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Zusammenfassung 

Eruptionen rhyolitischer Vulkane innerhalb der letzten Jahre haben, mit 

beispielsweise monatelanger Ascheproduktion und ihrer weitreichenden Auswirkungen auf 

die südlichen Hemisphäre, eindrucksvoll die Gefahrenbandbreite unter Beweis gestellt, die 

von solchen Vulkansystemen ausgehen kann. In 2008 und 2011 brachen in Chile relativ 

unvermittelt  die  Vulkane Chaitén und Cordón Caulle aus, beide nach einer fast 

hundertjährigen Pause größerer Vulkanaktivität. Seither werden große Anstrengungen 

unternommen, diese lang-anhaltenden rhyolitischen Eruptionen und ihre Produkte näher zu 

untersuchen. Nichtdestotrotz, verbleiben viele Aspekte der Ausbruchsdynamik und den 

zugrundeliegenden Mechanismen weiterhin im Dunkeln. 

Derartige rhyolitische Eruptionen produzieren einerseits große Mengen vulkanisches 

Glas—Bimsfragmente und Obsidianglas—welches physikochemische Einblicke in die 

Eruptionsdynamik ermöglicht, und erlauben andererseits eine genaue zeitliche Einordnung 

der unterschiedlichen Phasen effusiver und explosiver Aktivität und deren Ablagerungen. In 

der vorliegenden Studie wurden über 500 rhyolitische Glasfragmente aus Ablagerungen 

verschiedener Ausbruchsphasen des Chaitén Vulkans in 2008 auf ihren residualen 

Wassergehalt  hin untersucht. Dieser erwies sich über alle Eruptionsprodukte hinweg als 

sehr variabel mit Konzentrationen zwischen 0.1 bis 3.4 wt.%, wobei sich ein genereller 

Trend von niedrigen Wassergenalten in effusiven Produkten hin zu hohen Wassergehalten 

in den explosiven Ablagerungen zeigte. Darüberhinaus ließ sich innerhalb der einzelnen 

stratigraphischen Horizonte der pyroklastischen Ablagerung ein „Wasserkonzentrations-

Fenster― erkennen, definiert über minimalen und maximalen Wassergehalte der einzelnen 

Ablagerungshorizonte, welches sich in Breite und Absolutwerte der Wasserkonzentration  

innerhalb der vertikalen Stratigraphie verändert. Interessanter Weise grenzt dieses Fenster 

scharf die Wassergehalte der explosiven Produkte von den niedrigeren der effusiven 

Obsidiangläser ab. 

An systematisch ausgewählten Gläsern dieser Ablagerung mit Wassergehalten von 

0.13–1.4 wt.% wurden 94 Aufheizexperimente unter Atmosphärendruck und 740–1030°C 

durchgeführt. In Abhängigkeit des initialen Wassergehaltes zeigten die Proben 

unterschiedliches Entgasungsverhalten und Deformationszeitskalen des ursprünglich 

glasigen Materials. Als wichtigste Erkenntnis ergibt sich, dass Gläser mit ausreichend 

hohem Wassergehalt (≥1.4 wt.%) bei hohen Temperaturen (>874°C) schlagartig 

fragmentieren. Dies ist der erstmalige Nachweis explosiver Fragmentation durch 

Vesikulierung einer wässrigen rhyolitischen Schmelze unter experimentellen Bedingungen. 

Hier wird deutlich, dass initialer Wassergehalt sowie Temperatur maßgeblich das 

Ausbruchsverhalten beeinflussen. Ein Vergleich mit einem separaten Set an 

Hochdruckexperimenten in einer Fragmentationsbombe, welche Fragmentation durch 
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rasche Druckentlastung simuliert, legt nahe, dass beide Fragmentationsmechanismen im 

Laufe der verschiedenen Ausbruchsstadien des Chaitén in 2008 zum Tragen kamen. 

Zuletzt werden die Gefahren durch Vulkanasche, die mit solch lang-anhaltenden 

Eruptionen assoziiert sind, charakterisiert und deren Auswirkungen am Beispiel 

Patagoniens, Argentinien sondiert. Zusätzlich zu den unmittelbaren Auswirkungen durch 

primären Tephraregen, zeigte sich, dass weite Gebiete Patagoniens auch stark durch 

äolisch remobilisierte Asche beeinträchtigt sind. Der kurzzeitige negative Impakt war 

gravierend, und Umwelt und örtliche Gemeinschaft brauchten 5 Jahre um erkennbare 

Erholung aufzuweisen. Die Ergebnisse dieser Studie weisen auch auf das Zusammenspiel 

von Wind, Regen und der Verfügbarkeit von Asche als übergeordnete Kontrollparameter für 

das Auftreten und die Beständigkeit äolischer Remobilisierung vulkanischer Asche hin. 
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Abstract 

Recent rhyolite eruptions on Earth have demonstrated their capacity to produce a 

multitude of hazards, including ash formation lasting months and impacting the large 

reaches of the southern hemisphere. The eruptions of Chaitén volcano in 2008 and Cordón 

Caulle in 2011, both in Chile, ended a period of almost 100 years without major silicic 

events. Since then, significant effort has been invested in the characterization of these long-

lasting eruptions and their products. However, still many aspects about the dynamics and 

underlying mechanisms driving rhyolite eruptions remain unravelled.  

These rhyolite eruptions provided not only vast amounts of fresh volcanic glass and 

hence a physicochemical window into the eruption dynamics, but also key temporal aspects 

of explosive and effusive phases. Here, almost 500 glass shards from the different eruptive 

phases of 2008 Chaitén eruption were analysed for their H2O content. Results show that 

eruptive products preserve a wide range of residual H2O contents (0.1 to 3.4 wt.%), with an 

overall trend of H2O depletion from explosive to effusive. In addition, the presence of ―H2O 

content windows‖ within stratigraphic horizons of the pyroclastic sequences, defined by 

upper and lower H2O content values, was detected. Interestingly, these windows shift with 

stratigraphic position and demarcate clear H2O gaps with respect to effusive obsidians.  

Guided by the H2O distributions observed in the different deposits, 94 heating 

experiments were carried out at 0.1 MPa, temperatures between 740–1030°C on cylindrical 

obsidian cores (4X10mm) with water content between 0.13–1.4 wt.%. Results reveal 

different degassing behaviors and deformation timescales of the glassy material as a 

function of the initial H2O content of the sample. The most striking finding is the occurrence 

of explosive fragmentation at T >874°C in samples with H2O = 1.4 wt.%. This provides the 

first observations on explosive fragmentation due to experimental vesiculation of hydrous 

rhyolite melt and demonstrate that starting H2O concentration and temperature control 

eruptive behaviour. A comparison with a separate set of high-P experiments performed in a 

fragmentation bomb —which simulates fragmentation by rapid decompression— suggest 

that both fragmentation mechanisms might have operated during different stages of 2008 

Chaitén eruption.   

Finally, the characteristics and impacts of ash-related hazards associated with these 

long-lasting events were explored. In addition to the impact of primary tephra fallout, a vast 

area of the Argentinian Patagonia was also significantly affected by wind-remobilization of 

ash. Results of this study show the primary importance of wind, rainfall and ash availability in 

controlling the occurrence and persistence of these events. Regarding the impacts, although 

in the short-term they were highly negative, the environment and the community start 

showing signs of recovery after five years. 

 



 

 

 



C h a p t e r  1  | 5 

 

 

 

 

 

 

Chapter 1 

Introduction 

 



 

 

 
 



C h a p t e r  1  | 7 

 

 

Rhyolite magmatic systems can generate some of the planet‘s largest explosive 

volcanic eruptions, with extensive environmental, atmospheric, and social impacts.  

Unfortunately, our knowledge of these systems is incomplete and the underlying 

mechanisms driving rhyolitic eruption styles (ranging from explosive to effusive) are not yet 

fully understood. Despite significant progress made in experimental volcanology during the 

last decades (Dingwell, 2010), the typically long-period recurrence intervals of rhyolite 

volcanism in comparison to intermediate composition and mafic magmatic eruptions has 

hampered how we interpret observational information in the context of experimental and 

analytical studies on the eruption deposits.  

In fact, 96 years had to pass—since the 1912 Novarupta eruption in Alaska (Hildreth 

and Fierstein, 2012)—until a new major rhyolitic eruption occurred. In the southern Chilean 

Andes, and almost without forewarning (Lara, 2009), Chaitén volcano erupted on 1 May 

2008. It was the first significant scientifically observed eruption in which rhyolitic magma was 

produced (Castro and Dingwell, 2009). Three years later, on 4 June 2011, another rhyolitic 

eruption surprised the world. This time, a silicic fissure eruption of Cordón Caulle, located 

only 260 km north of Chaitén volcano, injected vast amounts of rhyolitic ash into the 

atmosphere and produced an extensive lava flow (Castro et al., 2013). These long-lasting 

events gave the scientific community the opportunity to look at new physical processes that 

take place during rhyolitic eruptions and showed us that the impact of these events on 

communities, in particular related to ash fall, can be extensive (e.g., Duhart et al., 2009; 

Martin et al., 2009; Wilson et al., 2012; Craig et al., 2016a,b; Elissondo et al., 2016). In 

addition, Chaitén and Cordón Caulle eruptions offered observational frameworks to go back 

and reinterpret some of the many rhyolite eruptions that occurred in the late Holocene (e.g., 

Mono craters, Ca; Newberry volcano, Or). Taking the unique opportunity afforded by these 

recent events, this thesis aims to shed light on the characteristics and dynamics of long-

lasting rhyolite eruptions. But to understand the relevance of these eruptions, the first 

question that should be addressed is: what did we know exactly about rhyolite eruptions 

before the occurrence of these two volcanic events in the southern Andes? 

 

1.1 Pre-2008 state of knowledge of rhyolite eruptions 

Rhyolite magmas (>69 to 73 wt.% SiO2, for alkalis contents ranging from ~3 to 13 

wt.%) represent the SiO2-rich end member of the magmatic compositions spectrum (Le Bas 

et al., 1986). More broadly, rhyolite magmas can be placed in a category of silicic magmas 

that also includes those of dacitic and andesitic compositions. In this context, it is common to 

refer to rhyolite magmas as highly-silicic. As earlier stated, no rhyolite eruption had been 

scientifically witnessed before the occurrence of 2008 Chaitén and 2011 Cordón Caulle 

eruptions. Since the begging of last century until 2008, only three highly-silicic eruptions 
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were recorded in our planet: Novarupta (Alaska, US) in 1912, Cordón Caulle (Chile) in 1960, 

and Da‘Ure (Northern Afar, Ethiopia) in 2005. Despite the 1912 Novarupta eruption being the 

largest volcanic event of the twentieth century, the only concrete observations of this event 

came from scattered villages and ship reports (Hildreth and Fierstein, 2012). In ~60 hours 

that lasted the explosive phase, approximately 28 km3 of tephra fallout and an ignimbrite 

deposit of 11±2 km3 were produced. Pyroclastic products showed compositions ranging from 

rhyolitic (~78 wt.% SiO2) to dacitic-andesitic (68–57.9 wt.% SiO2) (Fierstein and Hildreth, 

1992). The initial explosive phase was followed by the extrusion of three lava domes, two 

dacitic and one rhyolitic. Unfortunately, no accurate constraints exist for the timing of their 

emplacement. The rhyolitic dome is still preserved and it has become one the iconic pictures 

of effusive silicic volcanism (Fig. 1.1A). In 1960, the fissure eruption of Cordón Caulle, in the 

southern Andes, emitted <0.25 km3 (DRE volume) of rhyolite material (70.3 wt.% SiO2; 

Gerlach et al., 1988, Lara et al., 2006). The eruptive cycle lasted for less than 2 months and, 

unfortunately, only scarce direct observations were made (Lara et al., 2004). Finally, the 

2005 rhyolite eruption of Da‘Ure was a very short (1 day) and small eruption associated with 

a rifting event (Wright et al., 2006). Its short duration, together with the inhospitable and 

remote field area, explains why almost one-hundred years after Novarupta eruption 

scientists were prevented, one more time, from witnessing a rhyolite eruption. The only 

evidence of the Da‘Ure event is a 500 meters long, 100 meters width and 60 meters deep 

vent opened at 5 km ENE from the summit of Dabbahu volcano (Fig. 1.1.B). The deposits 

related to Da‘Ure eruption are also scarce: a thin layer of silicic ash (few tens of cm), some 

bombs at distances up to 20 m from the vent and a small silicic foamed lava body in the 

central part of the fissure (Ayele et al., 2007). According to Potuzak et al., (2006), these 

products present glass compositions of 74 wt.% SiO2 and very low crystal contents (1%).  

Due to the lack of direct observations, scientific knowledge about the dynamics of 

rhyolite eruptions was mainly based on experiments (e.g., Alidibirov and Dingwell, 1996a, 

Bagdassarov et al., 1996; Stevenson et al., 1997; Navon et al., 1998; Martel et al., 2000 and 

2001; Spieler et al., 2004) and forensic volcanology; looking back at the deposits of previous 

eruptions, piecing evidence together and trying to reconstruct the eruptive dynamics of the 

volcano (e.g., Eichelberger et al., 1981; Taylor et al., 1983; Eichelberger et al.,1986; 

Newman et al., 1988; Castro and Mercer, 2004; Rust and Cashman, 2007). All this, together 

with direct observations of dacite eruptions—which are more frequent in the recent Earth‘s 

volcanic history (e.g., Mount Saint Helens (1980, USA), Pinatubo (1991, Philippines), Unzen 

(1991-1995, Japan)—allowed scientists to identify and characterize the type of volcanic 

activity and eruptive styles related to silicic eruptions.  
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Fig. 1.1. A) 1912 Novarupta rhyolite dome showing a subcircular shape with a diameter of 380 m and 

an average high of 65 m (Taken from Hildreth and Fierstein (2012)) B). Aerial view of the fissure 

system where the 2015 Da‘Ure eruption occurred. The arrow highlights the location of the 30 m in 

diameter pumice dome. White ash blanketing the surroundings of the vent can be recognized.  Picture 

taken shortly after the eruption by Asfawossen Asrat and made available online by the Global 

Volcanism Program (GVP). 

 

Silicic eruptions are often associated with Vulcanian and Subplinian to Plinian 

eruptive styles, which are among the most explosive volcanic events on Earth and generally 

involve the generation of large amounts of pyroclastic material (Cioni et al., 2015; Clarke et 

al., 2015). To generate pyroclasts, the disruption of magma (i.e., mixture of melt ± bubbles ± 

crystals) into discrete pieces is required. This conversion process of a continuous volume of 

molten rock into an expanding gas-pyroclast mixture is called fragmentation (Gonnermann, 

2015). Understanding the mechanisms underlying magma fragmentation in silicic volcanism 

has captured the attention of volcanologist since the onset of modern volcanology (e.g., 

Sparks, 1978), and is also one of the goals of this thesis. For that reason, in section 1.1.2 

the main models and existing ideas about how magma fragments are reviewed. But before 

that, a series of fundamental processes that are necessary for magma to reach 

fragmentation conditions are described. 

 

1.1.1 Bubble nucleation and growth 

Volcanic eruptions are fuelled by magma stored beneath volcanic edifices. In rhyolitic 

systems, storage areas —named magmatic reservoirs— are generally located between 5 

and 10 km depth (Eichelberger, 1995). These depths are equivalent to pressures between 

100 and 200 MPa. At these pressures, silicic melts usually contain large amount of dissolved 

volatiles, being H2O, by far, the most abundant species (Zhang et al., 2007). With initial 

values up to 6 wt.% (Bacon et al., 1992; Wallace, 2005), this volatile is one of the main 

players involved in the evolution of rhyolitic systems and in the occurrence of explosive 
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volcanic eruptions (Eichelberger and Westrich, 1981; Dingwell, 1996; Castro et al., 2005). 

For that reason, H2O is a central topic of this thesis. Other volatiles species that can be 

present in rhyolite magmas are CO2, SO2, HF and HCl (Wallace et al., 2015), however, 

these play little if any role, in driving silicic magma ascent and fragmentation.  

The ability of volatiles to remain dissolved in the melt is controlled by the volatile 

solubility, which depends on pressure, temperature and melt composition (Friedman et al., 

1963; Fogel and Rutherford, 1990; Silver et at., 1990; Blank et al., 1993; Dingwell et al., 

1997; Tamic et al., 2001; Newman and Lowenstern, 2002; Liu et al., 2005; Ryan et al., 

2015). H2O solubility in rhyolite melts decreases with temperature and increases with 

pressure. If for any reason, the magma experienced a decrease in pressure (i.e., migration 

towards surface or removal of overlying rocks), the melt will become supersaturated and 

volatiles will be exsolved. As a consequence, bubbles will nucleate and growth. Other ways 

to trigger volatile exsolution include fractional crystallization (e.g., Tait et al., 1989; 

Taddeucci et al., 2004) and frictional heating (e.g., Lavallée et al., 2015). 

Bubbles nucleate at a rate determined by the degree of supersaturation and the 

activation energy required to overcome the excess energy of the bubble surface. Nucleation 

can either be homogeneous or heterogeneous (Toramaru, 1989; Mourtara-Bonnefoi and 

Laporte, 1999; Mangan and Sission, 2000; Gardner and Denis, 2004). First experimental 

attempts to study nucleation process in rhyolitic melts were performed by Murase and 

McBirney (1973) and later on by Badgdassarov and Dingwell (1993), which detected the 

increase in nucleation rates when microlites were present. Hurwitz and Navon (1994) 

demonstrated that the presence of a crystal-phase reduces the activation energy of the 

process and consequently, the supersaturation required. According to these authors and 

later studies by Gardner et al. (1999), ΔP ≤ 5–20 MPa are needed to trigger heterogeneous 

vesiculation; while Mourtara-Bonnefoi and Laporte (1999) found homogeneous nucleation 

will occur when the pressure drop is > 120–150 MPa (Fig. 1.2A). The fact that homogenous 

nucleation requires larger supersaturation (larger overpressure), necessarily implies that 

bubble nucleation will take place at shallower depth. Mangan and Sisson (2000) observed 

that in this case dissolved water contents in the melt can reach twice its equilibrium value 

before the onset of vesiculation. Decompression rates also play a role in the nucleation 

process and in the development of oversaturated melts (Fig.1.2A; Gardner et al., 1999; 

Mangan and Sisson, 2000)  

Once a bubble nucleates, its ability to grow is controlled by a complex interplay of 

three dynamic processes: diffusion of volatiles into the bubble, viscous deformation of the 

surrounding melt and decompression rate (Gonnermann and Manga, 2007). Navon et al. 

(1998) defined three stages during the bubble growth process under constant pressure (Fig. 

1.2B): during an initial stage (1), volatile diffusion into the bubble is very efficient and the 
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small bubble grows exponentially. The internal pressure is closed to its initial value and the 

growth is limited by the viscous resistance of the melt. At stage (2), the growth is parabolic 

and limited by diffusion. Bubble internal pressure drops and is maintained at slightly above 

the ambient pressure. Finally, in a multi-bubble situation (3), all excess water is taken by the 

bubbles, increasing melt viscosity and slowing down the growth rate of the bubble, which 

asymptotically approaches its final radius. Both, viscous and diffusion regimes that limit 

bubble growth present characteristic time scales and their ratio is represented by the non-

dimensional Peclet number (Lyakhovsky et al., 1996). For the case of continuous 

decompression of magma, bubble growth is also governed by the decompression rate, and 

in consequence, a third characteristic time scale has to be considered (Lenksy et al., 2004).  

 

Fig.1.2. A) Degasing paths and changes in dissolved H2O content for vesiculation controlled by 

heterogeneous (dash line) and homogeneous (solid lines) bubble nucleation during decompression 

(Modified from Cashman and Scheu (2015)). For the latest case, nucleation is triggered at 

overpressure of 120 -150 MPa, regardless of the decompression rate. This variable only affect 

degassing paths after the onset of nucleation (red star) (Mangan and Sisson, 2000). For the case of 

heterogeneous nucleation, non-equilibrium degassing only occurs at high decompression rates (i.e., 

≥0.25 MPa s
-1

), in particular during the interval 200 to 140 MPa (Gardner et al., 1999). B) Bubble 

growth at constant final pressure. Initial growth stage (1) shows exponential behaviour (red line), while 

during the second stage (2), bubble growth is parabolic (blue line). Green line represents bubble 

internal pressure evolution. The curves for exponential and square root solutions are also shown 

(black solid lines). The two vertical lines represent transition time interval (        ) between 

exponential and square-root (parabolic) solutions. Modified from Navon et al. (1998). 

 

As a consequence of bubble growth, magma vesiculates and increases its volume 

while it accelerates towards Earth‘s surface. The study of vesiculation on rhyolite magmas 

has been approached from theoretical (e.g., Sparks, 1978; Toramaru, 1989; Barclay et al., 

1995; Proussevitch and Sahagian, 1996; Lyakhovsky et al., 1996; Navon et al., 1998; 
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Lensky et al., 2004) as well as from experimental perspectives (e.g., Murase and McBirney, 

1973; Bagdassarov and Dingwell, 1993; Bagdassarov et al, 1996; Stevenson et al., 1997; 

Liu and Zhang, 2000). Many of these studies represent the foundations for the experiments 

presented in Chapter 3 of this thesis and they are discussed in detail there. 

The generation of a gas phase in the magma mixture is of primordial importance to 

explain explosive behavior of volcanoes, as its high compressibility provides potential for a 

rapid volume increase during decompression (Sparks, 1978; Gonnermann, 2015). But, is at 

this point of evolution of the system explosive fragmentation an inevitable process? 

 

1.1.2 The fate of rising magma 

The occurrence of explosive fragmentation will depend on the efficiency of the rising 

magma in releasing its volatiles. Most of the ideas that underlie silicic magmatic degassing 

models are based on volatiles analysis of obsidian glasses (e.g., Eichelberger and Westrich, 

1981; Taylor et al., 1983; Eichelberger et al., 1986; Newman et al., 1988; Dobson et al., 

1989; Rust et al., 2004; Rust and Cashman, 2007). These studies, performed mostly on 

Holocene rhyolite eruptions throughout the Pacific Northwest of the USA (e.g., Newberry 

volcano, South Sister, Medicine Lake, Mono Craters), showed that H2O and CO2 contents 

and hydrogen isotopic composition of the magma evolves with eruption progress. Degassing 

models developed from bulk H2O and hydrogen isotopic data consider close- and open-

system volatile exsolution (e.g., Taylor et al., 1983; Newman et al., 1988) as well as 

multistep combination of these degassing styles (i.e., batch model; Taylor, 1991). In close-

system degassing, the exsolved volatiles remain in contact with the melt and the melt 

composition adjusts to be in equilibrium with the total vapor exsolved. During open-system 

degassing, exsolved volatiles are immediately removed, preventing equilibrium between 

exsolved and dissolved volatile in the melt. Taylor et al. (1983) and Eichelberger et al. (1986) 

were the first to relate explosive-to-effusive transition to these two opposite degassing styles 

that are controlled by time-varying magma ascent, conduit permeability and deformation 

modes. This two-stage degassing path, which has historically been assumed to involve a 

sharp transition between explosive and effusive stages, was adopted as the main eruptive 

model for silicic eruptions (e.g., Newman et al., 1988; Jaupart and Allegre, 1991; Woods and 

Koyaguchi et al., 1994; Gonnermann and Manga, 2003). During initial stages, bubbly 

magma behaves as a chemically close system, allowing the development of bubble 

overpressure and consequent fragmentation (Fig. 1.3A). With the progression of the 

eruption, decrease in rates of magma supply and development of permeability in the shallow 

conduit allows a more efficient outgassing. Consequently, fragmentation is prevented, 

leading to the extrusion of a degassed lava body (Fig. 1. 3B).  
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Fig.1.3. Schematic representation of explosive (A) and effusive (B) stages during the progression of 

an eruption. Redraft after Gonnermann (2015) 

 

Fragmentation implies the disruption of a coherent volume of magma into a mixture 

of gas and pyroclasts. For the case of highly-silicic magmas, it can be governed by three 

different mechanisms: a) brittle fracture, b) external water-magma interaction and c) shear 

deformation (e.g., Gonnermann, 2015). The first of them, is thought to be the main 

mechanism involved in the so called, magmatic or ―dry‖ fragmentation; which will be the only 

one discussed in this thesis. Magmatic fragmentation can be viewed as a bottom-up or top-

down driven process (Cashman and Scheu, 2015). In the first of the cases, vesiculation and 

bubble growth provide the driving force for expansion and fragmentation (Fig. 1.3A), while in 

the second, fragmentation is accomplished by the failure of suddenly unloaded, already 

vesicular, magma. This last model better describes explosive events associated with 

volcanic dome collapse and Vulcanian eruptions, while the first one is more suitable for 

sustained Plinian and sub-Plinian activity. To date, a number of mechanisms have been 

proposed for just how brittle failure of magma occurs (e.g., McBirney and Murase, 1970; 

Sparks, 1978; Alidibirov and Dingwell, 1996a; Dingwell, 1996; Papale, 1999; Zhang, 1999). 

Fragmentation mechanisms are discussed in Chapter 4, together with the results of 

experiments performed at variable P-T conditions.   

 

1.2 Witnessing rhyolite eruptions in the southern Andes, Chile. 

The occurrence of volcanism in the southern Andes is a consequence of the 

subduction of the Nazca Plate beneath the South American Plate (Cembrano and Lara, 

2009). Along its almost 1500 km length, the Southern Volcanic Zone (SVZ; 33–46°S; Stern, 

2004) hosts some of the most active volcanoes in the world (Fig. 1.4A). The SVZ is divided 

in smaller volcanic arc segments—Northern (NSVZ), Transitional (TSVZ) and Southern 

(SSVZ) South Volcanic Zone—with distinctive petrological and structural features. A main 
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feature of the TSVZ and SSVZ is the Liquiñe-Ofqui Fault Zone (LOFZ), a 1200 km long intra-

arc fault system that accommodates part of the margin-parallel component of the oblique 

subduction (López-Escobar et al., 1995; Lavenu and Cembrano, 1999). Throughout its 

extension, LOFZ shows different deformation styles and kinematics, imposing control on the 

location of many of the volcanic systems in the area (Lavenu and Cembrano, 1999; Stern, 

2004; Cembrano and Lara, 2009).  

 

Fig. 1.4 A.) Tectonic setting of the Chilean Andes south of 33°S. Red triangles represent the position 

of the active volcanic systems at the volcanic front while yellow triangles show the location of Cordón 

Caulle and Chaitén volcanoes. Modified from Cembrano and Lara (2009). Main features of Cordón 

Caulle-Puyehue Volcanic Complex (CCPVC) and Chaitén volcano are presented in B and C, 

respectively. Red dash line in C indicates Chaitén‘s 3 km wide caldera. 

 

1.2.1 2008–2010 eruption of Chaitén volcano, Chile  

Chaitén volcano (42.83°S, 72.65°W) is a relatively small volcanic structure (1120 

m.a.s.l) located in the SSVZ, 20 km west of Michinmahuida volcano (2405 m.a.s.l), which is 

positioned atop the LOFZ (Fig. 1.4C). Michinmahuida is one of the largest volcanic 

structures in the SSVZ and its deposits evidence a large record of volcanic events, including 

eruptions in historical times (Amigo et al., 2013). Eruptive products of this volcano show 

compositions ranging from andesitic to dacitic (López-Escobar et al., 1993; Amigo et al, 

2013). Crustal thickness at the latitude of Chaitén is approximately 30–35 km and LOFZ is 

characterized by transpressive deformation (Cembrano and Lara, 2009). Before its eruption 

in 2008, Chaitén was considered a dormant volcano. The volcano showed no visual 

evidences of activity (e.g., gas emissions) and, according to Naranjo and Stern (2004), it last 

eruption had occurred ~9370 years ago. In consequence, no effort was being invested by 
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the Chilean Geological Service (SERNAGEOMIN) in monitoring its activity. After the 2008 

eruption, several studies in the area explored for evidences of previous activity (e.g., Watt et 

al., 2009; Amigo et al., 2013; Watt et al., 2013; Moreno et al., 2015; Alloway et al., 2017). 

Watt et al. (2009) were the first to review the stratigraphy proposed for the area by Naranjo 

and Stern (2004), reassigning to Chaitén eruptive record a 4500 BP event. Amigo et al. 

(2013) identified two other unknown Holocene moderate-size events: a 6200 -5900 BP 

rhyolite tephra deposit and another close to the current surface. According to Lara et al. 

(2013), this last deposit could be correlated to an historical event reported for the 17th 

century that had been previously associated with activity at Michinmahuida volcano. The 

authors estimated a bulk tephra volume of 0.5 km3. Moreno et al. (2015) extended to ten the 

number of Holocene eruptions of Chaitén by analyzing lake sediment cores from a small 

closed-basin lake in the vicinity of the volcano (Lago Teo). Alloway et al. (2017) expanded 

the observational time window, to the end of the Last Glacial Maximum, and identified an 

additional set of 10 tephra layers, making a total of 20 eruptive events in the last 18000 

years. Although with subtle geochemical differences in the major elements, all the products 

emitted by Chaitén were uniformly rhyolitic (Amigo et al., 2013; Alloway et al., 2017). 

As a consequence of the lack of proximal monitoring instruments, very little 

information exists about the precursory activity that preceded the 2008 eruption. Seismic 

activity was detected by distant instruments located more than 300 km away only 36 hours 

before the eruption (Lara, 2009). After this short forewarning, late on the night of 1 May, the 

eruption started (Castro and Dingwell, 2009). The 2008 Chaitén eruption lasted for almost 

two years and Pallister et al. (2013) divided it in five phases (Fig. 1.5). An initial (1) ten days-

long explosive phase (1–10 May 2008), which showed plinian ash columns that reached 

altitudes of 19–21 km, the occurrence of directed blasts and pyroclastic density currents 

(PDCs). Initially, the presence of two vents was reported, which finally merged on 6 May. 

After this initial purely explosive activity, (2) an extended transitional phase was observed 

between the 11 and 31 May 2008. Explosive ash emissions and lava effusion occurred 

simultaneously from the same vent. Finally, phases (3) to (5) represent the purely effusive 

stages of the eruption, which included both exogenous and endogenous growth of a 

complex of domes and the extrusion and collapse of aspine. The eruption was over by the 

end of 2009–beginning of 2010.  

The rhyolite nature of this eruption was first reported by Horwell et al. (2008) and 

confirmed later by many other authors (e.g., Castro and Dingwell 2009, Watt et al., 2009; 

Alfano et al., 2011; Amigo et al., 2013; Pallister et al.,2013;  Moreno et al., 2015; Alloway et 

al., 2017). Castro et al. (2012a) measured H2O concentrations in obsidians from all the 

phases and found values ranging from 0.10 to 1.40 wt%. The Volcanic Explosivity Index 

(VEI) estimated for the eruption was between 4 and 5 (Carn et al., 2009; Watt et al., 2009). 



C h a p t e r  1  | 16 

 

 

According to Alfano et al. (2011), the total bulk tephra volume erupted during the whole 

eruption was ≤1km3, being ~0.5 km3 erupted during the first six day of the eruption. The 

prevailing wind directions in the area caused most of the tephra to deposit in neighboring 

Argentina (Watt et al., 2009). Regarding the effusive products, Pallister et al. (2013) 

estimated a total volume of ~0.8 km3. 

 

Fig. 1.5 Eruptive phases of 2008–2010 Chaitén volcano eruption. Following Pallister et al. (2013) 

criterion: A) phase 1= explosive activity, B) phase 2= hybrid activity and C) phases 3 to 5= effusive 

activity. 

 

1.2.2 2011–2012 eruption of Cordón Caulle, Chile  

Cordón Caulle is part of the Cordón Caulle-Puyehue Volcanic Complex (CCPVC), 

which also comprises Puyehue volcano and erosional remnants of earlier Pleistocene 

volcanoes (Singer et al., 2008). Located in the TSVZ, 260 km north of Chaitén volcano, the 

CCPVC forms a 15 km long by 4 km wide NW–SE ridge, built on top of LOFZ. Unlike 

Chaitén, the eruptive history of CCPVC was well characterized before its last eruption (e.g., 

Katzui and Katz, 1967; Gerlach et al., 1988; Lara et al., 2004; Lara et al., 2006; Jicha et al., 

2007; Singer et al., 2008). This volcanic complex, which encompasses ~140 km3 of 

Pleistocene and Holocene volcanic rocks, is unique in the Southern Andes for having 

erupted a wide range of magma types, from basalts to rhyolites (Gerlach et al., 1988). The 

most recent activity (pre-2011) of the CCVC took place in the Cordón Caulle fissure system. 

Last evidence of activity in Puyehue volcano dated from 1.1ka ago, and involves the eruption 

of andesitic and dacitic lava and scoria from flank vents (Singer et al., 2008). Although the 

GVP reports ten historical eruptions of Cordón Caulle (from XIIX century to 1990), only two 

of them can be found in the scientific literature: the ones in 1921–1922 (Stone, 1935; 

Hantke, 1940) and 1960 (Katsui and Katz, 1967; Lara et al., 2004). While the last one, as 

already mentioned in section 1.1, was rhyolitic in composition, products of the 1921–1922 

eruption were mainly rhyodacitic (Castro et al., 2013). Both events consisted of initial 
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explosive phases followed by the extrusion of lava flows. Extruded lava flows can be easily 

recognized in satellite images (Fig. 1.4B). Eruptions were short (~2 months) and with small 

erupted volumes (<0.3 km3).  

On 4 June 2011, after two months of precursory seismic activity, a new eruption of 

Cordón Caulle occurred (Castro et al., 2013). In contrast to what happened with 2008 

Chaitén eruption, the event was well monitored from its onset (Silvia Parejas et al., 2012). 

The initial phase was characterized by explosive activity (VEI ~4-5) and eruptive columns 

that reached 10-12 km in height (Bonadonna et al., 2015a). Like in the 2008–2010 Chaitén 

eruption, lava emission began after 10 days of purely explosive activity, (Lara et al., 2012). 

Schipper et al. (2013) described the occurrence of gas and ash jets and vulcanian blasts 

simultaneously with the effusion of the lava flow. Although with lower eruptive columns than 

during the climatic phase, the emission of tephra continued for several months. In August 

2012, SERNAGEOMIN-OVDAS reported the absence of ash emission. By the same time, 

the lava effusion ceased (Tuffen et al., 2013).  

Although the erupted magma was also rhyolite (69.5 to 71 wt.%; Castro et al., 2013), 

its SiO2 content was lower than Chaitén, placing it on the compositional boundary with 

rhyodacitic magma. Residual H2O contents of the eruptive products were also considerably 

lower (<0.4 wt.%: Castro et al., 2014). The 2011–2012 Cordón Caulle eruption emitted about 

1 km3 of tephra (Pistolesi et al., 2015) and, again, most of it was deposited to the west, 

covering vast areas of the Argentinian Patagonia (Wislon et al., 2012; Pistollesi et al., 2015). 

The impacts of rhyolite tephra fallout, together with the occurrence of associated secondary 

hazards are discussed in the Chapter 5 of this thesis.  

 

1.3 What have we learned after these eruptions? 

Just ten years have elapsed since rhyolite magma reaching the surface was first 

witnessed. Nevertheless, significant effort has been already invested in the characterization 

of these eruptions and their products (Castro et al., 2009; Watt et al., 2009; Alfano et al., 

2011; Wicks et al., 2011; Alfano et al, 2012; Castro et al. 2012a; Durant et al., 2012; 

Lowenstern et al., 2012; Castro et al., 2013; Major et al., 2013; Pallister et al., 2013; 

Schipper et al., 2013; Tuffen et al., 2013; Castro et al., 2014; Jay et al., 2014; Bonadonna et 

al., 2015a,b; Pistolesi et al., 2015; Schipper et al., 2015; Castro et al., 2016), as well as in 

the study of the impact they pose for the society (Martin et al., 2009; Pierson et al., 2013; 

Wilson et al., 2013; Craig et al., 2016a,b; Elissondo et al., 2016). At the same time, these 

two rhyolite eruptions offered the opportunity to test some of the models and hypothesis 

developed during the past decades (discussed in section 1.2). They also revealed the 

occurrence of new physical phenomena and eruptive behaviors previously unknown, in 
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particular related to degassing mechanisms and explosive-effusive transitions. Some 

existing questions were addressed at the same time new ones have been raised. 

The first striking finding was that (hydrous) rhyolite magmas can ascend very rapidly 

before fragmentation (Castro and Dingwell, 2009). The authors performed petrological 

experiments and estimated a decompression rate of 40 MPa h-1 for 2008 Chaitén rhyolite 

magma. According to their experiments, the magmatic reservoir was located at P >120 MPa 

(>5 km depth) and temperatures between 780 and 825°C. Considering this, pre-

fragmentation magma average ascent velocity was about 0.5 m s-1. Furthermore, based on 

the lack of detectable CO2 and the explosivity of the eruption, they assumed a H2O-saturated 

melt (~4 wt.%). By pairing analytical and experimental petrology, Castro et al. (2013) found 

that the magma involved in the 2011-2012 Cordón Caulle eruption was hotter (870–920°C) 

and stored at lower pressures (50–100 MPa ≈ 2.5–5 km) than for 2008 Chaitén eruption. At 

these depths, the magma would contain about 2.6 to 4.5 wt.% dissolved H2O. These pre-

eruptive conditions place Cordón Caulle magma viscosity at the lowest value that can be 

expected for rhyolite magma under natural conditions. 

Remote sensing techniques have also contributed to shed light on rhyolite eruptions 

dynamics. Based on surface deformation data, Wicks et al. (2009) interpreted that the main 

magmatic reservoir that fuelled 2008–2010 Chaitén eruption was emplaced 5–9 km below 

Michinmahuida volcano and that the rapid ascent of rhyolite occurred through dyking. InSAR 

observations performed by Jay et al. (2014) located 2011–2012 Cordón Caulle magmatic 

reservoir also at a depth of about 5–9 km. Furthermore, the authors identified three pre-

eruptive deformation events and co-eruptive subsidence (from June 2011 to March 2012). 

With the aid of radar images, Castro et al. (2016) detected an uplift >200 m during the first 

month of the Cordón Caulle eruption, which was attributed to the syn-eruptive intrusion of a 

laccolith. Their results showed that explosive rhyolite eruptions may be responsible for 

shallow magmatic intrusions, and this in turn, raises questions about the hazards related to 

this phenomenon.  

Another striking observation at both Chaitén and Cordón Caulle was that explosive 

and effusive activity can occur simultaneously. These new evidences compel us to review 

the existing eruptive models (described in section 1.1.2), which consider a sharp transition 

(two-stage degassing path) between explosive and effusive phases. How then does magma 

loses its volatiles and what vent architectures foster simultaneous explosive and effusive 

activity? 

The abundant presence of tuffisite veins in bombs ejected during the explosive phase 

of Chaitén eruption motivated Castro et al. (2012a) to evaluate the role played by shear-

induced fracturing of melt in fostering magma degassing and in controlling the explosive-

effusive transition. Tuffisite veins are shear fractures formed by the non-Newtonian response 
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of highly viscous magma to flow-related strain (Tuffen et al., 2003). The authors concluded 

that, although these pyroclastic and gas pathways may play a key role in transferring gas 

and pyroclasts to the surface and in linking explosive and effusive eruptive styles, diffusive 

degassing through tuffisites could not effectively degas magma during 2008 Chaitén 

eruption. Alternatively, Castro et al. (2014) showed that batched degassing, promoted by 

variable opening and closing of tuffisite veins, could explain the hydrogen-isotopic evolution 

of the 2008 Chaitén magma across the explosive-to-effusive transition. Unfortunately, the 

narrow H2O content range showed by 2011–2012 Cordón Caulle products prevented the 

authors from elucidating a significant degassing trend. Schipper et al. (2013) explored the 

hybrid activity dynamics and, particularly, the vent architecture developed during this last 

eruption. They suggested the occurrence of a complex shallow vent architecture, with the 

development of a branching network of permeable degassing structures that extent to depth 

greater than 1000 m and that allow the long-time open-system degassing regime necessary 

to promote the effusion of lava. The authors recognized evidence for the interplay of both 

ductile (i.e., tube-like bubble networks) and brittle processes (i.e., tuffisites veins) of 

permeability development. 

Interestingly, in both eruptions the hybrid (i.e., simultaneous explosive-effusive 

activity) phase started after ten days of purely explosive activity. In other words, during the 

first ten days magma degassing was perhaps dominantly closed-system and not efficient 

enough to prevent explosive fragmentation of the ascending magma. Castro et al. (2013) 

estimated an ascent rate between 0.3 and 0.6 cm s-1 for the first degassed parcel of magma 

that emerged as lava during 2011–2012 Cordón Caulle eruption. Following their approach, 

minimum ascent rate values for Chaitén lava were ≥0.6 cm s-1. 

Notwithstanding the progress made, the underlying mechanisms driving rhyolitic 

eruptions are not yet fully understood. There is consensus on the key role of H2O content in 

controlling the explosivity of the eruption. However, how melt parcels with variable water 

contents respond on the local scale to changes in Pressure, Temperature and time (P-T-t) 

remains unclear, particularly due to the challenges of observing high temperature melt 

undergoing vesiculation. At the same time, several studies has already shown that residual 

volatile contents found in rhyolite glasses can shed light on volatile evolution during an 

eruption. However, up to the ocurrence of 2008 Chaitén and 2011 Cordón Caulle eruptions, 

an accurate time frame to constrain degassing processes in rhyolite systems was still 

missing. In the following chapters, effort will be devoted to providing new insights into these 

open topics. 
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1.4 Thesis structure 

The thesis is comprised of this introduction (Chapter 1) and five additional chapters. 

In Chapter 2, a detailed description of the H2O content distribution found in the 2008–2010 

Chaitén eruption deposits is presented. To further understand the role played by hydrous 

volatile species in the dynamics and explosivity of rhyolite systems, a series of high 

temperature-0.1 MPa experiments were performed at the facilities of the Johannes 

Gutenberg Universität (JGU) and they along with interpretations and discussion of foaming 

and explosive behaviour are presented in Chapter 3. Also, adopting an experimental 

approach, in Chapter 4 different explosive fragmentation mechanisms that could operate 

during rhyolite eruptions are studied. For that purpose, an additional set of high-pressure 

experiments were performed at the laboratories of the Ludwig-Maximilians University (LMU). 

Finally, after characterizing the deposits and exploring dynamics of rhyolite eruptions, 

Chapter 5 explores the (human and societal) impacts of these long-lasting events. Although 

the short-term impacts of both Chaitén and Cordón Caulle eruptions have been already 

studied, in particular the ones related to tephra fallout (e.g., Duhart et al., 2009; Martin et al., 

2009; Wilson et al. 2013; Craig et al. 2006a,b; Elissondo et al. 2016), little is known about 

long-term hazards and impacts of these events. Due to its more recent occurrence and wider 

affected area, this last research is focus on the 2011–2012 Cordón Caulle eruption. In 

particular, the phenomenology and impacts of wind-induced ash remobilization are studied. 

Finally, in Chapter 6 a summary of the entire thesis as well as the implications of the main 

findings rising from this work are presented. 

Regarding the structure of the chapters, it worth to note that each chapter follows the 

structure of a scientific paper. The reader will find an Introduction, in which the specific topic 

of that chapter is addressed, Methods, Results, Discussion and Conclusions.   
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2.1 Introduction 

H2O is the most abundant and important volatile component in natural magmas, and 

it exerts a major influence on the eruptive behaviour of volcanic systems. The presence of 

dissolved H2O influences physical and chemical properties of melts as, for example, 

viscosity (e.g., Shaw, 1972; Hess and Dingwell, 1996; Giordano et al., 2008), chemical 

diffusivity (e.g., Zhang and Stolper, 1991; Zhang et al., 1991), crystal nucleation and growth 

(e.g., Fenn, 1977; Davis et al., 1997), liquidus and solidus temperature (e.g., Wasserburg, 

1957; Tuttle and Bowen, 1958) and density (e.g., Ochs and Lange, 1999). The existence of 

H2O in the Earth can be traced back to the mantle, which is the largest and deepest H2O 

reservoir and contains some hundred ppm (~70 to 500) of this volatile component (Wallace 

et al., 2015). During partial melting, H2O (and also any other volatile species) behaves as an 

incompatible element and consequently, migrates and accumulates in shallower reservoirs. 

At crustal levels, H2O can reach a variety of concentrations. Basaltic melts in subduction-

related reservoirs can contain up to 6 wt.% H2O (Wallace (2005) and references therein). 

Lower concentrations can be found in N-MORB (<0.4 wt.%), E-MORB (≤1.5 wt.%), Ocean 

Island Basalts (0.2–1.5 wt.%) and back-arc basalts (0.1–2.3 wt.%). Silicic reservoirs can also 

store significant amount of H2O, with values ranging from 1 to 6 wt.% (e.g., Coombs and 

Gardner, 2001; Wallace, 2005; Castro and Dingwell, 2009).  

This chapter will investigate the H2O contents in rhyolite systems, but instead of 

quantifying the abundance of this volatile species at storage conditions (e.g., by phase 

equilibrium experiments), the focus will be on the characterization of the residual H2O 

content preserved in the eruptive products. Taking 2008 Chaitén eruption as a case of study, 

H2O content retained in glasses that were produced during the different eruptive phases will 

be measured. In this way, the study aims to obtain insights about the eruptive dynamics of 

rhyolite systems. But before proceeding to the methodology section, a brief overview of the 

main H2O characteristics as well as a review of existing research on H2O in rhyolite 

deposited is presented.     

 

2.1.1 H2O: main characteristics 

H2O is present in silicate melts as two species: molecular water (H2Om) and hydroxyl 

groups (OH-). Both species are related via the homogeneous reaction: 

H2Om + O2- ⟷ 2OH-   (2.1) 

where O2- is an oxygen structurally bound to an anhydrous component of the melt. In the 

case of fully polymerized melts such as a rhyolite, the O2- is bonded to two tetrahedral 

cations, constituting what is known as a Bridging Oxygen (BO). According to reaction (2.1), 

for its progression in any of both possible directions a BO must be created or broken. Due to 
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the fact that BO is the strongest bond in the melt, this reaction will be rate-limited by the 

exchange frequency of the BO to O2- (Dingwell and Webb, 1990). Furthermore, these 

authors pointed out that this exchange frequency corresponds to the structural relaxation 

time of rhyolite melts. Thus, the glass transition curves—which divides liquid and glass field 

of response of a melt—of hydrous rhyolite should record the glass transition with respect to 

the reaction (2.1). 

Nowadays, the presence of both H2O species coexisting in melts is a well-

established fact (e.g., Silver et al., 1990; Ihinger et al., 1999; Zhang, 1999b; Zhang et al., 

2007, Castro et al., 2012a; Dingwell et al., 2016; Mitchell et al. 2018) and its influence on 

several fundamental processes such as solubility, diffusivity and also on the H isotopic 

fractionation of H2O, has been widely demonstrated (e.g., Zhang, 1999b; Zhang and 

Behrens, 2000; Newman and Lowenstern, 2002). However, before the work of Stolper 

(1982a,b), it was generally believed that H2O dissolved in silicate melts dominantly as OH- 

(e.g., Hamilton et al., 1964, Burnham,1975), with H2Om being present in the melt only 

perhaps at high pressures or high total dissolved H2O content (H2Ot). By using infrared 

spectroscopy, Stolpers‘ works proved that any of these two conditions were necessary to 

stabilize H2Om in the melt. Furthermore, Stolper showed that the concentrations of H2O 

species in silicate melts are predictable functions of H2Ot. While OH- is the dominant species 

at low H2Ot, H2Om becomes dominant at higher H2Ot contents. The exact relative OH-:H2Om 

ratio at which this occurs will depend on the equilibrium constant (Keq) of reaction (2.1), 

which is defined as:   

    
     

         
 (2.2) 

where the brackets represent mole fractions. Silver (1988) was the first to identify that the 

ratio of H2O species preserved in glasses was quench rate dependent. At higher quench 

rates, the time spent by the melt at each temperature interval will be shorter and, as a 

consequence, less interconversion of H2O species (Eq. 2.1) will take place, leading to higher 

values of OH-. Higher quench rates also imply that glass transition will be crossed at a higher 

temperature (i.e., apparent equilibrium temperature (Tae)). Conversely, slower quench rates 

will result in higher H2Om concentrations and a lower Tae. Dingwell and Webb (1990) 

postulated that this quench-rate dependency implies a temperature-dependence of the 

species equilibrium in the liquid state. In other words, this means that Keq (Eq. 2.2) also is 

temperature dependent. After that idea was proposed, several studies have demonstrated 

that Keq increases with temperature (e.g., Ihinger, 1991; Zhang et al., 1991; Nowak and 

Behrens, 2001), meaning that for a given H2Ot, equilibrium at higher temperatures leads to 

higher OH- contents and vice versa.  
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The amount of dissolved H2O preserved in subaerially quenched volcanic glass can 

be directly measured by spot-based (e.g., Fourier Transform Infrared (FTIR) and Secondary 

Ion Mass (SIMS) spectroscopy and Raman) and bulk (e.g., Thermogravimetric analysis 

(TGA) and Karl-Fischer titration (KFT)) analytical techniques. The quantification of H2O 

concentration -and the relative abundance of H2Om and OH- species- preserved in the glass, 

can provide information about its formation (e.g., Dunbar and Kyle, 1992; Rust and 

Cashman, 2007; Gardner et al., 2017) as well as about melt volatile contents prior 

fragmentation (e.g., Eichelberger and Westrich, 1981; Bursik et al., 1993) and degassing 

styles acting during the evolution of an eruption (e.g., Taylor et al., 1983; Newman et al., 

1988; Dobson et al., 1989; Taylor et al., 1991). However, volcanic glasses exposed to 

atmospheric conditions can be altered and therefore may contain secondary—meteoric—

H2O (e.g., Eichelberger and Westrich, 1981; Giachetti and Gonnermann, 2013; Fanara et al., 

2015). For that reason, prior to any volcanic interpretation, it is important to know how much 

of the H2O retained in the glass has a magmatic origin.  

 

2.1.2 Primary versus secondary H2O 

Once erupted, pyroclastic material is deposited and exposed to atmospheric 

conditions. If H2O is available in the environment, it can become absorbed by the glassy 

pyroclasts, creating a thin H2O film at their surfaces (Giachetti et al., 2015). During this 

process, several layers of H2O molecules are attached to the glass surface. While the first 

layer is bonded to the glass via Si-O bonds, the subsequent H2O molecules will do it through 

hydrogen bonds between them. As rehydration progresses, some of this H2O can be 

incorporated to the glass structure by diffusion. Rehydration proceeds from the surface 

towards the interior of the glass and if sufficient meteoric water is available, it will be a 

diffusion-limited process. Thus, the degree of rehydration will depend on the time elapsed 

between sample deposition and collection. The total amount of H2O gained by rehydration 

will also depend on the pyroclast specific surface area. A compilation of published matrix-

glass H2O concentrations carried out by Giachetti and Gonnermann (2013) showed a broad 

positive correlation between porosity and water concentration for a large range of eruptive 

styles and ages. 

A number of methodologies have been developed during last decades to assess 

whether a glass has incorporated secondary H2O or not. Some studies have used hydrogen 

(D/H) and oxygen isotopic signatures to distinguish magmatic from meteoric water (e.g., 

Taylor et al., 1983; Tuffen et al., 2010; Fanara et al., 2015). Good spatial resolution of Micro-

analytical techniques, such as Raman or FTIR, allows for analysis of H2O concentration 

gradients from glass surface towards its interior, which are indicative of diffusion profiles 

(e.g., Watkins et al., 2012; McIntosh et al., 2013). At the same time, based on the idea that 
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secondary H2O is mainly incorporated as H2Om (Denton et al., 2009), FTIR can be also used 

for the quantification of H2O species (e.g., Dingwell et al., 2016; Mitchel et al., 2018). Finally, 

TGA analysis has also shown to be a useful tool to discriminate between primary and 

secondary H2O (e.g., Eichelberger and Westrich, 1981; Anovitz et al., 2008; Giachetti and 

Gonnermann, 2013; Giachetti et al., 2015). This method consists in heating a sample—at a 

specific rate and to a specific temperature—and recording it loss of weight. The main 

assumption behind this technique is that secondary H2O is more weakly bound to the glass 

chemical structure than magmatic H2O (Denton et al, 2009; Giachetti et al., 2015). It is 

important to note that due to the fact that this is a bulk weight loss method, the contribution 

of other volatile species (e.g., halogens, S, CO2) has to be ruled out with the aid of a 

complementary technique. Another weight-loss method used is KFT (e.g., Behrens et al., 

1996; Fanara et al., 2015). Although the variety of methods described, none of them can be 

used to asses quantitatively for post-eruptive rehydration without potential problems. This is 

mainly because important aspects of glass rehydration at very low temperatures remain 

unresolved (Giachetti and Gonnermann, 2013). 

Other processes that can hinder the interpretation of H2O degassing signatures 

preserved in glasses include the interaction of the hot melt/glass with a hydrothermal system 

(e.g., Tuffen et al., 2010) and bubble resorption (e.g., Yoshimura and Nakamura, 2008; 

Watkins et al., 2012; McIntosh et al., 2014). Bubble resorption is a solubility dependent 

process. As a melt experience decompression in its way to the surface, solubility decreases 

and H2O is exsolved from the melt into the growing bubbles. However, a subsequent 

increase in solubility (i.e., increase in P, decrease in T) in the system before quench, can 

lead to the migration of the volatile back into the melt. Bubble resorption is a process that 

occurs largely above melt‘s glass transition (McIntosh et al., 2017). 

 

2.1.3 H2O contents in rhyolite deposits 

During the last decades, a considerable number of works have reported residual H2O 

contents in non-vesicular rhyolite volcanic glass (i.e., obsidian). A compilation of many of 

them is shown in Figure 2.1. Interestingly, while H2O preserved in glasses associated with 

explosive activity deposits (i.e., tephra fallout and PDC deposits) ranges from 0.08 to 3.12 

wt.%, and a mean of 1.1 wt.%, for effusive products the H2O range is significantly narrower 

(0.05 to 0.37 wt.%), with a mean of 0.20 wt.%. 
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Fig. 2.1 H2O content distribution of rhyolite obsidian glass for explosive (black) and effusive (red) 

activity based on available data. Sources: Eichelberger and Westrich, 1981; Taylor et al., 1983; 

Newman et al., 1988; Bagdassarov and Dingwell, 1993; Bagdassarov et al., 1996; Stevenson et al., 

1997; Castro and Mercer, 2004; Tuffen and Castro, 2009; Castro et al., 2012; Barnes et al., 2014; 

Castro et al., 2014; ; Ryan et al., 2015; Gardner et al., 2017; von Aulock et al., 2017.  

 

Eichelberger and Westrich (1981) were the first to study H2O content preserved in 

rhyolite obsidians to constrain its abundance in the deposits and evolution throughout an 

eruption. The authors performed TGA measurements in glasses from a series of rhyolite 

volcanic sequences in the Pacific Northwest (USA)—Medicine Lake, Inyo Domes and Crater 

Lake—deposited up ten thousand years ago. Results showed an abrupt decline in volatile 

content from explosive (0.3 to 1.3 wt.%) to effusive products (0.05 to 0.2 wt.%). After that 

pioneering study, Taylor et al. (1983) analysed obsidian clasts from what they called ―very 

young‖ (≤ 2000-yr-old) rhyolite eruptions from Newberry caldera, Medicine Lake and the Inyo 

Domes chain. These authors observed a large variation within individual eruptive 

sequences, with H2O content decreasing with the progress of the eruption. H2O 

concentrations up to 3.1 wt.% were measured in obsidians from the explosive deposits. 

Furthermore, they identified an apparent boundary between H2O content from explosive and 

effusive deposits at ~0.4 wt.%. Eichelberger et al. (1986) further investigated the abundance 

of this volatile species in effusive deposits by drilling in a 600-yr- old obsidian dome of the 

Inyo Domes (Ca). The authors reported values in the range of 0.1 to 0.4 wt.%, consistent 

with previous studies. Newmann et al. (1988) were the first to examine the volatile 

geochemistry (H2O and CO2) of a rhyolite eruptive sequence by infrared spectroscopy 

(FTIR). The authors were able to analyse obsidians from a well-defined stratigraphic 

sequence related to the 1340 A.D Mono Craters eruption (US). They reported H2O values 

ranging from 0.5 to 2.6 wt. % for the explosive deposits, while glasses from effusive activity 

showed values <0.4 wt.%. The maximum and mean observed H2O contents tend to 

decrease with increasing stratigraphic height (i.e., as the eruption progressed) and by first 
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time, a significant variability in H2O concentration within each stratigraphic horizon of the 

pyroclastic deposits was reported. These deposits were later investigated also by Barnes et 

al. (2014) and Gardner et al. (2017), finding similar ranges of H2O contents. Dunbar and 

Kyle (1992) measured H2O concentrations in 6500 - 20000 yr-old rhyolite tephra deposits 

from the Taupo Volcanic Zone in New Zealand by applying KFT. H2O contents obtained for 

these sequences were between 0.2 and 2.5 wt.%. However, the authors reported some 

technical limitations for the determination of H2O contents <0.4 wt.%. For that reason, their 

results are not shown in Fig. 2.1. More recently, Rust and Cashman (2007) investigated the 

origin of obsidian pyroclasts related to the 650 A.D Newberry volcano eruption. The authors 

characterized obsidians textures and volatiles contents (H2O and CO2) by performing a 

detailed sampling of a 2.65 m thick fallout deposit. Their results from infrared spectroscopy 

measurements showed that H2O contents range between 0.1 and 1.5 wt% and, although an 

overall decrease of H2O with eruption progression was observed, the volatile depletion trend 

is not as evident as those described in previous studies. Rhyolite obsidian H2O contents 

were also reported in many other studies in which the goal was not the characterization of 

H2O during eruptive events per se but the performance of experiments (Bagdassarov and 

Dingwell, 1993; Bagdassarov et al., 1996, Stevenson et al., 1997; Ryan et al., 2015; von 

Aulock et al., 2017). Even though the large number of measurements and detailed 

characterization of H2O content in diverse rhyolite deposits around the world, the lack of 

direct observation of these events did not allow for precise time constraints on the observed 

hydrous geochemical trends and stratigraphic patterns. 

On the other hand, despite pumices (i.e., vesicular glass) being by far more abundant 

in rhyolite deposits than obsidians (Newmann et al., 1988; Rust and Cashman, 2007, 

Watkins et al., 2012), H2O content data on this pyroclastic component is scarce. This might 

be probably related to the ease of these porous samples to incorporate significant amounts 

of secondary H2O in relative short time. Among the few exceptions, Eichelberger and 

Westrich (1981) found that pumices contained a broader range of H2O content (0.5–2 wt.%) 

than the co-eruptive obsidians, a fact they attributed to the presence of secondary H2O. 

Newman et al. (1988) reported 3.07 wt.% H2O for a pumice from Mono Craters, also a value 

higher than any of the measured in the obsidian chips. Dingwell et al. (2016) characterized 

the H2O content distribution in a 8.7 Ma old tube pumice from the Ramadas Volcanic Center 

(Altiplano, Argentina), finding values between 4.8 and 5.5 wt.%. The authors estimated that 

only between 0.86 and 1.01 wt.% of that H2O was magmatic. Giachetti and Gonnermann 

(2013) provided values ranging from 0.92 to 3.01 wt.% for pumices from Medicine Lake, 

Glass Mountain. Unlike the case of obsidians, to date no systematic study exists about 

residual magmatic H2O content preserved in pumices during the evolution of an eruption. 
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2.1.3.1 Recent rhyolite eruptions 

The eruption of Chaitén, in 2008, and of Cordón Caulle later in 2011, generated vast 

amount of fresh rhyolite glass (Castro and Dingwell, 2009; Alfano et al. 2011; Castro et al., 

2013). Castro et al. (2012a) were the first to measure the concentration of H2O retained in 

obsidians from 2008 Chaitén eruption. By using synchrotron-FTIR, the authors analysed 

almost 200 pyroclasts, spanning the entire eruptive interval. According to their 

measurements, total H2O contents preserved in explosive products range from 0.1 to 1.4 

wt.%, while the dome extruded in May 2008 present H2O contents <0.4 wt.%. Magmatic CO2 

was not detected in any of the analysed samples. Castro et al. (2014) performed Thermal 

Conversion Element Analyzer (TCEA) mass spectrometry measurements to analyse H2Ot 

and H-isotopic composition over a variety of 2008 Chaitén and 2011 Cordón Caulle eruptive 

products. Chaitén eruptives exhibited similar bulk H2O (0.1–1.6 wt.%) than the ones reported 

by Castro et al. (2012a). H2O preserved in obsidian bombs ranges from 0.22 to 1.59 wt.%, 

with an average H2O content of 0.9 wt.%. The authors also found that in most of the cases, 

tuffisites (i.e., pyroclastic channels) were drier than their hosting obsidians. Furthermore, 

they provided the first H2O values of recently-erupted Plinian pumice fragments (bombs and 

fallout deposits). Interestingly, all the values were consistently around 0.7 wt.%. On the other 

hand, the products of Cordón Caulle eruption were found to be significantly drier, both 

pumices and obsidians. H2O contents reported for these eruptives were uniformly low (<0.35 

wt.%), in agreement with the values reported by Schipper et al. (2013). No systematic 

differences in either δD or H2O exist for the various eruptive phases and products of this 

eruption. For that reason, this study will focus only on the deposits related to 2008 Chaitén 

eruption. 

 

2.2 Methodology 

2.2.1. Sampling strategy  

Deposits formed during each of the three eruptive phases of 2008–2010 Chaitén 

volcano eruption were sampled in several field campaigns spanning 2008 to 2016. Samples 

were collected at variable distances from the vent, both inside and outside the caldera, and 

comprise: distal Plinian tephra fallout, PDC deposits and volcanic bombs (explosive phase), 

a tephra cone developed around the vent during the hybrid activity and the lava dome 

(effusive phase) (Fig. 2.2). 

A tephra fallout deposit from the explosive phase was sampled twice, first in June 

2008, shortly after the onset of the eruption, and later in February 2016. Samples were 

collected from the same area of the Amarillo River, some 15 km SW of the volcano (Fig. 

2.2). According to Alfano et al. (2011), this deposit corresponds to the Plinian activity that 
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took place during 3 May 2008. The fallout deposit sampled in 2016 was 20 cm thick at the 

location and it was in contact with the pre-2008 soil (Fig. 2.3A). Samples were collected 

every 2 cm, following the same criterion than Prof. Jonathan Castro when sampled the 

deposit in June 2008. Once in the laboratory, samples were sieved and glassy, bubble-free, 

obsidian chips >250 µm selected with the aid of an optical microscope.    

 

Fig. 2.2 Satellite image showing the location of the study area and the sampling spots. In the upper 

right corner, a detailed image of Chaitén volcano. 

 

The obsidian and pumice bombs were collected from an area of highly cratered land 

located to the north of the Chaitén dome and within the caldera during several field 

campaigns between 2010 and 2016 (Fig. 2.2). Due to the regular occurrence of rock falls 

from the lava dome, only bombs embedded in the PDC deposit were sampled in its vicinity 

(Fig. 2.3B). Faced with the logistic impossibility of whole-bomb collection, the main strategy 

consisted of sampling centimetric-size fragments with no evidence of alteration. 

Nevertheless, 15 complete specimens were brought to the lab for further investigations.  

Following the same criteria, material from the earliest extruded lava lobe (May, 2008; 

Pallister et al., 2013), which is exposed on the northern end of Chaitén caldera was collected 

(Fig. 3.3C). A sample of a lava dome mapped by Pallister et al. (2013) as part of the pre-

2008 lava dome was also obtained. 

Regarding the transitional phase, a section of a tephra cone overlying the 2008 and 

pre-historic lava domes and exposed in the SE, was sampled. The outcrop presents a 

thickness of 4.25 m and, based on textural characteristics, a number of stratigraphy layers 
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were defined (Fig. 3.3D). All the layers were sampled. Once in the laboratory, the bulk 

material sampled was dried, sieved and glassy pyroclasts (i.e., obsidians and pumices) >1 

mm hand-picked. 

 

Fig. 2.3. Samples collected from the three eruptive phases (explosive, A–B; effusive, C and 

transitional, D). A) Ash deposit in the Río Amarillo area. Each dot line represents a horizon from which 

a sampled was collected. B) Arrows point two obsidian bombs sampled from a PDC deposited (inside 

the caldera) during the first week of activity. C) North face of the lava dome complex. Black arrow 

points the lava lobe extruded in May 2008, from which a sample was taken. D) Stratigraphic section of 

the tephra cone built during the transitional phase. Four main layers (A, B, C and D), and a series of 

sub-layers were identified. 

 

2.2.2 H2O content determination 

A set of samples from the different deposits described above were selected to 

analyze their H2O contents. H2O concentrations in bubble-free (<5%) glassy samples (i.e., 

obsidians) were obtained by applying Fourier Transform Infrared (FTIR) spectroscopy. High 

porosity represents a limitation for this analytical technique. For that reason, Differential 
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scanning calorimetry-Thermogravimetric analysis (DSC-TGA) was used as a complementary 

technique to obtain H2O contents of pumices. 

  

2.2.2.1 FTIR measurements  

A total of 493 obsidian samples were analyzed by FTIR to determinate their H2O 

contents (Table 2.1). In addition to total H2Ot, hydrous species concentrations were also 

discriminated. The method also allows for quantification of CO2, but it was not detected in 

any FTIR experiments. Measurements were carried out at the facilities of the Institute für 

Geowissenschaften at the Johannes Gutenberg University (JGU) following the protocols 

described by Castro et al. (2012a) and von Aulock et al. (2014). Samples were embedded in 

epoxy, sectioned into thin wafers with a Buhler slow speed saw, and then doubly polished 

with diamond-impregnated lap wheels. Spectra were acquired using a Nicolet Continuum 

FT-IR Microscope attached to a Nicolet 6700 FT-IR bench, with a KBr-beamspliter, a MCT/A 

detector and a 15x objective. Measurements were performed in transmission mode, on the 

doubly polished wafers that ranged from 95 to 500 µm thick.  Wafer thicknesses were 

measured using a digital Mitutoyo® ball micrometer, with a precision of ~1 µm. Between 4 

and 38 spots were measured on each bomb and lava sample, while for the tephra fallout and 

transitional cone samples 2 measurements were performed on different spots of the sample. 

Size of the analyzed samples was 1 to 2 mm and 500 µm to 1 mm for the transitional cone 

and Plinian fallout deposits, respectively. Between 256 and 512 scans were collected at 

each single spot at 4 cm-1 spectral resolution, with some few exceptions in which 1026 scans 

were collected in order to increase the signal/noise ratio. Background spectra comprising the 

infrared signal of a sample-free aperture were collected every 10 min and subsequently used 

by the onboard Omnic software to background-correct each unknown sample spectra. 

Absorbance values (A) in conjunction with absorption coefficients (ε; Ihinger et al., 1994; 

Withers and Behrens, 1999) and the Beer-Lambert law were used to determine the 

concentration (ω) of each hydrous species in weight fraction: 

  
   
     

  (2.3) 

where M is the molar mass of the absorber, l the path length (i.e., thickness) and ρ the 

density. The absorbance of the hydroxyl (OH-) peak at 4512 cm-1 and molecular water 

(H2Om) peak at 5200 cm-1 were used to quantify individual and bulk hydrous components. 

When not saturated (i.e., peak heights less than 1 absorbance unit), the total water (H2Ot) 

peak at 3750 cm-1 was also used, and this provided an independent control on the bulk H2O 

values obtained by summing the concentrations of the two hydrous species. A glass density 

value of 2300 kg m-3 was assumed for all the samples. This value is based on an average 
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Chaitén rhyolite glass density and it is in agreement with values measured with a 1mL 

Witeg® pycnometer.  

  

Table 2.1 Summary of FTIR measurements on obsidian samples   

Eruptive phase Deposit 

N° samples 

analysed 

N° total 

measurements 

Explosive Bomb field 69 528 

 

Tephra 

fallout 

2008 58 120 

 

2016 91 184 

Transitional Pyroclastic cone 274 551 

Effusive Lava dome 2 10 

Total 

 

493 1393 

 

2.2.2.2 DSC-TGA measurements 

Differential scanning calorimetry-Thermogravimetric analysis (DSC-TGA) was 

performed at the Ludwig Maximilian University (LMU), Germany. The instrument used was a 

STA 449 C Jupiter®, which allows for simultaneous DSC-TGA analysis. Pumice samples 

were hand-picked from different stratigraphic layers of the transitional cone (Fig. 2.3D). Prior 

to the analysis, samples were oven-dried at 60°C. Pyroclast with a weight between 20 and 

30 mg were placed in a tared platinum cup on the DSC-TGA sample beam and heated from 

room temperature (~21°C) to 1100°C at a constant rate of 25° C min-1. A total of 11 samples 

were analyzed. A second measurement was performed on several samples to confirm that 

samples lost the totality of their volatiles during the experiments. Measurements were carried 

out by Dr. Kai-Uwe Hess.   

 

2.2.3 Electron Probe Microanalysis (EPMA) 

A total of 12 obsidian samples spanning the complete eruptive sequence (from 

explosive to effusive) were selected to analyze their major element glass compositions. 

Measurements were performed with the electron microprobe available at the Institute für 

Geowissenschaften-University of Mainz. Following the standard preparation procedure, all 

the samples were first polished and then carbon coated. For the measurements, a 10 µm 

spot was used with a beam current of 60 nA for Cl, F, S and P, and 4 nA for all other 

elements, with counting times of 50–200s per analysis. During the measurements, Na peaks 

were counted first to avoid significant migration during the run.  
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2.3 Results 

 Chaitén obsidians exhibit a wide range of H2Ot contents (0.1 to 3.44 wt.%), 

significantly expanding the upper H2O limit reported by Castro et al. (2012a, 2014). The 

dome obsidians have the lowest H2O concentrations. Measurements revealed that the 

sample collected from the lava lobe extruded in May 2008 preserves 0.13 wt.% of this 

volatile species, while the one mapped as part of the pre-2008 dome has retained 0.3 wt.%. 

Figure 2.4 shows H2O content distributions for the obsidian clasts from the different 

pyroclastic deposits studied. Obsidian bombs (Fig. 2.4A) present the narrowest H2O range 

(0.57 to 1.77 wt.%) and values define an unimodal right-skewed distribution, with a peak in 

~0.6 wt.% and a mean of 0.92 wt.%. The most interesting aspect of this graph is how the 

absence of bombs containing less than 0.5 w.t.%, defines a sharp lower limit for the H2O 

content distribution of these pyroclasts. Distributions of H2O retained in obsidians from 

tephra fallout deposits associated with the explosive (Fig. 2.4B) and transitional (Fig. 2.4C) 

phases show a higher degree of symmetry than the observed for the bombs (Fig. 2.4A). 

Nevertheless, the distribution for Plinian fallout glasses is slightly skewed to the right, 

showing a longer tail to high H2O contents. Maximum H2O value observed in the glasses 

from the transitional cone is 2.7 wt.%, while for the tephra fallout deposit obsidians with up to 

3.44 wt.% H2O were measured. Average H2O contents are similar for both set of samples 

(~1.1 wt.%). A distinctive feature shared by both distributions is their strong bimodality, 

associated with the presence of a second mode at H2O ~0.2 wt.%. Interestingly, in each 

series the two modes are clearly defined and separate by a sharp decrease in H2O between 

0.4 and 0.5 wt.%. When distributions observed in Fig 2.4A–C are compared with values 

reported in previous studied for effusive and explosive rhyolite glasses (Fig. 2.4D), it is 

possible to observe that the distribution of H2O in bombs as well as the main modes of the 

transitional cone and Plinian fallout data sets overlap with the distribution for explosive 

products. In the same way, the secondary peaks observed in these two last deposits at H2O 

~0.2 wt.% coincide with the H2O distribution characteristic for effusive rhyolites. Thus, it is 

likely that samples with H2O <0.5 wt.% observed in Fig. 2.4B and C, represent fragments of 

the pre-existing dome through which the 2008 eruption developed. In this sense, these 

samples represent lithic fragments and not primary 2008 magmatic components. In the case 

of the transitional phase, these obsidians could also be juvenile degassed material 

associated with the lava dome that was being extruded simultaneously with the occurrence 

of explosive activity. 
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Fig. 2.4. H2Ot content distribution of 2008 Chaitén pyroclastic obsidians erupted during the explosive 

(A–B) and transitional (C) phases. Graph D shows a comparison between density curves of these 

measurements with the H2O reported for rhyolite glasses in previous studies (Fig. 2.1). The amount of 

H2O was determined by FTIR, following the procedure described in section 2.2.2.1. For the complete 

list of measurements see Appendix A.   

 

Box plots in Fig. 2.5 provide additional elements for the comparison of the 

distributions observed for the different deposits. Fig. 2.5A shows the same data that was 

presented in Fig. 2.4. The different degrees of symmetry of the distributions can be clearly 

identified from the comparison between mean and median values. As described above, 

symmetry of the distributions increased from bombs to transitional phase glasses. The 

dispersion of the distributions also increased in this way, as indicated by the inter-quartile 

box sizes. Box plots also allow for the identification of outliers. While for the bombs all the 

values >1.47 wt.% are considered outliers (n = 3), for the Plinian tephra fallout distribution 

the outliers are all the values >2.04 wt.% (n = 10). No outliers for the transitional cone are 

observed. In figure 2.5B, the same box plots for the three different deposits are shown, but 

excluding the glasses with H2O <0.5 wt.%. When these data points are not considered, both, 

Plinian fallout and transitional cone data sets show skewed-right distributions. At the same 

time, the exclusion of the driest glasses results in a lower degree of dispersion of the 

distributions. As a consequence, the number of outliers increases. In this case, all the 

samples from the tephra fallout and transitional cone data sets with H2O content >2.01 (n = 

11) and 2.64 wt.% (n = 1), respectively, are considered outliers. As no obsidian bombs with 
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H2O values >0.5 wt.% were identified, no changes in the distribution is observed for this data 

set.      

 

Fig. 2.5 Box plots of H2O data from the different deposits shown in Fig. 2.4. Each box plot is 

constructed from five values: the smallest value, the first quartile (Q1), the median (Q2), the third 

quartile (Q3), and the largest value. Outliers are plot as individual points (black dots) and represent 

values that are larger than Q3 plus 1.5 times the inter-quartile (Q3–Q1) range or smaller than Q1 

minus 1.5 times the inter-quartile range. The median is represented as a thick horizontal black line 

inside each box, while black triangles shown the mean for each set of values. 

 

Figure 2.6A shows the concentrations of H2Om and OH- groups that are dissolved in 

the glasses from the different deposits studied. Obsidian pyroclasts from the Plinian tephra 

fallout and transitional cone deposits contain more OH- at fixed total H2O content than the 

obsidian bombs. At the same time, differences between glasses from the first two 

aforementioned deposits are observed at H2Ot >1.6 wt.%, as evidenced by the larger 

dispersion of data at higher OH- and H2Om contents. On closer inspection, Fig. 2.6A reveals 

that there is a group of samples from the transitional cone that lie out of the main trend, 

showing a larger range of H2Om content for a certain OH- concentration. With the exception 

of this last feature, the speciation data is in agreement with the one reported by Castro et al. 

(2012a), as shown in Fig 2.6 (B–D). In all the cases, trends from both studies overlap and 

show similar degree of dispersion. Furthermore, these figures (Fig. 2.6B–D) demonstrate 

how the results of this study extend the range of H2O contents measured in each deposit. 

Castro et al. (2012a) attributed the different H2O species ratio observed between the 

deposits to their distinct thermal histories, related to different magma ascent and cooling 

histories. The authors verified their hypothesis by providing cooling rate calculations based 

on Zhang et al. (2000). Results showed average cooling rates of 500 K s-1 for the pyroclasts 

from the Plinian tephra fallout and transitional cone deposits, 1 K s-1 for tuffisite bombs and 

0.01 K s-1 for effusive obsidians. 
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Fig. 2.6 Hydrous speciation in Chaitén obsidians as determined by FTIR. In A, the speciation data 

obtained for the different group of samples is shown. In B to D, H2O species for each set of pyroclastic 

obsidians are compared with H2O speciation data published by Castro et al. (2012a). Each dot 

represents an average of 2 to 38 punctual measurements (see Appendix A for details). Error bars are 

smaller than respective symbols. 

 

 Pumice samples collected from the transitional cone deposits showed a loss in mass 

relative to the initial mass sample of 0.65 to 1.68 wt.%, when heated during the DSC-TGA 

experiments (Table 2.2). Due to the fact that no evidence of CO2 was detected during the 

FTIR measurements, all the weight loss is attributed to the release of H2O. These results will 

be further analyzed in the discussion.  

 

Table 2.2 H2O content of pumice samples from the transitional phase measured by DSC-TGA 

Stratigraphic 

unit 

Sample H2O released 

pre-Tg (wt.%) 

H2O released 

post-Tg (wt.%) 

Total H2O* 

released (wt.%) 

D 
D4_p2 0.04 0.51 0.65 

D4_p1 0.37 0.62 1.09 

C 
C6_p1 0.3 0.69 1.09 

C4_p2 0.37 0.63 1.10 
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C4_p1 0.32 0.5 0.92 

C1_p1 0.53 0.8 1.43 

B 

B4_p2 0.62 0.87 1.59 

B4_p1 0.88 0.77 1.75 

B2_p1 0.88 0.7 1.68 

A 
A1_p2 0.38 0.77 1.25 

A1_p1 0.78 0.89 1.77 

     

* Values were corrected by adding 0.10 wt.% to account for unextracted H2O in glasses after heating (Leschik et 

al. 2004) 

 

Glass chemistry is a useful tool to distinguish between deposits from different 

sources and volcanic events (e.g., Fontijn et al., 2014). In Fig. 2.8, glass compositions of 

samples from the different eruptive phases of 2008 Chaitén eruption are shown. For ease of 

comparison, values were normalized to the composition of an obsidian bomb representative 

of the explosive phase.  

 

Fig. 2.7. Glass composition of the 2008 Chaitén eruptives. Values are normalized to the composition 

of an obsidian bomb (CH_2016_04) for ease of comparison between products of the different eruptive 

phases. Each curve represents an averaged value of 3 to 6 measurements. A complete list of the 

EMPA analysis can be found in Appendix B. 
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All glasses measured are rhyolite in composition, with similar SIO2, Al2O3, Na2O, CaO 

and K2O values irrespective of the eruptive phase. Subtle differences are observed for FeO, 

TIO2, while variations are larger for MgO and MnO. However, no apparent correlation is 

observed between these variations and eruption progression (i.e., position in the 

stratigraphic record). The large amplitude of the curves at MgO and MnO can be explained 

as an artifact due to the manner in which the results were plotted. In particular, since MgO 

and MnO are both of low concentration, an even minor fluctuation in their values could 

represent a relatively large difference with the obsidian bomb used as a reference. Figure 

2.8 also includes a pumice from the explosive phase measured in Castro and Dingwell 

(2009), which composition is within the range of the ones measured in this study. 

Furthermore, the values obtained for the different products are in agreement with the EPMA 

analysis presented by Amigo et al. (2013). Altogether, this indicates that all the samples are 

derived from the same magma source.  

 

2.4 Discussion 

 Each of the deposits that represent the three eruptive phases observed during 2008 

Chaitén eruption preserves specific H2O ranges preserved in their glasses. As introduced in 

section 2.1.3, evolution of H2O during the progression of an eruption was already studied in 

some Holocene rhyolite eruptions throughout the Pacific Northwest (USA). However, due to 

the lack of direct observations, before the eruption of Chaitén in 2008 precise constraints on 

the time of deposition of the different eruptive products was missing. In this sense, this 

eruption gave us the opportunity, for the first time, to associate the deposits, and hence their 

preserved H2O, with a precise timeline of their eruption. This allows for the study of H2O 

content evolution during the 2008 Chaitén event, at the same time that offers a platform 

rooted in observation to go back and reinterpret some of the many rhyolite eruptions that 

occurred in the late Holocene.  

 

2.4.1 Magmatic or secondary H2O? 

A necessary first step to any interpretation of the results is to elucidate whether the 

H2O measured in the glasses is magmatic or if there are also contributions from meteoric 

sources. This is particularly relevant in light of the high values obtained (up to 3.5 wt.%) for 

some of the glasses from the explosive and transitional phases. Considering the slow 

diffusivity of H2O at low temperature (10-24 and 10-21 m2 s-1; Giachetti and Gonnermann, 

2013) and the short time elapsed between sample deposition and collection (<8 yrs.), the 

extensive incorporation of H2O into the glass chemical network seems highly unlikely. 

Oxygen isotope composition measured by Castro et al. (2014) on a lava dome sample also 
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ruled out the presence of meteoric H2O. Nevertheless, Chaitén eruptives were exposed to a 

wet environment once ejected into the atmosphere, as this volcano is located in a region 

with an average annual rainfall of ~2400 mm. This might be particularly relevant for the case 

of pumices, which higher specific surface areas could facilitate the incorporation of 

significant amounts of H2O by adsorption.  

 

2.4.1.1 Hydrous speciation 

The analysis of H2O species provides a relatively simple and powerful tool to shed 

light on the origins of the H2O retained in volcanic glasses. As described above, the relative 

abundance of OH- and H2Om is determined by Keq (Eq. 2.2), which defines the equilibrium 

species concentration for a certain set of conditions. Any perturbation to this equilibrium will 

lead to compensation by the interconversion reaction (Eq. 2.1). Importantly, the speed of this 

reaction decreases with falling temperature (Zhang et al., 1991; 2007). If H2Om enters the 

melt at magmatic temperatures, Eq. 2.1 will act rapidly to convert that H2Om into OH-. 

However, at lower temperatures, the interconversion rate is considerably slower and it will 

become negligible once the glass transition is crossed. The temperature at which this occurs 

is named the temperature of apparent (or last) equilibrium (Tae). In a scenario of low-to-

negligible interconversion rate, all the H2Om that enter the melt/glass structure will remain as 

H2Om. In this extreme case, we have the scenario of meteoric hydration.  As a consequence, 

this will give to OH:H2Om ratios that differ (they will be smaller) from those expected under 

equilibrium conditions (Eq. 2.2). 

The data was examined for evidence of disequilibrium speciation. The hydrous 

speciation data from the different deposit, as determined by FTIR, was compared with the 

equilibrium speciation model developed by Nowak and Behrens (2001): 

             
     

        
  (2.4) 

For the calculations, the procedure implemented by Mitchell et al. (2018) was followed. In 

their work, the authors used the systems of equations provided by Zhang and Ni (2010): 

       
  

      
  

      
 
        

 

 (2.5) 

       
     

  
       (2.6) 

                      (2.7) 

                  (2.8) 

where square brackets denote molar fraction, Cw is H2Ot in wt.% and W the weight of the dry 

melt per mole of oxygen. Based on the XRF data presented in Table 3.2, W assumed a 
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value of 32.5 g mol-1. Rearranging the equilibrium equation (Eq. 2.2) in terms of [H2Ot] (Eq. 

2.5), the concentration of H2Om in wt.% (CH2Om) can be calculated for a given H2Ot (wt.%) 

and temperature:  

     
 

                  √   √              
                             

 (     )      
  (2.9) 

As mentioned in the introduction of this chapter, Keq depends on temperature (see also Eq. 

2.4). In order to cover the complete spectrum of possible Keq values and realistic scenarios, 

equilibrium speciation was estimated for a range of temperatures. The upper limit selected 

was the maximum eruptive temperature estimated by Castro and Dingwell (825°C) while the 

lower limit considered the lowest experimental glass transition temperature (Tg found for H2O 

rich rhyolite with a cooling rate <1 K min-1 (Giordano et al., 2005). 

Figure 2.8 provides the results obtained from this comparison. Most of the data from 

the different deposits show OH-:H2Om ratios that correspond to equilibrium speciation 

between 700–500°C.  

 

Fig. 2.8 Comparison of H2O speciation data from the different deposits of Chaitén with the equilibrium 

speciation model of Nowak and Behrens (2001). The grey area represents equilibrium speciation for a 

range of temperatures between 400 and 825°C. Red lines are the equilibrium speciation conditions for 

Chaitén eruptive temperatures estimated by Castro and Dingwell (2009).   
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The sharpest trend is defined by the bombs, which exhibit equilibrium speciation 

consistently coincident with Tg = 500°C over the complete range of H2Ot,.The lower apparent 

equilibrium temperatures of these samples in comparison with the other two series are is in 

agreement with the lower cooling rates estimated for these pyroclasts by Castro et al. 

(2012a). Figure 2.8 also shows that towards higher H2Ot values, samples from the Plinian 

fallout and transitional cone deposits tend to present hydrous species ratios corresponding 

to lower Tg. This feature is not surprising, since the presence of higher H2Ot content in a 

melt, will decrease its Tg (Giordano et al., 2008). Another distinctive feature of Fig. 2.8 is the 

higher degree of dispersion observed for the data with H2Ot >1.6 wt.%. This could be 

explained by differences in cooling rates within a particular deposit. As shown in the 

supplementary Fig. S.1 of Castro et al. (2012b), cooling rates estimated for each deposit 

comprise a wide range of values. The authors attributed this to different transport history, 

grain size, or residence time in the conduit of the samples. However, there is a group of 

samples that could not be explained by cooling rates differences. Some 17 samples from the 

transitional cone lie entirely outside the equilibrium speciation field, showing equilibrium 

speciation lower than Tg = 400°C. This strongly suggests the addition of H2Om that was not 

re-equilibrated.  

One possible explanation for the anomalous H2Om values observed in this group of 

samples from the transitional cone is the incorporation of secondary H2O after deposition. 

However, considering that all the samples were collected from a single stratigraphic section 

(Fig. 2.2) that was deposited in a short period of time (<20 days), it seems highly unlikely 

that only a few proportion of the glasses were hydrated. An alternative explanation might be 

the occurrence of re-incorporation of H2Om by bubble resorption. McIntosh et al. (2014) 

proposed that bubble resorption may occur during the quench from melt to glass as H2O 

solubility increases with decreasing temperature. Furthermore, the authors mentioned that 

this might be an extended process that affects all the melts with bubbles that undergo 

quenching. As for the first option, this mechanism of H2O enrichment might not be 

appropriate for explaining the pattern observed in Fig. 2.8. The gap observed for data 

between 500° and 400°C might indicate that the mechanism, from which H2O was 

incorporated, operated only in a fraction of the samples. In support to this idea, it is worth 

noting that 10 out of the 17 samples belong to layer B1. Watkins et al. (2012) proposed an 

alternative explanation for bubble resorption than includes a pressure increase in the 

volcanic conduit prior to eruption. Such a mechanism could satisfactorily explain the 

occurrence of anomalous H2Om for a restrict group of layers. Nevertheless, future works 

should investigate evidence of water resorption as H2O diffusion profiles as well as the 

correlation between H2O species and textural characteristics of the deposits. 
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2.4.1.2 2008 vs. 2016 ash fallout deposits 

The 2008 Chaitén eruption provided the unique opportunity of collecting fresh 

obsidian glass shortly after its deposition. Likewise, subsequent sampling of same deposits 

allows for a longitudinal study -research method in which data is gathered for the same 

subjects repeatedly over a period of time- of the influence of the environmental conditions on 

the H2O retained in the glass. Figure 2.9 compares H2O measurements performed in 

glasses collected from the same spot (and same tephra fallout deposit) in 2008 and 2016. 

As revealed by Fig. 2.9A, H2O distributions are almost identical, with 2016 samples showing 

values slightly higher. Even though at a first glance this could be attributed to some H2O gain 

due to rehydration, H2O species concentrations show no evidences of incorporation of 

secondary H2O (Fig. 2.9B). As pointed out previously, during rehydration H2O is expected to 

be adsorbed and diffused into the glass structure as H2Om. However, when H2Om - OH- 

trends defined for both datasets are compared, they overlap, with no evidence of higher 

H2Om in the 2016 glasses at fixed OH- value. Thus, the difference in bulk H2O observed in 

Fig. 2.9A might be related to minor differences in the stratigraphic position of the analysed 

samples (see Section 2.4.2). In conclusion, these results suggest that no measurable 

amount of secondary H2O was incorporated in the rhyolite obsidians in the time elapsed 

between both sampling campaigns. 

 

 

Fig. 2.9 Comparison of H2O content in glasses from the same Plinian fallout deposit sampled in 2008 

(grey) and 2016 (blue). In (A), the H2Ot content distributions of both set of samples are compared. 

Graph B shows the concentration of H2O and OH
-
 groups retained in these glasses. Glasses with 

H2Ot <0.5 wt.% were excluded from the plots. For details about sampling location reader is referred to 

section 2.2.1. 

 

 

 



C h a p t e r  2  | 44 

 

 

2.4.1.3 DSC-TGA measurements 

The amount of H2O incorporated to the non-vesicular glasses in the time frame 

between the eruption and sample collection appears to be insignifcant. However, high 

porostiy of pumices, calculated in 43 to 80% by Alfano et al., (2012), might have allowed the 

absorption of secondary water by the glass surface. Unfortunately, textural characteristics of 

pumices impose a challenge for the use of point-based measurement techniques (e.g., 

FTIR). For that reason, bulk sample methods, like TGA, are usually preferred instead. During 

TGA, the loss of adsorbed H2O occurs at lower temperatures that the loss of magmatic H2O.  

Eichelberger and Westrich (1981) reported two different temperatures of maximum 

volatile release rate when performing TGA, 300° and 600°C, for pumices and obsidians, 

respectively. More recently, Giachetti et al. (2015) identified that most of the secondary H2O 

is released at temperatures <480°C, while the release of magmatic H2O took place at T 

>600°C. Furthermore, the authors proposed that the maximum mass rate associated to 

primary H2O occurs approximately at the estimated sample Tg. However, they also 

highlighted the influence of the heating rate on the released temperature.  

As reported in Table 2.2, total H2O released by pumices from the transitional phase 

during TGA measurements range between 1.67 and 0.55 wt.%. In Fig. 2.10A and B, mass 

evolution as a function of temperature is shown for the 11 analysed samples. In addition to 

TGA, simultaneous DSC measurements allowed for the estimation of Tg, which for these 

pumices assume an average value of 560°C. Fig 2.10C shows the calculated amount of H2O 

released before and after crossing Tg. Following Giachetti et al. (2015) and assuming that all 

the weight loss after Tg is mainly due to primary H2O exsolution, it is possible to obtain a first 

approximation of the amount of primary and secondary H2O contained by the samples. 

Excluding sample D4_p1, which shows mass loss only at T >Tg, all the other samples 

released between 30 and 55% of its H2O before Tg. Subtracting these percentages to the 

total H2O released suggests that pumices preserve between 0.6 and 1 wt.% of magmatic 

H2O. Interestingly, values of estimated primary H2O are in the range of values reported by 

Castro et al. (2014) (~0.7 wt.% for the explosive phase). However, these should be 

considered as maximum magmatic H2O concentration values, since if the applied heating 

rate was too fast, some of the secondary H2O might have been released after Tg (e.g., 

Sodeyama et al., 1999). Further measurements at lower heating rates are needed to 

evaluate the influence of this parameter on the weight loss curves.  

Despite the uncertainties, TGA measurements demonstrated that, unlike the 

obsidians, pumices show evidences of post-eruptive hydration. The different degrees of 

hydration (different slopes in Fig. 2.10A–B) might be in part attributed to differences in 

samples vesicularity.  
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Fig. 2.10 Mass loss as a function of temperature for the pumices of the transitional phase as recorded 

during the DSC-TGA experiments. Measurements were divided between plot A and B to simplify the 

figure. Tg as estimated by DSC analysis is represented which the vertical grey dot line. In C, a 

detalied of the H2Ot assumed to be realeased during heating before and after crossing the glass 

transition temperature (Tg).  

 

2.4.2 H2O content evolution during 2008 Chaitén eruption 

The results of this study show that H2O content in the melt varied during the course 

of the Chaitén eruption. This confirms earlier evidence found in many deposits of Holocene 

rhyolite eruptions. Figure 2.11 and 2.12 show the H2O content evolution of 2008 Chaitén 

eruption as recorded in the transitional cone and the Plinian tephra fallout deposits, 

respectively. Together with the raw data (grey dots), both figures display the predicted mean 

estimates from a model ran in R (R Core Team, 2013). This analysis was carried out using 

the statistical packages ‗lme4‘ (Bates et al., 2014) and ‗arm‘ (Gelman and Yu-Sung, 2015) in 

a Bayesian framework with non-informative prior probability distribution of the estimates. A 

Gaussian error distribution was assumed, which was confirmed for all response variables 

after visual inspection of model residuals. Subsequently, the ‗sim‘ function was used to 

simulate values from the posterior distributions of model parameters. The 95% credible 

interval around the mean were extract (Gelman and Hill, 2007), representing the uncertainty 

around the estimates. From the figures, a statistically meaningful difference between groups 

can be assumed if the credible interval of one group (i.e. stratigraphic layer) does not 

overlap with the mean estimate of the other. 

A first look to the data displayed in Fig. 2.11A reveals a gradual decrease in H2Ot 

with the progression of eruption. This can be identified both, from the raw data and the mean 

estimated by the model. A difference of ~1 wt.% in the mean H2O content is observed 
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between the basal (1.73 wt.%) and top (0.72 wt.%) layers. At the same time, three sub-

trends can be identified along the sequence (A1 to B3 and B4 to C3 and C4 to D5). These 

fluctuations in H2O might be indicative of heterogeneities in the volatile content of the 

magma. Alternatively, they could be related to different degassing mechanism—with 

associated different efficiencies—operating during the evolution of the eruption. An 

additional interesting feature of Fig. 2.11A is the occurrence of ―H2O content windows‖ within 

stratigraphic horizons. These windows, defined by the H2O content distribution of each layer, 

also shift with stratigraphic position, showing narrower ranges with eruption progress. While 

at the base of the sequence ∆H2O is 1.48 wt.%, at the top the difference between maximum 

and minimum H2O preserved in the glasses is only 0.57 wt.%. It is also important to remark, 

that the observed H2O windows demarcate clear H2O gaps with respect to effusive obsidians 

(see Fig. 2.3C).  

 

Fig 2.11.A H2Ot variations in the transitional cone deposits as a function of stratigraphic position. Grey 

dots represent average glass H2O content for individual chips. Colour dots represent the median 

value while black horizontal bars are their 95% credible intervals. See main text for the description of 

the statistical approach. Glasses with H2Ot <0.5 wt.% were excluded from the analysis and in order to 

simplify the chart they are not shown. The vertical axis is not scaled. For stratigraphic heights and 

thicknesses of the different layers, see plot B. A photo of this stratigraphic section is shown in Fig. 

2.3D. Red squares represent pumice H2Ot as determined by DSC-TGA.  

 

Even though data sets are smaller, similar features are recognized in the 

stratigraphic sequences related to the Plinian fallout deposits (Fig. 2.12). Unfortunately, in 
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these cases the sampling strategy was not based on a geological criterion, making the 

detailed comparison with the results from Fig. 2.11 not possible. Finally, in Fig. 2.11A the 

results of the DSC-TGA measurements on pumices are shown. Interestingly, all the samples 

show H2O contents that coincide with the lower limit of the H2O window defined for that 

layer. Although more measurements are needed to statistically analyse this occurrence, 

preliminary results might be suggesting a relationship between the residual H2O contents 

preserved in vesicular and non-vesicular glasses.  

 

Fig 2.12 H2Ot variations in the Plinian tephra fallout deposit sampled in 2008 (A) and 2016 (B) as a 

function of stratigraphic position. Grey dots represent average glass H2O for individual chips. Colour 

dots represent the median value while black horizontal bars are the 95% credible interval. The same 

statistical approach than for the analysis of the Transitional cone glasses was followed. Although plots 

are scaled, the spatial correlation between the two set of samples is not possible. A photo of the 

deposit sampled in 2016 is shown in Fig. 2.3A. As for the case of Fig. 2.11, glasses with H2Ot <0.5 

wt.% were excluded from the analysis and are not show. 

 

A strikingly similar pattern of H2O content distribution and evolution throughout a 

sequence to the one presented in Fig. 2.11, was observed by Newmann et al. (1988) in the 

deposits of 1340 A.D Mono Craters eruption (see their Fig. 3). The H2O data presented by 

Rust and Cashman (2007) from 1300 B.P. Newberry volcano eruption also presents a range 

of H2O values for each layer. However, the upper and lower boundaries as well as a general 

H2O depletion trend are not as evident as in the previously described sequences. In the light 

of the results of this study, it might be convenient to reanalyse the results of Rust and 

Cashman (2007) excluding the data with H2O <0.5 wt.%. Both, Newmann et al. (1988) and 

Rust and Cashman (2007), offer different explanations for the observed range of H2O within 

single pyroclastic layers, which are strongly related to the origin of the obsidians itself 

Newman et al. (1988) suggested that obsidians represent fragments of the glassy margins of 

the volcanic conduit. In their model, the authors explained the range of H2O contents within a 

stratigraphich layer as the results of glassy material sampled (by erosion) at different depths 
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(i.e., different pressures) by the ―fragmentation front‖. In this way, the maximum H2O content 

of each layer records the maximum depth reached by the fragmentation surface, while the 

H2O depletion trend in the sequence indicates the shallowing of the fragmentation level 

through time. Contrary to this interpretetation, Rust and Cashman (2007) argued that 

obsidian pyroclasts provide limited constraints of the fragmentation level. Furthermore, the 

authors proposed multiple origins for the obsidians of Newberry eruption. More recently, 

Gardner et al. (2017) proposed that obisdians originate from sintering of small glass/melt 

fragments in the conduit. As can be seen, there is no agreement among scientist about the 

origin of obsidians. Finding an explanation to the formation of obsdians necessarily need to 

include an explanation to the braod range of H2O concentrations preserved in the glasses 

and the different degassing mechanisms that take place during an eruption. For that reason, 

in order to provide a robust interpretation of the mechanisms underlying obsidian formation 

during 2008 Chaitén eruption and also of the H2O depletion patterns observed in the 

different deposits, further investigation on the pyroclasts textures and isotopic compositions 

is required. Elucidating the origin of Chaitén osidians includes the challenge of explaining 

how obsidians can preserve up to 3.4 wt.% H2O, considering the fact that pre-eruptive H2O 

at storage levels was estimated in 4 wt.% by Castro and Dingwell (2009). 

 

2.5 Conclusions 

A total of 493 obsidian samples from different deposits representative of each of the 

three phases of 2008–2010 Chaitén eruption were analyzed for their H2O contents by FTIR. 

Results show bulk H2O contents between 0.5 and 3.44 wt.%, with specific ranges for each 

deposit. Obsidian bombs show the narrowest range (0.5–1.77 wt.%), while H2O retained in 

the glasses from the Plinian tephra fallout and transitional cone deposits reach values up to 

2.7 and 3.44 wt.%, respectively. The lowest H2O concentrations were measured in the lava 

dome obsidians (<0.3 wt.%). Altogether, the distributions of H2O in Chaitén eruptives are in 

agreement with the ones observed in glasses associated with explosive and effusive activity 

from previous rhyolite eruptions in other regions. Furthermore, this study has identified a 

sharp boundary at ~0.5 wt.% that separates H2O contents preserved in explosive and 

effusive products. 

Following a multi-methodological approach, the origin of the H2O preserved in the 

glasses was constrained. The analysis of hydrous species revealed that most of the H2O 

retained in the glasses show no evidence of significant incorporation of secondary (meteoric) 

water. The extensive influence of bubble resorption seems also highly unlikely. However, 

disequilibrium speciation observed in a group of 17 samples highlight the need for further 

investigations. The comparison between glasses from the same tephra fallout deposit 

sampled twice, in 2008 and 2016, supports the magmatic origin for the H2O preserved in the 
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obsidians, including the samples from the Plinian Fallout deposits with H2O up to 3.4 wt.%. 

This is somehow surprising, since the pre-eruptive H2O at storage levels was estimated in 4 

wt.% by Castro and Dingwell (2009). On the other hand, DSC-TGA measurements on 11 

pumices showed that this porous pyroclasts were probably hydrated during the time elapsed 

between their eruption and collection. TGA results offer a maximum H2O content estimation 

for these samples, which range from 0.5 to 0.9 wt.%.  

Finally, the evolution of H2O content was analyzed in three stratigraphic sections (two 

from the Plinian tephra fallout and one from the transitional cone). Similar features were 

identified in all the cases, with H2O decreasing from base to top in each sequence. 

Internally, H2O sub-trends were recognized in each sequence. However, the most striking 

finding was the occurrence of ―H2O content windows‖ within stratigraphic horizons, defined 

by upper and lower H2O content values. These water content windows shift with stratigraphic 

position and demarcate clear H2O gaps with respect to effusive obsidians. Overall a well-

defined trend of H2O depletion from the explosive to the effusive deposits is observed for the 

2008–2010 Chaitén eruptive cycle.  

  



 

 

 



C h a p t e r  3  | 51 

 

 

 

 

 

 

Chapter 3 

High temperature-0.1 MPa 

experiments with rhyolite glasses 
 



 

 

 

 



C h a p t e r  3  | 53 

 

 

3.1 Introduction 

Heating natural rhyolitic obsidian glasses at atmospheric pressure above their glass 

transition temperatures results in the growth of bubbles (Murase and McBirney, 1973), which 

indicates that H2O is retained in the volcanic glass since the time of quench. This 

observation has enabled scientists to experimentally investigate H2O exsolution and bubble 

growth kinetics, from nucleation to coalescence and collapse. Since the pioneering study of 

Murase and McBirney (1973), a considerable amount of effort was invested to understand 

the physical and chemical processes related to gas exsolution and vesiculation in rhyolitic 

systems. Bagdassarov and Dingwell (1993) performed 0.1 MPa, high-temperature 

experiments (1200–1400°C) on calc-alkaline rhyolite with H2O content ranging between 0.14 

and 0.2 wt.% to investigate the kinetics of foaming as a result of the internal stress of gas 

expansion. After that, Bagdassarov et al. (1996) investigated the vesiculation of a peralkaline 

rhyolite melt with 0.14 wt.% H2O in the temperature range of (650–950°C) through optical 

and dilatometric methods, demonstrating that a ―time lag‖ exists between the moment of 

supersaturation and the beginning of the vesiculation process. These workers, furthermore, 

parameterized the competing regimes of viscous- and diffusion-controlled bubble growth 

through the use of Peclet (Pe) number quantifications. With a similar approach, Stevenson et 

al. (1997) studied the effects of temperature and viscosity on the kinetics of bubble growth 

and vesiculation at 520–624°C in high water content calc-alkaline obsidians (~1.8 wt.%). 

Navon et al. (1998) explored the kinetics of bubble growth at atmospheric pressure and 375–

460°C in hydrated rhyolitic melts with 5 wt.% H2O, common content for pre-eruptive storage 

conditions. Most recently, Ryan et al. (2015) investigated the expansion and degassing 

behavior of ―dry‖ rhyolitic glasses (~0.11 wt.%) at temperatures between 900 and 1100°C. 

Based on these experiments, a 1-atm, H2O solubility model was developed permitting the 

prediction of water concentration in hydrous glass from porosity data. Von Aulock et al. 

(2017) heated cylindrical cores of obsidian with 0.12–0.16 wt.% H2O to 950°C to understand 

degassing and outgassing procceses in closed and open systems.  

These previous studies provide a good basis for understanding vesiculation in 

effusive products, since these usually retain magmatic water contents up to about 0.3 wt.% 

(e.g., Eichelberger et al., 1986; Castro et al., 2005). The applicability of these studies to 

understanding H2O-temperature conditions found in explosive eruption deposits -as the ones 

described for 2008–2010 Chaitén eruption in Chapter 2- is as of yet unexplored and 

arguably limited, since the pyroclastic glasses produced in explosive rhyolite eruptions are 

so much more water-rich and explosive fragmentation requires that the samples do not 

remain coherent during the course of bubble growth. Accordingly, a range of parameter 

space from H2O contents ranging from 0.20 to 1.8 wt.% was identified (Fig. 3.1). Here the 

existing gap is spanned by performing experiments at eruption-relevant temperatures and 
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applying a new methodological approach that allowed observing and monitoring the 

complete duration of the experiments. Taking obsidian glass drilled from bombs and lava 

dome samples of 2008–2010 Chaitén eruption as starting material, and through a series of 

high-temperature, 0.1 MPa vesiculation experiments, new insights into the response of silicic 

melts to degassing are demonstrated.   

 

Fig. 3.1. Previous high-T, 0.1 MPa experiments performed on obsidian glass and the experimental 

gap identified that this work spanned.   

 

3.2 Methodology 

3.2.1 Samples 

Samples for the experiments comprise decimeter-sized obsidian bombs collected 

during field campaigns in 2010 and 2015 from an area of highly cratered land located to the 

north of the Chaitén dome and within the caldera. Due to the impossibility of detecting H2O 

contents in the field, sampling was made based on the appearance of fresh glass and the 

absence of alteration. Materials from the 2008 lava dome complex were also collected, 

specifically on the earliest erupted lava lobe (May, 2008), which is exposed on the northern 

end of Chaitén caldera (see Fig. 2.3 in the previous chapter). 

 

3.2.2 Experimental and Analytical Methods 

3.2.2.1. Sample characterization and preparation 

The obsidian samples were first analyzed by Fourier transform infrared spectroscopy 

(FTIR) to determinate their H2O contents. Measurements were carried out at the facilities of 

the Institute für Geowissenschaften at the Johannes Gutenberg University (JGU) and a 



C h a p t e r  3  | 55 

 

 

detailed description of this methodological procedure is provided in Chapter 2 (see section 

2.2.2.1). Magmatic CO2 was below detection limits in all samples. The results of FTIR 

measurements guided the selection of 4 samples for experimental investigation (Table 3.1). 

Three of these samples are obsidian bombs (CH_2015_02, CH_2015_05 and CH_2011_5) 

containing between 0.75 and 1.4 wt.% H2O and the other sample is a relatively dry lava 

dome obsidian (CH_2015_01; 0.13 wt.% H2O). It is assumed that all the H2O measured in 

the samples is of magmatic origin, an interpretation that is supported by the results shown in 

Chapter 2. 

 

Table 3.1.  Experimental conditions and H2O contents  

Sample OH
-  

(4512 cm-1) 
H2Om  

(5200 cm-1) 
H2Ot T (°C) 

range 
N° 

experiments 

CH_2015_01 0.12 ± 0.02 - 
a
 0.13 ± 0.01

b
 766-1032 12 

CH_2015_02 0.60 ± 0.06 0.15 ± 0.06 0.75 ± 0.12 728-1001 22 

CH_2015_05 0.66 ± 0.10 0.31 ± 0.07 0.97 ± 0.17 746-1024 42 

CH_2011_05 0.88 ± 0.09 0.52 ± 0.03 1.40 ± 0.13 741-901 18 

Note: complete list of experiment conditions and results in Supplementary Table 1.   

a 
Absorbance peak not detected. 

b
 H2O content calculated from 3750 cm

-1
 peak. 

 

Table 3.2. Bulk composition of Chaitén samples obtained by X-Ray Fluorescence Analysis. 

Sample 
CH_2015_01 

(0.13 wt.%H2O) 

CH_2015_02 

(0.75 wt.%H2O) 

CH_2015_05 

(0.97 wt.%H2O) 

CH_2011_5 

(1.40 wt.%H2O)* 

Average 

composition* 

SiO2 74.43 74.23 73.98 75.6 74.41 (±0.55) 

Al2O3 13.94 13.89 13.86 13.9 13.89 (±0.03) 

Fe2O3(t) 1.55 1.55 1.53 1.5 1.54 (±0.02) 

MnO 0.06 0.06 0.06 0.05 0.06 (±0.004) 

MgO 0.16 0.16 0.15 0.26 0.18 (±0.04) 

CaO 1.47 1.47 1.46 1.46 1.46 (±0.01) 

Na2O 4.16 4.16 4.13 4.04 4.12 (±0.04) 

K2O 3.02 3 3 2.93 2.99 (±0.03) 

TiO2 0.15 0.15 0.15 0.14 0.15 (±0.003) 

P2O5 0.05 0.05 0.05 0.06 0.05 (±0.004) 

Cr2O3 0.001 0.001 n.d n.d 0.001 (±0.002) 

SO3 0.005 0.006 0.008 n.d 0.01 (±0.001) 

Total 99.24 99.62 99.53 99.9 99.52 (±0.21) 

*Average value reported by Castro and Dingwell (2009) that represent the composition of CH_2011_05 (1. 40 wt. 

%) 

 

Under the optical microscope, all glassy samples are texturally isotropic, with 

microlite and bubble contents lower than 5%. The only exceptions are some micrometric-

width flow bands having a locally higher concentration of microlites. Bulk X-ray fluorescence 

analyses (XRF) performed in all the samples indicate homogeneous major element 
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composition, consistent with values published by Castro and Dingwell (2009) (Table 3.2). 

For this reason, an average value of bulk composition will be considered for further 

calculations. 

 

3.2.2.2 Experimental procedure 

Heating experiments were performed on cylindrical obsidian cores drilled from the 

bomb and/or lava sample interiors with a diamond-coring device. Cores had an initial 

diameter of 9 mm and an average height of 3.5 mm. Size was measured with a precision 

digital caliper (ζ ± 0.01 mm) and the samples were weighed with a high-precision balance (ζ 

± 0.01 mg). The ends of the cores were ground flat and polished to avoid irregularities. 

Before running the experiments, all the glassy cores were carefully inspected under a 

microscope for preexisting fractures, and the ones showing damage, significant bubble 

contents (>1 vol.%) or tuffisite veins were discarded. 

A total of 94 experiments at 0.1 MPa and variable temperature (728–1032°C) as well 

as across a range of H2O contents (0.13–1.4 wt.%; Table 3.1 and Fig. 3.2) were conducted. 

Owing to the wide range of H2O contents, the experiments comprise the first analysis of the 

behavior of the full spectrum of degassing levels observed in rhyolitic glasses produced 

during 2008 Chaitén eruption, but also in many other similar systems (e.g., Inyo Domes; 

e.g., Castro and Mercer, 2004).  

 

Fig. 3.2. Experimental series ran at different temperature and H2O conditions. Each symbol 

represents a single experiment. Filled symbols represent experiments with a standard dwell time of 27 

minutes. Unfilled symbols represent experiments with dwell time longer (up to 3 days) or shorter (1 

minute) than standard dwell time. (More details about experimental conditions are shown in Appendix 

C). 

 

The experimental results were grouped into three H2O-content regimes, each of 

which showed clearly distinct behavior upon heating: (1) the low H2O domain, with 0.13 wt.% 
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and represented by the lava dome sample (CH_2015_01), (2) the intermediate domain, 

composed of CH_2015_02 and CH_2015_05 with 0.75 and 0.97 wt.% H2O and (3) the high-

H2O content domain, represented by CH_2011_05 with 1.4 wt.%. 

The cores, initially at room temperature (~25°C), were placed on a stage inside a 

Nabertherm® LT24/12 box furnace that was pre-heated to the target temperature (see 

Appendix C for the complete list of experiment conditions and results). Each experiment was 

run for a total of 27 minutes, which provided a consistent time frame to analyze the 

potentially different behaviors. The only exceptions to the 27–min experimental run-time 

were: 1) the experimental series CH_2015_01, which, due to the low H2O content of these 

samples, required longer times in order to observe a significant response to the heating 

process, and 2) experiments on sample CH_2011_05 were run at significantly shorter times, 

because, due to its very high H2O content, obsidians exploded within minutes of sample 

insertion into the furnace. A second set of complementary experiments was also performed 

over variable durations—long and short dwell times—in order to quantify the response times 

of the obsidian to heating within the first minutes and to therefore establish a lag time (tlag; 

the time between sample insertion and the moment the first expansion or change in volume 

is recognized). Long dwell time experiments were used as well to determine equilibrium 

conditions for low H2O-T experiments of the intermediate H2O content domain. Some of 

these experiments also served as a calibration on the heating rates of obsidians for different 

target temperatures. Once the experimental dwell time was reached, samples were manually 

removed and set on insulation to cool within seconds to room temperature.  

The furnace permits real-time observation of the sample through a 15 X 15 cm 

sapphire window (Fig. 3.3A). The evolution of the experiments was monitored by using two 

cameras, one (EX-F1 CASIO® camera) was used to record the experiment at High Definition 

(HD) and 60 fps, and the second recorded at high-speed (Edgertronic®), which permitted 

digital capture of important fast phenomena—e.g., pyroclast ejection during explosions—

(Fig. 3.3B).  

Special effort was focused on obtaining precise values of the experimental sample 

temperature. Given the presence of a strong thermal gradient within the oven (between the 

bottom and the top and front and back of the furnace), its temperature was additionally 

measured with a chromel-alumel K-type thermocouple (Omega® KMQXL) inserted through 

the back of the furnace and located a few centimeters from the sample. A systematic 

difference of ~10°C between the furnace temperature as read on the controller display and 

the K-type thermocouple was repeatedly observed. As the furnace thermometer is located at 

the top of the inner chamber, the temperature values reported for the experiments 

correspond to the ones measured with the thermocouple probe. In addition, an infrared 

thermometer (Optris® CS laser 2MH-SF) was used to track the temperature evolution on a 
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laser-defined spot (~3 mm in diameter) on the front surface of the sample. As this 

measurement was made through the sapphire window, the infrared sensor was adjusted to 

account for the transmissivity of the window and variable emissivity of the sample, which 

arose due to vesiculation and attendant sample color change from black to grey. In general, 

very small differences (<5˚C) were observed between the thermocouple and IR thermometer 

readings. A series of experiments were performed on the same sample type (CH_2015_01, 

0.13 wt.% H2O) in order to constrain timescales for sample heating. Experiments were run 

twice to check reproducibility. Measurements at a temperature range spanning the 

experimental conditions (740–975°C) showed that samples need between 98 and 80 

seconds to reach the target temperature (Fig 3.4). At higher target T, time needed for the 

sample to reach thermal equilibrium is shorter.   

 

Fig. 3.3. Experimental setup A) Frontal view of the furnace. B) View of the complete experimental 

setup, including the furnace, two cameras (High Speed (HS) and High Definition (HD) cameras), and 

an external source of light. 

 

Fig. 3.4. Curves showing timescales for sample heating at different target temperatures. 
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All video recordings were analyzed with ImageJ software (Abramoff et al., 2004). The 

sample‘s initial cross-sectional area as observed front-on was used as a control parameter 

for tracking the growth evolution through time. The 2D borders of the expanding sample 

were digitized in successive video frames by using the pen tool in ImageJ. Owing to the 

change of color and size of the samples during the vesiculation and growth of obsidian (from 

black to light brown/whitish), that affect the definition of the area boundaries, two errors were 

calculated. During the onset of experiments (before expansion) the initial edge-detection 

error (black sample) is about 1.7%, whereas for more advanced stages of expansion (light 

brown to whitish) it was 1.4%.  

To complement the information obtained from the 2D analysis of the videos, post-

experiment volume of the samples that did not experience fragmentation was also measured 

with a density determiner water pycnometer (gravity cup). The equation ϕ = ΔV/Vf, where Vf 

is the final volume, yields the final porosity of the samples with ζ ± 1%. The instrument was 

calibrated by measuring the volume of steel spheres of different size and comparing the 

values obtained with their theoretical volumes (        
 

 
     ). Calibration showed 

precision of the instrument increases with volume. An overestimation of ~7% in porosity was 

observed for V ~0.25 cm3 while for V ~4 cm3 it was ~1.4%. Additionally, two foamed samples 

from the 1.4 wt. % H2O content series were scanned with a Procon X-Ray computed µ-

tomography system at the University of Mainz in order to document the size and 3D 

structure of vesicles. The scan resolution (~5–10 µm voxel edge length) prevented adequate 

base images to produce sharp 3D models, however, 2D sections through CT stacks were 

adequately sharp for bubble size distribution and number density measurements. Finally, a 

binocular microscope was used to characterize bubble size distributions during the initial 

stages of vesiculation in a subset of experiments from the 0.97 wt.% H2O series. 

 

3.3. Results 

Three types of behavior were identified in the experiments as a result of different 

H2O-temperature experimental combinations (Fig. 3.5): A) expansion + equilibrium, B) 

expansion + shrinking and C) expansion + fragmentation. Expansion is defined here as the 

measurable increase in sample volume after some dwell period due to vesiculation.  

Equilibrium is defined as the state reached whereby vesiculation stops and the sample 

volume remains constant. Shrinking, by contrast, is the tendency for the sample to decrease 

in volume after it has expanded. Fragmentation is the sudden explosive response of the 

sample resulting in innumerable particles. 
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Fig. 3.5. Three different vesiculation behaviors identified through video analysis.  A) Expansion + 

equilibrium (constant volume). B) Expansion + shrink. C) Expansion + fragmentation.  

 

After an initial time lag (Toschev, 1973), defined as the time need for the system to 

heat above the calorimetric glass transition (between 709 and 547°C for Chaitén samples; 

Giordano et al. (2008)) all the experimental samples expanded due to the gas exsolution 

(vesiculation), causing the consequent volume increase. For samples showing behaviors A 

and B, a deceleration in the expansion rate was identified after certain time. Finally, for the 

case of behavior A, the growth of vesicles and expansion stopped and samples reached the 

―equilibrium state‖. In the case of behavior B, after reaching the maximum expansion, 

shrinkage of the samples occurred. For its part, behavior C is characterized by a continuous 

expansion that is disrupted when the sample explosively fragments. It is important to note 

that fragmentation always occurred at a stage in expansion at which samples had not 

reached the equilibrium state 

The three classes of behaviors are reconstructed as a function of time (t) and 

changing sample area (A/A0; where A and A0 correspond to the final and initial cross-

sectional areas, respectively) in Figure 3.6. Characteristic sigmoidal shapes are found for 

behaviors A and B, similar to bubble growth and cumulative volume curves previously 

documented in experiment studies by Murase and McBirney (1973), Bagdasarov et al. 

(1996), Stevenson et al. (1997) and Navon et al. (1998). In contrast to previous studies, 

however, these experiments reveal for the first time the transition from expansion to 
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fragmentation as shown by the steep truncated paths in Fig. 3.6D and generally expressed 

the type C experiments. 

 

Fig. 3.6. Evolution of sample area for the intermediate and high-H2O contents experimental series.  

Each dot represents a video frame in which the area was manually measured. The colors of the 

curves represent the different temperatures, which are color coded to allow the comparison between 

the different series. Frames A and B depict expansion + equilibrium, and expansion + shrinking 

behaviors respectively. In both cases, after an exponential growth phase, the curves show a 

deceleration and the development of a sigmoidal shape. After that, some samples reach their 

maximum size and equilibrate, represented by the curve plateaus at long times. For the highest T 

experiments of these two series, a decrease in the A/A0 ratio was observed, corresponding to 

shrinking of the sample. Graphs C and D depict area evolution of the high-H2O domain samples; in 

these expansion + equilibrium and expansion + fragmentation behaviors are represented. Graph D is 

a close up view of the first 100 seconds of the high-H2O domain experiments, where the 

fragmentation of the cores was observed for T‘s >874˚C. Red stars represent the points of 

fragmentation.   

 

Figure 3.7 illustrates the correlation between initial H2O content and obsidian 

vesiculation behavior, specifically, whether the sample reaches the equilibration state, grows 

and then shrinks, or grows and then explodes. In general terms, the higher the initial H2O 

content, the lower the temperature and shorter the time lag before the onset of exsolution 

and expansion. At higher initial H2O contents, the temperature range over which behavior A 

occurs is furthermore larger. Behavior B was only identified in both intermediate H2O content 

series, with shrinkage of samples occurring some 20˚C lower temperature when initial H2O 
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content is 0.75 wt.%. Behavior C was observed only for the high H2O series (1.4 wt.%), at 

temperatures higher than 874°C. Interestingly three out of nine experiments at T >874°C did 

not explode, however, this is attributed to pre-existing cracks in the samples that may have 

helped bleed off vapor during expansion. The high-T condition of explosive fragmentation 

was confirmed in an additional set of experiments, which are presented in Chapter 4. Lastly, 

the driest obsidians (0.13 wt.% H2O) exhibited no change in volume during the standard 

dwell time (27 minutes).   

 

Fig. 3.7. Different behaviors observed at different temperature and H2O experimental combinations 

during standard 27 minutes-long experiments: A) Expansion + equilibrium (constant volume). B) 

Expansion + shrink. C) Expansion + fragmentation. (*) Dark gray represents samples which did not 

complete the expansion process in the 27 minutes timeframe. 

 

The temperature dependency of obsidian expansion becomes clearer when looking 

in detail at the individual vesiculation curves for each series Fig. 3.6 (A–D). An increase in 

the angle of the slope, which reflects an increase in the sample‘s expansion rate, occurs 

from low to high temperature. Temporal information on expansion is also represented in Fig. 

3.8, where the natural log of the growth time (tgw) is plotted as a function of reciprocal 

temperature. Growth time follows an exponential behavior, with values converging at high 

temperatures. In addition, tgw differences of up to two orders of magnitude were found within 

each single series. As is the case with the growth rates (i.e., the A/A0 slopes in Fig. 3.6), this 

broad range of tgw reflects, in part, the dependency of H2O solubility on temperature, more 

specifically its inverse or retrograde nature (e.g., Ryan et al., 2015).   

Fig. 3.8 also highlights the importance of initial H2O in controlling the timescale of the 

exsolution process. For example, at the same experimental target temperature (~875°C), 

samples showing behavior C needed less than 70 seconds to explosively fragment while 

obsidian cores from the intermediate H2O-content series required much longer times (480–

540 s) just to reach equilibrium conditions. This difference in time between series reflects the 

profound influence of H2O content on the fundamental process of chemical diffusion and 
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melt viscosity, both of which, control rates of bubble growth. The results of volume 

measurements also show the close connection between melt H2O content, temperature and 

bubble growth rates. As observed in Figure 3.9, volumes (Vf/Vi) increase with temperature 

until the point in which behavior B takes place. Interestingly, samples from the high and 

intermediate H2O domains (in particular 1.4 and 0.97 wt.% H2O series), reach final volumes 

that are about the same (Vf/Vi >15). To quantify volume expansion rates, changes in volume 

through time (ΔV/ΔT) were analyzed for experiments of different series at a similar 

temperature (~875°C). To determine ΔV, the difference between initial and maximum 

achieved volumes was measured and thus, the growth rates are linear-averaged values. 

Volume expansion rates of 0.006, 0.009 and 0.029 cm3 s-1 were calculated for the 0.75, 0.97 

and 1.4 wt.% series, respectively. Even though they represent averaged values, and from 

the A/A0 curves we can clearly recognize changes in the rates within single experiments, 

these values offer us a first impression of the effect of H2O content on bubble growth rate. 

 

Fig. 3.8. Growth time (tgw) as a function of reciprocal temperature for the different H2O series. The 

growth time for the samples showing behavior A was estimated as the time needed for the sample to 

reach equilibrium (constant volume). In the case of behavior B, it was considered as the maximum 

A/A0 before shrinkage begins. For samples showing behavior C (red stars), it is the time between the 

beginning of the experiments and the occurrence of fragmentation. 

 

Regarding final porosity (ϕ), the experimental products show trends that reflect the 

volume development for different experimental series (Fig. 3.9). The maximum porosities for 

many experiments are >90% and, for values below this maximum, there is a clear 

dependency on temperature and H2O content. All of the porosities measured for the 1.4 

wt.% series (in samples that did not experience fragmentation) represent equilibrium 

conditions and increase until the fragmentation temperature (T >874°C) is reached. In the 

case of the intermediate domain series, although the increasing trend is observed, porosity 

reduction up to 4.5 (for series 0.75 wt.%) and 8.5% (for series 0.97 wt.%) were measured at 
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T >960°C. Samples from the lower T experimental regime of these series (T <800°C) did not 

reach equilibrium conditions and highlight ϕ‘s additional dependency on dwell time. 

 

Fig. 3.9. Final/initial volume ratio (Vf/Vi) and porosities values for the experimental series during 

experiments with standard dwell time (27 minutes). The 0.13 wt.% series is not represented because 

no change in the measured property was detected during that period of time. Gray dash line 

represents temperature at which first fragmentation of a sample was observed. The samples from the 

1.40 wt.% series plotted to the right of the dash line correspond to the 3 out of 9 experiments that did 

not experience fragmentation at T >874°C.   

 

In order to characterize final bubble sizes of experimental products, fragments of two 

foamed samples of the 1.4 wt.% H2O series were scanned with a Procon X-Ray CT system. 

Samples of experiments ran at low and high-temperature were selected to bracket the 

experimental conditions. A bubble size distribution was built up from sub-selecting three 

separate areas or stack slices from the CT data and using Image J to measure the maximum 

2D diameters of bubbles in specific slices through the volume. No correction for stereological 

effects to get a 3D diameter was done. Results in Fig. 3.10, show mean bubble size values 

decreased from to 136 to 96 µm with increasing temperature (741–897°C). Although these 

values might not be representative of all the experimental products, they provide first-order 

magnitude values that are helpful to characterize bubble size distribution for the 

experimental conditions explored in this study.   

Finally, Fig. 3.11 shows the surface textures of the experimental products and how 

these vary across the different experimental series. Textures of the 0.13, 0.75 and 0.97 wt.% 

(not pictured) samples comprise smooth surfaces (Fig. 3.11A–B). The 0.13 wt.% series in 

particular, developed a shiny outer ―skin‖, consisting of a glassy rind, much like those 
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observed in other vesiculation studies (e.g., Ryan et al., 2015; von Aulock et al, 2017). In 

contrast, the products of the high-H2O series developed rough surfaces with irregular to 

polygonal cracks (Fig. 3.11C) and resembling breadcrust textures on volcanic bombs. This 

phenomenon was also reported by Stevenson et al. (1997) in their vesiculation experiments 

on compositionally similar high-H2O content obsidians (H2O = 1.5 wt. %, T = 520–624 °C). 

As it was observed through the furnace window, these cracks formed while the samples 

were in the expansion stage, confirming that this surface behavior is in fact related to the 

growth history of the samples rather than being a post-experiment (e.g., cooling and 

contraction-controlled) process. The different surface textures might be indicative of 

dissimilar stresses generated within the samples during expansion and vesiculation. 

 

Fig. 3.10. Bubble size distribution in two foamed high-H2O experiment samples (1.4 wt.%) at low 

(741°C) and high (897°C) experimental temperature. 

 

 

Fig. 3.11. Images acquired with an optical microscope showing surface textures of different 

experimental products. There is a systematic change in the surface texture from glassy skins 

observed on low-H2O-content experiments (A) to rough surfaced at intermediate H2O contents (B), to 

a fractured crust on the high H2O content samples (C).   



C h a p t e r  3  | 66 

 

 

3.4. Discussion 

The varied responses of obsidians to being heated to magmatic temperatures (i.e., 

behaviors A, B and C) demonstrate the complexity of H2O exsolution kinetics in rhyolitic 

melts. The occurrence of these behaviors very clearly follow specific H2O-temperature 

conditions and are the result of the decompression rate, viscous deformation of the melt, and 

diffusivity of H2O. In particular, the wide range of vesiculation and fragmentation timescales, 

as well as textures of the experimental products, illustrate how temperature and H2O 

strongly influence bubble growth and therefore eruptive dynamics. What is perhaps most 

striking about this experimental dataset is the observation that explosive fragmentation 

behavior correlates to both initial H2O content and temperature. The following discussion will 

be focused on interpreting the different vesiculation behaviors as a function of magmatic 

intensive parameters, T and PH2O, while the analysis and interpretation of fragmentation 

behavior observed in the 1.4 wt.% H2O experiments will be addressed in Chapter 4. 

 

3.4.1 Onset of vesiculation 

Experimental heating of hydrous obsidians above their glass transition temperatures 

releases intrinsically dissolved H2O from the melt and drives bubble nucleation and growth. 

Bubble nucleation, the critical first step in the foaming process, requires that the melt is 

sufficiently supersaturated in H2O. All of the samples used for these experiments contain 

H2O well in excess of the value expected at 1-atm. (~0.05 wt.%; Ryan et al., 2015) and thus 

were supersaturated at all conditions. The manner of bubble nucleation depends strongly on 

the presence of microlites in the melt, which act to lower the nucleation energy barrier and 

prompt heterogeneous nucleation (e.g., Mangan and Sisson, 2000). The presence of 

ubiquitous microlites in all of our starting materials implies that bubbles in the experiments 

nucleated heterogeneously.    

Formation of bubble nuclei during experiments cannot be tracked with the existing 

experimental setup because newly nucleated bubbles are exceedingly small at their critical 

radius ~10-9 m (Mangan and Sisson, 2000). Furthermore, these small bubbles, even if grown 

into the 10‘s of µm‘s range, would contribute little to expansion of the obsidian core caused 

by bubble growth. For example, the bubble number density in high-H2O experiments is on 

the order of 106 cm-3. The number density of bubbles was measured by assigning each 

bubble‘s center area (same samples that were used for bubble size distribution analysis, Fig. 

3.10) a point in Image J and then having the program count those points. The total number 

of points was divided by the effective area of glass in the image (this equal to the total image 

area minus the area occupied by thresholded grey matter in the image). These 2D number 

densities were corrected to 3D values using the formulation of Peterson (1996). Assuming 

these values represent an initial nucleation pulse at the onset of experiments, the bubbles 
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would have to have been >10 µm to generate an observable 5% volume increase; recall that 

a 5% increase in the sample area establishes the onset of measureable vesiculation. Thus, 

the volume increase observed in experiments is overwhelmingly due to bubble growth rather 

than nucleation. 

Once nucleated, bubbles will grow and expand. Measurements performed in a subset 

of experiments of the 0.97 wt.% H2O series (Fig. 3.12), show how bubble size distribution 

evolves during the first stages of the vesiculation process. By the time the sample reached a 

~5% increase in its volume, mean bubble size is 7µm, and it quickly double its size in the 

next ~20 seconds. Although growing times are expected to be different for each H2O-T 

experimental condition, Fig.3.12 shed light on the first moments of bubble growth, and 

provides bracketing values for further calculations. Bubbles grow by both diffusive mass 

transfer and gas expansion due to the vapour pressure gradient between bubbles and the 

atmosphere      and viscous melt deformation to accommodate the increase in gas volume.  

 

Fig. 3.12. Bubble size distribution at the first stages of vesiculation process in a subset of experiments 

of the 0.97 wt.% H2O series. Three experiments were performed at 795°C and variable durations (102 

to 123 seconds). The shortest time chosen to run the experiments corresponds with the expected t lag 

at Pe = 1. To obtain these BSD, experimental products were first embedded in epoxy, sectioned into 

thin wafers with a Buhler slow speed saw, and then doubly polished with diamond-impregnated lap 

wheels. Images of the existing bubbles were acquired with the assistance of a binocular microscope 

and their sizes measured with ImageJ.   

 

 

 



C h a p t e r  3  | 68 

 

 

3.4.2 Vesiculation regimes 

Diffusive mass transport and viscous deformation during bubble growth are controlled 

by the silicate melt‘s temperature and H2O concentration, as both of these variables strongly 

influence the H2O diffusivity coefficient and viscosity (Zhang and Behrens, 2000; Giordano et 

al., 2008). Accordingly, it is somewhat expected that the variably hydrous samples displayed 

well-defined ranges of expansion behavior that follow temperature intervals. One way to 

characterize different vesiculation regimes is through comparing the relative importance of 

H2O diffusion and viscous melt deformation on bubble growth. In non-dimensional terms, the 

Peclet number (Pe) weighs the characteristic timescales of diffusion (     

 ⁄ ) and viscous 

deformation timescale (   
 
  ⁄ ) via the following expression (e.g., Lyakhovsky et al., 

1996): 

   
     

   
 

  
  

         

where    is the overpressure inside a bubble of radius R,   the viscosity of the melt and D is 

the composition- and temperature-dependent H2O diffusion coefficient (Zhang and Behrens, 

2000). According to Bagdassarov et al. (1996), Pe = 1 represents a transition between these 

authors‘ so-called diffusion-limited (at relatively high-T) and viscosity-limited (relatively low-T) 

growth regimes. This is to say that when Pe >1, the timescale of diffusion limits bubble 

growth, while for Pe <1, viscous melt deformation limits the kinetics of the vesiculation 

process. Note, however, that under certain experimental conditions, it will be the smaller of 

the two timescales—i.e., the faster process—that will control bubble expansion during the 

course of an experiment. For example, Pe >>1 indicates τd >>τv and thus, diffusive 

contributions to the growing bubble will be negligible for a certain time compared to bubble 

growth by vapour expansion and viscous relaxation of the pressure differential,     This may 

lead to high degrees of H2O supersaturation in the melt (e.g., Gonnermann and Manga, 

2007). By contrast, for Pe <<1 conditions, τd <<τv, i.e., diffusion keeps pace with the 

decrease in H2O solubility driven by decompression and, owing to rather sluggish viscous 

deformation, the system may become critically overpressurized (Gonnermann and Manga, 

2007). Consequently, large and small Pe regimes are sometimes termed as ―viscosity-

controlled‖ and ―diffusion-controlled‖, respectively (e.g., Toramaru, 1995; Lyakovsky et al., 

1996; Navon et al., 1998; Lensky et al., 2004). This terminology will be used to refer high- 

and low-Pe regimes from here on out.  

It is clear from the Pe formula (Eq. 3.1) that large Pe’s stem from high    and 

relatively low melt viscosities, conditions that are fostered by high initial H2O content and 

temperature. In contrast, low Pe is fostered by relatively small    (low initial P-H2O) and high 
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viscosity (low T). Unfortunately, the value of    in the experiments is a priori, unknown. 

However, if it is assumed that    is the difference between the hypothetical pressure at 

which the initial dissolved H2O would be in equilibrium (i.e., at the solubility limit) with the 

melt and the ambient pressure (i.e., 1-atm in all experiments), a maximum values of Pe that 

may have governed vesiculation is obtained (Fig.3.13 and Table 3.3). Clearly Pe’s 

determined this way could be in error if in fact the bubble pressure is initially less than that of 

the dissolved H2O content. In addition, diffusivity (D) also plays a role in Pe, varying 

sympathetically with temperature and H2O content (e.g., Zhang and Behrens, 2000), but D 

variations impact Pe slightly less than    and viscosity. Similarly, bubble radius is rather 

restricted to a small range (~5–100 µm) in our experiments (Fig. 3.10 and 3.12). Therefore, 

over the course of a vesiculation experiment, it is expected the Pe‘s decrease as the melt-

H2O steadily decreases during H2O exsolution and bubble growth and the viscosity 

concomitantly rises.  

 

Fig. 3.13. Peclet number estimations for the different H2O content series. In the upper left corner, a 

close up view of Pe values <10. It is important to observe the different temperatures at which the 

experimental series transition from viscosity- (Pe <1) to diffusion-controlled (Pe >1) regimes. Pe = 1 is 

represented, in the upper right corner plot, by an horizontal dotted line. Assumptions made and 

parameters used for calculations are described in Table 3.3 as well as in the main text. 

    

Table 3.3. Calculated Pe numbers for a range of T and H2O experimental conditions   

H2O 

(wt.%) 

T  

(°C) 

∆ P 
(a)

 

(MPa) 

Radius
(b)

 

(µm) 

log10 ɳ 
(c)

 

(Pa s
-1

) 

Diffusivity 
(d)

 

(µm
2
 s

-1
) 

Pe estimated 

1.4 780 14.2 5 7.8 1.5 5 

 880 17.1 5 6.6 3.5 46 

1.0 780 7.4 5 8.3 1.2 0.96 
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 880 8.9 5 7.0 2.7 11 

0.7 780 3.8 5 8.9 0.9 0.2 

 

880 4.5 5 7.4 2.0 2.7 

0.4* 780 1.2 5 9.6 0.5 0.02 

 880 1.4 5 8 1.2 0.4 

(a) Based on Newman and Lowenstern (2002) solubility model 

(b) Obtained from Giordano et al. (2008) 

(c) Calculated from Ni and Zhang (2008) 

(d) Navon et al. (1998) 

* Hypothetical Pe numbers not based on our starting H2O contents 

 

The experimental parameter space over which bubble growth is controlled by 

viscosity versus diffusion can also be defined by plotting the natural log of the time lag (tlag) 

vs. reciprocal temperature (Fig. 3.14; e.g., Bagdassarov et al., 1996). However, it must be 

noted that this parameterization only categorizes bubble nucleation and growth during the 

earliest stages and does not describe the entire expansion history of our samples, since tlag 

was time-limited after 5% growth. That said, Bagdassarov et al. (1996) used this 

parameterization to quantify the activation energies associated with H2O diffusion and 

viscous deformation during the onset of vesiculation in rhyolitic obsidians. Similar to what 

these authors observed, the data from this study plot into distinct temperature ranges, and 

those for 0.75 and 0.97 wt.% series (Fig. 3.14B–C) comprise two linear arrays distinguished 

by different slopes. The linear segments, steeply sloping at low-T and shallow at high-T, are 

divided by a kink whose position is offset to lower temperatures as water content increases 

(i.e., from 0.75 wt. % to the 0.97 wt. %). The 1.4 wt.% H2O experimental series is not kinked 

as all its values plot on a single line (Fig. 3.14A). This suggests that experiments at 1.4 wt.% 

H2O did not reach low enough temperatures to delineate a more steeply sloping segment.  

Bagdassarov et al. (1996) showed that kinked plots in tlag-1/T space characterize two 

bubble growth regimes, using their terminology: 1) high-T, diffusion-limited growth 

represented by the shallow sloping segment, and 2) low-T, viscosity-limited growth 

demarcated by the steeper-sloping segment. The activation energies (Ea) corresponding to 

H2O-diffusion and viscous deformation are in turn proportional to the slopes of the arrays at 

high and low temperatures, respectively. Specifically Ea‘s are obtained from linear fitting of 

the form: 

              ( 
  

 
 
 

 
)         

where R is the ideal gas constant and    represents a fitting parameter. 

The experimental data yields Ea‘s of 205 and 208 kJ mol-1 for the 0.75 and 0.97 wt.% 

H2O series, at T‘s less than 897° and 802°C, respectively, while for higher temperatures, 

fitting returns Ea‘s of 85 and 78 kJ mol-1, respectively (Fig. 3.14). These Ea‘s are similar with 
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those obtained for compositionally similar rhyolitic melts (Bagdassarov et al., 1996; 

Stevenson et al. 1997; Zhang and Behrens, 2000), which confirms that despite different 

experimental configurations and conditions, the activation energies for diffusion and viscous 

flow are somewhat constant. The 1.4 wt.% H2O series yields Ea of 81 kJ mol-1, consistent 

with the high-T Ea‘s of the other two lower-H2O series.  

 

Fig. 3.14. Plots of the natural logarithm of the lag time (tlag) versus reciprocal temperature for the high 

(A) and intermediate (B–C) H2O experimental series. Tlag was obtained graphically by documenting 

the time at which a measurable increase in the sample area (5%) occurred during initial foaming. In 

contrast to the highest H2O content series, which has a single linear segment, the two lower H2O 

content series depict ―kinks‖ in the tlag relation, indicating a temperature dependent transition across 

diffusion- and viscosity-limited expansion behavior. The activation energies for diffusion and viscous 

flow are shown as Ea values in boxes.  

 

Following on the work of Bagdassarov et al. (1996), the kinked plots in tlag-1/T space 

are interpreted to record two bubble growth regimes, corresponding to viscosity and diffusion 

controlled conditions. The positions of the transition from Pe >1 to Pe <1 in intermediate H2O 

content series, i.e., where Pe = 1, provides a way to independently estimate the early    

stored in bubbles. More specifically by assigning Pe = 1 and rearranging the Pe formula (Eq. 

1), we have: 

   
   

  
         

Unfortunately this overpressure formulation cannot be directly apply to the 1.4 wt.% H2O 

series, since its tlag plot does not display a kink. However, the values derived for the two 

intermediate H2O content series, whose Pe = 1 positions are at 800˚C and 900˚C, do provide 

limiting overpressure estimates. Thus, considering the average bubble radius in these 
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experiments at the onset of vesiculation (R~5 µm; Fig. 3.12) and appropriate viscosity and 

H2O-diffusivity values, the bubble overpressures at 800˚C (at 0.97 wt.% H2O) and 900˚C (at 

0.75 wt.% H2O) would be on the order of 4.6 and 4.0 MPa, respectively. These values are 

comparatively lower than the overpressures estimated assuming that initial bubbles formed 

with a vapour pressure equal to the solubility limit (~7.7 to 5.9 MPa). We expect that the 

overpressure in the 1.4 wt.% experiment series would be even higher given that H2O 

correlates to higher    (e.g., note relative      of 0.97 and 0.75 wt.% experiments). 

Experimental and numerical studies demonstrate that high Pe (>1) conditions lead to 

exponential bubble growth in time, and square-root-of-time or parabolic growth trajectories at 

small Pe (Toramaru, 1995; Navon et al., 1998; Lyakovsky et al., 1996). The sigmoidal forms 

of the experimental A/A0 vs. time plots manifest both exponential and parabolic components 

of bubble growth (Fig. 3.6 and Fig. 3.15). At short times, the concave-up segments indicates 

that sample expansion is purely exponential, a reflection of the viscosity control on bubble 

growth at large Pe (Toramaru, 1995; Navon et al., 1998). After some period of time, which is 

indicated geometrically by the inflection point in the growth curve, expansion rate slows and 

then resembles a parabolic law. Viewed macroscopically, the growth curves demonstrate 

accelerating (early) and decelerating (late) components. This prompts the question: what is 

the physical significance of the expansion rate change?  

 

Fig. 3.15. Exponential and parabolic growth segments for two samples of the 1.4 wt.% H2O series 

that did not experience explosive fragmentation (behavior A). Each dot (black and red) represents a 

video frame in which the area was manually measured. While T0 corresponds with measured tlag (see 

Appendix C), texp coincides with the inflection point of the sigmoidal curve. The inflection point was 

determined graphically by inspecting the growth traces directly on graphs. In the upper left corner of 

each plot, the complete growth evolution of the sample is represented. 

 

Interestingly, explosive fragmentation in type-C experiments occurred only when the 

foamed samples were just emergent from the exponential growth segment, exploding after 

just tens of seconds (~20–30 s) of foaming (Fig. 3.16). Qualitatively, this suggests that a 

late-stage pressurization due to prolonged vesiculation in the low-Pe, diffusion-controlled 
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realm—as is often ascribed to overpressure-induced explosions in lava domes (Sato, 1992; 

Navon et al., 1998; Gonnermann and Manga, 2007)—is not the only mechanism driving 

fragmentation in our experiments. Instead, the explosions seem to manifest initial 

overpressure that was not fully relieved by viscous bubble growth. Hence, it is the initial 

high-H2O content and the incipient shift between growth regimes that may in part be critical 

for pushing foaming into fragmentation.   

  

Fig.3.16. Exponential and parabolic growth segments for the 1.4 w.t% H2O samples that experienced 

explosive fragmentation (behavior C). For the construction of the graphs, the same procedure as the 

one described in Fig. 3.15‘s caption was followed. Detailed information about the duration of 

exponential and parabolic growth segments can be found in Table 3.4. 

 

Table 3.4. Exponential and parabolic growth times of experiments showing behavior C. Values were 

measured graphically from Fig. 3.16.   

Experiment 
Temp 
(°C) 

t0 texp 
Exponential 
growth (s) 

Parabolic 
growth 

(s) 

Time 
fragmentation 

(s) 

CH_2011_05_18 874 23 33 9 30 63 

CH_2011_05_09 876 39 49 10 21 70 

CH_2011_05_10 885 41 52 11 21 73 

CH_2011_05_13 887 44 55 11 19 73 

CH_2011_05_16 900 36 46 10 17 63 

CH_2011_05_16 901 33 46 13 12 58 

 

The observation that the most H2O-rich (1.4 wt% series) experimental samples 

exhibit both explosive and coherent foaming behavior—depending on temperature—

suggests that in addition to high initial vapour overpressure (high Pe), the dynamics of 

expansion may also be at play in promoting fragmentation behavior (e.g., Lensky et al., 
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2004; Gonnermann and Manga, 2007). In particular, the timescales of expansion are very 

different between exploding (e.g., <30 secs at 880˚C) and non-exploding (e.g., >200 secs at 

780˚C) 1.4 wt.% H2O experiments (Fig. 3.6 and 3.8). With temperature being the only 

difference underpinning these two distinct expansion times, it is proposed that temperature 

dependencies of viscosity (>1 order of magnitude difference; Giordano et al., 2008) and the 

solubility vapour pressure (about 3 MPa higher at 880˚C; Newman and Lowenstern, 2002) 

conspire to drastically change the viscous deformation timescale (   
 
  ⁄ = 0.21s at 880˚C 

vs. 4.4s at 780˚C). This, in turn, facilitates significantly faster viscous expansion rates in the 

H2O-rich, high-T experiments. For all intents and purposes, foam expansion rate is 

analogous to a sample‘s decompression rate, in so far that a prescribed amount of P-V work 

is done by the expanding clast over the a defined amount of time (e.g., Kaminsky and 

Jaupart, 1997). Therefore, in addition to the Pe, a characteristic decompression rate appears 

to dictate whether experiments exhibit coherent foaming, or foaming to fragmentation 

behavior (e.g., Lensky et al., 2004; Gonnermann and Manga, 2007). This will be addressed 

in detail during the next chapter.   

 

3.5. Conclusions 

Through a robust set of experiments (94), this study bridges the existing gap for 1-

atm, high-temperature experiments with rhyolite glasses and provides new insights into the 

degassing and vesiculation dynamics of rhyolite magmas with eruptive-relevant H2O 

contents. A novel experimental setup permitted to monitor and record the complete duration 

of the experiments. Post-experimental video analysis has revealed 3 types of behaviors of 

the samples: a) expansion followed by equilibrium (constant volume), b) expansion followed 

by shrinking and c) expansion followed by explosive fragmentation. The occurrence of these 

behaviors very clearly follow specific H2O-temperature conditions and, as shown here, are 

the result of variations in expansion rates, viscous deformation of the melt  and diffusivity of 

H2O. In particular, the wide range of vesiculation and fragmentation timescales, as well as 

textures of the experimental products, illustrate how temperature and H2O strongly influence 

bubble growth and therefore eruptive dynamics.  

Explosive behavior was identified exclusively in samples with H2O = 1.4 wt.%, and at 

temperatures higher than 874°C. For samples with H2O <1.4 wt.%, no fragmentation was 

observed, even at higher temperatures (up to 1030°C), well above the estimated pre-

eruptive temperature (~825˚C) of the 2008 Chaitén rhyolite. In samples that did not 

experience fragmentation, porosities of up to ~90% were measured. Surface textures 

identified in the samples also correlate with the different observed behaviors. Finally, it was 

possible to characterize vesiculation regimes associated to the different behaviors observed. 
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In particular, Pe and tlag permitted to define viscous and diffusion regimes that controlled 

bubble growth during the experiments. Interestingly, in contrast to the models proposed for 

lava dome explosions (e.g., Navon and Lyakhovsky, 1998), the explosions in these 

experiments seem to manifest initial overpressure that was not fully relieved by viscous 

bubble growth.  
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Chapter 4 

Explosive fragmentation of rhyolite 

magma: an experimental perspective 
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4.1 Introduction 

Magmatic fragmentation in highly-silicic systems involves brittle fracture of a magma 

body and, as it was mentioned in the introductory chapter, it can be seen as either a bottom-

up or top-down driven process (Cashman and Scheu, 2015). A number of mechanisms have 

been proposed for just how brittle failure of magma occurs (e.g., McBirney and Murase, 

1970; Sparks, 1978; Alidibirov and Dingwell, 1996a; Dingwell, 1996; Papale, 1999; Zhang, 

1999; Alidibirov and Dingwell, 2000). Most models consider that silicic melts behave 

viscoelastically under stress, that is, they show different material responses to stress when 

subjected to variable temperatures and timescales of deformation. Dingwell and Webb 

(1989) parameterized this behavior and showed that brittle (elastic) and viscous-response 

fields are separated by the relaxation time curve, also termed the glass transition. For 

fragmentation to occur, magma (initially in the viscous regime) can cross the glass transition 

dynamically by being deformed at a rate higher than the melt‘s relaxation rate, which defines 

a critical rate above which stress cannot be dissipated by viscous flow. Another mechanism 

to drive fragmentation is for the overpressure to increase beyond that of the strength of the 

melt, the so-called tensile-strength-limiting condition (Zhang, 1999).  

Given the difficulty (and danger) of directly observing magmatic fragmentation, the 

development of experiments has greatly improved our understanding of fragmentation and 

its underlying mechanisms. Significant progress has been made for the case of Vulcanian-

type activity, in which fragmentation is thought to be driven by instantaneous decompression 

(Alidibirov and Dingwell, 1996a,b; Alidibirov and Dingwell, 2000; Martel et al., 2000, 2001; 

Spieler et al., 2004, Kueppers et al., 2006). However, to date, explosive degassing from 

rhyolite volcanoes has only been scarcely experimentally investigated with natural materials. 

High-pressure and temperature (PT) autoclave experiments involving rapid decompression 

of vesicular rocks into a low-pressure chamber utilize an externally supplied gas as an 

exsolved-volatile equivalent, and when a diaphragm ruptures between the high- and low-

pressure sections, a decompression shock wave fragments the sample (Alidibirov and 

Dingwell, 1996a,b). As a consequence, these experiments indicate how pre-existing porosity 

and the gas-pressure gradient influence the ―fragmentation threshold‖ of bubbly melts 

(Martel et al., 2000, 2001; Spieler et al., 2004). However, because the pressurizing gas is 

introduced to an already porous sample, such experiments cannot shed light on how bubble 

growth may drive fragmentation (e.g., Sparks, 1978; Papale, 1999). To date, however, no 

experimental studies have induced explosive fragmentation from bubble growth in silicic 

melts. Consequently, there has been a disconnect between experimental constraints on 

bubble growth (see section 1.1.1 and references therein) and observations of the 

fragmentation process itself.  
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In Chapter 3, the results of a series of high-T, 0.1 MPa experiments performed on 

natural pyroclastic obsidians erupted during Chaitén volcano‘s 2008 explosive Plinian phase 

were presented. These obsidians, like those of many other rhyolite systems (e.g., Mono 

Craters, CA; Newman et al., 1988), preserve a range of magmatic H2O contents (~1.4 to 

0.13 wt.%) that reflect various amounts of degassing from what was initially much more 

hydrous melt (~4 wt. %; Castro and Dingwell, 2009). As it was shown, and despite the 

natural samples being partially degassed relative to pre-eruptive conditions, these obsidians 

still contain sufficient H2O to vesiculate, and in some cases fragment, when heated at 1-atm. 

This means that 1-atm. vesiculation behavior of obsidian can reveal critical elements of the 

explosive degassing process, which in turn can be used to better understand different low-

pressure ―degassing environments‖ within a silicic eruption.    

In this chapter, a detailed analysis of the explosive behavior (behavior C) observed in 

the high-T, 0.1 MPa experiments is presented. In addition, these results are compared with a 

separate set of high-P experiments performed in a fragmentation bomb. Finally, all these 

experimental results are discussed in the context of 2008 Chaitén eruption.  

 

4.2 Methodology 

 To explore the fragmentation mechanisms involved in the disruption of highly-silicic 

melts, the experiments presented in Chapter 3 (High-T, 0.1MPa) were complemented with a 

set of high pressure experiments performed in a fragmentation bomb at the LMU. 

 

4.2.1. High Temperature-0.1 MPa experiments 

The experimental setup and procedure followed for these experiments was already 

described in Chapter 3. However, in addition to the experiments presented in that chapter, a 

complementary set of experiments was carried out to further characterize the pyroclastic 

material generated (Table 4.1). Unfortunately, the original design of the experimental setup 

was not optimal for samples recovery (Fig. 4.1A). In addition to the loss of material, 

especially the finest fraction, the exposure of the resultant pyroclasts to temperatures above 

glass transition for extended periods of time (until the furnace cooled down), made the setup 

not suitable for post-experimental textural analysis. To overcome this limitation, an ash 

collector was designed and developed in cooperation with SCHOTT® (Fig. 4.1B). The 

collector consists in a 150x240x280 mm glass box, made of Quarzal®, which is a slip cast, 

fused silica material (99.6 wt.% SiO2) that has an excellent thermal shock resistance. One 

side of the box was replaced with a 3mm thick removable window, which allows not only for 

the insertion of the sample, but also for observation of the experiment evolution. The window 

material is fused silica glass (JGS1), which has a transmissivity that matches with the IR-
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wavelength of the laser used to monitor sample surface temperature evolution. Additionally, 

the collector has a 3 mm hole in the back that permits the introduction of a thermocouple.  

 

Table 4.1. Experimental conditions and post-experimental analysis performed. 

Experiment T(°C) 
GSD 

analysis 
Particle velocity 

tracking 

CH_2011_05_09 876 No Yes 

CH_2011_05_10 885 No Yes 

CH_2011_05_13 887 No Yes 

CH_2011_05_15 901 No Yes 

CH_2011_05_16 900 No Yes 

CH_2011_05_18 874 No Yes 

CH_2011_05_19* 879 Yes No 

CH_2011_05_20* 890 Yes No 

CH_2011_05_21* 897 No Yes 

* Complementary set of experiments, not presented in Chapter 3.  

 

 

Fig. 4.1. A) Photo of the furnace at JGU after a series of high-T, 0.1 MPa fragmentation experiments. 

It is possible to observe the resultant pyroclastic material covering the floor of the furnace. B) Glass 

box developed to collect pyroclastic material generated during an experiment. A 15 mm-width foamed 

obsidian sample placed inside the collector provides a scale.  

 

To perform this complementary set of experiments, the ash collector was placed 

inside the furnace at room temperature and then heated up to the target experimental 

conditions (Table 4.1). Before running the experiment, time was given for the ash collector 

interior to reach thermal equilibrium with the furnace inner chamber. This was monitored by 

using two chromel-alumel K-type thermocouples, one to measure the temperature inside the 

collector and other the one outside (furnace interior T). Once thermal equilibrium was 

reached, the sample was inserted into the collector, the window closed and the experiment 
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recorded following the methodology described in the previous chapter. Upon completion of 

the experiment, the box was immediately removed with the assistance of a steal shovel and 

cooled down with compressed air. After ~1 minute, the temperature inside the ash collector 

was below sample‘s glass transition temperature.   

Unfortunately, due to the limited amount of obsidian glass with 1.4 wt.% H2O 

available, it was possible to performed only 2 experiments with the improved setup (Table 

4.1). Nevertheless, the ash collector was successfully tested with other samples (that are not 

of interest of this thesis), proving its utility for future research.   

 

4.2.2. High Pressure–variable Temperature shock-tube experiments 

4.2.2.1. Sample characterization  

Samples for the experiments were obtained from a single, decimeter-sized, pumice 

bomb (Fig. 4.2A). The bomb was collected during a field campaign in November 2016 from 

the northern outer rim of the Chaitén caldera and it represents part of the material erupted 

during the initial explosive phase of the 2008 eruption.   

The pumice exhibits a texture composed of tubular bubbles (Fig. 4.2B) and an open-

porosity value of 55%. Porosity was measured with a Quantachrome Ultrapyc 1200e helium-

pycnometer at LMU, and this value represents an average obtained from 5 independent 

measurements. Due to the experimental procedure followed, open porosity is the only 

porosity value relevant for these experiments. H2O content of this sample, determined by 

DSC-TGA is ~0.70 wt.% (see Chapter 2). 

 

Fig. 4.2. A) Pumice bomb used for the high-P experiments. B) SEM image showing the pore 

morphology of the pumice.  

 

4.2.2.2. Experimental procedure 

High-P experiments were performed in the fragmentation bomb available at the 

laboratories of LMU (Fig. 4.3). This experimental apparatus consists of three main units (Fig. 
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4.3B): a) a shock-tube (made of Nimonic 105 alloy), which allows for high P-T conditions, b) 

a diaphragm system, composed of 3 diaphragms that open at a relative pressure differential, 

and c) a low-pressure tank (atmospheric conditions). A cylindrical Plexiglas tube at the base 

of the low-P tank allows for direct visual observation and high-speed video filming of the 

experiments. 

 

Fig. 4.3. Experimental setup for the high-P experiments. A) Photo of the fragmentation bomb. 

External source of light is used to record high speed videos of the experiments. In (B), a detailed 

description of the experimental apparatus is presented (not to scale). The grey dot-lined rectangle 

indicates the camera field of view (Modified from Cigala et al., 2017).  

 

Cylindrical cores drilled from the pumice with a diamond-coring device were used as 

starting material. Cores had an initial diameter of 25 mm and two different lengths, 30 and 60 

mm. Size was measured with a precision digital caliper (ζ ± 0.01 mm) and the samples were 

weighed with a high-precision balance (ζ ± 0.01 mg). The ends of the cores were ground flat 

and polished to avoid irregularities. As for the case of the obsidian cores, before running the 

experiments all the samples were carefully inspected for preexisting fractures, and the ones 

showing damage were discarded.  

Once the sample was placed inside the shock-tube, the system was pressurized. The 

set-up permits precise and reproducible pressurization of the sample. The shock-tube was 

pressurized with an external gas (Argon). Two different initial overpressures were applied 

during the experiments, 10 and 15 MPa. Experiments were carried out at two different 

temperatures, 25°C (room T) and 500°C.This temperature range, below sample Tg, was 
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used in order to avoid heating-induced physical changes in the samples. High experimental 

temperature was achieved by using an external tube furnace. Temperature inside the shock-

tube was monitored with a K-type thermocouple located at the bottom of the sample. Before 

decompression, sample was in thermal equilibrium with the surrounding gas phase. To 

ensure this, sample was held at target conditions for 10 minutes before triggering 

decompression. Pressurization of the uppermost diaphragm over its strength induces its 

failure and triggers system depressurization. Decompression is instantaneous, triggering 

fragmentation. As a consequence, a mixture of gas and sample fragments is ejected into the 

low-P tank. Upon decompression, the expanding gas phase is rapidly cooled. After allowing 

time to settle (~2h), the experimentally generated particles were carefully collected for grain 

size distribution (GSD) analysis. The experiments were filmed with a Phantom high-speed 

camera (V711) at 10,000 fps. The camera was connected to a pressure sensor, which 

records pressure drops and triggers the recording. These experiments were performed with 

the assistance of Dr. Ulrich Kueppers. 

A total of 9 high-P experiments were conducted at a variable set of conditions (Table 

4.2). Parameters modified include: pressure (10 and 15 MPa), temperature (25 and 500°C), 

and sample (30 and 60 mm) length. Additionaly, in two of the experiments the length of the 

low-P tank was modified from 3 to 1 m. The goal of these experiments was to explore the 

effect of the tank length on the final grain size distribution observed. Although this goal is 

irrelevant to the research focus of this thesis, the results of these experiments were used to 

test the reproducibility of certain experimental results (e.g., pressure-velocity relation). 

 

Table 4.2. Experimental conditions and post-experimental analysis performed. 

Experiment T °(C) P (Mpa) 
Cylinder 

length (mm) GSD analysis 
Particle velocity 

tracking 

CH_P2_1 25 10 31.5 Yes Yes 

CH_P2_2 500 15 61.2 Yes Yes 

CH_P2_4 25 15 60.4 Yes Yes 

CH_P2_5 500 10 60 Yes Yes 

CH_P2_6 25 15 30 Yes Yes 

CH_P2_7 25 10 59.4 Yes Yes 

CH_P2_8 25 10 30.4 Yes Yes 

CH_P2_9 500 15 30.4 Yes Yes 

CH_P2_11 25 15 29.8 Yes Yes 

 

4.2.3 Post-experimental analysis 

The design of both experimental setups (low and high-P experiments) permitted 

filming fragmentation experiments with high speed cameras (Fig.4.4 and 4.8). Post-

experimental video analysis allowed precise timing of explosions as well as estimation of 
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fragment velocities and ejection directions. For this, a number of particles (between 50 to 

200) were manually tracked in each experiment by using MTrackJ, an ImageJ plug-in. 

Velocity was evaluated by measuring the distance of single particles in five consecutive 

scaled frames and averaging the velocity for this time interval. No perceptible acceleration or 

deceleration could be detected during that time frame. 

Experimental products were collected to analyze their grain size distributions (GSD). 

The pyroclastic material generated both in the fragmentation bomb and inside the ash 

collector at JGU (see Table 4.1 for details), was carefully collected with the aid of a brush 

and sieved. Sieving was performed at half-Φ steps (Φ = -log2d, with d = particle diameter in 

mm), spanning the grain size range from 32 to 0.06 mm. Samples were sieved dry, with an 

average sieving duration of 20 s per sieve class. Samples were weighed before and after 

sieving with a high precision digital balance. In all cases, weight loss was <1 wt.%. Particles 

<0.06 mm were collected and weight together as one class. 

Scanning Electron Microscopy (SEM) was performed on a Zeiss DSM 942 to image 

the internal texture and structures of experimental products (Fig. 4.5). Images were collected 

in Secondary Electron (SE) mode on carbon-coated samples at different magnifications.   

 

4.3. Results 

In the following section, the results obtained from the experiments performed in both 

experimental setups are presented and evaluated independently. Particle velocities, grain 

size distributions and textural characteristics of the experimentally produced pyroclasts are 

presented. In section 4.4, these results are compared and discussed in the context of 2008 

Chaitén eruption.   

 

4.3.1 High-T, 0.1 MPa experiments 

Explosive fragmentation of samples during High-T, 0.1MPa was observed only for 

the high H2O series (1.4 wt.%), at temperatures higher than 874°C (see Fig. 3.7 in previous 

chapter). This behavior is characterized by a continuous expansion of the sample that is 

disrupted after (~20–30 s) of foaming when it explosively fragments. Fragmentation always 

occurred at a stage in expansion at which samples had not reached the equilibrium state. As 

mentioned in Chapter 3, three out of nine experiments performed at T >874°C did not 

explode. Nevertheless, the complementary set of experiments presented in this chapter, 

confirmed their reproducibility and the high-T condition of explosive fragmentation.  

Figure 4.4 shows an image sequence of the first 0.22 ms of an explosion captured by 

high speed imaging. As can be observed in this figure, sample exploded from a central point, 

breaking into innumerable fragments of different sizes. This fragmentation mode was 
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identified in most of the experiments. However, in two of them, fragmentation started from a 

side of the samples. This might be a consequence of H2O content heterogeneities in the 

sample or the presence of pre-existing internal structures, which could have conditioned the 

stress distribution.  

 

Fig.4.4. Image sequence showing the first 0.22 ms of a high-T, 0.1 MPa fragmentation experiment 

performed at 897°C (CH_2011_05_21). This video was captured with a NAC HX-3 high-speed 

camera with a Zeiss 100 mm macro lens that allows for higher frame rate and shutter speed. Frame 

rate for this video was 50,000 fps. Videos of the complementary set of 0.1 MPa experiments 

presented in this chapter were recorded by Dr. Jacopo Taddeucci, from INGV (Italy). 

 

The frame-by-frame tracking of sample fragments permitted the calculation of their 

velocities during the first instants after fragmentation (Fig. 4.5). In all the cases, a non-linear 

decay of particle velocity was observed, with values becoming asymptotic towards zero after 

~3 ms. After 10 ms, the totality of the particles ejected by the explosion were out of the 

camera visual field. Maximum velocities measured in the experiments ranged from 43 to 58 

m s-1 (see Table 4.3). No clear correlation between maximum particle velocity and 

experimental temperature was observed. 

The resulting pyroclastic material of these explosions developed rough surfaces with 

irregular to polygonal cracks (Fig. 4.6A). On the microscopic scale, these clast exteriors 

comprise microbrecciated surfaces just a few µm‘s thick (Fig. 4.6C). No glassy rinds were 

found in the fragments. These samples instead cracked while they were in the expansion 

stage, confirming that this surface behavior is linked to the samples‘ growth history rather 

than post-experiment cooling and contraction. In Fig. 4.6B, the abundance of relatively thin 

(~2–5 µm) septa between large vesicles (~100 µm average radius) indicates encroachment 
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of neighboring bubbles on one another and consequent melt film deformation between those 

bubbles (highlighted with white arrows) 

 

 

Fig. 4.5. Temporal evolution of particle velocity for the experiments of series CH_2011_05 (1.4 wt. % 

H2O) that experienced explosive fragmentation. Each black dot in the plots represents an average 

velocity based on particle displacement measured in five consecutives frames. Between 50 and 70 

particles were tracked for each experiment. Most of the error bars are smaller than related symbol. 

 

 

Fig. 4.6. Images acquired with an optical microscope (A and D) and SEM (B–C and E–F) showing 

surface and internal textures of the products obtained from the two different experimental setups. 

Image B shows bubbles and septa developed during 0.1 MPa experiments. In (C), the surface texture 

of an exploded fragment is displayed with the inset view providing high magnification of this rough 

textured surface Image E and F show the elongated and angular shape of the ash generated in the 

fragmentation bomb. The close up view of a pyroclast offered by image F, allows for the identification 

of the original tube porosity. 
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Figure 4.7 presents the grain size distribution of two experiments performed inside 

the ash collector. While the experiment CH_2011_05_19 (blue histogram) shows a defined 

non-Gaussian particle size distribution, a similar trend cannot be clearly identified for the 

case of experiment CH_2011_05_20 (pink histogram). In particular, a strikingly high value of 

the class Φ = 3 can be identified, which might be attributed to the fragmentation mode 

showed by this particular experiment. Unfortunately, the lack of material (i.e., obsidian bomb 

with H2O = 1.4 wt.%) precluded repetition of the experiment to check reproducibility. Another 

limitation for the analysis of the grain size distribution of the high-T, 0.1 MPa experiments is 

the small amount of material used (<0.8 gr). On the positive side, the ash collector showed a 

material recovery capacity >95%, which makes it attractive for future experiments.  

 

Fig. 4.7. Grain-size distribution of two high-T, 0.1 MPa experiments performed inside the ash 

collector. The height of the columns represent the wt.%-values for each sieving class. Φ = 4.5 

represents all the material <0.06 mm. 

 

4.3.2 High-Pressure experiments 

All the samples exposed to rapid pressure differentials at the selected experimental 

conditions (Table 4.2) experienced explosive fragmentation. Once the set of diaphragms are 

disrupted and the pressurized autoclave is linked to the low-pressure tank, the sample is 

exposed to a sudden pressure drop. If this pressure differential is higher than the sample 

fragmentation threshold (see Spieler et al., 2004), the sample will fragment. As a 

consequence, the resultant gas-particle mixture is ejected in the low-pressure tank (Fig. 4.8). 

In all the experiments, the gas stored above the sample was the first phase to be observed 

in the camera field of view. The gas phase is visible due to condensation under illumination. 

Depending on the experimental conditions, the first particles were identified between 3.5 and 

7.9 ms after the gas front was detected. For all the cases, the highest concentration of 

particles was observed during the first ~15 ms of the experiment. 

 

 



C h a p t e r  4  | 89 

 

 

 

Fig. 4.8. Sequence of still-frames showing the first 32 ms of a high-P, low-T experiment performed in 

the fragmentation bomb. High-speed imaging at 10,000 fps allowed for the observation, first of the 

outflow of the gas front and then the gas-particle mixture. After 12 ms, most of the gas was released. 

Specific conditions for this experiment were 10 MPa and 25°C (experiment CH_P2_7). 

 

Fig. 4.9 and 4.10 show particle exit velocity vs. time for a combination of 

experimental parameters. The maximum velocities measured range from 151 to 234 m s-.1, 

with the highest velocity values recorded always at the onset of the experiment. As in the 

case of the high-T, 0.1MPa experiments, a non-linear decay of particle velocity is observed. 

However, in these experiments the decay time was longer, with values becoming asymptotic 

towards zero after ~20 ms. Decay time and the shape of the velocity curve are slightly 

different for each experiment, depending on the combination of experimental variables 

considered. Nevertheless, in all the cases particle velocity decay time was larger than for the 



C h a p t e r  4  | 90 

 

 

0.1 MPa experiments. When the velocity vs. time curves of both types of experiments are 

compared (high-P vs 0.1 Mpa), although their overall shape is the same, the curve defined 

by the cluster of individual particle velocity measurements is more scatter for the 0.1 MPa 

experiments (Fig. 4.5) This might be a consequence of the experimental setup 

characteristics. While in the fragmentation bomb the particles travel all in one direction and 

can be tracked once they are ejected through the vent, in the furnace experiments the 

fragments expand radially, making it difficult to establish a common starting point to measure 

their velocities. 

In Fig. 4.9, the velocity evolution of ejected pyroclasts is evaluated as a function of 

pressure and temperature. Higher particle peak velocities were measured for higher initial 

pressure differentials (i.e., ∆P). When experiments presenting the same initial pressure are 

compared, the highest velocities are observed at higher temperature. These results are in 

agreement with the ones reported by Martel et al. (2000) and, more recently, by Cigala et al. 

(2017). The effect of sample initial length in the observed velocity was also evaluated (Fig. 

4.10). Results show that higher velocities are obtained when longer cylinders are used. As in 

Fig. 4.9, the same effect of initial pressure on particle velocities can be recognized. 

Regarding the texture of the experimental products, fragments exhibit plate-like shapes (Fig. 

4.6D-F). This shape was already observed in several previous studies performed in the 

fragmentation bomb (e.g., Alidibirov and Dingwell, 1996a; Martel et al. 2000) and is a 

consequence of the fragmentation mechanism operating during sample disruption (Alidibirov 

and Dingwell, 2000). Experimental pyroclasts preserve the original tube-pore morphology 

and show angular outlines (Fig. 4.6F), confirming sample brittle response to sudden 

decompression.  

Grain size distributions of the pyroclastic material generated during the instantaneous 

decompression experiments were also analyzed (Fig 4.11 and 4.12). Results are evaluated 

considering the same experimental parameters that were considered for the analysis of 

particle exit velocities (Fig. 4.9 and 4.10). As a common feature, all the grain-size plots 

exhibit a non-Gaussian particle size distribution. In addition, the histograms show that higher 

experimental pressures produce larger amounts of ash, as well as a decrease in the grain-

size of the most abundant particle class. Similar results were reported by Kueppers et al. 

(2006) in a study in which the authors explored the fragmentation efficiency of explosive 

eruption with a similar experimental setup that the one used here. Regarding the effect of 

temperature, in Fig. 4.11 it is possible to recognize a reduction of the coarsest pyroclastic 

fraction when experimental temperature is higher. This was reported also by Aldibirov and 

Dingwell (1996a). Grain size distributions analysis of the experiments in which the sample 

length was modified (Fig. 4.12) show that Md was lower in those cases in which used 
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cylinder were shorter. A lower Md implies a larger grain size reduction. However, this trend 

is not as clear as the previously described (P-T related).  

Fig. 4.9. Temporal evolution of particle velocity for a series of experiments performed in the 

fragmentation bomb at variable P-T conditions, and constant sample length (60 mm). Between 100 

and 120 particles were tracked per video covering the entire duration of particle ejection. Most of the 

error bars are smaller than related symbol. 

 

Fig. 4.10. Temporal evolution of particle velocity for a series of experiments performed in the 

fragmentation bomb at variable P and sample length (60 mm), and constant temperature (25°C). 

Between 100 and 120 particles were tracked per video covering the entire duration of particle 

ejection. Most of the error bars are smaller than related symbol 
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Fig. 4 .11. Grain-size distributions for a series of experiments performed in the fragmentation bomb at 

variable P-T conditions and constant sample length (60 mm). The height of the columns represent the 

wt.%-values for each sieving class. Class Φ = 4.5 represents all the material <0.06 mm. Temporal 

evolution of particle exit velocity of these experiments is presented in Fig. 4.9. 

 

 

Fig.4 .12. Grain-size distributions for a series of experiments performed in the fragmentation bomb at 

variable P and sample length (30–60 mm), and constant temperature (25°C). The height of the 

columns represent the wt.%-values for each sieving class. Class Φ = 4.5 represents all the material 

<0.06 mm. Temporal evolution of particle exit velocity of these experiments is presented in Fig. 4.10. 
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4.4 Discussion 

The high temperature-0.1 MPa experiments provide an unprecedented view of 

fragmentation at eruption-relevant temperatures and H2O contents. During these 

experiments, sample fragmentation was induced as a consequence of bubble growth. This 

mechanism differs from the one simulated with the fragmentation bomb, in which sample 

disruption is driven by the rapid release of the gas externally introduced. In the following 

section, this finding is discussed and interpreted in the context of existent fragmentation 

theories. After that, the results of both set of experiments are compared and discussed in the 

framework of 2008 Chaitén eruption.  

 

4.4.1. High Temperature-0.1 MPa experiments 

4.4.1.1 From Foam to Fragments: why samples of the 1.4 wt.% H2O series explode? 

As discussed in Chapter 3, it is both the absolute H2O content and the time evolution 

of bubble vapor pressure (i.e., the expansion rate), moderated by temperature, that are 

critical for driving fragmentation during the experiments. Because there appears to be a very 

clear decompression rate dependence on explosive fragmentation in our experiments (see 

discussion below), brittle behavior is interpreted to stem from the exsolution and expansion 

of retained magmatic H2O. This, in turn suggests that bubble growth, driven by internal vapor 

pressure, imposed sufficiently high strain rates to push the melt‘s deformation response into 

the brittle field (e.g., Dingwell, 1996; Papale, 1999; Gonnermann and Manga, 2003). Indeed, 

many eruption models consider that silicic melts behave viscoelastically under stress, that is, 

they may cross the glass transition when sufficiently high rates of deformation (e.g., Dingwell 

and Webb, 1989; Dingwell, 1996). 

As shown by Papale (1999) and more recently Gonnermann and Manga (2003), the 

viscous-to-brittle transition can be predicted by the Maxwell relation: 

   

  
  

 

 
  

  

  
     (4.1) 

where dvz/dz is the elongational strain rate ( ̇), k is a constant that assumes a value of 0.01 

and corrects for the onset of brittle magma failure and   is the melt‘s structural relaxation 

time, defined as the quotient of the relaxed melt shear viscosity (and the shear modulus 

(   .    is assumed to be constant at               (Dingwell and Webb, 1989). In 

principle, when the elongational strain rate is greater than the last term on the right hand 

side of equation 4.1, the so-called relaxation rate ( -1), fragmentation will occur.  

In order to confirm that the brittle threshold was exceeded, bulk elongational strain 

rates,  ̇  was estimated by video analysis of 0.75, 0.97 and 1.4 wt.% H2O experiments and 

compared them to the theoretical melt relaxation rates ( -1) that dictate the brittle 
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fragmentation criterion (Eq. 4.1; Fig. 4.13). Elongational strain rates were determined by 

dividing the horizontal change in length (i.e., lf-li) of foamed samples by the initial lengths (li) 

to achieve a fractional elongational strain value and in turn, divided this value by total growth 

time determined from A/A0 vs. t curves (Fig. 3.6). Analysis of expansion behavior in videos, 

namely tracking of the velocities of the sample margins along three directions shows that the 

direction of measurement is unimportant in that tests of the horizontal, vertical, and head-on 

diagonal growth velocities are all within a factor of two of one another. As the H2O contents 

of the samples at the time of fragmentation were not known a priori—fragments were too 

small to be analyzed by FTIR and KFT—melt relaxation rates were calculated for exploding 

clasts using a range of viscosity values consistent with H2O contents between ~1.0 and 0.05 

wt.% H2O. The lower limit for  -1 in non-exploding experiments was calculated by assuming 

that these samples equilibrated to 1 atm pressure, which employs a melt viscosity consistent 

with very low H2O at T-0.1 MPa (~0.05 wt.%; Ryan et al., 2015).  

 

Fig. 4.13. Elongational strain rates measured derived from observed sample expansion rates (see 

text) for intermediate and high H2O experimental series. Red stars represent samples that explosively 

fragmented. Uncertainties in both temperature and strain rate are less than the size of the symbols 

(~10% of the measurement). Solid black and dashed grey lines represent melt relaxation rates 

calculated based on Chaitén rhyolite melt viscosity derived from composition in Table 2 and for 

different H2O contents. The bold black line (at 0.05 wt.% H2O) divides the fields where explosive 

fragmentation and foaming + equilibrium (No fragmentation) are expected to occur. 
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According to Fig. 4.13, which plots experiment elongational strain rates versus 

temperature, samples that explosively fragmented had strain rates in excess of the predicted 

threshold for melts with 0.1 to 0. 2 H2O wt.%. This result is consistent with independent 

fragmentation predictions based on conduit models (Gonnermann and Manga, 2003). The 

non-fragmenting obsidians (with 0.75 and ~1 wt.% H2O) expanded at strain rates one to two 

orders of magnitude lower.  

Another implication of the results shown in Fig. 3.14 is that explosively fragmented 

experimental samples should have residual H2O contents between 0.1 and 0.2 wt.%. While 

these values appear low compared to average H2O contents (~0.7 wt.%) measured in 

natural Chaitén Plinian pumice (see Chapter 2), they are consistent with the relatively higher 

experimental temperatures that yielded them. For example, if the strain rate values 

experienced by these fragmented samples are extrapolated to the 0.7 wt.% H2O relaxation 

rate curve, associated T‘s are between 785 and 805°C, very much in line with estimates of 

with Chaitén‘s 2008 eruptive T (780–825°C; Castro and Dingwell, 2009). This is further 

discussed in Chapter 6.   

Bubble-scale strain during thinning of the melt films between adjacent bubbles 

provides an independent check on the critical strain rates needed to fragment the sample 

and can link bubble-scale growth to strain localization leading to fragmentation. Stretched 

inter-bubble melt films are abundant in the exploding samples (Fig. 4.5B). As bubbles get 

close to one another they begin to interact and exert strain on the melt between them (Fig. 

4.5B; Castro et al., 2012b). In this way, the stretching of the melt film is coupled to the 

growth of the bubbles. To assess deformation rates in inter-bubble melt films, the melt-film 

thinning model of Castro et al (2012b) was used, which relates the bubble growth rate to a 

film stretching rate (cf. Fig. 7 in Castro et al., 2012b). This method requires an estimate of 

the bubble growth rate for two equal-sized bubbles that are in contact with one-another and 

exerting elongational strain on an inter-bubble melt film. An average bubble growth rate was 

assessed by using the mean bubble radius (R) measured on CT scans of a high water 

content experiment (Fig. 3.10) and this value (~100 µm) combined with the average time to 

explosion (t ~20 sec) yields a growth rate of about 4 µm sec-1. Results of the model reveal 

that inter-bubble melt films would have experienced strain rates on the order of 10-1 to 10-2 s-

1, which is entirely consistent with strain rate estimates derived from the bulk expansion 

rates of vesiculated samples. 

Finally, It was noted that while fragmentation could also occur by bubble 

overpressure exceeding the tensile strength of magma (Alidibirov and Dingwell 1996; Spieler 

et al., 2004), which for crystal poor bubble-bearing rhyolite at eruptive conditions has been 

estimated about 5 to 10 MPa (Martel et al., 2000, 2001), the lack of explosive fragmentation 
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in low-temperature yet hydrous foaming experiments means that this mechanism may have 

been of second order importance.  

 

4.4.1.2. Foam expansion as an analogous of magma decompression 

When natural obsidians with variable H2O content are heated at temperatures above 

their glass transitions, H2O exsolves and samples vesiculate. Together, diffusion and bubble 

expansion drive P-V (i.e., pressure-volume) work that the bubbly melt does against the 

atmosphere by foaming. Vesiculation is, for all intents and purposes, analogous to the 

decompression that occurs in natural volcanic conduits when bubbly melts rise or when 

individual pyroclasts expand after fragmentation events (Kaminski and Jaupart, 1997; Castro 

et al., 2012b). Therefore, it might be valuable to calculate the decompression rates that 

operated during the experiments. 

As it is not possible to know the exact pressure evolution of bubbles (see discussion 

in Chapter 3), it is difficult to constrain a critical fragmentation-inducing decompression rate. 

It might be important, however, to estimate and compare the decompression rates for the 

intermediate (0.75 and 0.97 wt.%) and high (1.4 wt.%) H2O series. Assuming a linear 

decompression rate, an initial and final pressure value need to be considered. The initial 

overpressure is assumed to be the solubility-controlled P-H2O (Newman and Lowenstern, 

2002), while final pressure assumes two different values. For the samples that did not 

explode (and reached equilibrium conditions), a final pressure of 0.1 MPa was assumed. For 

the exploding samples of the 1.4 wt.% series, a final (pre-fragmentation) pressure of ~2.5 

MPa was estimated. In order to estimate the overpressure developed in the samples at the 

moment of fragmentation (1.4 wt.%; T ≥874°C), a reformulated version of Turcotte et al. 

(1990) equation by Taddeucci et al. (2004) was applied: 

              
     

    
    (Eq. 4.2) 

where V is the pyroclast exit velocity, n is the mass fraction of exsolved volatiles, Pfrag is the 

pressure at fragmentation; Patm is the atmospheric pressure; R is the specific gas constant 

and T is temperature. Based on the concept that maximum pyroclast velocities at the conduit 

oulet during an explosive eruption is mainly controlled by pressure difference between the 

gas in the bubbles and the atmosphere, Turcotte model (and others, for example, Wilson, 

1980, Woods, 1995; Alatorre-Ibargüengoitia et al., 2010) were developed to quantify this 

overpressure. 

Maximum pyroclast velocities were measured by video analysis (Fig. 4.6), while R 

assumes a value of 461 J Kg-1 K-1 for H2O. A value of 1.2 wt. % of exsolved H2O (n = 0.012) 

was considered for the calculations based on sample residual water content estimated in 

Fig. 4.13. Overpressures (i.e., the fragmentation minus atmospheric pressure) obtained for 
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our experiments are in the order of 0.1 MPa (Table 4.3). It is important to note that this is a 

conservative value because it was assumed that the samples experienced no leak during 

their growth prior fragmentation. On the other hand, if a scenario in which most of the gas 

escaped from the sample is assumed (through crack and fractures) almost immediately after 

its exsolution (n = 0.001), overpressures expected in the samples are in the order of 0.8 

MPa. 

 

Table 4.3.  Sample overpressures (minima) estimated for the moment of fragmentation 

Experiment 
Temperature 

(°C) 

Max. velocity 

(m/s) 

Pfrag 

(MPa) 

∆P 

(MPa) 

CH_2011_05_09 876 58 0.21 0.11 

CH_2011_05_10 885 50 0.19 0.09 

CH_2011_05_13 887 49 0.18 0.08 

CH_2011_05_15 901 47 0.18 0.08 

CH_2011_05_16 900 53 0.19 0.09 

CH_2011_05_18 874 43 0.17 0.07 

 

Although the model of Turcotte et al. (1990) was developed for Vulcanian explosions, 

the fact that it does not consider the presence of a rigid caprock, together with the 

assumption that particles remain in thermal equilibrium, make it suitable for the 1-atm 

experiments presented here. Note that the samples do not exhibit a hard exterior shell (Fig. 

4.5.C) akin to a caprock and are subject to constant temperature at the time of expansion 

and explosion. However, it should be recognized that the calculations here provided, are 

absolute minimum values. Alatorre-Ibargüengoitia et al. (2010) postulated that some of the 

energy in the overpressurized bubbles will in fact be partitioned into energy required to 

rupture the melt. Furthermore, these authors proposed that the pressure prior to magma 

disruption (Ppre-frag) can be estimated by considering this value as the sum of the effective 

pressure (Pfrag) available for particle ejection and the fragmentation threshold (Pth) of the 

magma. This latter value can be derived from the equation proposed by Spieler et al. (2004), 

which relates effective tensile strength (ζ) and porosity (ϕ) (Pth= ζ/ ϕ). For the case of these 

experiments, Pth ranges between 2.3 and 2.5 MPa. The sum of calculated Pth and Pfrag 

pressures yields Ppre-frag values ranging from 2.4–2.6 MPa. These values, along with Pfrag 

(derived from particle velocities), bracket the range of possible final overpressure (pre-

fragmentation). For Pth estimations, a final porosity values of 80-85% is considered and an 

effective tensile strength of 2MPa assumed (Spieler et al., 2004; Alatorre-Ibargüengoitia et 

al., 2010).  Porosity was measured with a density determiner water pycnometer (Fig. 3.9) 

and confirmed by 2D image analysis on image slices extracted from CT stacks.  

 Once initial and final pressure were estimated, they were then divided by a 

decompression timescale, which it was taken as the duration of the parabolic growth 
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segment assessed graphically on sample expansion curves (see Navon et al., 1998; section 

3.4.2.). In this way, a maximum decompression rate leading to fragmentation was estimated. 

These estimations assume that the bubbles initially formed with the full H2O complement in 

the melt phase. These calculations yield a range of decompression rate for the exploding 

samples of about 0.5–1.2 MPa sec-1 (Fig. 4.14).  

 

Fig. 4.14. Calculated decompression rates for representative experiments of intermediate and high-

H2O series. Red stars represent samples that explosively fragmented. Dashed black lines represent 

the critical decompression rate necessary for sample to explosively fragment. The dark grey area 

represents the range of eruptive temperatures estimated for 2008 Chaitén eruption by Castro and 

Dingwell (2009). Uncertainties in both temperature and decompression rate are less than the size of 

the symbols.  See text for description of decompression rate calculations. 

 

By comparison, the decompression rates for non-exploding, low-T experiments of the 

1.4 wt.% series, are about an order of magnitude smaller. These results demonstrate that 

even though a parcel of melt may be significantly hydrous, it may not explode during foaming 

due to slow and effectively restricted expansion and consequently not exceeding a critical 

decompression rate. However, as rhyolite magmas often contain several wt.% H2O prior to 

eruption (e.g., Castro and Dingwell, 2009), and therefore are much more hydrous than our 

experimental samples, critical decompression rates may in fact be achieved at lower 
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eruption temperatures than implied by our experiments. Clearly, in addition, magma parcels 

with >2 wt.% H2O would potentially fragment as well, provided they are subject to a large 

enough pressure gradient to foster high decompression rates. These results corroborate the 

finding that elongational strain rates of exploding versus non-exploding samples also differ 

by at least an order of magnitude. 

 

4.4.2 Fragmentation experiments and the 2008 Chaitén eruption 

As shown in section 4.3.1, particle velocities observed in the fragmentation bomb 

experiments are influenced by several parameters. By modifying the initial experimental 

conditions (i.e., temperature, pressure and sample length), differences in the maximum 

velocities up to 90 m s-1 were obtained. The highest maximum velocity was measured in the 

experiment performed at 500°C, initial overpressure of 15 MPa and sample length of 60 mm. 

Nevertheless, despite the differences observed, all these velocities are at least 100 m s-1 

higher than the ones obtained during the high-T, 0.1 MPa explosions (Fig. 4.15). 

 

Fig. 4.15 Comparison between maximum particle velocities obtained for the different experimental 

setups. The x-axis is not scaled.  

 

Together with the differences in particle velocities, it is important to notice that these 

experimental setups simulate two different fragmentation mechanisms. The fragmentation 

bomb experimental apparatus, first used by Alidibirov and Dingwell (1996a) to explore the 

fragmentation behavior involved in 1980 Mount St. Helens eruption, has become a well-

established setup to investigate fragmentation due to bubble overpressure triggered by rapid 

decompression. On the other hand, the experiments performed at JGU provide a view of 
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brittle fragmentation induced by volatile exsolution and bubble growth, which so far, had 

been only simulated with numerical models (e.g., Papale, 1999; Polacci et al., 2004). This 

prompt the question: which of these experiments, if any, is representative of the explosive 

activity observed during 2008 Chaitén eruption?  

The initial pressures (10 and 15 MPa) selected to perform the experiments in the 

fragmentation bomb are in the range of the initial overpressure estimated (solubility-

controlled P-H2O; Newman and Lowenstern, 2002) for the 0.1 MPa experiments that 

experienced explosive fragmentation. At the same time, H2O content of the samples used for 

the 0.1 MPa experiments are representative of the values observed in the deposits (Chapter 

2). Therefore, experimental conditions of both sets of experiments are within the range of P-

H2O conditions of 2008 Chaitén eruption. Regarding temperature, it is important to note that 

the highest temperature used in the fragmentation bomb experiments is below the eruptive 

temperatures estimated by Castro and Dingwell (2009) (750–825°C). As shown in this and 

previous studies (e.g., Cigala et al., 2017), particle velocity increases with temperature. 

Thus, the velocities estimated here provide a minimum velocity value for the velocities 

expected in 2008 Chaitén eruption. Regardless the differences between experimental and 

eruptive temperatures, and consequent variation in the velocities (and GSD), experimental 

conditions of both sets of experiments and their results still reproduce two different 

fragmentation mechanisms and can be used to better understand the fragmentation dynamic 

during Chaitén eruption  

Alfano et al. (2012) explored the eruptive dynamics of Chaitén eruption by analysing 

the textural characteristics of lapilli-size pumices erupted during the 6 May, 2008, climatic 

phase. In their study, the authors reported bulk porosity ranging between 43 and 80%, with 

relative open porosity varying between 70 and 86% of these values. According to aspect 

ratio measurements, vesicles show a high degree of elongation and modal diameter 

between 50 and 80 µm while estimated BNDs are in the order of 9x104 to 1.3x 105 mm-3. In 

this sense, the pumice used in the fragmentation bomb experiments is representative of the 

material erupted during the early stages of 2008 Chaitén eruption. Based on these textural 

features, Alfano et al. (2012) suggested that vesiculation was homogenous, occurred over a 

very short time and relatively late during magma ascent. The authors propose that vesicle 

nucleation and growth was virtually inhibited by magma fast ascent—enabled by its low 

viscosity—and the absence of microcrystals, allowing large portions of the magma body to 

reach shallow crustal levels highly saturated in water. Once the magma reached shallow 

levels, the presence of the pre-2008 lava dome acted as a plug, causing pressure to 

increase. Its failure triggered homogeneous vesiculation, the built up of overpressure in the 

bubbles and finally magma fragmentation. This hypothesis of early explosive eruptive stages 

characterized by dome disruption, sudden magma decompression and consequent violent 
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explosions is also supported by the large amounts of lithic fragments (~80%) in the deposits 

described by Alfano et al. (2011).  

In this scenario, fragmentation bomb experiments appear to be the most suitable to 

reproduce the fragmentation mechanism dominant during the Plinean phase of the eruption. 

By using the BND (Bubble Number Density) decompression rate meter method developed 

by Toramaru (2006), Alfano et al. (2012) estimated decompression rates between 8 and 12 

MPa s-1, with fragmented mixture (gas + particles) exit velocity between 330 and 1180 m s-1. 

The experiments performed at the fragmentation bomb suggest that velocities of individual 

pyroclasts might have been significantly lower. As discussed earlier in this chapter, the ideal 

maximum velocity reached by the fragments at the conduit outlet depends mainly on the 

pressure differential between gas and atmosphere and on the initial amount of volatiles. 

Unfortunately, the data collected about obsidian bombs in the field is not enough to validate 

the results obtained in the experiments with any of the available models (e.g., software 

EJECT! by Mastin (2001)). 

When pumice textural characteristics reported by Alfano et al. (2012) are compared 

with the products of the 0.1 MPa, High-T experiments, the latter show higher porosity (5 to 

15%), larger bubbles (mode = 90 µm) and lower BDN (~103 mm-3). All these characteristics 

are in agreement with a scenario dominated by heterogeneous nucleation, as postulated in 

the previous chapter (section 3.4.1). At the same time, it is worth noting that decompression 

rates associated with samples that fragmented explosively are one order of magnitude lower 

than values obtained by Alfano et al. (2012). This might also help explain the differences in 

bubble sizes observed. In this sense, it is expected that samples with higher initial H2O 

contents than the one used here, would experience higher decompression rates and, 

therefore, form smaller bubbles.  

Due to its experimental design, the 0.1 MPa, high-T experiments can shed light on 

low-pressure degassing environments. This includes tuffisites, which are active pyroclastic 

channels that cross-cut magma-filled volcanic conduits and enable outgassing of magma to 

the atmosphere (Tuffen et al., 2003). The opening and closing of tuffisites may impose 

intermittent pressure drops of (1–15 MPa) on the hydrous melt, and tuffisite‘s vertical 

connectivity (to 500 m; Castro et al., 2014), suggests that melt parcels would indeed be 

subject to rapid decompression to atmospheric levels. Evidences of these degassing 

structures are ubiquitous in Chaitén bombs and also in the obsidian lava dome (Castro et al. 

2012a).  

In summary, experimental and field evidence suggest that both fragmentation 

mechanisms might have been responsible of the explosive activity observed during 2008 

Chaitén eruption. During the initial explosive phase, fast ascent of ―crystal-free‖ magma, 

together with the progressive failure of the pre-existing lava dome and consequent exposure 
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of magma to sudden pressure drops, might have conspired to trigger magma fragmentation 

due to bubble overpressure. As the eruption progressed, slower ascent rate might have 

enabled the formation of microlites, promoting heterogeneous bubble nucleation. In addition, 

degassing might have favoured shear-induced magma fracturing, leading to the occurrence 

of tuffisites. These pyroclastic channels, in turn, facilitated the exposure of still hydrous melt 

parcels to low pressure, contributing to a scenario in which fragmentation occurred due to 

strain rates (bubble growth-related) exceeding melts relaxation rates. Recent findings of 

Wadsworth et al. (2018) support this eruption evolution. The authors predict that during early 

stages of the eruption, magma behaviour resided in the viscous field. As a consequence, 

conduit-scale shear fracturing was not likely to be a dominant component during the initial 

Plinian explosive activity. Instead, they suggest fragmentation due to bubble overpressure as 

the dominant mechanism. As the eruption progressed, and magma degassed, the eruption 

transitioned into a mixed viscous-brittle regime and ash generation occurred simultaneously 

with the emplacement of a lava dome.  

 

4.5 Conclusions 

Two different fragmentation mechanisms were simulated by using the experimental 

setups at JGU and LMU. While in the fragmentation bomb (LMU) magma fragmentation is 

caused by gas overpressure exceeding melt tensile strength (e.g., Spieler et al., 2004), the 

0.1 MPa experiments performed at JGU shed light on fragmentation mechanisms in which 

magma disruption is a consequence of strain rates directly stemming from bubble growth 

overcoming the structural relaxation timescale of the melt (e.g., Papale, 1999). 

The 0.1 MPa, high-temperature experiments provide the first observations on 

explosive fragmentation due to experimental vesiculation of hydrous rhyolite melt at 

eruption-relevant temperatures and H2O contents. Samples with initial H2O contents of 1.4 

wt.% exposed to T‘s >874°C will expand at sufficiently high rates to explosively fragment. 

Image analysis permitted the estimation of associated strain and decompression rates that 

lead to magma fragmentation. On the other hand, even though the experiments at LMU do 

not yield novel results, the widespread use of this technique for the study of magmatic 

fragmentation offer a reference framemork for the comparison of both sets of experiments. 

Among the most relevant findings from this comparison, highlights the difference in 

measured pyroclastic velocities of up to 150 m s-1, which should be considered as a lower 

limit difference for the velocities expected during the intial stages of 2008 Chaitén eruption.  

Experimental results were interpreted in the context of 2008 Chaitén eruption. The 

fragmentation bomb experiments seem to be more appropriate to simulate the early stages 

of the eruption, characterized by the failure of the pre-existing lava dome, violent explosions 

and Plinian activity. On the other hand, fragmentation mechanism simulated in the 0.1 MPa 
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experiments may reproduce better the explosive activity observed during the transitional 

phase of the eruption, in which explosive and effusive activity occurred simultaneously. 

Results show that exposure of significantly hydrous and hot melt parcels to low pressure will 

in and of itself result in fast deformation and decompression rates necessary for melt 

disruption. This process will likely aid magma degassing in the conduit environment or in 

newly opened melt-hosted fractures that act as low pressure sinks for outgassing (tuffisites; 

Castro et al., 2012a). 

Finally, these results help explain the H2O content distributions in 2008 Chaitén 

pyroclastic obsidian deposits described in the Chapter 2 of this thesis, as well as the ones 

observed in other rhyolitic eruptions (e.g., Mono Craters, Newman et al., 1988; Rust et al., 

2004).  
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Long-lasting impacts of rhyolite 

eruptions: ash resuspension events 
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5.1. Introduction 

Hazards and impacts associated with dispersal and sedimentation of primary 

volcanic tephra during eruptions are well documented in the literature (e.g., Horwell and 

Baxter, 2006; Wilson et al., 2012; Guffanti and Tupper, 2014; Jenkins et al., 2015). Worthy of 

note are also the tools from the social sciences used to characterize and identify public 

awareness, perceptions and behavior around volcanoes, including preparedness related to 

primary tephra fallout (e.g., Greene et al., 1981; Johnston et al., 1999; Paton et al., 2001; 

Gregg et al., 2004; Bird, 2009; Bird and Gísladóttir, 2012). Social science research is also 

used in post-event impact assessments, where eye-witness accounts provide scientists with 

invaluable physical data not recorded in the geological record (e.g., Wilson et al., 2011; 

Craig et al., 2016b). However, less attention has been devoted to characterization of ash as 

a secondary hazard after it has been resuspended by winds. Despite the relative dearth of 

research on ash resuspension, the phenomenon has been documented in several areas 

during and after volcanic eruptions (Table 5.1).  

 Defined as ―ash storm‖ by Bitschene et al. (1995), ash resuspension events are 

prone to occur under specific meteorological and environmental conditions such as strong 

winds, low soil moisture and lack of vegetation (e.g., Leadbetter et al., 2012; Wilson et al., 

2011). Particles begin to move by creeping, saltation and suspension when the wind reaches 

a threshold friction velocity (Bagnold, 1941), which depends on soil and ash textural and 

morphological characteristics (i.e., grain size, density, surface roughness, degree of 

compaction; Sivakumar, 2005). Saltation is the dominant mechanism during initial stages of 

ash resuspension, with particles first being lifted and then transferring their kinetic energy 

when falling back to the surface and thus promoting a chain reaction (Shao et al., 1993) that 

liberates stationary ash particles from the surface. Once the threshold friction velocity is 

exceeded, sediment suspension may become stable causing large-scale ash remobilization. 

Ash travelling in suspension can affect areas several hundred kilometers away from the 

primary depositional area (e.g., Alexander, 1934; Miller, 1934; Wilson et al. 2011; Folch et 

al., 2014). This long-lasting phenomenon, unlike most primary tephra fallouts, does not have 

a point source of emission (i.e., a single volcanic vent), but is typically sourced from wide 

areas, and can occur in both young (e.g., Thorsteinsson et al., 2012; Wilson et al., 2013)  

and old deposits (e.g., Hadley et al., 2004; Mingari et al., 2017). The term tephra is 

considered here in the sense of Thorarinsson (1944)—a collective term used to describe all 

particles ejected from volcanoes irrespective of size, shape and composition. Wind 

remobilization typically affects the ash fraction of tephra deposits, but terms like ―volcanic 

ash‖ are often used common languagel to describe all sizes of volcanic particles. Since this 

study involved survey interviews of farmers who may not use grain size terms consistent 
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with those of scientists, in the following sections ―ash fallout/deposits‖ and ―tephra 

fallout/deposits‖ are considered to be equivalent. 

Remobilization of tephra deposits was first reported by Alexander (1934) and Miller 

(1934), affecting the city of Buffalo (USA) on 12-13 November 1933. Characterization of the 

particles deposited and meteorological conditions led the authors to propose Alaska as the 

source of this volcanic ash. Hadley et al. (2004) reported an ash resuspension event related 

to the 1912 Novarupta eruption (Katmai volcanic cluster, Alaska) on 20-21 September 2003 

and highlighted its hazardous nature to aviation. The Alaska Volcano Observatory reported 

several remobilization events related to this deposit over the last 14 years, with most events 

taking place during boreal spring and fall and affecting areas up to 250 km downwind 

(Wallace et al., 2015). Novarupta tephra deposits are still remobilized more than 100 years 

after its deposition. Following the 1980 Mount Saint Helens eruption (USA), Hobbs et al. 

(1983) described ash resuspended over eastern Washington State and provided the first 

measurement of the concentration of this particulate material in the atmosphere. Iceland is 

another important source of volcanic sediments that are frequently subjected to intense 

aeolian processes and resuspension (Dagsson-Waldhauserova et al., 2013). Thorsteinsson 

et al. (2012) and Leadbetter et al. (2012) identified ash resuspension events during and 

shortly after the 2010 Eyjafjallajökull eruption (14 April to 20 May) and performed the first 

systematic ground-based measurements of air quality (i.e., concentration of Particulate 

Matter (≤ 10 µm, (PM10)) at locations around the volcano). Leadbetter et al. (2012) made the 

first attempt to model these events. Arnalds et al. (2013) registered over 30 erosive events 

on Eyjafjallajökull tephra deposited between June and October 2010, including an extreme 

episode that transported 11,802 kg m-1 at sustained wind speeds between 14.1 and 22.5 m 

s-1 and gusts up to 38.7 m s-1. Lastly, applying morphological, textural and compositional 

analysis, Liu et al. (2014) characterized a resuspended ash deposit on Reykjavik following a 

blizzard in March 2013 and identified multiple sources—the 2010 Eyjafjallajökull and 2011 

Grímsvötn deposits.   

In the southern hemisphere, Patagonia is another region where conditions for ash 

resuspension are often reached. After the eruption of Mount Hudson (Chile) in 1991, Scasso 

et al. (1994) described deposits of remobilized ash at several locations east of the volcano, 

while Inbar et al. (1995) analyzed the chemical and physical characteristics of the airborne 

ash. The Global Volcanism Program (GVP) reported wind remobilization of Hudson‘s tephra 

from shortly after the 12-15 August 1991 eruption until late March 1992 (GVP, 1991a,b,c; 

GVP, 1992). More recently, ash resuspension events related to the 2008-2010 Chaitén 

volcano (Craig et al., 2016b) and 2011-2012 Cordón Caulle (Wilson et al., 2013; Folch et al., 

2014; Craig et al., 2016a,b; Elissondo et al., 2016; Ulke et al., 2016 and Panebianco et al., 

2017) eruptions were reported in the Argentinian Patagonia. The same phenomenon was 
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described by Reckziegel et al. (2016) after the short eruption of Calbuco volcano in 2015 

(Chile). In the Argentinian/Chilean region of La Puna, Collini et al. (2015) noted the 

occurrence of a resuspension event shortly after the eruption of Lascar in 1993 (Chile). Also 

in La Puna, on 13 June 2015 the Volcanic Ash Advisory Centers (VAAC) in London and 

Buenos Aires identified a plume of ash in the vicinity of Nevados Ojos del Salado volcano 

(Chile/Argentina). After discarding the volcano as the source of the ash, they related it to 

resuspension of relict pyroclastic deposits from an eruption of Cerro Blanco volcano some 

4300 years ago (Collini et al., 2015; Mingari et al., 2016).  

   

Table 5.1 Summary of reported ash resuspension events. 

 
Volcanic 
eruption 
(onset) 

Resuspension event 
Affected area 
(distance, km) 

Particle 
Matter (PM)*

1
 

[µg/m
3
] 

References 

Alaska* 12–13 Nov. 1933 Buffalo (USA) 
( >4000) 

 Alexander (1934); 
Miller (1934) 

Novarupta 
(06.06.1912) 

20–21 Sep. 2003 Gulf of Alaska (USA) 
(230) 

 Hadley et al. (2004) 

2003–2005  
2010–2015 

Shelikof Strait, Kodiak 
Island Gulf of Alaska 
(250) 

 Wallace et al. (2015) 

Mount St. 
Helens 
(18.05.1980) 

23 May 1980 Eastern Washington 
(USA) 
(125–225) 

14 PM2 
/250.5*

2
 

Hobbs et al. (1983) 

Eyjafjallajökull 
(14.04.2010) 

7 May–6 Jun 2010 Vik 
(40) 

13157/ 1231 Thorsteinsson et 
al.(2012)*

4 

Heimaland 
(50) 

4000/>1000  

Hvolsvöllur 
(35) 

-/~500  

Reykjavík 
(125) 

-/2000 

23 May–2 Jul 2010 Heimaland 
(50) 

4161 Leadbetter et 
al.(2012)*

5
 

Hvolsvöllur 
(35) 

1900  

Grensàsvegur 
(120) 

1413  

Hvaleyrarholt 
(125) 

1726  

21 Sep 2010–16 Feb 2011 Drangshildardalur 
(12) 

1900 

Jun–Oct 2010 10 km from the crater  Arnalds et al. (2013) 

6–7 Mar 2013 Reykjavík 
(125) 

 Liu et al. (2014) 
 

 18 Sep 2012 Kirkuæbjarklaustar 
(75) 

 

22–23 Aug 2013 Siglufjördur 
(285) 

 

12 Nov 2013 South of Eyjafallajökull 
(<15) 

 

Grìmsvötn 
(21.04.2011) 

6–7 Mar 2013 Reykjavík 
(225) 

 Liu et al. (2014) 

Cerro Blanco 
(2300 BCE) 

13 Jun 2015 ―Bolsón de Fiambalá‖ area 
(~100) 

 Collini et al. (2015) 
Mingari et al. (2017) 

Mount Hudson 
(08.08.1991) 

16–23 Aug 1991 
Sep 1991 
 
 
 

No specifications 
Comodoro Rivadavia 
(400) 
Río Gallegos (770) 
Puerto Deseado 

 
 
 
 
 

GVP (1991b) 
GVP (1991a) 
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21 Mar 1992 
 
 
1991–1992 
 
1991–2011 

Puerto San Julian 
Atlantic Ocean (1000) 
Mar del Plata ( >1500) 
Comodoro Rivadavia 
(400) 
Malargüe (1300) 
XI region (Chile) - Santa 
Cruz province (Argentina) 
(120–570) 

 
 
 
 
 
 
3768–6000 
part./l*

3
 

 
GVP (1991c) 
 
GVP (1992) 
 
 
Inbar et al. (1995) 
 
Wilson et al. (2011) 

Lascar  
(30.01.1993) 

23 April 1993 Puna región (Argentina) 
(50–100) 

 Collini et al. (2015) 

Chaitén  
(01.05.2008) 

Feb 2009 Esquel – Pilcaniyeu 
(110–250) 

 Craig et al. (2016b) 

Cordón Caulle 
(04.06.2011) 

Jun 2011–Mar 2012 Bariloche – Ing. Jacobacci 
(100–250) 

 Wilson et al. (2013) 

Aug 2011 Ingeniero Jacobacci 
(250) 

 

4–5 Mar 2012 Ingeniero Jacobacci  
(250) 

919/ 625  

14–18 Oct 2011 Buenos Aires 
(1400) 

252  Folch et al. (2014) 

Jun 2011–Jan 2012 Villa La Angostura 
(50) 

~600/ ~300 Elissondo et al. 
(2016) 
 
 
 
Craig et al. (2016a) 
 
 
Panebianco et al. 
(2017) 

 
 
Jun 2011–Mar 2012 
 
 
Jun 2011–Dec 2012 

Ingeniero Jacobacci 
(250) 
Villa La Angostura  - 
Ingeniero Jacobacci 
(50-250) 

Patagonian Steppe 
(200–260) 

~1500 / 
~1100 

Calbuco 
(22.04.2015) 

2–3 May 2015 Neuquén province 
(200–250) 

 Reckziegel et al. 
(2016) 

* Volcanic system is not specified. 

*
1
 When not clarified PM refers to PM10 

*
2
 Total Mass Concentration of Particles obtained via aircraft airbone sampling.  

*
3
 Values reported as particles per liter. 

*
4
The first value reported corresponds to the maximum 10 min average concentration while the second is the 

maximum 24 hour average.  

*
5 

Values reported as hourly averages 

 

Little assessment, however, exists of impacts of resuspension events on human 

health, infrastructure, economic activities and, in general, on communities as integrated and 

complex systems. Sixteen years after the 1991 Mount Hudson eruption, Wilson et al. (2011) 

examined the long-term environmental, social and economic consequences of ash 

resuspension events in the southern Patagonia Steppe. The authors identified several 

impacts on farming activities, including farmland buried under ash dunes, abraded 

vegetation, contaminated feed supplies and, tooth abrasion, gastrointestinal problems, 

blindness, impeded movement and exhaustion in livestock, causing the abandonment of 

some farming activities and farms. Wilson et al. (2011) also showed that ash resuspension 

events can extend the effects of primary tephra fallout for several years. This was 

corroborated by Craig et al. (2016a,b) in their studies on impacts on agricultural activities 

after tephra falls in Patagonia. Recent ash resuspension events reported in Iceland (Table 



C h a p t e r  5  | 111 

 

 

3.1) aroused great concern about the possible consequences of long term exposure to high 

airbone concentrations of thoracic (≤10 µm) and respirable (≤4 µm) size particles  on human 

health (Leadbetter et al., 2012). These critical grain size classes were defined by the Quality 

of Urban Air Review Group (1996). Although the potential impacts of long term exposure are 

known (Horwell and Baxter, 2006), no epidemiological survey has been carried out in areas 

affected by this secondary ash hazard. The only published study (Carlsen et al., 2015), 

found that high levels of PM10 due to volcanic ash during non-eruptive periods increased the 

number of emergency hospital visits for cardiorespiratory causes in adults in Reykjavík. To 

our knowledge, however, no study has examined people‘s perception, awareness and 

preparedness related to ash resuspension events.  

In this chapter, aspects of natural and social sciences are combined to characterize 

ash resuspension events associated with the 2011–2012 Cordón Caulle deposits and 

assess the impact on a farming community in the Argentinian Patagonian steppe (i.e., 

Ingeniero Jacobacci, Fig. 5.1). The impacts of ash resuspension are compared to those of 

primary tephra fallout. Furthermore, farmers‘ perception and knowledge in relation to these 

hazardous events were assessed. At the same time, the information they provided was used 

to complete the description of the physical phenomenon, based on measurable physical 

parameters (i.e., rainfall, wind velocity).   

 

5.2. Area of study 

The area of Ingeniero Jacobacci was severely affected during the 2011–2012 Cordón 

Caulle eruption, despite the fissure system being ~250 km distant (Fig. 5.1; Gaitán et al., 

2011). Furthermore, the prevailing environmental conditions (i.e., low vegetation coverage 

and low precipitation rates) of the region around Ingeniero Jacobacci make it especially 

susceptible to post-eruptive ash resuspension events. Located in the Department of 25 de 

Mayo, in Rio Negro province, Argentina, Ingeniero Jacobacci is in the Argentinian 

Patagonian Steppe (Fig. 5.1A) and has a population of 6261 inhabitants (INDEC, 2010). The 

closest main cities are Bariloche (210 km), General Roca (350 km) and Viedma (700 km), 

capital of the province. Next, we summarize the main social, economic, meteorological and 

environmental aspects that established a baseline to understand the population and 

environmental conditions of our study area.   

 

5.2.1. Social and economic aspects 

Ingeniero Jacobacci was founded in 1917 as a consequence of the arrival of the 

railway that today connects the city with Bariloche and Viedma. However, the area was 

already populated before that time by indigenous communities (Mapuches and Tehuelches). 
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Between 1878 and 1885 the Argentinian government launched military campaigns to 

exterminate the existing indigenous communities and take control of their lands. As a result 

of those campaigns, vast areas of the Patagonia were incorporated within the incipient 

Argentinian State. Farming activity in the area began soon after this period and expanded 

rapidly. Due to the historical process of land occupation, different categories of farmers and 

scales of farming activities can be recognized in the area, ranging from relatively small ones 

practicing subsistence cattle-farming to big landowners with several thousands of hectares 

and animals (LADA, 2010). Although improvements in legislation have recognized some 

indigenous rights, tension for the possession of the land between remaining indigenous 

communities and the Argentinian State still persists (Murgida and Gentile, 2015).  

 

Fig.5.1. Location of the study area. A) Isopach maps of the tephra deposits of the last three eruptions 

that affected the region: 2008–2010 Chaitén (Alfano et al., 2011; Watt et al., 2009), 2011–2012 

Cordón Caulle (modified from Gaitán et al., 2011) and 2015 Calbuco (Van Eaton et al., 2016) 

eruptions. The rectangule indicates the location of the study area. B) Zoom on the study area. The 

colored dots show the locations of farms in the study area (Census INTA, 2016), while black dots 

indicate farms involved in the present study. Different colors indicate tephra thickness deposited 

according to Gaitán et al. (2011). 

 

Farming is the main economic activity in the study area and it developed as 

extensive, low-intensity livestock farming on arid/semi-arid grazing lands. Production 

consists mainly of sheep (Merino breed) and goats (Angora and Criolla breeds) for wool 

exportation and, on a smaller scale, cattle are bred for meat production. According to the last 

census carried out by INTA in 2016, 508 families live in the rural area of Ingeniero Jacobacci 

(Fig. 5.1B). The city of Ingeniero Jacobacci functions as a service center for the farmers, 

providing access to banking, a hospital, agricultural institutions and an agricultural 

cooperative. The main source of employment in the city is the municipal government, while 

mining-related activities represent an important complementary source of employment.     
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5.2.2. Meteorological and environmental aspects 

The Argentinian Patagonian steppe is a low relief region with hills, plateaus and 

plains. The area under study experiences a climate comprising four seasons, characterized 

by changes in temperature, wind conditions and precipitation (Fig. 5.2).  

 

Fig. 5.2. Meteorological characteristics of the study area. A) Columns represent monthly distribution 

of rainfall for the period 1941–2005 (Source: Station Emiliano Criado—900 m.a.s.l). Red line 

represents monthly mean wind velocity for the period 2011-2016 obtained from ERA-Interim Re-

Analysis of the ECMWF (European Center for Medium-range Weather Forecasts) dataset. At the top, 

monthly temperatures averaged for the period 1982-1990 (Source: INTA-DPA). B) Wind direction and 

velocity for the period 2011-2016. C) Rainfall for the period December 2009 - February 2016. LP, AA 

and JS are pluviometers. INTA J is emplaced in the city of Ingeniero Jacobacci. Grey dot line 

represents data of Elissondo et al. (2016) for the period September 2011–July 2012 (NOAA 

NCEP/NCAR). 

 

According to the UNEP (1992) Aridity Index, it can be classified as an Arid/Semi-arid 

region. Annual median temperature is 8.2°C; however, large daily and seasonal fluctuations 

exist. Winds prevail from the west with an annual mean velocity of 4.7 m s-1. Summer and 

winter are the windiest seasons, with maximum mean velocities of 5.4 m s-1 reached in 



C h a p t e r  5  | 114 

 

 

December; while lowest wind velocities occurred in fall (4.16 m s-1 in March). The historical 

annual precipitation is 170 mm (1941–2004) with most rainfall occurring between April and 

September (Fig. 5.2A). Unfortunately, rainfall data for the area is discontinuous. 

Nevertheless, data from pluviometers emplaced by INTA in farms located at different 

altitudes allows for a first characterization of the precipitation regime during the last 6 years 

(2010–2015). These values are supplemented in Fig. 5.2C with the ones published by 

Elissondo et al. (2016). Since 2007 the region has been affected by a severe drought (INTA-

EEA, 2011).    

 

5.2.3. Volcanic activity and its impacts 

The influence of post-glacial volcanic activity in the Patagonian steppe can be 

recognized in the geological record (Fontijn et al., 2014). Tephra layers identified in a 

paleolake sequence in the vicinity of Ingeniero Jacobacci (~20 km to the north) by Tatur et 

al. (2002) show how these events have impacted the region at least during the last 14,000 

years. The active Andean volcanic front is located approximately 200 km west of the study 

area (Fig. 5.1A). According to the GVP (http://volcano.si.edu/), in the segment between 39° 

and 43°S, a total of 25 volcanoes are considered to be active, some of which have erupted 

explosively during the last decades. The 2008-2010 Chaitén and 2011–2012 Cordón Caulle 

eruptions were the two most explosives taking place in this segment, developing extensive 

volcanic plumes and dispersing tephra all over this region (Watt et al., 2009; Alfano et al., 

2011; Pistolesi et al., 2015; Fig. 5.1A). On a minor scale, the 2015 eruption of Calbuco 

affected the northern sector of Patagonia (Reckziegel et al., 2016; Romero et al., 2016; Van 

Eaton et al., 2016; Fig. 5.1A). On 22 April 2015, and preceded only by three hours of a 

sudden increase in its seismic activity, Calbuco volcano erupted explosively, producing a 15 

km high eruption column (SERNAGEOMIN, 2015a). After two short but energetic and highly 

explosive phases, the activity of the system decreased, giving rise to the alternation of 

smaller explosions and periods of quiescence. The eruption was over by the end of May 

(SERNAGEOMIN, 2015b). In the following sections, the main impacts of these eruptions are 

described, putting special emphasis on the study area. 

 

5.2.3.1. 2008–2010 Chaitén eruption 

Chaitén volcano, located 310 km southwest of Ingeniero Jacobacci, produced vast 

amounts of tephra during the first weeks. Impacts were severe at a local, regional and global 

scale. A wide area of the Argentinian Patagonia was affected by the dispersion and 

deposition of fine ash. According to the isopach map developed by Watt et al. (2009), our 

study area was covered with 0.1 to 0.5 mm of volcanic material (Fig. 5.1). Martin et al. 

(2009) evaluated the environmental effects (i.e., on air, water and vegetation) of the eruption 



C h a p t e r  5  | 115 

 

 

in Argentina. They reported ash resuspension-related problems in Esquel city, but triggered 

by anthropogenic activity (i.e., vehicular traffic). Although there is no specific study carried 

out in Ingeniero Jacobacci, Craig et al. (2016b) identified pastoral and horticultural impacts in 

the Patagonian Steppe related to the primary tephra fallout. They also reported wind 

remobilization of tephra deposits, which exacerbated the impacts of primary tephra fallout on 

farming activities and increased the affected area.         

 

5.2.3.2. 2011–2012 Córdon Caulle eruption 

The 2011–2012 Cordón Caulle eruption emitted about 1 km3 of tephra (Pistolesi et 

al., 2015) and prevailing westerly winds in the region caused most of the primary tephra to 

be deposited in nearby Argentina (Fig. 5.1A), causing disruption to various economic and 

other human activities in several localities (Wilson et al., 2013; Craig et al., 2016a,b; 

Elissondo et al., 2016). According to Gaitán et al. (2011), 3 to 5 cm of tephra was deposited 

in Ingeniero Jacobacci (Fig. 5.1B). Their measurements were performed at some time during 

the first two months after the onset of the eruption while Pistolesi et al. (2015) measured 

about 6.5 cm in July 2011. Electricity, water supplies, communications, road traffic, school 

and administrative activities were significantly disrupted in Ingeniero Jacobacci (Wilson et 

al., 2013; Elissondo et al., 2016).  

Farming activities were also seriously affected by the primary tephra fallout. 

According to Jacobacci municipality, livestock losses were estimated at 40–60% for a total 

herd of 225,000 sheep and 60,000 goats. Craig et al. (2016a) reported starvation and 

gastrointestinal blockages as the main cause of mortality. Other problems reported include 

eye irritation, teeth abrasion and difficulties in breathing. Due to the lack of uncovered 

pasture, supplemental nourishment with forage and grains was implemented. In their report, 

Wilson et al. (2013) pointed out that birth rates went down from 60% to 10–30% and that 

there were instances of livestock being sold and moved to other areas. Contamination of 

wool with tephra adversely impacted the health of animals as well as in the quality and 

profitability of woolen products (Aguirre, 2012; Easdale et al., 2014).   

In addition to the impact of widespread dispersal of primary tephra fallout during the 

eruption, Ingeniero Jacobacci was significantly affected by the remobilization of primary ash 

immediately after its deposition and during several months after the climactic phase (e.g., 

Folch et al., 2014). A team from the Argentinian Geological Survey (SEGEMAR) monitored 

air quality in the city between September 2011 and July 2012, and measured concentrations 

exceeding the daily exposure limit (Elissondo et al., 2016). These events prolonged the 

effects observed during primary tephra fallout, reducing visibility, interrupting mobility of 

vehicles, delaying urban clean-up activities and increasing water demand (Craig et al., 

2016a). 
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5.2.3.3. 2015 Calbuco eruption  

Although Calbuco volcano is located at the same latitude as Ingeniero Jacobacci, the 

tephra plume of this short eruption was mainly dispersed towards the NE and, in 

consequence, no primary tephra fallout was reported in our study area. Reckziegel et al. 

(2016) reported several ash resuspension events related to the 2015 Calbuco eruption 

deposits; however, according to the authors these events affected a region located more 

than 200 km north of our study area.    

 

5.3. Methodology 

Four sources of data were used to understand ash resuspension events and their 

impacts on people. These resources include: 1) available meteorological data, 2), in-person 

interviews with people living in the study area since the 2011–2012 eruption of Cordon 

Caulle (i.e., eye-witnesses); 3) newspaper articles detailing the eruption, resuspension and 

impacts; and 4) field observations in the impacted region. Collectively, these data was used 

to characterize the phenomenology of ash resuspension events in the study region of the 

Patagonian Steppe. Prior to the in-person interviews, informed consent of respondents was 

obtained, following the institutional review board requirements for research on human 

subjects. 

A sample survey research was carried out by using a written questionnaire to guide 

in-person interviews. A 41 item questionnaire was developed based on that used by Bird and 

Gisladóttir (2010). The questionnaire combined both open and closed-ended questions. It 

was developed in Spanish, taking special effort to avoid ambiguity and following a logical 

order. The questionnaire was structured in four sections. Section 1 gathered personal 

information about the interviewee. Section 2 addressed issues related to the initial phases of 

the 2011 Cordón Caulle eruption and the primary tephra fallout while Section 3 focused on 

subsequent ash resuspension events. Sections 2 and 3 were subdivided in two sub-

sections, focusing on: (A) the characteristics of the events and, (B) impacts of the 

phenomena under consideration. Section 4 contained questions related to the 2015 Calbuco 

eruption. As this latter eruption occurred during the development of the questionnaire, it was 

considered valuable to expand ther analysis to capture the influence of this event on the 

sample population. Several items in Section 3B that inquired about support and assistance 

provided to the farmers during and after the eruption are omitted from the analysis as they 

are beyond the scope of this chapter.    

A total of 21 In-person interviews were conducted during the first week of February 

2016. Local farmers were interviewed and, when possible, their farms were visited to make 

field observations, documenting impacts and environmental conditions. However, due to the 
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long distances between farms and poor accessibility, some of the interviews were conducted 

in Ingeniero Jacobacci (city) with farmers who were in town on business. A local employee of 

the ‗Cooperativa Indígena Ganadera‘ (i.e., farmers cooperative) served as a Field 

Coordinator to the project, providing assistance in identifying farms and farmers (based on 

the fact that these farmers had come to Ingeniero Jacobacci to run their errands) and 

facilitating access to them during the interview campaign. Before starting the interview 

phase, it was verified that the purposive sample represented a good cross section of the 

farms across the spatial extent of the study area and consisted of a mixture of small and 

large farms being affected by variable accumulation of ash (Fig. 5.1). Only one farmer 

refused to participate, arguing that he was already interviewed once and there was no direct 

benefit for him. 

The first question asked respondents was ‗Did you live here during the 2011 Cordón 

Caulle eruption?‘ This screening question acted as a filter to verify the farmer‘s suitability to 

the purpose of the research. In case of a negative answer, Section 2 of the questionnaire 

was skipped. The interviews were conducted in Spanish by a native speaker from the 

research team. Although the questionnaires were filled-in by the research team during the 

interviews, each one was audio recorded so that the conversations could be transcribed and 

analyzed. These transcriptions provided the opportunity to revisit each interview to ensure 

the accuracy of recorded responses in each questionnaire. The average time of each 

interview was 47 minutes. Completed questionnaires were subsequently coded and entered 

into the software SPSS v19® (Statistical Package for the Social Sciences) and answers 

checked to detect missing data and errors made during the interviews.  

Newspapers were used as a complementary source of information. Although 

information derived from a newspaper analysis may not have the same rigour as a 

measurement or a social survey, their usefulness to complement hazard characterization 

and impact assessments has been demonstrated (e.g., Elissondo et al., 2016). Due to the 

fact that interviews were carried out almost five years after the onset of the eruption, 

newspapers are also used to verify facts given by interviewees. After a detailed examination 

of national, provincial and local newspapers, it was found that the provincial newspaper 

Diario de Rio Negro offered the most detailed descriptions. While news about the 2011 

Cordón Caulle eruption travelled around the country (and the world) during the first two 

weeks, subsequent ash resuspension events that occurred in Ingeniero Jacobacci did not 

receive attention from the national mass media. The short term nature of media coverage is 

consistent with other disasters and events. For that reason, only Diario de Río Negro was 

considered for the analysis presented here. Search of news was online, using key words 

(i.e., Cordón Caulle, ceniza, viento, Jacobacci, Linea Sur). A database with news matching 

the search was created and information about characteristics of ash resuspension events 
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and related impacts extracted (i.e., duration, reported wind velocity, visibility, impacts on 

accessibility, telecommunications, electricity supply and school activities).  

Field observations (i.e., aspects of the deposit, erosion/accumulation features) were 

also an important component to characterize the geological evidence of ash resuspension 

events. Visits to the farms, when possible, were also fundamental to validate the data about 

impacts and mitigation measures obtained from the questionnaires.  

 

5.4. Results 

5.4.1 Farmers: main demographics 

Of the 21 farmers interviewed, 19 were small-scale producers while 2 were owners of 

big farms. This is representative of the ratio large:small-scale producers in the area (~1:10; 

LADA, 2010). The mean age of the farmers was 53.6 (± 12.3) years. Almost two-third of 

them (62%; n = 13) recognized themselves as descendants of or belonging to an indigenous 

community. In the majority of cases, the respondents were strongly rooted in the area. Most 

of the farmers (86%; n = 18) have lived there since birth. Only one respondent had lived in 

Ingeniero Jacobacci for less than 10 years and all of them were living in the area when 

Cordón Caulle erupted. With respect to the highest level of education completed, 71% 

finished primary school, 14% high school, 9% tertiary education and only 1 had obtained a 

university degree.  

Table 5.2 summarizes the agricultural activities practiced among the respondents. 

Some 19 out of 21 people interviewed possess grazing lands in which they primarily practice 

extensive low-intensity farming of sheep (88%; n = 18) and goats (57%; n = 12; Fig. 5.3A). 

Some 52% (n = 11) declared cattle farming; however, the scale of production is considerably 

smaller than for the previous two. Even though the percentages for poultry and horse 

farming are also high, with few exceptions the first one is only for self-consumption, while 

horses are used for daily farming activities. A group of small farms devoted to pig production 

was identified in the outskirts of the urban area of Ingeniero Jacobacci (Fig. 5.3B). There are 

no farms with big extensions of cultivated land; however, 24% mentioned that they grow 

vegetables for self-consumption, mostly in greenhouses (Fig. 5.3C). Although all declared 

that farming is their main source of income, over half of the respondents (57%) indicated that 

they had supplementary sources of income, such as a retirement pension or urban job.   

In order to understand the importance that farmers might give to primary tephra 

fallout and resuspension events compared to other events in their community, the open 

question: ‗List the three main problems you face in your community'‘ was asked. Answers 

were subsequently coded and grouped in different categories. In total, environmental related 

problems were mentioned 20 times, governance issues 16 times and economic problems 
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five times. Surprisingly, almost five years after the eruption, and from a total of 63 possible 

answers (3 problems times 21 respondents), ash related problems were only mentioned 

twice. Other environmental problems such as mining and waste management were 

mentioned an equal number of times. From the answers obtained, it seems that the actual 

main concern among farmers is drought, as nearly half of the respondents (n=10) mentioned 

water-related problems. Only 6 farmers did not mention any environmental related problem. 

The following question, however, specifically asked about environmental problems, to which 

five respondents mentioned drought. Two of them also mentioned ash and only one did not 

identify any environmental problems. This result shows that whether upon prompting 

respondents about environmental problems or not, drought was the critical hazard on their 

minds, not resuspended ash. 

 

Table 5.2 Current agricultural activity practiced. 

Agricultural activity Percent of cases (%) 

Grazing land 90 

Sheep 88 

Poultry 71 

Equidae 67 

Goats 57 

Cattle 52 

Pigs 33 

Crops 24 

Other 5 

 

 

Fig. 5.3. Farming styles. A) Typical farm of the area devoted mainly to sheep and goat farming. On 

the right side of the picture, the farmyard can be observed next to the house. B) Pig farming in the 

outskirts of Ingeniero Jacobacci town. C) Greenhouse for self-consumption constructed with the 

assistance of INTA.       

 

5.4.2. Ash resuspension events 

The remobilization of ash deposited by 2011–2012 Cordón Caulle eruption began 

shortly after the first plume arrived in the area (5 June; Elissondo et al., 2016) and continued 

during the years that followed the end of the eruption in 2012. All of the interviewed farmers 
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identified the occurrence of ash-related events after the end of what they defined as the 

―main eruption‖. At the beginning of Section 2 the respondents were asked, ‗What was the 

duration of the 2011 Cordón Caulle eruption?‘ The purpose of this question was to see if the 

farmers were able to define the duration of the eruption and also distinguish the ash 

resuspension events from the primary fallout. Results are shown in Fig. 5.4A, together with 

the chronology of the eruption. Nearly half of the respondents (43%, n = 9) defined the main 

eruption in the time frame of the purely explosive phase of Cordón Caulle (first 10 days). 

Two of them considered that the eruption was still ongoing in April 2012, when OVDAS 

reported minor explosions and ash plumes lower than 1 km, and only one defined the 

duration of the eruption longer than it actually was. Some 24% (n = 5) defined the eruption 

as a <2 day long event. Despite the different durations defined for the eruption, most of the 

farmers agreed that the remobilization of ash started almost ―immediately‖ after the ash 

impacted Ingeniero Jacobacci.  

 

Fig. 5.4. A) Responses to the question: ‗What was the duration of 2011 Cordón Caulle eruption?‘ B) 

Zoom into the first month of the eruption. From top to bottom: mean daily wind direction (North to top 

of page) and velocity (from ERA-Interim Re-Analysis of the ECMWF dataset), plume direction and 

height (from Ellisondo et al., 2016) and responses to the question about eruption duration. In green 

boxes, the event code number (See Appendix D). 

 

According to farmers‘ descriptions of the eruption, something similar to snowflakes 

started falling and covering the landscape in the earliest hours of 5 June. Media reported the 

onset of a wind storm on the night of 6 June, which continued the next day, resuspending 

the ash deposited during the first day (event 1). According to the newspaper, the wind 

reached velocities higher than 28 m s-1. Wind data from ERA-Interim Re-Analysis of the 

ECMWF dataset shows a marked increase for 6 June, reaching a daily average velocity of 
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9.5 m s-1 on 7 June (Fig. 5.4B). Considering the reported plume dispersion direction, 

Ingeniero Jacobacci was affected simultaneously by primary ash fallout and resuspension 

during those days. During the first month of the eruption four other resuspension events 

were reported by the provincial media, the longest with a duration of four days (event 5). 

Two of them (events 3 and 5) coincided with marked increases in daily wind velocity. This is 

not the case for events 2 and 4, which do not match with wind peaks. However, the purely 

resuspension nature of these events can be deduced from the volcanic plume direction 

observed during those days (E-NE). 

With regard to resuspension events described by the respodents, when they were 

asked ‗Are these events still occurring‘, some 95% (n = 20) answered in the affirmative. 

However, the same number of respondents agreed that the frequency and intensity of these 

events had decreased with time, as discerned from a follow-up question where it was asked, 

‗Did the frequency and the intensity (amount of ash, duration and extension) of these events 

decrease with time?‘ Although this was a closed-ended question, during the conversation 

most of respondents mentioned that frequency abruptly decreased after the first two years. 

At least half of them also described a rainfall event that took place during the first half of 

2014 as the turning point. When looking at the data from pluviometers (Fig 5.2C), a peak is 

recognized in 2014. Between 2 and 8 April 2014, a big storm affected North Patagonia, 

causing mud flows and damage to roads and houses all around the region. In one week, the 

area of Ingeniero Jacobacci received 132 mm of rain, and in sum, rainfall in April was almost 

the same as the annual historical precipitation for the area. Moreover, respondents were 

asked to indicate, ‗What was the frequency of occurrence of these events (ash 

resuspension)?‘, to which 20 of the respondents concurred that before the change in 

frequency, events had an occurrence greater than once per month.  

As can be seen from Fig. 5.5, a total of 28 ash resuspension events were identified 

based on the newspaper article analysis (See Appendix D). Even though the lack of news 

about resuspension events after 11/11/2013 cannot be unequivocally interpreted as the 

absence of events after that date, the remarkable decrease in reported events are in 

agreement with the interviewees descriptions. A closer inspection to Fig. 5.5A reveals a 

good agreement between the distribution of resuspension events reported and the windiest 

months, in particular after September 2011. From the rainfall anomalies plot (Fig. 5.5B), the 

deficit of rainfall and the persistent drought conditions during the three years following the 

eruption can be recognized. The scenario changed in April 2014, with 8 months of rainfall 

above the historical average. Rainfall data are shown here in terms of anomalies instead of 

absolute values to highlight that the area was being simulateneously affected by both 

hydrometeorological hazard and ash resuspension (please refer to Fig. 5.2 for absolute 

values of monthly rain accumulation). 
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Fig. 5.5. Chronology of events (2011–2016): wind, rainfall anomalies and resuspension events.  Light 

red vertical bars represent ash resuspension events reconstructed by newspaper analysis. In green 

boxes, the event code number (see Appendix D). A) Monthly mean wind velocity obtained from ERA-

Interim Re-Analysis of the ECMWF dataset. B) Rainfall anomalies: difference between historical 

precipitation (1941–2005) and rainfall for the period under consideration. Light green bars are months 

with rainfalls above the average value while orange columns show months with rainfalls below the 

historical average.  

 

Farmers were asked, ‗Does the occurrence (amount of ash, duration and extension) 

of these events change as a function of the season?‘ Responses are shown in Fig. 5.6 and 

compared with wind and available rainfall data for the period 2011–2015. Interestingly, more 

than 80% (n = 17) of respondents believe these events are seasonally-controlled and almost 

without exceptions they agreed that they are more common during austral spring and 

summer. During these seasons, winds are strong and rain is scarce. Similar wind conditions 

are reached during the end of fall and beginning of winter, however, this is the wettest period 

of the year. Together, these results support the observation that, although wind is a 

necessary factor to trigger ash resuspension, rain acts as a first order control (inhibitor) for 

the occurrence of events involving the resuspension of ash.     

Aspects related to the characteristics of the deposits (primary and secondary, if any) 

and the modification of the landscape through time were also addressed. For these 

purposes, first the farmers were asked to define, ‗What was the average thickness of ash 

accumulated in each event?‘ Although answers were not precise (vague estimations), most 

of the farmers mentioned thicknesses ranging from a millimeter to a centimeter. Three of the 

respondents described how the events did not leave any deposit. Secondly, they were 

asked, ‗Have you noticed any specific accumulation/erosion processes (in your farm)?‘  

All of the respondents identified the occurrence of erosion processes in their farm. 

From the set of options we gave them (not mutually exclusive), 91% (n=19) of respondents 

reported a non-uniform distribution of ash deposits in their farms. Just over half of them 

(52%) reported a decrease of ash thickness with time, while only one identified a local 

increase of the ash deposited. During a visit to some of the farms, accumulation of ash was 
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identified in areas protected from wind in gullies and small valleys (Fig. 5.7A). When 

examing the deposits in detail, it is possible to identify a discontinuous ash layer of 2–3 cm 

thickness that corresponds to the primary fallout and on the top, a layer presenting cross-

bedded structures where the ash is already mixed with non-volcanic material. Ash deposits 

can also be found, as small pockets, downwind of pastures and bushes (Fig. 5.7B). Figures. 

5.7C and 5.7D illustrate the two main scenarios described by farmers regarding these 

events: (a) storms or days with persistent high winds, where ash is remobilized massively 

and visibility is severely affected and (b) local and short duration dust devils. According to 

many of the respondents, the second ones are the main way by which ash has been 

remobilized during the last years (and even now). In summary, the availability of ash and 

wind are a necessary condition for putting ash in suspension in the atmosphere; however, 

rain seems to be the key player in controlling its occurrence. 

 

Fig. 5.6. Seasonal variability: comparison between answers to the question ‗Does the occurrence of 

these events change as a function of the season? When are they most common?‘ and seasonal 

variability of wind and rainfall in Ingeniero Jacobacci. Wind range was obtained considering mean 

wind velocity for the period 2011–2015 from the ERA-Interim Re-Analysis of the ECMWF dataset. In 

the case of rainfall, monthly values from Elissondo et al. (2016) and pluviometer INTA_J were 

considered for the periods (2011–2012) and (2014–2015), respectively. Colored background is a 

qualitative representation of seasonal variability of mean temperature. 

 

Farmers‘ understanding of the origin and causes of resuspension events was also 

explored by asking them, ‗What are, in your opinion, the sources of generation of these 
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events?‘ Overall, their knowledge about this secondary hazard is high. Answers show that 

the farmers perceive ash resuspension as complex events that depend on a combination of 

several factors. Only two respondents considered that an ongoing eruption is necessary for 

the occurrence of these events. All respondents selected wind as one of the responsible 

factors. Most of them also selected the lack of precipitation (77%, n = 16) and the existence 

of volcanic ash deposit in the ground (81%, n = 17). A small number of respondents (11%) 

indicated the effect of vegetation as one of the causes. One famer attributed these events to 

the will of God.   

 

Fig. 5.7. Field evidences. A) Geoform of accumulation detected in a valley nearby Ingeniero 

Jacobacci city. At the low right corner a cross section of the deposit is shown. B) General view of a 

hillslide covered with low vegetation (pastures and bushes). White patches downwind is remaining 

ash from 2011 Cordón Caulle eruption. A closer view of this can be found at the upper right corner. C) 

Feeding sheep with forage during an ash resuspension event on the 05/09/2011 (credits: Fermín 

Franco). D) Farmers transporting dead bodies of sheep in the same farm than in picture a on the 

03/10/2011 (credits: Fermín Franco). Arrows point to dust devils occuring in the horizon. 

 

5.4.3. Impacts: ash resuspension events vs. primary tephra fallout  

The short-term impact of the Cordon Caulle eruption on urban (Wilson et al., 2013; 

Elissondo et al., 2016) and agricultural facilities (Craig et al., 2016a, b) was already 

assessed, but the visit to the area almost five years after the eruption allowed for an 
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evaluation of its long-term impact and, in particular, of the effects of ash resuspension 

events. 

In a first set of questions, impacts of primary tephra fallout on farming activities were 

assessed by asking, ‗What impact did the ash have on vegetation growth in grazing lands?‘ 

during the main phase of the eruption. The same question was repeated in Section 3, for 

periods of ash resuspension events. From the comparison of the responses, the most 

interesting result is the opposite short–long term effect that farmers perceive on their farming 

activities (Fig.5.8A). While immediate impact was evaluated as negative by all of the farmers 

possessing grazing lands (91%), 76% (n = 16) of them indicated that during the subsequent 

years after the eruption there was an increased yield of grazing areas. From this 76%, some 

69% (n = 11) mentioned the precipitations of April 2014 as the starting point of the 

vegetation recovery, while 19% (n = 3) attributed it to the low levels of cattle-grazing during 

the first years after the eruption. In Fig. 5.9, two pictures taken at the same farm in 2011 (A) 

and 2016 (B), illustrate the evolution and recovery of vegetation and landscape.   

It was also asked, ‗What was the impact on livestock?‘ of both primary ash fallout 

during the eruption and during ash resuspension. Results are shown in Fig.5.8B and the first 

interesting point that arises is that all the farmers declared that their livestock suffered some 

kind of impact due to primary ash fallout, while less (75%) reported impacts during  

resuspension events. Nearly all farmers (20 of 21) reported death of livestock associated 

with primary fallout. Rates of mortality reported by respondents matched estimations of local 

authorities (40-60%; Wilson et al., 2013) and affected small and large scale farmers in the 

same way. On the other hand, only two farmers reported death of livestock due to ash 

resuspension events. Interestingly, one of them was the farmer who mentioned no livestock 

died due to primary ash fallout. This farmer is devoted to pig and poultry farming, and 

reported deaths of chickens after resuspension events. The other farmer mentioned his 

livestock died during 2011, but recorded no deaths in 2012.   

Although there are documented cases of evacuation of livestock after the eruption 

(Craig et al., 2016b), only one of the respondents evacuated livestock to the locality of 

Valcheta (~340 km to the east). Less than a quarter of respondents (19%, n = 4) housed 

their livestock during the main phase of the eruption and only one undertook this measure 

when ash storms took place.  

Among the impacts of ash on livestock during the whole period, the most mentioned 

by farmers were: teeth abrasion, obstruction of digestive tract with ash, eye irritation and 

blindness, difficulties in breathing, miscarriage and problems with reproduction. Among the 

farmers that possessed goats and sheep, there was a general consensus that goats were 

more resilient, especially the breed Criolla. One of the poultry farmers reported that turkeys 

and geese were more resilient than chickens. However, he also mentioned all three species 
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experienced reduced reproduction rates. Regarding the non-farming animals, many 

respondents reported more fox attacks to livestock and related them to the decrease of hare 

populations in the area.  

 

Fig. 5.8. Impacts on farming activities: A) Answers to question ‗What impact did the ash have on 

vegetation growth in grazing land?‘ due to primary ash fallout (question 16.A) and resuspension 

events (question 28.A). Answer ‗No grazing lands‘ accounts for farmers that did not pose grazing 

lands. B) Answers to question ‗What was the impact on livestock?‘ due to primary ash fallout and 

resuspension events. Answers labeled ‗I evacuated/I housed…‘ refer to the different farming animals. 

Detailed information about answer ‗Other‘ is provided in the main text. 

 

 

Fig. 5.9.  Comparison of the state of vegetation and landscape between 2011 and 2016.  Photos 

taken at the same farm in September 2011 (A) and November 2016 (B) (Credits: Jazmín Miguel). 
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In order to understand impacts on farms and the sale of farm products the 

respondents were asked, ‗Have you experienced any issues in selling farm produce to 

suppliers due to the occurrence of these events?‘ Although a frequent answer was ‗…we 

didn‘t have anything to sell‘, a number of issues were identified. The main problem was 

related to wool production. Its quality was severely dimished by ash contamination and as a 

related problem, damage of tools was a frequently reported during shearing. A pig producer 

reported to have difficulties in selling his products, apparently because customers were 

concerned about the quality of the products from the area after the 2011-2012 Cordón 

Caulle eruption.  

After asking about the impacts, it was also inquired whether farmers adapted or 

changed their farms to mitigate the effects of these events.  To do so, respondents were 

asked, ‗What, if any, changes have you made to your farm, after the Cordón Caulle 2011 

eruptions, to deal with the impact of ash storms? (e.g., structural measures, change of crop 

type or farming practices)‘. Almost half of respondents (43%, n=9) declared having improved 

protection of water catchment areas (i.e., wells and waterholes). In some cases, concrete 

structures were built while in other areas only nylon was used for the protection (Fig. 5.9).  

 

Fig. 5.10. Ash hazard mitigation measures: A,B) Photos taken at the same location shortly after the 

eruption (A) and during our visit (B). On the left side of it is possible to observe the drinking and 

feeding troughs installed after the begining of the eruption. C) Windows of pig farm stalls protected 

with nylon. D) Farmyard for sheep and goats reinforced with stone and with an internal close shelter. 



C h a p t e r  5  | 128 

 

 

Respondents also indicated that they increased the frequency of clean-up activities. 

During the first month after the eruption, supplementation with forage and grains was a 

common practice. For that purpose, in many farms drinking and feeding troughs were 

installed (Fig. 5.10A). However, most of them were abandoned once livestock was able to 

feed again with natural pastures (Fig. 5.10B). Additional modifications mentioned were the 

improvement of farmyards, covering their open areas with nylon (Fig. 5.10C) or reinforcing 

the walls (Fig. 5.10D). Only three respondents declared that they did not make any change 

to their farms. 

Although no questions about volcanic events occurring before 2011 Cordón Caulle 

eruption were asked, during the interviews some farmers mentioned spontaneously the 

eruption of Chaitén in 2008. In all the cases, their comments described how the impact of 

that event was reduced in comparison with what occurred in 2011.  

Impacts of primary ash fallout and ash resuspension events on farmers and the 

influence on their personal health, wellbeing and behavior were also explored. First, we 

asked them to define different level of impacts in relation to the 2011–2012 eruption using a 

5-point Likert scale (Table 5.3). Almost three quarters of respondents indicated an extreme 

impact of the eruption on their emotions. More than half of respondents indicated a moderate 

impact on health while, for the other aspects, results were less homogenous. 

 

Table 5.3. Answers to the question: ‗On a scale ranging from 1 (no impact) to 5 (extreme impact), 

please indicate in which level the eruption impacted on:‘  

 

1 2 3 4 5 

No impact 

(%) 

A little 

impact (%) 

Moderate 

impact (%) 

Great 

impact (%) 

Extreme 

impact (%) 

…your house? 5 10 29 29 29 

…your health and the health of           

your family? 
9 14 52 14 10 

…your finantial situation? 9 33 29 14 14 

…you and your family emotionally?  0 9 5 14 71 

 

Finally, after exploring impacts and memories associated with the eruption and 

resuspension events, respondents were asked, ‗In your opinion, which events were the 

worst: the primary ash fall related to 2011 Cordón Caulle event or the subsequent ash 

storms? Why?‘ Almost two-thirds of the respondents (62%, n = 13) expressed the main 

eruption was the worst, while 29% (n = 6) felt ash resuspension events were worse. The 

remaining 10% (n = 2), weighted the effect of both phenomenon as similar. When asked, 

‗Have you ever considered the option of moving to another place as a result of the 

occurrence of these events?‘, answers were almost equally divided. Some 57% (n = 12) 
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answered in the affirmative, while 43% (n = 9) said they have never considered that option. 

We then asked the ones that considered moving from the area, ‗Why have you not moved 

yet?‘ Reasons given by respondents were diverse. Some of them decided to stay after 

receiving support (i.e., livestock—sheep and goats) from provincial and national institutions. 

Others mentioned their bond with the area as a reason for staying while a few took it as a 

personal challenge. In addition, when talking about this last topic with interviewees, it was 

pointed out several times that young generations were leaving the farms and moving to the 

city. 

 

5.4.4 The influence of 2015 Calbuco eruption 

Due to the location of Calbuco volcano, the 2015 eruption could have easily affected 

our study area. However, due to strong SW winds, no significant ash deposition occured in 

Ingenerio Jacobacci (Fig. 5.1A). This was confirmed by interviewees answers in Section 4. 

The totality of respondents agreed that the eruption did not affect their farms. It was 

remarkable that all the respondents remembered the name of the volcano (even though 

Calbuco volcano is only about 100 km south of Cordon Caulle volcano) and the approximate 

date of the eruption. When respondents were asked about the occurrence of ash 

resuspension events after the eruption, all agreed that there were no changes in the 

frequency or pattern of occurrence of ash resuspension events in the area. This is supported 

also by the lack of reported events by media (Fig. 5.5A). 

 

5.5. Discussion 

During the last five years, ash resuspension events have captured the attention of a 

growing sector of the scientific volcanological community mostly due to its long-lasting and 

widespread impact. The eruption of Cordón Caulle in 2011, together with the Eyjafjallajökull 

eruption in 2010, provided the opportunity to observe the complete cycle, from the onset of 

the eruption to the dispersion, deposition and subsequent re-insertion and transport of 

volcanic ash into the atmosphere. The magnitude, recurrence and impacts of this last 

phenomenon led to first attempts to model them (Leadbetter et al., 2012; Folch et al., 2014 

and Liu et al., 2014). Even though the models used were developed for mineral dust 

emission, results obtained from modeling volcanic ash are promising because the model 

outcomes are in good agreement with field observations. However, the authors recognized 

that the lack of data on soil properties and meteorological conditions at a local scale are still 

one of the main limiting factors in the modeling processs. Whereas experiments can 

contribute to a better understanding of the role of these variables (e.g., Del Bello et al., 

2018), there is still a need for detailed field investigations and characterization of the 
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phenomenology of these events. This information is also fundamental to assess the potential 

impacts of these events and, in consequence, necessary for governments to develop tools to 

cope with them.   

 

5.5.1. Phenomenology of ash resuspension events 

Resuspension of ash in Ingeniero Jacobacci started almost immediately after its 

deposition and during the first weeks the area was affected simultaneously by primary ash 

fallout and resuspension. There is consensus about the primary importance of wind and soil 

moisture in ash remobilization processes (e.g., Wilson et al., 2011, Leadbetter et al., 2012; 

Folch et al., 2014); however, accurate information about this last parameter is usually absent 

for recent fallout deposits (Leadbetter et al., 2012; Folch et al., 2014). As a result, in some 

numerical simulations, precipitation rate is used instead of soil moisture (e.g., Leadbetter et 

al., 2012; Liu et al., 2014); while in other cases an arbitrary value is chosen (e.g. Folch et al., 

2014). Unfortunately, meteorological data for the study area are incomplete. Rainfall records 

are discontinuous and there are no wind data from meteorological stations in the region to 

carry out a high-resolution analysis of these variables. Nevertheless, wind data from the 

ERA-Interim Re-Analysis of the ECMWF (European Center for Medium-range Weather 

Forecasts) datasets was combined with reported events by media to obtain a first-order 

characterization of the role played by this variable in our system (Fig. 5.11). Wind data is 

presented as four daily values (at 0, 6, 12 and 18 hs) and represents an altitude of 10 m 

above the surface. Even if events reported by newspapers do not always allow us to 

precisely constrain events in time, in particular the end of the event, it is interesting to note 

how all the resuspension events shown in Fig. 5.11 correspond to peaks in surface wind 

velocity.   

Wind velocities reported by media for the events shown in Fig. 5.11 are between 8.3 

(event 11) and 25 m s-1 (event 12 and 21), with most of the events occurring with velocities 

higher than 19.4 m s-1 (Table 5.4). For these events, surface wind velocities from the ERA-

Interim Reanalysis of the ECMWF datasets reached maximum values of ~13.0 m s-1. Similar 

values were reported by Arnalds et al. (2013) for resuspension of Eyjafjallajökull 2010 

volcanic ash. For the events 11 and 16, with reported durations of several days, wind 

velocities reached values down to 2.5 and 1.9 m s-1, respectively. Considering that for both 

cases these low values coincide with the beginning of the events, this may be reflecting the 

inaccuracy of newspaper data to constrain the duration of the events. 

Rainfall data from pluviometers are monthly averages and consequently it is not 

possible to correlate them with daily wind data. However, for the period September 2011–

July 2012, averaged values every two days are available and shown in Fig. 5.11. 

Precipitation for those months was low and in only two cases there was a certain amount of 
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rain (1mm) during a reported resuspension event (events 11 and 12). Interesting to note is 

that event 12 matched with conditions of relative low wind velocities and a rainfall peak. 

Even though this could be also attributed to an inaccuracy in media reports, it also opens the 

question about the effect and response time of the soil to rainfall (e.g., rainfall threshold to 

inhibit resuspension, local infiltration rates). Unfortunately, due to the lack of high-temporal 

resolution data for the area (i.e., wind and rainfall) no further interpretations can be made. 

 

Table 4 Wind velocities: comparison between ERA-Interim Re-Analysis of the ECMWF dataset and 

newspapers. For detailed information about the events (i.e., duration, reported wind velocity and 

reported impacts) see Supplementary Material 2. 

 Wind velocity (m s
-1

) 

  

ERA-Interim Re-Analysis of the ECMWF 

dataset Newspaper 

Event Max. Min. Average 

11 12.2 2.5 6.9 <13.9 

12 9.6 5.2 6.5 >25 

13 7.7 3.4 5.2 8.3 

14 11.7 3.5 6.6 19.4 

15 9.3 5.1 6.9 - 

16 13.4 1.9 7.3 >19.4 

20 12.2 6.1 7.8 >19.4 

21 11.7 7.0 9.0 >25 

22 13.2 5.8 8.9 >19.4 

23 12.04 6.4 9.1 - 

24 12.2 3.8 7.4 >19.4 

 

 However, the influence of the (lack of) rain in controlling the occurrence of ash 

resuspension events becomes evident when looking at the seasonal distribution of events 

(Fig. 5.6). As pointed out earlier, and although similar wind conditions are reached in 

summer and winter, most of the resuspension events occurred during summer and spring— 

the driest seasons. Seasonal control of resuspension events was also reported by Wallace 

et al. (2015) for the 1912 Novarupta-Katmai deposits. The seasonal control can also be 

recognized in the study area by looking at the distribution of reported events in Fig. 5.5, in 

particular for 2012–2013. The situation is slightly different for 2011. Even though many 

resuspension events were reported between September and December, 63% of the events 

reported by media in 2011 took place during winter (June to August). This could be attributed 

to two factors: the deficit of precipitations related to the drought that was affecting the area 

since 2007 and the availability of ash deposit. Supporting the first factor, Fig. 5.5B shows 

that a rainfall deficit was at its highest level during the first months of the eruption. Regarding 

the second factor, Panebianco et al. (2017) indicated that the highest mass transport rates in 
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our study area occurred during the first seven months after the eruption. After that period, 

the authors identified a decrease in the mass transport rate, which they attributed to the 

depletion of ash deposit in the system.   

Topography is another factor that needs to be considered. It was already pointed out 

by Liu et al. (2014) that it could be a source of error when modeling resuspension events. 

Recent findings of Panebianco et al. (2017) suggest that relief was controlling the erosion 

rates in the Patagonian Steppe. Although the results from this study are qualitative, similar 

conclusions can be extracted. Farmers identified different accumulation and depletion areas 

associated with topography. This was validated by visiting some of the farms during the field 

campaign (Fig. 5.7).  

 

Fig. 5. 11. Wind velocity (at surface level ~10 m height) and resuspension events reported by media 

for selected months during the period September 2011–December 2012.  Wind data for December 

2015 is shown to serve as a comparison with the earlier months in which ash resuspension events 

were reported. In green boxes, the event code number (See Supplementary Material 2). Rainfall from 

Elissondo et al. (2016) is shown, when available. 

 

The timescale for the decay in frequency of events observed from the media analysis 

matched with the one reported by Panebianco et al. (2017). Grouping all the evidence, it is 

possible to describe an initial scenario in which ash was remobilized massively and the 

controlling parameters were (lack of) precipitations (i.e., below the historical average) and 

availability of ash. Once the eruption decreased its explosivity, depletion of ash supply due 

to wind remobilization and the increase of precipitation may have led to a gradual decrease 

in the frequency and magnitude of resuspension events. The extraordinary precipitation 
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event of April 2014 and the associated flash-flood may have induced a massive 

remobilization of an important amount of the remaining ash in the system. The increase of 

rainfall after this event may have contributed to increased soil cohesion making it less 

susceptible to suspension by wind (Fécan et al., 1998). Since then, and during windy days, 

local and short-duration dust devils can be observed, which put into suspension the 

remaining ash accumulated in specific areas. Comparison of wind profiles (Fig. 5.5A and 

Fig. 5.11) shows that wind conditions for the area have not changed in the period under 

study. 

 

5.5.2. Impacts 

The visit to the area around Ingeniero Jacobacci almost five years after the eruption 

allowed for an evaluation of the impact of the Cordón Caulle eruption beyond the primary 

tephra fallout of 2011.  

It is recognized that the short-term impact on the farming community was highly 

negative. The ―unexpected‖ ash fallout deposit that covered the area of Ingeniero Jacobacci 

caused the collapse of productivity of the farming system, even though the area was 

previously affected in a much reduced way by 2008 Chaitén eruption. Furthermore, as 

Wilson et al. (2011) observed for the case of Mount Hudson, resuspension events extended 

the negative effects of the eruption. However, the quick recovery of the environment 

described above, was also reflected in the incipient recovery of the farming community. 

Evidence of this could be manifested by the results of question 11, which revealed that after 

five years only two farmers consider ash-related events as a current problem. Answers 

obtained from questions exploring feelings also showed how main impacts on emotions were 

associated with the scenario that took place during the first week/month after the beginning 

of the eruption.   

The results obtained in this study in relation to the impact of the primary ash fallout 

are in agreement with those reported by previous studies in the area (Wilson et al., 2013; 

Craig et al., 2016a,b and Elissondo et al., 2016). For the case of livestock, impacts reported 

by farmers are hard to exclusively attribute to primary fallout or resuspension events. 

Regarding the impacts on grazing lands, it is interesting to observe how a high number of 

respondents recognized a recovery and increase in yield of grazing areas in the long-term. 

Many of the farmers attributed this to the precipitations of 2014. The positive long-term effect 

of volcanic ash in soils has been already reported for other areas in Patagonia (e.g., Wilson 

et al., 2011). In addition to the positive effect of rain, ash remobilization may have 

contributed to the observed recovery. Three farmers attributed it to the low levels of cattle-

grazing during the first years after the eruption. This observation necessarily suggests that 

we should consider the pre-existing context of the area before the eruption took place. The 



C h a p t e r  5  | 134 

 

 

practice of subsistence cattle-raising without land planning strategies in the area has led to 

the overload of lands and its consequent degradation (Murgida et al., 2015). This situation 

was amplified by the existing drought that has been affecting the area since 2007. Craig et 

al. (2016b) recognized that this situation contributed to increased vulnerability of the farms 

systems. Although they did not present specific results for Ingeniero Jacobacci, the authors 

mentioned that this environmental condition was already the reason why impacts on farming 

activities were more extensive in the Patagonian Steppe after the 2008 Chaitén eruption. In 

addition, some respondents mentioned that young generations were leaving the farms and 

moving to the city. Even though this could be partially attributed to the situation after the 

eruption, Murgida et al. (2015) showed that migration of young people from the farms to the 

city was already occurring before the eruption. According to data from the national Census, 

between 2001 and 2010 the rural population in the Department of 25 de Mayo decreased 

30%.  

Overall, the results of this research suggest that the eruption adversely impacted 

farming life of an already highly vulnerable community, and that the ash fallout and 

associated resuspension events amplified the effect of an existing natural hazard that had 

already been affecting the area for years— the drought. 

 

5.6. Conclusions 

This study has shown the importance of a multidisciplinary approach to understand 

hazardous processes, such as ash resuspension, and their associated impact in the context 

of a multi-hazard scenario involving a volcanic eruption and prolonged drought and 

overgrazing. Furthermore, it was demonstrated the usefulness of interviews for capturing in-

depth information on people‘s knowledge and experiences related to ash resuspension 

events. Combining their results with measurable physical parameters (i.e., rainfall, wind 

velocity), it was possible to reconstruct and characterize the phenomenology of ash 

resuspension events in an area of the Patagonian Steppe. Interviews demonstrated also 

their importance for the assessment of primary ash fallout and resuspension events impacts 

on farming activities and farmers emotions.   

The results of this research show that, although wind is a necessary factor, rainfall 

and ash availability play a first order control on the occurrence and persistence in time of ash 

resuspension events. It was observed that after the first six months, frequency of massive 

ash remobilization events was gradually decreasing until the beginning of 2014. Although the 

precipitation event of April 2014 can be considered as the turning point for the system 

evolution, the gradual decrease in frequency may be attributed to the availability of ash. This 

may also explain why deposits from massive eruptions such as Novarupta (i.e., Katmai, 

Alaska in 1912) are still remobilized after more than one hundred years, while smaller 
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eruptions such as Mount St. Helens in 1980 (and Cordón Caulle) have shown shorter 

periods of time of associated ash resuspension activity.   

It was also identified that seasonal variability has a direct influence on the spatial 

distribution of ash resuspension events. Most of them occurred during the austral spring and 

summer, the driest seasons of the year. Although winter shows similar wind conditions, the 

higher amounts of precipitation may have played a key roll in inhibiting the occurrence of 

these events. Moreover, the presence of pre-existing hydrometeorological hazards, such as 

drought, and the occurrence of long-return period events, such as the exceptional 

precipitations of April 2014, demonstrate the importance of assessing ash resuspension 

events in a multi-hazard scenario context.   

Another important finding of this research is that, although the short-term impact of 

ash resuspension was highly negative, the environment and the farming community are 

showing signs of recovery after five years. Farmers reported that grazing lands are showing 

an increased yield and the volume of ash deposited in the fields has decreased. Remaining 

accumulations of ash can be found in low wind velocity areas like gullies and downwind side 

of bushes. On the other hand, it was found hard to attribute impacts on livestock exclusively 

to primary fallout or resuspension events. The main reason for this is that resuspension 

events began almost simultaneously with the arrival of the volcanic plume. This suggests as 

well that both hazards pose similar impacts. An interesting finding with implications for 

agricultural planning was the identification of different resiliencies in farming animals. Goats, 

and in particular the breed Criolla, showed more resilience than sheep, while for poultry, 

turkeys and geese adapted better to this stressful scenario than chickens. Different levels of 

resilence were also reported for non-farming animals. Regarding mitigation measures, and 

although some improvement have been made in the farms, it is important to point out that 

many of the structures built immediately after the eruption have not been maintained. 

Finally, this study highlights the need to improve the existing meteorological networks 

in areas prone to resuspension events. This is particulary important in the Patagonian 

Steppe, where meteorological conditions and volcanic activity in the Andes range combine to 

increase the probability of occurrence of ash resuspension episodes in the future. Future 

research should concentrate also in the quantification of the physical parameters discussed 

here (i.e., wind velocity, rainfall and soil moisture, ash availability) and needed to model 

resuspension events. It is of primary importance to link them with the experimental and 

numerical model variables such as wind friction velocity (U*), soil moisture and precipitation 

rate.   
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Chapter 6 

Summary and conclusion 
 



 

 

 



C h a p t e r  6  | 139 

 

 

Taking the unique opportunity afforded by 2008–2010 Chaitén and 2011–2012 

Cordón Caulle eruptions, this thesis shed light on the characteristics and dynamics of long-

lasting rhyolite events. Combining field work, analytical techniques, experiments and also 

tools from social sciences, several aspects of these eruptions were studied. While the 2008 

Chaitén eruption was selected as a case of study to learn about physical processes related 

to magma degassing and fragmentation dynamics, the eruption of Cordón Caulle provided 

the opportunity to look to aspects related to hazards and impacts of these long-lasting 

events.  

As promised in the introductory chapter, H2O was a central topic of this thesis. In 

Chapter 2, a detailed analysis of the H2O preserved in glasses from 2008–2010 Chaitén 

eruption revealed the evolution of this volatile species during the eruption. By applying FTIR, 

almost 500 obsidians from time-constrained deposits representative of each of the three 

eruptive phases (i.e., explosive, transitional and effusive) were measured. This is the largest 

data set analyzed so far for a single volcanic event. Results show that obsidians from 

Chaitén exhibit a wide range of H2Ot contents (0.1 to 3.44 wt.%), significantly expanding the 

upper H2O limit reported by Castro et al. (2012a, 2014). The lowest concentrations were 

found in obsidians from the lava domes (0.1–0.3 wt.%) while the narrowest range is shown 

by the obsidian bombs (0.5–1.77 wt.%). The highest H2O values were measured in the 

glasses from the Plinian tephra fallout and transitional cone deposits, which retained up to 

2.7 and 3.44 wt.% H2O, respectively. Altogether, the distributions and mean H2O values in 

Chaitén eruptives are in agreement with the ones observed in glasses associated with 

explosive and effusive activity from previous rhyolite eruptions in other regions. Interestingly, 

by compiling measurements from previous works (Fig. 2.1), this study has identified a sharp 

boundary at ~0.5 wt.% that separates H2O contents preserved in explosive and effusive 

products. This boundary is also clearly identified in the H2O distribution observed for 

Chaitén. Based on these observations, a re-analysing of the existing published data on H2O 

in rhyolite glasses (e.g., Newman et al., 1988; Rust and Cashman, 2007) is suggested.  

A critical aspect related to the interpretation of H2O retained in glasses is the 

discrimination between magmatic and secondary H2O. For that reason, in this study a multi-

methodological approach was followed in order to constrain the origin of the H2O measured. 

First, the data was examined for evidence of disequilibrium speciation by comparing the 

hydrous species ratio in the glasses (OH-:H2Om) with the equilibrium model of Nowak and 

Behrens (2001). Results revealed that most of the glasses show no evidence of significant 

incorporation of secondary (meteoric) H2O. The extensive occurrence of bubble resorption 

(e.g., Watkins et al., 2012; McIntosh et al, 2014) seems also highly unlikely. However, 

disequilibrium speciation observed in a group of 17 samples highlight the need for further 

investigations. In particular, future work should focus on looking for H2O disequilibrium 
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profiles around bubbles and micro-fractures. Secondly, the comparison between glasses 

from the same volcanic deposit sampled twice, in 2008 (shortly after the eruption) and 2016, 

was performed. These results support the magmatic origin for the H2O preserved in the 

obsidians of Chaitén, including the samples from the Plinian Fallout deposits with H2O up to 

3.4 wt.%. Finally, DSC-TGA measurements on 11 pumices showed that, unlike obsidians, 

this porous pyroclasts were probably hydrated during the time elapsed between their 

eruption and collection. TGA results offer a maximum H2O content estimation for these 

samples, which range from 0.5 to 0.9 wt.%. To better constrain the total amount of magmatic 

vs. meteoric H2O, this study should be repeated applying different heating rates.  

Overall, non-vesicular glasses shows a defined H2O depletion trend —from explosive 

to effusive deposits— for the 2008–2010 Chaitén eruptive cycle. The evolution of H2O 

content was analyzed in three stratigraphic sections (two from the Plinian tephra fallout and 

one from the transitional cone). Similar features were identified in all the cases, with H2O 

decreasing from base to top in each sequence. Internally, H2O sub-trends were recognized 

in each sequence. However, the most striking finding was the occurrence of ―H2O content 

windows‖ within stratigraphic horizons, defined by upper and lower H2O content values. 

These water content windows shift with stratigraphic position and demarcate clear H2O gaps 

with respect to effusive obsidians. At the base of the sequence ∆H2O is 1.48 wt.%, while at 

the top the difference between maximum and minimum H2O preserved in the glasses is only 

0.57 wt.%. Similar patterns were observed in other rhyolite systems, as Mono Craters and 

Newberry volcano, raising the question about the existence of any parameter(s) controlling 

the H2O distribution observed in the different deposits. To address this, the experiments 

presented in Chapter 3 and 4 were performed.  

Taking obsidian glass drilled from bombs and lava dome samples of 2008–2010 

Chaitén eruption as starting material, a series of high-temperature, 0.1 MPa vesiculation 

experiments were carried out in order to explore the response of silicic melts (with different 

wt.% H2O) to degassing at different temperatures. Experiments showed that when hydrous 

rhyolitic obsidians from Chaitén are experimentally heated above their glass transition 

temperatures at ambient 1 atm-conditions, two different behaviors result, depending on 

starting H2O concentration and temperature: obsidians vesiculate to stable or quasi-steady 

state foams when H2O is <1 wt.% for a wide range of temperatures (728–1032˚C), but will 

explode within just tens of seconds (<30 secs) of the foaming process when H2O is 1.4 wt.% 

and T is >874˚C. Whether a foaming sample remains coherent or explodes depends on two 

interrelated factors, the Peclet number (Pe) —a dimensionless ratio of diffusive and viscous 

timescales— and the timescale or rate of decompression, which is dictated in part by the 

H2O-vapour pressure gradient between bubbles and atmosphere. At or above 1.4 wt.% H2O, 

and for a range of permissible Chaitén eruption temperatures, Pe is large (>10), meaning 
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viscous deformation aiding vapour expansion is the dominant mode of growing bubbles. 

Consequently, vesiculation can proceed rapidly due to high initial overpressure and low melt 

viscosity, until the point is reached that the melt deforms at a rate greater than its relaxation 

rate, resulting in fragmentation. Below 1.4 wt.% H2O and for temperatures equal to or lower 

than Chaitén‘s eruption, decompression and deformation rates, inferred from experimental 

clast expansion and bubble growth behavior, are at least an order of magnitude smaller than 

the explosive cases, which is insufficient for critical melt-rupturing. Pe estimations highlight 

the first order influence of temperature and H2O content on physical degassing behavior. 

Since the starting H2O content and temperature dictate many the parameters that govern 

bubble growth—pressure gradient, melt viscosity, and chemical diffusivity—these 

experiments shed light on what limits fragmentation in natural eruptions and offer an 

alternative explanation for H2O contents measured in pyroclastic deposits from Chaitén and 

other rhyolite centers (e.g., Newman et al., 1988; Rust et al., 2004; Castro and Gardner, 

2008). In essence, pyroclastic obsidian H2O contents could reflect temperature and P-H2O 

limitations on fragmentation. Interestingly, explosive behavior occurs above Chaitén‘s 

estimated eruption temperature (~780–825˚C). This temperature discrepancy implies that in 

the actual 2008 eruption, explosive fragmentation was fuelled by magma bearing higher H2O 

contents than the one using for running the experiments. Coherent with that inference, H2O 

content distributions for Plinian and transitional cone deposits show that Chaitén‘s 

pyroclastic obsidians preserved up to 2.6 wt% H2O (excluding outliers, see Fig. 3.5). 

Unfortunately, the narrow range of H2O contents preserved in the obsidian bombs of Chaitén 

(Fig. 3.4A) impedes the performance of experiments with higher H2O concentrations using 

natural samples. An alternative that should be considered for future works is the 

experimental hydration of Chaitén glasses. At the same time, this research should be 

extended to a broader range of compositions (i.e., other silicic volcanic systems) in order to 

validate these findings at a larger scale.   

Results from these experiments also show that foam expansion under low-P, high-T-

H2O conditions can foster strain rates in excess of the melt‘s relaxation rate and thus drive 

fragmentation (Fig. 4.13). Thus, in addition to rapid magma ascent (and high magma supply 

rates), rapid clast expansion under low pressure conditions may also be important for 

explosive magma fragmentation. In this sense, these experiments may shed light on 

degassing dynamics of low-pressure environments, such as the ones associated with 

tuffisites (Tuffen et al., 2003). These features have been observed to erupt copious ash, 

lapilli and bombs during hybrid explosive-effusive activity (e.g., Schipper et al., 2013). The 

opening and closing of tuffisites may impose intermittent pressure drops of (1–15 MPa) on 

the hydrous melt, and tuffisite‘s vertical connectivity (to 500 m; Castro et al., 2014), suggests 

that melt parcels would indeed be subject to rapid decompression to atmospheric levels. 
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Other relevant degassing scenarios include explosive pyroclast expansion above the 

fragmentation level in shallow conduits, or the rise of pyroclasts in eruptive plumes involving 

significant volatile exsolution as melt-H2O solubility decreases under exceedingly low 

external pressures (~0.1 MPa; e.g., Kaminsky and Jaupart, 1997; Polacci et al., 2004). 

Together with the decompression experiments performed in the fragmentation bomb that are 

shown in Chapter 4, the results of this thesis provides insights in the evolution and dynamics 

of 2008-2010 Chaitén eruption. In addition, the similar patterns observed in the H2O 

distribution of other rhyolite deposits, may allow making the findings of this thesis extensive 

to many other silicic systems. 

A natural progression of the work presented in this thesis is to incorporate the 

parameter decompression rate to the experiments. Martel et al. (2000, 2001) had already 

foamed H2O-oversatured rhyolites at high-T and P in a fragmentation bomb device. 

However, during their experiments, the authors triggered sample fragmentation (by sudden 

decompression), only after enabling the sample enough time to vesiculate at the target P-T 

(hence solubility-) conditions. In this way, the experiments allowed for the investigation of the 

effect of the magnitude of the decompression, porosity, and pore morphology on the 

fragment shape and size distribution. However, up to date, no experiments have tried to 

simulate explosive fragmentation by allowing vesiculation of melt due to sample 

decompression at eruptive relevant P-T-H2O conditions. In this sense, the results of the 0.1 

MPa experiments here presented provide a parameter space that future research could 

explore to shed light on vesiculation dynamics that take place in the last hundred of meter of 

volcanic conduits during an eruption.  

Finally, Chapter 5 reminds us of the importance of understanding the mechanisms 

underlying the occurrence and dynamics of long-lasting rhyolite eruptions. These events can 

produce vast amounts of ash, with associated consequences and impacts on the 

environments and communities. In the study presented in that chapter, special effort was 

invested in the characterization of a secondary hazard associated with ash: wind-

remobilization events and ash storms. The parameters responsible of controlling the 

occurrence of these events were identified, as well as their frequency and dynamics. At the 

same time, the impacts of these events on a farming community in the Argentinian 

Patagonian Steppe were evaluated by combining tools from natural and social sciences. 

Results show that although, the short-term impact of ash resuspension was highly negative, 

the environment and the farming community are showing signs of recovery after five years.  
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Appendices 

A. FTIR measurements 

Explosive phase - Tephra fallout deposit sampled in 2008 (CH_Exp) 

Sample OH
-
 wt.% 

(4500) 
sd H2Om wt.% 

(5200) 
sd H2Ot* 

wt.% 
sd n 

CH_Exp_1 1_1 0.83 0.01 0.22 0.01 1.06 0.02 2 

1_2 0.64 0.03 0.11 0.01 0.75 0.04 2 

1_3 0.75 0.01 0.18 0.00 0.93 0.02 2 

1_4 0.67 0.06 0.14 0.01 0.80 0.07 2 

1_5 0.72 0.03 0.13 0.01 0.85 0.03 3 

1_6 0.58 0.00 0.12 0.01 0.70 0.01 2 

1_7 0.68 0.06 0.14 0.01 0.81 0.07 2 

1_8 0.69 0.06 0.14 0.01 0.83 0.07 2 

1_9 0.74 0.00 0.14 0.02 0.88 0.02 2 

1_10 0.51 0.02 0.13 0.02 0.64 0.04 2 

1_11 0.67 0.01 0.17 0.03 0.84 0.05 2 

1_12 0.90 0.01 0.24 0.00 1.14 0.01 2 

1_13 0.89 0.00 0.26 0.02 1.15 0.02 2 

1_14 0.56 0.02 0.07 0.00 0.63 0.02 2 

CH_Exp_2 2_1 1.23 0.06 0.38 0.06 1.61 0.12 2 

2_2 0.75 0.07 0.18 0.01 0.92 0.08 2 

2_3 0.84 0.00 0.18 0.01 1.02 0.01 2 

2_4 0.90 0.02 0.21 0.01 1.11 0.03 2 

2_5 0.88 0.00 0.18 0.00 1.06 0.00 2 

2_6 0.75 0.00 0.14 0.00 0.89 0.00 3 

2_7 0.92 0.02 0.25 0.01 1.17 0.03 2 

2_8 0.99 0.04 0.34 0.01 1.34 0.05 2 

2_9 0.74 0.01 0.16 0.01 0.90 0.02 2 

2_10 0.71 0.00 0.14 0.00 0.85 0.00 2 

CH_Exp_3 3_1 0.94 0.00 0.26 0.01 1.21 0.01 2 

3_2 1.00 0.00 0.33 0.00 1.33 0.01 2 

3_3 0.78 0.02 0.17 0.00 0.95 0.02 2 

3_4 0.99 0.02 0.37 0.00 1.36 0.03 2 

3_5 0.83 0.04 0.24 0.01 1.07 0.05 2 

3_6 0.80 0.01 0.19 0.00 0.99 0.01 2 

3_7 0.97 0.00 0.29 0.02 1.25 0.02 2 

3_8 0.90 0.03 0.28 0.01 1.18 0.04 2 

3_9 1.11 0.01 0.45 0.00 1.56 0.02 2 

3_10 0.94 0.00 0.32 0.01 1.25 0.01 2 
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Explosive phase - Tephra fallout deposit sampled in 2016 (Rio_AM) 

CH_Exp_4 4_1 1.44 0.02 1.16 0.08 2.61 0.10 2 

4_2 0.97 0.05 0.37 0.02 1.34 0.07 2 

4_3 0.75 0.05 0.16 0.00 0.90 0.05 2 

4_4 1.27 0.01 0.80 0.01 2.08 0.02 2 

4_5 1.16 0.03 0.59 0.01 1.74 0.03 2 

4_6 0.81 0.05 0.22 0.00 1.03 0.05 2 

4_7 0.93 0.02 0.27 0.02 1.21 0.04 2 

4_8 1.08 0.00 0.37 0.02 1.45 0.02 2 

4_9 - - - - 0.16 0.01 2 

4_10 1.13 0.01 0.47 0.01 1.60 0.02 2 

CH_Exp_5 5_1 - - - - 0.24 0.00 2 

5_2 0.71 0.09 0.62 0.09 1.34 0.18 2 

5_3 0.77 0.11 0.23 0.03 1.00 0.14 2 

5_4 - - - - 0.20 0.00 2 

5_5 0.67 0.02 0.18 0.01 0.85 0.03 2 

5_6 - - - - 0.19 0.01 2 

5_7 0.67 0.03 0.13 0.01 0.81 0.04 2 

5_8 - - - - 0.22 0.01 2 

5_9 1.43 0.06 1.05 0.02 2.47 0.08 2 

5_10 - - - - 0.50 0.01 2 

5_11 0.92 0.03 0.32 0.00 1.24 0.03 2 

5_12 - - - - 0.14 0.00 2 

5_13 1.21 0.19 0.84 0.13 2.04 0.32 4 

5_14 - - - - 0.12 0.00 2 

Sample OH
-
 wt.% 

(4500) 
sd H2Omwt.% 

(5200) 
sd H2Ot* 

wt.% 
sd n 

Rio AM_0 0_1 - - - - 0.20 0.02 2 

0_2 0.67 0.04 0.14 0.00 0.81 0.04 2 

0_3 - - - - 0.21 0.00 2 

0_4 1.19 0.02 0.41 0.03 1.60 0.05 2 

0_5 0.67 0.03 0.14 0.01 0.81 0.04 2 

0_6 0.61 0.01 0.13 0.04 0.74 0.05 2 

0_7 0.63 0.02 0.15 0.01 0.78 0.03 2 

0_8 0.94 0.01 0.24 0.01 1.18 0.02 2 

0_9 0.56 0.01 0.13 0.00 0.69 0.02 2 

0_10 0.67 0.01 0.10 0.00 0.76 0.01 2 

0_11 - - - - 0.24 0.00 2 

Rio_AM_1 1_1 0.89 0.04 0.35 0.00 1.24 0.05 2 

1_2 0.97 0.01 0.29 0.01 1.25 0.02 2 

1_3 1.00 0.01 0.35 0.00 1.35 0.01 2 
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1_4 0.67 0.01 0.20 0.01 0.88 0.02 2 

1_5 1.53 0.00 0.75 0.02 2.28 0.02 2 

1_6 1.02 0.00 0.41 0.02 1.43 0.03 2 

1_7 0.95 0.02 0.30 0.00 1.24 0.02 2 

1_8 1.18 0.02 0.56 0.03 1.74 0.06 2 

1_9 0.95 0.05 0.34 0.01 1.29 0.06 2 

1_10 0.95 0.02 0.35 0.02 1.30 0.04 2 

1_11 1.22 0.03 0.66 0.01 1.88 0.04 2 

Rio _AM_2 2_1 0.87 0.02 0.27 0.00 1.13 0.02 2 

2_2 0.97 0.04 0.21 0.01 1.18 0.05 2 

2_3 0.76 0.01 0.29 0.17 1.05 0.18 2 

2_4 1.07 0.58 0.21 0.00 1.28 0.58 2 

2_5 0.79 0.00 0.25 0.02 1.05 0.02 2 

2_6 1.02 0.02 0.43 0.01 1.46 0.03 2 

Rio_AM_3 3_1 0.58 0.01 0.15 0.03 0.73 0.04 2 

3_2 0.82 0.04 0.28 0.04 1.11 0.08 2 

3_3 0.89 0.01 0.24 0.01 1.13 0.02 2 

3_4 0.72 0.00 0.17 0.01 0.89 0.02 2 

3_5 0.84 0.07 0.25 0.00 1.09 0.08 2 

3_6 0.60 0.05 0.11 0.00 0.70 0.05 2 

3_7 0.79 0.01 0.20 0.03 0.99 0.04 2 

3_8 0.89 0.03 0.31 0.00 1.21 0.03 2 

3_9 0.83 0.01 0.21 0.02 1.04 0.03 2 

Rio_AM_4 4_1 0.81 0.01 0.27 0.00 1.08 0.01 2 

4_2 0.73 0.01 0.21 0.01 0.94 0.02 2 

4_3 0.68 0.11 0.29 0.17 0.97 0.28 2 

4_4 0.76 0.01 0.21 0.00 0.96 0.01 2 

4_5 0.79 0.00 0.25 0.02 1.05 0.02 2 

4_6 1.02 0.02 0.43 0.01 1.46 0.03 2 

4_7 0.86 0.03 0.27 0.02 1.14 0.06 2 

4_8 0.71 0.01 0.18 0.01 0.89 0.01 2 

4_9 0.76 0.00 0.20 0.00 0.96 0.01 2 

4_10 0.53 0.01 0.20 0.01 0.73 0.02 2 

4_11 0.78 0.02 0.42 0.01 1.21 0.03 2 

Rio_AM_5 5_1 - - - - 0.14 0.00 2 

5_2 - - - - 0.25 0.00 2 

5_3 - - - - 0.17 0.00 2 

5_4 0.79 0.00 0.25 0.02 1.05 0.02 2 

5_5 1.02 0.02 0.43 0.01 1.46 0.03 2 

5_6 0.86 0.03 0.27 0.02 1.14 0.06 2 

5_7 0.71 0.01 0.18 0.01 0.89 0.01 2 
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Explosive phase – Bomb field 

Sample OH- wt.% 
(4500) 

sd H2Omwt.% 
(5200) 

sd H2Ot* 
wt.% 

sd n 

CH_2015_02 0.61 0.05 0.12 0.02 0.73 0.06 18 

CH_2015_04 0.59 0.03 0.15 0.02 0.74 0.04 21 

5_8 0.76 0.00 0.20 0.00 0.96 0.01 2 

5_9 0.53 0.01 0.20 0.01 0.73 0.02 2 

Rio_AM_6 6_1 0.92 0.00 0.26 0.01 1.18 0.01 2 

6_2 0.90 0.00 0.26 0.00 1.16 0.01 2 

6_3 0.87 0.01 0.24 0.02 1.12 0.04 2 

6_4 0.93 0.00 0.27 0.00 1.21 0.00 2 

6_5 0.99 0.10 0.36 0.02 1.34 0.11 2 

6_6 - - - - 0.25 0.00 3 

6_7 1.01 0.02 0.33 0.00 1.34 0.02 2 

6_8 0.86 0.01 0.31 0.03 1.17 0.03 2 

6_9 - - - - 0.65 0.07 2 

6_10 1.09 0.13 0.53 0.10 1.62 0.23 2 

Rio_AM_7 7_1 - - - - 0.34 0.01 2 

7_2 - - - - 0.36 0.03 2 

7_3 - - - - 0.64 0.03 2 

7_4 - - - - 0.34 0.02 2 

7_5 - - - - 0.62 0.01 2 

7_6 - - - - 0.64 0.00 2 

7_7 - - - - 0.37 0.03 3 

7_8 0.64 0.03 0.19 0.01 0.82 0.04 2 

7_9 0.74 0.00 0.18 0.00 0.92 0.00 2 

7_10 - - - - 0.41 0.02 2 

Rio_AM_8 8_1 0.85 0.02 0.22 0.01 1.07 0.02 2 

8_2 1.10 0.06 0.51 0.04 1.61 0.09 2 

8_3 1.18 0.07 0.38 0.00 1.56 0.07 2 

8_4 1.02 0.01 0.34 0.01 1.36 0.01 2 

8_5 1.26 0.02 0.48 0.02 1.74 0.04 2 

Río_AM_9 9_1 - - - - 0.29 0.03 2 

9_2 1.44 0.01 0.69 0.00 2.13 0.01 2 

9_3 1.69 0.17 0.99 0.29 2.68 0.45 2 

9_4 2.01 0.15 1.43 0.18 3.44 0.33 2 

9_5 0.46 0.07 0.43 0.08 0.89 0.15 2 

9_6 1.63 0.04 1.22 0.04 2.85 0.08 2 

9_7 - - - - 0.17 0.00 2 

9_8 1.66 0.13 1.74 0.10 3.40 0.23 2 

9_9 1.61 0.02 1.17 0.02 2.77 0.04 2 
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CH_2015_05 0.69 0.15 0.34 0.06 1.03 0.21 26 

CH_2015_06 0.67 0.03 0.18 0.02 0.85 0.05 15 

CH_2011_05 0.93 0.08 0.53 0.03 1.46 0.11 38 

CH_2011_06 0.97 0.03 0.50 0.04 1.47 0.08 18 

CH_Bomb Cald_14 0.60 0.05 0.14 0.04 0.74 0.08 17 

CH_Castro 0.68 0.02 0.19 0.02 0.87 0.03 20 

CH_2016_01 0.49 0.01 0.10 0.00 0.58 0.02 9 

CH_2016_02 0.46 0.02 0.10 0.04 0.57 0.06 5 

CH_2016_03 0.63 0.06 0.17 0.05 0.80 0.11 5 

CH_2016_04 1.08 0.02 0.64 0.04 1.72 0.06 8 

CH_2016_05 0.57 0.01 0.13 0.01 0.70 0.02 5 

CH_2016_5B 0.56 0.03 0.08 0.01 0.64 0.04 14 

CH_2016_06 0.74 0.02 0.19 0.01 0.93 0.03 5 

CH_2016_07 0.74 0.00 0.26 0.01 1.00 0.01 4 

CH_2016_08 1.01 0.04 0.42 0.03 1.43 0.07 11 

CH_2016_10 1.05 0.00 0.56 0.05 1.61 0.05 14 

CH_2016_11 0.71 0.02 0.24 0.00 0.95 0.02 5 

CH_2016_12 0.72 0.02 0.22 0.01 0.94 0.03 5 

CH_2016_14 0.75 0.01 0.27 0.02 1.02 0.03 7 

CH_2016_15 0.67 0.05 0.18 0.01 0.85 0.06 11 

CH_2016_16 0.63 0.01 0.15 0.01 0.77 0.02 11 

CH_2016_17 0.60 0.02 0.14 0.02 0.73 0.04 5 

CH_2016_18 0.85 0.01 0.26 0.01 1.11 0.01 5 

CH_2016_19 0.65 0.01 0.17 0.02 0.82 0.03 5 

CH_2016_20 0.69 0.04 0.26 0.02 0.95 0.06 5 

CH_2016_21 0.58 0.01 0.14 0.01 0.72 0.02 6 

CH_2016_22 0.56 0.01 0.09 0.00 0.65 0.01 4 

CH_2016_23 0.53 0.03 0.13 0.03 0.65 0.06 6 

CH_2016_24 0.69 0.02 0.19 0.46 0.88 0.48 5 

CH_2016_26 0.89 0.01 0.46 0.01 1.35 0.03 6 

CH_2016_27 0.52 0.12 0.11 0.06 0.63 0.18 6 

CH_2016_28 0.79 0.02 0.30 0.01 1.08 0.03 5 

CH_2016_29 0.53 0.02 0.11 0.01 0.64 0.03 5 

CH_2016_30 0.60 0.00 0.14 0.01 0.75 0.01 5 

CH_2016_31 0.57 0.02 0.10 0.01 0.67 0.03 6 

CH_2016_32 0.61 0.01 0.13 0.01 0.73 0.02 5 

CH_2016_33 0.71 0.00 0.22 0.01 0.93 0.01 5 

CH_2016_34 0.69 0.01 0.15 0.02 0.84 0.02 5 

CH_2016_35 0.57 0.02 0.19 0.01 0.76 0.03 5 

CH_2016_36 0.64 0.04 0.18 0.01 0.83 0.05 5 

CH_2016_37 0.76 0.01 0.27 0.01 1.04 0.02 5 
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CH_2016_38 0.51 0.01 0.10 0.01 0.61 0.02 5 

CH_2016_39 0.86 0.02 0.37 0.02 1.23 0.04 5 

CH_2016_40 0.54 0.02 0.11 0.01 0.65 0.03 5 

CH_2016_41 0.82 0.03 0.39 0.06 1.21 0.09 5 

CH_2016_42 0.72 0.01 0.17 0.01 0.89 0.02 5 

CH_2016_47 0.62 0.04 0.16 0.02 0.78 0.06 5 

CH_2016_48 0.63 0.03 0.18 0.02 0.80 0.04 5 

CH_2016_49 0.51 0.01 0.11 0.00 0.62 0.01 5 

CH_2016_54 0.50 0.03 0.10 0.01 0.60 0.04 5 

CH_2016_55 0.90 0.02 0.57 0.05 1.47 0.07 5 

CH_2016_56 1.11 0.05 0.66 0.03 1.77 0.08 5 

CH_2016_57 0.51 0.01 0.10 0.01 0.61 0.02 5 

CH_2016_01_f 0.72 0.02 0.21 0.02 0.93 0.04 5 

CH_2016_02_f 0.52 0.00 0.09 0.01 0.61 0.01 5 

CH_2016_03_f 0.94 0.05 0.52 0.04 1.46 0.09 9 

CH_2016_04_f 0.74 0.02 0.25 0.00 0.99 0.03 5 

CH_2016_05_f 0.58 0.01 0.11 0.01 0.68 0.02 5 

CH_2016_06_f 0.90 0.05 0.52 0.06 1.41 0.11 8 

CH_2016_07_f 0.64 0.03 0.19 0.02 0.83 0.05 5 

CH_2016_08_f 0.78 0.02 0.25 0.01 1.02 0.03 5 

CH_2016_09_f 0.49 0.01 0.09 0.01 0.59 0.02 5 

CH_2016_10_f 0.72 0.04 0.22 0.01 0.94 0.05 5 

CH_2016_11_f 0.71 0.01 0.22 0.01 0.93 0.02 5 

CH_2016_12_f 0.51 0.03 0.09 0.01 0.60 0.04 5 

CH_2016_13_f 0.78 0.01 0.37 0.03 1.14 0.05 5 

CH_2016_14_f 0.68 0.06 0.27 0.01 0.95 0.07 5 

 

Transitional phase 

 Sample OH
-
 wt.% 

(4500) 
sd H2Omwt.% 

(5200) 
Sd H2Ot* 

wt.% 
sd n 

A1 A1_1 - - - - 0.15 0.004 2 

A1_2 - - - - 0.23 0.005 2 

A1_3 0.99 0.10 0.80 0.15 1.79 0.25 2 

A1_4 1.09 0.02 0.49 0.02 1.58 0.04 2 

A1_5 0.84 0.01 0.30 0.001 1.14 0.01 2 

A1_6 1.00 0.01 0.31 0.01 1.32 0.02 2 

A1_7 1.13 0.01 0.86 0.01 1.98 0.02 2 

A1_8 1.03 0.01 0.55 0.01 1.58 0.02 2 

A1_1_a 1.19 0.03 0.79 0.02 1.98 0.05 2 

A1_2_a 1.08 0.01 0.82 0.00 1.90 0.01 2 

A1_3_a 0.97 0.01 0.29 0.02 1.27 0.03 2 
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A1_4_a 0.82 0.001 0.26 0.001 1.08 0.002 2 

A1_5_a 1.04 0.04 0.50 0.03 1.54 0.07 2 

A1_6_a 0.93 0.06 0.72 0.01 1.65 0.06 2 

A1_7_a 0.91 0.03 0.74 0.07 1.65 0.10 2 

A1_8_a 1.28 0.05 1.07 0.01 2.35 0.06 2 

A1_9_a 1.20 0.01 1.37 0.08 2.56 0.09 2 

A1_10_a 1.21 0.02 0.97 0.05 2.18 0.06 2 

A1_11_a 1.08 0.08 0.42 0.05 1.50 0.13 2 

A1_12_a - - - - 0.15 0.004 2 

A1_13_a - - - - 0.05 0.07 2 

 A1_14_a 1.25 0.04 1.01 0.04 2.26 0.08  

A2 A2_1 - - - - 0.29 0.03 2 

A2_2 - - - - 0.15 0.03 2 

A2_3 - - - - 0.19 0.01 2 

A2_4 - - - - 0.09 0.001 2 

A2_5 - - - - 0.34 0.01 2 

A2_1_a 1.31 0.00 0.98 0.07 2.29 0.07 2 

A2_2_a 1.23 0.02 0.76 0.02 1.99 0.04 2 

A2_3_a 1.01 0.00 0.81 0.01 1.81 0.01 2 

A2_4_a - - - - 0.13 0.01 2 

A2_5_a - - - - 0.11 0.02 2 

A2_6_a - - - - 0.10 0.02 2 

A2_7_a - - - - 0.16 0.03 2 

A2_8_a 0.50 0.01 0.21 0.01 0.71 0.01 2 

A2_9_a 1.24 0.02 0.68 0.01 1.93 0.02 2 

A2_10_a - - - - 0.09 0.00 2 

A3 A3_1 - - - - 0.16 0.00 2 

A3_2 1.01 0.10 0.39 0.06 1.39 0.16 2 

A3_3 0.95 0.003 0.28 0.00 1.23 0.003 2 

A3_1_a 1.06 0.03 0.97 0.07 2.03 0.10 2 

A3_2_a 1.06 0.001 0.40 0.01 1.46 0.01 2 

A3_3_a 0.80 0.01 0.16 0.02 0.97 0.02 2 

A3_4_a 1.02 0.03 0.54 0.09 1.56 0.12 2 

A3_5_a 0.23 0.02 0.06 0.03 0.29 0.05 2 

A3_6_a 0.57 0.01 0.18 0.01 0.75 0.01 2 

A3_7_a 0.59 0.01 0.61 0.02 1.19 0.03 2 

A3_8_a 1.25 0.01 0.74 0.03 1.99 0.05 2 

A3_9_a 0.91 0.09 0.44 0.04 1.35 0.12 2 

A3_10_a 1.06 0.01 0.55 0.02 1.61 0.03 2 

A3_11_a 1.09 0.02 0.50 0.03 1.59 0.04 2 

A3_12_a - - - - 0.18 0.01 2 
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A3_13_a  - - - 0.15 0.01 2 

A3_14_a 1.10 0.09 1.05 0.28 2.15 0.38 2 

A3_15_a 1.01 0.04 0.37 0.00 1.38 0.04 2 

A3_16_a 0.22 0.01 0.10 0.02 0.33 0.03 2 

B1 B1_1 1.04 0.003 0.30 0.05 1.34 0.05 2 

B1_2 - - - - 0.25 0.01 2 

B1_3 0.97 0.00 0.31 0.02 1.28 0.02 2 

B1_4 0.91 0.01 0.27 0.00 1.18 0.02 2 

B1_5 - - - - 0.20 0.03 2 

B1_6 1.00 0.05 0.22 0.03 1.22 0.08 2 

B1_1_a 0.88 0.01 0.25 0.02 1.13 0.04 2 

B1_2_a 0.92 0.00 0.26 0.001 1.18 0.00 2 

B1_3_a 0.72 0.007 0.15 0.002 0.87 0.01 2 

B1_4_a 0.84 0.004 0.36 0.01 1.21 0.01 2 

B1_5_a - - - - 0.12 0.00 2 

B1_6_a 0.90 0.03 1.28 0.03 2.18 0.06 2 

B1_7_a 0.86 0.07 1.14 0.09 2.00 0.17 2 

B1_8_a 0.57 0.02 0.73 0.01 1.30 0.02 2 

B1_9_a 0.99 0.03 1.47 0.05 2.46 0.09 2 

B1_10_a 0.92 0.00 1.24 0.00 2.16 0.00 2 

B1_11_a 0.93 0.02 1.20 0.03 2.13 0.04 2 

B1_12_a 0.68 0.01 0.79 0.01 1.47 0.02 2 

B1_13_a 0.90 0.01 1.24 0.04 2.14 0.05 2 

B1_15_a 1.01 0.00 1.55 0.02 2.56 0.02 2 

B1_16_a 0.67 0.01 0.79 0.01 1.46 0.01 2 

B2 B2_1 - - - - 0.19 0.01 3 

B2_2 0.86 0.00 0.30 0.01 1.16 0.01 2 

B2_3 0.84 0.02 0.31 0.00 1.15 0.02 2 

B2_4 - - - -- 0.11 0.01 2 

B2_5 0.92 0.01 0.29 0.00 1.21 0.01 2 

B2_6 0.79 0.03 0.22 0.01 1.01 0.04 2 

B2_7 0.81 0.02 0.22 0.01 1.03 0.02 2 

B2_8 1.06 0.01 0.48 0.02 1.53 0.03 2 

B2_9 0.84 0.00 0.33 0.03 1.17 0.03 2 

B3 B3_1 0.58 0.02 0.19 0.02 0.76 0.04 2 

B3_2 0.81 0.05 0.25 0.02 1.06 0.06 2 

B3_3 0.88 0.08 0.33 0.02 1.21 0.10 2 

B3_4 0.70 0.04 0.21 0.01 0.91 0.05 2 

B3_5 0.87 0.02 0.32 0.02 1.19 0.04 2 

B3_6 - - - - 0.28 0.01 2 

B3_7 - - - - 0.18 0.00 2 
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B3_8 - - - - 0.17 0.01 2 

B3_1_a 0.83 0.00 0.21 0.00 1.05 0.00 2 

B3_2_a 1.05 0.05 0.41 0.06 1.46 0.10 2 

B3_3_a 0.79 0.00 0.19 0.00 0.99 0.01 2 

B3_4_a 0.78 0.01 0.21 0.00 0.99 0.01 2 

B3_5_a 1.09 0.02 0.70 0.04 1.79 0.06 2 

B3_6_a - - - - 0.21 0.01 2 

B4 B4_1 - - - - 0.18 0.02 2 

B4_2 - - - - 0.22 0.04 2 

B4_3 1.14 0.02 0.94 0.09 2.08 0.10 2 

B4_4 - - - - 0.15 0.00 2 

B4_5 1.10 0.04 0.47 0.004 1.57 0.05 2 

B4_6 0.97 0.03 0.38 0.02 1.35 0.05 2 

B4_1_a 1.13 0.03 0.48 0.03 1.61 0.06 2 

B4_2_a 1.08 0.01 0.56 0.01 1.65 0.03 2 

B4_3_a 1.11 0.01 0.51 0.03 1.62 0.04 2 

B4_4_a 1.15 0.01 0.61 0.02 1.76 0.03 2 

B4_5_a 1.20 0.002 0.62 0.01 1.81 0.01 2 

B4_6_a 1.19 0.01 0.74 0.08 1.93 0.09 2 

B5 B5_1 - - - - 0.11 0.01 2 

B5_2 - - - - 0.16 0.02 2 

B5_3 0.95 0.03 0.50 0.01 1.45 0.03 2 

B5_4 1.00 0.02 0.40 0.003 1.40 0.02 2 

B5_5 - - - - 0.15 0.01 2 

B5_6 1.01 0.02 0.49 0.02 1.50 0.04 2 

B5_7 1.10 0.04 0.84 0.00 1.95 0.04 2 

B5_8 - - - - 0.14 0.002 2 

B5_9 0.84 0.05 0.37 0.03 1.21 0.08 2 

B5_10 1.31 0.10 1.38 0.02 2.70 0.12 2 

B6 B6_1_a 1.16 0.02 0.52 0.05 1.68 0.07 2 

B6_2_a 1.13 0.02 0.65 0.03 1.79 0.05 2 

B6_3_a 1.13 0.02 0.72 0.10 1.85 0.12 2 

B6_4_a 1.05 0.01 0.56 0.02 1.61 0.02 2 

B6_5_a 0.95 0.004 0.36 0.01 1.31 0.02 2 

B6_6_a 0.96 0.01 0.34 0.01 1.30 0.02 2 

B6_7_a 0.95 0.06 0.31 0.03 1.26 0.09 2 

C1 C1_1 1.11 0.05 0.56 0.05 1.68 0.09 2 

C1_2 0.97 0.01 0.63 0.02 1.60 0.03 2 

C1_3 0.75 0.05 0.24 0.005 0.99 0.05 2 

C1_1_a 1.16 0.02 0.60 0.02 1.75 0.04 2 

C1_2_a 1.23 0.02 0.92 0.08 2.15 0.10 2 
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C1_3_a 0.94 0.01 0.32 0.02 1.26 0.03 2 

C1_4_a 1.13 0.00 0.66 0.004 1.80 0.01 2 

C1_5_a 0.73 0.02 0.15 0.01 0.89 0.03 2 

C1_6_a 0.89 0.02 0.26 0.01 1.15 0.03 2 

C1_7_a 0.97 0.002 0.38 0.001 1.35 0.003 2 

C1_8_a 0.99 0.002 0.56 0.00 1.55 0.002 2 

C1_9_a 1.08 0.00 0.56 0.03 1.64 0.03 2 

C2 C2_1 - - - - 0.15 0.01 2 

C2_2 0.76 0.00 0.13 0.01 0.90 0.01 2 

C2_3 - - - - 0.18 0.01 2 

C2_4 1.16 0.01 0.78 0.01 1.94 0.02 2 

C2_5 0.93 0.01 0.41 0.01 1.33 0.02 2 

C2_6 1.02 0.01 0.36 0.00 1.38 0.02 2 

C2_7 0.75 0.04 0.16 0.02 0.91 0.06 2 

C2_8 0.39 0.01 0.07 0.01 0.46 0.02 2 

C2_1_a 0.83 0.00 0.21 0.00 1.05 0.004 2 

C2_2_a 1.05 0.05 0.41 0.06 1.46 0.10 2 

C2_3_a 0.79 0.00 0.19 0.00 0.99 0.01 2 

C2_4_a 0.78 0.01 0.21 0.004 0.99 0.01 2 

C2_5_a 1.09 0.02 0.70 0.04 1.79 0.06 2 

C2_6_a - - - - 0.21 0.01 2 

C2_7_a - - - - 0.35 0.001 2 

C2_8_a 1.08 0.03 0.54 0.02 1.62 0.05 2 

C2_9_a - - - - 0.21 0.02 2 

C2_10_a 0.76 0.01 0.17 0.02 0.93 0.03 2 

C2_11_a 1.17 0.02 0.72 0.003 1.89 0.02 2 

C2_12_a 0.78 0.06 0.24 0.07 1.02 0.13 2 

C2_13_a 1.08 0.09 0.49 0.01 1.57 0.10 2 

C2_14_a 0.74 0.01 0.90 1.00 1.63 1.01 2 

C2_15_a 1.35 0.07 0.69 0.06 2.04 0.12 2 

C2_16_a 1.17 0.00 0.89 0.12 2.07 0.12 2 

C2_17_a 0.83 0.07 0.22 0.05 1.05 0.12 2 

C3 C3_1_a 1.05 0.02 0.47 0.01 1.52 0.04 2 

C3_2_a 0.59 0.002 0.11 0.01 0.70 0.01 2 

C3_3_a 1.28 0.02 0.63 0.04 1.91 0.06 2 

C3_4_a 1.33 0.02 1.31 0.01 2.64 0.02 2 

C3_5_a 1.31 0.06 0.67 0.04 1.98 0.10 2 

C3_6_a 1.18 0.01 0.55 0.01 1.72 0.01 2 

C3_7_a 1.13 0.00 0.64 0.04 1.77 0.04 2 

C3_8_a 1.05 0.02 0.43 0.01 1.48 0.03 2 

C3_9_a 1.11 0.00 0.51 0.02 1.62 0.02 2 
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C3_10_a 0.79 0.002 0.16 0.01 0.95 0.01 2 

C4 C4_1 0.90 0.00 1.13 0.003 2.03 0.003 2 

C4_2 0.76 0.06 0.91 0.09 1.67 0.15 2 

C4_3 0.86 0.02 1.11 0.04 1.97 0.06 2 

C4_4 0.98 0.01 0.31 0.002 1.29 0.01 2 

C4_5 0.86 0.02 1.08 0.02 1.94 0.04 2 

C4_1_a 0.61 0.08 0.09 0.001 0.70 0.08 2 

C4_2_a 0.66 0.001 0.11 0.005 0.77 0.01 2 

C4_3_a 0.68 0.04 0.13 0.04 0.81 0.08 3 

C4_4_a 0.86 0.01 0.29 0.003 1.15 0.01 2 

C4_5_a 1.02 0.01 0.35 0.02 1.37 0.03 2 

C4_6_a 0.71 0.01 0.14 0.01 0.85 0.02 2 

C4_7_a 0.66 0.005 0.11 0.01 0.78 0.01 2 

C4_8_a 0.61 0.01 0.13 0.01 0.74 0.02 2 

C4_9_a 0.69 0.01 0.12 0.03 0.81 0.04 2 

C4_10_a 0.76 0.02 0.15 0.001 0.91 0.02 2 

C4_11_a 0.68 0.001 0.10 0.002 0.78 0.003 2 

C4_12_a 0.86 0.02 0.19 0.01 1.05 0.03 2 

C4_13_a 0.82 0.01 0.20 0.01 1.02 0.01 2 

C4_14_a 0.76 0.01 0.18 0.03 0.94 0.05 2 

C4_15_a 0.83 0.06 0.17 0.03 1.01 0.09 2 

C4_16_a 0.85 0.01 0.20 0.001 1.06 0.01 2 

C5 C5_1 0.48 0.03 0.07 0.01 0.55 0.03 3 

C5_2 0.70 0.02 0.20 0.01 0.90 0.03 2 

C5_3 1.02 0.07 0.49 0.10 1.51 0.17 2 

C5_4 0.96 0.19 0.28 0.04 1.24 0.24 2 

C5_5 0.83 0.02 0.26 0.00 1.08 0.02 2 

C5_6 0.85 0.04 0.36 0.05 1.21 0.09 2 

C6 C6_1 0.83 0.00 0.26 0.00 1.09 0.00 2 

C6_2 0.83 0.04 0.29 0.08 1.12 0.12 2 

C6_3 0.89 0.02 0.28 0.01 1.17 0.02 2 

C6_4 0.91 0.01 0.43 0.00 1.34 0.01 2 

C6_5 0.77 0.07 0.20 0.05 0.96 0.12 2 

D1 D1_1 0.90 0.00 0.22 0.00 1.12 0.00 2 

D1_2 0.56 0.01 0.08 0.01 0.63 0.02 2 

D1_3 0.73 0.02 0.14 0.02 0.87 0.04 2 

D1_4 0.66 0.04 0.11 0.01 0.78 0.05 2 

D1_5 0.59 0.00 0.10 0.00 0.68 0.00 2 

D1_6 0.54 0.02 0.11 0.02 0.64 0.04 2 

D1_7 0.53 0.04 0.43 0.46 0.96 0.51 2 

D1_1_a 0.74 0.00 0.17 0.00 0.91 0.00 2 
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D1_2_a 0.89 0.02 0.26 0.02 1.15 0.03 2 

D1_3_a 0.68 0.00 0.15 0.01 0.83 0.01 2 

D1_4_a 0.66 0.01 0.13 0.00 0.80 0.02 2 

D1_5_a 0.80 0.02 0.24 0.01 1.04 0.03 2 

D1_6_a 1.08 0.01 1.11 0.02 2.18 0.02 2 

D1_7_a 0.76 0.02 0.14 0.01 0.89 0.03 2 

D1_8_a 0.77 0.00 0.23 0.01 1.00 0.01 2 

D1_9_a 0.65 0.00 0.15 0.00 0.81 0.01 2 

D1_10_a 0.92 0.03 0.31 0.03 1.22 0.06 2 

D1_11_a 0.71 0.02 0.16 0.04 0.86 0.06 2 

D1_12_a 0.92 0.02 0.27 0.02 1.20 0.04 2 

D1_13_a 0.95 0.01 0.51 0.00 1.46 0.01 2 

D1_14_a 0.82 0.05 0.18 0.01 1.00 0.06 2 

D1_15_a 0.91 0.03 0.24 0.00 1.15 0.03 2 

D1_16_a 1.00 0.02 0.57 0.01 1.57 0.03 2 

D2 D2_1 0.88 0.08 0.38 0.11 1.26 0.19 2 

D2_2 0.56 0.03 0.28 0.01 0.84 0.04 2 

D2_3 0.76 0.01 0.22 0.00 0.98 0.01 2 

D2_4 0.86 0.02 0.39 0.01 1.25 0.03 2 

D3 D3_1_a 0.83 0.04 0.16 0.03 0.98 0.06 2 

D3_2_a 0.88 0.04 0.27 0.13 1.16 0.17 2 

D3_3_a 0.99 0.01 0.40 0.01 1.39 0.02 2 

D3_4_a 0.63 0.04 0.11 0.03 0.74 0.07 2 

D3_5_a 0.75 0.01 0.19 0.01 0.94 0.02 2 

D3_6_a 1.02 0.01 0.48 0.01 1.49 0.03 2 

D3_7_a 0.95 0.02 0.24 0.00 1.18 0.02 2 

D3_8_a 0.89 0.01 0.34 0.00 1.23 0.01 2 

D3_9_a 1.15 0.00 0.29 0.00 1.44 0.01 2 

D3_10_a 0.96 0.03 0.27 0.01 1.22 0.04 2 

D3_11_a 0.96 0.01 0.37 0.00 1.32 0.02 2 

D3_12_a 0.92 0.01 0.39 0.11 1.31 0.12 2 

D4 D4_1 0.55 0.00 0.05 0.01 0.60 0.01 2 

D4_2 0.76 0.00 0.23 0.01 1.00 0.01 2 

D4_3 0.62 0.03 0.11 0.02 0.73 0.04 2 

D4_4 0.62 0.02 0.08 0.00 0.70 0.03 2 

D4_5 0.71 0.04 0.20 0.03 0.91 0.08 2 

D4_6 0.98 0.02 0.29 0.04 1.28 0.06 2 

D5 D5_1 0.63 0.01 0.12 0.00 0.75 0.02 2 

D5_2 0.67 0.04 0.12 0.02 0.79 0.06 2 

D5_3 0.51 0.00 0.06 0.01 0.57 0.01 2 

D5_4 0.57 0.01 0.05 0.00 0.62 0.01 2 
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D5_5 0.74 0.05 0.13 0.03 0.88 0.08 2 

D5_6 0.74 0.07 0.14 0.00 0.88 0.07 2 

D5_7 0.69 0.06 0.14 0.01 0.84 0.07 2 

D5_8 0.72 0.03 0.13 0.01 0.85 0.04 2 

D5_9 0.61 0.00 0.08 0.00 0.68 0.00 2 

D5_1_a 0.53 0.01 0.09 0.01 0.62 0.02 2 

D5_2_a 0.52 0.01 0.10 0.01 0.62 0.02 2 

D5_3_a 0.65 0.03 0.12 0.01 0.77 0.04 2 

D5_4_a 0.37 0.00 0.03 0.00 0.40 0.01 2 

D5_5_a 0.71 0.01 0.14 0.00 0.84 0.01 2 

D5_6_a 0.68 0.00 0.12 0.01 0.80 0.02 2 

D5_7_a 0.85 0.00 0.28 0.01 1.13 0.01 2 

D5_8_a 0.69 0.01 0.10 0.00 0.79 0.01 2 

D5_9_a 0.53 0.03 0.05 0.00 0.59 0.03 2 

D5_10_a 0.68 0.03 0.13 0.01 0.81 0.03 2 

D5_11_a 0.75 0.03 0.14 0.01 0.89 0.04 2 

D5_12_a 0.61 0.00 0.10 0.00 0.71 0.00 2 

 

Effusive phase 

Sample OH
-
 wt.% 

(4500) 
sd H2Omwt.% 

(5200) 
Sd H2Ot* 

wt.% 
sd n 

CH_2015_01  - - - - 0.13 0.002 5 

Pre-CH_Cone  - - - - 0.29 0.01 5 

  



A p p e n d i c e s  | 176 

 

 

B. Electron Microprobe Analysis (EMPA)  

  
  Na2O      SiO2      CaO       FeO       P2O5      F         MgO       K2O       MnO       Cl      Al2O3     SO3       TiO2   Total 

E
ff

u
s
iv

e
 

CH_2015_01 

3 75.54 1.3008 1.113 - - 0.2143 3.01 0.0687 - 13.86 - 0.1237 98.2732 

2.93 75.47 1.2671 1.2237 - - 0.2135 3.02 0.0544 - 13.79 - 0.1553 98.1345 

3.06 75.37 1.2871 1.1957 - - 0.2168 3.04 0.028 - 13.84 - 0.1673 98.205 

2.98 75.87 1.3175 1.1156 - - 0.1886 3.19 0.0534 - 13.71 - 0.0976 98.5247 

2.83 75.64 1.3105 1.1581 - - 0.1658 3.11 0.0689 - 13.73 - 0.1535 98.1669 

2.94 75.86 1.2457 1.1372 - - 0.202 3.09 0.0455 - 13.79 - 0.1295 98.4752 

Pre-
CH_cone 

4.14 75.05 1.41 1.15 0.052 0 0.19 3.05 0.073 0.079 13.876 0 0.132 99.178 

4.01 75.13 1.36 1.18 0.061 0.112 0.191 3.03 0.007 0.079 13.99 0.023 0.131 99.234 

4.01 74.64 1.34 1.22 0.074 0.141 0.203 3.06 0.064 0.072 13.895 0 0.13 98.771 

4.11 75.24 1.38 1.22 0.036 0 0.196 3.08 0.074 0.082 13.905 0.02 0.113 99.426 

3.97 74.96 1.32 1.08 0.057 0.029 0.198 3.04 0.002 0.071 13.681 0.002 0.116 98.491 

E
x
p

lo
s
iv

e
 

CH_2016_04 

4.03 73.67 1.38 1.32 0.064 0 0.22 2.99 0.067 0.08 13.682 0.005 0.15 97.632 

3.98 73.80 1.40 1.34 0.059 0 0.226 3.01 0.068 0.086 13.723 0 0.142 97.807 

3.92 74.64 1.34 1.22 0.06 0 0.259 2.97 0.037 0.082 13.757 0.003 0.116 98.376 

3.93 74.26 1.38 1.35 0.058 0.17 0.279 3.04 0.08 0.084 13.848 0.026 0.152 98.565 

3.91 74.68 1.43 1.22 0.068 0 0.259 3.06 0.058 0.073 13.814 0.012 0.147 98.713 

T
ra

n
s
it
io

n
a

l 

D5_1 

4.06 75.86 1.42 1.29 0.044 0 0.243 3.12 0.045 0.084 13.854 0 0.154 100.149 

4.01 75.99 1.36 1.37 0.027 0.038 0.23 3.09 0.051 0.085 13.769 0 0.17 100.151 

4.08 75.83 1.37 1.30 0.02 0.002 0.233 2.96 0.051 0.089 13.779 0 0.147 99.839 

D5_3 

4.13 75.90 1.35 1.30 0.064 0.119 0.241 3.02 0.054 0.097 13.883 0 0.134 100.216 

4.12 76.25 1.34 1.38 0.083 0.201 0.251 3.12 0.075 0.093 13.861 0.011 0.121 100.792 

4.05 76.16 1.33 1.31 0.029 0 0.241 3.00 0.074 0.085 13.877 0.011 0.143 100.294 

D5_5 

4.16 75.95 1.43 1.37 0.072 0 0.253 2.98 0.014 0.077 13.896 0 0.149 100.32 

4.03 75.62 1.39 1.30 0.073 0.107 0.256 3.03 0.087 0.065 13.92 0 0.166 99.979 

3.94 75.85 1.38 1.34 0.058 0 0.267 2.99 0.089 0.087 13.898 0.01 0.16 100.047 

D5_7 

4.00 75.85 1.36 1.36 0.036 0.084 0.259 2.99 0.068 0.086 13.86 0 0.153 100.044 

4.10 75.45 1.38 1.38 0.041 0.072 0.247 3.03 0.04 0.084 13.851 0 0.165 99.789 

4.09 75.71 1.44 1.28 0.073 0 0.283 3.08 0.067 0.085 13.763 0 0.152 99.996 
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D5_9 

3.93 75.49 1.41 1.32 0.066 0 0.238 3.02 0.02 0.09 13.826 0 0.168 99.546 

4.14 75.20 1.43 1.39 0.049 0 0.27 3.14 0.065 0.092 13.861 0.025 0.149 99.78 

4.07 75.98 1.47 1.34 0.074 0 0.259 3.06 0.056 0.076 14.033 0 0.145 100.541 

C4_2 

3.89 74.47 1.33 1.99 0.053 0.048 0.52 3.01 0.04 0.091 13.71 0.003 0.164 99.282 

3.90 75.71 1.33 1.20 0.06 0.111 0.199 3.10 0.035 0.092 13.786 0 0.145 99.601 

3.85 74.98 1.33 1.13 0.047 0 0.217 3.15 0.058 0.085 13.694 0 0.141 98.672 

3.79 75.65 1.35 1.27 0.042 0.054 0.262 3.14 0.075 0.078 13.831 0 0.146 99.641 

C4_3 

4.05 75.27 1.40 1.34 0.06 0.121 0.251 3.02 0.044 0.077 13.714 0.005 0.163 99.449 

4.01 75.81 1.39 1.31 0.068 0 0.278 3.14 0.049 0.072 13.792 0.018 0.168 100.087 

3.96 75.28 1.39 1.28 0.08 0 0.245 3.11 0.028 0.091 13.772 0.008 0.123 99.346 

C4_4 

3.99 74.90 1.35 1.39 0.063 0.002 0.241 3.03 0.069 0.082 13.875 0 0.164 99.141 

4.05 74.53 1.39 1.32 0.051 0.069 0.267 3.08 0.046 0.086 13.769 0 0.129 98.735 

3.91 74.88 1.42 1.30 0.079 0 0.252 3.02 0.05 0.087 13.787 0 0.13 98.895 

C4_6 

4.05 74.89 1.47 1.34 0.067 0 0.284 3.08 0.035 0.073 13.788 0.007 0.159 99.222 

4.10 74.43 1.39 1.34 0.02 0.154 0.279 2.99 0.039 0.079 13.809 0.019 0.142 98.701 

3.96 74.96 1.40 1.38 0.017 0 0.238 3.03 0.059 0.08 13.857 0.007 0.119 99.094 

4.05 74.57 1.45 1.35 0.063 0.054 0.261 3.03 0.08 0.083 13.874 0 0.14 98.959 
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C. Table of experimental conditions (High T – 0.1 MPa experiments) 

 
 

Experiment H2Ot 

(wt.%) 
T 

(°C) 
Duration 

(s) 
Time lag 

(s) 
Time eq  

(s) 
mass 

(gr) 
Af/A0 Φ 

(%) 

CH_2015_01 CH_2015_01_01 0.13 766 1683 - Not eq. 0.695 1.00 - 

CH_2015_01_02 842 1667 - Not eq. 0.660 1.00 - 

CH_2015_01_03 900 1629 - Not eq. 0.685 1.00 2 

CH_2015_01_04 900 9782 - Not eq. 0.779 1.01 1 

CH_2015_01_05 899 35755 - Not eq. 0.746 1.00 25 

CH_2015_01_06 1032 9148 - Not eq. 0.594 1.88 57 

CH_2015_01_07 1000 11033 - Not eq. 0.758 1.93 65 

CH_2015_01_08 955 46996 - Not eq. 0.702 1.86 62 

CH_2015_01_09 988 16367 - Not eq. 0.639 1.59 47 

CH_2015_01_10 935 39128 - Not eq. 0.598 1.07 24 

CH_2015_01_11 998 25320 - 19980 - - - 

CH_2015_01_12 950 71100 - 68340 0.703 1.80 - 

          CH_2015_02 CH_2015_02_01 0.75 728 1620 - No eq. 0.634 1.00 1 

CH_2015_02_02* 746 1620 - No eq. 0.704 1.04 29 

CH_2015_02_03* 767 1620 1180 No eq. 0.696 1.09 31 

CH_2015_02_04* 785 1620 946 No eq. 0.552 1.49 35 

CH_2015_02_05* 804 1620 448 No eq. 0.729 4.94 89 

CH_2015_02_06* 824 1620 352 No eq. 0.732 6.22 91 

CH_2015_02_07* 844 1620 211 1260 0.632 6.28 92 

CH_2015_02_08* 864 1600 173 780 0.703 6.98 93 

CH_2015_02_09* 884 1620 133 540 0.690 7.22 93 

CH_2015_02_10* 902 1620 95 330 0.708 7.63 94 

CH_2015_02_11* 923 1620 68 210 0.768 7.53 94 

CH_2015_02_12* 942 1620 64 158 0.627 7.70 94 

CH_2015_02_13 963 720 62 120 0.722 6.26 94 

CH_2015_02_14* 982 1606 43 100 0.705 6.31 93 

CH_2015_02_15* 1001 1612 49 90 0.779 4.68 90 

CH_2015_02_16 790 5767 752 4166 0.663 5.24 - 

CH_2015_02_17 815 5568 241 1466 0.430 4.83 - 

CH_2015_02_18 805 3207 543 2833 0.575 4.60 - 

CH_2015_02_19 824 3985 359 1900 0.515 5.90 - 

CH_2015_02_20 780 14932 1316 - 0.479 5.13 - 

CH_2015_02_21 780 5448 845 4666 0.525 4.36 - 

CH_2015_02_22 821 3134 444 2333 - 5.74 - 

          CH_2015_05 CH_2015_05_01* 0.97 776 1620 218 No eq. 0.691 5.27 89 

CH_2015_05_02* 790 1620 85 No eq. 0.566 5.03 89 

CH_2015_05_03* 810 1620 97 1020 0.674 6.41 92 

CH_2015_05_04* 829 1620 68 1320 0.633 7.84 93 

CH_2015_05_05* 849 1620 63 900 0.695 7.91 94 

CH_2015_05_06* 868 1620 64 480 0.844 7.55 94 

CH_2015_05_07 887 270 65 - 0.566 7.91 95 

CH_2015_05_08* 907 1620 33 150 0.690 6.25 93 

CH_2015_05_09* 926 1620 31 166 0.652 8.57 95 

CH_2015_05_10* 945 1620 45 120 0.790 8.44 96 

CH_2015_05_11* 964 1620 36 120 0.749 10.29 96 
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*Experiment plot in Fig. 3A-D  

CH_2015_05_12 982 900 30 75 0.671 8.07 93 

CH_2015_05_13* 1004 1633 28 67 0.701 4.34 - 

CH_2015_05_14 1024 750 29 58 0.691 5.08 - 

CH_2015_05_15 1024 402 24 48 0.632 5.86 - 

CH_2015_05_16* 986 1648 37 67 0.604 6.39 - 

CH_2015_05_17 990 598 31 65 0.661 6.56 - 

CH_2015_05_18 974 1543 27 75 0.618 6.67 - 

CH_2015_05_19 965 183 30 77 0.609 7.82 - 

CH_2015_05_20 958 210 34 72 0.575 7.44 - 

CH_2015_05_21 983 120 25 - 0.417 1.83 - 

CH_2015_05_22 907 83 50 No eq. 0.685 4.15 - 

CH_2015_05_23 908 323 61 200 0.631 7.97 - 

CH_2015_05_24 896 277 52 208 0.683 12.03 - 

CH_2015_05_25 915 417 50 142 0.605 9.11 - 

CH_2015_05_26 840 345 91 - 0.458 7.00 - 

CH_2015_05_27 771 603 175 No eq. 0.551 2.02 - 

CH_2015_05_28 755 667 283 No eq. 0.507 1.77 - 

CH_2015_05_29* 887 1613 58 260 0.611 7.36 - 

CH_2015_05_30 854 1620 77 500 0.535 6.46 - 

CH_2015_05_31 832 1631 97 1167 0.609 6.11 - 

CH_2015_05_32* 746 6728 362 4333 0.576 5.02 - 

CH_2015_05_33 760 2185 208 - 0.548 4.59 - 

CH_2015_05_34 773 2574 219 - 0.559 6.42 - 

CH_2015_05_35 781 4194 209 2617 0.556 5.63 - 

CH_2015_05_36 775 4637 198 2433 0.359 4.87 - 

CH_2015_05_37 791 5961 171 1167 0.547 5.30 - 

CH_2015_05_38 801 3004 234 1167 0.549 6.07 - 

CH_2015_05_39* 762 6827 356 5167 0.399 5.92 - 

CH_2011_05 CH_2011_05_01* 1.4 741 1620 129 1200 0.341 5.24 88 
 CH_2011_05_02*  767 1620 96 780 0.640 6.00 91 

CH_2011_05_03* 786 1620 80 540 0.421 6.03 90 
CH_2011_05_04* 805 1620 62 480 0.773 8.61 92 
CH_2011_05_05* 821 1620 63 360 0.908 8.04 94 
CH_2011_05_06* 845 1620 54 300 0.577 7.62 94 
CH_2011_05_07* 855 1620 55 180 0.979 7.39 94 
CH_2011_05_08* 861 1620 58 210 0.744 7.35 93 
CH_2011_05_09* 876 70 39 blew up 0.552 5.90 - 
CH_2011_05_10* 885 73 41 blew up 0.695 7.18 - 
CH_2011_05_11 790 1683 87 - - - - 
CH_2011_05_12* 879 1620 45 135 0.543 8.31 - 
CH_2011_05_13* 887 73 44 blew up 0.656 6.88 - 
CH_2011_05_14* 892 161 43 100 0.649 8.22 - 
CH_2011_05_15* 901 58 33 blew up 0.591 5.88 - 
CH_2011_05_16* 900 63 36 blew up 0.493 8.24 - 
CH_2011_05_17* 897 1620 25 80 0.537 9.31 - 
CH_2011_05_18* 874 63 23 blew up 0.982 7.64 - 
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D. Newspaper analysis 

  Reported event Reported impacts 

 
 

Event 
Code 

news 
date 

Start End 

Win
d 

velo
city 
(km/
h) 

Transport
ation 

Accessibi
lity 

Electr
icty 

suppl
y 

Telecommuni
cations 

Scho
ol 

activi
ties 

Visibility 

20
11 

1 07/06/
2011 

06/06/
2011 

07/06/
2011 

> 
100 

x x x x x  

08/06/
2011 

06/06/
2011 

07/06/
2011 

> 80 x x  x x 10 
meters 

2 12/06/
2011 

12/06/
2011 

        

13/06/
2011 

12/06/
2011 

12/06/
2011 

     x almost 
0 

3 18/06/
2011 

17/06/
2011 

  x    x almost 
0 

4 24/06/
2011 

23/06/
2011 

23/06/
2011 

    x   

5 28/06/
2011 

27/06/
2011 

      x  

29/06/
2011 

28/06/
2011 

      x  

30/06/
2011 

28/06/
2011 

29/06/
2011 

 x   x   

30/06/
2011 

27/06/
2011 

30/06/
2011 

 x   x   

01/07/
2011 

27/06/
2011 

30/06/
2011 

 x    x few 
meters 

6 21/07/
2011 

20/07/
2011 

21/07/
2011 

 x    x  

22/07/
2011 

20/07/
2011 

21/07/
2011 

> 80 x   x x 10 
meters 

7 26/07/
2011 

25/07/
2011 

25/07/
2011 

70    x x few 
meters 

8 28/07/
2011 

27/07/
2011 

27/07/
2011 

    x x 50 
meters 

9 06/08/
2011 

05/08/
2011 

05/08/
2011 

 x   x x few 
meters 

10 30/08/
2011 

29/08/
2011 

29/08/
2011 

 x   x x  

11 06/09/
2011 

01/09/
2011 

05/09/
2011 

< 50    x   

12 10/09/
2011 

09/09/
2011 

10/09/
2011 

>90 x   x x 10 
meters 

13 26/09/
2011 

25/09/
2011 

 30       

14 15/10/
2011 

14/10/
2011 

 > 70       

16/10/
2011 

14/10/
2011 

15/10/
2011 

70 x    x almost 
0 

15 28/10/
2011 

26/10/
2011 

28/10/
2011 

 x    x  

16 09/11/
2011 

09/11/
2011 

09/11/
2011 

 x    x  

10/11/
2011 

09/11/
2011 

10/11/
2011 

 x    x  

17 24/11/
2011 

21/11/
2011 

21/11/
2011 

    x   

23/11/
2011 

23/11/
2011 

>70 x   x x  

27/11/
2011 

16/11/
2011 

26/11/
2011 

       

20 18 08/02/ 07/02/ 07/02/ 60 x    x  



C u r r i c u l u m  V i t a e  | 181 

 

 

12 2012 2012 2012 

19 22/06/
2012 

21/06/
2012 

 >90 x x  x x few 
meters 

20 10/08/
2012 

09/08/
2012 

     x x  

21 05/10/
2012 

04/10/
2012 

04/10/
2012 

> 70 x   x x few 
meters 

22 31/10/
2012 

31/10/
2012 

 > 90 x   x x  

01/11/
2012 

31/10/
2012 

 > 90 x   x x > 100 
m 

23 12/12/
2012 

11/12/
2012 

11/12/
2012 

> 70       

24 15/12/
2012 

14/12/
2012 

  x    x  

25 19/12/
2012 

18/12/
2012 

 > 70     x  

20
13 

26 30/05/
2013 

29/05/
2013 

30/05/
2013 

> 
120 

x x  x x  

27 21/08/
2013 

21/08/
2013 

21/08/
2013 

       

22/08/
2013 

21/08/
2013 

21/08/
2013 

100     x few 
meters 

28 10/09/
2013 

09/09/
2013 

09/09/
2013 

> 
100 

x x  x   

29 11/11/
2013 

11/11/
2013 

11/11/
2013 

    x   

12/11/
2013 

11/11/
2013 

11/11/
2013 

    x   

 


