


PROPERTIES OF MINIMALLY DOUBLED
FERMIONS

Dissertation zur Erlangung des Grades
“Doktor der Naturwissenschaften”

vorgelegt am Fachbereich
Physik, Mathematik und Informatik

der Johannes Gutenberg-Universität in Mainz

Johannes Heinrich Weber
geboren in Groß-Gerau

Mainz, den 13. März 2015



Johannes Heinrich Weber: Properties of Minimally doubled fermions
Einreichung der Promotion: 13. März 2015
Mündliches Kolloquium: 30. Oktober 2015
Datum der Promotion: 14. Dezember 2015 D77



Abstract

The majority of quark actions in lattice QCD encounter difficulties with chiral symme-
try and its spontaneous symmetry breaking, which is realised only in compliance with
the Nielsen-Ninomiya No-Go theorem. Minimally doubled fermions are a category of
discretisations of strictly local chiral fermions which reproduce two degenerate quark
flavours in the continuum limit. The Dirac operator complies with the No-Go theorem
by having two poles at different points in the Brillouin zone. Their alignment implies
that hypercubic symmetry is explicitly broken at finite lattice spacing.

Boriçi-Creutz and Karsten-Wilczek (KW) fermions are two different variants of min-
imally doubled fermions, which are studied in perturbation theory. Renormalisation
properties are studied and three counterterms, which arise due to explicit loss of hyper-
cubic symmetry, are determined perturbatively. Inclusion of counterterms removes the
anisotropy from self-energy and vacuum polarisation at one-loop level. Corrections to
local bilinears are calculated and chiral symmetry is tested. Vector and axial symmetry
currents are derived and their conservation is verified.
Numerical simulations of KW fermions in the quenched approximation are used to de-
termine non-perturbative renormalisation criteria. The relevant fermionic counterterm
is tuned using two complementary approaches. First, the action’s anisotropy is reflected
in an anisotropic pseudoscalar mass. The minimum of the mass anisotropy defines the
tuned action. Second, some hadronic correlation functions have oscillating contributions.
Restoration of the tree-level frequency spectrum is used as complementary condition,
which agrees within errors. Due to lack of a numerically robust non-perturbative con-
dition, the marginal fermionic counterterm is fixed to the estimate from perturbation
theory.
The hadron spectrum is studied with a properly tuned KW action. As the spontaneously
broken chiral symmetry SU(2)A is reduced to U(1)A due to the fermion action, only one
pseudoscalar meson is a (Pseudo-) Goldstone boson at finite cutoff. The pseudoscalar
channel is studied and Goldstone boson-like behaviour including quenched chiral loga-
rithms is observed, which agrees with phenomenological predictions. A second channel
using γ0 instead of γ5 is studied. Its ground state scales with the bare quark mass like a
(Pseudo-) Goldstone boson, but retains a residual mass in the chiral limit, which vanishes
as O(a2) in the continuum limit. This strongly indicates that the γ0 channel contains a
pseudoscalar meson which is affected by lattice artifacts. These simulations in the chiral
regime indicate that KW fermions are not affected by exceptional configurations.

The first numerical study of KW fermions is a cornerstone for future applications. Sim-
ulations using dynamical KW fermions and including missing quark-disconnected con-
tributions will overcome present deficiencies. Vector mesons and nucleons are the next
milestones in a study of the hadron spectrum.



Zusammenfassung

Die Mehrheit der Quarkwirkungen in Gitter QCD leidet an Problemen mit chiraler Sym-
metrie und deren spontaner Brechung, die nur gemäß des Nielsen-Ninomiya Theorems
realisiert wird. Minimal verdoppelte Fermionen sind eine Kategorie von Diskretisierun-
gen strikt lokaler, chiraler Fermionen, die im Kontinuumslimes zwei entartete Quark
Flavours reproduzieren. Der Dirac Operator erfüllt das Theorem, da er zwei Polstellen
an ungleichen Punkten der Brillouin-Zone hat. Diese Anordnung zieht explizite Brechung
der hyperkubische Symmetrie bei endlichem Gitterabstand nach sich.

Boriçi-Creutz und Karsten-Wilczek (KW) Fermionen sind zwei Varianten, die in Stö-
rungstheorie untersucht werden. Aufgrund expliziter hyperkubischer Symmetriebrechung
erfordert Renormierung drei Counterterme, die perturbativ bestimmt werden. Mittels
der Counterterme wird die Anisotropie aus Selbst-Energie und Vakuum-Polarisation auf
Ein-Schleifen Niveau entfernt. Korrekturen zu bilinearen Operatoren werden berech-
net und chirale Symmetrie überprüft. Vektorielle und axiale Symmetrieströme werden
hergeleitet und deren Erhaltung verifiziert.
Numerische Simulation von KW Fermionen in Quenched Approximation dienen der
Bestimmung nicht-perturbativer Renormierungsbedingungen. Der relevante fermion-
ische Counterterm wird mit zwei komplementären Ansätzen justiert. Erstens spiegelt
sich die Anisotropie der Wirkung in einer Anisotropie der pseudoskalaren Masse wider.
Das Minimum der Massenanisotropie definiert die kalibrierte Wirkung. Zweitens haben
manche hadronische Korrelatoren oszillierende Anteile. Wiederherstellung des Tree-level
Frequenzspektrums ist eine komplementäre Bedingung, die innerhalb der Fehler über-
einstimmt. Mangels einer numerisch robusten, nicht-perturbativen Bedingung wird der
marginale fermionische Counterterm auf die Vorhersage der Störungstheorie fixiert.
Das Hadronenspektrum wird mit einer korrekt eingestellten KW Wirkung untersucht.
Da die spontan gebrochene chirale Symmetrie SU(2)A durch die Fermionwirkung zu
U(1)A reduziert ist, ist nur eines der pseudoskalaren Mesonen bei endlichem Cutoff ein
(Pseudo-) Goldstone Boson. In der Untersuchung des pseudoskalaren Kanals wird Gold-
stone Boson-artiges Verhalten einschließlich Quenched Chiral Logarithms im Einklang
mit phänomenologischen Vorhersagen beobachtet. Ein zweiter Kanal mit γ0 anstelle
von γ5 wird untersucht. Dessen Grundzustand skaliert mit der nackten Quarkmasse
wie ein (Pseudo-) Goldstone Boson, aber behält eine residuale Masse im chiralen Limes,
welche wie O(a2) im Kontinuumslimes verschwindet. Dies ist ein starkes Indiz, dass
der γ0 Kanal ein von Gitterartefakten betroffenes pseudoskalares Meson enthält. Diese
Simulationen im chiralen Regime zeigen, dass KW Fermionen nicht von Exceptional
Configurations betroffen sind.

Die erste numerische Studie von KW Fermionen ist Grundlage zuküftiger Anwendungen.
Überwindung derzeitiger Unzulänglichkeiten erfordert Simulationen mit dynamischen
KW Fermionen unter Berücksichtigung fehlender Quark-disconnected Beiträge. Vek-
tormesonen und Nukleonen sind die nächsten Meilensteine der Untersuchung des Hadro-
nenspektrums.



概概概略略略

格子上における量子色力学のクォーク作用の多くはカイラル対称性を保持すること
が困難であり、Nielsen-二宮の定理にある通り, 制限が加わることが知られている。
Minimally doubled fermions(MDF)は, 局在するカイラル・フェルミ粒子を離散化す
ることによって、連続極限における縮退のフレーバー数が2となるように定式化され
ている。 ブリユアン領域において二つのゼロ点が存在するならば、そのようなディ
ラック演算子は上記の定理を満たす。 有限の格子間隔の場合には, 四次元の格子対称
性の破れが上記のゼロ点の方向性の結果となる。

Boriçi-Creutz, 及び, Karsten-Wilczek(KW)フェルミオンは, 二種類の異なるMDFであ
り, 本研究では, これらのMDFを摂動論を用いて検証する。 四次元の格子対称性の
破れにより, 繰り込みは３つの, 異方性を持ったcounter term (CT) によって特徴付け
られる。また, これらのCTは摂動論によって求まる。 このCTを取り込むことによっ
て, 自己エネルギーと真空偏極の異方性は１-ループのオーダーで取り除かれる。 ま
た, 双一次の演算子の１-ループ補正を計算することによってカイラル対称性を検討す
る。 さらに, ベクトル対称性, 及び, 軸性ベクトル対称性のカレントを導出し, これら
を通して保存則を確認する。
クェンチ近似を用いた数値シミュレーションによって, KWフェルミオンの非摂動的
な繰り込み条件の設定を行う。 フェルミ作用の三次元のCTは, 以下の２つの要素か
ら構成される手法によって計算される。 第一に, 遷移行列の異方性が擬スカラーの質
量の異方性に映し出されることから, 質量における異方性の最小値によって, 作用を
定義することができる。 次に, 異なる極を含むハドロン相関関数が振動する成分を持
つにことに注目する。 この振動成分の周波数スペクトルを再現するための条件を求
めることができ, この条件によって再現されたスペクトルは, 元の振動に誤算の範囲で
一致することが確認できる。 また, 四次元格子上のCTを数値的に評価するための必
要条件を特定するために, 前述の摂動論による予測を使用する。
上記の繰り込み条件によって改良されたKW作用を用いて, ハドロン・スペクトルの
研究を行う。 自発的に破れるカイラル対称性は, 格子上におけるフェルミオンの定
式化によりSU(2)A が破れ,U(1)Aだけが残る。このことから, 有限の格子間隔の場合
には,擬スカラー中間子のうちの一つのみが南部ボソンの役割を担う。 擬スカラー・
チャンネルには, このような現象論的な予測に従う, クェンチ・カイラル対数を含んだ
南部ボソンとの対応が見られる。 次に, γ5 の代わりγ0 を用いるチャンネルの研究を
行う。 本チャネルにおける基底状態の質量スペクトラムは南部ボソンと類似してい
るが, 有限の格子間隔による寄与がカイラル極限に残ったとしても, 連続極限において
はO(a2) で消滅することが示される。 このことから, γ0 チャンネルの基底状態は,量
子エラーの影響を受けている擬スカラーであるということが結論付けられる。

本研究におけるMDFの数値的な検証は, 今後のMDF研究の礎になるであろう。 一方
で, 現在までの数値計算には不十分な点が残る。今後の進展として, MDFによって定
式化された動的フェルミオンの導入, 及び, quark-disconnected 図の計算は欠かせない
と考える。 また, ベクトル中間子と核子は, 更なるハドロン・スペクトル研究の目標
である。
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Introduction

The recent discovery [1] of a Higgs boson at CERN, which is at the level of present knowl-
edge not dissimilar to the Higgs boson of the Standard Model (SM) [76,138,157], strongly
supports the SM as the appropriate theory of particle physics at the energy scales, which
are nowadays accessible in experimental observations. The Nobel prize of physics 2013
was awarded for the theoretical suggestion of the Higgs mechanism [11,55,86,92] of spon-
taneous breakdown of the electroweak SU(2) symmetry as the origin of a non-vanishing
vacuum expectation value (VEV) of a Higgs field. It requires the existence of at least
one scalar Higgs boson as a particle, contributes longitudinal polarisation degrees of
freedom to the weak gauge bosons and generates the mass of all elementary particles
through Yukawa couplings between massless, bare fields and a Higgs field with its non-
vanishing VEV. Whereas the non-trivial electroweak vacuum structure of the Higgs field
sets the scale of elementary particle masses in the SM through its VEV, it is not the
dominant contribution to the mass of the visible universe. Instead the internal structure
of baryons, bound states of strongly interacting elementary fields, is responsible for the
overwhelming majority of this mass. The constituent quark masses, which are due to
the Higgs mechanism, contribute only about 2% to the proton’s total mass. The mass of
hydrogen is completely dominated by the proton mass, which exceeds the electron mass
(due to the Higgs mechanism) by nearly a factor 2000. Thus, the mass of the visible
universe, which mainly consists of hydrogen and helium atoms, is almost entirely due to
the strong interactions. Hence, the mass and structure of the visible universe cannot be
understood without a thorough comprehension of the strong interactions.

Since the advent of particle accelerators in the late 1940’s and early 1950’s, experimen-
tal observations of a multitude of previously unknown particles necessitated a rethink-
ing of subatomic physics in general and of the strong interactions in particular. The
previously known particle spectrum contained protons, electrons and photons, which
were readily accessible in many atomic systems already in the 1920’s, as well as neu-
trons [40], positrons [50], muons [6,7] and, as postulated particles, Pauli’s neutrino [128]
and Yukawa’s meson [164]. The muon was considered as a candidate for the meson,
since its mass agreed with the postulated meson mass within a factor of two. Elec-
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tric charge and isospin [90] were considered as the charges of elementary quanta. With
the experimental discovery of pions and kaons in 1947 [108, 137], the pion fit into the
isospin picture as Yukawa’s meson. However, kaon decays indicated new physics as
their time scales greatly exceeded those of pion-nucleon reactions. A new quantum
number called strangeness [127] was introduced, which is violated in weak decays. As
more and more additional hadrons (the ‘particle zoo’) were discovered in new parti-
cle accelerator facilities, theoretical models of hadrons could not keep up with the
speed of discovery. In the meantime, the development of Quantum Electrodynamics
(QED) [53,54,58–60,140,141,146] as the quantised U(1) gauge theory of the photon and
the electron advanced very quickly. With high precision calculations such as the Lamb
shift in the spectrum of hydrogen [22,107], QED was already an established theory, while
the model of the strong interactions was still in its infancy.

Experimental pion-nucleon scattering data did not match the prediciton of a renor-
malisable, pseudoscalar pion-nucleon coupling, which predicted large s-wave contribu-
tions [8,9,51]. Instead, the energy dependence of pion-nucleon interactions was in good
agreement with gradient-coupling models in which low-energy pions decouple from the
nucleons and from other pions, since their coupling is proportional to their 4-momenta.
The shift symmetry of these soft pions led to an interpretation of the pion as an almost
massless (Pseudo-) Goldstone boson of a spontaneously broken chiral symmetry of the
strong interactions [79, 117]. An explicit, soft breaking of the chiral symmetry was
considered the source of the finite pion mass. However, the nature of the fundamental
chiral fermions was still obscure. Detailed studies of weak pion decays [77, 78] revealed
a relation between the axial charge of the neutron in beta decay and the pion-nucleon
coupling constant from the gradient-coupling model, which was coined the Goldberger-
Treiman relation. It is understood in terms of the Partially Conserved Axial Current
(PCAC) hypothesis [69]. Axial currents do not preserve the vacuum of the strong inter-
actions, but instead serve as interpolating operators for pseudoscalar meson fields and
create one-particle states. The same axial currents participate in the V-A-coupling of
the weak interactions and mediate the weak decay of the neutron. Application of axial
current operators on external particle wave-functions successfully procured amplitudes
involving soft pions from amplitudes without them through the use of chiral Ward iden-
tities [156]. This current algebra was successfully applied to a variety of strong processes,
even though the fundamental carriers of chiral charge were still missing.

Gell-Mann and Ne’eman introduced an approximate global SU(3) symmetry of the
hadron spectrum [66, 118] as the eightfold way. Hadrons with equal space-time quan-
tum numbers JPC and similar masses were considered as an SU(3) multiplet. Isospin
and strangeness quantum numbers were united in a group-theoretical sense. The eight-
fold way described the known particle spectrum with great success, but predicted new
states [67]. Though the existence of Delta baryons with spin-3/2 had been known since
1952 [10, 28], a spin-3/2 baryon decuplet implied the existence of a new baryon with
strangeness S = −3, which would have to be a long-lived state with a unique decay sig-
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nature via three weak decays. This Omega baryon Ω− was discovered only in 1964 [17]
after its earlier prediction in the eightfold way. Hypothetical fermionic constituents were
suggested by Gell-Mann [68,70] as the origin of the flavour SU(3) symmetry. As part of
a spin-3/2 baryon decuplet, three states at the decuplet’s corners (∆++, ∆−, Ω−) must
have fully-symmetric spin and flavour wave functions of all constituents. However, as
fermions, they must have a totally antisymmetric wave function. This implies antisym-
metry in a new quantum number of the constituents, which was called colour.

These hypothetised fundamental carriers of flavour SU(3) and colour SU(3) quantum
numbers were referred to as quarks [68]. Whereas deep inelastic electron scattering on
nucleons indeed revealed point-like constituents [23] inside of the nucleons, quarks could
not be isolated in a detector. Fritzsch, Gell-Mann and Leutwyler suggested [61] that the
quarks’ colour charge is coupled to an octet of gluons, fictitious neutral gauge bosons
in the adjoint representation of the colour gauge group with dynamics of a Yang-Mills
field [163]. Their theory of the strong interactions had already reached its modern form
except for the number of flavours. However, a mechanism of colour confinement for
quarks and gluons, which simultaneously allowed for Bjorken scaling [23], was still lack-
ing. With the proof of asymptotic freedom by Gross, Politzer and Wilczek [81–83, 131]
using perturbation theory and Wilson’s demonstration of a colour confinement mech-
anism on a space-time lattice in the strong coupling limit [160], the theory of quarks
and gluons quickly started to gain acceptance. It is nowadays included in the Standard
Model as Quantum Chromodynamics (QCD), a quantised SU(3) gauge theory, and cov-
ers the interactions of eight gauge fields, massless vector bosons called gluons, amongst
each other and with six species of quarks, which are massive spin-1/2 fields. The six
species are labelled as flavours up, down, strange, charm, bottom and top. They are
identical copies which differ only in their masses and their electroweak couplings1.

QCD can be studied successfully in the framework of perturbation theory only in the high
energy regime. The running coupling is small at high four-momentum transfer, since the
colour anti-screening effect of the self-interacting gluon field is lessened at short distances,
and quarks and gluons are asymptotically free. In stark contrast, quarks and gluons or
coloured composita thereof cannot exist as almost free particles at lower energies due to
a linearly rising colour potential, which is the root of confinenment. Potentials in general
and the quark potential in particular are non-perturbative effects. Any perturbation se-
ries with a finite number of terms inevitably fails to bring forth such a potential. Since
gluons are fields in the adjoint representation and quarks are fields in the fundamental
representation of the colour gauge group SU(3), only composita which belong to the
trivial representation can exist as stable hadrons at the hadronic scale. Mesons with one
valence quark-antiquark pair (|qq̄〉) and baryons with three totally colour-antisymmetric
valence quarks (|qqq〉) are the only hadrons for which experimental evidence exists. Even
though they are allowed by the gauge symmetry of QCD, glueballs without any valence
quarks (e.g. |gg〉 or |ggg〉) as well as exotic meson-like states (e.g. |qq̄g〉 or |qq̄qq̄〉) and

1Whereas flavour eigenstates of the strong interactions have definite mass and electric charge, weak
interactions couple to quarks in a different basis. This is the origin of the CKM matrix [30,105].
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pentaquarks (|qqqqq̄〉) still lack experimental evidence2.

Figure 1: Ab initio calculations with lattice QCD reproduce the experimental light
hadron spectrum within errors. The figure is taken from [52].

Any approach aimed at understanding the spectrum of QCD with ab initio calculations
must necessarily involve non-perturbative methods. Observables are calculated without
the need for a perturbation series with the path integral (cf. section 1.1.2), which can be
evaluated numerically in computer simulations. An estimate of the path integral based on
a representative subset of configuration space with controlled statistical errors is obtained
using importance sampling, where configurations are weighted with the classical action
on a discretised Euclidean space-time. The lattice spacing serves as a non-perturbative
cutoff, which removes ultraviolet divergences. This is the strategy of lattice QCD, which
has attained remarkable success in the description of the strong interactions that is
evident in figure 1. Nevertheless, a shortcoming which is intrinsically connected to the
lattice regularisation is the intricacy of the implementation of chiral symmetry [120,121].
Wilson fermions [160], which had been used in the calculations of [52], explicitly break
chiral symmetry at finite cutoff. Though Ginsparg-Wilson fermions [72] retain a chiral
symmetry for one single quark species at finite lattice spacing, their Dirac operators
lack ultralocality and turn out as numerically costly. Staggered fermions [144], which
retain an ultralocal, non-singlet chiral symmetry, include four mass-degenerate species of
quarks. Simulations with dynamical staggered fermions make use of a rooting procedure,
which reduces the number of mass-degenerate sea quark species to one or two. Though
the root of a determinant is mathematically well-defined, rooting a quantum field theory
with non-singlet properties may lead to pathologies and fail to reproduce QCD in the
continuum limit. This rooting procedure is subject of ongoing and controversial dis-
cussions (cf. [44]). Minimally doubled fermions [98] are a type of lattice fermions with
two mass-degenerate species and an ultralocal, non-singlet chiral symmetry. Since the
Dirac operator is ultracolal, numerical application of these lattice fermions is supposedly
similarly simple and fast as Wilson fermions. If the species are interpreted as an isospin
doublet of light quarks, such actions may provide a compromise between the theoretical
cleanliness of Ginsparg-Wilson fermions and the numerical efficiency of Wilson fermions.

2The charmonium spectrum contains X, Y and Z states [14, 41] that cannot be explained as |qq̄〉
states, but their detailed nature is still unclear. They are candidates for |qq̄g〉- or |qq̄qq̄〉-states.
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The study of properties of minimally doubled fermions is the subject of this thesis.
Among the different kinds of minimally doubled fermions know at present, Karsten-
Wilczek [98,159] and Boriçi-Creutz fermions [27,46] are studied within this thesis using
various different approaches. Since these actions explicitly break the hypercubic lattice
symmetry at finite lattice spacing, there is a risk that these theories fail to reproduce
an isotropic continuum theory due to operator mixing if these anisotropic effects are not
properly accounted for by renormalisation. Therefore, the main focus of this thesis lies
on renormalisation of minimally doubled fermion actions.

Chapter 1 outlines foundations of continuum and lattice QCD. Wilson and Ginsparg-
Wilson fermions are juxtaposed with minimally doubled fermions. Results from other
research groups concerning minimally doubled fermions are touched. Chapter 2 covers
analytical investigations of minimally doubled fermions using lattice perturbation the-
ory [35–38]. The fermionic self-energy and the fermionic contribution to the vacuum po-
larisation are calculated and their anisotropies are removed using the counterterms of the
theory. Renormalisation factors of fermionic bilinears are calculated and the symmetry
currents of the theory are derived. Chapter 3 contains analytical studies of the structure
of minimally doubled fermions in the naïve continuum limit. A formal decomposition of
the spinors into a pair of fields suggests the existence of oscillating contributions in some
correlation functions. Later on, it is concluded from CPΘ symmetry of Karsten-Wilczek
fermions in the quenched approximation that correlation functions with the same charge
conjugation eigenstates at source and sink are invariant under time reflection. Chapter
4 encompasses numerical studies of Karsten-Wilczek fermions in the quenched approx-
imation [155]. Foreseeable difficulties for numerical simulations are discussed and an
overview of the setup of simulations is given. Methods for dealing with a lack of symme-
try under time reflection are discussed. No signature for this broken reflection symmetry
is observed in data. Next, two independent approaches to non-perturbative tuning of
the relevant counterterm’s coefficient are discussed in detail. The first approach, which
minimises the anisotropy that is observed in the mass of the pseudoscalar ground state,
is scrutinised with regard to its various systematical uncertainties, which are dominated
by finite size effects and the chiral extrapolation. The second approach restores the
frequency spectrum of an oscillating ratio of correlation functions to its tree-level form.
These oscillations are related to fermion doubling in a comparison with naïve and Wilson
fermions and systematical uncertainties of the approach are examined. The numerical
part is concluded with an investigation of the scaling behaviour of the ground states of
two different channels using the non-perturbatively tuned theory. The ground state of
the γ5 channel scales like a (Pseudo-) Goldstone boson including quenched chiral loga-
rithms at finite cutoff. Since the ground state of the γ0 channel scales like a (Pseudo-)
Goldstone boson up to O(a2)-corrections, it is identified as a pseudoscalar that is massive
in the chiral limit due to lattice artefacts. The study with pseudoscalar masses below
300 MeV shows that Karsten-Wilczek fermions are not affected by exceptional config-
urations. Finally, chapter 5 summarises the results and provides an outlook to future
applications of minimally doubled fermions.
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Foundations

1.1 QCD in the continuum

The topic of this section is a brief review of QCD as a quantised field theory of the strong
interactions. The first focus lies on the fields of QCD and the structure of its action. The
symmetries of QCD are discussed in the absence of electroweak interactions. The second
focus lies on the quantisation of the QCD action within the path integral formalism as it
had been conceived by Feynman [57] and on renormalisation. In general, this part follows
mainly [130]. The treatment of chiral symmetry follows [139]. Notational conventions
are guided by [65].

1.1.1 The QCD action and its symmetries

The fields and the action of QCD

QCD is a quantised SU(3) gauge theory which includes massive matter fields called
quarks and massless gauge fields called gluons. The quarks are described by Dirac four-
spinors in the fundamental representation of the gauge group,

ψa,(f)
α (x), ψ̄a,(f)

α (x), (1.1)

which carry spinor indices α, colour indices a and flavour indices (f) as defined in the
appendix (A.2). The spinor field ψ(f)(x) has twelve independent components at each
point x, which are represented by anti-commuting Grassmann numbers due to their
compliance with Fermi statistics. The ψ(f)(x) can be interpreted as a component of
a six-dimensional vector ψ(x) in flavour space. The adjoint spinor field is defined by
ψ̄ = ψ†γ0, where γ0 is the Dirac matrix associated with time (cf. appendix A.4). In the
path integral approach to quantisation, ψ̄ and ψ are treated as independent degrees of
freedom.
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The gluons are described by four-vector fields in the gauge group’s adjoint representation,

Aabµ (x) ≡ Acµ(x)T abc , (1.2)

which carry space-time indices µ and colour indices a, b as defined in the appendix (A.2).
The gluon fields Aabµ (x), which are 3× 3-matrices can be expressed through eight hermi-
tian fields Acµ(x) using the eight generators Tc of the gauge group SU(3) as in eq. (1.2).
In total, the gluon field A has 32 components at each space-time point x. Since it is a
massless spin-1 vector field, only sixteen components are independent.

The action of QCD is a functional of the fields ψ, ψ̄ and A. The action functional has
a piece which depends only on the gluon field, which is called gluon action Sg[A], pure
gauge action or Yang-Mills action, which reads

Sg[A] =
∫
M4

1
4g2

0
Fµν,ab(x)F baνµ(x) d4x, (1.3)

and a piece which involves quark and gauge fields, which is called quark action or fermion
action Sf [ψ, ψ̄, A],

Sf [ψ, ψ̄, A] =
∑
(f)

∫
M4

ψ̄a,(f)
α (x)

(
iγµαβD

ab
µ −m

(f)
0 δabδαβ

)
ψ
b,(f)
β (x) d4x. (1.4)

Among the seven parameters of the QCD action, there is one bare coupling constant
g0 and six bare quark masses m(f)

0 . The coupling g0 of QCD cannot be defined for
on-shell quantities like the coupling e of QED, since QCD is a confining theory and its
charge carriers, quarks and gluons, cannot be observed in an asymptotic state under
on-shell conditions. This is why the coupling of QCD must be defined with methods
of the renormalisation group (cf. section 1.1.2). The six masses fall apart into a set of
light masses and another set of heavy masses (cf. table 1.1). QCD has a natural scale,
ΛQCD, which is a function of its seven parameters. Typical four-momenta of states of
the QCD spectrum are of the order of ΛQCD, which is about 200 MeV. The strange
quark mass ms is considered as light in some applications and as heavy in others, since
it compares with ΛQCD within a factor of two. The up and down quark masses, mu and
md, however, are always considered as light. Since the quark action is explicitly written
as a sum of different flavours, the following discussion is exactly equal for all flavours.
A concise notation for one flavour reads

SQCD[ψ, ψ̄, A] =
∫
M4

ψ̄(x) (iγµDµ −m0)ψ(x) + 1
2g2

0
Tr (Fµν(x)Fµν(x)) d4x (1.5)

and has to be interpreted in the sense of eqs. (1.3) and (1.4). The kinetic term of the
quark action contains Dirac matrices γµ (cf. appendix A.4.2) and the covariant derivative,

Dab
µ ψ

b
α(x) ≡

(
δab∂µ + iAabµ (x)

)
ψbα(x), (1.6)
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Light quarks
f m(f) (exp.) [MeV] m(f) (th.) [MeV] e.m. charge [e]
u 2.3+0.7

−0.5 2.16± 0.11 +2/3
d 4.8+0.5

−0.3 4.68± 0.14± 0.07 −1/3
s 95± 5 93.8± 1.5± 1.9 −1/3

Heavy quarks
f m(f) (exp.) [GeV] e.m. charge [e]
c 1.275± 0.025 +2/3
b 4.18± 0.03 −1/3
t 173.07± 0.52± 0.72 +2/3

Table 1.1: Quarks are separated by ΛQCD into light flavours (m(f) . ΛQCD) and heavy
flavours (m(f) & ΛQCD). Quark masses are taken from [20] and [13].

which couples quark and gluon fields. The covariant derivative implicitly depends on
the space-time point x through the gauge field Aµ(x). The commutator of two covariant
derivatives at the same space-time point x gives rise to the field strength tensor Fµν(x),

F abµν(x) ≡ −i
[
Dac
µ , D

cb
ν

]
≡ ∂µAabν (x)− ∂νAabµ (x) + i

[
Aacµ (x), Acbν (x)

]
. (1.7)

The field strength tensor Fµν , which is a 3 × 3-matrix just like the gauge field Aµ can
be rewritten in a vector notation with hermitian fields F cµν multiplied by the generators
of the gauge group SU(3).

Gauge symmetry in QCD

The QCD action is invariant under local gauge transformations Ω(x) = eiω
c(x)Tc , which

are fully parameterised by eight real parameters ωc(x), since the gauge group SU(3)
is an eight-dimensional compact Lie group. Gauge transformations are simultaneously
applied to all fields which lie in non-trivial representations of SU(3),

ψaα(x) Ω(x)→ Ωab(x)ψbα(x),
ψ̄aα(x) Ω(x)→ ψ̄bα(x)(Ωab)†(x),
F abµν(x) Ω(x)→ Ωac(x)F cdµν(x)(Ωbd)†(x).

(1.8)

The invariance of the quark action in eq. (1.4) is achieved by the covariant derivative of
the fermion field, which transforms like the fermion field itself in eq. (1.6). This is due
to the nontrivial behaviour of the gauge field Aµ(x) under gauge transformations:

Dab
µ ψ

b
α(x) Ω(x)→ Ωab(x)Dbc

µ ψ
c
α(x), (1.9)

Aabµ (x) Ω(x)→ Ωac(x)Acdµ (x)(Ωbd)†(x) + i (∂µΩac(x)) (Ωbc)†(x) = Aabµ (x) +Dab
µ ω

bc(x).
(1.10)

The covariant derivative is related to the concept of parallel transport in the framework
of differential geometry. Space-time M4 and the gauge group SU(3) form a vector bundle

8



in the sense that each space-time point x is vested with its own copy of SU(3). Therefore,
fields which belong to non-trivial representations of the gauge group at different points
transform differently under gauge transformations. A gauge transporter U(x, x+aêµ) is
introduced, which compensates for different copies of SU(3) at base points x and x+aêµ.
A sensible derivative of a field ψ(x) is thus defined in the limit of vanishing distance a,

Dbc
µ ψ

c(x) != lim
a→0

1
a

{
U bc(x, x+ aêµ)ψc(x+ aêµ)− ψb(x)

}
= lim

a→0
U bc(x, x+ aêµ) 1

a

{
ψc(x+ aêµ)− ψc(x)

}
+ lim
a→0

1
a

{
U bc(x, x+ aêµ)− δbc

}
ψc(x)

=
(
δbc∂µ + [∂µU(x′, x)]bcx′=x

)
ψc(x), (1.11)

where U bc(x, x) = δbc was used. A comparison with eq. (1.6) reveals

[∂µU(x′, x)]bcx′=x = iAbcµ (x), U(x, x+aêµ) = 1 + iaêµA
c
µ(x)Tc +O(a2) ≡ Uµ(x). (1.12)

The gauge field Aµ is the connection of the covariant derivative. The gauge transporter
is generalised to arbitrary differentiable paths C and the parallel transporter reads

U(x, y) = exp

i y∫
x

Tc

3∑
µ=0

Acµdsµ

, (1.13)

which is a Wilson line between the points x and y.

Discrete symmetries of QCD

Besides its gauge symmetry, the QCD action retains its structure under three individ-
ual discrete symmetry transformations, which are charge conjugation (often referred
to as C symmetry), parity transformation (P ) and time reversal (often referred to as
Θ symmetry). Parity and time reversal are global symmetries, since the transformations
connect fields with different space-time arguments. Parity is defined with a unitary
operator acting on fields and space-time points,

(x0,x) P→ (x0,−x),
ψ(x0,x) P→ γ0 ψ(x0,−x),
ψ̄(x0,x) P→ ψ̄(x0,−x) γ0,

(A0(x0,x),A(x0,x)) P→ (A0(x0,−x),−A(x0,x)) ,

(1.14)

whereas time reversal must be defined with an anti-unitary operator, which enacts com-
plex conjugation on all c-numbers and operators alongside its operation on fields and
space-time points,

(x0,x) Θ→ (−x0,x),
ψ(x0,x) Θ→ γ1γ3 ψ(−x0,x),
ψ̄(x0,x) Θ→ −ψ̄(x0,−x) γ1γ3,

(A0(x0,x),A(x0,x)) Θ→ − (−A0(−x0,x),A(−x0,x)) .

(1.15)
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Lastly, charge conjugation replaces particles by antiparticles and vice versa. Since space-
time points are unaltered, charge conjugation can be locally defined with the charge
conjugation matrix C of eq. (A.33),

ψ(x0,x) C→ C ψ̄T (x0,x),
ψ̄(x0,x) C→ −ψT (x0,x)C,

(A0(x0,x),A(x0,x)) C→ − (A0(x0,x),A(x0,x)) .
(1.16)

The product CPΘ leaves the structure of any field theory invariant, since the action is
scalar and must necessarily be invariant under space-time transformations.

Approximate chiral symmetry in QCD

Nevertheless, the QCD action has additional symmetries, some of which are only ap-
proximately realised. These approximate symmetries can be identified, when the quarks
are sufficiently lighter and external four-momenta are sufficiently smaller than ΛQCD.
On the one hand, small external four-momenta in QCD processes as well as the light
quark masses can be treated as a perturbation to a theory with vanishing external
four-momenta and quark masses. On the other hand, heavy quark states are strongly
suppressed as they are produced only far off shell in processes with low external four-
momenta and hence do not contribute to asymptotic states. As a result, QCD processes
with small external four-momenta can be described by an effective theory of interactions
between hadronic states consisting of the light flavours only, whereas the heavy degrees
of freedom are integrated out. The a priori unknown effective coupling constants and
the symmetry of interactions of such an effective theory are determined by QCD.

Right-handed and left-handed components of the Nf = 3 light quark fields ψ(f) are
defined using the chirality projectors of eq. (A.31),

ψ
(f)
R,L(x) = PR,Lψ

(f)(x), ψ̄
(f)
R,L(x) = ψ̄(f)(x)PL,R. (1.17)

In the chiral limit, where light quark masses are set to zero, left- and right-handed quarks
decouple in the chiral quark action,

Sch.[ψ, ψ̄, A] =
Nf∑
f=1

∫
R4

ψ̄
(f)
R (x) (iγµDµ)ψ(f)

R (x) + ψ̄
(f)
L (x) (iγµDµ)ψ(f)

L (x) d4x. (1.18)

The action is invariant under two individual sets of global symmetry transformations for
right-handed or left-handed quarks,

ψ
′(g)
R,L(x) = exp

(
−i

8∑
j=1

Θj
R,LT

gf
j

)
e−iΘR,Lψ

(f)
R,L(x),

ψ̄
′(g)
R,L(x) = ψ̄

(f)
R,L(x) exp

(
i

8∑
j=1

Θj
R,LT

fg
j

)
eiΘR,L ,

(1.19)
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where the Tj are the generators of a flavour symmetry group SU(3) (cf. appendix A.3).
The independent transformations of right-handed and left-handed fields can be equiva-
lently represented by vector and axial transformations, which simultaneously transform
right-handed and left-handed fields with Θj

V = (Θj
R + Θj

L)/2, Θj
A = (Θj

R − Θj
L)/2 and

ΘV = (ΘR + ΘL)/2. The action of the axial transformation on the flavour group’s
three-vectors includes the chirality matrix γ5,

ψ′(g)(x) = exp
(
−i

8∑
j=1

Θj
AT

gf
j γ5

)
ψ(f)(x),

ψ̄′(g)(x) = ψ̄(f)(x) exp
(
−i

8∑
j=1

Θj
AT

fg
j γ5

)
,

(1.20)

and leaves the chiral quark action invariant. This flavoured axial symmetry SU(3)A
is spontaneously broken in QCD and the axial charge operators do not annihilate the
vacuum. Instead, when applied to the vacuum state, they create massless pseudoscalar
bosons, which have the same quantum numbers as the axial charge operators. These are
the (Pseudo-) Goldstone bosons of QCD. In this idealised case, pions, kaons and the eta
meson are massless and fully degenerate in all interactions.

These axial transformations cease to be symmetry transformations in the presence of
light quark masses. Therefore, the spontaneously broken axial symmetry is explicitly
broken by the light quark masses and the (Pseudo-) Goldstone bosons acquire small
masses, while their degeneracies are partially lifted. In the spectrum of QCD, they can
be identified as the light pseudoscalar meson octet. In a limiting case with degenerate up
and down quark masses, mu = md = mud < ms, isospin is realised as a symmetry and
pions are fully degenerate and considerably lighter than the kaons. In the real world,
isospin symmetry is broken by the finite mass difference of up and down quarks as well
as their different electroweak charges. The presence of light quark masses reduces the
flavoured vector symmetries as well. The singlet vector transformation is preserved as a
symmetry transformation for arbitrary quark masses and is connected to baryon number
conservation. For degenerate light quarks, all flavoured vector symmetries are preserved
and the perfect flavour symmetry of the eightfold way of Gell-Mann and Ne’eman is
realised. The divergences of the axial symmetry currents are proportional to products
of pseudoscalar quark bilinears and combinations of quark masses in the form which was
realised in the PCAC relation.

1.1.2 Quantisation of QCD with the path integral approach

The path integral

The path integral approach to quantisation as it had been suggested by Feynman [57] ex-
presses quantummechanical amplitudes, such as the time evolution operator U(xi, ti;xf , tf )
between states xi and xf , as a functional integral of the observables weighted with the
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classical action over all possible paths between initial and final points:

〈U(xi, ti;xf , tf )〉 =
x(tf )=xf∫
x(ti)=xi

Dx(t)eiS[x(t)]. (1.21)

Paths in the neighbourhood of the classical solution xcl(t) dominate the path integral
and produce small quantum corrections, whereas outlying paths are suppressed by strong
cancellations. The path integral is generalised to quantum field theories (QFTs), where
observables are functionals of elementary field variables. The path integral of QCD reads

〈O〉 = 1
Z

∫
Dψ̄DψDA O[ψ, ψ̄, A] eiSQCD[ψ,ψ̄,A], (1.22)

where Z = 〈1〉 is a constant and SQCD[ψ, ψ̄, A] is defined in eq. (1.5). However, there are
two obstacles which must be overcome before the path integral of QCD can be evaluated.

Firstly, due to gauge invariance, the integration overcounts gauge field configurations,
which are connected by gauge transformations. The naïve gluon propagator,(

∂2gµν − ∂µ∂ν
)
Dνρ, ab
g (x− y) != iδρµδ

(4)(x− y)δab, (1.23)

has no solution for gauge fields, which are connected to vanishing A by the gauge trans-
formations of eq. (1.10) and thus consist only of a derivative of a scalar function. These
physically equivalent configurations must be culled by an ingenious gauge-fixing proce-
dure, which has been developed by Fadeev and Popov [56]. An arbitrary gauge-fixing
parameter ξ is introduced, which modifies the gluon propagator,(

∂2gµν −
(

1− 1
ξ

)
∂µ∂ν

)
Dνρ, ab
g (x− y) != iδρµδ

(4)(x− y)δab, (1.24)

and unphysical degrees of freedom, which are called Faddeev-Popov ghosts, are coupled
to the gluon field and cancel the contributions from unphysical polarisations of gauge
bosons. Since physical observables are naturally gauge invariant, any effects due to
particular choices of the gauge-fixing parameter ξ or contributions of unphysical gauge
field or ghost degrees of freedom cancel completely in any observables. Secondly, non-
perturbative evaluation of the path integral of QCD must be restricted to an evaluation
of its kernel on a relatively small number of representative gauge field configurations due
to technical reasons. Following the idea of importance sampling, a small but represen-
tative ensemble of configurations which yields a good estimate of the full path integral
is required. Hence, the majority of configuration must belong to the neighbourhood of
the classical path. However, an explicit bias which generally rejects outlying configura-
tions is not acceptable. Gauge field configurations can be produced with Monte-Carlo
methods and their vicinity to the classical path is determined from the numerical value
of the action. Yet, because a complex exponential eiSQCD is not a valid weight factor
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that would have to be real, importance sampling cannot be applied straightforwardly.

Both of these obstacles are lifted simultaneously by the approach of Lattice QCD, which
uses the analytic continuation of the QCD action of eq. (1.5) on a discretised Euclidean
space-time (cf. appendix A.4). The discretised space-time requires another represen-
tation of the gauge fields in terms of the gauge transporters of eq. (1.12), which are
integrated with the gauge-invariant Haar measure. Thus, the Haar measure dispenses
with gauge-fixing. The exponential factor changes into e−S

QCD
E , which is a real, suitable

weight factor for importance sampling. Lattice QCD is addressed in section 1.2.

Renormalisation

The seven parameters of the QCD action, the bare coupling g0 and the six bare masses
m

(f)
0 , as well as the field variables ψ, ψ̄ and A are subject to renormalisation in the

quantised theory. The quantities in the action are defined in the absence of interactions,
whereas the physical fields naturally include any interaction effects in full. Quantum cor-
rections, which are diagrammatically represented by loops in a perturbative approach,
lead to finite and divergent contributions beyond the bare quantities. These corrections
are absorbed into coefficients of counterterms at any given renormalisation scale M ,
where the physical values of the parameters of the theory are known. In a so-called
renormalisable quantum field theory, a finite number of counterterms is sufficient for
the complete absorption of all quantum corrections into their coefficients. The same
coefficients are repeatedly modified at each order in a perturbative expansion. In an
effective field theory, absorption requires an infinite number of counterterms. However,
if the quantum corrections are computed in a well-defined perturbative expansion, the
number of counterterms which are required for absorbing divergences at each order of
the perturbation theory is still finite and divergences can be removed order by order.

Due to the requirement of renormalisation, the coupling constant g of the interactions
which are the origin of the quantum corrections receives quantum corrections itself.
These quantum corrections to the coupling constant g are determined by the Callan-
Symanzik β function of QCD,

β(g) ≡M ∂g

∂M
, (1.25)

which describes the dependence of the coupling constant g on changes of the renor-
malisation scale M . In that sense the coupling constant is actually a running coupling
parameter. In the case of QED, a renormalisation scaleM is chosen as the physical scale
of on shell electrons, which can propagate as asymptotic states. Therefore, the classical
electron mass and electric charge can be used in the renormalisation procedure.

On the contrary, due to the colour confinement property of QCD, neither the quarks in
the fundamental representation nor the gluons in the adjoint representation of the gauge
group can propagate as asymptotic states into a detector. However, they can behave
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as almost free particles when they carry very high four-momenta. The beta function of
QCD (in the chiral limit) reads

β(g) =− g3

(4π)2

(
β0 + g2

(4π)2β1

)
+O(g7), (1.26)

β0 =
(11

3 C(G)− 4
3NfC(R)

)
, (1.27)

β1 =
(34

3 C
2(G)−NfC(R)

(20
3 C(G) + 4C2(R)

))
, (1.28)

where the Casimir operators of the adjoint and fundamental representations, C(G), C(R)
and C2(R), are defined in appendix A.3. Nf is the number of massless quark flavours
in the theory. If Nf < (11/4)C(G)/C(R) = 16.5, the coefficient β0 is positive and the
β-function has negative curvature in g. Therefore, there is a high four-momentum scale,
where the coupling strength vanishes and quarks and gluons behave as free particles.
This property is aymptotic freedom of QCD, which was discovered by Gross, Politzer
and Wilczek [81–83, 131]. Asymptotic freedom is the reason why the coupling constant
of QCD can be measured at the electroweak scale. The world average of measurements
of the coupling is given in the particle data book [20] as

αs(M2
Z) ≡ g2(M2

Z)
4π = 0.1184± 0.0007, (1.29)

which must be evolved with renormalisation group methods to the scale of interest.

1.2 Lattice QCD

This part follows mostly [65]. It includes a brief introduction to Lattice QCD (LQCD)
as a discretisation of an analytic continuation of the continuum action of eq. (1.5) to
Euclidean space-time as it had been conceived for the first time by Wilson [160]. The
gluon action is discretised as the Wilson plaquette action and Wilson fermions are in-
troduced as the standard case of lattice fermions, which is compared in section 1.3 with
minimally doubled fermion actions. A lattice realisation of chiral symmetry according to
the Ginsparg-Wilson equation [72] employing Ginsparg-Wilson fermions with an Overlap
operator [119] is presented for contrasting juxtaposition.

1.2.1 Discretisation of QCD on a Euclidean space-time

The analytic continuation of the QCD action from Minkowski space-time to Euclidean
space-time is rather straightforward. The Osterwalder-Schrader approach [124, 126] is
used for the Wick rotation1 (cf. appendix A.4). Wick rotation is applied to eq. (1.5) and

1The terminology is taken over from [149,153].
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produces an overall factor i,

SQCDM [ψM , ψ̄M , AM ] = iSQCDE [ψE , ψ̄E , AE ], (1.30)

which multiplies the Euclidean QCD action (without Euclidean indexing),

SQCD[ψ, ψ̄, A] =
∫
R4

ψ̄(x) (γµDµ +m0)ψ(x)− 1
4Tr (Fµν(x)Fµν(x)) d4x. (1.31)

Euclidean space-time is discretised according to appendix A.4.3 using eqs. (A.38) and
(A.39). The lattice spacing a, the intrinsic length scale of the discretised theory, is
treated as a small quantity and its inverse serves as a cutoff removing UV divergences.
The limit a → 0 of tree-level quantities is called the naïve continuum limit. However,
since interactions mix terms of different powers in the lattice spacing a, an appropriate
renormalisation prescription is required in the determination of the continuum limit.

Fermion fields are defined on the lattice sites labelled by n. Partial derivatives cannot be
defined on a lattice and have to be discretised as finite differences. Two naïve versions,

∇µψn = 1
a

(
ψn+êµ − ψn

)
= ∂µψ(x)− a

2ψ(x) +O(a2), (1.32)

∇∗µψn = 1
a

(
ψn − ψn−êµ

)
= ∂µψ(x) + a

2ψ(x) +O(a2), (1.33)

are combined to a symmetrised form2 with reduced discretisation errors,
1
2(∇µ +∇∗µ)ψn = 1

2a
(
ψn+êµ − ψn−êµ

)
= ∂µψ(x) +O(a2). (1.34)

As fermion fields in the kinetic term sit on neighbouring sites, they transform differently
under gauge transformations. A gauge-invariant kinetic term uses gauge links Uµn ,

Uµn ≡ Uµ(an, a(n+ êµ)) = eiaA
µ(a(n+êµ/2)) = e

iaAµ
n+êµ/2 , (1.35)

which are the Euclidean analogue of the parallel transporters of eq. (1.12). Since gauge
transporters Uµn instead of the connection Aµn+êµ/2 are the field variables in LQCD,
eq. (1.35) defines the connection in LQCD. Gauge links Uµn are defined by the end sites
n and n + êµ which they connect. The particular definition of the site label of the
connection, which is exactly in the middle between the ends of the gauge link, simpli-
fies calculations in lattice perturbation theory in section 2. Thus, the symmetrically
discretised covariant derivative reads

Dµ[U ]ψn = 1
2a

(
Uµnψn+êµ − U

µ†
n−êµψn−êµ

)
= (∂µ + iAµ(x))ψ(x) +O(a2) = Dµψ(x) +O(a2)

(1.36)
and is conveniently expressed as a matrix with two site indices,

Dµ
n,m[U ] = 1

2a
(
Uµn δn+êµ,m − U

µ†
n−êµδn−êµ,m

)
. (1.37)

2Only the symmetrised form has the desired hermiticity properties.
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The contraction of the discretised covariant derivative Dµ
n,m[U ] with Dirac matrices γµ,

DN
n,m =

3∑
µ=0

γµDµ
n,m[U ], (1.38)

is referred to as the naïve Dirac operator and implicitly depends on the local gauge fields
U . It is a remarkable feature of the naïve Dirac operator that it connects only fields on
even with fields on odd sites as defined in eq. (A.40), which is inherited by many other
discretised Dirac operators. It is employed in the naïve fermion action with mass m0,

SN [ψ, ψ̄, U ] = a4 ∑
n,m∈Λ

ψ̄n
(
DN
n,m +m0δn,m

)
ψm. (1.39)

However, the action of eq. (1.39) is not well-suited for simulations of QCD due to the
so-called doubling problem, which is covered in section 1.2.3.

Since the field strength tensor Fµν(x) is defined through explicit use of derivatives,
discretisation of the gauge action of eq. (1.3) requires a lattice representation of the field
strength tensor that uses only finite differences. Any chain of neighbouring gauge links
is a discretised expression for a Wilson line. If the Wilson line returns to its origin in a
so-called Wilson loop, it becomes a gauge-invariant object. The smallest possible Wilson
loop in the µ-ν plane is the so-called plaquette Uµνn , which can be expanded in the gauge
fields A using eq. (1.35),

Uµνn =UµnUνn+êµU
µ†
n+êνU

ν†
n (1.40)

=eiaA
µ
n+êµ/2 e

iaAν
n+êµ+êν/2 e

−iaAµ
n+êν+êµ/2 e

−iaAν
n+êν/2

=e
ia2(∇µAν

n+êν/2
−∇νAµ

n+êµ/2
+i
[
Aµ
n+êν+êµ/2

,Aν
n+êν/2

]
)

+O(a3)
=eia2Fµν(x) +O(a3), (1.41)

until it yields the exponentiated field strength tensor up to higher orders in the lattice
spacing. Hence, the plaquette as an exponentiated multiple of a discretised version of
the field strength tensor is used in the so-called plaquette action,

Sp[U ] =
∑
n∈Λ

∑
µ<ν

2
g2

0
Re Tr(1− Uµνn ), (1.42)

which was originally conceived by Wilson [160]. The inverse coupling constant is usually
abbreviated as

β = 6
g2

0
, (1.43)

and is non-analytically related the lattice spacing a. The product of lattice spacing and
length of the time direction plays the role of an inverse temperature aN0 = 1/(kBT ).
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1.2.2 Symmetries of Lattice QCD

Most symmetries of the Minkowski space-time QCD action are carried over to the Eu-
clidean QCD action, though some symmetries are replaced by a counterpart. The sym-
metry under transformations with elements of the proper orthochronous Lorentz group
L↑+ together with the spatial rotation group SO(3) are substituted by an SO(4) symmetry,
since Euclidean time is fully equivalent to any spatial direction. The naïve discretisation
procedure breaks the rotation group SO(4) down to the hypercubic groupW4. The sym-
metry transformations of eqs. (1.14) and (1.16), parity P and charge conjugation C, fully
carry over to Euclidean space-time. Due to the full equivalence of the four directions
of Euclidean space-time, the parity transformation can be generalised to reflections Pµ,
which leave only the êµ direction invariant,

xν
Pµ→ Pµxν ≡ (−1)1−δµνxν ,

ψ(x) Pµ→ γµ ψ(Pµx),
ψ̄(x) Pµ→ ψ̄(Pµx) γµ,
Aλ(x) Pµ→ (−1)1−δµλAλ(Pµx).

(1.44)

Hermiticity of the Minkowski space-time quark action is not carried over to Euclidean
space-time in the OS approach for Euclidean field theories [124, 126]. Nevertheless,
γ5 hermiticity of the Dirac operator,

γ5D†γ5 = D, (1.45)

is a property of Euclidean Dirac operators that are analytic continuations of hermitian
Dirac operators on Minkowski space-time. The product Q = γ5D is a hermitian Dirac
operator if D is γ5 hermitian.

Time reflection Θ of the Euclidean space-time QCD action is realised with three succes-
sive generalised parity transformations with cyclical spatial indices, e.g. P1P2P3. The
reflection is generalised to reflection of the single êµ direction in Euclidean space-time,

xν
Θµ→ Θµxν ≡ (−1)δµνxν ,

ψ(x) Θµ→ γµγ5 ψ(Θµx),
ψ̄(x) Θµ→ ψ̄(Θµx) γ5γµ,

Aν(x) Θµ→ δµνAν(Θµx).

(1.46)

In a discretised theory, time-reflection can be performed with two different methods.
Either one temporal site index is fixed and the lattice is reflected at this hyperplane,
which is called site-reflection. Or the invariant hyperplane is chosen in the middle of a
link between two neighbouring temporal hyperplanes, which is called link-reflection. If
either site- or link-reflection is a symmetry of the discretised theory, the continuum limit
satisfies Θ symmetry. The condition, whether the Minkowski space-time QFT, which
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is obtained from any Euclidean space-time QFT by the analytic continuation back to
Minkowski space-time with an inverse Wick rotation, satisfies Θ symmetry or not has
been covered by Osterwalder et al. [125, 126]. The associated Minkowski space-time
QFT satisifies Θ symmetry, if any correlation function, which depends only on fields at
positive times (defined with either site- or link reflection) is necessarily positive.

1.2.3 Doubling problem and No-Go theorem

The naïvely discretised fermion action of eq. (1.39) contains spurious fermionic degrees
of freedom, which are called doublers. This property is apparent in the momentum space
representation of the naïve fermion action in the free theory with trivial gauge fields,

SN [ψ, ψ̄] = 1
|Λ|

∑
k∈Λ̃

ψ̄(k)

 i

a

3∑
µ=0

γµ sin (akµ) +m0

ψ(k), (1.47)

where |Λ| is defined in appendix A.4.3. On the one hand, the naïve Dirac operator’s
chiral limit DN (k) = i

aγ
µ sin (akµ) vanishes, if all four-momentum components satisfy

kµ = nµ
π

a
, nµ = {0, 1}. (1.48)

In a four-dimensional lattice, each dimension contributes a factor two for a total of sixteen
poles of DN (k). On the other hand, the continuum Dirac operator D(k) = iγµkµ has
only one pole, if all momentum components vanish. Because each pole represents a
real and degenerate fermion species3, the naïvely discretised Dirac operator has fifteen
spurious species compared to the Dirac operator of QCD on a space-time continuum.
The degeneracy is due to invariance of the action of eq. (1.39) under any products
(µ ∈ {0, 1, 2, 3}) of the following unitary symmetry transformations:

ψn → χn = Tµnψn, ψ̄n → χ̄n = ψ̄n(Tµn )−1, Tµn = (−1)nµQµ, Qµ = γµγ5. (1.49)

These are the spin factors (cf. eq. (2.10) in [99]) that reflect the symmetry between the
sixteen species. Since the number of zero modes of the naïve Dirac operator is doubled
for every space-time direction, these spurious degrees of freedom are called doublers and
their presence is known as the doubling problem. Appropriate modification of the naïve
Dirac action solves the doubling problem.

However, Nielsen and Ninomiya presented a No-Go theorem [121], which identified limi-
tations to such modifications. According to Niedermayer [120], there is a limitation that
no Dirac operator can simultaneously satisfy

(a) Dn,m is local (bounded by Ce−γ|n−m|)
(b) D(p) = iγµpµ +O(ap2) for p� π/a
(c) D(p) is invertible for p 6= 0 (has no massless doublers)
(d) γ5D +Dγ5 = 0 (chiral symmetry)

3Since these poles differ by local spin factors [99], lattice fermions are called species in the following.
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In brief, ultralocal lattice discretisations of the Dirac operator cannot have an odd num-
ber of chiral fermions without failing to reproduce the continuum Dirac operator in the
naïve continuum limit. Therefore, any modification of the naïve Dirac operator must lack
at least one of these properties. First, Wilson’s discretisation of the quark action, which
explicitly sacrifices the chiral symmetry is discussed. Second, the Ginsparg-Wilson rela-
tion [72], as a possible non-ultralocal realisation of chiral symmetry on a space-time lat-
tice, and Neuberger’s overlap operator [119] as an example of Ginsparg-Wilson fermions
are covered. Finally4, minimally doubled fermions of the types suggested by Karsten [98]
and Wilczek [159] as well as the types suggested by Creutz [45] and Borici [26] are intro-
duced. The presence of exactly two chiral zero modes inevitably breaks the hypercubic
symmetry of the space-time lattice.

1.2.4 Wilson fermions

Wilson’s solution [160] to the doubling problem adds to the naïve Dirac operator of
eq. (1.38) an addititional operator, that constitutes the Wilson term,

DW
n,m = 1

3∑
µ=0

r

2a
(
2δn,m −

(
Uµn δn+êµ,m + Uµ†n−êµδn−êµ,m

))
, (1.50)

which trivially vanishes in the naïve continuum limit. In the free theory with trivial
gauge fields, it can be expressed through

DWψn = −ar2 1
3∑

µ=0
∇µ∇∗µψn = −r21

3∑
µ=0

(
∇µ −∇∗µ

)
ψn, (1.51)

which shows that it is a discretised form of a d’Alembertian operator. The momentum
space representation of the Wilson term in the free theory,

DW (k) = 1
3∑

µ=0

r

a
(1− cos (akµ)) , (1.52)

formally resembles a four-momentum dependent mass term. It vanishes at k = (0, 0, 0, 0),
which corresponds to the continuum Dirac operator’s pole. All spurious fermion modes
acquire mass terms that diverge in the continuum limit. Due to this infinite mass,
the doublers decouple from the dynamics of the continuum fermion. The Wilson term,
however, explicitly breaks chiral symmetry:

(DN +DW )γ5 + γ5(DN +DW ) = 2γ5DW . (1.53)

If the lattice spacing a is sufficiently small, cutoff effects due to the Wilson term break
chiral symmetry softly like the quark masses. Then cutoff effects can be treated as

4This is by no means exhaustive, e.g. staggered fermions are a third type of lattice fermions with a
large number of different subtypes.
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a perturbation to chiral symmetry and the spectrum of QCD can be recovered in the
continuum limit. Otherwise, the spontaneous breakdown of chiral symmetry due to
QCD cannot be studied numerically. Subtle properties of QCD due to the broken chiral
symmetry might be obscured in studies with Wilson fermions.

1.2.5 Ginsparg-Wilson fermions

In 1981, Ginsparg and Wilson [72] suggested a discretised form of chiral symmetry as

DGWγ5 + γ5DGW = aDGWγ5DGW , (1.54)

which is known as the Ginsparg-Wilson equation. Eq. (1.54) requires that any Ginsparg-
Wilson Dirac operator DGW has non-vanishing contributions for arbitrarily separated
lattice sites. Locality in the usual sense (ultralocality) is therefore sacrificed in these
Dirac operators. However, an infinitesimal chiral transformation of the quark fields with

ψ′ = eiαγ
5(1−a2D

GW )ψ, ψ̄′ = ψ̄eiα(1−a2D
GW )γ5

(1.55)

leaves a Ginsparg-Wilson quark action invariant,

L[ψ′, ψ̄′] = ψ̄′DGWψ′ = ψ̄DGWψ = L[ψ, ψ̄]. (1.56)

Lattice chirality projectors are defined with a non-local Ginsparg-Wilson chirality matrix,

γ̂5 = γ5(1− aDGW ), P̂R = 1 + γ̂5

2 , P̂L = 1− γ̂5

2 (1.57)

and Ginsparg-Wilson fermions with a finite quark mass are obtained with

DGW,m = ωDGW +m1, ω = 1− am

2 . (1.58)

For a long time, no Dirac operator that qualified as a Ginsparg-Wilson Dirac operator
DGW was discovered until the 1990s. Kaplan [97] suggested domain wall fermions,
Hasenfratz et al. [89] suggested perfect actions and Neuberger [119] suggested the overlap
operator, which all qualify as Ginsparg-Wilson fermions. The overlap operator reads

Dov = 1
a

(
1 + γ5 sign(Q)

)
= 1
a

(
1 + γ5Q√

Q2

)
, (1.59)

where Q is the overlap kernel, which can be any undoubled hermitian Dirac operator
with real eigenvalues such as Q = γ5(DN + DW ). Due to the presence of the sign
function, the overlap Dirac operator is not a sparse matrix in space-time even with a
sparse kernel matrix Q. It must be approximated with considerable numerical effort and
is computationally quite expensive. Nevertheless, it is shown by Hernandez et al. [91]
that the magnitude of components of the Ginsparg-Wilson Dirac operator decreases at
least exponentially with the distance between sites,∣∣∣(DGW

n,m )āb̄αβ
∣∣∣ ≤ C exp (−γ‖n−m‖). (1.60)
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As the coefficients C and γ are independent of the gauge configuration and the lattice
spacing a, the exponential fall-off shrinks to zero and a local field theory is recovered
in the continuum limit. In that sense, the non-locality of the overlap operator can be
considered as only a technical problem of calculations.

1.3 Minimally doubled fermions

Minimally doubled fermions are another type of discretised fermion actions, which have
explicit ultralocal chiral symmetry. An additional ultralocal operator Dmd that anti-
commutes with the standard chirality matrix γ5 is added to the naïve fermion action.
Dmd reduces the number of poles of the lattice Dirac operator to two. Since these poles
are located at different points on a line through the Brillouin zone, their displacement
explicitly necessitates a reduction of the hypercubic symmetry of the naïve Dirac opera-
tor. Their different momentum support implies that they acquire different spin factors.
Chiral fermions in the continuum limit can be defined as linear combinations of fields
on neighbouring sites [159]. These two fermions show sensitivity to fluctuations of local
gauge fields which may lift the degeneracy between both at finite lattice spacing. This is
the analogue of taste-splitting and taste-breaking for staggered fermions [24, 104]. Two
different types of minimally doubled fermions, Karsten-Wilczek [98, 159] and Boriçi-
Creutz fermions [26, 27, 45, 46] are covered in more detail. Other types of minimally
doubled fermions such as twisted ordering fermions [116] and generalisations of Karsten-
Wilcek and Boriçi-Creutz types [32–34] are not covered here.

1.3.1 Karsten-Wilczek fermions

Karsten-Wilczek fermions were suggested in response to the No-Go theorem of Nielsen
and Ninomiya [121] by Karsten [98] as a strictly local, chiral Dirac operator with the
minimal number of chiral fermion species. The additional term vanishes only at the
two temporal doublers and hence lessens the degeneracy and removes fourteen spurious
fermions. Wilczek generalised the action further through the Wilczek parameter (called
ζ throughout this thesis) and suggested a gluonic counterterm [159]. Pernici studied the
action with the Karsten-Wilczek term in the ê1 direction [129]. He suggested to consider
the two fermion species as two flavours of QCD, constructed the transfer matrix and dis-
cussed fermionic counterterms. Moreover, he showed that the free action has a different
species symmetry than the naïve action. In the wake of the minimally doubled fermion
revival by Creutz [45] and Boriçi [26], Bedaque et al. [18] revisited the symmetries of the
Karsten-Wilczek action. A study of the perturbative renormalisation of Karsten-Wilczek
fermions at one-loop level [35,36,38] independently derived its counterterm structure in
perturbation theory (cf. section 2). Tiburzi [145] studied the spin-flavour structure and
the axial anomaly with Karsten-Wilczek fermions and Creutz suggested an approach
to flavours of minimally doubled fermions using point-split fields [47]. Later, Misumi
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et al. studied the index theorem [48] with Karsten-Wilczek fermions, their spin-flavour
representation [101] and an interpretation as fermions with flavoured chemical poten-
tial [114,115]. The additional operator of the Karsten-Wilczek term reads

DKW
n,m =

∑
µ 6=α

iζ

2aγ
α
(
2δn,m −

(
Uµn δn+êµ,m + Uµ†n−êµδn−êµ,m

))
, (1.61)

and is added to the naïve Dirac operator of eq. (1.38) to form the full Karsten-Wilczek
operator. êα is the unit vector along the alignment of the Karsten-Wilczek term and can
be any one of the four Euclidean directions. The additional operator breaks the hyper-
cubic group W4 down to the cubic subgroup W3, which excludes the êα direction. Any
combination of permutations of axes and reflections Pµ within the orthogonal comple-
ment of the êα direction (µ 6= α) is a symmetry of the Karsten-Wilczek action. However,
neither the operators Θα for nα reflection of the êα direction nor C for charge conjugation
are symmetry operators of the Karsten-Wilczek action, since neither leaves the Karsten-
Wilczek operator form-invariant. Nevertheless, the combination ΘαC = CΘα leaves the
Karsten-Wilczek action form-invariant. Therefore, the product CPΘ is a symmetry of
the Karsten-Wilczek action for any choice of α. The two doublers are located on the
α axis,

kα = nα
π

a
, nα = {0, 1}; kµ = 0, µ 6= α. (1.62)

The mechanism which removes the spurious doublers is evident in the free momentum
space Karsten-Wilczek action,

SKW [ψ, ψ̄] = 1
|Λ|
∑
k∈Λ̃

ψ̄(k)
(
i

a

3∑
µ=0

{
γµ sin (akµ) + ζ(1− δµα)γα(1− cos (akµ))

}
+m0

)
ψ(k).

(1.63)
The magnitude of the Karsten-Wilczek term exceeds the magnitude of the γα-component
of the naïve kinetic term, if the Wilczek parameter satisfies |ζ| > 1/2 at any of the
spurious doublers kµ = π/a, µ 6= α,

|ζ|(1− cos (akµ)) = 2|ζ| > 1 ≥ | sin (akα)|. (1.64)

Thus, the massless Dirac equation (DN (k)+DKW (k))ψ(k) = 0 has no solution, if any of
the four-momentum components is non-zero except kα. This leads to Pernici’s symmetry
transformation between mirror fermions [129],

ψn → (−1)nαψRαn, ψ̄n → ψ̄Rαn(−1)nα , Rµnν = (1− 2δµν)nν , (1.65)

which can be understood as a combination of nα reflection Θα of eq. (1.46) and the uni-
tary operator Tαn of eq. (1.49). Thus, the combination of any two of the three operators
C, Θα and Tαn leaves the Karsten-Wilczek action form-invariant. The Karsten-Wilczek
action requires three counterterms [18,36,38,129], which are the only further relevant and
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marginal operators in the operator product expansion, which comply with the Karsten-
Wilczek term’s symmetry. The two fermionic counterterm operators read

D3
n,m =cKW (g0) i

a
γαδn,m, (1.66)

D4
n,m =dKW (g0) γαDα

n,m[U ], (1.67)

where Dα
n,m[U ] is the α component of the usual lattice covariant derivative of eq. (1.37).

It amounts to a renormalisation of the fermionic speed of light in the êα direction. The
gluonic counterterm is due to a carryover of the anisotropy to the gauge fields and reads

S4p[U ] =
∑
n∈Λ

∑
µ6=α

dKWP (g0)β3 Re Tr(1− Uµαn ). (1.68)

It amounts to a renormalisation of the gluonic speed of light in the êα direction. The
dimension three counterterm has the same symmetry (CΘα instead of C and Θα indi-
vidually) as the Karsten-Wilczek term. However, both dimension four counterterms are
form-invariant under charge conjugation, any nµ reflection (Pµ or Θµ) and the unitary
operators (Tαn ). Thus, the full Karsten-Wilczek action has three counterterms,

Sf [ψ, ψ̄, U ] = a4 ∑
n,m∈Λ

ψ̄n
(
DN
n,m +DKW

n,m +D3
n,m +D4

n,m +m0δn,m
)
ψm, (1.69)

Sg[U ] =
∑
n∈Λ

∑
µ<ν

β

3 Re Tr(1− Uµνn )
(
1 + dKWP (g0)δµα

)
, (1.70)

with a priori unknown coefficients cKW (g0), dKW (g0) and dKWP (g0), which depend on
the parameters of the theory (in the chiral limit only g0 and ζ). These counterterm
coefficients5 must be tuned in order to restore isotropy to the continuum limit.

1.3.2 Boriçi-Creutz fermions

Boriçi-Creutz fermions were suggested by Creutz [45] as a four-dimensional generali-
sation of graphene. Graphene layers of single atom thickness had been extracted for
the first time by Geim and Novoselov in 2004 [95] and they demonstrated that elec-
trons in graphene propagate as a two-dimensional gas of massless Dirac fermions [122].
Boriçi placed these four-dimensional graphene actions on orthogonal lattices [26]. Be-
daque et al. studied symmetries of these actions [18], introduced an iso-doublet notation
and pointed out the non-singlet structure of the Boriçi-Creutz operator. They demon-
strated that Boriçi-Creutz actions on totally symmetric hyperdiamond lattices do not
reproduce the correct continuum limit [19]. Cichy et al. [42] studied cutoff effects of
Boriçi-Creutz fermions at tree level and Boriçi found scaling behaviour of pseudoscalar
masses with Boriçi-Creutz fermions consistent with predictions of chiral perturbation
theory [27]. Misumi and Kimura [102, 103] studied hyperdiamond lattices of different

5The label KW of the coefficients and the coupling dependence are usually omitted in the following.
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dimensionalities and demonstrated that minimal doubling and hyperdiamond structure
are compatible only in two dimensions. One-loop renormalisation properties were de-
termined in perturbative studies of Boriçi-Creutz fermions [35–38]. The spin-flavour
representation of Boriçi-Creutz fermions was covered in [101]. The additional operator
is

DBC
n,m =

∑
µ

iζ

2a (Γ− γµ)
((
Uµn δn+êµ,m + Uµ†n−êµδn−êµ,m

)
− 2δn,m

)
, (1.71)

and its fermionic bilinear is the Boriçi-Creutz term with parameter6 ζ = ±1 and where

Γ ≡ 1
2

3∑
ν=0

γν . (1.72)

The additional operator is added to the naïve Dirac operator of eq. (1.38) to form the
full Boriçi-Creutz operator. A transformed set of Dirac matrices,

γµ′ ≡ ΓγµΓ = Γ− γµ, (1.73)

allows for a convenient notation of the additional operator,

DBC
n,m =

∑
µ

iζ

2aγ
µ′
(
Uµn δn+êµ,m + Uµ†n−êµδn−êµ,m

)
− iζ

a
2Γδn,m. (1.74)

The symmetry of the Boriçi-Creutz action has been studied by Creutz [46]. The residual
W3 cubic symmetry of the Boriçi-Creutz action can be made transparent most easily
using a real, self-inverse and symmetric matrix,

A = ζ

2


+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

 = A−1 = AT = A∗, (1.75)

which transforms the site basis êµ to a new orthonormal basis f̂ν (f̂ basis),

f̂ν = Aνµêµ, êµ = Aµν f̂ν . (1.76)

The Dirac matrices in the f̂ basis are linear combinations of the old Dirac matrices,

Γν = Aνµγµ, γµ = AµνΓν , in particular ζΓ ≡ Γ0. (1.77)

The naïve Dirac operator is form-invariant under the coordinate transformation to the
f̂ basis and the additional operator written in the f̂ basis reads

DBC
n,m =−

∑
ν,µ

i

2aΓνAνµ
(
Uµn δn+êµ,m + Uµ†n−êµδn−êµ,m

)
(1.78)

+
∑
µ

i

a
Γ0A0µ

(
Uµn δn+êµ,m + Uµ†n−êµδn−êµ,m

)
+ i

a
2Γ0δn,m, (1.79)

6Some authors (e.g. [101]) use a generalised Boriçi-Creutz action with arbitrary values of ζ. A brief
discussion why these actions are not considered here is presented at the end of this section.
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where the residual cubic symmetry of the linear span

span(V ) =
{ 3∑
i=1

λif̂i | f̂1, f̂2, f̂3

}
(1.80)

is evident in eq. (1.78). However, any reflection of the f̂0 direction changes the sign
of the last term in eq. (1.79). Moreover, a simultaneous reflection of all directions
(PΘ = PfΘf ) changes the overall sign of the additional operator of eq. (1.71). Because
charge conjugation induces a sign change in the additional operator as well, the Boriçi-
Creutz action satisfies CPΘ symmetry. The two doublers are aligned on the f̂0-axis,

k0 = n0
π

a
, n0 = {0, 1}; kν = 0, ν 6= 0. (1.81)

Whereas this looks very much alike eq. (1.62), the length of one period on the axes in
the f̂ basis is 4π/a instead of 2π/a. Hence, the Boriçi-Creutz term in eq. (1.71) and the
Karsten-Wilczek term in eq. (1.61) are not exactly rotated analogues. Only even sites
in the site basis êµ are mapped on points with integer labels in the f̂ basis f̂ν . Odd sites
in the site basis are mapped on points with half-integer labels in the f̂ basis and vice
versa. In terms of the site basis êµ, the doublers are located at

kµ = nζ
π

2a ∀µ, n = {0, 1}, (1.82)

where all components are equal. The mechanism, which removes the spurious doublers is
covered in great detail by Creutz [46]. Among the two pieces of the additional operator,
the first is unitarily equivalent to the naïve Dirac operator with shifted four-momentum,

iζ

a
γµ′ cos (akµ) = Γ

(
i

a
γµ sin

(
akµ + ζ

π

2

))
Γ, (1.83)

and vanishes at four-momenta that maximize the naïve Dirac operator. The second piece
is a constant

− iζ
a

2Γ = − i
a

∑
µ

γµζ = − iζ
a

∑
µ

γµ′ (1.84)

that cancels the with the first piece exactly at the continuum pole of the naïve Dirac op-
erator (kµ = 0 ∀ µ), whereas it cancels with the naïve Dirac operator exactly a single pole
of the first piece of the additional operator of the Boriçi-Creutz term (kµ = ζπ/(2a) ∀ µ).
Any other pole of either operator is only incompletely cancelled by the second piece and
does not persist as a pole of the full Boriçi-Creutz operator. Therefore, minimal doubling
is achieved and the free momentum space Boriçi-Creutz action reads

SBC [ψ, ψ̄] = 1
|Λ|
∑
k∈Λ̃

ψ̄(k)
(
i

a

3∑
µ=0
{γµ sin (akµ) + ζγµ′(cos (akµ))}+

{
m0 −

iζ

a
2Γ
})

ψ(k).

(1.85)
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The Boriçi-Creutz action requires three counterterms [18, 35–38], which are the only
further relevant and marginal operators in the operator product expansion that comply
with the Boriçi-Creutz term’s symmetry. The two fermionic counterterm operators read

D3
n,m =cBC(g0) i

a
Γδn,m, (1.86)

D4
n,m =dBC(g0) 1

2Γ
3∑

µ=0
Dµ
n,m[U ], (1.87)

whereDµ
n,m[U ] are the µ-components of the usual lattice covariant derivative of eq. (1.37).

The dimension four counterterm can be understood as the Γ0D0
n,m[U ] component of the

naïve Dirac operator in the f̂ basis. The gluonic counterterm is due to a carryover of
the anisotropy to the gauge fields and reads

S4p[U ] =
∑
n∈Λ

3∑
µ,ν,ρ=0

dBCP (g0)
(
F̂µρn F̂ ρνn

)
, (1.88)

where F̂µρn is some lattice discretisation of the gluon field strength tensor. In the f̂ -basis,
the term takes a form which clearly underscores the analogy to eq. (1.68),

S4p[U ] =
∑
n∈Λ

3∑
ρ=1

dBCP (g0)1
4
(
F̂ 0ρ
n F̂ ρ0

n

)
. (1.89)

The dimension four counterterms amount to different renormalisation of the speed of
light for fermions and gluons in the f̂0-direction. The dimension three counterterm has
the same CPΘ symmetry as the additional term of eq. (1.71). However, both dimension
four counterterms are additionally form-invariant under charge conjugation as well as any
nµ reflection (Pµ or Θµ). The full Boriçi-Creutz action contains its three counterterms,

Sf [ψ, ψ̄, U ] =a4 ∑
n,m∈Λ

ψ̄n
(
DN
n,m +DBC

n,m +D3
n,m +D4

n,m +m0δn,m
)
ψm, (1.90)

Sg[U ] =
∑
n∈Λ

∑
µ<ν

β

3 Re Tr(1− Uµνn ) +
3∑
ρ=0

2dBCP (g0)
(
F̂µρn F̂ ρνn

)
, (1.91)

with a priori unknown coefficients cBC(g0), dBC(g0) and dBCP (g0), which depend on
the parameters of the theory g0. These counterterm coefficients7 must be tuned in
order to restore isotropy to the continuum limit. The additional operator could be
generalised [101] with ζ 6= ±1, if the dimension-four counterterm were included with a
changed coefficient,

D4,mod
n,m =

(
dBC(g0) + 2(|ζ| − 1)

) 1
2Γ

3∑
µ=0

Dµ
n,m[U ]. (1.92)

7The label BC of the coefficients and the coupling dependence are usually omitted in the following.
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The action would maintain minimal doubling with the same zero modes as in eq. (1.82).
However, eq. (1.92) changes the naïve continuum limit of the Dirac operator, which is

lim
a→0

Dmod(p) = lim
a→0

DN (p) +D4,mod(p) = i
∑
µ

(γµ + (|ζ| − 1)Γ) pµ. (1.93)

Hence, the naïve continuum limit of the modified Boriçi-Creutz actions fails to agree
with the correct continuum action i∑µ γ

µpµ unless |ζ| = 1. This is why these modified
actions are not given any further consideration here.
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Perturbative studies

Though the objective of LQCD is to study QCD in the non-perturbative regime, Lattice
Perturbation Theory (LPT) is an important tool. Here, LPT studies are applied to
determine renormalisation properties of minimally doubled fermions. Their counter-
terms are a manifestiation of the anisotropy and their coefficients are calculated at one-
loop level. It is shown how isotropy is restored to the continuum limit in perturbation
theory up to O(g4

0) corrections through application of counterterms. However, only
coefficients of counterterms in the continuum limit are known at one-loop level. If there
are different lattice operators with the same continuum limit, a one-loop LPT calculation
cannot necessarily discern which counterterm operator is favourable at finite cutoff.
This is important if counterterm operators include lattice derivatives such as eqs. (1.67)
and (1.87), as one-loop calculations are ignorant of their discretisation1. Nevertheless,
the dependence of one-loop coefficients on tree-level parameters (such as ζ) restricts
possible choices of lattice counterterm operators. LPT calculations demonstrate the
renormalisability of minimally doubled fermions (cf. sections 2.3.1 and 2.3.3). LPT
substantiates the statements [18, 145] that the axial symmetry current of minimally
doubled fermions is conserved in the perturbative regime for arbitrary gauge coupling.
Vector and axial symmetry currents, which are derived with chiral Ward-Takahashi
identities have renormalisation factors equal to one, since contributions from proper
vertex renormalisation and legs cancel exactly (cf. section 2.3.2).
The chapter starts with a discussion of general technical aspects of LPT is section 2.1,
which are taken from [31]. The next section 2.2 covers propagators and vertices of
minimally doubled fermions, which were already presented in [35–38]. The calculation
of one-loop corrections is then covered in more detail in section 2.3. Finally, the concept
of boosted perturbation theory (BPT) [110] is introduced and the perturbative estimates
from BPT for non-perturbative coefficients are presented in section 2.4. Lastly, results
of perturbative studies are summarised as interim findings (I) in section 2.5.

1Two-loop coefficients explicitly discriminate between these choices, since counterterms have to be
included in loop calculations up to O(g4

0).
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2.1 Technical aspects of lattice perturbation theory

LPT has been covered in great detail by Capitani in [31]. This section covers only those
concepts from chapters 15 and 18 of [31], which are necessary in the following. These
are the power counting theorem of Reisz [133–136], the subtraction scheme for divergent
integrals from Kawai et al. [100] and basic bosonic integrals, which were first studied by
Caracciolo et al. [39].

2.1.1 The power counting theorem of Reisz

Any LPT integral I with L loops has a generic structure ( [31], p. 208, eq. (15.1))

I =
+π/a∫
−π/a

d4k1
(2π)4 . . .

+π/a∫
−π/a

d4kL
(2π)4

V (k, q;m, a)
C(k, q;m, a) , (2.1)

where kj are internal loop four-momenta, qj are external four-momenta, m represents
masses of all particles on internal lines and a is the lattice spacing. The denominator is
written as a product of denominators of individual propagators ( [31], p. 208, eq. (15.2)),

C(k, q;m, a) =
L∏
i=1

Ci(li;m, a), (2.2)

with line momenta li(k, q), which can be expressed as linear combinations of internal
four-momenta kj and external four-momenta qj . The numerator and denominator have
to satisfy a set of conditions (V1,V2, C1,C2,C3 and L1,L2 in [31]). C3 is quoted here
verbatim ( [31], p. 209, eq. (15.7)), because it is not satisfied in LPT calculations with
minimally doubled fermions without additional precautions:

“(C3) There exist positive constants a0 and A such that

|Ci(li;m, a)| ≥ A(l̂2i +m2
i ) (2.3)

for all a ≤ a0 and all li’s.”

The variable l̂ on the right hand side of eq. (2.3) is defined as

l̂µ ≡
2
a

sin
(
alµ
2

)
. (2.4)

Lattice integrals at finite a are necessarily finite in the ultraviolet (UV) region. In-
stead, their divergence is entirely in the infrared (IR). Evaluation of any LPT integral
requires knowledge of its superficial degree of divergence ( [31], p. 209, eq. (15.12)). The
superficial degree of divergence deg V of a numerator V is defined as

V (λk, q;m,λa) λ→∞= Kλdeg V +O(λdeg V−1), (2.5)
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where K 6= 0. With an analogous definition of degC for the denominator, the full
superficial degree of divergence is given by

deg I = 4L+ deg V − degC. (2.6)

In the one-loop calculations of section 2.3, chiral fermions are assumed. A common mass
parameter is introduced in all denominators as a mass regularisation in the infrared.

2.1.2 Subtraction scheme for lattice integrals

One-loop integrals I, which are calculated in section 2.3 depend on one or two external
four-momenta p and q, where the latter case applies within this thesis only to quadrat-
ically divergent contributions to the vacuum polarisation with p = q. The subtraction
scheme is demonstrated here for integrals with only one external four-momentum p,

I =
π/a∫
−π/a

d4k

(2π)2I(k, p), (2.7)

which are representative of logarithmically or linearly divergent contributions to the
fermionic self-energy. Following the scheme introduced by Kawai et al. [100], the diver-
gent integral is artificially split into two pieces J and I − J , where

J =
π/a∫
−π/a

d4k

(2π)2I(k, 0) +
3∑

µ=0

pµ π/a∫
−π/a

d4k

(2π)2
∂ I(k, p)
∂pµ

∣∣∣∣∣
p=0

 (2.8)

is obtained as a Taylor expansion of I up to first order in the external four-momentum p.
Thus, external particles are assumed as belonging to the neighbourhood of the standard
pole kµ = 0 ∀ µ. All integrands in J are evaluated for vanishing external four-momenta
and in the chiral limit, which greatly simplifies the calculation. Renormalisation of the
quark mass is calculated from a Taylor expansion in the bare mass, where integrals are
evaluated in the chiral limit. However, even for IR-finite cases of the original integral I,
both integrals J and I−J are IR-divergent and require an intermediate IR-regularisation
scheme. The second piece, I − J , is UV-finite and is evaluated in the limit a→ 0. The
first piece J can be simplified further with subtractions of well-known basic integrals J̃ ,
which share the same IR divergence. Hence, the difference J− J̃ is IR-finite. The lattice
spacing a is absorbed by rescaling the integration momentum,

ak → k′, (2.9)

and the integral itself is transformed into a pure number multiplying a power of the
lattice spacing a. The subtracted IR divergence is obtained from basic bosonic integrals
J̃ , which are known at very high precision. The basic integrals that are used in the
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presented calculations are expressed with the notation of eq. (2.4) as

B(1) ≡
π/a∫
−π/a

d4k

(2π)4
1∑
µ k̂

2
µ

= 1
a2Z0, (2.10)

B(1; 1, 1) ≡
π/a∫
−π/a

d4k

(2π)4

k̂2
µk̂

2
ν∑

λ k̂
2
λ

= 4a2Z1, (2.11)

B(2) ≡
π/a∫
−π/a

d4k

(2π)4
1(∑

µ k̂
2
µ +M2

)2 = 1
16π2

(
− log (aM)2)− γE + F0

)
. (2.12)

The Euler-Mascheroni constant γE also appears in continuum loop integrals,

γE = 0.57721566490153286. (2.13)

These basic integrals are taken from [31], p. 254, eqs. (18.23), (18.24) and (18.26). Other
bosonic integrals are defined in [31], p. 254, eq. (18.15) using eq. (2.4) as

B(p;n0, n1, n2, n3) =
π/a∫
−π/a

d4k

(2π)4
k̂2n0

0 k̂2n1
1 k̂2n2

2 k̂2n3
3(∑

µ k̂
2
µ +M2

)p (2.14)

and satisfy recursion relations, which are summarised in appendix B.1.

Basic bosonic constants
Z0 0.154933390231060214084837208
Z1 0.107781313539874001343391550
F0 4.369225233874758

Table 2.1: Numerical values of basic bosonic constants in LPT are taken from [31],
p. 254., Table 2. These constants are defined in eqs. (2.10), (2.11) and (2.12).

2.1.3 Numerical integration and finite volume effects

The remaining lattice integrals J− J̃ are evaluated with discrete summation methods for
periodic analytic functions taken from [111]. Integrals I of analytic periodic functions
f(k) are estimated as

I =
∫

d4k

(2π)4 f(k) = 1
N4

3∑
µ=0

N∑
nµ=1

f(2π n
N

) +O(e−εN ) ≡ I(N) +O(e−εN ), (2.15)

where ε is given by the absolute value of the singularity of the integrand which is closest to
the real axis (eqs. (5.42)-(5.44) in chapter 5.3 of [111]). The convergence of the integrals
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is accelerated by changing the integration variable according to (eqs. (5.46)-(5.51) in
chapter 5.3 of [111]) as

k = k′ − α sin (k′), 0 ≤ α < 1, (2.16)

which moves the singularity away from the real axis. The integrand takes the new form

f̂(k′) = (1− α cos k′)f(k(k′)) (2.17)

and the summation is replaced by

I = 1
N4

3∑
µ=0

N∑
nµ=1

f̂(2π n
N

) +O(e−ε̂N ) ≡ Î(N) +O(e−ε̂N ), (2.18)

where ε̂ = O(1). The summation is performed for various discretisations of the Brillouin
zone with different N . According to eq. (6.5) in chapter 6 of [111], the finite volume
effects for lattice one-loop diagrams with engineering dimension δ in the absence of
external momenta and masses take the form

D(f) ∼ aδ−4[A+B log(1/N)] + (aN)δ−4
∞∑
m=0

am(1/N)m. (2.19)

Therefore, multiple Î(N) with large, but similar N are extrapolated to N →∞ with

Î(N) = I∞ + dI

N2 . (2.20)

2.2 Propagators and vertices

Propagators and vertices for Karsten-Wilczek and Boriçi-Creutz fermions have been
already presented in [35–38]. Their properties are covered in detail in the next two
sections. Propagators and vertices are derived from the exponentiated action in the path
integral with variational methods in the limit of weak coupling g0. Since perturbative
expressions are lengthy, the following abbreviations are used:

sµp ≡ sin (apµ)
cµp ≡ cos (apµ)
ŝµp ≡ 2 sin (apµ/2)
ĉµp ≡ 2 cos (apµ/2)

(2.21)

When the Euclidean index is omitted in terms within parentheses that include any of
the expressions defined in eq. (2.21), their index is to be understood as being summed
over (e.g. (ŝp) ≡

∑
µ(ŝµp ), (ŝpŝpĉp) ≡

∑
µ(ŝµp ŝµp ĉµp )). Summations, which are restricted to
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all but the êα direction (e.g. (ŝpĉp)⊥ ≡
∑
µ6=α(ŝµp ĉµp )) are abbreviated with an additional

lower index “⊥”. For a similar purpose, the abbreviation %µν is introduced:

%µν ≡ 1− δµν . (2.22)

The propagator is obtained as the inverse of the free momentum space Dirac operator,

S(p;m, a) = D†(p;m, a)
D(p;m, a)D†(p;m, a) . (2.23)

The vertices must be derived from a variation of the connection Aµ instead of the gauge
links Uµ, which are related by eq. (1.35). Moreover, the coupling constant must be
extracted from the definition of the connection as Aµ = g0Aµ. Since one-loop corrections
are of order O(g2

0), the gauge links have to be expanded up to order O(g2
0),

Uµn = 1 + iag0Aµn+êµ/2 −
a2g2

0
2! A

µ
n+êµ/2A

µ
n+êµ/2 +O(g3

0) (2.24)

which generates vertices of fermions with two gluons that produce tadpole diagrams of
LPT, which do not have counterparts in continuum QCD. Each gluon field Aµn+êµ/2 is
expressed through its Fourier transform Aµ(k). The gluon propagator is taken from [31],
p. 144, eq. (5.62). It is obtained from an expansion of the plaquette action and requires
use of the Fadeev-Popov procedure [15]. Once a gauge has been fixed using a gauge
fixing parameter ξ, the gluon propagator reads

Gabµν(p;M,a) ≡ δabGµν(p;M,a), Gµν(p;M,a) ≡
δµν − (1− ξ) ŝµp ŝ

ν
p

(ŝp)2+(aM)2

(ŝp)2 + (aM)2
, (2.25)

where a mass parameter M is included only for the purpose of mass regularisation. The
overall denominator is referred to as the gluon denominator Dg(p;M,a) = (ŝp)2+(aM)2.

2.2.1 Karsten-Wilczek fermions
The fermion propagator for Karsten-Wilczek fermions is obtained by inverting the free
Dirac operator in eq. (1.63). It reads

S(p; ζ,m0, a) = a
−i(γ · sp)− i ζ2γα(ŝp)2

⊥ + am0

(sp)2 + ζ2

4 ((ŝp)2
⊥)2 + (am0)2 + ζs

α
p (ŝp)2

⊥
(2.26)

and is multiplied by a Kronecker symbol δbc in SU(3) space. Its denominator, which is
later referred to as D(p; ζ,m0, a), vanishes at both doublers of eq. (1.62), which clearly
violates condition C3 of eq. (2.3). Whether or not the second doubler generates an IR
divergence depends on properties of the other contributions to the loop integral. The
propagator has the correct continuum limit S(p; ζ,m0, 0) = (∑µ iγ

µpµ + m0)−1 in the
neighbourhood of its first doubler and can be interpreted as a quark propagator in the
limit a → 0. In the neighbourhood of the second doubler, the four-momentum p must
be expanded around the pole in line with [99,145] as

pµ = π

a
δµα + qµ. (2.27)
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Expansion of the propagator yields

S(q + π

a
êα; ζ,m0, a) = a

−i
∑
µ

(
γµsµq (1− 2δµα)

)
− iζγα(ŝq)2

⊥ + am0

(sq)2 + ζ2

4
(
(ŝq)2

⊥
)2 + (am0)2 − ζsαq (ŝq)2

⊥
(2.28)

which does not match a free quark in the limit a→ 0:

lim
a→0

S(q + π

a
êα; ζ,m0, a) =

(∑
µ

iγµqµ(1− 2δµα) +m0

)−1

. (2.29)

If the poles correspond to degenerate quarks in the limit a → 0, they must be related
by a unitary transformation like eq. (1.49 for naïve fermions). It is defined as

lim
q→0

χ(q) ≡ Qψ(q + π

a
êα), lim

q→0
χ̄(q) ≡ ψ̄(q + π

a
êα)Q†. (2.30)

with matrices Q and Q†. Thus, the propagator is transformed by left and right mul-
tiplication with their inverse matrices. Q and Q† equal Qα of eq. (1.49) up to phase
factors,

Q = eiϑiγαγ5, Q† = e−iϑiγαγ5 = Q−1, (2.31)
and bring the continuum limit of the shifted propagator in the neighbourhood of the
second pole to the original form in the neighbourhood of the first pole. The phase ϑ of
the matrix Q is unrestricted and taken as zero for convenience. The propagator is called
Sχ(q; ζ,m0, a) after four-momentum shift and unitary transformation reads

Sχ(q; ζ,m0, a) ≡ Q†S(q + π

a
êα; ζ,m0, a)Q = a

−i (γ · sq) + iζγα(ŝq)2
⊥ + am0

(sq)2 + ζ2

4
(
(ŝq)2

⊥
)2 + (am0)2 − ζsαq (ŝq)2

⊥
,

(2.32)

which satisfies
Sχ(p; ζ,m0, a) = S(p;−ζ,m0, a). (2.33)

Since the Karsten-Wilczek term of eq. (1.61) changes its sign under charge conjuga-
tion C, transforming the fermions with (−1)nαQC (with arbitrary phase ϑ) and gauge
fields with C is a local symmetry. The propagator always (with the exception of the
limit a → 0) includes both doublers, though S(p; ζ,m0, a) and Sχ(p; ζ,m0, a) differ by
O(a) effects. Since left and right multiplication of the chirality matrix γ5 with matrices
Q and Q† changes its sign as Q†γ5Q = −γ5, the two doublers always correspond to
fermion modes with opposite chirality in compliance with the No-Go theorem of Nielsen
and Ninomiya [121]. The fermion-fermion-gluon vertex reads

V µ
1 (p, q; ζ, a) = −ig0

2
(
γµĉµp+q + ζγα%αµŝµp+q

)
(2.34)

and is multiplied by an SU(3) generator (T d)bc, where d is the gluon’s colour index and
b and c are the fermions’ colour indices. The fermion-fermion-gluon-gluon vertex reads

V µν
2 (p, q; ζ, a) = ia

g2
0
4 δ

µν
(
γµŝµp+q − ζγα%αµĉ

µ
p+q

)
(2.35)
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and is multiplied by an anticommutator of two SU(3) generators (cf. eq. (A.10)),{
T d, T e

}bc
=
(1

3δ
deδbc + ddef (T f )bc

)
, (2.36)

where d and e are colour indices of the two emitted gluons. b and c are colour indices
of the fermion fields. The four-momentum p is attributed to an incoming fermion field
and q is attributed to an outgoing fermion field in both vertices.

2.2.2 Boriçi-Creutz fermions

Propagators and vertices for Boriçi-Creutz fermions are obtained like those for Karsten-
Wilczek fermions. In particular, the SU(3) structure is identical to the previous case
and is therefore not repeated here. The fermion propagator is derived by inverting the
free momentum space Boriçi-Creutz Dirac operator of eq. (1.85) and reads

S(p; ζ,m0, a) = a
N(p; ζ,m0, a)
D(p; ζ,m0, a) , (2.37)

with

N(p; ζ,m0, a) = −i
∑
µ

(
γµsµp −

ζ

2γ
µ′(ŝµp )2

)
+ am0, (2.38)

D(p; ζ,m0, a) = (sp)2+ζ2 ((cp)2 − 2(cp) + 4
)
− ζ (2(sp) + 2(spcp)− (sp)(cp)) + (am0)2. (2.39)

Its denominator D(p; ζ,m0, a) vanishes at both doublers of eq. (1.82) and thus violates
condition C3 of eq. (2.3). Whether or not the second doubler generates an IR divergence
depends on properties of the other contributions to the loop integral. The propagator
has the correct continuum limit S(p; ζ,m0, 0) = (∑µ iγ

µpµ+m0)−1 in the neighbourhood
of its first doubler and can be interpreted as a quark propagator in the limit a→ 0. In
line with the considerations of [18,99], the four-momentum p must be expanded around
the pole in the neighbourhood of the second doubler as

pµ = ζ
π

2a + qµ. (2.40)

Expansion of the propagator yields

S(q + π

2a ; ζ,m0, a) = a
N ′(q; ζ,m0, a)
D′(q; ζ,m0, a) (2.41)

with

N ′(q; ζ,m0, a) = − i
∑
µ

(
γµζcµq − ζγµ′(1 + ζsµq )

)
+ am0

D′(q; ζ,m0, a) = (ζcq)2 + ζ2 ((ζsq)2 + 2ζ(sq) + 4
)
− ζ2 (2(cq)− 2(cqζsq) + (cq)(ζsq)) + (am0)2

= ζ4(sq)2 + ζ2 ((cq)2 − 2(cq) + 4
)

+ ζ3 (2(sq) + 2(sqcq)− (sq)(cq)) + (am0)2.
(2.42)
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Eq. (2.41) does not match a free quark in the limit a→ 0:

lim
a→0

S(q + ζ
π

2a ; ζ,m0, a) =
iζ2∑

µ γ
µ′qµ +m0

ζ4∑
µ q

2
µ +m2

0
. (2.43)

If the poles correspond to degenerate quarks in the limit a→ 0, a unitary transformation
similar to eq. (1.49 for naïve fermions) must relate the fields. With a similar notation
but different matrices Q and Q† that are fixed in eq. (2.45), it is defined as

lim
q→0

χ(q) ≡ lim
q→0
Qψ(q + ζ

π

2a), lim
q→0

χ̄(q) ≡ lim
q→0

ψ̄(q + ζ
π

2a)Q†. (2.44)

Therefore, the propagator is transformed by left and right multiplication with the inverse
matrices. The shifted propagator of eq. (2.43) can be transformed into a free quark
propagator only if ζ2 = 1. Left and right multiplication of the propagator with

Q = eiϑiΓγ5, Q† = e−iϑiΓγ5 = Q−1 (2.45)
bring the continuum limit of the shifted propagator in the neighbourhood of the second
pole to the original form in the neighbourhood of the first pole. The phase ϑ of the
matrix Q is unrestricted and taken as zero for convenience. The propagator is called
Sχ(q; ζ,m0, a) after four-momentum shift and unitary transformation reads

S2(q; ζ,m0, a) ≡ Q†S(q + π

2a ; ζ,m0, a)Q (2.46)

=
a
(
−i
∑
µ

(
ζ2γµsµq −

ζ
2γ

µ′(ŝµq )2
)

+ am0

)
ζ4(sq)2 + ζ2 ((cq)2 − 2(cq) + 4) + ζ3 (2(sq) + 2(sqcq)− (sq)(cq)) + (am0)2 ,

which satisfies
Sχ(p;±1,m0, a) = S(p;∓1,m0, a), (2.47)

which strongly resembles the corresponding relation for Karsten-Wilczek fermions of
eq. (2.33). Moreover, as the Boriçi-Creutz term changes its sign under charge conjuga-
tion C, transforming fermion fields with i−nΣQC and inΣQC (with arbitrary phase ϑ)
and gauge fields with C is a local symmetry, where nΣ is defined in eq. (A.40). The prop-
agator always (with the exception of the limit a → 0) includes both doublers, though
S(p; ζ,m0, a) and Sχ(p; ζ,m0, a) differ by O(a) effects, which has been already pointed
out by Bedaque et al. [18]. Since left and right multiplication of the chirality matrix
γ5 with matrices Q and Q† changes its sign as Q†γ5Q = −γ5, the two doublers always
describe fermion modes with opposite chirality in compliance with the No-Go theorem
of Nielsen and Ninomiya [121]. The fermion-fermion-gluon vertex reads

V µ
1 (p, q; ζ, a) = −ig0

2
(
γµĉµp+q − ζγµ ′ŝ

µ
p+q

)
(2.48)

and the fermion-fermion-gluon-gluon vertex reads

V µν
2 (p, q; ζ, a) = ia

g2
0
4 δ

µν
(
γµŝµp+q + ζγµ ′ĉµp+q

)
, (2.49)

where fermionic four-momenta represent incoming fermions and the colour structure is
the same as in the previous case (cf. text below eqs. (2.34 and 2.35)).
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2.3 One-loop corrections

After relevant technical aspects are summarised in section 2.1 and necessary propagators
and vertices are derived in section 2.2, the calculation of one-loop corrections for mini-
mally doubled fermions is covered. Fermionic self-energy and the fermionic contribution
to the vacuum polarisation are discussed in detail.

2.3.1 Fermionic self-energy

�
p k

p− k

p

�
p p

k

Figure 2.1: The 1-loop contribution to the fermionic self-energy consists of a sunset (left)
and a tadpole (right) diagram.

The fermionic self-energy is calculated from the sum of the sunset diagram (left side of
figure 2.1) and the tadpole diagram (right side of figure 2.1),

Iad(p; ζ,m0, a) = I0
s (p; ζ,m0, a) · Cads + I0

t (p; ζ,m0, a) · Cadt . (2.50)

The sunset diagram2 involves colour indices a, b, c, d ∈ {1, 2, 3} and e, f ∈ {1, . . . , 8} as

I0
s (p; ζ,m0, a) · Cads =

+π/a∫
−π/a

d4k

(2π)4

3∑
µ,ν=0

V µ
1 (p, k)S(k; ζ,m0, a)V ν

1 (k, p)

×
∑
b,c;e,f

(T e)abGefµν(p− k; 0, a)δbc(T f )cd (2.51)

The tadpole diagram includes a symmetry factor 1/2,

I0
t (p; ζ,m0, a) · Cadt = 1

2

+π/a∫
−π/a

d4k

(2π)4

3∑
µ,ν=0

V µν2 (p, p)
∑
b,c

(
1
3δ

bcδad +
∑
e

dbce(T e)ad
)
Gbcµν(k; 0, a),

(2.52)

2Since the gluon propagator of eq. (2.25) is isotropic and relatively simple compared to fermion
propagators of eqs. (2.26) and (2.37), the momentum difference p−k is assigned to the gluon propagator.
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and involves colour indices a, d ∈ {1, 2, 3} and b, c, e ∈ {1, . . . , 8}. The SU(3) structure
is independent of the discretisation and collapses to CF δad after using eq. (A.12),

Cads =
3∑

b,c=1

8∑
e,f=1

(T e)abδefδbc(T f )cd =
8∑
e=1

(T eT e)ad = CF δ
ad, (2.53)

Cadt =
∑
b,c

1
2

1
3δ

bcδad +
∑
b,c

dbce(T e)ad
 = 1

6

8∑
e=1

δad = CF δ
ad, (2.54)

which is included into the integrals Is,t(p; ζ,m0, a) = CF I
0
s,t(p; ζ,m0, a) as

Is(p; ζ,m0, a) = CF

∫
d4k

(2π)4

∑
µ,ν

V µ
1 (p,−k)S(k; ζ,m0, a)V ν

1 (k,−p)Gµν(p− k; 0, a),

(2.55)

It(p; ζ, 0, a) = CF

∫
d4k

(2π)4

∑
µ,ν

V µν
2 (p, p)Gµν(k; 0, a) ≡ It(p; ζ, a). (2.56)

Tadpole diagram

Without internal fermions in the tadpole diagram, there is no problem with condition C3
of eq. (2.3). Mass regularisation is not required, since the superficial degree of divergence
is negative, deg It = −1. Any ξ dependence of a power divergence must cancel exactly
with the sunset diagram. For Karsten-Wilczek fermions, the tadpole diagram reads

It(p; ζ, a) =ia3 g
2
0CF
4

∫
d4k

(2π)4

∑
µ,ν

δµν
((

γµŝµ2p − ζγα%αµĉ
µ
2p

)
(ŝk)2

− (1− ξ)(ŝµk ŝ
ν
k)

(
γµŝµ2p − ζγα%αµĉ

µ
2p

)
(ŝk)2 (ŝk)2

)
, (2.57)

which is simplified algebraically to (terms that vanish for a→ 0 have been dropped)

It(p; ζ, a) = ia
g2

0CF
2 (aγ · p− 3ζγα)

(
1− (1− ξ)

4

)∫
d4k

(2π)4
1

(ŝk)2 . (2.58)

The loop integral is identical to eq. (2.10) and the tadpole contribution reads

It(p; ζ, a) = g2
0CFZ0

2

(
1− (1− ξ)

4

)(
iγ · p− i3ζ

a
γα
)
. (2.59)

For Boriçi-Creutz fermions, the tadpole diagram reads

It(p; ζ, a) =ia3 g
2
0CF
4

∫
d4k

(2π)4

∑
µ,ν

(δµν)
((

γµŝµ2p + ζγµ ′ĉµ2p

)
(ŝk)2

− (1− ξ)(ŝµk ŝ
ν
k)

(
γµŝµ2p + ζγµ ′ĉµ2p

)
(ŝk)2 (ŝk)2

)
, (2.60)
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which is simplified algebraically to (terms that vanish for a→ 0 have been dropped)

It(p; ζ, a) = ia
g2

0CF
2 (aγ · p+ 2ζΓ)

(
1− (1− ξ)

4

)∫
d4k

(2π)4
1

(ŝk)2 . (2.61)

Again, the loop integral is identical to eq. (2.10) and the tadpole contribution reads

It(p; ζ, a) = g2
0CFZ0

2

(
1− (1− ξ)

4

)(
iγ · p+ i

2ζ
a

Γ
)
. (2.62)

Sunset diagram

The integral Is(p; ζ,m0, a) of the sunset diagram is split into two pieces, the lattice inte-
gral J(p,m0; ζ,M, a), and the continuum integral Is(p; ζ,m0, a)−J(p,m0; ζ,M, a). The
external momenta p and the massm0 are treated as small and the integral J(p,m0; ζ,M, a)
is subjected to a Taylor expansion in p and m0,

J(p,m0; ζ,M, a) =
∑
χ

iγχJχ3 (ζ, a) +
∑
χ,θ

iγχpθJ
θχ
4 (ζ,M, a) +m0Jm(ζ,M, a) (2.63)

Jχ3 (ζ, 0, a) =
∫∑

tr {γχV µ1 (0, k)S(k; ζ, 0, a)V ν1 (k, 0)Gµν(−k; 0, a)} , (2.64)

Jθχ4 (ζ,M, a) =
∫∑

tr
{
γχ
∂ {V µ1 (p, k)S(k; ζ, 0, a)V ν1 (k, p)Gµν(p− k; 0, a)}

∂pθ

}
p=0

, (2.65)

Jm(ζ,M, a) = m0

∫∑
tr
{
∂ {V µ1 (0, k)S(k; ζ,m0, a)V ν1 (k, 0)Gµν(−k; 0, a)}

∂m0

}
m0=0

. (2.66)

Each self-energy integral in eqs. (2.64), (2.65) and (2.66) is integrated and summed as

∫∑
tr (. . .) ≡

+π/a∫
−π/a

d4k

(2π)4

∑
µ,ν

1
4tr (. . .) . (2.67)

Jθχ4 (ζ,M, a) and Jm(ζ,M, a) are regularised in the IR with a small mass term M2 in
each denominator. The indices θ of the Taylor expansion in p and χ of the projection
to Dirac matrices may differ, since the anisotropy of the fermion action allows for the
persistence of complicated combinations of indices in the continuum limit.

Karsten-Wilczek fermions

For Karsten-Wilczek fermions, the power divergent integral J3(ζ, a) reads

J3(ζ, a) =
∑
χ

iγχJχ3 (ζ, a),

Jχ3 (ζ, a) =a3 g
2
0CF
4

∫∑
tr
{
γχ (γµĉµk + ζγα%αµŝµk)

(
(γ · sk) + ζ

2γα(ŝk)2
⊥

)

× (γν ĉνk + ζγα%αν ŝνk)
} δµν − (1− ξ) ŝµ−k ŝ

ν
−k

Dg(−k;0,a)

DKW (k; ζ, 0, a)Dg(−k; 0, a) . (2.68)

39



The fermion propagator has two separate divergences at the poles of eq. (1.62). However,
the gluon denominator vanishes only at the standard pole. Thus, the superficial degree
of divergence is deg I1 = −1 at the first pole. Since deg I2 = 1 at the second pole, it does
not contribute to the divergence of the integral. Even though condition C3 of eq. (2.3) is
not met by all propagators, there is no extra divergence and the power counting theorem
of Reisz is applicable. Due to the negative degree of divergence, IR regularisation is not
needed. The integral of eq. (2.68) is split into a Feynman gauge part (J0 = Jχ3 |ξ=1) and
a gauge fixing part (J1 = (ξ − 1) (∂Jχ3 /∂ξ)), which is the rest of eq. (2.68). Numerators
N0 of J0 and N1 of J1 are simplified algebraically to eqs. (B.7) and (B.8). Since only
kα contributes to the denominator as an odd power, odd powers of other Euclidean
components of k in the numerators N0 and N1 are integrated to zero. Hence, symmetry
restricts the power divergence to the γα -component. Numerators collapse to

N0 = δχα
{(

s
α
k + ζ

2(ŝk)2
⊥

)(
(ĉαk )2 − (ĉk)2

⊥ + ζ2 (ŝk)2
⊥

)
+ 4ζ(sk)2

⊥

}
, (2.69)

N1 = δχα
{
s
α
k

(
4(sk)2 + 3ζ2

(
(ŝk)2

⊥

)2
)

+ ζ (ŝk)2
⊥

(
4
(
s
α
k

)2 + 2(sk)2 + ζ2

2
(
(ŝk)2

⊥

)2
)}

.

(2.70)

It is noteworthy that the numerators contain only terms which are even in kα and odd in
ζ and vice versa, whereas the denominators add even powers of kα and ζ to odd powers
of both. Thus, the overall contribution from Jχ3 to c1L is necessarily an odd function3 of
ζ. The final form of the power divergent integral Jχ3 (ζ, a) reads

Jχ3 (ζ, a) = ia3 g
2
0CF
4 δχα

∫
d4k

(2π)4

N0 − (1− ξ) N1
Dg(−k;0,1)

DKW (k; ζ, 0, 1)Dg(−k; 0, 1) . (2.71)

It is evaluated numerically for ζ = +1 after rescaling (cf. eq. (2.9)) and yields

J3(+1, a) = i

a
γα
g2

0CF
16π2 (7.166866− 9.17479(1− ξ)) . (2.72)

Mass renormalisation is due to the integral Jm(ζ,M, a) of eq. (2.66), which reads

Jm0(m0; ζ,M, a) = m0Jm(ζ,M, a),

Jm(ζ,M, a) = a4 g
2
0CF
4

∫∑
tr
{ (
γµĉµk + ζγα%αµŝµk

)
(γν ĉνk + ζγα%αν ŝνk)

}

×
δµν − (1− ξ) ŝµ−k ŝ

ν
−k

Dg(−k;M,a)
DKW (k; ζ,M, a)Dg(−k;M,a) (2.73)

for Karsten-Wilczek fermions. The fermion propagator has two separate divergences at
the poles of eq. (1.62). However, the gluon denominator vanishes only at the standard

3The contribution to c1L from the tadpole in eq. (2.59) is directly proportional to ζ.

40



pole. Thus, the superficial degree of divergence is deg I1 = 0 at the first pole. Since
deg I2 = 2 at the second pole, it does not contribute to the logarithmic divergence of
the integral. Though the condition C3 of eq. (2.3) is not met by all propagators, there
is no extra divergence and the power counting theorem of Reisz is applicable. Eq. (2.73)
is split into Feynman gauge (J2 = Jm|ξ=1) and gauge fixing (J3 = (ξ − 1) (∂Jm/∂ξ))
parts. Numerators N2 of J2 and N3 of J3 are simplified algebraically to

N2 = (ĉk)2 + ζ2(ŝk)2
⊥ (2.74)

N3 = 4(sk)2 + ζ2
(
(ŝk)2

⊥

)2
+ 4ζsαk (ŝk)2

⊥. (2.75)

Since N2 and N3 contain only terms which are even in k and ζ or odd in kα and ζ, the
one-loop coefficient Σ2 of the mass renormalisation is an even function of ζ. Thus, the
lattice contribution to mass renormalisation reads

Jm(ζ,M, a) = a4 g
2
0CF
4

∫
d4k

(2π)4

N2 − (1− ξ) N3
Dg(−k;M,a)

DKW (k; ζ,M, a)Dg(−k;M,a) (2.76)

and would still be IR-divergent without M2 in the denominator. The IR regulator is
removed from Jm(ζ,M, a) by subtracting base integrals J̃m(M,a) such as eq. (2.12) with
appropriate prefactors. The difference Jm(ζ,M, a) − J̃m(M,a) is IR-finite for any M2

by construction. It is evaluated for ζ = +1 after rescaling (cf. eq. (2.9)) and removing
the IR regulator,

Jm(+1, 0, a)− J̃m(0, a) = g2
0CF

16π2 (−1.200712) . (2.77)

Next, the IR regularised base integrals with the necessary prefactors,

J̃m(M,a) ≡ g2
0CF · 4 (B(2)− (1− ξ)B(3; 1))

= g2
0CF

(
−15.168038 + 4 log (aM)2 + (1− ξ)

(
3.292010− log (aM)2

))
,

(2.78)

are added to the finite integral to obtain the complete IR regularised lattice integral,

Jm0(m0; +1,M, a) = m0
g2

0CF
16π2

{
4 log (aM)2 − 16.36875

+ (1− ξ)
(
− log (aM)2 + 3.292010

)}
. (2.79)

Lastly, wavefunction renormalisation is the most laborious part of the self-energy’s cal-
culation. It is due to the integral J4(p; ζ,M, a) of eq. (2.65), which reads

J4(p; ζ,M, a) =
∑
θ,χ

iγχpθJ
θχ
4 (ζ,M, a),

Jθχ4 (ζ,M, a) =a4 g
2
0CF
4

∫
d4k

(2π)4

{(N4
D4

+ N5
D5

)
− (1− ξ)

(
N6 +N7
D5

+ N8
D6

)}
(2.80)
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for Karsten-Wilczek fermions. Denominators D4 - D6 and numerators N4 - N8 are shown
in appendix B.2.1 in eqs. (B.9) - (B.16). Since any pieces of the algebraically simplified
numerators of eqs. (B.17) - (B.21) contain only terms which are either even in k and ζ
or odd in both, one-loop coefficients Σ1 and d1L that are obtained from Jθχ4 (ζ,M, a) are
even functions4 of ζ. Since odd momenta in the denominator are restricted to kα, any
odd powers of momenta kθ and kχ contribute only to the integral if the indices θ and χ
are matched with each other or with α. This last stage of algebraic simplification of the
numerators requires equality of the indices θ and χ:

N4 = −δθχ
{

(sθk)2[2− ζ2 (δθα − %θα(1 + (ŝk)2
⊥)
) ]
− ζsαk

[
%θα(ĉθk)2 − δθα(ŝk)2

⊥
]}
, (2.81)

N5 = −δθχ
{

2(sθk)2[(ĉk)2 − 2(ĉθk)2 − ζ2δθα(ŝk)2
⊥
]

+ ζs
α
k

[
8(sθk)2 + δθα

(
8
(
(sk)2

⊥ − (sαk )2)+ (ŝk)2
⊥
(
(ĉαk )2 − (ĉk)2

⊥ + ζ2((ŝ)2
⊥)
)) ]}

,

(2.82)

N6 = −δθχ
{

2(ŝθk)2[(sk)2 − ζ2(ŝk)2
⊥

(
%θα − (ŝk)2

⊥
2

)]
+ ζs

α
k (ŝk)2

⊥
[
3(ŝθk)2 − ζ2δθα(ŝk)2

⊥
]}
,

(2.83)

N7 = −δθχ
{

2
[
(ĉθk)2 ((sk)2 + ζ2((ŝk)2

⊥)2)+
(
2− δθα

)
ζ2(sθk)2(ŝ)2

⊥
]

+ 2ζsαk (ĉθk)2(ŝk)2
⊥

}
, (2.84)

N8 = −δθχ4
{

(sθk)2[4(s)2 + ζ2 (2δθα + 1
)

((ŝk)2
⊥)2]+ ζs

α
k (ŝk)2

⊥
[
4(sθk)2 + δθα

8− ζ2((ŝk)2
⊥)2

4
]}
.

(2.85)

After the simplified numerators are obtained, the superficial degree of divergence is
calculated as deg I1 = 0 at the first pole. Since deg I2 = 2 at the second pole, it does
not contribute to the divergence of the integral. Though condition C3 of eq. (2.3) is
not fulfilled by all propagators, there is no extra divergence and the power counting
theorem of Reisz is applicable. Since ratios N4/D4 and N6/D5 are due to discretisation
effects, they do not contribute to the superficial degree of divergence. Moreover, any
structure proportional to δθα or %θα is either multiplied by ζ2 or by ζs

α
k . The latter

must combine with ζsαk in the fermionic denominator. Hence, the coefficient d1L of the
anisotropic dimension-four counterterm is entirely due to even powers of ζ. The integral
Jθχ4 (ζ,M, a) has three divergent pieces, which require IR regularisation with a mass M2

in all denominators. The IR regulator is removed from Jχθ4 (ζ,M, a) by subtracting base
integrals J̃χθ4 (M,a) of the form of eq. (2.14) with appropriate prefactors. The difference
Jχθ4 (ζ,M, a) − J̃χθ4 (M,a) is IR-finite for any M2 by construction. It is evaluated for
ζ = +1 after rescaling (cf. eq. (2.9)) and removing the IR regulator,

Jθχ4 (+1, 0, a)− J̃θχ4 (0, a) = g2
0CF

16π2 δ
θχ
(
2.29985− 0.12554 δθα + (1− ξ) (2.558262)

)
.

(2.86)

4The 1-loop contribution to Σ1 from the tadpole diagram is independent of ζ. Since Σ1 receives a
contribution from a continuum integral without any ζ dependence, it cannot be an odd function of ζ.
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Next, the IR regularised base integrals with the necessary prefactors,

J̃θχ4 (M,a) = g2
0CF δ

θχ · 4 (B(3, 1) + (1− ξ) · 2 (B(3, 1)− B(4, 2)− 3B(3, 1, 1)))

= g2
0CF

16π2

(
log (aM)2 − 3.292010 + (1− ξ)

(
− log (aM)2 + 3.62534

))
,

(2.87)

are added to the finite integral to obtain the complete IR regularised lattice integral,

J4(p; +1,M, a) =
∑
θ

iγθpθ
g2

0CF
16π2

{
log (aM)2 − 0.99216− 0.12554 δθα

+ (1− ξ)
(
− log (aM)2 + 6.350272

)}
. (2.88)

Boriçi-Creutz fermions

The preceding procedure for Karsten-Wilczek fermions is closely mirrored for Boriçi-
Creutz fermions. Since technical details are very similar, individual steps are not re-
peated here. The superficial degree of divergence is the same for both discretisations.
The second divergence of the fermion propagator violates condition C3 of eq. (2.3) with-
out violating the power counting theorem of Reisz due to the presence of the gluon
propagator. Mass renormalisation is applied and the subtracted integrals J̃m(M,a) of
eq. (2.78) and J̃θχ4 (M,a) of eq. (2.87) are identical. For Boriçi-Creutz fermions, the
power divergent integral Jχ3 (ζ, a) reads

J3(ζ, a) =
∑
χ

iγχJχ3 (ζ, a),

Jχ3 (ζ, a) =ia3 g
2
0CF
4

∫∑
tr
{
γχ
(
γµĉµk − ζγ

µ ′ŝµk
)∑

λ

(
γλs

λ
p − ζγ′λ(1− cλp)

)

×
(
γν ĉνk − ζγν ′ŝνk

) } δµν − (1− ξ) ŝµ−k ŝ
ν
−k

Dg(−k;0,a)
DBC(k; ζ, 0, a)Dg(−k; 0, a) . (2.89)

The algebra is presented in appendix B.2.2. ζ = +1 is fixed and Jχ3 (+1, a) reads

J3(+1, a) = i

a

∑
χ

(1
2γ

χ
)
g2

0CF
16π2 (5.07558 + 6.11653(1− ξ)) . (2.90)

Due to the different anisotropic Dirac structure, there is no Kronecker symbol for Eu-
clidean indices here. The combination ∑χ

(
1
2γ

χ
)

= Γ is the matrix of eq. (1.72). Mass
renormalisation is calculated from Jm0(m0; ζ,M, a) of eq. (2.66) in the same way as for
Karsten-Wilczek fermions. For Boriçi-Creutz fermions, the integral reads

Jm(ζ,M, a) = a4 g
2
0CF
4

∫∑
tr
{

(γµĉµk − ζγ
µ ′ŝµk)(γν ĉνk − ζγν ′ŝνk)

} δµν − (1− ξ) ŝµ−k ŝ
ν
−k

Dg(−k;M,a)

DBC(k; ζ,M, a)Dg(−k;M,a) .

(2.91)
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The algebra is shown in appendix B.2.2. ζ = +1 is fixed and Jm0(m0; +1,M, a) reads

Jm0(m0; +1,M, a) =m0
g2

0CF
16π2

{
4 log (aM)2 − 21.48729

+ (1− ξ)
(
− log (aM)2 + 3.292010

)}
. (2.92)

Wavefunction renormalisation is due to the integral J4(p; ζ,M, a) of eq. (2.65), which is
again the hardest part of the self-energy’s calculation. The integral J4(p; ζ,M, a) reads

J4(p; ζ,M, a) =
∑
θ,χ

iγχpθJ
θχ
4 (ζ,M, a),

Jθχ4 (ζ,M, a) =ia4 g
2
0CF
4

∫
d4k

(2π)4

{(N4
D4

+ N5
D5

)
− (1− ξ)

(
N6 +N7
D5

+ N8
D6

)}
(2.93)

for Boriçi-Creutz fermions, where denominators D4 - D6 and numerators N4 - N8 are
presented in appendix B.2.2 in eqs. (B.28) - (B.35). The algebra, which is even more
tedious than for Karsten-Wilczek fermions is also shown in appendix B.2.2. ζ = +1 is
fixed and J4(p; +1,M, a) reads

J4(p; +1,M, a) =
∑
θχ

iγχpθ
g2

0CF
16π2

(
δθχ
{

log (aM)2 − 3.42642
)

+ 1
2 · 1.52766

+ δθχ(1− ξ)
(
− log (aM)2 + 6.350272

)}
. (2.94)

Continuum integral

The continuum integral I(p; ζ,m0, 0)−J(p,m0; ζ,M, 0) is independent of discretisations:

K(p,m0;M) = I(p; 0,m0, 0)− lim
M2→0

J(p,m0; 0,M, 0). (2.95)

Even though K(p,m0;M) is already UV finite and IR regularised, it is easily evaluated
using dimensional regularisation. The associated additional scaleM cancels between I
and J . The external four-momentum p contributes only in the gluon propagator,

Gµν(p− k; 0) = 1
(p− k)2 +M2

(
δµν − (1− ξ)

((p− k)µ(p− k)ν
(p− k)2

))
, (2.96)

and the continuum integral reads

K(p,m0;M) = − g2
0CF

( +∞∫
−∞

ddk

(2π)dM
4−d

∑
µ,ν

(
γµ
∑
λ−iγλkλ +m0

k2 γν
)
Gµν(p− k)

+
+∞∫
−∞

ddk

(2π)dM
4−d

∑
µ,ν

(
γµ
∑
λ−iγλkλ
k2 +M2 γν

)∑
θ

pθ

(
∂Gµν(p− k;M)

∂pθ

)
p=0

+
+∞∫
−∞

ddk

(2π)dM
4−d

∑
µ,ν

(
γµ

m0

k2 +M2 γ
ν

)
Gµν(k;M)

)
. (2.97)
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K(p,m0;M) is evaluated to

K(p,m0;M) = g2
0CF

16π2

{
iγ · p

(
log p2

M2 − 2− (1− ξ)
(

log p2

M2 −
5
3

))

+m0

(
4
(

log ( p
2

M2 )− 2
)
− (1− ξ)

(
log ( p

2

M2 )− 5
2

))}
. (2.98)

Full self-energy

With the calculation of the continuum integral, all pieces of the LPT self-energy calcu-
lation are completed. The full fermionic self-energy of Karsten-Wilczek fermions is the
sum of eqs. (2.59), (2.72), (2.79), (2.88) and (2.98) and reads

Σ(p,m0) = iγ · pΣ1(p) +m0Σ2(p) + i

a
γαc1L(g0) + iγαpαd1L(g0), (2.99)

where the one-loop coefficients are given by

Σ1(p) =g2
0CF

16π2

{
log (ap)2 + 9.24089 + (1− ξ)

(
− log (ap)2 + 4.792010

)}
, (2.100)

Σ2(p) =g2
0CF

16π2

{
4 log (ap)2 − 24.36875 + (1− ξ)

(
− log (ap)2 + 5.792010

)}
, (2.101)

c1L(g0) =g2
0CF

16π2 · (−29.53228) , (2.102)

d1L(g0) =g2
0CF

16π2 · (−0.12554) . (2.103)

With the inclusion of fermionic counterterms of eqs. (1.66) and (1.67), the one-loop
propagator for Karsten-Wilczek fermions reads

1
i/p+m0

+ 1
i/p+m0

{
i/pΣ1 +m0Σ2 + i

a
γα(c1L − c) + iγαpα(d1L − d)

} 1
i/p+m0

= 1
i/p(1− Σ1) +m0(1− Σ2) + i

aγ
α(c− c1L) + iγαpα(d− d1L)

. (2.104)

Once the coefficients of the counterterms are set to

c(g0) = c1L(g0) +O(g4
0), (2.105)

d(g0) = d1L(g0) +O(g4
0), (2.106)

the anisotropy is completely removed from the renormalised propagator at one-loop level,

Σ(p,m0) = Z2
i/p+ Zmm0

, (2.107)
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which has standard form. Wavefunction (Z2) and mass (Zm) renormalisation factors are

Z2 = (1− Σ1)−1, (2.108)
Zm = 1− (Σ2 − Σ1). (2.109)

The full fermionic self-energy of Boriçi-Creutz fermions has different anisotropic terms
but an analogous structure,

Σ(p,m0) = iγ · pΣ1(p) +m0Σ2(p) + i

a
Γc1L(g0) + iΓ

∑
µ

pµd1L(g0), (2.110)

where the one-loop coefficients are given by

Σ1(p) =g2
0CF

16π2

{
log (ap)2 + 6.80663 + (1− ξ)

(
− log (ap)2 + 4.792010

)}
, (2.111)

Σ2(p) =g2
0CF

16π2

{
4 log (ap)2 − 29.48729 + (1− ξ)

(
− log (ap)2 + 5.792010

)}
, (2.112)

c1L(g0) =g2
0CF

16π2 · (+29.54170) , (2.113)

d1L(g0) =g2
0CF

16π2 · (+1.52766) . (2.114)

Once fermionic counterterms of eqs. (1.86) and (1.87) with coefficients

c(g0) =c1L(g0) +O(g4
0), (2.115)

d(g0) =d1L(g0) +O(g4
0) (2.116)

are included, the Boriçi-Creutz fermion propagator recovers its isotropy and takes the
standard form of eq. (2.107) with Z2 and Zm given by eqs. (2.108) and (2.109) using
coefficients Σ1 and Σ2 of eqs. (2.111) and (2.112).

Both fermionic self-energies share the same gauge-fixing contributions proportional to
(1 − ξ). This is necessarily true for all lattice fermions due to gauge invariance. As
a consequence, the anisotropic terms proportional to (1 − ξ) must invariably cancel
between tadpole and sunset diagrams. Coefficients of dimension-three counterterms
are very similar but have different sign. This seems natural since the on-site pieces of
Karsten-Wilczek term in eq. (1.61) and of Boriçi-Creutz term in eq. (1.71) have opposite
sign. In contrast, the smallness of the coefficient of the dimension four counterterm of
the Karsten-Wilczek action is not thoroughly understood at present.

2.3.2 Local bilinears and symmetry currents

Renormalisation factors for local fermionic bilinears are required for many applications.
They are computed by evaluating the vertex diagram (a) of figure 2.2 and adding the self-
energy contribution for the legs of figure 2.3. Because both fermion actions preserve chiral
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Figure 2.2: Four diagrams are required for the proper vertex renormalisation of the
symmetry currents. Merely the vertex diagram (a) is sufficent for local bilinears.

symmetry, they each have identical scalar and pseudoscalar renormalisation factors.
Moreover, vector and axial-vector renormalisation factors are identical due to chiral
symmetry for each action. These local currents undergo anisotropic mixing, which is
not absorbed by the counterterms of their actions. The tensor current, however, does
not have anisotropic contributions. One-loop results for local currents are presented as
a summary. Symmetry currents are covered in more detail. They are constructed using
infinitesimal vector and axial transformations, which yield point-split current operators.
In the chiral limit, the point-split axial-vector current is conserved as well. The symmetry
currents further require contributions from two sails ((c) and (d)) and from the operator
tadpole (b) of figure 2.2. The sum of these proper contributions exactly cancels the self-
energy contribution from the legs of figure 2.3. Therefore, the renormalisation constant
is exactly one before any counterterms are included.

Karsten-Wilczek fermions

Vertex corrections for insertion of scalar or pseudoscalar densities are equal: ΛP = ΛSγ5.
The vertex correction of the scalar density equals −Σ2(p) of eq. (2.101) and reads

ΛS = g2
0CF

16π2

(
−4 log (ap)2 + 24.36875 + (1− ξ)

(
log (ap)2 − 5.792010

))
(2.117)

Thus, the renormalisation factor of the pseudoscalar density,

ZP = 1− (ΛP + Σ1), (2.118)

is the inverse of the mass renormalisation factor Zm of eq. (2.109). Local vector and
axial currents undergo anisotropic renormalisation. The vertex correction to the local
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Figure 2.3: Renormalisation of the legs contributes four further diagrams to the renor-
malisation of local bilinears and symmetry currents.

vector current reads

ΛµV = g2
0CF

16π2 · γ
µ
(
− log (ap)2+10.44610−2.88914·δµα+(1−ξ)

(
log (ap)2−4.792010

))
(2.119)

and the vertex correction to the axial current is obtained as ΛµA = ΛµV γ5. Finally, the
tensor current does not undergo anisotropic renormalisation and reads

ΛµνT = g2
0CF

16π2 σ
µν (4.17551 + (1− ξ) (L− 3.792010)) . (2.120)

Symmetry currents are constructed by applying infinitesimal vector and axial transfor-
mations to the fermion fields in the action,

δV ψn = iαVn ψn, δV ψ̄n = −iαVn ψ̄n,
δAψn = iαAn γ

5ψn, δAψ̄n = +iαAn ψ̄nγ5,
(2.121)

which yield point-split symmetry currents

V µ
n =ψ̄n

γµ(1 + dδµα)− iζγα%αµ
2 Uµnψn+êµ + ψ̄n+êµ

γµ(1 + dδµα) + iζγα%αµ

2 Uµ†n ψn,

(2.122)

Aµn =ψ̄n
γµ(1 + dδµα)− iζγα%αµ

2 γ5Uµnψn+êµ + ψ̄n+êµ
γµ(1 + dδµα) + iζγα%αµ

2 γ5Uµ†n ψn.

(2.123)

Whereas the vector transformation δV ψn commutes with the matrices Q and Q† of
eq. (2.31), the axial transformation anticommutes with Q and Q†,

γ5Q = −Qγ5, Q†γ5 = −γ5Q†. (2.124)
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The axial transformation produces a current which has opposite sign for both doublers 5.
Only the vector symmetry current of eq. (2.122) is covered in detail here, since the
axial current of eq. (2.123), which is a symmetry current in the chiral limit, is treated
identically. Evaluation of the vertex correction, the two sails and the operator tadpole
of figure 2.2 yields the proper one-loop contribution to the vector symmetry current

g2
0CF

16π2 γ
µ
(
− log (ap)2 − 9.24089 + 0.12554 · δµα + (1− ξ)

(
log (ap)2 − 4.79201

))
,

(2.125)
if the counterterm’s contribution in eq. (2.122) is excluded. Using Σ1 and d1L of
eqs. (2.100) and (2.103), this proper contribution is expressed as

γµ(−Σ1(p)− d1L(g0)δµα). (2.126)

Since the self-energy contribution from the legs not only includes the wavefunction renor-
malisation Z2 = (1 − Σ1)−1, but also the anisotropic contribution from d1L, the full
renormalisation factor amounts to

γµ(−Σ1 − d1Lδ
µα + (1− Σ1)−1 + d1Lδ

µα) = γµ · 1 (2.127)

and supports the claim of current conservation. In particular, the vector symmetry
current is conserved even before inclusion of counterterms. Hence it cannot be used as
a device for tuning the coefficient d in contradiction to previous conclusions [36]. In
particular, the Ward identity is satisfied only if the point-split symmetry current is used
instead of the local axial current.

Boriçi-Creutz fermions

Vertex corrections for insertion of scalar or pseudoscalar densities are equal: ΛP = ΛSγ5.
The vertex correction of the scalar density equals −Σ2(p) of eq. (2.112) and reads

ΛS = g2
0CF

16π2

(
−4 log (ap)2 + 29.48729 + (1− ξ)

(
log (ap)2 − 5.792010

))
. (2.128)

Local vector and axial currents undergo anisotropic renormalisation. The vertex correc-
tion to the local vector current reads

ΛµV = g2
0CF

16π2 ·
∑
ν

γν
(
δµν

(
− log (ap)2 + 9.54612

)
− 1

2 · 0.10037

+ δµν(1− ξ)
(
log (ap)2 − 4.792010

))
(2.129)

5The axial current is interpreted as an isovector current unrelated to the axial anomaly in [145].
There, an explicit expression for the isosinglet axial current is presented and the Abelian axial anomaly
for Karsten-Wilczek fermions in two dimensions is derived from it perturbatively.
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and the vertex correction to the axial current is ΛµA = ΛµV γ5. Lastly, the tensor current
does not undergo anisotropic renormalisation and reads

ΛµνT = g2
0CF

16π2 σ
µν (2.16548 + (1− ξ) (L− 3.792010)) . (2.130)

Symmetry currents which are constructed using transformations of eq. (2.121) read

V µ
n =ψ̄n

γµ + dBCΓ + iγµ′

2 Uµnψn+êµ + ψ̄n+êµ
γµ + dBCΓ− iγµ′

2 Uµ†n ψn, (2.131)

Aµn =ψ̄n
γµ + dBCΓ + iγµ′

2 γ5Uµnψn+êµ + ψ̄n+êµ
γµ + dBCΓ− iγµ′

2 γ5Uµ†n ψn. (2.132)

Analogously to the case for Karsten-Wilczek fermions ineq. (2.124), the axial transfor-
mation anticommutes with the matrices of eq. (2.45). Again, only the vector symmetry
current is covered in detail. The axial current, which is conserved in the chiral limit, is
treated equally. Evaluation of the vertex correction, the sails and the operator tadpole
of figure 2.2 yields the proper one-loop contribution to the vector symmetry current

g2
0CF

16π2

∑
ν

γν
{
− δµν

(
log (ap)2 + 6.80664

)
− 1

2 · 1.52766 + δµν(1− ξ)
(
log (ap)2 − 4.79201

)}
,

(2.133)
if the counterterm’s contribution in eq. (2.131) is excluded. This proper contribution is
expressed using Σ1 and d1L of eqs. (2.111) and (2.114) and yields

∑
ν

γν(−δµνΣ1(p)− 1
2 · d1L(g0)), (2.134)

which combines with the self-energy contribution from the legs to
∑
ν

γν(−δµνΣ1 −
1
2 · d1L + δµν(1− Σ1)−1 + 1

2 · d1Lδ
µα) = γµ · 1. (2.135)

Hence, the vector symmetry current is conserved even before inclusion of counterterms
and the Ward identity is satisfied only if the point-split symmetry current is used instead
of the local axial current.

2.3.3 Fermionic contribution to the vacuum polarisation

Since Karsten-Wilczek and Boriçi-Creutz fermions break hypercubic symmetry, it must
be expected that fermion loops communicate this anisotropy to quantities that are
isotropic at tree level. First and foremost, the validity of the Ward-Takahashi iden-
tity has to be confirmed, because the tensor structure of the vacuum polarisation tensor
is modified in an anisotropic theory. The fermionic contribution to the vacuum polari-
sation, which is simply referred to as “the vacuum polarisation” here for brevity’s sake,
reveals the extent of induced anisotropy. The gluonic dimension four counterterm is used
to restore isotropy to its continuum limit. The bubble diagram (left side of figure 2.4)
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Figure 2.4: The one-loop fermionic contribution to the vacuum polarisation consists of
a bubble (left) and a tadpole (right) diagram, the latter of which cancels the quadratic
power divergence of the former.

of the vacuum polarisation introduces a new aspect, which has not been encountered
in the preceding LPT calculations. Due to the fact that all internal lines are fermion
propagators, both poles of the fermion propagator contribute on equal footing. Hence,
a naïve approach to the bubble diagram does not satisfy condition C3 of eq. (2.3) for
the applicability of the power counting theorem of Reisz.

The vacuum polarisation is calculated from the sum of the bubble diagram and the
tadpole diagram (right side of figure 2.4),

Iad θχ(p; ζ, a) = I0 θχ
b (p; ζ, a) · Cadb + I0 θχ

t (p; ζ, a) · Cadt , (2.136)

where space-time parts of bubble and tadpole diagrams are given by

I0 θχ
b (p; ζ, a) =−

+π/a∫
−π/a

d4k

(2π)4 tr
{
V θ

1 (k, p+ k)S(p+ k; ζ, 0, a)V χ
1 (p+ k, k)S(k; ζ, 0, a)

}
,

(2.137)

I0 θχ
t (p; ζ, a) =−

+π/a∫
−π/a

d4k

(2π)4 tr
{
V θχ

2 (k, k)S(k; ζ, 0, a)
}
. (2.138)

Both integrals contain an overall factor (−1) due to having one closed fermion loop. The
symmetry factor 1/2 of the tadpole diagram is allotted to Cadt . The SU(3) structure is
independent of the discretisation and collapses to C2 δ

a,d using eq. (A.11),

Iadb,c =
3∑

b,c,e,f=1
(T a)fbδbc(T d)ceδef = tr(T aT d) = C2δ

ad, (2.139)

Iadt,c =1
2
∑
b,c

δbc

1
3δ

bcδad +
∑
b,c

dbce(T e)ad
 = 1

2δ
ad = C2δ

ad. (2.140)
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which is included in the integrals Iθχb,t (p; ζ, a) ≡ C2I
0 θχ
b,t (p; ζ, a) as

Iθχb (p; ζ, a) = −C2

+π/a∫
−π/a

d4k

(2π)4 tr
{
V θ

1 (k, p+ k)S(p+ k; ζ, 0, a)V χ
1 (p+ k, k)S(k; ζ, 0, a)

}
,

(2.141)

Iθχt (p; ζ, a) = −C2

+π/a∫
−π/a

d4k

(2π)4 tr
{
V θχ

2 (k, k)S(k; ζ, 0, a)
}
≡ Iθχt (ζ, a). (2.142)

Tadpole diagram

The tadpole diagram of eq. (2.142) is independent of the external four-momentum and
yields a constant, which – by virtue of its mass dimension – must be a quadratic power
divergence. Hence, the superficial degree of divergence of the tadpole diagram is negative,
deg It = −2, IR regularisation is not required and there is no problem with condition
C3 of eq. (2.3). For Karsten-Wilczek fermions, the tadpole diagram reads

Iθχt (ζ, a) = −δθχa2 g
2
0C2
4

∫
d4k

(2π)4 tr
{(

γθŝθ2k − ζγα%θαĉθ2k
) (γ · sk) + ζ

2γ
α(ŝk)2

⊥
DKW (k; ζ, 0, a)

}
,

(2.143)
which is simplified algebraically to

Iθχt (ζ, a) = −δθχa2g2
0C2

∫
d4k

(2π)4
2(sθk)2 + ζ2(ŝk)2

⊥(ck)⊥ + 2ζsαk
[
δθα − %θα(ck)⊥

]
DKW (k; ζ, 0, a) .

(2.144)
Because the odd power in ζs

α
k in the numerator must combine with the odd power of

ζs
α
k in the denominator or be trivially integrated to zero, the integral is an even function

of ζ. After setting ζ = +1 and rescaling (cf. eq. (2.9)), the integral is evaluated to

Iθχt (+1, a) = δθχ
g2

0C2
a2

(
−36.31464 · %θα + 7.12931 · δθα

)
. (2.145)

For Boriçi-Creutz fermions, the tadpole diagram reads

Iθχt (ζ, a) =− δθχa2 g
2
0C2
4

∫
d4k

(2π)4

∑
µ

tr
{(γθŝθk+k + ζγθ ′ĉθk+k

) (
γµsµk − ζγµ ′

1
2(ŝµk)2

)
DBC(k; ζ, 0, a)

}
,

(2.146)

which is simplified algebraically to

Iθχt (ζ, a) = −δθχa2g2
0C2

∫
d4k

(2π)4
2
[
(sθk)2 + ζ2 ((ck)− (ck)2) ]+ 6ζ(sk)

DBC(k; ζ, 0, a) . (2.147)
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Since the odd power in ζ(sk) in the numerator must combine with the odd power of ζ(sk)
in the denominator or be trivially integrated to zero, the integral is an even function of
ζ. After setting ζ = +1 and rescaling (cf. eq. (2.9)), the integral is evaluated to

Iθχt (+1, a) = δθχ
g2

0C2
a2 · (−73.71980) . (2.148)

Bubble diagram

The integral Iθχb (p; ζ, a) of the bubble diagram is split into two pieces, the lattice integral
Jθχ(p; ζ,M, a), and the continuum integral Iθχb (p; ζ, a) − Jθχ(p; ζ,M, a). The external
four-momentum p is treated as small and the integral Jθχ(p; ζ,M, a) is subjected to a
Taylor expansion in p up to second order,

Jθχ(p; ζ, a) = Jθχ2 (ζ, a) +
∑
η,ξ

pηpξJ
θχ
ηξ (ζ,M, a) (2.149)

Jθχ2 (ζ, a) = −
∫

tr
{
V θ1 (k, k)S(k; ζ, 0, a)V χ1 (k, k)S(k; ζ, 0, a)

}
, (2.150)

Jθχηξ (ζ,M, a) = −1
2

∫
tr
{
∂2 {V θ1 (k, p+ k)S(p+ k; ζ,M, a)V χ1 (p+ k, k)S(k; ζ,M, a)

}
∂pη∂pξ

}
p=0

,

(2.151)

where each of the vacuum polarisation integrals in eqs. (2.150 and 2.151 is integrated as

∫
tr (. . .) ≡

+π/a∫
−π/a

d4k

(2π)4 tr (. . .) (2.152)

and where Jθχηξ (ζ,M, a) is IR regularised with a small mass term M2 in every denomina-
tor. The indices η and ξ of the Taylor expansion in p do not necessarily have to match
indices θ and χ of the vertices, since the anisotropy of the fermion action allows for the
persistence of various combinations of indices in the continuum limit.

Karsten-Wilczek fermions

For Karsten-Wilczek fermions, the power divergent integral Jθχ2 (ζ, a) reads

Jθχ2 (ζ, a) =− a2 g
2
0C2

4

∫
tr
{(
γθ ĉθ2k + ζγα%θαŝθ2k

) (γ · sk) + ζ
2γα(ŝk)2

⊥
DKW (k; ζ, 0, a)

×
(
γχĉχ2k + ζγα%θαŝχ2k

) (γ · sk) + ζ
2γα(ŝk)2

⊥
DKW (k; ζ, 0, a)

}
. (2.153)

The part of the numerator, which is non-vanishing upon integration,

N0 = δθχ
{

2(sθk)2 − 4(sk)2(cθk)2 − 4ζsαk
[
(1−2δθα)(ŝk)2

⊥(cθk)2 − %θα(sθk)2(4cθk + ζ2((ŝk)2
⊥)2)

]
− ζ2[(1−2δθα)((ŝk)2

⊥)2(cθk)2 − %θα(sθk)2(4
(
(sαk )2 − (sk)2

⊥
)

+ ζ2((ŝk)2
⊥)2)

]}
, (2.154)
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has been simplified algebraically by taking into account that only kα contributes as an
odd power in the denominator. Therefore, the integral J2(ζ, a) is reduced to

Jθχ2 (ζ, a) = −δθχa2g2
0C2

∫
d4k

(2π)4
N0

(DKW (k; ζ, 0, a))2 . (2.155)

Odd powers in ζs
α
k in the numerator must combine with odd powers of ζsαk in the

denominator and the integral turns out to be an even function of ζ. The power divergent
integral is evaluated after setting ζ = +1 and rescaling (cf. eq. (2.9)) and exactly cancels
the power divergent tadpole contribution of eq. (2.145):

Jθχ2 (+1, a) = δθχ
g2

0C2
a2

(
36.31464 · %θα − 7.12931 · δθα

)
. (2.156)

The integral Jθχηξ (ζ,M, a) of eq. (2.151) is far too cumbersome for explicit presentation.
Due to the exclusive presence of two fermion propagators, it is IR divergent at both poles
and has to be regularised at both in order to satisfy condition C3 of eq. (2.3). A simple
method to obtain both IR divergences is to calculate the standard IR divergence6 from
the continuum integral Jθχηξ (M, 0), replace all loop momenta as kµ → ŝµk and finally add
a second standard IR divergence that is shifted from the second pole to the first. The
continuum integral Jθχηξ (ζ,M, 0) reads

Jθχηξ (M, 0) =g2
0C2
2

+∞∫
−∞

ddk

(2π)d tr

γθ
{
∂2S(p+ k; 0,M, 0)

∂pη∂pξ

}
p=0

γχS(k; 0,M, 0)


=− g2

0C2 4
+∞∫
−∞

ddk

(2π)d
{[δθχδηξk2 − (δηχδθξ + δηθδχξ)((kθ)2 + (kχ)2)

]
(k2 +M2)3

− 4

[
δθχδηξ(kη)2(k2 − 2(kθ)2)− 2(δηχδθξ + δηθδχξ)((kθ)2(kχ)2)

]
(k2 +M2)4

}
. (2.157)

It is transformed into a lattice integral for the first divergence without any obstacles,

J̃1
θχ

ηξ (M,a) =− 4 g2
0C2a

4
+π/a∫
−π/a

ddk

(2π)d
{[δθχδηξ(ŝk)2 − (δηχδθξ + δηθδχξ)((ŝθk)2 + (ŝχk )2)

]
((ŝk)2 + (aM)2)3

− 4

[
δθχδηξ(ŝηk)2((ŝk)2 − 2(ŝθk)2)− 2(δηχδθξ + δηθδχξ)((ŝθk)2(ŝχk )2)

]
((ŝk)2 + (aM)2)4

}
=4 g2

0C2
{

4δθχδηξ
[
B(3, 1)− (1− 2δηθ)B(4, 2)− (1 + 2δηθ)B(4, 1, 1)

]
− 2(δηχδθξ + δηθδχξ)

[
B(3, 1)− 4δθχB(4, 2)− 4(1− δθχ)B(4, 1, 1)

]}
.

(2.158)
6If the lattice divergence is automatically constructed from the lattice integral, it may pick up extra

finite terms due to discretisation effects. These extra terms are due to higher derivatives of trigonometric
function of external four-momenta. They are included in the regularised lattice integral (cf. eq. (2.162)).
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The second divergence is obtained by a shift kα → kα − π/a, which transforms the
trigonometric functions as

(ŝθk)2 → (t̂θk)2, (t̂θk)2 ≡ (ŝθk)2 + 2δθα(2− (ŝαk )2), (t̂k)2 ≡ (ŝk)2 + 2(2− (ŝαk )2). (2.159)

Thus, the second divergence reads

J̃2
θχ

ηξ (M,a) = J̃1
θχ

ηξ (M,a)
∣∣∣∣
ŝk→t̂k

, (2.160)

which is numerically identical to eq. (2.158) after integration. The tensor components7 of
each divergence J̃j

θχ

ηξ (M,a) are invariant under interchanges of θ and χ and interchanges
of η and ξ. Non-vanishing tensor components are evaluated to

J̃j
θχ

θχ(M,a) = +16g2
0C2(B(3, 1)− 4B(4, 1, 1)) = +4.13588− 4

3 log (aM)2,

J̃j
ηη

θθ (M,a) = −16g2
0C2(B(3, 1)− B(4, 2)− B(4, 1, 1)) = −5.84941 + 4

3 log (aM)2.
(2.161)

After subtraction of the divergences J̃j
θχ

ηξ (M,a), the lattice integral is automatically
IR finite by construction. The regulator is removed and loop momenta are rescaled
(cf. eq. (2.9)). For ζ = +1, the integral evaluates to

Jθχηξ (+1, 0, a)−
2∑
j=1

J̃j
θχ

ηξ (0, a) = δθχδηξ
{
− 2.51804− 4

3
}

+ (δηχδθξ + δηθδχξ)
{+7.2785

2
}

+
[
2δθχδηξ(δθα + δηα)− (δηχδθξ + δηθδχξ)(δθα + δχα)

]12.69766
4 .

(2.162)

After adding the divergences J̃j
θχ

ηξ (M,a) of eq. (2.161) and including external momenta
pη and pξ, the lattice integral finally yields

Jθχ =
(
pθpχ − δθχp2

) g2
0C2

16π2

(
−8

3 log (aM)2 + 15.55024
)

−
(
pθpχ(δθα + δχα)− δθχ(p2δθαδχα + (pα)2)

) g2
0C2

16π2 · 12.69766, (2.163)

where it is noted explicitly that the term−8/3 log (aM)2 is due to subtraction of IR diver-
gences for both poles. The Ward identity is satisfied despite the anisotropic contribution.

7Other tensor components of the divergences are integrated to 0 once symmetries between different
Euclidean components of loop momenta in the numerator have been exploited.
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Boriçi-Creutz fermions

Boriçi-Creutz fermions mirror the strategy for Karsten-Wilczek fermions. The power
divergent integral Jθχ2 (ζ, a) reads

Jθχ2 (ζ, a) =− a2 g
2
0C2

4

∫
tr
{(
γθ ĉθ2k − ζγθ ′ŝθ2k

) (∑µ

(
γµs

µ
k − ζγ′µ(1− cµk)

))
DBC(k; ζ, 0, a)

× (γχĉχ2k − ζγ
χ ′ŝχ2k) (

∑
ν (γνsνk − ζγ′ν(1− cνk)))
DKBC(k; ζ, 0, a)

}
(2.164)

and is evaluated directly for ζ = +1 after rescaling (cf. eq. (2.9)) as

Jθχ2 (ζ, a) = δθχ
g2

0C2
a2 · (73.71980) , (2.165)

which precisely cancels the tadpole’s power divergence of eq. (2.148). The second di-
vergence of Jθχηξ (ζ,M, a) is obtained with a shift kµ → kµ − π/(2a) ∀µ between the two
poles, which transforms the trigonometric functions as

(ŝθk)2 → (t̂θk)2, (t̂θk)2 ≡ 2(1− sθk), (t̂k)2 ≡ 2(4− (sk)). (2.166)

After subtraction of the divergences J̃j
θχ

ηξ (M,a), the lattice integral is automatically
IR finite by construction. The regulator is removed and loop momenta are rescaled
(cf. eq. (2.9)). For ζ = +1, the integral evaluates to

Jθχηξ (0, a)−
2∑
j=1

J̃j
θχ

ηξ (0, a) =δθχδηξ
{
− 4.38389− 4

3
}

+ (δηχδθξ + δηθδχξ)
{+9.1443

2
}

+
[
δθχ + δηξ − (δηχ + δθξ + δηθ + δχξ)

]
· 0.9094. (2.167)

After adding the divergences J̃j
θχ

ηξ (M,a) of eq. (2.161) and including external momenta
pη and pξ, the lattice integral finally yields

Jθχ =
(
pθpχ − δθχp2

) g2
0C2

16π2

(
−8

3 log (aM)2 + 19.2349
)

−

(pθ + pχ)
(∑

λ

pλ
)
− p2 − δθχ

(∑
λ

pλ
)2
 g2

0C2
16π2 · 0.9094, (2.168)

where it is noted explicitly that the term−8/3 log (aM)2 is due to subtraction of IR diver-
gences for both poles. The Ward identity is satisfied despite the anisotropic contribution.

Continuum integral

Evaluation of the continuum integral mirrors section 2.3.1. However, the limit a→ 0 for
small p in Iθχ(p; ζ, 0)−Jθχ(p; ζ,M, 0) contains propagators with only one single fermion
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mode each and thus corresponds to a one-flavour theory. Hence, the continuum integral
requires an extra factor 2 for the two flavours,

Kθχ(p;M) = 2(Iθχ(p; 0, 0)− lim
M2→0

Jθχ(p; 0,M, 0)). (2.169)

Kθχ(p;M) is evaluated using dimensional regularisation even though it is already UV fi-
nite and IR regularised. Cancellation of the presence of the IR regulator of eqs. (2.163)
and (2.168) would fail without the flavour factor 2. The additional dimensional regulator
cancels between Iθχ(p; 0, 0) and Jθχ(p; 0,M, 0) and the integral reads

Kθχ(p;M) = + g2
0C2

( +∞∫
−∞

ddk

(2π)dM
4−dtr

{
γθS(p+ k; 0, 0, 0)γχS(k; 0, 0, 0)

}
− 1

2
∑
η,ξ

pηpξtr
{
γθ
{
∂2S(p+ k; 0,M, 0)

∂pη∂pξ

}
p=0

γχS(k; 0,M, 0)
})

. (2.170)

The power divergence of the zeroth order of the Taylor expansion vanishes in dimensional
regularisation in the limit of vanishing IR regulator M . The integral evaluates to

K(p;M) =
(
pθpχ − δθχp2

) g2
0C2

16π2 · 2 ·
{
− 4

3 log p2

M2 + 20
9

}
. (2.171)

Full fermionic contribution to the vacuum polarisation

The sum of eqs. (2.145), (2.156), (2.163) and (2.171) completes the full fermionic con-
tribution to the vacuum polarisation for Karsten-Wilczek fermions and reads

Iθχ(p) =
(
pθpχ − δθχp2

)
Π(p2) +Aθχ(p)Π̃(g0), (2.172)

where

Π(p2) =g2
0C2

16π2

(
−8

3 log (ap)2 + 19.99468
)

(2.173)

Aθχ(p) =pθpχ(δθα + δχα)− δθχ(p2δθαδχα + (pα)2) (2.174)

Π̃(g0) =− g2
0C2

16π2 · 12.69766. (2.175)

Even before inclusion of counterterms, the Ward identity is satisfied:∑
θ

pθI
θχ(p) =

∑
χ

pχI
θχ(p) = 0. (2.176)

Using Q from eq. (2.31), the anisotropic term Aθχ(p) is expressed as

Aθχ(p) = 1
4

(
1
2 [Q, /p]

(
{γθ, /p}[γχ,Q] + {γχ, /p}[γθ,Q]

)
− p2[Q, γθ][γχ,Q]− δθχ[Q, /p][/p,Q]

)
(2.177)
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In the presence of the anisotropic term of eq. (2.174), the tree-level tensor structure
cannot be recoverd in the full one-loop gluon propagator. Once the anisotropic term has
been removed by tuning the gluonic counterterm of eq. (1.68) using eq. (2.175),

dP (g0) = −g
2
0C2

16π2 · 12.69766 +O(g4
0), (2.178)

the one-loop gluon propagator takes the standard form

Γµν(p) = Z3
δµν − (1− ξ(1 + Π(p2)))pµpν

p2

p2 (2.179)

and the charge renormalisation factor Z3 is obtained as

Z3 = (1−Π(0))−1. (2.180)

The sum of eqs. (2.148), (2.165), (2.168) and (2.171) completes the full fermionic con-
tribution to the vacuum polarisation for Boriçi-Creutz fermions eq. (2.172) with

Π(p2) =g2
0C2

16π2

(
−8

3 log (ap)2 + 23.6793
)

(2.181)

Aθχ(p) =(pθ + pχ)
(∑

λ

pλ
)
− p2 − δθχ

(∑
λ

pλ
)2

(2.182)

Π̃(g0) =− g2
0C2

16π2 · 0.9094 (2.183)

Again, the Ward identity of eq. (2.176) is satisfied before inclusion of counterterms and
the anisotropic term is expressed through the Dirac structure of eq. (2.177) using Q
from eq. (2.45). The anisotropy must be removed at one-loop level by tuning the gluonic
counterterm of eq. (1.88) using eq. (2.183),

dP (g0) = −g
2
0C2

16π2 · 0.9094 +O(g4
0) (2.184)

in order to have the charge renormalisation factor of eq. (2.180) and the one-loop gluon
propagator of eq. (2.179) take their standard forms.

Whether there is any deeper meaning to the Dirac structure of eq. (2.177) is not fully
understood at present. However, the presence of two matrices Q seems to indicate that
the anisotropic contribution is due to fermion loops which receive contributions from the
propagation of different fermion species.

2.4 Boosted perturbation theory
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Boosted perturbation theory (BPT) has been suggested by Lepage and Mackenzie [110]
as a means to extend the validity of perturbative calculations into the non-perturbative
regime. Non-perturbative effects are estimated with the average plaquette value,

U0 = 4

√√√√ 1
|Λ|

∑
n∈Λ

∑
µ<ν

Uµνn , (2.185)

which is included in a boosted coupling constant (also called Parisi’s coupling),

g2
P = g2

0/U
4
0 , (2.186)

which replaces g0 in one-loop quantities. Predictions from BPT often serve as good
starting points for non-perturbative studies. In the case of minimally doubled fermions,
coefficients of the anisotropic counterterms have to be tuned non-perturbatively. Esti-
mates from BPT are used to pin down a region of interest where anisotropic effects are
expected to be mild compared with the untuned theory. BPT predictions are listed in
table 2.2.

Karsten-Wilczek fermions
β U4

0 c1L cBPT d1L dBPT dP, 1L dP,BPT
5.8 0.567 −0.258 −0.454 −0.00110 −0.00193 −0.0924 −0.163
6.0 0.594 −0.249 −0.420 −0.00106 −0.00179 −0.0893 −0.150
6.2 0.614 −0.241 −0.393 −0.00103 −0.00167 −0.0865 −0.141

Boriçi-Creutz fermions
β U4

0 c1L cBPT d1L dBPT dP, 1L dP,BPT
5.8 0.567 +0.258 +0.455 +0.0133 +0.0235 −0.00298 −0.00525
6.0 0.594 +0.249 +0.420 +0.0129 +0.0217 −0.00288 −0.00485
6.2 0.614 +0.241 +0.393 +0.0125 +0.0203 −0.00279 −0.00454

Table 2.2: Boosted one-loop coefficients serve as starting point for non-perturbative
renormalisation. Numerical values for U4

0 are due to [16].

2.5 Interim findings (I)

With the completion of perturbative studies at one-loop level, it is demonstrated
that Karsten-Wilczek and Boriçi-Creutz actions are renormalisable quantum field the-
ories. Due to their anisotropies, each action requires three counterterms. Even though
the actions’ anisotropies are different, their counterterms are exact analogues.

Both fermionic counterterms are required for recovery of isotropy of the fermion propa-
gator. Once these counterterms are included with appropriate one-loop coefficients, the
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continuum limit of the fermion propagator takes the standard form of a one-flavour quark
propagator. An exchange of the two doublers by a shift of the fermion’s four-momentum
from one pole to the other and application of the matrices Q and Q† (of eqs. (2.31)
or (2.45)) in the sense of the unitary transformation in eq. (1.49) changes the sign of the
Karsten-Wilczek (or Boriçi-Creutz) term. The coefficient c(g0) of the dimension-three
counterterm inherits this sign, whereas the other coeffcients of the self-energy – Z2, Zm
and d(g0) – are unchanged by this transformation. This verifies that the discretrised
forms of the counterterm operators presented in section 1.3 are appropriate choices for
the actions over the full range of fermionic four-momenta. It is noteworthy that the
coefficients of the relevant counterterms for both actions are almost equal in magnitude.

The fermionic contribution to the vacuum polarisation is anisotropic before inclusion
of the gluonic counterterm, which recovers the gluon propagator’s isotropy at one-loop
level. Nevertheless, the Ward identity is satisfied even without counterterms and power
divergences cancel between bubble and tadpole diagrams. Since all internal lines cor-
respond to fermion propagators, both poles contribute on equal footing to the diagram
and the logarithmic divergence indicates a two-flavour theory. The coefficient dP (g0) of
the anisotropic term is finite and even under the analogue of eq. (1.49).

Lastly, interacting minimally doubled fermions retain their chiral symmetry, which is
reflected by the equality of renormalisation factors of local scalar and pseudoscalar
densities as well as vector and axial vector currents, even though the latter undergo
anisotropic renormalisation that necessitates additional counterterms. The tensor cur-
rent is isotropic. Minimally doubled fermions have two symmetry currents involving
only fields at neighbouring sites. This vector current and axial current both satisfy chi-
ral Ward identities. Such an ultralocal axial symmetry current is not available for the
majority of fermion discretisations. The PCAC relation is satisfied at one-loop level only
if the axial symmetry current is used.

For a theory of two quark flavours, the presence of a single, conserved axial symmetry
current implies there is only one (Pseudo-) Goldstone boson in the chiral limit. Thus,
the spectrum must include two states which fail to be (Pseudo-) Goldstone bosons at
finite lattice spacing, but become degenerate with the (Pseudo-) Goldstone boson in
the continuum limit. Hence, a lattice artefacts contributes to their masses, which is
the analogue of taste-breaking for staggered fermions [24, 104]. Of course, a third kind
of pseudoscalar boson must have the role of the pseudoscalar singlet and retain a non-
vanishing mass even in the continuum limit. Numerical simulations in chapter 4 aim at
identifying at least one of the would-be (Pseudo-) Goldstone bosons.
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Structure and symmetry

Perturbative studies of minimally doubled fermions reproduce standard behaviour of
quarks in the continuum limit once three counterterms are included. At one loop,
the propagator resembles the one-flavour expression, though the vacuum polarisation’s
logarithmic divergence implies a two-flavour theory. It seems as if minimally doubled
fermions within purely fermionic loops resemble staggered fermions rather than Wilson
fermions. Before embarking on an extensive numerical study, analytical methods are
used to explore the limit a → 0 of Karsten-Wilczek fermions by means of an expan-
sion in the lattice spacing a. The focus of section 3.1 is on a formal decomposition of
Karsten-Wilczek fermions in terms of a pair of fields with different momentum support.
This decomposition suggests additional oscillating contribution in some correlation func-
tions – as is known for the case of staggered fermions (e.g. [5]) – but with a frequency
that depends on the coefficients of the counterterms. The focus of section 3.2 is on the
interdependence of charge conjugation and Euclidean reflections for minimally doubled
fermions, which is due to the CPΘ symmetry of their actions. It is shown that observ-
ables in the quenched approximation with definite charge conjugation quantum number
are automatically symmetric under the broken reflection symmetry . A short summary
of interim findings is presented in section 3.3.

3.1 Decomposition into a pair of fields

The aim of this section is to analyse Karsten-Wilczek fermions with an action that
includes counterterms with arbitrary coefficients. This study in the naïve continuum
limit (a→ 0) reveals a dependence of correlation functions on mismatched counterterm
coefficients, which is valuable for defining non-perturbative tuning schemes. The relevant
operator of eq. (1.67) diverges as a is taken to zero. Hence, its arbitrary coefficient has to
be dealt with by a local field transformation before any expansion in a can be attempted.
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This is covered in section 3.1.1. A transformation along these lines was suggested for the
first time by Pernici [129]. However, the coefficient of the divergent operator persistently
modifies the boundary conditions. This was noted for the first time in [18]. The new
approach within this thesis is keeping the operator with a coefficient that is required for
cancellation of power divergences while absorbing the mismatch of its coefficient into a
field transformation. Next, in section 3.1.2, the spinor fields of the free theory are related
to a pair of fields, each having a different momentum support. The decomposition into
this pair of components, which must be defined with support on multiple lattice sites,
follows ideas concerning a flavour interpretation1 that has been applied to staggered
fermions [80, 147] for a long time and to minimally doubled fermions [18, 101, 145] as
well. The requirement that both components satisfy the same field equations in limit
a→ 0 fixes their mixture and recovers the matrices of eq. (2.31). Later on, this definition
of components is generalised to interacting fields in section 3.1.3. Before support on
different lattice sites can be defined, any mismatch of the divergent operator’s coefficient
must be shifted into local phase factors. It turns out that these phase factors for both
components must be related by complex conjugation due to the components’ non-trivial
mixture that is observed in the free theory as well. Lastly, the decomposition is plugged
into interpolating operators that are used in the construction of mesonic correlation
functions in section 3.1.4. These correlation functions contain sixteen different pieces
due to 24 possible combinations of components, which can be sorted into five sets with
different properties. Whereas two sets yield non-oscillating contributions with JPC that
is expected for the interpolating operator, two other sets yield oscillating contributions
with different Dirac structure and different JPC . The oscillation’s frequency depends on
the mismatch of the divergent operator’s coefficient. The last set with eight contributions
must vanish due to symmetry violation.

3.1.1 Absorption of a coefficient into a local field transformation

The full Karsten-Wilczek fermion action has been introduced in eq. (1.69) as

Sf [ψ, ψ̄, U ] = a4 ∑
n,m∈Λ

ψ̄n
(
DN
n,m +DKW

n,m +D3
n,m +D4

n,m +m0δn,m
)
ψm, (3.1)

which involves both fermionic counterterms. In the following, the case is considered
where the counterterms’ coefficients c and d do not match the tuned values c(g0) and
d(g0) required for restoring the tree-level form to the propagator. This would be the
case if either the counterterms were included in the free theory or if the coefficients were
improperly tuned in the interacting theory. Hence, expressions for the coefficients read
in these cases

c = c(g0) + δc, d = d(g0) + δd : c(g0), d(g0) = O(g2
0); δc, δd = O(1). (3.2)

1It is not a priori clear whether or not a flavour interpretation is eventually adequate for minimally
doubled fermions. Hence, the pair of components is only a formal tool without flavour interpretation.
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On the one hand, the mismatches δc and δd do not depend on the gauge coupling g0
and δc causes a uncancelled divergence of the theory in the limit a → 0. On the other
hand, the quantities c(g0) and d(g0) are necessary for a cancellation of interaction effects
that would also diverge for a → 0. Thus, the contribution proportional to δc from the
relevant operator D3

n,m of eq. (1.66) must be removed. The mismatch δc is absorbed
into modified boundary conditions by a local field transformation of spinor fields

ψn = e−iϕnαψcn, ψ̄n = ψ̄cne
+iϕnα . (3.3)

The phase ϕ is fixed later in order to remove the mismatch δc in the divergent term. The
gluon action is obviously invariant under the transformation of eq. (3.3). The fermion
action is rewritten in terms of the transformed fields ψc and ψ̄c as

Sf [ψc, ψ̄c, U ] = a4 ∑
n,m∈Λ

ψ̄cne
+iϕnα

(
DN
n,m +DKW

n,m +D3
n,m +D4

n,m +m0δn,m
)
e−iϕmαψcm

= a4 ∑
n,m∈Λ

ψ̄cn

( ∑
µ6=α

γµDµ
n,m[U ] +DKW

n,m +D3
n,m +m0δn,m

+ e+iϕnα
{
γαDα

n,m[U ] +D4
n,m

}
e−iϕmα

)
ψcm. (3.4)

Both operators in the lower line of eq. (3.4) have the structure of the êα component of
the lattice covariant derivative of eq. (1.37). This term is abbreviated as

{Dψ}n = 1+d
2a

(
Uαn e

−iϕ(nα+1)ψcn+êα − U
α†
n−êαe

−iϕ(nα−1)ψcn−êα

)
and satisfies a lattice product rule for sufficiently small values of a and ϕ,

{Dψ}n = (1 + d)e−iϕnα
(
Dα
n,m[U ]ψcm − i ϕ2a

{
Uαnψ

c
n+êα + U

α†
n−êαψ

c
n−êα

}
+O(ϕ2)

)
= (1 + d)e−iϕnα

(
Dα
n,m[U ]ψcm − 2i ϕ2aψ

c
n +O(a, ϕ2)

)
= e−i

ϕ
a
anα

{
(1 + d)Dα

n,m[U ]− i(1 + d)ϕ
a

δn,m

}
ψcm +O(a, ϕ2). (3.5)

When the lattice product rule of eq. (3.5) is plugged into the fermion action of eq. (3.4),
the last remaining phase factors cancel and the action up to effects of O(a, ϕ2) reads

Sf [ψc, ψ̄c, U ] = a4 ∑
n,m∈Λ

ψ̄cn

(
DN
n,m+DKW

n,m +i c−(1+d)ϕ
a γαδn,m+D4

n,m+m0δn,m
)
ψcm, (3.6)

where D3
n,m and the second term of eq. (3.5) have been combined. After the phase ϕ is

fixed to
ϕ = δc

1 + d
, (3.7)

the mismatch δc of the relevant counterterm’s coefficient appears exclusively in the
combination of eq. (3.7) in the boundary conditions of the fermion fields ψc and ψ̄c

up to corrections of O(a, ϕ2). The remaining coefficient c(g0) of the divergent operator
exactly cancels power divergent interaction effects. Hence, fields with extended support
on multiple sites can be constructed from ψc and ψ̄c.
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3.1.2 Decomposition in the free theory

Decomposition of spinor fields into components that differ in chirality and spin due to
having different momentum support has been in use for various types of lattice fermions
for a long time (e.g. [80,99,147]). Decomposition for minimally doubled fermions featured
first in [18, 145] and is generalised in the following. Components φ and χ of spinors
ψ for Karsten-Wilczek fermions are defined by a summation of the full lattice using
decomposition kernels gφ and gχ that restrict the components’ momentum support as

ψn = ∑
k∈Λ

gφn,kφk + (−1)nαQgχn,kχk

ψ̄n = ∑
k∈Λ

φ̄k(gφn,k)† + (−1)nαχ̄kQ̄(gχn,k)†
. (3.8)

The symbols Q and Q̄ represent a priori unknown matrices that allow for mixtures of
two components with different spin and chirality into the same original spinor fields.
Because the matrices later turn out to be the same objects as in eq. (2.31), the same
symbols Q and Q̄ are used here as well. The alternating factor (−1)nα accounts for
momentum support at different poles in the Brillouin zone according to eq. (1.62). The
only required properties of decomposition kernels here are a reasonably fast decrease for
increasing distance |n− k| and a Kronecker symbol δn,k in the limit a→ 0,

gφn,k = δn,k +O(a), gχn,k = δn,k +O(a). (3.9)

This decomposition is a generalisation of the decomposition in [145] with more general
decomposition kernels. The field components φ and χ do not necessarily have a simple
relation to the physical flavours of the theory (cf. the discussion in section 2 of [80]).
Combinations of matrices and factors (−1)nα are wrapped up into a concise notation as

Rn = (−1)nα Q, R̄n = (−1)nα Q̄. (3.10)

The decomposition of eq. (3.8) is plugged into the Karsten-Wilczek fermion action of
eq. (3.1) neglecting counterterms and interactions initially. Hence, the action reads

Sf [φ, φ̄, χ, χ̄] = a4 ∑
k,l∈Λ

Lφ̄φ[φl, φ̄k] + Lχ̄χ[χl, χ̄k] + Lφ̄χ[χl, φ̄k] + Lχ̄φ[φl, χ̄k], (3.11)

Lφ̄φ[φl, φ̄k] =
∑

n,m∈Λ
φ̄k(gφn,k)

†
(
DN
n,m +DKW

n,m +m0δn,m
)
gφm,lφl, (3.12)

Lχ̄χ[χl, χ̄k] =
∑

n,m∈Λ
χ̄k(gχn,k)

†R̄n
(
DN
n,m +DKW

n,m +m0δn,m
)
Rmgχm,lχl, (3.13)

Lφ̄χ[χl, φ̄k] =
∑

n,m∈Λ
φ̄k(gφn,k)

†
(
DN
n,m +DKW

n,m +m0δn,m
)
Rmgχm,lχl, (3.14)

Lχ̄φ[φl, χ̄k] =
∑

n,m∈Λ
χ̄k(gχn,k)

†R̄n
(
DN
n,m +DKW

n,m +m0δn,m
)
gφm,lφl. (3.15)
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Next, decomposition kernels are treated as part of the Dirac kernels for field components.
Thus, the Dirac kernelKχ̄,χ

k,l in the Lagrangian Lχ̄χ[χl, χ̄k] = χ̄kK
χ̄,χ
k,l χl of eq. (3.13) reads

Kχ̄,χ
k,l =

∑
n∈Λ

(gχn,k)
†
( ∑
µ 6=α

1
2aR̄nγ

µRn
{
gχn+êµ,l − g

χ
n−êµ,l

}
+m0R̄nRngχn,l

+ 1
2a
{
R̄nγαRn+α̂g

χ
n+êα,l − R̄nγ

αRn−α̂gχn−êα,l
}

+ iζ

2aR̄nγ
αRn

∑
µ 6=α

{
gχn+êµ,l + gχn−êµ,l − 2gχn,l

})
. (3.16)

The structure of the lattice derivatives in the êα direction simplifies, because

R̄nMRn±α̂ = −R̄nMRn = −Q̄MQ (3.17)

is valid for arbitrary matricesM. Hence, the Dirac kernel Kχ̄,χ
k,l reads

Kχ̄,χ
k,l =

∑
n∈Λ

(gχn,k)
†
( ∑
µ6=α

1
2a(Q̄γµQ)

{
gχn+êµ,l − g

χ
n−êµ,l

}
+m0(Q̄Q)gχn,l

− 1
2a(Q̄γαQ)

{
gχn+êα,l − g

χ
n−êα,l

}
+ iζ

2a(Q̄γαQ)
∑
µ 6=α

{
gχn+êµ,l + gχn−êµ,l − 2gχn,l

})
. (3.18)

Components φ and χ satisfy the same field equations in the limit a → 0 if and only if
the Dirac kernels of Lagrangians Lφ̄φ[φl, φ̄k] and Lχ̄χ[χl, χ̄k] take the same form in the
limit a→ 0. As the limit a→ 0 of the decomposition kernels is taken, this implies three
conditions for the matrices Q and Q̄:


(Q̄Q) = 1 equality of the mass term

(Q̄γµQ) = γµ equality of the perpendicular kinetic term
(Q̄γαQ) = −γα equality of the parallel kinetic term

 . (3.19)

It is evident that the set of conditions requires that Q and Q̄ equal the matrices of
eq. (2.31) up to choices of the arbitrary phase ϑ. Because the Karsten-Wilczek term is
the leading order correction to the naïve continuum limit of the Karsten-Wilczek Dirac
operator and has opposite sign in the kernelsK φ̄,φ

k,l andKχ̄,χ
k,l , the components satisfy field

equations that differ at finite lattice spacing a by the sign of the Karsten-Wilczek term’s
contribution. This is the coordinate space analogue to eq. (2.33). Component-mixing
Lagrangians Lφ̄χ[χl, φ̄k] and Lχ̄φ[φl, χ̄k] of eqs. (3.14) and (3.15) have Dirac kernels K φ̄,χ

k,l
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and Kχ̄,φ
k,l which read

K φ̄,χ
k,l =

∑
n∈Λ

ei(
π
2 +ϑ)(−1)nα(gφn,k)

†
( ∑
µ,ν,λ

1
4a(−iΣλνενλµα)

{
gχn+êµ,l − g

χ
n−êµ,l

}
+ 1

2aγ
5
{
gχn+êα,l − g

χ
n−êα,l

}
+m0γ

αγ5gχn,l

+ iζ

2aγ
5 ∑
µ6=α

{
gχn+êµ,l + gχn−êµ,l − 2gχn,l

})
, (3.20)

Kχ̄,φ
k,l =

∑
n∈Λ

ei(
π
2−ϑ)(−1)nα(gχn,k)

†
( ∑
µ,ν,λ

1
4a(−iΣλνενλµα)

{
gφn+êµ,l − g

φ
n−êµ,l

}
+ 1

2aγ
5
{
gφn+êα,l − g

φ
n−êα,l

}
+m0γ

αγ5gφn,l

− iζ

2aγ
5 ∑
µ6=α

{
gφn+êµ,l + gφn−êµ,l − 2gφn,l

})
. (3.21)

The role of these terms in the limit a → 0 is clarified by a Fourier transform of the
component fields to momentum space. Hereby, the limit a→ 0 of decomposition kernels
gφ and gχ is taken according to eq. (3.9). The component-mixing piece of the action up
to corrections of O(a) reads

S′ = ei(
π
2 +ϑ)

∫
d4q

(2π)4 φ̄(q + π

a
êα)

{
γ5qα +m0γ

αγ5 − i

2Σλνενλµαqµ
}
χ(q)

+ ei(
π
2−ϑ)

∫
d4q

(2π)4 χ̄(q + π

a
êα)

{
γ5qα +m0γ

αγ5 − i

2Σλνενλµαqµ
}
φ(q) +O(a).

(3.22)

If either component has small four-momentum q in the vicinity of the pole q2 = 0, the
four-momentum q + π/a êα of the other component in eq. (3.22) is inevitably near the
pole at the cutoff. Thus, both components decouple in the limit a→ 0 of the free theory.
This result has been discussed already by Pernici [129]. Moreover, decomposition kernels
gφ and gχ can be defined on non-overlapping regions of the Brillouin zone enforcing
|qα| ≤ π/(2a) for component momenta. This definition manifestly prohibits mixing
of components without four-momentum exchange. Tiburzi applied this scheme in a
calculation of the chiral anomaly for Karsten-Wilczek fermions [145]. Putting everything
together, the simplified free Lagrangians for the components read

Sf [φ, φ̄, χ, χ̄] = a4 ∑
k,l∈Λ

Lφ̄φ[φl, φ̄k] + Lχ̄χ[χl, χ̄k] + Lφ̄χ[χl, φ̄k] + Lχ̄φ[φl, χ̄k] (3.23)
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Lφ̄φ[φl, φ̄k] =
∑

n,m∈Λ
φ̄k(gφn,k)

†
(
DN
n,m +DKW

n,m +m0δn,m
)
gφm,lφl, (3.24)

Lχ̄χ[χl, χ̄k] =
∑

n,m∈Λ
χ̄k(gχn,k)

†
(
DN
n,m −DKW

n,m +m0δn,m
)
gχm,lχl, (3.25)

Lφ̄χ[χl, φ̄k] =
∑

n,m∈Λ
φ̄k(−1)nα(gφn,k)

†
(
DN
n,m +DKW

n,m +m0δn,m
)
Qgχm,lχl, (3.26)

Lχ̄φ[φl, χ̄k] =
∑

n,m∈Λ
χ̄k(−1)nα(gχn,k)

†
(
DN
n,m −DKW

n,m +m0δn,m
)
Q̄gφm,lφl. (3.27)

It is made explicit how the Karsten-Wilczek term distinguishes between both components
and how they decouple in the limit a → 0 of the free theory. The component-mixing
terms contain alternating factors (−1)nα that do not cancel because of contributions from
different regions of the Brillouin zone. This phenomenon is well-known from staggered
fermions [80].

3.1.3 Absorption of the coefficient into component fields

The preceding derivation in section 3.1.2 defines field components for free Karsten-
Wilczek fermions. In the limit a→ 0, they satisfy the same field equations and decouple.
Nevertheless, the Karsten-Wilczek term contributes differently to their field equations
at finite lattice spacing. It seems plausible that components can still be defined for
sufficiently weak interactions. Such ideas have been extensively discussed for the case
of staggered fermions in [80]. However, local gauge invariance requires generalisation of
the previous definition of components using decomposition kernels gφ[U ] and gχ[U ] as

ψn = ∑
k∈Λ

e−iϕ
φnαgφn,k[U ]φk + (−e−iϕχ)nαQgχn,k[U ]χk

ψ̄n = ∑
k∈Λ

φ̄k(gφn,k[U ])†eiϕφnα + (−eiϕχ)nαχ̄kQ̄(gχn,k[U ])†
. (3.28)

Smooth transition from interacting to free theory without counterterms requires

lim
c,d,g0→0

ϕφ = lim
c,d,g0→0

ϕχ = 0. (3.29)

Gauge invariance of component bilinears requires that the decomposition kernels gφn,k[U ]
and gχn,k[U ] include parallel transport. This can be achieved by a definition as products
of the free theory’s decomposition kernels gφn,k and gχn,k and Wilson lines2 between sites
n and k. The concise notation of eq. (3.10) is generalised by including phase factors

2In [145], Tiburzi defines components of the free Karsten-Wilczek action (α = 0) with extended
support in the ê0 direction (“energy smearing”). In this case, parallel transport of the component fields
can be achieved by the path-ordered products of gauge links U0 between n and k (the shortest possible
Wilson line). There is no simple shortest Wilson line if the components’ support is not restricted to a
single axis. This is necessarily the case for Boriçi-Creutz fermions, where the components are spread out
along the hypercube’s diagonal. In such a case, a scheme must either define a single path or the average
of multiple paths for parallel transport (cf. similar ideas in [152]).
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e±iϕ
χ into matrices Rϕχn and R̄ϕχn and phase factors e±iϕφ into scalar factors rϕφn and

r̄ϕ
φ

n . These new abbreviations read{
Rϕχn = (−e−iϕχ)nα Q, R̄ϕχn = (−e+iϕχ)nα Q̄
rϕ

φ

n = (+e−iϕφ)nα , r̄ϕ
φ

n = (+e+iϕφ)nα

}
. (3.30)

The decomposition of eq. (3.28) is plugged into the Karsten-Wilczek fermion action of
eq. (3.1) for the interacting theory as it is done for the free theory in eq. (3.11). The
fermion action is decomposed into the sum of four Lagrangians,

Sf [φ, φ̄, χ, χ̄, U ] = a4
∑
k,l∈Λ

Lφ̄φ[φl, φ̄k, U ]+Lχ̄χ[χl, χ̄k, U ]+Lφ̄χ[χl, φ̄k, U ]+Lχ̄φ[φl, χ̄k, U ], (3.31)

Lφ̄φ[φl, φ̄k, U ] =
∑
n,m

φ̄k(gφn,k[U ])†r̄ϕ
φ

n

(
DN
n,m+DKW

n,m +D3
n,m+D4

n,m+m0δn,m
)
rϕ

φ

m gφm,l[U ]φl,

(3.32)

Lχ̄χ[χl, χ̄k, U ] =
∑
n,m

χ̄k(gχn,k[U ])†R̄ϕ
χ

n

(
DN
n,m+DKW

n,m +D3
n,m+D4

n,m+m0δn,m
)
Rϕ

χ

m gχm,l[U ]χl,

(3.33)

Lφ̄χ[χl, φ̄k, U ] =
∑
n,m

φ̄k(gφn,k[U ])†r̄ϕ
φ

n

(
DN
n,m+DKW

n,m +D3
n,m+D4

n,m+m0δn,m
)
Rϕ

χ

m gχm,l[U ]χl,

(3.34)

Lχ̄φ[φl, χ̄k, U ] =
∑
n,m

χ̄k(gχn,k[U ])†R̄ϕ
χ

n

(
DN
n,m+DKW

n,m +D3
n,m+D4

n,m+m0δn,m
)
rϕ

φ

m gφm,l[U ]φl.

(3.35)

Dirac kernels (e.g. Kχ̄,χk,l ) of the Lagrangians are defined analogously to the free theory
in section 3.1.2. The analogue of eq. (3.17) in the interacting theory is

R̄ϕχn MR
ϕχ

n±α̂ = −e∓iϕχR̄ϕχn MRϕ
χ

n = −e∓iϕχQ̄MQ, r̄ϕ
φ

n Mrϕ
φ

n±α̂ = +e∓iϕφM. (3.36)

Hence, parallel kinetic terms of both Dirac kernels Kφ̄,φk,l and Kχ̄,χk,l include phase factors
like those which feature in eq. (3.4),

Kφ̄,φ
k,l =

∑
n∈Λ

(gφn,k[U ])†
(

+
∑
µ6=α

1
2aγ

µ
{
Uµn g

φ
n+êµ,l[U ]− Uµ†n−êµg

φ
n−êµ,l[U ]

}
+m0g

φ
n,l

+ γα
[

1+d
2a

{
e−iϕ

φ

U
α
n g

φ
n+êα,l[U ]− e+iϕφU

α†
n−êαg

φ
n−êα,l[U ]

}
+ i

c

a
gφn,l[U ]

]
+ iζ

2aγ
α
∑
µ6=α

{
Uµn g

χ
n+êµ,l[U ] + Uµ†n−êµg

χ
n−êµ,l[U ]− 2gχn,l[U ]

})
,

Kχ̄,χ
k,l =

∑
n∈Λ

(gχn,k[U ])†
(

+
∑
µ6=α

1
2aQ̄γ

µQ
{
Uµn g

χ
n+êµ,l[U ]− Uµ†n−êµg

χ
n−êµ,l[U ]

}
+m0Q̄Qgχn,l[U ]

− Q̄γαQ
[

1+d
2a

{
e−iϕ

χ

U
α
n g

χ
n+êα,l[U ]− e+iϕχU

α†
n−êαg

χ
n−êα,l[U ]

}
− i c

a
gχn,l[U ]

]
+ iζ

2aQ̄γ
αQ

∑
µ6=α

{
Uµn g

χ
n+êµ,l[U ] + Uµ†n−êµg

χ
n−êµ,l[U ]− 2gχn,l[U ]

})
.
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The lattice product rule of eq. (3.5) applies and yields up to O(a, ϕ2)
1 + d

2a
{
e−iϕ

φ
Uαn g

φ
n+êα,l[U ]− e+iϕφU

α†
n−êαg

φ
n−êα,l[U ]

}
+ i cag

φ
n,l[U ]

= {1+d}Dα
n,mg

φ
m,l[U ] + i

c− (1 + d)ϕφ
a

gφn,l[U ], (3.37)
1 + d

2a
{
e−iϕ

χ
Uαn g

χ
n+êα,l[U ]− e+iϕχU

α†
n−êαg

χ
n−êα,l[U ]

}
− i c

a
gχn,l[U ]

= {1+d}Dα
n,mg

χ
m,l[U ]− i c+(1+d)ϕχ

a gχn,l[U ]. (3.38)

Unmatched divergent operators in eqs. (3.37) and (3.38) must cancel before a expansion
in a can be attempted. A divergence due to a mismatch of coefficients as in eq. (3.2)
cancels if the phases ϕφ and ϕχ satisfy two different conditions,

ϕφ = δc

1 + d
, ϕχ = − δc

1 + d
. (3.39)

This implies ϕ ≡ ϕφ = −ϕχ. Because δc c,d,g0→0→ 0, these phases satisfy the requirement
of eq. (3.29) for a smooth transition to the free theory. The opposite sign of phases for
both components has been already pointed out in [129]. The difference is not surpris-
ing in the light of section 2.3.1, since c is an odd function of the Wilczek parameter ζ.
Hence, it affects the Dirac field χ of the second component with momentum support near
p = π/aêα as −c. The first component φ with momentum support near p = 0 is treated
like the spinor field ψc that was discussed in section 3.1.1. The phase factors ±e∓iϕ
can be interpreted as plane wave terms of a Fourier transform that ensure that each
pole corresponds to a component with vanishing four-momentum. If the conditions of
eq. (3.39) are met, the mismatched divergent operator (∝ δc) is removed from the Dirac
kernels Kφ̄,φk,l and Kχ̄,χk,l . The remainder of the counterterm operator (∝ c(g0)) exactly
cancels the divergences due to interaction effects. The condition for the matrices Q and
Q̄ in the interacting theory remains the same as in eq. (3.19).

Though the mismatched coefficient δc of the divergent operator ceases to appear explic-
itly in the Lagrangians Lφ̄φ[φl, φ̄k, U ] and Lχ̄χ[χl, χ̄k, U ], it persists in the components’
boundary conditions due to their definition in eq. (3.28). Nevertheless, the component-
mixing Lagrangians Lφ̄χ[χl, φ̄k, U ] and Lχ̄φ[φl, χ̄k, U ] of eqs. (3.34) and (3.35) retain its
explicit appearance. Their Dirac kernels K φ̄,χ

k,l and Kχ̄,φ
k,l explictly depend on the mis-

matched coefficient δc through phases ϕφ and ϕχ, which fail to cancel in

Kφ̄,χ
k,l =

∑
n∈Λ

ei(
π
2 +ϑ)(−e+i(ϕφ−ϕχ))nα(gφn,k[U ])†

(
+ 1 + d

2a γ5
{
U
α
n g

χ
n+êα,l[U ]− Uα†n−êαg

χ
n−êα,l[U ]

}
+
∑
µ,ν,λ

1
4a (−iΣλνενλµα)

{
Uµn g

χ
n+êµ,l[U ]− Uµ†n−êµg

χ
n−êµ,l[U ]

}
+m0γ

αγ5gχn,l[U ]

+ iζ

2aγ
5
∑
µ6=α

{
Uµn g

χ
n+êµ,l[U ] + Uµ†n−êµg

χ
n−êµ,l[U ]− 2gχn,l[U ]

}
+ iγ5 c+ (1 + d)ϕχ

a
gχn,l[U ]

)
,

(3.40)
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Kχ̄,φ
k,l =

∑
n∈Λ

ei(
π
2−ϑ)(−e−i(ϕ

φ−ϕχ))nα(gχn,k[U ])†
(

+ 1 + d

2a γ5
{
U
α
n g

φ
n+êα,l[U ]− Uα†n−êαg

φ
n−êα,l[U ]

}
+
∑
µ,ν,λ

1
4a (−iΣλνενλµα)

{
Uµn g

φ
n+êµ,l[U ]− Uµ†n−êµg

φ
n−êµ,l[U ]

}
+m0γ

αγ5gφn,l[U ]

− iζ

2aγ
5
∑
µ6=α

{
Uµn g

φ
n+êµ,l[U ] + Uµ†n−êµg

φ
n−êµ[U ],l − 2gφn,l[U ]

}
− iγ5 c− (1 + d)ϕφ

a
gφn,l[U ]

)
.

(3.41)

The mismatched divergent operators (∝ δc) in the last terms in each of eqs. (3.40)
and (3.41) cancel if the phases ϕφ and ϕχ are fixed according to eq. (3.39). However,
there are remaining overall phase factors ξn and ξ∗n, which are defined as

ξn ≡ (−ei(ϕφ−ϕχ))nα = (−ei(2ϕ))nα = (−ei(2δc)/(1+d))nα . (3.42)

These phase factors bear witness that a mismatch δc affects the components of interacting
fields not only at the boundary, but is presumably visible in component-mixing terms
even in the bulk of the lattice. The signature of this mismatch shows in oscillating
correlation functions that are considered in the next section 3.1.4. This section is closed
with a summary of the simplified Lagrangians for components of interacting fields:

Sf [φ, φ̄, χ, χ̄] = a4
∑
k,l

Lφ̄φ[φl, φ̄k, U ] + Lχ̄χ[χl, χ̄k, U ] + Lφ̄χ[χl, φ̄k, U ] + Lχ̄φ[φl, χ̄k, U ], (3.43)

Lφ̄φ[φl, φ̄k, U ] =
∑
n,m

φ̄k(gφn,k[U ])†
[
DN
n,m +DKW

n,m +D4
n,m + (m0 + i

c(g0)
a

γα)δn,m
]
gφm,l[U ]φl,

(3.44)

Lχ̄χ[χl, χ̄k, U ] =
∑
n,m

χ̄k(gχn,k[U ])†
[
DN
n,m −DKW

n,m +D4
n,m + (m0 − i

c(g0)
a

γα)δn,m
]
gχm,l[U ]χl,

(3.45)

Lφ̄χ[χl, φ̄k, U ] =
∑
n,m

φ̄k(gφn,k[U ])†ξn
[
DN
n,m +DKW

n,m +D4
n,m + (m0 + i

c(g0)
a

γα)δn,m
]
Qgχm,l[U ]χl,

(3.46)

Lχ̄φ[φl, χ̄k, U ] =
∑
n,m

χ̄k(gχn,k[U ])†ξ∗n
[
DN
n,m −DKW

n,m +D4
n,m + (m0 − i

c(g0)
a

γα)δn,m
]
Q̄gφm,l[U ]φl.

(3.47)

There is no explicit appearance of a mismatch δc in the relevant counterterm’s coefficient
up to O(a, δc2) in the single-component Lagrangians of eqs. (3.44) and (3.45), though
it modifies their non-trivial boundary conditions. However, the component-mixing La-
grangians of eqs. (3.46) and (3.47) retain an explicit dependence on δc through phase
factors ξn and ξ∗n which manifest the mismatch even in the bulk of the lattice.
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3.1.4 Components in correlation functions

Next, decomposition into a pair of fields as defined in eq. (3.28) is applied to hadronic
correlation functions. A typical mesonic two-point correlation function is the expectation
value (denoted by

〈
. . .
〉
U
) of the product of two interpolating operators, which are

fermionic bilinears with matricesM or N . This mesonic correlation function

CM,N (t) =
〈 ∑
n∈Λ0

t

−tr
(
ON (t)ŌM(0)

)〉
U

=
〈 ∑
n∈Λ0

t

−tr
(
ψ̄nN †ψnψ̄0Mψ0

)〉
U

(3.48)

has a connected and a quark-disconnected contribution, which are obtained from different
Wick contractions of the fields. Only the former is discussed in detail in the following.
As spinor fields are expressed through components fields, abbreviations from eqs. (3.30)
are employed extensively. The decomposed interpolating operators read

ŌM(0) =
{
φ̄k(gφ0,k[U ])†r̄ϕ0 + χ̄k(gχ0,k[U ])†R̄−ϕ0

}
M
{
rϕ0 (gφ0,l[U ])φl +R−ϕ0 (gχ0,l[U ])χl

}
, (3.49)

ON (t) =
{
φ̄v(gφn,v[U ])†r̄ϕn + χ̄v(gχn,v[U ])†R̄−ϕn

}
N
{
rϕn(gφn,w[U ])φw +R−ϕn (gχn,w[U ])χw

}
. (3.50)

The Lagrangians of eqs. (3.44), . . . , (3.47) are used in Wick contractions of the compo-
nents. It is necessary to mention at this stage that transitions between the components
are possible (at least through four-momentum exchanges in the interacting theory). It
is understood that reference to a particular component on a fermion line is meaningful
only at their endpoints. The correlation function is expressed through propagators of
the components and split into sixteen pieces. Among these, twelve pieces require an
odd number of transitions between different components on at least one of the fermion
lines. They are arranged into three sets, which are denoted as the third, fourth and
fifth set in the ensuing discussion. The remaining four pieces with an even number of
transitions between components on each fermion line belong to two sets with fundamen-
tally different properties. The two pieces of the first set, which have at each endpoint
the same component on both fermion lines, exactly mirror two contributions from usual
single-flavour theories (e.g. Wilson fermions) and read

Cφφ̄φφ̄M,N (t) =
〈 ∑
n∈Λ0

t

tr
(
Sφφ̄w,k(g

φ
0,k[U ])†M(gφ0,l[U ])Sφφ̄l,v (gφn,v[U ])†N (gφn,w[U ])

)〉
U
, (3.51)

Cχχ̄χχ̄M,N (t) =
〈 ∑
n∈Λ0

t

tr
(
Sχχ̄w,k(g

χ
0,k[U ])†Q̄MQ(gχ0,l[U ])Sχχ̄l,v (gχn,v[U ])†Q̄NQ(gχn,w[U ])

)〉
U
.

(3.52)

Dirac matrices for the second component can differ at most by a factor (−1), since

Q̄MQ = ±M,

{
+ : 1, iγαγ5, γµ,Σνλ ∀ µ, ν, λ 6= α
− : γ5, γα, iγµγ5,Σαµ ∀ µ 6= α

}
. (3.53)

Thus, Cφφ̄φφ̄M,N (t) and Cχχ̄χχ̄M,N (t) are structurally identical. Quark-disconnected contributions
to the processes of the first set are postponed until discussion of the third set.
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The two pieces of the second set have the same component at both endpoints of each
fermion line, but different components on both fermion lines at each endpoint. They
exhibit oscillating phase factors ξn and ξ∗n that were defined in eq. (3.42) and read

Cφφ̄χχ̄M,N (t) =
〈 ∑
n∈Λ0

t

ξ∗ntr
(
Sφφ̄w,k(g

φ
0,k[U ])†MQ(gχ0,l[U ])Sχχ̄l,v (gφn,v[U ])†Q̄N (gφn,w[U ])

)〉
U
, (3.54)

Cχχ̄φφ̄M,N (t) =
〈 ∑
n∈Λ0

t

ξntr
(
Sχχ̄w,k(g

χ
0,k[U ])†Q̄M(gφ0,l[U ])Sφφ̄l,v (gφn,v[U ])†NQ(gχn,w[U ])

)〉
U
. (3.55)

These Dirac matrices are obviously different from those in eqs. (3.51) and (3.52). There-
fore, the two sets overlap with qq̄ states that have different JPC . Matrix relations
between matrices for both sets are listed in table 3.1. On the one hand, in the case
α = 0, the êα direction is parallel to the time direction. Thus, the two sets of component
bilinears have different parity eigenvalues. Oscillating factors ξn and ξ∗n are not summed
over for α = 0 and an oscillation along the time direction persists. On the other hand,
in the case α 6= 0, the êα direction is perpendicular to the time direction. Hence, the two
sets of component field bilinears have different spin. Oscillating factors ξn and ξ∗n are
summed over for α 6= 0 and strong cancellations that lead to suppression of component
field bilinears from the second set are expected.

M 1 γ5 γµ Σαµ

MQ iγαγ5 −iγα 1
2Σνλελνµα γµγ5

Q̄M iγαγ5 +iγα 1
2Σνλελνµα −γµγ5

Table 3.1: Dirac matrices for both sets of components field bilinears with even numbers
of transitions on each fermion line yield different quantum numbers for both sets.
In the end, the twelve remaining pieces with at least one fermion line with an odd number
of transitions between the components fall into three different sets, which are denoted
as third, fourth and fifth set in the following. Typical representatives of these sets are

Cφχ̄χφ̄M,N (t) =
〈 ∑
n∈Λ0

t

tr
(
Sφχ̄w,k(g

χ
0,k[U ])†Q̄MQ(gχ0,l[U ])Sχφ̄l,v (gφn,v[U ])†N (gφn,w[U ])

)〉
U
, (3.56)

Cχφ̄χφ̄M,N (t) =
〈 ∑
n∈Λ0

t

ξntr
(
Sχφ̄w,k(g

φ
0,k[U ])†MQ(gχ0,l[U ])Sχφ̄l,v (gφn,v[U ])†NQ(gχn,w[U ])

)〉
U
, (3.57)

Cχχ̄χφ̄M,N (t) =
〈 ∑
n∈Λ0

t

ξntr
(
Sχχ̄w,k(g

χ
0,k[U ])†Q̄MQ(gχ0,l[U ])Sχφ̄l,v (gφn,v[U ])†NQ(gχn,w[U ])

)〉
U
.

(3.58)

The first representative of the third set is Cφχ̄χφ̄M,N (t) of eq. (3.56). It is a connected con-
tribution to a process, which has the same component on both fermion lines at each
endpoint, but different components at each endpoint of each of the fermion lines. Thus,
there must be an odd number of transitions between the components on each of the
fermion lines, which sets the process apart from the first set. A pictorial representation
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of such a process is given by the diagram in the left part of figure 3.1. Crosses represent
either two- or three-point insertions such as transitions between the components or inter-
action vertices with gauge fields and hatched circles represent the coupling of component
fields to external meson fields. The second piece of the third set is Cχφ̄φχ̄M,N (t) and requires
exactly analogous treatment. Processes such as those described in eq. (3.56) are usually
realised only in quark-disconnected contributions (right diagram in figure 3.1). The dou-
bled curly line indicates interaction with non-perturbative gauge fields or exchange of
at least three gluons, since such processes are OZI suppressed [94,123,165]. The leading
contribution is O(a2) if the components satisfy the same field equations in the continuum
limit. Here, the quark-disconnected contributions to these processes involve only even
numbers of transitions between the components on each fermion line and also exist for
undoubled fermion fields (such as Wilson fermions). Moreover, quark-disconnected con-
tributions to processes of the first set are analogous to quark-disconnected contributions
to processes of the third set with the exception that the components on all fermion lines
at all endpoints are the same. Hence, if oddness of the number of transitions between
components on both fermions lines is used as the criterion for classification, these quark-
disconnected contributions all belong to the first set.

�
χ

χ φ

φ

Q̄MQ N

�χ
χ

φ

φ

Q̄MQ N

Figure 3.1: Left: The third set are connected contributions to processes that involve
different components at both endpoints. Right: The same structure occurs in quark-
disconnected diagrams. The notation is explained in the text.

It must be pointed out as a caveat that these diagrams serve only as a guide to the eyes
and must not be understood as equivalent to a mathematical formula (in the sense of
a Feynman diagram). This caveat holds for the entirety of diagrams in figures 3.1, 3.2
and 3.3. First, assignment of any single component to a fermion line is meaningful
only for asymptotically free fields at its endpoints, since there can be arbitrary numbers
(though odd for the third set) of transitions between the components. Second, fermion
lines for the components have decomposition kernels at their endpoints, which depend
on local gauge fields appearing in parallel transports. Hence, perturbative treatment in
the weak coupling regime must also include perturbative expansion of the decomposition
kernels (which are not yet specified at this level of the discussion) before components
can be considered as asymptotically free.

The first representative of the fourth set is Cχφ̄χφ̄M,N (t) of eq. (3.57). It is a connected
contribution to a process, which has different components at each endpoint of each of
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�
φ

χ φ

χ

MQ NQ

�χ
φ

φ

χ

MQ NQ

Figure 3.2: Left: The fourth set are connected contributions to processes that involve
different components at both endpoints of each fermion line and on both fermion lines
at each endpoints. Right: The same structure occurs in quark-disconnected diagrams as
well. The notation is explained in the text.

the fermion lines and also different components on each fermion line at each endpoint.
Hence, there must be an odd number of transitions between the components on each of
the fermion lines, which sets the process apart from the second set. A pictorial represen-
tation of such a process is given by the diagram in the left part of figure 3.2, which may
be understood in the sense of the aforementioned caveat as a guide to the eyes. The same
process also receives a quark-disconnected contribution, which is depicted in the right
diagram of figure 3.2. An analogous piece Cφχ̄φχ̄M,N (t) and a quark disconnected contribu-
tion to the same process exist as well. Furthermore, there are two quark-disconnected
diagrams contributing to the processes of eqs. (3.54) and (3.55). These contributions
also involve an odd number of transitions between components on each fermion line.
This is why these quark-disconnected contributions are considered as part of the fourth
set. Neither of these diagrams is found in a theory of undoubled fermion fields. In order
to obtain the correct continuum limit, the entirety of diagrams contributing to processes
of the fourth set must either cancel mutually or vanish individually in the continuum
limit.

�
χ

χ φ

χ

Q̄MQ NQ

�χ
χ

φ

χ

Q̄MQ NQ

Figure 3.3: The fifth set requires an odd number of transitions between the components
on fermion lines. Since symmetries are violated, the sum of all contributions must vanish.

The first representative of the fifth set is Cχχ̄χφ̄M,N (t) of eq. (3.58). It is a connected contri-
bution to a process, which has equal components on both fermion lines at one endpoint
and different components on both fermion lines at the other endpoint. Thus, there must
be an odd number of transitions between the components on one of the fermion lines and
an even number of transitions between the components on the other fermion line. The
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total number of transitions between the components is odd for the fifth set. This sets
it apart from the other four sets, where the total number of transitions has always been
even. A pictorial representation of such a process is given by the diagram in the left
part of figure 3.3. Quark-disconnected contributions to the same kind of process exist
as well and are depicted in the right diagram in figure 3.3. In the sense of the aforemen-
tioned caveat, these diagrams must not be considered as more than a guide to the eyes.
In total, there are eight processes in the fifth set. Since source and sink interpolating
operators are multiplied by an odd number of matrices Q and Q̄, the component bilin-
ears (assuming M = N ) accumulate an odd power of γ5. Due to these contributions,
either parity for α = 0 or spin for α 6= 0 would not be conserved. However, since either
quantum number is conserved in the respective theory of minimally doubled fermions,
the entirety of diagrams contributing to processes of the fifth set must cancel mutually
or vanish individually on each gauge configuration.

In summary, decomposition of interpolating operators suggests five sets of contributions.
The first set represents contributions that would also be observed for undoubled fermion
actions. Moreover, the component bilinears have the same Dirac structure and JPC as
the original interpolating operators. Contributions from the first set do not include oscil-
lating terms. The third set contributes only one kind of process that may interfere with
processes of the first set. Nevertheless, there are no oscillating terms due to the third
set and it matches the first set’s Dirac structure. There are no additional processes that
arise exclusively due to the third set. The second set represents contributions that would
only be observed for undoubled fermion actions if both fermion lines would be assigned
to different quark flavours. As an example, this kind of contribution is observed with
Wilson fermions if one fermion line is considered as an up quark and the other as a down
quark of a isospin symmetric doublet. Due to the possibility of transitions between
the components, such an assignment is not possible for minimally doubled fermions.
The component bilinears have different Dirac structure and thus different JPC than the
original interpolating operators. Moreover, contributions from the second set include
oscillating terms with either ξn = (−e+i2ϕ)nα or ξ∗n = (−e−i2ϕ)nα . The fact that these
oscillating factors have frequencies that are not integer multiples of (2π)/(aNα) seems
unusual given that the eigenfrequencies of the lattice are restricted to integer multiples
of (2π)/(aNα). However, the frequencies can be realised as maxima of distributions of
discrete eigenfrequencies of the lattice. A harmonic oscillator and a one-dimensional
fermion with imaginary mass serve as toy models that exhibit similar behaviour. These
toy models are discussed in the appendix D to illustrate this phenomenon. It seems clear
that these contributions are very sensitive to a mismatch δc = (1 + d)ϕ of the relevant
counterterm’s coefficient. It is expected that this yields oscillating contributions in the
parallel case (α = 0) and strong cancellations in perpendicular cases (α 6= 0). Oscillating
contributions of this kind (though without dependence on a mismatched counterterm’s
coeffcient) are a well-known observation in simulations with staggered fermions [5]. The
contributions from the second set interfere with contributions from the fourth set. The
same considerations about Dirac structure and oscillating terms are valid for the lat-
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ter. However, the fourth set includes contributions that suggest non-conservation of the
components. If the components have any physical meaning, such processes must not
survive in the continuum limit. Lastly, contributions of the fifth set violate symmetries
of the action. They must either cancel mutually or vanish individually on every gauge
configuration even at finite lattice spacing. Hence, these terms do not contribute to any
observable quantities and can be neglected in the interpetation.

Since numerical simulations in section 4 are focused on only the connected contribution
to two different mesonic channels (M = N = γ5 andM = N = γ0) with either α = 0
or α = 3, these mesonic correlations are constructed in detail. Using eqs. (3.42) and
(3.51)-(3.57), Cγ5,γ5(t) for α = 0, ϑ = 0 and an infinite lattice can be written as

Cγ5,γ5(t) =Cstd
γ5,γ5(t) + Cosc

γ0,γ0(t), (3.59)

Cstd
γ5,γ5(t) =

〈 ∑
n∈Λ0

t

tr
(
Sφφ̄w,k(gφ0,k[U ])†γ5(gφ0,l[U ])Sφφ̄l,v (gφn,v[U ])†γ5(gφn,w[U ])

)〉
U

+
〈 ∑
n∈Λ0

t

tr
(
Sχχ̄w,k(gχ0,k[U ])†γ5(gχ0,l[U ])Sχχ̄l,v (gχn,v[U ])†γ5(gχn,w[U ])

)〉
U

−
〈 ∑
n∈Λ0

t

tr
(
Sφχ̄w,k(gχ0,k[U ])†γ5(gχ0,l[U ])Sχφ̄l,v (gφn,v[U ])†γ5(gφn,w[U ])

)〉
U

−
〈 ∑
n∈Λ0

t

tr
(
Sχφ̄w,k(gφ0,k[U ])†γ5(gφ0,l[U ])Sφχ̄l,v (gχn,v[U ])†γ5(gχn,w[U ])

)〉
U
, (3.60)

Cosc
γ0,γ0(t) =

〈 ∑
n∈Λ0

t

e−i(π+2ϕ)n0 tr
(
Sφφ̄w,k(gφ0,k[U ])†γ0(gχ0,l[U ])Sχχ̄l,v (gχn,v[U ])†γ0(gφn,w[U ])

)〉
U

+
〈 ∑
n∈Λ0

t

e+i(π+2ϕ)n0 tr
(
Sχχ̄w,k(gχ0,k[U ])†γ0(gφ0,l[U ])Sφφ̄l,v (gφn,v[U ])†γ0(gχn,w[U ])

)〉
U

−
〈 ∑
n∈Λ0

t

e+i(π+2ϕ)n0 tr
(
Sχφ̄w,k(gφ0,k[U ])†γ0(gχ0,l[U ])Sχφ̄l,v (gφn,v[U ])†γ0(gχn,w[U ])

)〉
U

−
〈 ∑
n∈Λ0

t

e−i(π+2ϕ)n0 tr
(
Sφχ̄w,k(gχ0,k[U ])†γ0(gφ0,l[U ])Sφχ̄l,v (gχn,v[U ])†γ0(gφn,w[U ])

)〉
U
. (3.61)

The correlation function Cγ0,γ0(t) is obtained by the trivial replacement γ5 ↔ γ0 through-
out the expressions. Correlation functions for α = 3 are obtained by the trivial replace-
ment 0↔ 3 in n0 and γ0 throughout the expressions. Unless the decomposition kernels
are sufficiently localised, this correlation function cannot be interpreted in terms of any
states formed from the fields φ and χ. However, if the decomposition kernels are suf-
ficiently localised, each of the terms in Cstd/osc

γ5,γ5 (t) represents states with JPC = 0−+

propagating from time 0 to time t. Therefore, an oscillating contribution from 0−+

states should be be observed in the γ0 channel. Each of the terms in Cstd/osc
γ0,γ0 (t) repre-

sents states with JPC = 0+− that are not part of the QCD spectrum and contribute
supposedly only noise. Hence, the formal decomposition suggest existence of 0−+ states
in γ5 and γ0 channels. Numerical data indicating the presence of 0−+ states is presented
in sections 4.3 and 4.4.
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3.2 Remnant Θ symmetry and O(a) corrections

The Karsten-Wilczek term breaks nα reflection and charge conjugation symmetries,
CPΘ and both CΘα and Pα are still good symmetries. Hence, generic observables
that would have both symmetries if constructed using Wilson fermions may well have
only CΘα symmetry if constructed using Karsten-Wilczek fermions. In particular, since
correlation functions may well have only CΘα symmetry, they potentially lack sym-
metry under time reflection in the parallel case (α = 0). Nevertheless, both marginal
anisotropic counterterms of eqs. (1.67) and (1.68) are symmetric under nα reflection
and charge conjugation. Hence, the perturbative vacuum at one-loop has the symme-
tries of the gluonic counterterm. If the perturbative vacuum has higher symmetry than
generic observables, the question arises whether this may apply to other (perturbative
or non-perturbative) observables as well. In section 3.2.1, invariance of the pseudoscalar
correlation function under nα reflection is derived analytically for free fields at first.
Next, this invariance is deduced from CΘα symmetry. In section 3.2.2, general local
correlation functions with charge conjugated gauge fields and an invariant vacuum are
studied. It is shown that interpolating operators at source and sink with equal charge
conjugation eigenvalue ensure symmetry under nα reflection and suppress O(a) correc-
tions. This is a consequence of CΘα symmetry.

3.2.1 CΘ symmetry in the free theory

The pseudoscalar correlation function in the free theory

The pseudoscalar correlation function is a special case of eq. (3.48) and reads

C5,5(t) ≡ Cγ5,γ5(t) =
〈 ∑
n∈Λ0

t

−tr
(
ψ̄0γ

5ψ0ψ̄nγ
5ψn

)〉
1. (3.62)

The spinor fields are Wick contracted and yield propagators as

C5,5(t) =
〈 ∑
n∈Λ0

t

tr
(
Sn,0γ

5S0,nγ
5
)
− tr

(
S0,0γ

5
)
tr
(
Sn,nγ

5
)〉

1, (3.63)

where the first piece is the connected and the second piece is the quark-disconnected
contribution. For a γ5 hermitian action, the connected contribution is written as

Ccon.
5,5 (t) =

〈 ∑
n∈Λ0

t

tr
(
Sn,0γ

5S0,nγ
5
)〉

1 =
〈 ∑
n∈Λ0

t

tr
(
Sn,0S

†
n,0

)〉
1. (3.64)

As gauge fields of the free theory are trivial (U = 1), the expectation value can be
omitted here. Furthermore, explicit indication as connected contribution is omitted as
well. The free correlation function in the chiral limit is cast into momentum space as

C5,5(t) =
∑
n∈Λ0

t

∫
d4p d4k

(2π)8 ein·p tr
(
S(k + p

2; ζ, 0, a)S†(k − p

2; ζ, 0, a)
)

(3.65)
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using the propagator of eq. (2.26). Summation of the sink slice introduces a delta
function δ(3)(p) for external three-momenta. The trace acts upon the numerator N as

N = tr
{(
−i(γ · s

k+p
2
)− i ζ2γα(ŝ

k+p
2
)2
⊥

)(
+i(γ · s

k−p2
) + i ζ2γα(ŝ

k−p2
)2
⊥

)}
p=p0ê0

.

The abbreviations are defined in eqs. (2.21) and (2.22). The numerator is expanded as

N =
{
4(s

k+p
2
· s
k−p2

) + ζ2(ŝ
k+p

2
)2
⊥(ŝ

k−p2
)2
⊥ + 2ζ

(
s
α

k+p
2
(ŝ
k−p2

)2
⊥ + s

α

k−p2
(ŝ
k+p

2
)2
⊥

)}
p=p0ê0

=
∑
µ

(sµk ĉ
µ
p )2 − (c0

kŝ
0
p)2 + ζ

{ ∑
µ6=α

(
s
α
k ĉ
µ
p (ŝµk ĉ

µ
p/2)2)+ %α0s

α
k ĉ

0
p(ĉ0

kŝ
0
p/2)2

}
+ ζ2

( 1
16
{ ∑
µ6=α

(ŝµk ĉ
µ
p/2)2 + %α0(ĉ0

kŝ
0
p/2)2}2 − %α0(s0

kŝ
0
p

)2)
, (3.66)

until it finally simplifies to a manifestly even function of p0. The denominator D reads
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and is expanded as D = X + Y + Z with
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(ŝ
k−p2

)2
⊥

)2 }
=

2∑
i=0

(
ζ2

4

)i
X2i, (3.67)
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(3.68)

Z = z(+p) + z(−p) = ζZ1 + ζ3Z3, (3.69)
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}
, (3.70)

where the restriction to p = p0ê0 is omitted. The individual terms read
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, (3.74)
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)}
−
(∑

µ

{sµkc
µ
ks
µ
p}
){(cαk ŝαp )
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Due to the delta function δ(3)(p) , these terms are simplified to
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p/2)2)

− {s0
kc

0
ks

0
p}
(
δα0
(
c0kŝ
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µ
p/2)2}+

(
s
α
k ĉ
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kŝ
0
p}2
)
.
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Hence, all terms in the denominator are even functions of p0. Because both numerator
and denominator are even functions of p0, the loop integral of the correlation function,

C̃(p0) =
∫

d4k

(2π)4 tr
(
S(k + ê0

p0
2 ; ζ, 0, a)S†(k − ê0

p0
2 ; ζ, 0, a)

)
, (3.83)
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is necessarily an even function of p0. Thus, the exponential in eq. (3.65) can be replaced
by a cosine and the connected part of the pseudoscalar correlation function is equal to

C5,5(t) =
∫

dp0
(2π) cos (tp0) C̃(p0) + C̃(−p0)

2 . (3.84)

Hence, even though the propagators explicitly break nα reflection symmetry, the sym-
metry is restored in the pseudoscalar correlation function of the free theory. The free
pseudoscalar correlation function is manifestly invariant under time reflection and par-
ity for any version (α = 0 or α 6= 0) of the Karsten-Wilczek action. Though it is not a
priori clear whether this remarkable result can be reproduced with interacting fields, it
certainly warrants further analytical and numerical studies.

CΘ, charge conjugation and reflection symmetry

In order to understand the presence of nα reflection symmetry, it is related to charge
conjugation symmetry using CΘα symmetry of the theory. Using eq. (1.16), the pseu-
doscalar correlation function of eq. (3.62) is charge conjugated and reads

C5,5(t) =
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n∈Λ0

t

−tr
(
ψ̄0γ

5ψ0ψ̄nγ
5ψn

)〉
1
C→
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where the charge conjugation matrix C is defined in eq. (A.33). The charge conjugated
correlation function is simplified with basic Dirac and Grassmann algebra to

CC5,5(t) =
〈 ∑
n∈Λ0

t

−tr
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5ψ0)T (ψ̄nγ5ψn)T
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(3.86)

When the transposition of both bilinears in the trace is removed, manifest invariance of
the correlation function under charge conjugation becomes evident as

CC5,5(t) =
〈 ∑
n∈Λ0

t

−tr
(
(ψ̄0γ

5ψ0)(ψ̄nγ5ψn)
)〉

1 = C5,5(t). (3.87)

The relation to reflection symmetries becomes apparent, once the spinor fields are Wick
contracted to propagators. The charge conjugated connected piece of eq. (3.64) reads

CC5,5(t) =
〈 ∑
n∈Λ0

t

tr
(
SCn,0γ

5SC0,nγ
5
)〉

1. (3.88)
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It is known from section 1.3.1 that the Karsten-Wilczek action has a CΘα symmetry,
whose operator is the combination of charge conjugation and nα reflection operators.
The consequence of CΘα symmetry is trivial for the perpendicular case (α 6= 0), since
the spatial directions are summed in eq. (3.88). However, in the parallel case (α = 0),
CΘα symmetry implies that
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5
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This expression is equal to the time-reflected correlation function defined as

Θ̂C5,5(t) ≡ CΘ
5,5(−t) =

〈 ∑
n∈Λ0

−t

tr
(
SΘ
n,0γ

5SΘ
0,nγ

5
)〉

1. (3.90)

Because charge-conjugated and time-reflected correlation functions are equal and since
the charge conjugated correlation function is equal to the original correlation function,
it follows that the pseudoscalar correlation function is manifestly invariant under time
reflection. Restriction to the pseudoscalar correlation function is not necessary, since the
proof can be easily extended to a larger group of observables (such as generic mesonic
correlation functions with equal Dirac matrices at source and sink). However, a crucial
ingredient of the proof is invariance of the vacuum under charge conjugation. In the
quenched approximation, sea quarks are neglected and gauge configurations are pure
Yang-Mills fields. Therefore, gauge configurations in the quenched approximation cor-
respond to a vacuum that is invariant under charge conjugation. Since all numerical
simulations in this thesis are restricted to the quenched approximation, the unquenched
case with sea quarks is not considered here. Whether or not the unquenched vacuum is
charge conjugation invariant or not is an open and non-trivial problem.

3.2.2 CΘ symmetry in the interacting theory

Mesonic correlation functions consist of fermion loops with matrix insertions according
to their interpolating operators. These operators may lead to non-trivial transforma-
tion behaviour under charge conjugation that is unrelated to the fermion action. After
mesonic correlation functions with charge-conjugated gauge fields are discussed for in-
variant fermion actions (like naïve or Wilson fermions), the pattern is compared to
Karsten-Wilczek fermions. In order to understand the different behaviour of Karsten-
Wilczek fermions, charge conjugation of general next-neighbour lattice Dirac operators
is considered. Charge conjugation of Minkowski space-time gauge fields Aµ is translated
to gauge links Uµ on a Euclidean space-time lattice, which transform as

Uµn
C→ UC µn = (Uµn )∗ = (Uµ†n )T . (3.91)
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Thus, a general interacting Dirac operator

Dn,m[U ] =
∑
µ

Mµ
+U

µ
n δn+êµ,m −M

µ
−U

µ†
n−êµ,mδn−êµ +Mmδn,m (3.92)

with hopping term matrices Mµ
± and a mass matrix Mm transforms as

DC
n,m[UC ] =

∑
µ

CMµ
+CU

µ∗
n δn+êµ,m − CM

µ
−CU

µ†∗
n−êµδn−êµ,m + CMmCδn,m. (3.93)

Transposition in Dirac, colour and site space are labeled Td, Tc and Ts. The definitions

(M̃µ
±)Td ≡ CMµ

±C, (M̃m)Td ≡ CMmC. (3.94)

allow for rewriting the charge conjugated Dirac operator with an overall transposition,

DC
n,m[UC ] =

∑
µ

(M̃µ
+)Td(Uµ†m−êµ)TcδTsm−êµ,n − (M̃µ

−)Td(Uµm)TcδTsm+êµ,n + (M̃m)TdδTsm,n

=
∑
µ

(
−M̃µ

−U
µ
mδm+êµ,n + M̃µ

+CU
µ†
m−êµδm−êµ,n + M̃mδm,n

)T
= (D̃m,n[U ])T ,

(3.95)

where D̃ is to be understood in the sense of eq. (3.94). Except for the overall transpo-
sition, the original Dirac structure is recovered if

M̃µ
± = −Mµ

∓, M̃m =Mm. (3.96)

In the case of the Karsten-Wilczek operator, the matrices read

Mµ
± = +(1 + dδαµ)γµ ∓ iζ%αµγα, Mm = m01 + i

3ζ + c

a
γα, (3.97)

M̃µ
± = −(1 + dδαµ)γµ ± iζ%αµγα, M̃m = m01− i3ζ + c

a
γα. (3.98)

Thus, charge conjugation flips the sign of the Wilzcek parameter (c(−ζ) = −c(+ζ))

M̃µ
±(+ζ) = −Mµ

∓(−ζ), M̃m(+ζ) =Mm(−ζ), D̃f [U ](+ζ) = Df [U ](−ζ). (3.99)

Charge conjugation invariant fermions

If eq. (3.96) is satisfied, the action is manifestly invariant under charge conjugation.
Though naïve and Wilson fermions satisfy eq. (3.96), Karsten-Wilczek fermions satisfy
eq. (3.99) instead. Because the Dirac operator of an invariant action transform as

Dn,m[U ] C→ CDn,m[UC ]C = DC
n,m[UC ] = (Dm,n[U ])T , (3.100)

its inverse, the fermion propagator, must transform as

SCn,m[UC ] = (Sm,n[U ])T , Sn,m[UC ] = C(Sm,n[U ])TC. (3.101)
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If a correlation function is computed from propagators that use charge conjugated gauge
fields, it is related to correlation functions computed from propagators using the original
gauge fields according to eq. (3.101) and reads

CM,N (t)[UC ] =
〈 ∑
n∈Λ0

t

tr
(
Sn,0[UC ]MS0,n[UC ]N

)〉
UC

=
〈 ∑
n∈Λ0

t

tr
(
(S0,n[U ])TCMC(Sn,0[U ])TCNC

)〉
U

=
〈 ∑
n∈Λ0

t

tr
(
Sn,0[U ]M̃Sn,0[U ]Ñ

)T 〉
U

= CM̃,Ñ (t)[U ]. (3.102)

The matrices M̃ and Ñ must be understood in the sense of eq. (3.94). If both matri-

M,N γν Σµν 1 γ5 γ5γν

γθ R R I I I
Σχθ R R I I I
1 I I R R R
γ5 I I R R R
γ5γθ I I R R R

Table 3.2: Mesonic correlation functions for Wilson fermions are either purely real or
purely imaginary. The format is ‘R’ for real and ‘I’ for imaginary correlation functions.
Real correlators preserve their sign and imaginary correlators change their sign under
charge conjugation. Correlators with naïve instead of Wilson fermions are always real
and they are non-zero only if source and sink interpolators are symmetric (M = N ).

ces transform with the same sign under left- and right-multiplication with the charge
conjugation matrix C, the correlation function is independent of whether gauge fields
are charge conjugated. Since all coefficients in Wilson and naïve Dirac operators are
real, charge conjugation of gauge fields can only change the sign of the imaginary part
of the correlation function. Hence, correlation functions must be purely real if both
matrices transform with the same sign and purely imaginary if both matrices transform
with different signs. This behaviour is observed within errors in numerical simulations
with Wilson and naïve fermions and summarised in table 3.2, where rows and columns
represent matricesM and N of source and sink interpolating operators.

Charge conjugation of Karsten-Wilczek fermions

For Karsten-Wilczek fermions, eq. (3.101) must be replaced due to eq. (3.99) by

SCn,m[UC ] = (S̃m,n[U ])T , Sn,m[UC ] = C(S̃m,n[U ])TC. (3.103)
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M,N γα Σαν γν Σµν 1 γ5γα γ5 γ5γµ

γα +R +R -R -R +I +I -I -I
Σαθ +R +R -R -R +I +I -I -I
γθ -R -R +R +R -I -I +I +I

Σχθ -R -R +R +R -I -I +I +I
1 +I +I -I -I +R +R -R -R

γ5γα +I +I -I -I +R +R -R -R
γ5 -I -I +I +I -R -R +R +R
γ5γθ -I -I +I +I -R -R +R +R

Table 3.3: Local mesonic correlation functions with Karsten-Wilczek fermions are either
real or imaginary. Some change sign for charge conjugated gauge fields. The format is
‘+‘ for positive sign and ‘-’ for negative sign under charge conjugation and ‘R’ for real
and ‘I’ for imaginary correlation functions. {µ, ν, χ, θ} 6= α.

Hence, instead of eq. (3.102), correlation functions are described by

CM,N (t)[UC ] =
〈 ∑
n∈Λ0

t

tr
(
Sn,0[UC ]MS0,n[UC ]N

)〉
UC

=
〈 ∑
n∈Λ0

t

tr
(
(S̃0,n[U ])TCMC(S̃n,0[U ])TCNC

)〉
U

=
〈 ∑
n∈Λ0

t

tr
(
S̃n,0[U ]M̃S̃n,0[U ]Ñ

)〉
U
6= CM̃,Ñ (t)[U ]. (3.104)

The Wilczek parameter ζ in the propagators S[UC ] is replaced by −ζ in the propagators
S̃[U ]. Hence, eq. (3.104) is rephrased with regard to the Wilczek parameter ζ as

CM,N (t; +ζ)[UC ] = CM̃,Ñ (t;−ζ)[U ] (3.105)

Given the Dirac matrices M and N of the interpolating operators, eq. (3.105) is an
unambiguous statement about the ζ depence of the correlation function if and only if
the vacuum is invariant under charge conjugation such as the pure Yang-Mills vacuum of
the quenched approximation. It is not clear at present whether or not this invariance is
realised for full QCD with dynamical Karsten-Wilczek fermions. However, this issue is of
no concern for predictions about numerical simulations in the quenched approximation
that are considered in this thesis. The change of the Wilczek parameter can be compen-
sated by left- and right-multiplication of the propagators by matrices Rn = (−1)nαQ
and R0 = Q (cf. paragraph below eq. (2.33) or sections 2.5 and 3.1.2). As 1 = (Rn)2 is
plugged into the correlation functions on both sides of each propagator, M and N are
also left-and right-multiplied by Q. Denoting total powers of γα and γ5 in both interpo-
lating operators as Nα and N5, they acquire factors (−1)Nα+N5 that must be combined
with factors (±1) from left- and right-mutliplication with the charge conjugation matrix.
Though mesonic correlation functions for Karsten-Wilczek fermions are purely real or
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purely imaginary according to the same pattern as naïve and Wilson fermions. However,
the pattern of signs in table 3.2 that real functions are positive and imaginary functions
are negative under charge conjugation is broken up with extra factors (−1)Nα+N5 . This
behaviour is observed in numerical simulations and summarised in table 3.3, where rows
and columns represent matrices M and N of source and sink interpolating operators.
Because correlation functions for Karsten-Wilczek fermions satisfy eq. (3.105), those
which are real and retain their sign under charge conjugation (indicated by +R in ta-
ble 3.3) must be even functions of the Wilczek parameter ζ. Being even functions of
ζ implies that they are invariant under nα reflection. This is a manifestation of the
CΘα symmetry in correlation functions.

CΘ symmetry and O(a) corrections

Since invariance of correlation functions under nα reflection is linked to invariance under
charge conjugation by CΘα symmetry, a condition for nα reflection symmetry of corre-
lation functions can be formulated in an operator language for more general states. The
Euclidean correlation function of the state O†|Ω〉 reads

CO,O†(t) = 〈Ω|Ôe−ĤtÔ†|Ω〉, (3.106)

where |Ω〉 is the vacuum. Since numerical simulations of this thesis use the quenched
approximation, the vacuum of full QCD is not considered here. The pure Yang-Mills
vacuum of the quenched approximation is strictly invariant under both Ĉ and Θ̂α of
eqs. (1.16) and (1.46). The Hamiltonian Ĥ has the same CΘα symmetry as the action,

Ĥ = (Θ̂αC)Ĥ(Θ̂αC)†, (3.107)

where Ĉ and Θ̂α are the charge conjugation and nα reflection operators of eqs. (1.16)
and (1.46). Then the correlation function is equal to

CO,O†(t) = 〈Ω|Ô(Θ̂αC)†e−Ĥ(Θ̂αt)(Θ̂αC)Ô†|Ω〉 = 〈Ω|ÔĈ†Θ̂†αe−Ĥ(Θ̂αt)Θ̂αĈÔ†|Ω〉.
(3.108)

If the operator O† generates an eigenstate of charge conjugation, O† and O satisfy

Ô† = ±ĈÔ†Ĉ†, Ô = ±ĈÔĈ†, (3.109)

and the charge conjugation operators may be moved past the operators Ô and Ô†.

CO,O†(t) = 〈Ω|Ĉ†ÔΘ̂†αe−Ĥ(Θ̂αt)Θ̂αÔ†Ĉ|Ω〉

= 〈Ω|(Ĉ†Θ̂†α)(Θ̂αÔΘ̂†α)e−Ĥ(Θ̂αt)(Θ̂αÔ†Θ̂†α)(Θ̂αĈ)|Ω〉. (3.110)

Since the vacuum satisfies (Θ̂αĈ)|Ω〉 = |Ω〉, the correlation function is expressed through
nα-reflected operators (Θ̂αOΘ̂†α) as an overall nα-reflected correlation function,

CO,O†(t) = = CΘ̂αOΘ̂†α,(Θ̂αOΘ̂†α)†(Θ̂αt) = Θ̂α CO,O†(t). (3.111)
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In the parallel case of Karsten-Wilczek fermions (α = 0) , eq. (3.111) implies that the
correlation function in any channel with definite charge conjugation quantum number
is invariant under time reflection. The argument can be generalised to Boriçi-Creutz
fermions at this stage. nα reflection is along the f̂0-direction (diagonal of the hypercube,
cf. eq. (1.76)) for Boriçi-Creutz fermions. Therefore, nα reflection reflects all Euclidean
directions at once. If the operators Ô† and Ô generate and destroy a state with definite
parity and charge conjugation quantum numbers, the correlation function is invariant
under any spatial reflection and under charge conjugation. Invariance under time re-
flection follows from the general CPΘ invariance and both invariance under charge
conjugation (Ĉ) and under reflection of all spatial axes (P̂ ) of the correlation function.
Hence, correlation functions of operators with definite charge conjugation and parity
quantum numbers are invariant under time reflection for Boriçi-Creutz fermions.

Another consequence of nα reflection symmetry concerns O(a) corrections to the con-
tinuum limit. In both actions, any O(a)-suppressed operators break charge conjugation
and nα reflection symmetry to CΘα symmetry, whereas the leading order terms respect
both symmetries. Hence, because O(a) corrections to any observable are generated by
the O(a)-suppressed operators (in diagrammatical terms only one O(a)-suppressed in-
sertion per diagram), they must also share their broken symmetry. If an observable
has the unbroken symmetries, there cannot be any O(a) corrections. Therefore, leading
corrections to correlation functions which respect both symmetries are of O(a2). Of
course, this statement is true only if the vacuum itself has the right symmetry and does
not have O(a) corrections on its own. This is the case for the pure Yang-Mills vac-
uum of the quenched approximation. Whether or not this is the case for the full QCD
vacuum is a non-trivial question that is not considered here. This is not the same as
automatical O(a) improvement for Ginsparg-Wilson fermions, because the absence of
O(a) corrections is exclusive to observables with additional symmetry.

3.3 Interim findings (II)

The preceding section contains analytical studies of Karsten-Wilczek fermions in terms
of a decomposition of spinor fields ψ into a pair fields φ and χ with different four-
momentum support and of higher symmetries of mesonic correlation functions.

Decomposition into a pair of fields φ and χ with different four-momentum support re-
quires use of decomposition kernels which extend support over multiple lattice sites.
Definition of fields with extended support is not feasible in a theory with an unmatched
power divergent operator. Hence, a mismatch δc of the relevant operator’s coefficient
is absorbed into two phase factors that modify the boundary conditions of the fields φ
and χ differently. This must not be mistaken for a removal of the counterterm or its
coefficient. Since the decomposition relies on linearisation both in δc and in the lattice
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spacing a for the lattice product rule of eq. (3.5), decomposition may well break down
if either of δc or a is too large. Decomposition of interpolating operators yields bilinear
forms of the fields φ and χ that form two strikingly different terms in mesonic corre-
lation functions. Whereas the first term with the same fields (e.g. φ̄ and φ) has the
same Dirac structure and JPC as the correlation function for undoubled fermions, the
second term with different fields (e.g. φ̄ and χ) has different Dirac structure and JPC

and also oscillates in the êα direction. While such an oscillating term is well-known for
staggered fermions [5], its frequency depends on the mismatch δc for Karsten-Wilczek
fermions. It is certainly worthwhile to investigate whether this dependence on δc is a
viable non-perturbative tuning criterion. Moreover, the second term with different fields
and different JPC may contribute additional low-lying states or even the ground state.

The decomposition is based on linearising in the mismatch δc and the lattice spacing
a and may or may not be legitimate for numerical simulations. Moreover, as it makes
use of unspecified decomposition kernels that are functionals of the local gauge fields,
a rigorous perturbative calculation would require a perturbative expansion of the de-
composition kernels as well. Therefore, identification of components in any pictorial
representation lacks the field-theoretical rigour of Feynman diagrams. This problem is
inherent in the treatment of any doubled lattice fermion in position-space. However,
the decomposition suggests that general concepts concerning doubled fermions should
be also applicable to Karsten-Wilczek fermions. The presence of oscillating contribu-
tions with different JPC due to fermion modes in different parts of the Brillouin zone
in correlation functions is known for staggered fermions [5,80,99]. It seems as if similar
findings apply to Karsten-Wilczek fermions as well. Whether or not the frequency of
the oscillations depends on the mismatch δc is put to a test in the numerical simulations
that make up section 4.3.

Correlation functions can have a higher symmetry than the fermion action, if gauge
configurations correspond to a vacuum |Ω〉 that is invariant under (Θ̂αĈ). This is strictly
satisfied for the pure Yang-Mills vacuum of the quenched approximation. Whether or
not the full QCD vacuum has this symmetry is not within the scope of this thesis. For
a symmetric vacuum, correlation functions with the same tree-level charge conjugation
patterns at source and sink are also invariant under nα reflection as a consequence of
CPΘ symmetry. This higher symmetry suggests that correlation functions with the
same matrices in source and sink interpolating operators in the quenched approximation
are symmetric under time reflection and have equal energies for forwards and backwards
propagating states. BecauseO(a) terms in minimally doubled fermion actions break both
symmetries explicitly, O(a) corrections should be absent in observables that retain the
higher symmetry. Even if this behaviour were to hold true for the full QCD vacuum, this
is not to be mistaken with O(a) improvement because it requires an extra symmetry of
the observables. Nevertheless, symmetric correlation functions are tested for this higher
symmetry in the numerical simulations that make up section 4.2.
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Numerical studies

The central objective of lattice QCD is to study QCD in the non-perturbative regime,
which can be achieved with numerical simulations. In these simulations, the QCD path
integral (the Euclidean analogue of eq. (1.22) is evaluated on a limited number of field
configurations, which are generated using an importance sampling method. A Markov
process with a probabilistic acceptance condition is used to generate configurations. In
order to satisfy detailed balance, the rejection probability is determined by the increase
of the classical action. Field configurations are expressed in terms of gauge field variables
that implicitly depend on sea quarks. Fermion fields are integrated out and yield the
quark determinant, which is an additional contribution to an effective gauge field action.
Once an ensemble of gauge configurations has been provided, observables are evaluated
on each configuration as functions of fermionic and gluonic fields. Observables with
valence fermions are calculated from a set of source fields on which the Dirac operator
is inverted. These propagator components correspond to Wick contractions of fermion
fields at different space-time points and are combined to form correlation functions of
hadronic interpolating operators with appropriate spin and parity. Since interpolating
operators have non-zero overlap with all physical states with the same quantum num-
bers, excited states as well as the ground state contribute in each channel. In order to
cleanly extract the ground state, correlation functions are studied for long Euclidean
time separation. The ground state is isolated, since spectral weights of all states ex-
ponentially decrease with their energies. A typical Euclidean correlation function for a
lattice with infinite extent in the time direction reads

C(t) =
∞∑
k=0

Ake
−Ekt = A0e

−E0t
∞∑
k=0

Ak
A0

e−(Ek−E0)t t→∞→ A0e
−E0t + . . . , (4.1)

where Ak are spectral weights (at t = 0) and Ek are the absolute energies of states.
Whereas spectral weights depend on the peculiar details of the interpolating operators,
the energies depend only on their quantum numbers. The set of spectral weights Ak
can be manipulated in order to achieve dominance of the ground state for smaller t by
applying smearing procedures, which alter geometrical shapes at source and sink. This
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is of particular importance for the study of anisotropies in section 4.2. The energies of
hadronic states satisfy dispersion relations Ek(p) =

√
m2
k + p2, where p is the hadron’s

spatial momentum. Spatial momentum can be injected, if the local interpolating op-
erator ON (t) at the sink site n = (t/a,n) is multiplied by a plane wave eian·p before
summation (cf. eq. (3.48) ). The contribution of the ground state at smaller time separa-
tion is greatly enhanced with appropriate smearing techniques (cf. section 4.1). Due to
theW4 symmetry of the lattice, any direction may serve as time direction for calculating
correlation functions. Furthermore, (anti-) periodicity of the finite space-time lattice is
responsible for a superposition of hadronic states moving forward or backward in the
time direction (cf. section 4.1). Therefore, a generic correlation function on a lattice with
periodic boundary conditions in the time direction (T = aNt, where Nt is the number
of time slices) reads

CPB(t) =
∞∑
k=0

Ak(e−Ekt + e−Ek(T−t)) (4.2)

Correlation functions or ratios thereof on the full statistical ensemble are analysed with
fit routines, which extract properties of hadronic states. The Jackknife method is applied
for determination of statistical errors (cf. appendix C). In the quenched approximation,
light quark masses close to the physical point lead to exceptional configurations for Wil-
son fermions. The inversion of the Wilson Dirac operator D[U ] breaks down for these
exceptional configurations, which correspond to very small eigenvalues of the Wilson
Dirac operator. Thus, Wilson fermions in the quenched approximation cannot reach
pion masses below 300 MeV. Because minimally doubled fermions have chiral symmetry,
they are supposed to be protected against exceptional configurations. It is expected that
simulations with pion masses below 300 MeV are feasible with Karsten-Wilczek fermions.
Nevertheless, most of the simulations within this thesis use heavier quark masses, because
they are numerically cheaper. Hence, it is necessary to perform a chiral extrapolation of
hadronic quantities towards either the chiral limit or the physical point using chiral per-
turbation theory. Lastly, since hadronic observables inherit discretisation errors from the
action, a continuum extrapolation on lines of constant physics is necessary for extraction
of the continuum limit. Technical apects of the numerical simulations in the quenched
approximation are covered in section 4.1. Three different aspects of Karsten-Wilczek
fermions are studied using data from numerical simulations. A study of the anisotropy
of hadronic correlation functions [155] in section 4.2 and a study of oscillating correlation
functions [154] in section 4.3 yield two independent tuning conditions for the relevant
fermionic counterterm of eq. (1.66). Determination of a robust non-perturbative tuning
condition for the marginal fermionic counterterm of eq. (1.67) is unsuccessful. Later on,
in section 4.4, actual physical information on QCD concerning the chiral behaviour of
pseudoscalar mesons is extracted with simulations that reach into the chiral regime that
is inaccessible with Wilson fermions in the quenched approximation. Lastly, interim
findings from numerical studies are summarised in section 4.5.
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4.1 Setup of simulations

4.1.1 Karsten-Wilczek fermions in the quenched approximation

Numerical simulations of Karsten-Wilczek fermions as one example of minimally doubled
fermion actions are performed for the first time. Gauge configurations are calculated in
the quenched approximation, where the full QCD path integral

〈O〉 = 1
Z

∫
Dψ̄DψDU O[ψ, ψ̄, U ] e−(Sf [ψ,ψ̄,U ]+Sg [U ])

= 1
Z

∫
DU det (D[U ]) O[ψ, ψ̄, U ] e−Sg [U ] (4.3)

is approximated by setting the fermion determinant det (D[U ]) to 1 instead of including
it into an effective gauge action Seff [U ] = Sg[U ] − log det (D[U ]) for full QCD. Herein,
observables O[ψ, ψ̄, U ] are expressed in terms of fermion propagators and gauge fields.
This amounts to neglecting vacuum fermion loops due to sea quarks and the quenched
vacuum is the pure Yang-Mills vacuum. The absence of fermion loops in the quenched
approximation implies that the gauge fields are not affected by the anisotropy of the
fermion sector. Hence, simulations in the quenched approximation can forgo the gluonic
counterterm of eq. (1.68), though both fermionic counterterms of eqs. (1.66) and (1.67)
must be included. Due to the anisotropy of the fermion action, the QCD transfer matrix
is anisotropic as well. Furthermore, the QCD transfer matrix lacks symmetry under
nα reflection and charge conjugation, since both are broken explicitly by the Karsten-
Wilczek term of eq. (1.61). It was seen in section 2.3.1 that requiring isotropy of the
one-loop quark propagator is enough to fix the fermionic counterterms’ coefficients per-
turbatively. It is worthwhile to investigate whether the requirement of isotropy for
hadronic observables similarly provides a criterion for fixing the counterterms’ coeffi-
cients. Even though ‘Lorentz scalars’ like hadron masses or pseudoscalar densities might
be naïvely anticipated as isotropic like in perturbation theory (cf. section 2.3.2), this can-
not be true in the non-perturbative context of a numerical simulation. Because they are
calculated from directed correlation functions that require a choice of the Euclidean time
direction (or direction of correlation), even the most simple hadronic quantity, which is
the pseudoscalar ground state mass, is necessarily sensitive to the lack of isotropy in
the fermion action. The anisotropy is studied by calculating correlation functions with
different orientations of the direction of correlation with respect to the alignment of
the Karsten-Wilczek term in sections 4.2 and 4.3. Section 3.2.2 suggests that corre-
lation functions of states with definite charge conjugation quantum number on a pure
Yang-Mills vacuum satisfy both nα reflection and charge conjugation symmetries. These
considerations are put to a numerical test in section 4.2.2 and methods for dealing with
a potential lack of time-reflection symmetry are developed.
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4.1.2 Machine and code

Numerical simulations are performed on the Wilson cluster of the Institut für Kernphysik
at Johannes Gutenberg-Universität Mainz. The simulation code is based on the Kpipi
Code [73–75], which was originally designed for simulations of overlap fermions in the
quenched approximation. The code is written in C, but makes frequent use of manual
vectorisation using explicit inline assembly for SSE2 acceleration of particularly costly
numerical operations. It was gradually adapted to numerical studies of minimally dou-
bled fermion actions of Karsten-Wilczek and Boriçi-Creutz types. This section covers
different stages of numerical simulations and summarises modifications to the code.

4.1.3 Lattice geometry

The preexisting Kpipi code sets the basic geometry constraints for numerical studies.
The Euclidean direction N0 is fixed as a free parameter T and the three other Euclidean
directions N1, N2 and N3 are fixed as another free parameter L at compile time. Both
T and L must be integer multiples of 2 in the single processor version and of 8 in the
parallelised version of the code. The parallelised version (cf. section 4.1.10) must have at
least a 2×2 grid of local sublattices in ê0 and ê1 directions, where local sublattices must
have lengths of at least 4 in both ê0 and ê1 directions. Moreover, the sublattice length
in the ê1 direction must be an integer multiple of 2, 3 or 5. Lattice sites are grouped
together in the memory in an alignment of blocks, which improved performance when
the code was initially written (ca. 2004). Some parts of the code rely on the specific form
of the geometry arrays. Since the effort of a geometry change for this preexisting code
exceeds its benefits, the geometry was left unchanged. Owing to the blocking structure,
memory is not aligned in a pattern which allows for coherent even-odd ordering of sites,
which is required for even-odd preconditioning of Dirac operators (cf. section 4.1.7).
The problem was solved by introducing two additional geometry arrays, which provide a
mapping between even-odd ordered and preexisting site-indices. Memory overhead due
to two extra integer arrays is reasonably small and the loss of performance due to one
additional intermediary hash table is acceptable.

4.1.4 Gauge configurations and scale setting

β U4
0 a[fm] r0 nJS

5.8 0.567 0.136 3.668 30
6.0 0.594 0.093 5.368 40
6.2 0.614 0.068 7.360 140

Table 4.1: The scale a is set using eq. (4.5). Dimensionful quantities in lattice units are
converted to physical quantities in units of 2 fm−1 by multiplication with r0. nJS is the
iteration count of the Jacobi smearing algorithm (cf. section 4.1.9).

The code providing gauge configurations was taken over without modification. Gauge
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configurations are calculated with a Markov chain update procedure that satisfies a
detailed balance condition. The update algorithm is a standard heatbath-overrelaxation
algorithm. It consists of consecutive applications of the Cabibbo-Marinari heatbath
algorithm [29,43] and microcanonical overrelaxation steps [2,158]. The individual update
procedures – heatbath and overrelaxation – are described in detail in the fourth chapter
of [65]. Gauge configurations throughout this thesis are always produced from a cold
start with trivial gauge links Uµn = 1 ∀ µ, n (free theory). Each update cycle consists of
sequences of one heatbath and five overrelaxation steps. The initial thermalisation uses
2000 iterations of the update cycle. Each configuration uses additional 100 iterations
of the update cycle in order to reduce the correlation between configurations. The
update algorithm provides gauge links in single precision. Double precision link variables
are obtained as copies from the single precision gauge links, which are projected to
SU(3) in double precision. Finally, double precision link variables are copied back to
single precision links with an additional typecast. Otherwise, deviations between single
and double precision fields occasionally cause exceptions in the code, which may halt
execution of programs. The scale is set following [84] with the Sommer parameter r0 as
reference scale [143], which is defined by eq. (1.1) of [84] as

r0F (r0) = 1.65, (4.4)

where F (r) is the force between static charges in the fundamental representation [143].
The constant on the right hand side of eq. (4.4) is chosen in order to fix the Sommer
parameter at roughly 0.5 fm. In the range 5.7 ≤ β ≤ 6.57, the inverse gauge coupling β
is related to the lattice spacing a by eq. (2.18) of [84], which reads

log
(
a

r0

)
= −1.6805− 1.7139(β − 6) + 0.8155(β − 6)2 − 0.6667(β − 6)3. (4.5)

4.1.5 Dirac operators

Dirac operators for Karsten-Wilczek fermions and Boriçi-Creutz fermions of eqs. (1.69)
and (1.90) are implemented using Dirac matrices in the chiral representation of eq. (A.27).
However, instead of a direct implementation of the Dirac operator D, which is γ5 hermi-
tian, the hermitian Dirac operator Q = γ5D is used. Dirac operators Q for implementa-
tion of Karsten-Wilczek and Boriçi-Creutz fermions are presented in appendix F.1. The
propagator Sm,n[U ]ηn is obtained by solving the equation∑

m,α,a

Q
βα,ba
n,m φα,am = γ5η

β,b
n (4.6)

with numerical methods (cf. sections 4.1.6 and 4.1.7). The source vector ηn and the
solution vector φm are globally defined spinor fields. The solution φm, which is given by

φα,am (ηβ,bn ) = (Q−1)αβ,abm,n γ5η
β,b
n = (D−1)αβ,abm,n η

β,b
n ≡ Sαβ,abm,n [U ]ηβ,bn , (4.7)

is the inverse Dirac operator applied to the source ηn and describes the propagation of
a fermion field from site n to all other sites m in the background of the gauge field U .
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The source is a local point source with twelve complex components ηβ,bn – three colour
components b times four spin components β – at the site n, which is always located
at n = (0, 0, 0, 0) for simulations of this thesis. Propagator components φα,am (ηβ,bn ) are
obtained from twelve inversions, where different source components are set to 1. Smeared
sources have the gauge-invariant smearing operator of eq. (4.18) applied nJS times to
local source components ηβ,bn before the Dirac operator is inverted.

4.1.6 Mixed precision CG inverter

Starting conditions: k = 0

xk = 0 (A)
rk = b−Axk (B)
pk = sk = Ark (C)

Loop: iterate for k = 0, 1, 2, . . .

qk = Apk (a)
λk = |sk|2/|qk|2 (b)

rk+1 = rk − λkqk (c)
xk+1 = xk + λkpk (d)
νk = |sk|2 (e)

sk+1 = Ark+1 (f)
µk = |sk+1|2/νk (g)

pk+1 = sk+1 + µkpk (h)

until convergence is achieved and |rk+1|2 < ε2.

Figure 4.1: Pseudocode for the CG algorithm was taken from chapter thirteen of [12].

Since inversion of the Dirac operator is the bottleneck of any simulation in the
quenched approximation, the inversion algorithm must be optimised and accelerated
to the utmost. Minimally doubled Dirac operators are inverted using a conjugate gra-
dient (CG) algorithm [71, 96] that was taken from chapter thirteen of [12] by solving
eq. (4.6) as

Ax = b. (4.8)
Pseudocode of the CG algorithm is presented in figure 4.1. Convergence of a bi-conjugate
gradient (Bi-CGstab) algorithm taken from chapter six of [65] is unstable for minimally
doubled fermions.
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The inverter uses mixed precision as a runtime option, which conducts calculations (a),
(f) and (h) in single and (c) and (d) in double precision. Thus, whereas residue rk and
solution vector xk are double precision fields, search vectors pk, qk and sk use only single
precision. This implementation of the CG algorithm restricts costly matrix-times-vector
operations of (a) and (f) to single precision, if (f) is performed after a typecast of
rk+1 to single precision, which can be stored in qk. The mixed precision solver needs
only one double precision spinor field rk and three single precision spinor fields pk,
qk and sk as well as three doubles1 λk, νk, µk as workspace, which seems to be the
most cost-efficient implementation of a straight CG algorithm without preconditioning
for minimally doubled fermions. In order to prevent the accumulation of numerical
errors from single precision operations, convergence in double precision is ensured by
recalculating the residue rk from xk using (B) in double precision after a fixed count
(∼ 10− 30) of interations. In a final step after the precision goal |rk+1|2 < ε2 is reached,
rk is recalculated from xk in double precision. In the rare case that the precision goal
is missed, the solver runs through additional iterations at double precision2, until the
precision goal is met.

4.1.7 Even-odd preconditioning

In order to accelerate the inversion of Dirac operators for eqs. (1.69) and (1.90) with the
CG algorithm, even-odd preconditioning [49] is used to reduce the condition number of
the operator. Lattice sites are separated into two sets of even or odd lattice sites, which
are defined by eq. (A.40). Thus, the Dirac equation of eq. (4.6) is recast into

Qeen,mφ
e
m +Qeon,mφ

o
m = γ5ηen,

Qoen,mφ
e
m +Qoon,mφ

o
m = γ5ηon,

(4.9)

where colour and spinor indices are omitted and indices o and e label fields restricted
to odd or even sites. Matrix multiplications with gauge fields occur only in the hopping
terms Qeon,m and Qoen,m. Qeen,m and Qoon,m are constant matrices of type Q0δn,m. Their
colour structure is trivial and they are listed in table 4.2.

Action Q0
√

detQ0

Wilson (4r
a +m0)1

(
4r+am0

a

)2

Karsten-Wilczek i3ζ+c
a γα +m01

(
3ζ+c
a

)2
+m2

0

Boriçi-Creutz i c−2ζ
a Γ +m01

(
c−2ζ
a

)2
+m2

0

Table 4.2: Constant matrices Q0 have
√

detQ0 > 1/a2 and are easily inverted.

Following standard procedures, the upper row of eq. (4.9) is formally solved for φem,

φem = (Qee−1)m,n
(
γ5ηen −Qeon,pφop

)
. (4.10)

1The double precision scalar νk can be omitted since λk can be reused to store |sk|2 as well.
2These final iterations require three additional double precision work space spinor fields, but ensure

convergence in double precision. No more than two additional interations have been observed.
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Using eq. (4.10), φem is eliminated from the lower row, which is reshuffled to(
Qoon,m −Qoen,m0(Qee−1)m0,m1Q

eo
m1,m

)
φom = γ5ηon −Qoen,m2(Qee−1)m2,nγ

5ηen. (4.11)

A new notation is introduced using a matrix Q̂n,m and a preconditioned source ξon,

Q̂n,m =
(
δn,m − (Qoo−1)n,m1Q

oe
m1,m2(Qee−1)m2,m3Q

eo
m3,m

)
, (4.12)

ξon =(Qoo−1)n,m
(
γ5ηom −Qoem,m1(Qee−1)m1,mγ

5ηem

)
. (4.13)

This notation allows for matching eq. (4.11) to the form of eq. (4.8) as

Q̂n,mφ
o
m = ξon. (4.14)

Hence, the CG inverter can be applied to the system of eq. (4.14). After the so-
lution φom = (Q̂−1)m,nξon is obtained, the even components φem are calculated from
eq. (4.10). The even-odd preconditioned operator Q̂ requires the same number of matrix-
times-vector operations like the original operator Q, since the matrix multiplication is
applied twice to only half the number of sites. However the condition number is reduced,
since the gauge field dependent hopping term is suppressed against the constant on-site
term by (detQ0)1/2 instead of (detQ0)1/4. Table 4.2 shows that suppression is best for
Wilson fermions and worst for Boriçi-Creutz fermions. It should be noted here that
even-odd preconditioning is computationally advantageous only if Qeen,m and Qoon,m can
be inverted at marginal numerical cost.

4.1.8 Contractions and interpolating operators

Connected correlation functions are calculated according to eq. (3.48) from contractions
of two fermion propagators at source and sink with a summation of the entire sink slice.
Connected correlation functions depend on point-to-all propagators Sn,0 and all-to-point
propagators S0,n. The latter would require a prohibitive amount of inversions. However,
the propagator inherits the γ5 hermiticity from the Dirac operator and satisfies

S0,n = γ5(S†)n,0γ5. (4.15)

Therefore, connected correlation functions require only point-to-all propagators,

CM,N (t) =
∑
n∈Λ0

t

tr
(
Sn,0Mγ5(S†)n,0γ5N

)
. (4.16)

Contraction of all twelve propagator components completes the trace at the source.
Source Dirac matrices are implemented through contraction of different propagator com-
ponents and multiplication with phase factors (±1 or ±i). The Dirac matrix at either
source or sink must be transposed, since

CM,N (t) =
∑
n∈Λ0

t

trc
(
Sαβn,0(S∗)δγn,0((Mγ5)T )γβ(γ5N )δα

)
. (4.17)

Details of the procedure are listed in appendix F.2.
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4.1.9 Smearing

A clean study of the anisotropy due to the Karsten-Wilczek action requires that other
potential sources of anisotropy are avoided. Therefore, symmetric lattices are used.
Compared to the usual choices for hadron spectroscopy, symmetric lattices have an
unusually large spatial and unusually small temporal extent. These lattices have the
disadvantage that the time interval in which the ground state is isolated becomes very
short. It is therefore desirable to use smearing techniques to enhance the ground state’s
spectral weight. Local and smeared interpolating operators for creation and annihilation
of mesons are implemented in order to improve the signal of the pseudoscalar ground
state. There is a heuristic rule that the overlap of an interpolating operator with a
meson’s creation operator is considerably improved if the average smearing radius of the
spatial distribution of the smeared source operator is of similar magnitude than the phys-
ical radius of that meson. Thus, spectral weights of excited states are reduced and the
ground state is isolated already for shorter Euclidean time separations (cf. section 4.2).
Gauge-invariant smearing is achieved with (iterative) Jacobi smearing3 algorithms [4,87].
Jacobi smearing is an iterative procedure in which a gauge-invariant lattice Laplacian is
added to the original spinor field with a fixed iteration count irrespective of convergence,

OJn,m[U ] = 1
1 + 6κJS

δn,m + κJS
a

∑
µ6=0

(
Uµn δn+êµ,m + Uµ†n−êµδn−êµ,m

) , (4.18)

and includes a normalisation factor 1/(1 + 6κJS), which prevents an unbounded growth
of the smeared field. The smearing directions must be restricted to those perpendicular
to the Euclidean time direction in order to avoid changes to the transfer matrix. In order
to obtain a smooth spatial distribution, violent local fluctuations of spatial gauge fields
have to be reduced. This is achieved with so-called fat links. Fat links V µ

n are calculated
from thin links Uµn (the usual link variables) of the update procedure with link smearing
algorithms that average gauge fields locally. As elementary step, thin links are replaced
by the SU(3) projected linear combinations of the thin links and their nS pairs of staples,

V µ
n = ProjSU(3)

(1− ξ)Uµn + ξ

2nS
∑
ν 6=µ

UνnU
µ
n+êνU

µ †
n+êµ

 . (4.19)

In terms of the practical application, the smoothing properties of link smearing are sim-
ilar to those of evolution with gradient flow [25, 112]. For the purpose of use in the nu-
merical studies of this thesis, APE smearing [3] and HYP smearing [88] are implemented.
The latter algorithm is applied with standard parameters (α = 0.75, β = 0.6, γ = 0.3).
This amounts to using a single pair of opposite staples with parameter ξ = γ to get a
first new set of links. Next, a second new set of links is constructed using the first set
of new links for building two pairs of opposite staples with parameter ξ = β. Finally,
the fat links are constructed using the second new set of links for building three pairs of

3Jacobi smearing is related to Wuppertal smearing (also called Gaussian smearing), where the smear-
ing procedure is repeated until convergence is reached.
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opposite staples with parameter ξ = α. Three full iterations of HYP smearing are used
to provide smooth links for smeared interpolating operators at the source of correlation
functions.

The Jacobi smearing parameter is fixed as κJS = 4.0, which is a standard value
used in many applications. The iteration number nJS is adapted to the gauge coupling
(cf. table 4.1) in order to achieve smearing radii of approximately r ≈ 0.5 fm. This
enhances the spectral weight of the pseudoscalar ground state. Lastly, it is noted that
correlation functions which are smeared only at either the source or the sink may include
states with negative spectral weights. In these cases, the correlation function is not
necessarily a convex function and low-lying excited states may cancel partly with the
ground state and reduce the quality of the signal.

4.1.10 Parallelisation

Memory considerations as well as the general need to minimise the computational effort
strongly motivate parallelisation of numerical simulations. The full lattice Λ is subdi-
vided into equally-sized local sublattices λj , which must communicate the fields in the
neighbourhood of their boundaries ∂λj to their neighbouring subprocesses after every
modification. Communication between subprocesses is handled by MPI routines. Data
is communicated via the Infiniband network of the Wilson cluster. In parallelised code,
extra memory is required for the boundaries ∂λj , which store copies of fields from neigh-
bouring sublattices. Thus, a finer division into local sublattices incurs a larger memory
overhead for boundaries. Moreover, actual communication of boundary fields must wait
for termination of the previous subprocess on all local sublattices and communication
itself is a bottleneck for application of the Dirac operator.

For Karsten-Wilczek fermions with ζ = ±1, kinetic terms of the Dirac operator in any
direction other than the êα direction have only one linearly independent pair of one lower
and one upper Dirac component (cf. appendix F.1). After this pair has been relayed to
neighbouring sublattices, missing components are automatically reconstructed in com-
munication routines. The present simulation code comprises Karsten-Wilczek fermions
for two different directions of the Karsten-Wilczek term, either α = 0 or α = 3, with
arbitrary ζ or ζ = +1. Boriçi-Creutz (ζ = +1) and Wilson fermions are also available.
The Dirac structure of hopping terms for some of these Dirac operators (e.g. 1±γµ

2 for
Wilson or γµ∓iζγα

2 for µ 6= α for Karsten-Wilczek fermions) allows for reconstruction
of some Dirac components from the others, which allows a reduction of the computa-
tional cost. This is due to a reduced number of SU(3) multiplications and also due to
a reduced number of components that have to be communicated across the boundaries.
Each Dirac operator has its own optimised set of boundary field communication buffers
and routines, which are initialised automatically in simulations.
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4.2 Anisotropy of hadronic quantities

β a [fm] r0 L ncfg am0 c d

6.0 0.093 5.368 32 100 0.02, 0.03, 0.04, 0.05 [−1.2,+0.3] 0.0
6.0 0.093 5.368 32 100 0.01, 0.02, 0.03, 0.04, 0.05 [−0.65,−0.20] [−0.08,+0.02]
6.0 0.093 5.368 48 40 0.02 [−0.65,+0.0] 0.0
6.2 0.068 7.360 32 100 0.01, 0.02, 0.03, 0.04, 0.05 [−0.65,−0.20] [−0.08,+0.04]
6.2 0.068 7.360 48 40 0.02 [−0.65,+0.0] 0.0
5.8 0.136 3.668 32 100 0.02, 0.04, 0.05 [−0.65,+0.0] [0.0,+0.02]

Table 4.3: Symmetric lattices (T = L) are used in studies of the anisotropy. The
parameter c is varied in small steps close to the perturbative estimates (cf. table 2.2).

Numerical studies [155] of the anisotropy are performed with Karsten-Wilczek fermions
of eqs. (1.69) and (1.70) in order to tune the coefficients c and d non-perturbatively.
Boosted perturbation theory (BPT) provides an initial guess for the coefficients (cf. ta-
ble 2.2), where the plaquette is used to estimate non-perturbative parameters from
one-loop results (cf. section 2.4). Symmetric lattices with T = L and periodic boundary
conditions in all directions avoid anisotropic finite volume or boundary effects that might
obscure the anisotropy due to the fermion action. Since simulations utilise the quenched
approximation, the coefficient dp of the gluonic counterterm is set to zero. Correla-
tion functions are calculated using Karsten-Wilczek fermion propagators with ζ = +1
and alignment α = 0 (cf. section 4.1.5), where the direction of correlation is either
the ê0 or ê3 direction. With respect to the alignment of the Karsten-Wilczek opera-
tor, ê0 yields parallel and ê3 yields perpendicular correlation functions. The statistical
basis are 100 configurations (cf. section 4.1.4) of 324 lattices and 40 configurations of
484 lattices. Lattice parameters are listed in table 4.3. Correlation functions use source-
smeared interpolating operators (cf. section 4.1.9) with a smearing radius of r ≈ 0.5 fm,
since the direction of correlation is quite short (T = 32) and isolation of the ground
state is not guaranteed otherwise. Scale setting using the Sommer parameter [143] is
accomplished via eq. (4.5).

4.2.1 Tuning with the mass anisotropy

The gauge coupling is chosen as β = 6.0 for initial scans of parameter space. The
bare fermion mass am0 is set to a relatively high value, which allows for inversions
of the Dirac operator with moderate computational cost. The marginal counterterm’s
coefficient is fixed as d = 0 initially, because BPT suggests that its effects are mild
(cf. table 2.2) compared to the relevant parameter c. c is varied in small steps near
the BPT estimate (c ≈ cBPT ) and in wide steps in more outlying regions of parameter
space (c 6≈ cBPT ). The pseudoscalar (PS) correlation function with vanishing hadron
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momentum (cf. eq. (4.16))

C‖,⊥PS (t) ≡ Cγ5,γ5(n‖,⊥) ≡ C5,5(n‖,⊥) =
∑

n∈Λ‖,⊥t

∑
a,b

∑
α,β

|Sαβ,abn,0 |2 (4.20)

is computed in numerical simulations using Karsten-Wilczek fermion propagators with
α = 0. The direction of correlation is either êt = ê0 for the parallel (wrt the Karsten-
Wilczek term) or êt = ê3 for the perpendicular correlation function. It is analysed by
performing fits, which extract the mass M‖,⊥PS of the pseudoscalar ground state. Statisti-
cal errors are determined with the Jackknife method (cf. appendix C). Since the study of
the anisotropy is restricted to the pseudoscalar channel, the index ‘PS’ is omitted in the
remainder of section 4.2. The mass M‖, which is calculated from the parallel correlation
function C‖(t) is called the parallel mass, and the mass M⊥, which is calculated from
the perpendicular correlation function C⊥(t), is called the perpendicular mass. The mass
anisotropy is the difference of squared pseudoscalar masses,

∆(M2
PS) ≡

(
M2
‖

)
−
(
M2
⊥

)
. (4.21)

which is employed as a tuning criterion for c, while the other parameters β, m0 and d
are kept at fixed values. The mass anisotropy is interpolated as a function of c. The
extremum of the mass anisotropy defines the non-perturbatively tuned coefficient cM 4.
In the next step, the bare fermion mass am0 is lowered towards the chiral limit. An
extrapolation of cM to the chiral limit is performed in order to compare with estimates
from BPT. In the following step, sensitivity to variation of d is studied. Lastly, the
coupling β is varied and the procedure is repeated for different lattice spacings.

4.2.2 Determination of the pseudoscalar mass

Because the fermion action of eq. (1.69) lacks a simple transformation behaviour under
nα reflection, backward (b) and forward (f) propagating states will in general be different
in parallel correlation functions. Masses and spectral weights of backwards and forwards
states are treated as independent. If both masses differ, M‖ cannot be unambiguously
defined. In line with section 3.1.4, no oscillations are expected in the γ5 channel. Hence,
this correlation function can be described for vanishing hadronic momenta as

C(t) =
∞∑
k=0

( Afk
2Mf

k

e−M
f
k
·t + Abk

2M b
k

e−M
b
k·(T−t)

)
(4.22)

and reaches asymptotic behaviour for large T and t ≈ T/2 as

C(t) = Af0

2Mf
0
e−M

f
0 ·t + Ab0

2M b
0
e−M

b
0 ·(T−t) + . . . . (4.23)

4cM labels the value of c that is eventually obtained by tuning with the mass anisotropy. The label
is used to allow a distinction to c from other methods of tuning (cf. sections 4.3.3,4.5).
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Using eq. (4.23) as a four-parametric fit function with adequate fit ranges in clearly
separated intervals of the Euclidean time direction simultaneously extracts masses of
backwards and forwards states as independent parameters. A local effective mass of
either backwards or forwards states is another tool for isolating their respective masses.

Local effective mass
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Figure 4.2: Left: M [2]
cosh(t) and Mlog(t) agree in the plateau region within errors. Right:

Fluctuations around Mlog(t) beset M [1]
cosh(t) even in the plateau region. Symbols and

data sets are explained in the text.

Such a local effective mass, which is called the log mass, is calculated as

M
[s]
log(t) = 1

s
log |C(t)|
|C(t+ s)| (4.24)

and reaches a plateau for large times if the oncoming state is negligible. The parameter
s is the step size and is usually set to one. In an interval around the midpoint of a
periodic lattice, the log mass is a poor quantity for deciding whether the ground state
has been reached because of the oncoming state’s contribution. Another definition of a
local effective mass is the cosh mass, which is calculated as

M
[s]
cosh(t) = 1

s
log

(
R+

√
R2 − 1

)
, R = |C(t+ s)|+ |C(t− s)|

2|C(t)| . (4.25)

Effective mass plots in figure 4.2 have a lilac shaded band centered around midpoint
(t = T/2), where the log mass (red filled squares) drops towards zero. Neither backwards
nor forwards contributions are negligible in the central region. The grey-shaded bands
near the temporal boundary of the lattice yield higherMlog(t), since excited states cannot
be neglected and the ground state is not isolated. In the green shaded plateau regions,
Mlog(t) is constant within errors, since excited as well as oncoming states are negligible.
Therefore, local effective masses in the green bands isolate the backward or forward
propagating ground states repectively. The parallel pseudoscalar correlation function is
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Eff. Fit range Cor. fit Uncor. fit Cor. fit Uncor. fit
mass [. . .] M [1] χ2/dof M [1] χ2/dof M [2] χ2/dof M [2] χ2/dof
cosh [8−16] 0.305(3) 0.950 0.305(3) 2.800 0.299(3) 0.692 0.300(3) 0.237
cosh [32−40] 0.304(3) 1.399 0.301(3) 0.915 0.305(2) 1.352 0.301(3) 1.406
cosh [8−16, 32−40] 0.306(2) 1.447 0.303(3) 1.769 0.303(2) 2.225 0.300(2) 0.786
cosh [8−40] 0.299(1) 5.801 0.301(1) 1.349 0.297(1) 7.148 0.299(1) 1.126
log [8−16] 0.294(2) 1.633 0.297(3) 0.833 0.293(2) 1.910 0.296(3) 0.886
log [32−40] 0.301(2) 1.461 0.299(2) 1.197 0.299(1) 2.303 0.299(2) 1.700
log [8−16, 32−40] 0.299(1) 2.100 0.298(2) 1.006 0.302(1) 3.916 0.298(2) 1.965

Table 4.4: Fits to the effective mass mostly agree within 1−2σ. M [2]
cosh is more stable

than M [1]
cosh. The data set is the same as in figure 4.2.

obtained with β = 6.0 and c = −0.45 on a 484 lattice from table 4.3. The pseudoscalar
mass isM‖PS ≈ 630 MeV. The cosh mass with s = 2 (blue bullets in the left plot of figure
4.2) agrees very well with Mlog(t) in the plateau region. Moreover, M [2]

cosh(t) maintains
the plateau value within errors within the central region around midpoint. Since the
cosh mass with s = 1 (blue bullets in the right plot of figure 4.2) strongly fluctuates
around the plateau value of Mlog(t), M [1]

cosh(t) should not be used. The local effective
mass is fitted as a constant within the plateau regions. Fit results in table 4.4 provide no
numerical evidence of different backwards and forwards masses. However, χ2/dof is very
large and its considerable variation between different fits is not understood at present.

Parallel correlation functions

Independent Fit range Correlated fit Uncorrelated fit
parameters [. . .] Mf Mb χ2/dof Mf Mb χ2/dof
Mf

0 , A
f
0 [8−16] 0.301(3) 1.261 0.298(3) 0.038

Mb
0 , A

b
0 [32−40] 0.300(2) 0.690 0.297(3) 0.059

Mf
0 =Mb

0 , A
f
0 =Ab0 [8−16] 0.302(3) 1.154 0.299(3) 0.035

Mf
0 =Mb

0 , A
f
0 =Ab0 [32−40] 0.301(2) 0.740 0.298(3) 0.036

Mf
0 , M

b
0 , A

f
0 , A

b
0 [8−40] 0.300(1) 0.299(1) 3.923 0.298(2) 0.299(2) 0.038

Mf
0 , M

b
0 , A

f
0 , A

b
0 [10−38] 0.300(1) 0.296(1) 2.827 0.298(2) 0.299(2) 0.039

Mf
0 , M

b
0 , A

f
0 , A

b
0 [8−16, 32−40] 0.304(3) 0.303(2) 1.402 0.299(3) 0.298(3) 0.036

Mf
0 , M

b
0 , A

f
0 , A

b
0 [10−16, 32−38] 0.301(3) 0.301(3) 1.424 0.299(4) 0.296(3) 0.033

Mf
0 , M

b
0 , A

f
0 , A

b
0 [8−14, 34−40] 0.303(3) 0.302(3) 1.858 0.299(4) 0.298(3) 0.042

Table 4.5: Backwards and forwards fit masses agree within errors. Fits with different
functions or fit ranges are consistent but strongly deviate in their correlated χ2/dof.
The data set is the same as in figure 4.2.

An alternative approach uses fits to the correlation function with an ansatz like eq. (4.23).
If the fit range is restricted to one of the plateau regions, backwards or forwards states
are isolated for all fits of table 4.5. Fits with independent parameters for forwards and
backwards states simultaneously extract properties of backwards or forwards ground
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Fit range Correlated fit Uncorrelated fit
[. . .] M A [×10−3] χ2/dof M A [×10−3] χ2/dof

[10−38] 0.2983(5) 6.02(10) 3.215 0.298(1) 6.2(2) 0.566
[9−39] 0.2988(5) 6.12(8) 3.120 0.298(1) 6.2(1) 0.585
[8−40] 0.2996(4) 6.24(8) 3.839 0.298(1) 6.2(1) 0.612

[8−14, 34−40] 0.304(2) 6.6(3) 1.795 0.299(3) 6.3(3) 0.985
[8−16, 32−40] 0.304(2) 6.6(2) 1.432 0.299(3) 6.3(3) 0.969
[10−16, 32−38] 0.301(2) 6.4(2) 1.272 0.298(3) 6.2(3) 0.989

Table 4.6: M‖ is determined with a symmetrised fit. Though correlated χ2/dof strongly
depends on the fit range, results are stable and agree with uncorrelated fits within errors.
The data set is the same as in figure 4.2.

states. Examples of fit results are listed in table 4.5. There is no numerical evidence
for different backwards and forwards masses and consistency between both fit strategies
is evident. Hereafter, nα reflection symmetry is assumed and M‖ is defined as the fit
mass obtained with a symmetrised fit ansatz. Local effective masses are calculated as
cosh masses with step size s = 2 due to better numerical stability. Fit results are stable
(cf. table 4.6), though correlated fits have large χ2/dof if the interval around midpoint
(t ≈ T/2) is included.

Perpendicular correlation functions
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Figure 4.3: Left: Mcosh(t) and Mlog(t) agree in the plateau region within errors at
c = −0.45 ≈ cBPT . Right: Mcosh(t) and Mlog(t) agree only for t/a ∈ [13, 16]∪ [32, 35] at
c = +0.00. Symbols and data sets are explained in the text.

Time reflection symmetry of perpendicular correlation functions is strictly satisfied and
the asymptotic form of a correlation function is given by

C(t) = A0
2M0

(
e−M0·t + e−M0·(T−t)

)
+ . . . , (4.26)

which can be used as a two-parametric fit function. The local effective masses shown in
figure 4.3 are obtained from perpendicular pseudoscalar correlation functions with β = 6.0
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c = −0.45 c = +0.00
Fit range Cor. fit Unc. fit Cor. fit Unc. fit

[. . .] M [2] χ2/dof M [1] χ2/dof M [2] χ2/dof M [1] χ2/dof
[16−32] 0.297(1) 0.862 0.299(2) 0.061 0.283(1) 1.583 0.284(1) 0.069
[14−34] 0.296(1) 0.709 0.298(1) 0.078 0.2829(9) 1.363 0.284(1) 0.101
[12−36] 0.2953(8) 1.640 0.297(1) 0.121 0.2821(8) 1.913 0.283(1) 0.153
[10−38] 0.2960(7) 1.863 0.296(1) 0.192 0.2840(6) 2.114 0.283(1) 0.211
[8−40] 0.2953(4) 1.729 0.296(1) 0.266 0.2835(3) 6.716 0.283(1) 0.290

[8−14, 34−40] 0.293(1) 1.306 0.293(2) 0.354 0.283(1) 2.631 0.284(2) 0.597
[8−16, 32−40] 0.295(1) 1.243 0.293(2) 0.304 0.2834(9) 2.076 0.283(2) 0.510
[10−16, 32−38] 0.295(1) 0.912 0.292(2) 0.208 0.282(1) 1.633 0.281(2) 0.374

Table 4.7: Fits to perpendicular functions hint at increasing mass for fit ranges closer
to midpoint, but agree within errors. The data set is the same as in figure4.3.

Fit range Correlated fit Uncorrelated fit
[. . .] M A [×10−3] χ2/dof M A [×10−3] χ2/dof

[10−38] 0.2960(7) 3.05(5) 1.863 0.296(1) 3.10(8) 0.192
[9−39] 0.2953(4) 3.02(4) 1.820 0.296(1) 3.08(8) 0.223
[8−40] 0.2953(4) 3.01(3) 1.729 0.296(1) 3.06(8) 0.266

[8−14, 34−40] 0.293(1) 2.92(6) 1.306 0.293(2) 2.93(9) 0.354
[8−16, 32−40] 0.295(1) 2.96(5) 1.243 0.293(2) 2.93(9) 0.304
[10−16, 32−38] 0.295(1) 3.05(8) 0.912 0.292(2) 2.9(1) 0.208

Table 4.8: M⊥ is determined with a symmetrised fit ansatz. The data set is the same as
in figure4.3 for c = −0.45.

on a 484 lattice from table 4.3. The fit mass has a peculiar dependence on the fit range.
Table 4.7 shows that the mass increases and χ2/dof decreases, if the fit range is con-
tracted towards the central region around midpoint (t ≈ T/2). Excited states contribut-
ing with negative spectral weights are a possible explanation for this counterintuitive
behaviour. Such behaviour is possible as the correlation functions is smeared only at the
source (cf. section 4.1.9). Fit results are listed in table 4.8 for comparison with parallel
correlation functions (cf. table 4.6).

4.2.3 Minimisation of the mass anisotropy

Interpolation of fit parameters

A fit to the pseudoscalar correlation function extracts the parameter M for the ground
state’s mass. Residual mass anisotropy can persist at finite lattice spacing even after tun-
ing the counterterms’ coefficients. Calculating the mass anisotropy from squared pseu-
doscalar masses is beneficial for a chiral extrapolation that assumes Goldstone boson-like
properties. An ansatz for the squared masses M2

‖,⊥ as quadratic functions in c,

M2
‖,⊥(c) = a

‖,⊥
0 + a

‖,⊥
1 c+ a

‖,⊥
2 c2, (4.27)
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Figure 4.4: Interpolation of M2
‖ and M2

⊥ in c: Both squared masses are interpolated
within c ∈ [−0.65,−0.2]. Correlators have β = 6.0 on a 484 lattice from table 4.3. The
pseudoscalar mass is MPS ≈ 630 MeV for c = cM .

is motivated by the expectation to achieve an minimum of the anisotropy after tuning.
An example for the interpolation within c ∈ [−0.65,−0.2] is shown in figure 4.4. All
data within the range are matched within standard errors, but M2

‖ at c = 0.0 requires
additional higher order terms. Fit masses M2

‖,⊥ do not match but retain a small dif-
ference, which is of the same order as statistical uncertainties. Therefore, the absolute
mass anisotropy of eq. (4.21) is not necessarily a good observable. The extremum of the
mass anisotropy is calculated from the difference of interpolations as

cM = − a
‖
1 − a⊥1

2(a‖2 − a⊥2 )
(4.28)

and indicated as the blue vertical band in figure 4.4.

Fit range cM for c ∈ [−0.65,−0.20] cM for c ∈ [−0.65,+0.00]
[. . .] Cor. fit Unc. fit Cor. fit Unc. fit

[10−38] −0.460(5) −0.457(6) −0.457(4) −0.456(4)
[9−39] −0.519(9) −0.457(5) −0.494(6) −0.455(4)
[8−40] −0.508(9) −0.457(5) −0.486(5) −0.455(4)

Table 4.9: Extrema of ∆(M2
PS) are stable within errors only for uncorrelated fits to the

correlation function. The data set has β = 6.0 on a 484 lattice from table 4.3.

Though the fit range dependence of cM for interpolations of fit masses from correlated
fits to the correlation function exceeds the statistical uncertainty, it is consistent with
uncorrelated results for shorter fit intervals. This is shown in table 4.9.

Smaller lattices

Smaller lattices (324) of table 4.3 are used for scans of the parameter space in m0 and d
due to their smaller numerical cost. However, the time direction for symmetric lattices
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Figure 4.5: Left: Plateaus of M‖cosh(t) and M‖log(t) are very short. Right: M⊥log(t) lacks
the plateau of M⊥cosh(t). Symbols and data sets are explained in the text.

with T = L might be too short for a clean extraction of the ground state, which intro-
duces systematical uncertainties. Scans of parameter space are required for clarification
of the dependence of the mass anisotropy on d and for an extrapolation of cM to the chi-
ral limit. Local effective mass plateaus, which are invariably shorter due to the shorter
time direction, are presented in figure 4.5. The cosh mass with s = 2 is represented by
blue bullets and the log mass with s = 1 by red squares. The cosh mass plateau of the
perpendicular correlation function is very short. The pseudoscalar correlation functions
have c = −0.45 in the upper plots and c = 0.0 in the lower plots. Data are obtained
with β = 6.0, m0 = 0.02 and d = 0.0 on a 324 lattice from table 4.3. The pseudoscalar
mass for c = −0.45 is MPS ≈ 630 MeV and consistent with 484 within combined errors.

Fit range cM for c ∈ [−0.65,−0.20] cM for c ∈ [−0.70,+0.00]
[. . .] Cor. fit Unc. fit Cor. fit Unc. fit

[12−20] −0.448(8) −0.449(8) −0.450(6) −0.453(7)
[10−22] −0.444(6) −0.442(6) −0.446(5) −0.447(5)
[9−23] −0.446(6) −0.442(5) −0.447(5) −0.446(5)
[8−24] −0.440(6) −0.442(5) −0.442(5) −0.445(4)

Table 4.10: cM is slightly less negative on smaller volumes (cf. table 4.9). The data set
has β = 6.0, m0 = 0.02 and d = 0.0 on a 324 lattice from table 4.3.
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Figure 4.6: Left: The extremum is shallower for lighter masses. Right: The mass
anisotropy is consistent within errors. Symbols and data sets are explained in the text.

Direct subtraction of the interpolations yields ∆(M2
PS) of eq. (4.21). The left plot of

figure 4.6 displays the dependence of ∆(M2
PS) on the fermion mass parameter in the

neighbourhood of cM , where the two overlapping vertical bands indicate cM for the dif-
ferent masses. The lower mass am0 = 0.02 (red squares) yields a shallower interpolation
than the higher mass am0 = 0.03 (blue bullets). Interpolations of fit masses for different
lattice sizes are plotted together in the right plot of figure 4.6. Masses on the smaller
lattice are denoted by open symbols. Though the mass splitting is slightly wider on the
smaller lattice as M‖32 > M

‖
48 and M⊥32 < M⊥48, the masses agree within errors. Minimi-

sation results for β = 6.0, m0 = 0.02 and d = 0.0 using different fit and interpolation
ranges are stable within errors (cf. table 4.10). Values for the larger (c(48)

M , cf. table 4.9)
and smaller (c(32)

M , cf. table 4.10) lattices are indicated as vertical blue and lilac bands
in the figure. Their difference ∆fs

cM
≡ c(48)

M − c(32)
M ≈ −0.01 provides an estimate of finite

size effects, which are considered as systematical errors.

Chiral extrapolation of the minimum of the mass anisotropy

Fit range cM , linear in m0 cM , quadratic in m0
[. . .] Cor. fit Unc. fit Cor. fit Unc. fit

[12−20] −0.448(11) −0.451(12) −0.429(22) −0.436(21)
[10−22] −0.439(8) −0.439(9) −0.425(14) −0.422(14)
[9−23] −0.440(8) −0.437(13) −0.429(13) −0.421(12)
[8−24] −0.429(8) −0.435(7) −0.411(12) −0.419(11)

Table 4.11: Quadratic instead of linear chiral extrapolation yields more negative cM
with larger errors. Correlators have β = 6.0 on a 324 lattice from table 4.3.

Extrema of ∆(M2
PS) on the 324 lattice with β = 6.0 and d = 0.0 are extrapolated to-

wards the chiral limit. Linear and quadratic extrapolations of cM are displayed in the
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Figure 4.7: Left: A chiral extrapolation of cM can be compared to cBPT . Finite size
effects seem to point to cM being more negative by ∆fs

cM
≈ −0.01. Right: Dependence

on d is not resolved by cM . Symbols and data sets are explained in the text.

am0
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0.02

0.01

0

dBPT

d = −0.02
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Figure 4.8: Left: ∆(M2
PS) for c = cM is linear in m0. Right: The slope ∆1(d) is linear

in d and vanishes close to dBPT . Symbols and data are explained in the text.

left plot of figure 4.7 and listed in table 4.11. The data set contains all masses and
c ∈ [−0.65,−0.2] from table 4.3 for fit ranges of t/a ∈ [9 − 23] for 324. The lightest
mass (am0 = 0.01) is not matched well in a linear extrapolation (blue line). However,
curvatures of quadratic extrapolations (lilac line) seem too high as the extrapolation
bends upwards at the highest mass (am0 = 0.05). It is probably pure coincidence that
its endpoint is very close to the perturbative estimate cBPT (black burst). A linear
extrapolation with the lightest mass left out yields slightly more negative cM , but still
agrees with the extrapolation of the full sample within errors. The 484 lattice (open
symbol at am0 = 0.02, slightly shifted to the left for distinction of error bars) indicates
more negative cM (by ∆fs

cM
≈ −0.01) than the 324 lattice (filled symbols). Thus, cM for

the lightest mass (am0 = 0.01) agrees with the central value of the fit within combined
statistical and estimated finite size errors. Variation of d on the 324 lattice is shown
in the right plot of figure 4.7. Since results for d = 0.0 (red squares), d = −0.01 (blue
bullets) and d = −0.02 (lilac triangles) are consistent within fractions of the errors, the
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tuning condition c = cM can be considered as independent of d.

Once c is tuned to cM , the interpolating function for ∆(M2
PS) yields the residual mass

anisotropy, which is shown for a 324 lattice at β = 6.0 in the left plot of figure 4.8. The
data set covers d ∈ [−0.08,+0.02] and is extrapolated linearly in the mass,

∆(M2
PS) = ∆0 + ∆1(d)m0. (4.29)

The crossing of lines at am0 > 0 indicates that tuning does not remove the anisotropy
completely. The slope parameter ∆1(d) is linear in d (cf. right plot of figure 4.8) and is
dominated by the d dependence of M2

‖ . The turquoise line is a regression line between
d = 0.0 and d = −0.02. The vertical line marks the BPT estimate (dBPT = −0.00179).

4.2.4 Dependence of the mass anisotropy on the gauge coupling

Finer lattices: β = 6.2
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Figure 4.9: Left: The mass anisotropy is consistent within errors. The pseudoscalar mass
is MPS ≈ 725 MeV for c = cM . Right: cM is insensitive to d within errors. Symbols and
data are explained in the text.

The gauge coupling is changed to β = 6.2, which is closer to the continuum limit. The
previous procedure for determination of the mass and interpolation using eq. (4.27) is
repeated (cf. interpolations for am0 = 0.02 in the left plot of figure 4.9). The smaller
physical lattice size primarily affects perpendicular correlation functions and reasonable
fit ranges are very short. Due to large variations of cM for changes of the fit range, sys-
tematical uncertainties due to the fit range are estimated as ∆fr

cM
≈ 0.02. A linear chiral

extrapolation of cM is conducted on the 324 lattice with β = 6.2 as in section 4.2.3. Large
statistical errors are observed and cM is quite insensitive to d (right plot of figure 4.9).
The estimate cBPT (black burst) lies within the error bands of cM . The 484 lattice (open
symbol at am0 = 0.02, slightly shifted to the left) suggests more negative values of cM
than the 324 lattice (filled symbols), which is also indicated by the two overlapping ver-
tical bands (blue for 484, lilac for 324) in the left plot. Chiral behaviour of the residual
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Figure 4.10: Left: ∆(M2
PS) for c = cM is linear in m0. Right: The slope ∆1(d) is linear

in d and vanishes close to d ≈ +0.015. Symbols and data are explained in the text.

mass anisotropy ∆(M2
PS) for c = cM is described by eq. (4.29) within errors. In the left

plot of figure 4.10, it is shown that ∆0 is consistent with zero but changes its sign with
respect to β = 6.0. The right plot displays the linear regression of ∆1(d). The vertical
line marks the BPT estimate.

Coarser lattices: β = 5.8

c
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Figure 4.11: The coarser lattice with β = 5.8 is more anisotropic. Pseudoscalar masses
for am0 = 0.02 are M‖PS ≈ 545 MeV and M⊥PS ≈ 535 MeV for c = cM . Symbols and data
sets are explained in the text below.

Figure 4.11 shows that the mass anisotropy between parallel (green circles) and per-
pendicular (lilac triangles) masses is larger than for β = 6.0. cM is indicated by the
lilac vertical band. Because data for larger lattices with β = 5.8 is not available, un-
certainties due to finite size of the lattice are estimated to be as large as for β = 6.0
(∆fs

cM
≡ c

(48)
M − c(32)

M ≈ −0.01 as defined in section 4.2.3). Significant dependendence on
the fit range (for fits to the correlation function) is not observed. The left plot of figure
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Figure 4.12: Left: The chiral extrapolation of cM has a positive slope. Right: d0 ≈ +0.03
would flat approach the chiral limit flatly. Symbols and data sets are explained below.

4.12 shows that cM for d = +0.00 (red squares) and d = +0.02 (blue bullets) is indepen-
dent of d within errors. The positive slope of the chiral extrapolation starkly differs from
results for finer lattices. The estimate cBPT = −0.454 is more than 15% less negative
than cM . The residual mass anisotropy ∆(M2

PS) suggests that the slope ∆1(d) of the
approach to the chiral limit vanishes for d ≈ +0.03. At present, no particular reason is
known why trends in the chiral extrapolation for β = 5.8 and β = 6.0 or β = 6.2 are
opposite. However, data are compatible with cM being independent of am0.

Qualitative aspects of gauge coupling dependence

The non-perturbative value cM is slightly more neagtive than the estimate cBPT . Unsur-
prisingly, this difference (cBPT −cM ) increases for coarser lattices. cM for all three gauge
couplings is summarised in table 4.12. Dominant sources for systematical uncertainties
are finite size effects, dependence on the fit range and the chiral extrapolation. Because
the lightest mass is MPS ≈ 450 MeV, the study of the anisotropy has not necessarily
reached the chiral regime. Perpendicular correlation functions receive contributions from
long-lived excited states. An increase of effective mass plateaus towards the midpoint
of the lattice for source-smeared correlation functions suggests that these excited states
may have negative spectral weights (cf. section 4.2.2). Their contribution seems to be-
come more important with detuning of c. The associated systematical uncertainty is
estimated to be similar in size to the other sources of systematical uncertainty.

β a [fm] cM MPS for c = cM
5.8 0.136 −0.537(8)(10) 540 MeV
6.0 0.093 −0.437(7)(10) 450 MeV
6.2 0.068 −0.405(17)(20) 515 MeV

Table 4.12: The format cM (δ)(σ) includes statistical and systematical errors. The last
column indicates the lightest pseudoscalar mass in the chiral extrapolation of ∆

(
M2
PS

)
.
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4.3 Oscillating correlation functions

β a [fm] r0 T ncfg am0 c d

6.0 0.093 5.368 48 20 0.02 −0.45 −0.001
6.2 0.068 7.360 128 10 0.00730 [−0.50,−0.30] −0.001
6.0 0.093 5.368 128 10 0.01000 [−0.55,−0.35] −0.001
5.8 0.136 3.668 128 10 0.01464 [−0.60,−0.40] −0.002

Table 4.13: Oscillating correlation functions are studied with L = 24.

Pseudoscalar correlation functions in the γ5 channel do not exhibit visible oscillations.
Nevertheless, oscillations are observed in many other channels of parallel correlation
functions for qq̄ states, while they are not observed in the same channels of perpendicular
correlation functions for qq̄ states. The direction of correlation is parallel to the Karsten-
Wilczek term for parallel correlation functions and perpendicular to the Karsten-Wilczek
term for perpendicular correlation functions. Moreover, the frequency of the oscillations
depends on the relevant counterterm’s coefficient c. Hence, the aim of this section is to
clarify the origin and physical relevance of these oscillations without making explicit use
of the decomposition that is defined in section 3.1 by answering the following questions:

1. Are the states of the QCD spectrum observed in channels that contain oscillations?

2. Are the differences between parallel and perpendicular correlation functions a re-
sult of residual anisotropies that can be removed with better tuning?

3. Is it possibile to use the c dependence of the frequency for non-perturbative tuning?

The first question is answered by comparing the ground state masses of the J = 0 sec-
tor for Karsten-Wilczek fermions with tuned parameters to the ground state masses for
Wilson fermions, which are known to correctly reproduce the spectrum of QCD. The
second question is answered by a comparison to correlation functions for naïve fermions,
which exhibit a similar pattern of oscillations without being anisotropic. Though naïve
fermions are unphysical, they show a pattern of oscillating correlation functions that
is similar to both tuned parallel Karsten-Wilczek fermions and staggered fermions [5].
This pattern is due to the presence of an additional pole of the quark propagators in
the direction of correlation. Naïve fermions are realised with the routines for Karsten-
Wilczek fermions by setting the Wilczek parameter ζ and all counterterms to zero and
require no additional coding effort. In section 4.3.1, the naïve fermion action of eq. (1.39)
is contrasted with the Wilson fermion action, which includes eq. (1.50). Next, approx-
imately tuned parallel and perpendicular Karsten-Wilzcek fermions5 are juxtaposed in
section 4.3.2. The Wilczek parameter is set to ζ = +1 and the counterterm coefficients

5Parallel and perpendicular Karsten-Wilzcek fermions amount to calculation of parallel or perpen-
dicular correlation functions (direction of correlation wrt alignment of the Karsten-Wilczek term).
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are tuned to c = −0.45 and d = −0.001. Contrary to the approach in section 4.2, per-
pendicular Karsten-Wilczek fermions are implemented by changing the direction of the
Karsten-Wilczek term (α = 3) while keeping the direction of correlation in the êt = ê0
direction. All of these correlation functions are computed on 20 configurations of a
48 × 243 lattice at β = 6.0. This approach has the benefit of a longer time direction
despite the reduction of the numerical cost due to smaller spatial volumes. This longer
time direction is advantageous for isolating the ground state, in particular for perpen-
dicular correlation functions. Moreover, local fluctuations of gauge links along the time
direction are the same for both parallel and perpendicular correlation functions. The
mass splitting between γ5 channels for both parallel and perpendicular Karsten-Wilzcek
fermions is consistent with zero and indicates that anisotropies discussed in section 4.2
have been removed even for lattices with T 6= L. The third question in the list is
anwered in section 4.3.3, where a non-perturbative tuning condition is derived from a
Fourier analysis of ratios of correlation functions.

4.3.1 Naïve and Wilson fermions

Correlation functions for Wilson fermions use am0 = −0.788. The bare mass parameter
takes the critical mass amcr = −0.808 of Wilson fermions into account, which is deter-
mined as am0 = 1/(2κ) − 4 from the critical hopping parameter κcr = 0.157131(9) for
unimproved Wilson fermions at β = 6.0 that was taken from [85]. Correlation functions
for naïve fermions use am0 = 0.02. Free naïve fermions have 16 real fermion modes
localised in the Brillouin zone at the naïve doublers of eq. (1.48) and satisfy a residual
chiral symmetry. However, naïve fermions do not reproduce the spectrum of QCD due
to their unphysically large number of degenerate fermions. Though the bare parameters
of both actions correspond to a bare quark mass of amq ≈ 0.02, it must be kept in
mind that use of the same bare mass parameter does not imply matching hadron masses
for different fermion actions. The displayed absolute values of correlation functions are
calculated with source-smeared interpolating operators. C(n0) ≥ 0 is indicated as red
squares and C(n0) < 0 as blue bullets in the following figures. The time direction in
the following figures is always the ê0 direction. Ground state masses of these correlation
functions are summarised in table 4.14 at the end.

Correlation functions for Wilson fermions in the γ5 and γ5γ0 channels are displayed in
the upper row of figure 4.13. Both quark bilinears ψ̄γ5ψ and ψ̄γ5γ0ψ have JPC = 0−+

and have the same ground state mass within statistical errors. Correlation functions
for Wilson fermions in the γ0 and 1 channels are shown in the lower row of figure 4.13.
Whereas the quark bilinear ψ̄1ψ has JPC = 0++, the other quark bilinear ψ̄γ0ψ has
JPC = 0+−. As there are no physical mesons with JPC = 0+−, no statistically signifi-
cant signal is seen in the γ0 channel and the correlation function rapidly plummets into
statistical noise that is consistent with zero. The correlation function in the 1 channel
shows a clear signal of a state that is heavier than the ground state of the γ5 channel.
The change of sign for n0 ∈ [25, 31] is just a fluctuation that consistent with zero within
errors. These observations reflect the meson spectrum of QCD.
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Figure 4.13: Upper row: γ5 (left) and γ5γ0 channels (right) are mass degenerate for
Wilson fermions. Lower row: For Wilson fermions, the γ0-channel (left) contains only
noise, whereas the 1-channel (right) contains low-lying scalar states.

Correlation functions for naïve fermions in the γ5 or γ0 channels are displayed in the up-
per row of figure 4.14. As there are no physical mesons with JPC = 0+−, no statistically
significant signal is expected for the γ0 channel. However, the empirical observation is
that the absolute value of both correlation functions agrees at machine precision and
their ratio satisfies on all time slices (up to machine precision)

R05(n0) ≡ Rγ0,γ5(n0) =
Cγ0,γ0(n0)
Cγ5,γ5(n0) = (−1)n0 . (4.30)

Hence, there is an additional oscillating contribution in the γ0 channel, which corre-
ponds to states that are mass-degenerate with states in the γ5 channel (and have the
same spectral weights). For naïve fermions, the spectra of the interpolating operators
ψ̄γ5ψ and ψ̄γ0ψ are degenerate, but the non-oscillating contribution in the γ5 channel
is alternating in the other.
Most other correlation functions are more complicated. An example is presented in the
lower row of figure 4.14. Without any regard to a physical interpretation, the correlation
functions have a form which appears to be a superposition of two different contributions
on odd and even time slices or a superposition of a non-oscillating and an alternating
contribution. The latter assessment is supported by the observation that the ratio of
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Figure 4.14: Upper row: γ5 (left) and γ0 channels (right) have identical magnitude for
naïve fermions. Lower row: γ5γ0 (left) or 1 channels contain superpositions of oscillating
and non-oscillating terms for naïve fermions.

correlators in γ5γ0 and 1 channels satisfies (up to machine precision) the same empirical
relation up to a global factor (−1),

R1,γ5γ0(n0) = C1,1(n0)
Cγ5γ0,γ5γ0(n0) = −(−1)n0 . (4.31)

Thus, for naïve fermions, the interpolating operators ψ̄γ5γ0ψ and ψ̄1ψ have degenerate
spectra and the non-oscillating contributions in either of the channels are the alternating
contributions in the other.
It is known from Wilson fermions that both ψ̄γ5ψ and ψ̄γ5γ0ψ generate 0−+ states.
Therefore, if there were an exclusive relation between interpolating operators for naïve
fermions and JPC , both interpolating operators would have to generate the same 0−+

states. Spectral weights would be different and even masses may differ due to lattice
artefacts. However, it is evident from the correlation functions that the spectra of both
interpolating operators generate different states in the oscillating contribution. Hence,
an exclusive relation between interpolating operators for naïve fermions and JPC cannot
apply and their spectra may include different JPC . Thus, it is concluded that both
ψ̄γ5γ0ψ and ψ̄1ψ generate 0−+ and 0++ states. Since both JPC are relevant for physical
mesons, both the non-oscillating and the alternating contribution are observed in the
correlation function. This conclusion is consistent with the observation for the γ5 and
γ0 channels (the 0+− contribution is only noise) and can be generalised even further. For
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every channel of qq̄ states, an empirical correpondence to another channel is observed
(up to machine precision):

RM±,γ5γ0M±(n0) =± (−1)n0 ,

{
M+ ∈

{
γ5, γ0, γ5γi, γ0γi

}
M− ∈

{
1, γ5γ0, γi, γjγk

} . (4.32)

4.3.2 Oscillations of Karsten-Wilczek fermions
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Figure 4.15: Upper row: γ5 (left) and γ5γ0 channels (right) are mass degenerate for
perpendicular Karsten-Wilczek fermions. Lower row: The γ0 channel (left) contains
only noise and the 1 channel (right) contains scalar states for perpendicular Karsten-
Wilczek fermions.

Perpendicular Karsten-Wilczek fermions yield mass degenerate ground states in γ5 and
γ5γ0 channels (cf. upper row of figure 4.15). The γ0 channel contains only statistical
noise, while the 1 channel exhibits a low-lying scalar state (cf. lower row of figure 4.15).
Thus, perpendicular Karsten-Wilczek fermions seem to closely resemble Wilson fermions.
It appears appropriate to assign the same JPC .

Parallel Karsten-Wilczek correlation functions in γ5 and γ0 channels are displayed in the
upper row of figure 4.16 and exhibit striking similarity to naïve correlation functions in
figure 4.14. There are no visible oscillations in the γ5 channel and only oscillating terms
in the γ0 channel. Nonetheless, γ5 and γ0 channels for Karsten-Wilczek fermions do not
have a common ground state mass. These observations would be expected if interpolating
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Figure 4.16: Upper row: γ5 (left) and γ0 channels (right) have similar but different
magnitude for parallel Karsten-Wilczek fermions. The masses are different. Lower row:
γ5γ0 (left) or 1 channels show both parity partners for parallel Karsten-Wilczek fermions.

operators for Karsten-Wilczek fermions would overlap with states with the same JPC as
interpolating operators for naïve fermons. The ground state of the γ0 channel would be
considered to have JPC = 0−+ and the mass splitting would suggest that gauge fields
discriminate between states with the same JPC in different channels. Furthermore, the
observed similarity of γ5γ0 and 1 channels for naïve fermions is preserved for parallel
Karsten-Wilczek fermions. These channels are shown in the lower row of figure 4.16. The
oscillating terms in the γ5γ0 channel are observed only close to the boundaries (n0 ≤ 8
or n0 ≥ 40) and quickly fall to amplitudes close to noise level. On the contrary, the
oscillations are long-lived in the 1 channel. These observations lead to the conclusion
that the ground state of the 1 channel must belong to the oscillating contribution, while
the ground state of the γ5γ0 channel must belong to the non-oscillating contribution.
These observations would be expected if interpolating operators for Karsten-Wilczek
fermions would overlap with states with the same JPC as interpolating operators for
naïve fermons. The ground state of both channels would have JPC = 0−+ and would
belong to the non-oscillating contribution in the γ5γ0 channel and to the oscillating
contribution in the 1 channel. Because the other contributions in both channels would
have JPC = 0++, their signal would be much weaker.
Figure 4.17 displays local effective masses for γ0 (blue bullets) and γ5 channels (red
squares). The former (aM00) exceeds the latter (aM55) consistently by approximately
one or two standard errors over the full range of the effective mass plateau and precisely
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Figure 4.17: There is a mass splitting between cosh masses of γ0 and γ5 channels.
Symbols and data sets are explained in the text.

follows suit in any fluctuations of the plateau value. The mass splitting is

aM00 − aM55 ≈ 0.02 (4.33)

and amounts to ten standard errors on the level of the fit mass. This smallness of
the mass splitting raises the question whether the splitting decreases or increases for
finer lattices. A decreasing splitting would be interpreted as a lattice artefact and the
γ0 channel’s ground state would have to be considered as a physical state that is mass-
degenerate with the γ5 channel’s ground state in the continuum limit. An increasing
splitting would have to be considered as an indication that the γ0 channel’s ground state
were an unphysical state. This question is answered in a detailed study of the chiral
behaviour and continuum extrapolation of both ground state masses in section 4.4.

Action aM55 aM00 aM50 50 aM11
Naïve 0.339(1) 0.339(1) 0.381(21) 0.383(22)
KW ‖ 0.299(2) 0.319(2) 0.333(12) 0.332(23)
KW ⊥ 0.299(2) 0.301(2)
Wilson 0.254(2) 0.261(5)

Table 4.14: Pseudoscalar fit masses aM55 are obtained using γ5, aM50 50 using γ5γ0,
aM00 using γ0 and aM11 using 1 in the interpolating operators. The data set of table 4.13
is used and parameters are explained in the text. aM55 corresponds to MPS ≈ 630 MeV
for Karsten-Wilczek fermions and MPS ≈ 540 MeV for Wilson fermions.

Fits to the correlation function for naïve and parallel Karsten-Wilczek fermions are
performed with the ansatz

C(t) = A0
2M0

(
e−M0·t + e−M0·(T−t)

)
+ Ã0

2M̃0
(−1)t/a

(
e−M̃0·t + e−M̃0·(T−t)

)
, (4.34)

where A0,M0, Ã0, M̃0 are four independent parameters. For the γ5 or γ0 channels, where
only either the non-oscillating or the oscillating contribution is observed, one term in the
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ansatz of eq. (4.34) is omitted in the fit function. Because they are considered as different
JPC , both contributions each have their own ground state. Fit masses of pseudoscalar
states for naïve, parallel as well as perpendicular Karsten-Wilczek and Wilson fermions
are summarised in table 4.14. It is noted again that the common bare quark mass
parameter does not imply similar hadron masses because different fermion actions are
used. The following empirical symmetry patterns are observed:

• For Wilson and perpendicular Karsten-Wilczek fermions, the following are common
observations: The γ5 and γ5γ0 channels are mass degenerate (within errors) and
both identified as 0−+. The 1 channel is heavier than 0−+ and identified as 0++.
The γ0 channel contains only noise, because 0+− is not realised in physical mesons.

• For naïve and parallel Karsten-Wilczek fermions, the following are common obser-
vations: Oscillating and non-oscillating contributions are observed in most chan-
nels. The non-oscillating contributions are interpreted as the same JPC that is
identified for Wilson fermions in the same channel. JPC for the oscillating contri-
butions is deduced by multiplying the Dirac matrix of the interpolating operators
by γ5γ0. Thus, the γ5 channel contains no visible oscillations and is interpreted
as 0−+. The γ0 channel contains only oscillating contributions that are also in-
terpreted as 0−+. Contributions due to 0+− in both channels may exist, but are
indistinduishable from noise. The γ5γ0 and 1 channels are interpreted as con-
taining both 0−+ and 0++. For the γ5γ0 channel, non-oscillating contributions are
interpreted as 0−+. For the 1 channel, non-oscillating contributions are interpreted
as 0++. The oscillating contribution is interpreted as the other JPC .

• For parallel and perpendicular Karsten-Wilczek fermions the following is observed:
The γ5 channels for both and the γ5γ0 channel for perpendicular Karsten-Wilczek
fermions are mass degenerate (within errors). This indicates that the action is
tuned correctly even for T 6= L. The masses of γ0, γ5γ0 and 1 channels for parallel
Karsten-Wilczek fermions are a few percent larger than the γ5 channel’s mass.
The mass in the γ0 channel is slightly lower than in γ5γ0 and 1 channels, but
all three masses are consistent within errors. The larger errors in the γ5γ0 and
1 channels are a consequence of the oscillating contribution that generally enlarges
the uncertainty of the fits.

• For naïve fermions: Correlation functions satisfy the empirical relation of eq. (4.32)
at machine precision. Therefore, both the pair of γ5 and γ0 channels and the pair
of γ5γ0 and 1 channels are mass-degenerate pairs. The mass splitting between the
γ5 and γ5γ0 channels is larger than for parallel Karsten-Wilczek fermions.

The observation of oscillations for naïve and parallel Karsten-Wilczek fermions in the
same channels make it clear that oscillations are not due to anisotropy. As the anisotropy
of the pseudoscalar mass is succesfully removed, incomplete tuning is not responsible for
the oscillating terms. These oscillating terms are generated by the presence of the Dirac
operator’s extra pole in the direction of correlation and mass splittings between states
with the same JPC in different channels persist in the tuned theory.
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4.3.3 Tuning with the frequency spectrum
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Figure 4.18: The γ0 channel exhibits oscillations whose frequency depends on the pa-
rameter c. Data sets are explained in the text below.

Correlation functions for approximately tuned parallel Karsten-Wilczek fermions (sec-
tion 4.3.2) exhibit alternating terms in the same channels as correlation functions for
naïve fermions (section 4.3.1). However, these patterns vary as the coefficients of the
counterterms are changed, which is shown in figure 4.18. The depicted correlation func-
tions in the γ0 channel for c = −0.30 (left) and c = −0.40 (right) use β = 6.0, am0 = 0.02
and d = 0.0 on a 484 lattice of table 4.3 and clearly show that the pattern of oscillations
depends on the choice of the relevant counterterm’s coefficient c. These patterns have
to be contrasted with approximately tuned Karsten-Wilczek fermions (c = −0.45 for
β = 6.0) that are shown in the upper right plot in figure 4.16. The rapid oscillation
of the parallel correlation function for approximately tuned Karsten-Wilczek fermions,
which is described well by a factor (−1)n0 , is modified for detuned Karsten-Wilczek
fermions. Thus, the question whether the change in oscillation patterns can serve as
a criterion for tuning the relevant counterterm’s coefficient. Figure 4.18 indicates that
the modification of the oscillation’s pattern becomes more pronounced as c is detuned
further. Hence, the oscillation’s frequency Ω can be parameterised as

Ω = π + ωc, ∂ωc/∂c finite, (4.35)

where the frequency shift ωc is a smooth function of c that vanishes in the tuned theory.
Its variation may serve as an observable indicating a mismatch δc. c0 is defined as
the value of c that restores the frequency spectrum to its tree level form (the tuned
frequency spectrum) so that the coefficient c can be written as c = c0 +δc. If ωc vanishes,
the mismatch δc is zero and the coefficient is tuned correctly to c0 = c(g0). Though there
is no apparent link between a full restoration of hypercubic symmetry and the frequency
spectrum, it is clear that neither restoration of hypercubic symmetry nor restoration of
the frequency spectrum is possible unless c is tuned correctly. Instead of attempting a
fit to an oscillating correlation function, where the frequency is an unknown parameter,
methods of Fourier analysis are applied to a ratio of correlation functions. The frequency
distribution of lattice eigenfrequencies is peaked at the oscillation frequencies Ω, even
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though Ω does not have to be an eigenfrequency of the lattice. Two simple toy models
in appendix D elucidate this concept. Of course, the resolution of a discrete Fourier
transform is limited by the width of the frequency bins,

ωb = 2π
N0

, (4.36)

which depends only on N0, the temporal extent of the lattice. If |ωc| < ωb/2, the time
direction is too short to provide sufficient resolution of the spectrum. Thus, N0 should
be as large as possible and lattices of table 4.13 with very long time direction (N0 = 128)
are applied for this purpose.
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Figure 4.19: Correlator ratios R05(n0) on a 128× 243 lattice at β = 6.2 from table 4.13
provide unmistakable evidence of the c dependence of the frequency shift ωc.

It is observed in eq. (4.33 that the mass splitting between γ0 and γ5 channels is very small.
Therefore, the leading order quark mass dependence cancels in the ratio R05(n0) of these
correlators, which is defined in eq. (4.30) for naïve fermions. Though eq. (4.30) is satified
only approximately for tuned parallel Karsten-Wilczek fermions due to the small mass
splitting, the residual decay of the correlator ratios (due to the mass splitting) is smaller
for finer lattices. Because peaks in the frequency spectrum are narrower for a smaller
residual decay, the following discussion is focused on β = 6.2. However, it must be kept in
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mind that both correlation functions (γ0 and γ5 channels) have different excited states.
Hence, even if the mass splitting between the ground states were zero, there would
still be a residual decay due to the presence of different excited states. Seven ratios
for β = 6.2 and c ∈ [−0.30,−0.50] are shown in figure 4.19. cM = −0.405(17)(20), the
non-perturbative value that is obtained from the mass anisotropy in section 4.2, agrees
within errors with the parameter c = −0.40 of the central plot. Correlator ratios R05(n0)
for β = 6.0 and β = 5.8 are shown in figures E.1 and E.3 in appendix E. These ratios
contain stronger exponential decays due to larger ground state mass differences.
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Figure 4.20: The two peaks of the Fourier spectrum of the correlator ratio R05(n0)
approach a single peak at k = N0/2 if the coefficient c is tuned properly.

In order to obtain a frequency spectrum with two peaks near zero, an alternating fac-
tor (−1)n0 (due to Ω = π in the tuned frequency spectrum) is multiplied with the ratio
before it is submitted to a discrete Fourier transform using the GSL FFT library [62].
The Fourier coefficients Ck are computed as

Ck =
N0−1∑
n0=0

R05(n0)(−1)n0e
−2πi kn0

N0 . (4.37)

Because the FFT of the ratios is conducted independently on each sample of the full
ensemble, no statistical information is lost in this process and statistical uncertainties
of the spectra can be calculated with the Jackknife method. Fourier spectra that are
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defined without the alternating factor (−1)n0 are shown in figure 4.20. Two peaks are
observed in the spectra that approach a single peak at k = N0/2 for c = c0. The spectra
are symmetric (up to machine precision) about k = N0/2. Distinction between c > c0
and c < c0 on the basis of the spectra in figure 4.20 is impossible. Outside of the peak
region, the spectrum is almost consistent with zero. The power spectral density (PSD)
takes advantage of the frequency spectrum’s symmetry. Its definition is taken from [132],

P(f0) = 1
N2 |C0|2

P(fk) = 1
N2
(
|Ck|2 + |CN−k|2

)
k = 1, 2, . . . ,

(
N
2 − 1

)
P(fN/2) = 1

N2 |CN/2|2
, (4.38)

where the Ck are the Fourier coefficients defined in eq. (4.37). The two peaks of the
frequency spectrum are mapped onto a single peak of the power spectral density. The
power spectral densities within the frequency range ω ∈ [0, 0.3π] are shown in figure 4.21.
They are sharply peaked distributions with noise which is typically suppressed by 3−6
orders of magnitude. Due to the aforementioned residual exponential decays of the
ground state mass difference and excited state contributions, which are not known in
detail, the exact form of the frequency spectrum is unknown.
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Figure 4.21: Power spectral densities are displayed on a logarithmic scale. The curve is
a gaussian function, which is used for estimating the maximum of the distribution.
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An estimate of the peak frequency and its systematical uncertainty are obtained as the
maximum ωc and the width σ of a gaussian distribution,

g(ω) = P0√
2πσ2

e−
(ω−ωc)2

2σ2 , (4.39)

which is matched with a least squares fit to the power spectral density on each sample.
If the peak frequency ωc is smaller than ωb/2, all samples evaluate to ωc = 0 and the sta-
tistical uncertainty vanishes. If ωc = 0 with δωc = 0 were used in an interpolation in c, it
would completely dominate the interpolation6. Hence, a balanced and sensitive approach
to interpolation must combine statistical and systematical uncertainties. Systematic un-
certainties are estimated as the root of the variance of the gaussian distribution. In the
following, they are treated as independent errors and combined quadratically,

δωc =
√

(δωc)2 + σ2. (4.40)

β = 5.8
c −0.40 −0.45 −0.48 −0.50 −0.53 −0.55 −0.60
ωc 155(2)(37) 74(1)(38) 26(2)(38) 11(2)(26) 14(4)(35) 40(2)(33) 116(2)(35)

β = 6.0
c −0.35 −0.40 −0.42 −0.45 −0.47 −0.50 −0.55
ωc 124(1)(12) 54(1)(13) 25(1)(13) 0(0)(15) 32(1)(13) 74(1)(13) 141(1)(13)

β = 6.2
c −0.30 −0.45 −0.38 −0.40 −0.42 −0.45 −0.50
ωc 134(1)(11) 65(1)(7) 30(1)(8) 0(0)(9) 17(1)(9) 60(1)(11) 125(1)(9)

Table 4.15: The peak frequency ωc of the power spectral densities seems to be linear in
|δc|. ωc in the table must be multiplied by 10−3. Statistical (δωc) and systematical (σ)
uncertainties are in brackets. Ratios are calculated on 128×243-lattices from table 4.13.

Peak frequencies with statistical and systematical uncertainties in the format ωc(δωc)(σ)
for β = 6.2, 6.0 and 5.8 are summarised in table 4.15. Power spectral densities of ratios
for β = 6.0 and β = 5.8 are presented in figures E.2 and E.4 in appendix E. The width
of the peak is larger on the coarse lattice (β = 5.8), which is immediately clear from a
comparison of the figures. This is the reason why the systematical errors for β = 5.8
considerably exceed their counterparts on finer lattices (β = 6.0, β = 6.2). The ratios
contain stronger exponential decays due to larger ground state mass differences. It is
seen in figure 4.20 and in table 4.15 that the frequency shift ωc does not allow for a
distinction between δc > 0 and δc < 0. Two different approaches are applied. First, the
peak frequencies ωc are interpolated with the function

ωc = A · |c− c0|, (4.41)
6If multiple coefficients c have ωc = 0 and δωc = 0, linear interpolation of ωc necessarily fails.
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which precludes from using a simple linear fit. Second, peak frequencies ωc for c < cmin
with ωcmin ≤ ωc ∀ c are multiplied by (−1) and a linear interpolation is conducted with

ωc = A(c− c0). (4.42)

Both approaches are consistent. Interpolations of peak frequencies are displayed in fig-
ure 4.22 and their zeros c0 are listed in table 4.16. The frequency shift ωc is described
extraordinarily well over the full range of data (at β = 6.2 and β = 6.0) by the ansatz
of eq. (4.41). Hence, even a shorter ê0 direction (e.g. N0 = 48) yields sufficient reso-
lution for linear interpolation. c0 is consistent with cM within combined errors. Since
oscillations are exclusive to parallel correlation functions, c0 is obtained without use of
perpendicular correlation functions (correlation functions, where the direction of correla-
tion is perpendicular to alignment of the Karsten-Wilczek term). Therefore, restoration
of the frequency spectrum to its tree-level form is a tuning condition that disregards the
anisotropy. If an observable with sensitivity to the anisotropy, good statistical accuracy
and strong sensitivity to d were discovered, the residual anisotropy after setting c = c0
could be employed for tuning d non-perturbatively.
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Figure 4.22: Peak frequencies ωc for β = 5.8, β = 6.0 and β = 6.2 are interpolated in c
using eq. (4.41). Error bands are dominated by systematical errors.

β a [fm] c0
5.8 0.136 −0.5120(7)(100)
6.0 0.093 −0.4435(8)(37)
6.2 0.068 −0.4028(5)(27)

Table 4.16: The zero crossing c0 of eq. (4.42) is obtained for ratios with N0 = 128. The
format c0(δ)(σ) includes statistical and systematical errors.
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4.4 Chiral behaviour of the pseudoscalar ground state

β am0 (r0m0) (r0M55) M55 [MeV] (r0M00) M00 [MeV] B55

5.8 0.02928 0.107 1.655(2) 653(1) 1.858(3) 733(1) 25.5(1)
5.8 0.02000 0.073 1.379(1) 544(1) 1.612(3) 636(1) 25.9(1)
5.8 0.01464 0.054 1.188(1) 469(1) 1.450(4) 572(2) 26.2(1)
5.8 0.01000 0.037 0.989(1) 390(1) 1.294(5) 511(2) 26.6(1)
5.8 0.00732 0.027 0.851(1) 336(1) 1.194(6) 471(2) 26.9(1)
5.8 0.00534 0.020 0.731(1) 288(1) 1.115(8) 440(3) 27.2(1)
6.0 0.02000 0.107 1.597(4) 630(1) 1.695(5) 669(2) 23.8(1)
6.0 0.01371 0.074 1.333(4) 526(1) 1.444(5) 570(2) 24.2(1)
6.0 0.01000 0.054 1.149(4) 453(2) 1.274(5) 503(2) 24.6(2)
6.0 0.00685 0.037 0.963(4) 380(2) 1.109(6) 438(2) 25.3(2)
6.0 0.00500 0.027 0.832(4) 328(2) 0.997(7) 393(3) 25.9(3)
6.0 0.00365 0.020 0.719(5) 284(2) 0.905(8) 357(3) 26.5(3)
6.2 0.01460 0.107 1.567(7) 618(3) 1.602(7) 632(3) 23.0(2)
6.2 0.01000 0.074 1.305(8) 515(3) 1.346(7) 531(3) 23.4(3)
6.2 0.00730 0.054 1.124(8) 444(3) 1.173(8) 463(3) 23.8(4)
6.2 0.00500 0.037 0.943(9) 372(4) 1.004(9) 396(3) 24.5(5)
6.2 0.00365 0.027 0.815(10) 322(4) 0.889(10) 351(4) 25.1(6)
6.2 0.00266 0.020 0.704(12) 278(5) 0.793(11) 313(4) 25.8(9)
6.2 0.00194 0.014 0.607(14) 240(5) 0.712(12) 281(5) 26.4(12)

Table 4.17: The tuned action is studied on lattices with T = 48. L = 24 for β = 5.8, 6.0
and L = 32 for β = 6.2 are used.

β c d T L ncfg
5.8 −0.51 −0.002 48 24 200
6.0 −0.45 −0.001 48 24 200
6.2 −0.40 −0.001 48 32 100

Table 4.18: c is tuned non-perturbatively and ∆(M2
PS) as well as ωc are consistent with

zero within errors. d is fixed perturbatively. The Wilczek parameter is set to ζ = +1.

The preceding two sections concern non-perturbative tuning of Karsten-Wilczek fermions.
The counterterm’s coefficient c of the Karsten-Wilczek action is tuned non-perturbatively
by either making use of minimisation of the pseudoscalar mass anisotropy (section 4.2)
or restoration of the tree-level frequency spectrum (section 4.3). The counterterm coef-
ficient d is tuned using boosted perturbation theory. Simulation parameters are listed
in table 4.18. Properties of QCD are studied using the Karsten-Wilczek fermion action.
The scale is set with the Sommer parameter r0 [143] from table 4.1. The only remaining
simulation parameter is the bare fermion mass am0, which is listed in table 4.17 together
with fit masses of the pseudoscalar ground states of the γ5 channel (M55) and of the
γ0 channel (M00). Chiral behaviour is studied by varying am0 within a factor of 6−7.
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The 3rd column of table 4.17 is the bare mass r0m0 in physical units (2 fm−1). Because
mass renormalisation is required but not performed, different r0M55 (in the 4th column)
is obtained for the same r0m0 at different β. Since M55 and M00 are quite similar and a
pseudoscalar ground state is expected in both channels, both are tentatively treated as
approximate Goldstone bosons with different discretisation effects. Local effective mass
plots indicating the fit ranges are displayed in figure E.6 in the appendix.

4.4.1 Chiral behaviour of the γ5 channel

In full QCD, chiral perturbation theory (ChPT) at next-to-leading order [63,64] predicts
that the pion mass scales with the average light quark mass mud and the strange quark
mass ms as

M2
π,2 = 2B0mud, M2

η,2 = 2
3B0(mud + 2ms), (4.43)

M2
π,4 = M2

π,2

{
1 +X +

M2
π,2

32π2F 2
0

log (µ−2M2
π,2)−

M2
η,2

96π2F 2
0

log (µ−2M2
η,2)

}
, (4.44)

X = 16
F 2

0
{(2mud +ms)B0(2Lr6 − Lr4) + (mud +ms)B0(2Lr8 − Lr5)} .

The notation follows [139], where M2
π,2n and M2

η,2n indicate the pion and eta meson
masses for degenerate up and down quarks at chiral order 2n. 2B0 and F0 are the
chiral condensate and the pion decay constant in the chiral limit. X is the sum of two
contributions that depend on the quark masses, B0, F0 and four renormalised low-energy
constants Lri from the chiral Lagrangian at chiral order four. All of these (quark masses,
B0, F0 and Lri ) are undetermined parameters that must be obtained by matching ChPT
calculations to calculations in QCD or to experimental data. The ratio B55 in the 8th
column of table 4.17 is defined as

B55 ≡
(r0M55)2

(r0m0) . (4.45)

Comparison of eq. (4.45) with eqs. (4.43) and (4.44) suggests that B55 is related to 2B0
in partially quenched QCD (the strange quark is considered as heavy) as

B55 ∝ 2B0{1 +X0mud +X1mud log (amud)}. (4.46)

As factors X0 and X1 are numerically positive, the prediction of partially quenched QCD
is a monotonical increase of B55 with the quark mass. Instead, a decrease is observed at
fixed β. There are two possible causes why this increase is not reflected in the data.

The first cause is that the quenched approximation neglects virtual quark loops, which
cancel hairpin diagrams [21,142] that contribute to mesonic correlation functions. Lack
of this cancellation leads to additional logarithmic contributions to the pion mass [21]
in the form of quenched chiral logarithms,

M2
π = M2

π,2

{
(1− δ)− δ log (µ−2M2

π,2)
}

+O(M4
π,2), (4.47)

126



where the new parameter δ is related to the pseudoscalar flavour singlet mass M2
0 by

δ = M2
0

Nf (4πF0)2 . (4.48)

The parameter M2
0 is related to the topological susceptibility χt through the Witten-

Veneziano formula [150, 161]. A phenomenological estimate of M2
0 is obtained in terms

of physical meson masses,
M2

0 = M2
η′ +M2

η − 2M2
K , (4.49)

which yields δ ≈ 0.18. Since δ is positive, quenched chiral logarithms cause a logarithmic
divergence of B55 in the chiral limit.

The second cause for a rise of B55 in the chiral limit are uncertainties in the choice of the
coefficients. The anisotropy study in section 4.2 demonstrates that the mass anisotropy
∆(M2

PS) in the chiral limit is not removed perfectly at finite lattice spacing, which
implies a mass shift in at least one of the correlation functions. As c is tuned only with a
few percent accuracy and d only using perturbation theory, incomplete tuning must be
considered another potential source of non-vanishing contributions to the ground state
mass in the chiral limit. Nevertheless, a chiral extrapolation as

r2
0M

2 = r2
0M

2
res + 2B0(r0m0) {(1− δ)− δ log (m0/r0)} (4.50)

is suited for both γ5 and γ0 channels. The small mass splitting of eq. (4.33) between
γ5 and γ0 channels indicates that the latter channel’s ground state is a pseudoscalar
which is affected by mild discretisation effects. Spontaneous chiral symmetry break-
ing would still affect all non-singlet pseudoscalars, if such discretisation effects could be
treated like the quark mass as perturbations in a ChPT for Karsten-Wilczek fermions7.

M55 is extracted by fitting a cosh to the correlation function for each fermion mass
parameter am0. Fit masses are squared and subjected to a chiral extrapolation with

M2(am0) = C + (am0) · {A+B log (am0)} (4.51)
and δ = B/(B − A). The same chiral extrapolation is conducted in one case with
three independent fit parameters (upper row of figure 4.23) and in another case with the
constraint C = 0 (lower row of figure 4.23). Results of both chiral extrapolations are
shown in table 4.19. Extrapolation results with an offset C agree well with each other and
with the phenomenological estimate (δ ≈ 0.18). If the offset is fixed to C = 0, χ2/dof
increases and δ varies within a factor of two for β = 6.0 and β = 6.2. Since δ is
only a phenomenological estimate and the spread of other lattice results for δ [162]
is consistent with this result, strong conclusions must be avoided at this point. The
variation might indicate incomplete tuning in the sense that the counterterms are tuned
better for β = 5.8 than for β = 6.0 and β = 6.2. A partial reexamination of the study
with improved counterterm coefficients8 may partly solve this problem. Because M2

55 in
7ChPT for staggered fermions in [109] includes non-singlet discretisation effects in the chiral expan-

sion. This sets the example that should be followed for Karsten-Wilczek fermions.
8The simulation parameter d for β = 6.0 and β = 6.2 is closer to d1L than to dBPT .
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Figure 4.23: Upper row: C is included as parameter in the chiral extrapolation of M2
55.

At β = 5.8, it partly compensates for the rise of B55 due to quenched chiral logarithms.
Lower row: The offset parameter C in the chiral extrapolation of M2

55 is fixed to 0.

the chiral limit at β = 5.8 is consistent with zero within less than 2σ, data support the
claim that the ground state of the γ5 channel behaves as a (Pseudo-) Goldstone boson.

β r0A r0B δ r2
0C χ2/dof r0A r0B δ χ2/dof

5.8 21.5(2) −4.2(2) 0.16(1) −0.004(3) 0.05 21.8(2) −3.9(2) 0.15(1) 0.04
6.0 20.6(4) −3.9(7) 0.15(1) 0.036(8) 0.10 18.0(6) −7.8(8) 0.30(2) 0.59
6.2 19.7(9) −5.0(19) 0.20(6) 0.031(21) 0.05 17.1(16) −9.9(28) 0.37(7) 0.16

Table 4.19: The chiral extrapolation of M2
55 with an offset in the chiral limit reproduces

the phenomenological value of δ ≈ 0.18 very well.

4.4.2 Interpretation of the γ0 channel

For Wilson fermions, interpolating operators of the γ0 channel are related to JPC = 0+−

and do not generate physical qq̄ states from the vacuum. Hence, the physical significance
of the γ0 channel’s ground state for Karsten-Wilczek fermions is not immediately evident.
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However, the mass splitting between the ground states of γ0 and γ5 channels is about
3-15% and decreases for finer lattices. The ground state would have to be considered as
an unphysical state, if the mass splitting increased for finer lattices. Because the trend in
data is opposite, the state must correspond to a physical meson in the continuum limit.
Within this mass range, there are no states in the QCD spectrum other than isospin
non-singlet pseudoscalars. Therefore, the continuum limit of the ground state must
be a (Pseudo-) Goldstone boson in the chiral limit. Assuming that the discretisation
effects that eventually break the symmetries can be treated as perturbations within
some parameter range (which is a priori unknown), its mass M00 is tentatively squared
and extrapolated using eq. (4.51). The same chiral extrapolation is conducted in one
case with three independent fit parameters and in another case with B = 0 (upper and
lower rows of figure E.5 in appendix E.3). Results of both chiral extrapolations are in
perfect agreement (cf. table 4.20) and provide no numerical evidence for quenched chiral
logarithms in the γ0 channel.

β r0A r0B r2
0C χ2/dof r0A r2

0C χ2/dof
5.8 25.2(2) 0.0003(120) 0.75(2) 0.002 25.1(2) 0.75(2) 0.002
6.0 23.3(1) −0.03(2) 0.37(2) 0.11 23.4(2) 0.37(2) 0.08
6.2 22.0(2) 0.008(30) 0.20(2) 0.04 22.0(2) 0.20(2) 0.03

Table 4.20: The chiral extrapolation of M2
00 produces a large offset in the chiral limit.

In order to shed light on the physical interpretation of the γ0 channel, the quadratic
mass difference

(
M2

00 −M2
55
)
is expressed in units of r2

0,

∆05 ≡ r2
0

(
M2

00 −M2
55

)
. (4.52)

Because there are strong cancellations between statistical fluctuations in the difference
of the squared masses, its statistical error decreases (compared to the individual masses)
and turns out to be too small for covering the difference’s variations over the full quark
mass range. The difference in the chiral limit is obtained as the difference of the offset
parameters C (rescaled with r2

0) of the chiral extrapolations of the ground state masses
of both channels and included as ‘ch.l.’ in the table 4.21. ∆05 is remarkably stable
over the full range of quark masses and decreases towards the continuum limit. The
scaling behaviour of its approach to the continuum limit is determined by the scaling
behaviour of both correlation functions. Since the results of section 3.2 indicate that
mesonic correlation functions with definite charge conjugation quantum numbers on
quenched cofigurations do not have O(a) corrections, leading discretisation effects of ∆05
are O(a2). Therefore, ∆05 can be extrapolated to the continuum limit as

∆05 = ∆0 + a2∆2 +O(a3). (4.53)

Continuum extrapolation is conducted with different functions f02(a) and f2(a),

f02(a2) = ∆0 + a2∆2, (4.54)
f2(a2) = a2∆2. (4.55)
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β (r0m0) (r0M55)2 (r0M00)2 ∆05
5.8 0.107 2.740(5) 3.454(11) 0.714(8)
5.8 0.073 1.901(4) 2.597(11) 0.696(9)
5.8 0.054 1.410(3) 2.103(12) 0.692(10)
5.8 0.037 0.979(3) 1.674(13) 0.696(12)
5.8 0.027 0.725(2) 1.427(15) 0.702(14)
5.8 0.020 0.534(2) 1.243(17) 0.709(17)
5.8 ch.l. −0.004(3) 0.751(17) 0.755(17)
6.0 0.107 2.552(12) 2.873(15) 0.321(5)
6.0 0.074 1.776(10) 2.085(14) 0.309(6)
6.0 0.054 1.319(9) 1.623(13) 0.304(6)
6.0 0.037 0.927(8) 1.229(13) 0.302(7)
6.0 0.027 0.693(7) 0.994(13) 0.302(8)
6.0 0.020 0.517(7) 0.818(14) 0.301(10)
6.0 ch.l. 0.036(8) 0.366(15) 0.330(13)
6.2 0.107 2.454(22) 2.566(22) 0.112(5)
6.2 0.073 1.703(20) 1.812(19) 0.110(5)
6.2 0.054 1.264(18) 1.377(18) 0.112(5)
6.2 0.037 0.889(17) 1.008(17) 0.119(5)
6.2 0.027 0.665(17) 0.791(17) 0.127(5)
6.2 0.020 0.496(17) 0.629(17) 0.134(6)
6.2 0.014 0.369(16) 0.507(17) 0.139(7)
6.2 ch.l. 0.031(21) 0.196(18) 0.165(13)

Table 4.21: The difference ∆05 of the squared ground state masses of γ0 and γ5 channels
has only a mild fermion mass dependence. The statistical errors of ∆05 are greatly
reduced due to cancellations of fluctuations between both channels.

Both extrapolations are displayed in figure 4.24 and their coefficients are listed in table
4.22. The extrapolation with f02(a2), which is non-zero in the continuum limit, agrees
well with data and χ2/dof is reasonably small, whereas f2(a2) seems to be disfavoured.
This may have different reasons, among which incomplete tuning, fluctuations in the
data points or unresolved higher order effects are the most obvious. Resolution of higher
order discretisation effects is not deemed feasible with only three data points. Incomplete
tuning is particularly suggestive because C is non-vanishing in the chiral extrapolation of
the γ5 channel for both finer lattices (β = 6.0 and β = 6.2). It is pointed out with regard
to eq. (4.52) that the value of the expansion coefficient ∆0 is numerically consistent with
−C for β = 6.0 and β = 6.2 in table 4.19, which suggests that r2

0M
2
00 is consistent with

zero in the combined chiral and continuum limit. Therefore, chiral behaviour of the
ground state of the γ0 channel is consistent with a (Pseudo-) Goldstone boson in the
continuum limit. As the fermion mass dependence of ∆05 is rather mild, this conclusion
seems to be extendable to finite fermion mass. The difference at finite lattice spacing
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Figure 4.24: The continuum extrapolation of ∆05 is conducted with two functions
f02(a2) (red) and f2(a2) (blue). Data clearly supports f02(a2).

extrapolation ∆0 ∆2 χ2/dof
f02(a) −0.033(6) 42.3(6) 0.15
f2(a) 0 by def. 39.6(11) 2.11

Table 4.22: The continuum extrapolation of ∆05 disfavours restriction to O(a2) correc-
tions. This could be either due to incomplete tuning or due to higher orders.

is evidence of discretisation effects that distinguish between both pseudoscalar states.
This result is the analogue to taste-breaking effects for staggered fermions [24, 104]. It
appears that (quenched) chiral perturbation theory is applicable and captures the quark
mass dependence correctly even for (Pseudo-) Goldstone bosons that are beset by these
lattice artifacts. This remarkable result certainly warrants further dedicated studies.
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4.5 Interim findings (III)

In an initial discussion, foreseeable difficulties in numerical studies with minimally dou-
bled fermions are pointed out and technical details of the implementation are covered.
Only some of these difficulties can be understood purely in terms of the broken discrete
symmetries of the theory. The appearance of oscillating terms in certain channels can be
interpreted in term of the decomposition of the spinor fields of section 3.1. Two differ-
ent approaches to non-perturbative tuning of Karsten-Wilczek fermions are developed.
They make use of the anisotropy of the pseudoscalar mass or shifted frequency spectra of
oscillating ratios of correlation functions. Lastly, a spectroscopic study of mesonic corre-
lation functions in two different channels determines the chiral behaviour of their ground
states and identifies them as pseudoscalars, which are degenerate in the continuum limit.

The first approach to non-perturbative renormalisation compares hadronic correlation
functions, which use different directions of correlation – parallel or perpendicular to the
êα direction of the Karsten-Wilczek term. Without appropriately tuned counterterms,
observables which are related to these correlators are anisotropic. The condition that
the mass anisotropy ∆(M2

PS) of the pseudoscalar ground state has a mininum is used to
tune the relevant counterterm’s coefficient to a value cM . This approach has three main
weaknesses. First, because the mass anisotropy ∆(M2

PS) is a very shallow function of the
relevant counterterm’s coefficient, cM has relatively large uncertainties. Second, since
∆(M2

PS) is not independent of the marginal counterterm’s coefficient, disentangling the
dependence on both coefficients is a non-trivial issue. Third, correlation functions with
the direction of correlation perpendicular to the alignment of the Karsten-Wilczek term
have short plateaus. It appears as if they include low-lying excited state contributions,
which seem to have negative spectral weights in source-smeared correlation functions.
These issues seem less prominent if c ≈ cM .

Two non-trivial aspects in the numerical evaluation in correlation functions with the
direction of correlation parallel to the alignment of the Karsten-Wilczek term were stud-
ied in detail. First, signatures of the broken time-reflection symmetry are not observed
in numerical data for the pseudoscalar channel. Due to the considerations about the
CΘα symmetry in section 3.2, this is not surprising. Second, in all mesonic channels
other than the γ5 channel, an oscillating contribution can be observed directly. A pos-
sible explanation of the oscillatory pattern is offered by the formal decomposition in
section 3.1. In particular, a very small mass splitting between the ground states of
γ0 and γ5 channels is observed and their ratio R05(n0) for the finest lattice with β = 6.2
is almost purely oscillating with only a very small exponential decay. If the relevant
counterterm is not fully tuned, the ratio’s frequency spectrum has two peaks that are
aligned symmetrically around π/a, while the peak is at π/a in the frequency spectra for
naïve or free Karsten-Wilczek fermions. The frequency shift’s parameter dependence is
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empirically found to be ωc ∝ |δc|. The formal decomposition in section 3.1 also suggests
oscillations with frequencies that are close to π/a but shifted linearly in δc. The condi-
tion that the frequency spectrum of R05(n0) is restored to its tree-level form is used to
tune the relevant counterterm’s coefficient to c0 in this second approach.

c0
cM

cBPT

c1L

g2
0

c

1.041.0210.980.960.94

-0.2

-0.25
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-0.35
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Figure 4.25: Non-perturbative renormalisation schemes for c(g2
0) agree within errors.

One-loop results are clearly too small, but BPT undershoots only by a few percent.

β a [fm] cBPT
∣∣∣ c0−cBPTc0

∣∣∣ cM c0

5.8 0.136 −0.454 11% −0.537(8)(10) −0.5120(7)(100)
6.0 0.093 −0.420 5% −0.437(7)(10) −0.4435(8)(37)
6.2 0.068 −0.393 2% −0.405(17)(20) −0.4028(5)(27)

Table 4.23: Two different non-perturbative tuning schemes yield cM and c0 for the
relevant counterterm. The first error is statistical, the second error is an estimate of
systematical uncertainty. Results agree very well though c0 yields smaller uncertainties.

Non-perturbative results for the relevant counterterm’s coefficient c(g2
0) are summarised

in table 4.23 and figure 4.25. cM and c0 at each gauge coupling are in good agreement and
are slightly (cf. fourth column in table 4.23) more negative than the estimate cBPT from
boosted perturbation theory. The systematical uncertainty of cM is due to finite size
effects, the fit range dependence of correlation functions with direction of correlation
perpendicular to the alignment of the Karsten-Wilczek term and uncertainties of the
chiral extrapolation. The systematical uncertainty of c0 is due to the width of the peak
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Scheme cM c0
n2 +0.2255(27) +0.2163(8)
d1 −0.9459(53) −0.9256(18)

χ2/dof 0.458 0.081

Table 4.24: The Padé approximation of c0 using eq. (4.56) has the smallest uncertainties
and agrees with cBPT for fine lattices within 1σ.

in the power spectral density, which is dominated by the ground state mass difference.
Variation of c0 due to different m0 or d or for different lattice sizes is within statistical
uncertainties. The coefficient in each scheme is interpolated with a Padé approximant
using n1 ≡ c1L = −0.249351, which ensures that the interpolation reproduces the one-
loop result for small couplings. The interpolation

c(g2
0) = n1g

2
0 + n2g

4
0

1 + d1g2
0

(4.56)

yields parameters that are listed in table 4.24. Finding a numerically robust approach
to non-perturbative tuning of the marginal counterterm’s coefficient d is still an open
problem. Because estimates from BPT (dBPT from table 2.2) are very small, they may
well be sufficient for non-perturbative tuning within uncertainties.

The spectroscopic study of the ground state of γ5 and γ0 channels with an approximately
tuned action verifies that M2

55 receives contributions from quenched chiral logarithms,
which agree within uncertainties with phenomenological estimates for all studied cou-
plings. Thus, data are consistent with an interpretation as a (Pseudo-) Goldstone boson
at finite lattice spacing. Consistency of the logarithms amongst different β and with phe-
nomenological estimates improves if a finite offset is included in the chiral extrapolation
of M2

55. This might indicate incomplete tuning of the counterterms. Data provide no
numerical evidence for quenched chiral logarithms in the ground state mass M2

00 of the
γ0 channel. Instead, it has a residual mass in the chiral limit that vanishes asO(a2) in the
continuum limit. Deviation of the squared ground states mass difference ∆05 from zero
in the continuum limit is very small and consistent with the negative offset ofM2

55 for the
finer lattices. Results are inconclusive whether these deviations are due to systematical
uncertainties (e.g. incomplete tuning), due to neglecting higher order terms or simply
due to statistical fluctuations. The ground states of γ5 and γ0 channels for tuned parallel
Karsten-Wilczek fermions are degenerate in the continuum limit within these uncertain-
ties. Thus, the γ0 channel’s ground state is interpreted as a (Pseudo-) Goldstone boson
in the continuum limit. The non-vanishing residual mass term can be understood as a
consequence of the explicitly broken non-singlet chiral symmetry at finite lattice spac-
ing cf. section 2.5). Lastly, a spectroscopic study in the quenched approximation with
pseudoscalar masses below 300 MeV would not have been feasible with Wilson fermions
due to exceptional configurations. Clearly, Karsten-Wilczek fermions are protected from
exceptional configurations by their residual chiral symmetry.
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Conclusions

For the first time, perturbative studies of minimally doubled fermions have been pub-
lished in [36, 37]. The first non-perturbative studies in the quenched approximation
have been published in [154, 155]. This thesis wraps up the results of these studies and
presents new unpublished research about minimally doubled fermions in lattice QCD.
The perturbative studies include two varieties of minimally doubled fermions – Boriçi-
Creutz and Karsten-Wilczek fermions – whereas the numerical studies are restricted
to Karsten-Wilczek fermions. Minimally doubled fermions are among the few types of
lattice fermions with an exact local chiral symmetry at finite lattice spacing and an
ultralocal Dirac operator that can be inverted with moderate numerical cost. Because
minimally doubled fermions reproduce two mass-degenerate quarks, numerical results
can be interpreted in terms of QCD in the isospin-symmetric limit.

Minimally doubled fermions realise an exact chiral symmetry at finite lattice spacing
whilst explicitly breaking the hypercubic symmetry and symmetry under both charge
conjugation and reflections of one particular direction. This particular direction, along
which the two poles of their Dirac operators are aligned, is different for Boriçi-Creutz and
Karsten-Wilczek fermions and reflects the orientation of the dimension five operators in
their actions. Nevertheless, the actions are invariant under the combination of charge
conjugation and the broken reflection symmetry such that CPΘ symmetry is always
maintained. Due to the broken symmetries, renormalisation requires three counterterms,
whose forms are determined by the broken symmetries and whose coefficients have been
computed perturbatively in [36, 37]. There are two fermionic counterterms – a relevant
counterterm with dimension three and a marginal counterterm with dimension four –
and a marginal gluonic counterterm with dimension four. The broken symmetries are
manifest in the form of anisotropies unless the counterterms are tuned properly. Conser-
vation of ultralocal vector and axial symmetry currents is verified on the one-loop level
such that the PCAC relation is satisfied exactly. Estimates for the non-perturbative
coefficients are obtained using boosted perturbation theory.
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Different aspects of Karsten-Wilczek fermions are explored in numerical studies using the
quenched approximation. In particular, the influence of the relevant counterterm’s coef-
ficient is studied extensively. Signatures of the broken reflection symmetry, which would
be seen as a mass splitting between forward and backward propagating states in correla-
tion functions parallel to the Karsten-Wilczek term’s alignment, are consistent with zero.
Interpretation as a consequence of CPΘ symmetry of the action using pure Yang-Mills
gauge configurations is suggestive. Anisotropies due to inaccurately tuned countert-
erms are observed in the mass determination for the pseudoscalar channel in directions
which are either parallel or perpendicular to the alignment of the Karsten-Wilczek term.
Minimisation of the anisotropy is used as a scheme for non-perturbative tuning of the
relevant counterterm. Though the anisotropy depends on the marginal counterterm as
well, the sensitivity is insufficient for the given statistical accuracy. Hence, use of its
estimate from boosted perturbation theory seems to be numerically sufficient as it is
very small.

Numerical studies reveal that the connection between interpolating operators for Karsten-
Wilczek fermions and JPC of hadrons is more complicated than for Wilson-type fermions,
but correlation functions of Dirac bilinears can still be interpreted straightforwardly in
terms of mesonic channels. These complications are indicated by the empirical observa-
tion of oscillations for most mesonic correlation functions in a direction that is parallel
to the alignment of the Karsten-Wilczek term. These oscillations are most significant
in the γ0 and 1 channels, where the ground state belongs to the oscillating contribu-
tion. Nevertheless, no oscillations are observed in correlation functions in a direction
that is perpendicular to the Karsten-Wilczek term’s alignment. The oscillating contribu-
tions are interpreted in the spirit of a formal decomposition of spinor fields and of their
bilinear operators that are used in correlation functions. Conclusions from this decom-
position about JPC of the states in the oscillating contributions are consistent with their
masses in numerical studies. Empirical observations indicate that the oscillation pattern
changes upon variation of the relevant counterterm’s coefficient. Frequency spectra for
ratios of correlation functions in the direction that is parallel to the Karsten-Wilczek
term’s alignment are obtained with methods of discrete Fourier analysis. The numer-
ical result that the frequency spectrum is restored to its tree-level form upon tuning
of the relevant counterterm’s coefficient serves as a second scheme for non-perturbative
tuning. Conclusions from the formal decomposition about the frequency’s dependence
on the coefficient are consistent with observations. The results from the two different
non-perturbative tuning schemes differ at the level of a few percent but are consistent
within the overall uncertainties (cf. table 4.23).

Correlation functions in the pseudoscalar sector are studied in the chiral regime for
pseudoscalar masses well below 300 MeV. This mass range is inaccessible with Wilson
fermions in the quenched approximation due to exceptional configurations. The study
shows that Karsten-Wilczek fermions are not affected by exceptional configurations. A
chiral extrapolation of the pseudoscalar mass is performed in the spirit of chiral pertur-
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bation theory. Strictly speaking, the chiral limit does not exist due to pathologies of the
quenched approximation, which manifest themselves in the form of quenched chiral log-
arithms. Their size as estimated from numerical data agrees with other determinations.
The pseudoscalar mass is consistent with zero in the limit of vanishing quark mass. An
approximate degeneracy between the ground state of the oscillating contribution in the
γ0 channel and the ground state of the pseudoscalar channel is observed empirically.
This mass splitting is nearly independent of the quark mass and consistent with zero in
the continuum limit. Since this state is interpreted as JPC = 0−+ in the spirit of the
formal decomposition, both ground states are interpreted as pion states.

As a natural next step it is necessary to move on from the quenched approximation to
simulations with dynamical minimally doubled fermions. The best chances for success
rests with an implementation of Karsten-Wilczek fermions within very general, preex-
isting frameworks such as USQCD [93] or the MILC [113] code. In a simulation with
dynamical fermions, the gluonic counterterm will be tuned by the prescription that the
average plaquette value of parallel and perpendicular plaquettes (including or exclud-
ing the direction of the Karsten-Wilczek term’s alignment) must be equal. Whether
or not this prescription is sufficiently independent of the other counterterms’ coeffi-
cients remains to be seen, but the idea seems very straightforward compared to the
fermionic counterterms. The method of stochastic sources can be applied to deal with
the second systematical deficit of present simulations, as it may be applied in a calcula-
tion of quark-disconnected contributions. These quark-disconnected contributions which
discriminate between charged and neutral pions are indispensable for an unambiguous
identification of the physical pion states that are seen in the different channels containing
pseudoscalars. The analytical and numerical studies within this thesis are the first proof
that non-perturbative studies of QCD with minimally doubled fermions are feasible and
yield a mass spectrum which exhibits the correct features as expected from QCD. Even
though studies in the quenched approximation are in a way dissatisfying compared to the
success of Lattice QCD with dynamical fermions using other discretisations, the present
study will be the cornerstone upon which any future application with minimally doubled
fermions will rest.
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Conventions

A.1 Physical constants

This section declares the unit conventions throughout this thesis. Natural units are
applied throughout this thesis, i.e.

c = 1 = ~. (A.1)

Therefore, physical quantities have the following length dimensions:

[length] = [time] = [energy]−1 = [mass]−1. (A.2)

For the purpose of conversion to other systems of units, the product of the quantum of
action and the speed of light in vacuum as well as the speed of light in vacuum are given
in SI units by

~c = 197.326968(17) MeV fm, c = 299792458 m s−1. (A.3)

A.2 Indices

This section declares the index conventions throughout this thesis.

Space-time indices

Space-time indices are labelled by Greek letters mostly from the middle of the Greek
alphabet. If they are applied in Minkowski space-time M4, their range is µ ∈ {0, 1, 2, 3}.
If they are applied in Euclidean space-time R4, their range is µ ∈ {0, 1, 2, 3} as well.
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Space-time indices, which occur multiply are always considered to be summed over.
Exceptions are explicitly highlighted. Fixed indices, which are never summed are marked
by an underscore, e.g. µ.

Spinor indices

Spinor indices are labelled by Greek letters mostly from the beginning of the Greek
alphabet. Their range is α ∈ {1, 2, 3, 4}. Spinor indices which occur twice are always
considered to be summed over according to Einstein’s summation convention.

Colour indices

Colour indices are labelled by Latin letters mostly from the start of the alphabet.
The range of colour indices is a ∈ {1, 2, 3} for the fundamental representation and
a ∈ {1, 2, 3, 4, 5, 6, 7, 8} for the adjoint representation. Colour indices which occur twice
in either the fundamental or adjoint representation are always considered to be summed
over according to Einstein’s summation convention. Exceptions are explicitly high-
lighted. Fixed indices, which are never summed are marked by an underscore, e.g. a.

Flavour indices

Flavour indices in the fundamental representation are labelled by bracketed numbers.
Their general range is f ∈ {1, 2, 3, 4, 5, 6} and they are sorted in the order of ascending
quark mass. The spinor’s symbol ψ can be replaced by the one-letter label of the flavours,
e.g. ψ(1) ≡ u, ψ(2) ≡ d, . . . and the quark mass parameters can be labeled as m(1) = mu,
m(2) = md, . . .. Summation of flavour indices is always declared explicitly.

Space-time coordinates

Space-time coordinates x of field variables ψ defined on a space-time continuum are
represented as arguments of the fields, e.g. ψ(x). Space-time coordinates are labelled
with latin letters from the end of the alphabet. In the contrary, site labels n on discretised
space-time lattice are dimensionless numbers defined as nµ = xµ/a. Site labels are
represented as site indices ψn. Sites labels are usually labelled by letters from the middle
of the alphabet. Integration over space-time coordinates or summation over site labels
are always declared explicitly. The summation range of site labels is usually omitted.

Momentum space coordinates

The vector space of four-momenta is referred to as momentum space throughout this
thesis. Its coordinates kµ are always represented as arguments of the fields, ψ(k). Inte-
gration over momentum space coordinates is always declared explicitly.
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A.3 SU(N) Matrices

This section declares the conventions concerning SU(N) matrices.

SU(2) – Pauli matrices

The Pauli matrices σµ are defined by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.4)

The 2× 2-unit matrix is included as

σ0 =
(

1 0
0 1

)
. (A.5)

As generators of the symmetry group SU(2), they are defined with an extra factor 1/2,

τj = 1
2σ

j (A.6)

and satisfy
τ iτ j = 1

2
(
δij + iεijkτk

)
. (A.7)

SU(3) – Gell-Mann matrices

The Gell-Mann matrices λj are defined by

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

 ,

λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0

 ,

λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 = 1√
3

 1 0 0
0 1 0
0 0 −2

 . (A.8)

As generators of the symmetry group SU(3), they are defined with an extra factor 1/2,

Tj = 1
2λ

j (A.9)

and satisfy
T iT j = 1

2

(1
3δ

ij1 + (dijk + if ijk)Tk
)
. (A.10)
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Casimir operators

The Casimir operators of the group SU(N) are given by

C(R) = 1
2 = Tr(TaTa) (A.11)

C2(R)1N×N =
∑
a

TaTa = N2 − 1
2N 1N×N , C2(R) ≡ CF (A.12)

C2 ≡ C2(G) = C(G) = facdfacd = N, (A.13)

where R is the fundamental and G is the adjoint representation.

A.4 Minkowski and Euclidean space-time

This section declares the conventions concerning Minkowski and Euclidean space-time
throughout this thesis. Quantities defined on a Minkowski or Euclidean space-time are
always labelled with upper indices M or E if there is any possibility of an ambiguity. If
ambiguities can be excluded, these labels are omitted.

A.4.1 Coordinates and four-vectors

This thesis mostly uses Euclidean space-time. Four-vectors defined on Euclidean space-
time are connected with four-vectors on Minkowski space-time by a Wick rotation. The
Wick rotation of the x0 coordinate is defined as

xE0 ≡ ixM0 . (A.14)

The Minkowski space-time coordinate xM0 is identical to the usual physical time t. Four-
momenta pµ, derivatives ∂µ as well as four-vector fields Aµ(x) have their temporal com-
ponents transformed by the Wick-rotation with the conjugate factor (−i),

pE0 = − ipM0 , (A.15)

∂E0 = ∂

∂x0E = 1
i

∂

∂x0M = −i∂M0 , (A.16)

AE0 (xE) = − iAM0 (xM ). (A.17)

Four-vectors are defined in Minkowski and Euclidean space-time by

xM µ = (xM0 ,xM ), (A.18)
xMµ = gµνx

M µ = (xM0 ,−xM ), (A.19)
xEµ = xE µ = (xE0 ,xE) (A.20)
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and scalar products are

xM · yM = xMµ y
M µ = (xM0 yM0 )− (xM · yM ), (A.21)

xE · yE = xEµ y
E
µ = (xE0 yE0 ) + (xE · yE). (A.22)

Three-dimensional vectors are in bold print (e.g. x). The scalar product of four-vectors
and three-vectors are both abbreviated as dot products. The metric of Minkowski space-
time is defined as

gµν = diag (+1,−1,−1,−1). (A.23)

Due to the aforementioned transformation properties of derivatives in eq. (A.16) and
vector fields in eq. (A.17), the field strength tensor Fµν(x) transforms as

FE µν(xE) = FEµν(xE) = (−i)(δµ0+δν0) FMµν (xM ) = i(δ
µ0+δν0) FM µν(xM ). (A.24)

Thus, the product FEµν(xE)FEµν(xE) = FMµν (xM )FM µν(xM ) is not multiplied by any ex-
tra factors in the Wick rotation.

Spinor fields and adjoint spinor fields are treated as independent degrees of freedom
in the Osterwalder-Schrader approach [124, 126] to a Euclidean field theory, but are
otherwise left unchanged:

ψE(xE) = ψM (xM ), ψ̄E(xE) = ψ̄M (xM ). (A.25)

While this is not of particular importance in the path integral approach, which already
treats ψ and ψ̄ as independent field in Minkowski space-time, the OS approach causes
a loss of hermiticity for the Dirac action, which can be avoided by Waldron’s elaborate
scheme for the Wick rotation including spinor rotations [148,149,153]. Throughout this
thesis, the OS approach to Euclidean field theories is applied.

A.4.2 Dirac matrices

Dirac matrices are defined as

γM 0 =
(

0 σ0

σ0 0

)
, γM j =

(
0 σj

−σj 0

)
, (A.26)

γE 0 =
(

0 σ0

σ0 0

)
= γM 0, γE j =

(
0 −iσj
iσj 0

)
= −iγM j , (A.27)

which corresponds to the chiral representation in both Minkowski and Euclidean space-
time. The Dirac matrix γ0 is real, wheres the spatial Dirac matrices are anti-hermitian in
Minkowski space-time and hermitian in Euclidean space-time. They satisfy the Clifford
algebra, {

γM µ, γM ν
}

= 2gµν ,
{
γE µ, γE ν

}
= 2δµν . (A.28)
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Contrary to standard conventions, Euclidean space-time Dirac matrices are usually writ-
ten with upper indices throughout the thesis. The chirality matrix γ5, which anticom-
mutes with all Dirac matrices γµ, is defined by

γM 5 = iγM 0γM 1γM 2γM 3, γE 5 = γE 0γE 1γE 2γE 3 (A.29)

and is equal in Minkowski and Euclidean space-time:

γ5 = γM 5 = γE 5 =
(
σ0 0
0 −σ0

)
. (A.30)

The chirality matrix is usually written with an upper index as γ5 in this thesis. The
chirality projectors are defined as

PR = 1
2(1 + γ5), PL = 1

2(1− γ5) (A.31)

and parity projectors (for fermions) are defined as

P+ = 1
2(1 + γ0), P− = 1

2(1− γ0). (A.32)

The charge conjugation matrix C is defined as

C = iγ0γ2 = C† = C−1 = −CT (A.33)

both on Minkowski and Euclidean space-times and satisifies

γµC = CTγµT . (A.34)

A.4.3 Continuous space-time and discrete space-time lattices

Events in a four-dimensional continuous space-time V of infinite extent,

V = {x = (x0, x1, x2, x3) | −∞ < xµ <∞}, (A.35)

are labelled by four-component coordinate vectors x, which have the dimension of a
[length]. This definition can be restricted to any subspace of finite extent,

V = {x = (x0, x1, x2, x3) | 0 < xµ < Lµ}, (A.36)

where the size of the subspace introduces a length scale. Any finite subspace must
be supplied with appropriate boundary conditions. Throughout this thesis, boundary
conditions will be generally chosen as periodic or anti-periodic, e.g. any function satisfies

f(xµ + Lµ) = ±f(xµ). (A.37)

In a discretisation, continuous space-time is replaced by a finite space-time lattice Λ,

Λ = {n = (n0, n1, n2, n3) | 0 ≤ nµ < Nµ}. (A.38)
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Events on this lattice are labelled by a four-component site vector n, which is dimen-
sionless. It is connected to a coordinate vector of dimension [length] as

xµ = anµ (A.39)

by a lattice spacing a, which defines the intrinsic length scale of the system (the intrinsic
length scale of the continuous system is defined in terms of the lattice spacing and the
number of sites: Lµ = aNµ). Sites n of a discretised space-time lattice can be sorted
into even and odd sites, which are distinguished by whether the sum of components

nΣ =
3∑

µ=0
nµ (A.40)

is an even or an odd number. The volume is defined as V = a4 |Λ|, where |Λ| = ∏
µNµ

takes the role of a dimensionless volume. Slices of the lattice are defined for any direction
by

Λµm = {n ∈ Λ |nµ = m = const}. (A.41)

A.5 Fourier transformations

Fourier transformations connect space-time V to its Fourier space Ṽ , which is usually
called momentum space throughout this thesis.

Infinite space-time

The Fourier space Ṽ of an infinite space-time V is also infinite. The Fourier transform
f̃(p) of a real function f(x) is defined by

f̃(p) =
∫
V

f(x)e−ix·pd4x, (A.42)

f(x) =
∫
Ṽ

f̃(p)eix·p d4p

(2π)4 . (A.43)
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Hence, complex functions φ(x) are transformed to φ̃(p) according to

φ̃(p) =
∫
V

φ(x)e−ix·pd4x, (A.44)

φ(x) =
∫
Ṽ

φ̃(p)eix·p d4p

(2π)4 , (A.45)

φ̃†(p) =
∫
V

φ†(x)eix·pd4x, (A.46)

φ†(x) =
∫
Ṽ

φ̃†(p)e−ix·p d4p

(2π)4 . (A.47)

Because it is always clear from the arguments, the Fourier transforms of the fields ψ, ψ̄
and A are not marked with a tilde (̃ ) explicitly. Delta functions, which naturally arise
in Fourier transformations of local products of fields, are generated as

δ(p− q) ≡δ(p0 − q0)δ(p1 − q1)δ(p2 − q2)δ(p3 − q3) =
∫
V

e−ix·(p−q)d4x, (A.48)

δ(x− y) ≡δ(x0 − y0)δ(x1 − y1)δ(x2 − y2)δ(x3 − y3) =
∫
Ṽ

ei(x−y)·p d4p

(2π)4 . (A.49)

Finite space-time lattice

The discretised Fourier space is the Brillouin zone, Ṽ = (2π/a)4 = |Λ| ∏µ(2π/(aNµ)).
The Fourier transform f(k) of a real function fn on a finite space-time lattice is defined
by (complex functions are analogous to eqs. (A.44)-(A.47) )

f̃(k) = 1√
|Λ|

∑
n∈Λ

fne
−ian·k, (A.50)

fn = 1√
|Λ|

∑
k∈Λ̃

f̃(k)eian·k. (A.51)

The analogues of the delta functions of eqs. (A.48) and (A.49) are given by

δ(k, l) ≡ δk0l0δk1l1δk2l2δk3l3 = 1
|Λ|

∑
n∈Λ

e−ian·(k−l), (A.52)

δn,m ≡ δn0m0δn1m1δn2m2δn3m3 = 1
|Λ|

∑
k∈Λ̃

eia(n−m)·k. (A.53)

Generalisation of the (inverse) discrete Fourier transform of real functions to complex
functions is analogous to the treatment in the continuous case (cf. A.5).
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Addendum to perturbative studies

This appendix covers some particularly lengthy expression, which appear in perturbative
calculations, in more detail.

B.1 Recursion relations for bosonic integrals

This appendix summarises the recursion relations for basic bosonic integrals in LPT and
clarifies the nomenclature. All recursion relations have been taken from [31], chapter 18.
Their practical application is done with a FORM [106, 151] program, which has been
provided by Stefano Capitani. The basic integrals of eq. (2.14) satisfy recursion relations.
Absent momentum components in the numerator are left out in the nomenclature, e.g.

B(p;n0, n3) ≡ B(p;n0, 0, 0, n3), B(p) ≡ B(p; 0, 0, 0, 0). (B.1)

The first set of recursion relations removes a first power of a momentum component k̂2
µ

in the numerator,

4B(p; 1) =B(p− 1)−M2B(p) (B.2)
3B(p;x, 1) =B(p− 1;x)− B(p;x+ 1)−M2B(p;x) (B.3)

2B(p;x, y, 1) =B(p− 1;x, y)− B(p;x+ 1, y)− B(p;x, y + 1)−M2B(p;x, y) (B.4)
B(p;x, y, z, 1) =B(p− 1;x, y, z)− B(p;x+ 1, y, z)− B(p;x, y + 1, z)

− B(p;x, y, z + 1)−M2B(p;x, y, z). (B.5)

The second recursion relation lowers the power of a momentum component k̂2r
µ in the

numerator,

B(p; . . . , r) = r − 1
p− 1B(p− 1; . . . , r − 1)− 4r − 6

p− 1 B(p− 1; . . . , r − 2) + 4B(p; . . . , r − 1). (B.6)
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B.2 Addendum to the self-energy calculation

B.2.1 Sunset diagram for Karsten-Wilczek fermions
Various particular unwieldy expressions of the one-loop calculation of the fermionic self-
energy are presented only in this addendum to the perturbative studies. The alge-
braically simplified numerators of Jχ3 (ζ, a) read
N0 = sχk

(
{2(ĉχk )2 − (ĉk)2}+ δχαζ2(ŝk)2

⊥
)

+ ζ
{

4sαk s
χ
kε
αχ + δχα

(
4(sk)2

⊥ + 1
2(ŝk)2

⊥{2(ĉαk )2 − (ĉk)2 + ζ2(ŝk)2
⊥}
)}

(B.7)

N1 = sχk

({
4(sk)2+ζ2(1+2δχα){(ŝk)2

⊥}2
}

+ζ(ŝk)2
⊥
{

4sαk s
χ
k+δχα

(
2(sk)2+ ζ2

2 {(ŝk)2
⊥}2

)})
. (B.8)

The denominators of the sunset diagram that contribute to wavefunction renormalisation
and the marginal counterterm’s coefficient for Karsten-Wilczek fermions read

D4 = DKW (k; ζ,M, a)Dg(−k;M,a), (B.9)
D5 = DKW (k; ζ,M, a) (Dg(−k;M,a))2 , (B.10)
D6 = DKW (k; ζ,M, a) (Dg(−k;M,a))3 . (B.11)

Five numerators N4 - N8 contribute to wavefunction renormalisation and to the marginal
counterterm’s coefficient. The full numerators N4 and N5 of the part in Feynman gauge
(Jχθ4 |ξ=1) read

N4 =
∑
µ,ν,λ

δµν

8 tr
{(

γχδµθ (−γµŝµk + ζγαεαµĉµk)
(
γλsλk + ζγαεαλ{1− cλk}

)
(γν ĉνk + ζγαεαν ŝνk)

)
+
(
γχδνθ (γµĉµk + ζγαεαµŝµk)

(
γλsλk + ζγαεαλ{1− cλk}

)
(−γν ŝνk + ζγαεαν ĉνk)

)}
, (B.12)

N5 =
∑
µ,ν,λ

δµν

4 tr
{
γχ (γµĉµk + ζγαεαµŝµk)

(
γλsλk + ζγαεαλ{1− cλk}

)
(γν ĉνk + ζγαεαν ŝνk)

}(
ĉθkŝ

θ
k

)
,

(B.13)

and the numerators N6, N7 and N8 of the gauge fixing part (−(1− ξ)
(
∂Jχθ4 /∂ξ

)
) read

N6 =
∑
µ,ν,λ

1
8tr
{(

γχδµθ (−γµŝµk + ζγαεαµĉµk)
(
γλsλk + ζγαεαλ{1− cλk}

)
(γν ĉνk + ζγαεαν ŝνk)

)
+
(
γχδνθ (γµĉµk + ζγαεαµŝµk)

(
γλsλk + ζγαεαλ{1− cλk}

)
(−γν ŝνk + ζγαεαν ĉνk)

)}
(ŝµk ŝ

ν
k) , (B.14)

N7 =
∑
µ,ν,λ

−
δµθ ĉµk ŝ

ν
k+δνθ ŝµk ĉ

ν
k

8 tr
{
γχ (γµĉµk + ζγαεαµŝµk)

(
γλsλk + ζγαεαλ{1− cλk}

)
(γν ĉνk + ζγαεαν ŝνk)

}
,

(B.15)

N8 =
∑
µ,ν,λ

−
(ĉθkŝθk)(ŝµk ŝ

ν
k)

2 tr
{
γχ (γµĉµk + ζγαεαµŝµk)

(
γλsλk + ζγαεαλ{1− cλk}

)
(γν ĉνk + ζγαεαν ŝνk)

}
.

(B.16)
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Summation of Euclidean indices and evaluation of the trace simplifies the numerators to

N4 = sθks
χ
k

{
2(1− 2δθχ) + ζ2 (−1 + 2δθα + 4δχα − δθχ{4δχα + (ŝk)2

⊥ε
χα}
)}

+ ζ
{
s
α
k δ
θχ
(
(ĉθk)2 − δθα

{
(ĉθk)2 + (ŝk)2

⊥
})

+ sθkδ
χαεθα

(
2(ĉθk)2 + (1 + ζ2)(ŝk)2

⊥
)}
, (B.17)

N5 = − 2sθks
χ
k

{
(ĉk)2 − 2(ĉχk )2 − ζ2δχα(ŝk)2

⊥
}

− 2ζsθk
{

4sαk s
χ
k + δχα

(
4
{

(sk)2
⊥ − (sχk )2}+ 1

2(ŝk)2
⊥
{

2(ĉχk )2 − (ĉk)2 + ζ2(ŝ)2
⊥
} )}

, (B.18)

N6 = − 2(ŝθk)2δθχ(sk)2 + ζ2 {2sθks
χ
kε
χα − δθχ(ŝθk)2((ŝk)2

⊥)2}
+ ζ(ŝk)2

⊥
{

(ŝθk)2 (sχkδθα − sθkδχα − 3sαk δ
θχ
)

+ ζ2sθkδ
χα(ŝk)2

⊥
}
, (B.19)

N7 = − 2δθχ(ĉθk)2 {(sk)2 + ζ2((ŝk)2
⊥)2}− 2ζ2sθks

χ
k (ŝk)2

⊥
{
−2 + δθα + 2δχαεθχ

}
+ ζ
(
− 2sαδθχ(ĉθk)2(ŝk)2

⊥ − sθkεθα
{

4δχα(sk)2 + ζ2((ŝk)2
⊥)2} ), (B.20)

N8 = − 16sθks
χ
k

{
(sk)2 + ζ2

4
(
2δχα + 1

)
{(ŝk)2

⊥}2
}
− 8ζsθk(ŝk)2

⊥
{

2sχks
α
k + δχα

(
1 + ζ2

8 {(ŝk)2
⊥}2

)}
.

(B.21)

These numerators simplify further since the denominator includes odd powers of only
kα. The next step of the calculation is shown in eqs. (2.81) - (2.85) in the main part.

B.2.2 Sunset diagram for Boriçi-Creutz fermions
Boriçi-Creutz fermions involve one-loop calculations that are even more cumbersome
than those for Karsten-Wilczek fermions. Since every Euclidean component kµ con-
tributes as an odd power that multiplies ζ in the denominator, simplification of the
numerator using symmetry arguments is only possible in terms which are individually
even in ζ and loop momenta. However, any odd function of loop momenta in the nu-
merators contributes to the integrals, since it combines to an even power with terms
like ζ (sk) in the denominator. The integral of eq. (2.89) is split into a Feynman gauge
part (J0 = Jχ3 |ξ=1) and a gauge fixing part (J1 = (ξ− 1) (∂Jχ3 /∂ξ)), which is the rest of
eq. (2.89). Numerators N0 of J0 and N1 of J1 are simplified algebraically to

N0 = sχk{2(ĉχk )2 − (ĉk)2}+ ζ2{{6(ŝχk )2 + (ŝk)2}sχk − {2(ŝχk )2 + 1
2(ŝk)2}(sk)− (skŝkŝk)

}
+ ζ
{

2(sk)2 + 4(sk)sχk − 8(sχk )2 + 1
4
{

2(ĉχk )2 − (ĉk)2}{2(ŝχk )2 − (ŝk)2}
+ ζ2(1

4
{

(ŝk)2 − 2(ŝχk )2}(ŝk)2 + 1
2
{

2(ŝχk )4 − (ŝk)4})}, (B.22)

N1 = sχk
(
4(sk)2 + ζ2{−(ŝk)4 + 2((ŝk)2)2 + 2(skŝk)2}

)
+ ζ2({(ŝχk )2(ŝk)2 + 1

2((ŝk)2)2}(sk) + 2{(ŝχk )2 − (ŝk)2}(skŝkŝk)
)

+ ζ
(
{(ŝk)2 − 4(ŝχk )2}(sk)2 + 2{2(skŝkŝk)− (sk)(ŝk)2}sχk + ζ2

2 {(ŝ
χ
k )2 − 1

2(ŝk)2}(ŝk)4).
(B.23)

The terms in eqs. (B.22) and (B.23), are either even in ζ and odd in k or odd in ζ and
even in k. Since the denominator DBC(k; ζ,M, a) consists of terms that are either even
or odd in both ζ and k, the full integral Jχ3 (ζ, a) is necessarily an odd function of ζ, since
integrands which are odd in any loop momentum component kµ vanish upon integration.
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Further simplification of N0 or N1 due to symmetry arguments yields

N0 = sχk{2(ĉχk )2 − (ĉk)2}+ ζ2{{6(ŝχk )2 + (ŝk)2}sχk − {2(ŝχk )2 + 1
2(ŝk)2}(sk)− (skŝkŝk)

}
+ ζ
{

2(sk)2 − 4(sχk )2 + 1
4
{

2(ĉχk )2 − (ĉk)2}{2(ŝχk )2 − (ŝk)2}
+ ζ2(1

4
{

(ŝk)2 − 2(ŝχk )2}(ŝk)2 + 1
2
{

2(ŝχk )4 − (ŝk)4})}, (B.24)

N1 = sχk
(
4(sk)2 + ζ2{−(ŝk)4 + 2((ŝk)2)2 + 2(skŝk)2}

)
+ ζ2({(ŝχk )2(ŝk)2 + 1

2((ŝk)2)2}(sk) + 2{(ŝχk )2 − (ŝk)2}(skŝkŝk)
)

+ ζ
(
{(ŝk)2 − 4(ŝχk )2}(sk)2 + {2(sχk )2 + ζ2

4 (ŝk)4}{2(ŝχk )2 − (ŝk)2}
)
. (B.25)

The integral Jm(ζ,M, a) of eq. (2.91) contributes to mass renormalisation. It is split into
a Feynman gauge part (J2 = Jm|ξ=1) and a gauge fixing part (J3 = (ξ − 1) (∂Jm/∂ξ)).
Numerators N2 of J2 and N3 of J3 are simplified algebraically to

N2 = (ĉk)2 + ζ2(ŝk)2 + 2ζ(sk), (B.26)
N3 = 4(sk)2 + ζ2(ŝk)4 + 2ζ(skŝkŝk). (B.27)

The presence of an odd term in both ζ and k is a remarkable difference to the case of
Karsten-Wilczek fermions, where such terms had explicitly cancelled. Since it vanishes
unless it is combined with the odd term in ζ and k of the denominator, the overall inte-
gral Jm(ζ,M, a) is an even function of ζ. The presence of these odd terms considerably
increases the numerical effort of the numerical integration for Boriçi-Creutz fermions
compared to Karsten-Wilczek fermions.

The most laboriuous part of the self-energy calculation is J4(p; ζ,M, a), which con-
tributes to the wavefunction renormalisation and the marginal counterterm.The denom-
inators of the sunset diagram that contribute to wavefunction renormalisation and the
marginal counterterm’s coefficient for Boriçi-Creutz fermions read

D4 = DBC(k; ζ,M, a)Dg(−k;M,a), (B.28)
D5 = DBC(k; ζ,M, a) (Dg(−k;M,a))2 , (B.29)
D6 = DBC(k; ζ,M, a) (Dg(−k;M,a))3 . (B.30)

Five numerators N4 - N8 contribute to wavefunction renormalisation and to the marginal
counterterm’s coefficient. The full numerators N4 and N5 of the part in Feynman gauge
(Jχθ4 |ξ=1) read

N4 =
∑
µ,ν,λ

δµν

8 tr
{(

γχδµθ
(
−γµŝµk − ζγ

µ′ĉµk
) (
γλsλk − ζγλ′{1− cλk}

) (
γν ĉνk − ζγν′ŝνk

))
+
(
γχδνθ

(
γµĉµk − ζγ

µ′ŝµk
) (
γλsλk − ζγλ′{1− cλk}

) (
−γν ŝνk − ζγν′ĉνk

))}
, (B.31)

N5 =
∑
µ,ν,λ

δµν

4 tr
{
γχ
(
γµĉµk − ζγ

µ′ŝµk
) (
γλsλk − ζγλ′{1− cλk}

) (
γν ĉνk − ζγν′ŝνk

)} (
ĉθkŝ

θ
k

)
, (B.32)
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and the numerators N6, N7 and N8 of the gauge fixing part (−(1− ξ)
(
∂Jχθ4 /∂ξ

)
) read

N6 =
∑
µ,ν,λ

1
8tr
{(

γχδµθ
(
−γµŝµk − ζγ

µ′ĉµk
) (
γλsλk − ζγλ′{1− cλk}

) (
γν ĉνk − ζγν′ŝνk

))
+
(
γχδνθ

(
γµĉµk − ζγ

µ′ŝµk
) (
γλsλk − ζγλ′{1− cλk}

) (
−γν ŝνk − ζγν′ĉνk

))}
(ŝµk ŝ

ν
k) , (B.33)

N7 =
∑
µ,ν,λ

−
δµθ ĉµk ŝ

ν
k + δνθ ŝµk ĉ

ν
k

8 tr
{
γχ
(
γµĉµk − ζγ

µ′ŝµk
) (
γλsλk − ζγλ′{1− cλk}

) (
γν ĉνk − ζγν′ŝνk

)}
,

(B.34)

N8 =
∑
µ,ν,λ

−
(ĉθkŝθk)(ŝµk ŝ

ν
k)

2 tr
{
γχ
(
γµĉµk − ζγ

µ′ŝµk
) (
γλsλk − ζγλ′{1− cλk}

) (
γν ĉνk − ζγν′ŝνk

)}
. (B.35)

Summation of Euclidean indices and evaluation of the trace simplifies numerators to

N4 = sθk{1− 2δθχ}
{

2(1− ζ2)sχk + ζ2(sk)
}

+ ζ2
(
{δθχ − 1

4}
{

4(sθk)2 − (ŝθk)4}− cθk{(ŝχk )2 + εθχ(ŝk)2})
+ ζ
{
sθk(1− 2δθχ)

(
{1 + ζ2}{(ŝχk )2 − 1

2(ŝk)2} − ζ2(ŝθk)2)+ 2cθk
(
sθk + sχk + δθχ{(sk)− 4sθk}

)}
,

(B.36)

N5 = + 2sθk
(
sχk{2(ĉχk )2 − (ĉk)2}+ ζ2{{6(ŝχk )2 + (ŝk)2}sχk − {2(ŝχk )2 + 1

2(ŝk)2}(sk)− (skŝkŝk)
}

+ ζ
{

2(sk)2 + 4(sk)sχk − 8(sχk )2 + 1
4
{

2(ĉχk )2 − (ĉk)2}{2(ŝχk )2 − (ŝk)2}
+ ζ2(1

4
{

(ŝk)2 − 2(ŝχk )2}(ŝk)2 + 1
2
{

2(ŝχk )4 − (ŝk)4})}), (B.37)

N6 = − 2(ŝθk)2δθχ(sk)2 + ζ2
{
sθk
(
{4δθχ − 1}(skŝkŝk) + 2sθk(ŝχk )2 + 2sχk (ŝk)2 + (sk){(ŝk)2 − 2(ŝχk )2}

)
− (ŝθk)2(cθk{2(ŝχk )2 + (ŝk)2}+ 1

4(ŝk)2 + 1
2{δ

θχ({(ŝk)2}2 + (ŝk)4) + (ŝχk )2(ŝθk)2}
)}

+ ζ
{
sχk (ŝθk)2{(ŝk)2 + (ŝθk)2 + cθk}+ sθk

(
{2(sk)2 − ζ2

2 (ŝk)4}{1− 2δθχ} − 4sχks
θ
k − (ŝθk)2(ŝk)2)},

(B.38)

N7 = − δθχ(ĉθk)2(2(sk)2 + ζ2

2
{

((ŝk)2)2 − (ŝk)4 + (ŝk)2(ŝχk )2})
+ ζ2sθk

(
{3sθk − 2sχk − (sk)}(ŝk)2 + (1− 4δθχ)(skŝkŝk)

)
+ ζ
(
(ĉθk)2{(ŝk)2{sχk − s

θ
k}+ 2sθk(ŝχk )2}+ sθk

{
4sθksχk − {2(sk)2 − ζ2

2 (ŝk)4}(1− 2δθχ)
})
, (B.39)

N8 = − 4sθk
{
sχk
(
4(sk)2 + ζ2{−(ŝk)4 + 2((ŝk)2)2 + 2(skŝk)2}

)
+ ζ2({(ŝχk )2(ŝk)2 + 1

2((ŝk)2)2}(sk) + 2{(ŝχk )2 − (ŝk)2}(skŝkŝk)
)

+ ζ
(
{(ŝk)2 − 4(ŝχk )2}(sk)2 + 2{2(skŝkŝk)− (sk)(ŝk)2}sχk + ζ2

2 {(ŝ
χ
k )2 − 1

2(ŝk)2}(ŝk)4)}. (B.40)

It is observed that each numerator consists of terms which are either even or odd in both
ζ and k. Since these odd powers of k vanish unless combined with the denominator’s
term that is odd in ζ and k, both contributions to Σ1 and d1L are necessarily even
functions of ζ. Further simplification is achieved by noting that odd powers of loop
momentum components kµ in terms of the numerators which are even in powers k (with
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arbitrary Euclidean indices) are integrated to zero.

N4 = − (sθk)2{2δθχ − ζ2}+ ζ2
(
{δθχ − 1

4}
{

4(sθk)2 − (ŝθk)4}− cθk{(ŝχk )2 + εθχ(ŝk)2})
+ ζ
{
sθk(1− 2δθχ)

(
{1 + ζ2}{(ŝχk )2 − 1

2(ŝk)2} − ζ2(ŝθk)2)+ 2cθk
(
sθk + sχk + δθχ{(sk)− 4sθk}

)}
,

(B.41)

N5 = − 2sθk
(
sθk
(
δθχ{(ĉk)2 − 2(ĉθk)2} − ζ2{(2δθχ − 1){2(ŝχk )2 + (ŝθk)2 + 1

2(ŝk)2}
})

− ζ
{

2(sk)2 + 4(sk)sχk − 8(sχk )2 + 1
4
{

2(ĉχk )2 − (ĉk)2}{2(ŝχk )2 − (ŝk)2}
+ ζ2(1

4
{

(ŝk)2 − 2(ŝχk )2}(ŝk)2 + 1
2
{

2(ŝχk )4 − (ŝk)4})}), (B.42)

N6 = − 2(ŝθk)2δθχ(sk)2 + ζ2
{

(sθk)2(2δθχ{2(ŝθk)2 + (ŝk)2}+ (ŝk)2 − (ŝθk)2)
− (ŝθk)2(cθk{2(ŝχk )2 + (ŝk)2}+ 1

4(ŝk)2 + 1
2{δ

θχ({(ŝk)2}2 + (ŝk)4) + (ŝχk )2(ŝθk)2}
)}

+ ζ
{
sχk (ŝθk)2{(ŝk)2 + (ŝθk)2 + cθk}+ sθk

(
{2(sk)2 − ζ2

2 (ŝk)4}{1− 2δθχ} − 4sχks
θ
k − (ŝθk)2(ŝk)2)},

(B.43)

N7 = − δθχ(ĉθk)2(2(sk)2 + ζ2

2
{

((ŝk)2)2 − (ŝk)4 + (ŝk)2(ŝχk )2})+ ζ2(sθk)2(2εθχ(ŝk)2 + (1− 4δθχ)(ŝθk)2)
+ ζ
(
(ĉθk)2{(ŝk)2{sχk − s

θ
k}+ 2sθk(ŝχk )2}+ sθk

{
4sθksχk − {2(sk)2 − ζ2

2 (ŝk)4}(1− 2δθχ)
})
, (B.44)

N8 = − 4sθk
{
sθk
{
δθχ
(
4(sk)2 + ζ2{−(ŝk)4 + 2((ŝk)2)2 + 2(skŝk)2}

)
+ ζ2({(ŝχk )2(ŝk)2 + 1

2((ŝk)2)2}+ 2{(ŝχk )2 − (ŝk)2}(ŝθk)2)}
+ ζ
(
{(ŝk)2 − 4(ŝχk )2}(sk)2 + 2{2(skŝkŝk)− (sk)(ŝk)2}sχk + ζ2

2 {(ŝ
χ
k )2 − 1

2(ŝk)2}(ŝk)4)}. (B.45)

In particular, odd powers in ζ in the numerators multiply various different combinations
of odd powers of loop momentum components, which cannot be reduced because the
denominator includes a sum of all loop momentum components in its odd term. This
is the main reason why numerical integration is considerably more expensive for Boriçi-
Creutz fermions than for Karsten-Wilczek fermions.
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Statistical analysis

In the following, a brief overview of the statistical analysis within this thesis is given.
This overview closely follows [65]. The terminology of primary and secondary observables
as well as correlated and uncorrelated fits are clarified. The subject of autocorrelations is
touched and methods for estimating whether observables are sufficiently uncorrelated or
not are discussed. Finally, the Jackknife method which is used in the statistical analysis
of this thesis is discussed.

A primary observable X is calculated on N different configurations, where Xi denotes
the value of X on the ith sample. The expectation value of 〈X〉 and the variance σ2

X

are defined as

〈X〉 = 〈Xi〉, (C.1)
σ2
X = 〈(Xi − 〈Xi〉)2〉. (C.2)

Stochastic estimators 〈X̂〉 and σ̂2
X are defined accordingly for 〈X〉 and σ2

X ,

X̂ = 1
N

N∑
i=1

Xi, (C.3)

σ̂2
X = 1

N − 1

N∑
i=1

(Xi −X)2. (C.4)

The expectation value of the estimator 〈X̂〉 agrees with the mean as 〈X̂〉 = 〈X〉. If the
Xi are uncorrelated, their expectation values factorise for i 6= j as

〈XiXj〉 = 〈Xi〉〈Xj〉 = 〈X〉2 (C.5)
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and the variance σ2
X̂

of the estimator is given by

σ2
X̂

= 〈
(
〈X̂〉 − 〈X〉

)2
〉 = 〈

(
1
N

N∑
i=1

(Xi − 〈X〉)
)2

〉

= 1
N
〈X2〉 − 〈X〉2 + 1

N2

N∑
i 6=j=1

〈XiXj〉. (C.6)

The last term yields ∑N
i 6=j=1〈XiXj〉 = N(N − 1)〈X〉2 for uncorrelated observables due

to eq. (C.5) and the variance of the estimator is related to the variance of the observable
by σ2

X̂
= σ2

X/N . Using the estimator of the variance σ̂2
X instead of σ2

X , the statistical
error of the estimator X̂ is given by

σ = σ̂X√
N
. (C.7)

Since observables, which are computed from the same Markov chain are necessarily
correlated to some extent, these correlations have to be accounted for. In principle, it
would be necessary to calculate the autocorrelation function,

CX(t) ≡ CX(Xi, Xi+t) = (Xi − 〈Xi〉)(Xi+t − 〈Xi+t〉), (C.8)

and the integrated autocorrelation time,

τX,int = 1
2 +

N∑
t=1

ΓX(t), ΓX(t) = CX(t)
CX(0) , (C.9)

where t is the computer time of the Markov chain update algorithm. The variance of
the estimator which would yield the statistical error including autocorrelations reads

σ2
X̂

= 1
N2

∑
i,j

CX(|i− j|) = CX(0)
N

N∑
t=−N

ΓX(|t|)
(

1− |t|
N

)
≈ σ2

X

N
2τX,int, (C.10)

where CX(0) = σ2
X is used. However, calculation of the integrated autocorrelation time

requires a cutoff of the summation for values of t where ΓX(t) becomes unreliable. Since
usually extremely large ensembles with at least 1000 τX,int samples are required for a
reliable estimate of τX,int, this method is impractical for the small statistical ensembles
of the numerical studies of chapter 4.

A typical representative of a secondary observable Y is a parameter obtained from a fit
to a correlation function. The statistical error of Y is obtained as the square root of the
diagonal elements of the covariance matrix

COV (Y,Z) = lim
N→∞

1
N

N∑
i,j=1

∂Y

∂Xi

∂Z

∂Xj
〈XiXj〉N (C.11)
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Since the secondary observables Y are usually non-linear functions of the primary ob-
servables X, the covariance matrix is not exactly known. The fit is performed as a
minimisation of χ2 that is defined as

χ2 =
nmax∑

s,s′=nmin

(X(s)− f(Y, s))w(s, s′)
(
X(s′)− f(Y, s′)

)
(C.12)

by varying the set of fit parameters Y . The indices s, s′ denote the sampling range of
the minimisation and typically represent indices of time slices. Ideally the inverse of
the exact covariance matrix would be used as statistical weights w(s, s′) = COV (s, s′).
However, since only a stochastic estimator COVN (s, s′) of the covariance matrix on N
samples is known,

COVN (s, s′) = 1
N − 1〈(X(s)− 〈X(s)〉N )

(
X(s′)− 〈X(s′)〉N

)
〉N (C.13)

is inverted numerically and used as a weight w(s, s′)) = COVN (s, s′)−1 in the definition
of χ2. In the case of truly uncorrelated data, the covariance matrix is diagonal and the
weights take the form w(s, s′) = δs,s′/σ

2
X(s). If the estimator of the covariance is badly

determined due to statistical fluctuations, it may acquire accidental small eigenvalues
that are detrimental to the stability of the fit. As a result, despite reasonably small values
of χ2, the fit fails to agree with the primary observables. In such a case, the covariance
matrix must either be smoothly approximated or the off-diagonal elements of the covari-
ance matrix must be neglected. The latter case is the familiar form of an uncorrelated fit.

The numerical correlation of data is estimated in the statistical analysis with three dif-
ferent approaches. The first approach is data blocking. The ensemble is divided in N/K
subsets, which are indicated by k ∈ [1, . . . , N/K]. The mean value 〈X̂k〉 and variance
σ2
X̂k

are calulated on each subset k with K samples each. If the variance scales like 1/K
upon variation of K, the original observables can be considered sufficiently uncorrelated.
The second approach omits samples of the total ensemble in a simplified version of the
statistical bootstrap. This is done by either using only a subset of K samples which
would be counted as the kth subset in the data blocking approach or by using only every
kth sample and varying the offset i of the first sample within i ∈ [0,K − 1]. If the
mean 〈Xk〉 fluctuates between the subsets only within the statistical errors of any of the
subsets, data can be considered sufficiently uncorrelated.

The third approach uses the Jackknife method. The Jackknife method computes sample
averages of the original data, where the ith sample is removed. Hence, the Jackknife
bins read

XJ
i = 1

N − 1
(
NX̂ −Xi

)
(C.14)

and the variance is given by

σ2
X̂

= N − 1
N

N∑
i=1

(
XJ
i − 〈X̂〉

)2
(C.15)

155



The Jackknife method can be freely combined with the aforementioned blocking proce-
dures. Its advantage is that secondary observables Y J that are computed from primary
observables XJ that have been processed with the Jackknife procedure are automatically
stochastic estimators for 〈Y 〉. Their covariance matrix reads

COV (Y,Z) = lim
N→∞

N − 1
N

N∑
i=1

(
Y J
i − 〈Y 〉

) (
ZJi − 〈Z〉

)
. (C.16)

Once the secondary observables Y J are obtained with the Jackknife method, they can
be used instead of primary observables in eq. (C.12), any secondary observables Y can
be used to define a sampling range and the covariance matrix of the primary observables
can be replaced by eq. (C.16).

Fits to secondary observables are performed for all extrapolations of fit parameters. The
sampling range is defined in terms of simulation parameters of the primary simulations.
The covariance matrix of fit parameters appears unstable using correlated fits for extrap-
olations due to having only small data sets. Thus, secondary observables from correlated
fits are fitted with uncorrelated fits within this thesis.

Lastly, some values of the simulation parameter c in the analysis of power spectral
densities in section 4.3.3 yield frequencies ωc ≤ ωB/2, which are too close to zero for
obtaining any statistical variation. In these cases, the analysis which determines the
statistical error from Jackknife bins of secondary observables fails and yields zero as the
statistical error. Thus, the statistical error is combined quadratically with an estimate
of the systematical error and an uncorrelated fit using routines from the GSL library
is conducted on any sample Y J . The combined statistical and systematical errors are
used in the definition of the weights of the secondary observables. The statistical error
is then calculated from the variance of ternary observabless and the systematical error
is estimated from the variance-covariance matrix of ternary observables.
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Oscillating lattice toy models

Application of the decomposition of spinor fields in section 3.1.4 indicates that mesonic
correlation functions receive oscillating contributions with a frequency that is a contin-
uous function of the counterterms’ coefficients. Thus, this frequency is not necessarily
an eigenfrequency of a periodic lattice for arbitrary choices of the parameters. This
appendix contains two toy models that show how oscillations with arbitrary frequencies
are realised on a lattice with periodic boundary conditions.

D.1 Harmonic oscillator as a toy model

The first toy model is a simple harmonic oscillator. Its equation of motion reads(
d2

dt2
+ ω2

0

)
q(t) = 0 (D.1)

and its solutions are
q(t) = A cos(ω0t) +B sin(ω0t). (D.2)

For a periodic system with q(t + T ) = q(t), it is obvious that the only permissible
homogenous solutions are those with ω0

!= 2πn
T . However, the situation is different for

inhomogenous solutions. The Green’s function of the harmonic oscillator is defined by(
d2

dt2
+ ω2

0

)
G(t, t0) = δ(t− t0), (D.3)

and reads

G(t, t0) = 1
2π

∫ +∞

−∞
dk

eik(t−t0)

ω2
0 − k2 + iε

. (D.4)
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If the harmonic oscillator is set up with periodic boundary conditions q(t + T ) = q(t),
the Green’s function becomes (T is the physical length of the periodic direction)

G(t, t0) = 1
T

∞∑
nk=0

ei
2πnk
T

(t−t0)

ω2
0 −

(
2πnk
T

)2 (D.5)

due to its restricted frequency range (k = 2πnk
T ). The real part of the Green’s function

of eq. (D.5)– which is the same as the sum of Green’s function and reflected Green’s
function – is plotted as the points in figure D.5) for T = 64 for three oscillator frequencies
Tω0
128π =

{
1
11 ,

2
11 ,

3
11

}
. The continuous curves are obtained by truncating the sum in

eq. (D.5) at nk = T − 1. Effects of the truncation are visible near the inhomogenity. It
is clearly visible that the Green’s function oscillates with oscillator frequency ω0 even
though it is not a permissible frequency k for homogenous solutions.

Figure D.1: Green’s functions for harmonic oscillators of frequencies Tω0
128π =

{
1
11 ,

2
11 ,

3
11

}
(blue, yellow, green) oscillate with ω0.

The power spectral density, which is defined in eq. (4.38), is computed from a discrete
Fourier transform of the Green’s function and plotted in figure D.2. The curves are given
by 1/[N3(ω2

0 − k2)2] and diverge at the peaks of the power spectral densities. The peak
positions are not at frequencies k that are permissible in terms of the periodic boundary
conditions, but at the eigenfrequencies ω0 of the harmonic oscillators.
Next, the harmonic oscillator is formulated on a lattice. This introduces an upper bound
for the frequencies. One example of a discretised action for a harmonic oscillator on a
lattice is given by

S[q] = m

2a

N−1∑
n=0

qn
(
((aω)2 − 2)qn + qn−1 + qn+1

)
. (D.6)
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Figure D.2: The peaks of the power spectral densities mark the oscillators’ frequencies
Tω0
64 = 2π

22 × {2, 3, 4, 5, 6}, which lie in between the lattice frequencies k.

With a Fourier transform of the variable qn, the action is expressed in frequency space,

S[q] = m

2aN
1
√
N

2

N−1∑
nk,n`=0

q(2π nk
aN

)q(2π n`
aN

)
N−1∑
n=0

ei(nk+n`)n 2π
N

(
(aω0)2 − 2 + e+ia` + e−ia`

)

= m

aN

N−1∑
nk=0

q

(
2π nk
aN

)
q

(
2πN − nk

aN

)(
cos

(
2πnk
N

)
− 1 + (aω)2

2

)
, (D.7)

where the different modes decouple. Hence, the equation of motion is(
cos

(
2πnk
N

)
− 1 + (aω0)2

2

)
q

(2πnk
aN

)
= 0 (D.8)

and turns into a standard harmonic oscillator (−k2 +ω2
0)q(k) = 0 in its continuum limit

(a→ 0 and k = 2π
a
nk
N ). The homogenous solution of the lattice equation requires

2π
a

nk
N

= ωlat
0 ≡

1
a

arccos
(

1− (aω0)2

2

)
, (D.9)

where nk is an integer that labels one of the lattice eigenfrequencies. Due to the discre-
tised second derivative, the lattice Green’s function reads

G(n, n0) = a

N

N−1∑
nk=0

ei2π
nk
N

(n−n0)

1− (aω0)2

2 − cos (2π nkN )
. (D.10)

The power spectral density is computed from a discrete Fourier transform of the lattice
Green’s function and plotted in figure D.3 together with curves that are given by

C(nk, ω0) = 1
N3

1
1− (aω0)2

2 − cos (2π nkN )
. (D.11)

The curves C(nk, ω0) diverge at the peaks of the power spectral densities, which match
the discretised oscillator’s frequencies ωlat

0 instead of the lattice eigenfrequencies 2π
a
nk
N .
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Figure D.3: The peaks of the power spectral densities mark the discretised oscillators’
frequencies ωlat

0 (ω0), aω0 = 2π
22 × {2, 3, 4, 5, 6}.

D.2 One-dimensional, spinless lattice fermion
The second toy model, a one-dimensional colourless and spinless fermion field with imag-
inary mass iω0 is closer to the thesis’ main topic. The field’s action is given by

S[ψ,ψ†] =
N−1∑
n=0

ψ†n{
ψn+1 − ψn−1

2a + iω0ψn}. (D.12)

The equation of motion reads
ψn+1 − ψn−1

2a + iω0ψn = 0 (D.13)

and decouples in frequency space as
i

a

{
sin
(

2πnk
N

)
+ aω0

}
ψ

(
2πnk
N

)
= 0. (D.14)

Similar to the discretised harmonic oscillator, homogenous solutions require

2π
a

nk
N

=
{

Ω1
Ω2

≡
{
−ωlat

0
π
a + ωlat

0
, ωlat

0 ≡
1
a

arcsin (aω0), (D.15)

where nk is an integer that labels one of the lattice eigenfrequencies. Due to the discre-
tised derivative, the lattice Green’s function – the one-dimensional fermion propagator
– reads

G(n, n0) = −i
N

N−1∑
nk=0

ei2π
nk
N

(n−n0)

(aω0) + sin (2π nkN ) . (D.16)

The Green’s function for N = 128 is plotted in figure D.4 and exhibits interference
patterns that are analysed in terms of its power spectral density, which is plotted in
figure D.5. The continuous curves in the plot of the power spectral density are given by

C(k, ω0) = 1
N4

1
(aω0) + sin (2π nkN ) . (D.17)
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Figure D.4: The Green’s function G(n, 0) for aω0
2π = − 3

22 exhibits interference patterns.

The power spectral density is peaked at the frequencies Ω1 and Ω2 that are defined in
eq. (D.15). Each lattice frequency 2π

a
nk
N contributes with different weigths to each of the

peaks for Ω1 and Ω2, whose interference pattern is visible in the Green’s function.

Figure D.5: The peaks of the power spectral densities mark both frequencies Ω1 and Ω2,
which are defined as functions of ωlat

0 , where aω0 = −2π
22 × {2, 3, 4, 5, 6}.

In the next step of the toy model, a mesonic correlation function is created from the
contraction of two Green’s functions as in eqs. (3.48) or (4.17),

GM (n, n0) = |G(n, n0)|2. (D.18)

This correlation function is manifestly positive and contains a constant and an oscillating
term with equal weights as is depicted in figure D.6. Hence, the correlation function can
be written in terms of the oscillation frequency Ω as

GM (n) ∝ 1 +
cos (aΩN

2 )
1 + cos (aΩN) cos (aΩ(n− N

2 )). (D.19)

Thus, the toy model’s correlation function formally resembles the decomposed correlation
function in eqs. (3.59)-(3.61) that is derived from a spinor decomposition in section 3.1.

161



Figure D.6: The mesonic correlation function for aω0
2π = − 3

22 has oscillating and non-
oscillating contributions.

Its frequency Ω is analysed in terms of the mesonic correlation function’s power spec-
tral density, which is plotted in figure D.7. The first peak is exactly at the lattice’s
eigenfrequency 2π

a
nk
N = 0. The second peak has its maximum at

Ω ≡ Ω2 − Ω1 = π

a
+ 2ωlat

0 , (D.20)

which implies that the oscillation is due to the product of different fermionic modes
(counted as Ω1 and Ω2) in both Green’s functions. Frequencies other than the lattices’s
eigenfrequencies can be realised in terms of the peak position of the spectral distribution
of the lattice’s eigenfrequencies. Since this toy model is essentially a one-dimensional,
non-interacting Karsten-Wilczek fermion, it is not suprising that similar features are
reproduced in the numerical results of section 4.3.

Figure D.7: The peak of the mesonic correlation function’s power spectral densities
marks the frequency difference Ω = Ω2 − Ω1. Both Ω1 and Ω2 are defined as functions
of ωlat

0 , where aω0 = −2π
22 × {2, 3, 4, 5, 6}.
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Simulation parameters and data sets

E.1 Summary of data sets

This appendix summarises all parameters sets of simulations for this thesis in tabular
form. Karsten-Wilczek fermions are always simulated with ζ = +1.

β T ncfg c d am0

5.8 32 100 0.0, −0.3, −0.4, −0.45, −0.5, −0.55, −0.65 0, 0.02 0.02, 0.04,
0.05

6.0 32 100 −0.2, −0.3, −0.38, −0.42, −0.45, −0.5, −0.55,
−0.65

−0.02, −0.01, 0 0.01, 0.02,
0.03, 0.04,
0.05

6.0 32 100 −0.3, −0.38, −0.42, −0.45, −0.5, −0.55 −0.08, −0.06,
−0.04, +0.01,
+0.02

0.02, 0.03,
0.04, 0.05

6.0 32 100 +0.3, +0.2, +0.1, 0.0, −0.1, −0.15, −0.2,
−0.25, −0.3, −0.32, −0.35, −0.37, −0.38,
−0.40, −0.42, −0.43, −0.44, −0.4445, −0.45,
−0.47, −0.48, −0.5, −0.52, −0.55, −0.6, −0.65,
−0.7, −0.8, −0.9, −1.0, −1.1, −1.2

0 0.02, 0.03,
0.04, 0.05

6.0 48 40 0.0, −0.2, −0.3, −0.4, −0.45, −0.55, −0.65 0 0.02
6.2 32 100 −0.2, −0.3, −0.38, −0.42, −0.45, −0.55, −0.65 0 0.01
6.2 32 100 −0.2, −0.3, −0.38, −0.42, −0.45, −0.55, −0.65 −0.08, −0.04,

+0.02
0.02, 0.03,
0.04, 0.05

6.2 32 100 −0.15, −0.2, −0.25, −0.27, −0.3, −0.32, −0.33,
−0.35, −0.37, −0.38, −0.42, −0.43, −0.45,
−0.47, −0.50, −0.55, −0.6, −0.65

0 0.02, 0.03,
0.04, 0.05

6.2 48 40 0.0, −0.2, −0.3, −0.4, −0.45, −0.55, −0.65 0 0.02

Table E.1: The anisotropy study covers a wide range of parameter values. Parallel and
perpendicular source-smeared correlators are available in γ5, 1 and all γµ channels.
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β ncfg c d am0 r0m0

5.8 10 −0.4, −0.45, −0.48, −0.5, −0.53, −0.55, −0.6 −0.002 0.01464 0.054
6.0 10 −0.35, −0.40, −0.42, −0.45, −0.47, −0.50, −0.55 −0.001 0.01 0.054
6.2 10 −0.3, −0.35, −0.38, −0.40, −0.42, −0.45, −0.50 −0.001 0.0073 0.054

Table E.2: All datasets of the frequency study use the same bare mass (r0m0) in physical
units. Mesonic correlators are source smeared and available in allM,N channels.

Action β ncfg c d mcr m0 (r0M55) [MeV]
Karsten-Wilczek, ‖ 6.0 20 −0.45 −0.001 n.a 0.02 642(4)
Karsten-Wilczek, ⊥ 6.0 20 −0.45 −0.001 n.a 0.02 642(4)

Naïve 6.0 20 n.a. n.a n.a 0.02 728(2)
Wilson 6.0 20 n.a. n.a −0.808 −0.788 545(4)

Table E.3: Different values of r0M55 for equal bare masses m0 (or m0 −mcr for Wilson
fermions) are due to use of different fermion actions.

β L ncfg c d am0 (r0m0) (r0M55) M55 [MeV] B55

5.8 24 200 −0.51 −0.002 0.02928 0.107 1.655(2) 653(1) 25.5(1)
5.8 24 200 −0.51 −0.002 0.02000 0.073 1.379(1) 544(1) 25.9(1)
5.8 24 200 −0.51 −0.002 0.01464 0.054 1.188(1) 469(1) 26.3(1)
5.8 24 200 −0.51 −0.002 0.01000 0.037 0.990(1) 391(1) 26.7(1)
5.8 24 200 −0.51 −0.002 0.07320 0.027 0.852(1) 336(1) 27.0(1)
5.8 24 200 −0.51 −0.002 0.05340 0.020 0.731(1) 288(1) 27.3(1)
6.0 24 200 −0.45 −0.001 0.02000 0.107 1.598(3) 631(1) 23.8(1)
6.0 24 200 −0.45 −0.001 0.01371 0.074 1.333(3) 526(1) 24.2(1)
6.0 24 200 −0.45 −0.001 0.01000 0.054 1.149(3) 453(1) 24.6(1)
6.0 24 200 −0.45 −0.001 0.06850 0.037 0.964(4) 380(1) 25.3(2)
6.0 24 200 −0.45 −0.001 0.00500 0.027 0.833(4) 329(2) 25.9(3)
6.0 24 200 −0.45 −0.001 0.03650 0.020 0.719(4) 284(2) 26.4(3)
6.2 32 100 −0.40 −0.001 0.01460 0.107 1.575(5) 621(2) 23.1(2)
6.2 32 100 −0.40 −0.001 0.01000 0.074 1.312(6) 518(2) 23.4(2)
6.2 32 100 −0.40 −0.001 0.07300 0.054 1.131(6) 446(2) 23.8(3)
6.2 32 100 −0.40 −0.001 0.00500 0.037 0.947(7) 374(3) 24.4(3)
6.2 32 100 −0.40 −0.001 0.03650 0.027 0.819(7) 323(3) 25.0(4)
6.2 32 100 −0.40 −0.001 0.02660 0.020 0.709(8) 280(3) 25.7(6)
6.2 32 100 −0.40 −0.001 0.01940 0.014 0.615(8) 243(3) 26.5(7)

Table E.4: Chiral behaviour is studied on lattices with T = 48. Different r0M55 for
equal r0m0 at different β indicates lack of mass renormalisation.
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E.2 Addendum to tuning with the frequency spectrum

Ratios R05(n0) of correlation functions for the coarser lattices (β = 6.0, β = 5.8) are
displayed in the following. Since the ratio at the source R05(0) varies only within one
or two standard errors over the range of c for all lattices, the ratio of renormalisation
factors of the γ5 and γ0 bilinears seems to have only a weak dependence on c.
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Figure E.1: Ratios R05(n0) on a 128× 243 lattice at β = 6.0 from table 4.13 are unmis-
takable evidence of the c dependence of the frequency shift.

ω

c = −0.35
P(ω)

0.80.40

1

0.1

0.01

0.001

0.0001

1e-05

1e-06

1e-07

1e-08
ω

c = −0.40
P(ω)

0.80.40

1

0.1

0.01

0.001

0.0001

1e-05

1e-06

1e-07

1e-08
ω

c = −0.42
P(ω)

0.80.40

1

0.1

0.01

0.001

0.0001

1e-05

1e-06

1e-07

1e-08
ω

c = −0.45
P(ω)

0.80.40

1

0.1

0.01

0.001

0.0001

1e-05

1e-06

1e-07

1e-08

ω

c = −0.47
P(ω)

0.80.40

1

0.1

0.01

0.001

0.0001

1e-05

1e-06

1e-07

1e-08
ω

c = −0.50
P(ω)

0.80.40

1

0.1

0.01

0.001

0.0001

1e-05

1e-06

1e-07

1e-08
ω

c = −0.55
P(ω)

0.80.40

1

0.1

0.01

0.001

0.0001

1e-05

1e-06

1e-07

1e-08

Figure E.2: Power spectral densities (β = 6.0) are displayed on a logarithmic scale. The
curve is a gaussian function, which is used to estimate the maximum of the distribution.

The residual exponential decay at β = 6.0 can be approximated linearly (cf. c = −0.45
in figure E.1). Hence, peak broadening in the power spectral density is still relatively
mild and the peaks consist of 3−4 data points. The width of the peak does not increase
significantly above the mininum that is defined by half of the bin size,

σmin = ωb/2. (E.1)
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The residual exponential decay for β = 5.8 cannot be approximated as a linear funci-
ton (cf. c = −0.50 in figure E.3) and oscillations can hardly be resolved visually. Pre-
sumably, the oscillation can be isolated cleanly if the ratio is divided by a hyperbolic
cosine of the ground state mass difference for c ≈ c0.

n0

c = −0.40
R05(n0)

1281129680644832160

1

0.5

0

-0.5

-1
n0

c = −0.45
R05(n0)

1281129680644832160

1

0.5

0

-0.5

-1
n0

c = −0.48
R05(n0)

1281129680644832160

1

0.5

0

-0.5

-1
n0

c = −0.50
R05(n0)

1281129680644832160

1

0.5

0

-0.5

-1

n0

c = −0.53
R05(n0)

1281129680644832160

1

0.5

0

-0.5

-1
n0

c = −0.55
R05(n0)

1281129680644832160

1

0.5

0

-0.5

-1
n0

c = −0.60
R05(n0)

1281129680644832160

1

0.5

0

-0.5

-1

Figure E.3: Ratios R05(n0) on a 128×243 lattice for β = 5.8 from table 4.13 still feature
large exponential decays.

Peak broadening in the power spectral density is quite severe and each peak consists
of 7−10 data points (cf. figure E.4). Its width is therefore approximately three times as
large as the minimal width of eq. (E.1). Thus, the systematical error can be presumably
reduced by a factor 2−4, if the residual decay is removed.
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Figure E.4: Power spectral densities (β = 5.8) are displayed on a logarithmic scale. The
curve is a gaussian function, which is used to estimate the maximum of the distribution.
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E.3 Addendum to chiral behaviour of the pseudoscalar
ground state

The ground state mass M00 is extracted with a fit using eq. (4.51). The left column
of figure E.5 shows B00 = (r0M00)2/(r0m0), the analogue of B55 defined in eq. (4.45).
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Figure E.5: Upper row: The chiral extrapolation of M2
00 including quenched chiral loga-

rithms obtains the residual massM2
res with small errors. Lower row: Without logarithms,

the extrapolation of M2
00 has narrower error bands.

The study of the chiral behaviour of the pseudoscalar ground states of γ5 and γ0 channels
involves fits to correlation functions. Local effective (cosh) masses are displayed in the
following together with the fit masses with 1σ bands within the fit ranges. The grey-
shaded bands are considered as potentially affected by excited states. Fit parameters
are stable within 1σ upon variation of the fit range within the central region. The error
bands of the γ0 channel are wider by a factor 1.5 ∼ 2. Fluctuations as well as errors
increase with a decrease of the lattice spacing as well as with a decrease of the quark
mass. Since fluctuations of both channels are very similar, there are large cancellations
in the ratio of correlation functions, which explain the decrease of the error of the mass
difference in the chiral limit.
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Figure E.6: Local effective mass plots of the γ5 and γ0 channels exhibit almost the same
fluctuations for all masses from table 4.17.
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Numerical implementation

F.1 Lattice Dirac operators

This appendix covers the implementation of the Karsten-Wilczek and the Boriçi-Creutz
Dirac operators in numerical studies of minimally doubled fermions. The hermitian
Dirac operators Q = γ5D are applied in numerical simulations. The application of Q is
implemented with an input field φ and an output field ψ as

ψ = Qφ = δmψ + 1
2
∑
µ

(
δµ+ψ + δµ−ψ

)
. (F.1)

The on-site term δmψ and the hopping terms δµ±ψ are defined for Karsten-Wilczek and
Boriçi-Creutz operators in the following.

F.1.1 Karsten-Wilczek Dirac operator

The Karsten-Wilczek Dirac operator with α = 0 is taken from eq. (1.69). The hopping
terms δµ±ψ of eq. (F.1) add 1/2 times the following contributions:

δ0
−ψ

1
n = U0†

n (− [1 + d]φ3
n−ê0)

δ0
−ψ

2
n = U0†

n (− [1 + d]φ4
n−ê0)

δ0
−ψ

3
n = U0†

n (+ [1 + d]φ1
n−ê0)

δ0
−ψ

4
n = U0†

n (+ [1 + d]φ2
n−ê0)



δ0

+ψ
1
n = U0

n (+ [1 + d]φ3
n+ê0)

δ0
+ψ
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n (+ [1 + d]φ4
n+ê0)

δ0
+ψ

3
n = U0

n (− [1 + d]φ1
n+ê0)

δ0
+ψ

4
n = U0

n (− [1 + d]φ2
n+ê0)

 (F.2)


δ3
−ψ

1
n = U3†

n (−i [1 + ζ]φ3
n−ê3)

δ3
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2
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n (+i [1− ζ]φ4
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 (F.3)
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and the on-site term δmψ of eq. (F.1) contributes
δmψ

1
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Some spatial hopping terms δj±ψ for α = 0 and ζ = ±1 are related (cf. table F.1).
Components which are linearly related are reconstructed with reduced numerical effort.
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Table F.1: For α = 0 and ζ = ±1, the Dirac components of δ1
±ψ and δ1

±ψ are linearly
dependent and half of the δ3

±ψ trivially vanish. Moreover, the communications for spatial
boundaries are halved in each spatial direction.

The Karsten-Wilczek Dirac operator with α = 3 is used for studies of the anisotropy.
The hopping terms δµ±ψ of eq. (F.1) add 1/2 times the following contributions:

δ0
−ψ

1
n = U0†

n (− [1− ζ]φ3
n−ê0)

δ0
−ψ

2
n = U0†

n (− [1 + ζ]φ4
n−ê0)

δ0
−ψ

3
n = U0†

n (+ [1− ζ]φ1
n−ê0)

δ0
−ψ

4
n = U0†

n (+ [1 + ζ]φ2
n−ê0)



δ0

+ψ
1
n = U0

n (+ [1 + ζ]φ3
n+ê0)

δ0
+ψ

2
n = U0

n (+ [1− ζ]φ4
n+ê0)

δ0
+ψ

3
n = U0

n (− [1 + ζ]φ1
n+ê0)

δ0
+ψ

4
n = U0

n (− [1− ζ]φ2
n+ê0)

 (F.7)


δ3
−ψ

1
n = U3†

n (−i [1 + d]φ3
n−ê3)

δ3
−ψ

2
n = U3†

n (+i [1 + d]φ4
n−ê3)

δ3
−ψ

3
n = U3†

n (−i [1 + d]φ1
n−ê3)

δ3
−ψ

4
n = U3†

n (+i [1 + d]φ2
n−ê3)



δ3

+ψ
1
n = U3

n (+i [1 + d]φ3
n+ê3)

δ3
+ψ

2
n = U3

n (−i [1 + d]φ4
n+ê3)

δ3
+ψ

3
n = U3

n (+i [1 + d]φ1
n+ê3)

δ3
+ψ

4
n = U3

n (−i [1 + d]φ2
n+ê3)

 (F.8)
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δ1
−ψ

1
n = U1†

n (+i
[
φ4
n−ê1 − iζφ

3
n−ê1

]
)

δ1
−ψ

2
n = U1†

n (+i
[
φ3
n−ê1 + iζφ4

n−ê1

]
)

δ1
−ψ

3
n = U1†

n (+i
[
φ2
n−ê1 + iζφ1

n−ê1

]
)

δ1
−ψ

4
n = U1†

n (+i
[
φ1
n−ê1 − iζφ

2
n−ê1

]
)





δ1
+ψ

1
n = U1

n (−i
[
φ4
n−ê1 + iζφ3

n−ê1

]
)

δ1
+ψ

2
n = U1

n (−i
[
φ3
n−ê1 − iζφ

4
n−ê1

]
)

δ1
+ψ

3
n = U1

n (−i
[
φ2
n−ê1 − iζφ

1
n−ê1

]
)

δ1
+ψ

4
n = U1

n (−i
[
φ1
n−ê1 + iζφ2

n−ê1

]
)


(F.9)

δ2
−ψ

1
n = U2†

n (+
[
φ4
n−ê2 + ζφ3

n−ê2

]
)

δ2
−ψ

2
n = U2†

n (−
[
φ3
n−ê2 + ζφ4

n−ê2

]
)

δ2
−ψ

3
n = U2†

n (+
[
φ2
n−ê2 − ζφ

1
n−ê2

]
)

δ2
−ψ

4
n = U2†

n (−
[
φ1
n−ê2 − ζφ

2
n−ê2

]
)





δ2
+ψ

1
n = U2

n (−
[
φ4
n−ê2 − ζφ

3
n−ê2

]
)

δ2
+ψ

2
n = U2

n (+
[
φ3
n−ê2 − ζφ

4
n−ê2

]
)

δ2
+ψ

3
n = U2

n (−
[
φ2
n−ê2 + ζφ1

n−ê2

]
)

δ2
+ψ

4
n = U2

n (+
[
φ1
n−ê2 + ζφ2

n−ê2

]
)


,

(F.10)

and the on-site term δmψ of eq. (F.1) contributes


δmψ

1
n = (+m0φ

1
n + 3ζ+c

a φ3
n)

δmψ
2
n = (+m0φ

2
n −

3ζ+c
a φ4

n)
δmψ

3
n = (−m0φ

3
n −

3ζ+c
a φ1

n)
δmψ

4
n = (−m0φ

4
n + 3ζ+c

a φ2
n)

 . (F.11)

Perpendicular hopping terms (δ0
±ψ, δ1

±ψ, δ2
±ψ) for α = 3 and ζ = ±1, are related

(cf. table F.2). Components which are linearly related are reconstructed with reduced
numerical effort.

δ1
−ψ

1
n = ∓iζδ1

−ψ
2
n, δ1

−ψ
3
n = ±iζδ1

−ψ
4
n, δ1

+ψ
1
n = ±iζδ1

+ψ
2
n, δ1

+ψ
3
n = ∓iζδ1

+ψ
4
n,

δ2
−ψ

1
n = ∓ζδ2

−ψ
2
n, δ2

−ψ
3
n = ±ζδ2

−ψ
4
n, δ2

+ψ
1
n = ±ζδ2

+ψ
2
n, δ2

+ψ
3
n = ∓ζδ2

+ψ
4
n,

ζ = +1: δ0
−ψ

1
n = δ0

−ψ
3
n = 0, δ0

+ψ
2
n = δ0

+ψ
4
n = 0,

ζ = −1: δ0
−ψ

2
n = δ0

−ψ
4
n = 0, δ0

+ψ
1
n = δ0

+ψ
3
n = 0.

Table F.2: For α = 3 and ζ = ±1, the Dirac components of δ1
±ψ and δ1

±ψ are linearly
dependent and half of the δ0

±ψ trivially vanish. Moreover, the communications for spatial
boundaries are halved in each perpendicular direction.

Independent of the particular choice of α, the tally of floating point operations, which
is dominated by the SU(3) matrix-times-vector operations in the δµ±ψ , is reduced to
approximately 5/8 for ζ = ±1, if the symmetries of δµ±ψ are incorporated into the code.
It is reasonable to provide extra versions of the Karsten-Wilczek Dirac operator for
ζ = ±1 due to their superior numerical efficiency.
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F.1.2 Boriçi-Creutz Dirac operator

The Boriçi-Creutz Dirac operator is taken from eq. (1.90). The hopping terms δµ±ψ of
eq. (F.1) add 1/2 times the following contributions:

δ0
−ψ

1
n = U0†

n ((−1− iζ)φ3
n−ê0 + (iζ + d/2)

[
(−1 + i)φ3

n−ê0 + (+1 + i)φ4
n−ê0

]
)

δ0
−ψ

2
n = U0†

n ((−1− iζ)φ4
n−ê0 + (iζ + d/2)

[
(−1 + i)φ3

n−ê0 + (−1− i)φ4
n−ê0

]
)

δ0
−ψ

3
n = U0†

n ((+1 + iζ)φ1
n−ê0 + (iζ + d/2)

[
(+1 + i)φ1

n−ê0 + (+1 + i)φ2
n−ê0

]
)

δ0
−ψ

4
n = U0†

n ((+1 + iζ)φ2
n−ê0 + (iζ + d/2)

[
(−1 + i)φ1

n−ê0 + (+1− i)φ2
n−ê0

]
)


(F.12)

δ0
+ψ

1
n = U0

n ((+1− iζ)φ3
n+ê0 + (iζ − d/2)

[
(+1− i)φ3

n−ê0 + (−1− i)φ4
n−ê0

]
)

δ0
+ψ

2
n = U0

n ((+1− iζ)φ4
n+ê0 + (iζ − d/2)

[
(+1− i)φ3

n−ê0 + (+1 + i)φ4
n−ê0

]
)

δ0
+ψ

3
n = U0

n ((−1 + iζ)φ1
n+ê0 + (iζ − d/2)

[
(−1− i)φ1

n−ê0 + (−1− i)φ2
n−ê0

]
)

δ0
+ψ

4
n = U0

n ((−1 + iζ)φ2
n+ê0 + (iζ − d/2)

[
(+1− i)φ1

n−ê0 + (−1 + i)φ2
n−ê0

]
)


(F.13)

δ1
−ψ

1
n = U1†

n ((+i− ζ)φ3
n−ê1 + (iζ + d/2)

[
(−1 + i)φ3

n−ê1 + (+1 + i)φ4
n−ê1

]
)

δ1
−ψ

2
n = U1†

n ((+i− ζ)φ4
n−ê1 + (iζ + d/2)

[
(−1 + i)φ3

n−ê1 + (−1− i)φ4
n−ê1

]
)

δ1
−ψ

3
n = U1†

n ((+i− ζ)φ1
n−ê1 + (iζ + d/2)

[
(+1 + i)φ1

n−ê1 + (+1 + i)φ2
n−ê1

]
)

δ1
−ψ

4
n = U1†

n ((+i− ζ)φ2
n−ê1 + (iζ + d/2)

[
(−1 + i)φ1

n−ê1 + (+1− i)φ2
n−ê1

]
)


(F.14)

δ1
+ψ

1
n = U1

n ((−i− ζ)φ3
n+ê1 + (iζ − d/2)

[
(+1− i)φ3

n−ê1 + (−1− i)φ4
n−ê1

]
)

δ1
+ψ

2
n = U1

n ((−i− ζ)φ4
n+ê1 + (iζ − d/2)

[
(+1− i)φ3

n−ê1 + (+1 + i)φ4
n−ê1

]
)

δ1
+ψ

3
n = U1

n ((−i− ζ)φ1
n+ê1 + (iζ − d/2)

[
(−1− i)φ1

n−ê1 + (−1− i)φ2
n−ê1

]
)

δ1
+ψ

4
n = U1

n ((−i− ζ)φ2
n+ê1 + (iζ − d/2)

[
(+1− i)φ1

n−ê1 + (−1 + i)φ2
n−ê1

]
)


(F.15)

δ2
−ψ

1
n = U2†

n ((+1 + iζ)φ3
n−ê2 + (iζ + d/2)

[
(−1 + i)φ3

n−ê2 + (+1 + i)φ4
n−ê2

]
)

δ2
−ψ

2
n = U2†

n ((−1− iζ)φ4
n−ê2 + (iζ + d/2)

[
(−1 + i)φ3

n−ê2 + (−1− i)φ4
n−ê2

]
)

δ2
−ψ

3
n = U2†

n ((+1 + iζ)φ1
n−ê2 + (iζ + d/2)

[
(+1 + i)φ1

n−ê2 + (+1 + i)φ2
n−ê2

]
)

δ2
−ψ

4
n = U2†

n ((−1− iζ)φ2
n−ê2 + (iζ + d/2)

[
(−1 + i)φ1

n−ê2 + (+1− i)φ2
n−ê2

]
)


(F.16)

δ2
+ψ

1
n = U2

n ((−1 + iζ)φ3
n+ê2 + (iζ − d/2)

[
(+1− i)φ3

n−ê2 + (−1− i)φ4
n−ê2

]
)

δ2
+ψ

2
n = U2

n ((+1− iζ)φ4
n+ê2 + (iζ − d/2)

[
(+1− i)φ3

n−ê2 + (+1 + i)φ4
n−ê2

]
)

δ2
+ψ

3
n = U2

n ((−1 + iζ)φ1
n+ê2 + (iζ − d/2)

[
(−1− i)φ1

n−ê2 + (−1− i)φ2
n−ê2

]
)

δ2
+ψ

4
n = U2

n ((+1− iζ)φ2
n+ê2 + (iζ − d/2)

[
(+1− i)φ1

n−ê2 + (−1 + i)φ2
n−ê2

]
)


(F.17)
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δ3
−ψ

1
n = U3†

n ((−i+ ζ)φ3
n−ê3 + (iζ + d/2)

[
(−1 + i)φ3

n−ê3 + (+1 + i)φ4
n−ê3

]
)

δ3
−ψ

2
n = U3†

n ((+i− ζ)φ4
n−ê3 + (iζ + d/2)

[
(−1 + i)φ3

n−ê3 + (−1− i)φ4
n−ê3

]
)

δ3
−ψ

3
n = U3†

n ((−i+ ζ)φ1
n−ê3 + (iζ + d/2)

[
(+1 + i)φ1

n−ê3 + (+1 + i)φ2
n−ê3

]
)

δ3
−ψ

4
n = U3†

n ((+i− ζ)φ2
n−ê3 + (iζ + d/2)

[
(−1 + i)φ1

n−ê3 + (+1− i)φ2
n−ê3

]
)


(F.18)

δ3
+ψ

1
n = U3

n ((+i+ ζ)φ3
n+ê3 + (iζ − d/2)

[
(+1− i)φ3

n−ê3 + (−1− i)φ4
n−ê3

]
)

δ3
+ψ

2
n = U3

n ((−i− ζ)φ4
n+ê3 + (iζ − d/2)

[
(+1− i)φ3

n−ê3 + (+1 + i)φ4
n−ê3

]
)

δ3
+ψ

3
n = U3

n ((+i+ ζ)φ1
n+ê3 + (iζ − d/2)

[
(−1− i)φ1

n−ê3 + (−1− i)φ2
n−ê3

]
)

δ3
+ψ

4
n = U3

n ((−i− ζ)φ2
n+ê3 + (iζ − d/2)

[
(+1− i)φ1

n−ê3 + (−1 + i)φ2
n−ê3

]
)


,

(F.19)

and the on-site term δmψ of eq. (F.1) is
δmψ

1
n = (+m0φ

1
n + 2ζ+c

2
[
(+1 + i)φ3

n + (+1− i)φ4
n

]
)

δmψ
2
n = (+m0φ

2
n + 2ζ+c

2
[
(+1 + i)φ3

n + (−1 + i)φ4
n

]
)

δmψ
3
n = (−m0φ

3
n + 2ζ+c

2
[
(+1− i)φ1

n + (+1− i)φ2
n

]
)

δmψ
4
n = (−m0φ

4
n + 2ζ+c

2
[
(+1 + i)φ1

n + (−1− i)φ2
n

]
)

 . (F.20)

For ζ = +1, all coefficients of Boriçi-Creutz hopping terms δµ±ψ in the linear combinations
on the right hand sides of eqs. (F.12), . . . , (F.19) are covered by three real constants,

h1+ = 1 + d/2
h1− = 1− d/2
h3+ = 3 + d/2

, (F.21)

which can be used to minimise the tally of complex-times-vector operations. This is the
most efficient implementation of the Boriçi-Creutz Dirac operator at present knowledge.

F.2 Contractions

Contractions of two fermionic propagators into mesonic correlation functions rely on
eq. (4.17), which reads

CM,N (t) =
∑
n∈Λ0

t

trc
(
Sαβn,0(S∗)δγn,0((Mγ5)T )γβ(γ5N )δα

)
. (F.22)

Propagator components (hereafter: propagators) are stored in the memory as spinor
fields ‘ψ’ which are defined on the full lattice in a memory alignment of 24 doubles
following

Reψ1
1 Imψ1

1 Reψ2
1 . . . Imψ3

1 Reψ1
2 . . . Imψ3

2 Reψ1
3 . . . Imψ3

3 Reψ1
4 . . . Imψ3

4.
(F.23)
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In the following, the indication of Dirac matrices within the simulation program for
interpolating operators at source and sink is outlined in table F.3. The simulation uses
Dirac matrices in the chiral representation that are defined in eq. (A.27). Instead of
using the original matrices M and N in interpolating operators, contractions directly
use the transposed matrix product (Mγ5)T for the source and the matrix product (γ5N )
for the sink:

M→ (Mγ5)T , N → (γ5N ). (F.24)

Dirac matrixM,N γµ 1 γ5 γ5γµ γ0γi γiγj , i < j

Index µ µ 4 5 6 + µ 9 + i 10 + i+ j

Table F.3: 16 Dirac matrices that are used in interpolating operators are labeled by only
one index µ. Care has to be taken since only γµ, 1 and γ5 are hermitian.

Propagators are calculated one by one in sequence, where the colour component ranges
between ic ∈ [1, 2, 3] in an outer loop and the spin component (or Dirac component)
ranges between id ∈ [1, 2, 3, 4] in an inner loop. Each Dirac component is directly used
in the calculation of 2-point functions with either 1 or γ5 at the source and added up
to the total correlation function. Once the second (id = 2) Dirac component (or fourth
(id = 4) Dirac component) is available, 2 contributions to correlation functions with
source interpolators with tensor structure (γµγν) are calculated. The propagator is con-
tracted with the first (jd = 1) Dirac component (or third (jd = 3) Dirac component) for
µ = {10, 11, 14, 15} and it is contracted with itself for µ = {12, 13}. Next, contractions
of jd with id are performed for µ = {10, 11, 14, 15} and of jd with jd for µ = {12, 13}
added to the total correlation functions. Once the third (ic = 3) Dirac component is
available, 2 contributions to correlation functions with source interpolators with vector
(γµ) or axial vector (γ5γµ) structure are calculated. The propagator is contracted with
the first (j0

d = 1) Dirac component for µ = {0, 3, 6, 9} and it is contracted with the
second (j1

d = 2) for µ = {1, 2, 7, 8}. Next, contractions of j0,1
d with id are performed and

added to the total correlation functions. Once the fourth (id = 3) Dirac component is
available, 2 contributions to correlation functions with source interpolators with vector
(γµ) or axial vector (γ5γµ) structure are calculated. The propagator is contracted with
the first (j1

d = 1) Dirac component for µ = {1, 2, 7, 8} and it is contracted with the
second (j0

d = 2) for µ = {0, 3, 6, 9} and added to the total correlation function. Next,
contractions of j0,1

d with id are performed and added to the total correlation functions.
Finally, the last 2 contributions to correlation functions with source interpolators with
tensor structure (γµγν) are calculated as described above.

The procedure is repeated for all colour components. Propagators are temporarily
dumped to the hard disk for later use as jd component in contractions. For the contrac-
tions, these dumped propagators are restored and kept in work space that is reserved for
the CG solver in the rest of the program. After processing the fourth id = 4 components,
the dumped propagators are deleted.
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The subroutine

void add_to_MM_2pt (int p1, int p2, int l, int mu, int nu, int dir,
int *vect_ps, complex_dble *corr),

which performs the contractions, receives the locations p1, p2 in memory for 2 possibly
different propagators that are computed by the inverter for different Dirac operators
or for different smearing options at source or sink. The index l = 3(id − 1) + (ic − 1)
denotes which propagator is treated and is factored into a macro that determines whether
the contribution is added or subtracted from the correlator. The indices mu and nu label
the Dirac matrices of interpolating operators at sink (mu) and source (nu). The index
nu determines the Dirac components that are accessed in the contractions of j0

d , j1
d or

jd with id. Either index j0
d , j1

d or jd is calculated only once for every id and replaces l
within the subroutine. The index dir incidates the Euclidean time direction and may
be either set to 0 or 3. The contractions are performed for all lattice sites individually
and all sites in a slice that is perpendicular to this time direction are summed up in the
aftermath. The pointer *vect_ps indicates a four-component array, which holds integers
that determine an external momentum insertion at the sink. The momentum is given
by pµ = 2π/a·(vect_ps[µ]/Nµ) . Only three components have a physical role as spatial
hadron momenta. However, due to the flexibility in terms of defining the time direction,
external momenta are handled most naturally as a four-component field. Finally, the
pointer corr indicates an array, which stores the value of the correlation function.

mu amu tmu imu
0 ≤ mu < 5 0 0 mu
mu = 5 1 0 4

6 ≤ mu < 10 1 0 mu− 6
10 ≤ mu < 15 0 1 mu− 10

Table F.4: Flags for contractions are used for determination of signs with simple integer
operations. Flags anu, tnu and inu are defined accordingly.

In each call of the subroutine, eight integers (amu, tmu, imu, xmu, anu, tnu, inu, xnu)
are defined according to table F.4. amu is set to one, if the sink Dirac structure contains
γ5 and to zero otherwise. tmu is set to one if the sink Dirac structure has two Euclidean
indices and to zero otherwise. xmu is defined as one if the sink Dirac structure is
imaginary and zero otherwise,

xmu = (((imu&1)&&(!tmu))||(((imu)̂1)&&((imu)̂4)&&(tmu))). (F.25)

anu, tnu, xnu are defined accordingly. imu is an index running within 0 and 5, which is
used within the macros k(imu, tmu, j), f(imu, amu, tmu, j), g(inu, anu, tnu, l). The
24 real components of the propagators are looped with an index j using steps of two. The
spinor component of the second propagator is determined by the macro k(imu, tmu, j),
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which is not affected by the replacement rule of eq. (F.24). Variation of the sign due
to different components of the Dirac matrices at source and sink are determined by the
macros g(inu, anu, tnu, l) and f(imu, amu, tmu, j), which take the matrix products
of eq. (F.24) into account. Then the full contraction for one sink site is given by

A =
j′<12∑
j′=0

δj,2j′ f · g· ((double∗)(ψ0
0[p1] + j) ∗ (double∗)(ψ0

0[p2] + k)

+ (double∗)(ψ0
0[p1] + j + 1) ∗ (double∗)(ψ0

0[p2] + k + 1))
(F.26)

B =
j′<12∑
j′=0

δj,2j′ f · g· ((double∗)(ψ0
0[p1] + j) ∗ (double∗)(ψ0

0[p2] + k + 1)

− (double∗)(ψ0
0[p1] + j + 1) ∗ (double∗)(ψ0

0[p2] + k)), (F.27)

where k, f and g are determined with the macros for each j. After the summation,
Re(xmu, xnu,A,B) is added to the real part and Im(xmu, xnu,A,B) is added to
the imaginary part of the correlator for this sink site. The calculation is repeated for all
sink sites. The role of the index jd for the contraction at the source is mirrored by the
index k for the contraction at the sink.
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Macro k=k(imu, tmu, j):

k=(tmu ? (imu&2) ? (j)
: (1-((((j)/6)&1)« 1))*6+(j)

: (imu&4) ? (j)
: (imu%3) ? ((j)%6+6*(3-((j)/6)))

: (((j)+12)%24))

Macro f=f(imu, amu, tmu, j):

f= (tmu ? (imu&2) ? (((j)/6)%imu) ? (imu&1) ? (−1) : (+1)
: (imu&1) ? (+1) : (−1)

: (imu&4) ? (imu&1) ? (((j)/6)»1) ? (−1) : (+1)
: (((j)/6)%3)? (+1) : (−1)

: (imu&1) ? (((j)/6)%2)? (−1) : (+1)
: (−1)

: ((imu&(~1)) ? (imu&(~3)) ? (amu) ? (+1)
: (((j)/6)»1) ? (−1) : (+1)

: (((j)/6)%(2ˆamu)) ? (−1) : (+1)
: ((imu&1)ˆamu) ? (amu) ? (−1) : (+1)

: ((((j)/6)»1)ˆ(amu)) ? (+1) : (−1)))))

Macro g=g(inu, anu, tnu, l):

g=(tnu ? (inu&2) ? (((l)/3)%inu) ? (inu&1) ? (−1) : (+1)
: (inu&1) ? (+1) : (−1)

: (inu&4) ? (inu&1) ? (((l)/3)»1) ? (−1) : (+1)
: (((l)/3)%3) ? (−1) : (+1)

: (inu&1) ? (((l)/3)%2) ? (+1) : (−1)
: (−1)

: ((inu&(~1)) ? (inu&(~3)) ? (anu) ? (+1)
: (((l)/3)»1) ? (−1) : (+1)

: (((l)/3)%(2ˆanu)) ? ((inu&1)ˆanu) ? (+1) : (−1)
: ((inu&1)ˆanu) : ((inu&1)ˆanu) ? (−1) : (+1)
: ((inu&1)ˆanu) ? (anu) ? (+1) : (−1)

: ((((l)/3)»1)ˆ(anu)) ? (+1) : (−1)))))

Macros Re=Re(xmu, xnu,A,B), Im=Im(xmu, xnu,A,B):

Re= (((xmu)ˆ(xnu)) ? (-B)
: ((xmu)&&(xnu)) ? (-A) : (+A))

Im= (((xmu)ˆ(xnu)) ? (A)
: ((xmu)&&(xnu)) ? (-B) : (+B))

Figure F.1: Macros for contractions spread out factors ±1, factors i and selection of
components due to Dirac structure of interpolators to different parts of the program.
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