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Abstract. Increasing the accuracy of theoretical predictions is an ongoing

task in today’s high energy physics. In this thesis, we investigate two different

aspects that are part of the theoretical modelling of collider events.

In the first part of this thesis, we focus on the parton shower and particularly

the role of the top quark mass in the parton shower simulation. Therefore,

we analyze the depence of the peak position of the thrust distribution on the

shower cutoff value. Thrust is an observable that is highly sensitive to the mass

of the top quark. For our analysis, we use the dipole parton shower algorithm.

We compare the outcome of our parton shower simulations to a relation of the

dependence from analytic computations. These calculations are based on soft-

colliner effective theory and the coherent branching formalism. We show that

the result of the parton shower simulations and the analytic computation are in

good agreement.

The second part of the thesis is dedicated to fixed-order calculations concerning

the field of scattering amplitudes. For processes with more than two particles in

the final state, one is particularly interested in computational methods that are

suited for automation. One promising approach is found in loop-tree duality

combined with numerical loop integration. In the loop-tree duality method

at next-to-next-to-leading order, one encounters two-loop diagrams that have

a one-loop self-energy insertion on one of the internal lines of the outer loop.

This leads to Feynman integrals with raised propagators, i.e. propagators with

higher powers. For calculations in the loop-tree duality approach, one needs

to calculate the residue for the case that a raised propagator goes on-shell.

This calculation involves the calculation of derivatives and is, hence, process-

dependent. We show that it is possible to construct ultraviolet counterterms at

the integrand level that make the residues vanish in the on-shell scheme. This

relocates the problem of raised propagators to a process-independent part of

the calculation. Additionally, we provide suitable forms of these counterterms

for scalar φ3-theory and QCD.
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Zusammenfassung. Eine Aufgabe der modernen Hochenergiephysik ist, die

Genauigkeit theoretischer Vorhersagen zu erhöhen. In dieser Dissertation un-

tersuchen wir zwei unterschiedliche Aspekte der theoretischen Modellierung von

Collider-Events.

Im ersten Teil der Thesis konzentrieren wir uns auf den Partonshower, insbeson-

dere auf die Rolle der Masse des Top-Quarks in Partonshower-Simulationen.

Hierfür analysieren wir die Abhängigkeit der Lage des Maximums der Thrust-

Verteilung vom Wert des Showercutoffs. Thrust ist eine Observable, die stark

von der Masse des Top-Quarks abhängt. Für unsere Analyse verwenden wir

den Dipole-Partonshower-Algorithmus. Wir vergleichen das Resultat unserer

Partonshower-Simulationen mit einer analytisch hergeleiteten Formel für die

Beziehung zwischen dem Wert des Thrust-Maximums und dem Showercutoff.

Die analytische Betrachtung basiert auf der Soft-Collinear-Effective-Theory und

dem Coherent-Branching-Formalismus. Wir zeigen, dass das Ergebnis unserer

Partonshower-Simulationen mit den Vorhersagen der analytischen Herangehens-

weise übereinstimmt.

Im zweiten Teil der Thesis widmen wir uns Fixed-Order-Berechnungen im Be-

reich der Streuamplituden. Für Prozesse mit mehr als zwei Teilchen im Endzu-

stand ist man vorallem an Methoden interessiert, die sich automatisieren lassen.

Einen vielversprechenden Ansatz bietet Loop-Tree-Duality kombiniert mit nu-

merischer Loop-Integration. In der Loop-Tree-Duality-Methode in nächst-zu-

nächstführender Ordnung begegnen einem Zwei-Loop-Diagramme, bei denen

ein Ein-Loop-Selbstenergiediagramm auf einer internen Linie des äußeren Loops

eingefügt ist. Dies führt zu Feynmanintegralen mit erhöhten Propagatoren,

also Propagatoren mit höheren Exponenten. Für Berechnungen im Loop-Tree-

Duality-Approach ist es notwendig, die Residuen für den Fall zu berechnen, dass

ein erhöhter Propagator on-shell geht. Hierbei müssen Ableitungen berechnet

werden. Außerdem ist die Berechnung vom betrachteten Prozess abhängig. Wir

zeigen, dass es möglich ist, Ultraviolett-Counterterme auf der Ebene des Inte-

granden zu konstruieren, die die Residuen im On-Shell-Schema verschwinden

lassen. Diese Vorgehensweise verlagert das Problem der erhöhten Propagatoren

in einen prozessunabhängigen Teil der Berechnung. Zusätzlich bieten wir ex-

plizite Darstellungen der Counterterme für die skalare φ3-Theorie und QCD.
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Part 1

Introduction and Basics





CHAPTER 1

Introduction

In a world where the precision of experiments in high energy physics is steadily

increasing, the continual improvement of theoretical predictions becomes in-

evitable. One example of the big machines that produce huge amounts of ex-

perimental data, that need to be analyzed, is the Large Hadron Collider (LHC)

at CERN.

These collider experiments are not only important for the search of new physics

but particularly for the validation of existing theories and the examination of

their fundamental parameters.

The Standard Model (SM) of particle physics is the current state-of-the-art

quantum field theory (QFT) when it comes to describing the fundamental par-

ticles and their interactions. The SM is based upon the gauge groups SUc(3),

SUL(2), and UY (1), where the corresponding charges are the color charge, the

weak isospin, and the weak hypercharge, respectively.

The weak interaction and the theory of electromagnetism, quantum electrody-

namics (QED), can be summarized in the theory of the electroweak interaction

with the underlying gauge group SUL(2)×UY (1). On the other hand, the QFT

that describes the strong interaction of quarks and gluons is called quantum

chromodynamics (QCD). QCD is a renormalizable non-abelian gauge theory

that is based upon the gauge group SU(3). In this thesis, we mostly focus on

events involving QCD.

Using the fundamentals of QFT, it is possible to compute hard scattering events

via Feynman diagrams, using perturbation theory. However, in practice, this

approach is limited to a small number of particles in the final state. This does

not fully represent the situation found in particle colliders. In the “real world”

of the experiment, the hard scattering is just the beginning.

The particles that are produced in the hard event radiate additional particles

that may form jets. Additionally, confinement states that color charged par-

ticles cannot individually exist in nature but only in bound hadronic states.

3



4 1. INTRODUCTION

Lastly, the hadrons themselves may decay. The resulting particles and jets are

measured in the detector of the experiment.

It is up to the theorist to model the described behavior inside the collider ex-

periment in order to make useful predictions. As already mentioned, the hard

scattering event can be calculated using fixed-order perturbation theory. After

this computation, the parton shower is applied. The parton shower algorithm

provides a way to model the radiation of soft and collinear particles off the

final-state particles from the hard event.

After the parton shower evolution from the scale of the hard event down to a

cutoff scale, hadronization and decay models can be applied. Additionally, the

involved particles can be clustered to jets for a more accurate description of

the situation inside the detector. There exist computer programs that generate

events based on all of these steps. They are called Monte Carlo (MC) event

generators. Some of the most commonly used general-purpose event generators

are Herwig [1–4], Pythia [5, 6], and Sherpa [7, 8].

The outcome of an MC event generator forms the basis of the template method

that makes use of the theoretical predictions to obtain knowledge of parameters

of the SM from experimental data.

One of the fundamental parameters of the SM, for whose measurement direct

reconstruction via the template method is used, is the mass of the top quark mt.

With a mass of around 173 GeV, the top quark is by far the heaviest elementary

particle in the SM. As such, the knowledge of the value of its mass has a huge

impact on our understanding of the SM.

However, until today, the connection between the top mass parameter obtained

from direct reconstruction using an MC event generator and the quantum field

theoretical top quark mass inside a renormalization scheme is not sufficiently

understood. In this context, an important question to ask is how the top quark

mass inside a specific MC generator depends on certain parameters of the im-

plemented parton shower simulation.

A first step in this direction has been made in [9]. Here, they analyzed the cutoff

dependence of an observable that is highly sensitive to the top quark mass.

We address this question in Chapter 5. There, we analyze the dependence of

the peak position of the thrust observable on the value of the shower cutoff. For

the parton shower simulations we use an implementation of the so-called dipole

shower [10].
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We compare our findings to the analytical predictions of [9] and find them to

be in good agreement. From this analysis, it is possible to deduce information

about the cutoff dependence of the top quark mass.

Considering fixed-order calculations, the urge for high precision predictions re-

quires next-to-next-to-leading order (NNLO) calculations. When the number

of final-state particles exceeds two, one is interested in methods that can be au-

tomated. One promising approach is the so-called loop-tree duality combined

with numerical loop integration.

One problem that arises in this method is the calculation of higher order residues

that involves derivatives. This situation occurs for two-loop diagrams with a

self-energy insertion on an internal line. We show that this problem can be

solved by constructing a counterterm on an integrand level that makes the

residue vanish.

This thesis is organized as follows:

In the next chapter, we recapitulate some important features of QCD that are

essential for the understanding of the studies carried out in Part 2 and 3. These

concepts include the QCD Lagrangian and the derivation of Feynman rules from

it, the fundamentals of perturbative QCD, and renormalization.

In Chapter 3, we consider the Catani–Seymour dipole subtraction method that

is used to cancel infrared (IR) divergences in next-to-leading order (NLO) com-

putations. The basis of this subtraction scheme is formed by dipoles that also

build the foundation of the parton shower algorithm based on Catani–Seymour

dipoles.

The general ideas behind the concept of parton showers are subject of Chapter

4. Additionally, we describe the main features and the practical implementation

of the parton shower algorithm based on Catani–Seymour dipoles.

Chapter 5 is dedicated to the role of the top quark mass in high energy physics

in general and particularly its role in a parton shower. We start with a section

on general properties of the top quark mass and the subtleties of its determina-

tion. This is followed by an overview of the analytic computations carried out

in [9], quantifying a relation between the peak position of the thrust observable

and the value of the cutoff parameter in parton shower simulations.

In Section 5.3, we present our analysis of the thrust peak position’s dependence

on the shower cutoff, using an implementation of the dipole shower. Addition-

ally, we show our results, that agree with the analytic computations.
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In Chapter 6 we provide a solution for the problem of raised propagators due to

self-energy insertions in the loop-tree duality approach. This problem is accom-

panied with the calculation of higher order residues. We show that it is possible

to find a counterterm to the one-loop self-energy insertion on the integrand level

that makes the residue vanish. In addition, we provide a representation of these

counterterms for scalar φ3-theory and QCD. The results of this chapter have

been published in [11].

In the appendix we provide the Feynman rules for QCD, a set of formulae that

are needed for the implementation of the running coupling of QCD and Lorentz

transformations that are essential for the dipole shower algorithm.

We note that we use natural units for all calculations throughout this thesis,

setting ~ = c = 1.
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Quantum Chromodynamics

Contents
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2.2. The Lagrangian of Quantum Chromodynamics 10

2.3. Feynman Rules 12
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2.3.2. Feynman Rules for the Vertices 13

2.3.3. Feynman Rules for φ3-Theory 14
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2.5.1. The Quark Self-Energy 21
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2.5.4. Pole Mass Renormalon Ambiguity 29

In the following sections, we give a summary of the aspects of QCD that are

essential for later discussions. We start with the description of the color group

SU(3), followed by the Lagrangian of QCD. After that, we give a short in-

terlude on how to derive Feynman rules for a theory given the corresponding

Lagrangian. This leads to the important topic of perturbative QCD where the

Feynman rules are used to derive mathematical formulations for the calculation

of scattering amplitudes from Feynman diagrams. Last but not least, the task

of renormalization, especially mass renormalization, will be covered which will

play a crucial role in the second part of this thesis.
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There are many excellent textbooks on QCD. Wide parts of this chapter follow

the descriptions in [12–14], and we recommend these books for a more detailed

description of the topics covered in this chapter.

2.1. The Color Group SU(3)

All hadronic matter consists of quarks. QCD is the theory of quarks and the

associated gauge boson, the gluon. The SM contains six different kinds of quarks

and their corresponding antiparticles. The different kinds are also referred to

as flavors. The individual flavors differ in their masses, electric charge, isospin,

and other quantum numbers. A list of the six different quark flavors and some

of their properties can be found in Table 2.1.

Name Symbol Charge (e) Mass

Up u +2/3 ∼ 2.16 MeV
Down d −1/3 ∼ 4.67 MeV
Charm c +2/3 ∼ 1.27 GeV
Strange s −1/3 ∼ 93 MeV

Top t +2/3 ∼ 172.9 GeV
Bottom b −1/3 ∼ 4.18 GeV

Table 2.1. The six quark flavors with electric charges and
masses [15]. The masses of the light quarks (u, d, s) are esti-
mates of the current quark masses in the MS scheme at µ ≈ 2
GeV. The c and b masses are given in the MS scheme. The top
quark mass is the mass obtained from direct reconstruction.

In addition, every quark carries another degree of freedom, the color index

a = 1, 2, 3.

In QED, the quantum field theory of the electromagnetic force, the correspond-

ing gauge boson, i.e. the photon, does not carry any electric charge. In contrast,

the gauge boson of QCD, the gluon, carries a color charge. Therefore, gluons

can interact with other gluons. The color charge of a gluon is composed of a

combination of the three colors and their corresponding anticolors. From group

theory, it follows that the combination of the two color triplets lead to a color

singlet and a color octet. Hence, a gluon can carry one of eight different types

of color charge. This coincides with the underlying structure of the SU(3) color

group of QCD.



2.1. THE COLOR GROUP SU(3) 9

The generators tA of the fundamental representation of SU(3) are chosen to be

proportional to the Gell-Mann matrices λA:

(2.1) tA =
1

2
λA, with A = 1, . . . , 8.

Notice that there are eight generators corresponding to the eight colors a gluon

can carry.

Let us denote the matrices of the adjoint representation by TA. Their definition

is given by

(2.2) (TA)BC := −ifABC

Then, the following relations for the commutators of the generating matrices

hold [
tA, tB

]
= i fABC tC ,[

TA, TB
]

= i fABC TC ,
(2.3)

where i denotes the imaginary unit and fABC (A,B,C = 1, . . . , 8) the antisym-

metric structure constants of SU(3). Since fABC 6= 0, the generators tA form a

non-abelian Lie algebra.

The choice of the generators yields the normalization

(2.4) Tr(tAtB) =
1

2
δAB.

Additionally, we find some useful relations for the color algebra involving the

Casimir operators CF, CA, and TR:

(2.5)
∑
A

tAab t
A
bc = CF δac,

with CF = (N2
c − 1)/(2Nc) for the general group SU(Nc). Hence, we have

CF = 4/3 for SU(3). The color-factor CF is associated with a quark emitting a

gluon.

(2.6) Tr(TCTD) =
∑
A,B

fABC fABD = CA δ
CD,

with CA = Nc = 3, which can be associated with a gluon emitting another

gluon.

Finally,

(2.7) tAabt
B
ba = TR δ

AB,
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where TR = 1/2 is associated with the splitting of a gluon into a pair of a quark

and an antiquark.

After this short excursion to the group theoretical foundations of QCD in the

form of the special unitarity group SU(3), we have a look at the physical aspects

of QCD, i.e. its Lagrangian, and how to derive Feynman rules from it.

2.2. The Lagrangian of Quantum Chromodynamics

The gauge theory that is based on the Lie group SU(N), without fermions, is

Yang–Mills theory. Hence, it is the preferred theory to describe the interactions

of the elementary particles in the SM.

Let us start with the Lagrangian for the gauge field of QCD (SU(3)), i.e. the

gluon field. Remember that we use the conventions of (2.3) and (2.4) for the

color matrices. We denote the gluon field by AAµ (x).

Then, the Yang–Mills Lagrange density for the gluon field reads

(2.8) LG = −1

4
FA
µνF

A,µν ,

with the field strength tensor

(2.9) FA
µν =

[
∂µA

A
ν − ∂νAAµ − gs f

ABC ABµ A
C
ν

]
,

where gs is the coupling of the strong interaction.

In addition to the Lagrangian for the gluon field (2.8), we need a term to describe

the fields of the different quarks. The corresponding Lagrange density is given

by

(2.10) LQ =
∑

flavors

q̄a(i /D −mq)ab qb.

The slashed notation of /D is an abbreviation for γµD
µ, where γµ are the gamma

matrices, satisfying the anticommutation relations

(2.11) {γµ, γν} = 2gµν ,

with the metric tensor gµν = diag(1,−1,−1,−1).

The covariant derivative in (2.10) is given by

(2.12) (Dµ)ab = ∂µδab + i gs (tC ACµ )ab.
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The QCD Lagrangian is invariant under the transformation

(2.13) tAAAµ (x)→ U(x)

(
tAAAµ (x) +

i

gs

)
U †(x),

with

(2.14) U(x) = exp(−i tAθA(x)).

If one wants to compute Feynman rules for the QCD Lagrangian, it is required

to perform gauge fixing. This step is necessary because of the invariance of

the Lagrangian under gauge transformations (2.13). The calculations of the

gauge-fixing can be found in Section 2.3 of [16]. Here, we want to present the

resulting gauge-fixing term in covariant gauge which needs to be added to the

Lagrangian

(2.15) LGF = − 1

2ξ
(∂µAAµ )(∂νAAν ).

One is free to choose the gauge-fixing parameter ξ in order to fix the gauge. A

common choice is the Feynman gauge, corresponding to ξ = 1, which will be

used mostly throughout this thesis.

Lastly, there is another term which has to be added to the QCD Lagrangian:

the Lagrangian of the Fadeev–Popov ghosts which is given by

(2.16) LFP = (∂µ c̄
A)(δAC∂µ + gsf

ABCABµ )cC .

Here, cA and c̄A are the Fadeev–Popov ghosts and antighosts. The Fadeev–

Popov terms are necessary because the integration over all paths in the path

integral formalism leads to a double counting of paths that are equivalent in

terms of gauge ambiguities. To counter these multiple countings, the Fadeev–

Popov ghosts have to be introduced. Since these are virtual particles that arise

in loops, i.e. unphysical particles that do not exist in nature, the Fadeev–Popov

term is only relevant beyond tree-level.

Putting the pieces together, we find the full Lagrangian of QCD as

LQCD =− 1

4
FA
µνF

A,µν +
∑

flavors

q̄a(i /D −mq)ab qb

− 1

2ξ
(∂µAAµ )(∂νAAν ) + (∂µ c̄

A)(δAC∂µ + gsf
ABCABµ )cC .

(2.17)

Using this Lagrange density, we are able to derive the Feynman rules for quan-

tum chromodynamics.
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2.3. Feynman Rules

In this section, we present a recipe to derive the Feynman rules for a theory

given its Lagrange density. The depiction of the Feynman rule derivation closely

follows Section 2.4 of [16]. We will only give a useful recipe for deriving the

Feynman rules and do not cover the exact method of how to derive the recipe

itself. These crucial details are part of most textbooks on QFT as for example

[13, 14].

The first step towards the derivation of Feynman rules for a given Lagrangian is

to order its terms by the number of fields. We can, then, write the Lagrangian

as a sum of terms, each having the same number of fields as

(2.18) L = L(2) + L(3) + L(4) + . . . .

The superscripts denote the number of fields in the corresponding term of the

Lagrangian. A physical Lagrangian does not contain terms with just one or even

no field. In addition, we have to assume that every field vanishes at infinity such

that the boundary terms in partial integration are zero.

2.3.1. Feynman Rule for the Propagator

From the first term in (2.18), i.e. the one that is bilinear in the fields, the

Feynman rule for the propagator can be derived. First, the term has to be

ordered such that it has the form

(2.19) L(2)(x) =
1

2
φi(x)Pij(x)φj.

Here, Pij is a real operator that is symmetric and invertable. Note that it can

also contain derivatives. In this case, we consider real boson fields φi, but the

statements are also true for other fields, e.g. gauge fields or fermion fields.

Next, we define the inverse of Pij by

(2.20)
∑
j

Pij(x)P−1
jk (x− y) = δik δ

4(x− y).

The Fourier transform of the inverse is given by

(2.21) P−1
ij (x) =

∫
d4p

(2π)4
e−i p·x P̃−1

ij (p).
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Finally, we obtain the propagator by the Fourier transform of the inverse trans-

formed to momentum space with a prefactor i

(2.22) ∆F (p)ij = iP̃−1
ij (p).

2.3.2. Feynman Rules for the Vertices

The Feynman rules for the vertices describe the interaction between different

particles. To derive the Feynman rules, we start by ordering the interaction

term in a way similar to (2.19)

(2.23) L(n)(x) = Oi1...in(∂1, . . . , ∂n)φi1(x) . . . φin(x),

where O is an operator that may also contain derivatives.

The notation for the partial derivative, ∂j, means that it is only applied to the

j-th field φij(x).

Using the formulae for the Fourier transforms of each field

φi(x) =

∫
dDp

(2π)D
e−i p·x φ̃i(p),

φ̃i(p) =

∫
dDx ei p·x φi(x),

(2.24)

with p an incoming momentum, we can rewrite the interaction term (2.23) as

L(n)(x) =

∫
dDp1

(2π)D
· · ·
∫

dDpn
(2π)D

e−i(p1+···+pn)·x

× Oi1...in(−ip1, . . . ,−ipn) φ̃i1(p1) . . . φ̃in(pn).

(2.25)

Replacing pj by −pj, i.e. switching from incoming to outgoing momenta, we

obtain the vertex as

(2.26) V = i
∑

permutations

(−1)PFOi1...in(ip1, . . . , ipn).

In this vertex, all momenta are outgoing. With the sum over all permutations,

we mean all permutations of momenta and indices of identical particles. PF

gives the number of permutations over identical fermions. Thus, the whole

vertex gets an overall minus sign for an odd number of fermion permutations.
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2.3.3. Feynman Rules for φ3-Theory

As a simple example, we want to apply the recipe to φ3-theory to derive its

Feynman rules. The Lagrangian of φ3-theory, without counterterms, reads

(2.27) L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 +

1

3!
λφ3.

The part of the Lagrangian bilinear in the fields can be written as in (2.19)

(2.28) L(2)(x) = −1

2
φ(x)(∂µ∂

µ +m2)φ(x).

Hence, we find

(2.29) P (x) = −(∂µ∂
µ +m2),

and with (2.20)

(2.30) P (x)P−1(x− y) = −(∂µ∂
µ +m2)P−1(x− y)

!
= δ4(x− y).

Applying the Fourier transform to both sides, with ∂µ → −ipµ, for both sides

we obtain

(2.31)

∫
d4p

(2π)4
e−i p·(x−y)(p2 −m2) P̃−1(p)

!
=

∫
d4p

(2π)4
e−i p·(x−y).

The propagator is, therefore, given by

(2.32) ∆F (p) = iP̃−1(p) =
i

p2 −m2 + iε
.

Here, the term iε is a shortcut that is commonly used to imply the time ordering

of the two-point function (see for example [13]).

For the interaction part of the Lagrangian we have

(2.33) L(3) =
1

3!
λφ3,

and, hence,

(2.34) O(∂µ) = O(−ipµ) =
1

3!
λ.

Using (2.26), we find the Feynman rule for the vertex

(2.35) V = i
∑

permutations

1

3!
λ = iλ.
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2.3.4. Feynman Rules for QCD

As an example, we present the derivation of the Feynman rule for the gluon

propagator. The full set of Feynman rules for QCD can be found in Appendix

A.1.

Recall from (2.17) that the part of the Lagrangian bilinear in the gluon fields

AAµ (x) reads

(2.36) L(2)
gluons =

1

2
AAµ (x)

[
∂ρ∂

ρgµνδAB −
(

1− 1

ξ

)
∂µ∂νδAB

]
ABν .

Thus, the operator P (x) is given by

(2.37) P µν,AB(x) = ∂ρ∂
ρgµνδAB −

(
1− 1

ξ

)
∂µ∂νδAB.

Consulting (2.20), we find

(2.38)

[
∂ρ∂

ρgµσδAC −
(

1− 1

ξ

)
∂µ∂σδAC

]
(P−1)CBσν (x− y)

!
= gµν δ

ABδ4(x− y),

which has to be transformed to momentum space. The Fourier transformation

on both sides yields∫
d4p

(2π)4
e−i p·(x−y)

[
−p2gµσδAC +

(
1− 1

ξ

)
pµpσδAC

]
× (P−1)CBσν (p)

!
=

∫
d4p

(2π)4
e−i p·(x−y) gµν δ

AB.

(2.39)

Comparing both sides gives us the propagator for the gluon (2.22)

(2.40) ∆F (p)ABµν = i (P−1)ABµν (p) =
i

p2

(
−gµν + (1− ξ)pµpν

p2

)
δAB.

2.4. Perturbative QCD

Using the QCD Feynman rules derived in Section 2.3, we are now able to cal-

culate predictions for observables using perturbative expansions in the coupling

gs, or rather αs := g2s
4π

.
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2.4.1. QCD Beta Function

Before we start with the basics of perturbative computations in QCD, let us

take a closer look at the strong coupling αs(µ), i.e. its corresponding beta func-

tion, and the concept of asymptotic freedom. Notice that the coupling depends

on an unphysical renormalization scale µ.

The fact that the beta function of a non-abelian gauge theory can be negative

was first shown by Politzer, Wilczek, and Gross [17–19]. Since the gauge group

of QCD, SU(3), is non-abelian (see Section 2.1), the statement of negativity, in

fact, holds for the beta function of QCD.

The renormalization group equation (RGE) of αs(µ) with respect to the renor-

malization scale µ defines the QCD beta function:

(2.41) β(αs(µ)) :=
dαs(µ)

d log(µ)
= −2αs(µ)

∞∑
n=0

βn

(
αs(µ)

4π

)n+1

.

The coefficients βn are known up to five-loop order [20–24]. The first three

coefficients read

β0 =
11

3
CA −

3

4
TRnf ,

β1 =
34

3
C2

A −
20

3
CATRnf − 4CFTRnf ,

β2 =
325

54
n2
f −

5033

18
nf +

2857

2
,

(2.42)

with the number of active quark flavors nf and the Casimir operators CF, CA,

and TR known from Section 2.1. The two missing coefficients β3 and β4 can be

found in [22].

The minus sign on the right-hand side of (2.41) indicates that the value of the

strong coupling decreases when going to higher energies. This is contrary to

the behavior of the QED coupling which increases for higher energies. Theories

with this property are called infrared free. Theories with the opposite behavior,

such as QCD, are called asymptotically free.

The term asymptotic freedom arises from the fact that the strong coupling goes

to zero for short distances, i.e. for high energies. At low energies, αs is so strong

that the partons of QCD, i.e. quarks and gluons, cannot be observed as single

particles but as bound states, so-called hadrons. This behavior of quarks and

gluons at low energies is known as color confinement.
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Asymptotic freedom allows us to calculate observables in QCD perturbatively

at high energies way above the QCD scale ΛQCD, i.e. the location of the Landau

pole of the running of the strong coupling. In the MS scheme (cf. Section 2.5)

its world average values at four-loop order are

Λ
(6)
QCD = (89± 6) MeV,

Λ
(5)
QCD = (210± 14) MeV,

Λ
(4)
QCD = (292± 16) MeV,

Λ
(3)
QCD = (332± 17) MeV,

(2.43)

where the superscript denotes the number nf of active quark flavors [15].

Knowing the QCD scale, there exists a solution to the renormalization group

equation (2.41) at one-loop order

(2.44) αs(µ) =
2π

β0

1

log
(

µ
ΛQCD

) .
If a solution for the RGE at higher orders is desired, a perturbative expansion

around the leading-order solution provides a good approximation (cf. [13] p.

528). Additionally, an expansion of αs(µ) around a reference value at some

fixed scale µ0, e.g. the Z-Boson’s mass mZ , can be used. This is particularly

helpful for an implementation into a computer program. A plot for two different

approximating implementations for the running of the strong coupling at first

order can be found in Figure 2.1. For the corresponding formulae, see Appendix

A.2. For the implementation of αs(µ) in Figure 2.1, we used the mass of the Z-

Boson, mZ = 91.1876 GeV, as reference scale with the corresponding value of the

strong coupling, αs(mZ) = 0.118. It is apparent that the two implementations

differ in their asymptotic behavior when approaching µ = 0. The ratio of the

two implementations is depicted in the lower panel of Figure 2.1. However, this

has no major implications on our analyses throughout this thesis. In practice,

the RGE can be solved numerically at a fixed order for exact results.

2.4.2. Observables in Perturbative QCD

Using the strong coupling constant, we can compute observables through their

perturbative expansion in αs. Before looking at observables, let us start with

some remarks on calculating cross sections. Asymptotic freedom allows us to
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Figure 2.1. The running of the strong coupling αs(µ) at two-
loop order for two different approximations (upper figure). The
blue solid line represents an implementation of (A.1), while we
used (A.4) for plotting the dotted red line. The lower panel shows
the ratio of both implementations

calculate a certain process in QCD perturbatively, i.e. use a series in αs where

each term corresponds to a set of Feynman diagrams.

In most cases, the leading order (LO), or Born level, amplitude can be calcu-

lated using tree-level diagrams. One-loop diagrams together with real correc-

tions provide the formulae for NLO computations (cf. Section 3.1). Summing

up all partial amplitudes of all orders would provide the exact result for a cer-

tain process. Since this is not feasible, for it would take infinite computing time,

state-of-the-art calculations rarely go beyond NNLO accuracy. Another com-

plication that arises when going to higher orders, besides the rapidly increasing

number of diagrams, are infrared divergences (see Section 3.1).
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Figure 2.2. Examples of a tree-level diagram (left) and a one-
loop diagram (right) for a 2→ 2 scattering process.

Speaking of a typical QCD observable O(y), dependent on a variable y, we

encounter a perturbative expansion of the form

(2.45) O(y) =
∑
n=1

(αs

2π

)n
An(y),

with

(2.46) An(y) =
2n∑
j=0

anj logj(y) + power corrections.

Here, anj are the coefficients of the expansion of O(y). Considering only the

first two orders yields

(2.47) O(y) =
αs

2π
A1(y) +

(αs

2π

)2

A2(y) +O(α3
s ),

with

A1(y) = a10 + a11 log(y) + a12 log2(y),

A2(y) = a20 + a21 log(y) + a22 log2(y) + a23 log3(y) + a24 log4(y).
(2.48)

It is obvious that for small y we encouter large logarithms. It follows that,

although αs is small, we have

(2.49) αs log2(y) /�1,

and, therefore, our perturbative expansion is spoiled. One way to deal with

these large logarithms in the series expansion of the observable is resummation.

The Borel transform provides one possibility for the resummation of asymptotic

expansions.

Given a power series

(2.50) f(αs) =
∞∑
n=1

cnα
n
s ,
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the corresponding Borel transform is defined by

(2.51) B[f ](t) :=
∞∑
n=0

cn+1
tn

n!
.

The Borel integral is defined as

(2.52)

∞∫
0

dt e−t/αs B[f ](t),

and has the following properties:

(1) It has the same series expansion as f(αs).

(2) It provides the exact result under certain conditions.

An example where the Borel resummation does not work is the conversion of the

top quark mass from the pole mass scheme to the MS mass scheme (see Section

2.5). In this case, an ambiguity of order ΛQCD arises, which is also known as

the renormalon ambiguity of the top quark mass [25–29].

2.5. Mass Renormalization

Let us conclude the chapter on QCD basics with a brief discussion of the renor-

malization of QCD, especially the renormalization of the quark mass.

First, we introduce the renormalization of the quark mass, the coupling, and

the field strength into the QCD Lagrangian (2.17) as

L =− 1

4
Z3(∂µA

A
ν − ∂νAAµ )2 + Z2q̄a(i/∂ − ZmmR)abqb − Z3cc̄

A�cA

− gRZA3fABC(∂µA
A
ν )ABµA

C
ν −

1

4
g2

RZA4(fEABAAµA
B
ν )(fECDACµA

D
ν )

+ gRZ1A
A
µ q̄aγ

µtAabqb + gRZ1cf
ABC(∂µc̄

A)ABµ c
C .

(2.53)

Here, we implicitly sum over the different quark flavors. The renormalization

constant for a quark field is denoted by Z2, the one for the gluon field by Z3,

and the one for a ghost field by Z3c. In addition, the renormalization constant

for the mass of a quark is denoted by Zm.

The renormalized coupling gR appears in four different terms of the Lagrangian.

Therefore, it comes with the four renormalization constants Z1, ZA3 , ZA4 , and
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Z1c, corresponding to the quark-gluon vertex, the three-gluon-vertex, the four-

gluon vertex, and the ghost-gluon vertex, respectively.

The renormalization constants Za, with a ∈ {1, 1c, 2, 3, 3c,m,A3, A4}, can be

written as a series in αs:

(2.54) Za = 1 +
∞∑
n=1

Z(n)
a

(αs

4π

)n
.

The counterterms δa at one-loop order are, then, defined by

(2.55) δa := Z(1)
a

αs

4π
.

2.5.1. The Quark Self-Energy

We start with the explicit computation of the quark self-energy graph at one

loop, pictured in Figure 2.3, to determine the counterterms for the quark field

and the quark mass.

Figure 2.3. The quark self-energy graph.

Using the QCD Feynman rules of Appendix A.1, we find

iΣab
2 (/p) = CF δ

ab (igs)
2

∫
d4k

(2π)4
γµ

i(/k +m)

k2 −m2 + iε
γν

−igµν
(p− k)2 + iε

= −CF δ
ab g2

s

∫
d4k

(2π)4
γµ

(/k +m)

(k2 −m2 + iε)((p− k)2 + iε)
γµ.

(2.56)

The prefactor CF δ
ab is a color-factor coming from the summation over all pos-

sible color states

(2.57)
∑
A,B,c,d

tAca t
B
bd δ

AB δcd =
∑
A

(tAtA)ab = CF δab.

Using the formula for Feynman parametrization

(2.58)
1

AB
=

∫ 1

0

dx
1

[A+ (B − A)x]2
,
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we can write (2.56) as

iΣab
2 (/p) =− CF δ

ab g2
s

∫
d4k

(2π)4

×
∫ 1

0

dx γµ
(/k +m)

[k2 −m2 + iε+ ((p− k)2 − k2 +m2)x]2
γµ.

(2.59)

Completing the square in the denominator with x2p2 yields

(2.60) iΣab
2 (/p) = −CF δ

ab g2
s

∫
d4k

(2π)4

∫ 1

0

dx γµ
(/k +m)

[(k − px)2 −∆ + iε]2
γµ,

where we have defined

(2.61) ∆ := (m2 − p2x)(1− x).

Using the relations of the gamma matrices in D dimensions

γµγµ = DI4,

γµγνγµ = (2−D)γν ,
(2.62)

we find

(2.63) γµ(γνkν +m)γµ = −2/k + 4m,

for the numerator in D = 4. Shifting k → k + px, we obtain:

(2.64) iΣab
2 (/p) = 2CF δ

ab g2
s

∫
d4k

(2π)4

∫ 1

0

dx
(/k + /px− 2m)

[(k2 −∆ + iε]2
.

The first term in the integral, which is proportional to k, vanishes when inte-

grated since it is odd in k ↔ −k. Hence, our integral for the self-energy loop

graph reads

(2.65) iΣab
2 (/p) = 2CF δ

ab g2
s

∫
d4k

(2π)4

∫ 1

0

dx
(/px− 2m)

[(k2 −∆ + iε]2
.

The integral scales as d4k/k4 and is, therefore, logarithmically divergent in the

ultraviolet (UV) region.

In order to get rid of this divergency, we use dimensional regularization and

consider the integral in D = 4 − ε dimensions. The self-energy contribution in
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D dimensions reads

Σab
2 (/p) = −iCF δ

ab g2
s

×
∫ 1

0

dx [(D − 2)/px−Dm]︸ ︷︷ ︸
=:K

∫
dDk

(2π)D
µ4−D

[(k2 −∆ + iε]2︸ ︷︷ ︸
=:I

.(2.66)

Calculating the Integral I

Let us first compute the integral I in (2.66). We use the general formula for

the loop integral over a propagator to the power n in D dimensions

(2.67)

∫
dDk

(2π)D
1

(p2 −∆)n
= i

(−1)n

(4π)
D
2

Γ(n− D
2

)

Γ(n)

(
1

∆

)2−D
2

.

Applying (2.67) to our integral I yields

(2.68) I =

∫
dDk

(2π)D
µ4−D

[(k2 −∆ + iε]2
= i

1

(4π)
D
2

Γ

(
4−D

2

) (
µ2

∆

)2−D
2

.

Inserting D = 4− ε gives us

(2.69) I = i
1

(4π)2− ε
2

Γ
( ε

2

) (µ2

∆

) ε
2

.

Next, we expand around ε = 0. The Laurent expansion of the gamma function

around x = 0 is given by

(2.70) Γ(x) =
1

x
− γE +O(x),

where γE ≈ 0, 577 . . . is the Euler–Mascheroni constant. Hence, we find

(2.71) Γ
( ε

2

)
=

2

ε
− γE +O(ε).

The expansion of the remaining factors yields

(2.72)

(
4πµ2

∆

) ε
2

= exp

[
ε

2
log

(
4πµ2

∆

)]
= 1 +

ε

2
log

(
4πµ2

∆

)
,
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and, therefore, we have

I =
i

16π2

(
2

ε
− γE

)(
1 +

ε

2
log

(
4πµ2

∆

))
=

i

16π2

[
2

ε
− γE + log

(
4πµ2

∆

)
− ε

2
γE log

(
4πµ2

∆

)
︸ ︷︷ ︸

O(ε1)

]
,

(2.73)

where we can neglect terms of order higher than ε0 since we consider ε→ 0.

The Final Formula

Before we can write the final formula for Σ2(/p), we insert D = 4 − ε in K of

(2.66) and find

(2.74) K = 2/px− 4m− ε(/px−m).

Now, we are able to insert I and K into (2.66):

Σab
2 (/p) =

CF δ
ab g2

s

16π2

∫ 1

0

dx
[
2/px− 4m− ε(/px−m)

]
×
[

2

ε
− γE + log

(
4πµ2

∆

)
+O(ε1)

]
=
CF δ

ab g2
s

16π2

[ ∫ 1

0

dx

[
2

ε
− γE + log(4π)

] [
2/px− 4m

]
− 2

∫ 1

0

dx(/px−m) + 2

∫ 1

0

dx log

(
µ2

∆

)
(/px− 2m)

]
+O(ε1).

(2.75)

Integrating the terms proportional to x and writing the loop integral in a form

where all divergences are separated from the finite part, gives us a useful ex-

pression for the quark self-energy

Σab
2 (/p) =

CF δ
ab g2

s

16π2

[(
2

ε
− γE + log(4π)

)(
/p− 4m

)
− (/p− 2m)

+ 2

∫ 1

0

dx log

(
µ2

∆

)
(/px− 2m)

]
,

(2.76)

or

(2.77) Σab
2 (/p) =

CF δ
ab g2

s

16π2

[
2/p− 8m

ε
+ finite

]
.
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Note that we have divergences proportional to both /p and m. Hence, we need

to renormalize two quantities. This is the topic we address next.

2.5.2. Renormalization

As we can see from equation (2.77), there are two different kinds of infinities

in Σab
2 . One that is proportional to /p and one that is independent from /p, but

proportional to m.

In order to find the right counterterms, we have to renormalize the (bare) quark

field q(x) and the corresponding (bare) quark mass m. For the renormalized

quark field at one-loop order, we can write

(2.78) qR(x) =
1√
Z2

q(x), with Z2 = 1 + δ2,

where δ2 is the counterterm for the quark field. The corresponding relation for

the quark mass reads

(2.79) mR =
1

Zm
m, with Zm = 1 + δm.

The renormalized Green’s function using Z2 is

(2.80) GR(/p) =
1

Z2

Gbare(/p).

With this relation, we can write the tree-level propagator in terms of the pro-

pagator of the bare fields

(2.81) iGR(/p) =
1

Z2

i

/p−m
+ loops.

Using the relations for the renormalized quark field (2.78) and the renormalized

mass (2.79) yields

iGR(/p) =

(
1

1 + δ2

)(
i

/p−mR − δmmR

)
+ loops

=
i

/p−mR − δmmR + δ2/p− δ2mR − δ2δmmR

+ loops.

(2.82)

Since we are interested in first-order corrections, we only need to consider terms

linear in the counterterms δa. Hence, we can neglect the last term in the de-

nominator.
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For arbitrary matrices A and B, the following relation holds

(2.83) (A−B)−1 = A−1 + A−1BA−1 +O(B2).

Setting A = /p−mR and B = δ2 − (δ2 + δm)mR provides

iGR(/p) =
i

/p−mR

+
i

/p−mR

[
i(δ2/p− (δ2 + δm)mR

] i

/p−mR

+ loops +O(g4
s ).

(2.84)

The term for the one-loop correction reads

(2.85) iG2(/p) = iG0(/p)[iΣ
ab
2 (/p)]iG0(/p).

Insertion into (2.84) yields

iGR(/p) =
i

/p−mR

+
i

/p−mR

[
i(δ2/p− (δ2 + δm)mR + Σab

2 (/p)
] i

/p−mR

+O(g4
s ).

(2.86)

2.5.3. Renormalization Schemes

Now, we can choose the counterterms δ2 and δm such that they cancel the diver-

gences in Σab
2 . This type of renormalization is called subtraction scheme. There

are many different subtraction schemes that differ in the way the counterterms

are chosen. The most commonly used schemes are the minimal subtraction (MS)

scheme, or rather the modified minimal subtraction (MS) scheme, and the on-

shell scheme.

In the MS scheme, the counterterms are chosen such that they exactly cancel

the divergences in Σab
2 , but do not include finite terms. Hence, we obtain

δ2 =
1

ε

g2
s

16π2
[−2CF],

δm =
1

ε

g2
s

16π2
[−6CF],

(2.87)

for the counterterms in the MS scheme, leaving out the Kronecker delta for the

flavor indices.

The full set of counterterms at one-loop order can be calculated from the remain-

ing two- and three-point functions in a similar way. For the sake of completeness,
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we give the full set of one-loop counterterms in Feynman gauge (ξ = 1) [13]

δ1 =
1

ε

g2
s

16π2
[−2CF − 2CA],

δ2 =
1

ε

g2
s

16π2
[−2CF],

δm =
1

ε

g2
s

16π2
[−6CF],

δ3 =
1

ε

g2
s

16π2

[
10

3
CA −

8

3
nfTR

]
,

δ3c =
1

ε

g2
s

16π2
[CA],

δA3 =
1

ε

g2
s

16π2

[
4

3
CA −

8

3
nfTR

]
,

δA4 =
1

ε

g2
s

16π2

[
−2

3
CA −

8

3
nfTR

]
,

δ1c =
1

ε

g2
s

16π2
[−CA].

In the following, we define the pole mass mpole, a physical mass quantity, and

show two examples of renormalization schemes. First, the on-shell scheme where

the renormalized mass mR is set equal to the pole mass. Secondly, the modified

minimal subtraction scheme (MS) where the counterterms are defined similarly

to the MS scheme but with additional finite terms.

The Pole Mass

One particle irreducible (1PI) Feynman graphs are graphs that cannot be cut

into two by slicing one single propagator. iΣ(/p) can be defined as the sum of all

1PI graphs. Resumming the corresponding Green’s function to all orders yields

(2.88) iG(/p) =
i

/p−m+ Σ(/p)
.

At order g2
s , the renormalized Green’s function reads as

(2.89) iGR(/p) =
i

/p−mR + ΣR(/p)
,
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with

(2.90) ΣR(/p) = Σ2(/p) + δ2/p− (δm + δ2)mR +O(g4
s ).

The physical quark mass mpole, or the pole mass, is the location of the propa-

gator’s pole. The renormalized propagator has a single pole at /p = mpole with

residue i. Hence, we find

(2.91) ΣR(mpole) = mR −mpole,

for the 1PI graphs. With the residue i, we find

(2.92) i = lim
/p→mpole

(/p−mpole)
i

/p−mR + ΣR(/p)
= lim

/p→mpole

i

1 + d
d/p

ΣR(/p)
,

which gives us

(2.93)
d

d/p
ΣR(/p)

∣∣∣∣
/p=mpole

= 0.

These two equations define the pole mass.

In the on-shell subtraction scheme the finite parts of the counterterms are chosen

such that the renormalized mass is equal to the pole mass, mR = mpole. Hence,

the counterterms are given by

δ2 = − d

d/p
Σ2(/p)

∣∣∣∣
/p=mpole

,

δmmpole = Σ2(mpole).

(2.94)

When calculating the counterterms, we encounter the problem of arising IR

divergences. We address this problem in Chapter 3 where we discuss the sub-

traction method for the cancellation of IR singularities in NLO calculations.

MS Scheme

The MS scheme is closely related to the MS scheme. The only difference is that

there are some additional finite terms in the counterterms, namely

δ2 = − g2
s

16π2

[
2

ε
− γE + log(4π)

]
CF,(2.95)

δm = − 3g2
s

16π2

[
2

ε
− γE + log(4π)

]
CF.(2.96)
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With this choice for the counterterms, we find

(2.97) ΣR(/p) =
g2

s

8π2
CF

∫ 1

0

dx log(
µ2

∆
)(/px− 2mR)− g2

s

16π2
(/p− 2mR).

Note that the renormalized propagator has no pole at /p = mR but at /p = mpole,

which gives us the relation

(2.98) mpole −mR + ΣR(mpole) = 0.

Using mpole = mR at leading order, we obtain the relation

(2.99) mR = mpole

[
1− g2

s

16π2

(
4 + 3 log

(
µ2

m2
pole

))
+O(g4

s )

]
.

Since the parameter µ is unphysical, every physical observable O has to be

independent of µ. This leads to the renormalization group equation

(2.100)
d

dµ
O = 0.

2.5.4. Pole Mass Renormalon Ambiguity

As already mentioned in the context of resummation of observables in QCD (cf.

Section 2.4.2), we now want to address the problem that arises when trying to

resum the series in the conversion from the pole mass to the MS mass.

The conversion from the pole mass scheme (mpole) to the MS mass scheme (m̄)

reads

(2.101) mpole = m̄+
∞∑
n=0

rnα
n+1
s .

The coefficients rn are strongly contributed by infrared momenta in the inte-

gration over the gluon line. They diverge as

(2.102) rn
n→∞
=

CF

π
e5/6µ(−2β0)nn!,

where β0 is the first coefficient of the QCD β-function of Eq. (2.41).

The function we want to resum is then defined by

(2.103) f(αs) :=
∞∑
n=0

rnα
n+1
s ∼

∞∑
n=0

(−2β0)nn!αn+1
s .
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Trying Borel resummation (cf. Section 2.4.2), we find the following Borel trans-

form

(2.104) B[f ](t) =
∞∑
n=0

(−2β0)ntn =
1

1 + 2β0t
, for |2β0t| < 1.

In the corresponding Borel integral

(2.105)

∞∫
0

e−t/αs
1

1 + 2β0t
,

we encounter a pole at t = −1/(2β0) which leads to an ambiguity of order

ΛQCD in the pole mass. This ambiguity makes the pole mass impractical for

quarks. A short-distance mass (a practical quark mass definition without the

O(ΛQCD) ambiguity) has to depend on an additional IR scale R. Examples for

short-distance masses are the MS mass and the MSR mass [30, 31].
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When dealing with NLO computations, one encounters infrared singularities

that may spoil the calculations. There are two different ways to deal with these

singularities:

(1) The phase space slicing method [32–38].

(2) The subtraction method [39–58].

In the subtraction scheme, one introduces a counterterm that approximates the

singularities of the real emission term and the virtual contribution. This makes

both contributions integrable separately.

In the phase space slicing approach, a cutoff (or in some examples two cutoffs

[35]) is applied to the phase space such that the singular regions are separated

from the rest. The latter can then be integrated numerically. In the singular

region the real emission matrix element is approximated with its collinear and

soft limits and then integrated.

Here, we focus on the subtraction method, in particular the dipole subtraction

method [42–44], since its properties will play a crucial role for the definition of

the dipole shower in Section 4.2.

33
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Before we start with a description of the dipole subtraction method, we take a

look at the general structure of NLO computations in perturbative QCD.

3.1. The Structure of NLO Computations

The differential cross section of any scattering process in QCD can generally be

written as

(3.1) dσNLO = [B(φn) + V (φn) + C(φn)] dφn +R(φn+1)dφn+1.

Here, B(φn) denotes the Born contribution, i.e. the LO contribution. The

NLO contributions are the renormalized virtual contribution V (φn) and the

real contribution R(φn+1). For hadronic collisions, as for example in the LHC,

an additional counterterm C(φn) has to be added to cancel singularities in the

initial state.

Since, in collider experiments, we observe the scattering of two initial-state

particles into n final-state particles, it is sufficient to consider the process 2→ n.

For two colliding hadrons A and B, we denote their four-momenta by pA and

pB, respectively. The momenta of the incoming partons a and b are then defined

by

(3.2) pa := xapA, pb := xbpB,

where xa (xb) is the momentum fraction of parton a (b) in hadron A (B). The

scattering process then fulfills the momentum conservation

(3.3) xapA + xbpB =
n∑
i=1

pi,

where pi is the four-momentum of the final-state particle i. The set of kinematic

variables that specify the resulting n-particle phase space is denoted by

(3.4) Φn = {p1, . . . , pn} ,

and a point in this phase space by φn.

It is apparent that for initial-state particles that are not hadrons the corre-

sponding momentum fraction xj has to be set to 1.
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3.1.1. Born Cross Section

The Born contribution represents the LO part of the differential NLO cross

section in (3.1). It is given by

(3.5) dσB =
∑
fa,fb

∫
dxa

∫
dxb

ffa(xa)ffb(xb)

2ŝ ns(a)ns(b)nc(a)nc(b)

∑
spins,color

|Mn|2dφn,

where the first sum is over the flavors of the initial-state partons a and b. The

center-of-mass energy of the hard collision is given by ŝ, whereas ns(j) and nc(j)

denote the degrees of freedom for the spin and color of parton j. The relevant

tree-level matrix element is denoted by Mn.

The usual n-particle phase space element in four dimensions is given by

(3.6) dφn(P ; p1, . . . , pn) = (2π)4δ4

(
P −

n∑
i=1

pi

)
n∏
i=1

d3pi
(2π)32p0

i

,

with P = pa + pb. For convenience we abbreviate (3.5) by

(3.7) dσB = B(φn) dφn.

3.1.2. Virtual Corrections

The virtual corrections assemble the contribution from the one-loop diagrams

to a corresponding process. The matrix element squared contributing to the

differential cross section of the virtual corrections (cf. (3.5)) is calculated as an

interference of the one-loop contribution with the Born amplitude

(3.8) 2 Re
(
M(1−loop)M∗

n

)
.

This interference of the Born amplitude with the one-loop amplitude leads to

UV divergences. These can be removed by renormalization (cf. Section 2.5).

We assume that the virtual contribution V (φn) in our abbreviated form

(3.9) dσV = V (φn)dφn,

is already renormalized and, hence, free of UV divergences.

However, IR divergences remain in V (φn) arising from collinear or soft partons

in the loop. Applying dimensional regularization, these divergences show up

as 1/ε and 1/ε2 poles in the virtual contribution. As already mentioned, these

divergences can be tackled using the subtraction method.
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3.1.3. Real Corrections

The structure of the real corrections to the NLO cross section is very similar to

the structure of the Born cross section, but with an additional parton coming

from a real emission. Thus, it is sufficient to consider the Born amplitude for a

2→ n+ 1 process.

Using the familiar abbreviation, we can write the differential cross section for

the real emission part as

(3.10) dσR = R(φn+1)dφn+1.

The n+ 1-particle phase space element in D dimensions reads

(3.11) dφn+1(P ; p1, . . . , pn+1) = (2π)DδD

(
P −

n+1∑
i=1

pi

)
n+1∏
i=1

dD−1pi
(2π)D−12p0

i

.

In phase space regions where the emitted parton becomes soft or collinear to

one of the other partons, the real contribution also contains IR singularities.

Additionally, the n + 1-particle phase space can be factorized into a Born like

n-particle phase space times a radiation phase space which depends on three

radiation variables.

3.1.4. Hadronic Counterterms

Hadronic collisions are collisions where at least one of the colliding particles

is a hadron. In these events, initial-state IR divergences occur. To solve this

problem, the factorization counterterm

(3.12) dσC = C(φn)dφn,

has to be added to the differential NLO cross section (cf. (3.1)). The infrared

divergences in this counterterm again appear as 1/ε poles in dimensional regu-

larization. For leptonic collisions the counterterm is set to zero.
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3.2. Dipole Subtraction – General Overview

Let us reconsider the formula for the differential NLO cross section (3.1)

(3.13) dσNLO = [B(φn) + V (φn) + C(φn)] dφn +R(φn+1)dφn+1.

As discussed in the last section, each term of the NLO correction, i.e. the

virtual contribution V (φn) and the real emission correction R(φn), contains

infrared singularities. Two types of infrared singular regions in phase space can

be distinguished:

(1) Soft region: A final-state parton with a four-momentum near zero is

called a soft parton, i.e. a parton j with four-momentum

(3.14) pj = λq, withλ→ 0,

for an arbitrary four-momentum q.

(2) Collinear region: The final-state parton i is called collinear to an-

other parton j if

(3.15) pi → zp, pj → (1− z)p,

holds for the four-momenta of the both partons. Here, we have p =

pi + pj, and z is the momentum fraction of the parton i of p. The

parton j can either be a parton in the final state or in the initial state.

Additionally, there are regions where both types of singularities overlap. These

are called soft-collinear regions.

The singularities lead to divergences in the integrals which make them not

integrable. However, the Kinoshita–Lee–Nauenberg (KLN) theorem [59, 60]

states that the computation of infrared safe observables at fixed-order is infrared

finite. In our case, at NLO, the infrared singularities of the real emission term

cancel the infrared singularities of the virtual contribution after phase space

integration.

A convenient tool to make the separate terms of (3.13) suitable for numerical

calculations is the subtraction method [39–58]. Here, we only give an overview

of the general aspects of the subtraction method which fit our purposes of

discussing a special subtraction scheme, i.e. subtraction in the Catani–Seymour

dipole formalism [42–44]. A more detailed description of the subtraction method

in a general framework can be found in [61].
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The subtraction method makes use of a counterterm A(φn+1) that approximates

the singular behavior of the virtual correction and the real emission part of

(3.13). Adding and subtracting this counterterm lets us rewrite the differential

NLO cross section as

dσNLO = [B(φn) + V (φn) + C(φn) + A(φn+1)dφrad] dφn

+ [R(φn+1)− A(φn+1)] dφn+1.
(3.16)

Note that the counterterm and the real emission term live on the phase space

of n + 1 final-state particles. In order to make it also suitable to the virtual

contribution, which lives on the n-particle phase space, we used the factoriza-

tion property of the n + 1-particle phase space into a product of an n-particle

configuration and a radiation phase space

(3.17) dφn+1 = dφndφrad.

The involved part when applying the subtraction method is the task of finding a

suitable form for the counterterms. One method to find these counterterms, we

want to focus on, is the dipole subtraction method. It was first introduced by

Catani and Seymour in [42] for massless final-state partons. Hence, it is often

referred to as Catani–Seymour subtraction. It has been extended to massive

final-state partons in [43, 44].

The dipole subtraction method is based upon the external-leg insertion rule:

In the soft or collinear regions, the tree-level amplitude Mn+1 can always be

obtained by inserting a parton j (that is either soft or collinear to another of

the n partons) between two external legs of the tree-level amplitude Mn and

summing over all possible insertions (see Figure 3.1). From this external leg

Figure 3.1. Schematic representation of the external leg inser-
tion for squared matrix elements.

insertion, one can derive the dipole factorization formulae [42]. Introducing

the dipole splitting functions Vij,k, the n + 1 final-state parton matrix element



3.2. DIPOLE SUBTRACTION – GENERAL OVERVIEW 39

squared of the real emission term can symbolically be expressed as

(3.18) |Mn+1|2 → |Mn|2 ⊗ Vij,k.

Here, ⊗ denotes a convolution between the squared Born level amplitude and

the singular factor Vij,k. A pictorial representation of this factorization can be

found in Figure 3.2. Note that, in the soft and collinear limits, the splitting

functions Vij,k become proportional to the Altarelli–Parisi splitting functions

[62–64].

Figure 3.2. Dipole factorization of an amplitude with n + 1-
particles in the final state.

Making use of the splitting functions Vij,k, the singular behavior of the real

correction can be expressed as a sum over dipoles

(3.19) |Mn+1|2 =
∑
i,j

∑
k 6=i,j

Dij,k+
∑
i,j

∑
a

Daij+
∑
a,i

∑
k 6=i

Daik +
∑
a,i

∑
b6=a

Dai,b+. . . ,

where the dots represent non-divergent terms in the singular regions of the

n + 1-particle phase space. The dipole functions D can be obtained from the

corresponding splitting functions V . By i, j, and k, we denote partons in the

final state while a and b are initial-state partons.

Each of the dipole contributions depends on three partons. The three partons

are distinguished as emitter, emitted parton, and spectator. There exist four

different phase space configurations depending on which of these three partons

are in the final or in the inital state (see Figure 3.3):

• Final-state emitter with final-state spectator Dij,k.
• Final-state emitter with initial-state spectator Daij.
• Initial-state emitter with final-state spectator Daik .

• Initial-state emitter with initial-state spectator Dai,b.
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(a) Final-state emitter with
final-state spectator.

(b) Final-state emitter with
initial-state spectator.

(c) Initial-state emitter with
final-state spectator.

(d) Initial-state emitter with
initial-state spectator.

Figure 3.3. Pictorial representation of the four possible emitter-
spectator pairs.

The dipole functions approximate the n + 1-particle matrix element pointwise

in the singular regions (cf. (3.19)). Hence, they provide a suitable form for the

counterterms in the subtraction method.

Since we will focus on dipole parton showers in electron-positron annihilation

processes later on, it is sufficient to discuss the properties of the dipole for a

final-state emitter with a final-state spectator, Dij,k. The properties of the other

dipoles and their extension to massive particles can be found in [42–44].
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3.3. Dipole for Colorless Initial State

For the case of a final-state emitter and a final-state spectator, the n+1-parton

matrix element squared can be expressed by the sum over the corresponding

dipoles plus non-singular terms

(3.20) |Mn+1|2 =
∑
i,j

∑
k 6=i,j

Dij,k + . . . .

The dipole contribution reads

Dij,k = − 1

2pi · pj

×M∗
n(p1, . . . , p̄ij, . . . , p̄k, . . .)

T k · T ij

T 2
ij

Vij,kMn(p1, . . . , p̄ij, . . . , p̄k, . . .),
(3.21)

where T j denotes the color charge operator for the parton j. In the final state

the color operators T j are given by

M∗(. . . qi . . .)(t
a
ij)M(. . . qj . . .),

M∗(. . . q̄i . . .)(−taji)M(. . . q̄j . . .),

M∗(. . . gCi . . .)(if
CAB)M(. . . gBj . . .),

(3.22)

for a quark, antiquark, and gluon, respectively. It is obvious that the color

operators T j lead to color correlations.

The splitting functions Vij,k are matrices in the helicity space of the emitter īj.

Hence, they lead to spin correlations as well.

After this discussion of the general properties of the dipole function Dij,k, we

will now present the features that are necessary for the definition of the dipole

shower in Section 4.2, i.e. the kinematics of the splitting, the factorized phase

space measure, and the form of the spin averaged splitting functions Vij,k. We

start with the massless case and extend it to the massive case.

3.3.1. Massless Case

Considering the splitting īj + k̄ → i + j + k, we require exact momentum

conservation

(3.23) pi + pj + pk = p̄ij + p̄k,
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where p̄ij and p̄k are the four-momenta of the emitter parton īj and the spectator

parton k̄. The momenta pi, pj, pk are the four-momenta of the partons i, j, k

after the splitting.

For the massless case we have

(3.24) p2
i = p2

j = p2
k = 0.

Kinematics

We start with the definition of the kinematic variables for the splitting, i.e. yij,k
and the momentum fraction like variables z̄i and z̄j:

yij,k :=
pipj

pipj + pjpk + pkpi
=

sij
sij + sjk + sik

,

z̄i :=
pipk

pjpk + pipk
=

sik
sjk + sik

,

z̄j :=
pjpk

pjpk + pipk
=

sjk
sjk + sik

= 1− z̄i,

(3.25)

where we used

(3.26) slm := (pl + pm)2, for l,m ∈ {i, j, k}, l 6= m.

The momenta of the emitter and the spectator are defined as in [42]:

p̄ij = pi + pj −
yij,k

1− yij,k
pk,

p̄k =
1

1− yij,k
pk,

p̄m = pm, for m 6= ij, k,

(3.27)

which ensures exact momentum conservation

(3.28)
n∑
l=1

p̄l =
n+1∑
l=1

pl.

Factorized Phase Space Measure

The three-particle phase space element of the partons i, j, k contributes to the

n + 1-particle phase space element of the final-states. It can be factorized into

a two-particle phase space and an unresolved radiation phase space

(3.29) dφ3(Q; pi, pj, pk) = dφ2(Q; p̄ij, p̄k) dφrad(pi; p̄ij, p̄k),
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with Q = pi + pj + pk, the total outgoing momentum of the final-state particles

that form the dipole.

The measure of the radiation phase space dφrad(pi; p̄ij, p̄k) can be expressed in

terms of the kinematic variables yij,k and z̄i. In D dimensions, the radiation

phase space measure reads

dφrad(pi; p̄ij, p̄k) =
(2p̄ij p̄k)

1−ε

16π2

dΩ(D−3)

(2π)1−2ε
dz̄i dyij,k Θ(z̄i(1− z̄i))

×Θ(yij,k(1− yij,k)) (z̄i(1− z̄i))−ε (1− yij,k)1−2ε y−εij,k.

(3.30)

For the parton shower splitting (cf. Chapter 4), it is reasonable to consider the

phase space measure in D = 4 dimensions. In this case, the element of solid

angle dΩ(D−3) simplifies as follows

(3.31)

∫
dΩ(D−3) =

2π

πε Γ(1− ε)
D=4−−−→

∫
dΩ = 2π.

In four dimensions, the differential dΩ corresponds to the differential of the

azimuthal angle ϕ. Thus, the following replacement holds

(3.32) dΩ→ dϕΘ(ϕ(2π − ϕ)).

It is apparent that the radiation phase space Φrad is now parametrized in terms

of three radiation variables

(3.33) Φrad = {yij,k, z̄i, ϕ}.

Hence, we are now able to write the differential of the radiation phase space in

D = 4 dimensions in terms of these three radiation variables

dφrad(pi; p̄ij, p̄k) =
(2p̄ij p̄k)

4(2π)3
dϕ dz̄i dyij,k (1− yij,k)

×Θ(ϕ(2π − ϕ)) Θ(z̄i(1− z̄i)) Θ(yij,k(1− yij,k)).
(3.34)

Defining sijk := (p̄ij + p̄k)
2 = (pi + pj + pk)

2 and writing out the integrals, we

obtain

(3.35)

∫
dφrad =

sijk
32π3

1∫
0

dyij,k(1− yij,k)
1∫

0

dz̄i

2π∫
0

dϕ,

for the phase space measure in the massless case.
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Dipole Splitting Functions

The dipole splitting functions Vij,k for the different splittings are obtained from

[42]. In their spin-averaged form they read:

For q → qg:

(3.36) 〈Vqg,k〉 = 8πµ2εαsCF

[
2

1− z̄i(1− yij,k)
− (1 + z̄i) + ε(1− z̄i)

]
.

For g → qq̄:

(3.37) 〈Vqq̄,k〉 = 8πµ2εαsTR

[
1− 2z̄i(1− z̄i)

1− ε

]
.

For g → gg:

〈Vgg,k〉 = 8πµ2εαsCA

[
2

1− z̄i(1− yij,k)

+
2

1− (1− z̄i)(1− yij,k)
− 4 + 2z̄i(1− z̄i)

]
.

(3.38)

3.3.2. Massive Case

In the massive case, we consider arbitrary masses for the final-state particles:

(3.39) p2
i = m2

i , p
2
j = m2

j , p̄
2
k = p2

k = m2
k, p̄

2
ij = m2

ij.

Again, we require that the splitting fulfills exact momentum conservation

(3.40) Q := pi + pj + pk = p̄ij + p̄k,

where we defined the sum of the outgoing momenta as Q.

Kinematics

The kinematic variables yij,k and z̄i are defined as in the massless case.

Additionally, we define the rescaled parton mass as

(3.41) µl :=
ml√
Q2
, with l ∈ {i, j, k, ij}.
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The relative velocity between two massive momenta p, q is defined as

(3.42) vp,q :=

√
1− p2q2

(pq)2
=

√
λ((p+ q)2, p2, q2)

(p+ q)2 − p2 − q2
,

where the Källén function λ(x, y, z) is given by

(3.43) λ(x, y, z) := x2 + y2 + z2 − 2xy − 2xz − 2yz.

For example, the velocity v̄ij,k between p̄ij and p̄k is given by

(3.44) v̄ij,k =

√
λ(1, µ2

ij, µ
2
k)

1− µ2
ij − µ2

k

.

The definition of the parton momenta before the splitting is as follows

p̄k :=

√
λ(Q2,m2

ij,m
2
k)

λ(Q2, (pi + pj)2,m2
k)

(
pk −

Q · pk
Q2

Q

)
+
Q2 +m2

k −m2
ij

2Q2
Q,

p̄ij := Q− p̄k,

p̄m := pm, for m 6= ij, k.

(3.45)

Together with the definition sij := (pi + pj)
2, the spectator momentum p̄k can

be written in terms of the rescaled masses µl

(3.46) p̄k =

√
λ(1, µ2

ij, µ
2
k)

λ(1,
sij
Q2 , µ2

k)
pk +

(
1 + µ2

k − µ2
ij −

√
λ(1, µ2

ij, µ
2
k)

λ(1,
sij
Q2 , µ2

k)

2Q · pk
Q2

)
Q

2
.

Factorized Phase Space Measure

According to [44], the three-parton phase space of pi, pj, and pk is factorizable

into a two-particle phase space of the momenta p̄ij and p̄k times a radiation

phase space

(3.47) dφ3(Q; pi, pj, pk) = dφ2(Q; p̄ij, p̄k) dφrad(pi; p̄ij, p̄k).
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The radiation phase space element in D dimensions is given by

dφrad(pi; p̄ij, p̄k) =
1

4
(2π)−3+2ε (Q2)1−ε (1− µ2

i − µ2
j − µ2

k)
2−2ε

×
[
λ(1, µ2

ij, µ
2
k)
]−1+2ε

2 dΩ(D−3) dz̄i dyij,k

×Θ((z̄i − z−)(z+ − z̄i)) Θ((yij,k − y−)(y+ − yij,k))

× [(z+ − z̄i)(z̄i − z−)]−ε (1− yij,k)1−2ε

×
[
µ2
i + µ2

j + (1− µ2
i − µ2

j − µ2
k)yij,k

]−ε
.

(3.48)

Here, the kinematic variables yij,k and z̄i are the same as in the definitions in

(3.25). The element of solid angle dΩ(D−3) is perpendicular to p̄ij and p̄k. The

integration boundaries of yij,k and z̄i are given in equation (5.13) of [44]:

y− =
2µiµj

1− µ2
i − µ2

j − µ2
k

,

y+ = 1− 2µk(1− µk)
1− µ2

i − µ2
j − µ2

k

,

z± := z±(yij,k) =
2µ2

i + (1− µ2
i − µ2

j − µ2
k)yij,k

2
[
µ2
i + µ2

j + (1− µ2
i − µ2

j − µ2
k)yij,k

] (1± vij,i vij,k).

(3.49)

The labels of the relative velocities stand for the parton momenta pij = pi + pj,

pi, and pk. They are obtained by (3.42). Their explicit forms read

vij,k =

√[
2µ2

k + (1− µ2
i − µ2

j − µ2
k)(1− yij,k)

]2 − 4µ2
k

(1− µ2
i − µ2

j − µ2
k)(1− yij,k)

,

vij,i =

√
(1− µ2

i − µ2
j − µ2

k)
2y2
ij,k − 4µ2

iµ
2
j

(1− µ2
i − µ2

j − µ2
k)yij,k + 2µ2

i

.

(3.50)

In four dimensions, the radiation phase space element is obtained by setting

ε→ 0. The element of solid angle transforms in the same way as in the massless

case. The radiation phase space, again, is paramaterized by z̄i, yij,k and ϕ. Its

measure reads

dφrad(pi; p̄ij, p̄k) =
Q2

4(2π)3

1− µ2
i − µ2

j − µ2
k√

λ(1, µ2
ij, µ

2
k)

Θ(1− µi − µj − µk)

× dϕ dz̄i dyij,k (1− yij,k) Θ(ϕ(2π − ϕ))

×Θ((z̄i − z−)(z+ − z̄i)) Θ((yij,k − y−)(y+ − yij,k)).

(3.51)
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Defining sijk := Q2 and writing out the integrals, it can be written as

(3.52)

∫
dφrad =

sijk
32π3

1− µ2
i − µ2

j − µ2
k√

λ(1, µ2
ij, µ

2
k)

y+∫
y−

dyij,k(1− yij,k)
z+∫
z−

dz̄i

2π∫
0

dϕ.

Dipole Splitting Functions

The dipole splitting functions Vij,k for the different splittings can be found in

[44]. In their spin-averaged form they read:

For Q→ g(pi) +Q(pj), mi = 0, mj = mij = mQ:

〈VgQ,k〉 = 8πµ2εαsCF

[
2

1− z̄j(1− yij,k)

− v̄ij,k
vij,k

(
1 + z̄j +

m2
Q

pipj
+ ε(1− z̄j)

)]
.

(3.53)

For g → Q(pi) + Q̄(pj), mi = mj = mQ, mij = 0:

〈VQQ̄,k〉 = 8πµ2εαsTR
1

vij,k

[
1− 2

1− ε

(
z̄i(1− z̄i)− (1− ξ)z+z−

−
ξµ2

Q

2µ2
Q + (1− 2µ2

Q − µ2
k)yij,k

)]
.

(3.54)

For g → g(pi) + g(pj), mi = mj = mij = 0:

〈Vgg,k〉 = 16πµ2εαsCA

[
1

1− z̄i(1− yij,k)
+

2

1− (1− z̄i)(1− yij,k)

+
z̄i(1− z̄i)− (1− ξ)z+z− − 2

vij,k

]
.

(3.55)

Here, ξ is a free constant parameter that redistributes non-singular contributions

between the different terms in the subtraction method. It can simplify the

expressions of the subtraction term (ξ = 0) or its integral (ξ = 3/2). The

velocity factors in the definitions of the dipole splitting functions, i.e. the terms

containing vij,k and v̄ij,k, are introduced to simplify their integration.
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The parton shower [65–67] is a theoretical tool for modeling soft and collinear

radiation off partons starting from the hard collision inside a collider. Thus, it

increases the multiplicity of partons coming from the hard event. In this way,

the situation inside a collider experiment can be modelled much more adequate

than by only using fixed-order calculations.

Starting from the DGLAP equation [62–64], we present the classical approach

to parton branching to gain a fundamental understanding of the parton shower.

The description of the classical approach largely follows chapter five of [12].

In the second section of this chapter, we review the main aspects of the so-

called dipole shower algorithm. The dipole shower makes use of the dipole

splitting functions, discussed in Chapter 3. The possibility that such a shower

might be practicable was first proposed by Nagy and Soper [68, 69]. The first

implementations were provided by two different groups [10, 70]. We orientate

us on the algorithm presented in [10].

49
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4.1. From Evolution Equation to Parton Branching

In order to describe the branching of partons and end up with the parton shower,

we start from the DGLAP equation for parton evolution [62–64]

(4.1) t
∂

∂t
f(x, t) =

1∫
x

dz

z

αs

2π
P (z)f

(x
z
, t
)
.

It describes the dependence of the parton distribution f(x, t) on the scale vari-

able t. With P (z) := P̂+(z), we denote the regularized Altarelli–Parisi splitting

functions, using the plus-prescription defined by

(4.2)

1∫
0

dx
f(x)

(1− x)+

=

1∫
0

dx
f(x)− f(1)

(1− x)
.

Or in general

(4.3)

1∫
0

dxf(x)[F (x)]+ =

1∫
0

dx(f(x)− f(1))F (x),

with

(4.4)

1∫
0

dx[F (x)]+ = 0.

By using the plus-prescription, the (soft gluon) singularity at z = 1 is removed.

Also, we do not encounter the singularity at z = 0 due to the region of integra-

tion x < z < 1.

Next, we want to use MC simulation to obtain a numerical solution of the

DGLAP equation in (4.1). We start with the definition of the Sudakov factor

(4.5) ∆(t) := exp

− t∫
t0

dt′

t′

∫
dz

αs

2π
P̂ (z)

 .
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To combine the Sudakov factor (4.5) with the DGLAP equation, we have to

write (4.1) in terms of the unregularized splitting functions P̂ (z), i.e. to elimi-

nate the plus prescription. With

1∫
0

dz
f(z)

z
P (z) =

1∫
0

dz

(
f(x/z)

z
− f(x)

)
P̂ (z)

=

1∫
0

dz
f(x/z)

z
P̂ (z)− f(x)

1∫
0

dz P̂ (z),

(4.6)

we obtain

(4.7) t
∂

∂t
f(x, t) =

∫
dz

z

αs

2π
P̂ (z) f

(x
z
, t
)
− αs

2π
f(x, t)

∫
dz P̂ (z).

Using the derivative of the Sudakov factor with respect to t

(4.8)
t

∆

∂∆

∂t
= −

∫
dz

αs

2π
P̂ (z),

we find

(4.9) t
∂

∂t
f(x, t) =

∫
dz

z

αs

2π
P̂ (z) f

(x
z
, t
)
− f(x, t)

t

∆

∂∆

∂t
.

Multiplying with 1/∆ and using

(4.10)
∂

∂t

f

∆
=

1

∆

∂f

∂t
− f

∆2

∂∆

∂t
,

we finally arrive at the DGLAP equation using the Sudakov factor

(4.11) t
∂

∂t

f(x, t)

∆
=

∫
dz

z

1

∆

αs

2π
P̂ (z)f

(x
z
, t
)
.

Integrating this equation leads to

(4.12) f(x, t) = ∆(t) f(x, t0) +

t∫
t0

dt′

t′
∆(t)

∆(t′)

∫
dz

z

αs

2π
P̂ (z) f

(x
z
, t′
)
.

The first term on the right-hand-side stands for no branching from t0 to t. The

quotient ∆(t)/∆(t′) in the second term gives the probability that no branching

occurs between t′ and t. Additionally, the entire second term gives the proba-

bility for the last branching to occur at t′.

The generalized forms of the Sudakov factor (4.5) and the DGLAP equation

with the Sudakov factor (4.11) for the case of more involved partons are given
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by

∆i(t) := exp

−∑
j

t∫
t0

dt′

t′

∫
dz

αs

2π
P̂ji(z)

 ,
t
∂

∂t

fi(x, t)

∆i

=
∑
j

∫
dz

z

1

∆i

αs

2π
P̂ij(z)fj

(x
z
, t
)
,

(4.13)

where P̂ji(z) is the unregularized i→ j splitting function.

To deal with the IR singularity at z = 1 in the unregularized splitting functions,

one introduces an IR cutoff. This ensures that resolvable branching only occurs

at z < 1− ε(t).
The equation in (4.12) can be identified as an integral equation of Fredholm

type

(4.14) Φ(x) = f(x) + λ

b∫
a

dy K(x, y)Φ(y),

which can be solved by iteration using a Neumann series:

Φn(x) =
n∑
i=0

λiui(x), with

un(x) =

b∫
a

. . .

b∫
a

dy1 . . . dynK(x, y1)K(y1, y2) . . . K(yn−1, yn)f(yn),

(4.15)

with u0(x) = f(x). The first three iterations of the solution read

Φ0(x) = f(x),

Φ1(x) = f(x) + λ

∫ b

a

dy1K(x, y1)f(y1),

Φ2(x) = f(x) + λ

∫ b

a

dy1K(x, y1)f(y1)

+ λ2

∫ b

a

dy1dy2K(x, y1)K(y1, y2)f(y2).

(4.16)
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Figure 4.1. Graphical illustration of (4.18). The solid lines
stand for no branching, the small empty dot is the splitting func-
tion and the blobs represent the parton distribution.

With this knowledge about the Fredholm integral equation, we can solve (4.12)

iteratively. The first two iterations are given by

f0(x, t) = f(x, t0)∆(t),(4.17)

f1(x, t) = f(x, t0)∆(t) +
αs

2π

t∫
t0

dt′

t′
∆(t)

∆(t′)

1∫
x

dz

z
P̂ (z) f

(x
z
, t0

)
∆(t′).(4.18)

A graphical illustration of the first iteration (4.18) can be found in Figure 4.1.

The term on the right-hand-side, as the first solid line in the figure, stands for

no splitting between t and t0. The second solid line represents no branching

between t and t′, corresponding to ∆(t)/∆(t′) in (4.18). The small empty dot

is the splitting into two partons carrying the momentum fractions z and 1− z,

respectively.

The full solution of (4.12) may be written as

(4.19) fn(x, t) =
∑
n

1

n!
logn

(
t

t0

)
An ⊗∆(t)f

(x
z
, t0

)
.

Here,

(4.20) A =

∫
dz

z
P̂ (z),

is a symbolic representation of the integral over z and ⊗ indicates that a convo-

lution has to be performed. We want to stress that this solution of the DGLAP

equation (4.11) is a resummation to all orders in αs log(t).
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4.1.1. The Sudakov Factor

Let us add some notes on the Sudakov factor. We consider the Poisson distri-

bution with zero mean

(4.21) P (0, p) = e−p.

If the Poisson distribution P (n, p) gives the probability to observe n emissions,

then P (0, p) gives the probability for no emission. The one-branching probabil-

ity in Poisson statistics reads

(4.22) P (1, p) = p · e−p,

which is exactly the first iteration of the Neumann series for the evolution equa-

tion (4.18). This underlines that the Sudakov factor gives the probability of

evolving from t0 to t without any resolvable branching.

With the Sudakov factor, we sum enhanced virtual (parton loop) and real (par-

ton emission) contributions to all orders. The virtual contributions are included

by unitarity: the sum of the branching and the no-branching probabilities must

be unity. Hence, the probability for resolvable branchings gives us the sum of

virtual and unresolvable real contributions.

4.1.2. Parton Shower and Monte Carlo Event Generation

In a parton shower, we use the evolution variable t to evolve from the scale Q

of a hard event down to a cutoff scale Q0 by generating subsequent branchings.

Typical choices for t are the opening angle between the two branched partons

(angular ordered showers) or the transverse momentum of the daughter par-

tons relative to the mother parton (kT ordered showers). The parton shower

algorithm yields a numerical implementation of the solution to the DGLAP

equation. Using the algorithm, we generate an event with a much higher par-

ton multiplicity than the original hard event.

A typical parton shower algorithm starts at a scale t1 and proceeds as follows:

(1) Select scale t2 at which the next branching occurs:

Take a uniformly distributed number r1 ∈ [0, 1] and solve

∆(t1)

∆(t2)
= r1.
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(2) If t2 < Q0 → shower terminates

(3) Generate value of z:

Random number r2 ∈ [0, 1], solve

z∫
z−(t2)

dz′
αs

2π
P̂ (z′) = r2

z+(t2)∫
z−(t2)

dz′
αs

2π
P̂ (z′).

(4) Select the azimuthal angle ϕ:

Random number r3 ∈ [0, 1]:

ϕ = 2πr3.

(5) Set t1 = t2

↪→ Go to step 1

Implementing this algorithm into a computer program, it is possible to generate

a parton shower simulation from a hard event. Note that it is also possible to im-

plement the algorithm using the spin-dependent form of the splitting functions.

This leads to spin-correlations (see [71] and references therein), e.g. without the

approximation of spin-averaged splitting functions, the azimuthal angle has to

be chosen in a weighted way, i.e. it is not uniformly distributed between zero

and 2π.

Today, there exist many different general-purpose event generators, such as

Herwig [1–4], Pythia [5, 6], and Sherpa [7, 8], just to mention a few. Those

MC event generators do not only contain parton showering but also come with

tools for the generation of the hard event, hadronization, and particle decay.

Another important topic, when talking about MC event generators, is the

matching of the parton shower to NLO calculations. Due to the fact that

NLO calculations include a real radiation term (cf. Chapter 3), it may come to

a double counting of this emission, when naively applying the parton shower.

There exist several methods, used in today’s event generators, to overcome this

problem [61, 72–74]. For example, in the Powheg formalism [61, 72, 73] the

hardest emission is generated first, using NLO accuracy. Subsequent radiations

can, then, be generated using a standard MC parton shower program.
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4.2. The Dipole Parton Shower

The idea that the splitting functions of the Catani–Seymour dipole subtraction

method (cf. Chapter 3) might be sufficient to define a parton shower algorithm

first arose in [68, 69]. First implementations were presented by two different

groups [10, 70]. Since we use the implementation of the shower algorithm in

[10] to perform our analysis presented in Chapter 5, we focus on the shower

algorithm presented there. Again, as for the dipole formalism in Chapter 3, we

restrict our discussion to the case of final-state dipole showers. This corresponds

to the situation found in electron-positron colliders. The extension to initial-

state partons can be found in [10].

4.2.1. Massless Final-State Partons

A suitable choice for the evolution variable is

(4.23) t = log

(
−k2

T

Q2

)
,

where kT is the splitting’s transverse momentum and Q2 is a fixed reference

scale.

In the leading color approximation, the emitter and the spectator of the splitting

are always adjacent in the cyclic order of the color cluster that is assigned to

the final-state partons of the hard event.

For the dipole phase space Φrad it is convenient to define the variable κ that is

proportional to the transverse momentum of the splitting:

(4.24) κ = 4
(−k2

T)

(p̄ij + p̄k)2
,

and is related to yij,k via

(4.25) yij,k =
κ

4z̄i(1− z̄i)
.

Hence, we can substitute κ for yij,k in the phase space measure (3.35) and obtain

(4.26)

∫
dφrad =

sijk
16π2

1∫
0

dκ

z+(κ)∫
z−(κ)

dz̄i
1

4z̄i(1− z̄i)

(
1− κ

4z̄i(1− z̄i)

)
,
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with

(4.27) z±(κ) =
1

2

(
1±
√

1− κ
)
.

The probability that the pair of an emitter īj and a spectator k̄ does not emit

an additional parton j while evolving from t1 to t2 is given by the Sudakov

factor

(4.28) ∆ij,k(t1, t2) = exp

− t1∫
t2

dt Cīj,k̄
∫

dφrad δ
(
t− Tīj,k̄

)
Pij,k

 .

Here, Cīj,k̄ is a color-factor that, in the leading color approximation, is only non-

zero if īj and k̄ are adjacent in a color cluster. Corresponding to the color-factor

in the dipole formula (3.21) it reads

(4.29) Cīj,k̄ =
T k · T ij

T 2
ij

=

1/2 for īj = g,

1 for īj = q, q̄,

Tīj,k̄ depends on the invariant mass sijk of the dipole and the phase space variable

κ:

(4.30) Tīj,k̄ = log

(
κ

4

sijk
Q2

)
.

Using the delta distribution in (4.28), we can perform the integration over κ

and keep the integration over t and z̄i. For κ, we find the t dependence

(4.31) κ(t) =
4Q2et

sijk
.

The splitting function Pij,k in the Sudakov factor (4.28) is given by

(4.32) Pij,k =
〈Vij,k〉
sij −m2

ij

·Θ (〈Vij,k〉) ,

where the theta function ensures that the splitting probability does not become

negative. The spin-averaged dipole splitting functions 〈Vij,k〉 for the different

splittings were given earlier in (3.36)-(3.38).

The total Sudakov factor that gives the probability to evolve from a scale t1
to a scale t2 without any resolvable branching is given by the product of the

Sudakov factors for each individual splitting type

(4.33) ∆(t1, t2) =
∏
īj,k̄

∆īj,k̄(t1, t2).
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If the parton īj can emit different partons j, and eventually change its flavor,

as for g → qq̄, the Sudakov factor on the right hand side factorizes as

(4.34) ∆īj,k̄(t1, t2) =
∏
j

∆ij,k(t1, t2).

Using the Sudakov factor, the probability for a splitting to occur at a scale t2
is given by

(4.35)
∑
īj,k̄

∑
j

Cīj,k̄
∫

dφrad δ
(
t− Tīj,k̄

)
Pij,k ∆(t1, t2).

With these ingredients, we are now able to define a shower algorithm. For con-

venience, we set z := z̄i. In the algorithm, the strong coupling, αs, is evaluated

at the scale µ2 = −k2
T = κ

4
sijk.

The Shower Algorithm

Start at a scale t1 and proceed as follows:

(1) Select next dipole to branch and scale t2 at which this occurs:

Take a uniformly distributed number r1,ij,k ∈ [0, 1] for each dipole and

solve

∆ij,k(t1, t2,ij,k) = r1,ij,k.

The dipole with the maximum value of t2,ij,k is the dipole that emits

an additional particle at

t2 = max(t2,ij,k).

(2) If t2 < Q0 (cutoff scale) → shower terminates

(3) Generate value of z:

Random number r2 ∈ [0, 1], solve:

z∫
z−(t2)

dz′ J (t2, z
′)Pij,k = r2

z+(t2)∫
z−(t2)

dz′ J (t2, z
′)Pij,k,

with Jacobian:

J (t2, z) =
κ(t2)

4z(1− z)

(
1− κ(t2)

4z(1− z)

)
.
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(4) Select azimuthal angle ϕ:

Random number r3 ∈ [0, 1]:

ϕ = 2πr3.

(5) Use the three kinematical variables t2, z, and ϕ to insert the new parton

j and replace the four-momenta p̄ij and p̄k with pi and pk (see Section

4.2.3)

(6) Set t1 = t2

↪→ Go to step 1

4.2.2. Massive Final-State Partons

Now, we discuss the massive case. For simplification of the notation and read-

ability, we set z̄i = z and yij,k = y in the following.

The evolution variable in the massive case may be chosen as

(4.36) t = log

(−k2
T + (1− z)2m2

i + z2m2
j

Q2

)
.

The Sudakov factor is defined as for the massless case in (4.28), i.e.

(4.37) ∆ij,k(t1, t2) = exp

− t1∫
t2

dt Cīj,k̄
∫

dφrad δ
(
t− Tīj,k̄

)
Pij,k

 .

The radiation phase space is given by (3.52)

(4.38)

∫
dφrad =

sijk
16π2

(1− µ2
i − µ2

j − µ2
k)

2√
λ(1, µ2

ij, µ
2
k)

y+∫
y−

dy(1− y)

z+(y)∫
z−(y)

dz,

with the integration boundaries in (3.49) and the definition of the rescaled

parton mass (3.41). In the massive case, Tīj,k̄ is given by

(4.39) Tīj,k̄ = log

(
(sijk −m2

i −m2
j −m2

k)yz(1− z)

Q2

)
.
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Again, we can perform the integration over y by substituting in κ, using the

delta distribution and keeping the integration over t and z. Hence, we obtain

(4.40)

y+∫
y−

dy (1− y)

z+(y)∫
z−(y)

dz δ
(
t− Tīj,k̄

)
=

zmax∫
zmin

dz y(1− y),

with the κ dependence of y in (4.25). The delta distribution yields the t de-

pendence of κ as

(4.41) κ(t) =
4Q2et

sijk −m2
i −m2

j −m2
k

.

The integration boundaries for z, i.e. zmin and zmax are constrained by the

physical region

(4.42) (1− y)2
[κ

4
− (1− z)2m̄2

i − z2m̄2
j

]
− y2m̄2

k + 4m̄2
i m̄

2
jm̄

2
k ≥ 0,

where the barred masses are defined by

(4.43) m̄2
l :=

m2
l

sijk −m2
i −m2

j −m2
k

for l ∈ {i, j, k}.

Equation (4.42) can be solved numerically for zmin and zmax.

With this knowledge, the parton shower algorithm for the massless case can also

be applied for the massive case. In this case, the Jacobian reads

J (t2, z) =
(1− µ2

i − µ2
j − µ2

k)
2√

λ(1, µ2
ij, µ

2
k)

κ(t2)

4z(1− z)

(
1− κ(t2)

4z(1− z)

)
.

4.2.3. Inserting the Particles after Branching

To insert the particles after the branching, i.e. assign the momenta pi, pj, and

pk, we have to invert the mapping of the dipole subtraction method

(4.44) {p1, . . . , pn+1} → {p̄1, . . . , p̄n,Φrad}.

This means, it is necessary to express the momenta of the particles i, j, and k

after the splitting in terms of the momenta of the particles īj and k̄ before the

splitting and the radiation variables Φrad.
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Massless Case

To obtain the momenta of the partons i, j, and k after branching, we consider

the system in the rest frame of P := p̄ij + p̄k. This is achieved by the boost that

can be found in Appendix B.1. Additionally, we rotate the system around the

z-axis and the y-axis such that the momentum p̄k points along the z-axis. The

transformed four-momentum can be written as

(4.45) p′m = Λr
y(−θy)Λr

z(−φz)Λb(P̂ ) pm, m ∈ {i, j, k}.

The explicit form of the transformations can be found in Appendix B.1. Working

in this frame, the four-momenta of the particles after branching take the form

p′i = Ei (1, sin(θi) cos(φ+ π), sin(θi) sin(φ+ π), cos(θi)) ,

p′j = Ej (1, sin(θj) cos(φ), sin(θj) sin(φ), cos(θj)) ,

p′k = Ek (1, 0, 0, 1) .

(4.46)

The energies are defined through the kinematical invariants

Ei =
sij + sik
2
√
sijk

,

Ej =
sij + sjk
2
√
sijk

,

Ek =
sik + sjk
2
√
sijk

,

(4.47)

and we have

(4.48) θi = arccos

(
1− sik

2EiEk

)
, θj = arccos

(
1− sjk

2EjEk

)
.

To obtain the momenta pi, pj, and pk, we have to transform (4.46) back to the

original frame by applying

(4.49) pm = Λb(P )Λr
z(φz)Λ

r
y(θy) p

′
m, m ∈ {i, j, k},

with the rotational angles

(4.50) θy = arccos

2ẼkE
′
k − 2p̃k · p′k

2
∣∣∣~̃pk∣∣∣ ∣∣~p ′k ∣∣

 , φz = arctan

(
p̃yk
p̃xk

)
.

By p̃k and Ẽk, we denote the four-momentum and the energy of the momentum

p̄k that has already been boosted into the rest frame of P .
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Massive Case

For the massive case, the momenta pi, pj and pk are obtained in a way similar to

the massless case. Again, the subsequent transformations of (4.45) are applied

to work in the rest frame of P , such that the spatial components of p̄k point

along the z-axis.

In this particular coordinate system the transformed momenta of i, j and k read

p′i = |~pi|
(
Ei
|~pi|

, sin(θi) cos(φ+ π), sin(θi) sin(φ+ π), cos(θi)

)
,

p′j = |~pj|
(
Ej
|~pj|

, sin(θj) cos(φ), sin(θj) sin(φ), cos(θj)

)
,

p′k = |~pk|
(
Ek
|~pk|

, 0, 0, 1

)
,

(4.51)

with the energies

Ei =
sij − 2pjpk +m2

i −m2
j −m2

k

2
√
sijk

,

Ej =
sij − 2pipk −m2

i +m2
j −m2

k

2
√
sijk

,

Ek =
sik − 2pipj −m2

i −m2
j +m2

k

2
√
sijk

.

(4.52)

In the massive case, the angles of (4.48) are given by

(4.53) θi = arccos

(
2EiEk − 2pipk

2|~pi||~pk|

)
, θj = arccos

(
1− 2EjEk − 2pjpk

2|~pj||~pk|

)
.

Transforming p′i, p
′
j, and p′k back to the original frame yields the final form of

the momenta after branching.
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In this chapter, we discuss some of the general properties of the top quark

and the issues that arise within measurements and the theoretical description

of its mass. In Section 2.5, we learned that the mass, that is measured in an

experiment, is subject to renormalization. Thus, its actual value depends on

the chosen renormalization scheme. In this context, we focus on the difficulty of

identifying the top quark mass in a parton shower with the mass in a quantum

field theoretical renormalization scheme.

Additionally, we pick up the idea of [9] to analyze the peak position of an event

shape, namely the thrust distribution, in order to deduce general statements on

the dependence of the top quark mass on parameters of the parton shower. For

this, we use the implementation of the dipole shower of Section 4.2 to analyze

the thrust distribution for different scenarios. Our analyses and results can be

found in Section 5.3.
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5.1. General Considerations

The mass of the top quark mt is one of the fundamental parameters in the

SM. From Table 2.1, we can see that, with a mass around 173 GeV, it is by

far the heaviest elementary particle. However, the lifetime of the top quark

is extremely short. The fact that it is even shorter than the time scale for

hadronization yields that the top quark cannot form bound states before it de-

cays. These properties give a strong reason for the top quark to be treated

perturbatively.

Despite the importance of the precise knowledge of the value of the top quark

mass, the uncertainties on the measured values are still high. These uncertain-

ties arise from the fact that mt cannot be measured directly. The measurements

rather rely on theoretical input that is used to reconstruct the kinematic prop-

erties of a top particle from experimental data. Two commonly used methods of

direct reconstruction are the matrix element method and the template method.

At present, the most precise measurements from reconstruction come from CMS

[75] and ATLAS [76], both using LHC data, and from the Tevatron [77]. The

measurements yield

mt = 172.44± 0.13 (stat)± 0.47 (syst) GeV,

mt = 172.84± 0.34 (stat)± 0.61 (syst) GeV,

mt = 173.34± 0.64 GeV,

(5.1)

for CMS, ATLAS, and Tevatron, respectively.

As mentioned above, one issue with these reconstruction methods is that they

require theoretical input. Since the theoretical computations, entering the anal-

yses, are based on MC event generators, the measured top quark mass depends

on the properties of the MC generator in use. Therefore, the mass of the top

quark, that is obtained by analysing experimental data through MC event gen-

erators, is often referred to as Monte Carlo mass mMC
t .

A typical MC generator starts with the basic hard process that can be calcu-

lated analytically (cf. Chapter 3). From there, we apply a parton shower that

models collinear and soft radiation. Note that the parton shower starts at the

scale of the hard event Q and evolves down to a user-defined cutoff Q0.

The shower cutoff is, typically, chosen to be around 1 GeV, where the pertur-

bative region ends and the event has to be treated non-perturbatively. In this
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non-perturbative region, one has to deal with the problems of hadronization

and decay.

The different phases of an MC event generator apply to different scales. This

makes it possible to, more or less accurately, assign one effective theory to each

component. The theory corresponding to the hard process scales from Q down

to the top mass mt is QCD. For the phase of the parton shower, the effective

theory at hand is SCET. The corresponding scales start at the top mass and

go down to the top width Γt. In the region between the top width and ΛQCD

the preferred theory is heavy quark effective theory (HQET) [78, 79] adapted

for top quarks (top-HQET) [80, 81].

5.1.1. Status Quo

Until today, it is unclear how the top mass obtained from direct reconstruction,

using a certain MC event generator, can be related to a well-defined (renor-

malized) mass in a quantum field theoretical context. To solve this problem,

many aspects have to be taken into account. The mass mMC
t depends on the

specific implementation of the event generator at hand. Hence, it is natural to

ask, on the one hand, how the usage of different event generators, e.g. Pythia,

Herwig, etc. (cf. Chapter 4), or hadronization schemes affects the outcome,

and on the other hand, how mMC
t depends on certain parameters inside the MC

event generator (e.g. Q0, Γt).

So far, there have been different studies making various efforts to quantify the

relation between the MC mass and its field theoretical counterpart [82–87]. In

most of these studies, the attempt was made to find a relation between mMC
t

and the pole mass or the MSR mass (cf. Section 2.5).

Similarly to (2.101), the conversion from the pole mass scheme to any short-

distance mass scheme, that depends on an additional IR scale R, reads

(5.2) mpole
t = mt(R, µ) + δmt(R, µ),

where the series expansion of the second term on the right-hand-side is given

by

(5.3) δmt(R, µ) = R
∞∑
n=1

∞∑
k=0

ank

(
αs(µ)

4π

)n
logk

( µ
R

)
.
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Here, the coefficients ank are finite real numbers.

Assuming that the mass in the MC generator plays the role of a short-distance

mass implies that the relation in (5.2) also holds for mMC
t .

In [82] it was argued that the conversion from the MC mass to mpole
t comes with

the series expansion of δmMC
t (R, µ) of the form

(5.4) δmMC
t (Rsc) = Rsc

(
αs(µ)

π

)
+ . . . ,

where Rsc is closely related to the cutoff Q0 implemented in the parton shower

program and is around 1 GeV. This conjecture is based on the analogy of the

components of an MC event generator to the QCD factorization for jet masses

in the peak region initiated by boosted top quarks [80, 81]. The corresponding

analyses have been carried out in SCET and boosted heavy quark effective

theory (bHQET).

Additionally, it is stated in [82] that the MC mass can be identified with the

MSR mass at a low scale R between 1 and 9 GeV

(5.5) mMC
t (Rsc) = mMSR

t (R = 1, . . . , 9 GeV).

The author of [83] argued that the effects of hadronization models lead to prop-

erties of mMC
t that seem analogous to the mass of a top quark meson. The

considerations are based on the concept of heavy quark symmetry [88, 89]. It

is conjectured that the conversion term δmMC
t (R) in

(5.6) mMC
t = mMSR

t (R = 1 GeV) + δmMC
t (R = 1 GeV),

is subject to perturbative as well as non-perturbative effects. From a compari-

son of B meson and bottom quark masses, the author comes to the conclusion

that the value of δmMC
t (R) is around 1 GeV. It is stressed that this uncertainty

of O(1 GeV) is not subject of the theoretical uncertainty in the MC parameter

mMC
t but in the conversion from mMC

t to a well-defined mass scheme, as for

example the MSR scheme.

First steps towards the numerical evaluation of the conversion parameter δmMC
t

have been made in [90–92].

In [91] a calibration procedure for the MC mass in the process e+e− → boosted tt̄

was used to find the numerical relation

(5.7) mMC
t = mMSR

t (R = 1 GeV) + (0.18± 0.22) GeV.
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In this analysis, the factorized hadron level predictions for the 2-jettiness [93]

distribution in the peak region [80, 81] are calculated at next-to-next-to-leading

logarithmic (NNLL) and O(αs) accuracy. The results are used to fit the predic-

tions obtained from the MC event generator Pythia 8.2 to them as a calibra-

tion procedure.

Expanding this procedure to hadron collisions, as found at the LHC, is a highly

non-trivial task. A first step in this direction has been made in [92]. There,

an observable is constructed that is highly kinematically sensitive to the top

mass, the soft-drop groomed hadron level jet mass distribution in boosted top

production [94, 95]. Additionally, they provide a factorization formula at next-

to-leading logarithmic (NLL) accuracy that makes it possible to fit MC pre-

dictions to it. The corresponding analyses are less precise than for the case of

electron-positron annihilation [91] but show compatible results.

Additional studies investigating the sources of uncertainties in the determina-

tion of the top quark mass from reconstruction or using alternative methods

can be found in [96–98] and references therein.

5.1.2. Cutoff Dependence

Regarding the considerations above, it becomes clear that the investigation of

the precise field theoretical meaning of mMC
t is far from being completed. Be-

sides the question how the MC mass is related to a field theoretical mass scheme,

another important task is to quantify the dependence of mMC
t on the various

parameters of the parton shower, as well as on its specific implementation.

In the following, we focus on the question how a change of the cutoff parameter

Q0 affects the outcome of a parton shower based on the Catani-Seymour sub-

traction method (cf. Section 4.2). In [9] the dependency of the peak position

of the hemisphere jet mass distribution τ on the value of the shower cutoff in

Herwig is analyzed. We stress that the use of Herwig implies the use of an

angular ordered shower algorithm.

For this, analytic solutions of the dependency of the peak position of τ on Q0

are derived in two different approaches. Firstly, utilizing the factorized analytic

calculations of SCET. Secondly, using the analytic solution of the parton shower

evolution based on the coherent branching formalism which is equivalent to the

angular ordered shower algorithm.
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The main result of this analysis in [9] is that the resulting Q0 dependence of

the peak position of τ coincides for both analytic approaches. Additionally, the

simulations in Herwig agree with the results of the analytic examination.

5.2. Analytic Computations

Before we come to our analysis of the cutoff dependence of the thrust variable

in the dipole shower formalism, we sketch the analytic computations in [9] and

present their results. We stress that we only present the basic characteristics of

SCET and the coherent branching formalism that are required to understand the

results of the corresponding analyses. A full description of SCET or the coherent

branching formalism goes beyond the scope of this thesis. An introduction to

SCET can be found in [99] or in some textbooks on QFT (e.g. [13]). Chapter

five of [12] provides a description of the coherent branching formalism. Note

that we restrict our considerations on the case of massless partons in e+e−

annihilation.

5.2.1. Thrust

The observable analyzed in [9] is what they call the “squared hemisphere mass

sum”. It is defined by

(5.8) τ :=
M2

1 +M2
2

Q2
,

where Q denotes the center-of-mass energy and M1 and M2 are the masses of the

hemispheres that are defined with respect to the thrust axis. Relevant for the

analyses is the location of the distribution’s peak τpeak. It is strongly affected by

configurations containing two jets that are back-to-back. These contributions

arise from the LO production of a quark-antiquark pair.

We stress that, in the case of massless quark production, the squared hemisphere

mass sum in the peak region is equivalent to the typical thrust variable [100]

(5.9) τ thrust := 1− T := 1−max
~n

∑
j |~pj · ~n|∑
j |~pj|

,

where the maximum defines the thrust axis ~n.
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This equivalence is at least valid concerning the factors that effect the position

and shape of the peak for large Q, i.e. the structure of the singularities in

the limit τ → τmin and the large logarithmic behavior. Hence, the squared

hemisphere mass sum as well as the classic thrust variable are both simply

denoted as “thrust” in the following.

For massless quark production, the region of the resonance peak is close to τ = 0.

This location is shifted to positive values due to non-perturbative effects. The

size of this shift is of order O(Λ/Q), where Λ ≈ 1 GeV [101].

Let us shortly note on the procedure for massive quarks. In this case the studied

variable τ is closely related to the 2-jettiness observable [93]. The peak is located

around τ = 2m2
Q/Q

2. For top quark examinations the rescaled thrust variable

(5.10) Mτ :=
Q2τ

2mQ

,

is also a convenient choice as an observable. Its peak is close to Mτ = mQ.

The thrust distribution makes a reasonable choice for the study of the cutoff

dependence of the top mass in a parton shower because the effects of the decay

of the top quark are power suppressed in the thrust distribution. Additionally,

there exist analytical calculations for the thrust distribution based on factoriza-

tion, that the parton shower outcome can be compared to.

5.2.2. Thrust in SCET

Here, we review the computations for the resummation of the thrust distribution

in the peak region in SCET. This calculation requires the summation of terms

that have singularities at τ → τmin and contain large logarithms. In [102] first

calculations regarding perturbative QCD have been studied at NLL. For soft-

collinear factorization, the results at NLL+O(αs) can be found in [103]. The

extension to the order N3LL+O(α3
s ) was performed in [101, 104]. In [9] the

notation of [101] was adopted, which we will also stick to.

In this notation, and in the context of soft-collinear factorization, the hadron

level thrust distribution in the peak region takes the form

(5.11)
dσ

dτ
(τ,Q) =

Qτ∫
0

d`
dσ̂s
dτ

(
τ − `

Q
,Q

)
Smod(`).
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In this context, dσ̂/dτ denotes the resummed factorized singular partonic QCD

cross section. In addition, Smod(`) is the soft model shape function. It describes

non-perturbative effects and must satisfy the following conditions:

It must have support for positive `, be peaked around ` = 1 GeV and fall

strongly for `→∞. Additionally, Smod should vanish at ` = 0.

The soft model shape function causes a smearing of the partonic thrust distri-

bution that shifts the position of the peak to the positive direction. Thus, it is

essential for the analysis of thrust distribution in the resonance region. Since

we only study the relative dependence of τpeak on the cutoff, the exact form of

the soft model shape function is not relevant.

The form of the soft model shape function that is used in [9] as well as in our

analysis is given by

(5.12) Smod(`) =
128

3

`3

Λm

exp

(
− 4`

Λm

)
,

where Λm is a smearing parameter, that is varied between 1 and 5 GeV.

For the total partonic cross section at tree level we write σ0. The singular

partonic cross section normalized to σ0 in a resummed factorized form reads

1

σ0

dσ̂s
dτ

(τ,Q) = QHQ(Q, µH)

Q2τ∫
0

ds

s∫
0

ds′ UJ(s′, µH , µJ) J (τ)(s− s′, µJ)

×

Qτ− s
Q∫

0

dk US(k, µH , µS)S(τ)(Qτ − s

Q
− k, µS).

(5.13)

All large logarithms are summed in the functions UJ and US. Hence, the hard,

jet, and soft function contain no singularities. The hard function HQ describes

the effects at the hard production scale Q. The jet function J (τ) models the

distribution of the squared invariant mass s coming from collinear radiation of

both jets. The soft radiation with a large angle is accounted for by the soft

function S(τ).
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The involved renormalization scales µH , µJ , and µS are chosen in such a way

that all large logarithms are contained in the U factors. A suitable choice is

µH ∼ Q,

µJ ∼ Q
√
τ ,

µS ∼ Qτ.

(5.14)

The U factors, then, sum the large logarithms from one scale to the scale µH .

Thus, UJ sums the large logarithms from µJ to µH and US does the same from

µS to µH .

The renormalization group equations for the U functions and the expressions

for the hard, jet, and soft function at O(αs) are given in Appendix A.1 of [9].

The expansion of (5.13) to first order in αs yields the commonly known first

order thrust distribution

1

σ0

dσ̂s
dτ

(τ,Q) = δ(τ) +
αsCF

4π

{
− 8

[
θ(τ) log(τ)

τ

]
+

− 6

[
θ(τ)

τ

]
+

+ (
2π2

3
− 2) δ(τ)

}
+O(α2

s ),

(5.15)

where all scales have been set to µ = µH = µJ = µS.

The thrust distribution in (5.13) can be transformed to the Laplace space using

the convention

(5.16) σ̃(ν,Q) =

∞∫
0

dτ e−ντ
1

σ0

dσ̂s
dτ

(τ,Q).

In a condensed form, it can be written as

σ̃(ν,Q) = exp

[
K(ΓJ , µH,ν , µJ,ν) +K(ΓS, µH,ν , µS,ν)

+
1

2

(
ω(γJ , µH,ν , µJ,ν) + ω(γS, µH,ν , µS,ν)

)]
,

(5.17)
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with the evolution functions K and ω

K(Γ, µ, µ0) = 2

αs(µ)∫
αs(µ0)

dαs

β[αs]
Γ[αs]

αs∫
αs(µ0)

dα′s
β[α′s]

,

ω(Γ, µ, µ0) = 2

αs(µ)∫
αs(µ0)

dαs

β[αs]
Γ[αs].

(5.18)

The cusp and non-cusp anomalous dimensions have the form

ΓJ [αs] = −2ΓS[αs] = 4Γcusp[αs],

γJ [αs] = 12CF

αs

4π
,

γS[αs] = 0,

(5.19)

with

Γcusp[αs] = Γcusp
0 [αs]

αs

4π
+ Γcusp

1 [αs]
(αs

4π

)2

,

Γcusp
0 [αs] = 4CF,

Γcusp
1 [αs] = CF

[
CA

(
268

9
− 4π2

3

)
− 80

9
TRnf

]
.

(5.20)

The corresponding scales can be obtained by combining the U evolution factors

at NLL with the corrections in the Laplace transformed hard, jet, and soft

function of Appendix A.1 in [9] containing logarithms or plus-distributions.

They read

µH,ν = Q,

µJ,ν = Q (νeγE)−
1
2 ,

µS,ν = Q (νeγE)−1.

(5.21)

5.2.3. Coherent Branching

Another way to resum large logarithms to NLL accuracy, besides the SCET

approach, is provided by the coherent branching formalism. It was firstly for-

mulated in [105]. In [106] it was applied for the resummation of the thrust

distribution. Additionally, the coherent branching provides an algorithm that

forms the basis of angular ordered parton showers such as in Herwig.
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In the coherent branching formalism, the parton level thrust distribution for

massless quarks (cf. (5.13)) reads

(5.22)
1

σ0

dσ̂cb

dτ
(τ,Q) =

∫
ds1ds2 δ

(
τ − s1 + s2

Q2

)
J(s1, Q

2) J(s2, Q
2).

Here, J(s,Q2) denotes the parton level jet mass distributions with the squared

jet invariant mass s = M2
jet.

In the following, we sketch the main ideas of the coherent branching formal-

ism. For a more detailed description we refer to the original paper [105] and

[9, 12]. Furthermore, we quote the results of the NLL resummation of J(s,Q2)

performed in [9] that coincide with the result for the thrust distribution of the

SCET approach in 5.2.2.

Let us consider the production of a quark-antiquark pair with the momenta p

and p̄, respectively. In the coherent branching formalism we parametrize the

momentum of the quark after the i-th emission using the light-cone decompo-

sition by

(5.23) kµi = αi p
µ + βi n̄

µ + kµi,T.

The reference direction n̄ is, in the massless case, given bei n̄ = p̄. For the

transverse momentum kµi,T we have

(5.24) p · ki,T = n · ki,T = 0, k2
i,T < 0,

and the coefficient βi is given by

(5.25) βi =
−k2

i,T + k2
i

2αi(p · n̄)
.

The momentum after the i-th splitting can be expressed recursively by

(5.26) kµi = zi k
µ
i−1 +

p2
i,T + k2

i − z2
i k

2
i−1

2zi(ki−1 · n̄)
n̄µ + qµi,T,

with the splitting variables

zi =
αi
αi−1

,

qµi,T = kµi−1,T − zik
µ
i,T,

(5.27)

where α0 = 1 and pµ0,T = 0.
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When implementing a shower, a suitable choice for the evolution variable that

encodes angular ordering is given by [105]

(5.28) q̃2
i =

p2
i,T

z2
i (1− zi)2

,

with p2
i,T = −q2

i,T. The conditions

(5.29) q̃2
i+1 < z2

i q̃
2
i and k̃2

i < (1− z2
i ) q̃

2,

restrict the opening angle of the i + 1-th radiation to be smaller than the pre-

vious one. From the requirement of momentum conservation at each splitting

it follows that

(5.30) k2
i−1 =

k2
i

zi
+

q2
i

1− zi
+ zi(1− zi)q̃2

i .

Following [9] and [106], the evolution equation of the jet mass distribution can

be written as

J(s,Q2) = δ(s) +

∫ Q2

0

dq̃2

q̃2

∫ 1

0

dzPqq
[
αs(z(1− z)q̃), z

]
×

[∫ ∞
0

dk′2
∫ ∞

0

dq2 δ

(
s− k′2

z
− q2

1− z
− z(1− z)q̃2

)

× J(k′2, z2q̃2)Jg(q
2, (1− z)2q̃2)− J(s, q̃2)

]
,

(5.31)

with the gluon virtuality q2. The gluon jet mass distribution Jg(s,Q
2) is defined

analogously to J(s,Q2). The splitting function yields

(5.32) Pqq
[
αs, z

]
=
αsCF

2π

1 + z2

1− z
=
αsCF

2π

[
2

1− z
− (1 + z)

]
.

The evolution equation of the jet mass distribution (5.31) encodes the coherent

branching formalism for parton showers (cf. (4.12)). The first term, i.e. the

delta distribution, stands for an event without branching. This corresponds to

the tree level contribution with a vanishing jet mass. The shower equation is

initialized with the starting scale q̃2 = Q2.

The subsequent resolvable radiation is modelled by the evolution of the quark

and gluon jet mass distributions, i.e. the second term in (5.31). Finally, the

last term represents the case of evolution with unresolved branchings.
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Note that the resolved branchings are subject to the angular ordering constraints

(5.29) and momentum conservation while the unresolved branching is uncon-

strained.

For the analytic resummation to NLL accuracy, it is reasonable to make two

approximations:

(1) At NLL the gluon jet mass contribution is suppressed due to the con-

ditions in (5.29) (cf. [106]). Thus, Jg(s,Q
2) can be replaced by a delta

distribution δ(s).

(2) Some terms do not get enhanced in the soft limit. For these terms, the

limit z → 1 can be applied.

Similar to the case in the SCET approach (5.16) the jet mass distribution is

transformed to Laplace space by

(5.33) J̃(ν̄, Q) =

∞∫
0

ds e−ν̄sJ(s,Q).

Thus, the thrust distribution in Laplace space reads

(5.34) σ̃cb(ν,Q) =

[
J̃

(
ν

Q2
, Q

)]2

.

Applying the approximations (1) and (2) we arrive at the formula for the jet

mass distribution in Laplace space

(5.35) J̃(ν̄, Q) = 1 +

Q2∫
0

dq̃2

q̃2

1∫
0

Pqq
[
αs(z(1− z)q̃), z

](
e−ν̄(1−z)q̃2 − 1)J̃(ν, q̃).

From this integral equation, a differential equation can be derived. After solving

this differential equation and carrying out some manipulations we arrive at

σ̃cb(ν,Q) = exp

[
K(ΓJ , µH,ν , µJ,ν) +K(ΓS, µH,ν , µS,ν)

+
1

2
ω(γJ , µH,ν , µJ,ν)

]
,

(5.36)

with the evolution functions K and ω of (5.18) and the anomalous dimensions

in (5.19). A comparison with (5.17) shows that the SCET approach and the

coherent branching formalism lead to the same result for the thrust distribution.

Note that we left out several steps in the calculation that can be found in

Chapter 4 of [9] and are not essential for the general understanding.



76 5. THE TOP QUARK MASS IN THE DIPOLE SHOWER

5.2.4. Cutoff Dependence of τpeak

The resummation of the thrust distribution in the SCET approach and in the

coherent branching formalism leads to the same result (cf. (5.17) and (5.36)).

Note that both calculations go without a shower cut Q0. From this, they proved

in [9] that, in the coherent branching formalism without a shower cut, i.e. with

Q0 = 0, the coherent branching mass in the peak region coincides with the pole

mass up to order O(αs)

(5.37) mcb(Q0 = 0)
peak
= mpole +O(αs).

However, in practice a parton shower cannot be used without a cutoff. The

reasons for that are twofold:

(1) The shower cutoff separates the perturbative region of the parton shower

from the non-perturbative region, where hadronization has to be ap-

plied. Without this cut, the evolution would run into the Landau pole

of QCD when approaching scales of order O(ΛQCD).

(2) The shower cutoff is needed to restrict the parton multiplicities. Oth-

erwise, it would generate an infinite number of partons.

Thus, (5.37) does not hold for the top quark mass in parton showers.

In the coherent branching formalism, the cutoff Q0 can be applied by restricting

the integrals over q̃2 and z in (5.31) to the region

(5.38) p2
T = q̃2 z2(1− z)2 > Q2

0.

This cut in the transverse momentum pT can be applied to the jet mass distribu-

tion in Laplace space (5.36). After some manipulations we arrive at the relation

between the thrust distribution with cut (left-hand-side) and the distribution

without cut (righ-hand-side)

(5.39)
dσ̂cb

dτ
(τ,Q,Q0) =

dσ̂cb

dτ

(
τ + 16

Q0

Q

CF αs(Q0)

4π
,Q

)
.

The corresponding calculations can be found in Section 5.2 of [9].

For the factorization approach, the shower cut can be interpreted as a cut on

the transverse momentum of gluons with respect to the thrust axis. This cut

can be implemented separately in each of the hard, jet, and soft functions. This

treatment leads to the same results as the coherent branching formalism. The

corresponding computations can be found in Section 5.3 of [9].
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For the case of massless quarks, the effect of the shower cutoff Q0 represents a

factorization scale between the perturbative region of the parton shower and the

non-perturbative region of soft radiation with a large angle. In the peak region,

the modification of Q0 can be interpreted as a change of the non-perturbative

contributions, namely a modification of the soft model shape function Smod. In

[107] this shift in Smod is referred to as “gap”.

This gap can be calculated perturbatively (cf. (5.39)). The general expression of

the hadron level thrust distribution (cf. (5.11)) incorporating the gap, denoted

as ∆soft(Q0), reads

dσ

dτ
(τ,Q,Q0) =

Qτ∫
0

d`
dσ̂s
dτ

(
τ − `

Q
,Q,Q0

)
Smod(`)

=

Qτ∫
0

d`
dσ̂s
dτ

(
τ − `

Q
,Q

)
Smod(`+ ∆soft(Q0)) +O(α2

s , Q
2
0).

(5.40)

The gap function ∆soft(Q0) depends on the cutoff and is given by

(5.41) ∆soft(Q0) = 16Q0
αs(Q0)CF

4π
+O(α2

sQ0).

Similar to the MSR mass, the RGE of the gap function is linear in the renor-

malization scale

(5.42)
d

d log(R)
∆soft(R) = 16R

αs(R)CF

4π
+O(α2

sR),

which is named R-evolution [30, 31].

This relation implies that in a parton shower, a change in the cutoff parameter

Q0 has to be accompanied by a change in the parameters of the hadronization

model. Considering the factorized formula for the hadron level thrust distribu-

tion (5.40) this results in

dσ

dτ
(τ,Q,Q0) =

Qτ∫
0

d`
dσ̂s
dτ

(
τ − `

Q
,Q,Q′0

)
× Smod(`+ ∆soft(Q0)−∆soft(Q

′
0)),

(5.43)
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for the relation between two different cutoff scales Q0 and Q′0. The IR insensitive

difference between the gap function at the two scales yields

(5.44) ∆soft(Q0)−∆soft(Q
′
0) = 16

Q0∫
Q′0

dR

[
αs(R)CF

4π
+O(α2

s )

]
.

The relation above can be verified numerically by varying the cutoff parameter of

an MC event generator while keeping the hadronization model unchanged. This

leads to a linear dependence of τpeak on Q0, since the effect is not compensated

by the hadronization model. In [9] this is validated by using the Herwig event

generator. Therefor, the dependence of the peak position of the hadronic thrust

variable is studied for different values of the cutoff Q0.

Taking (5.40) and (5.41) into account, the dependence of τpeak(Q0) on the cutoff,

in the massless case, is given by

(5.45) τpeak(Q0) = τpeak(Q′0)− 16

Q

Q0∫
Q′0

dR
αs(R)CF

4π
.

Here, τpeak(Q′0) is the value of the peak position at some reference scale Q′0.

The numerical validation of relation (5.45) is carried out by using parton shower

simulations from Herwig in Section 7 of [9]. However, the angular ordered

parton shower algorithm implemented in Herwig is based on the coherent

branching formalism, that was used to derive the relation in (5.45). Thus, it

is natural to ask, if this relation also holds for a different family of shower

algorithms, i.e. the dipole parton shower algorithm discussed in Section 4.2.

The search for an answer to this question is subject of the next section.

5.3. Analyses and Results

To answer the question that arose in the last section, we start from the gener-

ation of the thrust distribution using an implementation of the dipole shower

algorithm outlined in Section 4.2. For that, we show that the cutoff depend-

ence of the peak position of the thrust distribution obtained from the dipole

shower matches the expected form of the analytical computations that is given

in (5.45).
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Before we discuss the event generation using the dipole shower and show our

results, we stress that the observable we study is the classical thrust variable

given in (5.9). For simplification we set

(5.46) τ := τ thrust,

for the rest of this chapter.

We emphasize that the use of the classical thrust variable instead of the squared

hemisphere mass sum of (5.8) does not spoil the comparability of our results

with the outcomes of [9]. This is explained by the fact that we are only interested

in the relative location of the maximum of the distribution in the peak region.

However, in the peak region, the classical thrust variable (5.9) and the squared

hemisphere mass sum of (5.8) show very similar behavior.

For our analysis we start from the hard event e+e− → qq̄, by computing the

corresponding tree level matrix element squared. To obtain the full weight of

the hard event, we generate a phase space weight from the two initial beam

four-momenta using the Rambo algorithm [108, 109] and multiply it with the

squared matrix element. From this event, we can start the parton shower.

For the parton shower we use the implementation of the algorithm depicted in

Section 4.2. We evolve the shower from the initial scale of the hard event, in

our case from Q = 91 GeV and Q = 300 GeV, down to the cutoff scale Q0.

Finally, we calculate the thrust τ .

In this way, we generate 107 events for each cutoff scale Q0 with

(5.47) Q0/GeV ∈ {0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0} .

For the creation of a histogram for the thrust distribution, the resulting weights

of this process are cumulatively ordered into bins of size ∆τ = 10−3. Note that

this procedure gives us the partonic thrust distribution (cf. (5.13)) generated

by the dipole parton shower algorithm. To make it comparable to the analytic

results from Section 5.2 we have to convolve the partonic thrust distribution

with the soft model shape function as in (5.11).

For that purpose we convolve the partonic thrust distribution dσ̂/dτ with the

Smod of (5.12) using the discretized representation of the convolution integral

(5.11), namely

(5.48)
dσ

dτ
(τ,Q) =

Qτ∑
`=0

∆`
dσ

dτ

(
τ − `

Q
,Q

)
Smod(`+

∆`

2
).
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Here, the sum over ` has to be taken in steps of the size

(5.49) ∆` =
Qτ

bins
,

where “bins” is the number of bins we use to discretize the function Smod. In

(5.48) the soft model shape function, for each step, is evaluated at the center

of the corresponding bin. The value for the partonic thrust distribution at the

certain value τ − `/Q is obtained from its histogram. We vary the smearing

parameter Λm between 1 and 3 GeV.

As an example, we show the convolved partonic thrust distribution with the

cutoff Q0 = 1.2 GeV and the smearing parameter Λm = 1 GeV for Q = 91 GeV

in Figure 5.1.

Figure 5.1. Thrust distribution for the center-of-mass energy
Q = 91 GeV, with the cutoff value Q0 = 1.2 GeV and the smear-
ing parameter of the soft model shape function Λm = 1 GeV. The
distribution is normalized such that its peak value is one.

In Figure 5.1 we can see that, as expected, the peak position of the thrust

distribution is near τ = 0. However, it is slightly shifted to positive values of τ .

As in all plots of the thrust distribution throughout this thesis, we normalize

the distribution such that the peak value is one.

The important question we address is, if for fixed parameters Q and Λm and for

varying cutoff values Q0 of the set (5.47), the dependence of the peak position
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agrees with the result of the analytic computation (5.45), i.e.

(5.50) τpeak(Q0) = τpeak(Q′0)− 16

Q

Q0∫
Q′0

dR
αs(R)CF

4π
.

Figure 5.2. Plots of the thrust distribution from the dipole
shower for the smearing parameters Λm = 1 (left) and Λm = 3
GeV with a center-of-mass energy of Q = 91 GeV. Each figure
shows the distribution for cutoff values of Q = 1 GeV (red solid
line), Q = 1.6 GeV (green dashed line), and Q = 2 GeV (blue
dotted line), respectively.

Figure 5.2 shows the thrust distribution for the smearing parameters Λm = 1

GeV (left figure) and Λm = 3 GeV with Q = 91 GeV each with three different

values for the shower cut. The red solid line represents a cut of Q0 = 1 GeV. The

green dashed line and the blue dotted line stand for the cutoff values Q0 = 1.6

GeV and Q0 = 2 GeV, respectively. Already from the plots for the three

different cutoff values we can recognize the tendency that is implied by the

analytic prediction (5.50): The value of the peak position decreases for bigger

cutoff values.

However, we see that increasing the smearing parameter decreases the difference

between the peak position for the different values of Q0. The same plots of the

thrust distribution, but for a center-of-mass energy Q = 300 GeV, are shown in

Figure 5.3. Here, the described tendency is also visible.
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Figure 5.3. Plots of the thrust distribution from the dipole
shower for the smearing parameters Λm = 1 (left) and Λm = 3
GeV with a center-of-mass energy of Q = 300 GeV. Each figure
shows the distribution for cutoff values of Q = 1 GeV (red solid
line), Q = 1.6 GeV (green dashed line), and Q = 2 GeV (blue
dotted line), respectively.

To obtain a more quantitative analysis of the peak position’s dependence on

the cutoff, we fit a quadratic function to the thrust distribution in the peak

region and extract the maximum. This procedure ensures that the statistical

uncertainties in the determination of the peak position are so small that we

desist from specifying any systematic or statistical errors in our results. Addi-

tionally, the visualization only demonstrates the general tendency of the cutoff

dependence to test the agreement between the theoretical prediction and the

parton shower simulation. It shall not indicate exact numerical statements.

The results from this analysis are shown in Figure 5.4. The plot of the peak

position against the cutoff Q0 from the analytical computations is obtained

by solving the integral in (5.50) numerically, using standard MC integration

[109]. As the reference value we take the peak position from the parton shower

simulation at Q′0 = 1.2 GeV.

Figure 5.4 illustrates the position of the peak τpeak as a function of the cutoff Q0

for four different combinations of Q and Λm. The two upper figures correspond

to Q = 91 GeV with Λm = 1 GeV (left) and Λm = 3 GeV (right), while the two

lower figures depict the Q0 dependence for Q = 300 GeV with Λm = 1 GeV (left)

and Λm = 3 GeV (right). The blue solid line gives a pictorial representation of
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Figure 5.4. Position of the peak of the thrust distribution as a
function of the shower cut Q0. Displayed are the plots for Q = 91
GeV with Λm = 1 GeV (upper left) and Λm = 3 GeV (upper
right) as well as Q = 300 GeV with Λm = 1 GeV (lower left) and
Λm = 3 GeV (lower right). The blue solid line depicts the result
of the analytical computation while the red squares represent the
data points from the parton shower simulation.

the analytic relation (5.50). The centers of the red squares are the data points

obtained from the parton shower simulations.

From Figure 5.4 we deduce a good agreement between the analytical prediction

and the parton shower simulations from the dipole shower formalism. Hence,

our results coincide with the findings of [9].

To conclude, we can say that the dependence of the peak position from parton

shower simulations, using the dipole shower algorithm, matches the prediction

from the analytical computations. Thus, the relation (5.50), derived from SCET

and the coherent branching formalism, is not only valid for angular ordered

parton showers but also for parton showers based on the Catani–Seymour dipole

formalism.
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In the last chapters, we discussed parton showers, the top quark mass, and

the cutoff dependence of the top mass parameter in parton shower simulations.

Next, we focus on the hard scattering part of modelling collider events, namely

fixed-order calculations and some implications that come along with NNLO

computations.

In Section 2.5 we discussed the renormalization of QCD to cancel UV diver-

gences that arise when calculating loop diagrams. This is achieved by introduc-

ing counterterms into the Lagrangian. We demonstrated this renormalization,

using the example of the quark self-energy contribution at one-loop order.

When going to higher orders in perturbation theory, we encounter diagrams with

corresponding Feynman integrals that contain propagators with exponents big-

ger than one. In the following, we refer to propagators with this property as

raised propagators. The higher powers of the raised propagators originate from

the insertion of a self-energy on an internal line, i.e. on a particle line inside the

exterior loop.

87
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One ingredient, that is needed for calculations in the so-called loop-tree duality

approach [110–122], is the residue of the integrand, when a raised propagator

goes on-shell. In this chapter, we show that in the on-shell scheme, it is possible

to find a counterterm at the integrand level that makes the residue vanish. Ad-

ditionally, we provide a possible form of these counterterms for scalar φ3-theory

and QCD at one-loop order as published in [11].

6.1. Motivation and a Toy Example

In Chapter 3, we explained the structure and importance of NLO computations

to make theoretical predictions for collider experiments. A special requirement

for these calculations is the possibility to automatize them in a computer pro-

gram. This is especially desirable for the case with more than two final-state

particles involved.

However, due to the constantly increasing precision from the experimental side,

the search for automatable methods using NNLO precision becomes indispens-

able for many 2→ n processes with n ≥ 2. There exist two promising numerical

methods to attack this problem. Here, we want to focus on numerical loop in-

tegration [123–135] combined with loop-tree duality [110–122]. Also, methods

based on numerical unitarity [136–140] provide a possible way to a solution of

the problem.

Starting at NNLO, i.e. at two-loop order, one encounters raised propagators

coming from self-energy insertions in the main loop. Figure 6.1 shows an exam-

ple for a self-energy insertion in a scalar theory. For some integrals, containing

raised propagators, it is possible to calculate them analytically. In this case,

the integral is reduced to master integrals using integration-by-parts identities

[141]. The master integrals themselves may contain raised propagators and are

calculable analytically.

However, we are interested in numerical approaches that can be automated. Al-

though our focus is on the combination of loop-tree duality with numerical loop

integration, our results are also useful for numerical unitarity based methods.

In these approaches, the residue of the integrand has to be calculated for the

case that a raised propagator goes on-shell. Let us consider a function f(z) that

depends on the complex variable z. If this function has a pole of order ν at z0,



6.1. MOTIVATION AND A TOY EXAMPLE 89

Figure 6.1. A two-loop diagram involving a self-energy inser-
tion (left) and the corresponding diagram with a counterterm
(right). The red line marks the raised propagator. [11]

the residue at z0 can be calculated using

(6.1) res (f, z0) =
1

(ν − 1)!

(
∂

∂z

)ν−1

[(z − z0)ν f(z)]

∣∣∣∣∣
z=z0

.

A generalization of this one-dimensional formula to multivariate residues can

be found in [142]. In general, the calculation of the residues can be carried out

for each individual integrand. However, this procedure is very troublesome and

depends on the considered process. Hence, it is not well suited for automation.

Another approach, proposed in [112], suggests to use integration-by-parts rela-

tions for the reduction of integrals containing raised propagators to Feynman

integrals with no higher powers in the propagators. This procedure is manage-

able but also depends on the underlying process.

In loop-tree duality an l-loop contribution is cut exactly l times. In this ap-

proach it is desirable to isolate the part of the l-loop contribution that contains

the problem, i.e. the internal line with the self-energy insertion, to a small part

that does not depend on the underlying process. One way to do this is to not

only consider the diagram with the self-energy insertion on a specific line, but

taking all diagrams into account that contribute to this self-energy insertion.

This means, particularly, to look at the diagram with a renormalization coun-

terterm, corresponding to the self-energy insertion on this specific internal line.
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It is possible to calculate the self-energy and the corresponding term analyti-

cally in the on-shell scheme. Here, the counterterm is the second order Taylor

expansion of the self-energy around its on-shell value. Doing this calculation,

the double pole is canceled and the residue is zero. However, this method is not

practicable when it comes to automation because the solution of the analytic

calculation is a transcendental function. To work numerically, as we have to do

for automated computations, all functions have to be rational.

Therefore, we show that it is possible to find counterterms on an integrand level

that lead to vanishing residues. Since we have to find a proper counterterm, the

integral and its UV-behavior are fixed. It should be local in loop momentum

space and its on-shell behavior is fixed by our requirement that the residue has

to vanish. For the last requirement to hold we set the condition

(6.2) lim
k2→m2

(self-energy integrand) = O
((
E − E[

)2
)
.

By E[ we denote the energy flowing through the raised propagator in the on-

shell limit. In words, the condition states that the whole integrand has to vanish

quadratically in the case where the external momenta of the self-energy are on-

shell. When (6.2) is fulfilled, the poles from the propagators are cancelled and

the residue will vanish. Note that the small amount of requirements on the

counterterms leads to the situation that they are not unique.

In this chapter, we present a method to obtain counterterms with the desired

behavior. Additionally, we construct these counterterms for φ3-theory and QCD

at one-loop order. These counterterms can be used to make the residues vanish

that are encountered when calculating integrals for two-loop diagrams with a

self-energy insertion on an internal line. The main advantage of our method

is that the counterterms work on an integrand level. Hence, all functions are

rational and, therefore, applicable for automated calculations.

It may be conspicuous that the counterterms also contain raised propagators.

This means that for the calculation of the residues, there are also derivatives

that have to be calculated (cf. (6.1)). However, since we isolated the problem

of raised propagators into the self-energy insertion part, it became process-

independent. Therefore, the residues can be calculated once and used for every

diagram that contains self-energy insertions.
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6.1.1. A Simple Toy Example

Before we move on to our method for physical theories, namely φ3-theory and

QCD, let us examine the procedure using a simple toy example from complex

analysis. We inspect the local residues of the rational function R, which serves

as our integrand. In our case it is given by

(6.3) R =
1

D1D2
2D6

,

with the polynomials, i.e. the propagators,

(6.4) D1 = z1 +
1

2
z2 + 1, D2 = z2, D6 = z1 −

1

2
z2 − 1,

where the two complex variables z1 and z2 could be considered as energy vari-

ables in a quantum field theoretical context. The locations of the residues are

at

(6.5) (z1, z2) ∈ {(−1, 0), (1, 0), (0,−2)} ,

with double poles, coming from D2
2, at P1 = (−1, 0) and P2 = (1, 0). The left

image of Figure 6.2 shows the location of the residues in the (z1, z2)-plane.

Let us first calculate the residue at P1, using (6.1) iteratively

(6.6) res (res (R, z2 = 0), z1 = −1) =
1

4
.

The residue, corresponding to P2, is calculated analogously and we obtain

(6.7) res (R,P1) =
1

4
, res (R,P2) = −1

4
.

The task is, to find a counterterm RCT such that the residues at P1 and P2

of the sum R + RCT vanish. In quantum field theory, we define the on-shell

projections of the propagators D1 and D6 by setting z2 = 0:

(6.8) D[
1 = z1 + 1, D[

6 = z1 − 1.

To find the counterterm RCT, let us first consider a general form of rational

functions that only has poles along D[
1, D2 and D[

6

(6.9) Rgeneral =
P (z1, z2)

(D[
1)ν1Dν2

2 (D[
6)ν6

.

Here, we have the exponents ν1, ν2, ν6 ∈ N and P (z1, z2) is a polynomial of the

variables z1 and z2. This situation is shown in the right part of Figure 6.2.
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Figure 6.2. The location of the residues of the toy example in
the (z1, z2)-plane (left) and the residues with the on-shell projec-
tions of the propagators (right).

The functions Rgeneral have residues only at P1 and P2. As a first guess of a

counterterm for R, that cancels the residues at P1 and P2, we try the simplest

version of Rgeneral with ν2 = 2,

(6.10) Rguess =
1

D[
1D

2
2D

[
6

=
1

(z1 + 1)z2
2(z1 − 1)

.

When calculating the residues of Rguess at P1 and P2, we find that these vanish

(6.11) res (Rguess, P1) = res (Rguess, P2) = 0.

Hence, Rguess yields no suitable counterterm to R. A counterterm with the de-

sired properties can be obtained by expanding R around the on-shell projections

to second order in z2.

Let us define f(D) := 1/D. Then, the Taylor expansion of f around the on-shell

projection of the propagator, i.e. around D[, is given by

(6.12) TNf(D;D[) =
N∑
n=0

(−1)n
(D −D[)n

(D[)n+1
.

The expansion of R around the on-shell projections D[
1 and D[

6 can be written

as a product of the individual expansions

(6.13) R ≈ 1

D2
2

[
N∑

n1=0

(−1)n1
(D1 −D[

1)n1

(D[
1)n1+1

]
×

[
N∑

n2=0

(−1)n2
(D6 −D[

6)n2

(D[
6)n2+1

]
.
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Applying the expansion up to terms of order z2 yields

(6.14) RCT = − 1

D[
1D

2
2D

[
6

(
1− z2

2D[
1

+
z2

2D[
6

)
.

The residues of RCT at P1 and P2 are

(6.15) res (RCT, P1) = −1

4
, res (RCT, P2) =

1

4
,

and, therefore, the residues of the sum R +RCT at P1 and P2 vanish

(6.16) res (R +RCT, P1) = res (R +RCT, P2) = 0.

Thus, the expansion of R around the on-shell projections provides a suitable

counterterm that cancels the residues at the points where we encounter a pole

in the raised propagator.

6.2. Subtraction Terms for φ3-Theory

In this section, we take the lessons we learned from the toy example to set up

requirements on the counterterm. These conditions are given in a universal,

process-independent way, such that the resulting counterterms can be used in

every two-loop calculation featuring a self-energy insertion. As a first physical

example, we construct a suitable counterterm for the self-energy calculation in

φ3-theory.

6.2.1. Setting up the Requirements

To set up the required conditions and construct a suitable counterterm in φ3-

theory, let us first recall the corresponding Lagrangian of (2.27)

(6.17) L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 +

1

3!
λ(D)φ3 + LCT.

Here, we imply that all quantities are already renormalized. By LCT we denote

the counterterm part of the Lagrangian. The superscript of the coupling λ(D)

contains the information of dimensional regularization, with D = 4 − 2ε. Its

relation to λ is given by

(6.18) λ(D) = µε S
− 1

2
ε λ,
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where the factor S
− 1

2
ε = (4π)ε exp(−εγE) and the scale µ come from dimensional

regularization.

The counterterm part of the Lagrangian reads

(6.19) LCT = −1

2
(Zφ − 1)φ�φ− 1

2
(ZφZ

2
m − 1)m2φ2 +

1

3!

(
Z

3
2
φZλ − 1

)
λ(D)φ3,

where the series expansion of the renormalization constants (cf. (2.54)) is given

by

(6.20) Za = 1 +
∞∑
n=1

Z(n)
a

(
λ2

(4π)2

)n
, a ∈ {φ,m, λ}.

The bare quantities are related to the renormalized quantities by

(6.21) φ0 = Z
1
2
φ φ, λ0 = Zλλ

(D), m0 = Zmm.

Recalling Section 2.5, the renormalization constants needed for the self-energy

are Z
(1)
φ and Z

(1)
m . In the on-shell scheme they read

Z
(1)
φ =

2− ε
6m2

B0(m2,m2,m2)− 1− ε
3m4

A0(m2),

Z(1)
m =

1

4m2
B0(m2,m2,m2),

(6.22)

with the scalar one-loop integrals

A0(m2) = Cε

∫
dDk

i(2π)D
1

k2 −m2
,

B0(p2,m2
1,m

2
2) = Cε

∫
dDk

i(2π)D
1[

(k + 1
2
p)2 −m2

1

] [
(k − 1

2
p)2 −m2

2

] .(6.23)

The prefactor is defined by Cε := 16π2S−1
ε µ2ε. Note that we use a definition of

the momenta inside the self-energy loop that differs from the common conven-

tions (cf. Section 2.5). Our convention is shown in Figure 6.3.

The type of diagrams, we are interested in, are two-loop diagrams with a self-

energy insertion, as the left diagram in Figure 6.1.

The propagators are defined by

(6.24) Dj = k2
j −m2 + iε,

using the numbering of the propagators and the directions of the momenta

depicted in Figure 6.4. The integral, corresponding to this two-loop diagram,
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Figure 6.3. The scalar self-energy diagram. [11]

dropping one prefactor of µ2εS−1
ε , reads

(6.25) I(2) = iλ6µ4εS−2
ε

∫
dDk1

(2π)D

∫
dDk2

(2π)D
R(2)(k1, k2),

where the integrand is defined as

(6.26) R(2)(k1, k2) :=
1

2D1D2
2D3D4D5D6

.

Note that R(2)(k1, k2) is a rational function in k1 and k2.

Additional to the integral, corresponding to the full diagram, we need to consider

the integral for the counterterm contribution in Figure 6.1. It is given by

(6.27) I(2),CT = − λ6

(4π)2
µ2εS−1

ε

∫
dDk2

(2π)D

[
Z

(1)
φ k2

2 −
(
Z

(1)
φ + 2Z

(1)
m

)
m2
]

D2
2D3D4D5

.

There also exists an integral representation of this counterterm, involving an

integration over the loop momentum of the self-energy insertion

(6.28) I(2),CT = iλ6µ4εS−2
ε

∫
dDk1

(2π)D

∫
dDk2

(2π)D
R(2),CT(k1, k2).

To implement this form of the counterterm within numerical calculations, the

counterterm integrand R(2),CT(k1, k2) must be a rational function in the energies

E1 and E2. To be a local counterterm for the UV divergence, coming from the

self-energy graph, it has to fulfill the following statements:

(1) Integrating (6.28) over k1 yields (6.27).
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Figure 6.4. Our numbering of the propagators (left) and the
labeling of the momenta (right). [11]

(2) When |k1| goes to infinity, the sum of R(2) and R(2),CT falls off as |k1|−5,

i.e.

(6.29) lim
|k1|→∞

(
R(2)(k1, k2) +R(2),CT(k1, k2)

)
= O

(
|k1|−5

)
.

Additionally, we require R(2),CT to have such a form that the residue coming

from D2 → 0 vanishes (cf. 6.2):

(3) When k2 goes on-shell, the sum of R(2) and R(2),CT has to vanish

quadratically, i.e.

(6.30) lim
k22→m2

(
R(2)(k1, k2) +R(2),CT(k1, k2)

)
= O

((
E − E[

)2
)
.

As a last requirement, we want to ensure that R(2),CT receives no contributions

coming from the cut, where both of the internal lines of the self-energy loop are

cut. This is achieved by the condition:

(4) R(2),CT must not depend on the energy E2.

We stress that all of the four requirements on the counterterm R(2),CT do not

refer to the full diagram, but only to the self-energy diagram that is inserted

into the outer loop. Hence, all of the conditions are universal and do not depend

on the underlying process.

6.2.2. Constructing the Counterterm

For the one-loop self-energy in φ3-theory (cf. Figure 6.3) we have

(6.31) −iΣ(1) = λ2µ2εS−1
ε

∫
dDk

(2π)D
R(1).
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With the propagators

(6.32) D1 =

(
k +

1

2
p

)2

−m2, D2 =

(
k − 1

2
p

)2

−m2,

the one-loop integrand is given by

(6.33) R(1) =
1

2D1D2

.

From the external momentum p = (E, ~p), we define p[ as

(6.34) p[ :=
(

sign(E)
√
~p2 +m2, ~p

)
.

Note that p[ does only depend on the sign of the energy E, not on its actual

value. Additionally, p[ is on-shell,

(6.35)
(
p[
)2

= m2.

Defining the four-vector n = (1, 0, 0, 0) we can write p[ in the form

(6.36) p[ = p− cn,

where c is given by

(6.37) c :=
1

2n2

(
2p · n− sign(2p · n)

√
(2p · n)2 − 4n2(p2 −m2)

)
.

Now, we construct a counterterm R(1),CT, on the integrand level that satisfies

all four conditions set up above.

The counterterm corresponding to the self-energy diagram can be written as

(6.38) −iΣ(1),CT = λ2µ2εS−1
ε

∫
dDk

(2π)D
R(1),CT.

The only singularities of R(1),CT shall arise from the on-shell projections of the

propagators, i.e. the propagators D1 and D2 under the transformation p→ p[.

They are given by

(6.39) D[
1 =

(
k +

1

2
p[
)2

−m2, D2 =

(
k − 1

2
p[
)2

−m2.

Recalling the method we applied for the toy example, we expand R(1) around

the on-shell kinematics up to first order in the momenta (cf. (6.13)). Thus, we
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obtain

R(1),expansion = − 1

2D[
1D

[
2

×

[
1−

4k ·
(
p− p[

)
+ p2 −m2

4D[
1

+
4k ·

(
p− p[

)
− p2 +m2

4D[
2

]
.

(6.40)

When summing R(1) and R(1),expansion we find that the difference is of order

O((p2 − m2)2) and, hence, condition (3) is fulfilled. Additionally, the sum of

R(1) and R(1),expansion falls of as |k|−5. Thus, R(1),expansion acts as a local UV

counterterm to R(1) and respects requirement (2). Following our definition

of the on-shell momentum p[ in (6.34), that does not depend on the energy,

condition (4) is also satisfied.

As a last step, we have to make sure that integrating the counterterm over k

leads to the right expression (6.27)

(6.41) λ2µ2εS−1
ε

∫
dDk

(2π)D
R(1),CT

!
=

λ2

(4π)2
i
[
Z

(1)
φ p2 −

(
Z

(1)
φ + 2Z(1)

m

)
m2
]
,

with the renormalization constants from (6.22). To do that, we can add terms

that do not spoil the conditions (2) to (4) but lead to the appropriate form of the

integral. Taking this into account, we find a suitable form for the counterterm,

R(1),CT = − 1

2D[
1D

[
2

×

[
1−

4k ·
(
p− p[

)
+ p2 −m2

4D[
1

+
4k ·

(
p− p[

)
− p2 +m2

4D[
2

]

+

(
p− p[

)2

8m2

(
2

D[
1D

[
2

− 1(
D[

1

)2 −
1(
D[

2

)2

)
.

(6.42)

Note that the required on-shell behavior is given by the fact that, in the on-

shell limit, (p − p[)2 vanishes quadratically. Furthermore, the last factor, i.e.

the three terms in brackets, ensure the correct UV behavior since they fall off
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as O(|k|)−6:

2

D[
1D

[
2

− 1(
D[

1

)2 −
1(
D[

2

)2 = −
(
D[

1 −D[
2

)2(
D[

1

)2 (
D[

2

)2

= −
4k2

(
p[
)2(

D[
1

)2 (
D[

2

)2 ∼ O(|k|−6).

(6.43)

6.2.3. Computation of Residues

After having constructed a suitable counterterm at the integrand level, we are

now left with the calculation of the residues. We can see from (6.42) that the

counterterm R(1),CT is a rational function of the energy Ek and has double poles

in this variable. However, our four requirements are set up in such a way that

the residues can be calculated once and, then, be used in every calculation

involving a self-energy insertion.

As an example, let us calculate the residue at

(6.44) Ek,D[1 = −1

2
Ep[ + E1,

with

(6.45) E1 :=

√(
~k +

1

2
~p

)2

+m2.

Calculating the residue at k = (Ek,D[1 ,
~k) yields

res
(
R(1),CT, Ek = Ek,D[1

)
=− 1

4E1D[
2

+

(
Ep − Ep[

)2

8E1m2D[
2

+

(
Ep − Ep[

)2

32E3
1m

2
−
(
Ep − Ep[

)2

32E3
1D

[
2

−
(
E1 − Ep[

) (
Ep − Ep[

)
2E1

(
D[

2

)2

+
Ep[

(
Ep − Ep[

)2

16E2
1

(
D[

2

)2

∣∣∣∣∣
k=(E

k,D[1
,~k)

.

(6.46)

The integrand of the one-loop calculation R(1) only has single poles in the energy

Ek. The location of the pole corresponding to the residue at (6.44) of the
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counterterm lies at

(6.47) Ek,D1 = −1

2
Ep + E1.

For the residue at k = (Ek,D1 ,
~k) we obtain

(6.48) res
(
R(1), Ek = Ek,D1

)
=

1

4E1D2

∣∣∣∣∣
k=(Ek,D1

,~k)

.

Adding the two residues (6.48) and (6.46), we find

res
(
R(1), Ek = Ek,D1

)
+ res

(
R(1),CT, Ek = Ek,D[1

)
=

1

4E1

[
1

D2

− 1

D[
2

−
2
(
E1 − Ep[

) (
Ep − Ep[

)(
D[

2

)2

]

+

(
Ep − Ep[

)2

8E1m2D[
2

+

(
Ep − Ep[

)2

32E3
1m

2

−
(
Ep − Ep[

)2

32E3
1D

[
2

+
Ep[

(
Ep − Ep[

)2

16E2
1

(
D[

2

)2 .

(6.49)

It is obvious that the last four terms vanish quadratically in the on-shell limit.

However, the term in the squared brackets is also of order O((Ep−Ep[)2), when

the propagators D2 and D[
2 are evaluated at k = (Ek,D1 ,

~k) and k = (Ek,D[1 ,
~k),

respectively.

Let us shortly summarize what we gained in this section:

We constructed an integral representation for the counterterm of the self-energy

diagram in φ3-theory in Figure 6.3. A benefit of our construction is that the

counterterm satisfies all four requirements set up in the last section. In par-

ticular, it makes the residue of the sum of the counterterm and the self-energy

integrand vanish in the on-shell limit.

This special property becomes useful when calculating two-loop integrals that

contain a self-energy insertion, as the left diagram in Figure 6.1. In this case,

the counterterm (6.42) can be used for a two-loop integral representation of the

counterterm diagram in the right image of Figure 6.1. Within the loop-tree

duality method the sum of both diagrams can be evaluated by applying cuts to

two of the propagators, i.e. taking residues in the two energy integrations.

Our choice of the integrand of the counterterm (6.42) makes sure that the residue

from the cut (1, 2) will vanish. For the cut (1, 6) we can say that there is no
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residue coming from the counterterm diagram but only from the full two-loop

contribution. This, we made sure by setting up condition (4) on the counter-

term. All other cuts that can be applied are unproblematic, since they do not

require taking residues of raised propagators.

6.3. Subtraction Terms for QCD

Next, we construct counterterms for the different one-loop self-energy contribu-

tions in QCD. By nf and nQ, we denote the number of massless and massive

quarks, respectively. The QCD Lagrangian, including the counterterm contribu-

tions, is given in (2.53). The series expansion of the renormalization constants

reads (2.54)

(6.50) Za = 1 +
∞∑
n=1

Z(n)
a

(αs

4π

)n
.

For constructing the counterterms, we need the renormalization constants at

one-loop order for a massless (Z2) and a massive (Z2,Q) quark field, the gluon

field (Z3) and the mass m of the heavy quark (Zm). Additionally, we split

up the renormalization constant for the gluon field into Z
(1)
3,l and Z

(1)
3Q

for the

contributions, coming from the massless partons or the massive quark inside

the loop, respectively

(6.51) Z
(1)
3 = Z

(1)
3,l + Z

(1)
3Q
.

At one-loop order and in the on-shell scheme the required renormalization con-

stants are given by

Z
(1)
2 = 0,

Z
(1)
2,Q = −(3− 2ε)CFB0(m2,m2, 0),

Z(1)
m = −(3− 2ε)CFB0(m2,m2, 0),

Z
(1)
3,l = 0,

Z
(1)
3,Q = −4

3
TRnQB0(m2,m2, 0).

(6.52)

Note that we only consider the case where all heavy quarks have the same mass

m and we suppress all Kronecker deltas in color space. The counterterms are
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then given by (2.55)

(6.53) δa :=
αs

4π
Z(1)
a .

6.3.1. Light Quarks

For the self-energy of a light quark, we consider the self-energy graph for a quark

(cf. Figure 2.3) with the labeling of the momenta as in Figure 6.3. With

(6.54) D1 =

(
k +

1

2
p

)2

, D2 =

(
k − 1

2
p

)2

,

we find for the corresponding integral

(6.55) −iΣ(1) = g2
sµ

2εS−1
ε

∫
dDk

(2π)D
R(1),

where the one-loop integrand is given by

(6.56) R(1) = CF

2(1− ε)
(
/k + 1

2/p
)

D1D2

.

Then, the counterterm can be written as

(6.57) −iΣ(1),CT = g2
sµ

2εS−1
ε

∫
dDk

(2π)D
R(1),CT

!
= iδ2/p = 0.

The on-shell projections of the propagators are given by

(6.58) D[
1 =

(
k +

1

2
p[
)2

, D[
2 =

(
k − 1

2
p[
)2

.

Expanding R(1) around the on-shell kinematics yields a suitable form for the

counterterm integrand

R(1),CT = −CF

2(1− ε)
(
/k + 1

2/p
)

D[
1D

[
2

×

[
1−

4k ·
(
p− p[

)
+ p2

4D[
1

+
4k ·

(
p− p[

)
− p2

4D[
2

]
.

(6.59)

Carrying out the integration over R(1),CT shows that the integral vanishes in

dimensional regularization. Hence, we do not need to add additional terms to

satisfy condition (1), i.e. Equation (6.57).
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6.3.2. Heavy Quarks

For heavy quarks, the situation is a bit more involved. With our labeling of the

momenta, we have

(6.60) D1 =

(
k +

1

2
p

)2

−m2, D2 =

(
k − 1

2
p

)2

.

The self-energy integral is given by

(6.61) −iΣ(1) = g2
sµ

2εS−1
ε

∫
dDk

(2π)D
R(1),

with the integrand

(6.62) R(1) = CF

2(1− ε)
(
/k + 1

2/p
)
− 4(1− 1

2
ε)m

D1D2

.

In the massive case, the counterterm integral can be written as

−iΣ(1),CT = g2
sµ

2εS−1
ε

∫
dDk

(2π)D
R(1),CT

!
= i
[
δ2,Q/p−

(
δ2,Q + δm

)
m
]
.

(6.63)

The on-shell projections, we need to expand around, are

(6.64) D[
1 =

(
k +

1

2
p[
)2

−m2, D[
2 =

(
k − 1

2
p[
)2

In the massless case, the expansion of R(1) around D[
1 and D[

2 provided a suffi-

cient form for the counterterm. However, it only yields the correct on-shell and

UV behavior. For the massive case, we have to add terms that do not spoil this

behavior and also give the desired result (6.63) when integrated over. Taking
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all this into account, we find

1

CF

R(1),CT = −
2 (1− ε)

(
/k + 1

2/p
[
)
− 4

(
1− 1

2
ε
)
m

D[
1D

[
2

×

[
1−

4k ·
(
p− p[

)
+ p2 −m2

4D[
1

+
4k ·

(
p− p[

)
− p2 +m2

4D[
2

]

−
(1− ε)

(
/p− /p[

)
D[

1D
[
2

−
εm
(
p− p[

)2

2
(
D[

1

)2
D[

2

− 1

4

(
/p
[ −m

) (
p2 −m2

) D[
1 −D[

2 + 4m2(
D[

1

)2 (
D[

2

)2

+
m
(
p− p[

)2

4m2

(
D[

1 −D[
2

) (
D[

1 −D[
2 + 2m2

)(
D[

1

)2 (
D[

2

)2

+

(
/p[ −m

) [
p[ ·
(
p− p[

)]
m2

(
D[

1 −D[
2

) (
D[

1 −D[
2 + 3

2
m2
)(

D[
1

)2 (
D[

2

)2

+

[
2
(
/p−m

)
m2 −m (p2 −m2)

]
2m2

(
D[

1 −D[
2

) (
2D[

1 +D[
2

)(
D[

1

)2 (
D[

2

)2

(6.65)

as a suitable form for the counterterm. Note that the last five terms vanish in

the on-shell and in the UV limit. As an example, the UV behavior of the last

term is of order O(|k|−5). To see its behavior in the on-shell limit, one can show

that

(6.66) 2
(
/p−m

)
m2 −m

(
p2 −m2

)
= −m

(
/p−m

) (
/p−m

)
.

Thus, (6.65) is a possible choice for the counterterm for the heavy quark self-

energy that satisfies all four desired conditions.

6.3.3. Gluons

For the computation of the gluon self-energy we have to sum up four different

diagrams. They differ in the particles in the loop. The first diagram in Figure

6.5 shows the case of a quark loop. The second and third diagrams show a gluon

loop involving the three-gluon vertex and the four-gluon vertex, respectively. In

the last diagram in Figure 6.5 we have to take the ghost loop into account (cf.

Section 2.5).
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Figure 6.5. All Feynman diagrams that contribute to the gluon
self-energy.

Additonally, we differentiate between two cases. First, we construct the coun-

terterm for the case where the particles in the loop are massless, i.e. massless

quarks, gluons and ghosts. Secondly, we construct a counterterm for the dia-

gram with massive quarks in the loop.

For the gluon self-energy, we encounter the problem of tensor integrals. Let us

denote the self-energy integral at one-loop by −iΠµν
(1). This is a tensor of sec-

ond order. A commonly used technique for reducing tensor integrals to scalar

integrals is the Passarino–Veltmann reduction [143]. In −iΠµν
(1), only the tensors

gµν and pµpν can appear. Hence, we may write

(6.67) −iΠµν
(1) = i

(
p2gµν − pµpν

)
Π(1)

(
p2
)
.

Expanding the scalar function Π(1) (p2) around the on-shell value p2 = 0 yields

(6.68) Π(1)

(
p2
)

= Π(1) (0) +O
(
p2
)
.

This defines us the counterterm at one-loop order, using the definition of (2.55)

(6.69) δ3 :=
αs

4π
Z

(1)
3 = Π(1)(0).

The tensor structure of the counterterm, then, reads

(6.70) −iΠµν
(1),CT = −i

(
p2gµν − pµpν

)
δ3,

and we find

(6.71) −i
(

Πµν
(1) + Πµν

(1),CT

)
= i
(
p2gµν − pµpν

)
· O
(
p2
)
.

We want to stress that this remnant vanishes in the on-shell limit, i.e. there is

no residue to be calculated. For the first term on the right-hand-side, propor-

tional to gµν , we have a factor of (p2)
2
, which cancels a double pole from the

propagators. The second term, coming with a factor p2, cancels only one pole.

Hence, there is still a residue coming from a single pole in the propagators.

However, the contribution from this residue can be neglected because we can
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contract pµpν with an on-shell momentum pµ or pν . In this case the contribution

will vanish.

Massless Case

In the massless case we have to take all diagrams in Figure 6.5 into account. For

the diagram with the quark loop, we only consider light quarks. With D1 and

D2 defined as in (6.54), we have for the gluon self-energy, with only massless

particles in the loop,

(6.72) −iΠµν
(1) = g2

sµ
2εS−1

ε

∫
dDk

(2π)D
R(1).

The integrand is given by

(6.73) R(1) =
Cmassless

D1D2
,

where we introduced the abbreviation

Cmassless :=

− 2CA

[
−p2gµν + pµpν − 2 (1− ε) kµkν +

1

2
(1− ε) gµν (D1 +D2)

]
− 2TRnf

[
p2gµν − pµpν + 4kµkν − gµν (D1 +D2)

]
.

(6.74)

The first term on the right-hand-side is obtained from the contributions of the

gluons and the ghosts in the loop. The second term comes from the quark loop.

The integral of the counterterm yields

−iΠµν
(1),CT = g2

sµ
2εS−1

ε

∫
dDk

(2π)D
R(1),CT

!
= −i

(
p2gµν − pµpν

)
δ3,l = 0.

(6.75)

For the massless case, we have the same on-shell kinematics as for the light

quark self-energy

(6.76) D[
1 =

(
k +

1

2
p[
)2

, D[
2 =

(
k − 1

2
p[
)2

.
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A form of the counterterm integrand R(1) featuring the desired properties is

given by

R(1),CT =− Cmassless

D[
1D

[
2

[
1−

4k ·
(
p− p[

)
+ p2

4D[
1

+
4k ·

(
p− p[

)
− p2

4D[
2

]

− Cmassless

(
k ·
(
p− p[

))2

D[
1D

[
2

(
1(
D[

1

)2 +
1(
D[

2

)2 −
1

D[
1D

[
2

)
.

(6.77)

Massive Case

For the massive case, we only have to consider the left diagram in Figure 6.5

with heavy quarks in the loop. Assuming that both quarks carry the mass m,

the propagators read

(6.78) D1 =

(
k +

1

2
p

)2

−m2, D2 =

(
k − 1

2
p

)2

−m2.

For the integral of the massive quark contribution, we have

(6.79) −iΠµν
(1) = g2

sµ
2εS−1

ε

∫
dDk

(2π)D
R(1),

with the integrand

(6.80) R(1) = −2TRnQ
p2gµν − pµpν + 4kµkν − gµν (D1 +D2)

D1D2

.

The integral of the counterterm is given by

−iΠµν
(1),CT = g2

sµ
2εS−1

ε

∫
dDk

(2π)D
R(1),CT

!
= −i

(
p2gµν − pµpν

)
δ3,Q.

(6.81)

We can write the on-shell projections of D1 and D2 as

(6.82) D[
1 =

(
k +

1

2
p[
)2

−m2, D[
2 =

(
k − 1

2
p[
)2

−m2,

in the massive case.

Similar to the case of the heavy quark self-energy counterterm, we have to

add several terms to the expansion of R(1) to obtain the correct result, when

R(1),CT is integrated. Before we give our choice for the counterterm R(1),CT, we

want to recall the statements following (6.71): Although a term proportional to



108 6. UV SUBTRACTION TERMS AT ONE-LOOP

p2 p[µp[ν does not cancel a double pole in the propagators, it gives a vanishing

contribution in the on-shell limit, when contracted with p[µ or p[ν .

Taking this into account, we find as a suitable form for the counterterm

1

TRnQ
R(1),CT =

2 (p2gµν − pµpν)
D[

1D
[
2

×

[
1−

4k ·
(
p− p[

)
+ p2

4D[
1

+
4k ·

(
p− p[

)
− p2

4D[
2

]

+

[
8kµkν − 2gµν

(
D[

1 +D[
2

)]
D[

1D
[
2

×

[
1−

4k ·
(
p− p[

)
+ p2

4D[
1

+
4k ·

(
p− p[

)
− p2

4D[
2

+
(
k ·
(
p− p[

))2

(
1(
D[

1

)2 +
1(
D[

2

)2 −
1

D[
1D

[
2

)]
− p2gµν

D[
1D

[
2

− 3

14

(
p[ ·
(
p− p[

))2
p[µp[ν(

D[
1

)2 (
D[

2

)2

+

[(
1

3
p[ ·
(
p− p[

)
− p2

2

)(
p− p[

)µ (
p− p[

)ν
+

(
2

15
p[ ·
(
p− p[

)
− p2

2

)((
p− p[

)µ
p[ν + p[µ

(
p− p[

)ν)
−1

6

(
p− p[

)2
p[µp[ν +

2

5

(
p[ ·
(
p− p[

))2
gµν

+
1

6

((
p− p[

)2
+ 2p2

)
p2gµν − 4

15
p2p[µp[ν

]
D[

1 +D[
2(

D[
1

)2 (
D[

2

)2

(6.83)

Note that the terms in the lines six to ten had to be added to obtain the correct

result, when integrating R(1),CT. The other terms ensure the right behavior in

the on-shell and UV limit.
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CHAPTER 7

Conclusions and Outlook

In this thesis, we discussed several aspects of theoretical computations and pre-

dictions in high energy physics. It is apparent that the constantly increasing

precision of experimental measurements also requires the theoretical predictions

to become more accurate. Therefore, we focused on two different aspects of the-

oretical predictions that help to make a step forward on this path.

In the first part of the thesis, we gave a general introduction to the modelling

of the event structure inside a collider experiment. Additionally, we recapitu-

lated the basics of quantum chromodynamics (QCD), the theory of the strong

interaction between quarks and gluons.

Let us shortly summarize, which are the constituents of the modelling of a col-

lider event to make theoretical predictions:

Usually, we start from the hard scattering event that can be calculated pertur-

batively. What we obtain is the result for a scattering process with a limited

number of final-state particles. Next, we apply a parton shower to the final-state

configuration of the hard event. The parton shower evolves from the scale of

the hard scattering down to a cutoff scale. In this way, the particle multiplicity

is increased significantly.

The cutoff represents a separation between the perturbative regime of the parton

shower and the non-perturbative region, where hadronization has to be applied.

Thus, the next step in modelling an event is the application of a hadronization

model that clusters the color charged partons into hadrons. Lastly, the decay

of the final-state particles has to be modelled. Additionally, the particles can

form jets, which is accounted for by applying a jet algorithm.

There exist computer programs that model all these steps required for event

generation. They are called Monte Carlo (MC) event generators.

In the second part of this thesis, we focused on the role of the parton shower,

particularly concerning the determination of the top quark mass. The top quark

is by far the heaviest elementary particle and, hence, the exact knowledge of its
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properties plays a crucial role in our understanding of the Standard Model (SM).

However, it is still not exactly clear, how the top quark mass from event gener-

ators is related to a quantum field theoretical top quark mass inside a certain

renormalization scheme. The mass inside the event generator is often referred

to as MC mass.

To make a step forward in understanding this relation, it is natural to ask, how

the MC mass depends on certain parameters inside the event generator, partic-

ularly inside the parton shower simulation. One step in this direction was made

in the second part of this thesis.

In Chapter 3 we started from the general structure of next-to-leading order

(NLO) computations to arrive at the dipole subtraction scheme. In this scheme,

we encounter so-called dipole splitting functions. These splitting functions form

the basis of the dipole parton shower algorithm that is described in Chapter 4.

This shower algorithm is our preferred choice for the analysis carried out in

Chapter 5.

In Chapter 5 we discussed some general aspects of the top mass determination

and reviewed some recent work on quantifying the relation between the MC

mass and a theoretically well-defined mass scheme.

The main part of this chapter is centered around the dependence of the top

quark mass on the cutoff parameter Q0 of the parton shower. For this, we sum-

marized the results of the analytical computations in [9]. There, they used two

different theoretical approaches to quantify the relation of the peak position of

the thrust distribution on the cutoff parameter Q0. Thrust is an observable that

is highly sensitive to the value of top quark mass.

The two ways to compute the thrust distribution are calculations in soft-collinear

effective theory (SCET) and the coherent branching formalism. It is shown that

both approaches lead to the same relation of the thrust peak position τpeak on

the cutoff parameter Q0. For the case of massless final-state particles this rela-

tion reads

(7.1) τpeak(Q0) = τpeak(Q′0)− 16

Q

Q0∫
Q′0

dR
αs(R)CF

4π
.

Here, τpeak(Q′0) denotes the peak position at a reference value Q′0, Q is the

center-of-mass energy of the hard event and αs is the strong coupling.



7. CONCLUSIONS AND OUTLOOK 113

In [9], the analytic relation (7.1) is validated by using parton shower simulations

from the general-purpose event generator Herwig. We stress that the use of

Herwig implies an angular-ordered parton shower algorithm that is based on

the coherent branching formalism. Since relation (7.1) is also derived within

the coherent branching algorithm, the question arises, if it also holds for other

shower algorithms, i.e. the dipole shower algorithm of Section 4.2.

This question was addressed by our analysis in Section 5.3. There, we pre-

sented our results for the cutoff dependence of the peak position of the thrust

distribution obtained from parton shower simulations, using the dipole shower

algorithm.

For this, we generated events for the process e+e− → qq̄ with two different

center-of-mass energies, Q = 91 GeV and Q = 300 GeV. For each center-of-

mass energy we applied different cutoff scales Q0 in the range from 0.4 GeV to

2.0 GeV in steps of 0.2 GeV. We generated 107 events for each combination of

Q and Q0. The resulting distribution was obtained as a histogram with a bin

size of ∆τ = 10−3.

To obtain the correct distribution, the partonic thrust distribution had to be

convolved with the soft model shape function Smod according to

(7.2)
dσ

dτ
(τ,Q) =

Qτ∫
0

d`
dσ̂s
dτ

(
τ − `

Q
,Q

)
Smod(`).

The soft model shape function models hadronization effects. Since we were

only interested in the relative dependence of the peak position on Q0, the exact

form of Smod is not pivotal. For our analysis we adopted the soft model shape

function used in [9], namely

(7.3) Smod(`) =
128

3

`3

Λm

exp

(
− 4`

Λm

)
,

where Λm is a smearing parameter that we varied between 1 and 3 GeV.

Our analysis shows a good agreement between the dependence of τpeak on the

cutoff Q0 inside our parton shower simulations and the relation in (7.1). As an

example, the cutoff dependence for Q = 91 GeV and Λm = 1 GeV is shown in

Figure 7.1. The centers of the red squares give the results of our analysis while

the blue line depicts the analytic relation. For the reference value τpeak(Q′0), we

chose the value obtained from the parton shower simulations at Q′0 = 1.2 GeV.
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Figure 7.1. Cutoff dependence of τpeak for Q = 91 GeV and
Λm = 1 GeV. The centers of the red squares give the data from
shower simulations. The blue line comes from the analytical re-
sult.

Our results show that the analytically derived relation is not only valid for

angular-ordered showers algorithms, but also for shower simulations that are

based on the dipole formalism. We emphasize that our analysis is only car-

ried out for massless final-state partons. To have better predictions on the

dependence of the top quark mass on the cutoff, it is also desirable to examine

the massive case. Additionally, there are many ways to further investigate the

interplay between the shower parameters and observables. For example, the

procedure could be used for other observables and different parameters in the

shower. This tasks are left as future projects.

The third part of this thesis is dedicated to the topic of scattering amplitudes.

To reach next-to-next-to-leading order (NNLO) accuracy in perturbative calcu-

lations, it is necessary to find ways to automate the computation of two-loop

diagrams with more than two particles in the final state.

One promising approach to this task is found in loop-tree duality combined with

numerical loop integration. In loop-tree duality at two-loop order, one encoun-

ters diagrams that have a self-energy insertion on one of the internal lines. This

leads to propagators in the loop integral that have exponents bigger than one.

These are referred to as raised propagators.
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For calculations in loop-tree duality, the residues of the raised propagators have

to be calculated for the case of these propagators going on-shell. However, the

calculation of the residue involves the computation of derivatives. This makes

it process-dependent and, hence, not well suited for automation.

In Chapter 6, we showed that it is possible to find a counterterm for the self-

energy insertion on an integrand level in the on-shell scheme that makes the

residue vanish. This counterterm has the correct UV and on-shell behavior

and leads to a vanishing residue, when combined with the self-energy insertion.

However, the form of the counterterm is not unique.

We started from a toy model and extended our method to scalar φ3-theory and

QCD. Not only did we show that counterterms with the desired properties exist

but we also provided explicit forms for the counterterms in φ3-theory and QCD.

Let us add that the resulting counterterms contain higher powers in the prop-

agators as well. However, by constructing the counterterms we isolated the

problem of raised propagators into a process-independent part. Therefore, the

residues involving the raised propagators can be calculated once and, then, be

used in every two-loop calculation involving a self-energy insertion.

The counterterms we provided are for self-energy graphs at one-loop order.

Since in the foreseeable future, theoretical considerations might reach an accu-

racy that requires three-loop computations, it is natural to ask, if our method

can be extended to self-energy insertions at two loops or more. We expect that

this is indeed possible. The search for an answer to this essential question is

left as a future project.

As a final conclusion, let us say that although many big steps have been made

on the way to understanding the world of elementary particles and their inter-

actions, there is still a lot of work to do. We hope, the research and results of

this thesis contribute to the search for an answer to the question, already raised

in Goethe’s Faust, of “whatever binds the world’s innermost core together”.
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APPENDIX A

Quantum Chromodynamics

A.1. QCD Feynman Rules

Here, we present the full set of Feynman rules for QCD, used throughout this

thesis. Note that all Feynman rules are given in Feynman gauge.

For the propagators we have:

=
i

/p−m+ iε
δab

=
− igµν

p2 + iε
δAB

=
i

p2 + iε
δAB

The Feynman rule for the quark-gluon vertex reads:

= i gsγ
µtAab

For the three-gluon vertex, where we take all momenta as incoming, we have:

= gsf
ABC [gµν (p1 − p2)ρ + gνρ (p2 − p3)µ + gρµ (p3 − p1)ν ]

The four-gluon vertex reads:
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= −ig2
s

[
fABEfCDE (gµρgνσ − gµσgνρ)

+fACEfBDE (gµνgρσ − gµσgνρ)
+fADEfBCE (gµνgρσ − gµρgνσ)

]
Finally, we have for the ghost-gluon vertex:

= −gsf
ABCpµ

A.2. Formulae for the Implementation of αs

For the implementation of αs, using a reference value αs(µ0) at a given scale µ0,

different formulae can be used. The expansion around this value up to order α3
s

reads [13]

αs(µ) = αs(µ0)− α2
s (µ0)

2π
β0 log

(
µ

µ0

)
+
α3

s (µ0)

8π2

[
−β1 log

(
µ

µ0

)
+ 2β2

0 log2

(
µ

µ0

)]
+O

(
α4

s (µ0)
)
,

(A.1)

where β0 and β1 are the first two coefficients of the QCD beta function (2.41).

A second way to implement the strong coupling is to use the following formulae,

at one-loop order

(A.2) α(1)
s (µ) =

αs(µ0)

1 + αs(µ0)
2π

β0 log
(
µ
µ0

) .
It is obtained by solving the RGE of αs at first order

(A.3)
dαs

d log(µ)
= −α

2
s

2π
β0,

by separation of variables and integration from µ0 to µ.

A similar approach at two-loop order, including a resummation of logarithms
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as log(µ0/µ), yields [144]

(A.4) α(2)
s (µ) =

αs(µ0)

w

[
1− β1

β0

αs(µ0)
log(w)

w

]
,

with

(A.5) w := 1 + β0 αs(µ0) log

(
µ

µ0

)
.





APPENDIX B

Parton Showers

B.1. Lorentz Transformations

Here, we present the explicit form of the Lorentz transformations used to obtain

the momenta of the partons i, j and k after the branching in the dipole shower

formalism of Section 4.2.

Let P and q be two arbitrary four momenta and |P | =
√
p2 as usual. Let us

additionally assume that p2 6= 0. The Lorentz boost that transforms q into the

rest frame of P is given by

(B.1) Λb(P̂ ) q =

[
EP
|P |

Eq −
~P · ~q
|P |

, ~q +

(
~P · ~q

|P |(EP + |P |)
− Eq
|P |

)
~P

]
.

The parity operation on a four-vector x is defined as x̂ := (x0,−~x).

The boost back to the original frame is given by

(B.2) Λb(P ) q =

[
EP
|P |

Eq +
~P · ~J
|P |

, ~q +

(
~P · ~q

|P |(EP + |P |)
+
Eq
|P |

)
~P

]
.

The matrix that defines the rotation around the z-axis by the angle φz reads

(B.3) Λr
z(φz) =


1 0 0 0

0 cos(φx) − sin(φx) 0

0 sin(φx) cos(φx) 0

0 0 0 1

 ,

while the rotation around the y-axis by the angle θy is given by

(B.4) Λr
y(θy) =


1 0 0 0

0 cos(θy) 0 sin(θy)

0 0 1 0

0 − sin(θy) 0 cos(θy)

 .
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