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Abstract

In this thesis we develop further the functional renormalization group (RG) approach to
quantum field theory (QFT) based on the effective average action (EAA) and on the exact
flow equation that it satisfies. The EAA is a generalization of the standard effective action
that interpolates smoothly between the bare action for & — oo and the standard effective
action for £ — 0. In this way, the problem of performing the functional integral is converted
into the problem of integrating the exact flow of the EAA from the UV to the IR. The EAA
formalism deals naturally with several different aspects of a QFT. One aspect is related to the
discovery of non-Gaussian fixed points of the RG flow that can be used to construct continuum
limits. In particular, the EAA framework is a useful setting to search for Asymptotically Safe
theories, i.e. theories valid up to arbitrarily high energies. A second aspect in which the EAA
reveals its usefulness are non-perturbative calculations. In fact, the exact flow that it satisfies
is a valuable starting point for devising new approximation schemes.

In the first part of this thesis we review and extend the formalism, in particular we derive
the exact RG flow equation for the EAA and the related hierarchy of coupled flow equations
for the proper-vertices. We show how standard perturbation theory emerges as a particular
way to iteratively solve the flow equation, if the starting point is the bare action. Next,
we explore both technical and conceptual issues by means of three different applications of
the formalism, to QED, to general non-linear sigma models (NLoM) and to matter fields on
curved spacetimes.

In the main part of this thesis we construct the EAA for non-abelian gauge theories and
for quantum Einstein gravity (QEG), using the background field method to implement the
coarse-graining procedure in a gauge invariant way. We propose a new truncation scheme
where the EAA is expanded in powers of the curvature or field strength. Crucial to the
practical use of this expansion is the development of new techniques to manage functional
traces such as the algorithm proposed in this thesis. This allows to project the flow of all
terms in the EAA which are analytic in the fields. As an application we show how the low
energy effective action for quantum gravity emerges as the result of integrating the RG flow.

In any treatment of theories with local symmetries that introduces a reference scale, the
question of preserving gauge invariance along the flow emerges as predominant. In the EAA
framework this problem is dealt with the use of the background field formalism. This comes
at the cost of enlarging the theory space where the EAA lives to the space of functionals of
both fluctuation and background fields. In this thesis, we study how the identities dictated

by the symmetries are modified by the introduction of the cutoff and we study so called



bimetric truncations of the EAA that contain both fluctuation and background couplings.
In particular, we confirm the existence of a non-Gaussian fixed point for QEG, that is at the
heart of the Asymptotic Safety scenario in quantum gravity; in the enlarged bimetric theory
space where the running of the cosmological constant and of Newton’s constant is influenced

by fluctuation couplings.



Zusammenfassung

In dieser Doktorarbeit wird der Funktionale Renormierungsgruppen (RG) - Zugang zur Quan-
tenfeldtheorie (QFT), basierend auf der 'Effective Average Action’ (EAA) und der exakten
Flussgleichung, die diese erfiillt, weiterentwickelt. Die EAA ist eine Verallgemeinerung der
gewohnlichen effektiven Wirkung, die stetig zwischen der nackten Wirkung fiir £ — oo und
der gewdhnlichen effektiven Wirkung fiir £ — 0 interpoliert. Hierdurch wird das eigentliche
Problem des Auswertens des Funktionalintegrals iiberfiihrt in die Bestimmungen des Flusses
der EAA vom UV- bis hin zum IR-Bereich. Der EAA-Formalismus eignet sich auf natiirliche
Art und Weise zur Losung verschieder Probleme der QFT. Ein Aspekt ist verkniipft mit der
Suche nach einem Nicht-Gaufschen Fixpunkt des RG Flusses, der dazu verwendet werden
kann, den Kontinuums-Limes zu konstruieren. Insbesondere bietet der EAA-Formalismus
einen hilfreichen Rahmen, um asymptotisch sichere Theorien zu finden, d.h. Theorien, die
bis zu beliebig hohen Energien ihre Giiltigkeit bewahren. Ein zweiter Aspekt, bei dem der
EAA-Zugang sich als besonders hilfreich erweist, liegt im Bereich nicht-stérungstheoretischer
Berechnungen. Die exakte Flussgleichung, die von der EAA erfiillt wird, ist in der Tat ein
wichtiger Ausgangspunkt um neue Naherungsmethoden zu entwickeln.

Im ersten Teil der Arbeit geben wir eine Einfiihrung in den Formalismus. Insbeson-
dere wird die exakte RG Flussgleichung fiir die EAA und die damit verbundene Hierarchie
der gekoppelten Flussgleichungen fiir eigentliche Vertizes hergeleitet. Wir zeigen, wie sich die
gewohnliche Storungstheorie als spezielle Form einer iterativen Losung der RG Flussgleichung
ergibt, sofern als Ausgangspunkt die nackte Wirkung herangezogen wird. Anschliefend wer-
den sowohl konzeptionelle als auch technische Fragen am Beispiel von drei verschiedenen An-
wendungen des Formalismus erdrtert: des QED, der allgemeinen nichtlinearen Sigma-Modells
(NLoM) und von Materiefeldern im gekriimmten Raum.

Im Hauptteil dieser Arbeit widmen wir uns der Konstruktion der EAA fiir nicht-abelsche
Eichtheorien und fiir die Quanten-Einsteingravitation (QEG), wobei wir hier den Hintergrund
feld-Formalismus verwenden, um auf eichinvariante Weise das Coarse-Graining Verfahren zu
implementieren. Wir schlagen ein neues Trunkierungsverfahren vor, wobei die EAA nach
Ordnungen der Feldstirke bzw. Kriimmung entwickelt wird. Der wesentliche Aspekt bei der
praktischen Anwendung dieses Algorithmus liegt in der Konstruktion eines neuen Hilfsmittels,
um die Berechnung von funktionalen Spuren handhabbar zu machen. Dies erlaubt den Fluss
aller in den Feldern analytischen Terme der EAA herauszuprojizieren. Als Anwendung zeigen
wir, wie die niederenergetische effektive Wirkung der QEG als Ergebnis des integrierten RG-

Flusses zu Tage tritt.



Bei der Betrachtung von Theorien mit lokaler Symmetrie, welche eine Referenzskala mit
sich tragen, ist die Frage nach Erhaltung der Eichsymmetrie entlang des Flusses von grofser
Bedeutung. Im Rahmen der EAA wird dieses Problem durch Benutzung des Hintergrundfeld-
Formalismus beriicksichtigt. Dies erfordert eine Erweiterung des Theorienraums in dem die
EAA definiert ist, zum Raum sg. “bimetrischer” Funktionale, der sowohl von den Fluktuations-
als auch den Hintergrund-Feldern abhéngt. In dieser Arbeit untersuchen wir, wie die Iden-
titdten, die aus den Symmetrien entstehen, durch die Einfiihrung des Cutoffs modifiziert wer-
den. Weiterhin studieren wir bimetrische Trunkierungen der EAA, die neben Fluktuations-
auch Hintergrund-Kopplungen enthalten. Insbesondere bestétigen wir die Existenz des Nicht-
Gaufschen Fixpunkts fiir die QEG, der fiir das Programm der Asymptotischen Sicherheit von
zentraler Bedeutung ist. Wir lassen dabei erstmals zu, dass das Laufen der Kosmologischen-

und der Newton-Konstante durch die Fluktuationskopplungen beeinflusst wird.
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Chapter 1
Introduction

In the last century, theoretical physics has witnessed extraordinary achievements, ranging
from the discovery of the quantum world to the formulation of general relativity. In partic-
ular, in the last sixty years, quantum field theory (QFT) has been developed and now we
posses a wide theoretical framework that we use to understand the fundamental interactions
and the cosmos. Equally important developments have been made in the understanding of
critical behavior of systems composed of many interacting parts, as those studied in sta-
tistical mechanics and in condensed matter. We also made deep progress in the study of
non-equilibrium systems and we discovered that deterministic systems may become chaotic.

In all these discoveries we often followed guideline principles that turned out not to be
completely correct and a different justification of the assumptions leading to correct answers
was formulated only in a second time. The main example of this kind of situation is the
perturbative renormalization principle that was used to formulate the standard model of
particle physics. It was trough the synthesis that K. Wilson made at the beginning of the
seventies that we started to understand the reasons why the standard model of particle
physics was working so well and the real nature of the UV divergences that affect QFT. This
conceptual framework is now known as the Renormalization Group (RG) theory. A deep
connection between QFT and statistical mechanics emerged, and ultimately between all
theories where fluctuations play a consistent role. We discovered that there is a close relation
between the ability to construct fundamental theories and second-order phase transitions,
the concept of universality emerged as a fundamental theoretical tool. Another important
conceptual development, not unrelated with RG ideas, was the development of effective field
theory (EFT). Theoretical physics is now some how more mature, in the sense that we are

now able to understand the reasons why our theories are predictive and the extent to which

10



CHAPTER 1. INTRODUCTION 11

they are. The unreasonable success of mathematics in physics is not anymore such deep

mystery.

1.0.1 Renormalization Group theory

Several different approaches to quantum field theory (QFT) have been developed so far. In
all cases one starts from a regularized version of the theory, which is mathematically well
defined, and successively tries to remove the regularization so to obtain unambiguous physical
predictions.

One common starting point to develop a QFT is the functional integral construction of

the effective action I'[p]. This can be defined as in equation (B.17) of Appendix B:

Tl / Dy e~ Sletd+/ %5 (x) =0. (1.1)

In equation (1.1) we introduced the average field, denoted by ¢, and the classical or bare
action S[¢] that we are quantizing!'. In this section we will consider the (on shell) effective
action as a prototype for all physical observables. For example, the partition function of a

QFT can be calculated from the effective action using the following relation,
I = —log Z, (1.2)

where the field configuration ¢, is the quantum vacuum state and is the solution of the

following quantum equations of motion:

~0. (1.3)

Equation (1.3) represents the quantum action principle.

There are two main types of regularization procedures that are commonly employed to
give a mathematically grounded definition of the functional integral in (1.1), making it a
well defined finite dimensional integral. In the first case space (or spacetime) is discretized
by defining the theory on a lattice, while in the second case continuity is preserved but a
cutoff is imposed on the field modes that are integrated in the functional integral. Examples
of the first kind are lattice approaches, as lattice gauge theories [38] and discrete approaches

to quantum gravity |73, 75]. Examples of the second type are the functional RG approaches

!The relation between the quantum field ¢, the fluctuation field y and the average field ¢ is ¢ = ¢ + x.
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to QFT, among them is the effective average action (EAA) approach studied in this thesis.
The fact that both these regularization procedures act at the level of the functional integral
make them non-perturbative in nature.

This is obviously in contrast with perturbation theory [10, 9, 12|, where a formal series
expansion is regularized term by term. Perturbation theory is based on our ability of ex-
actly evaluating Gaussian functional integrals. The functional integral is expanded around a
quadratic part of the action and all the other terms are treated as interactions. In this way

we generate the formal loop expansion for the effective action:

I'[e] = S[p] + %Tr log S®[p] — % @+ F;—Q CX)JrO(hB) .

Here we introduced 7 as a loop counting parameter. The loop expansion needs first to be
regularized and then to be (perturbatively) renormalized?, as we said, term by term. But
the series so constructed is not usually convergent and is thus not enough to reconstruct the
original functional integral. Still, the perturbative expansion is one of the most valuable tools
at our disposal, in particular in the framework of effective field theory (EFT). As we will see
later, EFT is the most general way of making physical prediction using Gaussian integration
techniques.

Every regularization scheme introduces an arbitrary cutoff scale. In lattice regularizations
this is given by the lattice spacing a, while in cutoff formulations this is given by the ultraviolet
(UV) cutoff A. We can consider these two scales as related by A = % and we implicitly
assume this relation in the following considerations. The theory of renormalization studies
when and how it is possible to remove the regularization, or equivalently how to take the limit
A — oo if it exists. This limit is commonly called “continuum limit”. We say that a theory
is renormalizable when we can remove the regularization, by taking the continuum limit, in
such a way that all physical quantities remain finite and just a finite number of parameters
need to be fixed by experiments to make the theory predictive. The study of how it is possible
to construct the continuum limit is one of the two faces of the renormalization group (RG)
theory, the other being the understanding of critical phenomena, i.e. of universality®. This
two apparently different problems are strictly related in the RG theory and we due to K.
Wilson the formulation of this general framework [1, 2|. If a theory is renormalizable in the

above mentioned way, then it is in principle predictive at arbitrary high energy scales, or

2We assume that the reader is familiar with standard perturbative renormalization [9].
3Since we are interested here in the UV aspects of renormalization we refer the reader to the literature
for more details on critical phenomena and on the concept of universality [12].
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Figure 1.1: In the Wilsonian framework the functional integral is defined as a sum over all
field modes ¢, of momentum p smaller then the UV cutoff A. The RG flow of the WEA is
generated by varying the cutoff scaleA.

equivalently at arbitrary small spacetime scales, and is thus considered to be a fundamental
physical theory. This picture is invalidated if, for example, new physics emerges above a
certain energy scale.

In the standard Wilsonian RG framework one studies what happens when the UV cutoff
is varied. If we lower the UV cutoff to A’ < A we can define a new action Sy/[¢] as the
resultant of the integration over the momentum shell defined by these two scales. It is
important to realize that even if the initial bare action Sx[¢] is local the resulting Sy/[¢]
is an extremely complicated non-local action containing all possible invariants compatible
with the symmetries of the theory. The action so generated is called the Wilsonian effective
action (WEA) and the flow which relates the WEAs at different values of the UV cutoff is
the RG flow. In this way the RG theory naturally introduces the space of all possible actions
compatible with the symmetries of the theory. This is called “theory space” and is the place
where the RG flow takes place.

The variation of the UV cutoff can be implemented in a smooth way by introducing a
damping factor in the action, in place of sharply cutting-off the modes in the functional
measure, and by codifying the flow in a differential equation for the WEA [3].

If the field modes we integrated out pertain to a massive excitation of mass M, then we
can expand the WEA at the lower scale in a local series of invariants suppressed by inverse
powers of M. This is the decoupling mechanism. But if the field modes we integrated out
correspond to mass-less excitation then there is no low energy scale in which we can expand
the WEA and thus non-local term can become significant. We will come back to this point

later when discussing EF'Ts.
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Modulo the remarks just made, the general WEA can be expanded in a basis of local
invariants® I;[¢], parametrized by A-dependent dimensionless coupling constants g;(A), of

the following form:

Silg] = ZAAigi(A) Ii[¢]. (1.4)

The A; in (1.4) are the dimensions of the (dimensionful) coupling constants. Note that we
will consider the masses as just part of the set of coupling constants®. Using the expansion
in terms of local invariants (1.4), one can describe the RG flow by the following system of
differential equations for the A-dependent dimensionless coupling constants:

Ad

mgi(A) = —A,g; + quantum corrections = ; (g) . (1.5)

The functions ;(g) are the “beta functions” for the dimensionless couplings. The problem of
constructing a continuum limit can now be translates into the related problem of searching

for solutions g/ of the system:

with particular properties. The g/ represent the fixed points of the RG flow.

The dimensions A; in (1.4) are defined as minus the dimensions of the invariants I;[¢], in
such a way to make the action dimensionless. Since there is no a priory way to choose the
dimensions 4A;, they are commonly chosen to be the canonical ones, i.e. they are fixed by

requiring the Gaussian action®

Seld) = 5 [ d'v 9,00 (L7

to be dimensionless. Assigning mass dimension in units of the cutoff A to the coordinates
fixes [d2] = A~ and [0,] = A. Thus we must have [¢] = A¥?~1. With these definitions all
the dimensions of the invariants I;[¢] are fixed. But this is just a conventional choice. It is
important to realize that the dimension of the field is a fundamental fractal property of the
theory and, as we will see, every universality class has a distinctive spectrum of “anomalous
dimensions” for the field and for all composite operators I;[¢]. To account for this, we must

allow for scale dependent wave-function renormalization constants Z,(g) that are introduced

4Tf our aim is to study the continuum limit of a QFT, we can focus on local invariants since the dangerous
divergent terms in A are expected to be so.

5Not all coupling constants are “essential”, the “inessential” one can be removed by field redefinitions
[86, 80].

6We consider here a scalar field as an example.
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by the field redefinitions ¢ — Z;)/ 2¢. If at a given fixed point the anomalous dimension,

defined by
d
ns(g) = —A—~log Zs(g) , (1.8)

dA
is non-zero 1,(g*) # 0, then the factor Z,(g*) in the Gaussian action (1.7) acquires a non-zero
dimension A~"%. For dimensional consistency the dimension of field must change in order to
compensate for this:
Np*

6] = AZ71F5 (1.9)

In this way the RG theory “corrects” the scaling properties of the theory. The field and all
the composite operators dimensionalities have thus a proper meaning only near a fixed point
and strongly depend on it. The ability to understand this phenomenon together with the
capacity of actually calculating the non-trivial scaling spectrum of a theory around a fixed
point are the most important success of the RG theory [1, 2.

To qualitatively understand the varieties of asymptotic behavior the running coupling
constant may have as A — oo, we consider the simple situation where theory space is reduced
to a one dimensional subspace of only one coupling constant g(A). In this case the full flow
is encoded in one beta function 3(g). Integrating the flow equation (1.5) for this particular

case gives:
gAa dg

am ﬁ(g) ’

where M is a mass scale arising as an integration constant. Integrating instead equation

(1.8) gives:
A dN’
ZA = ZM exp{—/ 77(9/\’) N } . (111)
M

A =M exp (1.10)

There are basically three possible forms for the function S(g) and these are represented in
Figure 2. In the first case the beta function is always positive for positive coupling and grows
rapidly enough to make the integral in (1.10) convergent in the upper limit for gy — oo.
Therefore the bare coupling g, is driven away from g = 0 and diverges at a finite scale. This
is the so-called “Landau pole” case and is generally considered unphysical. In the second case
the beta function is always negative for non-zero coupling so that g = 0 is an UV attractive
fixed point and the theory is said to be “asymptotically free”. Since the coupling is small,
perturbation theory can be used to calculate the beta function, and is usually of the form
B(g) = —bg? with b > 0. The integral in (1.10) can then be easily calculated to yield:

frd gM
1+ bgn log %

9a (1.12)
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B(g)

A

A\
Q

Figure 1.2: Possible forms of the beta function §(g) for the coupling g.

For A — oo this approaches the g,; independent limit (b log %)71 and then becomes zero.
Also, the anomalous dimension of a given invariant I;[¢] has the perturbative form n(g) = Cg"
for some constant C' and for some positive integer n. Inserting in (1.11) the g5, independent

limit for g, gives, for the ratio of the wave-function renormalization, the following result:

—CJb
A4 log & n=1
A (log 57) (1.13)

/A 1-n ’
A exp {——bn(f_n) (log %) } n>1

In this case the Gaussian scaling is modified by logarithmic corrections. In the last case the
beta function is positive in the vicinity of the origin but has a (simple) zero at the UV fixed
point g.. The coupling constant will grow if smaller then fixed point value, otherwise it will
decrease. Taylor expanding the beta function for ¢ < ¢, and inserting in (1.10) gives the

following important relation:

B 1
B'(g.) ‘

M ~ Alg. — gal” v = (1.14)

The critical exponent v is the mass critical exponent |12, 75]. To obtain a non-trivial contin-
uum limit we have to send A — oo so that M, which plays the role of the inverse correlation

length, remains finite or vanishes. From (1.11) we find instead

Zp ~ A1) (1.15)
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Figure 1.3: The RG flow in theory space. Two nearby trajectories on the UV critical surface
of a fixed point are shown. To obtain a finite theory as we take the limit A — oo we need to
tune (non-perturbatively renormalize) the theory to lie on the UV critical surface Syy .

which shows that the Gaussian operator, or equivalently the field, acquires a new scaling

. . d—2
dimension %

. Thus at non-Gaussian fixed point the scaling spectrum of the theory is
non-trivial. Non-Gaussian fixed points of the RG represents scale invariant, or even conformal
invariant, interacting theories that are representative of non-trivial universality classes [13].

In presence of more couplings, which are infinite in the general situations, the asymptotic
behavior for A — oo can be of different types: trajectories can go to infinity for finite or
infinite A, there can be fixed points or even limit cycles. Even the very speculative possibility
that the RG flow may be chaotic has to be considered, opening the road to the question of
what such a case could mean. Of all these situations the most interesting one is when fixed
points, in particular non-Gaussian ones, are present. In this case it is useful to linearize the

system (1.5) around a solution g of (1.6):

d

A—
dA

where the stability matrix M;; is defined by
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9B

M;; = —*
dg;

(1.17)

9=9x

If we consider the eigenvectors of the stability matrix Y~ Myv] = Mv] we can write the
perturbations as a linear combination of the eigenvectors dg; = >, Crv} AN so that we can

write

gi=g;+ Y Cro/AM.
1

The couplings will reach the fixed point g’ for A — oo only if the coeflicients are zero
Cr = 0 for all I with positive eigenvalues A’ > 0. The linear combinations of coupling that
are attracted to the fixed point are called irrelevant, those which are repelled are termed
relevant while if A! = 0 they are marginal. The set of all points in theory space attracted
to the fixed point for A — o0, i.e. the basin of attraction of the fixed point, is the UV
critical surface Syy. The dimension of this surface dim Syy, if finite, sets the number of
independent parameters to by fixed by experiment to make the theory predictive. Note that
if dim Syy < oo then dim S;p = oo and viceversa’. If a fixed point with finite dimensional
UV critical surface can be found in a give theory space, then it is possible to construct a non-
perturbative renormalizable QFT that depends on dim Sy independent parameters. This
scenario is termed asymptotic safety after S. Weinberg [86]. This generalizes the more know
case of asymptotic freedom in which the fixed point in question is Gaussian.

When instead the fixed point is attractive in the IR and has there a finite dimensional
critical surface dim S;r < oo, then all those microscopic models, who’s classical action can
be taken to lie on S;g by tuning a finite number of parameters, have the same macroscopic
physics. This is what we need to describe critical phenomena and is the IR manifestation of
universality [12].

If a UV attractive fixed point with a finite dimensional UV attractive critical surface
exists then by fixing the bare theory to lie on it we can take the limit A — oo resulting in a
theory where only dim Sy couplings and masses have to be taken from experiments to have
a predictive theory. Even if we are able to find such a fixed point, that can be in principle
found by studying the beta function system (1.6), we still need to calculate the path integral
with bare action arbitrary close to the fixed point action S.[¢]. This can be done if we are
able to solve the fixed point theory, as is possible to do in the context of conformal field
theory (CFT) in d = 2, then we can define any theory around this fixed point by perturbing

Si[#] [13]. But this kind of exact results are basically never available for realistic theories

"We are assuming that fluctuations lifts all marginal operators to be relevant or irrelevant.
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away from two dimensions.

In the framework of perturbative or effective QFT the RG theory is usually introduced in
a different way. As we have seen, the effective action is constructed using the loop expansion
where every term is made finite by a perturbative renormalization; i.e. infinities are removed
by subtractions after they have been regularized, usually by dimensional regularization. After
the theory has been made finite, we still need to impose renormalization conditions to fix the
renormalized parameter with the observed ones. It is at this point that the RG comes into
play in the form of renormalization conditions imposed at the arbitrary reference scale p.
This defines renormalized coupling constants g;(i) depending on this “sliding scale” p [11].
By the request that renormalized physical quantities, like the (on-shell) effective action, must

be independent of this arbitrary chosen scale, we obtain the RG equations for the couplings:

d d
BT (g) = ud—ﬂgi(u) ny"(g) = I log Z(g) . (1.18)

where we used a superscript to remark that these are perturbative beta functions and anoma-
lous dimensions. Remember also that we are considering the masses as part of the coupling
constants set. In the same way we can also write down a flow equation for the renormalized

effective action:

a Py e /d 0 I
(NaM‘FZ@ (9)agi Ny (9) dxg&(x)égp(x) Fu[Z(ﬁ’M(p,mZ’mgz’u]_o_ (1.19)

7

This is the well known Callan-Symanzik homogeneous RG equation [9, 12]. This implementa-
tion of the general RG theory is useful when we dispose of a computation and renormalization
framework able to give use, within some expansion scheme, the full effective action on which
we can impose the renormalization conditions at the arbitrary scale pu. When we are able
to do this, then this is a good way to observe the physical system we are analyzing at dif-
ferent resolutions, which are in a way or the other related to p, in this way obtaining the
physical RG flow. This approach is less useful when we don’t have a proper way to renor-
malize the theory and we do not dispose of an efficient way to calculate the contributions of
fluctuation to the effective action. Perturbation theory is the optimal setting were to study
asymptotically free theories, since the question of if a theory is actually so can be settled by
perturbative calculation of the beta functions. But this is not the proper setting where to
investigate for universality classes that cannot be uncovered by perturbative expansions and

in particular is not the proper setting where to search for asymptotically safe theories.
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We have to mention that the perturbative RG approach was actually the first one de-
veloped. Even if the full RG conceptual framework was not yet formulated, the work of
Stueckelberg and Petermann [4] and the better known work of Gell-Mann and Low [5] intro-
duced the beta functions for the running electric charge in QED. In fact equations (1.18) are
know after this last two authors. The aim that motivated this first studies was to improve
the range of validity of perturbation theory, in particular when large logarithms were invali-
dating it [11]. The perturbative approach is the one commonly used in high energy physics
since perturbative and effective theories are efficient tools to deal with the standard model of
particle physics. All the general properties of the RG flow discussed in the previous section
carry over to the perturbative RG just discussed by replacing A with pu.

When are the Wilsonian RG and the perturbative RG comparable? In the UV were
the beta are mass-less and depend only on dimensionless couplings, in this case the first
two terms of the Taylor expansion of both 5, and f,, can be shown to be equal [11].
This implies that if a theory is perturbatively asymptotically free then it is possible to take
the continuum limit on the lattice. In more general conditions instead, as in presence of
dimensionful couplings or non-zero masses, there are no general results that relate the RG
flow in these two formulations.

Today we don’t consider any more the property of QFT to be perturbatively renormal-
izable as a fundamental physical requirement. Instead we are more interested to understand
why QFTs are sometimes very good models of natural phenomena. The answer to this ques-
tion is encoded into the effective field theory (EFT) formalisms. As we already mentioned,
EFT is the most general way of making physical predictions using our ability to perform
Gaussian integrals. In this framework the loop expansion for the effective action is used in
a very clever way: the saddle point expansion is constructed around the quadratic part of
the action which correctly describes the low energy fluctuations of the quantum fields and
all the other terms allowed by symmetries, both (perturbatively) renormalizable and non-
renormalizable ones, are considered as interactions. It is assumed that the description in
terms of the low energy degrees of freedom will break down at the characteristic high energy

scale M and the action for the theory is expanded in inverse powers of this scale:
Slgl =Y M%g; L[g]. (1.20)
i=0

The EFT reasoning is particularly simple if no other characteristic scales other than M

are present, i.e. if the theory has been regularized using a mass-independent scheme as
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Figure 1.4: After a RG transformation from the scale A = % to the scale A’ = %A heavy fields
(dot) of mass A > M > A’ do not propagate any more and are effectively described as a
local interaction among light field (continuous). Mass-less fields (wavy) can generate instead
non-local interactions among the light fields. The WEA Sy/[¢] can be expanded in an inverse
power series in M where only a finite number of local invariants, describing the light-heavy
fields interactions, need to be retained. To describe the light-mass-less interactions instead
non-local terms may be needed.

dimensional regularization. The basic idea of EFT is to define the error up to which we want
to calculate the effective action, i.e. we fix the ratio p/M, where p is the characteristic energy
scale of the process under investigation. For example p is the mass or the momenta of the
light fields. If we now insert the action (1.20) in the loop expansion for the effective action,

every diagram will be proportional the following to the factor:
(£>w w=3"mA, (1.21)
M i ’

where n, is the number of vertices steaming from the operator I;[¢] and A; = nfd, — n? 4+ d
with nf’ and n? the numbers of fields and derivatives in this invariant. dg4 is the canonical
dimension of the field, for a scalar field we have as before d, = ‘21 —1. Using simple arguments

about the topology of Feynman diagrams we can prove the following relation:

d
w:—d+dL+Z{<d¢—§> nf—i—n?} n; . (1.22)

where L is the number of loops in the diagram. We see that once we have fixed the error
to which we want to know the effective action, i.e the value of w, the maximum value of L
we need to consider a given interaction I;[¢] is fixed by (1.22). In particular, to any fixed

value for w we need to consider only a finite number of interactions and only a finite number
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Figure 1.5: Within the general renormalization group theory (RG) we can understand all the
approaches to QFT. Perturbative (PT) renormalizable theories are a subclass of effective field
theories (EFT) and both are based on the Gaussian fixed point of the RG flow. Conformal
field theories are used to describe interacting non-Gaussian fixed point theories but only the
full RG theory is capable of describing the full theory space.

of loops. Thus to make unambiguous predictions we need to fix from experiments only the
values of the dimensionless coupling constants for the interactions we are considering, if we
are not able to calculate them from the high energy theory. This is a fundamental result
and ultimately the explanation of the success of theories like QED or the standard model of
particle physics is related to the fact that the respective fundamental mass scales are much
higher then the energy probed by the relative experiments [10, 7]. From this perspective,
perturbative renormalizable theories are just those theories where to improve the precision in
the predictions, i.e. we increase the value of w, we don’t need to consider new interactions.
Note that this does not mean that a perturbatively renormalizable theory is fundamental but
just that it is a convenient theory to work with.

We remark that mass-independent regularization schemes are very useful in EF'T because
they allow the simple power counting we just made but they fail to describe thresholds, i.e.
they fail to describe decoupling. When using this kind of regularizations threshold phenomena
have to be introduced by hand as matching conditions. The results of EFT can obviously be
obtained also using a mass-dependent regularization scheme, since physics cannot depend on
this choice, but the arguments become more involved due to the presence of the cutoff scale.

The origin of the fundamental mass scale M can be understood in terms of the WEA:
it is just the mass of the heavy fields which have already been integrated out. The same
remark we made before about the decoupling of the high energy degrees of freedom applies

again: only massive fields decouple completely while mass-less fields can contribute to the
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Figure 1.6: In the effective average action (EAA) framework an IR cutoff & is introduced and
the functional integral is defined over the field modes ¢, of momenta k < p < A.

low energy physics with non-local terms in the effective action of the EFT. In particular these
terms are related, and can be obtained, by the analysis of anomalies [8]. In theory there is
the possibility that high energy physics can have a signature on the low energy domain. A
cartoon of this fact is shown in Figure 1.4.

We can understand now the physics behind standard renormalization: the UV cutoff A is
just an arbitrary scale smaller then a fundamental mass scale M and the bare action is just the
result of the integration of the heavy fields between the scales M and A. Physical observables
cannot depend on A since they cannot depend on the fact that we decided to integrated
out the heavy fields first and successively the light ones. The procedure of perturbative
renormalization reflects this fact: the UV scale that enters both the loop integrals and the
coupling constants, i.e. the vertices, must drop out from observables since this dependence
arises by the arbitrary introduction of the cutoff [7].

Thus we can understand both perturbative renormalization and EFT as part of the general
Wilsonian RG theory. How can we unveil the other regions of this general theory? More
precisely, how can we make physical predictions that go beyond the scale at which the EFT
description brakes down? How can we discover those fixed points of the RG flow that are out
of the domain where perturbation theory is applicable? How do we construct asymptotically
safe theories? The answer is in principle simple: by doing the momentum shell integration
that relates the WEA at different scales step by step, and in doing so we extend the RG flow
to cover theory space completely.

Only in recent years it has finally come to use a practical way to do this. Instead of
considering the functional integral with a floating UV cutoff, we introduce an additional TR

cutoff scale k to restrict the integration of the field modes to the range k¥ < p < A and we
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Figure 1.7: The flow of the EAA in theory space. At the UV scale A the EAA can be either
a given microscopic action S or a fixed point action S,. In the limit £ — 0 we recover the
full effective action I' as the result of the integration of the flow.

shift our the attention to the effective action in place of the bare action. The functional
defined in this way is called effective average action (EAA) [15, 18, 17|. But why considering
an effective action that now depends on two cutoff scales? The answer is that the scale
dependence of the effective average action on the IR scale k£ can be encoded in an exact RG
flow equation [14]. This equation is the fundamental tool used in this approach and reads as

follows:

1. (6T -

This flow is well defined both in the IR as well as in the UV and we can thus forget about
the original UV regularization of the functional integral. Also, it is easy to show that the
EAA interpolates smoothly between the bare action for £ — A and the full effective action for
k — 0. This properties allow us to translate the problem of computing the functional integral
into the problem of integrating the RG flow described by the exact flow equation (1.23). In
particular we can use (1.23) to devise new computational tools to use to approximate the
effective action seen as the & = 0 limit of the EAA. All the general RG analysis described
before carries over to this formalisms by the identification® A — k. We have thus an unified
framework where to search for continuum limits and at the same time where to calculate the
effective action that can follow from these.

The EAA joins the conceptual virtues of WEA with new computational possibilities

8As we remarked before, there is no direct relation between the explicit flow in the three different RG
implementations we are considering.
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offered by the exact flow it satisfies. It is left to demonstrate that the EAA is really capable
to maintain these promises. It is possible, in practice, to use the exact flow of the EAA to
answer real non-perturbative questions? Is quantum gravity asymptotically safe? Can the
EAA formalisms deal with theories with local symmetries? These are the main question we

try to answer in this thesis.

1.0.2 Outline of the thesis

In this thesis we develop further the functional renormalization group (RG) approach to
quantum field theory (QFT) based of the effective average action (EAA) and on the exact
flow equation that it satisfies. As we said in the previous section, the EAA is a generalization
of the standard effective action that interpolates smoothly between the bare action for £ — oo
and the standard effective action for & — 0. In this way, the problem of performing the
functional integral is converted into the problem of integrating the flow of the EAA from
the UV to the IR. The technical reason why this reformulation is useful is the fact that the
EAA average action satisfies an exact flow equation that can be used as the starting point
to define the QFT in theory space.

The EAA formalism deals naturally with several different aspects of a QFT. One aspect
is related to the discovery of non-Gaussian fixed points of the RG flow that can be used to
construct continuum limits. In particular, the EAA framework is a useful setting where to
search for Asymptotically Safe theories, i.e. theories valid up to arbitrary high energies. A
second aspect in which the EAA reveals its usefulness is to non-perturbative calculations. In
fact, the exact flow that it satisfies, is a valuable starting point for devising new approximation
schemes.

In the second chapter of this thesis we introduce the formalism. We state the basic
definitions in section 2.2, in particular we derive the exact RG flow equation for the EAA
in section 2.2.1 and the related hierarchy of coupled flow equations for the proper-vertices
in section 2.2.2. In section 2.2.3, we show how standard perturbation theory emerges as
just a particular way to iteratively solve the flow equation if the starting point is the bare
action. We propose that more general initial points in the iterative process, in particularly
scale dependent ones, may be useful new approximation scheme to the solution of the flow
equation. Next, in section 2.3 we explore both technical and conceptual issues by means
of three different applications of the formalism. In section 2.3.1 we treat some basic QED,
in section 2.3.2 we apply the formalism to general non-linear sigma models (NLoM) and in

section 2.3.3 we study matter fields on curved spaces.
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In the main part of this thesis, Chapters 3 and Chapter 4, we construct the EAA for
non-abelian gauge theories and for quantum gravity, using the background field method
to implement the coarse-graining procedure in a gauge invariant way. The construction
of the background effective average action (bEAA) is done in section 3.3 for non-abelian
gauge theories and in section 4.3 for quantum gravity. In sections 3.2 and 4.2, after briefly
reviewing the classical theory, we study the quantum theory through the bEAA approach
respectively for non-abelian gauge theories and for quantum gravity. We state the basic
definition and properties and then we study both local, sections 3.2.2.1 and 4.2.2.1, and
non-local truncations, sections 3.2.2.2 and 4.2.2.2, of the EAA. When treating non-local
truncations we propose a new truncation scheme where the bEAA is expanded in powers of
the curvature or field strength that we call “curvature expansion”. Crucial to the practical use
of this expansion is the development of new techniques to manage functional traces, that are
developed in section 3.3.4, and that furnish the basis for a general algorithm, firstly proposed
in this thesis, that allows to project the flow of all terms in the bEAA which are analytic in
the fields. As an application, in section 4.2.2.2 we show how the low energy effective action
for quantum gravity emerges as the result of integrating the RG flow.

In any treatment of theories with local symmetries that introduces a reference scale, the
question of preserving gauge invariance along the flow emerges as predominant. As we said,
in the bEAA framework this problem is dealt with the use of the background field formalism.
This comes at the cost of enlarging the theory space where the EAA lives to the space of
functionals of both fluctuation and background fields. We study how the identities dictated
by the symmetries are modified by the introduction of the cutoff by deriving the modified
Ward-Takahashi identities in section 3.3.2 for non-abelian gauge theories and in section 4.3.2.
for quantum gravity. We study truncations of the bEAA that contain both fluctuation and
background couplings when we deal with local truncations in non-abelian gauge theories in
section 3.2.2.1 and in quantum gravity in section 4.2.2.1. In particular, in this last section, we
confirm the existence of a non-Gaussian fixed point for quantum gravity, which is at the basis
of the Asymptotic Safety scenario in quantum gravity, in the enlarged theory space where the
running of the cosmological constant and of Newton’s constant is influenced by fluctuation
couplings. All the derivations and technical details pertaining to these two chapters are
collected in the respective Appendix to the Chapter.

In the first appendix we treat the heat kernel expansion and we propose a new way to
derive the non-local expansion for its trace. We also introduce the )-functional technology
used to compute functional traces. In the second appendix we review the basic of QFT

that we use all over the thesis. In the third appendix we fix the formalism for non-abelian
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gauge theories, in particular the functional quantization via Faddeev-Popov and the back-
ground field method. In the last one, after reviewing the some basic differential geometry we

introduce the functional integral for quantum gravity.



Chapter 2

Introduction to the functional RG

2.1 Introduction

There are many different ways to implement the general RG coarse-graining procedure. The
first one developed were Migdal-Kadanoft’s block-spin real space RG and Wilson’s original
momentum shell mode elimination. The functional RG approach focuses on the mode elimi-
nation procedure of Wilson, but in place of integrating finite momentum shells, one encodes
the integration over an infinitesimal momentum shell in a differential equation describing
how the effective action changes as the cutoff is varied. The striking and fundamental point
is that it is possible to write exact functional equations describing this process. These are
the exact RG flow equations that characterize the functional RG framework.

In particular, it turns out to be convenient to study a scale dependent generalization of
the effective action, called effective average action (EAA). In this way, we can work directly
with the mean or average fields, which have a clear and direct physical interpretation. Also,
the exact flow equation for the EAA turns out to be extremely compact and powerful. Still,
the flow equation is a very complicated functional integro-differential equation, which can be
treated only at the cost of making truncations of the full EAA.

As we will see in this chapter, the EAA is also suited to be applied to physical systems in
presence of background gauge fields and can be extended to treat matter fields on arbitrary
curved manifolds. In this last case, the matter fields are interacting with the background
geometry. All this is possible because the mode elimination is performed by separating the
slow modes, to be integrated out, from the fast modes in a covariant way. To do this we
introduce a cutoff action constructed employing the covariant Laplacian that respects the

symmetries of the underling theory. In the following chapters, and as the main topic of

28
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this thesis, the EAA formalism will be extended to treat dynamical gauge fields and even
dynamical geometries.

In this first chapter we review the EAA formalism for matter fields on general back-
grounds. We derive the exact flow equation the EAA satisfies and other basic properties.
Through three applications in three quite different contexts we will learn several important
conceptual and technical facts about the formalism. For a general reference about the EAA
we refer to [15, 16|, while for an introduction to the EAA formalism see [18, 17].

2.2 Effective average action (EAA)

The effective average action (EAA) is a functional that interpolates smoothly between the
bare, or classical, action and the effective action. We will define the EAA T'[¢] for theories
on a non-trivial gauge or gravitational background. In this chapter we will quantize only
matter fields, gauge theories will be treated starting from the next chapter. For expository
simplicity we will consider only a scalar field ¢, on the manifold M with Riemannian metric
g, and in presence of a gauge connection (abelian or non-abelian) A,, to state the basic
definitions. It is then straightforward to extend these definitions to a more general matter
content.

Starting from the functional integral (B.4) from Appendix B, which defines the generating

functional of correlation functions

ZIJ; A, g] = /Dg¢ exp (—S[gb; A, g +/ddw§J¢) : (2.1)

we add to the bare action S[¢; A, g] an infrared (IR) “cutoff “ or “regulator” term ASy[¢; A, ¢

of the form:

ASoi A g) = 5 [ devo Rula)o. 22)

In (2.2) the operator kernel Ry(A) is chosen so to suppress the field modes ¢, eigenfunctions
A¢, = N\,¢, of the covariant Laplacian A, with eigenvalues smaller than the cutoff scale
A\n < k?. We will call ASy[¢; A, g] the cutoff action and A the cutoff operator.

For example, in condensed matter applications the cutoff operator is usually chosen to
be the flat space Laplacian A = —92.
will cutoff the modes with the gauge Laplacian A = —D? = — (9, + eiA,,) (0" + eiAH),

while in section 2.3.3 we will choose the Laplace-Beltrami operator acting on scalars, A¢ =

When we will consider QED in section 2.3.1 we

—\/%78“ (\/ﬁg‘“’&,(b), as cutoff operator. In the next chapters, when dealing with non-abelian
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gauge theories and quantum gravity, we will consider more general choices.

The functional form of Ry (2) is arbitrary except for the requirements that it should be a
monotonically decreasing function in both z and k, i.e. that Ri(z) — 0 for z > k? and that
Ry(2) — k? for z < k2.

In this way we obtain the scale dependent generalization of (2.1):

Zi[J; A, g] = /Dgcb exp (—S[szﬁ;fhg] — ASk[$; A, g] +/ddl‘x/§J¢) : (2.3)

Next we define the scale dependent generalization of the generating functional of connected

correlation functions as:

WilJ; A, g] = log Z,.[J; A, g] - (2.4)

The EAA is the scale dependent generalization of the effective action, defined in equation
(B.13) of Appendix B. It is defined by the Lagrange transform of (2.4):

Lilp; A, g] + ASklp; A, g] = /ddI\/EJ@so — Wi[Jp: A, g, (2.5)

WilJ;A9]

where ¢ = (¢) is the mean or average field. In (2.5) we have solved the equation ~—*

¢ to obtain the current as function of the mean field J = J,.

Note that the Legendre transform of the generating functional of the connected correlation
functions Wi[J; A, g] is the combination I'x[p; A, g] + ASk[p; A, g] and not just the EAA; thus
[k[e; A, g] needs not to be a convex functional of ¢ for non zero k.

We can derive the integro-differential equation satisfied by the EAA by the same steps we
did to derive the integro-differential representation of the effective action, equation (B.17) in
Appendix B. We find:!

e Trlel = /DxeXP [=S[e + x] — ASk[p + x]
p oLk[p] | 0ASk[p]
[ty (P 25y asigl] 26)

Equation (2.6) has to be considered together with the condition of vanishing vacuum expec-

tation value of the fluctuation field (x) = 0. We can rearrange the terms in (2.6), containing

'We omit the arguments A, and g,, of I', and AS), as soon as they are understood.
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the cutoff action, in the following way:

—ASk[‘P‘FX]‘{'ASk[‘P]‘{'/ddx\/E%;[QD]X = —%/ddxx/ﬁx%wmxg)
= —ASix]. (2.7)

In the second step in equation (2.7), we used the fact that the cutoff action, as defined in

(2.2), is quadratic in the argument field. Inserting (2.7) into (2.6) gives:

e Trlel = / Dy exp [—S[¢+X] — AS[x] + / d%@‘;%f]x] .

(2.8)
In (2.8) the condition (x) = 0 is understood. Relation (2.8) is the integro-differential equation
that is satisfied by the EAA. Note that we can also use (2.8) as the starting point to define
the EAA in place of (2.5).

As we said before, the EAA interpolates smoothly between the bare (or classical) action
at UV scale and the effective action at the IR scale. To study the limit & — co, we notice that
the cutoff action behaves as Ck* [ d?z,/gp* for k — oo, with C' a cutoff shape dependent
constant. If we redefine the fluctuation field as y — x/k and we use the relation ASk[x/k] =
ASy[x]/k?, which follows from the definition of the cutoff action (2.2), then equation (2.8),

in the £ — oo limit, becomes:

_ 1 1 or
et = [ Dyew [—S[so X/ - pAs+ 1 ddm%x]
1
T e_S[“’]/Dxexp {—QC/ddm\/EXQ} : (2.9)
In (2.9) we assumed that M;Ly] is finite in the limit & — oo. The functional integral so

obtained is Gaussian and is thus just a constant?. We thus arrive to the relation
I'wlp] = S[g] + const , (2.10)

which can be seen as a boundary condition for the EAA as k — oo. It is easy to see that in
the opposite limit & — 0 the EAA becomes the effective action since the cutoff kernel Ry(z)
vanishes. We have thus shown that the EAA interpolates between the bare action in the UV,

2If we rescale the fluctuation field as x — x/+/C we obtain the Gaussian integral that actually defines the
path integral and is normalized to be equal to one.
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Figure 2.1: The regulator shape functions form (2.12). The mass-type cutoff shape function
(short dashed), the exponential cutoff shape function (long dashed) and the optimized cutoff
shape function (thick) are plotted in units of k? as a function of z/k?.

for k — oo, and the effective action in the IR, for & — 0:

lim T [p; A, g] = T A, ¢] lim I'y[p; A, g] = Slp; A, g] . (2.11)
—0 k—o0

Once we have a way to compute the EAA for all k, we can use the properties (2.11) to give
a new construction of the effective action. In this way, the EAA framework emerges as a
new promising setting to define and calculate functional integrals. As we will see in the next
section, the flow of T'y[p; A, g] is well defined for every finite non-zero k. Renormalization
aspects are related to the limit £ — oo while the full effective action is recovered in the limit
k — 0.

There is a considerable freedom in the choice of the functional form of the regulator kernel
Ry (2). In this thesis we will use one of the following three examples of cutoff shape functions.

The “optimized” [19], the “exponential”, and the “mass-type” cutoffs are, respectively:

Rznass(z) — ]{72
R (2) = (K —2)0(k* - 2)
EeXT z
In Figure 2.1 we show a plot of the cutoff shape functions in (2.12). The mass cutoff is not
properly a cutoff because for z > k? it does not go to zero. Hence it does not guarantee the

UV finiteness of the flow. Still it is useful, since it often allows for analytical computations
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Figure 2.2: The bare propagator (continuous) is plotted in units of k? as a functions of
z/k?* together with the regularized propagators obtained using in (2.13), respectively, the
optimized (thick), the exponential (long dashed) and the mass-type (short dashed) cutoff
shapes.

of UV finite quantities.
. g 1o 1
It is easy to understand how the regulator acts when the bare propagator goes like ==z

The regularized propagator
1

(2.13)

is shown in Figure 2.2, for the three different cutoff shapes in (2.12), plotted together with
the bare one. For modes of momentum eigenvalues greater then the RG scale z > k? the
propagation is unaffected, while starting at the cutoff scale, their propagation is successively

suppressed as if they were massive particles of constantly growing mass k.

2.2.1 Exact flow equation for the EAA

The major virtue of the EAA is that it is possible to write down an exact equation describing
how it varies when the cutoff scale k is changed. This relation is the exact functional RG
equation satisfied by I'y[p]. To be general here we consider ¢ as a multiplet of matter fields,
the components of which we indicate with capital letters.

If we differentiate the integro-differential equation (2.8) with respect to the “RG time” or
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“RG parameter” t = log k/kq® we find:

or 5T [#]
Tl = [ Dyaasin - [ aleygo S E ] e seniasiie w i
$A
(2.14)
Expressing the terms on the rhs of (2.14) as expectation values, using equation (B.2) and

equation (2.2), we can rewrite (2.14) as:

A

arilel = @A) - [ devFo st (o)
= %/ddx\/g<XAXB>atRkBA- (2.15)

In (2.15) we used the fact that the field y 4 has vanishing vacuum expectation value (x4) =0
and the symmetry of the cutoff kernel in the indices A and B. Since the fluctuation field
has zero average, the two-point function in (2.15) can be considered to be the connected one.
Using the standard relation, equation (B.20) from Appendix B, we can express it in terms of

the inverse Hessian of the EAA plus the cutoff action® :

(P (Tl + ASke)\ T (6Tl B
(Xaxm) = ( Sonbom ) = ( Sordon +RkAB) : (2.16)

Inserting (2.16) into (2.15) and writing a functional trace in place of the integral, gives:

9 ~1
AT sl] = %Tr <551;’;Ef] + Rk) Ry, . (2.17)
Equation (2.17) is a closed equation that describes the RG flow of the EAA. This equation
is exact since no approximations where made in its derivation and is the main technical tool
employed within the functional RG approach to quantum field theory. It was first derived in
this form in [14].

Note that to obtain a one-loop like flow equation, as is equation (2.17), it is crucial that
the cutoff action (2.2) is quadratic in the argument field. Otherwise we would had found
higher order vertices of the EAA on the rhs of (2.17) that spoil the one-loop structure of the
flow equation.

The flow generated by equation (2.17) is both UV finite, due to the presence of the term

3Here ko is an arbitrary scale.
‘Remember that it is T'y[p] + ASk[¢] to be the Legendre transform of W [J], see the definition (2.5) of
the EAA.
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Figure 2.3: Graphical representation of the exact RG flow equation (2.17). The continuous
line represents the regularized propagator defined in equation (2.18) while the cross represents
the insertion of 0, Ry.

0, Ry, which constrains the momentum in the integral to be between zero and k, and IR finite,
due to the presence of the regulator R in the propagator that behaves like a mass term for
k — 0. Thus the EAA obtained by integrating the flow equation (2.17) is a finite functional
for non-zero k.

We will often use a notation involving the “regularized propagator” defined by:

Grl] = (5;2 ’g[:;] +Rk) . (2.18)

With this notation the flow equation (2.17) becomes simply:
1

We can represent graphically the flow equation as in Figure 2.3.

The exact flow equation (2.17) can be re-derived as an RG improvement of the one-loop
EAA. If we apply standard perturbation theory, equations (B.58) and (B.61) from Appendix
B, to the EAA/ as defined in equation (2.8), we find to one-loop order:

1
Tile] = Sle] + 5 Trlog (SP[p] + Ry) + ... (2.20)
If we differentiate (2.20) with respect to the RG parameter ¢, we are lead to:

1 (82Sg] -
oI =-Tr{———+R O Ry, . 2.21
iUk (] 2r(5¢5w+k , Ry, (2.21)
This is the one-loop flow equation that the EAA satisfies. If we now RG improve it by
replacing the Hessian of the bare action with the Hessian of the EAA, we recover the exact
flow equation (2.17). As we mentioned before, this happens because we have chosen the

cutoff action (2.2) to be quadratic in the argument field.
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Figure 2.4: Graphical representation of the first two equations of the hierarchy of flow equa-
tions for the proper-vertices of the EAA from equation (2.22).

DO =

2.2.2 Flow equations for the proper-vertices of the EAA

The exact flow equation (2.17) is equivalent to a hierarchy of flow equations for the proper-
vertices of the EAA. To derive this hierarchy, we simply differentiate (2.17) with respect to
the field .

The first two equations in the hierarchy are:

1
oL\ [p; A g] = —5 TrGil; A, g] T [0 A, g)Glys A, g0, Ri[A, g]
o) [oi Aygl = TrGilos A, g T [0: A, g)Gilio; A, 9] T (03 A, g1Gilis A, 910, Rel A, g]
1
—5TrGilp A, g] T les A, g)Grlie; A, 910 Ri[A, 9] (2.22)

These equations can be represented graphically as in Figure 2.4. The flow equations for higher
vertices can be easily calculated by taking further functional derivatives. For example, the
flow for the three-point function is given in Figure 2.5. In equation (2.22) we used the
,(:21.__% o] = #’ﬂm, that we will often adopt, to indicate functional
derivatives of the EAA or of other functionals.

Note that in the flow equations (2.17) or (2.22), the cutoff kernel depends on the back-

ground gauge connection and on the background metric. Here we tare taking only functional

abbreviation T’

derivatives with respect to the average field ¢, only in this case the equations in (2.22) are
correct. In the case we were differentiating with respect to the background fields we must
have cared about how to differentiate the cutoff kernels. This can be necessary for computa-
tional purposes, but will not be dealt with in this chapter. We will see that this will become
necessary when treating non-abelian gauge theories in Chapter 3 and quantum gravity in
Chapter 4.

Actually, every equation of the hierarchy, if considered for a general field configuration
©(x), is equivalent to the basic flow equation (2.17) and gives thus no new information. The

hierarchy becomes useful when the EAA can be expanded in functional Taylor series around
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ary = -3 ()

Figure 2.5: Flow equation for the three point function of the EAA. Repeated diagrams stands
for different permutations of the coordinates of the external legs.

4(
—

+

[N
DO [—

a given field configuration ¢(z), using the abbreviation [ = [daf..d"w,\/Ge; -\/Gu, We

can write:

Delpi A, g) = Zn, [T e Agle) - e p(e) — plan] . (229

1..-Tn

The expansion (2.23) makes the hierarchy of flow equations for the proper-vertices an infinite
(n)

k,x1...xn

finite order n, obtaining in this way a finite system for the first n proper-vertices of the EAA,

system of equations for the vertices I' [@; A, g]. We can now truncate the hierarchy to a
that can be used as a starting point for useful applications [20]. This kind of truncation of
the EAA is usually called vertex expansion. Up to now, it has been employed only to treat
the EAA of matter fields on flat space with zero gauge backgrounds. In this thesis we will
develop the tools to construct the analogous of the vertex expansion for non-abelian gauge
theories in Chapter 3 and for quantum gravity in Chapter 4.

The fact that we Taylor expand the EAA does not mean that we cannot study truncations
of the EAA which are non-analytical in the fields. For example, ¢ can be a constant field
configuration. This is what is done to calculate the flow of the functions Vi () and Zy(¢) (to
be defined in a moment) at order 9 of the derivative expansion [21, 25, 22]. The derivative
expansion is a truncation scheme where the EAA is expanded in powers of the derivatives.
This scheme is usually employed for matter field theories on flat space, where the expan-
sion becomes an expansion in powers of the momentum. It is manly used to study critical
phenomena and to calculate the related critical exponents. If we consider a one component

scalar field, in d-dimensional flat space, with a Z, symmetry, the derivative expansion for the
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EAA to order 9* reads [26]:

Bl = [die{ 35600002 + (o) + 3Wale) (%) +

—%Wg,k(w)(f?so)%@?so + iWs,k(so)(é‘sD)“} +0 (8% . (2.24)

The effective potential Vj(p), the wave-function renormalization function Zx(¢) and the
fourth order functions W, x(p), i = 1,2,3, are arbitrary functions of ¢. To derive the flow
for these functions one needs to consider the running of the n-th proper-vertex of the EAA
evaluated at the constant field configuration ¢. In particular, to extract the running of the
wave-function renormalization function and of W x(¢) one needs to consider the running
of the two-point function of the EAA. To extract the running of W5 (p) one considers the
running of the three-point function, while to extract the running of Ws,(¢) the running of
the four-point function is needed. These equations can be evaluated in momentum space
after ¢ has been taken to be constant.

We derive now the flow equation for the effective potential Vi (¢) and for the wave-function
renormalization function Zx (), dropping the fourth order functions W; x(¢). It is not difficult
to show that the flow equation for the effective potential is given by:

OVi(P) = 34 (OB — R Gu(?)] (2.25)

(4m)
where in (2.25) the regularized propagator at the constant field configuration @ is defined as:

_ 1
Gl = 2 D T D Rae) (2:26)

In (2.25) we wrote the rhs side as a “Q-functional” as defined in equation (A.39) of Appendix
A. In this thesis we will always write the beta functions, before a particular cutoff shape
function as been chosen, in terms of ()-functionals. In this sense a ()-functional is a functional
that maps a cutoff shape function to the explicit form of the beta function. The anomalous
dimension of the scalar field in (2.25) is defined by n = —0,log Zx(@o), where @q is the
minimum of the effective potential V’(@y) = 0. This definition of the anomalous dimension
is valid both in the symmetric and in the broken phase [15]. Tt is a little more involved to
derive the flow equation for the wave-function renormalization function. From the graphical

representation of Figure 2.4 we can readily write down the flow equation for the two-point
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function of the EAA in momentum space. We have:

8,5F(2) P /G qp —q— p( )Gq+p<@)rg%2p,—p,—q(@)Gq(@)@Rq+
__/G FE{? —p, q(@)GfI(@)ath- (2.27)

Introducing on the rhs of equation (2.27) the vertices of the EAA (2.24) at order 9% and
extracting the p? terms gives, after some algebra, the following flow equation for the wave-

function renormalization function:
(AmY? 0,7, = (V") {Qg (OB, — nBi) GkGl] + Qa sy [(O.R), — nRy,) GiG’,ﬂ}
+Zl/cvkm {Q% [(&ng — 77Rk) Gz} + (d —+ 2)Qg+1 [(@Rk — T]Rk> GiG%]

(d+2)Qus [(ORk — nRy) GLGY] }

R I CY STl

AL o, (@R~ 1R GG

YLD 0, @k —uh cic) |

—%Z,;’Q (8, Ry, — nRy,) Gy . (2.28)

Equations (2.25) and (2.28) represent the flow equations for Vi (@) and Zy(p) for general
cutoff shape function at order 92 of the derivative expansion.

Once an appropriate cutoff shape function as been chosen, the integrals in (2.25) and
(2.28) can be done analytically. In this way we obtain a system of partial differential equations
for Vi(p) and Zi(@) in the variables k and ¢. After re-writing the flow equations (2.25)
and (2.28) in terms of the dimensionless field ¢ = k:%_le_l(@g)@ and of the dimensionless
functions Vi(¢) and Z,((), we can study the system

O Vi(@) =0 0, Z(¢) =0, (2:29)

to find the fixed point effective potential and fixed point wave-function renormalization func-
tion. It is possible, for example, to show that in d = 3 there is only one scaling solution to the
system (2.29). This scaling solution corresponds to what is know as the Wilson-Fisher fixed

point and correspond to the scalar Z, symmetric universality class in d = 3. By linearizing
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around this solution, it is possible to calculate the critical exponents that characterize this
particular universality class to a good numerical precision.

As these critical exponents can be accurately calculated with various perturbative expan-
sions, as for example the e-expansion [12], the fact that they are very well reproduced by the
derivative expansion of the EAA [26] is not a critical test for the non-perturbative strength
of the EAA approach. It is in d = 2, where every perturbative approach fails to describe
correctly the various universality classes, first constructed exactly using conformal field the-
ory (CFT) methods [13], that the system (2.29) reveals its non-perturbative potentialities.
It was shown in [24] that the system (2.29), in d = 2, has several scaling solutions, each of
which corresponds to one of the universality classes know from CFT. It was also found in [24]
that the derivative expansion (2.24) breaks down as the anomalous dimension of the scalar
field grows, making the contributions of the neglected higher derivative terms, increasingly

more important.

2.2.3 Perturbation theory form the EAA

The flow equation for the EAA (2.17) is an integro-differential equation and, as it stands, it is
very difficult to solve. We have seen that one way to proceed is to truncate the EAA using the
vertex expansion or the derivative expansion. But there are other possible strategies to follow,
for example we can try an iterative solution of the flow equation. This means that we have
to chose an initial ansatz 'y o[p] for the EAA, with possibly some given scale dependence, to
plug it into the rhs of the flow equation (2.17), while we consider the lhs as the flow of the
first approximation I'y1[¢] to the EAA. Then we integrate the flow to obtain I'g;[y|, after
we imposed the initial condition I'1[p] = Salg] as found in (2.11), and we re-insert it in
the rhs of the flow equation; in this way generating the flow of the second approximation
[i2[e]. We generate a sequence L', [p] of approximate actions that may converge in the
limit n — oo to the full effective action. Obviously the issue of convergence of this procedure
is also a very hard mathematical problem, but depending on the initial ansatz Iy o[¢], we
could generate sequences (or series) that can be useful approximations. In fact, if we use as
our initial ansatz the bare action I'y o[p] = Sa[¢] we generate the standard loop expansion
of perturbation theory as we will shortly show. As it is well known [12], perturbative series,
when not Borel summable, are just asymptotic expansions, but still they turn out to be very
useful. From this point of view this iterative procedure can be of valuable use also for initial

ansatz different from the bare action, in particular those ansatz where I'y o[p] has already
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some non-trivial scale dependence. As an example of this, we can take the initial ansatz

1
Fualel = [ e |3 200,000 + il

where Zy(po) and Vi(p) are the explicit known functions of k£ and ¢ already calculated
from the flow equations (2.25) and (2.28). Already this simple initial ansatz has never been
considered and deserves further study.

To recover the loop expansion, as an iterative solution of the flow equation, we introduce
hin (2.17) as a loop counting parameter:

Olklp] = ETrﬂ (2.30)

2 Flg)[%@] + R

and we write the following expansion for the EAA:
Tile] = Salel + > BT rkle]. (2.31)

L=1
With the definition made in (2.31) the actions I', x[¢] of the previous paragraph are actually

the finite sums >_7_, AT 1[p]. Inserting (2.31) in the the flow equation (2.30) gives:

h R
RO k[p] + RO Takp] + ... = = Tr L

27 SPlp] + Ry + ATC) (] + BT[] + ..

(2.32)

In the regularized propagator in (2.32) the Hessians of the terms I',, x[] need to be renor-
malized to make the denominator finite. This is done by writing the bare action S[y] as the

sum of the renormalized action® Sy[p] and the A dependent counterterm action §Sy[¢] as:
Salee] = Solie] + 6Sale] = Sole] + > h*6S,ale) - (2.33)
L=1

Inserting (2.33) into (2.32) transforms the denominator to the form:
STl + Fa+ (Tl + 0882061 + 12 (Tl + 08Qel) +O () . (234)

In this way the rhs of (2.32) will be finite, after the counterterms have been chosen properly,

5Here we use the notation Sy for the renormalized action to be consistent with the notations used in this
thesis where renormalized quantities are obtained as the k — 0 limit of scale dependent quantities.
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Figure 2.6: Graphical representation for the flow equation of the one-loop contribution I'y 4[]
from equation (2.38). The continuous line represents the regularized renormalized propagator.
Due to the one-loop structure of the exact flow, this representation is similar to the one in
Figure 2.3.

to order L — 1 when we are calculating the flow of the L-th order contribution. Each loop

contribution can be written as the sum of a divergent part and a renormalized part as:

Crile] = [Crilellgy + Trrlel]en - (2.35)

We chose the counterterms so to cancel the divergent parts by defining:

6Sralel = = [Trolellgy - (2.36)

Note that we defined the counterterm in (2.36) as minus the divergent part of the loop
contribution at £ = 0. Due to the separation of scales this makes finite also the contribution
at k # 0 since [I'zx[¢]]y;, = [Trole]ly,- Note also that it can be shown that the divergent
part of every loop contribution is a local action in the fields [12| and so every counterterm
dSL.ap] is also local.

The flow of the L-th loop contribution to the EAA action can be extracted from (2.32)

as follows:
1 oLt 9Ty {80]

O Lile] = (L—1)1onFT h |,

(2.37)

We will now show that the first two contributions, L = 1,2, to the effective action generated
using (2.37) reproduce the loop expansion, given in Appendix B, to two-loop order. This fact
is a manifestation of the “exactness” of the flow [27] for EAA described by (2.30).

The flow of the one-loop contribution obtained from (2.37) is simply:

1 1
Ol kle] = 5Tr Grlo|O: Ry = 5Tr O log G M [¢], (2.38)

where we defined .
Gl = ——— (2.39)

S5 el + Ry’
as the (IR) regularized renormalized propagator. In the second step of (2.38) we used the
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relation 0; (log G) = G0, Ry, which is valid in this case because the only dependence of
the regularized renormalized propagator on k is through the cutoff kernel Ry. As already
noticed, the one-loop flow equation has the same structure as the flow equation (2.17) for
the full EAA.

It is tempting in (2.38) to exchange the t-derivative with the trace integral, but if we do
this the flow will not be anymore UV finite. We should first calculate explicitly the trace
in (2.38) and then integrate it from k and A. Here we are only interested to show that we
correctly recover the loop expansion, so we introduce an additional UV cutoff in the trace
integral using A to interchange it with the t-derivative. We will write this as Tr — Tr,.

We integrate now the one-loop flow (2.38) from the UV scale A, where we impose the
boundary condition I'y z[p] = 0, to the IR scale k. We find:

1[N dk 1[N di 1
FL]{[SO] = —5/; F&yFLk/[gp} = —5/]{; Fat/TrA log Gl;l = 5 TrA lOg Glzl}f\ . (240)

If we send k£ — 0 in (2.40) we obtain the following one-loop contribution:

1 1
Piolie] = 5Tralog S5 [e] — 5Tralog (S5 [e] + Ra ) - (2.41)
If now the bare theory is perturbatively renormalizable, then the divergent part [I'[¢]],;,
of (2.41) can be reabsorbed by the counterterms in Sy[p]. When we insert (2.41) in (2.31)
and we combine it with the appropriate counterterm in (2.33), fixed as in (2.36), we find the

perturbatively renormalized one-loop contribution to the effective action:
[FL()[QDHTQH = Fl,O[SD] + (5517/\[@] A — . (242)

In the following we will consider all renormalized quantities to be in the limit A — oo.
As an example we consider a massless scalar field in d = 4 with interaction V(¢) = ﬁ¢4.
The k # 0 one-loop contribution (2.40) becomes:

1 —0?+V"(¢) + Rp(—0?
[y k] = s Trp log (o) & (=0

2 —02 + V() + Rp(—0?) (2.43)

For a constant field configuration ¢ = ¢ the trace in (2.43) can be written as a momentum

space integral with cutoff:

Pualg] = 2 /OA s L HV /(@) + Buld) (2.44)
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27Td/2
T(d/2)"

n (2.44) we find:

where S; = If we insert the optimized cutoff shape function R (2) = (k* —2)0(k*— 2)

Sy

Tele] = 16

{k4 A =2 (K = A) V(@) + 2[V"(#)] log i?i—%} : (2.45)

Note that the two scales k and A do not mix and so [I'y ;[¢]];,, = [T'10[¥]]ly, as we assumed

earlier. In particular we have:

1{A4 A?

T2l 8 TV @ %[V”(w)]QlogA}. (2.46)

[FI,O[@”div =

Equations (2.36) and (2.46) tell us that we have to choose the one-loop counterterm action

as:

1 L [AY A2
0SiAld] = 155 [ d'z g——)\ogb + = )\ 2ot log A (2.47)
To one-loop order the bare action is thus
4 1 2 MR o Ay
Salgl = [ d'z |Ex+ 32n (09)" + TR R (2.48)

where the bare parameters are related to the renormalized ones by the following relations:

A4 A2
By — — Iy =1 2 — A
AT 19872 A A= G420

A2log A (2.49)

3
Y= )\0+162

We can solve the last relation of (2.49) for the renormalized coupling to find:
Do = A 5 Xlogh+0 (X 2.50
0= A_WAOg"" (A) (2.50)

From the condition AOjyA\g = 0 that the renormalized coupling is independent of the cutoff A

and from relation (2.50) we find Wilson’s beta function for the bare coupling:

AOAA, = 1O (N) - (2.51)

1672

Equation (2.51) represent the standard one-loop beta function for the scalar ¢* coupling [9].

We go back now to the general case. The running of the two-loop contribution to the
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Figure 2.7: Flow of the two-loop contribution I'y ;[p] flow from equation (2.55). The thick
loops are the renormalized ones, while the other ones are regularized by an insertion of 0, Ry.

N

EAA from (2.37) reads:

GileloFe= 3T [Tl oy, (252)

ren

02kl ] = —%Tr Grly] [Ffi[w]]

ren

where we used the cyclicity of the trace and the relation

again valid only because GG depends on k only through the cutoff kernel Rj. Note that the
flow of the two-loop contribution is given in terms of the Hessian of the renormalized one-loop
contribution at k # 0. This is valid in general: the flow of the L-loop contribution is given in

terms of I, x[¢]] ., for n =1,..., L — 1. The loop expansion is therefore constructed loop by

loop. We can calculate the Hessian [F(IQ,)C [go]} needed in the flow (2.52) by taking functional

ren

derivatives of (2.42) but for k # 0. We find:

1
=3 [Séibek,chSi)dek,da - Séjl(zwykavba} : (2.54)

ren 2 ren

[Fﬁ)ﬁ [Sp]xy}

In (2.54) we used a condensed matrix notation in place of writing the integrals explicitly.

The two-loop flow (2.52) then becomes:

8tr2,k[90] = [S(gizszk,ch(()i)dek,da - S(gizmyb

ka,,a] G (2.55)

A~ =

This is represented graphically as in Figure 2.7. The argument of the trace can be re-written

using relation (2.53) as:

1
T |58t GreSCrda = Sy G Oy =
ren

1 . . 1
at |:—Esz,abS((]fgxch,cdS(()igyaGk,yx + gGk7abS(()2$yka7yx:| . (256)
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Inserting (2.56) in (2.55) and integrating from 0 to A gives the two-loop contribution:

1 1
[aole] = 12 Go,abS(g?gxcGo,cdSéizyeGo,ea} o + 3 |:G0,abS(()4) Go,ca o (2.57)

b
,0TYC en

Note that the two-loop contribution (2.57) is the expected perturbative one. The divergent
part [['20[p]]y;, of (2.57) originates from the xy loop integral while the abcde loop integral
in the first term, or the abc loop integral in the second term, are finite due to the one-loop
subtractions. Combining (2.57) with the two-loop counterterm 052 a[¢] gives, in the limit

A — 00, the renormalized two-loop contribution:

[L20[]],en = T20[0] + 0524 [¢] - (2.58)

Combining (2.31), (2.42) and (2.58) we obtain the renormalized effective action to two-loop

order:

Folelen = Soli] + & [Tr log Golyy +

|GoasSSicGociSieGoea| |+
rend ren

h2
12
h2
)

4 <
[ CoasSiGoa) | +O07). (2.59)
remn- ren
Note that in (2.59) all quantities are the renormalized ones as it should in a perturbative
expansion of the effective action.
In summary, the renormalized perturbative expansion emerges, loop by loop, as a particu-

lar way of solving the exact flow equation (2.30) satisfied by the EAA. This is a manifestation
of the exactness of the flow equation for the EAA.

2.3 Applications of the EAA

In this section we discuss three different applications of the EAA formalism in order to
understand how it works is specific examples. In this way we touch several important technical
and conceptual points. In the first application, we show how some basic results of quantum
electrodynamics (QED) are recovered, as the running of the electric charge and the low energy
Euler-Heisenberg effective action. We also make the explicit calculation of the one-loop
polarization function and see how renormalization is introduced. In the second application

we study general non-linear sigma models (NLoM) and understand how the geometric flow
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that characterizes these models is obtained within the EAA approach. We study the UV
behavior of these models, which are know to be asymptotically free in d = 2 and discuss the
possibility that this extends to asymptotic safety in higher dimensions, in particular d = 4.
In the last section we discuss matter fields on curved space-times. We construct the EAA
for a minimally coupled scalar field and we use it to calculate the effective action finding the

non-local form first discovered by Polyakov.

2.3.1 Quantum electrodynamics

Quantum electrodynamics (QED) is the most successful of all physical theories of natural
phenomena. The agreement between theory and experiment has reached astonishing levels.
Still, today it is regarded only as an effective theory. This is mostly because, when not
embedded in a larger theory such as the Standard Model, the theory is “trivial”. If we fix a
non-zero value for the bare electric charge at the UV scale and send A — oo, we find a zero
renormalized charge. It was also in the QED context that the first effective, low energy, action
was calculate by Euler and Heisenberg [6]. In this section we will see how these properties
of QED emerge within the EAA approach. We will see how the “flow quantization” actually
works and we will provide a first example of how calculations on non-trivial backgrounds are
done within the EAA framework, by calculating the photon polarization function.

QED is an abelian gauge theory with SO(2) ~ U(1) as gauge group. We consider the
complex U(1) representation where the group elements are simply given by R = e =

1 +40 + ... The abelian gauge connection A, transforms as:
A, —A,+0,0. (2.60)

The covariant derivative is constructed as D, = 0, + ieA,, with e the bare electric charge.

The commutator of covariant derivatives defines the field strength F),, as follows:
[D,,D,] f =ie(0,A, —0,A,)f =ieF,, . (2.61)
Electrons are described by Dirac spinors ¢ and %; in the U(1) picture they transforms as:
Y — e v — e . (2.62)

The classical (Euclidean) theory is defined as the minimal gauge invariant action that can
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be written down:

S[A, 9, 7] = /d% EFWFW + (D +m Y| . (2.63)

In (2.63) m, is the bare electron mass and the covariant derivative acting on spinors is defined
by D= Y*D,,.
In the quantum path integral formulation, we have to introduce the gauge-fixing action:

SyrlA] = % / dz (9,A") . (2.64)

On flat d-dimensional space, the Faddeev-Popov ghosts decouple and can thus be discarded.

The effective action can be defined using its integro-differential definition:

oA _ /DADJ)DQ/;exp{—S[A+a,1/_1+g7¢+£]+ng[A+a]

The effective action defined (2.65) can be calculated to one-loop order using relation (B.60)
from Appendix B for Gaussian functional integrals over mixed bosonic and fermionic fields.

In this way, the one-loop effective action can be reduced to the following functional traces:

— 1 1 _ 1
A = —Trlog |—0%¢" 1——)o"0” — yy* v
—Trlog (I +me) . (2.66)
Using the following relation
det (I +m.) = det v5 (I +m,) v5 = det (= +m,) (2.67)

we can rewrite the second trace in (2.66) in the following way:

Trlog (1 + m,) = %log [det (1D + m,) det (=D + m,)] = %Tr log (=" +m?) . (2.68)

Relation (2.67) follows from the properties of the gamma matrix 75, which anti-commutes

with all the v* and has square equal to one (7°)? = 1.
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The differential operator - appearing in (2.68) can be rewritten as:

2 1%
- = —"9'D,D,
1
= -3 (V4" DD, +~"+"D,D,, +ieF,,)
1€

= -D*~ 4 VA B

= -D*—¢o-F. (2.69)

In (2.69) we used (2.61), the commutation relations for Dirac matrices {7*,~"} = 20" and
we defined the tensor o = £ [y# "],
Here we will construct the EAA for QED introducing the cutoff kernels directly in the

one-loop equation for the effective action (2.66) to obtain:

_ | 1 o
Diald d.0] = Trlog {—azg“” + (1 - a) 00 — I+ Rul(~OP)”
|
~3Trlog [—ZDQ +m? Rk(—lDz)} . (2.70)

Note that in (2.70) we choose as the cutoff operator for the photon field the flat-space
Laplacian —9?, while for the fermion fields we used the covariant operator —]DQ.
In the quantum theory the photon and fermion fields are renormalized by their respective

wave-functions renormalizations:
A, — Z%4, Y — 2% b= 2. (2.71)

The running electric charge e, is introduced using the non-renormalization of the covariant
derivative: the partial derivative in D, = 0, + iey Zi\{leu does not renormalize, so we must
have:

en=2". (2.72)

This implies that to calculate the beta function of the running electric charge ey it is enough
to calculate 0;Z4 ;. From now on we impose (2.72), in this way the covariant derivative does
not contain anymore the running electric charge.

We will start studying the photon part of the EAA, i. e. I'yx[A,0,0]. Differentiating
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(2.70) at 1) = 1) = 0 with respect to the RG parameter t gives the following flow equation:

B 1 @Rk(—32)””
atrl,k[A7 07 0] - éTr_aQQ,uu + (1 _ é) orov + Rk(—82)“”

Lo OR(=P)

27 PP+ m2+ Ry(—1°)

(2.73)

The first trace in (2.73) does not depend on the photon field and thus will not generate
any A, contribution to 0;I'y[A,0,0]. This reflects the fact that QED is an abelian gauge
theory with no photon self-interactions. Thus to one-loop order, all the contributions to the
running of the gauge part of the EAA stems from the fermionic trace in (2.73). This one can
be evaluated using the non-local heat kernel expansion for the operator —lﬂQ described in
Appendix A. But first we need to choose a truncation ansatz for the EAA to insert in the lhs
of equation (2.73). We will expand I'y ;[A, 0,0] in powers of the field strength; up to second

power we have:

1 1
I'1x[A,0,0] = / d’x [ZFWFW+ 7 F Al (=D*) F™ + 0 (F?)| . (2.74)

Here IIj(x) is the running polarization function, it is defined as a function of the gauge

covariant Laplacian. Inserting (2.74) in the lhs of the flow equation (2.73) gives:

1
OT 142} A,0,0] = KZany / dz F,, F"
1
+7 / d*z F,,0; [ Zaplly (-D*)] F*™ + O (F*) . (2.75)

Note that due to the non-renormalization of the covariant derivative, we have in the second
term of (2.75) just an overall factor of the wave-function renormalization of the photon field.

From now on we will work in the physical dimension d = 4. We now calculate the rhs
of the flow equation (2.73) using the non-local heat kernel expansion, equation (A.8) from
Appendix A with the identification A = —1p*. The operator (2.69) is of the general Laplacian
type (A.6) with U = o - F and Q,,,, = ieF),,. Using (A.38) we find:

1

Tr hi(—1P°) = e /d% {m +F, [/OOO ds hy,(s) fr (—5D2)1 F™ +0 (F3)} . (2.76)
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In deriving (2.76) we used the following traces:
tro-F =0 tr(o- F)*=2F,, F" trQ,, Q" = —F,, F"

and we defined the function
atRk<Z)

2+ m2+ Ri(z)

hi(z) = (2.77)

of which hy(s) is the inverse Laplace transform. Also, fg(z) is the following non-local heat

kernel structure function:

9 1

fr2(x) = =Afa(@) + 2fu(x) = f(@) + = [f(x) — 1] = 4 / dgg(l— et (278)
0

In (2.78) f(z) is the basic heat kernel structure function (A.10). If we Taylor expand (2.78)

to lowest order we find:

fr2(z) = ; - %x +0 (2%) . (2.79)

Inserting the expansion (2.79) in equation (2.76) and equating the first term with the first
term on the rhs of (2.75) gives the following beta function for the wave-function renormal-

ization of the photon field:
1

1272
If we set the electron mass to zero m, = 0, the Q-functional in (2.80) becomes independent
of the cutoff shape function. From relation (A.40) we know that Qo[hx] = hi(0). From
the definition (2.77) and from the general properties of the cutoff shape functions we have
hi(0) = 2 independently of the choice we make for Ry(z). Setting Qo[hx] = 2 in (2.80) we

find the following flow equation for the running electric charge:

OZa) =

Qolhx] (2.80)

(2.81)

This is the standard beta function found in perturbation theory when a mass independent
regularization scheme, as dimensional regularization MS (or MS) scheme [9, 6], is used. For

me # 0 and using the optimized cutoff shape function (2.12), equation (2.80) becomes instead:

1 1
WZay = _@W; (2.82)

=)
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while (2.81) is modified to the form:

3
1 €%

Orey;

= ) 2.83
1272 1 ¢ 7:_22 ( )

From (2.82) we can read-off the scale dependent anomalous dimension of the photon field
Nak = =0t Zak/Zak:
G

= — m2.
67T21_+_l€2s

NAK (2.84)

Note that in terms of (2.84) the beta function for the electric charge can also be written as
orer = naer. Within the EAA approach, the anomalous dimension for the photon field has
been calculated beyond one-loop order in [28].

The presence of the denominator term m?/k* in equation (2.83) is of key importance to
describe the decoupling of the electron at scales much smaller the electron mass £ < me..
At these scales the rhs of (2.83) becomes smaller and smaller, until the flow of the electric
charge effectively stops.

It is interesting to compare the beta function (2.83) with one calculated using standard
perturbation theory but employing a mass dependent regularization scheme, as the dimen-
sional regularization p-scheme. After the identification & = p we find, from equation (3.25)
of [6], the beta function:

e 1 :E2(1 _ 5(7)2

Oer = —= _— .
21 Jo  z(1—x) + 7:22

(2.85)

We here see in action the same decoupling mechanism. A comparison of the three beta
functions (2.81), (2.83) and (2.85), shows that only mass dependent regularization schemes
are capable of describing threshold phenomena while mass independent schemes generate the
same running at all scales: heavy particles do not decouple. The mass dependence of the
beta functions (2.83) and (2.85) is shown in Figure 2.8.

We now integrate beta function (2.83) for the electric charge from the UV scale A to the
IR scale k. We find the following formula relating the bare electric charge e, to the running

electric charge ey:

11 111+$
SR : 2.86
e% e% 1272 08 1+ :122 ( )

Solving (2.86) for ey gives:
2
2 €A
&= —p —. (2.87)
1+ 7z log ﬂgjfmg
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Figure 2.8: Mass dependent beta functions for the electric charge in QED. Comparison
between dimensional regularization u-scheme with k& = p (lower curve) from equation (2.85)
and EAA scheme (upper curve) from equation (2.83). Osex/e} is plotted as a function of
me/k.

Relation (2.87) is interesting for several reasons. First, it shows the screening effect of vacuum:
electron-positron pairs polarize the vacuum around an electric charge so that the effective
electric charge ey, at the scale k, is smaller than the electric charge e, at the higher scale A.
This is shown in Figure 2.9. Second, for £ — 0 it relates the bare electric charge e, to the

renormalized electric charge e:

62
el = —2 —. (2.88)
1+ s log (1+4)

Third, it shows that QED, as defined by the bare action (2.63), is a trivial quantum field
theory: if we take the limit A — oo in equation (2.88), at fixed finite ey, we get a zero
renormalized electric charge eg! The other way around: if we solve (2.88) for the bare charge
e% and we set the renormalized charge €2 to some fixed value, then the bare coupling will

diverge at the finite “Landau pole” scale
AL =m] (6127r2/eg — 1) :

These are the two faces of QED’s triviality. So, even if the theory is perturbatively renor-
malizable, it cannot be a fundamental theory valid at arbitrary high energy scales. This
example, among others, shows that the perturbative renormalization principle, which was

used to successfully construct the Standard Model of particle physics, is just a practically
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Figure 2.9: Polarization of the vacuum by electron-positron pairs. The effective electric
charge e, at the energy scale k£ appears smaller than the electric charge e, at the bigger
energy scale A.

convenient assumption void of any true physical meaning. To find an explanation for the
success of QED, we have to take the effective field theory point of view, see [10] for a clear
analysis.

We turn back to relation (2.76). By inserting the full heat kernel structure function (2.78),
we can read of the flow equation for the polarization function by comparing with equation
(2.75):

1 [~ .
OZak+ 0 [Zaplly(z)] = —=— ds hy(s) fr2(sz)

2
812 J,

- _2%2/0 dé £(1 — &) Qolhi(z + 2€(1 = €))]

1

- g | deE1-Oms-g). (289
In (2.89) the variable x stands for the gauge Laplacian and we used the properties of the
Q-functional, as explained in Appendix B, in particular the relation Qo[f(z + a)] = f(a).
Using 0y [Zaxlk(z)] = Zak [-1axlle(z) + 01k (x)], relation (2.72) and (2.84) we can rewrite
the flow equation (2.89) in the following way:

2 2
€k

O (0) = gy [+ M) = 5k [ dseti - mtaei =€), (290)

T G624 , m2
67T21_|_k_26
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Relation (2.90) expresses the flow equation for the one-loop photon polarization function.

We can find the renormalized polarization function ITy(z) integrating the flow (2.90) from
the UV scale A, where we impose the boundary condition II5(z) = 0, to k = 0. Note first
that the second term in (2.90) is at least of order e;. We will discard it here since we are
interested to show how the standard one-loop result is derived in this framework. We also
set the running charge in (2.90) to its renormalized value ey. Integrating from k to A, using
the property hi(z) = 0;log [z +m? + Ri(2)] and equation (2.86), we find:

e 1+ T/};
HA(x) - Hk(:lj) = 127{_2 log 1 _'_ k;
¢ [ 2€(1 = &) +mZ + Ry (z£(1 = €))
B A e A ()

Consider now the optimized cutoff shape function R{™(2) = (k* — 2)0(k* — z) from (2.12).
For A — oo we have Ry(z) ~ A% — z, while for & — 0 we have R(z) ~ 0. For k = 0 equation
(2.91) takes the following form:

e A? e A?
p(z) — p(z) = 12;2 log <1 + m2) — 12;2 log (1 + ﬁ) +
2

1
+% 0 de€(1—€) log <1 el - 5)%) . (2.92)

Note now that the renormalization of the electric charge in (2.92) is enough to allow us to take

the limit A — oo in (2.92). At k = 0 we find the following renormalized vacuum polarization

function:
ez ! T
Mo (5) = o [ deei- |1 +c0-9.5] (299

Inserting (2.93) in equation (2.74) finally gives the one-loop photon part of the effective
action:

1 4 1%

Fl,O[Aa O, 0] = Z_l d*x FMVF +
6(2) 4 ' —-D?
1%
-8 [aor, ([ deca-gus|1+ca-9-5] ) B
+0 (F*) . (2.94)

Equation (2.94) is the expression for the photon part of the EAA in QED to second order
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in the field strength and in e3. Although the polarization function in (2.94) is a function
of the gauge Laplacian, in an abelian theory like QED it boils to a function of just the flat
Laplacian —d? and thus does not give non-zero contribution to higher vertices of the effective
action. If instead we were considering a non-abelian gauge theory, the contribution to the
effective action would had been of the same form as in (2.94) and thus to all orders in gauge
field.

We look now at the next terms in (2.90). They are the following F* invariants (parity
invariance forbids F* terms in the EAA for QED):

ax / A%z (F, F"™)? + by / d%x F, FY* Fos FP* . (2.95)

From the fermion trace in the flow equation (2.73), following the standard heat kernel pro-

cedure, we find the renormalized value:

1 et [>dk k? 1 1 &

ag = ——— —_—
7188 )y k(24 m2)® 1832m%md
where we imposed the initial condition ay = 0. Doing the same for the other term, we recover

the Euler-Heisenberg contribution to the photon part of the effective action [6]:

4

T10[A,0,0]] 0 = @% / d'z {—% (FL, ™) + 9—7()FMVFV‘”F&5F5“ . (2.96)
The terms in (2.96) describes the low energy effective scattering of photons mediated by
virtual electrons. Note that from the effective theory point of view we have been calculating
the effective action to order p*/m? with p the photon momentum. The power of effective
field theory is that, even without deriving equation (2.96) from the bare action (2.63) by
integrating the flow, we could had constructed it only on dimensional grounds. To be able

to make predictions about light by light scattering to order p*/m? we just need to fit from

1
36

Along the same lines the one-loop fermion-photon part of the effective action can be

experiments the two numbers —= and 9—70.
constructed. Obviously also the full non-perturbative effective action for QED can be studied
within the EAA framework. We will not do this here since our aim was only to show how to

use the EAA framework in a well known setting as is QED.
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2.3.2 Non-linear sigma models (NLoM)

Non-linear sigma models (NLoM) are a rich class of theories [29], describing the dynamics
of a map ¢ from a d-dimensional manifold M to a D-dimensional manifold N. They have
been applied to phenomenological models of high energy physics, such as chiral perturbation
theory in low energy QCD [6]; to phenomenological models of condensed matter physics,
as magnetic systems [30]; to the statistical mechanics of surfaces, both in realistic systems
like membranes [31] and more abstractly to string theories [32]. NLoM have interesting
supersymmetric generalizations and also applications in mathematics. Recently even the
RG flow of NLoMs has found a mathematical application in the proof of the long standing
Poincaré conjecture [33].

Given a coordinate system {z*} on M and {y*} on N, one can describe the map ¢ by D
scalar fields ¢ (z). Physics must be independent of the choice of coordinates on N, forcing
the action to be a functional constructed with tensorial structures on A. Only derivative
interactions are allowed. Linear scalar theories correspond to the case when A is linear. In
this case, and only in this case, one can choose the action to describe free fields. General
NLoM are profoundly different from linear scalar theories.

We will study general NLoM via the EAA approach following [34]. The bare action for
the general NLoM is usually taken to be:

St6) = 5 [ d'a han(9)0,0'0"". (2.07)

Here h,g is a dimensionless metric on A/ and the wave-function renormalization ¢ has dimen-
sions k%72 and is related to the coupling constant by ¢ = 1/¢g%. We will consider here only
the case where the manifold M is flat.

Applying the formalism of quantum field theory to these models requires some adaptation.
The simplest treatment is based on the assumption that the ground state of the theory is a
constant map . There exists a local diffeomorphism expg of the tangent space T;N to a
neighborhood U of @, given by mapping a vector £ to the point lying a distance ||£|| along
the geodesic emanating from ¢ in the direction of £&. The components ¢4 can be used as
coordinates on U, called normal coordinates. Fluctuations around the vacuum are described
by the fields £4(x), which can be quantized by path integral methods. When the action
is thus expanded around ¢ and the fields are canonically normalized, one recognizes that
g plays the role of coupling constant, and since it has dimension of k%d, this perturbative

expansion is non-renormalizable for d > 2. As a consequence, phenomenological applications
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M
N

Figure 2.10: ¢ is a map from a d-dimensional manifold M to a D-dimensional manifold N .

of the NLoM in d = 4 are usually regarded as effective field theories with a cutoff.

To construct the EAA we use the background field method® where we expand the full
quantum field around a background configuration ¢ as ¢ (x) = @?(x) + n*(x). For reasons
that will become clear soon, it will not be sufficient to consider constant backgrounds, so
the simple procedure described above will have to be generalized. Furthermore, the field n
is a difference of coordinates and does not have good transformation properties. At each
point x € M one evaluates the EAA using the normal coordinates centered at ¢(x). They
are the components of a section ¢ of p*TN, such that exp,)({(z)) = ¢(z). Using normal

coordinate at ¢ we can easily derive the following expansion for the field derivative:

_ 1 _
O™ = 0up” + Ve = 20,0  RpptO¢” + O(E), (2.98)

and for the metric tensor:

hap(p) = hap(@) — %RACBchfD +0(&%). (2.99)

In (2.98) and (2.99) we constructed the Riemann tensor, at the background point ¢, using the

Christoffel symbols I'4 . of the metric hap. The covariant derivative in (2.98) is as following:

V&t = 0,% + wi€© wip = 0,0Tép. (2.100)

6The EAA for theories with local symmetries is constructed using the background field method starting
from the next chapter. In this section we skip a detailed development of the background EAA since we are
interested in the NLoM as an application of the general EAA formalism. The reader is referred to Chapter
3 for more details on the background field formalisms within the EAA approach.

TA bar over the covariant derivatives or over the curvature tensor means that we are evaluating the
quantity at the point @.
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Figure 2.11: The exponential mapping used to define the background field expansion.

The field n can be written as a function of &, which is taken as the fluctuation field in the
background field method.
The EAA for the general NLoM can be expanded in powers of the derivatives, the lowest

term being:
1
Lelel = G / d*z hap(p)0,p" 0" 0" + 0 (9") | (2.101)

where (j is the running wave-function renormalization. One can now expand the EAA (2.101)

in powers of ¢ as follows:
Nulel = Tulel+ [ d T 0dag @
1 )
4y [ dady TN 0 oLing el + O, (2:102)

and write the result in a tensorial form, in such a way that invariance under background
coordinate transformations is manifest.

The cutoff action is constructed using the background field ¢ to define the cutoff kernel:
1
ApS[p,€] = §Ck/ddx£ARkAB[@}§B. (2.103)

Note that in (2.103) we inserted a factor of the running wave-function renormalization (.
The flow equation for the EAA takes the following form®:

aTlg] = 5Tx (T2700:6] + Relg))  aRile]. (2.104)

Using relations (2.98) and (2.99) one can extract from the expansion (2.102) the following

8See Chapter 3 for more details on this point
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Hessian with respect to the fluctuation field &:
L2010 @lap = G (=V?6u5 + Racpp0,p°0"¢") | (2.105)

where —V2 = —V,V* is the Laplacian of the covariant derivative (2.100) at the point @.
We have to choose the cutoff operator we use to separate the fast modes from the slow ones,

here we take following operator?:
A= —-V%54p+ Racpp0,p°0"e" (2.106)

which is of the general Laplacian type we discuss the heat kernel expansion in Appendix A.
With this choice the flow equation (2.104) becomes simply:

O R (

1 — Ry (A
Ol'y[&; @) = §Tf ~ e «(2)

A)
+ Ri(A) ’

(2.107)

where we introduced the field anomalous dimension 7, = —0; log (.
We can now use the local heat kernel expansion to evaluate the functional trace in (2.107).

Using equation (A.38) from Appendix A, we find the following term of order 9*:

1

L [Pl = —WQg,l[(&:Rk — M Ri) G /ddI Rap0d,p orp” . (2.108)

In (2.108) we defined the regularized propagator as:

Gilz) = H;Rk(z). (2.109)

Comparing the t-derivative of (2.101) with (2.108) gives the following flow equation'®:

at [CkhAB] _ 2cdkd—2 (1 + d7_7:2> RAB‘ (2.110)

In (2.108) we employed the optimized cutoff shape function in the Q-functional and we defined

Cd If we set m, = 0 in equation (2.110), we find the famous “Geometric

_ 1
T (4m)/2T(d/2+1)"
flow” that characterizes the RG flow of general NLoM: the beta functional of the full metric
Gap = (ihap is given by the Ricci tensor Ryp of G4p on N. It is possible to check that

for d = 2 the numerical coefficient ¢y is cutoff shape independent. For d > 2 the coefficient

9This corresponds to a type II cutoff in the nomenclature of the next chapters.
1We omit to the bar over background quantities in some equations for clarity.
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Figure 2.12: Beta function (2.112) for the dimensionless coupling constant g, (dashed) for
the N = 53 NLoM in d = 4 together with its one-loop approximation (continuous).

cq depends on the choice of cutoff shape function, but one can show that the qualitative
properties of the beta function are the same for any cutoff.

Let us now suppose that the metric hap has some Killing vectors, generating a Lie group
G. Since the cutoff is defined by means of the G-invariant Laplacian —V?, it preserves the
G invariance. Therefore if the initial point of the flow is an invariant metric, the flow takes
place within the restricted class of invariant metrics. From now on we shall restrict ourselves
to homogeneous spaces N' = G/H admitting a single invariant Einstein metric hap, up to
scalings. In this case in equation (2.110) it is convenient to think of hsp as being fixed and
we interpret the RG flow as affecting only (;. The Ricci tensor of hap is Rap = %hAB, where

R is the Ricci scalar, therefore:

R

@@:2%M4(1+df2)5. (2.111)

When (2.111) is solved for 0,y one obtains a rational beta function which, in terms of the

dimensionless coupling g = kT gk, reads:

- d—2_ Cdﬁg?)
O, = 5Ok~ D2~T (2.112)
1-— QCdmgk

This beta function is the main result of this section and is shown in Figure 2.12.

We first look at the one-loop flow, where we consider the lhs of (2.112) to order gi. If

d—2 D
2 cqR”

at small coupling, where perturbation theory is reliable. The derivative of the beta function

d > 2 and R > 0 there is a non-Gaussian fixed point at g2 = For large R it occurs
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at the fixed point is

B 1
0, =2-d<0 - 2.113
o5, 01| < = v : ( )

so this fixed point is UV attractive and the mass critical exponent [75| is mean-field like
as should be in a one-loop approximation. This shows that a NLoM with positive Ricci
curvature is an asymptotically safe theory. In particular for N = SP? and R = D(D — 1) we

reproduce the results of the 2 + € expansion for the SO(D + 1) model [32].

When we consider the full beta function (2.112), the fixed point is shifted at the value
~2 _ 1D(d?—4)
* T 2 cqdR

then the mean-field value:

and is still UV attractive in d > 2. The mass critical exponent is now smaller

_ o d+2 1
C2d(d—2) " d—-2’

v

(2.114)

the anomalous dimension as the value n = d — 2. In particular, in d = 4 we have a non-
Gaussian fixed point with critical exponents v = g and 7 = 2. Numerically, the results
do not differ very much from the one-loop ones, but since their derivation is not based
on perturbation theory, their validity does not depend on the coupling being small. This
indicates that general NLoM may be asymptotically safe even in d = 4. Since the truncation
of the EAA (2.101) we are considering is very crude, this result has to be considered more as
a hint for future research then a definitive answer. But if this scenario turns out to be correct,
then general NLoM are inherently different from the linear theory. We should mention here
that according to lattice calculations the triviality of ¢* theory in d = 4 is expected to extend
also to the corresponding NLoSM (37, 38|. Tt will be interesting to understand how these
results fit with this expectation. In this connection we observe that a non-Gaussian fixed
point in the NLoM is not ruled out by a recent investigation of the triviality issue using
functional RG methods [39]. It may also be useful to repeat and improve the numerical
simulations of [40]. For further studies of general NLoM within the EAA approach see [41].

Every manifold can be isometrically embedded in a linear space of sufficiently high di-
mension and it is sometimes convenient to regard the NLoM as a constrained linear theory.

For example, in the SO(D + 1) model, one can start from a linear theory with action

/ d%z

where p = %ZDH ¢*¢* and Zi, A, pr are running couplings. The action (2.97) can be

a=1

D+1
]‘ a a 1 — \2
52k ; 0ud" 6" + Shlp = )’ | (2.115)
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Figure 2.13: The manifold A/ can be be isometrically embedded in a linear space of sufficiently
high dimension.

obtained in the limit A\, — oo, with the identification (, = 2Z;pr. It is therefore of some
interest to derive the beta function of the NLoM from the one of the linear theory. The beta
functions of Zx, Ay and py, are given e.g. in [15], where the notation rj, = Zyppk® 2 = 1k 2
is used. Evaluating these beta functions with the optimized cutoff and taking the limit
A — 00, the anomalous dimension 1z, = 0:2y/Zr — cq/kKk, whereas Ok — (2 — d —
Nzx)kk + Dcqg = (2 — d)kg + (D — 1)cgq, in complete accordance with (2.111). Since the beta
function (2.111) implies a (power law) divergence for k& — oo, this means that the divergence
is the same in the NLoM and in the Ay — oo limit of the linear theory, in agreement with
[15].

As a further check of the formalism, we can compute also the effect of g, on the running
of the four derivative terms. There are two such contributions in the heat kernel expansion
of the lhs of the flow equation (2.107) coming from the heat kernel coefficient by(A), given
in equation A.7 of Appendix A, for the cutoff operator (2.106). One is the term %UABUBA,
where Uap = Racpp0,p°0"@P, while the other is 5Q480,  where Qf}VB is the commutator

12° fuw
of the covariant derivative (2.100) and is explicitly given by

A _ A A A C A, C
Q;WB = Oy, — auw'uB + WucWyp — WyoWyp - (2116)

The first contribution is easily evaluated to yield:

UapUP? = RparpRE5,0,620"0%0,p°0" 37 | (2.117)
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while using
Ouwip = 0, (8V¢BFA ) =10 0,0 T80 + 0,050, 5

(the first term is symmetric in v and will cancel out) and 9,¢29,I'4- = 0,p59,8P0pTAc,

we find after some manipulations:
Q%5 = 0,090, 0pT a5 — 0,00, 0pT g +

uvB
+0,8° 50,8 TS , — 0,p°T 50,05 T S
= 0,9"0,0" [8DFEB — 0pl g+ ThclGs — FgCF%B]

= 0,8"0,8" Rypp -
Thus we finally have:
1 . 1 - _ L O
1292?59# = ERABEFRCDEF@SOA@SOBﬁ“roa P . (2.118)

The terms of order 9* on rhs of the flow equation (2.107) are, using (A.38) from Appendix
A and (2.117)-(2.118), the following:

1
L[] 5 W/ddﬁﬁ {ng [0 RG] ba(=D?) + Q4 [0, RiGY] UABUBA}
Add—2)1 - pp- S
= Cd/ddl‘ {%ERABEFRCDEF + REAFBRIE‘ED}
x0,p0"pP0,5°0" g" . (2.119)

Note that the @Q-functionals in (2.119) are cutoff shape independent. In the case of the SO(4)
model in four dimensions (d = 4, D = 3, N' = %) the allowed four derivative terms in the
EAA are

(hxhaghep + loghachpp)0,0 0" 020,007 " (2.120)

with [y ; and [, running coupling constants. The Riemann tensor is of the form Rspcp =

hachgp — haphpc and one obtains the following beta functions:

2 4
&/lLk == §C4 8tl2,k == 564 . (2121)

When one solves (2.121) for [; , and Iy, the results diverge logarithmically for & — oo; using
the identification log k? = ﬁ, the coefficients of the divergence agree with the dimensionally

regulated one-loop calculation in [35].
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We conclude with some comments. The NLoM has many features in common with gravity,
discussed in Chapter 4, already at the kinematical level [36], and comparison between the
two theories may be useful. Also the structure of the dynamics is very similar: except for the
factor \/detg and for the different contractions of the indices, the action (2.97) for a group-
valued NLoM and the Einstein-Hilbert action for gravity both have the structure ¢ [(¢g~'dg)?
where g is either a G-valued scalar field or the metric, and ¢ has dimension k%~2. The results
of the present section confirms that these analogies extend also to the properties of the RG
flow.

An “asymptotically safe” NLoM could be more useful in weak interaction physics. In fact,
the SO(4) NLoM can be regarded as the strong coupling limit of the scalar sector of the
standard model. Replacing the complex Higgs doublet by a S% NLoM results in a “Higgsless”
theory. Normally this is regarded only as an approximate description valid below some cutoff
of the order of the mass of the Higgs particle, but if there is a fixed point, and assuming that
there are no resonances, then the Higgsless theory could hold up to much higher energies
[42].

2.3.3 Matter field theories on curved backgrounds

In this section we discuss matter theories on curved manifolds equipped with a metric g,,. In
particular, we will consider a minimally coupled scalar field on a two dimensional manifold
and we will follow [43]. We will show how to derive the Polyakov effective action [44, 81|,

1
Ilg] = ~ o6 de\/_R R, (2.122)
by integrating the flow of the EAA. It is quite instructive to consider matter contributions to
the gravitational EAA, especially because ambiguities related to the construction of a gauge
invariant flow are not involved. The closely related Liouville field theory in two dimensions
has been studied within the EAA approach in [45].

The classical action for a minimally coupled scalar field ¢ is given by

1
Sle.gl =5 / x/99" 0,90, = % / d*x\/go A, (2.123)

where we introduced the covariant Laplacian operator A acting on scalar fields defined by:

1
Ap = ——0, (/59" 0,0) .
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Being that the action (2.123) is quadratic in the fields, the one-loop EAA (2.20) is already

exact and it is thus enough to consider the flow equation (2.124):

1

L (9°5p. g] )
oI’ =-Tr( ——=+R O Ryg] - 2.124
ulonsl = 5 (24 Rigg)) ol (2.124)
Note that when we insert the bare action (2.123) in equation (2.124), the rhs becomes inde-
pendent of ¢, so the flow will not generate any non-trivial dependence of the EAA on . It
is thus enough to concentrate on the flow of the gravitational part of the EAA, i.e. T'[0, g],
which is the only non-trivial part of the EAA.

The Hessian of the bare action (2.123) is just the covariant Laplacian S*9[0, g] = A and
so equation (2.124) reduces to

1 O:Rp(A)

0l'k[0, 9] = = Tr

2 A+ Ri(A) (2125)

We can evaluate the functional trace in equation (2.125) using the technology developed in
Ot Ry (%)

Appendix A. Defining, as before, the function hy(z) = R

and using the non-local heat

kernel expansion (A.12) in equation (A.3) we find:

OT40.g] = %Ql[hk] / PG+ é@o[hk] / P /GR +

+8iﬂ / /R [ /0 T dsha(s) s fmd(sm} R+O(RY.  (2.126)

Here hy(s) is the inverse Laplace transform of the function hy(z) and the Q-functionals
are defined in equation (A.38) of Appendix B. In (2.126) froq(x) is the non-local structure
function defined in (A.13).

To make progress we need to devise a truncation ansatz for the EAA to insert into the
lhs of equation (2.125). We will consider an ansatz where the EAA is local in the curvature,
but non-local in the covariant momentum square, i.e. in A. We are lead to the following

truncation ansatz, which comprises the first terms of the curvature expansion:
r4[0, 9] = / /G (ax + bR+ Rep(A)R) + O(RY). (2.127)

Here ¢;(z) is any function of the covariant Laplacian. We are working in two dimensions so
this is the only structure function at second order in the curvature to be considered.

By comparing equation (2.126) to (2.127), the beta functions for the first two couplings
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in (2.127) are immediately found:

1

1
Oy, = S_WQl[hk] O, = 48_7TQO[hk] . (2.128)

From the curvature square term in (2.126) we find the following flow equation for the non-local

structure function:

Orer(z) = SL /000 ds hy,(s) s fraa(sz) . (2.129)

™

If we now insert the explicit form of the heat kernel structure function froeq(z) from equation
(A.13) of Appendix B, written in terms of the basic parameter integral (A.10), and expressing

everything in terms of Q)-functionals, we find:

87 Oca(z) = 312 dE Q1 [z + 26(1 — €))] +
+81x 4 Qu (= + 261~ €))] ~ ——Qulhu] +
+$ Qe +a6(1- )] = @il (2130

In the last equation the dummy index z is shown to indicate that the Q-functionals are to
be evaluated at the shifted point z + z&(1 — £). The next step is to use the properties of the
@-functionals to find:

87 Oyep(z) = L dfh’ (:cg(l—&))+i/ d€ by, (z€(1 = €)) +

32 8

(1-¢)
_@ i 8352/ dg/ dz hy, (2) . (2.131)

Note that we combined the last two terms of equation (2.130) into a single z integral.
Equation (2.131) is the explicit flow equation for the structure function cx(x). It should
be possible to integrate equation (2.131) from the UV to the IR scale to recover the Polyakov
effective action (2.122) without specifying the cutoff shape function Ry(z). Here we will show
how this can be done by explicitly using the cutoff shapes in (2.12).
First we use the “optimized” cutoff to evaluate the beta functions (2.128):
k? 1

_ b — 2.132
D = Obr = 5 (2.132)

After collecting the overall power k=2 and writing the parameter integrals in terms of the
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Figure 2.14: The function f(u) evaluated using the exponential cutoff (long dashed), the
mass cutoff (short dashed) and the optimized cutoff (thick). Note that all three functions
are analytic around the origin and that f,,(u) develop a pole at v = 4.

dimensionless variable u = x/k?, the flow equation (2.131) can be rewritten in the form

Dyen(z) = 87T1k2 f <%) . (2.133)

The function f(u) depends explicitly on the cutoff shape function used. In the case of the

optimized and mass cutoffs we find, after some elementary integrations, respectively:

fo) = [\/T u+4F] L

Vu(u+4)(u+6)+ 8(u+3) artanh\/_

fmass(u) = (u+4)3/2u5/2 (2134)

The parameter integrals in equation (2.131) cannot be evaluated analytically for the exponen-
tial cutoff, but this can still be done numerically. The functions f(u) evaluated for the three
different cutoff shape functions are plotted in Figure 2.14. Note that they are all analytic in
a neighborhood of the origin, f,,(u) is even zero in the entire interval [0,4).

If we were to interpret f(u) as a power series in u about u = 0, it follows that we have a
non zero running of local terms of the form cé") f VIRA™R only for the exponential and the

mass cutoff. For example, we can expand for small u

1 u u?

fmass(u):%_%+2_10+0( )7
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and read off the resulting beta functions for the couplings c,(f”) in the mass cutoff case. For

the optimized cutoff none of the couplings c,(j) has a non-zero beta function. Any finite

truncation of the EAA containing some of the couplings c,(cn) will never reproduce the correct
IR behavior and will lead to IR divergences. More importantly, the running of the couplings

c(_"), n > 0, which multiply non-local terms involving inverse powers of A, is zero for all

three cutoff choices. In particular, the beta function of the coupling c,(gl) pertaining to the
operator [ \/ﬁRiR is zero, even if this is the form the EAA is expected to reach at k = 0! We
conclude that, at least for the cutoff shapes we considered, to capture the non-local features
of the EAA we need to consider the running of the whole structure function c(z).

We now integrate the flow equations from the UV scale A, where we impose the initial con-
ditions T'z[p, g] = Sale, g], to the IR scale k. We will see that imposing the initial conditions
not only selects which theory we are quantizing, but also implements the renormalization
conditions. In the limit & — 0 we will find the full effective action.

We start solving the differential equations (2.132). Integrating from k to A gives

A — ap — i(AQ — ]{?2)

4
1 A
= - —. 2.1
by, ba Y log 2 ( 35)

The coupling a; and by, have to be renormalized. This can be done by setting ay = %, so that
the renormalized aq vanishes and conformal invariance of the effective action is preserved,
and by setting by = ﬁ log ,?—0 with kg an arbitrary scale.

Integrating the RG equation (2.133) of the structure function gives

1 [ANdE T
=t [ ().

If we use the variable u = x/k? we have dk/k3 = —du/2z and we come to:
1 x/k>
= — d . 2.136
e =ente) ~ g [ dnf (2.130)

If the integral in (2.136) is convergent at both the lower and upper limits it becomes a pure

number in the limit A — oo and &k — 0. The functional form of ¢o(x) will be in agreement
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with the Polyakov effective action (2.122) if

/Oooduf(u):%.

This condition should be met for any cutoff choice. A simple integration of (2.134) shows
that this is so for the optimized and mass cutoffs. A numerical evaluation shows that also the
exponential cutoff gives the desired result. The functions plotted in Figure 2.14 have thus
all the same area. This is a non-trivial check of the cutoff shape independence of physical
quantities in the EAA formalism.

Imposing the boundary condition ¢, (x) = 0, we thus recover Polyakov’s non-local effec-

tive action, equation (2.122), as the result of the integration of the RG flow:

1
967z

co(x) =

We are now in a position to write down the full EAA within truncation (2.127) and using

the optimized cutoff shape function. At any given scale k we have:

k2 k
I'k[0,9] = E/d%\/ﬁ—l—%logk—o—l—

VAR = HAR2) ) e )| Rt O(RY).
A (A/K2)%?

1
—— | @xaR
067 / v
(2.137)

This relation is the main result of this section. It shows how the EAA interpolates smoothly
between the classical action at the scale K = A and the EA at the scale £ = 0. The evolution
of the structure function ¢, (A) in its final form (2.137) is plotted in Figure 2.14.

Note that the convergence is non-uniform, c¢(z) ~ co(z) for x < 4k* and that the
singularity in the structure function is obtained only at £ = 0. Note also that we have
written the linear term in the curvature in terms of the Euler topological characteristic of the
manifold x = & [ d*z,/gR. Only when the topology of the manifold M is the one of a torus
and the Euler characteristic is zero x = 0, there is no problem in taking the limit £ — 0. In
the spherical case, x = 2, or in all higher genus topologies, the limit £ — 0 can be taken only
if we also send ky — 0 in such a way that % remains constant. A similar phenomenon is
encountered in what is called the “double scaling limit” in two dimensional quantum gravity
[73].

In principle we still have to show that all higher terms, that would extend the truncation



CHAPTER 2. INTRODUCTION TO THE FUNCTIONAL RG 71

5 0 15 20 25— 3035

- 0. 0002}
-0. 0004
- 0. 0006

- 0. 0008
-0.001;

-0. 0012}
-0. 0014

Figure 2.15: Flow of the structure function cg(x) from c(z) = 0 (upper thick curve) to

co(x) = —g5= (lower thick curve). The structure function ¢ (z) is plotted as a function of x

for different values of the TR cutoff in the range co > k£ > 0.

(2.127) to higher curvatures, and are in principle present in the EAA, vanish at & = 0. Only
then we would had completely recovered Polyakov’s result. We shall not embark on such a
proof since this issue is special to two dimensions and, contrary to the discussion above, it
does not generalize to the higher dimensional case to which we will turn in Chapter 4.

In summary, in this section we explained how the Polyakov effective action for a minimally
coupled scalar field on a curved two dimensional manifold emerges within the functional RG
approach. To do this we calculated the RG flow of the structure function ¢;(A) using the non-
local heat kernel expansion. We learned that in order to be able to recover, at the IR scale,
special non-local terms in the EAA, [ VIR %R in our example, it is necessary to include the
running of the complete structure function which allows for an arbitrary dependence on A.
We also saw that, quite remarkably, individual non-local terms in a Laurent series expansion,
[ VGRA™R, n > 0, have no RG running, even though the k& — 0 limit of the EAA is
precisely of this type. This is an important observation in view of the applications of this

framework to quantized gravity, that we start to develop in Chapter 4.

2.4 Summary

In this chapter we introduced the EAA together with its basic properties. In section 2.2.1,
we derived the exact RG flow equation, given in (2.17), that the EAA satisfies. From this
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equation we constructed in section 2.2.2 a hierarchy of coupled equations for the proper-
vertices of the EAA and we explained how these equations can be used to devise useful
approximation schemes for calculating the full EAA.

Next we showed in section 2.2.3 how the standard renormalized perturbative expansion
is recovered as a particular way to iteratively solve the exact flow equation for the EAA if
the starting point of the iteration is the bare action..

In the last part of the chapter we exposed three different first applications of the EAA.
This in order to understand and learn the basic properties of the formalisms through concrete
examples.

In the first application, we studied one-loop QED focusing on the photon part of the EAA.
We derived the running of the electric charge ad used this to explain the reasons why we
consider QED as just an effective theory: triviality, or equivalently, the existence of a Landau
pole in its flow. As a first example of the use of the EAA to make explicit calculations in
QFT we calculated the running vacuum polarization in the one-loop approximation and we
showed that for & — 0 we recover the standard result from perturbation theory. We also
prove that, as it should, this last result is independent of the cutoff we employ. Finally we
calculate the next terms in the photon part of the effective action and find the old result of
Euler and Heisenberg.

In the second application we construct the EAA for general Non-Linear-o-Models (NLoM)
by constructing the cutoff action in such a way that the underling symmetries of the model
are preserved. To be able to do so we use the background field method (this is the topic of
the next two chapters and will be fully developed there) together with the geometric geodesic
expansion. We study a simple truncation, the second order derivative expansion, and within
the one-loop approximation we recover the geometric flow that characterizes the quantum
behavior of these models. Next we consider homogeneous spaces, so that the effect of RG flow
is just to rescale the geometry of the model, beyond the one-loop approximation. Our results
point in the direction that general NLoM can be asymptotically safe in d > 2, in particular
in four dimensions. We speculate the role that such a scenario can have for particle physics.

The last application is to matter fields in curved space. In particular we study a minimally
coupled scalar on a general two dimensional manifold. We learn that, in order to calculate
the full effective action for £ — 0, it is mandatory to consider truncations of the EAA that
contain an infinite number of coupling constants. We encode these in the form of running
“structure functions” and we devise a curvature expansion of the EAA. We derive the flow
of the structure function relative to the model we studied and we show that for £ = 0 we

recover the effective action first found by Polyakov.



Chapter 3

Functional RG for gauge theories

3.1 Introduction

Quantum field theories based on a gauge or local symmetry group G are the fundamental
building blocks out of which the standard model of particle interactions is constructed. QED
is a gauge theory with abelian gauge group G = U(1), while the electroweak and strong forces
are described using a non-abelian gauge group. The interesting property of gauge theories
with non-abelian groups is that they are self-interacting: the vector bosons which mediate
the forces interact with each other. This phenomenon has the important consequence that
screening or anti screening effects may suppress or enhance the interaction strength at certain
energy scales. This is indeed what happens for gauge theories with gauge group G = SU(N),
as those used to construct the standard model of particle interactions. This phenomenon is
particularly relevant in the case of strong interactions, where at high energies, the coupling
constant, which quantifies the force strength, becomes smaller and smaller, meaning that
the force strength becomes weaker and weaker. This property is called asymptotic freedom
because the vector bosons, become free particles as the energy scale grows towards infinity.
This important discovery was made in 1974 by Wilzeck, Polizer and Gross [46, 47| and firmly
established non-abelian gauge theories as the fundamental theory able to describe strong
interaction. This theory is what we call QCD. Despite the extraordinary success obtained
by QCD in the high energy, ultraviolet (UV), regime with the use of perturbation theory,
put on firm ground by asymptotic freedom, it is still a difficult problem to describe the
low energy, infrared (IR) physics of gluons and quarks, in particular at energies where the
coupling constant grows to be of order one and perturbation theory is no more a useful

tool. This happens around the energy scale Agpc where the confinement transition takes

73
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place and quarks become bounded together by gluons to form mesons and hadrons. This is
physically one of the most interesting regimes and up to now it has mainly been treated using
effective field theory ideas as chiral perturbation theory [6]. What we would really like to
have is a complete theoretical framework where the degrees of freedom used at a particular
energy scale can be continued to cover all the interesting physical scales involved. To be
able to do so, non-perturbative methods have to be employed. The most developed up to
now is lattice gauge theory, where spacetime is discretized in order to make the functional
integral and the partition functional well defined, finite dimensional integrals. These are then
evaluated numerically by Monte Carlo techniques at the cost of hard computations which
require intense use of dedicated workstations.

The functional renormalization group (fRG) approach to non-abelian gauge theories tries
to introduces non-perturbative methods that can still be treated as much as it is possible
analytically. Here the basic approximation scheme are the truncations of theory space, the
hope is to device wise truncations able to capture in few running couplings or running func-
tions enough information to understand the basic physics involved and to make quantitative
predictions. Considering that, at the practical level, the method deals with coupled differ-
ential equations for the running coupling constants or integro-differential equations for the
running functions, numerical techniques are still necessary. The hope is that they come in a
less prominent role then in lattice approaches.

The crucial point that we have not yet mentioned is that implementing the RG coarse-
graining procedure to gauge theories is a difficult task which generally comes at a price. In the
implementation followed in this thesis we use the background field method and the cost is that
we have to enlarge theory space to include functionals not only of the dynamical fluctuating
fields but also of the background gauge fields. This is because we are “softly” breaking
physical gauge invariance by making the theory in presence of the RG cutoff invariant under
background plus physical gauge transformations. The important point is that we are able to
control this breaking of gauge invariance with the aid of modified Ward-Takahashi identities
that ensure that when the cutoff is removed we recover full gauge invariance. The functional
RG approach is some how dual to the lattice one: the first preserves the spacetime symmetries
while breaking the gauge ones while the second breaks spacetime symmetry going on the
lattice but preserves gauge symmetry using gauge invariant variables as Wilson loops.

In section 3.2 of this chapter, after rapidly introducing the classical theory, we turn to the
EAA quantization of non-abelian gauge theories based on the formalism developed in section
3.3. We explore the approach by means, first of local truncations where we study the running

of the gauge coupling within various approximations, and subsequently by introducing non-
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local ones in terms of a curvature expansion where we look at the running of the covariant
polarization function. In section 3.3 the formalism is developed, the exact flow equation is
derived for both the EAA and its proper-vertices. The modified Ward-Takahashi identities
and the modified Zinn-Justin equation are treated. Finally we introduce new diagrammatic
and momentum space techniques that allow to project the flow of any truncation of the EAA
which is analytic in the fields. In the Appendix to the Chapter we report all the technical

details about the derivations.

3.2 EAA approach to non-abelian gauge theories

3.2.1 Classical theory

The geometric idea behind gauge theories is roughly that the gauge field is a connection in
a fiber bundle over spacetime where the fiber is the gauge group GG. We will consider here
only the case where G = SU(N). We use the gauge connection or gauge field' A,, defined

in each local trivialization of the fiber bundle, to construct a covariant derivative:

D, =0,+gA,, (3.1)
where ¢ is the coupling constant, and the field strength or curvature:?

F.=[D.D,]. (3.2)

Two gauge connections written in two different trivializations of the fiber bundle A}, and A,

are related by a “gauge transformation”

A =gAg = (0u9)g ", (3.3)

where g is the fiber bundle structure function which relates the two trivializations. The field

strength (3.2) transforms homogeneously under gauge transformations (3.3):

Fly=9Fuwg (3.4)

'We will often use the term “gluons” to indicate the gauge fields of a non-abelian gauge theory and the
term “photon” to indicate the gauge field of an abelian gauge theory.
2For more details refer to Appendix C at this point.
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We can now write down an action for the gauge field integrating over spacetime the simplest

invariant under the gauge transformations (3.3) we can construct:

1 174 1 a auv
S[A] =3 / d*z trF,, F" = 1 / d'x Fj, F . (3.5)
This action is taken as the bare action for non-abelian gauge theories. That (3.5) is invariant
under gauge transformations is easily checked using (3.4). The equations of motion following

from the action principle

5SI4] _,
SA,
are
B F™ + g[A,, F™] =0, (3.6)

The commutator in (3.6) vanishes in the case of an abelian gauge group thus giving one of
Maxwell’s equations. The term proportional to g is the self-interaction of the gauge field.
When g — 0, as happens in the quantum theory in the high energy regime, the gluons become

free particles.

3.2.2 Quantum theory

We carry over the quantization of the theory using the EAA approach. This means that we
need to construct a complete RG trajectory in theory space that connects the classical or
bare action for k — oo and the full effective action for & — 0. The EAA is constructed using
the background field method introduced in section 3.3, to which we remand the reader at
this moment.
The background effective average action (bEAA), as is defined in (3.59), has the general
form (3.65):
Tila,é ¢; Al = Th[A + a] + Difa, &, ¢; A (3.7)

where a,, is the gauge fluctuation field, ¢ and c are the ghost fields® and A,, is the background
gauge field. The full quantum field A, = 121,1, + a, is, in this approach, linearly split into the
background and the fluctuation field. The bEAA is invariant under combined physical and

background gauge transformations (3.63):

(6 +6)Tkla,e,c; Al = 0. (3.8)

3We often refer to the fields in the multiplet ¢ = (a,, ¢, ¢) as the “fuctuation fields”.
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The gauge covariant effective average action (gEAA), denoted by T'y[A], is that part of the
bEAA which is invariant under physical gauge transformations (3.66),

STH[A] =0, (3.9)

and is a functional of the full quantum field, at least for £ — 0. In fact, at intermediate

scales we must introduce the scale dependent wave-function renormalization for all the fields

involved:
a, — Zi/,fau Au — Zi{zf_lu
¢ Zyle c— Zle. (3.10)

In particular, this implies that the linear split of the full quantum field
Ay =2 A+ 2%y, (3.11)

can be broken by renormalization if the wave-function renormalization of the gauge fluctu-
ation field Z, runs differently then the wave-function renormalization of the background
gauge field Z4 ;. We will see that this is indeed what generally happens and this implies that
for k # 0 we need to consider the running of the full bEAA.

The beta function of the running gauge coupling g;. is related to the running wave-function
renormalization of the background field Z4,. Using the non-renormalization of the back-
ground covariant derivative we find:

g =23". (3.12)

Equation (3.12) tells us that we can calculate the running of the gauge coupling by looking

at the running of the wave function renormalization of the background field. This was the

original reason why the background field method was introduced [48]: only diagrams with no

external fluctuation legs need to be considered in perturbation theory to calculate the beta

function of of the gauge coupling. We see that, in view of (3.12), the covariant derivative
constructed with the full quantum field (3.11) becomes:

D, =0,+ A, +gZla,, (3.13)

and is thus scale dependent. As a consequence of (3.12) the background covariant derivative

does not renormalize.
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The functional I'[a, & ¢; A] is the remainder effective average action (rEAA) and plays
the role of a generalized gauge-fixing and ghost action as, in the limit £ — oo, it flows to the

classical gauge-fixing (3.61) and ghost (3.62) actions:

lim Ti[a,é c; A] = Syrla; A] + Sgnla, & c; A]. (3.14)

k—00

The exact RG flow equation for the bEAA can be easily derived and reads (3.70):

Ol A) = ST (TR0 A 4 RulA)) T R[] (3.15)
where ¢ = (a,,¢,c) is the field fluctuation multiplet. As explained in section 3.3 the cut-
off kernel in (3.15) is constructed using a differential operator, for example the covariant
Laplacian, constructed using the background field.

It is tempting to set ¢ = 0 in (3.15) and hoping in this way to get a closed flow equation
for the gEAA since 0,Tx[A] = 9,T%[0; A]. The subtlety is that the flow (3.15) is “driven” by
the Hessian of the bEAA taken with respect to the fluctuation multiplet and F,(f;o) 0; A] is
not equal to f,(f) [A]. Thus, in general, we have to consider the full flow of the bEAA that
takes place in the enlarged theory space of functionals of the fields a,, ¢, ¢ and A,. In the
next section we will study the flow of the gauge coupling, which is part of the gEAA, and
we will see how this is influenced by couplings which are part of a truncation of the rEAA.
In particular we will present different ways to “close” the flow of g, which naturally depends
on the fluctuation couplings, i.e. Z,, Z., and the gluon and ghost masses as well as the
guage-fixing parameter.

When we consider a truncation ansatz for the bEAA which is bilinear in the ghost fields,
the flow equation for the gEAA becomes (3.75):

o 1 _ _ N1 _
Al = T (DEO00: A + RuaalA))  OBianlA]
. -_ -_— _1 -_—

Ty (r,go’lvl"” [0; A] + RW[A]) O, Ry co A . (3.16)

The flow equation (3.16) can be seen as the RG improvement of the one-loop effective action
(C.50) of Appendix B.
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3.2.2.1 Local truncations

We will consider first a truncation ansatz for the gEAA in (3.7) which is the RG improvement

of the classical action (3.5):

_ 1
[L[A] = 1 / dz F P (3.17)

We have to consider the flow in the enlarged functional space which means that we have to

insert (3.11) in (3.17). Using the basic variations (3.142) we find the following expansion:

TWZ{iA+ Z%a) = ZaDwlAl+ 232,08 / d'x " Dyay +

1 _ _ _
+5Zak / d'za, [-D*¢" + 2iF" + D*D¥] a, +

+ kZ3/2f“bc/dd:cD al aZaf,—i—
1
+- gk kfabcfade/ddxab“acyazai. (3.18)

Note here the factors of g; steaming from the fact that the action (3.17) is constructed with
the covariant derivative of the full quantum field (3.13). We see from (3.18) that the flow
equation for I'y[A] is enough to extract the beta function of the wave-function renormalization
of the background field. This is done in section 3.5.4. To find the running of the wave-function
renormalization of the fluctuation field we have to use the full flow equation for the bEAA
(3.15), in particular it is clear from (3.18) that this can be done by looking at the running of
the zero-field proper-vertex 722 00:0) — F(2 0.0:0) [0,0,0;0]. This is done in section 3.5.6.

Second, we have to consider a truncation ansatz for the rEAA. We expand the rEAA in
powers of the fluctuation field a, and we consider those terms that are not already present
n (3.18). These are the running masses m,  and m.y of respectively the gauge fluctuation
field and the ghost fields, the running gauge-fixing parameter «; and the scale dependent
ghost wave-function renormalization Z.;. We take the following truncation ansatz:

- 1 1
iZ,5a, 2,006 2 e 23] A] = 5 Zek / 'z L—kDua“Dyawmik aua"}

+Ze / A%z [DME <DM + ngi{k2aﬂ> C+ Meg Ec} . (3.19)

The ansatz (3.19) amounts to an RG improvement of the classical gauge-fixing and ghost

actions (3.61) and (3.62). Note also that in this part of the truncation the gauge coupling is
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present due the structure of the background ghost action (3.62) we are improving.

From the flow equation (3.16) for the gEAA we can calculate the RG running of the
wave-function renormalization of the background field. As explained in section 3.5.3 there
are two possible ways to choose the cutoff operator that we employ to separate the field
modes to integrate out from those we don’t integrate out. In one case, that we call type I, we
use the covariant Laplacian —D? as cutoff operator in both the gauge and ghost sectors. In
the other case, that we call type II, we use the differential operator Déﬁ” = —D%g 4 2 Fm
to cutoff the gauge fluctuation modes in place of the covariant Laplacian. The general form
of 0;Z 4, in these two cases, is derived is section 3.5.3 and the results are given in equation
(3.180) for type I and in equation (3.183) for type II.

For general values of the masses of the fluctuation field we can only evaluate explicitly
the beta function of the wave-function renormalization of the background field if we employ
the optimized cutoff. Here we are working with the gauge-fixing parameter fixed to ap = 1

for convenience. For general d and for type I cutoff we find (3.184):

N k-1 dd—2— 32 d+2—mey  1d—2—1ny
atZA,k =

¢ L ~ . (3.20
@m)@eT (4) |6 1+m2,  dd+2) (1+m2,)? 31+@k] (3:20)

where we defined 1, = k™ ?mgay and M.y, = k™ *m.y. For type II cutoff (3.185) we find

instead:

atZA,k =

Nkt [2d4—dd—2—n.y 1d—2—n
[ Tak | 2 "$] (3.21)

(4m)d2r (2) | 6 14m2, 3 1+m2,
These equations show that the running of Z4 ; is determined by the running of the dynamical
set of couplings {Zak, Zex, Moy, mZ )} The anomalous dimensions in (3.20) and (3.21) are
defined by

Nay = —Oplog Zgy, Ne = —0Oylog Ze . . (3.22)

If we set d = 4 in equation (3.20) and if we neglect the masses, the beta function becomes

cutoff shape independent:

N 22 2 1
07— — (22 2 — 20k ) . 3.23

The beta function for the gauge coupling is readily found differentiating (3.23) with respect
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to the RG parameter, i.e. 0,21, = —0,9x/2g;, thus:

Orgr = AN (—1—1 + lna kT 177c k) e (3.24)
(47)? 3 37 67

Later we will see that the anomalous dimensions of the fluctuation fields are proportional to

g2, so in (3.24) only the first term goes like g3: this is just the standard one-loop running

of the gauge coupling [9, 11, 12]. Note that the beta function is negative for small coupling:

this show that non-abelian gauge theories are asymptotically free. If instead we set d = 4 in

equation (3.21) and if we neglect the masses, we find the following beta functions for type IT

cutoff N 22 10 1
0Zik= 75 | = — 5k — 77l 3.25
tL Ak (4m)2 ( 3 3 Nak 377 k) ( )
and N 11 5 1
O, a0 — _ M 1, 3 3.26

The beta functions are still cutoff shape independent, but a comparison between (3.23-3.24)
and (3.25-3.26) reveals that the coefficients that multiply the anomalous dimensions depend
on the cutoff operator we choose. However, these coefficients are also gauge dependent and
for a, = 0 they may have closer values.

The flow equations for the gauge coupling (3.24) and (3.26) need the specification of
the anomalous dimensions of the fluctuation field and of the ghost fields to be completely
determined. This is the actual manifestation of the fact that the flow of the gEAA, here
represented by g, is not closed but is given in terms of the flow of the fluctuation couplings,
here represented only by 7, and 7. since we fixed m, = m.; = 0 and o, = 1. We propose
now three different approximations that allows us to obtain closed beta functions for g;. The
first approximation is just the one-loop approximation that consists in setting 1,5 = e = 0.

The second approximation consists in choosing:

NAk = Tk Nek =0, (3.27)

where the anomalous dimension of the background field is obtained from (3.23) or (3.25)
using:
77A7k = —@t lOg ZA,/{? . (328)

In all previous works on the bEAA for non-abelian gauge theories [51, 56, 57| this approx-

imation was used. Inserting the approximation (3.27) in (3.24) or (3.26) transforms these
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equations in linear systems for 0;g,. These can be easily solved to yield:

1 1IN g:
_ 2
3 (4m)2
in the case of type I cutoff, and
1 11N qgs
3 (4m)?

in the case of type II cutoff. Equation (3.29) or (3.30) are rational functions of the gauge
coupling. This shows how the approximation (3.27) implements the resummation of an
infinite number of perturbative diagrams. At this point is not clear which contributions
are actually resummed by the identification (3.27) between the fluctuation and background
anomalous dimensions and thus the validity of this approximation is questionable.

For small coupling g, < 1 we can expand these equations. For type I we find:
gi 11 gp 22

- __Jr _ _JkE =" ar2 7
Oigr = (47 3 N An) 0 N*+0 (g) . (3.31)

while for type IT we get:

3 5
gr 11 ge 110, 7

Ohgr, = ———=—N — —N“+0 . 3.32
As we already noticed, the one-loop contributions are equal and agree with the perturbative

result, the two-loop contributions are instead quite different. If we compare them with the

perturbative result —(497?)4%]\72 [48] we see that type I is 79% smaller while the type II is
just 8% bigger. What we learn is that the approximation made in (3.27) implements an RG
improvement which strongly depends, at least, on the cutoff operator employed and is in
general not under control.

The third way to obtain a closed beta function for the gauge coupling, that we propose
here for the first time, is to first calculate the anomalous dimensions 7, and 7., and then
reinsert them back in (3.24) or (3.26). This means that we are considering the flow of the
full bEAA which takes place in the enlarged theory space of all functionals of the fluctuation
gauge field, of the ghost fields and of the background gauge field. In the truncation we
are considering, given by equations (3.18) and (3.19), this is the sixth-dimensional space

parametrized by the coupling constants {gx, Zak, Zc ks Mak, Mek, xf. We will see that the
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anomalous dimensions of the fluctuation gauge field and of the ghost fields are determined
by a linear system that can be solved to give them as a function of the gauge coupling, the
gauge-fixing parameter and of the masses. Since it turns out that the ghost running mass
m. has vanishing beta function and can thus be fixed to be zero at all scales, we set it to
this value from now on. Contrary to the beta function of the gauge coupling, all the other
are the same for both cutoff operator choices. The explicit derivation of these beta functions
is done in section 3.5.6 and 3.5.7 using the approach introduced in section 3.3.4 based on the
flow equations for the zero-field proper-vertices of the bEAA.

We start by considering the linear system satisfied by the fluctuation and ghost anomalous
dimensions. We will solve for these anomalous dimensions and we will insert the result back
into the beta functions for the gauge coupling (3.24) or (3.26). In this way we obtain a closed
form for 0;g;.

The general form of 7, and 7. are derived in section 3.5.6 and 3.5.7 for general cutoff
shape function, value of the gauge-fixing parameter and dimension. The explicit forms are
given in equation (3.221) and (3.242) respectively. Since previously we calculated the beta
function for the gauge coupling in the gauge ap = 1, we will consider these anomalous
dimensions in this gauge also. For this choice and employing the optimized cutoff shape
function they are given in equation (3.222) from section 3.5.6 and in equation (3.243) from

section 3.5.7,

@GN Kk 14(3d—-1) 1
(MWMF@) ﬂd+m(1+m%y

Nak =

20 d+2— Na,k 4 1 (3 33)
dd+2) (L+mg,)°  d(d+2) (1+mZ,)" '
and 2 7 et ;
- 4 24+d—n,
Mok = = S — (3.34)
(47)220 (4) d(d +2) (1 +m . )* (1 +m2,)
In particular, setting d = 4 in (3.33) and (3.34) gives the following linear system:
o @N 1 u 15 6o
Tk T T a2 |67 6 (L mE)t 6 (14w, )
2N 6 — 1,
U — ok (3.35)

(4m)4/2 6(1 4 m ;)

Note first that the anomalous dimension of the ghost field is entirely determined by the
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gauge fluctuation anomalous dimension and that this can be obtained from the first equation
in (3.35). This fact depends on the gauge, if we consider these anomalous dimensions for
ma . = 0 but for general value of the gauge-fixing parameter oy we find, equation (3.224) of

section 3.5.6 and equation (3.245) of section 3.5.7, the following forms:

_ gGiN [ 13-3aqy N 31 — 1020y, + 14403 — 58a3 — 15a3 + 48} log
Tek = 42 3 36(1 — )3 ek
@GN [ar—3 (14 ag)(1 —4dag + 302 — 2a3 log a,)
Ne = 3 + 3 Na,k
(47T) 2 8(1 — Ckk)
1 — 4oy, + 11ad — 8a3 + 2ai (1 + 2ay,) log
ek | - 3.36
+ ST —ar)? ek (3.36)

We see from (3.36) that for a general value of the gauge-fixing parameter, the anomalous
dimensions are determined by solving a linear system. An analogous system, within a different
implementation of the cutoff has been obtained in the non-background EAA approach to non-
abelian gauge theories in [59]. Considering that the anomalous dimensions in the rhs of (3.36)

are at least of order g2 we find to lowest order the following forms:

giN 13 — 3oy

u - _ 0] 4 ~2
T] 7k (47'(')2 3 + (gk7 ma,k)
2
c = - @) 3 . 3.37
Ne,k (47T)2 2 + (gk ma,k) ( )

The terms on the rhs of (3.37) are scheme independent and agree with the perturbative ones
[59, 9.
By solving the first equation in (3.35) we obtain the anomalous dimension of the gauge

fluctuation field as a function of m, and g, alone:

oy L 5 _ 11
g N 8T g )7 604w ) (3.38)
77(17]{2 - (47T>2 1 B g,%N 5 . .

(4m)? 6(1+m2 ,)?

The ghost anomalous dimensions is obtained as a function of m, and g by inserting (3.38)
in (3.35):

1 5 11
_ GiN 1 g N B0EmE ) - (T+m2 )7 6(1+mZ )0
Tk = T Um) 2 1+ w2, )2 (4n)t 1_ N 5

(47)2 6(1+m? ;)3

(3.39)
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Figure 3.1: The three forms for the type I beta function for the gauge coupling together with
the two-loop one. One-loop (continuous), two-loop (short dashed), improved as in (3.29)
(long dashed) and improved as in (3.40) (thick).

For general value of the gauge-fixing parameter the form for these anomalous dimensions can
also be obtained analytically but the resulting forms are quite cumbersome and so we do not
report them here.

We can now turn back to the beta functions for the gauge coupling and close them by
inserting the functions (3.38) and (3.39) in (3.24) or in (3.26). In particular, if we set m,; = 0,
we find for the type I beta function the following RG improved result:

ng_&%ﬂ_iﬁf

9% 3 9 (4m) 108 (47)

@%_’(MV YL . (3.40)
6 (4m)2

For the type II beta function we find instead the following RG improved form:

ng_Eﬁﬁ_iﬁﬁ

o k 3 6 (4m)2 ~ 108 (4m)2

ﬁtgk = —(477)2 5 g,%N . (341)
T 6 (4m)2

Note that the beta function (3.40) and (3.41) differ now only in the coefficient of the sec-
ond term in the denominator. These beta functions clearly show how the influence of the
fluctuation couplings, here Z,; and Z., is encoded in the flow of the gauge coupling as a
particular kind of improvement. The type I beta functions (3.29) and (3.40) are given in
Figure 3.1 together with the one-loop and two-loops results. The analogous figure for the
type II beta functions (3.30) and (3.41) is Figure 3.2. We note that for both cutoff types, the
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-10¢

Figure 3.2: The three forms for the type II beta function for the gauge coupling together
with the two-loop one. One-loop (continuous), two-loop (short dashed), improved as in (3.30)
(long dashed) and improved as in (3.41) (thick).

beta functions that account for the non-trivial form of the fluctuation and ghost anomalous
dimensions are in between the one-loop and two-loop beta functions. We interpret this fact
as the indication that flow described by these beta functions is closer to the exact one, even if
in the type II case the beta function differs slightly from the one-loop one. Considering that
the anomalous dimensions we used to obtain a closed form for these beta functions have been
calcualted in the gauge ap = 1 we speculate that the situation may improve if we consider
instead the Landau gauge [68]. Note also that the beta functions obtined employing the
identification (3.27) are those which approximate in a better way the two-loop beta function
even if we don’t have a proper justification for this approxiamtion. All the improved beta
functions we considered, (3.29), (3.30), (3.40) and (3.41) are reliable only in the high energy
asymptotic free regime since they all diverge for finite non-zero g,. To be able to extend
the flow of the guage coupling toward the IR, a more general class of truncations has to be
considered [57, 58|.

We integrate now the one-loop beta function for the gauge coupling from the UV scale A

to the IR scale k. After an elementary integration we find:

11 1 22N A
Y (3.42)

= — og — .
9 gr (4m)? 3 k

We solve (3.42) for g3 as we are interested to study the theory in the A — oo regime where
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Figure 3.3: Running non-abelian coupling constant oy = % as a function of the UV scale A
from (3.45).

the truncation ansatz for the gEAA (3.17) is valid due to asymptotic freedom:

2 9i
gan = 2 . (343)
A
L+ (4%5)2 223N log
A mass scale M can be defined by the relation:
2
9r 22N k
1= —log — 3.44
@m)? 3 8 (8.44)
if we insert (3.44) in (3.43) we can write:
2
==, 3.45
o %N log% (3.45)

where we defined oy = %. This is the standard result found in perturbation theory and this
derivation shows how this fundamental physical phenomena arises within the bEAA formal-
ism. The scale dependent QCD parameter «, is plotted in Figure 3.3 as a function of A.
The picture clearly shows that the coupling constant is decreasing in magnitude as we go to

higher and higher scales.

Next, we consider the flow of the gauge fluctuation mass. This beta function has been
calculated in section 3.5.6 and is given in equations (3.216) and (3.217) for general cutoff

shape function, value of the gauge-fixing parameter and dimension. In the case of interest,
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d =4 and oy, = 1, if we employ the optimized cutoff shape function we finds equation (3.218)

from section 3.5.6. In terms of the dimensionless variable m? , = k*m;, ., we find the following

form:
N 6 — Nak
O, = —(2—n.) W2 Ik _ a,
Wi = = B Most o | "2, P
3 8 - nak; 8 - 770]43
- ’ = . 3.46
+8(1 +m(21,k)3 24 ] ( )

We are now in the position to study the full closed system for 0,gx and 9;m, obtained by
closing (3.24) or (3.26) and (3.46) using (3.38) and (3.39) .The beta functions so obtained are
quite complicated polynomial functions of rhik and we give them here only to lowest order

in gx. They read:

g2N 16 4+ 66102, + 581y, — 2mf , 4 2mf , + M5,

o, = —2m2, — R +0 (gp
ok ok (47)? 6(1+ mik)4 ( k)
3N 11 —m?2, +mt, +mb
9N a,k a,k a.k 4
0, = — O ) 3.47
tGk (47)? 3(1+ ﬁle)g " (gk) ( )

We can solve both the approximate system (3.47) and the full one numerically. The results of
these integrations are given in Figure 3.4 and Figure 3.5. By the numerical study we made,
we learned that in order to obtain a vanishing gluon mass in the IR for k£ — 0, so that the full
effective action is gauge invariant, we need to tune the initial value for the gluon mass to the
value m?2 y ~ —A?. This indicates that the flucutation couplings, i.e non-trivial truncations
of the rEAA, not only exert an influence on the running of the physical couplings, but need
also a non-trivial renormalization in the UV. This shows again how important it is to study
the flow of the full bEAA.

Finally we consider the running of the gauge-fixing parameter. The beta function for «y
is derived in section 3.5.6 and is given for general cutoff shape function and dimension in
equations (3.229) and (3.230). In d = 4, for m,, = 0 and employing the optimized cutoff

shape function, we find the following form:

GN i (5 — 150y + 18a; — baii — 3o + 6a} log ak)ﬁ )
(47)? 12(1 — ay,)? “

Oroug, = —Na k0 + (3.48)
In we insert (3.38) in (3.48) we obtain the complete beta function for oy, in the case M, = 0.

2\ —1
This beta function has a fixed point at a; = 0 where it has slope (4;)2 %gi (1 — ;Z—gﬁ)
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Figure 3.4: Flow of the gauge fluctuation mass obtained by solving the complete version of
system (3.47). m2,/A* is plotted as a function of log &. Note that to obtain a vanishing
mass for k — 0 we need to tune m? , ~ —A”.

and so the fixed point is IR attractive if g7 < 6(;7\?2 near the fixed point. For N = 3 this

means g, < 63 and thus the gauge-fixing parameter is attracted to zero, i.e. to the Landau

gauge, in the IR. This confirms the expectation that Landau gauge represents a fixed point

of the flow of the guage-fixing parameter [16].

3.2.2.2 Non-local truncations

To be able to explore the IR physics of non-abelian gauge theories we need to consider a
more general class of truncations that retain at least an infinite number of invariants and
coupling constants. A way to do so is to generalize the truncation (3.17) for the gEAA to
what we call a “curvature expansion”. For non-abelian gauge theories this expansion has the
following form:

TW[A] = ;1 / 'z F, F +i / d'z Fo 1, (— D)™ F 4 O (F?) (3.49)

where IIi(x) is the running vacuum polarization function. If we expand (3.49) in powers of

the fluctuation field we find to lowest order

Ti|Z{3A+ 2,}0a) = Z3,Tw[A] + O(a) (3.50)
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Figure 3.5: Flow of the gauge fluctuation mass in units of the UV cutoff m], , /A* (2-axis)
and of the gauge coupling g, obtained by solving the system (3.47) (continuous line) and the
full version of it (thick line). Tuning m , ~ —A? the fluctuation mass rapidly goes to zero
and the gauge coupling starts to grow.

since the background covariant Laplacian does not renormalize. Thus the background wave-
function renormalization and so the guage coupling enters the flow of I1(x) only as an overall
factor.

To calculate the complete non-perturbative running of the vacuum polarization function
obtained by inserting (3.49) in the flow equation (3.16) for the gEAA is a difficult task. In
principle, using the techniques of sect 3.3.4, it is possible to project out the flow equation
for I (x), but this is still quite complicated. Also, a truncation ansatz involving a structure
function has to be considered in the ghost sector. This is particularly relevant in view of
the ghost TR enhancement found in Dyson-Schwinger (DS) equation studies in Landau gauge
ar = 0 non-abelian gauge theories |61, 62]. Within the EAA approach, several works in this
direction have already been done. These consider truncations similar to the one in (3.49),
but all these works are within the non-background approach to non-abelian gauge theories
where gauge invariance is explicitly broken along the flow and the field modes are regulated
using the flat space Laplacian [60, 63, 67, 64, 65, 66|]. On the contrary, the ansatz (3.49)
is covariant and thus gives, in the proper-vertex hierarchy described in section 3.3.3, non-
trivial contributions to all vertices. In the works just mentioned, all vertices are considered
as bare. Still, the results found in this more naive approach are stimulating and in general
accordance with DS studies. The question is whether the covariant background approach can
be more efficient in penetrating into the IR physics than the non-background ones. This kind

of applications of the bEAA are now practicable using the formalism developed in section
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3.3.4 and will be subject of future investigations. For the moment we will consider only
the one-loop running of the vacuum polarization function Il (z) induced by the local action
(3.17).

To extract the one-loop running of the vacuum polarization function, we employ the non-
local heat kernel expansion to calculate the functional trace in the rhs of the flow equation
(3.16) for the gEAA. The details are given in section 3.5.5. In d = 4 and by employing the
type IT cutoff operator introduced in the previous section together with the optimized shape
function, we find (3.202):

N |22 (22 8k*\ [, 4k?
O [Zalk(2)] = =0, Z5, + S [? — (3 + 3_:1:) 1— 7e(x — 4k2)] ,  (3.51)

where x stands for the covariant Laplacian A. Inserting into equation (3.51) the beta function
for the wave-function renormalization of the background field, from equation (3.25) with

Nak = Nery = 0, the constant term in the rhs cancels and we are left with the following simple

formula: .
— Ik r
Ol () = naplle(z) + ( 47T)Qf <ﬁ> : (3.52)
In (3.52) we used the relation g7 = Z, and the definition of the anomalous dimension of

the background field (3.28). The function f(u) is found to be:

Flu) = — <% + 3%) - %9@ _y (3.53)

Note that the & dependence in (3.52) enters only via the combination v = z/k* In (3.53),
naxlli(z) is at least of order gy and we discard it here. Also, we set the running coupling to

its renormalized value go. We can integrate now the flow equation (3.52) from the IR scale
k to the UV scale A thus finding:

2 x/k?
g N du
II —1I = — 3.54
-t = s [ S, (3.54)
where we changed variable to u = z/k*. Thanks to the cancellation between the constant
term in (3.51) and the one-loop term of the beta function of the wave-function renormalization
of the background field, the integral in (3.54) is finite in the limit A — oco. In this limit,

the vacuum polarization function goes to its boundary value, i.e. II5(z) = 0. The vacuum
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polarization function at the scale k is finally found to be:

2 2 2
N [ /128 16K\ [ 4k
I = — -2 1
() (47)? {< o " or z
22 x 1 A4k?
— " llog — +1log= |1 1—— — 4k?). .
3[0gk2+0g2<+ x)]}@(x ) (3.55)

From (3.55) we see that we cannot extend (3.55) down to arbitrary low energies, i.e. we

cannot send k& — 0 since the first logarithm term diverges in this limit. For k* < x we find
the following contribution to the gEAA:

N 22 (=D?® 128
2 d a ab buv
9 / d%x F2, {—3 log 5 — —- 0" | F". (3.56)

We interpret the obstruction to the limit & — 0 in (3.55) as a signal of the breakdown of
the approximation used in its derivation, where we considered the flow of II;(z) as driven
only by the operator 1 [ d?zF?. In order to be able to continue the flow of the gEAA in the
deep TR, we need the full non-perturbative power of the flow equation (3.16) that becomes

available if we insert the complete ansatz (3.49) in the rhs side of it [68].

3.3 Background effective average action (bEAA)

In this section we generalize the construction of the EAA done in Chapter 2 to the case
of gauge theories, in particular to non-abelian gauge theories. The important point in the
construction is obviously that gauge invariance has to be preserved after the introduction of
the cutoff. We have seen in the case of matter fields how it is possible, within the EAA frame-
work, to covariantly cutoff field modes by defining a cutoff action using covariant operators
in the external fields, like the gauge Laplacian in QED or the Beltrami-Laplace operator in
the case of matter fields on curved backgrounds. We learned also the importance, for the
cutoff action, to be quadratic in the fields in order to obtain a one-loop like flow equation.
This means that if we try to introduce in gauge theories a cutoff by simply taking as cutoff
kernel a function of the covariant Laplacian, this will spoil the simple one loop structure of
the flow. Still the EAA will not be gauge invariant because of the non-covariant coupling of
the gauge field to the source. The way out is to employ the background field method as was
first done in [51]. The quantum field A, is linearly split between the background field A,
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and the fluctuation field a,:
A=A, +a, (3.57)

and the cutoff action is taken to be quadratic in the fluctuation field, while the cutoff operator
is constructed with the background field. We consider thus a cutoff action of the following

form:

ASifp d) = 7 / d'e o Rel Ay, (3.58)

here ¢ = (a, ¢, c) is the field multiplet, combining the fluctuating field a, and the ghost fields
¢ and c¢. The background effective average action (bEAA) is constructed introducing the
cutoff action (3.58) into the integro-differential definition of the background effective action,

equation (C.39) from Appendix C, to obtain:*

e Trlwdl — / Dx exp (—S[XﬂO;A} — ASk[x; A] + / d'x FS;O)[@;A]X) : (3.59)

The multiplet field x in (3.59) has zero vacuum expectation value (x) = 0. The bare action,

as constructed in Appendix C, is
Slp; Al = S[A + a] + Sytla; A] + S,nla, ¢, c; A], (3.60)
with the following background gauge-fixing action

Sytla; Al = i/ddx D,a"D,a" (3.61)

2a

and the following background ghost action
Snla, ¢, c; A = /ddx D,eDVe = /ddx D,é (D" + ga") c. (3.62)

The bEAA is invariant under combined physical plus background gauge transformations:

(04 0)Th[p; Al = 0. (3.63)

We can now define a gauge covariant functional that we will call gauge covariant effective

average action (gEAA). This is defined by setting in the bEAA ¢ = 0, or equivalently

4Functional derivatives of a functionals depending on many arguments are indicated by the notation
rmme [ ],
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Au:f_l# and ¢ =c=0:
This is equivalent to the parametrization of the bEAA as the sum of a functional of the full

quantum field A = A+ a, the gEAA, and a “remainder functional” I'y[¢; A] (rEAA) which is
still a functional of both the fluctuation multiplet and the background gauge field:

— — — A —

Tilp; Al = Ti[A + a] + Ti[ep; A (3.65)
The gEAA constructed in this way is invariant under physical gauge transformations:
0T[A] =0, (3.66)

while the rEAA is invariant under simultaneous physical and background gauge transforma-
tions as the full bEAA.

3.3.1 Exact flow equations for the bEAA

In this section we derive the exact flow equation that the bEAA satisfies. We will follow the
derivation of the exact flow equation for the standard EAA given in section 2.2.1 of Chapter
2. Differentiating the integro-differential equation for the bEAA (3.59) with respect to the
“RG time” t = log k/ko we find:

€_Fk[¢;A]atFk[90;A] = /DX (8tASk[X7A] - /ddxatrl(gl;o) [SO; A]X) X

w ¢~ SletxAl=ASK A+ S 0 (o3 Alx . (3.67)

Expressing the terms on the rhs of (3.67) as expectation values using (B.2) and (3.58) we

can rewrite (3.67) as®

OLklps A = (0. ASk[x; A]) — / %z .0\ ; Al (xa)

1

= 5 /ddx <XAXB> @tRk:,BA, (368)

where we used the vanishing vacuum expectation value (x4) = 0 and the symmetry of the

cutoff kernel in A <+ B. The two-point function of the fluctuation field can be written in

5We introduce here the multiplet indices A, B, ...
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terms of the inverse Hessian of the bEAA, where the functional derivative are taken with

respect to fluctuation fields, plus the cutoff action:

(axs) = (T2 A+ A5 A)) T = (T 4]+ RiA]) (3.69)

Inserting (3.69) into (3.68) and writing a functional trace in place of the integral, gives:

- 1 . _ N _
OTulpi A] = ST (TEVes Al + Rl A])  0i7(A). (3.70)
This is the exact flow equation for the bEAA for non-abelian gauge theories [51] and is the
main result of this section. The flow generated by (3.70) has the same general properties as
the flow for matter fields described in Chapter 2. If we define the “regularized propagator”
as ,

Giloi A] = (TEV(es A+ By[A]) (3.71)
then the flow equation for the bEAA (3.70) can be rewritten in the compact form:

1
Oy [p; A] = QTT Grle; AJORi[A] . (3.72)

As before, the flow equation has a one-loop structure and can be derived as an RG improve-
ment of the one-loop bEAA calculated from the integro-differential equation (3.59)
From (3.65) and (3.72) we can readily write down the flow equation for the gEAA:

L | _ -
Note that Fff;o) [0, A] is “super-diagonal” if the ghost action is bilinear. In this case we can

immediately perform the multiplet trace in the flow equation (3.70). Using the notations
Traa = TP2%900,0,0; A, Tz = TOP5200,0,0; A, Riaa = ASEY00,0,0; 4] and Ry zo =
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AS,EEO’M;O) [0,0,0; A] we can write the flow equation in the following matrix form:

-1

1 1—‘k,aa + Rk,aa 0 0
atl:‘k [A] - §Tr O O Fkﬁc + Rk:jc
0 - (Fk,éc + Rk,EC) 0
atRk,aa 0 0
X 0 0 815Rk750
0 _atRk,éc 0
1 Gk,aa 0 0 atRk,aa 0 0
= §Tr 0 0 Gz 0 0 Oy Ry, e
0 _Gk,éc 0 0 _atRk,éc 0
1 Gk,aaatRk:,aa 0 0
= §Tr 0 GrecOr R e 0
0 0 Gk,écatRk,Ec
1
= §TI' Gk,aaatng —Tr Gk’gcatRkygc . (374)

In (3.74) we used the property that the trace over anti-commuting fields carries an additional

minus sign. We have found the flow equation for the gEAA in its commonly used form [51]:

_ 1 . _ N1
WAl = ST (PPO00: 4] + ReaalA])  O0Riaal A] +

. — — -1 —
T <1“](€0’1’1’0) 0; A] + Rk@[A}) O Ryce A . (3.75)

It is important to realize that equation (3.75) is not a closed equation for the gEAA since
it involves the Hessian taken with respect to the fluctuation field of the bEAA. This implies
that for k£ #£ 0 it is necessary to consider the flow in the extended theory space of all func-
tionals of the fields ¢ and A, invariant under simultaneous physical and background gauge
transformations. Equation (3.75) can be obtained as an RG improvement of the one-loop
effective action (C.50) for non-abelian gauge theories given in Appendix C.
The flow equation for rEAA can be deduced differentiating equation (3.65) and using
(3.70) and (3.75):
0L k[; A] = T [A+ a] — 0T[5 A]. (3.76)

In the Appendix to the Chapter we will use the flow equation (3.75) to calculate the beta

function for the wave-function renormalization of the background field and for the running



CHAPTER 3. FUNCTIONAL RG FOR GAUGE THEORIES 97

vacuum polarization function IT;(x).

3.3.2 Modified Ward-Takahashi identities

The bEAA is invariant under combined physical § and background ¢ gauge transformations
(3.63). The gauge-fixing action, the ghost action and, more importantly, the cutoff action
spoil the physical gauge invariance of the bEAA. This means that the bEAA should obey
modified Ward-Takahashi identities under physical gauge transformation [69, 54, 56, 71, 70,
18, 16]. In presence of a non-invariant term in the bare action, the effective action obeys the
following Ward-Takahashi (WT) identity, equation (B.69) from Appendix B. In the case we

are considering this impies the following relation:

/ dz (66) (rfjm[ A+ ASy[p; A ) = (68, sla; A] + 6Syup; A + 5ASk[p; A]) . (3.77)

Note that on the lhs of (3.77) we have the sum of bEAA and of the cutoff action, as this
combination is the Legendre transform of the generating functional of connected correlations
of ¢, which enters the general WT identity (B.69).

Physical gauge transformations act linearly on the fields and thus we have (@) = dp.
We can write them as 6¢ = 04G4¢ where G4 are the symmetry generators and the 64 are
the parameters of the gauge transformations. See Appendix B at this point for more details.

The first term on the lhs of equation (3.77) can be rewritten as

/ddx F LO1o: 416 = 0T4[p: 4], (3.78)
in this way we obtain:
GT1le; A] = (G (Syrla; A] + Sgnle; A]) ) + (GASK[9; A]) — GAS,[p; A]. (3.79)

The first one-loop term on the rhs of (3.79) is the standard one of non-abelian gauge theories
[12], while the second one-loop term is the RG modification induced by the cutoff action.
Using (3.58), we can rewrite the second term of (3.79) as

(GAS[¢: A]) = / 0% Ry 15[ A] (Gbads) = - / 0 Ry aplAIG (6a05) . (3.80)
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and the third as: .
0ASuliA) = 5 [ d's RanlAG(oa0n). (3.81)

We can combine equation (3.80) and equation (3.81) in the following way:

(9880 A) - GASi Al = ;5 [ d' Fuasl 4G ((046s) ~ oaor)

1

= §/ddx Ry, 4[AIGGr.palp; A, (3.82)

where in the second step we used (3.69) and the definition of the regularized propagator
(3.71). Finally, using (3.82), the identity (3.79) boils down to:

QFk[<p; A] = <Q (ng[a A] -+ Sgh ¢, )> + = /ddSC Rk,AB[A]QGk,BA[go; /ﬂ . (383)

Equation (3.83) represents the modified WT identity (mW'T) the bEAA for non-abelian gauge
theories satisfies. The modifying term in (3.83) stems from the introduction of the cutoff,
the important point is that it vanishes in the & — 0 limit as the cutoff kernel R;[A] goes to
zero. Thus the standard WT identity is recovered in the IR and is satisfied by & — 0 limit
of the bEAA T'y[p; A]. This property is of fundamental importance for the approach, since it
shows that a fully gauge invariant theory is recovered as result of the integration of the flow.

The gEAA does not depend on the fluctuation fields and so we simply have:
Gri[A]=0. (3.84)
Also, the gEAA is invariant background gauge transformations d¢ = 4G ,¢:
GI'y[A] =0. (3.85)

This implies that the mWT (3.83) is a constrain only on the form of the rEAA T';[e; AJ.
Also, the linear split symmetry of the quantum is recovered at k = 0.

Gauge fixed non-abelian gauge theories are no more invariant under physical gauge sym-
metries but posses a new global symmetry: BRST invariance. The BRST transformation
dBrsT®, defined in equation (C.29) of Appendix C, is not linear in the fields but it is nilpo-
tent 6% 5¢r = 0 as proved in Appendix C. Thus the BRST variations dprsr¢ are composite
operators. To deal with this complication it is useful to introduce additional currents K, the
BRST currents, that couple to the BRST variations. The bEAA becomes a functional also
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of K, which is just a spectator in the Legendre transform that leads to the bEAA, and the

following relation holds:

e = = (5¢) . (3.86)

The general form of the Zinn-Justin equation, equation (B.76) from Appendix B, when
applied to the bEAA becomes:

/dd 5Fk[g§,KK Al 5I‘k[<p,K Al (A6 Al — /dd O so,K Al 5AS§S[;O,A]. (3.87)

Using (3.86) we can further manipulate the cutoff terms in (3.87) to get

(0AS[¢; A]) = /ddl“Rk,AB[A] (0padB) %ETA] = /ddl’ Ry aslAles,
inserting these relations in (3.87) gives
or K; A]éT K; A
e AT B e Rasld) (Goa0m) — 0000 (0a) . (389

In equation (3.88) the connected correlation between the fields and the BRST variations
appears on the rhs, this can be expressed as a mixed second functional derivative of the

generator functional of connected correlations in presence of the BRST currents as follows:

(SQWk[J, K; 14_1]

5Ji0Ks (00a¢B) — (0¢4) (P) - (3.89)

We can write (3.89) in terms of mixed functional derivatives of the bEAA in presence of the
BRST currents as:

2WilJ, K; A] 4 00 0T 1lp, K; A J _ 0T, K; A]
) ) — d ) ) — d G K A ’ ) )
340K 5 / 5T, 0pcoKg / * Gracle, K Al—50 S — e
(3.90)
Inserting (3.90) in equation (3.88) finally gives:
5Fk[907K7A] 5Fk[907K7A] / d 1 52Fk[@7K7A] A
=— | dzR Al—————@G K; Al. 3.91
5 5y z Ry aplA] K pdon roale, K; Al (3.91)

This is the modified Zinn-Justin (mZJ) equation which generalize the ZJ equation (B.75)

in presence of the cutoff. Note that the lhs, usually denoted as “star product” or “Batalin-
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Vilkovisky” bracket [12], is no more vanishing and thus the advantage of using the BRST
approach is not clear anymore when we are in presence of a cutoff of the type that is em-
ployed here. It is worth noting that the mZJ equation has more the structure of the “master
equation”, arising in the Batalin-Vilkovisky quantization of gauge theories, where the “Lapla-
cian” on the rhs is replaced by a sort of “regularized Laplacian” as is in the rhs of (3.91).
Further study in this direction may be useful to better understand the role of the cutoff in

the approach to quantization offered by the exact flow equation for the bEAA.

3.3.3 Flow equations for proper vertices of the bEAA

In this section we derive the hierarchy of equations governing the flow of the proper-vertices
of both the full bEAA and the gEAA. Starting from the flow equation for the bEAA (3.70),
we can derive a hierarchy of flow equations for the proper-vertices of the bEAA simply by
taking functional derivatives with respect to the fields.

In the background formalism we are employing, we can take functional derivatives with
respect to both the fluctuation multiplet ¢ and the background field /_lu. In this second
case we have to remember that the cutoff terms in the flow equation depend explicitly on
the background field. This adds new additional terms to the flow equations for the proper-
vertices that are not present in the flow equations for the proper vertices of the EAA in the
non-background formalism. We will see that these terms are crucial in preserving the gauge
covariance of the gEAA along the flow.

Taking a functional derivative of the flow equation (3.70) with respect to the fluctuation
multiplet or with respect to the background field gives the following flow equations for the
one-vertices of the bEAA:

. - 1 _ . _ _ _
OTy g Al = — T Giles AT [ Al A0 Rl A)
. - 1 - . _ _ _ _
Ay Vlpi Al = —STrCles A (0 o A + B (A)) Gilos A0l A
+%Tr Gyl AJo,RV[A] . (3.92)

Note that in the second equation of (3.92) there are terms containing functional derivatives

of the cutoff kernel Ry[A].
Taking a further derivative of equation (3.92) with respect to both the fluctuation and
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background field gives the following flow equations for the two-vertices of the bEAAS:

1
or®” = Trq, r¥0aq, r*0Go,R, — S LGl U0 a0, Ry,
ary = Trq, (Fg"*” + R,ﬁ) G TG0, Ry
1 . 1 .
~3Tr Gy (T + B G Ry~ TG TEO0 R
or® = TGy (1P + BY) Gy (TP + R ”) GO, Ry
1 |
~3 TG (r(”) + R(Z)) GO, Ry,

i Yen ( “>+R(”) GhO RV + TeratR(Q) (3.93)

Proceeding in this way, we generate the full hierarchy of flow equations for the proper-vertices
Fén;m)of the bEAA. In general the flow of the proper-vertex T’ ,(gn;m) involves the proper-vertex
up to F,(C”H;m) and functional derivatives of the cutoff kernel up to Rém).

Note that, as they stand in equation (3.92) and (3.93), every equation of the hierarchy
has the same information content as the original flow equation (3.70). To make profit of the
above derived equations, we perform now a Taylor expansion of the two argument functional

['x[e; A], that we express in the following way:

m) L
Z n‘m / 7]€$1 InyYl.. ym(pxl (‘Oanyl"'Ay'my (394)

n,m=0 Z1.--ZnY1---Ym

In (3.94) we defined the zero-field proper-vertices as:

T e = D [050] (3.95)
If we evaluate now the hierarchy of flow equations, the first of which are equation (3.92) and
(3.93), for ¢ = 0 and Au = 0, they become and infinite system of coupled equations for the
zero-field proper-vertices 7,(;”7”). From the expansion (3.94), we see that this system we can
be used to extract the RG running of all terms in the bEAA that are analytic in the fields.
In particular these terms can be of non-local character.

To handle possible general non-analytical operators, a scheme different from this has to

be developed. Up to now some calculations have been done for truncations like T'y[A] =

6Here, as in several other equations of section, we omit for clarity to explicitly write the arguments of the
functionals.
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[ W (1F?) in non-abelian gauge theories [56, 57, 58, 63], or like T';[g] = [ \/gf (R) in the
gravitational contest [104, 105, 96|. This studies employed a specific choice for the background
fields and the calculation tools used are not general enough to handle all possible general
non-analytic terms that may be present in the bEAA. Still, as several example show, it seems
that the non-trivial part of the bEAA has a non-local structure instead of a non-analytical
one. For this reason, among others, the computational strategy based on the hierarchy of
flow equations for the zero-field proper-vertices of the bEAA is a promising research route to
study the bEAA in its full generality.

As for the bEAA, we can derive a hierarchy of flow equations for the proper-vertices
of the gEAA. In this case the functional depends only on the background field. Taking a
functional derivative of (3.75) with respect to this field gives the following flow equation for
the one-vertex of the gEAA:

o 1 _ , _ _ _ _
arA] = —3TeGyfo, A] (1710, A) + BV [A]) Gilo, Ao, il A]

1 — _

+5Tr Gy [0, Alo,RV[A]. (3.96)

The second term in (3.96) contains a functional derivative of the cutoff kernel as in the case
of the second equation in (3.92). Actually, equation (3.96) is the same as equation (3.92) if
we set ¢ = 0 and if we consider the relation E)tF,(CO;l)[O; A] = 0,4 [A].

A further derivative of (3.96) with respect to A, gives the following flow equation for the
two-vertex of the gEAA:

ar® = Tray (F,(f;l) + R,ﬂ})) Gi (F,(f;l) + R,@) GO, Ry

1 .
—§TI' Gk (Fl(fz) + Rl(f)) GkatRk

. 1
G Yen (r}}” + R,g”) GO + S Tr GaRY (3.97)

As for (3.96), this equation is equal to the last equation in (3.93) if we set ¢ = 0 and if we use
that 0,1 ;0;2) [0; A] = 8tf‘,(€2) [A]. As already said, the terms coming from functional derivatives
of the cutoff kernel, that are present in the background formalism, but not in the ordinary
one, are crucial in preserving the covariant character of the flow of the gEAA and its vertices.
As we did for the full bEAA, we can perform a Taylor expansion of the gEAA analogous to
(3.94) and define the zero-field proper-vertices

AW =Thaaa0], (3.98)

k,x1...Tn



CHAPTER 3. FUNCTIONAL RG FOR GAUGE THEORIES 103

to turn the hierarchy of flow equations for the proper vertices of the gEAA in an infinite
dimensional coupled system for this just defined vertices.

We notice now that there is a more compact form in which we can rewrite the flow
equations for the proper-vertices we just derived. If we introduce the formal operator defined
as

. 9
O = (R — nkRk)a_Rk : (3.99)

where here 7, is a multiplet matrix of anomalous dimensions, we can rewrite the flow equation

for the bEAA (3.70) as:
Ol A) = LT Gules A0 RALA) = — T B log Gily: A (3.100)
In (3.100) we used the following simple relations:
0,Gr. = —Gr0,Ri,Gy Iy log Gy, = G 10,Gy = GO,Ry, .

In this way, we can rewrite the flow equation for the one-vertices of the bEAA (3.92) in the

compact form:

. - 1 ~ ) — _
oy A = —5 1o, {F;(f”o) 05 A]Gi[e; A]}
. - 1 = . _ _ _
ore Al = —sTa {(TPVlei A+ RUA]) Gulwi A} (3101)

while the flow equations for the two-vertices of the bEAA (3.93) read now:

. 1~ (- . 1~ (o
ory? = ST, {r}f’mek r}j"’%k} —5Ted, {r}j"O)Gk}
: 1 = ‘ . 1 - .
oI — 5T, { (rﬁ” + R,ﬁ”) G rf””)Gk} ~5Ted, {F,S””Gk}
. 1 = . .
ory? = ST, { (rg‘"” + R,(j’) G (Fff’l) + R,EP) Gk}

—%Tr d, {(Ff}” + R,(f)) Gk} . (3.102)

This notation turns out to be useful since the flow equations (3.101) and (3.102) contain less
terms then their counter parts (3.92) and (3.93) and are thus much more manageable when
employed in actual computations. The same reasoning applies to all subsequent equations
(n;m)

of the hierarchy and extend to the flow equations for the zero-field proper-vertices -,

Also in this case the flow equations for the proper-vertices of the gEAA are just those for the
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1;0
amgo;n = —1 «/\@ +, dv@

Figure 3.6: Diagrammatic representation of the flow equations for 0757,&1;0) and 8,57,({0;1) as given
in (3.92).

bEAA evaluated at ¢ = 0 and we don’t need to repeat them here. The same applies to the
. ~ . _(n)
flow equation for the proper-vertices 7, .
We will see in the next section how the flow equation for the zero-field proper-vertices just
defined can be turned into a powerful computational device to perform actual computations

in the bEAA framework.

3.3.4 Diagrammatic and momentum space techniques

In this section we expose the important technical tools developed in this thesis in order to
make calculations possible in a large new class of truncations of the bEAA. These include
those related to the truncation (3.17) and (3.19) studied in the main part of this chapter.
All the results of this section can be extended to treat the bEAA for quantum gravity and
more generally the bEAA of any theory with local gauge invariance. For this reason we try
to maintain our notation as general as possible.

We first develop some useful diagrammatic rules as a device to organize the various
contributions to the flow equation for the zero-field proper-vertices ’y,(C";m) of the bEAA derived
in the previous section. Then we introduce the momentum space representation that enables
us to explicitly calculate these contributions.

As we will see, there are some non-trivial technical steps that have to be done in order
to be able to write explicitly, in momentum space, the flow equations for zero-field proper-
vertices with some background legs, i.e. the vertices v(™™) for m > 0. This issue is related
to the dependence of the cutoff kernel Ri[A] on the cutoff operator constructed with the
use of the background field. The functional derivatives of the cutoff kernel, R,gm) [A], can be
calculated as the terms of a Taylor series expansion of the cutoff kernel with respect to the
background field. This expansion will be performed using the perturbative expansion for the
un-traced heat kernel developed is Appendix A.

We start to introduce the diagrammatic rules used to represent the hierarchy of flow
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DO|—

Isheds

O
O

DO |—

N[

S

Figure 3.7: Diagrammatic representation of the flow equations for the vertices 8157,&2;0), &mgl;l)
0:2) s :
and Jyy, "~ as in equation (3.93).

equations for the zero-field proper-vertices. In particular, we show how to represent equations
(3.92) and (3.93). The virtue of diagrammatic techniques is that they allow to switch from
coordinate space to momentum space straightforwardly.

We represent the zero-field regularized propagator G[0;0] with an internal continuous
line, the cutoff insertions 0, R, are indicated with a crossed circle and the zero-field proper-
vertices %in;m) are represented as vertex with n external continuous lines and m external thick

wavy lines. The diagrammatic rules are summarized as follows:

n n
——— = Gi[0;0]
;l :l — rylgn,,m) }{ — atR](;n)[O}
® = (91‘/Rk{0} m m

Finally, to every closed loop, and in all flow equations there is just one as the flow equation
has a one-loop structure, we associate a coordinate or momentum integral together with the
factor 0; R, — nRy. Here the anomalous dimension 7 pertains to the field the cutoff kernel of
which is considered.

Following these diagrammatic rules, the flow equations (3.92) for the zero-field one-vertices
1;0

8tfy,g ) and aﬂ,g‘”” can be represented as in Figure 3.6, while the flow equations (3.93) for
(151

the zero-field two-vertices 8,57,(62;0), O, ) and 8]57,&0;2) can be represented as in Figure 3.7.
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a{yél;()) _

DO

0;1
@’y;g Y= _% "V‘Q
Figure 3.8: Diagrammatic representation of the flow equation for the one-vertices 0757,&1;0) and
8"V as given in (3.101).

As explained in the previous section, it is useful to work also with the set of flow equations
for the bEAA (3.101) and (3.102) written employing the formal operator 9, defined in (3.99).
In this case there are no explicit insertion of the cutoff term 0; R, in the loops, but to every
loop is now associated an integration together with the action of this formal operator, i.e.
fx 9, in coordinate space or fq d; in momentum space. In this way, the flow equations (3.101)
for the zero-field one-vertices 8,57,(61;0) and E)ﬂ,ﬁoﬂ) can be represented as in Figure 3.8, while the
equations (3.102) for the zero-field two-vertices 8t7,£2;0), 8ﬁ,§1;1) and (9t7,(€0;2) can be represented
as in Figure 3.9.

Note that in this last representation, the flow equations for the different one-vertices or
two-vertices assume a more symmetric form with respect to each other. This reflects in a
computational advantage, especially when considering the flow equation for the two-vertex
7,92), where the additional terms involving cutoff kernel vertices are accounted for by the
action of the operator d;. As we will see in section 3.5.4, this fact is very useful.

We are now in the position to write down the flow equations for the zero-field proper-
vertices v,in;m) of the bEAA in momentum space. The only non-standard step is to write the
momentum space representation of the terms involving functional derivatives of the cutoff

kernel Ry[A] with respect to the background field, i.e. the momentum representation of the
vertices 7,&2;1) and 7,&2;2). We start by stating the final result and postpone the details of the
derivation to the next section.

The zero-field proper-vertex 7,23;0) is represented graphically by the following diagram:

A C
q+tp

q 2:1 )
= [’7(5715,2(1717} ABC

Here we use capital letters to indicate general composite indices A =aa, B=b3,C = c~, so
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-1 —O— 1 S
o’ = 3 V\Q’V\ ~ J\Q/\

Figure 3.9: Diagrammatic representation of the flow equations for the two-vertices at’y,(f;o ,

9" and 8,7\ as in equation (3.102).
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)

that the definitions we make can be easily extended to more general situations. For example,

in the gravitational context we will have A = a8, B = 79, C = ex. Note that each index is

associated with a momentum variable, so that A, B, C are the indices of the related momenta

q,p, —q — p respectively. Note also that we always define ingoing momenta as being positive.

When considering the vertices with background lines, it is useful to consider the “tilde”

bEAAT defined by the relation

Lilp; Al = Tkl Al + ASk[p; A,

and to define the related “tilde” zero-field proper-vertices
G = A+ AST™[0;0].

In terms of these, the two-fluctuations one-background zero-field proper-vertex ¥

AS,?;I)[O; 0] is represented graphically by the diagram:

A C
q+p

q _ & (Z1) ABC
Ap

B

~(2;1)
=

(3.103)

(3.104)

2;1
%(c -

"Note that T';[g; A] is the actual Legendre transform of the functional generator of connected correlation

functions W;[J; A].
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The non-trivial technical step is to write explicitly the momentum space representation of
the tilde zero-field proper-vertex 7,(;;1). In the next section we show that this representation
turns out to be:

~(21)  JABC _ (%)  jABC (2:1) ABC p(1)

(3.105)

In (3.105) the functional L[p; A] is the “cutoff operator action”, defined in the next section,

which is the action whose Hessian with respect to ¢ is the cutoff operator. Furthermore,
= —— (3.106)

represents the first finite-difference derivative of the cutoff shape function. The momentum
space representation (3.105) is of crucial importance since it makes, together with the gen-

eralization to higher vertices given in the following, access to the computational use of the

flow equations for the zero-field proper-vertices y,i”:m). Obviously, for every n the relation
&,Ef“o) = 'y,(gmo) holds. Hence we can re-phrase the flow equations for the zero-field proper-
vertices solely in terms of the tilde vertices 7™ alone.

The four-fluctuation vertex 7,24;0) is represented graphically as:

4:0
= [7{57[),21)5(1]ABCD

Note that here we are giving the four-vertex only for a particular combination of momenta,
which is not the most general one, since this will be the case we will treat in this thesis.
The general case can be easily derived. The two-fluctuations two-backgrounds vertex %(92;2) =

722;2) + ASS;Q) [0; 0] is represented instead by the diagram:

A D

q ~(2;2
» _ hcg,p,zp,—q] ABCD

<~ X



CHAPTER 3. FUNCTIONAL RG FOR GAUGE THEORIES 109

)

The momentum space representation of %2;2 , as shown in the next section, turns out to be:

~(2:2) ABCD __ (2;1) ABC (2;2) ABCD 1(2)
[ qﬁp7_p7_q] - [ (Lpu_pu_q] + [L(LP,—Py—q] Rq-‘-]hl’
21 2;1
L g P L - a PRy (3.107)

Note that now in (3.107) the cutoff action enters both as a four-vertex and as a product of
two three-vertices. This time we need to consider the second finite-difference derivative of

the cutoff shape function defined by:

2 Rqup — Rq _

R® =
T g+ p)? - ¢ La+p)? - ¢

R . (3.108)

The relation (3.107) is the second example of the general rule needed to represent explicitly
in momentum space the flow equations for the zero-field proper-vertices Vl(cn;m). Note that
the second finite-difference derivative (3.108) equals the first finite difference derivative of
RW

q+p,q°
momenta as follows:

as it should be. The finite-difference derivatives can be expanded for small external

1 2 ,
Ry = Ry+p-qR)+ 5P’ B+ 300 BY + 0 (p°)

2 2 1 1
R,y = R+ T R® + 3P’ RW + 3(P-9)” RW+0 (»°) . (3.109)

The correction terms in (3.109) proportional to p or p* are those needed to make the flow of
the vertices ﬁ,gm) = %(CO;m) covariant, as they should be by construction. It is worth noticing
that these rules actually implement a kind of mass regularization of the effective action which
respects gauge symmetry.

We are ready now to write the flow equations for the zero-field proper vertices of the
bEAA in their momentum space representation. We will be interested solely in the flow
equations for the two-vertices, equations (3.93) and (3.102), since it is from these equations
that in the next sections we will extract the beta functions of the coupling we are considering
in truncation (3.17) and (3.19). Using the rules introduced in the previous paragraph, we find

for the first equation in (3.93), describing the flow of the zero-filed fluctuation-fluctuation
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two-vertex, the following momentum space representation:

[@w,f‘_oﬁ]AB = /(8th - an) [%(jiflq—p]élm[Gq+p]12[7ﬁg?—p,—q]233 [Gq]34
q

1 .
~5 [ @R~ nR) B, G 3.110)
q

2
In (3.110) and in the following relations 7 is the multiplet matrix of anomalous dimension of
the multiplet fluctuation field ¢. Note also that we are using the generalized notation for the
indices introduced before. With respect to the first equation in Figure 3.7, the first line in
(3.110) is the contribution from the first diagram, while the second line is the contribution
from the second one. The second equation in (3.93), describing the flow of the zero-field

fluctuation-background two-vertex, takes the form:

O = [ @Ry~ ) B G DL G
q

1

-5 [ @R = nR) G2, JG,
q

2:1 1 1
- /[Lg,p,)qp(atRéJr)p,q - nRész,q)]Ml
q

3;0 g
X[Gainl *[igippa (G (3.111)
In (3.111) there are now two vertices of the tilde zero-field proper-vertex since, referring to
the second equation in Figure 3.7, there is a background line attached to respectively a three-
vertex, a four-vertex and to the factor 9, R;[A]. The contribution from these three diagrams
are respectively the first, second and third lines of (3.111). The last of equations (3.93) takes

the following form:

O = [ @Ry~ ) B G B G
q
1 (2
_5 /(ath - 77Rq) [75,2;;,22p,7q]1A32[Gq}21

q

- /[Lt(z?z;})—q—p <afR¢(1£2p,q - an(zizp,q>]4A1[G!1+p]12wtgizlo?—p,—q}w3 [GQ]34
q
1 )
g ROy AT A S Ch®
q

-l-[L(Q;l) ]1,43 [L(Q;l) ]332(875Ré%2p,q - nRé?nq)[Gq]?l} ’ (8.112)

q;p,—q—p q+p77p77q
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Equation (3.112) represents the flow of the zero-field background-background two-vertex of
the bEAA and thus every term is written in terms of the tilde zero-field vertex and of the
cutoff action L[p; A]. As we explained earlier, these equations are very general and can be
adapted to every theory with local gauge symmetry treated in the bEAA framework.

In terms of the compact representation introduced earlier using the formal operator O
defined in (3.99), the flow equations for the zero-field two-vertices of the bEAA are given
in equation (3.102). These are represented graphically in Figure 3.9 and all three have the
same overall structure. The flow of the zero-filed fluctuation-fluctuation two-vertex has the

following momentum space representation:

) 1 .
[8t71()’2,_o;]AB _ /at {[ q3po)q p]4Al[Gq+p]12[’Y¢§ig) . q]QBs[Gq]34}

—5 Ja{ni e (3.113)

The second equation in (3.102) of in Figure 3.9 expresses the flow of the zero-field fluctuation-

background two-vertex and differs from (3.113) in two tilde vertices:

N = 5 [ Gl -

——/at q(?;,l a “‘Bz[Gq]ﬂ} . (3.114)

Finally, the compact form for the flow of the zero-field background-background two-vertex

is:
0;2 1 A ~(2;1 ~(251
[athz(),—zz]AB = 5 at {h/tg,p,lq—prlAl [GCI+P]12 [’y(g—&-p?—p,—q]QBg[GQ]M}
q

; /q 8, {[ fj)p,_q]mBQ[Gq]zl} . (3.115)

Note that in equation (3.115) all zero-field proper-vertices are tilde vertices. Thus the flow
equation for the zero-field proper-vertices of the bEAA are formally as those of the standard
EAA when written in terms of the formal operator d; but with tilde vertices in place of the
standard vertices. All the non-trivial dependence of the cutoff kernel is in this way hided in
the dependence of the tilde vertices on it. This turns out to be very useful property in actual
computations.

As already said, equation (3.115), as equation (3.112), represents also the flow of the
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zero-field proper-vertex ﬁ,(f) of the gEAA since we have that 8@,&2) = 8t7,g0;2).

Clearly, these are only the first equations of the respective hierarchies and the results
exposed in this section are valid for all the subsequent equations of the hierarchy for both
the zero-field proper-vertices of the bEAA and of the gEAA.

The equations (3.110-3.115) are the main result of this section. A lot of information
about the flow of both the bEAA and of the gEAA can be extracted already from the flow
of the zero-field two-vertices described by these equations. In particular, in this thesis we
will use equation (3.110), in sections 3.5.6 and 3.5.7 to calculate the beta functions of the
running gauge fluctuation and ghost masses, of the wave-functions renormalizations of the
gauge fluctuation and ghost fields and of the gauge-fixing parameter. We will use (3.115), in
section 3.5.4, to calculate the beta function for the running wave-function renormalization of
the background field from which we will find the beta function of the non-abelian coupling
constant.

The results of this section, when combined with the flow equations of the previous one,
constitute the basis for a concrete framework in which all truncations of the bEAA, which

are analytic in the fields, can be handled.

3.3.4.1 DMomentum space representation of background vertices

In this subsection we show how to derive the momentum space representation of background
vertices, in particular we will derive the two relations (3.105) and (3.107) used in the previous
section to explicitly write the momentum space representation of the flow equations for the
zero-field proper-vertices of the bEAA.

What we need to do is to calculate the momentum space representation of the cutoff
vertices AS[0;0] and ASP[0;0]. From the definition of the cutoff action (3.58) we see
that:

ASZO0; AJA = / 0u: Ri[A]AB6,, = Ry[AJAP. (3.116)

zZw

The cutoff kernel Ri[A] is a function of the cutoff operator L(9[0; A], constructed as the
Hessian of the cutoff operator action L[a; A]. For example, if the cutoff operator we consider

is just the gauge Laplacian, then we have the following relation:

L(20) [0; A]wy = /DZ“(SZ.TD,’;(LZ, = — /5tzuDg5zy = _owﬂyézy = _chézy'

z z

Thus, after making a Laplace transform, we can write the cutoff kernel in terms of the
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un-traced heat kernel of the cutoff operator:

Yy

Ri[A)AP :/UOO ds Ry, (s) K*[A]27 (3.117)

where the un-traced heat kernel can be written in terms of the Hessian of the Laplacian

action:

K*[A] = exp { —sL®V[0; 4]} . (3.118)

Inserting (3.117) in equation (3.116) and setting the background field to zero after having
differentiated with respect to it one time, gives the following representation in terms of the

un-traced heat kernel for the cutoff vertex with one background leg :

o KA
:/ ds Ry(s) ———="%
. 0

5 Ry[A]AP
(2;1) ABC __ kL ay
AS [0; 0] _ 5AC

w = =5 (3.119)

We can now use the perturbative expansion in for the un-traced heat kernel developed in
Appendix A, equation (A.21), to write the last term of (3.119) as follows:

© el
/0 ds Ri(s) W

=/dmwx>/wm%%mmm5m@<mm
0 0

In (3.120) we omitted to write explicitly the coordinate integrals and we wrote the flat space
un-traced heat kernels as K*[0]2F = 548 where K¢

0.2y 18 given in equation (A.18) of
Appendix A. Going to momentum space and inserting (3.120) in (3.119) gives the following

Oxy

representation for the cutoff vertex:

P1,P2,P3 0,p1 P1,P2,P3 0,p2

A521 (0,010 o = (27r)d5p1+p2+p3/ dst(S)( )/ dt KU t)[L(Z;l) JABCKS
0 0

[e’s) 1
D —s(1—t)p? ; —stp2
Z@W%mmAdﬂWWﬂAﬁeu%MﬂMM%wz

(2;1) ABC
P1+P2+P3 [Lpl ,D2 pg}

/ dt / ds Ry(s)(—s)es(-0pi—sti (3.121)

Here we used the following simple momentum space representation for the flat space un-
traced heat kernel Kj , = e~ Tt is left to evaluate the double integral in (3.121). This can
be done with the aid of the Q-functionals relations of Appendix A, in particular using (A.39)
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we find:

/ ds Ry(s)(—s)e0=0Pi=strs  — _Q | [Ry.(2 + s(1 — t)p? + stp?)]
0
= Rj(s(1 —t)p? + stp?). (3.122)

Now the parameter integral is easily evaluated:

1 R 2\ R 2
/ dt Ry (s(1 — t)p? + stp?) = ’“(p% Qk(pl) . (3.123)
0 P2 — D1

If we introduce the first finite-difference derivative, defined as

f(p3) — f(pi)

f(l) —
p1,p2 2 2 )

we can finally write, for the cutoff vertex with one external background leg (3.121), the

following momentum space representation:

2 1n. ;
AS}& )[Oa 0];1?;7621,;73 = (27T)d5p1+p2+p3 [LZ(721;7)2>P3]ABCRZ(711),P2 : (3124)
We just need now to consider (3.124) for the momentum values p; = ¢, p» = —q — p and

ps = p to prove the relation given in equation (3.105):

ASl(f;l) [0’ O]ABC -0 {L(Zl) ABCR(l)

q,—4—p;p q7_q_p7p] q+p,p *

(3.125)

Along the same lines we can derive the momentum space representation for the cutoff vertex
with two external legs. In place of (3.119) we have now

' 52R AAB 0o 5 52K5AAB
AS,(CM) [0; 0JABCD ﬂ — / ds R J . (3.126)
- 0
A=

e = SADSAC

#(5) A5 AC

Using the perturbative expansion (A.21) gives now the following expansion for the second
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functional derivative of the cutoff kernel:

L ERKCA
|| @R sz

6?Ry[A]2FP
SAD§AC | )

= / ds Ry(s)(— )/ dt K3 L#2(0; 0] 2507 k!
0

0,zu uvzZw 0,vy

+2/ dSRk / dtl/ dts O;Utl 21)[0 0];%\53
< K8 s(t1i— tz)L(Q 1)[0 O CMD pesta

0,ur Ttw O,ty *

(3.127)

When we insert (3.127) into (3.126) and shift to momentum space, the first contribution in

(3.127) becomes, like in the previous case, of the form:

(27T)d5P1+P2+P3+P4 [L(2 2 ]ABCDR : (3'128)

P1,P2,P3,P4 Pa,p1
The second contribution takes instead the following form:

d (2;1) AMB7 T (251) CMD
2(27T) 5p1+p2+p3+p4 [Lpl —p1—p2 p2] [Lps ,P1+D2 p4]

1 t 00
X / dt, / 1 dtQ/ ds Ry, (s) 5% e~ s0-tpi—s(ti—ta)(prtp2)—satap (3.129)
0 0

We can calculate the double integral in (3.129) using the properties of the Q-functionals as

before: -
/ ds Ry,(s) s e~ s0-tpi—sti—t)(prp2)*—satopi —
0
= Q_s[Ri(z + s(1 — t1)pT + s(t1 — t2)(p1 + p2)* + satap])]
= R}(s(1 — t1)p} + s(t1 — t2)(p1 + p2)® + satap]) (3.130)
and

/ dtl/ dty R} (s t)p] + s(ty — ta)(p1 + pa)* + satap]) =

{Rk((pl +p2)°) — Re(p?)  Ri(pi) — Re(pi)
~ +pz) — i (p1 + p2)? — p} P —pi

Finally, inserting (3.131) in (3.129) and combining with (3.128), gives the following momen-

(3.131)

tum space representation for (3.126):

AS (2;2) [0 O]ABCD _ (27T)d5 1,(22) ]ABCDR

P1,P2,03,P4 P1—P2+q1+q2 {[ P1,P2,03,P4 P4, p1
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(2:1) AMB7 7 (21) CMD 2 (1) 1
+[Lp17—p1—pz,p2] [Lp:s,p1+p2,p4] (pl + p2)2 _ pi Rp1+p2,p1 - Rz(u),m}
(3.132)
To recover relation (3.107) we set p; = —py = ¢ and py = —p3 = p in (3.132) so that:
(2:2) 1. NJABCD 2:2 ABCD (2;1) AMB 7 (21) CMD p(2)
ASk’ [0’ O}m D2,P3,P4 Q {[L;Lp)z,ps,m] R; + [Lph—m —p27p2] [Lp:s7p1+p27p4] Rp-i-qyp} :
(3.133)
In (3.133) we defined the second finite-difference derivative of a function as:
@ _ 2 (1) 2
fp-i—q,q - (p + q)2 . p2 fp+q,p - f/(p ) . (3134)

This concludes the derivation of the realtions (3.105) and (3.107) needed in the previous
section to explicitly write down the momentum space representaion for the flow equaitons of
the zero-field proper-vertices of the bEAA.

3.4 Summary

In this chapter we introduced the background effective average action (hbEAA) and we applied
it to non-abelian gauge theories with gauge group G = SU(N). The details of this construc-
tion, in particular the issue of preserving gauge invariance along the flow, are covered in
section 3.3. The background field is used to construct the cutoff operator that we used to
separate the slow field modes from the fast filed modes. These last ones are integrated out.
The cost of this construction is that the flow takes place in the enlarged theory space of all
functionals of the fluctuation fields and of the background field. The functional defined by
setting to zero the former, which we call gauge covariant EAA (gEAA), is invariant under
physical gauge transformations, while the original bEAA is invariant only under combined
physical plus background gauge transformations. The flow of both the bEAA and the gEAA
has the simple one-loop structure of the flow of the standard non-background EAA intro-
duced in Chapter 2. The main subtlety is that the flow of the gauge invariant gEAA is not
closed because is determined by the Hessian of the full bEAA. This fact forces us, even if the
modified Ward-Takahashi identities derived in section 3.3.2 show that the full physical gauge
symmetry is restored at £ = 0, to consider the flow in the enlarged theory space, i.e. the
flow of the full bEAA. This is done in section 3.2.2.1, where we start studying the quantum
theory by a local truncation of the bEAA that involves together with the running of the

gauge coupling constant, the running gluon and ghost masses, the running wave-function
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renormalization of the fluctuation gauge field and of the ghost fields and the running gauge-
fixing parameter. We derive the running for all these couplings and learn from the system of
the beta functions several important facts. First we show how to account for the contribution
of the non-physical couplings, i.e. 1, and 1.z, in the flow of the gauge coupling by eliminat-
ing these anomalous dimensions after we determined them by solving a linear system. We
study the running of the fluctuation gluon masses and we show that it vanishes for £k = 0
as it should. This is a non-trivial check of the formalism. Finally we show that the running
gauge-fixing parameter flows to zero in the IR, thus confirming the expectation that Landau
gauge is the most physical gauge.

In section 3.2.2.2 we propose a new approximation scheme, that we call curvature ex-
pansion, in which the gEAA is expanded in powers of the field strength and the gEAA is
parametrized in terms of running structure functions. We make the first step in the direction
of studying the flow of these non-local truncations by analyzing the one-loop flow of the
field strength square running structure function, i.e. the running vacuum polarization func-
tion. We propose this truncation scheme as a promising approach to unveil the IR physics
of non-abelian gauge theories.

Finally we introduced new diagrammatic and momentum space techniques, exposed in
section 3.3.4, based on the hierarchy of flow equations of the bEAA. In particular we show how
all the results obtained with the aid of the local and non-local expansion of the heat kernel
are obtained by the proposed method. The most promising applications of this formalism

will be material for future work.

3.5 Appendix to Chapter 3

In this Appendix to the Chapter we perform all the calculations needed in the main part
of the chapter. We first calculate the variations and the functional derivatives of the action
functionals that compose the bEAA in the truncation we are considering. Then we construct
the regularized propagator by choosing the explicit form of the cutoff kernel and operator.
In the last three sections we use the heat kernel expansion and the techniques developed in

section 3.3.4 to calculate the beta functions studied in the main part of the chapter.
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3.5.1 Variations and functional derivatives

In this section we calculate the variations and the functional derivatives that are used in the

next sections. The basic variation of the field strength is:

a a a abc Ab pc
OF;, = 0(0,A, — 0,A, + [*AAY)
= Oua, — O,aj, + fabCaZA,‘i + f“bCAZaf/
= D%a) — Da),. (3.135)
Here we are using the notation 0A7, = af,. The second variation is simply:
2 1a abc b ¢
0°F,, =2f"aa

v

(3.136)

while all higher variations of the field strength vanish since the field strength is quadratic in

A,. Next, we consider the basic invariant:
1 d a rapy
I[A] = 1 d®x F, F* . (3.137)
The first and second variations of (3.137) are:

1 1
SI[A] = = / dlx FO SR = — / d'z F*" (Dyaj, — Dyal) = / d%z F"D,a®  (3.138)

2 |24 9 v
and
1 auv a auv a
SI[A] = 3 / d'z [§F§FS, + F* 6 F, |

= / dz [(Dyay — Dyal,) Dyag, + F f*a) af ]
= / dz [Dyaf Dyal — Dyal Dyag + F* f*abac] . (3.139)

Being the action (3.137) quartic in the gauge field, we can go on to calculate the other two

non-vanishing variations. We have:

S I[A] = ;/ddx SEM P F, = G/dda: D,a; f“bcal;af, (3.140)
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and

v

3 174 a aoc raae cv €
SHI[A] = 5 / d'z P F§°Fy, = 6 f* / dz a"aalal, . (3.141)
We can insert the relations (3.137-3.141) in the following expansion

[[A+a] = I|A] + 6I[A] + %521[21} + %531[;1] + %541[,21] ,

to find the exact relation:

_ _ _ 1 _ _ _
I[A+d = I[A]+ / d*z F* D,a, + 3 / d*z a, [-D*¢" + 2iF"™ + D*D"] a,
_ 1
+g / diz D,a; aZaﬁ + ZQZf“bcfade / diz ab“ac”aﬁaf, : (3.142)

Note that the background gauge-fixing action (3.61) and the background ghost action (3.62)
are already in their “varied form” since they are by construction quadratic in the fields.

We now calculate the functional derivatives of the functional (3.137), of the gauge-fixing
action (3.61) and of the ghost action (3.62) that are needed in the flow equations for both
the bEAA and the gEAA. We start with the functional I[A] defined in (3.137). Tt is useful
to expand the integrand of (3.137) as follows:

1 1
TER " = 7 (0,40 = 0,40 + fALAD) (0MAY — OV AT 4 frEATAT)
1

=5 (0, A" A™ — 9, A%0" A™) + [0, A AP A™ +
1 aoc raae C ev
+3f befpede AD AG A A (3.143)
Using (3.143) as reference, it is easy to write the second functional derivative of (3.137):

521 [A]
5 AG202 5 Aaren

1
= 5 / (25pga1u5““1 6111(?“522 5aa2 6$$2 _ augalydaal 5:)0901 azxégQ §aaz 6Im2+

Oy 028y OO 595,
= 0m® / [9a1a2 8p51z1 au(sxxg - aag 52?371 aal 6xm2]

A=0

aia 1
— 6 12 |:_ga1a2 (pl : p2) + 5 (p1a2p2a1 +p1a1p2a2> ) (3144)

where we integrated by parts the term [ 0.,040,00,0220 = [, Oay0ze; Oay0ze, to symmetrize

the final expression. The arrow in the last step means that we are “translating” the expression
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to momentum space following the basic rule 0,0,,, — ip;,. We can write (3.144) as:

1
[Ig?m]aﬁab — (Qw)dapﬁm(sab [_gaﬁ(m pa) + 5 <p‘1"p§ +pfp§*>] . (3.145)

The third functional derivative of (3.137), which gives the gauge three-vertex, is:

P I[A]
5 AL § 4520 5 AT

_ fabc/ [(@galﬁaal(sml) (6525@25”2) ((5235ca35m3) + }

A=0 T
alazas ;
— 0D 00 Garas T+ -

where the dots stand for permutations of the indices and momenta. This can be rewrite as:

[[jg?,)pg,pg]aﬁ’y B = (2m) 0y, s [gaﬁ (P2 — 1) + 97 (ps — p2)* + 97 (1 — pz)ﬁ} .

(3.146)
The fourth functional derivative of (3.137), which gives the gauge four-vertex, is:
54]["4] 1 abc pade ba ca
5Aaia45Aa3a35Aa2a26Aa1a1 A = Zf f / (gal,ué 1(5.%1‘1) (ga21/5 25{E$2> X
X xr3 T2 T1 =0 x
% (553 5da3 51’903) (6245%4595134) + ..
1
or as:
[Izgéll?p27p37p4]a1a2a3a4 ajazazas (27T)d5p1+p2+p3+p4 [faalag faa3a4 (goqaggozgoa; . ga1a4ga2a3) +
faalazsfaa2a4 (90110129043044 _ ga1a4ga2a3) +
faa1a4faa2a3 (ga1a29a3a4 _ ga1a39a2a4>] ) (3147)

Note that in the next sections we will use the vertices (3.146) and (3.147) to construct the
zero-field proper vertices of the bEAA with both gauge fluctuation or gauge background legs.

This is possible, since for a gauge invariant action as is (3.137), the following property holds:

SI[A]  6SI[A SI[A
6 A4 oas d A
Within truncation (3.17), the vertices of the action (3.137) just considered are all we need.

Next, we need the vertices coming from the gauge-fixing action (3.61). The two gauge
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fluctuation functional derivative is:

52ng ab i sbay ac v Scas
W 8 0700 07" 0y 0,090, 0" O
6a1a2p1a1p2a2 )
thus we have .
[S20.00asab — ——0"pp’. (3.149)

The mixed functional derivatives give the gauge fluctuation-fluctuation-background vertex:

5359/‘ 1 / b b
e N CICr R N S W L0 S, W LI M LA N
5Ab65a%§a25aalal i o x( a1 BY%xylzx Yas TT2 ay TT] azBY%xy a:a:z)
1 - ala N
- a (fawlbgm/ﬂp%cz + ngazﬁlplal) )
and so )
2,0,0;1 o abce > £aoc (67 (84
[S;fPhPQ),p:;] Prabe — (27T)d(5p1+p2+p3 alf ’ (957}71 ) 71’5) . (3.150)
Four mixed functional derivatives give the fluctuation-fluctuation-background-background
vertex:
54ng o l (faalbl 5 6 faa2b2 5 6 +
5AZ§625A1:;11ﬂ15ag§a25aa1a1 o o o ), Jai 81 92y1 Oy Gz 82 9zys Ozas
+faalb29a1ﬁ25$y25$x1 f(mZblgCQBl 590?;1 52?372)
1 aa aaq aa aa
— a(f lblf 2b29a1519a2,82+f 1b2f 2blga152ga2ﬁ1)7
thus
[5(2002 ]a,B,uzzabcd (2 5 abe rcde ade rbce 3.151
9f P1,p2,p3,p4 ﬂ-) P1+p2+p3+p4 (f f 9oBGuw + f f gaugﬁy) . ( . )

The vertices (3.150) and (3.151) will be used in section 3.5.4. The ghost action (3.62), when

we write out explicitly the covariant derivatives, reads:
Synla, ¢, c; Al = /ddx (0 + foALEE) (9" + frleAMCE + frater) (3.152)

Note first that (3.152) will generate the three-vertices ghost-ghost-fluctuation and ghost-
ghost-background but only the four-vertex ghost-ghost-background-background. The two
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three-vertices differ by a factor of two since the background field enters both covariant deriva-

tives while the fluctuation field does not. We have:

% /a R, fad65 5da3 SHS. seaz
6@;5 (50%356;51 o= = HZTTL T3 avrrs
% ifalaganla ,
or
1,1,1;0 a abe . rabe
[Sg(/h pl,pz),ps] b= _<27T)d5p1+p2+p32f "Paa (3.153)
We find also:
5339h aa1 rade das: ea
SO |y 105 5 50838,5°
f&bc(gzm ybas Gua 51331 Jea a#(gmm 5(1(12}
% _ifa1a2a3p1a + ifa2a3a1p2a ,
and thus
5(07171;1) aabc _ 2 d5 - rabc o 3.154
[ ghpl,pz,ps] (27) Oy +potpe S (P2 — D1 ) - (3.154)

Note that in both (3.153) and (3.154) the indices and the momentum variables are related

in the precise order they appear. Finally the four-vertex is:

8*Syn /
— ddl’ abcaxx. 5ba3 a&m §ea ade(smc 5da45#5$$ §eaz
SARPS AL S8 | g £ 007 B 01 £ O 0 G
+fab65:vx4 6ba4guﬁémx166al fadeéﬂmgédag 65533332 §ea2]
- gaﬁ (faa3a1 faa4a2 + faa4a1 faag(lg) ’
and so:
0,1,1;2 a8 abe « eac pe ead pebe
S a2 = (27) 0 s 0™ (S fOt ) (3.155)

With this we derived all the variations and all the vertices that we will use in the next section
to explicitly calculate the running of the coupling present in truncation (3.17) and (3.19) that

we considered in the main part of the chapter.

3.5.2 Regularized Propagator

In this section we construct the regularized propagators and we choose the cutoff kernels and

the cutoff operators.
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The Hessian that enters both the flow equation for the bEAA and the flow equation for
gEAA, within truncation (3.18) and (3.19) is:®

2,0,0;0)108a = (2 ~(2,0,0;0)108a
hz(),—p )] b = [77(271724_71(?,—11 )] par
1
= QO Zgp 6% { g*Pm?2 , + p* [(1 — P)* 4 —Paﬁl } : (3.156)
b ak

where we introduced the orthogonal longitudinal and transverse projectors P** = p“p? /p?
and (1 — P)*?. Here Q = (27)96(0) is a spacetime volume factor. The fluctuation field

regularized inverse propagator, defined by

Za k
G, =0 : (3.157)
(2,0,050) ’
that follows from (3.156) is:
1
0107 = 0 it (1 P P (3.158)

Note that we have factored out 27, in the regularized propagator and in the cutoff kernel.

We have now to choose the tensor structure of the cutoff kernel, there are two basic ways to
do this:

[Rp]aﬁab — 5ab |:<1 _ P)aﬁ + ipaﬁ:| Rp (3159)

073

[R,)*P = §%¢*°R,. (3.160)

Note that in the first case, (3.159), we are introducing in the cutoff kernel the running gauge
coupling ay: this will give rise to additional terms on the rhs of the flow equation, generated
by the 0; Ry factor, proportional to J;ay. It is not clear how this terms should be interpreted.

Using the relation

[la+ (1 -P)+P ' = L(l ~P)+ 1

P
a+b a+c

Y

we can invert equation (3.158) to obtain the regularized propagator. In the case that we are

8In this technical section, as in the next we omit to write the scale index k on the functionals to simplify
the notation.
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using the cutoff kernel as defined in (3.159), we find the form:

1

G [P — gab 1 — P)8 4 5o i pes 3.161
) p?+ml, + Rp( ) P> +agm?, + R, ( )
while in the case we are using the cutoff kernel as defined in (3.160), we get instead:
aff ab ab 1 aof ab Ok af
Gy =0 (1—-P)" +4§ PP (3.162)

p*+ mik + R, p*+ g (mZk + Rp)

In this thesis we will consider the second case corresponding to (3.160). This is the minimal

cutoff choice we can make. We define the transverse and longitudinal regularized propagators

as

1
Gri(s) = —— ARG (3.163)
Qg
G = . 3.164

We can now write (3.162) as follows:
(G, = 6%(1 — P)* G + 6" PG .

Note that GL’k(Z) =01if ap = 0 and that GL,k(Z) = GT’k(Z) if A = 1.

The inverse regularized ghost propagator is easily obtained:

0,1,1;0)1a 0,1,1;0)14 a
ey 1 = ZerlSap i)™ = Zowd™ (0 +m2y) (3.165)

with the minimal cutoff kernel choice:
[R]* = 6"R,, (3.166)

we find the form: .

p2—|—mg’k+Rp'

[G)* = 6 (3.167)

We will often write:

1

G.rx(2) = )
#(2) z+m2; + Ri(z)

(3.168)

This completes the construction of the regularized propagators needed in the flow equations
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for the bEAA.

3.5.3 Derivation of 0,7

In this section we derive the beta function for the background wave-function renormalization.
This will also give the RG flow of the gauge coupling since these are related by g = Z;. In
this section we omit to write the k-dependence of the coupling constants explicitly.

We will set the gauge-fixing parameter to @ = 1 and first show how to calculate the
running of the wave-function renormalization of the background field Z; using the heat
kernel expansion. From (3.18) we see that to extract 0,Z; we need to consider the flow
equation (3.75) for the gEAA:

- 1 - N1 _
WAl = T (TEO00,0,0: 4] + ReaalA])  O0Ruaal 4] +

T (0,1,1,0) x 0\ ! 1
Ty (rk [0,0,0; A] + Ry, [A]) O, Ricel A | (3.169)
where, consistently with the previous section, we make the following definitions:

R aa A" = Z, Ry 6" g™ Rice|A]" = Z.Rp.6 . (3.170)

We need to calculate the Hessian’s involved in the flow equation (3.169), using the general
decomposition of the bEAA (3.65) they can be written as follows:

T2%%a, 60, A] = TP[A + o] + TP a,,¢; A] (3.171)
and
PO 2, ¢ A = TV 0,6, ¢; A] (3.172)

Within the truncation we are considering, (3.18) and (3.19), we find:
Fg) [A + a]ab;w — ; (_D25abg;w + 2fachcp,V + Dac,u,chl/)
A . _ 1 - _
I—‘](CQ,U,O,O) [a’ ¢, c A]ab/u/ _ Za (__Dacchbu + mCQLéabguV)
(0%

PO 2 ¢ AP = Z, (=D DY 4 m25e) . (3.173)

Note that is we set Z, = 1 and m? = Z, = m? = 0 we have f,(f’o’[);o) [a,¢,c; Al = Sg(;,o,o;()) [a, ¢, c; A
p— E pu—

and 1:](;),1,1;0) [a,¢,c; A = S;(,)l’l’l;o) [a, & c; A]l. At zero fluctuation fields a ¢ = 0 the Hes-
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sian’s (3.171) and (3.172) become:

. - _ _ 1\ - _
F1§270’070) [O, O, 0’ A]abuu — Za _D25abg;w + 2fachcm/ + mzaabg/a/ + (1 . a) Dacchbu:|

rPt00,0,0; A1 = 2,6 (~D* +m?) . (3.174)

From now on we set @ = 1 so that the fluctuation Hessian in (3.174) becomes the Laplace-
type operator DY} = —D?*g" + 2iF*. We need now to choose the cutoff operator, the
eigenvalues of which, we compare to the RG scale k£ to separate the fast from the slow field
modes. Without introducing running couplings in the cutoff action, apart for the wave-
function renormalization of the fluctuation fields, there are two possible choices in the gauge
sector. Looking at equation (3.174), we see that we can take as cutoff operator simply the
covariant Laplacian —D?g"”, or instead the full the Laplace-type differential operator D .
Cutoff actions constructed in this way are called respectively type I and type II. In the ghost
sector we consider the covariant Laplacian as cutoff operator in both cases.

We start by deriving the beta functions employing the type II cutoff. Considering (3.174),

the flow equation (3.169) can be written as:

1 O Ry (Dr) — noRy (Dr) _ O Ry (—D?) — n.Ry, (—D?)

OLL[A] = =Try,—= —— Toc — =
A = e G e (5™ + mzge ™ D2 4 Ry (<D?) + 2

(3.175)

In (3.175) we emphasize that the traces are also over spacetime as well as color indices. If

on the lhs of the flow equation (3.175) we insert the truncation ansatz (3.17) we find:
_ 1 _
OTi[A] = 02y / dz F P (3.176)

This will be compared with the expansion of the trace terms. We now use the local heat
kernel expansion, equations (A.4) and (A.38) from Appendix A, for the operators Dy and
—D?, to expand the traces on the rhs side of equation (3.175) in terms of gauge invariant
operators. In particular, we are interested to the terms proportional to }prz, to compare
with (3.176) to extract the beta function 0,77 ;. They are:

- 1 1 _
O [A”ifFQ = @nie {532 (Dr) Qa_y [(OrRi — 110 Bi) Grp]
B3 (D) Qq_y [(ORy — neRi) Gl (3.177)

The heat kernel coefficients in (3.177) are given in equation (A.5) of Appendix A. For the
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differential operator Dy we have the following heat kernel coefficient:

_ 1 1
B2 (DT) = /ddﬂf [§tr []2 + Etr QQ:|

= [t [ E) (ML) + e (<P (<iF)

12
24 —d .
= 3 N/ddxFQ. (3.178)

In (3.178) we used the relations U = 2 febeprenv - fabe fabd — N§ab and Q,, = —iF),,. For
the ghost operator —D? we find the following heat kernel coefficient:

_ 1 _
B, (-D?) = / ddxﬁtrm -5 d'zF?. (3.179)

Inserting (3.178) and (3.179) in (3.177) and comparing with (3.176) finally gives:

N 24 —d
atZA: {

1
(dm)72 5 Qg_z [(O:Ri — naRyk) Gy + §Qg_2 (0. Ry, — neRi) G ]

(3.180)
Equation (3.180) represents the beta function for the wave-function renormalization of the
background field within truncation (3.18-3.19) in the gauge for a = 1 and within a type II
cutoff.
If instead we employ a type I cutoff we need to recalculate only the gauge contribution
to the flow equation (3.175). Now it reads:
| ORy (~D?) — n Ry (—D?)

—-T . _ _ B .
2 Iy _D2gw/+2iF'U‘V+Rk(—D2)gHV+mgg“y

(3.181)

To collect all terms proportional to }L Ik F?in (3.181), we expand the denominator in powers

of the curvature:

1
—D2 + 2 F -+ Rk(—D2> + mg

= Gri(—D?) — 2i Gr(—D*)F Gy x(—D?)
+4G1k(—D*)F Gr(—D*)F Gy y(—D?)
+0 (F?) . (3.182)

The first term in (3.182) generates a contribution proportional to %L Ik F? when we expand the

trace using the heat kernel expansion, while the third term is already proportional to i i F2.
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Collecting the contributions of these terms we are lead to the following beta function for the

wave-function renormalization within a type I cutoff choice:

N d
OiZ g (I {—gQg_z [(Ou R — naRi)Grgl + 8@% [(0:Ry, — naRi) G5 .|
1
+§Qg_2 (O Ry, — %Rk)GcM} : (3.183)

Given a cutoff choice we can evaluate the beta functions (3.180) and (3.183) explicitly. We
first consider the optimized cutoff (2.12), we find for type I:

N k4 dd—2—n, 32 d+2-n, 1d—2-n.
0,75 = { U +2—1 U

6 2 3.184
(47T)d/2r (%) 61—|—mg/kj2 + d(d—|—2) (1—'—77’],3/]{}2)3 31+m2/k2:| 9 ( )

while for type II:

N ki 24 —dd—-2—-mn, 1d—2-—n,.

= 1
(4m)dPT (4) | 6 1+m2/k* 31+ m2/k? (3.185)

Equation (3.184) and (3.185) are the main results of this section.
Note that to calculate 0,7z for general a we need to know the heat kernel expansion for

the operator

1
D;b,;ux — _D25abgpz/ + (1 o E) D(J,}J,Dbl/ 4 2fachC/u/ ,

which we don’t know. Also if we use a type II cutoff with this operator we will insert in
the cutoff kernel an additional running of a. One way of performing this calculation is to

perform a decomposition of the gauge field into its spin components [56, 57].

3.5.4 Derivation of 9,74, from 81&7;(62)

We now show how we can derive the beta function for the wave-function renormalization of
the background field from the flow equation for the zero-field two-point function of the gE AA
employing the techniques exposed in section 3.3.4. The flow equation (3.115) reads

[aﬂp p /at qp —q— p4A1[Gq+P]12Htgizlo?fpﬁq]QB?)[Gq]gél}

- / O { B - 220Gl (3.186)
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where the tilde vertices are given in terms of the zero-field proper-vertices of the bEAA and
of the cutoff operator action (3.104). The flow equation (3.186) is represented graphically in
Figure 3.10. Remember that the the cutoff action is just that action whose Hessian is the
cutoff operator. First, we need to specify the cutoff operator we employ to cutoff the field
modes. As already defined in the previous section, there are two basic possibilities, which
we called type I and type II, where the cutoff operator is taken, respectively, as the gauge
Laplacian —D? or as the operator Dr defined previously.

We start now by considering type I, where the cutoff action is just:

1
Lla; A] = 3 / d*zD,a,D"a" (3.187)

so that

L0 AJab % = g*P / d*2D%0.o D0,y = —g* Dy D60y = g** (= D)6,y . (3.188)

-y

In the flow equation (3.186) we need the vertices for the stemming from the cutoff action
(3.188). They are just:

[L;(i;,;)g,pg]abmﬁv - (27)d5p1+p2+p3i(p2 - pl)agmfabc
[L;?;;)Z’ps’pél]abcdaﬁws _ (27T)d5p1+p2+p3+p4 29aﬁgv5fadefbec ) (3189)

For the ghosts the cutoff operator is just the gauge Laplacian and the cutoff operator action
reads simply:
Lle,c; Al = / d*zD,eD"c. (3.190)

The zero-field vertices implied by (3.190) are the the following:

[Lélf,;?;l,;)g ] abe (QW)dépl +p2+p3 U (pZ — D1 ) “ fabc
[Lélfii;z?;?:s ,p4]ab6d = (27) 0pytpatpstps 29°7 g7 foe free. (3.191)

To extract the beta function for the wave-function renormalization of the background field

we project the lhs of the flow equation (3.186) to obtain:
(1= P)agldq) )8 = 6%(d — 1)8:Z1 p* . (3.192)

From (3.192) we see that from the transverse component of the flow equation (3.186) we need
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O 71&2) =

?ﬂ?
3
ki

+J\,W\’\'

Figure 3.10: Diagrammatic representation of the flow equation for the two point function of
the gEAA after the field multiplet decomposition. Thick lines are the represent the back-
ground field while light line represent gauge fluctuation and ghost fields.

to extract those terms proportional to p. We find:
(1= P)agldqL )7 = —4(d - 1)p*No™ / 0{G,Cyen} +

2
—sz5ab/q2(1 — %), {G Gatp (14 Y, } +
q

+2dN5“b/q2(1 — %), {G qu’pq}

q

2
+4N5“b/q2(1 — %), {GCG§+p (1+RY,,) } +
q

—4N5“”/ 2120, { CoRE, .} (3.193)
q

where the contributions in the first two lines come from the first diagram of Figure 3.10 while
the contributions in the other three lines come, in order, from the other three diagrams of
Figure 3.10. The first integral in equation (3.193) is needed only for p — 0, since the term
is already proportional to p?, and it easy to see that it can be rewritten as a Q-functional in

the following way:
/ 0,G2 = T /QQd [(O: Rk — naR)G?] (3.194)

Note here the important fact that the contributions from the second and and third line

combine to give a term of the form:

~ 2
/ (1 —22)d, {Gq [GW (1+R,,.) - Réi)p,q} } . (3.195)
q
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It can be shown that the following relation is valid in arbitrary dimension:

- 2
/q2(1 - $2)at {Gq {Gq-i-p <1 + Ri(]?p#]) - Rgi)p,q} } =
q

~ Qe @R -Gl {1+ b0 () . o
This relation can be easily verified by inserting a sufficiently smooth cutoff shape function
and calculating both sides in a Taylor expansion in p. Note also that the ghost contributions
in (3.193) combine in the same way. Using the relation (3.196) to extract from the rhs of
equation (3.193) the terms of order p* and by comparing with (3.192) we finally find the

following beta function for the wave function-renormalization of the background field:

N d
hZi = i) {8Qg [(OeRy. — 1aRi)GTp.] — 6Wi— (O Ry — naRy) Grp] +

1
+§Qg_2 [(O:Ry — TIaRk)Gc,k]} ,

which is precisely (3.183).
Within this framework, to consider a type II cutoff means to consider in the above deriva-

tion the cutoff action as the following action:
Lla; A] = Tx[A + a] + Syf[a; A, (3.197)

where the actions in (3.197) are the gEAA of our truncation ansatz (3.17) and the gauge
fixing action (3.61) for « = 1. In the ghost sector we don’t make any changes. The gauge

contributions to equation (3.186) combine now completely to the following form:
- 2
s / [4(d — 1)p* + 2dg*(1 — 2%)] & {Gq [GW (1 + Rgljp,q> - Rﬁm} } . (3.198)
q

Using again the expansion (3.196), this time considering both the p° and p? terms, to expand
the rhs of the flow equation and comparing with (3.192) gives now the following expression

for the beta function for the wave-function renormalization of the background gauge field:

8tZ;1 -

N {24—d

1
(47)d/2 6 Q%ﬂ [(O:Ri — naltr)Gr] + §Qg72 (O Ry — UaRk)Gc,k]} :

Again, we have re-derived beta function (3.180) found before when employing a type II cutoff.
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We have thus shown how the techniques developed in section 3.3.4 can be used to calcu-
late the beta function in the truncation we are considering. This way of evaluating the flow
equation for the bEAA is very general and can be applied to any general truncation ansatz,
in particular to those that cannot be treated with the aid of the local heat kernel expan-
sion. For example, we are now in the position to calculate the running of the wave-function
renormalization of the background field for a general value of the gauge-fixing parameter oy,
without any further obstacle and for the cutoff choices we made in (3.170). The aim of this
section was just to show how the method introduced in section 3.3.4 can be used to reproduce
the results obtained with the aid of the local heat kernel expansion in the previous section
and how the various cutoff choices are reflected here. In section 3.5.6 we use this approach
to calculate the running of the gauge fluctuation and ghost masses, of the wave-function
renormalization of the fluctuation and of the ghost fields and of the gauge-fixing parameter.

All other further applications to local truncations of the gEAA are left to future studies.

3.5.5 Derivation of 0;I1;(x)

In this subsection we derive the running of the vacuum polarization function Il;(x). We set
Nak = Nek = 0 and m, . = m.x = 0 in equation (3.175) and we use the non-local heat kernel

expansion form Appendix A. The curvature square term in the expansion is:

— N o 7 — auv
OLk[A]| e = W/dd:vF[}y [/0 ds h(s) s> fpo (—sD?) | F (3.199)

where the structure function fr2(z) is found to be:

d—2
4x

fro(x) = f(z) + [f(x) = 1], (3-200)

and hy(z) = Gri(2)0:Ry(2). Here f(z) is the basic form factor (A.10). Comparing the trun-

cation ansatz (3.49) with (3.199) gives the flow equation for the running vacuum polarization

function:
AN

/OO ds hy(s) s>~Y? fpa(sz). (3.201)
0
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Figure 3.11: Diagrammatic representation of the flow equation for the proper vertex of

the bEAA used to calculate the beta functions 0,2, k, 3157712,;{ and O;ay. Note that within

truncation (3.18-3.19) the vertex 7}&2,1,1;0) is zero and thus diagram (d) gives no contribution.

Writing every thing in terms of the Q-functionals gives:

d—2
x

+

(/01 d§ Qa_y [ (2 + 2€(1 = €))] — le[hko } . (3.202)

Equation (3.202) when combined with equation (3.180) is the one-loop RG running for the
vacuum polarization function within type II cutoff. In the case of type I cutoff the calculation

is similar and we don’t report it here.

3.5.6 Derivation of 8tm27k, 01 Zqy and Opay.

In this section we calculate the beta functions of the gauge fluctuation mass m,y, of the
gauge fluctuation wave-function renormalization Z,; and of the gauge-fixing parameter aj.
We will extract these beta functions form the flow equation for the two-point function 7(2’0’0;0)
of the bEAA. In this section, as in the following, we will omit, for clarity, to explicitly write
the scale dependence of the running couplings.

After the multiplet decomposition, and within truncation (3.18-3.19), the flow equation

for 7,22’0’0;0) becomes as in Fig. 3.11. In formulas this can be written as:

. 1
g1 = 20 (O, Ry lay ™ = 32 [(OR, ) By
q q

—2¢*Z, / (O:Ry — meRy) [cpq)™ ™. (3.203)

q
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Note first that the last diagram in Figure 3.11, diagram d, is identically zero, since in our
truncation there is no term bilinear in the ghost and in the gauge fluctuation fields. Every
other diagram is proportional to g>Z, since the gauge fluctuation three-vertex comes with
a factor ng’/ ?, the four-vertex with a factor g*Z?%, while the regularized gauge propagators
come with a power of Z; ! and a gauge cutoff kernel insertion with a power of Z,. In the

ghost diagrams the three-vertex gives a factor gZ;/ 2

Z., there is no four-vertex, the regularized
ghost propagator has a factor of Z_ ! and the ghost cutoff kernel insertion has a power of Z..
Also, all the volume factors € on both sides of equation (3.203) delete each other. Finally,

the tensor products entering the flow equation (3.203) are:

vmn aBa cr - (3,0,0;0 cm K 3,0,050 kva kna

[ap ™ =[Gl LG Ly D TG gy ) (3.204)
vmn aBa 4,0,0;0 vy bmnc aca

Bl = (G s )G (3.205)
vmn cla 1,1,1;0 mc[yelce 1,1,1;0 vdnejclea

[epal™ ™ = G g e G g gl G (3.206)

together with the following vertices:

(3.0,0:0) _ 1(3) (40,000 _ 7(4) (1,1,10) _ g(1,1,10) (3.207)

71’17?271’3 P1,P2,P3 7]’1:?2:1’3»1’4 T TDP1,P2,P3,P4 ,YPI:PQ»PS — “gh,p1,p2,p3

The first vertex in (3.207) is given in equation (3.146), the second in equation (3.147) while the
third in equation (3.153). The group factors are calculated like in the standard diagrammatic
of non-abelian gauge theories.

To deal with a scalar equation we can project equation (3.203) using the orthogonal
projectors (1 — P)* and P*. In this way we obtain to independent equations, describing

the flow of respectively the transverse and longitudinal components of 7,(92’0’0;0)

. The transverse
equation can be used to extract the running of m, and Z,, while the longitudinal equation
to extract the running of a. This can be seen by applying the projectors to the lhs of the

flow equation (3.203). We find respectively

(1= P)agloA), + 9350008 — Q5% (d — 1) {8; (Zam?2) + p*0iZs } (3.208)

and

L
Pasloa?, + 042000 s ab — qgab {a (Z,m?2) + p*0, (;)} . (3.209)

In (3.208) we used the trace (1 — P)% = d — 1, while in (3.209) we used P2 = 1. Equation
(3.208) shows that we can find, respectively, 9; (Z,m?) as the term of order p° and 9;Z, as the
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term of order p? of the transverse equation. 9; (Z,m?) can be extracted also as the term of
order p° of the longitudinal equation, we will show that these two ways to obtain the running
of the gauge fluctuation mass lead to an equal result. Finally, 0, ( “) is found as the term
of order p? of the longitudinal equation.

We start studying the transverse component of the flow equation (3.203). To do this we
need the projections of the tensors defined previously. Acting on (3.204) gives:

(1= Py lap i = ~No"{(G1)* G, [2(d=2+2%)p-q

— (5d — 6 — (4d = 5)2%) (1 + ¢*)]
( ) qﬂ,[( —2+x2)q2+2(2d—3+x2)p-q
+ (1 + (4d — 5) 2*) p°]
(

T2 L _ 12 (pQ—q2)2
+(G1)? 6T, — G, (a2 %) AL
L T L 2 P!
HE G, - Ch ) (- Lk e

The first factor in (3.210) is the group factor fom°fr¢ = —N§™". In equation (3.210) and in
the following, the variable x is the cosine of the angle between p and ¢. Note that equation
(3.210) simplifies considerably in the two gauges « = 0, where G, = 0, and a = 1, where

G = Gp. The transverse contribution from (3.205) is:

7%

(1— P)[b, ™ = —2N§™ {—(d — 2422 (GE)? — (& — 3d + 3 — 2?) (GqT)Q} . (3.211)

here the group factor is feom febn 4 feab femn — _9 N§mn From (3.206) we find the transverse

contribution from ghost diagram (c):

(1= Py [epgmn = —Namn{— 2(1—2?) (G°)° G;ﬂ,} . (3.212)

In (3.212) the group factor is fom fban = — N§™". Once we insert equations (3.210), (3.211)
and (3.212) back in (3.203) we obtain, within truncation (3.18-3.19), the explicit flow of the
vertex fyz(, opo )
can be performed if we use spherical coordinates with the z-axis along p:

Sd—l /OO d—1 /1 2 d—3
- — d dz (1 — z 2, 3.213
/q om ), dd [ de(i=) (3.213)

to all orders in the external momenta p. The momentum integrals in (3.203)
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d
Here Sq = 1%?;) is the volume of the d-dimensional sphere and x = cos@ with 6 the angle
2

between p and q. We also shift the radial integral to the variable z = ¢?, so that:

o0 1 oo
/ dggt ! — —/ dz z
0 2 Jo

After expanding equation (3.203) in powers of p, the x-integrals can be easily performed.

ol

-1 (3.214)

After matching the appropriate powers of p the resulting beta functions are expressed as
z-integrals.

We start to calculate the running of the fluctuation field mass. If we define
O (Zam?2) = Bzumz (gs Nas Nes Mg, M, @) (3.215)
we have that the beta function for the gauge fluctuation mass squared can be written as:
omZ =nam2+ 2, Bromz - (3.216)

The anomalous dimension of the gauge fluctuation field, n, = —0;log Z,, is given later in
equation (3.221). After expressing everything in terms of Q-functionals, defined in equation
(A.38) of Appendix A, we finally find:

IN (d—
2 Bt = | jﬂ)m { . LQu 1y [(OR — nR) (1G5 + GG + GG
2(d—1
SN0, 0k - ) ((d - 0G5 + )]
+Qup (R —nR)GI) } (3.217)

Inserting (3.217) in (3.216) gives the beta function for the gauge fluctuation mass for arbi-
trary cutoff shape function, gauge-fixing parameter and dimension. In equation (3.217) the
contribution in the first line can be traced back to diagram (a), in the second line to diagram
(b) and in the last line to diagram (c¢). The @-functionals in equation (3.217) can all be
evaluated analytically if we employ the optimized cutoff shape function. This is even true
for arbitrary value of the gauge-fixing parameter o but the resulting equations are not very
illuminating. We will consider here only the cases « = 1 and a = 0. Using the Q)-functionals

integrals from Appendix A, we find the following forms:

FPNE [ 8(d—1) d+2-n,
(47)4/2T (g) d(d+2) (1 +m2/k2)?

Za_l/BZamg (gv Nas MNey Ma, M, 1) =
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L 2d-1)  d+d-n 8 d+4=ne (3.218)
d(d+2)(d+4) (1 +m2/k2)°  d(d+2)(d+4) (1 +m2/k?)®
and
N k42 8(d—1)* d+2—n
zZ! =7 - 3
a ﬁZamg (9777a777camaamc’0) (47r)d/21" (%) d2(d+2) (1 —|—mc2l//£2)2
16(d—1) d+4—mn, 8 d+4=n (3.219)

+ .
d(d+2)(d+4) (1+m2/k2)>  d(d+2)(d+4) (1 4+ m2/k2)*
From the terms proportional to p* of the transverse component of (3.203) we can extract

the beta function of the gauge fluctuation wave-function renormalization which is better

accounted for in the form of anomalous dimension:
Na (G Nay Ney Ma, Me, ) = —0 log Z, = —Za_lé?tZa. (3.220)

As before, we can write everything in terms of ()-functionals, to obtain:

2 2
N 8d+4d-20 B ;

—2(d = 1)Qu, [(AR — nuR) G7Gr]
(3d +5)(d — 2)

_2(d N 1)Q%+2 [(8,5R - naR) GCZFG%} + d(d 4 2) Qg [(atR - naR) G%‘GL}
d2 —3d—06 , d + 1 ,
~arz e [OR - mR)G1GL] - ——Qy. [(OR - nR) G1GY]

d?> +9d + 10
2(d + 2)
d +1 2 A 2
—— Qa2 [(AR = naR) GLG7] + Quyy [(R — neR) GIG]

) /
_EQ% [(atR - naR) G%GT} - Q%Jrl [(atR - naR) G%GT]

+Quay [(0:R — neR) G2GY] } : (3.221)

Equation (3.221) gives implicitly the anomalous dimension of the gauge fluctuation field as
part of a linear system for the variables n, and 7.. It is valid for arbitrary cutoff shape
function, gauge and dimension. In the next section we will calculate and analogous equation
for the anomalous dimension 7. of the ghost field that together with (3.221) can be used to
solve for both n,(g, ms, me, a) and n.(g, mq, m, ). It is possible to calculate analytically the

Q-functionals in (3.221) if we employ the optimized cutoff shape function. In particular, for
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the gauge-fixing parameters values a = 1 and a = 0 we have, respectively,

( b N {4(3d— D1
a ) Has Camfumc? -
Ma (9 Nas 1 (4m)i2T (4) | d(d+2) (1+m2/k?)?
20  d+2—n, 4 1 ]
- - 3.222
d(d+2) (1+m(21//€2)3 d(d+2) (1+m3/k2)4 ( )
and
2 d—4
Nk {8(65_ )1
a ) Has camGL?mC’O = +
Mo (95 Tlas 1 )= Gmyirr (@) Ld(d+2) 1+ m2/k2)"
162 +d—5) d+2-n, 4 1 (3.223)
Pd+22  (L+m2/k2)’  dld+2) (1+m2/k2)]

The dependence of the anomalous dimension of the fluctuation field on the gauge-fixing
parameter can be seen from the simple case where we set m, = m. = 0 in the rhs of equation
(3.221) and we evaluate the Q-functionals employing the optimized cutoff in d = 4:

2
2N [ 13— 3«
Na (9>77a777c>070aa) = (471')2 o 3

+31 — 102 + 144a? — 58a3 — 15a* + 48a3 log a

TTERE M - (3.224)

This shows the strong gauge dependence of the anomalous dimension of the fluctuation field
even in d = 4, where instead the anomalous dimension of the background field is gauge
independent.

We now look at the longitudinal component of the flow equation (3.203). Projecting with

P" the tensor structure of diagram (a), equation (3.204), gives:

Pap it = =No™ { = (1) L, [ (d =2+ 2%) +2p- q (24— 3+ 2?)
0 (L+ (44— 5)2)] = (Gy)" Gl o+ ) (1 - 27)
™2 [~T AL _ 2 q*
(G 68y - Gy (1= 2) (3229

Here the group factor is as before —N§™". Form diagram (b), projecting equation (3.205)
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gives:
nv

P b, 7 = —2N ™ {—(1 —2?) (GL)* = (d— 2+ 2?) (GqT)Q} , (3.226)

5mTL

where the group factor is as before —2N¢™". For ghost diagram (c) we find, by projecting

equation (3.206), the following contribution:

P e, M = —N§™ {2(]:& (p+ qx) (Gg)2 G;er} : (3.227)

1%

We can extract now the running of the gauge-fixing parameter « from the terms proportional

to p? of the longitudinal components of the flow equation (3.203). In particular, if we define

O (Zaf @) = Bzaja (9 Mas Nes May Me, @) (3.228)

we can write the beta function of the gauge-fixing parameter as:
oo = —am, — 0422;162&/& ) (3.229)

In terms of Q-functionals we find for the beta function (3.228) the following form:

N d—1)(d*+2d —4
Zy Btute = (fﬂ)d/z {< 21(((1 :2) )Qg [(O:R — noR) G7]

+6(d —1) Qayy [(R = nR) G7GT] + 6(d — 1)Qu, [(O:1R — naR) G7G7]

(d—1)(d—-2) 2
Ty [(0.R —1.R) G3:G1]
(d _ 1)(d — 2) 2
i Qun @R ) G,
+%Qg+2 (R — 1 R) GG + %Qg [(8:R — n.R) G2Gr]
d—1)(d 2
%Qgﬂ (0 —n.R) GG ]

d—1
+ Qs [0~ nR) G364
—3Qu [(OR — 1cR) GG = 3Qua., [(OR — neR) G2GY] } : (3.230)
Inserting equation (3.230) in (3.229) after we have calculated 7,(g, mq me, ), gives the beta

function for the gauge-fixing parameter for arbitrary cutoff shape function and dimension.

The general form can be calculated analytically employing the optimized cutoff shape function
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but it is quite cumbersome. Here we consider only the case m, = m,. = 0:

¢*N o (5 — 15a + 18a? — 5a® — 3at + 602 log a)

Oyx = —m,0 + ) 3.231
1T T (a2 12(1—a)’ ! (3.231)
or the following Taylor expansion:
2
gN |1 3 5 66— 2 1
oo = —n,00 — - — + — =l o+ 0 (a®) . 3.232
t n (47’(’)2 2 (1 + mZ/kQ)A‘ 12 (1 + mg/kg)s ( ) ( )

This concludes the derivations of the beta functions of our truncation which can be extracted
from the flow equation (3.203) for the vertex 7}()72,_0},20;0) of the bEAA. In the next section we

calculate the remaining flow of the mass and anomalous dimension of the ghost fields.

3.5.7 Derivation of 8tmg7k and 0,7,

In this section we calculate the beta functions for the wave-function renormalization of the
ghost fields and for the ghost mass. The only term in the truncation (3.19) that we are

considering that contains the ghost fields and the related couplings is the following:
Z, / d*z [D,e (D" + gZ)*a") ¢ +mlec] . (3.233)

We can extract the beta functions for the coupling in (3.233) from the flow equation for

(0,1,1;0)

the ghost-ghost zero-field proper-vertex . This equation is obtained from the flow

equation for the zero-field proper-vertex 7,&2;0) after we make the multiplet decomposition
and reads:
[at%(??fz;l;())]ab = QQZC /(ath - naRq) [ep,q]ab + QQZC /(ath - Uch) [fpﬂ]ab' (3234)
q q

In equation (3.234) there is only the ghost-ghost-gluon vertex since the action (3.233) is at
most trilinear in the ghost and gauge fluctuation fields. This flow equation is represented
graphically in Figure 3.12. Could had been writing down the flow equation (3.234) by just
considering all the possible diagrams entering in Figure 3.12. Here we show how this equation

is derived by starting directly from the flow equation for the bEAA. As we just said, the only
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non-zero vertices are:

0 O ’Yacé 0 f}/aéc 0
7]552,170;0) — 0 0 0 71552’0’1;0) — ryéac 0 0 . (3235)
VYeae 0 0 O 0 0

The regularized propagators G, and G have been defined in section 3.5.2. The multiplet

trace involved in the flow equation is reduced as follows:

Gaa O O 0 0 Yace Gaa O O
Tr| 0 0 —-Ga 0 0 0 0 0 —Ge
O GEC 0 Yeac 0 0 O G@C O
0 Yaee 0 6tRk; aa
X Yeac 0 0 0 0 at Rk cc
0 0 O 0 —0 Ry ze
O O Gaar)/acé aar)/acc O
— TI’ _GECF)/CG,E O O O O O
0 0 0 Gcc’Ycac 0 0
atRk,aa 0 0
X 0 0 atRkjc
0 —ORpz O
GaaVacEGECIYEacatRk,aa 0 0
=Tr 0 _GEC’YC(ZEG(MI/YCLECatRk,EC 0 (3236)
0 0 0
= _GaaWaEcGEc/YEcaatRk,aa - GEC/}/CE(ZGG‘(Z,YGCEatRk,EC ) (3237)

which corresponds to the rhs of (3.234) when written in momentum space. Note that in the
last step of (3.237) we have interchanged the order in which we have taken the functional
derivatives with respect to the ghost fields thus generating a minus sign. Inserting (3.233) in
the lhs of (3.234) gives:

[0y M09 = 59 [9, (m2Z,) + p* B Z.] . (3.238)

p,—p
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Figure 3.12: Graphical representation of the flow equation for the ghost-ghost zero-field
(0,1,1;0)
proper vertex -, from (3.234).

We see that we can extract 9, (m2Z.) as the term of order p® of (3.234) and 9,7, as the term
of order p?. Skipping the following steps in the derivation we find that

875 (mng) = BZcmz (ga Nas Ny Mgy M, a) ) (3239)

turns out to be zero in every gauge:

6Zcmz (ganavncamaamcya) =0. (3240)

The beta function for the wave function-renormalization of the ghost fields is accounted for

by defining the ghost anomalous dimension:
Ne (g7 Nay Ne, Mg, Me, Oé) - _at log Zc - _Zc_lath . (3241)

In terms of ()-functionals we find the following result:

[\

1 2 2
Ne = W {——Qg [(@R —n.R)((d = 1)GT — GL)GC}

d
d—1 2 21
——— Qs (OB = n.R)GrGZ] + Qayy [(OR — naR)GIGY]
+Qa 1 [(OR — . R)G3GL] } . (3.242)
Equation (3.242) represents the ghost anomalous dimensions within the truncation (3.17) and
(3.19) for general cutoff shape function, value of the gauge-fixing parameter and dimension.

Employing the optimized cutoff in (3.242) we find for the gauge-fixing value o = 1 the

following form:

>N k-4 4 24d—n,
(4m)*2T (g) d(d +2) (1 +m2/k?)* (1 +m2/k?)

Ne (95 Nas Nes Mas Me, 1) = — (3.243)
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In the gauge o = 0 we find instead:

( ) 2N k4 { 4(d-1) 2+d—1a
c s Has CamtI?mC? = N
Ne \g, Na, 7N (4m)/2T (g) d?(d+2) (1+ m?L/kJQ)2 (1+m2/k?)
4(d —1 2 —
1) d+2 2} , (3.244)
d*(d+2) (14 m2/k2)* (1 + m2/k?)

Considering (3.242) at m, = m. = 0 and in the physical dimension d = 4 but for general
value of the gauge-fixing parameter shows that:

9 2 2
N [a—=3 (1+a)(l—4a+ 3a® —2a%loga)
nc(ganaan670707a) = (47.‘.)2 2 8(].—Oé>3

+1 — 4o+ 11a? — 8a® + 222 (1 + 2a) log a
8(1—a)’

Na

M| - (3.245)

The first term in equation (3.245) is in agreement with [59]. Equations (3.240) and (3.242)
are the main result of this section, while the physical implications of equations (3.243) and

(3.245) are discussed in the main part of this chapter.



Chapter 4

Functional RG for quantum gravity

4.1 Introduction

General relativity and quantum mechanics are not yet unified in a coherent theory as we do
not have yet a fully successful theory of quantum gravity. But this does not mean that we
lack any kind of quantum gravitational predictions: at least at low energy, quantum gravity
can be described by an effective field theory based on metric degrees of freedom, as was first
shown by Donoghue and others [82, 83]. At scales much smaller than the characteristic scale,
which is here the Planck mass, effective field theory predictions are possible and calculable.
Examples of this kind are the calculation of the first quantum corrections to the gravitational
interaction potential between two masses |82, 84| and the low-energy graviton scattering cross-
section [85]. The important point about these predictions is that no matter which theory
actually describes high-energy quantum gravity - a string theory, a spin foam model, or other
approaches - in the infrared (IR) limit any physically valid theory must reproduce the results
found in the effective field theory framework.

In the last years, the hypothesis that the high energy completion of quantum gravity can
still be described using the metric as fundamental degrees of freedom has gained some new
support. In particular, the possibility that gravity may be asymptotically safe, a proposal first
made by S. Weinberg [86], has been investigated within the functional RG approach. Progress
in this direction has been possible thanks to the development of the EAA for quantum gravity
made by M. Reuter in [87].

In this chapter we show how to construct the EAA for quantum gravity, first considering
the truncation where the gauge invariant part of the EAA is taken to be the RG improved
classical Einstein-Hilbert action. We show that in d = 4 the theory appears to asymptotically

144
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safe, we calculate the critical exponents with two different cutoff choices in a given gauge.
We make contact both with the 2 + € expansion results [89, 90, 91] and with the one-loop
perturbative divergences first calculated by t'Hooft and Veltmann [88]. Then we study a
truncation of the full background EAA where also the gauge-fixing and ghost sector have a
non-trivial running, we calculate the anomalous dimensions of the fluctuation metric and of
the ghost fields and we consider also the running of the Pauli-Fierz mass [93].

Next, we show how the low energy effective field theory predictions naturally arise in
the effective average action approach to quantum gravity. To be able to recover the known
results we devise a new approximation scheme to the EAA, the curvature expansion. This
was introduced in the previous chapter in the context of non-abelian gauge theories and is
now extended to the gravitational case. In this way we start to delineate a picture able to
describe gravitational phenomena at all scales: from the UV physics of the non-trivial fixed
point down to the IR physics of the low energy effective action. We then look at the d = 2

case where we try to make contact with the solution of two dimensional quantum gravity.

4.2 EAA approach to quantum gravity

4.2.1 Classical theory

General Relativity, the classical theory of gravitational phenomena, is described by the

Einstein-Hilbert action:

1
=—— [d* 20— R) . 4.1
Seald) = oo [ d'aya A~ R) (1)
Here G = 6.67428 x 10" m’kg 's~2 is Newton’s gravitational constant and A is the cosmo-
logical constant. In units of the IR cutoff they have dimensions [G] = k2~ and [A] = k>

Newton’s constant is related to the Planck mass by the following relation:
MPlanck = G_1/2 . (42)

The Planck mass is the fundamental mass scale of gravitational interactions. The classical
equations of motion are derived minimizing the Einstein-Hilbert action (4.1) with respect to

the metric:

—0. 4.3
dGu 09 (43)
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In (4.3) we included general matter fields in the form of the action S,,[¢, v, A,; g] for scalar
fields ¢, fermion fields ¢ and gauge fields A,,. The variation of the gravitational action (4.1)

with respect to the metric can be written, considering (4.144) and (4.145), as follows:

1 1

6Sen = ——— | dov/g || R — =9 R+ Agu ) B* + V2h — VNV h,, | (4.4)
167G 2

where h,, = 0g,,. We can drop the last two terms in (4.4) since they are total derivatives

and contribute only to boundary terms. The matter action variation is related to the classical

energy momentum tensor 7}, by the relation:

1
08m =3 / d%w\/gT,, h" . (4.5)

Inserting the variations (4.4) and (4.5) in equation (4.3) gives Einstein’s equations for general
relativity:
1
R, — §9WR + Agy, =8nGTH . (4.6)

Note that the gravitational coupling constant G' does enter in equation (4.6) only if matter
is present.
From an effective field theory point of view many more terms can be added at the classical

action (4.1), the first candidates being the curvature squared terms:

/ d®z/g R / d®z\/gR,., R" / A2 /G Rop RO

There are severe bounds on the magnitude of the value of the couplings of these invariants
[72]. So in a classical setting, this terms can be considered absent. We will see instead that
in the quantum theory they will be generated by quantum fluctuations together with more

complicated structures.

4.2.2 Quantum Theory

We now start to study the quantum theory using the EAA approach. Quantum gravity, if
based on the Einstein-Hilbert action (4.1), is not perturbatively renormalizable, as first shown
in [88], but as we will see later, there is now evidence that the theory may be asymptotically
safe [100, 76, 77, 80]. This means, that to quantize the theory, we need to construct a
complete RG trajectory in theory space that connects the fixed point action for £ — oo to

the full effective action for £ — 0. As for non-abelian gauge theories, the EAA for quantum
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gravity is constructed using the background field method in section 4.3, to which we remand
the reader at this moment.

The general decomposition of the bEAA is as in equation (4.84):

Tx[h, C,C;g) = Tilg+ bl + Tk[h, C, C; ], (4.7)

where h,, is the fluctuation metric, C,, and C” are the ghost fields and g, is the background
metric. The full quantum metric g, = g, + hy is linearly split into the background and
the fluctuation metric. The bEAA is invariant under combined physical and background
diffeomorphisms (4.82):

(8 +6)Tw[h,C,C;9) =0. (4.8)

The diffeomorphism covariant effective average action (gEAA), denoted by ['x[g] in (4.7), is
that part of the bEAA which is invariant under physical diffeomorphisms (4.85),

oTklg] =0, (4.9)

and is a functional of the full quantum metric, at least for £ — 0. In fact, at intermediate
scales k # 0 we must study the flow of the full bEAA. This is done here by introducing scale
dependent wave-function renormalization for all the fields present in the cutoff action (4.76),
i.e. the fields of which we cutoff the modes in defining the bEAA,

by = Zy i hy C, — Zd3C, v — Zdic, (4.10)

and by considering non-trivial truncations of the functional I'y[h, C',C; g] in (4.7). This last
functional is the remainder effective average action (rEAA) and plays the role of a generalized
gauge-fixing and ghost action as, in the limit £ — oo, it flows to the classical gauge-fixing
(4.80) and ghost (4.81) actions. It is defined by the property I [0,0,0; g] = 0.

Another interesting thing to notice is that both the background and the full covariant
derivative do not renormalize. This is due to the fact that in the definition of the Christoffel
symbols, equation (D.31) of Appendix D, both the metric and its inverse enter and thus they
are invariant under global rescaling.

The exact RG flow equation for the bEAA is derived in section 4.3.1 and reads (4.89):

o) = 31 (1 lei) + Relgl) aRila), (4.11)
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where ¢ = (hu, C_’u, C") is the field fluctuation multiplet. As explained in section 4.3 the
cutoff kernel in (4.11) is constructed using a cutoff operator constructed using the background
metric. In particular, since in the definition of the bEAA we are cutting off the field modes
of the fluctuation metric and of the ghost fields, the cutoff term 0,Rx[g] in the flow equation

(4.11) will contain terms proportional to their anomalous dimensions,
nh,k = —Gt lOg Zh,k nC,k = —8t lOg ZC,k s (412)

steaming from the redefinitions (4.10).

It is tempting to set ¢ = 0 in (4.11) and hope in this way to obtain a closed flow equation
for the gEAA, since 9,I'x[g] = 0;I'+[0; g]. The subtlety is that the flow (4.11) is “driven” by
the Hessian of the bEAA taken with respect to the fluctuation multiplet and F,(f;o) [0; g] is
not equal to f,@ [g]. This remarks the fact that in general we have to consider the flow of the
full bEAA that takes place in the enlarged theory space of functionals of the fields in ¢ and
of g,,. When we consider a truncation ansatz for the bEAA which is bilinear in the ghost

fields, the flow equation for the gEAA becomes (4.93):

_ 1 , -1
ol'klgl = §Tr (Ff’o’o’o) [0; 9] + R L‘ﬂ) Oi Ry, hnn (9]
. -1
~Tr (000 9) + Rieels]) dileels). (4.13)

The flow equation (4.13) can be seen as the RG improvement of the one-loop flow, obtained
from the one-loop effective action (D.106) derived in Appendix D.

In section 4.2.2.1 we will study the flow of the cosmological constant A; and of Newton’s
constant GG, which are part of a truncation of the gEAA, and we will see how the flow of
these couplings is influenced by couplings which are part of a truncation of the rEAA. In
particular we will compare three different ways to “close” the flow of Ay and Gy, i.e. how to
obtain a non-trivial RG improved form for these beta functions, which naturally depend on
the anomalous dimensions (4.12) and on couplings pertaining to a truncation of the rEAA. In
section 4.2.2.1 we will consider a truncation of the rEAA comprising the running Pauli-Fierz
mass and the running gauge-fixing parameters. We will find that even in this enlarged theory
space quantum gravity still appears to be asymptotically safe, thus giving new support to
this interesting scenario.

In section 4.2.2.2 we study non-local truncations of the bEAA, this class of truncations is
necessary if we want to calculate the full effective action for quantum gravity as the £k — 0

limit of the bEAA. In particular we show how the low energy effective action for quantum
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gravity is recovered within this formalism [113].

4.2.2.1 Local truncations

We start considering as a truncation ansatz for the gEAA the RG improved version of the
Einstein-Hilbert action (4.1) where Newton’s constant and the cosmological constant become
scale dependent quantities:

Lulgl = jog [ oV M- R). (4.14)

The full quantum metric g, entering in (4.14) is then linearly split into a background metric

g and a fluctuation metric £, in the following way:

I = G + kah;w . (415)

In (4.15) we redefined the fluctuation metric by introducing the gravitational coupling con-
stant sy, which is related to Newton’s constant by the relation kj, = 1/167G},. Inserting in
(4.14) the full quantum metric as in (4.15) and expanding in powers of the fluctuation metric
using the variations (4.144), (4.145) , (4.151) from section 4.5.1, gives to order /-f,z/sz’ the

following relation:

_ 1 _
Tulg + ki Zyth) = . / d*z/g (2As — R)
k
1/2

_ - _ 1 _
+=5 [ty [—Ah = VIV by + by B 4 Sh (205 — R)
k

2

—h* B Ry — BB Ry — hR* by,
1 1 _

+ (th — 5h“%aﬁ) (27, — R)}

+0 (mi/ 2h3> . (4.16)

1 1o 1 . _ .
+5Znk / d'z {Eh’”AhW = GhAh+ WV, Vo = WV Dy,

In (4.16) we introduced the wave-function renormalization of the fluctuation metric Zj ; as
in (4.10). Note that in (4.16) the kinetic term of the metric fluctuation trace h comes with
the wrong sign; this is the signal that the Einstein-Hilbert action (4.1) is unstable in the
conformal sector. See [81] for a more detailed discussion of this point.

An important difference between quantum gravity and non-abelian gauge theories is that
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any ansatz for the gEA A of the first is necessarily non-polynomial in the full quantum metric,
because it involves both the inverse metric and the square root of the determinant of the
metric. Therefore, the expansion around any background metric does involve an infinite
number of terms. Already in the full version of (4.16) all powers of the metric fluctuation
are present, giving rise to non-zero contributions to arbitrary high vertices. This is indeed a
peculiar property of gravity.

As we said already in the analysis of non-abelian gauge theories in Chapter 3, the flow
of the full bEAA takes place in the enlarged theory space, in this case, of functionals of
the fluctuation metric, of the ghost fields and of the background metric, which are invariant
under combined physical and background diffeomorphisms. To consistently study the flow of
the bEAA in quantum gravity, we must consider also the running of the couplings present
in the rEAA T, [h,C,C;g]. We consider here an expansion of the rEAA in powers of the
fluctuation metric and of the ghost fields, as we have already done in Chapter 3 for non-
abelian gauge theories. To second power in h,, and first in C_'N, C*", we consider a truncation
ansatz comprising the running wave-function renormalization of the fluctuation metric Zj, ;
and of the ghost fields Z¢j, the running Pauli-Fierz mass my; |93, 72] and the running

gauge-fixing parameters oy and [. We study the following ansatz:

R _ 1
DL ZC. 250k = 52 [ A (bl — ) i

1 d ——_uv wit) 5]3 — ?
+—Zni [ d /g™ | V Moy — ?Vuh

20%
Zen / d427/G " [VOgya Vs + VG Ve
_ﬁk?uguava} cr. (417)

Note that in (4.17) the ghost action involves both covariant derivatives in the full quan-
tum metric V,, and in the background metric V,. The action (4.17) amounts to an RG
improvement of the classical gauge-fixing (4.80) and ghost (4.81) actions. We are thus
considering the sub-space of theory space parametrized by the following set of couplings
{Ak, G, mpk, Zh,k, Zc,k, g, 5k}~

Even if the methods developed in this thesis are capable of treating the full truncation
composed of the functionals (4.14) and (4.17), we will limit ourselves to consider the case
where the gauge-fixing parameters are fixed to the values ;. = 5, = 1. This choice is dictated
by technical reasons since in this gauge the standard heat kernel techniques can be used. The

running of Newton’s constant and of the cosmological constant have already been studied for
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general gauge-fixing parameters in [94, 95]. It is worth noting that the most natural choice for
the gauge-fixing parameters should be a;, = 0 and 8 = 2/d, where only traceless transverse
gravitons and the conformal factor propagate. It is believed that this values correspond to a
fixed point of the RG flow, as is in the case of non-abelian gauge theories. The full truncation
(4.14) and (4.17) will be analyzed in [122]. We do not consider here a running ghost mass
since we have seen in Chapter 3 that the analogous term for non-abelian gauge theories plays
no important role.

To fourth order in the derivatives, we can add to the ansatz for the gEAA (4.14) the

following curvature terms:

- 1 1 1 1
I = [da —C*+ R+ —FE+—AR) . 4.18
bl fona (s b e dan)
In (4.18) we expressed the four derivative invariants in the basis {C? R? E, AR}. C? is the

square of the conformal invariant Weyl tensor given in d = 4 by
2 uvaf nz 2 2
C* = RuapRR — 2R, R" — §R ,
while F is the integrand of the Euler topological invariant in four dimension:
E = RuasR"* — 4R, R"™ + R*.

In Appendix D we study the geometric interpretation of these curvature invariants. The RG
running of the couplings {Ay, Gk, Ak, &, pr, Tx } has been studied, within the bEAA approach,
under several different approximations in [97, 98, 99]. In this thesis we will only look at the

running of these couplings as induced by the Einstein-Hilbert truncation (4.14).

We start now to study the running of the gEAA (4.14) under the condition oy = B, = 1.
As we did in Chapter 3 for non-abelian gauge theories, we consider two different cutoff
operator choices. The first case, that we call type I, considers both Ry ;1[g] and Ry oc|g] as
functions of the covariant Laplacian, while the second case, type II, considers the graviton
and ghost cutoff kernels as a function, respectively, of the operators Ay and A; defined in
section 4.5.4. Other possible cutoff procedures are extensively studied in |96].

We discuss first the beta functions of Newton’s constant and of the cosmological constant
for my,, = 0. These are derived, for general cutoff shape function and dimension, in section

4.5.4. In particular, for type I cutoff these are determined by the system (4.209), while for type
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IT cutoff they are determined by (4.226). After introducing the dimensionless cosmological
constant A, = k~2A;, and the dimensionless Newton’s constant Gj, = k%2G), and employing

the optimized cutoff shape function, we find the following type I beta functions:

Oy = 2+ (47r)d/2iw(§ +2) {d(dz = f QAZh’k —dldrz e
Y [dw LS i e
A 2 )| [ G, o
and
88 — (4 DG (47T)d/211§7£g E {d(d - 1)8(d +2) f: 727?\2
T =L

When we employ the type II cutoff, we find instead the following beta functions for the

dimensionless coupling constants:

ohe = —2hpt— " {d<d+1>d+2—nh7k_

(47)/2T (4 + 2) 4 1—2A,

~ d(5d—7)d—7]hk d+6 ~
—2A = d— G 4.21
k|: 2 1_2Ak+ 6 ( Uo,k)}} k (4.21)

d(d +2 —nek)

and

N - 167G2 d(5d —7)d — d
0, = (d—2)C — 667Gy { (5 7) 77h,k:+ +6

(4m)42T (§ +1) 24 1-2A, 6 (d - 770,k>} L (4.22)

These beta functions are the fundamental result of this section and constitute the basis
of the bEAA approach to quantum gravity. They are valid for d > 2 but note that for
general dimension they depend both on the cutoff shape function and on the cutoff operator
employed.

We start now to study the flow in physical dimension d = 4, where from equations (4.19)

and (4.20) we find the following set of type I beta functions:
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Figure 4.1: Renormalization group flow in the Gy, Ay obtained by integrating the type I beta
functions (4.26).

127 (1—2A)2

5 —11A, — 10A}
(1 —2A;)2

G2 {_44 - 72h 11287 14104

G {6 — 8A, — 24A2 — 112A3

Mk + (4 + 6/~\k)770,k}

127 (1—2A5)2 TETT e 67’%} . (423)

From equation (4.21) and equation (4.22) we find the following system for the type II beta

functions:
. - Gy | 6—44A, +80A7 5 —13A4 4+ 2A;, — 2072
N, = —2A. + = — = _
14k R Ton { 1 — 24, 1 —oh, Ik 1 oK, ok
N . G2 92 — 80A,, 13
0,Gr = 2G, + —E<{— — 4 _ + 10 . 4.24
tGk kT o { 1 —2A, 1 2Ak77h,k: Uc,k} ( )

As we noticed already in Chapter 3 for non-abelian gauge theories, the beta functions for
the physical couplings, here Ay and Gy, are not determined by a closed system. In (4.23)
and (4.24) this happens because of the presence, on the rhs, of the anomalous dimensions of
the fluctuation metric 7y, and of the ghost fields ¢ . This reflects the fact noticed in the
previous section that for £ # 0 the flow of the gEAA is not closed and the flow of the full
bEAA has to be considered. As we did in Chapter 3, we present now three different ways to
close the beta function system (4.23) or (4.24).
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Figure 4.2: Renormalization group flow in the Gy, A, obtained by integrating the type II
beta functions (4.27).

The first way is the trivial one where we set 7, = ¢, = 0. This amounts to a one-loop
approximation where all the non-perturbative information contained in the flow is discarded.
Within this approximation the beta functions are just (4.23) and (4.24) where only the first
terms inside the parenthesis are retained. These one-loop beta functions have been analyzed
in [96].

In the second way to close the beta function system, we employ an approximation adopted
in all previous studies of these equations [87, 94, 100, 101, 95, 102, 103, 96]. The system (4.23)

or (4.24) is here closed by imposing the following relations:
Zh,k == lilzl ZC,k =0. (425)

The identification in (4.25) implies a non-trivial, but difficult to interpret, RG improvement
of the beta functions. We will call this procedure the “standard improvement” of the beta
functions (4.23) and (4.24). For type I cutoff, we find the following standard improvement
of (4.23):

(3 — 4Ay, — 12A2 — 56A3)G), + 12 (107 — 20A4)G?
(1—2A4)2 — 22-(1 + 10A,)G,,
-1 (11— 18A, + 28A2)G?

0,Gr = 2G — — . k. 4.26
e ©BT (1 - 2A)2 — (1 + 10A4) Gy (4.26)

SE

The beta functions in (4.26) are exactly those first obtained in [87]|. For type II cutoff we
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A G 0 + 6" NG,
Type I one-loop | 0.121 | 1.172 | —1.868 +1.398: | 0.142
Type II one-loop | 0.047 | 0.775 | —2.310 & 0.382¢ | 0.036
Type I Std 0.193 | 0.707 | —1.475+ 3.043¢ | 0.137
Type II Std 0.092 | 0.555 | —2.425 £ 1.270¢ | 0.051
Type I New 0.082 | 1.162 | —3.117 £ 0.564¢ | 0.095
Type IT New 0.039 | 0.696 | —2.617 £ 0.255¢ | 0.027

Table 4.1: Fixed points and critical exponents for the various closures of the flow of A; and
G-

find instead the following standard improvement of (4.24):

(3 — 284, + 84A2 — 80A})G), + 10-(191 — 512A,)G?
(1—2A5)2 — £(1 - 2A,) Gy '

B B . A\ Y2
0,G, — 2Gk—i (23 20Ak)Gk

- ~ 1
67

(4.27)

The system (4.27) as been proposed in [96] together with some variants of it. Note that
the beta function (4.26) and (4.27) are rational functions of both G} and Ay, this can be
interpreted as a resummation of an infinite number of perturbative diagrams implemented by
the RG improvement implied by (4.25). The outcome of the numerical integration of (4.26)
and (4.27) is shown in Figure 4.1 and Figure 4.2 respectively. The presence of a non-Gaussian
fixed point is clearly visible in these pictures and the values for A* and @* for both cutoff
types are reported in Table 4.1, together with the respective one-loop values. The important
point is that the non-Gaussian fixed point is UV attractive in both directions. The flow near
to the fixed point is spiraling towards it, i.e. there is a pair of complex conjugated critical
exponents with negative real part . These are also reported in Table 4.1. Thus within the
truncation we are considering and the standard improvement of the relative beta functions,
quantum gravity is asymptotically safe. Actually, we still need to show that the critical
surface is finite dimensional. Evidence for this to be true has been given in [104, 105]. For
more details see [96].

The third way to close the beta functions system, that we propose here for the first
time, is to separately calculate the anomalous dimensions 7, 1, nc as functions of /~\k, C?k

and successively reinsert these back in the beta functions (4.23) or (4.24). In this way we

'Here we follow the convention of [96] that a negative value for the critical exponent implies that the
relative eigendirection is UV attractive.
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obtain closed beta functions (within the truncation considered) that account for the flow of
the wave-function renormalizations Z;,; and Zc . In doing so we make a step further in
considering the flow in the enlarged theory space where the bEAA lives. We are adopting
the point of view that Ay and G} are physical couplings while Zj 5 and Z¢ ), are not, but
the influence of these last couplings is non-trivial and it is important to account for it. The
calculations of the anomalous dimensions 7, and 7¢ are done explicitly in sections 4.5.6

and 4.5.7 using the flow equations for the zero-field proper-vertices of the bEAA, 7,&2’0’0;0)

and 7,({0’1’1;0). These results are given, for general cutoff shape function and dimension, in
equations (4.255) and (4.256). Also, 7 and ncy turn out not to depend on the cutoff
operator type. If we insert now the optimized cutoff shape function in (4.255) we find the

following form for the anomalous dimension of the fluctuation metric:

B 167Gy 5d® + 44d + 116 20
Tk Ty (41 1) {_ (d+4) (= 4) (d+ 1) (1 — 28,1
80(d + 6) Ay, +d2—5d+4d+2—nh,k
(@ —4)(d+1) (1 —2A,) d+2  (1-2A,)?
32002  d+2— s 480A,  d+2—
(@ —4)(d+1) (1-28)1 (B -4)(d+1) (1-24,)3
20(31d +120)  d+4 — 32

AT D@ - DATD) (1—2hy) @i H@ry 4 ”aw} (4.28)

By inserting the optimized cutoff shape function in (4.256) we find the following form for the

anomalous dimensions of the ghost fields:

167Gy { 3d* — 3d* — 12d” + 20d — 124 + d — s
ok 2(4m) 42T (4 + 1) P(d + 4)(d2 — 4) (1—2A,)2
2d? —d—8) d+4—
2 . ) d+ ~770,/<;} ' (4.29)
(d+4)(d® —4) 1—2A,

Note that equations (4.28) and (4.29) constitute a linear system for the indeterminates 7y,
and 7y that can be solved to yield these anomalous dimensions as functions solely of Ax
and Gj. In general, the anomalous dimensions (4.28) and (4.29), like in non-abelian gauge
theories, are strongly dependent on the gauge-fixing parameters a; and S. This general
case, along with the conjecture that these anomalous dimensions may obey a scaling relation,
analogous to the one obeyed by non-abelian gauge theories at the IR fixed point [64, 66], will

be investigate further in [112]. By solving the linear system composed of equations (4.28) and
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Figure 4.3: Renormalization group flow in the G, Ay, plane for the type I beta functions
obtained by employing the explicit expressions for n;, and 7.

(4.29) in d = 4, we find the following form for the anomalous dimension of the fluctuation

field as a function of Ay, and G} alone:

Mk =~ [(39 358K, + 176A2 + 179242 — 2560A% + 1024A3)G,
—48%(381 — 2176A;, + 5040A2 — 616/1%)(?2]
X [(1 —2A;)° — %(10 — 63A, + 11572 — 56A3 — 4A1) Gy,
temes (18— 125A; + 307A% — 226/12)@,2] B (4.30)

and the following form for the anomalous dimension of the ghost field as a function of Ay

and G r alone:

1

(1 =2A)%105 + 16A,)G
48m(1 — 2A) [0 - 280" G

Nk =

1 A A " ~ ~
~og, (12813 — 404964, + 857604 — 1075204} + 578567,y

N 1 - - - .
X {(1 —2A;)° — E(10 — 63A, + 115A2 — 56A; — 4A}) Gy
-1

+ (18 — 125A, + 307A2 — 226A3)G2| . (4.31)

57672



CHAPTER 4. FUNCTIONAL RG FOR QUANTUM GRAVITY 158

Figure 4.4: Renormalization group flow in the G, Ay plane for the type 1I beta functions
obtained by employing the explicit expressions for n;, and 7.

Inserting back (4.30) and (4.31) in the beta functions (4.23) or (4.24) finally gives the “new
improved” form of O,A;, and 9,G, that accounts for the non-trivial influence that Zn i and Ze g,
have on the flow of the dimensionless cosmological and Newton’s constants. The result of the
numerical integration of these beta functions is plotted in Figure 4.3 and Figure 4.4 for type I
cutoff and type II cutoff respectively. Note that, despite these new beta functions differ non-
trivially from the one-loop and from the standard improved ones, the overall picture of the
flow is unchanged. In particular there is still one non-Gaussian fixed point which is attractive
toward the UV. The fixed point values for the dimensionless couplings and for the critical
exponents for this new improved case are also given in Table 4.1. The critical exponents
still form a complex conjugate pair, but now the imaginary part is smaller in comparison
to the real one. This is reflected in the fact that the flow next to the non-Gaussian fixed
point is now less spiraling and one can speculate that in a more complete truncation the
critical exponents may become real. If we insert the fixed point values for the cosmological
constant and for Newton’s constant in (4.30) and (4.31) we find the values 7}, = —0.637
and nk, = —1.262 for type I cutoff while for we find !l = —0.442 and n4, = —0.602 for
type II cutoff. This values depend also on the values of the gauge fixing-parameters and it
is expected that for ay, = 0 and (5, = % they become cutoff independent [112]. We have to
mention here that the anomalous dimension of the ghost fields has already been calculated in
[106, 108] and has been used to improve the standard closure based on the relations in (4.25).
From the point of view of this section, this procedure is an hybrid between the standard and

the new improvements that is not completely justified since the arbitrary relation Zj j = /i,gl
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is still employed. Another truncation of the ghost sector has been considered in [107]. We
have to mention that a complementary strategy to explore the full flow of the bEAA as been
developed in [109, 110, 111].

We have thus shown that accounting for the non-trivial influence that the anomalous di-
mensions 7, ; and 7¢, have on the flow has changed the properties of the non-Gaussian fixed
point only quantitatively but not qualitatively. In light of these results the asymptotic safety
scenario in quantum gravity is strongly reinforced, since they show that the non-Gaussian
fixed point is still unique and UV attractive even when we consider truncations of the full
bEAA. As a proposal for future work, it will be interesting to improve the beta functions

[98, 99| for the higher derivative couplings in (4.18) by the method proposed here.

To better understand the kind of RG improvements, or resummations, implemented by
the three different procedures presented here to close the beta functions of Newton’s constant
and of the cosmological constant, we focus on the running of G, and we set A, = 0. In this
case the one-loop beta functions for the dimensionless Newton’s constant, for both cutoff

types, become simply as follows:

~ ~ 11 -
0,Gy, = 2G), — gai type [ (4.32)

- ~ 23 .
0,G, = 2G), — 3—Gi type II. (4.33)
s

Note that the one-loop coefficient in (4.32) and (4.33) are not universal as expected in d = 4.
The beta functions (4.32) and (4.33) have a non-CGaussian fixed point for G = 1.714 and
éil = 0.820 respectively. For a theory with only one coupling constant, the mass critical
exponent is given by minus the first derivative of the beta function evaluated at the fixed

point [75]:

o9 0Gr| . (4.34)
0Gy G

From (4.32) and (4.33) we find the mean field like values v/ = v!f = 1 as expected in a

one-loop calculation. When instead we consider the standard improved version of the beta
function for the dimensionless Newton’s constant, equations (4.26) and (4.27) for A, = 0, we
find the following forms:

11 G2

0,G, =2G, — —— "k type I 4.35
tG k 37”_%(% ype ( )
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Figure 4.5: Beta functions 8,G for the dimensionless Newton’s constant within type I cutoff
for the three different closures schemes as a function of G in d = 4. One-loop form (long
dashed) from equation (4.32), standard improved form (short dashed) from equation (4.35)
and new improved form (thick) from equation (4.37).

2

0,Gy, = 2G}, — g%% type II. (4.36)
Note that the effect of the standard RG improvement has been to make the beta functions
(4.35) and (4.36) rational functions of Gy. The non-Gaussian fixed points are now at the
values GI = 1.639 and G/ = 0.639, while the mass critical exponent (4.34) has the values
vl = 0.478 and v'! = 0.390. Note that these values differ by each other for about 20%.
Finally, when we close the beta function of the dimensionless Newton’s constant, equations
(4.26) and (4.27) for A, = 0, by inserting the calculated anomalous dimensions of the fluc-
tuation metric and of the ghost fields, equations (4.30) and (4.31) now function of G}, alone,

we find the forms:

11— 286, — 090G

0,Gr = 2G) — - —— =Gk Ep type I (4.37)
31— G+ 352Gy
. 5 931 — 0Ly _ 28543 (o
0,Gy, = 26 — ~>—— Tk G2 type 11 . (4.38)
3o 1- GGk + 3 G,

Note that the RG improvement implied in this last procedure made the beta functions (4.37)
and (4.38) rational functions of higher order than the previous ones (4.35) and (4.36) ob-
tained by the standard RG improvement. Also, the denominators in (4.37) and (4.38) are

now equal. In this last case the values for the zero of the beta functions are GI = 1.451
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Figure 4.6: Beta functions 8,G for the dimensionless Newton’s constant within type II cutoff
for the three different closures schemes as a function of G in d = 4. One-loop form (long
dashed) from equation (4.33), standard improved form (short dashed) from equation (4.36)
and new improved form (thick) from equation (4.38).

and GII = 0.731, while the values of the mass critical exponent are now v; = 0.421 and
vir = 0.446. Tt is interesting that these values for the mass critical exponent are now closer
as they differ only for about 6%. This can be considered has an indication that the accounted
flow of Z), , and Z¢, has made the flow of the dimensionless Newton’s constant closer to the
exact one, and thus less sensible to truncation artifacts. The three beta functions for both
cutoff types are shown in Figure 4.5 and Figure 4.6. It is interesting to note that in the case
of type II cutoff, the new improved beta function lies between the standard improved and

one-loop ones and is not always smaller [96].

We turn now to consider the flow of the dimensionless Newton’s constant near two di-
mensions where we can make direct contact with the standard d = 2+ € perturbative studies.
In all cases, i.e. for both cutoff types and for any cutoff shape function, we find the following

form:

~ ~ 38 ~ ~

The scheme independent one-loop coefficient in (4.39) matches the one calculated using the

e-expansion [89, 90, 91|. The beta function (4.39) as a UV attractive non-Gaussian fixed
point at G, = g—; and the theory is thus asymptotically safe. It is important to notice that

this fixed point is continuously related to the one in four dimensions. For more details on

this point see [96]. We note that subsequent analysis of d = 2 + € quantum gravity [92]
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have found a different coefficient, precisely 53—0 instead ‘%8. This discrepancy as to be imputed

to the different way the gravitational conformal factor has been quantized in these last studies.

It is not difficult to calculate the running of the fourth order invariants in (4.18) induced
by the truncation we are considering. In particular, for A, = 0 we find, equation (4.223)

from section 4.5.4, the following result:

_ 1 53
atrk[g]\m:(m / m\/_< Ry B + R2 + =B+ AR) (4.40)

which is independent of the cutoff operator and of the cutoff shape function employed. This
contributions to the flow of tho couplings in (4.18) are related to the UV divergences found in
perturbation theory [88|. For a discussion of this point see [96]. We will recover the first two
terms of (4.40), which are not total-derivatives, in the next section when treating a non-local
truncation of the gEAA.

We now switch on the Pauli-Fierz mass term and we will consider only the type I cutoff
case for simplicity. The resulting beta functions are quite cumbersome for general values
of Ay and myy, so we consider only the Ay = 0 case here. The general form of the beta
function for the Pauli-Fierz mass is derived in section 4.5.6 for general cutoff shape function
and dimension in the gauge oy = [ = 1 and is given in equations (4.251) and (4.252).
In physical dimension and employing the optimized cutoff shape function, we find, for the

dimensionless squared mass m? , = k~*my, the following form:

5 Gr | 798 9 8—
Oy g = (=24 Nhg)ig g, + == { STk 2 "h.k

21 | 961 +m2, 321+ 3mp,

00T mZ )% 960 (1+3m7 )3 960 (1 +m7 (1 +3m7,

207 10—me | 1 10—myp 7 10 = 7in. (4.41)
s

For non-zero Pauli-Fierz mass, the beta function for Newton’s constant is given in equation
(4.218) of section 4.5.4 for arbitrary cutoff shape function and dimension. Employing the
optimized cutoff and setting d = 4 we get equation (4.220) which reads:

G [94—mp 14— 6 — Mhk
0,Gy = 2G;, + =+ : —3 —14+3 L (142
W = 2t {41+m%7k+41+3mhk Armg, 2 ook (4.42)
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Figure 4.7: Flow of the dimensionful Pauli-Fierz mass in units of the UV scale mj , /A with
initial condition mj , ~ Anmj, = 0.601.

We can now insert the explicit forms for the anomalous dimensions of the fluctuation metric
and of the ghost fields for general values of the Pauli-Fierz mass into (4.41) and (4.42) to
obtain a closed system for 8,577%,2”C and 9,G,. We can solve this system numerically and we
find only a non-Gaussian fixed point at the values m32, = 0.601 and G, = 2.275. This fixed
point is UV attractive with eigenvalues —4.051 and —1.602, while at the Gaussian fixed point
we find the canonical eigenvalues —2 and 2. More importantly, if we follow the flow of the
dimensionful mass from the non-Gaussian fixed point to the IR we find that it goes to zero

as expected. A plot of the solution of the system (4.41) and (4.42) is given in Figure 4.7.

4.2.2.2 Non-local truncations

We now start to use the flow equation for the bEAA as a tool to actually compute the full
effective action. We learned in section 2.3.3 of the Chapter 2 that in order to be able to
extend the flow of the EAA down to & = 0 we need to consider truncation ansatz with
at least an infinite number of terms. We proposed a truncation scheme that we called
“curvature expansion” where we consider an ansatz containing running structure functions.

In the present contest we consider the following ansatz for the gEAA:

_ 1
Telg] = /ddx\/ﬁ {167@9 (2A; — R)+ RF1 ,(A)R+ R, Fop (AR | . (4.43)

In (4.43) we added to the truncation (4.14) all possible curvature square terms, in the
{R,., R",R? E} basis, in the form of functions of the full covariant Laplacian F; x(z), i = 1,2,
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sandwiched between Ricci scalar and tensor curvatures.

As for the case of non-abelian gauge theories in Chapter 3, the task of inserting the full
truncation (4.43) in the flow equation for the gEAA in a difficult one, even if in principle
possible using the techniques developed in section 3.3.4 of Chapter 3. Here we will consider
only the flow of the form factors® in (4.43) induced by the Einstein-Hilbert operator [ \/gR
and we set Ay = mp = Mhr = Nox = 0. We will continue to use the gauge o, = B = 1
and we will work with type IT cutoff operators. In section 4.5.5 we employ the non-local heat
kernel expansion, derived in Appendix A, to the extract the flow equations for the structure
functions under these conditions. They are given in arbitrary dimension and for general
cutoff shape function in equations (4.234) and (4.235). This section follows [113].

We start to consider the d = 4 case, the flow equations (4.236) and (4.237) can be casted

in the following form:
1 T

where the functions g;(u) can be calculated once a cutoff shape function has been chosen.
Note that, in d = 4 as here, all the k-dependence is through the u = x/k* dependence of the
functions g;(u). If we employ the optimized cutoff shape function and by using the relevant

parametric integrals of Q)-functionals from Appendix A, we find:

1 1 19 1 1
S J1— 20 —4 4.4
alu) = g5+ ( 60 Tru " 15u2) mAC (4.45)
7 (7 16 8 1
S (. 1= 26— 4). 4.4
g2(u) = 15 (10 TR 15u2) mACa) (4.46)

These are the beta functions for the non-local form factors and they are plotted in Figure
4.8.
The functions (4.45) and (4.46) are constant in a neighborhood of the origin: if instead

of considering the full functional dependence of the form factors F;j(x) on the covariant
Laplacian, we had considered only a local expansion to a polynomial, we would had found zero
beta functions for the running couplings of all derivative terms of the form [ ,/gR,,A"R"
or [ VIRA"R. As already noticed in section 2.3.3 of Chapter 2, this shows that truncations
to a finite number of local terms are generally not powerful enough to correctly describe
IR physics. Truncations of the gEAA need at least to project the flow onto an infinite
dimensional subspace of theory space, as here the one of the functions F; ;(z).

We now integrate the flow equations (4.44) from a UV scale A down to a generic IR scale

2We consider the words “structure function” and “form factor” as synonymous.
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2.5
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upper curve) and gs(u) — 15 (lower curve) representing
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60

the flow of the form factors in (2.127) after we imposed the UV boundary conditions (4.50).
Note that the flow stops for x < 4k%: only IR or slow modes contribute effectively to the RG

running of the form factors.

Figure 4.8: The functions g (u) —

k. It is expected that for A — oo we will encounter the usual ultraviolet divergences that

are found in one-loop effective field theory. Using 0, = k0 in (4.44), we find

1 Ndk s x
FzA(OE) - sz(ﬂf) = W/k ng (ﬁ) )

and after going to the variable u = z/k* (with dk/k = —du/2u) we get:

1 L
F, —F =— —q;(u) . 4.47
2@~ Fue) = g [ S (4.47)
The constant terms in the flow functions (4.45) and (4.46) make the integrals in (4.47)
logarithmically divergent at the lower limit when A — oo. We can isolate these divergences

in the following way:

1 1 A k
Fia(z) — Fiu(z) = (4ﬂ)2@ (log k’_o + log ?0)

b [Ebe-d]
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1 7 A k
Foa(z) — Fop(z) = Wl_() (logk—o—i-log?o)
1 K qu 7
Y — - — 4.49
e I CIC R B R

where kg is an arbitrary reference scale which plays a role akin to u in effective field theory.
The logarithmic A terms in (4.48) and (4.49) correspond to the UV divergences (4.40) found
earlier in the previous section. We can renormalize the theory imposing the following UV

boundary conditions:

F = ———log—
1A () @260 Bhy @
1 7 A
F. = ———log— 4.

where the ¢; are possible finite renormalizations. The important point in equations (4.48)
and (4.49) is that the integrals are now convergent in the lower limit when we take A — oo.

The scale-dependent form factors at the scale k turn out to be:
1 1 601  1139k2  2k*\ /. 4k?
w0 = g { [30 Og+( 000 4500 75x2) z
1 €T 1 ]{72
—log ( — || O(x — 4k*) + —log | — | O(4k* —
50 % (k:%)] (7 = 4K + g Lo (ké) ( x)}
1 7001 4k? 41 84k* 16k 4k?
F, = —{|=log=[1 1—— | = (=  —
k(@) = 55 { [5 %83 < * x ) (75 T oma T 75$2> x
7 T 7 k?
—log [ = )| O(x —4k®>) + —log [ —= ) O(4k> — . 4.51
51 ()| e 90+ 5 s (3 ) o=} o

These results are now to be reinserted in the O (R?) part of the truncation ansatz (4.43):

Folg] e = / &2 /G [RFux (A) R+ Ry Fo (A) R™] . (4.52)

This is the result we were looking for. Note that the form factors are continuous at x = 4k?,

and that for £ — 0 we obtain a well-defined limit, namely the action:

_ 1 1 A 7 A .
FO[QHRz = 302 /d4x\/§ [@R log (k_(%) R+ 1—0RW log (k_§> R } , (4.53)
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where we fixed the finite renormalizations in (4.50) to ¢; = —@% and ¢y = —ﬁ%.
The resulting non-local terms equal the part of standard one-loop quantum gravity effective
action that arises solely from graviton and ghosts vacuum polarization [114].

We have obtained a non-local gEAA, equations (4.51) and (4.52), that flows from an
ultraviolet scale £ = A to the infrared limit £ = 0, and in the latter limit equals the expected
effective field theory result. We discuss now the possible physical effects arising from the
gFEAA just calculated for £ # 0 by computing the quantum corrections to the Newtonian
potential stemming from it. We couple (4.43) to a classical matter source:

U 1671Gk /d4x\/§(2/\k - R) +/d4x\/§[RF1,k(A)R+RWFM(A)RW]
+ Sl v, Ay gl (4.54)

Note that the matter action is taken to be scale independent. From (4.54) we will derive the
equations of motion under the assumption that the gravitational field is weak throughout
space in addition to static. Before presenting the explicit calculations, we would like to clarify
two important points. Firstly, we will switch to work in a 3-+1 static spacetime, analytically
continuing our Euclidean expressions for the form factors into the Lorentzian sector. With
the usual definition of the “in-out” effective action, this would imply a replacement of the
Euclidean propagators by the corresponding Feynman propagators in the form factors, and
the resulting field equations would be neither real nor causal. In order to get real and causal
equations, one can introduce a “Closed Time Path” (CTP) or “in-in” effective action. As
shown in [126], when the quantum fluctuations are in the vacuum state, the CTP procedure
is equivalent to the replacement of the Euclidean propagator by the retarded propagators in
the form factors appearing in the field equations. Due to the staticity assumption, this is
equivalent to the replacement A — —V? (the 3-Laplacian) in the form factors. Secondly, as
pointed out in [114], the solutions of the field equations derived from the effective action will
depend on the gauge fixing parameters, and therefore they are not physical. Indeed, for our
calculations we considered the particular values ay, = 5 = 1 in the gauge fixing condition. In
the general case, the effective action and the quantum corrections to the metric will depend
explicitly on «j and S;. In order to obtain physical results, it is necessary to define an
observable from the quantum corrected metric, as proposed in [114]. Though important, this
issue will not be relevant in the discussion that follows.

We write g,,(x) = 7, + by (x) with b, small everywhere, and we will proceed assuming

k to be a fixed parameter, ignoring for the moment the possibility (discussed e.g. in [115, 117,
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118, 119], and also later in this section) that it should depend on position. The equations of

motion derived from (4.54) are:
1
Ryw = 5 R gus = Mg = 87G [T + Fui(=V?)Hy,) + Fop (V) H (4.55)

where HS)) = 4V, V, R—41,, V2R and H\)) = 2V,V, R—1,, V2R—2V2R,,, are the variations
of the squared curvature scalar and squared Ricci tensor. All curvature tensors are evaluated
at first order in h,,. We will assume in what follows that we are in a non-cosmological regime
where Ay can be neglected.

We choose the classical matter to be static and non-relativistic so that there exists a

quasi-Cartesian coordinate system in which
mat __  3:
1" = diag(p(x),0,0,0) . (4.56)

We write for the metric perturbation h,, = hj, +hl, where hj,, solves the classical equations
of motion and A%, is O(h); also, we write G = Go(1 + 0G},) with G being the experimental
value of G, assumed to be measured at k = 0, and dG}, being O(h) . Expanding to the first

order in h, the equations for the classical and quantum parts of the metric read:

2
Vzhfw = 167G { [4F1 1(—V?) + 2F 1 (= V?)] 0,0, R + 1w [2F16(—V?) + Foix(=V?)] VR

1
V2he, = 167Gy | Tm — —WWT;;M} — 87Gy pdiag(1,1,1,1) (4.57)

1
2By 4(—=V2)V2R,, + §5Gk pdiag(1,1,1, 1)} (4.58)

In (4.58) the Ricci tensor and its trace are understood to be computed from A, exclusively.
The classical Newtonian potential ¢(x) is equal to —%hgo and, per (4.57), is found solving
Poisson’s equation as usual. Its quantum correction, bearing the same relation to hd,, will

be found from
By (x) = 0Gh(x) + 25672G3 [Fiu(—V?) + Fau(=V2)] plx) (4.59)

which is obtained replacing in (4.58) R,,, by —3V?Ah¢,,, using (4.57), and canceling Laplacians.
Therefore, the quantum correction to the Newtonian potential consists of two terms: a trivial
shift due to renormalization of GG, plus a non-trivial part that is found by direct application

of the non-local form factor Fi(z) 4+ F»(z) to the classical matter distribution. From now on
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we take hl, to refer only to the nontrivial part, absorbing the first term in a redefinition of
hc
00
Since the Laplacian in all the preceding expressions is flat (to keep only the first order in
the metric perturbation), the action of the form factors in (4.59) can be computed with an

ordinary Fourier transform:

1 —ip-(x—x'
Ha(x) = 256G s [ o) [ @ [Fao?) + Faslp?)] e
4G° px') [
=—— [ &3 dp pF, i —x 4.
e [ R s x ), (1.60
where we have defined:
Fi(p) = =320 [FLe(p®) + Far(p?)]
B (PR e gt 109 s 1akty [k
~ 60 ° 2 000 4502  T5pt P

431 AR2
Zlog = [ 1+ /1— =160 — 4k?). 4.61
+35 og2< + p2)]] (p ) (4.61)

Equations (4.60) and (4.61) comprise the result we wanted for the quantum correction. For
further analysis we call I; the term of the p-integral in (4.60) that comes from the first term
of (4.61), and Iy the p-integral of the remaining terms. I; can be evaluated exactly as a
combination of elementary integrals and distributional Fourier transforms, whereas in I no

such closed form can be found. We have for I;:

sin(2kX) 2k cos(2kX)

43 U ,
]1—@{—ﬁ+(5(){)10gk0+|: X2 10g4
28i(2kX)  2sin(2kX)
R e (4.62)

where we defined X = |x — x/|.

The remaining terms, comprising I, can also be rewritten as a combination of distribu-
tional Fourier transforms and convergent integrals, but for them the convergent part cannot
usually be computed in closed form (though it can be investigated numerically if so desired).
For this reason, we restrict ourselves to evaluating the large X asymptotic expansion of the
result. If the matter distribution is a point source, i.e. p(x) = M§*(x), this will give us

the long-distance quantum corrections to the Newtonian potential of a point source in an
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asymptotic series. However, note that we will later call into question the physical validity of
such an asymptotic expansion, so the following calculation needs to be taken with a grain of
salt. We find that for large X we have:

43 kcos(2kX) 7 \/—ksin (2kX + 27)

[z = =35 logd ———= = 5V X3/2
43 sin(2kX) |
251 1 jog o) SUERY) . 4.63
3 LT log2l =3 +0((/{;)()2) (4.63)

Joining this with the asymptotic expansion for the result we obtained for I, we conclude
that the quantum correction for the Newtonian potential of a point source of mass M is given

at long distances r = |x| by

b ) =  8MG3k {43 7 sin (2kr + 37/4)

T2 |60 400y /7 Vir
43 (2cos(2kr) +7) +O( 1 )} | (4.64)

1207 kr kr

The full Newtonian potential of the point source would therefore be given asymptotically by:

M 43Gok k sin (2k 4
o(r) = — Go 146G, — 3Gy 7GoVk sin (2kr + 37 /4)
r 157 10073/2 r3/2
43Go 2 cos(2kr) + 7 1
+ 3072 2 +o0 (ﬁ)] . (465)

One might find the asymptotic result (4.65) peculiar in several respects: the leading order
correction is dominant over the effective field theory ones (k/r? versus 1/r3), and the sub-
leading terms are oscillatory, which is difficult to interpret physically. We suggest that this is
due to the large X expansion being unphysical for the problem under consideration. Recall
that the equations of motion derived from the effective action predict the expectation values
of quantities such as the metric. From the effective average action, which is defined by
a functional integral with an infrared cutoff at scale k, we would expect to obtain, if k is
treated as fixed, equations of motion for “approximate expectation values”, that do not include
the information about low frequency field modes. These might be a good approximation in
the kr < 1 regime (where r is the radial coordinate for us, or more in general the greatest
physical length scale involved in the problem) but we would expect the results to be incorrect
for kr > 1. If this reasoning is accepted, the result in (4.65) is not physical, since it is obtained

as a large r expansion for fixed k; the physical quantum correction to the potential is to be
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obtained instead from the k£ — 0 limit at fixed 7.

Taking the limit £ — 0 in (4.60) in I gives zero up to a purely local term involving
§'(r). In Iy, this results in a similar local term plus 437 /(60r?). This latter term implies a
nontrivial long-distance correction for the Newtonian potential

or) =~ {1 +

r

13Go } (4.66)

3072

(because 6Gy, obtained by integrating the flow the flow of Gy, is ~ Gok? and thus vanishes
at k£ = 0). This is the same result obtained in effective quantum gravity for the contribution
of the graviton and ghost vacuum polarization diagrams [82, 114]. Since we have treated
the matter source in a purely classical way, we are not obtaining the terms due to vertex
corrections®. This confirms that the effective field theory quantum corrections to Newton’s
law are indeed recovered in the right limit from the effective average action.

These remarks above concord with the general philosophy of interpreting the EAA as a
useful device to follow the flow of the renormalization group (and hopefully discover a UV
fixed point) but not as an action from which physics can be directly extracted by solving
equations of motion: these, predicting expectation values of observables, should be computed
from the k = 0 usual effective action. On the other hand, there have been several attempts
[115, 117, 118, 119] to extract physics from the effective average action itself by identifying
k with an inverse distance scale of the spacetime under consideration, instead of as a fixed
parameter. For a static and spherically symmetric situation like the one we are considering
(with just a point source) this proposal means k = ¢/r with ¢ a numerical constant. (Note
that above we argued that the effective average action with cutoff k is to be trusted only for
k < r~1, whereas this approach conjectures that it can be trusted only for k& = (r='.). If we
do this replacement before computing I; and I, we see that in the case of a point source the
variable x is just 2(, and so all the functions of it are numerical constants. The Newtonian

potential would therefore be

¢(r) =

_ MG {1+£—G°} : (4.67)

r r?

with £ a numerical constant (the dGj term gives a similar contribution, as has often been
noted). This agrees with the general form of the effective field theory correction discussed

above. However, this agreement in form is rather trivial, following just from dimensional

3A local term with ¢'(r) is also found in effective quantum gravity, with an arbitrary constant involving
the renormalization scale u.
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analysis and the lack of other length scales in the problem once we make the conjectured
identification for k. A more interesting test of the conjectured identification in the case of an
extended source with spherical symmetry, such as a spherical star. Here a naive application
of this conjecture that equates k with the inverse distance to the center of the star, at the
level of (4.60), leads to

th(X) _ _4C2§2 /d3$/ p(XI> f << |X B X/|) : (468)

T |x — x/| 2 r

which is obtained from (4.60) by making the replacement k = (/r, changing variables from p
to v = pr, and defining f as the result of the v-integrals I; + I, with 1/r? taken out. On the

other hand, the result obtained from effective theory (and from our formulas as £ — 0) is

hiy(x) = 367 / iy LX) (4.69)

157 |X — X/|3

These two formulas agree asymptotically for large r (up to a factor related to (), but will
in general be different at closer distances where results depend on new length scales implicit
in the function p(r) for the density within the star (see [120] for a discussion of how (4.69)
depends on this).

The qualitative agreement with effective field theory for a general source could be obtained
if (instead of r~!) we identified k with |x — x'| ™" before integrating over x/, in effect defining
a k(x,x’) as the inverse distance to each point source x’ instead of the inverse distance to
the global center of symmetry of the spacetime. We leave open the question of whether this
kind of identification can be motivated or justified. The alternative position that we are
suggesting is that the equations of motion derived from the effective average action are to be
trusted only in a small k regime, and ultimately are only correct when k£ — 0 and we recover
the usual effective action.

It would obviously be desirable to go beyond our approximations. One-loop computations
of the flow of higher order non-local terms seems possible in principle by extension of the
methods of this thesis, though computationally very intensive. On the other hand, going
beyond the one-loop approximation and obtaining information about the non-perturbative
flow is a difficult and open research question. A first step towards it would be to improve
the running of the form factors by computing the beta function not from the bare action but
from an action with running G and Ay, which can be found from the beta functions of the

previous section.
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We now switch our attention to two dimensions where, due to the fact that the Ricci
tensor is proportional to the Ricci scalar R, = %gWR, there is only one structure function

at the order curvature square and this is given by the following linear combination:

File) = Fuu(e) + 5 Fos(a). (4.70)

The flow equation for Fj(x), given in (4.239), can be written as in (4.44):

0, Fi(x) = 873ng (%) . (4.71)

Note the overall power of k=2 in (4.71). If we employ the optimized cutoff shape function
and if we use the parametric integrals of Q-functionals from Appendix A, we find for the

function g(u) the following form:

glu) = 161u2 [—(12 +27u)y /1 — % + 11u, /ﬁ] O(u— 4)
(4+9u)q/1—%—9u,/uﬁ4]6(u—4). (4.72)

In equation (4.72) we separated the contributions coming from the graviton trace, in the

L1
4u?

first line, from the ghost contribution, in the second line. Note that now there are no UV
divergences.
Integrating the flow from the UV scale A to the IR scale k and shifting to the variable

u = x/k?* gives:

xz/k?
Fi(z) = Fa(z) — 1617rx //A2 dug(u). (4.73)

The integral in (4.73) is finite for A — oo, so we can take the limit and impose the boundary
condition Fy(x) = 0, to find:

Fle) = 1 {\/x/k2—4(13x/k’2+2)_1 x 210g%<1+ 1_%)

167 4(z/k?)3/2 TR x
Va/k?—4(13z/k?* + 2) )
_ e } O(x/k* —4). (4.74)

The first line in (4.74) is the graviton contribution while the second line is the ghost con-

tribution. We see that the first logarithmic term in the graviton contribution to Fj(z) in



CHAPTER 4. FUNCTIONAL RG FOR QUANTUM GRAVITY 174

(4.74) do not have a finite limit for k& — 0. The ghost term flows to 22—, which is know to

be the correct contribution to the effective action of two dimensional quantum gravity from

the ghost sector. Usually this result is obtained employing the conformal gauge-fixing and

considering the relative conformal field theory [44, 81|. The ghost effective action has the

same form as the Polyakov effective action for matter fields that we calculated in section

2.3.3 of Chapter 2, but contributes with a different sign. Also, the first term in the graviton
9

contribution has a similar form and flows to —92?, which is far from being the known correct
1

967"
We have learned that the ghost sector is correctly described in our formalism, at least in

answer —

d = 2, and we can speculate that it will be possible to treat quantum gravity implementing the
EAA formalism only on the gravitational part of the effective action. This two dimensional
example clearly shows that to be able to calculate the effective action in quantum gravity we
must consider the full non-perturbative flow equation where we insert the structure functions
Fi(z) on both sides of the flow equation (4.13) for the gEAA. Knowing that the complete
effective action for two dimensional quantum gravity has precisely the form (4.43), this will
represent an exact truncation and is thus a crucial test for the formalisms to reproduce
the results of two dimensional quantum gravity. This is a very promising avenue of future
research [122].

4.3 EAA for quantum gravity

In this section we extend the construction of the background effective average action (bEAA),
done in Chapter 3 for non-abelian gauge theories, to quantum gravity. In Chapter 3 we
employed the background field method to introduce a cutoff action in such a way to preserve
gauge invariance and the simple one-loop structure of the flow. Here we have to preserve
diffeomorphism invariance, or invariance under general coordinate transformations. If we
consider only small fluctuations around a fixed background, it is clear that we can use the
fixed background metric to construct the differential operator to use to separate the slow from
the fast field modes. The problem arises as soon as we start to consider strong fluctuations and
quantum regimes where a background does not exist any more. In the quantum gravitational
contest, one usually speaks about “background independence” as the concept that any theory
of quantum gravity needs a formulation where no privileged metric is employed. In the
functional RG contest, background independence is realized through the background field

method, where an auxiliary arbitrary background metric is introduced together with the
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fluctuation metric and the cutoff operator in constructed with the former. In this way, the
one-loop structure of the flow is preserved and a functional of the two metrics is defined.
Only when we equate these two metrics we arrive at a diffeomorphism invariant functional
that plays the role of the effective action for quantum gravity.

The metric that we integrate over in the path integral is linearly split as the sum of the

background metric g,, and the fluctuation metric h,,:
G = Guv + Py - (4.75)

The cutoff action is taken to be quadratic in the fluctuation metric, while the cutoff operator
is constructed with the background metric and can be, for example, the covariant Laplacian.

The general form of the cutoff action is:
o1 — _
ASilgigl = 3 / d"z\/g Ry[gle - (4.76)

Here ¢ = (h,C,C) is the field multiplet combining the fluctuating metric with the ghost
vector fields C,,, C*. The background effective average action (bEAA) is defined introducing
in the integro-differential equation for the background effective action, defined in (D.98) in
Appendix D, the cutoff action (4.76):

e Trleidl = /DXeXp (—S[X+<,0;g] — ASi[x; 9] +/ddﬂf\/§F;§1;0)[w;g]x) : (4.77)

where the field multiplet x has zero vacuum expectation value (x) = 0. The bare action in
(4.77) is defined in equation (D.95) of Appendix D and reads:

Slw; gl = S[g + h] + Syplh; gl + Senlh, C, C; 7. (4.78)

The background gauge-fixing condition is f,[h, g] = 0, where

fulhng) = (5;;@5 - §—aﬂm) hos (4.79)

while the background gauge-fixing action reads:

Syhig) = 5 [ devgflbglflh.g). (4.80)
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Here o and (3 are gauge-fixing parameters. The ghost action in (4.78), related to the gauge-
fixing condition (4.79), is readily found to be:

Sonlh, G, C:g] = — / F2/G O (V00 V4 V9 Ve — BV,0aV) 7. (481)

The bEAA defined in this way is invariant under combined physical plus background diffeo-
morphisms:

(6 +0)Tklp; 9l = 0. (4.82)

We can now define a diffeomorphism covariant functional, that we will call gauge covariant
EAA (gEAA), by setting in the bEAA the fluctuation multiplet to zero ¢ = 0, or equivalently
Guv = G and éu =Cr=0:

Tilg] = T4[0,0,0; g]. (4.83)

This is equivalent to the parametrization of the bEAA as the sum of a functional of the full
quantum metric g, = Gu + hyw, the gEAA, and a “reminder functional” T';[p;g] (rEAA)
which remains functional of both the fluctuation multiplet and the background metric sepa-
rately:

Tile; g = Twlg + b + Telp; 9] (4.84)

The gEAA (4.83) in this way is invariant under physical diffeomorphisms:
0Tk[g] =0, (4.85)

while the rEAA is invariant under simultaneous physical and background diffeomorphisms
as the full bEAA.

4.3.1 Exact flow equations for the bEAA in quantum gravity

We will follow the derivation of the flow equation for the bEAA done in Chapter 3 for non-
abelian gauge theories. Differentiating the integro-differential definition of the bEAA (4.77),
with respect to the “RG time” t = log k/ko, gives:

e THag T [0 g] = /DX <8tASk[X;g]—/ddg;\/_3t “leig }X) X

w o= Slotx:al—ASk g+ VAT sl (4.86)
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Expressing the terms on the right hand side of (4.86) as expectation values, using relation
(B.2) form Appendix B and (4.76), we can rewrite (4.86) as following:*

aﬁd%g]==<@ASWmd%—/ﬁ%w@&F?mWWHXM

= %/ddx\/E<XAXB>atRk,BA[g]' (4.87)

In (4.87) we used the vanishing vacuum expectation value of the field multiplet (x4) = 0
and the symmetry of the cutoff kernel in the indices A and B. The two-point function of
the fluctuation field can be written in terms of the inverse Hessian of the bEAA, where the

functional derivatives are taken with respect to fluctuation fields, plus the cutoff action:

-1

(xaxs) = (F;(f;o) ;3] + ASZV [ Q]) (Fff;o) [p; 9] + Ry, [QD o (4.88)

Inserting (4.88) into (4.87) and writing a functional trace in place of the integral, gives:

Ol g = T (TEeig] + Rulgl)  ORilg). (4.89)

The flow equation (4.89) is the exact flow equation for the bEAA for quantum gravity [87]
and is the main result of this section. The flow generated by (4.89) has the same general
properties as the flow for non-abelian gauge theories described in Chapter 3. As we did

before, if we define the “regularized propagator” as
Al — (@0 L N
Gilp; gl = (T lws gl + Relg]) (4.90)
then the flow equation for the bEAA (4.89) can be rewritten in the compact form:
L1 _ _
O:Lk[w: 9] = 5Tr Gil: 90 B3] (4.91)

As for the other cases, the flow equation has a one-loop structure and can be derived as
an RG improvement of the one-loop bEAA calculated from the integro-differential equation
(4.77).

Using (4.83) and (4.91) we can readily write down the flow equation for the gEAA:

oTx[g) = 0.T'1[0; 9] = %Tr G[0; 9]0 R [g] - (4.92)

4We introduce here the the multiplet indices A, B, ...
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Note that F,(f;o) [0, g] is “super-diagonal” if the ghost action is bilinear in the ghosts and in
this case we can immediately do the multiplet trace in (4.92). Following the same steps of

done in section 3.3.1 of Chapter 3, we find the flow equation for the gEAA in its commonly

used form:
= 1 (2,0,0,0) _ A\t _
olwlg] = JTr (Fk’ 700,0,0; 9] + Rk,hh[g]> O Ry nnlg] +
(0,1,1;0) _ S\ L B
—Tr (Fk [0,0,0; g] + Rk,C‘C[Q]) O Ry, ccl9] - (4.93)

In (4.93) we defined the cutoff kernels by the relations Ry p,[g] = AS,EQ’O’O;O) [9] and Ry, cc(g] =
AS,(gO’l’l;O) [g]. As in the case of non-abelian gauge theories, it is important to realize that equa-
tion (4.93) is not a closed equation for the gEAA, since it involves the Hessian of the bEAA
taken with respect to the fluctuation metric and the ghost fields. This implies that for k& # 0
it is necessary to consider the flow in the extended theory space of all functionals of the fields
Py C_’“, C” and g, invariant under simultaneous physical and background diffeomorphisms,
i.e. the flow of I'y[h, C,C; g
The flow equation for rEAA can be deduced from directly from (4.84):

atfk[% g] = 3tfk[§ + h] — Oy, [@? g] . (494)

In section 4.3.3 we study the flow equations for the running proper-vertices of both the gEAA
and the bEAA starting from equations (4.89) and (4.93) respectively.

4.3.2 Modified Ward-Takahashi identities

As for non-abelian gauge theories, the bEAA in quantum gravity obeys modified Ward-
Takahashi (WT) identities.

The bEAA is invariant under combined physical § and background ¢ gauge transforma-
tions (4.82). The gauge-fixing action (4.80), the ghost action (4.81) and, more importantly,
the cutoff action (4.76) spoil physical diffeomorphism invariance of the bEAA. This means
that the bEAA should obey modified Ward-Takahashi identities under physical diffeomor-
phisms [87].

Physical diffeomorphisms act linearly on the fields in ¢ and so we have (0¢) = dp. We
can write them as d¢ = €2G4¢ where G4 are the symmetry generators and the €4 are the

parameters of an infinitesimal diffeomorphism (see Appendix D for more details).
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Following the same steps done in section 3.3.2 of Chapter 3 we find the following relation:

GUklp; 9] = (G (Sgrlh; ] + Sgnles g])) + %Rk,AB[g]gGk,BA[SOQ gl (4.95)

Equation (4.95) represents the modified WT identity (mWT) the bEAA for quantum gravity
satisfies. The modifying term in (4.95) stems from the introduction of the cutoff, the impor-
tant point is that it vanishes in the & — 0 limit as the cutoff kernel Ry[g] goes to zero. Thus
the standard W'T identity is recovered in the IR and is satisfied by k£ — 0 limit of the bEAA
Tolp; g]. This property is of fundamental importance for the approach, since it shows that a
fully diffeomorphism invariant theory is recovered as result of the integration of the flow.

The gEAA does not depend on the fluctuation fields and we simply have:
Gri[A]=0. (4.96)

Also, the gEAA is invariant background diffeomorphisms 6¢ = é2G4¢ and so:
Gry[A] =0. (4.97)

This implies that the mWT (4.95) is a constrain only for the form of the rEAA.

4.3.3 Flow equations for the proper vertices

In complete analogy to what we did for non-abelian gauge theories in section 3.3.3 of Chapter
3, we derive the hierarchy of equations governing the flow of the proper-vertices of both the
full bEAA and the gEAA.

Starting from the flow equation for the bEAA (4.91) we can derive a hierarchy of flow
equations for the proper-vertices of the bEAA simply by taking functional derivatives with
respect to the fields. Within the background formalism we are employing, we can take
functional derivatives with respect to both the fluctuation multiplet ¢ = (h,,,,C,C") and
the background metric g,,. In this second case, we have to remember that the cutoff terms in
the flow equation depend explicitly on the background metric and so there are new additional
terms in the flow equations for the proper-vertices that are not present in the flow equations
for the proper-vertices of the EAA in the non-background formalism. We will see that these
terms are crucial in preserving the diffeomorphism covariance of the gEAA along the flow.

Taking a functional derivative of the flow equation (4.91) with respect to the fluctuation

multiplet or with respect to the background metric gives the following flow equations for the
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one-vertices of the bEAA:

: 1 :
ory"psgl = —5TrGilesg) 15 lp: 91Cule: 910 Rulg]
. 1 .
orMleig) = —3TeGilesg) (T2 esa) + BO1)) Geles 910 R4lg
1
+5TrGele: 9107, g). (4.98)

Note that in the second equation of (4.98) there are terms containing functional derivatives
of the cutoff kernel Ry[g] with respect to the background metric. Taking a further derivative
of equation (4.98) with respect to both the fluctuation multiplet and the background metric

gives the following flow equations for the two-vertices of the bEAAS:
ar% = Trq, ¢, ' G,0,R, — %Tr G, TGO, R,
ary = Tr@, (r,(f%” + R,(j)) G T®0G,0,R,
—%Tr e (rf’?” + R,ﬁ”) GO Ry — %Tr G T399, R
or® = TGy (07 + BY) G (T + RY) Gror Ry
—%Tr G (T + RY) Grdy R
G Yen (Ff” + R;“) GO, RV + %Tr GO, R (4.99)

Proceeding in this way, we generate the full hierarchy of flow equations for the proper-vertices

F,(C";m)of the bEAA. In general the flow of the proper-vertex Fin;m) involves proper-vertices
up to T\"**™ and functional derivatives of the cutoff kernel up to R\™.

Note that, as they stand in equation (4.98) and (4.99), every equation of the hierarchy
has the same information content as the original flow equation (4.91). To make profit of the
above derived equations, we perform now a Taylor expansion of the two argument functional

['x[e; g], that we express in the following way:%

— = 1 n;m — —
Fk"[(p’g] = Z W/ 7I(c,x1..).xny1‘..ym90w1"‘QO:Bngyl"'gym7 (4]‘00)

n,m=0 1---ZnYl---Ym

5Here, as in several other equations of this section, we omit for clarity to explicitly write the arguments
of the functionals.
5We omit to explicitly write Lorentz indices for clarity.



CHAPTER 4. FUNCTIONAL RG FOR QUANTUM GRAVITY 181

In (4.100) we defined the zero-field proper-vertices:

s NG [0;0]. (4.101)

k,x1..2nY1.-Ym k,21...TnY1-.-Ym

If we evaluate now the hierarchy of flow equations, the first of which are equation (4.98) and
(4.99), for ¢ = 0 and g, = 0, they become an infinite system of coupled equations for the

zero-field proper-Vertices ,ykn;m)

. From the expansion (4.100), we see that this system can be
used to extract the RG running of all terms in the bEAA that are analytic in the fields. In
particular these terms can be of non-local character.

As for the bEAA, we can derive a hierarchy of flow equations for the proper vertices of
the gEAA. In this case the functional depends only on the background metric. Taking a
functional derivative of (4.92) with respect to g, gives the following flow equation for the

one-vertex of the gEAA:

_ 1 .
orlg) = —5TrGul0,3] (12V10,9)+ B [g]) Gil0. glouRilg
1
+5Tr G0, 9101, [g) (4.102)

The second term in (4.102) contains a functional derivative of the cutoff kernel as in the case
of the second equation in (4.98). Actually, equation (4.102) is the same as equation (4.98) if
we set ¢ = 0 and if we consider the relation atr,ﬁf;”[o; gl = 0:Tk[g).

A further derivative of (4.102) with respect to g,, gives the following flow equation for

the two-vertex of the gEAA:

or? = TGy (1Y + BY) Gy (17 + B) Gro
1 |
—S TG (TP + BY ) Lo

| 1
~Tr G, (r,?” + R,(j)) GrO R + 5 Tr GO, R? . (4.103)

As for (4.102), this equation is equal to the last equation in (4.99) if we set ¢ = 0 and if we
use the relation ath);Z) 0;9] = th‘,(f) [g]. As already said, the terms coming from functional
derivatives of the cutoff kernel, that are present in the background formalism but not in the
ordinary one, are crucial in preserving the covariant character of the flow of the gEAA and

of its vertices. As we did for the full bEAA, we can perform a Taylor expansion of the gEAA
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analogous to (4.100) and define the zero-field proper-vertices

A o = Ty 0], (4.104)

k.x1..Tn

to turn the hierarchy of flow equations for the proper-vertices of the gEAA in an infinite
dimensional coupled system for the 7,2”).

As was noticed in Chapter 3, there is a more compact form in which we can rewrite the
flow equations for the proper-vertices we just derived. If we introduce the formal operator
defined as

3 . )
Oy = (Ry, — nkRk)a_Rk ) (4.105)

where here 7, is a multiplet matrix of anomalous dimensions, we can rewrite the flow equation

for the bEAA (4.91) as:
o1 _ _ I = _
0T klp; 9] = 5Tr Gilp; 9]0iRelg] = —5Tr O log Geli; 9] (4.106)

In this way, we can rewrite the flow equation for the one-vertices of the bEAA (4.98) in the

compact form:

. - 1 ~ ) — _
oy Ve A = —5 1o, {F;(f”o) 05 A]Gi[e; A]}
. - 1 = . _ _ _
ore Al = —sTa { (TPl A+ RUIA]) Gulgi A} (@4107)

while the flow equations for the two-vertices of the bEAA (4.99) read now:

. 1~ (- . 1~ (o
ory? = ST, {r}f’mek r}j"’%k} —5Ted, {r}j"O)Gk}
: 1 = ‘ . 1 - .
oI — 5T, { (rﬁ” + R,ﬁ”) G rf””)Gk} ~5Ted, {F,S””Gk}
. 1 = . .
ory? = ST, { (rg‘"” + R,(j’) G (Fff’l) + R,EP) Gk}

—ma (v - RP) 6.} (4.108)

This notation turns out to be useful since the flow equations (4.107) and (4.108) contain less
terms then their counter parts (4.98) and (4.99) and are thus much more manageable when
employed in actual computations. The same reasoning applies to all subsequent equations
(n;m)

of the hierarchy and extend to the flow equations for the zero-field proper-vertices -,

Also, in this case the flow equations for the proper-vertices of the gEEAA are just those for
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the bEAA evaluated at ¢ = 0 and we don’t need to repeat them here. The same applies to
the flow equation for the zero-field proper-vertices ﬁ,i”).

As for non-abelian gauge theories, the flow equation for the zero-field proper-vertices
in quantum gravity can be turned into a powerful computational device to perform actual
computations in the bEAA framework.

The diagrammatic representation of the flow equations for the zero-field proper-vertices
of the bEAA and the momentum space techniques developed in section 3.3.4 of Chapter 3
carry over straightforwardly to the quantum gravity contest here studied and for this reason
we do not repeat their derivation here. Section 3.3.4 can be read at this moment with the

only modification that A, — g,, and by interpreting wavy line as graviton ones. In sections

4.5.6 and 4.5.7 we will employ the flow equations for the zero-field proper-vertices 722’0’0;0)
and 7,530’1’1;0) to extract the RG running of the Pauli-Fierz mass m; and of the fluctuation

metric and ghost wave-function renormalizations.

4.4 Summary

In this chapter we developed the EAA approach to quantum gravity. The main problem in
the construction of the RG flow for gravitational theories is to preserve background inde-
pendence, i.e. the fact that the quantum theory of geometry should be constructed with no
reference to any pre-fixed background metric. The way in which we deal with this problem
is by implementing the coarse-graining procedure using an arbitrary background metric to
distinguish the fast field modes from the slow ones that we never specify. The bEAA so
constructed is a functional of both the fluctuation metric, along with the ghost fields, and
of the background metric. The functional defined by setting the former to zero, that we call
gauge invariant EAA (gEAA), is a diffeomorphism invariant functional of only one metric.
As for non-abelian gauge theories, the diffeomorphism invariance of the bEAA is controlled
by modified symmetry identities derived in section 4.3.2. From the exact flow equation that
the bEAA satisfies we derive a hierarchy of flow equations, that together with the general
techniques introduced in section 3.3.4 of Chapter 3, enables us to project the flow of both
the bEAA or gEAA in any given truncation in which the action is analytic in the fields.
These comprise both local and non-local truncations. The first ones are treated in section
4.2.2.1, where we consider the flow of the cosmological constant and of Newton’s constant
in three different approximations. The novelty is that we close the system that determines

A and 8,G using the anomalous dimensions of the fluctuation metric and of ghost fields
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that naturally enter this system. These anomalous dimensions are obtained by solving a
linear system. The flow in these three different approximations is discussed and compared.
A fundamental result is that the non-Gaussian fixed point, on which the asymptotic safety
scenario in quantum gravity is based, is preserved in this non-trivial extension. We treat also
the running Pauli-Fierz mass. The method used to derive these beta functions is based on
the flow equations for the zero-field proper-vertices of the bEAA, introduced in section 4.3.3,
and enables future extension to cover also the running of the gauge-fixing parameters [122].
Next, we make the first step toward the use of the EAA approach to actually compute the
full effective action by considering a non-local truncation of the gEAA. This is in the spirit
of the curvature expansion already introduced for matter fields in section 2.3.3 of Chapter 2
and in the contest of non-abelian gauge theories in section 3.2.2.2 of Chapter 3. In section
4.2.2.2 we showed how the running structure functions that encode the flow of the gEAA to
order curvature square of the curvature expansion can be used to yield, in the limit £ — 0,
the effective action for quantum gravity first obtained by Donoghue [113]. We investigated
the possible physical interpretation of the gEAA for small but non-zero k. Finally, we looked
at two dimensional quantum gravity and we concluded that it is necessary to consider the
full flow of the structure functions in order to extract the known non-perturbative part of the
theory. The future extensions that are now under reach are a promising avenue of research
[122].

4.5 Appendix to Chapter 4

In this Appendix to the Chapter we expose the derivations of all the beta functions inves-
tigated in the main part of the chapter. In the first section we study the basic curvature
invariants and we calculate their variations and functional derivatives. In the second and
third sections we define a basis of projection operators and we use them to construct the
regularized graviton propagator. In the fourth section we calculate the beta functions of the
cosmological constant and of Newton’s constant using heat kernel techniques. In the fifth
section we compute the RG running of the curvature square structure functions induced by
the Einstein-Hilbert operator [ V9R. In the following two sections we calculate the beta
functions for the fluctuation metric Pauli-Fierz mass and for the wave-function renormaliza-
tion of the fluctuation metric Zj, ; and of the ghosts Z¢ appearing in the beta functions for
Ay and G,.
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4.5.1 Variations and functional derivatives

We start introducing the basic curvature invariants. The basic invariants in the Einstein-

Hilbert action are the volume and the integral of the Ricci scalar:

Ihlg] = / d®z\/g Lg] = / d'z\/gR. (4.109)

Note that in d = 2 the integrand of the Ricci scalar is proportional to the Euler characteristic

for a two dimensional manifold (D.71):

X(M) = 477/ d*x\/gR. (4.110)

Up to two curvatures, or four derivatives, the invariants we can construct are:

Irilg) = / d®z/gR? Irolg] = / d®z\/gR,, R"

Lslg] = / d®w\/GR, s R P Lulg] = / d*z/g0R. (4.111)

The last invariant in (4.111) is a total derivative and is usually dropped. In d = 4 the three

curvature square invariants are not independent since the linear combination
E = RasR"*® — 4R, R"™ + R?, (4.112)

is the integrand of the the Euler characteristic for a four dimensional manifold (D.77):

x(M) = 3217T2/Md4x\/§E. (4.113)

Relation (4.110) and (4.113) are proven in Appendix D using heat kernel methods. We define

the invariant:
Iplg) = /dd:c\/ﬁE. (4.114)

There is another interesting combination of the four derivatives invariants, this defines the
Weyl conformal tensor (D.60), the square of which is (D.61):

C«a,B;u/ — Ra,@uuRaﬁwj . R Rw/ 2

d 5 —(d_1)<d_2)32. (4.115)

Caﬁ/w
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The Weyl tensor is completely traceless and the action

Iclg] = / d*2\/g Copu OO, (4.116)

is invariant under local conformal transformations, i.e. Ic[e“g] = Ic[g] for any o(z). See
Appendix D for a proof.

We now calculate the variations of the basic invariants just defined. We define h,, = dg,.
to be the first variation of the metric tensor. The first variations of the inverse metric can

be deduced from the following relations, valid for any invertible matrix M,

MM =1 = SM*M+ MM =0 = Mt = —M'6M M.

(4.117)
Setting M, = g,, and dM,, = hy, in (4.117) gives:
0g° = —g*g" 6 g = —h7 . (4.118)
The second variation can be calculated iterating (4.118):
529aﬁ — —5ga“g5"hw _ go‘”(sgﬁ”h,w
= ga)\gupgﬁyh/\ph;w + gaugﬁ)\gyph/\ph;w
= 2h°Mn) . (4.119)
The third variation is similarly found to be:
§g*? = =3hehihP . (4.120)

Combining (4.118), (4.119) and (4.120) gives the following expansion for the inverse metric

around the background metric g,

1 1
9% = g7+ 69" + 50% + 50°9 + O (n)

= g% = 1 + WK~ hghbhP + O (') . (4.121)

It is not difficult to write the general n-th variation of the inverse metric tensor, it can be

proven by induction that:

e O R e (1.122)
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The variations of the determinant of the metric tensor can be easily found using the following

relation, valid again for any invertible matrix M,
logdet M = trlog M . (4.123)
A variation of equation (4.123) gives:
§ det M = 0" M = det M btrlog M = det M tr (M ~'6M) . (4.124)

Inserting in (4.124) M, = g,,, and dM,, = h,, brings to

1 1
09 = 5\/§9a659a6 =5V9h. (4.125)

The second variation follows easily:

1 1 1 1
PG = VIS, ~ 330 S = VG ({1~ 3Nan) . (4126)

For completeness the third variation of the metric determinant is found to be:

1
Vg =19 <§h3 — zhhwh‘“’ + hw,h”ahj) : (4.127)

We don’t have a closed formula for the n-th variation of the square root of the determinant
of the metric, but for any given n these can be easily determined. We find now the variations
of the Christoffel symbols, defined in equation (D.31) of Appendix D:

« 1 «
Cpw = 59 (ugvs + 05 = OpGuw) - (4.128)

Using geodesic coordinates, it can be proven that the first variation of the Christoffel symbols
is:

(6% 1 (6%
05, = 5% (Vs + Volys = Vhy) (4.129)

More generally we have the fundamental relation, that can again be proven by induction on

n, for the n-th variation of the Christoffel symbols:

1
0T, = 5 (0"719"") (Vihus + Vihus = Vishy) (4.130)

pv

All the non-linearities of the Christoffel symbols are due the inverse metric of which we know
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exactly the n-variation (4.122). Introducing the tensor:
1
Guva = 3 (Vihwa +Vihue — Vahu) (4.131)
we can rewrite the n-th variation of the Christoffel symbols simply as:
5T, =6""g" Gus. (4.132)

Note that the tensor (4.131) is symmetric in the first two indices G0 = G, puq. In particular

we have the useful contractions:

1 1

We turn now the variations of the fundamental building block of all gravitational invariants:

the Riemann tensor. It is defined in equation (D.42) of Appendix D:
o o e a A a A
R,Blul/ — a“F v a,/]:‘ﬁ“ + FAVFﬁ:U' - F}\Hrﬂy . (4134)
The Ricci tensor and the Ricci scalar are defined by the following contractions:

Rs, = RS R=g¢"Rg,. (4.135)

Bav

All the properties of the curvature tensors are derived and reviewed in Appendix D.
The n-th variation of the Riemann tensor is found directly from the definition (4.134)

and using the binomial theorem for the variation of a product:

n—1

n po nyo nyo n n—ipo SITA n—ipa SITA

0" RS, = V,0'TG, — V,0"T5, + ) ( i ) (6" T0\6'Ty, — 6" 'Te\6'Th,) - (4.136)
=1

This relation together with equation (4.130) or (4.132) and (4.122) gives us, in a closed
form, all possible variations of the Riemann tensor. This is a fundamental result. The
n-th variations of the Ricci tensor (4.135) are obtained straightforwardly from (4.136) by
contraction:

0"Rg, = 0" RS, - (4.137)
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The n-variation of the Ricci scalar follows from (4.135) and is:

SR=" ( " ) " g6 Ry, . (4.138)

i=1 \
We can now study some particular examples. From the fundamental relation (4.136), for
i =1, we find
0Rg,, = VG5, — VG5, .

Using (4.137) and the second relation in (4.133) gives the first variation of the Ricci tensor:

OR,, = VaGo —V,G2
1

= 5 [Va (Vb + Vb = V2hy) = Vo V,uh)
= % (=Y = Vi Vuh + VaVuhi + VoV, h5) (4.139)

Combining (4.139) with (4.138) gives the first variation of the Ricci scalar:

R = ¢"oR,, + 09" R,,
= —V?h+ V*"Vh,, — h,R"™. (4.140)

From (4.136) with n = 2 we get the second variation of the Riemann tensor

0 R, = =V (K Go) + Vi (7 Gog) +2 (G, G, = G1,G) (4.141)

Buv

while the second variation of the Ricci tensor is again just the contraction of (4.141):
Ry = =V (h*Ga) + YV, (B Ggua) + 2 (G25GE, — G2,GPL) (4.142)

The second variation of the Ricci scalar is given in terms of (4.118), (4.119), (4.139) and
(4.142):
R = 0°g" Ry + 209" SR, + " 0° R, . (4.143)

We can now find the variations of the curvature invariants [;[g]. Using (4.125) and (4.126)

we find:

1 1 1
d1o[g] = §/dd:1:\/§h 6*Iolg] = /ddx\/g (Zh2 - 5h“ﬂhaﬁ> . (4.144)
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Using (4.125) and (4.140) we find:

1
onla] = [ e GVaR-+ VGR) = [ dayi (T4 OV b b 4 R
(4.145)

For the second variation we have:

§*L[g] = / d*z (6°\/gR + 26\/g6 R + \/g0°R) , (4.146)

the first two terms in (4.146) are rapidly evaluated using (4.125), (4.126) and (4.140). The

last term in (4.146) can be expanded as:

/ d®r/g0*R = / d*x\/g (829" Ry + 269" 0 R, + g"6° R, (4.147)

Again, the first two terms in (4.147) need just the relations (4.118), (4.119) and (4.139), the

last can be written employing (4.142). Modulo a total derivative, we have:
/ d®z\/gg" * R, = 2 / d'z\/g (GL,G™ — G*JGR ) | (4.148)
using in (4.148) the relations (4.133) and the product

GG’ = = (=VhagV b + 2V BN o hg,) |

] =

we find
[ R, = 2 [t (@67 - 67560)
= /ddm\/ﬁ (Vuh“’jvl,h — %VuhV“h
+%V“hwvah‘“’ —~ vahﬂ"vuhm> . (4.149)
Inserting in (4.146) the variation (4.147) and (4.149) finally gives:
8?hLlg] = / d'z\/g l—%hVQh + %h“”VQh,w — WN GV b 4 DN byt

1 1
+2h" WS Rye, — RR™ hy,, + (ZhZ - §h"‘ﬂha5) R] : (4.150)
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Commuting covariant derivatives in the third term of (4.150) as
VoV, he =V, Vo he + Ruoh® — Raush®”
we can recast (4.150) to the form:
1 1
§Lg] = /ddx\/ﬁ {_§thhw + EhAh — N,V ohy + hVEV Ly,
1 1
+R* RS Ryo + BB Roypy — hR* By, + (ZhZ - 5hwﬁh@ R} , (4.151)

which can be later combined with the gauge-fixing action. It is straightforward now to
calculate higher order variations of both the actions Iy[g] and I;[g], since their variations
can always be reduced to combinations of variations of the inverse metric, of the metric
determinant and of the Christoffel symbols, which are all known exactly. In the same way,
we can easily calculate the variations of the higher curvature invariants (4.111). We will not
do this here since, in this thesis, we will concentrate to truncations where only variations of
Io[g] and I,]g] are needed.

The background gauge fixing action (4.80) is already quadratic in the metric fluctuation,
when expanded reads:
82

1
Srlhi gl = 5 / d'z\/g (—hwvuvahg + BhV VY hy,, + ZhAh) . (4.152)

Combining (4.152) with (4.151) gives:

—151[]+S [hyg] = L g Ly, - 1 1—5—2 hAh
ROhldl+ Syslhigl =5 [ v | ey 2

- (1 - 1) VAN (1 = ﬁ) hV*V" Ry

(6] 0%

B hE Rye — W WP Ry + hR™

1 1
- (th - 5haﬂhag) R} : (4.153)

We will use (4.153) in section 4.5.4 to construct the Hessian’s needed in the flow equation
for the bEAA. Note that the gauge choice a = = 1 diagonalizes the Hessian (4.153).
From the variations just obtained we can calculate all the functional derivatives of the

previous defined invariants by employing the following relation between variations and func-
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tional derivatives’:

5<">(...)(x):i‘ / [ @) (@1, e ) Py (1) P, (20). (4.154)

n!
Using (4.154) we can derive all the gravitational vertices needed in the flow equations for the

zero-field proper-vertices used in sections 4.5.6 and 4.5.7.

4.5.2 Decomposition and projectors

In this section we study the different degrees of freedom that are contained in the fluctuation
metric, we understand which degrees of freedom are physical and which are pure gauge. We
use this knowledge to construct the projector basis that we will use in the next section to
construct the regularized graviton propagator.
We start decomposing the metric fluctuation in transverse h/, and longitudinal A%, com-
ponents:
huw = hl,, + h: (4.155)

pv

T

j2%

with the following transversality condition V#h’ = 0. The longitudinal part can be written

in terms of the vector §, as:
Wt = V.6 + V6 = V8 + V8 +2V,V,0. (4.156)

In (4.156) we decomposed the vector into a transverse 55 vector and the gradient of the scalar
oas, = fg + V0, with the transversality condition V“fg = 0. We can extract the trace
of the fluctuation metric

h=g"hu = g"hl, — 20, (4.157)

writing the transverse component of h,, in the following way:
1
Moy = Py + 0 (h+ 200) (4.158)

. TT . . . v TT . .
with %, the transverse-traceless metric satisfying g"“h,,, = 0. Inserting (4.156) and (4.158)
in (4.155) gives:

1
huw = hly + V&8 + V.6 +2V, V0 + ng(h +2A0). (4.159)

"We use the convention [ = [ d%z,/g,.
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In (4.159) the metric fluctuation is decomposed into a transverse-traceless symmetric tensor, a
transverse vector and two scalar degrees of freedom, the trace and the longitudinal component
of the vector. To see which of these degrees of freedom are physical and which are pure gauge
we can insert in (4.159) the gauge transformation of the metric fluctuation parametrized by
the vector y,,:

6hyw = VX + Voxu = Vux, + Vux, +2V,.Vox . (4.160)

In (4.160) with decomposed the gauge transformation vector as x, = XE+VMX with as usual
V#x;. = 0. Matching (4.160) to

1
Shy = 6hl) 4+ ¥V, 060 +V,6¢8 + 2V, V, 00 + F9u(h +2000),
we find:

Shy, =0 80 =X, do = x 5h = —2Ax . (4.161)
These are the gauge transformation properties of the metric fluctuation components. We see
that the transverse-traceless symmetric tensor is a physical degree of freedom, which can be
associated with the graviton. Also the following combination of the two scalar degrees of
freedom

S=h+2A0, (4.162)

is gauge invariant 65 = 0 and is as well physical. It correspond to the conformal mode that in
the path integral formulation of gravity is dynamical as the graviton. Instead, the transverse
vector £ and the scalar field o are pure gauge fields [81].

When we will work with the flow equations for the zero-field proper-vertices of the bEAA
in sections 4.5.6 and 4.5.7, we will work in flat space where the decomposition (4.159) natu-
rally gives rise to a set of projectors operators that we will use as a base to express the reg-
(2000) 1 R[d] where 7,22’0’0;0) = I‘,?’O’O;O) [0,0,0;4].

Using the properties of these projectors we can then easily obtain the regularized gravitational

ularized inverse gravitational propagator ~y
propagator Gg[0;d] = (7,&2’0’0;0) + Ry, [5])7 . The basic longitudinal projector is defined by
P = gr9” /5% and projects out the longitudinal component of a vector field, 6" — P+

instead projects out the transverse component of a vector field. The graviton is the transverse



CHAPTER 4. FUNCTIONAL RG FOR QUANTUM GRAVITY 194

part of the traceless component of the metric, in flat space we can define it as follows:

1 (6% (0} 1 (0% (0%
= [ R 0 R+ 5 0 B (02— R2) +
1
Td-1 (9w — Bu) (gaﬁ - Paﬁ)} hag
N 1,
= |i6l0;5 - _d — 1gm/g B:| haﬂ ) (4163)

where we defined g* = g" — P*”. We also have the following relations for the scalar degrees

of freedom:

1 d 1
S = 71 “hyy Uo = -1 (Pkl - 39“) P - (4.164)

Inspired by (4.163) and (4.164) we define the following projectors:

pprad . juos _ ﬁgwgaﬂ

s _ %(g/m Vi 4 e pre g grapu 4 gub pie)

Pg? = di "5

praB —  pu paf

Pt = \/lel (g PP + P gor) . (4.165)

The projectors in (4.165) have the following traces (where we use the notation A = pr and

B = af and hats mean contractions):

& —d-2 15
PP = ———— PP =0
PP =d-1 Pt =0
PiE =1 PP =d—1

P&B — ¢ PIB —9vd—1 (4.166)
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and satisfy the following relations:

[Py + P+ Ps + P,? = gres

v,af
[(d —1)Ps + P, + \/ﬁPSU} TS e

pvef3
[2Pa +d — 1PSU} = PP 4 prges
v, 1 a pv, va va v ey
[P1+2PU]M”8 = 5(gl‘ Pﬁ_f_gﬂﬁp +g puﬁ+gﬂpu)
prveb - — - pupal (4.167)

We can also introduce the trace projection operator as follows:

prval 1 guugaﬁ

4.168
d ? ( )

and from (4.167) this can be expressed in terms of the other projection operators as®:

d—1 1 d—1
P= P -P, Ps,, 4.169
d s+ p + P s ( )
so that
1 d—1 d—1
1-P=P,+P,+-Ps+ —P, — Ps, . (4.170)
d d d
The non-zero products between these projection operators are:
PSPSJ + PUPSU - PSO’ PSPSU - PSO'PO'
Ps,Ps=P,Pgy, Ps,Ps, =Ps+P,. (4171)

There is a useful isomorphisms that encodes (4.171) and that can be used to simplify the

operations with these projectors. This reads:

1 0 0 0 01
Ps — P, — Ps, — ) (4.172)
0 0 0 1 10

The general structure of the inverse propagator that we will encounter in the next section is
as follows:
M = Py + MPy + AsPgs + APy + Ao Pso (4.173)

8We will sometimes suppress indices for notation clarity and we will use boldface symbols to indicate
linear operators in the space of symmetric tensors.
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We can invert (4.173) to obtain:

_ 1 1 >\0' )\S )\SO'
M'!'=_—P,+—P P P, - — 27—
2 + 1t s+ Nohy — AL

Py, . 4.174
Ao A\ Ashg — A2, Ashg — A2 5 ( )

g

The scalar part of (4.174) has been derived by using the isomorphisms (4.172) in the following

way:

-1
s Moo
(AsPs + AP, + As,Ps,) ' — ( S )

/\Sa )\o
o 1 /\U _/\SU
B )\S)\O' - A%o’ _)\Sa )‘S
1
—— (APs+ AsPy — Ao Psy) -
- )\SAU—AZSU( s+ As soPso)

Equation (4.174) is the fundamental relation used in the next section to construct the regu-

larized graviton propagator.

4.5.3 Regularized propagator

In this section we construct the regularized graviton propagator that enters the flow equation
for the bEAA for quantum gravity. We will use the flow equations for the zero-field proper-
vertices of the bEAA, 71(370’0;0) and 7,(60’1’1;0), to calculate the running of the wave-function
renormalization of the fluctuation metric, of the fluctuation metric Pauli-Fierz mass and of
the ghost wave-function renormalization in section 4.5.6 and 4.5.7. In both cases we need the
regularized graviton propagator evaluated for flat background metric. For the truncations
we are considering in this chapter, we need the functional derivatives of the basic invariants

(4.109) evaluated at g,, = 0,,. In momentum space, these are given by the following relations:

2 LV, 1 vV, 1 vV
](g )(p,—p)’ af _§5u . B_,_Zgu g B
1 2 vV, vV, 1 vV, 1 /82 vV
—§ff M(p, —p)"™ " + Sy (p, —py = T - 3 (1 ~ 50 P’y g’
1 1 vV v V_
-7 (1 - 5) (9" "D + g""p"p

+g"p"p” + g p'p*)
1

/6 v (0% L,V
+5 (1 - (g™ p*p° + g™ p'p”) . (4.175)
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where in the second line we added the contribution from the gauge-fixing term (4.152). Note
that the second relation in (4.175) agrees with the variation (4.153) if we evaluate it on flat
momentum space. We can now write down, in momentum space, the Hessian of the bEAA
we are considering using the projection operators introduced in the previous section. We find

the following form:®

. 1 1
M (p, —p) = Zh{é(p2+2mi—2/\) Py + (ﬁpumi—/\) Py
d—2 (d—1)3 A 2— ) A

2 dov 2 4o 2

d—1 {ﬁ(ﬂ—
2 2c

2
>p2 + 2m3 + A] PSU} : (4.176)

It is now the moment to chose the tensor structure of the cutoff kernel. Here we will consider
the following form:
d—3 1 vVd—1

Pg+ -P, —
5 t5Tt3 9

1
Rk[(;] = —Zh |:P2 +P1 -

5 Psa} R (p?), (4.177)

that corresponds to the choice that we will make in the next section when we derive the beta
function of A and G. The inverse regularized graviton propagator can thus be written by
summing (4.176) and (4.177):

(2,0,0;0

A B0 L RLO] = Zn [12P2 + MP1 + 75Ps + YsePss + 10 Ps] | (4.178)

where the various spin components in (4.178) are:

1 1
Y (p?) = 5(192 —2A) +mj, + §Rk(p2)
1
n(p?) = %ﬁ — A+ mj, + Re(p?)
d—2 (d—1)8 d—3 d—1
2 B 2 5 2 2
15(p7) = [ 5 T | P dmh A+ 1 Ri.(p7)
o _ (2-8)72, A d-1_, ,
Yo (p°) = i P53ty Ry (p”)
—9 A
750(])2) = d—1 [ﬁ(ia )p2+mi+§} . (4179)

9In this section as in the following we will omit to write the k£ dependence of the running coupling constants
for clarity.
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The regularized graviton propagator is defined as the inverse regularized Hessian of the bEAA,
i.e the inverse of (4.178):

. -1
G[0; 8] = (7,970’“’0) + Rk[é]) . (4.180)

Using the isomorphism described in the previous section to invert (4.178) we find the following
general form:

Gk[07 5] == GQPQ + G1P1 -+ GsPS + GSUPSU + GUPU R (4.181)

together with the following spin components:

Ga(p?) = P 1 2m? _22/\ + Ri(p?)
2¢
Gi(p®) = p? + 2a[mi — A+ R(p?)]
fYU
Gs(p®) = W
S
G.(p*) = 5T — 7
Gsalp?) = — . e

Equations (4.181) and (4.182) represent the general for of the regularized graviton propagator
on flat space for general values of A, my, a and .

There are particular gauge-fixing parameter choices that simplify the graviton regularized
propagator. One case, that correspond to the gauge used in sections 4.5.4, 4.5.6 and 4.5.7, is

the choice @« = § = 1. In this case we have:

2
Gk[O, (5] = (1 — P) GTF,k(pz) — mP GT,k(p2> 5 (4183)
where P is the trace projector (4.169). In (4.183) Grpy and Gry are, respectively, the
trace-free and trace parts of the regularized graviton propagator and are defined in equation
(4.215) of section 4.5.4. The cutoff kernel (4.177), when written in terms of P using (4.169)
and (4.170) reads as follows:
1 d—2

R,[0] = 52n [1 -P- TP] Ri(p?). (4.184)

This shows that the cutoff kernel (4.177) is as the one employed in [87, 96]. Another interest-

ing case, that correspond to the physical decomposition of the degrees of freedom described
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in section 4.5.2, is the gauge a = 0 and § = 2/d where we find the following form for the

various spin components:

2
Ga(p?) =
2(P") p?+2mj — 2A + Ry(p?)
Gi(p®) = 0
1
Gs(p?) = =
52 (v o) + BN T )
1
2 _ 2
Golp”) = Z—Gs)
1
Gso(0) = —==Cs(r"). (4.185)

Note that in this gauge the scalars projectors come in the following combination:

i-1 [(d —)Ps+ P, +Vd—1Ps,| = —P. (4.186)

This shows that in this gauge the propagating degrees of freedom are hgT and S. Note that

14

in d = 4 the regularized propagator for the scalar modes becomes simply:

Gs(p?) = !

— . 4.187
—p% —2m? + %A + Ry(p?) ( )

It is important to notice that only for the value g = g, the limit o« — 0 gives the same form
of the regularized propagators for all three scalar components apart an overall factor. We

will use the regularized graviton propagator (4.183) both in section 4.5.6 and section 4.5.7.

4.5.4 Derivation of 0;G; and 0;\;

In this section we calculate the beta function of Newton’s constant 0,G and the beta function
of the cosmological constant 0;A for non-zero Pauli-Fierz mass mj, and in the gauge a = f =
1, where heat kernel techniques can be used. We will employ both a type I and a type 11
cutoff operator. The truncation ansatz for the gEAA that we are considering, equation (4.14)
is:

Tilg] = ﬁ d®z/g(2A — R) . (4.188)
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Differentiating (4.188) with respect to the RG time gives:

OTw[g] = 0, (%) / /G — O, <ﬁ) / ' /GR . (4.189)

From (4.189) we see that we can extract the beta functions of the cosmological constant and
of Newton’s constant from those terms proportional to the invariants Iy[g] and [ [g] steaming

from the expansion of functional traces on the rhs of the flow equation

T 1 v =1V -1 Sl
Olilg) = STr <F,(€2’0’0’0)[0,O,0;§]Z5—l—Rk[g]gB) O Rilg)y +

-1
~Tx (0 010,0,0: 92 + Relgle)  OrRufgl (4.190)

for the gEAA. Note that in (4.190) the cutoff kernels in the graviton and ghost sectors are
distinguished by the indices. From here on we will consider only the gauge @ = § = 1 that
allows us to employ heat kernel methods. We use the general decomposition of the bEAA
given in (4.84) to write:

TP, €, C; gl = T2 (g + hy + T2 [h, ©, ¢ g1 (4.191)
and
T, ¢ s g = ZoSOM O, €, C5 g . (4.192)

In (4.192) we used our ansatz for the rEAA given in equation (4.17). To calculate the
gravitational Hessian needed in equation (4.190), we can extract the quadratic part in the

fluctuation metric of the action (4.188) using equation (4.153):
L[ i = 2000 A A qwpos _ L d =L A 1
5[4 v/ ghu Ly [h, €', C; gl gh™” = 540 | d /g 5h Ahyy — ZhAh

2 (KB hag — B2) — WhS Rye — Wh Roygy

_ 1 1 _
+hR" h,, + (Zh2 — §h“5ha5) (2A — R)] : (4.193)

The gravitational Hessian can now be easily extracted from (4.193) and reads:

. Z 1 2
T2%%0,0,0; gy = - {5“”

v (&% m (e} (07
5 |%as — 59" gaﬁ] [%f(A +mi, = 20) + 59" g0 + U |
(4.194)
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where the symmetric spin two tensor identity 007 = i ((55(5;’ + 555’;) and the trace projector
P = ég‘“’gpa have been defined in section 4.5.3 and we defined the following tensor:

1
Ul = (5;35 -5 g*? gpa) R+ g Ryo + R*gps +

—= (69R) + 62 R) + R85 + R200) — (R° %, + R%.)) +
_d-—4
2(d — 2)

N —

(R9*pe + 9" Ry + R*g,5) . (4.195)

Note, for later use, that the tensor (4.195) is linear in the curvatures.

We will sometimes suppress indices for notation clarity and we will use boldface symbols
to indicate linear operators in the space of symmetric tensors. For example, the operators
just defined will be indicated as 1, P and U. Note that 1—P and P are orthogonal projectors
into the trace and trace free subspaces in the space of symmetric tensors. With this notation

we can rewrite (4.194) in the following way:

: 1 d—2 d
%910, 0,0; g] = 52 {(1 -P)— TP} {1(A +m2 —2A) + mimP +U| .
(4.196)
The ghost action (4.81) when evaluated at zero fluctuation metric becomes:
Sonl0,C,C;g] = /ddx\/ﬁ C* [AGw — (1= B)V,V, — R, C”. (4.197)
If we then set § =1 in (4.197) we find the following ghost Hessian:
Tt 0,0,0; 9] = Zo (ASE — RY) . (4.198)

For later use we report here the following traces of the tensors defined in (4.195) and before:

1 1
trlz@ trP=1 trU:%R
PSP 48d+4 AP —8d+4
U2 — RCRy 2R R 4 3R s RO (4.199)

2(d—2) d—2
We have now to choose the cutoff operator that is used to separate the slow modes from the

fast modes in the functional integral. As we did for non-abelian gauge theories in Chapter 3,

we will employ two different cutoff operator choices. In this way we can study the dependence
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of the resulting beta functions on this choice. In the first case, that we call type I, we use
in both the graviton and ghost sectors the covariant Laplacian as cutoff operator. In the
second case, we employ the differential operator Ay = A1 + U for the graviton modes and
Ay = AdY — RE for the ghost modes.
We star to consider type I cutoff. We define the graviton cutoff kernel as:
Z, d—2

Ry, (A) = 7h (1-P) = ——P| By(d), (4.200)

which corresponds to the flat space expression (4.184) of the previous section. For the ghost

cutoff kernel we take:
Ri (A = Zodh R (A) . (4.201)

Remembering that the anomalous dimension of the fluctuation metric is defined by 7, =
—0log Zp,, we see that the flow equation (4.190) for the gEAA becomes:
1 O Ry (A) — R (A) T O R (A) — neRe(A)

O klg] = =T _
a 2 rl(A—l—m%—QA)—i—mi%P—l—U g ASHY — Ruv

(4.202)

Note that the wave-function renormalization factors in (4.202) have deleted each other leaving
terms proportional to the anomalous dimension of the fluctuation metric and of the ghost
fields. Note also that the possible troublesome conformal instability does not affect (4.202)
due to our cutoff choice (4.200).

We now set m, = 0. On a general background it is impossible to invert the operator
1(A —2A)+ U, so we expand it in powers of U, remembering that this last is proportional
to R, to find:

[1(A—2A+ Ry(A) + U7 = Gr(A) [1 - GR(A)U + GH(A)U? + 0 (R*)] . (4.203)

In (4.203) we defined the regularized graviton propagator as follows:

1

(4.204)

We can do the same in the ghost sector, we find:

(A5 — R™) ™" = Gew(A) [¢" — Gen(D)R™ + GEL(A) RER” + O (RY)] - (4.205)
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where the regularized ghost propagator is now:

1

Gc’k(z) = Z—i——Rk(Z) .

(4.206)

Inserting back in the flow equation (4.202) for the gEAA the expansions (4.203) and (4.205)

gives, to second order in the curvatures, the following result:

OLklgl = d<d; 1>T1" [(0:Ri — mnRy)Gr] — d'Tr [(O: Ry — e Ri)Gog)
- {d(d; 1)Tf [(O:Ry — mn Ry)G}] + Tr [(0:Ry — 1o Ri)GZ ] } R
Lo M @ — RG] P
{%ﬂ [(0Re = m RG] — Tt [(0,Re — noR)GE,) } R R
—I—gTr [(0:Rx — mRi)G}] Ruvas R + O (R?) . (4.207)

In (4.207) we calculated the traces over spacetime indices using the traces in (4.199). The
remaining functional traces in (4.207) can be calculated, as usual, using the local heat kernel
expansion and the trace technology from Appendix A. Collecting all terms of order zero and

one in the scalar curvature and writing everything in terms of ()-functionals finally gives the

following expansion:

ALilg] = (47r1)d/2 /ddx\@ { d(d; 2 Qa [(Oc Rk — mBy)Gr] — dQa [(O By — neRi)Gel
+ {d(dg D0, [0k — mRu)Gl - gQ;_l [(9Ry = e Rk)Gol
—d(d; 1)Qg (OB — muRi)G] — Q [(Oh Ry — Wch)Gék}] R}
o). (4.208)

By comparing (4.208) with (4.189) we find the following relations,

—dQy [(D0Fs — e )Gl }
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1 1 did+1 d
Oy (167er) T (dr)in { ( - >Qg_1 [(O: Ry — i By) Gi] — gQg_l [(0: Ry — neRi) Gl
_d(d4— 1)Qg [(8tRk - nth)Gi} — Q% [(&Rk — T]CRk)G%JJ} . (4.209)

from which we can solve for the beta functions for the cosmological and Newton’s constants.
Inserting the optimized cutoff shape function into (4.209) permits the analytical evaluation

of the Q-functionals and we find the following explicit system:

A _ k4 dd+1)d+2—m B
Oy (%) - (47T)d/2r<%l+2){ 4 1_9A d(d—|—2 776')}
1 - k=2 dd+1)(d+2)d—mn, d(d+2)
t(167TG> B _(47r)d/2F(§+2){ 48 oi 12 dmme)
dd—1)2+d—np
7 (1_2]\)2—(d+2—n0)}. (4.210)

In the original calculation of the beta functions (4.209) done in [87] the background metric
was chosen to be a metric on the d-dimensional sphere in order to be able to invert the
operator 1 (A — 2A) 4+ U. The above calculation, made instead by considering an arbitrary
background metric, shows that the beta functions in (4.209) are independent of this last
choice, as it should be for a background in depended RG flow [96].

We consider now a non-zero value for the Pauli-Fierz mass my,. To calculate the contri-
butions to the beta functions (4.209) given by my,, we could follow the steps just made with
minor modifications. It is interesting to do this by considering instead the background metric
as being the one of a d-dimensional sphere as in the original derivation. On the sphere the
Riemann and Ricci tensors are proportional to the Ricci scalar:

R R
R, = Eg#’/ Ryvps = m (GupGuvo — GuoGup) - (4.211)

Considering (4.211), the U tensor in (4.195) becomes simply:

d?>—3d+4 d—4
=(1-P)—————R-P—R. 4.212
U=l ) d(d—1) R i (4.212)

Using the fact that now (4.212) is decomposed in the orthogonal basis of the trace and
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trace-free projectors, we can easily re-express the Hessian (4.196) in the following way:

| 1 d*> —3d+ 4
1_‘](62,0,0,0) 0,0,0;9] = §Zh {(1 —P) (A + mi —2A + d(d——:;R)
_TP (A + meh — 2A + TR):| . (4.213)

It is easy now to write down explicitly the full regularized graviton propagator:

d -1

- (1-P) :
B A+ Ri(A) +m} — 20 + LR
2 1
- P . 4.214
d—2" A+ Rp(A) +25m} —2A + 2R (4.214)

Equation (4.214) expresses the full regularized graviton propagator steaming from our trun-
cation (4.14) and (4.17) in the gauge o = 8 = 1 when the background metric is a metric on
the d-dimensional sphere. Note also, that there is a kinematical singularity in the regular-
ized propagator (4.214) for d = 2. We can now define the trace and trace-free parts of the
regularized graviton propagator on the d-dimensional sphere as follows:
Grer(z) = !
’ z+ Rip(2) + m3 — 27, + ¢
1

G = . 4.215
7(2) z+ Ry(2) +252m? — 27, + 2R ( )

2_3d+4
d(d—1) R

Note that due to the presence of the Pauli-Fierz mass term, the trace and trace-free regular-
ized propagators in (4.215) are different even at R = 0. The ghost regularized propagator on

the d-dimensional sphere becomes simply:

1
Gegp = 7 (4.216)

To proceed, we insert in the graviton part of the flow equation (4.202) the identity in the

space of symmetric rank two tensor in the form 1 = (1 — P) + P. This gives the following
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relation:
_ 1 1
8tFk[g} = §TI‘(1 — P)(@tRk — U}LRk)GTF,k + ETI“P(atRk — U}LRk)GT,k
—Tré! (0 Ry — neRi)Ge
d*>+d—2 1
= TTrz(atRk — 1 Ri)Grrk + éTr:p(atRk — i Ri)Grg
—d Tl‘l(atRk - nCRk)GC,k . (4217)

We evaluated the Lorentz traces in (4.217) with the help of (4.199). Note that both the
kinematical singularity and the conformal instability are gone due to our choice for the cutoff
kernel. Equation (4.217) is the flow equation for the gEAA induced by the Einstein-Hilbert
truncation (4.14) with spherical background metric to all orders in the curvature scalar R.

Being the spectrum of the covariant Laplacian explicitly know on the d-dimensional
sphere, we could evaluate the functional traces in (4.217) exactly by summing the relative
series over the eigenvalues spectrum. Otherwise, we could use the Euler-Mclauren formula to
obtain an asymptotic expansion for these traces. It’s easy to verify that this last procedure
gives the same expansion as if we were using the standard local heat kernel expansion to
evaluate the traces in (4.217). In both cases, we recover, to order R, the expansion found
earlier on a general background (4.208). This happens because to linear order in the curva-
ture there is only one curvature invariant, i.e. R, and thus a spherical background is enough
to unambiguously extract the beta functions for A and G. This is no more true for higher
order invariants and the advantage of working on a symmetric backgrounds, as here is the
sphere, is lost due to inability to disentangle the different tensor structures.

Collecting all terms of zeroth and first order in the scalar curvature that are present on
the rhs of (4.217), steaming from the expansion of Grpg, Gy and from the heat kernel

expansion, we find the generalization of (4.209) to the case of non-zero my,:

A 1 d>+d—2 1
O (87rgk) = (dm)i2 { 1 Qg [(O:Ri — mnRi)Grrg) + 5@% [(O:Ri — mnRi) Gk

—dQa [(OuRy, — Uch)Gc,k]}
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1 1 d*+d—2
% (167?Gk> - (47)d/2 { 24 Qg_l [(O: Ry, — i Ry)Grr]
1 d
+EQg_1 [(O: R — mnRy)Grp) — EQ%—l [(0; Ry, — neRi)G o

_d2—3d+4d2+d—2
d(d—1) 4

d—
—2—d4Qg (0 By — mRi)GT] — Qa [(O:Rk — neRi)GE ] }(.4.218)

Qg [(O:Re — mnRi)GFpg ]

We can evaluate the beta functions (4.218) using the optimized cutoff shape function. In
terms of the dimensionless couplings A = k%A, G’ = k2@ and w3 = k~?m,, we find the

following forms:

~ ~ e d—1 d+2—mn,
ON = 20+ ——— 0 — A —
' (47r)d/2r(§){ d 1-2A+m

2(d® —=3d+ 4N 24d—n, 2 2+d—mn,

+
d? (1—2]\+m> d(d+2)1 - 27 +2&0m?

4(d—4)
d2(d+ 2

/~\ 2+d—7]h 8/~\
- 2
) (1- 28+ 283 d(d +2)

n 4rGA _d2+d—2 d—ny
Samir () | 4 1-2k-n

d+ 2 —
(d+ 770)+2+d770

2 d— Mh
+E—— —4(d— 4.219
d1— 2R + 2412 ( nc)} (4.219)

and

- ~ 167 4d
G = (d—2)G - d+2—
' (d=2)C+ (4m) 22T (2) { 713 d+2-me)

2 2
(=20 +mi) 02 (1 2h 4 2dting)

A {d2+d—2 d— 1,

+ —
3(4m)9/2T (2) d 1-2A+m:

2 d—1n
W Y TSy
- + 22y,

—4(d— nc)} G2, (4.220)
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These beta functions represent the generalization of the beta functions for the dimensionless
cosmological and Newton’s constant in presence of a non-zero Pauli-Fierz mass.

We analyze now the contributions from our truncation, i.e. from the Einstein-Hilbert
operator [ \/gR, to the terms (4.18) in the gEAA which are quadratic in the curvatures.
These terms can be calculated either using the local heat kernel expansion, as we do in this
section, or as the first terms in a non-local heat kernel expansion, as we do in the next section.
We will see that these two procedures give equal results, modulo total derivatives, for the
reasons explained in Appendix A. The terms of second order in the curvatures in equation
(4.207) are, when evaluated explicitly using the local heat kernel expansion, the following:

] d(33 - d N
Oilx[g)] e = (ar )d/Q/ddx\/_{ 4|0 RG] [—(T())RWMR” ’

d(d — 3) d(d—3) , 2d°—d-+10d
_ ) A
720 288 T 60 R

d>+d—4
QORGSR + QRG] ERMBRwﬁ

R, R™ +

(4.221)

d? —10d + 8 d® —5d* +8d+4
uv 2
Sd—2) LB Ty RH :

In (4.221) we set A = my, = n, = ne = 0. Also, we used Tr;Q,, Q" = —Rm,agRWO‘B for
vectors and Tr;Q,, Q" = —(d + 2)Ru,,a5R“”a5 for symmetric tensors. All the Q-functionals
in (4.221) are cutoff shape independent in d = 4 and when evaluated give rise to the following

form:

53 361 43
/ d®z\/g (4—53#,,&53“”&5 — R,R"+ R+ AR) (4.222)

r
HT'klg] 90 36

1
|R2 - (47)2

To compare later with the result obtained with the non-local heat kernel expansion, we
rewrite (4.223) in the {R?, R, R", E, AR} basis of curvature square invariants:

_ 1 7 53 19
r = d p 24+ FE+ A . 4.22

We explain in the main part of the chapter how these actions are related to the perturbative
UV divergences first calculated in |88, 96].

We now turn to consider type II cutoff where we take as cutoff operators A, = A1+ U
for the gravitons and (Ap)% = Aé¥ — RY for the ghosts. The flow equation for the gEAA
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(4.223), at m;, = 0, becomes now simply the following:
— 1

It is now easy to evaluate the traces in (4.224) using the local heat kernel expansion. Using

the following heat kernel coefficients for the cutoff operators we are considering

d(bd —7)
12

R trby(Ay) = tr {555 4 Rfj} _dxbp

R
= 1— — -
tr bQ(AQ) tr |: 6 U:| 6 d

we find, to linear order in the curvature, the following expansion:

OiTklgl = (47r1)d/2 /dd%@{d(dj UQ; [(Oe Rk — mnRi) G

S R e R T CY S ATE)
%le [(Oe Rk — ncRi)Ge il R} +0(R?) . (4.225)

From (4.225) we can extract the following relations that determine the beta functions of A
and G:

A 1 d(d+1)
O (87?(gk) = lam)in { 1 Qa [(Or Ry — nn Ry ) G
—dQq (O — noRy)Geul
1 1 (d(5d—T)
O (167?Gk> = (472 { Y Qg—1 [(OuRr — mnRi)Gy]
d+6
+TQg_1 (O Ry, — Uch)Gc,k]} ‘ (4.226)

Inserting in (4.226) the optimized cutoff function we find:

A k4 d(d+1)d+2 -,
O\—=] = T a(d+ 2 —
t(&TG) (47T)d/2f(%’+2){ T 1oan Mt nC)}
1 ki dbd—T7)d—n, d+6
o - = d— . (4.227
t(WG) <4ﬂ>d/zf(%+1){ I S ”C)} 220

As we did before, we can look at the running, induced by the Einstein-Hilbert operator

J /gR, of the curvature square terms in (4.18) for A = my, = n, = ne = 0. This time it is
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much easier, we find:

OTkl[g)| o = W/ddfﬁ\/ﬁng (O, Ry — mnRi) G| {%tr by(Ag) — tr b4(A1)} . (4.228)

Using the explicit expressions for the heat kernel coeflicients, equation (A.7) from Appendix
A, we find:

d? — 29d + 480 d® — 181d* + 1438d — 720

trbhg(Ay) = Ryuap R — R, R"
rha(Ae) 360 nvaf 360(d — 2) »
9503 — 145d% + 262d + 144 ,  d(2d — 3)
A 4.22
144(d —2) Ty M (4.229)
and
d—15 90 — d d+12 , d+5
bi(A) = SR, s R LRV 2 CTONR. 4.2
tba(Be) = g5~ Ruwas B 4 == B B + == 0 = —55= AR (4.230)

In d = 4 the Q-functional in equation (4.228) is cutoff shape independent. Inserting (4.229)
and (4.230) in (4.228) gives back equation (4.223). This shows that both cutoff types repro-
duce correctly the contributions to the flow of the curvature square terms. This is analogous
to what we found for non-abelian gauge theories in Chapter 3.

It is possible to use the general momentum space technique introduced in section 3.3.4 of
Chapter 3 to relax the choice a = § =1 for the gauge-fixing parameters but we will not do
this here. This as been done for m;, = 0 by employing a slight modification of type I cutoff
in [94, 95]. This amounts to use the general decomposition of the metric tensor introduced
in section 4.5.2 to diagonalize the Hessian’s entering the flow equation (4.190) for the gEAA.
For my, # 0 this will be considered in [112].

4.5.5 Derivation of 0, F; ;(x)

We now derive the flow equations for the structure functions F;;(z) in (4.43) induced by
the operator f\/gR We will use a the type Il cutoff operator and work with arbitrary
cutoff shape function. Also, we will consider the flow of the structure functions in arbitrary
dimension.

In place of using the local heat kernel expansion to calculate the O (R?) contributions to

the flow (4.190), as we did in the previous section in equation (4.228), we employ instead the
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non-local heat kernel expansion described in Appendix A. We find:

Olulgl| . = (47r1)d/2/ddgg\/g{R{/Ooodsﬁ(s)SQ_gfl(sA)}R

4R, [/OOO ds h(s) s> 2 fQ(SA)] RW} . (4.231)

Here we defined the function hy(z) = 0;Ry(2)Gr(2), of which hy(s) is the inverse-Laplace
transform. The functions f(z) and fo(z) are derived combining the non-local heat kernel
functions for the operators As, Ay and expressing them in the basis {R? R, R" ., E, AR},
they read:

9d® — 61d* — 10d + 320 3d* +7d + 16

hta) = MG R ) - 2
17d +19425j+ 96 d(?c)iQ;QB) )1
hla) = g+ St - E A ) ) )

From (4.231) we can extract the running of the structure functions

O p(x) = W /O s hi(s) s272 fi(sA), (4.233)

for : = 1,2. For each i this can be rewritten in terms of a combination of ()-functionals inside
parameter integrals. Inserting (4.232) in (4.233) and using the definitions of the Q-functionals
from Appendix A, we find the following forms:

9d% — 61d? — 10d + 320

1
(dm)2 O, Fy () = =2 /0de3_2 [y (2 + 2€(1 — €))]
3d> +7d+16 (!
S | deQy e+ a1 - €)
17d? + 45d + 96
T

d(?(fQ;f) {/0 dg Qg [ (2 + 281 = )] —Qg[hk]} (4.234)
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and
(4m)4% 0, Fy () % /0 d¢ Qg,2 [hi (2 + 2€(1 = €))]
+g /0 dg Qu_y [P (= + 2€(1 - €))] - %Qg—l[hk]
*d(i—; 2 { /0 d€ Qg [ (2 + w€(1 = §))] = Q;[hk]} . (4.235)

where z stands for A. Equations (4.234) and (4.235) are the contributions induced by
the operator f V9R, within a type II cutoff, to the flow of the curvature square structure
functions in truncation (4.43). They are valid in arbitrary dimension and for general cutoff
shape function. These are the main results of this section.

We first study the flow equations (4.234) and (4.235) in the physical dimension d = 4.
They read:

(4m)? O, Fy p(x) = —g 0 dé Qo [l (2 + 2€(1 = €))] —g/o A€ Q1 [hi (= + 2€(1 — €)] +
+%Ql[hk] — é {/o d€ Qo [hy (2 + z&(1 = &))] — QQ[hk]} (4.236)

and

rf b = [ deQuib(eag -+ [ dcQuih ot agt - )]+

1
Q]+ { [ deQulin (a1 - )] - il . (280
Inserting the optimized cutoff shape function in the equations (4.236) and (4.237), using the
Q)-functionals (A.59), (A.63) and (A.64) from Appendix A, we find equations (4.44), (4.45)
and (4.46).

In the two dimensional case the Ricci tensor is proportional to the Ricci scalar R, =
% guwR. To order curvature square we have thus to consider only the structure function given

by the following linear combination:

Fi(z) = Fup(z) + %Fz,k(m) | (4.238)

The running of the two dimensional structure function (4.238) can be deduced from and the
flow equations (4.234) and (4.235) evaluated at d = 2. Note that the poles in the first terms
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of (4.234) and (4.235) cancel each other. We find the following form:

A O, Fy(z) = % Olde_l [hk(z+x§(1—§))}+116—i/old§c20 [l (2 + 2€(1 = €))]
2 ulh) + 1oy { [ el (e a1 ) - ulha
‘1% Oldel [l (2 + 26(1 = €))] — %/O d€ Qo [hue (= + 2€ (1 — €))]
o Qolin] — g { /0 Q1 (= a€(— )] Ql[hk]} o (4.239)

In (4.239) we have separated the graviton contributions, in the first two lines, from the ghost

contributions, in the second two lines.

4.5.6 Derivation of 0,7 and d;my,

In this section we calculate the beta functions of the fluctuation metric Pauli-Fierz mass my,
and of the fluctuation metric wave-function renormalization Z;. We will extract the beta
functions dym? and 9,7, form the flow equation for the zero-field proper-vertex 71(570’0;0) of
the bEAA. The derivations of this section are similar to those made in section 3.5.6.

After the multiplet decomposition, and within the truncation we are considering in this

chapter, the flow equation becomes as in Fig. 4.9. In formulas we have:

1
O = 2 [y = B [0 = 52 [(@Ry — ) Byl

q q

—2K%Z), /(ath - 770Rq) [qu]uuaﬁ

q

—2k%7), / (O,Ry — ncRy) [dyq]" " . (4.240)
q

Every diagram in Figure 4.9 is proportional to x2Z, since the metric fluctuation three-
vertex come with a power KZ}?:/ ?_ the four-vertex with a power x2Z2 while the regularized
graviton propagators with a factor 7, I and graviton cutoff insertion with a factor Z,. In the
ghost diagrams the three-vertex has a power /fZ,lL/QZC, the four-vertex a power KZ,Zc, the
regularized ghost propagators has a power Zgl and the ghost cutoff insertion has power Z¢.

Also all the volume factors €2 delete each other. The tensor products entering (4.240) are:
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F(lgure 4.9: Diagrammatic representation of the flow equation for the zero-field proper-vertex
2,0,0,0

o of the bEAA used to calculate the beta functions 0,7 and 8tmh k-
S (S e 7 R e (G B 7 e (CA R L R C B2
Bpal™™ =[G [ PN (G )P IR (4.242)
[epa™™ = (G g MG g -V 1GE (4.243)
"™ = (G P 2 G T (4.244)

where the vertices entering (4.241) are:

3) 3
71()? 2201703) = QAI( [6 P1,P2,P3 [1( )[5]171,102,]?3

]

(4 0 05 0) — 2A[(3 [5]1)171)2 ,P3 - [1(3) [5]171,?2 D3
0,
[

(1,1,1;0)

7}71 »P2,P3,P4
o 1 1,1;0) ,
7?1 p2,p3 0 07075]

(2,1,1,0) 2“000,0;5]. (4.245)

Vpl sP2,P3

The vertices entering (4.245) can be deduced from the relations of section 4.5.1. The mo-

mentum integrals in (4.240) can be written in spherical coordinates:

Sdfl /OO d—1 /1 9 a—3
- — d dr (1 —2x7) 2 4.246
[~ i ) aad™ [ ar-s (4.246)

d
272 is the volume of the d-dimensional sphere and z = cosf with @ the angle

r(g)
between p and g. We can also shift to the variable z = ¢? so that

o0 1 o0
/ dq qd_1 — —/ dz 2271
0 2 o

We will give the results only in the gauge @« = § = 1 and in d = 4. The first term in equation

where S; =
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(4.240), when projected with P, is:

va 1 2
Py B[Clp,q};waﬁ = ﬂ(l_x2)2q4 (G;) GZH?

—% [15p* + 210p°qz + 10pg’x (17 + 42?)

+5p2¢% (52 + 10122) + ¢* (7 + 622 + 22%)] (GTF)* 6T,
+4—18 [375p" + 750p°qz — 10pg°x (13 + 22?)

+5p%¢> (22 + 23x2) +q* (7 + 622 + 2x4)} (GqT)2 GqTfp
+% [225p* + 450p°qz + 150pg°x (2 + 2*)

+15p°¢* (11 + 342*) + 3¢* (34 + 322” + 92*)

—80 (3p® + 3pgz + ¢* (1 +22%)) A

2
+160A°] (G27)" GLE, . (4.247)
From diagram (b) we have:
va 5
P byalwas = 15 [210° +19¢° + 5¢%2%] (G7)” +
5
T3 [2177 = 55¢° — 17¢%* — 48A] (G} 2 (4.248)
while for the ghost diagram (c¢) we find:
va ) 2
Py lepalwan = 50 [30° + 6pgz + ¢* (1 + 20°)] (GT)" G, (4.249)

Note that diagram (c) is already proportional to p?. Thus it does not give any contribution

to the running of the Pauli-Fierz mass. Finally for diagram (d) we have:

P;Vaﬂ ([dp,glywap = gpqx (G3)2 :
Being linear in z it gives zero when integrate over the angular integral. Diagram (d) can thus
be omitted.
Once we insert equations (4.247), (4.248) and (4.249) back in (4.240) we obtain within
our truncation, the explicit flow of the zero-field proper-vertex 71572’_0130;0)
external momenta p. Here we will be interested only in the lower orders: from the p° term we

, to all orders in the

extract the beta function 9, (Z,m?) while from the p? term we will extract the beta function
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Oy Zp,.
We start to calculate the running of the fluctuation metric Pauli-Fierz mass. All diagrams

in Figure 4.9 give a non-zero contribution to order p°. Define

O (Zwm3) = Bzymz (K, N, Zy, Zo,my) (4.250)

so that we have:
Oymiy = nrmi + 5zhmg/Zh ; (4.251)
where the anomalous dimension of the fluctuation field is given by 7, = —0;log Z). After

expressing everything in terms of Q)-functionals we finally find:

Bowmz K 32072
il (o T LR LR
160 (d +2) A
~Td= D @O 1 Ri) G ]
d—1)(d—+2
( 6 (dg (_ I) )Q§+2[(atRk — mA)Gy]

| 334d? +100d + 91
2 (d—2)(d+1)
Td? +20d + 18
T12(d—2)(d+ 1)Qg+g[(6tRk — Ry) (G2Grp + GrGy)]
d* — 7d° + 30d* + 34d — 108
+ .

d® — 7d? — 10d + 24)A
( ) Q[(O Ry — 1 Ry,)G7p]

Q%_,.Q[(atRk — mnRy) G

Q%_H[(&tRk — 1 Ri)Gp]

d
(13 — d)(d 4)d + 54 )
—4 E(d—2) Q%H[(@Rk - Ri)G7]
+2(6 —dd()d(— %) )AQZ[(atRk - Uth)GQT]} : (4.252)

Equation (4.252) together with equation (4.251) gives the beta function for the Pauli-Fierz
mass in general dimension and for arbitrary cutoff shape function in the gauge o = § = 1.
The Q-functional in equation (4.252) can be evaluated analytically if we employ the optimized

cutoff shape function.

From the terms proportional to p? in (4.240) we can extract the beta function of the
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wave-function renormalization of the fluctuation metric. If we define
0 Zn = Bz, (ky N, Zn, Zc,my) (4.253)
we can write the anomalous dimension of the fluctuation metric as:
M (K, Zn, Zo, i) = =0 log Zy, = — Bz, [ Zn - (4.254)

When we write everything in terms of Q-functionals we finally find:

K> 480A
{ Qs [(OR — mR) Gy

Mh = 2(4m)42 | (d—2) (d+1)
3202
HCEDICE)
5 (22d + 23) 2
oW _2) (@3 D i [OF —mR) GrGrr]
5(52d + 101)

Told- )@+ 1 tan [OF = mE) CreCr]

Qg [(atR — ) G?FFG/TF}

2 i e (ORI G
~ 50_(‘25)? d8)+A1 Q411 [(OR —mR) GG
T _322)0&: @4 [0 —mR) Ghr Gl
+%QW [(B,R — i, R) GG

7d* + 360d + 938
T 12(d—2)(d+1)
7d? — 240d — 622
12(d-2)(d+1)
— (50_(5)—2(181:1) Qa iy [(O:R — nuR) G7pG7p ]
| 334d° 4 300d + 791
2 (d—2)(d+1)
o Eid _12) Qs [(OR —mR) G7G7]
7d* + 60d + 158
T 12(d—2)(d+1)

Qa s [(0:R — muR) G7.5G7]

Q%+2 [(8tR - nhR) G%G/TF]

Qg [(O:R — mnR) G7.p Gy ]

Q45 [(OR —mR) GGy + G7Grp)]
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Dy = e 51&77 ----- + e é‘M‘é ------

Figure 4.10: Graphical representation of the flow equation for the ghost-ghost zero-field
proper vertex 71(;)71’1;0) of the bEAA used to calculate 0,7},.

3342 + 300d + 791
2 (d—2)(d+1)

36 — 2d
~=—"Qu [(R — mR) G

& — 5 + 2d + 36
+ q

_§Qg+1 [(O.R — ncR) GE] } : (4.255)

Qg+3 [(atR - 77hR> G%FGITI“F}

Qu [(0R —mR) G7p]

(V1IN

Equation (4.255) gives the anomalous dimension of the fluctuation metric in d-dimensions,
for an arbitrary cutoff shape function in the gauge a = = 1. It is possible to calculate the
Q-functionals in (4.255) analytically if we employ the optimized cutoff shape function. For
myp, = 0 the result is given in equation (4.28).

This completes the derivation of the beta functions of the coupling we are considering
that can be extracted from the flow of the zero-field proper-vertex 7,22’0’0;0). Equations (4.252)

and (4.255) are the main results of this section.

4.5.7 Derivation of 0,Z¢,

This derivation is analogous to the one made in section 3.5.7 for non-abelian gauge theories.
The truncation ansatz is quadratic in the ghost fields and so the flow equation for the zero-field
proper-vertex 7,(;)’1’1;0) is decomposed as in Figure 4.10. The diagrams in Figure 4.10 involve
only one type of vertex: the ghost-ghost-graviton vertex. Note that the cutoff kernel has a
different structure in the two sectors and involves different wave-function renormalization.
Thus the two diagrams in Figure 4.10 give different contributions.

As usual we evaluate the tensor contractions, we Taylor expand in powers of the external
momentum, we retain the term of order p? and we do the angular integrals. In terms of

Q-functionals we find the following general expression for the anomalous dimension of the
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ghost fields:

2

2d — 3
. {— Qayy [(8: Ry — i Ri) GG

= wmR T @ d-2)
3(d* +d d+2 ,
M2 O~ mAIGeGh] ~ =50y (AR~ mR)GEGE]
d—1)(d+2
+( iéz , Qg+2 [(0: Ry — i Ri)Gp G
d+1 ¥+d—2
T2 (d— )Qd+1 [(3tRk - TICRI@)G%GT} Qd+1 [(atRk - Uch)GZCGTF]
d+2 ,
d2 ( )Qd+2 [(atRk - Uch)G%GT}
d—1)(d+2
( ié? )* Qu s [(O Ry — noRy) G2 gF}} . (4.256)

When we set my, = 0 in 4.256 we find instead:

2 3d? —3d — 4
" { Qi [(0:Ry, — mu Ri) G* G|

= ez 4d(d 2)
(d+2ﬂ —4)

o 4d(d- ) Qa o [(ORx = Br)G* G

P —d—8 )
+m@§ 1 [(0:Ry, — e Ri) GE.G]
(d+2) (d® — d—4)
I ICE)

Qa iy (0, Ry — TICR;C)G%G/}} : (4.257)

A similar form for the anomalous dimension of the ghost fields has been found, using slightly
different implementations of the cutoff, in [106, 108]. Equations (4.256) and (4.257) are the

main results of this section.



Chapter 5
Conclusions

In this thesis developed the functional RG approach to quantum field theory based of the
effective average action (EAA) and on the exact flow equations that it satisfies. Precisely
the fact that the flow of the EAA is exact offers the opportunity to develop a new approach
quantum field theory, and more generally to any theory where fluctuations are relevant. In
particular this functional reformulation does not have any reference to a bare action and is
focused on the properties of theory space.

This point of view has two main virtues. First, we can use the formalism to search for new
continuum limits, i.e. attractive UV fixed points of the RG flow, on which we can construct a
proper mathematical definition of the functional integral. Second, even if a Gaussian saddle
point expansion is not available, we can use the exact flow equation, combined with some
kind of truncation of the EAA, to find new approximations to the effective action. These can
contain valuable non-perturbative information.

About the first point, in this thesis we have analyzed both non-abelian gauge theories
and quantum gravity. For the first we have recovered asymptotic freedom and the universal
properties of the UV flow, as expected. In the second case we have extended the treatments
of local truncations and in this way we have given new support to the asymptotic safety
scenario in quantum gravity.

To the second point we started to study truncation schemes able to put the exactness
of the flow to profit. In particular we proposed, for both gauge and gravitational theories,
a new expansion scheme that we called “curvature expansion”. This consists in expansion
the EAA in powers of the curvatures or field strength where we retain all the momentum
structure in the form of running structure functions. Crucial to the practical use of this

expansion is the development of new calculation tools to manage functional traces. In this
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thesis we developed such scheme in the form of flow equations describing the running of the
proper-vertices of the EAA. When the background field method is involved, as in the EAA
formulation of gauge and gravitational theories, these equations have non-trivial contributions
steaming from the fact that the cutoff action is constructed using the background fields. This
terms are responsible to maintain gauge covariance in the flow of the gauge invariant part of
the EAA. In this way the the standard heat kernel techniques are emended and truncations
schemes, as the above mentioned curvature expansion, can be put to profit. In the thesis we
construct several examples, that have to be intended as first applications, and we show how
results previously obtained by heat kernel techniques are recovered and easily generalized. In
particular we have at our disposal a computation algorithm able to explicitly project the flow
of any truncation of the EAA which is analytic in the fields. It is admissible to think that with
some developments these calculations can become straightforward. We have to mention, that
in theories tensorially complicated as is gravity, the aid of symbolic manipulation software
becomes, if not indispensable, strictly recommended.

This techniques can be employed also, as we did, to project the flow of truncation of
the full bEAA, i.e. bi-gauge field truncations in non-abelian gauge theories and bi-metric
truncations in quantum gravity. As we said, in any RG treatment of theories with local
symmetries the need to introduce a reference scale may spoil gauge invariance along the flow.
In the EAA framework we are employing, this problem is dealt with the use of the background
field formalism. This comes at the cost of enlarging theory space to functionals of both the
fluctuation and background fields. To this issues we dedicated lot of efforts and we studied
how the identities dictated by the local symmetries are modified by the introduction of the
cutoff. We systematically studied the flow in this larger space for both non-abelian gauge
theories, in Chapter 3, and for quantum gravity in Chapter 4.

In summary, the EAA framework emerges as capable of treating both conceptual and
computational issues. To the first, the possibility to map the calculation of the functional
integral to a flow problem gives an adequate setting where to study foundational problems as
the mathematical definition of the path integral based on non-Gaussian fixed points of the RG
flow. To the second, the exact flow equation that the EAA satisfies comprise a novel setting
where diverse expansions can be constructed. In particular the non-perturbative nature of
the exact flow equation offers to both issues a new interesting avenue of research that year

after year is taken more and more seriously.



Appendix A

Heat kernel techniques

This appendix is dedicated to the development of the heat kernel techniques used in this
thesis. In the first section we review the definition of the heat kernel and the asymptotic
expansion of its trace. We will consider both the local and the non-local expansions for
second order covariant Laplacians on a general d-dimensional manifold with arbitrary gauge
connection. In the second section we expose a perturbative scheme, firstly developed in this
thesis, to calculate the un-traced heat kernel. This perturbative expansion will be used in
Chapter 3 to construct the momentum space representation of the flow equations for the
zero-field proper-vertices of the bEAA for theories with general local gauge invariance. We
will also show how this method can be used to give a new and independent derivation of
the non-local heat kernel expansion first derived in [126, 127, 128]. Finally, we show how to
use the heat kernel trace expansion to calculate functional traces of functions of covariant
Laplacians by introducing the “Q-functional” technology that is used throughout this thesis.
For a review of the more mathematical and geometrical aspects of the heat kernel see [130],

while for a physicist perspective see [123, 124].

A.1 Basic definitions

The heat kernel K (s;x,y) satisfies the following partial differential equation with boundary
condition':

(B + Ay) Kuy(s) = 0 Koy(0) = sy (A.1)

In (A.1), as in the following, the covariant Laplacian in denoted by A = -V, V#, where V,,

is the general covariant derivative comprising both the Levi-Civita and gauge connections.

'Here and in the following we use the compact notation K, (s) = K(s;z,y) and &, = 6D (z — y).
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When we deal with flat space situations where only the gauge connection is present, we will
indicate the covariant derivative as D,,. The heat kernel as defined in (A.1) can be interpreted
as describing a continuous diffusion process on a manifold, where the diffusing particles are
all concentrated at the origin when the heat kernel “proper-time” parameter, related to the
diffusion constant D and to time ¢t as s = Dt, is zero. Equation (A.1) is immediately solved

as K, = e_SAzéwy, thus the trace of the heat kernel is equal to:
Tr K(s) = Tre 2. (A.2)

The usefulness of the heat kernel stems from the fact that every functional trace of a function

h(A) of the covariant Laplacian can be related to it by a Laplace transform:
Trh(A) = / ds h(s) Tre™2 . (A.3)
0

Here h(s) is the inverse-Laplace transform of h(x). To compute such a functional trace, one
just needs to know the expansion of the trace of the heat kernel to the desired accuracy.
There are two basic expansions available, these are respectively, the local and the non-local

one. We review these two in the next two sections.

A.1.1 Local heat kernel expansion

For the trace of the heat kernel there exists a standard asymptotic series expansion in local
curvature polynomials [123, 125]. This reads:
1 N
TrK(s) = EEnE ; Bon(A)s™. (A.4)
In (A.4) the By, (A) are the integrated heat kernel coefficients for the covariant Laplacian A,
they are related to the un-integrated coefficients by, (A) by the following relation:

Bon(A) = / d%z\/q tr by, (A) (A.5)

Note that in (A.4) the only explicit dependence on the dimension is trough the overall factor
(47)4? while other dependence on the dimension is generated by the trace operation in

(A.5). The un-integrated heat kernel coefficients do not depend on the dimension. In this
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thesis we will be interested only on covariant Laplacians of the following type:
A=-V21+4U. (A.6)

In (A.6), as in the following, we use bold face notation to remember the matrix structure that
the covariant Laplacians may have. The first few coefficients, which have been calculated

using various techniques by different authors, are as follows [123, 125]:

bo(A) = 1
R
1 1 1 R
A — - 2 - 2 —Q Q'LLV o
1 1 1 1
— R* - — R’ 4+ _R)— _V°R. AT
g0 tres T 10 T 75 30v (A7)

In (A.7) the curvature tensors are constructed using the Levi-Civita connection in V, while

the tensor €2, represents the field strength of the gauge connection in V.

A.1.2 Non-local heat kernel expansion

In general we need a more sophisticated version of the heat kernel expansion which includes
an infinite number of heat kernel coefficients. This expansion has been developed in [126,
127, 128] and retains the infinite number of heat kernel coefficients in the form of non-local
“structure functions” or “form factors”. The generalized expansion that replaces (A.4) reads
as follows:

1 R
TrK(s) = 7 / d’z\/gtr { 1+slo+ s> [1R, fric(sA)R*™ + 1R fr(sA)R+

(4rs)
R fro(sA)U + Ufp(sANU + Qp fa(sA)0] + O(RY)} . (A8)

The heat kernel structure functions in (A.8) are found to be:

frile) = o+ 5 [f(@) - 1
fala) = el @)+ 50 I@) 15— o [f@) ~ 1
@) = —Sf(@) - = [f(z) -1
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5 10 15 20

Figure A.1: The basic heat kernel structure function f(x) as defined in equation (A.10).

folz) = Sf(@)
fol@) = —o-1f(@) 1], (2.9)

where the basic heat kernel structure function f(z) is defined in terms of the parameter

integral:
1
f(x) = / dg e=281=9) (A.10)
0

A plot of (A.10) is given in Figure A.1. Inserting in (A.9) the Taylor expansion of the basic
structure function, f(z) =1— ¢ + % + O(z"), gives the following “short time” expansion for
the structure functions defined in (A.9):

Jrie(®) = % - ;To * 15961220 +0()
fa(x) = %o N 1\1)?250 i 10x()280 +0()
fro(x) = —é +o5 - % +0(a*)
fole) = 1L o)
fole) = LT LT L o). (A.11)

12 120 1680

If we insert (A.11) in (A.8) we recover the first coefficients of local heat kernel expansion of

the previous section. In particular, if we compare with (A.7) we see that not all coefficients
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match exactly. This is because the local heat kernel expansion is derived by calculating the
un-integrated coefficients while the non-local heat kernel expansion is derived by calculating
the integrated ones. So the coefficients derived by expanding the structure functions (A.9)
may differ from the local ones (A.7) by a total derivative or a boundary term. For example,
only two of the three possible curvature square invariants present in (A.7) appear in (A.8),
the third one has been eliminated using Bianchi’s identities and discarding a boundary term.
For this reason also the total derivative terms in the coefficient B;(A) are not present in the
non-local expansion. Thus, in general, a straightforward series expansion of the non-local
heat kernel structure functions will not reproduce exactly the same heat kernel coefficients of
the local expansion. See [127] for more details on this point. But the series in (A.11), when
inserted back in (A.8) generate an infinite number of local heat kernel coefficients, all these of
the form [ ,/gUA"U, [ /gRA™U, [ \/g1R,, A"R", [ \/g1RA"R and [ /g, A"Q" con-
tributing to the integrated coefficients Bs, (A). Actually, the heat kernel structure functions
(A.9) can be obtained by resumming these coeflicients [128].

In d = 2 there is only one curvature square invariant in (A.8) because of the relation

R, = %gm,R, so the gravitational part of the non-local heat kernel expansion becomes just:

Tr K(s) = ﬁ /dzx\/gtrl [1 + 5% + 8°R froa(sA)R+ O(R®) | , (A.12)
where: . ) 5
fraa(w) = 5 F(@) + o 2f(a) — 1] + g [f) ~ 1] (4.13)

We will show in the next section how the non-local heat kernel expansion (A.8) can be

derived.

A.2 Perturbative expansion of the heat kernel

In this section we develop a perturbative expansion for the un-traced heat kernel where
the covariant Laplacian is decomposed as the sum of the flat space Laplacian —9? and an

interaction part V in the following way?:

A=-9+V. (A.14)

2Tn this section we suppress to use boldface characters to indicate matrix structures for clarity.
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The potential V' contains U, all terms proportional to the gauge connection and all terms
obtained by expanding g,, around 6,,. For example, consider the abelian gauge Laplacian,

then the potential term contains all the terms that vanish for A, = 0:

A =—D,D" = — (8, +iA,) (0" +iA") = —0° —2A,0" — 0, A" + A, A" .

\%

We start to calculate the flat space heat kernel K{, around which we will perform the
perturbative expansion. From equation (A.1) we see that it satisfies the following equation
with boundary condition:

(0, — 82) KL, =0 K9

02y —

Sy - (A.15)

Ty

Equation (A.15) can be easily solved in momentum space, we Fourier transform to
Ké;cy B / Ké,qq’ et (A.16)
qq’

so that equation (A.15) becomes simply:

(8,5 + q2) Kt

0,99

;=0 Kb oo = O4q - (A.17)

aq
The solution of (A.17) is trivially seen to be K ., = S, Transforming this solution back
to coordinate space, completing the square and using the basic Gaussian integral fq e =

(4m)#?2, gives the following result:

1 (z—y)?
t _ — J)
by = —(47rt)d/2€ o (A.18)
Equation (A.18) is the fundamental solution around which we will construct the perturbative
expansion.

To derive the perturbative expansion® for K' around K} we define the product U' =

3In the following we omit to write explicitly the dependence on coordinates for clarity.
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K;'K'. Using (A.1) and (A.17) we find it satisfies the following equation:

oU" = OK;'K'+ K;'oK"
= K,'"(-0*)K'— K;'AK"'
= —K,'VK'
= —K,'VKLU". (A.19)

We know that equation (A.19) can be solved using Dyson’s series, thus we find for U" and

K the solutions:
t t
Ut :TeXp{— / dTKOTVKg} = K'= KgTexp{— / dTKOTVKg} . (A20)
0 0

In (A.20) the exponentials are time-ordered with respect to t. Rescaling the integration
variable in (A.20) as 7 — 7/s gives the final formula for the perturbative expansion of the

un-traced heat kernel:

1
K® = KgTexp{—s/ dtKOStVKSt}
0

1
= K¢ — s/ dt KUV K+
0
1 t1
+5° / dty / dty KUV KWy Kt 4 O(V?) (A.21)
0 0
The expansion (A.21) is conveniently represented graphically as:
K5 — —g % 1 g2 e e

where a continuous line represents a K, factor and a cross an insertion of the interaction
potential V. The parameter integral of the general term is the straightforward generalization
of the parameter integrals in (A.21).

The perturbative expansion for the un-traced heat kernel just derived is the fundamental
technical tool used in section 3.3.4 of Chapter 3 to derive the momentum space representation
for the flow equation of the zero-field proper vertices of the bEAA.

We use now the expansion (A.21) to derive the perturbative expansion for the trace of
the heat kernel. To do this we simply trace equation (A.21). This gives, in graphical form,

the following expansion for the heat kernel trace:
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T eReIor

The general term in this expansion is now of the form:
1 tn—1
(—s)" /0 dty - /0 dt, Te K3V RGO Ly ey (A.22)

Note that in (A.22) we used the cyclicity of the trace to combine the last flat space heat
kernel with the first.
As a first example of how this expansion can be used, we consider the Laplacian A =

—0% + U acting on scalar fields. The first two contributions to the heat kernel trace are:

@ = At T KU = b [, U

and

Q = Jo dt1 Jg' dtz Tr KS(I*“H?)UKS(tﬁtQ)U

The first contribution is already in its final form. The second one can be simplified by

changing variables to £ = t; — t; so that it can be rewritten as:
1 /1
5 /0 de / dlzdty K2V K, 25U,U, (A.23)

The combination of flat space heat kernels in (A.23) can be simplified using the following
identity:

s(1-€) grse L s¢(1—-€)
K2y KO,xy—WKovmy : (A.24)

This relation can be easily verified inserting the explicit form of the flat space heat kernel
(A.18). Using (A.24) in (A.23) gives:

1 d,. jd e —s£(1-€)(—02
W/dxd y U, (5/ dg e=s¢1=0%)s, ) U, . (A.25)

0
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We see that in (A.25) the basic structure function (A.10) arises naturally in its parametric

form. We can finally write (A.23) as:

1 1

Thus, to second order in powers of U, the trace of the heat kernel is given by the following

non-local expansion:
1
TrKS:W/ddx (1=sU+5°U fu (sA)U +...) (A.27)

This is just the expansion (A.8) adapted to the Laplacian operator we are considering. Note,

as we said before, that the term

57 d 1.
—(4773)d/2 /d s <—68 U) 9

is absent in the expansion (A.27) but present in the local heat kernel coefficient (A.7) since
it is a total derivative.

As a second example of how to use the perturbative expansion for the trace of the heat
kernel, we use it to derive the pure gauge part of the non-local heat kernel expansion (A.8),
i.e. we calculate fqo(x). Due to symmetry arguments, it is enough to consider the simplest
case where fqo(x) is not vanishing, i. e. we consider the abelian gauge Laplacian. The non-
local structure function so calculated will be then valid for the general case where the €,
can be arbitrary complicated. This is one of the advantages of the heat kernel expansion:
just calculate the coefficients, or the structure functions, in the simplest case and then use
them to treat the general case.

First we note that the Laplacian can be written as the Hessian of the following “Laplacian
action”:

Llg" 5 A] = / 0 (D) (D) | (A.28)

The Hessian of (A.28) is in fact:

Lgcly,l;o) [0,0; A] = /ddszH(Sngayz = =D, D}o,y . (A.29)
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a3

«
Figure A.2: Feynman rules from the Laplacian action (A.28).

If we expand the Hessian of the Laplacian action (A.29) in powers of the gauge field as

1
L9000, A] = L110>[000}+/L<1“>[000]A 2/ LEE210,0;0] A, A, + O(A?),

Yz TYZW
(A.30)
and we note that Lg}y’l;o) 0,0;0] = —820,, is the flat space Laplacian, we can write the
interaction potential as follows:
1
V= /Lgy; D10,0;0]A, + 2/ L:120,0; 014, A, + O(A?). (A.31)

From symmetry considerations alone we know that the heat kernel expansion for the gauge
Laplacian (A.29) has the general form (A.8) and that the first non-trivial contribution is of
order curvature square, i. e. is the function fo(x). To find an equation satisfied by this term

we simply differentiate (A.8) two times with respect to the gauge field to obtain:

82'Tr K 2 2
T = 48 —S ;
514%5145 A=0 aT By
ax By

We just need to evaluate this equation in momentum space. The vertices of the Laplacian

action are the standard ones for a scalar field interacting with the electromagnetic interaction

and they are shown in Figure A.2. Internal lines are treated according to:

p3 Pn—2 Pn

T

2—

tpn— tn— l)pn le —Stn— 1pn
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As usual we integrate over closed loop momentum. The first diagram gives the following

contribution:

q

W\G\Nﬁ = I dtr g dtz Jy(2q + p)*(2q + p) eI (et

q+tp

Terms linear in ¢ integrate to zero so we can set (2q +p)®(2¢+ p)? = 4¢°¢® + p®p® under the

integral. Re-writing the exponent as

(I—ti+t2)* — sttt —t2) (g +p)° =¢ =+ (¢ +p* +2q - p)
= (q+&p)*+ 1 —-¢)p°,

shifting the momentum variable ¢ — ¢“ + &%, dropping terms linear in ¢® and using the

relation ¢®¢® — Cll ¢*%¢% under the integral gives:
L[ sctmont {4 oas [ 2o | arp SN
5 dée 29 e +pp” (1-48%) [ e : (A.32)
0 q q

Using the basic Gaussian integrals

1 1 d
—sk? 2 —sk?
= —— k fe
/ke (4ms)d/? /k ‘ (47s)/2 25"
in (A.32) gives:
11! 2 [2
Z —sé(1=E)p* ) 2 B —4£2) )3
(4m)d/22/0 dée {Sg + (1 —4€%) p°p } . (A.33)

The parameter integral in (A.33) can be written in terms of the basic form factor (A.10) as:

1 [t 1—
5\/0 df e—{(l—f)a (1 o 452) — j(@) ’

thus we get the following result for the first diagram:

! {lf (sp2) go8 + 1L 17 G } : (A.34)

(4ms)d/2 | s sp?

Note that (A.34) is not transverse. The second diagram gives instead:



APPENDIX A. HEAT KERNEL TECHNIQUES 233

q
_ a3 —sq® _ 1 2 _af
J\Q\ o 29 fq € o (4775){1/2 Sg

a B

The two diagrams combine now to give the following transverse structure:

52 1— f(sp?)
—9_ 7 (p2g®P — pepf)y L/
(47s)d/2 (v P'r’) sp2

which correspond to the momentum space representation of the term:

82

W /dflf FMVfQ (SA) ) o s (A35)

with the following form for the structure function:

fo(z) = ——F—. (A.36)

We see that (A.36) agrees with (A.9).

Along the same lines it is possible to derive the gravitational form factors in the non-local
heat kernel expansion (A.8) by considering the Laplacian action as equal to the action of a
minimally coupled scalar field L{¢; g] = 3 [ /99" 0,$0,¢. We do not do this here and refer
to [129] for further details.

The derivations of this section show that the perturbative expansion here developed is
able to re-derive the non-local expansion for the trace of the heat kernel exposed in section
A.1.2. More importantly, this approach can be easily applied to general differential operators

other then second order Laplacians [129].

A.3 Trace technology

One of the most useful applications of the heat kernel expansion is to the calculation of
functional traces. Consider a function of the Laplacian operator f(A), we want to calculate
its trace. With the aid of a Laplace transform we can reduce the trace of f(A) to the trace

of the heat kernel as following:

Tr f(A) = /OOO ds f(s)Tre 4 = /000 dt f(t)TrK® . (A.37)
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Here f(z) is the inverse-Laplace transform of f(x). Inserting in the last equation the local

heat kernel expansion (A.4) we find:

Tr f(A) =Y Qu_,[f1Ban(A), (A.38)

n=0

where Bs, are the integrated local coefficients (A.5) and

Q= [ afor (A.39)
0
are the “Q-functionals”. These can be stated in terms of f(z) as following:
= [ dz 2 >0
Qulf]=4 "™ Jo dz gz =0 (A.40)
(=1)f™(0) n<0

It is possible to extend (A.40) also to half integers values of n. For more details see the
appendix of [96]. With the aid of (A.38) and (A.40) we can now calculate the local expansion

for the trace of any function of the Laplacian operator.

A.3.1 Threshold integrals

In this section we explicitly calculate the Q-functionals or threshold integrals needed in this

thesis. We will employ the optimized cutoff shape function
Ri(2) = (K* — 2)0(k* — 2), (A.41)

that enables the analytical calculation of all the threshold integrals we will encounter.
As already defined in the main text, the general form of the regularized propagator is as

follows:
1

Gi(z) = R

(A.42)

were w is generally a squared mass but can even be something else. In all the beta functions
we will study there are three basic QQ-functionals to be evaluated. The first one is of the form:
REm 9(n 1) —

Qn [0 Ry — nRy)GY'] = T T3 (/R (A.43)

where 7 is a given anomalous dimension. The second form involves a derivative of the
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regularized propagator with respect to the argument z and turns out to be zero if we employ
the optimized cutoff:

To see why (A.44) vanishes, we just need to notice that
Gi(2) = —Gr(2) (1 + Ri(2)), (A.45)

vanishes since R} (z) = —0(k* — z) becomes —1 inside the integral in the Q-functional. The
last combination we are interested is when a factor of the second derivative of the regularized
propagator is present:

k2(n+27m) 1

Qn [(O:Ry, — nRy)GRGY) = — T Oxw/key (A.46)

In (A.46) we used the following relation:
Gii(2) = 2G(1 + Ri(2))* — GRR{(2). (A47)

where only the second term is non-zero when using the optimized cutoff shape function. We
used also the relation R} (z) = 6(k* — z). It is obvious how to generalize (A.43), (A.44)
and (A.46) when different regularized propagator of the general form (A.42) are present. In
studying non-abelian gauge theories in Chapter 3 we will encounter a regularized propagator
which is not of the form (A.42) but reads:

(67

GLi) = e TR

(A.48)

where « is the gauge-fixing parameter. In this case the @)-functionals turn out to be more
complicated since, due to the presence of the gauge-fixing parameter in the denominator of
(A.48), the usual simplification that occurs when employing the optimized cutoff does not
occur any more. We find a similar form for the regularized propagator also in Chapter 2

when dealing with the derivative expansion at order 9%. In that case we have o = Zi(p) in
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the denominator of (A.48) while a = 1 in the numerator. We find the following result:

k2(n+1—m) 1
I'(n+2) am(l4+w/k*)™ [

-1
<t (o1,
«

Qn [(ORx — nR)GY] =

—(14+n)(=2+n)

1+ w/k)
—1
Also
Qn [(0 By — nRy)GI'GY] = (o = 1)Qn [(01 By, — nRR)GY'] (A.50)
while

Qn [(O:Ry — nRy)GRGY] = (a—1)°Qu [(0:Rx — nRy)GY]

k2(n+27m) o

I'(n) (1+aw/k?)™"

(A.51)

If instead we consider the non-local heat kernel expansion (A.8) in (A.37) we encounter

@-functionals inside parameter integrals of the following form:

/0 4€ Qu [ (= + 2£(1 — €))] (A.52)

where we defined the function hg(z) = 0;Ri(2)Gr(z) for w = 0. The integrals (A.52) can
be calculated analytically if we employ the optimized cutoff shape function (A.41). We will
need these integrals in the cases n = —1,0, 1,2. We start to consider the case n = —1, where,

using (A.40), we have to evaluate

/ 4€ Qy [y (= + 2€(1 — €))] = — / de My (26(1— €)) (A.53)

0 0

We have hj, (z€(1 — €)) = 26 (2 — £(1 — €)) where & = x/k*. We need to study the following

quadratic equation:

O =e—c+z fO=0 =  e=gEnfi-c. (A5

Using the properties of the delta function and the fact that /(1) = £4/1 — % we find that
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(A.53) becomes:

| den@sa-o) - 1 f ds{5(5‘5:>+5(51‘5>}

1+ -0(3 —4), (A.55)

since only for < 4 the roots &, are real. Inserting back (A.55) in (A.53) gives the following

/0 dEQ 1 [hy (z +2£(1 = €))] = %\ 1+ 47]“29(3: — 4k?) | (A.56)

For the case where n = 0, using (A.40), we have that:

result:

/0 d€ Qo [ (= + w€(1 — €))] = /0 € I (2£(1 — €)) | (A57)

We have now hy, (z€(1 —€)) = 260 (£ —&(1 —¢€)) and we need to find out when f(&) > 0.
From (A.54) we see that this happens for 0 < £ < ¢ and £, < ¢ <1 when Z > 4 and always

when < 4. The parameter integral integral in (A.57) becomes thus:

L

/0 ¢ iy, (w€(1 - €)) = (A.58)

<4
>4

N

{2 —2e - )

Inserting (A.58) in (A.57) and using (A.54) finally gives:

/O de Qo [ (= + 2€(1 — €))] = 2 [1 yJ1- 47’“29(95 - 4/8)] . (A.50)

In the remaining case n > 0, using (A.40), we have to evaluate:

/01 € Qu [y (2 + 2E(1 = €))] = ﬁ/ol d¢ /Ooo dz 2" hy, (z+ 2€(1 =€) . (A.60)

Now we have hy (z€(1 — €)) =26 (£ — &(1 — €) — z) so that the z-integral in (A.60) is reduced
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to:

o k2 —z€(1-€) 92
/ dz "y (= + 2€(1 — €)) = 2/ doa = 22— ae(1- 6], (A6L)
0 0 n

with the condition k% — z£(1 — &) > 0, otherwise it vanishes. As for the n = 0 case, this
condition is satisfied for 0 < & < ¢ and &, < ¢ <1 when £ > 4 and always when = < 4.
Inserting back (A.61) in (A.60) thus gives:

R

0o 2 1 2 . n
/ dz 2" 'hy (2 +2€(1 =€) = T(n+1) fo ng [k 5Ulf<1 £)] ) <4 ‘
° ok e+ J deb R -z - iz

(A.62)

In the cases of interest, n = 1,2, performing the integrals in (A.62) gives the following results:

X

! 2
/U dé Q1 [hi (2 + 2€(1 = €))] = 2k [1_%+@(1_ﬁ

T

)2 0(x — 4k2)] . (A63)

and

/1déQ2[hk<z+x£<1—£>>] = K {1—i+ -

. 3k2 " 30k4
x? 42\ 2
— 1—— ) O(z—4k»] . A.64

This concludes the explicit evaluation of the ()-functionals needed in the applications exposed

in the main part of the thesis.



Appendix B

Basic quantum field theory

In this Appendix we give a short review of the basic concepts of the functional formulation of
Quantum Field Theory (QFT). We will work with a Euclidean signature, so we are actually
doing Statistical Field Theory (STF). For a general introduction see the textbooks [10, 11,
12, 9].

B.1 Functional formulation of QFT

The fundamental object of a QFT, as defined in the functional formalism, is the partition

function. In a theory with classical or bare action S[¢] the partition function is defined by:

Z = /D¢e—5[¢1, (B.1)

where ¢(x) is the field variable. The field can be either bosonic or fermionic. In the first case
we integrate over classical fields while in the second case we use anti-commuting Grassmann

variables. Given an observable O [¢(x)], the expectation value is defined to be

1

©16l) = [ Do) . (8.2

An important role is played by the expectation value of the product of n fields at different

points. This defines correlations or Green’s functions:

G(x1, ... xn) = (P(x1),...,0(xy)) . (B.3)

239
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B.1.1 Generating functionals

It is convenient to introduce auxiliary currents J(x) and to define the partition functional as

follows!:

— [ ocsinsn. (3.0

In this way we can write the correlation functions as:

L9 * 1 (B.5)

Oln). - 0)) = ZrsTey s 2,

Equation (B.5) says that the partition functional (B.4) is the generating functional of correla-
tion functions. We are more interested in connected correlation functions, these are generated
by the following functional:

W([J| =log Z]J]. (B.6)

We can see this by calculating the first functional derivatives of (B.6). A first derivative

gives:
SWU 1 67

where (¢(x)), is the vacuum expectation value of the field in presence of the current J(z).

For the two-point function of W[.J| we find the following:

W J| 1 2Z[J) 1 6Z[J) 6Z]J]
0J(x1)0 (x2) — Z[J] 5J( 1)0J (22) ZUP 6J(21) 6J (22)
= (D(z1)e(2)); — (b(x1)) s (D(2)) 5 (B-8)

and we see that this corresponds to the connected two-point correlation function, i. e. the

propagator. For the three-point function of W[J] we find instead:

SBWJ] 1 AR 1 6z]J] 2Z[J]
6J(21)0J(22)0 (x3) — Z[J]0J(21)6J (22)6] (x3)  Z[J]? 6] (23) (5J(x1) J(x9)
1 62Z1J]  0Z[J] 1 6z[J]  8*Z[J]

T Z[IR25T(21)8 (23) 00 (w2)  Z[J2 0 (1) 0 (22)0 (23)
1 6z[J) §z[J] 6Z|J]

+2

LObviously the partition function is given by Z = Z[0].
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)2 (0(22)) 5 (¢(23)) ; - (B.9)

Equations (B.7-B.9) show that W[J] is the generating functional of connected correlation

functions. In general we have:

0 " wi| (B.10)

<¢(l’1>,,¢(l€n)>c = 5J([E1) 5J([En> J=0

These are called also connected Green’s functions Go(¢(1), ..., () = (d(21), ..., O(2n)) o
These relations between connected and non-connected correlation functions can be inverted

to give the following:

(O(z1)) = (d(21))¢
(O(z1)d(x2)) = (D(21)9(22))c + (D(71))c (A(22)) ¢
(P(x1)(22)p(73)) = ((21)d(x2)9(23)) 0 + (D(21)P(22)) 0 (B(w3)) (o +
(O(z1)d(x3)) 0 (D(22)) o + (D(22)D(23))  (D(21)) +
+ (@(21)) ¢ (d(22)) o {d(23)) o - (B.11)

In a QFT, the natural variable to use is the vacuum expectation value of the field ¢ (z) =
(¢(x)) ;. From equation (B.7) we have that

SWJ]

5T(r) ps(@). (B.12)

To construct a functional of ¢ ;(x) we can solve (B.12) to obtain .J,(x) and take a Legendre
transform of the functional W[J]:

el = [ died (a)ote) - W1, (B.13)
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This is the definition of the effective action. Differentiating equation (B.13) with respect to
@ gives:

() () p(x))  oplz)
_ o (0J0(y) _ o OW[J,] 5J_(y)
= [ (Gaayetn v awsa) - [ G5 a2
=¢(y)
= J(z). (B.14)
If we set J =0 in (B.14) we obtain the following equation:
oCle] _
b)) 0, (B.15)

which is the quantum generalization of the principle of least action. Using (B.6), (B.13) and

(B.14) in (B.4) gives the following integral representation for the effective action:

T = [ st o), (B.16)

Shifting to the fluctuation field x = ¢ — ¢ in the functional integral (B.16) finally gives:

ST [p

R X (x) =0. (B.17)

o~Tlel / Dy ¢S+l

The solution of equation (B.15) ¢, is the quantum vacuum expectation value of the field, if
we insert it in the integral representation of the effective action (B.17) we find the following

relation for the on-shell effective action:
e Tled — /DX e~ Slestnd (B.18)

We can write the relation between the on-shell effective action (B.18) and the zero-source

partition function (B.1) as follows:
Clp.] = —log Z. (B.19)

Equation (B.19) shows how the effective action formalism can be used to calculate the zero-

source partition function: first calculate the effective action, second solve equation (B.15) to
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find the vacuum expectation value of the field ¢, and third use relation (B.19).

243

The effective action is the generating functional of proper-vertices. The following rela-

tions, found by differentiating (B.12) and (B.14),

*WJ] (1) 0’Lle]  _ 0J(xa)

0J(x1)0J(z9) 6 (w2) So(z1)dp(xa) (1)’

show that the Hessian’s of W[J] and T'[g] are inverse to each other:

W J] _ ( 5T
dep(

] - = X1,
5.J(21)0.J (x2) (a;Q)) = Golzy,22).

1)
For the connected three point function we have instead?:

W0 000G
6J1(5J25J3 N 5<]1 8 5<]1 6§0A .

Using the following relation

0G93 3T
= —GopG3c——"—,
dpa - 30590,459035800
in (B.21) gives:
W 3T
§J16J26 05 _GMG2BGSC5SOA5SOB5<PC '

For the connected four point function we find:

W 5
N Y A [GMGQBG?,C

- o

I
5§0A5QOB&PC}
%Gm GapGiac + Gia OG2z
YD 0¢p
56‘30] »r n
dpp | 0padpRdPC

Gso+

+G14G2p

5T

—G14GopG3cG
14G2G30 4D(5§0A(5‘;0B5900590D7

>We use now a condensed notation for the arguments of the fields ¢(z) = ¢, and so on.

(B.20)

(B.21)

(B.22)
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reordering some indices gives:

SAW
57570050 = G14G2pGacCGip + CraGacCGapGapt
&I 53T
G 1 ConCac ] — 0 Gy O
14G2pG3cGaB| 5000500 XY5<Py5g005g0D
5T
—G14Go5GarG _ B.23
1A 2B 3C 4D5§0A(5§035(,005(,0D ( )

Equations (B.20), (B.22) and (B.23) are the first of a hierarchy of relations expressing

connected correlation functions in terms of the proper-vertices and propagators.

B.1.2 Gaussian integrals

The ability to perform Gaussian integrals is at the base of the perturbative approach to QFT.
It is also the basic tool used in effective field theory. For this reasons we review here the
basics relations.

We start with the finite dimensional Gaussian integral for bosonic variables ¢, = 1, .., N.

The Gaussian action takes the following form:
1
Sl¢] = B %: OiM;i;0; (B.24)

where M;; is a positive definite matrix, i.e. M;; is diagonalize and all eigenvalues satisfy

Ai > 0. The partition function is defined as the finite dimensional version of (B.1):
7 = / dep e 2 Xis #iMisbs (B.25)

with measure d¢ = II;d¢;. Eventually by a redefinition of the ¢;, they can be taken to be an
eigenbasis, i.e. to satisfy > . M;;d; = \idi;¢;. Equation (B.25) becomes:

7 = /dgbe—éZM? = H/dgzﬁi em2hdt (B.26)

Using the basic Gaussian integral

oo
) 2T
—zaxr® __
/ dre 2% =4[ —,
oo a
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in (B.26) finally gives:
21\ /? (2m)N/2
7 = - S S A— B.27
1:[ ( Ai ) det? M ( )
We can extend this result to calculate the full generating functional of correlation functions

Z(J). Completing the square and shifting the integration variables to ¢ — ¢ — J M1 gives:
Z(J) = / dep e~ 2MO+T0
_ e%JM—lJ / do e—%(qﬁ—JM*l)M(zﬁ—M*lJ)
= Z(0)ex? MV (B.28)

with obviously Z = Z(0). Using (B.28) we can calculate all correlation functions:

1 62Z(J)
(0192) = Z(J) 61160z | ,_,
— ]\/[1*21
1 §Z(J)
(@1920394) Z(J) 6116 J50J50 4 | ,_,
= MMy + M Myt + M MGG (B.29)
By induction we can easily prove the general relation:
(Pr..0N) = > ML MY (B.30)

11 <ioF..ZiN_1<IN

Relation (B.30) is usually called Wick theorem and here it follows as combinatorial property
of Gaussian integrals. The generating functional of connected correlations functions is defined
by

W(J) = log Z(J) = %J M (B.31)

In (B.31) we used (B.28) and we fixed the normalization Z(0) = 1. The average field is

determined by:
oW (J _

thus J;(p) = M,;¢; and the effective action becomes:

T (p) = Jle)ei = W(I(0) = 50:Mige;. (.33
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In particular, this shows that for a Gaussian theory the bare action and the effective action
are equal I'(¢) = S(p).
We can also consider the case of complex fields. In this case we integrate over ¢; and ¢

separately. Using the basic complex bosonic Gaussian integral

/ dz / dz* e~ ——, (B.34)

we find the following form for the generating functional of connected correlation functions:

Z(J, J*) — /d¢d¢* 6—¢*M¢+J¢*+J*¢ — Z(O)O) eJ* ]\471J7 (B35)
where now
™ B.36)
Z(0,0 .
(0,0) = det M~ (

As before, we can show that the bare action and the effective action are equal.
Fermionic variables are elements of a Grassmann algebra, with elements 6;, defined by
the following anti-commutation relations:

1

A function of Grassmann variables has a truncated Taylor expansion:
f(01,..,0n) = fo+ fili + fi;0:0; + fiju0:i050k + .. + fir iy - Oy, (B.38)

where the coefficients f;, ;. are totally antisymmetric and the indices run from one to V.

Integration over Grassmann variables is defined by the rule:

[10) = [ 010 561, 8) = fr. (B.39)
6

The property (B.39) can be seen as a manifestation of the following anti-commutation rules
for the differentials:
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together with the basic integration rule:

o =0 9o =1. (B.41)
/ /

The integral over Grassmann variables so defined is called “Berezin integral”. The integral is

translation invariant:

[0+ 6= [ av50). (B.42)

and has the following property under rescaling:

- / i0' 0 — / d(ch) b = ¢ / dcd)6 = d(ch) = %d&. (B.43)

Employing the rules (B.38) and (B.41) we can calculate the basic Grassmann Gaussian inte-
gral:
/ dfdf e = / d0do(1 — abf) = —a / d0doos = a . (B.44)

Note that the fermionic Gaussian integral (B.44) is linear in a while the bosonic Gaussian

integral (B.34) goes as . The general fermionic Gaussian action reads:

where summation over repeated indices is understood. The partition function is defined by
Z = / dfdf e~ Mis% | (B.46)

where the measure is defined as dfdf = df;...dOxdb;...d0n. We can evaluate (B.46) in the

following way:

I ;
7 = Nl d9d9eilMiljlejl---giNMiNjNejN
DY [ sraod o .0
= N| d9d9 91/19]19”\70]]\7 M7,1]1M7/N]N
:(_I)Ngi:iNEjl--vjN
1
= mEil...iNejlijMiljl"'MiNjN

= det M. (B.47)
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We can now calculate the generating functional of fermionic Gaussian correlations with the
help of the shifts § — 0 + M 'y and § — 6 + 7M ', we find:

Z.m) = / dBdf e~ 0 Miabs+m040m — 70 0) MM (B.48)

where again Z(0,0) = Z. From (B.48) we can derive Wick’s theorem for fermionic Gaussian
variables as we did before for the bosonic case.

In the general case, where both bosonic and fermionic fields are present, we can combine
them in a super-field multiplet ® = (¢, ). We can define the super-determinant as follows:

1 _ ST
(sdet M)~ = —= / dDdD ="M (B.49)

(2m)

where the factor in front is a convenient normalization and where M is a super-matrix of the

M M
M = BB BF ‘ (B50)
Mpp Mpp

form:

To calculate the integral, we seek for a change of variables that diagonalize the quadratic

e = @ (e o) ()

= o' Mppo+ " Mprh + 07 Mppd + 07 Mpp6 . (B.51)

form:

If we shift ¢ — ¢+ X0 and ¢7 — ¢T + 67X in (B.51) we get:

O'MP® = ¢"Mppd+¢" (MppX + Mpr)0+ 0" (XMpp + Mrg) ¢ +
+6" (Mpp + XMppX + XMpp + MpcX) 6. (B.52)

To diagonalize the quadratic form (B.51) we impose MppX + Mpr = 0 and X Mpp+ Mpp =
0. This gives X = —M 55 Mpp and X = —MppMyy,. Inserting these relation back in (B.52)
finally gives:

T'MP = ¢" Mppo + 0" (Mpp — MppMppMpr) 6. (B.53)

We can now compute the mixed Gaussian integral (B.49). We find the following value for
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the super-determinant:

det1/2 MBB

(sdet M)~ = —
det (MFF — MFBMBBMBF)

(B.54)

We had instead made the variable change on the fermionic variables, we would had found

the following equivalent expression for the super-determinant:

det1/2 (MBB — MBFMJ«:}?MFB)

det M)™' =
(S ¢ ) detMFF

(B.55)

We will use (B.54) and (B.55) to derive the explicit expression for the one-loop effective
action for non-abelian gauge theories in Appendix C and for quantum gravity in Appendix
D.

B.2 Perturbative expansion of the effective action

It is possible to calculate the effective action perturbatively in a loop expansion by the saddle
point expansion. We start from the integro-differential equation (B.17) that the effective

action satisfies by reintroducing % and shifting y — v x. We find:
e—%F[@] _ /DX 6—%S[w+\/ﬁx}+ﬁﬂ”[<ﬂ}x <X> =0. (B56)

Next, we expand the action in powers of the fluctuation (integrations are understood):

1 1 1 1
1 _ 1 1o 1@
=Sle+ Vhy] - Sle] + \/55 [plx + 58Pl +
Vh I
+35(3) el + @5‘4) [elxxxx + O (F2X°) (B.57)

and we expand the effective action in powers of A as follows:
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Inserting (B.57) and (B.58) back into (B.56) and expanding the rhs in powers of the fluctu-

ation y gives:

e

3!

s go 1.
= /Dx 250 {1 - Vh (—5(‘” [ehxxx — Fg”[@]x) +
J

-
1
2
1O (F/2) .

~Tifp]-hTafp]+... _ /DXe—§S<2)[<ﬂ}xx—\/ﬁ(31,S<3>[<p]xxx—F§1>Mx)—ﬁs(‘l)[so]xxxer---

2
h
+- (55(3) [lxxx —T §1)[w]x> -5 [s@]xxxx]

(B.59)

The integrals in (B.59) are now all Gaussian and can be thus performed. Remembering

that (x) = 0, only even correlations in (B.59) are non-zero. We can extract various loop

contributions to the effective action by equating, on both sides of (B.59), those terms of the

same order in A. The one-loop contribution is simply:

N

671“1[50} — /DX e—%S(Q)XX _ (det S(Z) [4,0])_ :
or, using the relation log det S®|[p] = Tr log S@[¢],
1
T[] = 5 Trlog S¥e].

In terms of the following Gaussian correlation functions for the field y,

[ Dxe 350y,
N [ Dx e~ 25

(X1.--Xn)

Y

the two-loop contribution can be written as:

1/1\?
rlel = -3 (5) SBIASHI G +

1

)

1 3 1 1 1
T Sislellle] dxaxaxaxa) — STl

1
+55Y§§4[¢] (X1X2X3X4) -

)] (xaxa) +

(B.60)

(B.61)

(B.62)

Note that the two-loop contribution in (B.60) involves the first functional derivative of the

one-loop contribution. Differentiating equation (B.59) once with respect to ¢ gives:
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I{le] = $815lelGanlel = <)

where we defined the field dependent propagator Gia[¢]| = 52 (0]t = (x1x2). Using Wick’s
theorem (B.52) to reduce the Gaussian correlations in (B.62), we find, in obvious diagram-

matic notation, the following contributions:

Sible) Sl (xixaxsXaX5X6) = 6 @ +9 O—O
Sl = (OO
ririlGeld = 1 O—O
Stabalel xixaxsxa) = 3%

Inserting these terms in (B.62) gives the two-loop contribution in the form:

i = 447100 9 O-Ol+

oo|,_.
=

+
==
w

By simplifying this expression, we see that only one-particle irreducible diagrams are left at

the end:

Finally, the effective action to order A% is thus given by the following formula:

Tlg] = Sle] + iTrlog S@fg] - 25 (H+ 2 (YD) + o).
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Three loop terms, or higher, can be deduced by drawing diagrams and by figuring out the

appropriate coefficients.

In general, we can calculate the loop contributions to the effective action by employing

the heat kernel expansion. We just need to use the relation % = fooo ds e™*" so that we can

relate the propagator to the heat kernel of the operator S [p)] as follows:

Gayly] = /0 ds eS¢l = /0 ds K3, (] (B.63)

In this way we can evaluate the one-loop contribution using the non-local expansion for the
heat kernel trace, while we can evaluate all higher contributions employing the expansion for
the un-traced heat kernel both described in Appendix A.

B.3 Ward-Takahashi identities

Consider a symmetry of the action and of the measure such that for ¢ — ¢ + d¢ we have:
Sle + d¢] = S[¢] D(¢ +6¢) = Dg. (B.64)

For a general operator O[¢], which is not invariant under the symmetry, we must have:

©l6) = [ Doolgie
— [ D(6+38) Ol + 0] 501
= /D(b O[¢ + d¢] e~

~ [ Do (©ls] + 5006) =5
(O[9]) + (601¢)) ,
so we find:
(50[¢]) = 0. (B.65)

Equation (B.65) is the basic Ward-Takahashi (WT) identity. To rephrase the WT identity
in terms of the generating functionals we remember that Z[J] = Z[0] (e/7¢). We have to
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insert in (B.65) the operator O[¢] = e/ /¢, who's variation is de/ /¢ = e/ /¢ [ J5¢, to find:

/dde(x) (0p(x)), =0. (B.66)

In terms of the effective action we can rewrite (B.66) as follows:

/ dz (6¢(x)) 5 =0. (B.67)

Equation (B.67) is the WT identity for the effective action. If 0¢ is linear in the fields, then
(0¢) = d¢p, and the lhs of equation (B.67) becomes just:

ol'[p]
do(x)

[t ot 525 = [ dtssotars B < ol

In this case the effective action satisfies the same symmetries of the bare action:
o'[¢] =0. (B.68)

In the case in which the bare action is not invariant under the symmetry ¢ — ¢ + d¢ the
WT identity (B.67) becomes:

ol'[]
dp(x)

Equation (B.69) represents the general WT identity. It will be used in Chapter 3 and 4 to
derive the modified WT identities that the EAA for non-abelian gauge theories and quantum

[ s oty 52 = 65i6h (B.69)

gravity satisfy.

When ¢ is not linear in the fields but the symmetry is nilpotent 62 = 0, as in the
case of BRST symmetry, it is useful to introduce additional currents K, the BRST currents,
that couple to d¢. Note that d¢ is now a composite operator. The generator functional of

connected correlation functions becomes now:

JWILK] _ / D eSS Jot [ Koo (B.70)
with SWIJ, K]
T@ = (0¢(x)) . (B.71)

The modified bare action S[¢] + [ Kd¢ is still invariant under the symmetry transformation
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because of the nilpotency of 6. Thus the modified effective action:
oK) = [ i J(o)e(o) - WK, (B.72)

where K is only a spectator in the Legendre transform, satisfies the WT identity:

/[<6¢(x)>é%%§§?j 0. (B.73)

Considering that
e, K| IWIJ, K]

—_— = B.74
K (x) 0K (x) (B.74)
the WT identity (B.73) can be recast in the compact form:
O, K] 0T [p, K]
¢ ’ = =0. B.
[ 5 ey = (7

Equation (B.75) is the Zinn-Justin (ZJ) equation. If the bare action is not invariant under

the symmetry transformation we get instead:

d 5F[S07 K] 5F[90’ K] _
/ﬁxéK@)éﬂ@ — (5S[4]) . (B.76)

We will use the general form of the ZJ equation (B.76) in Chapter 3 to derive the modified
7J equation valid for the EAA of non-abelian gauge theories.



Appendix C

Basic non-abelian gauge theory

In this appendix we review the basic material needed to study non-abelian gauge theories in

Chapter 3. For a general reference see the textbooks [11, 12, 9].

C.1 Definitions

Given a Lie group G we pick up a representation such that the group elements are represented

by matrices of the form:
R=e". (C.1)

Here 6 = —it*0* are the group parameters, the indices a,b, ... run from one to dim G, and
the matrices t* are the generators of the Lie algebra of G in the given representation. The

generators satisfy the following commutation relations:
[t2, %] = i feete. (C.2)

The structure constants ¢ in a general representation are antisymmetric in the first two

indices f¢ = — f%¢ The generators satisfy also the Jacoby identity:
([t 6] ] + [0, ], ¢°] + [[t5, ¢, ¢°] = 0. (C.3)
We can rewrite the Jacoby identity (C.3) in terms of the structure constants as follows:

fcalfcbk + fcakfclb + fcabfckl =0. (04)

255
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Matter fields ¢ are sections of the fiber bundle B with base the spacetime manifold M
and fiber the gauge group G. Under a gauge transformation (or under a change of local
trivialization), they transform as ¢’ = R¢. Covariant differentiation is introduced asking
the transformation property (D,¢)" = RD,¢ (or more generally D] = RD,R™) to hold,
together with the definition:

D,=0,+A4,, (C.5)

where A, = —iAjt® is the Lie algebra valued gauge connection. Thus we have:

(Duo) = (Ou+ AR
= (OuR)¢+ RO+ AR
= RO+ RALP,

and so the gauge field must transforms as:
A =RA,R'—(0,R)R. (C.6)
Note that we can rewrite the inhomogeneous term in (C.6) using the relation:
RR'=1= (0,R)R'=-RI,R".

The gauge field strength F),, is the curvature of the gauge connection. It can be defined as

the commutator of covariant derivatives acting on matter fields:
[D;L7Du]¢: FMV¢' (C?)
To find the explicit form of the field strength we just need few steps:

Dy, D¢ = (0, + Au)(0, + A)op — (n > v)
= 0,000+ A0ub + DAy + Adyd + AA, — (1o v)
- (auAV - aVAu + [A/u Au]) o,

so we find
F.=0,A,-0A,+[A,A)=D,A —D,A,. (C.8)

The commutator term in (C.8) will vanish in the case we are considering an abelian gauge

group, in this case we recover the the field strength of electrodynamics.
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In components, the covariant derivative (C.5), reads

Dzb =570, + f“bCAZ . (C.9)
In components we have
[A,,A)] = (—i)QAZA,C/ [tb,tc} = —AZAZC, i foee® (C.10)
if we set Fl,, = —iFjt" we get
Fi, = 0,48 —0,A% + [ AL A (C.11)

From the transformation properties of the connection it is possible to find out how the gauge

field transforms:

F,, = D,A,—D,A,
= RD,R'(RA, R = (0,R)R™") — (nv)
= R(D,A,—D,A)R,

that gives
F,=RF,R", (C.12)

showing that the field strength transforms homogeneously. Using the transformation property

(C.12) we see that we can construct the following gauge invariant combination:

tr F,, F'* = tr(RF,, R'RF" R")
= tr (F,F" R™'R)
= trF,F". (C.13)

The integral of the invariant (C.13) over spacetime is the classical action for non-abelian

gauge theories:

1 1
S[A] = 3 / d'ztr F, " = 1 / Az Fy, F* (C.14)

In (C.14) we used the normalization of the generators trtt’ = £6°°. The field equations for

non-abelian gauge theories are obtained by a variation of the action (C.14) with respect to
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the gauge field A,. We find:

0S = /ddxtréFm,F“”
= 2 / d®ztr (9,04, + A 0A, — A, A,) F*
= -2 / d®z tr (0, F"™ + [A,, F*™]) 6 A, ,
the condition 0.5 = 0 implies the following non-abelian or “Yang-Mills” equations of motion:
O F" +glA,, F*] =0. (C.15)

In (C.15) g is the non-abelian charge that is present since we have redefined the covariant
derivative as D, = 0, + gA,. Equation (C.15) can be written as D, F* = 0 if we introduce

the covariant derivative acting on fields with one group index a:
D,V =0,V+[A,V]. (C.16)

We can prove that (C.16) transforms homogeneously D)V’ = RD,VR™'. Finally, from the
Jacoby identity (C.3) it follows the following relation:

D,F,,+D,F,, +D,F, =0, (C.17)

which is called Bianchi identity.
For infinitesimal values of the gauge parameter, the group elements can be expanded as

R =¢e"%~1— 0. Matter fields transform infinitesimally as:
¢ =Ro=¢—0p=0p = —0¢. (C.18)
The gauge connection transforms infinitesimally as:

A = RA,R"—(9,R)R'

(1=0)A,(1+0)+ (0,0)(1+0)

= A,+0,0+[A,°0

= 04, = D,0, (C.19)

Q
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while the field strength transforms as:

F\, = RF,R™

(1-60)F.(1+0)

= Fu —0F,, +0F,

= 0F, = [Fu.f]. (C.20)

Q

In component form, we have the following relations

So' =0 (t2)" ¢ (C.21)
SAL = 9,0+ [ AL (C.22)
5FS, = f™F,0°, (C.23)

a

where we used the relation f2%¢ = i(t¢,)? valid in the adjoint representation.

C.2 Functional integral quantization of non-abelian gauge

theories

In this section we quantize non-abelian gauge theories by functional methods. We first review
the Faddeev-Popov quantization and the related BRST symmetry. Then we introduce the

background field method and we construct the background effective action.

C.2.1 Faddeev-Popov and BRST symmetry

The partition function is defined by the functional integral:

DA s

7 = e

(C.24)

Vé;auge

In (C.24) the action S[A] and the measure DA are gauge invariant: DAy = DA and S[A4y] =
S[A] for any gauge transformation parametrized by 6. To omit over-counting due to gauge

equivalent connections in (C.24) we divided out from the measure a factor of the volume
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of the gauge group Vauge. The functional integral (C.24) is over the space of connections
modulo gauge transformations. We follow the Faddeev-Popov method [Peskin, Weinberg| to
factor out the volume of the gauge group. The first step is to insert in the partition function
(C.24) the following identity:

J
1 :/chS /Dé’é fo] det 529 (C.25)
where f*(A) = 0 is a given gauge-fixing condition. Inserting (C.25) in (C.24) and manipu-
lating further gives:
DA 6f9 —S[A

J = D det
va " [fo] 30

— / DAyDOS[fy] det —— 000 —s145)
gauge 50

- /DQ/DAé dt%
gauge 50

= / DAS[f ot 20| st (C.26)
50 o

—S[A]

We explain now step by step the manipulations done in (C.26): in the first step we used the
gauge invariance of the action and of the me sure; in the second we shifted the integration
variable from Ay to A and we set § = 0 in the remaining Faddeev-Popov determinant; in
the last step we isolated the integration over the gauge parameters 6 and we identified it as
the gauge volume Vi, = f D@. Tt is possible to repeat the same steps with a more general
gauge fixing functional B[f] in place of §[f] and functionally Fourier transform with respect
to a field b. At last, we write the Faddeev-Popov determinant using ghost fields ¢ and c.
Finally we get:

— / DADbDeDc e Sprsrldbec (C.27)
where the final action is of the form:
Sprsr[A, b, ¢, c] = S[A] + /ddx < —b* + b f* + & 5£b ) : (C.28)

We can eliminate the auxiliary field b* by the relation

) 1
e S
ob® o
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so that the first two terms in (C.28) give back the standard gauge-fixing term:

d _gaa aa_i d,.ra ra
/dx(be+bf)_2a/dxff.

We have a new symmetry replacing the original gauge symmetry which is called BRST

symmetry:

a __ a
5BRSTA# = EDMC

= (9" + fteAle)

1
5BRSTCa - _ §€fabccbcc
dprsTc’ = —eb”
oprsTb® = 0, (C.29)

where € is a Grassmann parameter. The BRST operator s, defined by dgrsr = €s, is nilpotent

52 = 0. To prove this, we start by showing the effect it has on the gauge connection
S2AZ = 5(0uc"+ f“bCAZcC)
= Ou(sc®) + s AD e + f7CAD s
1
— _§fabcau<cbcc> + fabcaucbcc +
aoc C 1 aoc rc
+ fab fbklAﬁclc — §f be f klAchcl. (C.30)
Due to the Grassmann nature of the ghost and the antisymmetry of the structure constants
the first two terms in (C.31) cancel each other, the other terms can be manipulated until

we factor one term that vanishes due to the Jacoby identity (C.4) in terms of the structure

constants:
S2AZ — (_fackfcbl . %fabCfckl) AZCkCl

1
— _5 (fcalfcbk + fcakfclb + fcabfckl) Azckzcl
= 0.



APPENDIX C. BASIC NON-ABELIAN GAUGE THEORY 262

For the ghost we have:

1 1
S2Ca — —éfachCbCC . §fabCCbSCC
1 1 1
— _éfabc (_ﬁfbklckclcc . §fcklcbckcl)
(facbfckl 4 fabc]cckl) Cbckcl

_fabc + fabc) fcklcbckcl

[ R N B N

The action of the BRST operator is trivial on the other fields:
§%¢% = —sb* =0 2 = 0.
To prove now that the action Sgrsr|A4, ¢, c,b] is BRST invariant we just have to note that:

d _gaa a ra —a(;fab _ d,. =b _ga a
/dm( 2bb + b fr+c Mbc)—s/dxc( 2b +f>,

and use the nilpotency of s. The BRST symmetry has thus replaced the original gauge

symimetry.

C.2.2 Background field method

To construct a “gauge invariant” effective action we introduce another gauge field A4,, the

background field, which transforms under a background gauge transformation & as
6A,=D,0, (C.31)

where the covariant derivative in (C.31) is constructed using the background field D, =
9, + gA,. Under a gauge transformation the background field transforms as 64, = 0. If we
consider the combination a, = Au—flu, which is called the fluctuation field, we see that under

a combined physical and background gauge transformation it transforms homogeneously:

(6 +8)a, = Db — D0 = [A,, 0] — [A,,0] = [a,,0] . (C.32)
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We can now use the fluctuation field to construct a covariant contraction with the current
J# under this combined transformation. The background gauge-fixing condition is defined

as follows:
f=D,a", (C.33)

and so the gauge-fixing action becomes:
A 1 d o 1 d.. 7y L) LV
Syrla; Al = % d'z fft' = Ia d°zD,a"D,a" . (C.34)

The Faddeev-Popov operator is obtained by varying (C.33) with respect to a physical gauge

transformation:
4 fo

fo=Du(@" +D") = =

— D, D",

0=0

giving the following ghost action:
Sgnla, e, c; Al = — /ddx ¢D,D'c = /ddwl_)MED“c = /ddeME (D“ + ga“) c. (C.35)

Note that both the background gauge-fixing and background ghost actions are invariant

under combined physical and background gauge transformations:

(0 +9)Syfla; Al =0 (6 +6)Synla,é,c; Al =0, (C.36)
Thus the “background classical action”
Slp; Al = S[A] + Sytla; Al + Synla, ¢, c; A]. (C.37)
is also invariant:
(64 0)S[p; A] = 0. (C.38)

The background effective action (bEA) is defined by the following integro-differential equa-
tion:

e Tl — /Dx eXP{—5[90+X§A] +/ddfﬁf(”{s@;z4}x} : (C.39)

From (C.36) and (C.38) it follows the bEA, as defined in (C.39), is also invariant under

combined physical and background gauge transformations:

(6 +0)[p: A] = 0. (C.40)
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We can define the full quantum gauge field as:
A=A, +a,. (C.A41)

The main reason to employ the background field method is that we can define a gauge
invariant functional T'[A], that we call gauge invariant effective action (gEA), by setting
¢ = 0, or equivalently A, = A, and ¢ = ¢ =0, in the bEA (C.39):

T[A] = T[0; 4. (C.42)

The integro-differential equation satisfied by the gEA is just (C.39) for ¢ = 0:

e T = /DX exp{—S[X;A] —|—/dda: 1o A]X} : (C.43)

It is important to notice that this definition for the gEA is not closed since on the rhs of (C.43)
there is the first functional derivative of the bEA and not of the gEA. Most importantly, the

invariance (C.40) now becomes:
ST[A] =0. (C.44)

Equation (C.44) is a fundamental result since it shows that a gauge invariant construction
of the effective action is possible.
We consider now the perturbative expansion of the bEA and of the gEA. From Appendix

B we have that I'g[p; A] = S[p; A] and using (C.42) we have:

[o[A] = S[A] + S,4[0; A] + S,1[0,0,0; A] = S[A] . (C.45)
T T

The one-loop contribution is given by (B.61):

1 _
[i[p; Al = §Tr log S0 [0; A], (C.46)

_ M M
50 p; 4] = ( e ) , (C47)
FB FF

The Hessian of (C.37) is
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where

Mpg = SP[A+a]+ Sﬁ’o) [a; A] + Sﬁ,o,o,O) [a, ¢ c; A

Mpr = 552’0’1’0) [a, ¢, c; A

Mpg = 83"V0a,¢,¢; A

Mpr = S50, ¢ A]. (C.48)

Using the properties of the super-determinant and super-trace (B.54) we find:
_ 1
Tr 10g 8(2;0) [QO, A] = log det (MFF — MFBMgéMBF) — 5 IOg det MBB s
and thus:

[ifa,e ¢ A] = %Trlog (S@1A+a] + 5[ 4] + 55V a, e, ¢ 4))

af

—Trlog (S(O 1.1,0) [a,¢,c; A] — S;};LQO) a2, ;OA]S i 0.2, 4 — ) (C.49)
S@la+ Al + S50 a; A] + 85 a, ¢, ¢; A]
The gEA at one-loop is found from (C.49) from ¢ = 0 and reads:
[1[A] = T4[0,0,0; A]
= Trlog (SPA] + S2700; A + 53°[0,0,0; 4))
~Trlog S\[0,0,0; A]. (C.50)

The elaborate construction of the bEA ensures that all contributions steaming from the
functional traces in the lhs of (C.50) are gauge invariant. We will use (C.50) in Chapter 3 to
obtain the flow equation for the gEAA as the RG improvement of the one-loop flow.



Appendix D
Basic gravity

In the first part of this appendix we review some basic notions about differential geometry
which are needed to study both classical gravity, i.e. general relativity, and quantum gravity.
In the second part we introduce the functional integral quantization of gravity, in particular
we employ the background field method to construct a diffeomorphism invariant effective

action.

D.1 Differential geometry

In this section we review basics facts about differential geometry of manifolds. We assume
that the reader is familiar with the fundamental notions about manifolds and suggest [130]

for details.

D.1.0.1 Differential structures

In a coordinate basis 0, at the point p of M, a vector is the differential operator V' = V*#9,
belonging to the tangent space TM,. A one-form is an element of the cotangent space
T M, the vector space dual to TM,,. In terms of the dual basis daz*, defined by the relation
dz"(9,) = o, we have w = w,dz*. A one-form field is an element of Q'(M) and a function

is an element of Q°(M). The action of a one-form on a vector is given by the following:

w(V) =w,de"(V"0,) = w,V"dz"(0,) = w, V", (D.1)

266
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while the action of a vector field on a function is defined as V{f} = V*0,f. The “external
differential” of a function is defined to be the one-form df = 0, f dz*. We have thus:

V{f}=di(V). (D.2)

The Lie bracket of two vector fields V and W is defined as the commutator vector field:

V.WIf = V{iW{f}} - wW{v{s}}
= V*9,(W"0,f) - W"9,(V"0,f)
= (VWY — WHI, V), f (D.3)

thus we have [V, W] = (V#9,W" — W*#9,V¥)0,. In particular we have [0,,0,] = 0 for any

coordinate basis. We can prove the Jacoby identity:
(X, YV, 2]+ [V, [2, X]] + [Z,[X, Y]] = 0. (D.4)

We can define the Lie derivative of the vector field W along W as LW = [V, W]. We can

easily prove the following properties:

LyW = —LyV
Ly[W, U] = [LyW, U]+ W, LyU]
LomU = LyLwl — LwlyU
Ly(fW) = V{fIW+ fL,WV. (D.5)

A differential form of degree k is an element of Q*(M) and can be constructed from one-forms
using the wedge product. This is defined as the anti-symmetrization of the tensor product

of two forms:

(k+ D!
k!
The wedge product satisfies the following properties:

wi N m= Alt(wk X 77[) . (D6)

wAMAE) = wAAE)
wk/\m = (—1)kl771/\wk. (D?)
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The “exterior differential” of a form is the map d : Q¥(M) — QFFL(M) defined by the

relations:

af(v)y = V{f}
dlwp Am) = dwAn+(—=1)wAdny
& = 0. (D.8)

Note that the exterior differential is nilpotent. In a coordinate chart we can write the following

representation:
dw = d(wpy . dz™ N N d2?*) = 0wy, da” A dxtt A LA dat (D.9)

There exists an invariant formula to express the exterior differential. For the differential of

a one-form this reads:
dw(X,Y) = X {w(Y)} - Y{w(X)} —w ([X,Y]), (D.10)
while for the differential of a two-form we have:

dw(X,Y, 7)) = X{wY,2)} -Y{w(X,2)} + Z{w(X,Y)} +
—w (X, Y])+w([X,Z]) —w(]Y,Z]), (D.11)

and so on. The Lie derivative can be defined to act on forms, we have to fundamental

relations:
va = Zv<dw) + d(lv(ﬂ) ﬁvdw = d(ﬁvw) . (D12)

The first relation in (D.12) is called Cartan’s formula. Forms are the natural objects to
be integrated. A k-form has to be integrated over a k-dimensional (sub)manifold. The

fundamental generalization of Stoke’s theorem is the following:

|- w. (D.13)

where M is the boundary of the manifold M.
A metric tensor is a positive non-degenerate bilinear form g that acts on two vector fields
X and Y as follows:
9(X,Y) =g, X"Y". (D.14)
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The vector spaces QF (M) and Q47P(M) have the same dimension, with the aid of the metric

tensor it is possible to construct an isomorphism between then by defining:

xdztt A ... A\ dxtr = g gt ey, At TN LA dat (D.15)

(d —p)!

* is the Hodge star operator and €, . is the totally antisymmetric tensor. The dual a p-form

is defined by:

1
kW = mem“p s dxt NN datr . (D.16)

In particular, we can define the volume d-form associated to the metric g by the relation:

€y g A" A o A dptd = dat A A dat (D.17)

1

It is easy to prove the following properties of the Hodge star operator:

) (—1)pld=r) Euclidean (D.18)
X = .
(—1)pld=p)+1 Lorentzian
and
;) (—1)pld=p) Euclidean (D.19)
x = .
(—1)Pld=P)H1 4 Lorentzian
We can define an inner product between two p-forms by:
1
(ap, Bp) = /M aAxf = i /M Qg B = (B, ) (D.20)

On an Euclidean manifold we always have («, ) > 0, the equality is obtained only if a = 0
and so the inner product is non-degenerate. On a closed manifold (OM = 0) we can define
the co-exterior differential as the adjoint operator to the external differential by the following

relations:

(doy-1,B,) = /da/\*ﬁ
= /d(aA5)+(—1)p/aAd*5

= /aA* (1?1 d = g]
= (ap-1,6). (D.21)
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From (D.21) we see that the co-exterior differential is maps p-forms to (p — 1)-forms 9, :
QP(M) — QP~1(M) and that can be expressed in terms of the exterior differential and the

Hodge star operator as:
6, = (=1)Px'dx
— (_1)p(_1)(dfp+1)(d*(dfp+1)) % d %
C(CD g (D.22)
The co-exterior differential is nilpotent as is the exterior differential: 62 ~ *d * xd* ~ *d** =
0. We can now define the Laplacian acting on a p-form A, : QP(M) — QF(M) by the

following composition:

A, = 6pprdy + dy 15, = (d + 6)*. (D.23)

The Laplacian on forms satisfies:
*A = A x dA = Ad O0A = 6A. (D.24)
On Euclidean manifolds the Laplacian is positive:
(w, Aw) = (w, ddw) + (w, dow) = (dw, dw) + (dw, dw) > 0 (D.25)

and a form is harmonic only and only if it is both closed and co-closed: Aw = 0 &
dw=0 and Odw =0.The de Rham cohomology groups are defined as the quotients:
ker d
Hip(M) = =% (D.26)

N Im dp—l .

The fundamental theorem of de Rham states that the Euler characteristic of a manifold x (M)

can be written in terms of the dimensions of the de Rham cohomology groups as follows:

X(M) =) (=1)P dim Hj, (M) . (D.27)

p=0

The fundamental theorem of Hodge states instead that in every cohomology class there is

one and only one harmonic form:

ker A, = HY,(M). (D.28)
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We will use de Rham’s and Hodge’s theorem to prove the Chern-Gauss-Bonnet theorem in
section D.1.0.4.
D.1.0.2 Connection and covariant derivative

Geodesic are those curves that have minimal length. The geodesic equation can be obtained

has the solution of the following variational problem:

5/ds:m (D.29)

where the infinitesimal line element is given by ds = g,,dx*dx". We obtain the following

equation geodesic equation:
Pz dat da”

el D.30
ds? e ds ds ’ ( )
where the Christoffel symbols are related to the metric tensor by the relation:
2 Lo
F,uﬁ = 59 (859 + &nga — aaguﬁ) . (D31)

Note that the Christoffel symbols do not transform as a tensor. We say that a vector V

tangent to the curve parametrized by x*(s), with tangent vector filed T = dj—;, is parallel
transported if:
d( T™"V") =0 = dWCHWT%ﬁ—o (D.32)
ds "I N ds af - '

A geodesic is thus a curve that parallel transports its own tangent vectors. We can solve
equation (D.32) as follows:
VH(s) = P* (s,50)V"(s0) , (D.33)

where the parallel transport kernel is given by the following path-ordered expression:
A
P(X, X\o) = Pexp {—/ dA F(X)} : (D.34)
Ao

where X* = % and T'(X)g = I'};X*. We can define the covariant derivative along X*, of

a vector field V*#, as the following limit:

-1 .
VoV = lim PN+ ANNV(A+ AN =V (A) '
AXS0 A

(D.35)
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From (D.34) we see that
A+AA
POA+AMA) =1 / dnT(n) + O(AN?) = 1 — AAT(N) + O(AN?),
A

and thus we find the following relation:

ViV = lim ALA (14 AAT(A) + O(AN) V(A + AX)