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Abstract∗

This thesis provides a quantitative view on the relative importance of individual processes to
the flow-dependent amplification of forecast errors and forecast uncertainty. The focus is on
the near-tropopause region of the midlatitudes, which is of particular importance to the evolu-
tion of midlatitude weather systems and the evolution of forecast errors. A potential-vorticity
(PV) framework is developed to partition the contributions from individual processes. This
partitioning builds on the PV perspective for midlatitude dynamics and includes the influence
of near-tropopause dynamics (nonlinear Rossby-wave dynamics), tropospheric-deep interac-
tion (baroclinic growth), upper-tropospheric divergence (often associated with latent heat
release), and nonconservative processes (direct PV modification by diabatic heating and non-
conservative momentum change).
In the first part of this thesis, the error growth of a state-of-the-art deterministic forecast
is analyzed. In this case, localized mesoscale error maxima form near the tropopause until
two forecast days. In the following days, this error pattern changes into a wave-like pattern
that maximizes along the dynamical tropopause and reaches the scale of individual Rossby-
wave anomalies after about six forecast days. An analysis based on the PV framework reveals
that the error growth in this case is dominated by differences in the nonlinear Rossby-wave
dynamics near the tropopause. Upper-tropospheric divergence makes a large contribution to
error growth in localized regions where a surface cyclone is misrepresented. The direct impact
of tropospheric-deep interaction, and thus baroclinic instability, is much smaller than the im-
pact of near-tropopause dynamics. The mesoscale errors generated near the tropopause thus
do not primarily project on differences in the baroclinic growth as stated in previous studies.
Instead, they directly project on the tropopause evolution and amplify because of differences
in the nonlinear Rossby-wave dynamics.
The second part of this thesis investigates upscale error growth from the grid scale up to the
planetary scale using global simulations with a stochastic convection scheme. Using the PV

∗This abstract summarizes the results presented in Chapters 2–4, which have been published in Baumgart
et al. (2018), Baumgart et al. (2019), and Baumgart and Riemer (2019). A few phrases of this abstract
coincide with phrases from these publications.
c© 2018 American Meteorological Society. Used with permission.
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Ltd on behalf of the Royal Meteorological Society. This article is available under the terms of the Creative
Commons Attribution License (CC BY), which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
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framework, a distinct sequence of the processes governing upscale error growth can be iden-
tified: In the first twelve hours, latent-heating differences induced by the convection scheme
dominate the PV-error growth near the tropopause. In the following 1.5 days, the dom-
inant error-growth contribution is given by upper-tropospheric divergence, which provides
an effective mechanism to project errors from moist processes into the tropopause region.
After two days, differences in the nonlinear near-tropopause dynamics dominate the error
growth. A fourth stage of the error growth exists after about 14.5 days when the error grows
from the synoptic scale of individual Rossby-wave anomalies up to the planetary scale of the
Rossby-wave envelope. Compared to previous studies, a novel interpretation of the processes
governing upscale error growth is provided.
In the last part of this thesis, the amplification of ensemble spread is investigated for a
medium-range forecast with large forecast uncertainty. The focus is on two aspects of the
ensemble behavior: i) the mean divergence of the ensemble members indicating the general
amplification of forecast uncertainty and ii) the divergence of the best and worst member in-
dicating extremes in possible error-growth scenarios. To quantify the amplification of forecast
uncertainty, a tendency equation for the ensemble variance of PV is derived. Averaged over
the midlatitudes of the Northern Hemisphere, the variance amplification of this case is domi-
nated by near-tropopause dynamics. Locally, however, there can be large differences as in the
region where tropical storm Karl interacts with the Rossby-wave pattern during extratropical
transition. In this region, the variance amplification is mostly related to the moist baroclinic
cyclone development. The differences between the error growth in the best and worst member
can, to a large part, be traced back in time to differences in the representation of a cutoff
evolution, which further amplify in the highly nonlinear region of a large-amplitude ridge.
This thesis provides novel insight into the processes governing the flow-dependent amplifi-
cation of forecast errors and forecast uncertainty. This insight can be used to improve the
interpretation, and possibly also the design, of future forecast systems. The results from this
thesis can also be used to identify regions that are (intrinsically) prone to a large amplification
of forecast errors and forecast uncertainty. As the first two stages of upscale error growth are
not dominating error-growth mechanisms in the operational forecasts, one can expect that
initial-condition errors are still of larger importance to error growth in operational forecasts
than errors from moist processes with low intrinsic predictability.
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CHAPTER 1

Introduction

This chapter provides a general introduction to the topics discussed in Chapters 2–4, which
have been published in Baumgart et al. (2018)1, Baumgart et al. (2019)2, and Baumgart
and Riemer (2019)3. A few phrases of this introduction coincide with phrases from these
publications.

1.1 Motivation

Our society depends strongly on the weather. This dependence starts from the personal need
of a good forecast for, e.g, the planned weekend hike, continues with the financial need of good
forecasts for, e.g., the energy sector, and ends with warnings for extreme weather events like
flash floods or extreme wind gusts. Accurate and reliable weather forecasts can thus facilitate
every-day live, prevent economic losses, and save lives.
The history of weather forecasting based on physical laws goes back to early ideas of Abbe
(1901) and Bjerknes (1904) who proposed the use of a mathematical model for weather fore-
casting in two steps by first determining the initial state and then predicting the future
weather by time integration of the governing equations. The first weather forecast was then
performed by Richardson (1922) who manually solved the governing equations. After about
six weeks of computation for a six-hour forecast, he got a result that was completely unre-
alistic due to an imbalance in the initial conditions. With the development of computers,
the first attempt to calculate numerical weather forecasts based on an approximation of the
equations for large-scale dynamics was presented by Charney et al. (1950) who were able to
forecast the large-scale evolution reasonably well one day ahead. Today, more than hundred
years after the early work of Abbe (1901) and Bjerknes (1904), weather forecasts are produced
several times every day with a much larger amount of complexity and forecast capabilities

1 c© 2018 American Meteorological Society. Used with permission.
2 c© 2019 American Meteorological Society. Used with permission.
3 c© 2019 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons
Ltd on behalf of the Royal Meteorological Society. This article is available under the terms of the Creative
Commons Attribution License (CC BY), which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
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Figure 1.1: Evolution of forecast skill over the past decades for a lead time of three, five,
seven and ten days. Forecast skill is measured as the anomaly correlation coefficient for 500 hPa
geopotential height and computed over the extratropical Northern Hemisphere (NH) and Southern
Hemisphere (SH). The figure is taken from Fig. 1 of Bauer et al. (2015).

have increased enormously (e.g., Bauer et al., 2015).
Weather forecasting is an initial-value problem. With the Navier-Stokes equation, the con-
tinuity equation, the first law of thermodynamics, the ideal gas law, and the conservation
equation for water mass, there exists a full set of (nonlinear, partial-differential) equations
that governs the atmospheric evolution (Bjerknes, 1904; Kalnay, 2002). Based on these equa-
tions changes in time and space can be described for individual atmospheric variables like
temperature, wind, or pressure based on the initial state of the atmosphere. There exists,
however, no exact solution of the governing equations. The equations thus have to be solved
numerically using a discretization in space and time. Processes that are smaller and/or shorter
than the discretization of the model have to be represented by parametrization schemes.
Over the past decades, the forecast skill of numerical weather-prediction models has improved
significantly (e.g., Bauer et al., 2015). As a rough estimate, the predictability has improved
by about 1 forecast day per decade, that means a today’s 6-day forecast is as good as a 5-
day forecast 10 years ago (Fig. 1.1). This “quiet revolution of numerical weather prediction”,
as it was named by Bauer et al. (2015), can be attributed to several improvements in terms
of better observations and better weather-prediction models. There exists, however, still oc-
casions where the forecast skill is exceptionally bad (“forecast busts”, Rodwell et al., 2013).
Because of the multi-stage behavior of atmospheric dynamics there may also always be an
intrinsic limit of atmospheric predictability (Lorenz, 1969).
Forecast errors arise due to errors in the initial conditions of the forecast and due to model
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errors in correctly representing the governing equations (e.g., Palmer and Hagedorn, 2006).
These initially small errors grow both in magnitude and scale, until they influence the syn-
optic scale after a few forecast days (e.g., Davies and Didone, 2013; Martínez-Alvarado et al.,
2014). In the following, the errors further amplify and propagate downstream (e.g., Langland
et al., 2002; Anwender et al., 2008; Pantillon et al., 2013). The forecast horizon, until which
a forecast can be interpreted as useful, depends on both the spatial and temporal scale under
consideration (Buizza and Leutbecher, 2015). Importantly, there is also a pronounced flow de-
pendence of atmospheric predictability (e.g., Palmer and Hagedorn, 2006; Slingo and Palmer,
2011; Ferranti et al., 2014). It is thus of large importance to better understand how forecast
errors and forecast uncertainty amplify with time. For that purpose, it is crucial to gain
insight into the processes governing the dynamical evolution of forecast errors and forecast
uncertainty. This thesis contributes to this problem by quantifying the relative importance
of individual processes, including the influence of near-tropopause Rossby-wave dynamics,
baroclinic growth, and moist processes, to the flow-dependent amplification of forecast errors
and forecast uncertainty.

1.2 Weather prediction

In this section we provide an overview of three aspects of weather prediction that are important
for this thesis: First, a general introduction into atmospheric predictability is given both for
practical and intrinsic predictability. Afterwards, the upscale propagation of forecast errors is
discussed, which limits intrinsic predictability. Finally, we introduce the concept of ensemble
forecasts, which provides a probabilistic framework for weather forecasting.

1.2.1 Atmospheric predictability

From the seminal work of Lorenz (1963, 1969), it is known that weather forecasts are very
sensitive to the initial conditions and particularly challenging due to the interaction of multi-
ple scales of motion. Atmospheric predictability still constitutes a major research area (e.g.,
Bauer et al., 2015) that has been discussed controversially in recent years (e.g., Melhauser
and Zhang, 2012; Durran and Gingrich, 2014; Durran and Weyn, 2016; Sun and Zhang, 2016).
One can define two types of predictability, practical and intrinsic predictability (e.g., Lorenz,
1995). Practical predictability describes the ability to predict the weather based on the best-
known forecasting procedures (e.g., Lorenz, 1995). Practical predictability is thereby limited
by uncertainties in the initial conditions and in the forecast model that arise from the represen-
tation of the governing equation in the model, the parametrization of subgrid-scale processes,
the observations, and the data-assimilation procedures (e.g., Melhauser and Zhang, 2012; Sun
and Zhang, 2016). Intrinsic predictability, in contrasts, describes the ability to predict the
weather in the presence of optimal forecast procedures and nearly perfect initial conditions
(e.g., Lorenz, 1995). This intrinsic predictability originates from the multi-scale, chaotic na-
ture of the atmosphere and sets a finite intrinsic limit to weather forecasting that cannot be
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Figure 1.2: Finite-time error growth in the Lorenz (1963) system. The yellow shading denotes
all possible states (“climatological distribution”) in the Lorenz (1963) system, while the first
black circle denotes the initial-condition uncertainty of an ensemble forecast. The arrows and
further circles illustrate the evolution of forecast uncertainty. The initial forecast uncertainty is
confined to different regimes of the system, yielding a) a high-predictability situation, b) a high-
predictability situation in the short term, but a low-predictability situation in the long term, and
c) a low-predictability situation. The figure is taken from Fig. 1 of Slingo and Palmer (2011).

extended by improving the forecast system (Lorenz, 1969). For current weather forecasts,
predictability is often limited by practical predictability (e.g., Durran and Gingrich, 2014;
Durran and Weyn, 2016). Predictability, however, is highly flow-dependent (e.g., Palmer and
Hagedorn, 2006; Slingo and Palmer, 2011; Ferranti et al., 2014) and can in some cases also be
limited by intrinsic predictability (e.g., Melhauser and Zhang, 2012; Sun and Zhang, 2016).
The flow-dependent aspect of predictability can be illustrated with the simple Lorenz (1963)
system as a low-order chaotic system consisting of a set of deterministic ordinary nonlinear
partial-differential equations. Depending on the initial conditions, the predictability of this
system differs largely: some flow situations yield high predictability also in the long term
(Fig. 1.2a), other flow situations yield high predictability only in the short term (Fig. 1.2b),
and again other flow situations yield low predictability even in the short term (Fig. 1.2c).
The famous metaphor “Does the flap of a butterfly’s wings in Brazil set off a tornado in
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Figure 1.3: Schematic illustration of the forecast-skill horizon of the ECMWF operational fore-
casts in dependence of spatial scale. Forecast-skill horizon is defined using the continuous ranked
probability score (Brown, 1974; Hersbach, 2000) as forecast metric for medium-range, monthly,
and seasonal forecasts. The figure is taken from Fig. 5 of Buizza et al. (2015).

Texas?”, which was the title of a presentation from Edward N. Lorenz in 19724, illustrates
this sensitive dependence on the initial conditions. This so-called “butterfly effect” expresses
also another important, and maybe even more important, characteristic of atmospheric pre-
dictability, namely that multiple scales of motion interact in the atmosphere and that errors
on the small scale (in the metaphor the “butterfly”) can be responsible for errors on the larger
scale (in the metaphor the “tornado”).
Buizza and Leutbecher (2015) analyzed the current practical predictability limit, which they
refer to as the “forecast-skill horizon”, for different spatial and temporal scales using ensem-
ble forecasts (the concept of ensemble forecasting will be introduced in Sec. 1.2.3) from the
European Centre for Medium-Range Weather Forecasts (ECMWF). The authors defined the
forecast-skill horizon as the time when the ensemble forecast stops being more skillful than
the climatological distribution. For instantaneous grid-point fields, the authors derived a
forecast-skill horizon of 16–23 days, while they found a considerably longer forecast-skill hori-
zon for spatially and temporally averaged fields (Fig. 1.3). In addition to the dependence on
the spatio-temporal scale, the authors showed that the forecast-skill horizon depends also on
the variable, the region, and the season under consideration.
Recently, Selz (2019) used upscale error-growth simulations (see Sec. 1.2.2) to estimate an
intrinsic predictability limit of about 17 days, consistent with the intrinsic predictability limit
of around 2–3 weeks that was derived by Judt (2018). This even shorter intrinsic predictabil-
ity limit than the one derived by Buizza and Leutbecher (2015) for practical predictability
4Talk at the 139th meeting of the American Association for the Advancement of Science in Washington, D.C.,
on December 29, 1972.
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Figure 1.4: Schematic diagram illustrating the three-stage error-growth model derived by Zhang
et al. (2007) (see text for details).

can be attributed to the use of another forecast-error metric and a smaller data set. By
comparing the results from the upscale error-growth simulations with the initial-condition
uncertainty of the current ECMWF data-assimilation system, Selz (2019) could nevertheless
derive a potential improvement of about 3.5 days through perfecting the initial conditions in
current weather-prediction models. In a further study, Zhang et al. (2019) found a similar
potential improvement of 3–5 days. Both studies thus suggest that there is still a distinct gap
between the intrinsic predictability limit and the current practical predictability limit. There
is thus still large potential for further improvements in weather forecasting.
In this thesis, we investigate aspects of both practical and intrinsic predictability: In Chap-
ter 2, we analyze the forecast-error growth in a deterministic forecast of a state-of-the-art
weather-prediction model from a process-based perspective, which provides quantitative in-
sight into practical predictability. Further insight into practical predictability is gained by
analyzing the amplification of ensemble spread for an operational forecast associated with
large forecast uncertainty (Chapter 4). In Chapter 3, we quantify the processes governing
upscale error growth and focus thereby on intrinsic predictability.

1.2.2 Upscale error growth

Small-scale error growth associated with moist convection is about ten times faster than
synoptic-scale error growth and errors saturate about ten times faster on the small scale
than on the synoptic scale (Hohenegger and Schär, 2007). Due to the multi-scale nature of
atmospheric flow, errors on the smallest resolved scale amplify both in magnitude and in scale
and can thereby limit predictability on the synoptic scale (Lorenz, 1969). This upscale error
growth sets an intrinsic limit to atmospheric predictability (see Sec. 1.2.1) and is thus of large
importance to weather forecasting.
Using idealized baroclinic wave simulations, Zhang et al. (2007) derived a conceptual model
for upscale error growth that was, in general, confirmed for realistic weather situations (Selz
and Craig, 2015b; Judt, 2018). This model consists of three different stages as indicated in
Fig. 1.4. In the first stage, errors grow on the small scale driven by convective instability. Error
growth in this stage quickly saturates when individual convective cells become completely
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decorrelated (Zhang et al., 2003, 2007). In the second stage, error growth is characterized
by a transitioning from a small-scale unbalanced error pattern to a large-scale balanced error
pattern. Recent work (Bierdel et al., 2017, 2018) shows that changes in the net divergence
forced by convection are most important to the error growth in this stage, while the spreading
of gravity waves has only a transient effect on the error growth. In the final stage, error growth
is dominated by the balanced, large-scale part of the flow. This stage is related to baroclinic
instability in the conceptual model of Zhang et al. (2007).
Previous studies on upscale error growth are mostly based on error-energy spectra (e.g., Zhang
et al., 2007; Selz and Craig, 2015b; Judt, 2018; Selz, 2019). These spectra provide direct
insight into the spatial scale of the error growth. The relation to the processes governing the
error growth, however, is only based on qualitative arguments. In this thesis (Chapter 3),
we provide a quantitative view on the processes governing upscale error growth and thereby
novel insight into the upscale error-growth mechanisms.

1.2.3 Ensemble forecasts

In the past 25 years, weather forecasting has experienced a paradigm shift from a determin-
istic approach to a probabilistic approach (e.g., Buizza, 2019): Instead of just providing a
single, deterministic weather forecast, current state-of-the-art weather-prediction models are
producing ensembles of about 20–50 forecasts to provide an estimate of the future range of
possible scenarios and of the uncertainty associated with a forecast. This paradigm shift
towards probabilistic forecasts was triggered by the recognition that atmospheric predictabil-
ity is limited due to uncertainties in the initial conditions and in the forecast model (see
Sec. 1.2.1). Today’s ensemble-prediction system account for both types of uncertainty by
introducing perturbations to the initial conditions and to the model physics (e.g., Palmer and
Hagedorn, 2006) as schematically illustrated in Fig. 1.5 (Slingo and Palmer, 2011): Starting
from only small perturbations at initial time, the individual ensemble members diverge from
each other, leading to a pronounced amplification of ensemble spread with forecast-lead time.
As predictability is flow-dependent, the evolution of ensemble spread is also largely depen-
dent on the flow situation (e.g., Palmer and Hagedorn, 2006; Slingo and Palmer, 2011; Ferranti
et al., 2014). Going back to the simple Lorenz (1963) system, this characteristic can be illus-
trated schematically: Starting with the same amplitude of initial-condition uncertainty, the
forecast uncertainty in the three examples indicated in Fig. 1.2 evolves rather differently with
some flow situations having much higher predictability than other flow situations.
Defining perturbations for ensemble forecasts is a nontrivial task that has shown major
achievements over the past 25 years, but also remains a key challenge for the future (e.g.,
Bauer et al., 2015; Buizza, 2019). At the different weather-prediction centers, there exists a
wide range of methods to define ensemble perturbations (e.g., Buizza, 2019). Today’s opera-
tional ensemble-forecasting model at ECMWF employs three different perturbation strategies
(ECMWF, 2018): First, perturbations associated with the initial-condition uncertainty are
introduced using the ensemble data assimilation (EDA) system and the leading singular vec-
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Figure 1.5: Schematic illustration of an ensemble forecast. Trajectories of individual forecasts
(blue lines) diverge due to the uncertainty in the initial conditions and in representing subgrid-
scale processes in the model. The range of possible states as estimated by the model predictions
is represented by the solid envelope, while the dashed envelope represents the climatological range
of possible states of the atmosphere. The figure is taken from Fig. 2 of Slingo and Palmer (2011).

tors (SVs). In the EDA system, an ensemble of analyses is generated by randomly perturbing
the observation values in a way that is consistent with the statistical characteristics of the
observation error (Buizza et al., 2008; Isaksen et al., 2010). These perturbed analyses should
provide a reliable estimate of the initial-condition uncertainty if all relevant sources of un-
certainty were represented. By only using EDA perturbations, ensemble spread is, however,
underestimated (Buizza et al., 2008). ECMWF thus uses a combination of EDA perturba-
tions and singular vectors, which are designed to maximize the perturbation growth over a
finite time interval (Buizza and Palmer, 1995). Using this combination leads to a more skillful
representation of the initial-condition uncertainty at ECMWF (Buizza et al., 2008). Uncer-
tainties associated with the forecast model are represented using the Stochastically Perturbed
Parameterization Tendencies (SPPT) scheme (ECMWF, 2018). The SPPT scheme randomly
perturbs the tendencies from the physical parameterization schemes to represent uncertain-
ties associated with the representation of the parameterized physical processes (Buizza et al.,
1999).
Over the past 25 years, the accuracy of ensemble forecast has improved significantly (e.g.,
Buizza, 2019; Rodwell et al., 2018). In addition to forecast accuracy, a second important char-
acteristic of the ensemble-forecast quality is forecast reliability, which measures whether the
forecast distribution matches the observed frequency of occurrence. Concerning annual-mean
averages over the Northern Hemisphere, forecast reliability has also improved significantly
over the past decades (see, e.g., Fig. 1a of Rodwell et al., 2018). Concerning the day-to-day
variability in more localized regions, there exists, however, still deficiencies in flow-dependent
reliability (see, e.g., Fig. 1b of Rodwell et al., 2018). One crucial aspect to improve flow-
dependent reliability is to better understand the dynamical evolution of ensemble spread.
Rodwell et al. (2018) presented an approach to gain insight into deficiencies in the short-term
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reliability, highlighting the importance of moist processes as sources for forecast uncertainty.
In this thesis (Chapter 4), we provide a complementary approach and focus on the further
amplification of initially small ensemble perturbations. Using a potential-vorticity framework,
which will be introduced in the next section, we quantify the relative importance of individ-
ual processes governing the flow-dependent amplification of ensemble spread. This insight can
be useful for the interpretation, and possible also the design, of future ensemble-prediction
systems.

1.3 Potential vorticity

Potential vorticity is a key variable for dynamical meteorology as it provides a compact and
coherent theoretical framework to analyze midlatitude dynamics. This section provides a
general introduction into potential vorticity and introduces the potential-vorticity framework
that is used in this thesis to partition the relative importance of individual processes to the
amplification of forecast errors and forecast uncertainty.

1.3.1 Definition

Potential vorticity (PV) is a variable that combines thermodynamic and kinematic properties
of atmospheric flow. The nonhydrostatic version of Ertel (1942) PV is defined as

P =
1

ρ
η ·∇θ , (1.1)

where ρ denotes the air density, η the absolute vorticity, ∇ the three-dimensional nabla
operator, and θ the potential temperature. Absolute vorticity is defined as η = ∇× u + 2Ω

where u denotes the three-dimensional wind field and Ω the angular velocity of the Earth’s
rotation. PV is often measured in potential-vorticity units (PVU), which are defined as 1 PVU
= 10−6 K m2 s−1 kg−1. In the primitive-equation framework and isentropic coordinates, Ertel-
PV is given by

P = −g∂θ
∂p

(ζθ + f) , (1.2)

where g is the gravitational acceleration, θ the potential temperature, p the pressure, ζθ the
vertical component of relative vorticity on an isentropic surface, and f the Coriolis parameter.
In this thesis, we use this primitive-equation form of Ertel-PV.

1.3.2 Climatological distribution

From a climatological perspective, PV increases upward and poleward (Fig. 1.6). In the tro-
posphere, PV is generally smaller than 1.5 PVU, while it is generally larger than 4 PVU in
the stratosphere (e.g., Hoskins et al., 1985). The tropopause is characterized by a large PV
gradient. An isosurface of PV such as the 2 PVU-surface can thus be used to define the
dynamical tropopause.
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Figure 1.6: Latitude-height cross section of the zonal mean climatological distribution of PV
(shading) and of potential temperature (dashed contours with an interval of 10 K) on the Northern
Hemisphere averaged from 1979 to 2003 for a) January and b) July. The solid line indicates the
isentrope that intersects the tropopause at 45◦ N. Pressure is used as height coordinates (solid
horizontal lines with a spacing of 100 hPa). The figure is taken from Fig. 1 of Liniger and Davies
(2004).

The zonal-mean distribution of PV and potential temperature exhibits a pronounced sea-
sonality as shown in Fig. 1.6 (Liniger and Davies, 2004). For dynamical analyses in the
midlatitudes, it is useful to analyze PV on those isentropes that intersect the tropopause
in the midlatitudes (e.g., at 45◦N) as the PV evolution near the tropopause is of particular
importance to the evolution of midlatitude weather systems (e.g., Hoskins et al., 1985). In
winter this intersection corresponds to isentropes around 310 K and in summer to isentropes
around 335 K (Fig. 1.6).

1.3.3 Main characteristics

PV has three characteristics that are particularly useful for dynamical analyses (Hoskins et al.,
1985):

1. PV conservation: Under conservative (adiabatic and frictionless) conditions, PV is
conserved materially, that means

DP

Dt
= 0 , (1.3)

where D
Dt = ∂

∂t +u ·∇. Under such conditions, the PV of an air parcel is simply advected
with the flow. As potential temperature is also conserved under adiabatic and friction-
less conditions, the advection of PV in isentropic coordinates is (quasi-)horizontally
under conservative conditions. Maps of PV on isentropic surfaces provide a sharp pic-
ture on atmospheric dynamics and can be used to identify salient flow features. This
characteristic is a large advantage compared to other atmospheric variables as, e.g.,
geopotential, which exhibit a much smoother pattern than PV.
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Figure 1.7: Vertical cross section of a) potential temperature (contour interval 4 K) and b)
normal component of geostrophic velocity (contour interval 2 m s−1) associated with a compact
positive potential-vorticity anomaly (PV “ball” indicated by the circle in a)) that is added to
a constant standard-atmosphere PV distribution. Solid and dashed contours in b) denote flow
into and out of the page, respectively. Spatial distances are normalized by the radius of the PV
anomaly and scaled in the vertical direction. For a PV anomaly with 250 km radius, the distances
shown correspond to 2000 km in the horizontal direction and 20 km in the vertical direction. The
figure is adapted from Fig. 1b of Thorpe and Bishop (1995) and taken from Fig. 6.10 of Holton
and Hakim (2013).

The contributions from diabatic processes and friction to the PV evolution can be quan-
tified, complementing the conservative view on the PV evolution. Including these two
contributions, the material change of PV is given by

DP

Dt
=

1

ρ
η · ∇θ̇ +

1

ρ
(∇× F) · ∇θ , (1.4)

where θ̇ denotes the diabatic heating rate and F the frictional forces. On the synoptic
scale in isentropic coordinates, the diabatic PV modification can be approximated by
(e.g., Davies and Didone, 2013)

DP

Dt
= P

∂θ̇

∂θ
. (1.5)

In regions of latent heating, a positive PV anomaly is thus generally produced beneath
the maximum heating rate and a negative PV anomaly above.

2. PV inversion: The PV distribution contains information about the flow and mass
distribution. Together with a balance condition, a reference state, and suitable boundary
conditions, the flow and mass distribution can be deduced from a PV distribution by the
inversion of a Laplace operator. Qualitatively, the flow and temperature of a localized
positive PV anomaly5 is illustrated in Fig. 1.7 (Thorpe and Bishop, 1995): Positive PV
anomalies are, in general, associated with a cyclonic circulation, a positive static stability

5Anomalies denote deviations from a reference state as, e.g., in Fig. 1.7 from the constant standard atmosphere.
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anomaly inside the PV anomaly, and a negative static stability anomaly above and
beneath the PV anomaly. For a negative PV anomaly, the corresponding circulation and
static stability anomalies have opposite sign. Importantly, PV anomalies have a far-field
effect on the mass and flow distribution, that means that the flow and static-stability
anomalies associated with a PV anomaly are larger in scale than the PV anomaly itself.
The largest PV anomalies are found near the tropopause and in terms of potential
temperature anomalies just above the boundary layer. These temperature anomalies
can be interpreted as infinitesimally shallow PV anomalies (Bretherton, 1966). A warm
anomaly just above the boundary layer can thus be interpreted as a positive PV anomaly
and a cold anomaly as a negative PV anomaly.

3. PV partitioning: The PV distribution exhibits characteristic patterns related to indi-
vidual weather systems. By treating the PV distribution as a composite of a reference
state and individual PV perturbations and performing separate (piecewise) PV inver-
sions (PPVI), it is possible to obtain the flow and mass distribution associated with
individual PV perturbations (Davis and Emanuel, 1991; Davis, 1992). It is thereby
possible to quantify the influence of individual weather systems on the flow.
PPVI has become a valuable tool for dynamical analyses. Previous studies applied it,
e.g., to analyze midlatitude cyclogenesis (e.g., Davis and Emanuel, 1991; Davis et al.,
1996; Stoelinga, 1996) or to analyze Rossby-wave dynamics (e.g., Nielsen-Gammon and
Lefevre, 1996; Teubler and Riemer, 2016). In addition, PPVI has often been applied in
the context of the extratropical transition of tropical cyclones (e.g., McTaggart-Cowan
et al., 2001; Agustí-Panareda et al., 2004, 2005; Riemer et al., 2008; Riemer and Jones,
2010; Grams et al., 2013).

1.3.4 PV thinking for midlatitude dynamics

Based on the seminal work of Hoskins et al. (1985), “PV thinking” has become an established
concept to describe midlatitude dynamics. PV thinking combines the main characteristics
of PV (see Sec. 1.3.3): Based on PV inversion, one can derive the flow and temperature as-
sociated with a PV distribution. Under conservative conditions, one can then calculate the
local change of PV based on PV conservation and thus determine the time evolution of PV.
Finally, with PV partitioning one can identify the importance of different weather systems to
the flow evolution.
The concept of PV thinking can be used to describe several atmospheric processes, including
the downstream development of Rossby waves and baroclinic instability. These two processes
will be discussed in more detail in the following, together with the influence of diabatic pro-
cesses and upper-tropospheric divergence on Rossby-wave dynamics. In this thesis, these four
processes will be quantified using a PV framework (see Sec. 1.3.5).
From the PV perspective, the barotropic downstream development of Rossby waves can be
explained based on qualitative arguments (Hoskins et al., 1985): As illustrated schematically
in Fig. 1.8 (Wirth et al., 2018), a trough (southward deflection of a PV contour) can be inter-
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Figure 1.8: Schematic diagram illustrating the barotropic downstream development from the PV
perspective in longitude-latitude maps for a background atmsophere with northward PV gradient.
Left: Black lines indicate lines of constant PV at different time steps (earlier time in solid, later
time in dashed) for a) the time interval t1 → t2 and b) the time interval t2 → t3. The signs +
and − indicate the individual PV anomalies in the Rossby wave. Arrows denote the circulation
associated with the PV anomalies. Right: Stationary scenario for the phase of troughs and ridges
when a westerly basic flow is added that exactly opposes the westerly phase propagation. The
figure is taken from Fig. 8 of Wirth et al. (2018).

preted as a positive PV anomaly in a background atmosphere with northward PV gradient (as
indicated at time t1 in Fig. 1.8a). This PV anomaly is associated with a cyclonic flow, which
leads to a southward deflection of the PV contour on the western side of the PV anomaly
and a northward deflection on the eastern side. The positive PV anomaly is thereby advected
westward, while a new ridge (negative PV anomaly) develops downstream of the positive PV
anomaly at time t2 (Fig. 1.8a). These two PV anomalies are again associated with a flow
pattern that leads to a westward shift of the existing PV anomalies and to the generation of
a new trough at time t3 (Fig. 1.8b). Adding a westerly flow of exactly the same magnitude as
the westward phase speed of the troughs and ridges, yields a stationary scenario for the phase
of the troughs and ridges (Fig. 1.8 right panel). In this scenario, the generation of new PV
anomalies downstream of the existing PV anomalies, as manifested in the classical picture of
downstream development (e.g., Hoskins et al., 1985), becomes clearly evident.
In a baroclinic atmosphere, vertical interaction occurs between upper- and lower-level PV
anomalies. The mutual interaction between PV anomalies near the tropopause and near the
surface can be explained in the simple two-layer model of Eady (1949), which consists of one
upper-level and one lower-level layer. As indicated in Fig. 1.9a, an upper-level PV anomaly
approaching a lower-level baroclinic zone will be associated with a circulation at lower levels.
This circulation leads to the generation of a warm anomaly at the lower level, which can be
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Figure 1.9: Schematic diagram illustrating baroclinic growth from the PV perspective. The
approach of an upper-level positive PV anomaly (solid line at top) over a baroclinic zone (lower
panel) is illustrated with the corresponding wind field associated with the upper-level PV anomaly
(solid arrows). b) A warm anomaly is created from the low-level circulation of the upper-level
PV anomaly, which in turn is associated with a circulation (open arrows). The figure is taken
from Fig. 21 of Hoskins et al. (1985).

interpreted as a positive PV anomaly (Bretherton, 1966). This anomaly is in turn associated
with a cyclonic circulation at upper-levels. In this scenario, the vertical interaction between
the upper- and lower-level anomalies leads to a mutual amplification of the upper- and lower-
level anomalies, which is the essence of baroclinic instability (Eady, 1949; Hoskins et al., 1985;
Heifetz et al., 2004).
As noted in Sec. 1.3.3, diabatic processes can lead to a material change of PV and thereby
modify the PV distribution directly. The role of diabatic processes for Rossby-wave dynamics
was the focus of recent research (e.g., Grams et al., 2011; Chagnon et al., 2013). As illustrated
schematically in Fig. 1.10, diabatic processes generate positive PV anomalies on the strato-
spheric side of the tropopause and negative PV anomalies on the tropospheric side, resulting
in an enhancement of the PV gradient near the tropopause (Chagnon et al., 2013). The posi-
tive PV anomalies originate mostly from longwave radiative cooling, whereas the negative PV
anomalies originate mostly from latent heating (Chagnon et al., 2013). The role of diabatic
processes has also attained recent attention in the context of forecast-error growth (e.g., Gray
et al., 2014; Martínez-Alvarado et al., 2016; Grams et al., 2018, see also Sec. 1.3.6).
Diabatic processes play also an important indirect role for Rossby-wave dynamics (e.g., Davis
et al., 1993) due to (i) balanced PV anomalies generated by diabatic processes and (ii) upper-
tropospheric divergence, which is often associated with latent release below. Previous work
shows that the indirect diabatic effect from upper-tropospheric divergence is often of larger
importance to Rossby-wave dynamics than the direct diabatic PV modification (Davis et al.,
1993; Riemer and Jones, 2010; Teubler and Riemer, 2016). As illustrated schematically in
Fig. 1.11, upper-tropospheric divergence leads to an area increase of Rossby-wave ridges and
is thus of large importance during ridge-building (e.g., Davis et al., 1996; Riemer and Jones,
2010; Teubler and Riemer, 2016).
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Figure 1.10: Schematic diagram illustrating the influence of diabatic processes on the PV evolu-
tion near the tropopause. The solid contour denotes the dynamical tropopause, while the shading
denotes the net diabatic PV anomalies in individual troughs (index T) and ridges (index R). The
figure is taken from Fig. 10 of Chagnon et al. (2013).

Figure 1.11: Schematic diagram illustrating the influence of upper-tropospheric divergence on
the Rossby-wave evolution near the tropopause. The black contour denotes the Rossby-wave
pattern at initial time, while the green contour denotes the Rossby-wave pattern at a later time.
Arrows depict the divergent outflow near the tropopause. The figure is taken from Fig. 2c of
Teubler and Riemer (2016).
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Figure 1.12: Schematic diagram illustrating the four processes partitioned in the PV framework
(see text for details). Courtesy of F. Teubler with slight modifications.

1.3.5 PV framework to quantify the influence of individual processes

In this study, we use a PV framework to quantify the relative importance of individual pro-
cesses to the amplification of forecast errors and forecast uncertainty. For that purpose, we
use the same partitioning of processes as in a previous analysis of Rossby-wave dynamics
(Teubler and Riemer, 2016). This PV framework is based on the PV perspective of midlati-
tude dynamics (as described in the previous subsection, Hoskins et al., 1985) and partitions
the influence of four processes, namely near-tropopause dynamics, tropospheric-deep interac-
tion, upper-tropospheric divergence, and nonconservative PV modification (Fig. 1.12).
The influence of near-tropopause dynamics, tropospheric-deep interaction, and upper-tropos-
pheric divergence is determined using a flow partitioning: First, the nondivergent and diver-
gent flow is partitioned using a Helmholtz partitioning (Lynch, 1989). The nondivergent flow
is then further partitioned into the flow associated with upper- and lower-level PV anomalies,
respectively, using PPVI (Davis and Emanuel, 1991; Davis, 1992). The influence of upper-
level (near-tropopause) PV anomalies on the upper-level (near-tropopause) evolution provides
a quasi-two-dimensional view on the dynamics and is mostly related to nonlinear Rossby-wave
dynamics. The influence of lower-level PV anomalies on the near-tropopause evolution de-
scribes the influence of the vertical interaction between upper- and lower-level dynamics and
includes the influence of baroclinic instability. The influence of upper-tropospheric divergence
can be related to balanced dynamics and moist processes (see, e.g., Chapter 6.4 in Holton
and Hakim, 2013). For Rossby-wave dynamics, a strong influence of upper-tropospheric di-
vergence is often associated with latent heat release below (e.g., Davis et al., 1993; Riemer
et al., 2014; Quinting and Jones, 2016).
The nonconservative processes associated with radiative transfer, turbulent mixing, subgrid-
scale orographic drag, non-orographic gravity wave drag, moist convection, clouds, and sur-
face/soil processes (see Fig. 1.13 for an overview of all processes) exhibit generally a small
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Figure 1.13: Schematic diagram illustrating the different physical processes that are represented
in current numerical weather-prediction models via parametrization schemes. The figure is taken
from Fig. 2 of Bauer et al. (2015).

spatial scale and are therefore not explicitly resolved in global models (ECMWF, 2013). These
processes, however, are of relevant importance to weather prediction as they drive the heat
and momentum budget (ECMWF, 2013). Their influence on the grid scale is thus represented
by parametrization schemes. The parametrization schemes in the Integrated Forecasting Sys-
tem (IFS) model at ECMWF, for example, provide heating rates from the cloud, convection,
radiation, and turbulence parameterization, and wind tendencies from the convection and tur-
bulence parameterization (ECMWF, 2013). In this study, we use these tendencies from the
parametrization schemes to quantify the direct PV modification by nonconservative processes
due to diabatic heating and nonconservative momentum change.

1.3.6 PV perspective on error growth

The PV perspective has become a valuable perspective to gain insight into the dynamics of
forecast errors. Early work demonstrated that a misrepresentation of the PV distribution
near the tropopause can result in rapid error growth in individual subsynoptic and synoptic
weather systems (e.g., Fehlmann and Davies, 1997, 1999). The PV error maximizes, in general,
in regions with a strong PV gradient, as it occurs near the tropopause (e.g., Snyder et al.,
2003; Davies and Didone, 2013). By analyzing a case study and a single winter climatology,
Dirren et al. (2003) showed that the PV error (“forecast minus analysis” PV) provides insight
into the nature and evolution of forecast errors.
Climatological studies of the PV error can be used to identify systematic errors of numerical
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Figure 1.14: Example of a PV pattern on the 320 K isentropic surface from a) the analysis field,
and b) the error (forecast minus analysis) field of the corresponding 4 day forecast. The black
(red) contour denotes the 2 PVU contour of the analysis (forecast) and the symbols W-B, F, and
C-F refer to wave-breaking, filament, and cutoff structures, respectively. The figure is taken from
Fig. 1 of Davies and Didone (2013).

weather prediction models. By focusing on PV, Gray et al. (2014) showed that the amplitude
of Rossby-wave ridges and the tropopause sharpness is systematically underestimated in the
forecast. Furthermore, PV has been used to identify model deficiencies in forecasting Rossby-
wave breaking (Wiegand and Knippertz, 2014) and the Rossby waveguide (Giannakaki and
Martius, 2016).
Based on the PV perspective, Davies and Didone (2013) provided an outline to diagnose
the dynamics of forecast errors in the medium range. For an example-weather situation, the
authors showed that the PV-error field of this case reveals key-error features that are related
to a misrepresentation of the Rossby-wave pattern near the tropopause and of surface-weather
systems (Fig 1.14). Furthermore, the authors derived a tendency equation for the PV error
that provides qualitative insight into the dynamical evolution of forecast errors and into
possible error-growth mechanisms.
This study builds on the study of Davies and Didone (2013). Here, we extend their work
significantly by providing not only a qualitative, but also a quantitative view on the dynamics
of forecast errors and forecast uncertainty. Using the partitioning of processes as introduced
in the previous subsection, we quantify the relative importance of individual processes to the
amplification of forecast errors and forecast uncertainty.
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1.4 Research questions and thesis outline

The central aim of this thesis is to provide dynamical insight into the processes governing
the amplification of forecast errors and forecast uncertainty. For that purpose, we use a PV
framework and focus on the near-tropopause region of the midlatitudes, which is of particular
importance to the evolution of midlatitude weather systems and the evolution of PV errors.
In essence, we address the following research questions:

1. Error growth in an operational state-of-the-art deterministic forecast

a) How can the PV perspective be used to quantify the processes governing the am-
plification of forecast errors?

b) What are the most important processes governing the error growth in an opera-
tional state-of-the-art forecast?

c) How can the error-growth mechanisms be explained from a theoretical perspective?

2. Error growth in upscale error-growth simulations

a) What are the most important processes governing upscale error growth from the
grid scale up to the planetary scale?

b) Are the quantitative results from the PV framework consistent with the conceptual
model for upscale error growth?

c) Do the processes governing upscale error growth differ from the processes governing
error growth in operational forecasts?

3. Amplification of ensemble spread in an operational state-of-the-art forecast

a) How can the PV perspective be used to quantify the processes governing the am-
plification of forecast uncertainty?

b) What are the most important processes governing the amplification of ensemble
spread in an operational state-of-the-art forecast?

c) Are there flow-dependent differences in the amplification of ensemble spread?

These three research-question items serve as an outline for this thesis: In Chapter 2, we de-
rive a tendency equation for forecast-error growth and provide a quantitative view on the
processes governing the error growth in a current state-of-the-art operational forecast. Fur-
thermore, we discuss individual error-growth mechanisms. Chapter 3 investigates upscale
error growth from the grid scale up to the planetary scale using global simulations with a
stochastic convection scheme. We quantify the processes governing the upscale error growth
and compare our results with the conceptual model for upscale error growth and with the
error growth in operational forecasts. In Chapter 4, we derive a tendency equation for the
ensemble variance of PV. The processes governing the amplification of ensemble spread are
quantified for a current state-of-the-art operational forecast and flow-dependent aspects of this
amplification are highlighted. Finally, we conclude with a summary and outlook in Chapter 5.
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Abstract

Synoptic-scale error growth near the tropopause is investigated from a process-based perspec-
tive. Following previous work, a potential vorticity (PV) error tendency equation is derived
and partitioned into individual contributions to yield insight into the processes governing error
growth near the tropopause. Importantly, we focus here on the further amplification of preex-
isting errors and not on the origin of errors. The individual contributions to error growth are
quantified in a case study of a 6-day forecast. In this case, localized mesoscale error maxima
have formed by forecast day 2. These maxima organize into a wavelike pattern and reach the
Rossby wave scale around forecast day 6. Error growth occurs most prominently within the
Atlantic and Pacific Rossby wave patterns. In our PV framework, the error growth is dom-
inated by the contribution of upper-level, near-tropopause PV anomalies (near-tropopause
dynamics). Significant contributions from upper-tropospheric divergent flow (prominently as-
sociated with latent heat release below) and lower-tropospheric anomalies [tropospheric-deep

1 c© American Meteorological Society. Used with permission. Slight modifications have been added to the text
for consistency.
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Figure 2.1: PV error (colored) on an isentropic surface (320 K) for the forecast started at
00 UTC, 12 November 2013 in the Atlantic region for a) forecast day 2, and b) forecast day 3.
The black contour denotes the dynamical tropopause (2 PVU surface; 1 PVU = 10−6 K m2 kg−1

s−1) of the analysis (solid) and of the forecast (dashed) on 320 K.

(i.e., baroclinic) interaction] are associated with a misrepresentation of the surface cyclone
development in the forecast. These contributions are, in general, of smaller importance to
error growth than near-tropopause dynamics. This result indicates that the mesoscale errors
generated near the tropopause do not primarily project on differences in the subsequent baro-
clinic growth, but instead directly project on the tropopause evolution and amplify because
of differences in the nonlinear Rossby wave dynamics.

2.1 Introduction

Numerical weather prediction has improved remarkably over the last decades (e.g., Bauer
et al., 2015). Occasionally, however, very poor medium-range forecasts do still occur (Rod-
well et al., 2013). Forecast errors arise due to errors in the initial conditions and due to model
deficiencies (e.g., Palmer and Hagedorn, 2006). After 1–2 forecast days, localized errors may
form that start to affect the synoptic-scale flow (e.g., Davies and Didone, 2013; Martínez-
Alvarado et al., 2016). Subsequently, these errors further amplify and propagate downstream
(e.g., Langland et al., 2002; Anwender et al., 2008; Pantillon et al., 2013).
The focus of this study is on the amplification of existing errors as illustrated in Fig. 2.1. At
forecast day 2, a localized PV error is in our case generated in the Atlantic ridge (Fig. 2.1a).
Within the next day, significant error amplification occurs and the localized error evolves
into a wave-like pattern at forecast day 3 (Fig. 2.1b). This study aims at understanding
such error growth by quantifying the processes governing the error amplification, rather than
identifying the initial source of the error growth. Gaining deeper insight into the dynamics
of error growth, and thus into the atmospheric conditions that exhibit high or low intrinsic
predictability (e.g., Melhauser and Zhang, 2012) can be expected to improve the future inter-
pretation of the forecast uncertainty observed in ensemble forecast systems.
Synoptic-scale error growth is often related to baroclinic instability (e.g., Tribbia and Baum-
hefner, 2004; Hakim, 2005; Hohenegger and Schär, 2007; Zhang et al., 2007; Boisserie et al.,
2014; Selz and Craig, 2015b; Sun and Zhang, 2016). Baroclinic instability leads to exponen-
tial growth of wave amplitudes (e.g., Eady, 1949). Therefore, a small difference between the
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baroclinic growth in the forecast and the analysis can be expected to yield exponential error
growth. A number of other studies have highlighted the importance of processes that are
unrelated to baroclinic instability: Snyder (1999) and Plu and Arbogast (2005) emphasize
that errors in the propagation characteristics and nonlinear error growth mechanisms can be
as important for the error growth as barotropic and baroclinic instabilities. In addition, more
recent studies indicate that synoptic-scale error growth can be induced by misrepresented
deformation fields or potential vorticity (PV) anomalies near the tropopause (Davies and
Didone, 2013), a systematic underestimation of the background PV gradient in the forecast
(Harvey et al., 2016), and bifurcation-like behavior (Riemer and Jones, 2014). A quantitative
analysis of the relative importance of individual processes, however, is still missing.
This study adopts the potential-vorticity (PV) perspective of forecast errors to gain insight
into the processes governing the error growth. This perspective provides a useful framework
to analyze error growth from a dynamical, process-oriented perspective (Davies and Didone,
2013). The largest values of the PV error occur near the midlatitude tropopause and are
related to erroneous displacements of the tropopause (e.g., Dirren et al., 2003; Gray et al.,
2014). It is these near-tropopause errors that we will focus on in this study. Davies and Di-
done (2013) have derived a tendency equation for the PV error and analyzed it qualitatively.
Our study considers a similar tendency equation in combination with a partitioning of the
PV tendencies as applied in an investigation of Rossby wave packet dynamics (Teubler and
Riemer, 2016). This partitioning allows us to quantify the relative importance of four indi-
vidual processes to PV error growth near the tropopause: 1) near-tropopause dynamics, 2)
tropospheric-deep interaction, 3) upper-tropospheric divergent flow, and 4) nonconservative
processes.
The contribution of near-tropopause dynamics quantifies the influence of upper-level, near-
tropopause PV anomalies on the tropopause evolution, which is mostly related to Rossby
wave dynamics, while the contribution of tropospheric-deep interaction quantifies the influ-
ence of lower-tropospheric anomalies on the tropopause evolution, which signifies baroclinic
interaction in the PV framework (Eady, 1949; Hoskins et al., 1985; Davis and Emanuel, 1991;
Heifetz et al., 2004). Baroclinic instability can be described by the mutual amplification of
upper- and lower-level PV anomalies. Its potential influence near the tropopause can therefore
be assessed by the influence of tropospheric-deep interaction. In addition to these contribu-
tions from balanced dynamics, we quantify the influence of upper-tropospheric divergent flow.
Upper-tropospheric divergence can be associated with balanced dynamics and diabatic pro-
cesses (see considerations with the omega equation, e.g., Holton and Hakim, 2013). For Rossby
wave dynamics, a few cases indicate that strong upper-tropospheric divergence is mostly as-
sociated with latent heat release below (e.g., Davis et al., 1993; Riemer et al., 2014; Quinting
and Jones, 2016). Finally, the direct impact of nonconservative processes is quantified.
This Chapter is organized as follows. In Section 2.2, we describe the data and tendency equa-
tion used to quantify PV error growth and the relative importance of individual processes.
Section 2.3 presents our results for a case study of medium-range forecast error growth. In
Section 2.4, we discuss some conceptual aspects of error growth based on the error patterns
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observed in our case study. Finally, Section 2.5 contains our summary and conclusions of the
results.

2.2 Data and diagnostics to quantify the individual
contributions to PV error growth

2.2.1 Data

We use analysis and deterministic-forecast data from the Atmospheric Model high resolu-
tion 10-day forecast (HRES) of the European Centre for Medium-Range Weather Forecasts
(ECMWF). Error growth is analyzed for the forecast starting at 00UTC, 12 November 20132.
This forecast covers an extreme precipitation event over Sardinia on 18-19 November 2013,
which was closely connected with the preceding Rossby wave packet, wave breaking, and the
formation of a cutoff low. The error growth within this Rossby wave packet is therefore of
particular interest.
Six-hourly data are used on pressure levels and a 1◦ × 1◦ grid. The piecewise PV inver-
sion used to partition the PV tendencies is performed on pressure levels as in Davis and
Emanuel (1991) and Davis (1992). For the further analysis of PV error growth, all vari-
ables are interpolated to isentropic levels. Similar to YOTC (“Year of Tropical Convection”)
data (Moncrieff et al., 2012), accumulated temperature and wind tendencies from the physi-
cal parametrization schemes were saved for our case study3. Note that the computations of
the physical parametrization schemes are performed in the vertical only (ECMWF, 2013), in
particular they account only for vertical diffusion and not for horizontal mixing. Instanta-
neous tendencies are approximated by centered differences of the 3 h accumulated tendency
data4. Tendency data for the analysis are estimated with accumulated data from short-range
forecasts.

2.2.2 PV error and tendency equation

The hydrostatic form of Ertel PV (Ertel, 1942) is used in isentropic coordinates,

P = −g∂θ
∂p

(ζθ + f) , (2.1)

where g is the gravitational acceleration, θ the potential temperature, p the pressure, ζθ the
vertical component of the isentropic relative vorticity, and f the Coriolis parameter.
Forecast errors (index ∗) are defined as the difference between the forecast (index fc) and

2The error growth was also analyzed for the forecasts starting at 00UTC, 9 November 2013 and 12UTC,
10 November 2013. These forecasts showed similar results with respect to the relative importance of the
processes contributing to the error growth.

3Note that we do not use the tendencies for specific humidity as they do not directly affect the PV evolution.
4A comparison between temperature tendency data with 1 h- and 3 h-resolution did not show a significant
dependence on the time resolution. Therefore, we assume that this approximation yields reasonable results
for our diagnostics.
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the analysis (index an), e.g. P ∗ := Pfc − Pan. Following the approach of Davies and Didone
(2013), we derive a PV-error tendency equation. Our tendency equation is based on the
local tendency equation for PV in isentropic coordinates, which is given by (e.g., Davies and
Didone, 2013)

∂P

∂t
= −v · ∇θP +N + res. , (2.2)

where N = −θ̇ ∂P∂θ + P ∂θ̇
∂θ − g

∂θ
∂p

(
k× ∂v

∂θ

)
· ∇θ̇ − g ∂θ∂pk · (∇× v̇) describes the nonconservative

PV tendency due to diabatic heating and nonconservative momentum change as measured
by the parametrization schemes. The heating rate θ̇ comprises heating due to the cloud,
convection, radiation, and turbulence parametrization, while the horizontal wind tendencies u̇
and v̇ comprise tendencies from the convection and turbulence parametrization. The residual
term res. comprises the influence of those processes that can not be quantified with the
available data, i.e. numerical diffusion, analysis increments due to data assimilation, and
numerical inaccuracies due to the discretization and interpolation of data.
As the error is defined by the difference between the forecast and analysis, the local tendency
for the PV error is given by (see Davies and Didone, 2013)

∂P ∗

∂t
=

∂Pfc
∂t
− ∂P

∂t
= −v∗ · ∇θP − v∗ · ∇θP ∗ − v · ∇θP ∗ +N∗ + res., (2.3)

where variables without an index refer to analysis variables. Note that the PV error is not
materially conserved under conservative conditions and that the tendency equation for the
PV error is thereby more complicated than Eq. 2.2.
Similar to the enstrophy error by Boer (1984), we consider the local tendency of the potential
enstrophy error (the squared PV error, P ∗2), which is a positive-definite error metric and thus
ensures that a positive error tendency is associated with error amplification. The according
tendency equation is given by

∂

∂t

P ∗2

2
= P ∗

∂P ∗

∂t
= −P ∗v∗ · ∇θP − (v∗ + v) · ∇θ

(
P ∗2

2

)
+ P ∗N∗ + res.

= −P ∗v∗ · ∇θP −∇θ ·
(
P ∗2

2
(v∗ + v)

)
+
P ∗2

2
∇θ · (v∗ + v)

+P ∗N∗ + res. . (2.4)

To provide a succinct quantitative view on the error growth, we consider the error evolution
integrated over a (potentially) time-dependent area A

d

dt

∫
A

P ∗2

2
dA =

∫
A

∂

∂t

P ∗2

2
dA+

∮
S

P ∗2

2
vS · n dS

= −
∫
A
P ∗v∗ · ∇θPdA−

∮
S

P ∗2

2
(v∗ + v) · n dS +

∫
A

P ∗2

2
∇θ · (v∗ + v)dA

+

∫
A
P ∗N∗dA+

∮
S

P ∗2

2
vS · n dS + res. , (2.5)



26 2 Potential vorticity dynamics of forecast errors: A quantitative case study

where vS describes the motion of the integration area. As in Boer (1984), the first term on
the right hand side of Eq. 2.5 can be interpreted as a (nonlinear) production term. Since the
second term in Eq. 2.4 merely redistributes existing errors, it can be evaluated in terms of
an error flux across the boundary of the integration domain (second term in Eq. 2.5). Not
explicitly included in the barotropic framework of Boer (1984), the third term in Eq. 2.5
constitutes an error source due to the divergence of the quasi-horizontal (adiabatic) flow. The
remaining terms describe the influence of nonconservative processes (term 4), the boundary
contribution due to changes in the integration area (term 5), and the residual (term 6).
We evaluate the PV-error tendency equation on an isentropic level intersecting the midlatitude
tropopause, namely on 320 K. PV anomalies on this isentropic level are representative for
midlatitude Rossby waves during the time of year under consideration (Liniger and Davies,
2004; Martius et al., 2010). A comparison with the error growth on nearby isentropes (315 K
and 325 K) showed qualitatively very similar results.

2.2.3 Further separation of the advective term

To gain deeper insight into the dynamics of the PV error growth, we further partition the
nonlinear production term (term 1 on the right hand side in Eq. 2.5), following Teubler and
Riemer (2016). This partitioning builds on the PV perspective of midlatitude dynamics. In
essence, the evolution of PV anomalies near the tropopause can be described by advective
tendencies associated with 1) the upper-level (near-tropopause) PV anomalies themselves, 2)
θ anomalies just above the boundary layer and “interior” PV anomalies in the lower tropo-
sphere, and 3) upper-tropospheric divergent flow. In addition, upper-level PV anomalies are
modified by 4) nonconservative processes.
The influence of upper-level PV anomalies on upper-level dynamics can be related to Rossby
wave dynamics. As mentioned in the introduction, baroclinic instability is in the PV frame-
work described by the mutual amplification of upper- and lower-level anomalies (Eady, 1949;
Hoskins et al., 1985; Davis and Emanuel, 1991; Heifetz et al., 2004). Since our focus is on error
growth near the tropopause, the contribution of tropospheric-deep interaction is quantified
by the influence of lower-level errors on the upper-level errors. This part of the interaction,
however, provides a necessary condition that amplification due to baroclinic instability does
occur. Upper-tropospheric divergent flow can significantly influence Rossby wave dynamics,
in particular ridge building (e.g., Grams et al., 2011; Teubler and Riemer, 2016). It can be
associated with dry balanced dynamics and diabatic processes (see considerations with the
omega equation as discussed in, e.g., Chapter 6.4 in Holton and Hakim, 2013). A few cases
(e.g., Davis et al., 1993; Riemer and Jones, 2010; Riemer et al., 2014) indicate that pronounced
upper-level divergence is mostly related to latent heat release below. This indirect diabatic
impact can be of larger importance for Rossby wave dynamics than direct diabatic PV mod-
ification (e.g., Riemer and Jones, 2010; Teubler and Riemer, 2016).
Figure 2.2 illustrates that the errors in our case concentrate in two regions: Errors exhibit
their strongest signal in PV close to the tropopause and, equivalently, as θ errors at the top
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Figure 2.2: 3D picture of the PV error between 850 and 250 hPa (colored) and the θ error at the
top of the boundary layer (875 hPa, colored) for the forecast started at 00 UTC, 12 November
2013 for forecast day 4. The black contour denotes the dynamical tropopause (smoothed 2 PVU
surface) of the analysis (solid) and of the forecast (dashed) on 250 hPa. The gray section at
600 hPa indicates the pressure level where the upper and lower PV anomalies are separated.

of the boundary layer (875 hPa). There is a clear vertical separation between these upper-
and lower-level PV and θ errors. Therefore, it is reasonable to separate the error features at
a mid-level where the error features are in general of small amplitude. Our results are not
sensitive to the exact choice of the separation level (tested for 700, 600, and 500 hPa). The
following results are shown for a separation level of 600 hPa.
The upper-level wind associated with the lower-tropospheric (PV and θ) anomalies will be
referred to as “tropospheric-deep” (vTPd), the upper-level wind associated with upper-level
anomalies as “near-tropopause” (vnTP), and the upper-level wind associated with upper-level
divergence as “divergent” (vdiv). Thus, the full wind field can be partitioned as

v = vnTP + vTPd + vdiv + vuct. (2.6)

The uncertainty term, vuct, describes the uncertainties associated with the partitioning of the
wind field. It is calculated as the difference between the wind field given by ECMWF and
the sum of the near-tropopause, tropospheric-deep and divergent wind field. This uncertainty
turns out to be small and does not affect the physical interpretation of our results. Technical
details on our flow partitioning are provided in Appendix 2.6.1.
Quantitatively, we separate the relative importance of the individual processes by spatially-
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integrating their contribution to the error tendency (Eq. 2.5)

OBS = nTP+TPd+DIV+NONCONS+BND+UCT+RES , (2.7)

where OBS :=
d

dt

∫
A

P ∗2

2
dA ≈

P ∗2t+6h − P ∗2t
6h

,

nTP := −
∫
A
P ∗v∗nTP · ∇θPdA ,

TPd := −
∫
A
P ∗v∗TPd · ∇θPdA ,

DIV := −
∫
A
P ∗v∗div · ∇θPdA+

∫
A

P ∗2

2
∇θ · (v∗div + vdiv)dA ,

NONCONS :=

∫
A
P ∗N∗dA ,

BND := −
∮
S

P ∗2

2
(v∗ + v − vS) · n dS ,

UCT := −
∫
A
P ∗v∗uct · ∇θPdA ,

RES := OBS− (nTP+TPd+DIV+NONCONS+BND+UCT) .

The residual term is determined by the difference between the observed error evolution (OBS;
approximated by 6 h finite differences) and the sum of the quantified contributions to error
growth (averaged over the two time steps used for the finite differences).
We emphasize that Eq. 2.7 describes the influence of individual processes to error growth
at an instantaneous time step. This approach is different from Lagrangian approaches that
investigate the accumulated effect of, e.g., diabatic processes on the PV distribution (e.g.,
Gray, 2006; Chagnon et al., 2013) or that track errors back to their initial source (e.g.,
Martínez-Alvarado et al., 2016). In particular, we do not explicitly analyze the indirect effect
of diabatic processes by having created PV anomalies at earlier times (see summary and
discussion by Davis et al., 1993). As the processes governing the error growth may differ at
different stages of the error growth (e.g., Zhang et al., 2007; Hohenegger and Schär, 2007; Selz
and Craig, 2015b), analysis of the instantaneous tendencies provides helpful insight into the
error-growth dynamics.

2.3 Error growth in an illustrative case

In this section, the error growth in our case is first illustrated by the time evolution of the
PV error. Then we show the spatial patterns of the individual contributions to net error
amplification. Finally, the relative importance of these contributions to error growth in specific
regions is quantified by time series of spatially-integrated tendencies.
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2.3.1 Error evolution

Fig. 2.3 illustrates the PV-error evolution of our case study on 320 K together with the loca-
tion of the dynamical tropopause in the forecast and the analysis (here defined as the 2 PVU
surface; 1 PVU = 10−6 K m2 kg−1 s−1), which serves as an indication of the synoptic evolu-
tion in the forecast and in the analysis. The tropopause is, in general, undulated by Rossby
wave patterns. Two regions, the Atlantic and Pacific region, turn out to be associated with a
significant error evolution and will be discussed in more detail.
The synoptic evolution in the Atlantic starts with a ridge building around 30◦W (Fig. 2.3a),
which is in association with cyclogenesis off the coast of Newfoundland. The cyclone’s inten-
sity and ridge building were underestimated in the forecast, leading to a localized positive
error in surface pressure and PV around 40–20◦W at forecast day 2. In the following two days,
the downstream trough breaks anti-cyclonically and a cutoff is formed at day 4 (10◦W–20◦E,
Fig. 2.3b). This wave breaking occurred too late in the forecast and was associated with
significant error amplification between day 2 and 4. At day 6 (Fig. 2.3c), the wave pattern
in the forecast and in the analysis exhibit large differences, including local phase shifts of
approx. half a wavelength and significant amplitude errors.
The synoptic evolution in the Pacific starts with anti-cyclonic wave-breaking and cutoff forma-
tion around 140◦W before forecast day 2 (not shown). The error pattern at day 2 is dominated
by an error in the meridional location of the tropopause (Fig. 2.3a). In the following two days,
ridge building associated with cyclogenesis governs the evolution (150◦W–170◦E, Fig. 2.3b).
The cyclogenesis and ridge building were much stronger in the forecast than in the analysis
leading to significant error amplification in surface pressure and PV. Further error amplifica-
tion occurs between day 4 and 6 leading to large differences between the wave pattern in the
forecast and the analysis at day 6 (Fig. 2.3c).
Consistent with, e.g., Dirren et al. (2003) and Davies and Didone (2013), large absolute val-
ues of the PV error are related to a displacement of the dynamical tropopause. Both in the
Atlantic and the Pacific, a first localized error pattern changes into a wave-like error pattern
between day 2 and 4 (Figs. 2.3a and b). Error extrema in both regions are associated with
an erroneous representation of the Rossby wave pattern. Compared to the PV anomalies (de-
fined by the deviation of the PV from a background PV, see appendix A for details), the PV
error exhibits, in general, a smaller horizontal scale, in particular in the meridional direction
(Figs. 2.3b and d).

2.3.2 Spatial patterns of the individual contributions to error growth

In Fig. 2.4 the individual contributions to the net error amplification in Eq. 2.7 are illustrated
for forecast day 4 (note the different colorbars in this figure). The advective tendencies are
further discussed with focus on the Pacific region in Fig. 2.5. All individual tendencies
exhibit their largest amplitude and a relatively high degree of spatial coherence within the
Rossby wave pattern in the Atlantic and in the Pacific. The Rossby wave patterns thus stand
out as important regions of the error evolution, corroborating our notion from the previous
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Figure 2.3: PV error (colored) on an isentropic surface (320 K) for the forecast started at
00 UTC, 12 November 2013 in the Northern Hemisphere for a) forecast day 2, b) forecast day 4,
and c) forecast day 6. For comparison, d) shows the PV anomalies of the analysis, i.e. deviations
of the analysis PV from the background PV (see appendix A for details), at day 4. The black
contour denotes the dynamical tropopause (2 PVU surface) of the analysis (solid) and of the
forecast (dashed) on 320 K. The gray contours depict the error in mean sea level pressure every
5 hPa in a), every 7.5 hPa in b), and every 10 hPa in c) without 0 hPa (positive: solid, negative:
dashed), and the mean sea level pressure in the analysis every 10 hPa (smoothed over 3 gridpoints)
in d). Blue boxes in a)–c) indicate the regions used as integration areas.
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Figure 2.4: Spatial distribution of individual contributions to net error amplification as indicated
by Eq. 2.7 (colored, in PVU2/s) for forecast day 4 on 320 K by a) near-tropopause dynamics (nTP
in Eq. 2.7), b) tropospheric-deep interaction (TPd in Eq. 2.7), c) upper-tropospheric divergence
(DIV in Eq. 2.7), and d) nonconservative processes (NONCONS in Eq. 2.7). The black contour
denotes the dynamical tropopause (2 PVU surface) of the analysis (solid) and of the forecast
(dashed) on 320 K. Note the different scales of the colorbars.
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Figure 2.5: Focus on the Pacific region. a) PV error on 320 K, c) potential temperature error on
875 hPa, e) specific humidity error on 700 hPa, and net error amplification associated with b) near-
tropopause dynamics, d) tropospheric-deep interaction, and f) upper-tropospheric divergence on
320 K for forecast day 4. The black contour denotes the 2 PVU surface of the analysis (solid) and
of the forecast (dashed) on 320 K. Contours in d) depict the θ error on 875 hPa at -4 and -8 K
(blue) and at 4 and 8 K (red). Gray contours in e) and f) show the error in mean sea level pressure
every 7.5 hPa without 0 hPa (positive: solid, negative: dashed). Labels point to individual PV
errors near the tropopause (A and B), θ errors on 875 hPa (C and D), a cyclone error (E), and
a warm conveyor belt error (F). Arrows denote the error wind associated with near-tropopause
dynamics (a and b), tropospheric-deep interaction (c and d), and upper-tropospheric divergence
(e and f) on 320 K.
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subsection.
The near-tropopause tendency (Figs. 2.4a and 2.5b) exhibits the largest absolute values com-
pared to the other individual tendencies. The spatial pattern of the total tendency (not
shown) is almost entirely determined by the near-tropopause tendency. The dominant feature
of the spatial pattern are dipoles of positive and negative values. A comparison with the PV
error (Figs. 2.5a and b) indicates that the near-tropopause error wind and near-tropopause
error tendency are clearly related to the PV error: Positive PV errors (error feature A in
Fig. 2.5a) are associated with a cyclonic error circulation, whereas negative PV errors (error
feature B in Fig. 2.5a) are associated with an anti-cyclonic error circulation. The associated
error tendency, which is defined by the advection of the analysis PV by the near-tropopause
error wind (Eq. 2.7), leads to error amplification on the western side and error decay on the
eastern side of the individual PV error features (see error tendency within error features A and
B in Fig. 2.5b). The tendency pattern is thus dominated by a displacement of the PV error
along the dynamical tropopause. From Figs. 2.4a and 2.5b it is not directly clear whether the
net effect of the near-tropopause tendency is positive or negative.
The tropospheric-deep tendency (Figs. 2.4b and 2.5d) leads to error amplification in the Pacific
ridge (140–180◦W) and possibly also in the Atlantic ridge (near 10◦W). In the Pacific region,
temperature error features at the top of the boundary layer and PV error features near the
tropopause have a phase shift of about π/4 to π/2 (see Figs. 2.5a and c). The tropospheric-
deep error wind associated with the positive potential temperature error (error feature D in
Fig. 2.5c) exhibits a cyclonic pattern leading to the tropospheric-deep error amplification ob-
served in the Pacific ridge (Fig. 2.5d). The absolute values of the tropospheric-deep tendency
are, however, almost one order of magnitude smaller than those of the near-tropopause ten-
dency.
The divergent tendency (Figs. 2.4c and 2.5f) leads to error amplification over coherent regions,
in particular in ridges and cutoffs. A comparison with the error in mid-tropospheric specific
humidity and mean sea level pressure in the Pacific region (Figs. 2.5e and f) indicates that the
divergent tendency is directly linked to the misrepresentation of the surface cyclone around
190◦W and the associated latent heat release: This cyclone (error feature E in Fig. 2.5e), its
accompanying warm conveyor belt (error feature F in Fig. 2.5e), and the associated upper-
tropospheric divergent flow and divergent ridge amplification were too strong in the forecast.
The divergent tendency thus increases the difference between the ridge amplification in the
forecast and the analysis leading to error amplification in the Pacific region, which can be seen
by coherent region of positive error tendency in the ridge (Fig. 2.5f). A similar investigation
shows that strong divergent tendencies in other regions can be related to latent heat release
also (not shown).
The largest values of the nonconservative tendency (approximated by the wind and tempera-
ture tendencies from the parametrization schemes, Fig. 2.4d) are found in ridges and cutoffs.
A further partitioning of this tendency (not shown) reveals that error amplification in ridges
and cutoffs is in this case mostly governed by radiation, whereas the turbulence parametriza-
tion leads to the error decay in regions of a strong PV gradient, e.g., in the Pacific ridge.



34 2 Potential vorticity dynamics of forecast errors: A quantitative case study

These two processes have mostly opposite effects. Compared to the advective tendencies, the
nonconservative tendency exhibits the smallest absolute values.

2.3.3 Spatially-integrated metric of the error growth

Insight into the relative importance of the individual processes can be gained by considering
spatially-integrated tendencies. Integration over large, sensibly-defined regions diminishes the
compensation between positive and negative tendencies prominent in Fig. 2.4. The areas used
for integration are chosen such that the distinct error patterns in the Atlantic and Pacific are
included during the whole forecast time. The areas are indicated by the blue boxes in Fig. 2.3.
Time series of the spatially-integrated tendencies are depicted in Fig. 2.6.
Comparing the observed error evolution with the quantified contributions to the error growth
(RES in Eq. 2.7), reveals a systematic negative residual of considerable amplitude, in partic-
ular after day 2. From the processes contributing to the residual (see Sec. 2.2.2), numerical
diffusion can be expected to have a systematic negative effect on the error evolution. Non-
conservation of PV by the dynamical core, which is related to numerical diffusion, has been
shown to yield PV tendencies of similar magnitude as diabatic processes (Chagnon and Gray,
2015; Saffin et al., 2016). From a physical point of view, numerical diffusion is associated
with a smoothing of small-scale PV features. PV forms rich filamentary structures near the
tropopause (e.g., Appenzeller et al., 1996), i.e. the cascade of potential enstrophy (P 2) is
directed towards the smaller scales. Errors that are associated with such filaments, e.g. dis-
placement errors, are thus eliminated when the scale of the filament reaches the resolution
of our data. Effectively, this elimination constitutes irreversible horizontal mixing (e.g., Nie
et al., 2016), a nonconservative process that cannot be quantified in this study.
A comparison of the individual tendencies clearly demonstrates that the error growth, inte-
grated over the Northern Hemisphere from 30◦N to 80◦N, is dominated by the near-tropopause
tendency, which yields the largest contribution to the error growth at all time steps (Fig. 2.6a).
The most conservative estimate of the near-tropopause tendency would be to add all uncer-
tainty of our diagnostic (residual and uncertainty of PPVI, i.e. terms RES and UCT in
Eq. 2.7) to the near-tropopause tendency. However, even together with this error sink, the
near-tropopause tendency still makes by far the largest contribution to error growth. The di-
vergent tendency makes the second largest contribution to the error growth, but is at all times
much smaller than the near-tropopause tendency. Furthermore, we find only a minor contri-
bution from the tropospheric-deep tendency to the error growth. This tendency contributes,
on average, only 14% to the observed error growth. The nonconservative tendency makes a
small, but continuously negative contribution to the error evolution. A further partitioning
of this tendency reveals that it is mostly governed by the radiation and turbulence tendency
(Fig. 2.7). As mentioned in Sec. 2.3.2, these tendencies have rather opposite effect on the
error evolution. While the radiation tendency makes a significant positive contribution, the
turbulence tendency makes a contribution of similar magnitude, but of opposite sign.
As demonstrated above, the error growth in this case most prominently occurs within the
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Figure 2.6: Individual contributions (colored lines) to spatially-integrated error growth on 320 K
as indicated by Eq. 2.7 in dependence of forecast time. The integration area is a) Northern
Hemisphere (30◦N–80◦N), b) Rossby wave pattern in the Atlantic, and c) Rossby wave pattern
in the Pacific. The integration areas in the Atlantic and Pacific are indicated by the blue boxes
in Fig. 2.3. The shading next to the near-tropopause and tropospheric-deep tendencies indicates
the uncertainty of the result due to the uncertainty of PPVI (UCT in Eq. 2.7).
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Figure 2.7: Individual contributions (colored lines) to the spatially-integrated nonconservative
error growth (NONCONS in Eq. 2.7) on 320 K in dependence of forecast time. The integration
area is the Northern Hemisphere (30◦N–80◦N).

Atlantic and Pacific Rossby wave pattern (Figs. 2.3 and 2.4). The error features in the Pacific
and Atlantic are clearly separated and their amplification may exhibit different characteris-
tics. In the following, these two regions are therefore investigated in isolation.
Within the Atlantic region, error growth during wave breaking and the highly nonlinear stage
of the wave pattern (after forecast day 4) is clearly dominated by the near-tropopause ten-
dency (Fig. 2.6b). Preceding the wave breaking, a significant contribution is also given by the
divergent tendency, which is of similar magnitude as the conservative estimate of the near-
tropopause tendency. During this time, the relative importance of the divergent tendency is
larger than when integrated hemispherically (30–80◦N, Fig. 2.6a). This large divergent ten-
dency can be attributed to the surface cyclone located around 40◦W at forecast day 2 and its
accompanying warm conveyor belt that were underestimated in the forecast (surface pressure
error shown in Fig. 2.3a). The forecast of the associated ridge building was of particular
importance to the subsequent wave breaking, cutoff formation and high-impact weather over
Sardinia. Thereby, the error growth associated with this high-impact weather was strongly
related to near-tropopause dynamics and upper-tropospheric divergence.
Within the Pacific region (Fig. 2.6c), the largest contribution to error growth is again given by
the near-tropopause tendency. The tropospheric-deep tendency contributes more prominently
to error growth than when integrated hemispherically (30–80◦N, Fig. 2.6a). Averaged over
forecast day 4–5, it accounts for about one third of the observed error growth. Interestingly,
this significant contribution from the tropospheric-deep tendency is accompanied by a con-
tribution of similar magnitude from the divergent tendency. These significant contributions
from the tropospheric-deep and divergent tendency can be attributed to the cyclone develop-
ment on the upstream side of the Pacific ridge that was overestimated in the forecast (surface
pressure error around 170◦E in Figs. 2.3b and 2.5e and f).
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2.4 Some insight into error-growth dynamics

The previous section has shown that PV-error growth in our case is not primarily governed
by baroclinic instability (tropospheric-deep interaction) as assumed by some previous stud-
ies. Instead, we find a large contribution of near-tropopause dynamics to the error growth.
This section provides a plausible explanation for the limited importance of tropospheric-deep
interaction to error growth. Furthermore, we discuss the importance of differences between
the nonlinear Rossby wave dynamics in the analysis and in the forecast, which can explain a
large part of the observed error evolution in our case. Finally, we compare the error evolution
with the underlying waviness evolution in the forecast and the analysis.

2.4.1 Limited importance of tropospheric-deep interaction to error growth

To better understand the limited importance of tropospheric-deep interaction to the error
growth in our case, we consider the Eady (1949) model in the reformulation of Davies and
Bishop (1994) as a well-known and arguably the simplest model that describes baroclinic
instability. Details about the model setup are provided in Appendix 2.6.2. The basic idea is
to prescribe idealized error patterns in this model and to apply our error tendency derived in
Sec. 2.2 to quantify the tropospheric-deep contribution to error growth in the Eady model.
Due to the linearity of the model, it turns out that error growth in this model exhibits the
same characteristics as generic baroclinic growth.
The Eady model is nondivergent and conservative, and we will consider error growth globally,
i.e., integrated over the whole domain. In the integrated PV-error tendency equation (Eq. 2.5)
all terms on the right-hand-side therefore vanish, except for the first term. The dynamics of
the Eady model are completely governed by the distribution of θ-edge waves at the upper and
lower boundary, effectively representing the PV distribution, from which the wind field can
be derived directly (Eqs. 2.17 and 2.18). Evaluating the error tendency equation in the Eady
model requires specification of the upper-level analysis PV and of the PV error at the upper
and lower level. A zonal background superposed by a wavenumber-6 wave (representing a
synoptic-scale Rossby wave pattern) constitutes our idealized upper-level analysis state. Due
to the linearity of the Eady model, arbitrary error patterns can be prescribed by the super-
position of individual Fourier modes. It is therefore sufficient to consider error growth in the
presence of one arbitrary wave mode in the analysis.
The dependence of the tropospheric-deep error tendency on the wavenumber and phase shift
of the upper- and lower-level errors is investigated by varying these two parameters. These
investigations show that tropospheric-deep error growth is only possible for a rather specific
configuration, namely for identical wavenumbers of the upper and lower error wave and for
a favorable phase shift between 0 and π (Fig. 2.8a). Furthermore, the error growth shows a
prominent scale dependence. For the optimal growth configuration (identical wavenumbers
and phase shift of π/2), the error tendency decreases exponentially with increasing wavenum-
ber (Fig. 2.8b). Tropospheric-deep error growth in the Eady model thus shows the same
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Figure 2.8: Error growth by tropospheric-deep interaction in the Eady model. a) Dependency
of spatially-integrated tropospheric-deep error tendency (colored) for a fixed upper error wave
(wavenumber 8, initial phase 0π) on the lower error wavenumber and phase shift between the
lower and upper error wave, and b) Dependency of maximum of spatially-integrated tropospheric-
deep tendency (identical wavenumbers of upper and lower error wave and phase shift of π/2) on
the error wavenumber.

behavior as baroclinic growth in general.
In light of these results from an idealized model, we now examine in more detail the error
pattern observed in our case study. In the Pacific, the region in which tropospheric-deep
error growth is most prominent, the error pattern is indeed as suggested by Fig. 2.8a: Error
features at upper- and lower-level have a similar wavelength and a phase shift of π/4 − π/2
(indicated by labels in Fig. 2.5c). It is evident that the associated tropospheric-deep error
tendency is mostly positive in this region (Fig. 2.5d). Apart from this region, a pronounced
coupling between the upper- and lower-level errors is not noticeable (Fig. 2.4b). From a
qualitative perspective, a favorable configuration for tropospheric-deep interaction is evident
in the Atlantic ridge (similar wavelength of upper- and lower-level error features and phase
shift of approx. π/2) and positive tendencies prevail in the western part of the ridge. In the
integrated sense of Fig. 2.6b, however, the tropospheric-deep error tendency is much weaker
than in the Pacific due to cancellation with negative values in the eastern part of the ridge
and near the cutoff.
Evidently, the favorable configuration for tropospheric-deep error growth is achieved only over
a limited region. In our case, the organization of the error pattern into such a configuration
requires 3–4 forecast days, which is significantly longer than assumed in previous studies (e.g.,
Zhang et al., 2007; Hohenegger and Schär, 2007). In addition, we note that the spatial scale
of the error features is smaller than that of the anomalies governing baroclinic development
of the midlatitudes (Figs. 2.3b and d). Due to the dependence of vertical penetration on the
horizontal scale (Fig. 2.8b), the tropospheric-deep interaction of PV and θ errors can be ex-
pected to be less prominent than the tropospheric-deep interaction of respective anomalies in
a baroclinically-unstable Rossby wave. Our considerations with the Eady model thus provide
theoretical support for our observation that tropospheric-deep growth, i.e. error growth due to
differences in the release of baroclinic instability, is not a dominant error-growth mechanism



2.4 Some insight into error-growth dynamics 39

in our case study.

2.4.2 Importance of nonlinear near-tropopause dynamics

Further insight into the important role of near-tropopause dynamics to error growth can
be gained by considering the differences in the underlying linear dynamics and nonlinear
dynamics. Recall from Eq. 2.3 that the error tendency is defined as the difference between
the PV tendency in the forecast and in the analysis. Introducing a stationary background
state and deviations thereof (see Appendix A for details), we further partition the advective
part of the respective tendency as

∂P

∂t

∣∣∣∣
adv

= −v · ∇θP = −v · ∇θP − v′ · ∇θP − v · ∇θP ′ − v′ · ∇θP ′ , (2.8)

where variables with an overbar denote the background state and variables with a prime the
deviations thereof. The first three terms in Eq. 2.8 therefore denote the linear contributions
to the near-tropopause dynamics and the last term the nonlinear contribution. Using this
partitioning and noting that the background state is identical for the forecast and for the
analysis, it is straight-forward to rewrite the advective error tendency as

∂P ∗

∂t

∣∣∣∣
adv

=
∂Pfc
∂t

∣∣∣∣
adv
− ∂Pan

∂t

∣∣∣∣
adv

= −v∗ · ∇θP − v · ∇θP ∗ − v∗ · ∇θP ′ − (v′ + v∗) · ∇θP ∗ , (2.9)

where P ′ and v′ refer to the PV anomalies and the associated wind in the analysis, respectively.
In this equation, the first two terms denote error evolution due to differences in the linear
dynamics and the last two terms error evolution due to differences in the nonlinear dynamics.
We here focus on the near-tropopause dynamics and consider v′ and v∗ in Eq. 2.9 as associated
with the near-tropopause wind. For nondivergent wind, as the near-tropopause wind, the
second and fourth term in Eq. 2.9 merely redistribute the error, but do not contribute to a
net amplification. In the integrated sense of Eq. 2.7, the partitioning of the near-tropopause
contribution to error growth thus reads

nTP = −
∫
A
P ∗v∗nTP · ∇θPdA = −

∫
A
P ∗v∗nTP · ∇θPdA−

∫
A
P ∗v∗nTP · ∇θP ′dA , (2.10)

where the first and the second term are the contributions due to differences in the underlying
linear and nonlinear dynamics, respectively. Spatially integrated over the Northern Hemi-
sphere, error growth is clearly dominated by differences in the nonlinear dynamics (Fig. 2.9).
The contribution due to differences in the linear dynamics is essentially negligible in our case.
It is thus not possible to explain the error evolution based on simple linear arguments for
Rossby wave dynamics.
For nonlinear Rossby wave dynamics, we are not aware of an established conceptual framework
that could guide a further systematic analysis of the nonlinear processes underlying the error
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Figure 2.9: Partitioning of the spatially-integrated near-tropopause error growth (nTP in
Eq. 2.7) on 320 K into the contributions due to differences in the underlying linear and non-
linear dynamics, respectively, (see Eq. 2.10). The integration area is the Northern Hemisphere
(30◦N–80◦N).

growth. Instead, we here illustrate exemplary how differences between the near-tropopause
PV tendency in the analysis and in the forecast can be used to explain a large part of the
observed error evolution. Specifically, we consider the localized error pattern in the Atlantic
at forecast day 2 and the wave-like error pattern in the Pacific at forecast day 4.
The Atlantic error pattern at forecast day 2 is dominated by an amplitude error of the ridge,
which is too weak in the forecast compared to the analysis (Figs. 2.1a and 2.10a). This dif-
ference is associated with differences in the near-tropopause PV tendency (Figs. 2.10b and
c): The negative tendency on the eastern side of the ridge is of larger amplitude in the anal-
ysis than in the forecast. The tendency in the analysis is thus associated with a faster shift
(phase speed) of the ridge to the east and an enhanced thinning of the downstream trough
as compared to the forecast. Consistently, at day 3 the ridge in the analysis is farther to the
east than in the forecast, leading to a distinct phase error generated between day 2 and 3
(Figs. 2.1b and 2.10a). Furthermore, the downstream trough in the analysis is thinner than
in the forecast and exhibits a more pronounced positive tilt, indicating that anticyclonic wave
breaking occurs earlier in the analysis than in the forecast. Differences in the near-tropopause
tendency at day 2 thereby help to explain the observed error evolution in the Atlantic between
day 2 and 3.
The Pacific wave pattern in the forecast exhibits a larger amplitude and smaller wavelength at
day 4 than the analysis wave pattern leading to the observed wave-like error pattern at that
day (Figs. 2.5a and 2.10d). Comparing the near-tropopause PV tendency in the analysis and
in the forecast clearly indicates that these differences are associated with large differences in
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Figure 2.10: Near-tropopause error growth in the Atlantic region at forecast day 2 (a–c) and in
the Pacific region at forecast day 4 (d–f). a) and d) PV error (colored) on 320 K with the black
contour denoting the dynamical tropopause (2 PVU surface) of the analysis (solid) and of the
forecast (dashed) on 320 K and the respective gray contour denoting the dynamical tropopause
one forecast day later. b), c), e), and f) Near-tropopause PV tendency (colored, smoothed over
5 grid points in b and c and over 3 grid points in e and f) in the analysis (b and e) and in the
forecast (c and f). The black contour denotes the dynamical tropopause (2 PVU surface) on 320 K
of the analysis (b and e) and of the forecast (c and f). The arrows depict the near-tropopause
wind of the analysis (b and e) and of the forecast (c and f) on 320 K.
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the subsequent evolution of the wave pattern (Figs. 2.10e and f): While the forecast tendency
exhibits a distinct signal of Rossby wave propagation with positive and negative tendencies
on the western and the eastern flank of the ridge, respectively, the analysis tendency exhibits
instead a patchy signal. The forecast ridge is thus associated with eastward phase propagation
between day 4 and 5, while the analysis ridge is still at a similar location at day 5, but tilted
northwestward (gray contours in Fig. 2.10d). A large part of the observed error evolution
between day 4 and 5 can thus be explained by these differences in the nonlinear Rossby wave
dynamics.

2.4.3 Underlying waviness evolution in the forecast and analysis

In this final subsection, we briefly compare the processes contributing to error amplification
with those contributing to the evolution of the underlying Rossby wave patterns. We focus
on wave amplitude, or waviness, which we here measure by potential eddy enstrophy, i.e. the
square of the PV anomaly. Starting from the PV equation (Eq. 2.2), applying some manipu-
lations as in the derivation of the spatially-integrated error tendency (Eq. 2.5), and using the
partitioning of the wind field (Eq. 2.6), it is straight-forward to derive a tendency equation for
waviness that quantifies the contributions from near-tropopause dynamics, tropospheric-deep
interaction, upper-tropospheric divergent flow, and nonconservative processes:

d

dt

∫
A

P ′2

2
dA = −

∫
A
P ′(vnTP + vTPd + vdiv + vuct) · ∇θPdA (2.11)

+

∫
A

P ′2

2
∇θ · vdiv dA+

∫
A
P ′N dA−

∮
S

P ′2

2
(v − vS) · n dS + res. ,

with N = −θ̇ ∂P∂θ +P ∂θ̇
∂θ −g

∂θ
∂p

(
k× ∂v

∂θ

)
·∇θ̇−g ∂θ∂pk · (∇× v̇) and residual res.. P here denotes

the background PV and P ′ the PV anomaly, i.e. the deviation from the background PV
(see appendix A for details). For our case, the individual contributions to the hemispheric
(30–80◦N) waviness evolution in the analysis and in the forecast are shown in Figs. 2.11a and
b, respectively.
Tropospheric-deep interaction leads to amplification of the waviness in both the analysis and
the forecast (Figs. 2.11a and b). Our case is thus characterized by baroclinic amplification
of the wave patterns. In contrast, tropospheric-deep interaction has only a small influence
on the hemispheric error evolution (Fig. 2.6a). In our case, there is consequently a difference
between the processes contributing to the waviness evolution and the processes contributing
to the error evolution. Previous studies (e.g., Zhang et al., 2007; Boisserie et al., 2014) often
related synoptic-scale error growth to baroclinic instability since the largest error growth
was found in baroclinic active regions. Our case indicates, however, that differences in the
release of baroclinic instability are not necessarily a primary error growth mechanism and
that it is important to distinguish the processes contributing to the error evolution from
those contributing to the underlying Rossby wave evolution.
The differences between the individual contributions to the waviness evolution in the forecast
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Figure 2.11: Individual contributions (colored lines) to spatially-integrated waviness evolution
on 320 K as indicated by Eq. 2.12 for a) the analysis, and b) the forecast. The difference between
the spatially-integrated waviness evolution in the forecast and the analysis (i.e. values of b) minus
values of a)) is shown in c). The integration area is the Northern Hemisphere (30◦N–80◦N). The
shading next to the near-tropopause and tropospheric-deep tendencies indicates the uncertainty
of the result due to the uncertainty of PPVI.
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and the analysis are not exceeding a magnitude of 3 × 108 PVU2m2/s (Fig. 2.11c), while
the largest values of the error tendency are much larger (10 × 108 PVU2m2/s, Fig. 2.6a).
Differences in the waviness evolution can thus only account for a small part of the error
evolution. Thereby, this comparison supports our result that the error growth in our case is
not primarily governed by differences in the (baroclinic) growth rate of the wave patterns.
Since near-tropopause dynamics makes the largest contribution to the error growth, we rather
suggest that the largest part of the error evolution is related to errors in the phase and the
shape of the wave patterns. We hypothesize that errors generated near the tropopause, e.g.
due to differences in upper-level divergence associated with latent heat release below, directly
project onto the tropopause dynamics and then further amplify due to differences in the
nonlinear Rossby wave dynamics (see Sec. 2.4.2). Our results thus indicate that the processes
amplifying the errors can differ from the processes generating the initial error.

2.5 Summary and discussion

This study provides a quantitative analysis of error growth from a PV perspective. A ten-
dency equation for the squared PV error is combined with the partitioning of PV tendencies
as used in a previous analysis of Rossby wave dynamics (Teubler and Riemer, 2016). This
allows us to quantify the relative importance of four individual contributions to the PV-error
evolution near the tropopause, namely: near-tropopause dynamics (influence of upper-level
PV anomalies), tropospheric-deep (baroclinic) interaction (influence of lower-tropospheric PV
and θ anomalies), upper-tropospheric divergent flow, and PV modification by nonconservative
processes.
The impact of upper-level anomalies on the tropopause evolution can be related to Rossby
wave dynamics (e.g., Hoskins et al., 1985). In the PV framework, baroclinic instability is
signified by the mutual amplification of anomalies in the upper and lower troposphere (Eady,
1949; Hoskins et al., 1985; Davis and Emanuel, 1991; Heifetz et al., 2004) and is thus cap-
tured by the tropospheric-deep tendency in our diagnostic. Upper-tropospheric divergent flow
is mostly associated with latent heat release below and can thus be interpreted as an indirect
impact of diabatic processes, which is of particular importance to ridge building (e.g., Davis
et al., 1993; Riemer and Jones, 2010; Grams et al., 2011; Riemer et al., 2014; Teubler and
Riemer, 2016). Indirect diabatic effects may be included also in the near-tropopause and
tropospheric-deep tendency due to the diabatic generation of PV anomalies at earlier times.
The partitioning applied in this study therefore allows a quantification of whether baroclinic
instability is a dominating error growth mechanism, as assumed in many previous studies.
Error growth is analyzed in a case study of a 6-day forecast for the Northern Hemisphere. The
Atlantic and Pacific Rossby wave pattern turn out to be associated with the most pronounced
error growth. After 2–3 forecast days, the pattern of the PV error changes from localized
error maxima to wave-like error patterns that are located along the dynamical tropopause.
The largest error amplification is found within the Rossby wave patterns.
In our case, near-tropopause dynamics clearly dominates the PV-error growth near the tro-
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popause, even in the conservative estimate when all uncertainties of our diagnostic are at-
tributed to the near-tropopause contribution. The near-tropopause error amplification in
our case can almost entirely be related to differences in the nonlinear dynamics. During
the prominent ridge building in the Atlantic (forecast day 2–3) and in the Pacific (forecast
day 4–5), the divergent flow is of comparable importance to error growth as the conserva-
tive estimate of near-tropopause dynamics. Within the Pacific wave pattern during forecast
day 4–5, tropospheric-deep interaction is of comparable importance also. It is of only minor
importance within the Atlantic wave pattern. Significant tropospheric-deep and divergent
tendencies can be related to a misrepresentation of the respective surface cyclone develop-
ment in the forecast.
Considerations with the Eady model (Eady, 1949; Davies and Bishop, 1994) provide a plausible
explanation for the limited importance of tropospheric-deep interaction to the error growth in
our case. This idealized model demonstrates that significant tropospheric-deep error growth
may occur only when the upper- and lower-level error patterns are in a specific, favorable
configuration. However, the error patterns observed in our case do not exhibit the general
tendency to develop towards such a configuration. A favorable configuration develops only in
a limited region around forecast day 4, which is significantly later than assumed in previous
studies (e.g., Zhang et al., 2007; Hohenegger and Schär, 2007). Furthermore, the Eady model
demonstrates that error growth due to tropospheric-deep interaction decreases with increas-
ing wavenumber of the error pattern. Within the 6-day forecast period investigated here, the
spatial scale of the error features is significantly smaller than that of anomalies governing
baroclinic development of the midlatitudes. The small importance of tropospheric-deep in-
teraction to error growth is thus also conceptually supported by the idealized considerations
with the Eady model.
Our diagnostic reveals a systematic negative residual of considerable magnitude. In accor-
dance with previous authors (e.g., Nie et al., 2016), we argue that this residual can be in-
terpreted as an additional physical process related to the downscale enstrophy cascade of
quasi-horizontal flow: the filamentation of PV error features and their effective diffusion at
the grid scale. This process constitutes an error sink that cannot be quantified from forecast
models’ parameterization schemes. We are currently designing idealized numerical experi-
ments to further investigate the role of the enstrophy cascade in the error evolution.
We emphasize that our analysis quantifies the direct impact of processes on the amplification
of existing errors, in contrast to several previous studies, which tracked the accumulation of
specific error sources with time using Lagrangian diagnostics (e.g., Martínez-Alvarado et al.,
2016). Our approach provides useful insight into the error-growth dynamics as the processes
governing the error growth may differ from the processes generating the error (e.g., Zhang
et al., 2007; Hohenegger and Schär, 2007; Selz and Craig, 2015b). Using this approach, we
demonstrate that at any given time of the 6-day forecast analyzed here it is mostly differences
in the nonlinear near-tropopause dynamics that amplifies existing errors in the tropopause
region. Differences in baroclinic instability have instead only a weak (direct) impact on the
error growth in our case. Our results are in general agreement with Snyder (1999) and Plu
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and Arbogast (2005), who showed that nonlinear dynamics can be as important to the error
growth as baroclinic and barotropic instabilities. It is clear, however, that a single case study
is not sufficient to make robust, general statements about the processes governing the error
growth. Preliminary results from a few additional cases (including the “forecast bust” from
Rodwell et al. (2013)), however, indicate that near-tropopause dynamics is in all of these cases
of large importance to the error growth.
Arguably, the relative importance of the processes governing error growth is regime dependent.
A systematic investigation of different synoptic regimes is planned to gain deeper insight into
this dependence. Furthermore, we plan to adopt the method presented herein to investigate
the divergence of the members in an ensemble forecast system. Thereby, the processes that
govern the evolution of the ensemble spread, i.e. forecast uncertainty, could be quantified.
An improved understanding of error growth and the amplification of forecast uncertainty may
help to improve the interpretation, and possibly the design, of future forecast systems. Based
on our results, we hypothesize that the nonlinear dynamics of high-amplitude Rossby wave
patterns is most susceptible to rapid growth of forecast errors and uncertainty. Baroclinic
instability and diabatic processes, including the effect of upper-level divergence associated
with latent heat release below, may play important roles by setting up such high-amplitude
Rossby wave patterns. In that sense, tropospheric-deep interaction and diabatic processes
may significantly influence error growth on the synoptic scale, albeit in an indirect way.
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2.6 Appendix

2.6.1 Partitioning of the individual processes

For the partitioning of the wind field (Eq. 2.6), we employ a Helmholtz partitioning (following
Lynch, 1989) to calculate the nondivergent and irrotational wind components. The nondiver-
gent flow is further partitioned using piecewise PV inversion (PPVI) under nonlinear balance
(Charney, 1955; Davis, 1992). The PPVI is performed on the Northern Hemisphere between
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25◦N and 85◦N on 15 evenly-spaced pressure levels, with vertical boundary conditions speci-
fied at 875 and 125 hPa. Anomalies are defined as deviations from a background state, which
is here defined as the 30-day-mean, centered on 00 UTC, 14 November 2013, of the analysis.
We use a mid-tropospheric pressure level (600 hPa) as the separation level between upper-
and lower-level PV anomalies. The partitioning yields a residual component, which is due to
the harmonic flow component, nonlinear effects in the PPVI, and uncertainties in the PPVI’s
boundary conditions. This residual does not exhibit a systematic impact on upper-level PV
tendencies and is small enough such that it does not affect the physical interpretation of our
results.

2.6.2 Eady model in the reformulation of Davies and Bishop (1994)

The Eady model (Eady, 1949) in the reformulation of Davies and Bishop (1994) comprises
quasi-geostrophic channel flow with walls at y = (0, π/l). We set l = 6 and the height of the
domain to d = 104 m. The dynamics of the model are governed by the distribution of θ at
the upper (z = d) and the lower (z = 0) boundary.
It is straight-forward to derive an error tendency equation for the Eady model analogous to
Eq. 2.4, but for θ instead of PV. As the setup of the Eady model is adiabatic and nondivergent,
the error tendency equation is simply given by

∂

∂t

θ∗2

2
= −θ∗v∗ · ∇θ −∇ ·

(
θ∗2

2
(v∗ + v)

)
. (2.12)

Again, the second term merely redistributes the error pattern and is therefore not further
considered.
Since we are interested in error growth by tropospheric-deep interaction near the tropopause
(represented by the upper boundary in the Eady model), it is sufficient to analyze the
tropospheric-deep error tendency at z = d

∂

∂t

θ∗2

2

∣∣∣∣
TPd,z=d

= −θ∗z=d v∗TPd,z=d · ∇θz=d . (2.13)

At z = d an idealized analysis state is represented by a zonal background state and a wavenum-
ber 6 pattern

θz=d = θz=d + θ′T,z=d = −fθS
g

Λy + θ0,T sin(kTx+ δT ) sin(ly) , (2.14)

where Λ = 3 × 10−3 s−1 describes the uniform vertical shear, f = 10−4 s−1 the Coriolis
parameter, θs = 300 K the reference temperature and g the gravitational acceleration. We
choose θ0,T = 10 K and δT = 0.
We introduce error patterns at the upper and lower model levels as Eady edge waves

θ∗T (z) =
sinh(µ∗T z)

sinh(µ∗Td)
θ∗0,T sin(k∗Tx+ δ∗T ) sin(ly), (2.15)
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θ∗B(z) =
sinh(µ∗B(d− z))

sinh(µ∗Bd)
θ∗0,B sin(k∗Bx+ δ∗B) sin(ly). (2.16)

with µ∗T/B = N
f

√
k∗2T/B + l2 and Brunt-Väisälä frequency N = 10−2 s−1. By definition, θ∗B

and θ∗T are zero at the respective other boundary. Since the amplitude and scale of the error
patterns observed in our case study is, in general, smaller than that of the analysis pattern,
we choose θ∗0,T = θ∗0,B = 5 K, k∗T ≥ kT and k∗B ≥ kT . The tropospheric-deep contribution to
the error wind is given by the wind associated with the lower error wave θ∗B

u∗TPd,z=d =
gl

fθSµ∗B

1

sinh(µ∗B)
θ∗0,B sin(k∗Bx+ δ∗B) cos(ly), (2.17)

v∗TPd,z=d = −
gk∗B
fθSµ∗B

1

sinh(µ∗B)
θ∗0,B cos(k∗Bx+ δ∗B) sin(ly). (2.18)

For Fig. 2.8a we consider error growth by tropospheric-deep interaction (spatial integration
of Eq. 2.13) as a function of k∗B and δ∗B for a fixed upper-level error pattern (k∗T = 8 and
δ∗T = 0). Varying the parameters of the upper error wave reveals that the maximal baroclinic
error growth is always attained for k∗B = k∗T and δ∗B − δ∗T = π/2 (not shown). The magnitude
of this maximum is displayed in Fig. 2.8b as a function of the error wavenumber.
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Abstract

Two diagnostics based on potential vorticity and the envelope of Rossby waves are used to
investigate upscale error growth from a dynamical perspective. The diagnostics are applied
to several cases of global, real-case ensemble simulations, in which the only difference between
the ensemble members lies in the random seed of the stochastic convection scheme. Based on
a tendency equation for the enstrophy error, the relative importance of individual processes
to enstrophy-error growth near the tropopause is quantified. After the enstrophy error is
saturated on the synoptic scale, the envelope diagnostic is used to investigate error growth
up to the planetary scale. The diagnostics reveal distinct stages of the error growth: in the
first 12 h, error growth is dominated by differences in the convection scheme. Differences in
the upper-tropospheric divergent wind then project these diabatic errors into the tropopause
region (day 0.5-–2). The subsequent error growth (day 2—14.5) is governed by differences

1 c© American Meteorological Society. Used with permission. Slight modifications have been added to the text
for consistency.
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in the nonlinear near-tropopause dynamics. A fourth stage of the error growth is found up
to 18 days when the envelope diagnostic indicates error growth from the synoptic up to the
planetary scale. Previous ideas of the multiscale nature of upscale error growth are confirmed
in general. However, a novel interpretation of the governing processes is provided. The
insight obtained into the dynamics of upscale error growth may help to design representations
of uncertainty in operational forecast models and to identify atmospheric conditions that are
intrinsically prone to large error amplification.

3.1 Introduction

Weather prediction has improved significantly in the past decades (Bauer et al., 2015). Fore-
cast dropouts, however, do still occur in operational numerical weather prediction models
(Rodwell et al., 2013, 2018). Due to the multi-scale nature of atmospheric dynamics, there
may always be an intrinsic limit of predictability even if model errors and initial-condition
errors occur only on the smallest resolved scale (Lorenz, 1969). Small-scale errors associated
with moist processes grow much faster than errors on the synoptic scale and saturate already
after about one day (Hohenegger and Schär, 2007). Due to this scale-dependence, small-scale
errors can initiate a multi-stage sequence of upscale error growth and thereby affect the fore-
cast skill on much larger scales (e.g., Zhang et al., 2003, 2007; Selz and Craig, 2015b; Judt,
2018).
Based on an idealized moist baroclinic wave simulation, Zhang et al. (2007) derived a con-
ceptual three-stage model for upscale error growth. A similar upscale error-growth behavior
could also be found in realistic weather events (Selz and Craig, 2015b; Judt, 2018). In the
first stage, errors grow quickly especially in regions of moist convection due to convective
instability. This growth quickly slows down and saturates on the convective scale with a
complete displacement of the individual cells (Zhang et al., 2003, 2007). The following stage
is characterized by the transitioning from an unbalanced small-scale error pattern to a bal-
anced larger-scale error pattern. Although spreading gravity waves are a prominent feature
of this stage (Selz and Craig, 2015b), Bierdel et al. (2017, 2018) have argued that these have
only transient effects that are small in comparison to changes in the net divergence forced by
convection. In the last stage, the model suggests that errors grow on the synoptic scale with
the background baroclinic instability.
Upscale error growth has often been investigated using error-energy spectra (e.g., Zhang et al.,
2007; Selz and Craig, 2015b; Judt, 2018; Selz, 2019). These spectra provide insight into the
scale of the error, but do not provide insight into the processes governing the error growth.
One diagnostic to provide such insight into the processes governing the error growth is based
on potential vorticity (PV, Snyder et al., 2003; Dirren et al., 2003; Davies and Didone, 2013;
Baumgart et al., 2018). Recently, Baumgart et al. (2018) applied this diagnostic to a case
study of an operational forecast. In the presence of the initial-condition and model errors of
the investigated forecast of a state-of-the-art operational model, the error growth was dom-
inated by differences in the nonlinear near-tropopause dynamics. This work suggests that
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these near-tropopause interactions might be more important to synoptic-scale error growth
than the direct impact of baroclinic instability. For upscale error growth, one expects that
the processes dominating the error growth are more directly related to moist processes than
in the operational forecast investigated by Baumgart et al. (2018). To gain deeper insight
into the role of moist processes to upscale error growth, we here apply the same diagnostic
framework as in Baumgart et al. (2018) to simulations, in which the initial differences stem
only from the representation of convection.
On the synoptic scale, forecast errors saturate when troughs and ridges in an upper-level
Rossby wave pattern are completely out of phase. Beyond this synoptic-scale phase satura-
tion at long lead times (beyond 2 weeks), the results of Buizza and Leutbecher (2015) indicate
that there is still forecast skill for large-scale fields. To investigate error growth up to the
planetary scale, we employ a complementary diagnostic that filters out phase information and
identifies the envelope of the upper-level Rossby waves. This diagnostic is based on finite am-
plitude local wave activity (LWA) in the primitive-equation, isentropic-coordinates framework
following Ghinassi et al. (2018). It has been shown recently that the LWA-based diagnostic is
particularly suitable in identifying finite amplitude wave packets and related nonlinear phe-
nomena such as wave-breaking and blocking (Ghinassi et al., 2018). Using this phase-filtered
envelope diagnostic, we are capable to investigate error growth up to the planetary scale and
long lead times.
Simulating explicitly the upscale error growth from the convective up to the planetary scale
requires convection-permitting simulations on very large, preferably global, domains and for
long lead times. Such an approach is computationally extremely costly, but has recently been
performed for a single case by Judt (2018). This approach, however, is currently not feasible to
be applied to a large number of cases with several ensemble members to ensure the robustness
of the results. Using coarser resolution with a deterministic scheme to parameterize convec-
tion, upscale error growth turns out to be much slower (Zhang et al., 2003; Selz and Craig,
2015a). A way out of this problem was suggested by Selz and Craig (2015a) who showed that
a stochastic convection scheme, namely the scheme of Plant and Craig (2008), could generate
error amplitudes on meso- and synoptic scales similar to a convection-permitting simulation.
The scheme models the individual updrafts in a grid box and draws their magnitude ran-
domly from a distribution. A different realization of the convection can thus be achieved by
changing the random seed of the scheme. The scheme thus simulates the outcome of the first
error-growth stage and projects it adaptively onto the model grid. For upscale error-growth
experiments, this characteristic is a crucial advantage compared to simulations with a deter-
ministic scheme.
Recently, Selz (2019) investigated the intrinsic predictability on larger scales that originate
from the short intrinsic predictability of convection using the stochastic convection scheme
of Plant and Craig (2008) to represent the first stage of error growth. The coarse resolution
allowed for the simulation of 12 cases, regularly distributed over one year, with 5 ensemble
members each. In the current work we use this data set to apply the advanced diagnostics
described above to gain more insight into the processes governing the upscale error growth.
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This Chapter is organized as follows: Section 3.2 describes the upscale error-growth simu-
lations and introduces the PV and envelope diagnostics that are used to quantify the error
growth from a dynamical, process-based perspective. Section 3.3 illustrates the results of our
diagnostic for one representative case study. The relative importance of the individual pro-
cesses to upscale error growth is then discussed in Section 3.4. Finally, we provide a summary
of our results in Section 3.5.

3.2 Data and methods

3.2.1 Global simulations with a stochastic convection scheme

We use the icosahedral non-hydrostatic global forecasting model ICON of the German weather
service (Zängl et al., 2015). The model was run with a horizontal resolution corresponding to
about 40 km. Convection is parametrized using the stochastic Plant-Craig (PC) convection
scheme (Plant and Craig, 2008). The PC scheme uses a random value of the convective mass
flux, which is drawn from a quasi-equilibrium distribution that uses the ensemble mean mass
flux given by a standard CAPE closure. For each ensemble member a different seed is used
to generate the random draw, resulting in a different realization of convective variability (see
Fig. 1 in Selz (2019) for illustration). At the initial time, this is the only difference between
ensemble members, but as the simulations evolve, differences in the resolved flow will also
lead to differences in the closure.
Twelve different cases are considered, one for each month from October 2016 to September
2017. These cases are initialized 12 h before the start of the month, using initial conditions
from ECMWF. After a spin-up period of 12 h, we create an ensemble of five members by
changing the random seed of the PC scheme. Initially, the only difference between these
members thus lies in the convective scheme. All simulations are run for a duration of 31 days.
Further information on the set up of the simulations are provided in Selz (2019).
For the PV inversion, we use data with a horizontal resolution of 1◦x1◦ on pressure levels from
900–100 hPa with a grid distance of 50 hPa. Data on pressure levels below the ground are
created by horizontal linear interpolation from valid neighboring grid points. We use hourly
data for the first 10 days and three-hourly data afterwards. For the further analysis of the
error growth, data are interpolated from pressure to isentropic levels. Different isentropes are
used for each case to account for the seasonal dependence of the tropopause location. For
each case, the isentrope is chosen such that the tropopause is located at approximately 45◦N
(see climatology of Liniger and Davies, 2004), resulting in the choice of 315 K for Dec., Jan.,
and Feb., 320 K for Nov., Mar., and Apr., 325 K for Oct. and May, 330 K for Jun. and Sep.,
and 335 K for Jul. and Aug..
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3.2.2 PV error and tendency equation

We use Ertel-PV (Ertel, 1942) as our key variable. In the framework of the primitive equations
and with potential temperature θ as vertical coordinate, it is defined as

P =
1

σ
(ζθ + f) , (3.1)

where ζθ is the vertical component of the isentropic relative vorticity, f is the Coriolis param-
eter, and σ = −g−1(∂p/∂θ) is the isentropic layer density with gravitational acceleration g

and pressure p.
The PV tendency is given by advection and nonconservative PV modification,

∂P

∂t
= −v · ∇θP +N + res. , (3.2)

where N = −θ̇ ∂P∂θ +P ∂θ̇
∂θ + 1

σk · (∇× v̇) describes the nonconservative PV modification due to
diabatic heating and nonconservative momentum change. The heating rates θ̇ and horizon-
tal wind tendencies v̇ are approximated by centered differences of accumulated tendencies2

from the parametrization schemes (convection, microphysics, long- and shortwave radiation,
turbulence, subgrid-scale orography, and gravity wave drag). The residual (res.) includes
the influence of those nonconservative processes that cannot be quantified with the available
data as, e.g., the contribution of numerical diffusion, and intrinsic numerical errors due to the
discretization and interpolation of the data.
Our focus is on the difference in PV between the individual ensemble members, ∆P , defined
as

∆P = Pn − Pm , (3.3)

where Pn and Pm denote the PV of two different ensemble members n and m. Our ICON
ensemble contains five members. It is thus possible to define the PV difference for ten differ-
ent member pairs: member 2 – member 1, member 3 – member 1, member 3 – member 2,
... .3 In the following, we use the terminology ‘error’ for the difference between two members
although, strictly speaking, none of the members describes the true evolution.
In order to have a positive definite metric, we consider the (potential) enstrophy error,
(∆P )2/2. The mean enstrophy error P is then defined as the spatial average of the en-
strophy error over the midlatitudes of the Northern Hemisphere (30–80◦N),

P =
1

A

∫
A

(∆P )2

2
dA , (3.4)

2Data are saved with an hourly resolution for the first ten days and with a three-hourly resolution afterwards
(see Sec. 3.2.1), so the heating rates and horizontal wind tendencies are approximated by 2 h- and 6 h-centered
differences, respectively.

3Note that for the further analysis of the error amplification it is not necessary to investigate the other possible
combination of two members (e.g., one does not need to investigate member 1 – member 2 in addition to
member 2 – member 1) as enstrophy and LWA are positive definite variables.
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where A is the area of integration, dA = a2 cosφdλdφ is the area element in spherical coordi-
nates, a denotes the radius of the Earth, λ is longitude, and φ is latitude. P is then averaged
over the 12 cases and 10 member pairs within each case, which allows us to obtain reasonably
robust statistics (a sample of 120), yielding P. The statistical uncertainty of P associated
with the month-to-month variability is estimated as the standard error for the 12 cases, i.e.,
σ(P) = σ/

√
12, where σ denotes the standard deviation of the 12 cases.

To further investigate the enstrophy-error evolution, we follow the derivation of Baumgart
et al. (2018) and derive a tendency equation for ∆P

∂∆P

∂t
= −∆v · ∇θP − v · ∇θ∆P + ∆N + res. , (3.5)

where

∆N = −∆θ̇
∂P

∂θ
− θ̇ ∂∆P

∂θ
+ ∆P

∂θ̇

∂θ
+ P

∂∆θ̇

∂θ
+

1

σ
k · (∇×∆v̇) +

1

∆σ
k ·
(
∇× v̇

)
(3.6)

denotes the tendency of ∆P due to nonconservative processes. Variables with a ∆ denote
the difference between the two members, while variables with an overbar denote the mean of
the two members. We further extend the tendency for the PV error to a tendency for the
enstrophy error

∂

∂t

(∆P )2

2
= −∆P ∆v · ∇θP −∇θ ·

(
(∆P )2

2
v

)
+

(∆P )2

2
∇θ · v + ∆P ∆N + res. . (3.7)

We partition the advective part of the error tendency based on the PV perspective for mid-
latitude dynamics (Hoskins et al., 1985) as in Teubler and Riemer (2016) and Baumgart et al.
(2018). We analyze the contributions to error growth near the tropopause by decompos-
ing the horizontal velocity at that near-tropopause level. For that purpose, we first apply
a Helmholtz partitioning to separate the divergent flow from the nondivergent flow (Lynch,
1989). The nondivergent flow is then further partitioned into the flow associated with upper-
and lower-level PV anomalies, respectively, by using piecewise PV inversion (PPVI, Davis
and Emanuel, 1991; Davis, 1992). Anomalies are defined as deviations from a background
state, which for each case is defined as the temporal mean over the 31 days of simulation time
averaged over the five members. Piecewise PV inversion is performed between 25–85◦N and
850–150 hPa. Vertical boundary conditions are specified as potential temperature anomalies
at 875 and 125 hPa. 600 hPa is used as the separation level between upper- and lower-level
PV anomalies as PV errors are, in general, only small at this mid-level (Fig. 2 in Baumgart
et al., 2018). The partitioning includes uncertainties due to the harmonic flow component,
the horizontal boundary conditions, and the nonlinearities of the piecewise PV inversion. In
general, these uncertainties are small and do not affect the physical interpretation of the re-
sults.
The influence of upper-level PV anomalies (by PV advection due to the associated winds) on
the near-tropopause evolution is here interpreted as the contribution from near-tropopause
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dynamics (vnTP). As shown by Baumgart et al. (2018), this contribution to near-tropopause
error growth is mostly related to differences in the nonlinear dynamics.4 The influence of
lower-level PV and θ anomalies on the near-tropopause evolution is here interpreted as the
contribution from tropospheric-deep interaction (vTPd). This contribution describes the verti-
cal interaction between upper- and lower-levels and includes the basic mechanism for baroclinic
instability (Eady, 1949; Hoskins et al., 1985; Davis and Emanuel, 1991; Heifetz et al., 2004).
The influence of upper-tropospheric divergence (vdiv) can be associated with balanced dynam-
ics and diabatic processes (as one would obtain from an omega equation, see, e.g., Chapter
6.4 in Holton and Hakim, 2013). A strong divergence contribution is often associated with
latent heat release below (Davis et al., 1993; Riemer et al., 2014; Quinting and Jones, 2016).
In summary, our flow partitioning results in

v ≈ vnTP + vTPd + vdiv . (3.8)

We insert this flow partitioning in Eq. 3.7 and spatially integrate over the midlatitude Northern
Hemisphere (30–80◦N). Thereby, we can quantify the relative importance of near-tropopause
dynamics (term 1 on the right-hand side of Eq. 3.9), tropospheric-deep interaction (term
2), upper-tropospheric divergence (term 3 and 4), and nonconservative processes (term 5) to
enstrophy-error growth

dP

dt
=

1

A

∫
A

∂

∂t

(∆P )2

2
dA =

1

A

[
−
∫
A

∆P ∆vnTP · ∇θPdA−
∫
A

∆P ∆vTPd · ∇θPdA

−
∫
A

∆P ∆vdiv · ∇θPdA+

∫
A

(∆P )2

2
∇θ · vdiv dA+

∫
A

∆P ∆NdA
]

+bnd. + res. . (3.9)

The boundary term, bnd. = − 1
A

∮
S

(∆P )2

2 v ·n dS, describes the boundary effect due to errors
being advected into or out of the integration domain. Due to the choice of the integration
domain (hemispheric integration from 30–80◦N), this boundary contribution is in general very
small and will not be considered hereafter.
In addition to the enstrophy-error tendency, we consider the growth rate associated with the
individual processes

αprocess =
1

P

(
dP

dt

) ∣∣∣∣
process

. (3.10)

In contrast to the enstrophy-error-tendency diagnostic (Eq. 3.9), which provides a quantitative
metric for the absolute error growth, this growth-rate diagnostic provides a quantitative metric
for the error growth relative to the existing error. By combining both diagnostic, we thus
have a quantitative metric for both the absolute and relative error growth.
As for the mean enstrophy error (P), the enstrophy-error tendency (Eq. 3.9) and growth

4In Baumgart et al. (2018), the partitioning into the contribution of linear and nonlinear dynamics, respectively,
was based on the difference between the full near-tropopause tendency and its linearized part where the
background state of the PPVI (30 day-temporal mean) was used as reference state for the linearization (see
their Sec. 4b).
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rates (Eq. 3.10) associated with the individual processes are averaged over the 12 cases and
the 10 member pairs within each case to obtain reasonably robust statistics.5

3.2.3 Rossby wave envelope error

The Rossby wave envelope is obtained by, first, quantifying Rossby “waviness” through Local
Finite Amplitude Wave Activity (LWA) and then extracting the envelope through a spatial
filter. In our work we decided to use the envelope of LWA instead of the more established
envelope of the meridional wind (Zimin et al., 2003). While both yield very similar results
during the linear stage of a Rossby wave, the former was shown to be more appropriate in
the case of finite amplitude waves (Ghinassi et al., 2018).
Our LWA diagnostic is defined in the framework of the primitive equations with potential
temperature θ as vertical coordinate. Details can be found in Ghinassi et al. (2018). Broadly
speaking, LWA is a positive definite quantity related to the displacement of PV contours from
zonal symmetry. Consider a specific isentropic layer at a specific time. For any given latitude
φ one defines an associated PV contour Q(φ) through the relation∫∫

P≥Q
σ dA =

∫∫
φ′≥φ

σ dA , (3.11)

where dA denotes surface integration on the considered isentrope, the integration on the left
hand side extends over those areas where PV is larger than Q, and the integration on the
right hand side extends poleward of the considered latitude φ. LWA is then defined as

LWA(λ, φ) =
1

cosφ

(∫
lS

[P (λ, φ′)−Q(φ)]σ a cosφ′dφ′

+

∫
lN

[Q(φ)− P (λ, φ′)]σ a cosφ′dφ′
)
, (3.12)

where φ′ denotes the integration variable in the meridional direction, and lS and lN are the
arcs along the meridian at any given λ satisfying the following conditions

lS : P ≥ Q, φ′ ≤ φ , (3.13)

lN : P ≤ Q, φ′ ≥ φ , (3.14)

(for illustration see Figure 1 in Ghinassi et al. 2018). LWA has units of m s−1 and quantifies
the strength of Rossby waves in terms of their pseudo-momentum. The zonal average of LWA
exactly recovers the finite-amplitude wave activity of Nakamura and Solomon (2011). LWA is
Eulerian in longitude and partly Lagrangian in latitude. This characteristic has to be kept in
mind when comparing LWA-based diagnostics with our earlier-defined PV-based diagnostics,
since the latter is fully Eulerian. In addition, the LWA-based diagnostic is nonlocal in the
5If a PV inversion at one time step did not converge for a specific case and member (about 5 % of all inversions),
the average of the near-tropopause and tropospheric-deep tendency shown in Figs. 3.7 and 3.8 is taken only
over the converged cases and member pairs. Due to the small number of not-converged time steps, we still
expect our diagnostic to be reasonably robust.
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sense that (possibly remote) nonconservative processes affect the relation between φ and Q.
This effect renders the relation Q(φ) dependent on time; however, this time-dependence turns
out to be small in the sense that Q(φ) varies by less than 10% within a one-month period and,
by consequence, the difference between P and Q in the expression for LWA is dominated by
variations in P . Regarding our ensembles, it is appropriate to define a common Q(φ)-relation
for all members, and this is achieved by using the corresponding relation at initial time where
all ensemble members are identical. This guarantees that LWA at one latitude φ is computed
with respect to the same PV contour Q(φ) for each ensemble member. For computational
efficiency, we use a spatial resolution of 2◦x2◦ for the computation of LWA.
LWA as defined above still contains the phase information of the wave. We now go on to filter
out this phase dependence through a convolution with a Hann window in the zonal direction,
which results in the wave envelope E. The filter is allowed to depend on longitude and its
width is estimated through a wavelet analysis as described in Ghinassi et al. (2018).
In our analysis we consider the difference ∆E in the envelope between two ensemble members
n and m,

∆E = En − Em . (3.15)

Note that ∆E (in contrast to E) is a signed variable and includes both amplitude and position
errors of the envelope.
As for the enstrophy error, we consider the squared envelope error, (∆E)2/2, which is a
positive definite quantity. From this, the mean squared envelope error is calculated by a
spatial average yielding

E =
1

A

∫
A

(∆E)2

2
dA , (3.16)

where the integration area A extends over the midlatitudes of the Northern Hemisphere (20–
80◦N). Finally, E is averaged over the 12 cases and 10 member pairs within each case yielding
E . The statistical uncertainty of E associated with the month-to-month variability is esti-
mated as the standard error for the 12 cases, i.e., σ(E ) = σ/

√
12.

3.3 Illustrative case study

The October ensemble is used to illustrate the spatial patterns of our error-growth diagnos-
tics. This section starts with a discussion of the differences between the first two members.
Recall that the difference between two ensemble members is here referred to as error. The
contributions from the individual processes to error growth are then discussed in terms of
their spatial pattern. Finally, the error growth in the two-member ensemble is compared to
that in the five-member ensemble.

3.3.1 Evolution of error patterns

The PV and envelope error (∆P and ∆E) derived from the first two members of the October
ensemble at selected time steps are shown in Figs. 3.1, 3.2, and 3.3. At day 1, the PV error
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Figure 3.1: PV error derived from the first two members (∆P = P2 − P1) of the October
ensemble at day 1. Black contours denote the dynamical tropopause of member 1 (solid) and
member 2 (dashed). The blue contours depict the 1 mm/h-precipitation averaged over member 1
and 2.

occurs near the grid scale and exhibits considerable values only in localized regions (Fig. 3.1).
These regions are spatially correlated with regions of precipitation. Between day 1 and 5
(Figs. 3.1 and 3.2a), the PV error amplifies by an order of magnitude (note the different
scales of the colorbars) and starts to develop spatially more coherent patterns. Differences in
the position of the dynamical tropopause become apparent by day 5. During these first five
days the envelope error is mostly related to amplitude errors, but overall only of very small
magnitude (not shown).
Between day 5 and 10, the PV error further amplifies (Fig. 3.2a and b). Importantly, the
rather localized PV errors change to a larger-scale and more coherent error pattern that max-
imizes in regions where the tropopause is highly distorted. The PV error now projects more
strongly on the envelope error (Fig. 3.3g), which shows a dipole error around 120 − 150◦W,
suggesting that the error consists in a shift of the envelope. The second envelope-error maxi-
mum is a monopole located around 30 − 60◦E, suggesting instead an error in the amplitude
of the envelope.
At day 15, the PV error exhibits approximately the same scale and magnitude as the troughs
and ridges within the Rossby wave pattern (Fig. 3.2c). At the same time, the envelope er-
ror affects an extended part of the midlatitudes of the Western Hemisphere, with two large
negative errors over the North East Pacific and North Atlantic sector and a positive error in
between (Fig. 3.3h). The region with a more zonally oriented tropopause (70–140◦E) shows
only small errors both in PV and the envelope.
Between day 15 and 20, the PV error amplification is less pronounced than previously (Fig. 3.2c
and d), indicating that the PV error starts to saturate. The Rossby wave pattern in the West-
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Figure 3.2: PV error derived from the first two members (∆P = P2 − P1) of the October
ensemble at a) day 5, b) day 10, c) day 15, and d) day 20. Black contours denote the dynamical
tropopause of member 1 (solid) and member 2 (dashed).
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Figure 3.3: Rossby wave envelope, E, from member 1 of the October ensemble at a) day 10, b)
day 15, and c) day 20 . The same for member 2 in d)–f) and for the envelope difference, ∆E, in
g)–i).
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ern Hemisphere seems to be completely decorrelated. This decorrelation appears as a large
error in the envelope diagnostic, mostly in the form of an amplitude error (Fig. 3.3i). At
the same time, more pronounced PV errors start to occur in the Eastern Hemisphere. These
errors also become apparent as small errors in the envelope diagnostic.

3.3.2 Error tendencies associated with individual processes

In terms of PV, we can go one step further and relate the error evolution to individual pro-
cesses. The spatial patterns of the individual contributions to the enstrophy-error tendency
(Eq. 3.9) are illustrated in Fig. 3.4. The time steps and regions are chosen such that the
respective process makes a dominant contribution to the error growth.
The nonconservative tendency at 18 h (Fig. 3.4a) occurs near the grid scale in localized regions
of precipitation. In these regions, there is also a significant precipitation error (Fig. 3.4b).
A partitioning of the nonconservative tendency into the contributions from the individual
parametrization schemes (see below in Sec. 3.4.2, Fig. 3.7b) reveals that the contribution of
the convection scheme dominates at this time, suggesting that differences in the latent heating
induced by the convection scheme govern the error growth at that time.
The divergence tendency at day 1.5 (Fig. 3.4c) leads to error amplification along the dynam-
ical tropopause, particularly in the two ridges and the cutoff. A large divergence tendency is
found in the vicinity of cyclones where also the vertical velocity exhibits a pronounced error
(Fig. 3.4d). At this early lead time, the vertical-velocity error and the associated divergence
error tendency are still rather small-scale and mainly within an envelope of expected meso-
scale ascent, as in the warm conveyor belt region around 20◦W. This observation suggests
that the differences in latent heating induced by the convection scheme (see previous para-
graph) result in differences in the vertical motion within existing features of ascent, which
are projected into the tropopause region by upper-tropospheric divergence. This pattern is in
contrast to later lead times, when differences in vertical velocity are rather associated with a
displacement of the features themselves (not shown).
The near-tropopause tendency at day 4 (Fig. 3.4e) maximizes along the dynamical tropopause
on the flanks of the narrow trough and the high-amplitude ridge. Large error amplification is
found in regions where the PV error aligns with a strong PV gradient (Fig. 3.4f), consistent
with the observation of Snyder et al. (2003) that the PV error maximizes in regions where
the PV gradient of the reference flow is large. The regions of nonlinear Rossby wave behavior
are associated with large near-tropopause error growth, consistent with the large importance
of nonlinear Rossby wave dynamics to the error growth found by Baumgart et al. (2018).
The tropospheric-deep tendency at day 22 (Fig. 3.4g) leads to error amplification in regions
of large-scale PV errors (as can be inferred by the respective 2 PVU contours). In these
regions, potential temperature errors near the surface have a similar scale and are in vicinity
of the near-tropopause PV errors (Fig. 3.4h). The Eady (1949) model for baroclinic insta-
bility suggests that such a configuration is a necessary condition for tropospheric-deep error
amplification (Baumgart et al., 2018). Amplification occurs when the lower-level potential
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Figure 3.4: Individual contributions to the enstrophy-error tendency (Eq. 3.9, left column)
together with the error field it is mostly related to (right column). The time and region of the
panels are chosen such that the individual processes make a dominating contribution and thus
differ for the individual panels. Thick black contours denote the dynamical tropopause at 325 K
of member 1 (solid) and member 2 (dashed). Thin contours depict the mean over member 1 and
2 of a)-d) geopotential at 850 hPa every 500 m2/s2 (smoothed over 3 grid points) in gray, a)-b)
precipitation at 0.1 and 1 mm/h (smoothed over 3 grid points) in blue, and e)-f) PV at 3 and
4 PVU in gray. Contours in g) denote the potential temperature error at 875 hPa at -4 and -8 K
(blue) and at 4 and 8 K (red).
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temperature errors and upper-level PV errors have a phase shift between 0 and π. The
tropospheric-deep tendency thus quantifies error growth due to differences in the baroclinic
growth. Before day 15 when the the error has a smaller horizontal scale than the troughs and
ridges, the tropospheric-deep error amplification is small (not shown). This small importance
of tropospheric-deep interaction to the error growth during the first 15 days is plausible as
the vertical penetration of temperature anomalies, and thereby also of temperature errors,
depends on their horizontal scale (Eady, 1949; Baumgart et al., 2018).

3.3.3 Ensemble of all five members

In the following subsection, we consider the differences within the whole five-member ensemble
to investigate how representative the previous error-growth discussion of the two-member
ensemble is for the five-member ensemble. For that purpose, Fig. 3.5 shows the 2 PVU
contour (dynamical tropopause) of all five members for the same time steps as in Fig. 3.2.
At day 1 (not shown), no difference in the location of the dynamical tropopause is apparent
between the individual members, indicating that the error occurs near the grid scale and does
not yet affect the synoptic scale. At day 5 (Fig. 3.5a), differences in the tropopause location
of the individual members start to occur. These differences increase significantly until day 10
(Fig. 3.5b) and an increased spread of the 2 PVU contours is evident in regions of a highly
distorted tropopause. Individual troughs and ridges show both phase and amplitude errors,
but are still located at similar positions. By day 15, the troughs and ridges are almost
completely decorrelated (Fig. 3.5c), indicating that the PV error becomes saturated on the
scale of individual troughs and ridges. The region with a rather zonal tropopause pattern
(70 − 140◦E), in contrast, stands out as a region with only small spread of the tropopause
location. At day 20 (Fig. 3.5d), the differences in the ensemble are apparently not related to
individual troughs and ridges any longer.
Compared to the error evolution in the two-member ensemble, the differences between all five
members evolve in a similar way both in terms of the typical scale, typical magnitude, and
typical location of the error: Errors generated near the grid scale start to affect the synoptic
scale at around day 5 and reach the scale of the Rossby wave troughs and ridges at around
day 15. This change in the scale of the error is also associated with a strong increase in the
magnitude of the error. Regions with a distorted tropopause are associated with large error
growth, whereas regions with a more zonal tropopause exhibit only weak error growth. We
conclude that the error-growth characteristics discussed in the previous subsections for the
two-member ensemble are representative for the five-member ensemble.

3.4 Quantitative view on the processes governing the error
growth

To quantify the relative importance of the processes governing the error growth, we consider
all twelve cases including all pairwise combinations of the five-member ensembles. The large
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Figure 3.5: Dynamical tropopause of member 1 (black contour), member 2 (blue contour),
member 3 (yellow contour), member 4 (red contour), and member 5 (green contour) at a) day 5,
b) day 10, c) day 15, and d) day 20.
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Figure 3.6: Time series of a) mean enstrophy error (P), and b) mean squared envelope error
(E ) over the midlatitudes of the Northern Hemisphere. P and E are averaged over the 12 cases
and 10 member pairs within each case. These averages are shown as thick black lines, while
the shading next to the lines denotes the (statistical) standard error for the 12 cases. The red
dashed line shows the fit of the temporal development of the mean enstrophy error and mean
squared envelope error to Eq. 3.17 and the red cross indicates the predictability time (as measured
by Eq. 3.18) of the diagnostics. For later references, vertical solid lines denote the end of the
individual stages, while the dashed blue line denotes the time of maximal near-tropopause error
growth (see Figs. 3.7 and 3.8).

number of cases and member pairs provides a large enough sample for statistics to be rea-
sonably robust, namely a sample of 120. This section starts with a discussion of time series
of the mean enstrophy error and mean squared envelope error. Afterward, the contributions
of individual processes to error growth are quantified. Spatial maps of the squared envelope
error are then discussed to identify ‘error hot spots’. Finally, our results are compared with
the conceptual three-stage error growth model of Zhang et al. (2007).

3.4.1 Time series of error evolution

Time series of the mean enstrophy error (P) and mean squared envelope error (E ) over the
midlatitudes of the Northern Hemisphere are shown in Fig. 3.6 together with the (statistical)
standard error for the cases.
Both the enstrophy and the envelope diagnostic show the typical form of an error-growth
function (e.g., Selz, 2019): The initially very fast error growth seems to follow a power-law
behavior in the first two days (as seen on a log-log plot, not shown), which is followed by
quasi-exponential growth until day 6–7. Afterwards, error growth slows down significantly,
until the error eventually reaches saturation after a certain time.
Two main differences exist between the enstrophy and the envelope diagnostic. First, the en-
velope diagnostic shows larger differences between the 12 cases as measured by the standard
error. Second and more importantly, the envelope error saturates at a later time than the
enstrophy error.
To quantify the different saturation levels in the enstrophy and envelope diagnostic, we cal-
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culate the predictability time τ in the two diagnostics, according to Selz (2019). For that
purpose, the temporal development of P and E after day 7 is fitted to the following function
with the fitting parameters a and b

X = X (t0) exp (a (1− exp(−b(t− t0)))) , (3.17)

where t0 is set to 7 days as in Selz (2019) and X denotes either P or E . From Fig. 3.6 it
is evident that Eq. 3.17 provides a very good fit for the temporal development of P and E ,
respectively.
The predictability time is defined by the time when 80% of the error magnitude at t→∞ is
reached, that means

X (τ) = 0.8X (t∞) = 0.8X (t0) exp (a) . (3.18)

With this definition, we derive a predictability time of about 14.5 days for the enstrophy
diagnostic and of about 18 days for the envelope diagnostic. For difference kinetic energy,
Selz (2019) derived a predictability time of 17 days, which lies in between the result for the
enstrophy and envelope diagnostic. This intermediate time can be explained by the fact that
the enstrophy spectrum has larger weight on small scales than kinetic energy, while small
scales are filtered out in the envelope diagnostic.
Based on Fig. 3.6, we could thus quantitatively derive a time lag of 3.5 days between the
enstrophy diagnostic maximizing on the synoptic scale and the envelope diagnostic maximizing
on the planetary scale. The predictability of individual ridges and troughs in a Rossby wave
pattern is thus about 3.5 days shorter than the predictability of the wave-pattern envelope.

3.4.2 Relative error growth

For the early stage of the error evolution, we consider the growth rate associated with the
individual processes (Eq. 3.10) to quantify the error growth relative to the existing error.
Time series of these growth rates, averaged over all cases and member pairs, are shown in
Fig. 3.7 together with the (statistical) standard error.
During the first 12 h, the by far largest growth rate is associated with the nonconservative
processes (Fig. 3.7a). A further partitioning of this growth rate (Fig. 3.7b) indicates that it
is mostly related to the convection scheme. The growth rate associated with the convection
scheme is at the beginning about 7 × 10−5 s−1 and then sharply decreases by one order of
magnitude within the first 12 h. During the first 12 h, error growth is thus dominated by
the latent-heating differences that were induced by the convection scheme. In the first 12 h,
the longwave radiation and microphysics scheme are associated with error growth, while the
turbulence scheme is associated with error decay. These growth rates, however, are much
smaller than the growth rate associated with convection in the first 12 h. After about 18 h,
when the growth rate associated with the convective scheme is small, these parameterized
nonconservative processes become of larger importance to the error growth than the param-
eterized convection.
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Figure 3.7: a) Growth rate of enstrophy error associated with the individual processes as in-
dicated by Eq. 3.10, and b) further partitioning of the nonconservative contribution into the
contributions of the individual parametrization schemes. Results are averaged over the 12 cases
and the 10 member pairs within each case. These averages are shown as thick black line, while
the shading next to the line denotes the (statistical) standard error for the 12 cases. The time
series are smoothed by a running mean over 5 time steps.
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A substantial positive residual exists in our budget equation for the enstrophy error in the
first 12 h. This residual translates to a growth rate of similar magnitude as the growth rate
associated with the convection scheme (not shown) and can be attributed to the fact that our
diagnostic measures the growth of existing errors, but not the generation of new errors, which
makes a dominating contribution in the very beginning of the simulations. We do not see any
indication that this residual associated with the generation of new errors compromises our
interpretation of the relative importance of the processes governing the error growth.
The growth rate associated with upper-tropospheric divergence exhibits large values already
at the beginning of the simulations and becomes the dominating error-growth contribution
after about 12 h when the growth rate associated with the convection scheme has rapidly
decreased. The divergence error growth during this stage is, in general, associated with pro-
nounced vertical-velocity errors embedded within regions of meso-scale ascent in the vicinity
of cyclones (see Sec. 3.3.2, Fig. 3.4c and d). Upper-tropospheric divergence thus provides the
dominating error-growth mechanism to project the latent-heating differences induced by the
convection scheme into the tropopause region.
After about 2 days, the growth rate associated with near-tropopause dynamics becomes larger
than the growth rate associated with upper-tropospheric divergence, indicating that differ-
ences in the nonlinear Rossby wave dynamics near the tropopause become more important to
the error growth than differences in the moist processes and upper-tropospheric divergence.
The growth rate associated with near-tropopause dynamics is about 1×10−5 s−1 and thereby
one order of magnitude smaller than the growth rate associated with the convection scheme
at the beginning of the simulations. Hohenegger and Schär (2007) found a similar magnitude
for error-growth rate on the synoptic scale and also assumed that balanced dynamics are
governing the synoptic-scale error growth.

3.4.3 Absolute error growth

For the later stage of the error growth, we consider the individual contributions to the
enstrophy-error tendency (Eq. 3.9) to quantify the error growth in an absolute sense. Time se-
ries of the individual error-tendency contributions, averaged over all cases and member pairs,
are shown in Fig. 3.8 together with the (statistical) standard error.
From the growth-rate discussion (see Sec. 3.4.2), it is clear that near-tropopause dynamics
makes the largest contribution to error growth after about 2 days. Until day 10, the contri-
bution of near-tropopause dynamics to the error growth is strongly increasing with lead time
(Fig. 3.8a). In the following 7 days, it is decreasing with time, until it is eventually fluctuating
around zero after about 17 days. After about 15 days, the contribution of near-tropopause
dynamics is no longer the largest error-growth contribution. Interestingly, 15 days is also
about the time when the predictability time of enstrophy is reached (see Sec. 3.4.1, Fig. 3.6).
Large error amplification by near-tropopause dynamics thus occurs until the error becomes
saturated on the synoptic scale of individual troughs and ridges.
After about 15 days, the nonconservative, tropospheric-deep, and divergence contributions be-
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Figure 3.8: a) Partitioning of the mean enstrophy-error tendency into the contributions from
the individual processes, b) partitioning of the mean nonconservative enstrophy-error tendency
into the contributions from the individual parametrization schemes, and c) partitioning of the
mean enstrophy tendency into the contributions from the individual processes. The individual
error-tendency contributions in a) and b) are averaged over the 12 cases and the 10 member pairs
within each case, while the individual enstrophy-tendency contributions in c) are averaged over
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the shading next to the lines denotes the (statistical) standard error for the 12 cases. The time
series are smoothed by a running mean over 5 time steps.
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come more important to the error growth than the near-tropopause contribution. The large
contribution of nonconservative processes is mostly related to the longwave radiation scheme
(Fig. 3.8b). The longwave radiative PV tendency correlates with the PV anomalies of troughs
and ridges. Once these anomalies start to decorrelate, this correlation leads to a systematic
radiative error amplification. Tropospheric-deep error amplification occurs due to differences
in the release of baroclinic instability when the PV and θ errors near the tropopause and
near the surface, respectively, establish a favorable configuration for baroclinic growth (see
Sec. 3.3.2, Fig. 3.4g and h). The divergence error amplification can be related to a misrep-
resentation of surface cyclones and their associated divergent outflow in warm conveyor belts
(not shown).
To gain insight into the processes governing underlying Rossby wave evolution, we evaluate
an analogue tendency equation for the enstrophy evolution as derived in Baumgart et al.
(2018) (their Sec. 4c). The enstrophy evolution in our simulation (averaged over all cases and
members, Fig. 3.8c) is governed by enstrophy amplification by the nonconservative, diver-
gence, and tropospheric-deep contribution, while the near-tropopause contribution is weakly
negative. After the enstrophy error reaches the scale of individual Rossby wave troughs and
ridges (around day 15), the processes governing the error evolution are thus very similar to
the processes governing the underlying Rossby wave evolution. The magnitude of the indi-
vidual error-tendency contributions is about twice as large as the magnitude of the respective
enstrophy-tendency contributions, which is consistent with the double penalty effect of phase
errors during error saturation. In this stage, the processes governing the error growth thus
resemble the climatological signal of the underlying Rossby wave evolution.
From Fig. 3.8c it is clear that the sum of all contributions to enstrophy growth is positive,
suggesting that enstrophy would grow during the whole simulation time. Such continuous
growth, however, is not physically meaningful as the Rossby wave amplitude is, on average,
not amplifying with time. Rossby wave patterns amplify by (moist) baroclinic instability and
dissipate at a similar rate by (barotropic) dissipation on the small scales due to the downscale
cascade of enstrophy. In numerical weather prediction models, this dissipation appears as
numerical diffusion, which is an additional enstrophy sink that cannot be quantified with the
available data. The residual in the enstrophy tendency is about −2 × 10−6 PVU2 s−1 and
almost constant over time (not shown). A negative residual exists also in the enstrophy-error
tendency. This residual increases in magnitude from day 2 to 15, until it reaches an almost
constant value of about −4 × 10−6 PVU2 s−1 after day 15 (not shown). This value is about
twice as large as the residual in the enstrophy tendency, consistent with the observed double
penalty effect of phase errors during error saturation. The important role of dissipation was
also discussed in previous studies (Snyder et al., 2003; Zhang et al., 2007; Saffin et al., 2016,
2017; Baumgart et al., 2018). For instance, Zhang et al. (2007) quantified the contribution
of horizontal and vertical diffusion to their difference kinetic energy budget and found that
this kind of dissipation is of similar relative importance to the error evolution as the residual
observed in the current study.
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3.4.4 Spatial distribution of the envelope error

The spatial distribution of the squared envelope error, (∆E)2/2, at day 5, 10, 15, and 20
is shown in Fig. 3.9. At day 5, the envelope error appears still very localized and small in
magnitude. At day 10 (Fig. 3.9b), two distinct error regions are found around 120 − 90◦W
and around 30◦W. By day 15 (Fig. 3.9c), large error amplification occurs in the Western
Hemisphere: an extended region of large error is found around 150 − 110◦W and secondary
maxima are found around 180◦ and over an “error belt” extending from North America towards
Europe. Between day 15 and 20 (Fig. 3.9c and d), error growth continues further both in
magnitude and in its spatial extension. At day 20 (Fig. 3.9d), the error affects almost the
whole mid-to-high latitudes of the Northern Hemisphere. At this stage, the predictability
time in the envelope diagnostic is already reached (see Sec. 3.4.1, Fig. 3.6b).
From Fig. 3.9 it is evident that the envelope error tends to appear and amplify more in the
western portion of the Northern Hemisphere, whereas in the eastern portion its magnitude is
lower and its spatial extent more confined. This difference may be due to the fact that in our
cases the Rossby wave amplitude was, in general, weaker in the eastern than in the western
Northern Hemisphere.

3.4.5 Comparison with the conceptual three-stage error growth model

Our quantitative results from the PV- and envelope-based diagnostic reveal that upscale error
growth can be divided into distinct stages based on the processes governing the error growth
(as indicated by the vertical lines in Fig. 3.6). In the first stage (0–12 h), differences in the
convection scheme dominate the error growth, while upper-tropospheric divergence dominates
in the second stage (0.5–2 days). In the third stage (2–14.5 days), near-tropopause dynamics
dominates the error growth. A fourth stage is found between 14.5 and 18 days, which is
characterized by the planetary-scale error growth in the envelope diagnostic. In the following,
we will compare these four stages with the conceptual three-stage error growth model derived
by Zhang et al. (2007).
Stage 1 of the conceptual model is characterized by error growth on the convective scale in
regions of moist convection (Zhang et al., 2007; Selz and Craig, 2015b; Judt, 2018). The
stochastic convective scheme in our study represents explicitly resulting variability by reshuf-
fling of the individual clouds.6 The net effect of this stage on the grid scale in the first few
hours of the simulations is dominated by differences in the diabatic PV modification from the
convection scheme.
In the conceptual model, stage 2 is related to the transitioning towards error growth on the
synoptic scale (Zhang et al., 2007; Selz and Craig, 2015b). In our simulations, the latent-
heating differences induced by the convection scheme project on differences in the vertical
motion and the associated upper-tropospheric divergent PV advection that appear within
regions of meso-scale ascent in the vicinity of cyclones. The transition is in our simulation

6Note that this is different from a deterministic convection scheme where the individual updrafts are not
simulated, but only the cloud distribution mean.
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a) b)

c) d)

Figure 3.9: Squared envelope error (∆E)2/2 averaged over the 12 cases and 10 member pairs
within each case at a) day 5, b) day 10, c) day 15, d) day 20.
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thus characterized by the divergent flow making a dominant contribution to the error growth.
Thereby, upper-tropospheric divergence provides an effective mechanism to project errors
from moist processes into the tropopause region.
The third stage in the conceptual model is related to error growth by the background baroclinic
instability (Zhang et al., 2007). Although our diagnostic shows that the underlying Rossby
wave evolution during this stage is governed by (moist) baroclinic amplification (Fig. 3.8c),
we find that the error growth is governed by differences in the nonlinear near-tropopause
dynamics (Fig. 3.8a). Our diagnostic thereby provides a new interpretation of the processes
governing the error growth during this stage and emphasize the importance to distinguish the
processes governing the underlying Rossby wave evolution from the processes governing the
error growth (see also Sec. 4c in Baumgart et al., 2018).
We find a fourth stage of the error growth between about 14.5 and 18 days when the pre-
dictability time is reached for the enstrophy error, but not for the envelope error. This fourth
stage could not be identified by Zhang et al. (2007) and Selz and Craig (2015b) because these
studies did not have a long enough lead time to identify this stage.7 The enstrophy error
maximizes when the phase of the individual troughs and ridges in the Rossby wave pattern
becomes decorrelated. The envelope diagnostic, instead, filters phase information and its
error can continue to grow beyond the saturation of phase errors. The fourth stage is thus
characterized by error growth from the synoptic scale of individual Rossby wave troughs and
ridges up to the planetary scale.
In summary, previous ideas of a multi-scale behavior of upscale error growth are confirmed
by our diagnostics. Furthermore, our results provide a novel interpretation of the governing
processes and suggest a fourth stage of upscale error growth.

3.5 Summary

This study provides a quantitative view on the processes governing upscale error growth. Em-
ploying the stochastic Plant-Craig convection scheme, global ICON simulations of real cases
are used to study upscale error growth induced by the convection scheme up to the plane-
tary scale (Selz, 2019). The use of a stochastic convection scheme enables us to represent
convective uncertainty and its upscale propagation at relatively low computational cost (Selz
and Craig, 2015a). Thereby, it is possible to simulate 12 cases each consisting of a 5 member
ensemble, in which the only difference between the ensemble members lies in the random seed
of the stochastic convection scheme.
We investigate upscale error growth with a PV diagnostic (Teubler and Riemer, 2016; Baum-
gart et al., 2018) that allows us to quantify the relative importance of individual processes to
error growth near the tropopause. The partitioning of the processes builds on the PV perspec-
tive for midlatitude dynamics and includes the influence of Rossby wave dynamics, baroclinic
growth, and moist processes. Additionally, we use a diagnostic for the (phase-filtered) enve-

7In addition, there are differences in the experimental setup (e.g., the f-plane approximation and the periodic
symmetry in the study of Zhang et al. (2007) or the limited domain size in Selz and Craig (2015b)).
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lope of Rossby waves based on local finite amplitude wave activity (Ghinassi et al., 2018) to
investigate error growth up to the planetary scale.
Based on the PV and envelope diagnostic, we find a distinct sequence of the processes govern-
ing upscale error growth: During the first 12 h, error growth is dominated by differences in
the convection scheme. This growth is related to differences in the direct PV modification by
diabatic processes resulting from their latent heating. Between 12 h and 2 days, the largest
contribution to error growth is related to upper-tropospheric divergence, which projects errors
from moist processes into the tropopause region. This divergence error growth is associated
with vertical-motion errors in regions of meso-scale ascent in the vicinity of cyclones that
result from the latent-heating differences. After 2 days, error amplification up to the syn-
optic scale is dominated by differences in the nonlinear near-tropopause dynamics. During
this stage, the dynamics of error amplification differ distinctly from the underlying dynamics,
which are that of the classical life cycle of moist baroclinic Rossby waves. The envelope diag-
nostic indicates that a fourth stage of the error growth exists between about day 14.5 and 18
when the predictability time in the PV diagnostic is reached, but when there is still some pre-
dictability in the envelope diagnostic. This stage is thus characterized by error growth from
the synoptic scale of individual Rossby wave troughs and ridges up to the planetary scale of
the (phase-filtered) wave envelope. The processes governing the error evolution during this
stage, as identified by the PV diagnostic, are basically indistinguishable from those governing
the Rossby wave evolution itself.
The results of our PV and envelope diagnostic confirm the existence of a multi-stage behavior
of upscale error growth as observed in previous studies (e.g., Zhang et al., 2007; Selz and Craig,
2015b; Judt, 2018). Importantly, new insight is gained into the processes that govern error
growth: By displacing the strong PV gradient associated with the tropopause, upper-level
divergence provides an effective way to project errors associated with moist processes directly
into the tropopause region. Subsequently, these errors amplify by nonlinear near-tropopause
dynamics (the importance of nonlinear dynamics was shown explicitly by Baumgart et al.,
2018). This notion is distinct from the projection of errors on differences in the release of baro-
clinic instability, which is in our simulations only of minor importance to the error growth
during this stage. Our results suggest an additional fourth stage of planetary-scale error
growth that was missing in the conceptual model of Zhang et al. (2007).
Due to the initial-condition and model errors contained in current state-of-the-art operational
weather prediction models, one can expect a different error-growth behavior in current opera-
tional forecasts than in the upscale error-growth simulations investigated here. For instance,
the error growth in a recently investigated operational case (Baumgart et al., 2018) did not
show the first two stages of upscale error growth that we found in the present study. By
contrast, it was dominated by differences in the (balanced) near-tropopause dynamics right
from the beginning. For the same data as investigated here, Selz (2019) calculated explic-
itly that the error level at day 3.5 of our upscale error-growth simulations corresponds to
the initial-condition uncertainty of the current ECMWF data assimilation system. Indeed,
at day 3.5 upscale error growth in our simulations is already in stage 3 (error growth by
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near-tropopause dynamics). These results provide evidence that the first two stages do not
dominate the error growth in operational forecasts. Nevertheless, stochastic perturbations
are necessary to increase the spread in current ensemble forecasting systems that would be
underdispersive otherwise. In that sense, upscale error growth is of practical importance to
current weather forecasts, albeit not as the dominant mechanism in an average sense. The
insight into the processes governing upscale error growth obtained in this study may help to
generate stochastic perturbations that effectively initiate an upscale error-growth cascade and
thereby help to increase spread in current ensemble forecasts.
An improved understanding of upscale error growth may also help to identify regions that are
prone to large error growth. As upscale error growth provides a rather effective mechanism to
seed an error into the tropopause region within 2 days, one can expect that localized errors
along the tropopause establish predominantly in regions with latent heat release below. The
dominant contribution of near-tropopause dynamics in the third stage of the error growth
suggests that these errors then further amplify along the dynamical tropopause, particularly
in regions with a highly distorted tropopause. In that sense, the results of this study point
to those regions where one can expect large forecast error growth and thus large forecast
uncertainty.
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Abstract

This study provides a process-based perspective on the amplification of forecast uncertainty
and forecast errors in ensemble forecasts. A case from the North Atlantic Waveguide and
Downstream Impact Experiment that exhibits large forecast uncertainty is analyzed. Two
aspects of the ensemble behaviour are considered: (a) the mean divergence of the ensemble
members, indicating the general amplification of forecast uncertainty, and (b) the divergence
of the best and worst members, indicating extremes in possible error-growth scenarios. To an-
alyze the amplification of forecast uncertainty, a tendency equation for the ensemble variance
of potential vorticity (PV) is derived and partitioned into the contributions from individual
processes. The amplification of PV variance is, on average for the midlatitudes of the North-
ern Hemisphere, dominated by near-tropopause dynamics. Locally, however, other processes
can dominate the variance amplification, for example, in the region where tropical storm Karl
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interacts with the Rossby-wave pattern during extratropical transition. In this region, the
variance amplification is dominated by upper-tropospheric divergence and tropospheric-deep
interaction and is thereby mostly related to (moist baroclinic) cyclone development. The
differences between the error growth in the best and worst ensemble members can, to a large
part, be attributed to differences in the representation of cut-off evolution around 3 days,
which subsequently amplifies substantially in the highly nonlinear region of the Rossby-wave
pattern until 5 days. In terms of the processes, the differences in error growth are dominated
by differences in the error growth by near-tropopause dynamics. The approach presented
provides flow-dependent insight into the dynamics of forecast uncertainty and forecast errors
and helps to understand better the different contributions of specific weather systems to the
medium-range amplification of ensemble spread.

4.1 Introduction

4.1.1 Flow-dependent forecast uncertainty

Ensemble forecasts have become an essential component of operational weather forecasts in the
past 25 years. Weather prediction has thereby changed from a deterministic to a probabilistic
approach, i.e., from providing a single forecast to providing an estimate of the uncertainty
associated with a forecast and of the range of possible future scenarios (e.g. Buizza, 2019).
On average, the forecast accuracy of ensemble forecasts has improved substantially over the
past decades (for the European Centre for Medium-Range Weather Forecasts (ECMWF) see,
e.g., Fig. 1a of Rodwell et al., 2018). In addition to forecast accuracy, forecast reliability is
a second important characteristic of the quality of an ensemble forecast. A forecast system
is reliable if the forecast distribution matches the observed frequency of occurrence. For a
reliable forecast system, the ensemble standard deviation should match the root-mean-square
error of the ensemble mean when averaged over many cases (as measured by the so-called
spread–error relationship, Leutbecher and Palmer, 2008). Considering the annual mean of
the spread-error relationship for the Northern Hemisphere, large improvements have been
achieved in the last decades, resulting in almost indistinguishable spread-error curves in 2014
(see, e.g., Fig. 1a of Rodwell et al., 2018).
Due to the chaotic nature of atmospheric flow and the associated sensitive dependence on
the initial conditions (Lorenz, 1963), atmospheric predictability exhibits a pronounced flow
dependence. A central aim of ensemble forecasts is to provide a reliable estimate of this
day-to-day variability of forecast uncertainty. On a day-to-day basis, and averaged over a
local domain, however, the spread-error relationship holds only partially (see, e.g., Fig. 1b
of Rodwell et al., 2018). While the spread-error relationship can never hold perfectly on a
day-to-day basis (Whitaker and Loughe, 1998), there is arguably still room for improvement
(e.g., Rodwell et al., 2018). In addition, a better understanding of the flow dependence of
atmospheric predictability and associated local forecast reliability may help to improve the
interpretation of ensemble forecasts.
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The design of ensemble perturbations to generate appropriate ensemble spread is a nontriv-
ial task and remains a major area of research (e.g., Bauer et al., 2015; Berner et al., 2017;
Buizza, 2019). Ensemble forecast systems account for both uncertainties in the initial condi-
tions and in the model formulation (Palmer and Hagedorn, 2006). At ECMWF, e.g., initial-
condition uncertainty is accounted for by ensemble data assimilation (EDA) in combination
with singular-vector perturbations, and model uncertainties by stochastically perturbed pa-
rameterization tendencies (ECMWF, 2018). There is, however, a wide range of approaches
used at different operational weather prediction centers (e.g., Buizza, 2019). An improved
understanding of the processes governing the amplification of ensemble spread is deemed im-
portant to design the best suitable ensemble perturbations.
Rodwell et al. (2018) presented an approach to study flow-dependent deficiencies in short-term
reliability using a budget equation of ensemble variance in observation space (Rodwell et al.,
2016). Deficiencies in short-term reliability could be identified for a composite of initial flow
type that is associated with large forecast uncertainty, highlighting the importance of moist
processes in mesoscale convective systems and in warm conveyor belts as sources for forecast
uncertainty. In addition, the authors used a (spatio-temporally filtered) growth rate for the
ensemble standard deviation of potential vorticity (PV) to highlight uncertainty growth that
projects on the synoptic scale.
The current study considers a PV framework also. The focus here, in contrast to Rodwell
et al. (2018), is not on identifying model deficiencies, but rather on quantitatively diagnosing
the processes governing the flow-dependent amplification of initially small ensemble pertur-
bations. Our PV framework builds on the PV perspective of midlatitude dynamics (Hoskins
et al., 1985) and provides a quantitative partitioning of the dynamics into individual pro-
cesses, including the influence of near-tropopause Rossby wave dynamics, baroclinic growth,
and moist processes. The PV framework has recently been applied to quantify the govern-
ing processes of Rossby wave packets (Piaget et al., 2015; Teubler and Riemer, 2016) and a
large-amplitude ridge (Schneidereit et al., 2017). The PV framework has been applied also to
a case study of error growth in an operational ECMWF forecast (Baumgart et al., 2018) and
to study upscale error growth in dedicated numerical experiments (Baumgart et al., 2019).
Applying this framework to an operational ensemble forecast using a tendency equation for
the ensemble variance of PV is a key novelty of this study. The current study focuses on the
medium-range amplification of forecast uncertainty. Notwithstanding the importance of the
short-range sources of forecast uncertainty, we emphasize that the amplification of forecast
errors is highly nonlinear, i.e., ensemble members with relatively small errors at short lead
times may have relatively large errors at medium-range lead times, and vice versa (illustrated
in Fig. 4.1, see discussion below).

4.1.2 A case of large forecast uncertainty

We analyze one case from the North Atlantic Waveguide and Downstream Impact Experiment
(NAWDEX, Schäfler et al., 2018), namely the extratropical transition of tropical storm Karl
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Figure 4.1: Error enstrophy of each ensemble member (spatially-averaged over the midlatitudes
of the Northern Hemisphere, 30–80◦N) as a function of forecast time. Thick lines denote error
enstrophy of the control forecast (gray), the best member (blue), and the worst member (red).

to Ex-Karl. This case was associated with large forecast uncertainty (Schäfler et al., 2018)
and the medium-range ensemble forecast showed very different developments for the interac-
tion between Ex-Karl and the waveguide with only a few ensemble members capturing this
interaction correctly (Kumpf et al., 2018). Here, the same ensemble forecast is investigated
as in Kumpf et al. (2018). Besides the extratropical transition of Karl in the North Atlantic,
the ensemble forecast indicates a second region of very large forecast uncertainty, which is
associated with the interaction of a cutoff and a high-amplitude ridge over North America.
A hemispheric perspective on the ensemble evolution is therefore provided first, before dis-
cussing important local differences from this hemispheric perspective in more detail.
To provide an overview of the ensemble evolution in our case, Fig. 4.1 shows error enstrophy of
each ensemble member (spatially-averaged over the midlatitudes of the Northern Hemisphere,
30–80◦N) as a function of forecast time. Error enstrophy is here defined as the squared PV
error, i.e. 1

2P
∗2 with P ∗ denoting the PV error. Note that error enstrophy is thus directly

related to a standard-error metric: the root-mean-square error. At initial time, error en-
strophy of the control forecast is close to zero, whereas the perturbed members start with
a notable error enstrophy that is of similar magnitude for each perturbed forecast.2 Error
enstrophy amplifies steadily for approximately 2 days, both in the perturbed forecasts and the
control forecast. The control forecast maintains the smallest error until 3 day. Around 2 days,
nonlinearities in the error growth become apparent also: some members with smaller error
exhibit larger error-growth rates than members with larger errors, i.e., there are prominent

2Note that the control forecast is at the same resolution as each member.
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intersections of the error curves of the individual members.
At the end of the period considered here (5 days), two ensemble members are distinct from
the rest of the ensemble member in terms of error enstrophy. One of the members (in the
following referred to as “worst member”) exhibits a substantially larger error than the other
ensemble members, whereas another member (“best member”) exhibits a substantially smaller
error than the other ensemble members. Interestingly, error enstrophy of the best and worst
member is very similar in the first 2.5 days with both members having a relatively small er-
ror. Afterwards, the worst member exhibits, however, much larger error growth than the best
member and the two members diverge prominently until they become the apparent outliers
of the ensemble at 5 days.
The comparison of the error growth of the individual ensemble members illustrates two main
aspects of interest: i) the mean divergence of the ensemble members indicating the general
amplification of forecast uncertainty and ii) the divergence of the best and worst member in-
dicating extremes in possible error-growth scenarios. These two aspects are discussed in more
detail in the following. Section 4.2 first describes the data and methods used to quantify the
amplification of forecast uncertainty and forecast errors. Then, we will discuss the amplifica-
tion of forecast uncertainty both from a hemispheric and a localized perspective (Sec. 4.3).
Subsequently, the error growth of the best and worst member will be compared in Sec. 4.4.
We will conclude with a summary and discussion of the results in Sec. 4.5.

4.2 Data and methods to quantify the amplification of forecast
uncertainty and forecast errors

4.2.1 Ensemble data

We use real-time data from the Atmospheric model Ensemble 15-day forecast (ENS) of
ECMWF with a 3 h-temporal resolution in the first 3 days and 6 h-resolution afterwards.
These data were archived manually on model levels in spectral space during the NAWDEX
campaign. Operationally archived data on pressure levels are not sufficient for our diagnostic
as the vertical resolution is too low. For the PV inversion, we interpolate the manually-
archived data to a 1◦x1◦-grid and from model to pressure levels from 900 to 100 hPa with a
grid distance of 50 hPa. For the further analysis, all variables are interpolated to isentropic
levels.
We analyze the ensemble forecast initialized on September 22, 2016 00 UTC. This case is
related to one of the observational highlights during the NAWDEX campaign, namely the
extratropical transition of Hurricane Karl, which was related to a heavy-precipitation event
in Norway (Schäfler et al., 2018; Kumpf et al., 2019). Forecasting this event was rather dif-
ficult as the evolution was very sensitive to uncertainties in the timing and location of the
interaction between Ex-Karl and the midlatitude waveguide (Schäfler et al., 2018). The en-
semble forecast investigated here shows very different developments of individual members in
the medium-range forecast of Ex-Karl (Kumpf et al., 2018). A few members capture correctly
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the interaction between Ex-Karl and the waveguide, whereas the majority of members show
a distinct error during the interaction (Kumpf et al., 2018).

4.2.2 Quantitative PV framework for the amplification of forecast uncertainty
and forecast errors

To attribute the evolution of forecast uncertainty to individual processes, we extend our
recently developed potential-vorticity diagnostic for error growth (Baumgart et al., 2018, 2019)
to the evolution of ensemble variance. In isentropic coordinates and the primitive-equations
framework, Ertel (1942) PV is defined as follows

P = −g∂θ
∂p

(ζθ + f) , (4.1)

where g is the gravitational acceleration, θ the potential temperature, p the pressure, ζθ the
vertical component of the isentropic relative vorticity, and f the Coriolis parameter. PV
changes locally due to advection and nonconservative processes

∂P

∂t
= −v · ∇θP + Nres. . (4.2)

Nonconservative tendencies from the parametrization schemes are not archived for ensemble
forecasts so the direct PV modification by nonconservative processes due to diabatic heating
and nonconservative momentum change, which is given by

N = θ̇
∂P

∂θ
+ P

∂θ̇

∂θ
− g∂θ

∂p

(
k× ∂v

∂θ

)
· ∇θ̇ − g∂θ

∂p
k · (∇× v̇) , (4.3)

is here interpreted as part of the residual Nres.3. The residual also includes the influence
of other processes that cannot be quantified even if the tendencies from all parameterization
schemes were available, such as numerical diffusion, analysis increments due to data assimila-
tion, and numerical inaccuracies due to the discretization and interpolation of data. Near the
tropopause, diabatic processes can play an important role for Rossby wave dynamics (e.g.,
Chagnon et al., 2013; Martínez-Alvarado et al., 2014). Relative to the advective tendencies,
however, the direct diabatic PV changes are only of second-order importance (Teubler and
Riemer, 2016). The impact of latent heat release is arguably most prominently communicated
to the tropopause region by the associated upper-tropospheric divergent outflow (e.g., Davis
et al., 1996; Teubler and Riemer, 2016) and furthermore by enhancing baroclinic coupling
(e.g., Gutowski et al., 1992). Both processes are included in the advective tendencies ana-
lyzed here. In addition, a case study of error growth in an operational ECMWF forecast
including nonconservative tendencies from the parameterization schemes (Baumgart et al.,
2018) clearly demonstrated that these nonconservative tendencies are negligible, even at very
short lead times. For the operational ensemble forecast investigated here, neglecting direct

3For convenience, we will denote the residual in all tendency equations as Nres., although the mathematical
forms of the terms in the respective tendency equation differ.
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diabatic tendencies is therefore not expected to affect the analysis.
The PV perspective has proven very helpful to gain insight into the dynamics of forecast er-
rors (e.g., Snyder et al., 2003; Davies and Didone, 2013; Baumgart et al., 2018). Based on the
difference between the PV tendency in the forecast and the analysis, Baumgart et al. (2018)
derived a tendency equation for error (potential) enstrophy

∂

∂t

P ∗2

2
= −P ∗v∗ · ∇θP −∇θ ·

(
P ∗2

2
(v∗ + v)

)
+
P ∗2

2
∇θ · (v∗ + v) + Nres. , (4.4)

where variables with index ∗ denote error fields (forecast – analysis) and variables without
index denote analysis fields. This equation will be used in Sec. 4.4 to quantify the differences
between the error growth in best and worst member, respectively.
Deriving a similar equation for the amplification of forecast uncertainty in ensemble forecasts
is a natural extension of our previous work. For that purpose, we use the ensemble variance
in PV as our metric for forecast uncertainty

VP :=
1

n− 1

n∑
i=1

(Pi − P )2 , (4.5)

where n describes the number of ensemble members (50 perturbed forecasts and 1 control
forecast in the ECMWF system) and P the ensemble-mean PV.
The local change of the PV variance can be written as

∂VP
∂t

=
2

n− 1

(
n∑
i=1

(Pi − P )
∂

∂t
(Pi − P )

)
=

2

n− 1

((
n∑
i=1

Pi
∂Pi
∂t

)
− nP ∂P

∂t

)
. (4.6)

For the second step in Eq. 4.6, we made use of the fact that the terms
∑n

i=1 P
∂P
∂t ,
∑n

i=1 P
∂Pi
∂t ,

and
∑n

i=1 Pi
∂P
∂t can be written as nP ∂P

∂t .
To gain further insight into the variance amplification, we insert the PV tendency of the
individual ensemble members

(
∂Pi
∂t = −vi · ∇Pi + Nresi

)
and of the ensemble mean

(
∂P
∂t =

− 1
n

∑n
i=1(vi · ∇Pi + Nresi)

)
into Eq. 4.6. By expressing Pi as the sum of the ensemble mean

value and the perturbation thereof (i.e., Pi = P + δPi with δ denoting the perturbation from
the ensemble mean) and rearranging and combining terms, Eq. 4.6 can be written as

∂VP
∂t

=
2

n− 1

[
−

n∑
i=1

δPivi · ∇P −
n∑
i=1

vi · ∇
(δPi)

2

2

]
+ Nres. . (4.7)

Using vi = v + δvi for the first term on the right-hand side together with noting that
−
∑n

i=1 δPiv · ∇P = −v · ∇P
∑n

i=1 δPi = 0 and using the chain rule for the second term
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finally leads to

∂VP
∂t

=
2

n− 1

[
−

n∑
i=1

δPiδvi · ∇P︸ ︷︷ ︸
nonlinear production term

−
n∑
i=1

∇ ·
(

(δPi)
2

2
vi

)
︸ ︷︷ ︸

flux term

+

n∑
i=1

(δPi)
2

2
∇ · vi︸ ︷︷ ︸

area change term

]
+ Nres. .

(4.8)
In analogy to the tendency equation for error enstrophy (Eq. 4.4), the first term on the right-
hand side of Eq. 4.8 can be interpreted as a nonlinear production term. The flux term (second
term in Eq. 4.8) merely redistributes variance and does not contribute to a global variance
amplification. The third term in Eq. 4.8 is associated with an area change of PV variance
due to the divergent flow. This term leads to variance amplification (decay) when the quasi-
horizontal flow is divergent (convergent).
By using vi = v + δvi, the flux and area-change term can be combined to −v · ∇Vp −

1
n−1

∑n
i=1 δvi ·∇(δPi)

2. Rodwell et al. (2018) used a similar form of an equation for ensemble
spread, but using standard deviation instead of variance. They derived a “material” derivative
for ensemble spread following the ensemble mean flow, which would correspond to the term
−v · ∇Vp in our diagnostic. For this study, we decided to use, instead, the local derivative of
PV variance as indicated in Eq. 4.8 to have an exact budget equation for PV variance. The
use of Eq. 4.8 has also the advantage that the second term can be interpreted as a boundary
term when spatially integrating over a specific domain.
To gain further insight into the processes governing the variance amplification, we use the
same partitioning of processes as in the previous work by Teubler and Riemer (2016) and
Baumgart et al. (2018, 2019). This partitioning is based on the PV perspective of midlatitude
dynamics (Hoskins et al., 1985). From this perspective, the evolution of PV anomalies near
the tropopause can be described by advective tendencies associated with 1) upper-level (near-
tropopause) dynamics, 2) mid-tropospheric PV anomalies and potential temperature anoma-
lies just above the boundary layer, and 3) upper-tropospheric divergent flow. The influence of
upper-level (near-tropopause) PV anomalies on the upper-level (near-tropopause) evolution
describes the influence of nonlinear Rossby wave dynamics (Hoskins et al., 1985) and will here
be referred to as the contribution from near-tropopause dynamics (index nTP). The influence
of lower-level anomalies on the upper-level evolution describes the influence of vertical inter-
action, including baroclinic instability (Eady, 1949; Hoskins et al., 1985; Heifetz et al., 2004),
and will here be referred to as tropospheric-deep interaction (index TPd). Upper-tropospheric
divergence (index div) can be associated with dry balanced dynamics and diabatic processes
(see, e.g., Chapter 6.4 in Holton and Hakim, 2013) and is of particular importance during ridge
building (Grams et al., 2011; Teubler and Riemer, 2016). Pronounced upper-tropospheric di-
vergence is often associated with latent heat release below (e.g. Davis et al., 1993; Riemer
et al., 2014; Quinting and Jones, 2016) and can usually be expected of larger importance to
Rossby wave dynamics than direct diabatic PV modification (e.g., Davis et al., 1993; Riemer
and Jones, 2010; Teubler and Riemer, 2016).
The technicalities of the flow partitioning are also the same as in Teubler and Riemer (2016)
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and Baumgart et al. (2018, 2019): We use a Helmholtz partitioning to separate the divergent
flow from the nondivergent flow following Lynch (1989). The nondivergent flow is further par-
titioned into those parts associated with upper- and lower-level PV anomalies, respectively,
using piecewise PV inversion (PPVI) under nonlinear balance (Charney, 1955) following Davis
and Emanuel (1991) and Davis (1992). PPVI is performed on the Northern Hemisphere from
25–85◦N and 850–150 hPa. Potential temperature anomalies at 875 and 125 hPa serve as
vertical boundary conditions for the inversion. Anomalies are defined as deviations from a
background state, which is here defined as the 30 day-temporal mean centered on September
23, 2016 00 UTC of the analysis. A mid-tropospheric pressure level (600 hPa) is used as
the separation level between upper- and lower-level anomalies. The flow partitioning yields
an uncertainty, vunc, due to the harmonic flow component, the uncertainty in the horizontal
boundary conditions, and nonlinearities of the the piecewise PV inversion. This uncertainty
is calculated as the difference between the wind field in the ECMWF data and the sum of the
near-tropopause, tropospheric-deep and divergent wind field. It is, in general, small and does
not affect the physical interpretation of the results.
In summary, our flow partitioning yields

v = vnTP + vTPd + vdiv + vunc . (4.9)

The flow partitioning is performed separately for each individual ensemble member and then
inserted into Eq. 4.8, yielding

∂VP
∂t

=
2

n− 1

[
−

n∑
i=1

δPi(δvi, nTP + δvi, TPd + δvi, div + δvi, unc) · ∇P︸ ︷︷ ︸
nonlinear production term

−
n∑
i=1

∇ ·
(

vi
(δPi)

2

2

)
︸ ︷︷ ︸

flux term

+

n∑
i=1

(δPi)
2

2
∇ · vi, div︸ ︷︷ ︸

area change term

]
+ Nres. . (4.10)

Note that the divergent wind contributes to both the nonlinear production term and to the
area change term. These two contributions will be considered together as the divergent
contribution in our discussion below. For a quantitative view on the relative importance of
the individual processes, we spatially integrate Eq. 4.10∫

A

∂VP
∂t

dA =
2

n− 1

[
−
∫
A

( n∑
i=1

δPi(δvi, nTP + δvi, TPd + δvi, div) · ∇P
)
dA

+

∫
A

( n∑
i=1

(δPi)
2

2
∇ · vi, div

)
dA

]
+ bnd. + unc. + Nres. , (4.11)

where dA = a2cosφdλdφ is the area element in spherical coordinates with Earth radius
a, longitude λ, and latitude φ. The uncertainty term unc. = − 2

n−1

∫
A

(∑n
i=1 δPiδvi, unc ·

∇P
)
dA describes the uncertainty of the flow partitioning, while the boundary term bnd.
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describes the contribution from the flux term, bnd. = 2
n−1

∫
A

(
−
∑n

i=1∇ · (vi
(δPi)

2

2 )
)
dA =

2
n−1

∮
S

(
−
∑n

i=1
(δPi)

2

2 vi · n
)
dS, where dS denotes the boundary of the area and n the normal

vector of the boundary pointing outward. The variance change observed between consecutive
time steps acts as an indication for the representativeness of our diagnostic and is calculated
by centered differences:4

obs. =

∫
A

∂VP
∂t

dA ≈
∫
A Vp(t+ ∆t)dA−

∫
A Vp(t−∆t)dA

2∆t
(4.12)

with ∆t being 3 h in the first 3 forecast days and 6 h afterwards. Eq. 4.11 thus provides a novel
diagnostic to quantify the relative importance of near-tropopause dynamics, tropospheric-deep
interaction, and upper-tropospheric divergence to the amplification of forecast uncertainty.

4.3 Quantitative view on the variance amplification

4.3.1 Synoptic overview and variance evolution

Before discussing the variance amplification in more detail, we provide a synoptic overview of
our case together with a description of the variance evolution (Fig. 4.2). The synoptic evo-
lution of our case is characterized by a large-amplitude Rossby wave pattern spanning from
(counter-clockwise) 180◦ to 60◦E (as seen by the blue and black contour denoting the 2 PVU-
surface of the analysis and the ensemble mean, respectively, in Fig. 4.2). Most interesting
for the Rossby wave evolution is the evolution of several ridges (labeled R1–R3 in Fig. 4.2).
At 2 days, a large-amplitude ridge exists around 150–75◦W (label R1). Its upstream trough
interacts with a cutoff around 110◦W (2–3 days, Fig. 4.2a and b) and completely reabsorbs
this cutoff shortly after 3 days (Fig. 4.2b). Ridge R1 is characterized by a large extension in
the meridional direction and a contraction in the zonal direction and thereby exhibits a highly
nonlinear evolution (Fig. 4.2c and d). Another ridge exists around 20◦W–10◦E (label R3),
which is characterized by ridge building between 2–3 days (Fig. 4.2a and b). This ridge
building was associated with the development of cyclone “Vladiana” (labeled V in Fig. 4.2),
which was another observational highlight during the NAWDEX period due to the occurrence
of pronounced warm-conveyor-belt ascent (Schäfler et al., 2018; Oertel et al., 2019). In the
following, ridge R3 is characterized by a large amplitude and a similar nonlinear evolution as
ridge R1, albeit its spatial extent is smaller than that of ridge R1 (Fig. 4.2c and d). In between
these larger-amplitude ridges, a smaller-amplitude ridge exists (label R2, Fig. 4.2). Between
4–5 days, this ridge is influenced by the interaction with Ex-Karl around 40◦W (labeled K in
Fig. 4.2), which leads to cyclonic wave-breaking of the ridge (as seen by the PV wrap up of
the analysis ridge around 4.5 days, blue contour in Fig. 4.2d).
The ensemble variance of PV, which we use as our metric for forecast uncertainty, is not
homogeneously distributed over the hemisphere (colored shading in Fig. 4.2), manifest of the
well-known flow dependence of forecast uncertainty (e.g., Palmer and Hagedorn, 2006; Rod-

4For the first and last time step, we use instead forward and backward differences, respectively.
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Figure 4.2: PV variance (colored shading in PVU2) on 325 K at a) 2 days, b) 3 days, c) 4 days,
and d) 4.5 days. The black and blue contour denote the 2 PVU contour (smoothed over a box
of 5x5 grid points using a mean filter) of the ensemble mean and the analysis, respectively. Gray
contours denote the ensemble mean of mean sea level pressure every 10 hPa (smoothed over a
box of 3x3 grid points using a mean filter). Labels refer to individual ridges (prefix R) and the
cyclones Vladiana (label V) and Ex-Karl (label K).
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well et al., 2018). PV variance maximizes, in general, along the dynamical tropopause and
exhibits a larger amplitude in the region of the Rossby wave pattern (counter-clockwise from
180◦–60◦E) than in the more zonally-oriented region of the tropopause. In the time range
investigated here, variance amplification occurs both in amplitude and in scale. Several local
maxima of variance amplification can be identified: i) the cutoff evolution and its reabsorption
by the waveguide around 2–3 days, ii) ridge-building events in association with cyclone devel-
opment, e.g., the ridge building of ridge R3 around 2–3 days, iii) highly nonlinear regimes of
the wave pattern, e.g., the large-amplitude ridge R1, and iv) the interaction between Ex-Karl
and ridge R2 around 4–5 days.

4.3.2 Individual contributions to variance amplification: spatial illustration

The previous subsection revealed several local maxima of variance amplification. To spatially
illustrate the mechanisms that govern this variance amplification, we partition the variance
tendency into the contributions of the individual processes as detailed in Sec. 4.2. Before look-
ing at these individual contributions, the representativeness of our diagnostic for the actual
variance amplification is assessed by comparing the advective variance tendency (right-hand
side of Eq. 4.8) with the observed variance tendency (left-hand side of Eq. 4.8 approximated
by centered differences) at two forecast lead times (2 and 4.5 days, Fig. 4.3). The observed
variance tendency is characterized by dipole patterns along the tropopause that are associ-
ated with an eastward displacement of PV variance. This displacement is consistent with
the eastward phase propagation of the Rossby wave anomalies, in which the maxima of PV
variance are located. In most of the dipole patterns, the positive part is larger than the
negative part, leading to an overall amplification of PV variance. The main patterns of the
observed variance tendency are captured well by the advective tendency both in terms of the
variance displacement and the overall variance amplification. The magnitude of the observed
variance tendency, however, is smaller than that of the advective tendency, in particular at
4.5 days. One reason for the smaller magnitude might be that the observed variance change
has to be approximated by centered differences of 3-h data for lead times smaller than 3 days
and 6-h data afterwards, which yields a smoothing and thereby a reduction of maxima and
minima of the observed tendency. There exists thus a physically meaningful explanation for
the differences between the observed and advective tendency.
To remove the dipole patterns that are only associated with a displacement of variance, but
not with a net amplification of variance, we exclude the flux term of Eq. 4.8 from our inves-
tigation as it is only associated with a redistribution of PV variance. The main pattern of
this net advective tendency (Figs. 4.4a and 4.5a) is no longer characterized by dipole patterns
as it was the case for the full advective tendency (Fig. 4.3b and d). Regions of variance am-
plification are thus much easier to identify. For the partitioning into the contributions from
individual processes (Eq. 4.10), we will thus only discuss the net advective tendency and drop
the prefix “net” for brevity.
At 2 days (Fig. 4.4), a large amplitude of the advective tendency is, in general, found within
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Figure 4.3: Comparison between the observed variance tendency (left-hand side of Eq. 4.8
approximated by centered differences in a and c) and the advective variance tendency (right-
hand side of Eq. 4.8 in b and d) on 325 K at 2 days (a and b) and 4.5 days (c and d). The colored
shading shows the respective variance tendency in 10−4 PVU2 s−1 and the black contour denotes
the 2 PVU contour (smoothed over a box of 5x5 grid points using a mean filter) of the ensemble
mean.



90 4 Processes governing the amplification of ensemble spread

a) b)

c) d)

   0 °

  30 ° E

  60 ° E

  90 ° E

 120 ° E

 150 ° E

 180 ° E

  30 ° W

  60 ° W

  90 ° W

 120 ° W

 150 ° W

-2  

-1.6

-0.8

-0.4

-0.2

0.2 

0.4 

0.8 

1.6 

2   

   0 °

  30 ° E

  60 ° E

  90 ° E

 120 ° E

 150 ° E

 180 ° E

  30 ° W

  60 ° W

  90 ° W

 120 ° W

 150 ° W

-1  

-0.8

-0.4

-0.2

-0.1

0.1 

0.2 

0.4 

0.8 

1   

   0 °

  30 ° E

  60 ° E

  90 ° E

 120 ° E

 150 ° E

 180 ° E

  30 ° W

  60 ° W

  90 ° W

 120 ° W

 150 ° W

-2  

-1.6

-0.8

-0.4

-0.2

0.2 

0.4 

0.8 

1.6 

2   

   0 °

  30 ° E

  60 ° E

  90 ° E

 120 ° E

 150 ° E

 180 ° E

  30 ° W

  60 ° W

  90 ° W

 120 ° W

 150 ° W

-2  

-1.6

-0.8

-0.4

-0.2

0.2 

0.4 

0.8 

1.6 

2   

Figure 4.4: Variance tendency (colored shading in 10−4 PVU2 s−1) on 325 K at 2 days by a)
full wind, b) near-tropopause wind, c) tropospheric-deep wind, and d) divergent wind. The black
contour denotes the 2 PVU contour (smoothed over a box of 5x5 grid points using a mean filter)
of the ensemble mean. The blue and green contours indicate the regions used for the localized
perspective on the variance amplification (Fig. 4.7a/b).

the Rossby wave pattern around 180◦–60◦E (counter-clockwise) with a particular large vari-
ance amplification on the western flanks of the ridges R1 and R3 around 130◦W and 20◦W,
respectively, and in the trough around 40◦E (Fig. 4.4a). The individual contributions to
this tendency are shown in Fig. 4.4b–d. The advective tendency is mostly dominated by the
near-tropopause tendency (Fig. 4.4b). This tendency is particularly large where the Rossby
wave pattern exhibits a large amplitude as, e.g, in ridge R1 around 120◦W or in the trough
around 40◦E. One region, in which not only the near-tropopause tendency makes a domi-
nating contribution to the variance amplification, is ridge R3 around 20◦W. This ridge is
characterized by ridge building in association with cyclone development (Fig. 4.2a and b)
and its variance amplification is largely governed by both the near-tropopause and divergent
tendency (Fig. 4.4b and d). Compared to the near-tropopause and divergent tendency, the
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tropospheric-deep tendency is much smaller in amplitude (Fig. 4.4c, note the different scale
of the associated colorbar).
At 4.5 days (Fig. 4.5), the variance tendency has become larger in scale than at 2 days and
now exhibits a large amplitude almost everywhere along the dynamical tropopause. The large-
amplitude ridge R1 (120–60◦W) is still associated with large variance amplification (Fig. 4.5a).
Another region that exhibits large variance amplification is the smaller-amplitude ridge R2
where Ex-Karl interacts with the Rossby wave pattern around 40◦W. The processes that
govern the variance amplification in the two ridges are distinct: While the near-tropopause
tendency dominates the variance amplification in the large-amplitude ridge R1, it cannot ex-
plain the variance amplification in the smaller-amplitude ridge R2 (Fig. 4.5b). In this ridge,
the divergent and tropospheric-deep tendency make dominating contributions to the variance
amplification (Fig. 4.5c and d), which suggests that the variance amplification in this ridge
is mostly related to the (moist baroclinic) cyclone development of Ex-Karl. A locally dom-
inating contribution from the tropospheric-deep and divergent tendency is also found in the
smaller-amplitude ridge around 130◦W. The main pattern of the advective tendency, how-
ever, is dominated by the near-tropopause tendency as at 2 days. Interestingly, the variance
tendency in ridge R3 (around 10–40◦W), which was dominated by the divergent tendency at
2 days (Fig. 4.4), is now dominated by the near-tropopause tendency, indicating a multi-stage
behaviour of variance amplification as it was observed for upscale error growth (Baumgart
et al., 2019).
From the previous discussion it is evident that the variance tendency is in most regions dom-
inated by the near-tropopause tendency, but that there are also localized regions, in which
other processes dominate the variance tendency. In the following two subsections, we will
thus quantify the variance amplification both from a hemispheric-averaged perspective for
the midlatitudes of the Northern Hemisphere and from a local perspective for contrasting re-
gions exhibiting i) large near-tropopause variance amplification and ii) large divergent and/or
tropospheric-deep variance amplification.

4.3.3 Hemispheric variance amplification

For a quantitative perspective on the hemispheric-averaged variance amplification, Fig. 4.6
shows the spatially-averaged variance amplification for the midlatitudes of the Northern Hemi-
sphere (30–80◦N) and its partitioning into the individual processes (Eq. 4.11) as a function of
lead time. The observed variance tendency (as approximated by centered differences, Eq. 4.12)
is mostly increasing with lead time until around 4.5 days and then mostly decreasing until it is
almost zero after around 8 days. A particular large growth of the observed tendency is found
in the first 1.5 days and between 3.5 and 4.5 days. Between these two periods (day 1.5–3.5),
the observed tendency is almost constant. The initially large variance amplification might be
related to the singular-vector approach at ECMWF that maximizes the growth of ensemble
perturbations in the first 2 days, whereas the later nonhomogeneous growth of the observed
tendency points to a flow dependence of the variance amplification with a period of lower
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Figure 4.5: Variance tendency (colored shading in 10−4 PVU2 s−1) on 325 K at 4.5 days by a)
full wind, b) near-tropopause wind, c) tropospheric-deep wind, and d) divergent wind. The black
contour denotes the 2 PVU contour (smoothed over a box of 5x5 grid points using a mean filter)
of the ensemble mean. The blue and green contours indicate the regions used for the localized
perspective on the variance amplification (Fig. 4.7c/d).
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Figure 4.6: Individual contributions (colored lines) to the variance tendency (spatially-averaged
over the midlatitudes of the Northern Hemisphere, 30–80◦N) on the 325-K surface as indicated
by Eq. 4.11 as a function of forecast time. The observed tendency is approximated by centered
differences in time of the spatially-averaged variance (obs. in Eq. 4.12). The shading next to the
near-tropopause and tropospheric-deep tendencies indicates the uncertainty of the result due to
the uncertainty of PPVI (unc. in Eq. 4.11).

predictability and thus larger variance amplification between 3.5 and 4.5 days.
Our diagnostic yields a residual, which increases in magnitude in the first 2 days and is then
almost constant at a value of around −3× 10−6 PVU2 s−1. This residual is related to those
processes that cannot be measured with the available data (see Sec. 4.2). Based on the re-
sults of Baumgart et al. (2018), dissipation can be expected to make a dominant negative
contribution. Dissipation yields a smoothing of small-scale PV features in association with
the downscale cascade of enstrophy. In this way, dissipation also leads to a smoothing of the
PV variance associated with small-scale PV features and thereby provides a variance sink that
explains the negative residual observed in Fig. 4.6. This important role of dissipation was
also discussed in further previous studies (e.g., Zhang et al., 2007; Saffin et al., 2016, 2017;
Baumgart et al., 2019).
The near-tropopause tendency clearly dominates the hemispheric variance amplification. This
tendency makes the by far largest contribution to the observed variance tendency in the first
7 days and its general time evolution corresponds well with that of the observed variance
tendency. In the first two days, the near-tropopause tendency increases almost linearly with
lead time, suggesting that the singular-vector approach, which maximizes the perturbation
growth in the first 2 days, projects most strongly onto the near-tropopause tendency.
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The divergent tendency is almost as large as the near-tropopause tendency at the first time
step, but much smaller afterwards. This small importance suggests that the divergent vari-
ance amplification observed in the spatial maps (Fig. 4.4d and 4.5d) is only important in a
localized sense, but not in a hemispheric sense. Interestingly, the divergent tendency shows
a small peak around 4–4.5 days, which corresponds to the time when Ex-Karl interacts with
the waveguide.
The tropospheric-deep tendency is small in the first 4 days. Afterwards, it increases slowly
and becomes larger than the near-tropopause tendency after 7 days when the near-tropopause
tendency is small. This slow increase of the tropospheric-deep tendency suggests that the
tropospheric-deep variance amplification depends on the horizontal scale of the potential-
temperature uncertainty at the lower boundary (875 hPa), which has to become large enough
in scale to vertically penetrate up to the tropopause region. Such a scale dependence would
be consistent with the scale dependence found for error growth in the Eady (1949) model
(Baumgart et al., 2018).

4.3.4 Variance amplification in localized regions

The hemispheric variance amplification investigated in the previous subsection was dominated
by near-tropopause dynamics (Fig. 4.6). In the spatial maps (Figs. 4.4 and 4.5), we found,
however, that in localized regions the variance amplification can be dominated by other pro-
cesses. In the following, we will thus consider the two time steps used for the spatial maps (2
and 4.5 days) and quantify the variance amplification for two localized regions at each time
step that exhibit different characteristics in terms of the processes governing the variance
amplification. The localized regions of variance amplification are chosen by a threshold of the
smoothed advective tendency (> 0.2 × 10−4 PVU2 s−1, smoothing is performed over a box
of 5x5 grid points using a mean filter). These integration regions are indicated by the blue
contours in Figs. 4.4 and 4.5.
At 2 days, there are two localized regions of variance amplification that exhibit different
characteristics in terms of the processes, the large-amplitude ridge R1 around 150–75◦W and
the smaller-amplitude ridge R3 around 20–0◦W (Fig. 4.4). From a quantitative perspective,
the variance amplification in the large-amplitude ridge is dominated by the near-tropopause
tendency, which contributes about 90% to the advective variance amplification (Fig. 4.7a).
The variance amplification in the smaller-amplitude ridge, instead, is dominated by upper-
tropospheric divergence, which contributes about two thirds to the advective variance ampli-
fication (Fig. 4.7b).
At 4.5 days, there are again two localized regions of variance amplification that exhibit differ-
ent characteristics in terms of the processes, the large-amplitude ridge R1 around 120–60◦W,
which was also investigated at 2 days, and the smaller-amplitude ridge R2 around 45–15◦W
(Fig. 4.5). In the large-amplitude ridge, the largest contribution to the variance amplification
is again given by the near-tropopause tendency (almost 100% of the full advective amplifica-
tion, Fig. 4.7c). In the small-amplitude ridge, instead, the near-tropopause tendency makes
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Figure 4.7: Individual contributions (colored bars) to the variance tendency on the 325-K surface.
The variance tendency is averaged over localized regions of variance amplification: a) in the
flanks of large-amplitude ridge R1 around 150–75◦W at day 2 (integration area indicated by blue
contours in Fig. 4.4), b) on the western flank of the smaller-amplitude ridge R3 around 20–0◦ at
day 2 (green contour in Fig. 4.4), c) in the flanks of large-amplitude ridge R1 around 120–60◦W
at day 4.5 (blue contours in Fig. 4.5), and d) in the smaller-amplitude ridge R2 around 45–15◦W
at day 4.5 (green contour in Fig. 4.5).

only a very small contribution to the variance amplification (about 1% of the full advective
amplification, Fig. 4.7d). In this ridge, the variance amplification is largely governed by the
divergent tendency (almost 50% of the full advective amplification) and the tropospheric-deep
tendency (about 25% of the full advective amplification).5

This comparison of localized variance amplification shows that there can be large flow-
dependent differences in the processes that govern variance amplification. The large im-
portance of near-tropopause dynamics in the large-amplitude ridge R1 at 2 and 4.5 days
suggests that this contribution is particularly large when the flow is highly nonlinear. The
large importance of the divergent and tropospheric-deep tendency in the smaller-amplitude
ridges R2 and R3, in which ridge building occurs in association with cyclone development,
instead, suggests that the variance amplification during the earlier phase of ridge building is

5Note that there is also a large uncertainty of the piecewise PV inversion (about 25% of the full advective
amplification), which could be attributed to both the near-tropopause and the tropospheric-deep tendency.
The general observation that the near-tropopause tendency does not make the largest contribution to the
variance amplification, however, holds even when the whole uncertainty of the diagnostic is attributed to the
near-tropopause tendency.
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Figure 4.8: Difference between error enstrophy of the worst and best member on 325 K (spatially-
averaged over the midlatitudes of the Northern Hemisphere, 30–80◦N, black line) partitioned
into the contribution from individual segments of the hemisphere with each segment spanning a
longitude range of 90◦ (colored lines).

mainly related to uncertainties in the development of the respective cyclones both in terms
of the associated warm conveyor belt and divergent outflow (large divergent contribution at
2 and 4.5 days) and in terms of the associated baroclinic growth (large tropospheric-deep
contribution at 4.5 days).

4.4 Comparison between the error growth in the best and worst
member

As noted in the introduction, two members are distinct from the rest of the ensemble mem-
bers at 5 days in terms of error enstrophy being exceptionally small and large, respectively
(Fig. 4.1). In addition to our analysis of variance amplification (Sec. 4.3), which provides a
mean picture about the divergence of ensemble members, it is also interesting to analyze the
divergence of these two individual members that are associated with the largest differences
in error enstrophy of the ensemble. This section thus investigates in more detail the mecha-
nisms leading to the pronounced differences in the error evolution of the two members.
The difference between the hemispheric error enstrophy of the worst and best members is
shown in Fig. 4.8 (black line) as a function of forecast time. In the first 2.5 days, this differ-
ence is small, but increases prominently afterwards, until the two members become the best
and worst member of the ensemble at 5 days (Fig. 4.1). To gain insight into the origin of
this large difference in the hemispheric error enstrophy of the two members, the hemisphere
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Figure 4.9: Comparison between the PV error (colored shading in PVU) in the best member
(member 9 in a and c) and worst member (member 18 in b and d) on 325 K at 3 days (a and b)
and 4.5 days (c and d). The solid (dashed) black contour denote the 2 PVU contour (smoothed
over a box of 5x5 grid points using a mean filter) of the analysis (respective ensemble member).
The blue lines indicate the regions used for the partitioning of error-enstrophy difference between
the worst and best member in Fig. 4.8.
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is split into four quadrants and the difference in error enstrophy is calculated separately for
each quadrant (colored lines in Fig. 4.8). From this partitioning it is evident that all four
quadrants contribute in a similar way to the hemispheric error-enstrophy difference between
2.5 and 4 days. Between 4–5 days, however, the western quadrant contributes much more
strongly to the hemispheric error-enstrophy difference than the other three quadrants. Fi-
nally, this quadrant contributes more than 50% to the hemispheric error-enstrophy difference
at 5 days, whereas the other three quadrants contribute individually only 13–18%.
Comparing spatial maps of the PV error of the best and worst member (Fig. 4.9) reveals that
the large error-enstrophy difference in the western quadrant is mostly related to the highly
nonlinear region of the wave pattern (120–60◦W). At 4.5 days (Fig. 4.9c and d), this region is
captured rather well by the best member, while the worst member exhibits large errors that
are related to both the phase and the shape of the wave pattern. This difference in the error
pattern can be traced back in time (a manual error tracking is applied as in Magnusson, 2017)
to around 3 days when the cutoff interacts with the Rossby wave pattern (around 110◦W,
Fig. 4.9a and b). The worst member exhibits a distinct phase error in the trough that interacts
with the cutoff, whereas the error of the best member is small in this region. This difference
between the error pattern of the two members then amplifies largely in the highly nonlinear
region of the wave pattern, leading to the pronounced differences in the error pattern around
4–5 days (Fig. 4.9c and d). The important role of a misrepresented cutoff evolution leading
to large error growth in the further evolution was also discussed by Grams et al. (2018) for a
forecast-bust event in March 2016.
For a quantitative and process-based perspective on the error-growth differences between
the best and worst member, Fig. 4.10 compares the spatially-averaged error-enstrophy ten-
dency (Eq. 4.4) in the midlatitudes of the Northern Hemisphere (30–80◦N) for both members
together with its partitioning into the contribution from individual processes. In the first
2.5 days, the error tendency of the best and worst member is rather similar in terms of the
observed error-tendency magnitude, consistent with the fact that error enstrophy of the two
members first diverges after 2.5 days (Figs. 4.1 and 4.8). During this time, the error growth
of the two members is also similar in terms of the processes governing the error growth with
the near-tropopause tendency dominating the error growth in both members.
Around 2.5 days, the best member shows a distinct drop in the observed error tendency with a
magnitude around zero between 2.5–2.75 days. The error tendency in the worst member does
not show such a distinct drop, but instead increases largely with forecast time, starting from
a tendency of about 0.3× 10−5 PVU2 s−1 around day 2.5 and ending at a tendency of about
1.3 × 10−5 PVU2 s−1 between 4–5 days. A particularly large error growth is found between
4–5 days, which corresponds to the time when the error in the worst member becomes much
larger than that of all other ensemble member (Fig. 4.1). Between 4–5 days, the observed
error tendency of the best member is only about 0.5× 10−5 PVU2 s−1 and thereby less than
half of that of the worst member.
In terms of the processes, the difference between the error growth in the best and worst mem-
ber can be mostly attributed to the near-tropopause tendency. While the near-tropopause
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tendency between 2.5–5 days is about 0.4× 10−5 PVU2 s−1 for the best member, it is about
1.4×10−5 PVU2 s−1 for the worst member. The magnitude of the divergent tendency, instead,
is very similar and both the best and worst member show a modest maximum around 4.5 days
when Ex-Karl interacts with the waveguide. Between 2.5 and 5 days, the tropospheric-deep
tendency is positive for the best member, whereas it is negative for the worst member. This
tendency, however, is much smaller than the near-tropopause tendency and thus not of large
importance to the error-growth differences between the two members. Baumgart et al. (2018)
showed that the near-tropopause error tendency is mostly related to differences in the nonlin-
ear Rossby wave dynamics. The large importance of near-tropopause tendency to the error-
growth differences between the best and worst member is thus consistent with the observation
that the largest differences between the best and worst member occur in the western quadrant
of the hemisphere where the Rossby wave pattern is highly nonlinear (Figs. 4.8 and 4.9).

4.5 Summary and discussion

This study provides a quantitative framework to investigate the processes governing the ampli-
fication of forecast uncertainty and forecast errors in ensemble forecasts. A tendency equation
for the ensemble variance of PV is derived and partitioned into the contributions from indi-
vidual processes. The framework is applied to a case from the North Atlantic Waveguide
and Downstream Impact Experiment, namely the interaction of tropical storm Karl and the
Rossby wave pattern during extratropical transition. In the medium range, this interaction
was associated with large forecast uncertainty (Schäfler et al., 2018) and only a few members
captured the evolution correctly (Kumpf et al., 2018). Here, the same ensemble forecast is
investigated as in Kumpf et al. (2018). We focus, however, not only on the region of Ex-Karl,
but provide a hemispheric perspective on the ensemble evolution, before local differences, in-
cluding the evolution of Ex-Karl, are highlighted. Two aspects of the ensemble behaviour are
our main interests: i) the mean divergence of the ensemble members indicating the general
amplification of forecast uncertainty and ii) the divergence of the best and worst member
indicating extremes in possible error-growth scenarios.
The synoptic evolution of our case is characterized by a large-amplitude Rossby wave pattern
spanning from (counter-clockwise) 180◦ to 60◦E. This Rossby wave pattern is, in general, asso-
ciated with larger PV variance than the other part of the hemisphere, in which the tropopause
is more zonally oriented. Several local maxima of PV variance exist, including a cutoff, a large-
amplitude ridge, a ridge-building event, and the interaction between Ex-Karl and the strong
midlatitude PV gradient. The variance amplification is, on average for the midlatitudes of
the Northern Hemisphere, dominated by near-tropopause dynamics. This contribution is par-
ticularly large in highly nonlinear regions of the wave pattern as, e.g, in the large-amplitude
ridge around 120–60◦W. Locally, however, the variance amplification can also be dominated
by other processes. One prominent example is the region in which Ex-Karl interacts with the
Rossby wave pattern around 4.5 days lead time. In this region, the variance amplification is
dominated by upper-tropospheric divergence and tropospheric-deep interaction and is thereby
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Figure 4.10: Individual contributions (colored lines) to error-enstrophy tendency (spatially-
averaged over the midlatitudes of the Northern Hemisphere, 30–80◦N) on the 325-K surface as
indicated by Eq. 4.4 as a function of forecast time for a) best member (member 9), and b)
worst member (member 18). The observed tendency is approximated by centered differences in
time of the spatially-averaged error enstrophy. The shading next to the near-tropopause and
tropospheric-deep tendencies indicates the uncertainty of the result due to the uncertainty of
PPVI.



4.5 Summary and discussion 101

mostly related to uncertainties in the (moist baroclinic) cyclone development.
The differences between the error growth in the best and worst member can, to a large part,
be attributed to the highly nonlinear evolution of the large-amplitude ridge around 120–60◦W.
Around 4–5 days, this region is captured well by the best member, whereas the worst member
exhibits large errors associated with both the phase and the shape of the wave pattern. This
different error pattern can be traced back in time until 3 days when a cutoff interacts with
the upstream trough. During this interaction, the worst member is characterized by a distinct
phase error, which largely amplifies in the highly nonlinear region of the wave pattern until
5 days. In terms of the processes, the differences in error growth between the two members are
dominated by differences in the error growth by near-tropopause dynamics, which manifests
the large importance of nonlinear Rossby wave dynamics.
The large importance of near-tropopause dynamics to the variance amplification and the
error-growth differences between the best and worst member is consistent with the large
importance of near-tropopause dynamics found in a recent case study of error growth in a
deterministic ECMWF operational forecast (Baumgart et al., 2018) and in numerical error-
growth experiments (Baumgart et al., 2019). In the current study, however, we identify also
distinct local differences in the variance amplification as, e.g., in the region of Ex-Karl. In
addition, the large (hemispherically-averaged) error-growth differences between the best and
worst ensemble member around 5 days could be linked to a specific local event, namely the
cutoff interaction around 2–3 days. The presented approach is thus able to identify flow fea-
tures that are of large importance for the amplification of ensemble spread. Because both
the interaction of Ex-Karl and of the cutoff with the strong midlatitude PV gradient can be
interpreted as vortex-wave interactions, we speculate that such interactions are particularly
sensitive to perturbations and are therefore prominent “amplifiers” of uncertainty in medium-
range forecasts.
To extend our case study, future work could apply the presented approach in a more systematic
way, e.g., to the trough/CAPE-type flow situations identifed by Rodwell et al. (2013, 2018)
as associated with increased forecast uncertainty in the medium range. Rodwell et al. (2018)
demonstrated that there are deficiencies in the short-range reliability associated with this
flow situation by investigating a budget equation of ensemble variance in observation space.
Complementary, our approach is able to identify the processes governing the flow-dependent
amplification of ensemble spread in the medium range. As illustrated in Fig. 4.1, the am-
plification of forecast errors and forecast uncertainty can be highly nonlinear in the sense
that ensemble members with relatively small errors at short lead times may have relatively
large errors at medium-range lead times, and vice versa. Notwithstanding the importance of
the short-range sources of forecast uncertainty, a better understanding of the flow-dependent
nature of the medium-range amplification of forecast errors and forecast uncertainty (as also
highlighted in previous studies, e.g., Ferranti et al., 2014) is of importance for the design and
interpretation of ensemble forecasts also.
Even though the focus of this study is on the medium range, it is of interest to briefly con-
sider the evolution of ensemble spread in the short range also. During the first 1-2 days,
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the near-tropopause tendency dominates on average the amplification of PV variance. This
result is in contrast to results from upscale-error-growth simulations, in which the ensemble
members differ only in terms of the stochastic seed of the convection scheme (Selz, 2019). In
these simulations, error growth in the early phase of the simulations is dominated by moist
processes (Baumgart et al., 2019). This difference indicates i) that the ensemble perturba-
tions representing initial-condition uncertainty in the ECMWF operational system in 2016
project most strongly on the near-tropopause tendency and ii) that this initial-condition un-
certainty dominates on average over the (direct) generation of ensemble spread by processes
with low intrinsic predictability, most notably moist processes. The latter notion is consistent
with the lack of ensemble spread in low-predictability scenarios identified by Rodwell et al.
(2018). Extending the focus of our analysis to the spread evolution at short lead times in
low-predictability scenarios will require nonconservative-tendency data that are not available
in the archives of operational centres. Results from such an analysis, however, may yield
important insight into the deficiencies of flow-dependent reliability and may be of practical
relevance for the design of stochastic parameterization schemes.
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CHAPTER 5

Summary and outlook

This chapter provides a general summary and outlook of the results presented in Chapters 2–4,
which have been published in Baumgart et al. (2018)1, Baumgart et al. (2019)2, and Baum-
gart and Riemer (2019)3. A few phrases of this chapter coincide with phrases from these
publications.

5.1 Summary

This thesis provides novel insight into the dynamics of forecast errors and forecast uncer-
tainty by quantifying the relative importance of individual processes to the flow-dependent
amplification of forecast errors and forecast uncertainty. The focus of this thesis is on the
near-tropopause region of the midlatitudes, which is of particular importance to the evolution
of midlatitude weather systems and the evolution of PV errors.

Potential-vorticity framework

A PV framework is developed to quantify the relative importance of individual processes to
the amplification of forecast errors and forecast uncertainty. This PV framework builds on the
PV perspective of midlatitude dynamics and makes use of the three key characteristics of PV
(conservation, inversion, and attribution, Hoskins et al., 1985). Using the same partitioning
of processes as in a previous study on Rossby-wave dynamics (Teubler and Riemer, 2016),
we partition the contributions from four processes, namely 1) near-tropopause dynamics, 2)
tropospheric-deep interaction, 3) upper-tropospheric divergent flow, and 4) nonconservative
processes. The contribution of near-tropopause dynamics describes the influence of upper-
level anomalies on the upper-level evolution and is mostly related to nonlinear Rossby-wave

1 c© 2018 American Meteorological Society. Used with permission.
2 c© 2019 American Meteorological Society. Used with permission.
3 c© 2019 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons
Ltd on behalf of the Royal Meteorological Society. This article is available under the terms of the Creative
Commons Attribution License (CC BY), which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.



104 5 Summary and outlook

dynamics near the tropopause (e.g., Hoskins et al., 1985). The contribution of tropospheric-
deep interaction describes the influence of lower-level anomalies on the upper-level evolution
and thereby comprises the influence of vertical interaction, including the influence of baro-
clinic instability (Eady, 1949; Hoskins et al., 1985; Davis and Emanuel, 1991; Heifetz et al.,
2004). Upper-tropospheric divergent flow can be associated with dry dynamics and diabatic
processes (see, e.g., Holton and Hakim, 2013). For Rossby-wave dynamics, a strong divergent
contribution is often associated with latent-heat release below (Davis et al., 1993; Riemer
et al., 2014; Quinting and Jones, 2016). The contribution from nonconservative processes
describes the direct PV modification due to diabatic heating and nonconservative momen-
tum changes. This contribution is usually of smaller importance than the indirect diabatic
effect from upper-tropospheric divergence (e.g., Davis et al., 1996; Teubler and Riemer, 2016).
Following the ideas from Davies and Didone (2013), we derive a tendency equation for the
PV error and the ensemble variance of PV. We use these equations in combination with the
partitioning of processes to quantify the relative importance of individual processes to the
amplification of forecast errors and forecast uncertainty.

Error growth in an operational state-of-the-art deterministic forecast

In the first part of this thesis, we investigate the error growth in an operational state-of-the-art
deterministic forecast. To quantify the processes governing the amplification of forecast errors,
we derive a tendency equation for error-potential enstrophy, defined here as the squared PV
error, and partition it into the influence of individual processes. The PV-error growth of this
case is characterized first by localized error maxima that develop around 2 forecast days. These
maxima change into wave-like error patterns that reach the scale of individual Rossby-wave
anomalies until 6 forecast days. Error growth maximizes along the dynamical tropopause
and occurs most prominently within the Rossby-wave patterns in the Pacific and the At-
lantic, respectively. Our quantitative PV framework reveals that the error growth of this case
is clearly dominated by differences in the near-tropopause dynamics. This near-tropopause
error growth can almost entirely be related to the influence of nonlinear Rossby-wave dy-
namics. A large localized importance of upper-tropospheric divergence is found during two
ridge-building events in the Atlantic and the Pacific, respectively, when the development of a
cyclone and its associated warm conveyor belt is misrepresented in the forecast. Tropospheric-
deep interaction makes a large contribution to error growth in the Pacific-wave pattern around
4–5 forecast days. Otherwise, the impact of tropospheric-deep interaction and thereby baro-
clinic instability is small. Theoretical considerations with the Eady (1949) model provide a
plausible explanation for this small importance of baroclinic instability. The results from the
quantitative PV framework thus demonstrate that the meso-scale errors generated near the
tropopause do not primarily project on differences in the baroclinic instability as stated in
previous studies (e.g., Zhang et al., 2007). Instead, they amplify most prominently because
of differences in the nonlinear Rossby-wave dynamics.



5.1 Summary 105

Error growth in upscale error-growth simulations

In the second part of this thesis, we investigate upscale error growth from the grid scale up to
the planetary scale using global simulations with a stochastic convection scheme. Twelve cases
of real-case ensemble simulations are considered, in which the ensemble members differ only
in the random seed of the convection scheme (Selz, 2019). Using the PV framework, we find
a distinct sequence of the processes governing the upscale error growth near the tropopause
(as summarized in the schematic diagram in Fig. 5.1): In the first 12 h, error growth is
dominated by latent-heating differences induced from the convection scheme. Differences
in the upper-tropospheric divergence dominate the error growth in the following 1.5 days.
Upper-tropospheric divergence thus provides an effective mechanism to project an error from
moist processes into the tropopause region. After about 2 days, error growth is dominated
by differences in the nonlinear Rossby-wave dynamics. By comparing the results from the
PV framework with a framework that identifies the envelope of Rossby waves based on local
finite-amplitude wave activity (Ghinassi et al., 2018), a fourth stage of the error growth
can be identified between 14.5 and 18 days. During this stage, the error grows from the
synoptic scale of individual troughs and ridges up to the planetary scale of the Rossby-
wave envelope. Compared to a conceptual model for upscale error growth (Zhang et al.,
2007), our PV framework provides novel insight into the processes governing upscale error
growth. In particular, our quantitative results highlight the importance of differences in the
tropopause displacement induced by the upper-tropospheric divergent flow and the importance
of differences in the nonlinear Rossby-wave dynamics to upscale error growth.

Amplification of ensemble spread in an operational state-of-the-art forecast

In the third part of this thesis, we investigate the amplification of ensemble spread for an
operational forecast during the NAWDEX campaign that was associated with large forecast
uncertainty. The focus is on two aspects of the ensemble behavior: i) the mean divergence
of the ensemble members indicating the general amplification of forecast uncertainty and ii)
the divergence of the best and worst member indicating extremes in possible error-growth
scenarios. To quantify the processes governing the amplification of forecast uncertainty, we
derive a tendency equation for the ensemble variance of PV. Averaged over the midlatitudes
of the Northern Hemisphere, the variance amplification of this case is dominated by the con-
tribution of near-tropopause dynamics, which is particularly large in highly nonlinear regions
of the Rossby-wave pattern. Locally, however, there can be large differences in the variance
amplification as, for example, in the region where the extratropical transition of tropical storm
Karl interacts with the Rossby-wave pattern. In this region, the variance amplification is dom-
inated by upper-tropospheric divergence and tropospheric-deep interaction and thus mostly
related to the moist baroclinic cyclone development of Ex-Karl. The differences between the
error growth in the best and worst member can, to a large part, be attributed to the highly
nonlinear evolution of a large-amplitude ridge around 5 days, which is captured well by the
best member, while it is associated with large error growth in the worst member. These diffe-
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Figure 5.1: Schematic diagram illustrating the four stages of upscale error growth from a process-based perspective (see text for details).
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rences can be traced back in time until 3 days when a cutoff interacts with the upstream
trough. In terms of the processes, the error-growth differences can be mostly attributed to
differences in the error growth by near-tropopause dynamics. This study is thus able to
identify flow-dependent differences in the amplification of ensemble spread that result from,
e.g., the extratropical transition of a tropical storm or a cutoff reabsorption.

Synthesis of results

This thesis provides process-based insight into the amplification of forecast errors and forecast
uncertainty. This insight can be used to identify regions that are prone to a large amplifica-
tion of forecast errors and forecast uncertainty. Based on the result that the amplification of
forecast errors and forecast uncertainty in the operational forecasts is dominated by nonlinear
Rossby-wave dynamics near the tropopause, we hypothesize that the highly-nonlinear, large-
amplitude regions of the Rossby-wave pattern are most susceptible to rapid growth of forecast
errors and forecast uncertainty in current weather-prediction models. Baroclinic instability
and diabatic processes, including the indirect effect associated with upper-tropospheric di-
vergence, play important roles in setting up such large-amplitude Rossby-wave patterns and
can thus play important indirect roles for the amplification of forecast errors and forecast
uncertainty.
The results from the upscale error-growth simulations, on the other hand, can be used to
identify regions with low intrinsic predictability. As upper-tropospheric divergence provides
an effective mechanism to project errors from moist processes into the tropopause region, one
can expect that localized errors along the tropopause establish predominantly in regions with
latent-heat release below. The dominance of nonlinear Rossby-wave dynamics for the further
error growth suggests that the highly-nonlinear, large-amplitude regions of the Rossby-wave
pattern are most susceptible for the further error growth.
One of the areas, from which the largest benefits in numerical weather prediction have been
achieved over the past 25 years, represents the introduction of ensemble forecasts (e.g., Bauer
et al., 2015; Buizza, 2019). The central aim of ensemble forecasts is to provide an accurate and
reliable estimate of the future range of possible scenarios and of the uncertainty associated
with a forecast. Averaged over the Northern Hemisphere, the annual-mean forecast uncer-
tainty is now represented reasonably well at ECMWF (see, e.g., Fig. 1a of Rodwell et al.,
2018). On a day-to-day basis, ensemble forecasts, however, have still problems in represent-
ing forecast uncertainty (see, e.g., Fig. 1b of Rodwell et al., 2018). It is thus important to gain
a better understanding of the processes governing the amplification of forecast uncertainty.
The extension of our process-based PV framework from deterministic forecasts (Chapter 2)
to ensemble forecasts (Chapter 4) thus represents an important step to gain further insight
not only into the dynamics of forecast errors, but also into the dynamics of forecast uncer-
tainty. This insight might help to improve the representation of forecast uncertainty in future
ensemble-forecasting systems.
Using the PV framework, flow-dependent differences in the amplification of ensemble spread
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can be identified. For the ensemble forecast investigated in this thesis, the interaction of a
cutoff and of Ex-Karl with the strong midlatitude PV gradient are of large importance to
the amplification of ensemble spread, which suggests that vortex-wave interactions can act as
“amplifiers” for ensemble spread. The amplification of ensemble spread can be highly nonlin-
ear in the sense that ensemble members with relatively small error at short lead times can
have relatively large errors at medium-range lead times, and vice versa. In that sense, a bet-
ter understanding of the flow-dependent amplification of forecast uncertainty in the medium
range is important for the interpretation of ensemble forecasts.
The first two stages of upscale error growth do not occur as dominating error-growth mecha-
nisms in the operational forecasts. This result provides evidence that initial-condition errors
are, on average, still of larger importance to error growth in operational forecasts than errors
from moist processes with low intrinsic predictability. Nevertheless, stochastic perturbations
are necessary to increase the spread in current ensemble-forecasting systems that would be
underdispersive otherwise. The insight into upscale error growth obtained in this thesis can
thus be used to help designing suitable ensemble perturbations that effectively initiate an
upscale error-growth cascade.

5.2 Insight into research questions

In the following, the research questions raised in Sec. 1.4 will be repeated and answered based
on the results of this thesis.

1. Error growth in an operational state-of-the-art deterministic forecast

a) How can the PV perspective be used to quantify the processes governing the ampli-
fication of forecast errors?
Following Davies and Didone (2013), we derive an error-tendency equation based
on the difference between the PV tendency of the forecast and the analysis. Here,
we extend the work of Davies and Didone (2013) by providing not only a qualita-
tive, but also a quantitative view on the dynamics of forecast-error growth.
Using the same partitioning of processes as in a previous analysis of Rossby-wave
dynamics (Teubler and Riemer, 2016), we partition the error tendency into the con-
tributions from individual processes. We are thereby able to quantify the relative
importance of near-tropopause dynamics, tropospheric-deep interaction, upper-
tropospheric divergence, and nonconservative processes to the error growth near
the tropopause.

b) What are the most important processes governing the error growth in an operational
state-of-the-art forecast?
Averaged over the midlatitudes of the Northern Hemisphere, the operational fore-
cast analyzed in this thesis is dominated by differences in the nonlinear Rossby-
wave dynamics near the tropopause. Upper-tropospheric divergence can be of
large localized importance to the error growth in regions of a misrepresented cy-
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clone development, while the direct importance of tropospheric-deep interaction
(and thereby also baroclinic instability) is limited.

c) How can the error-growth mechanisms be explained from a theoretical perspective?
Theoretical considerations with the Eady (1949) model help to explain the limited
importance of baroclinic instability to the error growth in our case: A specific fa-
vorable configuration between the upper- and lower-level error pattern is needed
for baroclinic error growth to occur, which is in our case only observed over a lim-
ited region and duration. Another reason for the limited importance of baroclinic
instability is that the magnitude of baroclinic error growth increases with the spa-
tial scale of the error pattern, which is significantly smaller in our case than that
of anomalies governing baroclinic growth in the midlatitudes.
In our case, the by far largest error-growth contribution is given by near-tropopause
dynamics. A further separation of this contribution demonstrates that it is dom-
inated by differences in the nonlinear dynamics, while differences in the linear
dynamics are only of small importance to the error growth. For two example re-
gions, we illustrate schematically how such differences in the nonlinear Rossby-wave
dynamics lead to large error growth.

2. Error growth in upscale error-growth simulations

a) What are the most important processes governing upscale error growth from the
grid scale up to the planetary scale?
Using the PV framework, we quantify the processes governing the upscale error
growth in global simulations with a stochastic convection scheme: In the first 12 h,
upscale error growth is dominated by latent-heating differences induced from the
convection scheme. In the following 1.5 days, error growth is dominated by differ-
ences in the upper-tropospheric divergence, which provides an effective mechanism
to project an error from moist processes into the tropopause region. Afterwards,
error growth is dominated by differences in the nonlinear Rossby-wave dynamics
near the tropopause up to 14.5 days. Based on a diagnostic for the Rossby-wave
envelope (Ghinassi et al., 2018), error growth up to the planetary scale can be
identified until 18 days.

b) Are the quantitative results from the PV framework consistent with the conceptual
model for upscale error growth?
The results from the PV framework confirm the multi-stage behavior of upscale
error growth in the conceptual model as the error growth can be divided into
distinct stages based on the governing processes (see previous research question).
Compared to the conceptual model, our results, however, provide novel insight
into the processes governing upscale error growth, especially in the second and
third stage: In the second stage, the conceptual model assumes that differences
in the diabatic PV generation dominate the error growth, while our quantitative
results show that the error growth during this stage is dominated by differences
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in the displacement of the strong midlatitude PV gradient induced by the upper-
tropospheric divergent flow. In the third stage, the conceptual model relates error
growth to baroclinic instability, while our quantitative results show that the error
growth during this stage is dominated by differences in the near-tropopause dy-
namics. Furthermore, an additional fourth stage of planetary-scale error growth is
identified that was missing in the conceptual model.

c) Do the processes governing upscale error growth differ from the processes governing
the error growth in operational forecasts?
In the operational forecast investigated in this thesis, the first two stages of upscale
error growth do not occur. Instead, the error growth is dominated by differences
in the near-tropopause dynamics from the beginning. This result indicates that
errors in the initial conditions are still of larger importance to the error growth in
current state-of-the-art forecasting systems than errors from moist processes with
low intrinsic predictability. Nevertheless, stochastic perturbations are needed in
ensemble forecasting systems to increase ensemble spread. In that sense, upscale
error growth is also of practical importance to current weather forecasts, albeit not
as the dominating error-growth mechanism.

3. Amplification of ensemble spread in an operational state-of-the-art forecast

a) How can the PV perspective be used to quantify the processes governing the ampli-
fication of forecast uncertainty?
In this thesis, we derive a tendency equation for the ensemble variance of PV and
partition it into the contributions from individual processes to quantify the general
amplification of forecast uncertainty. Furthermore, the error growth of the ensem-
ble members with smallest and largest error growth is compared to indicate two
extremes in possible error-growth scenarios.

b) What are the most important processes governing the amplification of ensemble
spread in an operational state-of-the-art forecast?
Averaged over the midlatitudes of the Northern Hemisphere, the amplification of
ensemble variance is dominated by near-tropopause dynamics. For two localized
regions, in which ridge building occurs in association with a cyclone development,
we show, however, that the variance amplification can also be dominated by other
processes, namely upper-tropospheric divergence and/or tropospheric-deep interac-
tion. The differences between the error growth in the best and the worst member
can, to a large part, be attributed to differences in the error growth by near-
tropopause dynamics, which can be traced back to differences in the representation
of a cutoff reabsorption.

c) Are there flow-dependent differences in the amplification of ensemble spread?
Distinct flow-dependent differences in the amplification of ensemble spread are
highlighted in this thesis. Prominent examples include the interaction of the ex-
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tratropical transition of tropical storm Karl with the Rossby-wave pattern, in which
the variance amplification is related to the moist baroclinic cyclone development,
and the representation of a cutoff reabsorption, which leads to the large error-
growth differences between the best and the worst member, respectively. Flow
features that are particularly prone to a large amplification of ensemble spread can
thus be identified.

5.3 Outlook

A wide range of ideas for future research arises from the work of this thesis. These ideas will
be outlined in the following.

Climatological perspective on forecast-error growth

In Chapter 2, we analyze the error growth in a case study of an operational forecast. This case
provides the novel insight that synoptic-scale error growth can be dominated by differences in
the nonlinear Rossby-wave dynamics and not, as expected from previous studies (e.g., Zhang
et al., 2007), by differences in baroclinic instability. To draw more general conclusions, it
is necessary to perform a more systematic investigation. One possibility would be to apply
the PV framework used in this thesis to a climatological study with a large set of data.
Such a climatological investigation could, for example, be carried out with the ERA-Interim
reanalyses and reforecasts (Berrisford et al., 2011) or the operational analyses and forecasts
archived at ECMWF (www.ecmwf.int/en/forecasts/datasets). These data sets provide
several years of analysis and forecast data for a robust investigation of forecast-error growth.
The hypothesis from this thesis that nonlinear Rossby-wave dynamics are more important
to synoptic-scale error growth than baroclinic instability could thereby be verified from a
climatological perspective.

Composite view on situations with small/large error growth

One very interesting aspect of the dynamics of forecast-error growth is whether there are
systematic differences between situations with small and large error growth. A composite of
such cases could be drawn from a climatological data set, taking for example the 10th and 90th
percentile of the climatological error-magnitude distribution to define composites with small
and large error growth, respectively. Based on the PV framework, one could then investigate
whether there are systematic differences in the processes governing the error growth. This
process-based insight could be used to identify flow situations that are prone to small and
large error growth, respectively.
Another possibility to gain process-based insight into situations with large error growth would
be to apply the PV framework to the composite of forecast-bust events investigated by Rodwell
et al. (2013). Rodwell et al. (2013) showed that the largest forecast errors over Europe are
related to initial errors in representing mesoscale convective systems over the U.S. By applying

www.ecmwf.int/en/forecasts/datasets
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the PV framework to these forecast-bust events, one could highlight the processes that are
responsible for the further amplification of these initial errors from moist processes. Such an
analysis would thus provide a complementary perspective on the dynamics of forecast busts.

Localized perspective on individual weather systems

In this thesis, the amplification of forecast errors and forecast uncertainty is mostly inves-
tigated in terms of spatial averages over large regions. The results from the case study in
Chapter 4, however, indicate that locally there can be pronounced differences in the processes
governing the amplification of ensemble spread. A more localized perspective can thus help to
identify flow-dependent differences. One could for example focus on individual weather sys-
tems and quantify the amplification of forecast errors and forecast uncertainty separately for
these weather systems. Such a separation could help to identify, which weather systems are
most susceptible to a large amplification of forecast errors and forecast uncertainty. The PV
framework could furthermore provide insight into the processes governing the amplification
of forecast errors and forecast uncertainty in different weather systems.

Comparison between upscale error growth and operational forecast error growth

From the comparison between the case study of operational forecast-error growth (Chapter 2)
and the upscale error-growth simulations (Chapter 3) it is evident that there are still signifi-
cant differences between operational forecast-error growth and upscale error growth. The first
two stages of upscale error growth do not appear as dominating error-growth mechanisms in
the operational case study, at least when averaging over large regions as the midlatitudes of
the Northern Hemisphere or whole Rossby-wave patterns. In contrast, the error growth in
the operational forecast is dominated by differences in the near-tropopause dynamics from
the beginning. This result indicates that initial-condition errors contained in operational
forecasts are still of larger importance to the error growth than errors from moist processes
with low intrinsic predictability. For future research, it is an interesting question how much
initial-condition errors have to be reduced, until the first two stages of upscale error growth
become apparent.
An identical-twin simulation has been carried out by T. Selz (LMU Munich), which contains
perturbations from the ensemble data assimilation (EDA) system of ECMWF (Isaksen et al.,
2010) in addition to the stochastic perturbations from the stochastic convection scheme. This
simulation thus includes realistic perturbations for the initial-condition uncertainty. Using
the PV framework, we can show that the error growth in this simulation is dominated by
differences in the near-tropopause dynamics from the beginning (Fig. 5.2a). The first two
stages of upscale error growth do not appear, as it is the case for the operational forecast
investigated in Chapter 2. A second identical-twin simulation has been carried out, in which
the perturbations from the EDA system have been rescaled to 10% of their original ampli-
tude. In this simulation, the initial error growth is dominated by latent-heating differences
induced from the convection scheme, followed by a short period, in which differences in the
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Figure 5.2: Comparison of upscale error-growth simulations with simulations that include addi-
tional perturbations from the EDA system: a) original EDA perturbations, and b) EDA pertur-
bations rescaled to 10% of their original amplitude.
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upper-tropospheric divergent flow dominate the error growth (Fig. 5.2b). In this simulation,
the first two stages of upscale error growth do thus appear. Errors from moist processes with
low intrinsic predictability can thus play a substantial role for error growth when the initial-
condition uncertainty is reduced to 10%.
Additional simulations are needed to make robust statements about what reduction of initial-
condition errors is needed before the first two stages of upscale error growth become dominat-
ing error-growth mechanisms. One possibility would be to simulate the same set of cases as
analyzed in Chapter 3 with additional perturbations from the EDA system. By systematically
rescaling the amplitude of the EDA perturbations (e.g., starting from 90% and then going
stepwise down to 10%), one could identify the amount of rescaling that is needed, until the
first two stages of upscale error growth become dominating error-growth mechanisms. Such
an analysis would provide process-based insight into the practical importance of upscale error
growth.

Predictability of weather regimes

The results from the upscale error-growth simulations in Chapter 3 show that there exists a
final error-growth stage, in which errors grow from the synoptic scale of individual troughs
and ridges up to the planetary scale of the Rossby-wave envelope. On the planetary scale, pre-
dictability is closely related to the predictability of weather regimes. Due to their large spatial
scale and long life cycle, these weather regimes provide possible sources for predictability on
the subseasonal to seasonal time scale (e.g., Grams et al., 2017; Ferranti et al., 2018). The
individual weather regimes, however, differ in terms of their predictability with the blocking
regime having lowest predictability (Ferranti et al., 2014). By applying the PV framework
to individual weather regimes, one could highlight systematic differences between the am-
plification of forecast errors and forecast uncertainty in individual weather regime. This
process-based insight could help to explain why some weather regimes have higher or lower
predictability than other weather regimes.

Future work within Waves to Weather

This thesis is part of project A1 “Upscale impact of diabatic processes from convective to
near-hemispheric scale” from the first phase of the transregional collaborative research center
165 “Waves to Weather”. Building on the results from phase 1, this project is split into two
new projects in phase 2, namely A1 “Multiscale analysis of the evolution of forecast uncer-
tainty” and A8 (N) “Dynamics and predictability of blocked regimes in the Atlantic-European
region”.
Compared to phase 1, the A1 project in phase 2 will provide a more localized perspective
on upscale error growth and analyze different sources for convective-scale uncertainty. Based
on asymptotic theory, a theoretical model will be developed for upscale error growth from
the convective scale up to the synoptic scale. This project will moreover provide a system-
atic comparison between upscale error growth and operational forecast-error growth based on
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simulations with realistic initial-condition uncertainty.
The A8 (N) project in phase 2 will investigate the dynamics and predictability of weather
regimes. The focus of this project will be on blocked weather regimes, which are often as-
sociated with high-impact events, but also most difficult to represent in numerical weather
prediction models (Ferranti et al., 2014). In this project, the PV framework will be ap-
plied to a large set of data (reanalysis- and reforecast-data sets and operational analysis- and
forecast-data sets) to gain deeper insight into the underlying dynamics and the predictability
of blocked weather regimes.
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