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Introduction

Major depressive disorder (MDD) is a common disease affecting the general
population with a lifetime risk of approximately 16.2% (United States of America, 2003)
[1]to 17.1% (Germany, 2004) [2] in developed countries. The prevalence of depressive
disorders in 2015 was estimated to be 4.4% worldwide with the total number of people
living with depressive disorders estimated to be 322 million [3]. There is evidence of
the economic burden increasing in recent years with the total economic burden of
individuals with MDD in the United States of America totalling $210.5 billion in 2010
[4]. Globally, depressive disorders are ranked as the single largest contributor to non-
fatal health loss [3].

The large economic and public health statistics of depressive disorders are
complemented by powerful statistics for individual patient outcome. In people who died
by suicide in Mannitoba, Canada between 1995 and 2009, depression was significantly
more common than in matched controls with an adjusted odds ratio of 3.9 (95% CI:
3.35-4.52) [5]. An analysis of German health insurance data between 1987 and 1996
showed a significantly increased risk for permanent disability of patients that got
treated for depression in an outpatient or inpatient setting compared to controls, with
relative risks being 1.77 (95% CI: 1.56-2.00) and 3.47 (2,34-4,59) respectively.

These examples of statistics on outcome and disease burden underline the need for
effective treatment intervention. Current German treatment guidelines for unipolar
depression recommend psychotherapy or pharmacological therapy for moderate
symptom severity and a combination of both for severe symptoms [6, p. 61].
Pharmacological therapy commonly involves antidepressants as first-line therapy [7],
a substance class for which efficacy over placebo was shown for all examined
substances in a recent network-metanalysis involving over 116000 patients [8]. While
minor differences between substances exist [7, 8], overall response rates are
comparable between 50 to 75% [7, 6]. Patients that don’t show response (commonly
defined as reduction of symptom severity > 50% on a standardised scale [7]) should

receive a change in treatment strategy.

The timeframe for onset of antidepressant response is often within the first weeks of
treatment. A metanalysis including 17 trials with more than 14000 patients showed
early improvement (>20 % decrease in symptom severity after 2 weeks) to be a
sensitive predictor of later response [9]. The time until full antidepressant effect varies
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more widely between patients. A secondary analysis of the GENDEP study of 811
patients concluded, that “the eventual outcome of 12-week antidepressant treatment

can be accurately predicted only after 8 weeks” [10].

Guidelines try to balance these timeframes in order to avoid unnecessary prolongation
of ineffective treatments on one hand and not change the treatment strategy too often
and early on the other hand [7]. The current German guidelines recommend evaluation
and possible adaptation of treatment strategy after 4 weeks for adults [6, p. 78]. Studies
have investigated, whether patients who don’t show early improvement as per the
definition above benefit from an earlier change of pharmacological strategy, but overall
there is currently insufficient evidence to clearly show a benefit of early medication

change for patients without early improvement [7].

This thesis uses secondary analysis of the data from the “EMC trial” [11, 12] in order
to attempt a more detailed description and — where possible — prediction of early
improvement during an antidepressant treatment course and later progression to
response or remission. If there are identifiable and/or predictable clusters of patients
that share common response patterns, these clusters might allow a more fine-grained
decision-making process compared to the early improvement criterium. These
decisions could ultimately lead to clearer recommendations of which patients benefit

from early medication change or prolonged treatment continuation.

Background

Diagnosis of Major Depressive Disorder

According to the DSM-V, MDD is a mental disorder characterised by depressed mood
being present nearly every day for most of the day and loss of interest or pleasure.
Other symptoms include weight loss, insomnia or hypersomnia, psychomotor agitation
or retardation, fatigue, feelings of worthlessness or guilt, diminished ability to

concentrate or think, indecisiveness and thoughts about death or suicidal ideation [13].

The ICD-10 defines a major depressive episode by patients having more than four of
ten symptoms for a duration of at least two weeks. Three of the ten symptoms are main
symptoms, of which at least two must be present. The main symptoms are depressed
mood, loss of interest or pleasure and loss of energy. Other symptoms are reduced
concentration, reduced feeling of self-worth, feelings of guilt, negative outlook for the

future, suicidal ideation, disturbed sleep and diminished appetite [14].



Major depressive episodes can occur on their own or repeatedly over the course of a
patient’s life. Differential diagnostic includes, among others, bipolar disorder and
psychotic disorders [13, 14]. For bipolar disorder to be present, a single manic or
hypomanic episode in the history of a patient with a current depressive episode is
sufficient [13, 14]. For the purpose of this thesis, MDD, depression and unipolar

depression will be used synonymously.

Symptom severity questionnaires

Severity of depression is commonly measured via sum scores of individual symptoms
(see [15] for a critique of this practice). Commonly used scales include the clinician
rated Hamilton Depression Rating Scale (HDRS or HAMD) [16], the clinician rated
Montgomery Asberg Depression Rating Scale (MADRS) [17], the self-rated Becks
Depression Inventory (BDI) [18] and the clinician- or self-rated Inventory of depressive
Symptomatology (IDS-30) [19].

Patients are commonly classified as depressed or not depressed based on a cut-off
on these sum scales. Different degrees of severity are also commonly distinguished
by thresholds on the sum scales [15]. Remission is commonly defined as patients
falling below a cut-off on the sum-scales after they have been classified as depressed
before [20]. Response is commonly defined as a reduction of sum-scale value by 50%
or more (see [12] for an example). This 50% reduction will be synonymously referred

to as “traditional response criterium”, “response criterium” or simply “response” for the

purpose of this thesis.

Antidepressant treatment strategies

Antidepressants are an important part of treatment strategy for patients with MDD.
Current guidelines recommend pharmacological treatment as possible alternative for
MDD of medium and strong severity [6]. Antidepressants are being recommended as
first-line treatment if pharmacological treatment is chosen [7]. Efficacy of all substance
classes of antidepressant medication over placebo has been shown in a recent
network-metanalysis involving over 116000 patients [8]. While minor differences
between antidepressant substances exist [7, 8], overall response rates are comparable
between 50 to 75% [7, 6]. In practice, antidepressants are thus often chosen based on
their risk and side-effect profiles [6]. Clinical practice guides commonly recommend
starting with selective serotonin reuptake inhibitors (SSRI) like Escitalopram or

Sertraline, since they show a good risk-benefit profile [21]. Both clinical practice guides
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and current guidelines recommend starting antidepressants on a low starting dose and
escalating as fast as possible (based on individual patient acceptability and safety) to
a standard dose [6, 21]. An appropriate dosage level can further be asserted with

therapeutic drug monitoring [6, 21].

The timeframe after reaching a sufficient dosage until treatment evaluation is subject
to scientific discussion. Current German guidelines recommend continuation for a
duration of 4 weeks (6 weeks for elderly patients). In case of response (defined as a
decrease of 50% on a standardised symptom severity scale) the medication should be
continued further, until remission (defined as absence of depressive symptoms, e.g. a
HAMD score <= 7) is achieved. If there is no response at the evaluation timepoint,
guidelines recommend a switch in pharmacological strategy [6]. In practice, a switch
to a combination of SSRI and Mirtazapine or a switch to a SSNRI (e.g. Venlafaxine) is
common [21]. Alternative strategies include augmentation with lithium or second-
generation antipsychotics [6, 7]. It is unclear, whether an earlier evaluation using a
different metric is beneficial. Guidelines discuss the early improvement criterium as

possible alternative [7, 6, 21].

Early Improvement

As briefly explained in the introduction, patients with MDD often show an early onset
of treatment effect to antidepressants. Nierenberg et al. (2000) evaluated 182
outpatients with MDD who responded to fluoxetine treatment [22]. They defined onset
of response as a 30% decrease in HAMD score that persisted and led to a decrease
of HAMD score over 50% by week 8. With this design, 55.5%, 80.2% and 89.5%
(cumulatively) of responders had shown initial response by week 2, 4 or 6 respectively.
Szegedi et al. (2003) defined early improvement as 20% decrease of HAMD-Score
and showed that the majority of patients treated with mirtazapine (72.7% of 109
patients) or paroxetine (64.9% of 103 patients) showed early improvement within 2
weeks and that this early improvement was a sensitive predictor for later stable
response with sensitivity of 0.97/0.91 and specificity of 0.53/0.50 for mirtazapine and
paroxetine, respectively [23]. Further investigation into the time course of onset was
done by Katz et al. (2004) [24]. 70 patients were randomly assigned to receive 6 weeks
of paroxetine, desipramine or placebo. By week 2, there were significant between
group differences in symptoms of motor retardation, hostility and depression severity.
Most importantly for the topic of this thesis, “the global severity measure [...] detected
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differences between paroxetine responders and nonresponders [sic] as early as 1

week, and this difference was sustained at 2 weeks”.

These results were replicated in a meta-analysis by Szegedi et al. (2009) of over 6000
patients with MDD that received mirtazapine compared to active controls or placebo
[25]. Early improvement (> 20% reduction of HAMD-Score) predicted stable response
and stable remission with a sensitivity of 81%/87% respectively. Positive predictive
values and specificity were comparatively low, so the authors suggested non-
improvement after 2 weeks as possible trigger for making early treatment adaptations.
A more recent meta-analysis by Wagner et al. (2017) with over 14000 patients
assessed the predictive value of the early improvement criterium and found a
sensitivity of 85% (95%-ClI: 84.3 to 85.7) and specificity of 54% (95%-CI: 53.1 to 54.9)

9.

Investigations whether early non-improvement was a suitable trigger for an early
medication change (EMC) strategy were done and showed mixed results. Nakajima et
al. (2011) treated patients with 50 mg/d sertraline and randomized a total of 41 patients
who showed non-improvement after 2 weeks into a group that continued to receive
sertraline (n=20) and a group that was switched to paroxetine (n=21) [26]. The
switching group had significantly more responders, remitters as well as significantly
higher reduction in symptom severity. The larger “EMC trial” [12, 11], that is the main
data source for the secondary analysis in this thesis and explained in much more detail
later, found no significant differences in outcomes of 192 patients that were

randomized into an early medication change and a continuation group.

Predictors of response
In addition to the early improvement criterium, a multitude of demographic and clinical
markers have been investigated as to their predictive value for later response or

remission.

Many of these analyses were based on the Sequenced Treatment Alternatives to
Relieve Depression (STAR*D) trial [27], a large multicentre trial that included over 4000
patients. Rush et al. (2008) looked at a subset of 727 patients that did not show
remission or where intolerant to the trials first line treatment with citalopram and
analysed for predictors of response to 3 differing second line medications with
bupropion, sertraline or venlafaxine [28]. No significant differences for predicting one

medications efficacy over the others were found, but several overall predictors of
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efficacy could be identified: Remission was more likely for employed (vs. unemployed)
and married/cohabiting (vs. not cohabiting) patients. Additional predictors were
insurance status, previous suicide attempts, DSM-IV axis 1 comorbidity, anxious or
melancholic depression characteristics and overall symptom severity. As a more
focused analysis for older patients, Kozel et al. (2008) analysed 574 depressed
patients over age 55 from the STAR*D trial and compared patients with late onset of
MDD (first depressive episode after age 55) with those with earlier onset [29]. No
significant differences in remission-rates or time to remission between the onset
groups were found. Drago et Serretti (2011) compared the predictor results from the
STAR*D trial with an Italian sample of 236 patients [30]. Sociodemographic predictors
of remission “included the simultaneous presence of: higher education, higher income,
not living alone, and with a good employment status”. Nierenberg et al. (2000)
investigated predictors for the time to initial response in 182 patients with MDD that
responded to fluoxetine [22]. They found, “[n]either demographics (age and sex) nor
characteristics of depression (duration of current episode, number of episodes, age at
onset of first episode, and baseline score on Hamilton depression scale) predicted time
to initial response or time to response by Cox regression analysis for proportional
hazards”. Comparing responders and non-responders to fluoxetine, some significant
differences were found. Non-Responders were more likely to be unemployed and had

slightly higher baseline HAMD sum scores.

In addition to just correlating clinical and demographic data, Chekroud et al. (2016) [31]
built a full machine learning model to predict remission from treatment with
escitalopram using the STAR*D dataset and validated their model on an external
dataset from the COMED study (see [32] for details). They managed to achieve an
accuracy of 64.6% in the internal cross-validation, significantly over chance. In order
to build the model, the authors used all variables that were overlapping in the STAR*D
and the validation dataset and selected the top 25 predictors by elastic net
regularisation. An overview of the predictors is found in Figure 1. The top predictors
included symptom severity, specific clinical symptoms and demographic markers.
Accuracy in external validation was 59.6% (p = 0.043) for patients treated with
escitalopram, 59.7% (p=0.023) for patients treated with escitalopram and bupropion
and 51.4% (p=0.53) for patients treated with venlafaxine and mirtazapine, which
suggests predictive value being (partially) specific to the mechanism of antidepressant

action.
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Coefficient

Initial QIDS total severity 0-07793

Currently employed -0-06946
QIDS psychomotor agitation 0-06929
QIDS energy or fatiguability 0-05893
Black or African American 0-05559
Initial HAM-D depressive severity 0-05290
QIDS mood (sad) 0-04895
Years of education -0-04712

HAM-D loss of insight -0.04625
HAM-D somatic energy 0-03658
HAM-D somatic anxiety 0-03312

Did reminders of a traumatic event make you shake, 0-03034
break out into a sweat, or have a racing heart?

HAM-D delayed insomnia 0-02992

Have you ever witnessed a traumatic event such as rape, 0-02673
assault, someone dying in an accident, or any other
extremely upsetting event?

Did you try to avoid activities, places, or people that 0-02651
reminded you of a traumatic event?
White -0-02593

Did any of the following make you feel fearful, anxious, 0-02477
or nervous because you were afraid you'd have an
anxiety attack in the situation? Standing in long lines

Did any of the following make you feel fearful, anxious, 0-02424
or nervous because you were afraid you'd have an
anxiety attack in the situation? Driving or riding in a car

Have you been bothered by aches and pains in many 0-02249
different parts of your body?

HAM-D suicide 0-02175
Depressed mood most of the day, nearly every day 0-02095

Did you have attacks of anxiety that caused you to avoid ~ 0-01989
certain situations or to change your behaviour or normal

routine?

Ever taken sertraline 0-01851
Number of previous major depressive episodes 0-01832
QIDS sleep onset insomnia 0-01819

QID5=Quick Inventory of Depressive Symptomatology. HAM-D=Hamilton
Depression Rating Scale.

Figure 1. Top 25 predictors of remission from depression after escitalopram from elastic net
regularization in the STAR*D dataset. Graph taken from [31].
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Paul et al. (2019) [33] tried to predict classes of treatment response developed on the
MARS (see [34]) and GENDEP (see [35]) samples with a random forest algorithm. For
details of the target treatment response classes, see page 14. As prediction variables,
they used sociodemographic, psychiatric and family history, vital signs and baseline
laboratory data, life events, baseline psychopathology and personality items. As model
extensions, they added baseline HAMD single items and HAMD early partial response
after 2 weeks. The predictive models achieved “classification accuracies between 75
and 95.2%”. It should be noted though, that these accuracies reflect a prediction on
whether a given patient belongs to a single cluster or not and not a prediction of which
cluster a given patient belongs to, so much higher accuracies should be expected due
to the higher zero information rate (meaning the highest accuracy achievable by

predicting only one class).

Patterns of treatment response over time

In a secondary analysis of the GENDEP study (see [35] for details), Uher et al. (2001)
applied longitudinal latent class analysis of relative symptom severity scores to 811
depressed patients that received escitalopram or nortriptyline for 12 weeks [10]. The
number of groups was evaluated using the Bayesian information criterion, based on
which the authors selected a model of 9 trajectories (see Figure 2). A key result of this
analysis was that, while early improvements in depression severity are commonly
maintained and lead to response, there are classes that show response with a
significant delay. According to the authors, the “eventual outcome of 12-week-

antidepressant treatment can be accurately predicted only after 8 weeks”.
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Figure 1.The 9 Latent Trajectories Model®
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“Model estimates of class means are plotted, which for longitudinal latent class analysis are
equal to observed means of individuals belonging to each latent class. Latent trajectory classes
are ordered according to the relative severity of depression at study endpoint.

Figure 2: A 9 class longitudinal latent trajectories model of depressed patients from a secondary analysis
of the GENDEP study. Graph taken from [10].

Another attempt of identifying clusters of treatment response, Paul et al. (2019) [33]
created clusters from 809 patients of the MARS study (see [34] for details) and
validated these clusters based on a holdout sample from the MARS study (n=236) and
patients from the GENDEP (see [35]) study (n=826). Clusters were created on
logarithmically transformed weekly HAMD sum scores over up to 16 weeks with a
mixed model approach with the number of clusters being assessed by the integrated
completed likelihood criterium. With this approach, 7 treatment response classes were

identified. These are shown in Figure 3.
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Fig. 1 Resulting cluster shape characteristics and underlying natural logarithm-transformed HAM-D courses for the discovery sample and
both validation samples. X-axs: observation time in weeks; Y-axis: natural logarithm-transformed HAM-D values (purple: raw values, black cluster
specific median, pink: moc Il clusters are n the right. Clusters are sorted from C1 to &7
according to the cluster-spec slope. Absolute and relative cluster s in all samples are given within the subplots. Green borders represent the
limits in which 95% of HAM-D values of the discovery sample were contained. These were transferred to columns 2 and 3 to allow for comparison
with the validation samples. S slope, | intercept, In natural logarithm-transformed

Figure 3: A 7 class mixed model on logarithmic HAMD sum scores based on the MARS and validated
by a holdout set of MARS as well as the GENDEP study datasets. Graph and description taken from
[33].

Rationale
Due to the possible inter-individual variety in antidepressant treatment response,
finding an optimal timepoint for treatment evaluation is difficult. The approach of

evaluation after 4 weeks that is currently recommended by German guidelines [6] is

insufficient to be used for all patients, since some patients will show response much
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later in the treatment course [10]. At the same time, prolonging the treatment over a
longer amount of time would simultaneously prolong the duration of the disease for a
large part of patient population (25-50% [7, 6]), that doesn’t show response to (at least)

the first antidepressant substance.

Balancing the opposing needs for both these patient groups in an optimal way has an
additional difficulty in the operationalisation of response. By utilizing standardised sum
scores and their relative change as the only criterium, information about patients with
depression is reduced to the level of current symptom severity, while other clinical
characteristics are disregarded. This approach seems insufficient since previous data
shows the predictive value of both demographic and clinical history factors (See page
11).

Optimization for the overarching problem of individual treatment response evaluation
is attempted in several ways. One of those is to define separate evaluation timepoints
for specific patient groups. One example would be the evaluation after 6 weeks for
elderly patients that is recommended in current German guidelines [6]. Another, more
recent, attempt is to evaluate patients after 2 weeks based on the early improvement
criterium (see page 10). Since the early improvement criterium is quite sensitive,
patients without said early improvement have a low chance of showing response later
in the course of treatment. Thus, early medication change (EMC) might be beneficial
for this group of patients. As explained above, it is currently still unclear, whether this

approach is clinically preferable.

This thesis attempts to generate new insights for future approaches to the response
evaluation problem explained above by utilizing machine learning techniques
(explained in detail below) to investigate the first 4 weeks of treatment — the timeframe
until traditional response evaluation would be performed. The goal is to generate data
driven hypotheses that can be further evaluated for use in clinical decision making
while at the same time providing and evaluating the necessary algorithmic tools to

facilitate their future investigation.

For these hypotheses to provide a possible benefit over current clinical decision
making, they must either incorporate an intervention (e.g. early medication change)
before the traditional evaluation at week 4 or describe a subset of the population for
which treatment evaluation at week 4 would be too early. In order to find data-driven

hypotheses to answer these problems, two sources of information are combined. First,
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instead of looking at cut-offs at a certain timepoint, the early response to treatment is
investigated over time. This could enable a more fine-grained classification of early
treatment response and thus facilitate identification of population subsets for which
separate evaluation timepoints might be appropriate. Second, the predictive aspects
from patient history and symptom severity scores are combined with the time-course
analysis in order to predict later treatment outcome before the fact, where possible.
This could then enable early intervention for a subset of patients for whom accurate

prediction is possible and intervention is beneficial.

Common Methods

Data Source — The EMC Trial

The main data source for the analysis in this thesis is the “Randomised clinical trial
comparing early medication change (EMC) strategy with treatment as usual (TAU) in
patients with Major Depressive Disorder” or “EMC trial”. For further information on
topics in this chapter, please refer to published information on the study protocol [12].
The EMC trial's primary objective was to compare the effectiveness of an early
medication change regimen as compared to treatment as usual. Early medication
change (EMC) in the context of the EMC trial refers to switching the antidepressant
substance after 14 days in patients that did not show early improvement as opposed
to treatment as usual (TAU), which involves continuation of the same antidepressant

for a total of 28 days.

The EMC trial used a three-level randomization process that is summarized in Figure
4.

On level 1, all patients received Escitalopram (ESC) for 14 days. Patients showing
early improvement (decrease < 20% in HAMD17) between day 0 and day 14 continued
to receive Escitalopram for another 14 days and were taken to level 2. Patients not
showing improvement were randomized into an EMC group (EMC1) receiving
Venlafaxine (VEN) and a TAU group (TAU1) continuing Escitalopram for 14 days each.
The TAU group was rated as responders or non-responders based on the response
criterium (decrease < 50% in HAMD17) between day 0 and day 28. Responders
continued to receive Escitalopram, non-responders received Venlafaxine. The EMC
group was again split by the early improvement criterium between day 14 and day 28.
Improvers continued to receive Venlafaxine, non-improvers received venlafaxine and

lithium.
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Patients that showed early improvement in level 1 and received Escitalopram until day
28 were taken into level 2. Patients of this subgroup that showed no response (< 50%
HAMD17 decrease) were switched to Venlafaxine. After 14 days of Venlafaxine, the
early improvement criterium was evaluated for this timeframe (>20 % HAMD17
decrease between day 28 and day 42). Patients that did show early improvement in
this timeframe continued to receive venlafaxine for 14 more days. Patients without
early improvement were randomized into the EMC2 and TAU2 groups with EMC2
receiving venlafaxine with lithium augmentation and TAU2 receiving continued
venlafaxine for 14 days (until day 56). Patients that did show response on day 28

continued treatment with escitalopram and were taken to level 3.

In level 3, patients had shown a response to Escitalopram on day 28. If there was no
further improvement (<20% HAMD17 decrease) between day 28 and day 42, patients
were randomised to EMC3 or TAUS that both lasted 14 days. EMC3 was switched to
venlafaxine, TAU3 continued to receive Escitalopram. Patients that did show

improvement between day 28 and day 42 continued to receive Escitalopram.

For all levels, patients that showed remission (HAMD 17 absolute score <= 7) were
counted as improvers or responders, even if they did not meet the relative criterium.
Medication with Escitalopram and Venlafaxine was escalated to the highest tolerable
dose or the maximum dose (20 mg/d and 375 mg/d respectively). Lithium dose was

adjusted for a plasma level range of 0.6 to 0.8 mmol/l.
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Figure 4: Overview of treatment arms in the EMC trial. Graph taken from [12].

The primary endpoint of the trial was remission with a HAMD17 sum score <= 7 on day
56 which was compared between EMC1 and TAUL groups. Secondary endpoints were
response (HAMD17 decrease >= 50% compared to baseline), absolute change of
HAMD17 sum score, response and remission (sum score <= 11) in clinician and self-
rated IDS-30 questionnaires.

Inclusion criteria for the EMC trial were patients with moderate MDD (HAMD17 sum
score >= 18 points) with an age between 18 and 65 with the first depressive episode
occurring before age 60 that understood and signed the informed consent form. For all
exclusion criteria, refer to the study protocol [12], some key ones (in the author’s

opinion) are listed here for summary:

- Necessary intervention outside of protocol treatment because of suicide risk

- Lifetime diagnosis of dementia, schizophrenia, schizoaffective disorder or
bipolar disorder

- Current diagnosis of PTSD, OCD, anxiety disorder or eating disorder requiring

a non-protocol treatment
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- Current substance dependency requiring detoxification
- Depression secondary to organic disorder (e.g. multiple sclerosis)
- Clear history of non-response in the current depressive episode to any protocol

medication

Dataset

Patients in the EMC trial were assessed using a variety of psychometric and clinical
measurements. For an overview of these measurements, see Figure 5. To summarize
for the purpose of this thesis, at the screening timepoint (day -7 +/- 2), demographics,
medical and psychiatric history were taken. At the same timepoint, the Mini-
International Neuropsychiatric Interview (M.I.N.l.) [36] and the Structured Clinical
Interview for DSM-IV Axis Il (SCID-II) [37] were conducted. Symptom severity was
assessed weekly with the HAMD score and both the clinician and self-rated versions
of the IDS.

The dataset available for secondary analysis doesn’t include the complete
measurements taken in the EMC trial. The most notable difference for the purpose of
this thesis is the availability of itemized HAMD and IDS measurements only until week
2. For week 3 and after, only sum scores are available in the dataset. Since this thesis
focuses on the early timeframe of treatment up to week 4 (until traditional evaluation
would occur), only patients that have HAMD scores for at least 4 weeks are included

for analysis. Population characteristics for this subpopulation are described below.
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Figure 5: Overview of measurements from the EMC trial. Table and description taken from [12].

Population characteristics

For a description of the EMC trial dataset population, Table 1 and Table 2 give
information on sociodemographic and clinical data. For these reports, only patients
without missing HAMD-Scores until at least week 4 have been included, since these

constitute the dataset that is used for all further analysis in this thesis.
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Variable

Categorical Values

n (% of total)

Total n 766 (100%)
Gender Male 327 (42.7%)
Female 438 (57.3%)
Ethnic Group European 739 (96.6%)
Asian 7 (0.9%)
African 6 (0.8%)
Other 13 (1.7%)
Highest School | None 9 (1.2%)
Degree Lower secondary school 235 (30.7%)
Intermediate secondary school 237 (31.0%)
Advanced technical certificate 93 (12.2%)
Upper secondary school 185 (24.2%)
Other 6 (0.8%)
Highest  Vocational | None 102 (13.3%)
Degree Apprenticeship 446 (58.3%)

Master 20 (2.6%)
University, College of higher Education 163 (21.3%)
Vocational College 28 (3.7%)
Other 6 (0.8%)

Recurrent MDD

First Episode

259 (33.9%)

Previous Episodes

506 (66.1%)

Age of MDD Onset

Early Onset (before Age 21)

191 (25.0%)

Middle Onset (Ages 21 to 44)

416 (54.4%)

Late Onset (After Age 45)

157 (20.5%)

Table 1: Categorical demographic and clinical descriptors of the EMC dataset. Differences in absolute
sums are due to missing values, differences in percentage sums are due to rounding error. Only patients
without missing HAMD Scores until at least week 4 have been included.
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Variable Mean (95% CI)

Age 40.6 (95% CI 39.8 to 41.4)
Years of Education 13.9 (95% CI 13.7 t0 14.2)
Age at MDD onset 32.3 (95% CI 31.4 to 33.2)
Number of previous MDD episodes 2.63 (95% CI 2.31 to 2.96)
Length of current episode (days) 31.8 (95% CI 28.0 to 35.7)
HAMD score at Baseline 22.9 (95% CI 22.6 to 23.2)

Table 2: Continuous demographic and clinical descriptors of the EMC dataset. 95% CI: 95 % confidence
interval for the mean. Only patients without missing HAMD Scores until at least week 4 have been
included.

Software, source code and open source policy

Code for all analyses in this thesis was written with Python and Open Source Software
Libraries. A list of used packages with the corresponding software versions is given in
Table 3. The full source-code for all experiments in this thesis is available on request
through the author. This code or any part of it is free to use, on the condition, that this
thesis is cited as source. The source code has been written with great care, though the
author accepts no responsibility or liability for any damages caused by its use. The
datasets used for the analysis are proprietary and as such, cannot be shared without

prior approval. For scientific inquiries regarding the datasets, please contact the

author.

Python Software Package Version Number
Python [38] 3.6.6

pandas [39] 0.24.1

NumPy [40] 1.16.4
Matplotlib [41] 2.2.2
scikit-learn [42] 0.19.2

SciPy [43] 1.3.1

Table 3: Major software packages used in this thesis. Dependencies of the given software are not mentioned.

Structure of the experiments in this thesis

This thesis has a total of three Experiments. Experiments 1 and 2 stand mostly on their
own, while Experiment 3 combines key results from the previous two. While great care
has been taken to make this structure easily accessible on a first “top to bottom”
readthrough, the author suggests first consulting this thesis’ abstract (see page 96) as

well as the experimental summaries (see pages 25, 57 and 76 for experiments 1
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through 3 respectively) before continuing. This should help with a clearer

understanding of all experimental steps and findings in context.

Results from all three experiments are discussed separately after each experiment.
These results are then added to a combined discussion (see page 86). This combined
discussion should not be read separately, since aspects from all three individual
experimental discussions (see pages 46, 71 and 82 for experiments 1 through 3
respectively) have been presumed as known for its purpose.

Experiment 1 — Clustering early treatment response

Summary of Experiment 1

In Experiment 1, the k-means-algorithm was used in order to identify possible clusters
of treatment response until week 4. The time course of response was operationalized
by HAMD-Scores relative to baseline. Different numbers of clusters (k) were calculated
and goodness of fit data and clinical interpretation were discussed in order to identify
candidates for further investigation. For k=5, the goodness of fit data showed decent
fit and the cluster structure (See Figure 22) was suggestive of a clinical interpretation
based around the traditional early improvement (20% decrease) and response criteria

(50% decrease).

The cluster structure suggests that patients initially fall into the categories of “Early
Improvement”, “Early Non-Improvement” and “Early Response”. Patients that show
“Early Non-Improvement” can be consecutively differentiated in patients showing
“Delayed Improvement” or “Non-Improvement”. Patients showing “Early Improvement”
can be consecutively separated into patients with “Early Improvement with Response”
and “Early Improvement without Response”.

Aim

The time course of early treatment response is a possible source of benefits for clinical
decision making (See page 16). Limited prediction being possible with the early
improvement criterium shows predictive (regarding the outcome of the entire course of
treatment) information isn’t just contained in the level of symptom severity at week 4
but also the levels at previous timesteps. The underlying aim for this experiment is to
find latent information useful for prediction by classifying the early timeframe of
treatment in more detail. In order to facilitate this, patients with similar patterns of

symptom severity over time will be grouped together into sets of distinct clusters. These
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cluster structures will then be evaluated twofold. Firstly, it will be investigated whether
they are a mathematically valid (good measures of fithess) and generalizable (to an
external dataset) description of the possible patterns of early treatment response. In
case this validity is shown, the usefulness of the cluster structure is further investigated
in a second step. For this, clinical interpretability is one of the key characteristics that
should be discussed in detail, since possible interventions will have to be derived

based on clinical interpretations of the cluster structure.

Methods

Design Summary

The relative HAMD sum scores for the first 4 weeks for patients from the EMC dataset
are being grouped into clusters by using the k-means clustering algorithm. The fit for a
given number of clusters k is assessed by the elbow-method and the silhouette score.
The algorithm and fithess measures are explained below. The trained k-means-
clustering algorithm is then used to classify an external dataset, which is described in
more detail below, for validation. The fithess measures are repeated on the validation

set to check for generalization of the algorithm.

K-Means-Algorithm

The k-means-algorithm is a cluster analysis technique that fits a set of observations to
a given number of clusters (k). Since the target clusters aren’t known to begin with, this
IS an unsupervised machine learning technique. As starting condition, the algorithm
takes k-observations from the set of all observations. This choice is either made at
random or following certain rules (e.g. maximal distance between observations). All
remaining observations are then assigned to the closest of the initial k observations as
measured by an arbitrary distance-measure, most commonly Euclidian distance. This
assignment defines k clusters with each observation belonging to one cluster. In the
iteration part of the algorithm, the mean value of all observations belonging to a single
cluster is calculated. This step is repeated for all k clusters, resulting in k cluster mean
values. After this step, all observations are assigned to the cluster mean closest to
them, again resulting in k clusters. The iteration part is repeated, until the cluster
assignments no longer change during iterations. Using the trained algorithm to classify
new data can be done by assigning a new datapoint to the closest cluster mean without
updating the mean values. [44] This gives the algorithm several properties worthy of

pointing out. Since all observations are assigned to a cluster, there are no “outlier”
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observations, that will not be assigned to a cluster. The algorithm is also dependent on
the starting condition: a different set of initial observations will possibly result in a
different result of clusters. This is especially relevant, if the starting condition isn’t

dependent on a set of rules, but a random process instead.

For this specific experiment, the algorithm was set up to start with a random starting
condition. The random number generator was set up with a “seed” to make results
repeatable. A “seed” is a condition for the random number generator that ensures all
(pseudo-)random numbers being the same on every run of the code. The distance
measure chosen was the Euclidian distance, which is considered the default. Since no
properties of the data analysed here indicate the need for a non-default distance
measure and conformity to the default leads to better comparability, this choice is — in

the authors opinion — justified.

Number of clusters and measurements of fithess

The number of clusters (k) is an algorithmic parameter that is predetermined in the k-
means-algorithm, but there currently is no theoretical justification for imposing a given
number of clusters. Therefore, the clustering process was repeated for any number of
clusters between 2 and 10. The maximum of 10 clusters was arbitrarily imposed so
clusters could remain useful to clinical interpretation. Interpretability suffers with
increased number of clusters, mostly because the average number of patients per
cluster decreases. At the same time, more clusters lead to increasingly smaller
differences between the clusters, that are then obviously less practically and/or
scientifically relevant. By repeating the calculations for different cluster numbers, the
need arises to find one or more numbers that have the best “fit” to the data. In this
experiment, well established methods for determining fithess were used, namely the
so-called elbow method and the silhouette score.

The elbow method relies on the fact, that a higher number of clusters (k) always leads
to a higher degree of inter-observation-variance explained by the clusters. As obvious
extremes, only 1 cluster explains 0% of variance and a single cluster for each
observation explains 100% of variance. The graph of the explained variance
dependent on the number of clusters can then be used to find the fitting number of

clusters by looking for a flattening of the graph (the so called “elbow”) [45].

The silhouette score is commonly used to determine an appropriate k. This method

scores every observation for its fit to the cluster it was assigned to. This is done by
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calculating the average distance between the observation and all other observations
of the cluster it was assigned to and subtracting the average distance from all
observations of the closest cluster it was not assigned to (the “second best” choice for
the cluster) and normalizing the score to a measure from -1 (maximum outlier) to 1
(perfect fit) [46]. Graphing these individual scores in a sorted and cluster-grouped line
graph is the so called “silhouette plot”. This plot can be used to visually identify cluster
fitness by visible cues such as similar cluster sizes, small outlier (negative) silhouettes
as well as smooth and/or convex silhouette shape. Since these cues can be used to
assess cluster fitness independent of finding an appropriate k, these are also
appropriate visual interpretation aids for use in validation datasets. Calculating the
average of all observation scores and graphing it dependent on the number of clusters
gives the information on an appropriate cluster number. Both the global maximum as
well as outliers from an interpolated graph should be investigated closer. In order to
find the latter, for each k between 3 and 9 a linear interpolation of the silhouette scores
from k-1 and k+1 is calculated. The differences from the observed values are plotted
as residuals and local maxima on this residual graph are candidates for further

inspection.

Both the elbow method and the silhouette method are subject to researcher’s
interpretation, especially in cases where differences between values of k aren’t
pronounced. Dependent on both the goodness of fit measures and theoretical context,
multiple k might be chosen as appropriate. Detailed reasoning for candidate k values

is therefore given in the discussion section for this experiment.

Relative vs. Absolute HAMD score and outlier handling

By choosing the relative HAMD score as opposed to the absolute values, the
dimensionality of the clustering problem can be reduced from 5 to 4 (since all baseline
observations are equal to the value 1.0 now) and clusters are easier to interpret
clinically. This is especially true regarding both the early improvement criterium and
the response measure, that are defined relatively as a decrease of 20% or 50%

compared to baseline respectively.

The use of the relative score creates an opportunity for outliers, since there is no value
range like there is for the absolute score. These outliers might be assigned to clusters
with only a single observation, which can lead to significant problems in choosing an

appropriate number of clusters. For that reason, observations that are assigned single
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item clusters at any experimental stage are manually identified and excluded before all

calculations are repeated. Other handling of outliers is not applied.

Missing value handling

The k-means-algorithm as described above can’t natively handle missing values. Thus,
a decision on how to handle missing values needs to be made. Any interpolation of
missing values (e.g. linear interpolation) might directly influence the aim of this
experiment, the cluster-structure. For this reason, all patients with missing values in

the variables used for clustering were excluded from analysis.

Cluster numeration

In order to make cluster numbers between different k easier to interpret and reference,
cluster numbers are reassigned after the calculations. The reassignment is based on
the mean relative HAMD score after 4 weeks with cluster 0 having the lowest and
cluster k the highest mean score after reassignment. This step doesn’t change any
properties of the clusters or the resulting calculations and is only described for

completeness.

Validation data

The k-means classifiers for different k are trained on the EMC dataset as described
above. As additional test to the generalization of the classifiers, previously unseen
patients from a validation dataset are assigned to clusters and silhouette scores within
the validation dataset are calculated as described above. In case of poor generalization
an increase in observations with negative silhouette scores and a decrease of average
silhouette scores can be expected. Additionally, relative cluster sizes changing widely

between training and validation are a sign of poor generalization.

For validation, the “Study 831” dataset from the Psychiatric Hospital, University of
Zurich was kindly provided by Prof. Dr. Stassen. This dataset has a total of 1645
patients with HAMD scores over a period of 35 days. HAMD measurements were taken
ondays 0, 3, 7, 10, 14, 21, 28 and 35. In many cases, there were differences between
theoretical and real measurement timing. These differences were provided with the
dataset. Further details about the study protocol(s) were not provided because they

are inconsequential for the purpose of validation in this context.

In order to use the Study 831 dataset for validation purposes, measurements from days

0, 7, 14, 21 and 28 were selected as variables. We allowed for differences of
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measurement timing of +/- 2 days resulting in timings being the exact same as for the
EMC dataset. All patients with timings differing further and patients with missing values

in the selected variables were excluded leaving a total n of 1028 for validation.

Descriptive Reporting

Since the clusters are generated from only the relative HAMD scores, there can be
between-cluster differences in sociodemographic and clinical variables. Therefore,
reports on the descriptive variables (see Table 1 and Table 2) are generated for all
groups of clusters. For categorical variables, the statistical significance of the group
differences under the null hypothesis of uniform distribution is estimated with the Chi-
Squared-Test. For continuous variables, significance is estimated with a one-way
ANOVA.

Results

Number of observations

The total n after eliminating patients with missing values is 766. One additional patient
was excluded as outlier because he was classified into a single-element-cluster, so the
total n for final calculations was 765. The mean values for the relative HAMD-Scores
were approximately 0.68 after 1 week, 0.60 after 2 weeks, 0.57 after 3 weeks and 0.53

after 4 weeks.

Elbow method for estimation of cluster number

The percentage of variance that is explained for the clusters resulting from k-means-
clustering for a given number of clusters (k) was calculated for k between 2 and 10 as
explained in the method section. The resulting graph is shown Figure 6. The graph
doesn’t show a single obvious flattening, so the elbow method is ambiguous. Possible
candidates for k given by this method are 3, 4, and 5. This is concluded from the graph

showing visible flattening after each of those numbers. After 5 clusters, the explained
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variance grows almost linear, so no candidates are found in this range.

Variance explained by cluster number
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Figure 6: Variance explained by the clusters resulting from k-means-clustering for a given number of
clusters k

Average silhouette score for estimation of cluster number

The average silhouette scores for the clusters resulting from k-means-clustering for a
given number of clusters (k) was calculated for k between 2 and 10 as explained in the
method section. The resulting graph is shown in Figure 7. The graph shows a global
maximum at 2 clusters with a mostly monotonous decrease shaped roughly like an
exponential decay. There is a positive outlier from the exponential decay shape of the
graph at 5 clusters. The silhouette score at this outlier doesn’t quite reach the amount

of the score at 4 clusters, so it can’t be considered a local maximum.
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Silhouette Score by cluster number
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Figure 7: Average silhouette score of the clusters resulting from k-means-clustering for a given number
of clusters k

Residuals from linear interpolations of scores for the 2 neighbouring k were calculated
for k between 3 and 9 as described in the method section. The resulting graph is shown
in Figure 8. Residuals are positive (meaning the silhouette score is better than
expected from the interpolation) at 5 and 8 clusters with 5 being the global maximum
and the residual at 8 being close to 0. This mathematically supports the visual

identification of k=5 as positive outlier.
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Overall, the average silhouette score method results in 2 and 5 as candidates for k; 2

Interpelation residuals by cluster number
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Figure 8: Residuals of observed average silhouette score of the clusters resulting from k-means-clustering for a
given number of clusters k compared to interpolation. For calculation of the residuals, a linear interpolation is
calculated between the scores of the neighbouring cluster numbers k-1 and k+1.

from being the global maximum and 5 for being both a visual outlier and the global

maximum of the residuals.

Clustering results for selected k

The elbow method and the average silhouette score method combined give 2, 3, 4,
and 5 as candidates for the number of clusters (k) with 5 being the only candidate
resulting from both methods. Graphs and reports for all k between 2 and 10 were
created, but for sake of brevity only results for the candidate k and 6 as example of a
non-candidate k are reported and discussed. The additional graphs and reports can

be found in the appendix.

For 2 clusters (k=2), the average HAMD scores are shown in Figure 9. Both clusters
show a monotonous decrease of average relative HAMD score with cluster O

decreasing to approximately 0.32 and cluster 1 decreasing to approximately 0.77.

The corresponding silhouette plot is shown in Figure 10. There are 407 (53.2%)
patients assigned to cluster 0 and 358 (46.8%) patients assigned to cluster 1. 7 (0.9%)

of patients have a negative silhouette score, all of them in cluster 1 (1.9% of cluster 1).
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K-Means Clustering of relative HAMD Score over time
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Figure 9: Average HAMD score by cluster resulting from k-means-clustering for 2 clusters. Error-Bars
indicate the 95% confidence interval for the mean value.

Silhouette Plot for K-Means Clustering
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Figure 10: Silhouette plots for clusters resulting from k-means-clustering for 2 clusters. The average
silhouette score is shown as a vertical line.
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For 3 clusters (k=3), the average HAMD scores are shown in Figure 11. Both clusters
0 and 1 show a monotonous decrease of average relative HAMD score with cluster O
decreasing to approximately 0.21 and cluster 1 decreasing to approximately 0.52.
Cluster 2 shows a small decrease to approximately 0.89 in week 1 and stays at the

same level after that.

The corresponding silhouette plot is shown in Figure 12. There are 210 (27.5%)
patients assigned to cluster 0, 363 (47.5%) patients assigned to cluster 1 and 192
(25.1%) patients assigned to cluster 2. 14 (1.8%) of patients have a negative silhouette

score, 8 of them in cluster 1 (2.2% of cluster 1) and 6 in cluster 2 (3.1% of cluster 2).
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K-Means Clustering of relative HAMD Score over time
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Figure 11: Average HAMD score by cluster resulting from k-means-clustering for 3 clusters. Error-Bars
indicate the 95% confidence interval for the mean value.
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Figure 12: Silhouette plots for clusters resulting from k-means-clustering for 3 clusters. The average
silhouette score is shown as a vertical line.
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For 4 clusters (k=4), the average HAMD scores are shown in Figure 13. Clusters 0, 1
and 2 show a monotonous decrease of average relative HAMD score with cluster O
decreasing to approximately 0.18, cluster 1 decreasing to approximately 0.42 and
cluster 2 decreasing to approximately 0.67. Cluster 3 shows a small decrease to
approximately 0.94 in week 1 and monotonously increases to approximately 1.03 until

week 4.

The corresponding silhouette plot is shown in Figure 14. There are 155 (20.2%)
patients assigned to cluster 0, 272 (35.6%) patients assigned to cluster 1, 237 (31.0%)
patients assigned to cluster 2 and 101 (13.2%) patients assigned to cluster 3. 21 (2.7%)
of patients have a negative silhouette score, 9 of them in cluster 1 (3.3% of cluster 1),
3 in cluster 2 (1.3% of cluster 2) and 9 in cluster 3 (8.9% of cluster 3).
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Figure 13: Average HAMD score by cluster resulting from k-means-clustering for 4 clusters. Error-Bars
indicate the 95% confidence interval for the mean value
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Figure 14: Silhouette plots for clusters resulting from k-means-clustering for 4 clusters. The average
silhouette score is shown as a vertical line.
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For 5 clusters (k=5), the average HAMD scores are shown in Figure 15. Cluster 0
shows a monotonous decrease to an average relative HAMD score of approximately
0.18 in week 4. Clusters 1 and 3 both show a similar initial decrease in week 1 (0.65
and 0.64 respectively) and diverge after that with cluster 1 decreasing monotonously
to 0.39 and cluster 3 increasing to 0.75. A similar pattern is shown by clusters 2 and 4.
Both show a similar initial decrease in week 1 (0.90 and 0.95 respectively) with cluster

2 decreasing monotonously to 0.57 and cluster 4 increasing monotonously to 1.03.

The corresponding silhouette plot is shown in Figure 16. There are 152 (19.9%)
patients assigned to cluster 0, 235 (30.7%) patients assigned to cluster 1, 128 (16.7%)
patients assigned to cluster 2, 155 (20.3%) patients assigned to cluster 3 and 95
(12.4%) patients assigned to cluster 4. 17 (2.2%) of patients have a negative silhouette
score, 4 of them in cluster 1 (1.7% of cluster 1), 4 in cluster 2 (3.1% of cluster 2) and 9

in cluster 4 (9.5% of cluster 4).
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Figure 15: Average HAMD score by cluster resulting from k-means-clustering for 5 clusters. Error-Bars
indicate the 95% confidence interval for the mean value
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Figure 16: Silhouette plots for clusters resulting from k-means-clustering for 5 clusters. The average
silhouette score is shown as a vertical line.
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For 6 clusters (k=6), the average HAMD scores are shown in. Clusters 0, 1 and 3 show
a monotonous decrease to an average relative HAMD score of approximately 0.15,
0.28 and 0.54 respectively in week 4. Cluster 2 shows a decrease to approximately
0.58 in week 1 and roughly stays at that level. Cluster 4 shows a decrease to
approximately 0.72 in week 1 and an increase to 0.81 by week 4. Cluster 5 stays

roughly at the initial level with a final average relative HAMD score of 1.04 in week 4.

The corresponding silhouette plot is shown in. There are 101 (13.2%) patients
assigned to cluster 0, 159 (20.8%) patients assigned to cluster 1, 173 (22.6%) patients
assigned to cluster 2, 126 (16.5%) patients assigned to cluster 3, 120 (15.7%) patients
assigned to cluster 4 and 86 (11.2%) patients assigned to cluster 5. 36 (4.7%) of
patients have a negative silhouette score, 9 of them in cluster 1 (5.7% of cluster 1), 1
in cluster 2 (0.6% of cluster 2), 16 in cluster 3 (12.7% of cluster 3) and 10 in cluster 5
(11.6% of cluster 5).
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Figure 17: Average HAMD score by cluster resulting from k-means-clustering for 6 clusters. Error-Bars
indicate the 95% confidence interval for the mean value
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Figure 18: Silhouette plots for clusters resulting from k-means-clustering for 6 clusters. The average
silhouette score is shown as a vertical line.
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A summary of cluster sizes and observations with negative silhouette scores for k

between 2 and 6 is also reported in Table 4 and Table 5 respectively.

N (%) Cluster 0 | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5

k=2 407 358 X X X X
(53.2%) | (46.8%)

k=3 210 363 192 X X X
(27.5%) | (47.5%) | (25.0%)

k=4 155 272 237 101 X X
(20.2%) | (35.6%) | (31.0%) | (13.2%)

k=5 152 235 128 155 95 X
(19.9%) | (30.7%) | (16.7%) |(20.3%) | (12.4%)

k=6 101 159 173 126 120 86
(13.2%) | (20.8%) | (22.6%) | (16.5%) | (15.7%) | (11.2%)

Table 4: Cluster size structure for clusters resulting from k-means-clustering for a given number of
clusters k. Sums differing from 100% are due to rounding error.

Neg. Cluster | Cluster | Cluster | Cluster | Cluster | Cluster | Total

Silh. 0 1 2 3 4 5

Score

(%)

k=2 0(0%) |7 (2.0%) | X X X X 7 (0.9%)

k=3 0(0%) |8 (2.2%) | 6 (3.1%) | X X X 14
(1.8%)

k=4 0 (0%) |9 (3.3%) | 3(1.3%) | 9(8.9%) | X X 21
(2.7%)

k=5 0(0%) |4 (1.7%) |4 (3.1%) | 0 (0.0%) | 9 (9.4%) | X 17
(2.2%)

k=6 0(0%) |9(5.7%) | 1(0.6%) | 16 0 (0.0%) | 10 36

(12.7%) (11.6%) | (4.7%)

Table 5: Patients with negative silhouette scores for clusters resulting from k-means-clustering for a
given number of clusters k. Percentages for the individual clusters are relative to n for that cluster,
percentages for total are relative to total n.

Validation results

Variance explained and average silhouette scores were calculated in the validation

dataset with trained algorithms for k between 2 and 10 as described in the methods

section. An overview of results is shown in Figure 19. Both validation variance
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explained, and silhouette score show high similarity to the corresponding training
graphs. The validation silhouette score for all candidate k (2, 3, 4 and 5) is higher than
the corresponding training score. The validation variance explained is smaller than its

training counterpart for k=2 and higher for the other candidate k.

—e— Silhouette Score
Walidation Silh. Sc.
+— Variance Explained
Walidation Var. Exp.
Clustering performance by cluster number

|~
2

Cluster Number

Figure 19: Variance explained and Silhouette score for clusters resulting from k-means-clustering for a
given number of clusters k. Metrics are shown for training and validation dataset in comparison.

Structure of cluster sizes and observations with negative silhouette scores are reported
in Table 6 and Table 7 respectively. For sake of brevity, only candidate k and 6 as
example of a non-candidate k are reported. For sake of additional brevity, graphs of
mean relative HAMD scores and silhouette plots aren’t shown here. As far as they are
referenced in the discussion section, they are shown there. Full graphs can be found

in the supplementary material.
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N (%) Cluster 0 | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5

k=2 628 400 X X X X
(61.1%) (38.9%)

k=3 356 448 224 X X X
(34.6%) (43.6%) (21.8%)

k=4 255 400 249 124 X X
(24.8%) (38.9%) (24.2%) (12.1%)

k=5 236 368 203 101 120 X
(23.0%) (35.8%) (19.7%) (9.8%) (11.7%)

k=6 148 305 147 213 101 114
(14.4%) (29.7%) (14.3%) (20.7%) (9.8%) (11.1%)

Table 6: Cluster size structure for clusters resulting from applying trained k-means-clustering for a given
number of clusters k to the validation dataset. Sums differing from 100% are due to rounding error.

Neg. Cluster | Cluster | Cluster | Cluster | Cluster | Cluster | Total

Silh. 0 1 2 3 4 5

Score

(%)

k=2 0(0%) |19 X X X X 19
(4.7%) (1.8%)

k=3 1 (0.3%) | 3 (0.7%) | 12 X X X 16

(5.4%) (1.6%)

k=4 1 (0.4%) | 17 10 3 (2.4%) | X X 31
(4.3%) | (4.0%) (3.0%)

k=5 1 (0.4%) | 21 19 1(1.0%) | 6 (5%) | X 48
(5.7%) | (9.4%) (4.7%)

k=6 2 (1.4%) | 57 0(0%) |39 4 (4.0%) | 8 (7.0%) | 110
(18.7%) (18.3%) (10.7%)

Table 7: Patients with negative silhouette scores for clusters resulting from applying trained k-means-
clustering for a given number of clusters k to the validation dataset. Percentages for the individual
clusters are relative to n for that cluster, percentages for total are relative to total n.

Descriptive Reports

As described in the method section, reports of between-cluster differences (and their
statistical significance) in sociodemographic and clinical variables were created for all
k between 2 and 10. For reasons of brevity, these reports are not shown here. As far

as they are referenced in the discussion section, they are shown there.
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Discussion

Selecting the number of clusters

Different candidates for a given number of clusters (k) have been identified as
described in the results section for experiment 1. The elbow method gave 3, 4 and 5
as possible candidates and the average silhouette score gave 2 as candidate from the
global maximum and 5 as candidate for being a visual outlier and the maximum of the

residuals from interpolation.

In order to generate hypotheses for clinical decision making (as explained on page 16)
based on cluster structure, choosing one or more mathematically valid, generalizable
and clinically interpretable cluster structures is key (See page 25). Mathematical
validity was operationalized with the goodness of fit data, generalization was assessed
with the external validation dataset and clinical interpretability will be discussed in

combination with the other factors in this subsection.

The candidates for k are discussed individually, in comparison to other candidates and

compared to k=6 as example for a non-candidate below.

k=2 is strongly supported by the global maximum for the silhouette score. The low
percentage of patients with a negative silhouette score in both training (0.9%) and
validation (1.8%) datasets adds further support. The silhouette plot shows similar
sized, smooth, convex silhouettes in both training (Figure 10) and validation dataset
(Figure 20).

But while the supporting data is strong, interpretational usefulness of 2 clusters is
questionable. The mean relative HAMD scores for cluster O go below the level of 0.5
which is commonly used as definition of response, whereas cluster 1 doesn’t reach
that level. Therefore, interpreting the 2 clusters as responders and non-responders
seems obvious. Following this interpretation, the question needs to be asked, whether
the clustering approach gives any advantage over the traditional definition of response.
Since the clustering aligns with the common clinical definitions without adding any
additional information, there is no information from which to generate new
interventional hypotheses. Argued inversely, the data supporting 2 clusters are

supporting the traditional response definition.

In summary, k=2 is strongly supported by goodness of fit data but is interpretationally

non-superior to the traditional definition of response. Occam’s Razor also applies,
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since the traditional definition is far simpler than the clustering approach. For those

reasons, k=2 is a poor candidate for hypothesis generation.

Silhouette Plot for K-Means Clustering (Validation)
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Figure 20: Silhouette plots for clusters resulting from applying trained k-means-clustering for 2 clusters
to the validation dataset. The average silhouette score is shown as a vertical line.

The supporting goodness of fit data is far weaker for k=3. While it is a candidate given
by the elbow method, the average silhouette score method shows neither a local
maximum nor a positive residual to linear interpolation. The silhouette plot (Figure 12)
is both less smooth and less convex that for k=2. On the hand of positive evidence,
the number of patients with negative silhouette scores is low and similar for both
training (1.8%) and validation (1.6%).

Similar arguments are found for k=4. As another candidate from the elbow method, the
average silhouette method is non-supportive. The number of patients with negative
silhouette scores in training is higher than for both k=3 and k=5 (2.7% vs. 1.8% and

2.2% respectively) which weakens the goodness of fit data further.

The remaining candidate k=5 has a strong case from being both a candidate from the
elbow method and the silhouette score method. In the latter, it is both a visual outlier
and the global maximum of linear interpolation residuals. The silhouette plots for
training (Figure 16) and validation both show smooth outlines with minimal concauvity.

The number of patients with negative silhouette scores is lower than for both k=4 and
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k=6 (2.2% vs. 2.7% and 4.7% respectively) in training with an increase to 4.7% in the
validation set. The difference in the training set can be considered evidence of good fit
compared to the neighbours. The increase in the validation dataset can be considered
evidence of overfitting, meaning the algorithm captured some of the noise in the
training data which results in comparatively poor results in the validation set. Overfitting
can occur in most machine learning algorithms and commonly increases with model
complexity, so an increase of overfitting can be expected with growing k without
necessarily being indicative of poor choice of k. In line with that expectation, there is
an increase of patients with negative silhouette score in the validation set for all k >=
4. So, while the occurrence of overfitting mildly weakens the goodness of fit data for

k=5, the same arguments can be made for k=4 and k=6.

Silhouette Plot for K-Means Clustering (Validation)
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Figure 21: Silhouette plots for clusters resulting from applying trained k-means-clustering for 5 clusters
to the validation dataset. The average silhouette score is shown as a vertical line.

k=6 as example for a non-candidate shows comparatively weak goodness of fit
evidence as expected. Both elbow-method and average silhouette score method don’t
give it as candidate, the number of patients with negative silhouette score is high in the
training set (4.7%) with a large increase in the validation set (10.7%) suggesting
overfitting as described above. The silhouette plot (Figure 18) shows some large

negative outliers to the overall smooth and only mildly concave shapes.
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To summarize the goodness of fit data, of the different candidates for k > 2, there is
comparable evidence for k=3 and k=4. k=5 has stronger evidence in comparison to
both. In order to be useful for hypothesis generation, the clustering should both show
good fit (indicating mathematical validity for the training set and generalization on the
validation set) and be useful for clinical and research interpretation. The graphs of
mean relative HAMD scores for k=3 and k=4 (Figure 11 and Figure 13 respectively)
show different degrees of response that run mostly parallel. While this might allow for
a more fine-grained approach in clinical decision making, the interpretational case for
k=5 is much stronger. In the corresponding graph (Figure 15) we see 3 initial groups
of patients: Those showing early response (cluster 0), those showing early
improvement (clusters 1 and 3) and those showing no early improvement (clusters 2
and 4). Of the initial non-improvers, cluster 2 goes on to show a delayed improvement
and cluster 4 continues to show non-improvement. Of the early improvers, cluster 1
continues to show response and cluster 3 shows non-response. Interpreting the
clusters in this 2-level-approach seems obvious, since the traditional response
definitions and early improvement definitions (>50% and >20% decrease from
baseline) can be applied on the level of the cluster mean values. This gives a strong
interpretational case due to the strong alignment to the traditional definitions and thus,
previous evidence, while at the same time adding additional time course information.
Due to the interpretational analysis supporting k=5 and goodness of fit data being
comparatively supportive of k=5 as well, choosing the resulting clusters from k=5 as
clusters for hypothesis generation is in the authors opinion justified, whereas no

hypotheses should be derived from the cluster structures for k=3 or k=4.

Since only k=5 was selected for further hypothesis generation in this discussion
subsection, from this point onward all mentions of “cluster structure” or “clusters” will
reference the structure for k=5 unless otherwise indicated. For ease of reference, the
clusters for k=5 are given free-text names based on the interpretation described in
detail above with the original cluster numbers given in brackets from this point forward.
Free text names are shown in the legend of Figure 22. The group of clusters 1 and 3
will be referred to as “Early Improvement” and the group of Clusters 2 and 4 as “Early

Non-Improvement”.
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K-Means Clustering of relative HAMD Score over time
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Figure 22: Average HAMD score by cluster resulting from k-means-clustering for 5 clusters. Error-Bars
indicate the 95% confidence interval for the mean value. Free text names for interpretation are shown
in the legend.

Comparison to previous cluster structures

If the clusters for k=5 are compared to the first few weeks of the latent classes identified
by Uher et al. (2011), there are several parallels [10]. In order to compare the groups
side by side, data for the first 4 weeks was extracted from the graph shown in Figure
2 via WebPIlotDigitizer, a Computer Tool to extract graph data [47]. The resulting
comparison graph is shown in Figure 23. The Non-Improvement (4) cluster from this
thesis is comparable to a combination of classes 1, 3 and 4. Additionally, the Delayed
Improvement cluster (2) is comparable to a combination of classes 2, 5, 7 and 8. The
Early Response cluster (0) is roughly comparable to class 9 and the Early Improvement
with Response (1) cluster is comparable to class 6. Only the Early Improvement without
Response (3) cluster has no parallel classes. This could be the results of this response
pattern being added into one or more the different classes that run parallel to the

Delayed Improvement (2) or Early improvement with Response (1) cluster.

These parallels might have significant implications as to clinical usefulness of the
cluster structure developed in this thesis. For example, the Delayed Improvement
cluster (2) runs roughly parallel to both classes 7 and 8, which are classes with the

second and third lowest final relative HAMD score. This could imply that a subset of
50



patients from the Delayed Improvement cluster (2) would benefit from taking the same
antidepressant medication over a period longer than 4 weeks, even though the cluster

average does not reach the traditional response criterium at week 4.

K-Means Clustering of relative HAMD Score over time

Relative HAMD-Value

Uher 2011 Class 1
Uher 2011 Class 2
Uher 2011 Class 3
Uher 2011 Class 4
Uher 2011 Class 5
Uher 2011 Class 6
0.2 Uher 2011 Class 7
Uher 2011 Class 8
Uher 2011 Class 9

Week

Figure 23: Average HAMD score by cluster resulting from k-means-clustering for 5 clusters. Error-Bars
indicate the 95% confidence interval for the mean value. For comparison, Classes from [10] have been
drawn in the graphic.

A similar comparison to the treatment classes suggested by Paul et al. (2019) isn’t
immediately possible due to the differing underlying assumptions in their methodology
[33]. By using logarithmically transformed HAMD sum scores and fitting a (linear)
mixed effects model, the authors are essentially fitting an optimal number of logarithmic
functions. This constraint to finding logarithmic clusters is not present in the current
study or in Uher et al. (2009) [10]. The cluster structure resulting from this methodology
(as shown in Figure 3) captures this underlying assumption by showing average
slopes “fanning” a large portion of the logarithmic space. While this might not
necessarily constitute a weakness of the methodology, as the validation as to the
clusters predictive value by Paul et al. (2019) shows, hypothesis inferred from
clustering without a “shape”-constraint like in the current thesis does naturally differ

widely based on methodology alone [33].

It should further be noted, that both the aforementioned structures of treatment

response clusters examined a longer timeframe of the treatment course. By limiting
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the clustering effort to the first four weeks of antidepressant response, the clustering
proposed here emphasises the early timeframe of treatment, in order to gather
predictive information that might not be captured by the longer duration examination.
On the other hand, the longer duration clustering will likely be more useful for

assessment of total treatment courses.

Between-Cluster Differences

Having chosen k=5 for hypothesis generation results in the aforementioned clusters of
early response. To facilitate earlier clinical decision making, classifying is only the first
step. Prediction of a patient’s cluster earlier than week 4 is one possibility to outperform
current clinical guidelines (see page 16). To make prediction feasible, there should be
differences between the patients belonging to different clusters. Checking for these
differences in the descriptive reports that have been generated can serve as sanity
and feasibility check before attempting more complicated predictive algorithms. Table
8 and Table 9 give an overview of the descriptive variables for the different clusters.

Variable: Early Early Delayed Early Non-

N (%) Response | Improvement | Improvement | Improvement | Improvement
0) with 2) without 4)

Response (1) Response (3)

Gender (Chi2-p: 0.798)

Male 69 105 (44.7%) | 53 (41.4%) 62 (40.0%) 38 (40.0%)
(45.4%)

Female 83 130 (55.3%) 75 (58.6%) 93 (60.0%) 57 (60.0%)
(54.6%)

Ethnic Group (Chi2-p: 0.888)

European 145 230 (97.9%) 123 (96.1%) 149 (96.1%) | 92 (96.8%)
(95.4%)

Asian 2 (1.3%) | 0 (0%) 1 (0.8%) 3 (1.9%) 1 (1.1%)

African 2 (1.3%) | 2(0.9%) 1 (0.8%) 1 (0.6%) 0 (0%)

Other 3(2.0%) | 3(1.3%) 3 (2.3%) 2 (1.3%) 2 (2.1%)

Highest School Degree (Chi?-p: 0.928)

None 3(2.0%) | 3(1.3%) 1 (0.8%) 0 (0%) 2 (2.1%)

Lower secondary | 48 76 (32.3%) 42 (32.8%) 40 (25.8%) 29 (30.5%)

school (31.6%)

Intermediate 49 68 (28.9%) 39 (30.5%) 51 (32.9%) 30 (31.6%)

secondary school (32.2%)

Advanced technical | 17 29 (12.3%) 16 (12.5%) 23 (14.8%) 8 (8.4%)

certificate (11.2%)
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Variable: Early Early Delayed Early Non-

N (%) Response | Improvement | Improvement | Improvement | Improvement
0) with (2) without (4)

Response (1) Response (3)

Upper  secondary | 33 57 (24.3%) 30 (23.4%) 39 (25.2%) 26 (27.4%)

school (21.7%)

Other 2 (1.3%) | 2 (0.9%) 0 (0%) 2 (1.3%) 0 (0%)

Highest Vocational Degree (Chiz-p: 0.332)

None 19 23 (9.8%) 16 (12.5%) 30 (19.4%) 14 (14.7%)
(12.5%)

Apprenticeship 61 144 (61.3%) | 76 (59.4%) 79 (51.0%) 56 (58.9%)
(59.9%)

Master 6 (3.9%) | 6 (2.6%) 1 (0.8%) 6 (3.9%) 1 (1.1%)

University, College | 27 50 (21.3%) 31 (24.2%) 37 (23.9%) 18 (18.9%)

of higher Education | (17.8%)

Vocational College 7 (4.6%) 10 (4.3%) 4 (3.1%) 3 (1.9%) 4 (4.2%)

Other 2(1.3%) | 2(0.9%) 0 (0%) 0 (0%) 2 (2.1%)

Recurrent MDD (Chi2-p: 0.036*)

First Episode 63 85 (36.2%) 36 (28.1%) 52 (33.5%) 23 (24.2%)
(41.4%)

Previous Episodes | 89 150 (63.8%) | 92 (71.9%) 103 (66.5%) | 72 (75.8%)
(58.6%)

Age of MDD Onset (Chi2-p: 0.002**)

Early Onset (before | 29 46 (19.6%) 42 (32.8%) 49 (31.6%) 25 (26.3%)

Age 21) (19.1%)

Middle Onset (Ages | 89 126 (53.6%) | 67 (52.3%) 75 (48.4%) 59 (62.1%)

21 to 44) (58.6%)

Late Onset (After | 34 63 (26.8%) 19 (14.8%) 30 (19.4%) 11 (11.6%)

Age 45) (22.4%)

Table 8: Categorical demographic and clinical descriptors by Cluster from k-means-clustering for 5
Clusters. Differences in absolute sums are due to missing values, differences in percentage sums are
due to rounding error. Percentage sums are referring to the ration within each cluster. Chi-Squared-Test
results are indicated by p value. *= p< 0.05, **p<0.01, *** p<0.001.
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Variable: | Early Early Delayed Early Non- ANOVA-
Mean Response Improvement | Improvement | Improvement | Improvement | p
(95% CI) | (0) with @) without 4)
Response (1) Response (3)

Age 419 (95% | 41.3 (95% CI | 38.3 (95% CI | 40.6 (95% CI | 39.7 (95% CI | p=0.874

Cl 40.2 to | 39.9t042.8) | 36.2t040.5) | 38.7t042.5) | 37.31042.2)

43.7)
Years of | 13.9 (95% | 14.2 (95% CI | 13.9 (95% CI | 14.0 (95% CI | 13.5 (95% CI | p=0.677
Education | CI 134 to | 13.8t014.6) | 13.2t014.5) | 13.4t0 14.5) | 12.8t0 14.3)

14.4)
Age at| 345 (95% | 34.0 (95% CI | 29.8 (95% CI | 31.2 (95% CI | 29.6 (95% CI | p<0.001
MDD Cl 32.6 to | 32.41t035.6) | 27.61t031.9) | 29.2t033.2) | 27.4t031.9) | ***
onset 36.5)
Number 2.29 (95% | 2.31 (95% CI | 2.35 (95% CI | 2.90 (95% CI | 3.93 (95% CI | p=0.031
of Cl 1.74 to | 1.87t02.75) |1.79t02.92) | 1.97t03.82) | 2.53t05.33) | *
previous 2.84)
MDD
episodes
Length of | 24.3 (95% | 29.6 (95% CI | 39.2 (95% CI | 36.4 (95% CI | 31.8 (95% CI | p=0.147
current Cl 19.4 to | 24.2to 35) 23.8t054.6) | 27.7t0 45.1) | 22.7 t0 40.9)
episode 29.3)
(days)
HAMD 22.9 (95% | 23.5 (95% CI | 21.7 (95% CI | 24.2 (95% CI | 21.0 (95% CI | p<0.001
score at | Cl 22.2 to | 22.9t024.1) | 20.9t022.5) | 23.5t024.9) | 20to 22) rrx
Baseline | 23.5)

Table 9: Continuous demographic and clinical descriptors by Cluster from k-means-clustering for 5
Clusters. 95% CI: 95 % confidence interval for the mean. One-Way ANOVA results are indicated by p
value. *= p< 0.05, **p<0.01, *** p<0.001.

Statistically significant differences can be observed for the categorical variables
Recurrence of MDD and MDD onset group and for the continuous variables Age of
MDD onset, Number of previous episodes and HAMD score at baseline. The
categorical variables correspond to recoding of the two first mentioned continuous

variables, so significant differences in both corresponding variables is expected.

Existence of these baseline differences falls in line with expected differences from the

previous literature. Overall symptom severity was a significant predictor of later
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treatment response in Chekroud et al. (2016), Rush et al. (2008) and Nierenberg et al.
(2000) [31] [28] [22]. The theoretical importance of age of onset as significant predictor
is emphasised by the existence of targeted studies like Kozel et al. (2008) [29]. Though
that study didn’'t find a significant effect in its dataset, the underlying theoretical
importance stands. The number of previous MDD episodes was one of the significant
predictors in Chekroud et al. (2016) [31]. These parallels of between cluster differences
and predictors of response from previous literature gives the cluster structure some
face validity as to its possible usefulness and/or predictive value. At the same time, it's
of interest to note, that common demographic response predictors (employment,
ethnicity) don’t show significant differences in the cluster structure. This could well be
the result of insufficient statistical power (due to very small n for some groups), so the

implications from this should not be overvalued.

Comparison with other cluster algorithm families

K-means-clustering enforces hard clustering. This means, every patient was assigned
to a single cluster. While this makes the analysis easier, it doesn’t adequately capture
patients that might fall “between clusters” or outside of the cluster prototypes. This
limitation was partially quantified in the result section, when patients with negative
silhouette scores were reported. These patients are outliers from the cluster they were
assigned to, despite it being the best fit. This algorithmic property resulting from the
choice of clustering methodology has important implications for utilizing the clusters as

tools for future scientific research or clinical decision making.

For scientific inquiry into differences between different pattern of early treatment
response using a clustering approach like in this experiment, results might benefit from
not treating all patients assigned to a cluster the same. Selections need to be made,
how to deal with differing typicality of the patients, for example as measured by the
silhouette score. Whether or not edge-cases or outliers of the cluster assignment
should be in- or excluded for analysis or whether results might benefit from a typicality-
weighted approach depends on the research context, but these questions should be
kept in mind when opting for use of clustering methodology and the resulting tools.

Other clustering algorithms could be utilized as an alternative. Examples include so
called “soft” or “fuzzy” clustering algorithms, that allow objects to be in more than one
cluster at a time, often with some degree of membership or probability measure for

each cluster. An example of these algorithms is the C-means-algorithm [48] that’s
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closely related to the K-means-algorithm used here with the difference, that an object
can belong to all groups with different membership grades between 0 and 1. Fuzzy
clustering could solve issues with identifying outliers or directly provide weights for a

prototypicality-weighted approach.

As another alternative, clustering algorithms based on Bayesian statistics might be
used. The main strength of these algorithms is the incorporation of uncertainty and
usage of the entire space of possible cluster-separations for probability estimates
following Bayes rule (see [49] for detailed background a modern version of a Bayesian
clustering algorithm). The resulting cluster structure is as statistical model and can be
analysed as such as opposed to merely being a heuristic, like the k-means-algorithm
used here. This specifically also allows to test the cluster structure versus the null
hypothesis, that there are no clusters within the group. This is a critical —and commonly
neglected — step if the suggested cluster structure is proposed to be the result of an
underlying mechanism, as opposed to merely being a useful and mathematically valid

classification of the parameter space (the latter being the case in this thesis).

Lastly, hierarchical clustering algorithms can be employed. This group of algorithms
gives multiple degrees of separation. On the first level, all objects are treated as
individual. The second level treats each set of the 2 most proximal objects as a cluster.
In subsequent levels, objects are added to clusters or clusters are added to each other
based on proximity as defined based on some proximity measure. The different levels
are commonly visualised as dendrogram (see [50] for a more detailed introduction into
hierarchical clustering). The main advantage of this approach is that relationships
between different level clusters can be examined heuristically, which allows for easy
interpretation. As a weakness, hierarchical clustering algorithms are often sensitive to
small changes or noise in the dataset. There is additional difficulty in determining the
number of clusters, since there often is no obvious level on which to “cut” the decision

dendrogram.

The main advantage of the k-means-algorithm over the alternative clustering
approaches presented here lies in model simplicity. Simpler models not only result in
lower computational cost but also often make generalization of results easier following
Occam’s razor. Scientist employing similar methodology should be aware of the
different algorithmic families and should chose appropriately for the individual research

guestion.
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Experiment 2 — Prediction of clinical outcomes

Summary of Experiment 2

Random forest classifiers with differing variable sets (variables based on HAMD, IDS,
both and a set additionally including demographic and clinical history variables) were
trained to predict both traditional response and traditional remission criteria at week 4.
Prediction performance was quantified using accuracy, sensitivity and specificity and
both Chi2-Test and calculation of effect size (estimated by Cramer’'s V) were

performed. Feature importance scores were calculated for the different variable sets.

Predictive performance was comparable across models from all variable sets. When
including only variables from baseline, performance was comparable to the zero-
information rate. When variables from any later timepoints were included, prediction
was possible significantly over random and both the 20% and 30% early improvement
criteria, were outperformed. Prediction accuracy for later response increased
monotonously with inclusion of timepoints after baseline with the largest increase
between baseline and week 1, suggesting an early onset of antidepressant action

within that timeframe.

The most important features for prediction were HAMD and IDS sum scores as well as
principal components of their items and previously established demographic and
clinical variables. Inclusion of these variables into a predictive dataset for clustering
prediction was discussed.

Aim

The cluster structure identified in Experiment 1 provides a classification of early
response patterns over time. In order to facilitate decision making before the 4-week
timepoint based on that 5-cluster structure, a predictive model should be developed.
In order to develop a model with maximum prediction accuracy, feature engineering is
required. Feature engineering refers to a combination of transformation and
(subsequent) selection of variables in order to create a dataset with the largest possible
predictive value while simultaneously filtering out as much noise as possible. This
involves both calculation of new variables as well as filtering out variables with low

predictive value.

If feature engineering is performed parallel to building the final predictive model, there

is a risk of inadvertently overfitting the features to the training data, meaning the final
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feature set will have good predictive value on the training set but bad generalization to
unseen or external data. In order to avoid this problem, feature engineering will be
done for a model predicting the traditional clinical response and remission criteria. This
should be beneficial under the assumption, that variables with predictive value for the

traditional criteria will also have predictive value for the cluster structure.

In this experiment, a set of models for predicting traditional response and remission
criteria will be trained and evaluated. The predictive models will differ in the sets of
predictive variables. The target variables will be response or remission by the
traditional criteria in week 4. Based on the results, a set of variables to use for building
a predictive model for the clusters will be selected in the discussion section. At the
same time, this experiment expands upon previous data on the predictability of

treatment response (see page 11).

Methods

Design Summary

A random forest classifier will be trained with different sets of predictor and target
variables. For evaluation of classifier performance, 10-fold cross validation will be
performed. This means, the classifier will be trained on 9/10™ of the patients and will
predict the last 1/10" of patients. This process will be repeated 10 times with distinct
sets of patients used for prediction, so the entire dataset will have been predicted
exactly once. Performance of the classifier models will be evaluated against random

guessing as well the early improvement criterium.

Decision Tree Classifier

For more detailed information on decision trees, see [51], the source for the following
explanation. A decision tree classifier is a classification technique used to predict, to
which one of several distinct classes an observation belongs. This is achieved by
chaining multiple (usually binary) decisions with each decision separating the chain
into multiple (two in the binary case) branches. This leads to a structure of chained
decision branches, thus the name decision tree. Each individual decision can be
referred to as a node. The training algorithm uses a set of training data with known
target classes to create the decision tree. Since the target classes are known, this is
considered supervised machine learning. The algorithm begins by picking a variable
and a value that achieves the best separation of the observations into the

corresponding classes. The quality of separation can be measured in a multitude of
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ways, common ones include Gini-Impurity or Variance Reduction. Each resulting
branch is then again separated in this manner, until a stop condition is met. Examples
of possible stop conditions include, that only one class remains in the branch or that
either the current branch or branches resulting of a possible split have too few
elements. The last nodes of the decision tree are also referred to as leaf nodes. For

an example visualisation of a decision tree, see Figure 24.

Depressed Root Node
Patients ’
_—~ HAMDS7 HAMD <=7
o HAMD /
Decision Branches%_% Basoline LAMD Responder
T <08 =05
Responder MNonresponder
Leaf Nodes

Figure 24: Example of a decision tree for the traditional response criterium based on the HAMD score.
Parts of the decision tree are labelled.

Random Forest Classifier

For more detailed information on random forest classifiers, see [52], the source for the
following explanation. A random forest classifier is an extension of the decision tree
classifier described above. Instead of building a single decision tree, which often leads
to poor generalization due to making decisions too specific to the training data by
capturing noise (so-called overfitting), a random forest classifier builds multiple
decision trees. Depending on the algorithm settings, each individual tree is built using
only part of the training observations, part of the training features and/or is “pruned” to
only reach a certain depth. These steps are taken, so multiple trees in the classifier
aren’t the same. After multiple individual trees are trained, they can be used to predict
an unseen example via majority voting of the results from the individual trees. A degree
of certainty in the prediction can also be calculated by quantifying, how “unanimous”

the best classification was between the different trees in the forest.
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The importance of individual variables for a random forest classifier can be estimated
by calculating the average decrease of the Gini coefficient over all trees or by
calculating the effect on the accuracy if the variable is randomly shuffled between
observations. Calculation of these importance scores is a key part of selecting features
with large predictive value and eliminating features that constitute noise. The Gini-

coefficient based importance score will be calculated for all sets of variables.

Cross-Validation

In order to calculate the prediction accuracy of the classifiers, a cross-validation
procedure, specifically 10-fold stratified cross-validation, is used. The dataset is split
into 10 parts with patients being stratified based on the target variable, meaning there
will be approximately equal numbers of patients with or without the target variable
across dataset parts. The classifier model is then trained 10 separate times,
withholding a separate part of the dataset each repetition. The unseen dataset part for
each model is then given to that model for prediction. By proceeding in this manner,
there is a prediction for each observation by a model that has not seen this observation
during training. These predictions can then be compared to the known target variables
for each observation, so accuracy and other estimates of test performance can be
calculated.

Transformation of variables

Since random forest classifiers are based on recursive partitioning of the dataset, the
resulting classification does not change based on basic mathematical transformations
on the input. Therefore, a “normalization” (e.g. transforming all variables to zero mean,
unit variance) is not required and is thusly not performed here [53]. The algorithm also
natively can deal with both categorical as well as continuous data, so no additional pre-
processing is necessary regarding the mixed properties of the input data. For
categorical data, it is noteworthy though, that importance scores can be overestimated
for variables with many categories compared to variables with few categories. This
should be kept in mind for later variable selection.

For the weekly psychometric values (HAMD and IDS) some basic variable
transformations are performed to optimally extract a possible predictive value. First,
relative sum scores values to baseline are calculated. Second, absolute sum score
differences to all prior timepoints are calculated. Third, principle component analysis is

performed at baseline for the items of each test separately. Components are kept so
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the total explained variance is above 50%. The individual values for each patient for
these principal components are calculated until week 2 (itemized psychometrics aren’t
available in the dataset for weeks 3 and after). The variables resulting from these
transformations will be referred to as feature engineering variables for the purpose of
this thesis.

Prediction variable sets

To evaluate the predictive values of the different available variables, multiple predictive
sets are chosen for comparison. Each variable set will be calculated in 4 different time
versions for every week (baseline until week 3). It will encompass all available data
until that timepoint. One variable set includes all information based on the HAMD (sum
score, items, feature engineering variables) until the corresponding week. A second
set will include both the self and clinician rated IDS information. The third set will
combine both the HAMD and IDS set. And a last set will combine HAMD and IDS
information and add information from the M.I.N.I., SCID-II, demographics as well as

medical and psychiatric history. This set is referred to as “All Variables” set.

Hyperparameters

Algorithmic settings are commonly called Hyperparameters. Random forest classifiers
have multiple hyperparameters, like the number of trees in the forest, the type of
information gain criterion (gini coefficient or entropy gain), the maximum decision tree
depth or the maximum features considered per tree. These hyperparameters are
commonly set using so called hyperparameter grid search, meaning that a space of
parameter settings is searched for an optimal solution by calculating the cross-
validation score for every possible combination of these parameters. In order to
prevent contamination of the global cross-validation scores used for evaluation, this
grid search is commonly done separately for each cross-validation fold. In order to
compare the accuracies of different hyperparameter settings, cross validation will be
employed again, though only on the training data of the respective cross validation
fold. This is called nested cross validation hyperparameter tuning. For the nested cross

validation, 3 folds are used.

In order to make this procedure computationally viable, the hyperparameter search
space needs to be narrowly defined. Every possible parameter setting needs to be
evaluated in combination with all other settings on all other parameters — for every

cross-validation fold. The number of individual models that need to be fit quickly grows
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too large to calculate. Keeping this in mind, the search space for hyperparameter
tuning is defined by 3 parameters: the information gain criterion (gini coefficient vs.
entropy gain), the maximum decision tree depth (50, 100, Unlimited) and the maximum
features considered per tree (square root of total features, log2 of total features, 50%
of total features). The number of trees in the forest is fixed to 2000, which is likely larger
than required, though it is computationally cheaper to estimate this larger number once
for every parameter, than to evaluate all parameter combinations against multiple
settings for the number of trees. This leaves a total of 18 parameter combinations,
evaluated on 10 cross validation folds for 4 variable sets over 4 timepoints for 2 target
variables, with evaluation being based on 3 folds per parameter combination, meaning
a total of 18*10*4*4*2*3 = 17280 models will have to be fit (not including the final model
fit with the best set of hyperparameters). At 5 seconds per model, this will take
approximately 24 hours, showing how quickly a larger search space would become

calculation-cost prohibitive.

Feature importance calculation

Due to the cross-validation procedure described above, there will be multiple models
per set of predictive variables. In order to allow interpretation of the feature importance
scores (see the description of random forest classifiers above, page 59), it is beneficial
to have a single importance score per variable set. Therefore, the importance scores

will be averaged across all models resulting from the same variable set.

In order to compare importance scores across multiple variable sets, it is important to
keep in mind that simple averaging might not result in the intended effect. Importance
scores need to be compared over time, since it seems likely that variables very
important for baseline prediction might differ from variables very important for
prediction at week 3. Furthermore, it should be considered, that the number of sets a
given variable is in differs. Feature importance scores (after averaging over the models
per variable set) are therefore ordered by rank, separately for every variable set and
timepoint. If a feature shows a high rank (high meaning most important here) in multiple
variable sets, the predictive value is likely real. If it ranks high in some variable sets but
low in others, this might be due to cross-correlation between variables in the sets. If it
consistently ranks low across variable sets, it likely captures noise and should be

excluded from the set of predictive variables for future analysis.
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Results

Prediction performance metrics

After calculation of the predictive models, standard binary confusion matrices and their
corresponding metrics can be calculated. The accuracies for the given variable sets
over time are shown in Figure 25 (Response at week 4) and Figure 26 (Remission at
week 4). An overview of the remaining prediction metrics as well as Chi2-Tests and
effect sizes is given by Table 10 (Response at week 4) and Table 11 (Remission at

week 4).

For response at week 4, maximum prediction accuracy at baseline is 52.2%, only
slightly above the zero-information rate (approx. 50%) with a steep increase in
prediction accuracy to between 66.0% and 67.8% across all variable sets at week 1.
Until week 3, all variable sets show a further, roughly linear, increase of accuracy to
between 75.8% to 79.7%. The 20% early improvement criterium shows a roughly
constant prediction accuracy between 63.2% and 65.7%, the 30% early improvement
criterium shows an increase in accuracy from 67.0% at week 1 to 72.7% at week 3.
Both sensitivity and specificity are roughly equal to each other for all variable sets and
timepoints. Chi2-Testing against random guessing shows highly significant p-values for
weeks 1 through 3 for all variable sets with non-significant values across all variable
sets at baseline. Effect-size of the prediction as estimated with Cramer’s V increases

monotonously over time for all variable sets.

For remission at week 4, prediction at baseline is distributed between 69.2% and
70.4% around the zero-information rate (approx. 70%) for all variable sets, with the set
including all variables being worse than the others at approx. 62.1%. From there, all
variable sets show a quasi-linear increase in predictive accuracy until week 3, where
the accuracies are distributed between 83.4% and 86.3%. Both 20% and 30% early
improvement criterium show a predictive accuracy lower than the zero-information rate
at all timepoints. For all variable sets and timepoints, specificity is at least moderately
better than sensitivity. Chi2-Testing shows significant p-values over random guessing
for all timepoints and variable sets with the exception of the All-Variables-Set at
baseline, that shows a non-significant value. Effect-size of the prediction as estimated

with Cramer’s V increases monotonously over time for all variable sets.

63



Accuracy of predictive models over time - Target: Response after 4 Weeks
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Figure 25: Cross-validation accuracy of random forest classifiers predicting the traditional 50% response
criterium based on the given variable set at different timepoints. Zero information rate and early
improvement criterium are shown for comparison.

Accuracy of predictive models over time - Target: Remission after 4 Weeks
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Figure 26: Cross-validation accuracy of random forest classifiers predicting the traditional remission
criterium based on the given variable set at different timepoints. Zero information rate and early
improvement criterium are shown for comparison.
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Metric Baseline Week 1 Week 2 Week 3
All Variables as predictors for Response at week 4.

Accuracy 52.2% 67.8% 74.0% 79.7%
Sensitivity 53.9% 68.7% 75.6% 80.6%
Specificity 49.1% 66.8% 72.1% 78.7%
Chi2-p Value | 0.608 <0.001 <0.001 <0.001
Cramer’s V 0.024 0.349 0.473 0.588
HAMD Variables as predictors for Response at week 4.

Accuracy 50.7% 66.0% 68.9% 79.3%
Sensitivity 50.8% 66.6% 69.6% 79.5%
Specificity 50.7% 65.5% 68.2% 79.2%
Chi2-p Value |0.745 < 0.001 <0.001 <0.001
Cramer’'s V 0.012 0.318 0.375 0.584
IDS Variables as predictors for Response at week 4.

Accuracy 51.9% 66.1% 70.6% 75.8%
Sensitivity 52.0% 66.1% 71.5% 76.8%
Specificity 51.8% 66.0% 69.7% 14.7%
Chi2-p Value |0.331 <0.001 <0.001 <0.001
Cramer’'s V 0.035 0.318 0.409 0.513
HAMD and IDS Variables as predictors for Response at week 4.
Accuracy 50.1% 66.2% 73.9% 77.7%
Sensitivity 50.3% 66.4% 75.1% 78.5%
Specificity 49.9% 66.0% 712.7% 77.0%
Chi2-p vValue |0.970 < 0.001 <0.001 <0.001
Cramer's V 0.001 0.321 0.475 0.552

Table 10: Binary classification metrics of random forest classifiers with the given variable sets as
predictors and the traditional 50% response criterium at week 4 as target variable. Chi-2-Metric and

Cramer’s V were calculated in comparison to random guessing.
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Metric Baseline Week 1 Week 2 Week 3
All Variables as predictors for Remission at week 4.

Accuracy 62.1% 71.4% 77.9% 83.4%
Sensitivity 36.0% 61.9% 70.7% 79.0%
Specificity 65.3% 74.7% 81.2% 85.5%
Chi2-p Value |0.975 < 0.001 < 0.001 <0.001
Cramer's V 0.001 0.331 0.498 0.624
HAMD Variables as predictors for Remission at week 4.

Accuracy 69.2% 73.3% 82.1% 86.3%
Sensitivity 46.0% 58.5% 76.4% 79.8%
Specificity 72.1% 76.9% 83.8% 88.7%
Chi2-p Value |<0.001 < 0.001 <0.001 <0.001
Cramer’'s V 0.121 0.301 0.548 0.662
IDS Variables as predictors for Remission at week 4.

Accuracy 70.4% 76.7% 80.0% 84.8%
Sensitivity 51.8% 66.0% 69.7% 78.5%
Specificity 72.6% 79.5% 83.6% 87.1%
Chi2-p Value |<0.001 < 0.001 <0.001 <0.001
Cramer’'s V 0.162 0.400 0.504 0.627
HAMD and IDS Variables as predictors for Remission at week 4.
Accuracy 70.2% 77.1% 80.4% 85.6%
Sensitivity 51.2% 67.5% 71.3% 80.3%
Specificity 12.7% 79.5% 83.4% 87.5%
Chi2-p Value |<0.001 < 0.001 <0.001 <0.001
Cramer's V 0.160 0.408 0.511 0.646

Table 11: Binary classification metrics of random forest classifiers with the given variable sets as
predictors and the traditional HAMD remission criterium at week 4 as target variable. Chi-2-Metric and
Cramer’s V were calculated in comparison to random guessing.

Feature importance

For reasons of brevity, full feature importance ranks, values and graphs are not
reported here. Instead, only feature importance graphs for the top 30 predictors for
Response at week 4 in the All-Variable-Set are reported for baseline, week 1, week 2
and week 3 in Figure 27, Figure 28, Figure 29 and Figure 30, respectively. Additional

graphs can be found in the appendix. Rank comparisons are reported for clinical history
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and demographic variables as to their predictive importance for Response at week 4

in Table 12, in order to facilitate discussion of possible inclusion in future models.

All variables - Baseline Classifier Feature Importance for Response after 4 weeks
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Figure 27: Feature importance for the prediction of response at week 4 in the All-Variables-Classifier at
baseline. Variable abbreviations: SCR_* *(_rel): HAMD or IDSC (IDS clinician rated) or IDSF (IDS self-
rated) score at stated). Added suffix “_rel” to indicate value relative to baseline. CALC_PCA_* * *:
Principle component analysis of HAMD, IDSC or IDSF items at stated timepoint, nth component (0—
indexed). CALC_DELTA_* * *: Score difference of HAMD, IDSC or IDSF between two stated
timepoints. BL_SF*SC: SF-12 (I: Clinician rated, S: self-rated) (P: mental, k: physical) subscale score
at baseline. SCR_PSYAGE: Age at first MDD episode. SCR_PSYLENG: Length of current MDD
episode. SCR_R _AGE: Age at baseline. SCR_EDUYEARS: Years of formal education.
BL_VSWEIGHT: Body weight at baseline. BL_VSPULSE: Heart rate at baseline.

At baseline, where prediction accuracy of the All-Variables-Set classifier predicting
traditional 50% response at week 4 was not significantly above random, the features
with the highest importance scores were principal components of both HAMD and IDS
Items, baseline SF-12 subscale scores as well as some clinical (Weight, Heartrate),
history (Length of current episode, Age at first episode) and demographic variables
(Years of education, Age).

67



All variables - Week 1 Classifier Feature Importance for Response after 4 weeks
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Figure 28: Feature importance for the prediction of response at week 4 in the All-Variables-Classifier at
week 1. Variable abbreviations: SCR_* *(_rel): HAMD or IDSC (IDS clinician rated) or IDSF (IDS self-
rated) score at stated). Added suffix “ rel” to indicate value relative to baseline. CALC_PCA _* * *:
Principle component analysis of HAMD, IDSC or IDSF items at stated timepoint, nth component (O-
indexed). CALC_DELTA_* * *: Score difference of HAMD, IDSC or IDSF between two stated
timepoints. BL_SF**SC: SF-12 (I: Clinician rated, S: self-rated) (P: mental, k: physical) subscale score
at baseline. BL_VSPULSE: Heart rate at baseline.

The All-Variables-Set classifier predicting traditional 50% response at week 4 based
on week 1 variables showed both the absolute and relative HAMD sum score at week
1 as having the highest feature importance. Other important variables included IDS
sum scores, sum score differences between week 1 and baseline, principal
components of psychometric scale items at baseline and week 1 and both baseline
heart rate and SF-12 subscales.
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All variables - Week 2 Classifier Feature Importance for Response after 4 weeks
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Figure 29: Feature importance for the prediction of response at week 4 in the All-Variables-Classifier at
week 2. Variable abbreviations: SCR_*_*(_rel): HAMD or IDSC (IDS clinician rated) or IDSF (IDS self-
rated) score at stated). Added suffix “_rel” to indicate value relative to baseline. CALC_PCA_* * *:
Principle component analysis of HAMD, IDSC or IDSF items at stated timepoint, nth component (0-
indexed). CALC_DELTA_* * *. Score difference of HAMD, IDSC or IDSF between two stated
timepoints.

The most important features in the week 2 All-Variables-Set classifier predicting
traditional 50% response at week 4 were relative HAMD and IDS sum scores at week
2, differences between these scores and baseline, sum scores at week 1 and
differences to baseline and principal components of psychometric items between

baseline and week 2.
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Figure 30: Feature importance for the prediction of response at week 4 in the All-Variables-Classifier at
week 3. Variable abbreviations: SCR_*_*(_rel): HAMD or IDSC (IDS clinician rated) or IDSF (IDS self-
rated) score at stated). Added suffix “ _rel” to indicate value relative to baseline. CALC_PCA_* * *:
Principle component analysis of HAMD, IDSC or IDSF items at stated timepoint, nth component (O—
indexed). CALC _DELTA * * *: Score difference of HAMD, IDSC or IDSF between two stated
timepoints.
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Feature

For the week 3 All-Variables-Set classifier predicting traditional 50% response at week
4, the relative HAMD sum score at week 3 shows a far bigger feature importance than
all other features. Other important features are absolute and relative HAMD and IDS
sum scores at weeks 1 through 3, their differences to baseline and principal

components of psychometric scale items from baseline through week 3.
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Variable Baseline Week 1 Week 2 Week 3
Age at first MDD |20 / 140(53 / 216|78 [/ 29679 /| 312
episode (14.3%) (24.5%) (26.4%) (25.3%)
Length of current MDD |23 / 14035 / 21682 [/ 29|78 [ 312
episode (days) (16.4%) (16.2%) (27.7%) (25.0%)
Age at baseline 28 [/ 14058 [/ 21692 [/ 29|75 [ 312
(20.0%) (26.9%) (31.1%) (27.2%)
Years of education 30 / 140(62 [/ 21690 [/ 29694 |/ 312
(21.4%) (28.7%) (30.4%) (30.1%)
Number of previous |32 / 140|70 /[ 216|111 / 296|119 / 312
MDD episodes (22.9%) (32,4%) (37.5%) (38.1%)
Type of school |50 / 140|102 / 216|147 / 296|181 / 312
education (35.7%) (47.2%) (49.7%) (58.0%)
Type of vocational |56 / 140|140 / 216|175 / 296|215 /| 312
education (40.0%) (64.8%) (59.1%) (69.2%)
Gender 93 / 140|173 / 216|252 |/ 296|249 /| 312
(66.4%) (80.1%) (85.1%) (79.8%)
Ethnicity 108 / 140|180 / 216|267 / 296|281 [/ 312
(77.1%) (82.9%) (90.2%) (90.1%)

Table 12: Feature importance ranks of demographic and clinical history variables form the All-Variables-
Set classifiers for the given timepoints predicting response at week 4. Ordered form Rank 1 = Most
important. Percentage Ranks given in brackets.

Demographic and clinical history variables showed varying levels of feature importance
for the All-Variables-Set classifier predicting traditional 50% response at week 4 with
their relative importance ranking of the variables being roughly consistent across all
timepoints. Age at first MDD episode, Length of current episode, Patient Age and Years
of Education all consistently rank in the top third of feature importance. The number of
previous MDD episodes shows a decline in importance from the 22.9" percentile at
baseline to the 38.15 percentile at week 3. Gender, Ethnicity and type of education

don’t rank in the top third at any timepoint.

Discussion

Conclusions and deductions from model prediction accuracy over time

The overview graphs of the predictive model accuracy over time (Figure 25 and Figure

26) are immediately suggestive of several key findings. Firstly, prediction at baseline
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seems to be at best moderately above the zero-information rate. Second, prediction
gets more accurate closer to the target timepoint. And third, in the case of response
prediction, the growth in prediction accuracy between baseline and week 1 strongly
differs in magnitude from the growth after that point. These findings will be discussed
in the following subsection.

While the baseline prediction of remission at week 4 beats random guessing with
statistical significance in 3 out of 4 models, the prediction is at best a small amount
above the zero-information rate. For prediction of response, none of the models are
significantly better than random or show accuracy far above the zero-information rate.
At first glance, this seems to be differing from previous results like the predictors of
response discussed above (see page 11). But single predictors being associated with
response at baseline don’t necessarily translate into prediction being possible,
because response is most likely influenced by multiple factors and possibly interactions
between these factors. If this relationship is either to complex to uncover for the chosen
algorithm with the given amount of training data or the training data has a low signal to
noise ratio prohibiting finding of this relation, prediction might not be possible even

though the data contains variables already known to be predictive in some capacity.

One way to avoid this problem would be to increase the signal to noise ratio by feature
selection, meaning only the most predictive features will be selected in order to build a
model. This was done by Chekroud et al. (2016), where they achieved a prediction
accuracy of approx. 60% on the external validation dataset by selecting only the top
25 predictors [31]. The use of an external validation set is key for this approach.
Selecting the most informative features for the entire dataset and then trying to
estimate the prediction accuracy via cross validation on the same dataset constitutes
a so called “data leak”. Because it is already known from feature selection, that the
selected features are valuable to predict the holdout part of the dataset, it is
unsurprising that the holdout part gets predicted well by these features — the cross-
validation accuracy will likely be overestimated and in order to get a “real” accuracy,
an external validation is required. Chekroud et al. (2016) achieved a cross validation
accuracy of 64.6% and an external validation accuracy of 59.6%, showing this effect
[31].

For the purposes of this experiment, there was no external validation dataset available.
Thus, feature selection on the dataset could not be employed in this manner in order

to raise the signal to noise ratio and by doing so possibly raise the prediction accuracy
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above the zero-information rate. For Chekroud et al. (2016), the zero-information rate
was 51.3% [31]. Even with employing feature selection in the manner described above,
they achieved an external classification accuracy of only 59.6%. Compared to the zero-
information rate of 50.0% for response prediction and a prediction accuracy of 52.2%
for the best predictive model at baseline in this thesis, this is obviously better but
doesn’t — in the authors opinion — justify the assumption of a difference not explained
by the difference in methodology and the differing prediction question (Chekroud et al.
(2016) predicting remission after 12 weeks vs. this experiment predicting response or
remission after 4 weeks [31]). Overall, both in previous literature and the current
experiment baseline prediction of treatment outcome based on clinical data alone

seems to be possible at best moderately above the zero-information rate.

Unsurprisingly, the prediction accuracy increases with variables from timepoints closer
to week 4 being used. This result serves as a sanity check of the prediction accuracy.
What is interesting, is that in prediction of remission, this increase is approximately
linear (at least when considering an average of all 4 variable sets) from baseline until
week 3 and in prediction of response it's linear from week 1 until week 3. This
approximately linear increase can serve as an argumentative “baseline” about how
much easier prediction gets over time. With prediction of response showing a much
larger increase in accuracy between baseline and week 1 than suggested by the
baseline linear relation from the rest of the data, closer attention is warranted.

The background section on early improvement (See page 10) details, that significant
differences between responders and non-responders can be found within one or two
weeks. This is indicative of an onset of antidepressant response within this timeframe.
The difference in magnitude between the accuracy increase in comparison to a
baseline linear relation could be interpreted as this onset of response. In this case, the
data from the current experiment indicates an onset of antidepressant response within

the first week, in line with results from Szegedi et al. (2003) [23].

This interpretation raises the question, why the onset is only seen in the predictive
accuracy of response prediction and not seen in remission prediction. One possible
explanation is in the timeframe of the remission prediction. The current experiment
predicted remission after 4 weeks, which is earlier than remission would be expected
by current antidepressant treatment strategy (See page 9), that expects response by
week 4 to be predictive for later remission. But the shorter the distance to the predicted

timepoint, the stronger the accuracy gain over time should self-evidently be. Therefore,
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it could be possible for this strong accuracy gain over time to mask the presumed
accuracy gain from an onset of response. Since in the EMC trial, there were
antidepressant treatment adaptations directly dependent on whether a patient showed
response at week 4, predictions for remission in the further time course of this dataset
would change the prediction question sufficiently to prohibit investigation of this
possibility: An onset of antidepressant response to one medication would not
necessarily show up in the prediction accuracy for an entire treatment strategy. This
analysis should be done in future research on a different dataset, where patients were
exposed to the same antidepressant treatment for longer, since the current results
could indicate a way of supporting the early onset of antidepressant response further

and quite specifically.

Comparison to the early improvement criterium

In comparison to both the 20% and 30% forms of the early improvement criterium, the
machine learning models outperform. The 20% early improvement criterium shows a
predictive accuracy of approx. 65% for the prediction of response at all timepoints,
which is worse than the models based on all variable sets at week 1 and much worse
at all other timepoints. The 30% early improvement criterium shows a predictive
accuracy on par with the machine learning models in week 1 and an increase in
accuracy over time, but this increase can’t match the accuracy increase of all other
models that outperform the early improvement criterium in both week 2 and week 3 for
the prediction of response. For the prediction of remission at week 4, both early
improvement criteria are essentially worthless at all timepoints, since they are far below

the zero-information rate.

In addition to the early improvement criterium being outperformed accuracy-wise, the
machine learning models have several further advantages. As described in the
methodology for random forests (See page 59), an estimate of prediction confidence
based on the unanimity of predictions between trees can be made. While this was not
evaluated in this experiment, it provides an additional source of information that could
be considered for clinical decision making. Secondly, a trade-off between sensitivity
and specificity can be made for the specific needs such models might be used for. The
precision data in this experiment was automatically chosen to maximize accuracy, but

unlike the cut-off for the early improvement criterium, this can be adjusted.
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Feature selection for future model building

For beginning feature selection, the first key result is that models based on data from
all variable sets perform on roughly the same level across all timepoints. Both IDS and
HAMD seem like valid ways to measure symptom severity and neither approach seems
to show a definitive benefit over the others. Since strong levels of collinearity can be
expected between the different measures of symptom severity, only one set should be
included. A strong argument for then choosing the HAMD score instead of the IDS
score is present in the prediction question the features are selected for: The cluster
structure was based on the HAMD score; therefore, it is justified to assume more
contained information over the IDS. Since the clustering was specifically done on the
relative HAMD scores, all relative HAMD scores should be included. This is
mathematically justified, since the relative HAMD score is among the top predictors of
the all variables model from weeks 1 through 3. In addition, the absolute level of
symptom severity from all timepoints should be included. Absolute sum scale scores
from both the latest and previous timepoints are present in the top 30 predictors of
response for all timepoints of the All-Variable set model. This provides a mathematical
justification for inclusion in addition to the theoretical argument of predictive information

being contained in the time course of treatment response.

Regarding other features derived from the psychometric scales, it is obvious from the
feature importance data of all timepoints, that principal components are more
predictive than individual psychometric items. It is especially noteworthy, that principal
component expressions from previous timepoints are still among the top predictive
features in models from later timepoints. Further, it is noteworthy that the principal
components” predictive value is not present in rank order (meaning the first principle
component is not the most important feature etc.). It therefore is appropriate to include
all the HAMD principal components and exclude all single items variables.

Non-psychometric derived features are only included in the All-Variables set. The key
features here are the characteristics from clinical variables and demographics. The
theoretical importance of these variables was explored in detail in both the background
section and the discussion section to experiment 1 (See page 11 and 52 respectively).
The variables falling within the top third of predictive variables for at least one timepoint
will be included, meaning inclusion of patient age, age of onset, length of current MDD
episode, number of previous MDD episode and years of education. All other

demographic variables will be excluded. Noteworthy here is the exclusion of ethnicity,
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which was an important feature for Chekroud et al. (2016) [31]. The EMC dataset
features an approximately homogenously European population (See page 22). This
might lead to ethnicity being less predictive in the current dataset than suggested by
previous research, simply because the number of Non-European patients is too small
to uncover a possible effect.

Additional Non-demographic features that show up within the top predictive features
are SF-12 subscale scores at baseline and heartrate at baseline. Because of their
relative importance to prediction of response even in later timepoints (e.g. top 30

predictors for the week 1 model), these features are included in addition.

To summarize, the following features will be included as predictive variables for the
cluster prediction model: Absolute and relative HAMD sum-scores, HAMD item
principal components, patient age, age of onset, length of current MDD episode,
number of previous MDD episode and years of education, SF-12 subscale scores at
baseline, heartrate at baseline.

Experiment 3 — Prediction of response type clusters

Summary of Experiment 3

Random forest classifiers were used to predict later assignment of patients to the
clusters from Experiment 1 with variables available at Baseline and weeks 1 through 3
from the variable set selected in Experiment 2. Methodology for training and prediction

assessment was the same as for Experiment 2.

Prediction accuracy increased over time, with baseline prediction not being better than
random or the zero-information rates for any cluster. At week 1, predictions for the
Early Response (0) cluster were better than the zero-information rate and random. At
week 2, predictions for all clusters were better than random and predictions for all
clusters except the Delayed Improvement (2) cluster were better than the zero-
information rate. At week 3, all clusters were predicted significantly above random and
better than the zero-information rate with classification accuracies between 86.2% and
95.5%. Specificity was high compared to sensitivity for all clusters at all timepoints.
The high classification accuracy together with the high specificity implied possible
clinical utility in early identification of a patient subpopulation for which early medication
change might be beneficial. Limitations of this predictability and areas for future

investigation of algorithmic performance were discussed.
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Aim

After investigating prediction of traditional response markers for the purpose of feature
selection, the extension of the predictive methodology from experiment 2 to the cluster
structure from experiment 1 is the next step for deriving early clinical decisions based
on the early treatment response patterns. Only if predicting the cluster assignment of
a given patient early is possible with decent accuracy, early clinical decision making
based on these predictions is a viable route for further investigation. If no such
prediction is viable, only the time-course classification after 4 weeks is available as a

new source of information for clinical insight (see page 16).

Method

Design Summary

A set of random forest classifiers with the selected set of predictive variables from the
experiment 2 discussion will be trained with the different clusters from experiment 1 as
binary target variables (patient belonging to cluster X or not). The predictive variable
set will exist in 4 variants for the different prediction timepoints (baseline through week
3). Nested hyperparameter tuning will be employed for training these models.
Accuracy, other test performance metrics and Chi2-Tests against random will be
evaluated based on 10-fold cross validation. Prediction test metrics will be evaluated
in relation to the different timepoints. Feature importance will be calculated for all

predictions.

Algorithmic methodology

The methodology for the random forest prediction in this experiment is identical for the
prediction in experiment 2. For information on the underlying algorithm (see page 59),
the cross-validation procedure (see page 60), the hyperparameter tuning and its
search space (see page 61) and feature importance calculation (see page 62), please

refer to the methodology section of experiment 2.

Predictive and target variables

The predictive variable sets and target variables differ from experiment 2. In the
discussion from experiment 2, a set of predictive variables was selected (see page 75).
These features are used as predictive variables here. The predictive variable set is
given in 4 versions for the different possible timepoints of prediction (baseline through
week 3). Each variable set includes all variables from its own and previous timepoints.

The set of predictive variables includes absolute and relative HAMD sum scores,
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principal component expressions from PCA of HAMD items at baseline (from baseline
through week 2, since no HAMD items were available for week 3), baseline SF-12
subscale scores, baseline heart frequency, the patients age, age at first depressive

episode, length of current episode and years of education.

The target variables are Boolean variables indicating a patient’s assignment to a given
cluster. This can also be referred to as one-hot-encoding variables from the cluster
variable. This means, each cluster is predicted one at a time. This methodology is
opted for over a prediction of which cluster a patient will most likely be assigned to
(predicting all 5 clusters at once) because of the underlying clinical implications. If there
is a clinical hypothesis based on a patient’s cluster prediction, it is likely uninteresting
which cluster a patient belongs to. Instead, the key prediction is whether a patient
belongs to the single cluster in question, so it can accurately be assessed, whether the

hypothesis” suggested intervention is indicated for the given patient.

Results

Prediction performance metrics

Timepoint | Early Early Delayed Early Non-
Respons | Improvemen | Improvemen | Improvemen | Improvemen
e (0) t with | t (2) t without | t (4)
Response Response
1) 3
Zero- 80.1 % 69.3 % 83.3 % 79.7 % 87.6 %
Informatio
n Rate
Baseline 80.3 % 68.7 % 82.6 % 79.1% 87.1% **
Week 1 85.3% *** | 66.4 % 82.3% * 79.1 % 87.5 % ***
Week 2 91.5% *** | 76.2 % *** 82.1 % ** 80.0 % *** 89.9 % ***
Week 3 95.5 9% *** | 87.9 O *** 87.9 % *** 86.2 % *** 94.6 % ***

Table 13 Accuracy of predictive model for the given cluster and timepoint. Stars indicate p-test resulting
from Chi2-Testing vs. random *: p < 0.05, **: p < 0.01, ** p < 0.001. Zero-information rate given for
additional comparison; bold text indicates values higher than the zero-information rate for the given
cluster.

An overview of prediction accuracies per cluster and timepoint is given in Table 13. For
all clusters, accuracy at baseline approximately equals the zero-information rate. At
baseline, only the Non-Improvement cluster (4) shows a significant p value in Chi?-

Testing performance versus random. Accuracy at week 1 is still below the zero-
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information rate for all clusters with predictions for the Early Response (0), the Delayed
Improvement (2) and the Non-Improvement (4) clusters now performing significantly
better than random. Only the predictions for the Early-Response (0) cluster are above
the zero-information rate. In weeks 2 and 3, predictions for all clusters perform
significantly better than random. All predictions in this timeframe are also better than
the zero-information rate except for the Delayed Improvement cluster (2) at week 2.

Additional test performance metrics are shown in Table 14.
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Metric Baseline Week 1 Week 2 Week 3
Early Response (0)

Accuracy 80.3% 85.2% 91.5% 95.5%
Sensitivity 22.2% 64.2% 82.5% 91.8%
Specificity 81.0% 88.9% 93.2% 96.2%
Chi2-p Value 0.857 <0.001 <0.001 <0.001
Cramer’'s V 0.007 0.479 0.705 0.844
Early Improvement with Response (1)

Accuracy 68.7% 66.4% 76.2% 87.9%
Sensitivity 36.8% 29.4% 62.4% 83.2%
Specificity 69.5% 69.3% 81.4% 89.8%
Chi2-p Value 0.732 0.968 <0.001 <0.001
Cramer’s V 0.012 0.001 0.421 0.707
Delayed Improvement (2)

Accuracy 82.6% 82.3% 82.1% 87.9%
Sensitivity 0.0% 38.1% 38.5% 68.0%
Specificity 82.9% 83.6% 83.8% 91.1%
Chi2-p Value 0.987 0.021 0.007 < 0.001
Cramer’s V <0.001 0.087 0.102 0.537
Early Improvement without Response (3)

Accuracy 79.1% 79.1% 80.0% 86.2%
Sensitivity 28.6% 28.6% 54.0% 68.8%
Specificity 79.7% 79.7% 81.4% 90.0%
Chiz-p Value 0.947 0.947 <0.001 <0.001
Cramer’s V 0.002 0.002 0.188 0.552
Non-Improvement (4)

Accuracy 87.1% 87.5% 89.9% 94.6%
Sensitivity 50.0% 54.1% 65.2% 87.3%
Specificity 87.5% 89.4% 92.5% 95.4%
Chiz-p Value 0.009 <0.001 <0.001 <0.001
Cramer’s V 0.099 0.279 0.494 0.736

Table 14: Binary classification metrics of random forest classifiers with final selection variable set as
predictors and the given cluster assignment as target variable. Chi-2-Metric and Cramer’s V were
calculated in comparison to random guessing.

Feature importance

Feature importance values were calculated for all timepoints and all target clusters
individually. The importance scores were averaged over all 5 clusters for each
timepoint. Results are given in Table 15. Individual importance scores for the predictive

models can be found in the appendix.
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Variable Baseline Week 1 Week 2 Week 3
Rel. Week 3 HAMD | Not included Not included Not included 0.234
Rel. Week 2 HAMD | Not included Not included 0.204 0.150
Rel. Week 1 HAMD | Not included 0.164 0.128 0.132
Abs. Week 3 HAMD | Not included Not included Not included 0.072
Abs. Week 2 HAMD | Not included Not included 0.052 0.026
Abs. Week 1 HAMD | Not included 0.065 0.034 0.024
Abs. Baseline

HAMD 0.055 0.036 0.022 0.016
HAMD PCA V02-0 Not included Not included 0.034 0.022
HAMD PCA V02-1 Not included Not included 0.031 0.019
HAMD PCA V02-2 Not included Not included 0.025 0.014
HAMD PCA V02-3 Not included Not included 0.027 0.016
HAMD PCA V02-4 Not included Not included 0.025 0.015
HAMD PCA V01-0 Not included 0.042 0.022 0.014
HAMD PCA V01-1 Not included 0.055 0.029 0.022
HAMD PCA V01-2 Not included 0.048 0.024 0.015
HAMD PCA V01-3 Not included 0.039 0.021 0.014
HAMD PCA V01-4 Not included 0.040 0.023 0.013
HAMD PCA BL-0 0.080 0.043 0.025 0.015
HAMD PCA BL-1 0.073 0.041 0.024 0.014
HAMD PCA BL-2 0.073 0.038 0.022 0.014
HAMD PCA BL-3 0.068 0.037 0.023 0.014
HAMD PCA BL-4 0.065 0.036 0.022 0.012
SF-12-SR SSC 0.076 0.039 0.022 0.013
SF-12-SR PSC 0.071 0.034 0.020 0.013
SF-12-CR SSC 0.069 0.038 0.021 0.014
SF-12-CR PSC 0.070 0.037 0.022 0.014
Prev. Episodes 0.036 0.021 0.012 0.008
Age at Onset 0.061 0.033 0.019 0.011
Current Age 0.055 0.031 0.019 0.010
Length of Episode 0.058 0.031 0.018 0.011
Baseline Heartrate 0.046 0.026 0.015 0.008
Years of education 0.044 0.026 0.016 0.008

Table 15: Feature importance scores averaged over predictive models for all clusters at the given
timepoints. Variable Abbreviations: Rel. Week X HAMD: Relative HAMD Score to baseline. Abs. Week
X HAMD: Absolute HAMD score. HAMD PCA X-Y: Principle component analysis of HAMD items at
timepoint X, component Y (zero indexed). SF-12 X Y: SF-12 score self-rated (SR) or clinician rated (CR)
somatic subscale (SSC) or psychiatric subscale (PSC). Prev. episodes: Number of previous depressive
episodes.
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For prediction from baseline, the most important features were HAMD item principle
components, followed by SF-12 sum-scores and lastly absolute HAMD score as well

as demographic and clinical history information.

At week 1, the relative HAMD value from week 1 was the most important predictor by
a large margin to the absolute HAMD score at week 1, the second most important
predictor. After that, a group of variables including the HAMD item principle
components for both timepoints, the absolute HAMD score from baseline and the SF-
12 scores had roughly comparable average feature importance scores. The clinical

history and demographic variables showed the lowest feature importance.

A similar pattern was found for weeks 2 and 3: All relative HAMD scores where the
most important predictors by a large margin, with the latest absolute HAMD score being
the next most important predictor. Next, the HAMD item principle components for all
timepoints, the absolute HAMD score for all earlier timepoints and the SF-12 scores
had roughly comparable average feature importance scores. Variables from clinical

history and demographic data showed the lowest feature importance scores.

Discussion

Implications from the performance metrics

Prediction accuracy increases over time for all clusters. For week 2, predictions for all
clusters are significantly better than random and at week 3, predictions for all clusters
are both significantly better than random and above the zero-information rate. This
distinction is important, as the target variables are highly imbalanced with zero-
information rates between 69.4% and 87.6%. With labels that imbalanced, it is
common to find results significantly above random, that have lower accuracy than the
zero-information rate. This is easily explained when assuming a maximally imbalanced
target variable with only 1 element that belongs to class A while all other elements
belong to class B. The zero-information rate for this target is — depending on the cluster
size — close to 100%. If all elements are assumed to be class B, this zero-information
rate accuracy will be achieved. If the classes are randomly assigned based on their
proportions, the likelihood of the single class A label to be correctly assigned is low. If
class imbalance involves more than a single element but remains heavily skewed, this
can lead to the phenomenon of predictions performing worse than the zero-information
rate, while being better than random. Therefore, the zero-information rate is the better

evaluator in case of the imbalanced class labels that were used.
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The time course for individual clusters can be explained by their degree of separation
from other clusters at the given time point. This can be approximated by the degree of
separation of the cluster mean values as seen in Figure 22. Because the clustering
algorithm from Experiment 1 takes all timepoints into account as individual variables,
the degree of separation is cumulative over time. These interpretations are in line with
the results from the current experiment. At baseline, no degree of separation exists
between the cluster means and no results above random or above the zero-information
rate. At week 1, only the Early Response (0) cluster has a large degree of separation
from all other clusters. The Early Improvement clusters (1 and 3) have close to identical
cluster means, as do the Non-Improvement (4) and Delayed Improvement (2) cluster.
This implies a low degree of cluster separation at that point and subsequently, only the
Early Response cluster can be predicted above random and zero-information rate at
that timepoint. At week 2, some difference in cluster means exists between the two
mentioned cluster pairs, leading to prediction results above random for all clusters and
above the zero-information rate for all clusters except Delayed Improvement (2)
cluster. At week 3, all cluster means show some degree of separation. The Early
Improvement without response (3) and the Delayed Improvement (2) cluster do show
a similar cluster mean for this timepoint, but these showed a difference in cluster
means before then. All clusters therefore accumulated a sufficiently high degree of
separation and as result, all clusters can be differentiated from each other with high

accuracies above the zero-information rate.

Looking at the other predictive metrics, it is noteworthy that the increase in accuracy
over time is mainly driven by an increase in sensitivity. Specificity is consistently high
for all clusters at all timepoints. This is an expected result for an imbalanced target
variable, but it has important clinical implications. Since a test with high specificity has
few false positives, positive predictive value is generally high as soon as moderate
sensitivity is reached (depending on the zero-information rate). This makes a test ideal
for identifying a population, for which some intervention is indicated, when the
associated risk of not correctly identifying this population is low. This is the case for
early clinical intervention in patients with depression. When a patient can be identified
as belonging to a cluster for which a hypothetical intervention (e.g. early change of
medication) is indicated, this patient would be (on hypothetical average) less likely to
receive medication for too long. If this patient is not correctly identified early, he

receives treatment as usual with a change of medication after 4 weeks, which has no
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additional cost (when compared to all patients receiving treatment as usual). Since
specificity of the cluster predictions from this experiment is high, these could — provided
interventions can be shown to be effective in one or multiple of the clusters — be used

as a test for identifying candidates for this intervention.

Limitations of predictability

The key result of this experiment was showing predictability of cluster assignment with
high accuracies along all clusters. With predictive accuracies between 76.2% and
91.5% at week 2 and consistently good specificity, it seems viable to base clinical
interventions on the predicted cluster assignment, though some limitations must be

considered.

First, while the terminology of this thesis consistently used the term “prediction”, the
current experiment did not in fact predict cluster assignment for any timepoints after
baseline. This is because the cluster assignment is directly based on the relative
HAMD scores, which are given to the classification algorithm as variables. It is easy to
imagine the classification algorithm achieving (near) perfect accuracy with all 4 relative
HAMD values (classification based on full information). When only some of the relative
HAMD scores are available, the algorithm similarly classifies based on partial
information. Additionally, to this classification based on partial information, the
algorithm utilizes information form the other available variables to improve its
classification result. This can be conceptualized as the algorithm predicting the likely
relative HAMD scores for the remaining timepoints. While mathematically inaccurate,
this conceptualization is useful for distinguishing the partial classification task from the
actual prediction task as two different information sources for the purposes of this
discussion. The feature importance scores suggest, the partial classification variables
(relative HAMD sum scores) to be much more important, than the other predictive
variables. This difference in importance increases over time, which is consistent with
the ratio of available to predicted information increasing over time. If distinction
between these two information sources is required for future research, a possible way
to test this would be to test the prediction vs. classification based on (partial) random

walks.

Second, the accuracy in this experiment has a possibility of being overestimated due
to data leakage. For performing variable selection on the results from Experiment 2,

the entire dataset was used. Therefore, it is already known that the selected variables
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have some predictive significance for the entire dataset. By now evaluating a prediction
based on these variables via cross-validation might introduce some overestimation
based on dataset noise captured in the variable selection. Since this noise would not
generalize to external data, the accuracy estimated by cross-validation might be too
high. This overestimation was considered acceptable due to several factors. First,
since variable selection and final prediction were done on two related, but different
target variables, the amount of captured noise was considered to likely be low. Second,
the process of variable selection including theoretical justification of the variable
choices instead of purely accuracy-derived reasoning further decreases the risk of
capturing noise. And third, considering the two aforementioned reasons, any remaining
overestimation of accuracy was considered less important than the possible decrease
in result interpretability due to lower dataset size. This refers to the possibility of
avoiding this data leak by performing Experiment 2 and variable selection on only part
of the dataset, while estimating accuracy in Experiment 3 on the remaining dataset
(hold-out validation). Alternatively, a (dual) nested cross-validation approach could be
used, though that was cost-prohibitive due to multiplicative computational cost
increase for the already (single) nested cross-validation during hyperparameter tuning

(See page 61).

A third limitation stems from the EMC dataset properties. Some patients without early
improvement were randomized into the early medication change arm after 2 weeks, so
not all patients received the same medication for the entire prediction period. And since
the early medication change was randomized, it is inherently unpredictable from the
datapoints before. This might somewhat prevent accurate prediction, especially for the
Non-Improvement (4) and Delayed Improvement (2) clusters since these would be the
clusters expected to have most of the randomized patients. This difficulty in predicting
accurately would likely lead to an underestimation of prediction accuracy, which —
considering the good prediction accuracy shown for later timepoints — is
inconsequential for result interpretability. The good prediction accuracy also
retroactively supports the decision from Experiment 1, that randomized patients were
not excluded from analysis. It was assumed there, that a higher number of patients
was more beneficial to overall prediction accuracy than the difficulties arising from the

randomization.
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Combined Discussion

Deriving hypotheses

The goal of this thesis was to create data-driven hypotheses to improve clinical
decision making in the first 4 weeks of antidepressant treatment response (see page
16). In order to generate these hypotheses, it was attempted to identify clusters of
treatment response over time (Experiment 1) and to predict and/or partially predict

these patterns of response (Experiments 2 and 3).

Utility vs. mechanistic claim

Keeping this overarching goal in mind, it is important to discuss what precisely was
investigated by deriving the cluster structure in Experiment 1. The aim of that
experiment was to stratify patients by their respective early treatment response
patterns in order to identify possible information for clinical decision making. The
cluster structure proposed here should be understood as a mathematically optimized
way to capture the room of possible response patterns, with the mathematical validity
of this capture being shown by the goodness of fit measures discussed in detail above
(see page 46). The good generalization to the validation dataset should also not be
taken in the sense of “both datasets having the same clusters” but as “the cluster
structure from the training set is a valid way of describing the patterns found in the
validation dataset”. If training and validation dataset were reversed, the cluster

structure would likely look different and result in another valid description.

Testing whether the early treatment response patterns are a valid description of the
external validation data set is nevertheless a key step before investigating the cluster
structure further, especially considering properties of the EMC dataset. Not all patients
that were grouped into the patterns of early treatment response received the same
medication for all 4 weeks. Some of the patients were randomized into the early
medication change group after 2 weeks. These patients could be excluded from
analysis, but since the patterns are shown to be a valid descriptor for an external
dataset without this property, having a higher number of patients for later predictive
analysis is likely to be beneficial for uncovering patterns. The author assumed that the
benefits of the higher patient number would outweigh the negative effects from the
randomized patients being included. This assumption was somewhat supported by the
good generalization of the response patterns found in this experiment to the external

validation dataset and further supported by the results from Experiment 3, where even
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with inclusion of the randomized patients, good prediction accuracy for the cluster

structure was achieved.

After having shown mathematical validity and good generalization of the data set, the
utility of the cluster structure can be investigated. This is different from attempts of
stratifying patients into subgroups of patients with different underlying mechanisms. It
is very possible that there are no “depression subgroups” that could be identified by a
cluster structure on the level of symptom severity over time. In order to claim a possible
mechanistic distinction between clusters, it would be necessary to test against the null
hypothesis of there being no clusters and patients instead being described by a
continuous distribution of some kind, which could be done by Bayesian modelling (see
page 55).

In order to show utility, this testing doesn’t have to be performed. This is because the
“real” structure underlying the identified clusters is unimportant, if a benefit — for clinical
decision making in this case — can be shown. This can be conceptualized by imagining
multiple normal gaussian distributions arbitrarily split into clusters. The most extreme
clusters in this case would show distinctions between patients, regardless of the
underlying real distribution in between. They thus have utility, without any information
about the real distribution being required. See Figure 31 for a visualization of this

concept.

0.6
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Figure 31: Two overlapping normal distributions being arbitrarily split into 5 clusters along the x axis.
Clusters 0, 1 and 4 show good separation of the two hypothetical patient groups without any information
about the real underlying distributions. This is an example of a cluster structure with utility. Graph created
with [54].
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Utility of the 5-cluster structure
Keeping the distinction between a claim of utility and a mechanistical claim in mind,
the utility of the 5-cluster structure proposed in Experiment 1 should be examined in

detail.

The between cluster differences in descriptive variables (see page 52) serve as a
sanity check and first evidence of utility. As discussed in detail above, previously
established predictors of response from clinical history as well as demographic data
align with statistically significant differences between the clusters. While this result is
unsurprising, given that the cluster structure can be interpreted in close relation to
traditional response definitions (see page 46), establishing it was nonetheless
important, because if non-correlation would have been shown, the feasibility of

predicting cluster assignment early would have to undergo serious scrutiny.

Additional evidence of utility stems from comparing the cluster structure proposed here
with proposed structures from previous literature (see page 50). The Delayed
Improvement Cluster (2) runs roughly parallel to the first weeks of classes 7 and 8 from
Uher et al. (2011), both of which show good overall response in the later course of
treatment [10]. This suggests a subset of patients assigned to the Delayed
Improvement Cluster (2) benefiting from a longer course of treatment, even though the
traditional 50% response criterium would not be met after 4 weeks for these patients.
This directly translates into a testable clinical hypothesis (formulated below) as per the
goal of this thesis. The clinical information for this is based on the cluster assignment
at week 4 alone, without any prediction being necessary. This establishes the
possibility of the cluster structure being useful independent of any prediction task. To
be considered evidence of clinical utility, further research to test the hypothesis is
required, but deriving a testable hypothesis like this at least proves utility for future

research.

In order to derive clinical utility, two possible sources of information were discussed in
the thesis rationale (see page 16). An example of the first — being the early treatment
response patterns over time — was discussed in the previous paragraph. For the
second, treatment response needs to be predicted, instead of being classified ex post
facto. This was done directly in Experiment 2, where treatment response as defined by
traditional criteria was predicted based on clinical and demographic variables. This

prediction was significantly better than random and performed better than the —
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currently state of the art — early improvement criterium (see page 74 for detailed
discussion of this). This shows — in addition to previous research on the subject (see
page 11) — that predictive information that isn't being used by the current
antidepressant treatment strategy or a strategy based on the early improvement
criterium is contained in these clinical variables. In Experiment 3, the most promising
variables for containing this information from Experiment 2 were used to predict (or
classify based on partial information) later assignment to the 5-cluster structure. The
high classification accuracies in conjunction with the high specificity of this prediction
task before the traditional week 4 timepoint (see page 82 and 84 for detailed discussion
into the interpretability of these metrics) act as proof for the conceptual value of

combining the response time course with the predictive information.

With prediction of later cluster assignment being possible, the utility of the clusters can
be derived from them benefitting from distinct clinical intervention. The most obvious
hypothesis to derive from the cluster structure is then based on accelerating the
decisions of current antidepressant treatment strategy forward for the most extreme
group. The Non-Improvement (4) Cluster shows (on average) no treatment response
after 4 weeks. If we can predict early, that a patient will belong to this cluster, it might
be beneficial for this patient to receive an adapted course of treatment as early as
possible. The utility of the cluster structure in this hypothesis over direct prediction of
the traditional response criterium as in Experiment 2 stems from the focus on the
extreme group of non-responders. This moves the decision boundary away from the
edge cases of traditional response, which is directly associated with possible
interventional cost. If traditional response is predicted, there will likely be edge-cases
that would wrongly be predicted to be Non-Responders by week 4. These patients
might then wrongly receive an early adaptation of treatment strategy when they might
have benefitted from the longer treatment continuation that would’ve been chosen with
traditional week 4 evaluation. When predicting the extreme group in the cluster
structure, a patient wrongly predicted to be part of that group is still unlikely to show
response by week 4 and thus would’ve received an adaptation of treatment strategy at
that point anyway. This reduces the cost of the misclassification error. The cluster
structure proposed here provides a data-derived, mathematically valid and
generalizable (as shown in Experiment 1) way of defining a decision boundary for this
task, which is likely preferable over arbitrarily adding a “margin of error” to the decision

boundary of predicting traditional response. By combining this argument with the
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predictability of the cluster structure established in Experiment 3 and discussed in the

previous paragraph, the utility of the cluster structure is supported further.

Formulating testable hypotheses
In the previous subsection, two possible clinical hypotheses were derived in the
discussion of cluster utility. In this subsection these will be expanded upon and be

formulated as testable hypotheses.

The first hypothesis was derived from the parallel response pattern of the Delayed
Improvement (2) cluster to classes from Uher et al. (2011) which showed good
treatment response in the later time course of treatment [10]. If the patients assigned
to the Delayed Improvement (2) cluster have a comparatively large proportion of
patients who show good antidepressant effects later in the treatment course, it might
be beneficial to delay treatment evaluation for this group for longer than 4 weeks. This
effect would likely be a trade-off between some patients receiving a delay of necessary
treatment adaptation — meaning prolonged symptom severity and other patients not
receiving unnecessary treatment adaptation which might lead to lower unwanted
pharmacological effects and prevent ineffective treatment. Whether this trade-off is
beneficial for a group on average will depend on the proportion of patients within this

group.

Before this proportion can be investigated, the definition of the group warrants closer
attention. It is not necessary, that defining the group for possible treatment delay by
the cluster structure proposed in this paper is ideal. While the cluster structure was
utilized to identify this group, the cluster interpretation along the traditional
improvement and response criteria could result in preferable group proportion for the
aforementioned trade-off. Though the inverse statement could be true just as likely,

given the currently available data. Therefore, both definitions should be investigated.

In order to accurately assess the effects of a possible delay of treatment adaptation on
the patient group, the overall proportion also isn’t the only factor. The time-duration of
a possible delay would have strong effects of the cost-benefit analysis. It should
therefore be established, which timepoint for evaluation would be ideal, given the

proportions of the group.

With taking these points into account, the first hypothesis is formulated:
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Hypothesis 1: A subgroup of patients with MDD benefits on average from non-adapted
antidepressant treatment continuation until a delayed timepoint (later than week 4).
This subgroup is defined either by assignment to the Delayed Improvement (2) cluster
as proposed by this thesis or is defined as all patients without early improvement (>
20% improvement by week 2) who show no response (> 50% improvement by week
4) but do show delayed improvement (> 20% improvement by week 4). An optimal
timepoint for delayed treatment adaptation in case of non-response to non-adapted

treatment can be established for this subgroup.

The second hypothesis was derived from the predictability of the cluster structure.
Since the data in this thesis suggests that assignment to the Non-Improvement (4)
cluster can be predicted accurately for some patients before week 4, it seems obvious

to accelerate treatment adaptation for these patients.

In order to formulate this hypothesis in a well-defined way, it is again important to
consider the definition of the patient group an intervention would apply to. As opposed
to Hypothesis 1, an intervention according to this hypothesis doesn’t necessarily have
to be done for all patients for which corresponding cluster assignment is predicted.
Instead, individual certainty of the prediction can be considered, since the random
forest classifiers used for the prediction in Experiment 3 allow for estimation of a degree
of certainty (see page 59). By considering the individual prediction certainty for each
patient, a cost-benefit analysis doesn’t necessarily have to be performed groupwise
but can be performed per-patient. This naturally then provides excellent support not
only for clinical, but also for shared decision making — taking into account the individual

patients preferences for safety or fast treatment adaptation.

If the algorithmic tools from this thesis are used for defining patients for possible early
treatment adaptation, future investigation might be unnecessarily limited into these
specific algorithmic tools. As discussed in detail above, the cluster structure proposed
here might not necessarily be an ideal description of the underlying patient distribution
(see page 86). Therefore, it might also not capture the optimal decision boundary for
the prediction task (see page 88 for a detailed discussion of this). In addition, the
prediction algorithm is just one possible algorithm limited to the set of clinical prediction
variables available in the EMC dataset. This set of predictors is quite arbitrary and will
most likely be incompatible with other research datasets or patient data from clinical

practice.
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Considering these points, the second hypothesis is formulated:

Hypothesis 2: Patients for which later assignment to an extreme group of Non-
Improvers can be predicted with a high probability earlier than week 4 benefit from
adaptation of treatment strategy at that earlier timepoint. Defining the extreme group
as the Non-Improvement (4) cluster and using the prediction algorithm as proposed in

this thesis is suitable and clinically beneficial over treatment strategy as usual.

Future research strategy regarding the hypotheses

The first steps for testing Hypothesis 1 should — in the authors opinion — be to describe
the two possible patient group definitions regarding a possible benefit from non-
adopted treatment continuation. For this, existing datasets in which patients received
non-adapted antidepressant treatment for episodes longer than 4 weeks can be used.
The patient groups according to both definitions can be identified in that dataset and
classified by whether these patients express later response or remission. In a first step,
it could then be time-stratified, which of the remitting patients would be detectable by
treatment evaluation according to the response criterium at differing later timepoints —
which patients of the subgroup show response by week 5, which by week 6 and so on.
These proportions of responders found at different possible evaluation timepoints can
then be combined with knowledge about antidepressant response after treatment
adaptation (or if possible, with treatment adaptation data on the same patients from
the same dataset). This combination can then be formulated as a mathematical
optimization model (the details of which depend on the dataset) of the groupwise
average cost-benefit analysis explained in the previous subsection. If this analysis, that
can theoretically be performed purely in silico with already existing datasets, supports
Hypothesis 1 and thus a benefit of treatment delay, it would constitute a strong
scientific (and ethical) background for clinical trials to directly investigate the
hypothesis. At the same time, this analysis is required to establish the optimal
parameters (subgroup definition and treatment delay timepoint) for such clinical trials
to take place. By these arguments, this proposed future strategy can fulfil both the
necessary and sufficient conditions in order to move from the realm of psychiatric data

science into clinical decision making, in case Hypothesis 1 isn’t falsified before then.

In regard to Hypothesis 2, the next research steps — in the authors opinion — should
focus on validation and generalization of the prediction algorithm and the suitability of

the cluster definition. Since any external datasets, with which this validation could be
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undertaken, likely have some difference in the set of available predictive variables and
since practical clinical data is likely to differ even more in that regard, a more robust
prediction algorithm that can — at least — handle missing variables should be trained.
This could be as easy as retraining the prediction algorithm from Experiment 3 with
blinding (setting to a constant for all patients) different combinations of variables, but
depending on the available future validation datasets, other generalizations or
imputations might be appropriate. This generalization of the prediction algorithm
should ideally not be trained on the validation dataset at all and if required only be
trained on part of the dataset, so that leak-free evaluation of prediction accuracy can
occur without the limitations in this thesis (see page 84 for details). At the same time
as the evaluation of prediction accuracy, the conformity of the — theoretical — early
treatment adaptation after prediction with traditional treatment evaluation after 4 weeks
can be tested, which should lead to direct estimates of numbers needed to treat and
harm by the proposed intervention. Depending on these results, longitudinal clinical

research can then be considered as the next step.

Additional utility of the developed algorithmic tools

In addition to the data-driven hypotheses derived from the cluster structure and the
corresponding prediction algorithm, these algorithmic tools might have additional use

for future scientific research.

Above, the difference of a clustering with mechanistic claim and a utility clustering as
done in this thesis was discussed in detail (see page 86). What was not explored in
more detail there, is that a utility-based clustering can be used for further investigation
into mechanistic hypotheses without originally having this claim in mind. This is due to
the effect illustrated in Figure 31, where an arbitrary clustering can lead to good
separation between overlapping distributions without assumptions of the underlying
distributions. The clustering proposed in this thesis for example provides a
mathematically optimized and generalizable way, to separate the extreme groups of
Non-Responders (4) and Early Responders (0). By calculation of the silhouette sample
score, the algorithm also provides a way to select the most typical patients for these
groups. This might be beneficial over just identifying the most extreme cases, since
these might also be quite untypical. The associative comparison of these extreme
groups — for example in the field of genetics or epigenetics — could then possibly
uncover group-level associations, which might be masked while not investigating
extreme groups or when selecting atypical patients for further investigation. In case
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such research is undertaken, the results would need to be verified on patients not part
of the initial extreme group selection, otherwise a mechanistic claim of the cluster
structure would be assumed without this being justifiable. This example of extreme
groups can obviously be generalized to the remaining cluster structure. If research is
undertaken into the difference or commonalities between different trajectories of the
early treatment response time-course, the cluster structure and its algorithm proposed
here do provide a way of defining and separating groups of interest and assessing

typicality of a given patient for that group.

The predictive algorithm built in Experiment 2 was discussed in comparison to the early
improvement criterium above (see page 74). The early improvement criterium can be
seen as the current “state of the art” in early prediction of antidepressant response
(see page 10). Showing, that the state of the art can be outperformed by a rather simple
prediction algorithm without feature selection (which wasn’t done until Experiment 3,
so all cross-validation accuracies in Experiment 2 are interpretable leak-free), is a good
proof of concept for the usage of such prediction algorithms in clinical decision making
in favour of the early improvement criterium. Before prediction algorithms like this can
be deployed in clinical practice, they need to be designed robust to changing sets of
predictive variables and missing values, which are both characteristics to be expected
from practical clinical data. This likely requires future work in combining multiple
research datasets and collecting an extensive pool of data from clinical practice. The
success of the direct prediction algorithm developed in this thesis provides support for
the possible value of such research, which is significant scientific utility as additional

result of Experiment 2.

The prediction algorithms from Experiments 2 and 3 have an additional use cases for
science. Because they selected a set of informative clinical variables for prediction,
any potentially predictive variables that are added to this set can be evaluated based
on comparison of predictive performance. This is especially relevant in the field of
biomarker search, since testing for increase of predictive performance over clinical
variables alone can give a strong argument for validity for any biomarkers. If
biomarkers do not increase predictive performance, the biomarker might of course still
be interesting to better understand the pathophysiology of depression or as on
objectifiable (forensic) marker of depression, but it will then unlikely be of use in clinical
practice — the information contained within the biomarker can theoretically be gained

just as well by clinical observation alone, which will usually be much cheaper.
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Utilization of the predictive algorithms in this manner is currently already being planned
for future research in the group for which this thesis was written, which emphasizes

the potential value of the algorithms for this purpose.

Conclusion

MDD is disease with large importance both on the individual patient level and the
healthcare system level. To improve treatment response rates and to mitigate the
multitude of adverse effects, research into the most effective treatment strategies is
paramount. In order to improve upon current treatment strategy, research into the
underlying pathophysiology of depression, into novel pharmacological substances and
into specialised psychotherapeutical interventions (and into many other areas) are
being undertaken. But while these fields are beginning to benefit clinical practice, it is
also important to make the best use of existing information and existing treatment

strategies.

The current antidepressant treatment strategy is inadequate in that regard. The goal
of this thesis was to investigate sources of clinical information that were potentially
underused and search for possible hypotheses regarding clinical decision making
based on this information. And while hypotheses were found by utilizing the machine
learning methodology in this thesis, this is only a small step in establishing better
utilization of the existing clinical data.

Continued investigation into the hypotheses from this thesis as well as into other
potential sources of underused information has the potential to improve practical
clinical decision making and consecutively diminish patient suffering and societal
impact. And until the aforementioned other areas of research bring big leaps into
practical treatment of depression, the small incremental improvements to be expected
from this continued investigation are one of only a few potential ways of providing an

immediate benefit to suffering patients.
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Abstract

Current antidepressant treatment strategies in MDD evaluate treatment response only
after 4 weeks of treatment duration. The early improvement criterium (20% sum score
improvement after 2 weeks), which is currently state of the art for earlier prediction of
treatment response, wasn'’t proven to be an effective trigger for clinical decision making
so far. This thesis investigates potential sources of predictive information other than
symptom severity sum scores, in order to find new hypotheses for future treatment
strategies. In Experiment 1, early treatment response patterns over time are identified
by clustering with the k-means-algorithm and several possible cluster-structures are
evaluated for mathematical fit as well as clinical interpretability. A structure with 5
clusters of early response is identified as a candidate for further investigation and
hypothesis building. In Experiment 2, traditional clinical response and remission criteria
are predicted using random forest classifiers with different sets of clinical variables at
different timepoints as predictors. The classifiers are evaluated in comparison to the
early improvement criterium which is being outperformed for some of the predictor sets
at any timepoint. This shows that predictive information is contained in clinical variables
other than the sum score. These variables are assessed and selected for further model
building based on their relative feature importance scores. In Experiment 3, a random
forest classifier based on the variables selected in Experiment 2 is trained to predict
assignment to the clusters from Experiment 1, thereby combining the two sources of
predictive information. The results show this prediction to be possible above the zero-
information rate for later timepoints. In the combined discussion, the results from these
three Experiments are combined to formulate two new hypotheses for treatment
strategy. The first hypothesis assumes that the “Delayed Improvement” cluster from
Experiment 1 benefits (on average) from treatment continuation longer than 4 weeks
and the second hypothesis assumes that patients that will likely — based on predictions
like in Experiment 3 — be part of the “Non Improvement” cluster from Experiment 1
benefit from early medication change. The role of the algorithms from this thesis for

research into the hypotheses as well as their additional scientific use is discussed.
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Zusammenfassung

Aktuelle antidepressive Therapiestrategien fir die Behandlung depressiver
Erkrankungen evaluieren Therapieansprechen nach einer Therapiedauer von 4
Wochen. Das sogenannte ,early improvement‘-Kriterium (20% Symptom-
Summenscore Verbesserung in 2 Wochen nach Therapiebeginn), der aktuelle Stand
der Wissenschaft hinsichtlich friherer Verlaufspradiktion, konnte nach bisheriger
Datenlage bislang nicht als verlassliche klinische Entscheidungshilfe etabliert werden.
Diese Dissertation untersucht potenzielle Quellen fur neue pradiktive Information, um
Uberprufbare Hypothesen fur zukinftige Therapiestrategien zu generieren. In
Experiment 1 wurden typische Verlaufsmuster klinischen Ansprechens identifiziert,
indem Therapieverlaufe mit dem k-means-Algorithmus gruppiert werden. Mehrere
mogliche Gruppierungen wurden hinsichtlich der Gute der mathematischen
Beschreibung sowie ihrer klinischen Interpretierbarkeit untersucht und diskutiert. Eine
Gruppierung in 5 typische Verlaufsmuster wurde als Kandidat fur weitere
Untersuchungen sowie Hypothesenbildung identifiziert. In Experiment 2 wurden
random forest Klassifikationsalgorithmen eingesetzt, um Eintreten der traditionellen
Response- und Remissionskriterien der Depression zu pradizieren. Hierzu wurden
mehrere  Gruppen von Variablen zu unterschiedlichen Zeitpunkten im
Behandlungsverlauf als Pradiktoren eingesetzt. Die resultierenden Klassifikatoren
werden mit dem ,early improvement® Kriterium verglichen, dabei erreichten erstere an
jedem Zeitpunkt eine hohere Genauigkeit fur wenigstens einen Teil der
Pradiktorengruppen. Dies zeigte den pradiktiven Wert klinischer Variablen Gber die
Summenscores hinaus. Die pradiktiven Variablen wurden anhand ihrer Bedeutung fur
die Klassifikation untersucht und fir weitere Modellbildung ausgewahlt. In Experiment
3 wurde ein random forest Klassifikationsalgorithmus mit den in Experiment 2
gewahlten Pradiktionsvariablen trainiert, um Zugehdrigkeit zu den Verlaufsgruppen
aus Experiment 1 zu pradizieren. So wurden die beiden potenziellen Quellen flr
klinischen Informationsgewinn kombiniert. Es wurde gezeigt, dass diese Pradiktion im
spateren Therapieverlauf Uber die Null-Informationsrate hinaus maoglich ist. In der
Diskussion wurden die Ergebnisse der drei Experimente zusammengeflgt, um zwei
neue Hypothesen zur antidepressiven Therapiestrategie abzuleiten. Die erste
Hypothese nimmt an, dass Patienten aus der ,Delayed Improvement* Gruppe aus
Experiment 1 im Durchschnitt von einer langeren antidepressiven Therapiedauer als 4

Wochen profitieren. Die zweite Hypothese nimmt einen Nutzen eines frihen
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Medikationswechsels bei Patienten an, bei denen eine spatere Zuordnung zur ,Non
Improvement” Gruppe aus Experiment 1 mit hoher Wahrscheinlichkeit pradiziert wird
(vergleichbar mit der Pradiktion in Experiment 3). Die Rolle der Algorithmen aus dieser
Dissertation und deren Rolle fur die zuklnftige Hypothesenprifung sowie zusatzliche
wissenschaftliche Nutzung wurden diskutiert.
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Appendix

Experiment 1

K-Means Clustering of relative HAMD Score over time (Validation)

1.0

0.9

Relative HAMD-Value
2 g & g

g

00

K-Means Clustering of relative HAMD Score over time (Validation)}

1.0

08

5

Relative HAMD-Value
&

[} 1 2 3 4
Week

g

g

107



Relative HAMD-Value

08

0.8

o7

08

05

0.4

03

0z

01

00

Silhouette Plot for K-Means Clustering (Validation)

01 L] 01 0z 03 04 05 06
Silhouette-Score

K-Means Clustering of relative HAMD Score over time (Validation)

woha =

Cluster
[
[
- 2

Cluster

108



Relative HAMD-Value

0.1

0.9

0.8

07

06

05

0.4

03

0z

01

00

oo

Silhouette Plot for K-Means Clustering (Validation)

01 0z 03 04 05
Silhouette-Score

K-Means Clustering of relative HAMD Score over time (Validation)

%I ]

oW b= O

Cluster

w o =

Cluster

109



Relative HAMD-Value

09

08

07

06

05

04

03

02

0.1

0.0

K-Means Clustering of relative HAMD Score over time (Validation)

©

Silhouette Plot for K-Means Clustering (Validation)

1=

Week

02
Silhouette-Score

=

06

[ R Y

Cluster

110



Relative HAMD-Value

0.9

0.8

07

06

05

0.4

03

0z

01

0.0

K-Means Clustering of relative HAMD Score over time

Silhouette Plot for K-Means Clustering

o0

0.z
Silhouette-Score

Do kW=D

Cluster

111



Relative HAMD-Value

08

0.8

o7

06

05

04

03

0z

01

0.0

K-Means Clustering of relative HAMD Score over time (Validation)

o0

Silhouette Plot for K-Means Clustering (Validation)

01

Silhouette-Score

0.3

04

05

Do kW=D

Cluster

112



Relative HAMD-Value
= = =] = =
@ ~ o w [=]

=3
o

0.4

03

0z

01

0.0

K-Means Clustering of relative HAMD Score over time

Silhouette Plot for K-Means Clustering

0.0

o1
Silhouette-Score

02

N mo kWO

Cluster

=
@
P T RO

113



Relative HAMD-Value
= =] =4
@ = @

o
o

0.4

03

0z

01

0.0

K-Means Clustering of relative HAMD Score over time (Validation)

Silhouette Plot for K-Means Clustering (Validation)

00

02
Silhouette-Score

0.4

06

N mo kWO

Cluster

=
@
P T RO

114



Relative HAMD-Value

0.9

0.8

07

06

05

0.4

03

0z

01

0.0

K-Means Clustering of relative HAMD Score over time

Silhouette Plot for K-Means Clustering

00

[

Silhouette-Score

0z

N R =]

Cluster

=
@
@ w swNn = o d

115



Relative HAMD-Value
=} (=]
= @

=
@

o
o

0.4

03

0z

01

0.0

K-Means Clustering of relative HAMD Score over time (Validation)

Silhouette Plot for K-Means Clustering (Validation)

0.0

02
Silhouette-Score

04

06

N R =]

Cluster

=
@
@ w swNn = o d

116



Relative HAMD-Value

0.9

0.8

07

06

05

04

03

0z

01

0.0

K-Means Clustering of relative HAMD Score over time

Silhouette Plot for K-Means Clustering

T B

0.2 -0 0o o1 0z 03 0.4 05
Silhouette-Score

L A

Cluster

=
@
R -]

117



Relative HAMD-Value

0.4

03

0z

01

0.0

K-Means Clustering of relative HAMD Score over time (Validation)

Silhouette Plot for K-Means Clustering (Validation)

Silhouette-Score

L A

Cluster

=
@
R -]

118



Experiment 2

HAMD variables - Baseline Classifier Feature Importance for Remission after 4 weeks
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HAMD and IDS variables - Baseline Classifier Feature Importance for Remission after 4 weeks
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HAMD and |DS variables - Week 1 Classifier Feature Importance for Remission after 4 weeks
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HAMD and |DS variables - Week 2 Classifier Feature Importance for Remission after 4 weeks
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|DS variables - Baseline Classifier Feature Importance for Remission after 4 weeks
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IDS variables - Week 1 Classifier Feature Importance for Remission after 4 weeks
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IDS variables - Week 2 Classifier Feature Importance for Remission after 4 weeks

o @ @ = o o
= a =1 = =1
= = =] =1 =l =

21005 2ouspodw)|

0718 4Sal ¥od oD
¢TI 4Sal ¥od 0D
¥ 180S0 Yad 0D
+ 18 4801 ¥od OTvD
£ 20N 45aI ¥Od DTVD
¥ Z0A4SAI VOd DTVD
STZ0A S0 YOd 0D

¥ 20 0S0Iv¥Od 0w

T8 Z0AT0SAI VLR 0D

2720080 YOd 0D
¢TIE 0sa ¥ad oD
2 Z0A 48 ¥Od DTVD
€718 450 ¥od 0D
¥ L0AT4SAI VI 2D
1271 0ADSaIHOS

9718 28a ¥ad DD
LTIOA DSaI Yad DTvD
L0ADSAl ¥OS

S 10A 05l ¥od 2Tv0
07 L0A 481 ¥od DTV
¥ 104 0SOI ¥Od 0Tv0
1207 L0AJS AN HOS
LOAJSN HOS
0720080 YOd 0D
127 Z0AJSAN HOS
07Z0A 481 ¥Od DTVD
LE0ATDS0 Yad 0D
1807 Z0ADSAI HOS
ZOAJSAI HOS

Z0ADSAIT WIS

Feature

IDS variables - Week 2 Classifier Feature Importance for Response after 4 weeks

0.04
003
002
001

24005 aouepodw|

0.00

§ ZOA 430l ¥2d DTvD
7 ZON 4Sal vad OTvD
GTLOATOSAI WId DD
¢ Z0AT0SAI WId DD
€ L0ATDSAI WId DD
¥ LOATOSAI Wdd DD
¥ 20N 4801 vDd DWW

171870Sa vod Dv0

871044801 YLTIa 0D

9197080 Ydd OVD
¥ 20N 08I ¥ad 0D
9 LOATDSAI WDd DD

¥ 180S0 Yod 0D

T87Z0A 4301 VLT3a 0D

07LOATOSAI ¥od DVD
LTHOATOSAI Wod DTV
L0A4SaI WIS

T8 L0ATDSAl VLI3d 0D

10ADSaI U3

07L0AT 4501 Yd DD
1217 LOAJSal ¥OS

1247 LOADSAI HOS

0 Z0A”0SAl ¥od 0D
ZOA4SAI WIS
0720A 4801 YOd DD
1217 Z0AJS A HOS

LT20AT0SA ¥Od DTVD

197 Z0A DS VL1300 VD

20ADSAI HOS

18 20NDSAI WIS

Feature

129



B <o osarvod oo

LTLOA 2SI ¥Od 0D

B s oonasarvod o
B s orssarvodomo

T8 E0ATOSA VLI2A DVD
Z0ATE0AT4SAI VL1300V
LOATE0A” 4501 VL1130 OT¥0

LOATEOATDSAI VLA DIVD

IDS variables - Week 3 Classifier Feature Importance for Remission after 4 weeks

127 L0ADSAl YOS

¥ Z0AT0SAI vod 0D
§Z0A 2SAIYad OTVD
LOADSAI ¥OS

+ 18 4801 vod 0D
0710/ 48aWId DTvD

|DS variables - Week 3 Classifier Feature Importance for Response after 4 weeks

ZOATEDATOSQIT VL1300
97L0A”0SAl ¥Od OTv0

1718 4801 Vad OTvD
0TLOAT2SAI ¥2d 2TvD

¥ 20/ DSl ¥Od 2D

v g 0sal vad 02
1971047 0Sar VLT3 0D
LOAJSAIHOS

§ZOA 0SAl ¥Od OTvD
10ADSAI ¥OS

LOATEDA2SAI YLT13d 2TVD
127 LOAJSTI HOS
ZOATEDAT 4SO VLI3T OVD
07LOAT 450 ¥2d OTV2

130

0.16
0.14
012

LOASTITHOS g LOATEDAT4SAIVLTET 0D
¥ LOA 080l vOd 0D m ZOAJSAIHOS m
ST10AT0SAl vOd 0D 12 Z0AJSAI HOS
9 18 230 ¥od oTvD [T 10ADSAHOS
121 Z0A480 08 0720AT2SAI ¥2d 2Tv2
0720A DSAITYDd OTVD L 20ATOSAI ¥Dd 2D
1817 10A48aH0S 19720/ 0SA VL3 OV
121 Z0ADSAl YOS 07Z0A 4801 ¥Od 0D
LTE0ATOSAITYOd OTVD Z0ADSAI HOS
Z0A4SOl IS 19 €04 4501 Y1130 2TV
0720”350l ¥od 0Tv0 12 Z0A0SAl 8Os
Z0ADSAI YIS 197E0AT08A VL3 0TV
121 E0A4Sal WIS £0A4SAI ¥IS
1207 €0ADSAITHOS £0ADSAI HOS
£0ADSAI YIS 18I E0A4SAI M08
£0AJSAIMOS 12T E0ADSAI HOS

e 8 8 3 8 8 8 8 3 3 8 3 8

(=] (=] (=] (=] (=] (=] (=] (=] (=] (=] (=] (=] (=]

81008 asuepodw)| 81008 asuepodw|



Experiment 3

‘Week 0 Classifier Feature Importance for Cluster 0
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Week 0 Classifier Feature Importance for Cluster 2
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Week 0 Classifier Feature Importance for Cluster 4

010

0.08

)
=1
=

21005 souspodw|

3

=

0.02

000

38NdSAE

SHYIANOT ¥OS

IOV W HOS

ONITASH WIS

SdINAS HOS

¥ E QWYH YOd DD

IDVASH HIS

£718 QWYH YOd DD

2718 QWYH YOd DD

0Sdsds ™

VI8 aWYH vad oD

OSMI4STH

J8dids 8

DEMS4S E

TATAWYH MOS

079 QWvH vod OV

Feature

Week 1 Classifier Feature Importance for Cluster 0

0.20

)
=l

o
=l

24005 souepcdw|

0.05

0.00

SdINASd HOS
3ISINASATI8

ONITASd HOS

3OVASd HOS

RER Rt
SHYIANGS ¥OS

08ds4S |8

OSMIIST

28di48™H

39V Y MOS

falspti=Nlcgy -1

¥ 18 ONYH ¥od 0D
LTI8TaNYH Wad 0D
€18 ONVH ¥od OTvD
2718 0WYH ¥Od OvD
¥ LOA OWVH W2d oTvD
ETLOATOWYH ¥Od OvD
078 QNYH ¥2d OTvD
ZTL0A ONYH ¥Od 0D
07 LOAQNYH ¥Od OTvD
VTLOA OWYH ¥Od oD
LOATQWNYH HOS

BT LOATAWYH MO8

Feature

133



Week 1 Classifier Feature Importance for Cluster 1
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Week 2 Classifier Feature Importance for Cluster 4
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Week 3 Classifier Feature Importance for Cluster 3
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