
  

 

 
 

 
 

Analysis of the toxicity mechanism of zinc 

oxide nanoparticles aiming at their application 

as innovative anti-tumor agent 
 

 

Dissertation 

for attaining the academic degree of 

Doctor rerum naturalium (Dr. rer. nat.)  

in accordance with regulations of the Max Planck Graduate Center

of the departments  

08  Physics, Mathematics, and Computer Science, 

09  Chemistry, Pharmaceutics, and Geoscience, 

10  Biology, and the University Medicine 

of the Johannes Gutenberg University 

 

submitted by 

Nadine Wiesmann  

born 06.10.1988 in Wiesbaden 

 

First reviewer:  

Prof.   

Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine, Mainz

Second reviewer:  

Prof. Dr. Wolfgang Tremel  

Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg-University, Mainz

 

Mainz, March 2019 



Declaration I 

 

 

I hereby declare that I wrote the dissertation submitted without any unauthorized 

external assistance and used only sources acknowledged in the work. All textual 

passages which are appropriated verbatim or paraphrased from published and 

unpublished texts as well as all information obtained from oral sources are duly 

indicated and listed in accordance with bibliographical rules.  

 

In carrying out this research, I complied with the rules of standard scientific practice 

as formulated in the statutes of Johannes Gutenberg University Mainz to insure 

standard scientific practice. 

 

Here I declare that the scientific thesis I am now handing in has not yet been published 

at any other German University, or any university abroad, or any comparable 

institution, with the aim of attaining a scientific degree.  

 

Here I also declare that I have not yet finished any other doctoral PhD or any similar 

graduation program in any of the subjects represented by the MPGC-JOGU without 

success.  

 

 

 

Place                                          Date                                 Nadine Wiesmann

 

 



  

 

 

 

 

 

 

  



Zusammenfassung III 

 

 

Die Entwick

 auch in der Tumortherapie ruhen viele Hoffnungen auf 

der Nanomedizin. Gleichzeitig ist die Beurteilung unerw nschter Nebenwirkungen bei 

nanomedizinischen Therapeutika jedoch eine Herausforderung, da zwischen 

Interak hen. 

Diese Doktorarbeit -

Nanopartikeln (ZnO NP) und ihrer potenziellen Anwendung als innovatives 

Krebstherapeutikum. Metalloxid-Nanopartikel wie ZnO NP stellen eine besondere 

Herausforderung dar, da sie in der Lage sind Metallionen frei zu setzen und so ber 

viele unterschiedliche Mechanismen mit dem K rper zu interagieren. Um eine 

Translation dieser Partikel in die klinische Praxis zu erm glichen ist es fundamental 

wichtig ihr Verhalten in biologischen Systemen im Detail zu verstehen, um so ihre 

Toxizit t genau kontrollieren zu k nnen. 

Diese Studie wurde mit ZnO von 5-22 nm durchge rt, die ein 

Zeta-Potential von 20-30 mV aufwiesen. In w ssrigem Medium bildeten sie schnell 

Auf

Freisetzung von Zinkionen (Zn2+). Etwa ein Viertel aller in den Partikeln enthaltenen 

Zn2+ wurden innerhalb von vier Stunden freigesetzt. Extrazellul r frei gesetzte Zn2+ 

sind in der Lage toxische Effekte hervor zu rufen, wie Versuch mit Zinkchlorid (ZnCl2) 

zeigen konnten. Gleichzeitig beruht die Toxizit t von ZnO NP jedoch nicht allein auf 

der Freisetzung von Zn2+, vielmehr ist auch eine direkte Interaktion der Nanopartikel 

mit humanen Tumorzellen vonn ten. 

Wir konnten zeigen, dass es mit Hilfe einer Silika (ZnO@SiO2 NP) ist, die 

Freisetzung von Zn2+ 

e. Zudem k nnte mit Hilfe von speziellen Liganden 

ein gezieltes Ansteuern des Tumors im menschlichen K rper erfolgen. Wir konnten 

nachzuweisen, dass ZnO@SiO2 NP innerhalb von vier Stunden auf der Membran 

verschiedener Tumorzellen zu liegen kamen und von diesen aufgenommen wurden. 

Dies zeigt, braucht 

das System noch weiteren Feinschliff. 

Um die T  

wissen, auf welche Weise Zellen mit den Nanopartikeln interagieren und wie toxische 
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Effekte zustande kommen. Mit verschiedenen Tumorzelllinien konnten wir zeigen, 

dass sowohl nekrotischer als auch apoptotischer Zelltod vermittelt werden k nnen.

In einem einfachen Experiment mit Plasmid-DNA in einer zellfreien Umgebung konnte 

gezeigt werden, dass ZnO NP in der Lage sind, Einzelstran

induzieren und, dass zusammen mit H2O2 tativer Vertreter von reaktiven 

Sauerstoff , en alleinigen 

Effekt von H2O2 deutlich hinaus gehen. Somit sind ZnO NP auch in der Lage 

Tumorzellen ber die DNA zu sch digen. 

Es ist wohlbekannt, d  von ZnO NP 

beteiligt ist, jedoch ist es Gegenstand von Diskussionen ob die ROS direkt an der 

 Interaktion mit einem biologischen 

 die hier verwendeten ZnO NP konnten wir nachweisen, dass ROS nicht 

direkt an den Nanopartikeln entstehen, die Inkubation mit ZnO NP konnte jedoch das 

Superoxid-Level in den Mitochondrien anheben und zu einer Freisetzung von 

Cytochrom Dies deutet darauf hin, dass sowohl ROS als auch eine 

ZnO NP spielen  

Mitochondrien ist denkbar sowie eine Vermittlung des Tumorzelltods ber die oben 

genannten DNA-Sch den. 

Um zu untersuchen, ob ZnO NP eine selektive Toxizit t gegen ber Tumorzellen 

aufweisen wurden die Effekte der Nanopartikel auf Tumorzellen mit jenen auf 

Fibroblasten und endotheliale Zellen verglichen. Bei einer mittleren Konzentration von 

50 /mL ZnO NP wurden  als die 

Tumorzellen, jedoch reagierten die endothelialen Zellen sehr empfindlich. Dies zeigt, 

opartikel auf jeden Fall eine entsprechende 

sowie um ein aktives Targeting zum Tumor . 

Nicht nur als alleinstehendes Tumortherapeutikum sind ZnO NP denkbar, sondern 

auch in Kombination mit Strahlentherapie. Hier konnten wir zeigen, dass die 

Nanopartikel in der Lage sind den Erfolg der Radiotherapie zu verbessern, was 

Strahlenresistenzen interessant ist. 

Zusammenfassen  sagen, dass viele Details des Tox

von ZnO NP aufgedeckt werden konnten. Dies ist wichtig um diese Nanopartikel in der 

Zukunft .  
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Currently, nanomedicine is a hot topic in the development of new therapeutic agents 

and great hopes have been placed on nanoparticulate formulations to revolutionise 

tumor therapy. However, risk assessment in the field of nanomedicine constitutes a 

major challenge since completely new interactions between the therapeutic agent and 

the human body must be considered. 

The aim of this study was to unveil the concepts underlying the toxicity of zinc oxide 

nanoparticles (ZnO NP) to be able to precisely control their behaviour in an in vivo 

setting and thus paving the way for their application as innovative anti-tumor agent. 

The work with ZnO NP and zinc ions released by them is particularly challenging since 

metal ions intervene with many signalling pathways and can elicit toxicities via a 

multitude of mechanisms.  

We used ZnO NP of spherical shape with a size of 5 22 nm and a zeta potential of 

+20 30 mV. They readily formed agglomerates in aqueous solution, and they were 

prone to dissolution. About one fourth of the contained amount of zinc ions may be 

released extracellularly. Experiments with ZnCl2 as representative of the 

extracellularly released zinc ions showed that zinc ions can exert cytotoxicity once 

the buffer capacity of the cell culture medium is exhausted. The cytotoxicity of ZnO NP 

was not only attributable to the extracellular release of zinc ions but rather additionally 

to direct interaction with the nanoparticulate matter.   

Enclosing zinc oxide nanoparticles into a silica shell (ZnO@SiO2 NP) served the triple 

purposes of preventing them from premature dissolution, enabling the attachment of 

targeting moieties, and tracking the nanoparticles via incorporated dyes. Experiments 

with ZnO@SiO2 NP showed attachment of the particles to the outer membrane of 

different tumor cells as well as uptake within four hours. Additionally, the silica coating 

delayed onset of cytotoxicity. This shows that nanoparticles with these favourable 

properties are technically possible, even though requiring further fine-tuning. 

It is of great importance to understand the cellular reactions to treatment with ZnO NP 

to optimally control their toxicity in the human body. We found that ZnO NP were able 

to convey apoptotic and necrotic cell death to different human tumor cells. An 

experiment with plasmids as DNA representatives in a cell-free environment showed 

that ZnO NP were able to induce single strand breaks (SSB) of the DNA. Together with 

H2O2 as a representative reactive oxygen species (ROS) they additionally induced 
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huge amounts of double strand breaks (DSB), which surpassed the effect of treatment 

with H2O2 alone. 

ROS generation is a well- toxicity. 

However, there are still ongoing debates on whether ROS are generated directly on 

the surface of ZnO NP or whether they are triggered intracellularly. We showed that 

the ZnO NP used in this study were not able to generate ROS at their surface, but they 

did elevate superoxide levels in the mitochondria. Furthermore, we showed that 

mitochondria release cytochrome c upon treatment. Thus, damaging of the 

mitochondria and generation of ROS are most likely central elements of the toxicity of 

ZnO NP. Induction of apoptosis may occur via the mitochondrial signalling pathway. 

Alternatively, also above-mentioned DNA damage may play a role in induction of 

apoptosis. 

To test for tumor-specific toxicity, we treated A549 tumor cells as well as non-malignant 

fibroblasts and endothelial cells with ZnO NP of different concentrations. Treatment 

with an intermediate concentration of 50 ed that fibroblasts were less 

affected by the treatment compared to tumor cells, but endothelial cells reacted very 

sensitive. Thus, treatment with ZnO NP is a double-edged sword. This means we need 

to prevent premature dissolution of ZnO NP in the bloodstream and add active 

targeting to the NP, to safely direct them to the tumor. 

ZnO NP are discussed as a stand-alone treatment against cancer and as adjuvant for 

other therapies, for example radiotherapy. We were able to show that ZnO NP in 

combination with irradiation significantly reduced tumor cell survival. This 

demonstrates the potential of ZnO NP to improve the radiotherapeutic outcome. 

We unveiled some details of the toxicity mechanism of ZnO NP. It is of great 

importance to truly understand the interaction between these nanoparticles and human 

cells in order to be able to safely apply them in an in vivo setting. Nanoparticulate anti-

tumor agents such as ZnO NP have the potential to overcome current therapeutic 

hurdles in tumor treatment.  
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This chapter serves to guide the reader into the topic of this doctoral thesis. We begin 

with an overview over the role of zinc in the human body (5.1) in general. Then I will 

provide an introduction into the application of nanomaterials in modern medicine in 

general (5.2), and in tumor therapy (5.2.1), and in radiation therapy (5.2.2). This leads 

over to the introduction of zinc oxide nanoparticles (5.3), their biomedical application 

(5.3.1), and their characteristics which can convey cytotoxicity (5.3.2). Finally, I will 

provide an overview over the state of research concerning the application of zinc 

oxide nanoparticles as innovative antitumor agent (5.3.3). 

5.1 Zinc as trace element in the human body 

Our knowledge of the chemical elements of life is rather new. A hundred years ago 

chemist emistry believing that 

the latter does suffice to describe the main chemical processes in living organisms. 

This resulted in almost complete disappearance of teaching of inorganic chemistry 

from the curriculum of medicine and biology students. In the last decades we learned 

that this division of chemistry does not represent living systems accurately as the 

name implies. (Robert J. P. Williams 1991) Figure 1 shows the essential chemical 

elements of the human body.  

 

Figure 1: Chemical elements of the human body  

The four chemical elements oxygen, carbon, hydrogen, and nitrogen make about 96% of the mass of 
the human body. Further 3.5% of body is composed of seven chemical elements, namely calcium, 
phosphorus, sulphur, potassium, sodium, chlorine, and magnesium. The remaining constituents of the 
body are trace elements, among them zinc. Modified according to (Huat et al. 2019).  

 

Those elements which are present in only small amounts turned out to be also of 

utmost importance for many body functions. (Prashanth et al. 2015; Huat et al. 2019) 
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5.1.1 Body zinc content and zinc distribution  

Essential trace elements are understood to be chemical elements that are needed in 

very minute quantities for proper growth, development, and physiology of the 

organism. Only in the sixties of the last century the essentiality of zinc as a trace 

element for humans was established. Hitherto significant clinical problems stemming 

from zinc deficiency were considered improbable. (Prasad 2013; Roohani et al. 2013; 

Al-Fartusie et al. 2017) 

Z n number Z = 30, an atomic 

weight of 65.4, and it is the first element of group 12 of the periodic table. Zinc is the 

second most common metal present in the human body at about 2 4 g, after iron at 

about 3 5 g but before copper at about 0.1 0.2 g. (Kloubert et al. 2015; 

Prashanth et al. 2015; Ollig et al. 2016; Al-Fartusie et al. 2017) In contrast to iron, 

which is predominantly found in red blood cells, zinc is distributed throughout the 

entire human body, mostly intracellularly. The plasma concentrations of zinc range 

only from 12-16 . In the blood it is mostly bound to albumin (60%) and to a lesser 

extent to transferrin (10%). (Osredkar 2011; Kloubert et al. 2015; Ollig et al. 2016) 

Figure 2 shows the zinc distribution within the human body. Intracellularly about 30-

40% of the total cellular zinc is in the nucleus, about 50% is in the cytoplasm and its 

organelles, and the rest is associated with membranes. (Vallee et al. 1993) 

Figure 2: Zinc distribution in the human body 

Dietary zinc is primarily absorbed in the duodenum and the jejunum and then distributed to peripheral 
tissues such as skeletal muscle (~60%), bone (~30%), liver (~5%), skin (~5%), and other tissues and 
organs, including the brain, kidney, and pancreas. When in excess, zinc is excreted from the body 
through gastrointestinal secretion, sloughing of mucosal cells and integument, and renal excretion. 
Modified according to (Golan et al. 2017). 
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5.1.2 Zinc proteins  

Zinc plays a very important role for many vital bodily functions, such as cell 

proliferation, differentiation, and metabolic activity. We can see this from the fact that 

up to 3 000 proteins potentially bind to zinc. It is estimated that zinc is a cofactor for 

the function of approximately 4 10% of all proteins encoded in the genome of 

organisms ranging from prokaryotic to eukaryotic. Zinc is essential for the function of 

200 human enzymes of all enzyme classes. (Sandstead 1994; Andreini et al. 2006a, 

2006b; Osredkar 2011; Kloubert et al. 2015; Prashanth et al. 2015) 

Many zinc proteins are only present in minor concentrations in the human body, or 

they are restricted to certain tissues. This hindered the discovery of the diversity of 

zinc protein chemistry until more elaborate analytical methods came up. As the first 

zinc protein, carbonic anhydrase was discovered in 1939. Carbonic anhydrase is 

responsible for the conversion of carbon dioxide into bicarbonate, and vice versa, in 

the blood. Its structure is shown in Figure 3.  

 

Figure 3: Carbonic anhydrase as a zinc protein 

(A) shows the ribbon representation of carbonic anhydrase with its active centre containing a zinc ion. 
The active site (B) is composed of a zinc ion which is coordinated by three histidine (His1-3) and one 
water molecule. Modified according to (Fu et al. 2018). 

 

It took fifteen more years to discover that another important protein is zinc dependent

the carboxypeptidase which cleaves the peptide linkage during digestion of proteins. 

Finally, the zinc-finger proteins were discovered from about the 1980s onward, which 

dramatically increased the number of known zinc dependent proteins. Zinc-finger 

proteins mostly bind nucleic acids. They are characterized by a repetitive sequence 

most often consisting of cysteine and histidine residues, interrupted by spacer 

sequences. The cysteine and histidine residues are coordinated by zinc ions to 
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stabilize the finger-like structure of these proteins which conveys their nucleic acid 

binding capacity, as shown in Figure 4. (Osredkar 2011; Maret 2013) The zinc-finger 

domain is one of the most frequently used DNA-binding motifs in eukaryotic 

transcription factors and the zinc-finger proteins are one of the most abundant groups 

of proteins. They are involved in transcriptional regulation, protein degradation, signal 

transduction, DNA repair, migration, and numerous other cellular processes. 

(Cassandri et al. 2017) Besides zinc-finger proteins, also other transcription factors 

such as the prominent transcription factor p53 require zinc ions for proper structure 

and folding. (Loh 2010) 

Figure 4: Structural features of zinc-finger proteins 

(A) shows the modular design of transcription factor IIIA (TFIIIA) as archetype of zinc-finger proteins. 
Each of the 9 eatly fits into the major groove of the DNA, which enables 
sequence specific binding. The zinc ion inated tetrahedrally by two histidine 
and two cysteine residues. Thereby the alpha helices are stabilized that recognize the DNA in a 
sequence specific manner (B). Modified according to (Klug 2010).  

 

Zinc can perform catalytic, regulatory, and structural roles in proteins, and it has a 

very flexible coordination geometry with coordination numbers varying from two to 

eight. The kinetic lability of zinc complexes allows zinc proteins to rapidly shift 

conformation to perform different biological reactions. This also involves changes in 

the coordination geometry. (Vallee et al. 1993; McCall et al. 2000; Osredkar 2011; 

 et al. 2016) 

Zinc ions are mainly coordinated by the side chains of four different amino acids: 

aspartic acid, glutamic acid (at the carbonyl oxygen of the carboxyl group), cysteine 

(at the sulphur atom), and histidine (at the nitrogen atom in the imidazole ring). 

(Osredkar 2011; Laitaoja et al. 2013) Coordination by histidine is most common, 

followed by cysteine. (McCall et al. 2000) 
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5.1.3 Intracellular zinc homeostasis  

The total intracellular zinc concentration in human cells ranges from 200 to 300 , 

and even into the mM range in specialised vesicles. Cells maintain the amount of zinc 

that is not bound to any binding partners strictly at extremely 

low levels in the picomolar range. This is at least six or seven magnitudes lower than 

the total intracellular zinc amount. (Maret 2013) This is related to the Irving-Williams 

series, shown in Figure 5. It states that zinc, besides copper, has the highest affinity 

for ligands among the transition metal ions. Cells keep free zinc levels low because 

zinc has such a high affinity for forming complexes. (Maret 2015) Regulation of the 

free zinc level is achieved not only by binding of zinc to specific metal binding proteins 

and low molecular weight ligands known as buffering but also by sequestration in 

intracellular vesicles or transport out of the cell the so-called muffling. Having to 

compartmentalize the ion so extensively is characteristic for zinc. (Maret 2013, 2015; 

Prashanth et al. 2015) 

Figure 5: Intracellular concentration of unbound divalent metal ions and 

Irving-Williams series  

Magnesium, calcium, and zinc are the three major redox-inert metal ions, which are involved in cellular 
regulation. They cover many orders of magnitude with respect to intracellular concentration (A) and 
affinities, which are described by the Irving-Williams series (B). Modified according to (Maret 2013).
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As small as the free zinc concentration may be, it is not negligible and it is 

safeguarded by a notable intracellular zinc-buffering capacity in the micromolar range. 

(  et al. 2006) and personal communication ). In these cellular 

conditions cells react extremely sensitive to changes in the free zinc concentration 

once the buffering capacity is exhausted. (Bozym et al. 2010) 

5.1.3.1 Zinc transport  

The enormously elaborate system of tight intracellular zinc control necessitates a high 

amount of zinc transporters. Zinc as a charged divalent cation is not able to cross the 

cellular membrane by passive diffusion. Thus, to maintain cellular zinc homeostasis, 

zinc transporters are needed. (Kloubert et al. 2015)  

Human cells contain at least 10 zinc transporters of the ZnT family and 14 of the ZIP 

family. Zinc transporters of the ZnT family decrease the cytoplasmic zinc level by 

promoting the efflux of zinc out of the cell or into intracellular vesicles and organelles. 

ZIP transporters on the other hand increase the cytoplasmic zinc level by promoting 

the uptake of zinc from the extracellular space and the release of zinc from vesicles 

and organelles. The putative structure of both transporter families is shown in 

Figure 6.  

 

Figure 6: Putative structure of ZIP and ZnT zinc transporters  

(A) ZIP transporters are thought to have eight transmembrane helices. The histidine residue (H) in the 
transmembrane helix V is believed to be part of an intramembranous zinc-binding site. This motif may 
be involved in determining the metal cation specificity. Members of the LIV-1 subfamily the largest 
ZIP transporter family have a proline-alanine-leucine-containing (PAL) domain and a helix-rich 
domain in the large extracellular domain (ECD). (Zhang et al. 2016) (B) Most ZnT transporters are 
thought to harbour six transmembrane helices. Two histidine (H) and two aspartate (D) residues in the 
transmembrane helices II and V form the intramembranous zinc-binding site (site A). The cytosolic 
histidine-rich loop has been implicated in sensing zinc levels and modulating metal substrate 
specificity. The cytosolic carboxyl-terminal portion exhibits another zinc-coordination site (site C). 
Modified according to (Golan et al. 2017).  
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Both transporter families exhibit unique tissue-specific expression and are subjected 

to complex regulation by different physiological stimuli such as hormones, cytokines, 

and the zinc supply situation. (Cousins et al. 2006; Roohani et al. 2013) 

To perceive the amount of zinc that is present, cells express the metal regulatory 

transcription factor 1 (MTF 1), the only known eukaryotic zinc ion sensor, which itself 

is a zinc-finger protein. It is involved in the cellular response to various stress 

conditions, primarily exposure to metals such as cadmium, mercury, lead, zinc, and 

copper, but also to hypoxia or oxidative stress. By binding to the metal response 

element (MRE) in the promotor region MTF 1 controls the expression of zinc-

dependent genes, in particular the expression of metallothioneins (MTs). (Maret et al. 

 et al. 2012; Maret 2013)  

5.1.3.2 Metallothionein and redox signalling  

Humans have at least a dozen different metallothioneins. These are comprised of 60 

to 68 amino acids, of which are 20 or 21 cysteines. MTs can bind up to seven zinc 

ions. Each zinc ion is being complexed by four sulphurs of the surrounding cysteines, 

as shown in Figure 7. 

 

Figure 7: Structure of metallothionein  

Modified according to (Gumulec et al. 2012). 

 

Two remarkable properties of MTs confer special importance to these proteins. One 

is that even though all seven zinc ions are in tetrathiolate coordination environments, 

they are bound with different affinities. As a result, MTs do not simply bind any metal 
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ion they come across but can rather serve both as dynamic zinc acceptors and zinc 

donors. 

Even though zinc is a transition metal, zinc ions in biological systems only occur at 

the oxidation state +2, meaning zinc is redox-inert. (Ollig et al. 2016). At first glance 

it appears paradoxical that zinc which is not redox-active in contrast to copper and 

iron, has profound impact on the redox metabolism and the cellular management of 

oxidative stress. (Hao et al. 2005) Part of this special property of zinc in biological 

systems is attributable to the second remarkable characteristic of MTs: MTs are redox 

proteins which are influenced by the redox environment. Oxidation of the sulphur 

donors leads to zinc release. Reduction of the oxidized sulphurs leads to restoration 

of the zinc binding capacity. Thus, the structure of MTs in vivo is dynamic depending 

on the metal ion availability and the redox state. It was shown that the thiols in MT 

exist in three states: free, metal-bound, and disulphide. This means that the protein 

exists as fully reduced apoprotein (thionein), and fully oxidized apoprotein (thionin), 

as well as mixtures of these states. Thionein and thionin form a redox pair and their 

ratio depends on the cellular redox state. This state is directly linked to zinc 

homeostasis as reactive oxygen species can release zinc from MTs. Thus, redox 

signals can be converted to zinc signals and vice versa.  et al. 2007; Maret 

 et al. 2017) - , which 

is depicted in Figure 8. (Pace et al. 2014) 

 

Figure 8: Cellular zinc and redox buffering capacity of metallothionein 

Modified according to  et al. 2007; Maret 2009). 

 

Moreover, zinc is involved in the reaction to oxidative stress as a structural component 

of the copper/zinc superoxide dismutase (SOD). It promotes the conversion of two 
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superoxide radicals to hydrogen peroxide and molecular oxygen, which is an 

important step to limit toxic effects of oxidative stress. Additionally, zinc affects the 

expression of the glutamate-cysteine ligase, which is the rate-limiting enzyme of 

glutathione de novo synthesis. Furthermore, zinc can compete with redox-active 

metal ions such as iron and copper for binding sites at proteins and nucleotides. The 

replacement of these ions prevents the site-specific formation of highly reactive 

radicals through Fenton chemistry in case of oxidative stress since zinc is not redox-

active and cannot participate in these reactions.  

As stated above, zinc influences the reaction to oxidative stress via multiple indirect 

mechanisms. Deficiency in zinc favours the manifestation of oxidative stress and 

resulting degenerative diseases. Nevertheless, referring to zinc as an antioxidant 

without further qualification does not tell the whole truth, as lack of zinc as well as 

excess zinc have pro-oxidant effects. Zinc can have anti- and pro-apoptotic, anti- and 

pro-inflammatory and cytoprotective as well as cytotoxic effects depending on the 

concentration. Zinc was quite aptly described as  (Powell 2000; 

Plum et al. 2010; Kloubert et al. 2015; Jarosz et al. 2017; Marreiro et al. 2017; Maret 

2019) 

5.1.3.3 Zinc as a signalling ion  

Recently it became apparent that zinc ions themselves can perform regulatory tasks 

akin to calcium ions. (Maret 2013) On top of the normal capacity to export an excess 

of zinc, several cells including neurons with specific glutamatergic synaptic 

vesicles have the capacity to secrete zinc ions through calcium-dependent 

exocytosis. Zinc can serve special tasks within vesicles in cells of the pancreas, the 

prostate and mammary epithelium, the intestine, and the immune system. 

Additionally, intracellular signalling cascades are influenced by zinc waves. (Maret 

2017)  

5.1.4 Pathological dyshomeostasis of zinc  

Dysregulation of the zinc homeostasis can also be involved in pathobiology, as one 

prominent example I want to discuss diabetes mellitus. The  cells of the pancreas 

are known to contain very high zinc concentrations, which are needed for the 

appropriate synthesis of insulin, its storage, and its structural stability. The three-

dimensional structure of insulin is shown in Figure 9.  
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Figure 9: Insulin hexamer with central zinc atoms 

Insulin in its storage form is stabilized as a hexamer by two central zinc atoms (green), which are 
coordinated by three histidine residues (purple). This figure shows the T6 bovine insulin hexamer, one 
of the three known 3D structures of insulin. The A chain (21 amino acids) is coloured in blue and the 
B chain (30 amino acids) is coloured in purple. Both chains are held together by disulphide bonds, 
coloured in yellow. Both zinc atoms lie on one axis, thus only one is visible in the figure. Modified 
according to (Margiolaki et al. 2013).  

 

Since pancreatic cells produce large amounts of ATP, they are especially prone to 

oxidative stress and as zinc is involved in many mechanisms to detoxify ROS, 

pancreatic cells can easily sustain damage in case of zinc deficiency. Additionally, a 

polymorphism in the zinc transporter ZnT8 may increase the susceptibility to type 2 

diabetes. Thus, proper zinc supply and signalling influence endocrine functions on 

multiple levels. This demonstrates the far-reaching functions that zinc performs in our 

body. (Fukunaka et al. 2018) 

Furthermore, zinc has also been implicated in the pathogenesis of other diseases 

such as multiple sclerosis (Choi et al. 2017a), epilepsy (Doboszewska et al. 2018), 

(Watt et al. 2010). It is becoming increasingly clear, that the 

maintenance of zinc homeostasis is important on multiple levels for the health of the 

human body.  

Even though the importance of zinc on the human body  is far from being 

completely elucidated it can be assumed that its impact is at least as far-reaching as 

that of iron. (Maret 2013) 
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5.1.4.1 Zinc intoxication and zinc deficiency  

Compared to several other metal ions, zinc is relatively harmless and non-toxic, as 

the body has very efficient strategies to safeguard zinc homeostasis on cellular and 

systemic levels.  

Severe impact on human health by intoxication with zinc is a rather rare event which 

is limited to some anecdotal reports. Oral uptake of large amounts of zinc is highly 

improbable as vomiting is induced at amounts of approximately 200 400 mg zinc. 

(Plum et al. 2010) Acute oral toxicity in rats exposed to zinc salts was found to give 

LD50 (median lethal dose) in the range of approximately 200 600 mg/kg body weight 

depending on the zinc salt administered. LD50 for intraperitoneal injection ranged from 

approximately 30 to 70 mg/kg. (Maret et al. 2006) Uptake of large dose of zinc over 

extended periods of time is frequently associated with copper deficiency. (Plum et al. 

2010)  

Exposure to large amounts of zinc by inhalation can occur via zinc-containing smoke 

(300 mg zinc/m3 and higher) which causes the so-called metal fume fever. Symptoms 

of this reversible syndrome include fever, muscle soreness, nausea, fatigue, and 

respiratory effects.  

Dermal absorption of zinc is fathomable; however creams, lotions, and other products 

for external application contain concentrations that are not considered a noteworthy 

toxicological risk. (Plum et al. 2010) 

Systemic zinc toxicity is not a major health problem. Instead estimates suggest 

frequency of zinc deficiency worldwide to be higher than 20%. Adequate supply with 

zinc is particularly important for the immune system as zinc is involved in several 

immunological functions. In severe cases of zinc deficiencies patients present 

additional clinical manifestations. Figure 10 sums up the most important clinically 

known symptoms of both zinc excess and zinc deficiency.  
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Figure 10: Clinical symptoms of zinc excess and zinc deficiency 

Modified according to (Plum et al. 2010).  

 

5.1.4.2 Zinc in tumorigenesis and tumor progression  

As zinc is a critical component of numerous proteins and signalling pathways it is not 

surprising that it also plays a role in tumorigenesis and tumor progression. Zinc levels 

in blood serum are typically decreased in tumor patients. (Gumulec et al. 2014) 

Different studies within the last years were able to demonstrate that in some cancer 

entities there is an association between a marked increase or decrease in the 

intracellular zinc level and malignant transformation of formerly healthy tissue. In 

many cases the disturbance of the zinc homeostasis was linked to the deregulation 

of one of the zinc transporters as depicted in Table 1.  
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Table 1: Association between deregulated zinc transporters and tumorigenesis

Modified according to (Mudipalli et al. 2017; Takatani-Nakase 2018). 

Transporter Cancer type  

ZIP1 Prostate Reduced 

(Milon et al. 2010; 
Costello et al. 2011a; 

Zou et al. 2011; 
Costello et al. 2015)

ZIP2 Prostate Reduced (Desouki et al. 2007) 

ZIP3 Prostate, pancreatic Reduced 

(Desouki et al. 2007; 
Costello et al. 2011b; 
Costello et al. 2012; 
Franklin et al. 2014)

ZIP14 Hepatocellular Reduced (Franklin et al. 2012)

ZIP6 Breast Increased 
(Grattan et al. 2012; 
Matsui et al. 2017)

ZIP7 Breast Increased (Taylor et al. 2008)

ZIP10 Breast Increased (Kagara et al. 2007)

ZnT2 Breast Increased 
(Lopez et al. 2011; 

Bostanci et al. 2014)

 

The human prostate gland is characterized by a high zinc level compared to other soft 

tissues. The zinc concentration in prostatic fluid is about 500-fold higher than the 

plasma zinc concentration. (Bafaro et al. 2017; Mudipalli et al. 2017) In contrast, 

malignant prostate tissue was shown to display markedly lower zinc levels. This 

decline in the zinc level seems to be an early event in the malignant transformation. 

- -accumul

- . (Costello et al. 2004; Costello et al. 2016) During malignant 

progression these conditions must be reversed, since they represent a brake to 

uncontrolled proliferation. This reduction of the zinc level is achieved by reduction of 

the ZIP1 expression which is discussed to have the function of a tumor suppressor in 

prostate tissue. (Costello et al. 2006; Bafaro et al. 2017) Additionally, ZIP2, ZIP3, and 

ZIP4 exhibit reduced expression in prostate cancer. (Bafaro et al. 2017) While the risk 

of prostate cancer appears to be lower in men with a moderate to higher zinc intake, 

long-term supplemental zinc intake of more than 100 mg/day caused a higher 

prostate cancer risk. (Leitzmann, et - et al. 

2018) However, the underlying mechanisms are currently unknown.  
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Similar relations have been found in pancreatic tumors, where zinc levels are reduced 

early during malignant transformation. (Costello et al. 2011b) However, in tumor cells 

of the pancreas the expression of zinc transporters is more complicated with 

downregulation of the mRNA of all ZIP proteins except ZIP4, which is upregulated. 

(Yang et al. 2013; Bafaro et al. 2017)  

The expression of ZIP14 seems to be relevant for the progression of hepatocellular 

carcinoma (HCC), as the protein is consistently decreased in malignant tissue which 

is accompanied by reduced zinc levels. (Costello et al. 2014). Additionally, it was 

shown that treatment of cancerous cells with physiological amounts of zinc was able 

to dampen cellular proliferation. (Franklin et al. 2012) In their review Costello and 

colleagues lament that up to now too little attention was devoted to the connection 

between alternations of the zinc homeostasis and tumorigenesis .(Costello et al. 

2014)  

In contrast to most solid tumors, the zinc level in cancerous breast tissue was found 

to be increased, which is attributed to the elevated expression of ZIP6, ZIP7, and 

ZIP10 zinc transporters. Additionally, the downregulation of ZnT2 may facilitate 

sequestration of zinc in vesicles. Depending on the subtype of the tumor other zinc 

transporters may possibly be involved in breast cancer progression. (Taylor et al. 

2008; Lopez et al. 2011; Alam et al. 2012; Bafaro et al. 2017; Mudipalli et al. 2017)

Besides these relatively well studied relations, aberrant zinc levels and zinc 

transporter quantities were also found in other cancer entities. Practically all zinc 

transporters are discussed to be involved in tumor progression. Furthermore, zinc is 

suspected to be involved in the regulation of other ion channels which are themselves 

involved in tumor progression. Zinc might also act via the numerous different zinc 

proteins and the signalling cascades regulated by them. More and more evidence 

shows, that dysregulated zinc homeostasis might 

in tumorigenesis but rather be a driver in at least some cancer entities. (Mudipalli et al. 

2017; Pan 2017) 
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5.2 Nanomedicine 

The prefix nan  One 

nanometer (nm) is a billionth of a meter (m). Ten hydrogen atoms laid side by side 

would be a single nanometer. Red blood cells are approximately 7 000 nm in length. 

This can give us at least a vague idea of how small a nanometer is. (Idrees 2015) To 

grasp the size of nanomaterials their scale is depicted in Figure 11 in relation to 

different objects.  

Figure 11: Scale of nanomaterials  

Modified according to (Amin et al. 2014) 

 

a

-object with all three external dimens

nanoscale is defined as the size ranging from approximately 1 to 100 nm. 

(Boverhof et al. 2015) Nanotechnology is the design, characterization, production, 

and application of structures, devices and systems by controlling shape and size at 

nanometer scale , according to the definition of The Royal Society & The Royal 

Academy of Engineering in 2004. (Whatmore 2006) Nanomedicine is the application 

of nanotechnological advancements in medicine. This involves the areas of diagnosis 

as well as therapeutical intervention to improve human health and wellbeing. 

(Satalkar et al. 2016)  

Over the last decades research on the biomedical application of nanomaterials has 

advanced with great strides. From 1995 until 2017, 50 nanopharmaceuticals received 

FDA approval. (Ventola 2017)  



Introduction 16 

 

Nanomedical applications provide a huge opportunity to exploit therapeutic potential 

that was hitherto unattainable due to chemical, physical or biological restrictions. 

Nanomaterials hold the promise to improve the solubility and pharmacokinetics of 

currently available drugs, reduce their off-target effects, and increase their specificity. 

Hence the dose that is needed to achieve the desired effect can be reduced. In 

addition to nanocarriers for drug delivery, nanomaterials are being investigated that 

are able to mediate specific effects on their own. (Rasmussen et al. 2010; Ventola 

2017) Different families of nanotherapeutics are shown in Figure 12. 

 

Figure 12: Different nanotherapeutic platforms  

Modified according to (Wicki et al. 2015). 

 

Materials interact differently with their environment when they are sized on the nano 

scale. In bulk materials meaning material that is not nanosized most atoms are 

located inside the volume of the material rather than on the surface. In contrast, the 

relative number of atoms on the surface is greatly increased in nanomaterials. Their 

surface-to-volume ratio is much larger, which is associated with an increase in surface 

reactivity. (Grassian 2008; Idrees 2015) Thus, reducing the size of particles from bulk 

material to nano scale is accompanied by a modification of the chemical, physical, 

and biological properties. (Goesmann et al. 2010; Schladt et al. 2011; Bai et al. 2013) 
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Nanomaterials match the typical size of naturally occurring functional units and

biomolecules of living organisms. These special characteristics allow nanoparticles 

(NP) to interact in a unique manner with cellular biomolecules such as proteins and 

nucleic acids. In this way the transfer of NP into inner cellular structures is facilitated, 

which allows the manipulation of intracellular processes to hitherto an extent that was 

previously unthinkable. (Rasmussen et al. 2010; Idrees 2015) 

Despite recent advancements in nanomedicine, research is still far away from 

achieving a profound understanding of the dynamic behavior of nanomaterials in the 

human body. (Nel et al. 2009; Sun et al. 2014) Multiple challenges include the 

profound characterization of the new materials, the solving of possible toxicity issues 

and safety concerns, the clearing of regulatory hurdles, and the solving of 

manufacturing and storage issues. (Wicki et al. 2015; Ventola 2017) Settling these 

issues is especially important in medicine, which requires cooperation between the 

fields of physics, chemistry, biology and medicine. (Kunz-Schughart et al. 2017)

5.2.1 Nanotechnology in tumor therapy   

Tumor therapy has undergone profound developments within the last decades. 

Nevertheless, cancer continues to be one of the most serious healthcare problems 

worldwide, due to the development of resistances and the recidivation of tumors. 

According to estimates from the World Health Organization (WHO), cancer is the first 

or second leading cause of death before age 70 in 91 out of 172 countries in 2015, 

with 18.1 million new cases worldwide in 2018. (Bray et al. 2018) 

The major challenge of tumor therapy is to achieve death of tumor cells as selectively 

and precisely as possible while sparing the healthy tissue of the patient. To meet this 

challenge great hopes rest on innovative nanotherapeutics to overcome biological 

barriers that hinder therapy. The goal is to reduce limitation of the therapy due to low 

specificity, rapid drug clearance and low bioavailability, as well as high levels of 

adverse effects. (Wicki et al. 2015; Tran et al. 2017)  
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5.2.2 Nanoparticles as radiosensitizer  

Radiotherapy besides surgery and chemotherapy is a very important part of the 

treatment regimen for different types of cancer. It is non-invasive and not 

accompanied by an intense systemic toxicity as is typical in chemotherapy. 

(Deorukhkar et al. 2010) Approximately 50 60% of all cancer patients receive 

radiotherapy as stand-alone treatment or in combination with other options. (Kunz-

Schughart et al. 2017) Unfortunately, the curative potential of radiotherapy is impeded 

by mechanisms of tumor radiation resistance, which enable tumor cells to survive and 

repopulate. Thus, clinicians are in desperate need of new strategies to overcome 

these resistances or even better to improve the outcome of radiotherapy in the first 

place to prevent the establishment of resistances. 

Since water is the main component of cells, ionizing radiation used in radiotherapy 

primarily results in radiation mediated lysis of water. The process generates radicals 

(O2-  oxygen species (ROS). (Kwatra et al. 2013) The main 

target of radiotherapy in tumor cells is the DNA. Directly or indirectly via ROS, bases 

of the DNA can be damaged, the sugar-phosphate backbone interrupted  resulting 

in single strand breaks (SSB) or double strand breaks (DSB) , or DNA crosslinks 

produced. (Maier et al. 2016) DSB are considered to have the most devastating effect 

on tumor cell viability. (McMillan et al. 2001) Apart from DNA damage among other 

effects lipid peroxidation plays an important role in radiation mediated cellular 

damage. (Azzam et al. 2012) 

In principle there are three major approaches to enhance the efficacy of radiotherapy: 

radioresistance of healthy tissue may be enhanced, radiation resistance mechanisms 

specifically in tumor cells may be blocked, or radiosensitivity of the tumor tissue may 

be enhanced by radiosensitizers. The most promising nanoparticulate drug support 

strategies that go beyond the improvement of existing therapeutic strategies aim at 

achieving the last approach. (Kwatra et al. 2013) 

Radiosensitizers are usually mainly metal-based nanoparticles made from high-z 

metals (metals with a high atomic number; e.g. gold). Those metals have the property 

that incoming radiation energy ejects one electron of the atom from an orbital. The 

ejected electron is replaced with electrons dropping from higher orbits and energy is 

released. This creates a photoelectric effect which increases the therapeutic efficacy 

of radiotherapy. (Kwatra et al. 2013)  
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Additionally, quantum dots nanocrystals that display quantum mechanical 

properties made from semiconductors can be used as radiosensitizers. Their 

mechanism of action is based on the generation of radicals upon absorption of visible 

light. Major drawback of this technique is that visible and UV light do not penetrate far 

into the human body.  

Superparamagnetic substances such as iron oxide nanoparticles are also 

investigated as radiosensitizer. They can be targeted to the tumor tissue by an 

external magnetic force. Within the tumor tissue they generate ROS which enhances 

the radiation induced DNA damage. (Rasmussen et al. 2010; Kwatra et al. 2013) 

Additionally they can be used to convey local hyperthermic effects. (Rasmussen et al. 

2010; Sharma et al. 2015) 

5.3 Zinc oxide nanoparticles (ZnO NP) 

Zinc oxide (ZnO) is one of the most important manufactured compounds of zinc, with 

a wide variety of applications in various branches of industry, such as rubber, 

pharmaceutical, cosmetics, textile, electronic and electrotechnology, and 

photocatalysis. ZnO has a hexagonal wurtzite crystal structure at ambient pressure 

and temperature. Zinc oxide nanoparticles occur in a great variety of structures and 

offer a wide range of properties, as shown in Figure 13. This probably makes them 

one of the most versatile families of nanostructures among all materials. (Wang 2004; 

iejczak-Radzimska et al. 2014) 

Figure 13: Zinc oxide nanostructures 

Zinc oxide can occur in varied forms and shapes. (A) shows a collection of nanostructures of ZnO 
synthesized under controlled conditions by thermal evaporation of solid powders. (B) shows the typical 
wurtzite crystal structure of ZnO. Modified according to (Wang 2004; Samanta 2017). 

 

 



Introduction 20 

 

5.3.1 Biomedical application of ZnO NP  

Chemically, ZnO NP possess several characteristics that are favourable for their 

biomedical application. For one, the synthesis of ZnO NP is relatively inexpensive and 

it can be easily tuned to achieve different sizes and geometries. Additionally, the 

surface of ZnO NP enables its modification by different coatings. 

The FDA recognizes zinc oxide as a so-called GRAS (= Generally Recognized As 

Safe) substance (database of the Select Committee on GRAS Substances (SCOGS), 

https://www.accessdata.fda.gov/scripts/fdcc/?set=SCOGS&sort=Sortsubstance&ord

er=ASC&startrow=1&type=basic&search=zinc%20oxide, accessed 24.01.2019). 

This enables its application in healthcare and drugstore products. Zinc oxide is found 

in numerous medical formulations as well as in creams and lotions, for example in 

sun cream and in wound healing preparations. (Racca et al. 2018) Compared to other 

metal oxides zinc oxide is relatively non-toxic and biocompatible. 

ZnO NP are said to exhibit an inherent anti-cancer and antibacterial activity which is 

attributed to their ability to induce the generation of reactive oxygen species. 

(Padmavathy et al. 2008) Furthermore ZnO NP possess antifungal properties. 

ZnO NP are also discussed as drug carriers and immunomodulatory agents. 

(Mishra et al. 2017) On the one hand, the number of applications for which the use of 

ZnO NP is suggested is long. Unfortunately, on the other hand many characteristics 

of ZnO NP are not fully understood. We are still far from completely understanding 

their behaviour in interaction with cells and living organisms which is substantial for 

their safe biomedical application. 

In the following chapter I want to shed light on the most important characteristics of 

ZnO NP which are known to contribute to their in vitro toxicity. This will then lay the 

basis for understanding why ZnO NP are very attractive as innovative anti-tumor 

agent.   
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5.3.2 Characteristics and in vitro cytotoxicity mechanism of ZnO NP  

First of all, I want to introduce you into the interactions between ZnO NP and cells at 

the outer surface of the cell (5.3.2.1). This involves the extracellular release of zinc 

ions as well as the influence of coatings and the adsorption of proteins onto the 

nanoparticle surface. Then we will continue with the uptake of ZnO NP into cells and 

the damage they are able to cause to cellular membranes and to the cytoskeleton 

(5.3.2.2). Next, I will discuss the generation of reactive oxygen species by ZnO NP, 

their best-known mechanism of toxicity (5.3.2.3). After that I want to illustrate what is 

known about ZnO  and epigenetic changes 

(5.3.2.4). Finally, I will discuss the cellular reaction that follows cytotoxic damage 

conveyed by ZnO NP (5.3.2.5).  

The content of the chapter on the characteristics of ZnO NP which can convey 

cytotoxicity (1 5) is shown graphically in Figure 14.  

 

 

Figure 14: Overview over the most important characteristics which contribute 

to the cytotoxicity of ZnO NP  
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5.3.2.1 Coatings, stability against dissolution, and protein corona 

The characteristic electrostatic properties of ZnO NP are quite favourable for their 

biomedical application. Typically, they have neutral hydroxyl groups attached to their 

surface. In aqueous medium with a pH value larger than 9 (the isoelectric point) 

chemisorbed protons (H+) detach from the surface, leaving behind a negatively 

charged surface with partially bonded oxygen atoms (ZnO-). In contrast at lower pH 

values (neutral or acidic), protons from the environment are transferred onto the 

particle itively charged surface due to ZnOH2+ groups. 

(Rasmussen et al. 2010; Punnoose et al. 2014) This also holds true for physiological 

conditions and provides good conditions for the interaction of ZnO NP with tumor 

cells, which are known to frequently carry a negative charge at their surface. 

(Chen et al. 2016; Shi 2017) 

ZnO NP are prone to dissolution, while extracellular release of zinc ions is known to 

contribute to the cytotoxicity of ZnO NP. (Song et al. 2010) Release of zinc ions from 

ZnO NP is also higher at low pH values which is especially relevant for ZnO NP taken 

up via the endo-lysosomal system. (Avramescu et al. 2017; Odzak et al. 2017) 

Additionally, dissolution is affected by the ionic strength of the surrounding medium. 

(Odzak et al. 2017) Zinc ions released from ZnO NP are readily bound by different 

components of the cell culture medium, such as phosphate, carbonate, amino acids, 

as well as serum proteins. Thus, a considerable amount of zinc ions is buffered by 

the cell culture medium until the buffer capacity is exhausted. Zinc phosphate and 

zinc carbonate together with retained proteins can precipitate in crystalline or 

amorphous form. They constitute another (nano-sized) species that can take 

influence on the system. (Turney et al. 2012; Shen et al. 2013; Mu et al. 2014; 

Eixenberger et al. 2017) Furthermore metal oxide nanoparticles are prone to 

agglomeration and aggregation which are followed by sedimentation. (David et al. 

2012; Mu et al. 2014; Pradhan et al. 2016) 

Up to now there is no consensus whether extracellularly released zinc ions are 

responsible for all of the cytotoxicity of ZnO NP. Direct cell nanoparticle contact 

and/or uptake of NP might be required additionally. (Shen et al. 2013) It is well known 

that typically ZnO NP are not dissolved completely which contributes to the idea that 

zinc ions are not solely responsible for the cytotoxicity of ZnO NP. (Xia et al. 2008; 

Moos et al. 2010; Song et al. 2010) 
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It is always important to bear in mind that the moment that nanoparticles are released 

into biological medium their chemical properties can change quickly. The biological 

identity of the nanoparticles is not necessarily the same as the synthetic identity as 

shown in Figure 15. This also holds true for ZnO NP. The surface properties of the 

nanoparticles can change due to different buffer conditions and the adsorption of 

biological molecules. Consequently the colloidal stability, hydrodynamic diameter, 

and nanoparticle agglomeration are affected. (De Angelis et al. 2013)  

 

Figure 15: Transition of NP from their synthetic to the biological identity

When nanoparticles are introduced into biological medium they are modified in various ways. Their 
synthetic identity is changed to a biological identity and they are covered by a hard and a soft protein 
corona, which ultimately determines the physiological response they evoke in the bloodstream. The 
adsorbed proteins on their surface determine how the nanoparticles interact with both the immune 
system and biological barriers, as well as their deposition in the body and their excretion. Modified 
according to (Corbo et al. 2016).  

 

Furthermore, an important topic in this context is the stability against dissolution. On 

one hand it can be influenced by coatings intentionally applied during the synthetic 

procedures. On the other hand, it is influenced unintentionally by the protein corona 

that is deposited on the nanoparticles.  

ZnO NP possess a strong ability to absorb proteins from serum in the cell culture 

medium. Consequently, serum proteins are depleted from the cell culture medium. 

Potential toxicity that is observed might not only stem from the nanoparticles but also 

from protein nanoparticle complexes which differ in reactivity, cellular uptake, and 

surface chemistry from the pristine uncoated nanoparticles. (Horie et al. 2009)
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Several reports find that proteins and coatings deposited on the surface of ZnO NP 

reduce their cytotoxicity in adherent cell cultures. This is possibly due to reduced 

dissolution, reduced ROS generation, or hampered direct surface contact between 

NP and cells. (De Angelis et al. 2013; Mu et al. 2014; Ramasamy et al. 2014; 

Anders et al. 2015; Yin et  et al. 2015) However cytotoxicity in 

suspension cell models can be increased by protein adsorption and coatings. This is 

possibly attributable to the increase in dispersion stability, and the decrease in 

agglomeration and sedimentation, which enhances the bioavailability in suspension 

cell cultures. (Anders et al. 2015) Furthermore the modification of the membrane 

activity of ZnO NP by protein adsorption is discussed. NP uptake may differ 

depending on the nature of the coating and the corresponding cell type. 

(Churchman et al. 2013; Mu et al. 2014) Figure 16 graphically summarises the most 

important aspects of the interaction between ZnO NP and the cellular surface as well 

as potential mechanisms of uptake. 

 

Figure 16: Cell-nanoparticle interactions  

In the cell culture medium ZnO NP form agglomerates and they also release zinc ions. Extracellularly 
released zinc ions can form precipitates with components of the cell culture medium. ZnO NP can 
interact with cells in various ways. They can interact with the cellular membrane and they can be taken 
up into the cells via the endo-lysosomal system by pinocytosis and phagocytosis. Within lysosomes 
ZnO NP are dissolved rapidly due to the low pH value and further zinc ions are released intracellularly. 
Modified according to (Shen et al. 2013; Bisht et al. 2016; Racca et al. 2018). 
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5.3.2.2 Cytoskeletal damage, cellular integrity, and cellular uptake 

Several different studies report that ZnO NP take influence on the cytoskeleton. 

Rounding of the cells, cell retraction, and collapse of cells were observed. This was 

accompanied by detachment from the cell culture plate, depolymerisation of actin, 

and reorganisation of the microtubules (Condello et al. 2016; Garcia-Hevia et al. 

2016; Pati et al. 2016; Choudhury et al. 2017; Liu et al. 2017). The reorganization of 

the cytoskeleton was connected to the loosening of the continuous cell layer on the 

cell culture plate and the loss of intercellular contact. (Paszek et al. 2012; 

Reshma et al. 2017) Interestingly zinc ions are involved in the regulation of cell 

migration by attenuating focal adhesion density and size, just like calcium ions. 

(Li et al. 2016) Additionally, they were shown to be able to induce epithelial to 

mesenchymal transition (Ninsontia et al. 2016); possibly via binding to N-cadherin. 

(Heiliger et al. 2015).  

Disruption of the cellular membrane has been frequently observed after treatment 

with ZnO NP (Huang et al. 2010; Song et al. 2010; Paszek et al. 2012). Usually the 

membrane integrity is measured with a lactate dehydrogenase release assay (LDH 

release assay) which measures the spillage of the cytosolic protein into the 

extracellular space. It is important to bear in mind that this kind of assay without further 

information does not prove that the disruption of the cellular membrane is the cause 

for the cytotoxicity since membrane leakage can also be the consequence of necrotic 

cell death. However, it is fathomable that ZnO NP interfere with the cellular integrity. 

In antimicrobial studies the abrasiveness of ZnO NP was linked to bacterial death 

(Padmavathy et al. 2008). Up until now, further studies on this topic in mammalian 

cells are missing. 

ZnO NP convey toxicity by increasing the intracellular zinc level but it is still subject 

of debate whether zinc is internalized as a particle. Some studies see uptake of 

ZnO NP by cells (Sharma et al. 2011; Gilbert et al. 2012; Condello et al. 2016; 

Garcia-Hevia et al. 2016; Choudhury et al. 2017); possibly via the lysosomal pathway 

(Ancona et al. 2018). In contrast, others state that the only convincing proofs of entry 

of ZnO NP in nanoparticulate form exist solely for macrophages which are the 

champions in rapidly engulfing everything they come across. (Chevallet et al. 2016) 

The dissolution kinetics of ZnO NP and their surface coating most probably have a 

great impact on whether cells take them up or whether zinc ions released from the 

NP enter the cells.  
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5.3.2.3 Generation of reactive oxygen species (ROS)  

It is well established that generation of reactive oxygen species (ROS) is an important 

part of the mechanism of nanotoxicity. (Fu et al. 2014) A certain level of ROS is 

always present in cells as by-product of the cellular oxidative metabolism. In the 

mitochondria ATP is synthesized by reduction of molecular oxygen to water through 

a sequence of coupled proton and electron transfer reactions. During this process, a 

small percentage of oxygen is not reduced completely, which can result in the 

formation of superoxide radicals, and subsequently other ROS. (Fu et al. 2014) 

Mitochondrial respiration is the main endogenous source of ROS, but there are 

others, such as inflammatory responses and peroxisomes. (Babusikova et al. 2012; 

Manke et al. 2013) Cells have evolved efficient mechanisms to deal with a certain 

level of ROS by using enzymes like the superoxide dismutases, peroxidases, and 

catalases. They all promote the reaction of highly reactive radicals to more harmless 

substances to protect the cell. Problems begin to occur when the generation of ROS 

exceeds the physiologically normal level and the antioxidative capacity is exhausted. 

This process culminates in oxidative stress which can harm cells on various levels 

(Babusikova et al. 2012; Fu et al. 2014) Figure 17 depicts the most important aspects 

of how ROS generation can damage cells.  

Figure 17: Nanotoxicity conveyed by the generation of ROS 

Modified according to (Fu et al. 2014).  

 

Due to their small size and their high reactivity many nanomaterials possess the ability 

to generate ROS. Many metal oxide nanoparticles do so by participating in Fenton 

and Haber-Weiss reactions. (Fu et al. 2014) However, since zinc is redox inert in 

biological systems this can be ruled out for them. Nevertheless, they are also potent 

producers of ROS by different mechanism which will be discussed in the following.  
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5.3.2.3.1 Photocatalytic activity of zinc oxide nanoparticles  

Zinc oxide is a semiconductor with a wide band gap of 3.37 eV and a large exciton 

binding energy of 60 meV at room temperature. It absorbs a wide range of the solar 

spectrum. Photocatalysis can be defined as th

initiated when 

ZnO NP absorb photons with energies greater than the energy of their band gap. This 

can occur by illumination with visible or UV light. As a consequence, one electron is 

excited from the valence band (VB) to the conduction band (CB). This leads to the 

formation of a positively charged hole (h+VB) and a negatively charged electron (e-CB), 

a so-called electron hole pair on the surface of the ZnO NP. This is depicted 

schematically in Figure 18.  

 

Figure 18: Photocatalytic activity of zinc oxide nanoparticles  

Modified according to (Sivakumar et al. 2018).  

 

Electrons and holes often recombine quickly, but they can also migrate to the surface 

of the nanoparticle and react with surrounding molecules. The conduction band 

electrons e-CB are good reductants and can reduce oxygen from the surrounding 

environment to form superoxide radicals (O2- +VB are 

strong oxidants that can react with water to 

peroxide (H2O2), or protonated superoxide radicals (HO2

way for further reactions which involve different reactive oxygen species. 

(Padmavathy et al. 2008; Rasmussen et al. 2010; Punnoose et al. 2014; Lee et al. 

2016; Podporska-Carroll et al. 2017; Ancona et al. 2018) 
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Compared to ZnO bulk material in which the electron hole pairs recombine quickly 

and hinder catalytic activity, the presence of oxygen vacancies and other surface 

defects in the nanoparticulate matter help to keep the electron hole pairs separated. 

They can reach the surface more efficiently where they can participate in redox 

reactions. (Punnoose et al. 2014; Wang et al. 2017; Ancona et al. 2018) It has been 

shown that ZnO NP are also capable of generating ROS under abiotic conditions, 

which means without the presence of cells. (Xia et al. 2008; Song et al. 2010; 

Zijno et al. 2015) 

The photocatalytic activity of ZnO NP was found to greatly enhance the cytotoxicity 

of ZnO NP in vitro. This was shown in studies using UV irradiation or visible light in 

combination with the nanoparticles. (Hackenberg et al. 2010a; Yang et al. 2014; 

Ancona et al. 2018) Additionally, generation of ROS at the surface of ZnO NP is also 

possible in the dark fostered by surface defects of the crystalline structure. 

(Prasanna et al. 2015) 

On top of that, ZnO NP can also induce intracellular increase in ROS. This has been 

shown in numerous studies. (Xia et al. 2008; Sharma et al. 2012; Toduka et al. 2012; 

De Angelis et al. 2013; Kang et al. 2013; Wahab et al. 2013; Gao et al. 2016; 

Pati et al. 2016; Choudhury et al. 2017; Ng et al. 2017) In principle, ROS could be 

generated directly by the interaction of ZnO NP with the biological surroundings or by 

released zinc ions. Which mechanism really underlies the intracellular elevation of 

ROS is extremely difficult to decipher since the visualization of ZnO NP, zinc ions, 

and ROS in time and place intracellularly in a living system is very challenging. 

Another question still to be resolved is where exactly within the cell ROS are 

generated. Mostly, intracellular increase in ROS is related to mitochondrial damage, 

but it is unclear whether mitochondrial damage is cause or effect of the increase in 

ROS. 

5.3.2.3.2 ROS and mitochondrial damage cause or effect?  

Somewhat surprisingly, zinc ions seem to play a role in the regulation of mitochondrial 

activity under normal physiological conditions and as a part of cellular stress 

response. It has been shown that zinc ions are a very potent inhibitor of cellular 

respiration and terminal oxidation. Zinc seems to inhibit the succinate-stimulated 

reduction of oxidized cytochrome c, thereby likely inhibiting complex III, the 

-ketoglutarate dehydrogenase 
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complex upstream in the tricarboxylic acid (TCA) cycle. (Skulachev et al. 1967; 

Kleiner et al. 1972; Brown et al. 2000; Costello et al. 2004; Costello et al. 2016)  

The mitochondrial tricarboxylic acid (TCA) cycle and electron transport chain (ETC) 

are depicted in Figure 19 to shown where zinc can intervene. 

 

Figure 19: Mitochondrial tricarboxylic acid cycle and electron transport chain 

Complexes CI, CII, CIII, CIV, and CV comprise the electron transport chain (ETC). The ETC uses 
NADH and FADH2 to make ATP. These reducing equivalents for ETC are generated during glycolysis, 
fatty acid breakdown, and in the tricarboxylic acid cycle, the latter also being known as Krebs cycle. 
The electron flow starts with the binding of NADH to complex I or with succinate and FADH2 binding to 
complex II. Ultimately, ATP is produced at complex V, the ATPase. If these pathways malfunction, ATP 
production is reduced, placing stress on the cell. In the ETC at complex III and in the TCA cycle at the 

-ketoglutarate dehydrogenase zinc ions can intervene and inhibit respiration. Modified according to 
(Polyzos et al. 2017). 

 

The interrelations between mitochondria and zinc ions have been discussed 

especially in neural and endothelial cells, where zinc levels were found to be elevated 

in a variety of pathological conditions, such as ischemia-reperfusion injury and 

(Brown et al. 2000) Studies suggest biphasic effects of zinc ions 

on the mitochondrial function. On one hand high levels of zinc ions were found to 

decrease O2 consumption, lower the mitochondrial membrane potential, and increase 

ROS production. This is in line with the above-mentioned findings suggesting that zinc 



Introduction 30 

 

ions inhibit components of both the TCA cycle and the ETC. Low levels of zinc on the 

other hand increased O2 consumption and decreased ROS generation. (Sensi et al. 

2003) Several different working groups found crosstalk between zinc ions, 

mitochondria, and ROS. (Slepchenko et al. 2017; Lien et al. 2018) It was shown that 

ZnO NP can affect the cellular respiration of cancer cells. (Prasanth et al. 2013) In 

response to oxidative stress, endothelial cells were shown to exhibit increased levels 

of free zinc ions, concomitant loss of the mitochondrial function, and induction of 

cellular death. (Wiseman et al. 2007) When the cellular ability to maintain zinc 

homeostasis is overwhelmed, it seems as if a vicious circle of cellular damage is 

initiated that finally leads to cell death. This demonstrates the important role of 

intracellular zinc flows. They connect the oxidative stress response to the 

mitochondria, and thereby cellular signalling cascades, which finally can induce 

cellular (apoptotic) death. Signal transduction can possibly be achieved by the import 

of metallothionein loaded with zinc ions into mitochondria, where zinc ions are 

subsequently set free to modulate respiration. (Ye et al. 2001) Instead of being bound 

to metallothionein, zinc ions might enter the mitochondria on their own via a calcium 

uniporter (Lien et al. 2018) or yet unknown mechanisms (Malaiyandi et al. 2005). 

Mitochondrial dysfunction has been frequently observed following treatment with 

ZnO NP. (Berardis et al. 2010; Zhang et al. 2011; Choudhury et al. 2017) In principle, 

mitochondrial dysfunction can be the consequence of the generation of ROS in the 

cytosol and subsequent damage to the mitochondria. It is however also possible that 

zinc ions or ZnO NP directly interact with mitochondria. Additionally, it was suggested 

that treatment with ZnO NP may result in the inhibition of the superoxide dismutase 

and catalase activity. (Pati et al. 2016; Kononenko et al. 2017) This would suggest 

that failure of mitochondria may not be directly related to the interaction with ZnO NP 

or zinc ions but rather is a consequence of the exhaustion of the antioxidative capacity 

of the cells. 

The generation of ROS could in part also be a result of the cytotoxicity of ZnO NP 

rather than its cause. During the induction of cell death ROS can be released and 

membrane leakage can occur. We have to bear in mind that a complex series of 

events occurs upon treatment with ZnO NP and a mechanistic link is not necessarily 

a causality. (Shen et al. 2013) 
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5.3.2.4 Genotoxicity and epigenetic changes  

This chapter will start with a description of possibly naturally occurring interactions 

between nucleic acids and zinc ions. 

The affinity of positively charged metal ions for the DNA is predictable considering 

that its structure includes a negatively charged phosphate backbone, a deoxyribose 

sugar with oxygen atoms, and purine and pyrimidine bases that contain oxygen and 

nitrogen atoms. One might consider the stabilization of the DNA by binding of Mg2+ 

ions a well-known example.  Similarly, redox-active metals are known to intercalate 

into the DNA and induce metal-mediated DNA damage. (Morris 2014)  

In 1993 it was proposed for the first time that zinc ions can form a DNA-metal ion 

complex the so-called M-DNA , in which the zinc ions are located in-between the 

base pairs. (Lee et al. 1993) This is shown in Figure 20. First it was unclear whether 

zinc intercalation into the DNA was only an in vitro phenomenon, but since then it was 

shown that M-DNA can be created under physiological conditions. (Nejdl et al. 2014) 

The melting temperature of DNA is influenced by the binding of zinc (Nejdl et al. 2014) 

and it is fathomable that zinc ions bound to dsDNA and ssDNA have regulatory 

functions in vivo. -  et al. 1995; Lu 2014) Additionally, zinc ions can 

also bind to the phosphate backbone. (Langlais et al. 1990) 

 

Figure 20: Interaction of zinc ions with the nucleobases in the DNA  

Modified according to (Nejdl et al. 2014).  
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It was also shown that ZnO NP as a whole can interact with DNA strands under abiotic 

conditions. (Wahab et al. 2009; Saha et al. 2014; Preedia Babu et al. 2015; Ma et al. 

2016) In a therapeutic setting ZnO NP are discussed to stabilize RNA and RNA-based 

medication. (McCall et al. 2017; Ramani et al. 2017) In experiments with calf thymus 

DNA under abiotic conditions it was furthermore shown that ZnO NP can intercalate 

into the DNA, where they can potentiate the generation of ROS in response to 

gamma-irradiation and subsequent DNA damage. (Preedia Babu et al. 2015) Up until 

now it is not known whether whole particles could possibly directly interact with nucleic 

acids in cells under biotic conditions. 

It is well established that ZnO NP can induce DNA damage (Dufour et al. 2006; 

Sharma et al. 2009; Osman et al. 2010; Sharma et al. 2012; Toduka et al. 2012; 

Alarifi et al. 2013; Valdiglesias et al. 2013; Roy et al. 2014; Zijno et al. 2015; 

Condello et al. 2016; Pati et al. 2016; El Yamani et al. 2017; Kononenko et al. 2017; 

Ng et al. 2017; Thongkam et al. 2017), but the exact mechanisms of genotoxicity are 

largely unknown. DNA damage that was detected after treatment with ZnO NP ranged 

staining over nucleobase derivatives like 8-oxo-2'-deoxyguanosine (8-oxo-dG) to 

chromosomal breaks and the formation of micronuclei. (Hackenberg et al. 2017)

In the context of DNA damage, it is especially interesting whether ZnO NP can induce 

DNA damage directly or via ROS. This question remained largely unanswered up until 

now because ROS generation and DNA damage arise simultaneously, and it is 

difficult to disentangle both processes. Unfortunately, ROS scavenger 

N-acetylcysteine (NAC) cannot be used to assess the effect of ZnO NP on the DNA 

without ROS being present since NAC has a high affinity to zinc ions. (Pace et al. 

2014; Xueju et al. 2015) In general it is important to evaluate the genotoxic effects of 

ZnO NP at sub-cytotoxic timepoints and equivalently sub-cytotoxic 

concentrations since the induction of cell death is also accompanied by DNA 

fragmentation. 

On top of the known ability of ZnO NP to evoke genotoxic effects they have also been 

implicated in epigenetic changes. (Gao et al. 2016; Choudhury et al. 2017) 
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5.3.2.5 Cellular fate after treatment with ZnO NP  

One common question concerning nanotoxicity is the one about the cell death 

mechanism. In the narrow sense this means whether cells die via apoptosis, necrosis, 

or autophagy-associated cell death. The most important features of these cell death 

mechanisms are summarised in Figure 21.  

After treatment with ZnO NP mostly apoptosis (Ahamed et al. 2011; Zhang et al. 

2011; Wahab et al. 2014; Gao et al. 2016; Bai et al. 2017; Moghaddam et al. 2017) 

or necrosis in conjunction with apoptosis (Wilhelmi et al. 2013; Garcia-Hevia et al. 

2016) has been reported. Growing evidence suggests that apoptosis after treatment 

with ZnO NP is induced via the intrinsic, i.e. mitochondrial, pathway (Sharma et al. 

2012; Gao et al. 2016; Ng et al. 2017). In some cases autophagy (Roy et al. 2014; 

Bai et al. 2017; Reshma et al. 2017) and mitophagy (Wang et al. 2018) were also 

shown.  

 

Figure 21: Cell death mechanisms 

Apoptosis is a controlled mechanism of cell death which occurs within normal developmental 
processes and due to sustained damage, that cannot be repaired. It serves to eliminate a single cell 
from the organism without evoking an immune response. Necrosis is not a controlled cell death; it 
occurs when cells are hit by traumatic damage that cannot be handled in any other way. In contrast to 
apoptosis, necrosis involves uncontrolled rupture of the cellular membrane which induces an immune 
response. Autophagy occurs when cells suffer from starvation. It involves the digestion of intracellular 
components. Autophagy can be reversed, and cells can re-enter into proliferation, or it can lead to 
autophagy-associated cell death. The predominant mode of cell death depends on the type of cell and 
injury. Among the different types of cell death, cross-talk exists on multiple levels, which is not shown 
here. Modified according to  (Hotchkiss et al. 2009). 
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Mitochondria seem to play a decisive role in determining the cellular fate after 

treatment with ZnO NP. Most likely they are either involved in the ROS generation 

following treatment with ZnO NP or they are one of the first targets of ROS that are 

generated elsewhere in the cell. Aside from mitochondria, the nucleus may also 

sustain lasting damage following treatment with ZnO NP. Intracellular signalling 

cascades determine the fate of cells in the end. This can lead to controlled apoptosis 

most likely induced via the mitochondrial pathway or it can lead to the attempt to repair 

sustained damage. In the case of uncontrolled increase in ROS and membrane 

leakage necrosis is possible too.  

5.3.3 Zinc oxide nanoparticles as innovative anti-tumor agents   

During the last years evidence accumulated that ZnO NP represent a promising 

candidate as an innovative anti-tumor agent. Numerous studies have been published 

that show toxicity of ZnO NP against tumor cells involving mechanisms mentioned in 

the previous chapters. 

One central question which always arises when an innovative agent is proposed for 

the treatment of tumors is the question of the selectivity of the new drug. Several 

studies show that ZnO NP seem to possess selective anti-cancer characteristics in 

vitro that could help to spare healthy tissue and target the cancer cells selectively. In 

the following table the current state of research concerning the selective cytotoxicity 

of ZnO NP against tumor cells is depicted.  
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Table 2: Selective anti-cancer activity of zinc, zinc compounds, and ZnO NP

In the first and second column the malignant and non-malignant cell types that were used in the 
corresponding study are named. The third column presents the parameters that were analysed set in 
italics and thereafter the main findings of the study concerning the selective anti-cancer activity. The 
last column gives the corresponding publication for reference. Unless stated otherwise, the cells used 
in the publications were of human origin and the ZnO NP were uncoated. Compounds others than 
ZnO NP or coatings that were added to pristine ZnO NP are both set in bold.  

Malignant  
cell type 

Non-malignant 
cell type 

Key points Reference

T cells (Jurkat, 
Hut78) 

Resting T cells, 
activated T cells 

Viability in co-culture, ROS, 
apoptosis/necrosis 

cancerous T cells were 28 35 
times more susceptible  
toxicity was correlated with 

proliferative potential 

(Hanley et al. 2008)

- 
Peripheral blood 

mononuclear cells 
(PBMC) 

Viability, ROS, cytokine 
production 

T and B lymphocytes were 
more resistant compared to 

monocytes and NK cells, 
memory T cells were more 

  
toxicity was cell-type specific 

dependent on membrane 
association, phagocytic 
ability, capacity for ROS 

production 

(Hanley et al. 2009)

Glioma cells 
(A172, U87, 

LNZ308, LN18, 
LN229), breast 

cancer cells 
(MCF-7) 

Astrocytes, breast 
cells (MCF-10A), 

prostate cells 
(RWPE-1) 

Viability, apoptosis/necrosis, 
ROS  selective cytotoxic 
effects on cancerous cells, 
increased ROS production 
compared to normal cells 

(Ostrovsky et al. 2009)

Myelogenous 
leukemia cells 

(K562) 

Lymphocytes from 
peripheral blood 

Viability, DNA damage 
more pronounced cyto- and 

genotoxicity of ZnSO4 to 
cancer cells than to normal 

cells 

(Sliwinski et al. 2009)

T cells (Jurkat) 
CD4+ T cells from 

PBMC 

Viability, uptake 
preferential killing of 
cancerous cells by 

ZnO@SiO2 NP 

(Wang et al. 2009)

HNSCC cells 
(HLaC 78, 

UD-SCC 7A) 

Primary oral 
mucosa cells 

(pOMC) 

Treatment with ZnO NP and 
UVA-1, viability, 

apoptosis/necrosis 0.2 or 
2  NP + 15 min 

UVA induced preferred killing 
of cancerous cells 

(Hackenberg et al. 
2010b)
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Malignant  
cell type 

Non-malignant 
cell type 

Key points Reference

Myelogenous 
leukemia cells 

(HL60) 

Peripheral blood 
mononuclear cells 

(PBMC) 

Viability, apoptosis (DNA 
fragmentation, annexin V 

staining), lipid peroxidation 
preferential killing of 

cancerous cells 

(Premanathan et al. 
2011) 

Breast 
adenocarcinoma 

cells (MCF-7, 
MDA-MB-231), 
nasopharyngeal 
carcinoma cells 

(KB) 

HUVECs, 
lymphocytes from 

PBMC, breast 
epithelial cells, 
normal human 

dermal fibroblasts 
(NHDF) 

Viability, morphology, 
cytoskeleton, intracellular + 

mitochondrial ROS, 
mitochondrial membrane 

potential, apoptosis/necrosis, 
cell cycle progression; 

coating with starch, silica, 
and PEG more 

pronounced effects on 
cancerous cells in the above-

mentioned variables, 
measurement of extracellular 

pH value suggested 
association with preferred 
dissolution in acidic tumor-

microenvironment 

(Sasidharan et al. 
2011) 

Neuroblastoma 
cells (SH-SY5Y) 

Rat mesenchymal 
stem cells 

Viability, ROS 
pluripotent mesenchymal 

stem cells were more 
sensitive than osteogenically 
differentiated mesenchymal 

cells 

(Taccola et al. 2011)

Hepatocellular 
carcinoma cells 
(HepG2), lung 

adenocarcinoma 
cells (A549) 

Immortalized 
bronchial epithelial 

cells (BEAS-2B) 
[non-cancerous 

origin see 
(Reddel et al. 

1989)], primary rat 
hepatocytes and 

astrocytes 

Viability, signalling (qPCR and 
western blot p53, bax, bcl-2; 

caspase-3 activity), ROS, lipid 
peroxidation, antioxidant 
enzyme activity level  

immortalized cell lines were 
more sensitive than primary 

cells  

(Akhtar et al. 2012)

- 

 Immortalized 
murine myoblast 

cells (C2C12) 
[non-cancerous 

origin see 
(McMahon et al. 
1994)], mouse 

embryonic 
fibroblast cells 

(3T3-L1)  

Viability, lipid peroxidation, 
ROS, signalling (qPCR and 
western blot p53, bax, bcl-2; 
caspase-3 activity)  C2C12 

were more sensitive than 
3T3-L1 

(Chandrasekaran et al. 
2015) 
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Malignant  
cell type 

Non-malignant 
cell type 

Key points Reference

Cervical cancer 
cells (HeLa), 
breast cancer 
cells (MCF-7) 

Murine fibroblasts 
(L929) 

Viability, uptake, ROS, 
apoptosis/necrosis, cell cycle 

progression, morphology, 
mitochondrial membrane 

potential preferential killing 
of cancer cells over normal 

cells by FITC-ZnO 
nanocomposites  

(Gupta et al. 2015) 

Breast cancer 
cells (MCF-7, 
MDA-MB-231, 
MB-468, T47D) 

Peripheral blood 
mononuclear cells 

(PBMC) 

Viability, apoptosis, cell cycle 
progression, ROS, lipid 
peroxidation, signalling 

(various proteins, please refer 
to publication) doses of 

PEG-functionalized ZnO NP 
that were effective against 

tumor cells proved to be safe 
for PBMC  

(Chakraborti et al. 
2016) 

Breast cancer 
cells 

(MDA-MB-231) 

 

 

Murine fibroblasts 
(NIH-3T3) 

 

 

Viability, apoptosis (DNA 
fragmentation) 

ZnO NP and Triton-X-100 
modified ZnO NP had larger 

cytotoxic effect on cancer 
cells than on normal cells  

(KC et al. 2016)

Cervical cancer 
cells (HeLa) 

Murine fibroblasts 
(L929) 

ROS, apoptosis/necrosis 
(annexin V staining, DNA 
fragmentation), uptake 

ZnO nanoflowers exhibited a 
higher cytotoxic effect against 
cancerous cells than against 

non-cancerous cells 

(Paino et al. 2016)

Cervical cancer 
cells (HeLa) 

Madin-Darby 
canine kidney 
(MDCK) cells 

Viability, morphology, 
signalling (qPCR p53, 
caspase-3), ROS, lipid 
peroxidation 

cytotoxic effect on cancerous 
cells than on non-cancerous 

cells  

(Pandurangan et al. 
2016) 

Glioblastoma cells 
(T98G), lung 

carcinoma cells 
(H460), thyroid 

cancer cells 
(SNU-80) 

Embryonic kidney 
cells (HEK293), 
lung fibroblasts 

(MRC-5) 

Viability, ROS, caspase 
activity, micronuclei formation, 
migration, signalling (various 

proteins, please refer to 
publication), 

immunocytochemistry 
different ZnO 

nanostructures displayed 
lower IC50 in three cancerous 
cell types compared to two 
non-cancerous cell types 

(Wahab et al. 2016)
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Malignant  
cell type 

Non-malignant 
cell type 

Key points Reference

T cells (Jurkat), 
cutaneous T 

lymphocytes with 

disease (Hut-78T) 

CD4+ T cells from 
PBMC 

Viability, uptake, dissolution, 
mitochondrial ROS, GSH 

activity  selective 
cytotoxicity against cancer 

cells which was influenced by 
coating with polyacrylic acid 

(PAA) associated with 
decrease in zeta potential 

(Wingett et al. 2016)

Breast cancer 
cells (MCF-7, 
MDA-MB-231) 

Embryonic kidney 
cells (HEK293) 

Viability, apoptosis (DNA 
fragmentation, TUNEL 

assay), cell cycle progression, 
CFA, migration, expression of 

bax, bcl-2 ZnO NP 
quantum dots displayed 

preferential killing of 
cancerous cells  

(Arivazhagan et al. 
2017) 

Different 
oesophageal 

squamous cell 
carcinoma cell 
lines (ESCC) 

- 

Cell proliferation, cell cycle  
zinc supplementation 

inhibited cell proliferation, 
mechanism might be 

associated with Orai1-
mediated intracellular calcium 

oscillations 

(Choi et al. 2017b)

Hypopharyngeal 
squamous cell 
carcinoma cells 

(FaDu) 

Bone marrow 
derived 

mesenchymal 
stem cells (BMSC) 

Viability, morphology, 
apoptosis/necrosis, cell cycle 
progression, zinc ion release, 

qPCR caspase-3, DNA 
damage (comet assay) 

enhanced cyto- and 
genotoxicity towards 

cancerous cells compared to 
non-cancerous cells  

(Moratin et al. 2017) 

 

As the table shows up until now there is no consensus on the mechanism of 

cytotoxicity that conveys the preferential killing of tumor cells, but there are different 

mechanisms that are proposed to play an important role. 

One theory is that preferential killing of tumor cells is based on the high metabolic 

activity of the usually fast dividing tumor cells. (Hanley et al. 2008; Hanley et al. 2009; 

Taccola et al. 2011) Nevertheless, it has also been shown that the doubling time 

alone is not sufficient to explain the sensitivity towards treatment with ZnO NP. 

(Wingett et al. 2016) The cell-specific vulnerability to suffer from oxidative stress and 

the phagocytic activity were also brought up as possible factors of influence. 

(Wang et al. 2009; Wingett et al. 2016) 
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Another theory is that ZnO NP are more easily dissolved in the acidic tumor 

microenvironment that stems from the Warburg effect. (Gatenby et al. 2004; 

Sasidharan et al. 2011; Liberti et al. 2016; Arivazhagan et al. 2017) Additionally, the 

usually positive charge of ZnO NP at the surface can favour the interaction with the 

negatively charged membrane of cancer cells. (Wingett et al. 2016; Shi 2017).

Besides the possibility to use ZnO NP as a stand-alone therapeutic agent, there is 

also the possibility to combine NP with the well-established standard therapies: 

chemotherapy and radiotherapy. It has been envisioned that anti-cancer drugs could 

be loaded into ZnO NP to combine both therapies and achieve additive or synergistic 

effects of both treatments. Preliminary studies show very promising results 

concerning the combination of ZnO NP with doxorubicin, daunorubicin, paclitaxel, or 

cisplatin. (Guo et al. 2008; Hackenberg et al. 2012; Deng et al. 2013; Sharma et al. 

2016; Aswathanarayan et al. 2018) 

Considering the photocatalytic activity of ZnO NP, it could be especially promising to 

combine the nanoparticles with irradiation. This might be visible light as used in 

photodynamic therapy (PDT), gamma-irradiation as used in radiotherapy or UV-light. 

Promising findings were made in in vitro experiments. (Guo et al. 2008; Zhang et al. 

2008; Li et al. 2010; Hackenberg et al. 2012; Deng et al. 2013; Wang et al. 2013; 

Generalov et al. 2015; Sharma et al. 2016; Aswathanarayan et al. 2018) Cytotoxic 

effects of ZnO 

It was already shown that gamma-irradiation can enhance the antimicrobial activity of 

ZnO NP (Swaroop et al. 2015; Hosny et al. 2017) , which is another indication that 

anti-cancer effects of ZnO NP may also be potentiated by the combination with 

irradiation. Currently the detailed evaluation of ZnO NP as a radiosensitizer for the 

treatment of cancer is still missing. 

If the administration of ZnO NP is considered in therapeutic settings, the 

risk-assessment must go beyond experimental tests in vitro. Several recent reviews 

on the anti-cancer activity of ZnO NP (Rasmussen et al. 2010; Bedi et al. 2015; 

Mishra et al. 2017; Racca et al. 2018) show their huge potential in biomedical 

applications. Simultaneously they show that we are still far away from completely 

understanding the interactions between cells and ZnO NP; not to mention ZnO

behaviour in the human body. In order to pave the way for the translation of ZnO NP 

into clinics the hemocompatibility of the nanoparticles must be ensured. This includes 

the compatibility with erythrocytes, coagulation system, and an escape from the 
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immune system which enables sufficiently long circulation times to reach the tumor 

site. (Racca et al. 2018) To allow for hemocompatibility, coating of ZnO NP with an 

appropriate shell may be considered. The protein corona may influence active or 

passive targeting via specific targeting moieties or the EPR effect (enhanced 

permeability and retention effect (Nakamura et al. 2016)), respectively to the tumor 

site. (Mishra et al. 2017) 

After intraperitoneal administration of ZnO NP in mice the nanoparticles were found 

to have a very broad tissue distribution and accumulate in liver, spleen, lung, heart, 

and kidney. Zinc serum levels peaked 6 h after injection and remained high until 72 h 

after treatment. No elevation of the zinc level in the brain was seen which suggests 

that the blood brain barrier successfully blocks the entry of ZnO NP. (Li et al. 2012) 

Intravenously injected ZnO NP showed a similar biodistribution in mice. ZnO NP were 

rapidly removed from the bloodstream and accumulated in lung, spleen, kidney, and 

liver. As indicative of oxidative stress, the 8-oxo-2'-deoxyguanosine (8-oxo-dG) level 

in urine was found to be elevated after ZnO NP treatment and pathological changes 

were observed in lung and liver. (Fujihara et al. 2015) Another study detected 

changes in the blood values and confirmed the occurrence of oxidative stress and 

additionally noticed genotoxic effects.(Aula et al. 2018) 

To my knowledge there is only one preliminary study that deals with the in vivo 

evaluation of ZnO NP as an anti-tumor agent. (Hassan et al. 2017) Further analyses 

must follow to unveil the behaviour of ZnO NP in a living organism and to assess their 

potential to be specifically targeted to a solid tumor to set free their toxic load at the 

tumor site. 

  



Aim of the work 41 

 

6  

As illustrated in the introduction of this doctoral thesis zinc oxide nanoparticles 

(ZnO NP) hold great promise as innovative anti-tumor agent. They can be easily and 

cheaply synthesized in different forms and shapes and their toxicity can be tuned in 

different ways. Additionally, the human body can easily excrete an excess of zinc ions 

and it possesses many buffering mechanisms to protect non-malignant cells from 

sustaining damage by treatment with ZnO NP. 

At the same time, zinc ions participate in a bunch of different vital bodily functions. 

Our knowledge of the exact role of zinc in all the signalling pathways is far away from 

being complete. There might be the danger that introducing ZnO NP into the human 

body will open a Pandora's Box of uncontrollable health hazards. 

Many studies on the toxicity of ZnO NP lack meticulous description of the exact 

experimental conditions under which the nanoparticles were brought into contact with 

living cells. To work with ZnO NP and zinc ions being released by them is particularly 

challenging. Metal ions intervene with many signalling pathways and they can elicit 

toxicities via a multitude of mechanisms. Thus, to analyse the mechanisms of 

ZnO , we need an in-depth understanding of the chemical and biological 

properties of the experimental system. 

This doctoral thesis strives to broaden the knowledge on the interaction between 

ZnO NP and human cells tumor cells and non-malignant cells and their potential 

as innovative anti-tumor agent. To achieve that, a broad set of experiments was 

conducted under exactly uniform experimental conditions. This systematic approach 

aims at unveiling the concepts underlying the toxicity of ZnO NP in order to be able 

to precisely control their behaviour in an in vivo setting in the future. 

In particular, the aim of this study was to investigate the chemical properties that 

convey toxicity (8.2), which also included ZnO@SiO2 NP, zinc oxide 

nanoparticles covered by a silica shell (8.3). Furthermore, the intracellular 

consequences of treatment with ZnO NP were studied (8.4) with particular focus on 

genotoxicity (8.5) and the role of mitochondria and ROS (8.6). Finally, the selectivity 

of ZnO NP (8.7) and their performance as radiosensitizer (8.8) were evaluated. 



Materials and methods 42 

 

7  

7.1 Materials  

7.1.1 Chemicals  

Unless stated otherwise, all standard chemicals were obtained from Carl Roth GmbH 

(Karlsruhe, Germany), Merck KGaA (Darmstadt, Germany), AppliChem GmbH 

(Darmstadt), Sigma-Aldrich Corporation (St. Louis, MO, USA), and Serva 

Feinbiochemica GmbH & Co. (Heidelberg, Germany).  

7.1.2 Equipment 

Table 3: Equipment  

Equipment Manufacturer 

Atomic adsorption spectrometer PerkinElmer Inc., Waltham, MA, USA 

Autoclave 5050 ELV Tuttnauer Europe B.V., Breda, Netherlands 

Blotter Biorad criterion tank blotter  Bio-Rad Laboratories GmbH, Munich, Germany

Blotter Eco-mini tank blotter   

CASY  Cell Counter, model TT 
Roche Diagnostics International AG, Basel, 
Switzerland 

Centrifuge Biofuge fresco  
Heraeus, Kendro Laboratory Products GmbH, Hanau, 
Germany 

Centrifuge model 100 VAC Fisherbrand  Thermo Fisher Scientific Inc., Waltham, MA, USA 

Centrifuge Multifuge 1L-R  
Heraeus, Kendro Laboratory Products GmbH, Hanau, 
Germany 

 imaging system  Bio-Rad Laboratories GmbH, Munich, Germany

CLSM Leica TCS SP5 Leica Microsystems GmbH, Wetzlar, Germany 

COLCOUNT system Oxford Optronix Ltd., Abingdon, UK 

Electrophoresis chamber and 
corresponding gel plates with fixed 
spacers 1.0 mm and silicone seal 
1.0 mm 

 

Flow Cytometer BD FACS Calibur  
Becton, Dickinson and Company, Franklin Lakes, NJ, 
USA 

Flow Cytometer BD FACS Canto  
Becton, Dickinson and Company, Franklin Lakes, NJ, 
USA 

Fluorometer Fluoroskan Ascent 
Microplate Reader 

Thermo Fisher Scientific Inc., Waltham, MA, USA 

Freezer 
Robert Bosch GmbH, Stuttgart, Germany; Thermo 
Fisher Scientific Inc., Waltham, MA, USA; Heraeus, 
Kendro Laboratory Products GmbH, Hanau, Germany

Incubator HeraCell 150i CO2 Incubator  
Heraeus, Kendro Laboratory Products GmbH, Hanau, 
Germany 
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Irradiation facility Gammacell 2000, 
gamma-source (Cs137) 

 

Laminar flow hood Flow Hera safe Heraeus, Kendro Laboratory Products GmbH, Hanau, 
Germany 

Magnetic stirrer Starlab Smart 
Instruments 

Starlab International GmbH, Hamburg, Germany

Microscope AxioVert 200M Carl Zeiss Jena GmbH, Jena, Germany 

Microscope Nikon Eclipse TE2000-U  

Microscope Nikon TMS Inverted Phase 
Contrast Microscope  

 

Neubauer counting chamber Brand GmbH + Co. KG, Wertheim, Germany 

Nitrogen tank CRYO-4000 Chart Industries, Burnsville, MN, USA 

Photometer Multiskan Ascent   Thermo Fisher Scientific Inc., Waltham, MA, USA 

Pipettes  
Eppendorf AG, Hamburg, Germany; Greiner bio-one 

; Brand 
GmbH + Co. KG, Wertheim, Germany 

Pipetting aid pipetus  Eberstadt, 
Germany 

Plate reader Infinite 200 Pro Tecan,  

Power supply 1000/500 Bio-Rad Laboratories GmbH, Munich, Germany

Power supply Standard Power Pack P25 Biometra  

Refrigerator profi line 
Liebherr-International Deutschland GmbH, Biberach 

 

Scale Kern PCB Kern und Sohn GmbH, Balingen, Germany 

Scale Precision Advanced DHAUS As-  

Shaker IKA  KS 260 basic  -Werke GmbH & CO. KG, Staufen, Germany

Spectrometer 5100 ZL AA  PerkinElmer Inc., Waltham, MA, USA 

Swivel table Rocky  3D  

Swivel table WS-10 Germany 

Thermomixer comfort  Eppendorf AG, Hamburg, Germany 

Transmission electron microscope FEI 
Tecnai G2 12 BioTwin 

FEI Company, Hillsboro, OR, USA 

Ultrasonic bath Emag Emmi 40HC -Waldof, Germany 

Ultrasonic homogeniser Sonoplus mini20 BANDELIN electronic GmbH & Co. KG, Berlin, 
Germany 

Vortex IR Starlab Smart Instruments Starlab International GmbH, Hamburg, Germany

Vortex Top-Mix 11118 Fisherbrand  Thermo Fisher Scientific Inc., Waltham, MA, USA 

Vortex VWR VV3 VWR International GmbH, Darmstadt, Germany

Water bath GFL Shaking Water Bath 
1083 Germany 

X-ray diffractometer AXS D8 Advance Bruker Corporation, Billerica, MA, USA 

Zetasizer Nano ZS Malvern Instruments Ltd., Malvern, UK 
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7.1.3 Consumables 

Table 4: Consumables  

Product Manufacturer 

Cell culture dishes Advanced TC Dish, 
Sterile, 60x15 mm 

Greiner bio-one International GmbH, 
 

-Dish 
35 mm, high 

ibidi GmbH, Munich, Germany 

Cell culture flasks 175 cm2, 75 cm2, 25 cm2 
Greiner bio-one International GmbH, 

nster, Austria 

Cell cult
black 

Greiner bio-one International GmbH, 
 

 Greiner bio-one International GmbH, 
 

Cell scraber BD Falcon TM 
Becton, Dickinson and Company, Franklin Lakes, 
NJ, USA 

 mL, 50 mL  
Greiner bio-one International GmbH, 

 

Cover glasses  IDL GmbH & Co. KG, Nidderau, Germany 

 Greiner bio-one International GmbH, 
Krems  

Immobil -P-Transfer-Membran (PVDF; 
0.45  

Millipore Corporation, Billerica, MA, USA 

 Pechiney Plastic Packaging, Inc., Chicago, IL, USA

Pasteur pipettes (glass, disposable) Carl Roth GmbH, Karlsruhe, Germany 

Pipette tips       0,5-20 L,  
                        10-200 L, 100 L-1 000 L 

Kisker Biotech GmbH & Co. KG, Steinfurt, Germany 
Sarstedt A  

Serological pipettes 5 mL, 10 mL, 25 mL Greiner bio-one International GmbH, 
 

TEM Grids, carbon film, coated, 5-6 nm, 
300 Mesh, Cu 

EMS Electron Microscopy Sciences, Hatfield, PA, 
USA  

Tubes Round-Bottom Polystyrene Tube 
12x75 mm style 

Corning Incorporated, Corning, NY, USA 

Tubes safe-lock 0,5 mL,1,5 mL, 2 mL, 5 mL  Eppendorf AG, Hamburg, Germany 
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7.1.4 Buffers, solutions, and cell culture medium  

Cell culture medium 

 DMEM/ F-12 Ham with L-glutamine and phenol red without HEPES 

(Dulbecco's Modified Eagle Medium)  

 + 10% (v/v) fetal calf serum (FCS) 

 + 2% (v/v) penicillin and streptomycin (Pen-Strep) 

 

Wet blot transfer buffer 

 6.06 g Tris 

 29.3 g glycine 

 400 mL methanol 

 7.4 mL 10% (w/v) sodium dodecyl sulphate (SDS) solution 

 filled up to 2 000 mL with deionized water 

 

Cell lysis buffer  

 0.8 g SDS  

 1 mL 2 M Tris/ HCl pH 6.8-7.5 

 4.6 mL glycerine 

 2 mL deionized water 

 2 tablets Cocktail (Roche, Grenzach-Wyhlen, Germany)

 1 tablet PhosSTOP EASYpack phosphatase inhibitor cocktail (Roche, Grenzach-Wyhlen, 

Germany) 

 

10x TBS-washing buffer (Tris buffered saline) 

 24.2 g Tris 

 80 g NaCl 

 1 000 mL deionized water 

 pH value adjusted to 7.6 with HCl 

 

1x TBST20-washing buffer  

 200 mL 10x TBS-Washing buffer  

 1 800 mL deionized water 

 2 mL Tween20 
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5x Electrophoresis buffer  

 30 g Tris 

 144 g glycine 

 1 000 mL deionized water 

 

1x Electrophoresis buffer  

 100 mL 5x Electrophoresis buffer  

 5 mL SDS  

 filled up to 500 mL with deionized water 

 

Stripping buffer 

 1.) 1.876 g glycine in 1 L deionized water, pH value adjusted to 2.0 with HCl 

 2.) 1% (w/v) SDS  

 

BSA-T-PBS washing buffer  

 0.2% (v/v) Triton X-100 

 1% (w/v) BSA  

 in PBS 

 

PI (propidium iodide) staining solution  

 0.1% (w/v) RNase A (ribonuclease A from bovine pancreas, Sigma-Aldrich Corporation, 

St. Louis, MO, USA) 

 5 mL PI (Abcam, Cambridge, UK) 

 in PBS 
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7.2 Methods 

7.2.1 Synthesis of zinc oxide nanoparticle (ZnO and ZnO@SiO2 NP)

The solvothermal synthesis of the unmodified ZnO NP was adapted from 

(Cheng et al. 2006) with some modifications. 5 mmol of Zn(ac)2  H2O was dissolved 

in 10 mL methanol and gently shaken. 20 mL of tetramethylammonium hydroxide 

25% (w/w) in methanol were slowly added and the mixture was stirred for 20 min. The 

reaction mixture was transferred to a 50 mL teflon-lined stainless-steel autoclave and 

 h. The colourless precipitate was separated by centrifugation 

and washed twice with deionized water. Finally, the product was dispersed in ethanol 

and stored at RT for long term storage or dried in air for short term storage. 

The APTES FITC conjugate synthesis for dye functionalization of ZnO@SiO2 NP was 

carried out by dissolving 0.003 mmol of FITC in 0.5 mL of dry DMSO (solution 1). 

0.009 mmol of APTES were dissolved in 0.5 mL of dry DMSO (solution 2). Afterwards, 

solution 1 was added to solution 2 and the mixture was stirred overnight at RT under 

exclusion of light. The APTES FITC conjugate can be sto d.

(Tahir et al. 2013) with 

some modifications. 0.5 mmol Zn(ac)2 2O (pre-  min) were 

dispersed in 4 mL of benzyl alcohol, 3 mL of oleyl amine, and 2 mL of 1-octadecene 

under inert gas conditions and stirred for 5 min. The mixture was heated to 1

20  min. Afterwards, the mixture was slowly 

cooled to RT. The colourless product was precipitated, separated by centrifugation, 

dispersed in cyclohexane, and washed twice by adding ethanol (cyclohexane:ethanol 

= 1:2). Finally, the product was dispersed in cyclohexane and stored at RT. 

The synthesis of ZnO@SiO2 NP with HU ZnO NP was carried out using a reverse 

microemulsion technique. 2 g of Igepal CO-520 and 100 oleyl amine were 

dispersed in 40 mL of cyclohexane. The mixture was ultrasonicated for 15 min. 10 mg 

of HU ZnO NP were added and the mixture was ultrasonicated for additional 15 min. 

150  11.5 were added and the mixture was 

stirred for additional 10 min. The stirring speed was increased to maximum and 

120  of TEOS were injected rapidly. After 20 min 5 

APTES-FITC conjugate was added. The mixture was stirred overnight at maximum 

stirring speed. In the morning and evening of the next day 15 f TEOS each were 

added, and the mixture was again stirred overnight. 100 

subsequently added and the mixture was stirred for additional 4 h. The precipitate 
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was separated by centrifugation, dispersed in ethanol, and washed twice by adding 

cyclohexane (ethanol:cyclohexane = 1:2). Finally, the product was dispersed in 

 

For description of the synthesis in greater detail please refer to the doctoral thesis of 

Martin Kl nker. From 2015 until January 2017 all NP were synthesized and 

characterized by Martin Kl nker. Then Melanie Viel took over synthesis and 

characterization. Both were members of the working group of Prof. Dr. Wolfgang 

Tremel, Inorganic and Analytical Chemistry, Mainz. 

7.2.1.1 Characterization of the nanoparticles 

The NP were characterized by transmission electron microscopy (TEM), X-ray 

diffraction, and zeta potential measurements. Samples for TEM were prepared by 

placing a drop of NP dispersion in cyclohexane on a carbon coated copper grid. TEM 

images for the characterization of size and morphology were obtained using a 

FEI Tecnai 12 equipped with LaB6 source at 120 kV and a twin-objective together 

with a Gatan US1000 CCD-camera (2kx2k pixels). X-ray diffraction patterns were 

recorded on a Bruker AXS D8 Advance diffractometer equipped with a SolX energy 

phases were identified according to the PDF 2 database using Bruker AXS EVA 10.0 

software. Measurements of the zeta potential of the NP were performed using a 

Zetasizer Nano ZS (Malvern Instruments Ltd., Malvern, UK) and a disposable 

capillary cell. Typically, 1 mL aliquots of each sample were injected into the capillary 

cell and 5 . 

7.2.1.1.1 Atomic absorption spectroscopy  

Atomic absorption spectroscopy (AAS) measurements were conducted using a 

Perkin Elmer 5100 ZL AA spectrometer (PerkinElmer Inc., Waltham, MA, USA) with 

a Zeeman Furnace Module and a Zn hollow cathode lamp at 213.9 nm and 

air/acetylene mixture. For zinc ion detection the sample was treated with aqua regia 

overnight to dissolve any ZnO and denature any proteins. Afterwards the sample was 

diluted with deionized water. Samples were analysed using the whole flame width to 

ensure maximum ionization and reduced matrix effects. A 3-point calibration was 

carried out with 9 measurements for each concentration. Between sample 

measurements the instrument was rinsed with aqua regia and deionized water. 
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7.2.1.1.2 Measurement of reactive oxygen species (ROS) at the NP

We tested ZnO NP for the formation of reactive oxygen species (ROS) at the surface 

in two in vitro assays without cells being present.  

The formation of superoxide radicals was assessed with the help of a solution of 

iodonitrotetrazolium chloride (INT, 1.23 mg/mL). For this purpose, 300 1 mg/mL 

ZnO NP were mixed with 2 100 deionized water or cell culture medium, 

respectively, and 600 INT solution. Upon reaction with superoxide radicals INT is 

transformed into a red dye with an absorption maximum at 505 nm. The reaction 

mixture was incubated in the plate reader (Infinite 200 Pro plate reader, Tecan 

) which measured in the range from 400 700 nm 

every 15 min.  

To detect hydroxyl rad -tetramethylbenzidine (TMB) was used. 270 

1 mg/mL ZnO NP were mixed with 1 872 deionized water or cell culture medium, 

respectively, 108 1 mg/mL horseradish peroxidase (HRP), and 450 

0.48 mg/mL TMB. The reaction mixture was incubated in the plate reader (Infinite 200 

Pro plate reader, ). It was measured in the 

range from 300 to 800 nm every 10 min which covered the expected absorbance after 

reaction at 652 nm. 

7.2.2 Cells, cell culture, and nanoparticle treatment 

7.2.2.1 Cells 

For the study immortalized tumor cell lines of different origin we chosen. Those were 

the following: A549 (non-small cell lung cancer (NSCLC)), HeLa (cervix carcinoma), 

HNSCCUM-02T (squamous cell carcinoma (SCC) of the tongue), T24 (urothelial 

carcinoma), RPMI 2650 (SCC of the nasal septum) and FaDu (SCC of the pharynx). 

The head and neck squamous cell carcinoma (HNSCC) cell line HNSCCUM-02T was 

previously established and characterized in our laboratory (Welkoborsky et al. 2003). 

The other cell lines were purchased from DSMZ (German Collection of 

Microorganisms and Cell Cultures, Braunschweig, Germany). Their identity was 

verified by STR analysis. As representatives of healthy, non-malignant tissue, human 

fibroblasts isolated from oral mucosa and human umbilical vein endothelial cells 

(HUVECs) isolated from umbilical cord were chosen. Fibroblasts were isolated from 

material obtained from patients who underwent surgery at the University Medical 
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Center, Mainz, Germany as previously described. (Heller et al. 2016) The isolation of 

HUVECs was described in (Heller et al. 2015).  

7.2.2.2 Cell culture 

For cell culture d Saline), cell culture medium 

(DMEM = Dulbecco's Modified Eagle Medium / Nutrient Mixture F-12 Ham), penicillin 

and streptomycin (Pen-Strep), Accutase  solution, and trypsin-EDTA were obtained 

from Sigma-Aldrich Corporation (St. Louis, MO, USA).  

Cells were maintained in DMEM/Ha (v/v) FCS (fetal 

calf serum) and antibiotics (100 U/mL penicillin and 100 mg/mL 

in 5% (v/v) CO2. HUVECs were cultivated in special cell culture medium for 

endothelial cells (Endopan 3, Pan Biotech, Aidenbach, Germany). 

From 2015 until 2017 fetal calf serum (FCS) from Sigma-Aldrich (Newborn Calf 

Serum, product number: N4637, Sigma-Aldrich Corporation, St. Louis, MO, USA) was 

used. Beginning on January 2018 a new batch FCS was used which was obtained 

from Seradigm (Bovine calf serum iron supplemented, product number: 2100, VWR 

Life Science Seradigm, Radnor, PA, USA). With the new batch of FCS, the cells 

exhibited an increased proliferation but for consistency reasons the level of 10% (v/v) 

FCS in the cell culture medium was maintained. The following experiments were 

conducted with the new FCS: MitoSOX  Red assay, cytochrome c release assay, 

western blots, and the colony formation assay. 

All cell culture work was carried out within a laminar flow hood to avoid any 

contamination from outside and cells were subjected regularly to a PCR-based test 

to ensure absence of mycoplasma. 

To harvest cells, culture medium was discarded, cells were washed with PBS, and 

detached from the cell culture plate by trypsin-EDTA or Accutase  solution. The latter 

was used when flow cytometry experiments were planned. If necessary, cell numbers 

were determined microscopically by staining with 0.4% (w/v) trypan blue solution and 

counting of the cells in the Neubauer counting chamber. For the colony formation 

assay the CASY  cell counter was used to determine cell numbers. Cells were only 

used until passage 50 and were then discarded. 

7.2.2.3 Nanoparticle treatment conditions 

ZnO NP were stored airtightly sealed 0 mg/mL ZnO NP dispersions were 

freshly prepared immediately before each experiment with high-purity water 
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, Fresenius Kabi GmbH, Bad Homburg, Germany). To disperse the NP, 

they were ultrasonicated 5 min with 220 240 V and 37 kHz in an Elmasonic S 40 bath 

sonicator (Elma Schmidbauer GmbH, Singen, Germany). Before and after the 

ultrasonication NP were thoroughly vortexed for ten seconds. To prevent 

sedimentation the NP dispersion was pipetted up and down immediately before the 

NP were added to the cells. This step was repeated for every cell culture dish that 

was treated with NP. Cells in 25 cm2 cell culture flasks, small cell culture dishes, and 

in 6 well plates were directly treated with the 10 mg/mL stock solution of ZnO NP, 

cells in 96 well plates were treated with an intermediate dilution of 1 mg/mL.  

ZnCl2 solution (0.1 M solution, Sigma-Aldrich Corporation, St. Louis, MO, USA) was 

diluted to the proper concentration with high-purity water.  

ZnO@SiO2 NP were stored in ethanol and transferred to water immediately before 

usage by centrifugation, redispersion by short ultrasonication, and two washing steps 

to eliminate remnants of ethanol. 

Cells were incubated with the indicated amount of ZnCl2 / ZnO NP / ZnO@SiO2 NP 

for 4 h, followed by an exchange of the cell culture medium. To remove the cell culture 

medium with excessive NP completely a vacuum pump was used. At that timepoint 

cells were still attached to the cell culture plate. If cells were harvested for any analysis 

later than 4 h after beginning treatment with NP, the cells, that were detached from 

the cell culture plate, were included in the analysis by pooling the cells in the cell 

culture medium and the cells harvested from the cell culture plate. 

7.2.3 Viability measurement  

For the analysis of the cellular viability the cellular metabolic activity (CMA) of the cells 

was assessed with the alamar Blue  reagent (BIOZOL Diagnostica Vertrieb GmbH, 

Eching, Germany and Thermo Fisher Scientific Inc., Waltham, MA, USA). 10 000 cells 

per well were seeded in a 96 well plate and cultivated overnight for adherence. The 

next day, cells received fresh cell culture medium (200 and were treated with the 

indicated amount of ZnO NP, ZnO@SiO2 NP, ZnCl2, MgCl2 or supernatant of ZnO NP 

depending on the aim of the experiment. The required amount of ZnO@SiO2 NP was 

calculated based on the estimated zinc oxide amount that was enclosed in the silica 

shell measured by AAS. Treatment with the equivalent amount of water served as 

negative control (= untreated) and treatment with 70% (v/v) ethanol in water as 

positive control. Unless stated otherwise in the results section, medium was 

exchanged for fresh medium after 4 h with the help of a vacuum pump. To the cell 



Materials and methods 52 

 

culture medium of all wells 10% alamar Blu added at the indicated time points 

and the samples were incubated for additional 3 ained 

using a plate reader (Fluoroskan Ascent Microplate reader, Thermo Fisher Scientific 

Inc., Waltham, MA, USA; excitation: 540 nm, emission: 600 nm) and normalized to 

control cells (=100% viability). 

7.2.4 In vitro DNA damage analysis   

To test in vitro the influence of ZnO NP, ZnCl2, ROS and combinations on the integrity 

of plasmid DNA we diluted 200 ng plasmid DNA (pGlow ert, 

Thermo Fisher Scientific Inc., Waltham, MA, USA) in 20 nuclease-free water 

(water, bioscience grade, nuclease free, autoclaved DEPC-treated water, Carl Roth 

GmbH, Karlsruhe, Germany) and incubated it with 100 mL ZnO NP or equivalent 

amounts of ZnCl2, respectively, at  1 h. Some samples were additionally 

treated with 1 mM hydrogen peroxide (H2O2). To assess potential pH dependence of 

the reaction the pH-value of the H2

Bad Homburg, Germany) used to dilute the ZnO NP or ZnCl2, respectively, was 

adjusted to pH 5, 7 or 8. As a positive control for double strand breaks plasmid DNA 

was linearized by enzymatic digestion using KpnI, resulting in a single 5988 bp 

fragment. After incubation, 10 of the samples were loaded onto an agarose gel, 

stained with ethidium bromide, and run according to standard conditions. 

7.2.5 Microscopy  

7.2.5.1 Light Microscopy  

For light microscopical imaging of cellular morphology after ZnO NP treatment, cells 

were seeded in 25 cm2 cell culture flasks and treated with NP according to the 

standard procedure. Pictures were taken prior to the treatment and after 2 h, 4 h, 8 h, 

and 24 h with a fluorescence microscope AxioVert 200M (Carl Zeiss Jena GmbH, 

Jena, Germany). Cells treated with an equivalent amount of water served as control.

7.2.5.2 Confocal laser scanning microscopy (CLSM)  

For confocal laser scanning microscopy 250 000 cells were seeded in cell culture 

dishes (ibiTreat, ibidi GmbH, Munich, Germany) and cultivated overnight for 

adherence. Cells were then treated with ZnO@SiO2 NP according to the standard 

procedure on the basis of the estimated zinc oxide amount that was enclosed in the 
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silica shell measured by AAS. After 4 h cells excessive NP were removed with the 

cell culture medium using a vacuum pump and cells were washed twice with PBS. 

Then the cells were maintained in cell culture medium without phenol red and 

transported to the Max Planck Institute for Polymer Research for CLSM imaging in 

the working group of Prof. Dr. Volker Mailaender. Cell Plasma 

membrane stain (Thermo Fisher Scientific Inc., Waltham, MA, USA) was used to 

visualize the cell contours. Confocal images were acquired on a Leica TCS SP5 

(Leica Microsystems GmbH, Wetzlar, Germany). 

7.2.5.3 Immunofluorescence  

For immunofluorescence staining 250 000 cells were seeded on cover glasses in 

6 well plates and treated with ZnO@SiO2 NP according to the standard procedure 

based on the estimated zinc oxide amount that was enclosed in the silica shell 

measured by AAS. After 4 h excessive NP were removed with the cell culture medium 

using a vacuum pump and cells were washed three times with PBS (3x5 min).  Cells 

were fixed with 4% (w/v) paraformaldehyde in PBS (15 min), washed again three 

times with PBS,  until staining. Prior to staining cells were 

incubated in blocking buffer (5% (w/v) BSA and 0.3% (v/v) Triton-x-100 in PBS) for 

1 h. Then they were incubated with the primary antibody (Anti-Lamin A + C antibody 

[EPR4100], nuclear envelope marker (ab108595) 1:500 in PBS with 0.3% (v/v) 

Triton-x-100) for 1 h at RT, washed twice with PBS, incubated 2 min in TBS with 

400 mmol NaCl, and washed again with PBS. Afterwards cells were incubated with 

the secondary antibody (goat anti-rabbit 1:500 in PBS with 0.5% (w/v) BSA and 0.3% 

(v/v) Triton-x-100) for 1 h at RT. Finally, cells were washed again twice with PBS, 

incubated 2 min in TBS with 400 mmol NaCl and washed with PBS. Then the cover 

glasses with the cells were removed from the 6 well plates and transferred to 

microscope slides using Fluorescence Mounting Medium (Dako Omnis, Agilent, 

Santa Clara, CA, USA). Immunofluorescent staining was conducted by Karin Benz. 

Images were taken at the fluorescence microscope AxioVert 200M (Carl Zeiss Jena 

GmbH, Jena, Germany). 

7.2.6 Flow cytometry  

Flow cytometry is a very powerful tool to analyse the optical and fluorescent 

characteristics of single cells in a fluid stream in a fast and quantitative manner. While 

fluorescence microscopy can be biased by the image section that is chosen for 



Materials and methods 54 

 

analysis flow cytometry allows the accurate and simple analysis of high numbers of 

cells. In flow cytometry refracted or emitted light is used to identify certain cellular 

characteristics. Two types of light scatter occur when cells are hit by the laser beam, 

the forward scatter (FSC) that is proportional to the cell size and the side scatter (SSC) 

that is proportional to the granularity of the cell. Those values provide first information 

about the cells which can be supplemented with a huge amount of different dyes. 

(Adan et al. 2017) The principle of flow cytometry is depicted in Figure 22.  

Figure 22: Principle of flow cytometry  

Flow cytometry is a technology that is used to analyse the physical and chemical characteristics of 
cells in a fluid as it passes through a couple of lasers (A). Cell components are fluorescently labelled 
and then excited by the lasers to emit light at varying wavelengths. Additionally, light scattering 
provides insights into cellular size (forward scatter = FSC) and cellular granularity (side scatter = SSC) 
(B). [image modified according to (Adan et al. 2017)] 

 

7.2.6.1 Apoptosis assay 

Apoptosis and necrosis were assessed via parallel staining with propidium iodide (PI) 

and annexin V-FITC, followed by flow cytometric analysis. Positive staining with PI 

marks loss of cellular integrity. Positive staining with annexin V-FITC labels cells that 

are undergoing apoptosis while necrotic cells are not stained.  

For the apoptosis assay 600 000 cells were seeded in 25 cm2 cell culture flasks, the 

next day they were treated with the indicated amount of ZnO NP or ZnCl2 for 4 h 

according to the standard procedure, then cell culture medium was changed, and 

cells were harvested 4 h, 12 h, 16 h, 18 h, 20 h, 24 h, 48 h, 72 h, and 96 h after the 

beginning of the treatment. Please note that the indicated time points in all figures 

and analyses 

eight hours after beginning of the NP treatment and four hours after the removal of 
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excessive particles, as NP treatment lasted four hours. Cells treated with an 

equivalent amount of water served as control. Cells that additionally were irradiated 

received 4 Gray gamma irradiation 3 h after beginning NP treatment using the 

irradiation facility Gammacell 2000.  

Afterwards cells were stained with PI (Thermo Fisher Scientific Inc., Waltham, MA, 

USA) and annexin V- A, USA) according to 

manufacturers' specifications. All cells were included in the analysis, those that were 

still attached to the cell culture plate and those that were detached and were found in 

the cell culture medium. Cell samples were then analysed with a FACS Canto II flow 

cytometer (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) and data was 

analysed via the cytobank platform (https://www.cytobank.org/, Cytobank, Inc., Santa 

Clara, CA, USA). Cells without staining, were considered to be alive, cells which were 

single stained by PI to be necrotic and single stained by annexin V-FITC to be 

apoptotic and those which were stained by PI and annexin V-FITC to be dead.

7.2.6.2 Cell cycle analysis  

To analyse the cell cycle distribution of non-synchronized cells, staining with DNA 

binding dyes and subsequent flow cytometric analysis can be used. DNA binding dyes 

such as propidium iodide (PI) are stoichiometric, this means that they bind in 

proportion to the amount of DNA present in the cell. Thus, the amount of staining of 

every cell indicates the amount of DNA in the cell and thus the cell cycle phase it is 

currently in.  

For the cell cycle analysis 600 000 cells were seeded in 25 cm2 cell culture flasks, the 

next day they were treated with the indicated amount of nanoparticles according to 

the standard procedure. At the indicated time points cells were then harvested for flow 

cytometric analysis. Firstly, cells were washed with PBS and after centrifugation the 

supernatant was discarded. Cells were then taken up into 500 PBS and 4.5 mL of 

ice-cold ethanol was added. Both liquids were carefully mixed, and the cells were 

incubated for at least two hours at -2 step ensures fixation and 

permeabilization of the cells to allow PI to enter the cells in the following step. Cells 

were washed two times with BSA-T-PBS washing buffer (suspending of the cells + 

5 min incubation at RT + centrifugation + discarding of the supernatant). Then cells 

were suspended in PI staining buffer, transferred to round button tubes for flow 

cytometry and after 5 min 400 PBS was added to each sample. Cells were 

analysed with the FACSCanto  flow cytometer and the collected data was evaluated 
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with the corresponding software. The measurements were corrected for doublets 

using the PI-A (area) vs. the PI-W (width) values. The analysis with the ModFit LT 

software was not possible because the huge increase in debris after NP treatment 

interfered with the automated cell cycle phase detection.  

7.2.6.3 MitoSOX  Red mitochondrial superoxide indicator assay  

 Red is a novel fluorescent dye which selectively labels superoxide in the 

mitochondria of living cells. Mito  Red reagent is live-cell permeant and is 

rapidly and selectively targeted to the mitochondria. Once in the mitochondria, 

 Red is oxidized by superoxide it exhibits red fluorescence. Two different 

aspects complicate the data acquisition with Mi  Red: Mi  Red is a 

non-ratiometric probe that exhibits substantial cell-to-cell variability and every cell 

contains little amounts of superoxide in the mitochondria, thus the expected staining 

pattern is not of clear on-off fashion. To cope with these hurdles and obtain 

meaningful quantitative information, suitably big numbers of cells were analysed, 

every experiment was accompanied by positive and negative controls which served 

as reference values and the assay required some fine-tuning regarding the handling 

of the cells as proposed in (Polster et al. 2014). As positive control I used cells which 

were treated with 50  A for 2 h (antimycin A from Streptomyces sp., 

Sigma-Aldrich Corporation, St. Louis, MO, USA, dissolved in ethanol to a 10 mM 

stock solution, . Please note that this reagent is only stable for 3 to 

4 months.) Untreated cells served as negative control. As treatment with ZnO NP also 

induced a huge amount of unspecific autofluorescence an unstained probe for 

compensation was carried along for each stained cell sample. Additionally, a live-

dead staining was carried out, to be able to exclude the dead cells from the evaluation. 

It was refrained from using N-acetylcysteine (NAC) as ROS scavenger as negative 

control as cysteines have a high affinity to zinc and thus distort the treatment with 

ZnO NP (Pace et al. 2014; Xueju et al. 2015).  

The staining procedure that provided best results concerning cellular viability, 

reproducibility, and consistence was based on (Puleston 2015). For the assay 

600 000 cells were seeded in 25 cm2 cell culture flasks and the next day they were 

treated with the indicated amount of nanoparticles according to standard procedure. 

At the indicated time points cells were then harvested for flow cytometric analysis. 

Please note that the indicated time points in all figures and analyses refer to the 

beginning of the NP treatment, that   hours after beginning of the 
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NP treatment and four hours after the removal of excessive particles as NP treatment 

lasted four hours. Cells were harvested using Accutase  cell detachment solution and 

all cells were included in the measurement, also those that did already detach from 

the cell culture plate upon treatment with ZnO NP. After centrifugation cells were 

washed with Hank's Balanced Salt Solution with calcium and magnesium (HBSS, 

Thermo Fisher Scientific Inc., Waltham, MA, USA). Afterwards cells were suspended 

in 1 mL of PBS with 1% (w/v) glucose, and each sample was divided into three 

samples of 333 volume. One sample remained unstained, one was stained for 

cellular integrity with 7-Aminoactinomycin D (2 / 333 cell suspension, Thermo 

Fisher Scientific Inc., Waltham, MA, USA), and one for cellular integrity and ROS 

production. For M  Red staining 1  / 333 freshly 

 Red staining solution in DMSO was used which was prepared 

according to manufacturers' specifications. Cells were incubated with the 

M  Red staining solution for 30 min in the incubator, whereby cells were 

carefully moved every 10 min by tapping against the tubes. At the flow cytometer cells 

were further diluted by adding 200 PBS with 1% (w/v) glucose. Cells were 

analysed with the FACSCanto  flow cytometer and the collected data was evaluated 

with the corresponding software. Each sample was corrected for autofluorescence, 

dead cells were excluded, and the relative mitochondrial superoxide level was 

calculated by setting the staining of the untreated cells to 100% and expressing the 

other values in relation to that. The experiment was repeated independently several 

times such that every time point was covered at least three times. 

7.2.6.4 Cytochrome c release assay 

For the cell cytochrome c release assay 600 000 cells were seeded in 25 cm2 cell 

culture flasks and the next day they were treated with the indicated amount of 

nanoparticles according to the standard procedure. At the indicated time points cells 

were then harvested for flow cytometric analysis using Accutase  cell detachment 

solution. All cells were included in the measurement, also those that did already 

detach from the cell culture plate upon treatment with ZnO NP. Please note that the 

indicated time points in all figures and analyses refer to the beginning of the NP 

trea   hours after beginning of the NP treatment and 

four hours after the removal of excessive particles as NP treatment lasted four hours. 

After harvesting and washing cells with PBS (suspension, centrifugation, discarding 

of the supernatant), each cell sample was suspended in 1 mL PBS and subjected to 
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a live-dead-staining with 7-Aminoactinomycin D (1 /1 mL cell suspension, 20 min,

Thermo Fisher Scientific Inc., Waltham, MA, USA). Cells were again washed with 

PBS (suspension, centrifugation, discarding of the supernatant). Then the 

cytochrome c release assay was conducted with the FlowCellect  Cytochrome c Kit 

(Millipore Corporation, Billerca, AM, USA) according to manufacturers' specifications. 

Cells treated with ZnO NP exhibited a high level of autofluorescence. Therefore, to 

correct for that, for every stained cell sample an unstained control sample was 

processed in parallel. Additionally, a staining with the isotype control included in the 

kit was carried along for all samples, which ensured that unspecific binding of the 

antibody was ruled out. Cells were analysed with the FACSCalibur  flow cytometer 

and the collected data was evaluated with the corresponding software. Each sample 

was corrected for autofluorescence and dead cells were excluded from the analysis. 

7.2.7 Colony formation assay (CFA) 

For the colony formation assay (CFA) 600 000 cells were seeded in 25 cm2 cell culture 

flasks and the next day they were treated with 100 mL ZnO NP and/or 4 Gray 

gamma-irradiation according to the following scheme in Table 5.  

Table 5: Treatment groups for the colony formation assay  

   

   

   

  

   

   

 

Immediately after treatment all cells were harvested with Accutase  cell detachment 

solution and the number of viable cells was determined with the CASY  cell counter. 

In order to reach representative yet not too high colony numbers between 5 000 and 

35 000 cells were seeded in new 25 cm2 cell culture flasks depending on the 

experimental group. After ten days cultivation time in the incubator, cells were washed 

with deionized water and fixed with cold ethanol and acetone (1:1). The cell culture 

flasks were dried at RT overnight. After 24 h the colonies were stained with Giemsa 

staining solution (10% (v/v) 

water, Merck KGaA, Darmstadt, Germany), washed again with deionized water, and 

dried at RT overnight. Colony numbers were assessed with the COLCOUNT system 
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(Oxford Optronix Ltd., Abingdon, UK). Each experiment was performed in duplicates 

and repeated at least three times. The relative surviving fraction and the relative 

colony size were calculated. 

7.2.8 Expression analysis by SDS-PAGE and western blotting  

To assess the expression profile of different proteins that are relevant for apoptosis 

sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and 

western blotting were performed. According to the standard procedure 600 000 cells 

were seeded in 25 cm2 cell culture flasks, the next day they were treated with the 

indicated amount of ZnO NP for 4 h and harvested at the indicated time points. Please 

note that the indicated time points refer to the beginning of the NP treatment, that 

 ight hours after beginning of the NP treatment and four hours after 

the removal of excessive particles as NP treatment lasted four hours. The whole time 

series analysis was performed independently in triplicate for all cell lines. The 

corresponding negative control of cells, that were not treated with ZnO NP, was 

 h ZnO  

7.2.8.1 Harvesting of the cells  

All cells treated with ZnO NP were included in the lysates. To that, the cell culture 

medium containing detached cells was collected in a centrifuge tube. Then the cell 

culture flask was washed with PBS, which was carefully removed completely and also 

collected. While the detached cells in the supernatant were collected via a 

centrifugation step, the remaining cells on the cell culture plate were lysed with 300 

lysis buffer, collected with a cell scraper, and transferred to a micro tube. The 

supernatant of the cells in the cell culture medium was discarded after centrifugation, 

cells were lysed in 100 lysis buffer, and both lysates were pooled. To ensure 

complete lysis of the cells, lysates were homogenized ultrasonically (2 x 30 s with 

pulses of 0.5 s with pauses of 1 s in between at 88% amplitude). Then they were 

stored frozen until further processing for the SDS-PAGE. All steps of the harvesting 

procedure were performed on ice to avoid any protein degradation.  

7.2.8.2 Preparation of the lysates for the SDS-PAGE 

The protein concentration of the lysates was assessed in triplicate with the DC Protein 

Assay (Bio-Rad Laboratories GmbH, Munich, Germany) using bovine serum albumin 

(BSA) as protein standard. In short, 5 of the lysate were mixed with 25 reagent 



Materials and methods 60 

 

= 1 mL reagent A + 20 L reagent S) in a 96 well plate. Then 200 reagent B

was added. After 10 min extinction at 750 nm was measured using the photometer 

Multiskan Ascent (Thermo Fisher Scientific Inc., Waltham, MA, USA). Lysates were 

diluted to the same protein concentration (60 er gel) using lysis buffer. 

Bromophenol blue (1 5% (w/v) BPB / 100 lysis buffer) was added for 

visualization and dithiothreitol (5 2 M DTT / 100 lysis buffer) for reduction of all 

disulphide bridges.  

7.2.8.3 Running of the SDS-PAGE 

The SDS-PAGE performed here was a one-dimensional separation of reduced and 

denatured proteins according to their size in an electric field in a polyacrylamide gel. 

For the SDS-PAGE the TGX Stain- , 12% 

(Bio-Rad Laboratories GmbH, Munich, Germany) were used according to 

manufacturers' specifications. The TGX Stain-Free chemistry enables rapid 

 

MP imaging system. As molecular weight marker 5 of PageRule rotein Ladder 

(Fermentas Life Sciences, Thermo Fisher Scientific Inc., Waltham, MA, USA) were 

10 min. The gels were run at 10 mA per gel until the migration front reached the 

bottom of the gel.  

7.2.8.4 Western blotting by wet-tank method  

After the electrophoresis the proteins in gel were visualized using the Bio-Rad stain 

free system and then immediately transferred to a polyvinylidene fluoride membrane 

(PVDF membrane, Millipore Corporation, Billerica, MA, USA) using a wet blot 

The transfer was run 

 at 19 mA for 21 h under continuous stirring of the transfer buffer. After the 

transfer the membrane was activated, and the transferred proteins were visualized 

via the Bio-Rad stain free system. 

The following washing and incubations steps were all performed on a swivel table. 

After the transfer the membrane was washed 5 min with 1xTBST20 washing buffer. 

Next the membrane was blocked for 1 h with milk powder in 1xTBST20 washing buffer, 

followed by another washing step of 3x5 min with 1xTBST20 washing buffer. Then the 

membrane was incubated overnight with the primary antibody. The next day the 

membrane was washed 3x5 min with 1xTBST20 washing buffer and then incubated 
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with the secondary antibody for 1 h and washed again 3x5 min with 1xTBST20

washing buffer.  

For imaging the membrane was incubated 1-2 min with enhanced chemiluminescent 

substrate (Western Lightning ECL Plus, Waltham, MA, USA) and pictures were taken 

. The densitometric analysis was performed 

with the ImageLab Software (Bio-Rad Laboratories GmbH, Munich, Germany) using 

the stain free images as loading control. If the membrane was used once again for 

another antibody it was stripped with stripping buffer 1 (glycine) for 30 min and 

stripping buffer 2 (SDS) for 30 min followed by washing with 1xTBST20 washing buffer 

(10 min).  

Table 6: Antibodies and corresponding incubation strategies  

MP = milk powder; BSA = bovine serum albumin 

Specificity Product name Manufacturer Blocking 
1st antibody 
incubation 

2nd antibody 
incubation

P53 
Anti-p53 antibody, 

Mouse monoclonal, 
P6874 

Sigma-Aldrich 
Corporation (St. 
Louis, MO, USA) 

5% (w/v) 
MP 

1:10 000  
in 5% (w/v) 

BSA 

Anti-mouse
1:4 000

in 4% (w/v) 
MP

Bcl-xL 
Bcl-xL (54H6) 

Rabbit mAb #2764 

Cell Signaling 
Technology, Inc. 
(CST) (Danvers, 

MA, USA) 

5% (w/v) 
MP 

1:1 000 
in 5% (w/v) 

MP 

Anti-rabbit
1:4 000

in 4% (w/v) 
MP

Bax 
Bax (D2E11) Rabbit 

mAb #5023 

Cell Signaling 
Technology, Inc. 
(CST) (Danvers, 

MA, USA) 

5% (w/v) 
MP 

1:1 000 
in 4% (w/v) 

BSA 

Anti-rabbit
1:4 000

in 4% (w/v) 
MP

Caspase-9 
Caspase-9 (C9) 

Mouse mAb #9508 
 

Cell Signaling 
Technology, Inc. 
(CST) (Danvers, 

MA, USA) 

5% (w/v) 
MP 

1:750  
in 4% (w/v) 

BSA 

Anti-mouse
 1:4 000 

in 4% (w/v) 
MP

 

7.2.9 Statistical evaluation 

All collected data was shown together with a statement of the amount of independent 

experiments (N) that underlies. For this study only explorative-descriptive statistical 

methods were used. If possible, all values were shown as the arithmetic mea

standard deviation (SD). All exceptions were stated in the corresponding caption.  

As standard, data was analysed with a one-way ANOVA comparing all sample groups 

with the corresponding control group including a correction for multiple testing with 

the D The sample sizes were too small to test for normal distribution. 
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Nevertheless, ANOVA in contrast to the Kruskal-Wallis was the method of choice,

since ANOVA proved to yield better results when analysing data with small sample 

sizes. (Khan et al. 2003) 

Special statistical evaluations that were performed on top of what is described here 

were depicted in detail in the corresponding section of the results.  

All statistical analyses were conducted with the GraphPad Prism Software (Prism 6 

for Windows, version 6.01, GraphPad Software, San Diego, CA, USA), IBM SPSS 

Statistics (version 22.0.0.0 for Windows, International Business Machines 

Corporation, Armonk, NY, USA) or with the statistical programming language R (R 

version 3.3.3 (2017-03-06)), using RStudio as integrated development environment 

(version 1.0.136, RStudio Inc. Boston, MA, USA) 
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8  

The results section is subdivided into eight main chapters to structure the key topics 

of this doctoral thesis. 

 

Chapter 8.1 deals with the characterization of ZnO NP. This involves transmission 

electron microscopy, x-ray diffraction, and zeta potential measurements, as well as 

analysis of the generation of reactive oxygen species (ROS) at the  surface. 

Chapter 8.2 discusses the question of what exactly causes the cytotoxicity of 

ZnO NP. Subjects of this chapter are the release of zinc ions from the NP and their 

toxicity, the relevance of changes in the ionic strength and the pH value for the toxicity, 

as well as the contribution of ZnO NP as nanoparticulate matter to toxicity. 

Chapter 8.3 is dedicated to ZnO@SiO2 NP, zinc oxide nanoparticles that are coated 

by a silica shell. In this chapter their characterization, toxicity, and cellular uptake are 

illustrated. 

Chapter 8.4 deals which the cellular reaction to ZnO NP treatment. This includes the 

description of morphological characteristics after ZnO NP treatment, the assessment 

of apoptotic and necrotic cell death, and the analysis of the cell cycle distribution.

Chapter 8.5 analyses genotoxic effects of ZnO NP in combination with ROS in a cell-

free DNA damage analysis. 

Chapter 8.6 takes a closer look at the significance of mitochondria and ROS 

generation for the toxicity of ZnO NP. For this purpose, the generation of superoxide 

in the mitochondria as well as the cytochrome c release from the mitochondria were 

evaluated. Finally, signalling pathways were examined by western blots. 

Chapter 8.7 deals with the comparative analysis of the toxicity of ZnO NP towards 

both tumor cells and healthy cells of the human body. 

Chapter 8.8 finally evaluates the suitability of ZnO NP as radiosensitizing anti-tumor 

agent with the help of a colony formation assay (CFA). 

 

 

 

 

 

 



Results 64 

 

In the Figure 23 the main topics of this doctoral thesis are depicted in a graphical 

abstract, which sums up the key areas of interaction between human cells and 

ZnO NP or ZnO@SiO2 NP, respectively. 

 

 

Figure 23: Graphical representation of the different aspects of the cell

nanoparticle interaction 
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8.1 Characterization of ZnO NP 

Transmission electron microscopy (TEM) showed that the solvothermally synthesized 

ZnO NP were of spherical shape. Their size ranged from 5 to 22 nm in diameter 

(Figure 24A). For the experiments, different batches of ZnO NP were used which 

showed minor variations in size. X-ray diffraction (XRD) patterns of ZnO NP were 

obtained and all reflection could be assigned to the hexagonal wurtzite-type ZnO 

structure with lattic e group (SG) 

P63mc (No. 186) (Figure 24B). 

 

Figure 24: Characterization of ZnO NP by TEM and x-ray diffraction 

(A) shows a representative transmission electron microscopy image (TEM) of ZnO NP and (B) a 
representative x-ray diffraction (XRD) pattern. Those analyses where performed for every batch of 
ZnO NP with similar results. 

 

To further characterize the NP, their zeta potential was determined. In water the 

ZnO NP revealed a zeta potential of +20 to +30 mV. In cell culture medium the 

measurement of the zeta potential was not possible, most likely due to the presence 

of other charged species that hindered a reliable measurement. 

Additionally, we analysed the generation of reactive oxygen species (ROS) at the 

surface of ZnO NP since in literature there are described zinc oxide nanoparticles that 

generate ROS without the presence of any biological medium or cells. 

(Prasanna et al. 2015) The ZnO NP described here were neither able to generate 

superoxide nor hydroxyl radicals at the surface without being in contact with a 

biological system. 
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8.2 What causes the toxicity of ZnO NP? 

Concerning the toxicity of metal oxide NP, there are different possibilities which part 

of the NP exactly induces cytotoxicity. Apart from the NP themselves being the toxic 

agents, also released zinc ions can have toxic effects. Furthermore, released ions 

can be directly toxic or they can act via manipulation of the pH value or the ionic 

strength of the surrounding medium. This chapter strives to answer the question 

which chemical components or characteristics contribute to the toxicity of ZnO NP.

8.2.1 Zinc ion release from ZnO NP 

One important property of all metal oxide NP is their stability against dissolution. 

During treatment with these NP they can set free metal ions which can contribute to 

the cellular reaction upon NP treatment. With atomic absorption spectroscopy (AAS) 

measurements we assessed the amount of zinc ions that was released by ZnO NP 

within 4 h and 24 h in different media. These were water, Tris-NaCl buffer, pure cell 

culture medium, and cell culture medium supplemented with 10% (v/v) FCS 

(Figure 25). In total, 100  ZnO NP could theoretically correspond to up to 

1.23 mM zinc ions. However, only at most 250 300 

released. In cell culture medium the equilibrium was already established after 4 h and 

the amount of additional zinc ions that was released within further 20 h was small. In 

contrast, the equilibrium in water was not yet established after 4 h and additional zinc 

ions were liberated until the time of measurement after 24 h. In total, in cell culture 

medium with FCS more zinc ions were released than in pure cell culture medium.

 

Figure 25: Zinc ions released from ZnO NP 

The amount of zinc ions released from ZnO NP within 4 h and 24 h in different media was measured 
repeatedly (N  3) by atomic absorption spectroscopy (AAS). 
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8.2.2 Toxicity of released zinc ions 

To assess the cellular reaction to released zinc ions ZnCl2 was used because it 

completely dissolves in aqueous medium. A549 tumor cells were treated with different 

amounts of ZnCl2 ranging from 20  for 4 h. Then cell culture 

medium was exchanged for fresh medium and the cells were analysed 

microscopically and by flow cytometry. Flow cytometric analysis showed that starting 

from an amount of 40 50 nCl2 there was a toxic effect resulting in a decrease 

of the percentage of viable cells and an increase in dead, apoptotic, and necrotic cells 

(Figure 26). There was not seen a continuous increase in cell death but rather 

40  ZnCl2 seemed to represent a threshold level which marked the onset of 

toxic effects. From day one (1d) after treatment till day two (2d) the level of dying cells 

was increasing in those cell samples that received a high dose of ZnCl2. On day three 

(3d) some cells were able to recover from the treatment depending on the dose they 

received. In these samples the number of viable cells began to increase again.

Figure 26: Toxicity of released zinc ions 

The toxicity of ZnCl2 as representative of released zinc ions was assessed by flow cytometric analysis 
(A) of the amount of necrotic, apoptotic, and dead cells one, two, and three days after treatment with 
20 100 ZnCl2 (N=1). In parallel the morphology of cells treated with ZnCl2 was observed by light 
microscopy (B). 
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Microscopical analysis of the cells treated with ZnCl2 (Figure 26B) showed that high 

doses induced rounding of the cells and detachment from the cell culture plate. 

8.2.3 Influence of changes in pH value and ionic strength 

To further investigate which characteristics of ZnO NP account for their cytotoxicity 

we evaluated potential origins of cytotoxicity from a chemical perspective. We 

analysed whether the toxicity of ZnO NP was attributable to changes in the pH value, 

or the ionic strength of the surrounding medium. 

ZnO is an amphoteric oxide that can react both as an acid and as a base. ZnO NP 

slightly rose the pH value in pure water from 6 to 6.67. Nevertheless, the pH value of 

the cell culture medium under cell culture conditions (37  / 5% (v/v) CO2) was 

unaffected by ZnO NP. 

To evaluate whether changes of the ionic strength contribute to cytotoxicity, we 

compared the toxicity of MgCl2, ZnO NP, and ZnCl2 by treating cells with equimolar 

amounts of zinc or magnesium ions, respectively (Figure 27). Thus, the probe 

100  contained an amount of ions that was equivalent to the amount of zinc 

contained in 100  ZnO NP. 

Figure 27: Comparative analysis of the toxicity of MgCl2, ZnCl2, and ZnO NP

To comparatively assess the toxicity of MgCl2, ZnCl2, and ZnO NP the cellular metabolic activity (CMA) 
of A549 cells treated with 5 100 O NP or equimolar amounts of magnesium ions (MgCl2) or 
zinc ions (ZnCl2) was measured with  CMA was assessed 3 h, 6 h, and 24 h 
after beginning treatment with the different substances. Representatively the CMA after 24 h is shown 
here. In the bar chart are depicted means  SD of three independent experiments (N=3). 
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MgCl2 induced no cytotoxicity in all tested concentrations. In contrast, it seemed to 

somehow stimulate the cellular metabolic activity (CMA) of A549 cells. After 24 h 

ZnCl2 decreased the CMA significantly beginning at zinc ion concentrations that were 

equivalent to 10  NP. The onset of toxicity of ZnO NP was slightly shifted 

beginning at 15  NP. The data obtained by the measurement of the CMA 

24 h after treatment with ZnO NP or ZnCl2, respectively, was modelled with a 

non-linear regression for a dose-response curve in response to an inhibitor. The half 

maximal inhibitory concentrations were calculated to be IC50 = 211.4 2+ 

(R2 = 0.9307) for ZnO NP and IC50 = 141.4 n2+ (R2 = 0.97187) for ZnCl2 

(Figure 28). 

 

Figure 28: Dose-response curves for the inhibition of the cellular metabolic 

activity (CMA) by treatment with ZnO NP (A) or ZnCl2 (B), respectively 

To determine the IC50 (half maximal inhibitory concentration) of ZnO NP and ZnCl2 treatment with 
respect to their zinc content, the CMA of A549 cells 24 h after treatment with different concentrations 
was used. Zinc concentrations were transformed by taking their logarithm, the CMA was normalized, 
and the data was modelled by a non-linear regression for a dose-response curve in response to an 
inhibitor (log(inhibitor) vs normalized response, variable slope, least-square fit). 
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8.2.4 Particles vs. ions how do the NP contribute to the toxicity?

Next, we addressed the question, whether toxicity of ZnO NP was solely attributable 

to extracellularly released zinc ions or whether toxicity in parts could also be traced 

back to the NP themselves. To quantify the effect attributed to extracellular release of 

zinc ions a dispersion of 100  NP was incubated for 4 h under cell culture 

conditions to allow for zinc ion release. Thereupon remaining NP were separated by 

centrifugation. Then cells were either incubated directly with ZnO NP for 4 h or with 

the supernatant of the NP (Figure 29). Both treatments resulted in a reduction of 

cellular viability of A549 cells within 4 h. After 4 h, the cells were washed, and the cell 

culture medium was replaced with fresh medium. After 4-7 h and after 21-24 h cells 

treated with the supernatant were able to recover from the treatment while cells 

treated with the NP exhibited further reduced cellular viability. 

Figure 29: Cellular viability after treatment with ZnO NP or released zinc ions

To assess the cellular viability after treatment with ZnO NP directly or with zinc ions set free by ZnO NP 
 after 4 h, 7 h, 

and 24 h. The bar chart shows means  SD of three independent experiments (N=3). For statistical 
analysis a one-way ANOVA was used comparing every treatment group with the untreated control 
cells, * p < 0.05, ** p < 0.01, *** p < 0.001, correction with Dunnett  for multiple testing. 
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8.3 ZnO@SiO2 NP ZnO NP covered by a silica coating 

The synthesis of ZnO@SiO2 NP served three different purposes: the inclusion of a 

fluorescent dye into the silica shell of the particles to enable tracking of the NP by 

fluorescent microscopy (1), the possibility to tag moieties to the outer surface of the 

NP to enable active targeting (2), and the wrapping of the potential toxic ZnO loading 

into a coating that enables safe transport within the bloodstream to avoid off-target 

effects due to premature dissolution (3). 

Unfortunately, we were not able to set up a reproducible synthesis of ZnO@SiO2 NP 

which met all those requirements. Thus, the following experiments should be 

classified as a proof of concept, which shows that NP with these favourable properties 

are technically possible but in order to achieve batch-to-batch control the system 

requires further fine-tuning. 

8.3.1 Transmission electron microscopy 

The ZnO@SiO2 NP were coated by a silica shell of about 21 nm thickness. In the 

TEM images the dark ZnO core was seen within the light silica shell (Figure 30) due 

to their different scattering contrast.  

 

Figure 30: TEM imaging of ZnO@SiO2 NP 

Transmission electron microscopy imaging of ZnO@SiO2 showed spherical ZnO cores that were 
surrounded by an irregularly shaped silica shell. The NP were partly fused together. 

 



Results 72 

 

8.3.2 Comparative toxicity analysis of ZnO@SiO2 NP and ZnO NP

Comparison of the cytotoxicity of ZnO NP and ZnO@SiO2 NP showed that both types 

of NP induced approximately the same toxicity after 24 h but compared to ZnO NP 

the onset of cytotoxicity of ZnO@SiO2 NP was delayed (Figure 31). After 4 h, 

treatment with ZnO NP was able to significantly decrease cellular viability but 

treatment with ZnO@SiO2 NP was not. After 6 h the toxicity of ZnO@SiO2 NP started. 

After 24 h both types of NP induced approximately the same extent of toxicity.

Figure 31: Comparison of the toxicity of ZnO NP and ZnO@SiO2 NP 

To comparatively analyse the toxicity of pristine ZnO NP and ZnO@SiO2 NP the cellular metabolic 
activity (CMA) of A549 cells treated with 100 g/mL ZnO NP or an equivalent amount of ZnO@SiO2 NP 
was assessed with an alamar Blu 4 h, 6 h, and 24 h after beginning treatment. The bar chart 
shows means  SD of three independent experiments (N=3). For statistical analysis a one-way ANOVA 
was used, comparing every treatment group with the untreated control cells, * p < 0.05, ** p < 0.01, 
*** p < 0.001, correction with for multiple testing. Comparison between ZnO NP and 
ZnO@SiO2 NP did not reach statistical significance. 

 

8.3.3 Cellular uptake  

To track ZnO NP we designed ZnO@SiO2 NP that were covered by a silica coating 

in which FITC was incorporated. Fluorescent imaging revealed that after incubation 

for 4 h with an amount of ZnO@SiO2 NP that was equivalent to the amount of zinc 

that is contained in 100  NP, many NP were attached to the cellular 

membrane. In Figure 32 one can see in green the NP and in red a staining of the 

nuclear membrane with an antibody against lamins. 
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Figure 32: Fluorescent imaging of ZnO@SiO2 NP 

Fluorescent imaging of ZnO@SiO2 NP after incubation with human cells revealed that after 4 h 
incubation time, multiple particles and most likely also agglomerates were deposited on the cellular 
membrane. 

 

With the help of confocal laser scanning microscopy (CLSM), we were able to show 

that ZnO@SiO2 NP were internalized by different tumor cell lines within 4 h 

(Figure 33, I: A549; II: HNSCCUM 02T; III: FaDu; IV: RPMI-2650). 

Figure 33: CLSM imaging of cells treated with ZnO@SiO2 NP 

Confocal laser scanning microscopy revealed deposition of ZnO@SiO2 NP on the cellular membrane 
of human tumor cells (I: A549; II: HNSCCUM 02T; III: FaDu; IV: RPMI-2650) as well as uptake of NP 
into the cells.  

 

Many NP were attached to the outer cellular membrane stained by CellMask

Orange Plasma membrane stain and others were already internalized, which was 

verified by taking pictures along a z-stack at different focal planes. 
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8.4 Cellular reaction to treatment with ZnO NP 

8.4.1 Morphology 

To analyse the cellular reaction to treatment with ZnO NP four different cancer cell 

lines (A549, HeLa, HNSCCUM-02T, T24) were treated with 100 NP for 

4 h and their morphology was studied under the light microscope. It was observed 

that ZnO NP treatment in all cell lines resulted in a pronounced rounding of the cells 

which was accompanied by an increase in granularity. Finally, cells detached from 

the cell culture plate (Figure 34A). Until 4 h after beginning treatment, when cell 

culture medium was changed and excessive particles were washed away, cells were 

still attached to the cell culture plate (second row). Within the next 4 h cells began to 

detach from the cell culture plate and nearly all cells showed a rounded shape (third 

row). 24 h after beginning treatment most cells were detached and exhibited a 

granular morphology (last row). 

This observation was also verified by flow cytometry, where a shift of the cell 

population to higher SSC (side-scatter) and lower FSC (forward-scatter) values was 

seen (representative pictures in Figure 34B). This indicated a decrease in cell size 

and an increase in granularity. 

Figure 34: Morphology of different tumor cell lines after treatment with ZnO NP 

The morphology of four different tumor cell lines (A549, HeLa, HNSCCUM-02T, T24) was analysed 
following treatment with 100  NP for four hours (A). Morphological changes were confirmed 
by flow cytometric analysis (B). Shown are representative images of both analyses. 
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8.4.2 Apoptosis and necrosis 

Since we saw pronounced cellular toxicity induced by ZnO NP we finally posed the 

question, whether apoptosis was induced or whether unspecific toxicity resulted in 

necrotic processes leading to cell death. We performed a flow cytometric assay using 

propidium iodide (PI) as a marker for the intactness of the outer cellular membrane 

and annexin V-FITC as apoptotic marker. 

Figure 35A shows a representative panel of stained A549 cells analysed 4 h, 12 h, 

18 h, 24 h, and 48 h after beginning treatment with ZnO NP or ZnCl2. 

The analyses after 72 h, and 96 h were not included in the picture because at these 

timepoints the amount of debris was increased. Probably many cells were destroyed 

during the preparation process for the analysis which may have distorted the ratios 

between the different cell populations. 

In Figure 35A the intact, living cells are in the lower left quadrant, the (early) apoptotic 

cells are located in the upper left quadrant, dead cells (either late apoptotic or 

necrotic) lie in the upper right quadrant and necrotic cells in the lower right quadrant 

of each panel. 

Figure 35: Analysis of necrotic and apoptotic cell death in A549 cells 

The relative proportion of viable, necrotic, apoptotic, and dead cells in the cell population after 
treatment with 100 mL ZnO NP or 40  ZnCl2, respectively, was assessed by flow cytometry. 
40 /mL ZnCl2 approximated the amount of zinc ions that were set free extracellularly by the NP. (A) 
shows representative images of the analysis. In the bar charts in (B) are shown means  SD of at least 
three independent experiments (N  3). The data was statistically analysed with a 2-way ANOVA which 
compared all experimental groups with the control group and corrected for multiple comparisons with 
Dunnett. 



Results 76 

 

In Figure 35B the bar charts show the percentages of viable cells (white bar), 

apoptotic cells (light grey bar), necrotic cells (dark grey bar), and dead cells (black 

bar) in the total A549 cell population at the indicated timepoints. 

The number of dead cells and apoptotic cells rapidly increased after ZnO NP 

treatment while the percentage of healthy/intact cells decreased. After 48 h the 

number of living cells was significantly decreased (p < 0.001) after treatment with 

100  NP compared to control cells and the number of apoptotic (p < 0.01) 

and dead cells (p < 0.001) was significantly increased. 

The relative number of necrotic cells in all samples was small and did not rise 

significantly at any timepoint. 

ZnCl2 is completely dissolved in aqueous media, thus it is a suitable control to assess 

the effect of extracellularly released zinc ions, excluding the effects of the NP 

themselves. If we consider that the amount of zinc ions that was set free by 100

ZnO NP within the incubation time did not exceed 300  2 roughly 

approximates this amount of zinc ions. Thus, treatment of tumor cells with 40

ZnCl2 represents an upper border for the effect of ZnO NP if only extracellularly 

released zinc ions were relevant. The flow cytometric assay showed that 40

ZnCl2 were not able to induce pronounced cell death. The number of living cells was 

only slightly reduced after 4 h (p < 0.01), and the number of apoptotic cells was 

slightly increased after 24 h (p < 0.05) but cells were able to recover from the damage. 

 

Given the fact that over 50% of human cancers carry loss of function mutations in the 

p53 gene and the fact that the protein influences apoptosis on multiple levels 

(Ozaki et al. 2011), this assay was repeated with three other cell lines with different 

p53 states: HNSCCUM-02T, HeLa and T24 (Figure 36). A549 as well as HeLa cells 

bear wild-type p53, while HNSCCUM-02T cells bear a p53 mutation which results in 

unusually high p53 expression. (Wiesmann et al. 2017) HeLa cells represent a 

special case with regard to their p53 level since they are affected by a mutation-

independent reduction in p53 protein level due to the expression of the viral E6 

protein. (Leroy et al. 2014) T24 cells also bear a mutation in the p53 gene which 

results in unusually low p53 expression. (Hinata et al. 2003) Thus, we covered a wide 

range of different p53 states. 
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Figure 36: Analysis of the mechanism of cell death in A549, HNSCCUM-02T, 

HeLa, and T24 cells 

The relative amount of viable, necrotic, apoptotic, and dead cells in the cell population of A549, 
HNSCCUM-02T, HeLa, and T24 cells 24 h after treatment with 4 Gray gamma-irradiation, 40
ZnCl2, 100  NP, 100 L ZnO NP + 4 Gray, 100 2, or 100 2 + 
4 Gray, respectively, compared to untreated control cells was assessed by flow cytometry. In the bar 
charts are shown means of at least three independent experiments (N  3). To provide an overview, 
SD are omitted. 

 

While in A549 cells nearly no necrosis was detectable, and all cells died via apoptosis 

the level of necrosis was much higher in T24 and HeLa cells. In HNSSCUM-02T cells 

we detected apoptosis and some necrosis. 

Gamma-irradiation with 4 Gray did not have a major influence on cellular viability of 

all four tumor cell lines. Treatment with 40 

dead and necrotic or apoptotic cells depending on the cell line, even though the effect 

remained behind the effect of the NP. The treatment with 100 NP or 

100 2 clearly increased the amount of apoptosis and / or necrosis in the 

cell population depending on the cell line. The additional treatment with 4 Gray 

combined with zinc treatment did not result in additional increase in cell death.
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8.4.3 Cell cycle distribution 

To get another hint concerning the cellular events that take place after treatment with 

ZnO NP we evaluated whether a cell cycle arrest is induced in A549 cells. A flow 

cytometric assay (Figure 37) was used to determine the distribution of the cell 

population between G1, synthesis (S), G2, and sub-G1 phase (debris). This revealed 

that there was a pronounced increase in debris, this means cell fragments, while the 

distribution between the cell cycle phases remained within normal range. The loss of 

cells in G1 phase could be attributed to the increase in fragmented cells. This means 

that most likely there is no induction of a cell cycle arrest after ZnO NP treatment.

Figure 37: Distribution between the cell cycle phases after ZnO NP treatment

The cell cycle distribution of A549 cells 24 h, 48 h, 72 h, and 96 h after treatment with 40 
100  NP, respectively, compared to untreated control cells was assessed by flow cytometry. 
In the bar chart there are only depicted the mean values of three independent experiments (N=3) 
without standard deviations (SD) for reasons of clarity. The relative amounts of cells in the G1 phase 
(blue), the synthesis phase (yellow), the G2 phase (green), and the debris (orange) are depicted as 
percentage of the whole cell population. 
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8.5 Genotoxic effects of ZnO NP 

8.5.1 In vitro DNA damage analysis  

To decipher the DNA damaging potential of ZnO NP, zinc ions and/or ROS we 

performed a cell-free in vitro experiment using plasmids as a DNA model (Figure 38). 

H2O2 (=ROS) treatment induced single strand breaks (SSB). The treatment with ZnCl2 

which represented the treatment with zinc ions (=Zn2+) also induced SSB. ZnO NP 

induced SSB and some double strand breaks (DSB). Combinations of ZnO NP or 

Zn2+ with ROS increased the level of DNA damage substantially. Especially combined 

treatment with ZnO NP and ROS was highly destructive. The effects were 

independent of the pH in the surrounding water (data not shown). 

Figure 38: DNA damage analysis in cell-free environment using plasmids

In this experiment plasmids were used as a DNA model. The figure shows a representative DNA gel. 
The first lane contained a molecular weight marker to identify the different fragments of the plasmid. In 
the next seven lanes different samples were placed namely (1) the plasmid alone, and (2) the plasmid 
linearized with KpnI as control, and different combinations of zinc ions, ZnO NP, and H2O2 (3 7) as 
indicated in the table below. The intact plasmid existed in supercoiled form, plasmid DNA that sustained 
DSB, or SSB lost their supercoiled form. The position of the different forms of the plasmid in the gel is 
indicated at the righthand side. 
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8.6 The role of mitochondria and reactive oxygen species (ROS) 

It is generally recognized that the generation ROS is involved in the toxicity of ZnO NP 

(Bisht et al. 2016) but the exact location where ROS are generated and the 

mechanisms of generation are still under debate. In order to decipher the role of ROS 

and the mitochondria in the mechanism of toxicity of ZnO NP the following analyses 

were performed. 

8.6.1 MitoSOX  Red assay  

As previous experiments showed breakdown of the mitochondrial membrane 

potential after ZnO NP treatment (see doctoral thesis of Julia Heim), we tested for the 

 Red assay 

(Figure 39). 

The assay clearly demonstrated that beginning at 12 h after the first contact of the 

cells with ZnO NP, increasing numbers of superoxide radicals were generated at the 

mitochondria. Up to 24 h the superoxide level further increased, then there was a 

plateau phase and at day four there was another gain in mitochondrial superoxide. 

 

Figure 39: Assessment of the mitochondrial superoxide level 

The bar chart shows means  SD of three independent experiments (N=3). For statistical analysis a 
one-way ANOVA was used comparing every treatment group with untreated control cells, * p < 0.05, 
** p < 0.01, *** p < 0.001, correction with  
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8.6.2 Cytochrome c release assay 

The analysis of the relative amount of cytochrome c release compared to untreated 

control cells showed that beginning at 12 h after treatment with 100 NP 

for 4 h the release of cytochrome c from the mitochondria increased (Figure 40).

 

Figure 40: Cytochrome c release assay 

The bar chart shows means  SD of three independent experiments (N=3). For statistical analysis a 
one-way ANOVA was used comparing every treatment group with untreated control cells, * p < 0.05, 
** p < 0.01, *** p < 0.001,  multiple testing, AU = arbitrary units.

8.6.3 Western blot analysis of p53, bax, bcl-xL, and caspase-9 

To further examine the cellular reaction to the treatment with ZnO NP the expression 

of the signalling proteins bax, bcl-xL, p53, and caspase-9 was analysed in 

HNSCCUM-02T, HeLa, T24, and A549 cells. Those cell lines were chosen 

accordingly due to differences in their p53 state (Hinata et al. 2003; Leroy et al. 2014; 

Wiesmann et al. 2017). 

As expected, the cell lines differed in their baseline expression of the four different 

proteins (Figure 41). 
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Figure 41: Relative expression levels of p53, bax, bcl-xL, and caspase-9 in 

untreated A549, HeLa, HNSCCUM-02T, and T24 cells 

The expression level of each protein was normalized to the expression in A549 cells (= 100%) and 
means  SD of three independent experiments (N=3) are shown in the bar chart. 

 

Cells were treated with 100  NP for 4 h. Then lysates were harvested after 

4 h, 8 h, 12 h, 16 h, 20 h, 24 h, 48 h, 72 h, and 96  

refers to cells harvested directly after the treatment and all other time points were 

named accordingly. As reference, lysates of untreated cells were chosen. 

After getting a general idea of the cellular processes, the time points 4 h and 20 h 

turned out to be the most interesting ones. Therefore, lysates from untreated control 

cells and lysates harvested 4 h and 20 h after beginning NP treatment of all four 

different cell lines were loaded onto one gel and were compared to each other 

(Figure 42). 
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Figure 42: Expression of p53, caspase-9, bax, and bcl-xL 4 h and 20 h after 

treatment with ZnO NP 

The bar charts A D show the relative expression [%] of p53 (A), caspase-9 (B), bax (C), and bcl-xL(D) 
after treatment with 100  NP compared to untreated control cells in the four cell lines A549, 
HeLa, HNSCCUM-02T, and T24. Shown are means  SD of three independent experiments (N=3). 
The data was statistically analysed with a 2-way ANOVA which compared all experimental groups with 
the control group and corrected for multiple comparisons with Dunnett. 

 

In A549 and in HeLa cells the amount of p53 was increased 4 h and 20 h after 

treatment with ZnO NP compared to untreated control cells. The increase in p53 in 

the cells came in several waves: first after 4 h, then after 16 h to 24 h and again at a 

late time point (data not shown). As the waves did not have exactly the same chronical 

evolvement in every independent experiment, they did not reach statistical 

significance. In HNSCCUM-02T and in T24 cells the amount of p53 was reduced after 

treatment with ZnO NP. 

The amount of full-length caspase-9 was decreased in all four cell lines after treatment 

with ZnO NP. 
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The amount of bax did not show a clear trend 4 h after treatment with ZnO NP. In 

some runs of the experiment a slight increase in bax was seen, in others the amount 

of the protein was decreased. After 20 h the level of bax was decreased in all cell 

lines to different extent. It was further decreased in the following time course (data not 

shown). 

The amount of bcl-xL was decreased in all four cell lines 20 h after beginning 

treatment with ZnO NP compared to untreated control cells. 

8.7 Toxicity of ZnO NP against malignant and non-malignant cells

To evaluate the cellular toxicity of ZnO NP to tumor cells on the one hand and to 

healthy tissue on the other hand we compared toxicity in A549 tumor cells, to toxic 

effects in fibroblasts and endothelial cells (HUVECs) of healthy donors. The cellular 

viability of the different cell types after treatment with 100  /mL or 

10  NP was a  h, 8 h, 12 h, and 

24 h. The viability of untreated control cells was set to 100% and all test samples were 

normalized to this value. 

Treatment with 100  NP reduced cellular viability of A549 tumor cells, 

fibroblasts, and endothelial cells within 4 h below 25% of the untreated control cells. 

A549 cells and fibroblasts were able to slightly recover from the treatment after 8 h 

but viability was further reduced after 12 h and 24 h (Figure 43). 

For the intermediate dose of 50  NP we saw a reduction of tumor cell 

viability to 70% within 12 h compared to untreated control cells. Fibroblasts remained 

largely unaffected by that dose. Cellular viability of endothelial cells was clearly 

reduced at this concentration. 

All three cell types were able to cope with 10  NP without sustaining lasting 

damage. 
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Figure 43: Toxicity of ZnO NP towards malignant and non-malignant cells

The cellular viability of A549 cells, endothelial cells, and fibroblasts was assessed in four different 
independent experiments (N=4), 4 h, 8 h, 12 h, and 24 h after treatment with the indicated amount of 
ZnO NP. Depicted in the diagrams are only the mean values without SD values for clarity reasons. The 
table at the righthand side lists means and SDs. 
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8.8 ZnO NP as a radiosensitizer 

One of the standard experiments to assess the performance of a substance as a 

radiosensitizer is a colony formation assay (CFA). Such an assay was performed with 

six different treatment groups (Table 7) to asses tumor cells survival after combined 

treatment with irradiation and ZnO NP as well as the optimal treatment order 

(Figure 44). 

Table 7: Treatment groups for the colony formation assay 

1 Untreated Untreated control cells  
2 4 Gray  Treated with 4 Gray irradiation  
3 NP  Treated with 100 g/mL ZnO NP for 4 h  
4 NP + 4 Gray  Treated with 100 L ZnO NP for 4 h, at 3 h 4 Gray irradiation was applied  
5 4 Gray -> NP Irradiated first with 4 Gray, then treated with 100 L for 4 h 
6 NP -> 4 Gray  Treated with 100 L for 4 h, then irradiated with 4 Gray  

 

 

Figure 44: Colony formation assay (CFA) after ZnO NP treatment  

The bar chart shows means  SD of three independent experiments (N=3). For statistical analysis a 
one-way ANOVA was used comparing every treatment group with the untreated control cells, 
* p < 0.05, ** p < 0.01, *** p < Comparison 
between the different treatment orders did not reach statistical significance. 
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The colony formation assay clearly showed that the combined treatment of A549 cells 

with ZnO NP and irradiation was able to further reduce tumor cell survival compared 

to irradiation as stand-alone treatment.  

Concerning the treatment order, we did not detect a significant difference in the 

surviving fraction depending on whether irradiation was applied before the treatment 

with ZnO NP, in parallel to the incubation with ZnO NP or after the treatment with the 

ZnO NP. Nevertheless, one can see that the surviving fraction in those groups which 

received irradiation together with or after incubation with the NP exhibited slightly 

reduced surviving fractions compared to application of the NP after irradiation.

To estimate the influence of the treatment with ZnO NP, irradiation, and the 

combination of both on the surviving fraction (SF) the data was modelled with a beta 

e  Beta regression models are used 

to model outcome-variables with values in the standard unit interval between zero 

and one. (Cribari-Neto et al. 2010) 

The regression equation can be written as: 

 

where  is beta-distributed with: 
 

 intercept 

 variable describing the influence of irradiation 

 variable describing the influence of the treatment with ZnO NP 

 variable describing the influence of the interaction of both treatments

 

To perform the analysis, the surviving fraction of the control group was set to 0.999. 

The fitting of the model to the data provided the following coefficients: 

 

  significance  

 = 5.0636 *** 158.16 

 = -4.5572 *** 0.01 

 = -7.7036 *** 0.00045 

 = 2.4482 *** 11.57 

    

with * p < 0.05, ** p < 0.01, *** p < 0.001. 
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The exponential coefficients , , and describe the odds which 

are defined as the probability that an event will occur divided by the probability that 

the event will not occur. This means that  describes the relative 

change in the odds of the tumor cells for surviving the treatment with the 

corresponding therapeutic intervention compared to the control group. 

 

 The odds to survive under treatment with 4 Gray gamma-irradiation are 0.01 times 

as high as the odds to survive under non-treatment. 

 The odds to survive under treatment with 100  NP are 0.00045 times 

as high as the odds to survive under non-treatment. 

 Finally, the odds to survive under treatment with 4 Gray and ZnO NP are 

0.01  0.00045  11.57 = 0.000052 times as high as the odds to survive under non-

treatment. 

 

To sum up we see that treatment with ZnO NP alone has a bigger influence on the 

surviving fraction of A549 cells than treatment with 4 Gray gamma-irradiation as 

stand-alone treatment. Both treatments together have lesser influence on the 

surviving fraction than the addition of both effects, since 3 > 0. A 3 value smaller 

than zero would indicate a synergistic effect of both treatments. 
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9  

Within this chapter I will go through the results in the order of the eight sections 8.1-8.8 

and discuss the main findings of this doctoral thesis and what we can learn from them. 

9.1 The nature of ZnO NP used in this study  

This work was performed with ZnO NP of spherical shape. They were medium sized 

compared to the zinc oxide nanoparticles described in literature. With 5 22 nm in 

diameter they were bigger than quantum dots but still relatively small compared to 

nanoparticles of several tens of nanometres. One important property of nanoparticles 

is the zeta potential, their surface charge. The zeta potential provides an idea of how 

the nanoparticles interact with each other and with the medium they will be introduced 

into. As the zeta potential in aqueous solutions increases, the repulsive interactions 

between the nanoparticles also increase, which leads to the formation of more stable 

particles with a more uniform size distribution. This stability is important to prevent 

agglomeration and subsequent precipitation leading to a stable colloidal dispersion of 

the nanoparticles. Nanoparticles with a zeta  mV and +10 mV 

are considered approximately neutral, while nanoparticles with zeta potentials of 

greater than +30  mV are considered strongly cationic and 

strongly anionic, respectively. The greater the deviation of the zeta potential from zero 

is, the larger is the colloidal stability of the particles. (Clogston et al. 2011; 

Gutierrez et al. 2017) The ZnO NP used in this work exhibited a zeta potential of 

+20 mV to +30 mV, which suggested agglomeration to some extent when being 

introduced into aqueous medium. ZnO NP were dispersed in an ultrasonic bath and 

began to precipitate shortly afterwards. This indeed suggested agglomeration. To 

ensure reproducible and uniform treatment of cells with ZnO NP, the nanoparticles 

were freshly prepared and carefully held in dispersion before being added to the cells. 

Four hours after beginning treatment with ZnO NP, large agglomerates were visible 

to the naked eye in the cell culture plate. These precipitates likely did not only contain 

ZnO NP, but also both serum proteins

surface , and precipitates of zinc ions with components of the cell culture medium. 

All of these were previously described in literature. (Horie et al. 2009; Turney et al. 

2012; Mu et al. 2014). 

In summary, we are talking about small cationic ZnO NP which readily form 

agglomerates. Since most cellular membranes are negatively charged, zeta potential 
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suggests that they have a tendency to interact with and possibly permeate 

membranes (Clogston et al. 2011).  

9.2 Toxicity of ZnO NP is not solely based on release of zinc ions

ZnO NP are described to be prone to dissolution. This means that zinc ions are 

released from the nanoparticles and contribute to their cytotoxicity. (Song et al. 2010) 

This fact also holds true for the ZnO NP we used in this study. We quantified the 

amount of zinc ions that the nanoparticles released within 4 h and 24 h in several 

buffers (Figure 25). In water the release of zinc ions from ZnO NP was relatively slow, 

with a release of approximately 50 M zinc after 4 h. After 24 h around 200 M zinc 

release was reached. In contrast, the dissolution equilibrium in cell culture medium 

was nearly established after 4 h; and the amount of additional zinc ions that was set 

free within the subsequent 20 h was low. In total, 100 

theoretically correspond to up to 1.23 mM zinc ions. However, only at most 250 to 

300 released, which is only one fourth that amount. Clearly, 

particles are not completely disintegrated in tested media. The amount of released 

zinc ions was higher in cell culture medium with FCS than in cell culture medium 

without. This effect might result from the higher number of biomolecules in the media 

with FCS, which might be able to bind zinc ions and thus remove them from the 

equilibrium, which in turn might lead to additional release of zinc ions. 

One repeatedly emerging controversial issue is the question of whether the toxic 

effect of ZnO NP is exerted only by zinc ions that are rapidly liberated from the 

nanoparticles outside the cells or whether ZnO NP also take effect as nanoparticulate 

material. To address this question, we tested whether free zinc ions can have toxic 

effects at all (Figure 26) and whether the toxicity of ZnO NP is solely based on the 

release of zinc ions or whether nanoparticulate matter is somehow involved 

(Figure 29). (Moos et al. 2010) 

As a representative of free zinc ions ZnCl2 was chosen because it completely 

dissolves in aqueous media. A549 tumor cells were incubated with different 

concentrations of ZnCl2 for 4 h and the amount of apoptotic, necrotic, and dead cells 

was measured after one, two, and three days. This experiment showed that ZnCl2 

indeed did exert cytotoxic effects on tumor cells, starting from a concentration of 

40 g/mL. This data shows that there is seemingly a threshold concentration which 

marks the onset of cytotoxicity. When this threshold was exceeded the concentration 

of free zinc ions reached a level that could not be tolerated by the cells any more. This 
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threshold may depend on the buffer capacity of the cell culture medium. At the start, 

the zinc ions that are set free by the nanoparticles are mainly adsorbed by proteins, 

amino acids, and phosphates and carbonates in the cell culture medium and do not 

enter the cells. When this buffer capacity is exhausted, zinc ions also enter the cells 

and exert corresponding cytotoxicity. 

Summarising the above, it can be said that zinc ions released extracellularly definitely 

can exert cytotoxic effects. 

We wanted to know whether the toxicity of zinc ions is based on alternation of the pH 

value or the ionic strength of the cell culture medium (Figure 27). Changes in the pH 

value under cell culture conditions were excluded. To test for changes in the ionic 

strength we chose another divalent metal ion magnesium with the same counter 

ion chloride to compare its toxicity to the toxicity of ZnCl2. We used equimolar 

amounts of magnesium and zinc ions. This experiment showed that the toxic effect of 

ZnCl2 is based on the zinc ions and not simply on a change in the ionic strength as 

MgCl2 proved to be non-toxic and even slightly increased the cellular metabolic 

activity. 

To address the question whether extracellularly released zinc ions are responsible for 

all of the cytotoxicity of ZnO NP, we incubated cells either directly with ZnO NP or 

with their supernatant, which contained only zinc ions (Figure 29). 

Both zinc ions and ZnO NP reduced the cellular viability within 4 h to the same extent. 

After 4 h, the cells were washed, and the cell culture medium replaced with fresh 

medium. The cells that had been treated only with zinc ions recovered from the 

treatment within 24 h. In contrast, cells which were treated with nanoparticles 

exhibited significantly reduced cellular viability after 24 h. This finally proves that the 

cytotoxicity of ZnO NP cannot be traced back exclusively to the release of zinc ions 

outside the cells. Thus, it must be considered that the particles directly interact with 

the tumor cells. It is conceivable that ZnO NP stick to the cellular membrane and exert 

further cytotoxicity by interacting with it; or by the release of zinc ions beyond the time 

scale of 4 h. Furthermore, ZnO NP might be taken up by the cells which then may 

induce further intracellular damage fostered by the particles themselves or by 

intracellularly released zinc ions. 

We used both ZnCl2 and ZnO NP with equimolar amounts of zinc ions to treat A549 

tumor cells in order to directly compare the toxicity of both substances. IC50 values 

(half maximal inhibitory concentration) were determined by measuring the cellular 
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metabolic activity (Figure 28). The IC50 of ZnCl2 turned out to be at 141.4

(R2 = 0.9717) and the IC50 of ZnO NP at 211.4 2 = 0.9307), which 

corresponds to 19.3 2 and 17.2  NP, respectively. This shows 

that both substances have similar toxicity levels with respect to the amount of zinc 

ions that they contain. The IC50 of ZnCl2 was lower; thus its cytotoxicity was higher 

compared to ZnO NP. Interpreting this, we must bear in mind that ZnCl2 is dissolved 

completely. On the contrary, ZnO NP only release approximately one fourth of their 

zinc load within 4 h. This, in turn, again points to the idea that ZnO NP do not 

exclusively act via extracellularly released zinc ions but rather via additional effects 

mediated by the nanoparticulate matter. 

9.3 Zinc oxide nanoparticles covered by a silica shell  

Uncoated ZnO NP have several major disadvantages if we envision using them as a 

therapeutic agent in an in vivo setting. Firstly, ZnO NP cannot be made visible easily 

in a living system, which would be important to track their way within cells and within 

the human body. Secondly, ZnO NP show uncontrollable dissolution and release of 

zinc ions which we proved to exert toxic effects on cells. If we intend to introduce 

ZnO NP into an organism, their stability must be ensured to protect healthy cells and 

to guarantee that the NP reach their target while keeping their zinc load. This also 

involves an important third point: in order to be able to target tumor cells directly in 

the body using ZnO NP, it would be favourable to have a surface which enables the 

attachment of targeting moieties. 

All those three problems were addressed by the incorporation of zinc oxide 

nanoparticles into a silica coating: the silica coating should enable tracking of the 

nanoparticles within the cells by embedded FITC dye in the shell, it should prevent 

premature dissolution, and it should enable the attachment of targeting moieties (8.3). 

For one batch of ZnO@SiO2 NP, we showed a delayed onset of toxicity compared to 

the uncoated ZnO NP. This points to a delayed release of zinc ions (Figure 31). For 

the same batch of ZnO@SiO2 NP, we saw uptake of the nanoparticles into different 

tumor cells within 4 h (Figure 33). Furthermore, we saw additional particles deposited 

on the cellular membrane. As a proof of concept, the experiments show that these 

kinds of nanoparticles are technically possible. Unfortunately, we were not able to 

reliably synthesize ZnO@SiO2 NP which met all these favourable requirements. The 

system demands further fine-tuning. Reaction conditions must be found under which 

both the zinc oxide core is stable, and a silica coating of defined thickness can be 
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applied on the particles. Applying the coating is further complicated by the reduced 

Pearson compatibility of 2+ 4+. (Pearson 

1963) 

9.4 ZnO NP can convey apoptotic and necrotic cell death 

To optimally be able to control the toxicity of ZnO NP on human cells malignant and 

non-malignant it is of great benefit to understand the cellular reaction to the 

treatment with ZnO NP. The question which mechanism of cytotoxicity underlies cell 

death after treatment with ZnO NP is addressed in the next chapter. 

Morphological analysis of cells after ZnO NP treatment showed rounding and 

shrinkage of the cells, detachment from the cell culture plate, and an increasingly 

granular cell structure (Figure 34). These morphological characteristics pointed to a 

cellular death by apoptosis. (Elmore 2007) Flow cytometric analysis of A549 tumor 

cells after treatment with ZnO NP confirmed that the nanoparticles can convey 

apoptotic cell death (Figure 35). The percentage of apoptotic and dead cells of the 

total cell population was significantly increased within 48 h after treatment while the 

percentage of living cells was decreased to 30 50% compared to untreated control 

cells. The percentage of necrotic cells was low and did not significantly increase, thus 

necrosis can be regarded to be less frequent in A549 cells. 40 2 roughly 

approximate the amount of zinc ions that is set free by 100 L ZnO NP. Hence 

this number can serve as a control to estimate the effect of zinc ions extracellularly 

released from the NP. 40 2 were not able to significantly reduce the 

proportion of living cells 48 h after treatment. Thus, the flow cytometric assay 

confirmed that the cytotoxicity of ZnO NP cannot only be attributed to zinc ions that 

were released extracellularly. This confirmed the findings of chapter 8.2. 

Since central importance in the cellular response to a wide range of stress stimuli is 

attributed to the protein p53, we chose three more cell lines besides A549 with 

different p53 background to analyse the cell death mechanism after treatment with 

ZnO NP (Figure 36). (Meek 2015) A549 as well as HeLa cells bear wild-type p53, but 

HeLa cells represent a special case with regard to their p53 level. They are affected 

by a mutation-independent reduction in p53 protein level due to the expression of the 

viral E6 protein. (Leroy et al. 2014) T24 and HNSCCUM-02T cells bear mutations of 

p53. The mutation of p53 in HNSCCUM-02T cells results in unusually high p53 

expression. This heightened expression is unaffected by treatment with irradiation, 

which normally would increase the p53 level. (Wiesmann et al. 2017) This indicates 
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that the mutation is probably a so-called gain-of-function (GOF) mutation. GOF 

mutations of p53 are typically characterized by overexpression of the mutant protein. 

These mutations are thought to endow the mutant protein with additional activities 

which in contrast to the normal role of p53 contribute to tumor progression. 

(Oren et al. 2010; Meek 2015) T24 cells also bear a mutation in the p53 gene, which 

in contrast to HNSCCUM-02T cells results in unusually low p53 expression. 

(Hinata et al. 2003) 

Analysis of the cell death mechanism after treatment with ZnO NP in the four cell lines 

showed that A549 and HNSCCUM-02T cells predominantly died via apoptosis, with 

some necrosis occurring in the latter. In contrast, HeLa cells and T24 cells 

predominantly passed away via necrosis. This might indicate that the level of p53 in 

T24 and HeLa cells does not suffice to perform apoptosis whereas the p53 of 

HNSCCUM-02T cells might retain some normal functionality which allows the cells to 

initiate apoptosis. Without detailed analysis of the underlying signalling cascades, 

these are only presumptions. The assay furthermore showed that HNSCCUM-02T, 

HeLa, and T24 cells were more sensitive to the treatment with ZnO NP than A549 

cells, with HNSCCUM-02T cells being the most sensitive cell line among the tested.

While analysing the cell death mechanism, cells either received 4 Gray of gamma-

irradiation or a combined treatment with ZnO NP and irradiation. For this purpose, 

cells were incubated with 100  NP for 3 h and then irradiated. After 4 h of 

incubation in total, the cell culture medium was exchanged, and any remaining 

particles were washed away. We hoped to see an additive effect of treatment with the 

nanoparticles and irradiation, but this was not the case. Our first idea was that the 

irradiation somehow altered the surface of the particles and rendered them more inert. 

We compared the treatment with 100 2 alone with a combination of ZnCl2 

and irradiation and we did not see an additive effect with this treatment combination 

either. This means that the absence of additive effects is not directly linked to the 

particles. Instead pre-incubation with zinc ions in the form of ZnCl2 or ZnO NP

might initiate the upregulation of metallothionein. This may enhance the antioxidative 

capacity of the cells, which in turn may result in an improved ability to cope with the 

ROS that were generated upon irradiation. Additionally, at 4 Gray the irradiation dose 

chosen was not very high. Possibly, higher doses would yield different results.

The flow cytometric analysis of apoptotic and necrotic cell death is only suitable for 

assessing the mechanism of cell death. It does not show the clonogenic survival of 
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the tumor cells after treatment in the long run. One of the limitations of the assay is 

the fact that in cell culture apoptotic cells suffer from permeabilization of the cellular 

membrane at some point, because in contrast to the human body there are no 

immune cells present to clear them up. Thus, cells in late apoptosis are 

indistinguishable from cells which died by necrotic cell death. Additionally, cells may 

be lost during the preparation steps for the assay if they died early and were getting 

fragile. In this way, the number of dead cells may be underestimated when measuring 

72 and 96 h after treat

the capacity of an agent as radiosensitizer is a colony formation assay (CFA) which 

was performed in the course of this work. The CFA allows determining reproductive 

cell death after treatment with irradiation alone or in combination with other treatment 

options.(Franken et al. 2006; Nuryadi et al. 2018) 

In order to characterize the cellular reaction to treatment with ZnO NP more closely, 

the cell cycle distribution of A549 cells was determined after treatment (Figure 37). 

Short periods of time of up to 24 h were tested (data not shown), as well as long 

periods of time of up to 96 h after treatment. At no time point was there cell cycle 

arrest detectable. A reduction was seen in the percentage of cells in the G1 phase at 

the late time points, but this reduction was not attributable to a cell cycle arrest and 

instead occurred simultaneously with an increase in severely injured cells in the form 

of debris. The fact that we did not see a cell cycle arrest indicates either that the cells 

are not able to take measures to repair the sustained damage by treatment with 

ZnO NP, or the kind of damage that is sustained is not answered by cell cycle arrest 

at all. 

9.5 ZnO NP induce DNA damage 

It is well established that ZnO NP can induce generation of ROS and DNA damage, 

but unfortunately the underlying fundamental mechanisms mostly lie in the dark. To 

decipher whether the generation of ROS and DNA damage could be interconnected 

I performed an experiment with plasmid DNA under cell-free conditions in the dark 

(Figure 38). This experiment showed that H2O2 was able to induce single strand 

breaks (SSB) in the DNA. ZnO NP were able to induce SSB as well, but also a tiny 

amount of double strand breaks (DSB). Both together induced high amounts of SSB 

and some DSB, leaving nearly no plasmid DNA intact. This clearly shows that there 

seems to be some enhancing effect of the ZnO NP on the effect H2O2 has on the 
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plasmid DNA. The effect was independent of different physiological pH values that 

were tested (data not shown). 

It is known that zinc can intercalate between the DNA base pairs (Lee et al. 1993) 

and due to the negative charge the phosphate backbone is likely to interact with zinc 

ions (Langlais et al. 1990), but it is not known whether zinc ions can have a damaging 

effect on DNA strands. Zinc ions are redox-inert under physiological conditions; thus, 

any kind of Fenton-like reaction can be excluded. Photocatalytic activity of ZnO NP 

(5.3.2.3.1) is also unlikely as it requires energy input in the form of light and the 

experiment was conducted in the dark. We tested whether ZnO NP can directly 

generate ROS at their surface in a cell-free environment since such an activity has 

been previously described (Xia et al. 2008; Song et al. 2010; Zijno et al. 2015) but for 

our ZnO NP we could not show generation of superoxide radicals or hydroxyl radicals 

at the nanoparticle surface. Thus, the mechanism of action remains elusive. It is likely 

that generation of ROS and of DNA damage go hand in hand and reinforce each 

other. 

9.6 Mitochondria are central for the toxicity of ZnO NP  

Since mitochondria are the main endogenous source of ROS and zinc ions are known 

to interfere with the respiration as well as the fact that Julia Heim showed breakdown 

of the mitochondrial membrane potential after treatment with ZnO NP in her doctoral 

thesis, it was plausible to test whether ROS are generated in the mitochondria upon 

treatment of A549 cells with ZnO NP (Figure 39).  

Staining  h after beginning treatment with 

ZnO NP the mitochondrial superoxide level began to increase and exceed the level 

in untreated control cells. Until 72 h after beginning treatment the relative 

mitochondrial superoxide level remained at an elevated level, if only to further rise 

after 96 h. Furthermore, beginning at 12 h after treatment we detected cytochrome c 

release from the mitochondria which further increased after 16 h, 20 h, and 24 h. 

Altogether, this shows that mitochondria are involved in the cellular reaction upon 

treatment with ZnO NP. 

Mitochondrial cytochrome c release and initiation of apoptosis appeared 

approximately at the same time. This shows that initiation of apoptosis via the intrinsic 

pathway is fathomable. In order to shed light on intracellular signalling we performed 

an expression analysis to assess protein level differences in some of the key players 

in mitochondrial apoptosis. In order to also include differences in the p53 state in the 
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analysis, these experiments were not only conducted with A549 cells, which bear wild-

type p53, but also with HeLa, T24, and HNSCCUM-02T cells. Figure 45 describes in 

short, the part of the mitochondrial apoptosis that was analysed in the following.

 

Figure 45: Part of the intrinsic / mitochondrial pathway of apoptosis  

Upon cellular damage the tumor suppressor p53 which is normally subjected to rapid turnover is 
stabilized. Among multiple other functions, it inhibits the pro-survival protein bcl-xL and enhances the 
pro-apoptotic protein bax. This concentration shift releases bax from inhibition by bcl-xL (for exact 
mechanism please refer to (Edlich et al. 2011)). Bax can then translocate to the mitochondrial 
membrane and convey the permeabilization of the mitochondrial outer membrane (MOMP). As a result, 
cytochrome c is released which mediates the activation of caspase-9 by cleavage followed by induction 
of apoptosis. This diagram shows only the small part of the whole cascade which was analysed in this 
doctoral thesis. There exist multiple alternative signalling cascades, intermediate steps, and bypaths. 
Modified according to (Amaral et al. 2010; Tait et al. 2010). 

 

To correct for differences between the baseline expression of the four proteins p53, 

caspase-9, bax, and bcl-xL, the expression in untreated control cells was set to 100% 

in the corresponding cell line and the expression level 4 h and 20 h after treatment 

with 100  NP was expressed in relation to that value (Figure 42).

In A549 and HeLa cells the level of p53 increased 4 h and 20 h after treatment with 

ZnO NP. This indicates that these cells perform some kind of stress response via the 

p53 protein. These exact cell lines also bear wild-type p53 although HeLa cells 
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contain only very low levels of the protein. In contrast, the level of p53 in 

HNSCCUM-02T cells and in T24 cells which bear mutant p53 was decreased upon 

treatment with ZnO NP. This indicates that in those cell lines the p53 protein was not 

able to conduct its normal tasks. As expected HNSCCUM-02T cells exhibited a very 

high level of p53 (Figure 41) compared to the other cell lines which may point to a 

gain-of-function (GOF) mutation of the protein. In contrast, the p53 level in T24 cells 

was very low and was even reduced upon treatment with ZnO NP instead of elevated 

as one might expect as a reaction to a stress stimulus. 

If cells initiate mitochondrial apoptosis upon treatment with ZnO NP, we would expect 

the level of full-length caspase-9 to decrease since the protein is cleaved to induce 

apoptosis. We did indeed detect reduction of caspase-9, except for the fact that we 

saw it in all cell lines under investigation those bearing wild-type p53 and those 

bearing mutant p53. The decrease in caspase-9 occurred irrespective of apoptosis. It 

was detectable in cell lines which exhibited apoptotic and necrotic cell death upon 

treatment with ZnO NP. 

The pro-apoptotic protein bax and the anti-apoptotic protein bcl-xL were also 

subjected to a decrease in their expression level after treatment with ZnO NP in all 

cell lines within 4 h and 20 h. The decrease was more prominent or less prominent 

depending on the cell line. With these proteins we were not able to link the expression 

level to the state of p53 or to the amount of apoptosis that had been seen in the 

corresponding cell line upon treatment with ZnO NP. 

In summary, with reference to the elevation of wild-type p53 we can conclude that in 

A549 and HeLa cells some kind of stress response seems to be initiated after 

treatment with ZnO NP. The expression levels of caspase-9, bax, and bcl-xL were 

inconclusive since we did not find a link between the information about the cell death 

mechanism typical to the cell line and the expression levels of the proteins. This might 

be due to alternative pathways apart from those analysed here. 

To sum up the whole experimental series on the cellular reaction to treatment with 

ZnO NP we can say that dependent on the tumor cell line the particles can induce 

apoptotic as well as necrotic cell death. Mitochondria seem to play a central role in 

the cell death mechanism. The mitochondrial membrane potential was decreased 

(doctoral thesis of Julia Heim), ROS were elevated in the mitochondria, and 

cytochrome c was released. In A549 and HeLa cells which bear wild-type p53, the 

expression of the protein was elevated in response to treatment with ZnO NP. The 
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exact series of events is not yet decipherable, but mitochondria and the generation of 

ROS seem to play a pivotal role; and generation of ROS seems to be involved in the 

genotoxic effects of ZnO NP as well. 

9.7 ZnO NP can damage malignant and non-malignant cells  

Besides the toxicity mechanism itself, it is important to know whether an agent, that 

is intended to be used as tumor therapy, is selectively toxic only to tumor cells. In this 

case that means to test the sensitivity of tumor cells to treatment with ZnO NP 

compared to non-malignant cells of the human body. As model tumor cells we chose 

A549 cells; and as representative non-malignant cells we chose primary fibroblasts 

and HUVECs (Figure 43). At an intermediate concentration of 50 nO NP we 

saw that fibroblasts were less sensitive to treatment with ZnO NP than A549 cells. 

Unfortunately, endothelial cells showed high sensitivity towards treatment. This 

shows that treatment of tumors with ZnO NP is a double-edged sword. Although 

several studies showed that ZnO NP were more toxic to tumor cells than to non-

malignant cells (Table 2) our experiments show that damage to the more sensitive 

cell types of the human body cannot be completely excluded. This demands for a 

targeting strategy which ensures that ZnO NP which are injected into the bloodstream 

primarily target the tumor and release their toxic load only at the tumor site. 

Additionally, ZnO NP must be protected by a coating to safely travel through the 

bloodstream and to protect the sensitive endothelial layer. 

9.8 ZnO NP can reduce survival of tumor cells after irradiation

The potential of ZnO NP as a radiosensitizer was assessed with a colony formation 

assay. The first goal of this experiment was to analyse whether ZnO NP can improve 

the effect of radiotherapy. The second goal was to assess how to schedule application 

of both therapeutic means to yield the highest amount of tumor cell death. Concerning 

the second question, it can be said that there were no significant differences in the 

surviving fraction of tumor cells depending on the sequence of the treatments. We 

found that treatment with ZnO NP significantly reduced the surviving fraction of tumor 

cells compared to untreated control cells and their effect on the tumor cell survival 

was bigger than the effect of 4 Gray of gamma-irradiation as a stand-alone treatment. 

Concerning the combination of both treatments, we did not see synergistic or additive 

effects. This means the treatment with irradiation and ZnO NP in combination was 

less effective than the addition of both single-treatment effects. Nevertheless, ZnO NP 
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may become attractive as adjuvant therapeutic agent, to complement radiotherapy.

The nanoparticles may help to reduce the irradiation dose while yielding the same 

level of tumor cell death. This can help to reduce radiation damage to the healthy 

tissue surrounding the tumor, especially in very delicate regions, for example in the 

head and neck region. 

10  

The aim of this study was to broaden the knowledge on the interaction between 

ZnO NP and human cells tumor cells and non-malignant cells

potential as innovative anti-tumor agent. To achieve this, a broad set of experiments 

was conducted and herein described in detail to document precisely the experimental 

conditions that were used. 

We were able to show the importance of the direct interaction of ZnO NP with tumor 

cells to exert their cytotoxicity, while also describing the toxic effects of extracellularly 

released zinc ions. We documented the uptake of ZnO@SiO2 NP into tumor cells as 

well as their silica coating delaying onset of cytotoxicity. 

ZnO NP were shown to initiate apoptotic and necrotic cell death. We observed DNA 

as well as mitochondrial damage upon treatment with the particles. Reactive oxygen 

species seemed to play a central role in the intracellular effects of ZnO NP, being 

involved both in mitochondrial and DNA damage. 

Besides usage as stand-alone treatment ZnO NP could also be combined with 

radiotherapy as adjuvant treatment. 

Many questions concerning the cytotoxicity mechanism were answered; however 

further problems emerged from the new findings. Hitherto unknown is how ZnO NP 

can convey genotoxic damage, the sequence of events following treatment with 

ZnO NP is still not fully elucidated, and in vivo data concerning the toxic effects on 

whole organisms is still sparse. A coating strategy is needed to safely transport 

ZnO NP through the bloodstream. Active targeting may help to enrich the 

nanoparticles at the tumor site. These are the next challenges which must be met to 

pave the way for the translation of ZnO NP into clinical practice. 
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12  

In the appendix all raw values are shown according to the order of the 

experiments in the results section. To every table the corresponding figure in the 

results section is linked to be able to assign the figures to the raw values 

unambiguously. Numbering in bold indicates the different independent runs of the 

experiment. 

 

Table 8 corresponding to Figure 25 

To measure the amount of zinc ions released from ZnO NP, nanoparticles were prepared 
according to the standard procedure and incubated in the different media in centrifuge tubes 
under cell culture conditions. Remaining particles were separated by centrifugation and the 
amount of zinc ions in the supernatant was measured by atomic absorption spectroscopy.  

 H2O Tris-NaCl buffer  
 1 2 3 1 2 3  

4 h 49.3 67.9 66.2 157.5 177.9 243.5  
24 h 228.4 203.8 202.4 169.2 282.3 243.2  

 Cell culture medium Cell culture medium with FCS 
 1 2 3 1 2 3 4 

4 h 104.5 125.7 120.3 128.1 198.5 170.9 156.9 
24 h 119.9 133.5 123.4 208.2 208.9 177.4 171.8 

 

Table 9 corresponding to Figure 26 

To evaluate the toxicity of ZnCl2 as a representative zinc salt that is fully dissolved under cell 
culture conditions, staining with propidium iodide and annexin V-FITC was performed and 
measured by flow cytometry. As a proof of concept this experiment was only performed once. 
Alive = PI negative and annexin V negative, apoptotic = PI negative, annexin V positive, dead = 
PI positive and annexin V positive, necrotic = PI positive and annexin V negative. 

 Viable cells Necrotic cells Apoptotic cells Dead cells 
0d control 74.4 0.56 11.89 9.94 

0d 20  64.57 4.58 16 9.25 
0d 30  63.15 1.51 23.39 6.83 
0d 40  65.66 1.05 8.66 4.68 
0d 50  60.84 1.87 7.38 3.51 
0d 60  58.35 1.43 12.47 5.82 
0d 70  58.9 2.96 11.56 8.08 
0d 80  62.75 0.46 13.89 4.55 
0d 90  56.44 0.9 15.7 8.64 

0d 100  60.45 1.22 9.24 8.5 
1d control 79.52 4.32 7.14 4.4 

1d 20  77.79 1.57 8.76 5.05 
1d 30  80.37 0.73 11.12 4.21 
1d 40  65.07 0.29 15.01 12.88 
1d 50  63.57 0.57 13.34 14.81 
1d 60  55.77 2.11 10.72 20.34 
1d 70  57.4 2.02 9.11 20.23 
1d 80  53.02 3.36 9.68 19.64 
1d 90  57.5 2.4 11.58 19.38 
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Viable cells Necrotic cells Apoptotic cells Dead cells
1d 100  52.15 2.76 12.14 24.64 

1d control 79.52 4.32 7.14 4.4 
2d control 75.3 1.2 6.69 4.05 

2d 20  75.3 1.2 6.69 4.05 
2d 30  77.98 1.67 8.87 5.53 
2d 40  58.19 1.99 19.52 12.89 
2d 50  52.36 1.15 20.92 17.33 
2d 60  47.39 0.79 21.81 24.32 
2d 70 g/mL 40.4 7.81 14.32 29.47 
2d 80  39.48 6.81 14.96 30.69 
2d 90  38.69 6 12 34 

2d 100  34.85 7.35 18.17 33.53 
3d control  77.54 0.28 4.91 3.96 

3d 20  72.07 2.11 10.8 5.82 
3d 30  73.28 0.73 10.27 6.49 
3d 40  72.63 0.4 10.98 7.22 
3d 50  59.55 1 20.86 8.71 
3d 60  47.83 2.7 29.75 12.27 
3d 70  46.64 2.67 27.76 16.69 
3d 80  28.01 2.28 28.83 19.08 

3d control  77.54 0.28 4.91 3.96 
3d 20  72.07 2.11 10.8 5.82 
3d 30  73.28 0.73 10.27 6.49 

 

Table 10 corresponding to Figure 27 

To evaluate the toxicity of different divalent metal ions in contrast to ZnO NP equimolar amounts 
of magnesium and zinc ions were used in the form of ZnO NP, MgCl2 and ZnCl2. The viability of 
A549 cells was measured via the cellular metabolic activity, after 3 h, after 6 h and after 24 h after 
beginning 3  reagent was incubated with 
the cells in relation to the start point of the treatment. All values are stated in reference to untreated 
control cells (=100%) to correct for differences between the runs of the experiment.  

0 3 h 
ZnO NP MgCl2 ZnCl2 

1 2 3 1 2 3 1 2 3 
 112.8 51.1 115.4 134.1 157.1 138.4 78.8 26.5 83.2 

 97.7 30.6 72.9 122.5 150.5 120.1 46.5 23.9 65.1 
 57.1 26.0 56.4 150.9 151.2 152.9 59.1 18.6 62.0 
 56.5 24.4 46.8 117.7 125.2 145.7 53.6 19.1 58.4 
 81.1 33.8 77.2 150.6 158.4 161.4 74.7 28.0 89.7 
 97.9 36.4 97.7 128.6 153.8 141.5 74.3 27.9 96.7 
 87.4 43.7 87.6 120.8 140.7 127.0 71.2 33.3 92.5 
 86.0 52.0 76.3 127.1 143.6 124.5 86.2 43.8 137.0 
 103.7 81.6 87.6 116.3 129.3 106.8 89.8 90.6 150.8 
 115.5 103.4 103.8 106.4 131.6 92.1 95.1 121.6 144.9 

4 6 h 
ZnO NP MgCl2 ZnCl2 

1 2 3 1 2 3 1 2 3 
100  4.7 17.5 4.8 118.7 155.2 118.9 8.4 32.4 7.5 
50  3.0 12.6 4.8 101.6 148.9 111.4 35.2 19.2 34.6 
40  2.6 12.6 2.7 134.4 148.9 129.4 2.5 17.4 1.9 
35  2.4 13.3 2.9 113.6 123.8 124.6 3.1 16.4 2.0 
30  3.4 18.4 5.7 124.7 151.1 129.3 3.4 22.9 3.2 
25  7.2 18.3 10.7 110.1 147.3 123.9 5.5 24.6 4.9 

 6.9 22.6 12.9 116.2 135.8 122.2 8.2 30.4 7.6 
15  32.4 32.1 82.4 124.5 137.0 113.9 16.8 37.8 13.7 
10 g/mL 84.2 79.2 134.4 111.2 126.9 102.6 42.8 69.9 46.6 
5  98.1 118.2 135.5 104.0 129.0 88.1 114.0 101.2 101.7 
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21 24 h 
ZnO NP MgCl2 ZnCl2

1 2 3 1 2 3 1 2 3 
100  2.8 3.5 2.9 120.2 153.5 115.9 3.3 3.5 3.1 
50  10.9 4.1 6.5 116.8 143.1 110.4 4.9 3.4 4.0 
40  4.7 9.9 4.7 139.2 130.5 134.8 2.9 3.8 2.5 
35  12.9 14.8 16.8 139.6 108.7 137.1 3.6 4.3 2.7 
30  33.1 26.4 38.9 123.2 131.6 124.8 6.6 7.1 5.7 
25  35.1 31.1 41.0 108.1 127.1 112.5 10.2 10.2 8.7 
20  37.5 30.9 48.0 121.4 122.9 109.3 30.2 20.1 32.3 
15  45.0 39.9 75.4 114.1 119.8 115.0 43.2 26.8 44.1 
10  90.3 93.0 108.9 114.1 112.8 111.2 68.1 56.4 47.7 
5  91.6 101.3 125.0 86.5 109.4 91.8 106.6 98.9 110.8 

 

Table 11 corresponding to Figure 29 

To evaluate the toxicity of ZnO NP in contrast to the zinc ions that are released by the 
nanoparticles, A549 cells were incubated with the nanoparticles directly or with supernatant of 
ZnO NP from which all particulate material was separated by centrifugation. The cellular viability 
was measured via the cellular metabolic activity, after 4 h, after 7 h and after 24 h after beginning 
treatment. 4 as incubated with the cells 
in relation to the start point of the treatment. All values are stated in reference to untreated control 
cells (=100%) to correct for differences between the runs of the experiment. 

 Untreated control cells  Supernatant (zinc ions only) 
 1 2 3 1 2 3 

1 4 h 100.0 100.0 100.0 92.3 64.0 31.8 
4 7 h 100.0 100.0 100.0 85.1 76.3 94.7 

21 24 h 100.0 100.0 100.0 96.1 94.0 95.1 
 100  NP Dead cells 
 1 2 3 1 2 3 

1 4 h 93.6 64.2 27.2 24.7 -1.6 -1.2 
4 7 h 40.9 62.5 34.2 18.8 -5.6 0.5 

21 24 h 35.2 50.7 37.3 9.0 -2.3 0.2 

 

Table 12 corresponding to Figure 31 

To compare the toxicity of ZnO NP and ZnO@SiO2 NP equimolar amounts of enclosed zinc oxide 
was used. A549 cells were incubated with the nanoparticles and their viability was measured via 
the cellular metabolic activity, after 4 h, after 6 h and after 24 h after beginning 

ation to the 
start point of the treatment. All values are stated in reference to untreated control cells (=100%) 
to correct for differences between the runs of the experiment. 

 Untreated control cells  ZnO NP  
 1 2 3 1 2 3 

1 4 h 100.0 100.0 100.0 45.8 44.3 51.0 
3 6 h 100.0 100.0 100.0 38.6 30.8 25.6 

21 24 h 100.0 100.0 100.0 31.3 11.7 22.8 
 ZnO@SiO2 NP Dead cells 
 1 2 3 1 2 3 

1 4 h 101.1 110.2 95.9 0.4 0.3 0.4 
3 6 h 64.3 75.7 55.4 0.5 0.4 0.7 

21 24 h 41.4 20.2 35.9 0.6 0.5 0.4 
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Table 13 corresponding to Figure 35

To evaluate the toxicity of treatment with zinc ions (ZnCl2), ZnO NP, irradiation (4 Gray), and 
combinations thereof, staining with propidium iodide and annexin V was performed and measured 
by flow cytometry at different time points in reference to the starting point of the treatment 
(4 h = 4 h after beginning treatment). Treatment with ZnCl2 or ZnO NP lasted for four hours, 
irradiation was applied in parallel three hours after the beginning of the treatment with ZnCl2 or 
ZnO NP. After four hours the medium was exchanged for fresh medium. Alive = PI negative and 
annexin V negative, apoptotic = PI negative, annexin V positive, dead = PI positive and annexin V 
positive, necrotic = PI positive and annexin V negative.  

4 h 
100 2 

1 2 3 4 5 6 7 
Alive 91.2626 86.2239 88.9063 92.074 91.19 90.60 90.90 

Apoptotic 2.9646 7.0937 5.2203 3.772 2.58 3.50 1.50 
Dead 5.6846 6.6602 5.8231 4.072 5.86 5.70 7.30 

Necrotic 0.0882 0.0222 0.0502 0.082 0.37 0.30 0.40 

 
40 g/mL ZnCl2 

1 2 3 4 5 6 7 
Alive 94.4558 92.1307 94.9849 94.4558 93.62 92.10 93.10 

Apoptotic 1.6519 2.6939 2.657 1.6519 2.52 2.20 0.90 
Dead 3.568 5.1514 2.34 3.568 3.57 5.50 5.40 

Necrotic 0.3244 0.024 0.0181 0.3244 0.29 0.30 0.70 

 
Control 

1 2 3 4 5 6 7 
Alive 90.207 83.088 88.8332 92.57 92.36 91.00 94.70 

Apoptotic 2.7946 7.3113 5.9599 2.78 3.49 3.50 1.00 
Dead 6.1517 9.5006 5.1163 4.25 3.14 4.80 2.70 

Necrotic 0.8468 0.1002 0.0906 0.40 1.01 0.70 1.60 

 
100  NP 

1 2 3 4 5 6 
Alive 91.0182 90.2478 91.6413 90.64 93.20 94.00 

Apoptotic 3.2563 2.7466 3.9472 1.55 2.00 1.20 
Dead 5.6327 6.9673 4.3785 7.73 4.70 4.40 

Necrotic 0.0928 0.0384 0.033 0.08 0.20 0.40 
 100  NP + 4 Gray 

1 2 3 4 5 6 
Alive 93.6442 89.9816 91.1903 93.64 95.15 93.30 

Apoptotic 2.4807 4.2293 4.5762 3.19 1.30 1.90 
Dead 3.8111 5.7388 4.2137 3.09 3.47 4.60 

Necrotic 0.0641 0.0503 0.0198 0.08 0.08 0.20 
 4 Gray 

1 2 3 4 5 6 
Alive 93.2027 82.9701 88.6601 91.69 90.94 90.00 

Apoptotic 2.2858 10.0012 7.786 3.35 3.99 2.50 
Dead 4.3733 7.0006 3.4716 4.65 4.10 6.80 

Necrotic 0.1382 0.028 0.0823 0.31 0.97 0.70 
 100 2 + 4 Gray 

1 2 3 
Alive 92.73 90.90 89.90 

Apoptotic 3.21 3.30 1.70 
Dead 3.86 5.70 8.20 

Necrotic 0.20 0.10 0.30 
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12 h  
100 2

1 2 3 4 5 
Alive 7.9068 7.5228 10.2535 8.1800 15.8300 

Apoptotic 7.4681 14.5908 10.0050 6.8300 5.7900 
Dead 84.3667 77.8063 78.5853 84.8700 78.1700 

Necrotic 0.2584 0.0801 1.1562 0.1200 0.2100 

 
40 2 

1 2 3 4 5 
Alive 4.2235 3.8697 2.4901 1.8400 3.8300 

Apoptotic 4.1915 6.2990 9.6136 3.9300 12.1100 
Dead 91.5109 89.8032 87.8662 94.1900 83.8800 

Necrotic 0.0741 0.0281 0.0301 0.0400 0.1800 

 
control 

1 2 3 4 5 
Alive 5.7084 4.2818 3.5175 5.2200 4.1800 

Apoptotic 2.0243 4.8771 2.8767 2.4000 3.5400 
Dead 92.1192 90.7369 93.4974 91.7300 91.9400 

Necrotic 0.1482 0.1042 0.1085 0.6500 0.3400 

 
100  NP 

1 2 3 4 5 
Alive 8.4443 6.5307 10.9290 6.7700 24.6900 

Apoptotic 10.3528 23.8873 22.9272 4.6900 5.8900 
Dead 81.1067 69.5598 66.0792 88.4700 69.2300 

Necrotic 0.0962 0.0222 0.0647 0.0700 0.1900 

 
100 nO NP + 4 Gray 

1 2 3 4 5 
Alive 6.2345 6.9197 4.9621 7.4200 16.1800 

Apoptotic 8.7848 10.5050 14.2415 3.9400 7.9000 
Dead 84.8766 82.5372 80.7341 88.5500 75.7600 

Necrotic 0.1042 0.0381 0.0623 0.0900 0.1600 

 
4 Gray 

1 2 3 4 5 
Alive 6.6599 8.1127 5.6930 5.8100 4.0700 

Apoptotic 2.9080 9.3556 9.4184 4.3600 4.2800 
Dead 90.1816 82.4792 84.8482 89.4900 91.2300 

Necrotic 0.2505 0.0525 0.0404 0.3400 0.4200 

 
100 2 + 4 Gray 

1 2 3 
Alive 8.3100 11.4300 9.8700 

Apoptotic 7.2000 6.7000 6.9500 
Dead 84.4100 81.2400 82.8250 

Necrotic 0.0800 0.1300 0.1050 
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18 h  
100 2

1 2 3 4 5 
Alive 5.8290 22.4412 24.6000 20.0400 12.0000 

Apoptotic 7.6758 11.9150 8.3100 5.8600 7.9000 
Dead 86.2465 65.4251 66.2800 73.3800 78.8000 

Necrotic 0.2486 0.2188 0.8100 0.7200 1.3000 

 
40 2 

1 2 3 4 5 
Alive 11.6399 4.6156 4.3300 5.7900 5.7000 

Apoptotic 8.4901 10.6145 10.6000 17.4700 9.4000 
Dead 79.5610 84.7216 84.7900 76.5000 83.7000 

Necrotic 0.3090 0.0482 0.2800 0.2400 1.3000 

 
Control 

1 2 3 4 5 6 
Alive 3.1049 11.0271 3.9824 2.3200 2.0300 3.6000 

Apoptotic 2.1790 13.6128 5.6898 3.0100 1.6300 1.0000 
Dead 94.1960 75.2116 90.1848 93.9800 95.7300 94.4000 

Necrotic 0.5202 0.1484 0.1429 0.6900 0.6100 0.9000 

 
100  NP 

1 2 3 4 5 6 
Alive 18.0604 13.8179 15.7888 2.9400 23.5000 11.9000 

Apoptotic 14.0613 23.6763 12.3847 5.6100 5.7200 3.8000 
Dead 67.3829 62.4212 71.4366 91.0400 70.3200 83.7000 

Necrotic 0.4954 0.0846 0.3898 0.4100 0.4700 0.7000 

 
100  NP + 4 Gray 

1 2 3 4 5 6 
Alive 13.9264 10.1201 10.5910 5.7800 24.0200 8.9000 

Apoptotic 12.0742 17.6578 15.7427 8.3400 5.2600 9.3000 
Dead 73.7656 72.0190 73.5899 85.8100 70.1200 80.7000 

Necrotic 0.2338 0.2031 0.0764 0.0700 0.6000 1.1000 

 
4 Gray 

1 2 3 4 5 6 
Alive 8.8933 17.1183 3.4446 3.5100 2.5300 2.8000 

Apoptotic 6.2203 24.1508 7.7186 4.8400 4.0400 1.2000 
Dead 84.6157 58.5903 88.7134 91.3100 92.4700 95.5000 

Necrotic 0.2707 0.1406 0.1234 0.3400 0.9600 0.5000 
 100  ZnCl2 + 4 Gray 

1 2 3 
Alive 23.77 16.20 10.00 

Apoptotic 7.59 6.90 9.90 
Dead 68.01 76.45 79.30 

Necrotic 0.63 0.45 0.90 
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24 h  
100 2

1 2 3 4 5 6 
Alive 88.5162 58.8499 68.9064 74.5660 60.7300 63.2100 

Apoptotic 4.5763 15.9153 12.6880 10.1700 13.1400 13.0400 
Dead 0.3044 0.0883 0.5792 0.5640 0.9400 1.1300 

Necrotic 6.6031 25.1465 17.8264 14.7000 25.1900 22.6200 

 
40 2 

1 2 3 4 5 6 
Alive 67.6032 81.3319 67.9949 59.6400 89.5200 70.0000 

Apoptotic 14.7926 12.5699 25.3363 22.0700 6.8300 18.6000 
Dead 0.2689 0.0303 0.0791 0.4900 0.2100 0.5200 

Necrotic 17.3353 6.0680 6.5897 17.8000 3.4400 10.8800 

 
Control 

1 2 3 4 5 6 7 
Alive 86.73620 75.37110 90.53210 92.17000 92.17000 94.16000 92.40000

Apoptotic 3.33355 13.86910 4.43310 3.78000 3.05000 2.96000 2.00000 
Dead 0.80580 0.06220 0.14740 0.30000 0.72000 0.58000 1.30000 

Necrotic 9.12250 10.69770 4.88740 3.75000 4.06000 2.30000 4.40000 

 
100  NP 

1 2 3 4 5 6 7 
Alive 59.1239 52.0379 33.0070 72.6500 63.0900 51.5300 70.0000 

Apoptotic 13.0734 23.8628 18.4389 6.8000 10.2100 7.3400 12.8000 
Dead 1.1012 0.0930 3.0417 0.5200 0.3600 1.9700 3.0000

Necrotic 26.7015 24.0063 45.5124 20.0300 26.3400 39.1600 16.9000 

 
100  NP + 4 Gray 

1 2 3 4 5 6 7 
Alive 67.4404 66.8339 57.4133 67.5500 80.6000 61.2700 71.7000 

Apoptotic 7.9393 21.7337 29.7079 12.0400 8.5000 7.0500 17.7000 
Dead 0.5974 0.0789 0.0910 0.5000 0.3900 0.8700 0.3000

Necrotic 24.0229 11.3535 12.7877 19.9100 10.5100 30.8100 10.3000 

 
4 Gray 

1 2 3 4 5 6 
Alive 87.0891 66.3566 76.5048 90.0900 91.5900 92.0300 

Apoptotic 4.9293 19.0113 15.1715 6.2600 5.3000 4.6500 
Dead 0.1487 0.1386 0.0495 0.1000 0.3400 0.7600 

Necrotic 7.8330 14.4935 8.2742 3.5500 2.7700 2.5600 

 
100 2 + 4 Gray 
1 2 3 

Alive 74.092 61.27 66.04 
Apoptotic 8.812 16.20 11.98 

Dead 0.834 0.64 1.44 
Necrotic 16.262 21.89 20.54 
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48 h  
100 2

1 2 3 4 5 6 
Alive 49.8931 48.3441 47.0519 39.7300 55.4500 47.3700 

Apoptotic 21.9824 22.4868 25.7365 24.6500 21.8700 23.6300 
Dead 1.4785 1.4208 0.8374 2.1600 1.8400 2.3000 

Necrotic 26.6460 27.7483 26.3742 33.4600 20.8400 26.7000 

 
40 2 

1 2 3 4 5 6 
Alive 88.6891 89.9445 79.6986 71.6800 93.3200 74.8600 

Apoptotic 4.9839 5.3963 15.1006 20.9100 4.3000 15.0900 
Dead 0.2114 0.1070 0.0987 0.5600 0.3500 1.0700 

Necrotic 6.1156 4.5522 5.1021 6.8500 2.0300 8.9800 

 
Control 

1 2 3 4 5 6 7 
Alive 86.40370 91.20050 80.99510 89.27000 93.94000 96.38000 94.00000

Apoptotic 3.14980 3.55220 4.87940 6.81000 2.59000 1.30000 1.20000 
Dead 0.37510 0.17420 0.42480 0.18000 0.65000 0.47000 0.70000 

Necrotic 10.07140 5.07000 13.70070 3.74000 2.82000 1.85000 4.20000 

 
100  NP 

1 2 3 4 5 6 7 
Alive 22.2724 30.6995 11.2840 40.5200 58.8300 22.1000 54.9000 

Apoptotic 24.9410 16.6538 17.1784 17.4100 17.1500 24.8100 13.4000 
Dead 1.7254 0.5890 1.9758 3.8300 1.6700 7.6300 2.7000

Necrotic 51.0612 52.0576 69.5618 38.2400 22.3500 45.4600 29.1000 

 
100  NP + 4 Gray 

1 2 3 4 5 6 7 
Alive 43.0330 64.2390 51.0856 17.1800 71.0200 23.9600 67.1000 

Apoptotic 16.9353 23.5194 32.8440 20.3800 17.6800 23.1400 18.2000 
Dead 1.4955 0.3185 0.5408 6.1300 0.5900 5.6100 0.6000

Necrotic 38.5362 11.9231 15.5200 56.3100 10.7100 47.2900 14.1000 

 
4 Gray 

1 2 3 4 5 6 
Alive 85.5929 84.2536 75.6302 80.5900 88.8400 93.5600 

Apoptotic 8.3077 11.3161 13.1473 14.3900 7.6600 3.7900 
Dead 0.3722 0.0863 0.1980 0.2800 0.5100 0.7000 

Necrotic 5.7273 4.3440 11.0245 4.7400 2.9900 1.9500 

 
100 2 + 4 Gray 
1 2 3 

Alive 39.04 51.61 47.91 
Apoptotic 21.63 22.05 20.93 

Dead 2.89 1.81 2.55 
Necrotic 36.44 24.53 28.61 
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72 h  
100 ZnCl2

1 2 3 4 5 6 
Alive 33.7523 42.3638 31.5138 28.4100 62.7600 41.0400 

Apoptotic 42.1960 38.9712 43.8660 38.6800 27.6900 38.4900 
Dead 1.2611 1.3395 1.4514 7.8300 1.3500 2.9200 

Necrotic 22.7906 17.3255 23.1688 25.0800 8.2000 17.5500 

 
40 ZnCl2 

1 2 3 4 5 6 
Alive 84.2007 86.9157 88.0814 57.9900 94.5700 78.3200 

Apoptotic 9.9525 5.7206 6.4106 26.9800 3.1400 14.7600 
Dead 0.2557 0.1223 0.2325 3.2700 0.3900 1.6700 

Necrotic 5.5911 7.2414 5.2755 11.7600 1.9000 5.2500 

 
Control 

1 2 3 4 5 6 7 
Alive 88.09320 90.96110 91.39600 84.36000 94.46000 93.75000 91.90000

Apoptotic 5.40620 1.62270 3.39730 9.13000 2.25000 2.44000 3.10000 
Dead 0.25190 0.24440 0.27070 0.49000 0.62000 0.80000 0.40000 

Necrotic 6.24870 7.17180 4.93610 6.02000 2.67000 3.01000 4.60000 

 
100  NP 

1 2 3 4 5 6 7 
Alive 8.8876 28.9871 17.0161 28.7800 15.1800 20.5200 26.4000 

Apoptotic 32.7121 30.0197 17.7942 31.3600 27.3100 36.0000 33.4000 
Dead 5.5712 4.6898 2.4353 11.7600 7.9200 6.5900 6.4000

Necrotic 52.8292 36.3035 62.7544 28.1000 49.5900 34.2400 33.8000 

 
100  NP + 4 Gray 

1 2 3 4 5 6 
Alive 15.0111 59.7930 42.5906 16.2300 13.8000 63.8000 

Apoptotic 34.0588 30.0666 38.3856 36.1200 37.3600 26.8000 
Dead 2.3961 0.4598 1.3648 11.3200 9.5100 1.2000 

Necrotic 48.5340 9.6807 17.6590 36.3300 39.3300 8.2000 

 
4 Gray 

1 2 3 4 5 6 
Alive 78.2458 84.2855 85.9018 85.5900 90.6600 87.8800 

Apoptotic 17.0584 4.9224 8.2661 9.1400 6.1500 7.3700 
Dead 0.1612 0.2389 0.2038 0.4700 0.6100 0.8800 

Necrotic 4.5346 10.5531 5.6283 4.8000 2.5800 3.8700 

 
100 2 + 4 Gray 
1 2 3 

Alive 32.18 52.62 38.38 
Apoptotic 35.63 32.74 38.30 

Dead 11.04 2.23 3.36 
Necrotic 21.15 12.41 18.96 
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96 h 
100 g/mL ZnCl2

1 2 3 4 
Alive 20.9000 55.9300 39.8600 55.9000 

Apoptotic 54.6300 33.5900 44.5700 33.5000 
Dead 1.2000 2.6400 2.1200 2.1000 

Necrotic 23.2700 7.8400 13.4500 8.6000 

 
40 2 

1 2 3 4 
Alive 77.5900 90.1700 77.2900 88.8000 

Apoptotic 13.0500 5.4600 16.0000 7.2000 
Dead 0.6400 1.0200 1.8000 0.5000 

Necrotic 8.7200 3.3500 4.9100 3.6000 

 
Control 

1 2 3 4 5 
Alive 89.27000 89.45000 93.10000 83.40000 78.50000 

Apoptotic 7.13000 4.72000 2.53000 8.40000 12.00000 
Dead 0.19000 1.36000 0.91000 0.60000 0.60000 

Necrotic 3.41000 4.47000 3.46000 7.70000 8.90000 

 
100  NP 

1 2 3 4 5 
Alive 25.7900 22.5200 36.1000 62.3000 22.5200 

Apoptotic 43.4700 40.4500 43.4000 27.0000 40.4500 
Dead 1.2300 6.5900 3.8000 2.1000 6.5900 

Necrotic 29.5100 30.4400 16.7000 8.6000 30.4400 

 
100  NP + 4 Gray 

1 2 3 4 5 
Alive 23.8000 60.6500 16.5300 52.4000 43.6000 

Apoptotic 41.6300 30.4000 41.8400 37.3000 45.7000 
Dead 1.9200 2.5500 7.6100 1.8000 1.3000 

Necrotic 32.6500 6.4000 34.0200 8.6000 9.4000 

 
4 Gray 

1 2 3 4 
Alive 76.8000 86.1500 89.0400 76.4000 

Apoptotic 18.8500 9.4700 5.4100 15.3000 
Dead 0.0700 1.1100 0.9400 0.4000 

Necrotic 4.2800 3.2700 4.6100 7.9000 

 
100 2 + 4 Gray 
1 2 3 

Alive 21.88 49.68 33.66 
Apoptotic 50.58 40.34 48.65 

Dead 1.31 2.16 2.86 
Necrotic 26.23 7.82 14.83 
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Table 14 corresponding to Figure 36

The experiment was performed exactly identical to the one in Table 13 / Figure 35.  

HNSCCUM-02T 
1 Apoptotic Dead Alive Necrotic 

Control 8.6 7.1 82.2 2.1 
4 Gray 8.7 6.4 83.2 1.6 

40 2 35.8 36.4 26.60 1.2 
100 2 35.8 34.1 27.1 3.1 

100 2 + 4 Gray 37 33.2 28.4 1.4 
100  NP 27.4 45.7 25.2 1.7 

100 ZnO NP + 4 Gray 22.8 50.6 24.9 1.7 
2 Apoptotic Dead Alive Necrotic 

Control 7.1 8.3 82.4 2.2 
4 Gray 7.5 7.2 83.2 2.1 

40 2 7.9 12.9 55.50 23.8 
100 2 21.2 30 29.7 19.1 

100 2 + 4 Gray 36.1 44 15.7 4.2 
100 nO NP 20.4 34.6 40.1 4.8 

100 ZnO NP + 4 Gray 28.6 41.3 26.4 3.6 
3 Apoptotic Dead Alive Necrotic 

Control 6.6 7.6 83.6 2.2 
4 Gray 5.7 9.1 82 3.3 

40 2 18.1 27.9 47.50 6.5 
100 2 25.3 34.7 27.4 12.6 

100 l2 + 4 Gray 35.5 47.4 14.5 2.6 
100 ZnO NP 29.8 39.4 26.2 4.6 

100 ZnO NP + 4 Gray 17.8 24.8 49.8 7.7 
4 Apoptotic Dead Alive Necrotic 

Control 5.1 11.9 80.6 2.4 
4 Gray 4.2 7.4 83 5.5 

40 2 5.4 9.7 52.60 32.3 
100 2 18.8 27 30.9 23.4 

100 2 + 4 Gray 22.2 32.4 39.7 5.7 
100  NP 9.2 29.5 36.4 24.8 

100 L ZnO NP + 4 Gray 15.8 36.7 29.4 18.2 
5 Apoptotic Dead Alive Necrotic 

Control 4.9 4.2 90 1 
4 Gray 8.8 6.3 83 1.8 

40 2 40 28.4 31.1 0.5 
100 g/mL ZnCl2 40.1 47.8 11.6 0.5 

100 L ZnCl2 + 4 Gray 43.2 46.3 10.1 0.4 
100  NP 37.7 37.7 24.4 0.1 

100 ZnO NP + 4 Gray 39.5 35.4 24.9 0.2 
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HeLa 
1 Apoptotic Dead Alive Necrotic 

Control 7.4 4 87.9 0.6 
4 Gray 13.5 13.9 70.7 1.9 

40 l2 16.6 20.9 57.7 4.8 
100  ZnCl2 5.3 24.6 66.9 3.2 

100 2 + 4 Gray 4.1 28 64.1 3.8 
100  NP 10.4 36.2 33.3 20.1 

100 ZnO NP + 4 Gray 9.9 33 35.3 21.7 
2 Apoptotic Dead Alive Necrotic 

Control 7.9 4.7 86.8 0.6 
4 Gray 14.4 8.6 76.1 0.9 

40 2 16.8 20.3 60.7 2.3 
100 2 4.3 20.9 67.7 7.1 

100 nCl2 + 4 Gray 6.3 23.8 67.8 2 
100  NP 6.8 30 28.6 34.7 

100 ZnO NP + 4 Gray 3.4 9.1 42.2 45.3 
3 Apoptotic Dead Alive Necrotic 

Control 2.7 3.4 93.3 0.5 
4 Gray 5 6.4 84.3 4.3 

40 2 5.3 8.4 69.2 17.1 
100 2 0.3 7.8 61.3 30.6 

100 2 + 4 Gray 1.2 18 67.7 13.1 
100  NP 1.1 3.5 40.8 54.6 

100 ZnO NP + 4 Gray 2.8 9.7 36.9 50.7 
4 Apoptotic Dead Alive Necrotic 

Control 16 4.6 78.1 16 
4 Gray 10.5 5.2 81.2 10.5 

40 2 6.3 8.4 70.4 6.3 
100  ZnCl2 5.8 8.8 52.6 5.8 

100 2 + 4 Gray     
100  NP 4.7 10.3 48.7 4.7 

100 ZnO NP + 4 Gray 8 11 50.3 8 
T24 

1 Apoptotic Dead Alive Necrotic 
Control 7.2 5.1 86.8 1 
4 Gray 7.3 6.1 85.6 1 

40 2 5.5 9.5 63.3 21.7 
100 /mL ZnCl2 2.3 14.6 48 35.1 

100 2 + 4 Gray 2.4 21.8 43.9 31.9 
100  NP 1.2 12.5 58.2 28 

100 ZnO NP + 4 Gray 1.6 14.1 57.9 26.3 
2 Apoptotic Dead Alive Necrotic 

Control 4.7 4.6 89.9 0.9 
4 Gray 12 12.7 73.4 1.8 

40 2 3.3 4 70.1 22.6 
100 2 4.9 27.8 47 20.3 

100 2 + 4 Gray 3.9 30.2 44 21.9 
100  NP 1.8 17.8 39.6 40.8 

100 ZnO NP + 4 Gray 4.3 31 41.9 22.8 
3 Apoptotic Dead Alive Necrotic 

Control 4.6 3.4 91.4 0.7 
4 Gray 13.5 11.9 72.4 2.2 

40 2 10.1 15.5 57.7 16.8 
100 2 5 27 39.5 28.6 

100 2 + 4 Gray 6 30.4 37.8 25.8 
100  NP 2.7 21.5 41.6 34.2 

100 ZnO NP + 4 Gray 2.9 24.7 42.7 29.7 
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Table 15 corresponding to Figure 37

To evaluate the cell cycle distribution. A549 cells were harvested at the indicated time points after 
beginning the corresponding treatment, permeabilized, and stained with propidium iodide. Shorter 
timepoints were also measured (data not shown) but no changes in the cell cycle distribution were 
seen. Staining was measured and analysed on linear scale and corrected for doublets. 

1 G1 S G2 Debris 
24 h 4 Gray  66.5 2.2 24.5 1.9 

 40 ZnCl2 64.2 11.4 16.8 2.9 
 100 2 + 4 Gray 51.8 16.8 10.9 11.8 
 100 2  52 16.8 10.5 9.8 
 Control 58.7 14.2 13.9 1.2 
 100 ZnO NP + 4 Gray 53.5 18.6 13.4 7.5 
  100 mL ZnO NP 58.6 14.2 14.1 5.7 

48 h  4 Gray  78.1 3.6 10.6 1.4 
 40 ZnCl2 76.9 9.6 8.7 3.1 
 100 /mL ZnCl2 + 4 Gray 37.8 11 15.2 25.8 
 100 2  38.3 16.1 8.6 25.2 
 Control 81.1 7.5 10.1 0.6 
 100 ZnO NP + 4 Gray 46.2 11.2 17.7 16 
  100  NP 54.8 15.3 12.8 15.1 

72 h 4 Gray  69.5 5.3 5.1 8.4 
 40 ZnCl2 69.5 7.4 5.3 4.8 
 100 2 + 4 Gray 29.8 13 12.3 29.5 
 100 2  46.7 14.7 15.5 15.8 
 Control 86.2 4.1 7.9 0.4 
 100 ZnO NP + 4 Gray 34.9 10.3 12.8 21.7 
  100 L ZnO NP 34 16.6 10 24.2 

96 h 4 Gray  74 4.9 12.4 2.8 
 40 ZnCl2 69.5 7.4 5.3 4.8 
 100 2 + 4 Gray 29.8 9 2.6 41.1 
 100 2  44.9 15.3 2.2 33.1 
 Control 81.5 2.4 3 5.7 
 100 ZnO NP + 4 Gray 44.7 11.7 9.5 24.6 
  100 nO NP 14.7 4 3.7 64.8 

2 G1 S G2 Debris 
24 h 4 Gray  70.3 7.1 19.3 0.9 

 40 ZnCl2 46.9 27.7 19.9 2.6 
 100 2 + 4 Gray 77.5 7 3.6 10.7 
 100 2  75.5 7.7 3.4 12.3 
 Control 63.8 19.6 14.2 0.7 
 100 ZnO NP + 4 Gray 65.2 17 6.8 6.2 
  100  NP 73.1 11.9 3 10.4 

48 h  4 Gray  63.2 11.3 7.6 13 
 40  ZnCl2 62.7 17.1 15.2 3.4 
 100 2 + 4 Gray 58.3 10.2 3.5 24 
 100 2  56.5 12.6 3.6 24.4 
 Control 68.8 16.4 13.3 0.6 
 100 ZnO NP + 4 Gray 63.2 11.3 7.6 13 
  100 nO NP 48.1 17.7 3.9 25.5 

72 h 4 Gray  74.3 5.2 15.1 1.7 
 40 ZnCl2 74.5 8.7 14.4 1.3 
 100 2 + 4 Gray 38.5 10.8 1.8 45.1 
 100 2  50.1 14.8 5.1 26 
 Control 79 8.6 9.7 0.9 
 100 ZnO NP + 4 Gray 60.7 12.6 8.4 13.7 
  100 mL ZnO NP 33.6 9.8 3.1 47.9 

96 h 4 Gray  73.3 4.1 15.7 3.6 
 40 ZnCl2 77.1 6.1 10.6 4.3 
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100 2 + 4 Gray 37.9 8.1 4.4 46.4
 100 2  38.1 8.1 4.4 45.9 
 Control 86.3 3 7.3 1.8 
 100 ZnO NP + 4 Gray 47.3 7.6 8 32.1 
  100 mL ZnO NP 49.9 12.3 6.3 29.8 

3 G1 S G2 Debris 
24 h 4 Gray  56 3.3 5.5 2.5 

 40 ZnCl2 39.9 10.2 9.3 8.1 
 100 2 + 4 Gray 43.5 14.7 8.6 17.8 
 100 2  44.1 18.7 8.5 16 
 Control 48.7 15 6.9 2.5 
 100 ZnO NP + 4 Gray 46.6 10.6 18.3 9.2 
  100  NP 38.2 13.8 13.7 14.8 

48 h  4 Gray  54.7 1.5 12.2 2.7 
 40 ZnCl2 55.3 8.8 8.4 7.5 
 100 2 + 4 Gray 38.5 8.6 13 30.5 
 100 2  33.9 12.7 6.9 33.7 
 Control 70.3 14 4.9 1 
 100 mL ZnO NP + 4 Gray 31.2 8.9 11.5 33.8 
  100  NP 30.7 7.3 11.4 37.8 

72 h 4 Gray  66.9 3.1 16.4 1.7 
 40 ZnCl2 62.3 4.3 8.6 2.6 
 100 2 + 4 Gray 28.9 10.5 7.9 47.3 
 100 2  30.5 11.2 8.6 45.9 
 Control 52.6 2 3.7 1.8 
 100 ZnO NP + 4 Gray 23.5 3.1 11.7 25.4 
  100  NP 27.8 8.3 9.4 34.4 

96 h 4 Gray  41.5 2.8 9.4 12.6 
 40 ZnCl2 45.6 2.6 8.5 7.9 
 100 2 + 4 Gray 17.3 3.8 6 69.7 
 100 2  14.2 5.2 4.6 71.5 
 Control 45.3 0.7 2.3 4.3 
 100 ZnO NP + 4 Gray 19.6 5.9 6.5 63.2 
  100  NP 45.6 7.7 13.7 30.2 

 

Table 16 corresponding to Figure 39 

To measure the mitochondrial superoxide level after treatment with ZnO NP MitoSOX  Red was 
used. In order to correct for differences between the runs all values are expressed in reference 
to untreated control cells (=100%).  

 1 2 3 4 5 6 7 8 
Untreated control 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

4 h 95.00 122.00 103.00      
8 h 77.00 102.00 134.00      

12 h 84.00 96.00 109.00 127.00 114.00 145.00 128.00 165.00
16 h 91.00 104.00 131.00 142.00     
20 h 142.00 176.00 238.00 161.00     
24 h 153.00 199.00 218.00 343.00 293.00 320.00 274.00 380.00
48 h 197.00 190.00 280.00 316.00     
72 h 315.00 142.00 268.00 230.00     
96 h 330.00 296.00 374.00 516.00     

Positive control 450.00 263.00 303.00 385.00 447.00 601.00 595.00 788.00
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Table 17 corresponding to Figure 40

The release of cytochrome c from the mitochondria was measured as described in the materials 
and methods section. The values represent fluorescence in arbitrary units (AU). The higher the 
fluorescence is the greater is the cytochrome c release.  

 1 2 3 
Untreated control 3.38 1.58 1.22 

12 h  13.82 16.40 20.98 
16 h 26.44 21.38 32.90 
20 h 33.35 14.10 36.06 
24 h 45.70 25.57 49.45 

 

Table 18 corresponding to Figure 41 

The expression of the proteins was evaluated via western blot and SDS-PAGE. The expression 
levels are expressed in reference to the expression level in A549 cells in order to be able to 
compare between the different cell lines. In order to correct for loading difference between the 
lanes, stain-free gels were used as loading control.  

 A549 HeLa 
 1 2 3 1 2 3 

P53 100.0 100.0 100.0 48.0 27.0 13.0 
Bax 100.0 100.0 100.0 31.0 24.0 57.0 

Bcl-xL 100.0 100.0 100.0 27.0 24.0 46.0 
Caspase-9 100.0 100.0 100.0 192.0 221.0 185.6 

 HNSCCUM-02T T24 
 1 2 3 1 2 3 

P53 546.0 678.0 204.0 48.0 22.0 11.0 
Bax 27.0 20.0 43.0 74.0 41.0 105.0 

Bcl-xL 58.0 66.0 77.0 133.0 105.0 153.0 
Caspase-9 75.0 89.0 45.1 141.0 118.0 60.3 

 

Table 19 corresponding to Figure 42 

The expression of the proteins was evaluated via western blot and SDS-PAGE. The expression 
levels are expressed in reference to the untreated control cells of the corresponding cell line. All 
samples (one run, all cell lines, three samples) were loaded onto one gel, to make values directly 
comparable. In order to correct for loading difference between the lanes, stain-free gels were 
used as loading control. 

P53 

Untreated control 4 h after treatment with 
100  NP 

20 h after treatment 
with 100  

ZnO NP 
1 2 3 1 2 3 1 2 3

A549 100.0 100.0 100.0 210.0 201.0 254.0 161.0 112.0 227.0
HeLa 100.0 100.0 100.0 123.0 358.0 347.0 95.0 175.0 197.0

HNSCCUM-02T 100.0 100.0 100.0 43.0 60.0 47.0 14.0 18.0 20.0
T24 100.0 100.0 100.0 71.0 66.0 123.0 57.0 40.0 92.0

Bax 

Untreated control 4 h after treatment with 
100  NP 

20 h after treatment 
with 100 

ZnO NP 
1 2 3 1 2 3 1 2 3

A549 100.0 100.0 100.0 86.0 82.0 130.0 29.0 56.0 79.0
HeLa 100.0 100.0 100.0 97.0 93.0 69.0 21.0 32.0 23.0

HNSCCUM 02T 100.0 100.0 100.0 65.0 102.0 81.0 9.0 27.0 15.0
T24 100.0 100.0 100.0 104.0 73.0 92.0 43.0 38.0 76.0
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Bcl-xL 
Untreated control 4 h after treatment with 

100  NP 
20 h after treatment with 

100  NP
1 2 3 1 2 3 1 2 3

A549 100.0 100.0 100.0 77.0 78.0 106.0 47.0 57.0 97.0
HeLa 100.0 100.0 100.0 79.0 106.0 89.0 35.0 71.0 35.0

HNSCCUM 
02T 

100.0 100.0 100.0 50.0 106.0 96.0 19.0 57.0 32.0

T24 100.0 100.0 100.0 115.0 97.0 92.0 55.0 95.0 81.0

Caspase-9 
Untreated control 4 h after treatment with 

100  NP 
20 h after treatment with 

100  NP
1 2 3 1 2 3 1 2 3

A549 100.0 100.0 100.0 63.0 80.0 56.3 37.0 69.0 110.5
HeLa 100.0 100.0 100.0 71.0 83.0 85.6 48.0 56.0 60.1

HNSCCUM 
02T 

100.0 100.0 100.0 47.0 65.0 40.9 20.0 24.0 10.4

T24 100.0 100.0 100.0 63.0 64.0 95.8 37.0 56.0 69.4

 

Table 20 corresponding to Figure 43 

To evaluate the toxicity of ZnO NP in different cell types A549 cells, endothelial cells and 
fibroblasts were incubated with different amounts of nanoparticles, as indicated, and their viability 
was measured via the cellular metabolic activity, after 4 h, after 8 h, after 12 h, and after 24 h after 
beginning tre 4  was incubated with 
the cells in relation to the start point of the treatment. All values are stated in reference to untreated 
control cells (=100%) to correct for differences between the runs of the experiment. 

100  NP 
A549 1 2 3 4 
1 4 h 31.1 30.2 14.9 15.0 
5 8 h 49.6 19.6 42.6 36.2 

9 12 h 51.9 20.7 29.2 21.1 
21 24 h 37.1 18.3 20.5 6.1 

Endothelial cells 1 2 3 4 
1 4 h 23.8 15.2 11.5 8.4 
5 8 h 21.4 12.5 13.7 10.2 

9 12 h 8.9 2.6 2.7 2.0 
21 24 h 2.5 0.2 0.7 0.2 

Fibroblasts 1 2 3 4 
1 4 h 29.4 28.4 15.9 18.8 
5 8 h 60.4 7.0 29.7 9.2 

9 12 h 45.0 1.2 3.5 2.1 
21 24 h 23.7 0.8 1.2 0.8 

50  NP 
A549 1 2 3 4 
1 4 h 46.7 43.1 20.6 29.3 
5 8 h 67.0 76.3 80.3 88.7 

9 12 h 84.6 84.7 68.6 39.7 
21 24 h 69.3 94.7 43.1 47.8 

Endothelial cells 1 2 3 4 
1 4 h 42.4 62.7 27.9 31.7 
5 8 h 67.7 79.2 90.3 52.0 

9 12 h 30.8 69.6 9.6 9.8 
21 24 h 57.3 62.2 18.7 10.5 

Fibroblasts 1 2 3 4 
1 4 h 53.3 57.2 40.7 24.5 
5 8 h 84.2 80.7 135.6 96.8 

9 12 h 103.2 86.7 169.1 76.6 
21 24 h 68.4 90.8 173.1 84.5 
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10 g/mL ZnO NP
A549 1 2 3 4 
1 4 h 100.0 74.2 91.9 107.3 
5 8 h 101.3 98.7 108.9 108.8 

9 12 h 107.8 97.8 108.3 111.2 
21 24 h 87.1 109.4 107.1 100.3 

Endothelial cells 1 2 3 4 
1 4 h 61.9 64.0 61.2 53.6 
5 8 h 88.8 99.4 174.2 107.9 

9 12 h 97.9 107.1 155.2 90.1 
21 24 h 99.4 101.2 121.7 107.9 

Fibroblasts 1 2 3 4 
1 4 h 96.8 86.0 99.4 94.0 
5 8 h 94.7 95.2 177.6 106.4 

9 12 h 103.0 93.9 174.9 129.9 
21 24 h 99.5 100.3 185.5 110.5 

 

Table 21 corresponding to Figure 44 

The first part of the table shows the number of colonies that were counted ten days after the 
corresponding treatment and the second part shows the calculated surviving fractions.  

Colonies 1 2 3 4 
Untreated 716 632 617 539 

4 Gray 562 399 331 280 
NP 88 158 81 76 

NP + 4 Gray 35 10 10 11 
4 Gray -> NP 24 11 23 79 
NP -> 4 Gray 23 19 9 32 

 

Surviving Fraction 1 2 3 4 
Untreated 1.000 1.000 1.000 1.000 

4 Gray 0.785 0.632 0.536 0.520 
NP 0.061 0.087 0.046 0.049 

NP + 4 Gray 0.007 0.002 0.002 0.002 
4 Gray -> NP 0.005 0.002 0.004 0.015 
NP -> 4 Gray 0.004 0.003 0.001 0.006 
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R code for the computation of the beta regression: 

# Install packages 
install.packages("betareg") 
install.packages("foreign") 
# Load packages 
library(betareg) 
library(foreign) 
# Load data 
setwd("C:/Users/wiesm/Desktop/17 CFA Radiosensitizer/Regression Auswertung mit IMBEI")
data <- read.spss(file = "CFA_linear_regression_1.sav", 
                  use.value.labels = TRUE, 
                  to.data.frame = TRUE, 
                  use.missings = TRUE) 
# Surviving-fraction set to 0.999 
data$SF_new <- data$SF 
data$SF_new[data$SF_new==1] <- 0.999 
# Beta regression 
fit <- betareg(SF_new ~ Irrad_Gy + NP + Interact, data=data) 
# How good is the model? 
predict(fit, data) 
# 4G, no NP 
mean(c(0.7855,0.6318,0.5361,0.5200)) 
# Observed: 0.61835 
# Predicted: 0.623952907 
# 0G, NP 
mean(c(0.0615,0.0873,0.0460,0.0491)) 
# Observed: 0.060975 
# Predicted: 0.066602582 
# 4G, NP 
mean(c(0.0069,0.0015,0.0016,0.0020)) 
# Observed: 0.003 
# Predicted: 0.008585491 
# Coefficients and p-values? 
summary(fit) 
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