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Abstract

The realization of optical quantum communication protocols is still one of the most challenging
tasks in quantum information. To make specific tasks like quantum teleportation or quantum
key distribution over large distances possible, the exponential decay of photonic quantum infor-
mation has to be compensated. To achieve this, quantum repeaters exploiting quantum error
detection and correction of photon losses have been proposed. In this thesis, new schemes to
tackle the photon loss occurring in optical fibers are developed and applied in quantum com-
munication scenarios.

The main part of this thesis is on quantum error correcting codes against photon loss. We de-
velop exact codes based on NOON states and linear optics as well as approximate codes based
on coherent state superpositions. For both classes of codes, we investigate suitable perfor-
mance measures and show how to generalize them from logical qubits to general logical qudits.
Furthermore, we apply the proposed codes in so-called one-way communication schemes to
demonstrate their practical relevance.

Beside this, we propose a generalization of a known hybrid quantum repeater protocol for the
distribution of material qubit-qubit entanglement mediated by coherent states of light to ar-
bitrary finite dimensional material qudit-qudit entanglement distribution. Assuming perfect
matter memories and deterministic entanglement swapping operations, we calculate the entan-

glement distribution rates and final fidelities for various total distances and repeater spacings.
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Zusammenfassung

Die Umsetzung optischer Quantenkommunikationsprotokolle ist immer noch eine der grofsten
Herausforderungen in der Quanteninformatik. Fiir die Realisierung von Quantenteleportation
oder Quantenschliisselaustauschverfahren iiber grofse Entfernungen muss der exponentielle Ab-
fall der photonischen Quanteninformation kompensiert werden. Um dies zu erreichen wurden
Quantenrepeaterprotokolle auf der Basis von Quantenfehlerdetektion und -korrektur der Photo-
nenverluste vorgeschlagen. In dieser Arbeit werden neue Schemata zur Reduktion des Einflusses
von Photonenverlusten in optischen Fasern entwickelt und im Umfeld der Quantenkommunika-
tion angewandt.

Der Hauptteil dieser Arbeit handelt von Quantenfehlerkorrekturkodierungen gegen Photo-
nenverluste. Es werden sowohl exakte Kodierungen auf der Basis von sogenannten NOON-
Zustéinden und linearer Optik als auch approximative Kodierungen basierend auf Superposi-
tionen optischer kohérenter Zustidnde entwickelt. Fiir beide Klassen von Kodierungen werden
geeignete Qualitatskriterien untersucht sowie Verallgemeinerungen der Kodierungen von logi-
schen Qubits zu allgemeinen logischen Qudits (quantenmechanische , d-level“-Systeme) disku-
tiert. Um ihre Praxistauglichkeit zu demonstrieren, werden die vorgeschlagenen Kodierungen
in Kin-Weg-Kommunikationsschemata angewandt, d.h. in Schemata, bei denen kodierte Quan-
teninformation direkt durch entsprechende Quantenkanile gesendet wird ohne z.B. eine vor-
ausgehende Verteilung verschriankter Zusténde.

Desweiteren verallgemeinern wir ein bekanntes hybrides Quantenrepeaterprotokoll zur Vertei-
lung materieller Qubit-Qubit-Verschrankung auf der Basis optischer kohérenter Zustande auf
die Verteilung beliebig-endlichdimensionaler materieller Qudit-Qudit-Verschriankung. Unter der
Annahme perfekter Speicher und deterministischem Verschrinkungsaustausch werden die Ra-
ten und Giiten dieses Repeaterprotokolls fiir diverse elementare Distanzen und Gesamtdistanzen

berechnet.
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Chapter 1
Introduction

A future quantum internet promises a huge variety of possible features and applications [I], 2].
Not only are quantum networks expected to realize distributed quantum computing tasks [3]
and to link future quantum computers. They can, in addition, also offer pure communication
tasks like clock synchronization [4], the combination of telescopes [5] or the establishment of
secret keys [6l [7] between two or more parties [8] for secure classical communication. Especially
because of the latter, the field of quantum communication has created much interest during the
last years.

Photons are fundamental carriers of quantum information [9]. Since they only very weakly
interact with each other, they have been intensively investigated in the framework of optical
quantum computing [I0, T1]. Traveling at the speed of light, photons are furthermore the op-
timal choice for quantum communication.

Long-distance quantum communication protocols have been experimentally implemented in
free-space scenarios, for instance by transmitting photonic states between an orbiting satel-
lite and a telescope on Earth [I2] or between the canary islands La Palma and Tenerife [I3].
However, in free space quantum communication atmospheric losses induced by scattering and
scintillation are, besides geometric losses related to the apertures of the telescopes, major issues
which are extremely dependent on the weather conditions such as cloudiness.

Another approach, inspired by classical optical communication schemes, is the transmission
of photonic quantum information by using more reliable optical fibers. Optical fibers are
waveguides working on the principle of total reflection and routinely applied in many different
technological fields.

The main problem in fiber-based quantum communication is the loss of photons due to atomic
absorption. This results in an exponential decay of the transmission probability with the prop-
agation distance of the photon inside the optical fiber. In classical optical communication
schemes, this problem can be solved by reamplifying the signal. In the framework of quantum

mechanics, cloning and amplification of an unknown quantum state is impossible [14, 15], such



that the classical approaches cannot be applied. To nevertheless avoid the exponential decay
of photonic quantum information, quantum repeaters were proposed [16, [17, [1§].

To date, quantum repeaters are characterized by the methods they employ to fight against the
photon losses. This leads roughly to three different classes of quantum repeater protocols, also
called quantum repeater generations [19].

Concerning photon losses, first- and second-generation quantum repeaters employ the distribu-
tion, purification [20] and swapping [21] of entangled states for quantum error detection [22],
while in third-generation quantum repeaters, typically, encoded quantum information is sent
directly using active quantum error correction [23].

Quantum error correction (QEC) [24] 22 25] has been introduced to handle the fragility of
quantum states in the presence of noise and decoherence. Decoherence leads, in general, to
changes of the quantum states and induces errors in the stored quantum information. The aim
of quantum error correction is to detect at least some of the errors and to recover the initial
quantum information.

The basic unit of quantum information is, in analogy to a classical bit, the quantum bit or
qubit. A qubit is a two-dimensional quantum system and the quantum information is stored in
quantum states consisting in superpositions of the corresponding two orthogonal basis states
usually denoted by |0) and |1). Mathematically, a qubit can be considered as a normalized
vector in a two-dimensional Hilbert space and the physical operations are unitary operations
in this space. Physical realizations of qubits are numerous, e.g. the two spin states of an elec-
tron, an atomic nucleus [26] or the stable electronic states of trapped ions [27] as well as the
polarization of a single photon [9).

A single qubit alone can, thanks to the superposition principle, be utilized to transmit two
bits of classical information which is referred to as superdense coding [28]. To realize, however,
more interesting applications such as quantum teleportation |29, B0] or measurement-based
quantum computation [3I], entangled states of at least two qubits such as \%(IO(D +(11)) are
a necessary resource. Being one of the most counterintuitive genuine quantum phenomena,
quantum entanglement [32] 33] is a non-local correlation between two parties, e.g. two qubits,
that can be proven to be stronger than any classical correlation. It is therefore not surprising
that the distribution of entangled states of two qubits over large distances has been considered
a key problem in quantum communication from the very beginning and is still a cornerstone of
first-generation quantum repeaters.

In some situations, it is an advantage to generalize the notion of qubit to qudits, i.e. quantum
systems of arbitrary finite dimension ("qudit" here refers to a "d-level" system). One can show
that the usage of qudits makes fault-tolerant quantum computing not only more efficient [34] 35]
but can also improve quantum communication protocols. More precisely, qudits lead to an in-

crease in data transfer and especially to a higher security in quantum key distribution compared



to schemes involving only qubits |36, 37]. On the fundamental level qudits play an important
role in closing of the detection loophole in Bell test experiments [38, B39]. Furthermore, the
generation of a highly-entangled state between two ten-dimensional photonic quantum systems
has been confirmed in [40]. An experimental scheme for generating arbitrary superpositions of
photonic Fock states up to photon number three, which finally represents a qutrit, has been
proposed in [41].

The notion of a qudit can be extended from finite to infinite dimensions. Since any observable
of a quantum system either possesses a discrete or continuous spectrum, there is a priori a
choice for employing the corresponding eigenstates as discrete or continuous bases for the de-
scription of the system. For example, the quantum harmonic oscillator can be described with
the number basis as eigenstates of the discrete number operator 72 = a'a, where a and a are the
usual creation and annihilation operator satisfying [@,a'] = 1. On the other hand, prominent
examples of continuous-variable basis states in quantum optics [42] 43|, where the light field
is also described by a quantum harmonic oscillator, are position and momentum quadratures,
& = 1(a' + a) and p = o-(a — a'), expressed by the ladder operators of a single mode of the
electromagnetic field. Continuous superpositions of such basis states are then in analogy to
qudits referred to as qumodes.

For such qumodes, measurements of position and momentum and, more general, quadratures
can be performed very efficiently by homodyne detection, i.e. by mixing the qumode with
a strong coherent state at a symmetric beam splitter and measuring the difference of photo
currents in the output modes.

Despite the advantages of encoding quantum information into discrete qudits or continuous
qumodes, rather little attention has so far been paid to exploiting qudits in long-distance quan-
tum communication. From a conceptual point of view, first-generation repeater schemes for
the distribution of qudit-qudit entanglement as well as higher-dimensional quantum error cor-
rection codes against photon loss are a necessity to fill this gap.

The topic of this thesis is the suppression and correction of photon losses occurring in optical
fibers with a special focus on applications in long-distance quantum communication. All the
developed schemes are silhouetted against existing schemes, because they also explicitly exploit
the advantages of higher-dimensional quantum systems. The thesis is structured as follows.
In Chapter [2, we briefly review the physical origin of decoherence and give two different but
equivalent descriptions to model photon loss in optical fibers. We furthermore discuss two
prominent qubit-qubit entanglement purification schemes, which are key ingredients in first-
generation quantum repeater protocols. The chapter closes with a brief introduction to quantum
error detection codes.

The focus in Chapter [3|is on quantum error correction, especially in the context of photon loss.

We state the Knill-Laflamme conditions [25] 22] for quantum error correction codes and explain



the difference between exact and approximate codes against photon loss. We give an overview
of some of the most important known photon loss codes.

The three different classes of quantum repeaters are the topic of Chapter We discuss the
methods each class exploits to fight against photon losses and give examples of already proposed
quantum repeater schemes for each class.

In Chapter 5] we show how so-called NOON states can be exploited for constructing exact
quantum error correction codes against photon loss. Unlike existing photon loss codes, the
codewords of these codes can systematically be obtained by means of experimentally obtain-
able NOON states and static linear optical manipulations alone. The proposed qubit codes
are block codes with N photons per block. The total number of N? photons ensures that the
corresponding logical qubit is protected exactly against N — 1 photon losses. We furthermore
show that this systematic approach can also be applied to qudit code constructions.

In the succeeding Chapter [6] we first consider a specific example of an approximate one-photon
loss qubit code presented in [44] whose codewords are even cat states. After analyzing the
properties of this code in a full loss channel, we generalize this code to higher losses. The
possibility of a generalization of the one-loss cat code [45, [44] to higher losses has been briefly
mentioned a couple of times in the literature (see the Conclusions of Ref. [45] and Section 4.2.
on page 15 of Ref. [46]), including a few more detailed hints about the conceptual character of
such an extension in a quite recent publication (Fig. 1 on page 4 and Section V.B. on page 10
of Ref. [47]). However, as far as we know, there is no detailed analysis of a generalized code
that includes a complete and systematic definition of the codewords as well as a quantitative
performance assessment of the code in a full amplitude-damping channel. In Chapter [0, we
present such an analysis and give a very compact definition of the codewords for any number
of correctable losses in terms of eigenvalue equations. It turns out that the eigenvalue equation
approach is extendable to arbitrary approximate qudit codes.

The first part of Chapter[7|deals with first-generation quantum repeaters. We generalize a well-
known hybrid quantum repeater (HQR) protocol for the long-distance distribution of qubit-
qubit entanglement based on matter qubits and coherent-state light to the case of material
qudit-qudit entanglement. The proposed protocol especially exploits both discrete and contin-
uous variable quantum states and is, like the original qubit scheme, attractive for experimental
realization.

In addition, we give a proposal for the faithful long-distance transmission of arbitrary continu-
ous variable states by means of combining a known teleportation scheme and discrete variable
quantum repeaters. Furthermore, we introduce a light-matter interface that allows to switch
between noise-protected ionic quantum states and loss-protected photonic states. Such an ion-
light interface could be employed in a second-generation quantum repeater.

Chapter [7] ends with the application of some of the codes developed in Chapters [5] and [f] in a



certain instance of a third-generation quantum repeater scheme, namely a so-called one-way
scheme. We introduce and analyze performance measures adapted to both kinds of codes for
various communication scenarios.

Concluding remarks and an outlook on future research directions can be found in Chapter
Bl Due to the technically demanding flavor of this thesis, several appendices provide detailed

calculations and additional information.



Chapter 2
Quantum error detection

In this chapter, we explain how photon loss in optical fibers can be modeled by means of an
open system approach. The Kraus operators related to the photon loss channel, which play
a major role in almost all parts of this thesis, are introduced. After clarifying the physical
decoherence model, we discuss two important tools of quantum error detection that are typi-
cally included in quantum repeater schemes of the first kind, namely entanglement purification
and the notion of quantum error detection codes. We consider two important entanglement
purification schemes for qubit-qubit-entangled states and a dual-rail encoded photonic qubit as

an example of a quantum error detection code.

2.1 Open system dynamics and photon loss

A quantum system is never completely isolated but interacts at least weakly with its environ-
ment [48]. While the evolution of the closed system is determined by solving the Schrédinger
equation for the system Hamiltonian Hg, the open system dynamics is governed by two more
Hamiltonians [49)], namely the Hamiltonian of the environment Hp and an interaction Hamilto-
nian between the system and the environment H;[[] The total Hamiltonian Hgp of the system

and the environment thus reads
Hgp = Hg + Hy + Hj. (2.1)

At t = 0, the joint state is usually a product state pgg(t = 0) = ps ® pg with density operators
ps of the system and pg of the environment. The total evolution of system and environment

can be cast using the unitary global time-evolution operator Usg(t) = exp(—+Hggt),

pse(t) = Usp(t)psu(t = 0)US(1). (2.2)

1To avoid unnecessary complications, we assume that the occurring Hamiltonians do not show explicit
time-dependence.

6



Since the state of the environment is unobservable and the state of system .S alone is anyway

of particular interest, we build the trace over the environment to find

ps(t) = Trp[Use(t)pse(t = 0)ULL(D)], (2.3)

for the evolution of the quantum system S. Physically motivated, this approach is general
and describes all kinds of open system dynamics such as decoherence, dissipation, ensembles of
measurements and thermal relaxation.

In some situations, however, an equivalent approach via the notion of completely positive,
trace-preserving (CPTP) maps is convenient [22]. From this point of view, we interpret the
dynamics of a density matrix as a quantum operation. This operation is a map whose input
is a density operator from an underlying Hilbert space and whose output is a density operator
from a target Hilbert space. To ensure that the output is a density operator, i.e. a physical
state, a map ® has to fulfill three conditions.

First, ® must be trace-preserving, i.e. ®(p) has trace 1 for all input states p. This is an obvious
criterion, since the output is desired to be a regular density operatoﬂ. Second, ®(p) must
be positive, i.e. it has non-negative eigenvalues which are to be interpreted as probabilities
of the output state. The third required property is that ® is completely positive, i.e. the
map (1 ® ®)(p’) with support on density operators in a higher-dimensional Hilbert space leads
to global output states that are still physical. Maps with these three properties are called
completely positive, trace-preserving (CPTP) maps.

A first important observation following from a result in functional analysis [50] is that any CPTP
map can be constructed as in Eq. . The three necessary operations to be performed are
the tensor product with an arbitrary ancilla state, a joint unitary describing the interaction
and the partial trace over the ancilla system.

Another very useful property of CPTP maps that we will exploit in Chapters [ and [f] is the
operator-sum representation [5I 52, 22]. It states that the action of any CPTP map ® (and

thus the non-unitary evolution of any open system) can be described as
7 0(p) = 3 B 2.4

where the so-called Kraus operators E; are related to the so-called "positive operator-valued
measure" (POVM) elements E| E; > 0 with i EE, =1.

So far, the description of the evolution of 0;?1 quantum systems has been rather general. In
this thesis, we are exclusively looking at photons traveling through an optical fiber. Since our

goal is the faithful transmission of optical quantum information, the open system evolution

Individual terms of a CPTP map written in the operator-sum representation (see below) are then trace-
decreasing. Trace-decreasing maps may describe conditional evolutions depending on measurement outcomes.

7



described above leads to decoherence and loss of quantum information. For instance, photons
can be scattered by flaws and impurities or be reflected by splices and connections. In addition,
birefringence can occur that leads to photon pair generation. All these error sources are,
however, minor issues and will be neglected in this thesis.
The main error source for photonic quantum information processing in optical fibers is photon
loss due to atomic absorption. This is clearly a dissipation process that can be treated with the
system-environment approach , leading to the so-called amplitude damping model (AD)
[49, 52, [53]. The system in this case is a mode of a single harmonic oscillator expressible
in the photon number basis ("Fock basis"), {|n),n = 0,1,2,...}. The pure environmental
state is assumed to be a vacuum state, |0). Physically, this corresponds to a zero-temperature
environment. The interaction Hamiltonian will be represented by a beam splitter operation
with transmittance y (which plays the role of the coupling strength). The Hamiltonian in this
case is given by

Hpgs = hy(a'b + bfa), (2.5)

where G and b are the annihilation operators for the system and the environment, respectively.
For special input states, this approach is rather easy to perform. This will be a main tool in
Section [Z.1.1] for the case of coherent states.

For calculations with discrete photon states, the Kraus operators of the AD channel are more

suitable. These are given by [53]

Ay = i () vI=" - 0l 2.6)

Vk € {0,1,--- ,00}. For an optical fiber, the loss parameter v = cos?(yAt) with an interaction
time At, is given by exp(—L/La;), where L is the propagation distance of the photons in the
optical fiber and L, = 22 km is the attenuation length for photons at telecom wavelength.

The error operators in Eq. can be equivalently cast in a different form that will be

especially helpful in Chapter [6] for the no-loss and one-loss cases:

A = (1 ;!V)kﬁﬁd/ﬁ7 (2.7)
with the number operator n.

Important for the code construction in Chapters [5] and [f] are systems consisting of many modes.
For this scenario, we consider individual loss, i.e. each mode suffers from loss independent of all
other modes. The corresponding multi-mode Kraus operators are thus given by tensor products
of the single-mode Kraus operators, e.g. Ay ® A; for a two-mode system corresponds to no loss

on the first mode and one-photon loss on the second mode.



2.2 Entanglement purification

As directly obvious from Eq. , decoherence and errors turn a pure quantum state into a
mixed quantum state. In general, mixed entangled states degrade the performance of quantum
information processing tasks like teleportation or entanglement swapping (see Sections and
. Hence, the purification of a mixed state can be advantageous.

Entanglement purification aims at generating fewer high-fidelity copies from many noisy copies
of a certain pure target state. By iterating this purification protocol, a fidelity arbitrarily close
to unity can be achieved.

The purification of mixed qubit states was investigated by Bennett et.al [54] for the class of
Werner states [55]. Nearly at the same time, Deutsch et al. [56] proposed a similar purification
protocol for more general states diagonal in the Bell basis and with arbitrary Bell-state coef-
fcients. Both protocols require two copies for each step, but the Deutsch protocol leads to a
better efficiency compared to the Bennett scheme. The latter was demonstrated experimentally
|57, 58] and generalized to arbitrary dimensions [59, [60].

We will use entanglement purification in the first generation quantum repeater protocols to be
investigated in Chapter [/l Higher-dimensional extensions for special cases of the qubit purifi-
cation schemes, as briefly presented in the next two sections, will be shown to lead to a better

performance of the proposed protocols.

2.2.1 Bennett scheme

Bennett et al. [54] proposed a purification scheme where the non-maximally entangled resource
states p are given in Werner form [55], i.e.

o= Flo*)(6*] + (ﬂ) () 4+ [ + 7)), (2.8

3

where |¢F) = \/ii(|00> +|11), [v*) = \%(HO) + |01) are the four two-qubit Bell states and
F = (¢F|p|¢™) > 1/2 is the initial fidelity with respect to the target state |¢T).

For a single purification step, two copies pj2 and ps4 of the state in Eq. are required. A
crucial point of purification protocols is that one is restricted to local operations and classical
communication (LOCC). The physical reason is that the two parties sharing the entangled state
are assumed to be spatially separated by a certain distance such that they do not have access
to both qubits to perform joint measurements on them. Otherwise, the state in Eq. could
simply be purified by a non-local Bell measurement. So in this setting, it is assumed that one
party has access to qubits 1 and 3, the other to qubits 2 and 4.

The joint state of four qubits is given by piozs = p12 @ psa. To obtain a two-qubit state
with higher fidelity, both parties apply CNOT gates on their respective qubits, C NOT}3 and



CNOTs,. Finally, qubits 3 and 4 are measured in the Z-Basis and both parties compare their
results. If the two results coincide, the state is purified. If not, the output state is discarded.
If successful, this purification scheme results in a new mixed state whose fidelity F” with respect
to the target state |¢T) is [64] 20]

: P+ (1)

TP IR F) 1 31— F)Y (2.9)

which corresponds to a fidelity gain provided that F' > 1/2. Taking such states as new resource

states, more rounds of purification can be performed to further increase the fidelity.

2.2.2 Deutsch scheme

Deutsch et al. [56] introduced a purification protocol where the resource states are given by a

general mixture of the four Bell states,

p=FWT )W+ BT ) (W7 + B¢ T+ Filom) {0, (2.10)

where Fy + Fy + F3 4+ Fy = 1 and F; > 1/2 is the initial fidelity with respect to [¢)T).
Now given two copies of states like in Eq. (2.10), the first step of the purification protocol are
unitary single-qubit transformations on qubits 1 and 3 as well as on 2 and 4. On qubits 1 and

3 the transformation

1
10) = —=(]0) —i[1)),
V2 (2.11)

1) %un —ilo)).

is applied. A similar transformation is performed on qubits 2 and 4,

1
10) = —=(10) +4[1)),
V2 (2.12)

1
1) — —(]1) +1]0)).
1) \/§(| ) +0))
After these unitary transformations, CNOT gates are applied on qubits 1 and 3 as well as on
2 and 4. As in the Bennett scheme, the final step is to measure qubits 3 and 4 in the Z-basis.
Again, if the results coincide, purification has succeeded, or otherwise the state is discarded.

The new fidelity with respect to the target state [¢)™) in case of a successful purification reads

F? + F?

F =
V(R4 B2+ (Fy + Fy)?

(2.13)

for which F] > Fj holds if F} > 1/2.
In optical experiments, both the Bennett and the Deutsch scheme are difficult to realize with
10



single photons, since optical CNOT gates require high non-linearities and therefore efficient
CNOT gates do not exist at the moment. However, the simpler task for the purification of
mixed states that only consist of two Bell-state components, [¢™) and |¢/"), has been performed
experimentally [57, [58]. This scheme is based on polarization encoding and photon detection
of four-fold detection events. Due to realistically inefficient measurements, the efficiency is far

from those of the theoretical proposals with perfect gates and operations.

2.3 Quantum error detection codes

For applications like quantum computing or quantum communication, it is a crucial prerequisite
to find out if a state has been successfully generated or received. In optical quantum information
processing, it is therefore desired to find out if a photon was lost or not. This is the goal of
quantum error detection codes [22].

An arbitrary "single-rail" qubit is denoted as 1)) = «|0)+3|1) with |a|*+]|3]* = 1. By applying
Ay, one can easily verify that there is no way to find out if a loss has occurred because of the
intial vacuum term. To circumvent this problem, it is useful to encode the qubit information

into a dual-rail qubit, i.e. to perform the mapping
(2.14)

such that the encoded, logical qubit state reads |1)) = «|10) 4+ 5|01). If now AD channels are

applied to both modes simultaneously and independently, the resulting state becomes

p=1U){W] + (1 —7)[00)(00]. (2.15)

Now, for instance, by means of a quantum non-demolition (QND) measurement of the total
photon number on the two modes, we can infer whether a loss error has occurred or not. If we
measure 1, then everything worked fine and we can further process the qubit. If we measure 0,
we have to discard the state and start anew.

In general, a quantum error detection code is a subspace of some higher-dimensional Hilbert
space that enables us to perform a measurement to find out if there was some error on the logical
state. Note, however, that these errors cannot be corrected, but the state has to be prepared or
sent again if an error was detected. To be more specific, states obtained from different errors
are, in general, not necessarily distinguishable and therefore mapping them back to the original
state is no longer possible. Moreover, even worse, the qubit information may be completely
destroyed when the error occurs, although the error can be detected (like for the |00)(00|-term
in Eq. (2.175)). Correcting errors requires the qubit to remain intact in an orthogonal error

11



space. This requires quantum error correction codes (see Chapter [3)).
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Chapter 3
Quantum error correction (QEC)

This chapter introduces the notion of quantum error correction on which a large part of this
thesis is based. We motivate and define quantum error correction codes and state the central
Knill-Laflamme conditions. The fidelity as a measure of a quantum error correcting code’s
performance is introduced. Based on the error operators for photon loss (Eq. ), several
existing photon loss codes and their performance are reviewed. By the example of these codes,

we explain the differences between exact and approximate photon loss codes.

3.1 Quantum error correction and Knill-Laflamme condi-

tions

The evolution of a quantum system following Eq. is not always desired and at least some
of the involved Kraus operators are considered as errors on the input state. By employing a
quantum code, one is partially able to reverse the dynamics implied by Eq. and, unlike
the quantum error detection code in Section [2.3] to recover the original state.

A proper quantum code enables one to detect and correct a certain set of errors on the encoded
state. A quantum code is a vector space spanned by basis codewords, denoted by |0) = |¢;) and
|1) = |cy) for a qubit code, and at the same time subspace of some higher-dimensional Hilbert
space. Normalized elements of this vector space of the form «|0) + 3|1) are called logical qubits
(just as for the quantum error detection codes in Section . This notion can be extended to
qudit codes, where there are more than two codewords |c¢1), -, |cqg) to encode a logical d-level
system. To form a proper quantum code, the logical basis codewords have to fulfill certain
conditions. We state the famous Knill-Laflamme conditions which are a set of necessary and

sufficient conditions for the existence of a recovery operation [25] 22]:
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Theorem 1. (Knill-Laflamme)
Let C' = span{|c1),|ca), -+ ,|ca)} be a quantum code, P be the projector onto C' and {E;} the
set of error operators. There exists an error-correction operation R that corrects the errors
{E;} on C, iff

PE!E;P = Aj;P, Vi, j (3.1)

for some positive semi-definite, Hermitian matriz A with matriz elements A;;.

For photon loss codes (in particular, the exact codes with a fixed total photon number), the
matrix A is typically diagonal, i.e. A;; = ¢;0;;. This defines a non-degenerate code with differ-
ent loss errors (especially different numbers of photons lost, but also different modes subject
to loss) corresponding to orthogonal error spaces. Nonetheless, certain instances of our NOON
code to be developed in Chapter 5[ do exhibit degeneracy for a given number of lost photons.

The Knill-Laflamme (KL) conditions contain two basic notions. The first notion is the orthog-

onality of corrupted codewords, i.e.
(| EYE;|e)) = 0 if k#1. (3.2)
The second one is the non-deformability condition, i.e.
(a|ElEila) = gi, V. (3.3)

This means that the norm of a corrupted codeword only depends on the error operator and not
on the codeword itself.

Our interest from now on is devoted to the Kraus operators for the AD channel, Eq. ,
describing photon loss. Before proceeding with an overview of already existing photon loss
codes, we want to clarify how to quantify the performance of a photon loss code. A convenient
measure for the quality of a quantum error correcting code is the worst-case fidelity, defined as
[22, B3]

F = min (¥[R(p,)D). (3.4)

where py is the final mixed state after multi-mode amplitude damping (with the only assumption
that each AD channel acts independently on each mode) and R is the recovery operation. Note
that the recovery operation always exists if the KL conditions are fulfilled. The fidelity defined
in Eq. is a suitable figure of merit to assess the performance of a quantum error correction

Code.[] In particular, it also reveals if an encoding is not a proper code (see, e.g. the encodings

in Eqs. (219 and (5:11)).

!The exact loss codes considered in this thesis have identical worst-case and average fidelities.

14



3.2 Review of some existing photon loss codes

3.2.1 Exact codes

In the first example, a logical qubit is encoded in a certain two-dimensional subspace of two

bosonic modes. The basis codewords are chosen in the following way [53]:

1
0) =75 (140) + 04)), (3.5)
1) =[22),

i.e. any logical qubit has a total photon number N2 = 4P| This code corrects exactly N —1 = 1
photon losses. The worst-case fidelity, as defined in Eq. (3.4)), is found to be F' = v* 4+ 4~3(1 —
7) =1-=6(1—-7)*4+8(1 —7)%—3(1 —~7)* In the same reference [53], the following code is

given:

_ 1

0) = E(I70> +[16)),

Y (3.6)
1) = —=(152) + [34)).

V2

This code corrects also all one-photon losses and its worst-case fidelity is
AT (1) = 1-21(1—)2+70(1 =) —105(1—7)*+84(1—~)° —35(1—~)5+6(1—7)". (3.7)

Another example that encodes a qubit in three optical modes with a total photon number of 3

was proposed in [61]. The basis codewords are

0) = %usow +[030) + [003)), (3.8)
) = |111).

The fidelity in this case is v* + 37*(1 —v) = 1 —3(1 —7)* + 2(1 — v)3. Moreover, note that all
three codes given above are capable of exactly correcting only the loss of one photon, as can
be easily seen by checking the KL conditions. An example for a proper two-photon-loss code
is [53]

o) = 2190) + s,

73

: i (3.9)
1) = §|09> + 7|63>,

whose worst-case fidelity is found to be F' =2 +998(1 — ) + 3677(1 — 7)? & 1 — 84(1 — v)>.

What these codes also have in common is their small number of optical modes, at the expense

’In Appendix @ we present an experimentally feasible scheme to realize such a loss-protected qubit.
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of having rather large maximal photon numbers in each mode (in order to obtain a sufficiently
large Hilbert space). Conversely, codes that have at most one photon in any mode, but a

correspondingly large total mode number, are, for example, the quantum parity codes (QPCs).
The simplest non-trivial QPC, denoted as QPC(2,2), reads as follows [62]:

1

0) = —5(110101010) + [01010101)).

-1

1) 7

It also corrects exactly the loss of one photon.

Sl

(3.10)
(110100101) + [01011010)).

3.2.2 Approximate codes

All exact codes presented in the last section consist of superpositions of states with a fixed

photon number. Different from these is the following code [63]:

L (10000) + 1111)),

0) —
0) 5
1

VG

Sl

(3.11)

1) (10011) + 1100)).

S

This code is conceptually distinct, because it does not satisfy the usual KL conditions. It
satisfies certain relaxed conditions, which leads, in a more general setting, to approximate
quantum error correcting schemes [63]. The above approximate code still satisfies the KL
conditions up to linear order in 1 — =, corresponding to one-photon-loss correction, while it
requires 4 physical qubits (single-rail qubits encoded as vacuum |0) and single-photon [1))
instead of 5 physical qubits for the minimal universal one-qubit-error code [64] 65]. Note that
for dual-rail physical qubits (i.e., the approximate Leung code [63] concatenated with standard
optical dual-rail encoding), one obtains QPC(2,2), which is then an exact one-photon-loss code.
Recently, also the concept of an approximate single-mode bosonic code was introduced whose
codewords are finite superpositions of certain multiples of the photon number [47]. The easiest

code which is an approximate one loss code reads as

1
0) = ;Ziﬂ0>-+l4>), (312)
) =12),

where now only the average photon number in each codeword is equal, namely 2. The structural
resemblance between this code and that in Eq. (3.5) is striking. But in terms of fidelity, this
code equals the code in Eq. (3.11)), because of the same average photon number.
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Another approach to optical, loss-adapted QEC is to encode a logical qubit into the full Hilbert
space of a single oscillator mode [66, [44] [45]. Such a code can make explicit use of the infinite-
dimensional Hilbert space already available with just one optical, physical mode. Nonetheless,
by sticking to a finite-dimensional (logical qubit) code space, such codes also circumvent existing
no-go results for efficient QEC of logical continuous-variable Gaussian states encoded into
physical, multi-mode Gaussian states [67, [68] (69, [70, [7T] and subject to Gaussian error channels
[72]. More precisely, non-Gaussian logical states alone, such as logical qubits, are actually
not enough to circumvent those no-go results when both error and recovery channels are of
Gaussian nature [73]. Note that the AD (photon-loss) channel is indeed a Gaussian channel.
Nonetheless, non-Gaussian logical states subject to Gaussian error channels together with non-
Gaussian ancilla states [66] [74] or with non-Gaussian operations [45] [44] for the recoveries do
the trick. Similarly, Gaussian logical states subject to non-Gaussian error channels with only
Gaussian recovery operations suffice to circumvent the no-go theorem [70] [71].

The qubit-into-oscillator codes are approximate codes based on non-orthogonal codewords that
become perfect for infinite squeezing [66] or for infinitely large coherent-state amplitudes [45],
44]. Note that the Glancy-Knill-Preskill (GKP) code with codewords as superpositions of
position (quadrature) eigenstates [66] is a universal code, whereas the "cat code" with codewords
as even cat states (that is superpositions of even photon numbers) [45], [44] is specifically adapted
to photon loss errors.

The codewords of the cat code presented in [44], 45] are given by

04) ~ o) +] - a),

3.13
1) ~ lia) + | — ic). (3.13)

By writing the coherent states in the Fock basis, one can easily confirm that both codewords
have only even photon number terms. If a photon gets lost, it is intuitively clear that the
codewords will jump into the odd parity space. The idea is to detect the loss error via a parity
measurement. A detailed analysis of the behavior of this approximate one-loss code under the
AD channel as well as its performance in terms of fidelities is so far missing and therefore the
topic of Section [6.1]
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Chapter 4
Quantum repeaters (QRs)

The faithful transmission of photonic quantum information over large distances is one of the
most challenging tasks in practical quantum information. As pointed out in Section the
transmission probability v of a single photon decays exponentially with the length L of the

optical fiber channel,
v = exp(—L/22km),

such that photon loss, represented by the AD channel, becomes a serious problem. Unlike
classical information, quantum states cannot be amplified without adding extra noise due to
the no-cloning theorem [14]. Quantum repeaters were therefore introduced to overcome the
problem of transmission loss [16, 17, [I§].

From the perspective of the most recent quantum repeater research, a quantum repeater proto-
col can be classified into three distinct categories, referred to as quantum repeater generations

[19, 23]. We discuss all three generations in some detail in the next sections.

4.1 First-generation QR

In first-generation quantum repeaters, the total distance L to be covered is divided into 2"
segments of elementary length Ly = L/2" (see Fig. .

In each segment, a maximally entangled state, e.g. [10) + |01), covering the distance Lyg is
generated. Neighboring links are then connected via entanglement swapping [21], i.e. a Bell
measurement on adjacent repeater nodes. If two segments are successfully connected, an en-
tangled state over the distance 2L, is generated. Then these new neighboring links are again
connected to create segments of length 4L, and so on.

Since both the entanglement generation and the entanglement swapping are potentially proba-
bilistic, it is important to perform both tasks in a heralded fashion. Moreover, the opportunity
to store the successfully generated entangled states is a prerequisite, since neighboring links do

not necessarily herald entanglement at the same time. In addition, the entanglement swapping
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Figure 4.1: Basic principle of a first-generation quantum repeater: a) Entanglement is generated
over a rather small distance Ly. b) Entanglement swapping is performed on adjacent repeater
nodes (yellow boxes) to entangle the nodes over a distance 2L. ¢) In the next step, the distance
is increased by further entanglement swappings on the previously generated pairs. d) Finally,
an entangled state over the distance 4L, is generated. Note that the entanglement generation
process a) as well as the swapping operation are usually non-deterministic and that at any time
purification steps can be performed.

operation could fail and the corresponding segments have to be prepared anew, while other seg-
ments have to wait. To handle both scenarios, quantum memories with reasonable coherence
times are required which limits the total communication distance.

In general, both transmission loss and memory errors lead to decoherence and instead of a
pure maximally entangled Bell state, a mixed entangled state is generated over the distance L.
Therefore, already on the elementary segments of length L, a few rounds of purification could
be necessary to achieve reasonable initial fidelities before entanglement swapping operations
are performed. Furthermore, after some rounds of entanglement swappings or at the very end,
the obtained state can be further purified to increase the final fidelity.

For a given total distance L it is not trivial to find the right repeater strategy. The only fixed
parameter is the success probability of the swapping ps,qp operation. One is still free to choose
the elementary distance Ly which also determines the number of swappings, the number of
necessary memories and at least partially the initial entanglement generation probability pg. A
crucial point is the number of rounds of purifications on each initial entangled state and if and
when to do further purifications.

To assess the performance of a first-generation quantum repeater protocol in dependence of
the free parameters and to compare different physical platforms, the average repeater rate is
a suitable measure. The average repeater rate, in the following just called rate for short, is
defined as the number of entangled pairs distributed over the distance L per unit time. It is
therefore desired to choose the free parameters such that a maximal rate can be achieved. In

general, however, the rate is limited by L/c [19].

19



Besides the rate that measures the time consumption of the repeater protocol, the quality of
the final state in terms of fidelity is a second performance measure. Therefore, the goal is to
achieve high rates and high fidelities.

As we will also see in our rate analysis in Section there is typically a trade-off between
rate and fidelity in first-generation quantum repeater protocols. High fidelities usually come
at the cost of low rates and vice versa such that a happy medium has to be accepted. Many
different physical systems and platforms have been investigated to realize first-generation quan-

tum repeaters. Among these are single trapped ions [75], neutral atoms |[76] and NV centers [77].

4.1.1 DLCZ-type quantum repeaters

One of the most prominent instances of a first-generation quantum repeater scheme is the
well-known DLCZ protocol [78] 18] which uses atomic ensembles as quantum memories and
single photons with linear optics for entanglement distribution and swapping. A remarkable
feature of the DLCZ scheme is that entanglement purification is built into the process of initial
entanglement distribution and swapping (purifying the entangled atomic ensembles from the
effects of transmission and memory losses, respectively).

The entanglement generation between two atomic ensembles works by detecting a Stokes photon
emitted by one of the two ensembles. The effective joint state of one ensemble and its Stokes

mode can be described as a two-mode squeezed state in the limit of very small squeezing, i.e.
U)oz = |00)ar + 7[11)ar + O(r?), (4.1)

where 7 is the squeezing parameter and labels "a" stand for the atomic ensemble and "1" for
the light mode, respectively. Combining the two ensembles and their Stokes modes, the total
state reads

100 >4 |00)y; + 7|01 >40 |01)y + 7|10 >4q |10)y + O(r?)

where we reordered the modes and neglected higher order terms. The light modes are now sent
over the desired distance, mixed at a symmetric beam splitter to erase which-path information
and finally measured using a photon number resolving detector. We see that the two light
modes are effectively encoded using the quantum error detection code presented in Eq.
in Section2.3] A maximally entangled state between the two atomic ensembles is thus produced
if and only if exactly one photon is detected after the beam splitter. Otherwise the generation
process has to be repeated.

The same principle of error detection is automatically included in the entanglement swapping
operation. If we are given two maximally entangled states of atomic ensembles next to each

other, the swapping operation again works by mixing the Stokes modes of adjacent ensembles
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at a symmetric beam splitter and again success is heralded when exactly one single photon
is detected, otherwise the swapping failed and one has to start again with the entanglement
generation.

Due to transmission and memory loss, the final distributed entangled state is a mixture of the
target maximally entangled state and the two-mode vacuum state. The DLCZ protocol ensures
that the vacuum component grows subexponentially with the total distance. Nevertheless, the
statistical weight (later referred to as the fidelity) of the desired state is rather small for long
distances. By using two repeater chains and two copies of noisy two-mode entangled states,
the DLCZ protocol proposes postselection to create a four-mode entangled state containing two
photons in total. This postselection procedure is probabilistic and could be realized by local
QND measurements on each side of the links. More practical is the direct consumption of the
corresponding photons for some application such as long-distance quantum cryptography. If
successful, unit fidelity can be in principle achieved.

The DLCZ protocol has created much attention and various implementations, variations and
generalizations have been proposed. In [79], a different qubit basis was chosen and active
purification included. A similar approach was presented in [80] and [8I]. Another variation
[82] uses pair sources and multi-mode quantum memories while in [83] high-fidelity entangled
pairs are locally prepared and long-distance entanglement is generated by means of two-photon

detections.

4.1.2 Hybrid-type quantum repeaters

Another suitable first-generation "hybrid quantum repeater" protocol for the distribution of
atomic qubit-qubit entanglement was given in [84] [85]. As in other hybrid quantum informa-
tion processing schemes [86], this protocol combines the advantages of discrete and continuous
variable quantum states. Atomic two-level systems with long coherence time serve as quantum
memories while optical coherent states are used to generate the initial entanglement between
the atoms using dispersive light-matter interactions and highly efficient homodyne measure-
ments. Employing such Gaussian measurements and Gaussian states as the initial resources
appears very attractive from a practical point of view compared to repeater schemes based on
the generation and detection of single photons. A particular experimental demonstration of this
scheme is proposed in [87]. Another, similar hybrid quantum repeater protocol can be found in
[88] and a recent hybrid approach to entanglement swapping using coherent states and linear
optics can be found in [89].

The physical setup for a qubit HQR is as follows: the qubit is represented by the two spin states
|0) and |1) of an atomic electron. The atom is placed into a cavity and the electronic spin in-
teracts with a bright coherent light pulse. The situation at hand is theoretically described by
the Jaynes-Cummings model in the limit of large detuning [90], i.e. the probe pulse and the
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cavity are in resonance, but both are detuned from the resonance frequency of the electronic
transition.

The interaction Hamiltonian in this model reads H'”) = hgo.a'a, where o, = —210)(0]+5[1)(1]
is the Pauli-operator on the spin state and a'a is the photon number operator of the light mode.
Furthermore, the parameter g describes the strength of the spin-light coupling.

Based on this interaction Hamiltonian, the corresponding unitary transformation is given by
Us(0) = exp(ifo.a’a) (with = gt being an effective interaction time) and, up to an uncon-
i6/2

ditional phase shift of the mode by €'/, acts on the spin-light system effectively as a phase

rotation, i.e.

Ux(0)[(10) + [1))]a)] = [0)]ar) + [1)]cve™). (4.2)

In the literature, this interaction is also known as dispersive interaction [91].
For the generalization that we are aiming at, we consider the case # = m, corresponding to
a strong interaction resulting in coherent states | & a) on the light mode. Note that this is
opposite to the original HQR-scheme of [84] where weak dispersive interactions are assumed.
The repeater protocol works as follows: the matter system is prepared in the state |0) + |1)
and interacts dispersively with a single-mode coherent state |a) (referred to as "qubus") as
described by Eq. . Note that this leads to a pure entangled state between the light mode
and the matter system.
The light mode is then sent through an optical channel of length L where it inevitably suffers
from photon loss. As pointed out in Section the action of photon loss can be simulated
by mixing the light mode with a vacuum state at a beam splitter with transmittance v =
exp (—ﬁ) (see the discussion below (2.6).
After applying the beam splitter, the total pure state of the matter system, the qubus light
mode and the loss mode reads as

1

\/§(|0>!\/704>!\/1—704>+\1>|—ﬁ@l— V1—7a)). (4.3)

The joint state of the matter system and the relevant light mode is obtained by tracing out the
loss mode. Since the coherent states |«) and | — «) are not orthogonal, it is useful to transform
these into an orthogonal basis. A suitable orthogonal basis in this case is the basis of even and

odd cat states (throughout we assume « € R),

W) = <= (o) +| - ) (14)
0) = ——(la) = | - a)), (45)

with normalization constants N,(a) = 2(1 + e2*°) and N,(a) = 2(1 — e~2**). Expressed in

this basis, one has
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—1 \/Nu (@) + V/No(@)o)), (4.6)
| — a) \/ a)lu) — v/ Ny(a)|v)). (4.7)

After tracing out the loss mode in this basis, the resulting state of the matter system and the
qubus light mode becomes

pout = NVl =70) W [% (10)] /A7) + |1Y] — ﬁa))} x H.c.

N, (1 —7a)

: (4.8)
# A 2 10l yFa) — 0] - vaa)| x e

This is a mixed entangled state between the matter system and the qubus. To study the
entanglement of such a state, and also for later purposes, it is most convenient to use directly
the |u), |v)-basis on the light mode , where ~ refers to the basis vectors in Egs. and
with damped amplitudes |/ya.

In addition, a basis change on the matter system into the conjugate X -basis, [0) = %(!@ +|1))
and |1) = \%(\O) —|1)), gives the expression

o = VL= 70) VZ_”O‘) [1< Na(y/A0)[0)@) + Nv<ﬁa)ﬁ>|’ﬁ>)] x H.c.

L N(VT=7a) 1—7@ { (y/Nuly/F0) D)) + /Va ﬁa)\ﬁ)ﬁ»} x H.c.,

which represents the state in Eq. (4.8)) in suitable binary orthogonal bases for both the matter

(4.9)

system and the qubus. Note that this does not change the entanglement properties of the state,
since any entanglement measure is invariant under local basis changes [92] [33].
Also note that this matter-light qubit-qubus entangled state effectively remains an entangled
qubit-qubit state, since the two initial coherent states of the qubus span a two-dimensional
qubit space and because individual coherent states remain pure after a loss channel.
After traveling through the optical fiber over the distance Lg, the light mode interacts disper-
sively with a second matter system, also prepared in the state |0) + |1), but this time with the
inverse angle, 6 = —.
The joint tripartite state, written in the same basis as in Eq. , then becomes

Nu(V1 —~a)

o = 220 0 ¢ BV 20D 6 (1.10)

where
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1

Co) = —=(167) V) + [¥1)] = vra)), (4.11)

Sl

2
and

S5 (167 IVA) + [u7)] = Vo)) (1.12)
Here, |¢*) and |¢)*) denote the four qubit Bell states already defined right after Eq. (2.8).
The component |Cp) in Eq. is the target component, whereas |C7) is the loss component
that vanishes in the loss-free case. Indeed, for v — 1, one observes N,(0) = 4 and N,(0) =0

|Ch) =

such that in this case the corresponding output density operator py, = |Co)(Cy| represents a
pure state.

To achieve the goal of distributing entanglement between the two separated matter systems over
the distance L, the final step is a measurement on the light mode, for instance, by homodyne
detection.

Unlike in the original hybrid quantum repeater protocol where the dispersive interaction is
assumed to be weak (and hence a p-homodyne detection is ultimately preferred over an a-
homodyne detection with, respectively, state distinguishabilities ~ af versus af? for small
but otherwise unfixed 6), the suitable detection scheme in our case is a measurement of the
quadrature & = 3(a + a') instead of p = 5 (a — af).

The position distribution of coherent states with complex amplitude § can be obtained by the

square of their wave functions,

o) = [ exp (2(a  Re()?) (4.13)

Because of the finite overlap of the coherent states |/ya) and | — \/ya), it is impossible to
perfectly distinguish these states and an error due to this non-orthogonality has to be taken
into account. Based on Eq. (£.13), it is obvious that |\/ya) and | — \/7a) have Gaussian
position distributions around ,/ya and —,/yq, respectively. It is therefore useful to assign the
result of the z-measurement to one of three possible windows.

The first window is wo = [\/yo — A, 00] with /7o > A > 0. If the measurement results
fall into this range, then the light mode is effectively projected onto |\/yc). Note that this
is an approximate projection due to the non-orthogonality, i.e. the resulting state is still a
superposition of |¢*) and |¢)7) in the first component where the weight of the latter can be
reduced by increasing the value of /7. The same is true in the second component for [¢~)
and [¢)7).

As for the second window we define w; = [—o0, —\/ya + A] which is symmetric to wy and
therefore represents the approximate projection on | — /ya). Unlike wp, one has now |¢*)

as the dominant terms in the superpositions in the two components. It is again true that the
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Figure 4.2: Phase space representation of the two coherent states |a) and | — «) to be distin-
guished by homodyne detection.

non-dominant term in the superposition can be made arbitrarily small by increasing \/ya. A
third window can be defined in between wy and w;, and a measurement result in this range
will be considered as a failure event to be discarded.

Valid measures for the performance of this entanglement distribution scheme are the success
probabilities of the two non-failure windows wg and w; as well as the fidelity of the corresponding
target state in the first component. As the fidelity, we define the overlap of the maximally
entangled Bell states [¢1) (wg) or [¢) (w;) with the mixed state after the homodyne
measurement.

The success probability for a measurement result to fall into the first window reads

o0

b=y [ dallo el + - ma@)) (111
Jyo—A
For the second window, we have
i
b=y [ de(mn@ 4 s (4.15

which equals p,, for symmetry reasons. The same holds true for the two fidelities,

Fwo = le
—/Yo+A )
B Nu( /—1 —’)/Oé) 7.£O dx‘qvbﬁa(x” (416)
o 4 —JAa+A .
S dz([dma(@) P + Y- ma(@) )
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The formulae for the fidelities and the success probabilities imply the crucial dependence of
the performance on the choice of A and /ya: if we choose A = Aq := |/7a, then we have
no failure window and every measurement result is assigned to one of the two coherent states
| £ /7). The corresponding success probability equals unity at the expense of a rather low
fidelity.

With A < Ay, the success probability is clearly less than unity and the fidelity correspondingly
increases.

In general, the fidelity drops for too small |/ya due to the non-orthogonality and thus indis-
tinguishability of the coherent states | £ ,/7a). The overall effect becomes manifest in bit-flip
errors in the target Bell state.

Though leading to near-orthogonality, large (/Yo lead to a near-equally mixture of the state
in Eq. which then, after a near-deterministic discrimination, consists of one of the two
possible Bell states in the first component and its phase-flipped version in the second. This
state has therefore very low entanglement and hence is of limited practical interest.

So the task is to find a regime of o and distances Ly such that both reasonable fidelities and
success probabilities can be obtained.

Besides homodyne detection, unambiguous state discrimination (USD) has been considered for
hybrid quantum repeaters in the literature. The advantage here is that the effects originating
from the finite overlaps of the coherent states no longer appear in the fidelity thanks to an
error-free state discrimination. The corresponding effects solely influence the success proba-
bilities depending on the weights of the inconclusive discrimination results. Two-state USD
for coherent states | & ,/ya) is well-known and can be optimally performed via a single beam
splitter and on-off detections [93].

Further steps in the original repeater protocol address the purification of the mixed state in
Eq. after homodyne detection and entanglement swapping on the matter system or via
the qubus to distribute the generated entanglement over longer distances. For more details, see
[84].

We generalize the first-generation hybrid quantum repeater scheme presented in [84] to higher

dimensions in Section [T.1.1]

4.2 Second-generation QR

A fundamental drawback in first-generation quantum repeaters is the necessity of rather long
memory coherence times. The resulting restriction of the total communication distance has
been first overcome with the introduction of second-generation quantum repeaters by Jiang et
al. [94].

In [94], unlike first-generation quantum repeater protocols, the memories are protected by the
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usage of quantum error correction codes against the specific memory errors.

In an elementary link, the goal is to distribute an encoded Bell state over a distance Lg. After
entanglement generation, quantum error correction on the memories takes place to increase
the initial fidelity of the entangled state. Using quantum error correction, some of the time-
consuming purification steps can be avoided. Since the error correction steps are performed
locally, no communication between different parties is necessary and thus the error correction
scheme can be faster than schemes involving purification. Indeed, the rate of such a repeater
scheme is limited by Lo/c [19].

After encoded entangled states in elementary links next to each other have successfully gen-
erated, entanglement swapping at the encoded level has to be performed. This requires gates
and operations like CNOT gates which can further introduce errors. However, by a suitable
choice of the quantum error correction code to be used, one is able to correct both, memory
and operational errors. In [94], this is done by using Calderbank-Shore-Steane (CSS) codes
[22], a special class of stabilizer codes which show the property of transversality and lead to the
concept of error correcting teleportation [95]. It can be shown that quantum error correction
and entanglement swapping can be done with the same set of gates.

Besides [94], not much attention has been paid to second-generation quantum repeater schemes.
In [96], the hybrid quantum repeater protocol of reference [84] has been modified to tackle mem-
ory errors using CSS codes and repetition codes. Apart from that, a similar approach for the
distribution of streams of entangled qubits in the framework of quantum networks has been
considered [97].

4.3 Third-generation QR

Though suppressing memory and gate errors and possibly reducing the number of rounds of
entanglement purification steps, second-generation quantum repeaters still need two-way com-
munication between the repeater nodes for heralded entanglement generation. Apart from that,
photon loss protection in both first and second-generation quantum repeater schemes is only
implicitly included. The key idea of third-generation quantum repeater protocols is hence the
employment of quantum error correction for both photon loss and operational errors.

As a specific instance of a third-generation quantum repeater, one-way quantum communi-
cation schemes were introduced [23] (see Fig. . Inspired by one-way quantum computing
schemes [98|, an encoded quantum state is sent from a sending station directly through an opti-
cal fiber of length Ly to reach the first repeater station while suffering from a moderate amount
of photon loss for sufficiently small Lj. In each intermediate station, teleportation-based error
correction [95] is performed before the corrected state is sent to the next repeater station. For

logical qubits, error correcting is realized by Bell-state preparation and Bell measurements at
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QEC QEC QEC QEC —

Figure 4.3: Except of a one-way quantum repeater: encoded quantum information is sent
through an optical channel while losses are corrected by means of quantum error correction at
intermediate stations separated by rather small distances L.

the encoded level, which requires encoded Pauli operations as well as encoded Hadamard and
CNOT gates. This schemes uses QPCs for the loss protection and the syndrome identification
and recovery process in every repeater station are realized in the framework of circuit quantum
electrodynamics [99]. A similar and more practical scheme was presented in [100, I0T] where the
encoded Bell measurements are implemented with a static network of linear optical elements.
As pointed out in [102], error correcting teleportation can be generalized to logical qudits using
qudit Pauli and SUM gates together with qudit Hadamard gates.

The essential advantage of a third-generation repeater is that there is no need to temporarily
store entangled states until neighboring entangled states have been distributed and purified,
and there is also no need to send classical information back and forth between repeater sta-
tions. A third-generation repeater therefore only requires one-way classical communication and,
in principle, no quantum memories are needed at all [I03]. The rate is therefore only limited
by the speed of local operations and quantum information can then be sent directly at rates
that approach, in principle, those achievable in classical communication.

A conceptually distinct version of such a loss-error-correction-based repeater is the all-optical
scheme of Azuma et al. [104] based on the distribution of entangled cluster states. This
scheme also relies on sufficiently fast feedforward operations. Third-generation quantum re-
peater schemes play a crucial role in this thesis because quantum error correcting codes against
photon loss are their key ingredient. We will apply the codes to be constructed in Section
and [0] directly in one-way communications schemes and determine the performance in terms of

success probabilities and final fidelities.
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Chapter 5

QEC against photon loss using NOON

states

Based on the error operators for AD (Eq. (2.6))) and the KL-conditions for QEC (Eq. (3.1)),
new explicit quantum codes against photon loss for logical qubits based on NOON states and
beam splitter operations are systematically developed. The resulting codes are intermediate
between QPCs and bosonic codes, because they use N? photons in 2N modes with at most N
photons per mode. Our code is a block code like QPC and unlike the general bosonic code,
with the same number of blocks as QPC, but with the N? photons distributed among a smaller
number of modes in every block compared to QPC. It turns out that only in our scheme both
the total mode number and the maximal photon number per mode scale linearly with N to
achieve protection against N — 1 losses.

We then discuss the extension of this systematic scheme to logical qudits (d-level systems) in
a natural manner by switching from beam splitters to general multi-port devices. It is shown
that the scaling of the fidelity only depends on the total photon number and, especially, that
it is independent of the dimension of the logical qudit. After that, we present an in-principle
method for the generation of an arbitrary logical qubit state for the one-photon-loss qubit code
based on linear optics and light-matter interactions.

Before deriving the different codes, we first provide a brief introduction to NOON states and

the notion of linear-optical devices in the framework of quantum optics.
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5.1 NOON states

So-called NOON states are an important resource in optical quantum information science 105,
106l 107, 108]. First introduced in 1996 [109], they are bipartite entangled, N-photon two-mode
states where the N photons occupy either one of two optical modes,

1

V2

NOON states have been widely used in quantum communication [110], quantum metrology

(|NO) + [ON)). (5.1)

[111] and quantum lithography [112], because they allow for super-sensitive measurements, e.g.
in optical interferometry. This is related to the substandard quantum-limit behavior of NOON
states, i.e. a factor v/ N improvement to the shot noise limit can be achieved [I13]. Due to their
practical relevance, various schemes for NOON state generation based on strong non-linearities
[114, 115] or measurement and feed-forward [116} 117, 1T8] have been proposed F_:] Unfortunately,
NOON states are very fragile, which focused recent research on their entanglement and phase
properties in noisy environments [119] or on the enhancements of NOON state sensitivity by

non-Gaussian operations [120].

5.2 Linear optics

Passive linear optical devices such as beam splitters and their generalization are a basic ingre-
dient for the NOON codes to be developed in the next sections. We therefore briefly review
the notion of linear optics [10] 43].

In the general case, a linear optical device is best understood in the Heisenberg picture. A gen-
eral optical device transforms d input modes into d output modes which can also be expressed
as a transformation on the corresponding creation and annihilation operators of the modes. A
linear optical device is defined by the linear relation between the annihilation operators of the

input modes a;,7 = 0,...,d — 1 and the annihilation operators of the output modes b;:

T
x

.
Il
=)

Here, the unitary matrix U, connecting the input and output modes and ensuring photon
number preservation, is arbitrary. In the case d = 2, this transformation corresponds to a

beam splitter [I21] and the corresponding unitary is given by
v v viTn) (5.3)
VT -y

!In Appendix @ we present another experimentally feasible scheme to realize arbitrary NOON states.
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such that the input annihilation operators a; and asy are transformed by a beam splitter with
transmittance 7 according to ay; — /nay ++/1 — nas and a; — /1 — nay — \/Nay. More general
beam splitter transformations would include additional phase shifts.

By means of the linear input-output relation, the action of the above beam splitter transfor-
mation on any two-mode state can be calculated. Written in the Fock basis, the effect of the

beam splitter transformation is described by

im, 1) % \/(j +k)!<mm%!rn7!z—j — k)| (T) (Z)

7,k=0

. n—i+k i .
< (=)F T = — k4 R,

In the case of a 50:50 beam splitter (/7 = /1 —n = \/ig), this reduces to

) mZ o IR T () k)

(5.5)

(5.4)

and we obtain in particular the expressions
N N
1 N
BS[|NO)| =4/ = N —3,7
oy = /2 > ()i s,

BS[|ON)] = \/;Vé(—l)j\/@w — 4, 3);

which play a central role in the next section.
In the remainder of this chapter, we only need symmetric linear optical devices. In complete
analogy to the 50:50 beam splitter, the symmetric tritter transformation 7" of the annihilation

operators aj, as and agz of three optical modes is given by

. r .. .
ay —(a1 + a9 + CL3),

V3
27 271

X L 2mi _2mi,
(g — —=(G1 + €3 s+ e~ 3 as), (5.7)
27 2mi

V3

dg — —(dl +e 3 a9+ €TCZ3).

V3

By induction, one easily verifies that a symmetric d splitter on d optical modes with annihilation

operators a;, ¢ = 0,1,..,d — 1 can be described as

d—1 .
Qe Y e d . (5.8)
=0
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General expressions for arbitrary multi-mode Fock states (as in Eq. (5.5) for d = 2) are not
very insightful, so we do not display them here. Expressions for special cases similar to the
input states in Eq. (5.6) are derived in Section

5.3 Qubit codes

Let us consider the following qubit codewords defined in the three-dimensional Hilbert space

of two photons distributed among two modes,

1
0) = E(W) +102)), (5.9
1) = [11).

The action of the AD channels on the two modes of the logical qubit |¥) = co|0) + ¢;|1) is []

Ap ® Ag|¥) = /12| ¥),
Ay @ Ao W) = /41 — 7)(co|10) + ¢1[01)), (5.10)
A0®A1‘\Il VY 1 00’01 +01’10>)

including the first three error operators Fy = Aqg ® Ay, Fs = A1 ® Ag and E3 = Ag ® Ay, of
which the last two describe the loss of a photon. Obviously, the one-photon-loss spaces are
not orthogonal (they are even identical) and the qubit is subject to a random bit flip for the

one-photon-loss case. A different choice would be:

—=|11),
f (5.11)

frn>

_ 1 1
= -2 —102
0) = 5120) + 5102) +
_ 1 1
1) = |20} + =02
1) = 5120) + 5102) -
After AD, this becomes:
A ® Aol¥) = /72[V), (5.12)
_ 1
A1 @ Ag|¥) = /(1 =) x (co—=(]10) + [01)) + e1—=(|10) — |01))),

V2
i(|10> +101)) — er—=(]10) — [01))).

V2

\/_

Ay ® A1|T) = \/7(1 =) x (co \/—

Here, the phase flip in the last line corresponds to a violation of the KL criteria, (0| El E5|0) #
(1| E1E5|1), preventing the encoding from being a proper quantum error correcting code. In-

deed, again we have identical one-photon-loss spaces. One can easily verify that any choice of

2In the remainder of this chapter cg,c1,..,cq_1 € C are the coefficients of our logical qudits.
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codewords will either lead to overlapping one-photon-loss spaces or the qubit is completely lost.
A possible remedy is to construct codes composed of blocks.

To demonstrate this, we first deal with the specific example for encoding a logical qubit. Define

11),
\f (5.13)

as the "input states" for our encoding, where BS[ | denotes a 50:50 beam splitter transforma-

1 1
%) = BS[|20)] = ]20) + /02) +

1 1
£5%) = BS[j02)] = 5120) + 5]02) -

tion. Now by means of a Hadamard-type operation on |to) and [t7?), the following states are

obtained:
~ 1
0) = —(\t D) +16%) = —=(120) + [02)),
N \/_ V2 (5.14)
1) = —=(|t57) — [£7%)) = 11).

ﬁ
Note that |1) equals BS[ =(|20) — 102))], whereas |0) is the two-photon NOON state which is
invariant under the beam Sphtter transformation. A logical qubit can now be encoded according

to
1) = ¢o[0Y]0) + ¢1[1)[T) = co[0) + 1 ]1). (5.15)

We prove in the following that the codewords

0) = [0)[0) = %uzm +102))

1) = [DIT) = [1111),

7(120> +102)) = (|2020> +[2002) + [0220) + |0202)),
(5.16)

form a quantum error correcting code for the AD channel. Calculating the action of AD on the

basis codewords and checking the KL conditions, we obtain

Ay ® Ay ® A ®A0|\T’> = v74|‘if>a

AL ® Ay ® Ag ® Ag|T) = /13 (1 — ) (]1020) + |1002)) + ¢1]0111)

?

Ap® AL ® Ay ® Ao|T) = /43 (1 — ) [ 2(10120) + [0102)) + 1 [1011) ) | (5.17)

(12010) + [0210)) + ¢;]1101)

’

vvv\_/

SIS Sle Sle Sls

5
(
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(
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The KL conditions are obviously fulfilled for one-photon-loss errors. Note that, after losing any
two or more photons, the logical qubit cannot be recovered anymore.

To be able to actively perform quantum error correction, it is a necessary task to determine the
syndrome information, i.e. in our case the location (the mode) where a photon loss occurred.
To get this information, we first measure the total photon number per block. If the result is
"2" on each block, there is no photon missing and the logical qubit is unaffected. However, if
for example a photon got lost on the first mode, the result is "1" for the first block and "2"
for the other. This result is not unique, because there are still two possible corrupted states
with this measurement pattern. In order to resolve this, inter-block photon number parity
measurements with respect to modes 2+3 and 1+4 are suitable. The results "even-odd" and
"odd-even" uniquely determine the corrupted state which can then be accordingly recovered.
Note that all the measurements discussed here are assumed to be of QND-type such that also
higher photon losses can be non-destructively detected. But so far these cannot be corrected
by means of the encoding.

To assess the performance of this code, we use the worst-case fidelity, as defined in Eq. .

A short calculation shows
F=~7"4+4y31-9)~1-6(1—~)% (5.18)

Note that this code has the same scaling as the four-photon-code of [53] described by Eq.(3.5)).
For higher losses, we can use NOON states with higher photon number to encode a logical

qubit. For this purpose, let us define the input states for the codewords as

1#2%) — BS[|30)] — L\/_|03> + 1\/§|12 \[\21 |30>

(5.19)
t2°) = BS[|03)] = — |03 \[112 \[|21 \30>
such that this time
S L aa ey L L V3
) = 565 +162%9) = 130) + 52112} = B | = (130) +103)|. .

= 2,3 23\\ 1 \/§
1) = 5% ~ 1) = 5108) + S7121) = B3 | 7= (130) = 03)

become the states after the Hadamard-type gate. We could now again build a qubit like in
Eq.(5.15). However, we find that the resulting six-photon two-block (four-mode) code only
corrects certain two-photon losses and therefore there is no significant enhancement compared
to the N = 2 code above. This can be understood by looking at the corrupted logical qubit for
losses of up to two photons. The details for this are presented in Appendix[A.1I] The conclusion

34



is that some of the orthogonality requirements are violated for certain two-photon losses which
consequently cannot be corrected. To overcome this problem and to improve the code, instead
we take the following codewords for N = 3 photons per block (with N? = 9 as the total number
of photons):
0) = 10)]0)[0),
1) = DD,

which are now composed of three blocks for a total number of six modes. To verify that this

(5.21)

code corrects all losses up to two photons, we can calculate the action of AD on the logical qubit.
Due to symmetry reasons, it is sufficient to calculate the action of only certain error operators
on the codewords, because all other corrupted codewords with at most two lost photons can
be obtained by permutations of the blocks. Therefore, if the KL conditions are fulfilled for the
following error operators, then they are also satisfied by the block-permuted corrupted states.

The relevant error operators are

A1 ® Ag ® Ag ® Ag ® Ag @ Ao| V) = ;78(1— ) (5= (120) + [02))[0)[0) + 1 [11) D T)),

V2
Ar® 41® Ay ® Ay @ o @ Aol = [ 59°(1 = (@1 BID) + 5 (120) + 02) DI,

A @ A ® Ay ® Ay © g © Aol ) =\ 597(1 = )2 loL)T) ) + ea10)T) ),

A28 A4y A0 & Ao Ay @ Al) = LTI 10)B)T) + e1fo1) DIT)),

A ® Ay ® Ag ® Ay ® Ag ® Ag|T) = ?m(%umyb}@ +a0D)[D)T),  (5.22)

A 4@ A Ay @ Ao @ AB) = 5V =P (—75(120) +102)—=(120) + [02) )
eI n[D)),

- 3
Ag@ A @A @ Ay ® Ay ® AV = 5 Y71 —7)? (00‘11> (|20> + |02>)|0>

g

+e1—=(120) + 102)) [11)[1)),

\/_
— 3
Ay ® A1 @ A ® A1 ® Ay ® Ao|¥) = Z/77(1 = 7)%(co]11)[11)]0)

120) + 02)) —=(120) + [02))[T)).

v V2
S - 7)2@0%(&0) +102))[11)/0)

+ ¢
A1®A0®AO®A1®AO®AO|@>:

+a|ll)— (!20>+|02>)!1>)

&l
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One can easily verify that a recovery of the logical qubit is, in principle, possible by again
detecting the photon number for each block with additional inter-block parity measurements.
It is then also not difficult to see that the KL conditions are fulfilled for these operators, so
indeed the corresponding two-photon loss errors can be corrected with this encoding. Note that
the code is degenerate, i.e. the effect of some non-identical loss errors on the logical qubit is
identical. For the loss of three or more photons, the code ceases to be a complete loss code.

The corresponding worst-case fidelity is

F=7"4+9¥1-7)+367y"(1-1~)°

~1—84(1— )% (523)

This is the same result as for the bosonic code in Eq.. However, note that in order to
promote the encoding from a one-photon-loss to a two-photon-loss code, in our scheme the
maximal photon number per mode only needs to go up from two to three photons (as opposed
to four versus nine photons in Eq. and Eq., respectively). Similarly, the two-photon-
loss code QPC(3,3) requires as many as 18 optical modes compared to a modest number of six
modes in our case.

Our procedure can be generalized for arbitrary N (i.e., N photons per block and N? total

number of photons), setting

t5™) = BS[INO)],

(5.24)
) = BSHONﬂ,
applying the Hadamard-type gate (using Egs. ) and (5.24)),
N
~ 1 N
) = 5 (16 1) = 3 (5 )1 - 22)
\/_< ) N 2j
1
— BS [—(NO 40N ] 5.25
7 [NO) +|ON)) (5.25)
o1 _ QN _ Y .
D= 75 (5 - 18%) = = 12 (53 ) —2i = 1251
=BS |— (|NO) — |ON 5.26
5 (150) — o) (5.26)
and finally introducing the N-block structure,
0) = [0)®Y,
\7> !~> (5.27)
1) = [1)*
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Figure 5.1: Worst-case fidelities for different qubit loss NOON codes as a function of v: N? = 4
(orange), N? = 9 (green), N* = 16 (blue) and N? = 25 (magenta), each correcting N —1 photon
losses. Notice the change of ordering with higher-order codes beating the lower-order codes for
small losses and the converse for larger losses [see inset|. The small-loss regime v € [0.95, 1]
would correspond to a communication channel length of ~ 1 km (see Section [2.1).

By construction (for more details, see the next section), this code corrects the loss of up to
N — 1 photons using N? photons. For any order, i.e. photon number, the codewords of our
NOON code can always be obtained from NOON state resources using beam splitters. The
worst-case fidelities of different qubit codes are compared in Fig. . One interesting feature
of our qubit code construction is the interchangeability of the beam splitter transformation,
Hadamard operation, and block building. For example, consider the N? = 4 case. In order to
produce the codewords, we first apply the symmetric beam splitter transformation on |20) and
|02), followed by the Hadamard gate, and finally build the blocks. The logical basis codewords

obtained in this way are

0) = 12(yzo> + 102>)1 o £(12020) + [2002) + [0220) +]0202)),

e

22 (5.28)
_ 1

1) = | —(]20) — |02 = —(|2020) — |2002) — [0220) + |0202)),
1) = | 50200 ~ 02| = 502020) — 2002) — po220) + foz02)
which correspond to the codewords obtained as before up to a beam splitter transformation on

each block. The details to verify that this encoding is also a proper code as well as its extension
to qudits can be found in Appendix[A.2].
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5.4 Generalization to qudit codes

Our method can be directly generalized to logical qudits. Let us again illustrate the idea by a
specific example, namely that for a qutrit code (d = 3). Define the states

1 1 1 2 2 2
|t3?) = T'[|200)] = 51200) + £1020) + £]002) + %|101) + ‘/?_|011> + §|110>, (5.29)
3.2 1 1 . 1 . V2 .
|t77) = T7[|020)] = §\200> + 3 exp(4mi/3)|020) + 3 exp(—4mi/3)|002) + 5 exp(—2mi/3)|101)
2 2
+ %\on) 4 % exp(27i/3)[110),

£32) = T[j002)] = %|200> + %exp(—47ri/3)|020> + % exp(4mi/3)[002) + g exp(2mi/3)[101)
+ \/?E\Om + \/?i exp(—2mi/3)[110),

where T' now represents a "tritter" transformation, i.e. a symmetric 3-splitter. The encoding

works via a qutrit Hadamard-type gate:

= 3,2 32\, _ 1 2

0) = 7<|t I+ 157) = \/§|200>+\/;|011>,

et o 43,2 o 32y L 2

1) = 7(|t %) + exp(2mi/3)[t7%) + exp(—27i/3)|t57)) = ﬁ|020> + \/;Il()l), (5.30)
5 3,2 . 3,2 . 3.2\ 1 2

|2) = ﬁ(“o )+ exp(—2mi/3)|t77) + exp(2mi/3)|ty7)) = %|002> + \/;|110).

The logical qutrit state is then defined as
[T) = co[0)|0) + c1 [1)[T) + c2[2)[2). (5.31)

The states obtained from the logical qutrit after the loss of exactly one photon are:

AL ® Ay ® Ay ® Ag @ Ay © AT = 1/ ZA3(1 — ~)(co]100Y]0 + 1 ]001)[T) + e]010)[2)),

wﬁ‘

— 2

_ 2
Ag® Ao ® Ag® Ay © Ao ® AolB) = |/ 27%(1 = %) (@[0)[100) + c1[1)[001) + o[2)|010)),
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Ag® Ay ® Ay ® Ag ® A1 @ Ao|T) = 1/ =43(1 — 7)(c0[0)]001) + ¢4]|1)[010) + ¢5]2)[100)),

wﬁ‘

(5.32)

Again, the KL conditions are obviously fulfilled, so the code can correct the loss of up to one
single photon. As before, the error spaces can be discriminated by identifying in which block
the photon was lost and by measuring global inter-block observables (while simple inter-block
parities no longer work). An extension to higher photon numbers and to higher dimensional

quantum systems is natural,
LNy = S4[|N00...0Y], ..., |t2N) = S4[|000...0N)]. (5.33)

Here, S, represents a d-splitter, i.e. a symmetric d-port device where d is the number of modes.
It is the multi-mode generalization of a symmetric beam splitter and the tritter as discussed
above (thus Sy = BS and S5 =1T).

Then we define the following states:
N =
k) = —=> " exp(2mikj/d)|t;™), (5.34)

for k =0,...,d—1. A general logical qudit is then expressed by the dN-mode, N2-photon state

D) = col0)®N + 1 [T)®N + ..+ cqoy]d — 1)V, (5.35)

By construction, this code can correct up to N —1 photon losses. The orthogonality of corrupted
codewords, required by the KL conditions, is easy to check, because the codewords are built
blockwise. The non-deformation criterion, however, requires a more rigorous check. Let us first

calculate the input state |[t0") for general N and d,

INOO -+ ) = —=000...) — S4[|N000...)]
(@l +ab +---+ah)No0o- )

N
1 N
= ——/= al™al™ - .- al)000) (5.36)
d 4 kg
ke A
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In the third line, we used the multinomial theorem, bearing in mind that all the creation

operators commute with each other. Furthermore, we defined the multinomial coefficient,

N NI
T TVl kgl 5.37
<k17k27"' ,kd) kl'kg‘]{;d' ( )

as the number of arrangements of NV objects in which there are k; objects of type j, k, objects

of type q and so on. We also introduced the set of d-dimensional vectors with fixed column

. d
sum, i.e. A = {k € NI|>" k; = N}, to parametrize the set of all d-mode Fock states with
i=1

. d
fixed photon number N. Furthermore, we define A’ = {k € N¢| >  k; = N and k; > 1} and
i=1
A”—{kGNd|Zk‘ =N —1}.
We consider the loss of exactly one photon in the first mode, i.e. we apply the operator
A ® AP

Ay @ AZTLSH[IN0O..)]

N!
= o E ®d—1
\/N!\/; 4 \/kl!\/kQ!...,/_kd!Al(g’Ao k1, ka2, ,kq)
keA
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\[\/—N VA Z\/qTVqT \/—\ql,qz,---,qcﬁ

qeA”
- m\/gﬁf“mgd(w —1,0,0,--)). (5.38)

For symmetry reasons, the loss of a photon in a different mode acts identically. The same is true
for the other input states, i.e. S4[[0,0,---, N,0,0,---)] decays into S4[|0,0,--- , N—1,0,0,---)]

after losing one photon. Higher losses can be treated by induction. Because the blocks of the
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basis codewords are exactly superpositions of these states, no deformation can take place after
photon loss. Together with the orthogonality of corrupted codewords, this proves our qudit

encoding to be a quantum error correction code.

5.5 Physical implementation of the qubit code

In order to substantiate the importance of the encodings, we describe a scheme how to generate
an arbitrary logical qubit for the simplest code with just two photons per block (N = 2). We
assume that the states \/Li(|2()) + |02)) are experimentally accessible from two single-photon
states |1) ® |1) with a phase-free and an appropriately phase-inducing, 50:50 beam splitter. In
addition, we need one auxiliary photon in two ancilla modes to produce the following states:

[¥1) = 10) (!20} +102))[1),

%I

(5.39)

[¥2) = [1)—=(]20) — 102))[0).

ﬁ
As pointed out in [122], by employing an ancilla ion-trap system, the generation of a symmetric
entangled state,\/ii(lqblﬂqﬁg} + |p2)|#1)), is, in principle, possible for arbitrary photonic input
states |¢p1) and |¢9). Applied to |11) and [1)5), one obtains

1

(120) — 02))[0110)) + —=(]20) — [02))

1 1
—=(120) +102)) — %

|
v <\/§ v —_(]20) + \02>)\1001>) ,

V2
(5.40)
where we already reordered the modes. The next step is to apply a general beam splitter with
complex transmittance ¢t and reflectivity r, with the coefficients in the desired superposition

determined later, to the first and second pair of the ancilla modes. This leads to

1
7
- (j20) - J02))—

V2 V2

Measuring the photons after the beam splitter and detecting 1001’ projects the state onto

1 1
(E(@O) + !02>)E(!20> —102)))(r[10) = ¢01))(¢[10) + 7(01)) )

(120) +102))(¢|10) + r|01))(r|10) — t101>)) :

2

||4+|ﬂ4 f (120) +|02>>7<r2o> 02))) -

|7“|4 T+ |t|4 \/— 20) — |02>)E(|20> +102))).

Finally, a phase shift of 7/2 on the last mode (i.e., applying exp (Z2) to it) gives the logical
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qubit

2

o) = |T|4+|t|4 f >+|02>>7<|2o>+|o2>>>
1
m4+|t|4 f >—|oz>>ﬁ<|2o>—|o2>>> (5.43)
1 1
s f<|2o>+|02>>E<120>+roz>>>+c1 f<|2o> 02))75(120) ~ [02)),

similar to Eq.(5.15)). Because |t|*+|r|? = 1, this means that with an appropriate choice of ¢ and
r and with a final symmetric beam splitter transformation on the blocks, any superposition of
the logical codewords can be generated. Note that the logical qubit in Eq.(5.43) (without the

final symmetric beam splitter) corresponds to the four-photon, alternative NOON code qubit

[see Section [5.3] and Appendix [A.2].
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Chapter 6

QEC against photon loss using

multicomponent cat states

In this chapter, we start with a discussion of the known approximate one-loss qubit cat code
[44, 45] (see Eq. (3.13)) and its properties when subject to individual photon loss events
as well as its behavior in a full loss channel. Following this, we present a generalisation of
this code to a higher number of losses. We present a detailed analysis of a generalized code
that includes a complete and systematic definition of the codewords as well as a quantitative
performance assessment of the code in a full photon loss channel. We will give a very compact
definition of the codewords in terms of eigenvalue equations, expressed in terms of powers of the
mode annihilation operators, for any loss order. In this way we will also define the canonical
codewords for the respective error spaces, which satisfy the same eigenvalue equations, but
differ from the code space-codewords and the codewords from the other error spaces in their
(generalized) number parities. Thus, a certain instance of the cat code (corresponding to a
certain coherent-state amplitude «, a certain loss order L, and also a certain logical dimension
d for general logical qudits living in the code and error spaces) is defined by two sets of eigenvalue
equations: one to determine the space (and hence the error syndrome) and another one to define
(together with the former set) the codewords. We will demonstrate that for the right choice
of codewords there is no deformation of the initial logical qubit (not even for small coherent-
state amplitudes, in which case, however, the codewords begin to overlap significantly). This
no-deformation property results in a rather simple and well structured output density matrix
when the encoded state is subject to a complete loss channel. This feature is also similar to
the cyclic behavior of the one-loss-code in the simplified photon-annihilation ("photon-jump")
error model [44] [45], but here extended to higher losses and for the full, physical photon loss

channel.
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6.1 Omne-loss cat code

It is rather well-known that there is a two-fold effect when a cat state, i.e., a superposition of two
distinct coherent states such as o< |a)+|—a) is subject to a full photon loss (amplitude damping)
channel. On the one hand, the coherent-state amplitude « in each term is attenuated depending
on the channel transmission parameter, ,/y«, corresponding to an exponential amplitude decay
with distance. On the other hand, a random phase flip occurs that incoherently mixes the initial
cat state with its phase-flipped version such as o |a) — | — @), where the flip probability also
depends on the channel transmission v and on the initial amplitude a. In a cat-state qubit
encoding [62] 123], a loss-induced phase flip of a logical qubit could be corrected when the qubit
is encoded into an additional layer of a multi-qubit repetition code composed of three or more
logical cat qubits (i.e., by adding two or more physical oscillator modes) [124], 125, 126]. A
conceptually more innovative approach, however, would stick to a single oscillator mode and
instead exploit more than just two (near-)orthogonal coherent-state components of that mode
(i.e., exploiting a manifold with dimension larger than two in the oscillator’s phase space). While
it is obvious that this approach enables one to reach higher dimensions, it is not immediately
clear how this can provide protection against photon losses. In Refs. [44] [45], however, it was
shown that by constructing two (near-)orthogonal codewords both in the form of even cat states
(those with only even photon-number terms) a logical qubit can be encoded that remains intact
under the effect of a lost photon, as the qubit is then mapped onto an orthogonal error space
that is spanned by two (near-)orthogonal codewords both in the form of odd cat states (those
with only odd photon-number terms).

Formally, for the even cat code given in [44] [45], the basic codewords are certain +1 eigenstates

i

of the number parity operator (—1)™:

_ 1

04) = (lo) + | —a)),

" o
14) = (lie) + | —ic)),

5

with normalization constant Ny = 2 + 2exp(—2a?) (N_ for later). Throughout we assume
a € R. By writing the coherent states in the Fock basis, one can easily confirm that both

codewords have only even photon number terms,

_ 267012/2 Oé2 014
00) = — (0)+ = [2) + —=[4) + ... ) ,

) (6.2)
3 e~ /2

1) =2 (0= S5+ S - ).
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These two so-called even cat states are, in general, not orthogonal, but for large «, as e~ /20k —
0, an infinite superposition of nearly equally weighted even number states is obtained for each
codeword, [0,) o< |0) +[2) + |4) +... and |1,) o< |0) —|2) + |[4) — ... and thus (0, |1,) ~ 0 (notice
the alternating sign in |1,)). For general o, their overlap is (see App.

cos(a?)

(04[1) =5 ({alia) + (0] — ia) + (~alia) + {~a] — ia)) = (6.3)

4 cosh(a?)’

which indeed goes to zero in the limit o — oo. Instead of the codewords in Eq. (6.1)), as an

alternative qubit basis, we may also use the two orthogonal states

0, 1) =

1 . .
= (o) + | = ) £ fia) | — i), (6.4)

Vv VL
which span the same (even) code space as {|0.),|1,)} do and hence represent the same (even)
cat code (N, are some normalization constants). Their exact orthogonality (for any «) can be

immediately seen in the Fock basis:

R TRl (S S ISP
+1,) = +——]4) + +..),
et m(” NN )
—a?/2 2 6 10 (6'5)
0, —1,) =2~ (—O‘ 12) + 2 16) + ——[10) + )
T N V2 12/5 72077 )

Here we refer to the non-orthogonal codewords [0,) and |1,) as the (approximate) logical
Pauli-Z basis, and in this sense, the states |0, 4= 1,) can be thought of a logical Pauli-X basis
obtained by taking an equally weighted sum or difference of the two Z eigenstates. This is
similar to the cat-qubit encoding of Ref.[123] when two non-orthogonal phase-rotated coherent
states {| & o)} form the computational Z basis, while the two orthogonal even and odd cat
states {|a) & | — a)} correspond to the Hadamard-transformed, logical X basis (this encoding,
however, does not represent a loss code that allows to correct a certain non-zero number of
photon losses and it corresponds to the Oth order of our family of generalized cat codes, see
next section).

Although {|04),[14)} and {|0 £ 1)} represent the same code, we will see that, nonetheless,
the choice of codewords, for example the Z or X basis, does make a difference when assessing
the code’s performance in a physical loss channel. This is related to the fact that the code is an
approximate code, for which there is not a clear distinction between correctable errors (exactly
satisfying the Knill-Laflamme (KL) conditions [22], see App. and uncorrectable errors
(violating the KL conditions) like for an exact code. For the approximate cat code, those errors
that are, in principle, correctable may still give violations of the KL conditions, however, these

violations go away in the limit of large amplitudes a. For general a values, it then depends
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on the choice of codewords what particular KL conditions are violated and, as a result, what
particular logical errors occur. These logical errors reduce the (input-state-dependent qubit)
fidelity, which is further reduced by the uncorrectable errors (which remain uncorrectable even
when o — oo and which occur more frequently when « is large, see below).

As one type of violation of the KL conditions can be avoided at least in the Oth order (i.e., the
orthogonality condition of the initial codewords) for the basis {|0; £+ 1)}, independently of
«, it appears beneficial to choose this basis. However, for finite o, these codewords lead to a
deformation of the logical qubit, i.e., the norms of the codewords after an otherwise correctable
error (such as a one-loss-error for the one-loss-code) change depending on the specific codeword.
This latter effect of qubit deformation turns out to be highly undesirable when the full photon
loss channel is considered and so our choice of codewords will be the non-orthogonal {|0, ), [1,)}-
basis. These codewords do not lead to a qubit deformation, i.e., the change in the norm of
either codeword after a one-loss-error (or any other correctable error such as 0,4,8,12,... or
5,9,13,... losses of photons, see below) is independent of the codeword for any «. This no-
deformation property of the codewords means that the nice cyclicity feature of the cat code for
a simplified, unphysical photon-loss error model, as we discuss next, can be effectively taken
over to the physical model of a full loss channel. The only remaining effects that have to be
dealt with then come from the non-orthogonality of the codewords |0,) and |1, ) before and
after an error (i.e., in the code and the error spaces, as it becomes manifest through violations
of the corresponding KL conditions). In App. , we present a detailed discussion of the KL
criteria for the various error models.

In order to understand the behavior of the codewords under photon loss, it is conceptually
useful to first model the effects of the channel by individual photon loss and simply apply the
annihilation operator a to the codewords. Higher losses are analogously represented by higher

powers of a. It also turns out to be advantageous to look at even and odd powers separately:

where k = 0,1,2,.... According to this simplified loss model, a logical qubit of the (unnormal-
ized) form |¢)) = a|0,) + b|1,) evolves cyclically into the following four (unnormalized) states
[44, [45],



[0)ar = al04) 4+ bI14),
) aks1 = a|? ) +ib|1_), .
|9) ak2 = al04) — b|14),
[0) aprs = al0_) —ib|1_),

depending on whether the number of lost photons is 0,4,8,... or 1,5,9,... or 2,6,10,... or 3,7,11,...,

respectively. Here, we defined the non-orthogonal basic codewords for the error space as

_ 1
0) = ——(la) — | - a)),
) 1 B (6.8)
’1*> = m(’Z&> - ’ - iOé)),
which are two so-called odd cat states with only odd photon number terms,

_ 2= 2¢ a? at

0)="—— () + —=3) + —=5) + ... |,

o) = 2= () + el + 5o + .

2= 2jqy

e (y1> - )+ 5o le) - ) .

Again, these two codewords approach an orthogonal qubit basis, this time in the odd-parity
error space, when « is sufficiently large (notice the alternating sign in |1_) inherited from |1,)).
In fact, the overlap between |[0_) and |1_) is

1 _isin(a?)

(0-[1-) =~ ((alia) = {a| —ia) = (=alia) + (-a] —ia))

- = Soh(a?)’ (6.10)

which again can be made arbitrarily small by increasing o. The code and error spaces can be
characterized by their photon number parity (even/odd) and thus are perfectly distinguishable.
However, there can be uncorrectable phase-flip errors of the logical qubit when it is mapped
back to the even code space after