
On the Flavor Problem in Strongly
Coupled Theories

Dissertation

zur Erlangung des Grades “Doktor der Naturwissenschaften”
am Fachbereich Physik, Mathematik und Informatik

der Johannes Gutenberg-Universität in Mainz

Martin Bauer
geboren in Mainz

Mainz, September 2012

mailto:marbauer@students.uni-mainz.de


Datum der mündlichen Prüfung: 28.11.2012
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UNIVERSITY OF MAINZ

ABSTRACT

THEORETICAL HIGH ENERGY PHYSICS (THEP)
INSTITUT FÜR PHYSIK

Doctor rerum naturalium

by Martin Bauer

This thesis is on the flavor problem of Randall Sundrum models and their strongly
coupled dual theories. These models are particularly well motivated extensions of the
Standard Model, because they simultaneously address the gauge hierarchy problem
and the hierarchies in the quark masses and mixings. In order to put this into con-
text, special attention is given to concepts underlying the theories which can explain
the hierarchy problem and the flavor structure of the Standard Model (SM). The
AdS/CFT duality is introduced and its implications for the Randall Sundrum model
with fermions in the bulk and general bulk gauge groups is investigated. It will be
shown that the different terms in the general 5D propagator of a bulk gauge field can
be related to the corresponding diagrams of the strongly coupled dual, which allows
for a deeper understanding of the origin of flavor changing neutral currents generated
by the exchange of the Kaluza Klein excitations of these bulk fields.
In the numerical analysis, different observables which are sensitive to corrections from
the tree-level exchange of these resonances will be presented on the basis of updated
experimental data from the Tevatron and LHC experiments. This includes electroweak
precision observables, namely corrections to the S and T parameters followed by cor-
rections to the Zbb̄ vertex, flavor changing observables with flavor changes at one
vertex, viz. B(Bd → µ+µ−) and B(Bs → µ+µ−), and two vertices, viz. Sψφ and |εK |,
as well as bounds from direct detection experiments.
The analysis will show that all of these bounds can be brought in agreement with a
new physics scale ΛNP in the TeV range, except for the CP violating quantity |εK |,
which requires ΛNP = O(10) TeV in the absence of fine-tuning. The numerous modi-
fications of the Randall Sundrum model in the literature, which try to attenuate this
bound are reviewed and categorized.
Subsequently, a novel solution to this flavor problem, based on an extended color
gauge group in the bulk and its thorough implementation in the RS model, will be
presented, as well as an analysis of the observables mentioned above in the extended
model. This solution is especially motivated from the point of view of the strongly
coupled dual theory and the implications for strongly coupled models of new physics,
which do not possess a holographic dual, are examined.
Finally, the top quark plays a special role in models with a geometric explanation of
flavor hierarchies and the predictions in the Randall-Sundrum model with and with-
out the proposed extension for the forward-backward asymmetry AtFB in top pair
production are computed.
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ZUSAMMENFASSUNG

Gegenstand dieser Arbeit ist das Flavor Problem in Randall Sundrum Modellen und
stark gekoppelten Theorien, welche dieselbe Physik beschreiben und mit Hilfe der
AdS/CFT Korrespondenz miteinander identifiziert werden können. Diese Theorien
sind besonders attraktive Erweiterungen des Standardmodells, weil sie im Stande sind
das Hierarchie Problem zu lösen unde gleichzeitig eine Erklärung für die Hierarchien im
Flavor Sektor liefern. Beide Seiten der AdS/CFT Korrespondenz werden ausführlich
vorgestellt und ein tieferes Verständnis von Flavor ändernden Kopplungen welche von
extradimensionalen Eichfeldern im Randall Sundrum Modell induziret werden, an-
hand der Diagramme der dualen Theorie ermöglicht.
Eine Diskussion verschiedener Flavor ändernder Ströme, erzeugt durch den Austausch
dieser Felder auf Born niveau wird präsentiert und mit den aktuellsten Werten der
Experimente an Tevatron und LHC verglichen. Diskutiert werden flavor diagonale
Kopplungen, unter anderem Korrekturen zu elektroschwachen Präzessionsmesungen,
den S und T Parametern, und zur Kopplung des Z an bottom quarks, flavor wech-
selnde Kopplungen an einem Vertex, in Form der Zerfallsbreiten B(Bd → µ+µ−) und
B(Bs → µ+µ−), sowie flavor ändernde Kopplungen an zwei Vertices, insbesondere die
Observablen Sψφ und |εK |. Ausserdem wird auf Limits auf den direkten Nachweis
solcher neuer Resonanzen eingegangen.
Alle diese Messungen stehen im Einklang mit einer Skala für neue Physik von ΛNP =
O(TeV), abgesehen von Korrekturen zur CP verletzenden Observable |εK |, welche nur
mit den Daten in Einklang gebracht werden kann, falls die Skala der neuen Physik
um eine Größenordnung angehoben ist.
Viele Lösungen für dieses Problem existieren in der Literatur und werden vorgestellt
und kategorisiert, um anschließend eine neue Lösung in Form einer Erweiterung der
starken Symmetriegruppe zu präsentieren. Diese Lösung ist besonders motiviert durch
ihre Implikationen für die duale Theorie und die Konsequenzen die der damit ver-
bundene Mechanismus für Theorien ohne holographische Äquivalenz induziert. Im
dementsprechend erweiterten Modell werden daraufhin die oben zusammengefassten
Observablen berechnet, und die Verträglichkeit aller Observablen im Flavor Sektor
mit einer neuen Physik Skala im TeV-Bereich festgestellt.
Abschließend wird auf die Vorhersagen für die Asymmetrie in der top antitop Pro-
duktion eingegangen, und die Resultate sowohl für das Randall Sundrum Modell, als
auch für das erweiterte Modell gezeigt.
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Preface
Before the advent of the Standard Model,
physicists had become used to experiments
producing unexpected new particles or other
signposts to a new theory almost before the
chalk dust had settled on the old one. They have
been waiting 30 years for that to happen with
the Standard Model.

Gordon Kane

When Gordon Kane wrote this statement seven years ago, despite its success, one
crucial ingredient of the Standard Model (SM) was still missing, the Higgs boson. In
the meantime, the Large Hadron Collider (LHC) has started running, and essentially
rediscovered every known particle in the SM and nothing else, but one scalar reso-
nance at roughly 126 GeV. If this scalar is the Higgs, one can conclude from vacuum
stability bounds, that its mass nicely agrees with the SM as a complete theory of non-
gravitational forces up to almost the Planck scale. At this point, its couplings are not
measured with an accuracy that would allow it to identify the SM Higgs with all its
predicted characteristics. However, one can already say that electroweak symmetry
breaking (EWSB), as it is described by the SM, is the correct low energy theory. The
desert of scales above the electroweak scale that the LHC begins to explore, lets one
wonder how many orders of magnitude this “low” energy description actually covers.
Thus, from an experimental point of view, the SM is a success. Theoretically, the LHC
measurements have made the questions left open by the SM only more pressing. This
thesis will address two of the most puzzling ones: What sets the electroweak scale,
and what is the reason for the hierarchies in the masses and mixings of the quarks?
The first question has been the driving force for building models of physics beyond
the SM for decades. In the SM, the electroweak scale is a free parameter and unstable
against radiative corrections. It must therefore be fine-tuned to a large degree in order
to agree with the experiment, unless some symmetry or mechanism protects it from
these radiative corrections.
In the first part of the Chapter 1, a survey of ideas that can solve this problem will
be presented. The emphasis will be put on theories which assume the Higgs to be a
strongly coupled bound state by some new force. If the LHC continues to set better
and better exclusion limits on new resonances, this explanation becomes attractive,
because the Goldstone bosons of QCD are roughly an order of magnitude lighter than
its characteristic scale and the difference between the Higgs mass and the mass of
possible new resonances could be explained in a similar way. As will be explained
there, these theories are generically in conflict with bounds from flavor observables,
because they allow for flavor changing neutral currents (FCNCs) at tree level. It will
be shown that, if fermions are partially composite fields, one can avoid most of these
bounds, and also finds an explanation for the hierarchies in the quark sector. Quark
masses and mixings are also unmotivated in the SM, and models which can explain
them are the subject of the second part of the first chapter.



x

One of the most fascinating insights of the last fifteen years regarding new physics is
that, due to a conjecture by Maldacena, one can describe concepts in strongly coupled
theories by a five dimensional (5D) model, based on a compact extra dimension with
an unfactorizable Anti-de Sitter metric, the Randall Sundrum (RS) model. It adds
to the fascination, that the concept of partial compositeness is automatically imple-
mented in these models by making the quarks 5D fields.
In the first half of Chapter 2, this duality will be motivated, and the two different ways
of describing the same physics will be used for a deeper understanding of the analyses
in the latter parts of the thesis. As a new result, a dual interpretation of the small
momentum expansion of the 5D propagator for gauge bosons will be presented there.
The rest of Chapter 2 will be devoted to the technical formulation of the fundamentals
of the RS model. Important in this context is the geometrical explanation of how the
suppression of FCNCs is realized by the RS-GIM mechanism.
Chapter 3 includes an update on the RS contributions to electroweak precision mea-
surements, including the consequences of a new global fit for the oblique parameters
S and T and the impact of new theoretical results on the conclusions drawn from the
Zb̄b for the RS parameter space. The effectiveness of the RS-GIM mechanism will be
demonstrated on the basis of observables connected to the decay of Bs and Bd mesons
to muons and Bs− B̄s mixing. The heavy b quark makes them well suited to test the
limits of the RS-GIM mechanism, because the suppression of FCNCs becomes less ef-
fective the heavier the involved flavors are. While it turns out that these observables
generically agree even with the small errors from recent LHCb measurements, one
finds that the CP violating quantity in K − K̄ mixing, εK will induce a fine-tuning
of the order of one percent if no additional suppression of the RS contributions is
implemented.
This is rooted in a chiral enhancement and large renormalization group effects, and
therefore it is a largely model independent problem for any new physics with vector
couplings to quarks. In RS models it is the only observable which needs fine-tuning
and this issue has therefore been termed the “RS flavor problem”. After the expla-
nations proposed in the literature are collected and interpreted in the dual theory, a
novel solution based on an extension of the color gauge group will be presented and
discussed in detail. This solution is especially attractive, because it preserves the an-
archical flavor structure of the Yukawa matrices, which is essential in order to explain
the hierarchies in quark masses and mixings. In the extended model the aforemen-
tioned observables will be computed, as well as the cross section for direct detection
of the involved new resonances at the LHC.
The fact that the size of the couplings of RS gauge fields to quarks depends on the
the quark mass, makes top observables an ideal candidate to look for effects of the RS
model. Possible contributions to the forward-backward asymmetry measured by CDF
and DØ , as well as the agreement with the total cross section in top antitop pairs
will therefore be studied in Chapter 4. In a model-independent analyses, the impact
of general new physics in the s and t channel will be computed and in particular the
effects in the RS model as well as in the RS model with the proposed extension will
be shown.
Concluding remarks and an outlook on future work in Chapter 5 will complete the
thesis.



1 Introduction: Problems
beyond the Standard Model

The Standard Model of elementary particles (SM) is arguably the most succesful
theory in physics today. It has passed a myriad of tests, and with the discovery of
the Higgs boson this year, every particle necessary to describe electroweak symmetry
breaking (EWSB) within the SM has been observed. The data from colliders is so
convincing, that most of the evidence for physics beyond the SM only becomes appar-
ent at astronomical scales, e.g. Dark Matter, or quantum gravity effects. Other hints
are found at mass scales which are orders of magnitude smaller than the electroweak
breaking scale, as in the indirect detection of neutrino masses. Physics at the elec-
troweak breaking scale, however, seems to be completely described by the SM.
Nevertheless, there are good theoretical arguments for why the SM should be extended
at a scale much closer to the electroweak breaking scale than one would expect from
these experiments. One can see this by regarding the SM Lagrangian as a part of a
more general effective field theory (EFT),

Leff = c0 Λ4
UV +c2 Λ2

UVH
†H−λ(H†H)2+ L(4)

Gauge+ L(4)
Yukawa+

L(5)

ΛUV
+
L(6)

Λ2
UV

+. . . , (1.1)

in which L(4)
Gauge comprises the familiar SU(3)C × SU(2)L ×U(1)Y gauge interactions

and L(4)
Yukawa the Yukawa couplings, and ΛUV denotes the for now unspecified scale at

which this EFT has to be completed by an underlying theory. The mass dimension
of the operators in L(i) is denoted by the superscript (i),1 and the ellipsis stands for
higher order operators. Therefore, prior to EWSB all operators are of mass dimension
four or higher, aside from a constant term and the Higgs mass operator, which carry
mass dimension zero, and two respectively and as a consequence have coefficients of
positive mass dimension. In the language of renormalization group flow, these op-
erators are the only relevant operators which can be constructed from the SM field
content.

Although not in this context, it was realized very early that a scalar mass term will
lead to a radiative sensitivity on the cut-off scale [1].2 The constant term is even
sensitive to the fourth power of the cut off scale. In other words, there is no reason
to expect the coefficients of these operators to be connected to any scale other than
ΛUV. Likewise, the irrelevant operators in (1.1) with mass dimension larger than four
are expected to be suppressed by this scale. However in order for EWSB to work

1Throughout the thesis, we will use natural units c = ~ = 1.
2A more careful statement would be: Such an operator leads to a quadratic sensitivity on masses

of particles interacting with the Higgs up to the cut-off scale, as the dependence on the cut-off scale
itself is an artifact of cut-off regularization, which does not show up in dimensional regularization.
We will however adopt this slight abuse of language.
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as described by the SM, the coefficient of the Higgs mass operator has to be of the
order of the electroweak scale, i.e. ΛEW ≈ 1 TeV. This introduces a large unexplained
hierarchy in scales, unless there is new physics at ΛEW or the dimensionless coefficient
c2 is tuned to be of the order c2 ≈ Λ2

EW/Λ
2
UV. Even more severe is the problem of the

cosmological constant, which is indirectly measured at c0 ≈
(
10−12 GeV

)4
/Λ4

UV [2],
and either calls for a UV completion at the millielectronvolt scale or a fine-tuning of
hundreds of orders of magnitude if one assumes that ΛUV is of the order of the Planck
scale MPl = 1019 GeV.
Both hierarchies become a problem if one expects the theory to be natural, for which
we will adopt the definition of ’t Hooft,

The naturalness criterion states that one such [dimensionless and
measured in units of the cut-off] parameter is allowed to be much
smaller than unity only if setting it to zero increases the symmetry
of the theory. If this does not happen, the theory is unnatural.[3]

A good measure to judge the attractiveness of a physical theory is therefore the ab-
sence of these small parameters, or equivalently the absence of large hierarchies be-
tween scales. However, since the cosmological constant is not directly relevant for
the physics of the SM , we will ignore this problem and concentrate on the hierarchy
problem of the SM in Part 1.1 of this chapter.

This hierarchy problem becomes even more puzzling if one considers higher dimen-
sional operators. If it can be explained by new physics at the electroweak scale, one
would expect from the EFT ansatz (1.1), that also the suppression scale of the ir-
relevant operators are of the order ΛUV = ΛEW. However, if not prevented by some
mechanism in the new physics sector, bounds from measurements on flavor changing
processes involving quarks will enforce at least

ΛUV & 103 TeV . (1.2)

A UV completion of the SM should therefore not only be able to explain why the
electroweak scale is stabilized against radiative corrections, but also why higher di-
mensional operators are absent or suppressed by orders of magnitude compared to
ΛEW.
The question of how both of these requirements can be brought in agreement is one
of the most pressing issues for models of physics beyond the SM. Further, while the
marginal operators in LGauge all have natural coefficients ,3 the Yukawa couplings in
LYukawa exhibit hierarchical structures which are not explained by SM physics either,
and although these parameters are not radiatively unstable, the question what sets
the masses and mixings of quarks and leptons is also to be answered by physics be-
yond the SM. Part 1.2 of this chapter will describe models which aim to explain the
hierarchies of the Yukawa sector and mechanisms which generate a hierarchy between
the coefficients of higher dimensional operators relevant for flavor changing processes

3With the exception of operators allowing for strong CP violation.
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and the electroweak scale.

While the questions behind the hierarchies of the SM are an important guideline for
new physics models, one should keep in mind, that hierarchies are not completely
absent in EFTs. An example can be found in the effective theory of nucleon-nucleon
interactions below the pion threshold, which is basically a collection of contact terms
between nucleons. The coefficients of these contact terms are suppressed by the pion
mass scale mπ ≈ 140 MeV or in some cases by the QCD scale ΛQCD ≈ 1 GeV.
However, the inverse s-channel scattering length of protons and neutrons is measured
to 1/as ≈ 10 MeV, which implies fundamental coefficients in the Lagrangian which
are tuned by at least 1%. In this case, one knows the UV completion and as of now
no explanation for this hierarchy of scales has been found, apart from the theory
being fine-tuned, see [4] for details. Besides all the models and ideas introduced in
this chapter, the possibility that finetuning might appear elsewhere in nature should
therefore not be ignored.

1.1 Solutions to the Gauge Hierarchy Problem

The need for fundamental scalar fields in the

theory of weak and electromagnetic forces is a

serious flaw. Aside from the subjective aesthetic

argument, there exists a real difficulty connected

with the quadratic mass divergences which

always accompany scalar fields.

Leonard Susskind

There are two aspects to the gauge hierarchy problem: One is the huge hierarchy be-
tween the electroweak scale and the Planck scale. The other is the problem that the
Higgs boson mass is radiatively unstable. Therefore, even if some new physics fixes
the electroweak scale at tree level, it would still be unstable against radiative correc-
tions, in contrast to the hierarchies in the flavor sector. As a consequence, a solution
for the hierarchy problem can have different meanings. It can describe a mechanism
which protects the Higgs boson mass parameter from quadratic corrections, which sets
in at an acceptable scale (e.g. Supersymmetry, Technicolor, gauge-Higgs unification
with nonlocal loop potential). Or, it may leave the theory radiatively unstable up
to the Planck scale, but explains why this scale is considerably lower than what we
expect (e.g. Large Extra Dimensions). The first type of models does not explain why
the ratio of the scales of electroweak symmetry breaking and gravity appears to be
so tremendously large, but rather makes it a natural thing to have such a dispar-
ity, because all relevant operators are eliminated from the theory or protected from
renormalization effects through a symmetry. The other class of models argues that
this ratio is actually not a ratio of fundamental masses and the weakness of gravity
is an illusion, generated by another big scale, e.g. the volume of additional compact
dimensions.
Another key observation is, that only scalar fields suffer from quadratic radiative
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corrections. One can therefore also distinguish between theories which allow for fun-
damental scalars, but protect their mass terms through a symmetry, in line with
t’Hoofts original definition of naturality, and models which simply ban all fundamen-
tal scalars from the theory. Naively, one might expect mass terms for vector bosons
to be quadratically and fermion masses to be linearly divergent as well. In the SM
however, they are only logarithmically divergent, because all vector bosons are gauge
bosons and their masses are protected by gauge symmetries, while the fermion masses
are protected by chiral symmetry, which is rooted in the different representations of
left- and right-handed Weyl fermions under the SU(2)L gauge group, and can there-
fore also be interpreted as a protection connected to the gauge sector. It is hence
remarkable, that all mechanisms which protect the mass of a fundamental scalar are
related to extensions of the spacetime symmetry!

It is important to carve out such similarities and differences of the various approaches
in order to explore the essential mechanisms of an answer to the hierarchy problem.
If a number of models show similar problems or results, this might be a hint at some
underlying structure, or lead to the realization that some sector of the SM behaves
different than the rest, once the hierarchy problem is taken care of. An example for
this is the top quark mass. Based solely on mass ratios to the electroweak scale, one
can argue that it is perfectly compatible with the electroweak scale, but a number of
models which stabilize the electroweak scale turn out to have a problem implementing
such a heavy quark. That might be due to all of these models being wrong, but it can
also mean that nature tries to tell us that the top quark is differs in more than just
the mass from the other five known flavors.
The following sections will give an overview of the various solutions to the gauge
hierarchy problem, pointing out their theoretical and phenemenological implications.
With regard to the subject of the thesis and also in anticipation of Section 1.2, an
emphasis will be put on (Quark) Flavor when it comes to discussing bounds from
observables. Also, the section about strongly interacting theories will be more detailed,
since many of the introduced concepts will turn out to be mirrored in models with
warped geometry due to the AdS/CFT duality presented in the next chapter.

Supersymmetry

In a nutshell, supersymmetric transformations relate scalar with fermionic degrees of
freedom and as a consequence, if fermions are protected from radiative corrections
which are not proportional to their masses (or the vev), by chiral symmetry, their
scalar superpartners must inherit this protection via the supersymmetry (SUSY). Since
it changes the spin of the states it acts on, SUSY is an extension of the spacetime
symmetry.

It was generally believed, that this part (the space-time symmetry) of the SM was a
settled matter after Coleman and Mandula published a paper in 1967, which states
that the most general symmetry of a relativistic QFT which fulfills some fundamental
assumptions, like analyticity of scattering amplitudes and the occurrence of a mass
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gap, is locally4 a direct product of the Poincaré group and an internal symmetry group
[8].5 Only in 1974 the first supersymmetric Lagrangian (in four dimensions) was con-
structed by Wess and Zumino [11]. They already note (footnote 5), that supergroups
build a loophole in the Coleman-Mandula theorem, which was subsequently gener-
alized by Haag, Lopuszanski and Sohnius [12]. They also point out, that quadratic
divergences of the mass renormalization for scalar fields cancel.

How does this work? In the most simple supersymmetric extension of the SM, the
minimal supersymmetric Standard Model (MSSM) [13], every SM fermion has two
scalar superpartners, the s(uper)fermions, the Higgs boson has neutral and charged
Weyl fermions as superpartners, the higgsinos, and superpartners of the Gauge fields,
called gauginos, are Majorana fermions. The solution to the hierarchy problem can
therefore be understood in a diagrammatic way, where only the leading corrections
to the Higgs boson mass from the top and its superpartners, the stops (denoted by
t̃) are considered, just to show the principle. In a cutoff regularisation, the one-loop
correction of the Higgs mass 6 from the top quark with mass mt and Yukawa coupling
λt reads

H H

t

→ ∆m2
H |top =

3λ2
t

8π2

[
−Λ2 + 6m2

t log

(
Λ

mt

)
− 2m2

t

]
.

(1.3)

Whereas the contribution from the stops with mass Mt̃ and Yukawa coupling λt̃ gives

H H

t̃

+ H H

t̃

→ ∆m2
H |stops =

3λt̃
8π2

[
−Λ2 + 2M2

t̃
log

(
Λ

Mt̃

)]
−

3λ2
t̃
v2

8π2

[
−1 + 2 log

(
Λ

Mt̃

)]
.

(1.4)

Both contributions by themselves are quadratically divergent, but if the Lagrangian
is supersymmetric, the couplings of stop and top must be related, λ2

t = −λt̃, so that

∆m2
H |top + ∆m2

H |stops = 3
λ2
t

4π2

[
(m2

t −M2
t̃
) log

(
Λ

Mt̃

)
+ 3m2

t log

(
Mt̃

mt

)]
. (1.5)

4It is stated on the level of Lie algebras. As a consequence, a discrete symmetry transformation
which does not commute with spacetime transformations is not excluded by the theorem.

5The paper was motivated by the then fashionable effort to organize quarks in so-called super-
multiplets of a unified spin-flavor SU(6), see [9]. At the same time an alternative model which groups
hadrons and mesons in a multiplet was proposed, but went generally unnoticed, although it includes
the first notion of a supergroup, i.e. a group generated from anticommuting algebra elements [10].

6To be precise, the one which couples to the up sector. The MSSM needs two Higgs doublets with
opposite hypercharge in order to cancel the anomalies from the Higgsinos.
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Quadratic divergences cancel and, as expected for a chirally protected mass, all re-
maining divergences are logarithmic and vanish in the limit where the Higgs vev goes
to zero. In the limit of exact supersymmetry, mt = Mt̃, all corrections vanish. More-
over, since SUSY is a symmetry of the quantum theory, no divergences will occur at
any loop order, in fact, the masses are not renormalized at all, see [14, Sec. 4].
However, the MSSM does not only –in conflict with experiment– predict degener-
ate masses of superpartners, but it necessarily gives the Higgs boson a positive mass
squared.7 As a consequence, in order to have nondegenerate masses in the MSSM (or
massive particles at all), supersymmetry needs to be broken. There is no phenomeno-
logically viable way to incoporate SUSY breaking with only the MSSM field content
and a breaking communicated at tree level (a direct couplings to the SUSY-breaking
field) will also lead to inconsistencies8, see e.g. [5, Sec. 7].

One therefore assumes a hidden sector, in which SUSY is broken and some kind of
messenger fields communicate the breaking to the MSSM. In the spirit of effective field
theory one writes down the relevant terms of the most general Lagrangian parametriz-
ing the breaking. This introduces 124 new parameters to the MSSM, which are in
general unrelated, and will lead to a breaking of the chiral protection of the scalar
masses, because Mt̃ = mt +m���SUSY in (1.5) is now sensitive to the size of the breaking
terms. They are usually given by

m���SUSY ∼
〈F〉
Λ

, (1.6)

where 〈F〉 denotes the vev of the SUSY breaking field and Λ is the SUSY breaking
scale (the mass of the messenger field). These masses should clearly not exceed the
TeV scale by much m���SUSY . TeV in a natural model. However, since the SUSY break-
ing sfermion masses induce radiative corrections relative to their Yukawa couplings,
one can relax this bound depending on flavor. For example a 200 GeV stop contributes
roughly as much to ∆m2

H as a sbottom at 3.5 TeV. Natural supersymmetric models
may therefore allow for a large splitting in the superpartner mass spectrum [7]. It
should be noted, that such an ansatz requires the SUSY breaking sector to generate
this hierarchy in superpartner masses.
The modeling of the SUSY breaking sector may accomodate further attractive fea-
tures. For a large enough SUSY breaking scale, renormalization group running may
eventually turn one of the scalar mass parameters negative, triggering condensation
of the corresponding field. It would be a disaster, if this would be any sfermion
mass, because it would induce a color- or electromagnetic breaking vacuum. However,
the Higgs boson mass parameter will get the largest negative corrections by the top
Yukawa and thus generically turns negative first, ultimatively triggering EWSB. This
is known as radiative symmetry breaking [6] and although it depends on the values
m���SUSY at the SUSY breaking scale, it is a step beyond the ignorace of the EWSB

7In order to achieve EWSB in a (unbroken) supersymmetric extension of the SM, one therefore
has to include additional fields, which do not have superpartners in the SM, see for example the
dicsussion in [15, Sec.5.4].

8There is for example no scalar-gaugino-gaugino term allowed by SUSY, therefore the gauginos
remain massless in such a scenario.
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mechanism in the SM. Another interesting property of SUSY models is, that the run-
ning of the gauge couplings will lead to gauge coupling unification at a scale of about
Λ ∼ 1016 GeV, which can be understood as a strong hint at a grand unified theory
(GUT), in which all MSSM gauge interactions are low energy remnants of a single
large gauge symmetry (this assumes a desert of energy scales up to the GUT scale
with no new physics besides the MSSM).

But there are further additional concepts necessary in order to bring a supersymmetric
field theory in agreement with experiment. In contrast to the SM, there are renormal-
izable couplings involving the new scalar superpartners, which allow for Lepton and
Baryon number violation. These couplings lead to rapid proton decay and must either
be forbidden or extremely small. The most established solution for this problem is
called R parity, a discrete symmetry which allows only vertices with two superpartners
attached, and thus eliminates the dangerous couplings, first introduced in [16]. Some
interesting consequences of such an additional symmetry is that superpartners will
only be pair produced at colliders and that there is a stable lightest supersymmetric
particle (LSP) with a mass around the electroweak scale, which makes for an ideal
dark matter candidate. Less restrictive solutions are possible, e.g. imposing Lepton-,
Baryon number conservation as a global symmetry [17] or minimal flavor violation
[18, 19].
The MSSM allows also for one parameter carying mass dimension, which is not from
the SUSY-breaking sector and as a consequence should be sensitive to the scale where
the UV-completion of the MSSM sets in, the GUT or the Planck scale. Yet, this so
called µ−parameter is related to the weak scale, since it plays a fundamental role in
EWSB. This is the MSSM fine-tuning problem, and although the situation is better
than in the SM (because the µ−parameter does not renormalize), the scale disparity
remains.

Technicolor and Composite Higgs Models

Technicolor

In essence, the idea of Technicolor (TC) solves the gauge hierarchy problem by replac-
ing the scalar Goldstone degrees of freedom necessary to give masses to the electroweak
gauge bosons by composite bound states. It is based on the observation, that even
in the absence of a Higgs boson the electroweak symmetry is broken by the quark
condensate 〈 q̄q 〉 = 〈 q̄LqR 〉 + 〈 q̄RqL 〉 formed at the scale at which QCD becomes
strongly coupled, ΛQCD.

In such a scenario, fermions are massless and the SM with NF quark flavors exhibits a
global SU(NF )L×SU(NF )R×U(1)B chiral (and Baryon number) symmetry9, which
is broken down to SU(NF )V × U(1)B by the quark condensate. Due to Goldstones
theorem this symmetry breaking generates N2

F − 1 massless Goldstone bosons, in the

9The axial U(1) is broken by quantum effects and therefore the η′ is massive even in the chiral
limit.
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case of one generation (NF = 2), three pions. The electroweak gauge group gauges a
subgroup of the full global symmetry and since qL and qR transform differently under
this subgroup the electroweak symmetry is broken by the formation of the quark
condensate as well. It even breaks the electroweak symmetry in the correct pattern,
since the quark condensate has the same quantum numbers as a fundamental Higgs
scalar. As a consequence, the coupling of the W± to the conserved weak currents
J±µ = qLγµT

±qL results in a correction to the W propagator below ΛQCD [21],

pions =
−i

q2 − g2 Π(q2)/2

(
ηµν −

qµqν
q2

)
(1.7)

where Πµν(q) = i

∫
d4x e−iq·x 〈0|T

{
J+
µ (x)J−ν (0)

}
|0〉 =

(
ηµν −

qµqν
q2

)
Π(q2) .

One ends up with a mass for the W± proportional to the residue of the pole of the
vacuum polarization function Π(q2), which follows from pion exchange,

〈0|J+
µ |π(p)〉 = i

fπ√
2
pµ ⇒ MW =

√
NF

2

gfπ
2
, (1.8)

where fπ denotes the pion decay constant. The thereby generated masses for the
electroweak gauge bosons

MW ≈ 28

√
NF

2
MeV , MZ ≈ 32

√
NF

2
MeV , (1.9)

are however to small by a factor of roughly 4000/
√
NF in order to explain the measured

values. It is interesting to explore the implications of such a world without a Higgs
,10 but the important statement here is, that the confining phase of QCD would
describe a viable mechanism of electroweak symmetry breaking if fπ was replaced by
the electroweak scale v.

In the late seventies, this observation led Weinberg [23] and Susskind [24] to propose
a theory in which electroweak symmetry breaking is arranged by an upscaled version
of QCD, for which the name technicolor (TC) became most established. The sim-
plest model includes two flavors of techniquarks,11 transforming in the fundamental
representation of the TC gauge group GTC = SU(NTC) where the right-handed com-
ponents transform as singlets and the left-handed components as doublet under the
SM SU(2)L in order to form a techniquark condensate with the right quantum num-
bers. The new gauge group has a β function just like QCD, only that the coupling
gTC becomes strong at the scale

ΛTC =

√
3

NTC

fTC
π

fπ
ΛQCD ∼ 4πfTC

π , (1.10)

10The Fermi constant for example would be larger by a factor 2v2/NF f
2
π and processes driven by

the weak force like β−decay would occur much more rapidly. A comprehensive discussion of such a
Gedankenworld can be found in [22].

11In the case NF > 2, additional, for now massless, technipions appear (the analog of QCD Kaons
and ηs).
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Xµ
ETC

QTC

qSM qSM

QTC
QTC QTC

×

qSM qSM

×

×

qSM qSM

〈QQ〉TC

Figure 1.1: Diagrammatical representation of the generation of effective Yukawa cou-
plings for the SM fermions in extended Technicolor theories. In a first step, the heavy
ETC gauge bosons are integrated out and in a second step the technicolor condesate
forms.

where fTC
π is the analog of the pion decay constant and has a value around the

electroweak scale. Thus, there is no hierarchy problem in TC theories, because the
electroweak scale is dynamically generated by the confining phase of a non-abelian
gauge theory.

While technicolor solves the hierarchy problem and gives masses to the electroweak
gauge bosons, it does not provide masses for fermions. In order to implement a
Yukawa coupling, one must communicate the EWSB to the SM quarks and leptons.
The solution to this problem was developed soon after the original papers, based
on an enlarged technicolor gauge group GETC ⊃ GTC, in which SM and TC fermions
transform under the same representation, so that the corresponding ETC gauge bosons
couple the TC fermions to the SM fermions [25, 26]. These models are called extended
technicolor (ETC), and after integrating out the heavy ETC gauge bosons at some
scale ΛETC > ΛTC, and after Fierz transformations, there appear three different types
of dimension six operators,

Ld=6 = aij
QT iQQT jQ

Λ2
ETC

+ bij
QT iQqT jq

Λ2
ETC

+ cij
qT iq qT jq

Λ2
ETC

. (1.11)

where T i denote the GETC generators. The a-terms, connect TC fermions, which
are denoted by Q, with each other, the b-terms couple TC fermions to SM fermions,
which will from now on be denoted by q (we concentrate on the quark sector), and
the c-terms couple SM fermions among each other. For the current discussion the a-
terms are unimportant.12 The b-terms generate the effective Yukawa couplings after
formation of the techniquark condensate at the ETC scale, as illustrated in Figure
1.1,

LYukawa 3
b

Λ2
ETC

qL〈QQ〉
∣∣
ETC

qR . (1.12)

12They will give masses to additional technipions in the NF > 1 case, in the same way as the pion
mass difference is generated by photon exchange, see [27, p.61] for further details.
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Here the subscript at the vertical bar reads “evaluated at the respective scale”. There-
fore, the quark masses are given by

mq ∼ b
〈QQ〉

∣∣
ETC

Λ2
ETC

= b
NTCΛ3

TC

Λ2
ETC

, (1.13)

where we have assumed that 〈QQ〉
∣∣
ETC

= 〈QQ〉
∣∣
TC

= NTC Λ3
TC . Since ΛTC is set by

the electroweak breaking scale, for fixed NTC, the scale ΛETC can be extracted from
(1.13) if the physical quark masses are used as an input. Allowing for a step-wise
breaking of the extended symmetry at different scales Λ1 > Λ2 > Λ3 would make
it even possible to dynamically generate the hierarchy between the three generations
which will therefore obtain masses mq3 > mq2 > mq1 .
However, ΛETC is severely constrained from the third type of contributions to (1.11),
the c-terms, which generate FCNC processes suppressed by the same scale that enters
the effective Yukawas. From Table 1.1 we know that even in more optimistic scenarios
(assuming no additional CP violation), this bound amounts to at least ΛETC > 103

TeV, which translates in a maximal quark mass of (NTC < 10,ΛTC ∼ 1TeV)

mq < b× 10 MeV . (1.14)

Especially the large mass of the top quark poses therefore a problem for theories where
the Higgs is described by a bound state.

This problem can be attenuated by considering theories that are not like QCD [20].
In a QCD-like theory, the running of the coupling is fast because asymptotic freedom
sets in quickly above ΛQCD, as illustrated on the upper left panel of Figure 1.2. The
techniquark condensate will therefore stay roughly the same between the ETC scale
and the TC scale and the assumption going into (1.13) is justified. More precisely,
the running is given by

〈QQ〉
∣∣
ETC

= exp

(∫ ΛETC

ΛTC

dµ

µ
γm(α(µ))

)
〈QQ〉

∣∣
TC

, (1.15)

and QCD-like running corresponds to an anomalous dimension γm(α(µ)) ≈ γα(µ)
≈ γ/ ln(µ), which results in a power-logarithmic enhancement factor proportional
to ln(ΛETC)γ/ ln(ΛTC)γ , similar to QCD radiative corrections to semileptonic elec-
troweak processes.
For general strongly coupled theories, such a behaviour is not mandatory. It may
well be, that the coupling evolves slowly for a large range of scales, before asymptotic
freedom sets in, as depicted on the lower left panel of Figure 1.2. In such a case, the
coupling stays close to a constant, so that γm(α(µ)) ≈ γα(µ) ≈ γα∗ and the radiative
corrections give a power-law enhancement factor (ΛETC/ΛTC)γ . In terms of the beta
function, this behaviour corresponds to the convergence to a conformal fixed point,
but not quite reaching it, as illustrated in the lower right panel of Figure 1.2. Yang-
Mills theories with this behaviour are called walking and the corresponding walking
technicolor (WTC) theories allow for a significant amplification of the a-and b-terms
in (1.11), while the FCNC inducing c-terms, which do not couple to the technicolor
sector, still feel the full ETC scale suppression. In the WTC scenario, we can thus
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g(µ)

µΛTC

β(g)
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µΛTC

β(g)

g

g∗

Figure 1.2: Couplings and beta functions of strongly coupled theories.

rewrite the operators in (1.11) at the TC scale symbolically as (symbolically in the
sense that a Lagrangian itself should be independent of the energy scale)

Ld=6 = aij
QT iQQT jQ

Λ2−2γ
ETC

+ bij
QT iQqT jq

Λ2−γ
ETC

+ cij
qT iq qT jq

Λ2
ETC

. (1.16)

For walking technicolor theories, analyses based on the Schwinger-Dyson equation
show that the anomalous dimension has an upper bound of γ ∼ 1, see e.g. [27, p.75].
Equivalently, one can say that the scaling dimension of the techniquark condensate
∆Q̄Q≡ dim〈QQ〉= 3− γ, is bound from below by ∆Q̄Q = 2. This generates an upper
bound

mq . bNTC
Λ3−γ

TC

Λ2−γ
ETC

, (1.17)

which allows for quark masses as large as (NTC < 10,ΛTC ∼ 1TeV)

mq < b× 10 GeV , (1.18)

which would still need fine-tuned parameters in order to explain the large top mass.
Equation (1.17) suggests, that this bound can be loosened further by choosing a larger
number of colors NTC, or increasing the number of flavors NF of technifermions which
take part in the condensation. However, the β-function of an SU(NC) gauge theory
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Figure 1.3: Phase diagram of an SU(NC) Yang-Mills theory with NC numbers of color
and NF copies of fermions in the fundamental representation.

is a function of the number of flavors and colors,

β(g) = − g3

(4π)2
(11NC − 2NF ) +

g5

(4π)4

(
34

3
N2
C −

1

2
NF

[
16

3
− 20

3
NC

])
+O(g7) ,

(1.19)

and those must be chosen in a certain ratio in order to end up just below the lower
boundary of the conformal window (the region where the theory may evolve to an
infrared fixed point),

11

2
NC > NF >

17N2
C

4 + 5NC
(1.20)

which allows for walking gauge theories, see Figure 1.3. A technicolor theory is
therefore constrained in the possible values of NF and NTC. Also, a larger number of
flavors will give rise to additional technipions which have not been seen at colliders.
It is however possible to allow for theories, which are not SU(NC), but SO(N) or
Sp(N) and also the technifermions must not be in the fundamental representation,
but may be in the adjoint or even higher representations of the gauge group, which
changes the conformal window and therefore the possible NF , NC configurations (a
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Figure 1.4: Region in the ∆Q̄Q − ∆(Q̄Q)2 plane which is excluded using numerical
methods, shown in blue. These bounds depend on the global symmetry of the techni-
color condensate (and become weaker for a larger symmetry group), which is assumed
to be SU(2) in this plot. The red region in the upper left corner is the preferred region
by flavor bounds on the ETC scale and a natural top mass. The dashed cross indicates
the lowest possible value of ∆Q̄Q, while ∆2

(Q̄Q)
= 4, and the orange line depicts the

large N limit ∆(̄QQ)2 = 2∆Q̄Q.

good review is [28]).

Alternatively one can avoid the bound on the technicolor condensate scaling dimen-
sion ∆Q̄Q ≥ 2 and ask for even larger anomalous dimensions γ > 1, considering the
confining gauge theory is at a strongly interacting fixed point, which means in the
conformal window in Figure 1.3 or actually reaching g∗ in the lower right panel of
Figure 1.2. These theories are called conformal technicolor (CTC) and, in contrast to
WTC, such a Yang-Mills theory requires an external source which breaks the confor-
mal symmetry in order to create a mass gap and force the techniquark condensate to
form. In this respect CTC is very similar to supersymmetry, where also an external
breaking ultimatively triggers EWSB. Ideally, one would aim for a theory, in which
the scaling dimension of the technicolor condensate is as close to ∆Q̄Q = 1 as possible,
and the top mass is as natural as in the SM, while the “Higgs mass” operator still
is at ∆(Q̄Q)2 ≡ dim〈QQQQ〉 = 4 so that the hierarchy problem can be avoided [29].
However, the limit ∆Q̄Q = 1 corresponds to the free noninteracting theory, in which
always ∆(Q̄Q)2 = 2. Yet for slightly different values ∆Q̄Q = 1 + ε, with ε = 1/few, the
relation ∆(Q̄Q)2 = 2∆Q̄Q does not hold, except in the large NC limit, in which matrix
elements factorize. The question is, how small can ε be, while ∆(Q̄Q)2 ≥ 4?
Although there is very limited knowledge about strongly interacting theories, the
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large amount of symmetry of a conformal theory allows to extract information on
the bounds on the scaling dimension ∆Q̄Q in dependence of ∆(Q̄Q)2 numerically. The
progress made over the last years in these studies leads to the blue curve plotted in
Figure 1.4, corresponding to a fit function from [30, Sec. 3.2]. The blue shaded region
corresponds to the numerically excluded region. The result is, that there exists no
conformal field theory in the phenomenologically preferred region, indicated by the
red shaded rectangle. Additional assumptions, like minimal flavor violation, are thus
necessary to find a viable CTC theory. Nevertheless, CTC may be the only way to
implement strongly coupled EWSB without introducing composite fermions.

Partial Compositeness

The concept of partial compositeness was introduced in 1991 by Kaplan [31]. It
is based on the fact that there may be a fourth kind of dimension six operators not
included in (1.11), if the strongly coupled sector allows for fermionic bound states with
the same quantum numbers as the SM fermions, build from three technifermions,

dij
qT iQQT jQ

Λ2
ETC

. (1.21)

This bound state will appear as a composite Dirac-fermion and leads to a novel mech-
anism to generate fermion masses. The basic idea is, that the elementary SM fermions
are massless and do not couple directly to the technicolor condensate, i.e. the TC
condensate has a small or even a negative anomalous dimension, so that the b-terms
are irrelevant. The composite fermions however may have a marginal Yukawa coupling
with the TC condensate (suggestively called H in this section), because the Yukawa
operator does now only contain composites and its scaling dimension is therefore not
the sum of the scaling dimensions of its constituents.13 Only through the linear mix-
ing generated by the operator (1.21) will EWSB be communicated to the SM fermions.

Kaplan first developed his idea in upscaled QCD TC and therefore he considered the
techniquarks to form technibaryons QQ̄Q→ |ψ(0)|2B, with |ψ(0)|2 the wavefunctions
overlap of the techniquarks in the technibaryon, measuring the coupling strength.
Naive dimensional analysis tells us |ψ(0)|2 ∼ Λ3

TC, which can be supported by com-
parison with the QCD analogue, see [32, eq. (2.12) and (2.13)].
Denoting the left/right-handed Lorentz-chirality of the SU(2)L-doublet composite by
BL and BR and the SU(2)L-singlet with components Bc

L and Bc
R, one can write down

an effective Lagrangian,

L 3 Λ3
TC

Λ2
ETC

(d̃ qRB
c
L + d qLBR)−mBBB − m̃BB

c
Bc +BL (λHBc

R) + h.c. . (1.22)

Here, d and d̃ denote the mixing parameters from (1.21) and its analogue involving a
right-handed SM-quark, λ is an O(1) Yukawa coupling in the composite sector, and

13In the original paper, a coupling to a composite Higgs was not considered and only explicit mass
terms for the composite fermions were introduced.
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mB, m̃B are the vector masses of the technibaryons. In walking TC, it is assumed that
the technibaryons B and Bc have large anomalous dimensions, bound from below only
by the unitarity constraint for fermionic operators dimB ≥ 3/2. We can therefore
again symbolically put in the effect of the walking in the above Lagrangian at the TC
scale, so that

d̃
Λ3

TC

Λ2
ETC

qRB
c
L + d

Λ3
TC

Λ2
ETC

qLBR → d̃
Λ3−γ̃

TC

Λ2−γ̃
ETC

qRB
c
L + d

Λ3−γ
TC

Λ2−γ
ETC

qLBR , (1.23)

if we denote the anomalous dimension for B by γ and for Bc by γ̃. We will further
employ the redefinition γ → 3 − γ, in order to make contact with the more recent,
holographically inspired literature [61]. The Lagrangian now reads

L 3 d̃ΛETC

(
ΛTC

ΛETC

)γ̃
qRB

c
L + dΛETC

(
ΛTC

ΛETC

)γ
qLBR ,

−mBBB − m̃BB
c
Bc +BL (λHBc

R) + h.c. . (1.24)

Note, that in this notation the unitarity bound requires 3 > γ > 0 and unintuitively
smaller γ means stronger coupling. Upon diagonalization of the mass mixing terms,
with mass eigenstates denoted by ψ and χ respectively,(

qL
BL

)
=

(
cosϕL − sinϕL
sinϕL cosϕL

)(
ψL
χL

)
, tanϕL =

dΛγTC

mB Λγ−1
ETC

, (1.25)

(
qR
Bc
R

)
=

(
cosϕR − sinϕR
sinϕR cosϕR

)(
ψR
χcR

)
, tanϕR =

d̃Λγ̃TC

m̃BΛγ̃−1
ETC

, (1.26)

the Lagrangian reads

L 3 −mχχχ− m̃χχ
cχc +

(
ψL sinϕL + χL cosϕL

)
λH (ψR sinϕR + χcR cosϕR) + h.c..

(1.27)

Note that the right-handed component of the SU(2)L doublet vector quark does not
mix, so that BR = χR and analogously Bc

L = χcL. Before EWSB, the field ψ remains
massless and we identify it with the SM fermions. The fields χ, χc are the New Physics
mass eigenstates with masses

mχ = Λ1−γ
ETC

√
m2
BΛ2γ−2

ETC + d2Λ2γ
TC , mχ̃ = Λ1−γ̃

ETC

√
m̃2
BΛ2γ̃−2

ETC + d̃2Λ2γ̃
TC . (1.28)

The fact that the SM fermions are admixtures of elementary and composite fermions
with a composite component proportional to sinϕL or sinϕR motivates the name
partial compositeness. After EWSB, the SM fermions gain masses through effective
Yukawa couplings to the TC condensate H, whose size is also controlled by the mixing
angles, and thus by the anomalous dimension of the composite technibaryons,

Yψ = sinϕLλ sinϕR . (1.29)
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Any Yukawa coupling can thus be generated with a fundamental parameter λ = O(1),
based on the choice of the mixing angles

sinϕL = d
ΛγTC

mχ
Λ1−γ

ETC and sinϕR = d̃
Λγ̃TC

mχ̃
Λ1−γ̃

ETC , (1.30)

and therefore, ultimatively on the anomalous dimensions of B and Bc. Here, in con-
trast to WTC, even for very large values of ΛETC ∼ MPlanck, also the top mass can
be explained, given that the corresponding anomalous dimension is γ < 2.

Another virtue of partial compositeness becomes evident if one generalizes to 3 gen-
erations of SM quarks. In that case each SM quark has a set of composite partners
Bi, B

c
i , i = 1 . . . 3. The composites have different anomalous dimensions, so that the

corresponding effective Yukawa matrices (shown here for the up-type quarks) read

Y =

sinϕuL 0 0
0 sinϕcL 0
0 0 sinϕtL

λ
sinϕuR 0 0

0 sinϕcR 0
0 0 sinϕtR

 , (1.31)

where λ is assumed to be an anarchic order one matrix in straight generalization of
λ in (1.29). In analogy to the Yukawa couplings in (1.27), there might be further
bosonic technicolor resonances, which couple to the composite fermions, for example

L 3 g
(
Bi γµρ

µBi +B
c
i γµρ

µBc
i

)
, (1.32)

which, after diagonalization of the mass mixings, leads to the couplings of the SM
fermions

L 3 (gL)ij ψ
i
L γµρ

µ ψjL + (gR)ij ψ
i
R γµρ

µ ψjR , (1.33)

with

gL = g

sinϕ2
uL

0 0
0 sinϕ2

cL
0

0 0 sinϕ2
tL

 , gR = g

sinϕ2
uR

0 0
0 sinϕ2

cR
0

0 0 sinϕ2
tR

 .

(1.34)

and although these couplings are flavor diagonal, they will have off-diagonal entries in
the basis in which the Yukawas are diagonal, because only matrices proportional to
the identity commute with the unitary change of basis matrices. This leads to FCNCs.
However, the corresponding FCNCs are always suppressed by the same small mixing
angles which generate the Yukawa couplings. Therefore, as long as the top does not
participate, FCNCs are generically small in models with partial compositeness. Since
Randall-Sundrum models with bulk fermions do have this feature, we will examine it
in more detail in Section 2.5.
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Composite Higgs

TC models are higgsless theories, because they do not have a scalar Higgs doublet.
QCD-like theories do not predict a sharp scalar resonance at all.14 There are candi-
dates, for example the TC analogue of the σ/f0(550), but as in QCD it is very broad.
In WTC, it may be narrow and even lighter than assumed from scaled up QCD [33],
but still heavier than preferred by the LHC measurements.15 Also, in walking TC
theories, there is a Pseudo Nambu-Goldstone boson (PNGB) connected to the break-
ing of approximate scale invariance, if one is close enough to the conformal window,
the so called dilaton, which shares the quantum numbers with the neutral SM scalar
Higgs component, but has different self-couplings [34].

Composite Higgs models were first proposed and worked out by Kaplan and Georgi
in the early eighties [36]. They are philosophically different from TC, because they
implement electroweak symmetry breaking in two steps. A global symmetry breaks
at some scale f > v, which leaves the electroweak symmetry intact but generates
four composite Pseudo Nambu-Goldstone bosons. These PNGBs correspond to the
degrees of freedom of the Higgs doublet. One can imagine them as being a set of
technikaons, if one wants to push further the analogy with QCD. In practice, models
without additional Goldstone bosons are preferable, and so the minimal composite
Higgs model proposes a global symmetry breaking SO(5)/SO(4), which gives exactly
four GBs [37].
The problem of fermion mass generation persists, and is usually solved by introducing
partially composite fermions. After integrating out the heavy composite states, one
ends up with an effective Yukawa coupling as in (1.31). A potential for the Higgs is
then generated at loop level by Yukawa and gauge boson couplings which induce a
negative mass squared and force the composite Higgs to take on its vev. However, it
is not self-evident, that this loop-induced potential results in a vacuum which breaks
the electroweak symmetry. This can be illustrated in terms of the ratio between the
EWSB component of the vev, v, and the scale at which the global symmetry is broken,
f , given by the angle sin θ = v/f , see Figure 1.5. Gauge boson loops “like” to preserve
the gauge symmetry, i.e. they tend to induce a potential with a symmetry preserv-
ing minimum, θ = 0. On the other hand, Yukawa couplings generate contributions
to the Higgs potential which point in the direction of EWSB and prefer θ = π/2.16

Although very challenging for TC models, the heavy top is therefore a blessing for
composite Higgs models, since it allows for a symmetry breaking minimum of the
potential. Thus, in an interesting analogy, composite Higgs models and SUSY share a
fondness for the large top Yukawa, which is crucial in both scenarios to achieve EWSB.
It is however a matter of fine-tuning to get an angle which is still in agreement with
electroweak and flavor bounds, which prefer a large scale f , i.e. sin2 θ ∼ 0.1. Thus,
even though it does not pose a problem to write down the top Yukawa itself, its large

14Unitarization of WW scattering is achieved by the exchange of heavier TC vector composites.
15It should be noted that this might not be true for theories with technifermions in higher repre-

sentations [35]
16This was known at the time when Georgi and Kaplan proposed their model, but the top quark

was assumed to be lighter than ∼ 50 GeV and its contributions negligible. Therefore, new dynamics
were necessary and they introduced an additional axial U(1)A.
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θ

v

R = f

SU(2)L × U(1)Y

preserving vacuum

SU(2)L × U(1)Y

breaking vacuum

Figure 1.5: Circle of a priori degenerate minima in Composite Higgs models with
radius R = f , the scale at which the global theory is broken and the Higgs emerges
as a pseudo Nambu-Goldstone boson. The angle θ measures the (mis-)alignment with
the EWSB vacuum.

contribution to the potential reintroduces a tension comparable to the situation of
higgsless TC models, consult [61, Sec.3.4] for details.

In terms of the angle sin θ, it also becomes clear how composite Higgs models can be
seen as a link between the SM with an elementary Higgs scalar and TC theories. If
f → ∞, sin θ → 0 and all composite states besides the Higgs decouple, so that the
theory effectively has an elementary Higgs. For v → f however, sin θ → 1 and the
model predicts only a single characteristic scale, at which the composites form and
EWSB occurs, just like TC.

Collective Symmetry Breaking

In composite Higgs models one can achieve a natural separation of scales v < f ,
but the Higgs mass does still encounter quadratically divergent corrections up to the
compositeness scale, because gauge and Yukawa interactions explicitly break the shift
symmetry which protects it. Therefore, a large separation v � f is unnatural. Loosely
speaking, one could say that the Higgs does not profit from being a Nambu Goldstone
boson.
This was the inspiration for the mechanism of collective symmetry breaking, which is
realized in a class of models called little Higgs [38].17 The idea is, that the global
symmetry, which breaks dynamically in the composite Higgs model is larger than
necessary in order to accommodate the four Goldstone bosons which are identified
with the degrees of freedom of the Higgs, and the electroweak gauge group is enlarged
as well, so that there is at least another copy of W±s and the Z, which becomes heavy
by eating the additional GBs.

17The name is motivated, because the Higgs in these models is naturally light = little. See Section
1.3 in [38].
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G

F HI

Simplest Little Higgs:

G = SU(3)× SU(3)× U(1)

H = SU(2)× SU(2)× U(1)

F = SU(3)× U(1)

I = SU(2)× U(1)

gauging
SSB

Figure 1.6: Diagram illustrating the relations between the different symmetry groups
in a Little Higgs theory. Ignoring gauge interactions and spontaneous symmetry
breaking (SSB), G is the global symmetry of the Lagrangian. A subgroup F – larger
than the SM gauge group I– is gauged, which breaks the global symmetry. Another
global subgroup H is left after SSB. A number of GBs make some of the F gauge
bosons heavy, while the ones from I remain massless. The remaining GBs form the
Higgs.

If either the SM electroweak gauge bosons or the new gauge bosons couple to the
Higgs, there will still be a leftover global symmetry, which makes the Higgs a Goldstone
boson, i.e. massless, but if both gauge degrees of freedom couple to the Higgs a mass
term is generated, which will then only be logarithmically divergent.
This is illustrated best on the basis of a model introduced by Schmaltz, which he
called the Simplest Little Higgs [39]. It will be even more simplified here, because
we will ignore the U(1) gauge groups. Consider a Lagrangian with two scalar fields,
invariant under the global symmetry G = SU(3)1×SU(3)2 (ignoring additional U(1)
factors),

L = (∂µφ1)†(∂µφ1) + (∂µφ2)†(∂µφ2) + V (|φ1|2, |φ2|2) . (1.35)

Both scalar fields will take on a vev f , so that the symmetry breaks down to H =
SU(2)1 × SU(2)2 at that scale. A scheme of the symmetry breaking is provided in
Figure 1.6. We adopt the parametrization

φ1 = exp

[
i

f

(
02×2 κ
κ† 0

)
+

κ̃√
2f
13×3

]
exp

[
i

f

(
02×2 h
h† 0

)
+

η√
2f
13×3

]0
0
f

 ,

(1.36)

φ2 = exp

[
i

f

(
02×2 κ
κ† 0

)
+

κ̃√
2f
13×3

]
exp

[
− i
f

(
02×2 h
h† 0

)
− η√

2f
13×3

]0
0
f

 .
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Here {κ = (κ−, κ0), κ̃} and {h = (h−, h0), η} denote each five Goldstone bosons from
the breaking G/H. Now assume that the diagonal subgroup F = SU(3)diag of G is
gauged, so that the kinetic part of (1.35) becomes

Lkin = (Dµφ1)†(Dµφ1) + (Dµφ2)†(Dµφ2) (1.37)

with Dµ = ∂µ− ig T aAaµ, a = 1, . . . , 8. This is an explicit breaking of the subgroup H,
so that only I = H ∩ F = SU(2)diag (generated by the T as with the Pauli matrices
in the upper left corner) remains unbroken. The interaction terms from (1.37) can be
written as ∑

i

|Dµφi| 3 Tr
{
g2(AaµT

a)2(φ1φ
†
1 + φ2φ

†
2)
}
, (1.38)

where g is the weak coupling constant in this model and (ignoring the singlet η)

φ1φ
†
1 + φ2φ

†
2 =

(
h†h 0
0 f2 − h†h

)
. (1.39)

And, if we denote the new gauge bosons by X and the SM ones as usual, we find in
the mass eigenbasis

AaµT
a =

1√
2


B0
µ +

X8
µ√
3

W+
µ X0

µ

W−µ
X8
µ√
3
−B0

µ X−µ

X
0
µ X+

µ
−2√

3
X8
µ

 , (1.40)

so that

Tr
{
g2(AaµT

a)2(φ1φ
†
1 + φ2φ

†
2)
}

=
g2

2
f2

(
8

3
X8
µX

µ8 +X
0
µX

µ0 +X+
µ X

µ−
)

+
g2

2
h2
(
W+
µ W

µ− + 2B0
µB

µ0 −X+
µ X

µ−− 2X8
µX

µ8
)

+
2g2

√
3
h2X8

µB
µ0 . (1.41)

Two things become evident from this result. First, the five gauge bosons corresponding
to the broken T as, a = 1, . . . , 5 have eaten the κ fields from (1.36) and gain masses
proportional to the scale f , while the remaining three gauge bosons will become
massive if the Higgs field h acquires a vev. Second, the couplings to the Higgs in
the second line of (1.41) are of the same magnitude but of opposite sign between the
new gauge fields and the weak gauge fields. This leads to a cancellation (between
equal spin fields), which will assure that no quadratic divergent loop diagrams appear
in the theory. The reason is, that if one covariant derivative in (1.37) was replaced
by Dµ → ∂µ, all GBs of the corresponding scalar would be exact. Thus, only gauge
interactions including both scalars φ1 and φ2 break the shift symmetry and can give
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a contribution to the Higgs mass. A corresponding diagram is given by

φ1

φ2

:
g4

16π2
log

(
Λ2

µ2

)
|φ†1φ2|2 =

g4

16π2
log

(
Λ2

µ2

)
(f2 − 2h†h)2 ,

(1.42)

and a similar mass is generated for the real singlet η. Such a cancellation must also be
installed in the fermion sector, so that these models at least have an additional top-
partner. Light fermions may give quadratic corrections up to a larger scale because
their Yukawa couplings are small (the same reason which allows for a splitting in the
MSSM sfermion mass spectrum).
Thus, the hierarchy between the scale of compositeness and the electroweak scale
is explained and one naturally achieves the desired sin2 θ ∼ 1/(16π2) � 1. For
completeness, it should be mentioned that it is also possible to construct little Higgs
models with one symmetry breaking scalar, but two different gauge groups with a
common factor group. In these scenarios, collective symmetry breaking is achieved by
multiple gauged subgroups of the global symmetry (if only one gauge group is active,
the residue global symmetry protects the Higgs mass). In the minimal model, one can
get along with exactly four gauge partners for the four electroweak SM gauge bosons
[40].

Extra Dimensions

Flat Extra Dimensions

Additional compact spatial dimensions may provide an explanation for the extreme
weakness of gravity, if it is the only force which feels the extra volume and is thus
diluted by propagating in the extra dimension.

Historically, additional compact dimensions were first proposed by Nordström [43] and
subsequently by Kaluza and Klein [45, 44] almost 100 years ago, originally introduced
with the purpose to find a unified theory of gravity and electrodynamics. In the
context of the hierarchy problem however, the significance of extra dimensions was
only realized by Arkani-Hamed, Dvali and Dimopoulos (ADD) in 1998 [48]. Their idea
was motivated by the observation, that gravity, in contrast to the SM, is only tested at
distances of order 0.1 mm, corresponding to an energy scale of 103 eV [46].18 At these
energies, for small masses, Newtons law is a good approximation of general relativity.
A modification of the inverse square law might therefore have gone undetected if
it only comes to the fore at distances smaller than a tenth of a millimeter. To be

18This bound is so weak, that there are serious attempts to explain the cosmological fine-tuning
problem –the question why the cosmological constant is so small despite quartic radiative corrections–
by a modification of gravity close to this scale [47].



22 Chapter 1. Introduction: Problems beyond the Standard Model

more precise, consider an extension of Minkowski spacetime M4 by n compact extra
dimensions Sn,

M = M4 × Sn . (1.43)

These extra dimensions are assumed to be only accessible by gravity, while the SM
is confined to a domain wall or brane with a thickness δ – in contrast to the volume
of the extra dimensions, which is called bulk. The radii of these extra dimensions are
considered small enough to have escaped detection so far, but still large compared to
the Planck length. In spherical coordinates it follows for the spatial infinitesimal line
element (assuming all radii R equal for simplicity)

ds2 = gijdx
idxj = dr2 + r2dΩ2

2 +R2dΩ2
n , (1.44)

so that
√
|g| ∼ Rnr2, with g ≡ det gMN and M,N = 0, 1, . . . , n + 4. The Poisson

equation for the gravitational potential of a point-like source, measured at r � R
then reads

∂i

(√
|g| gij∂j

)
V (r) = Rn∂r

(
r2∂r

)
V (r) = δ(r) (1.45)

which is solved by

V (r) ∼ −G4+n

Rnr
= −G4

r
, (1.46)

where G4+n denotes the gravitational constant in 4+n dimensions and G4 = G4+n/R
n

the effective four-dimensional gravitational constant. The weakness of gravity, or
equivalently the size of the effective 4D Planck mass

M2
Pl ∼ 1/G4 = RnMn+2

Pl(4+n) , (1.47)

is attributed to the number and size of additional compact extra dimensions, so that
the fundamental constant MPl(4+n) might be of the order of the weak scale. For
experiments at macroscopic distances, r � R, the existence of compact extra dimen-
sions manifests itself as a seemingly extreme weakness of gravity, while at a more
fundamental level it can be explained by the field lines of gravity escaping in new
spatial directions. At distances r < R however, the radial coordinate of the compact
dimensions in (1.45) is treated on the same footing as the one corresponding to the
infinite dimensions. As a consequence one would expect a radical modification to
the inverse square law once experiments are able to resolve the compact dimensions.
This of course depends on their size, which on the other hand is roughly fixed by the
requirement to solve the hierarchy problem. The hierarchy between the weak and the
Planck scale is explained for the following arrangements of number and radii of extra
dimensions (assuming MPl(4+n) = 1 TeV)

Number n 1 2 3 . . .

Radius R ∼ 1013 m ∼ 10−9 m ∼ 10−11 m . . .
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Physically, the size of the radius is fixed by the vacuum expectation value of the purely
extra-dimensional components of the metric tensor, gnn, the radion or modulus fields.
It can thus be argued, that the hierarchy problem in the ADD model is only reformu-
lated in a geometric language. The large ratio between the Planck and the weak scale
is replaced by the ratio between brane thickness and radii of the extra dimensions δ/R.
In addition, phenomenological problems arise if the fundamental Planck scale is small.
If gravity becomes strong at energy scales E ∼MPl(4+n) = 1− 10 TeV, processes like
graviton mediated proton decay are only suppressed by that scale and therefore vastly
increased over the experimentally acceptable limit. As in SUSY, such a process must
be forbidden by additional gauged symmetries (Baryon- or Lepton number) or by a
properly adjusted localization of matter fields along the extended brane, the so called
fat brane or split fermion scenario, in which the couplings between different matter
fields may be small due to a small overlap of the localization functions inside the brane
[41].
A signature of extra dimensional models is the existence of an infinite tower of excited
states (think higher harmonics of a particle in a box) of every field which may prop-
agate into the bulk. In the ADD scenario, this would imply new massive resonances
with the same quantum numbers as a graviton. The masses of these modes are set by
the radius, mn ∼ n/R for the nth mode, which represents an interesting signature,
because depending on the number of extra dimensions, an almost continuous spectrum
of graviton states is predicted (MPL(4+n) = 1 TeV),

δmn ∼
1

R
= MPL(4+n)

(
MPL(4+n)

MPL

) 2
n

, e.g. δm = 103 eV , for n = 2. (1.48)

On the basis of these ideas, models which allow for all SM fields to propagate in the
extra dimensions, the Universal Extra Dimension (UED) scenarios were explored [42].
Generically, they do not add anything to the understanding of the hierarchy problem
as the difference between brane gauge theory and bulk gravity is removed. They can
clearly not be large extra dimensions, based on the equation above, so that the radius
is usually a free variable and a solution to the hierarchy problem is generically not
provided.

UED however set the stage for extra-dimensional higgsless models, in which the addi-
tional compact dimension is not a manifold, but an orbifold, for example a circle with
opposing points glued together by factoring out a Z2, technically an interval S1/Z2, as
shown in Figure 1.7. This process leaves two fixed points, φ = 0 and φ = π. Depend-
ing on whether they have negative or positive parity under Z2, χ(φ)→ ±χ(−φ), fields
propagating in the bulk must now get assigned either Neumann or Dirichlet boundary
conditions (BCs) at the fixed points and consequentially fields with negative parity
have no zero mode. This technique is known as Scherk-Schwarz mechanism and was
already found in the seventies [49]. Orbifolding is also necessary in each UED sce-
nario with an odd number of extra dimensions, because fermions are Dirac fermions
in the fundamental representation for such a setup and chiral zero modes can only be
achieved by projecting out the unwanted degrees of freedom, which will be discussed in
detail in Section 2.1. Choosing negative parity for the appropriate linear combination
of electroweak gauge fields makes it possible to implement EWSB via BCs. However,
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φ = 0 φ = ±π
φ = −φ φ = 0 φ = π

S1/Z2

Figure 1.7: Sketch of the orbifolding procedure.

if the BCs are set by orbifolding, the theory mimics a nonlinear sigma model with a
bunch of vector resonances (the KK modes of the SM fields), who ensure tree-level
unitarity of the WW scattering amplitude. A breaking via mixed BCs (with a finite
vev) can be modeled with a scalar living on a 4D brane at one of the fixed points, but
will inevitably bring back the hierarchy problem again. See [50], especially Section 6,
for a clear discussion.

Also related to the UED idea are gauge-Higgs unification models, in which the Higgs
is made of the extra dimensional components of a bulk gauge field. This idea was as
well born in the seventies [51], but only realized as a solution to the hierarchy prob-
lem some 20 years later [52]. As the scalar component of a bulk gauge field AM , the
gauge symmetry AM → AM + ∂Mα will prevent the Higgs from getting a mass term.
The mechanism is very similar to SUSY, in which the chiral symmetry is inherited
by putting scalars and fermions in a supermultiplet, while in gauge-Higgs unification
scalars share the gauge symmetry with a gauge boson by forming a higher dimensional
gauge field together. Clearly, since the Higgs is an electroweak doublet and a bulk
gauge boson transforms under the adjoint representation, even the simplest implemen-
tation requires an enlarged gauge group SU(3) ⊃ SU(2)L × U(1)Y [53, Sec. 3.2]. Its
adjoint representation decomposes into the representations of the SU(2)L subgroup
according to 8→ 3 + 2 + 2 + 1. More precisely, considering again S1/Z2 as the extra
dimension, the bulk gauge field can be decomposed just like the 5D generalization of
(1.40), so that the scalar components of the generalized (X0

M , X
−
M ) = H are identified

with the degrees of freedom of the Higgs boson and likewise the vector components
of the WM , X

8
M , B

0
M fields should give the electroweak gauge bosons. Therefore, the

BCs of these fields must be Neumann, in order to acquire a zero mode, while the zero
mode of their respective vector or scalar components vanish. Although the SU(3)
gauge symmetry is broken at the boundaries, the remnant protection allows only for a
radiatively generated Higgs potential which is non-local in the extra-dimension (gen-
erated by Wilson lines). As a consequence it is finite to all orders (another similarity
with SUSY), but leads generically to a small Higgs quartic coupling and thus to a too
light Higgs. Another characteristic of these models is, that 5D Yukawa interactions
are automatically provided by the fifth component of the kinetic term for the fermions,
but this means also that without additional assumptions, all fermion masses are equal
and proportional to the gauge coupling (for details see [54] and references therein).
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Warped Extra Dimensions

A qualitatively different implementation of compact extra dimensions was found by
Randall and Sundrum in 1998, who assumed a non-flat extension of 4D Minkowski
spacetime [55]. The idea is, that the compactification radius may be of the Planck
length rc ∼ `Pl, so that the hierarchy between scales is not due to the volume of the
extra dimension, but results from a specific choice of large negative bulk cosmological
constant (see Section 2.1 for details). As a consequence, the fifth dimension is subject
to a strong curvature k, so that krc ≈ 12, leading to an unfactorizable metric

ds2 = e−2σ(φ)ηµνdx
µdxν − r2

cdφ
2 , (1.49)

where the fifth dimension can be represented by an S1/Z2 orbifold with the coordinate
φ running from 0 ≤ φ ≤ π and σ(φ) ≡ krc|φ|. At the fixed points are two branes, the
Planck brane at φ = 0 and the TeV brane at φ = π. The names result from the fact
that the metric is rescaled at each four dimensional slice of the bulk according to the
warp factor e−2σ(φ).
This translates into a rescaling of dimensionful parameters in the effective 4D La-
grangian. In order to see this, consider the case where all SM fields are localized on
the TeV brane (as in the original paper). With G ≡ det(GMN ), the determinant of
the 5D metric tensor, and η its 4D counterpart, the Higgs potential part of the action
reads

S 3
∫
d4x

∫ π

−π
dφ
√
|G|

(
µ2H†H − λ(H†H)2

) δ(|φ| − π)

rc
(1.50)

=

∫
d4x
√
|η| e−4krcπ

(
µ2H†H − λ(H†H)2

)
=

∫
d4x
√
|η|

(
µ2

effH̃
†H̃ − λ(H̃†H̃)2

)
.

Here, H̃ = e−krcπH is just a field redefinition, but the effective 4D Higgs mass param-
eter

µeff = e−krcπµ =
ΛIR

ΛUV
µ , (1.51)

in which ΛIR should be identified with the weak scale, is the product of the funda-
mental mass scale µ ≈ MPl and the warp factor. The size of a dimensionful variable
therefore changes depending on the position along the extra dimension from the Planck
scale at the Planck brane to the weak scale at the TeV brane. One can further deduce
from the curvature part of the 5D Einstein-Hilbert action, that

S 3 −M3
Pl(5)

∫
d4x

∫ π

−π
dφ
√
|G|R5

= −M3
Pl(5)

∫
d4x

∫ π

−π
dφ
√
|η| rc e−2σ(φ)R4

= −
M3

Pl(5)

k

[
1− e−2krcπ

] ∫
d4x

√
|η|R4 , (1.52)
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where the 5D curvature, derived from GMN, and the 4D curvature, derived from the
4D block of GMN, gµν = e−2σηµν , are related by R5(G) = e2σ(φ)R4(g) + . . . up to
terms which vanish upon φ-integration or cancel with cosmological constant terms.
Matching with the 4D Einstein-Hilbert action implies that

M2
Pl =

M3
Pl(5)

k

[
1− e−2krcπ

]
, (1.53)

which, as a consequence of the strong curvature, is largely independent of the radius
rc, in contrast to (1.47). Likewise, the masses of the KK excitations are not tied to
the radius of the extra dimension, but depend on the curvature scale mn ∼ nMKK,
where

MKK ≡ kekrcπ = k
ΛIR

ΛUV
. (1.54)

The observation, that (1.53) is not sensitive to the limit rc →∞ led to a subsequent
paper of Randall and Sundrum, in which they proposed a model with an infinite
warped extra dimension as an alternative to compactification [56].
Equation (1.50) suggests, that solving the hierarchy problem only require the Higgs
to stay at the IR brane. The conclusions are not altered if all other SM fields are
promoted to bulk fields, which was explored soon after the original paper for bulk
gauge bosons in [57], and bulk fermions in [58, 59]. Similar to the split fermion idea
in UED, a localization in the bulk will lead to a suppression of dangerous higher
dimensional operators, because the overlaps of the extra dimensional wavefunctions
determine the size of the couplings. Due to the warping it can also accommodate
hierarchical fermion masses and mixings coming from anarchic 5D Yukawa couplings,
as well as a suppression of tree-level flavor violating effects. These features will be
elaborated on in Section 2.4 and 2.5.
In the context of the AdS/CFT duality, it can be motivated, that the RS model
is dual to a strong interacting four dimensional theory, see Section 2.2. Therefore,
many concepts introduced in Section 1.1 have an alternative, so called holographic
5D description, which may at first glance look like an entirely different theory. So
is for example the warped higgsless model dual to a walking TC theory [63]. The
warped version of a gauge-Higgs unification model is a dual description of a com-
posite pseudo-Nambu Goldstone Higgs19 [62, Sec.4] and the mechanism of collective
symmetry breaking can be implemented by an enlarged bulk gauge group [60].
It is interesting to note, that this dual description for the RS scenario, where gravity is
in the bulk and the graviton can therefore be understood as a composite of the brane
Yang-Mills theory seemingly contradicts a no-go theorem, the Weinberg-Witten theo-
rem [79]. It states among other things, that a massless graviton cannot be a composite
state. Very reminiscent of the Coleman-Mandula theorem and SUSY, the AdS/CFT
correspondence makes use of a loophole, because the 5D graviton can be described by
a composite state on the four dimensional boundary, see [80] for details.

19An indication of this relation may be that the extra-dimensional components of the gauge fields
transforms under the 5D gauge symmetry like under a shift symmetry.
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Figure 1.8: Diagrams contributing to FCNCs in the SM.

1.2 Solutions to the Flavor Problem

The famous question of “Who ordered the
muon?” has now been escalated to “Why does
Nature repeat herself ?”

Frank Wilcek & Anthony Zee

Hierarchies in the flavor sector are not radiatively unstable and might therefore be
considered a less severe problem then the gauge hierarchy problem. However, if the
hierarchy problem is solved by new physics at the electroweak scale, one immediately
runs into trouble with flavor observables. The reason is, that in the SM, the Z boson,
the gluon and the photon couple flavor universal and as a consequence, flavor changing
neutral currents (FCNCs) are loop-suppressed. Furthermore, these loop processes are
additionally suppressed due to the so called GIM mechanism [67]. It is based on the
fact, that flavor-violating diagrams, like the ones shown in Figure 1.8 can be described
by an effective Hamiltonian

H =
∑
i

Ci
Λ2
Oi (1.55)

with four quark operators Oi and Wilson coefficients

CPenguin ∼
∑
i=u,c,t

λiF (mi) , CBox ∼
∑

i,j=u,c,t

λiλjF̃ (mi,mj) , (1.56)

for the Penguin and Box diagram respectively. In this notation, the CKM factors are

λi =


V ∗isVid for K decays and K0 − K̄0− mixing,

V ∗ibVid for Bd decays and B0
d − B̄0

d− mixing,

V ∗ibVis for Bs decays and B0
s − B̄0

s− mixing,

(1.57)

so that in all cases unitarity of the CKM matrix enforces

λu + λc + λt = 0 . (1.58)

In the limit of equal quark masses, these processes would never occur through SM
physics alone. This is rooted in the fact that the SM gauge interactions respect the
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Observable Operator Bound on Λ in TeV

εK (dsc)(dsc) 104 − 105

∆mK (dsc)(dsc) 103 − 104

∆mD (cuc)(cuc) 102 − 103

∆mBd (bdc)(bdc) 102 − 103

Table 1.1: Rough bounds from Flavor observables on the suppression scale of the
corresponding four fermion operators.

full U(3)5 flavor symmetry, which is only broken by the Yukawa interactions.
The functions F (mi) and F̃ (mi,mj) however depend on the quark masses and break
the GIM protection. This dependence still leads in many cases to a powerful quadratic
suppression, e.g. ∼ (m2

u −m2
c)/M

2
W , but can be weaker in processes where it is only

logarithmic, e.g. ∼ log (mu/mc).
20 New Physics at the TeV scale will generically

introduce new particles with TeV masses, leading to large flavor changing neutral
currents (FCNCs) already at tree level, which are excluded by the good agreement of
various flavor observables with the SM. One might therefore find a viable solution for
the hierarchy problem, but the flavor sector will push the scale at which it is realized
orders of magnitude above the TeV scale.

In the following, the emphasis will be put on the quark sector again, even though
flavor violation is even more phenomenologically constrained in the lepton sector [157].
A solution to the flavor problem must then at least provide an explanation to the
question why the Wilson coefficients of the operators cited in Table 1.1 should be
small. Ideally, it would also explain the structure of the Yukawa matrices, which is
put in by hand in the SM. The exact structure of the Yukawa matrices cannot be
measured, because many parameters are not physical, but it can be approximated
under some assumptions [66]. Using the Wolfenstein parametrization [68], one can
write the CKM matrix and the Yukawa matrices in the form

Y diag
d =

dλ4 0 0
0 sλ2 0
0 0 1

 √2mb

v
, Y diag

u =

uλ4
u 0 0

0 cλ2
u 0

0 0 1

 √2mt

v
(1.59)

VCKM =

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(ρ− iη) −Aλ2 1

 , (1.60)

with λ ' 0.2 denoting the Cabbibo angle, λu ' 0.06, and all other coefficients of O(1).
The CKM matrix is given by VCKM = (UuL)† UdL, where UuL and UdL denote the unitary
rotation matrices which rotate the left-handed up- and down-type quarks from the
mass to the interaction eigenbasis. One can choose the rotation matrices such that
UdL and UdR depend only on λ and UuL and UuR only on λu. Since the Cabibbo angle is

roughly equal to the parameter λ '
√
md/ms, which determines Y diag

d , and λu < λ,

20One might argue, that the top mass leads to a considerable breaking of the GIM, but it will
come with a very small CKM element, canceling this effect.
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it is then a good approximation to consider VCKM ∼ UdL to first order. If one further
assumes the Yukawa matrices to be symmetric, which implies

(
UdR
)∗

= UdL, one finds

Yd = UdRY
diag
d (UdL)† ' V ∗CKMY

diag
d V †CKM

'

 (d+ s)λ4 sλ3 A(ρ− iη)λ3

sλ3 sλ2 Aλ2

A(ρ− iη)λ3 Aλ2 1

 √2mb

v
. (1.61)

In the less restrictive case that Yd is not symmetric, but (UdR)∗ij ∼ (UdL)ij , the coef-
ficients in front of the λns are undetermined, but the hierarchical structure remains.
From this analysis, no statement can be made about the structure of the Yukawa in
the up-sector Yu. However, as we will see, flavor symmetries that act in the same way
in the up- and down sector will relate the structures of Yu and Yd and also theories
with Yukawa unification at some GUT scale suggest such a relation.
It is safe to say that the approaches which try to explain this flavor structure are not
as inventive as the different solutions to the hierarchy problem. It basically comes
down to the question of what represents the source of the small parameter λ in (1.61).

Most of these models rely on abelian flavor symmetries, which have problems with
FCNCs from the irrelevant operators 1.1. On the other hand, non-abelian symmetry
groups, which lead to a successful suppression of these operators abandon an explana-
tion for the structure of the Yukawa matrices. The following sections will give a short
overview over the different models and highlight the role of partial compositeness as
a solution to the flavor problem.

Abelian Flavor Symmetries

Motivated by the fact, that the Yukawa matrices with the structure (1.61) (λ ↔ λu
for the up-sector) can reproduce the correct quark masses and a hierarchical CKM
matrix, Froggatt and Nielsen realized [70], that one can write down a simple ansatz
that parametrizes the small parameter λ, in writing the Yukawa couplings as(

φ

ΛFl

)n
qLH qcR . (1.62)

Here, one assumes a local continuous U(1) flavor symmetry with different charges for
left- and right-handed quarks depending on their family. The SM Higgs is assumed to
be uncharged, but n insertions of a flavor charged scalar φ, the flavon, are necessary
in order to end up with an invariant operator, which in turn leads to a corresponding
power suppression by the flavor scale ΛFl. This scalar will take on a vev, so that

〈φ〉
ΛFl
∼ λ , (1.63)
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Figure 1.9: The upper diagram leads to a Majorana mass term for the left-handed
neutrino upon integrating out the right-handed neutrino in the context of a seesaw
mechanism. The lower diagram is the generalization in the Froggatt-Nielsen model,
where new heavy fermions are integrated out, that on a fundamental level couple to
SM quarks through the Higgs or the Flavor symmetry breaking flavon φ.

and the charge assignments for the SM quarks will lead to the structure (1.61). More
precisely, if the left-handed quark qi carries the flavor charge ai > 0 and the right-
handed quark qcj carries the flavor charge bj ≤ 0, the Yukawa matrix is given by

Yij = gij λ
ai−bj , (1.64)

with gij non-hierarchic O(1) factors.21 On a fundamental level, the Froggatt-Nielsen
mechanism can be considered a generalization of the seesaw mechanism, which may
explain the smallness of the neutrino masses by integrating out a heavy right-handed
neutrino, which is a singlet under the SM gauge group. In the same way new heavy
fermions χ only charged under the flavor U(1) are integrated out, so that the flavor
scale is connected to their mass ΛFl ∼Mχ. Figure 1.9 shows a diagram which generates
the entries of the Yukawa matrix in (1.64). There must be several new fermions with
different flavor charges in order to arrange for diagrams with additional insertions of φ
tadpoles for the further suppressed Yukawa elements. The rotation matrices U qR and
U qL and from those the CKM matrix can be derived from (1.64) and the corresponding
formulas are collected in Section 2.5.
The Froggat Nielsen mechanism can serve as a model for a variety of theories which
generate the same hierarchic structure, but have different sources for the parameter
λ. For example, models featuring partial compositeness or more generally models in
which the Yukawa couplings run slow due to strong interactions (Nelson Strassler type

21For equation (1.64), and for the following equivalent formulas, no sum over indices that appear
twice is implied.
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models [71]),22 lead to

Yij(µ) = Yij(ΛFl)

(
µ

ΛFl

)γLi+γRj
, (1.65)

where now the respective anomalous dimension of the quarks plays the role of the flavor
charges, and the ratio between the flavor scale and the electroweak scale provide the
small expansion parameter λ. Another ansatz is the idea of radiative flavor breaking.
In these type of models, the masses of the second and first generation quarks can only
be generated at one or two loop-level respectively (for a good review see Section 6 of
[72]). Therefore, λ2 ∼ a loop factor, and

Yij = gij

(
1

16π2

)n
, (1.66)

with n = 1, 2 and further structure in gij is put in by hand or by different medi-
ators and couplings. In warped extra dimensions, the warp factor allows for large
hierarchies,

Yij = gije
−krcπ(ci−cj) , (1.67)

where ci, cj parametrize the localization of the 5D quark wavefunction along the extra
dimension and gij are the fundamental 5D Yukawa couplings. This mechanism as
well as its relation to the Froggatt-Nielsen model will be discussed in more detail in
Section 2.5. Note, that e−krcπ = ΛIR/ΛUV, which is another hint at a deeper relation
between strongly coupled and warped extra dimensional models considering (1.65).

All these models can be thought of as applications of the Froggatt Nielsen mechanism
and yet, there are important distinctive features which for example Nelson Strassler
models do have and the original Froggatt Nielsen model does not. They are related to
the other aspect of the flavor problem, the question whether the experimental bounds
on higher dimensional operators, which induce FCNCs can be brought in agreement
with a low new physics scale. Since flavor non-diagonal operators are suppressed, the
most dangerous effects in abelian flavor models come from flavor-diagonal operators,
for example in the down quark sector

3∑
i,j=1

Cdij
Λ2

Fl

(Q̄i d
c
i )(Q̄j d̄

c
j) , (1.68)

with Q denoting an electroweak doublet and dc a down-type singlet. Because the
abelian symmetry will enforce that the Cij make up a diagonal, but not a universal
matrix, after rotation to the mass eigenbasis one will have an operator (up to higher

22It is remarkable to note, that this idea, as well as the relationship between renormalization group
effects and the Froggatt Nielsen model was already envisioned in their original paper, see [70, sec.4].
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orders in λ)

(Cd11 + Cd22)λ2

Λ2
Fl

(Q̄2 d
c
1)(Q̄2 d

c
1) , (1.69)

and there is no reason why, considering an abelian symmetry, the diagonal coefficients
Cdii should be related. In Nelson Strassler type models (or in warped extra dimen-
sions) there is also no reason to assume this, but the coefficients are individually small,
because they are proportional to the localizations of the involved light flavors or the
corresponding mixing angles (compare the discussion at the end of 1.1). Further,
models with Yukawa hierarchies induced from strong renormalization group running
do not actually have an underlying flavor symmetry. At the flavor scale, the Yukawa
coupling is an anarchic order one matrix, which does not increase the global symmetry
group of the Lagrangian compared to the low energy theory. This is an advantage,
because in the Froggatt Nielsen model the Yukawa couplings emerge as effective op-
erators from a fundamental flavor symmetric theory. The breaking of this continuous
symmetry by the vev of φ results in massless Goldstone bosons. As a consequence, it
can not be realized exactly and even then, light Would-be Nambu Goldstone bosons
are bound to appear. This is the reason why, after it became known that a rich flavor
sector is realized in nature (basically after the discovery of the charm quark), most of
the proposals for a underlying symmetry were based on discrete groups, most of them
non-abelian ones (see [73, Ref.5]).

Non Abelian Flavor Symmetry

Another way to avoid the FCNC problem of ablian flavor theories is to assume non-
abelian flavor symmetries, which can ensure the coefficient matrix of (1.68) to be
universal. In these approaches, the maximal U(3)3 = U(3)Q × U(3)u × U(3)d quark
flavor symmetry, or a non-abelian subgroup, is considered to be broken by flavon
fields which transform in a χ ∼ (3̄,3) under the respective U(3)s (or a corresponding
equivalent for smaller flavor groups) in order to make the Yukawa couplings

1

ΛFl
χuQ̄H̃u

c +
1

ΛFl
χdQ̄Hd

c (1.70)

invariant. The problems regarding continuous groups mentioned at the end of the last
section have lost nothing of their validity and it is therefore preferable to consider
a discrete flavor symmetry, in this case a discrete subgroup of U(3)3. In principle,
another solution would be to gauge the flavor group in order to get rid of the massless
Goldstone modes. However, the small breaking in the light flavor sector will generate
very light flavor gauge bosons, as was already pointed out in the very first papers
considering gauged flavor groups [73]. But also if a discrete non-abelian subgroup is
realized, it should emerge from a gauged group via spontaneous breaking, because
fundamental global symmetries are not respected by quantum gravity (e.g. a black
hole may eat a proton and Hawking radiate a positron). Assuming such an explanation
is found, renormalizable terms in the flavon potential might still be invariant under
an accidental continuous symmetry, leading to Goldstone bosons. Higher dimensional
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operators will give masses to these Goldstone bosons, but they are again expected to
be light, because the breaking must be proportional to powers of λ. It is anyway a
challenge even for a gauged flavor symmetry to realize a potential which is able to
generate the Yukawa structures [75].23 This is already an impressive list of reasons,
why non-abelian models with low flavor scales are problematic. Since FCNCs at a low
scale are unavoidable if new physics (with no additional structure in the flavor sector) is
assumed to solve the hierarchy problem, such a flavor structure is often simply imposed
without further motivation. The practice to assume new physics to respect the flavor
symmetries of the SM gauge sector, i.e. it is flavor blind, is called Minimal Flavor
Violation (MFV). It was first implemented in [76], in the context of composite models
and thoroughly defined as an effective field theory in [77]. In practice, that means that
any flavored structure may be constructed only by insertions of SM Yukawa matrices,
pretending they are fields transforming in the same representation as an actual U(3)3

flavon. Afterwards these spurion fields are replaced by the constant Yukawa matrix
again. For example the Wilson coefficient in (1.68) is in MFV given by

Cd =
1

Λ2
Fl

χdχd

(
1+

1

Λ2
Fl

χdχ
†
d +

1

Λ2
Fl

χuχ
†
u +

1

Λ4
Fl

χuχ
†
uχdχ

†
d + . . .

)
= Yd Yd

(
1+ Yd Y

†
d + YuY

†
u + YuY

†
uYd Y

†
d + . . .

)
, (1.71)

which is to a good approximation diagonal in the mass eigenbasis. Deviations are due
to insertions of flavor invariant terms formed from the Yukawas, which are however
further suppressed by the flavor scale. The concept of MFV is very popular and an
ingredient of many BSM models which do not address the flavor sector inherently.
Very similar at first sight, however a qualitatively different approach can be realized
in models with extra dimensions. Here, it is possible to separate the source of flavor
breaking from the SM by confining it to a distant brane. In the simplest setup one has
n flat extra dimensions, with the SM assumed to reside on one brane and the flavor
breaking fields χ on another brane [69]. Flavor breaking is then only communicated
to the SM by a bulk field φ which couples to both branes. Because there is no
direct contact between the SM fields and the flavor breaking fields, one says the flavor
violation is shined to the IR brane. The relevant terms in the Lagrangian read

L 3
∫
d4xdzn

φkl

Λ
n/2−2
Fl

χklδ
n(z − z0) +

∫
d4xdzn

φkl

Λ
n/2+1
Fl

Q̄kHd
c
l δ

n(z) . (1.72)

After solving the equations of motion, the mediator will inherit the flavor structure
from the source (its boundary condition), so that φkl = χkl f(z) and the effective
Yukawa coupling from the Lagrangian above will therefore be

(Yd)kl ∼
χkl(z = 0)

Λ
n/2+1
Fl

, (1.73)

This is exactly what one would expect from a spurion analysis. However, a plethora
of phenomena can appear if one considers multiple sources sitting at different branes

23For the full flavor group it is not even possible to find a renormalizable potential, see [74, Sec
2.2].
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at different distances from the SM brane. Even interactions between different bulk
flavons can have a sizable effect and lead to hierarchies in the effective Yukawas. In the
worst case, shining is an alternative description of MFV for a non-abelian scenario or
directly related to a Froggatt Nielsen model (with λ now given by the distance between
branes). In the best case, it can be a new tool to generate hierarchies dynamically
(from bulk interactions).



2 The Randall Sundrum
Model and its Holographic
Interpretation

The model considered in this thesis is a variation of the Randall-Sundrum (RS) model
presented in Section 1.1. This model is enormously rich what concepts of model
building is concerned. Following the original motivation [55], it can be understood
as an extra dimensional theory with an Anti de Sitter metric in continuation of the
idea of large extra dimensions. This point of view will be introduced in Section 2.1.
It is also a model of strongly coupled composite fields, which becomes apparent in
the light of the AdS/CFT correspondence, which will be comprehensively presented
in Section 2.2. In the specific realization of the RS model that forms the basis of this
thesis, all standard model fermions and gauge bosons are five dimensional fields, or
in the language of the strongly coupled description, have composite admixtures (in a
generalization of ρ photon mixing). The technical aspects of this field content will be
the subject of Sections 2.3 and 2.4. Based on this setup and even more important in
the context of the following chapters, the Randall-Sundrum model provides one of the
best explanations for the Flavor structure in the SM we have today. The hierarchies in
quark masses and mixing angles can be reproduced and associated therewith, FCNCs
from higher dimensional operators are suppressed. In Section 2.5 will be explained how
this works and the connection with the concept of partial compositeness as introduced
in Section 1.1 will be established.

2.1 Why this and not that?

The geometrical setup of the RS model has already been introduced in Section 1.1.
This section serves to describe the motivation for this particular geometry and the
choice of localization of the SM fields (whether they are bulk fields or why they should
be confined to one brane or the other).
On first sight, the metric in (1.49) seems to be constructed and the question arises if
it corresponds to a generic approach to assume such a metric or if it is based on very
special assumptions. In other words, is there some hidden tuning like in the case of
large extra dimensions in the specific choice of the geometry?
In order to check this, we will make the most general ansatz compatible with 4D
Poincaré invariance and the Z2 orbifold symmetry,1

ds2 = GMNdx
MdxN = a(φ) ηµνdx

µdxν − b(φ) dφ2 . (2.1)

1Remember, that the orbifold is a necessity if one wants to describe chiral fermions in an odd
number of spacetime dimensions.
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and see what choices we have, given a few sensible conditions.2 Because φ is a dimen-
sionless variable, dimensional analysis tells us, that the mass dimensions of [a(φ)] = 0
and [b(φ)] = −2. Another condition we can surely impose is that in the decoupling
limit rc → 0, we must recover flat Minkowski spacetime, so limrc→0 b(φ) = 0 and
limrc→0 a(φ) = 1. Further b(φ) can be chosen constant, since every function of φ
can be absorbed in the differential element with a suitable coordinate transformation.
With only the dimensionful quantities rc and k at hand, this leaves only the choice
b ∼ r2

c . For the other coefficient function, we can conclude that up to constant co-
efficients ai, one can write a(φ) = 1 + a1 krc|φ| + . . ., where the ellipsis stands for
higher powers of krc |φ| with the corresponding coefficients, and the absolute value is
dictated by the orbifold symmetry. These arguments are not a rigorous derivation,
but after all, (1.49) does not seem all that strange.
One result of [55] was, that (1.49) is a solution to the 5D Einstein equations with
a large, O(MPl), negative cosmological constant, which corresponds to an extremely
curved Anti de Sitter space. This sounds very puzzling, because we assume a stable
compact extra dimension with flat four dimensional boundaries. Wouldn’t the two
branes not immediately be smashed together? After all we know, our universe is
slightly de Sitter and expands with an observable rate. And what tells us that the
brane metric should be flat?
Answers for these questions can be found by considering Einsteins equations. Making
use of such a coordinate transformation as mentioned above, |z| = eσ(φ)/k, the metric
can be put in the form

ds2 =

(
R

|z|

)2 (
ηµνdx

µdxν − dz2
)
. (2.2)

The UV brane is localized at z = 1/k ≡ R and the IR brane at z = ΛUV/(kΛIR) ≡ R′
in these coordinates. They are particular well suited for the calculation of the Einstein
tensor, because the metric is conformally flat, that is it can be written as GMN =
Ω2 ηMN with ηMN the flat five dimensional metric and Ω a smooth function, and are
therefore often called conformal coordinates. In order to differentiate between the
notations, we will refer to the notation introduced in (1.49) as φ-notation. Applying
[78] and A(z) = log(|z|/R), the Einstein tensor G becomes a one-liner,

GMN = RMN −
1

2
GMN R

= 3
[
∂MA∂NA+ ∂M∂NA− ηMN

(
∂K ∂

KA− ∂KA∂KA
)]
. (2.3)

The only non-vanishing components are

G55 = 6(A′)2 , (2.4)

Gµν = −3ηµν
[
A′′ − (A′)2

]
. (2.5)

Even if we assume the SM fields to propagate in the bulk, in the presence of an order
Planck scale cosmological constant one can neglect the matter contributions to the

2If not stated otherwise, the convention for the 5D metric signature in this thesis is (+,−,−,−,−).
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stress-energy tensor as a first approximation, so that

GMN =
1

2M3
Pl(5)

ΛGMN , (2.6)

which implies for the 55 component

(A′)2 = − 1

12M3
Pl(5)

Λ

(
R

z

)2

⇒ Λ = −12M3
Pl(5) k

2 . (2.7)

The cosmological constant must therefore be negative, Λ < 0 in order to find a real
solution. The µν components of the Einstein tensor gives

Gµν = 6ηµν

[
− 1

z2
+

1

|z|(δ(z −R)− δ(z −R′))
]
. (2.8)

Here, a negative contribution to the term in brackets is equivalent to a positive con-
tribution to the stress energy tensor, which is equivalent to a positive contribution to
the cosmological constant and thus leads to an attractive potential. Therefore, the
above calculation supports our intuition and the branes should collapse. Further, the
delta functions correspond to induced cosmological constants at the branes at z = R
and z = R′, which will make them (anti-) de Sitter and not flat.
This situation can be remedied by introducing brane tensions λUV and λIR, which
balance the contribution from the bulk cosmological constant in (2.8).3 These brane
tensions act like brane-localized four dimensional cosmological constants in the action,
which now reads

S 3 −
∫
d4x

∫ R′

R
dz
√
|G|

(
M3

Pl(5)R5 + Λ
)
−
∫
d4x
√
|gIR|λIR −

∫
d4x
√
|gUV|λUV ,

(2.9)

with gIR and gUV the determinant of the 4D block of GMN evaluated at z = R′ and
z = R respectively. In order to balance the contribution from the 5D cosmological
constant, the values of the brane tensions must be chosen to be

λUV = −λIR = −12kM3
Pl(5) =

Λ

k
. (2.10)

There is no reason for such a coincidence other then the stabilization of the setup and
the requirement for a flat brane metric. Tuning the brane tensions against the bulk
cosmological constant to achieve this relation is the equivalent of the tuning of the
4D cosmological constant in the SM. It does not set the compactification radius , but
ensures that once the radius is set, the setup remains stable. The radius itself is the
vacuum expectation value of the 55 component of the metric tensor, the radion. It
can be fixed via a Goldberger-Wise mechanism [83], which introduces a potential for
this field by the interaction with an additional bulk scalar, see [84] for details.
We will now turn to the localization of the Standard Model fields and in this context
return to the notation (1.49). In the model discussed in this thesis, we will assume

3Equation (2.8) including the brane tension terms is sometimes called Israel junction condition
in the literature, referring to its first mention in [82].



38 Chapter 2. The Randall Sundrum Model and its Holographic Interpretation

that all SM fields are bulk fields, apart from the Higgs, which will be realized as a sep-
arate brane-localized scalar (in contrast to EWSB by boundary conditions). As a 5D
warped model, this derives its justification from the goal to cut off quadratic radiative
corrections at the weak scale. Like all dimensionful scales in the warped background,
the cutoff depends on the fifth coordinate and only a brane-localized Higgs sector
guarantees that ultraviolet divergences are cut off at ΛIR = e−krcπMPl. In the dual
description of the theory, we will see that this corresponds to a fully composite Higgs
with no elementary scalar component.

Promoting gauge fields to bulk fields means that each is described by a 5D Lorentz
vector. The vector representation of the 5D Lorentz group decomposes in a four
dimensional Lorentz vector and a Lorentz scalar, compare [85, p.1119-1120], so that
AM (xµ, z) = (Aµ(xµ, z), A5(xµ, z)). Note that the scalar component in φ-notation
carries a different mass dimension, Aφ(xµ, φ) = rcA5(xµ, z). For the vector compo-
nents we are forced to choose Neumann BCs at both branes. This can be explained
by analogy with a Schrödinger particle in a box. In the box a constant solution for
a zero energy eigenvalue is only possible if the wavefunction has Neumann BCs on
both ends. In the case of a bulk field, the energy eigenfuntions correspond to the KK
modes, and the energy eigenvalues to their masses. We would like to identify the SM
gauge fields with massless zero modes and therefore need to impose Neumann BCs on
both branes. The scalar components must then have Dirichlet BCs on both branes,
because they have opposite orbifold parity, if the theory is supposed to be 5D gauge
invariant, as AM → AM + ∂MαM and ∂φ is odd under the action of Z2. With

S =

∫
dx

∫ π

−π
dφ
√
|G|
(
LGauge + LHiggs + LMatter

)
, (2.11)

the gauge sector reads

LGauge = GKMGLN
(
−1

4
GrKLGrMN −

1

4
W a
KLW

a
MN −

1

4
BKLBMN

)
. (2.12)

Here, the indices at the corresponding field strength tensors4 r = 1, . . . , 8 run over
the generators of SU(3)C and a = 1, 2, 3 over the generators of SU(2)L. Breaking of
the electroweak symmetry is implemented by couplings to the Higgs sector on the IR
brane,

LHiggs =
δ(|φ| − π)

rc

[
gµν(DµH)† (DνH) + µ2H†H − λ

(
H†H

)2
]
. (2.13)

The matter sector includes the kinetic terms of the bulk fermions and the Yukawa
couplings. Moving the fermions from the brane in the bulk is especially well moti-
vated, because it allows for an explanation of the Yukawa hierarchies in terms of order
one parameters, the localization of the zero modes along the extra dimension. This
ansatz explains retroactively why the gauge bosons should be in the bulk as well,
since a brane localized gauge sector would have localization dependent and thus flavor
non-diagonal gauge couplings for all excitations and the zero mode, which would be

4Please do not confuse the gluon fields strength tensor with the Einstein tensor.
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in conflict with the flavor-diagonal couplings of the photon and the gluon.

A bulk fermion however cannot be chiral, because the fundamental spinor represen-
tation of the 5D Lorentz group is a four component Dirac spinor, see for example [86,
Appendix A]. One way to see this is that in order to satisfy the Clifford algebra in 5D,

{ΓM ,ΓN} = 2ηMN , (2.14)

one needs five gamma matrices and the only choice allowed by the anticommutation
relation is ΓM = (γµ, iγ5). As a consequence, one cannot construct a projection
operator. The orbifold however allows for a projection via BCs, because a 5D fermion
will decompose into two Weyl representations in four dimensions, which must have
opposite BCs in order to write down a kinetic term ( again because ∂φ is Z2 odd).
For the SM quarks in the bulk, that means that both the 5D SU(2)L doublet Q and
singlet qc are Dirac spinors. But the Z2 even component of Q will be identified with a
left-handed SM field and the even component of qc with its right-handed counterpart.
Each KK excitation however will be a Dirac fermion and thus a doubling of the degrees
of freedom for each fermionic resonance is a tell tale sign of an orbifold (or of an odd
number of spacetime dimensions in general). Further, because the Clifford algebra
is defined over the tangent space, the curvature of the space is communicated to the
fermions via a vielbein and the equivalent of a Christophel symbol for spinors, the
spin connection, (for a comprehensive discussion see [87]). A kinetic term for a bulk
fermion is then given by

Lmatter 3 EAa
[
i

2
QΓa(∂A−

←
∂A)Q+

ωbcA
8

Q{γa, σbc}Q
]
−m sgn(φ)QQ, (2.15)

where EAa = diag(eσ, eσ, eσ, eσ, 1/r) denotes the five dimensional inverse vielbein. It
does not depend on x, since we have no dynamic gravitational background. Since it
is diagonal, it will simply assign different prefactors to the derivatives ∂µ and ∂φ. For
a diagonal metric the only non-vanishing components of the spin connection ωbcA are
b = c = A and give no contribution to the action, see for example [88]. Note, that the
signum in front of the mass term is necessary due to the parity assignments. Equation
(2.15) for an SU(2) doublet Q and an SU(2) singlet qc, together with the Yukawa
couplings will be the starting point for our discussion in section 2.4,

Lmatter =
∑
q=u,d

i

2
EAa

[
QΓa(∂A−

←
∂A)Q+ qc Γa(∂A−

←
∂A) qc

]
− sgn(φ)

(
QMQQ+ q̄cM q q

c
)

− δ(|φ| − π)

rc

[
εab Q̄aH

†
bY

(5D)
u uc + Q̄HY

(5D)
d dc + h.c.

]
. (2.16)

Here, MA, A = Q, q denote the generalization of the mass term for three generations.
The last line contains the Yukawa interactions before EWSB with the 5D Yukawa
matrices Y

(5D)
u and Y

(5D)
d . The setup is illustrated in Figure 2.1, and we will now

turn to the dual interpretation of this model in order to understand the physics in the
later sections from both sides of the duality.
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SU(3)C × U(1)EMSU(3)C × SU(2)L × U(1)Y

UV brane IR brane

0 φ π

S1/Z2

Figure 2.1: Illustration of the minimal RS model considered in this thesis. All
fermions and gauge bosons are assumed to be bulk fields and the symmetry is broken
at the IR brane by a Higgs boson. The effect of the warp factor for dimensionful
parameters is indicated by gray lines.

2.2 AdS/CFT

I have found that in the arena of warped
compactifications, the qualitative insight gained
from the AdS/CFT connection between such
compactifications and strongly coupled 4D
dynamics, has saved me time and time again
from errors. Its like checking units as an
undergraduate, in principle its not necessary, but
in practice indispensable

Raman Sundrum

The term AdS/CFT duality originates from a conjecture of Maldacena [95] and means
in its broadest sense, that a weakly coupled theory of fields defined in the bulk of a d
dimensional AdS space is equivalent to a strongly coupled CFT on its d−1 dimensional
boundary.
This section will be a bottom-up introduction to the AdS/CFT duality, meaning
that we will not go into detail about the original Maldacena conjecture, but keep
the discussion close to the applications in this thesis. We will however need some of
the original framework in order to motivate the conclusions in the later parts of the
section. In its original formulation, the weakly coupled bulk theory is the decoupling
(SUGRA) limit of a certain type of string theory on an AdS5 × S5 space and the
corresponding boundary theory is a maximally supersymmetric conformal SU(N)-
Yang-Mills theory in the large N limit. With R = 1/k the AdS curvature radius, `s
the string length and gYM the coupling of the boundary Yang-Mills theory, it follows
the relation

R4

`4s
= 4πNg2

YM . (2.17)
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It tells us, that if the string length `s � R, the Yang-Mills gauge coupling times
the number of colors N (the t’Hooft coupling) becomes large and the Yang-Mills
theory is strongly coupled. In addition, nonperturbative string states with masses
proportional to the inverse string coupling m ∼ 1/gs, are required to decouple as
well [107, p.22]. This means gs → 0 and therefore we have necessarily a large N
boundary theory, because gs ∼ 1/N . The picture becomes much more intuitive once
one examines the spacetime symmetries on both sides. Consider the AdS metric in
conformal coordinates (2.2). It is evident, that this metric is invariant under the
rescaling

xµ → λxµ, z → λz. (2.18)

Fields transform under such a rescaling according to their scaling dimension ∆φ,
φ(xµ, z) → λ−∆φφ(λxµ, λz). In contrast to flat space, every Lorentz invariant action
will turn out to be invariant under rescalings as well due to this property of the metric.
For example

SAdS =

∫
d4x dz

(
R

z

)5(1

2
GMN ∂Mφ∂Nφ−

M2

2
φ2 − λ

4!
φ4

)
→
∫
λd4x dλz

(
R

λz

)5(1

2
λ−2GMN (λ∂M )λ−∆φφ (λ∂N )λ−∆φφ

− M2

2
λ−2∆φφ2 − λ

4!
λ−4∆φφ4

)
, (2.19)

which is invariant upon absorption of a factor λ−∆φ in each field, in contrast to flat
space, where additional factors from the metric appear. This implies, that regardless
of the mass dimension of whatever operator we write down in the bulk Lagrangian, the
action will remain scale invariant. In the dual boundary theory the fifth coordinate is
identified with the inverse of an energy scale and thus we will have a scale invariant
boundary action. In general, it is still an open question whether scale invariance in
4D already implies conformal invariance (see e.g.[108]), however this is a strong hint
that we are dealing with a CFT on the boundary.
In fact it can be shown, that the 15 generators of the spacetime symmetry (isometry)
group of AdS5 correspond to the 15 generators of the conformal group of the dual
boundary theory, whereas the SO(6) isometry of the additional S5 corresponds to
the R-symmetry group of the N = 4 supersymmetry [109, p.187-188]. Changing the
non–AdS part of the manifold will therefore only cut down the amount of supersym-
metry on the CFT side and we can consider the duality on AdS5 alone without loosing
essential ingredients. At this point it should be pointed out, that there is no rigorous
mathematical proof of the original conjecture as of this writing and for the stripped
down versions we are considering here it could be that the corresponding CFT does
not even exist. However, we will see that it is very insightful to switch to the CFT
view in order to get a deeper understanding of the RS model.

In a more precise formulation, the conjecture states that the 5D partition function of
bulk fields φ(xµ, z) with boundary conditions at the AdS5 boundary φ(xµ, z)

∣∣
z=0

=
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ϕ(xµ),

Zbulk

[
φ(x, z)

∣∣∣
z=0

= ϕ(x)
]

=

∫
Dφ eiSAdS(φ) ≡ eiS(ϕ) , (2.20)

corresponds to the generating functional of the correlation functions of a boundary
CFT, where the boundary values of the bulk fields act as sources for the operators
O(x),

Zbulk

[
φ(x, z)

∣∣∣
z=0

= ϕ(x)
]

=
〈
e
∫
d4xϕ(x)O(x)

〉
CFT

. (2.21)

In other words it is possible to derive all n-point functions of the strongly coupled
boundary CFT by varying (2.20) with respect to the boundary values ϕ of the bulk
fields φ, and setting them to zero

〈O1O2 . . .On〉 =
1

n!

δn lnZbulk

δϕ1δϕ2 . . . δϕn

∣∣∣∣∣
ϕ=0

. (2.22)

We will go through this exercise with the example of a free massive bulk scalar φ ≡
φ(x, z), with corresponding 5D action in euclidean signature,

SAdS =
1

2

∫
d4x dz

(
R

z

)5 (
GMN ∂Mφ∂Nφ+M2φ2

)
. (2.23)

Applying a Fourier transform along the flat space-time directions

φ(x, z) =

∫
d4p eipx φ̃(p, z) , (2.24)

leads to the bulk equations of motion (EOM),(
−p2 − c2

z2
+ z3∂z

1

z3
∂z

)
φ̃(p, z) = 0 , (2.25)

where c ≡MR denotes the dimensionless 5D mass parameter. With the substitution
φ̃(p, z) = (zp)2 f(zp), the equation of motion is recognizable as a Bessel PDE,

(pz)2 ∂2

∂(pz)2
f(pz) + (pz)

∂

∂(pz)
f(pz)−

[
(pz)2 + c2 + 4

]
f(pz) = 0 , (2.26)

with the solution

φ̃(p, z) = p2z2
(
I∆−2(pz)C1 +K∆−2(pz)C2

)
, (2.27)

where

∆(∆− 4) = c2, ∆± = 2±
√

4 + c2 . (2.28)

It should be noted, that one of the strange properties of Anti de Sitter space is that
bulk masses as low as the Breitenlohner Freedman bound c2 > −4, are compatible
with unitarity [90]. This leaves us with the two solutions ∆+ ≥ 2 and ∆− < 2,



2.2. AdS/CFT 43

from which we will pick the larger root ∆+, but will come back to the significance
of the other one later in this section. The coefficients C1 and C2 have to be fixed
by appropriate boundary conditions. At the moment we are dealing with pure AdS5,
meaning that there is no IR boundary and the UV boundary is identified with the AdS
boundary z = 0 (no compactification). One of our boundary conditions is therefore
that the solution remains regular at the deep interior z →∞, so that C1 = 0. Fixing
the second boundary condition forces us to move the UV brane slightly into the bulk,
z = ε, because the solution becomes irregular at the AdS boundary (in the dual
picture this corresponds to the introduction of a cutoff ΛUV ∼ 1/ε at which the CFT
is broken). At the end of the day we will take the limit ε→ 0 and everything will be
finite. Choosing the UV boundary condition as above, φ̃(p, z)

∣∣
z=ε

= ϕ̃(p), yields

φ̃(p, z) = ϕ̃(p)
z2

ε2
K∆−2(pz)

K∆−2(pε)
. (2.29)

Upon integration by parts, we obtain from the action

SAdS =
1

2

∫
d4x dz φ

(
∂N

R3

z3
∂N +

R3

z3

c2

z2

)
φ+

1

2

∫
d4x

R3

z3
φ∂zφ

∣∣∣
z=ε

, (2.30)

where the first integral vanishes by the EOM. It should be emphasized that we use
the EOM here. That means we are working with a on-shell five dimensional theory
and the duality will give us an off shell boundary theory! Inserting (2.29), the second
part, which is called flux in the literature due to its resemblance with particle number
flux in scattering theory [97, p.7] gives

1

2

∫
d4x

R3

z3
φ∂zφ

∣∣∣
z=ε

=
1

2

∫
d4x d4q d4p

R3

z3
eipxφ̃(p, z) ∂ze

iqxφ̃(q, z)

∣∣∣∣
z=ε

(2.31)

=
1

2

∫
d4q d4p (2π)4 δ(p+ q)

R3

z3
φ̃(p, z) ∂zφ̃(q, z)

∣∣∣∣
z=ε

= −1

2

∫
d4q d4p (2π)4 δ(p+ q)

R3z

ε3
ϕ̃(q)ϕ̃(p)

× K∆−2(pz)

K∆−2(pε)

(
q
K∆−3(qz)

K∆−2(qε)
+

(∆− 4)

z

K∆−2(qz)

K∆−2(qε)

) ∣∣∣∣
z=ε

= −1

2

∫
d4q d4p (2π)4 δ(p+ q) ϕ̃(q)ϕ̃(p)

R3

ε3

×
(
q
K∆−3(qε)

K∆−2(qε)
+

(∆− 4)

ε

)
.

For non-integer order ν, the modified Bessel function has an expansion for small
arguments,

Kν(x) = xν2−ν−1Γ(−ν)
[
1 +O(x2)

]
+ x−ν2ν−1Γ(ν)

[
1 +O(x2)

]
. (2.32)
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So that in Fourier space the two point function reads

〈O(p)O(q)〉 = −(2π)4 δ(p+ q)
R3

ε4

×
(

∆− 4

2
+

(qε)∆−222−∆Γ(3−∆) + . . .+ (qε)4−∆2∆−4Γ(∆− 3) + . . .

(qε)∆−222−∆Γ(2−∆) + . . .+ (qε)2−∆2∆−2Γ(∆− 2) + . . .

)
= −(2π)4 δ(p+ q)

R3

ε4
(2.33)

×
(

∆+ − 4

2
+

1

∆+ − 3

(qε
2

)2
+

Γ(3−∆+)

Γ(∆+ − 2)

(qε
2

)2∆+−4
+ . . .

)
,

where in the last step from the expansion only the leading non-analytic and leading
analytic terms have been kept for the larger solution of (2.28). Constant terms,
will give rise to contact terms in position space and local polynomials in q have to
be subtracted by an appropriate boundary counter term. In a properly regularized
action only the non-analytic piece remains. This solution can be analytically continued
to integer values of ν, see i.e. [96, p.30-33] as well as for ∆− (the latter is not as
straightforward as one might think and has been first and extensively worked out in
[94]). The bottom line of the above calculation is now that the non-analytic part of
(2.33) in position space reads (in the following ignoring the subscript of ∆+)

〈O(x)O(y)〉 =
R3

π2
(2−∆)

Γ(∆)

Γ(∆− 2)
ε2∆−8 1

|x− y|2∆
, (2.34)

which should be interpreted as the two point correlation function of the unknown
strongly coupled CFT. And it is in fact the 2-point correlation function of a CFT, once
numerical factors and especially the cutoff dependence is absorbed into the operators,
which corresponds to φ(x, z)

∣∣
z=ε

= ε4−∆ϕ(x). Since even if one cannot say much
about strongly interacting theories, conformal invariance fixes the 1-point correlation
function to zero and the 2- and 3-point correlation functions up to numerical constants
[89, p.11f.],

〈O(x)〉 = 0 , (2.35)

〈Oi(x1)Oj(x2)〉 =
δij

r2∆i
12

, (2.36)

〈Oi(x1)Oj(x2)Ok(x3)〉 =
λijk

r
∆i+∆j−∆k

12 r
∆i−∆j−∆k

13 r
−∆i+∆j+∆k

23

, (2.37)

with rab ≡ |xa − xb| and ∆i denoting the conformal dimension (scaling dimension) of
the operators Oi(x). The result (2.34) is the same as the two point function derived
from the Lagrangian

L = ϕ(x)O(x) + LCFT , (2.38)

which is therefore called the dual Lagrangian to (2.23). Here, ϕ(x) denotes some
source field (sometimes also denoted Jϕ). Therefore, we can relate the sources with the
boundary values of the bulk fields at the UV brane and the scaling dimension with the
localization in the bulk. Note that the one-point function (i.e. the vacuum expectation
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value of the operator O) comes trivially out to be zero, because (2.31) is quadratic
in the sources due to the regularity condition fixing C1 to zero in (2.29), which is
analogous to the statement, that the conformal symmetry is not spontaneously broken.
Higher order correlation functions can be computed by including self-interactions in
the bulk Lagrangian with an elegant technique introduced by Witten [99].
In the RS model, the UV brane is however not at z = 0, but at some non-zero position
z = R. We should expect that this affects the dual theory, so that it is not conformally
invariant anymore above some scale ΛUV ∼ 1/R, because the 5D theory is not scale
invariant in this region. In this situation, the analytic terms in (2.33) gain importance.
The first term, independent of the momentum q, can be interpreted as a mass term for
the source field in the dual Lagrangian, while the second expression can be obtained
by a kinetic term for the source field. They correspond to the usual propagator of a
4D scalar field with

m2
eff =

2(∆− 4)(∆− 3)

R2
, (2.39)

and not explicitly given higher order analytic terms correspond to terms with ad-
ditional derivatives. Thus, the source field becomes dynamical and the dual theory
describes a conformal sector, probed by some field ϕ(x), called elementary for reasons
to become clear soon, which explicitly breaks conformal invariance at the scale at
which we placed the UV brane. Accordingly, the two-point function on the left-hand
side of (2.33) does not only describe the propagator of the conformal operators, but
of the mixed conformal-elementary states, with the elementary parts generating the
analytic contributions. In the 5D picture, the source fields can be understood as de-
grees of freedom confined to the UV brane, while the conformal states probe the bulk.
In this case, the dual Lagrangian reads

L = ∂µϕ(x)∂µϕ(x) +m2
eff ϕ(x)2 +

ω

Λ∆−3
ϕ(x)O(x) + LCFT , (2.40)

with m ∼ k and ω some dimensionless parameter. Note, that in order for the mixing
term to form a singlet under all symmetry groups, φ and O need to have the same
conformal and gauge quantum numbers. The amount of mixing of elementary and
conformal sector in the mass eigenstates depends on the scaling dimension of O, which
in the 5D theory is equivalent to its localization along the extra dimension. The gener-
alization for more general bulk fields is straightforward (although the construction of
the dual CFT for chiral fermions requires some care [104]). From Equation (2.39) it is
evident, that a scaling dimension/localization of ∆ = 3 and ∆ = 4 gives rise to purely
massless eigenstates and it turns out, that these are the exact scaling dimensions for
gauge fields and gravitons, respectively, compare Section (2.3). The computation is
actually really similar to the case of a bulk scalar, only the relation between scaling
dimension and the bulk mass (2.28) differ from the spin 0 case due to the different
EOM for different spin bulk fields, see Table 2.1. For a bulk gauge field however, we
can deduce additional information about the dual CFT. The dual Lagrangian in this
case reads

L = −1

4
F aµν(x)Fµνa (x) + ωAaµ(x)Oµa (x) + LCFT , (2.41)
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Scalar (j1, j2) = (0, 0) ∆± = 2±
√

4 + c2

Vector (j1, j2) = (1
2 ,

1
2) ∆± = 2±

√
1 + c2

Spin 2 (j1, j2) = (1, 1) ∆± = 2±
√

4 + c2

Chiral Spinor s = 1
2 (j1, j2) = (1

2 , 0) or (0, 1
2) ∆ = 3

2 + |c− 1
2 |

Table 2.1: Relation between scaling dimension of the conformal fields and bulk mass
parameter (localization) in AdS5. Note, that for general BCs, left- and right-handed
chiral spinors will have different relations, see (e.g. [104, p.7&13]). This will be obsolete
for our definition of the c-parameter, compare section 2.4. This table was first given
in [93, p.2-3].

where the source fields Aaµ are gauge fields, so that they must couple to conserved
currents Oµa in the CFT. Therefore, the existence of a bulk gauge group implies a
corresponding global symmetry of the dual CFT, where only a subgroup is gauged,
namely the one whose gauge bosons have Neumann boundary conditions on the UV
brane and thus possess a source field (which corresponds to the gauge boson in the
elementary sector). If only for a subgoup of a global symmetry gauge fields are intro-
duced, this global symmetry is explicitly broken scenario, which, if the gauge couplings
are small is in the literature called weakly gauging the global symmetry. Note however,
that for the composite sector alone LCFT, the global symmetry is preserved. The fact,
that one can impose a global symmetry in the composite sector by choosing the appro-
priate bulk gauge group, was the original inspiration for the SU(2)L × SU(2)R bulk
group in the custodial extension of the RS model [105] and its at first sight arbitrary
breaking pattern. It is just the holographic implementation of the global custodial
symmetry of the SM Higgs sector with the SU(2)L×U(1)Y weakly gauged. Likewise,
the extensions proposed in this thesis will translate in this way to global symmetries
of the dual theory.

At this point we have still not introduced an IR brane, but applications of the duality
without one can already be found in the literature. The 5D formulation of a set-up
without IR brane, where gravity is closely localized at the UV brane (SM fields play
no role but would reside on the UV brane in a complete realistic model) is called
RS2 model, due to a follow-up paper by Randall and Sundrum in 1999 [56] and is
described by a dual strongly coupled CFT together with 4D gravity (first mentioned
in the Acknowledgements of [98]). If one assumes the SM confined to the UV brane
and adds non SM fields into the bulk, one describes the holographic dual of a class
of new physics models proposed by Georgi in 2007, called unparticles [101], which
proposes the existence of a new conformal sector coupled to the SM.
Analogue to the explicit breaking of the CFT by the introduction of a UV brane at
high energies, the introduction of an IR brane z = R′ should lead to a breaking of
conformal invariance at low energy scales ΛIR ∼ 1/R′, below which scaling invariance
in the bulk is broken. As a first consequence, regarding our bulk scalar example above,
we observe that the introduction of an IR brane will replace the regularity condition
at z = ∞, which fixes C1 to zero in (2.27) by a boundary condition at z = R′ and
thus leads to C1 6= 0. Since the regularity condition in the non-compactified theory is



2.2. AdS/CFT 47

the reason for the one-point function (2.35) to be zero (the flux (2.31) contains only
terms quadratic in the source fields), this means that

an IR brane brings about an operator vev proportional to the coefficient C1 (some-
times, one finds therefore the expressions vev for C1 and source for C2 in the literature).
In contrast to the UV brane, the introduction of an IR brane is therefore connected
to a spontaneous breaking of the conformal symmetry in the dual theory, similar to
the breaking of classical conformal invariance through confinement in QCD. However,
the spontaneous breaking of a conformal symmetry is connected with the existence of
a Goldstone boson, the dilaton.5 In the holographic approach, this scalar is identified
with the radion, which is the fluctuation about the radius of the extra dimension, [92].
Moreover, we know that a compactified extra dimension leads to an infinite tower of
KK states with linear mass splitting. In the dual CFT, that is reflected by the fact,
that the operators O(x) do not describe a continuum CFT eigenstate anymore, but
an infinite tower of composite mass eigenstates, the equivalent of mesons. It is actu-
ally known since the seventies that in the large N limit, the two point function of a
confining SU(N) gauge theory can be written as the infinite sum (see [100, p.20])

〈O(p)O(−p)〉 =
∞∑
n=1

a2
n

p2 −m2
n

≈
∞∑
n=1

N

p2 −m2
n

, (2.42)

where mn are the masses of the nth meson state and an = 〈0|O|n〉 is the matrix
element for O to create the nth meson from the vacuum6. The fact that we have
a spontaneous breakdown of conformal invariance in the dual CFT and a 2-point
correlation function with discretely separated poles, tells us that the IR brane describes
a confining phase in the dual CFT. In the KK decomposition introduced in this thesis
(2.88), the zero mode can thereby be understood as dual to a mainly elementary state,
the equivalent of the elementary field ϕ(x) in (2.40), while the dual of the KK modes
mainly consist of composite states, the equivalent of O(x) in (2.40) 7. The zero mode
and likewise the KK modes can thus be considered superpositions of composite and
elementary states with the same quantum numbers, similar to γ − ρ mixing in the
SM, as illustrated in Figure 2.2. The mixing angle or equivalently the amount of
compositeness is dictated by the localization in the bulk, which controls in the dual
theory whether the mixing term is a relevant, marginal or irrelevant operator. This
realizes the concept of partial compositeness. For the example of a bulk fermion, before
introduction of an IR brane, one finds a dual Lagrangian

5It is named like this, because it corresponds to the broken generator from the dilation invariance
of the CFT. In this context it is interesting to note, that the number of Goldstone bosons from the
breaking of a spacetime symmetry will not follow from the Goldstone theorem, which is rooted in the
fact that the generators are linearly independent, but the long-wavelength excitations they produce
need not be [106].

6However, in large N QCD the meson masses show straight Regge behavior, meaning m2
n ∼ n,

while the hard wall RS model has KK mass spectra mn ∼ n. This is the reason why AdS/QCD is
modeled by soft wall RS models, which introduce a quadratic radion profile, leading to a linear mass
splitting [103].

7It should be mentioned, that in the AdS/CFT literature, the term “zero mode” often denotes
only the elementary state, located at the UV brane, which goes back to a different KK decomposition
as the one used in this thesis, the so-called holographic basis introduced by Batell and Ghergetta [102].
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× ×
γ γρ

× ×
ϕ ϕO

Figure 2.2: Illustration of γ − ρ mixing and the mixing of elementary and composite
states in the dual theory of the RS1 scenario.

L 3 Lel + ωM1−|c− 1
2
| (ψ̄0

LOR + h.c.
)

+ LCFT , (2.43)

where M ∼ ΛUV is of order Planck scale and c is the localization parameter of the
bulk field which is dual to OR(x). In this notation the scaling dimension of the
composite fermion operator reads dimOR(x) = 4 − 3/2 − 1 + |c − 1/2| = 3/2 +
|c − 1/2|. After introducing an IR brane, and therefore spontaneous breaking of the
CFT, OR(x) represents a composite bound state in a strongly coupled theory with a
mass gap dictated by the IR scale ΛIR. In the following, we will therefore make use
of the symbolic notation introduced in Section 1.1 and write the Lagrangian at the
compositeness scale ΛIR as

L 3 Lel + ωM

(
ΛIR

M

)|c− 1
2
| (
ψ̄0
LOR + h.c.

)
+ LCFT . (2.44)

This corresponds to attributing the varying scaling dimension of the composite op-
erator to the power law running in a strongly coupled theory close to the conformal
window, compare [37, p.4-5]. With the identification

γ = |c− 1/2| , (2.45)

the Lagrangian (2.44) can now directly be compared to the Lagrangian (1.24), which
shows how the localization in the bulk is connected to the mixing between elemen-
tary and composite states. As illustrated in Figure 2.3, for a localization parameter
c < −1/2, the mixing operator becomes irrelevant and therefore there is next to no
mixing between the CFT and the elementary sector. As a consequence, in the mass
eigenbasis, the light eigenstate will correspond to a mostly elementary field. This is
the case for the light quarks and leptons in the RS model with an IR localized Higgs.
For a bulk mass −1/2 < c < 1/2, which corresponds to a IR localized fermion, the
mixing becomes relevant and maximal mixing is achieved for c = 1/2, which will be
dual to roughly a 50% composite, 50% elementary eigenstate. From (2.44), one would
expect, that even more IR localized fields the mixing decreases again, however for
localizations c > 1/2, the dual theory will look different and (2.44) does not hold.
We will not go into detail concerning the construction of the dual Lagrangian in this
case, but refer to the relevant literature [104]. We note, that in this case the spec-
trum of the composite theory contains a light field, with negligible admixture from
the elementary sector, which in turn develops a mass term of the order of the cutoff.
One can therefore consider a fermion localized at c > 1/2 to be almost completely
composite [91].
This scenario is related to the two possible branches ∆± , which we found in the scalar
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example. For the root ∆+ the CFT part of the scalar correlation function computed
above encodes a massless pole – this can be seen explicitly by doing a small momen-
tum expansion of (2.33), see [107, Sec. 4.2.2] – and the mass term for the elementary
scalar is given by (2.39). The correlation function of the ∆− branch in (2.28) has not
been computed here, but would neither develop such a pole nor generate a mass term.
The calculation can be found in [107, Sec. 4.2.1].
Note, that the right- and left-handed elementaries are generated from different 5D
fields and therefore the bulk mass parameters can differ in general. One can therefore
write the mass term as

M
(
ψ̄0
L ŌL

)( 0
(
ΛIR/M

)|cR−1/2|(
ΛIR/M

)|cL−1/2|
ΛIR/M

)(
ψ0
R

OR

)
, (2.46)

which can be diagonalized with rotations analogue to (1.25). Thus we conclude,
that a localization very close to the IR brane, c > −1/2 for fermions, corresponds
to a large scaling dimension and thus a mainly composite state in the dual theory,
while localization close to the UV brane, c < −1/2 for fermions, results in a mainly
elementary zero mode and for values in between those limits, various amount of mixing
can be achieved.

The Holographic Dual of the Minimal RS Model

We can now understand the strongly coupled dual of the RS model described in Section
2.1, which will be used throughout the main part of this thesis. It has a Higgs scalar
confined to the IR brane, which is to be understood as the limit of an extremely IR
localized bulk scalar. This corresponds to a purely composite state in the dual theory.
Furthermore, this state has a scaling dimension ∆H > 4, which tells us that in terms
of the classification of composite Technicolor theories, we deal with the opposite of
walking technicolor, in the sense that in WTC on needs ∆H < 3 in order to generate
the top mass.8

Large fermion masses are consequently implemented by mixing and the Higgs does
not couple at all to the elementary sector. Such a coupling would be gauge invariant,
but the large scaling dimension of the Higgs composite renders them irrelevant. As
discussed in Section 1.1, such an argument cannot be made if all fields are strongly
coupled bound states, as it is the case for the Higgs couplings to composite fermions.
The top is thus mainly composite in this setup and the light quarks are dominantly
elementary states. As such, the Yukawa coupling of the right-handed top to the Higgs
is of order one, while light fermions can feel the presence of the Higgs only through
mixing with their composites, which induces Yukawas suppressed by the corresponding
mixing angles. Diagrammatically, this is illustrated in Figure 2.4. Referring to these
diagrams, we find for the effective Yukawa couplings

yt ∼ f(ctL)Y , yu ∼ f(cuL) f(cuR)Y , (2.47)

8In an unfortunate notation(because the couplings still walks), it is sometimes called speeding
technicolor [29, p.4]
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c =-1� 2 c =1� 2
Localization

L IR

M

Size of the mixing parameter

Marginal Coupling

Figure 2.3: Sketch showing the size of the mixing parameters M1−|c− 1
2
| in the La-

grangian (2.44) in purple and F (c) as defined in (2.150) in blue, depending on the
bulk localization of the 5D fermion. The dashed black line crosses the purple plot at
c = −1/2, which implies marginal mixing. In the vicinity of c = −1/2, the fermion
is either slightly UV or IR localized and F (c) grows exponentially, while localization
parameters c < −1/2 will lead to irrelevant mixing corresponding to a negligibly small
F (c) and for c > −1/2, F (c) becomes linear. At c = 1/2 the mixing becomes maximal
and localization parameters c > 1/2 correspond to a different dual theory with mainly
composite fermions.

where Y denotes the O(1) proto- or 5D Yukawa coupling, the coefficient of the three-

vertex operator OROLOH , and f(ci) ∼ ω
(
ΛIR/M

)|ci− 1
2
|

for i the flavor index, quanti-
fies the mixing between elementary and composite state. This explains the hierarchy
of effective 4D Yukawas in terms of the dual theory.

Gauge fields have by construction marginal mixing with the composite sector and
only the W s and the Z gauge bosons do directly feel the composite sector due to their
coupling to the Higgs.
In contrast to the Higgs however, the elementary gauge bosons have direct couplings to
the elementary sector. As a consequence we have two possible ways for the fermion zero
modes to couple to composite vector currents, depicted in Figure 2.5. The diagram on
the left gives rise to a flavor-universal (enforced by gauge symmetry) coupling in the
elementary sector and a mixing of order one (must be marginal) with the composite
vector. On the right, the three vertex is the composite-composite coupling while the
elementary fermions mix in with suppression factors f(ci), just like in Figure 2.4,
because the mixing operator is irrelevant or at most marginal (apart from the left
handed bottom/top). Upon diagonalization of the mass mixing terms (1.27), the light
mass eigenstates which are identified with the SM fields will have flavor non-diagonal
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Figure 2.4: Three vertices relevant for the effective Yukawa couplings of UV-localized
quarks (left panel) and for the top quark (right panel).
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Figure 2.5: Diagrams responsible for flavor universal (left panel) and flavor non-
universal couplings to the composite vector current.

couplings, which are represented by these diagrams, because the mixings are in general
not flavor universal, f(ci) 6= f(cj), if i 6= j. This is the dual picture for the RS-GIM
mechanism, which will be discussed in detail in Section 2.5: Both the coupling to the
Higgs and the flavor non-universal couplings to composite vector bosons, feel the same
suppression factors.
In Section 2.3 we will be able to identify the different contributions to the sum over
the gauge boson tower with the three different combinations of the two diagrams in
order to construct a four-fermion operator.

The Holographic Dual of Higgsless, Custodially Protected,
Composite Higgs and Little Higgs Theories

It is instructive to identify the holographic dual of the other concepts connected to
strongly coupled theories presented in Section 1.1.
It is very straightforward to replace the Higgs operator in our model by a non-linear
sigma field, which would correspond to a higgsless TC theory with only 3 scalar degrees
of freedom, which are eaten by the electroweak gauge bosons. One can alternatively
realize this model by breaking of the electroweak bulk symmetry via BCs (without a
scalar brane field). In the following we will use this description and label Dirichlet (D)
BCs on the UV brane and Neumann (N) BCs on the IR brane by (DN) and likewise
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F HG

UV brane IR brane
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(DD)
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(ND)
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Figure 2.6: Illustration of the breaking by BCs at the UV and IR brane. In the dual
theory, the subgroup F is gauged by elementary fermions and the group H leaves
the composite sector invariant after confinement. The right hand side shows a Venn
diagram of the groups. The BCs of the fields living in the corresponding complements
are also given (For example, fields in G may have any combination of BCs, but fields
in G\(F ∪H) must have Dirichlet BCs on both branes).

for all other combinations. We will consider the consequences of Goldstones theorem
in a situation in which breaking on both branes can appear, and its implications for
the dual theory.
In general, one has a bulk gauge group G, which is broken down to the subgroup
F on the UV brane by explicit breaking through weakly gauging this subgroup in
the elementary sector, see Figure 2.6. The dual theory is given by the Lagrangian
(2.41), where a denotes the indices of the generators of F . On the IR brane, G is
broken down to the subgroup H, which is the subgroup that still leaves the composite
sector invariant after confinement sets in. We will call the intersection of these groups
I = F ∩ H. One therefore expects dimG/H = dimG − dimH Goldstone bosons
from the spontaneous symmetry breaking. However, dimF/I of those will be eaten,
because there exist elementary gauge fields corresponding to the generators of this
spontaneously broken subgroup. In the end, one thus has dim I massless gauge bosons
in the elementary sector and NPNGB = dimG/H−dimF/I pseudo-Nambu Goldstone
bosons, since they correspond to explicitly broken generators. The general setup
is depicted in Figure 2.6, where the corresponding BCs for the vector part of the
bulk gauge fields have been given. Since the breaking takes place via BCs, there are
no scalar degrees of freedom on the brane. The longitudinal degrees of freedom of
the gauge bosons are in this setup provided by the A5 components of the residual
dimG/(F ∪ H), which must have Neumann BCs on both branes and thus develop
zero modes, compare Section 4 of [62]. Both approaches, symmetry breaking via a
brane field or via BCs, give the same number of degrees of freedoms. One can further
infer, that the A5 mode of a bulk gauge field is the holographic dual of a composite
pseudo Nambu Goldstone boson.

Higgsless TC is therefore described by an RS model without a brane scalar and the
following symmetries realized in the bulk and on the branes respectively (here, and
in the following scenarios, only the electroweak sector plays a role and the not noted
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SU(3)C is considered to be unbroken on both branes )

G = SU(2)L × U(1)B−L
F = SU(2)L × U(1)B−L
H = U(1)Y

⇒
dimG/H = 3
dimF/I = 3

NPNGB = 0

. (2.48)

In this scenario, the U(1) charges are chosen in a way that ensures that the single
massless gauge boson, I = U(1)Q, corresponds to the photon. The remaining three
gauge bosons correspond to W± and the Z and are massive only due to BCs on the
IR brane, which will put their masses in the right range (compare the upper left panel
of Figure 2.8 and the discussion in Section 2.3).
The extension to a model with a custodial global symmetry is straightforward. Con-
sider the setup [63],

G = SU(2)L × SU(2)R × U(1)B−L
F = SU(2)L × U(1)Y
H = SU(2)V × U(1)B−L

⇒
dimG/H = 3
dimF/I = 3

NPNGB = 0

. (2.49)

Here, the spontaneous breaking preserves a custodial SU(2)V symmetry, just like
in the SM. The group F tells us for which composite Goldstone bosons there are
elementary gauge bosons. This is again a W± and the Z (there is not much room
for choosing F ). The intersection I will again be the electromagnetic U(1)Q. But
now there are three gauge bosons, corresponding to the bulk SU(2)R, which do not
have a zero mode due to Dirichlet BCs on both branes. They will lead to a tower of
massive W±′s and Z ′s, which will couple with the same coupling strength as the KK
modes of the electroweak gauge bosons and therefore cancel their contributions to the
T parameter, see Section 3.1 for details.
In the holographic dual of the composite Higgs scenario, which realizes the Higgs as a
Nambu Goldstone boson, we expect to have a fully unbroken electroweak gauge group
in the theory and the confining phase will only give us 4 Goldstone Bosons in the
correct representation to form a composite Higgs. We will demonstrate this by means
of a scenario which also implements custodial symmetry, see [37, Sec. 2],

G = SO(5)× U(1)X
F = SU(2)L × U(1)Y
H = SO(4)× U(1)X

⇒
dimG/H = 4
dimF/I = 0

NPNGB = 4

. (2.50)

Here, the U(1) charges are chosen in a way that results in I = SU(2)L × U(1)Y .
Obviously, this choice of groups will leave all four electroweak gauge bosons massless,
preserves the SU(2)V ∼ SO(4) custodial symmetry in the composite sector, and four
PNGBs remain in the theory.
One can construct the holographic dual of models which implement the collective
breaking mechanism in an analogous way. For example, the corresponding scenario
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presented in Section 1.1 has the symmetry breaking pattern

G = SU(3)× SU(3)× U(1)
F = SU(3)× U(1)
H = SU(2)× SU(2)× U(1)

⇒
dimG/H = 10
dimF/I = 5

NPNGB = 5

. (2.51)

The charges must again be chosen in a way which guarantees I = SU(2)L × U(1)Y .
One also finds five PNGBs, which in agreement with (1.36) will form the composite
Higgs doublet and a singlet. One might be alarmed by the fact that we now have a
large elementary gauge group F , possibly implying that there are additional gauge
bosons with masses at the electroweak scale in the theory. However, in both the com-
posite Higgs scenarios (with and without collective breaking), the IR BCs will not
break the electroweak symmetry (that is what the composite Higgs is for), but the
larger global symmetry G at some scale f > v. The five additional gauge bosons in
the collective breaking scenario are just what we found in (1.41) with masses in the
multiple TeV range.

2.3 Profiles of Gauge Bosons

In the later discussion of flavor observables, we will compute the Wilson coefficients
of four fermion operators. The leading coefficients come from tree-level diagrams in
the full theory, with external fermion zero modes, but with gauge boson zero modes
(which are just the SM contributions), as well as their KK excitations or composite
resonances propagating between the vertices. At the matching scale, the momenta
in these propagators can be neglected compared to the masses. In this section, the
general 5D propagator with all possible boundary conditions for a generic bulk gauge
boson will be given and interpreted in the dual theory.

We assume a bulk gauge field transforming as a 5D Lorentz vector AM (xµ, φ) with
suppressed gauge indices (as they play no role in deriving the propagator) and add
a gauge fixing term as well as an explicit mass term, to the Lagrangian. Both gauge
breaking terms are kept, so that the solution can be adapted to different situations,

LGauge + LGF + LMass =GKMGLN
(
−1

4
FKLFMN

)
+

1

2
GMNM2

AAMAN

− rc

2ξ
√
|G|

(
∂µA

µ − ξ

r2
c

∂φe
−2σAφ

)2

. (2.52)

Note, that the gauge fixing is specifically chosen in a way that the Aφ independent term
represents the usual 4D gauge fixing and the cross terms cancel the mixing between
vector and scalar components of AM which will arrange for diagonal propagators [111].
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After integration by parts, one finds [112]√
|G|(LGauge+LGF + LMass) =

rc
2

[
Aν

(
∂2ηµν −

(
1− 1

ξ

)
∂µ∂ν − ∂φ

e−2σ

r2
c

∂φη
µν +M2

Ae
−2σ

)
Aµ

+Aφ

(
−e
−2σ

r2
c

∂2 +
ξ

r4
c

e−2σ∂2
φe
−2σ − e−4σ

r2
c

M2
A

)
Aφ

]
. (2.53)

Boundary terms from partial integration vanish as long as the fields have either Dirich-
let or Neumann BCs and the fields are well behaved at 4D infinity.
We will once more change notation, because it is sensible for the numerics to have all
expressions in dimensionless variables. Therefore, let t ≡ MKK z = MKK e

σ/k with
MKK = εk defined in (1.54), and ε ≡ ΛIR/ΛUV. The line element in this t-notation
reads

ds2 =
(ε
t

)2 (
ηµνdx

µdxν −M−2
KKdt

2
)
, (2.54)

and the positions of the branes are now intuitively expressed by ratios of scales, t = ε
for the UV and t = 1 for the IR brane. In addition, we define the volume of the extra
dimension as L = − ln ε = krcπ ≈ 36. Finally, we redefine the scalar component of
AM ,

A5(xµ, t) =
ε

t rc
Aφ(xµ, φ) , (2.55)

in order to adjust the mass dimension and simplify the following calculations. With
these conventions, equation (2.53) reads

S =

∫
d4x

∫
dφ
√
|G| (LGauge + LGF) =

1

2

∫
d4x

∫ π

−π
rcdφAMK

MN
ξ AN

=
1

2

∫
d4x

2π rc
L

∫ 1

ε

dt

t
AMK

MN
ξ AN , (2.56)

in which

KMN
ξ =

 (
∂2 −M2

KKt∂t
1
t ∂t
)
ηµν −

(
1− 1

ξ

)
∂µ∂ν + ε2

t2
M2
Aη

µν 0

0 − ∂2 + ξM2
KK∂tt∂t

1
t − ε2

t2
M2
A


(2.57)

is the inverse of the Feynman propagator in Rξ gauge. After a Fourier transformation
of the coordinates of the non-compact directions, pµ = i∂µ, the following two equations
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define the propagator of the vector and scalar components,[(
− p2 −M2

KKt∂t
1

t
∂t +

ε2

t2
M2
A

)
ηµν +

(
1− 1

ξ

)
pµpν

]
Dξ
νρ(p, t; t

′) =
Lt′

2πrc
δµρ δ(t− t′) ,

(2.58)[
p2 + ξM2

KK∂t t ∂t
1

t
− ε2

t2
M2
A

]
Dξ

55(p, t; t′) =
Lt′

2πrc
δ(t− t′) .

(2.59)

We further define the dimensionless quantities qµ ≡ pµ/MKK and cA ≡ εMA/MKK

and simplify,[(
− q2 − t∂t

1

t
∂t +

c2
A

t2

)
ηµν +

(
1− 1

ξ

)
qµqν

]
Dξ
νρ(q, t; t

′) =
Lt′

2πrcM2
KK

δµρ δ(t− t′) ,

(2.60)[
1

ξ
q2 + t∂t

1

t
∂t −

c2
A/ξ − 1

t2

]
ξDξ

55(q, t; t′) =
Lt′

2πrcM2
KK

δ(t− t′) . (2.61)

For the vector component, one can read off an ansatz for the solution [112],

Dξ
νρ(q, t; t

′) = Aξ(q, t; t
′)
qνqρ
q2

+B(q, t; t′)

(
ηνρ −

qνqρ
q2

)
, (2.62)

which, after inserting in (2.60) yields two independent equations,(
− 1

ξ
q2 − t∂t

1

t
∂t +

c2
A

t2

)
Aξ =

(
− q2 − t∂t

1

t
∂t +

c2
A

t2

)
B , (2.63)(

− q2 − t∂t
1

t
∂t +

c2
A

t2

)
B =

Lt′

2πrcM2
KK

δ(t− t′) . (2.64)

The first one tells us that Aξ(q, t; t
′) = B(q/

√
ξ, t; t′) and therefore

Dξ
55(q, t; t′) = −1

ξ
Aξ(q, t; t

′) = −1

ξ
B(q/

√
ξ, t; t′) with cA →

√
c2
A/ξ − 1 . (2.65)

Solving the second equation (2.64), is sufficient to compute both propagators. Evalu-
ated for t 6= t′ the equation can be put in the form(

(qt)2∂2
qt + (qt)∂qt +

[
(qt2)− (c2

A + 1)
] )B(qt)

qt
= 0 , (2.66)

which is a Bessel PDE with solutions (compare (2.27))

B>(qt>) = (qt>)
[
C>1 J∆−2(qt>) + C>2 Y∆−2(qt>)

]
, for t > t′ , (2.67)

B<(qt<) = (qt<)
[
C<1 J∆−2(qt<) + C<2 Y∆−2(qt<)

]
, for t < t′ , (2.68)

in which t> ≡ Max[t, t′], t< ≡ Min[t, t′] and ∆ = 2 +
√

1 + c2
A, which is chosen in a

way that makes it easily comparable with the results from Section 2.2. Note, that for
the scalar propagator, ∆ = 2 ± cA/

√
ξ. This is not what we found for a bulk scalar,
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see Table 2.1. But the A5 component will also not propagate in the unitary gauge,
ξ →∞, which is the exact behavior of a Goldstone boson and confirms therefore our
the findings of Section 2.2, that A5 can be considered to be the holographic dual of
a Goldstone boson. In this limit, the KK excitations of the vector fields will eat the
KK modes of the A5s and become massive, compare [62]. The behavior of the zero
modes will depend on the BCs.
The propagator is symmetric in t and t′ and a viable ansatz for the bulk solution is
therefore

B(q, t>, t<) = NB (q2, t>, t<)
[
C>1 J∆−2(qt>) + C>2 Y∆−2(qt>)

]
×
[
C<1 J∆−2(qt<) + C<2 Y∆−2(qt<)

]
, (2.69)

where the normalization is fixed by the jump condition,

lim
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dt
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KK

(2.70)

⇒ lim
δ→0

[
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2πrcM2
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, (2.71)

so that

NB =
L

4M2
KKq

2rc

1

C>1 C
<
2 − C<1 C>2

. (2.72)

The remaining coefficients are fixed by the boundary conditions. We will be mainly
interested in gauge bosons, that is ∆ = 3. However, a mass term may be induced by
a bulk Higgs, and can then be written as

c2
A → L

v2
4g

2
4

4M2
KK

, (2.73)

in which we follow [57] in defining g5 =
√

2πrcg4, and further use v4 = εv5 as well as
adjusting the mass dimension by 〈H〉 = v5

√
k/
√

2. Note, that this expression is not
general, but true for the SM.9 In the case of such a spontaneous symmetry breaking
in the bulk, one also has to introduce the corresponding Goldstone bosons ϕA in the
gauge fixing term in (2.52),(

∂µA
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−2σAφ

)2
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(
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µ − ξ
[√

k
v5g5

2
ϕA +

1

r2
c

∂φe
−2σAφ

])2

. (2.74)

Note, that in this model a linear combination of Aφ and the Goldstone boson ϕA,
which has mass dimension [ϕA] = 3/2, is absorbed by the KK modes of the Aµ, while
the other combination remains physical, see [50, App. A]. As a consequence, there
is a tower of additional pseudo scalars, which is a distinctive signal of a bulk Higgs
mechanism.
This is not the case if brane Higgs fields are introduced, which can be implemented

9Other gauge groups and symmetry breaking patterns induce different numerical factors, compare
Section 3.6.
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in the above equations by replacing

c2
A → L

v2
4g

2
4

4M2
KK

δ(t− 1−) + L
v2

4g
2
4

4M2
KK

δ(t− ε+) . (2.75)

and (
∂µA

µ− ξ

r2
c

∂φe
−2σAφ

)2

→(
∂µA

µ − ξ
[
v4g5

2rc
(δ(|φ| − π) + δ(|φ|))ϕA +

1

r2
c

∂φe
−2σAφ

])2

. (2.76)

This will only affect the propagator of the vector component, because in contrast to
the bulk Higgs, the kinetic term only needs couplings to the vector, in order to be
4D Lorentz invariant, as in (2.13). Note also, that here 〈H〉 = v5/

√
2 and [ϕA] = 1,

because H is a brane localized scalar. As a consequence, there will be no Higgs KK
modes and only one Goldstone boson for the zero mode of the gauge field. Squaring
the delta function in (2.76) looks worrisome, but is unproblematic, because the re-
sulting terms will cancel in the KK decomposed theory, as discussed in Section 2.3.
Alternatively, a brane Higgs can also be implemented with brane gauge fixing terms,
as in [113, Sec. 2.3]. Note also, that the bulk solution has always ∆ = 3 in case of a
brane Higgs.
If the replacement (2.75) is made in (2.60), it basically corresponds to invoking BCs
for the gauge field. Similar to (2.70), they can be found by integrating over small
intervals around the branes (in φ-notation), or from a infinitesimally displaced point
in the bulk to the brane (in t−notation)

∂tD
ξ
µν(q, t; t′)

∣∣∣
t=ε+

= L
v2

4g
2
4

4M2
KK

Dξ
µν(q, ε+; t′) , (2.77)

∂tD
ξ
µν(q, t; t′)

∣∣∣
t=1−

= −L v2
4g

2
4

4M2
KK

Dξ
µν(q, 1−; t′) . (2.78)

The δ-function should be implemented in a way that does not clash with the boundary
conditions of the fields, which is induced by the orbifold symmetry – and guarantees
the vanishing of boundary terms from integration by parts. This is denoted by the su-
perscripts at 1− and ε+, which indicate a regularization of the δ function, for example
δ(t− 1−) ≡ limη→0 δ(t− 1 + η), with

δ(t− 1 + η) =


1
η , for t ∈ [1− η, 1] ,

0, otherwise ,
(2.79)

so that the second equation in (2.77) makes sense, even though the orbifold symmetry
fixes the propagator or its derivative to vanish at the fixed points. See section 2.4 for
more details.
Symmetry breaking via BCs and by a brane Higgs field implies a different physical
spectrum, because the former will not generate a Higgs resonance in the spectrum.
However, for the following discussion, we will omit this distinction and choose a general
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parametrization for the BCs,

∂tD
ξ
µν(q, t; t′)

∣∣∣
t=ε+

= vUV D
ξ
µν(q, ε+; t′) , ∂tD

ξ
µν(q, t; t′)

∣∣∣
t=1−

= −vIRD
ξ
µν(q, 1−; t′) ,

(2.80)

and an equivalent set of equations for t ↔ t′. Here, vUV and vIR can either be
understood as functions of the vevs of some UV or IR brane localized scalars or as
to be taken in the limit where they are 0 or ∞ and represent Neumann or Dirichlet
BCs. The results derived in the following paragraphs will apply for both scenarios. It
follows for general bulk mass ∆, that

C>1 = −q Y∆−3(q) + (−vIR + ∆− 3)Y∆−2(q) ,

C>2 = q J∆−3(q)− (−vIR + ∆− 3)J∆−2(q) ,

C<1 = −qε Y∆−3(qε) + (vUVε+ ∆− 3)Y∆−2(qε) ,

C<2 = qε J∆−3(qε)− (vUVε+ ∆− 3)J∆−2(qε) . (2.81)

The limit ∆→ 3 for gauge bosons is straightforward.

We will study the gauge boson propagator in the effective theory, q � 1, and will
elaborate an interpretation in the dual theory depending on different BCs. In general,
the small momentum limit yields

Dξ
µν(q, t; t′) = ηµν

L

4πrcM2
KK

(
c1t

2
< + c2 t

2t′2 + c3(t2 + t′2) + c4

)
+O(q2) (2.82)

with

c1 =
vUV(2 + vIR) + vIRε(2− vUVε)

vUV(2 + vIR) + vIRε(2− vUVε)
= 1 , c2 =

−vIRvUV

vUV(2 + vIR) + vIRε(2− vUVε)
,

c3 =
vIRε(vUVε− 2)

vUV(2 + vIR) + vIRε(2− vUVε)
, c4 =

(2 + vIR)ε(2− vUVε)

vUV(2 + vIR) + vIRε(2− vUVε)
.

(2.83)

The correct way to read these different contributions is to imagine a four quark di-
agram with one vertex labeled by t and the other by t′, as shown in Figure 2.10.
Integration over t and t′ will cause flavor violation at the corresponding vertex. If
a coefficient multiplies neither t nor t′, the corresponding term describes two flavor
diagonal vertices, which is the case for c4.10 Coefficients which multiply either t or t′

can refer to diagrams with a flavor change at either one vertex, as in the case for c3.
Finally, the coefficient of terms with both t and t′ can induce flavor change at both
vertices This is the case for c1 and c2 in (2.82).
It makes not much sense to keep terms that are ε suppressed and neglect O(q2) terms
in the expressions above, since ε ∼ 10−16. However, a vev on the UV brane is natu-
rally order Planck scale and therefore factors ∼ vUVε may become relevant and the ε

10It is a 1 in flavor space and the integral over the profiles of the external fermions vanishes, due
to the orthonormality relation (2.125), derived in the next section.
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Figure 2.7: Collection of the contributions to the full four fermion operator in the
strongly coupled dual theory with at most one Oµ propagator, constructed from the
building blocks given in Figures 2.5 and 2.4. Thick lines represent composites and
thin lines elementary fields.

dependence has been kept at this point. It is also puzzling on first sight, why the co-
efficient c1 would be exactly one, regardless of the BCs, which seems not motivated at
all from the 5D theory. This will however become clearer by considering the strongly
coupled dual theory. Before we discuss specific limits, let us therefore collect the dif-
ferent contributions we would expect in the dual theory. In terms of diagrams, they
are given in Figure 2.7.

In principle, fermion lines are not directly relevant for the following discussion (we
only compute the boson propagator), but they are included to illustrate the differ-
ent contributions. If there is an elementary gauge boson, that is the propagator has
Neumann BCs in the UV, there exist contributions which can only be flavor diagonal,
shown in the first line of Figure 2.7. They consist of a pure gauge boson contribution
and a contribution from mixing in the composite state. Following the discussion of
section 2.2, composite states are always in the theory. Boundary conditions will only
tell us whether there is a gauge boson to mix into or not, and if the composites get
mass corrections from a composite Higgs coupling (depicted in the last line of Fig-
ure 2.7). Also, in our model, fermions are bulk fields and therefore the elementary
quarks mix into corresponding composite states. This allows for flavor violation at
either one vertex, see the second line of Figure 2.7, or ∆F = 2 contributions from
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pure composite exchange, which can be found in the third line of Figure 2.7. Keep in
mind, that these diagrams are flavor-diagonal in Figure 2.7, but not flavor universal,
which will lead to the described flavor violation after rotation into the basis in which
the Yukawa matrices are diagonal. Also, the diagrams in the second and third line
of Figure 2.7 can give flavor conserving and ∆F = 1 contributions as well, the right
hand side only denotes the maximal number of vertices at which flavor violation can
occur simultaneously. Further diagrams can be constructed through additional mixing
from composites into the elementary states and back. However, each additional Oµ
propagator carries another factor M−2

KK and will the corresponding terms will thus be
suppressed.

An interesting result of this thesis is, that we are able to assign diagrams in the dual
theory to the different contributions of (2.82), by systematically considering differ-
ent BCs. In the following, the respective BCs and the contributing diagrams are
shown on the left hand side. Also, after performing the limits for the respective BCs,
ε-suppressed factors will be omitted and the results are given in Feynman-’t Hooft
gauge, ξ = 1. Let us start with the “cleanest” scenario.

(DN) Dirichlet BCs in the UV imply, that there is no elementary gauge boson
in the theory. Consequentially, there is no mixing as in (2.41). If there
were no composite fermions, the elementary and composite sector would
not talk to each other at all. There is also no symmetry breaking in the
composite sector, because all fields (for all possible gauge indices) have
Neumann BCs in the IR. Referring to Figure (2.7), that means, that we
do only expect the exchange of composite states, i.e. only the diagram
in the third line. Interestingly, for these BCs, (2.82) reduces to

Dξ=1
µν (q, t; t′) =

ηµν L

4πrcM2
KK

t2< , (2.84)

which represents the term which we found to appear in (2.82) with
always the same coefficient regardless of the BCs. In the dual theory,
this corresponds to the exchange of exclusively composites, which is
only controlled by the bulk. That means, one can check that a different
localization, ∆ 6= 3, will in general change this factor. This term will
however always be present as long as ∆ = 3 and a change of BCs will
only generate additional diagrams.
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(DD) When a Higgs vev is turned on on the IR brane, the higgsing generates
mass correction to the bosonic composites. We expect therefore the
same contributions as in the (DN) scenario, however additional ∆F = 2
contributions should appear. The situation in the UV is unchanged (still
Dirichlet BCs) and since there is no mixing, no extra flavor diagonal or
∆F = 1 terms should appear. Accordingly, we find,

Dξ=1
µν (q, t; t′) =

ηµν L

4πrcM2
KK

(
t2< − t2t′2

)
, (2.85)

which perfectly agrees with the expectations.

(NN) If one allows for Neumann BCs on both branes, the situation changes
significantly. There is still the exclusively composite exchange like in
the (DN) scenario, however as Neumann BCs in the UV correspond
to gauge fields in the elementary sector the mixing term in (2.41)
becomes active and allows for all the additional diagrams shown on
the left hand side. We cannot reproduce a one-to-one correspon-
dence for each diagram here, because there exist many diagrams
contributing to the same terms. However, one can infer that in
contrast to the (DD) scenario no additional ∆F = 2 contributions
should appear. Also, the existence of a pure gauge boson diagram will
lead to a flavor diagonal term independent of the KK scale. There
should be additional flavor-diagonal contributions as well, from the
diagram with mixing into the composite boson and back. We find

Dξ=1
µν (q, t; t′) =− ηµν

2πrcp2
(2.86)

+
ηµν

4πrcM2
KK

(
Lt2<− t2

[1

2
−ln t

]
− t′2

[1

2
− ln t′

]
+

1

2L

)
,

which agrees with these expectations. Note, that the (NN) scenario
cannot be extracted from (2.82) by inserting the BCs directly, because
the equation has a singularity for vUV = vIR = 0. Equation (2.86) is
therefore the result of a limiting procedure.
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(ND)

and all pos-
sible Higgs
insertions

This is the “messiest” scenario, in the sense that all possible diagrams in
Figure 2.7 contribute to the propagator, besides the pure gauge boson
propagator, because it will be massive due to mixing with a composite
which breaks the gauge symmetry. In the language of Section 2.2, the
group I is empty here. The corresponding propagator should have flavor-
diagonal, ∆F = 1 and additional ∆F = 2 contributions and we find

Dξ=1
µν (q, t; t′) =

ηµν L

4πrcM2
KK

(
t2< − t2 − t′2 + 1

)
. (2.87)

This is not exactly what one would expect. The Higgs corrections to
the ∆F = 2 contributions we found for (DD) BCs are absent. This can
not be explained by a direct cancellation between diagrams, because
all other diagrams will not lead to ∆F = 2 effects. Also, the flavor-
diagonal factor is much larger compared to (NN) BCs, which can only
be explained by the Higgs insertions there having a large effect.

We will close this section with the introduction of the KK decomposition for the
different scenarios just introduced and a discussion of the behavior of the profile
functions for the lightest modes.

The generic bulk Lagrangian (2.53) suggests a KK decomposition in t-notation(
Aµ(xµ, t)

A5(xµ, t)

)
=

1√
rc

∑
n

(
Anµ(xµ)χn(t)

MKKA
n
5 (xµ) ∂tχn(t)

)
. (2.88)

If this decomposition is inserted into equation (2.53), one finds the important relation
(valid in Feynman gauge)

iDµν(q, t; t′) =

∞∑
n=0

−iηµν
q2 − x2

n + iε
χn(t)χn(t′) , (2.89)

in which xn ≡ mn/MKK and mn denotes the mass of the nth KK mode. This shows
how the 5D propagator is equivalent to the exchange of the whole KK tower and
represents another connection to the strongly coupled dual theory, compare (2.42). It
also follows that the normalization of the kinetic terms imposes the orthonormality
relation

2π

L

∫ 1

ε

dt

t
χm(t)χn(t) = δmn . (2.90)

Further, all terms including derivatives with respect to φ and the bulk mass have to
be matched to a 4D mass term for each mode. The resulting equations are called
EOM, and read for the vector component(

− t∂t
1

t
∂t +

c2
A

t2

)
χn(t) = x2

nχn(t) . (2.91)
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We can concentrate on the vector component, as the EOM for the scalar can again be
derived by the replacement c2

A → c2
a/ξ− 1 and x2

n → ξx2
n. A solution to (2.91) can be

guessed by comparison with (2.64), which has the same form,

χn(t) = t
(
J∆−2(txn) + αnY∆−2(txn)

)
, (2.92)

where again ∆ = 2 +
√

1 + c2
A. The coefficient αn is fixed by the UV BC and the IR

BC gives the mass eigenvalues. In general, they read

∂tχn(t)
∣∣∣
t=ε+

= vUVχn(ε+) , ∂tχn(t)
∣∣∣
t=1−

= −vIRχn(1−) . (2.93)

One can infer, that the mass eigenvalues have a splitting dictated by the zeros of
Bessel functions, which means the mass splitting approaches δmn = πMKK for large
n.

The mass of the first excitation is controlled by both BCs as shown in Figure 2.8. The
plots show the mass of the lightest mode depending on one BC, while the other one is
kept fixed. In all cases, x1, which denotes the mass of the lightest KK mode in units
of MKK approaches a limit and the units on the x-axis are chosen in a way that this
limit is shown in the respective plot. In the upper left panel the UV BC is Neumann
and the IR BC varies, showing the transition from the (NN) to the (ND) scenario.
From the dual picture, we expect the lightest mode to correspond to a massless gauge
boson if vIR = 0, and to become massive due to spontaneous symmetry breaking once
a vev is turned on on the IR brane. Its mass will therefore not grow arbitrarily, but
will always be a fraction of the symmetry breaking scale, which does agree with the
plot. The limit is at mn ∼ 0.235MKK and is more or less satisfied at vIR ∼ 10.
For the reverse situation, Dirichlet BCs in the UV and Neumann BCs in the IR, the
dual theory predicts no elementary gauge boson and no Higgs contribution to the
masses of the KK modes. This scenario should yield a straight line in the vUV − x1

plane at the mass of the first composite, unless vUV becomes so small, that Dirichlet
BCs are not a good approximation. This happens only for extremely small values
of vUV = O(10 ε), as shown in the upper right panel of Figure 2.8. In this plot, the
values of vUV are unnaturally small in order to show the region in which the mass
approaches zero. That corresponds to a situation, in which the breaking on the UV
brane is so small, that the dual theory has an approximate massless gauge boson. For
all other values, the limit is reached. From (2.93), it is evident that this limit is given
by the first zero of J0(xn), x1 ≈ 2.4. Therefore the plot shows the rapid transition
from the (NN) to the (DN) scenario.
The last panel (in the second row) shows the plot for the situation where vUV is
of O(1) and vIR is free to vary. It illustrates the transition from (DN) to (DD)
BCs. The lowest mass in this plot is consequentially the limit from the upper right
plot. Turning on the Higgs vev in the IR seems to have a considerable effect on the
first KK mass, the limiting value is shifted to the first zero of J1(xn) at x1 ≈ 3.8.
This can again easily be extracted from the equations (2.93). In the dual theory
one can argue that stronger couplings between the composites may allow for larger
corrections to the masses compared to the (ND) scenario, in which the contributions
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Figure 2.8: Mass of the lightest excitation for different BCs. See text for details.

from symmetry breaking are given by a marginal mixing operator. Note, that we also
found a substantial effect from the Higgs in the discussion of the (DD) propagator
limit, in contrast to the (ND) scenario, which is in line with our findings here. It
should be stressed, that the behavior can change significantly once one allows for a
non-zero bulk mass parameter.

The Electroweak Gauge Sector of the SM

The electroweak gauge sector of the SM is is completely shifted into the bulk in the
minimal RS model. Following the above analysis, one would expect gauge boson
masses of the order of the electroweak scale, as given in the upper left panel of Figure
2.8, if we start with (NN) BCs and couple to a IR localized Higgs. It will turn
out, that this proves true and the zero mode masses agree with the SM up to small
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modifications.
The 5D Lagrangian is given by the terms in (2.12) minus the SU(3)C terms and (2.13).
Analogue to the SM, we define

W±M =
1√
2

(
W 1
M ∓ iW 2

M

)
,

ZM =
1√

g2
5 + g′25

(
g5W

3
M − g′5BM

)
, (2.94)

AM =
1√

g2
5 + g′25

(
g′5W

3
M + g5BM

)
,

and

MW =
vg5

2
, MZ =

v
√
g2

5 + g′25
2

, (2.95)

where g5 and g′5 are the 5D gauge couplings of SU(2)L and U(1)Y , respectively. The
covariant derivative acting on the Higgs reads

DµH =
1√
2

(
−i
√

2
(
∂µϕ

+ +MW W+
µ

)
∂µh+ i (∂µϕ3 +MZ Zµ)

)
+ terms bi-linear in fields, (2.96)

and the brane Higgs involves in accordance with (2.76) the following gauge fixing
terms,

LGF = − 1

2ξ

(
∂µAµ − ξ

[
MKKt ∂t

1

t
A5

])2

− 1

2ξ

(
∂µZµ −

ξ

2

[
δ(t− 1) kMZ ϕ3 + 2MKK t∂t

1

t
Z5

])2

− 1

ξ

(
∂µW+

µ −
ξ

2

[
δ(t− 1) kMW ϕ+ + 2MKK t∂t

1

t
W+

5

])
×
(
∂µW−µ −

ξ

2

[
δ(t− 1) kMW ϕ− + 2MKK t∂t

1

t
W−5

])
, (2.97)

in which (2.55) has been applied in changing to t-coordinates for all scalar compo-
nents. More generally, the gauge fixing parameters could have been chosen different
for each gauge fixing term, but for convenience they are set equal. We will in the
following concentrate on terms quadratic in the fields. It is however straightforward
to implement three and four gauge boson terms. Accounting for the kinetic terms of
the gauge bosons and the Higgs, as well as for the gauge fixing terms, results in the
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action

S 3
∫
d4x r

2π

L

∫ 1

ε

dt

t
(2.98){

− 1

4
FµνF

µν − 1

2ξ
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− ξ
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)}
.

In the next step, analogue to (2.88), we decompose the fields in KK modes,

Aµ(x, t) =
1√
rc

∑
n

A(n)
µ (x)χAn (t) , A5(x, t) =

MKK√
rc

∑
n

aAn ϕ
(n)
A (x) ∂t χ

A
n (t) ,

Zµ(x, t) =
1√
rc

∑
n

Z(n)
µ (x)χZn (t) , Z5(x, t) =

MKK√
rc

∑
n

aZn ϕ
(n)
Z (x) ∂t χ

Z
n (t) ,

W±µ (x, t) =
1√
rc

∑
n

W±(n)
µ (x)χWn (t) , W±5 (x, t) =

MKK√
rc

∑
n

aWn ϕ
±(n)
W (x) ∂t χ

W
n (t) ,

(2.99)

and expand the would-be Goldstone bosons in (2.96) in the same basis of mass eigen-
states as the scalars,

ϕ±(x) =
∑
n

bWn ϕ
±(n)
W (x) , ϕ3(x) =

∑
n

bZn ϕ
(n)
Z (x) . (2.100)

We obtain the EOM (2.91) with the replacement

c2
A →

1

2
δ(t− 1−)k

M2
a

M2
KK

= δ(t− 1−)L
v2

4g
2
4

4M2
KK

, (2.101)

where the last equality holds for Ma = MW and also for Ma = MZ , if g2
4 is replaced

by (g′24 + g2
4). In the following, we denote both fields by Ma, with the corresponding

replacements for the couplings implied. Consequentially, the orthonormality relation
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(2.90) holds and the BCs become

∂t χ
a
n(ε+) = 0 , (2.102)

∂t χ
a
n(1−) = − L

2πrc

M2
a

M2
KK

χan(1−) = −L v2
4g

2
4

4M2
KK

χan(1−) = −L m2
a

M2
KK

χan(1−) ,

where the masses of the zero modes ma, with a = W,Z have been introduced. By
comparison with (2.93), the propagator can be found from (2.82), and reads

rcD
ξ
µν(q, t; t′) = ηµν

(
1

2πm2
W.Z

+
L

4πM2
KK

[
t2< − t2 − t′2 + 1

])
+O(q2) , (2.103)

and the propagator for the photon is given by (2.86).
The 4D effective theory is constructed by inserting the KK decomposition (2.99) into
(2.98), applying the EOM and the orthonormality relation, so that after integrating
out the fifth dimension one ends up with

SGauge,2 =
∑
n
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d4x

{
− 1

4
F (n)
µν F

µν(n) − 1

2ξ

(
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2ξ

(
∂µZ(n)

µ

)2
+

(mZ
n )2

2
Z(n)
µ Zµ(n)

− 1

2
W+(n)
µν W−µν(n) − 1

ξ
∂µW+(n)

µ ∂νW−(n)
ν + (mW

n )2W+(n)
µ W−µ(n)

+
1

2
∂µϕ

(n)
A ∂µϕ

(n)
A −

ξ(mA
n )2

2
ϕ

(n)
A ϕ

(n)
A +

1

2
∂µϕ

(n)
Z ∂µϕ

(n)
Z −

ξ(mZ
n )2

2
ϕ

(n)
Z ϕ

(n)
Z

+ ∂µϕ
+(n)
W ∂µϕ

−(n)
W − ξ(mW

n )2 ϕ
+(n)
W ϕ

−(n)
W

}
+

∫
d4x

(
1

2
∂µh∂

µh− λv2h2

)
,

(2.104)

under the additional condition, that the Fourier coefficients in (2.99) and (2.100) are

aan = − 1

ma
n

, ban =
Ma√
r

χan(1−)

ma
n

. (2.105)

Solving the EOM with the BCs (2.102) leads to

χan(t) = Nn

√
L

π
t c+
n (t) , (2.106)

where only the UV BC is used in determining the unspecified coefficient in the homo-
geneous solution, so that

c+
n (t) = Y0(xanε) J1(xant)− J0(xanε)Y1(xant) , (2.107)

c−n (t) =
1

xant

d

dt

[
t c+
n (t)

]
= Y0(xanε) J0(xant)− J0(xanε)Y0(xant) . (2.108)
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Note, that this result agrees with (2.92) for a brane Higgs up to an additional factor.
The normalization is fixed by (2.90), and reads

N−2
n =

[
c+
n (1)

]2
+
[
c−n (1)

]2 − 2

xn
c+
n (1) c−n (1)− ε2

[
c+
n (ε)

]2
, (2.109)

and the mass eigenvalues are the zeros of the IR BC,

xan c
−
n (1−) = − g2

4v
2
4

4M2
KK

Lc+n (1−) . (2.110)

One can now expand this equation in the zero mode mass x0 � 1 and solve for the
mass of the SM gauge bosons

(
mRS
W

)2 ≡ g2
4v

2
4

4

[
1− g2

4v
2
4

8M2
KK

(
L− 1 +

1

2L

)
+O

(
v4

M4
KK

)]
, (2.111)

and for the mass of the Z one finds the same expression after replacing the gauge
couplings accordingly. Equation (2.111) represents a correction to the SM relation
mSM
W = g4v4/2. Direct experimental measurements will measure the left hand side

of (2.111), and one can therefore absorb the universal RS corrections into mW,Z .
On a more fundamental level, this corresponds to the rescaling of the Higgs vacuum
expectation value, as discussed [116]. This rescaling should consequentially also take
place in the propagator, so that (2.103) becomes to leading order in v2/M2

KK and q2

rcD
ξ
µν(q, t; t′) = ηµν

(
1

2π(mRS
W.Z)2

+
1

4πM2
KK

[
Lt2< − L(t2 + t′2) + 1− 1

2L

])
.

(2.112)

In [115, Sec. 2.3] this result was reproduced using an alternative method, in which
the sums over the profile functions are directly evaluated by performing the sum on
the right-hand side of equation (2.89), generalizing a technique introduced in [117].
Finally, we note that the ZMA expressions for the zero modes read

χW,Z =
1√
2π

[
1 +

m2
W,Z

4M2
KK

(
1− 1

L
+ t2 (1− 2L− 2 ln t)

)
+O

(
m4
W,Z

M4
KK

)]
. (2.113)

The generalization to the full SM gauge group is rather straightforward, because the
quadratic terms of the effective SU(3)C Lagrangian will be an exact copy the photon
part of (2.104) upon replacing the gauge coupling. Because of the BCs, the gluon
propagator is given by (2.86) as well. in

2.4 Profiles of Fermions

In contrast to the gauge bosons, we will only need the zero modes of the bulk fermions
in the later computations. While a comprehensive discussion of the fermion propagator



70 Chapter 2. The Randall Sundrum Model and its Holographic Interpretation

can be found elsewhere [118, Sec. 4.2], we will concentrate on the KK decomposed
theory here.

As mentioned in Section 2.1, a bulk fermion is described by an irreducible Dirac
spinor field, which reduces to its two Weyl components in four dimensions, due to
the orbifold symmetry or equivalently, due to opposite BCs. This can be seen by
considering the kinetic term (2.15), which after partial integration and in terms of the
chiral components, Q = QL +QR can be written as√

|G| Lmatter 3 e−3σQ̄ i/∂ Q− e−4σm sgn(φ)Q̄ Q (2.114)

− e−2σ

rc

[
Q̄L ∂φ (e−2σ QR)− Q̄R ∂φ (e−2σ QL)

]
.

In contrast to the vector boson, an explicit mass term does not break gauge invariance
and we are going to keep it throughout the discussion. It is convenient to switch to
t-notation, in which a viable KK decomposition reads

QL(xµ, t) =
1√
r

t2

ε2

∑
n

QnL(xµ) fnL(t) , (2.115)

QR(xµ, t) =
1√
r

t2

ε2

∑
n

QnR(xµ) fnR(t) . (2.116)

Therefore, the orthonormality relation from the 4D part of the kinetic term reads

2π

Lε

∫ 1

ε
dt fnL/R(t)

(
fmL/R(t)

)∗
= δnm , (2.117)

which implies for the matching conditions or EOM the system of coupled first order
PDEs (

∂t +
c

t

)
fnR(t) = xnf

n
L(t) ,(

− ∂t +
c

t

)
fnL(t) = xnf

n
R(t) . (2.118)

Here, xn again denotes the dimensionless ratio of the mass of the nth KK mode mn

and the KK scale MKK, and c = m/k the dimensionless bulk mass parameter. This
leads to the second order differential equation(

− t2∂2
t + c(c∓ 1)

)
fnL/R(t) = t2x2

nf
n
L/R(t) . (2.119)

It is interesting to note, that in contrast to (2.91), in the limit c→ 0, the left hand side
reduces to a simple second derivative and one ends up with trigonometric solutions.
In other words, a free fermion will not feel the AdS-curvature, if it is massless.
A solution to (2.119) reads

fnL/R(t) =
√
t
(
Jc∓ 1

2
(xnt) + αnYc∓ 1

2
(xnt)

)
. (2.120)

In deriving this solution, it was already used, that the integration constant αn is the
same for fL and fR, which follows from (2.118). The value of αn is fixed by the BCs,
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which simultaneously give the mass eigenvalues of the KK modes xn. It follows also
from (2.118), that the BCs of fL and fR must be opposite, so that it is enough to give
one of them and in the following, the notion “BCs of Q” will always be understood
to be the BCs of its fL component. The following choices of BCs are possible,

fL fR

(NN) (DD)
(DD) (NN)
(ND) (DN)
(DN) (ND)

But only the first two lines will give rise to a zero mode for either the fL or fR
component. The zero modes are massless, but introducing Yukawa couplings with a
brane localized Higgs will result in zero mode masses which depend on the overlap
of the corresponding Bessel function with the IR brane, and thus on the bulk mass
parameter c. In this context of model building, the third and last line give still
interesting solutions, because the (DN) component mimics a (NN) solution with
a Higgs localized on the UV brane, which implies that a IR localization c > −1/2
results in a very light first KK mode. These ultralight KK fermions have first been
recognized in [119, App A.2] and can arise in theories in which the SM top is in an
extended multiplet with additional fermions, which do not have a zero mode due to
(DN) BCs. Candidates are GUTs as in the original reference or higgsless models as
examined in [120].
An interpretation of the different BCs in the dual theory can be given in accordance
with the interpretation of a bulk gauge boson. If the BC in the UV is Neumann,
there exists an elementary fermion which mixes with a composite state of the same
quantum number. Only for (NN) BCs will this elementary state remain massless,
Dirichlet BC in the IR result in a mass depending on the scale of the IR brane and
the localization along the bulk. In the case of (DN) or (DD) BCs the dual theory
has no elementary fermion and the Dirichlet BC in the IR make only for a correction
of the masses of the composite meson tower.
In order to model SM fermions, we will rely on the first two solutions, so that the
masses and the integration constant is fixed by

αn =
Jc∓ 1

2
(xnε)

Yc∓ 1
2
(xnε)

, (2.121)

in which the − sign holds if fL has a zero mode and and the + for the case that fR
has a zero mode.
In order to model the SM field content with two chiral zero modes for each quark
generation, we will have to introduce three copies of Q = (u, d) transforming as a
doublet under SU(2)L and a set of three downtype and three up-type SU(2)L singlets
qc = uc, dc, as already hinted at in Section 2.1. The Yukawa interactions couple these
bulk fermions to the Higgs, which should result in a Yukawa coupling for the zero
modes and therefore implies, that the zero mode of Q corresponds to an fL solution,
while the zero mode of qc is the fR solution of the bulk EOM. The ansatz (2.16) gives
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then

S 3
∫
dx

∫ π

−π
dφ
√
|G| Lmatter

=
∑
q=u,d

∫
dx

∫ π

−π
rcdφ

{
e−3σ

(
Q̄ i/∂ Q+ q̄c i/∂ qc

)
− e−4σsgn(φ)

(
Q̄MQQ+ q̄cM q q

c

)

− e−2σ

rc

[
Q̄L ∂φ (e−2σ QR)− Q̄R ∂φ (e−2σ QL) + q̄cL ∂φ (e−2σ qcR)− q̄cR ∂φ (e−2σ qcL)

]
− δ(|φ| − π)

e−4σ

rc

[
εab Q̄LaH

†
bY

(5D)
u ucR + εab Q̄RaH

†
bY

(5D)
u ucL

+ Q̄LHY
(5D)
d dcR + Q̄RHY

(5D)
d dcL + h.c.

]}
. (2.122)

Here, the bar on the Yukawas indicates that in principle Y
(5D)
q and Y

(5D)
q can be

chosen differently, which is suppressed in (2.4). This difference is only due to the fact,
that the Higgs is a brane localized 4D field. We will in the following assume, that

Y
(5D)
q = Y

(5D)
q , which can be motivated by considering the model resulting as a limit

of a theory with a bulk scalar, in which the couplings would be the same, because
the bulk must respect 5D Lorentz invariance. Even without introducing this limit,
this assumption should not affect the physics, because we expect the 5D Yukawas to
be structureless order one coefficients anyway with no effect on the hierarchies in the

flavor sector, so that even being more restrictive, for example choosing Y
(5D)
u = Y

(5D)
d

should not change the results.
Further, the real bulk mass matrices MQ,q and the complex 5D Yukawa matrices will
not be diagonal in the same basis. If not stated otherwise, we will from now on assume
that we are in the bulk mass basis, in which the bulk mass matrices are diagonal. Due
to the flavor degrees of freedom and the Higgs on the brane, The KK decomposition
is more involved than in (2.115). It can be brought into the form

uL(xµ, t) =
1√
r

t2

ε2

∑
n

unL(xµ)CQ
n (t) aUn ,

uR(xµ, t) =
1√
r

t2

ε2

∑
n

unR(xµ)SQn (t) aUn ,

ucL(xµ, t) =
1√
r

t2

ε2

∑
n

unL(xµ)Sun(t) aun ,

ucR(xµ, t) =
1√
r

t2

ε2

∑
n

unR(xµ)Cu
n(t) aun , (2.123)

where the index n runs over all flavor and KK modes. So will for example m1 =
mu,m2 = mc,m3 = mt give the SM quark masses, and m4, . . . ,m9 the masses of
the first set of six KK modes, and likewise for downtype quarks. The 3× 3 matrices
SQ,qn (t) correspond to the solutions with (DD) BCs which do not acquire a zero mode,
while CQ,q

n (t) denote profiles with (NN) BCs that have a zero mode. The additional

a-vectors a
(U,u)
n quantify flavor mixing induced by the Yukawa couplings. Therefore,
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while the profile functions must be the same for both components of the SU(2)L dou-
blet, SUn = SDn ≡ SQn and CU

n = CD
n ≡ CQ

n , the a-vectors are not, because the two
components are treated differently in the Yukawa interactions. Also, the profile func-
tions can be chosen diagonal and real in the bulk mass basis, whereas the a-vectors
are complex. Proceeding just like in the case of a free bulk gauge boson, we will first
derive the orthonormality relation by matching onto the kinetic term and then fix the
mass eigenvalues using the BCs.

In contrast to the free bulk fermion, upon insertion of the KK decomposition, the
matching of the first term in the second line of (2.122) onto the canonical kinetic term

S4D =
∑
q=u,d

∑
n

∫
d4x q̄n(x) i/∂ qn(x) , (2.124)

in which qn(x) ≡ qnL(xµ) + qnR(xµ) and qnL,R(xµ) denoting the 4D fields in the KK
decomposition, will result in the more general orthonormality relation

2π

Lε

∫ 1

ε
dt a(Q,q)†

m C(Q,q)
m (t)C(Q,q)

n (t)a(Q,q)
n + a(q,Q)†

m S(q,Q)
m (t)S(q,Q)

n (t)a(q,Q)
n = δmn .

(2.125)

In the limit of vanishing Yukawa interactions, this expression separates into two sets
of three independent equations for q = u, d. Since we know, that the C- and S-profiles
must reduce to the solutions fL,R in this limit, which form complete sets of functions
in the bulk and fulfill separate orthonormality conditions (2.117), we can deduce that

aQ†n aQn + aq†n a
q
n = 1 . (2.126)

With the result (2.125), the matching of the second to last term of (2.122) onto a
canonical 4D mass term gives rise to the EOM [115, 114](
− t∂t − cQ

)
SQn (t) aQn = −xn tCQ

n (t) aQn + δ(t− 1)
v√

2MKK

Y q C
q
n(t) a qn ,(

t∂t + cq

)
S qn(t) a qn = −xn tC q

n(t) a qn + δ(t− 1)
v√

2MKK

Y †q C
Q
n (t) aQn ,(

t∂t − cQ
)
CQ
n (t) aQn = −xn tSQn (t) aQn + δ(t− 1)

v√
2MKK

Y q S
q
n(t) a qn ,(

− t∂t + cq

)
C q
n(t) a qn = −xn tS qn(t) a qn + δ(t− 1)

v√
2MKK

Y †q S
Q
n (t) aQn , (2.127)

in which a sign has been introduced in defining cQ,q ≡ ±MQ,q/k , which will prove to
be convenient, as well as the dimensionless 4D Yukawa couplings have been defined by

Y
(5D)
q ≡ 2Y q/k. Apart from the IR brane, that is for t 6= 1, these equations decouple

and can be reduced to two times three sets of (2.118), because the a−vectors must
be proportional to unit vectors in this limit, with the corresponding solutions (2.120).
One way to find a solution to (2.127) is therefore to assume these solutions in the
bulk and treat the Yukawa couplings as perturbations. Alternatively, one can directly
account for the Yukawa terms in the EOM, as shown above. Both approaches are
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Bulk

Sliver

UV brane IR brane

ε t 11− η

η → 0

Matching the solutions

Figure 2.9: Illustration of the separation of a sliver from the bulk of the extra di-
mension in the context of the regularization of the delta function and the procedure
of solving the coupled EOM. The red line in the bulk indicates an S-profile which
solves the bulk EOM, the red line in the sliver depicts the corresponding solution of
the sliver EOM, which is supposed to match the bulk solution at 1−.

equivalent, see [122], although the latter is more straightforward and will therefore be
adopted here.

As mentioned in the previous section, in a situation with a brane localized Higgs, it
is crucial to properly regularize the delta functions and we will use the rectangular
regularization introduced in (2.79). The importance of such a regularization procedure
was first pointed out in [121, Sec. IV] and it was shown that the results are independent
of the regularization method later in [114]. The following derivation is also outlined in
the appendix of the latter reference. The regularized delta function effectively divides
the bulk into two regions, t ∈ [0, 1− η] and a small sliver t ∈ [1− η, 1], see Figure 2.9.
The solution in the sliver will generate the proper BCs for the bulk solutions at 1−.
In the sliver, only the following terms in the EOM are relevant,

−∂t SQn (t) aQn = δη(t− 1)
v√

2MKK

Y q C
q
n(t) aqn , (2.128)

∂t S
q
n(t) aqn = δη(t− 1)

v√
2MKK

Y †q C
Q
n (t) aQn , (2.129)

∂tC
Q
n (t) aQn = δη(t− 1)

v√
2MKK

Y q S
q
n(t) aqn , (2.130)

−∂tC q
n(t) aqn = δη(t− 1)

v√
2MKK

Y †q S
Q
n (t) aQn . (2.131)

Using (2.79), we obtain[
∂2
t −

(
Xq

η

)2
]
SQn (t) = 0 ,

[
∂2
t −

(
X̄q

η

)2
]
S qn(t) = 0 , (2.132)
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in which

Xq ≡
v√

2MKK

√
Y q Y

†
q , X̄q ≡

v√
2MKK

√
Y †q Y q . (2.133)

The solutions to these PDEs are hyperbolic functions. Integration constants are fixed
by the fact that at the IR brane t = 1, the S-profiles have Dirichlet BCS, SQ,qn (1) = 0
and at 1− η, they must be matched onto the solution of the bulk EOM at t = 1−. So
that

SQn (t) =

sinh

(
Xq

η
(1− t)

)
sinh

(
Xq

) SQn (1−) , S qn(t) =

sinh

(
X̄q

η
(1− t)

)
sinh

(
X̄q

) S qn(1−) .

CQ
n (t) =

cosh

(
Xq

η
(1− t)

)
cosh

(
Xq

) CQ
n (1−) , C q

n(t) =

cosh

(
X̄q

η
(1− t)

)
cosh

(
X̄q

) C q
n(1−) ,

(2.134)

where the solutions for the C-profiles follow from (2.128). At the boundary between
sliver and bulk, the bulk solutions are therefore related by

SQn (1−) aQn =
v√

2MKK

Y q

(
X̄q

)−1
tanh

(
X̄q

)
C q
n(1−) aqn , (2.135)

−S qn(1−) aqn =
v√

2MKK

Y †q
(
Xq

)−1
tanh

(
Xq

)
CQ
n (1−) aQn , (2.136)

which can be re-expressed by introducing the effective Yukawa couplings

Ỹ q ≡ f
(

v√
2MKK

√
Y ~qY

†
~q

)
Y q , f(A) = A−1 tanh (A) . (2.137)

These correspond to the bare Yukawas plus corrections of the order O(v2/M2
KK). One

can therefore write (2.137) as

SQn (1−) aQn =
v√

2MKK

Ỹ q C
q
n(1−) a qn , (2.138)

−S qn(1−) a qn =
v√

2MKK

Ỹ
†
q C

Q
n (1−) aQn . (2.139)

It is straightforward to derive the eigenvalue equation and expressions for the a-
vectors from (2.138). Since the diagonal S- and C-profiles will have only nonzero
entries (otherwise the corresponding SM quark would have no kinetic term), they can
be inverted and it follows

SQn (1−) aQn = − v2

2M2
KK

Ỹ uC
q
n(1−)

[
Sqn(1−)

]−1
Ỹ
†
uC

Q
n (1−) aQn ,

Sqn(1−) aqn = − v2

2M2
KK

Ỹ
†
uC

Q
n (1−)

[
SQn (1−)

]−1
Ỹ uC

q
n(1−) aqn . (2.140)
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The mass eigenvalues xn can then be found by solving

det

(
1− v2

2M2
KK

[
SQn (1−)

]−1
Ỹ qC

q
n(1−)

[
−Sqn(1−)

]−1
Ỹ
†
qC

Q
n (1−)

)
= 0 , (2.141)

and subsequentially the corresponding a-vectors can be derived from (2.140).

Bulk Profiles

Considering again a simple bulk fermion with BCs examined at the beginning of the
last section one can already anticipate a lot of the correct solution for the complete
model. In the case of non-integer order α, the general solution (2.120) can be expressed
solely by first order Bessel functions, because

Yα(x) =
1

sin(απ)

(
cos(απ)Jα(x)− J−α(x)

)
, (2.142)

so that

fnL/R(t) =
√
t
(
aL,Rn Jc∓ 1

2
− bL,Rn J−c± 1

2

)
. (2.143)

Note, that in this basis the EOM fix aLn = aRn , but bnL = −bnR. The value of the
coefficients as well as the mass eigenvalues are fixed by the BCs, which in the case of
Neumann BCs in the UV give

bn
an

=
Jc+ 1

2
(xnε)

J−c− 1
2
(xnε)

. (2.144)

It is therefore straightforward to find the solutions for the components of the matrices
SQ,qn (t) and CQ,q

n (t) in this basis, if we choose to fix the coefficients in the UV and
use the information on the IR brane in order to derive the mass eigenvalues. They
will be direct generalizations of (2.143) with (2.143), because they only differ in the
IR. Flavor is completely encoded in the choice of the localization parameters cQiand
cqi , so that we can omit flavor indices and find in agreement with [58, 59]

CQ,qn (t) = Nn(cQ,q)

√
Lεt

π
f+
n (t, cQ,q) ,

SQ,qn (t) = ±Nn(cQ,q)

√
Lεt

π
f−n (t, cQ,q) , (2.145)

in which

f±n (t, c) = J− 1
2
−c(xnε) J∓ 1

2
+c(xnt)± J 1

2
+c(xnε) J± 1

2
−c(xnt) . (2.146)

This motivates the introduction of the extra minus sign in cQ,q = ±MQ,q/k, because
it allows for a compact notation in the case of Neumann UV BCs and regardless of the
solution implies that cQ,q < −1/2 will always mean UV localization and cQ,q > −1/2
IR localization. However, in order to obtain a profile for c + 1/2 ∈ N, one must rely
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on the more general basis. The orthonormality relation (2.125) gives rise to

2

∫ 1

ε
dt t
[
f±n (t, c)

]2
=

1

N 2
n(c)

± f+
n (1−, c) f−n (1−, c)

xn
, (2.147)

so that the normalization factor in (2.145) is fixed by

N−2
n (c) =

[
f+
n (1−, c)

]2
+
[
f−n (1−, c)

]2 − 2c

xn
f+
n (1−, c) f−n (1−, c)− ε2f+

n (ε, c)2 .

(2.148)

The IR BCs determine the mass eigenvalues xn through (2.141), which for the zero
modes are well approximated by xn � 1, or equivalently v � MKK. It is therefore
convenient to expand (2.145) in this limit,

CQ,qn (t) ≈
√
Lε

π
F (cQ,q) t

cQ,q ,

SQ,qn (t) ≈ ±
√
Lε

π
xnF (cQ,q)

t1+cQ,q − ε1+2cQ,q t−cQ,q

1 + 2cQ,q
, (2.149)

which is suggestively called zero mode approximation (ZMA). Accordingly, the func-
tion

F (c) ≡ sgn[cos(πc)]

√
1 + 2c

1− ε1+2c
, (2.150)

which is proportional to the value of the zero mode C-profiles on the IR brane will be
called zero-mode profile. Note, that the S-profiles on the IR brane are proportional
to the inverse of the zero-mode profile.
We finish the discussion of the fermion profiles by giving the approximate behavior of
the zero-mode profile for different regions of the localization parameters

F (c) ≈


−
√
−1− 2c ε−c−

1
2 , −3/2 < c < −1/2 ,

√
1 + 2c , −1/2 < c < 1/2 .

. (2.151)

Since S−profiles are suppressed by xn compared to the C-profiles, the coupling be-
tween fermions and the Higgs is controlled by (2.151), if the Yukawas are anarchic
matrices. As a consequence of the curvature of the extra dimension, the KK modes of
gauge bosons are also peaked towards the IR, indicated by the t dependence of (2.106).
Therefore, the behavior of the zero-mode profile shows that a UV localized fermion
zero mode will have exponentially small mass compared to the electroweak scale as
well as exponentially suppressed couplings to KK gauge bosons. In other words, the
same mechanism responsible for light masses ensures that flavor changing couplings,
which are generically mediated by the KK excitations of gauge bosons. This is the
RS-GIM mechanism and will be the subject of the next section. Note, that for the IR
localized top quark however, large overlaps and therefore large effects are expected,
which will be further examined in Chapter 4.
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2.5 Hierarchies in Quark Masses and Mixings and the
RS GIM Mechanism

Presumably, there is a “Balmer series” hiding
somewhere in the CKM matrix. There is a
regularity between the elements which is
tantalizing; those regularities hint at more
fundamental relationships between the
generations.

Dan Green

As stated in the introduction, the mass hierarchies of the quarks as well as a suppres-
sion of FCNCs mediated by new resonances can both be explained in the context of
partially composite fermions. In the explicit model that Kaplan constructed, see [31,
Sec. 3], the confining interactions are QCD like and the possibility to base this expla-
nation on order one parameters, namely the anomalous dimensions of the composite
quarks, was not foreseen. The fact that such a mechanism exists in Randall-Sundrum
models was recognized first by Ghergetta and Pomarol in [59, Sec. 4.3]. Later on,
the connection to Kaplan was made in [123]. In this section we will derive explicit
expressions for the masses and mixings and discuss the consequences and implications
for FCNCs.

Hierarchic Quark Masses and Mixings from Anarchic Fundamental
Parameters

In Section 1.2, it was mentioned, that the mechanism of generating hierarchical masses
and mixings by the localization of the bulk fermions is related to the Froggatt-Nielsen
mechanism. Here, this relation will be made explicit, by rederiving the formulas in [70]
in the RS model. The small expansion parameter of the CKM matrix, the Cabibbo
angle λ ' 0.2 was chosen proportional to the vev of the Froggatt-Nielsen scalar in
Section 1.2, in order to illustrate the principle. Although this is possible, we will
choose the more general ansatz

〈φ〉
ΛFl
∼ ε , (2.152)

where ε 6= λ, but some unspecified small parameter.11 Equation (1.64) is then replaced
by

Yij = Gij ε
ai−bj , (2.153)

in which it is not to be summed over double indices, and Gij denotes the entries of
some fundamental matrix G, which are assumed to be anarchical and of order one. In
the RS model with a brane Higgs, the effective four dimensional Yukawa couplings can

11Not to be confused with the ε introduced in (2.54).
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be found by integrating the last two lines of Equation (2.122) over the fifth coordinate.
Taking into account (2.149), this gives to leading order in v/MKK,(

Y eff
q

)
ij

= F (cQi)
(
Y (5D)
q

)
ij
F (cqj ) , (2.154)

in which again no sum over double indices is implied. One can therefore motivate the
identification(

Y (5D)
q

)
ij
↔ (Gq)ij , F (cQ4−i)↔ εai , F (cq4−j )↔ ε−b

q
j , (2.155)

where q = u, d and clearly two different sets of charges for cd and cu and two copies
of G need to be introduced. The strange identification scheme of charges and bulk
mass parameters is due to the fact that we follow [70] in the convention of ordering
the charges in the way12 ai+1 > ai and bi+1 < bi, so that the quarks are enumerated
starting with the heaviest. On the other hand, the flavor-bulk mass assignment should
stay in line with the previous chapters, in which cq3 denotes the localization of the
heaviest generation and so forth.
One set of equations (2.153) will then hold for the up- and one for the downtype
quarks, and their masses can be found using

n∏
i=1

mq
i =

(
v√
2

)n
detG(n)

q εKn with Kn =
n∑
i=1

ai − bqi , (2.156)

where G
(n)
q denotes the n × n submatrix formed by the first n rows and columns of

Gq. This yields for the nth largest quark mass

mn =
v√
2

|detG
(n)
q |

|detG
(n−1)
q |

εan+bqn . (2.157)

Applying (2.155) results in

mu =
v√
2

|detY
(5D)
u |

|(M (5D)
u )11|

|F (cQ1)F (cu1)| , md =
v√
2

|detY
(5D)
d |

|(M (5D)
d )11|

|F (cQ1)F (cd1)| ,

mc =
v√
2

|(M (5D)
u )11|

|(Y (5D)
u )33|

|F (cQ2)F (cu2)| , ms =
v√
2

|(M (5D)
d )11|

|(Y (5D)
d )33|

|F (cQ2)F (cd2)| ,

mt =
v√
2
|(Y (5D)

u )33| |F (cQ3)F (cu3)| , mb =
v√
2
|(Y (5D)

d )33| |F (cQ3)F (cd3)| ,
(2.158)

in which M
(5D)
q denote the minors of the corresponding 5D Yukawa matrix. In the

rest of this section, the superscript (5D) will be suppressed and every Yukawa matrix
or minor is always understood to be derived from the five dimensional fundamental
Yukawa, if not explicitly noted otherwise. One can find closed form expressions for

12For degenerate charges the following relations are only order-of-magnitude wise correct.
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the unitary diagonalization matrices U qR and U qL [70], which read

(U qL)ij = (uq)ij


F (cQi)
F (cQj )

, i ≤ j ,

F (cQj )
F (cQi)

, i > j ,

uq =



1
(Mq)21
(Mq)11

(Yq)13
(Yq)33

−(Mq)
∗
21

(Mq)
∗
11

1
(Yq)23
(Yq)33

(Mq)
∗
31

(Mq)
∗
11

−(Yq)
∗
23

(Yq)
∗
33

1


,

(2.159)

(U qR)ij = (wq)ij e
iφj


F (cqi)
F (cqj )

, i ≤ j ,

F (cqj )
F (cqi)

, i > j .

wq =



1
(Mq)

∗
12

(Mq)
∗
11

(Yq)
∗
31

(Yq)
∗
33

−(Mq)12
(Mq)11

1
(Yq)

∗
32

(Yq)
∗
33

(Mq)13
(Mq)11

−(Yq)32
(Yq)33

1


,

(2.160)

in which the phase factor

ei φj = sgn
[
F (cQj )F (cfj )

]
e−i θj , θ =

arg(detY q)− arg((Mq)11)
arg((Mq)11)− arg((Yq)33)

arg((Yq)33)

 , (2.161)

appears as a consequence of the convention to choose the diagonal entries of U qL real.

The CKM matrix VCKM = (UuL)† UdL can then be expressed in terms of the zero mode
profiles and the 5D Yukawa couplings alone. The Wolfenstein parameters read

λ =
|Vus|√

|Vud|2 + |Vus|2
, A =

1

λ

∣∣∣∣ VcbVus

∣∣∣∣ , ρ̄− iη̄ = −V
∗
udVub
V ∗cdVcb

, (2.162)

so that we obtain from (2.159)

λ =
|F (cQ1)|
|F (cQ2)|

∣∣∣∣(Md)21

(Md)11

− (Mu)21

(Mu)11

∣∣∣∣ , A =
|F (cQ2)|3

|F (cQ1)|2 |F (cQ3)|

∣∣∣∣∣∣∣∣∣
(Yd)23
(Yd)33

− (Yu)23
(Yu)33[

(Md)21
(Md)11

− (Mu)21
(Mu)11

]2

∣∣∣∣∣∣∣∣∣ ,

ρ̄− iη̄ =
(Yd)33 (Mu)31 − (Yd)23 (Mu)21 + (Yd)13 (Mu)11

(Yd)33 (Mu)11

[
(Yd)23
(Yd)33

− (Yu)23
(Yu)33

] [
(Md)21
(Md)11

− (Mu)21
(Mu)11

] .
(2.163)

Note, that ρ and η are in leading order independent of the zero mode profiles and thus
of the quark localization. Since the Yukawa couplings are not supposed to add any
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structure, there are nine zero mode profiles F (cQi), F (cui), F (cdi), i = 1, 2, 3, whose
values determine six quark masses and the remaining two Wolfenstein parameters.
We will therefore use the SM values as an input in order to fix eight of these profile
functions, and randomly choose the remaining one as well as the Yukawa matrices in all
numerical analyses. Since they are spectators in the process of generating hierarchies,
it makes sense to randomize the Yukawas on the basis of a flat distribution, see
Appendix A for details. This is not the case for all of the zero mode profiles, because
of (2.151). Only for the right-handed top quark profile function F (cu3) we expect a
linear distribution of localization parameters, because the ZMA profile depends only
linearly on cu3 , and it thus represents a specific choice for the unspecified degree of
freedom. In other words, generating values for one of the other profile functions based
on a flat distribution will result in a large rejection rate, because we know that they
are not flatly distributed. However, any peaked distribution may generate results
biased towards the peak value. We will therefore derive expressions for these eight
profile functions depending on the Yukawas, the physical input parameters and the
right handed top localization. Plots of the resulting distributions of the quark profiles
are given in Figure A.1. For the profile functions of the SU(2)L doublets, this yields

|F (cQ1)| =
√

2mt

v

(
| (Yu)33 |

∣∣∣∣(Yd)23

(Yd)33

− (Yu)23

(Yu)33

∣∣∣∣ ∣∣∣∣(Md)21

(Md)11

− (Mu)21

(Mu)11

∣∣∣∣)−1 λ3A

|F (cu3)| ,

|F (cQ2)| =
√

2mt

v

(
| (Yu)33 |

∣∣∣∣(Yd)23

(Yd)33

− (Yu)23

(Yu)33

∣∣∣∣)−1 λ2A

|F (cu3)| ,

|F (cQ3)| =
√

2mt

v

1

| (Yu)33 |
1

|F (cu3)| , (2.164)

while the up-type singlet profiles read

|F (cu1)| = mu

mt

| (Yu)33 || (Mu)11 |
detY u

∣∣∣∣(Yd)23

(Yd)33

− (Yu)23

(Yu)33

∣∣∣∣ ∣∣∣∣(Md)21

(Md)11

− (Mu)21

(Mu)11

∣∣∣∣ |F (cu3)|
λ3A

|F (cu2)| = mc

mt

| (Yu)33 |2
| (Mu)11 |

∣∣∣∣(Yd)23

(Yd)33

− (Yu)23

(Yu)33

∣∣∣∣ |F (cu3)|
λ2A

(2.165)

and the down-type singlet profiles are

|F (cd1)| = md

mt

| (Yu)33 || (Md)11 |
detY d

∣∣∣∣(Yd)23

(Yd)33

− (Yu)23

(Yu)33

∣∣∣∣ ∣∣∣∣(Md)21

(Md)11

− (Mu)21

(Mu)11

∣∣∣∣ |F (cu3)|
λ3A

,

|F (cd2)| = ms

mt

| (Yu)33 || (Yd)33 |
| (Md)11 |

∣∣∣∣(Yd)23

(Yd)33

− (Yu)23

(Yu)33

∣∣∣∣ |F (cu3)|
λ2A

.

|F (cd3)| = mb

mt

| (Yu)33 |
| (Yd)33 |

|F (cu3)| . (2.166)

The hierarchies advertised in the introduction can now be read off directly from these
expressions, as

|F (cQ1)|
|F (cQ2)| ∼ λ

|F (cQ2)|
|F (cQ3)| ∼ λ

2 |F (cQ1)|
|F (cQ3)|

∼ λ3 , (2.167)
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and

|F (cu1)|
|F (cu3)| ∼

mu

mt

1

λ3

|F (cu2)|
|F (cu3)| ∼

mc

mt

1

λ2

|F (cd1)|
|F (cu3)| ∼

md

mt

1

λ3

|F (cd2)|
|F (cu3)| ∼

ms

mt

1

λ2

|F (cd3)|
|F (cu3)|

∼ mb

mt
, (2.168)

which in turn make the hierarchical structure of the rotation matrices (2.159) and
(2.160) clearly visible.

Because only ratios or products of profile functions are fixed by the above relations,
there is some freedom in rescaling a given set of profile functions and Yukawa matrices
and still end up with a set of parameters, that reproduces all physical input param-
eters. From (2.158) it is evident that this can either be done by reshuffling between
the singlet and doublet profiles and keeping the Yukawas unchanged,

F (cQi)→ ηF (cQi), F (cqi)→
1

η
F (cqi) , (2.169)

or by rescaling both the profiles and the Yukawas

F (cQi)→ ηF (cQi), F (cqi)→ ηqF (cqi) , Y q →
1

ηηq
Y q . (2.170)

This freedom will be referred to as reparametrization invariance and will be a con-
venient tool in estimating whether regions of parameter space which are not covered
directly in the numerical analyses would change the conclusions without the need to
generate a whole new set of parameter points. One should be careful in taking ad-
vantage of this freedom, because a rescaling of the Yukawa matrix should not clash
with the assumption of order one Yukawa couplings. Also, one should be aware that
a large reparametrization of the zero mode profiles implies changes of the localization
parameters, which can lead to a shift of some profiles from the UV in the IR and
result in severe bounds from FCNCs, as we will see in the next section. The range of
sensible values for η and ηq is therefore not unlimited.

In the dual theory, the zero mode profiles are equivalent to the functions defined below
(2.47) and the bulk parameters to the anomalous dimensions of the composite quark
partners. Referring to Section 1.1, the profile functions can be understood as the
mixing angles (1.30), so that the equations (1.31), (2.47) and (2.154) are basically the
same in different languages.
The derivation of hierarchies in the quark sector in the dual theory is explained in
the corresponding Sections 1.1 and 2.2. Reparametrization invariance is the freedom
of choosing the degree of compositeness in the dual theory and corresponds to a
reshuffling between the c-parameters in (2.46). Therefore, the dual theory allows for
a better understanding of the the limitations of the rescaling parameters η, ηq. Based
on Figure 2.3, one can see that a rescaling of the profile functions of the light quarks
towards the IR will not affect the generation of the masses and mixing angles, but will
make the light quarks more and more composite, which in turn would not only lead to
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qi

qj

qk

ql

t t′

Figure 2.10: Four fermion diagram leading to ∆F = 1 and ∆F = 2 processes.

FCNCs, but also imply form factors (see [125, Sec. 3.3] for explicit calculations) clearly
in tension with the most recent experimental limits on quark compositeness [126].

The RS-GIM Mechanism

The Higgs, being confined to the IR brane is in the dual theory interpreted as a fully
composite state, and its overlap with the zero modes of the light flavor quarks is small,
because they correspond to mostly elementary states which do not couple to the Higgs.
Similarly, gauge boson KK modes are almost entirely composites and are therefore
localized towards the IR brane. As a byproduct of the mass generation by an IR brane
localized Higgs, this also keeps the couplings between light flavor quarks and these
new resonances small. Most importantly, FCNCs which appear at tree level due to the
couplings being non-universal in flavor space are exponentially suppressed by the zero
mode profile functions (2.151). This is called the RS-GIM mechanism, in reference to
the SM GIM mechanism, which explains why loop-level FCNCs in the SM are small.
Both rely on the fact, that small quark masses enter in the couplings. In both cases,
the absence or even the equality of all quark masses (bulk mass parameters) would
eliminate FCNCs.
One could worry that effects in the RS model might still be significantly to large,
because they appear at tree level, while SM FCNCs are suppressed by a loop factor.
This is however balanced by the KK modes being heavy, so that the new physics scale
provides an additional suppression. All experimental evidence points in the direction
of small FCNCs in very good agreement with the SM and thus the requirement

1

M2
KK

×m2
q ≈ 1

16π2
×

m2
q

M2
W

(2.171)

can be understood as a very rough estimate of the new physics scale expected if an
RS-GIM mechanism is realized in nature. Remarkably, this puts it in the ballpark of
MKK ∼ 4πMW , which is what one would expect from a model designed to solve the
gauge hierarchy problem. It should be stressed, that it is especially noteworthy if not
unique, that flavor points to the TeV scale in a new physics model with no additional
assumptions regarding couplings in the flavor sector (a.k.a. MFV).
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UV brane IR brane

ε t 1

UV brane IR brane

ε t 1

Figure 2.11: Qualitative illustration of the RS-GIM mechanism. The dashed lines
represent a t2 term from the 5D gauge boson propagator. The solid lines show the
profile of a UV and an IR localized fermion zero mode in the left panel and of to
IR localized zero modes in the right panel. The blue shaded area can be interpreted
as an indicator of the size of the FCNC coupling resulting from the overlap integral
including the three functions.

Moreover does the 5D description allow for a particularly illustrative explanation of
the RS-GIM mechanism in geometric terms. In order to understand this let us analyze
all possible contributions arising from tree level diagrams as shown in Figure 2.10. It
describes a process in which external zero mode fermions couple to the tower of all KK
modes of a gauge boson, which in the effective theory is given by the first term in the
expansion of the 5D propagator for small momenta (2.82). The couplings will therefore
be rescaled by an integral over the fifth dimension including the t-dependent terms
of the zero modes (2.149) and the expressions (2.86) or (2.103). As an example, the
Wilson coefficient of a four quark operator with four SU(2)L singlet external quarks

Heff 3
3∑

i,j,k,l=1

cijkl
(
q̄ciγµq

c
j

)(
q̄ckγµq

c
l

)
, (2.172)

with i, j, k, l flavor indices, gets contributions from KK photon exchange proportional
to the following overlap integral

cijkl ∼
α

M2
KK

∫ 1

ε
dt

∫ 1

ε
dt′ tcqi+cqj t′cqk+cql

[
Lt2< − t2(

1

2
− ln t)− t′2(

1

2
− ln t′) +

1

2L

]
,

(2.173)

in which only the leading C-profiles are included and the 5D coordinates are assigned
to the two vertices as shown in Figure 2.10. The integral∫ 1

ε
dt tcqi+cqj × constant (2.174)

will not lead to FCNCs, because in the case of the photon, the operator in (2.172)
with only SU(2)L doublets gives rise to a similar integral with S-profiles which in the
sum completes the orthonormality relation of the fermion profiles (2.125).
FCNCs can therefore only arise if the gauge boson couplings distinguish between
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SU(2)L doublets and singlets or from propagator terms proportional to t or t′. Terms
proportional to only one of the coordinates t or t′ should therefore be read as t2 → t2×1
in flavor space and since we will concentrate on the photon, which has vectorial cou-
plings, can at most generate contributions to ∆F = 1 processes. Consequentially,
only the term proportional to t2< = Min[t2, t′2] in equation (2.173) will contribute to
∆F = 2 processes, while the second and third term will lead to flavor violation at the
respective vertex and the constant is flavor diagonal.
Note, that there are no negative powers of t or t′ in the propagator. This implies, that
the function becomes large in the IR and small in the UV. For the fermion zero modes,
the sign of the exponent depends on the localization. The factor tcqi+cqj becomes large
in the IR only if both qi and qj are IR localized, which is generically only the case if
both are top quarks. If one of them or even both are UV localized, this factor drags
the whole integral kernel into the UV which leads to small overlap integrals. As a
rough guide one can assume that if the shared enclosed area of the function curves
of the propagator term and the two zero modes is small (large), the overlap integral
becomes small (large). This rule of thumb is illustrated in Figure 2.11. It works only
because the propagators are IR localized. The zero mode of the graviton for example
is localized in the UV, which makes the overlap integrals with SM fermion profiles
even smaller, so that the conclusions drawn from Figure 2.11 are not applicable.

The discussion in this section is based on the exchange of the whole KK tower, but
would have led to the same qualitative results if only a single gauge boson KK mode
was exchanged instead. In this case, the propagator in (2.173) is replaced by one
summand of the right hand side of (2.89). The profiles of the gauge boson KK modes
are given in (2.106), and are already IR localized due to the t in front of the Bessel
functions.13 Certain aspects of the full sum can however not be estimated by con-
sidering the exchange of a single KK mode. For example, the enhancement by the
volume factor L ≈ 36 in front of the t2<- term is hidden in a mode-by-mode inspection,
and will lead to somewhat surprisingly large effects in ∆F = 2 observables, because
such a factor clearly spoils the naive estimate (2.171). One can however check, that
the sum must not extend to infinity in order to reproduce these effects.
It can even be considered wrong to sum up all modes, because this would contradict
the perception of the RS model as an effective theory. At what point the tower should
be cut off however is not uniquely defined. In the 5D description, it depends on the lo-
calization of the involved fields in the bulk and is therefore process dependent. Based
on this argument, a process involving the Higgs describes physics close to the IR brane
and should thus be cutoff at mn ∼ a few TeV . Processes involving only light fermions
(and a graviton for example) would however require a cutoff close to the Planck scale
mn ∼MPl.

Regarding these considerations, one should keep in mind, that dual theory is a walk-
ing TC theory, which means it remains strongly coupled over a large range of scales,
namely over the whole bulk due to the identification of the fifth coordinate with an
inverse energy scale. From this point of view it would be sensible to cut off at the scale

13This is a direct effect of the warped metric. In the limit of vanishing curvature k → 0, the Bessel
functions become trigonometric functions and t→ 1. As a result, there is no localization.
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at which the theory becomes asymptotically free, which is indicated by the position
of the UV brane. Independent on what position one takes, it will be a good approxi-
mation to evaluate the whole propagator, as very heavy modes do not contribute much.

In order to give precise expressions for the integrals in (2.173), we will in the following
collect formulas for overlap integrals involving all possible terms which appear in the
propagators derived in Section 2.3, including the full fermion profiles (2.149). It will
be referred to those in the next sections, when effective Hamiltonians are constructed.
Flavor changing at one vertex is described by the integrals

(∆Q)ij =
2π

Lε

∫ 1

ε
dt t2

[
a

(Q)†
i C

(Q)
i (t)C

(Q)
j (t) a

(Q)
j + a

(q)†
i S

(q)
i (t)S

(q)
j (t) a

(q)
j

]
, (2.175)

(∆q)ij =
2π

Lε

∫ 1

ε
dt t2

[
a

(q)†
i C

(q)
i (t)C

(q)
j (t) a

(q)
j + a

(Q)†
i S

(Q)
i (t)S

(Q)
j (t) a

(Q)
j

]
,

(
∆′Q
)
ij

=
2π

Lε

∫ 1

ε
dt t2

[
1

2
− ln t

][
a

(Q)†
i C

(Q)
i (t)C

(Q)
j (t) a

(Q)
j + a

(q)†
i S

(q)
i (t)S

(q)
j (t) a

(q)
j

]
,

(
∆′q
)
ij

=
2π

Lε

∫ 1

ε
dt t2

[
1

2
− ln t

][
a

(q)†
i C

(q)
i (t)C

(q)
j (t) a

(q)
j + a

(Q)†
i S

(Q)
i (t)S

(Q)
j (t) a

(Q)
j

]
,

in which i, j refer to the flavor indices in Figure 2.10. The other vertex gets only
flavor diagonal contributions from these structures. Recall also, that on the profiles
of SU(2)L doublet fermions no distinction is made between Q = U,D. Propagator
terms proportional to t2< lead to non-factorizable overlap integrals, for example

(
∆̃Q

)
ij
⊗
(
∆̃q′
)
kl

=
2π2

L2ε2

∫ 1

ε
dt

∫ 1

ε
dt′ t2< (2.176)

×
[
a

(Q)†
i C

(Q)
i (t)C

(Q)
j (t) a

(Q)
j + a

(q)†
i S

(q)
i (t)S

(q)
j (t) a

(q)
j

]
×
[
a

(q′)†
k C

(q′)
k (t′)C

(q′)
l (t′) a

(q′)
l + a

(Q′)†
k S

(Q)
k (t′)S

(Q)
l (t′) a

(Q′)
l

]
,

in which the flavor indices are again chosen in line with Figure 2.10. If the couplings
to SU(2)L singlets and doublets differ, as in the case of the Z boson, the couplings
can be expressed by the equivalent of the above integrals with the C-profiles omitted,
denoted by the replacement ∆→ ε. The expressions ε(′), ε̃⊗ ∆̃ and variations thereof
are then defined in an obvious manner. Finally, couplings to the Higgs involve the
profiles evaluated directly at the brane and we define

(gqh)ij =
√

2
π

Lε

∫ 1

ε
dt δ(t− 1)

[
aQ†i CQ

i (t)Y q C
q
j(t) a

q
j + aq †i Sqi (t)Y

†
q S

Q
j (t) aQj

]
.

(2.177)

in order to describe them. Using the EOM, (2.177) can be reformulated as

(gqh)ij = δij
mq
i

v
− mq

i

v
(δq)ij − (δQ)ij

mq
j

v
+ (∆gqh)ij , (2.178)
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with the overlap integrals

(δq)ij =
2π

Lε

∫ 1

ε
dt aQ †i SQi (t)SQj (t) aQj

(δQ)ij =
2π

Lε

∫ 1

ε
dt aq †i Sqi (t)S

q
j(t) a

q
j

(∆gqh)ij =
2π

Lε

∫ 1

ε
dt δ(t− 1) aq †i Sqi (t)Y

†
q S

Q
j (t) aQj . (2.179)

The last integral corresponds to the second Yukawa coupling in (2.177) and must be
evaluated with a properly regularized delta function, see [118, p.135f.]. It will represent
the leading term in Higgs mediated flavor violating processes, because it is not chirally
suppressed. However, for all processes considered it can still be neglected, because in
the case of ∆F = 1 currents the flavor-conserving vertex is chirally suppressed and for
∆F = 2 currents it is smaller then the tensor structure (2.176) by a factor v2/M2

KK.
It is however important in Higgs physics [127].

In the ZMA, the above matrices simplify considerably,

∆Q → U q†
L diag

[
F 2(cQi)

3 + 2cQi

]
U q
L ,

∆q → U q†
R diag

[
F 2(cqi)

3 + 2cqi

]
U q
R ,

∆′Q → U q†
L diag

[
5 + 2cQi

2(3 + 2cQi)
2
F 2(cQi)

]
U q
L ,

∆′q → U q†
R diag

[
5 + 2cqi

2(3 + 2cqi)
2
F 2(cqi)

]
U q
R , (2.180)

and (
∆̃Q

)
mn
⊗
(
∆̃q′
)
m′n′
→
∑
i,j

(
U q†L
)
mi

(
U qL
)
in

(∆̃Qq)ij
(
U q†R
)
m′j

(
U qR
)
jn′
, (2.181)

where

(∆̃Qq)ij =
F 2(cQi)

3 + 2cQi

3 + cQi + cqj
2(2 + cQi + cqj )

F 2(cqj )

3 + 2cqj
, (2.182)

and analogue for the remaining combinations of indices Q and q. Because of the
v/MKK suppression in (2.150), the ε structures vanish in the ZMA. Using the fact that
all ci parameters except cu3 are very close to −1/2, it is a reasonable approximation
to replace (3+cQi +cqj )/(2+cQi +cqj ) by 2, in which case we obtain the approximate
result

∆̃A ⊗ ∆̃B →∆A ∆B , (2.183)
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as well as ∆′A ≈∆A, both for A,B ∈ {Q, q}. For completeness, the matrices (2.179)
are given

δQ → xqU
q†
R diag

[
1

1− 2cqi

(
1

F 2(cqi)
− 1 +

F 2(cqi)

3 + 2cqi

)]
U q
R xq , (2.184)

δq → xqU
q†
L diag

[
1

1− 2cQi

(
1

F 2(cQi)
− 1 +

F 2(cQi)

3 + 2cQi

)]
U q
L xq ,

∆gqh →
√

2 v2

3M2
KK

U q†
L diag [F (cQi)] Y qY

†
qY q diag [F (cqi)]U

q
R ,

where xq denotes a vector in flavor space with xq = mq/MKK as its entries.

2.6 Four Fermion Interactions

Given the flavor mixing matrices introduced in the last section and the expressions
for the SM gauge boson propagators (2.103) and (2.86), it is straightforward to derive
effective Hamiltonians featuring all dimension six operators with four fermion legs. In
matching the full with the effective theory, one has to evaluate all diagrams in the full
theory, and take into account possible symmetry factors for the effective diagrams,
which are process dependent. Therefore, a common prefactor S(q̄i, qj ; q̄

′
k, q
′
l) depending

on the flavor indices i, j, k, l of all external quarks in a given process, is introduced.
In order not to clutter up the notation we will write the external quarks q and q′ as
vectors in flavor space and the sum implicitly assumes a sum over all KK modes as
well. For the photon one finds,

H(γ)
eff =

2πα

M2
KK

∑
q,q′

S(q̄i, qj ; q̄
′
k, q
′
l)Qq Qq′

{
1

2L
(q̄γµq)

(
q̄′γµq

′) (2.185)

− 2
(
q̄Lγ

µ∆′QqL + q̄Rγ
µ∆′qqR

) (
q̄′γµq

′)
+ 2L

(
q̄Lγ

µ∆̃QqL + q̄Rγ
µ∆̃qqR

)
⊗
(
q̄′Lγµ∆̃Q′q

′
L + q̄′Rγµ∆̃q′q

′
R

)}
.

The same expression holds for the gluon, with α→ αs and the electromagnetic charges
replaced by the color matrices T a⊗T a inserted in the respective quark bilinears. The
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induced interactions arising from the exchange of a Z-boson read

H(Z)
eff =

4πα

s2
wc

2
wm

2
Z

[
1 +

m2
Z

2M2
KK

[
1− 1

2L
+O

(
m4
Z

M4
KK

)]]
(2.186)

×
∑
q,q′

S(q̄i, qj ; q̄
′
k, q
′
l)
[
q̄Lγ

µT q3 (1− δQ)qL + q̄Rγ
µT q3 δqqR − s2

wQq q̄γ
µq
]

×
[
q̄′LγµT

q′

3 (1− δQ′)q′L + q̄′RγµT
q′

3 δq′q
′
R − s2

wQq′ q̄
′γµq

′
]

+
4παL

s2
wc

2
wM

2
KK

∑
q,q′

S(q̄i, qj ; q̄
′
k, q
′
l){

−
[
q̄LγµT

q
3 (1− δQ)qL + q̄RγµT

q
3 δqqR − s2

wQq q̄γµq
]

×
[
q̄′Lγ

µT q
′

3 (∆Q′ − εQ′)q′L + q̄′Rγ
µT q

′

3 εq′q
′
R − s2

wQq′
(
q̄′Lγ

µ∆Q′q
′
L + q̄′Rγ

µ∆q′q
′
R

) ]
+
[
q̄Lγ

µT q3 (∆̃Q − ε̃Q)qL + q̄Rγ
µT q3 ε̃qqR − s2

wQq

(
q̄Lγ

µ∆̃QqL + q̄Rγ
µ∆̃qqR

) ]
⊗
[
q̄′LγµT

q′

3 (∆̃Q′ − ε̃Q′)q′L + q̄′RγµT
q′

3 ε̃q′q
′
R − s2

wQq′
(
q̄′Lγµ∆̃Q′q

′
L + q̄′Rγµ∆̃q′q

′
R

) ]}
.

Here, the δ and ε matrices appear due to the non-vectorial coupling of the Z. Also,
by writing mZ , we implicitly assume the RS corrections (2.111) to be absorbed. Here
and in the following, mW,Z ≡ mRS

W,Z . To a good approximation one can neglect these
terms and ends up with a considerably simpler expression, which holds up to order
v4/M4

KK corrections,

H(Z)
eqq =

4πα

s2
wc

2
wm

2
Z

[
1 +

m2
Z

2M2
KK

[
1− 1

2L
+O

(
m4
Z

M4
KK

)]]
S(q̄, q; q̄′, q′)JµZ JZµ (2.187)

− 8πα

s2
wc

2
wm

2
Z

∑
q

S(q̄i, qj ; q̄
′
k, q
′
l) [q̄Lγ

µT q3 δQqL − q̄RγµT q3 δqqR] JZµ

− 4παL

s2
wc

2
wM

2
KK

∑
q

S(q̄, q; q̄′, q′)
[ (
T q3 − s2

wQq
)
q̄Lγ

µ∆QqL − s2
wQq q̄Rγ

µ∆qqR

]
JZµ

+
4παL

s2
wc

2
wM

2
KK

∑
q,q′

S(q̄, q; q̄′, q′)

{[ (
T q3 − s2

wQq
)
q̄Lγ

µ∆̃QqL − s2
wQq q̄Rγ

µ∆̃qqR

]

⊗
[ (
T q
′

3 − s2
wQq′

)
q̄′Lγµ∆̃Q′q

′
L − s2

wQq′ q̄
′
Rγµ∆̃q′q

′
R

]}
,

in which

JµZ ≡
∑
q

[(
T q3 − s2

wQq
)
q̄Lγ

µqL − s2
wQq q̄Rγ

µqR
]
. (2.188)
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Finally, Higgs exchange leads to the Hamiltonian

H(h)
eff =

1

m2
h

∑
q,q′

S(q̄i, qj ; q̄
′
k, q
′
l)
[
q̄L
mq

v
qR − q̄L

(mq

v
δq + δQ

mq

v
+ ∆gqh

)
qR + h.c.

]
×
[
q̄′L
mq′

v
q′R − q̄′L

(mq′

v
δq′ + δQ′

mq′

v
+ ∆gq

′

h

)
q′R + h.c.

]
≈ 1

m2
h v

2

∑
q,q′

S(q̄i, qj ; q̄
′
k, q
′
l) (2.189)

×
[ (
q̄mqq − 2

[
q̄L
(
mq δq + δQmq + v∆gqh

)
qR + h.c.

]) (
q̄′mq′q′

) ]
,

in which the second line is an approximation valid up to O
(
v4/M4

KK

)
corrections.

Since we are mainly interested in studying FCNCs, we refrain from giving explicit
expressions for the effective Hamiltonians describing the exchange of charged gauge
bosons, but refer to [150, Sec. 3.3] for the relevant expressions.
One might also expect the previously mentioned radion to give significant contribu-
tions to FCNCs, especially since it is often considered the lightest new resonance in
RS models in the literature. However, it will only have a mass in the range of the
Higgs mass if the Goldberger-Wise potential is tuned,14 while in a general setup the
mass of the radion is of O(TeV), compare [84, Sec. 6]. Moreover, one finds that the
radion couplings to fermions are chirally suppressed, similar to the Higgs, see [128] for
a detailed discussion. Since we find that Higgs contributions to FCNCs are negligible,
we will also neglect the effects of radion exchange in the analyses in the next chapter.

14Which is done in many analyses, because it allows for an analytic solution.



3 Solving the Flavor Problem
in Strongly Coupled
Theories

In this chapter, which I consider the core of the thesis, the flavor problem of strongly
coupled theories will be discussed at the hand of the holographic dual RS model. A
solution will be proposed, which is successful in theories which do have a dual 5D
theory and the consequences of this mechanism for models without holographic inter-
pretation will be explained.
In the first Section 3.1, the compatibility of such models with electroweak precision
tests is reviewed. Updates to the published results will be presented as well as a dis-
cussion of the significance of those tests for strongly coupled theories.
Section 3.2 collects some examples which show how the RS-GIM mechanism success-
fully suppresses tree-level mediated flavor changing processes both for ∆F = 1 and
for ∆F = 2 currents. For this analysis processes involving b quarks have been chosen
which are good tests of the RS-GIM mechanism, as the b is still fairly IR localized.
It will be shown that almost all flavor observables can be brought in agreement with
a KK scale of a few TeV, with a single exception, εK , which measures CP-violation
in K − K̄-mixing. Even though the quarks involved are in the first and second gen-
eration, and therefore UV localized, the traditional pitfall in the flavor sector, the
hugely enhanced mixed-chirality operators in ∆S = 2 processes push the KK scale to
MKK = O(10) TeV.
Section 3.3 will explain this problem and list some solutions proposed in the literature,
pointing out their strengths and weaknesses both from the perspective of a strongly
coupled theory as well as from the holographic point of view. Subsequently, in Section
3.4 a novel solution will be motivated and discussed in detail. It will be shown how
the same mechanism can also solve the flavor problem in composite Higgs models
without partial compositeness in Section 3.5, even if they can not be described by a
holographic extra dimensional model.
In Section 3.6 a discussion about the implications for the scalar sector will be given
and in Section 3.7 the consequences for direct searches of KK particles at the LHC,
as well as for flavor violating observables in other sectors are explained.
It should be emphasized that the discussion throughout this chapter concentrates on
tree level diagrams and observables which are generated by loops are not computed.
The calculation of loops in warped extra dimensions is very involved due to nested
sums over internal KK modes and we will be content with quoting important results
and otherwise refer to the literature, e.g. [129] and [130]. Likewise are lepton flavor vi-
olating observables not considered, as the implementation of the lepton sector requires
further model building (the localization along the extra dimension does not readily
yield the correct mixing angles). For this is also referred to the relevant literature
[131].
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Figure 3.1: This is a list of electroweak precision observables published by the GFitter
group [133]. A definition of the observables can be found in the original paper or for
example in [132, Sec.3A]. The bars show the deviation of the measurements from the
SM predictions in standard deviation.

3.1 Electroweak Precision Observables

The main focus of this thesis is on flavor changing processes. It is nevertheless im-
portant to consider implications from flavor conserving observables, especially if they
have direct impact on the later discussions. Electroweak precision tests are a measure
of new physics contributions to flavor conserving four fermion scattering processes,
including both propagator and vertex corrections. They are an important check for
new physics models and a particularly hard one for strongly coupled theories. In this
section the reasons for this and the implications for the Randall Sundrum model will
be discussed.

It is assumed that the reader is familiar with the list of electroweak observables com-
piled in Figure 3.1. A detailed explanation for each observable can for example be
found in [132, Sec.3A]. Indicated by the bars are the degrees of compatibility of the
experimental values with the SM predictions measured in standard deviations, the
so-called pull. Historically, fits to these observables have been used to successfully
predict the mass of the top quark before its direct observation [132, Sec.3A]. Likewise,
a global fit to these data has been used to constrain the Higgs mass window before
its discovery. However, since Higgs-induced loops lead to logarithmic corrections, e.g.
∼ lnmh/mZ , while quark loops induce quadratic corrections ∼ m2

t /m
2
Z , the top mass

was a rather precise prediction, whereas the Higgs mass bound from the latest fit
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Figure 3.2: The plots show regions of 68%, 95% and 99% probability in the S − T
plane. Shaded red (orange) are the accessible regions for MKK ∈ [1− 3] TeV (MKK ∈
[3− 10] TeV) for the minimal model (growing vertically towards large T ) and for the
custodially protected model (the horizontal stripe). The black arrows point in the
direction of growing volume L ∈ [5, 36].

[133],

mh = 96+31
−24GeV , (3.1)

can only be considered a rough guide pointing towards a rather light Higgs. These
global fits do not only constrain the masses of hypothetical SM particles, but also
of new physics resonances which contribute through radiative corrections. Basically
every light new resonance with an electroweak quantum number is supposed to show
up as a discrepancy in Figure 3.1. Possible cancellations of these contributions could
therefore still have explained why the Higgs would be heavier than allowed by the
SM fit (3.1), until it was finally found at mh ≈ 126 GeV [134, 135]. This makes
electroweak precision test an even more powerful tool to constrain new physics, be-
cause every possible cancellation must occur between the new resonances and should
therefore be predicted by the model at hand.

Oblique Parameters

All observables in Figure 3.1 show very good agreement with the SM, which is synonym
with no deviation at 3σ or more. Apart from couplings of the Z to bottom quarks,
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measured by R0
b = Γb̄bZ /Γ

had
Z , which denotes the ratio of Z → bb̄ decays and the

full hadronic Z branching ratio, as well as Abb̄FB, the forward-backward asymmetry
of the same decay channel, not even a 2σ discrepancy is observed. Both of these
observables are sensitive to vertex corrections. New contributions to the electroweak
gauge boson propagators should therefore exhibit a particular good agreement with
the SM. Following Peskin and Takeuchi [136, 137], it makes therefore sense to define
parameters, which quantify New Physics contributions to the electroweak gauge boson
propagators (1.7), in writing

Πab(q
2) = ΠSM

ab (q2) + δΠab(q
2) , (3.2)

for all allowed combinations ab = γγ, Zγ, ZZ and WW . Assuming that the new
physics scale is large compared to the gauge boson masses, one can expand its contri-
bution in (3.2) up to linear order in q2,

δΠab(q
2) ≈ δΠab(0) + q2δΠ′ab(0) . (3.3)

From the eight parameters δΠab(0), δΠ′ab(0), three are fixed by the renormalization of
the three SM input parameters GF , α and mZ . Two are zero by gauge invariance,
δΠγγ(0) = δΠγZ(0) = 0, and therefore all New Physics effects can be described by
three linear combinations. The values of the SM contributions ΠSM

ab (q2) are normalized
to zero, so that we can define the oblique parameters [137],

S =
4s2

wc
2
w

α

[
Π ′ZZ(0) +

s2
w − c2

w

swcw
Π ′Zγ(0)−Π ′γγ(0)

]
,

T =
1

αc2
wm

2
Z

[
ΠWW (0)− c2

w ΠZZ(0)
]
,

U =
4s2

w

α

[
Π ′WW (0)− c2

w Π ′ZZ(0)− 2 swcw Π ′Zγ(0)− s2
w Π ′γγ(0)

]
.

(3.4)

The SM values are by construction S = T = U = 0, and we anticipate that U = 0 to
leading order in the RS model as well. In this case, the best fit to the experimental
input values results in [133]

Sexp = 0.07± 0.09 ,

Texp = 0.10± 0.08 ,
ρ =

(
1.00 0.88

0.88 1.00

)
, (3.5)

in which ρ denotes the correlation matrix and a Higgs mass of mh = 120 GeV was
used as an input.
One can think of the S parameter as the number of degrees of freedom running in the
loop. In strongly coupled theories typically the number of colors and the number of
flavors tends to be large, in order to allow for a walking coupling and an embedding
in an ETC group. Therefore one finds using naive dimensional analysis (NDA) [138],
that S ∼ NFNC/π in TC theories, or alternatively S ∼ 0.3 extrapolated from QCD
[136, Sec.VII]. This makes the S parameter, besides the top mass, one of the most
difficult challenges for strongly coupled theories. The T parameter can be considered
a measure of additional isospin breaking from fermions running in the loops. In TC
models, T ∼ 1/(4π) and thus negligible in most cases. The reason is, that the T
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parameter is related to ρ = m2
W /(m

2
Zc

2
w) = 1 +αT , which is protected by the approx-

imate global SU(2)L × SU(2)R symmetry of the Higgs sector. This global symmetry,
is generally assumed to be realized in TC extensions of the SM as well, which leads
to small deviations.

In the minimal RS model, the leading contributions to the oblique parameters arise
from mixing of the KK excitations into the zero mode gauge bosons, [115, 140, 139],

S =
2πv2

M2
KK

(
1− 1

L

)
, T =

π2v

2c2
wM

2
KK

(
L− 1

L

)
. (3.6)

The result is shown in Figure 3.2, in which the cross is at the best fit point with
68%, 95% and 99% confidence level (CL) ellipses in shades of yellow, gray and blue
respectively, the star is the SM prediction and the orange (red) band rising in the
direction of a large T parameter shows (3.6) for a KK scale of 3 − 10 TeV (1 − 3)
TeV. In addition, the effect of varying the volume of the extra dimension L ∈ [5, 36]
is plotted with increasing L in the direction of the arrow. Two things are remarkable
here. First, the S parameter seems to be under control. This can be interpreted as
an unexpected nice result from the holographic theory, because it seems to contradict
the estimates relying on NDA or upscaled QCD (keep in mind that the RS model is
dual to a large Nc strongly coupled theory). However, it was shown for holographic
higgsless models, that if one localizes the fermions on the UV brane, a large positive
contribution to S in very good agreement with the naive estimates occurs, compare
[141, Sec.3]. On the other hand, models with IR brane localized fermions give large
(order L) negative contributions to S, as discovered in [142, Sec.3].
In [143] these results could be explained by showing that the contributions to the S
parameter are sensitive to the localization of the fermions and vanish for c ≈ −1/2.
This dependence is not the visible in (3.6), because we only consider universal correc-
tions there. It can be motivated in the dual theory described in Section 2.2, how a
different fermion localization may affect the S parameter. If the quarks are confined to
the UV brane, they are elementary fermions with direct couplings to the electroweak
gauge bosons and reproduce the SM quark contributions to S, while the composite
fields live in the IR and contribute in agreement with what we expect from a strongly
interacting theory. Confining the quarks to the IR brane makes them fully compos-
ite and couplings to the electroweak gauge bosons can only occur through mixing
with composite vector bosons (there is no direct coupling due to the large anomalous
dimension of IR localized fields). Therefore, the contribution from the elementary
quarks to the reference value S = 0 is not present in this model, resulting in a neg-
ative value of S, even though the technifermions still give positive corrections. The
possibility to achieve moderate S can therefore be viewed as another advantage of
partially composite fermions.
The second remark is, that the T parameter is enhanced by a volume factor and there-
fore significantly larger than expected from NDA. An explanation can also be found
from the dual description. In Section 2.2 it was shown that a global symmetry in the
strongly coupled theory is described by a bulk gauge symmetry. As pointed out above,
the T parameter is small because it is protected by a global symmetry, the custodial
SU(2)L × SU(2)R. The minimal model as shown in Figure 2.1, with the SM gauge
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group only, does not correspond to a theory with such a protection and therefore the
T parameter turns out to be large. One can therefore consider a custodial symmetry
indispensable for any extension of the SM, and in the custodially protected RS model
with an corresponding extended bulk group one finds [114],

S =
2πv2

M2
KK

(
1− 1

L

)
, T = − π2v

2c2
wM

2
KK

1

L
, (3.7)

as shown in Figure 3.2 by the orange band extending from the SM prediction towards
larger S.
One can think of other solutions, for example a version of the RS model in which
the volume factor L is smaller than 36. The effect of this modification is shown in
Figure 3.2 as well, in which the volume factor grows from L = 5 to L = 36 along the
black arrows. The physical meaning of such a truncation is that the gauge hierarchy
problem will only be cured up to some intermediate scale ΛUV = eL TeV. Based on
little Higgs models, these models are called little RS (LRS) models and just like the
little Higgs model they need some UV completion already at ΛUV = eL TeV. Since
lowering the volume factor will affect many observables also in the flavor sector, we
will come back to this option when we discuss FCNCs.

Corrections to Z → bb̄

The only observables with at least moderate deviations from the SM in 3.1 are sensi-
tive to corrections to the Zbb̄ vertex. Since the left-handed b quark is the weak isospin
partner of the top, they share the same 5D mass or localization parameter cQ3 in the
RS model. In order to generate the large top mass, cQ3 is shifted towards the IR
compared to the light quark localizations. Consequentially, one should expect sizable
corrections from the RS model.

From (2.113) and the structures defined in (2.175) it follows that the Z−vertex cor-
rection for general external quark flavors can be written in the form

L4D 3
g

cos θW

[
1 +

m2
Z

4M2
KK

(
1− 1

L

)]
Z0
µ

×
∑
ij

[(
gqL
)
ij
q̄L,iγ

µqL,j +
(
gqR
)
ij
q̄R,iγ

µqR,j

]
, (3.8)

in which

gqL =
(
T q3 − sin2 θW Qq

) [
1− m2

Z

2M2
KK

(
L∆Q −∆′Q

)]
− T q3

[
δQ −

m2
Z

2M2
KK

(
L εQ − ε′Q

)]
,

gqR = − sin2 θW Qq

[
1− m2

Z

2M2
KK

(
L∆q −∆′q

)]
+ T q3

[
δq −

m2
Z

2M2
KK

(
L εq − ε′q

)]
, (3.9)

with i, j = 1, 2, 3 denoting flavor indices and T d3 = −1
2 and Qd = −1

3 the corresponding
weak isospin and charge for down type quarks. Relevant for the Zbb̄ vertex are the 33
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elements of these matrices, that is the modifications to the flavor universal couplings.
In general the Z coupling to light quarks is modified as well. However, because of
the UV localization of the corresponding bulk fields, the SM expressions (gqL)11 =
T q3 − sinW θWQ

q and (gqR)11 = − sin2 θWQ
q are excellent approximations and the

production can assumed to be SM like.1With the help of the ZMA (2.180) and (2.184),
we obtain

gbL ≡
(
gdL
)

33
→
(
−1

2
+

sin2 θW
3

)[
1− m2

Z

2M2
KK

F 2(cbL)

3 + 2cbL

(
L− 5 + 2cbL

2(3 + 2cbL)

)]
(3.10)

+
m2
b

2M2
KK

 1

1− 2cbR

(
1

F 2(cbR)
− 1 +

F 2(cbR)

3 + 2cbR

)
+
∑
i=1,2

|(Yd)3i|2
|(Yd)33|2

1

1− 2cdi

1

F 2(cbR)

 ,
gbR ≡

(
gdR
)

33
→ sin2 θW

3

[
1− m2

Z

2M2
KK

F 2(cbR)

3 + 2cbR

(
L− 5 + 2cbR

2(3 + 2cbR)

)]
(3.11)

− m2
b

2M2
KK

 1

1− 2cbL

(
1

F 2(cbL)
− 1 +

F 2(cbL)

3 + 2cbL

)
+
∑
i=1,2

|(Yd)i3|2
|(Yd)33|2

1

1− 2cQi

1

F 2(cbL)

 ,
in which the notation cbL ≡ cQ3 and cbR ≡ cd3 is introduced. The terms in the second
lines in (3.10) and (3.11) come from the ZMA expressions of the δ matrices and are
further suppressed by mb/mZ , so that the leading terms are controlled by the zero
mode profiles F (cbL) and F (cbR).

The ratio of the width of the Z0-boson decay into bottom quarks and the total hadronic
width R0

b , the bottom quark left-right asymmetry parameter Ab, and the forward-

backward asymmetry for bottom quarks A0,b
FB, are given in terms of the left- and

right-handed bottom quark couplings as [145]

R0
b =

[
1 +

4
∑

q=u,d

[
(gqL)2 + (gqR)2

]
η2ηQCD ηQED

[
(1− 6zb)(g

b
L − gbR)2 + (gbL + gbR)2

]]−1

,

Ab =

2
√

1− 4zb
gbL + gbR
gbL − gbR

1− 4zb + (1 + 2zb)

(
gbL + gbR
gbL − gbR

)2 , A0,b
FB =

3

4
AeAb , (3.12)

where ηQCD = 0.9954 and ηQED = 0.9997 are QCD and QED radiative correction
factors. The factor η2 = 0.99386 takes into account the recently published fermionic
two loop contributions computed in [147], which are the only reason for the significant
pull of R0

b in Figure 3.1. The parameter zb ≡ m2
b(mZ)/m2

Z = 0.997 ·10−3 describes the
effects of the non-zero bottom quark mass. As explained above, left- and right-handed
couplings of the light quarks, gqL and gqR, and the asymmetry parameter of the electron,
Ae can be assumed SM like and we fix these quantities to their SM values. In what
follows we will employ guL = 0.34674, guR = −0.15470, gdL = −0.42434, gdR = 0.077345
and Ae = 0.1473 for the SM predictions [146, Table G3].

1For electrons as initial state the modifications are even smaller.
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Figure 3.3: The plots show regions of 68%, 95% and 99% probability in the gbL − gbR
plane. The best fit value is denoted with a cross and the experimental value with a
star. The red colored regions indicate the predicted values of a large set of parameter
points for the minimal RS model in the left panel and for the RS model with custodial
protection in the right panel.

Inserting the predicted SM values gbL = −0.42114 and gbR = 0.077420 [146, Table G3]
for the left- and right-handed bottom-quark couplings into the relations (3.12), we
obtain for the central values of the quantities in question

R0
b = 0.21474 , Ab = 0.935 , A0,b

FB = 0.1032 . (3.13)

In comparison, the experimentally extracted values for the three “pseudo observables”
read [146]

R0
b = 0.21629± 0.00066 ,

Ab = 0.923± 0.020 ,

A0,b
FB = 0.0992± 0.0016 ,

ρ =

 1.00 −0.08 −0.10
−0.08 1.00 0.06
−0.10 0.06 1.00

 , (3.14)

where ρ is the correlation matrix. This reproduces the deviations listed in Table 3.1.
In contrast to the original analysis in [115, Sec. 6.4], the theoretical corrections to R0

b

pull the best fit value 3σ away from the experimental SM value, as can be seen in Fig-
ure 3.3, in which the best fit is denoted by a cross and the experimental value by a star.

A new physics contribution that would improve this situation needs a large positive
correction to gbR of the order of 20% and no contribution to gbL ( while a small neg-
ative shift would also improve the fit). As becomes clear from (3.10) and (3.11), RS
corrections reduce the SM value of both gbR and gbL in magnitude, which corresponds
to a negative shift of gbR and a positive one for gbL, pointing in exactly the oppo-
site direction. In addition, the corrections to gbR are smaller by a factor of roughly
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δgbR/δg
b
L ∼ F (cbR)2/F (cbL)2 for δgb = (gbRS−gbSM)/gbSM, which is typically of the order

of a few percent, because cbL is more IR localized in order to help realizing the large
top mass in (2.158). The scaling on the plot in the left panel of Figure 3.3 however
makes the gbR corrections completely invisible. As a consequence, our set of parameter
points, which is chosen so that the correct quark masses and mixings are reproduced
(see Appendix A for details), lies entirely in the red band shown in the left panel of
Figure 3.3 and therefore fails to agree with the experiment within 3σ for the majority
of points.
Note, that the scaling of Figure 3.3 distorts the fact that there are still 10% of the
parameter points in the 3σ ellipse. Translating this into a constraint for MKK would
yield a very strong bound. One can invoke the reparametrization invariance intro-
duced in section 2.5 in order to examine the characteristics of the parameter corner
which is in agreement with this constraint. By reshuffling between F (cbL) and F (cbR)
using (2.169), for η < 1, one increases δgbR/δg

b
L. For η = 1/2(1/3), about 35(45)%

of the parameter points do at least not aggravate the already large discrepancy be-
tween the SM and the experiment. Thus, parameter points with strongly IR localized
right-handed bottom quarks tend to give less dangerous corrections to the global fit
in (3.14).
It is interesting to discuss the implications for the dual theory of such a considerable
reparametrization. Scaling down F (cbL) will not only enlarge F (cbR), but also F (ctR),
the zero mode of the right-handed top, which is already strongly IR localized. In a
generalization of this shift to all generations, one can assume that all doublets are ex-
tremely UV localized and all singlets shifted towards the IR. The dual theory of such
a model would have, to a good approximation, only right-handed quarks composites,
while the left-handed quarks are elementaries. This right-handed compositeness was
found to be a very attractive idea in [149], in which the relevance for the Zb̄b vertex
was however not pointed out. In the later sections we will get back to this scenario
and check the compatibility with other observables.

This situation is also ameliorated by the mixing between the Z zero mode and the
additional neutral composite vector bosons of the SU(2)R present in the custodially
protected RS model [148]. This is especially intriguing, because as discussed in the
previous section, the scalar sector of any extension of the SM should respect the cus-
todial symmetry in order to not get into conflict with the oblique parameters. The
mixing eliminates completely the L enhanced term in gbL and increases the L enhanced

term in gbR by L → 3c2w
s2w
L ≈ 10L. Therefore, corrections to gbL are dominated by the

terms in the second line of (3.10), which can now account for both negative and
positive modifications, controlled by the interplay of the singlet down quark localiza-
tion parameters of all generations. Choosing the correct quark representations under
the enlarged symmetry group and assuming the bulk symmetric under the exchange
SU(2)L ↔ SU(2)R, will further reduce the correction to gbL and make them purely
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negative, so that one finds to leading order (see [114] for details and the derivation)

gbL =

(
−1

2
+
s2
w

3

)[
1 +

m2
Z

2M2
KK

F 2(cbL)

3 + 2cbL

5 + 2cbL
2(3 + 2cbL)

]
+

m2
b

2M2
KK

1

1− 2cbR

(
F 2(cbR)

3 + 2cbR
− 1

)
,

(3.15)

gbR =
s2
w

3

[
1− m2

Z

2M2
KK

F 2(cbR)

3 + 2cbR

(
3c2
w

s2
w

L− 5 + 2cbR
2(3 + 2cbR)

)]
(3.16)

− m2
b

2M2
KK

 1

1− 2cbL

(
1

F 2(cbL)
− 1 +

F 2(cbL)

3 + 2cbL

)
+
∑
i=1,2

|(Yd)i3|2
|(Yd)33|2

1

1− 2cQi

1

F 2(cbL)

 .
Here, δgbR/δg

b
L > 1, and the right-handed corrections will lead to a worse then 3σ

discrepancy for some parameter points. Despite the misleading scatterplot however,
more than 99% of the parameter points are in the 3σ CL ellipsis in Figure 3.3.
Interestingly, with the new fit, the corrections to gbL tend to slightly improve the sit-
uation compared to the SM. Both is evident from the plot on the right hand side
of Figure 3.3, which shows the same set of parameter points as the left plot for the
couplings in the custodially protected RS model (3.15) and (3.16). Note, that an
improvement can be achieved for small MKK, which should be contrasted with the
model without custodial symmetry discussed above, in which a large new physics scale
is preferred in order to not spoil the fit. Also, the reparametrization invariance can
be used in favor of an IR shift of the left-handed profiles for even better agreement
with the measurements.2

This shows that the custodial protection is sufficient to protect the T parameter and
allows for an even slight attenuation of the tension from the fit to R0

b , , Ab and A0,b
FB.

Even though other solutions exist, we will assume that the custodial protection in the
SM is not broken by the underlying theory, in order not to be pushed to a corner
of parameter space or having to resort to a large MKK scale for agreement with
electroweak precision tests.

3.2 RS GIM Working

The present status of flavor physics is characterized by a large number of precision
results on B,D and K decays which are in tantalizing agreement with the SM pic-
ture of flavor and CP violation. In the RS model, the KK modes generate tree-level
FCNCs, which are ultimatively caused by the flavor non-universal couplings in (1.34),
and are suppressed by the mixing angles in (1.34) or equivalently by the zero-mode
profiles (2.150) in the context of the RS-GIM mechanism.
In the following it will be demonstrated how the RS-GIM mechanism successfully sup-
presses FCNCs by using observables involving b quarks, which have a large composite

2It should be pointed out, that in the custodial model without the PLR symmetry, many parameter
points end up in the 2σ ellipsis in Figure 3.3. Since this is not a consequence of a physically motivated
parameter choice, but depends on the random relative size of the right-handed localization parameters
and Yukawa matrices, we will not discuss this scenario.
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component and therefore the RS-GIM suppression is weak compared to the lighter
flavors. In addition, constraints derived from the analysis in section 3.1 will have the
most immediate impact. We will concentrate on observables which have recently been
measured very precisely at LHCb and lead to stringent bounds on any new physics
which allow for FCNCs. A very comprehensive analysis of flavor observables can be
found in the original paper [150].

Bs − B̄s Mixing

We will demonstrate the effectiveness of the RS-GIM mechanism first on the example
of Bs − B̄s mixing. A short review of neutral meson mixing is given in Appendix B
and we will concentrate on the characteristics of the Bs system here.
Since no first generation quarks are involved, it is the perfect place to test the limits of
the RS-GIM mechanism. In the original analysis, the constraints from the Zbb̄ vertex
have been employed as a filter for viable parameter points, however the updated ex-
perimental situation makes it necessary to enlarge the electroweak bulk gauge group
to SU(2)L×SU(2)R×U(1)X in order to not introduce fine-tuning in this observable,
as discussed in the last section. That means, we we discard parameter points which
lie outside of the 99% CL ellipse in the right panel of Figure 3.3.
While in the SM only left-handed currents contribute through box diagrams with
W± exchange, in the RS model also right-handed currents appear, because contribu-
tions arise already from tree-level diagrams mediated by KK gluons, KK photons as
well as the Z zero mode and KK modes. We therefore adopt the following general
parametrization of new physics effects in neutral meson mixing [151, 152, 153]

H∆B=2
eff =

5∑
i=1

CiQ
bs
i +

3∑
i=1

C̃i Q̃
bs
i , (3.17)

where

Qbs1 = (s̄Lγ
µbL) (s̄LγµbL) ,

Q̃bs1 = (s̄Rγ
µbR) (s̄RγµbR) ,

Qbs4 = (s̄RbL) (s̄LbR) ,

Qbs5 = (s̄αRb
β
L) (s̄βLb

α
R) . (3.18)

A summation over color indices α, β is understood and the Wilson coefficients are
denoted as a sum of a SM and a new physics contribution, Ci ≡ CSM

i +CRS
i (where in

the SM only CSM
1 is non-zero). After splitting the gluon propagator into U(NC) and

U(1) part, ∑
a

T aαβ T
a
σρ =

1

2

(
δαρδβσ −

1

NC
δβαδρσ

)
, (3.19)
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one can obtain from the general results (2.185) and (2.187) along with standard Fierz
identities and a symmetry factor3 Ssbsb = 1/2, the contributions arising in the RS
model

CRS
1 =

2πL

M2
KK

(
∆̃D

)
23
⊗
(
∆̃D

)
23

[
αs
2

(
1− 1

Nc

)
+Q2

d α+ ωDDZ
(TD3 − s2

wQd)
2 α

s2
wc

2
w

]
,

C̃RS
1 =

2πL

M2
KK

(
∆̃d

)
23
⊗
(
∆̃d

)
23

[
αs
2

(
1− 1

Nc

)
+Q2

d α+ ωddZ
(s2
wQd)

2 α

s2
wc

2
w

]
,

CRS
4 =

2πL

M2
KK

(
∆̃D

)
23
⊗
(
∆̃d

)
23

[−2αs] ,

CRS
5 =

2πL

M2
KK

(
∆̃D

)
23
⊗
(
∆̃d

)
23

[
2αs
Nc
− 4Q2

d α+ ωDdZ
4s2
wQd (TD3 − s2

wQd)α

s2
wc

2
w

]
,

(3.20)

where Qd = −1/3, TD3 = −1/2, ωZqq′ = 1 for all q, q′ ∈ {d,D} and Nc = 3 in the
minimal model. For the custodially protected model [167, App. C],

ωZqq′ = 1 +
1

c2
w − s2

w

(
s2
w(T q3L −Qd)− c2

wT
q
3R

T q3L − s2
wQd

)(
s2
w(T q

′

3L −Qd)− c2
wT

q′

3R

T q
′

3L − s2
wQd

)
, (3.21)

in which the SU(2)R × SU(2)L quantum numbers are completely fixed if the PLR
parity is imposed. It follows TD3L = TD3 = −1/2, TD3R = 1/2, T d3L = 0, T d3R = 1,
compare [114, Table 2].
In (3.20) the expressions in brackets refer, in an obvious way, to the contributions
from KK gluons, KK photons, and from the Z boson and its KK excitations. As
stated before, ∆F = 2 contributions from flavor-changing Higgs-boson exchange are
of O(v4/M4

KK) and we thus will not give them explicitly.
In the language of the dual theory, the overlap integrals (2.176) correspond to the
exchange of the infinite tower of composites described by the diagram in the third line
of Figure 2.7.
Note, that the leading contributions to (3.20) clearly result from KK gluon exchange,
but in the custodial model one finds ωZDD ≈ 3, ωZdd ≈ 129 and ωZDd ≈ −15, so that
the right-handed currents are subject to sizable corrections from the new SU(2)R KK
modes, which also partially cancel the gluon contributions to CRS

5 , because they enter
with opposite signs [154].

The tree-level expressions for the Wilson coefficients given above refer to a renor-
malization scale µKK = O(MKK). They must be evolved down to a scale µ ≈ mb,
where the hadronic matrix elements of the four-quark operators can be evaluated using
lattice QCD. The renormalized coefficients are given by [155],

Ci(mb) =
∑
j,k

(
b
(i,j)
k + ηc

(i,j)
k

)
ηak Cj(MKK), (3.22)

3In the full theory, a t and an s channel diagram provide an equal contribution and the effective
theory four quark vertex can be constructed in four different ways.
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in which η ≡ (αs(MKK)/αs(mt)) and the ak, b
(i,j)
k and c

(i,j)
k denote the “magic num-

bers” collected in Appendix C, which basically parameterize the anomalous dimension
matrix.

The hadronic matrix elements of the various operators are customarily expressed in
terms of the bag parameters Bi. For the operators relevant to our analysis, one has4

〈B0
s |Q1(µ) |B̄0

s 〉 = 〈B0
s | Q̃1(µ) |B̄0

s 〉 =

(
1 +

1

Nc

)
mBsf

2
Bs

4
Bbs

1 (µ) ,

〈B0
s |Q4(µ) |B̄0

s 〉 =

[
mBs

mb(µ) +ms(µ)

]2 mBsf
2
Bs

4
Bbs

4 (µ) , (3.23)

〈B0
s |Q5(µ) |B̄0

s 〉 =
1

Nc

[
mBs

mb(µ) +ms(µ)

]2 mBsf
2
Bs

4
Bbs

5 (µ) .

These definitions are such that in the vacuum-insertion approximation (VIA)[
Bbs

1 (µ)
]

VIA
= 1 ,[

Bbs
4 (µ)

]
VIA

= 1 +
1

2Nc

[
mb(µ) +ms(µ)

mBs

]2

,[
Bbs

5 (µ)
]

VIA
= 1 +

Nc

2

[
mb(µ) +ms(µ)

mBs

]2

, (3.24)

Lattice simulations quantify the deviation from the naive VIA results parameterized
by the bag parameters Bbs

i [156] which are collected in Appendix C. Furthermore, we
use mBs = 5366.8 MeV [157] and fBs = 231 MeV [160] for the Bs meson mass and
decay constant [157].

Working with the standard phase convention for the CKM matrix [157], the mass
difference and the weak phase of the Bs system are related to the absolute value and
the argument of the effective Hamiltonian (3.17) respectively,

∆mBs = 2
∣∣〈Bs|H∆B=2

eff,full |B̄s〉
∣∣ , 2ϕs = arg

(
〈Bs|H∆B=2

eff,full |B̄s〉
)
. (3.25)

In all cases the effective Hamiltonian contains the SM contribution plus contributions
from the RS model, as indicated by the subscript “full”. We will normalize the matrix
elements of the full effective Hamiltonian to those of only the SM contribution,

CBs e
2iφBs =

〈Bs|H∆B=2
eff,full |B̄s〉

〈Bs|H∆B=2
eff,SM |B̄s〉

, (3.26)

so that

CBs =
∆ms

(∆ms)SM
(3.27)

4Here the meson states are normalized to 〈M0|M0〉 = 〈M̄0|M̄0〉 = 1 for general mesons M0. The
expressions (3.23) differ therefore from the ones used in lattice calculations by a factor 1/(8mM ),
because there a normalization 〈M0|M0〉 = 1/(2mM ) is common and the extra 1/4 stems from a
different operator basis [176].
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measures the magnitude of the mass difference ∆ms relative to the one in the SM, while
the phase φBs affects the coefficients of sin(∆Mst) in the time-dependent asymmetry
of Bs → ψφ. One obtains [161]

Sψφ = sin(2|βs| − 2φBs) , (3.28)

where

Vts = −|Vts| e−iβs , (3.29)

and βs ≈ −1◦. In the presence of a non-vanishing phase φBs , the time-dependent
asymmetry measures therefore ϕs = |βs| − φBs , and not βs. Generally, (3.28) is only
correct if only an negligible weak phase is present in the decay amplitude Bs → ψφ,
which is the case for the SM. This assumption can be adopted in the RS model, because
corrections to charged-current interactions are suppressed by m2

W /M
2
KK and numer-

ically arg(V ∗cbVcs) < 0.001◦, and also the matrix elements in right-handed charged-
current interactions (VR)22 and (VR)23 do not exceed the level of 10−5 in magnitude
[115]. These tiny corrections can be safely neglected for all practical purposes.

The width differences ∆Γs and the semileptonic CP asymmetries AsSL take the form

∆Γs
Γs

= −
(

∆ms

Γs

)
exp

[
Re

(
Γs12

M s
12

)
SM

cos 2φBs
CBs

− Im

(
Γs12

M s
12

)
SM

sin 2φBs
CBs

]
,

AsSL = Im

(
Γs12

M s
12

)
SM

cos 2φBs
CBs

− Re

(
Γs12

M s
12

)
SM

sin 2φBs
CBs

, (3.30)

with [158]

Re

(
Γs12

M s
12

)
SM

= (−4.97± 0.94) · 10−3 , Im

(
Γs12

M s
12

)
SM

= (2.06± 0.57) · 10−5 .

(3.31)

In Figure 3.4, the width difference of the mass eigenstates normalized to the total
width (3.30) is plotted against Sψφ as given in (3.28), which encodes the CP viola-
tion from mixing (see Appendix B for details). The SM prediction for this phase is
extremely small and precise [160],

2βSM
s = 0.0363+0.0016

−0.0015 . (3.32)

and therefore a good place to constrain new physics effects. Shaded yellow and blue
are the 68% and 95% CL regions obtained from a global fit based on the most recent
combination of measurements of the semileptonic CP asymmetry AsSL, the mass dif-
ference ∆mBs , the phase φBs as well as ∆Γs [159]. Shown in red are parameter points
which fulfill the constraints from Z → bb̄ and from εK , which is discussed in Section
3.3.
It is interesting to note, that the phase showed a 3σ deviation from the SM phase,
based on a combination of almost one third of the DØ and CDF data back in 2008
[162]. New physics in general can accommodate a large phase. However it is hard to
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Figure 3.4: Predictions for Sψφ versus ∆Γs/Γs in the custodially protected RS model
with extended electroweak symmetry group. The red points reproduce the measured
value of the Zbb̄ couplings and of εK at the 99% and 95% CL. The black bar indi-
cates the SM prediction and error and the yellow (gray) contours the experimentally
preferred regions of 68% (95%) probability.

generate in the RS model once the constraints from the Z → bb̄ analysis and K − K̄-
mixing are taken into account, as becomes clear from Figure 3.4, but can already be
seen in our analysis in [150, Sec.5.4.2]. The 3σ discrepancy slowly melted away over
the years by analyzing more and more data and the full CDF dataset (10fb−1) finally
shows agreement with the SM within 1σ [163]. Even smaller errors could be obtained
from the LHCb measurements [164], which also provide the dominant input for the
combination [159] and are therefore the root for the small errors in our global fit5.
The fact that the RS prediction does generically agree with this very constraining ex-
perimental results even for a KK scale of a few TeV, is an indication of the impressive
range of the RS-GIM mechanism.

B Meson Decays to Muons

One might object, that ∆F = 2 observables are not the best place for a stress test of
the RS-GIM mechanism, because the tensor structures (2.176) which enter the Wilson
coefficients are sensitive to the fermion localization on both vertices, i.e. proportional
to ∼ mbms/v

2 in the case of Bs − B̄s mixing. We will therefore examine ∆F = 1
observables, again selected by the criteria that they depend on the localization of the

5It should be noted, that the LHCb analysis did also resolve the long standing sign ambiguity of
∆Γs in favor of the SM [165].
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b quark as well as being constrained by very precise measurements.
The branching ratios of both the Bd and Bs mesons to muons meet these criteria. Not
only is the experimental limit very close to the SM prediction, which excludes large
new physics effects and cuts deep into the parameter space of many extensions of the
SM 6, but also did CDF observe an excess of events in B(Bs → µ+µ−), which allows
for the first time to establish a two sided bound on the branching ratio with a central
value slightly above the SM prediction.

In the RS model, there are the following operators contributing to the effective Hamil-
tonian for b→ s`+`− transitions

Hb→s`+`−eff = C`1 (s̄Lγ
µbL)

∑
`

(¯̀
Lγµ`L) + C`2 (s̄Lγ

µbL)
∑
`

(¯̀
Rγµ`R)

+ C̃`1 (s̄Rγ
µbR)

∑
l

(¯̀
Rγµ`R) + C̃l2 (s̄Rγ

µbR)
∑
`

(¯̀
Lγµ`L)

+ C`3 (s̄LbR)
∑
`

(¯̀̀ ) + C̃`3 (s̄RbL)
∑
`

(¯̀̀ ) . (3.33)

The Wilson coefficients can only get contributions from the Z and its KK excitations,
the photon KK modes and from the Higgs, see Section 2.6. They depend on the
overlap integrals (2.175) and (2.184), which are described in the dual theory by the
diagrams in the second line of Figure 2.7. Note, that we do not implement leptons as
bulk fields. However, non-universal contributions at the lepton vertex are suppressed
by m2

µ/(msmb) relative to the leading contributions and can be neglected to very good
approximation and for the same reason the tensor structures which are proportional
to msmbm

2
µ/v

4 give only subleading corrections. One obtains

CRS
`1 = − 4πα

3M2
KK

(∆′D)23 −
2πα (1− 2s2

w)

s2
wc

2
wM

2
KK

(ΣD)23 ,

CRS
`2 = − 4πα

3M2
KK

(∆′D)23 +
4πα

c2
wM

2
KK

(ΣD)23 ,

C̃RS
`1 = − 4πα

3M2
KK

(∆′d)23 −
4πα

c2
wM

2
KK

(Σ′d)23 ,

C̃RS
`2 = − 4πα

3M2
KK

(∆′d)23 +
2πα (1− 2s2

w)

s2
wc

2
wM

2
KK

(Σ′d)23 ,

CRS
`3 = − 2m`

m2
hv

[ms

v
(δd)23 +

mb

v
(δD)23 + (∆gdh)23

]
,

C̃RS
`3 = − 2m`

m2
hv

[mb

v
(δd)23 +

ms

v
(δD)23 + (∆gdh)23

]
, (3.34)

in which

ΣQ,q ≡ ωZLLL
(

1

2
− s2

w

3

)
∆Q,q +

M2
KK

m2
Z

δQ,q Σ′Q,q ≡ ωZRRL
s2
w

3
∆Q,q +

M2
KK

m2
Z

δQ,q ,

(3.35)

6For example in the MSSM, the branching ratio (3.36) grows with tanβ6.
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with ωZLL = ωZRR = 1 in the minimal model and if the electroweak gauge group is

extended in order to comprise a custodial symmetry, ωZLL = 0 and ωZRR = 3c2w
s2w

, as in

(3.15) and (3.16), compare also [167, App. B].
Corrections to b → s`+`− arising from CRS

`3 and C̃RS
`3 are either O(mµmb/M

2
KK) or

O(v4/M4
KK) and will consequentially also be ignored in the numerical analysis.

The branching ratios for the Bq → µ+µ− decays can be expressed as

B(Bq → µ+µ−) =
G2
F α

2m3
Bq
f2
Bq
τBq

64π3s4
w

∣∣λ(qb)
t

∣∣2√1−
4m2

µ

m2
Bq

×
(

4m2
µ

m2
Bq

∣∣CA − C ′A∣∣2 +m2
Bq

[
1−

4m2
µ

m2
Bq

] ∣∣∣∣mbCS −mqC
′
S

mb +mq

∣∣∣∣2
)
,

(3.36)

where mBq , fBq , and τBq are the mass, decay constant, and lifetime of the Bq meson

and λ
(pr)
q ≡ V ∗qpVqr. The electromagnetic coupling α entering the branching ratios

should be evaluated at mZ . The expressions for the coefficients CA,S and C ′A,S read

CA = cA −
s4
wc

2
wm

2
Z

α2λ
(qb)
t

(
CRS
`1 − CRS

`2

)
, C ′A =

s4
wc

2
wm

2
Z

α2λ
(qb)
t

(
C̃RS
`1 − C̃RS

`2

)
,

CS =
2s4
wc

2
wm

2
Z

α2mbλ
(qb)
t

CRS
l3 , C ′S =

2s4
wc

2
wm

2
Z

α2mqλ
(qb)
t

C̃RS
`3 ,

(3.37)

where cA = 0.96 ± 0.02 denotes the SM contribution to the Wilson coefficient of the
axial-vector current [169, 170], and the coefficients CRS

`1−3 and C̃RS
`1−3 contain the 13

or 23 elements of the mixing matrices in the case of Bd → µ+µ− and Bs → µ+µ−,
respectively.7

The SM branching ratios of the Bq → µ+µ− decay channels evaluate to [171, 172]

B(Bd → µ+µ−)SM = (1.0± 0.1) · 10−10 , (3.38)

B(Bs → µ+µ−)SM = (3.2± 0.2) · 10−9 . (3.39)

These predictions are obtained by normalizing the decay rates to the well-measured
meson mass differences (∆mq)exp. This eliminates the dependence on CKM param-
eters and the bulk of the hadronic uncertainties by trading the decay constants for
less uncertain hadronic parameters. The dominant source of error is nevertheless still
provided by the hadronic input.

The result is plotted in Figure 3.5 and shows again very good agreement with the
current bounds, which however start to cut into the parameter space. Experimental
bounds refer to the very precise limit from LHCb measurements, obtained including
the full 2011 dataset [166], and the two-sided bound from CDF [168] respectively. It is

7While CA and C′A are scale independent, the coefficients CS and C′S have a non-trivial RG
evolution. We can ignore that because they are numerically insignificant.
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Figure 3.5: The red points correspond to the parameter set constrained by the Zbb̄
couplings and |εK | at the 99% and 95% CL, for the custodially protected RS model.
The black star indicates the SM prediction and the black dashed lines denote the
experimental upper limits as measured by LHCb at 95% CL. The blue band shows
the preferred region at 95% CL measured by CDF.

impressive that also rare decays are sufficiently suppressed by the RS-GIM mechanism
even for reasonably small new physics scales with the measurements reaching a stage
which will soon test the SM.

shown

3.3 Limitations of the RS GIM Mechanism

In summary of the previous sections, one can say that the RS-GIM mechanism proves
to be a successful protection from large tree level FCNCs, even if the heavy b quark is
involved. However, already from Table 1.1 it is clear that the most restrictive bound
on new physics from the flavor sector does not come from heavy quarks, but from
K − K̄ mixing. The reason is twofold, and both aspects are related to the mixed
left-right operators Q4 and Q5 in (3.18). First, the corresponding Wilson coefficients
are subject to a large chiral enhancement from the matrix elements (3.23) (which
translate to the case of K − K̄ mixing with the obvious replacements), because in
contrast to the B-mesons, the Kaon is much heavier than the sum of its constituents,[

mK

ms +md

]2

≈ 15 . (3.40)
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Second, renormalization group running from the KK scale down to 2 GeV, where the
matrix elements are evaluated, results in a considerably larger factor than the running
down to mb, the scale at which the bag parameters for B mesons are computed.
Therefore, one finds for a reference point of MKK = 2 TeV,

〈K0
∣∣H∆S=2

eff,RS

∣∣ K̄0〉 ∝ CRS
1 + C̃RS

1 + 150

(
CRS

4 +
CRS

5

NC

)
. (3.41)

These enhancements are a problem for all new physics models which allow for right-
handed currents, but are even large enough to overcome the RS-GIM suppression and
push the KK scale in the range of MKK = O(10) TeV.

The Flavor Problem of the RS Model

In the case of the Kaon system one finds for the mass difference and the CP violating
quantity εK (see Appendix B for details)

∆mK = 2 Re 〈K0|H∆S=2
eff,full |K̄0〉 , εK =

κε e
iϕε

√
2 ∆mexp

K

Im 〈K0|H∆S=2
eff,full |K̄0〉 , (3.42)

in which ϕε = (43.51 ± 0.05)◦ and κε = 0.92 ± 0.02 [173]. The suppression factor κε
parametrizes the effects due to the imaginary part of the isospin-zero amplitude in
K → ππ decays [174].
The theoretical values for both mK and εK are dependent on uncalculable long-
distance contributions, which make a precise prediction on the level of the experi-
mental uncertainty impossible. The best one can do, is compare the theoretical value
including the best estimate for the short-distance contributions [177], with the exper-
imental values [157],

∆mSM
K = (3.1± 1.2)× 10−15 , ∆mexp

K = (3.483± 0.0059)× 10−15 , (3.43)

|εSM
K | = (1.81± 0.28)× 10−3 , |εexp

K | = (2.228± 0.011)× 10−3 . (3.44)

It is therefore only meaningful to impose an order of magnitude upper limit on new
physics contributions, a lower limit in order to explain the deviation from the ex-
perimental value cannot be obtained. Consequentially, we will require that the pure
RS-contributions do not exceed

|εRS
K | < 1× 10−3 , |∆mRS

K | < 1× 10−15 . (3.45)

The contributions from the RS model are given by the Wilson coefficients (3.20), with
the replacement of the mixing matrices (∆̃D

)
23
→ (∆̃D

)
12

. Renormalization group
running is implemented by (3.22), in which the left hand side is replaced by Ci(2 GeV),
at which the matrix elements for Kaon final and initial states are evaluated. These
are given by (3.23) with the replacements B0

s → K0, Bsd
i (µ), mBs → mK = 497.6

MeV, mb → md and fBs → fK = 156.3 MeV [157, 160]. The definition of the Bsd
i (µ)

is given by (3.24) with the same replacements. Note, that significant progress has
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Figure 3.6: Plots showing the observables ∆mK (left panel) and |εK | (right panel)
plotted against the KK scale for the full parameter set, both in the more restrictive
case of the custodially protected RS model with enlarged electroweak bulk group.
Parameter points which do (not) agree with the bounds (3.45) are black (gray), and
in the right panel, a fit to the median value of the parameter points in 500 GeV bins
is plotted in red. For the minimal model, this bound is shifted by roughly 1 TeV
towards a lower KK scale.

been made in the last few years regarding the calculation of the bag parameters using
lattice QCD. In particular the matrix elements for K − K̄ mixing have been very
recently computed with considerably improved precision [175, 176]. The new results
(C.3) also tend to increase the contribution from the new physics operators compared
to the SM and thus further aggravate the bound on the new physics scale.
In Figure 3.6 scatterplots of our parameter set are shown for ∆mK = ∆mSM

K + ∆mRS
K

on the left panel and |εK | = |εSM
K + εRS

K | versus MKK on the right panel, in which
parameter points (not) consistent with (3.45) are colored (gray) black. The plot
ranges have been chosen in order to make the results easily comparable. While the
corrections to ∆mK generically agree with the imposed bound and a KK scale of the
order of a TeV, the bound from εK is much more severe. In order to guide the eye,
a fit to the median values for 500 GeV bins of MKK has been plotted in red, and the
point at which it crosses the black “band” can be considered a rough estimate of the
lower bound on the KK scale. This gives MKK > 6 − 7 TeV, which translates into
a mass for the lowest lying KK mode of roughly mG(1) > 15 TeV. For the custodial
model, this bound becomes even worse, MKK > 8 TeV and mG(1) > 15 TeV, because

the cancellation in C5 is overcome by the O(100) enhancement of C̃1.
Because this is the only observable in the flavor sector which is not compatible with a
TeV-ish new physics scale as suggested by the gauge hierarchy problem, the resulting
constraint is called the RS flavor problem and a lot of effort was put in modifications
of the minimal RS in order to somehow attenuate this bound.
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A List of Solutions to the Flavor Problem

The situation described in the last section has triggered many new ideas in order to
make the bound from εK compatible with a KK scale in the ballpark of a TeV. This
section will contain a comprehensive review of these ideas. They will be separated
in three categories. First, parametric suppressions of the relevant Wilson coefficients.
Second, global symmetries which ensure that the coefficients of the dangerous mixed
chirality operators are either zero or extremely small and finally, alternative solutions,
which rely on mechanisms that can not be categorized in one of the above.

Parametric Suppressions

A key observation is, that the enhancement of εK is almost solely due to the Wilson
coefficient C4 and, to a lesser extent (especially with a custodial protection), C5 in
(3.20) (which is always understood with the corresponding replacements if cited in
the context of K−K̄ mixing and the RS superscript will be dropped if no confusion is
possible). The parametric dependence of them becomes clearest using the ZMA and
(2.158), so that

C4 = −NcC5 ≈ −
4παs
M2

KK

L
2mdms

v2

|(Y (5D)
d )|

|detY
(5D)
d |

≈ −4παs
M2

KK

L
2mdms

v2Y 2
d

, (3.46)

where Yd denotes an order one parameter sensitive to the 5D Yukawa couplings in
the down sector. One possibility, which was first mentioned in [178], is therefore
to increase the down sector Yukawas, which corresponds to the application of the
reparametrization invariance (2.170). In terms of the 5D language, the overlap be-
tween zero modes and the gauge boson KK tower becomes smaller, because the down
type quarks or the 5D electroweak doublets are more UV localized. In the dual theory
this is to be interpreted as decreasing the mixing angle and thus making the down-
type quarks or the doublets more elementary and less composite. As a consequence,
given the relation between zero mode profiles induced by the masses of the quarks
(2.158), either the Yukawas in the up-sector have to be larger as well or the elec-
troweak singlet up-type quarks must be localized closer to the IR brane, i.e. must be
more composite. Both seems like a good trade-off, because bounds on FCNCs in the
up-sector are considerably less constraining. In the numerical analysis, the Yukawa
couplings for both sectors are randomized, so that the absolute values of all entries are
in the range |Y | ∈ [0.3, 3], see Appendix A for details. However, one cannot arbitrar-
ily increase the value of the fundamental Yukawa couplings. One reason is that the
Yukawa couplings should not become non-perturbative, because the above analysis
cannot be made if one looses perturbative control. The point at which this happens
depends on the normalization chosen in defining the dimensionless Yukawa couplings
in (2.127) and therefore there is some freedom, see the discussion in [115, Sec 3.4] and
[181, App E.4]. However, in order to balance out the enhancement in (3.41), one would
need to enhance the Yukawas by a factor of ten. Larger Yukawas might therefore
ameliorate the bound from εK , but at some point one simply shifts the tuning over
to the Yukawa sector. Even if this would be accepted, there are upper bounds on the
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absolute value of the Yukawa couplings from observables which are proportional to
positive powers of them, typically ∆F = 1 observables, which arise at the one loop
level with mass insertions. The authors of [180] find that direct CP violation from
Kaon decay, measured by ε′/εK gives the most severe upper bound. At Yd ≈ 6, the
derived bound on MKK becomes stronger than the one from |εK |, so that the best one
can arrange for would be a KK scale of MKK ≥ 3 TeV.

This problem can be avoided if instead of enhancing the Yukawa couplings, one lowers
the value of the volume of the extra dimension L = − ln ε, which appears linearly in
both the Wilson coefficients in ∆F = 1 and ∆F = 2 effective Hamiltonians [144].
This is the idea of the LRS models, which have been introduced in Section 3.1 as
a means to reduce the contributions to the oblique parameters. The reason for this
linearity is, that the coupling of the KK modes to a good approximation reads g

√
L,

which becomes apparent if one computes the contributions mode by mode instead of
using the full 5D propagators. This coupling will therefore be smaller if the bulk is
truncated at scales εLRS = ΛEW/ΛLRS, with ΛLRS � MPl. In the dual theory this
means, that the range of scales over which the theory is strongly coupled is smaller,
i.e. asymptotic freedom sets in already at the scale ΛLRS.
However, for the zero mode profiles of the light quarks holds F (c) ∼ ε−c−1/2 and if ε→
εLRS which is orders of magnitude smaller, the localization parameters must adjust,
because the values of the zero mode profiles are fixed by the mass relations (2.158).
Considering the original proposal [144], εLRS = 103 (LLRS ≈ 7), this means that he
c-parameters are by a factor of two larger in magnitude than in the original model.
However, the RS-GIM mechanism, illustrated by the naive picture 2.11 assumes, that
the integrand of the overlap integrals in (2.173) is proportional to a positive power
of he bulk coordinates t and t′. This will only be true as long as cqi + cqj + 2 > 0
(remember, all light flavors have cQ,q < −1/2). If the c parameters become smaller,
the overlap integrals (2.176) will not be dominated by the IR localization of the gluon
KK modes, but by the extreme UV localization of the fermion zero modes, so that the
main contributions arise from the region where t ≈ ε and the RS-GIM suppression is
undermined. This phenomenon is called UV dominance and its implications for flavor
changing as well as flavor diagonal neutral currents, for example the Zbb̄ coupling,
have been analyzed in [179]. One can turn this argument around and formulate a
lower bound on the volume LLRS > 8.2, above which the bound from εK is at least
not stronger, but the enhancement in (3.41) cannot be balanced out by lowering L
alone.

Global Symmetries and MFV

The dangerous coefficients C4 and C5 appear only if flavor changing vertices with
both right- and left-handed down quarks are present. This can be prevented, either
by imposing a global symmetry which arranges for the singlet or doublet bulk mass
parameters to be equal or by aligning them with the down-type Yukawa matrix [184].
The latter is an implication of minimal flavor violation, which was introduced in Sec-
tion 1.2. Several variants have been proposed, in which the alignment is assumed
only in the down sector, is extended to the up sector, or holds only for the first two
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generations [182, 183, 184]. In the dual theory, such an alignment means that not
the mixing angles in (1.27) alone are responsible for the structure in the flavor sector,
but also the fundamental Yukawa couplings denoted by λ in (1.27) in the composite
sector have some structure. As in the SM, the origin of this structure is not explained,
which at least partially abrogates one of the strengths of the RS model, namely the
capability to explain flavor structure and FCNC suppression by the same fundamental
order one parameters.
If alternatively the bulk masses of all 5D fermions are chosen equal in the down-sector,
cdi = cd, the couplings gR in (1.34) will be universal or equivalently, the corresponding
matrices in (2.180) and (2.181), both for q = d, are diagonal in flavor space [186]. An
alignment can equally well be imposed for the doublet bulk mass parameters cQi , but
not for both the up- and the down singlet localizations at once without introducing
additional structure in the Yukawa matrices. In essence, the reparametrization in-
variance (2.169) can be applied once in order to redistribute between the down-type
singlets and the doublets. This ansatz is from the point of view of the dual theory,
related to the idea of only electroweak singlet or doublet quarks having composite
partners, as proposed by Redi and Weiler [149], which was already quoted as a possi-
ble way to reduce the tension from the Zbb̄ coupling in Section 3.1.
Alignment of the bulk mass parameters cdi corresponds to having an equal anoma-
lous dimension for all composite down-type singlet partners. In the bulk, this can
be assured by imposing a global symmetry, which does however not translate to a
symmetry in the dual theory. Only for local bulk symmetries one knows that they
are present in the composite sector as well, which for example makes it necessary
to gauge the SU(2)R in order to realize the custodial protection in the dual theory.
Gauged bulk flavor symmetries have therefore gained some attention, see [185] and
references therein. The symmetry must also be exact, because small deviations from
the alignment will already imply large corrections, because the bulk mass parameters
enter the Wilson coefficients in the exponents. Such a symmetry can only be con-
sidered stable in the dual theory, if the localization of the singlet down-quarks is not
only equal, but also they are confined to the UV brane, which removes the composite
singlet down-quarks from the dual theory, a.k.a. left-handed compositeness (and vice
versa for the left-handed partners being confined to the UV brane).

Whether or not such a symmetry would be enough to balance the enhancement in
(3.41) can be estimated by considering the effect of higher order operators such as
(Q̄LYdHdR)2 which are encoded in the O(v2/M2

KK) corrections to (2.181). One finds

(δ̃D)mn ⊗ (δ̃d)mn =
mdmmdn

M2
KK

[(
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)
mi

(
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)
in

(δ̃D)ij
(
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)
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(
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)
mi

(
URd
)
in

(δ̃d)ij
(
UR†d

)
mj

(
URd
)
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]
(3.47)

from the terms in (2.176) involving both even C
(A)
m (φ) and odd S

(A)
m (φ) fermion pro-

files. Here a summation over the indices i, j is understood. Neglecting terms sup-
pressed by F 2(cQi) and F 2(cQi)F

2(cQj ), which are small for the light flavors, the
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elements of (δ̃D)ij take the form

(δ̃D)ij =
2(3 + cQi − cQj )

(3 + 2cQi)(3− 2cQj )(2 + cQi − cQj )
F 2(cQi)

F 2(cQj )
. (3.48)

An analogous expression holds in the case of (δ̃d)ij with cQi replaced by cdi . Since
all bulk mass parameters are close to −1/2 it is also a good approximation to replace
the rational function of cQi and cQj in (3.48) by the numerical factor 3/8. Using the
mass relations (2.158) as well as (2.159), it is straightforward to deduce from (3.47)
that (3.46) is replaced by

Cal
4 = −NcC

al
5 ≈ −

4παs
M4

KK

Lmdms ≈
v2Y 2

d

2M2
KK

C4 , (3.49)

in which the last expression gives the relation to the Wilson coefficient in the RS
model with anarchical bulk mass parameters. Depending on the size of the Yukawa
couplings, this allows to cancel the enhancement from renormalization group running
and the matrix elements for KK scales in the range of 1 − 2 TeV. Notice that the
O(v2/M2

KK) corrections from (δ̃d)ij have been neglected in (3.49), which is justified,

because the universality of (δ̃d)ij ∼ 1 in combination with the unitarity of the UR
d

matrices renders them negligibly small.

Alternative Solutions

One of the alternative strategies to ameliorate the RS flavor problem is to allow for
the Higgs to be shifted into the bulk [187]. In the case of a brane Higgs, the Yukawa
interactions are brane-localized operators, because the overlap with a brane Higgs and
the bulk fermions are given by the values of the fermion zero modes and the IR brane.
For a bulk Higgs, the overlap integral does include the Higgs profile, which is typically
exponentially peaked towards the IR brane, and will therefore be numerically larger
than the value of the fermion profiles at the brane (the “tail” of the Higgs profile will
always make for a larger overlap). In order for the mass relations to hold, this means
that the fermion profiles must be shifted towards the UV. One can imagine the effect
of a bulk Higgs by multiplying the zero mode profiles F (cQi) and F (cqi) in (2.158) by
the value of the overlap integral with the Higgs. This factor must be compensated by
the zero mode profiles, which, as in the case of larger Yukawas, results in a negative
shift in the bulk masses cQi and cqi .
The Wilson coefficient C4 in (3.20) is generated by KK gluon exchange alone, and
since the gluon KK modes are not affected at all by the localization of the Higgs, they
are unchanged for a bulk Higgs compared to the brane Higgs scenario. Consequen-
tially, the UV shift of the quark profiles leads to smaller overlap integrals with the
KK tower of the gluon and therefore the more the Higgs is shifted into the bulk, the
more are FCNC constraints defused, compare [181, Table 1].
In the dual theory, promoting the Higgs to a bulk field makes it a mixed state of an
elementary and a composite scalar. One might object, that an elementary scalar in
the theory is contrary to the original idea of a composite Higgs as a solution to the
hierarchy problem. However, as long as the Higgs stays close to the IR brane the
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mixing angle is tiny and the elementary mode has a mass of the order Planck scale,
see (2.39), so that the hierarchy problem is not reintroduced.

A related mechanism is provided in models with a soft wall [189]. Originally inspired
by the modeling of the Regge trajectories in AdS/QCD models (see the footnote
on page p.47), a soft wall model assumes in contrast to the RS model, that the
backreaction of the dilaton on the metric is not small, but large enough to distort the
metric in the IR, so that the action (2.11) is replaced by

S =

∫
d5x
√
|G|e−ΦL , (3.50)

in which Φ denotes the dilaton/radion field and L stands for the whole bulk La-
grangian. As a consequence, the metric is no longer pure AdS, but changes in the IR,
and the bulk is not cut off by a delta-function potential (a brane), but by a smooth
potential wall, depending on the coordinate dependent vev of Φ. Because the bulk
coordinate runs between t ∈ [ε,∞] in this setup, the IR boundary conditions are re-
placed by integrals up to t =∞, or by overlap integrals with a bulk Higgs respectively.
This bulk Higgs and the distorted metric both induce a shift of the fermion profiles
towards the UV brane and as a result further suppress FCNCs [188, 190]. The change
in the warp factor generated by the backreaction of the dilaton will however lead to
considerable fine-tuning in order to solve the gauge hierarchy problem in such models
[189].

3.4 A Solution in the Gauge Sector

A qualitatively different solution to the RS flavor problem is to consider an extension
of the strong interaction gauge group in the bulk. It is based on the idea, that the
contributions from the gluon KK excitations to the coefficients C4 and C5 of the
mixed chirality operators in (3.20) can be canceled by a KK tower of a strongly
interacting gauge boson, which couples with opposite sign to left- and right-handed
quarks, but with the same coupling strength as the gluon. The zero mode of this
new bulk field can be projected out by choosing the appropriate BCs. In contrast
to gauged flavor symmetries in the bulk, this model does neither affect the order one
Yukawa couplings nor does it impose a symmetry on the bulk masses which generate
the hierarchies in the quark masses and mixings. Therefore, instead of a widespread
implementation of the SM flavor structure with all its features and shortcomings, this
solution specifically targets the single operator which is not sufficiently suppressed by
the RS-GIM mechanism. Some of the results derived in the following sections have
been published in [191].

Extension of the Color Gauge Group

The goal is to find an extension of the strong interaction gauge group, which will be
able to accommodate the RS gluon as well as another gauge boson with couplings
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of opposite sign but equal magnitude to left- and right-handed bulk quarks. In SM
extensions, such an axial coupling is encountered in axigluon or chiral color models,
which have been considered first in [192]. In the following we will see if a 5D im-
plementation of the corresponding extension of the color gauge group will have the
desired characteristics.
Therefore, the color gauge group in the bulk is replaced by

SU(3)C → SU(3)D × SU(3)S , (3.51)

where the subscripts D,S indicate that the corresponding gauge bosons only couple to
5D electroweak singlets or doublets, respectively. The quarks do therefore transform
as Q ∼ (3, 1) and qc ∼ (1,3) under the extended gauge group. From now on, a
sum over flavor qc = uc, dc as in (2.122) is understood if the singlets appear in the
Lagrangian and will not be denoted explicitly. As a consequence, the interaction terms
of the 5D gluon and the bulk fermions in the Lagrangian√

|G|Lint 3 e−3σ gs5

(
Q̄ γµGaµ T aQ+ q̄c iγµGaµ T a qc

)
, (3.52)

in which Gµ is the bulk gluon field, gs5 denotes the 5D strong coupling constant and
T a = λa/2, a = 1, . . . 8, the generators of SU(3)C (so that λa are the Gellmann
matrices), has to be replaced by

√
|G|Lint 3 e−3σ

(
gD5 Q̄ γ

µ(GD)aµ T
aQ+ gS5 q̄

c iγµ(GS)aµ T
a qc
)
. (3.53)

Here, the 5D gauge bosons of the SU(3)D and SU(3)S are denoted by GD and GS
and the corresponding couplings by gD5 and gS5. The bulk gluon field is a linear
combination of these new gauge fields. Introducing the mixing matrix(

GµD
GµS

)
=

(
cos θ − sin θ

sin θ cos θ

)(
Gµ
Aµ

)
, (3.54)

in which Gµ denotes the gluon and Aµ the remaining linear combination, one can
therefore rewrite (3.53),

√
|G|Lint 3 e−3σ

(
gD5 Q̄ γ

µ
[
Gaµ cos θ −Aaµ sin θ

]
T aQ

+ gS5 q̄
c γµ

[
Gaµ sin θ +Aaµ cos θ

]
T a qc

)
, (3.55)

and find that the strong coupling constant must be defined as

gs5 ≡ gD5 cos θ = gS5 sin θ . (3.56)
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With this definition,√
|G|Lint 3 e−3σ gs5

(
Q̄ γµGaµ T aQ+ q̄c γµGaµ T a qc (3.57)

− tan θ Q̄ γµAaµ T aQ+ cot θ q̄c γµAaµ T a qc
)
.

It is obvious, that the linear combination Aµ will couple with opposite signs to 5D
doublets and singlets. These will in the case of the zero modes decompose into left-
handed and right-handed 4D fields respectively, apart from small admixtures from
the other chirality. This is due to the fact, that the other chirality enters with the
S-profiles in (2.123), which for the zero modes are suppressed by x0 ≈ v/MKK, see
(2.149). The magnitude of the couplings depends on the form of the propagator and
the mixing angle θ. For θ = π/4, the couplings become purely axial and one could
speak of a 5D axigluon. In a slight abuse of language, in the following, this notation
will also be used for differing mixing angles. Interestingly, however, in contributions
to the diagrams responsible for C4, the dependence on the mixing angle cancels, while
the contributions to the purely left- and right-handed operators show the proportion-
ality C1 ∼ tan2 θ and C̃1 ∼ cot2 θ.
Whether or not the contributions to C4 from the axigluon KK tower will lead to a
cancellation of the contribution from the gluon KK tower will therefore only depend
on the terms of the corresponding propagators which can induce flavor changes at
both vertices. These terms are fixed by the boundary conditions of Gµ and Aµ. As
discussed in Section 2.3, the gluon must have Neumann BCs on both branes, with the
corresponding propagator (2.86). The only contribution to ∆F = 2 processes arise
therefore from overlap integrals with the fermion profiles and the first term in the
second line of (2.86), which is ∼ t2<. However, one of the central results of Section
(2.3) was, that the ∼ t2< part always appears with the same coefficient for all possible
combinations of BCs. The reason is, that this term could be assigned to the purely
composite part of the propagator in the dual theory, which is always present, inde-
pendently of the particle content of the elementary sector and whether or not there is
a composite Higgs (which both is reflected in the BCs in the 5D theory).
As a consequence, already the Lagrangian (3.57) ensures that there happens a cancel-
lation of the contributions to C4 between the gluon and axigluon KK modes, which
does neither depend on the mixing angle in (3.54) nor on the BCs still to be cho-
sen in order to fix the axigluon propagator. This can be better understood from the
dual theory, in which the global symmetry corresponding to the bulk symmetry group
(3.51) forbids these mixed chirality operators. Section 3.5 will address this underlying
explanation.

In a specific model, the BCs of the axigluon propagator need to be fixed and there
are physical motivations other than the flavor problem which leave not much room
for choice here. For details regarding the following discussion refer to Section 2.3, in
which all combinations of BCs and their implications are discussed. We will assume
the axigluon propagator to have the most general form (2.82) to begin with and de-
termine the values of the coefficients gradually. We will also adopt the notation (ND)
for Neumann (Dirichlet) BCs in the UV (IR) and likewise for all other combinations.
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Choosing Neumann BCs on both branes implies a massless axigluon zero mode, which
is clearly not seen in experiments and the (NN) scenario is therefore ruled out. Switch-
ing on a Higgs vev in the IR, which implies that the axigluons are massive due to a
spontaneous symmetry breaking, will only achieve a mass of the first mode of the order
of the electroweak scale. The current mass limit for an axigluon from dijet resonance
searches at LHC is [193]

mexp
A > 3.28 TeV . (3.58)

We extracted an upper limit of mA1 < 0.235MKK for the lowest lying KK mode in
the (ND) scenario, as becomes visible from the plot in the upper left panel of Figure
2.8. Clearly, if the only source of breaking was an IR localized Higgs the most recent
mass bounds would therefore push the KK scale already above 10 TeV, in which case
the flavor problem wouldn’t pose itself to begin with. This makes sense from the
perspective of the dual theory as well, because Neumann BCs in the UV correspond
to an elementary gauge boson which gets massive by coupling to the composite Higgs,
just as the W± and the Z, resulting in masses in the same range. Imposing Dirichlet
BCs in the UV eliminates this gauge boson from the theory, which in this case only has
composite axigluons, identified with the corresponding KK modes. Consequentially,
the (DN) scenario allows for an upper bound of mA1 < 2.4MKK as shown in the upper
right panel of Figure 2.8, which is still in agreement with the current bounds for a
TeV-ish KK scale.8

One source of breaking in the IR can however not be avoided. Yukawa interactions
on the IR brane can only be invariant operators, if the SU(3)D and SU(3)S quantum
numbers of the doublet and singlet quarks are saturated. The implementation of
the Yukawa couplings requires therefore an extended scalar sector. One possibility
is to introduce an additional colored scalar S ∼ (3, 3̄, 1)0, where the transformation
properties are denoted according to (SU(3)D, SU(3)S , SU(2)L)Y , such that the last
two lines of (2.122) have to be replaced by[

. . .
]
−→

[ S

MKK

{
εab Q̄LaH

†
bY

(5D)
u ucR + εab Q̄RaH

†
bY

(5D)
u ucL

+ Q̄LHY
(5D)
d dcR + Q̄RHY

(5D)
d dcL

}
+ h.c.

]
, (3.59)

in which H ∼ (1,1,2) 1
2

denotes the SM Higgs and the Yukawa interactions are higher

dimensional operators. Alternatively, one can avoid the appearance of higher dimen-
sional brane-localized operators and write down dimension four operators,[

. . .
]
−→

[
Q̄LHuY

(5D)
u ucR + Q̄RHuY

(5D)
u ucL

+ Q̄LHdY
(5D)
d dcR + Q̄RHdY

(5D)
d dcL

}
+ h.c.

]
, (3.60)

in which two Higgs doublets have to be introduced, transforming under the represen-
tations Hu ∼ (3, 3̄,2)− 1

2
and Hd ∼ (3, 3̄,2) 1

2
. In both cases will the colored scalars

8In addition, such a heavy first KK mode is already localized much closer to the IR brane and
will therefore dominantly decay into top pairs, so that (3.58) does not apply and the bounds are
considerably weaker, see Section 3.7.
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contribute to the breaking of the extended bulk symmetry and therefore to the ax-
igluon mass if they take on their vevs. A detailed discussion of both variants of the
extended scalar sector can be found in Section 3.6.
For now, we note that the only physically viable BCs are Dirichlet BCs in the UV and
mixed BCs in the IR. That means, that the breaking from the IR localized scalars
dictates the IR boundary condition, completely analogous to the case of EWSB, only
that the electroweak gauge bosons have Neumann BCs in the UV. The propagator of
the axigluon Aµ follows from (2.82) and yields, expanded for small momenta,

Dξ=1
µν (q, t; t′) =

ηµν L

4πrcM2
KK

(
t2< −

vIR

2 + vIR
t2t′2

)
, (3.61)

in which vIR depends on the value of the SU(3)D × SU(3)S breaking vev on the IR
brane, compare (2.93) and (2.102).
Given the expression (3.61), the effective Hamiltonian for four fermion operators from
integrating out the axigluon KK excitations can be computed as described in Section
(2.6). One finds

H(A)
eff =

2παs
M2

KK

∑
q,q′

S(q̄i, qj ; q̄
′
k, q
′
l)
ta ⊗ ta
s2
θ c

2
θ

(3.62)

{
2L
(
q̄Lγ

µ[∆̃Q s
2
θ − ε̃Q]qL − q̄Rγµ[∆̃q c

2
θ − ε̃q]qR

)
⊗
(
q̄′Lγµ[∆̃Q′s

2
θ − ε̃Q′ ]q′L − q̄′Rγµ[∆̃q′c

2
θ − ε̃q′ ]q′R

)
− vIR

2 + vIR
L
(
q̄Lγ

µ[∆Q s
2
θ − εQ]qL − q̄Rγµ[∆q c

2
θ − εq]qR

)
×
(
q̄′Lγµ[∆Q′s

2
θ − εQ′ ]q′L − q̄′Rγµ[∆q′c

2
θ − εq′ ]q′R

)}
.

As in the case of the Z boson, terms proportional to εQ,q can be discarded to very good
approximation, because they are of O(v2/M2

KK). In this approximation one obtains
the simpler expression

H(A)
eff =

2παs
M2

KK

∑
q,q′

S(q̄i, qj ; q̄
′
k, q
′
l) t

a ⊗ ta (3.63)

{
2L
(
q̄Lγ

µ∆̃Q tan θ qL − q̄Rγµ∆̃q cot θ qR
)

⊗
(
q̄′Lγµ∆̃Q′ tan θ q′L − q̄′Rγµ∆̃q′ cot θ q′R

)
− vIR

2 + vIR
L
(
q̄Lγ

µ∆Q tan θ qL − q̄Rγµ∆q cot θ qR
)

×
(
q̄′Lγµ∆Q′ tan θ q′L − q̄′Rγµ∆q′ cot θ q′R

)}
,

which is valid up to O(v4/M4
KK) corrections. By comparing the second line of equa-

tion (3.63) with the last line of (2.185), one can clearly see how the cancellation of
the tensor structures for the mixed-chirality operators works.
However, if the coefficient vIR/(2 + vIR) is of order one, the ∆F = 2 contributions to
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the Wilson coefficients C4 and C5 induced by the second term in (3.61) will become
of the same size as the terms which cancel out and thus reintroduce the flavor problem.

The value of vIR depends sensitively on the modeling of the extended scalar sector,
but with reference to (2.102) and Section 3.6, we can anticipate that it can be written
as

vIR = L
g2
s

2NCc2
θs

2
θ

v2
4

M2
KK

ξ =
2παsL

NCc2
θs

2
θ

v2
4

M2
KK

ξ, (3.64)

in which v4 denotes the vev of the scalar which couples to the strong sector (either
Hu and Hd in (3.60) or S in (3.59)), NC = 3 the number of colors, gs = gs5/

√
2πrc

the strong coupling constant and ξ some for now unspecified order one factor, param-
eterizing the effects from modeling the extended scalar sector. With the additional
assumption that v4 is proportional to the electroweak breaking scale (which will turn
out to be true for the scenario (3.60)), the contributions induced by the BCs are sup-
pressed by v2/M2

KK with respect to the gluon KK mode contributions to C4.
The combined contributions to the Wilson coefficients of the operators (3.18) from
the KK towers of the gluon (2.185) and the axigluon (3.63) read9

CG+A
1 =

2πL

M2
KK

[
αs
2

(
1− 1

NC

)]
1

c2
θ

{
(∆̃D)12 ⊗ (∆̃D)12 − 2(∆̃D)12 ⊗ (ε̃D)12 (3.65)

+
1

s2
θ

(ε̃D)12 ⊗ (ε̃D)12 −
1

2

vIR

2 + vIR

[
s2
θ(∆D)2

12 − 2(∆D)12(εD)12 +
1

s2
θ

(εD)2
12

]}
,

C̃G+A
1 =

2πL

M2
KK

[
αs
2

(
1− 1

NC

)]
1

s2
θ

{
(∆̃d)12 ⊗ (∆̃d)12 − 2(∆̃d)12 ⊗ (ε̃d)12

+
1

c2
θ

(ε̃d)12 ⊗ (ε̃d)12 −
1

2

vIR

2 + vIR

[
c2
θ(∆d)

2
12 − 2(∆d)12(εd)12 +

1

c2
θ

(εd)
2
12

]}
,

CG+A
4 =−NCC

RS
5 =

2πL

M2
KK

2αs

{
− 1

c2
θ

(∆̃D)12 ⊗ (ε̃d)12 −
1

s2
θ

(∆̃d)12 ⊗ (ε̃D)12

+
1

s2
θc

2
θ

(ε̃D)12 ⊗ (ε̃d)12 −
1

2

vIR

2 + vIR

[
(∆D)12(∆d)12 −

1

s2
θ

(∆D)12(εd)12

− 1

c2
θ

(∆d)12(εD)12 +
1

c2
θs

2
θ

(εD)12(εd)12

]}
,

9The electroweak contributions are not repeated as they are unchanged from (3.20).
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Figure 3.7: The upper row refers to the minimal RS model, the lower row to the
custodially protected extension. The left panels show the observable |εK | plotted
against the KK scale for the full parameter set and the extended color gauge group
(3.51). A fit to the median value of the parameter points in 500 GeV bins is plotted
in red and parameter points which do (not) agree with the bound (3.45) are black
(gray). The right panels shows the percentages of parameter points in agreement with
this bound for the RS model with (orange) and without (blue) extended color gauge
group.
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which again considerably simplify if one keeps only the leading terms in the v2/M2
KK

expansion,

CG+A
1 =

2πL

M2
KK

[
αs
2

(
1− 1

NC

)]
1

c2
θ

(∆̃D)12 ⊗ (∆̃D)12 ,

C̃G+A
1 =

2πL

M2
KK

[
αs
2

(
1− 1

NC

)]
1

s2
θ

(∆̃d)12 ⊗ (∆̃d)12 , (3.66)

CG+A
4 =−NCC

RS
5 =

2πL

M2
KK

2αs

{
− 1

c2
θ

(∆̃D)12 ⊗ (ε̃d)12 −
1

s2
θ

(∆̃d)12 ⊗ (ε̃D)12

− 1

2

vIR

2 + vIR
(∆D)12(∆d)12

}
.

In (3.66), the first two terms in C4, C5 include the εQ,q structure and the last one is
proportional to the IR BC vIR, which both are of the order v2/M2

KK. Using (3.64)
and vIR < 1, this results in the relation

CG+A
4 ≈ αsπL

2NCc2
θs

2
θ

ξ
v2

4

M2
KK

C4 ∼


2
3αsπ L ξ

v2
4

M4
KK
C4 , θ = 45◦ ,

8
9αsπ L ξ

v2
4

M4
KK
C4 , θ = 30◦ or θ = 60◦ ,

(3.67)

where in the last step NC = 3 has been inserted and the value of the mixing angle
has been fixed for two examples. As noted above, in principle one is free to choose
the mixing angle because the cancellation of the leading order terms of C4 does not
depend on θ. From (3.67) one can see that also the term induced by the BCs is largely
independent, however in the parameter corner of very large or very small mixing an-
gles, the terms enhanced by c−2

θ and s−2
θ in the Wilson coefficients (3.66) become too

large. The smallest overall contributions are achieved for θ = 45◦, which will be the
default setting for the following numerical analyses. Equation (3.67) has to be com-
pared with the equivalent relation for the scenario of aligned right-handed localization
parameters (3.49), for which we estimated, that the suppression is sufficient for a KK
scale of 1− 2 TeV.

In the upper row and left panel of Figure 3.7, the scatter plot in the right panel
of Figure 3.6 has been redone with the gluon contributions in the Wilson coefficients
(3.20) replaced by the exact expressions in (3.65) and assuming the minimal RS model
without a custodial protection. For the numerical analysis the same parameter points
have been used and ξ = 1, θ = 45◦ as well as v4 = 246 GeV have been employed
for the parameters of the extended gauge sector. From the red curve, which is again
fitted to the median of eighteen 500 GeV bins of MKK one can see that the estimate
above was sharp. The approximate bound on MKK above which the parameter points
on average fulfill the εK constraint (3.45) is MKK > 2 TeV. In the left panel of the
lower row, the same plot has been made with the additional assumption of a custodial
protection induced by an extended electroweak gauge group. The bound is stronger
than from the minimal model for two reasons. Already without the extended color
gauge group, is the bound from εK stronger, because of the huge enhancement of the
C̃1, as discussed in Section 3.3. This is partially canceled by a cancellation of the gluon



3.5. Implications for Other Theories 123

and the electroweak contributions to C5 in the custodially protected model. However,
the extended color gauge group already cancels the gluon contributions to C5, so that
in the electroweak corrections will reinforce the corrections from this mixed-chirality
operator, with the result of a bound of roughly MKK > 3 TeV.
The right panels in Figure 3.7 show the improvement even clearer as they compare the
percentages of parameter points which fulfill the εK constraint in 1 TeV bins of MKK

in the minimal (upper row) or custodially protected (lower row) RS model (blue) and
the corresponding RS model with extended gauge sector (orange). While in the RS
model, less than 5% of parameter points in the lowest bin agree with the constraint
from εK roughly 17% (9% with custodial protection) agree in the RS model with an
extended color group.
ff

This RS model with extended color gauge group does therefore not require fine-tuning
in order to agree with the bounds from ∆F = 2 observables, although a tension prevails
if a custodial protection is assumed.

3.5 Implications for Other Theories

In Chapter 2, below equation (2.41) is discussed, how a gauge symmetry in the bulk
of the RS model corresponds to a global symmetry in the composite sector of the
dual theory. This is the starting point for the understanding of the absence of any
contributions to the dangerous Wilson coefficients in (3.20) in the strongly coupled
dual of the RS model with an extended color gauge symmetry. Theories without a
holographic dual (in particular CTC), as described towards the end of Section 1.1
might also evade exclusion if this mechanism is applied.

Let us remind ourselves, that the composite sector must be a strongly coupled large
N theory in order for the AdS/CFT duality to hold. The two-point function of a
conserved current can be described in such a large N theory by the exchange of
an infinite tower of vector meson states, which carry the quantum numbers of the
corresponding global symmetry, compare (2.42). This is dual to the KK modes of
the respective gauge boson, up to mixing with the elementary gauge boson, which
corresponds to the zero mode. We can resume, that due to the AdS/CFT duality,
there exists a correspondence between{

A bulk symmetryG
in the

5D theory

}
and

{
A global symmetryG

of the
4D theory

}
and

{
A tower of composite

vector mesons in the adjoint
of G in the 4D theory

}
.

Therefore, a quark bilinear (by quark we will denote fermions in the elementary sector
in this section),

ψ γµ T
aψ , (3.68)

for an arbitrary element of some Lie algebra T a ∈ g with dimension a , can couple
to a tower of composite mesons if the corresponding group G is a global symmetry of
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the composite sector. A four quark operator

1

Λ2

(
ψ γµ T

aψ
)(
ψ γµ T aψ

)
, (3.69)

will consequentially only have a non-zero coefficient, if the composite sector is invariant
under the corresponding global symmetry. Note, that here the composite scale Λ is
to be identified with the KK scale.
If now as an example, the 5D gauge boson of some bulk gauge symmetry only couples
to left-handed zero modes, this will translate to composites which will only couple
to left-handed quarks in the dual theory and from the list (3.20) only C1 would
receive contributions. One might object, that in the minimal RS model the bulk
SU(2)L gauge bosons seem to contribute to all Wilson coefficients in (3.20), except
C4 because of the color structure, but this does not hold true. The electroweak neutral
current is described by the exchange of the KK excitations of the photon and the Z,
which in return are mixtures of the hypercharge U(1)Y and the neutral SU(2)L gauge
bosons, just as in the SM. The hypercharge U(1)Y gives rise to vector couplings and
its admixture is the sole reason for the Z to couple to right-handed fermions. In the
limit of vanishing hypercharge, in which c2

w → 1, s2
w → 0 and Qd → TD3 , one can check

that all electroweak contributions vanish apart from the one for C1, for which

Q2
d α+

(TD3 − s2
wQd)

2 α

s2
wc

2
w

→
(
TD3
)2 g2

4π
, (3.70)

as one would expect. In the dual theory, there are only composite mesons with
couplings to left-handed quarks and thus a four quark interaction involving right-
handed quarks will not occur.
For the same reason purely left-handed, purely right-handed and mixed chirality four
fermion interactions get contributions from color-charged composite mesons, because
the gluon couples vectorially. If this group is now extended to SU(3)L × SU(3)R, the
composite sector will again only allow for four quark operators with only quarks of
the same chirality as external legs, because

1

Λ2

(
ψL γµ T

a
LψL

)(
ψR γ

µ T aRψR
)
, (3.71)

vanishes if T aL and T aR belong to different Lie groups. This is independent of the gauge
couplings for the two bulk SU(3)s and therefore of the mixing angle θ in (3.56), be-
cause in this basis the mixed chirality operators can simply not be constructed from
the meson fields available in the composite sector. Extreme values of tan θ will only
affect the contributions to C1 and C̃1.
This is hidden by the fact that we choose the linear combination with vector and the
one with axial vector couplings in (3.54) to have different BCs. In terms of these com-
binations, which correspond to the equivalent linear combinations of vector mesons
in the dual theory, it looks like their contributions to C4 and C5 cancel. In other
words, considering only the bulk symmetry, the composite sector has vector mesons
which couple either to left- or to righthanded currents and a change of basis may not
alter the fact, that the Wilson coefficients of four-quark operators which include both
chiralities are zero.
One can also understand the remaining terms in C4 in (3.66). The first two terms
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would vanish, if the 5D doublet and singlet would decompose into purely left- and
right-handed 4D fields. The mixing induced by the couplings to a brane-localized
Higgs are the reason for the cancellation being not perfect, and those terms do also
appear for the example of a purely left-handed coupling above. This is however rooted
in the fermion implementation, which can be seen by the fact that one can not find
these terms based on the propagator (3.61) alone.
Moreover, the IR localized Higgs has another effect, not directly evident from (3.61).
Because it gives masses to the linear combination with axial vector couplings, the cor-
responding composite mesons will have a different mass then the ones with vectorial
couplings which do not interact with the composite Higgs. The term in the last line
of (3.66) measures the amount by which this mass splitting sets off the cancellation,
which explains why it must be proportional to the Higgs vev. In the propagator we
encountered the responsible terms in the analysis of the (DD) BCs in Section 2.3.

There is good reason to believe that these conclusions carry over to a composite theory
which cannot be described by a holographic dual. Conformal Technicolor, which was
shortly discussed in section 1.1 is such a small N strongly coupled theory, which
features a composite Higgs but no composite fermions. It does therefore not explain
the hierarchies in the quark sector and has no built in RS-GIM, but it solves the
hierarchy problem by assuming that the scaling dimension of the Higgs mass operator
is ∆H†H = 4, while ∆H & 1. If it were possible to describe CTC by a 5D theory, it
would correspond to a model in which the whole SM model field content is on the UV
brane and only the Higgs extends into the bulk, but stays close to the UV brane in
order to allow for it to have a small scaling dimension, so that the Yukawa interactions
are only slightly irrelevant [29]. We concluded, that it may be the only feasible way to
bring an explanation of the hierarchy problem based on a strongly coupled theory in
agreement with experimental constraints if it should turn out that quarks of all flavors
are elementary particles. It is however strongly constrained from numerical analyses
in combination with flavor constraints and already ruled out, if the new resonances
do not respect additional flavor symmetries [30].

Whether the results obtained in the last section will also hold for a small N theory
can not be computed. It is however encouraging that QCD, which isn’t exactly a
large N theory does not only exhibit rho-photon mixing in complete analogy with the
elementary-composite mixing in the dual descriptions of RS models, but also features
a vector meson octet, which corresponds to the global SU(3)V symmetry of (quantum)
QCD. In the holographic dual, this octet would be the first KK mode of a gauged
bulk flavor SU(3)V .
If the global symmetry of such a small N theory were SU(3)D × SU(3)S , it is not
too far fetched to assume that there would be mesons for these global charges as well.
The resulting loosening of the flavor bounds is shown by the available parameter space
for the extended model in the ∆H†H − ∆H plane in Figure 3.8, shaded in green. It
is achieved by eliminating the coefficients of the dangerous mixed chirality operators
from the analysis. For comparison, the bound for minimal CTC as shown in Figure 1.4
is also plotted, the blue shaded region is generically excluded by numerical analyses.
Only a small corner of parameter space opens up, but the situation is actually better
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Figure 3.8: Region in the ∆H −∆H†H plane which is excluded using numerical meth-
ods, shown in blue. These bounds depend on the global symmetry of the technicolor
condensate (and become weaker for a larger symmetry group), which is assumed to
be SU(2) in this plot. The red region in the upper left corner is the preferred region
by flavor bounds on the ETC scale and a natural top mass. The green region shows
the improvement assuming a global SU(3)D × SU(3)S symmetry. The dashed cross
indicates the lowest possible value of ∆H ≡ ∆Q̄Q, while ∆H†H ≡ ∆(Q̄Q)2 = 4, and the
orange line depicts the large N limit ∆H†H = 2∆H .

then it appears, because the scalar sector needs to respect the enlarged global sym-
metry as well and this will lead to a weaker bound from the numerical analysis, which
means the thick blue line in Figure 3.8 shifts up. This has not been implemented in
the plot, because the fit function has not been given in the original paper, however
compare [30, Fig. 4].

We can resume that the dual interpretation of the extended gauge sector proposed
for RS models suggests that the associated suppression of the coefficients of mixed
chirality operators can be achieved in a wider class of strongly coupled models. Ex-
perimentally, such a global symmetry would reveal itself either by the additional
mesonic resonances or by the variety of scalars in the extended Higgs sector, which
will be the subject of Section 3.6.



3.6. The Extension of the Scalar Sector 127

K∗0 K∗+

K̄∗0K∗−

ρ+ρ−

ρ0

ω ϕ

Figure 3.9: In QCD, the global SU(3)V symmetry leads to an octet of vector mesons,
and a singlet corresponding to the U(1)B. In the same way, vector mesons of a
strongly coupled extension of the SM could be realized which correspond to a global
SU(3)D × SU(3)S and therefore do not lead to excessive contributions to εK .

3.6 The Extension of the Scalar Sector

In order to implement Yukawa couplings on the IR brane, the Higgs sector of the
extended RS model has to include color charged scalars, which saturate the quantum
numbers of the bulk quarks under SU(3)D × SU(3)S

Q ∼ (3,1) , qc ∼ (1,3) . (3.72)

The same fields will also contribute to the axigluon KK masses by inducing IR BCs
once they take on their vev. The most minimal extension of the scalar sector that
allows for gauge invariant Yukawa couplings is to introduce an electroweak singlet with
hypercharge Y = 0, but transforming as a bitriplet under SU(3)D × SU(3)S . This
is analogue to the most popular extension of the scalar sector in four dimensional
implementations of chiral color models [194]. In addition to the SM Higgs Lagrangian
on the IR brane and the Yukawa couplings (3.59), this introduces the following terms,

LS =
δ(|φ| − π)

rc

{
Tr
[(
DµS

)†(
DµS

)]
− V (S,H)

}
. (3.73)

Here, the trace is taken over the indices of the SU(3)D × SU(3)S generators, which
by a slight abuse of language will collectively be called color indices hereafter. The
potential V (S,H) is given in Appendix D because it is not important for the following
discussion. It is a priori not necessary to confine S to the IR brane, but it would lead
to chiral color breaking by a bulk mass instead of a BC if it was a bulk field, which
would change the analysis in the Sections 3.4 and 3.5 considerably, because a broken
gauge symmetry in the bulk will not correspond to a global symmetry in the dual
theory. We will therefore always assume the whole scalar sector to be localized on the
IR brane.
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The covariant derivative in (3.73) reads

(DµS)αa =

(
δabδαβ∂µ − igD5δαβ

(
GD
)r
µ
T rab + igS5

(
GS
)r
µ

(
T rαβ

)∗
δab

)
Sbβ , (3.74)

in which the color indices of the SU(3)D (SU(3)S) are denoted by greek (latin) letters
and the index r = 1 . . . , 8 runs over the number of generators of the respective group.
If the vev of S is supposed to break the bulk SU(3)D × SU(3)S down to its diagonal
subgroup, it must read

〈Saα〉 =
vS√
2NC

δaα . (3.75)

Inserting the linear combinations (3.54) and using

cos θ =
gS5√

g2
S5 + g2

D5

, sin θ =
gD5√

g2
S5 + g2

D5

, (3.76)

and (3.56), it follows from the kinetic term

Tr
[(
DµS

)†(
DµS

)]
3 1

2

g2
s5v

2
S

2NC c2
θ s

2
θ

ArµAr µ . (3.77)

Comparing this with the expressions (2.93) and (2.102), one can infer that for the
axigluon

vIR = L
m2
A

M2
KK

= L
g2
s

2NC c2
θ s

2
θ

v2
S

M2
KK

, (3.78)

which we already anticipated in (3.64). In SM implementations of chiral color, vS is
directly proportional to the axigluon mass. This is also true for an axigluon imple-
mented in an RS model, if the IR brane provides the only source of SU(3)D×SU(3)S
breaking. However, we could rule out this choice of BCs for the model at hand in
Section 3.4, because it leads to a too light first KK mode. This is rooted in the fact
that the IR brane is connected to the electroweak breaking scale. The vev of every
scalar confined to the IR is naturally bounded from above by the cutoff vS ≤ MKK.
However, if the axigluon has Dirichlet BCs in the UV, the mass of its first excitation
will be in the TeV range even for vS well below MKK, as discussed in Section 2.3.

Already in the SM it is questionable to assume such a minimal extension of the Higgs
sector, even if the vev of S can in principle be chosen arbitrarily large. The problem
arises not from the axigluon mass, but from the top quark mass. If the Yukawa
interactions are dimension five operators as in (3.59), the ratio 〈S〉/Λ should be of
order one if the top mass is to be generated with a perturbative Yukawa coupling.
That makes it problematic to neglect higher dimensional operators with additional S
insertions.
In the extension of the RS model it brings about another drawback. If vS/MKK ∼ 1,
the contributions to the mixed chirality Wilson coefficients in (3.66) do not have an
additional suppression and become equally large as the original terms in (3.20) so that
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the RS flavor problem is not solved.
The scalar sector introduced in the next section will allow for dimension four Yukawa
couplings, so that the vev is necessarily connected to the electroweak scale and a
sufficient suppression of the dangerous FCNCs is achieved.

A Realistic Higgs Sector

In order to evade the tension between a realistic top Yukawa coupling and the suppres-
sion of contributions to εK , we consider a scalar sector in which the Higgs which is re-
sponsible for EWSB also carries color charges. Such an extension is shortly mentioned
for a chiral color extension of the SM in [195]. The corresponding Yukawa couplings
have already been given in (3.60), and the additional terms in the Lagrangian read

LS =
δ(|φ| − π)

rc

{
Tr
[(
DµHu

)†(
DµHu

)]
+ Tr

[(
DµHd

)†(
DµHd

)]
+
(
Dµh

)†(
Dµh

)
− V (h,Hu, Hd)

}
, (3.79)

where the potential will again be given in Appendix D. The three scalar fields carry
the quantum numbers

SU(3)D SU(3)S SU(2)L U(1)Y

Hu 3 3̄ 2 −1
2

Hd 3 3̄ 2 1
2

h 1 1 2 1
2

The Higgs with SM quantum numbers will in this section be denoted by h for a better
differentiation, and the corresponding covariant derivative given by (2.96) does not
include couplings to the color group gauge bosons. Notice also, that the Dirichlet BCs
in the UV can be modeled by putting the Lagrangian (3.73) on the UV brane and
consequentially introducing a vev 〈S〉 ≈MPl.

10

There need to be different color charged Higgs fields for up and down quarks, because
the complex conjugated Hd transforms as H†d ∼ (3̄,3) under SU(3)D × SU(3)S and
therefore if it is inserted in the up-Yukawa interactions it will not saturate the quark
color charges11. The SM Higgs h will give Yukawa interactions for the leptons. In prin-
ciple one could write down effective lepton Yukawas with only the two color charged
fields, because h ∼ HdHdHu since 3⊗3⊗3 = (6⊕ 3̄)⊗3 3 1. However, the potential
V (Hu, Hd) has a global U(3) × U(3) symmetry, while the vacuum is invariant under
SU(3)C × U(1). This will lead to nine Goldstone bosons from which only eight will
be absorbed by the axigluons in order to become massive. It is therefore necessary

10A scalar sector on the UV brane may not include an electroweak doublet, because this would
introduce Yukawa interactions on the UV brane.

11Notice, that for a Higgs bidoublet as in the custodial model, there is no problem in writing
down both Yukawa terms with one field, because for SU(2) the fundamental and anti-fundamental
representation are isomorphic.
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to introduce an additional scalar which is either a singlet under the color groups or
under the SU(2)L, in order to break the residual U(1) in the potential.

The vacuum expectation values of the three scalars are dictated by the symmetries of
the vacuum

〈 (Hu)iaα〉 =
vu√
2NC

δaαδ
i1 ,

〈 (Hd)
i
aα〉 =

vd√
2NC

δaαδ
i2 ,

〈hi〉 =
v`√

2
δi2 . (3.80)

Here, small latin letters from the middle of the alphabet denote SU(2)L indices. The
mass term for the electroweak gauge bosons (2.102) and for the axigluon (3.77) change
accordingly and one finds,

MW =
g5

√
v2
u + v2

d + v2
`

2
, MZ =

MW

cw
, MA =

gs5

√
v2
u + v2

d√
2NCsθ cθ

. (3.81)

All three scalars are electroweak doublets and consequentially give mass to the elec-
troweak gauge bosons, while only the color-charged fields couple to the axigluon. It
follows therefore for the SM vev v = 246 GeV,

v =
√
v2
u + v2

d + v2
` , (3.82)

from which one can already infer for the factor introduced in (3.64) that ξ < 1.
In order to make this explicit, we will repeat the matching of the 5D to the 4D
Lagrangian, which was performed for the electroweak sector in (2.3), for the extended
color sector. Therefore, the rotation (3.54) has to be introduced in the Lagrangian for
the SU(3)D × SU(3)S bulk gauge fields

LSU(3)D×SU(3)S = GKMGLN
(
−1

4
(GrD)KL(GrD)MN −

1

4
(GrS)KL(GrS)MN

)
, (3.83)
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which yields

LSU(3)D×SU(3)S = GKMGLN
{
− 1

4
GrKLGrMN −

1

4

(
∂KArL − ∂LArK

)(
∂MArN − ∂NArM

)
− gs5

[
f rst(∂KGrL)AsMAtN + (cot θ − tan θ)f rst(∂KArL)AsMAtN

+
1

2
f rst

(
∂KArL − ∂LArK

)(
GsMAtN − GsNAtM

)]
− g2

s5

[ 1

4
(cot θ2 + tan θ2)f rstf rpqAsKAtLApMA

q
N

+
1

4
f rstf rpq

(
GsKAtL − GsLAtK

)(
GpMA

q
N − G

p
NA

q
M

)
+

1

2
(cot θ − tan θ)f rstf rpq(GsKAtL − GsLAtK)ApMA

q
N

+
1

2
f rstf rpqGsKGtLApMA

q
N

]}
. (3.84)

Here, the first line corresponds to the color gauge sector of the minimal RS model and
the axigluon kinetic term, the second and third line to GAA and AAA vertices and
the remaining terms to vertices with four legs.
The color-charged scalars are bitriplets under SU(3)D × SU(3)S , so that they can be
decomposed into a singlet φ and an octet Or under the diagonal subgroup SU(3)C ,

(Hu)aα = φu
δaα√
2NC

+Oru T
r
aα

(Hd)aα = φd
δaα√
2NC

+Ord T
r
aα

(S)aα = φS
δaα√
2NC

+OrS T
r
aα , (3.85)

in which the electroweak singlet Higgs is included in order to model the UV BC. The
relevant terms in the action are quadratic in the fields. Mass terms for the scalars are
omitted, because they depend non-trivially on the various parameters of the Higgs
potential given in Appendix D. Including only color charged fields, one finds

S 3
∫
d4x r

2π

L

∫ 1

ε

dt

t

{
LG + LA +

k

2
δ(t− 1)LIR +

k

2
δ(t− ε)LUV + LGF

}
, (3.86)
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in which

LG = −1

4
GrµνGr µν +

1

2

(
∂µGr5∂µGr5 +M2

KK ∂tGrµ∂tGrµ
)
−MKK∂

µGrµ t∂t
1

t
Gr5 , (3.87)

LA = −1

4

(
∂µArν − ∂µArµ

)2
+

1

2

(
∂µAr5∂µAr5 +M2

KK ∂tArµ∂tArµ
)

(3.88)

−MKK∂
µArµ t∂t

1

t
Ar5 ,

LIR = Tr
[
∂µHu∂

µH†u

]
+ Tr

[
∂µHd∂

µH†d

]
(3.89)

+Mu
AArµ∂µ ImOru +Md

AArµ∂µ ImOrd +
1

2
M2
AArµArµ ,

LUV = Tr
[
∂µS∂

µS†
]

+MS
AArµ∂µ ImOrS +

1

2
MS 2
A ArµArµ . (3.90)

Here, Grµν denotes the gluon fields strength tensor and the mass terms are defined by
(3.81) and

M i
A ≡

gs5vi√
2NCsθ cθ

, (3.91)

for i = u, d, S. The gauge fixing terms must take care of the mixing terms between the
scalar and vector component of the bulk gluon and axigluon and the mixing between
the imaginary part of the scalar octets and the vector component of the bulk fields.
It follows,

LGF =− 1

2ξ

(
∂µGrµ − ξ

[
MKKt ∂t

1

t
Gr5
])2

(3.92)

− 1

2ξ

(
∂µArµ −

ξ

2

[
δ(t− 1) k

{
Mu
A ImOru +Md

A ImOrd

}
+ δ(t− ε) kMS

A ImOrS + 2MKK t∂t
1

t
A5

])2

,

in accordance with (2.76). This eliminates the mixing terms and one finds an analogue
expression to (2.98). Upon insertion of the KK decomposition, which for the gauge
fields is given by(

Xr
µ(x, t)

Xr
5(x, t)

)
=

1√
rc

∑
n

(
X
r (n)
µ (x)χXn (t)

MKK a
X
n ϕ

r (n)
X (x) ∂tχ

X
n (t)

)
, (3.93)

for X = A,G, and one finds for the scalar octets analogue to (2.100),

ImOru(x) =
∑
n

bImOun ϕ
r(n)
A (x) , ImOrd(x) =

∑
n

bImOdn ϕ
r(n)
A (x) ,

ImOrS(x) =
∑
n

bImOSn ϕ
r(n)
A (x) , (3.94)



3.6. The Extension of the Scalar Sector 133

the boundary conditions take the form

∂t χ
G
n(ε+) = 0 , ∂t χ

G
n(1−) = 0 , (3.95)

∂t χ
A
n (ε+) =

L

2πrc

εM2
S

M2
KK

χGn(ε+) , (3.96)

∂t χ
A
n (1−) = − L

2πrc

M2
A

M2
KK

χAn (1−) , (3.97)

and the action reads (ignoring the kinetic terms for the scalars)

SGauge,2 =
∑
n

∫
d4x
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+
1

2
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}
,

under the additional condition for the Fourier coefficients in (3.93) and (3.94)

aAn = − 1

mAn
, aGn = − 1

mGn
, (3.98)

bImOSn =
MS
A√
rc

χAn (ε+)

mAn
, bImOun =

Mu
A√
rc

χAn (1−)

mAn
, bImOdn =

Md
A√
rc

χAn (1−)

mAn
.

The masses mAn and mGn are fixed by the IR BCs in (3.95) and (3.97), while the UV
BCs determine the coefficients αn in the profiles (2.92). For the gluon, the UV and
the IR BCs are Neumann and the masses of the KK modes are consequentially equal
to the minimal RS scenario with a first excitation at x1 ≈ 2.4. For the axigluon, the
BCs read

∂t χ
A
n (ε+) = L

ε v2
S g

2
s

2NCs2
θc

2
θM

2
KK

χGn(ε+) , (3.99)

∂t χ
A
n (1−) = −L (v2

u + v2
d)g

2
s

2NCs2
θc

2
θM

2
KK

χAn (1−) , (3.100)

which shows that Dirichlet BCs are successfully reproduced by a UV brane localized
scalar because naturally vS ∼ MPl, so that vUV ≈ MPl/MKK and as shown in the
upper right panel of Figure 2.8, every value of vUV which is not extremely small,
vUV ≈ O(ε), will effectively lead to Dirichlet BCs in the UV. The IR BCs tell us that

vIR = L
g2
s

2NCs2
θc

2
θ

(v2
u + v2

d)

M2
KK

, (3.101)
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which compared with (3.64) shows that for a thorough implementation of the Higgs
sector

ξ =
v2
u + v2

d

v2
< 1 . (3.102)

Since vIR < 1 in this scenario, one can expand (3.97) and also give an approximate
mass for the first axigluon KK mode of

x
(1)
A ≈ 2.4 + vIR/2.4. (3.103)

Adjusting the Fermion Profiles

Introducing different Higgs fields for the up- and down-type quarks will change the
mass relations (2.158), because the vacuum expectation value is now replaced by the
corresponding line of (3.80). In the extended model, the mass relations read

mqui
=

vu√
2NC

Yu |F (cQi)F (cui)| , mqdi
=

vd√
2NC

Yd |F (cQi)F (cdi)| , (3.104)

in which Yu, Yd are again order one parameters sensitive to the respective Yukawa
couplings. In order for the physical quark masses to be reproduced, that is the left
hand side of (3.104) to be unchanged, a factor

v
√
NC

vd
=

√
v2NC

v2 − v2
u − v2

`

≈
√
NC

(
1 + tan2 β

)1/2 ≡ pd ,
v
√
NC

vu
=

√
v2NC

v2 − v2
d − v2

`

≈
√
NC

(
1 + cot2 β

)1/2 ≡ pu , (3.105)

has to be absorbed into the variable parameters on the right-hand side of (3.104).
In writing (3.105), the standard notation tanβ = vu/vd has been introduced and it
was assumed that v2

` /v
2 � 1. 12 Note that for all tanβ, it follows pd >

√
NC and

pu >
√
NC . One possibility is to rescale the Yukawa couplings

Yd → pdYd , Yu → puYu , (3.106)

which however will lead to the consequences described in Section 3.3. Another way
to absorb these factors is to rescale the zero mode profiles and therefore ultimatively
the bulk mass parameters which will correspond to moving some of the profiles closer
to the IR brane. A third way would be a combination of both.
We will refrain from rescaling the Yukawa couplings. Although for small tanβ ∼ 1,
this will not require a rescaling by a factor of ten, as the proposal discussed in Section
3.3, it will still lead to a tension with observables which scale with positive powers of

12Whether this is viable or not depends on the size of the lepton Yukawas and the constraints
from lepton flavor violation. A sizable v` would even lead to a smaller ξ in (3.102), and therefore at
first sight bring about a less severe bound from εK , but this effect might be compensated for by the
rescaling of the quark profiles as argued above.
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the Yukawa couplings, as ε′/εK .
Instead, we will rescale the singlet profile functions,

F (cqi) → pq F (cqi) , (3.107)

and therefore all singlet zero modes will be located closer to the IR brane, while
the localization parameters of the doublets remain unaffected. This may reintroduce
contributions to the Wilson coefficients which are sensitive to the singlet localization.
For the overlap integrals, one finds on the basis of the ZMA relations (2.180), that

∆Q → ∆Q , ∆′Q → ∆′Q ,

∆q → p2
q ∆q , ∆′q → p2

q∆
′
q . (3.108)

The ε and δ structures have an additional v2/M2
KK suppression, which was the rea-

son why we have not given ZMA expressions for them in Section 2.5. They can be
approximated by

(εQ)mn ∼ (ε′Q)mn ∼ (δQ)mn ≈
Yqv

2

M2
KK

F (cQm)F (cQn) .

(εq)mn ∼ (ε′q)mn ∼ (δq)mn ≈
Yqv

2

M2
KK

F (cqm)F (cqn) . (3.109)

In the extended model not only the profiles change, but also these suppression factors.
This means that we have to replace(

εQ, ε
′
Q, δQ

)
→ 1

p2
q

(
εQ, ε

′
Q, δQ

)
,

(
εq, ε

′
q, δq

)
→
(
εq, ε

′
q, δq

)
. (3.110)

For the tensor structures the factorization property in the ZMA (2.183) does also
hold for the integrals in (3.66), so that one ends up with the rescaling of the Wilson
coefficients

CG+A
1 → CG+A

1

C̃G+A
1 → p4

d C̃
G+A
1 ,

CG+A
4 = −NCC

RS
5 → 2πL

M2
KK

2αs

{
− 1

c2
θ

(∆̃D)12 ⊗ (ε̃d)12 −
1

s2
θ

(∆̃d)12 ⊗ (ε̃D)12 ,

− p2
d

2

vIR

2 + vIR
(∆D)12(∆d)12

}
,

for a correctly implemented Higgs sector. Clearly, large values of tanβ will enhance
the dangerous mixed-chirality Wilson coefficients as well as C̃1, which is sensitive to
tan4 β. In Figure 3.10, the resulting bound on the KK scale from εK is plotted for
different values of tanβ = 0.1, 0.5, 1, 2, 5. All of the curves correspond to a fit to
the complete set of parameter points for the minimal RS model without custodial
protection but with extended color gauge group and with relocated quarks and have
to be compared with the red curves in Figure 3.7. The lower bound on p2

d > NC

leads to a stronger bound on the KK scale, even for extremely small tanβ and already
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Figure 3.10: Plot of the fit to |εK | versus MKK for six different values of tanβ, in
which the curves are from left to right for tanβ = 0.1, 0.5, 1, 2, 5.

for 2 < tanβ < 5, the bound becomes as bad as in the minimal model. Therefore,
if the extended color symmetry group is realized in nature, very small tanβ < 2
are a necessary prediction for the minimal Higgs sector. Note, that implementing a
custodial protection will shift the extracted value for MKK from Figure 3.7 by roughly
a TeV, for the reasons explained in Section 3.7. This induces a tension, because even
for tanβ < 1 the extracted bound becomes MKK > 4 TeV.

Another new source of contributions to εK arise from the exchange of the neutral
color octets in the extended Higgs sector. In general, such a new scalar can lead to
large FCNCs, but not if it couples proportional to the Yukawas, for details compare
the model-independent analysis [197]. Such a MFV coupling is naturally implemented
here and the flavor changing couplings arise only due to the mixing between fermion
zero mode and KK modes as in the case of a brane-localized color singlet [196]. It is
straightforward to determine the size of these FCNCs by inserting (3.85) into (3.60)
and compare the result with the FCNC inducing couplings of the brane localized SM
Higgs in (2.189). One can immediately read off that the couplings will be enhanced
compared to the singlet scalars by a factor of

√
2NC . However, on the basis of (2.189)

and (2.184), this still results in an overall suppression of v4/(m2
OM

4
KK) for the octet

contribution to the Wilson coefficients, in which mO denotes the mass of the octet
scalar.13 We find that they can be neglected for realistic masses for the color octet.

13Note, that the mass of the octet depends sensitively on the choice of parameters in the Higgs
potential and is not trivially connected to the SM Higgs mass.
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3.7 Flavor Observables and LHC Bounds

As elaborated in the last section, the extension of the color gauge group in the bulk
makes it necessary to introduce an extended scalar sector and as a consequence changes
the localization of the quarks along the extra dimension. Therefore not only observ-
ables in which the new axigluon resonances directly mediate FCNCs change in the
extended model, but also processes which involve only photon or Z exchange.
In this section we will therefore comment on the new contributions to observables dis-
cussed in the earlier sections of this chapter and repeat the numerical analyses with
the axigluon contributions as well as the fermion localization implemented. .
We will also analyze the bounds from direct detection experiments for the color octet
and axigluon resonances at the LHC.

Electroweak Precision Observables

The modification of the strongly coupled sector will not give direct contributions to
the oblique parameters and the relocalization of the fermions does also not affect the
analysis in Section 3.1, because only flavor universal contributions have been consid-
ered there.
In principle, a color octet, electroweak doublet scalar leads to modifications of the
electroweak gauge boson propagators via loop insertions. A model independent anal-
ysis yields an upper bound on the mass splitting between charged and neutral color
octets of O(50) GeV in order to agree with the T parameter [198]. This splitting
depends on the parameters in the Higgs potential and can be used as a constraint for
generating the physical spectrum. Note also, that we have not considered loops of KK
fermions or gauge bosons in Section 3.1, which might change these conclusions.
Corrections to the Z → bb̄ vertex depend sensitively on the localization of the bot-
tom quark. The extended color sector shifts all right-handed quarks closer to the IR
brane, so that effectively only modifications to the coupling of the Z to right-handed
b quarks gbR in (3.11) play a role.14 From (3.108) one can infer that the relocalization
amounts to a factor p2

d of the RS contribution δgbR. Since these corrections go in the
wrong direction and are already enhanced in the custodial model, the Zb̄b constraint
also prefers small tanβ, which is in line with the parameter region favored by εK . The
resulting scatter plot in the extended model is shown for tanβ = 1/2 and θ = 45◦ in
Figure 3.11, and despite the misleading scaling, still more than 95% do agree with the
measurements at 99% CL.

Flavor Violating Observables

Although the extended gauge sector leads to smaller values for εK , the contributions
to ∆B = 2 observables as discussed in Section 2.6 may be even larger in the RS model
with extended color gauge group. The reason is, that for K − K̄ mixing the mixed

14There is also a modification for the second term in (3.10), but this term is suppressed by m2
b/m

2
Z .
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Figure 3.11: The plot shows regions of 68%, 95% and 99% probability in the gbL− gbR
plane. The best fit value is denoted with a cross and the experimental value with a
star. The red colored regions indicate the predicted values of a large set of parameter
points for the custodially protected RS model with extended color gauge group in the
bulk and relocalized fermions for tanβ = 1/2 and θ = 45◦.

chirality Wilson coefficients are enhanced by renormalization group running from MKK

to 2 GeV and from chirally enhanced matrix elements, which both yield significantly
smaller factors if the Kaons are replaced by Bs mesons. The matrix elements are in
this case evaluated at µ = mb and the chiral enhancement is negligible. Instead of
(3.41) one finds thus

〈B0
s

∣∣H∆S=2
eff,RS

∣∣ B̄0
s 〉 ∝ CRS

1 + C̃RS
1 + 7.4

(
CRS

4 +
CRS

5

2.55

)
, (3.111)

which tells us, that the coefficients are more or less equally important. In the extended
model, the contributions to C4 and C5 from the KK gluon and axigluon cancel, which
by itself will lead to an enhancement of C5 with respect to the custodially protected
model. In addition, the coefficients C1 and C̃1 are enhanced by cos θ−2 and sin θ−2

respectively, which for values θ ≈ 45◦ are close to a factor of 2. Further, the IR shift of
the cdi induced by the extended Higgs sector will result in an equivalent enhancement
as in the case of K − K̄ mixing.

Regarding the branching ratios B
(
Bs → µ+µ−

)
and B

(
Bd → µ+µ−

)
discussed in

Section 2.6 only slightly larger effects are expected, because they are mediated by
electroweak gauge bosons and therefore only affected by the relocalization of the
right-handed down quarks. From the equations (3.108), (3.34) and (3.37) one can
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Figure 3.12: The red points indicate the predicted values of a large set of parameter
points for the custodially protected RS model with extended color gauge group in the
bulk and relocalized fermions for tanβ = 1/2 and θ = 45◦, in the B
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)
-

B
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plane (left panel) and in the Sψφ−∆Γ/Γ plane (right panel). The SM

predictions are indicated by black bars, and the and the yellow (gray) contours the
experimentally preferred regions of 68% (95%) probability in the right panel. In the
left panel, the black dashed lines denote the experimental upper limits as measured by
LHCb at 95% CL, and the blue band shows the preferred region at 95% CL measured
by CDF.

find that to leading order in v2/M2
KK the effect of the relocalization amounts to an

enhancement of CA′ → p2
dCA′ , while CA remains unchanged.

Scatterplots for the extended model with relocalized fermions for the reference values
of tanβ = 1/2 and θ = 45◦, for the observables described in Section 2.6 and 2.6 are
shown in Figure 3.12. One can see that slightly larger effects are possible, however
the RS-GIM mechanism does still sufficiently suppress FCNCs in order to not alter
the conclusions in the mentioned sections.

Bounds from Direct Detection

Besides agreement with the bounds from flavor observables, the masses of the new
resonances must be below the constantly improving mass limits of the LHC experi-
ments. This primarily concerns the KK excitations of the axigluon and the color octet
scalars.
Interestingly, both axigluons as well as color octet, electroweak doublet scalars are
among the most weakly constrained new physics resonances. This can be understood
by considering that the best exclusion limits from the LHC come from dijet analy-
ses, which in return are strongest if the new resonance can be produced at tree level
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Figure 3.13: In the first row, the leading diagrams for the single and pair production
of axigluon or scalar octet resonances are shown for gluon initial states. Coiled lines
represent gluons, straight lines quarks and dashed lines can be either an axigluon KK
mode or a scalar octet. The diagrams (b) and (c) exist also for an axigluon (octet) in
the loop and a octet (axigluon) final state. The second line shows the favored decay
channels for the pair production, with the straight lines in (e) denoting top quarks in
case of a neutral octet and top-bottom pairs if the octets are charged.

from gluon initial states [193]. However, even though they are color charged, the new
scalars are electroweak doublets and can therefore only be produced from gluon initial
states via loop suppressed gluon-gluon fusion, or in pairs, see Figure 3.13.
The same holds true for the axigluon. From the second line of (3.84) it is clear that
a GGA vertex is forbidden, as well as any vertex with an odd number of axigluons if
θ = 45◦, that is, if the new resonance couples purely axial. This is a result of parity
conservation, since the axigluon must have negative parity. As a consequence the
production channels from gluon initial states for a heavy axigluon resonance are also
given by the diagrams in the first row of Figure 3.13.
Regarding the decays one can say, that the color octet will decay primarily into tops,
because its couplings are proportional to the Yukawa couplings. This is also true for
the axigluon in the RS model, because it will be strongly IR localized and the RS-GIM
mechanism suppresses couplings to the light flavors. Both will therefore also evade
the usual dijet bounds, because a top pair final state will not look like two jets in the
detector and is often not reconstructed in these analyses. Possible signatures would
be seen in resonance searches in top pair final states for the gluon-fusion production
channel, or in four top final states if the resonances are pair-produced at tree-level.
There is also the diagram (f) in Figure 3.13, but this will not produce a narrow res-
onance in the dijet spectrum. Scalar octets can also radiate off an electroweak gauge
boson before they decay, which is however suppressed if the decay in top pairs is kine-
matically accessible, see [200, Fig.4] and the analysis therein.

In order to estimate whether the extended RS model is in conflict with the direct
detection limits we will concentrate on the axigluon KK mode. For this resonance the
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model predicts a mass which depends only on MKK, while the masses of the scalar
octets are not connected to the KK scale but depend on a large number of parameters
in the Higgs potential. We will therefore only refer to the literature on color octet
electroweak doublets [197, 199, 200, 201] and note that a dedicated analysis using the
LHC dataset is still to be undergone and the current upper limits from LEP searches
are in the mO > 100 GeV range 15.

For the axigluon KK mode, we will compare the tree-level production cross section
times the branching ratio into light flavors with the latest dijet bounds from the
ATLAS collaboration based on 5.8fb−1 integrated luminosity at

√
s = 8 TeV [202].

In order to do this we adapt the analysis done in [203, Sec. 5] to the case of a heavy
axigluon with flavor non-universal couplings to quarks.
The total cross section for tree-level production includes only qq̄ → G, and reads

σ =
∑
q

ffqq̄
(
(m

(1)
A )2/s, µf

) CF
Nc

2π2αs
s

(
(gAL )2

q + (gAR )2
q

)
, (3.112)

where the sum extends over the light quark flavors q = u, d, s, c, b and
√
s = 8 TeV.

The parton luminosity functions,

ffij(τ, µf ) =
2

1 + δij

∫ 1

τ

dx

x
fi/p(x, µf ) fj/p(τ/x, µf ) . (3.113)

are evaluated at the parton center-of-mass energy corresponding to the resonant pro-

duction of the axigluon, i.e. , τ = (m
(1)
A )2/s. They are obtained from a convolution of

the particle distribution functions (PDFs) fi/p(x, µf ), which describe the probability
of finding the parton i in the proton with longitudinal momentum fraction x. We will
employ MSTW2008LO PDFs with the renormalization and factorization scales set to

µr = µf = m
(1)
A [228].

The branching ratio for the axigluon decay into light quarks reads

B(A → qq̄) = Γq/ΓA , (3.114)

with the total width denoted by ΓA. The partial decay rate can be computed to

Γq =
αsTF

6
m

(1)
A

√
1−

4m2
q

(mA1 )2
(3.115)

×
[(

(gAL )2
q + (gAR )2

q

)(
1−

m2
q

(mA1 )2

)
+ 6(gAL )q (gAR )q

m2
q

(mA1 )2

]
,

15These analysis refer to the Manohar Wise model [197] of a single scalar octet electroweak doublet,
which has a considerably nicer potential then the one in the extended RS model.
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Figure 3.14: Predictions for resonant KK axigluon production as a function of m
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resents the ATLAS 95% CL upper limit on σBA for resonances decaying to qq̄ for
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8 TeV, taken from [202].

which in the case of the SM quarks (especially for the light flavors) is well approximated

by the limit mq/m
(1)
A , for which

Γq =
αsTq

6
mA1

[
(gAL )2

q + (gAR )2
q

]
, (3.116)

where Tq = 1/2.

The 95% CL upper limit on σBA from ATLAS is also corrected for the QCD radiation,
hadronization effects and acceptance of the detector, which can be incorporated in the
analysis by rescaling the result by

R =
(σBA)ATLAS

axigluon(
σB(A → qq̄)

)
= 0.54− 0.09

2.4TeV
mA1 − 0.6TeV) +

[
0.99

2.4TeV
mA1 − 0.6TeV)

]2

, (3.117)

where the numerator is given by the axigluon prediction of ATLAS, while the de-
nominator is calculated at the partonic level using (3.112) and (3.115), with the RS
expressions for (gAL )q = +1 and (gAR )q = −1. The RS couplings in (3.112) and (3.115),
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which are given by the overlap integrals

(gAL )qi =
2π

Lε

∫ 1

ε

dt

t
χ

(1)
A (3.118)

×
(

tan θ a
(Q)†
i C

(Q)
i (t)C

(Q)
i (t) a

(Q)
i − cot θ a

(q)†
i S

(q)
i (t)S

(q)
i (t) a

(q)
i

)
,

(gAR )qi =
2π

Lε

∫ 1

ε

dt

t
χ

(1)
A (3.119)

×
(

tan θ a
(q)†
i C

(q)
i (t)C

(q)
i (t) a

(q)
i − cot θ a

(Q)†
i S

(Q)
i (t)S

(Q)
i (t) a

(Q)
i

)
,

with q,Q = {u, d} and i = 1, 2, 3 denoting the ith flavor. The left panel of Figure
3.14 shows the 95% CL upper bound on σBA obtained by ATLAS (black line) to
our theory predictions for resonant axigluon production for the parameter set used
throughout this chapter. Scatter points above the black curve would be disfavored by
the data. Points below mA1 ≈ 2.5 TeV are generated, because the parameter set has a
lower limit on the KK scale of MKK > 1 TeV, and the mass of the first axigluon reso-
nance is given by (3.103). The width of the “band” quantifies the effect of a different
localization of the electroweak singlet top quark, which is flatly distributed between
cu3 ∈ [−0.5, 2] because we chose cu3 as the free parameter in generating the parameter
points, see Appendix A for details. Parameter points with an extreme IR localized tR
are colored blue and the color changes to red the more the tR is shifted towards the
UV. Since the top is not reconstructed in the analysis, a further IR localized tR lowers
the value of the branching fraction in (3.114), so that the dijet bound becomes even
weaker. Note, that no relocalization has been implemented in Figure 3.14, because
we can already infer, that the dijet bounds are weaker then the ones from the flavor
sector for all parameter points.
In the right panel of Figure 3.14, the mean values of our dataset for the branching
ratios to the different quark flavors is listed. The dominance of the top branching
ratio is clearly visible. Numerically, doing the same analysis for the gluon, which
corresponds to replacing the profile χA by χG and tan θ → 1, cot θ → −1 in (3.118),
will change the resulting branching fractions only at the permille level.
This allows to adopt the bounds from the most recent ATLAS analysis on tt̄ final
states on the mass of a gluon KK mode for the axigluon KK modes [204]. The effect
from the relocalization of the fermions will enhance the couplings to right handed
tops of both gluon and axigluon resonances by a factor p2

u(tanβ = 1/2) = 15, but the
predicted rate for a resonance mass in the ballpark of mA1 ≈ 2.5MKK is several orders
of magnitude below the measured cross section, as shown in Figure 3.15, and can
therefore not compete with the bounds from the flavor sector. However, this concerns
the new physics amplitude squared, while the interference with SM amplitudes may
lead to an overall enhanced cross section into top pairs. These effects will be discussed
in detail in the next chapter.

One can draw the conclusion, that direct detection bounds on KK modes of gluons and
axigluons are generally weaker than the strongest bounds from flavor physics, given
the prejudice, that not a fine-tuned set of parameters is the reason for an unexpected
agreement with experiments.
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Figure 3.15: Predictions for resonant KK gluon production as a function of mG1 taken
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4 The Asymmetry in Top
Pair Production

The top quark is the heaviest particle in the SM and explaining its large mass pro-
vides a challenge for many theories which try to extend it. Especially technicolor like
models of physics beyond the SM have a problem to generate the top mass, because
typically the Yukawa interaction is an irrelevant operator in these theories. The RS
model with fermions in the bulk avoids this problem by describing the top quark by
a mainly composite particle, which gets its mass from the compositeness scale similar
as the proton from ΛQCD. In this way it differs from the light flavors which are bound
to have small admixtures with their composite partners (provided one does not want
to sabotage the RS-GIM mechanism and give up the explanation of the flavor hierar-
chies).
Therefore, besides the Higgs, the top quark is the messenger of the composite sector
for strongly coupled theories featuring partial compositeness in the fermionic sector,
even more so as discovering a composite top would reject models with only a compos-
ite Higgs, e.g. CTC. Therefore, observables sensitive to top couplings should receive
special attention.
Interestingly, the only observable in which both CDF and DØ find a substantial devi-
ation from the SM, and which is not completely overshadowed by LHC measurements,
is the forward backward asymmetry in top pair production. In Sections 4.2 and 4.3
this observable will be introduced and the general implications for new physics which
try to resolve the tension with the SM value, as well as for LHC measurements, are
discussed. Based on the paper [205], in Section 4.4 the contributions from KK gluon
exchange at tree-level and including next to leading order (NLO) SM diagrams will be
examined and numerically evaluated in Section 4.5. Since the asymmetry is sensitive
to the axial vector current, one expects large effects from an RS axigluon and Section
4.6 is dedicated to the analysis on how the effects change if the extended color gauge
group is assumed.

4.1 Top-Antitop Pair Production and Observables at
Tevatron and the LHC

Since the top quark was discovered in 1995 by the Tevatron experiments CDF and DØ,
thousands of top-antitop pairs have been produced which allowed for a measurement
of the top mass mt with an accuracy of below 1% [206],

mTevatron
t = 173.2± 0.9stat+syst GeV (4.1)
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Figure 4.1: Rapidity distributions for top (red) and antitop (blue) quarks for the
Tevatron in the left panel and the LHC in the right panel. The distributions are not
to scale and represent only a qualitative illustration.

which more recently has been confirmed by the LHC detectors ATLAS and CMS [208],

mLHC
t = 173.3± 0.5stat ± 1.3syst GeV . (4.2)

Using the mass as an input, the theoretical predictions for the total inclusive cross
section turns out to be in very good agreement with the data from the Tevatron
[212, 207],

σtt̄
∣∣
DØ

= 7.56+0.63
−0.56 pb , (4.3)

σtt̄
∣∣1.96 TeV

NNLOapr
= 7.06+0.27

−0.34
+0.69
−0.53 pb , (4.4)

as well as with measurements at the LHC [209, 210],

σtt̄
∣∣
CMS

= 165.8± 2.2stat ± 10.6syst ± 7.8lumi pb , (4.5)

σtt̄
∣∣7 TeV

NNLOapr
= 161+12.3

−11.9
+15.2
−14.5 pb . (4.6)

Concerning the theoretical values of the cross sections in (4.4) and (4.6), consult [211,
Tab. 1] and the references therein. The quoted values correspond to approximative
NNLO results and the first error is the total theoretical uncertainty, the second the
PDF uncertainty.
This agreement has to be contrasted with a ∼ 3σ discrepancy between SM prediction
and measurements of both Tevatron detectors for the forward-backward asymmetry
of top antitop pairs, which in the CM frame reads [239, Table 6],(

AtFB

)
exp

= (16.2± 4.7stat+syst) % , (4.7)(
AtFB

)
SM

= (7.3+1.1
−0.7) % , (4.8)

where the experimental value corresponds to the first extraction from the full Teva-
tron dataset, recently done by CDF [213]. Any new physics that might explain this
discrepancy should however be heavy or broad enough to have escaped detection in
diject events and in the tt̄ invariant mass spectrum analyzed at the end of Section 3.7.
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We report therefore also the mass dependent asymmetry measured by CDF, which
could be interpreted as a hint at heavy new resonances, since it shows a linear slope
which is significantly larger than predicted in the SM,

AtFB(mtt̄ < 450GeV) =
(
7.8± 5.4

)
% ,

AtFB(mtt̄ > 450GeV) =
(
29.6± 6.7

)
% , (4.9)

although the SM prediction goes in the same direction [220]

AtFB(mtt̄ < 450GeV) =
(
6.2+0.4
−0.3

)
% , (4.10)

AtFB(mtt̄ > 450GeV) =
(
12.9+0.8

−0.6

)
% .

One can understand the observable (4.8) as the number of top quarks going in forward
direction minus the number of top quarks going in backwards direction relative to the
interaction point in the CM frame, normalized to the total number of tops,

AtFB =
Nt(F )−Nt(B)

Nt(F ) +Nt(B)
. (4.11)

Because of charge conjugation invariance, the antitops scattered forwards (backwards)
can be counted as tops scattered backwards (forwards), so that Nt̄(F ) = Nt(B).
Analogous to (4.11), one can therefore define the asymmetry as the number of tops
scattered in forward direction minus the number of antitops scattered in forward
direction, which then corresponds to a charge asymmetry

AtC =
Nt(F )−Nt̄(F )

Nt(F ) +Nt̄(F )
. (4.12)

A charge asymmetric initial state is required in order to generate contributions to such
an asymmetry. This is the case at the Tevatron, as it is a proton antiproton collider,
but not at the LHC, which collides protons with each other. This is illustrated by a
sketch of the rapidity distributions for the Tevatron and LHC in Figure 4.1. Clearly,
counting the tops versus the antitops in forward direction (y > 0) will only in the case
of the Tevatron lead to a non-zero number. On a more fundamental level however, the
asymmetry can be traced back to the fact, that the top quark likes to go in the direction
of the initial state quark and the antitop in the direction of the initial state antiquark.
These directions are well defined at the Tevatron as the proton consists mainly of
quarks, which results in the shifts of the rapidity distributions in the left panel of
Figure 4.1. At the LHC, one can infer that the initial antiquark must be a sea quark.
Sea quarks carry less momentum fraction than valence quarks and consequentially the
rapidity distributions at the LHC are symmetric, but have a different width, as shown
in the right panel of Figure 4.1. On average, the top carries more momentum than
the antitop.
One can therefore define a charge asymmetry based on the difference in absolute
rapidity, ∆|y| = |yt| − |yt̄|,

AyC =
N(∆|y| > 0)−N(∆|y| < 0)

N(∆|y| > 0) +N(∆|y| < 0)
. (4.13)
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Even though it cannot be transformed in a forward-backward asymmetry1, the charge
asymmetry at the LHC has the same physical origin and possible new physics effects
showing up in AtFB will also contribute to AyC . It has been measured at the LHC by
both ATLAS [217, 218] and CMS [216] and was found to be in good agreement with
the SM [219],

(AyC)SM = (1.15± 0.6) % , (4.14)

(AyC)exp = (0.4± 1stat ± 1.1syst) % . (4.15)

Here, the quoted experimental value corresponds to the latest CMS result, which is
based on 5fb−1 of data. The fact that the asymmetry at the LHC is considerably
smaller than at the Tevatron is rooted in the different center of mass energies (CM)
of both machines. Since the asymmetries are normalized to the total inclusive cross
section, the number of top pairs produced by gluon-gluon fusion contributes to the
denominator but not to the numerator as it is a charge symmetric initial state and at
LHC energies gluon-gluon fusion is by far the dominating process.

We can conclude, that whatever new physics might be responsible for the discrepancy
seen at the Tevatron, its contribution to the LHC charge asymmetry should stay within
the (still significant) errors. It should further not contribute to the total inclusive cross
section which all experiments see in very good agreement with SM predictions, and it
must be heavy or broad enough to have escaped direct detection by dijet searches or
in the tt̄ invariant mass spectrum so far.

4.2 The Forward-Backward Asymmetry in the SM

We will concentrate on the Tevatron observables at which tt̄ pairs are produced in col-
lisions of protons and antiprotons, pp̄→ tt̄X. At the partonic Born-level contributions
from quark-antiquark annihilation and gluon fusion arise within the SM

q

q̄ t̄

t

q(p1) + q̄(p2)→ t(p3) + t̄(p4) ,

g

g t̄

t

g(p1) + g(p2)→ t(p3) + t̄(p4) ,

(4.16)

in which the four-momenta p1,2 of the initial state partons can be expressed as the
fractions x1,2 of the four-momenta P1,2 of the colliding hadrons, p1,2 = x1,2P1,2. We
denote the square of the hadronic CM energy by s = (P1 + P2)2 and introduce the

1For more details concerning the different asymmetries and their comparability, see e.g. [220].



4.2. The Forward-Backward Asymmetry in the SM 149

kinematic invariants

ŝ = (p1 + p2)2 , t1 = (p1 − p3)2 −m2
t , u1 = (p2 − p3)2 −m2

t . (4.17)

The partonic cross section can then be described as a function of ŝ, t1 and u1 and
momentum conservation at Born level implies ŝ + t1 + u1 = 0. Since the number
of top quarks scattered in forward (backward) direction is given by integrating the
differential cross section over the angle θ included by ~p1 and ~p3 in the respective
ranges, we express t1 and u1 in terms of θ and the top-quark velocity β,

t1 = − ŝ
2

(1− β cos θ) , u1 = − ŝ
2

(1 + β cos θ) ,

β =
√

1− ρ , ρ =
4m2

t

ŝ
. (4.18)

The hadronic differential cross section may then be written as

dσpp̄→tt̄X

d cos θ
=
αs
m2
t

∑
i,j

∫ s

4m2
t

dŝ

s
ffij
(
ŝ/s, µf

)
Kij

(
4m2

t

ŝ
, cos θ, µf

)
, (4.19)

where µf denotes the factorization scale and ffij denote the parton luminosity func-
tions introduced in (3.113). The luminosities for ij = qq̄, q̄q are understood to be
summed over all species of light quarks, and the functions fi/p(x, µf ) (fi/p̄(x, µf ))
are the universal non-perturbative PDFs, which describe the probability of finding
the parton i in the proton (antiproton) with longitudinal momentum fraction x. The
hard-scattering kernels Kij(ρ, cos θ, µf ) are related to the partonic cross sections and
can be expanded in αs,

Kij(ρ, cos θ, µf ) =

∞∑
n=0

(αs
4π

)n
K

(n)
ij (ρ, cos θ, µf ) . (4.20)

At leading order, only the diagrams in (4.16) contribute, and one finds

K
(0)
qq̄ = αs

πβρ

8

CF
Nc

(
t21 + u2

1

ŝ2
+

2m2
t

ŝ

)
= αs

πβρ

16

CF
Nc

(
1 + β2 cos2 θ +

4m2
t

ŝ

)
, (4.21)

K(0)
gg = αs

πβρ

8(N2
c − 1)

(
CF

ŝ2

t1u1
−Nc

)[
t21 + u2

1

ŝ2
+

4m2
t

ŝ
− 4m4

t

t1u1

]
= αs

πβρ

8(N2
c − 1)

(
4CF

1− β2 cos2 θ
−Nc

)
(4.22)

×
[

1

2

(
1− β2 cos2 θ

)
+

4m2
t

ŝ
− 16m4

t

ŝ2
(
1− β2 cos2 θ

)] .
The factors Nc = 3 and CF = 4/3 are the usual color factors and K

(0)
q̄q = K

(0)
qq̄ in the

SM, because they are related by replacing cos θ with − cos θ the coefficients.
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Following [222], we introduce the charge-asymmetric (a) and -symmetric (s) averaged
differential cross sections. In the former case, we define

dσa
d cos θ

≡ 1

2

[
dσpp̄→tt̄X

d cos θ
− dσpp̄→t̄tX

d cos θ

]
, (4.23)

with dσpp̄→tt̄X/d cos θ given in (4.19). The corresponding expression for the charge-
symmetric averaged differential cross section dσs/d cos θ is simply obtained from the
above by changing the minus into a plus sign. The notation indicates that in the
process labeled by the superscript pp̄ → tt̄X (pp̄ → t̄tX) the angle θ corresponds to
the scattering angle of the top (antitop) quark in the partonic CM frame. Using (4.23)
one can derive various physical observables in tt̄ production. For example, the total
hadronic cross section is given by

σtt̄ =

∫ 1

−1
d cos θ

dσs
d cos θ

. (4.24)

The total tt̄ charge asymmetry can then be defined as

Atc ≡

∫ 1

0
d cos θ

dσa
d cos θ∫ 1

0
d cos θ

dσs
d cos θ

. (4.25)

Since QCD is symmetric under charge conjugation, it allows to identify

dσpp̄→t̄tX

d cos θ

∣∣∣∣∣
cos θ=c

=
dσpp̄→tt̄X

d cos θ

∣∣∣∣∣
cos θ=−c

, (4.26)

for any fixed value c. As mentioned in the previous section, the charge asymmetry
can then be understood as a forward-backward asymmetry

Atc = AtFB ≡

∫ 1

0
d cos θ

dσpp̄→tt̄X

d cos θ
−
∫ 0

−1
d cos θ

dσpp̄→tt̄X

d cos θ∫ 1

0
d cos θ

dσpp̄→tt̄X

d cos θ
+

∫ 0

−1
d cos θ

dσpp̄→tt̄X

d cos θ

=
σa
σs
. (4.27)

It makes sense to express contributions to the symmetric and asymmetric cross section
already at the level of the hard scattering kernels,

σs =
αs
m2
t

∑
i,j

∫ s

4m2
t

dŝ

s
ffij
(
ŝ/s, µf

)
Sij

(
4m2

t

ŝ

)
. (4.28)

σa =
αs
m2
t

∑
i,j

∫ s

4m2
t

dŝ

s
ffij
(
ŝ/s, µf

)
Aij

(
4m2

t

ŝ

)
, (4.29)
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Figure 4.2: Cut diagrams which contribute to the charge asymmetry at O(α3
s) in

QCD. The cuts refer to the initial- and final state interference and the box diagram-
Born level interference respectively.

with the corresponding expansion (4.20). Since the coefficients (4.21) and (4.22) are
symmetric under cos θ → − cos θ, one finds for the LO SM coefficients

S
(0)
qq̄ = αs

πβρ

27
(2 + ρ) , (4.30)

S(0)
gg = αs

πβρ

192

[
1

β
ln

(
1 + β

1− β

)(
16 + 16ρ+ ρ2

)
− 28− 31ρ

]
, (4.31)

A
(0)
qq̄ = A(0)

gg = 0 . (4.32)

This result is not surprising, considering that QCD couples purely vectorially and that
the diagrams in (4.16) do not discriminate between the final quark and antiquark. At
NLO however, there are diagrams which are odd under the exchange of the final state
top with the final state antitop. In this case, a vector coupling contributes maximally.

The diagrams in question are shown in the form of cut diagrams in Figure 4.2 and
refer to the interference of initial- and final-state radiation and the interference of the
box with the born level diagram. In principle, there is also a small contribution from
different quark-gluon scattering amplitudes, but their contribution to the asymmetry
is roughly an order of magnitude smaller compared to the ones discussed here, see
[215, Fig.4]. The same holds true for QCD-electroweak interference, which can be
obtained from replacing the s-channel gluon or one of the gluons in the box in Figure
4.2 by Z or γ, for which α3

s → αeα
2
s.

The diagrams (a) and (b) in Figure 4.2 have the color structure [215]

C(a) =
1

N2
C

Tr
[
T aT bT c

]
Tr
[
T aT cT b

]
=

1

16N2
C

(
f2
abc + d2

abc

)
C(b) =

1

N2
C

Tr
[
T aT bT c

]
Tr
[
T bT cT a

]
=

1

16N2
C

(
− f2

abc + d2
abc

)
, (4.33)

in which Ta = λa/2 are the SU(3)C generators with λa the Gellmann matrices, and fabc
denote the structure constants and dabc the totally symmetric d symbols of SU(3)C .
Since the color-stripped contributions to the asymmetry from the diagrams (a) and
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(b) are related by

dσa
∣∣
(a)

= −dσa
∣∣
(b)
, (4.34)

one can infer that the overall contribution must be proportional to

A
(1)
qq̄ ∼

1

16N2
C

αsd
2
abc . (4.35)

Note, that one factor αs is factored out in (4.28) and another one in (4.20), so that

the A
(n)
ij will always be linear in αs although the overall contributions are ∼ α3

s.
One can conclude, that the Born-Box diagram interference in Figure 4.2 gives a posi-
tive overall contribution, while the contributions from interference of initial- with final
state radiation diagrams enter with the opposite sign. The exact computation reveals,
that the latter are smaller, so that one ends up with a net positive asymmetry. The
exact formulas are compiled in [215, App. A] and will not be repeated here. The final
result can however be described by the parametrization

A
(1)
qq̄ =

αs d
2
abc

16N2
c

5.994βρ
[
1 + 17.948β − 20.391β2 + 6.291β3 + 0.253 ln (1− β)

]
,

(4.36)

which approximates the exact result with permille level accuracy. It has been ob-
tained by integrating the expressions for the charge-asymmetric contributions to the
differential tt̄ production cross section over the relevant phase space.2

Employing Nc = 3, d2
abc =

(
N2
c − 1

) (
N2
c − 4

)
/Nc = 40/3, mt = 173.1 GeV, and

αs(mt) = 0.126, one can plot (4.36) as a function of the square root of the CM energy√
s. This is shown by the solid black plot in the left panel of Figure 4.3, while in the

right panel A
(1)
qq̄ is multiplied with the up-quark PDFs ffuū(ŝ/s, µf ) and also plotted

in solid black. In both cases the function peaks at
√
s ≈ 420 GeV, i.e. around the

tt̄ threshold. The right panel shows also, that the integrated asymmetry (4.29) will
be saturated long before the upper integration limit s is reached, which is rooted in
the fact that the quark luminosities behave roughly like 1/ŝ2. These results can be
compared with the plots of the exact calculation, which can be found in [215, Fig. 7].

4.3 New Physics and the Forward-Backward
Asymmetry

Since it is the only observable dealt with in this thesis, which shows significant de-
viations from the SM and because top physics are largely unaffected by hadronic
uncertainties, it makes sense to categorize what kind of new physics would be able to
explain the observed deviation. Severely constrained by the requirement to achieve
agreement with the SM regarding the other observables introduced in Section 4.1, the
vast space of new physics models can be reduced to two different classes, new physics

2The numerical integration has been performed using the Vegas Monte Carlo algorithm imple-
mented in the CUBA library [223]
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Figure 4.3: The asymmetric coefficient A
(1)
qq̄ (left panel) and the differential hadronic

asymmetry dσa/d
√
ŝ (right panel) as functions of

√
ŝ in the SM plotted in solid black

and in the minimal RS model plotted in dashed black.

which contribute through the s channel and new physics which contribute through
the t or u channel.

New Physics in the s Channel

From the SM calculation it is clear, that if the effect is due to s channel exchange
of some new resonances, it will only lead to an asymmetry if these new resonances
have sizable axial vector couplings to the SM quarks. In addition, the vector couplings
should be under control in order not to induce a large contribution to the total inclusive
cross section.
Direct searches do also prefer heavy resonances, so that the interference with the gluon
s channel diagram will give the dominant contributions, while the new physics squared
contribution can be neglected away from the resonance peak. Such an interference
term from new physics in the s channel can only contribute to the asymmetry if
the new resonance is a spin 1 boson, which is a consequence of the Dirac structure.
Scalar color octets do not contribute to the asymmetry even if they have purely axial
couplings, compare [224, Sec. II], and references therein, while colored spin 2 resonances
exchanged in the s channel do not interfere with gluons at all [225].
Such a new resonance will thus lead to an additional term in the Lagrangian

LA 3 gsT aq̄i
(
gqiV + gqiAγ5

)
γµAaµ qi , (4.37)
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and with the notation C± ≡ 1+β2 cos2 θ± 4m2
t

ŝ , one finds in addition to the SM kernel
(4.21) the hard-scattering kernels

K
(0)
qq̄,SM×NP = αs

πβρ

16NC

2ŝ(ŝ−m2
A)

(ŝ−m2
A)2 +m2

AΓ2
A

[
gqV g

t
V C+ + 2gqAg

t
A β cos θ

]
, (4.38)

K
(0)

qq̄,NP2 = αs
πβρ

16NC

ŝ2

(ŝ−m2
A)2 +m2

AΓ2
A

(4.39)[(
(gqV )2 + (gqA)2

)(
(gtV )2C+ + (gtA)2C−

)
+ 8gqV g

q
Ag

t
V g

t
A β cos θ

]
,

from the interference between SM and new physics amplitude and from the new physics
amplitude squared, respectively. Both expressions have terms linear in cos θ, which
contribute to the asymmetry, but not to the cross section. For the interference kernel
this term depends only on the axial couplings to top and light quarks, while in the
case of the new physics squared contribution it is sensitive to all couplings in (4.37).
For large masses of the resonance, the latter is suppressed by an additional 1/m2

A and
for light resonances, assumed they are broad enough to be concealed in the invariant
tt̄ mass spectrum, the vector couplings need to be large for 8gqV g

q
Ag

t
V g

t
A to explain the

effect. Sizable vector couplings lead to an enlarged cross section, which does not only
induce a tension with the total cross section measurements, but in turn also decreases
the asymmetry, because the cross section appears in the denominator in (4.25). Since
the main contribution to the cross section comes from the interference term, it will
always dominate over the asymmetric contributions3. It is therefore justified to con-
centrate on the interference term in looking for a viable model which explains the
asymmetry.

In order for the interference kernel to generate a large asymmetric contribution to the
differential cross section, at the Born level only the axial vector couplings are relevant,
while sizable vector couplings are even dangerous for the reasons explained above.
Note, that at the one-loop level, the situation is reversed and the vector couplings
contribute to the asymmetry, because the corresponding diagrams 4.6 are already odd
under the exchange of t and t̄ (which is the original reason for the asymmetry being an
NLO effect in the SM). However, if NP contributions to the asymmetry are generated
at the one-loop level by vector couplings, one would expect that the same couplings
enhance the cross section at the Born level and thus partially cancel the effect in
(4.25). We will later confirm this assumption for KK gluon exchange in the minimal
RS model.

Besides a large axial vector and a small vector coupling, there are further requirements
on the couplings in (4.37). For large masses m2

A > ŝ, the relevant term in (4.38)
comes with a minus sign, which will lead to a negative asymmetry (4.27). Therefore,
either the new resonance is light, m2

A < ŝ, or the couplings are flavor non-universal

3If the effect is due to the new physics amplitude squared it is more likely that the new resonance
is a color singlet, for which the interference term vanishes, but K

(0)

qq̄,NP2 is larger by a factor of 9/2

[224].



4.3. New Physics and the Forward-Backward Asymmetry 155

gtAg
q
A < 0.4 A light axigluon could generate a positive asymmetry for large invariant

masses of the tt̄ pair [226]. Such an axigluon with a mass around mA ≈ 450 GeV was
actually encouraged by an earlier analysis by CDF [227], in which a sign change in
the central values of the mass dependent asymmetry in bins with mtt̄ < 450GeV and
mtt̄ > 450GeV was reported,

AtFB(mtt̄ < 450GeV) =
(
− 11.6± 15.3

)
% , (4.40)

AtFB(mtt̄ > 450GeV) =
(
47.5± 11.4

)
% , (4.41)

which however was neither seen by DØ, nor in the results of the full CDF analysis
(4.9). It requires also a very sophisticated extension of the fermionic sector for such
a light resonance to have the necessary width in order to not show up as a bump in
the tt̄ invariant mass spectrum.
One can therefore conclude, that a heavy resonance with purely axial, flavor non-
universal couplings is the best bet if new physics in the s channel are responsible
for the forward backward asymmetry observed at the Tevatron. However, this would
in general also induce a sizable charge asymmetry at the LHC, which has not been
observed. In order to accommodate both measurements, such an axigluon must not
only have a sign between couplings to up- and top quarks, but also between up- and
down quark couplings [221]. The reason is, that quark antiquark annihilation always
involves a sea quark at the LHC. Regarding the valence quarks, the PDFs for the
up (anti)quarks dominate over the down (anti)quarks in the (anti)proton, while for
the sea quarks the d̄ PDF is even slightly larger than the ū PDF for the proton as
shown in Figure 4.4. Therefore, at the LHC dd̄ annihilation contributes roughly half
as much to the charge asymmetry as uū annihilation, while at the Tevatron the uū
initial state contributes four times as much as the dd̄ initial state. A sign between
both contributions would therefore partially cancel the effect at the LHC but only
slightly decrease the asymmetry at the Tevatron. Finally, it should be noted that a
large asymmetry does also require that the resonance is not too heavy, which implies
that the couplings to the light flavors should be rather small in order to escape the
dijet bounds cited in (3.58).

New Physics in the t and u Channel

New physics resonances which are exchanged in the t or u channel can be provided by a
much larger class of models, because the new resonances need not to be color-charged
in order to interfere with the SM gluon in the s channel. This can be understood from
the color structure of the gluon propagator, which by using (3.19) can be split into a
U(NC) and a U(1) part

=
1

2
− 1

2NC
, (4.42)

4The FCNCs induced from such flavor non-universal couplings are discussed in [203] and found
to be negligible.
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Figure 4.4: Figure shows a plot of the PDFs of the gluon and the valence and sea
quarks in the proton for Q2 = 10 GeV2 and Q2 = 104 GeV2. They are taken from the
homepage of the MSTW collaboration and were computed using MSTW2008NLO [228].

from which the former has the same color flow as the t channel diagram and thus leads
to interference [229].
The common characteristic of models featuring large t channel currents is a sizable
flavor off-diagonal coupling between the up (or down) and the top quark, while other
flavor changing couplings have to be under control in order to not violate bounds from
FCNCs. This can be realized by a W ′ or Z ′ gauge boson with accordingly adjusted
couplings, so that the relevant interaction terms read

LZ′/W ′ 3 t̄
(
gZ
′

V + gZ
′

A γ5

)
γµZ ′µu+ t̄

(
gW

′
V + gW

′
A γ5

)
γµW ′µd . (4.43)

The corresponding expressions for the cross sections will not be explicitly repeated
here and can be found for the Z ′ in [230, Sec VI] and for the W ′ in [231, Sec.II]. In the
case of interference between t and s channel, both vector and axial vector couplings
contribute equally to the cross section and the asymmetry and one has therefore more
freedom to choose the couplings. If there is no flavor diagonal coupling however, the
new gauge bosons are forced to decay into top quarks which will yield a clear signal of
like sign leptons. Searches for this final state already place very strong bounds on the
parameter space of these resonances, except for a Z ′,W ′ which is too light to decay
into the top [232, 233]. This typically excludes models with resonances in the few
100 GeV range which is preferred in order to explain the large asymmetry assuming
perturbative couplings.
Analogous considerations apply to a scalar with flavor off-diagonal couplings. The
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interaction terms for different color representations in the Lagrangian read [234]

Lφ 3 t̄(gφV + gφAγ5)φa1,8 T̃
a
1,8u+ t̄c(gφV + gφAγ5)φa3,6 T̃

a
3,6u , (4.44)

in which the subscript identifies the color representation of the scalar as singlet, triplet,
sextet or octet, T̃ a denotes the corresponding SU(3)C Clebsch Gordon coefficient
which connects it to the two quarks and tc = iγ0γ2t. The corresponding contribution
to the cross section can be found in [234, Sec. III] and we content ourselves with quot-
ing the result, that the sextet and triplet color representation can accommodate the
asymmetry while the color singlet and octet runs into trouble with other observables.
Taking into account the LHC measurements does require similar adaptations as in
the case of s channel models and leads to a modification of the already very tuned
flavor-changing couplings.

4.4 Cross Section and Asymmetry in the Minimal RS
Model

In the RS model, many of the contributions described in Section 4.3 are generated.
Since left- and right-handed fermions are localized at different points in the bulk, the
KK gluon couplings to quarks are in general not purely vector-like, but receive non-
vanishing axial-vector components. These couplings generate a charge asymmetry in
top-quark pair production at the Born level, which is associated to quark-antiquark
annihilation qq̄ → tt̄ and proceeds through tree-level exchange of KK gluons in the
s channel. Further corrections to AtFB arise from the fact that the couplings of KK
gluons and photons, the Z boson and its KK excitations, as well as the Higgs boson
are flavor non-diagonal, leading to the flavor-changing uū→ tt̄ transition which affects
the t channel.5 The corresponding diagrams are shown in Figure 4.5. On the other
hand, the gluon-fusion channel gg → tt̄ does not receive a correction at Born level,
since owing to the orthonormality of gauge-boson wave functions the coupling of two
gluons to a KK gluon is zero.

Leading Order Contributions of the RS Model with and without
Custodial Protection

The effective Lagrangian needed to account for the effects of intermediate vector and
scalar states reads

Leff =
∑
q,u

∑
A,B=L,R

[
C

(V,8)
qq̄,ABQ

(V,8)
qq̄,AB + C

(V,8)
tū,ABQ

(V,8)
tū,AB + C

(V,1)
tū,ABQ

(V,1)
tū,AB + C

(S,1)
tū,ABQ

(S,1)
tū,AB

]
,

(4.45)

5In principle, also the dd̄→ tt̄ transition receives corrections due to the t channel exchange of the
W boson and its KK partners. However, these effects are negligibly small for viable values of MKK

and will therefore be ignored in the following.
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in which the operators are

Q
(V,8)
qq̄,AB = (q̄γµT

aPAq)(t̄γ
µT aPB t) ,

Q
(V,8)
tū,AB = (ūγµT

aPA t)(t̄γ
µT aPBu) ,

Q
(V,1)
tū,AB = (ūγµPA t)(t̄γ

µPBu) ,

Q
(S,1)
tū,AB = (ūPA t)(t̄PBu) , (4.46)

and the sum over q (u) involves all light (up-type) quark flavors. In addition, PL,R =
(1 ∓ γ5)/2 project onto left- and right-handed chiral quark fields, and T a are the
generators of SU(3)C . The superscripts V and S (8 and 1) label vector and scalar
(color-octet and -singlet) contributions, respectively.

Using the effective Lagrangian (4.45) it is straightforward to calculate the interference
between the tree-level matrix element describing s channel SM gluon exchange and the
s and t channel new-physics contributions arising from the Feynman graphs displayed
in Figure 4.5. In terms of the following combinations of Wilson coefficients

C
(P,a)
ij,‖ = Re

[
C

(P,a)
ij,LL + C

(P,a)
ij,RR

]
, C

(P,a)
ij,⊥ = Re

[
C

(P,a)
ij,LR + C

(P,a)
ij,RL

]
, (4.47)

the resulting hard-scattering kernels take the form

K
(0)
qq̄,RS =

βρ

32

CF
Nc

[
t21
ŝ
C

(V,8)
qq̄,⊥ +

u2
1

ŝ
C

(V,8)
qq̄,‖ +m2

t

(
C

(V,8)
qq̄,‖ + C

(V,8)
qq̄,⊥

)]
, (4.48)

K
(0)
tū,RS =

βρ

32

CF
Nc

[(
u2

1

ŝ
+m2

t

)(
1

Nc
C

(V,8)
tū,‖ − 2C

(V,1)
tū,‖

)
+

(
t21
ŝ

+m2
t

)
C

(S,1)
tū,⊥

]
.

(4.49)

Note, that per definition a factor of αs or αe has been absorbed in the Wilson coeffi-

cients. As in (4.22), the coefficient K
(0)
q̄q,RS

(
K

(0)
t̄u,RS

)
is obtained from K

(0)
qq̄,RS

(
K

(0)
tū,RS

)
by simply replacing cos θ with − cos θ.

After integrating over cos θ, one obtains the LO corrections to the symmetric and
asymmetric parts of the cross section defined in (4.28). In the case of the symmetric
part it follows

S
(0)
uū,RS =

βρ

216
(2 + ρ) ŝ

[
C

(V,8)
uū,‖ + C

(V,8)
uū,⊥ +

1

3
C

(V,8)
tū,‖ − 2C

(V,1)
tū,‖

]
+ fS(z) C̃Stū , (4.50)

S
(0)

dd̄,RS
=

βρ

216
(2 + ρ) ŝ

[
C

(V,8)

dd̄,‖ + C
(V,8)

dd̄,⊥

]
, (4.51)

while the asymmetric part in the partonic CM frame reads

A
(0)
uū,RS =

β2ρ

144
ŝ

[
C

(V,8)
uū,‖ − C

(V,8)
uū,⊥ +

1

3
C

(V,8)
tū,‖ − 2C

(V,1)
tū,‖

]
+ fA(z) C̃Stū , (4.52)

A
(0)

dd̄,RS
=
β2ρ

144
ŝ
[
C

(V,8)

dd̄,‖ − C
(V,8)

dd̄,⊥

]
. (4.53)
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Figure 4.5: Upper row: Tree-level contributions to the qq̄ → tt̄ (left) and the uū→ tt̄
(right) transition arising from s and t channel exchange of KK gluons. Lower row:
Tree-level contributions to the uū → tt̄ transition arising from t channel exchange
of the Z boson, of KK photons and Z bosons as well as of the Higgs boson. The s
channel (t channel) amplitudes receive corrections from all light up- and down-type
(up-type) quark flavors.

Note, that coefficients involving down-type quarks do not receive corrections from
flavor-changing t channel transitions, as the exchange of the W and its KK modes

is not considered. The coefficients C
(V,8)
qq̄,‖ and C

(V,8)
qq̄,⊥ enter in (4.50) always in the

combination CVqq̄ ≡
(
C

(V,8)
qq̄,‖ + C

(V,8)
qq̄,⊥

)
, while in (4.52) they always appear in the form

CAqq̄ ≡
(
C

(V,8)
qq̄,‖ − C

(V,8)
qq̄,⊥

)
. This feature expresses the fact that the symmetric (asym-

metric) LO cross section σs (σa) measures the product gqV g
t
V

(
gqAg

t
A

)
of the vector

(axial-vector) parts of the couplings of the KK gluons to light quarks and top quarks.
One can alternatively express (4.48) in the parameters given in (4.18) and compare it
with the general expression (4.38) in the limit mA � ŝ.
In order to be able to incorporate a light Higgs boson with mh �MKK into our anal-
ysis, we have kept the full Higgs-boson mass dependence arising from the t channel
propagator. This dependence is described by the phase-space factors

fS(z) = −βρ
72

1 +
ρ (1− z)

2
+
ρ
(

4 + ρ (1− z)2
)

8β
ln

(
2 (1 + β)− ρ (1− z)
2 (1− β)− ρ (1− z)

) ,
fA(z) =

ρ

144

1− ρ+
ρ
(

4 + ρ (1− z)2
)

4
ln

ρ
(

4z + ρ (1− z)2
)

(2− ρ (1− z))2

 , (4.54)

with z ≡ m2
h/m

2
t , so that the new Wilson coefficient C̃Stū is the dimensionless counter-

part of C
(S,1)
tū,⊥ .
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The expressions (4.50) and (4.52) encode in a model-independent way possible new-
physics contributions to σs,a that arise from tree-level exchange of color-octet vectors
in the s and t channels, as well as from t channel corrections due to both new color-
singlet vector and scalar states. Based on the general expressions compiled in Section

2.6, the Wilson coefficients appearing in S
(0)
ij,RS and A

(0)
ij,RS take the form

C
(V,8)
qq̄,‖ = − αsπ

2M2
KK

{
1

L
−
∑
a=Q,q

[
(∆′a)11 + (∆′a)33 − 2L (∆̃a)11 ⊗ (∆̃a)33

]}
, (4.55)

C
(V,8)
qq̄,⊥ = − αsπ

2M2
KK

{
1

L
−
∑
a=Q,q

[
(∆′a)11 + (∆′a)33

]

+ 2L
[
(∆̃Q)11 ⊗ (∆̃q)33 + (∆̃q)11 ⊗ (∆̃Q)33

]}
,

C
(V,8)
tū,‖ = − αsπ

M2
KK

L
∑
a=U,u

[
(∆̃a)13 ⊗ (∆̃a)31

]
,

C
(V,1)
tū,‖ = − αeπ

M2
KK

L

s2
wc

2
w

[(
T u3 − s2

wQu
)2

(∆̃U )13 ⊗ (∆̃U )31 +
(
s2
wQu

)2
(∆̃u)13 ⊗ (∆̃u)31

]
− αeπ

M2
KK

LQ2
u

∑
a=U,u

[
(∆̃a)13 ⊗ (∆̃a)31

]
,

for q = u, d and Q = U,D. Since the coefficient C
(S,1)
tū,⊥ is formally of O(v4/M4

KK), its

explicit form is not presented here. Further, while the expressions for C
(V,8)
qq̄,‖ , C

(V,8)
qq̄,⊥ ,

and C
(V,8)
tū,‖ are exact, in the coefficient C

(V,1)
tū,‖ we have only kept terms leading in

v2/M2
KK. In the numerical analysis however, we implement the Higgs exchange and

the subleading terms as well. Note, that these coefficients are subject to a symmetry
factor Suutt = 1/4 compared to the 1/2 in the case of neutral meson mixing. This is
rooted in the fact, that t and s channel exchanges are matched to different operators
here, while in Section 2.6 these diagrams were indistinguishable in the full theory.
For the custodially protected RS model based on an SU(2)R×SU(2)L×U(1)X×PLR
bulk gauge group, the expressions for the Wilson coefficients can simply be obtained

from (4.55) by multiplying the left-handed part of the Z-boson contribution to C
(V,1)
tū,‖

by a factor of around 3, while the right-handed contribution is protected by custo-
dial symmetry and thus smaller by a factor of roughly 1/L ≈ 1/37. Note, that this
couplings are enhanced for the opposite chirality compared to the down sector, which
is a consequence of the embedding of the fermions, which in return was fixed by the
requirement to protect the Zbb vertex from huge corrections, see [114] for details. The
custodial protection does not really play a role here, as the electroweak corrections
turn out to be subleading for all realistic choices of bulk mass parameters and the KK

gluon contributions, encoded in C
(V,8)
qq̄,‖ , C

(V,8)
qq̄,⊥ , and C

(V,8)
tū,‖ , remain unchanged.

The Wilson coefficients (4.55) are understood to be evaluated at the KK scale. The
renormalization group (RG) running down to the top-quark mass scale at leading-
logarithmic accuracy, i.e. at one-loop order, neglecting tiny effects that arise from the
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mixing with QCD penguin operators gives for P = V,A,

C̃Pqq̄(mt) =

(
2

3η4/7
+
η2/7

3

)
C̃Pqq̄(MKK) , (4.56)

where η ≡ αs(MKK)/αs(mt) is the ratio of strong coupling constants evaluated at
the relevant scales MKK and mt. The impact of RG effects is however limited, as
can be seen from evaluating (4.56) using αs(MZ) = 0.139, MKK = 1 TeV, and mt =
173.1 GeV, so that η = 0.803 at one-loop order. We obtain

C̃Pqq̄(mt) = 1.07 C̃Pqq̄(MKK) , (4.57)

which makes for an effect of the order of a few percent. We anticipate, that the
t channel contributions are suppressed, because they always feel the localization of
the up quarks, which yields an exponential suppression due to the zero mode profiles
and will therefore neglect renormalization group effects for the corresponding Wilson
coefficients.

Restricting ourselves to the corrections proportional to αs and suppressing relative
O(1) factors as well as numerically subleading terms, one finds from the ZMA ex-
pansion of the Wilson coefficients of the results given in (4.55) that the coefficient

functions S
(0)
ij,RS and A

(0)
ij,RS introduced in (4.50) and (4.52) scale in the case of the up

quark like

S
(0)
uū,RS ∼

αsπ

M2
KK

∑
A=L,R

F 2(ctA) , (4.58)

A
(0)
uū,RS ∼ −

αsπ

M2
KK

L

{ ∏
q=t,u

[
F 2(cqR)− F 2(cqL)

]
+

1

3

∑
A=L,R

F 2(ctA)F 2(cuA)

}
, (4.59)

where ctL ≡ cQ3 , ctR ≡ cu3 , cuL ≡ cQ1 , and cuR ≡ cu1 .

As a consequence of the composite character of the top, its bulk mass parameters are
typically ctA > −1/2, while the up quark, being mostly elementary is located close to
the UV brane. The relevant F 2(cqA) factors can therefore be approximated by

F 2(ctA) ≈ 1 + 2ctA , F 2(cuA) ≈ (−1− 2cuA) eL(2cuA+1) , (4.60)

with A = L,R, as elaborated in Section 2.4. The difference of bulk mass parameters
for light quarks (cuL − cuR) is typically small and positive, whereas (ctL − ctR) can
be of O(1) and is usually negative, because the localization parameter of the SU(2)L
doublet also enters the mass formula for the bottom quark (2.158), which typically
results in ctR > ctL . Using the above approximations and expanding in powers of
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(cuL − cuR), we find

S
(0)
uū,RS ∼

2παs
M2

KK

(1 + ctL + ctR) , (4.61)

A
(0)
uū,RS ∼

2παs
M2

KK

LeL(1+cuL+cuR ) (1 + cuL + cuR) (4.62)

×
{(

2 +
1

3

)
L (ctL − ctR) (cuL − cuR) +

1

3
(1 + ctL + ctR)

}
,

where the symmetric function S
(0)
uū,RS is entirely due to s channel KK gluon exchange,

while the contributions to the asymmetric coefficient A
(0)
uū,RS that arise from the s

channel (t channel) correspond to the term(s) with coefficient 2 (1/3) in the curly
bracket.

The relations (4.58) exhibit some interesting features. We observe that S
(0)
uū,RS, which

enters the RS prediction for σs in (4.28), is in our approximation independent of the
localization of the up-quark fields and strictly positive (as long as ctA > −1/2). This
in turn implies an enhancement of the inclusive tt̄ production cross section which gets
more pronounced the stronger the right- and left-handed top-quark wave functions
are localized in the IR.

In contrast to S
(0)
uū,RS, both terms in A

(0)
uū,RS are exponentially suppressed for UV-

localized up quarks, i.e. , cuA < −1/2. For typical values of the bulk mass parameters,
ctL = −0.34, ctR = 0.57, cuL = −0.63, and cuR = −0.68 [150], one finds numerically
that the first term in the curly bracket of (4.73), which is enhanced by a factor of
L but suppressed by the small difference (cuL − cuR) of bulk mass parameters, is
larger in magnitude than the second one by almost a factor of 10. This implies that
to first order the charge asymmetry can be described by including only the effects
from s channel KK gluon exchange, which can already be inferred from the fact that

the coefficients C
(V,1)
tū,‖ and C

(V,8)
tū,‖ in (4.55) are only generated by the tensor structures

(2.181), which include the zero mode profiles of all external fermions, compare (2.182).

Since generically (1+cuL+cuR)(cuL−cuR) < 0, we furthermore observe that a positive

LO contribution to A
(0)
uū,RS requires (ctL − ctR) to be negative, which can be achieved

by localizing the right-handed top quark sufficiently far in the IR. To leading powers
in hierarchies, one finds using the mass relation for the top quark (2.158) the condition

ctR &
mt√

2v |Yt|
− 1

2
, (4.63)

in which the top-quark mass is understood to be normalized at the KK scale. Nu-
merically, this means that for mt(1 TeV) = 144 GeV and |Yt| = 1 values for ctR bigger

than 0 lead to A
(0)
uū,RS > 0 and thus to a positive shift in σa.

In conclusion, we can identify three independent aspects of the RS model which render

the contributions to the asymmetric kernel A
(0)
uū,RS tiny. First, the fact that the KK

gluons only have a negligible axial vector coupling will generate a small Born level
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Figure 4.6: Cut diagrams which contribute to the charge asymmetry at O(α2
s) in the

SM extended by the four quark operators (4.46). The cuts refer to the initial- and
final state interference and the box diagram- Born level interference respectively.

asymmetry, as discussed in Section 4.3.6 Second, the localization of the up-quarks,

which suppresses all contributions to A
(0)
uū,RS and finally, the fact that the leading s

channel contribution as well as part of the t channel contribution in (4.58) is sensitive
to the difference between the localization parameters of the 5D up doublet and singlet,
which is generically small. As we will see below in our numerical analysis, the inclusion
of electroweak corrections arising from the Born-level exchange of the Z boson, of KK
excitations of both the photon and the Z boson as well as of the Higgs boson, do not
change this picture qualitatively.

The Asymmetry in the RS Model at NLO in QCD

As explained in 4.3, in models with small axial-vector couplings to light quarks and
no significant FCNC effects in the t channel, the charge-asymmetric cross section
σa is suppressed at LO. As we will show in the following, this suppression can be
evaded by going to NLO, after paying the price of an additional factor of αs/(4π).
In order to understand how the LO suppression is lifted at the loop level, it is useful
to recall the way in which the charge asymmetry arises in the SM. As elaborated in
Section 4.2, following from the fact that QCD is a pure vector theory, the lowest-
order processes qq̄ → tt̄ and gg → tt̄, which are of O(α2

s) do not contribute to AtFB.
However, starting at O(α3

s), quark-antiquark annihilation qq̄ → tt̄ (g), as well as flavor
excitation qg → qtt̄ receive charge-asymmetric contributions, see Figure 4.2, while
gluon fusion gg → tt̄ (g), remains symmetric to all orders in perturbation theory.
Because of charge conjugation invariance the interference between the lowest-order
and the QCD box graphs are the only virtual corrections to qq̄ → tt̄, which contribute
to the asymmetry at NLO. Similarly, for the bremsstrahlungs (or real) contributions,
only the interference between the amplitudes that are odd under the exchange of t and
t̄ furnishes a correction. Since the axial-vector current is even under this exchange, the
NLO contribution to the asymmetry arises solely from vector-current contributions.

6This effect concerning the mostly vector-like couplings of light quarks was emphasized in [235].
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The main lesson learned from the way the charge asymmetry arises in QCD is that
beyond LO vector couplings alone are sufficient to generate non-vanishing values of
AtFB. In the case of the EFT (4.45) this means that cut diagrams like the ones shown in
Figure 4.6, can give a sizable contribution to the charge asymmetry if the combination

CVqq̄ =
(
C

(V,8)
qq̄,‖ + C

(V,8)
qq̄,⊥

)
of Wilson coefficients is large enough. In fact, from (4.50),

(4.52), and (4.73) it is not difficult to see that in the case of the RS model NLO
corrections to σa should dominate over the LO ones, if the condition7

αs
4π

(1 + ctL + ctR) & LeL(1+cuL+cuR ) (4.64)

is fulfilled. For example, employing ctL = −0.34, cuL = −0.63, and cuR = −0.68, the
above formula tells us that for ctR = 0.57 the NLO contributions are bigger than the
LO corrections by a factor of roughly 25. This suggests that it might be possible to
generate values of AtFB that can reach the percent level with typical and completely
natural choices of parameters. Notice that in contrast to QCD, in the RS framework
the Feynman graphs displayed in 4.6 are not the only sources of charge-asymmetric
contributions. Self-energy, vertex, and counterterm diagrams as well as box diagrams
involving the virtual exchange of one zero-mode and one KK gluon might also give a
contribution to AtFB at NLO. As in Chapter 3, we will however not implement KK
modes in loops as it is technically involved to compute the nested sums over KK
modes in these diagrams. Also, those corrections are, like the Born-level contribution,
all exponentially suppressed by the UV localization of the light-quark fields (and the
small axial-vector coupling of the light quarks for what concerns the contributions from

the operators Q
(V,8)
qq̄,AB). Compared to the tree-level corrections, these contributions

are thus suppressed by an additional loop factor, so that they can be ignored for all
practical purposes in this particular observable.

The relevant contributions to AtFB arising in the RS model beyond LO include the
graphs depicted in Figure 4.6. After integrating over cos θ, one obtains in the partonic
CM frame (qq̄ = uū, dd̄)

A
(1)
qq̄,RS =

ŝ

16παs
CVqq̄A

(1)
qq̄ , (4.65)

where A
(1)
qq̄ denotes the NLO asymmetric SM coefficient, given in (4.36), and CVqq̄ the

Wilson coefficient including the vector couplings as defined below (4.52). Employing

an exemplary value of Cqq̄V = 10 TeV−2, Figure 4.3 shows A
(1)
qq̄,RS in the left panel and

A
(1)
qq̄,RS multiplied with the up-quark PDFs in the right panel, both plotted against the

CM energy
√
s in dashed black. This has to be compared with the solid black plots in

Figure 4.3 , which shows the same plots for the SM expressions. Clearly, the peak at
the tt̄ threshold is washed-out in the RS model, because the extra factor ŝ in (4.65)
prevents the function from dropping off for large CM energies. This is a consequence
of the fact that the new physics is considered heavy, which means that interference
terms scale as ŝ/m2

A, compare (4.38), and is symbolized by the propagators being
replaced by contact interactions in Figure 4.6.

7This inequality should be considered only as a crude approximation valid up to a factor of O(1).
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4.5 Numerical Analysis

The Wilson coefficients appearing in the effective Lagrangian (4.45) are constrained
by the measurements of the forward-backward asymmetry AtFB, the total cross section
σtt̄, and the tt̄ invariant mass spectrum dσtt̄/dMtt̄. In Section 4.1 the experimental
values for the cross section (4.3) and the forward backward asymmetry in the CM
frame (4.7) are quoted. In addition, we will include in the analysis the last bin of the
invariant tt̄ mass spectrum, Mtt̄ ∈ [800, 1400] GeV, which is most sensitive to new
physics [236],(

dσtt̄
dMtt̄

)Mtt̄ ∈ [800,1400] GeV

exp

= (0.068± 0.032stat. ± 0.015syst. ± 0.004lumi.)
fb

GeV
.

(4.66)

Here the quoted individual errors are of statistical and systematic origin, and due to
the luminosity uncertainty, respectively.

The above results should be compared to the predictions obtained in the SM sup-
plemented by the dimension-six operators (4.45). Ignoring tiny contributions related
to the (anti)strange-, (anti)charm-, and (anti)bottom-quark content of the proton
(antiproton), and using the dimensionless coefficients

C̃Vqq̄ ≡ 1 TeV2CVqq̄ , (4.67)

C̃Vtū ≡ 1 TeV2
(
1/3C

(V,8)
tū,‖ − 2C

(V,1)
tū,‖

)
,

one obtains for the cross section

(σtt̄)RS =
[
1 + 0.053

(
C̃Vuū + C̃Vtū

)
− 0.612 C̃Stū + 0.008 C̃Vdd̄

] (
6.73+0.52

−0.80

)
pb , (4.68)

and for the last bin of the invariant mass spectrum(
dσtt̄
dMtt̄

)Mtt̄ ∈ [800,1400] GeV

RS

= (4.69)[
1 + 0.33

(
C̃Vuū + C̃Vtū

)
− 0.81 C̃Stū + 0.02 C̃Vdd̄

] (
0.061+0.012

−0.006

) fb

GeV
.

All Wilson coefficients in the above expressions are understood to be evaluated at mt.
The numerical factors multiplying C̃Stū correspond to a Higgs mass of mh = 115 GeV.8

The RG evolution of the Wilson coefficients from MKK to mt is achieved with the
formula (4.56). The dependence of σtt̄ and dσtt̄/dMtt̄ on C̃Pij has been obtained by
convoluting the kernels (4.50) with the parton luminosities ffij(ŝ/s, µf ) by means
of the charge-symmetric analog of formula (4.28), using MSTW2008LO PDFs [228]
with renormalization and factorization scales fixed to µr = µf = mt = 173.1 GeV.
The corresponding value of the strong coupling constant is αs(MZ) = 0.139, which
translates into αs(mt) = 0.126 using one-loop RG running. The total cross section

8The conclusions will not depend on the Higgs mass, so that it is unnecessary to update the
calculation with the measured value here.
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ctL ctR C̃Vuū/αs C̃Auū/αs C̃V
dd̄
/αs C̃A

dd̄
/αs C̃Vtū/αs

−0.46 0.11 1.00 0.035 · 10−2 1.00 −0.070 · 10−2 −0.009 · 10−4

−0.47 0.50 1.19 0.081 · 10−2 1.19 0.004 · 10−2 −0.026 · 10−4

−0.49 1.00 1.29 0.201 · 10−2 1.29 −0.027 · 10−2 0.108 · 10−4

Table 4.1: Results for the Wilson coefficients corresponding to three different param-
eter points. The numbers shown correspond to the RS model with SU(2)L × U(1)Y
bulk gauge symmetry and brane-localized Higgs sector. The coefficients scale as
(1 TeV/MKK)2. Further details are given in the text.

and tt̄ invariant mass distribution in the SM have been computed at NLO [237] using
MCFM [238], employing MSTW2008NLO PDFs along with αs(MZ) = 0.120, which
corresponds to αs(mt) = 0.109 at two-loop accuracy. The given total SM errors
represent the uncertainty due to the variation of the factorization scale µr = µf ∈
[mt/2, 2mt] as well as PDF errors within their 90% CL limits, after combining the
two sources of error in quadrature. Notice that within errors our SM prediction for
σtt̄ is in good agreement with recent theoretical calculations, that include effects of
logarithmically enhanced NNLO terms [211, 239].

With all this at hand, we are now in a position to give the forward-backward asym-
metry in the CM frame. Normalizing the result for σa to σs calculated at NLO,9 we
find the following expression

(AtFB)RS = (4.70)[
1 + 0.243

(
C̃Auū + C̃Vtū

)
− 0.26C̃Stū + 0.034C̃A

dd̄
+ 0.03C̃Vuū + 0.004C̃V

dd̄

1 + 0.053
(
C̃Vuū + C̃Vtū

)
− 0.612C̃Stū + 0.008C̃V

dd̄

](
8.75+1.72

−1.56

)
% ,

where all coefficient functions should be evaluated at the scale mt. The central value
of our SM prediction has been obtained by integrating the formulas given in [215] over
the relevant phase space using (4.25), (4.27), and (4.28), weighted with MSTW2008LO
PDFs with the unphysical scales fixed to mt. It is in agreement with (4.8) as well as the
findings of [222]. Unlike [214], we have chosen not to include electroweak corrections
to the forward-backward asymmetry in the central value of (4.70). Such effects have
been found in [214, 240] to enhance the tt̄ forward-backward asymmetry by around
9% to 4% depending on whether only mixed electroweak-QCD contributions or also
purely electroweak corrections are included. To account for the uncertainty of our SM
prediction due to electroweak effects we have added in quadrature an error of 5% to
the combined scale and PDF uncertainties.

In order to investigate the importance of the different contributions entering the RS
predictions (4.68), (4.69) and (4.70) for the tt̄ observables, we have calculated the
relevant Wilson coefficients at the KK scale for three benchmark points with typical

9Using MSTW2008 PDFs and µr = µf = mt = 173.1 GeV, we obtain in the SM the symmetric
cross sections (σs)LO = 6.66 pb and (σs)NLO = 6.73 pb using MCFM. Since these results differ by only
1%, the central value of AtFB does essentially not depend on whether the LO or the NLO cross section
is used to normalize (4.70).
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bulk mass parameters chosen from our dataset. In Table 4.1 the numerical results for
the coefficient functions are presented. To keep the presentation simple, we show in the
table only the values of the left- and right-handed top-quark bulk mass parameters ctL
and ctR . The numerical values for the remaining bulk mass parameters and Yukawa
matrices, specifying the three parameter points completely are collected in Appendix
A. It should be emphasized that the magnitudes of the shown results are generic
predictions in the allowed parameter space and do not reflect a specific choice of
model parameters. From the numbers given in the table, we see that the ratios of
magnitudes of the Wilson coefficients are given by

|C̃Aqq̄|
|C̃Vqq̄|

≈ 10−3 ,
|C̃Vtū|
|C̃Vuū|

≈ 10−5 . (4.71)

For what concerns the size of the corrections due to flavor-changing currents in the
t channel (encoded in C̃Vtū and C̃Stū), we mention that in the RS model based on
an SU(2)L × U(1)Y bulk gauge group, the ratio of neutral electroweak gauge boson
(Higgs-boson) to KK gluon effects is roughly 1/3 (on average 1/50). In the RS variant
with extended SU(2)R symmetry and custodial protection of the ZbLb̄L vertex, one
finds a very similar pattern. The scalar contributions are not explicitly listed but are
another factor of 102 smaller than the C̃Vtū coefficients.

Focusing on the numerical dominant corrections arising from s channel KK gluon
exchange, we see from Table 4.1 that C̃Vuū and C̃Auū are comparable in size to their
counterparts involving down quarks. Since the latter coefficients are suppressed in the
total cross section relative to the coefficients involving up quarks by the small ratio
of quark luminosities ffdd̄ (0.04) /ffuū (0.04) ≈ 1/5 , the numerical impact of C̃V

dd̄
in

(4.70) is negligible. In practice, we find that the relevant ratio (0.008 C̃V
dd̄

)/(0.053 C̃Vuū)
amounts to less than 2.3% for the considered parameter points. For the last bin of
the tt̄ invariant mass spectrum, the picture is similar. The quark luminosity ratio
is ffdd̄ (0.17) /ffuū (0.17) ≈ 1/15, which results in a ratio (0.02 C̃V

dd̄
)/(0.33 C̃Vuū) which

is a 1.0% effect for our benchmark points. It is therefore sensible to restrict our
attention to the coefficients C̃V,Auū that render by far the largest contributions to the tt̄
observables in the RS model. Note however, that this situation is significantly changed
at the LHC, where the luminosities give a ratio of ffpp

dd̄
(0.003) /ffppuū (0.003) ≈ 2/3 at a

corresponding CM energy of s =
√

7 TeV, compare Figure 4.4.

These results, which hold true for all new physics models which try to explain the
forward backward asymmetry through s channel exchanges of new resonances can be
illustrated by a combined fit to the latest measurements of the asymmetry AtFB, the
total inclusive cross section σtt̄ and the last bin of the invariant mass spectrum, as
shown in Figure 4.7. In addition to the 99%, 95% and 68% CL ellipses in the C̃Vuū−C̃Auū
plane, the best fit point is indicated by a black cross as well as the prediction of the
SM, which is indicated by a black point. The dashed lines denote the region of
parameter space in which significant changes to the cross section as well as to the
forward backward asymmetry are expected. From Table 4.1, one can clearly see that
the RS corrections are expected to be nowhere near the right size in order to explain
the asymmetry.
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Figure 4.7: A combined fit to the latest measurements of the asymmetry AtFB, the
total inclusive cross section σtt̄ and the last bin of the invariant mass spectrum in
the C̃Vuū − C̃Auū plane. The 99%, 95% and 68% CL ellipses are shown in blue, grayish
blue and yellow respectively. The black cross (dot) represents the best fit point (SM
expectation). Dashed black lines show the regions of parameter space which induce a
large corrections to the total cross section and AtFB respectively.

From Table 4.1 we further observe that C̃Vuū grows with increasing (ctL + ctR), i.e. if
the top quark is localized more strongly in the IR, which was expected from (4.73) and
(4.63). A similar trend in terms of ctR , though less pronounced, is also visible in the
case of C̃Auū. The numbers given in the table furthermore confirm our qualitative find-
ings from Section 4.4 of strongly suppressed axial-vector couplings, |C̃Auū|/|C̃Vuū| � 1.
As a consequence, upon inserting the numerical values of C̃Vuū and C̃Auū into the nu-
merator of (4.70), it becomes clear, that in the RS model the NLO contributions to
AtFB arising from C̃Vuū dominate over the LO contributions from C̃Auū. Numerically, we
find that the vector-current contributions to the asymmetry are typically larger by
about a factor of 100 than the corrections due to the axial-vector current. This strong
enhancement reflects the fact that the KK gluons couple mainly vectorially with a
small axial component. A closer inspection of (4.70) shows however, that in the ratio
of the asymmetric and symmetric cross sections the effects of C̃Vuū tend to cancel, as
anticipated in Section 4.3. Since both σa and σs are enhanced for C̃Vuū > 0, but the
dependence of σs on C̃Vuū is stronger than the one of σa, positive values of C̃Vuū will
effectively lead to a reduction and not to an enhancement of the tt̄ forward-backward
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Figure 4.8: The forward backward asymmetry AtFB in the minimal RS model plotted
for the complete dataset versus MKK. The red line indicates the SM value.

asymmetry as envisioned. Given that C̃Vuū > 0 is a robust prediction of the RS frame-
work, as long as the top quark is mainly composite, we conclude that the corrections
to AtFB are necessarily negative.

This feature is illustrated in Figure 4.8, which shows the predictions for the RS cor-
rections to the forward-backward asymmetry for our complete dataset, plotted versus
the KK scale. The central value of the SM prediction is indicated by the red line.
It is evident, that the maximal attainable effects amount to not even −0.05%. For
all parameter points, the correction to the total inclusive cross section is larger than
the contribution to the asymmetric cross section, which fixes the sign of the overall
correction. Another representation of the small effects can be found in Figure 4.10,
which shows that the scatter plot of the complete parameter set in the C̃Vuū−C̃Auū plane
ends up in the tiny red region. These results should be contrasted with the analysis
[124], which finds positive corrections to the tt̄ forward-backward asymmetry of up to
5.6% (7%) arising from KK gluons (Z ′-boson exchange) at LO. In the latter article,
sizable corrections to C̃Aqq̄ arise since the 5D doublet and singlet light-quark fields are
localized at different ends of the extra dimension by choosing cuL = cdL ∈ [−0.4, 0.4]
(IR-localized) and cuR = cdR = −0.8 (UV-localized).10 This will sabotage the genera-
tion of hierarchical masses and mixings on the basis of fundamental anarchic parame-
ters. As a consequence, one would have to reintroduce a structure in the fundamental
Yukawas in order to make such a model viable.

10Notice that the convention of the bulk mass parameters used in [124] differs from ours by an
overall sign.
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4.6 Axigluon Contributions to the Cross Section and
the Asymmetry

The conclusions drawn in Section 4.3 and at the end of the last Section suggest that
a new resonance with mainly axial vector couplings can bring the measured value of
the forward backward asymmetry in agreement with the SM prediction.
The model introduced in Chapter 3, which features an extended strong interaction
gauge group SU(3)D×SU(3)S in the bulk fulfills some of the criteria which we identi-
fied as essential for a solution of the AtFB puzzle in Section 4.3. It provides a large axial
vector coupling with negligible vector coupling component for mixing angles θ ≈ 45◦

preferred by the flavor sector. Further, the couplings are large for the top, even larger
then in the minimal model, because the extended scalar sector implies extremely IR
localized top profiles. In addition, the extended model furnishes a hierarchy between
couplings to down and to up type quarks, which is rooted in the different scalar fields
which provide their masses. Such a hierarchy might explain why the measurements
point to a smaller asymmetry at a machine which collides protons that contain equal
shares of ū and d̄ quarks, compared to a proton-antiproton collider which provides
3/2 more ū than d̄ in the initial state.

From (3.63) and (3.108), one finds that in the model with extended color gauge group
the Wilson coefficients in (4.55) take the form

C
(V,8)
qq̄,‖ = − παs

2M2
KK

{
1

L
− (∆′Q)11 − (∆′Q)33 − p2

q (∆′q)11 − p2
q (∆′q)33

+ 2L

[
1

c2
θ

(∆̃Q)11 ⊗ (∆̃Q)33 +
p4
q

s2
θ

(∆̃q)11 ⊗ (∆̃q)33

− vIR

4

(
t2θ (∆Q)11(∆Q)33 + p4

qct
2
θ (∆q)11(∆q)33

)]}
, (4.72)

C
(V,8)
qq̄,⊥ = − παs

2M2
KK

{
1

L
− (∆′Q)11 − (∆′Q)33 − p2

q (∆′q)11 − p2
q (∆′q)33

+
p2
qvIR

2
L
(
(∆Q)11(∆q)33 + (∆Q)33(∆q)11

)}
,

C
(V,8)
tū,‖ = − παs

M2
KK

L

{
1

c2
θ

(∆Q)13 ⊗ (∆̃Q)31 +
p4
q

s2
θ

(∆q)13 ⊗ (∆̃q)31

− vIR

4

(
t2θ (∆Q)13(∆Q)31 + p4

qct
2
θ (∆q)13(∆q)31

)}
,

and C
(V,1)
tū,‖ is not modified by the axigluon KK modes, but only by the relocalization

of the fermions and is therefore not repeated here. In the above expressions, only
O(v2/M2

KK) contributions are kept, except for terms ∼ vIR, that become significant if
the suppression from vIR is balanced by powers of pu, which parametrizes the effect
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of the IR shift of the up-type quarks due to the extended Higgs sector. This factor is
defined in (3.105) and is a function of tanβ, which is preferred to be small by flavor
observables.
From the expressions (4.72) one can infer, that the tensor structures contributing to

C
(V,8)
qq̄,⊥ in the minimal model cancel between the gluon and the axigluon contributions,

which is expected, because this effect is exactly what renders the contributions to
εK small. In contrast to the down sector however, the remaining contributions are
∼ vIRp

2
u (for up quarks in the initial state), which is not small, because p2

u > p2
d if

tanβ < 1. The definition of the relocalization factors pu, pd is given in (3.105), and for
our reference value tanβ = 1/2, one finds p2

u = 15. It follows for the ZMA relations
for the symmetric and antisymmetric hard scattering kernels introduced in (4.50) and
(4.52) in the case of the extended model,

S
(0)
uū,RS+A ∼

αsπ

M2
KK

{
F 2(ctL) + F 2(cuL) + p2

uF
2(ctR) + p2

uF
2(cuR)

}
, (4.73)

A
(0)
uū,RS+A ∼ −

αsπ

M2
KK

L

{
1

c2
θ

(
4

3
− s2

θ

vIR

3

)
F 2(ctL)F 2(cuL)

+
p4
u

s2
θ

(
4

3
− c2

θ

vIR

3

)
F 2(ctR)F 2(cuR)

− p2
uvIR

4

(
F 2(ctL)F 2(cuR) + F 2(ctR)F 2(cuL)

)}
, (4.74)

which has to be compared to (4.58). The cancellation of contributions to C
(V,1)
tū,‖ are

the reason for the absence of a term with overall positive sign in A
(0)
uū,RS+A, which

is not formally of the order v4/M4
KK, because vIR ∼ v2/M2

KK. Keep in mind, that
the asymmetric cross section σa in the minimal model is positive, if the condition
(4.63) is fulfilled. Naively, one might think that this leads to an even larger set of
parameter points for which σa > 0 in the extended model, due to the IR shift of the
up-type quark localization parameters. However, condition (4.63) basically ensures

that the term ∼ F 2(ctR)F 2(cuL) dominates in A
(0)
uū,RS in (4.73). This would not lead

to a positive asymmetric cross section in the extended model, because this term is

suppressed by vIR/p
2
u compared to the leading negative contribution to A

(0)
uū,RS+A.

In this explicit example, we recover the result from Section 4.3, that an axigluon
generically generates the wrong sign in the asymmetry. A two Higgs doublet model
on the IR brane with tanβ < 1 would actually lead to an overall positive σa > 0, but
the cancellations in the left-right chirality operator due to the axigluon tower spoils
this effect.
In writing only the dominant terms in (4.73) and using the approximation (4.60), this
becomes even more apparent,

S
(0)
uū,RS+A ∼

2παs
M2

KK

(
1

2
+
p2
u

2
+ ctL + p2

uctR

)
, (4.75)

A
(0)
uū,RS+A ∼

2παs
M2

KK

L
p4
u

s2
θ

(
4

3
− c2

θ

vIR

3

)
(1 + 2ctR)(1 + 2cuR)eL(2cuR+1) . (4.76)
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ctL ctR C̃Vuū/αs C̃Auū/αs C̃V
dd̄
/αs C̃A

dd̄
/αs C̃Vtū/αs

−0.46 0.11 14.5 −2.66 · 10−2 14.3 −17.5 · 10−2 −12.8 · 10−4

−0.47 0.50 17.6 −5.82 · 10−2 17.6 −6.41 · 10−2 −20.2 · 10−4

−0.49 1.00 19.4 −22.2 · 10−2 19.6 −11.3 · 10−2 15.5 · 10−4

Table 4.2: Results for the Wilson coefficients corresponding to three different pa-
rameter points. The numbers shown correspond to the RS model with SU(3)D ×
SU(3)S × SU(2)L × U(1)Y bulk gauge symmetry and brane-localized Higgs sector.
The coefficients scale as (1 TeV/MKK)2. Further details are given in the text.

Since cuR < −1/2 for all parameter points, this would only allow for a positive con-

tribution to A
(0)
uū,RS+A, if either ctR < −1/2 as well or cuR > −1/2, which both are

choices that will undermine the generation of flavor hierarchies with O(1) Yukawa
couplings or the RS GIM suppression of FCNCs.

In addition, because the contributions to S
(0)
uū,RS+A are enhanced as well, which leads

to a further suppression by the total inclusive cross section in the denominator of
(4.27), the contributions to AtFB are strictly negative, and larger then in the minimal
model. However, the absolute size of the corrections that can be generated in the
extended model is still an order of magnitude too small for realistic values of MKK,
because all contributions to the asymmetric cross section feel the localization of the
light up quarks.
It is interesting to note, that one can understand from the dual theory, why the
new resonances although they couple almost purely axial to quarks, and the tops are
extremely IR localized, do not lead to larger effects. The deeper reason for this is
the fact, that unlike for the gluon, for the axigluon there is no elementary field in the
dual Lagrangian. In the analysis of the bulk gauge boson propagator in Section 2.3,
we found, that only for Neumann BCs in the UV, which corresponds to the existence
of an elementary field in the dual theory, terms which are proportional to only one of
the bulk coordinates t or t′ appear in the small momentum expansion. This makes
sense, because we could also show that these terms are related to diagrams which mix
the composites with the elementary bosons. As a consequence, the gluon KK tower
does contribute terms which are only proportional to the top localization to CVuū,
because there are diagrams with the gluon coupling to up quarks and then mixing
into its composite partner, which couples strongly to the tops. On the other hand,
the axigluon KK modes always contribute terms suppressed by the zero mode profiles
of the up quark to CAuū, because the only possible diagrams include the axigluon
composites coupling to the composite partners of the up quarks, and the mixing
between up composites and elementaries is suppressed by exactly those ZMA profiles.
In contrast, an RS axigluon with only Dirichlet BCs in the IR (due to an IR brane
Higgs sector) and Neumann BCs in the UV would lead to a sum over the KK tower
of the type (2.87), which in turn would furnish a sizable contribution to AtFB.

In order to make these results comparable to the findings in the minimal model, we
give the Wilson coefficients in the extended model in Table 4.2 for the same reference
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Figure 4.9: AtFB in the extended RS model with SU(3)D×SU(3)S strong interaction
bulk gauge group, plotted for the complete dataset versus MKK. The red line indicates
the SM value.

points and for θ = 45◦ and tanβ = 1/2. We refrain from giving the result for the
coefficient of the scalar operator even though it may be larger by a factor of a few,
depending on the different contributions from the extended Higgs sector, the generic
suppression of these contributions will prevail in the extended model.11 Note, that for
tanβ = 1/2, the contributions to C̃Vuū in Table 4.2 are already large, but still feasible,
as can be seen from the green points plotted in Figure 4.10. Further, the analogue
of the scatter plot in Figure 4.8 for the forward backward asymmetry versus the KK
scale is shown in Figure 4.9 for the extended model and θ = 45◦ and tanβ = 1/2.
One can see, that the effects are enhanced due to the relocalization of the top quarks,
but still do not exceed −0.5% even for extremely small KK scales and go invariably
in the wrong direction for a possible explanation of the measured asymmetry.

We can conclude from the results found in both the minimal and the extended RS
model, that without invoking additional ad hoc assumptions about the flavor struc-
ture of the light-quark sector, the RS model and the corresponding strongly coupled
theories can not explain the asymmetry, even if a resonance with purely axial cou-
plings is introduced. There thus seems to be a generic tension between having large
effects in AtFB and achieving a natural solution to the flavor problem.

11This is the case, because the couplings to quarks are still proportional to the Yukawa couplings
for all new scalar fields.
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Figure 4.10: The figure shows the CL ellipses described in 4.7 and a scatterplot of the
parameter set in the C̃Vuū − C̃Auū plane for the minimal model colored red and for the
model with extended color gauge group for tanβ = 1/2 and θ = 45◦ in green.



5 Conclusions

Whenever the Large Hadron Collider begins a new run, the first sign of physics be-
yond the Standard Model could be revealed, and this becomes more likely with the
recorded luminosity growing exponentially. However, as long as the mass gap be-
tween the Higgs and new physics resonances grows, theories which naturally predict
new particles with masses around the electroweak scale become more and more tuned.
In the Randall Sundrum model and its dual description by a strongly coupled theory,
new resonances are only expected in the multiple TeV range, and, due to the RS GIM
mechanism, couple more or less exclusively to top quarks. As was shown in Chapter
3 and 4, this can explain why they have stayed below the radar of the ever increasing
exclusion limits of the LHC.
In addition, the RS model arguably provides the best explanation of flavor we have
today. Both the absence of FCNCs as well as the structure of the CKM matrix can be
explained based on the fact that the quarks are localized differently along the extra
dimension, which can be interpreted as a mixing with new composite degrees of free-
dom. As a result, flavor bounds are suppressed by orders of magnitude compared to
general new physics without such a protection mechanism. This becomes apparent in
the generically good agreement of the RS predictions for the flavor changing processes
studied in Chapter 3. We find that both the contributions to Sψφ and ∆Γ/Γ in the
Bs − B̄S system as well as the branching ratios B

(
Bs → µ+µ−

)
and B

(
Bd → µ+µ−

)
do not exceed the experimental expectations and can even lead to an improved agree-
ment, even if the contributions from the custodially protected model are taken into
account.
It is thus remarkable that the RS-GIM mechanism leads to a broad agreement with
measurements in the flavor sector, except for indirect CP violation in the Kaon sys-
tem, which requires one percent fine-tuning despite the good suppression for the light
flavors involved. It was extensively discussed how this problem arises and how it can
be ameliorated following the approaches proposed in the literature. Most of these
solutions modify the Yukawa couplings or constrain the localization parameters for
the quarks, whose randomness is essential for the explanation of the flavor structure
of the CKM matrix.
A new solution has been motivated by the observation, that the dangerous contri-
butions to εK arise almost exclusively because of the exchange of color-charged res-
onances, the KK modes of the gluon. The extension of the strong interaction gauge
group to a SU(3)D×SU(3)S surprisingly cancels these contributions independently of
the imposed boundary conditions for the bulk fields and the choice of gauge couplings
for the two subgroups.
Invoking the AdS/CFT duality, in a detailed analysis the part of the 5D gauge boson
propagator which is responsible for the excessive contributions could be related to
the purely composite contribution of the mixed elementary-composite propagator in
Chapter 2. This allowed for a deeper understanding of the cancellation, that pro-
tects εK and ultimatively leads to an RS model in agreement with all bounds from
the quark flavor sector. In Chapter 3, the thorough implementation of this model is
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described, which unfortunately implies a baroque Higgs sector in order to realize the
Yukawa couplings on the IR brane, that does not lead to a predictive mass spectrum
for the new scalar states due to the vast number of free parameters in the potential.
The impact of the RS model with and without the extended color gauge group on
flavor diagonal processes, namely electroweak precision observables, has also been
studied in Chapter 3. It turns out that the recent updates on the fit to the Z → b̄b
pseudo observables put very severe constraints on the couplings of the Z or induces
a large KK scale. Adopting a custodial protection in order to prevent this, which is
also the best way to suppress large contribution to the oblique T parameter, however
reintroduces a tension with the contributions from the resonances charged under the
extended color gauge group to εK .
If the flavor problem of the RS model is explained by the mechanism introduced in
this thesis, this tension must be addressed by either a different suppression of contri-
butions to the electroweak precision observables, or by a more inventive realization
of the scalar sector. In this context it should be mentioned that during the comple-
tion of this thesis, a paper has been published, whose authors also find only a minor
improvement for the custodial model with extended color gauge group [244]. The
bound derived there comes from the loop induced direct CP violation in Kaon mixing
measured by ε′/εK and is due to the exchange of the new scalar degrees of freedom
and therefore also rooted in the extended Higgs sector.
The last chapter focuses on the question of whether the question whether the observed
forward-backward asymmetry at the Tevatron could be explained by new physics, with
the emphasis on the RS model and its extensions. Because the KK gluons have almost
pure vector couplings to quarks, one finds generically larger contributions to the total
inclusive cross section than to the asymmetric cross section in the RS model. This
leads to a negative correction to AtFB, that is defined as the ration of the two. The
measurement however suggests an enhancement. This result could be generalized to
all new physics with primarily vectorial couplings and its robustness under the inclu-
sion of interference effects with NLO QCD diagrams has been confirmed.
The almost axial vector couplings of the other linear combination of gauge fields from
the SU(3)D × SU(3)S → SU(3)C breaking in the extended model does already lead
to a suppression of the asymmetric cross section and consequentially leads to an even
worse fit, which is in agreement with the general expectations of resonances with axial
vector couplings. In contrast to εK , AtFB is very sensitive to the boundary conditions
of the color-charged 5D gauge bosons and it could be shown that the BCs imposed
by direct detection bounds and the Yukawa couplings guarantee that the effects are
always suppressed by the localization of the up quarks and are therefore rendered very
small.



A Generating Parameter
Points

In order to generate a point in the parameter space, we have to fix 38 (real) parameters.
These are the 36 real parameters corresponding to the 18 complex entries of the 5D
Yukawa matrices, the KK scale MKK and the remaining cu3-parameter corresponding
to the wave function F (cu3) which we chose in the Froggatt-Nielsen analysis to derive
the formulas (2.163), (2.164), (2.165) and (2.165). For the implementation of the
parameter scan we the program Mathematica was used and the functions mentioned
in this chapter will refer to predefined functions within Mathematica, if not stated
otherwise. The code conducts the following steps:

1. Random Yukawas
In the first step 18 random complex numbers are produced in the range yij ∈
[0.3, 3]. The random number generator is MersenneTwister, which turned out
to be the fastest.

2. First χ2 Test
From these numbers the profile-independent Wolfenstein parameters η̄, η̄ are
computed. If they fail to minimise

χ2[Xi] =
∑
i

(
Xi − µi
σ(Xi)

)2

, with Xi = (η̄, ρ̄), (A.1)

the respective point is rejected. The central values are experimental data µi =
(ρ̄exp, η̄exp) (see Appendix C for the reference) and the variance corresponds to
one experimental σ. Interestingly, the code fails to produce acceptable points,
if this condition is implemented as an upper bound, like χ2[η̄, ρ̄] < 2, even if the
bound is lowered significantly. Therefore the points are required to yield the
solution of a FindMinimum condition.

3. Random cu3

The ZMA profile F (cu3), defined in (2.150) is randomised within a range F (cu3) ∈
(0, Fmax). With the help of experimental values for the remaining Wolfenstein
parameters λ and A as well as for the quark masses, the other zero mode profiles
are computed according to the formulas in the Froggatt-Nielsen analysis (2.164),
(2.165) and (2.165). The distributions for the localization parameters are shown
in Figure A.1.

4. Second χ2 Test
In the last step the KK scale is randomised within MKK ∈ [103, 104] GeV and
with the help of the Yukawa matrices and the parameters F (cQ,q), already deter-
mined in the third step, the quark masses and the CKM matrix are computed,
according to (2.158) and (2.159). These expressions have to pass another χ2 test,
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Figure A.1: Distributions of the quark localization parameters for the dataset used in
throughout the thesis.

with Xi = (mu,mc,mt,md,ms,mb, A, λ, ρ, η), again compared to experimental
values, that must fulfill χ2 < 10, which corresponds to the degrees of freedom
here.

Reference Points

In the last chapter, three reference points have been chosen to illustrate the results.
The localization parameters of the top singlet and third generation doublet are given
in Table 4.1, and the full set of parameters, which specify these reference points
completely are compiled in the following. Our first parameter point is specified by the
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following bulk mass parameters1

cQ1 = −0.632 , cQ2 = −0.581 , cQ3 = −0.459 ,

cu1 = −0.667 , cu2 = −0.543 , cu3 = +0.108 ,

cd1 = −0.617 , cd2 = −0.625 , cd3 = −0.581 ,

and Yukawa matrices

Y u =

 1.798− 0.629 i − 0.981 + 0.343 i −0.555− 0.780 i
0.326 + 0.023 i − 1.468− 1.898 i −0.409− 1.351 i
0.494− 1.834 i 0.300− 0.416 i −1.128 + 2.220 i

 ,

Y d =

 0.330− 0.330 i 0.273 + 2.626 i 0.669 + 0.255 i
−0.647 + 0.124 i − 0.021− 2.913 i −0.221− 0.045 i

1.223− 1.134 i − 0.019− 0.030 i 0.318− 2.092 i

 .

The second parameter point is given by

cQ1 = −0.651 , cQ2 = −0.586 , cQ3 = −0.469 ,

cu1 = −0.666 , cu2 = −0.521 , cu3 = +0.501 ,

cd1 = −0.644 , cd2 = −0.618 , cd3 = −0.563 ,

and

Y u =

 −0.495− 0.151 i 0.471− 0.208 i 1.850− 2.155 i
0.032− 1.198 i − 2.280 + 0.216 i 1.285 + 0.756 i
0.571 + 0.842 i − 1.031 + 0.223 i 2.131− 0.343 i

 ,

Y d =

 −1.003− 0.146 i − 1.677 + 1.677 i 1.249 + 1.812 i
0.165− 0.762 i − 2.736− 0.514 i 0.338− 0.039 i
0.971 + 1.203 i 0.454 + 0.532 i 0.202 + 1.370 i

 .

Finally, our third parameter point features

cQ1 = −0.652 , cQ2 = −0.563 , cQ3 = −0.486 ,

cu1 = −0.655 , cu2 = −0.497 , cu3 = +0.999 ,

cd1 = −0.639 , cd2 = −0.612 , cd3 = −0.578 ,

and

Y u =

 0.100 + 1.586 i − 0.024 + 0.772 i 0.956 + 1.828 i
0.228 + 0.835 i − 0.018 + 0.145 i −0.969 + 1.064 i
−0.101− 0.060 i − 0.116− 0.238 i −0.223 + 2.312 i

 ,

Y d =

 0.232 + 2.313 i 0.597− 1.654 i −0.219 + 1.182 i
0.661− 2.200 i − 0.765− 0.815 i −1.270 + 1.060 i
−1.021 + 1.220 i − 0.066 + 0.097 i 2.497 + 1.067 i

 .

1Here and below, results are given to at least three significant digits.
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Here cQ1 = cuL = cdL , cu1 = cuR , and cd1 = cdR and similarly in the case of the second
and third quark generation.



B Neutral Meson Mixing

Neutral mesons and antimesons are composite states of quarks with different flavor
and zero electric charge,

K ∼ (s̄d) , K ∼ (sd̄) ,

Bd ∼ (b̄d) , Bd ∼ (bd̄) ,

Bs ∼ (b̄s) , Bs ∼ (bs̄) ,

D ∼ (ūc) , D ∼ (uc̄) . (B.1)

Apart from different flavor and antiflavor content, they share the same quantum num-
bers and therefore mix. By mixing one means that the mass eigenstates are not the
same as the flavor eigenstates (B.1), but linear combinations thereof,

|ML〉 = p |M〉+ q |M〉 ,
|MH〉 = p |M〉 − q |M〉 , (B.2)

where |p|2 + |q|2 = 1 and the indices H and L indicate the heavy and light mass
eigenstate respectively. Further, an initially produced pure meson or antimeson state
will always oscillate with time into a superposition of both. Because this oscillation
involves time scales � 1/ΛQCD, it can be described by an effective Hamiltonian H,
and a Schrödinger equation

i
∂

∂t

(
M
M

)
= H

(
M
M

)
. (B.3)

This Hamiltonian can only be hermitian, if the Hilbert space consisting of M,M is
complete. However, these (anti)meson states do not only oscillate, but will also decay
into different final states, which is consequentially described by the non-hermitian
component of H. One can write

H = M − i

2
Γ , (B.4)

so that the mass matrix M and the decay matrix Γ are hermitian and one can write(
H11 H12

H21 H22

)
=

(
M11 M12

M∗12 M22

)
+
i

2

(
Γ11 Γ12

Γ∗12 Γ22

)
. (B.5)

In this notation, mixing only means that these matrices have non-vanishing off-
diagonal components, and one finds for the “mixing angles” in (B.2) the relation(

q

p

)2

=
M∗12 − (i/2)Γ∗12

M12 − (i/2)Γ12
(B.6)
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and for the eigenvalues

ωL,H = H11 ∓
√
H12H21 . (B.7)

One can express the mass and width difference of the mass eigenstates by the real and
imaginery part of the eigenvalues

∆m ≡ mH −mL = Re (ωH − ωL) ,

∆Γ ≡ ΓH − ΓL = −2Im (ωH − ωL) , (B.8)

which allows for the definition of the parameters

x ≡ ∆m

Γ
, y ≡ ∆Γ

2Γ
, (B.9)

which are well suited to categorize the different meson-antimeson systems in (B.1).
A large mass difference expresses itself in a large x parameter and y measures the
difference in the lifetime of the two mass eigenstates. Interestingly, all of the four
systems in (B.1) differ in these parameters [159, 241], which implies different oscillation
behaviour, as one can see from plotting the percentage of antimesons M and mesons
M in an initially pure meson beam versus the time normalized to the average lifetime
T = t/τ of the involved states,

NM (t)

NM (0)
=
e−T

2
[cosh(yT ) + cos(xT )] ,

NM (t)

NM (0)
=
e−T

2
[cosh(yT )− cos(xT )] , (B.10)

see [241, Sec.2.2.4] for details. The plots are reproduced in Figure B.1. For the Kaon
system, both x ∼ 1 and y ∼ −1 are large, which corresponds to a large mass differ-
ence as well as a considerable difference in the lifetimes of the two mass eigenstates.
The sign of y does also imply, that the heavier state lifes longer, so that one usually
identifies KL = KH and KS = Kl with the subscript denoting S = short and L =
long lifetime. The relaxation process dominates, because it takes little more than
one oscillation for all of the KS to decay, so that the beam consists entirely of KL

states after one period, as shown in the upper left panel of Figure B.1. This feature
is shared by D − D̄ mixing and Bd − B̄d mixing, which both have x ∼ 0.6 − 0.8, so
that it takes only one oscillation for most of the mesons to decay. The difference in
lifetimes is with y ∼ 10−3 however negligible for the Bd−Bd system, so that there are
basically no particles left in the beam after one period as shown in the lower left panel
of Figure B.1. For the D−D system y ∼ 0.75, which results in a not totally depleted
beam, compare the upper right panel of Figure B.1. The situation is very different
for Bs − Bs system, for which x ∼ 27 and y ∼ 10−2. The system shows the biggest
mass difference of the four, but it is not possible to identify long- or short lived states
with the mass eigenstates, because their lifetimes are almost equal and the oscillation
frequency allows for several oscillations before the beam is depleted, as shown in the
lower left panel of Figure B.1.
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Figure B.1: The plots show the percentage of (anti-)mesons of a beam of 100% mesons
at T = 0 evolving over time T in (dashed) solid black. In the upper left(right) panel
for the K − K (D − D) system and in the lower left (right) panel for the Bd − Bd

(Bs −Bs) system.

In the SM, the contributions to the off-diagonal elements in (B.5) can only be gener-
ated by W± exchange in loops, because they correspond to ∆F = 2 neutral currents.
The relevant diagrams are box-diagrams as shown in Figure 1.8, which also include all
up-type (down-type) quarks in the case of external K,Bd or Bs (D) mesons. Because
of this virtual exchange, historically, meson mixing played an important role. The
carm mass was predicted from ∆mK measurements and similarly, the large Bd − Bd

oscillation rate gave a first hint on a really heavy top, for details see [242, Sec. 1.2] and
references therein.
Meson-antimeson mixing played also an important role in discovering C and CP vio-
lation in the electroweak interactions. The latter represents the toughest test for New
Physics models, because the measurements do agree so well the small SM expecta-
tions.
One differentiates between CP violation in mixing, decay and in the interference of
mixing and decay. With the help of the weak Hamiltonian HW , one can define the
amplitudes

Af = 〈f |HW |M〉 , Af̄ = 〈f |HW |M〉 , (B.11)
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for the decay of a neutral meson into some final state f and its antistate f̄ , and
analogous for the decay of the antimeson Af and Af̄ . The variable

λf ≡
q

p

Af
Af

(B.12)

allows then to distinguish between the three types of CP violation,

1. CP Violation in Mixing is characterized by |q/p| 6= 1,

2. CP Violation in Decay occurs for |Af̄/Af | 6= 1, and

3. CP Violation in Interference of Mixing and Decays] is expected if Imλf 6= 0.

A complementary way to categorize CP violation is by defining direct CP violation
for decays with |Af/Af̄ | 6= 1 and indirect CP violation if this ratio does not deviate
from one.

The observables in the Kaon and Bs −Bs system discussed in Chapter 3 correspond
to different measures of these types of CP violation. The ratio of the decay of long-
and short-lived Kaons into pions in the strong isospin I = 0 eigenstates,

εK ≡
〈(ππ)I=0|KL〉
〈(ππ)I=0|KS〉

(B.13)

measures the indirect CP violation in K − K̄ mixing. By writing λ0 ≡ λ(ππ)I=0
and

inserting (B.2) in (B.13), one finds that

εK =
1− λ0

1 + λ0
≈ 1

2
(1− λ0) ≈ 1

2

(
1 +

∣∣∣∣qp
∣∣∣∣+ Imλ0

)
, (B.14)

where in the second to last step it was used that the experimental value of εK im-
plies that |λ0| ≈ 1, and in the last step the fact that direct CP violation is absent
was employed. Therefore, the real part of εK is sensitive to CP violation in mixing
and the imaginary part quantifies CP violation in the interference of mixing and decay.

Because of the characteristics discussed above, the decays of the Bs meson mass
eigenstates cannot clearly be identified with the decays of a short or a long lived
state. Consequentially, the relevant observables are different. Relevant for this thesis
is the time-dependent asymmetry, which measures the difference in of the Bs and Bs

into some final state. In the case of semileptonic final states, it will only measure
indirect CP violation,

AsSL =
Γ(Bs(t)→ `+X)− Γ(Bs(t)→ `−X)

Γ(Bs(t)→ `+X) + Γ(Bs(t)→ `−X)
=

1− |q/p|4
1 + |q/p|4 , (B.15)

because the only source of CP violation is the oscillation Bs → Bs → `−X. It is
therefore sensitive to the CP violating phase in the CKM element Vts, which appears
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in the corresponding SM box diagram or to new phases from the exchange of new
physics resonances.
Further observables not discussed in this thesis are explained in [242] and references
therein.





C Input Parameters

This appendix is a collection of input parameters used in the phenemenological part
of the thesis

Parameter Value ± Error Reference

GF 1.16637 · 10−5 GeV −2 [245]
s2
w 0.2312 [146]

mW 80.398 GeV [146]
mZ 91.1875 GeV [146]

α(mZ) 1/127.9 [146]
αs(mZ) 0.118± 0.003 [245]
mt (144± 5) GeV [248]
mb (2.3± 0.1) GeV [245]
mc (560± 40) MeV [245]
ms (50± 15) MeV [245]
md (3.0± 2.0) MeV [245]
mu (1.5± 1.0) MeV [245]
λ 0.2265± 0.0008 [246]
A 0.807± 0.018 [246]

ρ̄ 0.147+0.029
−0.017 [246]

η̄ 0.343± 0.016 [246]

Table C.1: Parameters used in the SM predictions and the generation of RS parameter
points. The quoted values of the quark masses correspond to MS masses evaluated at
a scale of 1 TeV.
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Parameter Value ± Error Reference

ηB 0.55± 0.01 [249]
mBs 5.3661 GeV [245]
fBs (245± 25) MeV [247]
Bbs

1 0.80± 0.08 [247]
Bbs

4 1.15± 0.13 [247]
Bbs

5 1.74± 0.19 [247]
(mb +ms) (4.30± 0.08) GeV [247]

2βSM
s (0.0363+0.0016

−0.0015 [160]
(∆ms/Γs)exp 26.3± 0.6 [250]
Re (Γs12/M

s
12) (−4.97± 0.94) · 10−3 [158]

Im (Γs12/M
s
12) (2.06± 0.57) · 10−5 [158]

Table C.2: Parameters used in the Bs–B̄s mixing observables. The given values for
the Bbs

i parameters and the sums (mb+ms) are MS quantities normalized at the scale
4.2 GeV.

Parameter Value ± Error Reference

mK 497.6 MeV [245]
fK 156.1 MeV [245]
Bsd

1 0.51± 0.02 [176, Table 2]
Bsd

4 1.04± 0.07 [176, Table 2]
Bsd

5 0.76± 09 [176, Table 2]
(ms +md) (135± 18) MeV [247]

φε (43.51± 0.05)◦ [245]
κε 0.92± 0.02 [173]

(∆mK)exp 3.4833 · 10−15 GeV [245]
mt(mt) (163.8± 1.3) GeV [248]

mc(mc)
(
1.27+0.07

−0.11

)
GeV [245]

Table C.3: Parameters used in the K–K̄ mixing observables. The given values for
the Bsd

i parameters and the sum (ms+md) correspond to the RI-MOM scheme taken
at the scale 2 GeV .



189

Parameter Value ± Error Reference

mBd 5.2795 GeV [245]
fBd (200± 20) MeV [247]

τBs
(
1.472+0.024

−0.026

)
ps [250]

cA 0.96± 0.02 [169, 170]
mµ 105.66 MeV [245]
mτ 1.777 GeV [245]

Table C.4: Parameters entering the predictions for the B → µ+µ−-meson decays.

The relevant magic numbers for the renormalization group running of the Wilson
coefficients in neutral meson mixing read [152] for K − K̄ mixing

ai = (0.29, 0.69, 0.79, 1.1, 0.14)

b11
i = (0.82, 0, 0, 0, 0), c11

i = (0.016, 0, 0, 0, 0),

b44
i = (0, 0, 0, 4.4, 0), c44

i = (0, 0, 0, 0.68, 0.0055),

b45
i = (0, 0, 0, 1.5, 0.17), c45

i = (0, 0, 0, 0.35, 0.0062),

b54
i = (0, 0, 0, 0.18, 0), c54

i = (0, 0, 0, 0.026, 0.016),

b55
i = (0, 0, 0, 0.061, 0.82), c55

i = (0, 0, 0, 0.013, 0.018) .

and Bs − B̄s mixing

ai = (0.286, 0.692, 0.787, 1.143, 0.143)

b11
i = (0.865, 0, 0, 0, 0), c11

i = (0.017, 0, 0, 0, 0),

b44
i = (0, 0, 0, 2.87, 0), c44

i = (0, 0, 0, 0.48, 0.005),

b45
i = (0, 0, 0, 0.961, 0.22), c45

i = (0, 0, 0, 0.25, 0.006),

b54
i = (0, 0, 0, 0.09, 0), c54

i = (0, 0, 0, 0.013, 0.016),

b55
i = (0, 0, 0, 0.029, 0.863), c55

i = (0, 0, 0, 0.007, 0.019) .





D Higgs Potential for the
Extended Scalar Sector

In this appendix, the full potential of the scalar sector on the IR brane of an RS model
with SU(3)D×SU(3)S×SU(2)L×U(1)Y bulk gauge symmetry introduced in Section
3.6 is presented. It can be put into the form

V (h,Hu, Hd) =− µ`h†h+ λ`(h†h)2 (D.1)

+
∑
q=u,d

(
− µq (Hq)A(Hq)

†
BTr

[
TATB

]
+ (Hq)

i
A(H†q )

i
B (Hq)

j
C(H†q )

j
D P13

ABCD(λq)

+ (Hq)
i
A(H†q )

j
B (Hq)

j
C(H†q )

j
D P24

ABCD(λq)

)
+ (Hd)

i
A(H†d)

i
B(Hu)iC(H†u)iDQ1379

ABCD(f)

+ (Hd)
j
A(H†d)

i
B(Hu)iC(H†u)jDQ248 10

ABCD(f)

+ εlkεmn(Hd)
l
A(H†d)

m
B (Hu)kC(H†u)nDQ56 11 12

ABCD (f)

+
∑
q=u,d

(
cq1 h

†h (Hq)A(H†q )B

+ cq2 (h†)jhi (Hq)
j
A(H†q )

i
B

+ cq3 εijεkl(h
†)ihk (Hq)

l
A(H†q )

j
B

)
Tr
[
TATB

]
+ d1εmnh

lhj(Hu)kA(Hd
dagger)

j
B Tr

[
TATB

]
+
(
e1εlkεmnh

l(Hd)
m
A (Hu)kB(Hu)nC

+ e2εmn(h†)l(Hu)mA (Hd)
l
B(Hu)nC + h.c.

)
RABC (D.2)

where the color structure is split off and implemented as follows. Each color bitriplet
is written as a product XATA, where TA = {1/2, λa/2} and ta, a = 1 . . . 8 denote
the Gell-Mann matrices, small latin characters denote SU(2) indices. In the quartic
couplings, the color structure is repetitive and allows for at most four different color
traces, which we abbreviate by Q. In the cases in which the fields are indistinguishable,
this reduces to two independent color traces and we use the abbreviation P. The R
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structure only appears in the terms which mix all three fields,

Qijkl
ABCD(x) ≡ xiTr

[
TATB

]
Tr
[
TCTD

]
+ xjTr

[
TATDTCTB

]
(D.3)

+xkTr
[
TATD

]
Tr
[
TBTC

]
+ xlTr

[
TATBTCTD

]
,

Pij
ABCD(y) ≡ yiTr

[
TATB

]
Tr
[
TCTD

]
+ yjTr

[
TATDTBTC

]
,

RABC ≡
(
Nc

2

)2

δA0δB0δC0 −
Nc

2

(
Tr
[
TATB

]
δC0 + Tr

[
TATC

]
δB0 + Tr

[
TCTB

]
δA0

)
+ Tr

[
TATBTC

]
+ Tr

[
TBTATC

]
.

The Higgs sector comprises 3 mass terms, 2 × 4 real parameters describing self-
couplings of the bitriplets (the P structures), one parameter describing the self-
couplings of the color singlet, 6 real and 3 complex parameters from mixing between
the color singlet and one of the bitriplets as well as 12 f -terms which describe mixing
between the colored scalars (the Q structures). This makes for a total of 36 real
parameters.
It is straightforward to solve the extremal conditions, which are given by

∂V (v`, vu, vd)

∂vu
= 0 ,

∂V (v`, vu, vd)

∂vd
= 0 ,

∂V (v`, vu, vd)

∂v`
= 0 , (D.4)

and can be used to eliminate three parameters. For a general Higgs potential, it is
however not possible to analytically proof that this extremum is a minimum. The
reason is, that a minmum is only obtained if the Hessian of the potential is posi-
tive definite. The potential will however give rise to 8 + 4 Goldstone bosons, which
correspond to zeros on the diagonal of the Hessian (in blockdiagonal form). As a
consequence it is a numerical problem to minimize the potential. One can further
constrain the parameter space by the condition that all masses are positive, and that
the vacuum value of the potential signals a local minimum, V (v`, vu, vd) > V (0, 0, 0)
[243].
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