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Introduction 

Major depressive disorder (MDD) is a common disease affecting the general 

population with a lifetime risk of approximately 16.2% (United States of America, 2003) 

[1] to 17.1% (Germany, 2004) [2] in developed countries. The prevalence of depressive 

disorders in 2015 was estimated to be 4.4% worldwide with the total number of people 

living with depressive disorders estimated to be 322 million [3]. There is evidence of 

the economic burden increasing in recent years with the total economic burden of 

individuals with MDD in the United States of America totalling $210.5 billion in 2010 

[4]. Globally, depressive disorders are ranked as the single largest contributor to non-

fatal health loss [3]. 

The large economic and public health statistics of depressive disorders are 

complemented by powerful statistics for individual patient outcome. In people who died 

by suicide in Mannitoba, Canada between 1995 and 2009, depression was significantly 

more common than in matched controls with an adjusted odds ratio of 3.9 (95% CI: 

3.35-4.52) [5]. An analysis of German health insurance data between 1987 and 1996 

showed a significantly increased risk for permanent disability of patients that got 

treated for depression in an outpatient or inpatient setting compared to controls, with 

relative risks being 1.77 (95% CI: 1.56-2.00) and 3.47 (2,34-4,59) respectively. 

These examples of statistics on outcome and disease burden underline the need for 

effective treatment intervention. Current German treatment guidelines for unipolar 

depression recommend psychotherapy or pharmacological therapy for moderate 

symptom severity and a combination of both for severe symptoms [6, p. 61]. 

Pharmacological therapy commonly involves antidepressants as first-line therapy [7], 

a substance class for which efficacy over placebo was shown for all examined 

substances in a recent network-metanalysis involving over 116000 patients [8]. While 

minor differences between substances exist [7, 8], overall response rates are 

comparable between 50 to 75% [7, 6]. Patients that don’t show response (commonly 

defined as reduction of symptom severity > 50% on a standardised scale [7]) should 

receive a change in treatment strategy. 

The timeframe for onset of antidepressant response is often within the first weeks of 

treatment. A metanalysis including 17 trials with more than 14000 patients showed 

early improvement (>20 % decrease in symptom severity after 2 weeks) to be a 

sensitive predictor of later response [9]. The time until full antidepressant effect varies 
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more widely between patients. A secondary analysis of the GENDEP study of 811 

patients concluded, that “the eventual outcome of 12-week antidepressant treatment 

can be accurately predicted only after 8 weeks” [10]. 

Guidelines try to balance these timeframes in order to avoid unnecessary prolongation 

of ineffective treatments on one hand and not change the treatment strategy too often 

and early on the other hand [7]. The current German guidelines recommend evaluation 

and possible adaptation of treatment strategy after 4 weeks for adults [6, p. 78]. Studies 

have investigated, whether patients who don’t show early improvement as per the 

definition above benefit from an earlier change of pharmacological strategy, but overall 

there is currently insufficient evidence to clearly show a benefit of early medication 

change for patients without early improvement [7]. 

This thesis uses secondary analysis of the data from the “EMC trial” [11, 12] in order 

to attempt a more detailed description and – where possible – prediction of early 

improvement during an antidepressant treatment course and later progression to 

response or remission. If there are identifiable and/or predictable clusters of patients 

that share common response patterns, these clusters might allow a more fine-grained 

decision-making process compared to the early improvement criterium. These 

decisions could ultimately lead to clearer recommendations of which patients benefit 

from early medication change or prolonged treatment continuation. 

Background 

Diagnosis of Major Depressive Disorder 

According to the DSM-V, MDD is a mental disorder characterised by depressed mood 

being present nearly every day for most of the day and loss of interest or pleasure. 

Other symptoms include weight loss, insomnia or hypersomnia, psychomotor agitation 

or retardation, fatigue, feelings of worthlessness or guilt, diminished ability to 

concentrate or think, indecisiveness and thoughts about death or suicidal ideation [13]. 

The ICD-10 defines a major depressive episode by patients having more than four of 

ten symptoms for a duration of at least two weeks. Three of the ten symptoms are main 

symptoms, of which at least two must be present. The main symptoms are depressed 

mood, loss of interest or pleasure and loss of energy. Other symptoms are reduced 

concentration, reduced feeling of self-worth, feelings of guilt, negative outlook for the 

future, suicidal ideation, disturbed sleep and diminished appetite [14]. 
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Major depressive episodes can occur on their own or repeatedly over the course of a 

patient’s life. Differential diagnostic includes, among others, bipolar disorder and 

psychotic disorders [13, 14]. For bipolar disorder to be present, a single manic or 

hypomanic episode in the history of a patient with a current depressive episode is 

sufficient [13, 14]. For the purpose of this thesis, MDD, depression and unipolar 

depression will be used synonymously. 

Symptom severity questionnaires 

Severity of depression is commonly measured via sum scores of individual symptoms 

(see [15] for a critique of this practice). Commonly used scales include the clinician 

rated Hamilton Depression Rating Scale (HDRS or HAMD) [16], the clinician rated 

Montgomery Åsberg Depression Rating Scale (MADRS) [17], the self-rated Becks 

Depression Inventory (BDI) [18] and the clinician- or self-rated Inventory of depressive 

Symptomatology (IDS-30) [19].  

Patients are commonly classified as depressed or not depressed based on a cut-off 

on these sum scales. Different degrees of severity are also commonly distinguished 

by thresholds on the sum scales [15]. Remission is commonly defined as patients 

falling below a cut-off on the sum-scales after they have been classified as depressed 

before [20]. Response is commonly defined as a reduction of sum-scale value by 50% 

or more (see [12] for an example). This 50% reduction will be synonymously referred 

to as “traditional response criterium”, “response criterium” or simply “response” for the 

purpose of this thesis. 

Antidepressant treatment strategies 

Antidepressants are an important part of treatment strategy for patients with MDD. 

Current guidelines recommend pharmacological treatment as possible alternative for 

MDD of medium and strong severity [6]. Antidepressants are being recommended as 

first-line treatment if pharmacological treatment is chosen [7]. Efficacy of all substance 

classes of antidepressant medication over placebo has been shown in a recent 

network-metanalysis involving over 116000 patients [8]. While minor differences 

between antidepressant substances exist [7, 8], overall response rates are comparable 

between 50 to 75% [7, 6]. In practice, antidepressants are thus often chosen based on 

their risk and side-effect profiles [6]. Clinical practice guides commonly recommend 

starting with selective serotonin reuptake inhibitors (SSRI) like Escitalopram or 

Sertraline, since they show a good risk-benefit profile [21]. Both clinical practice guides 
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and current guidelines recommend starting antidepressants on a low starting dose and 

escalating as fast as possible (based on individual patient acceptability and safety) to 

a standard dose [6, 21]. An appropriate dosage level can further be asserted with 

therapeutic drug monitoring [6, 21]. 

The timeframe after reaching a sufficient dosage until treatment evaluation is subject 

to scientific discussion. Current German guidelines recommend continuation for a 

duration of 4 weeks (6 weeks for elderly patients). In case of response (defined as a 

decrease of 50% on a standardised symptom severity scale) the medication should be 

continued further, until remission (defined as absence of depressive symptoms, e.g. a 

HAMD score <= 7) is achieved. If there is no response at the evaluation timepoint, 

guidelines recommend a switch in pharmacological strategy [6]. In practice, a switch 

to a combination of SSRI and Mirtazapine or a switch to a SSNRI (e.g. Venlafaxine) is 

common [21]. Alternative strategies include augmentation with lithium or second-

generation antipsychotics [6, 7]. It is unclear, whether an earlier evaluation using a 

different metric is beneficial. Guidelines discuss the early improvement criterium as 

possible alternative [7, 6, 21]. 

Early Improvement 

As briefly explained in the introduction, patients with MDD often show an early onset 

of treatment effect to antidepressants. Nierenberg et al. (2000) evaluated 182 

outpatients with MDD who responded to fluoxetine treatment [22]. They defined onset 

of response as a 30% decrease in HAMD score that persisted and led to a decrease 

of HAMD score over 50% by week 8. With this design, 55.5%, 80.2% and 89.5% 

(cumulatively) of responders had shown initial response by week 2, 4 or 6 respectively. 

Szegedi et al. (2003) defined early improvement as 20% decrease of HAMD-Score 

and showed that the majority of patients treated with mirtazapine (72.7% of 109 

patients) or paroxetine (64.9% of 103 patients) showed early improvement within 2 

weeks and that this early improvement was a sensitive predictor for later stable 

response with sensitivity of 0.97/0.91 and specificity of 0.53/0.50 for mirtazapine and 

paroxetine, respectively [23]. Further investigation into the time course of onset was 

done by Katz et al. (2004) [24]. 70 patients were randomly assigned to receive 6 weeks 

of paroxetine, desipramine or placebo. By week 2, there were significant between 

group differences in symptoms of motor retardation, hostility and depression severity. 

Most importantly for the topic of this thesis, “the global severity measure […] detected 
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differences between paroxetine responders and nonresponders [sic] as early as 1 

week, and this difference was sustained at 2 weeks”. 

These results were replicated in a meta-analysis by Szegedi et al. (2009) of over 6000 

patients with MDD that received mirtazapine compared to active controls or placebo 

[25]. Early improvement (> 20% reduction of HAMD-Score) predicted stable response 

and stable remission with a sensitivity of 81%/87% respectively. Positive predictive 

values and specificity were comparatively low, so the authors suggested non-

improvement after 2 weeks as possible trigger for making early treatment adaptations. 

A more recent meta-analysis by Wagner et al. (2017) with over 14000 patients 

assessed the predictive value of the early improvement criterium and found a 

sensitivity of 85% (95%-CI: 84.3 to 85.7) and specificity of 54% (95%-CI: 53.1 to 54.9) 

[9]. 

Investigations whether early non-improvement was a suitable trigger for an early 

medication change (EMC) strategy were done and showed mixed results. Nakajima et 

al. (2011) treated patients with 50 mg/d sertraline and randomized a total of 41 patients 

who showed non-improvement after 2 weeks into a group that continued to receive 

sertraline (n=20) and a group that was switched to paroxetine (n=21) [26]. The 

switching group had significantly more responders, remitters as well as significantly 

higher reduction in symptom severity. The larger “EMC trial” [12, 11], that is the main 

data source for the secondary analysis in this thesis and explained in much more detail 

later, found no significant differences in outcomes of 192 patients that were 

randomized into an early medication change and a continuation group. 

Predictors of response 

In addition to the early improvement criterium, a multitude of demographic and clinical 

markers have been investigated as to their predictive value for later response or 

remission.  

Many of these analyses were based on the Sequenced Treatment Alternatives to 

Relieve Depression (STAR*D) trial [27], a large multicentre trial that included over 4000 

patients. Rush et al. (2008) looked at a subset of 727 patients that did not show 

remission or where intolerant to the trials first line treatment with citalopram and 

analysed for predictors of response to 3 differing second line medications with 

bupropion, sertraline or venlafaxine [28]. No significant differences for predicting one 

medications efficacy over the others were found, but several overall predictors of 
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efficacy could be identified: Remission was more likely for employed (vs. unemployed) 

and married/cohabiting (vs. not cohabiting) patients. Additional predictors were 

insurance status, previous suicide attempts, DSM-IV axis 1 comorbidity, anxious or 

melancholic depression characteristics and overall symptom severity. As a more 

focused analysis for older patients, Kozel et al. (2008) analysed 574 depressed 

patients over age 55 from the STAR*D trial and compared patients with late onset of 

MDD (first depressive episode after age 55) with those with earlier onset [29]. No 

significant differences in remission-rates or time to remission between the onset 

groups were found. Drago et Serretti (2011) compared the predictor results from the 

STAR*D trial with an Italian sample of 236 patients [30]. Sociodemographic predictors 

of remission “included the simultaneous presence of: higher education, higher income, 

not living alone, and with a good employment status”. Nierenberg et al. (2000) 

investigated predictors for the time to initial response in 182 patients with MDD that 

responded to fluoxetine [22]. They found, “[n]either demographics (age and sex) nor 

characteristics of depression (duration of current episode, number of episodes, age at 

onset of first episode, and baseline score on Hamilton depression scale) predicted time 

to initial response or time to response by Cox regression analysis for proportional 

hazards”. Comparing responders and non-responders to fluoxetine, some significant 

differences were found. Non-Responders were more likely to be unemployed and had 

slightly higher baseline HAMD sum scores. 

In addition to just correlating clinical and demographic data, Chekroud et al. (2016) [31] 

built a full machine learning model to predict remission from treatment with 

escitalopram using the STAR*D dataset and validated their model on an external 

dataset from the COMED study (see [32] for details). They managed to achieve an 

accuracy of 64.6% in the internal cross-validation, significantly over chance. In order 

to build the model, the authors used all variables that were overlapping in the STAR*D 

and the validation dataset and selected the top 25 predictors by elastic net 

regularisation. An overview of the predictors is found in Figure 1. The top predictors 

included symptom severity, specific clinical symptoms and demographic markers. 

Accuracy in external validation was 59.6% (p = 0.043) for patients treated with 

escitalopram, 59.7% (p=0.023) for patients treated with escitalopram and bupropion 

and 51.4% (p=0.53) for patients treated with venlafaxine and mirtazapine, which 

suggests predictive value being (partially) specific to the mechanism of antidepressant 

action. 
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Figure 1: Top 25 predictors of remission from depression after escitalopram from elastic net 
regularization in the STAR*D dataset. Graph taken from [31]. 



14 
 

Paul et al. (2019) [33] tried to predict classes of treatment response developed on the 

MARS (see [34]) and GENDEP (see [35]) samples with a random forest algorithm. For 

details of the target treatment response classes, see page 14. As prediction variables, 

they used sociodemographic, psychiatric and family history, vital signs and baseline 

laboratory data, life events, baseline psychopathology and personality items. As model 

extensions, they added baseline HAMD single items and HAMD early partial response 

after 2 weeks. The predictive models achieved “classification accuracies between 75 

and 95.2%”. It should be noted though, that these accuracies reflect a prediction on 

whether a given patient belongs to a single cluster or not and not a prediction of which 

cluster a given patient belongs to, so much higher accuracies should be expected due 

to the higher zero information rate (meaning the highest accuracy achievable by 

predicting only one class). 

Patterns of treatment response over time 

In a secondary analysis of the GENDEP study (see [35] for details), Uher et al. (2001) 

applied longitudinal latent class analysis of relative symptom severity scores to 811 

depressed patients that received escitalopram or nortriptyline for 12 weeks [10]. The 

number of groups was evaluated using the Bayesian information criterion, based on 

which the authors selected a model of 9 trajectories (see Figure 2). A key result of this 

analysis was that, while early improvements in depression severity are commonly 

maintained and lead to response, there are classes that show response with a 

significant delay. According to the authors, the “eventual outcome of 12-week-

antidepressant treatment can be accurately predicted only after 8 weeks”. 



15 
 

 

Figure 2: A 9 class longitudinal latent trajectories model of depressed patients from a secondary analysis 
of the GENDEP study. Graph taken from [10]. 

Another attempt of identifying clusters of treatment response, Paul et al. (2019) [33] 

created clusters from 809 patients of the MARS study (see [34] for details) and 

validated these clusters based on a holdout sample from the MARS study (n=236) and 

patients from the GENDEP (see  [35]) study (n=826). Clusters were created on 

logarithmically transformed weekly HAMD sum scores over up to 16 weeks with a 

mixed model approach with the number of clusters being assessed by the integrated 

completed likelihood criterium. With this approach, 7 treatment response classes were 

identified. These are shown in Figure 3. 
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Figure 3: A 7 class mixed model on logarithmic HAMD sum scores based on the MARS and validated 
by a holdout set of MARS as well as the GENDEP study datasets. Graph and description taken from 
[33]. 

Rationale 

Due to the possible inter-individual variety in antidepressant treatment response, 

finding an optimal timepoint for treatment evaluation is difficult. The approach of 

evaluation after 4 weeks that is currently recommended by German guidelines [6] is 

insufficient to be used for all patients, since some patients will show response much 
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later in the treatment course [10]. At the same time, prolonging the treatment over a 

longer amount of time would simultaneously prolong the duration of the disease for a 

large part of patient population (25-50% [7, 6]), that doesn’t show response to (at least) 

the first antidepressant substance. 

Balancing the opposing needs for both these patient groups in an optimal way has an 

additional difficulty in the operationalisation of response. By utilizing standardised sum 

scores and their relative change as the only criterium, information about patients with 

depression is reduced to the level of current symptom severity, while other clinical 

characteristics are disregarded. This approach seems insufficient since previous data 

shows the predictive value of both demographic and clinical history factors (See page 

11). 

Optimization for the overarching problem of individual treatment response evaluation 

is attempted in several ways. One of those is to define separate evaluation timepoints 

for specific patient groups. One example would be the evaluation after 6 weeks for 

elderly patients that is recommended in current German guidelines [6]. Another, more 

recent, attempt is to evaluate patients after 2 weeks based on the early improvement 

criterium (see page 10). Since the early improvement criterium is quite sensitive, 

patients without said early improvement have a low chance of showing response later 

in the course of treatment. Thus, early medication change (EMC) might be beneficial 

for this group of patients. As explained above, it is currently still unclear, whether this 

approach is clinically preferable. 

This thesis attempts to generate new insights for future approaches to the response 

evaluation problem explained above by utilizing machine learning techniques 

(explained in detail below) to investigate the first 4 weeks of treatment – the timeframe 

until traditional response evaluation would be performed. The goal is to generate data 

driven hypotheses that can be further evaluated for use in clinical decision making 

while at the same time providing and evaluating the necessary algorithmic tools to 

facilitate their future investigation. 

For these hypotheses to provide a possible benefit over current clinical decision 

making, they must either incorporate an intervention (e.g. early medication change) 

before the traditional evaluation at week 4 or describe a subset of the population for 

which treatment evaluation at week 4 would be too early. In order to find data-driven 

hypotheses to answer these problems, two sources of information are combined. First, 
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instead of looking at cut-offs at a certain timepoint, the early response to treatment is 

investigated over time. This could enable a more fine-grained classification of early 

treatment response and thus facilitate identification of population subsets for which 

separate evaluation timepoints might be appropriate. Second, the predictive aspects 

from patient history and symptom severity scores are combined with the time-course 

analysis in order to predict later treatment outcome before the fact, where possible. 

This could then enable early intervention for a subset of patients for whom accurate 

prediction is possible and intervention is beneficial. 

Common Methods 

Data Source – The EMC Trial 

The main data source for the analysis in this thesis is the “Randomised clinical trial 

comparing early medication change (EMC) strategy with treatment as usual (TAU) in 

patients with Major Depressive Disorder” or “EMC trial”. For further information on 

topics in this chapter, please refer to published information on the study protocol [12]. 

The EMC trial’s primary objective was to compare the effectiveness of an early 

medication change regimen as compared to treatment as usual. Early medication 

change (EMC) in the context of the EMC trial refers to switching the antidepressant 

substance after 14 days in patients that did not show early improvement as opposed 

to treatment as usual (TAU), which involves continuation of the same antidepressant 

for a total of 28 days. 

The EMC trial used a three-level randomization process that is summarized in Figure 

4. 

On level 1, all patients received Escitalopram (ESC) for 14 days. Patients showing 

early improvement (decrease < 20% in HAMD17) between day 0 and day 14 continued 

to receive Escitalopram for another 14 days and were taken to level 2. Patients not 

showing improvement were randomized into an EMC group (EMC1) receiving 

Venlafaxine (VEN) and a TAU group (TAU1) continuing Escitalopram for 14 days each. 

The TAU group was rated as responders or non-responders based on the response 

criterium (decrease < 50% in HAMD17) between day 0 and day 28. Responders 

continued to receive Escitalopram, non-responders received Venlafaxine. The EMC 

group was again split by the early improvement criterium between day 14 and day 28. 

Improvers continued to receive Venlafaxine, non-improvers received venlafaxine and 

lithium. 
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Patients that showed early improvement in level 1 and received Escitalopram until day 

28 were taken into level 2. Patients of this subgroup that showed no response (< 50% 

HAMD17 decrease) were switched to Venlafaxine. After 14 days of Venlafaxine, the 

early improvement criterium was evaluated for this timeframe (>20 % HAMD17 

decrease between day 28 and day 42). Patients that did show early improvement in 

this timeframe continued to receive venlafaxine for 14 more days. Patients without 

early improvement were randomized into the EMC2 and TAU2 groups with EMC2 

receiving venlafaxine with lithium augmentation and TAU2 receiving continued 

venlafaxine for 14 days (until day 56). Patients that did show response on day 28 

continued treatment with escitalopram and were taken to level 3. 

In level 3, patients had shown a response to Escitalopram on day 28. If there was no 

further improvement (<20% HAMD17 decrease) between day 28 and day 42, patients 

were randomised to EMC3 or TAU3 that both lasted 14 days. EMC3 was switched to 

venlafaxine, TAU3 continued to receive Escitalopram. Patients that did show 

improvement between day 28 and day 42 continued to receive Escitalopram. 

For all levels, patients that showed remission (HAMD 17 absolute score <= 7) were 

counted as improvers or responders, even if they did not meet the relative criterium. 

Medication with Escitalopram and Venlafaxine was escalated to the highest tolerable 

dose or the maximum dose (20 mg/d and 375 mg/d respectively). Lithium dose was 

adjusted for a plasma level range of 0.6 to 0.8 mmol/l. 
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Figure 4: Overview of treatment arms in the EMC trial. Graph taken from [12]. 

The primary endpoint of the trial was remission with a HAMD17 sum score <= 7 on day 

56 which was compared between EMC1 and TAU1 groups. Secondary endpoints were 

response (HAMD17 decrease >= 50% compared to baseline), absolute change of 

HAMD17 sum score, response and remission (sum score <= 11) in clinician and self-

rated IDS-30 questionnaires. 

Inclusion criteria for the EMC trial were patients with moderate MDD (HAMD17 sum 

score >= 18 points) with an age between 18 and 65 with the first depressive episode 

occurring before age 60 that understood and signed the informed consent form. For all 

exclusion criteria, refer to the study protocol [12], some key ones (in the author’s 

opinion) are listed here for summary: 

- Necessary intervention outside of protocol treatment because of suicide risk 

- Lifetime diagnosis of dementia, schizophrenia, schizoaffective disorder or 

bipolar disorder 

- Current diagnosis of PTSD, OCD, anxiety disorder or eating disorder requiring 

a non-protocol treatment 
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- Current substance dependency requiring detoxification 

- Depression secondary to organic disorder (e.g. multiple sclerosis) 

- Clear history of non-response in the current depressive episode to any protocol 

medication 

Dataset 

Patients in the EMC trial were assessed using a variety of psychometric and clinical 

measurements. For an overview of these measurements, see Figure 5. To summarize 

for the purpose of this thesis, at the screening timepoint (day -7 +/- 2), demographics, 

medical and psychiatric history were taken. At the same timepoint, the Mini-

International Neuropsychiatric Interview (M.I.N.I.) [36] and the Structured Clinical 

Interview for DSM-IV Axis II (SCID-II) [37] were conducted. Symptom severity was 

assessed weekly with the HAMD score and both the clinician and self-rated versions 

of the IDS. 

The dataset available for secondary analysis doesn’t include the complete 

measurements taken in the EMC trial. The most notable difference for the purpose of 

this thesis is the availability of itemized HAMD and IDS measurements only until week 

2. For week 3 and after, only sum scores are available in the dataset. Since this thesis 

focuses on the early timeframe of treatment up to week 4 (until traditional evaluation 

would occur), only patients that have HAMD scores for at least 4 weeks are included 

for analysis. Population characteristics for this subpopulation are described below. 
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Figure 5: Overview of measurements from the EMC trial. Table and description taken from [12]. 

Population characteristics 

For a description of the EMC trial dataset population, Table 1 and Table 2 give 

information on sociodemographic and clinical data. For these reports, only patients 

without missing HAMD-Scores until at least week 4 have been included, since these 

constitute the dataset that is used for all further analysis in this thesis. 
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Variable Categorical Values n (% of total) 

Total n  766 (100%) 

Gender Male 327 (42.7%) 

Female 438 (57.3%) 

Ethnic Group European 739 (96.6%) 

Asian 7 (0.9%) 

African 6 (0.8%) 

Other 13 (1.7%) 

Highest School 

Degree 

None 9 (1.2%) 

Lower secondary school 235 (30.7%) 

Intermediate secondary school 237 (31.0%) 

Advanced technical certificate 93 (12.2%) 

Upper secondary school 185 (24.2%) 

Other 6 (0.8%) 

Highest Vocational 

Degree 

None 102 (13.3%) 

Apprenticeship 446 (58.3%) 

Master 20 (2.6%) 

University, College of higher Education 163 (21.3%) 

Vocational College 28 (3.7%) 

Other 6 (0.8%) 

Recurrent MDD First Episode 259 (33.9%) 

Previous Episodes 506 (66.1%) 

Age of MDD Onset Early Onset (before Age 21) 191 (25.0%) 

Middle Onset (Ages 21 to 44) 416 (54.4%) 

Late Onset (After Age 45) 157 (20.5%) 

Table 1: Categorical demographic and clinical descriptors of the EMC dataset. Differences in absolute 
sums are due to missing values, differences in percentage sums are due to rounding error. Only patients 
without missing HAMD Scores until at least week 4 have been included. 
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Variable Mean (95% CI) 

Age 40.6 (95% CI 39.8 to 41.4) 

Years of Education 13.9 (95% CI 13.7 to 14.2) 

Age at MDD onset 32.3 (95% CI 31.4 to 33.2) 

Number of previous MDD episodes 2.63 (95% CI 2.31 to 2.96) 

Length of current episode (days) 31.8 (95% CI 28.0 to 35.7) 

HAMD score at Baseline 22.9 (95% CI 22.6 to 23.2) 

Table 2: Continuous demographic and clinical descriptors of the EMC dataset. 95% CI: 95 % confidence 
interval for the mean. Only patients without missing HAMD Scores until at least week 4 have been 
included. 

Software, source code and open source policy 

Code for all analyses in this thesis was written with Python and Open Source Software 

Libraries. A list of used packages with the corresponding software versions is given in 

Table 3. The full source-code for all experiments in this thesis is available on request 

through the author. This code or any part of it is free to use, on the condition, that this 

thesis is cited as source. The source code has been written with great care, though the 

author accepts no responsibility or liability for any damages caused by its use. The 

datasets used for the analysis are proprietary and as such, cannot be shared without 

prior approval. For scientific inquiries regarding the datasets, please contact the 

author. 

Python Software Package Version Number 

Python [38] 3.6.6 

pandas [39] 0.24.1 

NumPy [40] 1.16.4 

Matplotlib [41] 2.2.2 

scikit-learn [42] 0.19.2 

SciPy [43] 1.3.1 

Table 3: Major software packages used in this thesis. Dependencies of the given software are not mentioned. 

Structure of the experiments in this thesis 

This thesis has a total of three Experiments. Experiments 1 and 2 stand mostly on their 

own, while Experiment 3 combines key results from the previous two. While great care 

has been taken to make this structure easily accessible on a first “top to bottom” 

readthrough, the author suggests first consulting this thesis’ abstract (see page 96) as 

well as the experimental summaries (see pages 25, 57 and 76 for experiments 1 
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through 3 respectively) before continuing. This should help with a clearer 

understanding of all experimental steps and findings in context. 

Results from all three experiments are discussed separately after each experiment. 

These results are then added to a combined discussion (see page 86). This combined 

discussion should not be read separately, since aspects from all three individual 

experimental discussions (see pages 46, 71 and 82 for experiments 1 through 3 

respectively) have been presumed as known for its purpose. 

Experiment 1 – Clustering early treatment response 

Summary of Experiment 1 

In Experiment 1, the k-means-algorithm was used in order to identify possible clusters 

of treatment response until week 4. The time course of response was operationalized 

by HAMD-Scores relative to baseline. Different numbers of clusters (k) were calculated 

and goodness of fit data and clinical interpretation were discussed in order to identify 

candidates for further investigation. For k=5, the goodness of fit data showed decent 

fit and the cluster structure (See Figure 22) was suggestive of a clinical interpretation 

based around the traditional early improvement (20% decrease) and response criteria 

(50% decrease). 

The cluster structure suggests that patients initially fall into the categories of “Early 

Improvement”, “Early Non-Improvement” and “Early Response”. Patients that show 

“Early Non-Improvement” can be consecutively differentiated in patients showing 

“Delayed Improvement” or “Non-Improvement”. Patients showing “Early Improvement” 

can be consecutively separated into patients with “Early Improvement with Response” 

and “Early Improvement without Response”. 

Aim 

The time course of early treatment response is a possible source of benefits for clinical 

decision making (See page 16). Limited prediction being possible with the early 

improvement criterium shows predictive (regarding the outcome of the entire course of 

treatment) information isn’t just contained in the level of symptom severity at week 4 

but also the levels at previous timesteps. The underlying aim for this experiment is to 

find latent information useful for prediction by classifying the early timeframe of 

treatment in more detail. In order to facilitate this, patients with similar patterns of 

symptom severity over time will be grouped together into sets of distinct clusters. These 
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cluster structures will then be evaluated twofold. Firstly, it will be investigated whether 

they are a mathematically valid (good measures of fitness) and generalizable (to an 

external dataset) description of the possible patterns of early treatment response. In 

case this validity is shown, the usefulness of the cluster structure is further investigated 

in a second step. For this, clinical interpretability is one of the key characteristics that 

should be discussed in detail, since possible interventions will have to be derived 

based on clinical interpretations of the cluster structure. 

Methods 

Design Summary 

The relative HAMD sum scores for the first 4 weeks for patients from the EMC dataset 

are being grouped into clusters by using the k-means clustering algorithm. The fit for a 

given number of clusters k is assessed by the elbow-method and the silhouette score. 

The algorithm and fitness measures are explained below. The trained k-means-

clustering algorithm is then used to classify an external dataset, which is described in 

more detail below, for validation. The fitness measures are repeated on the validation 

set to check for generalization of the algorithm. 

K-Means-Algorithm 

The k-means-algorithm is a cluster analysis technique that fits a set of observations to 

a given number of clusters (k). Since the target clusters aren’t known to begin with, this 

is an unsupervised machine learning technique. As starting condition, the algorithm 

takes k-observations from the set of all observations. This choice is either made at 

random or following certain rules (e.g. maximal distance between observations). All 

remaining observations are then assigned to the closest of the initial k observations as 

measured by an arbitrary distance-measure, most commonly Euclidian distance. This 

assignment defines k clusters with each observation belonging to one cluster. In the 

iteration part of the algorithm, the mean value of all observations belonging to a single 

cluster is calculated. This step is repeated for all k clusters, resulting in k cluster mean 

values. After this step, all observations are assigned to the cluster mean closest to 

them, again resulting in k clusters. The iteration part is repeated, until the cluster 

assignments no longer change during iterations. Using the trained algorithm to classify 

new data can be done by assigning a new datapoint to the closest cluster mean without 

updating the mean values. [44] This gives the algorithm several properties worthy of 

pointing out. Since all observations are assigned to a cluster, there are no “outlier” 
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observations, that will not be assigned to a cluster. The algorithm is also dependent on 

the starting condition: a different set of initial observations will possibly result in a 

different result of clusters. This is especially relevant, if the starting condition isn’t 

dependent on a set of rules, but a random process instead.  

For this specific experiment, the algorithm was set up to start with a random starting 

condition. The random number generator was set up with a “seed” to make results 

repeatable. A “seed” is a condition for the random number generator that ensures all 

(pseudo-)random numbers being the same on every run of the code. The distance 

measure chosen was the Euclidian distance, which is considered the default. Since no 

properties of the data analysed here indicate the need for a non-default distance 

measure and conformity to the default leads to better comparability, this choice is – in 

the authors opinion – justified. 

Number of clusters and measurements of fitness 

The number of clusters (k) is an algorithmic parameter that is predetermined in the k-

means-algorithm, but there currently is no theoretical justification for imposing a given 

number of clusters. Therefore, the clustering process was repeated for any number of 

clusters between 2 and 10. The maximum of 10 clusters was arbitrarily imposed so 

clusters could remain useful to clinical interpretation. Interpretability suffers with 

increased number of clusters, mostly because the average number of patients per 

cluster decreases. At the same time, more clusters lead to increasingly smaller 

differences between the clusters, that are then obviously less practically and/or 

scientifically relevant. By repeating the calculations for different cluster numbers, the 

need arises to find one or more numbers that have the best “fit” to the data. In this 

experiment, well established methods for determining fitness were used, namely the 

so-called elbow method and the silhouette score. 

The elbow method relies on the fact, that a higher number of clusters (k) always leads 

to a higher degree of inter-observation-variance explained by the clusters. As obvious 

extremes, only 1 cluster explains 0% of variance and a single cluster for each 

observation explains 100% of variance. The graph of the explained variance 

dependent on the number of clusters can then be used to find the fitting number of 

clusters by looking for a flattening of the graph (the so called “elbow”) [45]. 

The silhouette score is commonly used to determine an appropriate k. This method 

scores every observation for its fit to the cluster it was assigned to. This is done by 



28 
 

calculating the average distance between the observation and all other observations 

of the cluster it was assigned to  and subtracting the average distance from all 

observations of the closest cluster it was not assigned to (the “second best” choice for 

the cluster) and normalizing the score to a measure from -1 (maximum outlier) to 1 

(perfect fit) [46]. Graphing these individual scores in a sorted and cluster-grouped line 

graph is the so called “silhouette plot”. This plot can be used to visually identify cluster 

fitness by visible cues such as similar cluster sizes, small outlier (negative) silhouettes 

as well as smooth and/or convex silhouette shape. Since these cues can be used to 

assess cluster fitness independent of finding an appropriate k, these are also 

appropriate visual interpretation aids for use in validation datasets. Calculating the 

average of all observation scores and graphing it dependent on the number of clusters 

gives the information on an appropriate cluster number. Both the global maximum as 

well as outliers from an interpolated graph should be investigated closer. In order to 

find the latter, for each k between 3 and 9 a linear interpolation of the silhouette scores 

from k-1 and k+1 is calculated. The differences from the observed values are plotted 

as residuals and local maxima on this residual graph are candidates for further 

inspection. 

Both the elbow method and the silhouette method are subject to researcher’s 

interpretation, especially in cases where differences between values of k aren’t 

pronounced. Dependent on both the goodness of fit measures and theoretical context, 

multiple k might be chosen as appropriate. Detailed reasoning for candidate k values 

is therefore given in the discussion section for this experiment. 

Relative vs. Absolute HAMD score and outlier handling 

By choosing the relative HAMD score as opposed to the absolute values, the 

dimensionality of the clustering problem can be reduced from 5 to 4 (since all baseline 

observations are equal to the value 1.0 now) and clusters are easier to interpret 

clinically. This is especially true regarding both the early improvement criterium and 

the response measure, that are defined relatively as a decrease of 20% or 50% 

compared to baseline respectively. 

The use of the relative score creates an opportunity for outliers, since there is no value 

range like there is for the absolute score. These outliers might be assigned to clusters 

with only a single observation, which can lead to significant problems in choosing an 

appropriate number of clusters. For that reason, observations that are assigned single 
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item clusters at any experimental stage are manually identified and excluded before all 

calculations are repeated. Other handling of outliers is not applied. 

Missing value handling 

The k-means-algorithm as described above can’t natively handle missing values. Thus, 

a decision on how to handle missing values needs to be made. Any interpolation of 

missing values (e.g. linear interpolation) might directly influence the aim of this 

experiment, the cluster-structure. For this reason, all patients with missing values in 

the variables used for clustering were excluded from analysis. 

Cluster numeration 

In order to make cluster numbers between different k easier to interpret and reference, 

cluster numbers are reassigned after the calculations. The reassignment is based on 

the mean relative HAMD score after 4 weeks with cluster 0 having the lowest and 

cluster k the highest mean score after reassignment. This step doesn’t change any 

properties of the clusters or the resulting calculations and is only described for 

completeness. 

Validation data 

The k-means classifiers for different k are trained on the EMC dataset as described 

above. As additional test to the generalization of the classifiers, previously unseen 

patients from a validation dataset are assigned to clusters and silhouette scores within 

the validation dataset are calculated as described above. In case of poor generalization 

an increase in observations with negative silhouette scores and a decrease of average 

silhouette scores can be expected. Additionally, relative cluster sizes changing widely 

between training and validation are a sign of poor generalization. 

For validation, the “Study 831” dataset from the Psychiatric Hospital, University of 

Zürich was kindly provided by Prof. Dr. Stassen. This dataset has a total of 1645 

patients with HAMD scores over a period of 35 days. HAMD measurements were taken 

on days 0, 3, 7, 10, 14, 21, 28 and 35. In many cases, there were differences between 

theoretical and real measurement timing. These differences were provided with the 

dataset. Further details about the study protocol(s) were not provided because they 

are inconsequential for the purpose of validation in this context. 

In order to use the Study 831 dataset for validation purposes, measurements from days 

0, 7, 14, 21 and 28 were selected as variables. We allowed for differences of 
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measurement timing of +/- 2 days resulting in timings being the exact same as for the 

EMC dataset. All patients with timings differing further and patients with missing values 

in the selected variables were excluded leaving a total n of 1028 for validation. 

Descriptive Reporting 

Since the clusters are generated from only the relative HAMD scores, there can be 

between-cluster differences in sociodemographic and clinical variables. Therefore, 

reports on the descriptive variables (see Table 1 and Table 2) are generated for all 

groups of clusters. For categorical variables, the statistical significance of the group 

differences under the null hypothesis of uniform distribution is estimated with the Chi-

Squared-Test. For continuous variables, significance is estimated with a one-way 

ANOVA. 

Results 

Number of observations 

The total n after eliminating patients with missing values is 766. One additional patient 

was excluded as outlier because he was classified into a single-element-cluster, so the 

total n for final calculations was 765. The mean values for the relative HAMD-Scores 

were approximately 0.68 after 1 week, 0.60 after 2 weeks, 0.57 after 3 weeks and 0.53 

after 4 weeks. 

Elbow method for estimation of cluster number 

The percentage of variance that is explained for the clusters resulting from k-means-

clustering for a given number of clusters (k) was calculated for k between 2 and 10 as 

explained in the method section. The resulting graph is shown Figure 6. The graph 

doesn’t show a single obvious flattening, so the elbow method is ambiguous. Possible 

candidates for k given by this method are 3, 4, and 5. This is concluded from the graph 

showing visible flattening after each of those numbers. After 5 clusters, the explained 
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variance grows almost linear, so no candidates are found in this range.

 

Figure 6: Variance explained by the clusters resulting from k-means-clustering for a given number of 
clusters k 

Average silhouette score for estimation of cluster number 

The average silhouette scores for the clusters resulting from k-means-clustering for a 

given number of clusters (k) was calculated for k between 2 and 10 as explained in the 

method section. The resulting graph is shown in Figure 7. The graph shows a global 

maximum at 2 clusters with a mostly monotonous decrease shaped roughly like an 

exponential decay. There is a positive outlier from the exponential decay shape of the 

graph at 5 clusters. The silhouette score at this outlier doesn’t quite reach the amount 

of the score at 4 clusters, so it can’t be considered a local maximum. 
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Figure 7: Average silhouette score of the clusters resulting from k-means-clustering for a given number 
of clusters k 

Residuals from linear interpolations of scores for the 2 neighbouring k were calculated 

for k between 3 and 9 as described in the method section. The resulting graph is shown 

in Figure 8. Residuals are positive (meaning the silhouette score is better than 

expected from the interpolation) at 5 and 8 clusters with 5 being the global maximum 

and the residual at 8 being close to 0. This mathematically supports the visual 

identification of k=5 as positive outlier. 
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Overall, the average silhouette score method results in 2 and 5 as candidates for k; 2 

from being the global maximum and 5 for being both a visual outlier and the global 

maximum of the residuals. 

Clustering results for selected k 

The elbow method and the average silhouette score method combined give 2, 3, 4, 

and 5 as candidates for the number of clusters (k) with 5 being the only candidate 

resulting from both methods. Graphs and reports for all k between 2 and 10 were 

created, but for sake of brevity only results for the candidate k and 6 as example of a 

non-candidate k are reported and discussed. The additional graphs and reports can 

be found in the appendix. 

For 2 clusters (k=2), the average HAMD scores are shown in Figure 9. Both clusters 

show a monotonous decrease of average relative HAMD score with cluster 0 

decreasing to approximately 0.32 and cluster 1 decreasing to approximately 0.77. 

The corresponding silhouette plot is shown in Figure 10. There are 407 (53.2%) 

patients assigned to cluster 0 and 358 (46.8%) patients assigned to cluster 1. 7 (0.9%) 

of patients have a negative silhouette score, all of them in cluster 1 (1.9% of cluster 1). 

Figure 8: Residuals of observed average silhouette score of the clusters resulting from k-means-clustering for a 
given number of clusters k compared to interpolation. For calculation of the residuals, a linear interpolation is 
calculated between the scores of the neighbouring cluster numbers k-1 and k+1. 



34 
 

 

Figure 9: Average HAMD score by cluster resulting from k-means-clustering for 2 clusters. Error-Bars 
indicate the 95% confidence interval for the mean value. 

 

Figure 10: Silhouette plots for clusters resulting from k-means-clustering for 2 clusters. The average 
silhouette score is shown as a vertical line. 
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For 3 clusters (k=3), the average HAMD scores are shown in Figure 11. Both clusters 

0 and 1 show a monotonous decrease of average relative HAMD score with cluster 0 

decreasing to approximately 0.21 and cluster 1 decreasing to approximately 0.52. 

Cluster 2 shows a small decrease to approximately 0.89 in week 1 and stays at the 

same level after that. 

The corresponding silhouette plot is shown in Figure 12. There are 210 (27.5%) 

patients assigned to cluster 0, 363 (47.5%) patients assigned to cluster 1 and 192 

(25.1%) patients assigned to cluster 2. 14 (1.8%) of patients have a negative silhouette 

score, 8 of them in cluster 1 (2.2% of cluster 1) and 6 in cluster 2 (3.1% of cluster 2). 
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Figure 11: Average HAMD score by cluster resulting from k-means-clustering for 3 clusters. Error-Bars 
indicate the 95% confidence interval for the mean value. 

 

Figure 12: Silhouette plots for clusters resulting from k-means-clustering for 3 clusters. The average 
silhouette score is shown as a vertical line. 
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For 4 clusters (k=4), the average HAMD scores are shown in Figure 13. Clusters 0, 1 

and 2 show a monotonous decrease of average relative HAMD score with cluster 0 

decreasing to approximately 0.18, cluster 1 decreasing to approximately 0.42 and 

cluster 2 decreasing to approximately 0.67. Cluster 3 shows a small decrease to 

approximately 0.94 in week 1 and monotonously increases to approximately 1.03 until 

week 4. 

The corresponding silhouette plot is shown in Figure 14. There are 155 (20.2%) 

patients assigned to cluster 0, 272 (35.6%) patients assigned to cluster 1, 237 (31.0%) 

patients assigned to cluster 2 and 101 (13.2%) patients assigned to cluster 3. 21 (2.7%) 

of patients have a negative silhouette score, 9 of them in cluster 1 (3.3% of cluster 1), 

3 in cluster 2 (1.3% of cluster 2) and 9 in cluster 3 (8.9% of cluster 3). 
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Figure 13: Average HAMD score by cluster resulting from k-means-clustering for 4 clusters. Error-Bars 
indicate the 95% confidence interval for the mean value 

 

Figure 14: Silhouette plots for clusters resulting from k-means-clustering for 4 clusters. The average 
silhouette score is shown as a vertical line. 
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For 5 clusters (k=5), the average HAMD scores are shown in Figure 15. Cluster 0 

shows a monotonous decrease to an average relative HAMD score of approximately 

0.18 in week 4. Clusters 1 and 3 both show a similar initial decrease in week 1 (0.65 

and 0.64 respectively) and diverge after that with cluster 1 decreasing monotonously 

to 0.39 and cluster 3 increasing to 0.75. A similar pattern is shown by clusters 2 and 4. 

Both show a similar initial decrease in week 1 (0.90 and 0.95 respectively) with cluster 

2 decreasing monotonously to 0.57 and cluster 4 increasing monotonously to 1.03. 

The corresponding silhouette plot is shown in Figure 16. There are 152 (19.9%) 

patients assigned to cluster 0, 235 (30.7%) patients assigned to cluster 1, 128 (16.7%) 

patients assigned to cluster 2, 155 (20.3%) patients assigned to cluster 3 and 95 

(12.4%) patients assigned to cluster 4. 17 (2.2%) of patients have a negative silhouette 

score, 4 of them in cluster 1 (1.7% of cluster 1), 4 in cluster 2 (3.1% of cluster 2) and 9 

in cluster 4 (9.5% of cluster 4). 
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Figure 15: Average HAMD score by cluster resulting from k-means-clustering for 5 clusters. Error-Bars 
indicate the 95% confidence interval for the mean value 

 

Figure 16: Silhouette plots for clusters resulting from k-means-clustering for 5 clusters. The average 
silhouette score is shown as a vertical line. 
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For 6 clusters (k=6), the average HAMD scores are shown in. Clusters 0, 1 and 3 show 

a monotonous decrease to an average relative HAMD score of approximately 0.15, 

0.28 and 0.54 respectively in week 4. Cluster 2 shows a decrease to approximately 

0.58 in week 1 and roughly stays at that level. Cluster 4 shows a decrease to 

approximately 0.72 in week 1 and an increase to 0.81 by week 4. Cluster 5 stays 

roughly at the initial level with a final average relative HAMD score of 1.04 in week 4. 

The corresponding silhouette plot is shown in. There are 101 (13.2%) patients 

assigned to cluster 0, 159 (20.8%) patients assigned to cluster 1, 173 (22.6%) patients 

assigned to cluster 2, 126 (16.5%) patients assigned to cluster 3, 120 (15.7%) patients 

assigned to cluster 4 and 86 (11.2%) patients assigned to cluster 5. 36 (4.7%) of 

patients have a negative silhouette score, 9 of them in cluster 1 (5.7% of cluster 1), 1 

in cluster 2 (0.6% of cluster 2), 16 in cluster 3 (12.7% of cluster 3) and 10 in cluster 5 

(11.6% of cluster 5). 
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Figure 17: Average HAMD score by cluster resulting from k-means-clustering for 6 clusters. Error-Bars 
indicate the 95% confidence interval for the mean value 

 

Figure 18: Silhouette plots for clusters resulting from k-means-clustering for 6 clusters. The average 
silhouette score is shown as a vertical line. 
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A summary of cluster sizes and observations with negative silhouette scores for k 

between 2 and 6 is also reported in Table 4 and Table 5 respectively. 

N (%) Cluster 0  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

k=2 407 

(53.2%) 

358 

(46.8%) 

X X X X 

k=3 210 

(27.5%) 

363 

(47.5%) 

192 

(25.0%) 

X X X 

k=4 155 

(20.2%) 

272 

(35.6%) 

237 

(31.0%) 

101 

(13.2%) 

X X 

k=5 152 

(19.9%) 

235 

(30.7%) 

128 

(16.7%) 

155 

(20.3%) 

95 

(12.4%) 

X 

k=6 101 

(13.2%) 

159 

(20.8%) 

173 

(22.6%) 

126 

(16.5%) 

120 

(15.7%) 

86 

(11.2%) 

Table 4: Cluster size structure for clusters resulting from k-means-clustering for a given number of 
clusters k. Sums differing from 100% are due to rounding error. 

Neg. 

Silh. 

Score 

(%) 

Cluster 

0  

Cluster 

1 

Cluster 

2 

Cluster 

3 

Cluster 

4 

Cluster 

5 

Total 

k=2 0 (0%) 7 (2.0%) X X X X 7 (0.9%) 

k=3 0 (0%) 8 (2.2%) 6 (3.1%) X X X 14 

(1.8%) 

k=4 0 (0%) 9 (3.3%) 3 (1.3%) 9 (8.9%) X X 21 

(2.7%) 

k=5 0 (0%) 4 (1.7%) 4 (3.1%) 0 (0.0%) 9 (9.4%) X 17 

(2.2%) 

k=6 0 (0%) 9 (5.7%) 1 (0.6%) 16 

(12.7%) 

0 (0.0%) 10 

(11.6%) 

36 

(4.7%) 

Table 5: Patients with negative silhouette scores for clusters resulting from k-means-clustering for a 
given number of clusters k. Percentages for the individual clusters are relative to n for that cluster, 
percentages for total are relative to total n. 

Validation results 

Variance explained and average silhouette scores were calculated in the validation 

dataset with trained algorithms for k between 2 and 10 as described in the methods 

section. An overview of results is shown in Figure 19. Both validation variance 
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explained, and silhouette score show high similarity to the corresponding training 

graphs. The validation silhouette score for all candidate k (2, 3, 4 and 5) is higher than 

the corresponding training score. The validation variance explained is smaller than its 

training counterpart for k=2 and higher for the other candidate k. 

 

Figure 19: Variance explained and Silhouette score for clusters resulting from k-means-clustering for a 
given number of clusters k. Metrics are shown for training and validation dataset in comparison. 

Structure of cluster sizes and observations with negative silhouette scores are reported 

in Table 6 and Table 7 respectively. For sake of brevity, only candidate k and 6 as 

example of a non-candidate k are reported. For sake of additional brevity, graphs of 

mean relative HAMD scores and silhouette plots aren’t shown here. As far as they are 

referenced in the discussion section, they are shown there. Full graphs can be found 

in the supplementary material. 
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N (%) Cluster 0  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

k=2 628 

(61.1%) 

400 

(38.9%) 

X X X X 

k=3 356 

(34.6%) 

448 

(43.6%) 

224 

(21.8%) 

X X X 

k=4 255 

(24.8%) 

400 

(38.9%) 

249 

(24.2%) 

124 

(12.1%) 

X X 

k=5 236 

(23.0%) 

368 

(35.8%) 

203 

(19.7%) 

101 

(9.8%) 

120 

(11.7%) 

X 

k=6 148 

(14.4%) 

305 

(29.7%) 

147 

(14.3%) 

213 

(20.7%) 

101 

(9.8%) 

114 

(11.1%) 

Table 6: Cluster size structure for clusters resulting from applying trained k-means-clustering for a given 
number of clusters k to the validation dataset. Sums differing from 100% are due to rounding error. 

Neg. 

Silh. 

Score 

(%) 

Cluster 

0  

Cluster 

1 

Cluster 

2 

Cluster 

3 

Cluster 

4 

Cluster 

5 

Total 

k=2 0 (0%) 19 

(4.7%) 

X X X X 19 

(1.8%) 

k=3 1 (0.3%) 3 (0.7%) 12 

(5.4%) 

X X X 16 

(1.6%) 

k=4 1 (0.4%) 17 

(4.3%) 

10 

(4.0%) 

3 (2.4%) X X 31 

(3.0%) 

k=5 1 (0.4%) 21 

(5.7%) 

19 

(9.4%) 

1 (1.0%) 6 (5%) X 48 

(4.7%) 

k=6 2 (1.4%) 57 

(18.7%) 

0 (0%) 39 

(18.3%) 

4 (4.0%) 8 (7.0%) 110 

(10.7%) 

Table 7: Patients with negative silhouette scores for clusters resulting from applying trained k-means-
clustering for a given number of clusters k to the validation dataset. Percentages for the individual 
clusters are relative to n for that cluster, percentages for total are relative to total n. 

Descriptive Reports 

As described in the method section, reports of between-cluster differences (and their 

statistical significance) in sociodemographic and clinical variables were created for all 

k between 2 and 10. For reasons of brevity, these reports are not shown here. As far 

as they are referenced in the discussion section, they are shown there. 
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Discussion 

Selecting the number of clusters 

Different candidates for a given number of clusters (k) have been identified as 

described in the results section for experiment 1. The elbow method gave 3, 4 and 5 

as possible candidates and the average silhouette score gave 2 as candidate from the 

global maximum and 5 as candidate for being a visual outlier and the maximum of the 

residuals from interpolation. 

In order to generate hypotheses for clinical decision making (as explained on page 16) 

based on cluster structure, choosing one or more mathematically valid, generalizable 

and clinically interpretable cluster structures is key (See page 25). Mathematical 

validity was operationalized with the goodness of fit data, generalization was assessed 

with the external validation dataset and clinical interpretability will be discussed in 

combination with the other factors in this subsection. 

The candidates for k are discussed individually, in comparison to other candidates and 

compared to k=6 as example for a non-candidate below. 

k=2 is strongly supported by the global maximum for the silhouette score. The low 

percentage of patients with a negative silhouette score in both training (0.9%) and 

validation (1.8%) datasets adds further support. The silhouette plot shows similar 

sized, smooth, convex silhouettes in both training (Figure 10) and validation dataset 

(Figure 20). 

But while the supporting data is strong, interpretational usefulness of 2 clusters is 

questionable. The mean relative HAMD scores for cluster 0 go below the level of 0.5 

which is commonly used as definition of response, whereas cluster 1 doesn’t reach 

that level. Therefore, interpreting the 2 clusters as responders and non-responders 

seems obvious. Following this interpretation, the question needs to be asked, whether 

the clustering approach gives any advantage over the traditional definition of response. 

Since the clustering aligns with the common clinical definitions without adding any 

additional information, there is no information from which to generate new 

interventional hypotheses. Argued inversely, the data supporting 2 clusters are 

supporting the traditional response definition. 

In summary, k=2 is strongly supported by goodness of fit data but is interpretationally 

non-superior to the traditional definition of response. Occam’s Razor also applies, 
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since the traditional definition is far simpler than the clustering approach. For those 

reasons, k=2 is a poor candidate for hypothesis generation. 

 

Figure 20: Silhouette plots for clusters resulting from applying trained k-means-clustering for 2 clusters 
to the validation dataset. The average silhouette score is shown as a vertical line. 

The supporting goodness of fit data is far weaker for k=3. While it is a candidate given 

by the elbow method, the average silhouette score method shows neither a local 

maximum nor a positive residual to linear interpolation. The silhouette plot (Figure 12) 

is both less smooth and less convex that for k=2. On the hand of positive evidence, 

the number of patients with negative silhouette scores is low and similar for both 

training (1.8%) and validation (1.6%). 

Similar arguments are found for k=4. As another candidate from the elbow method, the 

average silhouette method is non-supportive. The number of patients with negative 

silhouette scores in training is higher than for both k=3 and k=5 (2.7% vs. 1.8% and 

2.2% respectively) which weakens the goodness of fit data further. 

The remaining candidate k=5 has a strong case from being both a candidate from the 

elbow method and the silhouette score method. In the latter, it is both a visual outlier 

and the global maximum of linear interpolation residuals. The silhouette plots for 

training (Figure 16) and validation both show smooth outlines with minimal concavity. 

The number of patients with negative silhouette scores is lower than for both k=4 and 
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k=6 (2.2% vs. 2.7% and 4.7% respectively) in training with an increase to 4.7% in the 

validation set. The difference in the training set can be considered evidence of good fit 

compared to the neighbours. The increase in the validation dataset can be considered 

evidence of overfitting, meaning the algorithm captured some of the noise in the 

training data which results in comparatively poor results in the validation set. Overfitting 

can occur in most machine learning algorithms and commonly increases with model 

complexity, so an increase of overfitting can be expected with growing k without 

necessarily being indicative of poor choice of k.  In line with that expectation, there is 

an increase of patients with negative silhouette score in the validation set for all k >= 

4. So, while the occurrence of overfitting mildly weakens the goodness of fit data for 

k=5, the same arguments can be made for k=4 and k=6. 

 

Figure 21: Silhouette plots for clusters resulting from applying trained k-means-clustering for 5 clusters 
to the validation dataset. The average silhouette score is shown as a vertical line. 

k=6 as example for a non-candidate shows comparatively weak goodness of fit 

evidence as expected. Both elbow-method and average silhouette score method don’t 

give it as candidate, the number of patients with negative silhouette score is high in the 

training set (4.7%) with a large increase in the validation set (10.7%) suggesting 

overfitting as described above. The silhouette plot (Figure 18) shows some large 

negative outliers to the overall smooth and only mildly concave shapes. 
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To summarize the goodness of fit data, of the different candidates for k > 2, there is 

comparable evidence for k=3 and k=4. k=5 has stronger evidence in comparison to 

both. In order to be useful for hypothesis generation, the clustering should both show 

good fit (indicating mathematical validity for the training set and generalization on the 

validation set) and be useful for clinical and research interpretation. The graphs of 

mean relative HAMD scores for k=3 and k=4 (Figure 11 and Figure 13 respectively) 

show different degrees of response that run mostly parallel. While this might allow for 

a more fine-grained approach in clinical decision making, the interpretational case for 

k=5 is much stronger. In the corresponding graph (Figure 15) we see 3 initial groups 

of patients: Those showing early response (cluster 0), those showing early 

improvement (clusters 1 and 3) and those showing no early improvement (clusters 2 

and 4).  Of the initial non-improvers, cluster 2 goes on to show a delayed improvement 

and cluster 4 continues to show non-improvement. Of the early improvers, cluster 1 

continues to show response and cluster 3 shows non-response.  Interpreting the 

clusters in this 2-level-approach seems obvious, since the traditional response 

definitions and early improvement definitions (>50% and >20% decrease from 

baseline) can be applied on the level of the cluster mean values. This gives a strong 

interpretational case due to the strong alignment to the traditional definitions and thus, 

previous evidence, while at the same time adding additional time course information. 

Due to the interpretational analysis supporting k=5 and goodness of fit data being 

comparatively supportive of k=5 as well, choosing the resulting clusters from k=5 as 

clusters for hypothesis generation is in the authors opinion justified, whereas no 

hypotheses should be derived from the cluster structures for k=3 or k=4. 

Since only k=5 was selected for further hypothesis generation in this discussion 

subsection, from this point onward all mentions of “cluster structure” or “clusters” will 

reference the structure for k=5 unless otherwise indicated. For ease of reference, the 

clusters for k=5 are given free-text names based on the interpretation described in 

detail above with the original cluster numbers given in brackets from this point forward. 

Free text names are shown in the legend of Figure 22. The group of clusters 1 and 3 

will be referred to as “Early Improvement” and the group of Clusters 2 and 4 as “Early 

Non-Improvement”. 
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Figure 22: Average HAMD score by cluster resulting from k-means-clustering for 5 clusters. Error-Bars 
indicate the 95% confidence interval for the mean value. Free text names for interpretation are shown 
in the legend. 

Comparison to previous cluster structures 

If the clusters for k=5 are compared to the first few weeks of the latent classes identified 

by Uher et al. (2011), there are several parallels [10]. In order to compare the groups 

side by side, data for the first 4 weeks was extracted from the graph shown in Figure 

2 via WebPlotDigitizer, a Computer Tool to extract graph data [47]. The resulting 

comparison graph is shown in Figure 23. The Non-Improvement (4) cluster from this 

thesis is comparable to a combination of classes 1, 3 and 4. Additionally, the Delayed 

Improvement cluster (2) is comparable to a combination of classes 2, 5, 7 and 8.  The 

Early Response cluster (0) is roughly comparable to class 9 and the Early Improvement 

with Response (1) cluster is comparable to class 6. Only the Early Improvement without 

Response (3) cluster has no parallel classes. This could be the results of this response 

pattern being added into one or more the different classes that run parallel to the 

Delayed Improvement (2) or Early improvement with Response (1) cluster. 

These parallels might have significant implications as to clinical usefulness of the 

cluster structure developed in this thesis. For example, the Delayed Improvement 

cluster (2) runs roughly parallel to both classes 7 and 8, which are classes with the 

second and third lowest final relative HAMD score. This could imply that a subset of 
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patients from the Delayed Improvement cluster (2) would benefit from taking the same 

antidepressant medication over a period longer than 4 weeks, even though the cluster 

average does not reach the traditional response criterium at week 4. 

 

Figure 23: Average HAMD score by cluster resulting from k-means-clustering for 5 clusters. Error-Bars 
indicate the 95% confidence interval for the mean value. For comparison, Classes from [10] have been 
drawn in the graphic. 

A similar comparison to the treatment classes suggested by Paul et al. (2019) isn’t 

immediately possible due to the differing underlying assumptions in their methodology 

[33]. By using logarithmically transformed HAMD sum scores and fitting a (linear) 

mixed effects model, the authors are essentially fitting an optimal number of logarithmic 

functions. This constraint to finding logarithmic clusters is not present in the current 

study or in Uher et al. (2009) [10]. The cluster structure resulting from this methodology 

(as shown in  Figure 3) captures this underlying assumption by showing average 

slopes “fanning” a large portion of the logarithmic space. While this might not 

necessarily constitute a weakness of the methodology, as the validation as to the 

clusters predictive value by Paul et al. (2019) shows, hypothesis inferred from 

clustering without a “shape”-constraint like in the current thesis does naturally differ 

widely based on methodology alone [33]. 

It should further be noted, that both the aforementioned structures of treatment 

response clusters examined a longer timeframe of the treatment course. By limiting 
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the clustering effort to the first four weeks of antidepressant response, the clustering 

proposed here emphasises the early timeframe of treatment, in order to gather 

predictive information that might not be captured by the longer duration examination. 

On the other hand, the longer duration clustering will likely be more useful for 

assessment of total treatment courses. 

Between-Cluster Differences 

Having chosen k=5 for hypothesis generation results in the aforementioned clusters of 

early response. To facilitate earlier clinical decision making, classifying is only the first 

step. Prediction of a patient’s cluster earlier than week 4 is one possibility to outperform 

current clinical guidelines (see page 16). To make prediction feasible, there should be 

differences between the patients belonging to different clusters. Checking for these 

differences in the descriptive reports that have been generated can serve as sanity 

and feasibility check before attempting more complicated predictive algorithms. Table 

8 and Table 9 give an overview of the descriptive variables for the different clusters.  

Variable: 

N (%) 

Early 

Response 

(0) 

Early 

Improvement 

with 

Response (1) 

Delayed 

Improvement 

(2) 

Early 

Improvement 

without 

Response (3) 

Non-

Improvement 

(4) 

Gender (Chi²-p: 0.798)  

Male 69 

(45.4%) 

105 (44.7%) 53 (41.4%) 62 (40.0%) 38 (40.0%) 

Female 83 

(54.6%) 

130 (55.3%) 75 (58.6%) 93 (60.0%) 57 (60.0%) 

Ethnic Group (Chi²-p: 0.888) 

European 145 

(95.4%) 

230 (97.9%) 123 (96.1%) 149 (96.1%) 92 (96.8%) 

Asian 2 (1.3%) 0 (0%) 1 (0.8%) 3 (1.9%) 1 (1.1%) 

African 2 (1.3%) 2 (0.9%) 1 (0.8%) 1 (0.6%) 0 (0%) 

Other 3 (2.0%) 3 (1.3%) 3 (2.3%) 2 (1.3%) 2 (2.1%) 

Highest School Degree (Chi²-p: 0.928) 

None 3 (2.0%) 3 (1.3%) 1 (0.8%) 0 (0%) 2 (2.1%) 

Lower secondary 

school 

48 

(31.6%) 

76 (32.3%) 42 (32.8%) 40 (25.8%) 29 (30.5%) 

Intermediate 

secondary school 

49 

(32.2%) 

68 (28.9%) 39 (30.5%) 51 (32.9%) 30 (31.6%) 

Advanced technical 

certificate 

17 

(11.2%) 

29 (12.3%) 16 (12.5%) 23 (14.8%) 8 (8.4%) 
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Variable: 

N (%) 

Early 

Response 

(0) 

Early 

Improvement 

with 

Response (1) 

Delayed 

Improvement 

(2) 

Early 

Improvement 

without 

Response (3) 

Non-

Improvement 

(4) 

Upper secondary 

school 

33 

(21.7%) 

57 (24.3%) 30 (23.4%) 39 (25.2%) 26 (27.4%) 

Other 2 (1.3%) 2 (0.9%) 0 (0%) 2 (1.3%) 0 (0%) 

Highest Vocational Degree (Chi²-p: 0.332) 

None 19 

(12.5%) 

23 (9.8%) 16 (12.5%) 30 (19.4%) 14 (14.7%) 

Apprenticeship 61 

(59.9%) 

144 (61.3%) 76 (59.4%) 79 (51.0%) 56 (58.9%) 

Master 6 (3.9%) 6 (2.6%) 1 (0.8%) 6 (3.9%) 1 (1.1%) 

University, College 

of higher Education 

27 

(17.8%) 

50 (21.3%) 31 (24.2%) 37 (23.9%) 18 (18.9%) 

Vocational College 7 (4.6%) 10 (4.3%) 4 (3.1%) 3 (1.9%) 4 (4.2%) 

Other 2 (1.3%) 2 (0.9%) 0 (0%) 0 (0%) 2 (2.1%) 

Recurrent MDD (Chi²-p: 0.036*) 

First Episode 63 

(41.4%) 

85 (36.2%) 36 (28.1%) 52 (33.5%) 23 (24.2%) 

Previous Episodes 89 

(58.6%) 

150 (63.8%) 92 (71.9%) 103 (66.5%) 72 (75.8%) 

Age of MDD Onset (Chi²-p: 0.002**) 

Early Onset (before 

Age 21) 

29 

(19.1%) 

46 (19.6%) 42 (32.8%) 49 (31.6%) 25 (26.3%) 

Middle Onset (Ages 

21 to 44) 

89 

(58.6%) 

126 (53.6%) 67 (52.3%) 75 (48.4%) 59 (62.1%) 

Late Onset (After 

Age 45) 

34 

(22.4%) 

63 (26.8%) 19 (14.8%) 30 (19.4%) 11 (11.6%) 

Table 8: Categorical demographic and clinical descriptors by Cluster from k-means-clustering for 5 
Clusters. Differences in absolute sums are due to missing values, differences in percentage sums are 
due to rounding error. Percentage sums are referring to the ration within each cluster. Chi-Squared-Test 
results are indicated by p value. *= p< 0.05, **p<0.01, *** p<0.001. 
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Variable: 

Mean 

(95% CI) 

Early 

Response 

(0) 

Early 

Improvement 

with 

Response (1) 

Delayed 

Improvement 

(2) 

Early 

Improvement 

without 

Response (3) 

Non-

Improvement 

(4) 

ANOVA-

p 

Age 41.9 (95% 

CI 40.2 to 

43.7) 

41.3 (95% CI 

39.9 to 42.8) 

38.3 (95% CI 

36.2 to 40.5) 

40.6 (95% CI 

38.7 to 42.5) 

39.7 (95% CI 

37.3 to 42.2) 

p=0.874 

Years of 

Education 

13.9 (95% 

CI 13.4 to 

14.4) 

14.2 (95% CI 

13.8 to 14.6) 

13.9 (95% CI 

13.2 to 14.5) 

14.0 (95% CI 

13.4 to 14.5) 

13.5 (95% CI 

12.8 to 14.3) 

p=0.677 

Age at 

MDD 

onset 

34.5 (95% 

CI 32.6 to 

36.5) 

34.0 (95% CI 

32.4 to 35.6) 

29.8 (95% CI 

27.6 to 31.9) 

31.2 (95% CI 

29.2 to 33.2) 

29.6 (95% CI 

27.4 to 31.9) 

p<0.001 

*** 

Number 

of 

previous 

MDD 

episodes 

2.29 (95% 

CI 1.74 to 

2.84) 

2.31 (95% CI 

1.87 to 2.75) 

2.35 (95% CI 

1.79 to 2.92) 

2.90 (95% CI 

1.97 to 3.82) 

3.93 (95% CI 

2.53 to 5.33) 

p=0.031 

* 

Length of 

current 

episode 

(days) 

24.3 (95% 

CI 19.4 to 

29.3) 

29.6 (95% CI 

24.2 to 35) 

39.2 (95% CI 

23.8 to 54.6) 

36.4 (95% CI 

27.7 to 45.1) 

31.8 (95% CI 

22.7 to 40.9) 

p=0.147 

HAMD 

score at 

Baseline 

22.9 (95% 

CI 22.2 to 

23.5) 

23.5 (95% CI 

22.9 to 24.1) 

21.7 (95% CI 

20.9 to 22.5) 

24.2 (95% CI 

23.5 to 24.9) 

21.0 (95% CI 

20 to 22) 

p<0.001 

*** 

Table 9: Continuous demographic and clinical descriptors by Cluster from k-means-clustering for 5 
Clusters. 95% CI: 95 % confidence interval for the mean. One-Way ANOVA results are indicated by p 
value. *= p< 0.05, **p<0.01, *** p<0.001. 

Statistically significant differences can be observed for the categorical variables 

Recurrence of MDD and MDD onset group and for the continuous variables Age of 

MDD onset, Number of previous episodes and HAMD score at baseline. The 

categorical variables correspond to recoding of the two first mentioned continuous 

variables, so significant differences in both corresponding variables is expected. 

Existence of these baseline differences falls in line with expected differences from the 

previous literature. Overall symptom severity was a significant predictor of later 
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treatment response in Chekroud et al. (2016), Rush et al. (2008) and Nierenberg et al. 

(2000) [31] [28] [22]. The theoretical importance of age of onset as significant predictor 

is emphasised by the existence of targeted studies like Kozel et al. (2008) [29]. Though 

that study didn’t find a significant effect in its dataset, the underlying theoretical 

importance stands. The number of previous MDD episodes was one of the significant 

predictors in Chekroud et al. (2016) [31]. These parallels of between cluster differences 

and predictors of response from previous literature gives the cluster structure some 

face validity as to its possible usefulness and/or predictive value. At the same time, it’s 

of interest to note, that common demographic response predictors (employment, 

ethnicity) don’t show significant differences in the cluster structure. This could well be 

the result of insufficient statistical power (due to very small n for some groups), so the 

implications from this should not be overvalued. 

Comparison with other cluster algorithm families 

K-means-clustering enforces hard clustering. This means, every patient was assigned 

to a single cluster. While this makes the analysis easier, it doesn’t adequately capture 

patients that might fall “between clusters” or outside of the cluster prototypes. This 

limitation was partially quantified in the result section, when patients with negative 

silhouette scores were reported. These patients are outliers from the cluster they were 

assigned to, despite it being the best fit. This algorithmic property resulting from the 

choice of clustering methodology has important implications for utilizing the clusters as 

tools for future scientific research or clinical decision making. 

For scientific inquiry into differences between different pattern of early treatment 

response using a clustering approach like in this experiment, results might benefit from 

not treating all patients assigned to a cluster the same. Selections need to be made, 

how to deal with differing typicality of the patients, for example as measured by the 

silhouette score. Whether or not edge-cases or outliers of the cluster assignment 

should be in- or excluded for analysis or whether results might benefit from a typicality-

weighted approach depends on the research context, but these questions should be 

kept in mind when opting for use of clustering methodology and the resulting tools. 

Other clustering algorithms could be utilized as an alternative. Examples include so 

called “soft” or “fuzzy” clustering algorithms, that allow objects to be in more than one 

cluster at a time, often with some degree of membership or probability measure for 

each cluster. An example of these algorithms is the C-means-algorithm [48] that’s 
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closely related to the K-means-algorithm used here with the difference, that an object 

can belong to all groups with different membership grades between 0 and 1. Fuzzy 

clustering could solve issues with identifying outliers or directly provide weights for a 

prototypicality-weighted approach. 

As another alternative, clustering algorithms based on Bayesian statistics might be 

used. The main strength of these algorithms is the incorporation of uncertainty and 

usage of the entire space of possible cluster-separations for probability estimates 

following Bayes rule (see [49] for detailed background a modern version of a Bayesian 

clustering algorithm). The resulting cluster structure is as statistical model and can be 

analysed as such as opposed to merely being a heuristic, like the k-means-algorithm 

used here. This specifically also allows to test the cluster structure versus the null 

hypothesis, that there are no clusters within the group. This is a critical – and commonly 

neglected – step if the suggested cluster  structure is proposed to be the result of an 

underlying mechanism, as opposed to merely being a useful and mathematically valid 

classification of the parameter space (the latter being the case in this thesis). 

Lastly, hierarchical clustering algorithms can be employed. This group of algorithms 

gives multiple degrees of separation. On the first level, all objects are treated as 

individual. The second level treats each set of the 2 most proximal objects as a cluster. 

In subsequent levels, objects are added to clusters or clusters are added to each other 

based on proximity as defined based on some proximity measure. The different levels 

are commonly visualised as dendrogram (see [50] for a more detailed introduction into 

hierarchical clustering). The main advantage of this approach is that relationships 

between different level clusters can be examined heuristically, which allows for easy 

interpretation. As a weakness, hierarchical clustering algorithms are often sensitive to 

small changes or noise in the dataset. There is additional difficulty in determining the 

number of clusters, since there often is no obvious level on which to “cut” the decision 

dendrogram. 

The main advantage of the k-means-algorithm over the alternative clustering 

approaches presented here lies in model simplicity. Simpler models not only result in 

lower computational cost but also often make generalization of results easier following 

Occam’s razor. Scientist employing similar methodology should be aware of the 

different algorithmic families and should chose appropriately for the individual research 

question. 
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Experiment 2 – Prediction of clinical outcomes 

Summary of Experiment 2 

Random forest classifiers with differing variable sets (variables based on HAMD, IDS, 

both and a set additionally including demographic and clinical history variables) were 

trained to predict both traditional response and traditional remission criteria at week 4. 

Prediction performance was quantified using accuracy, sensitivity and specificity and 

both Chi²-Test and calculation of effect size (estimated by Cramer´s V) were 

performed. Feature importance scores were calculated for the different variable sets. 

Predictive performance was comparable across models from all variable sets. When 

including only variables from baseline, performance was comparable to the zero-

information rate. When variables from any later timepoints were included, prediction 

was possible significantly over random and both the 20% and 30% early improvement 

criteria, were outperformed. Prediction accuracy for later response increased 

monotonously with inclusion of timepoints after baseline with the largest increase 

between baseline and week 1, suggesting an early onset of antidepressant action 

within that timeframe. 

The most important features for prediction were HAMD and IDS sum scores as well as 

principal components of their items and previously established demographic and 

clinical variables. Inclusion of these variables into a predictive dataset for clustering 

prediction was discussed. 

Aim 

The cluster structure identified in Experiment 1 provides a classification of early 

response patterns over time. In order to facilitate decision making before the 4-week 

timepoint based on that 5-cluster structure, a predictive model should be developed. 

In order to develop a model with maximum prediction accuracy, feature engineering is 

required. Feature engineering refers to a combination of transformation and 

(subsequent) selection of variables in order to create a dataset with the largest possible 

predictive value while simultaneously filtering out as much noise as possible. This 

involves both calculation of new variables as well as filtering out variables with low 

predictive value. 

If feature engineering is performed parallel to building the final predictive model, there 

is a risk of inadvertently overfitting the features to the training data, meaning the final 
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feature set will have good predictive value on the training set but bad generalization to 

unseen or external data. In order to avoid this problem, feature engineering will be 

done for a model predicting the traditional clinical response and remission criteria. This 

should be beneficial under the assumption, that variables with predictive value for the 

traditional criteria will also have predictive value for the cluster structure. 

In this experiment, a set of models for predicting traditional response and remission 

criteria will be trained and evaluated. The predictive models will differ in the sets of 

predictive variables. The target variables will be response or remission by the 

traditional criteria in week 4. Based on the results, a set of variables to use for building 

a predictive model for the clusters will be selected in the discussion section. At the 

same time, this experiment expands upon previous data on the predictability of 

treatment response (see page 11). 

Methods 

Design Summary 

A random forest classifier will be trained with different sets of predictor and target 

variables. For evaluation of classifier performance, 10-fold cross validation will be 

performed. This means, the classifier will be trained on 9/10th of the patients and will 

predict the last 1/10th of patients. This process will be repeated 10 times with distinct 

sets of patients used for prediction, so the entire dataset will have been predicted 

exactly once. Performance of the classifier models will be evaluated against random 

guessing as well the early improvement criterium. 

Decision Tree Classifier 

For more detailed information on decision trees, see [51], the source for the following 

explanation. A decision tree classifier is a classification technique used to predict, to 

which one of several distinct classes an observation belongs. This is achieved by 

chaining multiple (usually binary) decisions with each decision separating the chain 

into multiple (two in the binary case) branches. This leads to a structure of chained 

decision branches, thus the name decision tree. Each individual decision can be 

referred to as a node. The training algorithm uses a set of training data with known 

target classes to create the decision tree. Since the target classes are known, this is 

considered supervised machine learning. The algorithm begins by picking a variable 

and a value that achieves the best separation of the observations into the 

corresponding classes. The quality of separation can be measured in a multitude of 
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ways, common ones include Gini-Impurity or Variance Reduction. Each resulting 

branch is then again separated in this manner, until a stop condition is met. Examples 

of possible stop conditions include, that only one class remains in the branch or that 

either the current branch or branches resulting of a possible split have too few 

elements. The last nodes of the decision tree are also referred to as leaf nodes. For 

an example visualisation of a decision tree, see Figure 24. 

 

Figure 24: Example of a decision tree for the traditional response criterium based on the HAMD score. 
Parts of the decision tree are labelled.  

Random Forest Classifier 

For more detailed information on random forest classifiers, see [52], the source for the 

following explanation. A random forest classifier is an extension of the decision tree 

classifier described above. Instead of building a single decision tree, which often leads 

to poor generalization due to making decisions too specific to the training data by 

capturing noise (so-called overfitting), a random forest classifier builds multiple 

decision trees. Depending on the algorithm settings, each individual tree is built using 

only part of the training observations, part of the training features and/or is “pruned” to 

only reach a certain depth. These steps are taken, so multiple trees in the classifier 

aren’t the same. After multiple individual trees are trained, they can be used to predict 

an unseen example via majority voting of the results from the individual trees. A degree 

of certainty in the prediction can also be calculated by quantifying, how “unanimous” 

the best classification was between the different trees in the forest. 
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The importance of individual variables for a random forest classifier can be estimated 

by calculating the average decrease of the Gini coefficient over all trees or by 

calculating the effect on the accuracy if the variable is randomly shuffled between 

observations. Calculation of these importance scores is a key part of selecting features 

with large predictive value and eliminating features that constitute noise. The Gini-

coefficient based importance score will be calculated for all sets of variables. 

Cross-Validation 

In order to calculate the prediction accuracy of the classifiers, a cross-validation 

procedure, specifically 10-fold stratified cross-validation, is used. The dataset is split 

into 10 parts with patients being stratified based on the target variable, meaning there 

will be approximately equal numbers of patients with or without the target variable 

across dataset parts. The classifier model is then trained 10 separate times, 

withholding a separate part of the dataset each repetition. The unseen dataset part for 

each model is then given to that model for prediction. By proceeding in this manner, 

there is a prediction for each observation by a model that has not seen this observation 

during training. These predictions can then be compared to the known target variables 

for each observation, so accuracy and other estimates of test performance can be 

calculated.  

Transformation of variables 

Since random forest classifiers are based on recursive partitioning of the dataset, the 

resulting classification does not change based on basic mathematical transformations 

on the input. Therefore, a “normalization” (e.g. transforming all variables to zero mean, 

unit variance) is not required and is thusly not performed here [53]. The algorithm also 

natively can deal with both categorical as well as continuous data, so no additional pre-

processing is necessary regarding the mixed properties of the input data. For 

categorical data, it is noteworthy though, that importance scores can be overestimated 

for variables with many categories compared to variables with few categories. This 

should be kept in mind for later variable selection. 

For the weekly psychometric values (HAMD and IDS) some basic variable 

transformations are performed to optimally extract a possible predictive value. First, 

relative sum scores values to baseline are calculated. Second, absolute sum score 

differences to all prior timepoints are calculated. Third, principle component analysis is 

performed at baseline for the items of each test separately. Components are kept so 
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the total explained variance is above 50%. The individual values for each patient for 

these principal components are calculated until week 2 (itemized psychometrics aren’t 

available in the dataset for weeks 3 and after). The variables resulting from these 

transformations will be referred to as feature engineering variables for the purpose of 

this thesis. 

Prediction variable sets 

To evaluate the predictive values of the different available variables, multiple predictive 

sets are chosen for comparison. Each variable set will be calculated in 4 different time 

versions for every week (baseline until week 3). It will encompass all available data 

until that timepoint. One variable set includes all information based on the HAMD (sum 

score, items, feature engineering variables) until the corresponding week. A second 

set will include both the self and clinician rated IDS information. The third set will 

combine both the HAMD and IDS set. And a last set will combine HAMD and IDS 

information and add information from the M.I.N.I., SCID-II, demographics as well as 

medical and psychiatric history. This set is referred to as “All Variables” set. 

Hyperparameters 

Algorithmic settings are commonly called Hyperparameters. Random forest classifiers 

have multiple hyperparameters, like the number of trees in the forest, the type of 

information gain criterion (gini coefficient or entropy gain), the maximum decision tree 

depth or the maximum features considered per tree. These hyperparameters are 

commonly set using so called hyperparameter grid search, meaning that a space of 

parameter settings is searched for an optimal solution by calculating the cross-

validation score for every possible combination of these parameters. In order to 

prevent contamination of the global cross-validation scores used for evaluation, this 

grid search is commonly done separately for each cross-validation fold. In order to 

compare the accuracies of different hyperparameter settings, cross validation will be 

employed again, though only on the training data of the respective cross validation 

fold. This is called nested cross validation hyperparameter tuning. For the nested cross 

validation, 3 folds are used. 

In order to make this procedure computationally viable, the hyperparameter search 

space needs to be narrowly defined. Every possible parameter setting needs to be 

evaluated in combination with all other settings on all other parameters – for every 

cross-validation fold. The number of individual models that need to be fit quickly grows 
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too large to calculate. Keeping this in mind, the search space for hyperparameter 

tuning is defined by 3 parameters: the information gain criterion (gini coefficient vs. 

entropy gain), the maximum decision tree depth (50, 100, Unlimited) and the maximum 

features considered per tree (square root of total features, log2 of total features, 50% 

of total features). The number of trees in the forest is fixed to 2000, which is likely larger 

than required, though it is computationally cheaper to estimate this larger number once 

for every parameter, than to evaluate all parameter combinations against multiple 

settings for the number of trees. This leaves a total of 18 parameter combinations, 

evaluated on 10 cross validation folds for 4 variable sets over 4 timepoints for 2 target 

variables, with evaluation being based on 3 folds per parameter combination, meaning 

a total of 18*10*4*4*2*3 = 17280 models will have to be fit (not including the final model 

fit with the best set of hyperparameters). At 5 seconds per model, this will take 

approximately 24 hours, showing how quickly a larger search space would become 

calculation-cost prohibitive. 

Feature importance calculation 

Due to the cross-validation procedure described above, there will be multiple models 

per set of predictive variables. In order to allow interpretation of the feature importance 

scores (see the description of random forest classifiers above, page 59), it is beneficial 

to have a single importance score per variable set. Therefore, the importance scores 

will be averaged across all models resulting from the same variable set. 

In order to compare importance scores across multiple variable sets, it is important to 

keep in mind that simple averaging might not result in the intended effect. Importance 

scores need to be compared over time, since it seems likely that variables very 

important for baseline prediction might differ from variables very important for 

prediction at week 3. Furthermore, it should be considered, that the number of sets a 

given variable is in differs. Feature importance scores (after averaging over the models 

per variable set) are therefore ordered by rank, separately for every variable set and 

timepoint. If a feature shows a high rank (high meaning most important here) in multiple 

variable sets, the predictive value is likely real. If it ranks high in some variable sets but 

low in others, this might be due to cross-correlation between variables in the sets. If it 

consistently ranks low across variable sets, it likely captures noise and should be 

excluded from the set of predictive variables for future analysis. 
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Results 

Prediction performance metrics 

After calculation of the predictive models, standard binary confusion matrices and their 

corresponding metrics can be calculated. The accuracies for the given variable sets 

over time are shown in Figure 25 (Response at week 4) and Figure 26 (Remission at 

week 4). An overview of the remaining prediction metrics as well as Chi²-Tests and 

effect sizes is given by Table 10 (Response at week 4) and Table 11 (Remission at 

week 4). 

For response at week 4, maximum prediction accuracy at baseline is 52.2%, only 

slightly above the zero-information rate (approx. 50%) with a steep increase in 

prediction accuracy to between 66.0% and 67.8% across all variable sets at week 1. 

Until week 3, all variable sets show a further, roughly linear, increase of accuracy to 

between 75.8% to 79.7%. The 20% early improvement criterium shows a roughly 

constant prediction accuracy between 63.2% and 65.7%, the 30% early improvement 

criterium shows an increase in accuracy from 67.0% at week 1 to 72.7% at week 3. 

Both sensitivity and specificity are roughly equal to each other for all variable sets and 

timepoints. Chi²-Testing against random guessing shows highly significant p-values for 

weeks 1 through 3 for all variable sets with non-significant values across all variable 

sets at baseline. Effect-size of the prediction as estimated with Cramer´s V increases 

monotonously over time for all variable sets. 

For remission at week 4, prediction at baseline is distributed between 69.2% and 

70.4% around the zero-information rate (approx. 70%) for all variable sets, with the set 

including all variables being worse than the others at approx. 62.1%. From there, all 

variable sets show a quasi-linear increase in predictive accuracy until week 3, where 

the accuracies are distributed between 83.4% and 86.3%. Both 20% and 30% early 

improvement criterium show a predictive accuracy lower than the zero-information rate 

at all timepoints. For all variable sets and timepoints, specificity is at least moderately 

better than sensitivity. Chi²-Testing shows significant p-values over random guessing 

for all timepoints and variable sets with the exception of the All-Variables-Set at 

baseline, that shows a non-significant value. Effect-size of the prediction as estimated 

with Cramer´s V increases monotonously over time for all variable sets. 
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Figure 25: Cross-validation accuracy of random forest classifiers predicting the traditional 50% response 
criterium based on the given variable set at different timepoints. Zero information rate and early 
improvement criterium are shown for comparison. 

 

Figure 26: Cross-validation accuracy of random forest classifiers predicting the traditional remission 
criterium based on the given variable set at different timepoints. Zero information rate and early 
improvement criterium are shown for comparison. 
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Metric Baseline Week 1 Week 2 Week 3 

All Variables as predictors for Response at week 4. 

Accuracy 52.2% 67.8% 74.0% 79.7% 

Sensitivity 53.9% 68.7% 75.6% 80.6% 

Specificity 49.1% 66.8% 72.1% 78.7% 

Chi²-p Value 0.608 < 0.001 < 0.001 < 0.001 

Cramer’s V 0.024 0.349 0.473 0.588 

HAMD Variables as predictors for Response at week 4. 

Accuracy 50.7% 66.0% 68.9% 79.3% 

Sensitivity 50.8% 66.6% 69.6% 79.5% 

Specificity 50.7% 65.5% 68.2% 79.2% 

Chi²-p Value 0.745 < 0.001 < 0.001 < 0.001 

Cramer’s V 0.012 0.318 0.375 0.584 

IDS Variables as predictors for Response at week 4. 

Accuracy 51.9% 66.1% 70.6% 75.8% 

Sensitivity 52.0% 66.1% 71.5% 76.8% 

Specificity 51.8% 66.0% 69.7% 74.7% 

Chi²-p Value 0.331 < 0.001 < 0.001 < 0.001 

Cramer’s V 0.035 0.318 0.409 0.513 

HAMD and IDS Variables as predictors for Response at week 4. 

Accuracy 50.1% 66.2% 73.9% 77.7% 

Sensitivity 50.3% 66.4% 75.1% 78.5% 

Specificity 49.9% 66.0% 72.7% 77.0% 

Chi²-p Value 0.970 < 0.001 < 0.001 < 0.001 

Cramer’s V 0.001 0.321 0.475 0.552 

Table 10: Binary classification metrics of random forest classifiers with the given variable sets as 
predictors and the traditional 50% response criterium at week 4 as target variable. Chi-2-Metric and 
Cramer´s V were calculated in comparison to random guessing. 
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Metric Baseline Week 1 Week 2 Week 3 

All Variables as predictors for Remission at week 4. 

Accuracy 62.1% 71.4% 77.9% 83.4% 

Sensitivity 36.0% 61.9% 70.7% 79.0% 

Specificity 65.3% 74.7% 81.2% 85.5% 

Chi²-p Value 0.975 < 0.001 < 0.001 < 0.001 

Cramer’s V 0.001 0.331 0.498 0.624 

HAMD Variables as predictors for Remission at week 4. 

Accuracy 69.2% 73.3% 82.1% 86.3% 

Sensitivity 46.0% 58.5% 76.4% 79.8% 

Specificity 72.1% 76.9% 83.8% 88.7% 

Chi²-p Value < 0.001 < 0.001 < 0.001 < 0.001 

Cramer’s V 0.121 0.301 0.548 0.662 

IDS Variables as predictors for Remission at week 4. 

Accuracy 70.4% 76.7% 80.0% 84.8% 

Sensitivity 51.8% 66.0% 69.7% 78.5% 

Specificity 72.6% 79.5% 83.6% 87.1% 

Chi²-p Value < 0.001 < 0.001 < 0.001 < 0.001 

Cramer’s V 0.162 0.400 0.504 0.627 

HAMD and IDS Variables as predictors for Remission at week 4. 

Accuracy 70.2% 77.1% 80.4% 85.6% 

Sensitivity 51.2% 67.5% 71.3% 80.3% 

Specificity 72.7% 79.5% 83.4% 87.5% 

Chi²-p Value < 0.001 < 0.001 < 0.001 < 0.001 

Cramer’s V 0.160 0.408 0.511 0.646 

Table 11: Binary classification metrics of random forest classifiers with the given variable sets as 
predictors and the traditional HAMD remission criterium at week 4 as target variable. Chi-2-Metric and 
Cramer´s V were calculated in comparison to random guessing. 

Feature importance 

For reasons of brevity, full feature importance ranks, values and graphs are not 

reported here. Instead, only feature importance graphs for the top 30 predictors for 

Response at week 4 in the All-Variable-Set are reported for baseline, week 1, week 2 

and week 3 in Figure 27, Figure 28, Figure 29 and Figure 30, respectively. Additional 

graphs can be found in the appendix. Rank comparisons are reported for clinical history 
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and demographic variables as to their predictive importance for Response at week 4 

in Table 12, in order to facilitate discussion of possible inclusion in future models. 

 

Figure 27: Feature importance for the prediction of response at week 4 in the All-Variables-Classifier at 
baseline. Variable abbreviations: SCR_*_*(_rel): HAMD or IDSC (IDS clinician rated) or IDSF (IDS self-
rated) score at stated). Added suffix “_rel” to indicate value relative to baseline. CALC_PCA_*_*_*: 
Principle component analysis of HAMD, IDSC or IDSF items at stated timepoint, nth component (0-
indexed). CALC_DELTA_*_*_*: Score difference of HAMD, IDSC or IDSF between two stated 
timepoints. BL_SF**SC: SF-12 (I: Clinician rated, S: self-rated) (P: mental, k: physical) subscale score 
at baseline. SCR_PSYAGE: Age at first MDD episode. SCR_PSYLENG: Length of current MDD 
episode. SCR_R_AGE: Age at baseline. SCR_EDUYEARS: Years of formal education. 
BL_VSWEIGHT: Body weight at baseline. BL_VSPULSE: Heart rate at baseline. 

At baseline, where prediction accuracy of the All-Variables-Set classifier predicting 

traditional 50% response at week 4 was not significantly above random, the features 

with the highest importance scores were principal components of both HAMD and IDS 

Items, baseline SF-12 subscale scores as well as some clinical (Weight, Heartrate), 

history (Length of current episode, Age at first episode) and demographic variables 

(Years of education, Age). 
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Figure 28: Feature importance for the prediction of response at week 4 in the All-Variables-Classifier at 
week 1. Variable abbreviations: SCR_*_*(_rel): HAMD or IDSC (IDS clinician rated) or IDSF (IDS self-
rated) score at stated). Added suffix “_rel” to indicate value relative to baseline. CALC_PCA_*_*_*: 
Principle component analysis of HAMD, IDSC or IDSF items at stated timepoint, nth component (0-
indexed). CALC_DELTA_*_*_*: Score difference of HAMD, IDSC or IDSF between two stated 
timepoints. BL_SF**SC: SF-12 (I: Clinician rated, S: self-rated) (P: mental, k: physical) subscale score 
at baseline. BL_VSPULSE: Heart rate at baseline. 

The All-Variables-Set classifier predicting traditional 50% response at week 4 based 

on week 1 variables showed both the absolute and relative HAMD sum score at week 

1 as having the highest feature importance. Other important variables included IDS 

sum scores, sum score differences between week 1 and baseline, principal 

components of psychometric scale items at baseline and week 1 and both baseline 

heart rate and SF-12 subscales. 
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Figure 29: Feature importance for the prediction of response at week 4 in the All-Variables-Classifier at 
week 2. Variable abbreviations: SCR_*_*(_rel): HAMD or IDSC (IDS clinician rated) or IDSF (IDS self-
rated) score at stated). Added suffix “_rel” to indicate value relative to baseline. CALC_PCA_*_*_*: 
Principle component analysis of HAMD, IDSC or IDSF items at stated timepoint, nth component (0-
indexed). CALC_DELTA_*_*_*: Score difference of HAMD, IDSC or IDSF between two stated 
timepoints. 

The most important features in the week 2 All-Variables-Set classifier predicting 

traditional 50% response at week 4 were relative HAMD and IDS sum scores at week 

2, differences between these scores and baseline, sum scores at week 1 and 

differences to baseline and principal components of psychometric items between 

baseline and week 2. 
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Figure 30: Feature importance for the prediction of response at week 4 in the All-Variables-Classifier at 
week 3. Variable abbreviations: SCR_*_*(_rel): HAMD or IDSC (IDS clinician rated) or IDSF (IDS self-
rated) score at stated). Added suffix “_rel” to indicate value relative to baseline. CALC_PCA_*_*_*: 
Principle component analysis of HAMD, IDSC or IDSF items at stated timepoint, nth component (0-
indexed). CALC_DELTA_*_*_*: Score difference of HAMD, IDSC or IDSF between two stated 
timepoints. 

For the week 3 All-Variables-Set classifier predicting traditional 50% response at week 

4, the relative HAMD sum score at week 3 shows a far bigger feature importance than 

all other features. Other important features are absolute and relative HAMD and IDS 

sum scores at weeks 1 through 3, their differences to baseline and principal 

components of psychometric scale items from baseline through week 3. 
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Variable Baseline Week 1 Week 2 Week 3 

Age at first MDD 

episode 

20 / 140 

(14.3%) 

53 / 216 

(24.5%) 

78 / 296 

(26.4%) 

79 / 312 

(25.3%) 

Length of current MDD 

episode (days) 

23 / 140 

(16.4%) 

35 / 216 

(16.2%) 

82 / 296 

(27.7%) 

78 / 312 

(25.0%) 

Age at baseline 28 / 140 

(20.0%) 

58 / 216 

(26.9%) 

92 / 296 

(31.1%) 

75 / 312 

(27.2%) 

Years of education 30 / 140 

(21.4%) 

62 / 216 

(28.7%) 

90 / 296 

(30.4%) 

94 / 312 

(30.1%) 

Number of previous 

MDD episodes 

32 / 140 

(22.9%) 

70 / 216 

(32,4%) 

111 / 296 

(37.5%) 

119 / 312 

(38.1%) 

Type of school 

education 

50 / 140 

(35.7%) 

102 / 216 

(47.2%) 

147 / 296 

(49.7%) 

181 / 312 

(58.0%) 

Type of vocational 

education 

56 / 140 

(40.0%) 

140 / 216 

(64.8%) 

175 / 296 

(59.1%) 

215 / 312 

(69.2%) 

Gender 93 / 140 

(66.4%) 

173 / 216 

(80.1%) 

252 / 296 

(85.1%) 

249 / 312 

(79.8%) 

Ethnicity 108 / 140 

(77.1%) 

180 / 216 

(82.9%) 

267 / 296 

(90.2%) 

281 / 312 

(90.1%) 

Table 12: Feature importance ranks of demographic and clinical history variables form the All-Variables-
Set classifiers for the given timepoints predicting response at week 4. Ordered form Rank 1 = Most 
important. Percentage Ranks given in brackets. 

Demographic and clinical history variables showed varying levels of feature importance 

for the All-Variables-Set classifier predicting traditional 50% response at week 4 with 

their relative importance ranking of the variables being roughly consistent across all 

timepoints. Age at first MDD episode, Length of current episode, Patient Age and Years 

of Education all consistently rank in the top third of feature importance. The number of 

previous MDD episodes shows a decline in importance from the 22.9th percentile at 

baseline to the 38.1st percentile at week 3. Gender, Ethnicity and type of education 

don´t rank in the top third at any timepoint. 

Discussion 

Conclusions and deductions from model prediction accuracy over time 

The overview graphs of the predictive model accuracy over time (Figure 25 and Figure 

26) are immediately suggestive of several key findings. Firstly, prediction at baseline 
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seems to be at best moderately above the zero-information rate. Second, prediction 

gets more accurate closer to the target timepoint. And third, in the case of response 

prediction, the growth in prediction accuracy between baseline and week 1 strongly 

differs in magnitude from the growth after that point. These findings will be discussed 

in the following subsection. 

While the baseline prediction of remission at week 4 beats random guessing with 

statistical significance in 3 out of 4 models, the prediction is at best a small amount 

above the zero-information rate. For prediction of response, none of the models are 

significantly better than random or show accuracy far above the zero-information rate. 

At first glance, this seems to be differing from previous results like the predictors of 

response discussed above (see page 11). But single predictors being associated with 

response at baseline don´t necessarily translate into prediction being possible, 

because response is most likely influenced by multiple factors and possibly interactions 

between these factors. If this relationship is either to complex to uncover for the chosen 

algorithm with the given amount of training data or the training data has a low signal to 

noise ratio prohibiting finding of this relation, prediction might not be possible even 

though the data contains variables already known to be predictive in some capacity. 

One way to avoid this problem would be to increase the signal to noise ratio by feature 

selection, meaning only the most predictive features will be selected in order to build a 

model. This was done by  Chekroud et al. (2016), where they achieved a prediction 

accuracy of approx. 60% on the external validation dataset by selecting only the top 

25 predictors [31]. The use of an external validation set is key for this approach. 

Selecting the most informative features for the entire dataset and then trying to 

estimate the prediction accuracy via cross validation on the same dataset constitutes 

a so called “data leak”: Because it is already known from feature selection, that the 

selected features are valuable to predict the holdout part of the dataset, it is 

unsurprising that the holdout part gets predicted well by these features – the cross-

validation accuracy will likely be overestimated and in order to get a “real” accuracy, 

an external validation is required. Chekroud et al. (2016) achieved a cross validation 

accuracy of 64.6% and an external validation accuracy of 59.6%, showing this effect 

[31]. 

For the purposes of this experiment, there was no external validation dataset available. 

Thus, feature selection on the dataset could not be employed in this manner in order 

to raise the signal to noise ratio and by doing so possibly raise the prediction accuracy 
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above the zero-information rate. For Chekroud et al. (2016), the zero-information rate 

was 51.3% [31]. Even with employing feature selection in the manner described above, 

they achieved an external classification accuracy of only 59.6%. Compared to the zero-

information rate of 50.0% for response prediction and a prediction accuracy of 52.2% 

for the best predictive model at baseline in this thesis, this is obviously better but 

doesn´t – in the authors opinion – justify the assumption of a difference not explained 

by the difference in methodology and the differing prediction question (Chekroud et al. 

(2016) predicting remission after 12 weeks vs. this experiment predicting response or 

remission after 4 weeks [31]). Overall, both in previous literature and the current 

experiment baseline prediction of treatment outcome based on clinical data alone 

seems to be possible at best moderately above the zero-information rate. 

Unsurprisingly, the prediction accuracy increases with variables from timepoints closer 

to week 4 being used. This result serves as a sanity check of the prediction accuracy. 

What is interesting, is that in prediction of remission, this increase is approximately 

linear (at least when considering an average of all 4 variable sets) from baseline until 

week 3 and in prediction of response it´s linear from week 1 until week 3. This 

approximately linear increase can serve as an argumentative “baseline” about how 

much easier prediction gets over time. With prediction of response showing a much 

larger increase in accuracy between baseline and week 1 than suggested by the 

baseline linear relation from the rest of the data, closer attention is warranted. 

The background section on early improvement (See page 10) details, that significant 

differences between responders and non-responders can be found within one or two 

weeks. This is indicative of an onset of antidepressant response within this timeframe. 

The difference in magnitude between the accuracy increase in comparison to a 

baseline linear relation could be interpreted as this onset of response. In this case, the 

data from the current experiment indicates an onset of antidepressant response within 

the first week, in line with results from Szegedi et al. (2003) [23]. 

This interpretation raises the question, why the onset is only seen in the predictive 

accuracy of response prediction and not seen in remission prediction. One possible 

explanation is in the timeframe of the remission prediction. The current experiment 

predicted remission after 4 weeks, which is earlier than remission would be expected 

by current antidepressant treatment strategy (See page 9), that expects response by 

week 4 to be predictive for later remission. But the shorter the distance to the predicted 

timepoint, the stronger the accuracy gain over time should self-evidently be. Therefore, 
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it could be possible for this strong accuracy gain over time to mask the presumed 

accuracy gain from an onset of response. Since in the EMC trial, there were 

antidepressant treatment adaptations directly dependent on whether a patient showed 

response at week 4, predictions for remission in the further time course of this dataset 

would change the prediction question sufficiently to prohibit investigation of this 

possibility: An onset of antidepressant response to one medication would not 

necessarily show up in the prediction accuracy for an entire treatment strategy. This 

analysis should be done in future research on a different dataset, where patients were 

exposed to the same antidepressant treatment for longer, since the current results 

could indicate a way of supporting the early onset of antidepressant response further 

and quite specifically. 

Comparison to the early improvement criterium 

In comparison to both the 20% and 30% forms of the early improvement criterium, the 

machine learning models outperform. The 20% early improvement criterium shows a 

predictive accuracy of approx. 65% for the prediction of response at all timepoints, 

which is worse than the models based on all variable sets at week 1 and much worse 

at all other timepoints. The 30% early improvement criterium shows a predictive 

accuracy on par with the machine learning models in week 1 and an increase in 

accuracy over time, but this increase can´t match the accuracy increase of all other 

models that outperform the early improvement criterium in both week 2 and week 3 for 

the prediction of response. For the prediction of remission at week 4, both early 

improvement criteria are essentially worthless at all timepoints, since they are far below 

the zero-information rate. 

In addition to the early improvement criterium being outperformed accuracy-wise, the 

machine learning models have several further advantages. As described in the 

methodology for random forests (See page 59), an estimate of prediction confidence 

based on the unanimity of predictions between trees can be made. While this was not 

evaluated in this experiment, it provides an additional source of information that could 

be considered for clinical decision making. Secondly, a trade-off between sensitivity 

and specificity can be made for the specific needs such models might be used for. The 

precision data in this experiment was automatically chosen to maximize accuracy, but 

unlike the cut-off for the early improvement criterium, this can be adjusted. 
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Feature selection for future model building 

For beginning feature selection, the first key result is that models based on data from 

all variable sets perform on roughly the same level across all timepoints. Both IDS and 

HAMD seem like valid ways to measure symptom severity and neither approach seems 

to show a definitive benefit over the others. Since strong levels of collinearity can be 

expected between the different measures of symptom severity, only one set should be 

included. A strong argument for then choosing the HAMD score instead of the IDS 

score is present in the prediction question the features are selected for: The cluster 

structure was based on the HAMD score; therefore, it is justified to assume more 

contained information over the IDS. Since the clustering was specifically done on the 

relative HAMD scores, all relative HAMD scores should be included. This is 

mathematically justified, since the relative HAMD score is among the top predictors of 

the all variables model from weeks 1 through 3. In addition, the absolute level of 

symptom severity from all timepoints should be included. Absolute sum scale scores 

from both the latest and previous timepoints are present in the top 30 predictors of 

response for all timepoints of the All-Variable set model. This provides a mathematical 

justification for inclusion in addition to the theoretical argument of predictive information 

being contained in the time course of treatment response. 

Regarding other features derived from the psychometric scales, it is obvious from the 

feature importance data of all timepoints, that principal components are more 

predictive than individual psychometric items. It is especially noteworthy, that principal 

component expressions from previous timepoints are still among the top predictive 

features in models from later timepoints. Further, it is noteworthy that the principal 

components´ predictive value is not present in rank order (meaning the first principle 

component is not the most important feature etc.). It therefore is appropriate to include 

all the HAMD principal components and exclude all single items variables. 

Non-psychometric derived features are only included in the All-Variables set. The key 

features here are the characteristics from clinical variables and demographics. The 

theoretical importance of these variables was explored in detail in both the background 

section and the discussion section to experiment 1 (See page 11 and 52 respectively). 

The variables falling within the top third of predictive variables for at least one timepoint 

will be included, meaning inclusion of patient age, age of onset, length of current MDD 

episode, number of previous MDD episode and years of education. All other 

demographic variables will be excluded. Noteworthy here is the exclusion of ethnicity, 



76 
 

which was an important feature for Chekroud et al. (2016) [31]. The EMC dataset 

features an approximately homogenously European population (See page 22). This 

might lead to ethnicity being less predictive in the current dataset than suggested by 

previous research, simply because the number of Non-European patients is too small 

to uncover a possible effect. 

Additional Non-demographic features that show up within the top predictive features 

are SF-12 subscale scores at baseline and heartrate at baseline. Because of their 

relative importance to prediction of response even in later timepoints (e.g. top 30 

predictors for the week 1 model), these features are included in addition. 

To summarize, the following features will be included as predictive variables for the 

cluster prediction model: Absolute and relative HAMD sum-scores, HAMD item 

principal components, patient age, age of onset, length of current MDD episode, 

number of previous MDD episode and years of education, SF-12 subscale scores at 

baseline, heartrate at baseline. 

Experiment 3 – Prediction of response type clusters 

Summary of Experiment 3 

Random forest classifiers were used to predict later assignment of patients to the 

clusters from Experiment 1 with variables available at Baseline and weeks 1 through 3 

from the variable set selected in Experiment 2. Methodology for training and prediction 

assessment was the same as for Experiment 2. 

Prediction accuracy increased over time, with baseline prediction not being better than 

random or the zero-information rates for any cluster. At week 1, predictions for the 

Early Response (0) cluster were better than the zero-information rate and random. At 

week 2, predictions for all clusters were better than random and predictions for all 

clusters except the Delayed Improvement (2) cluster were better than the zero-

information rate. At week 3, all clusters were predicted significantly above random and 

better than the zero-information rate with classification accuracies between 86.2% and 

95.5%. Specificity was high compared to sensitivity for all clusters at all timepoints. 

The high classification accuracy together with the high specificity implied possible 

clinical utility in early identification of a patient subpopulation for which early medication 

change might be beneficial. Limitations of this predictability and areas for future 

investigation of algorithmic performance were discussed. 
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Aim 

After investigating prediction of traditional response markers for the purpose of feature 

selection, the extension of the predictive methodology from experiment 2 to the cluster 

structure from experiment 1 is the next step for deriving early clinical decisions based 

on the early treatment response patterns. Only if predicting the cluster assignment of 

a given patient early is possible with decent accuracy, early clinical decision making 

based on these predictions is a viable route for further investigation. If no such 

prediction is viable, only the time-course classification after 4 weeks is available as a 

new source of information for clinical insight (see page 16). 

Method 

Design Summary 

A set of random forest classifiers with the selected set of predictive variables from the 

experiment 2 discussion will be trained with the different clusters from experiment 1 as 

binary target variables (patient belonging to cluster X or not). The predictive variable 

set will exist in 4 variants for the different prediction timepoints (baseline through week 

3). Nested hyperparameter tuning will be employed for training these models. 

Accuracy, other test performance metrics and Chi²-Tests against random will be 

evaluated based on 10-fold cross validation. Prediction test metrics will be evaluated 

in relation to the different timepoints. Feature importance will be calculated for all 

predictions. 

Algorithmic methodology 

The methodology for the random forest prediction in this experiment is identical for the 

prediction in experiment 2. For information on the underlying algorithm (see page 59), 

the cross-validation procedure (see page 60), the hyperparameter tuning and its 

search space (see page 61) and feature importance calculation (see page 62), please 

refer to the methodology section of experiment 2. 

Predictive and target variables 

The predictive variable sets and target variables differ from experiment 2. In the 

discussion from experiment 2, a set of predictive variables was selected (see page 75). 

These features are used as predictive variables here. The predictive variable set is 

given in 4 versions for the different possible timepoints of prediction (baseline through 

week 3). Each variable set includes all variables from its own and previous timepoints. 

The set of predictive variables includes absolute and relative HAMD sum scores, 
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principal component expressions from PCA of HAMD items at baseline (from baseline 

through week 2, since no HAMD items were available for week 3), baseline SF-12 

subscale scores, baseline heart frequency, the patients age, age at first depressive 

episode, length of current episode and years of education. 

The target variables are Boolean variables indicating a patient’s assignment to a given 

cluster. This can also be referred to as one-hot-encoding variables from the cluster 

variable. This means, each cluster is predicted one at a time. This methodology is 

opted for over a prediction of which cluster a patient will most likely be assigned to 

(predicting all 5 clusters at once) because of the underlying clinical implications. If there 

is a clinical hypothesis based on a patient’s cluster prediction, it is likely uninteresting 

which cluster a patient belongs to. Instead, the key prediction is whether a patient 

belongs to the single cluster in question, so it can accurately be assessed, whether the 

hypothesis´ suggested intervention is indicated for the given patient. 

Results 

Prediction performance metrics 

Timepoint Early 

Respons

e (0) 

Early 

Improvemen

t with 

Response 

(1) 

Delayed 

Improvemen

t (2) 

Early 

Improvemen

t without 

Response 

(3) 

Non-

Improvemen

t (4) 

Zero-

Informatio

n Rate 

80.1 % 69.3 % 83.3 % 79.7 % 87.6 % 

Baseline 80.3 % 68.7 % 82.6 % 79.1 % 87.1 % ** 

Week 1 85.3 % *** 66.4 % 82.3 % * 79.1 % 87.5 % *** 

Week 2 91.5 % *** 76.2 % *** 82.1 % ** 80.0 % *** 89.9 % *** 

Week 3 95.5 % *** 87.9 % *** 87.9 % *** 86.2 % *** 94.6 % *** 

Table 13 Accuracy of predictive model for the given cluster and timepoint. Stars indicate p-test resulting 
from Chi²-Testing vs. random *: p < 0.05, **: p < 0.01, *** p < 0.001. Zero-information rate given for 
additional comparison; bold text indicates values higher than the zero-information rate for the given 
cluster. 

An overview of prediction accuracies per cluster and timepoint is given in Table 13. For 

all clusters, accuracy at baseline approximately equals the zero-information rate. At 

baseline, only the Non-Improvement cluster (4) shows a significant p value in Chi²-

Testing performance versus random. Accuracy at week 1 is still below the zero-
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information rate for all clusters with predictions for the Early Response (0), the Delayed 

Improvement (2) and the Non-Improvement (4) clusters now performing significantly 

better than random. Only the predictions for the Early-Response (0) cluster are above 

the zero-information rate. In weeks 2 and 3, predictions for all clusters perform 

significantly better than random. All predictions in this timeframe are also better than 

the zero-information rate except for the Delayed Improvement cluster (2) at week 2. 

Additional test performance metrics are shown in Table 14. 
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Metric Baseline Week 1 Week 2 Week 3 

Early Response (0) 

Accuracy 80.3% 85.2% 91.5% 95.5% 

Sensitivity 22.2% 64.2% 82.5% 91.8% 

Specificity 81.0% 88.9% 93.2% 96.2% 

Chi²-p Value 0.857 < 0.001 < 0.001 < 0.001 

Cramer’s V 0.007 0.479 0.705 0.844 

Early Improvement with Response (1) 

Accuracy 68.7% 66.4% 76.2% 87.9% 

Sensitivity 36.8% 29.4% 62.4% 83.2% 

Specificity 69.5% 69.3% 81.4% 89.8% 

Chi²-p Value 0.732 0.968 < 0.001 < 0.001 

Cramer’s V 0.012 0.001 0.421 0.707 

Delayed Improvement (2) 

Accuracy 82.6% 82.3% 82.1% 87.9% 

Sensitivity 0.0% 38.1% 38.5% 68.0% 

Specificity 82.9% 83.6% 83.8% 91.1% 

Chi²-p Value 0.987 0.021 0.007 < 0.001 

Cramer’s V < 0.001 0.087 0.102 0.537 

Early Improvement without Response (3) 

Accuracy 79.1% 79.1% 80.0% 86.2% 

Sensitivity 28.6% 28.6% 54.0% 68.8% 

Specificity 79.7% 79.7% 81.4% 90.0% 

Chi²-p Value 0.947 0.947 < 0.001 < 0.001 

Cramer’s V 0.002 0.002 0.188 0.552 

Non-Improvement (4) 

Accuracy 87.1% 87.5% 89.9% 94.6% 

Sensitivity 50.0% 54.1% 65.2% 87.3% 

Specificity 87.5% 89.4% 92.5% 95.4% 

Chi²-p Value 0.009 < 0.001 < 0.001 < 0.001 

Cramer’s V 0.099 0.279 0.494 0.736 

Table 14: Binary classification metrics of random forest classifiers with final selection variable set as 
predictors and the given cluster assignment as target variable. Chi-2-Metric and Cramer´s V were 
calculated in comparison to random guessing. 

Feature importance 

Feature importance values were calculated for all timepoints and all target clusters 

individually. The importance scores were averaged over all 5 clusters for each 

timepoint. Results are given in Table 15. Individual importance scores for the predictive 

models can be found in the appendix. 
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Variable Baseline Week 1 Week 2 Week 3 

Rel. Week 3 HAMD Not included Not included Not included 0.234 

Rel. Week 2 HAMD Not included Not included 0.204 0.150 

Rel. Week 1 HAMD Not included 0.164 0.128 0.132 

Abs. Week 3 HAMD Not included Not included Not included 0.072 

Abs. Week 2 HAMD Not included Not included 0.052 0.026 

Abs. Week 1 HAMD Not included 0.065 0.034 0.024 

Abs. Baseline 

HAMD 0.055 0.036 0.022 0.016 

HAMD PCA V02-0 Not included Not included 0.034 0.022 

HAMD PCA V02-1 Not included Not included 0.031 0.019 

HAMD PCA V02-2 Not included Not included 0.025 0.014 

HAMD PCA V02-3 Not included Not included 0.027 0.016 

HAMD PCA V02-4 Not included Not included 0.025 0.015 

HAMD PCA V01-0 Not included 0.042 0.022 0.014 

HAMD PCA V01-1 Not included 0.055 0.029 0.022 

HAMD PCA V01-2 Not included 0.048 0.024 0.015 

HAMD PCA V01-3 Not included 0.039 0.021 0.014 

HAMD PCA V01-4 Not included 0.040 0.023 0.013 

HAMD PCA BL-0 0.080 0.043 0.025 0.015 

HAMD PCA BL-1 0.073 0.041 0.024 0.014 

HAMD PCA BL-2 0.073 0.038 0.022 0.014 

HAMD PCA BL-3 0.068 0.037 0.023 0.014 

HAMD PCA BL-4 0.065 0.036 0.022 0.012 

SF-12-SR SSC 0.076 0.039 0.022 0.013 

SF-12-SR PSC 0.071 0.034 0.020 0.013 

SF-12-CR SSC 0.069 0.038 0.021 0.014 

SF-12-CR PSC 0.070 0.037 0.022 0.014 

Prev. Episodes 0.036 0.021 0.012 0.008 

Age at Onset 0.061 0.033 0.019 0.011 

Current Age 0.055 0.031 0.019 0.010 

Length of Episode 0.058 0.031 0.018 0.011 

Baseline Heartrate 0.046 0.026 0.015 0.008 

Years of education 0.044 0.026 0.016 0.008 

Table 15: Feature importance scores averaged over predictive models for all clusters at the given 
timepoints. Variable Abbreviations: Rel. Week X HAMD: Relative HAMD Score to baseline. Abs. Week 
X HAMD: Absolute HAMD score.  HAMD PCA X-Y: Principle component analysis of HAMD items at 
timepoint X, component Y (zero indexed). SF-12 X Y: SF-12 score self-rated (SR) or clinician rated (CR) 
somatic subscale (SSC) or psychiatric subscale (PSC). Prev. episodes: Number of previous depressive 
episodes. 
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For prediction from baseline, the most important features were HAMD item principle 

components, followed by SF-12 sum-scores and lastly absolute HAMD score as well 

as demographic and clinical history information. 

At week 1, the relative HAMD value from week 1 was the most important predictor by 

a large margin to the absolute HAMD score at week 1, the second most important 

predictor. After that, a group of variables including the HAMD item principle 

components for both timepoints, the absolute HAMD score from baseline and the SF-

12 scores had roughly comparable average feature importance scores. The clinical 

history and demographic variables showed the lowest feature importance. 

A similar pattern was found for weeks 2 and 3: All relative HAMD scores where the 

most important predictors by a large margin, with the latest absolute HAMD score being 

the next most important predictor. Next, the HAMD item principle components for all 

timepoints, the absolute HAMD score for all earlier timepoints and the SF-12 scores 

had roughly comparable average feature importance scores. Variables from clinical 

history and demographic data showed the lowest feature importance scores. 

Discussion 

Implications from the performance metrics 

Prediction accuracy increases over time for all clusters. For week 2, predictions for all 

clusters are significantly better than random and at week 3, predictions for all clusters 

are both significantly better than random and above the zero-information rate. This 

distinction is important, as the target variables are highly imbalanced with zero-

information rates between 69.4% and 87.6%. With labels that imbalanced, it is 

common to find results significantly above random, that have lower accuracy than the 

zero-information rate. This is easily explained when assuming a maximally imbalanced 

target variable with only 1 element that belongs to class A while all other elements 

belong to class B. The zero-information rate for this target is – depending on the cluster 

size – close to 100%. If all elements are assumed to be class B, this zero-information 

rate accuracy will be achieved. If the classes are randomly assigned based on their 

proportions, the likelihood of the single class A label to be correctly assigned is low. If 

class imbalance involves more than a single element but remains heavily skewed, this 

can lead to the phenomenon of predictions performing worse than the zero-information 

rate, while being better than random. Therefore, the zero-information rate is the better 

evaluator in case of the imbalanced class labels that were used. 



83 
 

The time course for individual clusters can be explained by their degree of separation 

from other clusters at the given time point. This can be approximated by the degree of 

separation of the cluster mean values as seen in Figure 22. Because the clustering 

algorithm from Experiment 1 takes all timepoints into account as individual variables, 

the degree of separation is cumulative over time. These interpretations are in line with 

the results from the current experiment. At baseline, no degree of separation exists 

between the cluster means and no results above random or above the zero-information 

rate. At week 1, only the Early Response (0) cluster has a large degree of separation 

from all other clusters. The Early Improvement clusters (1 and 3) have close to identical 

cluster means, as do the Non-Improvement (4) and Delayed Improvement (2) cluster. 

This implies a low degree of cluster separation at that point and subsequently, only the 

Early Response cluster can be predicted above random and zero-information rate at 

that timepoint. At week 2, some difference in cluster means exists between the two 

mentioned cluster pairs, leading to prediction results above random for all clusters and 

above the zero-information rate for all clusters except Delayed Improvement (2) 

cluster. At week 3, all cluster means show some degree of separation. The Early 

Improvement without response (3) and the Delayed Improvement (2) cluster do show 

a similar cluster mean for this timepoint, but these showed a difference in cluster 

means before then. All clusters therefore accumulated a sufficiently high degree of 

separation and as result, all clusters can be differentiated from each other with high 

accuracies above the zero-information rate. 

Looking at the other predictive metrics, it is noteworthy that the increase in accuracy 

over time is mainly driven by an increase in sensitivity. Specificity is consistently high 

for all clusters at all timepoints. This is an expected result for an imbalanced target 

variable, but it has important clinical implications. Since a test with high specificity has 

few false positives, positive predictive value is generally high as soon as moderate 

sensitivity is reached (depending on the zero-information rate). This makes a test ideal 

for identifying a population, for which some intervention is indicated, when the 

associated risk of not correctly identifying this population is low. This is the case for 

early clinical intervention in patients with depression. When a patient can be identified 

as belonging to a cluster for which a hypothetical intervention (e.g. early change of 

medication) is indicated, this patient would be (on hypothetical average) less likely to 

receive medication for too long. If this patient is not correctly identified early, he 

receives treatment as usual with a change of medication after 4 weeks, which has no 
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additional cost (when compared to all patients receiving treatment as usual). Since 

specificity of the cluster predictions from this experiment is high, these could – provided 

interventions can be shown to be effective in one or multiple of the clusters – be used 

as a test for identifying candidates for this intervention.  

Limitations of predictability 

The key result of this experiment was showing predictability of cluster assignment with 

high accuracies along all clusters. With predictive accuracies between 76.2% and 

91.5% at week 2 and consistently good specificity, it seems viable to base clinical 

interventions on the predicted cluster assignment, though some limitations must be 

considered. 

First, while the terminology of this thesis consistently used the term “prediction”, the 

current experiment did not in fact predict cluster assignment for any timepoints after 

baseline. This is because the cluster assignment is directly based on the relative 

HAMD scores, which are given to the classification algorithm as variables. It is easy to 

imagine the classification algorithm achieving (near) perfect accuracy with all 4 relative 

HAMD values (classification based on full information). When only some of the relative 

HAMD scores are available, the algorithm similarly classifies based on partial 

information. Additionally, to this classification based on partial information, the 

algorithm utilizes information form the other available variables to improve its 

classification result. This can be conceptualized as the algorithm predicting the likely 

relative HAMD scores for the remaining timepoints. While mathematically inaccurate, 

this conceptualization is useful for distinguishing the partial classification task from the 

actual prediction task as two different information sources for the purposes of this 

discussion. The feature importance scores suggest, the partial classification variables 

(relative HAMD sum scores) to be much more important, than the other predictive 

variables. This difference in importance increases over time, which is consistent with 

the ratio of available to predicted information increasing over time. If distinction 

between these two information sources is required for future research, a possible way 

to test this would be to test the prediction vs. classification based on (partial) random 

walks. 

Second, the accuracy in this experiment has a possibility of being overestimated due 

to data leakage. For performing variable selection on the results from Experiment 2, 

the entire dataset was used. Therefore, it is already known that the selected variables 
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have some predictive significance for the entire dataset. By now evaluating a prediction 

based on these variables via cross-validation might introduce some overestimation 

based on dataset noise captured in the variable selection. Since this noise would not 

generalize to external data, the accuracy estimated by cross-validation might be too 

high. This overestimation was considered acceptable due to several factors. First, 

since variable selection and final prediction were done on two related, but different 

target variables, the amount of captured noise was considered to likely be low. Second, 

the process of variable selection including theoretical justification of the variable 

choices instead of purely accuracy-derived reasoning further decreases the risk of 

capturing noise. And third, considering the two aforementioned reasons, any remaining 

overestimation of accuracy was considered less important than the possible decrease 

in result interpretability due to lower dataset size. This refers to the possibility of 

avoiding this data leak by performing Experiment 2 and variable selection on only part 

of the dataset, while estimating accuracy in Experiment 3 on the remaining dataset 

(hold-out validation). Alternatively, a (dual) nested cross-validation approach could be 

used, though that was cost-prohibitive due to multiplicative computational cost 

increase for the already (single) nested cross-validation during hyperparameter tuning 

(See page 61). 

A third limitation stems from the EMC dataset properties. Some patients without early 

improvement were randomized into the early medication change arm after 2 weeks, so 

not all patients received the same medication for the entire prediction period. And since 

the early medication change was randomized, it is inherently unpredictable from the 

datapoints before. This might somewhat prevent accurate prediction, especially for the 

Non-Improvement (4) and Delayed Improvement (2) clusters since these would be the 

clusters expected to have most of the randomized patients. This difficulty in predicting 

accurately would likely lead to an underestimation of prediction accuracy, which – 

considering the good prediction accuracy shown for later timepoints – is 

inconsequential for result interpretability. The good prediction accuracy also 

retroactively supports the decision from Experiment 1, that randomized patients were 

not excluded from analysis. It was assumed there, that a higher number of patients 

was more beneficial to overall prediction accuracy than the difficulties arising from the 

randomization. 
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Combined Discussion 

Deriving hypotheses 

The goal of this thesis was to create data-driven hypotheses to improve clinical 

decision making in the first 4 weeks of antidepressant treatment response (see page 

16). In order to generate these hypotheses, it was attempted to identify clusters of 

treatment response over time (Experiment 1) and to predict and/or partially predict 

these patterns of response (Experiments 2 and 3). 

Utility vs. mechanistic claim 

Keeping this overarching goal in mind, it is important to discuss what precisely was 

investigated by deriving the cluster structure in Experiment 1. The aim of that 

experiment was to stratify patients by their respective early treatment response 

patterns in order to identify possible information for clinical decision making. The 

cluster structure proposed here should be understood as a mathematically optimized 

way to capture the room of possible response patterns, with the mathematical validity 

of this capture being shown by the goodness of fit measures discussed in detail above 

(see page 46). The good generalization to the validation dataset should also not be 

taken in the sense of “both datasets having the same clusters” but as “the cluster 

structure from the training set is a valid way of describing the patterns found in the 

validation dataset”. If training and validation dataset were reversed, the cluster 

structure would likely look different and result in another valid description. 

Testing whether the early treatment response patterns are a valid description of the 

external validation data set is nevertheless a key step before investigating the cluster 

structure further, especially considering properties of the EMC dataset. Not all patients 

that were grouped into the patterns of early treatment response received the same 

medication for all 4 weeks. Some of the patients were randomized into the early 

medication change group after 2 weeks. These patients could be excluded from 

analysis, but since the patterns are shown to be a valid descriptor for an external 

dataset without this property, having a higher number of patients for later predictive 

analysis is likely to be beneficial for uncovering patterns. The author assumed that the 

benefits of the higher patient number would outweigh the negative effects from the 

randomized patients being included. This assumption was somewhat supported by the 

good generalization of the response patterns found in this experiment to the external 

validation dataset and further supported by the results from Experiment 3, where even 
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with inclusion of the randomized patients, good prediction accuracy for the cluster 

structure was achieved. 

After having shown mathematical validity and good generalization of the data set, the 

utility of the cluster structure can be investigated. This is different from attempts of 

stratifying patients into subgroups of patients with different underlying mechanisms. It 

is very possible that there are no “depression subgroups” that could be identified by a 

cluster structure on the level of symptom severity over time. In order to claim a possible 

mechanistic distinction between clusters, it would be necessary to test against the null 

hypothesis of there being no clusters and patients instead being described by a 

continuous distribution of some kind, which could be done by Bayesian modelling (see 

page 55). 

In order to show utility, this testing doesn’t have to be performed. This is because the 

“real” structure underlying the identified clusters is unimportant, if a benefit – for clinical 

decision making in this case – can be shown. This can be conceptualized by imagining 

multiple normal gaussian distributions arbitrarily split into clusters. The most extreme 

clusters in this case would show distinctions between patients, regardless of the 

underlying real distribution in between. They thus have utility, without any information 

about the real distribution being required. See Figure 31 for a visualization of this 

concept. 

 

Figure 31: Two overlapping normal distributions being arbitrarily split into 5 clusters along the x axis. 
Clusters 0, 1 and 4 show good separation of the two hypothetical patient groups without any information 
about the real underlying distributions. This is an example of a cluster structure with utility. Graph created 
with [54]. 
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Utility of the 5-cluster structure 

Keeping the distinction between a claim of utility and a mechanistical claim in mind, 

the utility of the 5-cluster structure proposed in Experiment 1 should be examined in 

detail. 

The between cluster differences in descriptive variables (see page 52) serve as a 

sanity check and first evidence of utility. As discussed in detail above, previously 

established predictors of response from clinical history as well as demographic data 

align with statistically significant differences between the clusters. While this result is 

unsurprising, given that the cluster structure can be interpreted in close relation to 

traditional response definitions (see page 46), establishing it was nonetheless 

important, because if non-correlation would have been shown, the feasibility of 

predicting cluster assignment early would have to undergo serious scrutiny. 

Additional evidence of utility stems from comparing the cluster structure proposed here 

with proposed structures from previous literature (see page 50). The Delayed 

Improvement Cluster (2) runs roughly parallel to the first weeks of classes 7 and 8 from 

Uher et al. (2011), both of which show good overall response in the later course of 

treatment [10]. This suggests a subset of patients assigned to the Delayed 

Improvement Cluster (2) benefiting from a longer course of treatment, even though the 

traditional 50% response criterium would not be met after 4 weeks for these patients. 

This directly translates into a testable clinical hypothesis (formulated below) as per the 

goal of this thesis. The clinical information for this is based on the cluster assignment 

at week 4 alone, without any prediction being necessary. This establishes the 

possibility of the cluster structure being useful independent of any prediction task. To 

be considered evidence of clinical utility, further research to test the hypothesis is 

required, but deriving a testable hypothesis like this at least proves utility for future 

research. 

In order to derive clinical utility, two possible sources of information were discussed in 

the thesis rationale (see page 16). An example of the first – being the early treatment 

response patterns over time – was discussed in the previous paragraph. For the 

second, treatment response needs to be predicted, instead of being classified ex post 

facto. This was done directly in Experiment 2, where treatment response as defined by 

traditional criteria was predicted based on clinical and demographic variables. This 

prediction was significantly better than random and performed better than the – 



89 
 

currently state of the art – early improvement criterium (see page 74 for detailed 

discussion of this). This shows – in addition to previous research on the subject (see 

page 11) – that predictive information that isn’t being used by the current 

antidepressant treatment strategy or a strategy based on the early improvement 

criterium is contained in these clinical variables. In Experiment 3, the most promising 

variables for containing this information from Experiment 2 were used to predict (or 

classify based on partial information) later assignment to the 5-cluster structure. The 

high classification accuracies in conjunction with the high specificity of this prediction 

task before the traditional week 4 timepoint (see page 82 and 84 for detailed discussion 

into the interpretability of these metrics) act as proof for the conceptual value of 

combining the response time course with the predictive information. 

With prediction of later cluster assignment being possible, the utility of the clusters can 

be derived from them benefitting from distinct clinical intervention. The most obvious 

hypothesis to derive from the cluster structure is then based on accelerating the 

decisions of current antidepressant treatment strategy forward for the most extreme 

group. The Non-Improvement (4) Cluster shows (on average) no treatment response 

after 4 weeks. If we can predict early, that a patient will belong to this cluster, it might 

be beneficial for this patient to receive an adapted course of treatment as early as 

possible. The utility of the cluster structure in this hypothesis over direct prediction of 

the traditional response criterium as in Experiment 2 stems from the focus on the 

extreme group of non-responders. This moves the decision boundary away from the 

edge cases of traditional response, which is directly associated with possible 

interventional cost. If traditional response is predicted, there will likely be edge-cases 

that would wrongly be predicted to be Non-Responders by week 4. These patients 

might then wrongly receive an early adaptation of treatment strategy when they might 

have benefitted from the longer treatment continuation that would’ve been chosen with 

traditional week 4 evaluation. When predicting the extreme group in the cluster 

structure, a patient wrongly predicted to be part of that group is still unlikely to show 

response by week 4 and thus would’ve received an adaptation of treatment strategy at 

that point anyway. This reduces the cost of the misclassification error. The cluster 

structure proposed here provides a data-derived, mathematically valid and 

generalizable (as shown in Experiment 1) way of defining a decision boundary for this 

task, which is likely preferable over arbitrarily adding a “margin of error” to the decision 

boundary of predicting traditional response. By combining this argument with the 
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predictability of the cluster structure established in Experiment 3 and discussed in the 

previous paragraph, the utility of the cluster structure is supported further. 

Formulating testable hypotheses 

In the previous subsection, two possible clinical hypotheses were derived in the 

discussion of cluster utility. In this subsection these will be expanded upon and be 

formulated as testable hypotheses. 

The first hypothesis was derived from the parallel response pattern of the Delayed 

Improvement (2) cluster to classes from Uher et al. (2011) which showed good 

treatment response in the later time course of treatment [10]. If the patients assigned 

to the Delayed Improvement (2) cluster have a comparatively large proportion of 

patients who show good antidepressant effects later in the treatment course, it might 

be beneficial to delay treatment evaluation for this group for longer than 4 weeks. This 

effect would likely be a trade-off between some patients receiving a delay of necessary 

treatment adaptation – meaning prolonged symptom severity and other patients not 

receiving unnecessary treatment adaptation which might lead to lower unwanted 

pharmacological effects and prevent ineffective treatment. Whether this trade-off is 

beneficial for a group on average will depend on the proportion of patients within this 

group. 

Before this proportion can be investigated, the definition of the group warrants closer 

attention. It is not necessary, that defining the group for possible treatment delay by 

the cluster structure proposed in this paper is ideal. While the cluster structure was 

utilized to identify this group, the cluster interpretation along the traditional 

improvement and response criteria could result in preferable group proportion for the 

aforementioned trade-off. Though the inverse statement could be true just as likely, 

given the currently available data. Therefore, both definitions should be investigated. 

In order to accurately assess the effects of a possible delay of treatment adaptation on 

the patient group, the overall proportion also isn’t the only factor. The time-duration of 

a possible delay would have strong effects of the cost-benefit analysis. It should 

therefore be established, which timepoint for evaluation would be ideal, given the 

proportions of the group.  

With taking these points into account, the first hypothesis is formulated: 
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Hypothesis 1: A subgroup of patients with MDD benefits on average from non-adapted 

antidepressant treatment continuation until a delayed timepoint (later than week 4). 

This subgroup is defined either by assignment to the Delayed Improvement (2) cluster 

as proposed by this thesis or is defined as all patients without early improvement (> 

20% improvement by week 2) who show no response (> 50% improvement by week 

4) but do show delayed improvement (> 20% improvement by week 4). An optimal 

timepoint for delayed treatment adaptation in case of non-response to non-adapted 

treatment can be established for this subgroup. 

The second hypothesis was derived from the predictability of the cluster structure. 

Since the data in this thesis suggests that assignment to the Non-Improvement (4) 

cluster can be predicted accurately for some patients before week 4, it seems obvious 

to accelerate treatment adaptation for these patients. 

In order to formulate this hypothesis in a well-defined way, it is again important to 

consider the definition of the patient group an intervention would apply to. As opposed 

to Hypothesis 1, an intervention according to this hypothesis doesn’t necessarily have 

to be done for all patients for which corresponding cluster assignment is predicted. 

Instead, individual certainty of the prediction can be considered, since the random 

forest classifiers used for the prediction in Experiment 3 allow for estimation of a degree 

of certainty (see page 59). By considering the individual prediction certainty for each 

patient, a cost-benefit analysis doesn’t necessarily have to be performed groupwise 

but can be performed per-patient. This naturally then provides excellent support not 

only for clinical, but also for shared decision making – taking into account the individual 

patients preferences for safety or fast treatment adaptation.  

If the algorithmic tools from this thesis are used for defining patients for possible early 

treatment adaptation, future investigation might be unnecessarily limited into these 

specific algorithmic tools. As discussed in detail above, the cluster structure proposed 

here might not necessarily be an ideal description of the underlying patient distribution 

(see page 86). Therefore, it might also not capture the optimal decision boundary for 

the prediction task (see page 88 for a detailed discussion of this). In addition, the 

prediction algorithm is just one possible algorithm limited to the set of clinical prediction 

variables available in the EMC dataset. This set of predictors is quite arbitrary and will 

most likely be incompatible with other research datasets or patient data from clinical 

practice. 
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Considering these points, the second hypothesis is formulated: 

Hypothesis 2: Patients for which later assignment to an extreme group of Non-

Improvers can be predicted with a high probability earlier than week 4 benefit from 

adaptation of treatment strategy at that earlier timepoint. Defining the extreme group 

as the Non-Improvement (4) cluster and using the prediction algorithm as proposed in 

this thesis is suitable and clinically beneficial over treatment strategy as usual. 

Future research strategy regarding the hypotheses 

The first steps for testing Hypothesis 1 should – in the authors opinion – be to describe 

the two possible patient group definitions regarding a possible benefit from non-

adopted treatment continuation. For this, existing datasets in which patients received 

non-adapted antidepressant treatment for episodes longer than 4 weeks can be used. 

The patient groups according to both definitions can be identified in that dataset and 

classified by whether these patients express later response or remission. In a first step, 

it could then be time-stratified, which of the remitting patients would be detectable by 

treatment evaluation according to the response criterium at differing later timepoints – 

which patients of the subgroup show response by week 5, which by week 6 and so on. 

These proportions of responders found at different possible evaluation timepoints can 

then be combined with knowledge about antidepressant response after treatment 

adaptation (or if possible, with treatment adaptation data on the same patients from 

the same dataset). This combination can then be formulated as a mathematical 

optimization model (the details of which depend on the dataset) of the groupwise 

average cost-benefit analysis explained in the previous subsection. If this analysis, that 

can theoretically be performed purely in silico with already existing datasets, supports 

Hypothesis 1 and thus a benefit of treatment delay, it would constitute a strong 

scientific (and ethical) background for clinical trials to directly investigate the 

hypothesis. At the same time, this analysis is required to establish the optimal 

parameters (subgroup definition and treatment delay timepoint) for such clinical trials 

to take place. By these arguments, this proposed future strategy can fulfil both the 

necessary and sufficient conditions in order to move from the realm of psychiatric data 

science into clinical decision making, in case Hypothesis 1 isn’t falsified before then. 

In regard to Hypothesis 2, the next research steps – in the authors opinion – should 

focus on validation and generalization of the prediction algorithm and the suitability of 

the cluster definition. Since any external datasets, with which this validation could be 
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undertaken, likely have some difference in the set of available predictive variables and 

since practical clinical data is likely to differ even more in that regard, a more robust 

prediction algorithm that can – at least – handle missing variables should be trained. 

This could be as easy as retraining the prediction algorithm from Experiment 3 with 

blinding (setting to a constant for all patients) different combinations of variables, but 

depending on the available future validation datasets, other generalizations or 

imputations might be appropriate. This generalization of the prediction algorithm  

should ideally not be trained on the validation dataset at all and if required only be 

trained on part of the dataset, so that leak-free evaluation of prediction accuracy can 

occur without the limitations in this thesis (see page 84 for details). At the same time 

as the evaluation of prediction accuracy, the conformity of the – theoretical – early 

treatment adaptation after prediction with traditional treatment evaluation after 4 weeks 

can be tested, which should lead to direct estimates of numbers needed to treat and 

harm by the proposed intervention. Depending on these results, longitudinal clinical 

research can then be considered as the next step. 

Additional utility of the developed algorithmic tools 

In addition to the data-driven hypotheses derived from the cluster structure and the 

corresponding prediction algorithm, these algorithmic tools might have additional use 

for future scientific research. 

Above, the difference of a clustering with mechanistic claim and a utility clustering as 

done in this thesis was discussed in detail (see page 86). What was not explored in 

more detail there, is that a utility-based clustering can be used for further investigation 

into mechanistic hypotheses without originally having this claim in mind. This is due to 

the effect illustrated in Figure 31, where an arbitrary clustering can lead to good 

separation between overlapping distributions without assumptions of the underlying 

distributions. The clustering proposed in this thesis for example provides a 

mathematically optimized and generalizable way, to separate the extreme groups of 

Non-Responders (4) and Early Responders (0). By calculation of the silhouette sample 

score, the algorithm also provides a way to select the most typical patients for these 

groups. This might be beneficial over just identifying the most extreme cases, since 

these might also be quite untypical. The associative comparison of these extreme 

groups – for example in the field of genetics or epigenetics – could then possibly 

uncover group-level associations, which might be masked while not investigating 

extreme groups or when selecting atypical patients for further investigation. In case 
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such research is undertaken, the results would need to be verified on patients not part 

of the initial extreme group selection, otherwise a mechanistic claim of the cluster 

structure would be assumed without this being justifiable. This example of extreme 

groups can obviously be generalized to the remaining cluster structure. If research is 

undertaken into the difference or commonalities between different trajectories of the 

early treatment response time-course, the cluster structure and its algorithm proposed 

here do provide a way of defining and separating groups of interest and assessing 

typicality of a given patient for that group. 

The predictive algorithm built in Experiment 2 was discussed in comparison to the early 

improvement criterium above (see page 74). The early improvement criterium can be 

seen as the current “state of the art” in early prediction of antidepressant response 

(see page 10). Showing, that the state of the art can be outperformed by a rather simple 

prediction algorithm without feature selection (which wasn’t done until Experiment 3, 

so all cross-validation accuracies in Experiment 2 are interpretable leak-free), is a good 

proof of concept for the usage of such prediction algorithms in clinical decision making 

in favour of the early improvement criterium. Before prediction algorithms like this can 

be deployed in clinical practice, they need to be designed robust to changing sets of 

predictive variables and missing values, which are both characteristics to be expected 

from practical clinical data. This likely requires future work in combining multiple 

research datasets and collecting an extensive pool of data from clinical practice. The 

success of the direct prediction algorithm developed in this thesis provides support for 

the possible value of such research, which is significant scientific utility as additional 

result of Experiment 2. 

The prediction algorithms from Experiments 2 and 3 have an additional use cases for 

science. Because they selected a set of informative clinical variables for prediction, 

any potentially predictive variables that are added to this set can be evaluated based 

on comparison of predictive performance. This is especially relevant in the field of 

biomarker search, since testing for increase of predictive performance over clinical 

variables alone can give a strong argument for validity for any biomarkers. If 

biomarkers do not increase predictive performance, the biomarker might of course still 

be interesting to better understand the pathophysiology of depression or as on 

objectifiable (forensic) marker of depression, but it will then unlikely be of use in clinical 

practice – the information contained within the biomarker can theoretically be gained 

just as well by clinical observation alone, which will usually be much cheaper. 
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Utilization of the predictive algorithms in this manner is currently already being planned 

for future research in the group for which this thesis was written, which emphasizes 

the potential value of the algorithms for this purpose. 

Conclusion 

MDD is disease with large importance both on the individual patient level and the 

healthcare system level. To improve treatment response rates and to mitigate the 

multitude of adverse effects, research into the most effective treatment strategies is 

paramount. In order to improve upon current treatment strategy, research into the 

underlying pathophysiology of depression, into novel pharmacological substances and 

into specialised psychotherapeutical interventions (and into many other areas) are 

being undertaken. But while these fields are beginning to benefit clinical practice, it is 

also important to make the best use of existing information and existing treatment 

strategies. 

The current antidepressant treatment strategy is inadequate in that regard. The goal 

of this thesis was to investigate sources of clinical information that were potentially 

underused and search for possible hypotheses regarding clinical decision making 

based on this information. And while hypotheses were found by utilizing the machine 

learning methodology in this thesis, this is only a small step in establishing better 

utilization of the existing clinical data. 

Continued investigation into the hypotheses from this thesis as well as into other 

potential sources of underused information has the potential to improve practical 

clinical decision making and consecutively diminish patient suffering and societal 

impact. And until the aforementioned other areas of research bring big leaps into 

practical treatment of depression, the small incremental improvements to be expected 

from this continued investigation are one of only a few potential ways of providing an 

immediate benefit to suffering patients. 
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Abstract 

Current antidepressant treatment strategies in MDD evaluate treatment response only 

after 4 weeks of treatment duration. The early improvement criterium (20% sum score 

improvement after 2 weeks), which is currently state of the art for earlier prediction of 

treatment response, wasn’t proven to be an effective trigger for clinical decision making 

so far. This thesis investigates potential sources of predictive information other than 

symptom severity sum scores, in order to find new hypotheses for future treatment 

strategies. In Experiment 1, early treatment response patterns over time are identified 

by clustering with the k-means-algorithm and several possible cluster-structures are 

evaluated for mathematical fit as well as clinical interpretability. A structure with 5 

clusters of early response is identified as a candidate for further investigation and 

hypothesis building. In Experiment 2, traditional clinical response and remission criteria 

are predicted using random forest classifiers with different sets of clinical variables at 

different timepoints as predictors. The classifiers are evaluated in comparison to the 

early improvement criterium which is being outperformed for some of the predictor sets 

at any timepoint. This shows that predictive information is contained in clinical variables 

other than the sum score. These variables are assessed and selected for further model 

building based on their relative feature importance scores. In Experiment 3, a random 

forest classifier based on the variables selected in Experiment 2 is trained to predict 

assignment to the clusters from Experiment 1, thereby combining the two sources of 

predictive information. The results show this prediction to be possible above the zero-

information rate for later timepoints. In the combined discussion, the results from these 

three Experiments are combined to formulate two new hypotheses for treatment 

strategy. The first hypothesis assumes that the “Delayed Improvement” cluster from 

Experiment 1 benefits (on average) from treatment continuation longer than 4 weeks 

and the second hypothesis assumes that patients that will likely – based on predictions 

like in Experiment 3 – be part of the “Non Improvement” cluster from Experiment 1 

benefit from early medication change. The role of the algorithms from this thesis for 

research into the hypotheses as well as their additional scientific use is discussed. 
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Zusammenfassung 

Aktuelle antidepressive Therapiestrategien für die Behandlung depressiver 

Erkrankungen evaluieren Therapieansprechen nach einer Therapiedauer von 4 

Wochen. Das sogenannte „early improvement“-Kriterium (20% Symptom-

Summenscore Verbesserung in 2 Wochen nach Therapiebeginn), der aktuelle Stand 

der Wissenschaft hinsichtlich früherer Verlaufsprädiktion, konnte nach bisheriger 

Datenlage bislang nicht als verlässliche klinische Entscheidungshilfe etabliert werden. 

Diese Dissertation untersucht potenzielle Quellen für neue prädiktive Information, um 

überprüfbare Hypothesen für zukünftige Therapiestrategien zu generieren. In 

Experiment 1 wurden typische Verlaufsmuster klinischen Ansprechens identifiziert, 

indem Therapieverläufe mit dem k-means-Algorithmus gruppiert werden. Mehrere 

mögliche Gruppierungen wurden hinsichtlich der Güte der mathematischen 

Beschreibung sowie ihrer klinischen Interpretierbarkeit untersucht und diskutiert. Eine 

Gruppierung in 5 typische Verlaufsmuster wurde als Kandidat für weitere 

Untersuchungen sowie Hypothesenbildung identifiziert. In Experiment 2 wurden 

random forest Klassifikationsalgorithmen eingesetzt, um Eintreten der traditionellen 

Response- und Remissionskriterien der Depression zu prädizieren. Hierzu wurden 

mehrere Gruppen von Variablen zu unterschiedlichen Zeitpunkten im 

Behandlungsverlauf als Prädiktoren eingesetzt. Die resultierenden Klassifikatoren 

werden mit dem „early improvement“ Kriterium verglichen, dabei erreichten erstere an 

jedem Zeitpunkt eine höhere Genauigkeit für wenigstens einen Teil der 

Prädiktorengruppen. Dies zeigte den prädiktiven Wert klinischer Variablen über die 

Summenscores hinaus. Die prädiktiven Variablen wurden anhand ihrer Bedeutung für 

die Klassifikation untersucht und für weitere Modellbildung ausgewählt. In Experiment 

3 wurde ein random forest Klassifikationsalgorithmus mit den in Experiment 2 

gewählten Prädiktionsvariablen trainiert, um Zugehörigkeit zu den Verlaufsgruppen 

aus Experiment 1 zu prädizieren. So wurden die beiden potenziellen Quellen für 

klinischen Informationsgewinn kombiniert. Es wurde gezeigt, dass diese Prädiktion im 

späteren Therapieverlauf über die Null-Informationsrate hinaus möglich ist. In der 

Diskussion wurden die Ergebnisse der drei Experimente zusammengefügt, um zwei 

neue Hypothesen zur antidepressiven Therapiestrategie abzuleiten. Die erste 

Hypothese nimmt an, dass Patienten aus der „Delayed Improvement“ Gruppe aus 

Experiment 1 im Durchschnitt von einer längeren antidepressiven Therapiedauer als 4 

Wochen profitieren. Die zweite Hypothese nimmt einen Nutzen eines frühen 
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Medikationswechsels bei Patienten an, bei denen eine spätere Zuordnung zur „Non 

Improvement“ Gruppe aus Experiment 1 mit hoher Wahrscheinlichkeit prädiziert wird 

(vergleichbar mit der Prädiktion in Experiment 3). Die Rolle der Algorithmen aus dieser 

Dissertation und deren Rolle für die zukünftige Hypothesenprüfung sowie zusätzliche 

wissenschaftliche Nutzung wurden diskutiert. 
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