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Abstract

We use tropical curves and toric degeneration techniques to construct closed embedded Lagrangian rational
homology spheres in a lot of Calabi-Yau threefolds. The homology spheres are mirror dual to the holomorphic
curves contributing to the Gromov-Witten (GW) invariants. In view of Joyce’s conjecture, these Lagrangians are
expected to have special Lagrangian representatives and hence solve a special Lagrangian enumerative problem in
Calabi-Yau threefolds.

We apply this construction to the tropical curves obtained from the 2,875 lines on the quintic Calabi-Yau
threefold. Each admissible tropical curve gives a Lagrangian rational homology sphere in the corresponding mirror
quintic threefold and the Joyce’s weight of each of these Lagrangians equals the multiplicity of the corresponding
tropical curve.

As applications, we show that disjoint curves give pairwise homologous but non-Hamiltonian isotopic La-
grangians and we check in an example that > 300 mutually disjoint curves (and hence Lagrangians) arise. Dehn
twists along these Lagrangians generate an abelian subgroup of the symplectic mapping class group with that rank.
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1. Introduction

Special Lagrangian submanifolds of Calabi-Yau threefolds have received much attention due to their role
in mirror symmetry. Based on Thomas [57] and Thomas and Yau [58], Dominic Joyce [31] conjectured
that a Lagrangian submanifold ! admits a special Lagrangian representative (after surgery at a discrete
set of times under Lagrangian mean curvature flow) if ! is a stable object in the derived Fukaya category
with respect to an appropriate Bridgeland stability condition. Therefore, roughly speaking, special
Lagrangians correspond to stable objects. In [29], Joyce proposed a counting invariant for rigid special
Lagrangians (i.e., special Lagrangian rational homology spheres) so that each of these Lagrangians ! is
weighted by F(!) := |�1 (!,Z) | when it is counted and, under the conjectural correspondence between
special Lagrangians and stable objects, Joyce’s counting invariant is conjectured to be mirror to the
Donaldson-Thomas invariant. One possible explanation of the weight F(!) = |�1 (!,Z) | is that objects
in the Fukaya category are Lagrangians with local systems and |�1 (!,Z) | is exactly the number of rank
one local systems on !, giving |�1 (!,Z) | many different objects in the Fukaya category. (The original
explanation in [29] is different.)

Even before counting, finding special Lagrangians is a challenging problem ([28], [30] etc). The main
source of examples is given by the set of real points. Making a given Lagrangian special is hard. Even
without the specialty assumption, there are not many explicit methods to construct closed embedded
Lagrangian submanifolds in Calabi-Yau threefolds in the literature, especially when the Calabi-Yau is
assumed to be compact and the Lagrangians spherical. In this article, we provide a new method to
address the latter difficulty using toric degeneration techniques and tropical curves.

The Lagrangians are constructed by dualizing tropical curves that contribute to the Gromov-Witten
(GW) invariant of the mirror. Therefore, even though we do not show that the Lagrangians we con-
struct are (Hamiltonian isotopic to) special Lagrangians, their quasi-isomorphism classes in the Fukaya
category are conjecturally mirror dual to the stable sheaves contributing to the Donaldson-Thomas in-
variants (via DT/GW correspondence). It is expected that these Lagrangians would give the full set of
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stable objects in a fixed  -class in the Fukaya category with respect to a stability condition and hence
play an important role in the enumerative study of stable objects in the Fukaya category. In particular,
we find that the weight F(!) indeed coincides with the multiplicity of the corresponding tropical curve,
which is also how it enters the mirror dual GW count. We communicated this result to Mikhalkin, who
then also confirmed it in his approach [41].

The idea of construction is motivated by Strominger, Yau and Zaslow’s (SYZ) conjecture [56] and
the construction of cycles in [47]. Parallel results without connection to enumerative geometry have
very recently been achieved independent from us in the situation where the symplectic manifold is
noncompact [38], [37], [25, 26], a toric variety [41], [27] or a torus bundle over torus [54].

Roughly speaking, if there is a Lagrangian torus fibration for a Calabi-Yau manifold and a tropical
curve W in the base integral affine manifold such that all edges of W have weight one, then it is easy to
construct for each edge 4 of W a Lagrangian torus times interval !4 lying above 4, and for each trivalent
vertex E of W a Lagrangian pairs of pants times torus !E lying above a small neighbourhood of E.
Moreover, these local pieces can be constructed in a way that can be patched together smoothly, resulting
in a Lagrangian submanifold !◦W . Furthermore, if W hits the discriminant at the end points appropriately,
then !◦W can be closed up to a closed embedded Lagrangian !W , whose diffeomorphism type is determined
by the combinatorial type of W and the local monodromy at points where the discriminant is hit. We
will explain this in more details in Subsection 2.6. We call !W a tropical Lagrangian over W. The key
point is that this construction is straightforward only when we have been given a Lagrangian torus
fibration. However, the only compact Kähler Calabi-Yau threefolds that knowingly admit a Lagrangian
torus fibration are torus bundles over a torus.

Our actual construction starts with a family of smooth threefold hypersurfaces "C ⊂ PΔ in a toric
4-orbifold PΔ degenerating to "0 = mPΔ , the toric boundary divisor of PΔ with the reduced scheme
structure. Let (mPΔ )Sing be the locus of singular points of mPΔ , (mPΔ )Smooth := mPΔ \ (mPΔ )Sing,
Disc := "C ∩ (mPΔ )Sing be the discriminant, cΔ : PΔ → Δ be the moment map and A := cΔ (Disc).
Suppose that PΔ has at worst isolated Gorenstein orbifold singularities. The singularities are necessarily
at the preimage of vertices of Δ under cΔ , and thus "C is a smooth threefold for |C | > 0 small.

Starting with a reflexive polytope Δ- , [21] exhibited a Minkowski summand Δ ′ so that Δ = Δ- +Δ ′
has the property that (mΔ ,A) is simple ([23], Definition 1.60). We equip mΔ \A with an integral affine
structure using the integral affine structure on cΔ ((mPΔ )Smooth) and the fan structure at the vertices; see
Definition 3.13 in [21], Example 1.18 in [23]. Therefore, we can define tropical curves W in (mΔ ,A);
see Definition 1 below. We require W ∩ A to be the set of univalent vertices of W. Let Λ be the local
system of integral tangent vectors on mΔ \ A. When W is rigid and Λ is trivialisable over W, we can
associate to W its multiplicity mult(W) defined in [36] (cf. [35], [42]), which we recall in Subsection
2.7. The multiplicity depends on the directions of edges of W as well as the monodromy action around
A near the univalent vertices of W. We call a tropical curve W admissible if for each univalent vertex E,
there is a neighbourhood$E of E such that$E ∩A is an embedded curve (rather than two-dimensional).
The tropical lines that end on the ‘internal edges of the quintic curves’ in a mirror quintic threefold
are admissible; see Lemma 2.5 – in the example of Subsection 2.5, more than half of the lines are
admissible. Moreover, an admissible tropical curve determines a diffeomorphism type of a 3-manifold
in the way that the diffeomorphism type of a tropical Lagrangian over W is determined by W. By slight
abuse of terminology, we call the diffeomorphism type determined by W a Lagrangian lift of W (see
Subsection 2.6). We denote the n-neighbourhood of W with respect to the Euclidean distance on Δ by
,n (W). Our main theorem is the following.

Theorem 1.1. Let W be an admissible tropical curve in mΔ . For any n > 0, there exists a X > 0 such
that for all 0 < |C | < X, there is a closed embedded Lagrangian ! ⊂ "C such that cΔ (!) ⊂ ,n (W)
and ! is diffeomorphic to a Lagrangian lift of W. Moreover, whenever mult(W) is well defined, we have
F(!) = mult(W).

Remark 1.2. For a discussion of nonadmissible tropical curves, see Remark 6.3, 6.20.
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Remark 1.3. Though our main examples are mirror quintics, Theorem 1.1 applies to all admissible
tropical curves that arise from the setup in [21] explained above. For example, the tropical curves are
not necessarily simply connected.

Remark 1.4. Though mult(W) is only defined when Λ is trivialisable over W [36], in view of Theorem
1.1, it is tempting to define mult(W) by F(!) when Λ is not trivialisable. We believe that this definition
will have application to enumerative problems in algebraic/tropical geometry.

Remark 1.5. One can easily generalise F(!) = mult(W) to all dimensions (see Remark 2.8). However,
it was pointed out to us by Joyce that we do not expect a special Lagrangian counting invariant in
dimensions higher than 4.

Proof (Sketch of proof of Theorem 1.1). The construction is divided into two parts: for the geometry
away from the discriminant and near the discriminant. Both constructions rely heavily on the fact that
we can isotope "C symplectically to a nice symplectic hypersurface in local coordinates, as long as the
isotopy is away from the discriminant and does not produce new discriminant (see Lemma 4.1).

For the construction away from the discriminant, we isotope "C to a standard form (Lemma 5.3) in
a chart such that "C admits a local Lagrangian torus fibration and we can construct a local Lagrangian
from the torus fibration (Proposition 5.4). We have to deal with compatibility of standard forms (Lemma
5.8), transition of symplectic charts (Corollary 5.11) and the trivalent vertices of W (Lemma 5.15). The
outcome will be an embedded Lagrangian with toroidal boundaries such that the cΔ -image lies in a
small neighbourhood of W.

Then we need to close up the Lagrangian with toroidal boundaries by Lagrangian solid tori near the
discriminant, which is the essential part of the construction. The basic idea is that we can deform "C to
a particular " such that we have complete control away from the discriminant. We find an appropriate
open subset + of " that is an exact symplectic manifold with contact boundary (Proposition 6.28) and
we have complete control near the contact boundary of + . We show that + is a symplectic bundle over
an annulus and we use our control near m+ to show that the boundaries of the fibres are standard contact
(3. By a famous result of Gromov, each fibre is symplectomorphic to an open 4-ball (Theorem 6.8).
There is a Legendrian )2 inside m+ , which is an (1-bundle over (1 with respect to the symplectic 4-ball
fibre bundle structure on + . This Legendrian )2 can be filled by a Lagrangian solid torus in + by a soft
symplectic method (Proposition 6.18), which gives the Lagrangian solid torus we need.

Once the Lagrangian is constructed, the statement that F(!) = mult(W) follows from a simple
calculation using Čech cohomology (see Subsection 2.7) that was independently obtained in [41] by a
different argument after a presentation of our result given by the second author in 2017. �

Application to symplectic topology

Let S be the set of admissible tropical lines in (mΔ ,A) associated with a pencil of mirror quintics.
We can show that the Lagrangians constructed by Theorem 1.1 are homologous and non-Hamiltonian
isotopic in the following sense.

Theorem 1.6. Let W ∈ S and !W be a Lagrangian obtained by Theorem 1.1. For any W′ ∈ S, we can get
a Lagrangian !W′ by Theorem 1.1 such that [!W] = [!W′] ∈ �3(",Z). Moreover, if W ∩ W′ = ∅, then
!W is not Hamiltonian isotopic to !W′ .

Theorem 1.6 gives a large number of pairwise homologous but non-Hamiltonian isotopic Lagrangian
rational homology spheres, which is a rare application to symplectic topology in the literature.

When ! is diffeomorphic to a free quotient of a sphere by a finite subgroup of ($ (4), we can define
a Dehn twist along !, which is an element in the symplectomorphism group Symp(") of " . It is easy
to deduce the following from Theorem 1.1.

Corollary 1.7. Let :max be the maximum number of disjoint tropical curves satisfying Theorem 1.1
such that for each 8 = 1, . . . , :max, the corresponding !8 is a spherical manifold. Then c0 (Symp("))
contains an abelian subgroup isomorphic to Z:max .
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Note that, in generic situations, most tropical curves are disjoint from the others, so Corollary 1.7
gives a large rank of abelian subgroup in c0 (Symp(")).

By a computer-aided search for a particular symplectic mirror quintic, we found 354 pairwise disjoint
admissible tropical lines giving 312 Lagrangian (3 and 42 Lagrangian RP3 in the mirror quintic, all
of which are pairwise disjoint. The total number of admissible tropical lines in our example is 1, 451,
out of which 1, 406 have multiplicity one (giving Lagrangian (3s) and 45 have multiplicity two (giving
Lagrangian RP3s). The total number of tropical lines in our example is, however, 2, 785, out of which
2, 695 have multiplicity one and 90 have multiplicity two, so the weighted sum is indeed 2,875. Their
adjacency matrix has full rank, which implies that every tropical line intersects some other tropical line.
Inspection of the centre of Figure 3 gives an impression of the meeting of tropical lines, yet tropical
lines also meet others across components of the degenerate Calabi-Yau unlike what is possibly expected.
We do not know whether this is a general phenomenon or due to possibly not having picked the most
general deformation. We chose a random small perturbation of the subdivision given in Subsection 2.4.

Structure of the article

In Section 2 we give some background of SYZ mirror symmetry and the tropical curves in the affine base.
We also explain the topology of the Lagrangians and derive some consequences, including Theorem
1.6, by assuming Theorem 1.1, which is proved in the subsequent sections. In Section 3, we review toric
geometry from a symplectic perspective. In Section 4, we explain how to perform symplectic isotopy
away from the discriminant for our pencil of hypersurfaces. Then we explain the construction of the
Lagrangians away from the discriminant and near the discriminant in Sections 5 and 6, respectively. We
conclude the proof of Theorem 1.1 in Subsection 6.8.

2. From 2,875 lines on the quintic to Lagrangians in the quintic mirror

The toy model of the SYZ mirror symmetry conjecture is the following. Set + = R= and let )+ and
)∗+ denote the tangent and cotangent bundle. Let )Z+ denote the local system on + of integral tangent
vectors (using the lattice 2cZ= in R=). The quotient )+/)Z+ is an ((1)=-bundle over + . Similarly, we
can define )∗

Z
+ and another ((1)=-bundle )∗+/)∗

Z
+ . We arrive at dual torus fibrations over + ,

- := )+/)Z+ → + ← )∗+/)∗Z+ =: -̌,

where the left one carries a natural complex structure with complex coordinates (I 9 ) 9=1,...,= given by

(G, U =
∑
9 H 9m/mG 9 ) ↦→ (I 9 = G 9 +

√
−1H 9 ) 9=1,...,= and G 9 the 9 th coordinate on+ . The right one carries

a natural symplectic structure inherited from the canonical one of )∗+ . Part of the conjecture of SYZ is
that mirror symmetry is locally of this form. Unless we are talking about complex tori, in practice there
are also singular torus fibres in these bundles for Euler characteristic reasons, and we will get back to this.

Note that this toy model gives insight on how a complex submanifold ought to become a Lagrangian
submanifold of the mirror dual (see Subsection 6.3 of [3]). If, is an integrally generated linear subspace
of + , then ),/)Z, is naturally a complex submanifold of - . On the other hand, ,⊥/(,⊥ ∩ )∗

Z
+)

as a subbundle of )∗+/)∗
Z
+ supported over , is a Lagrangian submanifold of -̌ . To reach sufficient

generality, one needs to run this construction for the situation where , is a tropical variety; that
is, a polyhedral complex. At a general point it still looks just like the above but then pieces are
glued nontrivially when polyhedral parts meet another. However, this does not produce a differentiable
submanifold, let alone complex or Lagrangian. Improvements on the symplectic side can be made by
thickening the tropical, to an amoeba (see [37]). In this article, we are only interested in the situation
where , is one-dimensional, so a tropical curve, and the focus will be put on constructing closed
Lagrangian submanifolds in Calabi-Yau threefolds using tropical curves. Whenever -̌ compactifies to
a projective toric variety and the tropical curve attaches to the codimension two strata in the moment
polytope in particular ways, Mikhalkin recently gave a construction of closed Lagrangian submanifolds
in the projective toric variety [41]. On the other hand, no Lagrangian torus fibration is known for any
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6 Cheuk Yu Mak and Helge Ruddat

simply connected compact Calabi-Yau threefold. This is the situation that we are interested in, which
is also the subject of the SYZ conjecture. Luckily, most Calabi-Yau threefolds permit degenerations to
a reducible union of toric varieties, introducing the toric techniques we lay out for the quintic and its
mirror dual in the next sections.

2.1. The quintic threefold and its symplectic mirror duals

The most famous Calabi-Yau threefold is the quintic - in CP4. Its mirror dual -̌ is a crepant resolution
of an anticanonical hypersurface in the weighted projective space PΔ -̌ associated to the lattice simplex

Δ -̌ = conv
{
41, ..., 44,−

∑
9

4 9

}
.

One findsPΔ -̌ � CP
4/(Z5)3. As progress towards nailing the SYZ conjecture for the quintic, Mark Gross

[20, Theorem 4.4] gave a topological torus fibration on a space that is diffeomorphic to - and Matessi
and Castaño-Bernard [6] showed that this one can be upgraded to a piecewise smooth Lagrangian
fibration for some symplectic structure and a similar approach works for -̌ . Recently, Evans-Mauri
[15] gave a Lagrangian fibration local model for parts of the fibration that are most difficult to deal
with in dimension three. Whether this can be used for global compactifications of fibrations or tropical
Lagrangian attachment problems presumably requires a similarly careful analysis as for the situations
that we are going to consider. For recent progress on the SYZ topology, we refer to [49, 48, 50].

We are not working on the diffeomorphic model but on the actual symplectic quintic mirror -̌; in
fact, our construction applies to Lagrangians in each of the many possibilities resulting from different
choices of a crepant resolution for the quintic mirror (ℎ1,1 ( -̌) = 101). For our construction, it suffices
to have a Lagrangian torus fibration locally around the Lagrangian ! that we wish to construct from a
tropical curve W. To say where W lives, we make use of the construction of the real affine base space of
the torus fibration from [20].

The Newton polytope of the quintic is the polar dual to Δ -̌ ; that is, the convex hull
conv{0, 541, ..., 544} translated by (−1,−1,−1,−1) so that its unique interior lattice point (1, 1, 1, 1)
becomes the origin. We call the resulting polytope Δ- . Choosing 0< ∈ R≥0 for each < ∈ mΔ- ∩ Z4

yields a cone in R4 ⊕ R generated by the set of (<, 0<) and its boundary gives the graph of a piecewise
linear convex function i : R4 → R. We require that every face in the boundary is a simplicial cone and
we assume that each (<, 0<) generates a ray of this cone; in particular, i(<) = 0< for all <. There are
lots of i satisfying these properties, and each one gives a toric projective crepant partial resolution

res : PΔ → PΔ -̌ ,

where PΔ is given by the fan in R4 whose maximal cones are the maximal regions of linearity of i.
Equivalently, PΔ is given by the polytope

Δ =

⋂
<∈mΔ-∩Z4

{= ∈ R4 |〈=, <〉 ≥ −0<} = {= ∈ R4 |〈=, <〉 ≤ i(<) for all < ∈ R4}. (1)

Lemma 2.1. PΔ has at worst isolated Gorenstein orbifold singularities.

Proof. If f is a maximal cone in the fan – that is, a maximal region of linearity of i – then it is
simplicial by assumption and hence generated by<1, ..., <4 ∈ mΔ- , say. Moreover, these generators are
all contained in a single facet � of Δ- because the fan refines the normal fan of Δ -̌ . By the assumption
that each (<, i(<)) for < ∈ mΔ- ∩ Z4 is a ray generator, we find � ∩ f ∩ Z4 = {<1, ..., <4}. So f
is a cone over the elementary lattice simplex given by the convex hull of <1, ..., <4, and thus gives a
terminal toric Gorenstein orbifold singularity, and these have codimension four. �
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Let F 9 be the monomial associated to 4 9 . Consider the (singular) hypersurface in P-̌ given by an
anticanonical section written as a Laurent polynomial on (C∗)4,

ℎ = U1F1 + U2F2 + U3F3 + U4F4 + U0 + U5 (F1F2F3F4)−1,

with U 9 ∈ C∗ and −5U5
0 ≠

∏5
8=1 U8 (so that ℎ = 0 gives a submanifold of (C∗)4; cf. [4, §2]). The

monomial exponents of ℎ are precisely the lattice points of Δ -̌ . The closure of ℎ = 0 in PΔ misses the
isolated orbifold points at zero-dimensional strata (Lemma 2.1) and gives a symplectic 6-manifold -̌
with symplectic structure induced from PΔ . Furthermore, -̌ is a Calabi-Yau manifold because it agrees
with the crepant resolution under res of the anticanonical hypersurface, the closure of ℎ = 0 inside PΔ -̌ .
By deforming the 0< ∈ R≥0, one can study continuous deformations of the symplectic structure. The
space of crepant symplectic resolutions acquires an interesting chamber structure with a point on a wall
given by a set of 0< that violates the simplicialness of i. Just as a remark: the wall geometry is governed
by the secondary polytope of Δ- .

2.2. The real affine manifold and tropical curves

Following [21], we next explain how to give a real integral affine structure on a large open subset of mΔ
where Δ is a lattice polytope obtained from a i as in Subsection 2.1. We split Δ as a Minkowski sum

Δ = Δ -̌ + Δ ′,

where Δ ′ is the polytope associated to the piecewise linear function i′ that takes value i(<) − 1 at
< ∈ mΔ- ∩ Z4. Indeed, this gives a decomposition as claimed because Δ -̌ is the polytope of the
function i-̌ taking value 1 on all of mΔ- , so i = i-̌ + i′. By the decomposition, every vertex E of Δ
is uniquely expressible as E = E-̌ + E′ for E-̌ a vertex of Δ -̌ and E′ a vertex of Δ ′. We project a small
neighbourhood ,E ⊂ mΔ of E onto the quotient of the affine four-space [E + R4] that contains ,E by
the affine line [E + RE-̌ ] resulting an affine three-space. The projection is thus injective and thereby
gives a real affine chart for ,E . There is also an integral structure obtained by complementing E-̌ to a
lattice basis of R4 to find a lattice for the quotient. We do this for each vertex E of Δ . Furthermore, for
each facet � of Δ , its interior Int(�) carries a natural integral affine structure from the tangent space
to the facet. Combining the resulting charts ,E with the interiors of facet Int(�) yields an atlas on the
union of these charts for an integral affine structure; that is, transitions in GL3 (Z) ⋉ R3. By choosing
,E suitably, the complement of the union of charts can be made to be

A := cΔ ( -̌ ∩ P[2]Δ
) = cΔ ( -̌) ∩ mΔ [2] ,

where P[2]
Δ

is the union of complex two-dimensional strata, mΔ [2] is the union of two-cells of Δ and
cΔ : PΔ → Δ is the moment map for the Hamiltonian ((1)4-action on PΔ . We do not need Δ to be
a lattice polytope for this construction. The affine structure is integral affine because Δ -̌ is a lattice
polytope. Let Λ denote the local system of integral tangent vectors on mΔ \A (we also used )Z before).

Definition 1. A tropical curve in (mΔ ,A) is a graph W (realised as a topological space) together with a
continuous injection ℎ : W → mΔ such that

1. a vertex of W is either univalent or trivalent,
2. ℎ(E) ∈ A ⇐⇒ E is a univalent vertex of W,
3. the image of the interior of an edge 4 is a straight line segment in the affine structure of mΔ \ A of

rational tangent direction,
4. for E with ℎ(E) ∈ A, the primitive tangent vector of the adjacent edge 4 generates the image of )a − id

for )a the monodromy of Λ along any nontrivial simple loop a around A in a small neighbourhood
of E,

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2020.54
Downloaded from https://www.cambridge.org/core. Johannes Gutenberg University, on 07 Dec 2020 at 09:43:04, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2020.54
https://www.cambridge.org/core


8 Cheuk Yu Mak and Helge Ruddat

5. for every trivalent vertex E, and 41, 42, 43 ∈ ΛE the primitive tangent vectors into the outgoing edges,
we have 41 + 42 + 43 = 0 and 41, 42 span a saturated sublattice of ΛE .

We consider two tropical curves Γ1, Γ2 the same if there exists a homeomorphism Γ1 → Γ2 that
commutes with ℎ1, ℎ2. By slight abuse of notation, we also use W to refer to the image of ℎ. The following
lemma guarantees that we can always satisfy (4) above as long as the tropical curve approaches A from
the right direction. The lemma directly follows from the aforementioned simplicity of (mΔ ,A); cf. [20].

Lemma 2.2. Let G ∈ mΔ \ A be a point contained in a small neighbourhood + so that (+,+ ∩ A) is
homotopic to (�, ?) as a pair, where � is an open disc and ? is a point in �. Let a ∈ c1 (+ \ A) =
c1 (� \ ?) � Z be a generator and )a : ΛG → ΛG the monodromy of Λ along a. In a suitable basis

of ΛG � Z3, )a is given by
(

1 0 0
0 1 1
0 0 1

)
. In particular, the image of )a − id is saturated of rank one; that

is generated by a primitive vector.

2.3. Katz’s methods for finding lines on a quintic

The quintic - permits a flat degeneration to the union of coordinate hyperplanes simply by interpolation.
If - is given by the homogeneous quintic equation 55 in the variables D0, ..., D4 then we define the family
of hypersurfaces in CP4 varying with C by

D0 · ... · D4 + C 55 = 0

and denote by -0 the fibre with C = 0. Because -0 is the union of five projective spaces, it contains
infinitely many lines. However, only a finite number of them deform to the nearby fibres, worked out by
Katz in [53]. Assuming 55 is general, the intersection of - with each coordinate two-plane is a smooth
complex quintic curve. There are 10 of these.

Theorem 2.3 (Katz). A line in -0 deforms into the nearby fibre if and only if it does not meet any
coordinate line of P4 but meets four of the 10 quintic curves.

Note that it follows that a line that deforms needs to be contained in a unique irreducible component
� � P3 of -0 and needs to meet the four quintic curves that are contained in this component, namely,
the intersections of the four coordinate planes of � with - . A general quintic hosts 2, 875 = 5 · 575
many lines and in the degeneration, each � contains 575 deformable lines [53]. On the dense algebraic
torus (C∗)3 of CP3, we may apply the map (C∗)3 → R3 given by log | · | for each coordinate. Each line
maps to an amoeba with four legs going off to infinity in the directions of the rays in the fan of the toric
variety P3. Furthermore, these legs ‘meet the amoeba of the quintic plane curves at infinity’. We are not
going to make this more precise because we only use this idea as inspiration. There is a closely related
theorem that was our main motivation combined with Katz’s findings.

Theorem 2.4 ([36]). The number of tropical lines in R3 meeting 5 general quintic tropical curves at
tropical infinity each in one of the four directions of the rays of the fan of P3 when counted with their
tropical multiplicities agrees with the number of complex lines in P3 meeting five general quintic plane
curves.

So we may almost deduce from Katz’s count of complex lines a count of tropical lines via this
theorem. The only issue here is the attribute ‘general’. Indeed, the quintic curves in Katz’s situation are
not in general position. If they were, the count would be 2 · 54 by standard Schubert calculus, but this
number is way bigger than 575. Indeed, any pair of quintic curves meets each other in five points, which
would not happen if they were in general position. They meet each other because they arise from the
same equation 55 = 0 restricted to each coordinate plane.

We expect that in the more special position where the tropical quintics meet each other, after removing
degenerate tropical lines (meaning those that move in positive-dimensional families, meet vertices of
the discriminant curve or do not have the expected combinatorial type >−<), then one actually finds 575
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Figure 1. The tropical plane quintic curve that describes part of the discriminant A of mΔ .

when counting these with multiplicity. We verify this below in a global example. Before going into its
details, let us clarify why tropical lines in R3 that meet tropical quintics at infinity relate to (mΔ ,A) in
the sense of Definition 1. For B ∈ [0, 1], setting ΔB = Δ -̌ + BΔ ′, we observe Δ0 = Δ -̌ and Δ1 = Δ . In
this sense, Δ is a deformation of Δ -̌ and note that ΔB has the same combinatorial type for all B > 0.
Recall the notion of the discrete Legendre transform from [22, 23, 46]. Because Δ- and Δ -̌ are polar
duals, their boundaries are discrete Legendre dual [23, Example 1.18]. The subdivided boundary of Δ-
by means of i is the discrete Legendre dual to mΔ . For a 2-cell g in mΔ , there are three possibilities for
what its deformation ḡ in Δ0 = Δ -̌ can be, namely, zero-, one- or two-dimensional. These cases match
with whether its dual (one-dimensional) face ǧ in the subdivision of mΔ- lies in a 3-, 2- or 1-cell of

Δ- . Most important, because the subdivision of Δ- by i governs the composition PΔ
res−→ PΔ -̌ → Δ -̌ ,

the following holds.

Lemma 2.5. Let g ⊂ mΔ be a 2-cell. Recall the monomials F1, ..., F4. We set F5 := (F1F2F3F4)−1

and 8 ∈ ḡ means that the vertex of Δ -̌ corresponding to F8 is contained in ḡ. The amoeba part A∩ g is
given by

6g,0 :=
∑
8∈ ḡ

U8F8

as an equation on the torus orbit dense in the stratum of PΔ given by g.
In particular, for g deforming to an edge of Δ -̌ , 6g,0 is a binomial. Also note that A ∩ g = ∅ if ḡ is a

0-cell.

Note that 6g,0 is a binomial if and only if the corresponding amoeba is one-dimensional and hence
tropical curves ending on it will be admissible (see also Remark 6.2).

If i is a unimodular subdivision – for example, as in Figure 2 – then most 2-cells of mΔ have
A ∩ g = ∅, there are 5 · 10 many 2-cells of mΔ that deform to triangles in Δ -̌ but most interesting for
us, 10 · 30 2-cells deform to edges; hence their amoeba is given by a binomial. These amoeba pieces
arrange as 10 plane quintic curves; for example, as in Figure 1. (One verifies that indeed the number of
interior edges is 30 here.) Each quintic curve is dual to the triangulation of a 2-face of Δ- ; for example,
consider the front face in the right-hand part of Figure 2. Each facet of Δ- contains four triangle faces;
hence, dually, four quintic curves arrange together as the boundary of a space tropical quintic surface
in R3. In particular, we can view them as lying at infinity and because they make up the discriminant in
mΔ , a tropical line in R3 with ends on the four quintics thus gives a tropical curve in mΔ . There are a
lot of these (see Figure 3), and most of them are admissible; that is, they meet one of the 30 inner edges
of each quintic, rather than the 15 outer ones. Also note that this configuration appears five times in the
boundary of mΔ .
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10 Cheuk Yu Mak and Helge Ruddat

Figure 2. Graph of i0 and Weyl-�3 subdivision of a facet of the moment polytope of the quintic threefold
(obtained from i1).

2.4. A very symmetric subdivision and resolution of the quintic mirror

We next give an example for PΔ that is even a manifold (see also [20, p. 122: Figure 4.6]). The subdivision
of each facet of mΔ- is obtained from the affine Weyl chambers of type �3; cf. [32, III,§2]. Concretely,
let i0 : R → R be the unique continuous convex function that is linear on each connected component
of R \ Z, changes slope by 1 at each point in Z and is constantly zero on [0, 1] (see Figure 2). One
finds i0(=) = =(= − 1)/2 for = ∈ Z (‘discrete parabola’). Now consider the piecewise affine function
i1 : R4 → R given by

i1(G1, G2, G3, G4) = i0 (G1) + i0 (G2) + i0 (G3) + i0 (G4)
+ i0(G1 + G2) + i0 (G2 + G3) + i0(G3 + G4)
+ i0(G1 + G2 + G3) + i0(G2 + G3 + G4)
+ i0(G1 + G2 + G3 + G4),

and finally define i as the unique piecewise linear function on R4 that coincides with i1 on mΔ- . For
< ∈ mΔ- ∩ Z4, set 0< = i(<) and recall from Subsection 2.1 that i is entirely determined from the
set of 0<.

The induced subdivisions of any two facets are isomorphic and look like the right-hand side of
Figure 2. One checks that each four-dimensional cone in the fan given by i is lattice-isomorphic to the
standard cone R4

≥0 ⊂ R
4, so the resulting PΔ is smooth. In our explicit example below, we will use a

slight perturbation replacing 0< by 0< + Y< for random Y< to increase our chance of being in a generic
situation. Plugging the perturbed 0< into (1) yields a slightly deformed Δ , and though the complex
manifold PΔ does not change, this slightly perturbs the symplectic form in a well-understood manner.
The best way to understand what (mΔ ,A) looks like is by considering its discrete Legendre dual. The
subdivision of Δ- by i is five copies of the right-hand side of Figure 2 glued along facets. Therefore,
after identification, there are ten 2-faces, each carrying a subdivision that is dual to that of a quintic
curve in its most symmetric form shown in Figure 1.

2.5. The findings of a computer search for the tropical lines

As described in the previous section, we obtained a particular mΔ as a small perturbation of i that
gave the very symmetric subdivision of Δ- . From Katz’s work as described in Subsection 2.3, we are
looking for tropical lines in mΔ that meet the quadruple of tropical quintic curves where each tropical
quintic is dual to the subdivision of one of the 10 triangle faces of Δ- . We used a computer for this
search following the pseudo code1.

1For more details, the complete code with instructions and results, see
https://arxiv.org/src/1904.11780v3/anc
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Figure 3. Tropical lines in R3 meeting four tropical quintics at infinity, of total multiplicity 575.

Algorithm 1: Tropical line search

Data: Unimodular regular subdivision of the convex hull Δ- of 0, 541, ..., 544 in R4 by
piecewise affine height function that is integral at integral points.

Result: Findings of all tropical lines.
compute the tropical quintic threefold inside R4 associated to the height function;
compute the five tropical quintic surfaces (8 (8 = 1, ..., 5) at the five asymptotic directions of
infinity (each sitting inside an R3);

compute for each of these quintic surfaces (8 the quintic curves �8 9 ( 9 = 1, ..., 4) at the
respective four directions of infinity. Each �8 9 has 45 edges;

for 8 ← 1, ..., 5 do

for each of the 454 tuples (01, ..., 04) with 0 9 an edge of �8 9 do

for each of the three generic combinatorial types of a tropical line in R3 do

Check whether there exists a tropical line of the given type meeting 01, ..., 04 and,
if so, record it.

end

end

end

From the recorded tropical lines, remove all those that are nonrigid (i.e., they are part of a
positive-dimensional family) or are special (they meet vertices of the tropical quintics �8 9 ).
The remaining ones are the result of the search.

After removing all lines that meet vertices of the quintics, that have only one internal vertex or are
nonrigid (that is move in families), we did actually get the expected count – when counting with
multiplicity (which is remarkable in view of [60, 44, 8]). That is, maybe surprisingly, the lines were
not all of multiplicity one. We give the definition of the multiplicity in Subsection 2.7. For each of the
five facets of Δ- , the count with multiplicity of the tropical curves gave indeed 575, so in total 2, 875
as expected. We found 2, 695 curves of multiplicity one and 90 of multiplicity two. These 90 did not
evenly distribute over the five facets: 15+16+18+20+21. Though 90 is a number that has not appeared
yet in the context of the quintic to our knowledge, one may speculate that relates to the count of real
lines, which was found to be 15 in [55]: for rational curves on an elliptic surface, the presence of higher
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12 Cheuk Yu Mak and Helge Ruddat

Figure 4. A pair of pants.

multiplicity tropical curves is implied from the Welschinger invariant to differ from the GW invariant
(see, e.g., [59, Section 4.2.2]).

The goal is to construct Lagrangian threefolds from these tropical curves. The remainder of this
article carries this out for admissible curves. Recall that the requirement is that the tropical curve meets
the discriminant amoeba A in points where this amoeba is one-dimensional. By Lemma 2.5, this holds
true if the tropical line meets the internal edges of the quintic curves; that is, no outer edges. A bit
more than half the curves feature this: we get 1, 451 admissible lines, out of which 45 have multiplicity
two (multiplicity weighted account is 1, 496). Interestingly, the admissible curves do not meet curves of
other facets (unlike nonadmissible ones), though possibly still other curves in their own facet. We found
a set of 354 admissible lines that are pairwise disjoint, out of which 42 have multiplicity two.

2.6. Lagrangian lift of a tropical curve

In this section, we give the definition of the diffeomorphism type of a Lagrangian lift of a tropical curve
W in (mΔ ,A) to the Calabi-Yau given by mΔ; for example, the mirror quintic as before. Using the integral
affine structure on mΔ \A, we can define a Lagrangian torus bundle by

-̌◦ := )∗ (mΔ \A)/)∗Z (mΔ \A). (2)

Recall the notation Λ = )Z (mΔ \ A) and note that mΔ is an orientable topological manifold and so∧3
Λ � Z. Fixing an orientation once and for all, we can talk about oriented bases of stalks of Λ.
For each edge 4 of W and a point G in the interior 4◦ of 4, we get the two-dimensional subspace 4⊥

of )∗G (mΔ \A) consisting of co-vectors that are perpendicular to the direction of 4. By Definition 1 (3),
every translation 4⊥ + 0 descends to an embedded 2-torus in -̌◦. A smooth family of these 2-tori over
G ∈ 4◦ defines a (trivial) torus bundle !4◦ over 4◦ and the total space !4◦ is a Lagrangian submanifold
in -̌◦. It extends over the vertices of 4 that do not lie in A, and we let !4 denote the extension.

Remark 2.6. Let 5 : 4◦ → R be a smooth function such that it descends to a compactly supported
function 5 ′ : 4◦ → R/2cZ. Given a smooth family of 2-tori over G ∈ 4◦ as above, we can define a new
family by fibrewise translating the 2-tori by 5 (G). The resulting Lagrangian is a different embedding of
a 2-torus times interval to -̌◦. The function 5 ′ being compactly supported corresponds to the fact that
the two embeddings coincide near the ends of 4◦.

For each trivalent vertex E of W, by Definition 1 (5), we can identify the primitive tangent vector of the
outgoing edges as 41 = (1, 0, 0), 42 = (0, 1, 0) and 43 = (−1,−1, 0) with respect to aZ-basis ofΛE � Z3.
Let !̃E be the subset of )EmΔ/()EmΔ)Z = (R/2cZ)3 consisting of all points (@1, @2, @3) such that

{@1, @2 ≥ 0 and @1 + @2 ≤ c} or

{@1, @2 ≤ 0 and @1 + @2 ≥ −c}.
(3)

Equipping !̃E with the subspace topology yields a finite CW complex of the same homotopy type as a
pairs of pants times a circle. More explicitly, !̃E has a trivial circle factor given by the @3-coordinate,
and (3) defines two triangles in the @1, @2-coordinates and the vertices of the triangles are glued at
(@1, @2) = (0, 0), (0, c), (c, 0), respectively (see Figure 4).
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Figure 5. An admissible Čech covering of a tropical curve.

If we equip the two triangles in (3) with opposite orientations, then the boundary of them is exactly
given by the circles�1 := {@1 = 0},�2 := {@2 = 0} and�3 := {@1 + @2 = c}. For 8 = 1, 2, 3, the product
of �8 with the circle in @3-coordinate is exactly 4⊥8 + 08 ⊂ )∗E (mΔ \A), where 01 = 02 = 0 and 03 = c.
For an appropriate choice of orientations, one can see that the boundary of !̃E cancels the boundary
of ∪3

8=1!48 lying above E, yet !̃E ∪
⋃3
8=1 !48 is only a Lagrangian cell complex instead of a manifold.

In Subsection 5.2, we explain how to replace the union of the triangles by a pair of pants and obtain a
Lagrangian pair of pants times circle !E that can be glued with ∪3

8=1!48 smoothly.
Every univalent vertex E of W lies in A by Definition 1(2). Let a and )a be as in Definition 1(4), so,

by Lemma 2.2, )a =

(
1 0 0
0 1 1
0 0 1

)
for a suitable basis. The primitive direction of the edge 4 adjacent to E is

by assumption given by ±(0, 1, 0) so the 2-tori in !4 lying above 4 are generated by m@1 , m@3 . We can
glue a solid torus !E to the toroidal boundary component of !4 lying above E to cap off this boundary
component. Moreover, we require that the circle generated by m@3 is a meridian of !E . It is useful to
observe that m@3 is characterised by being perpendicular to the invariant plane ker()a − id).

Definition 2. The diffeomorphism type of a Lagrangian lift of a tropical curve W is the diffeomorphism
type of the closed 3-manifold obtained by gluing !E and !4 as above over all vertices E and edges 4
of W.

2.7. Lagrangian weight versus tropical multiplicity

Following Joyce, we define the weight of a Lagrangian rational homology sphere ! to be F(!) :=
|�1 (!,Z) | and, more generally, F(!) := |�1 (!,Z)tor |. Let W be a tropical curve in (mΔ ,A). In this
subsection, we explain how F(!W) of a tropical Lagrangian !W can be computed by a Čech covering
of the corresponding tropical curve W. Because our Lagrangian !W is homotopic to the Lagrangian
cell complex !̃W that is built by !̃E instead of !E at the trivalent vertices E (see Subsection 2.6), it
suffices to compute the first homology of !̃W . For simplicity, we denote !̃W by !W in this subsection.
The universal coefficient theorem gives (�1 (!W ,Z))tor = (�2(!W ,Z))tor, so we may compute F(!W)
via Čech cohomology.

A collection {* 9 }<9=1 of open sets in mΔ that covers W is called admissible (see Figure 5) if

1. * 91 ∩* 92 ∩* 93 = ∅ whenever 91, 92, 93 are pairwise distinct,
2. for all 9 , W ∩ * 9 is connected and it contains exactly one vertex of W that is, by definition, either

trivalent or univalent, and
3. for 91 ≠ 92, W ∩* 91 ∩* 92 (which may be empty) contains no vertex.

For {* 9 }<9=1 admissible, �8 (* 9 ∩ W,Z) and �8 (* 91 ∩* 92 ∩ W,Z) are torsion free for all 8, 9 , 91, 92 and
therefore

F(!W) =

������coker

(⊕
9

�1(c−1
Δ
(* 9 ) ∩ !W ,Z)

ΦW→
⊕
8< 9

�1 (c−1
Δ
(*8 ∩* 9 ) ∩ !W ,Z)

)
tor

������ ,
where the map ΦW is the Čech map on �1 (restriction with sign). Recall from [36, 35, 42] the definition
of multiplicity mult(W) of a tropical curve W. Applicable for us is [36, Equation (13)] because we need
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14 Cheuk Yu Mak and Helge Ruddat

to consider tropical curves with constraints on unbounded edges (i.e., univalent vertices for us). Let W◦

be the interior of W and assume that we can trivialise Λ on W◦; that is, set # := Γ(W◦,Λ) and # � Z3.
Furthermore, each univalent vertex E of W gives a saturated rank two subspace �E in # as the kernel of
)a − id near E. We view this as a constraint for the tropical curve W in #R in the sense of [36]. Given
these constraints, [36, Equation (13)] provides a map of lattices Φ whose cokernel torsion gives the
tropical multiplicity mult(W) of W.

Proposition 2.7. The Čech map ΦW is quasi-isomorphic to the tropical multiplicity computing map Φ

from [36, Equation (13)] and thus F(!W) = mult(W).

Proof. The assertion follows if one shows that there is a natural isomorphism

�1(c−1
Δ
(*8 ∩* 9 ) ∩ !W ,Z) � #/ZE

whenever *8 ∩ * 9 ≠ ∅ and E is the primitive generator of the edge of W that meets *8 ∩ * 9 and an
isomorphism

�1(c−1
Δ
(*8) ∩ !W ,Z) � #

whenever *8 contains a trivalent vertex and an isomorphism

�1 (c−1
Δ
(*8) ∩ !W ,Z) � F⊥/ZE

whenever *8 contains a univalent vertex of W, F⊥ = ker()a − id) and E the primitive generator of the
image of )a − id. Furthermore, the restriction maps �1(c−1

Δ
(* 9 ) ∩ !W ,Z)→�1(c−1

Δ
(*8 ∩* 9 ) ∩ !W ,Z)

are supposed to be the natural maps under these isomorphisms. It is straightforward to check the
isomorphisms and naturality of restriction maps from the local descriptions of !E and !4 given in
Subsection 2.6. �

Remark 2.8. Proposition 2.7 can be generalised to all dimensions for all tropical curves W satisfying
exactly the same set of conditions in Definition 1. The main reason is that, in higher dimensions,
c−1
Δ
(*8 ∩* 9 ) ∩ !W and c−1

Δ
(*8) ∩ !W split as a product and there is a trivial factor accounting for the

extra dimensions. Moreover, the universal coefficient theorem gives (�1 (!W ,Z))tor = (�2(!W ,Z))tor

no matter what the dimension is, so the same Čech cohomology calculation applies to conclude that
F(!W) := | (�1 (!W ,Z))tor | = mult(W).

2.8. Homology class of the Lagrangians

Recall from Section 4 in [45] that a tropical 2-cycle in an affine manifold �with singularitiesA is simply
a sheaf homology cycle representing a class in �2 (�, ]∗

∧2
Λ) for ] : � \ A → � the inclusion of the

regular part. Moreover, by (0.6) in [45], there is a homomorphism A2 : �2 (�, ]∗
∧2

Λ) → �3( -̌,Z)/,2

with ,2 = Im(A1) + Im(A0) for similar maps A0, A1, c.f. [49, 48]. For Γ ∈ �2(�, ]∗
∧2

Λ), we simply
refer to any lift of A2(Γ) from �3( -̌,Z)/,2 to �3( -̌,Z) by !Γ.

Lemma 2.9. There is a tropical 2-cycle Γ ⊂ mΔ whose associated 3-cycle !Γ inside "C has intersection
number ±1 with each Lagrangian !W constructed from a tropical line W. Changing the orientation of
!W if needed, we can thus assume this intersection number is +1.

Proof. Recall from Subsection 2.3 that the subdivided boundary of Δ- , call it �̌, is discrete Legendre
dual to � := mΔ . In particular, �̌ and � are homeomorphic with dual linear parts of their affine structures.
This means the homeomorphismD : �→ �̌ identifies the local system Λ̌�̌ of integral tangent vectors on
�̌\D(A) with the similar local systemΛ on �\A. We remark thatD(A) is contained in a neighbourhood
of the union of 2-faces of mΔ- . Making use of D, in order to produce the desired tropical 2-cycle Γ, it
therefore suffices to give a cycle for �2 (�̌, ]̌∗

∧2
Λ̌�̌) where ]̌ is the inclusion �̌ \D(A) ↩→ �̌. Because
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Figure 6. Intersection of a tropical line W and a tropical 2-cycle Γ in mΔ- where Γ consists of five
copies of the depicted cycle Γ0, one copy for each facet of mΔ- . The line W, however, is contained in a
unique facet of mΔ- .

�̌ is orientable, we have an isomorphism ]̌∗
∧2

Λ̌�̌ � ]̌∗Λ�̌ for Λ�̌ the dual of Λ̌�̌. We may thus give a
suitable cycle Γ representing a class in �2(�̌, ]̌∗Λ�̌) in order to prove the lemma.

Recall that mΔ- consists of five tetrahedra. Figure 6 shows one such tetrahedron containing a union
Γ0 of six polyhedral disks. The configuration Γ0 can be described as a homeomorphic version of the
compactification of the union of two-dimensional cones in the fan of P3. Each of the five facets of Δ-
contains such a configuration Γ0, and we may move the five copies of Γ0 so that they fit together to a
cycle Γ. That is, Γ is actually a union of only 10 disks, each of which is glued from 3 disks that stem
from different copies of Γ0. The 10 disks of Γ are naturally in bijection with the edges of mΔ- ; indeed,
we simply match a disk with the edge that it meets (transversely).

As the next step, we need to attach a section in Γ(�, ]̌∗Λ�̌) to each of the 10 disks � so that the 10
sections satisfy the cycle condition at the 1-cells where disks meet (three at a time). We make use of
the fact that the tangent space to a cell of the polyhedral decomposition of Δ- is always monodromy-
invariant for all monodromy transformations along loops in* \ (D(A) ∩*) for* a neighbourhood of
the interior of the cell. In the case of a pair (�, 4) of a disk � of Γ and the corresponding transverse
edge 4 of Δ- , we may choose a primitive generator E� of the tangent direction to 4 as the section of
Γ(�, ]̌∗Λ�̌) that we associate with �. Making use of the existence of an orientation of �̌, the sign of E�
and orientations of � can be chosen so that the cocycle condition on {E�}� is satisfied and we have
thus produced a valid cycle Γ as desired.

It remains to show that !Γ satisfies the claimed intersection-theoretic property. For this purpose,
we take the image of W along D and view W as a cycle in �1(�̌, ]̌∗Λ̌). Theorem 7 in [45] says that the
intersection number !W .!Γ agrees with the tropical intersection of W and Γ. The tropical intersection
number in turn is defined in item (3) of Theorem 6 in [45]. Note that W and Γ have a unique point
of physical intersection. We are left with verifying that the sections carried by W and Γ at this point
respectively pair to ±1. The sections of W carried by the outer legs are precisely generators for the perp
space of the 2-cells of Δ- that they meet. The balancing condition then implies what the section at the
central edge of W is. With this information and the knowledge that a disk � of Γ carries the section E�
that is a generator for the tangent space to the edge of Δ- that is met by �, it is easy to see from Figure 6
that the tropical intersection of W and Γ is indeed ±1 (and invariance of the intersection number under
deforming the cycles being given by Theorem 6 in [45]). �

For a fixed tropical line W, there are more than one !W that can be constructed from Theorem 1.1
due to the freedom of choices in the construction. In particular, for each !W and any integer 0, we can
construct another Lagrangian (!W) ′ by Theorem 1.1 such that the difference of their homology classes
[(!W) ′] − [!W] is 0 times the torus fibre class. Using this freedom, we can prove the following.
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16 Cheuk Yu Mak and Helge Ruddat

Proposition 2.10. If W, W′ are two disjoint tropical lines, Lagrangians !W , !W′ can be constructed via
Theorem 1.1 so that they are homologous.

Proof. We use the well-known fact that the vanishing cycle U � )3 of the quintic mirror degeneration
is a primitive nontrivial homology class (it generates,0 � Z of the monodromy weight filtration) with
U.U = 0. Using the cycle !Γ from Lemma 2.9, we find the following intersection numbers:

!Γ .!W = 1, !Γ .U = 0, !W .U = 0, !W .!W = 0, (4)

where the middle ones follow from the fact that U can be supported in the complement of !Γ and !W and
the last one follows because the intersection pairing is antisymmetric on �3 ("C ). We have equations
(4) similarly for !W′ in place of !W . Because the middle cohomology of the mirror quintic has rank
four, we can complement [U], [!W], [!Γ] to a basis of �3 ("C ,Z) by adding a fourth cycle (. Moreover,
because the restriction of the intersection pairing to the span of !W , !Γ is

(
0 1
−1 0

)
, we can require ( to be

in its orthogonal complement. We write [!W′] = 0[U] + 1[!W] + 2[!Γ] + 3( and want to determine the
coefficients 0, 1, 2, 3. From the analogue of (4) for !W′ , we find 3 = 0 by pairing !W′ with U because
necessarily U.( ≠ 0 for [U] being nonzero. Because W, W′ do not meet, !W .!W′ = 0, which yields 2 = 0.
Consequently, 1 = !Γ .!W′ = 1 and hence [!W′] = 0[U] + [!W] for some 0.

As explained in Remark 2.6, for the construction of the Lagrangian torus bundle over an edge 4 of W′,
there is a freedom given by translating the 2-tori fibres by a function on 4. Note that [U] is exactly the
fundamental class of the trace of the 2c translation by a 2-torus in a 3-torus fibre. By applying the freedom
in the construction and wrapping around −0 times, we can construct !W′ such that [!W′] = [!W]. �

Proof (Proof of Theorem 1.6). The Lagrangians !W and !W′ being homologous is the content of Propo-
sition 2.10. Because they are rational homology spheres, they have unobstructed Floer cohomology
over characteristic 0 [16] and we have �� (!W , !W) = �� (!W′ , !W′) = �∗((3) by the degeneration
of the spectral sequence in the second page. Moreover, when W ∩ W′ = ∅, we have �� (!W , !W′) = 0.
By Hamiltonian invariance of Floer cohomology, we conclude that !W is not Hamiltonian isotopic
to !W′ . �

Remark 2.11. Theorem 1.6 also works when W ∩ W′ is a single point. In this case, if !W is Hamiltonian
isotopic to !W′ , then �� (!W , !W′) would be well defined but, one can see from the local model that !W
intersects cleanly with !W′ along a circle, so �� (!W , !W′) is either 0 or concentrated on consecutive
degree. This gives a contradiction.

It is less clear what �� (!W , !W′) is when W overlaps with W′ along a codimension 0 subset. These
cases arise in our computer-aided search.

2.9. Symplectomorphism group

Proof (Proof of Corollary 1.7). Each spherical Lagrangian submanifold !8 gives rise to a symplecto-
morphism g!8 : " → " , called the Dehn twist along !8 , supported inside an arbitrarily small neigh-
bourhood of !8 (see [51], [34]). Therefore, it is clear that {g!8 }

:max
8=1 generates an abelian subgroup in

Symp(") that descends to an abelian subgroup � of c0 (Symp(")) = Symp(")/Ham(") (the equal-
ity uses the fact that c1 (") is trivial).

We recall from [51] that each g!8 can be lifted canonically to a Z-graded symplectomorphism because
21 (") = 0. Moreover, we know that g!8 (!8) = !8 [−2] and g!8 (! 9 ) = ! 9 are Z-graded Lagrangians,

for all 8 ≠ 9 . Therefore, 6 ∈ � is completely determined by (�� (!8 , 6(! 9 ))):max
8, 9=1 and � is isomorphic

to Z:max . �

Remark 2.12. If !8 is a spherical Lagrangian with |c1 (!8) | = <, then (g!1 )∗� = � + <([!8] ·
�) [!8] for � ∈ �3 (",Z). Because [!8] = [! 9 ] for all 8, 9 (Theorem 1.1(2)), the natural map � ⊂
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c0 (Symp(")) → Aut(�3 (",Z)) has a large kernel. It is less clear what the kernel of the natural map
� ⊂ c0 (Symp(")) → c0 (Diff (")) is.

3. Toric geometry in symplectic coordinates

We review some material about complex toric orbifolds. The presentation below is extracted from [1]
and [2] (see also [24], [33] and [5]). Any projective complex toric orbifold - is Kähler and can be
equipped with a Kähler form l- such that, for 8 =

√
−1, the action of the real torus

)= := 8R=/2c8Z= ⊂ C=/2c8Z= =: )=
C

is effective and Hamiltonian with respect to l- . The effective Hamiltonian action induces a moment
map cΔ : - → R= with image Δ := cΔ (-) being a simple and rational convex polytope. This means
that Δ is a convex polytope such that

◦ there are precisely = edges meeting at each vertex ?;
◦ each edge meeting a vertex ? is of the form {? + AE 9 |A ∈ [0, A 9 ]} for some E 9 ∈ Z=, A 9 ≥ 0 for

1 ≤ 9 ≤ =;
◦ {E 9 }=9=1 form a Q-basis of the lattice Z=.

If the last bullet is replaced by that {E 9 }=9=1 can be chosen to be a Z-basis of the lattice Z=, then Δ is
called a Delzant polytope and - is a smooth manifold.

We call a face of codimension one of Δ a facet.

Definition 3. A labeled polytope is a simple rational convex polytope Δ plus a positive integer < (label)
attached to each facet of Δ .

The label< of a facet � is the order of the orbifold structure group of the generic points in (cΔ )−1(�).
If not mentioned, we assume all labels to be 1.

Lerman and Tolman [33] proved that a labeled simple rational convex polytope Δ determines a
unique (up to equivariant symplectomorphism) compact symplectic orbifold (-, l- ) with effective
Hamiltonian torus action and moment map image Δ , which is a generalisation of Delzant’s result on
Delzant polytope and compact symplectic manifold (-, l- ) with effective Hamiltonian torus action
[9]. They also proved that if �1 and �2 are torus-invariant complex structures on - that are compatible
with l- , then (-, �1) and (-, �2) are equivariantly biholomorphic ([33, Theorem 9.4]; see also [1,
Section 2]). However, because there can be different torus-invariant Kähler structures on - , we need to
go into details about the transition between complex and symplectic coordinates.

3.1. Complex coordinates

Let -◦ := {G ∈ - | )= acts freely on G}. There is a biholomorphic identification

-◦ = C=/2c8Z= = {D + 8E | D ∈ R=, E ∈ R=/2cZ=}

such that C ∈ )= acts by

C · (D + 8E) = D + 8(E + C).

The Kähler form l- is given by l- := 28mm̄ 5l for a potential 5l (D, E) = 5l (D) ∈ �∞(-◦), depending
only on D (see [24] or [2, Exercise 3.5] for the definition of 5l (D)).

3.2. Symplectic coordinates

Dually, we have the symplectic identification -◦ = Δ◦ × )=, where Δ◦ is the interior of Δ . The torus
acts on (?, @) ∈ Δ◦ × )= by

C · (?, @) = (?, @ + C)
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18 Cheuk Yu Mak and Helge Ruddat

and the symplectic form is l- := 3? ∧ 3@. The complex structure � is determined by a function
5� (?, @) = 5� (?) ∈ �∞ (-◦) according to the following procedure. Let �� := Hess? ( 5� ) be the
Hessian of 5� in the ? coordinates ( 5� and �� are denoted by 6 and �, respectively, in [1]). The
complex structure in (?, @) coordinates is given by

� =

[
0 −�−1

�

�� 0

]
.

The transition maps between the complex and symplectic coordinates are given by

{
? =

m 5l
mD
, @ = E,

D =
m 5�
m?
, E = @.

(5)

There are restrictions for 5l and 5� to satisfy near infinity so that we have a well-defined Kähler structure
on - .

A canonical choice of complex structure is given by Guillemin as follows. The simple rational convex
polytope Δ can be described by a set of inequalities of the form

〈?, `A 〉 − dA ≥ 0 for A = 1, . . . , 3,

where 3 is the number of facets, each `A is a primitive element of Z= and dA ∈ R. We define affine
linear functions ;A : R= → R, A = 1, . . . , 3,

;A (?) := 〈?, <A `A 〉 − _A ,

where <A is the label of the Ath facet and _A = <A dA , so ? ∈ Δ if and only if ;A (?) ≥ 0 for all
A = 1, . . . , 3.

Theorem 3.1 ([1], [2], [24]). The ‘canonical’ compatible complex structure �Δ on Δ◦ × )= is given (in
(?, @)-coordinates) by

�Δ =

[
0 −�−1

� ,20=

�� ,20= 0

]
, (6)

where �� ,20= = Hess? ( 5� ,20=) and

5� ,20= (?) :=
1

2

3∑
A=1

;A (?) log(;A (?)). (7)

Remark 3.2. Fixingl- , all torus-invariant complex structures � on - compatible withl- are classified
in [1, Theorem 2].

Example 3.3 (Extending charts). We consider the following important noncompact example. Let
- = C= with moment polytope Δ = R=≥0 and ;A (?1, . . . , ?=) = ?A . We have symplectic coordinates

(? 9 , @ 9 ) ∈ -◦ = (C∗)= ⊂ - . Define I 9 = G 9 + 8H 9 =
√

2? 9 exp(8@ 9 ) ∈ C∗, so that we have
∑=
9=1 3G 9 ∧

3H 9 =
∑=
9=1 3? 9 ∧ 3@ 9 . We can extend the domain of I 9 from C∗ to C and thus provide a symplectic

chart to - and moment map - → R=≥0 is given by (I1, . . . , I=) ↦→ 1
2 (|I1 |2, . . . , |I= |2).

For the complex coordinates, (7) yields 5� ,20= =
1
2

∑=
9=1 ? 9 log(? 9 ) and m

m? 9
5� ,20= =

1
2 (1+ log(? 9 )),

so the Hessian of 5� ,20= is given by

�� ,20= =


1

2?1
0 0

0 . . . 0
0 0 1

2?=


.
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We define �Δ by Equation (6). Then a direct calculation gives

�Δ (mG) = mH .

Let D 9 =
m 5�,20= (?)

m? 9
, E 9 = @ 9 and F 9 = 4D 9+8E9 be the holomorphic coordinates on (C∗)= (see (5)). Then

D 9 =
1
2 (1 + log(? 9 )) and F 9 = 4

1
2
√
? 94

8@ 9 = ( 42 )
1
2 I 9 . The holomorphic coordinates (F1, . . . , F=) on

(C∗)= naturally extend to holomorphic coordinates on C=.

Lemma 3.4 (Integral linear transformation). Let Δ1 be a labeled polytope and Δ2 = �Δ1 + E where
� ∈ �!= (Z) and E ∈ Z=. Let -1 and -2 be the canonical Kähler toric orbifold with moment polytope
being Δ1 and Δ2, respectively. Then -1 and -2 are Kähler isomorphic.

Proof. This follows from realising that neither the definition of the symplectic nor complex structures
needs coordinates, because the `A are intrinsic to the integral affine structure and hence are the ;A . �

Example 3.5 (Transforming hypersurfaces). Let - be a toric manifold with moment image a Delzant
polyhedron Δ . By picking a vertex E and replacing Δ by �(Δ − E) for some � ∈ �!= (Z) (see Lemma
3.4), we can assume ;A (?1, . . . , ?=) = ?A for A = 1, . . . , = and the remaining facets of Δ are contained

respectively in ;A = 0 for A = = + 1, . . . , 3. Let F 9 = exp(D 9 + 8E 9 ) = exp( m 5�,20= (?)
m? 9

+ 8@ 9 ) ∈ C∗, which

gives a )=
C

equivariant identification between (C∗)= ⊂ C= and -◦. We know that (see (7))

5� ,20= :=
1

2

=∑
9=1

? 9 log(? 9 ) + ', (8)

where ' is the contribution from other facets. Assume now we are given a family of hypersurfaces via

F1 . . . F= = C6(F) (9)

for some polynomial 6 in holomorphic coordinates and C ∈ C a family parameter. The logarithm of this
hypersurface equation is transformed to

=

2
+ log

©«
√√√ =∏

9=1

? 9
ª®¬
+ 8 ©«

=∑
9=1

@ 9
ª®¬
+

=∑
9=1

m'(?)
m? 9

= log(C) + log(6(F(?, @))) (10)

in symplectic coordinates. Notice that ' can be smoothly extended to the origin, so by exponentiating
and setting I 9 :=

√
2? 9 exp(8@ 9 ), we may write this equation as

=∏
9=1

I 9 = C 5 (?, @), (11)

where

5 (?, @) = 6(F(?, @))ℎ(?) (12)

for ℎ =
√

2
=

exp(− =2−
∑=
9=1

m' (?)
m? 9
). Most important, later on, ℎ is a nonvanishing�∞-function depending

only on ?.

With the above example, we know how to transform a complex hypersurface defined by the equation
F1 . . . F= = C6(F) into a symplectic hypersurface in symplectic coordinates (?, @) for a toric manifold
- . To cover a large range of applications, we need an analogue for toric orbifolds.
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20 Cheuk Yu Mak and Helge Ruddat

3.3. Isolated Gorenstein toric orbifold singularities

Now consider a cone Δ ⊂ R= generated by E1, ..., E= ∈ Z=. The ring C[Δ ∩ Z=] is the coordinate
ring of an Abelian quotient singularity -Δ as follows. The ring is regular if and only if the E8 form
a lattice basis. Let f be the dual cone of Δ . It is also integrally generated, so let # be the sublattice
generated by the primitive ray generators of f as a sublattice of (Z=)∗, the dual lattice " = Hom(#,Z)
contains the original lattice Z= and the cone Δ is a standard cone when viewed with respect to ";
that is, C[Δ ∩ "] = C[F1, ..., F=], where F 9 is the monomial given by the primitive generator of
(R≥0E 9 ) ∩ " . The subring C[Δ ∩ Z=] ⊆ C[Δ ∩ "] is the ring of invariants of the group action
 = (Z=)∗/# that acts on a monomial I< via 6.I< = exp(2c8〈6, <〉)I< (see [17, Section 2.2, p. 34]).
We need this a bit more explicit and also want to make further assumptions. We require the singularity
to be isolated. Because then  necessarily acts faithfully on the subring C[F1] = C[(R≥0E1) ∩ "], we
conclude that  is cyclic, say,  is the group of :th roots of unity. Let Z be a primitive generator. The
action is

Z .(F1, ..., F=) = (Z01F1, ..., Z
0=F=)

for some integers 0 9 with gcd(0 9 , :) = 1 for all 9 , which is equivalent to the isolatedness of the
singularity. One can check the following result.

Lemma 3.6. Under the given assumptions, the cover C= → C=/ is unbranched away from the origin.

We want to further assume that the singularity is Gorenstein, which is equivalent to the statement
that the Gorenstein monomial F1F2...F= is invariant under  ; that is,∑

9

0 9 ∈ :Z.

We now address the symplectic coordinates. Let )0 = ((1)= and consider the standard )0-action on
C= by \ · (F1, . . . , F=) = (4\18F1, ..., 4

\=8F=). Recall from Example 3.3 that the standard symplectic

coordinates of the toric variety C= are I 9 = 4−
1
2F 9 and I 9 =

√
2? 9 exp(8@ 9 ) giving the moment map

C= → R=≥0. Note that  is a subgroup of )0, so )1 = )0/ acts faithfully on the orbifold singularity
C=/ . We claim that the moment map of C= factors through that of C=/ ; that is,

C=

��

// C=/ 

c

��

R=≥0 Δoo

where the bottom horizontal map is the real affine isomorphism given by the fact that Δ becomes a
standard cone with respect to " . The right vertical map is the moment map of the orbifold singularity.
The diagram clearly commutes and because the symplectic structures can be defined using the moment
maps, the diagram is compatible with symplectic structures. The only thing to check is that the complex
structures used in the diagram coincide with the canonical ones obtained from the complex potential
5� ,20= in Theorem 3.1. By Example 3.3 this is true for the left vertical map. Because the ` 9 are actually
the primitive generators of the rays of f, and are therefore contained in # , we find that the potential
5� ,20= for (Δ ,Z=) is identical to the one for (Δ , "), which gives the desired compatibility.

We finally want to consider the situation where the Gorenstein singularity appears locally at the vertex
of a compact polytope Δ . Let PΔ be the compact Kähler orbifold obtained from Δ and cΔ : PΔ → Δ the
moment map. Let E ∈ Δ be a vertex. Replacing Δ by Δ − E and invoking Lemma 3.4, we may assume
E = 0. Compared to the local study above, there is no difference for the complex structure; however, the
compact polytope Δ gives a different symplectic structure on the local model C=.

Consider a neighbourhood$E of E in Δ that is then also a neighbourhood of E in the cone R≥0Δ . The
two inverse images under the moments maps c−1

Δ
($E ) and c−1($E ) resulting from this are naturally
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Figure 7. Left: two-dimensional analogue when c−1
Δ
(E) is a smooth point. Right: two-dimensional

analogue when c−1
Δ
(E) is an orbifold point.

symplectomorphic. Assume now that we have a family of hypersurfaces in C=/ as given by (9); that is,

F1 · ... · F= = C6(F),

where we use the coordinates of C= and so 6(F) is now a  -invariant polynomial. By the Gorenstein
assumption, the monomial F1F2...F= is  -invariant. The same analysis as in Example 3.5 gives (10)
as the equation for the family of hypersurfaces in symplectic coordinates with the only difference that
now 5 and ℎ are  -invariant.

3.4. Corner charts in 4-orbifolds

Let PΔ be a four-dimensional Gorenstein-projective toric orbifold with isolated singularities and moment
polytope Δ . For each point I of PΔ , we can choose a vertex E of Δ lying in the face containing cΔ (I). Let

= Δ\ ∪E∉� � (13)

where � are facets of Δ . If c−1
Δ
(E) is a smooth point of PΔ , then we can, by an integral affine linear

transform, assume E is the origin and the primitive edge directions emerging from E coincide with the
positive real axes in R4. If Δ has integral points in its interior, after the transform, (1, 1, 1, 1) must be
one of them (in fact the only one if Δ is reflexive). We can give a symplectic chart * ⊂ R8 to c−1

Δ
( )

as in Example 3.3, which is )4
C
-equivariantly biholomorphic to C4 (see Figure 7). More generally, if

c−1
Δ
(E) is an orbifold point of PΔ , then we have just shown in Subsection 3.3 that c−1

Δ
( ) is equivariantly

symplectomorphic to the model -E = C4/ with the symplectic structure induced from cΔ . The smooth
case can be viewed like the situation  = {id}. In both cases, we call -E a symplectic corner chart for
PΔ associated to the vertex E. All mirror quintic threefolds are hosted inside a toric variety PΔ of the
type considered here.

4. Geometric setup

Let PΔ be a complex projective toric orbifold of complex dimension four with moment polytope Δ .
Recall that − PΔ = mPΔ ; we assume this is nef or, equivalently (for a toric variety), that O(− PΔ ) is
generated by global sections ([43], Theorem 2.7). Let Δ denote the corresponding lattice polytope.
We have a birational morphism PΔ → PΔ that we will use to pull back an anticanonical hypersurface.
We equip PΔ with the canonical Kähler structure. Set L := O(− PΔ ) and let B0 ∈ �0 (PΔ ,L) such that
B−1

0 (0) = mPΔ .
Let �∞ (PΔ ,L) denote the vector space of �∞-sections of L. For every B ∈ �∞(PΔ ,L) and C ∈ C,

we define

"B
C := {B0 = CB} ⊂ PΔ . (14)

The total family of "B
C is denoted by "B . Let (mPΔ )Sing denote the locus of singular points of mPΔ (we

also used P[2]
Δ

before). We define the discriminant of B via

Disc(B) := B−1(0) ∩ (mPΔ )Sing. (15)
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As explained in Subsection 3.4, a symplectic corner chart */ comes together with the quotient
map Π*/ : * → */ and the diffeomorphism Φ* : * → C4. In a symplectic corner chart, we define

"̃B
C :=Π−1

*/ ("
B
C ∩*/ ) (16)

=Φ
−1
* ({F ∈ C4 |F1F2F3F4 = C 5 (F)}) (17)

for some  -invariant function 5 ∈ �∞ (C4,C). The second equality comes from the fact that, with
respect to a choice of trivialisation, B0 = F1F2F3F4ℎ(F) for some nonvanishing  -invariant function
ℎ on C4. It is clear that if B ≠ 0 at the orbifold points of PΔ , then "B

C does not contain any orbifold point
whenever C ≠ 0.

When B1 ∈ �0 (PΔ ,L), we get a family of complex subvarieties "B1
C parametrized by C ∈ C. Let

�0(PΔ ,L)Reg := {B1 ∈ �0(PΔ ,L) |"B1
C is smooth for all |C | > 0 small}. (18)

When "B1
C is a smooth manifold, it is a symplectic hypersurface in PΔ and the symplectomorphism type

is independent of C by Moser’s argument. For smooth but not necessarily holomorphic sections, we have
the following sufficient condition to guarantee that "B

C is symplectic (when C is sufficiently close to 0).

Lemma 4.1 (Good deformation). Let B1 ∈ �0 (PΔ ,L)Reg. Suppose we have a smooth family
(BD)D∈[0,1] ∈ �∞ (PΔ ,L) such that

◦ BD = B1 near Disc(B1) for all D,
◦ Disc(BD) = Disc(B1) for all D,

then there exist X > 0 such that "D
C := "BD

C is a smooth symplectic hypersurface in PΔ for all 0 < |C | < X
and all D.

Proof. For any regular neighbourhood # of mPΔ , there exists X′ > 0 such that "D
C ⊂ # for all |C | < X′

for all D. This is because "D
C �

0-converges to mPΔ uniformly as |C | goes to 0. Therefore, if for each point
G ∈ mPΔ , we can find a neighbourhood $G of G such that "D

C ∩ $G is symplectic for all |C | > 0 small
and all D ∈ [0, 1], then "D

C is symplectic for all |C | > 0 small and all D ∈ [0, 1].
Because "D

C is independent of D in a neighbourhood $Disc of Disc(B1) (by the first bullet), we can
take $G = $Disc if G ∈ $Disc. Now we assume that G ∈ mPΔ \$Disc.

First suppose cΔ (G) lies in the interior of a 3-cell. There exists a symplectic corner chart */ and
an open subset + ⊂ * such that G ∈ Π*/ (+), Π*/ (+) ∩ Disc(B1) = ∅ and

"̃D
C ∩+ = Φ

−1
* ({F1 = C 5 D (F)})

for some smooth family of functions 5 D : Φ* (+) → C. This is because we can assume F2, F3, F4 are
invertible in Φ* (+) and absorbed by 5 D . Let �DC = F1 − C 5 D (F). The differential is given by

��DC = [1, 0, 0, 0] − C� 5 D .

Because ker(��DC ) = )"̃D
C and the first term of ��DC dominates (say, with respect to the Euclidean

norm in the chart) when |C | small, "̃D
C ∩+ is symplectic for all |C | > 0 small and all D ∈ [0, 1]. Therefore,

we can take $G = Π*/ (+).
Now suppose cΔ (G) lies in the interior of a 2-cell. There exists a symplectic corner chart */ and

an open subset + ⊂ * such that G ∈ Π*/ (+) and

"̃D
C ∩+ = Φ

−1
* ({F1F2 = C 5 D (F)})

for some smooth family of functions 5 D : Φ* (+) → C such that 5 D (0, 0, F3, F4) ≠ 0 (by the second
bullet and the assumption that G ∈ mPΔ \$Disc). This is because we can assume F3, F4 are invertible in
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Figure 8. The symplectic model " close to the boundary of PΔ .

Φ* (+) and Φ* (Π−1
*/ ((mPΔ )Sing) ∩+) = Φ* (+) ∩ {F1 = F2 = 0}. Therefore, there exists 2 > 0 such

that max{|F1 |, |F2 |, | 5 D (F) |} > 2 for all points in Φ* (+). Let �DC = F1F2 − C 5 D (F). The differential
is given by

��DC = [F2, F1, 0, 0] − C� 5 D .

Again, we want to show that the first term of ��DC dominates for F ∈ {�DC = 0} for all D when |C | > 0
small.

Because ‖� 5 D ‖ is bounded, the norm of the second vector is of order |C |. At points where |F1 | > 2
or |F2 | > 2, the first term clearly dominates when |C | > 0 small. By the assumption, all other points
satisfy | 5 D | > 2. As a result, for F ∈ {�DC = 0}, we have |F1 |2 + |F2 |2 ≥ 2|F1F2 | = 2|C 5 D | > 2|C |2 so

the norm of [F2, F1, 0] is of order at least
√
|C | and hence dominates when |C | > 0 small. This implies

that there exist X > 0 such that "̃D
C ∩+ is a symplectic manifold for all 0 < |C | < X and all D.

Similarly, when cΔ (G) lies in the interior of a 1-cell, we have

"̃D
C ∩+ = Φ

−1
* ({F1F2F3 = C 5 D (F)})

for some + and 5 D . There exists 2 > 0 such that

max{|F1F2 |, |F2F3 |, |F1F3 |, | 5 D (F) |} > 2.

At points where |F1F2 | > 2 or |F2F3 | > 2 or |F1F3 | > 2, the first term of ��DC , which is given by
[F2F3, F1F3, F1F2, 0], dominates when |C | > 0 small. At points where | 5 D | > 2, we have |F1F2 |2 +
|F2F3 |2 + |F1F3 |2 ≥ 3|F1F2F3 |

4
3 > 3|C | 43 2 so the norm of the first term of ��DC is of order |C | 23 and

the second term of ��DC is of order |C | so the first term dominates when |C | > 0 small.
One can do the same analysis when cΔ (G) is a vertex of Δ . In this case, the norm of the first term

and second term of ��DC is of order |C | 34 and |C |, respectively.
�

We remark that Disc(BD) = Disc(B1) implies that BD does not vanish at the orbifold points. In view
of Lemma 4.1, it is convenient to have the following definition.

Definition 4. Let B1 ∈ �0(PΔ ,L)Reg. We say that B ∈ �∞ (PΔ ,L) is B1-admissible if B = B1 in a
neighbourhood of Disc(B1) and Disc(B) = Disc(B1).

We say that B ∈ �∞ (PΔ ,L) is admissible if it is B1-admissible for some B1 ∈ �0(PΔ ,L)Reg.

Corollary 4.2. For B1 ∈ �0 (PΔ ,L)Reg and any regular neighbourhood # of (mPΔ )Sing, there is a
symplectic hypersurface " ⊂ PΔ such that " is symplectic isotopic to "B1

C for some |C | > 0 small, and
(mPΔ \ #) ⊂ " ⊂ (mPΔ ∪ #); see Figure 8.

Proof. Let # ′ ⊂ # be a smaller neighbourhood of (mPΔ )Sing. Let j : PΔ → R be a smooth function
that has values 1 in # ′

and 0 outside # . Then B := jB1 is an B1-admissible section. Moreover, BD := (1 − D)B1 + DB is a smooth
family of B1-admissible sections, so we can apply Lemma 4.1. Let the resulting family be "D

C . By
Moser’s argument, "0

C = "
B1
C is symplectic isotopic to " := "1

C when 0 < |C | < X.
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It follows from the definition of B that for G ∈ (PΔ \ #), we have

G ∈ " ⇔ B0(G) − CB(G) = 0 ⇔ B0(G) = 0 ⇔ G ∈ mPΔ \ #.

This gives the assertion. �

An important consequence of Corollary 4.2 is that we can transfer the Lagrangian torus fibre bundle
structure of mPΔ \ (mPΔ )Sing to a Lagrangian torus fibre bundle structure in a large open subset of " ,
and hence a large open subset of "B1

C .

Lemma 4.3. If (BD)D∈[0,1] is a family of B1-admissible sections such that, for some open subset + ⊂
PΔ , BD |PΔ\+ is independent of D, then there exists X > 0 such that for all 0 < |C | < X there is a

symplectomorphism q+ ,C : "B0

C → "B1

C such that q+ ,C |" B0
C \+

is the identity.

Proof. By Lemma 4.1, "BD

C is a family of symplectic hypersurfaces for 0 < |C | < X. By assumption,
"BD

C ∩(PΔ \+) is independent of D. The existence of q+ ,C follows from a standard application of Moser’s
argument. �

Outlook: recall W, ,n (W) and "C from Theorem 1.1. In its proof, for all n > 0, we will construct
a family of admissible sections (BD)D∈[0,1] such that "B0

C = "C and "B1

C ∩ c−1
Δ
(,n (W)) contains a

Lagrangian ! that is diffeomorphic to a Lagrangian lift of W for all |C | > 0 small. Moreover, for + :=
c−1
Δ
(,n (W)), BD |PΔ\+ will be independent of D. We can apply Lemma 4.3 to get a symplectomorphism

q+ ,C : "C → "B1

C and q−1
+ ,C
(!) will be our desired Lagrangian in "C ∩ c−1

Δ
(,n (W)).

5. Away from discriminant

This section gives the construction of Lagrangians away from the discriminant. In Subsection 5.1,
we give a local Lagrangian model and explain how to glue these Lagrangian models away from the
discriminant. We will complete our Lagrangian construction away from the discriminant after the
discussion in Subsection 5.2, which concerns trivalent vertices of a tropical curve. We conclude
the proof of Theorem 1.1 in Subsection 6.8. For simplicity of notation, in the rest of the article, we only
consider "B

C for C ∈ R, C > 0 instead of C ∈ C∗.

5.1. Standard Lagrangian model

There are four tasks to be completed in this subsection, which will be accomplished in the four subsequent
sub-subsections, respectively. Firstly, points on a tropical curve W can lie in different strata of mΔ , so we
want to enumerate all possibilities and describe the neighbourhood of points in different strata. Then,
for each point G ∈ W and a neighbourhood $G ⊂ Δ of G, we want to isotope "B

C ∩ c−1
Δ
($G) to a standard

form for constructing a local Lagrangian in "B
C ∩ c−1

Δ
($G). After that, we explain how to glue the local

Lagrangians in "B
C ∩ c−1

Δ
($G1 ) and "B

C ∩ c−1
Δ
($G2 ) when $G1 ∩ $G2 ≠ ∅. Finally, because the local

Lagrangians are constructed with respect to a symplectic corner chart, we will deal with the transition
of symplectic corner charts so that all of the local Lagrangian models in different symplectic corner
charts can be glued together.

In sub-subsections 5.1.1, 5.1.2 and 5.1.3, we work inside a single symplectic corner chart*/ with
moment map image := cΔ (*/ ). There is an induced moment map c

Δ̃
: * → R4 and we denote the

image by ˜ . Recall from Subsection 3.3 that the images and ˜ are related by a rational linear affine
transformation (in particular, a bijective map) so there are corresponding subsets G̃, W̃, Ã, $̃G , etc., in˜ . On the other hand, subsets in */ (e.g., "B

C ∩ */ ) can be lifted to  -invariant sets in * (e.g.,

"̃B
C ) that are compatible with the moment maps. For simplicity of notation, we omit all of the (̃−) in

Subsections 5.1.1, 5.1.2 and 5.1.3 and work  -equivariantly in* (*/ will also be denoted by*). By
possibly adding a translation, we identify ˜ with an open subset of R4

≥0 that contains the origin.
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5.1.1. Neighbourhood of a point in a tropical curve

We define a function Type : mΔ → {0, 1, 2, 3} such that Type(G) = = if G is in the interior of an =-cell.
In other words, Type specifies the stratum that G lies in.

For a neighbourhood $0 ⊂ \ A of the origin such that $0 ∩ m is contractible, the integral
affine structure on $0 ∩ m is inherited from the �0-embedding $0 ∩ m ↩→ /R(1, 1, 1, 1) (see the
definition of the chart,E in Subsection 2.2).

Let G ∈ m and 2(A) : [−1, 1] → m \A be a straight line (regarded as a closed segment in a tropical
curve W that contains G) in a small neighbourhood of G such that 2(0) = G. We have the following
situations using that mΔ is simple.

(A) If Type(G) = 0, then (Type(2(−1)),Type(2(0)),Type(2(1))) can only take values (modulo the
symmetry A ↦→ −A) (2, 0, 2), (1, 0, 3), (2, 0, 3) and (3, 0, 3).

(B) If Type(G) = 1, then (Type(2(−1)),Type(2(0)),Type(2(1))) can only take values (modulo the
symmetry A ↦→ −A) (1, 1, 1), (2, 1, 3) and (3, 1, 3).

(C) If Type(G) = 2, then (Type(2(−1)),Type(2(0)),Type(2(1))) can only take values (2, 2, 2) and
(3, 2, 3).

(D) If Type(G) = 3, then Type(2(A)) = 3 for all A .

Remark 5.1. From the enumeration above, we can see that for any straight line 2 : [−1, 1] → mΔ\A, if
A = A0 is a discontinuity of Type(2(A)), then Type(2(A0)) < Type(2(A)) for all A close to but not equal
to A0.

5.1.2. Local Lagrangian models at points in different strata

For each point G ∈ W and each open subset 2 ⊂ W containing G, we want to isotope "B
C ∩ c−1

Δ
($G)

to another  -invariant hypersurface so that we can build a  -invariant Lagrangian in "B
C ∩ c−1

Δ
($G)

whose cΔ -image is close to 2. First we describe a class of symplectic manifolds in c−1
Δ
($G) to which

we would like to isotope "B
C ∩ c−1

Δ
($G).

Definition 5. For a point G = (G1, . . . , G4) ∈ (m ) \ A and an B1-admissible section B ∈ �∞ (PΔ ,L),
we say that "B is G-standard with respect to* if there is a neighbourhood $G ⊂ of G that does not
meet any facet that does not contain G, and furthermore such that "B

C ∩ c−1
Δ
($G) is given by

©«
∏
9 ,G 9=0

√
? 9

ª®¬
48 (@1+@2+@3+@4) = C2 (19)

for some constant 2 ∈ C. If Type(G) = 0, 1, 2, we require 2 ≠ 0.
For a point G ∈ mΔ \ A, we say that "B is G-standard if there is a symplectic corner chart * such

that "B is G-standard with respect to*.

Because the action on* acts only on the @8 coordinates and the Gorenstein coordinate @1+@2+@3+@4

is invariant under the  action, "B is  -invariant if "B is G-standard with respect to*. To see that this
is a sensible notion, we at least need to observe the following.

Lemma 5.2. If "B is G-standard with respect to *, then ("B
C≠0 ∩ c

−1
Δ
($G)) ∩ (mPΔ )Sing = ∅. In other

words, "B
C ∩ c−1

Δ
($G) is disjoint from the discriminant for all C > 0.

Proof. Notice that we can rewrite equation (19) as

I1I2I3I4 =
√

16?1?2?3?44
8 (@1+@2+@3+@4) = 4C2

∏
9 ,G 9≠0

√
? 9 .

To prove the lemma, it suffices to show that the zero locus of 4C2
∏
9 ,G 9≠0

√
? 9 does not intersect with

(mPΔ )Sing∩c−1
Δ
($G). When Type(G) = 0, 1, 2, by Definition 5, we have 2 ≠ 0. Moreover, inside c−1

Δ
($G),

we have ? 9 > 0 when G 9 ≠ 0. Altogether this implies that 4C2
∏
9 ,G 9≠0

√
? 9 never vanishes in c−1

Δ
($G).
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Because (mPΔ )(8=6 = c−1
Δ
(codim-2-strata), when Type(G) = 3, (mPΔ )Sing ∩ c−1

Δ
($G) = ∅. �

The next lemma addresses that we can always isotope "B
C ∩ c−1

Δ
($G) to an G-standard one through

admissible sections that are  -invariant in*.

Lemma 5.3. Let B be an B1-admissible section. Let G ∈ mΔ\A be a point and #G be a neighbourhood
of G in Δ such that #G ∩A = ∅. Then there is a symplectic corner chart* containing G and a family of
B1-admissible section (BD)D∈[0,1] such that B0 = B, for all D, BD = B outside c−1

Δ
(#G), BD is  -invariant

in* and "B1

C is G-standard with respect to*.

Proof. If Type(G) = 0, then G is a vertex and we take the symplectic corner chart * associated to G.
Because G ∉ A, there exists a neighbourhood $G ⊂ #G of G such that c−1

Δ
($G) is contractible and, by

(11), "B
C ∩ c−1

Δ
($G) is given by

I1I2I3I4 =
√

16?1?2?3?44
8 (@1+@2+@3+@4) = C 5 (20)

for some 5 ∈ �∞ (c−1
Δ
($G),C∗). Because c−1

Δ
($G) is contractible, 5 is null-homotopic. For any subset

$ ⊂ $G \ {G}, because 5 is null-homotopic, we know that 5 |c−1
Δ
($) is null-homotopic and it descends

to a null-homotopic function in the quotient by  . Therefore, for any neighbourhood $ ′G ⊂ $G of G,
we can deform 5 , through  -invariant nonvanishing functions inside c−1

Δ
($G), to a function that is

constant in c−1
Δ
($ ′G). Moreover, the deformation can be chosen to be compactly supported. There is

no new discriminant created during the deformation because it is through nonvanishing functions (cf.
Lemma 5.2). The deformation is constant near the discriminant A because #G ∩ A = ∅. Because the
deformation is compactly supported, it can patch with 5 outside a compact set in c−1

Δ
($G) to give a

family of  -invariant B1-admissible sections with required properties.
If Type(G) = 1, let X be the 1-cell in Δ containing G. By simplicity of (mΔ ,A) (see introduction and

[23], Definition 1.60), there is a vertex E in X that can be connected to G by a path X′ in X that does not
intersect with A. Let * be the symplectic corner chart associated to E. Without loss of generality, we
assume G1 ≠ 0 and G 9 = 0 for 9 = 2, 3, 4. Notice that X′∩A = ∅ implies that there exists a neighbourhood
#X′ ⊂ mΔ of X′ such that c−1

Δ
(#X′) ∩Disc(B1) = ∅, c−1

Δ
(#X′) is contractible and c−1

Δ
(#X′) ∩"B

C is given
by equation (20) for some 5 ∈ �∞ (c−1

Δ
(#X′),C∗). This implies that for a neighbourhood$G ⊂ #G∩#X′

of G, 5 |c−1
Δ
($G ) is null-homotopic even though c−1

Δ
($G) is not contractible. In other words,

( 5 |c−1
Δ
($G ) )∗ : c1 (c−1

Δ
($G)) → c1 (C∗) = Z is zero (21)

and the same is true when 5 |c−1
Δ
($G ) is descended to the quotient by  . On the other hand, for $G

not containing E, ?1 > 0 in c−1
Δ
($G), so it gives a map

√
?1 |c−1

Δ
($G ) → R>0 ⊂ C∗. Moreover,

(√?1)∗ : c1 (c−1
Δ
($G)) → c1 (C∗) is also zero. Therefore, there is no topological obstruction to deform

5 |c−1
Δ
($G ) to

√
?1 |c−1

Δ
($G ) inside c−1

Δ
($G) via  -invariant C∗-valued functions. Most notable, C∗-valued

functions are nonvanishing functions. Similar to the previous case, we can assume that the deformation
is compactly supported and it gives a family of B1-admissible sections with required properties by
patching with 5 outside c−1

Δ
($G).

If Type(G) = 2, we use simplicity of (mΔ ,A) again to find a vertex E and a path such that it lies inside
a 2-cell of mΔ , connects E and G, and does not intersect with A. Let * be the symplectic corner chart
associated to E. The equation of "B

C is again locally given by Equation (20) for some 5 . Moreover, 5
is again null-homotopic. If G1, G2 ≠ 0 and G3 = G4 = 0, we can deform 5 to

√
?1?2 inside c−1

Δ
($G) for

some small neighbourhood $G of G. This gives our desired family of B1-admissible sections as in the
previous case.

If Type(G) = 3, then we can take $G such that it does not intersect 0, 1, 2-cells of Δ . Therefore,
we can do any compactly supported deformation of the corresponding 5 without creating/destroying
discriminant loci (i.e., we allow deformation of 5 via functions that vanish somewhere). It is instructive
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to compare it with the proof of Lemma 5.2. The outcome is that the lemma is trivially true when
Type(G) = 3. �

We are now ready to give the local Lagrangians in "B
C ∩ c−1

Δ
($G) when "B

C is G-standard.

Proposition 5.4 (Standard Lagrangian model). Let "B ⊂ * be G-standard for some G ∈ m and
$G be a neighbourhood of G such that (19) holds. Let , be a rationally generated two-dimensional
affine plane in R4 containing G and (1, 1, 1, 1) ∈ ), . Let 2 := , ∩ $G ∩ m (regarded as a straight
line segment in m ). Then there is a family of proper  -invariant (possibly disconnected) Lagrangian
submanifolds !C in c−1

Δ
($G) ∩ "B

C , for C > 0, such that

(I) ,⊥ ⊂ )(?,@)!C for all (?, @) ∈ !C , and
(II) cΔ (!C ) ⊂ , .

Moreover, every family of proper  -invariant Lagrangian submanifolds ! ′C in c−1
Δ
($G) ∩"B

C satisfying
(�), (� �) can be given one of the following parametrizations (either Case A or Case B).

Let,⊥
)

be the quotient of,⊥ by the lattice,⊥ ∩ (2cZ)4. Under the natural identification between
,⊥
)

and the )2 subgroup of (R/2cZ)4 in the @-variables, the cyclic group  is either contained in,⊥
)

or  ∩,⊥
)
= {0}.

Case A. If  is contained in,⊥
)

, then !C is connected and there exists an R4-valued function %(A, C)
and an (R/2cZ)4-valued function &(A, \1, \2, C), for (A, \1, \2) ∈ (0, 1) × (R/2cZ)2, parametrizing !C .
In this case, ! ′C is given by

{(?, @) ∈ c−1
Δ
($G) ∩ "B

C |? = %(A, C), @ = &(A, \1, \2, C) + � (A)} (22)

for some � (A) ∈ �∞ ((0, 1), (R/2cZ)4) satisfying
∑
9 � 9 (A) = 0 for all A ∈ (0, 1), where � 9 is the 9 Cℎ

component of �.
Case B. If  ∩ ,⊥

)
= {0}, then !C has | | connected components and there exists %(A, C) and

&(A, \1, \2, C) as above parametrizing one of the connected components so that the other connected
components are parametrized by ? = %(A, C) and @ = &(A, \1, \2, C) + ^ for ^ ∈  . In this case, one of
the components of ! ′C can be parametrized by ? = %(A, C) and @ = &(A, \1, \2, C) + � (A) for some � (A)
as above and the other components are obtained by adding ^ ∈  in the @ coordinates.

Furthermore, in either Case A or Case B, the family of {%(A, C) |A ∈ (0, 1)} Hausdorff converges to 2
when C approaches 0.

Definition 6. A proper Lagrangian submanifold !C in c−1
Δ
($G) ∩ "B

C satisfying Proposition 5.4 (�),
(� �) is called 2-standard.

Before giving the proof, it would be helpful to have an intuitive understanding of what !C looks like.
For fixed (A, C), {&(A, \, \2, C) |\, \2 ∈ R/2cZ} is a 2-torus lying inside !C with ?-coordinates being
? = %(A, C), so when  is contained in,⊥

)
, !C is a 2-torus bundle over the curve {? = %(A, C)} and when

 ∩,⊥
)
= {0}, !C has | | connected components and each of them is a 2-torus bundle over the curve.

Moreover, condition (�) describes the tangent directions of the 2-torus. Condition (� �) implies that the
curve {? = %(A, C)} is a subset of, ∩$G , which Hausdorff converges to 2 when C approaches to 0.

Also note that the function � (A) in (22) plays exactly the same role as 5 in Remark 2.6.

Proof. We have enumerated the possibilities of 2 in Subsection 5.1.1. Existence of !C is a simple case
by case calculation.

For cases of type �, we have G = (0, 0, 0, 0) and c−1
Δ
($G) ∩ "B

C is given by

(√?1?2?3?4)48 (@1+@2+@3+@4) = C2?4
82@

for some constants 2? > 0 and 2@ ∈ R/2cZ. In particular, a point (?, @) ∈ c−1
Δ
($G) ∩ "B

C has
to satisfy ?1?2?3?4 = C222

? . Notice that, for each fixed C > 0, �C := {?1?2?3?4 = C222
?} is a
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28 Cheuk Yu Mak and Helge Ruddat

hyperbola so �C ∩ , ∩ is a smoothly embedded curve. More rigorously, let 6 : R4
≥0 → R≥0 be

6(?) = ?1?2?3?4. For each ? ∈ , ∩ (m ), the ray {? + _(1, 1, 1, 1) |_ ≥ 0} lies in , and the
function 6? (_) := 6(? +_(1, 1, 1, 1)) is a strictly monotonic increasing function on the ray because, for
a :=

∑4
9=1 m? 9 , we have a(6) > 0 over R4

>0. Because 6? (0) = 0, for each fixed C > 0 there is exactly one

_ > 0 such that 6? (_) = C222
? . This means that for each ? ∈ ,∩m , there is at most one ?′ ∈ ,∩ such

that ?′ ∈ �C and ?′ = ?+_(1, 1, 1, 1) for some _ > 0. Because,∩m is a continuous curve,�C∩,∩
is a smoothing of it and hence a smoothly embedded curve. We define %C := �C∩,∩$G , which is smooth
because it is an open subset of a smooth curve. It is clear that %C Hausdorff converges to 2 when C goes
to 0.

For each C > 0 and ? ∈ %C , we can pick 2-tori &?,C ⊂ c−1
Δ
(?) such that &?,C varies smoothly with

respect to ?, &?,C is parallel to ,⊥ and 48 (@1+@2+@3+@4) = 482@ for all @ ∈ &?,C . This family of 2-tori
gives a submanifold !C ⊂ c−1

Δ
($G) ∩"B

C . The fact that %C ⊂ , and )&?,C = ,⊥ for all ? ∈ %C implies
that !C is a Lagrangian submanifold.

When ⊂ ,⊥
)

, it is easy to see that (22) gives all proper -invariant Lagrangians satisfying (�), (� �).
On the other hand, when  ∩,⊥

)
= {0}, we replace !C by its  -orbit. It is also easy to see that

any other proper  -invariant Lagrangian satisfying (�), (� �) is given by adding a function � (A) to the
@-coordinates of all components simultaneously.

For cases of type �, we have G = (0, 0, 0, 0) for some 0 > 0 and we need to consider the set of
? ∈ , ∩ $G that solves

√
?1?2?3 = C2? . This time, we can take 6(?) = ?1?2?3 for ? ∈ R4

≥0 and
6? (_) = 6(? + _(1, 1, 1, 1)) for ? ∈ , ∩ {?1?2?3 = 0}, and _ ≥ 0. Let a = m?1 + m?2 + m?3 + m?4 and
we have a(6) > 0 over R4

>0. Similar to the previous case, it means that for each ? ∈ , ∩ {?1?2?3 = 0},
there is at most one ?′ ∈ , ∩ such that ?′ ∈ �C and ?′ = ? + _(1, 1, 1, 1) for some _ > 0. The rest
of the argument is the same.

For cases of type � or Type(G) = 3, we need to consider ? ∈ , ∩ $G that solves
√
?1?2 = C2? and√

?1 = C2? , respectively. The rest of the argument is the same. �

5.1.3. Gluing local Lagrangians

In the previous sub-subsection, we explained how to construct a local Lagrangian when"B is G-standard.
Now, suppose 2 : [−1, 1] → m (again, Im(2) is regarded as a closed segment of a tropical curve W)
has the property that Type(2(A)) is discontinuous at A = 0 and "B is 2(0)-standard with respect to *.
Then "B is not 2(A) standard with respect to* for any A close to but not equal to 0. Therefore, we need
to generalise Proposition 5.4 and explain how to glue the local Lagrangian models together.

Definition 7. Let * be a symplectic corner chart and = cΔ (*). Let 2◦ ⊂ m \ A be an open
straight line segment. Let 2 : [0, 1] → m \ A be a straight line such that 2((0, 1)) = 2◦ and
Type(2(0)) ≤ Type(2(1)) = Type(2(A)) for A ∈ (0, 1]. Given an admissible section B ∈ �∞ (PΔ ,L),
we say that "B is 2◦-transition-standard with respect to * if "B is 2(0)-standard and 2(1)-standard
with respect to* and there is a neighbourhood $2◦ ⊂ \A of 2◦ such that 2◦ is proper inside $2◦ and
c−1
Δ
($2◦) ∩ "B

C is given by

©«
∏

9 ,2 (0) 9=0

√
? 9

ª®¬
48 (@1+@2+@3+@4) = C 5?

©«
∏

9 ,2 (0) 9=0,2 (1) 9≠0

? 9
ª®¬
48 5@ (?) (23)

for some function 5@ ∈ �∞(*,R/2cZ) depending only on ? (in particular,  -invariant), and some
5? ∈ �∞ (R≥0,R>0) is such that D

5 2
? (D)

is a monotonic increasing function and 5? is an interpolation

from 2? to 2′?
√
D for some constants 2? , 2′? > 0. In (23), 2(:) 9 is the ? 9 -coordinate of 2(:) for : = 0, 1,

and, whenever Type(2(0)) = Type(2(1)), ∏ 9 ,2 (0) 9=0,2 (1) 9≠0 ? 9 (which is a product over the empty set)
is interpreted as 1.
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We say that "B is 2◦-transition-standard if "B is 2◦-transition-standard with respect to some
symplectic corner chart.

Remark 5.5. Note that for "B to be 2(0)-standard and 2(1)-standard simultaneously, it is necessary for
5? to be an interpolation from 2? to 2′?

√
D. The monotonicity of D

5 2
? (D)

is imposed to achieve Lemma

5.8 below.

Lemma 5.6. Let B be an B1-admissible section. Let 2 : [0, 1] → m \A be a straight line such
that Type(2(0)) ≤ Type(2(1)) = Type(2(A)) for all A ∈ (0, 1]. Let 2◦ := 2((0, 1)) and #2 be a
neighbourhood of Im(2) in \A. Then there is a symplectic corner chart * and a family of B1-
admissible section (BD)D∈[0,1] such that B0 = B, for all D, BD = B outside c−1

Δ
(#2), BD is  -invariant in

*, and "B1
is 2◦-transition-standard with respect to*.

Proof. The proof is in parallel to Lemma 5.3. We give the details when Type(2(0)) = 1 < Type(2(1))
and leave the remaining to the readers.

Let G = 2(0). We pick a vertex E and the corresponding symplectic corner chart * as in the
proof of Lemma 5.3. We can find a neighbourhood $2 of Im(2) such that "B

C ∩ c−1
Δ
($2) is given

by (20) for some 5 ∈ �∞ (c−1
Δ
($2),C∗) and ( 5 )∗ : c1 (c−1

Δ
($2)) → c1 (C∗) is the zero map (see

(21)). Say G 9 ≠ 0 exactly when 9 = 1 and 2(1) 9 ≠ 0 exactly when 9 = 1, . . . , =2 (here =2 ∈ {2, 3}).
Let 6(A) = ∏

9 ,2 (0) 9=0,2 (1) 9≠0 2(A) 9 = 2(A)2 . . . 2(A)=2 , where 2(A) 9 is the 9 th-coordinate of 2(A) for
A ∈ [0, 1]. Note that 6(0) = 0 and 6(A) is strictly increasing.

Inside c−1
Δ
($2), there is no topological obstruction to deform 5 through  -invariant nonvanishing

functions to
√
?1 5? (?2 . . . ?=2 )48 5@ (?) for some 5? ∈ �∞ (R≥0,R>0) such that D

5 2
? (D)

is a monotonic

increasing function, and there are constants 2? , 2′? > 0 such that 5? (D) = 2? near D = 0 and 5? (D) =
2′?
√
D near D = 6(1). The conditions on 5? near D = 0 and D = 6(1) imply that "B is 2(0)-standard and

2(1)-standard simultaneously. Moreover, there exists $2◦ ⊂ $2 such that 2◦ is proper inside $2◦ and
c−1
Δ
($2◦) ∩ "B

C satisfies (23). Therefore, the result follows. �

A simple but crucial observation is that we can extend the ‘standard region’ by a further isotopy
without destroying the previously established standard region in the following sense.

Lemma 5.7. Let 21, 22 : [0, 1] → m \A be two straight lines as in Lemma 5.6 such that 21 (0) = 22 (0)
or 21 (0) = 22(1) or 21 (1) = 22 (1). Suppose we have applied Lemma 5.6 to 21 and denote the resulting
B1 as B. Let #2 be a neighbourhood of Im(22) in \A. Then there is a family of B1-admissible sections
(BD)D∈[0,1] such that B0 = B, for all D, BD = B outside c−1

Δ
(#2), BD is  -invariant in *, and "B1

is
simultaneously 2◦1-transition-standard and 2◦2-transition-standard with respect to*.

Proof. We want to apply (the proof) of Lemma 5.6 to 22. The key point is that, inside c−1
Δ
($22 ), there

is no topological obstruction to deform 5 through  -invariant nonvanishing functions to a function as
in Lemma 5.6 and, in addition, we are free to choose the deformation to be trivial inside c−1

Δ
($21 ) for

some small neighbourhood $21 of Im(21). In this case, the corresponding section B1 will make "B1

simultaneously 2◦1-transition-standard and 2◦2-transition-standard. �

Lemma 5.8. Let "B be 2◦-transition-standard with respect to *. Let $2◦ ⊂ be a neighbourhood of
2◦ such that (23) holds. Let , be the rationally generated two-dimensional plane in R4 that contains
2◦ and (1, 1, 1, 1) ∈ ), . Then there exists a family of proper  -invariant (possibly disconnected)
Lagrangian submanifold !C in c−1

Δ
($2◦ ) ∩ "B

C , for C > 0, such that

(I) ,⊥ ⊂ )(?,@)!C for all (?, @) ∈ !C , and
(II) cΔ (!C ) ⊂ , .

Moreover, cΔ (!C ) Hausdorff converges to 2◦ when C approaches 0.
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Proof. Similar to Proposition 5.4, because 5@ only depends on ?, it suffices to show that for each C > 0,
the set of ? ∈ , ∩$2◦ that solves

∏
9 ,2 (0) 9=0

√
? 9 = C 5?

©«
∏

9 ,2 (0) 9=0,2 (1) 9≠0

? 9
ª®¬

(24)

is an open subset of a smoothly embedded curve.
We only consider the case that Type(2(0)) = 0 and Type(2(1)) = 3. The other cases can be dealt

with similarly. In this case c−1
Δ
($2) ∩ "B

C is given by

(√?1?2?3?4)48 (@1+@2+@3+@4) = C 5? (?2?3?4)48 5@ (?) .

Notice that a :=
∑4
9=1 m? 9 satisfies a( ?1 ?2 ?3 ?4

5 2
? (?2 ?3 ?4)

) > 0 for all ? ∈ \m because we assumed that
D

5 2
? (D)

is monotonic increasing and m?1 (
?1 ?2 ?3 ?4

5 2
? (?2 ?3 ?4)

) = ?2 ?3 ?4

5 2
? (?2 ?3 ?4)

> 0 for all ? ∈ \m . The rest of the

argument is the same. �

Definition 8. A proper  -invariant Lagrangian submanifold !C in c−1
Δ
($2◦) ∩ "B

C satisfying Lemma
5.8 (�), (� �) is called 2◦-transition-standard.

We summarise the steps taken so far.

Proposition 5.9. Let 2 : [0, 1] → m \A be a straight line and #2 be a neighbourhood of Im(2) in
\A. Let 2◦ = 2((0, 1)). Then for any B1-admissible section B, there is a family of B1-admissible section
(BD)D∈[0,1] such that B0 = B, for all D, BD = B outside c−1

Δ
(#2), BD is  -invariant, and for all G ∈ Im(2),

"B1
is either G-standard with respect to * or there exists an open line segment 2◦G ⊂ 2◦ containing G

such that "B1
is 2◦G-transition-standard with respect to*.

Moreover, there is a neighbourhood$2◦ ⊂ \A of 2◦ and a family of proper -invariant Lagrangian
!C in "B1

C ∩ c−1
Δ
($2◦ ), for C > 0, such that 2◦ is proper inside $2◦ , !C is a 2-torus bundle (or union of

| | disjoint 2-torus bundles) with respect to cΔ and cΔ (!C ) Hausdorff converges to 2◦ as C goes to 0.

Proof. The function Type(2(A)) is discontinuous at finitely many points, say, at 0 ≤ A1 < · · · < A: ≤ 1.
By extending 2 slightly, we assume A1 > 0 and A: < 1. Pick a 3 9 ∈ (A 9 , A 9+1) for 9 = 1, . . . , : − 1.
Let 30 = 0 and 3: = 1. For 9 = 1, . . . , : , let 2+9 (A) = 2 |[A 9 ,3 9 ] (A) and 2−9 (−A) = 2 |[3 9−1 ,A 9 ] (A). By
reparametrizing the domain of 2±9 , we can assume that they satisfy the assumption of Lemma 5.6. We

can apply Lemma 5.6 and 5.7 to the neighbourhoods of {Im(2±9 )}:9=1 to find a family of B1-admissible

section (BD)D∈[0,1] such that B0 = B, for all D, BD = B outside c−1
Δ
(#2), BD is  -invariant, and "B1

is
(2±9 )◦-transition-standard with respect to * for all (2±9 )◦, where (2±9 )◦ is the set of interior points of
Im(2±9 ).

For each 2±9 , we obtain a  -invariant Lagrangian (!C )2±
9

by Lemma 5.8 such that (�) and

(� �) are satisfied. By definition of transition-standard, "B1
is G-standard with respect to * for

G = 30, . . . , 3: , A1, . . . , A: . Therefore, by Proposition 5.4, there exist neighbourhoods$3 9 of 3 9 such that
(!C )2+

9
∩ c−1

Δ
($G) and (!C )2−

9+1
∩ c−1

Δ
($G) are given by (22) for some appropriate %,&, �. By interpo-

lating the �, we can concatenate the  -invariant Lagrangians (!C )2+
9
∩ c−1

Δ
($G) and (!C )2−

9+1
∩ c−1

Δ
($G)

(for all 9 = 1, . . . , : − 1), so the result follows. �

5.1.4. Transition between symplectic corner charts

Because tropical curves considered in Theorem 1.1 are not necessarily contained in a single , we now
want to explain the transition between different symplectic corner charts and then how the Lagrangians
from different symplectic corner charts can be glued together. The key conclusion we want to draw is

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2020.54
Downloaded from https://www.cambridge.org/core. Johannes Gutenberg University, on 07 Dec 2020 at 09:43:04, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2020.54
https://www.cambridge.org/core


Forum of Mathematics, Sigma 31

that being G-standard is independent of choice of symplectic corner charts when G is suitably far away
from A (see Corollary 5.11).

Let *0, *1 be symplectic corner charts at vertices E0 and E1 of Δ , respectively. We assume that E0

and E1 are connected by a 1-cell X in Δ . Recall that Δ = Δ- + Δ ′ and thus both E0 and E1 decompose
accordingly, say, as E0 = E-0 + E

′
0 and E1 = E-1 + E

′
1. From the description of the monodromy in [21,

Proposition 3.15] that involves the vector E-0 − E-1 , we see that E-0 = E-1 holds if and only if X does
not meet the discriminant A. Let us assume that the reflexive polytope Δ- has been translated so that
its unique interior lattice point coincides with the origin. By the Gorenstein assumption, the monoid(
R≥0 (Δ − E0)

)
∩ Z4 is Gorenstein; that is, the ideal of integral points in its interior is generated by

a single element and this element is −E-0 (the Gorenstein character). A similar statement holds if we
replace E0 by E1. We conclude the following consequence from this observation.

Lemma 5.10. Let*0/ 0 and*1/ 1 be corner charts at E0 and E1 respectively connected by an edge X so
that X∩A = ∅, then the Gorenstein characters of*0/ 0 and*1/ 1 agree on the overlap*1/ 1∩*0/ 0.

Lemma 5.11. Let G ∈ mΔ and Π be the cell of mΔ whose interior contains G. Let E0, E1 be vertices of
Π such that there exists a union of 1-cells {X8}8 in Π connecting E0 and E1 and X8 ∩ A = ∅ for all 8.
Let *0/ 0,*1/ 1 be the symplectic corner charts at E0 and E1, respectively. If "B is G-standard with
respect to*0 then "B is G-standard with respect to*1.

Proof. It suffices to assume that E0 and E1 are the endpoints of a single edge X with X ∩ A = ∅.
By the standardness assumption on *0, there is a neighbourhood $G of G such that the hypersurface
"B
C ∩ c−1

Δ
($G) in the coordinates of*0 is given by

©«
∏
9 ,G 9=0

√
? 9

ª®¬
48 (@1+@2+@3+@4) = C2. (25)

The Gorenstein character 48 (@1+@2+@3+@4) descends to*0/ 0 and by Lemma 5.11, it agrees with the one
in *1. The coordinate ? 9 measures the distance from the corresponding facet of Δ that contains G. In
other words, the map ? ↦→ ? 9 is given by pairing with a dual vector that is an inward normal to the
facet. This is true for both *1 and *0. Note that the interior of the facet corresponding to G 9 = 0 is
necessarily contained in both cΔ (*0/ 0) and cΔ (*1/ 1) because both charts contain G and G lies in that
facet. Because the coordinate transformation of the ?-coordinates from *0 to *1 is affine Q-linear and
identifies the respective placements of the polytope, it follows that, if G 9 = 0, the respective coordinates
? 9 for*0 and*1 are constant multiples of one another. If we transform (25) from the coordinates of*0

to the coordinates of*1, the left-hand side takes the same shape up to multiplication by a constant that
we can absorb into the constant 2 on the right, so we see that"B is also G-standard with respect to*1. �

When Type(G) = 3, we can remove the assumption that E0 and E1 are connected by a union of 1-cells,
in the following sense.

Lemma 5.12. Let Π and G be as in Lemma 5.11 but we assume that Type(G) = 3 (so dim(Π) = 3). Let
E0, E1 be vertices of Π and *0,*1 be the corresponding corner charts. If "B is G-standard such that
equation (19) holds for 2 = 0 with respect to*0, then the same is true with respect to*1.

Proof. That equation (19) holds for 2 = 0 implies that "B
C ∩ c−1

Δ
($G) coincides with c−1

Δ
($G ∩ Π),

which is independent of coordinates. Therefore, it is true with respect to*0 if and only if it is true with
respect to*1. �

5.2. Trivalent vertex

In this subsection, we construct a local Lagrangian modeled on a trivalent vertex of a tropical curve W.
Near the trivalent vertex, W is contained in a two-dimensional plane, so we start our construction in)∗)2.
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Lemma 5.13. In)∗)2, there is a Lagrangian pair of pants ! such that outside a compact set, ! coincides
with the union of the negative co-normal bundles of a (1, 0) and (0, 1) curve and the positive co-normal
bundle of a (1, 1) curve.

Proof. Let A8 , \8 be the polar coordinates of R2\{0} for 8 = 1, 2. For a symplectic form on (R2\{0})2 we
use l :=

∑
8 3 (log(A8)) ∧ 3\8 . Now, )∗)2 is symplectomorphic to ((R2\{0})2, l) by the identification

(?8 , @8) = (log(A8), \8), where the @8 are the base coordinates of )∗)2. In the complex coordinate
I 9 = A 94

8 \ 9 , the holomorphic pair of pants � = {(I1, I2) | I1 + I2 = 1} is given by

A1 cos(\1) + A2 cos(\2) = 1, A1 sin(\1) + A2 sin(\2) = 0.

To obtain a Lagrangian pair of pants, we use hyperkähler rotation. Concretely, by transforming \1 ↦→
\2, \2 ↦→ −\1 keeping A1, A2 fixed, we know that

! :=

{
(A1, \1, A2, \2) ∈ (R2\{0})2

���� A1 cos(\2) + A2 cos(\1) = 1,

−A2 sin(\1) + A1 sin(\2) = 0

}

is diffeomorphic to a pair of pants. The three punctures correspond to A1 = 0, A2 = 0 and A1 = A2 = ∞,
respectively. We next check that ! is Lagrangian.

The tangent space of ! is spanned by

cos(\1)mA1 −
sin(\1)
A1

m\2 − cos(\2)mA2 +
sin(\2)
A2

m\1 , (26)

sin(\1)mA1 +
cos(\1)
A1

m\2 + sin(\2)mA2 +
cos(\2)
A2

m\1 (27)

as can be checked by applying these to the defining equations of !. Computing l((26), (27)) gives zero;
hence ! is Lagrangian.

Let c : )∗)2 → R2 be the projection c(?8 , @8) = (?1, ?2), which is a Lagrangian torus fibre bundle.
Note that c(!) = c(�), which is an amoeba with three legs asymptotic to the negative ?1 axis, the
negative ?2 axis and the line {?1 = ?2 |?1 > 0}. More precisely, when A1 > 0 is sufficiently small, \1 is
close to 0 and A2 is close to 1. The situation is similar when A2 > 0 is sufficiently small. When A1, A2 are
sufficiently large, we consider the equation A2

1 + A2
2 + 2A1A2 cos(\1 + \2) = 1 obtained by sum of squares

of two defining equations of !. This implies that 1 ≥ (A1 − A2)2 and cos(\1 + \2) is close to −1 when
A1, A2 large, which in turn implies that A1

A2
is close to 1 and \1 + \2 is close to −c. To complete the proof,

it suffices to deform ! to another Lagrangian ! ′ such that the three legs of c(! ′) completely coincide
with the asymptotic lines outside a compact set.

We now explain the deformation procedure. One can check that U := ?83@8 is exact when restricted
to ! by showing that

∫
28
U = 0, where 28 are simple closed loops wrapping around the asymptotes A8 = 0

for 8 = 1, 2. Define

�1 := {(?1, @1, ?2, @2) |@1 = 0, ?2 = 0 } ,

which is the co-normal bundle of {@1 = ?1 = ?2 = 0} ⊂ {?1 = ?2 = 0}when we identify {?1 = ?2 = 0}
with the zero section of )∗)2. In particular, �1 is a Lagrangian. The projection c1 : ! → �1 defined by
c1 (?1, @1, ?2, @2) = (?1, 0, 0, @2) is injective and submersive near the end corresponding to ?1 = −∞.
By locally identifying a neighbourhood of the zero section of )∗�1 with an open subset of )∗)2, !
can be identified as a section of )∗�1 → �1 near ?1 = −∞. Because we checked that ! is exact for
U, one can find a Hamiltonian isotopy to move this end of ! to �1. For the end of ! corresponding
to ?2 = −∞ and ?1 = ?2 = ∞, we can take �2 := {(?1, @1, ?2, @2) |@2 = 0, ?1 = 0} and �3 :=
{(?1, @1, ?2, @2) |?1 = ?2, @1 = −c − @2} to substitute �1, and c2 (?1, @1, ?2, @2) = (0, @1, ?2, 0) and
c3 (?1, @1, ?2, @2) = (?1,−c − @2, ?1, @2) to substitute c1, respectively. This completes the proof. �

By multiplying Lemma 5.13 with a trivial )∗(1 factor, we have the following.
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Corollary 5.14. In )∗)3, there is a Lagrangian pair of pants times circle ! such that outside a compact
set, ! coincides with the union of the negative co-normal bundles of a (1, 0, 0)-curve times a (0, 0, 1)-
curve, of a (0, 1, 0)-curve times a (0, 0, 1)-curve, and the positive co-normal bundle of a (1, 1, 0) curve
times a (0, 0, 1)-curve.

By applying backward Liouville flow for the standard Liouville structure on )∗)3, we can assume !
to lie inside a small open neighbourhood of the union of the zero section )3 and the negative/positive
co-normal bundles, and the neighbourhood is as small as we want.

Lemma 5.15. Let "B be G-standard for some G ∈ m \A so that c−1
Δ
($ ′G)∩"B

C is given by equation (19)
for a small neighbourhood$ ′G of G. Let 2 9 : [0, 1) → $ ′G∩m for 9 = 1, 2, 3 be proper straight lines such
that 2 9 (0) = G for all 9 . Assume the directions of 2 9 is integral linearly equivalent to {41, 42,−41 − 42}
with respect to the integral affine structure on m \A. Then there exists a small neighbourhood$G ⊂ $ ′G
of G, small neighbourhoods $2 9 ⊂ $ ′G of Im(2 9 ) and a family of proper Lagrangian pair of pants times
circle !C ⊂ c−1

Δ
($ ′G) ∩ "B

C , for C > 0, such that !C ∩ c−1
Δ
($2 9 ) is Im(2 9 )-standard outside c−1

Δ
($G) for

9 = 1, 2, 3.

Proof. By Proposition 5.4, we can construct Im(2 9 )-standard Lagrangian ! 9 in c−1
Δ
($ ′G) ∩"B

C . The set
of ?-coordinates of ! 9 is determined by condition (� �) in Proposition 5.4. Let the set of ?-coordinates
of ! 9 be % 9 . Notice that ∩ 9=1,2,3% 9 is a singleton given by the unique element in cΔ ("B

C ) such that
?1 − G1 = · · · = ?4 − G4. Let ?∗ be the unique element in ∩ 9=1,2,3% 9 and )?∗ := c−1

Δ
(?∗) ∩ "B

C be the
Lagrangian )3 in "B

C .
The assumption of the directions of 2 9 implies that, for some choice of coordinates in )?∗ , the

intersection pattern of ! 9 with)?∗ is exactly given by (1, 0, 0)-curve times (0, 0, 1)-curve, (0, 1, 0)-curve
times (0, 0, 1)-curve and (1, 1, 0) curve times (0, 0, 1)-curve. We can do a Hamiltonian perturbation of
! 9 such that, with respect to a choice of Weinstein neighbourhood of)?∗ , ! 9 coincides with the negative
co-normal bundles of a (1, 0, 0)-curve times (0, 0, 1)-curve, (0, 1, 0)-curve times (0, 0, 1)-curve, and
the positive co-normal bundle of a (1, 1, 0) curve times (0, 0, 1)-curve.

We can also adjust )?∗ ∩ ! 9 by parallel translation of the 2-tori using � (D) in Proposition 5.4 if
necessary. Therefore, we can apply Corollary 5.14 to glue the ! 9 together and obtain a proper Lagrangian
pair of pants times circle !C . It is clear that !C ∩ c−1

Δ
($2 9 ) is Im(2 9 )-standard outside c−1

Δ
($G) for some

small neighbourhood $G of G. �

5.3. Assembling local Lagrangian pieces away from the discriminant

We apply the results in the previous two subsections and conclude the construction of the Lagrangian
away from the discriminant.

Terminology 5.16. A solid torus is a manifold diffeomorphic to (1 × {I ∈ C| |I | ≤ 1}. An open solid
torus is a manifold diffeomorphic to the interior of a solid torus.

Let W be an admissible tropical curve (see the assumption of Theorem 1.1). Let # be a neighbourhood
of W and �′ ⊂ � ⊂ # be small open tubular neighbourhoods of the ends of W such that the closure �

′

of �′ lies inside �. In particular, we can write � = ∪4�4 and �′ = ∪4�′4 where the union is taken over
all the ends 4 of W and �4, �′4 are small topological balls containing 4.

Proposition 5.17. Suppose there exists an B1-admissible section B and, for all C > 0 small and for each
end 4, a Lagrangian open solid torus !4C in c−1

Δ
(�) ∩"B

C such that !4C is (�4 \�
′
4) ∩W-standard, and the

directions of the meridian and longitude of !4C with respect to the integral affine structure are as in !E
in Subsection 2.6. Then, for all C > 0 sufficiently small, there is a closed Lagrangian !C ⊂ "B

C such that
!C is diffeomorphic to a Lagrangian lift of W and cΔ (!C ) ⊂ # . Moreover, we have F(!C ) = mult(W).

Proof. We first explain the construction of !C and the proof concept is the same as for Proposition
5.9. Let � := {38} 8=1 ⊂ W \ � be a finite collection of points such that it contains all of the trivalent
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points of W and all of the points in m� ∩ W. By adding more points to � if necessary, we can assume
that every point G on W is contained in the image of a curve 2 : [0, 1] → \ A, for some , such
that Type(2(0)) ≤ Type(2(A)) = Type(2(1)) for all A ∈ (0, 1]. In particular, it implies that the interval
between two adjacent points 3, 3 ′ of � (adjacent with respect to the topology on W) is the image of
such a curve 2. We denote the open (respectively closed) interval between two adjacent points 3, 3 ′ by
(3, 3 ′) (respectively [3, 3 ′]).

By repeatedly applying Lemma 5.7, we get a new B1-admissible section B′ such that "B′ is (3, 3 ′)-
transition-standard for all adjacent points 3, 3 ′ ∈ � and B′ = B outside c−1

Δ
(#). Moreover, because

"B is standard for points in (� \ �′) ∩ W a priori, when we apply Lemma 5.7, we can assume that the
outcome B′ equals B inside c−1

Δ
(�).

As a consequence of "B′ being (3, 3 ′)-transition-standard, "B′ is G-standard for all G ∈ � (here, we
use Corollary 5.11 and Lemma 5.12 to guarantee that being G-standard is independent of corner charts:
if H ∈ (3, 3 ′) has Type(H) = 3, we apply Lemma 5.12; if H ∈ (3, 3 ′) has Type(H) < 3, the assumption of
Corollary 5.11 will be satisfied, so we can apply Corollary 5.11). In particular, "B′ is G-standard for all
trivalent points G of W. Let G be a trivalent point of W and let 381 , 382 , 383 ∈ � be the three adjacent points
of G on the three incident edges of G, respectively. We can apply Lemma 5.15 at G. The result is a point
18: ∈ (G, 38: ) for each : = 1, 2, 3 such that, for all C > 0 small, there exists a Lagrangian pair of pants
times circle !GC ⊂ "B′ such that !GC is (G, 18: )-standard outside the preimage of a small neighbourhood
$G of G under cΔ . Because "B′ is (G, 38: )-transition-standard for all : = 1, 2, 3, we can apply Lemma
5.8 to extend !GC so that it becomes (G, 38: )-transition-standard outside c−1

Δ
($G).

Now, as in the proof of Proposition 5.9, for all adjacent 3, 3 ′ ∈ � such that 3, 3 ′ are not trivalent points
of W, we can also construct Lagrangian local pieces in"B′ that are (3, 3 ′)-transition-standard. Moreover,
we can glue these local pieces together smoothly to get, for all C > 0 small, a closed Lagrangian !C .

Because B and B′ are interpolated by a family of B1-admissible sections that is unchanged outside
c−1
Δ
(#), we can apply Lemma 4.3 to conclude that !C ⊂ "B′

C can be brought back, via a symplectic
isotopy, to a closed embedded Lagrangian inside "B

C ∩ c−1
Δ
(#).

Finally, for the diffeomorphism type and topology of !C , it is clear from the construction that the
diffeomorphism type of !C is governed by W and coincides with Definition 2. In particular, for a rigid W
of genus zero, !C is a rational homology sphere and F(!) = mult(W). �

6. Near the discriminant

In this section, we explain the construction of a local Lagrangian solid torus that serves as capping off
the Lagrangian 3-folds near the discriminant. We first explain the case where PΔ is a toric manifold;
Subsection 6.8.1 reduces the more general orbifold situation to the manifold case.

Let * be a symplectic corner chart. As explained in Section 3 (see (5)), we have an explicit diffeo-
morphism Φ* : * → C4 given by

F 9 = exp(D 9 + 8E 9 ) = Φ*, 9 (I) = exp

(
m 5� (?)
m? 9

)
exp(8@ 9 ), (28)

where (F1, . . . , F4) ∈ C4, I = (I1, . . . , I4), I 9 =
√

2? 9 exp(8@ 9 ) and Φ* = (Φ*,1, . . . ,Φ*,4).
Let B1 ∈ �0(PΔ ,L)Reg and "C := "

B1
C (see (18)). For the purpose of capping off the Lagrangian,

we will make an assumption on the shape of the discriminant near the ending. Say the piece of the
discriminant that we want to cap off the Lagrangian at is contained in the complex two-dimensional
stratum ) = {F1 = F2 = 0, F3F4 ≠ 0}.

Assumption 6.1. In this section, we assume

"C ∩* = Φ
−1
* ({F1F2F3F4 = C6(F)}), (29)
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where 6(F) := 2(1 − F3) + F1ℎ1 (F) + F2ℎ2 (F) for some polynomial functions ℎ1, ℎ2 : C4 → C and
constants 1, 2 ∈ C∗. In other words, the restriction of 6 to ) is constant in F4 and degree one in F3.

Remark 6.2. As a consequence of Lemma 2.5, the situation of Assumption 6.1 is equivalent to the corner
chart * being based at a vertex with an adjacent 2-cell that deforms to a 1-cell in Δ -̌ . Furthermore,
6 being locally of this form is equivalent to its amoeba A locally being one-dimensional. By the
admissibility assumption on the tropical curves that we build Lagrangians for, its univalent vertices
permit a nearby vertex of Δ that is contained in a 2-cell so that the associated chart Φ* gives the
hypersurface the form of (29) for ) the toric 2-stratum associated to the 2-cell in Δ that contains the
univalent vertex of W. A is locally of dimension one if and only if (29) holds.

Remark 6.3 (Trivalent vertex). It is natural to ask whether Theorem 1.1 can be generalised to tropical
curves whose univalent vertices end at a codimension one part of A. In this case, the local model is

"C ∩* = Φ
−1
* ({F1F2F3F4 = C6(F)}) (30)

and 6(F) = 2(1− 13F3 − 14F4) +F1ℎ1 (F) +F2ℎ2(F) for some polynomial functions ℎ1, ℎ2 : C4 → C
and constants 1, 2, 13, 14 ∈ C∗.

The key difficulty for this generalisation is whether one can straighten the discriminant as in Propo-
sition 6.19. More details will be explained in Remark 6.20.

Let 60 := 6 |) . Because 60 (F3, F4) = 6(0, 0, F3, F4) = 2(1 − F3), the discriminant Disc(B1)
intersected with the stratum ) is

Disc0(B1) := Disc(B1) ∩ ) = {60 = 0} = {F3 = 1} ∩ ). (31)

Let c : * → be the moment map restricted to* and A := c(Disc0(B1)).

Lemma 6.4. c |Disc0 (B1) is an (1-fibre bundle over A and the tangent space of each (1-fibre is generated
by m@4 = mE4 . Moreover, A is an open embedded curve inside the 2-cell {?1 = ?2 = 0} ⊂ such that A
is transverse to the slices {?4 = 2>=BC}.

Proof. Because Disc(B1)∩) is connected, so is its projectionA. InsertingF 9 = 4D 9+8E9 into 60 (F3, F4) =
6(0, 0, F3, F4) and taking logarithm yields that Disc(B1) ∩) is given by D3 = 2>=BC and E3 = 2>=BC, so
it is invariant under the subtorus action {(0, 0, 0, o) ∈ )4 |o ∈ (1}. This proves the first statement of the
lemma.

The curveA in ?-coordinates is found by inserting D3 = m 5� (?)/m?3 into D3 = 2>=BC and because 5�
is a smooth function, A is a smooth connected curve. Let ? = (0, 0, 51(A), 52(A)) be a parametrization
of A. Note that Disc(B1) ∩) is symplectic with tangent space generated by { 5 ′1 (A)m?3 + 5 ′2 (A)m?4 , m@4 }.
This means that l( 5 ′1 (A)m?3 + 5 ′2 (A)m?4 , m@4 ) = 5 ′2 (A) ≠ 0 for all A , so A is transverse to the slices
{?4 = 2>=BC}. �

Remark 6.5. An alternative proof of Lemma 6.4 suggested by an anonymous referee is as follows: the
Hessian of 5� is positive definite so m2 5� (?)/m?2

3 > 0, and therefore A = {D3 = 2>=BC} is a curve as
claimed.

We consider a straight line segment W(A) = (0, 0, A, ') ∈ for some fixed ' ∈ R>0 parametrized by
A ∈ (A0, A1], inside the 2-cell {?1 = ?2 = 0} = c()), such that 0 < A0 < A1 and W(A) ∈ A ⇐⇒ A = A1

(see Figure 9).
The main result we want to prove in this section is the following.

Theorem 6.6 (Lagrangian solid tori). Let B be an B1-admissible section. For any neighbourhood
# ⊂ of W(A1), there exist A ′ < A ′′ < A1 with W([A ′, A1]) ⊂ # , and a family of B1-admissible section
(BD)D∈[0,1] such that B0 = B, for all D, BD = B outside c−1

Δ
(#) and "B1

is G-standard with respect to *
for all G ∈ W([A ′, A ′′]).
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Figure 9. The straight line segment W inside the two cell {?1 = ?2 = 0}. The transition from the left to
the right image is addressed in Subsection 6.3.

Moreover there exists a neighbourhood # ′ ⊂ # of W((A ′, A1]) such that W((A ′, A1]) is proper in # ′

and there exists a family of proper Lagrangian open solid tori !C ⊂ ("B1

C ∩ c−1 (# ′)), for all C > 0
sufficiently small, such that !C is (W((A ′, A ′′)))-standard (see Definition 6 and Terminology 5.16).

Note that, in Theorem 6.6, !C being (W((A ′, A ′′)))-standard and proper in ("B1

C ∩ c−1(# ′)) implies
that the infinite end of !C is contained in c−1 (W((A ′, A ′′))). We will use this property to glue !C with the
standard Lagrangian models constructed in Section 5 to conclude the proof of Theorem 1.1, eventually.

6.1. Lagrangian construction near the discriminant under assumptions

In this section, we give the construction of a Lagrangian solid torus under two additional assumptions
on "C near Disc(B1) ∩ ) , and we later show how to reduce the general case to this case. We start with
some preliminaries about contact geometry and Legendrian submanifolds.

6.1.1. Digression into contact geometry

Let (%, l) be a compact symplectic manifold with boundary. A Liouville structure on (%, l) is a choice
of U ∈ Ω1(%) such that 3U = l and that the vector field / , l-dual to U (i.e., ]/l = U), points outward
along m%. The triple (%, l, U) is called a Liouville domain.

Example 6.7. Let (�2=,
∑
A 93A 9∧3\ 9 ) be the standard symplectic closed ball. We can pickU =

∑ A2
9

2 3\ 9 .
In this case, / =

∑ A 9
2 mA 9 points outward along m�2=.

Given a Liouville domain (%, l, U), (m%, ker(U |m%)) is a contact manifold (see, e.g., [18], [40]) and
we call it the contact boundary of (%, l, U). The contact boundary of the Liouville domain in Example
6.7 is called the standard contact sphere ((2=−1, bBC3). In general, there are many contact structures one
can put on an odd-dimensional manifold even if one restricts to those that arise as the contact boundary
of a Liouville domain. In contrast, there is a unique contact structure on the three-dimensional sphere
(up to contactomorphisms) that can be the contact boundary of a Liouville domain, namely, the standard
one (see [12]).

Theorem 6.8 (see [11] and also Theorem 1.7 of [39]). If (%, l, U) is a Liouville domain with its contact
boundary being the standard contact 3-sphere, then (%, l, U) is symplectic deformation equivalent to
the standard symplectic closed 4-ball.

A knot  in ((3, bBC3) is called Legendrian if )? ⊂ bBC3 for every point ? ∈  . A Legendrian
unknot is a Legendrian knot such that its underlying smooth knot type is an unknot.

Example 6.9. Let  ⊂ ((3, bBC3) ⊂ R4 be the intersection of ((3, bBC3) with a Lagrangian vector
subspace of (R4, lBC3). Then  is a Legendrian unknot and we call it a standard Legendrian unknot.

The Legendrian isotopy type of a Legendrian unknot is classified by its Thurston-Bennequin number
and rotation number (see [13] and also [14, Section 5] for more about these background materials). There
is exactly one Legendrian unknot with Thurston-Bennequin number −1 up to Legendrian isotopy and
it is realised by the standard Legendrian unknot. By the Thurston-Bennequin inequality, a Legendrian
unknot can bound an embedded Lagrangian disk in (�4, lBC3) only if its Thurston-Bennequin number
is −1. The converse is also well known to be true.
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Lemma 6.10 (Bounding a Lagrangian disk). Let (%, l, U) be a Liouville domain with contact bound-
ary ((3, bBC3). If Λ ⊂ (m%, ker(U)) is Legendrian isotopic to the standard Legendrian unknot, then there
is an embedded Lagrangian disk � ⊂ (%, l) such that m� = � ∩ m% = Λ.

Proof. By Theorem 6.8, it suffices to assume that (%, l, U) is a star-shaped domain in (R4, lBC3). By
[7, Theorem 1.2], there is a small Darboux ball �4 ⊂ % and an embedded Lagrangian ! ⊂ % \ Int(�4)
such that ! ∩ m% = Λ and ! ∩ m�4 is a standard Legendrian unknot. Moreover, we can assume that ! is
invariant with respect to radial direction near m�4. Therefore, we can close up ! by a Lagrangian plane
in �4 by Example 6.9. �

Let " ′C := {(I1, I2, I3) ∈ C3 |I1I2 = CI3}, which is a complex and hence symplectic hypersurface for
all C ≠ 0. With positive n , let .n := {I ∈ C3 | |I1 |2 + |I2 |2 + |I3 |2 = n} be the 5-sphere equipped with the

standard contact structure and contact form U |.n =
∑ A2

8

2 3\8 (see Example 6.7).

Lemma 6.11. For C ∈ R>0, the contact form U |.n restricts to a contact form on .n ,C := " ′C ∩ .n such
that (.n ,C , ker(U |.n ,C )) is contactomorphic to the standard contact 3-sphere.

Proof. This result is well known (see Remark 6.12), but we still want to give some details. Without loss
of generality, we assume C is real positive. Note that.n ,C is the union of.n ,C \{I1 = 0} and.n ,C \{I2 = 0}.
We parametrize .n ,C \ {I1 = 0} and .n ,C \ {I2 = 0} by

{
(A1, \1, A2, \2, A3, \3) =

(
A, \1,

d(n, C, A)C
A

, \2, d(n, C, A), \1 + \2

)���A ∈ (0,√n], \1, \2 ∈ R/2cZ
}
,{

(A1, \1, A2, \2, A3, \3) =
( d(n, C, A)C

A
, \1, A, \2, d(n, C, A), \1 + \2

)���A ∈ (0,√n], \1, \2 ∈ R/2cZ
}
,

where d(n, C, A) :=
√
A2 (n−A2)
A2+C2 , so when A =

√
n , we have d(n, C,

√
n) = 0 and the corresponding angular

variable (i.e., \2 for the first equation and \1 for the second equation) collapses. In particular, the
parametrizations of .n ,C \ {I1 = 0} and .n ,C \ {I2 = 0} exactly give a Heegaard decomposition of .n ,C .
The collapsing circles at the ends have intersection pairing one in the Heegaard surface (a 2-torus) so
.n ,C = (

3.
Let Φ(B1, o1, B2, o2) := (B1

√
C exp(8o1), B2

√
C exp(8o2), B1B2 exp(8(o1 + o2))) be a chart for " ′C and

let U :=
∑ A2

9

2 3\ 9 |"C and recall that l =
∑
A 93A 9 ∧ \ 9 . Then we have

Φ
∗U =

B21

2
(C + B22)3o1 +

B22

2
(C + B21)3o2,

Φ
∗l = B1(C + B22)3B1 ∧ 3o1 + B21B23B2 ∧ 3o1 + B1B223B1 ∧ 3o2 + B2(C + B21)3B2 ∧ 3o2, so

/C =
1

2(C + B21 + B22)
(B1 (C + B21)mB1 + B2(C + B22)mB2)

is checked to be the dual of Φ∗U with respect to Φ∗l|"C . In particular, the Liouville vector field /C
points outward along m (" ′C ∩ {|I | ≤ n}). Therefore, " ′C ∩ {|I | ≤ n} is a Liouville domain with contact
boundary (.n ,C , ker(U |.n ,C )). Because the standard contact 3-sphere is the only contact 3-sphere that
arises as the boundary of a Liouville domain, the result follows. �

Remark 6.12. .n ,C is called the link of the ‘singularity’ of " ′C at the origin. Because " ′C is smooth at
the origin for C ≠ 0, the link of the origin is contactomorphic to the standard contact 3-sphere.

By translating the I3 coordinate, we know that .0,n ,C := {I ∈ C3 |I1I2 = C (I3 − 0)} ∩ {I ∈ C| |I1 |2 +
|I2 |2 + |I3−0 |2 = n} is naturally equipped with a contact structure making it a standard contact 3-sphere
for 0 ∈ C and n > 0.
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Lemma 6.13. With C ∈ R>0, the following is a Lagrangian disk in " ′0,C := {I1I2 = C (I3 − 0)},

! := {(A48 \ , A4−8 \ , A
2

C
+ 0) |A ∈ [0,∞), \ ∈ R/2cZ}. (32)

Moreover, m! := !∩.0,n ,C is a Legendrian and has the Legendrian isotopy type of a standard Legendrian
unknot in .0,n ,C .

Proof. Being a Lagrangian disk is an easy check. Using the chart Φ for " ′C from above, shifted by
(0, 0, 0), we have

Φ
−1(!) =

{(
A
√
C
, \,

A
√
C
,−\

)}
.

By the proof of Lemma 6.11, /C =
1

2(C+B2
1+B

2
2 )
(B1 (C+B21)mB1 +B2 (C+B

2
2)mB2), so we have /C |G ∈ )G (Φ−1(!))

for all G ∈ Φ−1(!). Therefore, m! is a Legendrian. The only Legendrian isotopy type that can bound a
Lagrangian disk is the standard one, so m! is Legendrian isotopic to the standard Legendrian unknot. �

Remark 6.14. For every q ∈ R/2cZ, there is a symplectomorphism" ′0,C → " ′0,C given by I1 ↦→ 48qI1,

I2 ↦→ 48qI2, I3 ↦→ 48 (2q) (I3 − 0) + 0. Therefore, if the domain of A in (32) is replaced by 48q [0,∞) for
some q ∈ R/2cZ, Lemma 6.13 still holds.

Having reviewed some basic contact geometry, now we explain the construction of Lagrangian solid
tori under Assumptions 6.15 and 6.17 below.

6.1.2. Overview of the construction

In one dimension lower like the situation we just considered, let I1, I2, I3 be symplectic coordinates of
C3 and suppose we have a family "C of hypersurfaces in C3 with "0 = {I1I2 = 0}, "C a symplectic
submanifold for C ≠ 0, for all C ≠ 0 the discriminant "C ∩ Sing("0) equals {(0, 0, 0)} for fixed 0 ∈ C∗.
Say we have two balls +,* centred at {(0, 0, 0)} with +̄ ⊂ * so that

"C ∩ (* \+) = {I1I2 = C (I3 − 0)}, (33)

"C ∩* is a Liouville domain. (34)

By (33) and Lemma 6.11, we know that m ("C ∩*) is the standard contact 3-sphere. By Lemma 6.13,
we have a Legendrian unknot

ΛA :=

{ (
A48 \ , A4−8 \ ,

A2

C
+ 0

)���� \ ∈ R/2cZ
}

(35)

inside m ("C ∩*) for some appropriate A . Furthermore, by (34) and Theorem 6.8, we know that "C ∩*
is symplectic deformation equivalent to the standard symplectic ball when C ≠ 0. Moreover, by Lemma
6.10, we know that we can fill ΛA by a Lagrangian disk in "C ∩*. This Lagrangian disk will generally
allow us to construct closed Lagrangian surfaces for a tropical curve ending at the discriminant with
such a disk closing up the ending.
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In the situation that interests us one dimension higher, the ending needs to be given by a solid 3-torus.
This situation is considerably harder for the following reason. Ideally, we would like to have a product
situation locally. This means that there is a symplectic annulus (�, l�) such that the family is simply
given by " ′C × � where " ′C is as above, the discriminant is then {(0, 0, 0)} × �, we obtain a Lagrangian
disk � in the first factor " ′C as before and then for any circle � in � that generates the fundamental
group of �, we find � × � as the desired solid torus in " ′C × �. However, it is very hard to understand
the symplectic form near the discriminant, not to mention to try to deform it to a product situation, so
this easy setup will not be achievable for us. The next weaker concept from a product is a fibration,
which is what we will be using instead, as follows.

Let I1, I2, I3, I4 be symplectic coordinates of C4, "C a family of hypersurfaces in C4 with "0 =

{I1I2 = 0}, "C a symplectic submanifold for C ≠ 0, and for all C ≠ 0 the discriminant "C ∩ Sing("0)
equals {(0, 0, 0)} × � for fixed 0 ∈ C∗ and some 0-centred annulus � ⊂ C. Again, say we have two balls
+ ′,* ′ ⊂ C3 centred at {(0, 0, 0)} with +̄ ′ ⊂ * ′ so that setting* = * ′ × �,+ = + ′ × �,

"C ∩ (* \+) = {I1I2 = C (I3 − 0)}, (36)

"C ∩* is a Liouville domain. (37)

We will show below that the restriction of the projection* → � to "C gives a ‘nice’ exact symplectic
fibration c : "C ∩* → �. Every fibre of c is the lower-dimensional situation as above. After symplectic
completion, we get an exact symplectic fibration Comp(c) : Comp("C ∩*) → )∗(1 such that fibres
are standard symplectic R4. Because the compactly supported symplectomorphism group of standard
R4 is trivial, we can find a compactly supported exact symplectic deformation from Comp("C ∩*) to
Comp("C ∩*) ′ such that Comp(c) is still an exact symplectic fibration and the symplectic monodromy
around a simple loop � ⊂ � is the identity. Therefore, we can construct a Lagrangian disk as above in a
fibre of a point of � and apply symplectic parallel transport along � to get a Lagrangian solid torus in
Comp("C ∩*) ′. Because Comp("C ∩*) ′ and Comp("C ∩*) are related by a compactly supported
exact symplectic deformation, we get a corresponding Lagrangian torus in Comp("C ∩*) and we can
apply the backward Liouville flow to obtain a Lagrangian solid torus in "C ∩*.

In the sections below, we will explain this construction in more details.

6.1.3. Main construction

Let * be a symplectic corner chart such that Assumption 6.1 holds. Let B be an B1-admissible section
and let ),A, W and c : * → be the ones from the beginning of Section 6. By Lemma 6.4, the @3-
coordinate of Disc(B) ∩ ) is a constant and we denote it simply by @. We are interested in the circle
in the discriminant that lies above the point where W hits its amoeba image A. Also by Lemma 6.4,
we find � := c−1(W(A1)) ∩ Disc(B1) ∩ ) to be a circle with constant radial coordinate, say, given by
|?4 | = ' ⇐⇒ |I4 | =

√
2'. So in I-coordinates, by setting 0 =

√
2A14

8@ , the circle � is given by

� =

{
I = (0, 0, 0, I4)

���|I4 | = √2'
}
. (38)

We will construct a Lagrangian solid torus inside "C ∩*� for an appropriate closed neighbourhood
*� of�. From now on, every tubular neighbourhood of� that we choose will be closed and of the form

*� := � × � × � × � ⊂ (R2)4 (39)

for � a 0-centred disk, � an 0-centred disk and � a 0-centred annulus (shrinking and then taking closure
of the one we had before) so that the circle of radius

√
2' is contained in �. We will make two further

assumptions for which we will show in later sections how these can be achieved. The first assumption
is that Disc(B) ∩ ) depends only on the I4-coordinate near � as illustrated on the right in Figure 9.
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Assumption 6.15. There exists a tubular neighbourhood *� of � such that

Disc(B) ∩ ) ∩*� = {(0, 0, 0, I4) ∈ *� |I4 ∈ �} (40)

for � a shrinking of the previous annulus � still containing the circle of radius
√

2'. In particular,
A ∩ c(*� ) = {(0, 0, A1)} × � where � is a straight line segment in the affine ?-coordinates of and �
is given by projecting the radial part of �.

To construct the Lagrangian solid torus, we also need to make an assumption on the restriction of c
to*� ∩ "C , and for that we introduce the following notion.

Definition 9. Let (�, l� ) be a symplectic manifold with corners and (Σ, lΣ) be a symplectic surface
with boundary. Let c : � → Σ be a symplectic fibration. The vertical boundary of c is mE� := c−1 (mΣ).
The horizontal boundary mℎ� of c is the closure of m� \ mE� . The fibration c is called a smoothly

trivial exact symplectic fibration if

1. c is a smoothly trivial fibre bundle,
2. there is a one form U� such that 3U� = l� and the induced Liouville vector field points outward

along mE� and mℎ� ,
3. there exists a neighbourhood # of mℎ� and a symplectic manifold (�, l� ) with smooth boundary

such that there is a symplectomorphism Ψ : (#, l� |# ) ≃ (� × Σ, l� ⊕ lΣ) and cΣ ◦ Ψ = c |# ,
where cΣ : � × Σ→ Σ is the projection to the second factor.

The last condition is also referred to as c being symplectically trivial near the horizontal boundary.

Remark 6.16. A smoothly trivial exact symplectic fibration is a strictly more restrictive notion than
that of an exact symplectic fibration as given in [52, Section 15].

Assumption 6.17. There exist tubular neighbourhoods

*� := � × � × � × � and +� := �′ × �′ × � ′ × � (41)

with *� as in (39) and �′ ⊂ � a 0-centred closed disk of smaller radius and � ′ ⊂ � an 0-centred
closed disk of smaller radius but*� and +� have notably the same �-factors such that

{
"B
C ∩ (*�\+� ) = {I1I2 = C (I3 − 0)} and

c : "B
C ∩*� → � is a smoothly trivial exact symplectic fibration,

(42)

where, as usual, I 9 =
√

2? 948@ 9 = G 9 + 8H 9 for 9 = 1, 2, 3, 4.

We next carry out the Lagrangian solid torus construction under Assumptions 6.15 and 6.17 (in fact,
we only use Assumption 6.17 for the Lagrangian construction and we will see in Subsections 6.4-6.6
that Assumption 6.15 is used to obtain Assumption 6.17). By Lemma 6.11, the contact boundaries of
fibres of the projection c : "C ∩*� → � are contactomorphic to the standard contact 3-sphere. This
implies that c is actually a symplectic 4-ball bundle over � by Theorem 6.8. Moreover, by Lemma 6.13,
for every I4 ∈ �, there is a unique A > 0 such that A2 + 0 ∈ m� for � the third factor of *� . When
C ∈ R>0 is small,

ΛI4 ,A :=
{
(
√
CA48 \ ,

√
CA4−8 \ , A2 + 0, I4)

��� \ ∈ R/2cZ} (43)

is a Legendrian unknot in m (c−1 (I4)). (By Remark 6.14, we can also take A ∈ C∗with nonzero argument.)
Recall that ' is the ?4-coordinate of W(A1). Because c is assumed to be symplectically trivial near the
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horizontal boundary, it is clear that

Λ�,A :=
⋃

I4: |I4 |=
√

2'

ΛI4 ,A (44)

is a Legendrian torus in the contact boundary of "C ∩ *� (after rounding corners to be able to call
"C ∩ *� a Liouville domain, even though Λ�,A does not meet any corners because it projects to the
interior of �).

Proposition 6.18. The Legendrian torus Λ�,A bounds an embedded Lagrangian solid torus !�,A in
"C ∩*� such that every ΛI4 ,A is a meridian.

Proof. We use the notation " ′C := "C ∩*� in this proof. Let Comp(" ′C ) be the symplectic completion
of " ′C . In other words,

Comp(" ′C ) := " ′C ∪m" ′C ([1,∞) × m"
′
C ) (45)

and the symplectic form on ([1,∞) × m" ′C ) is given by 3 (dU |m" ′C ) for d the linear coordinate on [1,∞)
and U the one-form on " ′C defining its Liouville structure. Because c is trivial near the horizontal
boundary (third item of Definition 9), Comp(" ′C ) can be obtained by first performing symplectic
completion along the fibres of c and then completing along the base direction. Therefore, we have
a symplectic R4-bundle Comp(c) : Comp(" ′C ) → C∗ extended from c. We also have a Lagrangian
submanifold [1,∞) × Λ�,A ⊂ [1,∞) × m" ′C ⊂ Comp(" ′C ) fibring over the circle {|I4 | =

√
2'} with

respect to Comp(c).
Gromov showed that the compactly supported symplectomorphism group of (R4, lBC3) is contractible

[19]. Therefore, there exists an exact symplectic deformation Comp(" ′C ) ′ of Comp(" ′C ) supported
inside a compact set  ⊂ Comp(" ′C ) such that after the deformation, Comp(c) : Comp(" ′C ) ′ → C∗ is
still a symplectic R4-bundle and the symplectic monodromy along {|I4 | =

√
2'} defined by symplectic

parallel transport becomes the identity (see [52, Lemma 15.3]).
Pick a point I4 ∈ � such that |I4 | =

√
2'. There exists d0 > 1 sufficiently large such that [d0,∞) ×

ΛI4 ,A ⊂ [1,∞) × m" ′C is disjoint from  . Because {d0} ×ΛI4 ,A is a Legendrian isotopic to the standard
Legendrian unknot in the relevant contact hypersurface (3 of Comp(c)−1(I4) = (R4, lBC3), the proper
annulus [d0,∞) × ΛI4 ,A can be extended to a smooth proper Lagrangian disk !I4 ,A in Comp(c)−1(I4),
by Lemma 6.10. (Note that when a Legendrian is Lagrangian fillable, one can always perturb the
Lagrangian filling near the Legendrian boundary to get another Lagrangian filling that is cylindrical
near its Legendrian boundary; therefore, the Lagrangian disk !I4 ,A can be made to be smooth.) We
engage !I4 ,A in symplectic parallel transport along {|I4 | =

√
2'}. The fact that the monodromy is the

identity implies that the trace of !I4 ,A is an embedded proper Lagrangian open solid torus, denoted by
! ′
�,A

, with a cylindrical end [d0,∞)×Λ�,A . Because {d0}×ΛI4 ,A bounds a disk in !I4 ,A , it is a meridian
of ! ′

�,A
.

Finally, because Comp(" ′C ) ′ is a compactly supported exact symplectic deformation of Comp(" ′C ),
there is also an embedded proper Lagrangian solid torus ! ′′

�,A
⊂ Comp(" ′C ) with the cylindrical end

[d1,∞) × Λ�,A for some sufficiently large d1. Therefore, one can argue using backward Liouville flow
as in the proof of Lemma 6.10 to rescale ! ′′

�,A
and make its cylindrical part as long as we like. We

consequently obtain a Lagrangian filling !�,A of Λ�,A inside " ′C with the properties required in the
proposition. �

6.1.4. Plan for the remaining part

In the following subsections, we will generalise Proposition 6.18. In Subsections 6.2 and 6.3, we explain
how to isotope the discriminant of B so that Assumption 6.15 holds. In Subsection 6.4, 6.5 and 6.6, we
construct a smoothly trivial exact symplectic fibration such that Assumption 6.17 holds. We conclude
the proof of Theorem 6.6 in Subsection 6.7. The proof of Theorem 1.1 is given in Subsection 6.8.
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6.2. Integral linear transform

We go back to the general setup in Theorem 6.6. In particular, we have a parametrized straight line
segment Wwith W(A1) ∈ A. In this section, we want to apply an integral linear transformation to transform
the (?, @)-coordinates to obtain new ( ?̂, @̂)-coordinates so that

∑4
8=1 @8 = @̂1 + @̂2. This will help us to

get rid of the fourth-coordinate in the defining equation of "B
C ∩*� later on. Define

�̂ :=



1 0 0 0
0 1 0 0
0 −1 1 0
0 −1 0 1


, so the inverse transpose �̂−) =



1 0 0 0
0 1 1 1
0 0 1 0
0 0 0 1


.

Consider a change of symplectic coordinates Ψ◦ : *◦ = * \ {?1 . . . ?4 = 0} → *̂◦ := Im(Ψ◦) ⊂ R4 ×
R4/2cZ4 given by the integral linear transform Ψ◦(?, @) = ( ?̂, @̂) = ( �̂?, �̂−) @). Note that, for 9 = 1, 2,
we have ?̂ 9 = ? 9 so we can define Î 9 :=

√
2?̂ 948@̂ 9 and partially compactify *̂◦ to *̂ by allowing Î 9 = 0

for 9 = 1, 2. We can smoothly extend Ψ◦ to Ψ : * \ {?3?4 = 0} → *̂ = Im(Ψ) ⊂ C2 × R2 × R2/2cZ2.
More explicitly,

Ψ(I) = (
√

2?14
8@1 ,

√
2?24

8 (@2+@3+@4) ,−?2 + ?3,−?2 + ?4, @3, @4). (46)

Note that Ψ|{I1=I2=0} is the identity map. Therefore, just like before, by Lemma 6.4, Disc(B1) ∩ ) has
the constant @̂3-coordinate arg(0) and A is transverse to the slices { ?̂4 = 2>=BC}. The straight line
Ŵ(A) := Ψ(W(A)) is still given by (0, 0, A, ') for A0 < A ≤ A1, and � = {Î = (0, 0, 0, Î4) | | Î4 | =

√
2'}.

For use in the next section, we now apply the transformation to the pencil. Observe that we achieved∑4
8=1 @8 = @̂1 + @̂2 and have

?3 = ?̂2 + ?̂3, ?4 = ?̂2 + ?̂4. (47)

Inserting this and more broadly I 9 = Ψ−1( Î 9 ) into equation (12) in Example 3.5 yields

2Î1 Î2
√
( ?̂2 + ?̂3) ( ?̂2 + ?̂4) = Cℎ( ?̂)6(F( ?̂, @̂)). (48)

6.3. Straightening the discriminant

We assume from now until Subsection 6.7 that we have performed the transformation Ψ given in the
previous subsection (Subsection 6.2). For better readability, we will use the notation ? instead of ?̂, I
for Î and so forth.

Our next step is to apply a compactly supported Hamiltonian diffeomorphism to deform Disc(B1) ∩)
such that the ?3-coordinate of Disc(B1) ∩) becomes independent of the ?4-coordinate near �. In other
words, we want that Assumption 6.15 holds after deforming Disc(B1) ∩ ) .

Similar to (39), we use a tubular neighbourhood of � of the form

*� := {((?1, @1), . . . , (?4, @4)) ∈ � × � × � × � ⊂ * (49)

and taken small enough so that ?3 and ?4 take positive values in *� , which works by (46). It is then
sensible to define I 9 =

√
2? 948@ 9 = G 9 + 8H 9 in*� for 9 = 1, 2, 3, 4.

Proposition 6.19. For any tubular neighbourhood # of �, there is a Hamiltonian diffeomorphism
q� : PΔ → PΔ supported inside # and a tubular neighbourhood *� ⊂ # of � given by (49) such that

◦ q� preserves all the toric strata of PΔ setwise,
◦ q� (Disc(B1) ∩ )) ∩*� = {(0, 0, 0, I4) |I4 ∈ �}, and
◦ I 9 = I 9 ◦ q−1

�
inside*� for 9 = 1, 2.
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After establishing Proposition 6.19, we push forward all of the data and define

�̂Δ := (q� )∗�Δ (50)

B̂8 := B8 ◦ q−1
� (51)

L̂ := (q−1
� )∗L (52)

Disc( B̂1) := ( B̂1)−1(0) ∩ (mPΔ )Sing = q� (Disc(B1)) (53)

"̂B
C := {B̂0 = CB} for B ∈ �∞ (PΔ , L̂) (54)

"̂C := "̂ B̂1
C = q� ("C ). (55)

In particular, �̂Δ is a complex structure on PΔ , and B̂8 are holomorphic sections of the holomorphic
bundle L̂. Therefore, it makes sense to talk about B̂1-admissible sections (which are the same as B1-
admissible sections precomposed by q−1

�
). Most notable, by the second bullet of Proposition 6.19,

Disc( B̂1) ∩ ) ∩*� satisfies Assumption 6.15 in (?, @)-coordinates.

Remark 6.20 (Trivalent vertex). As mentioned in Remark 6.3, the key difficulty to generalise Theorem
1.1 to tropical curves with ends on a codimension one part of A is whether one can establish the
corresponding result of Proposition 6.19.

More precisely, suppose we are given the local model (30) and a straight line segment W(A) =
(0, 0, A, ') parametrized by A ∈ (A0, A1] such that W(A) ∈ A if and only if A = A1. Let (0, 0, 0, 1) ∈
Disc(B1) such that cΔ (0, 0, 0, 1) = W(A1) and let � = {(0, 0, 0, I4) : |I4 | = |1 |}. We define neighbour-
hood *� of � as above. If Proposition 6.19 is true in this setup, which means that it is true for all the
ends of a tropical curve, then the Lagrangian construction in Theorem 1.1 applies to the tropical curve.

With that said, it is tempting to try to mimic the proof of Proposition 6.19 below to make A to be
very close to a trivalent graph and if W(A1) is not the trivalent point of the graph, we would be able to get
a Hamiltonian q� satisfying all three bullets of Proposition 6.19. However, such a q� is not supported
inside # . For q� to be supported inside # , we can only perturb Disc(B1) in # and hence cannot shrink
A to a trivalent graph.

If one uses a q� that is not supported inside # to run the rest of the argument, one can still get a
closed Lagrangian that is diffeomorphic to a Lagrangian lift of the tropical curve but one cannot control
the cΔ -image of the Lagrangian to be in a small neighbourhood of the tropical curve.

It is very possible that Proposition 6.19 for appropriate W(A) is true in this setup. Even though it
is a very explicit local question, we are not able to write down a clean condition on W for it to work,
especially when W(A1) is very close to ‘the trivalent point of A’.

Before giving the proof of Proposition 6.19, we first conclude the resulting local model of "̂C ∩*� .
We remind the reader that Î and ?̂ in the previous section are denoted by I and ? in this section.

Lemma 6.21. Let q� and*� be chosen as in Proposition 6.19. Then we have

"̂C ∩*� = {I1I2 = C6* (I)}

for some smooth function 6* : *� → C such that

◦ 6* = 6 up to a change of coordinates and a multiplication by a nonvanishing function: more
precisely, 6* = d(I)6(Φ* ◦ Ψ−1(q−1

�
(I))) for some d(I) : *� → C∗,

◦ the zero locus of (6* )0 := 6* |{I1=I2=0} is given by Disc( B̂1) ∩ ) ∩*� ,
◦ (6* )0 is submersive (i.e., � (6* )0 surjective) near Disc( B̂1) ∩ ) ∩*� ,
◦ (6* )0 |(�\{0})×� is homotopic to (I3, I4) ↦→ I3 − 0 as C∗-valued functions.
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Proof. By Assumption 6.1 and equation (48), we have

"C ∩*� = {2I1I2
√
(?2 + ?3) (?2 + ?4) = Cℎ(?)6(F(?, @))}.

Because (?2 + ?3) (?2 + ?4) > 0, we can rearrange the terms to get

"C ∩*� = {I1I2 = C ℎ̃(?)6(F(?, @))},

where ℎ̃(?) = ℎ (?)
2
√
(?2+?3) (?2+?4)

. Note that ℎ̃(?) is a nonvanishing positive function because the numer-

ator and denominator are both positive. On the other hand, by tracing back the definitions, we have
F(?, @) = Φ* ◦ Ψ−1(?, @). Applying q� to "C corresponds to precomposing the coordinates in the
defining equation by q−1

�
, so we have

"̂C ∩*� = {Ĩ1 Ĩ2 = C ℎ̃(q−1
� (I))6(Φ* ◦ Ψ−1(q−1

� (I)))}, (56)

where Ĩ8 := I8 ◦ q−1
�

for 8 = 1, 2. If we define d(I) := ℎ̃(q−1
�
(I)), then by the third bullet of Proposition

6.19, we get the first bullet of this lemma.
In*� , from the first bullet of Proposition 6.19 and the discussion above, it is clear that (6* )0 = 6 |)

up to a change of coordinates and a multiplication by a nonvanishing function. Therefore, (6* )−1
0 (0) =

q� ◦ Ψ ◦Φ−1
*
((6 |) )−1(0)) ∩*� = Disc( B̂1) ∩ ) ∩*� , which is exactly the second bullet.

We now consider the third bullet. Because Φ* , Ψ and q� are diffeomorphisms, it suffices to check
that� (6 |) ) is submersive near Disc(B1)∩) . We can check it in the complex chart where 6 |) = 0(1−F3)
and Disc( B̂1) ∩ ) = {1 = F3, F1 = F2 = 0, F4 ≠ 0}. Therefore, the third bullet follows.

Finally, because q� is isotopic to the identity, in order to understand the homotopy class of
(6* )0 |(�\{0})×�, in view of (56), it suffices to understand the homotopy class of

ℎ̃(?)6(Φ* ◦ Ψ−1(I)) |{0}×{0}×(�\{0})×�. (57)

It is clear that ℎ̃(?) is null-homotopic because, on one hand, it is well defined and nonvanishing on the
whole � factor and, on the other, it is independent of the @4-coordinate. The homotopy class of the
remaining term, 6(Φ* ◦ Ψ−1(I)), can be understood by combining the fact that, away from the zero
locus, 6 |) is homotopic to (F3, F4) ↦→ F3 − 1 ∈ C∗ and @3 = E3 is preserved under Ψ (see (46)). �

6.3.1. Proof of Proposition 6.19

Let # ⊂ *� be a tubular neighbourhood of � of a similar form as *� . Under abuse of repeating
notation, # is thus given by

# = {((?1, @1), . . . , (?4, @4)) ∈ � × � × � × �}.

Let 00, 01 be the radii of � in the ?4-coordinate with 00 < ' < 01 for ' the radius of �. By Lemma
6.4, there exists a smooth ?Disc : [00, 01] → R>0 and a constant @Disc ∈ [0, 2c) such that

Disc(B1) ∩ ) ∩ # = {I = (0, 0,
√

2?Disc (?4)48@Disc , I4) |I4 ∈ �}.

In particular, by � ⊂ Disc(B1) ∩ ) ∩ # , we have
√

2?Disc (') = |0 | and @Disc = arg(0).
By ignoring the first two factors, we can view Disc(B1) ∩ ) ∩ # as a symplectic section of the

projection c : � × � → �. In the following lemma, we explain how to deform this symplectic section
(denoted by / in the lemma) to another symplectic section that is locally constant near c(�). After that,
we will explain in Lemma 6.23 how to thicken this Hamiltonian isotopy inside ) to be a Hamiltonian
isotopy in*� to achieve Proposition 6.19.
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Figure 10. The symplectic section / (blue) is deformed to a section locally constant near c(�) (red)
after a compactly supported Hamiltonian diffeomorphism.

Lemma 6.22. Let / ⊂ � × � be the image of the symplectic section

�→ � × �, I4 ↦→ (
√

2?Disc (?4)48@Disc , I4)

of c. There exists a Hamiltonian � : � × � → R, supported inside the interior of the domain � × �,
and a neighbourhood, of c(�) = {?4 = '} in � such that c−1(,) ∩ q� (/) = {(0, I4) |I4 ∈ ,} (see
Figure 10).

Proof. Consider the Hamiltonian

� = (?Disc (?4) − ?Disc (')) (@3 − @Disc) ∈ �∞ (� × �).

This is well defined because the @3-coordinate on � is bounded in an interval for � is 0-centred with
0 ≠ 0 and � does not meet I3 = 0. The corresponding Hamiltonian vector field is (with the sign
convention 3� = −]-�l) given by

-� = −(?Disc (?4) − ?Disc ('))m?3 + ?′Disc (?4) (@3 − @Disc)m@4 .

In particular, -� |� = 0 and when the time 1 flow q� is well defined, we have

q� (?3, @3, ?4, @4) = (?3 + ?Disc (') − ?Disc (?4), @3, ?4, @4 + ?′Disc (?4) (@3 − @Disc)),

so q� (�) = � and q� (/) is a section over � with (?3, @3)-coordinates equal to (?Disc ('), @Disc).
Note that � is not compactly supported (and q� is not everywhere well defined). In order to

get a compactly supported Hamiltonian �̃, we need to multiply a cutoff function to � of the form
d1 (?4)d2(?3, @3) such that d1 (?4) : � → R equals 1 near ' and d2(?3, @3) : � → R equals
1 near (?Disc ('), @Disc). Now, for �̃ = d1 (?4)d2(?3, @3)�, it follows that for a sufficiently small
neighbourhood, ⊂ � of {?4 = '}, we will get c−1(,) ∩ q�̃ (/) = {(0, I4) |I4 ∈ ,}. �

We can thicken the constructed Hamiltonian as follows.

Lemma 6.23. As before, except with two extra ball factors �, let / := Disc(B1) ∩ # be the symplectic
section of the fibre bundle c : # → � given by projection and � = {(0, 0, 0, I4)) | |I4 | =

√
2'}. There

exists a Hamiltonian � : # → R, supported inside the interior of # , and a neighbourhood , of c(�)
in � such that c−1 (,) ∩ q� (/) = {(0, 0, 0, I4) |I4 ∈ ,}. Moreover, q� preserves {0} × � × � × �,
� × {0} × � × � and {0} × {0} × � × � setwise.

Proof. Let ℎ : �→ R be a function supported inside the interior of � such that ℎ ≡ 1 near the origin. Let
�0 : � × �→ R be the Hamiltonian obtained via Lemma 6.22. We define � = ℎ(I1)ℎ(I2)�0(I3, I4),
so � is supported inside the interior of # . Moreover, the Hamiltonian vector field satisfies

-� |{0}×{0}×�×� = -� 0 (58)

-� |{0}×�×�×� = �0(I3, I4)-ℎ2 + ℎ(I2)-� 0 (59)

-� |�×{0}×�×� = �0 (I3, I4)-ℎ1 + ℎ(I1)-� 0 , (60)
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where -ℎ8 denotes the unique vector field that pushes down to -ℎ in the 8th �-factor and trivial to the
other factors. We conclude the assertion. �

Proof (Proof of Proposition 6.19). Given a tubular neighbourhood # of �, we can apply Lemma 6.23
to get a Hamiltonian diffeomorphism q� : PΔ → PΔ supported inside # such that q� preserves all tori
strata setwise (so the first bullet of Proposition 6.19 holds).

If *� is a small tubular neighbourhood of � such that c(*� ) ⊂ , , where, is obtained in Lemma
6.23, then the second bullet of Proposition 6.19 holds.

Finally, a simple but crucial observation is that Equation (58) is true near {0} × {0} × � × �.
Therefore, Ĩ8 = I8 near {0} × {0} × � × � for 8 = 1, 2. By shrinking *� , we obtain the third bullet of
Proposition 6.19. �

6.4. A symplectic fibration

We assume from now until Subsection 6.7 that we have applied the diffeomorphism q� given in
Proposition 6.19. For better readability, we will drop the ‘hat’ notations.

In this subsection and the next two, we want to equip c : "B
C ∩*� → � with a smoothly trivial exact

symplectic fibration structure for some appropriate B1-admissible section B. After that, Assumption 6.17
will be justified and we can apply Proposition 6.18 to get some Lagrangian solid torus. As a first step
towards this, we consider B = B1 and equip "C ∩*� with a symplectic fibre bundle structure over � (see
Proposition 6.26 below). The main tool is the following linear algebra observation first made by Simon
Donaldson (and known by the slogan ‘almost holomorphic implies symplectic’).

Proposition 6.24 ([10], Proposition 3). Let U : C= → C be an R-linear map. Let U1,0 and U0,1 be the
complex linear and the anti-complex linear parts of U, respectively. If |U0,1 | < |U1,0 |, then ker(U) is
symplectic of rank 2= − 2 in C=.

Let �C := I1I2 − C6* (I) : *� → C where 6* and *� are obtained in Lemma 6.21 and Proposition
6.19. Because the tangent space of "C ∩*� is given by ker(��C ) for C ≠ 0, analysing ��C and how it
is related to the projection c will be the heart of this subsection.

In (G, H)-coordinates (see the paragraph after (49)), we have

�6* = [mG16* (G, H), mH16* (G, H), . . . , mG46* (G, H), mH46* (G, H)] .

Let
�36* := [0, . . . , 0, mG36* (I), mH36* (I), 0, 0],

�46* := [0, . . . , 0, mG46* (I), mH46* (I)],

which taken together form a 2× 8 real matrix-valued function on*� . For C ≠ 0, we know that "C ∩*�
is symplectic or, equivalently, ker(��C ) is symplectic at all points where �C = 0, because "C is a
holomorphic submanifold. If �46* ≡ 0, then �C is independent of the I4-coordinate, so factors as

*� → � × � × � (�C )′−→ C. If #C denotes the fibre of (�C ) ′ over 0, then "C ∩*� = #C × �, a symplectic
product. Though there is no reason to have �46* ≡ 0, we are in fact going to show that if we ‘remove’
the term C�46* from ��C , then ker(��C + C�46* ) is still symplectic near �, and we show that this
implies that c is a symplectic fibre bundle for*� sufficiently small.

Lemma 6.25. There exists a tubular neighbourhood* ′
�
⊂ *� of� such that ker((��C +C�46* ) |)I* ′� )

is symplectic of rank 6 for all I ∈ "C ∩* ′� and all C > 0.

Proof. With the transformation after Proposition 6.19 implicit, we denote �̂Δ just by �Δ etc. in the
following. We have "C = {B0 = CB1} and both B0 and B1 are holomorphic section and thus

��C ◦ �Δ |)I*� = �C ◦ ��C |)I*�
for all I ∈ "C and all C > 0, where �C is the standard complex structure of C.
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As a result, for I ∈ "C and any R-linear matrix � : )I*� → C, we have

(��C + �)1,0 = ��C + �1,0

(��C + �)0,1 = �0,1,

where superscripts (1, 0) and (0, 1) are the (�Δ , �C) complex linear part and anti-complex linear part,
respectively, so

2�1,0
= � − �C��Δ and 2�0,1

= � + �C��Δ . (61)

Using the fact that ‖�Δ ‖ is uniformly bounded, applying triangle inequality to (61) gives a 20 > 0 such that
‖�1,0‖, ‖�0,1‖ < 20‖�‖ for everyR-linear matrix �. Now assume additionally that ‖�‖ < 21‖��C (I)‖
for some 21 > 0, then

‖(��C + �)1,0‖ ≥ ‖��C ‖ − ‖�1,0‖
> ‖��C ‖ − 20‖�‖
> ‖��C ‖ − 2021‖��C ‖

>
(1 − 2021)
2021

‖�0,1‖

=
(1 − 2021)
2021

‖(��C + �)0,1‖.

Hence, given 21 > 0 (independent of C) such that 2021 < 1
2 , we have for all � satisfying ‖�‖ <

21‖��C (I)‖ for all C that ‖(��C + �)1,0‖ > ‖(��C + �)0,1‖. In this case, ker(��C + �) is symplectic
of rank 6 for all C by Proposition 6.24.

By the second and third bullets of Lemma 6.21, we know that mG46* (I) = mH46* (I) = 0, and
mG36* (I), mH36* (I) ≠ 0 for I ∈ Disc(B1). Therefore, for any 21 > 0 such that 2021 <

1
2 , there exist

small neighbourhood * ′
�

of � ⊂ Disc(B1) such that

‖�46* ‖ < 21‖�36* ‖

for all I ∈ * ′
�

. As a result, we have 21‖��C (I)‖ ≥ 21‖C�36* ‖ > ‖C�46* ‖ so ker(��C + C�46* ) is
symplectic for all I ∈ "C ∩* ′� and for all C > 0. �

By shrinking the *� we chose in Proposition 6.19 if necessary, we can assume *� is small enough
such that Lemma 6.25 is satisfied, and we will do so in the following.

Proposition 6.26. Let � and *� be as before and let c : "C ∩ *� → � be the restriction of the
projection c4 : *� → �. We find that c is a symplectic fibration without singularities.

Proof. Let�C (I) = (�C (I), c4 (I)) : *� → C×�. For all I4 ∈ �we get �I4 := (�C )−1(0, I4) = c−1 (I4).
Along �I4 , we have

ker(��C |�I4 ) = {E ∈ ker(��C |�I4 ) | E7 = E8 = 0} ⊂ ker((��C + C�46* ) |�I4 ),

where E7, E8 are the seventh and eighth entries of the vector E, respectively. Notice that ker((��C +
C�46* )�I4 ) = ker(��C |�I4 ) ⊕ R〈E7, E8〉 and the left-hand side has rank 6 by Lemma 6.25; hence
dimR(ker(��C |�I4 )) = 4 and therefore c has smooth fibres.

Moreover, ker((��C +C�46* )�I4 ) is symplectic by Lemma 6.25. It is clear thatR〈E7, E8〉 is symplec-
tic and its symplectic orthogonal complement is ker(��C |�I4 ), so ker(��C |�I4 ) is also symplectic. �
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6.5. Liouville vector field

We recall that *� = � × � × � × �. For 9 = 1, 2, let (r 9 , o 9 ) = (
√

2? 9 , @ 9 ) be the polar coordinates

of the first two factors, respectively. Using I3 =
√

2?34
8@3 , we can symplectically identify � with a

closed disk in C centred at 0. Translating by 0, the polar coordinates on C induce a polar coordinate
(r3, o3) on � with {r3 = 0} = {0}. We identify � with a (1-equivariant neighbourhood of the zero
section in )∗(1 such that {|I4 | = '} is mapped to the zero section. Let r4 and o4 be the fibre and base
coordinates of )∗(1 and hence coordinates on �. With these new notations, the symplectic form on*�
can be rewritten as 3U, where

U :=
3∑
8=1

r2
8

2
3o8 + r43o4.

We also have a Liouville vector field (see Subsection 6.1 for some background)

/*� :=
3∑
8=1

r8

2
mr8 + r4mr4

pointing outward along m*� making*� a convex exact symplectic manifold (or, equivalently, a Liouville
domain). The restriction of U to "C ∩*� induces a Liouville vector field /"C on it. We want to show
that /"C points outward along the vertical boundary c−1 (m�) of "C ∩*� .

Proposition 6.27. Given* ′
�

as in Proposition 6.26, there exists a shrinking of the � × � × �-factor of
* ′
�

to obtain an open set*� such that /"C points outward along the vertical boundary of the fibration
c : "C ∩*� → �.

Proof. The Liouville vector field /* ′
�

decomposes with respect to )"C ⊕ ()"C )l in, say, /1 + /2. For
E ∈ )"C , we have

U |"C (E) = U(E, 0) = l* ′� (/1 + /2, (E, 0)) = l* ′
�
(/1, (E, 0)) = l"C (/1, E)

because l* ′
�
(/2, (E, 0)) = 0 by "C being symplectic in* ′

�
. This being true for all E, we conclude that

/"C = /1.
Let �0 := {r1 = r2 = r3 = 0} × �, which lies inside "C for all C. Note that /* ′

�
= r4mr4 on �0

so it points outward along m�0. Note also that /* ′
�
|�0 ∈ )"C , so the ()"C )l-component of /* ′

�
|�0

is 0, which in turn implies that /"C |�0 points outward along m�0. Because pointing outward along
"C ∩ (� × � × � × m�) is an open condition, by shrinking the � × � × � factor, we can ensure that
/"C points outward along "C ∩ (� × � × � × m�). �

6.6. A good deformation

We are going to construct a smoothly trivial exact symplectic fibration and justify Assumption 6.17 in
this subsection. Ideally, we would like the symplectic fibration c : "C ∩*� → � to be a smoothly trivial
exact symplectic fibration, but it is not true in general that c is trivial near the horizontal boundary even
if we assume *� to be very small. However, we can show that it is true after appropriately deforming
B1 to another B1-admissible section, which has been the whole purpose of introducing the notion of
admissible sections.

Proposition 6.28 (Homotoping into Assumption 6.17). For any open neighbourhood # of �, there
are tubular neighbourhoods *� , +� ⊂ # as in (41) so that +� ( *� is a closed neighbourhood of
Disc(B1)∩*� . The neighbourhood*� satisfies Propositions 6.19, 6.26 and 6.27. There is also a smooth
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family (BD)D∈[0,1] of B1-admissible sections with B0 = B1 and for all D, BD = B1 outside # and

"B1

C ∩ (*�\+� ) = {I1I2 = C (I3 − 0)}. (62)

Moreover, the projection to �, c : "B1

C ∩*� → � is a smoothly trivial exact symplectic fibration for
all C > 0 small.

Recall that every B1-admissible section equals B1 near Disc(B1) (hence is more messy than (62)) and
recall that Disc(B1) ∩*� = {0} × {0} × {0} × �, so we cannot hope for (62) to be true if +� ⊂ *� is
not a neighbourhood of Disc(B1) ∩*� , which is why the �-factors of +� and*� agree in (41).

The proof of Proposition 6.28 is divided into two steps. The first step is the construction of (BD)D∈[0,1]
and +� , and the second step is to justify that c is a smoothly trivial exact symplectic fibration for all
C > 0 small.

Proof (Proof of Proposition 6.28: Step 1). Pick * ′
�
⊂ # sufficiently small such that Propositions 6.19,

6.26 and 6.27 are satisfied. We shrink the A-factor of * ′
�

to obtain an open set * ′′
�

that still satisfies
Propositions 6.19 and 6.26. Finally, apply Proposition 6.27 to* ′′

�
to shrink its �×�×�-factor and arrive

at an open set*� that also satisfies all three propositions like* ′
�

and, furthermore,*� is contained in
the interior of* ′

�
, which we will need later.

We work on *� now. By the last bullet of Lemma 6.21, we know that (6* )0 |(�\{0})×� → C∗ is
homotopic to I3 − 0 : (� \ {0}) × �→ C∗. Therefore, there is no obstruction to constructing a smooth
family of functions (ℎD)D∈[0,1] : � × �→ C such that

◦ ℎ0 = (6* )0,
◦ ℎD is independent of D near the discriminant {0} × �,
◦ (ℎD)−1(0) = {0} × � for all D, and
◦ there is a neighbourhood of +0 of {0} × � inside � × � such that ℎ1 |(�×�)\+0 = I3 − 0.

The second and third bullets above correspond to admissibility of sections, and the last bullet corresponds
to (62).

After ℎD is constructed, there is no obstruction to extend it to 6D : *� → C such that 60 = 6* , for
all D, 6D |{I1=I2=0} = ℎD , 6D is independent of D near the discriminant Disc(B1) ∩ *� and there exists
a closed neighbourhood +� ⊂ *� of Disc(B1) ∩ *� such that 61 |*�\+� = I3 − 0. Indeed, note that
we permit 6D to take value 0 outside {I1 = I2 = 0} ∩ *� . This is because {I1 = I2 = 0} ∩ *� is
exactly the intersection between the two-dimensional toric strata and*� , so even if 6D is 0 somewhere
in*� \ {I1 = I2 = 0}, it will not create new discriminant (cf. the proof of Corollary 4.2).

With this understood, we can extend the isotopy (6D)D∈[0,1] from *� to * ′
�

so that it equals 6* for
all D near the boundary of* ′

�
as well as near the discriminant. Recall that "C ∩* ′� = {B0 = CB1}∩* ′� =

{I1I2 = C6* } ∩* ′� . We can patch 6D with 6* outside * ′
�

to obtain a family of B1-admissible sections
(BD)D∈[0,1] such that B0 = B1, for all D, BD = B1 outside # and (62) is satisfied on*� . �

Proof (Proof of Proposition 6.28: Step two). Now, we want to address why c is a smoothly trivial exact
symplectic fibration for all C > 0 small. Let c4 : *� → � be the obvious projection (note the difference
with the c above, namely, c is the restriction of c4 to "B

C ∩*� for some B but c4 is defined on the entire
*� ). We use the notation "D

C := "BD

C ∩ *� in this proof. We will choose a subset + ′
�
⊂ +� (for +�

defined in step one), so the vertical boundary of the fibration c4 |"D
C

is divided into two parts, namely,
(a) c4 |"D

C ∩+ ′� , b) c4 |"D
C ∩(*�\+ ′� ) where we use different arguments. We first choose + ′

�
.

Let �C ,D := I1I2 − C6D (I) for 6D : *� → C constructed in step 1. In particular, we have "D
C =

(�C ,D)−1(0). Near Disc(B1) ∩ *� , �C ,D is independent of D, so by Proposition 6.26, there exists a
neighbourhood + ′

�
⊂ +� of Disc(B1) ∩ *� such that c4 |"D

C ∩+ ′� is a symplectic fibration without
singularity for all 0 < |C | < X and all D. Moreover, by Proposition 6.27, /"D

C
points outward along the

vertical boundary of c4 |"D
C ∩+ ′� , so we are done with (a)).
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For (b), as argued in the proof of Lemma 4.1, � (I1I2) dominates C�6D (I) outside + ′
�

when C is small. Therefore, ker(�C ,D) is an arbitrarily small perturbation of ker(� (I1I2)) out-
side + ′

�
for all D when C is small. More precisely, ker(�C ,D) |"D

C \+ ′� converges uniformly to
ker(� (I1I2)) outside + ′

�
for all D when C goes to 0. Because ker(� (I1I2)) ∩ ker(� (I4)) is

symplectic, the fact that ker(�C ,D) |"D
C \+ ′� converges uniformly to ker(� (I1I2)) implies that

for C small, c4 |"D
C \+ ′� is a symplectic fibration without singularity. On the other hand, by

the local model in Lemma 6.11, we also know that ker(�C ,D) |"D
C \+ ′� converges uniformly to

ker(� (I1I2)) which implies that for C small, /"D
C

points outward along the vertical boundary of
c4 |"D

C \+ ′� . We conclude that there exists X > 0 such that c4 |"D
C

is a symplectic fibration without sin-
gularity, and /"D

C
points outward along the vertical boundary of the fibration c4 |"D

C
, for all 0 < |C | < X

and all D.
Finally, we need to deal with the outward-pointing vector field along the horizontal boundary. We

have 61 |*�\+� = I3 − 0, so we have "1
C \+� = {I1I2 = C (I3 − 0)}. Because the horizontal boundary of

c : "1
C → � lies inside "1

C \ +� and "1
C \ +� is independent of the I4-coordinate, c is symplectically

trivial near the horizontal boundary. By Lemma 6.11, we know that /"D
C

also points outward along the
horizontal boundary of c. �

As a consequence of Proposition 6.18, we get the following corollary.

Corollary 6.29. Under Proposition 6.28, there exist a family of proper Lagrangian solid tori !C ⊂
"B1

C ∩ *� , for C > 0 small, such that !C ⊂ "B1

C ∩ (*�\+� ) is a cylindrical Lagrangian over the
Legendrian (44).

6.7. Proof of Theorem 6.6

Recall our convention to write ?̂ 9 as ? 9 , etc. We undo this convention now to distinguish between the
two sets of coordinates. The last section used the ?̂ 9 -coordinates. Recall the transformation Ψ between
the two sets of coordinates from (46). In this section, we apply Ψ−1 to transform the Lagrangian solid
tori obtained in Corollary 6.29 back to (?, @)-coordinates. After that, we will conclude the proof of
Theorem 6.6.

We start with the situation as in Proposition 6.28, so we have *� , +� of the form (49) and a family
(BD)D∈[0,1] of B1-admissible sections. Recall thatΨ is merely a change of coordinates and that it preserves

the coordinates on {I1 = I2 = 0} = {Î1 = Î2 = 0}. By applying Ψ−1 to "B1

C – that is, inserting (46) –
we get the following:

"B1

C ∩ (*� \+� ) = {Î1 Î2 = C ( Î3 − 0)}
={

√
4?1?24

8 (@1+@2+@3+@4) = C (
√

2(?3 − ?2)48@3 − 0)}. (63)

Recall that the third factor of*� and +� is disks centred at 0, say, �* and �+ , respectively (�+ (
�* ). Recall also that we have a straight line W(A) = (0, 0, A, ') in ?-coordinates for A0 < A ≤ A1 (see the
paragraph before Theorem 6.6) and 0 =

√
2A14

8@ , so W ends at 0. We choose A0 < A
′ < A ′′ < A ′′′ < A1

such that if �1 is the 0-centred annulus with radii A ′, A ′′ and �2 is the 0-centred annulus with radii
A ′′, A ′′′, then

�1 ∩ �* = ∅, �2 ∩ �+ = ∅, but �2 ∩ �* ≠ ∅;

see Figure 11. We want to perform an additional symplectic isotopy for "B1

C so that the new symplectic
hypersurface is G-standard for all G ∈ W([A ′, A ′′]) (see Definition 5), as explained in the following lemma.
For n > 0, let �n denote the closed 0-centred n-ball in R2. We set

,1, n = �n × �n × �1 × �,

,2, n = �n × �n × �2 × �.
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Figure 11. Disks and annuli in the I3-plane.

Lemma 6.30. Let # ⊂ PΔ be an open set such that there exists n > 0 with *� ,,1, n ,,2, n ⊂ # . Then
there exists a smooth family (BDtran)D∈[0,1] of B1-admissible sections such that B0tran = B1 and, for all D,
BDtran = B1 inside*� and outside # . Furthermore,

"
B1

tran
C ∩ (,1, n ∪,2, n ) = {

√
?1?24

8 (@1+···+@4) = C6tran(?3 − ?2, @3)} (64)

for some 6tran(?3 − ?2, @3) ∈ �∞ (,1, n ∪,2, n ,C) such that 6tran |,1, n is a nonzero constant.

Note that 6tran |,1, n being a nonzero constant implies that "
B1

tran
C is G-standard for G ∈ W([A ′, A ′′]).

Proof. This proof is very similar to the proof of Lemma 5.3 and step 1 of the proof of Proposition 6.28.
We know that "B1

C ∩ (,1, n ∪,2, n ) is given by

√
?1?2?3?44

8 (@1+···+@4) = C 5 (65)

for some 5 ∈ �∞ (,1, n ∪,2, n ,C) (cf. (20)). Let �� denote the smallest 0-centred ball containing �
(i.e., of radius the larger radius of �). By the fact that B1 is B1-admissible, we have Im( 5 |{?1=?2=0}) ⊂ C∗.
Moreover, because there is an open subset � of

(
{0} × {0} × �A ′′′ × ��

)
that is homeomorphic to a ball,

contains both the origin and (�1 ∪ �2) × � and such that � ∩ Disc(B1) = ∅, we have that

( 5 |{?1=?2=0})∗ : c1 ((�1 ∪ �2) × �) → c1 (C∗) (66)

is the zero map (cf. (21)). Thus, there is no obstruction to constructing a smooth family 5 Dtran,0 :

(�1 ∪ �2) × � → C∗, for D ∈ [0, 1], such that 5 0
tran,0 = 5 |{?1=?2=0}, 5 Dtran,0 is independent of D inside

((�1 ∪ �2) ∩ �* ) × �, 5 1
tran,0 =

√
?3?46tran,0(?3, @3) for some 6tran,0 : (�1 ∪ �2) × � → C∗ and

6tran,0 |�1×� is a nonzero constant.
Finally, as in the step 1 of the proof of Proposition 6.28, we can extend 5 Dtran,0 and 6tran,0 to 5 Dtran

and 6tran, which are defined over the whole ,n ,1 ∪,n ,2 such that, by patching, 5 Dtran induces a family
(BDtran)D∈[0,1] of B1-admissible sections with all of the properties listed in the proposition satisfied. In
particular, 6tran satisfies (64). �

Next, we want to describe the family (for C > 0 small) of proper Lagrangian solid tori !C ⊂ "B1

C ∩*�
in Corollary 6.29 in (?, @)-coordinates. Recall that 0 =

√
2A14

8@ and that Remark 6.14 permits us to
choose any argument for the Legendrian. For our purpose, we pick A to be the map A ↦→ A48q with
q =

c+@
2 . This way, A2 + 0 parametrizes a curve that starts at 0 and moves straight towards the origin.

We find !C ∩ (*� \+� ) in Î-coordinates (as in (32)) given by

{
Î =

(
A48 \1 , A4−8 \1 ,

A2

C
+ 0,
√

2'48 \2

)
∈ "B1

C ∩ (*� \+� )
�����A ∈ 4

8
c+@

2 (0,∞),
\1, \2 ∈ R/2cZ

}
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and in the (?, @)-coordinates (applying (47) alias inserting (46)) this is described by the following
equations:

?1 = ?2 =
|A |2
2
, ?3 =

(√
2A1 − |A |

2

C

)2

2
+ |A |

2

2
, ?4 = ' + |A |

2

2
, (67)

@1 =
c + @

2
+ \1, @2 =

c + @
2
− \1 − \2 − @, @3 = @, @4 = \2. (68)

The tropical curve W is contained in the line through (0, 0, 1, ') and (0, 0, 0, '), so in view of Propo-
sition 5.4, we define , to be the affine 2-plane in R4 containing the points (1, 1, 1, 1 + '), (0, 0, 1, ')
and (0, 0, 0, '), so W ⊆ , ∩ m . By inspecting (67), we see that ? ∈ , for all (?, @) ∈ !C ∩ (*� \+� )
and, by deriving (68), we find m\1 , m\2 ∈ ,⊥.

The following lemma gives a family (for C > 0 small) of Lagrangian solid tori (with boundary) in

"
B1

tran
C that are W((A ′, A ′′))-standard (see Definition 6).

Lemma 6.31. For B1tran in Lemma 6.30, there is a family of Lagrangian solid tori with boundary, for

C > 0 sufficiently small, !tran
C ⊂ "B1

tran
C ∩ (,1, n ∪,2, n ∪*� ) such that

1. ? ∈ , ∪ cΔ (+� ) for all (?, @) ∈ !tran
C , and

2. ,⊥ ⊂ )(?,@)!C for all (?, @) ∈ !tran
C satisfying ? ∈ ,\cΔ (+� ), and

3. the ?3-coordinate of all points in the torus boundary m!tran
C is A ′.

Proof. By the construction in Lemma 6.30, B1tran |*� = B1 |*� so the !C constructed in Corollary 6.29

are Lagrangian inside "
B1

tran
C ∩ *� . Inspecting (44) and (43), for a fixed C > 0 sufficiently small,

by Proposition 6.18 and the paragraph before, the (?3, @3)-coordinates of all of the points in m!C
are the same and they lie in m�* . Therefore, we need to explain how to ‘extend’ !C to !tran

C ⊂
"
B1

tran
C ∩ (,1, n ∪,2, n ∪ *� ) so that, in particular, the ?3-coordinate of all of the points in the torus

boundary m!tran
C equal A ′.

The proof strategy is the same as Proposition 5.4 and Lemma 5.8. By Lemma 6.30, "
B1

tran
C ∩ (,1, n ∪

,2, n ) is given by
√
?1?24

8 (@1+···+@4) = C6tran(?3 − ?2, @3). (69)

We want to construct a Lagrangian in "
B1

tran
C ∩ (,1, n ∪ ,2, n ) such that @3 = @ is a constant. We

move W inside , from the toric boundary to the nearby fibres as follows: Consider the function
d := ?1 ?2

|6tran (?3−?2 ,@) |2 on cΔ (,1, n ∪ ,2, n ), so d = C2 is the moment map image of the hypersurface

(69). Let a :=
∑4
9=1 m? 9 , so a(6tran(?3 − ?2, @3)) = 0. This implies a(d) > 0 for all ? ∈ cΔ (,1, n ∪

,2, n )\{?1 = ?2 = 0}, so d is strictly increasing in the direction (1, 1, 1, 1) and zero on the boundary
{?1 = 0} ∪ {?2 = 0}. For small C > 0, for all A ∈ (A ′, A ′′′), there exists a unique _ such that
? = W(A) +_(1, 1, 1, 1) satisfies

√
?1?2 = C |6tran(?3− ?2, @) |. Therefore, by the reasoning in Proposition

5.4 and Lemma 5.8, we get a family of Lagrangians in "
B1

tran
C ∩(,1, n ∪,2, n ) that is W((A ′, A ′′))-standard.

By choosing @1, @2, @4-coordinates appropriately (cf. (22)), this family can be smoothly attached to !C
to give !tran

C as desired. �

Now recall that we applied a Hamiltonian isotopy q in Subsection 6.3 to modify B1 so that the
discriminant became straight in the sense of Proposition 6.19 at the endpoint of the tropical curve. We
will account for this step in the following and conclude the proof of Theorem 6.6 where we carefully
distinguish between B1 and B̂1, etc.; see (50)-(55).

Proof (Proof of Theorem 6.6). Let B be an B1-admissible section and # be a neighbourhood of W(A1).
Let A ′ < A ′′ < A1 be such that W([A ′, A1]) ⊂ # . Consequently, ,1, n ⊂ c−1

Δ
(#) for n > 0 small (indeed,

recall that ,1, n is defined with respect to (?, @)-coordinates). Now, after applying the integral linear
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transformation Ψ, we let #1 ⊂ c−1
Δ
(#) be a tubular neighbourhood of� such that,1, n ∩#1 = ∅, where

#1 is defined in ( ?̂, @̂)-coordinates. We apply Proposition 6.19 to #1 so that we get a Hamiltonian isotopy
q� supported inside #1 to straighten the discriminant. By Corollary 6.29, there exist neighbourhoods
+� ⊂ *� ⊂ #1 of �, B̂1-admissible sections (BD)D∈[0,1] and for all C > 0 small, Lagrangian solid

tori !C ⊂ "̂B1

C ∩ *� . Let A ′′′ < A1 such that the corresponding ,2, n satisfies ,2, n ∩ *� ≠ ∅ and

,2, n ∩+� = ∅ as before. We can now apply Lemma 6.31 to obtain !tran
C ⊂ "̂B1

tran
C ∩ (,1, n ∪,2, n ∪*� ).

Finally, we apply the inverse of the Hamiltonian isotopy q� to get q−1
�
(!tran
C ) ⊂ q−1

�
("̂B1

tran
C ) ∩

q−1
�
(,1, n ∪,2, n ∪ *� ). First note that q−1

�
("̂B1

tran
C ) = "

B1
tran◦q�
C and B1tran ◦ q� is B1-admissible. By

definition, q−1
�

is the identity outside #1. As a result, q−1
�
("̂B1

tran
C ) = "

B1
tran◦q�
C remains G standard in

,1, n (because,1, n ∩ #1 = ∅). Moreover, q−1
�
(!tran
C ) remains W((A ′, A ′′))-standard for the same reason.

This finishes the proof. �

6.8. Concluding the proof of Theorem 1.1

Proof (Proof of Theorem 1.1). Let W be a tropical curve satisfying the assumptions of Theorem 1.1. Let
# be a neighbourhood of W. We can apply Theorem 6.6 to construct open Lagrangian solid tori for
the endings of the tropical curve near the discriminant such that the noncompact ends of the tori are
standard with respect to an open subset of W. Therefore, we can apply Proposition 5.17 to obtain, for all
C > 0 small, a closed Lagrangian !C ⊂ "B

C such that cΔ (!C ) ⊂ # .
Again, as explained in the proof of Proposition 5.17, we can assume the families of B1-admissible

sections we have constructed are constant outside c−1
Δ
(#). Therefore, we can apply Lemma 4.3 to

conclude that !C ⊂ "B
C can be brought back, via a symplectic isotopy, to a closed embedded Lagrangian

inside "C ∩ c−1
Δ
(#).

The statement regarding multiplicity is proved in Proposition 2.7. �

6.8.1. Orbifold case

When PΔ is a toric orbifold, the proof of Theorem 1.1 goes very similar. First, by Lemma 3.6, the cover
C= → C=/ is unbranched away from the origin. This means that if */ is a symplectic corner chart
for PΔ , then *\{0} → (*\{0})/ is an unbranched cyclic covering. Note that near the discriminant,
the tropical curve is in the direction (0, 0, 1, 0) with respect to the symplectic corner chart *. Because
the cyclic group  is generated by an element in (R/2cZ)4 with nonzero components (otherwise, the
orbifold points will not be isolated), it implies that we are necessarily in the case  ∩,⊥

)
= {0} in

Proposition 5.4. Therefore, if we denote the lift of Disc ⊂ */� to * by D̃isc, then we can apply
Theorem 6.6 in* to get a family of solid Lagrangian tori !C near D̃isc and its  -orbit is a disjoint union
of | | solid Lagrangian tori. Because !C are away from the origin in*, it descends to a family of solid
Lagrangian tori in*/ near Disc. Therefore, the result follows.
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