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1 Summary 
 

Cancer treatments with classic cytotoxic drugs are constrained by the resistance of cancer cells 

and indiscriminate toxicity towards normal cells. They are gradually being replaced by the drugs 

and molecules targeting cancer-specific molecules and processes. However, only a few of such 

targeted drugs provide clinical benefits compared to cost-effective classical drugs. Herein, I 

investigated an unexplored approach of improving the efficacy of the classical anti-cancer drug 

etoposide. I hypothesized that the response to etoposide, a widely used topoisomerase II poison, 

can be safely enhanced by considering treatment-evoked gene expression changes. To this end, I 

analyzed the basal transcriptomes and etoposide-evoked transcriptional changes in fibrosarcoma 

and acute myeloid leukemia (AML) cell lines. Using two parallel approaches of co-regulation 

within gene expression networks and essentiality for cancer cell survival, I identified and validated 

druggable drivers of etoposide cytotoxicity. Drivers with pre-treatment expression modulating the 

etoposide cytotoxicity (e.g. BIRC5 and PARP9) synergized with etoposide. Drivers essential for 

cancer cell survival and repressed after etoposide treatment (e.g. PFKP and PLK1) contributed to 

its cytotoxicity by evoking cell death. Drivers with etoposide-like gene expression changes (e.g. 

ANLN and MYC) synergized with etoposide as well as exhibited standalone cytotoxicity. 

Altogether, both pre-treatment gene expression levels and treatment-evoked gene expression 

changes drive the etoposide cytotoxicity. These drivers could be targeted to potentially replace 

etoposide or to enhance its efficacy. This approach can further be used to identify replacements 

and rational combination partners of other classical anti-cancer drugs interfering with gene 

expression.
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2 Zusammenfassung 
 

Die Wirksamkeit von Krebsbehandlungen mit klassischen Zytostatika wird durch Resistenzen und 

Toxizitäten eingeschränkt. Die klassischen Zytostatika werden daher nach und nach durch 

Medikamente ersetzt, die auf krebsspezifische Moleküle und Prozesse abzielen. Im Vergleich zu 

kostengünstigen klassischen Medikamenten bieten jedoch nur wenige dieser zielgerichteten 

Arzneimittel klinische Vorteile. Im Verlauf dieser Arbeit versuchte ich, die Wirksamkeit des 

klassischen Antikrebsmedikaments Etoposid zu verbessern. Ich stellte die Hypothese auf, dass die 

Antwort auf Etoposid, ein weit verbreitetes Topoisomerase-II-Gift, gesteigert werden kann, wenn 

die durch die Behandlung hervorgerufenen Genexpressionsänderungen berücksichtigt werden. Zu 

diesem Zweck analysierte ich die basalen Transkriptome sowie die durch Etoposid 

hervorgerufenen transkriptionellen Veränderungen in Zelllinien des Fibrosarkoms und der akuten 

myeloischen Leukämie (AML). Mit zwei parallelen Ansätzen, d.h. der Ko-Regulation innerhalb 

von Genexpressionsnetzwerken und der essenziellen Bedeutung für das Überleben von 

Krebszellen, identifizierte und validierte ich therapeutische Zielmoleküle welche die Etoposid-

Zytotoxizität verstärken. „Drivers“, deren Expression vor der Behandlung die Etoposid-

Zytotoxizität beeinflussten (z. B. BIRC5 und PARP9), wirkten mit Etoposid synergistisch. 

„Drivers“, die für das Überleben von Krebszellen essentiell waren und nach einer Etoposid-

Behandlung reprimiert wurden (z. B. PFKP und PLK1), verstärkten dessen Zytotoxizität durch 

Zelltod. „Drivers“, die Etoposid-ähnliche Genexpressionsänderungen hervorriefen (z. B. ANLN 

und MYC) wirkten synergistisch mit Etoposid und zeigten eigenständige Zytotoxizität. 

Zusammengefasst steuern sowohl die Genexpressionsniveaus vor der Behandlung als auch die 

durch die Behandlung hervorgerufenen Genexpressionsänderungen die Zytotoxizität von 

Etoposid. Diese „Drivers“ könnten gezielt genutzt werden, um Etoposid zu ersetzen oder seine 
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Wirksamkeit zu steigern. Darüber hinaus könnten mit dieser Herangehensweise Alternativen 

sowie Kombinationen für andere klassischen Krebsmedikamente identifiziert werden, die die 

Genexpression beeinflussen.
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3 Introduction 
 

Most classic anticancer drugs are indiscriminately toxic towards both cancerous and normal 

dividing cells due to the interference with the fundamental cellular processes of DNA metabolism 

or mitosis. They are therefore gradually being replaced by drugs targeting molecules and processes 

more specific to cancer cells. For example, the identification of the bcr-abl fusion protein expressed 

exclusively in chronic monomyelocytic leukemia led to the development of the well-tolerated 

inhibitor imatinib (An, Tiwari et al. 2010). The development of this and of many other new 

anticancer drugs has been driven by advances in the understanding of tumor biology. In coming 

years, the cancer chemotherapy is most likely to be tailored to individual patients. However, 

development and approval of drugs targeting such individual targets will take several years. Even 

more, such targeted drugs often confer rather modest clinical benefits and they remain out-of-reach 

to most patients because of high cost (Schilsky and Schnipper 2018). 

An alternative approach of finding and targeting cancer-specific effectors of cytotoxic drugs has 

not been explored. Cytotoxic drugs display a remarkable sensitivity towards particular cancer 

entities (e.g. cis-platinum is effective against solid tumors like NSCLC, testicular cancer or ovarian 

cancer, but not against hematological cancers). This work explores the sensitivity-relevant 

transcriptional drivers of clinically used cytotoxic drugs to understand the basis of selective 

sensitivity and to further enhance it. 

3.1 Cancer chemotherapy 

Cancer remains one of the major health concerns worldwide. It is second-leading cause of death 

with 18.1 million new cases and 9.6 million deaths in 2018 globally (Bray, Jacques et al. 2018, 

Siegel, Miller et al. 2018). Several factors contribute to increased cancer prevalence, including 
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aging population, as well as environmental and lifestyle changes. This is especially evident in 

rapidly developing countries which display a shift from poverty-associated cancers to lifestyle-

associated cancers (Kanavos 2006). 

The complexity of cancer in terms of genetic constitution, combined with variability in response 

to chemotherapeutic drugs, make treating them particularly challenging (Hanahan and Weinberg 

2011). These variabilities are often observed within a single cancer entity. Cancer treatment 

strategies include surgery, radiotherapy, chemotherapy, and immunotherapy. Surgery is the ideal 

treatment for solid tumors detected at an early stage. For large tumors the radiotherapy provides 

an alternative for surgery (Urruticoechea, Alemany et al. 2010). However, both of these 

approaches are employed for local therapies. Chemotherapy is the preferred treatment for 

advanced solid tumors and for hematological malignancies. 

There are various classes of clinically used anticancer drugs including alkylating agents, antibiotics 

and antimetabolites, topoisomerase inhibitors, and mitosis inhibitors. Unlike local treatments, 

chemotherapy is not restricted to particular site, but rather targets proliferating cells. Hence, 

chemotherapeutic drugs are indiscriminately toxic towards cancer cells as well as normal dividing 

cells including hair follicles, gastrointestinal epithelial cells, and bone marrow cells. This results 

in numerous side effects, including, among others, hair loss, stomach ulcers, and anemia, in the 

patients receiving chemotherapy, restricting their applicability. 

There are numerous of drugs approved for each cancer type, which are either cytotoxic or targeted 

towards specific cancer entities (Table 3.1.1) (Sun, Wei et al. 2017). 
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Table 3.1.1: Overview of the number of drugs approved for each cancer type (Sun, Wei et al. 2017). 

Cancer 
Number of 

cytotoxic drugs 

Number of 

targeted drugs 

Total 

number of 

drugs 

Leukemia 24 16 40 

Lymphoma 14 14 28 

Breast cancer 13 14 27 

Lung cancer 10 7 17 

Prostate cancer 3 12 15 

Ovarian cancer 10 2 12 

Melanoma 1 10 11 

Colorectal cancer 5 5 10 

Kidney cancer 2 8 10 

Stomach cancer 5 5 10 

Brain cancer 6 2 8 

Multiple myeloma 3 5 8 

Pancreatic cancer 5 3 8 

Testicular cancer 6 0 6 

Head and neck cancer 3 2 5 

Sarcoma 3 2 5 

Bladder cancer 4 0 4 

Thyroid cancer 1 3 4 

Bone cancer 2 1 3 

Basal cell carcinoma 0 2 2 

Cervical cancer 2 0 2 

Gestational trophoblastic disease 2 0 2 

Adrenal cortical carcinoma 1 0 1 

Choriocarcinoma 1 0 1 

Esophageal cancer 0 1 1 

Gastroenteropancreatic 

neuroendocrine tumor 
0 1 1 

Kaposi’s sarcoma 0 1 1 

Liver cancer 0 1 1 

Mesothelioma 1 0 1 

Myelofibrosis 0 1 1 

Penile cancer 1 0 1 

Retinoblastoma 1 0 1 

Vulvar cancer 1 0 1 
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Even with current advancements and availability of number of drugs (Table 3.1.1), most patients 

with advanced cancers still exhibit poor prognosis, mostly because of residual cancer cells. And 

hence there is great need to improve the standard treatment regimen. Hence, there is ever-growing 

research to identify new potent drugs as well as to utilize alternative strategies such as 

immunotherapy (Zhang and Chen 2018). However, there are not many efforts addressing the 

efficacy and safety of existing chemotherapeutic drugs which are very potent despite lacking the 

cancer cell specificity. This is especially crucial considering increasing number of targeted drugs 

which are applicable to ever smaller cohort of patients (Arbiser 2007, Widakowich, de Castro et 

al. 2007). There are two ways of addressing this. First, replace these non-specific drugs with drugs 

targeting molecules and processes more specific to cancer cells. Second, combine existing 

chemotherapeutic drugs with synergistic partners to reduce their dosage and, hence, side-effects. 

3.2 Topoisomerase II as cancer targets 

Topoisomerase II (TOP2) poisons constitute one of the widely used and successful classes of anti-

cancer drugs (Nitiss 2009). Unfortunately, due to the involvement of TOP2 in such fundamental 

cellular processes as DNA replication and transcription, its poisoning affects both cancerous and 

normal cells, including non-dividing ones. Thus, in addition to the transient bone marrow toxicity, 

TOP2 poisons cause irreversible side-effects such as secondary leukemia due to chromosomal 

rearrangements (Pendleton, Lindsey et al. 2014), and cardiotoxicity (McGowan, Chung et al. 

2017).  

DNA topoisomerases are the essential enzymes involved in the processes such as replication and 

transcription. Human DNA topoisomerases consist of three types including type IA (TOP3A and 

TOP3B), type IB (TOP1 and TOP1MT), and type IIA (TOP2A and TOP2B). Monomeric type I 

enzymes catalyze DNA single-stand breaks, while dimeric type II enzymes catalyze DNA-double 
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strand breaks to relieve the topological strain (Pommier 2013). These enzymes resolve higher order 

DNA structure through two trans-esterification steps. The first trans-esterification step creates an 

DNA adduct, which generates TOP2-DNA cleavable complex causing the topological change. The 

second trans-esterification step re-seals the break. This process has extensively been exploited in 

cancer chemotherapy. TOP2 poisoning has been utilized in the clinic for more than 50 years as 

first-line therapy for blood as well as solid cancers (Marinello, Delcuratolo et al. 2018). 

Topoisomerase II (TOP2) poisons constitute one of the widely used and successful classes of anti-

cancer drugs (Nitiss 2009, Pommier, Sun et al. 2016). The main TOP2 poison classes include 

anthracyclines, camptothecins, and epipodophyllotoxins. TOP2 poisons, such as 

epipodophyllotoxin etoposide, target the short-lived TOP2-DNA cleavable complex and prevent 

the re-ligation of transient DSBs. This generates high number of TOP2-associated DSBs, which 

trigger apoptosis (Nitiss 2009, Pommier, Leo et al. 2010). The process of TOP2 poisoning by 

etoposide is depicted in Fig. 3.2.1. 
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Fig. 3.2.1: Pictorial representation of topoisomerase II (TOP2) poisoning by etoposide and its consequences. 

 

TOP2 poisons constitute one of the most important anti-cancer drugs. They are used in managing 

almost all types of chemotherapy-responsive cancers. Clinically used and approved TOP2 poisons 

are listed in the Table 3.1.1. 
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Table 3.2.1: Overview of the topoisomerase II (TOP2) poisons used in clinic (Cowell and Austin 2012, Chemocare 

2019). 

Class Drug Use 

Acridine Amsacrine Acute adult leukemia, Lymphoma 

Benzo[c]phenanthridine alkaloid NK314 Adult T-cell leukemia-lymphoma 

Anthracenedione Mitoxantrone Breast cancer, Leukemia, Non-Hodgkin lymphoma 

Anthracyclines 

Daunorubicin 
Acute myeloid leukemia, Acute lymphoblastic leukemia, 

Acute promyelocytic leukemia 

Doxorubicin 

Acute lymphoblastic leukemia, Acute myeloid leukemia, 

Bone sarcoma, Breast cancer, Endometrial cancer, Gastric 

cancer, Head and neck cancer, Hodgkin and non-Hodgkin 

lymphoma, Liver cancer, Kidney cancer, Multiple myeloma, 

Neuroblastoma, Ovarian cancer, Small cell lung cancer, Soft 

tissue sarcoma, Thyomas, Thyroid cancer, Transitional cell 

bladder cancer, Uterine sarcoma, Wilms' tumor, 

Waldenstrom macroglobulinemia 

Epirubicin Breast cancer 

Idarubicin 
Acute lymphoblastic leukemia, Acute myeloid leukemia, 

Chronic myelogenous leukemia 

Camptothecins 
Irinotecan Metastatic colon or rectal cancer 

Topotecan Lung cancer, Ovarian cancer 

Epipodophyllotoxins 
Etoposide 

Acute myeloid leukemia, Bladder cancer, Hodgkin's and 

non-Hodgkin's lymphoma, Kaposi's sarcoma, Lung cancer, 

Prostate cancer, Stomach cancer, Testicular cancer, Uterine 

cancer, Wilm's tumor 

Teniposide Acute lymphocytic leukemia (in children) 

Quinolones Voreloxin Acute myeloid leukemia 

 

Clearly, doxorubicin and etoposide are the TOP2 poisons most widely used against cancers, 

especially against hematological ones. The anti-cancer activity of doxorubicin is additionally 

contributed to by DNA intercalation and generation of reactive oxygen species, and hence not 

limited to TOP2 poisoning (Thorn, Oshiro et al. 2011). Because of wide applicability to a number 

of cancer types and specificity for TOP2, I have focused on etoposide. 

Etoposide is synthesized from podophyllotoxin isolated from Podophyllum peltatum rhizome. It 

targets the type IIA topoisomerases TOP2A and TOP2B. Its clinical use is limited by the 
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indiscriminate toxicity towards normal cells. Etoposide causes secondary leukemia due to 

chromosomal rearrangements (Pendleton, Lindsey et al. 2014), usually a translocation of the mixed 

lineage leukemia (MLL) gene on the chromosome 11q23. Clearly, there is a need to optimize 

etoposide-regimens to reduce such chromosomal rearrangements. 

3.3 Gene expression and drug response 

Ever-decreasing cost of genomic profiling has allowed for high-throughput profiling of cancer 

cells. This has elevated our understanding of tumor growth, progression, and response and driven 

the development of many targeted therapeutics. During the last decade, there have been several 

efforts to associate the base line transcriptomic levels and mutation profiles with the response to 

cytotoxic drugs (Whyte and Holbeck 2006, Zhang, Wang et al. 2015, Vural, Simon et al. 2018). 

The basal expression of some genes has been linked to the drug resistance (Robert, Vekris et al. 

2004). A well-characterized explanation of etoposide resistance is the overexpression of MRP1 

(encoded by ABCC1) (Legrand, Zittoun et al. 1999, Benyahia, Huguet et al. 2004). However, this 

and other identified targets have failed to make significant clinical impact. 

Considering the dynamic nature of the cells, there have been few efforts addressing the 

transcriptomic profiles generated by drug treatments. Recently, drug-evoked gene expression 

changes (GEC) have been investigated using network analysis of cellular perturbation profiles 

(Rees, Seashore-Ludlow et al. 2016). Further, drug-evoked GEC, have been utilized to investigate 

mechanism and downstream pathways of drug treatments (Iorio, Tagliaferri et al. 2009, Woo, 

Shimoni et al. 2015). Currently, there are a few ongoing big-data initiatives generating 

transcriptomic changes caused by drug treatments, including Connectivity Map (CMap) from the 

Broad Institute. Such resources could be implemented in drug discovery pipelines to facilitate 

target identification based on drug-evoked GEC. 
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Considering the role of TOP2A in transcription, I hypothesized that TOP2 poisoning with 

etoposide could evoke specific GEC across various cancer cell lines. I planned to investigate such 

TOP2A-dependent GEC using an engineered fibrosarcoma cell line (HTETOP) with inducible 

repression of TOP2A. I next planned to explore the etoposide-evoked GEC for treatment 

optimization in the cancer entity AML, described in following section. 

3.4 Acute Myeloid Leukemia 

Acute myeloid leukemia (AML) is a type of blood neoplasm characterized by numerous genomic 

alterations (such as FLT3, NPM1, RUNX1, and IDH1 & 2). AML accounts for 80% of leukemia 

cases in adult patients with 5-year survival rate of 24% (De Kouchkovsky and Abdul-Hay 2016, 

Pearsall, Lincz et al. 2018). Chemotherapy is the main form AML management (Dombret and 

Gardin 2016). Cytarabine and daunorubicin, or idarubicin or mitoxantrone, or sometimes 

cladribine are preferentially utilized for the induction therapy to destroy most of the bone marrow 

cells. However, such intensive therapy is not tolerable to older patients (Ossenkoppele and 

Lowenberg 2015). Furthermore, treatment strategies for relapsed AML are not yet clearly defined. 

MEC regimen (mitoxantrone in combination with etoposide and cytarabine) is one of the common 

regimens used for relapsed AML. However, it is associated with increased side-effects in AML 

patients (Ramos, Mo et al. 2015, Thol, Schlenk et al. 2015). Hence, there is a need to improve 

efficacy and reduce the toxicity of these treatment regimens. To this end, the classical 

chemotherapeutics in AML are gradually being supplemented by drugs targeting molecules and 

processes more specific to cancer cells. For example, midostaurin and enasidenib can be nowadays 

added to standard chemotherapeutic regimens (Stein, DiNardo et al. 2017, Stone, Mandrekar et al. 

2017). However, this option is reserved for patients carrying specific mutations in the protein 

targets of these drugs, FLT3 and IDH2, respectively. 
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I chose AML as a cancer model, since it is frequently treated with etoposide, especially for relapsed 

AML (Dombret and Gardin 2016). This work explores the alternative and largely untested 

approach of fine-tuning approved etoposide-based therapies by combining them with already 

approved or experimental drugs. I reasoned that, 

• etoposide-driven changes in the expression and activity of specific proteins mediate, at 

least in part, etoposide’s cell killing effects and 

• drugs targeting some of these mediators will be already available for testing as combination 

treatments. 

Apoptosis resulting from etoposide-driven DNA damage is accompanied by considerable gene 

expression changes of unexplored consequences (E. Jeong et al., 2018; Troester, Hoadley, Parker, 

& Perou, 2004). I assessed etoposide-driven gene expression changes by comparing pre-and post-

treatment cell transcriptomes. I also considered the impact of prior-to-treatment gene expression 

levels on the response to etoposide across AML cell lines. Here, I reasoned that, in addition to 

expression changes, the response to etoposide is likely to be affected by pre-existing levels of 

proteins modulating its effects. I intended to enrich for drivers as opposed by bystanders of 

etoposide cytotoxicity using two parallel approaches. Firstly, I focused on genes co-regulated 

within networks and additionally correlating with etoposide cytotoxicity. Genes involved in such 

networks are more likely to be involved in etoposide response compared to genes taken 

individually (Langfelder and Horvath 2008, Li, Zhou et al. 2018). Secondly, I focused on 

individual, but essential genes, i.e. on those reducing the survival of each of the AML cell lines 

investigated when knocked down using shRNA (Tsherniak, Vazquez et al. 2017). Here I 

considered that tumor growth and metastasis are driven only by a fraction of the accompanying 

molecular changes and assumed a similar relationship for etoposide response and gene expression 
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levels. Among drivers thus identified, I differentiated between modulators, mediators, and 

emulators of etoposide response. Etoposide modulators are genes, whose expression correlates 

with etoposide cytotoxicity, but remains unchanged upon treatment. Etoposide mediators are genes 

that convey cytotoxicity via etoposide-driven changes in their expression levels. Etoposide 

emulators are upstream gene modulations and other drugs that evoke gene expression profiles 

resembling those evoked by etoposide. 

To distinguish between cytotoxicity drives from bystanders, I developed two parallel approaches. 

Firstly, I considered the network of genes co-regulated across AML cell lines. The reason was 

such genes are more likely to be enriched for etoposide-relevant biological processes compared to 

individual genes (Langfelder and Horvath 2008, Li, Zhou et al. 2018). Secondly, to distinguish 

between mediators and bystanders of etoposide cytotoxicity among etoposide-evoked GEC, I 

considered each gene’s essentiality (Tsherniak et al., 2017) for cell survival in each individual 

AML cell line. Because of unavailability of HTETOP essentiality data, another approach, 

considering high pre-treatment expression, involvement in cancer-related processes, and 

comparative high expression in cancer tissues, was developed to define essentiality. I hypothesized 

that the modulators could be targeted to enhance the efficacy of etoposide, while effectors could 

be investigated for their involvement in the cytotoxicity. 
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4 Materials and methods 
 

4.1 Cell culture and drugs 

HTETOP cell line was kindly provided by Dr. Andy Porter (Imperial College London, UK). It was 

cultured in DMEM media (Sigma Aldrich, Germany) supplemented with 10% FCS, 20 mM 

HEPES buffer, 1 mM sodium pyruvate, and antibiotics as reported before (Carpenter and Porter 

2004). HTETOP cells were maintained at 37°C and 10% CO2. Tetracycline (TET) at 1 µg/ml was 

added to cells resulting in >95% TOP2A mRNA and protein repression (Yan, Deng et al. 2009). 

Acute Myeloid Leukemia (AML) cell lines HL-60, MOLM-13, MONO-MAC-6, MV-4-11, NB-

4, NOMO-1, OCI-AML3, and THP-1 were obtained from Dr. Thomas Kindler, University Medical 

Center, Mainz. Three additional AML cell lines (F-36P, KASUMI-1, and OCI-AML2) were 

purchased from Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ, Germany). 

Cell lines were maintained at 37° C and 5% CO2 in appropriate media (Table 5.7.1). 293T cells 

were cultured in DMEM (Gibco, Germany) along with 10% FBS (Biochrom, Germany). Cell lines 

were routinely verified for mycoplasma contamination using Venor®GeM Mycoplasma Detection 

Kit (Sigma-Aldrich, Germany). Cell lines were authenticated by Multiplexion, Germany. The 

inhibitors were purchased from Abcam (UK), Biozol (Germany), and Santa Cruz Biotechnology 

(US). 
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4.2 Cell viability assay 

1800 cells (in 100 µL media) were seeded in 96 well plates and incubated overnight at 37° C in 

10% CO2 incubator, followed by tetracycline treatment (2 µg/mL in 100 µL media) and incubated 

for 24 hours to knock down the TOP2A expression. Media was then replaced, and the cells were 

treated with different concentrations of etoposide and doxorubicin for 24 and 48 hours. After the 
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treatment, 20 µL MTT were added and cells were incubated for 4 hours at 37° C followed by 

addition of solubilization buffer and then incubated overnight in dark. Absorbance was measured 

at 570 nm. Cell viability in response to drug treatment was calculated considering the absorbance 

of DMSO treated cells as 100% cell viability. 

The viability of AML cell lines in response to etoposide treatment was monitored using WST-8 

cell viability kit (PromoKine, German). All AML cell lines were seeded (1 X 104 cells per well) 

in a 96-well plate and incubated overnight. Cells were then treated for 24 hours with various 

concentrations of etoposide (0.02, 0.05, 0.1, 0.2, 0.37, 0.78, 1.56, 3.13, 6.25, 12.5, 25, 50 µM)., 

after the treatment with etoposide, 10% WST-8 reagent was added to the cells. After 1-4 hours 

incubation in the dark at room temperature, absorbance was measured at 450 nm using Spectramax 

iD3 (Molecular Devices, US) spectrometer. Absorbance from the DMSO-treated cells (vehicle 

control) was considered as 100% cell viability and used to calculate percentage cell viability after 

etoposide treatment. 

4.3 Annexin V apoptosis assay 

The flow cytometry-based apoptosis detection was performed using FITC Annexin V apoptosis 

detection kit I (BD Biosciences). 2 X 105 cells/mL were seeded in a 6-well plate and incubated 

overnight. Cells were then treated with cell line-specific etoposide IC50 concentrations, derived 

from the cell viability assay, for 24 hours, washed twice with ice-cold PBS, and resuspended in 

binding buffer (1 X 106 cells/ml). Thereafter, 100 µL of cell suspension (1 X 105 cells) was 

transferred to a new tube, followed by addition of 5 µL each of Annexin V and PI staining solution 

(FITC Annexin V apoptosis detection kit I, BD Biosciences). Cells were then gently vortexed and 

incubated in dark for 15 minutes at room temperature. 400 µL of binding buffer was then added to 

the cells and analyzed using BD Accuri C6 flow cytometer (BD Biosciences, US). 
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4.4 RNA-Seq: RNA extraction and library preparation 

The gene expression profiles in untreated and etoposide-treated AML and HTETOP cell lines were 

determined by RNA sequencing. 1 X 106 cells per well were seeded in a 6 well plate containing 5 

mL of the media. Cells were incubated overnight and then treated for 24 hours with etoposide at 

cell line-specific IC50 concentrations (for AML cell lines) or at 20 µM concentration (for HTETOP 

cell line). HTETOP cell line was separately treated with doxorubicin at 1 µM concentration for 24 

hours in presence and absence of TOP2A. For HTETOP cell line, only one biological replicate 

was generated. AML cells from 3 wells were then pooled together and total RNA was isolated 

using TriFast, peqGOLD total RNA kit and DNase I Digest kit (VWR PEQLAB GmbH, Germany) 

according to manufacturer's instructions. The quality and integrity of the extracted RNA was 

examined using a 2100 Bioanalyzer (Agilent technologies). Samples were sequenced by Illumina 

HiSeq 2000 using TruSeq stranded mRNA HT sample prep kit. RNA quality analysis, library 

preparation and sequencing was performed by the Genomics Core Facility at the Institute of 

Molecular Biology (IMB, Mainz, Germany). The targeted sequencing depth was 30 million reads 

(for AML) or 50 million reads (for HTETOP). HTETOP samples were generated and sequenced 

at the Star Seq GmbH (Germany) by Dr. Shiwei Deng (University Medical Center, Mainz). 

4.5 RNA-Seq: Analysis 

The quality of raw sequencing reads was assessed using FastQC (Babraham Bioinformatics, 

Cambridge, UK). These reads were then mapped to the human reference genome (gencode release 

25 GRCh38.p7) using the STAR aligner (v2.5.3a) (Dobin, Davis et al. 2013), with the option "--

quantMode GeneCounts" to count the number of reads mapped per gene. Quality of the expression 

data was assessed using NOISeq (v2.20.0) (Tarazona, Furio-Tari et al. 2015) R package (R Core 

Team 2014). The differential gene expression analysis was then performed using edgeR (v3.20.1) 
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(Robinson, McCarthy et al. 2010). Genes with fold-change higher than 2 and false discovery rate 

(FDR) below 0.05 were considered as differentially expressed. The R script used in this analysis 

is appended. 

4.6 Weighted gene co-expression network analysis (WGCNA) 

To identify modulators and mediators of etoposide sensitivity, weighted gene co-expression 

network analysis (WGCNA) was performed using basal gene expression in AML cell lines prior 

and after etoposide treatment. The resulting co-regulated networks were compared to identify 

genes (a) co-regulated only before treatment, (b) co-regulated only after treatment, and (c) 

unaffected by treatment. Gene Ontology analysis was performed for identified networks using the 

Database for Annotation, Visualization and Integrated Discovery (DAVID, 

https://david.ncifcrf.gov/). Cell line specific expression levels of co-regulated genes unaffected by 

treatment were correlated with cell-specific etoposide IC50 concentrations by Pearson correlation 

statistics using the WGCNA package in R (Langfelder and Horvath 2008). The co-regulated genes 

with positive and negative correlation with etoposide IC50 were selected for Gene Ontology 

analysis using DAVID. 

4.7 Identification of mediators among etoposide-evoked gene expression changes 

The Project Achilles (PAch) (Cowley, Weir et al. 2014) dataset was utilized to retrieve genes most 

likely to be essential for AML cell survival. PAch investigated the effect of more than 11k shRNA-

mediated individual gene knockdowns on cell survival in 501 cancer cell lines, including all AML 

cell lines used in the present study. Genes with negative DEMETER scores (defined in a previous 

study (Tsherniak, Vazquez et al. 2017)) were considered essential for cancer cell survival. Genes 

essential for 6 or more AML cell lines as well as differentially expressed after etoposide treatment 

were considered potential essential mediators and validated experimentally. To identify mediators 

https://david.ncifcrf.gov/
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of etoposide cytotoxicity in HTETOP cell line different approach was utilized because of 

unavailability of essentiality data from PAch. The genes highly expressed in HTETOP and 

repressed after etoposide treatment were selected. Gene Ontology analysis was performed using 

Ingenuity Pathway Analysis (IPA, Qiagen Inc., 

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis) to restrict the 

repressing GEC to the pathways involved in cancer and cell proliferation.  For quantifying the 

gene expression in normal tissues, transcript per million (TPM) data was downloaded for 33 

normal tissues from GTEx. For cancer tissues, fragments per kilobase million (FPKM) data was 

retrieved for 29 cancer tissues from The Cancer Genome Atlas (TCGA). FPKM was then 

converted to TPM and the average expression was compared to normal tissues using R. The genes 

with high expression in cancer tissues were selected and were further screened for their etoposide-

evoked repression in other cancer cell lines obtained from Gene Expression Omnibus (GEO). 

Furthermore, the putative upstream regulators of etoposide-evoked GEC in HTETOP were 

identified using IPA and Connectivity Map (CMap). 

4.8 Prediction of etoposide emulators 

Emulators, i.e. gene modulations and compounds that evoke GEC similar to those following 

etoposides, were identified using the CMap (Subramanian, Narayan et al. 2017). CMap provides 

changes in the expression of 1000 genes following gene perturbations and treatments with 

numerous small-molecule compounds. These genes and drugs were identified by uploading the 

top 300 overlapping etoposide-evoked GEC (150 up- and 150 down-regulated) from AML and 

HTETOP cell lines to CMap via the CLUE platform (CMap and LINCS Unified Environment). 

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
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4.9 Driver validation using inhibitors 

The inhibitors against the selected drivers were identified using the GeneCards (Ben-Ari Fuchs, 

Lieder et al. 2016), IUPHAR/BPS guide to pharmacology (Alexander, Fabbro et al. 2017), and 

CMap (Subramanian, Narayan et al. 2017) resources. These drivers were then validated using 

WST-8 cell viability assay. AML cell lines were treated for 24 hours with 1 nM, 100 nM, and 10 

µM of each inhibitor alone, as well as in combinations with cell-specific IC25 concentrations of 

etoposide, followed by WST-8 cell viability assay. Percentage cell viability compared to vehicle-

treated cells, taken as 100%, was calculated for single and combination treatments. For 

combination treatment screening, the synergy was defined as per-response additivity approach 

(Foucquier and Guedj 2015). The combination index (CI) was calculated as CI =
EA+EB

EAB
, where EA 

is the effect of inhibitor A, EB is the effect of etoposide and EAB is the effect of combination of 

inhibitor A and etoposide. CI < 1 was considered as synergy with etoposide, while CI > 1 was 

considered as antagonism, and CI = 1 was considered as additive effect. 

4.10 Driver validation using sh/siRNA-mediated gene knockdown 

siRNA sequences targeting the gene of interest in HTETOP cells were selected using Project 

Achilles (PAch) database. The shRNA target sequences with highest consistency scores and lowest 

p-value were selected. The targets of these sequences were verified using online siRNA-Check 

tool developed by Genomics and Bioinformatics Group, LMP, CCR, National Cancer Institute. 

siRNAs were then synthesized using Sigma custom oligo service. HTETOP cells were then 

transfected with 10 nM siRNA for 24 hours using JetPrime transfection reagent. WST-8-based cell 

viability assay was performed 24 hours after transfection to evaluate the effect of gene knockdown 

on cell viability. The gene knockdown was monitored using SYBR green qPCR. Primers used in 

this work are listed in Appendix table 2. 
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To investigate the effect of individual gene knockdowns on AML cell survival, Viral Shah 

(University Medical Center Mainz) cloned shRNA targeting BCL2A1, IGFIR, and ROCK1 into 

Tet-pLKO.1-puro vector (kindly provided by Dimitri Wiederschain, Novartis Institutes for 

BioMedical Research, Cambridge, MA). shRNA sequences were obtained from the PAch resource 

and were synthesized by Sigma-Aldrich, along with RHS4743 expressing scrambled shRNA 

(supplementary data S1 Table 2). Lentiviral particles were generated by co-transfecting psPAX2, 

pMD2.G along with previously generated shRNA expressing vectors into 293T cells. Transfection 

was carried out using TransIT (Mirus) as per the manufacturer’s instructions. To achieve stable 

transduction, AML cell lines were seeded 1 X 106 in a 6-well plate, with each virus supernatant in 

presence of 5 µg/mL polybrene and spin-infected at 2500 rpm at 32°C for 1 and 45 hours. 

Following 16 hours incubation at 37°C, cells were supplemented with 1-2 µg/mL puromycin 

(Sigma-Aldrich, Germany). Furthermore, to induce knockdown of the indicated drivers, 5 X 105 

cells per well were seeded in 6-well cell culture plates. The knockdown was then induced by 

treating the cells with doxycycline (200 ng/mL) and cell viability was measured after 24, 48, and 

72 hours using the WST-8 assay. The effect of shRNA-mediated gene knockdown on cell viability 

was calculated by comparing doxycycline-untreated and -treated cells. 

4.11 DNA damage measurement using flow cytometry 

To compare the amount of DNA damage caused by etoposide alone and in combination with other 

drugs, the levels of phosphorylated H2A.X in HL-60 cells were measured using flow cytometry. 

The fixed HL-60 cells were stained using the H2A.X phosphorylation assay kit (Merck, Germany) 

according to manufacturer’s instructions. In short, 5 X 105 HL-60 cells were seeded per well in a 

6-well plate and incubated overnight. Cells were treated for 24 hours with IC25 concentration of 

etoposide alone and in combination with other drugs. Next, cells were harvested and washed with 
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PBS followed by fixation. Cells were then stained with either FITC-conjugated anti-phospho-

Histone H2A.X (Ser139) or with the negative control mouse IgG-FITC conjugate for 20 minutes 

on ice. The amount of H2A.X was then measured using BD Accuri flow cytometer. The data was 

then analyzed using FlowJo software (v10). 

4.12 TCGA survival analysis 

The raw gene expression counts for 151 AML patients were retrieved from TCGA through the 

Broad GDAC Firehose, along with the clinical data, using the R package RTCGAToolbox (v2.8.0) 

(Samur 2014). Univariate survival analysis compared the groups with high expression (above 

median) and low expression (below median) of selected drivers. p-values for Kaplan-Meier plots 

were calculated using Log-rank test. The comparison between gene expression in AML patients 

and normal blood samples was performed using Gene Expression Profiling Interactive Analysis 

(GEPIA) web server (Tang, Li et al. 2017). 

4.13 Statistical analysis 

Unless otherwise specified, the experiments reflect 3 biological replicates. Data was analyzed 

using R language packages and GraphPad Prism software (v7). Graphs were plotted as mean ± 

SD. The etoposide IC50 concentrations were calculated using GraphPad Prism software by fitting 

the dose response curve by non-linear regression. Shapiro-Wilk test was performed to determine 

normal distribution for parametric tests. Two-way ANOVA with Benjamini and Hochberg FDR 

correction was performed to identify inhibitors with significant cytotoxicity (Benjamini and 

Hochberg 1995). Mann-Whitney test was performed to identify significant expression change 

between resistant and sensitive AML cell lines. 
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5 Results 

5.1 Etoposide-mediated cytotoxicity in HTETOP is TOP2A-dependent 

To investigate the dependency of TOP2A for etoposide-evoked GEC, it was crucial to examine 

TOP2A-specific cytotoxicity of etoposide. To this end, HTETOP cells were treated with different 

concentrations of etoposide and doxorubicin for 24 and 48 hours, in the presence and absence of 

TOP2A. The cell viability was measured using MTT assay. As seen in Fig. 5.1.1, both etoposide 

and doxorubicin exhibited dose-dependent cytotoxicity in HTETOP cell line in the presence of 

TOP2A. However, TOP2A knockdown by tetracycline (TET) treatment inhibited etoposide-

mediated cytotoxicity (Fig. 5.1.1A and B). On the other hand, TOP2A knockdown had no effect 

on doxorubicin-mediated cytotoxicity (Fig. 5.1.1C and D). This is consistent with the known 

mechanism of action of these two drugs, where doxorubicin, in addition to TOP2 poisoning, exerts 

its cytotoxic potential through direct intercalation with the DNA, as well as through damage to the 

mitochondria by means of oxidative stress (ROS generation), and on the other side etoposide being 

solely dependent on TOP2 poisoning. The results demonstrate that, in absence of TOP2A, 

etoposide is very little cytotoxic. Its remaining cytotoxicity most likely results from TOP2B 

poisoning. 
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Fig. 5.1.1: HTETOP cell viability in response to TOP2 poisons. MTT-based cell viability assay in HTETOP cell 

line after treatment with topoisomerase-II (TOP2) poisons etoposide (A and B) and doxorubicin (C and D) after 24 

and 48 hours. Data are represented as mean values ± SD. 

5.2 Etoposide-evoked specific gene repressions in HTETOP cell line 

HTETOP cell line was sequenced by mRNA sequencing before and after 20 µM etoposide or 1 

µM doxorubicin treatment by Dr. Shiwei Deng (University Medical Center, Mainz). After 

processing for the quality control step using FastQC, the paired-end sequencing data was mapped 

to reference genome (hg38) using HISAT2 (version 2.0.4). The count for mapped reads were 

generated using htseq-count (version 0.6.1) and then DESeq2 was used to identify gene expression 

changes following the etoposide treatment. As shown in Fig. 5.2.1, etoposide-evoked gene 
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repressions accounted for 65% of all GEC. On the other hand, doxorubicin-evoked gene inductions 

accounted for 57% of all GEC (Fig. 5.2.2). Furthermore, doxorubicin evoked more GEC (4861) 

compared to etoposide (859) (Fig. 5.2.3A). 

 

Fig. 5.2.1: Effect of etoposide on gene expression in HTETOP cells. Volcano plot representing gene expression 

changes (GEC) in HTETOP cells following etoposide treatment (20 µM) for 24 hours. 
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Fig. 5.2.2: Effect of doxorubicin on gene expression in HTETOP cells. Volcano plot representing gene expression 

changes (GEC) in HTETOP cells following doxorubicin treatment (1µM) for 24 hours. 

I further compared the effect of TOP2A availability on GEC evoked by etoposide and doxorubicin. 

As observed with the cytotoxicity (Fig. 5.1.1), etoposide-evoked GEC were TOP2A dependent, 

while absence of TOP2A did not have high impact on doxorubicin-evoked GEC. In the absence 

of TOP2A, etoposide-evoked GEC reduced from 859 to 91 (Fig. 5.2.3C). There were 425 TOP2A-

dependent GEC evoked by etoposide and 112 evoked by doxorubicin (Fig. 5.2.3D). This reflects 

that, unlike with doxorubicin, a majority of etoposide-evoked GEC are mediated by TOP2A 

poisoning. 
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Fig. 5.2.3: TOP2A-dependent gene expression changes after etoposide and doxorubicin treatments of HTETOP 

cells. (A) Comparison of gene expression changes (GEC) after doxorubicin and etoposide treatment, (B) and (C) 

represent the numbers of GEC after doxorubicin and etoposide treatment respectively, in presence and absence of 

TOP2A, (D) comparison of TOP2A-dependent GEC after doxorubicin and etoposide treatments. 

5.3 Etoposide predominantly represses the high-expressing genes in HTETOP cell 

line 

To understand the mechanism of etoposide-evoked TOP2A-dependent gene repression, the basal 

gene expression level (GEL) in HTETOP cells was investigated. I quantified transcripts per million 

(TPM) from mapped RNA-Seq counts. To correlate TOP2 poisoning-related GEC as a function of 

GEL, I divided all expressed genes into 3 categories according to their TPM values. Next, a density 

graph of all TPM values was plotted to define expressed genes. Then quantile approach was 
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followed to define low, average and high expressing genes. Considering the role of TOP2A in 

transcriptional regulation, I compared etoposide-evoked GEC of high and low expressing genes as 

a function of TOP2A enrichment. High expressing genes were preferentially repressed after both 

doxorubicin and etoposide treatment. When considered at the entire transcriptome level, 22% 

(1067) of genes with high basal GEL were repressed after doxorubicin treatment (Fig. 5.3.1A) 

compared to 0.6% (28) of genes with low basal GEL (Fig. 5.3.1B) in the presence of TOP2A. The 

absence of TOP2A did not have significant impact on doxorubicin-mediated repression of genes 

with high basal GEL. Similarly, 6% (289) of genes with high basal GEL were repressed after 

etoposide treatment (Fig. 5.3.1C) compared to 0.15% (7) of genes with low basal GEL (Fig. 

5.3.1D) in presence of TOP2A. As expected, the absence of TOP2A reduced etoposide-mediated 

repression of the genes with high basal GEL from 6% (289) to 0.15% (7).
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Fig. 5.3.1: Predominance of gene repression after treatment with etoposide and doxorubicin in HTETOP cells. 

Percentage of high (A) and low (B) expressing genes from HTETOP cells differentially expressed after doxorubicin 

treatment in presence and absence of TOP2A. Percentage of high (C) and low (D) expressing genes differentially 

expressed after etoposide treatment in presence and absence of TOP2A. 

The predominance of gene repressions among high expressing genes is in agreement with the role 

of TOP2A in transcription. Some of the repressing GEC could contribute to cell killing effect of 

etoposide, especially repressions in genes essential for survival. 

5.4 Etoposide evokes specific GEC in other cancer entities 

To validate the findings from HTETOP cell line in other cancer entities, I obtained etoposide-

evoked GEC from GEO and CMap. There were 14 cell lines representing 8 cancer types (Table 

5.4.1). Out of these 14 cell lines, 6 cell lines exhibited predominance of etoposide-evoked 

repressing GEC, which could contribute in cell killing. However, all these cell lines had been 

treated with different etoposide concentrations for different timepoints. 
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Table 5.4.1: Effect of etoposide on gene expression in various cancer cell lines. Overview of etoposide-evoked 

gene expression changes (GEC) in the cell lines representing different cancer entities obtained from GEO and 

connectivity Map (CMap). 

Cancer 

type 
Cell line Source 

Accession 

number 

Etoposide 

concentra

tion (µM) 

Treatm

ent time 

(hours) 

Numbers 

of 

induced 

genes (%) 

Numbers 

of 

repressed 

genes (%) 

AML HL-60 
Connectivity 

Map 
- 7 6 185 (59%) 127 (41%) 

B cell 

lymphoma 

OCI-Ly3 GEO GSE60408 IC20 24 56 (1%) 
5478 

(99%) 

OCI-Ly7 GEO GSE60409 IC20 24 351 (64%) 198 (36%) 

U-2932 GEO GSE60410 IC20 24 280 (49%) 291 (51%) 

Breast 

cancer 

HME-CC GEO GSE1647 10 12 439 (54%) 380 (46%) 

MCF-7 GEO GSE1648 40 12 56 (43%) 74 (57%) 

ME-16-C GEO GSE1649 20 12 101 (49%) 107 (51%) 

ZR-75-1 GEO GSE1650 30 12 308 (31%) 681 (69%) 

Burkitt’s 

lymphoma 
Ramos GEO GSE23169 20 6 624 (34%) 

1218 

(66%) 

Colorectal 

cancer 

HCT-116 GEO GSE71980 20 - 
3016 

(51%) 

2844 

(49%) 

SW-620 GEO GSE33624 60 2 897 (58%) 661 (42%) 

Fibrosarco

ma 
HT-1080 GEO GSE59368 3 24 245 (47%) 281 (53%) 

Histiocytic 

lymphoma 
U-937 GEO GSE66660 0.4 48 359 (76%) 115 (24%) 

Melanoma MelJuSo GEO GSE33624 60 2 516 (78%) 144 (22%) 

Prostate 

cancer 
PC-3 

Connectivity 

Map 
- 7 6 14 (56%) 11 (44%) 

 

After comparing the etoposide-evoked GEC from all cancer cell lines obtained from GEO, CMap, 

and from my experiment in HTETOP, I identified overlapping GEC among these cell lines. BTG2 

(NGF-inducible anti-proliferative protein PC3) was induced in 8, while PLK1 (polo-like kinase 1) 

was repressed in 10 cancer cell lines after etoposide treatment ( 
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Table 5.4.2A and B). 

 

 

 

Table 5.4.2: Overview of the etoposide-evoked gene expression changes (GEC) overlapping in 5 or more cancer 

cell lines. (A) Etoposide-evoked inducing GEC (B) Etoposide-evoked repressing GEC (top 22 shown). 

A   B  

Etoposide-

induced genes 

Number 

of cell 

lines 

 Etoposide-

repressed genes 

Number of 

cell lines 

BTG2 8  PLK1 10 

ATF3 7  CDC20 9 

CDKN1A 7  CENPE 9 

CD86 6  PSRC1 8 

GDXR 6  ASPM 7 

GDF15 6  BUB1 7 

IFI6 6  CCNB1 7 

RETSAT 6  CENPF 7 

SESN1 6  DLGAP5 7 

SLAMF7 6  HMMR 7 

TP53I3 6  MKI67 7 

ACTA2 5  STAG1 7 

ANKRA2 5  SYNCRIP 7 

CEACAM1 5  TOP2A 7 

CYFIP2 5  AURKA 6 

FAS 5  BIRC5 6 

FUCA1 5  BUB1B 6 

GAA 5  CCNB2 6 

GADD45A 5  CCNF 6 

JUN 5  DIAPH3 6 

SFN 5  DPYD 6 

TP53INP1 5  KIF4A 6 
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5.5 Prediction and validation of mediators of etoposide cytotoxicity in HTETOP cell 

line 

I restricted the prediction to the etoposide-evoked genes repressions because of their predominance 

in HTETOP cell line. To define essential gene repressions, I first selected the genes with high basal 

GEL and subsequent repression after etoposide treatment (289 genes). These genes were then 

restricted to 53 genes based on pathways involved in cancer and cell proliferation, using IPA. 

Then, the GEC from other cancer cell lines was used to select genes which are repressed in multiple 

cancer cell lines. Finally, gene expression for selected genes were compared in normal and cancer 

tissues to select essential gene repressions. Fig. 5.5.1 represents an example of DLGAP5 

expression across normal and cancer tissues. DLGAP5 and other selected genes had higher average 

expression in cancer tissues compared to normal tissues. 
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Fig. 5.5.1: Expression of etoposide-mediator in cancer tissues. Boxplot representing average DLGAP5 expression 

across 33 normal tissues obtained from GTEx and 29 cancer tissues obtained from TCGA. 

IPA and CLUE resources provided the putative upstream regulators modulating etoposide-evoked 

GEC in HTETOP cell line. Altogether, I selected 14 predicted essential repressing GEC and 6 

putative upstream regulators from IPA and CLUE (Table 5.5.1). All the identified targets were 

knocked down using siRNA-mediated transfection. The siRNA sequences are listed in Appendix 

table 1. The knockdown was confirmed by SYBR green qPCR using target specific primers. 

Table 5.5.1: Selected mediators among etoposide-evoked gene expression changes (GEC) and putative 

upstream regulators in HTETOP cell line. Log2FC represents fold change from RNA-Seq experiments after the 

etoposide treatment. Comparison with other cancer cell lines is based obtained from gene expression omnibus (GEO) 

and connectivity map (CMap). 
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Gene 

symbol 

Log2FC 

(HTETOP) 

Number of 

cancer cell lines 

gene repressed 

in 

Cancer cell lines gene repressed in 

Etoposide-repressed genes with high expression in HTETOP 

CDC20 -1.6 9 
HCT-116, HL-60, HT-1080, HTETOP, MCF-7, 

OCI-Ly3, Ramos, U-2932, ZR-75-1 

CDK6 -1.7 3 HME-CC, HTETOP, OCI-Ly3 

CENPF -1.6 7 
HCT-116, HL-60, HT-1080, HTETOP, MCF-7, 

OCI-Ly3, ZR-75-1 

DLGAP5 -1.2 7 
HCT116, HL-60, HT-1080, HTETOP, MCF-7, 

OCI-Ly-3, ZR-75-1 

FOSL1 -1.2 2 HTETOP, Ramos 

HMGA2 -1.6 1 HTETOP 

IGF2BP

1 
-1.1 2 HTETOP, OCI-Ly3 

KIF20A -1.2 5 HCT-116, HL-60, HTETOP, MCF-7, OCI-Ly3 

MCM6 -1.2 6 
HCT-116, HT-1080, HTETOP, MelJuSo, OCI-

Ly3, ZR-75-1 

NCAPD2 -1.4 4 HCT-116, HTETOP, OCI-Ly3, ZR-75-1 

PFKP -1.2 2 HTETOP, OCI-Ly3 

PLAU -1.4 2 HME-CC, HTETOP 

SLC7A5 -1.3 3 HME-CC, HTETOP, OCI-Ly3 

TPX2 -1.1 6 
HCT-116, HT-1080, HTETOP, MCF-7, OCI-

Ly3, ZR-75-1 

Upstream regulators (Ingenuity) 

ANLN -1.3 5 
HCT-116, HT-1080, HTETOP, OCI-Ly3, ZR-

75-1 

FOXM1 -1.4 3 HCT-116, HT-1080, HTETOP 

Gene knockdowns evoking etoposide-like GEC (emulators) 

MED1 - 1 ZR-75-1 

RPA2 - 1 HCT-116 

TOPBP1 - 1 HCT-116 

YWHAH - 2 ZR-75-1 

To achieve optimal gene knockdown, I optimized the cell seeding density and siRNA 

concentration. I selected the density of 5000 cells in as 96-well plate and 10nM siRNA 

concentration, as these parameters show minimum effect of scrambled sequence transfection on 

cell viability (Fig. 5.5.2). 
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Fig. 5.5.2: Optimization of cell numbers and siRNA concentration for knockdown in HTETOP cell line. 

Next, I measured the percentage of viable cells after knocking down all the selected targets using 

siRNA. In addition, I also investigated the effects of knockdown on etoposide sensitization by 

etoposide treatment at IC50 concentration for 24 hours after the siRNA transfection for 24 hours. 

As shown in Fig. 5.5.3, the knockdown of the predicted essential GEC PFKP and PLAU and of 

the putative upstream regulator ANLN exerted cytotoxic response in HTETOP cell line. However, 

no target sensitized cells to etoposide treatment. 
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Fig. 5.5.3: Effect of knockdown of the mediators of etoposide cytotoxicity on cell viability and etoposide 

sensitization using WST-8 cell viability assay. Predicted mediators of etoposide cytotoxicity were knocked down 

using siRNA for 24 hours. Percentage cell viability compared to untransfected cells, taken as 100%, was calculated 

and Mann-Whitney statistical test was performed using GraphPad Prism software (v7) to identify significant gene 

knockdowns compared to scrambled (SCR) sequence. (*q value < 0.05). 

 

5.6 Identifying transcriptional modulators and effectors of etoposide in AML: Pipeline 

overview 

To identify drugs that could supplement or replace etoposide, I determined, analyzed, and 

functionally verified gene expression profiles prior and after etoposide treatment (Fig. 5.6.1). 

Since multiple AML cell lines were available in contrast to HTETOP, an approach different from 

the one described for HTETOP cell line was developed to facilitate identification of etoposide 

cytotoxicity drivers. Two parallel approaches were followed. First, I identified networks of co-

expressing genes (step 1). Genes derived from co-expressing networks, whose co-regulation was 

unaffected by etoposide and whose expression correlated with etoposide IC50 were defined as 

potential modulators of etoposide cytotoxicity (step 2). Second, among the etoposide-evoked GEC 

(step 3), the essential genes were identified by applying PAch-derived survival essentiality filter 

(step 4). Putative etoposide emulators, i.e. gene modulations and drugs that cause GEC either 

similar or contrary to those evoked by etoposide, were identified using CMap (step 5). Putative 
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modulators, effectors and emulators thus identified were further scrutinized regarding biological 

function, relevance to a majority of AML cell lines, inhibitor availability, and subjected to 

functional validation. 

 

 

Fig. 5.6.1: Pipeline to identify transcriptional drivers of etoposide in AML. Step 1 and 2 represent quantification 

of genome-wide gene expression levels (GEL) prior and after etoposide treatment respectively, followed by co-

expression network construction in step 3 and 4. Step 5 corresponds to comparison of co-expressing gene clusters 

before and after treatment to identify differentially co-expressed genes (DCG). Gene expression changes (GEC) from 

step 6 were utilized to identify GEC essential for survival (step 7) and etoposide-like or -contrary transcriptional 

drivers (step 8). 
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5.7 AML cell lines are differentially sensitive to etoposide treatment 

I investigated the response of 11 AML cell lines to 6 or 24 hours of etoposide treatment (0.02 – 50 

µM) using WST-8 cell viability assay. Most of the cell lines did not respond sufficiently to 6-hour 

etoposide treatment (Fig. 5.7.1). Hence, the experiment was proceeded with 24 hours treatment, 

which revealed differential response by AML cell lines (Fig. 5.7.2). The IC50 concentrations varied 

from 0.3 µM, for the most sensitive cell line OCI-AML2, to 99 µM, for the most resistant cell line 

F-36P ( 

Table 5.7.1). 

Cell lines RRID 
AML 

classification 

Growth 

medium 

Fetal calf 

serum 

(heat 

inactivated) 

Supplements 
Growth 

condition 

Etoposide IC50 

(µM) 

Etoposide 

IC25 

(µM) 

F-36P CVCL_2037 AML M6 

RPMI 1640 

20% 

10 ng/ml 

granulocyte-

macrophhage 

colony 

stimulating 

factor 

37° C, 5% CO2 

98.81 25.96 

HL-60 CVCL_0002 AML M3 10% - 0.74 0.48 

KASUMI-1 CVCL_0589 AML M2 20% - 6.80 1.43 

MOLM-13 CVCL_2119 AML M5 10% - 0.39 0.12 

MONO-

MAC-6 
CVCL_1426 AML M5 10% 

MEM Non-

essential 

amino-acid 

solution, 

100mM Na-

pyruvate, 

10µg/mL 

human insulin 

4.39 2.34 

MV-4-11 CVCL_0064 AML M5 10% - 1.33 0.36 

NB-4 CVCL_0005 AML M3 10% - 0.50 0.25 

NOMO-1 CVCL_1609 AML M5 10% - 1.65 0.95 

OCI-AML2 CVCL_1619 AML M4 
alpha-MEM 

20% - 0.29 0.16 

OCI-AML3 CVCL_1844 AML M4 20% - 1.00 0.58 

THP-1 CVCL_0006 AML M5 RPMI 1640 10% - 1.01 0.63 
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Fig. 5.7.1: WST8-based concentration dependent effect of etoposide on survival of AML cell lines after 6 hours 

treatment. Percentage cell viability compared to vehicle-treated cells, taken as 100%, was calculated. Dose response 

curve was generated by fitting the data by non-linear regression using GraphPad Prism software (v7). Values represent 

mean ± SD from 3 biological replicates. 
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Fig. 5.7.2: WST8-based concentration dependent effect of etoposide on survival of AML cell lines after 24 hours 

treatment. Percentage cell viability compared to vehicle-treated cells, taken as 100%, was calculated. Dose response 

curve was generated by fitting the data by non-linear regression using GraphPad Prism software (v7). Values represent 

mean ± SD from 3 biological replicates. 



42              Results 

 

Table 5.7.1: Culture conditions and etoposide response by all investigated AML cell lines. Etoposide IC50 and IC25 concentrations were derived using GraphPad 

Prism software (v7) by fitting the dose response curve by non-linear regression. RRID of the cell lines were obtained from the Resource Identification Portal.

Cell lines RRID 
AML 

classification 

Growth 

medium 

Fetal calf 

serum 

(heat 

inactivated) 

Supplements 
Growth 

condition 

Etoposide IC50 

(µM) 

Etoposide 

IC25 (µM) 

F-36P CVCL_2037 AML M6 

RPMI 1640 

20% 

10 ng/ml 

granulocyte-

macrophhage 

colony 

stimulating 

factor 

37° C, 5% CO2 

98.81 25.96 

HL-60 CVCL_0002 AML M3 10% - 0.74 0.48 

KASUMI-1 CVCL_0589 AML M2 20% - 6.80 1.43 

MOLM-13 CVCL_2119 AML M5 10% - 0.39 0.12 

MONO-

MAC-6 
CVCL_1426 AML M5 10% 

MEM Non-

essential 

amino-acid 

solution, 

100mM Na-

pyruvate, 

10µg/mL 

human insulin 

4.39 2.34 

MV-4-11 CVCL_0064 AML M5 10% - 1.33 0.36 

NB-4 CVCL_0005 AML M3 10% - 0.50 0.25 

NOMO-1 CVCL_1609 AML M5 10% - 1.65 0.95 

OCI-AML2 CVCL_1619 AML M4 
alpha-MEM 

20% - 0.29 0.16 

OCI-AML3 CVCL_1844 AML M4 20% - 1.00 0.58 

THP-1 CVCL_0006 AML M5 RPMI 1640 10% - 1.01 0.63 
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These IC50 concentrations were derived from WST8-based cell viability assay, which measures 

the metabolic activity of cells. Cellular dehydrogenases reduce WST-8 to water soluble formazan, 

whose level corresponds to viability of cells. This approach might leave out the metabolically 

inactive, but live cells. Hence, WST-derived IC50 concentrations were validated for apoptosis using 

flow cytometric measurements of Annexin V-FITC stained AML cell lines treated with cell-

specific IC50 concentrations of etoposide. I expected 50% apoptosis with etoposide treatment at 

cell-specific IC50 concentrations. I observed 19 – 51% apoptosis after etoposide treatment (Fig. 

5.7.3). 
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Fig. 5.7.3: Percentage of apoptotic AML cells in response to etoposide treatment. Different AML cell lines were 

treated with IC25 concentrations of etoposide for 24 hours, followed by Annexin-FITC and PI staining and detection 

by flow cytometry. Quadrant LL represents healthy cells, LR represents early apoptotic cells, and UR represents late 

apoptotic cells. 
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5.8 Modulators of etoposide synergize AML cell lines to drug 

To identify modulators of etoposide whose expression correlate with etoposide response, all AML 

cell lines were treated with cell-specific IC50 concentrations of etoposide for 24 hours to obtain 

similar cytotoxicity levels. The RNA-Seq data from etoposide-treated OCI-AML2 cells was 

discarded, because it failed in the quality control of raw RNA sequences. Using WGCNA, I 

identified genes co-regulated in all 11 untreated AML cell lines, as well as in the remaining 10 

etoposide-treated cell lines. I identified the genes co-regulated in untreated cell lines as well as in 

etoposide-treated AML cell lines. The co-regulated genes found only in untreated cells comprise 

cell proliferation, transcription, apoptosis, and others (Table 5.8.1). The genes co-regulated only 

in networks newly formed after etoposide treatment regulate, among others, transcription, response 

to DNA damage, and DNA repair (Table 5.8.2). 

 

 

 

 

 

 

 

 

 

 



46        Results 

 

Table 5.8.1: Pathways corresponding to co-expressing gene clusters in untreated AML cell lines. WGCNA 

analysis was performed to identify gene clusters co-regulated in untreated AML cell lines. These clusters were 

annotated for biological processes using DAVID. Modules from last column (color names) represent identified 

clusters. Terms highlighted in bold type are etoposide-treatment related processes. 

Term Counts PValue Module names 

GO:0006351~transcription, DNA-templated 19 0.01 darkolivegreen 

GO:0000122~negative regulation of transcription from RNA 

polymerase II promoter 
12 0.01 orange 

GO:0000122~negative regulation of transcription from RNA 

polymerase II promoter 
11 0.00 darkolivegreen 

GO:0045892~negative regulation of transcription, DNA-

templated 
10 0.01 orange 

GO:0051301~cell division 9 0.03 salmon 

GO:0006915~apoptotic process 8 0.02 darkolivegreen 

GO:0008380~RNA splicing 8 0.00 orange 

GO:0000398~mRNA splicing, via spliceosome 8 0.00 orange 

GO:0007067~mitotic nuclear division 8 0.02 salmon 

GO:0016032~viral process 8 0.04 salmon 

GO:0000086~G2/M transition of mitotic cell cycle 7 0.00 orange 

GO:0043123~positive regulation of I-kappaB kinase/NF-

kappaB signaling 
7 0.01 salmon 

GO:0015031~protein transport 7 0.02 steelblue 

GO:0008285~negative regulation of cell proliferation 6 0.04 darkolivegreen 

GO:0006406~mRNA export from nucleus 6 0.00 orange 

GO:0051092~positive regulation of NF-kappaB transcription 

factor activity 
6 0.01 salmon 

GO:0007050~cell cycle arrest 6 0.02 salmon 

GO:0050852~T cell receptor signaling pathway 6 0.02 salmon 

GO:0098609~cell-cell adhesion 5 0.04 darkolivegreen 

GO:0010629~negative regulation of gene expression 5 0.02 orange 

GO:0006888~ER to Golgi vesicle-mediated transport 5 0.03 orange 

GO:0090090~negative regulation of canonical Wnt signaling 

pathway 
5 0.03 orange 

GO:0006397~mRNA processing 5 0.04 orange 

GO:0018105~peptidyl-serine phosphorylation 5 0.04 salmon 

GO:0010629~negative regulation of gene expression 5 0.00 skyblue3 

GO:0006890~retrograde vesicle-mediated transport, Golgi to 

ER 
5 0.00 steelblue 

GO:0031124~mRNA 3'-end processing 4 0.01 orange 

GO:0006405~RNA export from nucleus 4 0.01 orange 

GO:0032091~negative regulation of protein binding 4 0.01 orange 

GO:0006369~termination of RNA polymerase II transcription 4 0.01 orange 

GO:0016569~covalent chromatin modification 4 0.04 orange 
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GO:0070507~regulation of microtubule cytoskeleton 

organization 
4 0.00 salmon 

GO:0007249~I-kappaB kinase/NF-kappaB signaling 4 0.03 salmon 

GO:0071456~cellular response to hypoxia 4 0.01 skyblue3 

GO:0018105~peptidyl-serine phosphorylation 4 0.02 skyblue3 

GO:0042787~protein ubiquitination involved in ubiquitin-

dependent protein catabolic process 
4 0.05 steelblue 

GO:0048593~camera-type eye morphogenesis 3 0.00 darkolivegreen 

GO:0007052~mitotic spindle organization 3 0.02 orange 

GO:0000381~regulation of alternative mRNA splicing, via 

spliceosome 
3 0.03 orange 

GO:0010501~RNA secondary structure unwinding 3 0.04 orange 

GO:0014067~negative regulation of phosphatidylinositol 3-

kinase signaling 
3 0.00 salmon 

GO:0032006~regulation of TOR signaling 3 0.01 salmon 

GO:0030214~hyaluronan catabolic process 3 0.01 salmon 

GO:0021542~dentate gyrus development 3 0.01 salmon 

GO:0070423~nucleotide-binding oligomerization domain 

containing signaling pathway 
3 0.03 salmon 

GO:2001238~positive regulation of extrinsic apoptotic 

signaling pathway 
3 0.03 salmon 

GO:0046627~negative regulation of insulin receptor 

signaling pathway 
3 0.04 salmon 

GO:0010803~regulation of tumor necrosis factor-mediated 

signaling pathway 
3 0.04 salmon 

GO:0032480~negative regulation of type I interferon 

production 
3 0.04 salmon 

GO:0070555~response to interleukin-1 3 0.05 salmon 

GO:0051321~meiotic cell cycle 3 0.05 salmon 

GO:0007018~microtubule-based movement 3 0.04 skyblue3 

GO:0045931~positive regulation of mitotic cell cycle 3 0.01 steelblue 

GO:0007595~lactation 3 0.02 steelblue 

GO:0060337~type I interferon signaling pathway 3 0.05 steelblue 

GO:0061484~hematopoietic stem cell homeostasis 2 0.02 
Dark 

olivegreen 

GO:0071929~alpha-tubulin acetylation 2 0.02 salmon 

GO:0090140~regulation of mitochondrial fission 2 0.03 steelblue 

GO:0019885~antigen processing and presentation of 

endogenous peptide antigen via MHC class I 
2 0.04 steelblue 

GO:0051988~regulation of attachment of spindle 

microtubules to kinetochore 
2 0.04 steelblue 

 

 



48        Results 

 

Table 5.8.2: Pathways corresponding to co-expressing gene clusters in etoposide-treated AML cell lines. 

WGCNA analysis was performed to identify gene clusters co-regulated in etoposide-treated AML cell lines. These 

clusters were annotated for biological processes using DAVID. Modules from last column (color names) represent 

identified clusters. Terms highlighted in bold type are etoposide-treatment related processes. 

Term Count PValue Modules 

GO:0006351~transcription, DNA-templated 61 0.00 tan 

GO:0006355~regulation of transcription, DNA-templated 52 0.00 tan 

GO:0006351~transcription, DNA-templated 40 0.05 magenta 

GO:0006355~regulation of transcription, DNA-templated 32 0.05 magenta 

GO:0006351~transcription, DNA-templated 23 0.02 royalblue 

GO:0000122~negative regulation of transcription from RNA 

polymerase II promoter 
22 0.00 magenta 

GO:0006364~rRNA processing 20 0.00 magenta 

GO:0051301~cell division 19 0.00 tan 

GO:0006260~DNA replication 17 0.00 tan 

GO:0007067~mitotic nuclear division 17 0.00 tan 

GO:0051301~cell division 14 0.00 magenta 

GO:0006281~DNA repair 13 0.00 tan 

GO:0006468~protein phosphorylation 12 0.00 Light yellow 

GO:0007062~sister chromatid cohesion 11 0.00 tan 

GO:0000398~mRNA splicing, via spliceosome 11 0.00 tan 

GO:0042384~cilium assembly 9 0.00 magenta 

GO:0060271~cilium morphogenesis 9 0.00 magenta 

GO:0000722~telomere maintenance via recombination 9 0.00 tan 

GO:0000082~G1/S transition of mitotic cell cycle 9 0.00 tan 

GO:0006974~cellular response to DNA damage stimulus 9 0.02 tan 

GO:0006281~DNA repair 8 0.00 Royal blue 

GO:0006888~ER to Golgi vesicle-mediated transport 8 0.01 tan 

GO:0098609~cell-cell adhesion 7 0.01 Dark red 

GO:0010501~RNA secondary structure unwinding 7 0.00 magenta 

GO:0070126~mitochondrial translational termination 7 0.00 magenta 

GO:0016569~covalent chromatin modification 7 0.00 royalblue 

GO:0008380~RNA splicing 7 0.00 royalblue 

GO:0051301~cell division 7 0.04 royalblue 

GO:0007059~chromosome segregation 7 0.00 tan 

GO:0000724~double-strand break repair via homologous 

recombination 
7 0.00 tan 

GO:1901796~regulation of signal transduction by p53 class 

mediator 
7 0.01 tan 

GO:0000086~G2/M transition of mitotic cell cycle 7 0.02 tan 

GO:0006888~ER to Golgi vesicle-mediated transport 6 0.00 darkred 

GO:0070125~mitochondrial translational elongation 6 0.00 ivory 

GO:0070126~mitochondrial translational termination 6 0.00 ivory 

GO:0070125~mitochondrial translational elongation 6 0.01 magenta 

GO:0090263~positive regulation of canonical Wnt signaling 

pathway 
6 0.04 magenta 
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GO:0042787~protein ubiquitination involved in ubiquitin-

dependent protein catabolic process 
6 0.00 royalblue 

GO:0007067~mitotic nuclear division 6 0.03 royalblue 

GO:0006271~DNA strand elongation involved in DNA 

replication 
6 0.00 tan 

GO:0000731~DNA synthesis involved in DNA repair 6 0.00 tan 

GO:0006302~double-strand break repair 6 0.00 tan 

GO:0019886~antigen processing and presentation of exogenous 

peptide antigen via MHC class II 
5 0.00 darkred 

GO:0000209~protein polyubiquitination 5 0.04 darkred 

GO:0001701~in utero embryonic development 5 0.04 darkred 

GO:0006364~rRNA processing 5 0.00 ivory 

GO:0006412~translation 5 0.01 ivory 

GO:0038061~NIK/NF-kappaB signaling 5 0.02 magenta 

GO:0051436~negative regulation of ubiquitin-protein ligase 

activity involved in mitotic cell cycle 
5 0.02 magenta 

GO:0051437~positive regulation of ubiquitin-protein ligase 

activity involved in regulation of mitotic cell cycle transition 
5 0.03 magenta 

GO:0031145~anaphase-promoting complex-dependent 

catabolic process 
5 0.03 magenta 

GO:0006368~transcription elongation from RNA polymerase II 

promoter 
5 0.04 magenta 

GO:0006364~rRNA processing 5 0.03 orange 

GO:0007062~sister chromatid cohesion 5 0.01 royalblue 

GO:0006511~ubiquitin-dependent protein catabolic process 5 0.04 royalblue 

GO:0006270~DNA replication initiation 5 0.00 tan 

GO:0042769~DNA damage response, detection of DNA 

damage 
5 0.00 tan 

GO:0019985~translesion synthesis 5 0.00 tan 

GO:0034080~CENP-A containing nucleosome assembly 5 0.00 tan 

GO:0043966~histone H3 acetylation 5 0.00 tan 

GO:0030307~positive regulation of cell growth 5 0.04 tan 

GO:0051436~negative regulation of ubiquitin-protein ligase 

activity involved in mitotic cell cycle 
4 0.01 darkred 

GO:0051437~positive regulation of ubiquitin-protein ligase 

activity involved in regulation of mitotic cell cycle transition 
4 0.01 darkred 

GO:0031145~anaphase-promoting complex-dependent 

catabolic process 
4 0.02 darkred 

GO:0030521~androgen receptor signaling pathway 4 0.00 lightyellow 

GO:0006446~regulation of translational initiation 4 0.02 magenta 

GO:0001541~ovarian follicle development 4 0.03 magenta 

GO:0075733~intracellular transport of virus 4 0.04 magenta 

GO:0006521~regulation of cellular amino acid metabolic 

process 
4 0.04 magenta 

GO:0030150~protein import into mitochondrial matrix 4 0.00 orange 

GO:0032508~DNA duplex unwinding 4 0.00 royalblue 



50        Results 

 

GO:0006310~DNA recombination 4 0.02 royalblue 

GO:0006338~chromatin remodeling 4 0.02 royalblue 

GO:0000083~regulation of transcription involved in G1/S 

transition of mitotic cell cycle 
4 0.01 tan 

GO:0000732~strand displacement 4 0.01 tan 

GO:0006139~nucleobase-containing compound metabolic 

process 
4 0.04 tan 

GO:0009725~response to hormone 3 0.04 lightyellow 

GO:0007566~embryo implantation 3 0.04 lightyellow 

GO:0070936~protein K48-linked ubiquitination 3 0.05 lightyellow 

GO:0001522~pseudouridine synthesis 3 0.02 magenta 

GO:0030490~maturation of SSU-rRNA 3 0.02 magenta 

GO:0000470~maturation of LSU-rRNA 3 0.02 magenta 

GO:0042771~intrinsic apoptotic signaling pathway in 

response to DNA damage by p53 class mediator 
3 0.01 orange 

GO:0043124~negative regulation of I-kappaB kinase/NF-

kappaB signaling 
3 0.02 orange 

GO:0031124~mRNA 3'-end processing 3 0.05 royalblue 

GO:0046600~negative regulation of centriole replication 3 0.00 tan 

GO:0006269~DNA replication, synthesis of RNA primer 3 0.00 tan 

GO:0006884~cell volume homeostasis 3 0.01 tan 

GO:0031571~mitotic G1 DNA damage checkpoint 3 0.01 tan 

GO:0071732~cellular response to nitric oxide 3 0.02 tan 

GO:0007099~centriole replication 3 0.02 tan 

GO:0042276~error-prone translesion synthesis 3 0.03 tan 

GO:0007091~metaphase/anaphase transition of mitotic cell 

cycle 
2 0.03 darkred 

GO:0031325~positive regulation of cellular metabolic process 2 0.03 darkred 

GO:0032042~mitochondrial DNA metabolic process 2 0.03 lightyellow 

GO:0009299~mRNA transcription 2 0.04 lightyellow 

GO:0000472~endonucleolytic cleavage to generate mature 5'-

end of SSU-rRNA from (SSU-rRNA, 5.8S rRNA, LSU-rRNA) 
2 0.04 magenta 

GO:0042347~negative regulation of NF-kappaB import into 

nucleus 
2 0.06 orange 

GO:0032877~positive regulation of DNA endoreduplication 2 0.03 tan 

GO:0043009~chordate embryonic development 2 0.05 tan 

 

By comparing pre- and post-treatment networks, I identified and analyzed genes with co-regulation 

unaffected by the treatment (Fig. 5.8.1A and B). In the figure, color names highlighted in bold 

type on y-axis are the clusters uniquely present in either untreated or etoposide-treated AML cell 

lines. I further analyzed the gene clusters unaffected by the treatment. The 24 treatment-unaffected 
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clusters comprised 5711 genes. The genes with expression levels correlating with etoposide 

response were involved in processes such as apoptosis, proteasomal catabolism, response to DNA 

damage, and DNA repair. The 71 genes correlating positively (p < 0.05, Pearson’s r > |0.5|, S1 

Table 5) with etoposide IC50 concentrations were considered putative assisting modulators; the 

909 negatively correlating ones as putative impeding modulators. Among them, I identified the 

previously reported modulators SLFN11 (Zoppoli, Regairaz et al. 2012, Rees, Seashore-Ludlow 

et al. 2016) and SMARCA4 (Lee, Celik et al. 2018) whose expression correlated with etoposide 

sensitivity. 
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Fig. 5.8.1: WGCNA consensus network analysis. (A) Comparison of co-expression modules identified in untreated 

AML cell lines with consensus network (present in both untreated and etoposide-treated AML cell lines). (B) 

Comparison of co-expression modules identified in etoposide-treated AML cell lines with consensus network (present 

in both untreated and etoposide-treated AML cell lines). Color names on X- and Y-axis represent individual co-

expressing modules and the number next to module represent total number of co-expressing genes identified in that 

particular module. Numbers in the heatmap represent number of genes common to consensus network on the X-axis, 

while the number of genes to extreme right (common to Cons grey module) are the co-expressing genes unique to 

untreated AML cells. 

 

Fig. 5.8.2: Gene Ontology analysis for etoposide-modulators. Top 20 biological processes for the co-expressed 

genes from the consensus network negatively correlating with etoposide sensitivity. The scale represents number of 

genes enriched for individual biological processes. Processes previously linked to etoposide are shown in bold type. 

 

The putative impeding modulators BIRC5 and PARP9 (correlation is shown in Fig. 5.8.3) were 

selected for experimental validation using chemical inhibitors against their protein products 

because of their involvement in apoptosis regulation and in double strand break repair, 

respectively. NOTCH1 (Fig. 5.8.3) was selected for experimental validation to confirm its putative 
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etoposide-assisting activity. AML cell lines were treated for 24 hours with 3 concentrations (0.001 

µM, 0.1 µM, and 10 µM) of chemical inhibitors alone, as well as in combination with cell line-

specific IC25 concentrations of etoposide. The BIRC5 inhibitor GDC-0152 and the PARP inhibitor 

nicotinamide exhibited effects synergistic or additive to etoposide in 9 and 10 cell lines, 

respectively. The NOTCH1 inhibitor LY-3039478 antagonized with etoposide in 8 out of 11 AML 

cell lines (Fig. 5.8.4, Table 5.8.3, and Appendix table 5). Stand-alone cytotoxicity was observed 

in OCI-AML3 cells following BIRC5 inhibition and in two cell lines following NOTCH1 

inhibition (Table 5.8.3 and Appendix table 4). In summary, all putative modulators investigated 

were confirmed by chemical inhibitors. 

 

Fig. 5.8.3: Modulators gene expression correlation with etoposide sensitivity. Pearson correlations between the 

pre-treatment basal gene expression level of the impeding modulators BIRC5 and PARP9 and of the assisting 

modulator NOTCH1 with etoposide sensitivity across AML cell lines. 

 

     

     

        

       

          

       

    

      

        

        

     

          

           

                                          

        

            
  
 

        

                               

                

                                 

                   
            

                   
            

                  
            



55        Results 

 

 

Fig. 5.8.4: Synergy of modulators with etoposide in AML cells. Combination index (CI; see Methods section 4.9 

for details) for the cytotoxicity following treatment with IC25 concentrations of etoposide with inhibitors targeting the 

impeding modulators BIRC5 and PARP9 and the assisting modulator NOTCH1. CI < 1: synergism, CI = 1: additivity, 

and CI > 1: antagonism. 

 

Driver type Targets (inhibitors) 

Stand-alone 

cytotoxicity (no. of cell 

lines) 

Synergy/additivity with 

etoposide (no. of cell 

lines) 

Modulators 

NOTCH1 (LY-3039478) 2 2 

BIRC5 (GDC-0152) 1 9 

PARP9 (Nicotinamide) 0 10 

Mediators 

BCL2A1 (Sabutoclax) 11 1 

PRKCH (Sotrastaurin) 7 3 

PLK1 (Volasertib) 11 1 

IGF1R (GSK-

1838705A) 
9 2 

Emulators 

MYC (TWS-119) 10 2 

mTORi (Rapamycin) 7 6 

HDACi (Vorinostat) 9 9 

ROCK1 (Rockout) 3 7 
Table 5.8.3: Overview of the drivers of etoposide cytotoxicity in AML cells. The drivers exhibiting stand-alone 

cytotoxicity in at least 6 AML cell lines are highlighted in light grey, drivers synergizing with etoposide in at least 6 

AML cell lines in dark grey. 

 

5.9 Etoposide-repressed essential genes contribute to cytotoxicity in AML lines 

I next analyzed co-regulated genes correlating with the etoposide IC50 concentrations, but 

transcriptionally altered by etoposide treatment. The correlated genes BRD4, MATL1, and MYC 
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were involved in the clusters of genes co-regulated only in untreated AML cell lines; the correlated 

gene SIRT1 was present in the co-expression network detected only after etoposide treatment. 

BRD4 and MYC were transcriptionally repressed, while MALT1 and SIRT1 were transcriptionally 

induced by etoposide in the less responsive AML cell lines (supplementary Fig. 3). However, all 

of them, except MYC, were predicted to be essential in only 4 AML cell lines. Therefore, I next 

analyzed and functionally verified etoposide-driven GEC at the level of individual genes. 
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Fig. 5.9.1: Etoposide-evoked changes in the expression of co-regulating genes. Cell lines F-36P, KASUMI-1, and 

MONO-MAC-6 with highest etoposide IC50 concentrations were considered as resistant, while remaining AML cell 

lines were considered as etoposide-responsive. (A) and (B) targets BRD4 and MYC respectively repressed after 

etoposide treatment in resistant cell lines, (C) and (D) targets MALT1 and SIRT1 respectively induced after etoposide 

treatment in resistant cell lines. Fold change was calculated by comparing TMM-normalized counts after and before 

etoposide treatment for respective drivers. Mann-Whitney test was performed to identify significant fold change across 

two groups. (* and ** represents q value < 0.05 and 0.01 respectively). 

The differential gene expression analysis using edgeR revealed that inductions accounted for the 

majority of etoposide treatment-driven changes in the gene expression (Fig. 5.9.2 and Table 5.9.1). 
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On average, etoposide evoked 81% of gene inductions in AML cell lines after treatment with cell 

specific IC50 concentrations for 24 hours. 

 

Fig. 5.9.2: Etoposide-evoked gene expression changes (GEC) in AML. Volcano plot representing (GEC) in F-36P 

cell line in response to etoposide treatment at IC50 concentration for 24 hours. 

Table 5.9.1: Numbers and percentages of etoposide-evoked inducing and repressing gene expression changes 

(GEC) in all investigated AML cell lines. Differentially expressed genes were identify by comparing RNA-Seq gene 

counts from untreated and etoposide-treated AML cell lines using edgeR software. 

Cell lines 
Numbers of gene 

expression changes 

Numbers of induced 

genes (%) 

Numbers of repressed 

genes (%) 

F36-P 4615 3882 (84.1) 733 (15.9) 

HL-60 1007 875 (86.9) 132 (13.1) 

KASUMI-1 3558 2874 (80.8) 684 (19.2) 

MOLM-13 1643 1284 (78.2) 359 (21.9) 

MONO-

MAC-6 
1788 1307 (73.1) 481 (26.9) 

MV-4-11 2091 1883 (90.1) 208 (10.0) 

NB-4 2383 1965 (82.5) 418 (17.5) 

NOMO-1 1679 1177 (70.1) 502 (29.9) 

OCI-AML3 1215 1028 (84.6) 187 (15.4) 

THP-1 1278 1050 (82.2) 228 (17.8) 



59        Results 

 

Essentiality analysis suggested that, on average, about 33% of etoposide-driven changes could 

have reduced AML cell survival (Table 5.9.2). An example of GEC grouped according to 

essentiality in F-36P cell line is shown in Fig. 5.9.3. 

Table 5.9.2: Numbers and percentages of predicted essential genes using Project Achilles (PAch) among all 

etoposide-evoked gene expression changes (GEC). 

Cell lines 

Numbers of 

etoposide-

evoked GEC 

Number of 

predicted 

essential genes 

(%) 

Etoposide-

repressed predicted 

essential genes (%) 

Etoposide-induced 

predicted essential 

genes (%) 

F-36P 4615 1447 (31.3) 239 (16.5) 1208 (83.5) 

HL-60 1007 348 (34.6) 45 (12.9) 303 (87.1) 

KASUMI-

1 
3558 1234 (34.7) 227 (18.4) 1007 (81.6) 

MOLM-

13 
1643 549 (33.4) 118 (21.5) 431 (78.5) 

MONO-

MAC-6 
1788 602 (33.7) 144 (23.9) 458 (76.1) 

MV-4-11 2091 702 (33.6) 63 (9) 639 (91) 

NB-4 2383 762 (32) 128 (16.8) 634 (83.2) 

NOMO-1 1679 580 (34.5) 156 (26.9) 424 (73.1) 

OCI-

AML3 
1215 416 (34.2) 55 (13.2) 361 (86.8) 

THP-1 1278 417 (32.6) 71 (17) 346 (83) 
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Fig. 5.9.3: Scatterplot of etoposide-evoked differentially expressed genes in F-36P cell line, arranged according 

to essentiality for survival. DEMETER score < 0 signifies essentiality. The genes essential for tumor cell survival 

and differentially expressed after etoposide treatment were considered as putative essential mediators. The mediators 

shortlisted for experimental validation (BCL2A1, IGF1R, PLK1, and PRKCH) are depicted in larger font. Other gene 

names are random examples taken from the entire gene set. 

 

I selected IGF1R for experimental validation, since it was essential for 7 AML cell lines and 

repressed in 4 AML cell lines after etoposide treatment (Fig. 5.9.4). Likewise, PLK1, was essential 

as well as repressed in 4 AML cell lines (Fig. 5.9.4). I pursued PLK1 because it exhibited highest 

essentiality for the least etoposide-sensitive F-36P cell line (Fig. 5.9.3). BCL2A1 and PRKCH were 

selected because of their predicted essentiality for 6 AML cell lines each, and because they were 

induced by etoposide in 9 and 6 AML cell lines, respectively (Fig. 5.9.4). 
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I then treated all AML cell lines with the inhibitors of the protein products of these genes alone, 

as well as in combination with IC25 concentrations of etoposide. The inhibitors targeting the protein 

products of BCL2A1 and PLK1 exerted standalone cytotoxicity in all AML cell lines, while the 

IGF1R inhibitor and the PKC inhibitor exhibited cytotoxicity in 9 and 7 AML cell lines, 

respectively (Fig. 5.9.4, Fig. 5.9.5, and Table 5.8.3). Inhibition of BCL2A1 and PLK1 synergized 

with etoposide in MOLM-13 and NB-4 cell lines, respectively. Inhibition of PRKCH and IGF1R 

exhibited synergy with etoposide in 2 AML cell lines each (Table 5.8.3 and Appendix table 5). 

 

 

Fig. 5.9.4: Experimental validation of putative essential mediators shortlisted in Fig. 5.9.3. Cell viability was 

assessed by WST-8 assay after treatment with inhibitors targeting protein products of shortlisted drivers. Filled 

symbols represent predicted essentiality for survival in individual AML cell lines. Circles around the symbols 

represent experimentally confirmed cytotoxicity. 
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Fig. 5.9.5: Contribution of mediators in AML cell killing using inhibitors. Percentage cell viability in response to 

(A) sabutoclax (BCL2 inhibitor), (B) GSK-1838705A (IGF1R inhibitor), (C) volasertib (PLK1 inhibitor), and (D) 

sotrastaurin (PRKCH inhibitor) treatment respectively for 24 hours. Percentage cell viability compared to vehicle-

treated control, taken as 100%, was calculated. Two-way ANOVA with Benjamini and Hochberg FDR test was 

performed to quantify significant difference. Data are represented as mean values ± SD and derived from 3 biological 

replicates. (* p-value < 0.05). 

I additionally investigated, in HL-60 cells, the cytotoxic effects of the essential mediators BCL2A1 

and IGF1R using shRNA-mediated knockdown. Knockdown of the mediator IGF1R was cytotoxic 

to HL-60 cells. (Fig. 5.9.6). 

 

Fig. 5.9.6: Contribution of mediators in AML cell killing using shRNA-mediated knockdown. Viability of HL-

60 cells after shRNA-mediated gene knockdown of essential mediators BCL2A1 and IGF1R for 24, 48, and 72 hours. 

Percentage cell viability compared to untransduced cells, taken as 100%, was calculated. Mann-Whitney test was 

performed to identify significant change in the viability. (** represents q value < 0.01). Data are represented as mean 

values ± SD and derived from 3 biological replicates. 

5.10 Emulators are cytotoxic and synergize with etoposide 

Using the CMap resource, I identified gene modulations and drugs that cause GEC either similar 

or contrary to those evoked by etoposide. There were 32 gene knockdowns and 76 drugs whose 

application led to etoposide-like GEC. They were referred to as putative etoposide-like emulators. 

The majority of the drugs belonged to the classes mTOR inhibition, topoisomerase inhibition, and 
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HDAC inhibition. I also identified 12 drugs evoking opposite GEC, which are referred to as 

putative etoposide-contrary emulators (Table 5.10.1 and Table 5.10.2). 

Table 5.10.1: Emulators (gene knockdowns) evoking gene expression changes (GEC) either similar (etoposide-

like) or opposite (etoposide-contrary) to those evoked by etoposide. Emulators were identified by uploading top 

300 etoposide-evoked GEC overlapping in 10 AML cell lines to Connectivity Map (CMap) resource. The connectivity 

score ranging from -100 to 100 depicts the fraction of reference genes exhibiting similarity with the query. Emulators 

with connectivity score greater than |90| were considered as significant. 

Etoposide-like emulators (gene knockdowns) 

ID Target Connectivity score 

CGS001-6240 RRM1 99.66 

CGS001-4609 MYC 99.14 

CGS001-1027 CDKN1B 98.15 

CGS001-4998 ORC1 97.18 

CGS001-4067 LYN 97.04 

CGS001-1666 DECR1 96.86 

CGS001-3815 KIT 96.73 

CGS001-4199 ME1 96.33 

CGS001-11331 PHB2 95.7 

CGS001-29890 RBM15B 95.25 

CGS001-9020 MAP3K14 94.59 

CGS001-5373 PMM2 94.51 

CGS001-3226 HOXC10 94.22 

CGS001-5591 PRKDC 93.49 

CGS001-998 CDC42 93.31 

CGS001-291 SLC25A4 93.26 

CGS001-2852 GPER 92.76 

CGS001-4191 MDH2 92.52 

CGS001-2872 MKNK2 92.35 

CGS001-5245 PHB 91.58 

CGS001-5690 PSMB2 91.49 

CGS001-5770 PTPN1 91.43 

CGS001-2355 FOSL2 91.26 

CGS001-10247 HRSP12 91.08 

CGS001-2581 GALC 90.52 

CGS001-11245 GPR176 90.44 

CGS001-4792 NFKBIA 90.44 

CGS001-5184 PEPD 90.41 

CGS001-79724 ZNF768 90.4 

CGS001-64116 SLC39A8 90.21 

CGS001-63933 CCDC90A 90.15 

CGS001-4143 MAT1A 90.04 



65        Results 

 

Etoposide-contrary emulators (gene 

knockdowns) 

CGS001-64805 P2RY12 -97.83 

CGS001-2153 F5 -95.66 

CGS001-1622 DBI -95.5 

CGS001-25805 BAMBI -94.21 

CGS001-4312 MMP1 -92.97 

CGS001-136 ADORA2B -92.66 

CGS001-57819 LSM2 -92.39 

CGS001-79796 ALG9 -92.37 

CGS001-991 CDC20 -92.27 

CGS001-7535 ZAP70 -91.91 

CGS001-25925 ZNF521 -91.68 

CGS001-6046 BRD2 -91.6 

CGS001-6478 SIAH2 -90.91 

CGS001-9128 PRPF4 -90.81 

CGS001-7132 TNFRSF1A -90.63 

CGS001-9575 CLOCK -90.34 

CGS001-83593 RASSF5 -90.31 
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Table 5.10.2: Emulators (drug treatments) evoking gene expression changes (GEC) either similar (etoposide-like) or opposite (etoposide-contrary) to 

those evoked by etoposide. Emulators were identified by uploading top 300 etoposide-evoked GEC overlapping in 10 AML cell lines to Connectivity Map (CMap) 

resource. The connectivity score ranging from -100 to 100 depicts the fraction of reference genes exhibiting similarity with the query. Emulators with connectivity 

score greater than |90| were considered as significant. 

Etoposide-like emulators (drug treatment) 

ID Drug Drug target Drug class 

Connectivity 

score 

BRD-

A62025033 temsirolimus MTOR, PTEN 

MTOR inhibitor 

96.06 

BRD-

K68174511 torin-2 MTOR 94.2 

BRD-

K69932463 AZD-8055 MTOR 91.51 

BRD-

A45498368 WYE-125132 MTOR, PIK3CA 91.3 

BRD-

K77008974 WYE-354 MTOR 90.52 

BRD-

A79768653 sirolimus MTOR, FKBP1A, CCR5, FGF2 93.94 

BRD-

K84937637 sirolimus MTOR, FKBP1A, CCR5, FGF2 93.47 

BRD-

A75409952 wortmannin 

PIK3CA, PIK3CG, PLK1, ATM, ATR, MTOR, PI4KA, 

PI4KB, PIK3CD, PIK3R1, PLK3, PRKDC 95.03 

BRD-

K06750613 GSK-1059615 PIK3CA, PIK3CG 97.99 

BRD-

K12184916 NVP-BEZ235 MTOR, PIK3CA, PIK3CG, PIK3CD, ATR, PIK3CB 90.56 

BRD-

A36630025 SN-38 TOP1 

Topoisomerase inhibitor 

97.88 

BRD-

K98490050 amsacrine TOP2A, KCNH2 97.84 

BRD-

K56334280 amonafide TOP2A, TOP2B 96.72 

BRD-

A35588707 teniposide TOP2A, CYP3A5 96.42 
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BRD-

K37798499 etoposide TOP2A, CYP2E1, CYP3A5, TOP2B 93.68 

BRD-

K08547377 irinotecan TOP1, CYP3A5, TOP1MT 91.08 

BRD-

K85985071 ellipticine TOP2A, TOP2B 90.54 

BRD-

A71390734 idarubicin TOP2A 98.49 

BRD-

A52530684 doxorubicin TOP2A 97.24 

BRD-

A18419789 etoposide TOP2A, CYP2E1, CYP3A5, TOP2B 94.59 

BRD-

K52522949 NCH-51 

HDAC1, HDAC10, HDAC11, HDAC2, HDAC3, 

HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, HDAC9 

HDAC inhibitor 

96.18 

BRD-

K81418486 vorinostat 

HDAC1, HDAC2, HDAC3, HDAC6, HDAC8, HDAC10, 

HDAC11, HDAC5, HDAC9 93.6 

BRD-

K77908580 entinostat HDAC1, HDAC2, HDAC3, HDAC9 92.85 

BRD-

K74733595 

APHA-compound-

8 HDAC8 91.88 

BRD-

K13169950 NSC-3852 HDAC1 91.72 

BRD-

K16485616 mocetinostat HDAC1, HDAC2, HDAC3, HDAC11 91.51 

BRD-

K64606589 apicidin 

HDAC1, HDAC10, HDAC11, HDAC2, HDAC3, 

HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, HDAC9 90.53 

BRD-

K68336408 

tyrphostin-AG-

1478 EGFR, MAPK14 

EGFR inhibitor 

93.44 

BRD-

K85606544 neratinib EGFR, ERBB2, ERBB4, KDR 92.27 

BRD-

U25771771 WZ-4-145 CSF1R, DDR1, EGFR, PDGFRA, TIE1 91.63 

BRD-

K50168500 canertinib EGFR, ERBB2, ERBB4, AKT1 91.2 

BRD-

A25687296 emetine RPS2 
Protein synthesis inhibitor 

96.9 
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BRD-

A28970875 puromycin 

NHP2L1, RPL10L, RPL11, RPL13A, RPL15, RPL19, 

RPL23, RPL23A, RPL26L1, RPL3, RPL37, RPL8, 

RSL24D1 95.88 

BRD-

K76674262 homoharringtonine RPL3 95.2 

BRD-

K80348542 cephaeline RPS2 94.76 

BRD-

K15108141 gemcitabine RRM1, CMPK1, RRM2, TYMS 

Ribonucleotide reductase inhibitor 

97.28 

BRD-

K33106058 cytarabine POLB, POLA1 96.48 

BRD-

A82371568 clofarabine RRM1, POLA1, RRM2, SLC22A8 96.35 

BRD-

K50836978 purvalanol-a 

CDK1, CDK2, CDK4, CDK5, CCND1, CCNE1, 

CSNK1G3, RPS6KA1, SRC 
CDK inhibitor 

97.58 

BRD-

K07762753 aminopurvalanol-a CDK1, CDK2, CDK5, CDK6 96.96 

BRD-

K31542390 mycophenolic-acid IMPDH1, IMPDH2 
IMPDH inhibitor 

97.57 

BRD-

K92428153 

mycophenolate-

mofetil IMPDH1, IMPDH2, HCAR2 90.42 

BRD-

A49680073 cucurbitacin-i JAK2, STAT3 
JAK-STAT inhibitor 

97.96 

BRD-

A28105619 cucurbitacin-i JAK2, STAT3 95.86 

BRD-

A15079084 

phorbol-12-

myristate-13-

acetate CD4, KCNT2, PRKCA, TRPV4 PKC activator 97.25 

BRD-

A52650764 ingenol PRKCD, PRKCE 95.15 

BRD-

A89434049 sarmentogenin ATP1A1 ATPase inhibitor 91.79 

BRD-

K51018020 VAMA-37 PRKDC 

DNA dependent protein kinase 

inhibitor 92.46 

BRD-

A48237631 mitomycin-c  DNA synthesis inhibitor 94.44 
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BRD-

K13646352 midostaurin 

FLT3, KIT, CCNB1, FLT1, KDR, PDGFRB, PRKCA, 

PRKCG, VEGFA 

FLT3 inhibitor, PDGFR/KIT 

inhibitor, PKC inhibitor, VEGFR 

inhibitor 96.9 

BRD-

A81772229 simvastatin HMGCR, CYP2C8, CYP3A4, CYP3A5, ITGB2 HMGCR inhibitor 93.91 

BRD-

K13049116 BMS-754807 IGF1R, AKT1 IGF-1 inhibitor 94.69 

BRD-

K47983010 BX-795 

PDPK1, CDK2, CHEK1, GSK3B, IKBKE, KDR, PDK1, 

TBK1 IKK inhibitor 98.8 

BRD-

A11678676 wortmannin 

PIK3CA, PIK3CG, PLK1, ATM, ATR, MTOR, PI4KA, 

PI4KB, PIK3CD, PIK3R1, PLK3, PRKDC PI3K inhibitor 97.02 

BRD-

K82823804 SA-792987 WEE1 PKC inhibitor 98.3 

BRD-

K87343924 wortmannin 

PIK3CA, PIK3CG, PLK1, ATM, ATR, MTOR, PI4KA, 

PI4KB, PIK3CD, PIK3R1, PLK3, PRKDC - 98.5 

BRD-

M86331534 

pyrvinium-

pamoate AR - 96.6 

BRD-

K30677119 PP-30 RAF1 - 96.14 

BRD-

K03067624 emetine RPS2 - 95.87 

BRD-

A24643465 homoharringtonine RPL3 - 95.63 

BRD-

A55484088 BNTX OPRD1, OPRK1, OPRM1 - 95.38 

BRD-

K91370081 anisomycin 

NHP2L1, RPL10L, RPL11, RPL13A, RPL15, RPL19, 

RPL23, RPL23A, RPL26L1, RPL3, RPL37, RPL8, 

RSL24D1 - 94.36 

BRD-

K61829047 7b-cis XPO1 - 94.35 

BRD-

A19248578 latrunculin-b ACTA1, MKL1, SPIRE2 - 94.34 

BRD-

K74402642 NSC-632839 USP2, USP7, SENP2, USP1 - 94.33 

BRD-

K37392901 NSC-632839 USP2, USP7, SENP2, USP1 - 94.2 
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BRD-

K36007650 puromycin 

NHP2L1, RPL10L, RPL11, RPL13A, RPL15, RPL19, 

RPL23, RPL23A, RPL26L1, RPL3, RPL37, RPL8, 

RSL24D1 - 94.01 

BRD-

U86922168 QL-XII-47 BMX, BTK - 93.74 

BRD-

K67439147 SIB-1893 GRM5, GRM4 - 93.65 

BRD-

K17140735 SCH-79797 F2R - 93.26 

BRD-

A50737080 CGK-733 ATM, ATR - 92.59 

BRD-

K14821540 FCCP  - 91.53 

BRD-

K28907958 CD-437 RARG - 91.36 

BRD-

K89930444 AG-592  - 91.02 

BRD-

K73610817 BRD-K73610817  - 90.76 

BRD-

K30351863 BRD-K30351863 APEX1 - 90 

Etoposide-contrary emulators (drug treatment) 

BRD-

K23875128 

RHO-kinase-

inhibitor-

III[rockout] 

IMPDH2, ROCK1 - -98.78 

BRD-

A35108200 
dexamethasone 

ANXA1, CYP3A4, CYP3A5, NOS2, NR0B1, NR3C1, 

NR3C2 
Glucocorticoid receptor agonist -97.76 

BRD-

A69951442 
dexamethasone 

ANXA1, CYP3A4, CYP3A5, NOS2, NR0B1, NR3C1, 

NR3C2 
 -97.65 

BRD-

K89687904 
PKCbeta-inhibitor PRKCB - -96.99 

BRD-

K32107296 
temozolomide TOP2A Topoisomerase inhibitor -94.48 

BRD-

A68631409 
evodiamine TRPV1 - -94.22 
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BRD-

K32536677 
AGK-2 SIRT2 - -93.98 

BRD-

A14985772 
ascorbyl-palmitate  - -93.73 

BRD-

K59184148 
SB-216763 GSK3B, CCNA2, CDK2, GSK3A Glycogen synthase kinase inhibitor -93.31 

BRD-

K59222562 
BRD-K59222562 CLK1, CLK4, DYRK1A, DYRK1B - -91.84 

BRD-

K01638814 
rilmenidine NISCH Imidazoline ligand -91.2 

BRD-

K98372770 
L-2167 PPARD - -90.8 
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I then measured cell viability in AML cell lines treated with inhibitors targeting the protein 

products of selected putative etoposide-like emulators individually, as well as in combination with 

etoposide (IC25 concentrations) for 24 hours. Targeting of the etoposide-like emulator MYC with 

TWS-119 led to cytotoxicity in all AML cell lines except MONO-MAC-6 (Fig. 5.10.1A and Table 

5.8.3). Similarly, inhibition of etoposide-like emulators mTOR with rapamycin and of HDAC with 

vorinostat evoked cell death in in 9 and 6 AML cell lines, respectively (Fig. 5.10.1B and C, and 

Table 5.8.3). Interestingly, vorinostat and rapamycin also exhibited synergy or additivity with 

etoposide in 9 and 6 AML cell lines, respectively (Table 5.8.3, Appendix table 4, and Appendix 

table 5). 

The etoposide-contrary emulator ROCK1 also synergized or exhibited additivity with etoposide in 

7 out of 11 AML cell lines, when inhibited with rockout. Inhibition of ROCK1 was cytotoxic in 

only 3 AML cell lines (Table 5.8.3 and Appendix table 4). The target specificity of rockout was 

confirmed by demonstrating cytotoxicity in HL-60 cells upon shRNA-mediated knockdown of 

ROCK1 (Fig. 5.10.3). 
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Fig. 5.10.1: AML cell viability in response to emulators. Percentage of cell viability in response to an inhibitor of 

the etoposide-like transcriptional driver (A) MYC, (B) rapamycin (mTOR inhibitor), and (C) vorinostat (HDAC 

inhibitor) respectively after 24 hours treatment. Percentage cell viability compared to vehicle-treated control, taken as 

100%, was calculated. Two-way ANOVA with Benjamini and Hochberg FDR test was performed to quantify 

significant difference. Data are represented as mean values ± SD and derived from 3 biological replicates. (* p-value 

< 0.05). 
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Fig. 5.10.2: Synergy of emulators with etoposide in AML cells. Combination index of etoposide treatment with 

protein inhibitor targeting the etoposide-like transcriptional drivers MYC, vorinostat, and rapamycin. CI < 1: 

synergism, CI = 1 (dotted line): additivity, CI > 1: antagonism. 

 

 

Fig. 5.10.3: Viability of HL-60 cells after shRNA-mediated gene knockdown of the etoposide-contrary emulator 

ROCK1. Percentage cell viability compared to untransduced cells, taken as 100%, was calculated. Mann-Whitney test 

was performed to identify significant change in the viability. (** represents q value < 0.01). Data are represented as 

mean values ± SD and derived from 3 biological replicates. 

5.11 Etoposide-driver combinations exert cytotoxicity without increasing DNA damage 

To investigate the safety of the identified combinations of etoposide with other drugs, their effect 

on DNA damage in HL-60 cell line was investigated. I measured the FITC-conjugated Anti-
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phospho H2A.X-labelled HL-60 cells by flow cytometry before and after the treatment with 

etoposide, alone or in combination with other inhibitors for 24 hours. Etoposide caused, as an 

effect of TOP2-poisoning, DNA damage in 45% of cells when treated at IC25 concentration. None 

of the investigated etoposide-combinations elevated the amount of DNA damage in comparison to 

etoposide alone (Fig. 5.11.1). Furthermore, the BIR inhibitor GDC-0152 increased the cytotoxicity 

in combination with etoposide, while reducing the amount of DNA damage in comparison to 

etoposide alone. 
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Fig. 5.11.1: DNA damage after etoposide treatment in combination with its cytotoxicity drivers. Bar plot 

representing percentage of phospho-H2A.X positive cells counted using flow cytometry and percentage cell death 

after treatment with different inhibitors alone as well as in combination with IC25 concentration of etoposide in HL-

60 cell line. Mann-Whitney test was performed using GraphPad Prism software to identify significant effect compared 

to etoposide alone. 

5.12 Drivers of etoposide cytotoxicity form unfavorable prognostic markers in AML 

patients 

To assess the clinical relevance of identified drivers, I inspected the gene expression and clinical 

data for 173 patients from TCGA and compared with gene expression in 30 normal blood samples 
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from GTEx. The analysis revealed an association between high expression of BCL2A1 and PARP9 

with poor survival in AML patients (Fig. 5.12.1A and B). Furthermore, these genes were highly 

expressed in AML patients compared to healthy individuals (Fig. 5.12.1C and D). 

 

Fig. 5.12.1: Relevance of etoposide cytotoxicity drivers in AML patients. Basal expression of (A) BCL2A1 and (B) 

PARP9 respectively in AML and normal blood cells using the RNA-Seq data from TCGA and GTEx. Kaplan–Meier 

plot representing survival analysis of the AML patients with high and low expression of (A) BCL2A1 and (B) PARP9 

respectively, obtained from TCGA. 
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Additionally, the Human Protein Atlas resource revealed high expression of BIRC5 or PLK1 to be 

association poor survival in renal, liver, and lung cancer patients (Fig. 5.12.2) and high expression 

of ROCK1 to be a marker of unfavorable prognosis in pancreatic cancer (Fig. 5.12.3). 

 

Fig. 5.12.2: Kaplan–Meier plot representing survival analysis for cancer patients with low or high expression 

of BIRC5 and PLK1, obtained from The Human Protein Atlas resource. 
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Fig. 5.12.3: Kaplan–Meier plot representing survival analysis for cancer patients with low or high expression 

of ROCK1 and PLK1, obtained from The Human Protein Atlas resource. 

6 Discussion 
 

In this work, I demonstrate that etoposide kills cancer cells depending on expression levels of 

driver genes, some of which it modulates. This effect is distinct from the etoposide concentration-

driven increase in DNA double stranded breaks (Smart, Halicka et al. 2008). Targeting these 

drivers genetically or pharmacologically mimics or augments the response to etoposide, indicating 

a potential for clinical exploration. The pipeline used to discover drivers of etoposide cytotoxicity 

is applicable to other TOP2 inhibitors and to cytotoxic drugs in general. 

Furthermore, using HTETOP cell line model, I found the TOP2A dependency of etoposide for 

cytotoxic response. Both TOP2 poisons, doxorubicin and etoposide, inhibit re-ligation of transient 

DSB, which triggers cell death. However, the dependency of etoposide for TOP2A was striking. 

Doxorubicin poisons TOP2 as well as intercalates into DNA. Doxorubicin is oxidized to 

semiquinone and then converted back to original state generating reactive oxygen species (ROS) 

in the process. ROS generates oxidative stress and contributes to DNA damage and apoptosis. This 

pathway is most likely upregulated after doxorubicin treatment in the absence of TOP2A, 



79        Discussion 

 

overruling the need of TOP2A for cytotoxic response (Thorn, Oshiro et al. 2011). On the other 

hand, etoposide seems to exert its action predominantly via TOP2A poisoning. 

Altogether, this work demonstrates that: 

• Modulators synergized with etoposide 

• Mediators exhibited standalone cytotoxicity 

• Emulators exhibited standalone cytotoxicity and synergized with etoposide 

These drivers of etoposide cytotoxicity have been exploited to enhance the efficacy of etoposide. 

6.1 Gene expression changes-mediated cytotoxicity of etoposide 

Since the response of cancer cells to TOP2 poisons is variable, attempts have been made to explain 

it via pre-treatment gene expression levels (Zoppoli, Regairaz et al. 2012, Reinhold, Varma et al. 

2015, Yadav, Gopalacharyulu et al. 2015, Liu, Yang et al. 2016, Sun, Zhang et al. 2016). SLFN11 

(Zoppoli, Regairaz et al. 2012, Rees, Seashore-Ludlow et al. 2016) and SMARCA4 (Lee, Celik et 

al. 2018), re-discovered in this study, have been identified as modulators of TOP2 poisons, 

including etoposide, but failed to make clinical impact. Treatment-driven GEC have been likewise 

reported (Woo, Shimoni et al. 2015, Huang, Hsieh et al. 2018), but not explored for optimizing 

response to TOP2 poisons. I considered both pre-treatment gene expression levels and drug-

evoked changes, as a surrogate of pre- and post-treatment protein expression levels. Post-treatment 

transcriptomes turned out to be particularly important, since they were essential for the discovery 

of most of the functionally confirmed drivers (i.e. of all mediators and emulators). 

Most of the etoposide-evoked GEC were likely secondary, judging from the predominance of gene 

inductions over reductions. Indeed, only expression reductions can be expected to arise directly 

from DNA damage within regulatory or coding gene sequences. This is well reflected in a 
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HTETOP cell model, where predominance of gene repression was observed. However, I could not 

confirm the etoposide-evoked predominance of gene repression in other cancer cell lines, including 

a panel of AML cell lines, as well as in other cells lines obtained from GEO, except in OCI-Ly3 

(B-cell lymphoma). The explanation for this observation could be variable etoposide 

concentrations and treatment times in GEO set of cell lines. The HTETOP cell line was treated 

with 20 µM of etoposide (IC50 being 7.7 µM) for 24 hours. None of the cell line from GEO set 

was treated with comparable concentration and time-points. Furthermore, HTETOP is an 

engineered cell line derived from fibrosarcoma HT-1080 cell line, with artificially high TOP2A 

expression (Carpenter and Porter 2004). Hence, the predominance of repressing GEC after 

etoposide treatment seems to be a specific attribute of HTETOP cell line. Etoposide treatment 

generates limited numbers of DSB foci (Roos and Kaina 2013), which could have been reflected 

in lower number of gene repressions in other cancer cell lines. The predominance of gene 

inductions in other cancer cell lines is most likely resulted from secondary effectors of etoposide. 

Nevertheless, these GEC could themselves contribute to cytotoxicity, especially repressions in the 

oncogenic targets and inductions in the tumor repressor targets. Considering off-target effects of 

classical anti-cancer drugs, such essential GEC could provide effective alternative for targeted 

cancer therapies. Analysis of etoposide-treated HTETOP cell line revealed majority of etoposide-

evoked gene repressions to be involved in cancer and cell proliferation processes, indicating their 

repression could be exploited as a potential therapeutic strategy. 

6.2 Mediators as standalone targets for etoposide replacement 

The mediators PFKP and PLAU reduced the viability of HTETOP cells when suppressed using 

siRNA. PFKP (phosphofructokinase) catalyzes the initial step of glycolysis by phosphorylating D-

fructose 6-phosphate to fructose 1,6-bisphosphate. Many cancer cell types depend on glycolysis 
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rather than more efficient oxidative phosphorylation for energy metabolism because of hypoxic 

environment and mutations in the mitochondrial DNA (Ganapathy-Kanniappan & Geschwind, 

2013). Hence, targeting the enzymes involved in glycolytic processes provides an effective 

strategy for managing tumor growth (Zheng, 2012). In consistent with this, PFKP is highly 

expressed in HTETOP and its high expression is associated with poor survival of liver cancer and 

head and neck cancer patients (Uhlén et al., 2015). 

PLAU (plasminogen activator, urokinase) is a serine protease responsible for tumor migration 

because of its function in degrading the extracellular matrix. I found PLAU overexpressed in 

HTETOP cell line and its overexpression reduced the survival in pancreatic, head and neck, renal, 

and lung cancer patients, most likely contributing to secondary tumors at different sites. Reduction 

in the cell viability of HTETOP cell line after PLAU knockdown suggests its utility as an alternate 

target for therapy. 

Other investigated mediators of etoposide cytotoxicity in AML cell lines also represent critical 

processes in cancer survival and were confirmed to be essential. B-cell lymphoma 2-related protein 

A1 (BCL2A1) is a member of BCL2 family proteins having anti-apoptotic function (Vogler 2012). 

BCL2A1 expression is frequently deregulated in many types of cancers, including overexpression 

in AML patients. Insulin-like growth factor receptor 1 (IGF1R), a tyrosine kinase receptor, 

augment the cell proliferation and it’s use as anti-cancer target in combination with other 

chemotherapeutic drugs is under investigation (Chen and Sharon 2013). Polo-like kinase 1 (PLK1) 

plays critical role during mitosis (Brandwein 2015). I predicted PLK1 to be essential for 4 AML 

survival. Interestingly, PLK1 inhibition was cytotoxic in all 11 AML cell lines. This suggests that 

targets derived from small sample size can even be applicable for large cohort. Protein kinase c 

eta (PRKCH) in involved many cellular processes including cell proliferation and differentiation. 
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It is required for maintaining hematopoietic stem cell function. PRKCH is highly expressed in 

leukemia and its high expression is associated with poor prognosis in AML patients (Porter and 

Magee 2017).  

These mediators exhibited synergy with etoposide only in 2 out of 11 AML cell lines each. Similar 

results were obtained using HTETOP cell line. None of the knockdowns sensitized the HTETOP 

cell line to etoposide treatment in combination experiment. This may be due to different pathways 

governing the cytotoxicity getting triggered after treatment with inhibitors compared to etoposide. 

AML cells are likely to be committed to the dominant response pathway triggered either by 

essential mediator or by etoposide. Altogether, results confirmed the contribution of etoposide-

evoked GEC to its anti-cancer activity. Such essential mediators could even replace the classical 

anti-cancer drugs because of their specificity. These specific targets could replicate the cytotoxicity 

of non-specific anti-cancer drugs with less side-effects. 

6.3 Modulators for overcoming drug resistance 

The comparison of co-expression networks before and after etoposide-treatment identified the 

etoposide-relevant biological processes such as response to DNA damage, DNA repair, and 

apoptosis regulation to be affected by the treatment. The potential negative modulators 

investigated in detail, BIRC5 and PARP9, sensitized AML cell lines to etoposide treatment. 

BIRC5, also known as survivin, is a member of inhibitor of apoptosis family. It is involved in cell 

proliferation and apoptosis inhibition, and frequently overexpressed in cancer cells (Tanaka, 

Iwamoto et al. 2000). The results demonstrated the involvement of BIRC5 in etoposide resistance 

by AML cell lines as confirmed by increased etoposide sensitivity in combination with survivin 

inhibitor. Several clinical trials are undergoing to evaluate effectiveness of survivin inhibitors in 

combination with idarubicin and cytarabine (NCT00620321 and NCT01398462). The other 
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investigated negative modulator, PARP9 (also abbreviated as ARTD9 or BAL1), plays a role in cell 

migration (Aguiar, Yakushijin et al. 2000). The high expression of catalytically inactive PARP9 

is associated with upregulated cell motility. The experiments using nicotinamide, NAD and NADP 

pre-cursor and PARP inhibitor, revealed either etoposide-synergy or additive effects in 10 out of 

11 investigated AML cell lines. As nicotinamide is not a selective inhibitor of PARP9, further 

investigation using shRNA-mediated PARP9 knockdown in HL-60 cell line revealed essentiality 

for cell survival. Furthermore, high expression of PARP9 is associated with poor survival of AML 

patients. PARP inhibitors are currently being investigate in AML patients in combination with 

TOP1 poison topotecan (NCT03289910 and NCT00588991). Altogether, the results indicated the 

essential role of PARP9 for AML cell survival and a role in DNA damage response inferred by 

etoposide-synergy in AML cell lines. I also investigated NOTCH1 as a positive modulator of 

etoposide cytotoxicity with high expression in the etoposide-responsive AML cell lines. As 

expected, treatment with Notch inhibitor did not exert cytotoxicity or etoposide synergy. 

Interestingly, Notch inhibition in F-36P cell line further reduced the etoposide cytotoxicity of this 

cell line. 

Using this approach, I re-discovered the etoposide cytotoxicity modulators SLFN11 (Zoppoli, 

Regairaz et al. 2012, Rees, Seashore-Ludlow et al. 2016) and SMARCA4 (Lee, Celik et al. 2018), 

reported previously, correlating with etoposide sensitivity. However, the predicted effector targets 

MYC, BRD4, and SIRT1 were enriched only after integrating the etoposide-evoked GEC, 

confirming their additional value for predicting the sensitivity-relevant modulators. MALT1 

(Mucosa Associated Lymphoid Tissue Lymphoma Translocation Gene 1) enhances BCL10-

mediated NF-KB activation, triggering the proliferating and anti-apoptotic program (Hadian and 

Krappmann 2011). I observed MALT1 induction after etoposide treatment in the AML cell lines 
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less responsive to etoposide treatment, especially in the most resistant F-36P cell line. SIRT1 

(Sirtuin 1) enhances the DNA damage repair by deacetylating the repair proteins TP53 and Ku70 

(Jeong, Juhn et al. 2007). I observed SIRT1 induction in the AML cell lines less responsive to 

etoposide treatment. Altogether, these results suggest the efficient repair and apoptosis regulation 

to be key processes for differential etoposide response in the investigated AML cell lines. 

Furthermore, results also suggest involvement of epigenetic regulation enhancing the DNA repair 

processes and could be the possible mechanism for the observed synergy with etoposide and a 

HDAC inhibitor vorinostat. Inhibiting such targets, those affect the downstream pathways of 

etoposide, can provide effective strategy to overcome resistance to this drug. 

6.4 Rational combination partners using etoposide-like emulators 

After confirming the respective etoposide-synergy and cytotoxicity of modulators and mediators 

of etoposide cytotoxicity, I hypothesized that the next-generation etoposide-combinations can be 

designed using etoposide-evoked GEC. The CMap resource (Subramanian, Narayan et al. 2017) 

provided other specific targets as well as drugs which evoke GEC either similar (etoposide-like 

emulators) or opposite (etoposide-contrary emulators) to those evoked by etoposide. I expected 

that etoposide-like emulators could exert etoposide-like cytotoxic response and etoposide-contrary 

emulators could synergize with etoposide, hypothesizing that such targets would induce the genes 

which are direct or indirect targets of etoposide. Interestingly, along with other TOP2 poisons, I 

identified mTOR and HDAC inhibitors as etoposide-like emulators. This analysis surprisingly 

identified, along with other topoisomerase inhibitors, class of HDAC inhibitor and mTOR 

inhibitors evoking GEC similar to those evoked by etoposide. The etoposide-synergy with HDAC 

(Thurn, Thomas et al. 2011) and mTOR inhibitors (Xu, Thompson et al. 2005) is well documented 

and undergoing clinical trials, which I confirmed in AML using vorinostat and rapamycin. Due to 
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the interaction of TOP2 with HDAC1 and 2 (Montecucco, Zanetta et al. 2015), etoposide-evoked 

DNA double-strand breaks could affect the chromatin architecture. This could be plausible 

explanation for similar GEC after treatment with etoposide and HDAC inhibitor, as well as the 

basis for synergy. 

6.5 Potential application to AML and other cancers 

Etoposide effects can be clearly optimized by targeting drivers of its toxicity, but how relevant is 

this strategy to AML management? AML accounts for 80% of leukemia cases in adult patients and 

have poor prognosis in patients (De Kouchkovsky and Abdul-Hay 2016, Pearsall, Lincz et al. 

2018). Chemotherapy is the major form of treatment for AML management (Dombret and Gardin 

2016). However, treatment strategies for relapsed AML are not yet clearly defined. MEC regimen 

(mitoxantrone in combination with etoposide and cytarabine) is one of the common regimens used 

for relapsed AML. However, it is associated with increased side-effects in AML patients (Ramos, 

Mo et al. 2015, Thol, Schlenk et al. 2015). Hence, there is a need to improve efficacy and reduce 

the toxicity of these treatment regimens. Similar needs exist for other etoposide applications, such 

as testicular, prostate and small cell lung cancer. 

Interestingly, some of the drivers investigated in this work have been or are currently undergoing 

testing. This provides an additional validation of our approach. Supplementing etoposide with the 

inhibitor of its emulator mTOR with rapamycin has already been shown to reduce the survival of 

cancer cells in a mouse model of AML (Xu, Thompson et al. 2005). A phase II trial for managing 

high-risk AML patients with rapamycin in combination with MEC regimen is ongoing 

(NCT02583893). The etoposide-synergy with HDAC is currently undergoing testing for AML 

(NCT02553460). Due to the interaction of TOP2 with HDAC1 and 2, etoposide-evoked DNA 

double strand breaks could affect the chromatin architecture (Montecucco, Zanetta et al. 2015). 
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Interestingly, we observed etoposide-evoked induction in SIRT1. It is evident that SIRT1 induction 

synergizes with HDAC inhibition (Scuto, Kirschbaum et al. 2013). This is in agreement with the 

observed etoposide-evoked induction of SIRT1 and its observed synergy with vorinostat. 

Improved clinical outcomes in AML patients have been already reported for the PLK1 inhibitor 

volasertib (Kobayashi, Yamauchi et al. 2015) and a Phase III trial is ongoing (NCT01721876). 

Strikingly, PLK1 inhibition with volasertib was cytotoxic in all 11 AML cell lines. This suggests 

that cytotoxicity drivers can be efficient beyond the cohort subset in which they were detected. 

Inhibition of IGF1R has been found to be efficacious together with etoposide and cisplatin in 

small-cell lung cancer (Ellis, Shepherd et al. 2014) and further clinical trials are undergoing with 

other drugs and cancer types. 

This work also tries to address the most common drawback of chemotherapy – side effects. The 

use of DNA damaging drugs, including etoposide, is associated with increased risk of secondary 

leukemia because of chromosomal aberrations (Ezoe, 2012; Kollmannsberger et al., 1998). Hence, 

it is crucial to formulate the combination partners which don’t raise the risk further. My primary 

investigation using DSB marker gH2A.X revealed that none of the combination partners elevated 

the DNA damage compared to etoposide alone. Moreover, the inhibitor GDC-0152 targeting BIR 

protein reduced the amount of DNA damage caused by etoposide alone. GDC-0152 targets the 

anti-apoptotic BIR family proteins and hence most likely triggers the apoptotic pathways 

effectively in combination with etoposide. 

6.6 Limitations and perspective 

Utilizing etoposide-evoked GEC, I have demonstrated a unique pipeline to identify its specific 

targets and combination partners. However, this has certain limitations and caveats, beginning with 

the assumption of gene expression reflecting protein expression. While this assumption is 
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generally true, the expression and activity levels of some proteins are regulated without changes 

in the RNA expression level. Nevertheless, all potential drivers selected for validation displayed 

standalone toxicity or modified that of etoposide. Altogether, using transcriptome data is 

sufficiently sensitive and specific to detect and confirm cytotoxicity drivers worth further 

exploration in animal models and in the clinic. 

Furthermore, it seems that some drivers serve as markers of, additional, undetected drivers. For 

example, inhibiting the etoposide modulator BCL2A1 with sabutoclax caused cytotoxicity in all 

AML cells. In contrast, a shRNA-mediated knockdown of BCL2A1 in HL-60 cells had no effect. 

Additional members of the Bcl2 family may have contributed to the effect of sabutoclax, a pan-

Bcl2 inhibitor. shRNA-mediated knockdowns did confirm the specific involvements of IGF1R 

and ROCK1. On the other hand, results using chemical inhibitors are clinically more relevant. 

Especially drivers like BCL2A1 and PARP9, which showed relevance for AML patients, exhibit 

high potential and are currently under clinical investigation. Nevertheless, if possible, putative 

drivers should undergo verification both by genetic and pharmacological means. 

Even though drug evoked GEC are found to be ideal for retrospective identification of cytotoxicity 

drivers, they are impossible to obtain in advance from cancer patients. However, it would be 

possible to model these GEC by applying machine learning to high throughput genomics data. The 

next generation CMap is an example of such efforts, which extrapolate the genome-wide GEC 

based-on expression change in 1000 genes using machine learning. Considering numerous 

ongoing big data initiatives including Cancer Cell Line Encyclopedia (CCLE), Genomics of Drug 

Sensitivity in Cancer (GDSC), Connectivity Map (CMap), project DREAM, and Cancer Target 

Discovery and Development (CTD2), the drug-evoked changes could be predicted in patient 

beforehand to optimize the treatment for maximum efficacy with least side-effects. 
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8 Appendix 
 

Appendix table 1: All siRNAs sequences used in this work. The Project Achilles (PAch) database was used to identify 

siRNA targeting selected mediator genes. 

Target siRNA sequence 

ANLN UGCUGGAGCGAACCCGUGCC 

CDC20 ACAGAGGAUAUAUAUUCCCC 

CDK6 AGUUCAGAUGUUGAUCAACU 

DLGAP5 GAUGUUCGAGCAAUCCGACC 

FOXM1 AUAGCCUAUCCAACAUCCAG 

IGF2B CACCACUGCCGUCUCACUCU 

KIF20A CCCCUGCCGUCAUGUCGCAA 

MCM6 GAGUUUACCCUUACCUGUGU 

MED1 UAAGCUUGUGCGUCAAGUCA 

NCAPD2 CACGUUCUGCUAGUUCUGUC 

PFKP CGUCCCCGCCGAUCACACAC 

RPA2 GCCGCCGGCUCCCCCGUAUG 

SLC7A5 UACAGCGGCCUCUUUGCCUA 

TOPBP1 UGUCUUUGAUCACCUCAAAA 

TPX2 AUUGUCACACCUUUGAAACC 

YWHAH AAGCGACCUCUGCUAAGUAG 
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Appendix table 2: List of primers used for gene expression quantification using SYBR green qPCR. 

Gene 5' - 3' 3' - 5' 

ANLN TCTGACATTCACTACTACATTTACTCTGC GCCATGACTGAAGAATGAATGTTG 

BCL2A1 CAGGAGAATGGATAAGGCAAA CCAGCCAGATTTAGGTTCAAA 

BIRC5 CCACCGCATCTCTACATTCA TATGTTCCTCTATGGGGTCG 

CDC20 GGCACCAGTGATCGACACATTCGCAT GCCATAGCCTCAGGGTCTCATCTGCT 

CDK6 TGGAGACCTTCGAGCACC CACTCCAGGCTCTGGAACTT 

CENPF TACTGAGTTTGAGCCAGAGGGACT CATGGTTGTTCTTCGCAGGATAT 

DLGAP5 GGAAGACCTGCCAAAAATGTAG TGTGCCAAAATTTCTTTTGTTG 

FOSL1 GGGCATGTTCCGACACTT CCACTCATGGTGTTGATGCT 

FOXM1 GGAGGCAGCGACAGGTTAAGG GTTGATGGCGAATTGTATCATGG 

HDAC6 TGGCTATTGCATGTTCAACC TCGAAGGTGAACTGTGTTCCT 

HMGA2 AAGTTGTTCAGAAGAAGCCTGCTCA TGGAAAGACCATGGCAATACAGAAT 

IGF1R GCCACTACTACTATGCCGGTG GTGCATCCTTGGAGCATCT 

IGF2BP1 GCGGCCAGTTCTTGGTCAA TTGGGCACCGAATGTTCAATC 

KIF20A CTACAAGCACCCAAGGACTCTT AGATGGAGAAGCGAATGTTTG 

MCM6 TGGTGGCATCAATGGTCATG TTAAGGAGGCTTTGGGAGCA 

MED1 TGCGTCAAGTCATGGAGAAG CCACTGGCACTGAGATGAGA 

NCAPD2 TGGAGGGGTGAATCAGTATGT GCGGGATACCACTTTTATCAGG 

PARP9 GCAAAGAGGTCCAAGATGCT CCTCACACATCTCTTCCACGT 

PFKP GCATGGGTATCTACGTGGGG CTCTGCGATGTTTGAGCCTC 

PLAU CACGCAAGGGGAGATGAA ACAGCATTTTGGTGGTGACTT 

ROCK1 AAAGAAAGGATGGAGGATGAAGT TGTAACAACAGCCGCTTATTTG 

RPA2 GCACCTTCTCAAGCCGAAAA CAGCTGACATATAGTACAGGGCACAA 

SLC7A5 GCTGGTGTACGTGCTGACC GCCCAGGTGATAGTTCCCG 

TOPBP1 TGTGACCCTTTTAGTGGCGTT CTTGGGACACATGGCTGG 

TPX2 CCAGACCTTGCCCTACTAAGATT AATGTGGCACAGGTTGAGC 

YWHAH CGCTATGAAGGCGGTGAC TGCTAATGACCCTCCAGGAA 
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Appendix figure 1: Mean quality scores for all RNA-Seq raw reads from AML cell lines. 

 

 

Appendix figure 2: GC content in the raw RNA-Seq reads from AML cell lines. 
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Appendix table 3: Percentage of reads mapped to the human reference genome hg38. 

Sample Name % Aligned Million Aligned 

F36P_CTR_1 87.70% 21 

F36P_CTR_2 87.30% 21.4 

F36P_CTR_3 88.50% 22.6 

F36P_ETP_2 87.70% 21 

F36P_ETP_3 88.50% 21.9 

HL60_CTR_1 87.30% 22.9 

HL60_CTR_2 87.00% 22.8 

HL60_CTR_3 87.00% 20.8 

HL60_ETP_1 87.30% 21 

HL60_ETP_2 86.90% 21.2 

HL60_ETP_3 86.70% 23 

KASUMI1_CTR_1 87.20% 23.8 

KASUMI1_CTR_2 87.00% 23.1 

KASUMI1_CTR_3 86.60% 21.9 

KASUMI1_ETP_1 86.80% 24.7 

KASUMI1_ETP_2 85.50% 23 

KASUMI1_ETP_3 86.40% 23.5 

MOLM13_CTR_1 87.20% 22.9 

MOLM13_CTR_2 86.90% 22.6 

MOLM13_CTR_3 87.10% 22.7 

MOLM13_ETP_1 85.20% 20.5 

MOLM13_ETP_2 85.60% 22.5 

MOLM13_ETP_3 85.40% 22.5 

MONOMAC6_CTR_1 89.10% 23 

MONOMAC6_CTR_2 88.90% 23.6 

MONOMAC6_CTR_3 89.00% 24 

MONOMAC6_ETP_1 88.50% 24.4 

MONOMAC6_ETP_2 88.20% 23.3 

MONOMAC6_ETP_3 88.50% 24.9 

MV411_CTR_1 88.00% 22.7 

MV411_CTR_2 87.90% 20.9 

MV411_CTR_3 88.00% 22.9 

MV411_ETP_3 87.90% 26.2 

NB4_CTR_1 88.70% 23.9 

NB4_CTR_2 88.30% 22.1 

NB4_CTR_3 87.80% 21.1 

NB4_ETP_1 87.60% 24.2 

NB4_ETP_2 87.10% 22.5 

NB4_ETP_3 86.90% 22.8 

NOMO1_CTR_1 88.20% 22.7 

NOMO1_CTR_2 88.00% 23.5 
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NOMO1_CTR_3 88.10% 21.5 

NOMO1_ETP_1 88.10% 21.8 

NOMO1_ETP_2 88.00% 22.1 

NOMO1_ETP_3 88.40% 22.2 

OCIAML2_CTR_1 87.70% 23.8 

OCIAML2_CTR_2 87.70% 22 

OCIAML2_CTR_3 87.40% 22.2 

OCIAML2_ETP_3 87.50% 21.2 

OCIAML3_CTR_1 89.00% 23.1 

OCIAML3_CTR_2 88.80% 22.8 

OCIAML3_CTR_3 88.60% 23.8 

OCIAML3_ETP_1 89.00% 24.1 

OCIAML3_ETP_2 89.00% 25.2 

OCIAML3_ETP_3 88.80% 24.8 

THP1_CTR_1 88.00% 22 

THP1_CTR_2 87.10% 22.7 

THP1_CTR_3 87.60% 21.8 

THP1_ETP_1 88.00% 23.8 

THP1_ETP_2 87.40% 22.3 

THP1_ETP_3 87.30% 24.3 
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Appendix table 4: Standalone cytotoxicity of the drugs inhibiting selected drivers in AML cell line. Cells were treated with 3 concentrations of each drug for 24 hours. Two-way 

ANOVA with Benjamini and Hochberg FDR correction test was performed to determine significant standalone cytotoxicity 

Drug 

(driver) 

Treatment 

concentratio

n (µM) 

Mean 

differenc

e 

q value 

F-36P HL-60 
KASUMI

-1 

MOLM

-13 

MONO

-MAC-6 

MV-4-

11 
NB-4 

NOMO

-1 

OCI-

AML2 

OCI-

AML3 
THP-1 

GDC-0152 

(BIRC5) 

10 10.68 0.9717 0.4994 0.5955 0.8723 0.8661 0.3159 0.2301 0.6627 0.2204 0.0408 0.1738 

0.1 1.532 0.9717 0.5612 0.5955 0.7171 0.8943 0.8857 0.2777 0.9505 0.3106 0.0408 0.9151 

0.001 -1.963 0.9717 0.83 0.8623 0.7191 0.8943 0.7337 0.8791 0.8579 0.12 0.0291 0.7585 

GSK-

1838705A 

(IGF1R) 

10 85.3 
<0.000

1 

<0.000

1 
<0.0001 0.1719 0.3331 

<0.000

1 

<0.000

1 
<0.0001 

<0.000

1 

<0.000

1 

<0.000

1 

0.1 4.08 0.9717 0.0041 0.5574 0.9473 0.8661 0.7337 0.7725 0.3015 0.2204 0.0169 0.9515 

0.001 3.502 0.9717 0.5541 0.6986 0.8 0.8661 0.7515 0.9004 0.4933 0.537 0.0549 0.719 

LY-3039478 

(NOTCH1) 

10 -2.693 0.9717 0.4994 0.7399 0.7171 0.8661 0.9605 0.0652 0.5825 0.796 0.0108 0.719 

0.1 1.129 0.9717 0.2832 0.6941 0.7171 0.8661 0.9124 0.0306 0.5421 0.8944 0.0096 0.719 

0.001 -4.146 0.9717 0.1466 0.7682 0.7519 0.8661 0.906 0.602 0.4933 0.8298 0.0035 0.719 

Nicotinamid

e (PARP9) 

10 -4.48 0.9717 0.5399 0.5955 0.7171 0.8661 0.7337 0.7725 0.9576 0.9715 0.2969 0.7856 

0.1 -6.55 0.9717 0.4416 0.5955 0.7191 0.8943 0.9605 0.8871 0.8015 0.5624 0.742 0.719 

0.001 -8.173 0.9717 0.9966 0.5574 0.6617 0.8661 0.7337 0.1449 0.7631 0.3182 0.7829 0.9151 

Rapamycin 

(mTOR) 

10 9.511 0.9717 
<0.000

1 
0.0065 0.2481 0.8661 0.6897 0.0198 0.0375 

<0.000

1 

<0.000

1 
0.0006 

0.1 3.771 0.9717 0.0003 0.0205 0.7036 0.8943 0.7337 0.2301 0.3861 0.1208 
<0.000

1 
0.719 

0.001 7.931 0.9717 0.0091 0.0602 0.7225 0.8661 0.9605 0.2056 0.3695 0.1273 
<0.000

1 
0.719 

Rockout 

(ROCK1) 

10 1.961 0.9717 0.0663 0.59 0.7876 0.8661 0.9558 0.1748 0.3015 0.0264 0.0062 0.0255 

0.1 -6.848 0.9717 0.8752 0.5955 0.7171 0.8943 0.9693 0.3002 0.9576 0.0104 0.3993 0.719 

0.001 1.646 0.9717 0.6357 0.5574 0.5752 0.8661 0.9605 0.8791 0.9576 0.0264 0.0266 0.719 

Sabutoclax 

(BCL2A1) 

10 42.76 0.0007 
<0.000

1 
<0.0001 0.0192 0.0003 

<0.000

1 

<0.000

1 
<0.0001 

<0.000

1 

<0.000

1 

<0.000

1 

0.1 -1.232 0.9717 0.6357 0.8634 0.8073 0.8943 0.8636 0.1748 0.5421 0.9976 0.1612 0.719 

0.001 -5.607 0.9717 0.5052 0.5955 0.7171 0.8661 0.7941 0.2301 0.6471 0.9887 0.0744 0.1215 

Sotrastaurin 

(PRKCH) 

10 29.98 0.0292 
<0.000

1 
<0.0001 0.0109 0.7467 0.0008 0.1748 0.3861 

<0.000

1 

<0.000

1 
0.9594 

0.1 6.969 0.9717 0.6734 0.5955 0.9699 0.8661 0.5377 0.7543 0.86 0.001 0.0549 0.719 

0.001 6.241 0.9717 0.7203 0.5574 0.7171 0.8661 0.5377 0.7725 0.8579 0.0375 0.0549 0.9151 

TWS-119 

(MYC) 

10 31.54 0.0233 
<0.000

1 
<0.0001 0.0087 0.2445 

<0.000

1 

<0.000

1 
<0.0001 

<0.000

1 

<0.000

1 
0.0152 

0.1 -1.689 0.9717 0.83 0.0277 0.8723 0.8661 0.906 0.8791 0.8579 0.2239 0.0928 0.9594 

0.001 1.202 0.9717 0.83 0.5955 0.8723 0.8661 0.8857 0.8791 0.9649 0.6895 0.1425 0.719 
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Volasertib 

(PLK1) 

10 83.03 
<0.000

1 

<0.000

1 
<0.0001 0.0008 <0.0001 

<0.000

1 

<0.000

1 
<0.0001 

<0.000

1 

<0.000

1 

<0.000

1 

0.1 21.08 0.255 
<0.000

1 
<0.0001 0.0192 0.8661 0.0001 

<0.000

1 
<0.0001 

<0.000

1 

<0.000

1 
0.1596 

0.001 14.07 0.8191 0.0149 0.9294 0.2001 0.8661 0.7337 0.8791 0.0015 0.4652 
<0.000

1 
0.719 

Vorinostat 

(HDAC) 

10 64.95 
<0.000

1 

<0.000

1 
<0.0001 0.0225 0.9508 

<0.000

1 

<0.000

1 
0.0089 

<0.000

1 

<0.000

1 
0.1596 

0.1 -9.609 0.9717 0.0177 0.7682 0.5752 0.8661 0.7674 0.997 0.9649 0.8731 0.9865 0.906 

0.001 -7.394 0.9717 0.3912 0.9294 0.4114 0.8661 0.906 0.8791 0.7631 0.9388 0.9865 0.719 
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Appendix table 5: Synergy with etoposide of the drugs inhibiting selected drivers in AML cell line. Cells were treated with 3 concentrations of each drug in combination with IC25 

concentration of etoposide for 24 hours. Combination index (CI) was calculated to determine either synergistic (CI<1), additive (CI=1), or antagonist (CI>1) effects.  

Drug 

(driver) 

Treatment 

concentration 

(µM) 

Combination index (CI) 

F-

36P 

HL-

60 
KASUMI-1 

MOLM-

13 

MONO-

MAC-6 

MV-

4-11 

NB-

4 
NOMO-1 

OCI-

AML2 

OCI-

AML3 

THP-

1 

GDC-0152 

(BIRC5) 

10 0.7 0.9 1.1 0.9 1.0 1.4 0.9 1.4 1.3 1.3 1.2 
0.1 0.7 0.9 1.1 0.8 0.8 1.2 1.0 1.0 1.1 1.3 0.8 

0.001 0.8 0.7 1.0 0.7 0.8 1.2 1.0 0.8 1.0 1.2 0.8 

GSK-

1838705A 

(IGF1R) 

10 1.4 1.0 1.2 1.4 1.3 1.6 0.5 1.3 1.3 1.5 0.8 

0.1 1.2 1.4 1.1 1.2 1.4 1.3 0.9 1.2 1.4 1.4 0.7 

0.001 1.3 1.5 1.5 1.1 1.3 1.4 1.2 1.3 1.4 1.6 1.2 

LY-3039478 

(NOTCH1) 

10 3.2 1.2 1.3 0.7 1.3 1.3 1.0 1.3 1.1 1.6 1.3 
0.1 1.3 1.2 1.2 0.8 1.1 1.2 1.8 1.3 1.1 1.5 1.3 

0.001 10.3 1.3 1.3 0.8 1.1 1.5 1.2 1.3 1.1 1.7 0.8 

Nicotinamide 

(PARP9) 

10 1.0 1.0 1.2 0.9 1.5 1.9 1.2 2.3 1.3 1.2 1.0 

0.1 0.8 1.1 1.2 0.8 1.1 0.6 0.7 1.4 0.9 1.0 0.9 

0.001 0.6 1.1 1.0 0.8 1.3 0.6 0.7 0.9 0.9 1.0 0.8 

Rapamycin 

(mTOR) 

10 1.8 1.3 1.6 0.9 1.4 0.5 1.2 1.4 1.5 1.3 1.1 
0.1 1.1 1.6 1.6 0.9 1.1 1.0 2.3 1.1 1.5 1.2 0.9 

0.001 1.9 1.4 1.4 1.1 1.0 0.8 1.0 0.9 1.1 1.3 1.1 

Rockout 

(ROCK1) 

10 1.0 0.9 1.2 0.7 0.8 0.7 1.2 0.8 1.4 1.4 1.1 
0.1 1.2 0.7 1.3 1.1 0.9 0.5 1.3 0.7 1.4 1.6 1.0 

0.001 1.1 1.0 1.3 0.6 1.0 0.7 1.5 1.1 1.3 1.5 1.3 

Sabutoclax 

(BCL2A1) 

10 - 1.1 1.8 0.8 1.2 1.4 1.5 1.4 1.1 1.6 1.7 
0.1 - 1.3 1.5 0.9 1.1 1.3 1.5 1.7 1.3 1.4 1.6 

0.001 1.2 1.5 1.6 1.3 1.5 1.4 1.3 1.4 1.6 1.6 1.3 

Sotrastaurin 

(PRKCH) 

10 1.4 1.1 1.2 0.9 1.3 1.4 1.5 1.4 1.4 1.3 0.8 

0.1 1.1 1.0 1.2 0.7 1.0 1.5 1.1 1.1 1.5 1.3 0.8 

0.001 1.3 1.5 1.5 1.2 1.2 1.3 1.2 0.8 1.2 1.6 0.6 

TWS-119 

(MYC) 

10 1.6 0.9 1.4 1.1 1.4 1.2 1.0 1.1 1.4 1.4 0.8 

0.1 4.3 1.3 1.5 1.2 1.4 1.2 1.7 1.4 1.6 1.3 1.1 
0.001 4.4 2.8 1.6 1.3 1.4 1.5 1.9 3.6 1.6 2.1 1.4 

Volasertib 

(PLK1) 

10 20.1 1.3 1.1 1.2 1.4 2.6 0.5 3.0 1.7 1.5 1.2 
0.1 2.8 2.3 2.0 2.0 2.0 15.2 2.0 5.2 1.8 3.0 1.4 

0.001 1.3 1.4 1.6 1.2 1.4 1.2 1.2 1.3 1.3 1.4 1.4 

Vorinostat 

(HDAC) 

10 1.3 1.1 1.1 0.7 1.7 0.6 0.7 1.1 0.9 0.9 0.9 

0.1 0.9 1.1 1.1 0.6 1.1 0.5 0.5 0.7 1.1 0.8 0.7 

0.001 1.1 1.4 1.5 1.1 0.6 1.2 1.1 0.7 1.2 1.2 0.8 
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R script developed in this work for comprehensive analysis of RNA-Seq data 

 
#' --- 

#' title: "AML_VP16_RNA-Seq-2017_edgeR" 

#' author: "Piyush More" 

#' date: "September 1st, 2017" 

#' output: html_document 

#' --- 

 

library(edgeR) 

library(Homo.sapiens) 

 

setwd("/media/piyush/372429ff-0d6e-45d6-b529-527e3fb69028/RNA-

seq/AML_IMB_2017/Analysis/STAR/Gene_counts/edgeR") 

 

# Read individual count files (.tab) into edgeR 

files <- dir(pattern="*\\.tab$") 

 

# Remove OCIAML2 samples 

files <- files[ !grepl("OCIAML2", files) ] 

 

# While loading counts define the groups 

RG <- readDGE(files, columns = c(1,2), sep = " ", group = rep(1:20, times = 1, length.out = 60, each = 3)) 

 

rownames(RG$samples) <- 

c("F36P_CTR_1","F36P_CTR_2","F36P_CTR_3","F36P_VP16_1","F36P_VP16_2","F36P_VP16_3","HL60_CTR

_1","HL60_CTR_2","HL60_CTR_3","HL60_VP16_1","HL60_VP16_2","HL60_VP16_3","Kasumi1_CTR_1","Ka

sumi1_CTR_2","Kasumi1_CTR_3","Kasumi1_VP16_1","Kasumi1_VP16_2","Kasumi1_VP16_3","MOLM13_CT

R_1","MOLM13_CTR_2","MOLM13_CTR_3","MOLM13_VP16_1","MOLM13_VP16_2","MOLM13_VP16_3",

"MONOMAC6_CTR_1","MONOMAC6_CTR_2","MONOMAC6_CTR_3","MONOMAC6_VP16_1","MONOMA

C6_VP16_2","MONOMAC6_VP16_3","MV411_CTR_1","MV411_CTR_2","MV411_CTR_3","MV411_VP16_1

","MV411_VP16_2","MV411_VP16_3","NB4_CTR_1","NB4_CTR_2","NB4_CTR_3","NB4_VP16_1","NB4_VP

16_2","NB4_VP16_3","NOMO1_CTR_1","NOMO1_CTR_2","NOMO1_CTR_3","NOMO1_VP16_1","NOMO1_

VP16_2","NOMO1_VP16_3","OCIAML3_CTR_1","OCIAML3_CTR_2","OCIAML3_CTR_3","OCIAML3_VP1

6_1","OCIAML3_VP16_2","OCIAML3_VP16_3","THP1_CTR_1","THP1_CTR_2","THP1_CTR_3","THP1_VP1

6_1","THP1_VP16_2","THP1_VP16_3") 

 

colnames(RG$counts) <- 

c("F36P_CTR_1","F36P_CTR_2","F36P_CTR_3","F36P_VP16_1","F36P_VP16_2","F36P_VP16_3","HL60_CTR

_1","HL60_CTR_2","HL60_CTR_3","HL60_VP16_1","HL60_VP16_2","HL60_VP16_3","Kasumi1_CTR_1","Ka

sumi1_CTR_2","Kasumi1_CTR_3","Kasumi1_VP16_1","Kasumi1_VP16_2","Kasumi1_VP16_3","MOLM13_CT

R_1","MOLM13_CTR_2","MOLM13_CTR_3","MOLM13_VP16_1","MOLM13_VP16_2","MOLM13_VP16_3",

"MONOMAC6_CTR_1","MONOMAC6_CTR_2","MONOMAC6_CTR_3","MONOMAC6_VP16_1","MONOMA

C6_VP16_2","MONOMAC6_VP16_3","MV411_CTR_1","MV411_CTR_2","MV411_CTR_3","MV411_VP16_1

","MV411_VP16_2","MV411_VP16_3","NB4_CTR_1","NB4_CTR_2","NB4_CTR_3","NB4_VP16_1","NB4_VP

16_2","NB4_VP16_3","NOMO1_CTR_1","NOMO1_CTR_2","NOMO1_CTR_3","NOMO1_VP16_1","NOMO1_

VP16_2","NOMO1_VP16_3","OCIAML3_CTR_1","OCIAML3_CTR_2","OCIAML3_CTR_3","OCIAML3_VP1

6_1","OCIAML3_VP16_2","OCIAML3_VP16_3","THP1_CTR_1","THP1_CTR_2","THP1_CTR_3","THP1_VP1

6_1","THP1_VP16_2","THP1_VP16_3") 

 

RG$samples 

View(RG$counts) 

 

# Add gene annotation to the DGEList object 

geneid <- row.names(RG) 
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geneid <- substr(geneid, 1, 15) 

head(geneid) 

genes <- select(Homo.sapiens, keys=geneid, columns=c("ENTREZID", "SYMBOL", "TXCHROM", 

"DEFINITION", "OMIM"), keytype="ENSEMBL") 

head(genes) 

genes <- genes[!duplicated(genes$ENSEMBL),] 

head(genes) 

RG$genes <- genes 

y <- RG 

 

library("DESeq2") 

library("edgeR") 

library("hexbin") 

library("latticeExtra") 

library("vsn") 

library("gplots") 

library("RColorBrewer") 

library("topGO") 

library("gplots") 

library("genefilter") 

library("rtracklayer") 

library("xtable") 

library("GO.db") 

library("goseq") 

library("GenomicFeatures") 

library("pathview") 

library("NMF") 

library("pheatmap") 

library("GOplot") 

library(knitr) 

library("pcaExplorer") 

library(DT) 

library(ideal) 

library("dplyr") 

 

# Filter low counts: 3 are the minimum numbers of samples in each group and CPM 1 corresponds to counts of 6-7 

keep <- rowSums(cpm(y)>1) >= 3 

 

# Recalculate the library size 

y <- y[keep, , keep.lib.sizes=FALSE] 

 

# Create design for glm edgeR 

group <- factor(y$samples$group) 

group 

levels(y$samples$group) 

 

design <- model.matrix(~0+group, data=y$samples) 

design 

 

# DESeq object 

 

samplesDesign <- read.csv("/media/piyush/372429ff-0d6e-45d6-b529-527e3fb69028/RNA-

seq/AML_IMB_2017/Analysis/STAR/Gene_counts/DESeq2/sampleDesign_New2.csv", sep = ",", header = T, 

stringsAsFactors = F) 

dds <- DESeqDataSetFromMatrix(y$counts ,samplesDesign, design = ~ celltype + condition) 

colnames(dds) <- samplesDesign$sampleID 
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dds <- DESeq(dds) 

 

# Variance stabilizing transformation 

dds <- estimateSizeFactors(dds) 

baseMean <- rowMeans(counts(dds, normalized=TRUE)) 

sum(baseMean > 1) 

idx <- sample(which(baseMean > 5), 1000) 

dds.sub <- dds[idx, ] 

dds.sub <- estimateDispersions(dds.sub) 

dispersionFunction(dds) <- dispersionFunction(dds.sub) 

vsd <- varianceStabilizingTransformation(dds, blind=FALSE) 

 

colnames(vsd) <- 

c("F36P_CTR_1","F36P_CTR_2","F36P_CTR_3","F36P_VP16_1","F36P_VP16_2","F36P_VP16_3","HL60_CTR

_1","HL60_CTR_2","HL60_CTR_3","HL60_VP16_1","HL60_VP16_2","HL60_VP16_3","Kasumi1_CTR_1","Ka

sumi1_CTR_2","Kasumi1_CTR_3","Kasumi1_VP16_1","Kasumi1_VP16_2","Kasumi1_VP16_3","MOLM13_CT

R_1","MOLM13_CTR_2","MOLM13_CTR_3","MOLM13_VP16_1","MOLM13_VP16_2","MOLM13_VP16_3",

"MONOMAC6_CTR_1","MONOMAC6_CTR_2","MONOMAC6_CTR_3","MONOMAC6_VP16_1","MONOMA

C6_VP16_2","MONOMAC6_VP16_3","MV411_CTR_1","MV411_CTR_2","MV411_CTR_3","MV411_VP16_1

","MV411_VP16_2","MV411_VP16_3","NB4_CTR_1","NB4_CTR_2","NB4_CTR_3","NB4_VP16_1","NB4_VP

16_2","NB4_VP16_3","NOMO1_CTR_1","NOMO1_CTR_2","NOMO1_CTR_3","NOMO1_VP16_1","NOMO1_

VP16_2","NOMO1_VP16_3","OCIAML3_CTR_1","OCIAML3_CTR_2","OCIAML3_CTR_3","OCIAML3_VP1

6_1","OCIAML3_VP16_2","OCIAML3_VP16_3","THP1_CTR_1","THP1_CTR_2","THP1_CTR_3","THP1_VP1

6_1","THP1_VP16_2","THP1_VP16_3") 

 

library(pheatmap) 

pheatmap(as.matrix(dist(t(assay(vsd))))) 

dev.print(pdf, './edgeR_Results/AML-global_pheatmap.pdf', width = 12, height = 12) 

 

library(pcaExplorer) 

pcaplot(vsd, title = "pcaplot - global", ellipse = F) 

dev.print(pdf, './edgeR_Results/AML_pca_global.pdf', width = 12, height = 12) 

pcaplot(vsd, intgroup = "celltype", title = "pcaplot celltype - global", ellipse = F) 

dev.print(pdf, './edgeR_Results/AML_pca_global_celltype.pdf', width = 12, height = 12) 

 

# Sample distances  

sampleDists <- dist( t( assay(vsd) ) ) 

library("gplots") 

library("RColorBrewer") 

sampleDistMatrix <- as.matrix( sampleDists ) 

rownames(sampleDistMatrix) <- colnames(y$counts) 

colors <- colorRampPalette( rev(brewer.pal(9, "Blues")) )(255) 

hc <- hclust(sampleDists) 

heatmap.2( sampleDistMatrix, Rowv=as.dendrogram(hc), 

           symm=TRUE, trace="none", col=colors, 

           margins=c(2,10), labCol=FALSE ) 

dev.print(pdf, './edgeR_Results/AML-global_heatmap.pdf', width = 12, height = 12) 

 

# PCA plot 

z <- plotPCA(vsd, intgroup = "condition") 

nudge <- position_nudge(y = 2) 

z + geom_label(aes(label = name), position = nudge) 

dev.print(pdf, './edgeR_Results/AML_pca.pdf', width = 12, height = 12) 

(data <- plotPCA(vsd, intgroup = "condition", returnData=TRUE)) 

percentVar <- round(100 * attr(data, "percentVar")) 

library("ggplot2") 
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qplot(PC1, PC2, color=condition, shape=name, data=data) + 

  xlab(paste0("PC1: ",percentVar[1],"% variance")) + 

  ylab(paste0("PC2: ",percentVar[2],"% variance")) 

 

# Calculate library normalization factor 

y <- calcNormFactors(y) 

 

# MDS plot to identify outliers 

plotMDS(y, col = rainbow(22)) 

dev.print(pdf, './edgeR_Results/AML-global_MDS_plot.pdf', width = 12, height = 12) 

y <- estimateDisp(y, design) 

plotMeanVar(y, show.tagwise.vars = TRUE, NBline = TRUE) 

dev.print(pdf, './edgeR_Results/AML-global_mean_var.pdf') 

plotBCV(y) 

dev.print(pdf, './edgeR_Results/AML-global_BCV.pdf', width = 12, height = 12) 

fit <- glmFit(y, design) 

 

# Make all contrasts together 

my.contrasts <- makeContrasts(f36p=group2-group1, hl60=group4-group3, kasumi1=group6-group5, 

molm13=group8-group7, monomac6=group10-group9, mv411=group12-group11, nb4=group14-group13, 

nomo1=group16-group15, ociaml3=group18-group17, thp1=group20-group19, levels = design) 

my.contrasts 

my.contrasts2 <- makeContrasts(resistant=group2-group8, resistant.ctr=group1-group7, levels = design) 

my.contrasts2 

 

# Differential expression 

f36p.vp16.VS.ctr <- glmLRT(fit, contrast = my.contrasts[,"f36p"]) 

hl60.vp16.VS.ctr <- glmLRT(fit, contrast = my.contrasts[,"hl60"]) 

kasumi1.vp16.VS.ctr <- glmLRT(fit, contrast = my.contrasts[,"kasumi1"]) 

molm13.vp16.VS.ctr <- glmLRT(fit, contrast = my.contrasts[,"molm13"]) 

monomac6.vp16.VS.ctr <- glmLRT(fit, contrast = my.contrasts[,"monomac6"]) 

mv411.vp16.VS.ctr <- glmLRT(fit, contrast = my.contrasts[,"mv411"]) 

nb4.vp16.VS.ctr <- glmLRT(fit, contrast = my.contrasts[,"nb4"]) 

nomo1.vp16.VS.ctr <- glmLRT(fit, contrast = my.contrasts[,"nomo1"]) 

ociaml3.vp16.VS.ctr <- glmLRT(fit, contrast = my.contrasts[,"ociaml3"]) 

thp1.vp16.VS.ctr <- glmLRT(fit, contrast = my.contrasts[,"thp1"]) 

f36p.vp16.VS.molm13.vp16 <- glmLRT(fit, contrast = my.contrasts2[,"resistant"]) 

f36p.VS.molm13.ctr <- glmLRT(fit, contrast = my.contrasts2[,"resistant.ctr"]) 

 

# Filter top DEG according to FDR 

res_f36p.vp16.VS.ctr <- topTags(f36p.vp16.VS.ctr, n = nrow(f36p.vp16.VS.ctr), sort.by = "PValue", p.value = 0.05) 

res_hl60.vp16.VS.ctr <- topTags(hl60.vp16.VS.ctr, n = nrow(hl60.vp16.VS.ctr), sort.by = "PValue", p.value = 0.05) 

res_kasumi1.vp16.VS.ctr <- topTags(kasumi1.vp16.VS.ctr, n = nrow(kasumi1.vp16.VS.ctr), sort.by = "PValue", 

p.value = 0.05) 

res_molm13.vp16.VS.ctr <- topTags(molm13.vp16.VS.ctr, n = nrow(molm13.vp16.VS.ctr), sort.by = "PValue", 

p.value = 0.05) 

res_monomac6.vp16.VS.ctr <- topTags(monomac6.vp16.VS.ctr, n = nrow(monomac6.vp16.VS.ctr), sort.by = 

"PValue", p.value = 0.05) 

res_mv411.vp16.VS.ctr <- topTags(mv411.vp16.VS.ctr, n = nrow(mv411.vp16.VS.ctr), sort.by = "PValue", p.value 

= 0.05) 

res_nb4.vp16.VS.ctr <- topTags(nb4.vp16.VS.ctr, n = nrow(nb4.vp16.VS.ctr), sort.by = "PValue", p.value = 0.05) 

res_nomo1.vp16.VS.ctr <- topTags(nomo1.vp16.VS.ctr, n = nrow(nomo1.vp16.VS.ctr), sort.by = "PValue", p.value 

= 0.05) 

res_ociaml3.vp16.VS.ctr <- topTags(ociaml3.vp16.VS.ctr, n = nrow(ociaml3.vp16.VS.ctr), sort.by = "PValue", 

p.value = 0.05) 

res_thp1.vp16.VS.ctr <- topTags(thp1.vp16.VS.ctr, n = nrow(thp1.vp16.VS.ctr), sort.by = "PValue", p.value = 0.05) 



105        Appendix 

 

res_f36p.vp16.VS.molm13.vp16 <- topTags(f36p.vp16.VS.molm13.vp16, n = nrow(f36p.vp16.VS.molm13.vp16), 

sort.by = "PValue", p.value = 0.05) 

res_f36p.VS.molm13.ctr <- topTags(f36p.VS.molm13.ctr, n = nrow(f36p.VS.molm13.ctr), sort.by = "PValue", 

p.value = 0.05) 

 

# Filter DEG with logFC >= |1| 

keep_f36p <- abs(res_f36p.vp16.VS.ctr$table$logFC) >= 1 

res_f36p.vp16.VS.ctr <- res_f36p.vp16.VS.ctr[keep_f36p, ] 

keep_hl60 <- abs(res_hl60.vp16.VS.ctr$table$logFC) >= 1 

res_hl60.vp16.VS.ctr <- res_hl60.vp16.VS.ctr[keep_hl60, ] 

keep_kasumi1 <- abs(res_kasumi1.vp16.VS.ctr$table$logFC) >= 1 

res_kasumi1.vp16.VS.ctr <- res_kasumi1.vp16.VS.ctr[keep_kasumi1, ] 

keep_molm13 <- abs(res_molm13.vp16.VS.ctr$table$logFC) >= 1 

res_molm13.vp16.VS.ctr <- res_molm13.vp16.VS.ctr[keep_molm13, ] 

keep_monomac6 <- abs(res_monomac6.vp16.VS.ctr$table$logFC) >= 1 

res_monomac6.vp16.VS.ctr <- res_monomac6.vp16.VS.ctr[keep_monomac6, ] 

keep_mv411 <- abs(res_mv411.vp16.VS.ctr$table$logFC) >= 1 

res_mv411.vp16.VS.ctr <- res_mv411.vp16.VS.ctr[keep_mv411, ] 

keep_nb4 <- abs(res_nb4.vp16.VS.ctr$table$logFC) >= 1 

res_nb4.vp16.VS.ctr <- res_nb4.vp16.VS.ctr[keep_nb4, ] 

keep_nomo1 <- abs(res_nomo1.vp16.VS.ctr$table$logFC) >= 1 

res_nomo1.vp16.VS.ctr <- res_nomo1.vp16.VS.ctr[keep_nomo1, ] 

keep_ociaml3 <- abs(res_ociaml3.vp16.VS.ctr$table$logFC) >= 1 

res_ociaml3.vp16.VS.ctr <- res_ociaml3.vp16.VS.ctr[keep_ociaml3, ] 

keep_thp1 <- abs(res_thp1.vp16.VS.ctr$table$logFC) >= 1 

res_thp1.vp16.VS.ctr <- res_thp1.vp16.VS.ctr[keep_thp1, ] 

keep_resistant <- abs(res_f36p.vp16.VS.molm13.vp16$table$logFC) >= 1 

res_f36p.vp16.VS.molm13.vp16 <- res_f36p.vp16.VS.molm13.vp16[keep_resistant, ] 

keep_resistant.ctr <- abs(res_f36p.VS.molm13.ctr$table$logFC) >= 1 

res_f36p.VS.molm13.ctr <- res_f36p.VS.molm13.ctr[keep_resistant.ctr, ] 

 

plotMD(f36p.vp16.VS.ctr) 

abline(h=c(-1, 1), col="blue") 

dev.print(pdf, 'f36p_MD_plot.pdf') 

plotMD(hl60.vp16.VS.ctr) 

abline(h=c(-1, 1), col="blue") 

dev.print(pdf, 'hl60_MD_plot.pdf') 

plotMD(kasumi1.vp16.VS.ctr) 

abline(h=c(-1, 1), col="blue") 

dev.print(pdf, 'kasumi1_MD_plot.pdf') 

plotMD(molm13.vp16.VS.ctr) 

abline(h=c(-1, 1), col="blue") 

dev.print(pdf, 'molm13_MD_plot.pdf') 

plotMD(monomac6.vp16.VS.ctr) 

abline(h=c(-1, 1), col="blue") 

dev.print(pdf, 'monomac6_MD_plot.pdf') 

plotMD(mv411.vp16.VS.ctr) 

abline(h=c(-1, 1), col="blue") 

dev.print(pdf, 'mv411_MD_plot.pdf') 

plotMD(nb4.vp16.VS.ctr) 

abline(h=c(-1, 1), col="blue") 

dev.print(pdf, 'nb4_MD_plot.pdf') 

plotMD(nomo1.vp16.VS.ctr) 

abline(h=c(-1, 1), col="blue") 

dev.print(pdf, 'nomo1_MD_plot.pdf') 

plotMD(ociaml3.vp16.VS.ctr) 
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abline(h=c(-1, 1), col="blue") 

dev.print(pdf, 'ociaml3_MD_plot.pdf') 

plotMD(thp1.vp16.VS.ctr) 

abline(h=c(-1, 1), col="blue") 

dev.print(pdf, 'thp1_MD_plot.pdf') 

plotMD(f36p.vp16.VS.molm13.vp16) 

abline(h=c(-1, 1), col="blue") 

dev.print(pdf, 'f36p_vs_molm13_vp16_MD_plot.pdf') 

plotMD(f36p.VS.molm13.ctr) 

abline(h=c(-1, 1), col="blue") 

dev.print(pdf, 'f36p_vs_molm13_ctr_MD_plot.pdf') 

 

# Inspect depth-adjusted reads per million for some top DEGs 

nc <- cpm(y, normalized.lib.sizes = TRUE) 

rn_f36p <- rownames(topTags(f36p.vp16.VS.ctr)$table) 

rn_hl60 <- rownames(topTags(hl60.vp16.VS.ctr)$table) 

rn_kasumi1 <- rownames(topTags(kasumi1.vp16.VS.ctr)$table) 

rn_molm13 <- rownames(topTags(molm13.vp16.VS.ctr)$table) 

rn_monomac6 <- rownames(topTags(monomac6.vp16.VS.ctr)$table) 

rn_mv411 <- rownames(topTags(mv411.vp16.VS.ctr)$table) 

rn_nb4 <- rownames(topTags(nb4.vp16.VS.ctr)$table) 

rn_nomo1 <- rownames(topTags(nomo1.vp16.VS.ctr)$table) 

rn_ociaml3 <- rownames(topTags(ociaml3.vp16.VS.ctr)$table) 

rn_thp1 <- rownames(topTags(thp1.vp16.VS.ctr)$table) 

rn_resistant <- rownames(topTags(f36p.vp16.VS.molm13.vp16)$table) 

rn_resistant.ctr <- rownames(topTags(f36p.VS.molm13.ctr)$table) 

 

# MA plot 

# F36P 

deg_f36p <- rn_f36p[topTags(f36p.vp16.VS.ctr)$table$FDR < .05] 

plotSmear(y, de.tags = deg_f36p, main = "F36P - VP16 VS Control") 

dev.print(pdf, './edgeR_Results/f36p_smear_plot.pdf') 

tt_f36p <- topTags(f36p.vp16.VS.ctr, n=nrow(y)) 

plot(-log10(PValue) ~ logFC, tt_f36p, pch=20) 

title(main = "F36P - VP16 VS Control") 

with(subset(tt_f36p$table, FDR < .05), points(logFC, -log10(PValue), col = "red")) 

with(subset(tt_f36p$table, abs(logFC) > 1), points(logFC, -log10(PValue),col = "orange")) 

with(subset(tt_f36p$table, FDR < 0.05 & abs(logFC) > 1), points(logFC, -log10(PValue), col = "green")) 

legend("topright", legend = c("FDR < 0.05", "logFC > 1", "Both"), pch = 16, col = c("red", "orange", "green")) 

dev.print(pdf, './edgeR_Results/f36p_volcano_plot.pdf') 

 

# HL60 

deg_hl60 <- rn_hl60[topTags(hl60.vp16.VS.ctr)$table$FDR < .05] 

plotSmear(y, de.tags = deg_hl60, main = "HL60 - VP16 VS Control") 

dev.print(pdf, './edgeR_Results/hl60_smear_plot.pdf') 

tt_hl60 <- topTags(hl60.vp16.VS.ctr, n=nrow(y)) 

plot(-log10(PValue) ~ logFC, tt_hl60, pch=20) 

title(main = "HL60 - VP16 VS Control") 

with(subset(tt_hl60$table, FDR < .05), points(logFC, -log10(PValue), col = "red")) 

with(subset(tt_hl60$table, abs(logFC) > 1), points(logFC, -log10(PValue),col = "orange")) 

with(subset(tt_hl60$table, FDR < 0.05 & abs(logFC) > 1), points(logFC, -log10(PValue), col = "green")) 

legend("topright", legend = c("FDR < 0.05", "logFC > 1", "Both"), pch = 16, col = c("red", "orange", "green")) 

dev.print(pdf, './edgeR_Results/hl60_volcano_plot.pdf') 

 

# KASUMI1 

deg_kasumi1 <- rn_kasumi1[topTags(kasumi1.vp16.VS.ctr)$table$FDR < .05] 
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plotSmear(y, de.tags = deg_kasumi1, main = "KASUMI1 - VP16 VS Control") 

dev.print(pdf, './edgeR_Results/kasumi1_smear_plot.pdf') 

tt_kasumi1 <- topTags(kasumi1.vp16.VS.ctr, n=nrow(y)) 

plot(-log10(PValue) ~ logFC, tt_kasumi1, pch=20) 

title(main = "KASUMI1 - VP16 VS Control") 

with(subset(tt_kasumi1$table, FDR < .05), points(logFC, -log10(PValue), col = "red")) 

with(subset(tt_kasumi1$table, abs(logFC) > 1), points(logFC, -log10(PValue),col = "orange")) 

with(subset(tt_kasumi1$table, FDR < 0.05 & abs(logFC) > 1), points(logFC, -log10(PValue), col = "green")) 

legend("topright", legend = c("FDR < 0.05", "logFC > 1", "Both"), pch = 16, col = c("red", "orange", "green")) 

dev.print(pdf, './edgeR_Results/kasumi1_volcano_plot.pdf') 

 

# MOLM13 

deg_molm13 <- rn_molm13[topTags(molm13.vp16.VS.ctr)$table$FDR < .05] 

plotSmear(y, de.tags = deg_molm13, main = "MOLM13 - VP16 VS Control") 

dev.print(pdf, './edgeR_Results/molm13_smear_plot.pdf') 

tt_molm13 <- topTags(molm13.vp16.VS.ctr, n=nrow(y)) 

plot(-log10(PValue) ~ logFC, tt_molm13, pch=20) 

title(main = "MOLM13 - VP16 VS Control") 

with(subset(tt_molm13$table, FDR < .05), points(logFC, -log10(PValue), col = "red")) 

with(subset(tt_molm13$table, abs(logFC) > 1), points(logFC, -log10(PValue),col = "orange")) 

with(subset(tt_molm13$table, FDR < 0.05 & abs(logFC) > 1), points(logFC, -log10(PValue), col = "green")) 

legend("topright", legend = c("FDR < 0.05", "logFC > 1", "Both"), pch = 16, col = c("red", "orange", "green")) 

dev.print(pdf, './edgeR_Results/molm13_volcano_plot.pdf') 

 

# MONOMAC6 

deg_monomac6 <- rn_monomac6[topTags(monomac6.vp16.VS.ctr)$table$FDR < .05] 

plotSmear(y, de.tags = deg_monomac6, main = "MONOMAC6 - VP16 VS Control") 

dev.print(pdf, './edgeR_Results/monomac6_smear_plot.pdf') 

tt_monomac6 <- topTags(monomac6.vp16.VS.ctr, n=nrow(y)) 

plot(-log10(PValue) ~ logFC, tt_monomac6, pch=20) 

title(main = "MONOMAC6 - VP16 VS Control") 

with(subset(tt_monomac6$table, FDR < .05), points(logFC, -log10(PValue), col = "red")) 

with(subset(tt_monomac6$table, abs(logFC) > 1), points(logFC, -log10(PValue),col = "orange")) 

with(subset(tt_monomac6$table, FDR < 0.05 & abs(logFC) > 1), points(logFC, -log10(PValue), col = "green")) 

legend("topright", legend = c("FDR < 0.05", "logFC > 1", "Both"), pch = 16, col = c("red", "orange", "green")) 

dev.print(pdf, './edgeR_Results/monomac6_volcano_plot.pdf') 

 

# MV411 

deg_mv411 <- rn_mv411[topTags(mv411.vp16.VS.ctr)$table$FDR < .05] 

plotSmear(y, de.tags = deg_mv411, main = "MV411 - VP16 VS Control") 

dev.print(pdf, './edgeR_Results/mv411_smear_plot.pdf') 

tt_mv411 <- topTags(mv411.vp16.VS.ctr, n=nrow(y)) 

plot(-log10(PValue) ~ logFC, tt_mv411, pch=20) 

title(main = "MV411 - VP16 VS Control") 

with(subset(tt_mv411$table, FDR < .05), points(logFC, -log10(PValue), col = "red")) 

with(subset(tt_mv411$table, abs(logFC) > 1), points(logFC, -log10(PValue),col = "orange")) 

with(subset(tt_mv411$table, FDR < 0.05 & abs(logFC) > 1), points(logFC, -log10(PValue), col = "green")) 

legend("topright", legend = c("FDR < 0.05", "logFC > 1", "Both"), pch = 16, col = c("red", "orange", "green")) 

dev.print(pdf, './edgeR_Results/mv411_volcano_plot.pdf') 

 

# NB4 

deg_nb4 <- rn_nb4[topTags(nb4.vp16.VS.ctr)$table$FDR < .05] 

plotSmear(y, de.tags = deg_nb4, main = "NB4 - VP16 VS Control") 

dev.print(pdf, './edgeR_Results/nb4_smear_plot.pdf') 

tt_nb4 <- topTags(nb4.vp16.VS.ctr, n=nrow(y)) 

plot(-log10(PValue) ~ logFC, tt_nb4, pch=20) 
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title(main = "NB4 - VP16 VS Control") 

with(subset(tt_nb4$table, FDR < .05), points(logFC, -log10(PValue), col = "red")) 

with(subset(tt_nb4$table, abs(logFC) > 1), points(logFC, -log10(PValue),col = "orange")) 

with(subset(tt_nb4$table, FDR < 0.05 & abs(logFC) > 1), points(logFC, -log10(PValue), col = "green")) 

legend("topright", legend = c("FDR < 0.05", "logFC > 1", "Both"), pch = 16, col = c("red", "orange", "green")) 

dev.print(pdf, './edgeR_Results/nb4_volcano_plot.pdf') 

 

# NOMO1 

deg_nomo1 <- rn_nomo1[topTags(nomo1.vp16.VS.ctr)$table$FDR < .05] 

plotSmear(y, de.tags = deg_nomo1, main = "NOMO1 - VP16 VS Control") 

dev.print(pdf, './edgeR_Results/nomo1_smear_plot.pdf') 

tt_nomo1 <- topTags(nomo1.vp16.VS.ctr, n=nrow(y)) 

plot(-log10(PValue) ~ logFC, tt_nomo1, pch=20) 

title(main = "NOMO1 - VP16 VS Control") 

with(subset(tt_nomo1$table, FDR < .05), points(logFC, -log10(PValue), col = "red")) 

with(subset(tt_nomo1$table, abs(logFC) > 1), points(logFC, -log10(PValue),col = "orange")) 

with(subset(tt_nomo1$table, FDR < 0.05 & abs(logFC) > 1), points(logFC, -log10(PValue), col = "green")) 

legend("topright", legend = c("FDR < 0.05", "logFC > 1", "Both"), pch = 16, col = c("red", "orange", "green")) 

dev.print(pdf, './edgeR_Results/nomo1_volcano_plot.pdf') 

 

# OCIAML3 

deg_ociaml3 <- rn_ociaml3[topTags(ociaml3.vp16.VS.ctr)$table$FDR < .05] 

plotSmear(y, de.tags = deg_ociaml3, main = "OCIAML3 - VP16 VS Control") 

dev.print(pdf, './edgeR_Results/ociaml3_smear_plot.pdf') 

tt_ociaml3 <- topTags(ociaml3.vp16.VS.ctr, n=nrow(y)) 

plot(-log10(PValue) ~ logFC, tt_ociaml3, pch=20) 

title(main = "OCIAML3 - VP16 VS Control") 

with(subset(tt_ociaml3$table, FDR < .05), points(logFC, -log10(PValue), col = "red")) 

with(subset(tt_ociaml3$table, abs(logFC) > 1), points(logFC, -log10(PValue),col = "orange")) 

with(subset(tt_ociaml3$table, FDR < 0.05 & abs(logFC) > 1), points(logFC, -log10(PValue), col = "green")) 

legend("topright", legend = c("FDR < 0.05", "logFC > 1", "Both"), pch = 16, col = c("red", "orange", "green")) 

dev.print(pdf, './edgeR_Results/ociaml3_volcano_plot.pdf') 

 

# THP1 

deg_thp1 <- rn_thp1[topTags(thp1.vp16.VS.ctr)$table$FDR < .05] 

plotSmear(y, de.tags = deg_thp1, main = "THP1 - VP16 VS Control") 

dev.print(pdf, './edgeR_Results/thp1_smear_plot.pdf') 

tt_thp1 <- topTags(thp1.vp16.VS.ctr, n=nrow(y)) 

plot(-log10(PValue) ~ logFC, tt_thp1, pch=20) 

title(main = "THP1 - VP16 VS Control") 

with(subset(tt_thp1$table, FDR < .05), points(logFC, -log10(PValue), col = "red")) 

with(subset(tt_thp1$table, abs(logFC) > 1), points(logFC, -log10(PValue),col = "orange")) 

with(subset(tt_thp1$table, FDR < 0.05 & abs(logFC) > 1), points(logFC, -log10(PValue), col = "green")) 

legend("topright", legend = c("FDR < 0.05", "logFC > 1", "Both"), pch = 16, col = c("red", "orange", "green")) 

dev.print(pdf, './edgeR_Results/thp1_volcano_plot.pdf') 

 

# F36P VS MOLM13 VP16 

deg_resistant <- rn_resistant[topTags(f36p.vp16.VS.molm13.vp16)$table$FDR < .05] 

plotSmear(y, de.tags = deg_resistant, main = "F36P VP16 VS MOLM13 VP16") 

dev.print(pdf, './edgeR_Results/f36p-vp16_VS_mol13-vp16_smear_plot.pdf') 

tt_resistant <- topTags(f36p.vp16.VS.molm13.vp16, n=nrow(y)) 

plot(-log10(PValue) ~ logFC, tt_resistant, pch=20) 

title(main = "F36P VP16 VS MOLM13 VP16") 

with(subset(tt_resistant$table, FDR < .05), points(logFC, -log10(PValue), col = "red")) 

with(subset(tt_resistant$table, abs(logFC) > 1), points(logFC, -log10(PValue),col = "orange")) 

with(subset(tt_resistant$table, FDR < 0.05 & abs(logFC) > 1), points(logFC, -log10(PValue), col = "green")) 
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legend("topright", legend = c("FDR < 0.05", "logFC > 1", "Both"), pch = 16, col = c("red", "orange", "green")) 

dev.print(pdf, './edgeR_Results/f36p-vp16_VS_molm13-vp16_volcano_plot.pdf') 

 

# F36P VS MOLM13 CTR 

deg_resistant.ctr <- rn_resistant[topTags(f36p.VS.molm13.ctr)$table$FDR < .05] 

plotSmear(y, de.tags = deg_resistant.ctr, main = "F36P VP16 VS MOLM13 CTR") 

dev.print(pdf, './edgeR_Results/f36p-vp16_VS_mol13-ctr_smear_plot.pdf') 

tt_resistant.ctr <- topTags(f36p.VS.molm13.ctr, n=nrow(y)) 

plot(-log10(PValue) ~ logFC, tt_resistant.ctr, pch=20) 

title(main = "F36P VP16 VS MOLM13 CTR") 

with(subset(tt_resistant.ctr$table, FDR < .05), points(logFC, -log10(PValue), col = "red")) 

with(subset(tt_resistant.ctr$table, abs(logFC) > 1), points(logFC, -log10(PValue),col = "orange")) 

with(subset(tt_resistant.ctr$table, FDR < 0.05 & abs(logFC) > 1), points(logFC, -log10(PValue), col = "green")) 

legend("topright", legend = c("FDR < 0.05", "logFC > 1", "Both"), pch = 16, col = c("red", "orange", "green")) 

dev.print(pdf, './edgeR_Results/f36p_VS_molm13-ctr_volcano_plot.pdf') 

 

# Create result table 

# Define functions to create links 

 

createLinkGO <- function(val) { 

  sprintf('<a href="http://amigo.geneontology.org/amigo/term/%s" target="_blank" class="btn btn-

primary">%s</a>',val,val) 

} 

 

createLinkENS  <- function(val, species="Homo_sapiens") { 

  paste0('<a href="http://www.ensembl.org/',species,'/Gene/Summary?g=',val,'" target="_blank" class="btn btn-

primary">',val,'</a>') 

} 

 

createLinkGeneSymbol <- function(val) { 

  paste0('<a href="http://www.genecards.org/cgi-bin/carddisp.pl?gene=',val,'" target="_blank" class="btn btn-

primary">',val,'</a>') 

} 

 

# Create tables 

# F36P 

tbl_res_f36p.vp16.VS.ctr <- res_f36p.vp16.VS.ctr$table 

etbl_res_f36p.vp16.VS.ctr <- tbl_res_f36p.vp16.VS.ctr 

etbl_res_f36p.vp16.VS.ctr$ENSEMBL <- createLinkENS(etbl_res_f36p.vp16.VS.ctr$ENSEMBL, species = 

"Homo_sapiens") 

etbl_res_f36p.vp16.VS.ctr$SYMBOL <- createLinkGeneSymbol(etbl_res_f36p.vp16.VS.ctr$SYMBOL) 

datatable(etbl_res_f36p.vp16.VS.ctr, caption = "F36P - VP16 vs Control, DE genes", escape=F) 

write.table(tbl_res_f36p.vp16.VS.ctr, "./edgeR_Results/DEG_Table_f36p.txt", sep = "\t", row.names = F) 

 

# HL60 

tbl_res_hl60.vp16.VS.ctr <- res_hl60.vp16.VS.ctr$table 

etbl_res_hl60.vp16.VS.ctr <- tbl_res_hl60.vp16.VS.ctr 

etbl_res_hl60.vp16.VS.ctr$ENSEMBL <- createLinkENS(etbl_res_hl60.vp16.VS.ctr$ENSEMBL, species = 

"Homo_sapiens") 

etbl_res_hl60.vp16.VS.ctr$SYMBOL <- createLinkGeneSymbol(etbl_res_hl60.vp16.VS.ctr$SYMBOL) 

datatable(etbl_res_hl60.vp16.VS.ctr, caption = "HL60 - VP16 vs Control, DE genes", escape=F) 

write.table(tbl_res_hl60.vp16.VS.ctr, "./edgeR_Results/DEG_Table_hl60.txt", sep = "\t", row.names = F) 

 

# KASUMI1 

tbl_res_kasumi1.vp16.VS.ctr <- res_kasumi1.vp16.VS.ctr$table 

etbl_res_kasumi1.vp16.VS.ctr <- tbl_res_kasumi1.vp16.VS.ctr 
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etbl_res_kasumi1.vp16.VS.ctr$ENSEMBL <- createLinkENS(etbl_res_kasumi1.vp16.VS.ctr$ENSEMBL, species = 

"Homo_sapiens") 

etbl_res_kasumi1.vp16.VS.ctr$SYMBOL <- createLinkGeneSymbol(etbl_res_kasumi1.vp16.VS.ctr$SYMBOL) 

datatable(etbl_res_kasumi1.vp16.VS.ctr, caption = "KASUMI1 - VP16 vs Control, DE genes", escape=F) 

write.table(tbl_res_kasumi1.vp16.VS.ctr, "./edgeR_Results/DEG_Table_kasumi1.txt", sep = "\t", row.names = F) 

 

# MOLM13 

tbl_res_molm13.vp16.VS.ctr <- res_molm13.vp16.VS.ctr$table 

etbl_res_molm13.vp16.VS.ctr <- tbl_res_molm13.vp16.VS.ctr 

etbl_res_molm13.vp16.VS.ctr$ENSEMBL <- createLinkENS(etbl_res_molm13.vp16.VS.ctr$ENSEMBL, species = 

"Homo_sapiens") 

etbl_res_molm13.vp16.VS.ctr$SYMBOL <- createLinkGeneSymbol(etbl_res_molm13.vp16.VS.ctr$SYMBOL) 

datatable(etbl_res_molm13.vp16.VS.ctr, caption = "MOLM13 - VP16 vs Control, DE genes", escape=F) 

write.table(tbl_res_molm13.vp16.VS.ctr, "./edgeR_Results/DEG_Table_molm13.txt", sep = "\t", row.names = F) 

 

# MONOMAC6 

tbl_res_monomac6.vp16.VS.ctr <- res_monomac6.vp16.VS.ctr$table 

etbl_res_monomac6.vp16.VS.ctr <- tbl_res_monomac6.vp16.VS.ctr 

etbl_res_monomac6.vp16.VS.ctr$ENSEMBL <- createLinkENS(etbl_res_monomac6.vp16.VS.ctr$ENSEMBL, 

species = "Homo_sapiens") 

etbl_res_monomac6.vp16.VS.ctr$SYMBOL <- 

createLinkGeneSymbol(etbl_res_monomac6.vp16.VS.ctr$SYMBOL) 

datatable(etbl_res_monomac6.vp16.VS.ctr, caption = "MONOMAC6 - VP16 vs Control, DE genes", escape=F) 

write.table(tbl_res_monomac6.vp16.VS.ctr, "./edgeR_Results/DEG_Table_monomac6.txt", sep = "\t", row.names = 

F) 

 

# MV411 

tbl_res_mv411.vp16.VS.ctr <- res_mv411.vp16.VS.ctr$table 

etbl_res_mv411.vp16.VS.ctr <- tbl_res_mv411.vp16.VS.ctr 

etbl_res_mv411.vp16.VS.ctr$ENSEMBL <- createLinkENS(etbl_res_mv411.vp16.VS.ctr$ENSEMBL, species = 

"Homo_sapiens") 

etbl_res_mv411.vp16.VS.ctr$SYMBOL <- createLinkGeneSymbol(etbl_res_mv411.vp16.VS.ctr$SYMBOL) 

datatable(etbl_res_mv411.vp16.VS.ctr, caption = "MV411 - VP16 vs Control, DE genes", escape=F) 

write.table(tbl_res_mv411.vp16.VS.ctr, "./edgeR_Results/DEG_Table_mv411.txt", sep = "\t", row.names = F) 

 

# NB4 

tbl_res_nb4.vp16.VS.ctr <- res_nb4.vp16.VS.ctr$table 

etbl_res_nb4.vp16.VS.ctr <- tbl_res_nb4.vp16.VS.ctr 

etbl_res_nb4.vp16.VS.ctr$ENSEMBL <- createLinkENS(etbl_res_nb4.vp16.VS.ctr$ENSEMBL, species = 

"Homo_sapiens") 

etbl_res_nb4.vp16.VS.ctr$SYMBOL <- createLinkGeneSymbol(etbl_res_nb4.vp16.VS.ctr$SYMBOL) 

datatable(etbl_res_nb4.vp16.VS.ctr, caption = "NB4 - VP16 vs Control, DE genes", escape=F) 

write.table(tbl_res_nb4.vp16.VS.ctr, "./edgeR_Results/DEG_Table_nb4.txt", sep = "\t", row.names = F) 

 

# NOMO1 

tbl_res_nomo1.vp16.VS.ctr <- res_nomo1.vp16.VS.ctr$table 

etbl_res_nomo1.vp16.VS.ctr <- tbl_res_nomo1.vp16.VS.ctr 

etbl_res_nomo1.vp16.VS.ctr$ENSEMBL <- createLinkENS(etbl_res_nomo1.vp16.VS.ctr$ENSEMBL, species = 

"Homo_sapiens") 

etbl_res_nomo1.vp16.VS.ctr$SYMBOL <- createLinkGeneSymbol(etbl_res_nomo1.vp16.VS.ctr$SYMBOL) 

datatable(etbl_res_nomo1.vp16.VS.ctr, caption = "NOMO1 - VP16 vs Control, DE genes", escape=F) 

write.table(tbl_res_nomo1.vp16.VS.ctr, "./edgeR_Results/DEG_Table_nomo1.txt", sep = "\t", row.names = F) 

 

# OCIAML3 

tbl_res_ociaml3.vp16.VS.ctr <- res_ociaml3.vp16.VS.ctr$table 

etbl_res_ociaml3.vp16.VS.ctr <- tbl_res_ociaml3.vp16.VS.ctr 
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etbl_res_ociaml3.vp16.VS.ctr$ENSEMBL <- createLinkENS(etbl_res_ociaml3.vp16.VS.ctr$ENSEMBL, species = 

"Homo_sapiens") 

etbl_res_ociaml3.vp16.VS.ctr$SYMBOL <- createLinkGeneSymbol(etbl_res_ociaml3.vp16.VS.ctr$SYMBOL) 

datatable(etbl_res_ociaml3.vp16.VS.ctr, caption = "OCIAML3 - VP16 vs Control, DE genes", escape=F) 

write.table(tbl_res_ociaml3.vp16.VS.ctr, "./edgeR_Results/DEG_Table_ociaml3.txt", sep = "\t", row.names = F) 

 

# THP1 

tbl_res_thp1.vp16.VS.ctr <- res_thp1.vp16.VS.ctr$table 

etbl_res_thp1.vp16.VS.ctr <- tbl_res_thp1.vp16.VS.ctr 

etbl_res_thp1.vp16.VS.ctr$ENSEMBL <- createLinkENS(etbl_res_thp1.vp16.VS.ctr$ENSEMBL, species = 

"Homo_sapiens") 

etbl_res_thp1.vp16.VS.ctr$SYMBOL <- createLinkGeneSymbol(etbl_res_thp1.vp16.VS.ctr$SYMBOL) 

datatable(etbl_res_thp1.vp16.VS.ctr, caption = "THP1 - VP16 vs Control, DE genes", escape=F) 

write.table(tbl_res_thp1.vp16.VS.ctr, "./edgeR_Results/DEG_Table_thp1.txt", sep = "\t", row.names = F) 

 

# F36P VS MOLM13 VP16 

tbl_res_f36p.vp16.VS.molm13.vp16 <- res_f36p.vp16.VS.molm13.vp16$table 

etbl_res_f36p.vp16.VS.molm13.vp16 <- tbl_res_f36p.vp16.VS.molm13.vp16 

etbl_res_f36p.vp16.VS.molm13.vp16$ENSEMBL <- 

createLinkENS(etbl_res_f36p.vp16.VS.molm13.vp16$ENSEMBL, species = "Homo_sapiens") 

etbl_res_f36p.vp16.VS.molm13.vp16$SYMBOL <- 

createLinkGeneSymbol(etbl_res_f36p.vp16.VS.molm13.vp16$SYMBOL) 

datatable(etbl_res_f36p.vp16.VS.molm13.vp16, caption = "F36P VS MOLM13 VP16, DE genes", escape=F) 

write.table(tbl_res_f36p.vp16.VS.molm13.vp16, "./edgeR_Results/DEG_Table_f36p-vp16_VS-molm13-vp16.txt", 

sep = "\t", row.names = F) 

 

# F36P VS MOLM13 CTR 

tbl_res_f36p.VS.molm13.ctr <- res_f36p.VS.molm13.ctr$table 

etbl_res_f36p.VS.molm13.ctr <- tbl_res_f36p.VS.molm13.ctr 

etbl_res_f36p.VS.molm13.ctr$ENSEMBL <- createLinkENS(etbl_res_f36p.VS.molm13.ctr$ENSEMBL, species = 

"Homo_sapiens") 

etbl_res_f36p.VS.molm13.ctr$SYMBOL <- createLinkGeneSymbol(etbl_res_f36p.VS.molm13.ctr$SYMBOL) 

datatable(etbl_res_f36p.VS.molm13.ctr, caption = "F36P VS MOLM13 Control, DE genes", escape=F) 

write.table(tbl_res_f36p.VS.molm13.ctr, "./edgeR_Results/DEG_Table_f36p_VS-molm13-ctr.txt", sep = "\t", 

row.names = F) 

 

# Functional interpretation 

# Create annotation file 

 

annoHuman <- import("/media/piyush/372429ff-0d6e-45d6-b529-527e3fb69028/RNA-

seq/AML_IMB_2017/Analysis/STAR/NOISeq/Gencode_v25_GRCh38.p7/gencode.v25.annotation.gtf") 

cm2=data.frame(ensid=mcols(annoHuman)$gene_id,fromgtf=mcols(annoHuman)$gene_name,stringsAsFactors = 

FALSE) 

cm2 <- cm2[!duplicated(cm2),] 

rownames(cm2) <- cm2$ensid 

anno_df <- data.frame(gene_id = rownames(dds), stringsAsFactors = F) 

anno_df$gene_name <- cm2$fromgtf[match(anno_df$gene_id,rownames(cm2))] 

rownames(anno_df) <- anno_df$gene_id 

head(anno_df) 

 

# Create list of universally expressed genes 

expressedInAssay <- (rowSums(assay(dds))>0) 

geneUniverseExprENS <- rownames(dds)[expressedInAssay] 

geneUniverseExpr <- anno_df$gene_name[match(geneUniverseExprENS,anno_df$gene_id)] 
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# Use topGOtable to annotate DEGs for biological processesGObps_f36p.vp16.VS.ctr <- topGOtable(DEgenes = 

res_f36p.vp16.VS.ctr$table$SYMBOL, BGgenes = geneUniverseExpr, ontology = "BP", geneID = "symbol", 

addGeneToTerms = TRUE, mapping = "org.Hs.eg.db") 

# F36P 

GObps_f36p.vp16.VS.ctr <- topGOtable(DEgenes = res_f36p.vp16.VS.ctr$table$SYMBOL, BGgenes = 

geneUniverseExpr, ontology = "BP", geneID = "symbol", addGeneToTerms = TRUE, mapping = "org.Hs.eg.db") 

eGObps_f36p.vp16.VS.ctr <- GObps_f36p.vp16.VS.ctr 

eGObps_f36p.vp16.VS.ctr$GO.ID <- createLinkGO(eGObps_f36p.vp16.VS.ctr$GO.ID) 

eGObps_f36p.vp16.VS.ctr %>% datatable(caption = "topGO - Biological processes enriched in DE genes - F36P- 

VP16 vs Control", options = list(pageLength = 20),escape = FALSE) 

write.table(GObps_f36p.vp16.VS.ctr, "./edgeR_Results/topGO_BP_f36p_vp16_VS_ctr.txt", sep = "\t", row.names 

= F) 

 

# HL60 

GObps_hl60.vp16.VS.ctr <- topGOtable(DEgenes = res_hl60.vp16.VS.ctr$table$SYMBOL, BGgenes = 

geneUniverseExpr, ontology = "BP", geneID = "symbol", addGeneToTerms = TRUE, mapping = "org.Hs.eg.db") 

eGObps_hl60.vp16.VS.ctr <- GObps_hl60.vp16.VS.ctr 

eGObps_hl60.vp16.VS.ctr$GO.ID <- createLinkGO(eGObps_hl60.vp16.VS.ctr$GO.ID) 

eGObps_hl60.vp16.VS.ctr %>% datatable(caption = "topGO - Biological processes enriched in DE genes - HL60- 

VP16 vs Control", options = list(pageLength = 20),escape = FALSE) 

write.table(GObps_hl60.vp16.VS.ctr, "./edgeR_Results/topGO_BP_hl60_vp16_VS_ctr.txt", sep = "\t", row.names = 

F) 

 

# KASUMI1 

GObps_kasumi1.vp16.VS.ctr <- topGOtable(DEgenes = res_kasumi1.vp16.VS.ctr$table$SYMBOL, BGgenes = 

geneUniverseExpr, ontology = "BP", geneID = "symbol", addGeneToTerms = TRUE, mapping = "org.Hs.eg.db") 

eGObps_kasumi1.vp16.VS.ctr <- GObps_kasumi1.vp16.VS.ctr 

eGObps_kasumi1.vp16.VS.ctr$GO.ID <- createLinkGO(eGObps_kasumi1.vp16.VS.ctr$GO.ID) 

eGObps_kasumi1.vp16.VS.ctr %>% datatable(caption = "topGO - Biological processes enriched in DE genes - 

KASUMI1- VP16 vs Control", options = list(pageLength = 20),escape = FALSE) 

write.table(GObps_kasumi1.vp16.VS.ctr, "./edgeR_Results/topGO_BP_kasumi1_vp16_VS_ctr.txt", sep = "\t", 

row.names = F) 

 

# MOLM13 

GObps_molm13.vp16.VS.ctr <- topGOtable(DEgenes = res_molm13.vp16.VS.ctr$table$SYMBOL, BGgenes = 

geneUniverseExpr, ontology = "BP", geneID = "symbol", addGeneToTerms = TRUE, mapping = "org.Hs.eg.db") 

eGObps_molm13.vp16.VS.ctr <- GObps_molm13.vp16.VS.ctr 

eGObps_molm13.vp16.VS.ctr$GO.ID <- createLinkGO(eGObps_molm13.vp16.VS.ctr$GO.ID) 

eGObps_molm13.vp16.VS.ctr %>% datatable(caption = "topGO - Biological processes enriched in DE genes - 

MOLM13- VP16 vs Control", options = list(pageLength = 20),escape = FALSE) 

write.table(GObps_molm13.vp16.VS.ctr, "./edgeR_Results/topGO_BP_molm13_vp16_VS_ctr.txt", sep = "\t", 

row.names = F) 

 

# MONOMAC6 

GObps_monomac6.vp16.VS.ctr <- topGOtable(DEgenes = res_monomac6.vp16.VS.ctr$table$SYMBOL, BGgenes 

= geneUniverseExpr, ontology = "BP", geneID = "symbol", addGeneToTerms = TRUE, mapping = "org.Hs.eg.db") 

eGObps_monomac6.vp16.VS.ctr <- GObps_monomac6.vp16.VS.ctr 

eGObps_monomac6.vp16.VS.ctr$GO.ID <- createLinkGO(eGObps_monomac6.vp16.VS.ctr$GO.ID) 

eGObps_monomac6.vp16.VS.ctr %>% datatable(caption = "topGO - Biological processes enriched in DE genes - 

MONOMAC6- VP16 vs Control", options = list(pageLength = 20),escape = FALSE) 

write.table(GObps_monomac6.vp16.VS.ctr, "./edgeR_Results/topGO_BP_monomac6_vp16_VS_ctr.txt", sep = "\t", 

row.names = F) 

 

# MV411 

GObps_mv411.vp16.VS.ctr <- topGOtable(DEgenes = res_mv411.vp16.VS.ctr$table$SYMBOL, BGgenes = 

geneUniverseExpr, ontology = "BP", geneID = "symbol", addGeneToTerms = TRUE, mapping = "org.Hs.eg.db") 
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eGObps_mv411.vp16.VS.ctr <- GObps_mv411.vp16.VS.ctr 

eGObps_mv411.vp16.VS.ctr$GO.ID <- createLinkGO(eGObps_mv411.vp16.VS.ctr$GO.ID) 

eGObps_mv411.vp16.VS.ctr %>% datatable(caption = "topGO - Biological processes enriched in DE genes - 

MV411- VP16 vs Control", options = list(pageLength = 20),escape = FALSE) 

write.table(GObps_mv411.vp16.VS.ctr, "./edgeR_Results/topGO_BP_mv411_vp16_VS_ctr.txt", sep = "\t", 

row.names = F) 

 

# NB4 

GObps_nb4.vp16.VS.ctr <- topGOtable(DEgenes = res_nb4.vp16.VS.ctr$table$SYMBOL, BGgenes = 

geneUniverseExpr, ontology = "BP", geneID = "symbol", addGeneToTerms = TRUE, mapping = "org.Hs.eg.db") 

eGObps_nb4.vp16.VS.ctr <- GObps_nb4.vp16.VS.ctr 

eGObps_nb4.vp16.VS.ctr$GO.ID <- createLinkGO(eGObps_nb4.vp16.VS.ctr$GO.ID) 

eGObps_nb4.vp16.VS.ctr %>% datatable(caption = "topGO - Biological processes enriched in DE genes - NB4- 

VP16 vs Control", options = list(pageLength = 20),escape = FALSE) 

write.table(GObps_nb4.vp16.VS.ctr, "./edgeR_Results/topGO_BP_nb4_vp16_VS_ctr.txt", sep = "\t", row.names = 

F) 

 

# NOMO1 

GObps_nomo1.vp16.VS.ctr <- topGOtable(DEgenes = res_nomo1.vp16.VS.ctr$table$SYMBOL, BGgenes = 

geneUniverseExpr, ontology = "BP", geneID = "symbol", addGeneToTerms = TRUE, mapping = "org.Hs.eg.db") 

eGObps_nomo1.vp16.VS.ctr <- GObps_nomo1.vp16.VS.ctr 

eGObps_nomo1.vp16.VS.ctr$GO.ID <- createLinkGO(eGObps_nomo1.vp16.VS.ctr$GO.ID) 

eGObps_nomo1.vp16.VS.ctr %>% datatable(caption = "topGO - Biological processes enriched in DE genes - 

NOMO1- VP16 vs Control", options = list(pageLength = 20),escape = FALSE) 

write.table(GObps_nomo1.vp16.VS.ctr, "./edgeR_Results/topGO_BP_nomo1_vp16_VS_ctr.txt", sep = "\t", 

row.names = F) 

 

# OCIAML3 

GObps_ociaml3.vp16.VS.ctr <- topGOtable(DEgenes = res_ociaml3.vp16.VS.ctr$table$SYMBOL, BGgenes = 

geneUniverseExpr, ontology = "BP", geneID = "symbol", addGeneToTerms = TRUE, mapping = "org.Hs.eg.db") 

eGObps_ociaml3.vp16.VS.ctr <- GObps_ociaml3.vp16.VS.ctr 

eGObps_ociaml3.vp16.VS.ctr$GO.ID <- createLinkGO(eGObps_ociaml3.vp16.VS.ctr$GO.ID) 

eGObps_ociaml3.vp16.VS.ctr %>% datatable(caption = "topGO - Biological processes enriched in DE genes - 

OCIAML3- VP16 vs Control", options = list(pageLength = 20),escape = FALSE) 

write.table(GObps_ociaml3.vp16.VS.ctr, "./edgeR_Results/topGO_BP_ociaml3_vp16_VS_ctr.txt", sep = "\t", 

row.names = F) 

 

# THP1 

GObps_thp1.vp16.VS.ctr <- topGOtable(DEgenes = res_thp1.vp16.VS.ctr$table$SYMBOL, BGgenes = 

geneUniverseExpr, ontology = "BP", geneID = "symbol", addGeneToTerms = TRUE, mapping = "org.Hs.eg.db") 

eGObps_thp1.vp16.VS.ctr <- GObps_thp1.vp16.VS.ctr 

eGObps_thp1.vp16.VS.ctr$GO.ID <- createLinkGO(eGObps_thp1.vp16.VS.ctr$GO.ID) 

eGObps_thp1.vp16.VS.ctr %>% datatable(caption = "topGO - Biological processes enriched in DE genes - THP1- 

VP16 vs Control", options = list(pageLength = 20),escape = FALSE) 

write.table(GObps_thp1.vp16.VS.ctr, "./edgeR_Results/topGO_BP_thp1_vp16_VS_ctr.txt", sep = "\t", row.names = 

F) 

 

# F36P VS MOLM13 VP16 

GObps_f36p.vp16.VS.molm13.vp16 <- topGOtable(DEgenes = res_f36p.vp16.VS.molm13.vp16$table$SYMBOL, 

BGgenes = geneUniverseExpr, ontology = "BP", geneID = "symbol", addGeneToTerms = TRUE, mapping = 

"org.Hs.eg.db") 

eGObps_f36p.vp16.VS.molm13.vp16 <- GObps_f36p.vp16.VS.molm13.vp16 

eGObps_f36p.vp16.VS.molm13.vp16$GO.ID <- createLinkGO(eGObps_f36p.vp16.VS.molm13.vp16$GO.ID) 

eGObps_f36p.vp16.VS.molm13.vp16 %>% datatable(caption = "topGO - Biological processes enriched in DE 

genes - F36P-VP16 VS MOLM13-VP16", options = list(pageLength = 20),escape = FALSE) 
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write.table(GObps_f36p.vp16.VS.molm13.vp16, "./edgeR_Results/topGO_BP_f36p-vp16_VS_molm13-vp16.txt", 

sep = "\t", row.names = F) 

 

# F36P VS MOLM13 CTR 

GObps_f36p.VS.molm13.ctr <- topGOtable(DEgenes = res_f36p.VS.molm13.ctr$table$SYMBOL, BGgenes = 

geneUniverseExpr, ontology = "BP", geneID = "symbol", addGeneToTerms = TRUE, mapping = "org.Hs.eg.db") 

eGObps_f36p.VS.molm13.ctr <- GObps_f36p.VS.molm13.ctr 

eGObps_f36p.VS.molm13.ctr$GO.ID <- createLinkGO(eGObps_f36p.VS.molm13.ctr$GO.ID) 

eGObps_f36p.VS.molm13.ctr %>% datatable(caption = "topGO - Biological processes enriched in DE genes - F36P 

VS MOLM13 Control", options = list(pageLength = 20),escape = FALSE) 

write.table(GObps_f36p.VS.molm13.ctr, "./edgeR_Results/topGO_BP_f36p_VS_molm13-control.txt", sep = "\t", 

row.names = F) 

 

# remove NA values in ENTREZ and SYMBOL field 

deg_table_f36p <- data.frame(tbl_res_f36p.vp16.VS.ctr[complete.cases(tbl_res_f36p.vp16.VS.ctr[,2:3]),]) 

deg_table_hl60 <- data.frame(tbl_res_hl60.vp16.VS.ctr[complete.cases(tbl_res_hl60.vp16.VS.ctr[,2:3]),]) 

deg_table_kasumi1 <- 

data.frame(tbl_res_kasumi1.vp16.VS.ctr[complete.cases(tbl_res_kasumi1.vp16.VS.ctr[,2:3]),]) 

deg_table_molm13 <- 

data.frame(tbl_res_molm13.vp16.VS.ctr[complete.cases(tbl_res_molm13.vp16.VS.ctr[,2:3]),]) 

deg_table_monomac6 <- 

data.frame(tbl_res_monomac6.vp16.VS.ctr[complete.cases(tbl_res_monomac6.vp16.VS.ctr[,2:3]),]) 

deg_table_mv411 <- data.frame(tbl_res_mv411.vp16.VS.ctr[complete.cases(tbl_res_mv411.vp16.VS.ctr[,2:3]),]) 

deg_table_nb4 <- data.frame(tbl_res_nb4.vp16.VS.ctr[complete.cases(tbl_res_nb4.vp16.VS.ctr[,2:3]),]) 

deg_table_nomo1 <- data.frame(tbl_res_nomo1.vp16.VS.ctr[complete.cases(tbl_res_nomo1.vp16.VS.ctr[,2:3]),]) 

deg_table_ociaml3 <- data.frame(tbl_res_ociaml3.vp16.VS.ctr[complete.cases(tbl_res_ociaml3.vp16.VS.ctr[,2:3]),]) 

deg_table_thp1 <- data.frame(tbl_res_thp1.vp16.VS.ctr[complete.cases(tbl_res_thp1.vp16.VS.ctr[,2:3]),]) 

 

# DEG statistics  

deg_stat <- data.frame("Total_DEG" = c(length(deg_table_f36p$SYMBOL), length(deg_table_hl60$SYMBOL), 

length(deg_table_kasumi1$SYMBOL), length(deg_table_molm13$SYMBOL), 

length(deg_table_monomac6$SYMBOL), length(deg_table_mv411$SYMBOL), length(deg_table_nb4$SYMBOL), 

length(deg_table_nomo1$SYMBOL), length(deg_table_ociaml3$SYMBOL), length(deg_table_thp1$SYMBOL)), 

"UP" = c(length(which(deg_table_f36p$logFC >= 1)), length(which(deg_table_hl60$logFC >= 1)), 

length(which(deg_table_kasumi1$logFC >= 1)), length(which(deg_table_molm13$logFC >= 1)), 

length(which(deg_table_monomac6$logFC >= 1)), length(which(deg_table_mv411$logFC >= 1)), 

length(which(deg_table_nb4$logFC >= 1)), length(which(deg_table_nomo1$logFC >= 1)), 

length(which(deg_table_ociaml3$logFC >= 1)), length(which(deg_table_thp1$logFC >= 1))), "DOWN" = 

c(length(which(deg_table_f36p$logFC <= 1)), length(which(deg_table_hl60$logFC <= 1)), 

length(which(deg_table_kasumi1$logFC <= 1)), length(which(deg_table_molm13$logFC <= 1)), 

length(which(deg_table_monomac6$logFC <= 1)), length(which(deg_table_mv411$logFC <= 1)), 

length(which(deg_table_nb4$logFC <= 1)), length(which(deg_table_nomo1$logFC <= 1)), 

length(which(deg_table_ociaml3$logFC <= 1)), length(which(deg_table_thp1$logFC <= 1)))) 

deg_stat$"%_Up" <- round(((deg_stat$UP / deg_stat$Total_DEG) * 100), digits = 2) 

deg_stat$"%_Down" <- round(((deg_stat$DOWN / deg_stat$Total_DEG) * 100), digits = 2) 

rownames(deg_stat) <- c("F36-P", "HL-60", "KASUMI-1", "MOLM-13", "MONO-MAC-6", "MV-4-11", "NB-4", 

"NOMO-1", "OCI-AML3", "THP-1") 

deg_stat$"VP16-IC50 (µM)" <- c(98.81, 0.74, 6.80, 0.39, 4.39, 1.33, 0.50, 1.65, 1.00, 1.01) 

deg_stat %>% datatable(caption = "DEG statistics (VP16 VS Control)", escape = F) 

 

 

deg_table_UP_f36p <- data.frame(deg_table_f36p[which(deg_table_f36p$logFC >= 1),]) 

deg_table_DOWN_f36p <- data.frame(deg_table_f36p[which(deg_table_f36p$logFC <= 1),]) 

deg_table_UP_hl60 <- data.frame(deg_table_hl60[which(deg_table_hl60$logFC >= 1),]) 

deg_table_DOWN_hl60 <- data.frame(deg_table_hl60[which(deg_table_hl60$logFC <= 1),]) 

deg_table_UP_kasumi1 <- data.frame(deg_table_kasumi1[which(deg_table_kasumi1$logFC >= 1),]) 
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deg_table_DOWN_kasumi1 <- data.frame(deg_table_kasumi1[which(deg_table_kasumi1$logFC <= 1),]) 

deg_table_UP_molm13 <- data.frame(deg_table_molm13[which(deg_table_molm13$logFC >= 1),]) 

deg_table_DOWN_molm13 <- data.frame(deg_table_molm13[which(deg_table_molm13$logFC <= 1),]) 

deg_table_UP_monomac6 <- data.frame(deg_table_monomac6[which(deg_table_monomac6$logFC >= 1),]) 

deg_table_DOWN_monomac6 <- data.frame(deg_table_monomac6[which(deg_table_monomac6$logFC <= 1),]) 

deg_table_UP_mv411 <- data.frame(deg_table_mv411[which(deg_table_mv411$logFC >= 1),]) 

deg_table_DOWN_mv411 <- data.frame(deg_table_mv411[which(deg_table_mv411$logFC <= 1),]) 

deg_table_UP_nb4 <- data.frame(deg_table_nb4[which(deg_table_nb4$logFC >= 1),]) 

deg_table_DOWN_nb4 <- data.frame(deg_table_nb4[which(deg_table_nb4$logFC <= 1),]) 

deg_table_UP_nomo1 <- data.frame(deg_table_nomo1[which(deg_table_nomo1$logFC >= 1),]) 

deg_table_DOWN_nomo1 <- data.frame(deg_table_nomo1[which(deg_table_nomo1$logFC <= 1),]) 

deg_table_UP_ociaml3 <- data.frame(deg_table_ociaml3[which(deg_table_ociaml3$logFC >= 1),]) 

deg_table_DOWN_ociaml3 <- data.frame(deg_table_ociaml3[which(deg_table_ociaml3$logFC <= 1),]) 

deg_table_UP_thp1 <- data.frame(deg_table_thp1[which(deg_table_thp1$logFC >= 1),]) 

deg_table_DOWN_thp1 <- data.frame(deg_table_thp1[which(deg_table_thp1$logFC <= 1),]) 

 

 

max.len.up = max(length(deg_table_UP_f36p$SYMBOL), length(deg_table_UP_hl60$SYMBOL), 

length(deg_table_UP_kasumi1$SYMBOL), length(deg_table_UP_molm13$SYMBOL), 

length(deg_table_UP_monomac6$SYMBOL), length(deg_table_UP_mv411$SYMBOL), 

length(deg_table_UP_nb4$SYMBOL), length(deg_table_UP_nomo1$SYMBOL), 

length(deg_table_UP_ociaml3$SYMBOL), length(deg_table_UP_thp1$SYMBOL)) 

f36p_UP_genes <- c(deg_table_UP_f36p$SYMBOL, rep(NA, max.len.up - 

length(deg_table_UP_f36p$SYMBOL))) 

hl60_UP_genes <- c(deg_table_UP_hl60$SYMBOL, rep(NA, max.len.up - 

length(deg_table_UP_hl60$SYMBOL))) 

kasumi1_UP_genes <- c(deg_table_UP_kasumi1$SYMBOL, rep(NA, max.len.up - 

length(deg_table_UP_kasumi1$SYMBOL))) 

molm13_UP_genes <- c(deg_table_UP_molm13$SYMBOL, rep(NA, max.len.up - 

length(deg_table_UP_molm13$SYMBOL))) 

monomac6_UP_genes <- c(deg_table_UP_monomac6$SYMBOL, rep(NA, max.len.up - 

length(deg_table_UP_monomac6$SYMBOL))) 

mv411_UP_genes <- c(deg_table_UP_mv411$SYMBOL, rep(NA, max.len.up - 

length(deg_table_UP_mv411$SYMBOL))) 

nb4_UP_genes <- c(deg_table_UP_nb4$SYMBOL, rep(NA, max.len.up - length(deg_table_UP_nb4$SYMBOL))) 

nomo1_UP_genes <- c(deg_table_UP_nomo1$SYMBOL, rep(NA, max.len.up - 

length(deg_table_UP_nomo1$SYMBOL))) 

ociaml3_UP_genes <- c(deg_table_UP_ociaml3$SYMBOL, rep(NA, max.len.up - 

length(deg_table_UP_ociaml3$SYMBOL))) 

thp1_UP_genes <- c(deg_table_UP_thp1$SYMBOL, rep(NA, max.len.up - 

length(deg_table_UP_thp1$SYMBOL))) 

 

max.len.down = max(length(deg_table_DOWN_f36p$SYMBOL), length(deg_table_DOWN_hl60$SYMBOL), 

length(deg_table_DOWN_kasumi1$SYMBOL), length(deg_table_DOWN_molm13$SYMBOL), 

length(deg_table_DOWN_monomac6$SYMBOL), length(deg_table_DOWN_mv411$SYMBOL), 

length(deg_table_DOWN_nb4$SYMBOL), length(deg_table_DOWN_nomo1$SYMBOL), 

length(deg_table_DOWN_ociaml3$SYMBOL), length(deg_table_DOWN_thp1$SYMBOL)) 

f36p_DOWN_genes <- c(deg_table_DOWN_f36p$SYMBOL, rep(NA, max.len.down - 

length(deg_table_DOWN_f36p$SYMBOL))) 

hl60_DOWN_genes <- c(deg_table_DOWN_hl60$SYMBOL, rep(NA, max.len.down - 

length(deg_table_DOWN_hl60$SYMBOL))) 

kasumi1_DOWN_genes <- c(deg_table_DOWN_kasumi1$SYMBOL, rep(NA, max.len.down - 

length(deg_table_DOWN_kasumi1$SYMBOL))) 

molm13_DOWN_genes <- c(deg_table_DOWN_molm13$SYMBOL, rep(NA, max.len.down - 

length(deg_table_DOWN_molm13$SYMBOL))) 
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monomac6_DOWN_genes <- c(deg_table_DOWN_monomac6$SYMBOL, rep(NA, max.len.down - 

length(deg_table_DOWN_monomac6$SYMBOL))) 

mv411_DOWN_genes <- c(deg_table_DOWN_mv411$SYMBOL, rep(NA, max.len.down - 

length(deg_table_DOWN_mv411$SYMBOL))) 

nb4_DOWN_genes <- c(deg_table_DOWN_nb4$SYMBOL, rep(NA, max.len.down - 

length(deg_table_DOWN_nb4$SYMBOL))) 

nomo1_DOWN_genes <- c(deg_table_DOWN_nomo1$SYMBOL, rep(NA, max.len.down - 

length(deg_table_DOWN_nomo1$SYMBOL))) 

ociaml3_DOWN_genes <- c(deg_table_DOWN_ociaml3$SYMBOL, rep(NA, max.len.down - 

length(deg_table_DOWN_ociaml3$SYMBOL))) 

thp1_DOWN_genes <- c(deg_table_DOWN_thp1$SYMBOL, rep(NA, max.len.down - 

length(deg_table_DOWN_thp1$SYMBOL))) 

 

deg_table_UP_ALL <- data.frame(F36P = f36p_UP_genes, HL60 = hl60_UP_genes, KASUMI1 = 

kasumi1_UP_genes, MOLM13 = molm13_UP_genes, MONOMAC6 = monomac6_UP_genes, MV411 = 

mv411_UP_genes, NB4 = nb4_UP_genes, NOMO1 = nomo1_UP_genes, OCIAML3 = ociaml3_UP_genes, THP1 = 

thp1_UP_genes) 

deg_table_DOWN_ALL <- data.frame(F36P = f36p_DOWN_genes, HL60 = hl60_DOWN_genes, KASUMI1 = 

kasumi1_DOWN_genes, MOLM13 = molm13_DOWN_genes, MONOMAC6 = monomac6_DOWN_genes, 

MV411 = mv411_DOWN_genes, NB4 = nb4_DOWN_genes, NOMO1 = nomo1_DOWN_genes, OCIAML3 = 

ociaml3_DOWN_genes, THP1 = thp1_DOWN_genes) 

 

tab_UP <- table(unlist(deg_table_UP_ALL)) 

tab_DOWN <- table(unlist(deg_table_DOWN_ALL)) 

 

write.table(as.data.frame(tab_UP), "./edgeR_Results/AML_UP_DEG_ALL.txt", sep = "\t", row.names = F) 

write.table(as.data.frame(tab_DOWN), "./edgeR_Results/AML_DOWN_DEG_ALL.txt", sep = "\t", row.names = F) 

 

View(as.data.frame(tab[tab > 1])) 

 

sessionInfo() 

 

# Save R session 

save.image("./edgeR_Results/AML_RNA-Seq_2017_edgeR.RData") 

  



117        Appendix 

 

Scientific publication 

 
More P., Goedtel-Armbrust U, Shah V., Mathaes M., Kindler T., Andrade-Navarro M. A., and 

Wojnowski L. “Drivers of topoisomerase II poisoning mimic and complement cytotoxicity in 

AML cells.” (submitted) 

 

 

Congress contributions 

 

 
More P., Gödtel-Armbrust U., Wojnowski L. “Specific effectors of topoisomerase II poisons 

contribute to cytotoxicity in AML cell lines.” The FEBS Congress 2018, 9th July 2018, Prague, 

Czech Republic. (Poster presentation – outstanding poster in molecular oncology award) 

 

More P., GödtelArmbrust U., Shah V., Kindler T., Andrade M., and Wojnowski L. “Smart 

transcriptional effectors of etoposide contribute to cytotoxicity in AML cell lines.” UCT Science 

Day, 6th September 2018, University Medical Center, Mainz, Germany. (Poster presentation) 

 

More P. “Transcriptional effectors of etoposide contribute to cytotoxicity in AML”. TransMed 

Christmas Colloquium, 12th December 2018, University Medical Center, Mainz, Germany. (Oral 

presentation) 

 

More P., GödtelArmbrust U., Shah V., Mathaes M, Kindler T., Andrade M., and Wojnowski L. 

“Transcriptional effectors of etoposide contribute to cytotoxicity in AML cell lines”. 4th German 

Pharm-Tox Summit: DGPT 2019, 26th February 2019, Stuttgart, Germany. (Oral presentation) 


