y − z and x− z.
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Figure 4.9: The set of non-negative velocities Π2 is in green. The set of non-positive veloci-
ties Π1 is in red

Proof: Consider System (4.1-4.3) with b = 0. Let z be bounded and letW s(C0) be having
an unbounded branch in the x − y directions. A solution traveling this branch is in Ω3 or
in Ω4. In both cases, dz

dx
and dy

dx
are signed and thus bounded away from zero. It could then

be concluded that a solution on W s(C0) is locally described by y = h(x) and z = g(x).
Consider the derivative

d(y + z)

dx
=

2ax− 5z5 − cz
−ax+ 3z5

It has a growth rate equivalent to O(−2). This implies that x decreases whenever y incre-
ases since z is bounded. A contradiction to the assumption that W s(C0) has an unbounded
branch in x and y directions simultaneously. Now let x be bounded and suppose thatW s(C0)
has an unbounded branch near the y − z plane. The solutions belong then either to Ω5 with
(+,−,+) velocities' signs or to Ω6 with (+,−,−) velocities' signs. In both cases, dz

dx
and

dy
dx

are signed. Hence y and z can be locally written as functions h(x) and g(x) of x over
this branch. Both dz

dx
= y−5z5−cz
−ax+3z5

and dy
dx

= 2ax+3bx2−y
−ax+3z5

have the same denominator, which
is bounded away from zero since this branch must be at a positive Euclidean distance from
C0, the single intersection point of it with the different nullclines. Hence both h′(x) = dy

dx

and g′(x) = dz
dx

are bounded from above and then the solution given by the parametrization
(x(t), h(x), g(x)) must intersect the y − z plane in a finite time. This contradicts our ass-
umption. In an analogous way, no unbounded branch near the x−z plane can exist and then
W s(C0) or rather its extension are bounded in R3

≥0. �
Notice that writing two of the solution components in terms of the third is an outcome of
the Implicit Function Theorem.

Proposition 42 System (4.1-4.3) for b = 0 is strongly monotone over Υ = {(x, y, z) ∈ R≥0 | z 6= 0}.

Proof: We notice that ∂fi
∂xj
≥ 0, i 6= j, hence System (4.1-4.3) is cooperative. In addition,
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the digraph of the Jacobian matrix Df(x) is strongly connected over Υ and is then irreduci-
ble over this set. Besides the fact that Υ is p-convex, it follows from Proposition 28 that Sys-
tem (4.1-4.3) for b = 0 is strongly monotone over Υ. If we consider a point (x, y, 0) ∈ R3

≥0,
then ż|(x,y,0)= y ≥ 0. Therefore, for any solution starting at (x, y, 0) ∈ R3

≥0, the solution
leaves this set and enters Υ in a finite time. �

Proposition 43 The following sets are positively invariant

SC0
L :=

{
(x, y, z) ∈ R3

≥0 | (x, y, z) ≤ (xC0 , yC0 , zC0)
}

= [O,C0] (4.48)

SC0
U :=

{
(x, y, z) ∈ R3

≥0 | (x, y, z) ≥ (xC0 , yC0 , zC0)
}

= [C0,+∞[ (4.49)

Proof: ∀x ∈ [O,C0],��∃e ∈]O,C0[ such that e ∈ E (E is the set of equilibria). Therefore it
follows by trichotomy (Theorem 4) that any x ∈]O,C0[ either converges toO (i.e., φtx −−−→

t→∞
O or φtx −−−→

t→∞
C0). Since O is asymptotically stable in R3

≥0, it follows that φtx −−−→
t→∞

O. In any case, φtx ∈ [O,C0], ∀t ≥ 0 and then [O,C0] is positively invariant. Now if
x ∈]C0,+∞[ then x > C0 and by strong monotonicity φtx � φt(C0), ∀t ≥ 0 and then
[C0,+∞[ is positively invaraint. �
Let Q+

C0
and Q−C0

represent respectively the non-negative and non-positive orthants centered
at C0.

Proposition 44 A solution starting in
(
Q+
C0
∩ Π{2

)
\ {C0} diverges to infinity.

Proof: Clearly, Π2 ⊂ Q+
C0

(Proposition 16). Let p1 ∈
(
Q+
C0
∩ Π{2

)
\{C0}with coordinates

(x1, y1, z1). Points belonging to Π2 satisfy the following relation:
5

2a
z5 +

c

2a
z < x <

3

a
z5

5z5 + cz < y < 6z5.

Therefore, suitably changing z considered as our parameter, ∃p2, p3 ∈ Π2 satisfying

p2 < p1 < p3.

Consequently, due to strong monotonicity of the flow if φt0(pi) = pi i ∈ {1, 2, 3}, then:

φt(p2) < φt(p1) < φt(p3) ∀t > t0 (4.50)

Suppose φt(p1) remains in Q+
C0
∩Π{2 for infinity of time. Both φt(p2) and φt(p3) approaches

(∞,∞,∞) as t → ∞, which implies that φt(p1) → (∞,∞,∞) as t → ∞. Notice that
φt(p2)→∞ and φt(p3)→∞ as t→∞. Otherwise, if we assume they converge, we have
by strong monotonicity and positive invariance shown in the previous proposition that they
must converge into a steady state S � C0. However, no steady states other than O and C0

exist for the system. Hence, they diverge toward infinity.
We do not profit from this implication to know whether the solution enters Π2 at a later time.
It might be the case that a solution starting in Q+

C0
∩Π{2 keeps revolving around Π2 through

all the Ωi's without entering it in future time. However, if it does, it must then do it after a
finite time according to the same analysis done in Section 3.5 of the previous chapter. �

Corollary 9.1 A periodic orbit of (4.1-4.3), if it exists, lies in Ω and revolves through all
the Ωi's

Proposition 45 W s(C0) (respectively W̃ s(C0)) is balanced.
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Proof: Same analysis as in Proposition 33 holds here. The only difference here in com-
parison with Proposition 33 is that there are two sequences with {xn}n and {yn}n, both in
B(∞), such that they converge to X and Y respectively with X, Y ∈ W s(C0), X < Y .
Then ∃n0 ∈ N and X0 with X ≤ X0 ≤ Y such that xn0 < X0 < yn0 . Because of strong
monotonicity, φtxn0 � φtX0 � φtyn0 for all t ≥ t0. However, φtxn0 , φtyn0 → (∞,∞,∞)
as t → ∞ by Proposition 47. Hence, φtX0 → (∞,∞,∞) as t → ∞, which contradicts
the fact that X0 ∈ W s(C0). Notice that the extension W̃ s(C0) inherits this property from
W s(C0) by a similar argument. �

Proposition 46 W̃ s(C0) defines a Lipschitz manifold in R3
≥0.

Proof: The proof is identical to that done in Proposition 34 except that we substitute here
B(B) by B(∞). By abuse of notation, B(∞) defines the basin of attraction of∞. This is
the set of all solutions that diverge toward infinity in forward time. �

Proposition 47 A periodic orbit of (4.1-4.3), if it exists, implies the existence of a periodic
orbit in Ω̃ = Ω ∩Q+{

C0
∩Q−{

C0
over W̃ s(C0) and any periodic orbit switches between all the

Ωi's.

Proof: It is clear that W s(C0) ⊂ Ω̃ since almost all solutions starting outside Ω̃ either
converges to O or diverges to infinity. We present here a proof similar to that of Proposition
35. If we suppose there is a periodic orbit γ disjoint from W s(C0), roughly saying above
W s(C0), then: ∃p ∈ γ and ∃q ∈ W s(C0) such that q < p and φt(q) → XC0 as t → ∞.
It follows by strong monotonicity that ∃t0 > 0 such that φt(p) > XC0 for all t ≥ t0 (i.e.,
φt(p) /∈ Ω̃ for all t ≥ t0), but ω(p) = γ then γ ∈ Q+

C0
, which is a contradiction.

Now suppose that a periodic orbit γ exists above the extension W̃ s(C0)\W s(C0), it belongs
to Ω̃. This is equivalent to say: There is p ∈ γ and q ∈ W̃ s(C0) such that q < p. By strong
monotonicity, it follows that φtq � φtp, ∀t ≥ 0. Since q ∈ W̃ s(C0) \W s(C0) and O(q)
is bounded, it follows that ω(q) is a periodic orbit. If we call the periodic orbit ι, then
ι � γ. Now choose any point x ∈ Ω̃ such that q � x � p with q ∈ ι and p ∈ γ.
Then φtq � φtx � φtp for all t ≥ 0. Hence, ω(x) is then either a periodic orbit since all
equilibria are identified and E = {O,C0}, or ω(x) ∈ {ι, γ}. In the latter case, solutions
spiral from either ι or γ toward the other periodic orbit. Hence, there exists a cylinder of
either periodic orbits or of spiraling solutions bounded from below by ι and from above
by γ. The important consequence is that in both cases, a periodic orbit ι ∈ W̃ s(C0) is
implied. In an analogous way, a periodic orbit existing below W̃ s(C0) implies the existence
of periodic orbit above it in W̃ s(A). As in Proposition 35, the dynamics over W̃ s(C0) allows
exclusively the existence of an even number of periodic orbits. �

Proposition 48 There lies an even number of Periodic orbits over W̃ s(C0) counting multi-
plicity.

Proof: Same analysis as in Proposition 35 holds here. We see the dynamics in Figures
4.10 and 4.11. �

Proposition 49 No periodic orbit exists for (4.1-4.3) with b = 0.
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Figure 4.10: For b = 0, C0 possesses a two-dimensional stable manifold which lies in the
complement of the negative and positive orthants centered at C0. There is the possibility of
existence of an even number of periodic orbits over this stable manifold

Figure 4.11: The possible periodic orbits over the stable manifold ofC0 seen from a different
angle. The dynamics should flow from outside to inside
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Proof: The conclusion is just an outcome of the previous Propositions 47, 45, 48 together
with Proposition 36. Consider the proof of Proposition 36 and substitute b = 0. The same
conclusions holds. �

Proposition 50 A solution of (4.1-4.3) with b = 0 belongs to one of the following:

i) It converges to C0.

ii) It converges to O.

iii) It diverges to infinity.

Proof: There are no non-trivial limit sets for System (4.1-4.3) except periodic orbits (Theo-
rem 4). Periodic orbits above W̃ s(C0), if they exist, are projected into periodic orbits on
W̃ s(C0) as shown in Proposition 47. W̃ s(C0) is a two-dimensional Lipschitz manifold, on
which the generalized Poincaré-Bendixson Theorem can be applied (see [48], p. 182). Then
an ω−limit set on W̃ s(C0) is a periodic orbit, a heteroclinic or a homoclinic connection, or
an equilibrium. No heteroclinic connection exists over W̃ s(C0) since a single equilibrium
is there, namely C0. C0 is asymptotically stable on W̃ s(C0) and then there is no homoclinic
orbit connecting it to itself. This orbit is the intersection of the stable and unstable mani-
folds of an equilibrium and since C0 is just stable over the extension of its stable manifold,
there is no such an orbit then. The existence of periodic orbits was precluded in Proposition
49. Hence, an ω−limit set on W̃ s(C0) is C0. It follows that W̃ s(C0) = W s(C0). There are
then no non-trivial limit sets in B(∞) or B(O). That is, a solution starting above W s(C0)
is eventually in B(∞) and it diverges toward infinity and a solution starting below W s(C0),
converges to O. �

Notice that solutions diverging to infinity either start from
6⋃
i=1

Ωi or from Π2. It is, however,

not known whether solutions starting in
6⋃
i=1

Ωi do enter Π2 at a later time.

The Behavior near Infinity
Proposition 51 x, y and z of a solution of (4.1-4.3) with b = 0 starting in Π2 diverges
toward infinity with the following bounded limits:

5

2a
≤ lim inf

t→∞

x(t)

z(t)5
≤ lim sup

t→∞

x(t)

z(t)5
≤ 3

a

5 ≤ lim inf
t→∞

y(t)

z(t)5
≤ lim sup

t→∞

y(t)

z(t)5
≤ 6

5

3
a ≤ lim inf

t→∞

y(t)

x(t)
≤ lim sup

t→∞

y(t)

x(t)
≤ 2a.

Proof: We notice first that x, y and z of a solution might grow toward infinity either with
strictly positive velocities or with velocities unrelated to (0, 0, 0), interchanging signs upon
entering and leaving the Ωi's. Proposition 15 tells that a solution starting in any of the Ωi's
must leave it in a future finite time if it does not converge into a steady state. It either
enters the next Ωi according to the scheme in the mentioned proposition, or it might enter
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Π2. Certainly, there will be a solution starting in Ω, which diverges later toward infinity by
Proposition 50. Though, it is not known if this solution enters Π2 later or if it remains in
the Ω's. Therefore, we restrict the claim for solutions starting in Π2. Knowing that Π2 is
positively invariant as proven in Proposition 14, it suffices to consider solutions in Π2. A
solution starting in Π2 has the velocities' signs (ẋ(t), ẏ(t), ż(t))� (0, 0, 0). This inequality
generates the following inequalities:

5z5 + cz < 2ax < 6z5 (4.51)
5z5 + cz < y < 6z5 (4.52)
5

3
ax < y < 2ax (4.53)

A solution starting in Π2 is monotone increasing hence if it does not converge toward in-
finity, it must eventually converge into a steady state S ∈ Π2 with S � C0. However, no
steady states other than O and C0 exist for the system. Hence, it diverges toward infinity.
The solution is bounded away from the boundaries of R3

≥0 and we can safely divide by z(t)
in the Inequalities (4.51), (4.52) and by x(t) in the Inequality (4.53). We obtain the result
upon taking the limits for t→∞. �
Hence, if we consider the Poincaré compactification (x, y, z) → (X = 1

x
, Y = y

x
, Z = z

x
),

a flow diverging to infinity is mapped to a flow entering a neighborhood of some (0, K0 >
0, 0). That is, it is far from a neighborhood near the z−axis. If we consider this compactifi-
cation and let dτ

dt
= x4, then:

dX

dτ
= aX5 − 3Z5X (4.54)

dY

dτ
= 2aX4 − Y X4 + aY X4 − 3Z5Y (4.55)

dZ

dτ
= Y X4 − 5Z5 − 3Z6 + aZX4 − cZX4 (4.56)

The linearization at a point (0, K0, 0) is a zero matrix. Therefore, it is again necessary to
blow up to get more information about the flow near this point. We will again use the New-
ton polygon scheme in order to desingularize this point (see [100], [101]), Knowing that
a degenerate singularity of a smooth two-dimensional vector field is desingularizable after
a finite number of 'blowing ups' (i.e., trasnformations that include those directional trans-
formations carried out in the Newton polygon scheme (see [20])). Then, we are aware that
Newton polygon is used usually for two polynomials of two variables corresponding to the
right-hand sides in the above equations. Therefore, we will use this method with each two
polynomials while considering the third variable as a parameter. The computed transforma-
tion does not involve then the third variable. The fact is that the only plausible transformation
upon considering the right-hand sides of dX

dτ
and dY

dτ
is (X, Y )→ (u, v). That is, it changes

nothing. Let us consider the Newton polygons of transformations right-hand sides of dX
dτ

and
dZ
dτ

and then of dY
dτ

and dZ
dτ

. The following transformations are computed:

(X, Y, Z)→ (u, v, w) (4.57)
(X, Y, Z)→ (uw5, v, w4) (4.58)
(X, Y, Z)→ (u5, v, u4w) (4.59)
(X, Y, Z)→ (u, vw,w2) (4.60)
(X, Y, Z)→ (u, v, v2w) (4.61)
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(4.57) changes nothing. Upon applying the transformations (4.60) and (4.61) and conside-
ring the linearization at the images of (0, K0, 0) due to each mapping, we notice that the
relevant point is not desingularized, but it possesses a zero matrix linearization. It remains
then to consider the transformations (4.58) and (4.59), for which the linearization at the
relevant point reveals a negative eigenvalue and two zero eigenvalues in both. A further
computation shows then that both transformations lead essentially to the same result. The-
refore, we will consider only (4.58): (X, Y, Z)→ (uw5, v, w4) and we let ds

dτ
= w16.

du

ds
=

25

4
u+

3

4
uw4 − 5

4
u5v − 1

4
au5w4 +

5

4
cu5w4 (4.62)

dv

ds
= 2au4w4 − u4w4v − 3w4v + au4w4v (4.63)

dw

ds
=

1

4
u4wv − 3

4
w5 − 5

4
w +

1

4
au4w5 − 1

4
cu4w5 (4.64)

Notice that in this case u = X

Z
5
4

= x
1
4

z
5
4

, v = Y = y
x

and w = Z
1
4 = z

1
4

x
1
4

. The dynamics
near infinity are then tracked in a neighborhood near some (u0, v0, 0) (i.e., for w = 0). Let
w = 0. The system is then

du

ds
=

25

4
u− 5

4
u5v (4.65)

dv

ds
= 0 (4.66)

dw

ds
= 0 (4.67)

and there exists then a continuum of equilibria described by the curve v = 5
u4

on the u − v
plane. The linearization at any point is then:

J |(u,v= 5
u4
,0) =

 −25 0 0
0 0 0
0 0 0


with a zero eigenvalue corresponding to the continuum itself and another zero eigenvalue.
Hence, the centre manifold, whose existence is evident due to the Centre Manifold Theorem,
is two-dimensional. In order to compute the centre manifold, we transform an arbitrary point
(u0, y0 = 5

u40
, 0) to zero and we calculate the time derivative. LetU := u−u0 then U̇ = u̇−u̇0

and let V := v−v0 then V̇ = v̇− v̇0. Recall that u4
0v0 = 5 and therefore, u̇0 = 5

1
4

4v
5
4
0

v̇0, where

v̇0 = v̇|(u0,v0,w).The triplet (U, V,W = w) satisfies the following differential equations:

dU

ds
=

(
3

4
u0 +

3

4
U − 1

20
u5

0(3v0 + v0u
4
0 − 2au4

0 − av0u
4
0)

−1

4
a(u0 + U)5 +

5

4
c(u0 + U)5

)
W 4 (4.68)

+(
25

4
u0 +

25

4
U − 5

4
(V + v0)(u0 + U)5)
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dV

ds
=
(
2a(u0 + U)4 − (V + v0)(u0 + U)4 − 3(V + v0) + a(V + v0)(u0 + U)4

)
W 4

(4.69)

dW

ds
=

(
1

4
a(u0 + U)4 − 1

4
c(u0 + U)4 − 3

4

)
W 5

+

(
1

4
(V + v0)(u0 + U)4 − 5

4

)
W (4.70)

Proposition 52 The centre manifold is described by U = kW 4 + h.o.t., where h.o.t. means
higher order terms in W .

Proof: Suppose U ∼ O (W 2) + h.o.t., it follows U̇ ∼ O
(

2WẆ
)

+ h.o.t.. However,

Ẇ ∼ O (UW ) + h.o.t. ∼ O (W 3) + h.o.t.. In this case, the lowest term in U̇ is a multiple
of U since all other terms in (25

4
u0 + 25

4
U − 5

4
(V + v0)(u0 + U)5) vanish. Consequently,

no non-zero coefficient k exists. As a generalization, if we let U ∼ O (Wm) + h.o.t. then
again U̇ ∼ O

(
mWm−1Ẇ

)
+ h.o.t. and Ẇ ∼ O (UW ) + h.o.t. ∼ O (Wm+1) + h.o.t.

and then U̇ ∼ O (W 2m) + h.o.t.. However, from the equation of U̇ , we conclude that U̇ ∼
O (U,W 4) + h.o.t. ∼ O

(
min
m

(Wm,W 4)
)

+ h.o.t.. The case when min
m

(Wm,W 4) = Wm

requires that m = 2m, which is false for integers. The case when min
m

(Wm,W 4) = W 4

requires that 2m = 4, which contradicts minimality of power. In both cases, the power of
W from the time derivative of the centre manifold ansatz does not equate with that from
the original differential equation of U . Therefore, it is not possible to calculate a non-zero
k from equating both equations. The only remedy is then to set U = kW 4 + h.o.t.. We
substitute in the original differential equation of U . The least power in W is then four and
the coefficient of this least power is a linear function of k but not a multiple of it, hence k is
not zero. Further discussion shows that k is non-zero.

�
Substitute U = kW 4 + h.o.t. in U̇ , we get:

dU

ds
= (

25

4
u0 −

5

4
u5

0(V + v0)) +

([
25

4
− 25

4
u4

0(V + v0)

]
k +

3

4
u0 −

1

4
au5

0

+
5

4
cu5

0 −
1

20
u5

0(3v0 − 2au4
0 + u4

0v0 − au4
0v0)

)
W 4

+O(W 8)

(4.71)

The first two terms are zero and then V = 0. The second equation solves for k

k =
1

250
au9

0 +
1

20
cu5

0 −
1

100
u5

0 (4.72)

After substitution in the differential equations of the triplet (U, V,W )

dU

ds
= O

(
W 8
)

(4.73)

dV

ds
=

1

u4
0

[
2au8

0 + (5a− 5)u4
0 − 15

]
W 4 +O(W 8) (4.74)

dW

ds
=

1

100

[
2au8

0 + (25a− 5)u4
0 − 75

]
W 5 +O(W 9) (4.75)
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Rescale time by ds̃
ds

= W 4. It contributes to dividing the right-hand sides of the differential
equations by W 4. Now the stationary solution is computed by setting W = 0 and solving
the right-hand side of V̇ . The relevant u0 is then

u0 =

(
5− 5a+

√
25a2 + 70a+ 25

4a

) 1
4

(4.76)

and consequently, v0 = 5
u40

. This equality generates the following relations:

v0 > v∗0 ⇔ u0 < u∗0 ⇔
(
2au8

0 + (5a− 5)u4
0 − 15

)
< 0

v0 < v∗0 ⇔ u0 > u∗0 ⇔
(
2au8

0 + (5a− 5)u4
0 − 15

)
> 0

Therefore, the dynamics are attracting in the V -direction. In the W -direction, we have after
the substitution of u0:

dW

ds̃
=

[
au∗

4

0 − 3

5

]
︸ ︷︷ ︸

< 0

W +O(W 5) (4.77)

Hence, (0, 0, 0) is an attracting stationary solution in the positive orthant R3
≥0, concluded by

the suspension to the dynamics of the centre manifold.

Proposition 53 x,y and z of an unbounded solution in Π2 diverging to infinity satisfy the

following equations for all t > t0: x(t) = 1
u0

(20K)
1
4 e

5K

u40
t
+ · · ·, y(t) = v0

u0
(20K)

1
4 e

5K

u40
t
+ · · ·

and z(t) = 1
u0

( 1
20K

)
1
20 e

K

u40
t
+ · · ·.

Proof: Consider (4.75) and let 1
100

(2au8
0 + (25a− 5)u4

0 − 75) be denoted by −K for
someK > 0. If we solve forW , we getW (s) = ( 1

4Ks
)
1
4 +· · ·. We substitute in ds = W 16dτ

we have then s = 5
1
5 ( 1

4K
)
4
5 τ

1
5 + · · · and hence, W (τ) = ( 1

20Kτ
)

1
20 + · · ·. Substituting in

X = u0W
5 + · · · = u0( 1

20Kτ
)
1
4 + · · ·. Similarly, Z = W 4 = ( 1

20Kτ
)
1
5 + · · · and V = v0. If

we now compute τ in terms of the original time t, we have dτ = x4dt (i.e., dτ = 1
X4dt) and

it follows then τ = e
20K

u40
t
+ · · ·. Consider now x = 1

X
, y = Y

X
and z = Z and substitute τ

by e
20K

u40
t
+ · · ·, we conclude the following time equations

x(t) =
1

u0

(20K)
1
4 e

5K

u40
t
+ · · · (4.78)

y(t) =
v0

u0

(20K)
1
4 e

5K

u40
t
+ · · · (4.79)

z(t) =
1

u0

(
1

20K
)

1
20 e

K

u40
t
+ · · · (4.80)

The proof is complete. �

In this chapter, we have studied a third model for the Calvin cycle, according to Hahn [44].
This model implements photorespiration explicitly. Upon setting the flux of photorespira-
tion to zero, all solutions starting from an open unbounded set tend to infinity, essentially
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not biological. In this sense, photorespiration plays the role of the stabilizer of the cycle.
Without it, RuBP, PGA and TP accumulate indefinitely. It was shown that a key feature for
the analysis here is the strong monotonicity of the model. This character helps identify the
possible dynamics and their region of occurrence. Although in (3.2-3.3) this feature is also
satisfied, it was not urgently needed to draw conclusions. It was shown that sustained os-
cillations (i.e., periodic orbits if they are present) would be extremely unstable to the point
that they will not be noticed. The geometric region where these oscillations might exist was
recognized and this conclusion is not special for the model discussed. It is the negation of
the existence of periodic orbits, which could be called a special character of the model since
it is the direct outcome of the differential equations in (4.1-4.3). It could have been interes-
ting had we proved the existence of sustained oscillations in the model since it is still not
anticipated that the Calvin cycle works in an oscillatory mode. At least it was shown in [86]
[32] [90] [66] [30] that photosynthesis admits damped oscillations.
Another interesting task is to relate Hahn's models to other models of the Calvin cycle in
the literature. Possible relations to a model of Grimbs et al.[41] studied in [85] were already
mentioned in Section 3.3 and perhaps these could be extended so as to give a wider view of
runaway solutions of models for the Calvin cycle (i.e., Those solutions where all concen-
trations tend to infinity). One task is to obtain some characterization of models admitting
solutions of this type. Another is to obtain formulae for the asymptotics of these solutions
in the case that they do occur. This kind of behavior can be ruled out if the model admits a
suitable conservation law. This is, for instance, the case in a model of [80], whose mathema-
tical properties were studied in [72]. In Hahn's model with photorespiration, boundedness of
solutions is obtained without there being a conservation law. A model gives another example
of this studied in Section 6 of [85], where the original model of Grimbs et al. is modified by
including the concentration of ATP explicitly. It also remains to obtain a comprehensive un-
derstanding of solutions when some concentrations tend to zero at late times. As discussed
in [72], we can relate this to the biological phenomenon of overload collapse. This means
intuitively that the production of sugar by the cycle cannot meet the demand for export from
the chloroplast. In [72], it was shown that there are solutions to the model of [80] which
admit this phenomenon while in a modification of the model due to Poolman [82], these so-
lutions are eliminated. The model of [82] does not include photorespiration but does include
the mobilization of glucose from starch.
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A New Model for Photosynthesis

As it is clear for many biochemical processes, inhibition is also one property of the car-
boxylation of ribulose 1,5-bisphosphate (RuBP). There is not one but many phosphates
that compete with RuBisCO on the active site of RuBP. These ligands bind to both car-
bamylated and un-carbamylated sites of RuBP, reducing the efficiency of RuBisCO both in
carboxylation and in oxygenation reactions (see [114], [6]). Among the different phosphate
inhibitors, inorganic phosphate Pi is characterized by a relatively high binding constant. It
diffuses through a triose phosphate translocator channel into the chloroplast in an exchange
of triose phosphate diffusing in the reverse direction (see [112]). We will implement this fact
in a new model for photosynthesis because it resembles one of the significant inhibitions on
RuBisCO's work. Also it defines together with the other species a conserved quantity, so-
mething very natural. Again, we are not considering any sudden transients such as a sudden
light intensity change or CO2 concentration change. We are assuming a homogenous light
environment, CO2 concentration and RuBisCO concentration. This is based on precedent
models of photosynthesis, which show a high and fast adaptation of photosynthetic rates
(see [66], [91]) to similar changes. In Section 5.1, we reconsider Hahn's three-dimensional
model and we introduce a new non-dimensionalization. This leads to applying the Singu-
lar Perturbation Theory and then shows the equivalence between the dynamics taking place
on a two-dimensional manifold with those studied in Chapter 4. In Section 5.2, we intro-
duce our new model for photosynthesis, a four-dimensional model with conserved quantity.
Again, we utilize the Singular Perturbation Theory and we reduce the model into a three-
dimensional model with a conserved quantity. In Section 5.3, we thoroughly study the dy-
namics of the reduced new model and we demonstrate the existence of two stable equilibria
in some parameters' domains. In other domains of parameters, we show that the model ex-
hibits the hysteresis phenomenon. This allows the coexistence of three stable equilibria and
asserts the switch between two of them upon raising or lowering a control parameter. We
record that this behavior is new for models describing photosynthesis. In Section 5.4, we
conclude the new finding and we reflect on our new model and our perspective for any new
photosynthesis modeling.
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parameter unit

k1 sec−1

k2 (mol m−3)−1sec−1

k3 sec−1

k4 (mol m−3)−4sec−1

k5 sec−1

k6 sec−1

Table 5.1: Table of units of reactions' rates of Hahn's model

Hahn's Three-Dimensional Model in Singular Perturbation Theory

This section finds a suitable non-dimensionalization of Hahn's three-dimensional model gi-
ven by the following system of differential equations.

d[RuBP]

dt
= −k1[RuBP]− 2k2[RuBP]2 + 3k4[TP]5

d[PGA]

dt
= 2k1[RuBP] + 3k2[RuBP]2 − k3[PGA]

d[TP]

dt
= k3[PGA]− 5k4[TP]5 − (k5 + k6)[TP] (5.1)

The non-dimensionalization is motivated by the factor m governing bifurcation upon wri-

ting a2 = mbc
5
4 (i.e we assume that m = bc

5
4

a2
=

k
1
4
4 k

2
1

k2k
5
4
7

). We consider the following non-

dimensionalization:

[RuBP] =
k1

k2

X, [PGA] =
k2

1

k2k3

Y, [TP] =
k2

1

k2k7

Z. (5.2)

In addition, we rescale time by setting t = 1
k1
τ . If we adopt the following naming: e =

m4, δ = k3
k1
, γ = k7

k1
, the generated non-dimensionalized system is then

dX

dτ
= −X − 2X2 + 3eZ5 (5.3)

dY

dτ
= δ

(
2X + 3X2 − Y

)
(5.4)

dZ

dτ
= γ

(
Y − 5eZ5 − Z

)
(5.5)

Recall that reaction rates are written in the units given in Table 5.1. Hence, all parame-
ters and variables in the new system are unitless and hence the non-dimensionalization is
valid. Although the non-dimensionalization is not trivial, it is found to be useful to pose
the problem in the Singular Perturbation Theory settings. We remark that k3 is the rate of
transformation of PGA into TP, which could have been easily lumped by connecting RuBP
directly to TP. This lumping reduces the model into a two-dimensional model. A counter-
argument to this is that three-dimensional models allow more sophisticated dynamics than
two-dimensional ones. However, if we recognize that δ = k3

k1
and that k3 is the rate of a

reaction, which is purely linear reaction connecting a substrate to a product of the Calvin
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cycle and where the substrate is not involved in any other reaction and it does not resem-
ble any of the key processes (i.e., neither photosynthesis nor photorespiration or starch and
sucrose production), we might be convinced that this reaction does not influence the dyna-
mics. It could then be considered working in an arbitrarily fast mode, implying that δ = 1

ε

with ε being arbitrarily small. We now write the system in fast-slow settings whose slow
formulation is

dX

dτ
= −X − 2X2 + 3eZ5 (5.6)

ε
dY

dτ
=
(
2X + 3X2 − Y

)
(5.7)

dZ

dτ
= γ

(
Y − 5eZ5 − Z

)
(5.8)

Choosing γ = k7
k1

as too small or too big contributes to favoring photosynthesis over starch
and sucrose production, or vice versa. This will be studied later. The critical manifold of the
above system is the set C =

{
(X, Y, Z) ∈ R3

≥0 | 2X + 3X2 − Y = 0
}

.

Proposition 54 The critical manifold C of the system is normally hyperbolic attracting
manifold.

Proof: Let g(X, Y, Z, ε) = 2X + 3X2 − Y . It suffices to check the derivative of g with
respect to Y . It is the matrix DY (g(X, Y, Z, 0)) = −1 < 0. The conclusion follows. �
We are left then with a two-dimensional flow taking place over the critical manifold C. It is
given by:

dX

dτ
= −X − 2X2 + 3eZ5 (5.9)

dZ

dτ
= γ

(
2X + 3X2 − 5eZ5 − Z

)
(5.10)

This system, when set to zero, shares the same resultant as that of Hahn's three-dimensional
model (see (4.37)). We conclude that Hahn's three-dimensional model behaves dynamically
as a two-dimensional model for ε small enough. Hence, dynamically no essential gain is ad-
ded by considering the transformation of PGA into TP since, in both systems, all solutions
converge to equilibria at a later time and we witness the same bifurcation in both. It is con-
venient then to assume that inner reactions within the Calvin cycle, which do not contribute
to outer processes, like photorespiration or starch and sucrose synthesis, work fast enough
and could then be lumped into one fast reaction.
If we consider now the other variants of fast-slow setting first by assuming that γ = 1

ε

(i.e., starch and sucrose production yields much faster than carboxylation), we have then the
following system:

dX

dτ
= −X − 2X2 + 3eZ5 (5.11)

dY

dτ
= δ

(
2X + 3X2 − Y

)
(5.12)

ε
dZ

dτ
=
(
Y − 5eZ5 − Z

)
(5.13)
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The critical manifold is again normally hyperbolic attracting and is given by

C =
{

(X, Y, Z) ∈ R3
≥0 | Y − 5eZ5 − Z = 0

}
Z of a point belonging to C is then the root of a fifth degree polynomial, which is not
analytically easy to solve if it is solvable at all. Therefore, we have to switch to numerical
simulation of its dynamics. We notice that setting γ = 1

ε
makes e itself singular since then

e =
k4k81
k42k

5
7

=
(
k1
k7

)4

= ε4 k4k
4
1

k7k42
. In order to keep e ∼ O(1), we have to let, for example,

k4
k7

= 1
ε4

or k1
k2

= 1
ε

thus the loss in yield of carboxylation is compensated by a weaker
photorespiration in the second ratio or that regeneration is extremely more efficient than
starch and sucrose production in the first ratio. In the latter case, although one of the cycle's
breakage reactions is very efficient compared to carboxylation, carboxylation improves at
another point. When TP is formed, it is almost all incorporated in regeneration. Such com-
pulsory scaling to keep e in a non-singular range is not encountered in the first fast-slow
setting when δ = k1

k3
= 1

ε
because k3 is not present in any other parameter except in δ.

Reducing a model in the light of Singular Perturbation Theory will prove very helpful when
considering more detailed models of photosynthesis. We will use this approach in the next
section.

A New Model for Photosynthesis

This model will serve as a substitute for Hahn's three-dimensional model studied in Chapter
4. It includes, in addition to the previous model, a conservation value of the whole concen-
trations in the cycle. The reaction network reads:

RuBP
Ribulose 1,5-bisphosphate

k1 2 PGA
Phosphoglycerate

2 RuBP
Ribulose 1,5-bisphosphate

k2 3 PGA
Phosphoglycerate

+ Pi
Inorganic phosphate

PGA
Phosphoglycerate

k3 TP
Triose phosphate

Pi
Inorganic phosphate

+ 5 TP
Triose phosphate

k4 3 RuBP
Ribulose 1,5-bisphosphate

TP
Triose phosphate

k7 Pi
Inorganic phosphate

+ Sucrose + Starch

The differential equations written in mass action kinetics read:

d[RuBP]

dt
= −k1[RuBP]− 2k2[RuBP]2 + 3k4[TP]5[Pi]

d[PGA]

dt
= 2k1[RuBP] + 3k2[RuBP]2 − k3[PGA]

d[TP]

dt
= k3[PGA]− 5k4[TP]5[Pi]− k7[TP] (5.14)

d[Pi]
dt

= k2[RuBP]2 − k4[TP]5[Pi] + k7[TP]
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Figure 5.1: The main reactions in photosynthesis according to the new model

The system has the following conserved quantity:

2[RuBP] + [PGA] + [TP] + [Pi] = k (5.15)

Additionally, we have the following relations at stationary solutions:

1

3
k1[RuBP]− 1

3
k2[RuBP]2 − k7[TP] = 0 (5.16)

2k1[RuBP] + 3k2[RuBP]2 − k3[PGA] = 0 (5.17)

As in the previous section, we consider the same non-dimensionalization:

[RuBP] =
k1

k2

X, [PGA] =
k2

1

k2k3

Y, [TP] =
k2

1

k2k7

Z, [Pi] =
k1

k2

W (5.18)

If we adopt the following parameters: a = k7
k1
, b = kk2

k1
, c = k7

k3
, δ = k3

k1
and e = m̃5 =

k4k101
k52k

6
7

, we have the following non-dimensionalized system

dX

dτ
= −X − 2X2 + 3abeZ5 − 3eZ6 − 6aeXZ5 − 3ceY Z5

dY

dτ
= δ

(
2X + 3X2 − Y

)
dZ

dτ
= aY − aZ − 5a2beZ5 + 5aeZ6 + 10a2eXZ5 + 5aceY Z5 (5.19)

dW

dτ
= X2 + Z + 2aeXZ5 − abeZ5 + eZ6 + ceY Z5
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The conservation law reads now:

b = 2X +
1

δ
Y +

Z

a
+W (5.20)

Recall that an equilibrium of the system satisfies the following equalities:

Z∗ =
1

3

(
X∗ −X∗2

)
(5.21)

Y ∗ = 2X∗ + 3X∗
2

(5.22)

This requires that any solution (X∗, Y ∗, Z∗,W ∗) satisfies the following bounds:

0 ≤ X∗ ≤ min

{
1,
b

2

}
(5.23)

0 ≤ Z∗ ≤ min

{
1

12
, ab

}
(5.24)

0 ≤ W ∗ ≤ b (5.25)

Motivated by the discussion in the previous section, we set δ = k3
k1

= 1
ε
. In order to keep

e ∼ O(1), we additionally set k3
k7

= 1
ε

(i.e., c = k7
k3

= ε). The critical manifold C :={
(X, Y, Z,W ) ∈ R4

≥0 | Y = 2X + 3X2
}

is normally hyperbolic attracting manifold.

Proposition 55 The critical manifold C :=
{

(X, Y, Z,W ) ∈ R4
≥0 | Y = 2X + 3X2

}
is

normally hyperbolic attracting manifold.

Proof: Submitting to the fast-slow systems' notation, the critical manifold is given by the
equation g(X, Y, Z,W, ε = 0) = 0. For System 5.19, this is g(X, Y, Z,W, 0) = 2X +
3X2 − Y = 0. We consider the matrix DY g|(X,Y,Z,W,0) = −1 < 0. Hence, the critical
manifold defined above is normally hyperbolic attracting manifold. �

Now setting ε = 0, the system reduces into the three-dimensional system

Ẋ = −X − 2X2 + 3abeZ5 − 3eZ6 − 6aeXZ5 (5.26)
Ż = 2aX + 3aX2 − aZ − 5a2beZ5 + 5aeZ6 + 10a2eXZ5 (5.27)
Ẇ = X2 + Z + 2aeXZ5 − abeZ5 + eZ6 (5.28)

It suffices to study the right-hand sides of Ẋ and Ż. If we consider the resultant of the
right-hand sides of (5.26) and (5.27), we have

ResZ(Ẋ, Ż) = a6e5X
[
eX4 (X − 1)5 (X2 + (−6a− 1)X + 3ab

)
+ 243 (2X + 1)

]
(5.29)

Note that solutions of (5.29) in R≥0 are in one-to-one correspondence to solutions of System
(5.26-5.28) in R3

≥0. Note also that the conservation law (5.20) reads now b = 2X + Z
a

+W ,
while (5.21), (5.22), (5.23), (5.24) and (5.25) keep being satisfied. Besides X = 0, which
solves the resultant and generates the trivial solution (0, 0, b) of System (5.26-5.28), solving
the resultant for positive X means solving a polynomial of degree eleven. Therefore, we
switch to the inverse problem, searching for a parameter value e, for which positive roots
X of the Resultant (5.29) exist. The root X∗ is then completed into a relevant solution
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of System (5.26-5.28) if the right-hand sides of the Equations (5.21) and (5.22) are non-
negative. The intervals of X , where this completion is valid, are called the intervals of
relevance. If we set the resultant to zero and solve for e, we get the following continuous
rational function:

e =
243 (2X + 1)

X4 (X − 1)5 (−X2 + (6a+ 1)X − 3ab)
(5.30)

whose derivative with respect to X is:

de

dX
=

243 (20X4 + (−108a− 17)X3 + (48ab− 12a− 8)X2 + (30a+ 9ab+ 5)X − 12ab)

X5 (X − 1)6 (−X2 + (6a+ 1)X − 3ab)2

(5.31)

Let us name the significant polynomials in de
dX

in the following way:

P (X) := 20X4 + (−108a− 17)X3 + (48ab− 12a− 8)X2 + (30a+ 9ab+ 5)X − 12ab

Q(X) := (X − 1)

R(X) := −X2 + (6a+ 1)X − 3ab

We compute the resultants

ResX(P (X), Q(X)) = 45a(b− 2) (5.32)
ResX(P (X), R(X)) = −27a2b (b− 2) (4a+ 4ab+ 1)

(
(6a+ 1)2 − 12ab

)
(5.33)

Notice that W ∗ = −1
3a
R(X∗) and it is eventually non-negative for X < 1 and e positive. We

notice also that the discriminant of R(X) is DiscX(R(X)) = (6a + 1)2 − 12ab. Moreover,
we notice that P (X) admits exactly one negative root. For b = 2, P (X) admits a simple
common root with Q(X) and R(X) exactly at X = 1. Otherwise for b = (6a+1)2

12a
, P (X)

shares a common root with R(X) at X = 6a+1
2

, which is simple for P (X) and double for
R(X). The simplicity of the common roots of P (X) with respect to the product of the other
polynomials leaves the poles of de

dX
unchanged since they depend then on the roots of the

product of polynomials in the denominator of e = f(X). Knowing that Q(X) admits a
unique root at X = 1, we will classify the relevant domains of X according to the roots of
R(X). We mean by relevant domains of X , those domains, for which a steady state in the
non-negative orthant in intR3

≥0 exists if we choose a suitable value of e. We consider two
main cases: Case(I) for b < (6a+1)2

12a
and case(II) for b > (6a+1)2

12a
. Note that in case(II), R(X)

admits no real roots and note also that (6a+1)2

12a
> 2.

Case (I): In this case, R(X) has two positive roots since its discriminant is positive. In
between these roots, R(X) is positive and consequently e is negative, which is not of in-
terest. At this point, we make a difference between two sub-cases, which infer the posi-
tion of these roots. (I)(a) when in addition to the given inequality b < (6a+1)2

12a
, we ass-

ume that b < 2. Then the roots of R(X) to be called r1 and r2 are positioned in this way
r1 <

b
2
< 1 < r2, 6a < r2. In the second sub-case (I) (b), while assuming b > 2, the

roots of R(X) are in the following order 1 < r1 < r2 < 6a and the schematic Figure 5.2
for e holds for both sub-cases. We mean by a u-shaped curve, a curve that either looks like
a U or a tipped over U. Concretely, a curve f(x) looks like a U over an interval ]r, s[ if its
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Figure 5.2: The schematic figure of sub-cases (I)(a) and (I)(b). The difference between the
sub-cases occur when min {1, r1} is r1 in (I)(a) and is 1 in (I)(b)

Case(I)(a) Case(I)(b) Case(I)(c)

b < (6a+1)2

12a
b < (6a+1)2

12a
b < (6a+1)2

12a

b < 2 b > 2 b = 2
IOR ]0, r1[ ]0, 1[ ]0, 1[

Case(II)(a) Case(II)(b) Case(II)(c)

b = (6a+1)2

12a
b = (6a+1)2

12a
b > (6a+1)2

12a
6a+1

2
> 1 6a+1

2
< 1 6a+1

2
< 1

IOR ]0, 1[ ]0, 6a+1
2

[∪]6a+1
2
, 1[ ]0, 1[

Table 5.2: The conditions of the different discussed cases and the interval of relevance (IOR)
of X in each case

limits are limx→r+ f(x) = +∞ = limx→s− f(x) and admits a global minimum over this
interval. It looks like a tipped over U if limx→r+ f(x) = −∞ = limx→s− f(x) and it admits
a global maximum over the interval. We can be sure that the graph of e is a u-shaped curve
in the first interval X ∈]0,min {1, r1} [ based on two things: First e = f(X) tends either
to +∞ or to −∞ at the sections X = 0, X = 1, X = r1 and X = r2 (i.e., where the
poles are encountered). For instance, in sub-case (I) (a), there must exist at least one extre-
mum in each of the sections ]0, r1[, ]r1, 1[ and ]1, r2[. However, de

dX
admits maximally three

positive roots. Hence, exactly one extremum will be present in each of the aforementioned
sections including ]0, r1[, the interval of relevance of X , where e exclusively takes relevant
values. Similarly, in the sub-case (I)(b), e is plausibly defined for X ∈]0, 1[ where only one
extremum (minimum) exists and the function is u-shaped. We add another sub-case (I)(c)
when b = 2 < (6a+1)2

12a
, the boundary case between (I)(a) and (I)(b). Here, the graph of e is
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u-shaped over the intervals ]0, 1[ and ]1, r2[. No change concerning the maximal number of
positive roots in this sub-case. The schematic graph of e is illustrated in Figure 5.3. We sub-

Figure 5.3: The schematic figure of the sub-case (I)(c)

classify case (II) into three sub-cases: (II)(a) b = (6a+1)2

12a
and (6a+1)

2
> 1. (II)(b) b = (6a+1)2

12a

and (6a+1)
2

< 1 and (II)(c) b > (6a+1)2

12a
and (6a+1)

2
< 1. The first sub-case (II)(a) is described

by the schematic Figure 5.4, where the graph of e is u-shaped in the interval of relevance
]0, 1[. We notice that in all the cases yet discussed maximally two positive stationary soluti-

Figure 5.4: The schematic figure of the sub-case (II)(a)

ons appear as e changes in a seemingly simple fold bifurcation scenario. This will not be the
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case in the last two sub-cases (II)(b) and (II)(c). (II)(b) is described by the schematic Figure
5.5 and the graph of e is u-shaped in ]0, 6a+1

2
[ and ]6a+1

2
, 1[, the intervals of relevance. The

Figure 5.5: The schematic figure of the sub-case (II)(b)

latter sub-case (II)(c) has the schematic Figure 5.6. Notice that the conditions describing
each case and the interval of relevance of X in each case are listed in Table 5.2. In (II)(b)

Figure 5.6: The schematic figure of the sub-case (II)(c)

and upon varying e, there occur two seemingly fold bifurcations not known whether simul-
taneously or in succession. The two u-shaped curves are within the interval of relevance of
X . This leads to the coexistence of four positive stationary solutions upon sufficiently ele-
vating the value of e. The bifurcation taking place must be a simple fold bifurcation since
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one of the three existing stationary solutions, the trivial steady state (0, 0, b), is persistent.
That is, it exists for any choice of positive parameters. Moreover, the positive steady states
corresponding to X ∈]0, 6a+1

2
[ are always at positive distance from those corresponding to

X ∈]6a+1
2
, 1[ for every choice of parameters. Hence, each positive steady state joins a single

positive steady state undergoing a fold bifurcation. This rules out the hysteresis phenome-
non, which always accompanies cusp bifurcation. Hence, it also precludes cusp bifurcation.
In (II)(c) seen as the continuous generic extension of its boundary the sub-case (II)(b), we
are keeping (6a+1)

2
< 1 and sharpening the equality into the inequality b > (6a+1)2

12a
. Thus

letting R(X) be negative through the whole positive X-axis and forcing the still existing
three positive roots of P (X) to occur before X = 1. There are no well-defined intervals
of the parameters for which three positive roots of P (X) exist. At least for (6a+1)

2
< 1 and

(6a+1)2

12a
+ ε > b > (6a+1)2

12a
for some suitable ε > 0, there is a numerical evidence that these

roots exist and are bounded from above by X = 1. At this point, this will be sufficient since
once P (X) loses two of its three positive roots, we are then back to the same scenario en-
countered in case (I) and sub-case (II)(a). Thus, the richest of dynamical behavior is given
by case (II)(c).
Actually, an explicit study of the number of roots of P (X) was not needed throughout the
discussion since their existence was directly implied by the interval sections according to
the poles of function de

dX
. It is only in the latter sub-case (II)(c), where only two poles exist

at X = 0 and X = 1, that we could not decide about the number of positive roots of P (X)
and thus about the number of extrema of e. However, by continuity of the function, it is
safely known that three positive roots of P (X) keep existing in some interval of parameters
upon choosing b > (6a+1)2

12a
and letting (6a+1)

2
< 1. We can see that two positive stationary

solutions will first be born upon varying e in (II)(c). Then upon elevating e, two other posi-
tive stationary solutions will be born in a seemingly fold bifurcation scheme. If we further
elevate e, two positive stationary solutions will eventually be lost and we end up with only
two positive stationary solutions. If the positive stationary solutions are ordered alternately
as stable and then unstable or vice versa, one stable positive stationary solution is lost once
by elevating e and, otherwise, another stable positive stationary solution is lost when lowe-
ring e. This is the generic case. The two fold bifurcations might be realized for the same
value of e. This is not generic, which means it happens for a zero measure set of values of e
compared to the generic case.

Proposition 56 Solutions of System (5.26-5.28) exist globally over a two-dimensional ma-
nifold given by b = 2X + Z

a
+ W and only fold-type bifurcation is possible for System

(5.26-5.28). In other words, it undergoes either a simple fold bifurcation or a cusp bifurca-
tion if it does bifurcate. Moreover, periodic orbits are ruled out.

Proof: Since solutions of System (5.26-5.28) are constrained by the following conserved
quantity b = 2X + Z

a
+ W , they exist for all t ≥ 0 once they start on the two-dimensional

manifold given by the same aforementioned quantity. Moreover, all initial points starting
on this manifold within the non-negative orthant R3

≥0 remain on it in R3
≥0. For instance,

suppose X = 0, it follows from Equation (5.26) that Ẋ = 3eZ5(ab − Z) ≥ 0. If Ẋ = 0,
we pass to the second time derivative Ẍ , which is positive for Z = ab. For Z = 0, we
get the stable trivial steady state (0, 0, b). Analogously, a solution starting at Z = 0 have
by Equation (5.27), Ż = 2aX + 3aX2 ≥ 0. Again, for X = 0, the trivial steady state
(0, 0, b) is generated. Hence, all solutions starting in R3

≥0 at the two-dimensional manifold
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Figure 5.7: The values of e for a = 1
9

and b as in (II)(c). Cusp point is encountered exactly
where the peak in the middle is flattened

b = 2X + Z
a

+W remain there for all t ≥ 0 and any solution starting at its boundary leaves
it toward the interior of the manifold except for the trivial steady state (0, 0, b).
There are few types of bifurcation possible for two-dimensional systems, as is the case of
our System (5.26-5.28). Either or both of the eigenvalues might approach the imaginary axis
and pass through it as some parameters change or one or both of the eigenvalues approach
zero. In the former case, it is a Hopf bifurcation or generalized-Hopf bifurcation, depending
on the degree of degeneracy. In the latter case, Bogdanov-Takens bifurcation happens when
both eigenvalues are zero while fold bifurcation happens when only one eigenvalue is zero.
Simple fold bifurcation is when the equilibrium has a single zero eigenvalue and a non-
zero second-order term of the suspension to the differential equation governing the centre
manifold dynamics (see [65]). Cusp bifurcation occurs when, in addition to the single zero
eigenvalue, the second-order term is also zero. In order to unravel the bifurcations possible
for System (5.26-5.28), we utilize the following linear transformation: (X,Z) → (U =
5a
3
X +Z, V = Z). We study then the new system by restricting ourselves to U̇ and V̇ since

W keeps up with X and Z satisfying the equation b = 2X + Z
a

+W .

U̇ =
1

5
U − 25a2 + 5a

25a
V − 3

25a
U2 +

6

25a
UV − 3

25a
V 2 (5.34)

V̇ =
6

5
U − 25a2 + 30a

25a
V +

27

25a
U2 − 54

25a
UV +

27

25a
V 2 − 5a2beV 5 + 6aeuV 5 − aeV 6 (5.35)

The Jacobian matrix of System (5.34-5.35) is:

J =

(
−6U+6V+5a −5a−25a2+6U−6V

30a+54U−54V+150a2eV 5 −30a−25a2−54U+54V−625a3beV 4+750a2euV 4−150a2eV 5

)
(5.36)
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Computing the trace of J :

Trace(J) = −5
(
5a2 + 5a+ 12U − 12V

)
− 25a2eV 4 (6V − 30U + 25ab)

We make use of the following conservation value:

b = 2X +
Z

a
+W

=
6

5a
U − 1

5a
V +W (5.37)

for (U, V ) of a stationary solution, we have:

U =
5a

3
X + V > V ⇒

(
5a2 + 5a+ 12U − 12V

)
> 0

(6V − 30U + 25ab) > 0 via (5.37)

There is no Hopf-bifurcation type allowed since Trace(J) = λ1 + λ2 < 0 for every choice
of positive parameters. For the same reason, Bogdanov-Takens bifurcation is ruled out. The
two remaining possibilities are cusp bifurcation and fold bifurcation.
Notice that Trace(J) = dẊ

dX
+ dŻ

dZ
< 0 for all choices of positive parameters and for X and

Z satisfying b = 2X + Z
a

+ W , a two-dimensional simply connected compact manifold in
R3
≥0. Trace(J) is nothing but the divergence of the vector field. It is negative throughout the

mentioned two-dimensional manifold. Hence, by Bendixson's criterion (sometimes called
Bendixson-Dulac Theorem), no periodic orbit lies entirely in this manifold and then no
periodic orbit exists for System (5.26-5.28). �

Cusp Bifurcation in the Singularly Perturbed New Model

We will proceed in this section with the analysis of the singularly perturbed model of the new
model in (5.26-5.28). We will focus here on the sub-case(II)(c) for the purpose of proving
that the witnessed bifurcation in the schematic graph of this sub-case refers in its most
complex form to a cusp bifurcation. This means that there are parameters for which three
equilibria come together forming a single equilibrium with one zero eigenvalue and whose
stability follows the sign of the coefficient of a third-order term. We translate a stationary
solution (X0, Z0) to (0, 0) by the following linear transformation (X,Z) → (X̃ = X −
X0, Z̃ = Z − Z0), then we recover the same variables' naming. We reuse X and Z instead
of X̃ and Z̃. Note that it is not necessary to consider Ẇ since a change in W is implied by
the conserved quantity b = 2X + Z

a
+ W . The transformed singularly perturbed System

(5.26-5.28) reads now:
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Ẋ = (−6aeZ5
0 − 4X0 − 1)X + (15Z4

0abe− 30X0Z
4
0ae− 18Z5

0e)Z − 2X2

+(−30Z4
0ae)XZ + (30Z3

0abe− 60X0Z
3
0ae− 45Z4

0e)Z
2 + (−60Z3

0ae)XZ
2

+(30Z2
0abe− 60X0Z

2
0ae− 60Z3

0e)Z
3 + (−60Z2

0ae)XZ
3 + (15Z0abe− 30X0Z0ae− 45Z2

0e)Z
4

+(−30Z0ae)XZ
4 + (3abe− 18Z0e− 6X0ae)Z

5 + (−6ae)XZ5 + (−3e)Z6 (5.38)

Ż = (2a+ 6X0a+ 10Z5
0a

2e)X + (30Z5
0ae− a+ 50X0Z

4
0a

2e− 25Z4
0a

2be)Z + (3a)X2

+(50Z4
0a

2e)XZ + (75Z4
0ae+ 100X0Z

3
0a

2e− 50Z3
0a

2be)Z2 + (100Z3
0a

2e)XZ2

+(100Z3
0ae+ 100X0Z

2
0a

2e− 50Z2
0a

2be)Z3 + (100Z2
0a

2e)XZ3

+(75Z2
0ae+ 50X0Z0a

2e− 25Z0a
2be)Z4 + (50Z0a

2e)XZ4

+(10X0a
2e− 5a2be+ 30Z0ae)Z

5 + (10a2e)XZ5 + (5ae)Z6 (5.39)

We denote by:

f(X,Z) =

(
f1(X,Z)
f2(X,Z)

)
(5.40)

the subsequent right-hand sides of Ẋ and Ż of System (5.38-5.39). We let (X,Z) = u and
then we write the Taylor expansion of f near u = (0, 0) in the following way:

f(u) = Au+
1

2
B(u, u) +

1

6
C(u, u, u) +O(‖u‖4) (5.41)

where B(u, v)| and C(u, v, w)| are the multilinear functions with components

Bj(u, v) =
n∑

k,l=1

∂2fj(ξ, 0)

∂ξk∂ξl
|ξ=0ukvl (5.42)

Cj(u, v, w) =
n∑

k,l,m=1

∂3fj(ξ, 0)

∂ξk∂ξl∂ξm
|ξ=0ukvlwm (5.43)

for j = 1, 2.

Definition 5.3.1 Consider the continuous-time system depending on one parameter

ẋ = f(x, α), x ∈ Rn, α ∈ R

where f is smooth. Let x = x0 be an equilibrium of the system at α = α0. Further assume
that the Jacobian of f admits exactly one zero eigenvalue. Then the system is said to have
undergone a fold bifurcation (also called saddle-node bifurcation).

Recall that in the sense of Definition 5.3.1, both fold bifurcation and cusp bifurcation are
called fold bifurcation. The difference between the two bifurcations is clarified in the fol-
lowing theorems. The first theorem defines the generic-fold bifurcation by defining a non-
degeneracy condition and a transversality condition.
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Theorem 10 Suppose that a one-dimensional system

ẋ = f(x, α), x ∈ R, α ∈ R

where f is smooth and has at α = 0 the equilibrium x = 0 and let λ = fx(0, 0) = 0. Assume
that the following conditions are satisfied:
(A.1) fxx(0, 0) 6= 0 (Non-degeneracy Condition).
(A.2) fα(0, 0) 6= 0 (Transversality Condition).
Then there are smooth invertible parameter and coordinate changes transforming the system
into

ξ̇ = µ+ a(µ)ξ2 +O(ξ3).

where µ = µ(α) is a function of α and µ(0) = 0.

The non-degeneracy condition differentiates fold bifurcation from cusp bifurcation since
its violation opens the door for defining the latter. The transversality condition is a techni-
cal condition necessary for transforming the system into the theorem's generic system (see
[75]). Let us assume that condition (A.1) is violated upon the variation of one parameter.
This necessitates the dependence of the one-dimensional system on two parameters. Com-
pared with the cusp bifurcation, the fold bifurcation is a codim-1 bifurcation since it occurs
upon changing only one parameter. The following theorem describes the generic cusp bi-
furcation with respect to a one-dimensional system. This will suffice since the suspension
to the one-dimensional centre manifold in both bifurcations generates a one-dimensional
system.

Theorem 11 Suppose that a one-dimensional system

ẋ = f(x, β), x ∈ R, β ∈ R2

where f is smooth has at β = (β1, β2) = (0, 0) the equilibrium x = 0 and let the following
cusp bifurcations hold:
λ = fx(0, 0) = 0, fxx(0, 0) = 0
If also the following conditions are satisfied:
(C.1) fxxx(0, 0) 6= 0 (Non-degeneracy Condition)
(C.2) (fβ1fxβ2 − fβ2fxβ1) 6= 0 (Transversality Condition)
then there are smooth invertible parameter and coordinate changes transforming the system
into:

ξ̇ = µ1 + µ2ξ + c(µ)ξ3 +O(ξ4).

with µ1 = µ1(β) and µ2 = µ2(β) are functions of β and µ1(0, 0) = µ2(0, 0) = 0.

The core of the bifurcations is manifested in the conditions (A.1) and (C.1). The transver-
sality conditions are necessary as much as transforming the studied system into the generic
form system is necessary. It is easy to check for both types of conditions if the system is
scalar. However, the computation gets subsequently complicated as the dimension of the
system increases if the system is not given in its eigenbasis form. System (5.38-5.39) is not
given in the eigenbasis form. Thus, we need to use a known projection method to compute
a(µ) and c(µ) and thus track the cusp when the former is zero and the latter is non-zero. The
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idea is to split the vector variable x ∈ Rn of the continuous system ẋ = Ax + F (x) into
two components, the first belonging to the one-dimensional eigenspace T c of λ = 0 and
the other component to the (n − 1)-dimensional eigenspace T su referring to all the other
eigenvalues. This is done in the following way:

x = uq︸︷︷︸
∈T c

+ y︸︷︷︸
∈T su

, u ∈ R, q, y ∈ Rn. (5.44)

Aq = 0, 〈q, q〉 = 1. (5.45)

The system is then transformed into the (n+ 1)-dimensional system

u̇ = a(µ)u2 + c(µ)u3 +O(u4) (5.46)

ẏ = Ay +
1

2

(
∂2F (uq)

∂u2
|u=0 −

∂2

∂u2
〈p, F (uq)〉|u=0q

)
u2 + · · · (5.47)

The restriction to the centre manifold takes the form of Equation (5.46), with the following
coefficients at the bifurcation moment µ = 0:

a(0) =
1

2
〈p,B(q, q)〉, ATp = 0, 〈p, q〉 = 1. (5.48)

c(0) =
1

6
〈p, C(q, q, q) + 3B(q, h)〉, (5.49)(

A q
pT 0

)(
h
s

)
=

(
−B(q, q)

0

)
(5.50)

C(u, v, w) and B(u, v) are given in Equations (5.42) and (5.43). It turns out that tracking
fold and cusp bifurcations is essentially a question of computing the coefficients a(µ) and
c(µ). The next propositions will show some identities that facilitate the computation while
profiting from the Resultant (5.29).

Proposition 57 Let F (X,Z, λ) =
n∑
i=1

fi(X,λ)Zi = 0 and G(X,Z, λ) =
m∑
j=1

gj(X,λ)Zj =

0 with F and G smooth enough. If we assume that ∂F
∂Z
|
(X0,Z

i0
1 )
6= 0 and ∂G

∂Z
|
(X0,Z

j0
1 )
6= 0 and

if ResZ(F,G) admits a root at X0 up to its third derivative with respect to X , then Z can be
written as a function of X in a neighborhood of X0 and the system of polynomials

{
F (X,Z, λ)

G(X,Z, λ)
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admits the following identities at solution (X0, Z0) where Z(X0) = Z0

dF

dX
=
∂F

∂X
+
∂F

∂Z

dZ

dX
= 0. (5.51)

d2F

dXdZ
=

∂2F

∂X∂Z
+
∂2F

∂Z2

dZ

dX
= 0. (5.52)

d2F

dX2
=
∂2F

∂X2
+ 2

∂2F

∂X∂Z

dZ

dX
+
∂2F

∂Z2

(
dZ

dX

)2

+
∂F

∂Z

d2Z

dX2
= 0. (5.53)

d3F

dXdZ2
=

∂3F

∂X∂Z2
+
∂3F

∂Z3

dZ

dX
= 0. (5.54)

d3F

dX2dZ
=

∂3F

∂2X∂Z
+ 2

∂3F

∂X∂Z2

dZ

dX
+
∂3F

∂Z3

dZ

dX
+
∂2F

∂Z2

d2Z

dX2
= 0. (5.55)

d3F

dX3
=
∂3F

∂X3
+ 3

∂3F

∂X2∂Z

dZ

dX
+ 3

∂3F

∂X∂Z2

(
dZ

dX

)2

+ 3
∂2F

∂X∂Z

d2Z

dX2

+
∂3F

∂Z3

(
dZ

dX

)3

+ 3
∂2F

∂Z2

dZ

dX

d2Z

dX2
+
∂F

∂Z

d3Z

dX3
= 0. (5.56)

Same identities hold by replacing F with G. The converse is true.

Proof: As in Definition 4.2.1, the resultant of F and G with respect to Z and then its
derivatives up to third order with respect to X are given by

ResZ(F,G) = fmn g
n
m

∏
i,j

(Zi
1 − Z

j
2) (5.57)

dResZ(F,G)

dX
= mfm−1

n gnmf
′
n

∏
i,j

(Zi
1 − Z

j
2) + nfmn g

n−1
m g′n

∏
i,j

(Zi
1 − Z

j
2)

+fmn g
n
m

(∑
i0,j0

(
dZi0

1

dX
− dZj0

2

dX

) ∏
i 6=i0,j 6=j0

(Zi
1 − Z

j
2)

)
(5.58)

d2 ResZ(F,G)

dX2
=
d2fmn g

n
m

dX2

∏
i,j

(Zi
1 − Z

j
2)

+fmn g
n
m

(∑
i0,j0

(
d2Zi0

1

dX2
− d2Zj0

2

dX2

) ∏
i 6=i0,j 6=j0

(Zi
1 − Z

j
2)

)
(5.59)

d3 ResZ(F,G)

dX3
=
d3fmn g

n
m

dX3

∏
i,j

(Zi
1 − Z

j
2)

+fmn g
n
m

(∑
i0,j0

(
d3Zi0

1

dX3
− d3Zj0

2

dX3

) ∏
i 6=i0,j 6=j0

(Zi
1 − Z

j
2)

)
(5.60)

Having ∂F
∂Z
|
(X0,Z

i0
1 )
6= 0 and ∂G

∂Z
|
(X0,Z

j0
1 )
6= 0 contributes then to the existence of two func-

tions Z1(X) and Z2(X) in a neighborhood of X0. Following the notation in Proposition
19, these functions equates at X0 i.e. Z1(X0) = Z2(X0) = Zi0

1 = Zj0
2 = Z0. The identi-

ties above are then the outcome of differentiating F and G along the roots curves Z1(X)
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and Z2(X) in a neighborhood of X0 at the point (X0, Z0). Therefore, the right-hand si-
des of the identities are set to zero. It remains to argue that a unified notation resemb-
led by dkZ

dXk , k = 0, 1, 2 is legitimate for both identities of F and G. This is profited
from setting the polynomials in (5.57), (5.58), (5.59) and (5.60) to zero. We notice that
dk ResZ(F,G)

dXk |X0 = 0 =⇒ dkZ
i0
1

dXk =
dkZ

j0
2

dXk , where, by dkZ
i0
1

dXk , we mean dkZ1

dXk |(X0,Z
i0
1 )

and simi-

larly, dkZ
j0
2

dXk is the notation for dkZ2

dXk |(X0,Z
j0
2 )

. Therefore, let us denote with dkZ
dXk simply both

dkZ1

dXk and dkZ2

dXk . The identities are then mere calculation.
Let us now investigate the converse of the statement. The first derivative dResZ(F,G)

dX
|X0 = 0

implies that the following matrix  ∂F
∂X

∂F
∂Z

∂G
∂X

∂G
∂Z


|(X0,Z0)

(5.61)

has a zero determinant which is equivalent to the identity (5.51) for both F and G. Proving
the forward and backward directions was done in Proposition 19. We consider the second-
order case when d2 ResZ(F,G)

dX2 |X0 = 0. This generates the following equations at (X0, Z0) after
simplifying (5.53) by using (5.51) and (5.52):

∂2F

∂X2
− ∂2F

∂Z2

(
dZ

dX

)2

+
∂F

∂Z

d2Z

dX2
= 0 (5.62)

∂2G

∂X2
− ∂2G

∂Z2

(
dZ

dX

)2

+
∂G

∂Z

d2Z

dX2
= 0 (5.63)

which is equivalent to the matrix equation:

 ∂2F
∂X2

∂2F
∂Z2

∂F
∂Z

∂2G
∂X2

∂2G
∂Z2

∂G
∂Z

|(X0,Z0)


1

−
(
dZ
dX

)2

d2Z
dX2

|X0 =

 0

0

 (5.64)

which means that  ∂2F
∂X2

∂2F
∂Z2

∂F
∂Z

∂2G
∂X2

∂2G
∂Z2

∂G
∂Z

|(X0,Z0) (5.65)

has a rank one. Without loss of generality, this means that its rows are multiple of each other.
Now proving the converse, suppose that Matrix 5.65 is a rank one matrix and thus its rows
are multiple of each other. Now differentiating over the solution functions Z1 and Z2 for F
and G respectively, the following identities do hold at (X0, Z0):

∂2F

∂X2
− ∂2F

∂Z2
1

(
dZ1

dX

)2

+
∂F

∂Z1

d2Z1

dX2
= 0 (5.66)

∂2G

∂X2
− ∂2G

∂Z2
2

(
dZ2

dX

)2

+
∂G

∂Z2

d2Z2

dX2
= 0 (5.67)
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Knowing that dZ1

dX
|X0 = dZ2

dX
|X0 , it is easy then to check that d2Z1

dX2 |X0 = d2Z2

dX2 |X0 upon using
the Identities (5.66),(5.67) and the rank one property of the Matrix 5.65. They imply that
d2 ResZ(F,G)

dX2 |X0 = 0. Same analysis can be done for proving the converse of d3 ResZ(F,G)
dX3 |X0 =

0 =⇒ Identities 5.56 for both F and G. �

Proposition 58 Consider System (5.38-5.39) and its resultant ResZ(Ẋ, Ż) same as in (5.29).
We embrace the same notation as in (5.40) for the right-hand sides of Ẋ and Ż. Suppose
that d

k ResZ(f1,f2)
dXk |X0 = 0, k = 0, 1, 2 where (X0, Z0) is a solution of System (5.38− 5.39).

We let ∂f1
∂Z
|(X0,Z0),

∂f2
∂Z
|(X0,Z0) 6= 0. Then the linearization of System (5.38-5.39) admits a zero

eigenvalue at (X0, Z0). Moreover, the restriction to the centre manifold as in (5.46) upon
transforming the system admits the coefficient a(0) = 0 for the given parameters (a, b, e).
The converse is true.

Proof: The proof of the equivalence for which a zero eigenvalue of f at (X0, Z0) ⇐⇒
dResZ(f1,f2)

dX
|X0 = 0 was done in Proposition 19. From now on we use alternatively the

notation fiX instead of ∂fi
∂X

and Z(k)
X instead of dkZ

dXk . Solving for q and p as in (5.44) and
(5.48) respectively, let f1X 6= 0. The other case is trivial.

q =
1√

(− f1Z
f1X

)2 + 1

 − f1Z
f1X

1

|(X0,Z0) (5.68)

p =
1√

(−f2Xf1Z
f21X

)2 + 1

 −f2X
f1X

1

|(X0,Z0) (5.69)

We have the following identities after simplifying those in Proposition 57:

f1X = −f1ZZ
′
X . (5.70)

f1XZ = −f1ZZZ
′
X . (5.71)

f1XX = f1ZZZ
′2
X − f1ZZ

′′
X . (5.72)

f1XZZ = −f1ZZZZ
′
X . (5.73)

f1XXZ = 2f1ZZZZ
′2
X − f1ZZZZ

′
X − f1ZZZ

′′
X . (5.74)

f1XXX = −4f1ZZZZ
′3
X + 3f1ZZZZ

′2
X + 3f1ZZZ

′
XZ

′′
X − f1ZZ

′′′
X . (5.75)

Similar identities hold by replacing f1 by f2. According to the assumption, it is possible to
use any of the simplified identities except (5.75) since it contains a third derivative Z ′′′X |X0

which is not necessarily common between Z1 and Z2 of f1 and f2 respectively. Using these
identities and substituting in B(q, q), we compute the following matrix:

B(q, q) =
1

(− f1Z
f1X

)2 + 1


−f1Z

Z′′X
Z′

2
X

−f2Z
Z′′X
Z′

2
X

|(X0,Z0) (5.76)
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Now computing a(0) and making use of the simplified identities

a(0) =
1

2
〈p,B(q, q)〉|(X0,Z0)

=
1

2
√

(−f2Xf1Z
f21X

)2 + 1

1

(− f1Z
f1X

)2 + 1

[(
−f2X

f1X

)(
−f1Z

Z ′′X
Z ′

2

X

)

+

(
−f2Z

Z ′′X
Z ′

2

X

)]
= 0. (5.77)

We prove now the other direction, that a(0) = 0 =⇒ d2 ResZ(f1,f2)
dX2 |X0 = 0. Following the

assumption, we notice that 〈p,B(q, q)〉 = 0 is equivalent up to a scalar factor to having the
following matrix system zero at (X0, Z0)

 −f2X
f1X

1




(
− f1Z
f1X

1
) f1XX f1XZ

f1XZ f1ZZ

 − f1Z
f1X

1


(
− f1Z
f1X

1
) f2XX f2XZ

f2XZ f2ZZ

 − f1Z
f1X

1




= 0 (5.78)

Profiting from the already done proof of the converse implication of the zero eigenvalue, we
know that Identity (5.70) still holds for f1 evidently and for f2 by replacing f1 with f2 in
(5.70). System (5.78) can then be simplified into −f2Z

f1Z

1

|(X0,Z0)


f1XX
Z′

2
X

+ 2f1XZ
Z′X

+ f1ZZ

f2XX
Z′

2
X

+ 2f2XZ
Z′X

+ f2ZZ

|(X0,Z0) = 0 (5.79)

which implies that(
f1XX

Z ′
2

X

+ 2
f1XZ

Z ′X
+ f1ZZ

)
|(X0,Z0) =

f1Z

f2Z

(
f2XX

Z ′
2

X

+ 2
f2XZ

Z ′X
+ f2ZZ

)
|(X0,Z0).(5.80)

Now computing d2f1
dX2 and d2f2

dX2 along Z1 and Z2, we get the identities as in (5.53) at (X0, Z0):

d2f1

dX2
=
∂2f1

∂X2
+ 2

∂2f1

∂X∂Z1

dZ1

dX
+
∂2f1

∂Z2
1

(
dZ1

dX

)2

+
∂f1

∂Z2

d2Z1

dX2
= 0. (5.81)

d2f2

dX2
=
∂2f2

∂X2
+ 2

∂2f2

∂X∂Z2

dZ2

dX
+
∂2f2

∂Z2
2

(
dZ2

dX

)2

+
∂f2

∂Z2

d2Z2

dX2
= 0. (5.82)

Knowing that dZ1

dX
|X0 = dZ2

dX
|X0 and substituting (5.80) in (5.81), we easily obtain d2Z1

dX2 |X0 =
d2Z2

dX2 |X0 and thus d2 ResZ(f1,f2)
dX2 |X0 = 0 is established. �

Proposition 59 Under the same settings of Proposition 58, if in addition d3 ResZ(f1,f2)
dX3 |X0 =

0, then the restriction to the centre manifold as in (5.46) upon transforming the system
admits the coefficients a(0) = 0 and c(0) = 0 for the given parameters (a, b, e) and the
converse is true.
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Proof: We need to compute the coefficient c(0) of the restriction to the centre manifold
as in (5.46). It was proven in Proposition 58 that a(0) = 0, it is enough then to show that
c(0) = 0. We start by computing h as in (5.50), we have upon using the simplified identities
of the previous proposition

h =

 h1

h2

 =


f1Z

f2Z−f1ZZ′X
Z′′X
Z′

2
X

f2Z
f1Z
h1

|(X0,Z0) (5.83)

Now computing B(q, h), we get the following matrix:

B(q, h) =

 −f1Z
Z′′X
Z′X
h1

−f2Z
Z′′X
Z′X
h1

|(X0,Z0) (5.84)

It follows that

〈p,B(q, h)〉|(X0,Z0) = h1

(
−f2X

f1X

(
−f1Z

Z ′′X
Z ′X

)
+

(
−f2Z

Z ′′X
Z ′X

))
= h1

(
f2Z

Z ′′X
Z ′X
− f2Z

Z ′′X
Z ′X

)
= 0. (5.85)

Now computing C(q, q, q), we get the following matrix:

C(q, q, q) =
1

((− f1Z
f1X

)2 + 1)
3
2


−f1Z

Z′′′X
Z′

3
X

−f2Z
Z′′′X
Z′

3
X

|(X0,Z0) (5.86)

and it follows that

〈p, C(q, q, q)〉|(X0,Z0) =
1

((− f1Z
f1X

)2 + 1)
3
2

1

2
√

(−f2Xf1Z
f21X

)2 + 1

[
−f2X

f1X

(
−f1Z

Z ′′′X
Z ′

3

X

)

+

(
−f2Z

Z ′′′X
Z ′

3

X

)]
= f2Z

Z ′′′X
Z ′

3

X

− f2Z
Z ′′′X
Z ′

3

X

= 0. (5.87)

Therefore,

c(0) =
1

6
〈p, C(q, q, q) + 3B(q, h)〉 = 0.

as required.
Now proving the converse of the statement, we assume that c(0) = 0 in addition to a(0) = 0
and the zero eigenvalue case discussed before. It is therefore

c(0) =
1

6
〈p, C(q, q, q)〉+

1

6
〈p,B(q, h)〉 =

1

6
〈p, C(q, q, q)〉+ 0 (5.88)
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since 〈p,B(q, h)〉 = 0 follows from (5.85) where only second-order in X identities were
used. It was proven in Proposition 58 that these identities hold if a(0) = 0. The assumption
is then that 〈p, C(q, q, q)〉 = 0. This can be written up to a scalar factor and upon using the
first and second-order identities in the following matrix form:

(
−f2X
f1X

1
)
|(X0,Z0)


f1XXX
Z′

3
X

+ 3f1XXZ
Z′

2
X

+ 3f1XZZ
Z′X

+ f1ZZZ

f2XXX
Z′

3
X

+ 3f2XXZ
Z′

2
X

+ 3f2XZZ
Z′X

+ f2ZZZ

|(X0,Z0) = 0 (5.89)

which implies that

(
f1XXX
Z′

3
X

+ 3f1XXZ
Z′

2
X

+ 3f1XZZ
Z′X

+ f1ZZZ

)
|(X0,Z0) = f1Z

f2Z

(
f2XXX
Z′

3
X

+ 3f2XXZ
Z′

2
X

+ 3f2XZZ
Z′X

+ f2ZZZ

)
|(X0,Z0)

(5.90)

We substitute this quantity in d3f1
dX3 and d3f2

dX3 given by the following expressions at Z1 and Z2

given by (5.56):

d3f1

dX3
=
∂3f1

∂X3
+ 3

∂3f1

∂X2∂Z1

dZ1

dX
+ 3

∂3f1

∂X∂Z2
1

(
dZ1

dX

)2

+ 3
∂2f1

∂X∂Z1

d2Z1

dX2

+
∂3f1

∂Z3
1

(
dZ1

dX

)3

+ 3
∂2f1

∂Z2
1

dZ1

dX

d2Z1

dX2
+
∂f1

∂Z1

d3Z1

dX3
= 0. (5.91)

d3f2

dX3
=
∂3f2

∂X3
+ 3

∂3f2

∂X2∂Z2

dZ2

dX
+ 3

∂3f2

∂X∂Z2
2

(
dZ2

dX

)2

+ 3
∂2f2

∂X∂Z2

d2Z2

dX2

+
∂3f2

∂Z3
2

(
dZ2

dX

)3

+ 3
∂2f2

∂Z2
2

dZ2

dX

d2Z2

dX2
+
∂f2

∂Z2

d3Z2

dX3
= 0. (5.92)

It is then easy to check that d3Z1

dX3 |X0 = d3Z2

dX3 |X0 , knowing that f1XZ = f1Z
f2Z
f2XZ and f1ZZ =

f1Z
f2Z
f2ZZ are a direct outcome of a(0) = 0. Consequently, d

3 ResZ(f1,f2)
dX3 |X0 = 0. �

In order to prove the occurrence of cusp bifurcation for System (5.26-5.28), three charac-
teristics must hold at an equilibrium (X0, Z0,W0): First, the Jacobian matrix must admit
a zero eigenvalue at the equilibrium. Second, a(0) = 0. Third, c(0) 6= 0. Evidently, if
(X0, Z0,W0) is an equilibrium then ResZ(Ẋ, Ż)|(X0,Z0) = 0. We conclude from Propositi-
ons 57, 58 and 59 that the three characteristics are equivalent to having dResZ(Ẋ,Ż)

dX
|(X0,Z0) =

0, d2 ResZ(Ẋ,Ż)
d2X

|(X0,Z0) = 0 and d3 ResZ(Ẋ,Ż)
d3X

|(X0,Z0) 6= 0 respectively. To make things easier,

we simplify the resultant in (5.29) in the following manner: ResZ(Ẋ,Ż)
a6e5

and then we consider
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this simplified resultant with its derivatives.

ResZ(Ẋ, Ż) = X5e(X − 1)5
[
X2 + (−1− 6a)X + 3ab

]
+ 486X2 + 243X (5.93)

dResZ(Ẋ, Ż)

dX
= 3X4e(X − 1)4

[
4X3 + (−22a− 6)X2 + (12a+ 10ab+ 2)X − 5ab

]
+972X + 243 (5.94)

d2 ResZ(Ẋ, Ż)

dX2
= 6X3e(X − 1)3

[
22X4 + (−110a− 44)X3 + (120a+ 45ab+ 27)X2

+(−30a− 45ab− 5)X + 10ab] + 972 (5.95)

d3 ResZ(Ẋ, Ż)

dX3
= 60X2e(X − 1)2

[
22X5 + (−99a− 55)X4 + (162a+ 36ab+ 48)X3

+(−81a− 54ab− 17)X2 + (12a+ 24ab+ 2)X − 3ab
]

(5.96)

Setting (5.93), (5.94) and (5.95) to zero and solving for e gives rise to e0, e1 and e2 re-
spectively. These are rational functions depending on X , a and b. Now setting e0 = e1 and
e1 = e2 at X0 suffices to having the first and second characteristic satisfied. e0 = e1 is
equivalent to the following identity at X0:

20X4 + (−108a− 17)X3 + (48ab− 12a− 8)X2 + (30a+ 9ab+ 5)X − 12ab = 0

(5.97)

e1 = e2 generates the following identity at X0

80X5 + (−396a− 134)X4 + (302a+ 160ab+ 48)X3 + (24a− 105ab+ 11)X2

+(−30a− 15ab− 5)X + 10ab = 0 (5.98)

while the third characteristic is equivalent to having d3 ResZ(Ẋ,Ż)
dX3 |X0 6= 0 and then it is equi-

valent to the following non-equality:

60X2e(X − 1)2
[
22X5 + (−99a− 55)X4 + (162a+ 36ab+ 48)X3

+(−81a− 54ab− 17)X2 + (12a+ 24ab+ 2)X − 3ab
]
|X0 6= 0 (5.99)

As an example, we fix a value for parameter a. Then we substitute this value in the resultant
of the Polynomials (5.97) and (5.98) and then we solve for b. We can then solve for X and
subsequently for e. Having all the data at hand, we can then compute a(0) and c(0) in an
interval of confidence. For instance, for a = 1

9
, we obtain b ≈ 2.086240313 and the equili-

brium, for which the cusp occurs, is approximately at (0.8586160316, 0.040464847293,
0.004824624163). Then e ≈ 1.337192592 × 1010 and c(0) ≈ −9716317.38. All the condi-
tions for cusp bifurcation are satisfied. Moreover, it is guaranteed that no degenerate cusp
will be encountered for all parameter domain, where a cusp occurs. Taking the resultant of
(5.99) and (5.98) and that of (5.97) and (5.98), we notice that there are no relevant parame-
ters a and b, for which both are zero. In nearby region, the cusp point bifurcates into three
equilibria, two of them are stable. In this case, the model admits three stable equilibria, two
positive ones besides the trivial equilibrium (0, 0, b). This is illustrated in Figure 5.8 when
taking the following choice of parameters (a, b, e) =

(
1
9
, (6a+1)2

12a
, 3× 1010

)
. Upon starting
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(a) X with respect to t (b) Z with respect to t

(c) W with respect to t (d) W with respect to t (different range)

Figure 5.8: Three stable steady states exist for (a, b, e) =
(

1
9
, (6a+1)2

12a
, 3× 1010

)
. The higher

stable equilibrium for W is at b and it corresponds to the trivial steady state (0, 0, b) for the
model

120



Chapter 5 A New Model For Photosynthesis

Figure 5.9: Dynamics near the one-dimensional manifold where equilibria are located rush
toward it. The essential dynamics then take place over this manifold. Green points represent
stable equilibria while red ones represent unstable equilibria

from different initial states, solutions converge to one of the three stable equilibria. Figure
5.9 is a schematic but realistic figure of the one-dimensional manifold, where all equilibria
are located. At least three of the equilibria are not related to each other by partial order in the
non-negative orthant R3

≥0. In contrary to Hahn's model studied in the last chapters, this un-
order limits the application of the huge literature of results in monotone systems, especially
those satisfying the strongly order preserving property.

Proposition 60 System (5.38-5.39) undergoes simple fold bifurcation in Case (I)(a),(b) and
(c) and in Case (II)(a). In Case (II)(b), it undergoes generically two successive simple fold
bifurcations and in Case (II)(c), it undergoes generically three successive simple fold bifur-
cations. Hysteresis phenomenon is witnessed in Case (II)(c). Moreover, if System (5.38-5.39)
admits unique steady state (i.e., at the trivial steady state (0, 0, b)), all solutions converge to
this steady state later in time.

Proof: In Cases (I)(a), (b), (c) and in the Case (II)(a), a change in the phase portrait of
System (5.38-5.39) happens based on the schematic Figures 5.2, 5.3 and 5.4. These figures
are u-shaped and in each there is e0 > 0 such that for e < e0 no non-trivial positive steady
states exists for the system. For e = e0, there exists exactly one non-trivial positive steady
state and for e > e0, there are two non-trivial positive steady states. This change in the
number of non-trivial positive states must correspond to simple fold bifurcation. Based on
Proposition 56, a change in the phase portrait is due to simple fold bifurcation or cusp
bifurcation. In the mentioned cases, the trivial positive steady state (0, 0, b) is a persistent
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Figure 5.10: The dynamics of the singularly perturbed model take place over a two-
dimensional manifold in R3

≥0. The figure shows the dynamics rushing toward a one-
dimensional manifold where three stable equilibria are present

stable steady state that does not change with a change in parameters. Hence, it does not
unite with any of the two non-trivial steady states. Notice that if this happens, one of the
non-trivial steady states will unite alternatively with two steady states each time in a simple
fold bifurcation. Hysteresis means this, the phenomenon implying cusp bifurcation for some
choice of parameters.
In Case (II)(b), Figure 5.5 shows that there is e0, e1 > 0 such that for e < min {e0, e1} no
non-trivial steady states exist. Suppose e0 < e1, then for e = e0, e is at its minimum in one
of the curves existing in one of the intervals ]0, 6a+1

2
[ or ]6a+1

2
, 1[ and a single non-trivial

steady state is born. For e1 > e > e0, two non-trivial steady states exist. For e = e1, e is at
the other minimum on the other curve in one of the intervals ]0, 6a+1

2
[ or ]6a+1

2
, 1[ and there

are three non-trivial positive steady states. For e > e1, there are four non-trivial positive
steady states. None of the steady states encountered in the interval ]0, 6a+1

2
[ or ]6a+1

2
, 1[

undergo more than a single simple fold bifurcation. Hence, there is no hysteresis. If e0 = e1,
then at e = e0 = e1, two non-trivial steady states exist and for e > e0 = e1, four non-
trivial steady states exist. In all these, simple fold bifurcation occurs since all correspond to
exactly two steady states uniting at e = e0 and at e = e1. Notice that when e = e0 = e1, two
simultaneous simple fold bifurcations occur. However, this is not generic. In the last case,
Case (II)(c) shown in Figure 5.6, it is numerically evident that there exist ε > 0 such that
for b ∈] (6a+1)2

12a
, (6a+1)2

12a
+ ε[, there exist 0 < e0 < e1 < e2 with the following properties:

For e < e0, the unique positive steady state is the trivial steady state (0, 0, b). For e = e0,
there is exactly a single non-trivial steady state and e is at its minimum value in the interval
of relevance ]0, 1[. For e1 > e > e0, there are two non-trivial steady states. For e = e1, e
hits a local minimum and there are three non-trivial steady states. For e2 > e > e1, there
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exist four non-trivial steady states. For e = e2, e is at its local maximum and two of the
non-trivial positive steady states unite in a simple fold bifurcation. For e > e2, a non-trivial
positive steady state is lost and we are left with two non-trivial positive steady states.
Case (II)(c) corresponds then to the hysteresis phenomenon since there exist two non-trivial
positive steady states undergoing with another non-trivial positive steady state two simple
fold bifurcations alternatively. Once for e = e1 and otherwise for e = e2.
For all cases, whenever (0, 0, b) is the single positive steady state, all solutions converge to it
later. By applying the generalized Poincaré-Bendixson Theorem on the sufficiently smooth
two-dimensional manifold (plane in R3

≥0) defined by b = 2X+ Z
a

+W , a solution converges
either to a periodic orbit, a homoclinic or a heteroclinic connection between equilibria or to
an equilibrium. However, (0, 0, b) is then the unique equilibrium and it is asymptotically sta-
ble for every choice of positive parameters. Hence, all solutions must converge to (0, 0, b) in
future time. In the other cases, a solution converge into a heteroclinic connection (see Figure
5.10) of equilibria since periodic orbits are precluded for System (5.38-5.39) (Proposition
56). �

Conclusion
On Hysteresis in Photosynthesis

Hysteresis encountered in this chapter shows that photosynthesis can work in two different
positive stable equilibria that do not lie on the boundary of the space of concentrations. It
does not correspond to the exhaustion of some or many species, which is usually an extreme
scenario (e.g., collapse of the cycle). When choosing a suitable set of parameters, a change
in the parameter e causes a loss of one of these positive stable equilibria when it crosses a
certain threshold upwards or downwards. In future modeling, it is reasonable to introduce
some control function, which lets solutions switch between these two positive stable equili-
bria by leaving a neighborhood of one positive stable steady state into a neighborhood of the
other positive steady state. The system would then behave like a toggle switch interchan-
ging between two stable states. A good candidate for this feedback is the inhibition played
by inorganic phosphate on the carboxylation/oxygenation reactions. It could then be inte-
resting to implement a term like 1

k+xmn
with xn representing the concentration of inorganic

phosphate Pi in the equations of System (5.38-5.39) (see the Example System 2.3 in Chapter
3). Although System (5.38-5.39) is monotone in nature, introducing such a term might lead
to a new behavior provided that the negative feedback mechanism is powerful enough (see
[81]). The robustness of monotonicity in System (5.38-5.39) will guarantee that this term
will not destroy stable equilibria. However, it might introduce sustained oscillations (rela-
xation oscillation) having stable equilibria at their peaks and troughs and with a fast switch
from a neighborhood of one into the neighborhood of the other. It is beyond this thesis's
scope to assess hysteresis in vitro. It could be interesting to test this result experimentally.
This is usually done once by adding a variant of inorganic phosphate into the chloroplast
and checking the concentration of a traced species and otherwise by depleting inorganic
phosphate into the cytosol. The experiment copes with the anticipated hysteresis if, upon
adding inorganic phosphate, a steady state is reached, different from the stable steady state
reached upon depleting it.
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On RuBisCO

It is unusual that an enzyme is equally abundant as its substrates in nature. This is the case
with RuBisCO, at the same time, a sluggish enzyme. It is reported that RuBisCO in the
chloroplast is 1000 times as big as CO2 and is comparable with RuBP. It was later disco-
vered, after the revelation of the Calvin cycle, that RuBisCO is involved in a competitive
inhibitor reaction of CO2 fixation (see [77], [78]). Oxygen as an alternative substrate leads
to photorespiration. The efforts to patch the sluggishness and promiscuity of this enzyme
have not yet been successful [99]. However, once RuBisCO assimilates carbon, the reac-
tion occurs irreversibly [105]. This confirms a long-standing belief that a trade-off exists in
nature: High-rates enzymes are low-substrate-specific and vice versa [106]. Hence, oxyge-
nation which pursues its activity at night (thus the naming ''dark'' respiration, see [37], [38])
is an essential process during photosynthesis and it should be explicitly recognized upon
any modeling, which we have done.

On All Reactions Involved in Photosynthesis

Triose phosphate produced during the Calvin cycle is used for recovery of the cycle by
regenerating RuBP. It is also partly used for starch synthesis in the chloroplast and partly
depleted into the cytoplasm for a phosphate group entering through the entering inorganic
phosphate from the cytosol. An elevated PGA concentration and reduced Pi one activates
starch synthesis by activating ADP-glucose pyrophosphorylase [9]. In this case, or when
too much TP is depleted toward the cytoplasm, the Calvin cycle is stressed at one of its
substrates and will drastically collapse. The Calvin cycle's three key regulating processes
are photorespiration, starch, sucrose synthesis, inorganic phosphate Pi translocation and the
Calvin cycle functioning. These have been explicitly modeled in our model for photosyn-
thesis. A more detailed model might include the regulating role of energy compounds ATP
and NADPH, which we did not elaborate on since we assumed based on previous models
that oscillations in ATP are temporary. The stability of ATP production during sunlight and
the homogeneity of light intensity projecting the leaf (C3 leaf) are customary assumptions.
However, they are worth studying since it is well-known that RuBisCO activity changes
with light intensity so that carboxylation's rate is coordinated with electron transport acti-
vity. In reality, RuBisCO activase, the enzyme-activator of RuBisCO, requires ATP to work.
Additionally, it is shown in [66], [68] and [88] how ATP, NADPH and photosynthetic rates
oscillate because of different sudden changes either in the pressure of CO2 and O2 in the
light intensity or because of sudden darkness. The common conclusion of all this is that
only damped oscillations are exhibited [25]. Moreover, oscillations are rapidly stabilized.
Therefore, this backs our assumption of not including the light-phase ATP and NADPH
production by the seemingly robust stable behavior. Photosynthesis modeled remains reluc-
tant to sustained oscillations.

*
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Appendix A

Computing a(0) for Hahn's Three-Dimensional Model

Notice that it was unnecessary to prove that the second-order coefficient term a(0) 6= 0 for
System (4.1-4.3) in the light of reduction to the one-dimensional centre manifold dynamics
as in (5.46). The reason is that only simple fold bifurcation or cusp bifurcation are plausi-
ble bifurcation scenarios. However, cusp bifurcation is accompanied by hysteresis, which
requires three equilibria, with two of them being stable. An interchangeable fold bifurcation
occurs between the unstable equilibrium and one of the stable equilibria each time. Both
stable equilibria must disappear in an alternative fashion for certain parameters' choice. Ho-
wever, O(0, 0, 0), a stable equilibrium, is persistent. It is always there for all choices of
non-negative parameters, which are eventually the relevant parameters. This excludes then
hysteresis together with cusp bifurcation. There remains only the possibility of simple fold
bifurcation, which was adequately illustrated in Chapter 4. Another reason cusp bifurcation
is not plausible for (4.1-4.3) is learned from the non-dimensionalization carried out in (5.3-
5.5). γ and δ are nothing but a scale for dY

dτ
and dZ

dτ
. A simple calculation shows then that

the only decisive parameter concerning the number and nature of stationary solutions is e.
Knowing that cusp bifurcation is a codim-2 bifurcation, it depends then on the variation of
two independent parameters and since System (5.3-5.5) depends only on e, cusp bifurcation
is then ruled out.
For the sake of completion, we will compute a(0) for System (4.1-4.3). This can be done
by setting ẏ = 0 and substituting y = 2ax + 3bx2 in ż, we have then after the translation
(x, y, z)→ (X := x− x0, Y := y − y0, Z := z − z0) :

Ẋ = −aX − 4bx0X − 2bX2 + 15z4
0Z + 30z3

0Z
2 + 30z2

0Z
3 + 15z0Z

4 + 3Z5 (A.1)
Ż = 2aX + 6bx0X + 3bx2 − 25z4

0Z − 50z3
0Z

2 − 50z2
0Z

3 − 25z0Z
4 − 5Z5 − cZ (A.2)

Calling the right-hand sides of Ẋ and Ż by f1 and f2 respectively, we proceed according to
the given formulas in the last chapter. It remains to compute the fold equilibrium (x0, y0, z0).
This can be done by considering both q(z) and q′(z) from Chapter 4 and making the ansatz
z = µc

1
4 = m

k
c

1
4 as in (4.41), we end up with the following equations:

q(µc
1
4 ) = bc

9
4µ
(
µ8 + (4− k)µ4 + (4 + k)

)
= 0 (A.3)

q′(µc
1
4 ) = bc2

(
9µ8 + (20− 4k)µ4 + 4

)
= 0 (A.4)

With two equations with two unknowns, we solve for k and µ and we have k0 = 19
√

5
√

53
40

+ 37
8

and µ0 =
k40(32+9k0)

5k0−16
. The fold equilibrium is then at

(x0, y0, z0) =

(
z5

0 − 2cz0

a
, 5z0 + cz0,

m0

k0

c
1
4

)
(A.5)
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with m0 given in (4.38). Notice that we have the freedom to choose b and c as arbitrary
positive numbers, we have then to choose a =

√
m0bc

5
8 . It suffices then to compute a(0) for

any choice of positive b and c. Upon changing the values of b and c, neither the sign of a(0)
will change nor will it become zero. This is because there is a single bifurcation parameter,
which is m in this case since fold bifurcation is essentially a codim-1 bifurcation. At m =
m0 this bifurcation occurs. Now taking b = c = 1, we compute a(0) ≈ −0.0667637 6= 0.
For other values of b and c, the value of a(0) changes, but it cannot become zero. A zero
a(0) for some parameters' choice implies a cusp bifurcation, which is impossible for System
(4.1-4.3).
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Appendix B

Dynamics of Hahn's Three-Dimensional Model at Fold
Equilibrium

We didn't study the dynamics of Hahn's three-dimensional model at the parameters' values,
for which a fold equilibrium exists. Fold equilibrium happens exactly when m = m0. The
dynamics arising at this particular value are not significant to investigate since they happen
for a zero measure set of parameters' values. Nevertheless, for the sake of completeness, we
consider this case here.
Hahn's model admits at m = m0 two steady states: The trivial steady state O(0, 0, 0) and a
positive steady state with one zero eigenvalue and two eigenvalues with negative real part.
Let us call this fold equilibrium F . It possesses a two-dimensional stable manifold and a
one-dimensional centre manifold. We can argue that the set W̃ s(F ) :=

(
B(F ) ∩B(O)

)
∪

W s(F ), the extension of the stable manifold of F , is a Lipschitz balanced, compact manifold
as we had proven for W̃ s(A) in Propositions 26, 33 and 34. W̃ s(F ) constitutes the set of all
solutions that do not converge into F or O on the boundary of their basins of attraction. As
shown in Proposition 35, all non-trivial ω−limit sets above or below W̃ s(F ) implies non-
trivial ω−limit sets of the same quality on W̃ s(F ). Particularly, non-trivial ω−limit sets are
periodic orbits for Hahn's model. It is sufficient then to study the dynamics on W̃ s(F ). We
illustrate this in the following proposition.

Proposition 61 For m = m0, a solution of System (4.1-4.3) starting in R3
≥0 converges

either into the fold equilibrium F or into the origin O.

Proof: Suppose there lies a periodic orbit P on W̃ s(F ) and let p ∈ P . Since B(F ) is an
unbounded set including [F,+∞[, there is q ∈ B(F ) such that p � q. By strong monoto-
nicity of the system, ω(p) ≤ ω(q) = F . We assume that ω(p) < F . Then there is t0 > 0
such that φt(p) ∈ [O,F ] for all t > t0 and ω(p) = O since all solutions starting in [O,F [
converge to O as t→∞. Hence, p is not on a periodic orbit, which contradicts our assump-
tion. The other possibility would be that ω(p) = F , which also contradicts our assumption.
Hence, no periodic orbit exists on W̃ s(F ). By the generalized Poincaré-Bendixson Theo-
rem, all solutions starting on W̃ s(F ) must eventually converge into F and no periodic orbits
exist in R3

≥0. Therefore, any solution starting in R3
≥0 converges either to O or to F . �
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