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Abstract

Understanding the behavior of systems in the non-equilibrium state is one of the biggest
problems in contemporary physics. For these systems a formalism comparable to the
one of equilibrium statistical mechanics is not known. In this work two different slowly
relaxing model systems are investigated where the influenceof external forces leads
to a non-linear response. The first model system is a glassforming liquid where the
behavior of a single particle under the influence of a constant external force is shown.
In the second system the Ising model at the critical point under shear is investigated
and a method is presented how the anisotropic finite-size scaling can be accomplished
in this case.

In the first investigated system one of the particles in a glassforming soft-sphere mix-
ture is pulled with a constant external force in one direction. At low temperatures close
to the glass transition a strongly increased relaxation time is found and the system can
easily be driven out of the linear response regime. In dependence of the magnitude
of the applied force it is found that the particle behavior shows a strongly different
behavior and three distinct regions can be identified. For low forces the particle is in
the linear-response region where the particle properties are given by the equilibrium
properties. For higher forces the particles leave that regime and enter the regime at
intermediate force. In that regime the particle shows an anisotropic behavior with a
superdiffusive motion in the parallel direction. Furthermore, a universal behavior is
found where the particle properties can be rescaled onto theequilibrium properties
with an effective temperature. At high forces it is found that the particle motion be-
comes isotropic and diffusive again. As a last point in this model the behavior directly
after the switch on and off is investigated which helps to understand the behavior in
the glass state where the system is completely frozen.

Close to the critical temperature the shear rate influences the fluctuations in the system
and thus leads to an anisotropic behavior. A result of that anisotropy is that the nor-
mal finite-size scaling is not applicable anymore as two different correlation lengths
appear. In this work this problem is studied in the Ising model under shear and a way
is presented how the finite-size scaling can be done in that anisotropic case. Here, with
the help of the structure factor a new anisotropy exponentω can be calculated that
relates the two exponents of the correlation lengths with each other. With that expo-
nent known the relation of the two system sizes are known and the scaling can be done.
Here, the critical points are measured and they are shifted in dependence of the shear
rate. Furthermore the critical exponentsβ,γ, ν‖ andν⊥ are calculated.
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David Winter

Computersimulationen von langsam relaxierenden Systemen in
externen Feldern

Zusammenfassung

Eine der offenen Fragen der aktuellen Physik ist das Verständnis von Systemen im
Nichtgleichgewicht. Im Gegensatz zu der Gleichgewichtsphysik ist in diesem Bereich
aktuell kein Formalismus bekannt der ein systematisches Beschreiben der unterschied-
lichen Systeme erm̈oglicht. Um das Verständnisüber diese Systeme zu vergrößern
werden in dieser Arbeit zwei unterschiedliche Systeme studiert, die unter einem ex-
ternen Feld ein starkes nichtlineares Verhalten zeigen. Hierbei handelt es sich zum
einen um das Verhalten von Teilchen unter dem Einfluss einer extern angelegten Kraft
und zum anderen um das Verhalten eines Systems in der Nähe des kritischen Punktes
unter Scherung.

Das Modellsystem in dem ersten Teil der Arbeit ist eine binäre Yukawa Mischung,
die bei tiefen Temperaturen einen Glassübergang zeigt. Dies führt zu einer stark an-
steigenden Relaxationszeit des Systems, so dass man auch beikleinen Kr̈aften re-
lativ schnell ein nichtlineares Verhalten beobachtet. In Abhängigkeit der angelegten
konstanten Kraft k̈onnen in dieser Arbeit drei Regime, mit stark unterschiedlichem
Teilchenverhalten, identifiziert werden. Bei kleinen Kräften findet sich der lineare-
Antwort Bereich, in dem das Teilchenverhalten durch die Gleichgewichtseigenschaften
gegeben ist. Bei mittleren Kräften werden darüber hinaus nichtlineare Effekte sicht-
bar und es wird beobachtet, dass die Teilchenbewegung in Zugrichtung superdiffusiv
ist. Daneben lassen sich die Eigenschaften der Teilchen durch ein universelles Ver-
halten mit einer effektive Temperatur beschreiben. Zu höheren Kr̈aften hin beobachtet
man einenÜbergang in ein weiteres Regime. Hier verringert sich die Anisotropie
der Teilchenbewegung und sie wird wieder vollständig diffusiv. Als letzter Punkt in
diesem System wird das Verhalten des Teilchens direkt nach dem An- und Abschal-
ten der Kraft untersucht welches Aufschlussüber die Teilchenbewegung bei tieferen
Temperaturen in der Glassphase gibt.

In dem zweiten Teil der Arbeit wird das Ising-Modell unter Scherung betrachtet. In
der N̈ahe des kritischen Punkts kommt es in diesem Modell zu einer Beeinflussung der
Fluktuationen in dem System durch das angelegte Scherfeld.Dies hat zur Folge, dass
das System stark anisotrop wird und man zwei unterschiedliche Korrelationsl̈angen
vorfindet, die mit unterschiedlichen Exponenten divergieren. Infolgedessen lässt sich
der normale isotrope Formalismus des ”finite-size scaling”nicht mehr auf dieses Sys-
tem anwenden. In dieser Arbeit wird gezeigt, wie dieser auf den anisotropen Fall zu
verallgemeinern ist und wie damit die kritischen Punkte, sowie die dazu geḧorenden
kritischen Exponenten berechnet werden können.
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Chapter 1

Introduction

The description of systems far away from equilibrium is one of the major challenges of
contemporary physics. Since the understanding of the equilibrium systems around 100
years ago relatively slow progress has been made in that direction. Until now, only
the linear-response regime is understood that describes small perturbations from the
equilibrium behavior which breaks down for higher forces. At present no framework
is available that describes systems in that regime. Therefore, it is of great interest to
study slowly relaxing systems under the influence of external forces that can easily be
driven into the non-linear response regime. In this work twodifferent problems are
investigated that show a strongly non-linear response and are of interest in the field of
colloidal physics.

Fluid colloidal systems are often used systems in the study of soft matter physics [1, 2]
which contain particles in the range from nanometer to micrometer size dispersed in a
solvent. Well known examples of every day colloidal materials are blood, dust, milk,
paint, ketchup and many more. From the experimental side these systems are interest-
ing as they have a few advantages compared to atomistic systems. Due to the big size
of the particles they are much easier accessible. Colloidal systems can be investigated
with techniques that use optical light such as confocal microscopy or light scattering
whereas in the case of atomistic systems much higher energies are required that lead
to a bigger often not feasible effort. A second advantage arethe much slower times-
cales involved in these systems. For colloidal systems a typical relaxation time is in
the region of milliseconds or larger whereas for atomic systems it is in the range of pi-
coseconds which complicates the investigations even more.A further big advantage of
colloidal systems is the ability to tune the particle potentials. For example by varying
the concentration of polymers or salt in a solution the attraction between the charged
colloids can be changed. Thus, one can study the influence of certain parts of the po-
tentials much easier and these systems can even be used as models for atomic systems
[3]. One characteristic property of colloidal mixtures is that they exhibit Brownian
motion which is a consequence of the solvent that leads to many collisions with the
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colloidal particles and thus to a random motion.

One subfield that deals with the mechanical properties of condensed systems is the rhe-
ology [4]. There, the flow of complex liquids and deformations of soft solids under the
influence of external forces is investigated. A typical (macro) rheological experiment
is the shear experiment where the system is bound between twoplates that are moved
into opposing directions. First, this leads to a deformation and then to a flow of the
whole system. This can and has been done for colloidal systems [5] where the influ-
ence and the behavior of the shear rate on the system properties can be measured. Here,
interesting occurring phenomena are the effects of shear thinning or shear thickening
which lead to a decreasing or increasing viscosity with increasing shear rate [6].

In recent years a newly developed method called microrheology came into the focus
of the research [7, 8] as it allows to extract additional information about a system
and extends the macro rheological measurements. There, thebehavior of single probe
particles embedded in the material is measured with the aim to receive informations
about the system that are not accessible with the macro rheological experiments. In
principal this method can be applied in two different versions. In the passive version
the probe particles are left unperturbed inside the material. There, the formalism of
equilibrium mechanics still holds and thus with the Stokes-Einstein relation the relation
between the probe properties and the system properties are known and understood. The
second version is the active version where an external forceis applied on the probe
particle. As a consequence the probe accelerates and moves in the direction of the
force [9, 10, 11, 12]. Experimentally this can be done with probe particles that are
pulled with magnetic fields [13] or laser tweezers [14, 15, 16]. For strong enough
forces the linear-response regime [17] is left and the behavior gets non-linear. Here,
no simple formalism exists that describes the non-linear behavior of the particle [18]
and therefore this regime is still not well understood.

In the first part the behavior of a pulled particle in a glassforming soft-sphere mixture is
investigated which is for two reasons an interesting problem to study. At low temperat-
ures close to the glass transition one observes a strongly increased relaxation times. As
a consequence one can easily drive the system out of the linear-response regime and
thus study occurring non-linear effects. This is of interest in the field of microrheology
where one needs to understand the non-linear behavior of theprobe particles. There-
fore, the aim of this work is to identify and investigate the different occurring regimes
in dependence of the temperature and force parameter. Furthermore, the differences
in the behavior of the particles between the liquid and the glass phase are of interest
which leads to the second motivation from the side of the theoretical description of
the glass transition. The glass transition is a topic that has been studied for a long
time and multiple different theories have been developed todescribe the appearing ef-
fects [19, 20, 21]. For example one has the theory of Adam and Gibbs [22], the free
volume theory [23], kinetically constrained models [24] and the mode coupling theory
of the glass transition (MCT) [25, 26]. Thus, it is interesting to study the behavior of
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a pulled particle in a supercooled liquid and to compare the results with the theoretical
predictions that can be made.

The second part of this work deals with a problem of anisotropic finite-size scaling in
computer simulations at the critical point. This is a problem that appeared in previ-
ous simulation where the Asakura-Oosawa (AO) model [27] under shear was investig-
ated [5, 28]. As is well known, the AO model describes colloid-polymer mixtures
which undergo phase separation in a polymer-rich phase and acolloid-rich phase.
Here, the critical point where these phases become indistinguishable belongs to the
universality class of the Ising model. For the behavior of a liquid system under shear a
few predictions are made [29, 30, 31] such as a shifted critical point, an anisotropic crit-
ical behavior with different critical exponents and a reduction of the capillary waves.
These points are of interest to study in a computer simulation but unfortunately they
are strongly complicated by the occurring anisotropy and finite-size effects caused by
the applied shear in the region around the critical point. Thus, one can only make
progress in the understanding if the behavior is understoodand it is known how these
systems can be treated in computer simulations. As this problem is too difficult to
solve and to understand in a Molecular dynamics simulation of a continuous model a
much simpler model, the sheared two dimensional Ising model, is chosen here. Close
to the critical point the fluctuations in this system are alsostrongly anisotropic and
the finite-size scaling can be studied. Here, it is shown thatan anisotropic scaling is
required where the different system sizes are scaled with ananisotropy exponent. That
scaling exponent is crucial for the whole ansatz and it is found that it can be obtained
from the static structure factor. With the help of this exponent the critical points and
the corresponding critical exponents can be studied. Thus,a methodology has been
developed how criticality can be studied when Ising-like systems are exposed to shear.
It is hoped that this methodology will be a useful ingredientin future studies of phase
separation in Ising-like systems such as colloid-polymer mixtures under shear.

This work is organized in the following way. In the second chapter an introduction to
the soft sphere Yukawa system and the simulation details is given. The third chapter
is a short overview of the important theoretical models thatdescribe the behavior of
the pulled particles. In the fourth chapter the characteristic properties of the pulled
probe in the steady state are presented where three different regimes can be identified.
In chapter five the regime at intermediate forces and in chapter six the regime at high
force are investigated in detail. In chapter seven the behavior of the probe at the switch
on, the switch off and in the glass is presented which is the last chapter on the topic
of microrheology. Then, chapter eight treats the anisotropic finite-size scaling of the
Ising model under shear.
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Chapter 2

Molecular dynamics simulation and
the model

In the study of classical many-body systems two simulation methods are widely em-
ployed. The first is the classical Monte Carlo method [32] which is often used in the
study of equilibrium systems. There, one has access to the powerful formalism of
equilibrium ensembles that allows for advanced sampling steps. Additionally it can be
used in some cases for systems if the information about the microscopic dynamics is
not required and the average state of the system is not much influenced by the micro-
scopic dynamics and the chosen sampling algorithm. The second popular method is
called Molecular dynamics [32, 33]. There, one integrates the equations of motion on
a per particle base and therefore contains the information about the microscopic dy-
namics. As a consequence this method has the clear disadvantage that it is rather slow
for typical system sizes and it is quite a challenge to simulate slowly relaxing pro-
cesses. Here, in this work it is the aim to study the microscopic behavior of a pulled
particle with the correct dynamical properties and therefore the Molecular Dynamics
simulation method is chosen which is presented in the following. The basic equations
that describe the behavior of classical many-particle systems are Newton’s equations
of motion,

mi r̈ i = Fi = ∑
j( 6=i)

Fij = − ∑
j( 6=i)

∇V(|r i − r j|). (2.1)

For a system that containsN particles one obtains3N coupled differential equations of
second order. Together they describe the motion of the particles interacting by a given
potentialV(r). Here,mi is the mass,r i the position and̈r i the acceleration of thei-th
particle. This interaction potentialV(r) leads to a forceFij = −∇V(|r i − r j|) acting
between particlesi andj.

5



6 2.1. VELOCITY-VERLET-ALGORITHM

2.1 Velocity-Verlet-algorithm

Quite a few different integration schemes have been used to solve the equations of
motions (2.1). They differ in many properties as the required resource consumption
during the simulation, the speed, the complexity of the algorithm, the precision of the
calculated particle trajectories or the energy conservation of the whole system. For
the calculation of many-particle systems the Verlet integration scheme [34, 35, 36]
is often used. It is a symplectic algorithm and therefore conserves the energy of the
system even over long simulation runs and it is time reversible [37]. In addition, it
is in a low order of time and therefore very compact and simpleto program. In this
work an extended version of the Verlet integration scheme isused, the velocity Verlet
version [38]. Here, new positionsr i(t+ δt) and velocitiesvi(t+ δt) are given by

r i(t+ δt) = r i(t) + δtvi(t) +
δt2

2mi
Fi(t)

vi(t+ δt) = vi(t) +
1

2mi
[Fi(t) + Fi(t+ δt)], (2.2)

with δt the chosen time step. This scheme is implemented in a two stepway with the
force calculation in between. In the first integration step one calculates the new particle
positions from the old values and addsFi(t)/2mi to the velocities. After this step the
new forces can be calculated from the new particle positions. In the second and last
integration step the velocity calculation is completed by addingFi(t+ δt)/2mi to the
previous values. Now, the system has propagated by a time step δt and all system
properties of interest can then be measured.

Compared to the original integration scheme this implementation has the advantage
that it makes all particle positions, velocities and forcesaccessible at the same timet.
Whereas in the original version [34] the velocities at timet can only be calculated with
the knowledge of the positions at timet+ δt andt− δt and therefore its use is a bit
cumbersome.

2.2 DPD-thermostat

In this work one of the particles in the system shall be pulledthrough the system by
an external force. This additional force constantly increases the energy of the sys-
tem. As a consequence it will heat up. The aim of this work is tostudy the steady
state of the pulled particle with a surrounding medium at a constant temperature and
not in a system with an increasing temperature over time. Therefore, it is required
to reduce the whole energy of the system by the amount that is brought into the sys-
tem during the simulation. In this work the temperature and not the energy shall be
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Figure 2.1– A typical configuration of the system. The green particle highlights the single
pulled particle inside the bath of A and B particles (red and blue). The white arrow gives
the direction of the externally applied force.

preserved. This can be realized by coupling the system to a thermostat. Due to the
external force that works on the probe particle it is required that this thermostat also
conserves momentum locally and not only globally. Therefore, the thermostat should
also be Galilean invariant.

The thermostat of choice, that fulfills all these requirements, is an improved dissipative
particle dynamics (DPD) thermostat [39, 40, 41]. There, theequations of motion of
the particles are varied in the following way

mi r̈ i = Fi = ∑
j( 6=i)

[Fij + FD
ij + FR

ij ] + Fext
i . (2.3)

Originally DPD was used as a method to study hydrodynamic effects as they can be
strongly increased with this method. In this equation the original calculation of the
forces (three terms in brackets) was extended by the external force contributionFext

i .
This force acts at one selected particle which shall be pulled through the system. For
all other particles this force is zero. Beside the first contribution to the forces from
(2.1), two additional contributionsFD

ij andFR
ij act on the particle pairs. These are the

contributions from the DPD thermostat [39, 40] and are givenby

FD
ij = −ζω2(rij)(r̂ ij · vij)r̂ ij (2.4)

and
FR
ij =

√

2kBTζω(rij)θij r̂ ij, (2.5)

with r ij = r i − r j andvij = vi − vj the relative distances and velocities,r̂ ij = r ij/|r ij|
the corresponding unit vector andζ a parameter that sets the strength of the first in-
teraction. Note, that the prefactors in (2.4) and (2.5) are determined by the fluctuation
dissipation relation as was shown in [40]. The functionω(rij) is a weight function
which can be used to tune the strength of the DPD interactionsin dependence of the
relative particle distance. The following choice

ω(rij) =
√

1− rij/r
c
DPD. (2.6)
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for r < rcDPD (and zero otherwise) is the standard choice for the use of soft potentials
but generally a different function could also be used [42]. Here,rcDPD is a second free
parameter that sets the range of the DPD interactions. The function θij is a Gaussian
white noise term with

〈θij(t)〉 = 0,

〈θij(t)θi′ j′(t
′)〉 = (δii′δjj′ + δij′δji′)δ(t− t′). (2.7)

The first term of the DPD interactionsFD
ij (2.4) is a friction term. It is negative and

couples to the relative velocities of the particle pairs. This part leads to a decrease of
the relative motion and therefore to a cooling of the system.The second termFR

ij is
a random force that leads to an acceleration of the slow particles. The consequence
of these two terms is that the system energy is bound from bothsides. Together they
manage to keep the temperature of the system constant, even under the influence of
external forces [5]. Both parts of the thermostat only act on particle pairs and therefore
the thermostat works locally that is an important property for the simulation of system
with external forces. Generally these forces are anisotropic and therefore a require-
ment for the thermostat is that it is able to manage these directed forces and does not
create any unwanted anisotropic effects. An example for such a force is the shear field
where the system shows a strong anisotropic behavior as can be seen in [5]. There,
the DPD thermostat has proven to be a good working choice and managed to cool the
system even with such strong directed forces. By changing theparametersrcDPD and
ζ the range and the strength of the interaction can be tuned. The parameterζ sets the
strength of the thermostat and therefore controls how strong the Newtonian motion of
the particles is disturbed by the thermostat. The radiusrcDPD on the other hand tunes
how long ranged the interactions of the thermostat are. By choosingω2(rij) as a pre-
factor for FD

ij andω(rij) for FR
ij the fluctuation-dissipation theorem is automatically

fulfilled [40].

2.2.1 Peters scheme

The equations (2.4) and (2.5) can be implemented in different ways. In earlier realiz-
ations of this thermostat the problem occurred that they were not time step independ-
ent and did not rigorously maintain the Maxwell-Boltzmann distribution. This was
caused by the random force term (2.5) which was independent of the chosen time step
δt. There, a different time step changes only the friction termof the thermostat and
therefore leads to a different behavior. That problem was solved by a new integration
scheme which was proposed by Peters [41] which is used in thiswork. According to
this scheme the momenta of the particles have to be rescaled after the velocity Verlet
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integration step by

pi := pi + (−aij(vij · r̂ ij)δt+ bijθij)r̂ ij
pi := pi − (−aij(vij · r̂ ij)δt+ bijθij)r̂ ij. (2.8)

Here, prefactorsaij andbij are chosen as

aij = ζω2(rij)

bij =

√

√

√

√2kTζω2(rij)

(

1−
ζω2(rij)δt

2µij

)

, (2.9)

with µij = (1/mi + 1/mj)
−1 the reduced mass of the particlesi and j. This choice

corresponds to scheme 1, as proposed in the publication by Peters. This realization of
the DPD thermostat differs from earlier implementations inthe time step dependence
of bij. Therefore, changing here the value of the time step also changes the effect of
the random force term and thus leads to a time step independent behavior.

2.3 Neighbor list

To speed up the simulations neighbor lists of the particles are used [34, 35]. Each
particle in the system has two lists of surrounding neighbors, one for each particle
type. Here, surrounding means closer than a given cutoff radius rnlist. The advantage
of these lists is that the number of particles that are considered in the force calculation is
reduced strongly. Without these lists all interactions between every single particle pair
have to be calculated. This would lead to a scaling of the computational load∝ N2.
With the use of neighbor lists the effort can be reduced to a scaling ∝ N. This is a
drastic difference for systems with many particles. The cutoff radius of these neighbor
lists rnlist is given by the cutoff radius of the pair potentialrcαβ and an additional skin

size rnlist = rcαβ + rskin (fig. 2.2). By that choice the cutoff radius is always bigger

than the interaction potential in the simulations. The skinsizerskin gives an additional
buffer that prevents an update of the neighbor list after a particle has moved further
than the interaction potential. By an appropriate choice of this size an additional speed
gain is possible. In this work two slightly different implementations of neighbor lists
are used.

Classical Verlet neighbor list Implementation of the original proposed version [34].
Here, all particle neighbor lists are refreshed at the same time if one of the
particles moves further thanrskin/2. This leads to an effort∝ N2 for the up-
date step (all particle pairs have to be checked). If the displacements of all the
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+

rnlist

rcαβ

Figure 2.2 – Sketch of the neighbor list radii. The radius of the neighbor listrnlist is the
sum of the potential cutoff radiusrcαβ and a skin sizerskin.

particle are smaller thanrnlist no change at all on the list is done and therefore the
effort is zero. The important parameter for the neighbor list is rskin as it defines
how often the whole list is updated and therefore how big the speed gain is. If
this parameter is to small the list is updated to often and therefore one looses effi-
ciency. On the other hand if that parameter is too big one has too many particles
in the list and then too many forces inside the force calculation are computed.

Incremental Verlet neighbor list During the implementation it was found, that one
can speed up the simulation even more by incrementally updating the neigh-
bor list. Then, only the lists of the particles are updated that move further than
rskin/2. Additionally all the lists of the neighbor particles of these particles need
to be updated. This leads to an effort that is proportional toN and reduces the
work even more. A second advantage of this incremental updating is, that the
skin sizerskin can be reduced quite a bit. As a consequence fewer particles are
in each neighbor list. It is found, that this second type of neighbor list speeds up
the simulation by10− 20% but this speed gain comes at the cost of a more com-
plex neighbor list code. With the help of advanced classes inc++ as the vector
class that allow complex transformations of the neighbor list arrays this incre-
mental version could be realized. One problem here is, that this implementation
is not thread safe (cannot be used with multiple threads simultaneously which
is required for a parallelization) and therefore it cannot be used together with a
simple parallelization program called Openmp. Thus, during the equilibration
phase, where Openmp is required to speed up the simulation, the classical Verlet
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list had to be used.

Before the simulation runs were performed it was intensivelychecked, that both imple-
mentations lead to exactly the same numerical results and both list types were properly
implemented. In this work both types of lists were used. The classical version was
used during the long equilibration runs at the beginning to create the starting configur-
ations. With an Openmp parallelization the equilibration time could be reduced by a
factor of 6 on 8 cores. Later on during the measurements with the pulled particles, the
incremental version was used. These runs are much shorter compared to the equilib-
ration runs and therefore it is more efficient to use a trivialparallelization. There, one
runs a copy of the system on every single core and just pulls a different particle of the
same type. Here, the faster incremental version can be used.

2.4 Model and simulation details

The investigated model in the first part of this work is a binary soft sphere mixture. It
contains two different particle types A and B that interact through a Yukawa potential
which is an often used potential for describing colloidal systems. According to the
Derjaguin-Landau-Verweij-Overbeek (DLVO) theory [2] this potential is obtained if
charged colloidal particles are screened in a solution. Here, the counterions prevent
parts of the coulomb interaction between the charged colloids and lead to a screened
behavior. A further advantage is that it has been intensively investigated in previous
works and the behavior in the equilibrium and under shear areknown [5, 43, 44] and
can be used as a reference point. The resulting screened potential is of the following
type

Vαβ(r) = εαβdαβ exp[−κ(r− dαβ)]/r. (2.10)

Here,α andβ stand for the different types of particles that are separated by a distance
r. The general system properties are defined through the constant valuesεαβ, dαβ, κ
andmα in the potential function. Here,εαβ sets the energy scale,dαβ the length scale
andmα the scale of the masses. The inverse screening lengthκ is measured in units of

1/σAA. With these parameters one can define the characteristic units
√

mAd
2
AA/εAA

for the timet, εAA/kB for the temperatureT andεAA/dAA for the forcef , with kB the
Boltzmann constant. The potentialVαβ(r) is truncated at a cut-off radiusrcαβ. Here,
rcαβ is chosen as

Vαβ(r = rcαβ) = 10−7. (2.11)

To prevent fluctuations in the energy when particles move over this cut-off radius, the
potential in the simulation is shifted by the value atrcαβ. The implemented potential is
therefore

Ṽαβ(r) = Vαβ(r)−Vαβ(r
c
αβ). (2.12)
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Figure 2.3– Left) The behavior of the inter particle potentialVαβ in dependence ofr and
the particle types as given in (2.10).

Technical simulation details

System properties As the obtained results in this work shall be comparable with
the previous works the values of the particle potentials need to be the same. Therefore,
the chosen masses of both particle types are equal and set to unity mA = mB = 1.
The inverse Debye screening length isκ = 6 and the chosen time step isδt = 0.0083.
With this time step the equations of motion could be integrated without problems in
the previous works, even under shear. The other values ofεαβ, dαβ andrcαβ depend on
the type of particle and are summarized in table 2.1.

With these settings two different system geometries with periodic boundary conditions
are set up. A cubic one with sizeLx = Ly = Lz = 13.3 = L and 1600 particles
with 800 A and 800 B particles. The second system geometry is 8times larger in the
x-direction and thus allows longer simulation runs at higherforces without moving the
pulled particle multiple times trough the same box. The second geometry isLx = 8L,
Ly = Lz = L with 12800 particles (6400 of each type). Both configurationshave the
same particle densityρ = N

V = 0.68. At the borders of these boxes periodic boundary
conditions are applied that link opposing sides of the box with each other. Particles

typeαβ rangedαβ energyεαβ cutoff radiusrcαβ

AA 1.0 1.0 3.48
AB 1.1 1.4 3.64
BB 1.2 2.0 3.81

Table 2.1– Values of the potential parameters in dependence of the particle types



CHAPTER 2. MOLECULAR DYNAMICS SIMULATION AND THE
MODEL 13

that leave the box through one of the system sides enter the system at the opposing
side again. These boundary conditions prevent effects fromhard walls at the end of the
simulation box. During the calculation of the forces the minimum image convention
is adopted and therefore only forces between the nearest positions of the particles are
calculated.

In this work one of the particles is pulled through the system. This requires an addi-
tional external forcef that acts on the selected particle. In all presented simulations
that external force always directs into the positivex-direction with a constant strength
during the whole simulation run. To study the dependence on the strength,|Fext

i | = f
is varied in the range0.5 ≤ f ≤ 30. This external force is not only a source of energy
that needs to be taken out by the thermostat, but also a sourceof momenta. Due to the
present periodic boundary conditions that would lead to an acceleration of the whole
system over time. This effect is quite unpleasant in the later analysis of the particle
motion. Therefore, this acceleration is prevented by subtracting the average directed
velocity of the system from all particles after each time step. Then the system is again
at rest.

Properties of the neighbor list For the classical Verlet list the skin size is chosen
as rskin = 0.75 [5]. On average this leads to an update of the whole list every38
integration steps at the lowest equilibrium temperatureT = 0.14. For the incremental
Verlet list it is found that at the same temperature the skin size could be reduced to
rskin = 0.5.

Equilibration of the system Before the measurement runs can be started the sys-
tem has to be equilibrated. Therefore, up to 100 random configurations with cubic
shapeLx = L and 20 with elongated shapeLx = 8L have been prepared at each tem-
perature. These initial configurations were cooled down to the required temperature.
The required time for these equilibration runs can be taken from [5]. It is the time
when for a given temperature the incoherent scattering function (fig. 2.5) has decayed
to zero. At the lowest temperatureT = 0.14 this can take up to 50 million integration
steps. In addition to these equilibrium configurations someconfigurations in the glass
state were prepared. Therefore, the equilibrated configurations atT = 0.14 were used
and quenched to the lower temperaturesT = 0.10 andT = 0.05. This last step was
done over 2 million time steps.

To speed up the equilibration of the system, the DPD-thermostat was not used in this
case as it slows down the dynamics. Instead the Andersen thermostat was used [45].
There, every 10 time steps the velocities of the particles were drawn completely new
from a Maxwell-Boltzmann distribution. This thermostat destroys the correlations in
the system faster and hence leads to a faster relaxation.

Properties of the DPD thermostat The DPD thermostat has two free parameters
ζ andrcDPD that can be tuned. Here,rcDPD sets the range of the DPD interaction and
ζ the strength of the thermostat. For low values ofζ the conservative forces from the
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Figure 2.4– Behavior of the energies per particle and the temperature in the system with a
pulled particle. Shown system is atT = 0.14 and f = 5 for a pulled A particle. The inset
shows the same curve for the temperature (not shifted) and shifted curves for the energies.
Here, the whole system energy was shifted by3.268 and the potential energy by3.059 to
fit in the same inset.

potentials dominate and one obtains a dynamic that is close to the Newtonian case. For
high values ofζ the dynamics goes over to a Brownian motion. As in previous works
[5, 43, 44]ζ = 12 andrcDPD = 1.25 are chosen. These choices give a dynamics that is
close to the Newtonian behavior.

As this thermostat has already been successfully used in a previous study in the same
system under shear, one can expect that it is also able to handle one single pulled
particle with an external force. In fig. 2.4 the temperature (blue curve) and the energy
behavior (other curves) for a simulation with a pulled A particle at T = 0.14 and
f = 5 are shown. One sees that the thermostat manages to keep the temperature
constant over the whole simulation time. Only in the strongly increased inset a small
jump at the beginning can be seen. This jump results from the increased average kinetic
energy in the system when the particle is pulled. In the case of the potential energy,
the behavior is different. There, one observes a constant increase of the energy over
the whole simulation run. This is a result of the increased disorder that is introduced
in the system by the motion of the particle. At these low temperatures the relaxation
time is too large to restore the lowest energy state of the equilibrium configuration and
therefore the system is locally, in the region behind the particle, in a higher energy
state. This leads to a steady increase of the potential energy.
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Figure 2.5– Properties of the equilibrium system. Left plot shows mean-squared displace-
ments〈∆r2(t)〉 = 〈|r (t) − r (0)|2〉 and right incoherent scattering functionFs(q, t) =
〈exp (−iq · [r (t)− r (0)])〉 for q = 6.0 of A particles in dependence of the time for dif-
ferent temperatures. These curves were measured in a previous workby Jochen Zausch
[5].

System properties in equilibrium

The equilibrium properties of this Yukawa system (2.10) arealready known from pre-
vious work [5]. Therefore, the important properties of the system are summarized here
quite shortly and only the important parts that are requiredfor the understanding of
this work. A complete discussion can be found in the originalwork of Jochen Zausch
[5]. Note, the equilibrium data that is shown in this work andoften used as a reference
point is the original data and was not calculated again.

For this system it is found that it shows the typical behaviorof a glassforming binary
mixture. Above a critical temperatureTc the system is ergodic and in a fluid equi-
librium phase, where on the time scales of the simulation andfor the investigated
temperatures no crystallization or phase separation was observed. Closer to the crit-
ical temperature one finds a strong increase of the relaxation time and of the system
viscosity and a decrease of the diffusion over orders of magnitude. From the power
law behavior of these properties which is predicted by the mode-coupling theory the
critical temperature can be identified aroundTc = 0.14. For temperatures belowTc
the system freezes and the particle diffusion and relaxation is prevented on timescales
accessible in the simulation. This is the transition to the glass state.

Fig. 2.5 shows the equilibrium curves for the mean-squared displacement

〈

∆r2(t)
〉

=
〈

|r (t)− r (0)|2
〉

(2.13)



16 2.4. MODEL AND SIMULATION DETAILS

and the incoherent scattering function

Fs(q, t) =
〈

exp (−iq · [r (t)− r (0)])
〉

(2.14)

(with q = 6.0) for different temperaturesT in dependence of the timet. As one can
see, both curves show a strongly decreased motion by orders of magnitude at the lower
temperatures. Furthermore, a pronounced plateau appears that is stretched over dec-
ades in time for the lowest temperature and indicates the glass transition. During these
plateau regions the particles are trapped inside the cage ofthe surrounding particles and
only for longer times the particles are able to leave their cages, to diffuse and relax.
This second relaxation step can be divided into two different regimes. The behavior
shortly after the plateau where the behavior can be described by the ”von Schweidler
law” that is presented in the next chapter. For the late timesthe behavior can be ap-
proximated by a stretched exponential function. BelowTc one observes a freezing
of the system, the plateaus are stretched over the whole simulation time and the last
relaxation step is missing.



Chapter 3

Theoretical models

Systems in their supercooled state show some unusual properties [19, 46]. In their
liquid state the usual relaxation timeτ and viscosityη are rather small in the range
of picoseconds and10−3 Poise. By cooling these system down to temperatures below
their melting temperatureTm it is found that the values of these properties increase
strongly by orders of magnitude. This can be seen in fig. 3.1 where an Angell-plot for
different materials is shown. There, the viscosities are plotted againstTg/T with Tg
the temperature where the viscosity of the corresponding system has reached the value
of 1013 Poise. Here, the values ofη increase by over 15 decades in a relatively small
temperature window. That behavior of the dynamical quantities is in contrast to the
behavior of structural quantities as well as of thermodynamic properties of the system
that only show a relatively weak temperature dependence. This for example can be
seen in the heat capacityC which is displayed in the inset of fig. 3.1. Empirically it
is found that the behavior of the viscosities can be described by the Vogel-Fulcher(-
Tammann)-law [47, 48, 49]

η(T) = η0 exp (A/(T− T0)), (3.1)

that has a divergence atT0. In the study of supercooled liquids the correlation function
F(q, t) of the density fluctuationsρq(t) = ∑

N
i=1 exp (iq · r i(t)) is an often studied

property. It has the advantage that it is accessible from theexperimental side as well
as from the theoretical side and contains the full time development of the particle
behavior,

F(q, t) =
1

N
〈ρ∗q(t)ρq(0)〉. (3.2)

Two typical scattering functions are shown in the left sketch of fig. 3.2. The left curve
shows a fast decay and corresponds to a system at a higher temperatures in the liquid
state far away from the glass transition. Here, one observesa ballistic regime at short
times with the correlation function decays with at2 dependence followed by a micro-
scopic regime at intermediate times and an exponential Debye decay at long times. At
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Figure 3.1– Angell-plot of the viscosities for different systems against scaled inverse tem-
peraturesTg/T with Tg the temperature where the viscosity has the values of1013 Poise
from [50].

lower temperaturesφq(t) shows a strongly different behavior. There, also a ballistic
regime and then a microscopic regime is found but instead of afast decay to zero a
pronounced plateau is observed which is extended over decades in time. The time
window where the correlation function is close to the plateau is called theβ-relaxation
regime. During that time the particles are trapped in the cage of the surrounding neigh-
bors (right picture in fig. 3.2) and therefore are prevented from moving. Only for much
longer times the correlation function decays to zero and thus the particles are able to
leave their cages. This last regime is called theα-relaxation. Empirically it is found
that the long-time behavior can be approximated by a stretched exponential function
also known as ”Kohlrausch-Williams-Watts” (KWW) function [51, 52]

φq(t) ≈ A exp
[

−(t/τα)
β
]

, (3.3)

with τα(T) the relaxation time at temperatureT. Up to now it is not completely un-
derstood where this non-Debye behavior at long times comes from and principally two
different scenario are possible. In the heterogeneous casethe relaxation times for each
particle is different due to different surroundings and each particle shows a Debye re-
laxation. The stretched exponential behavior then followsfrom the average over all
particles. In the homogeneous case all particles have the same relaxation behavior
with a stretched exponential behavior. Thus, also the average shows that behavior. The
reason for that long-time behavior is still a matter of research and it is not clear which
of the two cases is the right one but probably both cases appear.
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Figure 3.2– Left) Time dependence of typical scattering function at two different temper-
atures. The left curve corresponds to a high temperature whereas the low curve shows a
lower temperature with the typical two step relaxation process from [20]. Right) Illustra-
tion of the cage effect. The black particle is caged by the surrounding neighbor particles
(blue) and therefore prevented from moving.

The second quantity which is often used to describe the motion of the particles is
the mean-squared displacement〈∆r2(t)〉 (2.13). That quantity shows at short times
a ballistic regime∝ t2 followed by a diffusive regime∝ t at high forces. In the
supercooled liquid a third intermediate regime is observedfor times inside the cages
where that quantity also shows a pronounced plateau that canbe extended over orders
of magnitude in time. For the equilibrium system that behavior of the MSDs and of
the incoherent scattering functions have been shown in fig. 2.5.

Up to now, no theory is available that describes all observedproperties for the sys-
tems in the supercooled state although quite some progress has been made. The most
successful theory at present is the mode coupling theory of the glass transition which
describes many properties but not all.

For the understanding of the motion of a pulled particles in the supercooled liquid
and below the glass transition temperature two quite different models are helpful. On
the one hand there is a simple trap model based on a directed Langevin equation in
a fixed random environment. This model shows unusual superdiffusive motion in the
direction parallel to the force and a transition to a diffusive motion for higher forces.
Both these predictions are also found in this work. On the other hand there is the
mode coupling theory (MCT) for the glass transition. This theory can be extended to
the case of a pulled particle in a supercooled liquid and gives for many properties as
the mean squared displacement or the incoherent scatteringfunction a good qualitative
description for the behavior of the pulled particle close tothe glass transition. But at
the moment it fails at describing the superdiffusive motionof the pulled particles.
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3.1 Mode coupling theory of the glass transition

The first theory described here is the mode coupling theory ofthe glass transition [19,
25, 26] that describes the behavior of systems in the supercooled state where the re-
laxation times and the viscosity of the system diverge closeto a critical temperature
Tc. Furthermore, it is the only theory that is based on the microscopic description of
the motion of the particles and it leads to many predictions that are in a qualitative
agreement with the results found in experiments and simulations. The original theory
was developed to describe the unperturbed system in equilibrium or in the glass state.
Only quite recently this formalism was extended to describesystems under the influ-
ence of external forces such as for sheared systems [53] or with a force acting on one
single particle [54, 55, 56, 57]. Unfortunately, it requires quite some effort to solve
the resulting equations of motion in this theory and often they cannot be solved at all.
Therefore, a couple of approximations have to be carried outsuch as the restriction
to only oneq-value which lead to simplified versions of the original equations. These
schematic models can be solved numerically but it comes at the cost of less precise or
even unrealistic solutions.

3.1.1 General predictions of the theory

In this section the main predictions of the MCT shall be summarized. It is found that
these properties are universally valid for many applications of the theory in quite differ-
ent systems. The theory makes predictions for the time dependence of the correlation
functionφq(t) of the density fluctuationsρq(t) = ∑

N
i=1 exp (iq · r i(t)) in the system

that corresponds to the coherent scattering functionF(q, t) (3.2)

φq(t) =
F(q, t)

S(q)
. (3.4)

Here,S(q) = F(q, 0) is the static structure factor of the system. For this property the
full mode coupling memory equation forφq(t) can be written down [19, 25, 26] as

φ̈q(t) + Ω2
qφq(t) + Ω2

q

∫ t

0
[M

reg
q (t− t′) + Mq(t− t′)]φ̇q(t

′)dt′ = 0, (3.5)

whereΩ2
q is a squared frequency andMq(t) the memory kernel that gives the long

time development of the correlator. They are given by

Ω2
q =

q2kBT

mS(q)
, and Mq(t) =

∫

V
(2)
q,k φk(t)φ|q−k|(t)dk. (3.6)

Here, the vertexV(2)
q,k is a function of the static structure factor. The MCT makes

several important predictions for a supercooled liquid. Itpredicts a dynamic phase
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transition at a critical temperatureTc where the system changes from an ergodic liquid
to a non-ergodic glass state. Beyond that temperature the theory even predicts a power
law behavior of the relaxation timeτα(T) and the diffusion constantD(T) above the
critical temperature according to

τα(T) ∝ (T − Tc)
−γ (3.7)

and
D(T) ∝ (T − Tc)

γ. (3.8)

with the same exponentγ. As a consequence the productτα(T) · D(T) of these two
properties is constant over the whole scaling range. AtTc the behavior of the correla-
tion function changes quite drastically. Below the glass transitionφq(t) decays onto a
plateau valuef (q), that is called the non-ergodicity parameter,

φq(t → ∞) = f (q). (3.9)

Above but close to the critical temperature in the ergodic phase the correlation func-
tions always decays to zero in the long time limit. Close toTc a typical two-step decay
can be observed. Here, two different relaxation regimes canbe identified. The first one
is theβ-relaxation regime where the correlation function decays on intermediate times
onto a plateau value. The interpretation of this behavior isthat the particles are trapped
at intermediate times inside a cage which is formed by the neighboring particles. In
this regime the theory makes the prediction that the behavior of the correlation function
can be written as

φq(t) = f̃q + hqG(t) (3.10)

where the second term factorizes into aq-dependent and a time dependent function.
This factorization property can be checked by calculating the fractionR(t)

R(t) =
φq(t)− φq(t′)

φq(t′′)− φq(t′)
. (3.11)

As long as the system is inside theβ-relaxation regime all curves forR(t) with dif-
ferentq values should collapse onto the same curve. For the lateβ regime the theory
predicts that the correlator behaves according to

φq(t) = f̃q + h
(1)
q tb + h

(2)
q t2b + . . . (3.12)

where the first two terms are known as ”von Schweidler law”. For the long time beha-
vior the particles leave the cage and enter a second relaxation regime, theα-relaxation
regime. This time the correlation functions decays to zero.The theory makes no simple
prediction about the exact functional behavior in this regime but empirically it is found
that the long-time behavior can be well approximated by a stretched exponential func-
tion (3.3) andτα(T) the relaxation time at temperatureT can be calculated. Here,
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the exponentβ still shows aq dependence. In this regime the theory predicts that a
time-temperature superposition principle (TTSP) holds:

φq(t, T) = φ̃q(t/τα(T)). (3.13)

Thus, after rescaling the time for measurements at different temperatures by the relax-
ation timeτα(T) it is predicted that all curves collapse onto the same universal curve.

3.1.2 MCT for a forced particle

Recently the MCT was extended to describe systems under the influence of external
forces such as a shear field or a single particle under the influence of an external force.
In the case of a pulled particle one is interested in the behavior of single particle prop-
erties. There, the correlator is the single particle correlator of the pulled particleφs

α(t)
that corresponds to the incoherent intermediate scattering function

φs(t) = 〈ρs∗(t)ρs(0)〉, (3.14)

with ρs(t) = exp (iq · r i(t)). Instead of only one memory equation for the bath
particles multiple coupled memory equations have to be solved now. Due to the
high complexity of these equations only simple schematic models have been solved
up to now. These simple models reduce the full memory equations with the whole
q-dependence to equations with only one or a fewq-modes. The first solved schem-
atic model only took oneq-value in the parallel direction of the wholeq-space into
account [54, 55, 57]. Due to this strong simplification it fails in describing some im-
portant properties of the particle as a plateau in the friction coefficient at high forces.
Therefore, this model was extended to a schematic model thatdepends on two differ-
ent q-values, one parallel‖ and one perpendicular⊥ to the force direction [56, 57].
Therefore, it is based on three memory equations forφ(t), φs

‖(t) andφs
⊥(t). The first

equation for the bath particles only depends onφ(t)

φ̇(t) + Γ

[

φ(t) +
∫ t

0
m(t− t′)φ̇(t′)dt′

]

= 0, (3.15)

with a a bilinear memory kernelm(t)

m(t) = ν1φ(t) + ν2[φ(t)]
2. (3.16)

The other two equations are coupled and they describe the behavior of the pulled
particle in both directions,

φ̇s
α(t) + ωs

α

[

φs
α(t) +

∫ t

0
ms

α(t− t′)φ̇s
α(t

′)dt′
]

= 0, (3.17)
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where the indexα ∈ {‖,⊥} stands for the directions parallel and perpendicular to
the force. The external forces are brought into the model by the prefactorsωs

‖ =

Γs(1− ik0F
ex) andωs

⊥ = Γs with Γs = 1. The coupling between both directions of
the probe and the bath correlator only happens inside the twomemory kernelsms

‖(t)

andms
⊥(t),

ms
‖(t) =

[

νs1φs∗
‖ (t)φ(t) + νs2φs

⊥(t)φ(t)
]

/(1− ik‖Fex), (3.18)

ms
⊥(t) =

[

νs1φs
⊥(t)φ(t) + νs2Re[φ

s
‖(t)]φ(t)

]

/(1+ (k⊥Fex)
2). (3.19)

Here,νsi andνi are real coupling parameters that define how strong the probeand the
host liquid interact andkα are parameters that allow to fine-tune the force scale (here
k0 = k‖ was chosen). From the symmetry in the perpendicular directions follows that
the perpendicular correlator is always a real quantity. Therefore only the real part of
the parallel direction can contribute in that direction. With the calculated solutions of
these equations one has access to additional properties of the particle as the friction
coefficientξ,

ξ = ξs0 + ξs0

∫ ∞

0
(µ‖Reφs

‖(t),+µ⊥φs
⊥(t))φ(t) dt . (3.20)

the displacement in force directionδz(t),

ξs0∂tδz(t) +
∫ t

0
m̂s

‖(t− t′)∂t′δz(t
′) dt′,= κ‖Fex , (3.21)

the mean squared displacement in force directionδz2(t),

ξs0∂tδz
2(t) +

∫ t

0
m̂s

‖(t− t′)∂t′δz
2(t′) dt′,

=2+ 2κ‖Fex δz(t)− 2
∫ t

0
Ks
‖(t− t′)∂t′δz(t

′) dt′ , (3.22)

and the mean squared displacement in perpendicular direction δx2(t),

ξs0∂tδx
2(t) +

∫ t

0
m̂s

⊥(t− t′)∂t′δx
2(t′) dt′ = 2 . (3.23)

Here,ξ0 is the friction coefficient of the bath particle. The memory kernelsm̂s
α(t) and

Ks
‖(t) are given by

m̂s
‖(t) = µ((1− µrel)Reφs

‖(t),+µrelφ
s
⊥(t))φ(t) , (3.24)

m̂s
⊥(t) = µ((1− µ′

rel)Reφs
‖(t),+µ′

relφ
s
⊥(t))φ(t) , (3.25)
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Ks
‖(t) = −µµBImφs

‖(t) . (3.26)

From these equations it is possible to calculate propertiesof interest in the long time
limit, such as the diffusion constant in both directions or the steady state velocity.
These predictions then can be directly compared to the simulation results.

In the liquid state this model predicts that the diffusion and relaxation of the probe
particle is accelerated under the influence of the force. Here, in contrast to the simple
trap model the motion stays completely diffusive in both directions for all forces. Be-
low the critical glass temperature the motion completely freezes and the particle is
trapped. At these temperatures the theory predicts a critical threshold forces that needs
to be overcome to set the particle in motion.

3.2 Simple trap model

The second model is a simple one-dimensional trap model [58,59] that tries to mimic
the behavior of a pulled particle by a Brownian particle motion inside a force land-
scape. This potential is declining on average in one direction and therefore the particle
feels a force in that direction. The original Langevin equation reads

dx

dt
=

1

γ
F[x(t)] + η(t) (3.27)

wherex is the position of the particle at timet, γ is the friction coefficient of the
particle,F the resulting force andη the thermal noise that leads to the motion inside the
potential landscape. In this modelη is a random variable with the following properties
that define the temperature scalekBT

η(t) = 0, η(t)η(t′) = 2
kBT

γ
δ(t− t′). (3.28)

The first term in (3.27) is the force resulting from the potential landscape. In this model
the force is also realized by a Gaussian white noise but now with a nonzero average
forceF0

〈F(x)〉 = F0, 〈F(x)F(x′)〉 − F20 = σδ(x− x′). (3.29)

It is found that the motion of the particle depends only on onecontrol parameterµ and
not explicitly on the values ofF0, D0 or σ that is given by

µ =
2F0D0

σ
, (3.30)

with D0 = kBT
γ the equilibrium diffusion constant. In [58, 59] it is shown that the

physics of this driven particle in the long time limit is given by the long trapping times
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Figure 3.3– Left) The behavior of the diffusion constant and of the velocity in dependence
of the parameterµ. Right) Sketch of the potential landscape of the simple trap model. Both
pictures are from [59].

in the deep valleys. It is found that these deep local minima have a broad probability
distribution and therefore the particle behavior is well captured by a directed walk
among traps with a broad distribution of release timesΨ(W). Thus, the system can be
described with a directed master equation

dPn
dt

= WnPn−1 − Wn+1Pn, (3.31)

with Pn is the probability of finding the system in staten andWn+1 the transition rate
for the jump from staten to n+ 1. Here, the release times W are distributed according
to the broad distributionΨ(W) for short W

Ψ(W) ∼ Wµ−1, W → 0. (3.32)

This leads to a broad distribution for the waiting timesτ that behaves asτ−(1+µ) at
long times. This model has the advantage, that it can be solved exactly. In dependence
of the strength of the external force one can identify three different regimes of that
model (shown in the left picture of fig 3.3).

0 < µ < 1 : For small values ofµ a creep motion is found. There, the displacement of
the particle increases with a value of less than one in the long time limit and the mean
squared displacement shows a behavior proportional to2µ:

〈x(t)〉 ∝ tµ, 〈x(t)2〉 − 〈x(t)〉2 ∝ t2µ. (3.33)

1 < µ < 2 : At intermediate forces the particles are trapped only a fraction of the
time in deep local traps and otherwise they move untrapped through the system. This
leads to a displacement that is proportional to the time. In this region the MSD shows
a superdiffusive behavior:

〈x(t)〉 ∝ t, 〈x(t)2〉 − 〈x(t)〉2 ∝ t2/µ. (3.34)
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2 < µ : For even higher forces the behavior of the particles is completely diffusive:

〈x(t)〉 ∝ t, 〈x(t)2〉 − 〈x(t)〉2 ∝ t. (3.35)

Of course, the applicability and the predictions of this simple model are quite limited
for a realistic model where a particle is pulled through a supercooled liquid or a glass.
One property that is not contained in this model is the equilibrium dynamic of the
system that should be restored for small forces. There, the model predicts a creep
motion of the particle whereas in the supercooled liquid onewould observe a linear
response regime. Without an average forceF0 = 0 the diffusive motion in this model
follows a logarithmic behavior (Sinai diffusion [60]) which is different from the normal
diffusive motion in the equilibrium liquid. Nevertheless,it is at the moment the only
model that predicts a superdiffusive behavior (second regime) and a transition to a
diffusive regime at even higher forces (third regime) for a pulled particle.



Chapter 4

Overview of the steady-state behavior

After the equilibrium configurations were prepared at each temperature the measure-
ment simulation runs can be started. At timet = 0 a start configuration is loaded and
the external force is switched on for one of the particles. This force is kept constant for
the rest of the simulation. After a short acceleration phasethe pulled particle reaches a
steady state with a constant average velocity. In this chapter the general characteristics
of the particles in the steady state shall be determined and the important quantities that
are used for this classification are introduced. In the steady state it is found that the
behavior of the probe depends strongly on the strength of theapplied external force.
Beyond that, three different regimes can be identified that classify the particle motion
in dependence of the force. For small forces a linear response regime is found, where
the particle motion is given by the equilibrium properties.At intermediate forces one
observes a non-linear regime where the particle motion is highly anisotropic. In the
parallel direction a superdiffusive behavior is found whereas the motion in the perpen-
dicular direction is strongly accelerated but still diffusive. Pulling with even higher
forces leads to third regime. There, at high forces, one observes that the motion in
both directions is again completely diffusive. In this chapter these three regimes shall
be differentiated and an overview is given. Then, in the following two chapters these
regimes are investigated closer.

4.1 Simulation details

The main part of the simulation took place on the Juropa cluster in J̈ulich. A typical
simulation run was done on 160-640 cpu cores over 24 hours (which was the run
time limit on the cluster). During such a simulation run typically around 1000-10000
particle trajectories were recorded. Here, the trajectories have a length of around 1-4
million time steps in the small system sizes and 100-400 thousand time steps in the big
systems. These boundaries to the simulation results from the maximum job time on the

27
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one hand and the system size on the other hand. Here, the particle is only allowed to
move once and not multiple times through the whole box. As thespeed of the particles
is a function of the temperature in the system but also of the applied external force, the
maximum runtime and the number of possible simulation runs is different for every
single measurement.

One problem with these simulations is that one likes to gather as much information
as possible about the particles in the system. To gain enoughstatistics of the pulled
particles it is required to repeat the simulations for around 1000 different particles of
the same type. With only a single pulled particle in the system one has compared to a
normal equilibrium simulation the clear disadvantage thatone cannot average over all
the particles in the simulation box. This leads to a reduction of the statistics by a factor
of 800 to 6400. As a consequence a much higher computational effort is required in
this case and the produced amount of information is much higher. For example the
required size of one system snapshot for a system withLx = 8L is around 1MB in
size. The complete output of one simulation trajectory of 100k steps would there-
fore lead to an output of around 100GB. For only one single trajectory this amount is
clearly orders of magnitude too big and a complete simulation with more than 1000
trajectories is thus completely unrealistic. As a consequence only partial informations
of the systems can be written out and one has to chose in advance the properties and
the precision of the measurement. As this work concentratesmainly on the behavior
of the particle under the influence of the external force, theproperties of that particle
are of greatest interest and should be recorded. But even onlythe trajectories and the
velocities of these pulled particles require too much spaceto easily write out at every
time step. Therefore, only parts of the trajectories can be recorded. Here, different
properties of the particles shall be investigated that are calculated on completely dif-
ferent timescales and on different time distances. Therefore, the particle trajectories
were recorded in two different ways. The first one is a normal linear way where the
position and velocities are recorded at equidistant times,typically every 40 or 80 time
steps. From these measurements properties such as the average velocity, van Hove
correlation functions or the jump and waiting time distributions can be calculated. Ad-
ditionally the trajectories were recorded on a logarithmictime scale where the distance
between measurements increases with time. From these measurements properties such
as the incoherent scattering function or the mean squared displacement that are meas-
ured over the whole simulation run can be calculated withoutrequiring too much disc
space. To increase the statistics of these logarithmic measurements 10 trajectories with
a shifted starting point of1/10 of the simulation time were recorded from the same
particle trajectory.

In addition to these measurements some properties such as the pair correlation function
were calculated directly during the simulation and only theresults of these measure-
ments were stored. Of course, these measurements have the clear disadvantage that one
has to repeat the whole simulation if one wants to measure theproperty in a slightly dif-
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Figure 4.1 – Typical trajectories of A particles with forcesf = 1.0, 5.0, 10 at the tem-
peratureT = 0.14. Left plots show trajectories in thex-y-plane with the starting point at
(0|0) and the endpoint at the right end of the plots. Right plots show the same trajectories,
but now only thex-coordinate in dependence of the time.
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ferent way or a completely different quantity. From all these data the important system
properties can be calculated. After the switch on of the force att = 0 one observes a
transition to the steady state first which could influence thesteady-state measurements.
There, it is required to discard some of the data at the beginning of the simulation until
the particle has reached the steady state. Therefore, the measurements were started
first after the velocity of the probe was constant. In the caseof the logarithmic times-
cale it was found that the second starting point after1/10 of the simulation was in all
cases in the steady state and only the first measurement with the first starting point was
discarded.

4.2 Velocity and friction coefficient

To get a first impression of the behavior of the probe particleit is quite useful to have
a closer look at single particle trajectories. One finds thatthe motion of these pulled
particles shows a strongly different behavior for varying external force. In fig. 4.1
some typical trajectories for pulled A particles atT = 0.14 with different external
forces are shown. At each force, left and right plots show thesame trajectories. Here,
left plots show the trajectories in thex-y-plane whereas the right ones only show the
x coordinates in dependence of the time. At low forces one observes that the particle
trajectories show a jump motion. There, the particles are trapped most of the time in the
cages of the surrounding particles and only rarely jump to the next cage. The average
jump time is much shorter than the average cage time. By increasing the external
force f one observes that the localization time decreases at intermediate forces (here
f = 5) and the jumps occur with a much higher frequency. With even higher forces the
trapping of the particles disappears and they move through the system without longer
trapping times inside the cages. Note that all the plots showthe same area in thex-y-
plane on the left and the same distancex(t) on the right but over different times. Hence
one can see that with increasing force the particle motion isaccelerated drastically. At
f = 1.0 the time to move the distance tox = 10 takes untilt = 10000 whereas at
f = 10 it takes only untilt = 10. This is two decades less in time compared to an
increase of only one decade in the force. That is a first hint ofa nonlinear behavior
taking place at these forces. As a first property to quantify the particle motion, the
velocities of the particles in the steady state is displayedin fig. 4.2. One finds that
A and B particles show qualitatively the same force and temperature dependence but
with slightly higher velocities for the A particles. It is anexpected result due to the
smaller particle diameter of the A particles. These lead to less friction from interactions
with the surroundings during the motion and therefore to a higher average velocity.
For small forces the velocity of the particles is proportional to the force. Here, the
particle motion is still in the linear response regime. For forces inside this regime
the friction from the bath is constant and therefore the velocity is proportional to the
external force. With increasing forces the particles leavethe linear response regime and
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Figure 4.2 – Upper plots show steady state velocities of the pulled particle for different
temperaturesT in dependence of the external force. Lower plots show the resulting friction
coefficientsξ = f/v. Left plots show A particles and right plots B particles.

enter the nonlinear regime. There, the velocity increases stronger than linear. In this
region one observes a drastic increase of the velocities. This behavior strongly depends
on the temperature and increases for lower temperatures. Atthe lowest equilibrium
temperatureT = 0.14 one finds an increase of the velocities fromv = 3.15 · 10−3

at f = 1.0 to v = 1.06 at f = 10. This is an increase over nearly three decades
in the velocity compared to only one decade in the force. For even higher forces the
velocity dependence is again linear and converges against the behavior atT = 1.0.
For that temperature the velocities of the particles are always in the linear response
regime. For the highest forces the velocity curves at different temperatures collapse
and therefore the particle motion is temperature independent. As a second quantity the
friction coefficientξ can be calculated from these measurements by

ξ =
f

v
. (4.1)
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The calculated values ofξ for both particle types are pictured in the corresponding
lower plots of fig. 4.2. For small forces the friction coefficient is constant with a value
given by the equilibrium system properties. There, the Einstein relation is still valid
and one haskBT = ξDeq, with Deq the diffusion constant in equilibrium. This plat-
eau corresponds to the linear response region of the velocity. At intermediate forces
one finds a strong drop over up to 3 decades at the lowest temperature from the linear
response plateau to a second plateau at high forces. In this regime all curves for dif-
ferent temperatures collapse onto the same plateau with valuesξ∞ ≈ 6.3 for A and
ξ∞ ≈ 9.8 for B particles. Note that this collapse has not yet been observed. In earlier
Brownian dynamics simulations [54, 56] in a quasi-hard-sphere liquid the control para-
meter was the density of the system and not the temperature. There, one observes a
density-dependent high force plateau value and not a collapse of the curves onto the
same plateau.

4.3 Local structure

Under the influence of the force one can expect that the structure around the particle
deforms. Hence, it is interesting to see what influence the pulled particle on the sur-
rounding bath particles has. Therefore, the particle distribution functiong(r ) is cal-
culated which measures to what extent the structure around aparticle deviates from a
completely random structure with a constant density. This quantity is often used in the
study of liquids as it gives informations about the average local structure even without
a long range symmetry present in the system. Here, in the caseof the pulled particle
only the closer surrounding is of interest. In this case the particle distribution function
[61] is given by

g(r ) =
L3

N

〈

∑
i 6=n

δ(r i − r )
〉

, (4.2)

and can be interpreted as the probability of finding a surrounding bath particle at dis-
tancer if the probe particle is located a zero. In the equilibrium case without external
fields one has a spherical symmetry and thereforeg(r) depends only on the distance
r = |r |. In the case of the pulled particles the motion of the probe isanisotropic and
therefore the full angular dependence needs to be recorded.In fig. 4.3 and fig. 4.4 the
calculated pair distribution functions of the pulled particles atT = 0.14 for different
external forces are displayed. In both figures upper plots show the behavior in the par-
allel direction and lower plots in the perpendicular direction. In the parallel direction
it is required to measure the probability distribution overa small cylinder if one wants
to gain enough statistics. Here, the radius of this cylinderwas chosen asr = 0.5. In
the perpendicular directiong(r ) is recorded in dependence of the radiusr due to the
rotational symmetry. As can be seen in the plots, the distribution function shows a
strong anisotropic behavior that depends on the particle type and the external force.
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Figure 4.3 – Change of the local structureg(r ) around a pulled A particle atT = 0.14
for different forcesf . Upper plots show pair correlation functions parallel to the force
g(x) and lower plots in the perpendicular directiong(r). Left plots show surrounding A
particles and right plots B particles. Dashed black line is the equilibrium behavior from
[5].

The structure around the pulled particle at low forces is quite close to the equilibrium
structure of the system (black dashed lines from [5]). For high forces (f = 20) the
structure changes drastically especially in the force direction. There, it loses nearly all
information of the equilibrium structure. At these forces the system around the pulled
particle has not enough time to relax and the equilibrium structure cannot emerge.
Additionally one has a strong dependence on the surroundingparticle type. For sur-
rounding A particles an increased probability behind the probe is found whereas for
B particles this probability is reduced. That effect is highlighted with the horizontal
dotted lines at the highest force. This dependence can be explained with the higher mo-
bility of the smaller particles that can fill the free space faster which is left behind the
moving probe particle. For the nearest neighbor peak in front of the particle one finds
a slight shift to the probe particle with increasing force. There, the particles are pushed
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Figure 4.4– Plots ofg(r ) with the same system properties as in fig. 4.3 but now for pulled
B particles.

closer together by the applied force. Behind the probe the nearest neighbor peak loses
much of its height until it completely disappears at the highest forces. The behavior in
the perpendicular direction is influenced as well. Also in this direction the peak of the
first neighbor shell shows a dependence on the external force. With increasingf the
position of the first peak changes. It moves closer to the probe. Under the influence
of the force the probe moves closer to the neighboring particles. For higher distances
the structure reduces more and more with increased force. Atthe highest forces the
maxima and minima are much less pronounced although the reduction is not as strong
as in the perpendicular direction. Here, again the system isnot able to relax on these
timescales.

The behavior at the highest forces is roughly in agreement with predictions of the
dynamic density functional theory that were made for a polymer solution [62]. There,
also an enrichment of the particles in front of the probe and and a hole behind the
probe is found. Note, that although the structure at high forces changes drastically,
for forces up tof = 2.5 the structure is nearly the same as in equilibrium. This is
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Figure 4.5– Mean-squared displacement for pulled particles in the direction orthogonal to
the force atT = 0.14 for different f . Upper plots show MSDs in dependence of the timet
and lower plots the same curves divided trought to highlight the long time behavior. Both
for A (left) and B (right) particles.

in contrast to the strongly influenced behavior of other dynamical quantities in the
region0.5 ≤ f ≤ 2.5 which are presented in the following. That is a quite often
found phenomenon in the dynamics of glassy systems where thedynamic quantities
can change drastically but the static properties, as the pair correlation function or the
structure factor, show barely any difference.

4.4 Mean squared displacement

The static properties of the system already showed some interesting behavior, but the
main focus of this work lies on the dynamic quantities of the probe particle. As a
property the mean-squared displacement is determined. It gives information about
the deviation from the average position for the particles and their long time diffusive
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Figure 4.6– Mean-squared displacement for pulled particles in the force direction atT =
0.14 for different f . Upper plots show MSDs in dependence of the timet and lower plots
the same curves divided trought to highlight the long time behavior. Both for A (left) and
B (right) particles.

behavior. The usual equilibrium definition of that quantityis
〈

∆r2(t)
〉

=
〈

|r (t)− r (0)|2
〉

. (4.3)

For the pulled probe that quantity needs to be slightly modified. In the orthogonal
direction it is the same as in the equilibrium case

〈

∆y2(t) + ∆z2(t)
〉

=
〈

[y(t)− y(0)]2 + [z(t)− z(0)]2
〉

. (4.4)

Due to the drift of the pulled particle the definition (4.4) isnot applicable in the force
direction. There, one has to subtract the drift motion first and one obtains

〈

∆x2(t)
〉

=
〈

[x(t)− x(0)]2
〉

−
〈

[x(t)− x(0)]
〉2

. (4.5)
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Figure 4.7 – a) Mean-squared displacement in the force direction for different temper-
atures at forcef = 1.5. b) Direct comparison of the two mean-squared displacement
directions for A particles with forcesf = 1.0 and f = 2.5 at T = 0.14. Straight lines
show MSDs in parallel and dashed lines in orthogonal direction. Lower plots show a
comparison of simulation results (symbols) with the prediction from the schematic model
(straight lines) in c) perpendicular and d) parallel direction from [63].

By that definition the MSD in the parallel direction measures the average squared devi-
ation from the mean position at timet. Thus, this quantity gives a closer picture of the
time dependent diffusion behavior of the particles under the influence of the external
force. In the steady state the mean-squared displacement ofthe probe particles shows a
strong dependence on the external force. In fig. 4.5 MSDs are shown on a logarithmic
scale in the perpendicular direction at the lowest temperatureT = 0.14 for different
forces. Also shown here is the equilibrium curve (dashed line, from [5]). At low forces
one finds that the MSDs behave quite similar to the equilibrium case. There, one can
clearly distinguish three different parts. For short timesone finds a ballistic regime.
Here, the particles move freely without the influence of the surrounding particles with
a constant velocity. This leads to a displacement proportional to t. Thus, the MSDs
for short times〈∆r2(t)〉 ∼ t2 in the case of the Newtonian dynamics. After some
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time the particles feel the influence of the potentials of thesurrounding particles and
the curves deviate from this motion. In the case of supercooled liquids a pronounced
plateau at intermediate times is observed. There, the particles are trapped inside the
cage of the neighboring particles. The probe particle is localized. For the lowest forces
and in equilibrium one finds that the intermediate plateau shows a strong temperature
dependence and it is extended over 2-3 decades in time for both particle types. This
is a typical behavior for a glass forming liquid close to the critical temperature. Due
to the applied force the particles manage to escape their cages earlier. Therefore, with
increasing force the length of the plateau decreases until it completely vanishes for
forces f > 5. From there on the cage structure does not influence the motion of the
particles anymore. Even at low forces the particles can leave their cages and diffuse
through the system at long times. As a consequence, the MSD islinear〈∆r2(t)〉 ∼ t at
late times in the diffusive regime. To highlight the diffusive behavior in the long time
limit the same MSDs divided by the timet are shown in the lower plots of fig. 4.5. At
long times a convergence towards a constant plateau value that corresponds to twice
the value of the diffusion constant of the curves can be seen.For the direction parallel
to the force the picture is a bit different. In fig. 4.6 the sameplots for the direction
parallel to the force are shown. There, one finds for short andintermediate times an
identical behavior of the MSDs. Only for long times the curves differ as the motion is
not diffusive. Here, the slope of the long time limit is bigger than one and therefore
shows superdiffusive behavior (〈∆x2(t)〉 ∼ tα with α > 1). This can best be seen in
the lower plots, where the curves divided byt do not converge against a constant plat-
eau value for long times. Instead one observes a power law increase. This shows that
the motion of the pulled particles is superdiffusive on timescales accessible in the sim-
ulations. At high forces, where the particle motion shows nosign of the cage anymore,
the superdiffusive regime disappears and the motion in the parallel direction becomes
diffusive again. The superdiffusivity not only depends on the applied force but also
on the temperature of the system. With lower temperatures one finds an increase ofα.
This is shown in fig. 4.7 where MSDs in parallel direction for Aparticles withf = 1.5
at different temperatures can be seen. The exponentα at long times steadily increases
from α = 1 atT = 0.34 to α ≈ 1.35 atT = 0.14.

In both directions one finds that with increasing force the ballistic regime is shifted to
higher values (fig. 4.5 and fig. 4.6). For smaller forces, as long as the curves show a
pronounced plateau, the regime collapses onto the same curve. Only for high forces
( f > 5 for A particles andf ≥ 10 for B particles) they differ. This can be understood
as the slope of the ballistic regime at short times corresponds directly to the temperat-
ure of the pulled particles. Obviously for high forces the DPD thermostat has problems
to locally cool the system to the bath temperature. Note thatthe temperature of the bath
particles in the system is still constant at the equilibriumtemperature and only the tem-
perature of the probe and the close surrounding is slightly increased. For a comparison
of the behavior in both directions the parallel and perpendicular MSDs are shown to-
gether for forcesf = 1 (black) andf = 2.5 (blue) in fig. 4.7. Both directions show
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Figure 4.8 – Diffusion constantDorth for the pulled particles in the direction perpendic-
ular to the force for a) A and b) B particles in dependence off at different temperatures.
Crosses mark the values of the equilibrium diffusion constant calculated in [5]. c) Com-
parison of the orthogonal diffusion coefficient from the simulations (symbols) with the
predictions from the schematic model (straight line) (3.17) from [63].

an identical behavior during the ballistic regime. Even forthe time in the plateau both
curves match over a long time. Only at late times, when the particle leaves the cage,
both curves start to diverge with a linear long time behaviorfor the orthogonal and a
superlinear behavior in the parallel direction. This indicates that the particle motion
at short times and inside the cage is isotropic. But outside the cage where the jump
motion from cage to cage takes place the motion gets anisotropic. These measured
MSDs can be directly compared to calculations in the schematic model. In fig. 4.7
some plots from [63] are shown for A particles atT = 0.17 and different forces. In
the direction perpendicular to the force one finds a good agreement for the long time
diffusive regime and even the plateau value for the lower forces agrees with the theor-
etical predictions. Only for the short time behavior one finds a strong deviation which
is caused by the different types of the microscopic motion. The schematic models are
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based on the Brownian motion which shows a diffusive motion atshort times whereas
the simulations solve the Newtonian equations and thus showa Newtonian dynamics.
For the direction parallel to the force a different picture emerges. There, the behavior
of theory and simulation differs quite drastically as the theory shows no superdiffusive
behavior and at the moment the theory is not able to explain that part of the behavior
in the force direction.

The mean-squared displacement in the orthogonal directionis linear in time. Hence, it
is possible to calculate the diffusion constant of the probeparticles and have a look at
the force dependence.Dorth is given by the Einstein relation [64]

Dorth = lim
t→∞

〈∆y2(t) + ∆z2(t)〉/(4t). (4.6)

The calculated values for the different temperatures in dependence of the applied force
are shown in fig. 4.8. In the linear response region the value of the diffusion constant is
constant and equal to the equilibrium diffusion. For bettervisualization the equilibrium
values calculated in [5] are marked with crosses. With increasing forces the diffusion
increases drastically in the perpendicular direction overup to 3 orders of magnitude
at the lowest temperatureT = 0.14. For high forcesDorth converges against another
plateau and in contrast to the behavior of the friction coefficient the plateau value this
time still depends on the temperature. As the MCT makes predictions for the diffusion
constant a direct comparison is possible. Except for the lowest temperatures the values
of the MCT are in agreement with the simulated ones which can beseen in fig. 4.8 c).

4.5 Correlation functions

In chapter 3.1.1 a few of the predictions from the MCT were presented. There, the
basic observable in this theory is the correlation functionφq(t) (3.4) and it is therefore
of great interest to calculate this quantity in the simulation and compare it with the
theoretical predictions. Here, the correlation function corresponds to the incoherent
intermediate scattering functionFs(q, t) of the probe particle which is defined in the
bulk as

Fα
s (q, t) =

1

Nα

Nα

∑
i

〈

ρi(q, 0)ρi(q, t)
〉

, (4.7)

with Nα the number of particles of typeα andρi(q, t) = exp (iq · r i(t)) the density
fluctuation of particlei. For bulk measurements this quantity usually is averaged over
all particles in the system. With the external force only oneparticle is pulled through
the system and therefore the expression reduces to

Fs(q, t) =
〈

ρ(q, 0)ρ(q, t)
〉

=
〈

exp (−iq · [r (t)− r (0)])
〉

. (4.8)
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Figure 4.9 – Incoherent scattering functionFs(q, t) of the pulled particle atT = 0.14
andq = 6.14 for different forces orthogonal to the force direction. First plots show real
part and lower plots imaginary parts of the scattering function for A (left) and B (right)
particles. Imaginary part in the perpendicular direction is zero for all forces.

In fig. 4.9 and 4.10Fs(q, t) for A and B particles atT = 0.15 andq = 6.14 with differ-
ent applied forces are shown. Compared to the equilibrium case (fig. 2.5), the behavior
of the incoherent scattering function for the pulled particle is more complex. As the
other quantities of the pulled particle alsoFs(q, t) shows a strong anisotropic behavior.
In the direction perpendicular the general behavior ofFs(q, t) is quite similar to the
equilibrium case. At short times during the ballistic regime one has a fast decay to a
plateau. At long times one finds a decay from this plateau witha stretched exponential
behavior in theα-regime. In this case higher applied forces lead to a reducedplateau
and a faster decay. In that direction the behavior under the influence of the force is
comparable to the equilibrium decay at higher temperatures. For the parallel direction
two strong differences appear. The first is that at high forces the correlation function
shows oscillatory behavior with even negative values. The second difference is the oc-
curring imaginary part which is zero in the perpendicular direction and in equilibrium.
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Figure 4.10– Incoherent scattering functionFs(q, t) of the pulled particle atT = 0.14 and
q = 6.14 for different forces in the force direction. First plots show real partand lower
plots imaginary parts of the scattering function for A (left) and B (right) particles.

Both points are the result of the drift motion that is not subtracted here as it leads to a
prefactor ofexp (−ivt) in the scattering function. This term oscillates with time and
introduces the imaginary behavior.

The last quantity introduced here is the self part of the van Hove functionGs(r, t) [61]
given in the equilibrium case by

Gα
s (r , t) =

1

Nα

〈 Nα

∑
i=1

δ(r − |r α
i (t)− r α

i (0)|)
〉

. (4.9)

Again, only the motion of the probe is of interest and therefore the above expression
reduces to

Gs(r , t) =
〈

δ(r− |r (t)− r (0)|)
〉

, (4.10)

with r (t) the coordinate of the pulled particle at timet. That quantity gives the prob-
ability of finding the probe at timet on the positionr (t) if it was att = 0 at r (0). This
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Figure 4.11– Steady state van Hove correlation functionsGs(r, t) for a (left) and B (right)
particles with different forcesf at timest = 249 for forces f = 5.0, 10 andt = 664 else.
Upper plots showGs(r, t) measured in the force direction and lower in perpendicular
directions.

quantity is also calculated independently in both directions. Displayed in fig.4.11 are
the obtained results atT = 0.14 in dependence of the force. There, the upper plots
showGs(r, t) in parallel and lower in the perpendicular direction. In parallel direction
for low and intermediate forces up tof = 5.0 the van Hove correlation functions show
a pronounced peak atx = 0. This is a result of the strong caging of the surrounding
particles at low temperatures which prevent the particle from leaving the initial pos-
ition. Only a fraction of the particles manages to move further than the initial cage.
The strength of that effect reduces with increased force until it disappears for high
forces (f ≥ 10 for A and f > 10 for B particles). Then, the particles move without
being trapped inside the cages and the shape of the van Hove correlation function is
Gaussian. At low forcesGs(r , t) has a long tail in the force direction. In the perpen-
dicular direction the symmetry is not broken by the force andGs(r , t) is symmetric at
all forces. At low and intermediate forces one finds strong exponential tails as in the
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equilibrium state [5] and a strong peak at the initial position that results from the trap-
ping in the cages. For higher forces a transition to a Gaussian shape can be observed
and the pronounced localization peak at zero disappears.

4.6 Summary

In this section the general behavior of the probe particle under the influence of an
external force was characterized. It is found that the particle motion strongly depends
on the strength of the applied forces and three different regimes can be identified.

Small forces: For small external forces the particle motion is given by theequilib-
rium properties of the system. Here, the linear response theory is still valid and can
be used to predict the behavior of the pulled probe. In this region the behavior of the
particle is still isotropic and only shifted in the force direction by the drift.

Intermediate forces: For intermediate forces one observes a strong anisotropic mo-
tion and with increasing forces a strong decrease of the friction coefficient takes place.
Parallel to the force a pronounced superdiffusive regime inthe mean-squared displace-
ments is observed whereas in the perpendicular direction the behavior is still diffusive
but it is strongly accelerated.

High forces: At high forces the friction coefficient shows a second plateau and the
velocity increases again linear with the applied force. In this region the superdiffusive
behavior disappears and a transition to a diffusive behavior in the parallel direction
takes place. Here, the anisotropy of the motion reduces again.

Furthermore, a comparison with calculations from the MCT showed that the data for
the perpendicular MSDs and the diffusion coefficients are inagreement with the meas-
ured values. But the superdiffusive regime in the parallel direction is completely miss-
ing in the schematic model. In the following chapters these regimes are investigated
in detail and it is checked how good these measurements can beunderstood with the
theoretical models.



Chapter 5

Scaling regime at intermediate forces

5.1 Universal behavior

In the last chapter the behavior of the particle in the steadystate was classified and
three different regimes were identified. The second regime,the regime at intermediate
forces, is investigated in detail in this chapter. In this regime the particle motion is
strongly affected by the surrounding cages. As was seen in fig. 4.7 b) the motion of the
particle is highly anisotropic in the long time limit where the particle has left the cage
and one observes superdiffusive motion. Here, it is found that with a constant applied
force the probe shows a universal behavior in dependence of the temperature. This
leads to a description of the particle motion with an effective temperature. Further-
more, it is checked in this chapter how far the classical MCT predictions can describe
the behavior of the pulled probe particle in the steady state.

5.1.1 Peclet number

In order to quantify the effect of the external force on the particle in the non-linear re-
sponse region the Peclet numberPe∗ can be used. This quantity relatesτD = σ2/Deq

the typical timescale of the equilibrium diffusion withτf = σ/v = σξ/ f the times-
cale introduced by the drift motion of the pulled particle. Here,σ is the diameter of the
particle andDeq the diffusion constant in equilibrium,

Pe∗ =
τD
τf

=
ξ0 fscal

ξ
. (5.1)

In addition the friction coefficient of the bathξ0 and the scaled forcesfscalare given by
ξ0 = kBT/Deq and fscal = fσ/ξ. This choice of the scaled force has the advantage
that in the linear response region, whereξ = ξ0 holdsPe∗ is equal tofscal and then in

45
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Figure 5.1– Upper plots show Peclet numbersPe∗ against scaled forcesfscal for different
temperaturesT in dependence of the external force. Lower plots show the same data
against rescaled forcesfscal/ f Pe

∗=20
scal to highlight the universal behavior. Left plots show

A particles an right B particles.

the linear response regionPe∗ in dependence offscal is just a straight line. In fig. 5.1 in
the upper plots the calculated Peclet values against the scaled forces for both particle
types are shown. At the highest temperatureT = 1.00 the resulting curve is in good
agreement with the linear response values for all forces andboth particle types. But
already for the next lower temperature one observes a slightdeviation from the linear
response values where the Peclet numbers increase superlinear at high forces. This
effect increases with decreasing temperatures and shifts the linear response region to
lower values. At the lowest temperatureT = 0.14 the system completely falls out
of the linear response region and therefore always shows a nonlinear behavior at the
measured forces. It is found that the curves at intermediateforces can be rescaled
and one finds a universal behavior of the Peclet numbers in thenon-linear regime. To
show this the forces were rescaled tofscal/ f Pe

∗=20
scal with f Pe

∗=20
scal the value of the force

wherePe∗ = 20 for the given temperature. This scaling is shown in the lowerplots
of fig. 5.1 for A and B particles separately and in fig. 5.2 for both together. In the
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Figure 5.2 – a) Combined Peclet numbersPe∗ of A and B particles against rescaled
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region behind the linear response one finds a collapse of the scaled curves onto the
same universal curve. The region over which the curves show this behavior increases
with lower temperatures and therefore the scaling region increases in dependence of
the temperature. At higher forces it is found that the curvesdeviate again from this
scaling curve and show a strong temperature and force dependent behavior.

5.1.2 Diffusion behavior

In fig 4.6 of the previous chapter it was seen that in the parallel direction the motion of
the pulled particles is superdiffusive for long times. There, the mean-squared displace-
ment behaves as〈∆x2(t)〉 − 〈∆x(t)〉2 ∼ tα with an exponentα > 1. One question
that naturally arises from this observation is whether or not this behavior is the long
time limit of the particle motion. One possibility is that the motion stays superdiffus-
ive for all times which is predicted by the simple trap model.The other is that one
observes a transition to a normal diffusive behavior for long times and the superdif-
fusive motion only occurs at intermediate times. That one would expect if the particle
motion reaches the time scales of the bath diffusion. In fig 5.3 displayed are the mean
squared displacements in the parallel direction atT = 0.17 and different forces for
both particle types. Here, eventually a crossover to a diffusive behavior can be seen
in the long time limit. Although this question cannot be answered with certainty. To
highlight the long time behavior also the MSDs divided through the time are shown.
These show even at long times a curvature and might converge against a constant plat-
eau. Unfortunately, it is not easily possible to answer thisquestion with certainty. Due
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Figure 5.3 – Mean-squared displacement for the pulled particle in the force direction.
Shown curves are for A (left) and B (right) particles for different forces atT = 0.17.

to the restrictions in the simulation time that result from the box length one cannot
simply increase the observation time. An increase of the boxsizes by an amount that
would make a difference would result in an enormous additional computational effort.
A second problem is the required statistics at these temperatures. The small deviations
of the exponentα from unity lead to a bad signal to noise ratio. Therefore, it is dif-
ficult to differentiate the superdiffusive behavior in the long time limit from a normal
diffusive behavior. It is also not practical to go to even lower temperatures that show
a stronger superdiffusive behavior. There, it is found thatthe region over which the
particles show superdiffusive motion atT = 0.14 is extended over up to 2 decades in
time and even up to 3 decades in time in the glass atT = 0.12. Therefore, the pos-
sible transition to the diffusive regime is shifted to much later times and even longer
simulations are required here. To check whether this long time behavior is influenced
by hydrodynamic effects, which are increased by the DPD thermostat, some additional
simulations were run with the Anderson thermostat. Due to the strong randomness
introduced by this method hydrodynamic effects are suppressed. In fig. 5.2 b) a direct
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comparison is shown and one finds that the long time behavior does not depend on the
thermostat. Hence, one can conclude that the long time superdiffusive behavior is not
influenced by hydrodynamic effects. From these simulation data it is possible to meas-
ure the exponentα in dependence of the force at different temperatures. This is done
by fitting power laws against the long time limit of the MSDs. The obtained exponents
are presented in fig.5.4 for both particle types. As one seesα deviates only slightly
from unity at high temperatures up toT = 0.18 and only in the region off = 2 where
α ≈ 1.1. These small deviations make it hard to measure the effect ofsuper-diffusion
as the statistical fluctuations are quite large. By lowering the temperature closer to the
glass transition one finds a steady increase of the exponentsand a shift of the maximum
of the curves to higher forces. At these temperatures one finds a steady, nearly linear,
increase ofα at small and intermediate forces, which corresponds to the universal be-
havior found in fig. 5.1. For higher forces these curves reacha plateau value, followed
by a strong decrease to unity at even higher forces. Here, thetransition to the diffusive
regime takes place. For both particle types one observes that at the lowest temperatures
the temperature dependence decreases and the curves seem too converge against a tem-
perature independent behavior (especially at low forces) with a maximum atf ≈ 4− 5
with α ≈ 1.5− 1.6. Although the simple trap model presented in chapter 3.2 showed
a superdiffusive regime, the qualitative behavior differsfrom the one observed in the
simulations. At low forces (3.33) predicts a linear increase with the force. This is in
agreement with the simulation results presented here, although the statistics are not
good enough and the slope of the increase is not2. A clear difference in that region is
the displacement behavior of the probe where the model predicts a creep motion with a
power law behavior whereas here a normal linear displacement with constant velocity
is observed. At higher forces a second regime is predicted (3.34) where the exponent
α behaves as2/µ. This could possibly describe the behavior found here although the
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Figure 5.5– Diffusion constant in the perpendicular directionDorth of the pulled particles
for different external forces. Upper plots showDorth against inverse temperature1/T
and lower against inverse effective temperature1/Teff to highlight the collapse onto the
equilibrium behavior. Left plots show A particles and right B particles.

statistic and the number of data points is definitely not goodenough in that region.
Then, at high forces the behavior agrees with the theoretical predictions (3.35) where
one has a diffusive motion and a linear increasing displacement. Of course this simple
model is only a rough description of the investigated systemand therefore the com-
parison should not be overstretched. For a realistic description a more sophisticated
model is required.

Although the diffusion constants in the force direction arenot accessible in these sim-
ulation they can still be calculated in the perpendicular direction which was already
shown in the previous chapter. For a better comparison with the equilibrium values
and to highlight the effect of the external forces in fig 5.5 the diffusion constants for
different f are plotted against the inverse temperature. As one can see,the equilibrium
diffusion reduces drastically by orders of magnitude at lower temperatures close toTc
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which is also predicted by the MCT (3.8). By applying an external force the diffu-
sion increases and still shows the same strong temperature behavior as in equilibrium,
but now with a shiftedTc. The particles behave as if they were at equilibrium but
at another temperature. This observation directly leads toa definition of an effective
temperatureTeff = c( f )T which describes the behavior of the pulled particles. Here,
Teff only depends on a force dependent prefactorc( f ) and the system temperatureT.
That prefactorc( f ) can be calculated by superimposing the curves for the particles
with external force onto the equilibrium curve which is shown in the lower plots of
fig 5.5 where the same diffusion constants are plotted against these inverse effective
temperatures. Here, one observes that for the lower temperatures all curves collapse
nicely onto the equilibrium curve of the system. Only far away from Tc, at temper-
atures aroundTeff = 0.34− 1.0, a deviation for the highest forces can be observed.
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This is in agreement with the previous results of the Peclet number where the scaling
also broke down for high forces and temperatures. It corresponds to the absence of the
super-diffusive motion and the influence of the cage structure on the particle motion.

Such a description with an effective temperature and the general temperature depend-
ence of the diffusion differs drastically from the behaviorunder shear as was found in
[5, 43]. To highlight the difference also the diffusive behavior of the particles in the
same system under shear is shown (dashed line, data from [5]). In the sheared case
only a slight temperature dependence is found. There, at high temperatures the system
is in the linear-response region and the diffusion coefficient agrees with the equilib-
rium values. Then, at lower temperatures the system enters the non-linear region and
one observes a converging behavior against a constant plateau. In the sheared case the
whole system is deformed and the cages break up by the shear rate which leads to a
nearly constant diffusion even far belowTc. There, the diffusive behavior is dominated
by the timescale1/γ̇ introduced by the shear rateγ̇ whereas for a single pulled particle
the surrounding does not change and one observes a motion of aparticle in a frozen
surrounding.

5.1.3 Incoherent scattering functions and relaxation times

The next system property under closer investigation for scaling relations and universal
behavior is the incoherent scattering functionFs(q, t) of the pulled particle. From
the theoretical side it is an interesting property to study due to the many predictions
the MCT makes about the typical behavior inside the differentrelaxation regimes.
To study the anisotropic behavior ofFs(q, t), both directions together for different
forces and temperatures are shown in fig. 5.6. Here, the middle plots showFs(q, t)
at T = 0.14 for f = 0.5 a) and f = 2.5 b). It is found that for high values of q
the incoherent scattering function shows an identical behavior in both directions. Only
for small q-values one observes a different behavior at intermediate and late times
with a much faster decaying correlation function parallel to the force. In c) one sees,
that atT = 0.17 and f = 0.5 for long times the correlation function in the parallel
direction even starts to oscillate between positive and negative values at the lowest
q values and has an imaginary part (not shown here). It seems that the difference
between both directions starts to emerge with the onset of the α-relaxation. This can
be checked by calculating the relationR(t) (3.11) for the shown curves which was
done in fig. 5.7 whereR(t) for T = 0.14 andT = 0.17 with f = 0.5 is shown.
In both directions all curves collapse nicely onto each other during theβ-relaxation
regime. Only for long times, where theα-relaxation sets in, the curves deviate from
each other. Here, the orthogonal direction shows a monotonous decrease whereas the
parallel direction shows oscillatory behavior for lowq and higherT values. Therefore,
one can conclude that the factorization property predictedby the MCT (3.10) holds
even under the influence of the external force in the scaling regime at low forces.
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Figure 5.7 – RelationR(t) of the incoherent scattering functions (shown in fig. 5.6) in
dependence of the time for different values ofq. Upper plots showR(t) for T = 0.14
and f = 0.5, lower plots forT = 0.17 and f = 0.5, both for A particles. Left plots
show direction parallel and right perpendicular to the force. On intermediate times, in the
β-relaxation regime, a collapse onto theq-independent curve is observed.

The MCT predicts thatFs(q, t) should behave according to (3.12) in theβ-relaxation
regime. From this behavior the non-ergodicity parameterf̃q can be obtained after
fitting (3.12) to the measured curves. Pictured in fig. 5.8 arethe values off̃q in de-
pendence ofq where all these curves nicely collapse onto each other. Thisis an in-
teresting observation as one can calculate a localization lengthr̄loc from them in the
Gaussian approximation of the incoherent scattering function Fs(q, t) [5]. There, the
non-ergodicity parameter behaves asf̃q = exp (− 1

6q
2r̄2loc). From the collapse of the

curves with different external forces onto the equilibriumcurve follows that̄rloc is the
same under the influence of the external forces and agree withthe calculated equilib-
rium values from [5]r̄Aloc = 0.22 and r̄Bloc = 0.19. Hence, the cage structure of the
trapped particles is the same as in equilibrium and it is not strongly deformed by the
force. Moreover the cages are still isotropic for the pulledparticles. This is in agree-
ment with the previous observations that the particle motion is nearly identical as long
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Figure 5.8 – Wave vector dependence of the non-ergodicy parameterf̃s of the pulled
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weidler fits to the incoherent scattering functions. Different symbols correspond to the
different directions and different colors to the different forces. Black straight lines are the
equilibrium values from [5].

as the particles are trapped and differs only for the times after the particle has left the
cage as was seen in fig.4.7 where the MSDs were compared.

For long times the second type of relaxation takes place, theα-relaxation. In the case
of glassforming systems one usually finds a stretched exponential behavior (3.3) of the
incoherent scattering functions. In this regime usually a universal time-temperature su-
perposition principle holds. In the first plots of fig. 5.6 incoherent scattering functions
of the probe forf = 1.0 andq = 6.0 at different temperatures in the range ofT = 0.34
to T = 0.14 for the perpendicular direction are shown. For all except the lowest two
temperatures the incoherent scattering function completely decays to zero during the
time of the simulation. It is now predicted that the different curves should collapse
onto each other for the late time regime after rescaling by the typical relaxation time
τα. For each temperature this relaxation time is defined by

Fs(q, t = τα) = 0.2. (5.2)

Thus, the relaxation timeτα is the time where the incoherent scattering function has
decayed to0.2. Here, the chosen point is one of the lowest available valuesof Fs(q, t)
atT = 0.14. Note that due to the universality each point inside the scaling region is a
valid rescaling point and therefore the relaxation time hasno unique definition. In the
right plot in the first row of fig. 5.6 this scaling for the discussed scattering functions
has been carried through. As one can see the time-temperature superposition principle
holds at low temperatures even with small and intermediate applied external forces as
long as the particle is inside the scaling regime. It is foundthat the lowest temperature
T = 0.14 already shows a small but systematic deviation from the time-temperature
superposition principle. This is a first hint of other processes that take place close to



CHAPTER 5. SCALING REGIME AT INTERMEDIATE FORCES 55

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

t

0

0.2

0.4

0.6

0.8

1

R
e 

F
s(q

,t)

T = 0.14
T = 0.15
T = 0.16
T = 0.17
T = 0.18
T = 0.21
T = 0.25
T = 0.30
T = 0.34

a)
A particles, f = 1.0

perpendicular

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

t/τα

0

0,2

0,4

0,6

0,8

1

R
e 

F
s(q

,t)

T = 0.14
T = 0.15
T = 0.16
T = 0.17
T = 0.18
T = 0.21
T = 0.34

b)

10
-1

10
0

10
1

10
2

10
3

t/τα

0

0.2

0.4

0.6

0.8

1

R
e 

F
s(q

,t)

f = 0.0
f = 0.5
f = 1.0
f = 1.5
f = 2.0
f = 2.5

A particles, T = 0.15

parallel

c)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

t/τα

0

0.2

0.4

0.6

0.8

1
R

e 
F

s(q
,t)

f = 0.0
f = 0.5
f = 1.0
f = 1.5
f = 2.0
f = 2.5

A particles, T = 0.15
perpendicular

d)

Figure 5.9 – Test of the scaling relations of the incoherent scattering functionsFs(q, t).
a) Shows incoherent scattering functionFs(q, t) in perpendicular direction withf = 1.0
andq = 6.0 for different temperaturesT. b) Shows same curves against rescaled time
t/τα to illustrate the time temperature superposition principle aroundTc. c) Illustration of
the force time superposition principle in the parallel direction and d) in the perpendicular
direction.

and below the critical temperature that are called hopping processes [19, 20]. Close
to Tc these additional relaxation processes lead to deviations in the behavior from the
MCT predictions. In the case of the pulled particle one has with the forcef an addi-
tional free parameter and therefore one can check if a secondsuperposition principle
holds, the force time superposition principle. In fig. 5.6 c)and d) the scattering func-
tions atT = 0.15 and different forces are scaled onto each other (unscaled data is
shown in fig. 4.9 and 4.10). In both directions one finds that for small forces the curves
collapse nicely onto each other during theα-relaxation regime. Only for the highest
force f = 2.5 a slight deviation can be observed which comes from the oscillatory be-
havior in the parallel direction. Therefore, one can conclude that such a superposition
principle holds. Thus, the exponentsβ of the stretched exponential decay (3.3) with
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Figure 5.10 – Product of relaxation timeτα and q2 of the pulled particles for different
external forcesf at T = 0.15 in dependence ofq. Left plot shows A and right plot B
particles. Crosses atx = 0 mark the value of the inverse diffusion constants1/Dorth

(ln(5) as scaling factor is required for this comparison).

the applied force are the same as in equilibrium.

The last investigated property of the incoherent scattering shall be the relaxation time
itself in the orthogonal direction. For different force atT = 0.15 in dependence of
q the product ofq2τα is shown in fig. 5.10. These curves increase withq until they
reach a maximum aroundq ≈ 6 − 9 with a decrease at higherq. With increasing
forces one observes a strong decrease over orders of magnitude and a pronounced
curved shape until theq dependence is only a linear increase at high forces. As in
the equilibrium case [5] these curves can be compared to the diffusion constantDorth

as F(q, t) = exp (−Dorthq
2τα) holds in the hydrodynamic limit for smallq. With

Fs(q, t = τα) = 0.2 follows that ταq
2/ ln 5 = 1/Dorth. These values are marked

with crosses in fig. 5.10 and one finds a good agreement with theextrapolated values.
As a second point it is interesting to study the temperature dependence ofτα. Here,
one can check if a similar scaling relation with an effectivetemperatureTeff as for
the diffusion constant (fig. 5.5) is found. Displayed in fig. 5.11 are the values ofτα

for q = 6.0 and different external forces in dependence of the temperature (upper
plots). All curves show a diverging behavior in the region aroundTc. Again, as in the
diffusion case, the curves for higher forces diverge at lower temperatures. Thus, one
can also scale these curves onto the equilibrium curve that was done in the lower plots.
Here, in contrast to the scaling of the diffusion constant a systematic deviation from
the scaling at low temperatures is observed. Therefore, this deviation might again be
a result of additional relaxation processes that occur close to the critical temperature
and lead to a deviation of the power law behavior. This effectwas also observed in the
equilibrium simulations in [5] where they lead to a strongerthan predicted decrease of
the relaxation time at the lowest temperatureT = 0.14.
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Figure 5.11– Relaxation timeτα of the pulled particles with different external forces for
q = 6.0. Upper plots showτα against temperatureT and lower against effective temper-
atureTeff to highlight the collapse onto the equilibrium behavior at higher temperatures.
Left plots show A particles and right B particles.

5.1.4 Friction coefficient and effective temperature

Until now only the temperature dependence of two quantitiesin the perpendicular dir-
ection were investigated. Therefore, it is interesting to have a closer look at a quant-
ity that also depends on the parallel direction, the friction coefficient. Displayed in
fig. 5.12 is the temperature dependence of the friction coefficientξ for a constant force.
Close toTc one observes a strong increase over orders of magnitude ofξ. As in the
cases of the diffusion and relaxation constants the critical temperature for the curves
with external forces is shifted to lower values ofT and therefore these curves are all
below the equilibrium curve. As can be seen in the middle plots of fig. 5.12, it is
again possible to scale them onto the equilibrium curve by shifting. There, one finds
a good agreement and a universal behavior over up to 3 decadesin ξ for the scaled
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Figure 5.13– Van Hove correlation functions of the pulled particles. Upper and middle
plots showGs(r , t) at T = 0.14 and f = 1.5. Upper plots show parallel and lower
perpendicular direction to the force for A (left) and B (right) particles. Lowest plots show
Gs(r , t) for A particles atT = 0.17 and f = 1.5 (left parallel and right perpendicular
direction).
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Figure 5.14– Van Hove correlation functions in the parallel direction for pulled A particles
atT = 0.14 for a) f = 1.0 and b) f = 2.5. Here, even a small third peak is visible.

curves against the effective temperature. Here, the quality of the scaling is again com-
parable with the diffusion scaling and thus the particle motion in both directions can
universally be described with an effective temperature. From all these scaled plots it is
directly possible to obtain the values of the effective temperatures. This leads to the in-
teresting question if all these effective temperatures forthe different properties are the
same for the different quantities. To answer that question in the lowest plot of fig. 5.12
Teff/T − 1 for all three measurements is shown. One finds that in all measurements
the effect on the A particles is stronger and the values for the effective temperature lie
therefore above the values of the B particles. For both particle types it is found that
the values for the friction and the relaxation constant are in quite good agreement with
each other except for the highest force of the A particles. Butat this force it is ques-
tionable whether this scaling is still applicable. The values for the friction coefficient
seem to lie all a bit below the values of the other quantities.But there the statistics
is clearly not good enough to make any further statements about differences between
these properties. It is found that the behavior of the diffusion constant can be described
quite well with a simpley = a+ b f 2 behavior as is shown with the dotted fit to both
curves. This is in agreement with the predictions made in [65] from a mean-field the-
ory for a Brownian particle with a strong external field where also a quadratic behavior
was found.

5.2 Particle motion

In the last part of this chapter the movement of the particle shall be analyzed directly in
the real space. Here, the first investigated property is the van Hove correlation function
of the probe particle. In fig. 5.13 some van Hove correlation functions of the probe
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Figure 5.15– Right) Schematic sketch of a typical pulled particle trajectory at low tem-
peratures and forces. Here,tw defines the time the particle is trapped inside the cage and
∆x the jump distance of a single jump. Left figure shows typical trajectories for particles
with f = 1.0 at different temperaturesT.

particle are shown. In the direction perpendicular to the force one finds the typical
behavior for a glassforming liquid where one has a symmetricdistribution with a small
Gaussian peak aroundy, z = 0. It indicates the trapped particles inside the cages
and the broad exponential tails result from the non-diffusive motion on intermediate
timescales. In the parallel direction the symmetry of the distribution is broken. There,
also a Gaussian peak atx = 0 is found but only with a small exponential tail in
the negative direction. In the positive direction one observes a smaller second peak
followed by a broad and slowly decaying tails at longer times. As can be seen in a)
this behavior can be observed for long times, where even att = 3000 a strong peak at
the initial position can be observed. At this time the average probe particle has moved
≈ 3σ at T = 0.14. Only for higher temperatures one can reach the regime wherethe
peak disappears. This is shown in e) atT = 0.17 with f = 1.5. Here, one finds that the
van Hove correlation function is nearly symmetric with a Gaussian shape around the
average position at the longest times. This corresponds to the times where possibly a
transition to a diffusive behavior can be observed in the MSDs of fig. 5.3. At the lower
temperatures one has a motion of a particle in a frozen environment that can be seen
from the peak structure in the force direction in fig. 5.14. The second small peak is
at x ≈ 1 that corresponds to the distance of the neighbor peak in the equilibrium pair
correlation function. There, the particle moves with a highprobability to the position
of the nearest neighbor. For higher forces (heref = 2.5) even a third peak appears
that indicates the next nearest neighbor positions.

At the lowest temperatures the particle motion is a nearly discrete motion with two sep-
arated parts. On the one hand one has long times at rest, wherethe particle is trapped
inside the cage and on the other hand short jump moves from cage to cage. This beha-
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Figure 5.16– Distribution of the jump distancesP(∆x) and the waiting timesP(τw) of
the particle motions for A particles. Left plots show distributions atT = 0.14 for different
forces and left plots forf = 1.5 and different temperatures.

vior gets more and more pronounced for lower temperatures. In fig. 5.15 some typical
trajectories (x-direction) at different temperatures withf = 1.0 are shown that high-
light this behavior. Even atT = 0.18 one already sees that the particle gets slowed
down from time to time by energy barriers in the system. With decreasing temperat-
ure the height of these barriers increases and the particlesare trapped longer and more
often. There, it is easy to differentiate between a trapped particle and a particle that
jumps to the next cage. At the lowest temperature one has a nearly perfect separa-
tion between these two states. Hence one can study the probability distributions of the
waiting timesτw inside the cages and of the jump distances∆x from cage to cage.
Here, this was done with the method that was used in [66]. There, the particle motion
of a binary Lennard-Jones mixture in equilibrium was studied. In the presented cases
the already recorded single particle trajectories were used. There, every 40 integration
steps the positions and velocities were written out which were averaged over 20 con-
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secutive steps to reduce the fluctuations. Only then it is possible to identify the single
jumps and waiting times. To identify particle jumps from these averaged trajectories
the distance∆x̄i between two 20 steps separated positions is calculated and the aver-

age fluctuationσest =
√

1/N ∑i ∆x̄2i of these distances are measured (N number of
measurements). Note that different to [66]σest is calculated from the average over all
trajectories and not separately for every particle due to the much shorter simulation
runs here. It is found that a good criteria for the identification of a particle jump at
the lowest temperatures is|∆x̄i|

2
> 10σ2

est. From these jumps the start and the end
were identified by the threshold criteria|∆x̄i|

2
> 3σ2

est. With these jumps identified
the waiting times and jump distances can be measured. Here, the jump distance is the
difference in the position between the beginning and the endof the jump and the wait-
ing time is the time from the end of a jump to the beginning of the next jump. The parts
at the beginning and the end of the simulation were discardedas the steps are not com-
pleted (usually the particle is trapped here). In fig. 5.16 the calculated distributions of
the jump distancesP(∆x) and the waiting timesP(τw) are shown. It is found that the
distribution of the jump distances shows an exponential decay in the positive direction
and that the distribution of the waiting times shows a broad behavior that can be fitted
by a stretched exponential (straight line) with an exponentβ ≈ 0.5. This behavior
with a broad distribution of waiting times is principally inagreement with the simple
trap model of chapter 3.2.

5.3 Summary

In this chapter the regime at intermediate forces in the steady-state was investigated
closer. In that regime the particle motion shows a strongly anisotropic behavior and in
the parallel direction the motion is superdiffusive. Here,a scaling behavior is found
where the properties of the pulled particles show a universal behavior. It could be
seen that the diffusion constants, the relaxation times andthe friction coefficients of
the particle under the influence of the external force can be scaled onto the equilibrium
curves of the system. This leads to a description of the particle motion with an effective
temperature. Furthermore, it was checked if the general predictions that are made
by the MCT still hold for the pulled particle and it was found that the incoherent
scattering functions show a time temperature and a force temperature superposition
principle. At the end of this chapter the jump motion of the particles was investigate
and the distribution of waiting times and jump distances wasmeasured. Here, a broad
distribution of waiting times was found which is in agreement with the assumption that
are made for the simple trap model.
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Chapter 6

High force diffusive Regime

The second regime investigated here in detail is the one at high forces. In chapter 4 it
was found that at high forces the particle motion changes again from the superdiffusive
motion at intermediate forces to a completely diffusive motion in the parallel direction
at high forces. In this chapter that transition is studied indetail and it is found that
with increasing force the anisotropy of the particle motionis reduced until it is again
completely isotropic for the highest forces. Here, the reduced interaction of the probe
particle with the energy landscape of the system (especially with the deep minima) at
high external forces leads to that behavior. Furthermore, it is found that still deep in
the high force regime a temperature dependence of the diffusion constant exists which
is in contrast to the temperature independent behavior of the velocities and friction
coefficients.

6.1 Transition to the diffusive regime

In fig. 6.1 the transition from the intermediate force regimeto the high force regime for
the mean-squared displacement of the particle motion for A particles atT = 0.14 is
shown. There, one finds a strong dependence on the force as long as the particle motion
is influenced by the cages in the system. This effect of the cages is indicated by the
onset of the plateau in the MSDs. For higher forces one first observes a disappearing
plateau and then a strong reduction of the effective exponent in the long time behavior.
A second observation that can be made is that as long as the plateau is visible, the
short time behavior is identical for the different forces. At higher forces this regime is
shifted to higher values and therefore the local temperature of the probe is increased.
For both particle types it can be observed that these effectsalways occur at the same
force. So it seems that the cooling effect of the DPD thermostat is increased by the
trapping of the particles. For better visualization of the long time behavior in the lower
plot of fig. 6.1 the same MSDs divided by the time are shown.

65



66 6.1. TRANSITION TO THE DIFFUSIVE REGIME

10
-2

10
-1

10
0

10
1

10
2

t

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

<
∆x

2
(t

)>
-<

∆x
(t

)>
2

f = 2.5
f = 4.0
f = 5.0
f = 6.0
f = 7.0
f = 8.0
f = 9.0
f = 10

T = 0.14, A particles

parallel

a)

10
-2

10
-1

10
0

10
1

10
2

t

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

<
∆x

2
(t

)>
-<

∆x
(t

)>
2

f = 5.0
f = 6.0
f = 10
f = 20
f = 30

T = 0.14, B particles
parallel

b)

10
-2

10
-1

10
0

10
1

10
2

t

10
-2

10
-1

10
0

(<
∆x

2
(t

)>
-<

∆x
(t

)>
2 )/

t

f = 2.5
f = 4.0
f = 5.0
f = 6.0
f = 7.0
f = 8.0
f = 9.0
f = 10

c)

10
-2

10
-1

10
0

10
1

10
2

t

10
-2

10
-1

(<
∆x

2
(t

)>
-<

∆x
(t

)>
2 )/

t

f = 5.0
f = 6.0
f = 10
f = 20
f = 30

d)

Figure 6.1 – Upper plots show mean-squared displacement atT = 0.14 in the parallel
direction for a) A and b) B particles at intermediate and higher forcesf . Lower plots show
the same curves divided throught to highlight the transition to the diffusive regime at high
forces.

A second property that is closely related to the MSDs is the velocity autocorrelation
functionCv(t). It measures how strong the fluctuations in the velocity are correlated
in time. For the pulled probe with a drift they are given by

Cv(t) =
〈

[v(0)− v][v(t)− v]
〉

=
〈

v(0)v(t)
〉

− v2. (6.1)

Here, the average drift velocityv is subtracted. Of course in the perpendicular direc-
tions the average velocity is zero and therefore one obtainshere

Cvy(t) =
〈

vy(0)vy(t)
〉

and Cvz(t) =
〈

vz(0)vz(t)
〉

. (6.2)

Only for the parallel direction the drift has to be taken intoaccount

Cvx(t) =
〈

vx(0)vx(t)
〉

− vx
2. (6.3)



CHAPTER 6. HIGH FORCE DIFFUSIVE REGIME 67

0 0.5 1 1.5 2 2.5
t

-0.2

0

0.2

0.4

0.6

0.8

1

v x(0
)v

x(t
)-

 v
x2

f = 0.0
f = 1.0
f = 2.5
f = 4.0
f = 5.0
f = 6.0
f = 7.0
f = 8.0
f = 10

T = 0.14, A particles
a)

parallel

0 0.5 1 1.5 2 2.5
t

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

v x(0
)v

x(t
)-

 v
x2

f = 0.0
f = 1.0
f = 2.5
f = 6.0
f = 8.0
f = 10

T = 0.14, B particlesb)

parallel

0 0.5 1 1.5 2 2.5
t

-0.2

0

0.2

0.4

0.6

0.8

1

v y|
z(0

) 
v y|

z(t
)

f = 0.0
f = 1.0
f = 2.5
f = 4.0
f = 5.0
f = 6.0
f = 7.0
f = 8.0
f = 10

T = 0.14, A particlesc)

perpendicular

0 0.5 1 1.5 2 2.5
t

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

v y|
z(0

) 
v y|

z(t
)

f = 0.0
f = 1.0
f = 2.5
f = 6.0
f = 8.0
f = 10

T = 0.14, B particlesd)

perpendicular

10
-1

10
0

10
1

10
2

t

10
-3

10
-2

10
-1

10
0

10
1

v x(0
)v

x(t
)-

 v
x2

f = 0.0
f = 1.0
f = 2.5
f = 4.0
f = 5.0
f = 6.0
f = 7.0
f = 8.0
f = 10

T = 0.14, A particlese)

parallel

Figure 6.2 – Velocity autocorrelation functions of the pulled particles atT = 0.14 in
dependence of the external force. Upper plots show direction parallelto the force and
middle plots perpendicular direction. e) shows the same data as a) but on a log-log scale
to highlight the long-time tales of the velocity autocorrelation function. Black dashed line
is a power-law fit with the exponentα′ = −0.53± 0.05.
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In fig. 6.2 some of these correlation functions forT = 0.14 are shown. As one can
see at the lowest forces the velocity autocorrelation function is still quite similar to
the equilibrium curve (dashed black line). There, one observes a strong drop for short
times of the correlation function and it even becomes negative. This the a result of
the surrounding cage structure that traps the probe and actsin the opposite direction.
Therefore, it comes to a reverted motion, the particle is pushed back and trapped. At
higher forces the particles can detach more and more from thecage structure and the
motion shows less influence of the surrounding particles. Hence, the velocity auto-
correlation function is shifted to higher values and the backward motion is less pro-
nounced. In the perpendicular direction c) and d) the decay to zero happens quite fast
at all forces and for both particle types. This is in contrastto the parallel direction
where at intermediate forces a long time tail can be observedwhich is shown in e) on
a logarithmic scale. Here, one finds that for the forces in therange of f = 4− 8 the
velocity autocorrelation function shows a power law decay at long times over up to two
decades in time. This behavior increases with the forces until it reaches a maximum
at f = 5− 6. For even higher forces this effect decreases again and it changes to an
exponential decay at the highest forces. This power law decay is directly related to the
superdiffusive motion observed in the MSDs [35] by

〈

∆r2(t)
〉

=
〈

∫ t

0
ṽ(t′) dt′

∫ t

0
ṽ(t′′) dt′′

〉

= 2
∫ t

0

∫ t′

0

〈

ṽ(0)ṽ(t′ − t′′)
〉

dt′′dt′,

(6.4)

with ṽ(t) = v(t)− v one has the direct relation between
〈

∆r2(t)
〉

andCv(t). Due to

the bad statistics at long times this exponent can only be checked for the higher forces.
At f = 4.0 the exponentα′ = −0.53± 0.05 of the velocity autocorrelation function is
measured which is in agreement with the obtained exponentα = α′+ 2 = 1.52± 0.05
of the MSD at that force.

This change in the decay behavior can also be seen in the incoherent scattering func-
tions Fs(q, t) which are shown in fig. 6.3 for A particles atT = 0.14. There, one
observes in the perpendicular direction a transition from the decay at low forces, with
a plateau at intermediate times and a stretched exponentialdecay at long times, to a
completely Gaussian decay at high forces. In the perpendicular direction one finds
that at f = 4.0 the curvature ofFs(q, t) disappears completely and one has a behavior
Fs(q, t) ∼ −log(t) over nearly 3 decades in time. At even higher forces the curvature
changes in the opposite direction and one finds a behavior that resembles the behavior
of scattering functions in the Lorentz gas as was shown in [67]. There, one first has a
fast decay of the relaxation function and then a crossover toa slow decay at long times
which is found for the forcesf = 5 and f = 6 in the perpendicular direction. It is
clear, that in the case of the pulled probe the reason for thisrelaxation behavior differs
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Figure 6.3– Intermediate incoherent scattering functionFs(q, t) atT = 0.14 andq = 6.14
of pulled A particles in dependence off . a) shows parallel and b) perpendicular direction.
For high forces the relaxation mechanism changes.

from the one in the Lorentz gas where the particles are localized inside pockets of a
frozen structure. In the parallel direction the drift of theparticles leads to an oscillatory
behavior at high forces. At intermediate forces one observes a slow transition from one
relaxation behavior to the other with a slowly disappearingplateau, coming from the
low forces. In fig. 6.4 theq-dependence ofFs(q, t) in both directions for some selected
forces are shown. As one can see, the general behavior depends on the value ofq. For
lower forces the oscillatory behavior is shifted to lower values ofq.

In fig. 6.5 the corresponding van Hove correlation functionsof the probe particles for
the same forces are shown. Here, one finds that in the paralleldirection the shape
becomes more and more Gaussian with increasing forces. At the intermediate forces
the distribution of the probe probability shows a two peak structure with a narrow but
strong peak atx = 0 and a broad second peak peak at higherx. Such a behavior was
also observed for a pulled probe in a triangular lattice gas in [17, 68]. In contrast to
these previous results, here a broad tail of this second peakto lower x is found and
the peaks clearly deviate from a Gaussian distribution. Only at the highest forces the
first peak disappears completely and the shape of the van Hovecorrelation function
is Gaussian for all times. From a comparison with the behavior at high temperatures
follows that these long tails result from the cage structureas they disappear at higher
temperatures even for small forces. This can be seen in fig. 5.13 e). In the perpendicu-
lar direction one observes a transition from the typical shape with the broad exponential
tails and a strong localization atx = 0 to a completely Gaussian behavior.
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Figure 6.4 – Intermediate incoherent scattering functionFs(q, t) at
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Figure 6.6 – Upper plots show the mean squared displacements of the probe in both dir-
ections atT = 0.14 with f = 8, 10, 20 for A (left) and B (right) particles. Lower plot
shows the self part of the van Hove correlation function for both directions at the same
forces of A particles. Here, the distribution in the parallel direction was shifted by the
average value, to make both curves comparable. At high forces a strongreduction of the
anisotropy of the particle motion can be observed.

6.2 The diffusive regime

For high forces the particle motion is diffusive again and the van Hove correlation
function has a similar shape in both directions. Therefore,it makes sense to compare
the two particle directions directly with each other and check how strong the anisotropy
in this region is. Pictured in fig. 6.6 in the upper plots are the MSDs in both directions
together for the highest forces atT = 0.14. For both particle types one finds that the
direction parallel (straight lines) and the direction orthogonal (dashed lines) converge
against each other with increasing forces. This can also be seen by directly comparing
the van Hove correlation functions of both directions as is shown in the lowest plot of
fig. 6.6. There, for reasons of better comparisonGs(x, t) was shifted by the average
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Figure 6.7– Temperature dependence of the behavior in the high force regime. Leftplot
shows MSDs in both directions and right corresponding van Hove correlation functions at
T = 0.14, 0.34, 1.0 for f = 30.

particle position.

The measurement of the friction coefficient showed that the particle motion in the high
force regime is independent of the system temperature. Therefore, one would also ex-
pect that the diffusion shows a temperature independent behavior as well. To check this
prediction in fig. 6.7 the MSDs for A particles andf = 30 at different temperatures are
shown. At all temperatures one finds a clear difference between both directions at short
times but no direction dependence in the diffusive long timelimit. Surprisingly even at
these extremely high forces a temperature dependence in thediffusion constant exist,
as can be seen in the inset. This temperature dependence can also nicely be seen in the
van Hove correlation function that is shown in the right plotof fig. 6.7. This quantity
gives exactly the same picture. No anisotropy any more but still a strong temperature
dependence which is a clear difference to the behavior of thefriction coefficient.

One of the remaining questions that needs to be answered is towhat extend the DPD
thermostat influences the particle motion, especially in the high force regime. This
thermostat introduces an additional friction term into theequations of motion and
therefore it could be possible that the particle behavior athigh forces is strongly in-
fluenced from it. Thus, some measurements were run at the lowest temperature where
the thermostat was completely switched off. The resulting simulations were therefore
performed completely micro-canonically. As a consequencethe whole system energy
during the simulations with the pulled particle was not constant as the external force
constantly increases the system energy. This leads to a slowly increasing temperature
with the time. In the upper plots of fig. 6.8 selected displacements and MSDs in the
force direction for A particles atT = 0.14 are shown. For all forces one finds that the
displacements with and without the thermostat are in good agreement and therefore
no effect is visible. As a consequence also the friction coefficient is not influenced by
the DPD thermostat. Also the comparison of the MSDs shows a good agreement with
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Figure 6.8– Upper plots show direct comparison of displacements (left) and mean squared
displacements in the parallel direction (right) of the probe particles with and without the
DPD thermostat and lower left plot the corresponding temperatures in the systems without
thermostat. Shown curves are atT = 0.14 with f = 1, 5, 20 for A particles. Lower
right plot shows density dependence of the high force plateau atT = 0.18. There, red
symbols corresponds to the mainly used density with1600 particles in a box of geometry
Lx = Ly = Lz = L, blue to1400 and black to1800 particles.

only slight deviations in the short time regime at the highest force. There, the ballistic
regime from the simulations without the thermostat is shifted to slightly higher values
as the local temperature of the pulled particles is increased even more without the DPD
thermostat. Just to highlight the effect of the missing thermostat on the system temper-
ature the development of the temperature with the time of these simulations without
the thermostat is shown in fig. 6.8. There can be seen that the forcesf = 5 and f = 20
lead to a strong increase of the system temperature whereas the drift for the smallest
force f = 1.0 can only be seen in the inset.

As a last point in this chapter it shall be checked if the high force plateau is density
dependent that has been found in previous works [54, 56]. Therefore, the number of
particles were changed and new system configurations atT = 0.18 were equilibrated.
At this temperature the relaxation times are still not too large but the system already
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exhibits slow dynamics. For a better comparison systems with two different densities
were used. One slightly less dense system with1400 particles (700 of each type) and
one with a slightly higher density1800 particles (900 of each type) per subbox of size
Lx = Ly = Lz = L. With these equilibrated configurations new measurement runs
with applied external forces in the high force regime were done. The calculated friction
coefficient from these simulations are pictured in the lowest plot of fig.6.8 where one
can see the value of the high force plateau shows a clear density dependence and it
is shifted to higher values for higher densities. This is in agreement with the results
published in previous works [54, 56].

6.3 Summary

In this chapter the behavior at high forces was investigatedand it was shown that the
anisotropy of the particle motion reduces for higher forceswhere it is diffusive again
on the accessible time scales. In this regime the incoherentscattering function and
the van Hove correlation functions were investigated and itwas found that the latter
showed even for relatively high forces a double peak structure. In addition the high
force regime was investigated where, in contrast to the friction coefficient, the diffusion
showed still a strong temperature dependence at the highestforces. Furthermore, the
influence of the DPD thermostat and the density of the system on the particle motion
were analyzed. With this chapter the part on the steady-state motion in the liquid
is completed. In the next section the behavior after the switch-on and switch-off is
investigated and then a closer look at the behavior of the particle in the glass state is
taken.
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Chapter 7

Switch on, switch off and the glass
state

The previous chapters concentrated on the classification ofthe probe particles in the
different steady state regimes. Up to now all the presented results were obtained in the
steady state at temperatures aboveTc in the liquid phase. On the other hand the MCT
presented in chapter 3.17 makes predictions for the transient dynamics. Thus, for a
direct comparison with the theoretical predictions one also needs to study the transition
behavior into the steady state. Furthermore, studying thiscase helps to understand the
behavior at temperatures below the glass transition where the motion of the particles
drastically slows down. At these temperatures the behaviorafter the switch on of
the force is pronounced and influences some observables for along time. Here, the
interesting questions that arise are at what time the particle is in the steady state and
furthermore for what forces does it reach a steady state witha nonzero velocity.

7.1 Switch-on and switch-off

The first investigated case is the switch-on case where the particle is initially at rest at
t = 0. With the beginning of the simulation the constant externalforce f is switched on
and leads to an acceleration of the probe. At low temperatures and high forces, where
the particle is out of the linear response regime, one expects a non-linear response. To
measure this behavior a much better statistics at short times is required compared to the
previous simulations. Here, no self averaging over time is possible and therefore only
short simulation runs are practical where around 80000 repetitions of the particle mo-
tions over 1500 steps are recorded. At low temperatures one observes a strong increase
of the velocity directly after the switch-on of the force which is shown in the first plots
of fig. 7.1. Directly after the switch on the first increase is proportional to the applied
force and linear in time. It reaches a maximum at aroundt = 0.25 then followed by a
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Figure 7.1– Behavior of the pulled A particles after switching on the external field. First
plots show the velocity in dependence of time, middle and lower plots show the particle
displacement (linear scale and on log-log scale). Left plots show the behavior atT = 0.14
for different forces and right plot forf = 5.0 and different temperatures.
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Figure 7.2– Left plot shows displacements of A particles atT = 0.14 and different forces
(straight lines show transient behavior and dashed lines steady state behavior). Right plot
shows time until the particle has approximately reached the steady state from thetransient
measurements (criteria is the time from where on the deviation between transientand
steady state curve is less than 25%).

strong decrease which results from the influence of the surrounding particles that lead
to a constant friction and therefore to a reduction of the probe velocity. Interestingly,
one does not observe a monotonous decrease to the steady state velocity from here
on. At low temperatures and high forces a dip to velocity below the steady state value
is found and only from there the velocity increases to the steady state value. At the
highest forcef = 10 atT = 0.14 one even finds a second smaller dip in the velocity.
In the middle and lower plots of fig. 7.1 the displacements forthe same particles are
shown. At the first sight the displacements shown in e) and f) on the log-log scale look
quite similar to the mean squared displacement in the steadystate with a quadratic
behavior at short times, a plateau at intermediate and a linear increase at long times.
But here in contrast to the MSD measurement, where it is the steady state behavior, it
is a transient behavior. If the displacements are measured in the steady state they only
show a linear increase with time. This can be seen in fig. 7.2, where the displacements
from the long simulation runs are shown. From this comparison one can extract a
timescale that describes how long it takes until the particle has reached the steady state
after the switch on. Here, this point is defined as the time from where on the difference
between both curves is less than 25%. As one can see, this timescale increases strongly
with lower temperatures and shows an exponential increase at low forces. Therefore,
the transient behavior of the displacements gives a false perspective on the dynamics
of the probe particles. Hence, from the velocities one sees that the particles reach the
steady state quite fast at aroundt = 10 which is a few decades faster. Thus, the plat-
eau in the transient measurement of the displacement is a consequence of the velocity
overshoot at short times after the switch on. For low temperatures the height of this
overshoot, compared to the steady state velocity, increases strongly and therefore the
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Figure 7.3– Comparison of steady state (straight lines) and transient (dashed lines)meas-
urements of the mean-squared displacement for different forces atT = 0.10, 0.14, 0.15.
Left plots show parallel and right plots perpendicular direction for pulledA particles.
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Figure 7.4 – Comparison of steady state (straight lines) and transient (dashed lines)
measurements of the incoherent scattering functionFs(q, t) for different forces atT =
0.10, 0.14, 0.15 andq = 6.14. Left plots show parallel and right plots perpendicular direc-
tion.
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plateau in the log-log plot increases by orders of magnitude. But the steady state is
reached much faster.

From these measurements it is also possible to calculate thediffusive motion of the
particles during the onset of the force. In fig. 7.3 a direct comparison of the mean
squared displacements at different temperatures and both directions for A particles is
shown. One finds that for temperaturesT ≥ 0.15 the transient and the steady state
curves in both directions converge quite fast against each other. Only for the highest
forces one finds that the transient curves (dashed lines) at short and intermediate times
show a deviation from the steady state motion. This results from the heating up of the
probe particles that are at rest at the beginning of the simulation. That behavior can
be observed at all investigated temperatures and in both directions. For temperatures
T ≤ 0.14 a second effect can be found. Here, at intermediate and long times one
observes that the transient motion in both directions is much faster than the steady
state motion. In the glass atT = 0.10 that effect is strongly pronounced over up to 4
decades in time. For these temperatures the diffusion at intermediate times is strongly
increased after the switch on of the field. The same can also beseen in the incoherent
scattering functions shown in fig.7.4 where the relaxation is strongly increased in both
directions as the correlation functions decay much faster.Here, one even finds a strong
direction dependence that results from the drift which is not subtracted in the parallel
direction. Shortly after the switch on the velocity of the particles is higher then in
the steady state and therefore leads to the strong decay of the scattering functions.
These effects can be compared to the behavior under shear where one also observes
an accelerated motion [5, 43]. Here, the effect after the switch on differs strongly.
After the switch on of the shear field one also observes an accelerated diffusion and
relaxation. But in contrast to the single particle behavior the curves move away from
the equilibrium to the steady state behavior. For the pulledprobes the relaxation after
the switch on is even faster than in the steady state. Thus, one observes for short times
a strong increase of the diffusion and relaxation with a maximum and then a decrease
to the steady state behavior. Whereas in the sheared case one finds a monotonously
increasing behavior. The difference of both cases could be aresult of the different type
of forces. In the sheared case the system was driven with a constant velocity that leads
to a fluctuating stress in the system. In this work the probe particles are pulled with a
constant force which leads to a fluctuating probe velocity. Thus, it could be that the
observed behavior results from the pulling with a constant external force and it might
be that by pulling the probe with a constant velocity the behavior changes.

As a direct comparison the behavior after the switch off can be investigated. In this
experiment the force is switched of at timet′ after it was initially switched on att = 0.
One can expect that the resulting switch off behavior strongly depends ont′ until the
particle has reached the steady state. In fig. 7.5 a) the behavior of the velocity is
shown after the external force is switched off at timet′. Here, it is found that the
response increases with longer waiting times. At short times one finds a behavior that



CHAPTER 7. SWITCH ON, SWITCH OFF AND THE GLASS 83

0 2 4 6 8 10
t

-0.4

-0.2

0

0.2

0.4

0.6

v(
t)

t’ = 8.30
t’ = 1.66
t’ = 0.996
t’ = 0.664
t’ = 0.415
t’ = 0.232
t’ = 0.125
t’ = 0.083

T = 0.14, A particles
a)

0 0.5 1 1.5 2 2.5 3
t

-5

-4

-3

-2

-1

0

1

v(
t)

/v
(t

’)

t’ = 0.083
t’ = 0.125
t’ = 0.232
t’ = 0.415
t’ = 0.664
t’ = 0.996
t’ = 1.66
t’ = 8.30

T = 0.14, A particles

b)

0 2 4 6 8 10 12
t-t’

0

0.2

0.4

0.6

-v
(t

)+
v(

t’)

t’ = 8.30
t’ = 1.66
t’ = 0.664

T = 0.14, A particles

c)

Figure 7.5 – c) Behavior of the velocities for pulled A particles with the external force
switched off at timet′. Dotted line shows the behavior of the steady state motion. b)
v(t)/v(t′) is shown to compare the behavior at short times with the equilibrium velocity
autocorrelation function (dotted line). c)−v(t) + v(t′) is shown to compare the response
at long times with the switch-on behavior (dotted line).

is similar to the velocity autocorrelation function in the equilibrium system. This can
be better seen in b), wherev(t)/v(t′) is displayed. Already for the shortest waiting
time t′ = 0.083 (10 integration steps) the response shows a slight deviation from the
equilibrium velocity autocorrelation function (dotted line). Thus, the response here
is only in the limit t′ 7→ 0 the equilibrium velocity autocorrelation function. With
longer waiting times the magnitude of the response increases until it is similar to the
inverse switch-on behavior. This is illustrated in fig. 7.5 c) where−v(t) + v(t′) is
shown for long timest′ against the switch-on behavior (dotted lines). In the steady
state (straight black curve) the long-time and short-time regimes are identical and only
at intermediate times both curves differ from each other. There, the response from the
switch off shows a continuous decay to the long time value where the switch on curve
has a dip with a minimum.
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Figure 7.6 – Upper plots show displacement of the pulled A particles atT = 0.10 and
different forces. Right plot shows transient measurements (straight lines) compared to
the steady state measurements (dashed lines). Middle plots show the calculatedsteady
state velocities and friction coefficients in the glass in dependence of the external force
f . Lowest plots show steady-state measurements of the mean-squared displacement in the
glass atT = 0.10 of pulled A particles and different forcesf . Left plot shows parallel and
right perpendicular direction.
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7.2 The glass state

Having studied the steady-state behavior in the liquid and the switch on case the glass
state can now be investigated. At temperaturesT < 0.14 the equilibrium dynam-
ics freeze on timescales accessible in the simulations. Thus, one does not observe a
long time diffusive regime and also no relaxation to zero in the incoherent scattering
functions. An interesting question that arises in this caseis how particles under the
influence of an external force behave at these temperatures.One can expect that for
high forces the glass melts and that the particles move through the system. Here, it is
interesting to check if even for small forces a steady state motion can be reached or if
the particle is completely trapped for forces below a critical force f0. In the upper plots
of fig. 7.6 the transient displacements of A particles atT = 0.10 and different forces
are shown and in the right plot in direct comparison the steady state displacements.
Even at long times a strong difference between both curves ispresent and therefore
the particle does not reach the steady state in the transientdisplacements. Here, the
overshoot of the velocities at short times is too strong and consequently it completely
hides the steady state motion. Nevertheless, it is present and it is reached as can be
seen from the dashed lines where even at the lowest forcef = 0.5 the average particle
moves the distance∆x ≈ 0.1 and the displacement shows a linear behavior. This ob-
servation is in contrast to previous results [13, 54, 69] where a freezing at low forces
was found. Also the MCT predicts that below the glass transition a threshold force
f0 exists. Below this force the particles are completely arrested, the velocity is zero
and the friction coefficient is infinity. Only for forcesf > f0 it is expected that the
cages are destroyed and the particles move with a constant velocity through the system.
Close to that critical force it was found that the particle velocity can be described by a
power law which is given by

v = v0 ·

(

f

f0
− 1

)α

, f > f0

= 0 , f ≤ f0. (7.1)

This behavior was also found in experiments [13, 69, 70] where the predicted curves
could be fitted against the measured values as is shown in fig. 7.7. There, the experi-
mentally measured velocities in dependence of the applied force are shown for different
volume fractions of the colloidal PMMA suspension. For the shown curves the volume
fraction increases from left to right with the valuesφ = 0.29, 0.45, 0.50, 0.52, 0.53, 0.55
but is always below the glass transition value ofφg = 0.58. Experimentally it is chal-
lenging to apply small external fields and therefore the particles could only be pulled
at velocities in the intermediate and high force regime for temperatures belowTc. This
is easier in computer simulations where the force can be set to an arbitrary small value
and only the required statistics is a limiting factor. In themiddle plots of fig. 7.6 the
measured velocities and friction coefficients atT = 0.10 are shown. Indeed one finds
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Figure 7.7 – Experimental values obtained for the velocities of the tracer particles in de-
pendence of the applied force from [13].

that at intermediate forces the behavior of the velocity canbe described by such a
power law which is shown by the blue fit curve. The values for the extracted fit para-
meters areα = 6.55, f0 = 0.03 andv0 = 1.1 · 10−16. Compared to the experiments
the exponentα is much higher whereα ≈ 2.5 was found and the obtained value for the
threshold force is more than a factor of10 smaller than the lowest investigated force
and therefore not easily accessible with the present computational resources. Neverthe-
less, even for these much higher forces a strong deviation from the power law behavior
is found that has not been observed in previous measurements. For small forces the
friction coefficient seems to converge against a plateau value which is in contrast to the
expected diverging behavior. Here, it is found that the particle motion is comparable
with the liquid state, but only for a cooler system with a slower particle motion. A
reason for that behavior could be the additional relaxationprocesses in the simulation
that are not present in the theory such as the hopping terms oraging processes. The
same behavior can also be observed for the diffusion and relaxation of the probe. In
the lowest plots of fig 7.6 the mean-squared displacements for A particles atT = 0.10
in both directions are shown. There, the external force leads to an acceleration of the
diffusion and the particles are able to reach the diffusive regime in the perpendicular
direction on a timescale accessible in the simulation. For the parallel direction it is
found that at long times the motion at small and intermediateforces is again superdif-
fusive and also the transition to the diffusive behavior at high forces can be observed.
In fig 7.8 the incoherent scattering functions for the same particles are shown and they
also shows a strong decrease of the relaxation times with increasing force. These ob-
servations are in contrast to the predictions from the theory. The MCT predicts a type
A transition for the transition in dependence of the external force. There, the plateau
in the glass is constant even for long times and continuouslydecreases to zero with
increasing force, whereas in the simulations, even at low forces, a decay of the correl-
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Figure 7.8– Upper plots show steady-state incoherent scattering functionFs(q, t) of pulled
A particles in the glass atT = 0.10 for different forcesf with q = 6.14. Left plot shows
parallel and right perpendicular direction. Lower plots show left)Fs(q, t) for q = 6.14
and right) mean-squared displacements in the perpendicular direction of A particles at
temperaturesT = 0.14, 0.10, 0.05. In the glass it is found that the height of the plateau
shows a temperature dependence.

ation function to zero at long times is observed. Furthermore, the height of the plateau
seems to be independent of the force as can be seen in fig. 7.8 where the scattering
functions and the mean-squared displacements atT = 0.14, 0.10, 0.05 are directly
compared with each other. There, the height of the plateaus changes with decreasing
temperature but they are independent of the force. This is the typical behavior for a
transition of type B. As a last point the behavior of the van Hove correlation functions
is investigated in the glass. For the forcesf = 2.5 and f = 4.0 at T = 0.10 they
are shown in fig. 7.9 for the direction parallel to the force. Here, the behavior is also
comparable to the behavior in the liquid atT = 0.14 with a strong peak atx = 0 and a
long stretched tail in the force direction and also the second and third order peaks are
visible.
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Figure 7.9– Van Hove correlation functionsGs(x, t) in the parallel direction for pulled A
particles in the glass atT = 0.10 for a) f = 2.5 and b) f = 4.0.

7.3 Summary

First in this chapter the behavior of the particles after theswitch on of the force was
discussed. It was found that for short times an overshoot in the velocity appears where
the particles move faster than in the steady state. That behavior influences the behavior
of the displacements for a long time and leads to a plateau value that can be misinter-
preted as a trapping region whereas the particle has alreadyreached the steady state for
a long time. This overshoot in the velocity also leads to a faster diffusion and relaxation
at the beginning of the simulation. As a second part the behavior after the switch off
was investigated and it is found that the response depends onthe waiting times between
the switch on and the switch off. In the last part of this chapter some measurements
in the glass state were shown. There, it is found that the particle behavior in the glass
is similar to the liquid case and that it reaches a steady state even for small forces.
This finding is in contradiction to previous experimental results and predictions by the
MCT where a threshold force is predicted and that expects thatthe whole dynamics
is frozen for forces below this force. Furthermore, the observed transition seems to
be of a different type. Here, a type B transition in dependence of the external force
is observed, whereas the MCT predicts a type A transition. These differences could
be a result from the fact that the system in these simulationsis not in the equilibrium
any more and therefore the behavior shows a dependence on thewaited time before the
particles were pulled.

With this chapter the investigation of the forced particle in the supercooled liquid in this
work ends and the next chapter presents the results of the anisotropic critical behavior
found in the Ising model.



Chapter 8

The Ising model under shear

The behavior of systems close to their critical point has been studied for a long time [74,
75, 76, 77]. For many equilibrium systems the important properties as the value of the
critical point and of the critical exponents are known or canbe calculated. The cal-
culation of these informations in computer simulations is not always a simple task.
Especially close to a critical point it is not straight forward to obtain the right inform-
ations about the system. In this region one observes a strongincrease of the relaxation
times and of the correlation lengths that complicates the work. It leads to an effective
reduction of the system size which causes a smoothening of the phase transitions and
thus an inaccurate measurement of the observables. For the equilibrium measurement
the behavior of these finite systems is understood and a method known as finite-size
scaling has been developed that solves the problem. There, from scaling arguments of
the observables the true values can be calculated [32, 75]. Unfortunately, until now
the critical behavior is only understood for the equilibrium case and only in parts for
the non-equilibrium case. It has been investigated in recent years in different simple
models as the driven lattice gas [78, 79] or the driven binarymixture [80]. Also a fluid
under shear in the critical region was investigated by Kawasaki and Onuki [29, 30, 31]
and many properties of the system as the behavior of the critical temperatureTc in
dependence of the applied shear rate or the values of the critical exponents were cal-
culated. Most of these predictions could be experimentallyverified [81, 82] but up
to now it is not completely understood how these systems can be treated in computer
simulations and thus how the finite-size scaling has to be done. In the following the
behavior of the Ising model under shear is investigated and away is presented how the
anisotropic finite-size scaling in the steady-state can be done.

89
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8.1 The model

The model which is used in this work is the two-dimensional Ising model on a square
lattice with Lx × Ly spins and nearest-neighbor interactions, so that all spinshave 4
direct neighbors. All spins can flip from the state+1 to −1 and back and are coupled
to their neighbors via the coupling constant−J. The Hamiltonian for this model is

H = −J ∑
<i,j>

σiσj (σi = ±1). (8.1)

This model is well understood and has been studied for a long time in the equilibrium.
There, it was solved analytically in two dimensions by Onsager [83] who showed that
the system has a critical point at the temperatureTc = 2.269. For simplification in this
work temperatures are given in units ofkB/J with kB the Boltzmann constant. In this
part of the work this system under the influence of shear is studied. Therefore, it is not
a good idea to simply apply the normal periodic boundary conditions here (that were
presented in chapter 2 and used in the microrheology simulations). These would lead to
surface effects at the borders where the system would feel a drastically increased shear
which disturbs and complicates the measurements and hence are not wanted. There-
fore, Lees-Edwards type periodic boundary conditions [84]are applied, that prevent
these effects. With their help one has a bulk system that is completely homogeneous
and feels the same shear rate at every point in the system. Theimplementation of
these modified periodic boundary conditions is rather simple. All that is required is
one counter that keeps track of the number of row shifts in thebulk system. Later on,
in the energy calculation for the lowest and uppermost rows the direct neighbors, not
the directly next neighbors are chosen. Instead the, by thiscounter shifted, neighbors
are used to counteract the shift of the whole system. For a better understanding these
boundary conditions are illustrated in fig 8.1 for a single shear step.

8.1.1 The sampling step

Here, the Metropolis step is used as the sampling step. It is an often used sampling
step in the study of equilibrium statistical mechanics [85]. There the probabilityPi for
a given statei at timet̂ is

Pi(t̂) =
1

Z
exp(−βEi). (8.2)

where,Z is the partition sum for the investigated system. The development of the
probability is given by a master equation

∂Pi(t̂)

∂t
= ∑

j

Pj(t̂)wji − ∑
j

Pi(t̂)wij, (8.3)
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Figure 8.1 – Illustration of the shear step with Lees-Edwards type boundary conditions.
Left is at the beginning before the first shear step, middle after the first step and right after
the second step. Upper gray layer is a copy of the lowest row and lowestgray layer a copy
of the first row to highlight the behavior of the boundary conditions that needs to keep
track of the numbers of shifts to prevent surface effects.

with Pi(t̂) the probability of finding the system in statei at timet̂ andwij the transition
rate from statei to statej. For the equilibrium system the left side is zero and then one
obtains the following equition

∑
j

Pjwji = ∑
i

Piwij. (8.4)

For the case that
Pjwji = Piwij (8.5)

is fulfilled, the system preserves detailed balance. By inserting (8.2) in (8.5) one ob-
tains the expression for the transition rate

wij

wji
=

Pj

Pi
= exp(−β∆E), (8.6)

in the case for∆E = Ej − Ei > 0. This is the Metropolis criterion for the change
from one configuration to the next. In the case∆E < 0 the acceptance rate is1 and
the move is always accepted. Here, the sampling step is implemented in the follow-
ing way. Randomly one lattice position is chosen and the difference∆E between the
present configurationi and the configuration with the flipped spinj at that position is
calculated. If∆E > 0 a random number [86] between0 and1 is drawn and it that
number is smaller thanexp(−β∆E) the spin is flipped. If∆E < 0 the spin is directly
flipped. That whole procedure is repeatedN = Lx · Ly times until the sampling step
is completed.

This sampling step can also be used in non-equilibrium systems. There, it is import-
ant to note that in contrast to the equilibrium case, the result of the simulation de-
pends on the chosen sampling step. By using a different acceptance rate, for example
the Glauber-sampling step [87], the heat dissipation changes and the system behaves
different. A direct comparison showed that the Glauber dynamic leads to less heat
dissipation under shear and therefore to less cooling of thesystem [88].
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Figure 8.2– Typical configuration snapshots at temperatureT = 2.45. Left picture shows
the unsheared equilibrium system withγ̇ = 0.0 and right the sheared system withγ̇ = 0.3.
In the sheared system one observes a strong anisotropic behavior with strongly increased
fluctuations in the shear direction. Here, black points showing up spins andwhite down
spins on aLx = Ly = 250 lattice.

8.1.2 The shear step

Sampling the system only with the Metropolis step leads to the equilibrium behavior
which is of no interest here. To reach a sheared steady state asecond step is required
that drives the system out of equilibrium. In this work this is done by a shear step which
follows after each sampling step and brings the anisotropy into the system. Here, a
shear algorithm is used that was first presented in [89] for the study of nucleation under
shear. The strength of the applied shear is set by the shear rate γ̇ which depends on the
two parametersMs andPs via γ̇ = Ms · Ps. Here,Ps is the acceptance probability for
each single row shift andMs defines how often the shift is tried on average for each
row. Each single row step contains the following steps:

• Draw a random number between0 and1. If that number is smaller thanPs, then
go on. Else stop this row-shift step.

• Choose a lattice row1 ≤ n ≤ Ly and shift all spins in rows fromn to Ly by one
lattice position into the positive x direction.

• Adjust the periodic boundary conditions to take the shear displacement into ac-
count (increase the counter by one).

This row-shift step is repeatedl = MsLy times. Afterl such steps the shear step is
completed and the next relaxation step follows. Note, that the characteristic parameter
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of the system behavior is the shear rateγ̇ and that the behavior is independent of the
explicit choice ofMs andPs. Therefore, all results presented here depend only onγ̇.

In fig. 8.2 some typical system configuration snapshots are shown. There, a direct com-
parison of the two systems with and without shear atT = 2.45 can be seen. One finds
that the shearing strongly influences the behavior of the order parameter fluctuations.
In the equilibrium system one has an isotropic behavior of the fluctuations. Switching
on the shear leads to a strong anisotropy in these fluctuations. Here, it is found that the
fluctuations in the direction parallel to the shear are much stronger than in the perpen-
dicular direction. Furthermore, one can conclude only by looking at these snapshots
that the correlation length of these two directions differsand is not isotropic any more.

8.1.3 Isotropic finite-size scaling

In equilibrium it is found that one observes a diverging correlation lengthξ in the
system close to a critical point. In finite systems this leadsto a smoothening of the
phase transition and to a strong system size dependence of the measured properties.
Thus, a formalism is required to obtain the wanted informations as the exact value of
the critical point or of the critical exponents. Here, the finite-size theory comes into
play. For a finite system it is found that the behavior of the observables separates into
a part that depends only on the length scaleξ and a second part that depends only on
the system sizeL. One can therefore describe the system behavior in dependence of
a universal scaling variablex = tL1/ν with t = (T/Tc − 1). For the singular part of
the free energy of the system it is found [32, 77] that it scales as

F(L, T) = L−(2−α)/νF (tL1/ν) (8.7)

for a given temperatureT and system sizeL. This function leads to expressions for the
other observables. For the magnetizationM follows

M(L, T) = L−β/νM(tL1/ν) (8.8)

and for the susceptibilityχ

χ(L, T) = Lγ/νχ(tL1/ν). (8.9)

For higher moments ink-th order of the magnetization the expression (8.8) can be
generalized to

〈|M|k〉 = L−kβ/νMk(tL
1/ν). (8.10)

With the help of these scaling relations one has access to a simple method for cal-
culating the critical point in the system. There, the fraction of the second and fourth
moment needs to be calculated

U(t) = 1−
〈M4〉

3〈M2〉2
= Ũ(tL1/ν). (8.11)



94 8.1. THE MODEL

0 20 40 60 80 100 120
x

10
-2

10
-1

10
0

G
(x

)

γ  = 0.3
.

parallel

Lx=Ly=250

0 20 40 60 80 100 120
y

10
-4

10
-3

10
-2

10
-1

10
0

G
(y

)

T = 2.44
T = 2.45
T = 2.46
T = 2.47
T = 2.48
T = 2.49
T = 2.50
T = 2.51
T = 2.52
T = 2.53
T = 2.54
T = 2.55

perpendicular

γ  = 0.3
.

Lx=Ly=250
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Here, the dependence on the system sizeL cancels out and the fraction only depends on
the universal scaling variablex. Direct at the critical point this variable is independent
of the system sizex = 0 and therefore the cumulantsU(t) for different system sizes
all have an intersection point atTc. Note, that this method requires that the system is
large enough to be in the scaling regime and that these predictions are not fulfilled for
too small systems.

8.1.4 The correlation length

One characteristic property of a critical point is the diverging correlation lengthξ that
follows a power law according to

ξ ∝ t−ν (8.12)

with the exponentν. In the unsheared system this quantity can be measured from the
behavior of the correlation functionG(r) between two spins at the distancer. Here,
the system is isotropic and thusG(r) only depends on the magnitude ofr

G(r) = 〈σ(0)σ(r)〉. (8.13)

There, it is found that the correlation function ind dimensions has the Ornstein-Zernike
form [32, 76] and behaves as

G(r) ∝ r−(d−1)/2 exp (−r/ξ) (8.14)

It is interesting to investigate the behavior of this quantity for the sheared system and to
check which differences can be observed. In fig. 8.3G(r) for the sheared system with
γ̇ = 0.3 at different temperatures is shown. The first difference to the equilibrium is
that the pair correlation function shows a strong anisotropic behavior. This is in agree-
ment with the previous observations from the snapshots in fig. 8.2. In the direction
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perpendicular to the shear one finds a behavior that is in agreement with the Ornstein-
Zernike behavior (8.14). There, an exponential decay at long distances is observed that,
at least in principle, allows to measure a correlation length. In the parallel direction the
case is different. Here, the behavior is strongly influencedby the shear and shows a
different behavior. Even at the largest distances no exponential decay can be observed
and therefore the algebraic behavior cannot clearly be identified. A second important
observation that can be made is the shift of the critical temperature under shear. For
the equilibrium case the critical temperature isTc = 2.269 which is quite a bit away
from the presented temperatures. Thus, one would not expectsuch a strong increase
of the correlation length at these temperatures. Principally, it is possible to extract the
correlation length from these measurements (at least in theperpendicular direction)
but unfortunately in this presented case the fluctuations and finite-size effects are too
strong for a direct measurement and therefore a different way is chosen.

8.1.5 The structure factor

It is found that the structure factorS(q) [90] of the system is a useful quantity for the
understanding of the finite-size scaling of the system

S(q) =
1

N

〈

ρ(q)ρ(−q)
〉

=
1

N

〈∣

∣

∣∑
i

σie
iqri
∣

∣

∣

2〉

. (8.15)

Previous work on a theoretical binary fluid model under shear[29, 30, 31] and exper-
iments [81, 82] found thatS(q) shows a strong anisotropy forq → 0 and that the
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behavior of the inverse structure factor is given by

S−1(q) = A(T − Tc)
γ + Bqω

x + Cq2. (8.16)

The identityA(T− Tc)γ = const is motivated by the equilibrium behaviorS−1(q) =
(kBTχ)−1(1+ q2ξ2). Then, one can write

S−1(q) = A(T − Tc)
γ

(

1+
B

A
(T − Tc)

−γqω
x +

C

A
(T − Tc)

−γq2
)

. (8.17)

Generally wave numbersq scale as inverse length and therefore one can assume that
the following relations

ξ2y =
C

A
(T − Tc)

−γ = ξ̂2y(T − Tc)
−2ν⊥ (8.18)

and

ξω
x =

B

A
(T − Tc)

−γ = ˆξω
x (T − Tc)

−ων‖ (8.19)

hold. Inserting these expressions into (8.15) leads to

S−1(q) = A(T − Tc)
γ(1+ (ξxqx)

ω + (ξyq)
2). (8.20)

with the following exponents

ν|| =
γ

ω
(8.21)

and
ν⊥ =

γ

2
. (8.22)
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Both correlation length are therefore related via

ξx ∝ ξ2/ω
y = ξ

ν⊥/ν||
y , (8.23)

with ω/2 = ν⊥/ν||. The important consequence is that by calculating the anisotropic
structure factor one has found a way to measure the anisotropy exponentω. This
exponent plays an important role in the anisotropic finite-size scaling as is shown in
the following sections. From the structure factor the valueof ω can be calculated by
taking the difference of both directions

∆S(q)−1 = S(qx)
−1 − S(qy)

−1 = Bqω
x . (8.24)

In dependence ofq the difference behaves as a power law with the wanted exponent.
In fig. 8.4 the calculated structure factor for a system withγ̇ = 0.3 at T = 2.44 is
shown. As is seen, the behavior ofS(q) in the perpendicular direction is∝ q2 and
in the parallel direction more complex. Also shown here in blue is the difference
between both directions. The difference∆S(q)−1 shows a power law behavior that
can be seen in fig. 8.5 where only the difference in a log-log plot at T = 2.45 and
different shear rates is shown. There, one finds that this method is quite robust as it
shows no dependence on the shear rate and thus one can conclude that the value of
this exponent is constant in the investigated region. To check how strong the following
results are influenced by the value of this exponent the following calculations are done
with two different exponentsω = 0.64 andω = 2/3 that are both in agreement with
the simulation results. From fig. 8.5 also the behavior of theprefactor in dependence
of the shear rate can be studied and it is found that∆S(q)−1 ∝ γ̇qω

x .

8.2 Anisotropic finite-size scaling

After a short introduction of the basic system properties inthe last chapter, the aniso-
tropic finite-size scaling for this system shall be presented here. For these systems the
finite-size scaling behavior differs drastically from the equilibrium cases. There, the
system shows an anisotropic behavior and therefore both directions have a different
correlation length. Furthermore, even the temperature dependence in the different dir-
ections is not the same and thus one expects two or more different exponents for the
correlation length. In this chapter an approach for the anisotropic finite-size-scaling is
presented that generalizes the isotropic methods to the anisotropic case.

8.2.1 Finite-size scaling theory

The measured exponentω plays a crucial role for the finite-size-scaling in the aniso-
tropic system under shear. Close to the critical point thek-th moment of the order



98 8.2. ANISOTROPIC FINITE-SIZE SCALING

2.33 2.335 2.34 2.345 2.35 2.355 2.36
T

1

1.5

2

2.5

3

<
M

4 >
/<

M
2 >

2

216x120
343x140
512x160
729x180

γ = 0.05

ω = 2/3

.

2.33 2.335 2.34 2.345 2.35 2.355 2.36
T

1

1.5

2

2.5

3

<
M

4 >
/<

M
2 >

2

270x120
437x140
664x160

γ = 0.05

ω = 0.64

.
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parameter is given [91, 92] by

〈|M|k〉 = |1− T/Tc|
kβ Mk(Lx/ξx, Ly/ξy) (8.25)

Now, the scaling function depends on both directions. By taking a factor(Lx/ξx)
−kβ/ν||

out of the scaling functionM̃k one gets

Mk(Lx/ξx, Ly/ξy) = (ξx/Lx)
kβ/ν‖M̃k(Lx/ξx, Ly/ξy)

= L
−kβ/ν‖
x |1− T/Tc|

−kβM̃k(Lx/ξx, Ly/ξy). (8.26)

Here, the appearing prefactor was absorbed in the scaling function and (8.19) was
inserted forξx. This leads to the expression for thek-th moment

〈|M|k〉 = L
−kβ/ν‖
x M̃k(Lx/ξx, Ly/ξy). (8.27)

In a second redefiniton step the temperature dependence in the second argument is

removed and one obtains the scaling function
≈
Mk

M̃k(Lx/ξx, Ly/ξy) =
≈
Mk

(

(Lx/ξx)
1/ν‖ , (Ly/ξy)/(Lx/ξx)

ν⊥/ν‖
)

=
≈
Mk (tL

1/ν‖
x , Ly/L

ν⊥/ν‖
x ). (8.28)

As the final expression for thek-th moment of the magnetization one obtains

〈|M|k〉 = L
−kβ/ν‖
x

≈
Mk (tL

1/ν‖
x , Ly/L

ν⊥/ν‖
x ). (8.29)
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As in the isotropic case (8.11), the fourth-order cumulant [91] can now be defined by

ULx,Ly(t) = 1−
〈M4〉

3〈M2〉2
= Ũ(tL

1/ν‖
x , Ly/L

ν⊥/ν‖
x ) (8.30)

Again, one hast = 0 at the critical point andULx,Ly(0) = Ũ(0, Ly/L
ν⊥/ν‖
x ). The

big difference to the isotropic case is that the cumulant still depends on the relation

Ly/L
ν⊥/ν‖
x . To obtain a clear intersection point ofULx,Ly(0) one needs to keep this

relation constant which is fulfilled by scaling the systems according toLx = cLω/2
y .

In this work for the two measured values ofω the chosen system sizes areLx × Ly =
216× 120, 343× 140, 512× 160, 729× 180 for ω = 2/3 andLx × Ly = 270×
120, 437 × 140, 664 × 160 for ω = 0.64. In both cases these correspond to the
choice ofc = 20. From the strongly enhanced fluctuations in the shear direction
follows that the sizeLx has to be chosen quite big withLx > 200 to prevent unwanted
strong finite-size effects.

Interpolation method A helpful method to calculate the cumulants at the different
temperatures in the equilibrium case is the histogram extrapolation method [32, 93].
With this method it is possible to calculate histograms at temperatures that are close
to the original simulated one from the same simulation. Thus, it is usually possible to
reduce the fluctuations of the cumulants close toTc without additional computational
effort. As that method is based on the theory of equilibrium mechanics [94] it is there-
fore not expected to work in the steady state. Nevertheless,here it was empirically
found that one can interpolate from one histogram to anotherin a similar way. In the
canonical ensemble the probability for a configurationS at temperatureT is given by

PT(S) =
1

ZT
e−βE (8.31)
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Therefore, one can write for the fraction of the two probabilities of the same configur-
ation and different temperatures

PT′(S)

PT(S)
=

Z

Z′
e−(β′−β)E ⇔ PT′(S) =

Z

Z′
PT(S)e

−(β′−β)E. (8.32)

As a consequence one can calculate the histogram of the system at a different temper-
atureT′ by weighting every configuration by the factore−(β′−β)E instead of1. Here, it
is found that for the sheared system a similar reweighting can be applied. In that case
the weights have to be chosen as

exp

(

(

β − β′
)

E+ cγ

(

1

β′
−

1

β

)

E

)

. (8.33)

In fig. 8.6 and 8.7 the calculated cumulants forγ̇ = 0.05 and γ̇ = 0.3 are shown.
As can be seen one finds a good agreement over the whole temperature range of the
simulated values (black symbols) and the extrapolated values (colored lines). Thus, by
using this method it is possible to extract the values of the critical points with a much
higher precision. Furthermore, one can even calculate the derivatives at the critical
point that are important for the calculation of the criticalexponents. These calculations
of the cumulants were done for a range of shear rates. All the obtained values for the
critical temperatures in dependence of the shear rate are presented in fig. 8.8. As
one sees, the critical temperature is shifted to higher values with increasingγ̇. For
small shear rates the critical temperatures follow a power law behavior according to
Tc(γ̇)− Tc(0) ∝ γ̇φ with φ = 0.44± 0.01 (straight blue line). This is in agreement
with the results found in [29, 82] where also a power-law shift of Tc was observed. For



CHAPTER 8. THE ISING MODEL UNDER SHEAR 101

200 700
Lx

10
3

10
4

-100 dU/dT
kTχ

300 600
Lx

10
3

10
4

- 50 dU/dT
kTχ
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extremely high shear rates one observes a saturation of the critical temperature and it
converges against the valueTc ≈ 2.68. It is found that the values of the critical points
are stable against small deviations ofω as can be seen in fig. 8.6 and 8.7 where a direct
comparison for both values is shown.

8.2.2 Evaluation of the critical exponents

After the critical temperatures are determined it is much easier to calculate the critical
exponents of the observables. Here, not only the single values of these exponents are
of interest. Furthermore, it is interesting to check if a shear rate dependency exists or
if they are independent oḟγ. Knowing that thek-th moment scales according to (8.29)

it follows that atTc with t = 0 and fixedLy/L
ν⊥/ν‖
x the first and second moments of

the magnetization scale as

〈|M|〉 ∝ L
−β/ν‖
x (8.34)

and
〈M2〉 ∝ L

−2β/ν‖
x . (8.35)

In an analogous manner it follows that the susceptibilitykBTχ = LxLy(〈M2〉 −

〈|M|〉2) atTc behaves as

χ ∝ L
γ/ν‖
x . (8.36)

If ν‖ is known it is possible to calculate the values ofβ andγ from these relations. The
valueν‖ can be obtained from the derivative of the cumulant [32, 95].In the first order
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the derivative with a constant ration ofLy/L
ν⊥/ν‖
x varies according to

dULx,Ly(t)

dT
∝ L

1/ν‖
x . (8.37)

From this behavior the value ofν‖ can be extracted. In fig. 8.9 the behavior of the
derivative and of the susceptibility are shown forγ̇ = 0.05 andγ̇ = 0.3. For the same
systems in fig. 8.10 the first and second moment of the magnetization atTc are shown.
There, all properties show a power-law behavior over the investigated region of system
sizes and therefore the exponents can be measured. The obtained critical exponents in
dependence of the shear rate and both values ofω are presented in tab. 8.1. Here, no
dependence on the shear rate for the investigated values ofγ̇ is observed but a slight
dependence onω is found.

For high shear rates it can be expected that the system behaves like a mean field system

Table 8.1– Measured critical exponents of the system

γ̇ ω ν‖ ν⊥ β γ

0.05 2/3 1.38 0.46 0.37 1.11
0.1 2/3 1.38 0.46 0.35 1.23
0.3 2/3 1.37 0.46 0.38 1.07
0.05 0.64 1.45 0.48 0.38 1.17
0.1 0.64 1.46 0.49 0.36 1.21
0.3 0.64 1.47 0.49 0.39 1.16
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with an infinite shear rate. In this limit the system can be solved analytically [96, 97].
There, the values for the critical exponents of the correlation length areν‖ = 1.5 and
ν⊥ = 0.5 with the mean field critical point isTc = 3.466. Especially the values of
the exponents forω = 0.64 are not too far away from the mean field values although
for the investigated region of shear rates still a strong dependence ofTc on γ̇ could
be observed. Thus, the system was definitely not in the mean field region. For high
shear rateṡγ > 10 the finite-size effects increased dramatically. There, it is required
to go to even larger system sizes to obtain a realistic valuesfor the measured properties
that explains the strong difference between the measuredTc and the mean field value.
At these high shear rates it is found that the behavior onω increases strongly and
therefore one needs to measure this exponent with a higher precision first before the
whole finite-size scaling analysis can be done.

8.2.3 Consistency checks

In this section a consistency check for the critical exponents is presented. At the critical
point the maximum size of the correlations in the finite system is given by the system
size. In thex-direction the maximum correlation length is given by

ξx = Lx (8.38)

and therefore in the y-direction by

ξy = cξ
ν⊥/ν‖
x = cL

ν⊥/ν‖
x . (8.39)

By choosing the system size as
Ly = nξy (8.40)



104 8.2. ANISOTROPIC FINITE-SIZE SCALING

10
-1

10
0

Lx
1/ν

||(1-T/T
c
)

1

2

3

<
|M

|>
L xβ/

ν ||

216x120
343x140
512x160
729x180

Figure 8.12– Universal scaling behavior of〈|M|〉L
β/ν‖
x againstx = L

1/ν‖
x (1− T/Tc(γ̇))

for temperatures belowTc at γ̇ = 0.05, ω = 2/3 andc = 20. Black line at high values
shows a fit with the exponentβ ≈ 0.36.

one hasn uncorrelated clusters in they-direction. Thus, one expects a scaling of for
the second moment of the magnetization according to

〈M2〉 ∝
1

n
∝ L−1

y . (8.41)

On the other hand follows from (8.29) that

〈M2〉 = L
−2β/ν‖
x

≈
M2 (0, Ly/L

ν⊥/ν‖
x ). (8.42)

Combining these two relations, the following expression is found

〈M2〉 = CL−1
y ∝ L

−2β/ν‖
x L

ν⊥/ν‖
x L−1

y = L
ν⊥/ν‖−2β/ν‖
x L−1

y (8.43)

with
C ∝ L

ν⊥/ν‖−2β/ν‖
x . (8.44)

By keepingLx fixed and varyingLy one can calculate the constantC in dependence
of Lx. Then, from theLx dependence ofC one obtains the value forν⊥/ν‖ − 2β/ν‖
and from the already known value ofβ/ν‖ the relationν⊥/ν‖ can be estimated. Here,
this was done forγ̇ = 0.1 where the system sizes were varied in the range200 ≤
Lx, Ly ≤ 600. The results for the second moments and the constantC are shown in
fig 8.11. As one can see the prediction of (8.41) is fulfilled inthe chosen range of
system sizes. Against these curves fits with a behavior according to (8.43) were made
and the constantC was measured. These calculated values are shown in the rightplot of
fig. 8.11. In the next step these points were fitted by a power law and the exponent was
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extracted. According to (8.44) the exponent corresponds toν⊥/ν‖ − 2β/ν‖ which in
this case has the value−0.19± 0.01. As a consequenceν⊥/ν‖ ≈ 0.32± 0.01 follows
that is in agreement with the previous results obtained fromthe structure factor.

A second consistency check is the calculation of the scalingfunction

≈
Mk (tL

1/ν‖
x , Ly/L

ν⊥/ν‖
x ) = 〈|M|〉L

β/ν‖
x (8.45)

in dependence of the scaling variablex = L
1/ν‖
x (1− T/Tc(γ̇)). For the right geo-

metries the values for the different measurement should collapse onto the same uni-
versal curve. Here, the previously calculated exponentsν‖ and β are required. For
γ̇ = 0.05 with ω = 2/3 this universal scaling is shown in fig. 8.12. There, all values
of the different measurements collapse nicely onto the sameuniversal scaling curve
and therefore the scaling properties are fulfilled. For highvalues ofx the scaling func-
tion should behave asymptotically as the infinite-lattice critical behavior. Therefore, in

this regime
≈
Mk≈ xβ should hold [98]. This is checked by a power law fit against the

highest values (black line) which gives the valueβ ≈ 0.36 that is in agreement with
the previous measurement.

8.3 Summary and outlook

In this chapter the finite-size scaling of the Ising model under shear was investigated.
It was found that by an additional shear step a strong anisotropy is brought into the
system which leads to two different correlation lengths, parallel and perpendicular to
the shear direction. As a consequence an anisotropic finite-size scaling of the system
is required. The finite-size scaling can be accomplished by scaling both system sizes
with a fixed ratio, that is given by an exponent. With the help of the structure factor
that exponents could be measured. In the following the critical points in dependence
of the shear rate were measured and it is found that the critical point shifts to higher
temperatures. From the scaling relations in addition the critical exponentsβ,γ, ν‖ and
ν⊥ could be calculated.
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Chapter 9

Final remarks

In this work two different slowly relaxing model systems under the influence of ex-
ternal forces were studied. The first system was a binary soft-sphere mixture that
shows a glassy dynamics at low temperatures. There, the active non-linear microrhe-
ology was investigated. In the second part of the work the behavior of the Ising model
under shear close to the critical point was studied and a method was presented how the
finite-size scaling can be accomplished in this anisotropiccase.

Soft-sphere mixture: Here, the behavior in the non-linear response was of interest
which could easier be studied in a slowly relaxing system. Therefore the binary
Yukawa mixture was chosen where at low temperatures a glass transition with strongly
increasing relaxation times is observed. By comparably low external forces the sys-
tem can be driven into the non-linear regime. In dependence of the applied force three
different regimes can be identified. For the lowest forces the particle motion is still in
the linear-response regime where the particle properties are given by the equilibrium
properties. This can be seen from the constant plateau in thefriction coefficient at low
forces and higher temperatures. At lower temperatures on observes that at intermediate
forces the particle motion deviates from the linear-response behavior and the velocity
increases superlinearly. Thus, the friction coefficient decreases with increasing force.
In that regime one finds a strongly anisotropic particle motion which is superdiffusive
in the force direction. Furthermore, a universal scaling regime is found that allows to
scale the perpendicular diffusion constants, the relaxation times and the friction coef-
ficients in dependence of temperature onto the corresponding equilibrium properties.
Therefore, the important properties of the particle in the non-linear regime behave as
in equilibrium but at a different temperature. This has leadto the definition of an ef-
fective temperature which is found to scale quadratic with the applied force. At higher
forces a third regime was observed where the motion in the force direction is diffusive
again and the anisotropy of the motion reduces with increasing force. These results
are characteristic for a system with glassy dynamics that has a frozen structure which
prevents a backflow in the system and leads to a separation of the time scales between
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the motion of the pulled particle and the surrounding environment. The behavior of the
pulled particles can be understood with the help of two theoretical models. A simple
directed trap model shows the behavior of superdiffusivity. In that model the strength
of the behavior depends on the external force and first leads to an increase and then
to a decrease at higher forces which is also found in this work. Also the transition
to the diffusive motion at high forces is found but it clearlymisses a lot of important
properties such as the equilibrium dynamics and the influence of the pulled particle on
the surrounding. Therefore, it can only be seen as a first starting point for the under-
standing of the particle behavior in a glassforming liquid.The second model is a much
more sophisticated model, a schematic model in the framework of the mode coupling
theory. This model succeeds in describing a big part of the equilibrium dynamics of
the system and thus gives the correct low force limits in the liquid. Here, the problem
is in the superdiffusive motion that cannot be described with that model. A problem
with these predictions is that the used model is a reduced schematic model which takes
only oneq-value into account. Therefore, one cannot expect that it describes the whole
dynamics correctly as effects that result from multiple modes are excluded. Here, these
simulation results should motivate further investigations on the theoretical and exper-
imental side to improve the present models and measure the particle behavior with a
higher precision. For further work from the simulation sideit would be interesting to
investigate the behavior in the superdiffusive regime witha higher precision and longer
simulation runs. There, it would be interesting to study thebehavior in a different sys-
tem for example in the Weeks-Chandler-Andersen (WCA) mixture [99] that can be
simulated more efficiently and allows longer simulation runs. Thus, one has access
to a better statistics and could therefore gain more preciseresults about the effective
temperatures and their behavior. Here, it would be interesting to definitely answer the
question if one observes different effective temperaturesfor the different observables
or if it is the same for all quantities. Furthermore, it wouldalso be interesting to in-
vestigate the behavior in the glass in more details. There, one interesting question that
one could investigate is the effect of aging on the particle behavior where it could be
that with increased waiting times the behavior of the particles approaches the theor-
etical predicted behavior with a threshold force and frozenparticles for forces below
that threshold. In that case one could expect that the friction coefficient increases with
longer waiting times and converges against the predicted power law behavior.

Ising model under shear:The second part of the work was a preliminary study to un-
derstand the behavior of a system under shear. Here, the anisotropic finite-size scaling
in the Ising model under shear was investigated which is a simple model system for a
liquid system under shear. With the help of that model a way was found to accomplish
the finite-size scaling in the anisotropic system. Shearingthe Ising model also leads to
a strong anisotropic behavior close to the critical point and the usual finite-size scaling
breaks down. In this work it was shown that the relation between the two exponents
of the correlation length is crucial for the scaling and thatthis value can be obtained
from the structure factor of the system. With that exponent known the scaling can be
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extended to the anisotropic case and the critical points andexponents could be identi-
fied. Here, it was found that the critical exponents change from the equilibrium values
towards the mean-field values of the system. In a future work it would be interesting
to check if this method can be applied in a continuous model asthe AO model or the
binary liquid and if one can verify the theoretical predictions for these models. There,
also the influence of the hydrodynamic interactions would beof interest as it is pre-
dicted that they lead to a shift of the critical temperaturesinto the opposite direction as
in the Ising case. Furthermore, it would be interesting to study the effect of shear on
additional properties such as the interface tensions and onthe capillary waves also far
away from the critical point. In principle here one could start again with these meas-
urements in the sheared Ising model and later move on to a morerealistic continuous
model.
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