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Abstract

Understanding the behavior of systems in the non-equilibistate is one of the biggest
problems in contemporary physics. For these systems a isrmaomparable to the
one of equilibrium statistical mechanics is not known. lis thiork two different slowly
relaxing model systems are investigated where the influehesternal forces leads
to a non-linear response. The first model system is a glamssigrliquid where the
behavior of a single particle under the influence of a consaternal force is shown.
In the second system the Ising model at the critical pointeursthear is investigated
and a method is presented how the anisotropic finite-sizengazan be accomplished
in this case.

In the first investigated system one of the particles in asiteimning soft-sphere mix-
ture is pulled with a constant external force in one directit low temperatures close
to the glass transition a strongly increased relaxatioe tsriound and the system can
easily be driven out of the linear response regime. In degerel of the magnitude
of the applied force it is found that the particle behavioowh a strongly different
behavior and three distinct regions can be identified. Rerfoces the particle is in
the linear-response region where the particle propertiegi&en by the equilibrium
properties. For higher forces the particles leave thatmegand enter the regime at
intermediate force. In that regime the particle shows asaropic behavior with a
superdiffusive motion in the parallel direction. Furtheme, a universal behavior is
found where the particle properties can be rescaled ontednéibrium properties
with an effective temperature. At high forces it is foundtttiee particle motion be-
comes isotropic and diffusive again. As a last point in thaled the behavior directly
after the switch on and off is investigated which helps toarsthnd the behavior in
the glass state where the system is completely frozen.

Close to the critical temperature the shear rate influenesubttuations in the system
and thus leads to an anisotropic behavior. A result of thetotropy is that the nor-
mal finite-size scaling is not applicable anymore as twoedd#ht correlation lengths
appeatr. In this work this problem is studied in the Ising macheler shear and a way
is presented how the finite-size scaling can be done in thsbtaopic case. Here, with
the help of the structure factor a new anisotropy exponemin be calculated that
relates the two exponents of the correlation lengths witthedher. With that expo-
nent known the relation of the two system sizes are knownladdaling can be done.
Here, the critical points are measured and they are shiftei@pendence of the shear
rate. Furthermore the critical exponeﬁtsy,vH andv, are calculated.
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Zusammenfassung——

Eine der offenen Fragen der aktuellen Physik ist das &adstis von Systemen im
Nichtgleichgewicht. Im Gegensatz zu der Gleichgewichgsphist in diesem Bereich
aktuell kein Formalismus bekannt der ein systematischestiBeiben der unterschied-
lichen Systeme eriglicht. Um das Versindnisiiber diese Systeme zu vedffern
werden in dieser Arbeit zwei unterschiedliche Systemeisttjddie unter einem ex-
ternen Feld ein starkes nichtlineares Verhalten zeigererhdi handelt es sich zum
einen um das Verhalten von Teilchen unter dem Einfluss ekterreangelegten Kraft
und zum anderen um das Verhalten eines Systems in @ee Nes kritischen Punktes
unter Scherung.

Das Modellsystem in dem ersten Teil der Arbeit ist eineabenYukawa Mischung,
die bei tiefen Temperaturen einen Glialssrgang zeigt. Diedihrt zu einer stark an-
steigenden Relaxationszeit des Systems, so dass man aukleiben Kiften re-
lativ schnell ein nichtlineares Verhalten beobachtet. bhdngigkeit der angelegten
konstanten Kraft &nnen in dieser Arbeit drei Regime, mit stark unterschiéein
Teilchenverhalten, identifiziert werden. Bei kleinenaken findet sich der lineare-
Antwort Bereich, in dem das Teilchenverhalten durch die chigéwichtseigenschaften
gegeben ist. Bei mittleren ften werden ddiber hinaus nichtlineare Effekte sicht-
bar und es wird beobachtet, dass die Teilchenbewegung inchiigng superdiffusiv
ist. Daneben lassen sich die Eigenschaften der Teilcheshdein universelles Ver-
halten mit einer effektive Temperatur beschreiben. dndren Kaften hin beobachtet
man einenUbergang in ein weiteres Regime. Hier verringert sich diesAtiopie
der Teilchenbewegung und sie wird wieder valtsdig diffusiv. Als letzter Punkt in
diesem System wird das Verhalten des Teilchens direkt naohAh- und Abschal-
ten der Kraft untersucht welches Aufschlugser die Teilchenbewegung bei tieferen
Temperaturen in der Glassphase gibt.

In dem zweiten Teil der Arbeit wird das Ising-Modell unterh®cung betrachtet. In
der Nahe des kritischen Punkts kommt es in diesem Modell zu eineinBessung der
Fluktuationen in dem System durch das angelegte Scheféd. hat zur Folge, dass
das System stark anisotrop wird und man zwei unterschleglli<orrelationsingen
vorfindet, die mit unterschiedlichen Exponenten divergierinfolgedesseratst sich
der normale isotrope Formalismus des "finite-size scalimght mehr auf dieses Sys-
tem anwenden. In dieser Arbeit wird gezeigt, wie dieser auf a@nisotropen Fall zu
verallgemeinern ist und wie damit die kritischen Punkteyisadie dazu getrenden
kritischen Exponenten berechnet werdémiken.
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Chapter 1

Introduction

The description of systems far away from equilibrium is ohthe major challenges of
contemporary physics. Since the understanding of theibguiin systems around 100
years ago relatively slow progress has been made in thattidine Until now, only
the linear-response regime is understood that describall perturbations from the
equilibrium behavior which breaks down for higher forced.pfesent no framework
is available that describes systems in that regime. Thexgefiois of great interest to
study slowly relaxing systems under the influence of exidoraes that can easily be
driven into the non-linear response regime. In this work thiféerent problems are
investigated that show a strongly non-linear response endfanterest in the field of
colloidal physics.

Fluid colloidal systems are often used systems in the stbdgfomatter physics [1, 2]
which contain particles in the range from nanometer to nm&ter size dispersed in a
solvent. Well known examples of every day colloidal materae blood, dust, milk,
paint, ketchup and many more. From the experimental sidethgstems are interest-
ing as they have a few advantages compared to atomisticsysi@ue to the big size
of the patrticles they are much easier accessible. Colloyga¢ms can be investigated
with techniques that use optical light such as confocal osicopy or light scattering
whereas in the case of atomistic systems much higher eseaggerequired that lead
to a bigger often not feasible effort. A second advantagdhaenuch slower times-
cales involved in these systems. For colloidal systems igalpelaxation time is in
the region of milliseconds or larger whereas for atomiceystit is in the range of pi-
coseconds which complicates the investigations even ndoerther big advantage of
colloidal systems is the ability to tune the particle potEst For example by varying
the concentration of polymers or salt in a solution the etiba between the charged
colloids can be changed. Thus, one can study the influencertie parts of the po-
tentials much easier and these systems can even be usedeals foodtomic systems
[3]. One characteristic property of colloidal mixtures &t they exhibit Brownian
motion which is a consequence of the solvent that leads to/ roaltisions with the
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colloidal particles and thus to a random motion.

One subfield that deals with the mechanical properties adeonsed systems is the rhe-
ology [4]. There, the flow of complex liquids and deformasaf soft solids under the
influence of external forces is investigated. A typical (nedcheological experiment
Is the shear experiment where the system is bound betweepl@tes that are moved
into opposing directions. First, this leads to a deforrraod then to a flow of the
whole system. This can and has been done for colloidal sgs[ghwhere the influ-
ence and the behavior of the shear rate on the system pexpeati be measured. Here,
interesting occurring phenomena are the effects of shaamitly or shear thickening
which lead to a decreasing or increasing viscosity witheasing shear rate![6].

In recent years a newly developed method called microrlggobame into the focus
of the research [7,]8] as it allows to extract additional infation about a system
and extends the macro rheological measurements. Thereglia&ior of single probe
particles embedded in the material is measured with the airedeive informations

about the system that are not accessible with the macroatjeal experiments. In

principal this method can be applied in two different vemsioln the passive version
the probe particles are left unperturbed inside the matefiaere, the formalism of

equilibrium mechanics still holds and thus with the Stokgsstein relation the relation
between the probe properties and the system propertiesansmkand understood. The
second version is the active version where an external fierepplied on the probe
particle. As a consequence the probe accelerates and mowes direction of the

force [9,[10, 11| 12]. Experimentally this can be done witbhar particles that are
pulled with magnetic fields [13] or laser tweezers![14, [15]. 1Bor strong enough

forces the linear-response regime![17] is left and the hehaets non-linear. Here,
no simple formalism exists that describes the non-lineaabier of the particle[[18]

and therefore this regime is still not well understood.

In the first part the behavior of a pulled particle in a glassing soft-sphere mixture is
investigated which is for two reasons an interesting prolitestudy. At low temperat-
ures close to the glass transition one observes a stronglyased relaxation times. As
a consequence one can easily drive the system out of the-liesaonse regime and
thus study occurring non-linear effects. This is of inteneshe field of microrheology
where one needs to understand the non-linear behavior qirttiee particles. There-
fore, the aim of this work is to identify and investigate thiéedent occurring regimes
in dependence of the temperature and force parameter. efomdne, the differences
in the behavior of the particles between the liquid and tlegphase are of interest
which leads to the second motivation from the side of the rigtezal description of
the glass transition. The glass transition is a topic thatlieen studied for a long
time and multiple different theories have been developatetxribe the appearing ef-
fects [19/ 20| 21]. For example one has the theory of Adam abtd<322], the free
volume theory![2B], kinetically constrained models![24¢iahe mode coupling theory
of the glass transition (MCT) [25, 26]. Thus, it is interegtiio study the behavior of
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a pulled particle in a supercooled liquid and to compare ¢iselts with the theoretical
predictions that can be made.

The second part of this work deals with a problem of anisatrépite-size scaling in
computer simulations at the critical point. This is a probldéat appeared in previ-
ous simulation where the Asakura-Oosawa (AO) mddel [27kustiear was investig-
ated [5, 28]. As is well known, the AO model describes colpalymer mixtures
which undergo phase separation in a polymer-rich phase amal@d-rich phase.
Here, the critical point where these phases become ingigghable belongs to the
universality class of the Ising model. For the behavior afjaitl system under shear a
few predictions are made [29,/30, 31] such as a shifted afpicint, an anisotropic crit-
ical behavior with different critical exponents and a retitut of the capillary waves.
These points are of interest to study in a computer simuldii¢t unfortunately they
are strongly complicated by the occurring anisotropy anitefisize effects caused by
the applied shear in the region around the critical pointuslTtone can only make
progress in the understanding if the behavior is undersamakit is known how these
systems can be treated in computer simulations. As thislgmols too difficult to
solve and to understand in a Molecular dynamics simulatfanantinuous model a
much simpler model, the sheared two dimensional Ising maslehosen here. Close
to the critical point the fluctuations in this system are afsongly anisotropic and
the finite-size scaling can be studied. Here, it is shown dha&nisotropic scaling is
required where the different system sizes are scaled wiimewotropy exponent. That
scaling exponent is crucial for the whole ansatz and it isifbtiat it can be obtained
from the static structure factor. With the help of this ex@onthe critical points and
the corresponding critical exponents can be studied. Téumsethodology has been
developed how criticality can be studied when Ising-liketsyns are exposed to shear.
It is hoped that this methodology will be a useful ingredienfuture studies of phase
separation in Ising-like systems such as colloid-polymittumes under shear.

This work is organized in the following way. In the secondtiea an introduction to
the soft sphere Yukawa system and the simulation detailsvéng The third chapter
is a short overview of the important theoretical models ttestcribe the behavior of
the pulled particles. In the fourth chapter the charadiergoperties of the pulled
probe in the steady state are presented where three diffeggmes can be identified.
In chapter five the regime at intermediate forces and in @negax the regime at high
force are investigated in detail. In chapter seven the hehaf/the probe at the switch
on, the switch off and in the glass is presented which is teedaapter on the topic
of microrheology. Then, chapter eight treats the anisatrbpite-size scaling of the
Ising model under shear.






Chapter 2

Molecular dynamics simulation and
the model

In the study of classical many-body systems two simulati@hwods are widely em-
ployed. The first is the classical Monte Carlo method [32] Wwhgoften used in the
study of equilibrium systems. There, one has access to therfd formalism of
equilibrium ensembles that allows for advanced sampliapgsstAdditionally it can be
used in some cases for systems if the information about theostopic dynamics is
not required and the average state of the system is not mtlakneed by the micro-
scopic dynamics and the chosen sampling algorithm. Thenslegopular method is
called Molecular dynamics$ [32, B3]. There, one integratesaquations of motion on
a per particle base and therefore contains the informatimutathe microscopic dy-
namics. As a consequence this method has the clear disadeathiat it is rather slow
for typical system sizes and it is quite a challenge to siteutdowly relaxing pro-
cesses. Here, in this work it is the aim to study the microscbghavior of a pulled
particle with the correct dynamical properties and theeetbe Molecular Dynamics
simulation method is chosen which is presented in the foligwThe basic equations
that describe the behavior of classical many-particleesystare Newton’s equations
of motion,

mit; =F; = 2 Fij: — 2 VV(’I’Z—I']D (2.1)
j(#i) j(#)

For a system that containé particles one obtairsN coupled differential equations of
second order. Together they describe the motion of thegiestinteracting by a given
potentialV(r). Here,m; is the masst; the position and; the acceleration of theth
particle. This interaction potentid(r) leads to a forc&;; = —VV(|r; —r;|) acting
between particlesand;.
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2.1 Velocity-Verlet-algorithm

Quite a few different integration schemes have been usedive $he equations of
motions [(2.1). They differ in many properties as the reglir@source consumption
during the simulation, the speed, the complexity of the w@tlgm, the precision of the
calculated patrticle trajectories or the energy consesmabif the whole system. For
the calculation of many-particle systems the Verlet iraign scheme [34, 35, 36]
is often used. It is a symplectic algorithm and thereforeseoves the energy of the
system even over long simulation runs and it is time revérdi®/]. In addition, it
is in a low order of time and therefore very compact and simplprogram. In this
work an extended version of the Verlet integration schemusésl, the velocity Verlet
version [38]. Here, new positiong(t + dt) and velocities;(t + Jt) are given by

2

ot
ri(t—+ot) =ri(t) + otvi(t) + om;
1

o [Fi(t) + Fi(t+5t)], (2.2)

Fi(t)

Vi<t + (St) = Vi(t) +

with ¢ the chosen time step. This scheme is implemented in a twoastgpvith the
force calculation in between. In the first integration step ocalculates the new particle
positions from the old values and adegt) /2m; to the velocities. After this step the
new forces can be calculated from the new particle positibmgshe second and last
integration step the velocity calculation is completed bgling F; (¢ + dt) /2m; to the
previous values. Now, the system has propagated by a tipedstand all system
properties of interest can then be measured.

Compared to the original integration scheme this implenm@mtaas the advantage
that it makes all particle positions, velocities and foraesessible at the same tirhe
Whereas in the original version [34] the velocities at tinean only be calculated with
the knowledge of the positions at timte- 6t andt — 6t and therefore its use is a bit
cumbersome.

2.2 DPD-thermostat

In this work one of the particles in the system shall be pulledugh the system by
an external force. This additional force constantly insesathe energy of the sys-
tem. As a consequence it will heat up. The aim of this work isttaly the steady
state of the pulled particle with a surrounding medium at @stant temperature and
not in a system with an increasing temperature over time.refbee, it is required

to reduce the whole energy of the system by the amount thabigght into the sys-

tem during the simulation. In this work the temperature aatithe energy shall be
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Figure 2.1- A typical configuration of the system. The green particle highlights the single
pulled particle inside the bath of A and B particles (red and blue). The whitevayives
the direction of the externally applied force.

preserved. This can be realized by coupling the system terantbstat. Due to the
external force that works on the probe particle it is requiteat this thermostat also
conserves momentum locally and not only globally. Theftine thermostat should
also be Galilean invariant.

The thermostat of choice, that fulfills all these requiretagis an improved dissipative
particle dynamics (DPD) thermostat [39,/ 40/ 41]. There,dfaations of motion of
the particles are varied in the following way

mit; = Fi = Y [Fij+FF +Fi] + F (2.3)
i(#i)

Originally DPD was used as a method to study hydrodynamexctdfas they can be
strongly increased with this method. In this equation thgioal calculation of the
forces (three terms in brackets) was extended by the extiemca contributionFl‘th.
This force acts at one selected particle which shall be guleough the system. For
all other particles this force is zero. Beside the first ctwtion to the forces from
2.1), two additional contributionE? and Fﬁ act on the particle pairs. These are the
contributions from the DPD thermostat [39) 40] and are given

Fij = —Cw?(ri) (Fi - Vi) (2.4)
and
FII} = \/2kBT§w(ri]-)9,-]-f‘ij, (2.5)

withr;; = r; —r;andv;; = v; —v; the relative distances and velocitiég,= rl-]-/|r1-]~\

the corresponding unit vector aifda parameter that sets the strength of the first in-
teraction. Note, that the prefactorsin (2.4) dnd](2.5) &teminined by the fluctuation
dissipation relation as was shown in [40]. The funct'w(v,-]-) is a weight function
which can be used to tune the strength of the DPD interactiodependence of the
relative particle distance. The following choice

W(Tij) =4/ 1-— rij/r(I:DPD' (2.6)
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for r < rppp (@and zero otherwise) is the standard choice for the use bpsténtials
but generally a different function could also be used [4%rdjrppp is a second free
parameter that sets the range of the DPD interactions. T 6;; is a Gaussian
white noise term with

(0;j(t)) =0,
(03 (1)6ij () = (8iirdjj + 010 )0 (t — 1) 2.1

The first term of the DPD interactiorﬁf (2.4) is a friction term. It is negative and
couples to the relative velocities of the particle pairsisTgart leads to a decrease of
the relative motion and therefore to a cooling of the systdime second terrFlR. is

a random force that leads to an acceleration of the slowgbesti The consequence
of these two terms is that the system energy is bound from &idés. Together they
manage to keep the temperature of the system constant, aden tne influence of
external forces [5]. Both parts of the thermostat only actantigle pairs and therefore
the thermostat works locally that is an important propeotytfie simulation of system
with external forces. Generally these forces are anisatrapd therefore a require-
ment for the thermostat is that it is able to manage thesetduldorces and does not
create any unwanted anisotropic effects. An example fdn auorce is the shear field
where the system shows a strong anisotropic behavior asecapdn in[[5]. There,
the DPD thermostat has proven to be a good working choice amhged to cool the
system even with such strong directed forces. By changingdnameterspyy and

¢ the range and the strength of the interaction can be tuneel parametef sets the
strength of the thermostat and therefore controls how gtth@ Newtonian motion of
the particles is disturbed by the thermostat. The ragigs on the other hand tunes
how long ranged the interactions of the thermostat are. Bym'hng(rij) as a pre-

factor for F? andw(r;;) for Ff} the fluctuation-dissipation theorem is automatically
fulfilled [40].

2.2.1 Peters scheme

The equationd_(214) and (2.5) can be implemented in diffesarys. In earlier realiz-
ations of this thermostat the problem occurred that theyewet time step independ-
ent and did not rigorously maintain the Maxwell-Boltzmanstdbution. This was
caused by the random force term (2.5) which was independéné @hosen time step
ot. There, a different time step changes only the friction tefrthe thermostat and
therefore leads to a different behavior. That problem wgesgdy a new integration
scheme which was proposed by Peters [41] which is used imihik. According to
this scheme the momenta of the particles have to be rescidrdiee velocity Verlet
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integration step by

P :=P; + (—aij(vij - £ij)0t + bijf;;)f 5

p; := P; — (—aij(Vij - Fij) St + bi0;)F 5. (2.8)
Here, prefactors;; andb;; are chosen as

a;; = {w?(rij)

bi]' = JZI{TCC(JZ(VZ']‘) (1 - M) ’ (2.9)
2pij

with yijj = (1/m; +1/m;)~! the reduced mass of the particleand;. This choice
corresponds to scheme 1, as proposed in the publicationteysP& his realization of
the DPD thermostat differs from earlier implementationghie time step dependence
of b;;. Therefore, changing here the value of the time step alsogesathe effect of
the random force term and thus leads to a time step indepehbdkavior.

2.3 Neighbor list

To speed up the simulations neighbor lists of the partictesused[[34, 35]. Each
particle in the system has two lists of surrounding neighpone for each particle
type. Here, surrounding means closer than a given cutoifisadl’s. The advantage
of these lists is that the number of particles that are cemstlin the force calculation is
reduced strongly. Without these lists all interactionsuasn every single particle pair
have to be calculated. This would lead to a scaling of the egatipnal loadx N2.

With the use of neighbor lists the effort can be reduced toadirsgec N. This is a

drastic difference for systems with many particles. Theffwadius of these neighbor
lists r"ist js given by the cutoff radius of the pair potentkgk and an additional skin

size rnlist — rep Sk (fig. [2.2). By that choice the cutoff radius is always bigger

than the interaction potential in the simulations. The skirerS<" gives an additional
buffer that prevents an update of the neighbor list afterréigi@ has moved further
than the interaction potential. By an appropriate choicéisfgize an additional speed
gain is possible. In this work two slightly different implemtations of neighbor lists
are used.

Classical Verlet neighbor list Implementation of the original proposed version! [34].
Here, all particle neighbor lists are refreshed at the same if one of the
particles moves further tharf<"/2. This leads to an efforx N2 for the up-
date step (all particle pairs have to be checked). If thelaigments of all the
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4
~.. .
‘ rnlist

Figure 2.2 Sketch of the neighbor list radii. The radius of the neighbor 1§t is the
sum of the potential cutoff radiug, and a skin sizeskn,

particle are smaller thar?s no change at all on the list is done and therefore the
effort is zero. The important parameter for the neighbari$isk" as it defines
how often the whole list is updated and therefore how big feeed gain is. If
this parameter is to small the list is updated to often ancktbes one looses effi-
ciency. On the other hand if that parameter is too big oned@mmany particles

in the list and then too many forces inside the force calcatadre computed.

Incremental Verlet neighbor list During the implementation it was found, that one
can speed up the simulation even more by incrementally upgdéte neigh-
bor list. Then, only the lists of the particles are updateat thove further than
rSKin/2 . Additionally all the lists of the neighbor particles of Seeparticles need
to be updated. This leads to an effort that is proportionadV/tand reduces the
work even more. A second advantage of this incremental upgat, that the
skin sizerskin can be reduced quite a bit. As a consequence fewer partiges a
in each neighbor list. It is found, that this second type ahkor list speeds up
the simulation byl0 — 20% but this speed gain comes at the cost of a more com-
plex neighbor list code. With the help of advanced classes#nas the vector
class that allow complex transformations of the neighlsirdrrays this incre-
mental version could be realized. One problem here is, timirhplementation
is not thread safe (cannot be used with multiple threads lsmeously which
Is required for a parallelization) and therefore it canm®ulsed together with a
simple parallelization program called Openmp. Thus, duthre equilibration
phase, where Openmp is required to speed up the simuldimnlassical Verlet
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list had to be used.

Before the simulation runs were performed it was intensigacked, that both imple-
mentations lead to exactly the same numerical results atidibbtypes were properly
implemented. In this work both types of lists were used. Tlassical version was
used during the long equilibration runs at the beginningéate the starting configur-
ations. With an Openmp parallelization the equilibrationet could be reduced by a
factor of 6 on 8 cores. Later on during the measurements Wélpulled particles, the
incremental version was used. These runs are much shortgrared to the equilib-
ration runs and therefore it is more efficient to use a tripeiallelization. There, one
runs a copy of the system on every single core and just pulifexaht particle of the
same type. Here, the faster incremental version can be used.

2.4 Model and simulation details

The investigated model in the first part of this work is a bynsoft sphere mixture. It
contains two different particle types A and B that inter&cbtigh a Yukawa potential
which is an often used potential for describing colloidasteyns. According to the
Derjaguin-Landau-Verweij-Overbeek (DLVO) theory [2] shpotential is obtained if
charged colloidal particles are screened in a solution.eHie counterions prevent
parts of the coulomb interaction between the charged cisland lead to a screened
behavior. A further advantage is that it has been intengivelestigated in previous
works and the behavior in the equilibrium and under sheakaogvn [5,/43] 44] and
can be used as a reference point. The resulting screeneadtipbig of the following
type

Vap(r) = eapdap exp|—x(r —dug)] /7. (2.10)
Here,x andp stand for the different types of particles that are seperayea distance
r. The general system properties are defined through theasgnstlues, g, dug, ©
andm, in the potential function. Here,; sets the energy scalé,; the length scale
andm, the scale of the masses. The inverse screening lenigtmeasured in units of

1/044. With these parameters one can define the characteristis:\ym Adi 4/ €an

for the timet, e 4 4 / kp for the temperaturé ande 4 o /d 44 for the forcef, with kg the
Boltzmann constant. The potentigls(r) is truncated at a cut-off radiugﬁ. Here,

riﬁ is chosen as
Vap(r =7r5g) =107, (2.11)
To prevent fluctuations in the energy when particles move thie cut-off radius, the

potential in the simulation is shifted by the value?g. The implemented potential is
therefore

V{xﬁ (r) = er[%(r) - sz,B(rsc‘B)' (2.12)
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Figure 2.3 Left) The behavior of the inter particle potentigls in dependence of and
the particle types as given in(2]10).

Technical simulation details

System properties As the obtained results in this work shall be comparable with
the previous works the values of the particle potentialsinede the same. Therefore,
the chosen masses of both particle types are equal and seityany, = mp = 1.
The inverse Debye screening lengthis= 6 and the chosen time stepds = 0.0083.
With this time step the equations of motion could be integptakithout problems in
the previous works, even under shear. The other valuegofl, s andriﬁ depend on

the type of particle and are summarized in table 2.1.

With these settings two different system geometries witiopéc boundary conditions
are set up. A cubic one with size, = L, = L, = 13.3 = L and 1600 particles
with 800 A and 800 B particles. The second system geometrytimes larger in the
x-direction and thus allows longer simulation runs at higbhezes without moving the
pulled particle multiple times trough the same box. The sdageometry id., = 8L,

L, = L, = L with 12800 particles (6400 of each type). Both configuratioarge the
same particle densify = % = 0.68. At the borders of these boxes periodic boundary
conditions are applied that link opposing sides of the bathweach other. Particles

‘ typeaf ‘ ranged, s | energye,p | cutoff radiusry g

AA 1.0 1.0 3.48
AB 11 1.4 3.64
BB 1.2 2.0 3.81

Table 2.1— Values of the potential parameters in dependence of the particle types
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that leave the box through one of the system sides enter #tersyat the opposing
side again. These boundary conditions prevent effects lfrant walls at the end of the
simulation box. During the calculation of the forces the imiam image convention
is adopted and therefore only forces between the nearesiopssof the particles are
calculated.

In this work one of the particles is pulled through the systérhis requires an addi-
tional external forcef that acts on the selected particle. In all presented simounkat
that external force always directs into the positivdirection with a constant strength
during the whole simulation run. To study the dependenc@emﬂrengtth?”] =f

is varied in the rang8.5 < f < 30. This external force is not only a source of energy
that needs to be taken out by the thermostat, but also a souneementa. Due to the
present periodic boundary conditions that would lead tocelaration of the whole
system over time. This effect is quite unpleasant in the latalysis of the particle
motion. Therefore, this acceleration is prevented by satitrg the average directed
velocity of the system from all particles after each timgsfehen the system is again
at rest.

Properties of the neighbor list  For the classical Verlet list the skin size is chosen
asrSk" = 0.75 [5]. On average this leads to an update of the whole list e@&ry
integration steps at the lowest equilibrium temperafire 0.14. For the incremental
V(Ia(_rlet list it is found that at the same temperature the skia sould be reduced to
rS¥N = 0.5,

Equilibration of the system  Before the measurement runs can be started the sys-
tem has to be equilibrated. Therefore, up to 100 random aaafigpns with cubic
shapel., = L and 20 with elongated shajg = 8L have been prepared at each tem-
perature. These initial configurations were cooled dowrhérequired temperature.
The required time for these equilibration runs can be takemf]5]. It is the time
when for a given temperature the incoherent scatteringiifum¢fig.[2.5) has decayed
to zero. At the lowest temperatufe= 0.14 this can take up to 50 million integration
steps. In addition to these equilibrium configurations soordigurations in the glass
state were prepared. Therefore, the equilibrated contignsaatT = 0.14 were used
and quenched to the lower temperatufes- 0.10 andT = 0.05. This last step was
done over 2 million time steps.

To speed up the equilibration of the system, the DPD-thetah@gs not used in this
case as it slows down the dynamics. Instead the Andersemadséat was used [45].
There, every 10 time steps the velocities of the particleaeweawn completely new
from a Maxwell-Boltzmann distribution. This thermostat tlegs the correlations in
the system faster and hence leads to a faster relaxation.

Properties of the DPD thermostat The DPD thermostat has two free parameters
¢ andrppp that can be tuned. Hereg,p sets the range of the DPD interaction and
 the strength of the thermostat. For low valueg @he conservative forces from the
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Figure 2.4— Behavior of the energies per particle and the temperature in the system with a
pulled particle. Shown system is&t= 0.14 andf = 5 for a pulled A particle. The inset
shows the same curve for the temperature (not shifted) and shiftedsdontbe energies.
Here, the whole system energy was shiftedB[68 and the potential energy /059 to
fitin the same inset.

potentials dominate and one obtains a dynamic that is ctoeetNewtonian case. For
high values of, the dynamics goes over to a Brownian motion. As in previouke/or
[5,143,/44]¢ = 12 andrppp = 1.25 are chosen. These choices give a dynamics that is
close to the Newtonian behavior.

As this thermostat has already been successfully used ievéops study in the same
system under shear, one can expect that it is also able tdehand single pulled
particle with an external force. In fig. 2.4 the temperatinle€ curve) and the energy
behavior (other curves) for a simulation with a pulled A mdetat T = 0.14 and

f = 5 are shown. One sees that the thermostat manages to keepriberature
constant over the whole simulation time. Only in the strgrigtreased inset a small
jump at the beginning can be seen. This jump results fronmitreased average kinetic
energy in the system when the particle is pulled. In the céslkeopotential energy,
the behavior is different. There, one observes a constargase of the energy over
the whole simulation run. This is a result of the increasewmdier that is introduced
in the system by the motion of the particle. At these low terapges the relaxation
time is too large to restore the lowest energy state of thdilequm configuration and
therefore the system is locally, in the region behind thdigar in a higher energy
state. This leads to a steady increase of the potential gnerg
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5],

System properties in equilibrium

The equilibrium properties of this Yukawa systdm (2.10)aready known from pre-
vious work [5]. Therefore, the important properties of thstem are summarized here
quite shortly and only the important parts that are requicedhe understanding of
this work. A complete discussion can be found in the origwaitk of Jochen Zausch
[5]. Note, the equilibrium data that is shown in this work arften used as a reference
point is the original data and was not calculated again.

For this system it is found that it shows the typical behawioa glassforming binary
mixture. Above a critical temperatufE. the system is ergodic and in a fluid equi-
librium phase, where on the time scales of the simulation fandhe investigated
temperatures no crystallization or phase separation wesreed. Closer to the crit-
ical temperature one finds a strong increase of the relaxétiee and of the system
viscosity and a decrease of the diffusion over orders of nbag@. From the power
law behavior of these properties which is predicted by thel@rcoupling theory the
critical temperature can be identified aroufid= 0.14. For temperatures beloW,
the system freezes and the patrticle diffusion and relaxasiprevented on timescales
accessible in the simulation. This is the transition to tlasgstate.

Fig.[2.5 shows the equilibrium curves for the mean-squaigalatement

<Ar2(t)> = <|r(t) - r(O)]2> (2.13)
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and the incoherent scattering function

Fy(a,t) = (exp (=ia- [r(t) =r(0)])) (2.14)

(with g = 6.0) for different temperature$ in dependence of the time As one can
see, both curves show a strongly decreased motion by orfleragmitude at the lower
temperatures. Furthermore, a pronounced plateau appedrs stretched over dec-
ades in time for the lowest temperature and indicates thes gtansition. During these
plateau regions the particles are trapped inside the cage stirrounding particles and
only for longer times the particles are able to leave thegresato diffuse and relax.
This second relaxation step can be divided into two differegimes. The behavior
shortly after the plateau where the behavior can be desthipehe "von Schweidler
law” that is presented in the next chapter. For the late tithedbehavior can be ap-
proximated by a stretched exponential function. BelBwone observes a freezing
of the system, the plateaus are stretched over the wholdatiorutime and the last
relaxation step is missing.



Chapter 3

Theoretical models

Systems in their supercooled state show some unusual fiespEr9,[46]. In their
liquid state the usual relaxation timeand viscosityy are rather small in the range
of picoseconds antD—3 Poise. By cooling these system down to temperatures below
their melting temperaturé), it is found that the values of these properties increase
strongly by orders of magnitude. This can be seen ir fig. 3.drevhn Angell-plot for
different materials is shown. There, the viscosities acét@tl against, /T with T,

the temperature where the viscosity of the correspondiagesyhas reached the value
of 10'® Poise. Here, the values gfincrease by over 15 decades in a relatively smalll
temperature window. That behavior of the dynamical quiastits in contrast to the
behavior of structural quantities as well as of thermodyicgimoperties of the system
that only show a relatively weak temperature dependencés foh example can be
seen in the heat capaci€y which is displayed in the inset of fif. 3.1. Empirically it
is found that the behavior of the viscosities can be desdrilyethe Vogel-Fulcher(-
Tammann)-lawi [477, 48, 49]

1(T) = noexp (A/(T = To)), (3.1)

that has a divergence &. In the study of supercooled liquids the correlation fumati
F(q,t) of the density fluctuationpq(t) = YN, exp (iq-r;(t)) is an often studied
property. It has the advantage that it is accessible fronexiperimental side as well
as from the theoretical side and contains the full time dgwelent of the particle
behavior,

Flg,1) = ~(03(1)pa(0)). 32)

Two typical scattering functions are shown in the left skai€fig.[3.2. The left curve
shows a fast decay and corresponds to a system at a highesregomes in the liquid
state far away from the glass transition. Here, one obsereslistic regime at short
times with the correlation function decays with%adependence followed by a micro-
scopic regime at intermediate times and an exponential ®dbygay at long times. At
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Figure 3.1— Angell-plot of the viscosities for different systems against scaledsevem-
peraturesl, /T with T, the temperature where the viscosity has the valud® bf Poise
from [S0].

lower temperaturegq(t) shows a strongly different behavior. There, also a batlisti
regime and then a microscopic regime is found but insteadfagtadecay to zero a
pronounced plateau is observed which is extended over dedadime. The time
window where the correlation function is close to the platisecalled the3-relaxation
regime. During that time the particles are trapped in the@dghe surrounding neigh-
bors (right picture in fig._312) and therefore are preventechfmoving. Only for much
longer times the correlation function decays to zero and tha particles are able to
leave their cages. This last regime is called theslaxation. Empirically it is found
that the long-time behavior can be approximated by a steetexponential function
also known as "Kohlrausch-Williams-Watts” (KWW) functionl]552]

¢q(t) = Aexp [—(t/Ta)'B}, (3.3)

with 7, (T) the relaxation time at temperatufe Up to now it is not completely un-
derstood where this non-Debye behavior at long times coroasdnd principally two
different scenario are possible. In the heterogeneoustibaselaxation times for each
particle is different due to different surroundings andreparticle shows a Debye re-
laxation. The stretched exponential behavior then folltnes the average over all
particles. In the homogeneous case all particles have tie salaxation behavior
with a stretched exponential behavior. Thus, also the gesshows that behavior. The
reason for that long-time behavior is still a matter of reskand it is not clear which
of the two cases is the right one but probably both cases appea
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Figure 3.2— Left) Time dependence of typical scattering function at two different &amp
atures. The left curve corresponds to a high temperature whereasuioeidee shows a
lower temperature with the typical two step relaxation process from [20htRiustra-
tion of the cage effect. The black patrticle is caged by the surroundingpl@igarticles
(blue) and therefore prevented from moving.

The second quantity which is often used to describe the maifathe particles is
the mean-squared displacemént?(t)) (Z.13). That quantity shows at short times
a ballistic regimex #> followed by a diffusive regimex t at high forces. In the
supercooled liquid a third intermediate regime is obsefeedimes inside the cages
where that quantity also shows a pronounced plateau thdiecantended over orders
of magnitude in time. For the equilibrium system that bebawf the MSDs and of
the incoherent scattering functions have been shown ingy. 2

Up to now, no theory is available that describes all obsepregerties for the sys-
tems in the supercooled state although quite some progasssden made. The most
successful theory at present is the mode coupling theoryeofilass transition which
describes many properties but not all.

For the understanding of the motion of a pulled particleshi $supercooled liquid
and below the glass transition temperature two quite diffemodels are helpful. On
the one hand there is a simple trap model based on a directegkelia equation in
a fixed random environment. This model shows unusual sufigsiye motion in the
direction parallel to the force and a transition to a difi@smotion for higher forces.
Both these predictions are also found in this work. On therotfaad there is the
mode coupling theory (MCT) for the glass transition. Thisoityecan be extended to
the case of a pulled particle in a supercooled liquid andsgiee many properties as
the mean squared displacement or the incoherent scatteriogion a good qualitative
description for the behavior of the pulled particle clos¢h® glass transition. But at
the moment it fails at describing the superdiffusive motidthe pulled particles.
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3.1 Mode coupling theory of the glass transition

The first theory described here is the mode coupling theotlgeglass transition [19,
25,126] that describes the behavior of systems in the supe@state where the re-
laxation times and the viscosity of the system diverge ctos& critical temperature
T.. Furthermore, it is the only theory that is based on the msimopic description of

the motion of the particles and it leads to many predictidva are in a qualitative

agreement with the results found in experiments and simoalsit The original theory

was developed to describe the unperturbed system in equitibor in the glass state.
Only quite recently this formalism was extended to descsjmtems under the influ-
ence of external forces such as for sheared systems [53}lm@viorce acting on one
single particle[[54, 55, 56, 57]. Unfortunately, it requirguite some effort to solve
the resulting equations of motion in this theory and oftezytbannot be solved at all.
Therefore, a couple of approximations have to be carriedsoch as the restriction
to only oneg-value which lead to simplified versions of the original efijpras. These

schematic models can be solved numerically but it comeseatdht of less precise or
even unrealistic solutions.

3.1.1 General predictions of the theory

In this section the main predictions of the MCT shall be sunizedr. It is found that
these properties are universally valid for many applicetiof the theory in quite differ-
ent systems. The theory makes predictions for the time dbp®e of the correlation
function¢q(t) of the density fluctuationgq(t) = YN exp (iq - r;(t)) in the system
that corresponds to the coherent scattering fundtignt) (3.2)

_ F(q,t)
=507 (3.4)

Here,S(q) = F(q,0) is the static structure factor of the system. For this priypie
full mode coupling memory equation fgg (f) can be written dowri [19, 25, 26] as

¢q(t)

t
alt) + Oa(t) + OF [ IMG(E =) + Mq(t = )gg(*)t =0, (35)

WhereQa is a squared frequency ardy(f) the memory kernel that gives the long
time development of the correlator. They are given by

2kgT
Qé:iqu)’ and M“(”:/ Vi Pr(1)91q-k (1) (3.6)

Here, the verte>6/q(2k) is a function of the static structure factor. The MCT makes

several important bredictions for a supercooled liquidpridicts a dynamic phase
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transition at a critical temperatuié where the system changes from an ergodic liquid
to a non-ergodic glass state. Beyond that temperature tbeytbeen predicts a power
law behavior of the relaxation time, (T) and the diffusion constari?(T) above the
critical temperature according to

TW(T) & (T = To) ™7 (3.7)

and
D(T) o« (T —T¢)". (3.8)

with the same exponent. As a consequence the produg{T) - D(T) of these two
properties is constant over the whole scaling rangel Ahe behavior of the correla-
tion function changes quite drastically. Below the glasedition¢q(¢) decays onto a
plateau valugf(q), that is called the non-ergodicity parameter,

¢q(t = o) = f(q). (3.9)

Above but close to the critical temperature in the ergodiasghthe correlation func-
tions always decays to zero in the long time limit. Closé&t@ typical two-step decay
can be observed. Here, two different relaxation regime$eddentified. The first one
is thep-relaxation regime where the correlation function decaysieermediate times
onto a plateau value. The interpretation of this behavitrasthe particles are trapped
at intermediate times inside a cage which is formed by thghiiring particles. In
this regime the theory makes the prediction that the beha¥ibe correlation function
can be written as

¢q(t) = fq+ hqG(t) (3.10)

where the second term factorizes intg-@ependent and a time dependent function.
This factorization property can be checked by calculatiegftactionR (t)

_ !
R(t) = ‘PQ(? ‘Pq“,) : (3.11)
Pq(t") — ¢q(t')
As long as the system is inside terelaxation regime all curves fdk(¢) with dif-

ferentq values should collapse onto the same curve. For theslaggime the theory
predicts that the correlator behaves according to

Pa(t) = fq+ P+ nPR0 4 (3.12)

where the first two terms are known as "von Schweidler law'. the long time beha-
vior the particles leave the cage and enter a second retaxatyime, thex-relaxation
regime. This time the correlation functions decays to z&hm theory makes no simple
prediction about the exact functional behavior in thismegbut empirically it is found
that the long-time behavior can be well approximated byetated exponential func-
tion (3.3) andt,(T) the relaxation time at temperatufecan be calculated. Here,
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the exponenp still shows ag dependence. In this regime the theory predicts that a
time-temperature superposition principle (TTSP) holds:

¢q(t, T) = ¢q(t/Tu(T)). (3.13)

Thus, after rescaling the time for measurements at difféeznperatures by the relax-
ation timet, (T) it is predicted that all curves collapse onto the same usalaurve.

3.1.2 MCT for a forced particle

Recently the MCT was extended to describe systems under thenct of external
forces such as a shear field or a single particle under theendiof an external force.
In the case of a pulled particle one is interested in the beha¥single particle prop-
erties. There, the correlator is the single particle cateelof the pulled particle; (¢)
that corresponds to the incoherent intermediate scagtéuimction

¢*(t) = (o> (1)p*(0)), (3.14)

with p5(t) = exp (iq-r;(t)). Instead of only one memory equation for the bath
particles multiple coupled memory equations have to beesbivow. Due to the
high complexity of these equations only simple schematideihave been solved
up to now. These simple models reduce the full memory eguatmth the whole
g-dependence to equations with only one or a femodes. The first solved schem-
atic model only took ong-value in the parallel direction of the wholgspace into
account[[54] 55, 57]. Due to this strong simplification itdan describing some im-
portant properties of the particle as a plateau in the énictioefficient at high forces.
Therefore, this model was extended to a schematic modetlépEnds on two differ-
entg-values, one paralld| and one perpendiculat to the force direction [56, 57].
Therefore, it is based on three memory equationgfoy, ] (t) and¢® (t). The first

equation for the bath particles only dependspgh)

dp(t)+T {qb(t) —|-/Otm(t —tHe(t)dt' | =0, (3.15)
with a a bilinear memory kernet (t)

m(t) = vig(t) + va[gp(1))*. (3.16)

The other two equations are coupled and they describe thavioehof the pulled
particle in both directions,

B0+ [0+ [ - ngew| =0 @
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where the indexx € {||, L} stands for the directions parallel and perpendicular to
the force. The external forces are brought into the modeIhlefyplrefactorswH =

I's(1 —ikoF®) andw? = Ts with I's = 1. The coupling between both directions of
the probe and the bath correlator only happens inside therteraory kernelsan( )

andm’ (t),

mi () = [V (D) +v3g (De(D)] /(1 — ik ), (3.18)

m (1) = [VigL(D9() +viRelgf (D]@(D)] /(1 + (k1 Fa)®). (319)

Here,v; andv; are real coupling parameters that define how strong the @od¢he
host liquid interact and, are parameters that allow to fine-tune the force scale (here
ko = k| was chosen). From the symmetry in the perpendicular doestiollows that

the perpendicular correlator is always a real quantity. rétoee only the real part of
the parallel direction can contribute in that direction.th\the calculated solutions of
these equations one has access to additional propertibe @itrticle as the friction
coefficient¢,

E=E+E [ (nRep] (1), +iLg7 (£)g(0) dt. 320
the displacement in force direction(t),
E59:02() + / e (= )3y 0z(¢') dF, = | Fex, (3.21)
the mean squared displacement in force direcfigiit),
E0;02%(t +/ it (¢ — t)9p02% () dt,
—2 4 2 Fox 02 (t) 2/ K (t — )2y (1) ', (3.22)
and the mean squared displacement in perpendicular dingbt? (t),
E0p0x% (¢t +/ S (t—t)ouox* () dt =2. (3.23)

Here,& is the friction coefficient of the bath particle. The memoeyrielssiz () and
H( ) are given by

i (8) = p((1 = prer)REP] (), +pirei? (£))(2) , (3.24)

i (8) = p((1 = pret) REP (1), +preid’ (1)) (1), (3.25)
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() = —uppimg (1) (3.26)

From these equations it is possible to calculate propeofi@sterest in the long time
limit, such as the diffusion constant in both directions loe steady state velocity.
These predictions then can be directly compared to the atioalresults.

In the liquid state this model predicts that the diffusiord aelaxation of the probe
particle is accelerated under the influence of the forceeHarcontrast to the simple
trap model the motion stays completely diffusive in bottedirons for all forces. Be-
low the critical glass temperature the motion completegefes and the particle is
trapped. At these temperatures the theory predicts aalriticeshold forces that needs
to be overcome to set the particle in motion.

3.2 Simple trap model

The second model is a simple one-dimensional trap modeb@&hat tries to mimic
the behavior of a pulled particle by a Brownian particle motinside a force land-
scape. This potential is declining on average in one doacid therefore the particle
feels a force in that direction. The original Langevin etpateads

dx 1

— = —Fx(t t 3.27

1t = @]+ (0 (3.27)
wherex is the position of the particle at timg -y is the friction coefficient of the
particle,F the resulting force angl the thermal noise that leads to the motion inside the
potential landscape. In this modgls a random variable with the following properties
that define the temperature scajgl

n@ =0, O = ZkBTTé(t "y (3.28)

The first term in[(3.27) is the force resulting from the poi@niandscape. In this model
the force is also realized by a Gaussian white noise but natv avhonzero average
force iy

(F(x)) =F,  (F(x)F(x")) —F3 = 0é(x — x). (3.29)
It is found that the motion of the particle depends only on co&trol parameten and
not explicitly on the values afy, D, or ¢ that is given by

2FD
p="= (3.30)

with Dy = kT the equilibrium diffusion constant. In_[58, 59] it is showmat the
physics of this driven particle in the long time limit is givey the long trapping times
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Figure 3.3— Left) The behavior of the diffusion constant and of the velocity in ddpane
of the parameteg. Right) Sketch of the potential landscape of the simple trap model. Both
pictures are from [59].

in the deep valleys. It is found that these deep local minianzela broad probability

distribution and therefore the particle behavior is welptcaed by a directed walk

among traps with a broad distribution of release tiff€8V). Thus, the system can be
described with a directed master equation

dp,
dt

with P, is the probability of finding the system in stateandW,,; the transition rate
for the jump from state to n + 1. Here, the release times W are distributed according
to the broad distributio® (W) for short W

(W) ~WHL w0, (3.32)

— Wnpn_l — Wn+1pn, (3.31)

This leads to a broad distribution for the waiting timeshat behaves as—(1#) at
long times. This model has the advantage, that it can bedelxactly. In dependence
of the strength of the external force one can identify thréer@nt regimes of that
model (shown in the left picture of fig_3.3).

0 < u < 1:Forsmall values ofi a creep motion is found. There, the displacement of
the particle increases with a value of less than one in thg fiome limit and the mean
squared displacement shows a behavior proportiorigkto

(x(B)) ot (x(8)2) = (x(1))? o 71, (3.33)

1 < u < 2 : Atintermediate forces the particles are trapped only atifvamf the
time in deep local traps and otherwise they move untrappedigin the system. This
leads to a displacement that is proportional to the timehisiregion the MSD shows
a superdiffusive behavior:

(x(1) ect,  (x(£)?2) = (x(8))? o 271, (3.34)
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2 < u : For even higher forces the behavior of the particles is cetepy diffusive:

(x(t) o, (x()?) = (x(1))* . (3.35)

Of course, the applicability and the predictions of thisgiermodel are quite limited
for a realistic model where a particle is pulled through aesapoled liquid or a glass.
One property that is not contained in this model is the eguilim dynamic of the
system that should be restored for small forces. There, thdehpredicts a creep
motion of the particle whereas in the supercooled liquid woeld observe a linear
response regime. Without an average fafge= 0 the diffusive motion in this model
follows a logarithmic behavior (Sinai diffusion [60]) whids different from the normal
diffusive motion in the equilibrium liquid. Neverthelessjs at the moment the only
model that predicts a superdiffusive behavior (secondnepiand a transition to a
diffusive regime at even higher forces (third regime) forudlgxl particle.



Chapter 4

Overview of the steady-state behavior

After the equilibrium configurations were prepared at earhperature the measure-
ment simulation runs can be started. At titne- 0 a start configuration is loaded and
the external force is switched on for one of the particless Tdrce is kept constant for
the rest of the simulation. After a short acceleration pliasgulled particle reaches a
steady state with a constant average velocity. In this endlpé general characteristics
of the particles in the steady state shall be determinedhaniotportant quantities that
are used for this classification are introduced. In the stestate it is found that the
behavior of the probe depends strongly on the strength capipdied external force.
Beyond that, three different regimes can be identified thesity the particle motion
in dependence of the force. For small forces a linear regpagme is found, where
the particle motion is given by the equilibrium propertiéd.intermediate forces one
observes a non-linear regime where the particle motiongklhianisotropic. In the
parallel direction a superdiffusive behavior is found wdes the motion in the perpen-
dicular direction is strongly accelerated but still difftes Pulling with even higher
forces leads to third regime. There, at high forces, onergbsehat the motion in
both directions is again completely diffusive. In this cteaghese three regimes shall
be differentiated and an overview is given. Then, in theofelhg two chapters these
regimes are investigated closer.

4.1 Simulation details

The main part of the simulation took place on the Juropa etustdilich. A typical
simulation run was done on 160-640 cpu cores over 24 hourgliwhas the run
time limit on the cluster). During such a simulation run tygdly around 1000-10000
particle trajectories were recorded. Here, the trajeesoniave a length of around 1-4
million time steps in the small system sizes and 100-400ghod time steps in the big
systems. These boundaries to the simulation results fremméximum job time on the

27
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one hand and the system size on the other hand. Here, thel@astonly allowed to
move once and not multiple times through the whole box. Aspeed of the particles
is a function of the temperature in the system but also of pipied external force, the
maximum runtime and the number of possible simulation rgndifferent for every
single measurement.

One problem with these simulations is that one likes to gaslsemuch information
as possible about the particles in the system. To gain enstagistics of the pulled
particles it is required to repeat the simulations for atbiA00 different particles of
the same type. With only a single pulled particle in the gyst&e has compared to a
normal equilibrium simulation the clear disadvantage tireg cannot average over all
the particles in the simulation box. This leads to a redmotitthe statistics by a factor
of 800 to 6400. As a consequence a much higher computatiffoal is required in
this case and the produced amount of information is muchehnighor example the
required size of one system snapshot for a system Iyjth= 8L is around 1MB in
size. The complete output of one simulation trajectory ddki8teps would there-
fore lead to an output of around 100GB. For only one singlettayy this amount is
clearly orders of magnitude too big and a complete simulatwth more than 1000
trajectories is thus completely unrealistic. As a consaga®nly partial informations
of the systems can be written out and one has to chose in aglvla@properties and
the precision of the measurement. As this work concentratgsly on the behavior
of the particle under the influence of the external force,piuperties of that particle
are of greatest interest and should be recorded. But evertlonlyajectories and the
velocities of these pulled particles require too much spa@asily write out at every
time step. Therefore, only parts of the trajectories candoended. Here, different
properties of the particles shall be investigated that ateutated on completely dif-
ferent timescales and on different time distances. Thezetbe particle trajectories
were recorded in two different ways. The first one is a nornmadr way where the
position and velocities are recorded at equidistant tirygscally every 40 or 80 time
steps. From these measurements properties such as thgeavetacity, van Hove
correlation functions or the jump and waiting time disttibas can be calculated. Ad-
ditionally the trajectories were recorded on a logarithtimee scale where the distance
between measurements increases with time. From these regsss properties such
as the incoherent scattering function or the mean squasptedement that are meas-
ured over the whole simulation run can be calculated withegtiiring too much disc
space. To increase the statistics of these logarithmic uneaeents 10 trajectories with
a shifted starting point of /10 of the simulation time were recorded from the same
particle trajectory.

In addition to these measurements some properties such paitttorrelation function
were calculated directly during the simulation and only tbsults of these measure-
ments were stored. Of course, these measurements havedhdisbdvantage that one
has to repeat the whole simulation if one wants to measungrtperty in a slightly dif-
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Figure 4.1 — Typical trajectories of A particles with force/s= 1.0,5.0,10 at the tem-
peraturel = 0.14. Left plots show trajectories in the-y-plane with the starting point at
(0]0) and the endpoint at the right end of the plots. Right plots show the samedragsc
but now only thex-coordinate in dependence of the time.
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ferent way or a completely different quantity. From all thelata the important system
properties can be calculated. After the switch on of thed@iz = 0 one observes a
transition to the steady state first which could influencesteady-state measurements.
There, it is required to discard some of the data at the begjrof the simulation until
the particle has reached the steady state. Therefore, thsumments were started
first after the velocity of the probe was constant. In the cdgbe logarithmic times-
cale it was found that the second starting point aft€r0 of the simulation was in all
cases in the steady state and only the first measurementwithigt starting point was
discarded.

4.2 \elocity and friction coefficient

To get a first impression of the behavior of the probe parttakequite useful to have
a closer look at single particle trajectories. One finds thatmotion of these pulled
particles shows a strongly different behavior for varyingeenal force. In figl 411
some typical trajectories for pulled A particles’Bt= 0.14 with different external
forces are shown. At each force, left and right plots showstrae trajectories. Here,
left plots show the trajectories in they-plane whereas the right ones only show the
x coordinates in dependence of the time. At low forces onemes that the particle
trajectories show a jump motion. There, the particles agoed most of the time in the
cages of the surrounding particles and only rarely jump ¢oniext cage. The average
jump time is much shorter than the average cage time. By isgrgahe external
force f one observes that the localization time decreases at iatBate forces (here
f = 5) and the jumps occur with a much higher frequency. With evghdr forces the
trapping of the particles disappears and they move throoglsystem without longer
trapping times inside the cages. Note that all the plots sheveame area in they-
plane on the left and the same distam¢g) on the right but over different times. Hence
one can see that with increasing force the particle motiacdglerated drastically. At
f = 1.0 the time to move the distance to= 10 takes untilt = 10000 whereas at
f = 10 it takes only untilt = 10. This is two decades less in time compared to an
increase of only one decade in the force. That is a first hirat nbnlinear behavior
taking place at these forces. As a first property to quantié garticle motion, the
velocities of the particles in the steady state is displayefig. [4.2. One finds that
A and B particles show qualitatively the same force and teatpee dependence but
with slightly higher velocities for the A particles. It is @axpected result due to the
smaller particle diameter of the A particles. These leadds friction from interactions
with the surroundings during the motion and therefore toghéi average velocity.
For small forces the velocity of the particles is proporéibto the force. Here, the
particle motion is still in the linear response regime. Fancés inside this regime
the friction from the bath is constant and therefore the aiglds proportional to the
external force. With increasing forces the particles lehedinear response regime and
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Figure 4.2 — Upper plots show steady state velocities of the pulled particle for different
temperatured in dependence of the external force. Lower plots show the resultinipfric
coefficients; = f/v. Left plots show A particles and right plots B particles.

enter the nonlinear regime. There, the velocity increasesger than linear. In this
region one observes a drastic increase of the velocitids.bBmavior strongly depends
on the temperature and increases for lower temperaturesheAbwest equilibrium
temperaturel’ = 0.14 one finds an increase of the velocities from= 3.15 - 1073
atf = 1.0tov = 1.06 at f = 10. This is an increase over nearly three decades
in the velocity compared to only one decade in the force. Fendigher forces the
velocity dependence is again linear and converges ag&iedtaghavior all = 1.0.
For that temperature the velocities of the particles aregdan the linear response
regime. For the highest forces the velocity curves at difietemperatures collapse
and therefore the particle motion is temperature independe a second quantity the
friction coefficient¢ can be calculated from these measurements by

_f
£==. (4.1)
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The calculated values @f for both particle types are pictured in the corresponding
lower plots of fig[4.2. For small forces the friction coeféint is constant with a value
given by the equilibrium system properties. There, the t€insrelation is still valid
and one ha&pT = {Deq, With Deq the diffusion constant in equilibrium. This plat-
eau corresponds to the linear response region of the welo&itintermediate forces
one finds a strong drop over up to 3 decades at the lowest tatapefrom the linear
response plateau to a second plateau at high forces. Iretjirme all curves for dif-
ferent temperatures collapse onto the same plateau witles@l, ~ 6.3 for A and
Coo ~ 9.8 for B particles. Note that this collapse has not yet beenrobse In earlier
Brownian dynamics simulations [54,/56] in a quasi-hard-sphiquid the control para-
meter was the density of the system and not the temperatirere Tone observes a
density-dependent high force plateau value and not a calapthe curves onto the
same plateau.

4.3 Local structure

Under the influence of the force one can expect that the strieiround the particle
deforms. Hence, it is interesting to see what influence thiegparticle on the sur-
rounding bath particles has. Therefore, the particle itistion functiong(r) is cal-
culated which measures to what extent the structure aropadti&le deviates from a
completely random structure with a constant density. Thangty is often used in the
study of liquids as it gives informations about the averagall structure even without
a long range symmetry present in the system. Here, in theafabke pulled particle
only the closer surrounding is of interest. In this case t@rgigle distribution function
[61] is given by

g(r)=ﬁ<25(ri—r)>, (4.2)

and can be interpreted as the probability of finding a sulognbath particle at dis-
tancer if the probe particle is located a zero. In the equilibriurseavithout external
fields one has a spherical symmetry and therefdre depends only on the distance
r = |r|. In the case of the pulled particles the motion of the protamnisotropic and
therefore the full angular dependence needs to be recohdéid. [4.3 and figl 4.4 the
calculated pair distribution functions of the pulled paes atT = 0.14 for different
external forces are displayed. In both figures upper plas/ghe behavior in the par-
allel direction and lower plots in the perpendicular direat In the parallel direction
it is required to measure the probability distribution osesmall cylinder if one wants
to gain enough statistics. Here, the radius of this cylindas chosen as = 0.5. In
the perpendicular directiog(r) is recorded in dependence of the radiudue to the
rotational symmetry. As can be seen in the plots, the digioh function shows a
strong anisotropic behavior that depends on the partigde §nd the external force.



CHAPTER 4. OVERVIEW OF THE STEADY-STATE BEHAVIOR 33

b) !

.

IN

w
(.
——n
W
NERON
©Coowm
w

*****
NI
N oo N
©CCoowu

N

N

)
-
s
=

o
o

'
[y
'

[y

'
N

'
N

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
X X

d)

<)

w

N
L1l ‘ L1l ‘ L1l ‘ L1l
w

(e
o n
W
NEOON
©Coowm

[ 11
— —h = —h
W
NEOON
©CCoowm

N

=
=

gaal

o
|

9as()
o

'
iy
'

[y

'
N

'
N

0 1 2 3 4 5 6 0 1 2 3 4 5 6
r r

Figure 4.3— Change of the local structuggr) around a pulled A particle & = 0.14

for different forcesf. Upper plots show pair correlation functions parallel to the force
¢(x) and lower plots in the perpendicular directigfr). Left plots show surrounding A
particles and right plots B particles. Dashed black line is the equilibrium hehem

[5].

The structure around the pulled particle at low forces isegciiose to the equilibrium
structure of the system (black dashed lines from [5]). FghHbrces f = 20) the
structure changes drastically especially in the forcectiva. There, it loses nearly all
information of the equilibrium structure. At these forche system around the pulled
particle has not enough time to relax and the equilibriuracstre cannot emerge.
Additionally one has a strong dependence on the surrourghnticle type. For sur-
rounding A particles an increased probability behind th&bpris found whereas for
B particles this probability is reduced. That effect is highted with the horizontal
dotted lines at the highest force. This dependence can li&esg with the higher mo-
bility of the smaller particles that can fill the free spacstéa which is left behind the
moving probe particle. For the nearest neighbor peak irt fwbthe particle one finds
a slight shift to the probe particle with increasing forcéefe, the particles are pushed
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Figure 4.4— Plots ofg(r) with the same system properties as inffig] 4.3 but now for pulled
B particles.

closer together by the applied force. Behind the probe theeseaeighbor peak loses
much of its height until it completely disappears at the kgjtforces. The behavior in
the perpendicular direction is influenced as well. Also is thirection the peak of the
first neighbor shell shows a dependence on the external. foiih increasingf the
position of the first peak changes. It moves closer to thegrainder the influence
of the force the probe moves closer to the neighboring pestid-or higher distances
the structure reduces more and more with increased forceheAbighest forces the
maxima and minima are much less pronounced although thetredus not as strong
as in the perpendicular direction. Here, again the systamtigble to relax on these
timescales.

The behavior at the highest forces is roughly in agreemetit piiedictions of the
dynamic density functional theory that were made for a pelysolution [62]. There,
also an enrichment of the particles in front of the probe amdl @ hole behind the
probe is found. Note, that although the structure at highdsrchanges drastically,
for forces up tof = 2.5 the structure is nearly the same as in equilibrium. This is
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Figure 4.5— Mean-squared displacement for pulled particles in the direction ortlabtgmn

the force afl’ = 0.14 for different f. Upper plots show MSDs in dependence of the time
and lower plots the same curves divided troadgd highlight the long time behavior. Both
for A (left) and B (right) particles.

in contrast to the strongly influenced behavior of other dyical quantities in the
region0.5 < f < 2.5 which are presented in the following. That is a quite often
found phenomenon in the dynamics of glassy systems wheredytiamic quantities
can change drastically but the static properties, as threcpaielation function or the
structure factor, show barely any difference.

4.4 Mean squared displacement

The static properties of the system already showed someestileg behavior, but the
main focus of this work lies on the dynamic quantities of thebg particle. As a
property the mean-squared displacement is determinedivds gnformation about
the deviation from the average position for the particles gueir long time diffusive
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Figure 4.6— Mean-squared displacement for pulled particles in the force directibr-at
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B (right) patrticles.

behavior. The usual equilibrium definition of that quanigy

<Ar2(t)> - <|r(t) . r(0)|2>. (4.3)

For the pulled probe that quantity needs to be slightly medifiln the orthogonal
direction it is the same as in the equilibrium case

(AP +822(1)) = ([y(H) —yOP + (1) =20 ).  (4.4)

Due to the drift of the pulled particle the definitidn (4.4 )nist applicable in the force
direction. There, one has to subtract the drift motion fingt ane obtains

(8220 = ([x(t) — xO)2) — {[x() - x(0)]) " (4.5)
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Figure 4.7 — a) Mean-squared displacement in the force direction for differenteemp
atures at forcef = 1.5. b) Direct comparison of the two mean-squared displacement
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comparison of simulation results (symbols) with the prediction from the schematielmo
(straight lines) in c) perpendicular and d) parallel direction from [63].

By that definition the MSD in the parallel direction measuresaverage squared devi-
ation from the mean position at tinie Thus, this quantity gives a closer picture of the
time dependent diffusion behavior of the particles underitiiluence of the external
force. In the steady state the mean-squared displacemtr pfobe particles shows a
strong dependence on the external force. IrLfig. 4.5 MSDstenwrson a logarithmic
scale in the perpendicular direction at the lowest tempegat = 0.14 for different
forces. Also shown here is the equilibrium curve (dashes firom [5]). At low forces
one finds that the MSDs behave quite similar to the equilibraase. There, one can
clearly distinguish three different parts. For short tinoee finds a ballistic regime.
Here, the particles move freely without the influence of tlne@unding particles with

a constant velocity. This leads to a displacement propmatito . Thus, the MSDs
for short times(Ar?(t)) ~ t? in the case of the Newtonian dynamics. After some
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time the particles feel the influence of the potentials ofsherounding particles and
the curves deviate from this motion. In the case of supeecbldjuids a pronounced
plateau at intermediate times is observed. There, thecfemtare trapped inside the
cage of the neighboring particles. The probe particle ialleed. For the lowest forces
and in equilibrium one finds that the intermediate plateawsha strong temperature
dependence and it is extended over 2-3 decades in time forgaoticle types. This
Is a typical behavior for a glass forming liquid close to thiéical temperature. Due
to the applied force the particles manage to escape thedsczaylier. Therefore, with
increasing force the length of the plateau decreases tmtimpletely vanishes for
forcesf > 5. From there on the cage structure does not influence the motithe
particles anymore. Even at low forces the particles carel¢agir cages and diffuse
through the system at long times. As a consequence, the M8Ras (Ar?(t)) ~ t at
late times in the diffusive regime. To highlight the diffusibehavior in the long time
limit the same MSDs divided by the tinteare shown in the lower plots of fig. 4.5. At
long times a convergence towards a constant plateau vadtiediresponds to twice
the value of the diffusion constant of the curves can be deenthe direction parallel
to the force the picture is a bit different. In fig. 4.6 the sgphats for the direction
parallel to the force are shown. There, one finds for shortiat@mediate times an
identical behavior of the MSDs. Only for long times the cuwrd#fer as the motion is
not diffusive. Here, the slope of the long time limit is bigdkan one and therefore
shows superdiffusive behaviofXx?(t)) ~ t* with « > 1). This can best be seen in
the lower plots, where the curves divided bgo not converge against a constant plat-
eau value for long times. Instead one observes a power lawase. This shows that
the motion of the pulled particles is superdiffusive on tsoales accessible in the sim-
ulations. At high forces, where the particle motion showsiga of the cage anymore,
the superdiffusive regime disappears and the motion in &énellel direction becomes
diffusive again. The superdiffusivity not only depends ba applied force but also
on the temperature of the system. With lower temperaturedinds an increase of.
This is shown in figl_4]7 where MSDs in parallel direction foparticles withf = 1.5

at different temperatures can be seen. The expanahtong times steadily increases
froma=1atT =034toa ~ 1.35atT = 0.14.

In both directions one finds that with increasing force thiidier regime is shifted to
higher values (fig. 415 and fig._4.6). For smaller forces, ag las the curves show a
pronounced plateau, the regime collapses onto the same.cOmy for high forces
(f > 5 for A particles andf > 10 for B particles) they differ. This can be understood
as the slope of the ballistic regime at short times corredpairectly to the temperat-
ure of the pulled particles. Obviously for high forces theliRermostat has problems
to locally cool the system to the bath temperature. Notettigtemperature of the bath
particles in the system is still constant at the equilibriemperature and only the tem-
perature of the probe and the close surrounding is slightlseiased. For a comparison
of the behavior in both directions the parallel and perpemdr MSDs are shown to-
gether for forcey = 1 (black) andf = 2.5 (blue) in fig.[4.7. Both directions show
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Figure 4.8 — Diffusion constanD,y, for the pulled particles in the direction perpendic-
ular to the force for a) A and b) B particles in dependencé af different temperatures.
Crosses mark the values of the equilibrium diffusion constant calculatég.ic] Com-
parison of the orthogonal diffusion coefficient from the simulations (sys)bwith the
predictions from the schematic model (straight liie) (8.17) friom [63].

an identical behavior during the ballistic regime. Eventfar time in the plateau both
curves match over a long time. Only at late times, when thegateaves the cage,
both curves start to diverge with a linear long time behafaothe orthogonal and a
superlinear behavior in the parallel direction. This iades that the particle motion
at short times and inside the cage is isotropic. But outsidectige where the jump
motion from cage to cage takes place the motion gets anmotrd hese measured
MSDs can be directly compared to calculations in the schiemaddel. In fig.[4.¥

some plots from([63] are shown for A particlesTat= 0.17 and different forces. In

the direction perpendicular to the force one finds a goodeameat for the long time

diffusive regime and even the plateau value for the lowerdsragrees with the theor-
etical predictions. Only for the short time behavior one siadstrong deviation which
is caused by the different types of the microscopic motidme $chematic models are
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based on the Brownian motion which shows a diffusive moticghatt times whereas

the simulations solve the Newtonian equations and thus shidewtonian dynamics.

For the direction parallel to the force a different pictureegges. There, the behavior
of theory and simulation differs quite drastically as thedty shows no superdiffusive
behavior and at the moment the theory is not able to explangart of the behavior

in the force direction.

The mean-squared displacement in the orthogonal dirertiamear in time. Hence, it
Is possible to calculate the diffusion constant of the pnodicles and have a look at
the force dependenc®,,., is given by the Einstein relation [64]

Dorn = lim (Ay?(t) + AZ%(t)) / (41). (4.6)

The calculated values for the different temperatures ireddpnce of the applied force
are shown in fig. 418. In the linear response region the valteeddiffusion constant is
constant and equal to the equilibrium diffusion. For betteualization the equilibrium
values calculated in_[5] are marked with crosses. With iasireg forces the diffusion
increases drastically in the perpendicular direction ay@to 3 orders of magnitude
at the lowest temperatufe = 0.14. For high forced, .4, converges against another
plateau and in contrast to the behavior of the friction coeffit the plateau value this
time still depends on the temperature. As the MCT makes gredgfor the diffusion
constant a direct comparison is possible. Except for thesbtemperatures the values
of the MCT are in agreement with the simulated ones which caseba in fig[ 4.8 c).

4.5 Correlation functions

In chaptef 3.1]1 a few of the predictions from the MCT were @nésd. There, the
basic observable in this theory is the correlation funciig(t) (3.4) and it is therefore
of great interest to calculate this quantity in the simolatand compare it with the
theoretical predictions. Here, the correlation functi@mresponds to the incoherent
intermediate scattering functidf (g, t) of the probe particle which is defined in the

bulk as
Ny

Ea) = v L (p@0p(an), (4.7)

with N, the number of particles of typeandp;(q,t) = exp (iq - r;(t)) the density
fluctuation of particle. For bulk measurements this quantity usually is averaged ov
all particles in the system. With the external force only paeicle is pulled through
the system and therefore the expression reduces to

F(a,t) = (p(@0)p(a,) = (exp (ia-[r() —r()]).  (4.8)
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Figure 4.9 — Incoherent scattering functiafi (g, t) of the pulled particle al” = 0.14
andg = 6.14 for different forces orthogonal to the force direction. First plotsvsheal
part and lower plots imaginary parts of the scattering function for A (left) Br(right)
particles. Imaginary part in the perpendicular direction is zero for adiefer

In fig.[4.9 and 4.1 (g, t) for A and B particles al’ = 0.15 andg = 6.14 with differ-
ent applied forces are shown. Compared to the equilibriura as[2.5), the behavior
of the incoherent scattering function for the pulled p#etis more complex. As the
other quantities of the pulled particle alBdg, t) shows a strong anisotropic behavior.
In the direction perpendicular the general behavioFgf, ¢) is quite similar to the
equilibrium case. At short times during the ballistic regione has a fast decay to a
plateau. At long times one finds a decay from this plateau avgtretched exponential
behavior in thex-regime. In this case higher applied forces lead to a redptzdau
and a faster decay. In that direction the behavior underrifteeince of the force is
comparable to the equilibrium decay at higher temperatitesthe parallel direction
two strong differences appear. The first is that at high ftbe correlation function
shows oscillatory behavior with even negative values. Boesd difference is the oc-
curring imaginary part which is zero in the perpendiculaediion and in equilibrium.
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Figure 4.10- Incoherent scattering functidi(g, t) of the pulled particle af = 0.14 and
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plots imaginary parts of the scattering function for A (left) and B (right) pbasic

Both points are the result of the drift motion that is not satted here as it leads to a
prefactor ofexp (—ivt) in the scattering function. This term oscillates with timela
introduces the imaginary behavior.

The last quantity introduced here is the self part of the vameHunctionG; (7, t) [61]
given in the equilibrium case by

u 1 Ntx o 14
GE(r,t) = 5 ( Lo = I () =1 D). (4.9)
Again, only the motion of the probe is of interest and therefihe above expression

reduces to
Gs(r,t) = (8(r = Ir(H) = r(0)])), (4.10)

with r (t) the coordinate of the pulled particle at timeThat quantity gives the prob-
ability of finding the probe at timeon the positiorr (¢) if it was att = 0 atr (0). This



CHAPTER 4. OVERVIEW OF THE STEADY-STATE BEHAVIOR 43

B particles, T = 0.14

A particles, T=0.14

=
o
=)
=
(=}

[N
o\
H

Z w0t [ A -
~ B {/\¢ = % ’2? E
© ] —f=05\ [ ©1073 — =10 [
i —f=10 L B —f=15 [
—f=15 5] —f=20 [
102+ — =20 — 1073 f=25 £
= f=25 E = f=5.0 F
m f=5.0 C N —f=10 [
7] —f=10 B 10-4? =
T ‘\\\\‘\\\\‘\\\\‘\‘\\\‘\\\\‘\\\\‘\\ 7\ T ‘ T 1T ‘ T 1T ‘ T 1T ‘ T \I‘ T 17T ‘ \7

0 5 10 15 20 25 30 0 5 10 15 20 25

X X

Lo b b b b ba | | N R I BN
- Aparticles, T =0.14 —f=05 - - Bparticles, T=0.14 —f=1.0 *
o — =10 o_| —f=15 |
1003 —f=15 [ 1073 [ —f=20 [
E —f=20 F E || f=25 F
] f=25 - ] f=5.0 -
] f=50 [ ] —f=10 [

- — =10 = 4t

e | T 1073 =
S 103 N /N g
o’ ] o ] C
. 1073 =
10774 = B E
] B 3| -
‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘ 10 7‘ T T T T ‘ 1 T T T ‘ T T T T ‘ T T T T ‘ 3

-6 4 2 0 2 4 6 4 2 0 2 4

ylz ylz

Figure 4.11- Steady state van Hove correlation functiéh$r, t) for a (left) and B (right)
particles with different forceg at timest = 249 for forcesf = 5.0, 10 andt = 664 else.
Upper plots showGs(r,t) measured in the force direction and lower in perpendicular
directions.

quantity is also calculated independently in both direwtioDisplayed in fi.4.11 are
the obtained results & = 0.14 in dependence of the force. There, the upper plots
showG; (7, t) in parallel and lower in the perpendicular direction. Inglkal direction

for low and intermediate forces up fo= 5.0 the van Hove correlation functions show
a pronounced peak at= 0. This is a result of the strong caging of the surrounding
particles at low temperatures which prevent the partiadenfieaving the initial pos-
ition. Only a fraction of the particles manages to move fartthan the initial cage.
The strength of that effect reduces with increased forcé iirdisappears for high
forces (f > 10 for A and f > 10 for B particles). Then, the particles move without
being trapped inside the cages and the shape of the van Hoeation function is
Gaussian. At low force&;(r, t) has a long tail in the force direction. In the perpen-
dicular direction the symmetry is not broken by the force &i(f, t) is symmetric at

all forces. At low and intermediate forces one finds strongoewential tails as in the
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equilibrium state/[5] and a strong peak at the initial positihat results from the trap-
ping in the cages. For higher forces a transition to a Gansdiape can be observed
and the pronounced localization peak at zero disappears.

4.6 Summary

In this section the general behavior of the probe particléeurthe influence of an
external force was characterized. It is found that the glartnotion strongly depends
on the strength of the applied forces and three differentreg can be identified.

Small forces: For small external forces the particle motion is given by eqeilib-
rium properties of the system. Here, the linear responsaryhse still valid and can
be used to predict the behavior of the pulled probe. In thggorethe behavior of the
particle is still isotropic and only shifted in the forceelition by the drift.

Intermediate forces: For intermediate forces one observes a strong anisotropic m
tion and with increasing forces a strong decrease of thednicoefficient takes place.
Parallel to the force a pronounced superdiffusive reginteérmean-squared displace-
ments is observed whereas in the perpendicular directmbehavior is still diffusive
but it is strongly accelerated.

High forces: At high forces the friction coefficient shows a second plataad the

velocity increases again linear with the applied force his tegion the superdiffusive
behavior disappears and a transition to a diffusive behamithe parallel direction

takes place. Here, the anisotropy of the motion reducesiagai

Furthermore, a comparison with calculations from the MCTwskgbthat the data for

the perpendicular MSDs and the diffusion coefficients asgieement with the meas-
ured values. But the superdiffusive regime in the parali@alion is completely miss-

ing in the schematic model. In the following chapters thegpmes are investigated
in detail and it is checked how good these measurements candsstood with the

theoretical models.



Chapter 5

Scaling regime at intermediate forces

5.1 Universal behavior

In the last chapter the behavior of the particle in the stestdie was classified and
three different regimes were identified. The second regihgeregime at intermediate
forces, is investigated in detail in this chapter. In thigimee the particle motion is

strongly affected by the surrounding cages. As was seen.[A.fid) the motion of the

particle is highly anisotropic in the long time limit wheitget particle has left the cage
and one observes superdiffusive motion. Here, it is fouatlwith a constant applied
force the probe shows a universal behavior in dependendeedietnperature. This
leads to a description of the particle motion with an effectiemperature. Further-
more, it is checked in this chapter how far the classical MG3dmmtions can describe
the behavior of the pulled probe particle in the steady state

5.1.1 Peclet number

In order to quantify the effect of the external force on thdipke in the non-linear re-
sponse region the Peclet numlir can be used. This quantity relatas = (rz/DeOI
the typical timescale of the equilibrium diffusion with = /v = ¢¢/ f the times-
cale introduced by the drift motion of the pulled particleerl,o is the diameter of the
particle andDeq the diffusion constant in equilibrium,

« D ofscal

In addition the friction coefficient of the baffy and the scaled forcefgca are given by
¢o = kT /Deqandfscai = fo/¢. This choice of the scaled force has the advantage
that in the linear response region, whére- ¢y holdsPe* is equal tofscg and then in

45
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Figure 5.1— Upper plots show Peclet numbdts" against scaled forcegc for different
temperatured’ in dependence of the external force. Lower plots show the same data
against rescaled forcesca/ f4,2° to highlight the universal behavior. Left plots show

A particles an right B particles.

the linear response regidte* in dependence ofsc4is just a straight line. In fig. 511 in
the upper plots the calculated Peclet values against thedstmaces for both particle
types are shown. At the highest temperatiire- 1.00 the resulting curve is in good
agreement with the linear response values for all forcesbaiial particle types. But
already for the next lower temperature one observes a slghation from the linear
response values where the Peclet numbers increase seperdinhigh forces. This
effect increases with decreasing temperatures and shétbrear response region to
lower values. At the lowest temperatufe= 0.14 the system completely falls out
of the linear response region and therefore always showsknear behavior at the
measured forces. It is found that the curves at intermedates can be rescaled
and one finds a universal behavior of the Peclet numbers indhdinear regime. To
show this the forces were rescaledften/ f£2,~2° with £L¢ =20 the value of the force
wherePe* = 20 for the given temperature. This scaling is shown in the loplets
of fig.[5.1 for A and B patrticles separately and in fig.]5.2 fotrbtogether. In the
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forces fsca/ ffce;:zo. b) Comparison of mean-squared displacement in force direction of
A particles atT = 0.14 and f = 2.0. Black curves shows measurement with system
cooled via the DPD thermostat, red curve via the Anderson thermostatE@steps and
blue curve via the Anderson thermostat every 30 steps. Inset shavesczaves divided

throught.

region behind the linear response one finds a collapse ofctleds curves onto the
same universal curve. The region over which the curves shisdbehavior increases
with lower temperatures and therefore the scaling regioreamses in dependence of
the temperature. At higher forces it is found that the cudegdate again from this
scaling curve and show a strong temperature and force depebdhavior.

5.1.2 Diffusion behavior

In fig[4.8 of the previous chapter it was seen that in the pelrditection the motion of
the pulled particles is superdiffusive for long times. Tdheéhe mean-squared displace-
ment behaves a@\x?(t)) — (Ax(t))? ~ t* with an exponent > 1. One question
that naturally arises from this observation is whether drths behavior is the long
time limit of the particle motion. One possibility is thattimotion stays superdiffus-
ive for all times which is predicted by the simple trap mod€&he other is that one
observes a transition to a normal diffusive behavior fogléimes and the superdif-
fusive motion only occurs at intermediate times. That oneldiexpect if the particle
motion reaches the time scales of the bath diffusion. |h fgdisplayed are the mean
squared displacements in the parallel directiol at 0.17 and different forces for
both particle types. Here, eventually a crossover to a slifibehavior can be seen
in the long time limit. Although this question cannot be aes®d with certainty. To
highlight the long time behavior also the MSDs divided thlgbuhe time are shown.
These show even at long times a curvature and might convgajest a constant plat-
eau. Unfortunately, it is not easily possible to answer dfigstion with certainty. Due
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Figure 5.3 — Mean-squared displacement for the pulled particle in the force direction.
Shown curves are for A (left) and B (right) particles for differentcies atT = 0.17.

to the restrictions in the simulation time that result frdme thox length one cannot
simply increase the observation time. An increase of thedmes by an amount that
would make a difference would result in an enormous addaticomputational effort.
A second problem is the required statistics at these teryyes The small deviations
of the exponent from unity lead to a bad signal to noise ratio. Therefores ilii-
ficult to differentiate the superdiffusive behavior in tlead time limit from a normal
diffusive behavior. It is also not practical to go to even éstemperatures that show
a stronger superdiffusive behavior. There, it is found thatregion over which the
particles show superdiffusive motion &At= 0.14 is extended over up to 2 decades in
time and even up to 3 decades in time in the glass at 0.12. Therefore, the pos-
sible transition to the diffusive regime is shifted to muakel times and even longer
simulations are required here. To check whether this lang tiehavior is influenced
by hydrodynamic effects, which are increased by the DPDntbstat, some additional
simulations were run with the Anderson thermostat. Due &sdinong randomness
introduced by this method hydrodynamic effects are suggcksin fig[ 5.2 b) a direct
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Figure 5.4 — Effective exponents of the mean-squared displacements in the force dir-
ection with (Ax?(t)) — (Ax(t))? ~ t* at different temperatureE in dependence of the
external forcef. Left plot shows A particles and right plot B particles.

comparison is shown and one finds that the long time behawvies dot depend on the
thermostat. Hence, one can conclude that the long time diffipsive behavior is not
influenced by hydrodynamic effects. From these simulatata @ is possible to meas-
ure the exponent in dependence of the force at different temperatures. Fhione
by fitting power laws against the long time limit of the MSDd€lobtained exponents
are presented in fig.3.4 for both particle types. As one sedaviates only slightly
from unity at high temperatures up To= 0.18 and only in the region of = 2 where

a =~ 1.1. These small deviations make it hard to measure the effedr-diffusion
as the statistical fluctuations are quite large. By lowerirggtemperature closer to the
glass transition one finds a steady increase of the expoaedts shift of the maximum
of the curves to higher forces. At these temperatures ons &irsleady, nearly linear,
increase ofv at small and intermediate forces, which corresponds to tineetsal be-
havior found in figL5.1L. For higher forces these curves reaglateau value, followed
by a strong decrease to unity at even higher forces. Hergérahsition to the diffusive
regime takes place. For both particle types one observeatttiee lowest temperatures
the temperature dependence decreases and the curves se@mMerge against a tem-
perature independent behavior (especially at low forcés)amaximum ayf ~ 4 —5
with & ~ 1.5 — 1.6. Although the simple trap model presented in chapter 3.%eHo
a superdiffusive regime, the qualitative behavior diffesn the one observed in the
simulations. At low forced (3.33) predicts a linear inceeagth the force. This is in
agreement with the simulation results presented hereguwadth the statistics are not
good enough and the slope of the increase i2nét clear difference in that region is
the displacement behavior of the probe where the modelgisegicreep motion with a
power law behavior whereas here a normal linear displacewiéimconstant velocity
is observed. At higher forces a second regime is prediCiédl)3vhere the exponent
« behaves a2/u. This could possibly describe the behavior found here aljhche
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Figure 5.5— Diffusion constant in the perpendicular directibg of the pulled particles
for different external forces. Upper plots shdws, against inverse temperatuig T
and lower against inverse effective temperatufées to highlight the collapse onto the
equilibrium behavior. Left plots show A particles and right B particles.

statistic and the number of data points is definitely not gendugh in that region.
Then, at high forces the behavior agrees with the theotetrealictions [(3.35) where
one has a diffusive motion and a linear increasing displargn©Of course this simple
model is only a rough description of the investigated sysaeh therefore the com-
parison should not be overstretched. For a realistic d&sami a more sophisticated
model is required.

Although the diffusion constants in the force direction ao¢ accessible in these sim-
ulation they can still be calculated in the perpendiculaection which was already
shown in the previous chapter. For a better comparison \Witheguilibrium values
and to highlight the effect of the external forces in[figl 5.8 thffusion constants for
different f are plotted against the inverse temperature. As one cathsesquilibrium
diffusion reduces drastically by orders of magnitude atdotemperatures close 1@
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which is also predicted by the MCT_(3.8). By applying an extefoece the diffu-
sion increases and still shows the same strong temperagheior as in equilibrium,
but now with a shiftedl.. The particles behave as if they were at equilibrium but
at another temperature. This observation directly leadsdefinition of an effective
temperaturdes = c(f)T which describes the behavior of the pulled particles. Here,
Teft only depends on a force dependent prefactgn and the system temperatufe
That prefactore(f) can be calculated by superimposing the curves for the pestic
with external force onto the equilibrium curve which is smoim the lower plots of

fig where the same diffusion constants are plotted agtiiase inverse effective
temperatures. Here, one observes that for the lower temopesaall curves collapse
nicely onto the equilibrium curve of the system. Only far gvitom T, at temper-
atures arounde = 0.34 — 1.0, a deviation for the highest forces can be observed.
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This is in agreement with the previous results of the Peclatlver where the scaling
also broke down for high forces and temperatures. It cooedpto the absence of the
super-diffusive motion and the influence of the cage streatn the particle motion.

Such a description with an effective temperature and thergétemperature depend-
ence of the diffusion differs drastically from the behavimider shear as was found in
[5143]. To highlight the difference also the diffusive beiwa of the particles in the
same system under shear is shown (dashed line, data [fifomlfbihe sheared case
only a slight temperature dependence is found. There, htthigperatures the system
IS in the linear-response region and the diffusion coeflicagrees with the equilib-
rium values. Then, at lower temperatures the system ertensan-linear region and
one observes a converging behavior against a constanapldtethe sheared case the
whole system is deformed and the cages break up by the sheawhech leads to a
nearly constant diffusion even far beld@y. There, the diffusive behavior is dominated
by the timescalé@ /-y introduced by the shear rajewvhereas for a single pulled particle
the surrounding does not change and one observes a motiopasfiele in a frozen
surrounding.

5.1.3 Incoherent scattering functions and relaxation times

The next system property under closer investigation folirsgaelations and universal
behavior is the incoherent scattering functiBifig, t) of the pulled particle. From
the theoretical side it is an interesting property to studg tb the many predictions
the MCT makes about the typical behavior inside the differetdxation regimes.
To study the anisotropic behavior &f(qg,t), both directions together for different
forces and temperatures are shown inffigl 5.6. Here, the enjpldts showF; (g, t)
atT = 0.14 for f = 0.5 a) andf = 2.5b). Itis found that for high values of g
the incoherent scattering function shows an identical biehan both directions. Only
for small g-values one observes a different behavior arnmteiate and late times
with a much faster decaying correlation function paralbeitte force. In c) one sees,
that atT = 0.17 and f = 0.5 for long times the correlation function in the parallel
direction even starts to oscillate between positive andchtiegy values at the lowest
g values and has an imaginary part (not shown here). It seeatghe difference
between both directions starts to emerge with the onseteaf-telaxation. This can
be checked by calculating the relati®{¢) (3.11) for the shown curves which was
done in fig[5V wher(t) for T = 0.14 andT = 0.17 with f = 0.5 is shown.
In both directions all curves collapse nicely onto each othging theB-relaxation
regime. Only for long times, where therelaxation sets in, the curves deviate from
each other. Here, the orthogonal direction shows a monatodecrease whereas the
parallel direction shows oscillatory behavior for Igvand higheiT values. Therefore,
one can conclude that the factorization property predibethe MCT [3.10) holds
even under the influence of the external force in the scakggne at low forces.



CHAPTER 5. SCALING REGIME AT INTERMEDIATE FORCES 53

T =0.14, parallel C T = 0.14, perpendicular B
10 - 5] N
f=05 B i i
£ o \ = B
@ - x o0— -
10; | N \.-\,..;»_‘.: I:
§ C s -
20— — i i
\H‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ \HH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T
10" 10° 10" 10 10° 10* 10" 10° 10" 10 10° 10*
t t
\HH‘ | \HHH‘ | \HHH‘ | \HHH‘ | \HHH‘ L1l ‘ ‘ ‘ ‘ ‘
1007 - 7\\\\\\\ Lol LI Lo LI Lo LI Lol LI |
7% N T =0.17, perpendicular B
0 X - -
— - f=05 —
£-100 - L B
= ] T=0.17, parallel N
] f=05 B ] B
-200— — i B
] T -100 -
7\\\\\‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \\\7 \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T
10" 10° 10" 10° 10° 10™ 10° 10 10° 10°
t t

Figure 5.7 — RelationR () of the incoherent scattering functions (shown in ffig] 5.6)
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n

The MCT predicts thaF;(g, t) should behave according {0 (3112) in theelaxation
regime. From this behavior the non-ergodicity paramgfgecan be obtained after
fitting (3.12) to the measured curves. Pictured inffigl 5.8theevalues off, in de-
pendence off where all these curves nicely collapse onto each other. i$has in-
teresting observation as one can calculate a localizagiogth7,,c from them in the
Gaussian approximation of the incoherent scattering fandt (g, t) [5]. There, the
non-ergodicity parameter behavesfas= exp (—%qz?ﬁm). From the collapse of the
curves with different external forces onto the equilibriaorve follows thaty is the
same under the influence of the external forces and agredhveitbalculated equilib-
rium values from[[5Jra, = 0.22 and7E. = 0.19. Hence, the cage structure of the
trapped particles is the same as in equilibrium and it is trongly deformed by the
force. Moreover the cages are still isotropic for the pulpaditicles. This is in agree-
ment with the previous observations that the particle nmasmearly identical as long
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as the particles are trapped and differs only for the timess #fie particle has left the
cage as was seen in fig.h.7 where the MSDs were compared.

For long times the second type of relaxation takes placeyttedaxation. In the case
of glassforming systems one usually finds a stretched expiahbehavior[(3.3) of the
incoherent scattering functions. In this regime usuallpi@ersal time-temperature su-
perposition principle holds. In the first plots of fig. 5.6 alh@rent scattering functions
of the probe forf = 1.0 andg = 6.0 at different temperatures in the rangelof= 0.34
to T = 0.14 for the perpendicular direction are shown. For all exceptlthwest two
temperatures the incoherent scattering function completcays to zero during the
time of the simulation. It is now predicted that the differenrves should collapse
onto each other for the late time regime after rescaling bytypical relaxation time
7. For each temperature this relaxation time is defined by

F(qt=1,) =02 (5.2)

Thus, the relaxation time, is the time where the incoherent scattering function has
decayed td.2. Here, the chosen point is one of the lowest available vadtiés(g, t)

atT = 0.14. Note that due to the universality each point inside theisgakgion is a
valid rescaling point and therefore the relaxation timetasinique definition. In the
right plot in the first row of figL.5.J6 this scaling for the dissed scattering functions
has been carried through. As one can see the time-tempegatperposition principle
holds at low temperatures even with small and intermediapdied external forces as
long as the particle is inside the scaling regime. It is fothvad the lowest temperature
T = 0.14 already shows a small but systematic deviation from the-tengperature
superposition principle. This is a first hint of other prasesthat take place close to
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Figure 5.9 — Test of the scaling relations of the incoherent scattering functipfst).

a) Shows incoherent scattering functiByig, t) in perpendicular direction witf = 1.0
andg = 6.0 for different temperature$. b) Shows same curves against rescaled time
t/ T, to illustrate the time temperature superposition principle araynd) lllustration of

the force time superposition principle in the parallel direction and d) in theepeéipular
direction.

and below the critical temperature that are called hoppnoggsses [19, 20]. Close
to T, these additional relaxation processes lead to deviatiotisei behavior from the
MCT predictions. In the case of the pulled particle one hak e forcef an addi-
tional free parameter and therefore one can check if a semgmerposition principle
holds, the force time superposition principle. In fig.]5.60y d) the scattering func-
tions atT = 0.15 and different forces are scaled onto each other (unscaledisla
shown in fig[4.9 and 4.10). In both directions one finds thasfoall forces the curves
collapse nicely onto each other during theelaxation regime. Only for the highest
force f = 2.5 a slight deviation can be observed which comes from thelatmiy be-
havior in the parallel direction. Therefore, one can codelthat such a superposition
principle holds. Thus, the exponerisof the stretched exponential decay (3.3) with
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Figure 5.10— Product of relaxation time, andg? of the pulled particles for different
external forcesf at T = 0.15 in dependence qf. Left plot shows A and right plot B
particles. Crosses at = 0 mark the value of the inverse diffusion constahfdgih
(In(5) as scaling factor is required for this comparison).

the applied force are the same as in equilibrium.

The last investigated property of the incoherent scatjeshrall be the relaxation time
itself in the orthogonal direction. For different force Bt= 0.15 in dependence of
g the product ofj?t, is shown in fig{5.10. These curves increase wjithntil they
reach a maximum aroungl ~ 6 — 9 with a decrease at highgt With increasing
forces one observes a strong decrease over orders of mé@grind a pronounced
curved shape until the dependence is only a linear increase at high forces. As in
the equilibrium case [5] these curves can be compared toiffiasidn constan®D,,,,
asF(q,t) = exp (—Dorng®T2) holds in the hydrodynamic limit for smadl. With
Fi(gq,t = 1) = 0.2 follows thatt,g?/ In5 = 1/Domn. These values are marked
with crosses in fig. 5.10 and one finds a good agreement witextnapolated values.
As a second point it is interesting to study the temperatepeddence of,. Here,
one can check if a similar scaling relation with an effectigenperaturels as for
the diffusion constant (fig. 5.5) is found. Displayed in figl® are the values of,
for g = 6.0 and different external forces in dependence of the tempergtpper
plots). All curves show a diverging behavior in the regioauard T,. Again, as in the
diffusion case, the curves for higher forces diverge at fawmperatures. Thus, one
can also scale these curves onto the equilibrium curve thatlone in the lower plots.
Here, in contrast to the scaling of the diffusion constanysiesnatic deviation from
the scaling at low temperatures is observed. Therefore diaiation might again be
a result of additional relaxation processes that occurecloghe critical temperature
and lead to a deviation of the power law behavior. This effext also observed in the
equilibrium simulations in [5] where they lead to a strontiemn predicted decrease of
the relaxation time at the lowest temperatilire- 0.14.
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Figure 5.11— Relaxation timer, of the pulled particles with different external forces for
g = 6.0. Upper plots showr, against temperaturg and lower against effective temper-
ature Teg to highlight the collapse onto the equilibrium behavior at higher temperatures.
Left plots show A particles and right B particles.

5.1.4 Friction coefficient and effective temperature

Until now only the temperature dependence of two quantiti¢se perpendicular dir-
ection were investigated. Therefore, it is interestingdweha closer look at a quant-
ity that also depends on the parallel direction, the frictamefficient. Displayed in
fig.[5.12 is the temperature dependence of the friction aeffi’ for a constant force.
Close toT, one observes a strong increase over orders of magnitudle A$ in the
cases of the diffusion and relaxation constants the criteraperature for the curves
with external forces is shifted to lower values Bfand therefore these curves are all
below the equilibrium curve. As can be seen in the middlespidtfig.[5.12, it is
again possible to scale them onto the equilibrium curve lifgirsty. There, one finds
a good agreement and a universal behavior over up to 3 decade®r the scaled
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Figure 5.14— Van Hove correlation functions in the parallel direction for pulled A parsicle
atT = 0.14fora) f = 1.0 and b)f = 2.5. Here, even a small third peak is visible.

curves against the effective temperature. Here, the gualihe scaling is again com-
parable with the diffusion scaling and thus the particleiorotn both directions can
universally be described with an effective temperaturent-all these scaled plots it is
directly possible to obtain the values of the effective temagpures. This leads to the in-
teresting question if all these effective temperaturestferdifferent properties are the
same for the different quantities. To answer that questidhe lowest plot of fig. 5.12
Tett/ T — 1 for all three measurements is shown. One finds that in all oreasents
the effect on the A particles is stronger and the values feffective temperature lie
therefore above the values of the B particles. For bothgartypes it is found that
the values for the friction and the relaxation constant aieiite good agreement with
each other except for the highest force of the A particles. 8tibis force it is ques-
tionable whether this scaling is still applicable. The ealdior the friction coefficient
seem to lie all a bit below the values of the other quantiti#st there the statistics
is clearly not good enough to make any further statementstabfierences between
these properties. Itis found that the behavior of the diffagonstant can be described
quite well with a simpley = a + bf? behavior as is shown with the dotted fit to both
curves. This is in agreement with the predictions made i fi@sn a mean-field the-
ory for a Brownian particle with a strong external field whelsoa quadratic behavior
was found.

5.2 Particle motion

In the last part of this chapter the movement of the particédl ©e analyzed directly in
the real space. Here, the first investigated property isaheHove correlation function
of the probe particle. In fig. 5.13 some van Hove correlatiamcfions of the probe
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Figure 5.15— Right) Schematic sketch of a typical pulled particle trajectory at low tem-
peratures and forces. Hetg, defines the time the particle is trapped inside the cage and
Ax the jump distance of a single jump. Left figure shows typical trajectoriesdiuicbes

with f = 1.0 at different temperatureE.

particle are shown. In the direction perpendicular to thredoone finds the typical
behavior for a glassforming liquid where one has a symmdisicibution with a small
Gaussian peak aroungz = 0. It indicates the trapped particles inside the cages
and the broad exponential tails result from the non-diffeisnotion on intermediate
timescales. In the parallel direction the symmetry of tretrdiution is broken. There,
also a Gaussian peak at= 0 is found but only with a small exponential tail in
the negative direction. In the positive direction one obsgra smaller second peak
followed by a broad and slowly decaying tails at longer timAs can be seen in a)
this behavior can be observed for long times, where ever-a8000 a strong peak at
the initial position can be observed. At this time the averpgbe particle has moved
~ 30 atT = 0.14. Only for higher temperatures one can reach the regime vihere
peak disappears. This is shown in eJat 0.17 with f = 1.5. Here, one finds that the
van Hove correlation function is nearly symmetric with a €&sian shape around the
average position at the longest times. This correspondsettirhes where possibly a
transition to a diffusive behavior can be observed in the 8fig.[5.3. At the lower
temperatures one has a motion of a particle in a frozen envient that can be seen
from the peak structure in the force direction in fig. 5.14.e Hecond small peak is
atx = 1 that corresponds to the distance of the neighbor peak inghéitgium pair
correlation function. There, the particle moves with a higbbability to the position
of the nearest neighbor. For higher forces (hgre- 2.5) even a third peak appears
that indicates the next nearest neighbor positions.

At the lowest temperatures the particle motion is a neadgreite motion with two sep-
arated parts. On the one hand one has long times at rest, thieeparticle is trapped
inside the cage and on the other hand short jump moves fromtoagage. This beha-



62 5.2. PARTICLE MOTION

\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\7 ‘\\\\‘\\\\‘\\\\‘\\\\ L1l | |
--- f=1.0 perp. L 4
1_| ---f=15perp. T =0.14, A particles
---f=2.0 perp.

---f=2.5 perp.

— f=1.0 parallel
— f=1.5 parallel NN
— f=2.0parallel 4
— f=25parallel

[
-~y

f=1.5, A particles

,_.
1S
|

P(AX)

=
O.
ol

-2 1 0 1 2 3
AX Ax

f=1.5, A particles
Iy + T=0.14
fEL < T=0.15
e ! -+ T=0.16

i
o‘
i

o b,

| \HHH‘
T \HHH‘
N

P

th,
TP
L ey,
"
DN
it B

P(1)

=
o\
G

T =0.14, A particles

T T
N
o
Lol
N
"
T

—h—h —h —h

NN = =
tmowo

i
O.
S
S

=

o,
\HH‘
\HH‘

10° 10° 10° 10°
T T
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the particle motions for A particles. Left plots show distribution¥ at 0.14 for different
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vior gets more and more pronounced for lower temperatunefig.[5.1% some typical
trajectories g-direction) at different temperatures with= 1.0 are shown that high-
light this behavior. Even af = 0.18 one already sees that the particle gets slowed
down from time to time by energy barriers in the system. Witleréasing temperat-
ure the height of these barriers increases and the paréicdesapped longer and more
often. There, it is easy to differentiate between a trappetighe and a particle that
jumps to the next cage. At the lowest temperature one hasréy mEafect separa-
tion between these two states. Hence one can study the jrgbdilstributions of the
waiting timest, inside the cages and of the jump distandesfrom cage to cage.
Here, this was done with the method that was used in [66]. & Hibe particle motion
of a binary Lennard-Jones mixture in equilibrium was stddi the presented cases
the already recorded single particle trajectories werd.ugkere, every 40 integration
steps the positions and velocities were written out whicheveveraged over 20 con-
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secutive steps to reduce the fluctuations. Only then it isiptesto identify the single
jumps and waiting times. To identify particle jumps fromdkeaveraged trajectories
the distance\x; between two 20 steps separated positions is calculatecharaler-

age fluctuatiorest = +/1/NY; Axiz of these distances are measurdtiumber of

measurements). Note that differentto![6@};is calculated from the average over all
trajectories and not separately for every particle due ¢ontluch shorter simulation
runs here. It is found that a good criteria for the identifmatof a particle jump at
the lowest temperatures jA%;|?> > 1002, From these jumps the start and the end
were identified by the threshold criteridx;|? > 302, With these jumps identified
the waiting times and jump distances can be measured. Hergyrp distance is the
difference in the position between the beginning and theoétide jump and the wait-
ing time is the time from the end of a jJump to the beginning efrtlext jump. The parts
at the beginning and the end of the simulation were discaaiddle steps are not com-
pleted (usually the particle is trapped here). In[fig. b.¥6dhlculated distributions of
the jump distanceB(Ax) and the waiting time® (1) are shown. It is found that the
distribution of the jump distances shows an exponentiahgatthe positive direction
and that the distribution of the waiting times shows a broaladvior that can be fitted
by a stretched exponential (straight line) with an exporgent 0.5. This behavior
with a broad distribution of waiting times is principally agreement with the simple
trap model of chaptér3.2.

5.3 Summary

In this chapter the regime at intermediate forces in thedststate was investigated
closer. In that regime the particle motion shows a stronglgaropic behavior and in
the parallel direction the motion is superdiffusive. Haaescaling behavior is found
where the properties of the pulled particles show a univdrehavior. It could be
seen that the diffusion constants, the relaxation timestla@driction coefficients of
the particle under the influence of the external force carchked onto the equilibrium
curves of the system. This leads to a description of theglarnotion with an effective
temperature. Furthermore, it was checked if the generaligitens that are made
by the MCT still hold for the pulled particle and it was foundatithe incoherent
scattering functions show a time temperature and a forcgdesture superposition
principle. At the end of this chapter the jump motion of thetiges was investigate
and the distribution of waiting times and jump distances magssured. Here, a broad
distribution of waiting times was found which is in agreerith the assumption that
are made for the simple trap model.
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Chapter 6

High force diffusive Regime

The second regime investigated here in detail is the oneghtfbrces. In chaptéd 4 it
was found that at high forces the particle motion changemdigan the superdiffusive

motion at intermediate forces to a completely diffusive imotn the parallel direction

at high forces. In this chapter that transition is studiedetail and it is found that
with increasing force the anisotropy of the particle moti®meduced until it is again
completely isotropic for the highest forces. Here, the cedlinteraction of the probe
particle with the energy landscape of the system (espgaidih the deep minima) at
high external forces leads to that behavior. Furthermais,found that still deep in

the high force regime a temperature dependence of the idiffe®nstant exists which
is in contrast to the temperature independent behavioreféiocities and friction

coefficients.

6.1 Transition to the diffusive regime

In fig.[6.1 the transition from the intermediate force regtméhe high force regime for
the mean-squared displacement of the particle motion foaiges atl’ = 0.14 is
shown. There, one finds a strong dependence on the forcegaaddhe particle motion
is influenced by the cages in the system. This effect of thes#gindicated by the
onset of the plateau in the MSDs. For higher forces one firstes a disappearing
plateau and then a strong reduction of the effective exganehe long time behavior.
A second observation that can be made is that as long as tteaple visible, the
short time behavior is identical for the different forces.higher forces this regime is
shifted to higher values and therefore the local tempegattithe probe is increased.
For both particle types it can be observed that these efédetys occur at the same
force. So it seems that the cooling effect of the DPD theratastincreased by the
trapping of the particles. For better visualization of thed time behavior in the lower
plot of fig.[6.1 the same MSDs divided by the time are shown.

65



66 6.1. TRANSITION TO THE DIFFUSIVE REGIME

3 gl vl vl L L il il il I AT L1

10 -
) @ 12014, A particles e b) T=0.14, B particles
10 o 10 parallel
parallel
! 0
5, 10 % 10
- 0 =
Rt §
Z1 % 10
Vo4 M
A 10 f=25 Ao
e, f=4.0 =10 — =50
3 10 f=5.0 3 f=6.0
Voo, f=6.0 v 10° --- £=10
10° f=7.0 -- =20
1250 w0 =20
4 = 9. 75
10 »// -- f=10
5 -5
10 H‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T T TTTT 10 H‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ 1T
107 10™ 10° 10" 10° 10” 10™ 10° 10" 10°
t t
I R TTIT R RTTIT RN RTIIY RSN ERTT BN EATT b v IR AR e In —l
o | — f=25 st ) P
107 f=4.0 o o7 E | e i
q --- f=50 Pt E -
- 1 -- f=6.0 e r 1 i Ee T
= i f=7.0 A I 21074 =
A f=8.0 T A, E =
= a1 f=9.0 P ol L = ] C
F09 - =10 =3 N
v g Ev
A ] B - - A | L
A ] . R ;
& A SRR s
x %107 g — =50 =
¥ 1073 = v ] f=6.0 =
= E = 7 --- f=10 C
1, - ] -- =20 i
1 . f=30
17 c) [ i n
\‘\‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T TTTIT \‘ T HHH‘ T HHH‘ T HHH‘ T HHH‘ 1T
107 10™ 10° 10" 10° 107 10" 10° 10" 10°
t t

Figure 6.1 — Upper plots show mean-squared displacemerit at 0.14 in the parallel
direction for a) A and b) B particles at intermediate and higher fofcéwer plots show
the same curves divided througto highlight the transition to the diffusive regime at high
forces.

A second property that is closely related to the MSDs is tHecvy autocorrelation
functionCy(t). It measures how strong the fluctuations in the velocity areetated
in time. For the pulled probe with a drift they are given by

Cult) = (v(0) = 9[v(t) = ¥]) = (v(O)v(t)) — V2 (6.1)

Here, the average drift velocityis subtracted. Of course in the perpendicular direc-
tions the average velocity is zero and therefore one oblegres

Ca, (1) = (04 (0)0y (1)) and Cy, (#) = (0:(0)0x(t) ). (6.2)

Only for the parallel direction the drift has to be taken iatttount

Coy(t) = (x(0)0x(t) ) — 72 (6.3)
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Figure 6.2 — Velocity autocorrelation functions of the pulled particlesTat= 0.14 in
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to highlight the long-time tales of the velocity autocorrelation function. Blackéas$ine
is a power-law fit with the exponent = —0.53 + 0.05.
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In fig. some of these correlation functions for= 0.14 are shown. As one can
see at the lowest forces the velocity autocorrelation foncis still quite similar to
the equilibrium curve (dashed black line). There, one olesea strong drop for short
times of the correlation function and it even becomes negatihis the a result of
the surrounding cage structure that traps the probe andraitte opposite direction.
Therefore, it comes to a reverted motion, the particle isypdack and trapped. At
higher forces the particles can detach more and more frorodbe structure and the
motion shows less influence of the surrounding particlesnddethe velocity auto-
correlation function is shifted to higher values and thekiasgezrd motion is less pro-
nounced. In the perpendicular direction c¢) and d) the dezagto happens quite fast
at all forces and for both particle types. This is in conttasthe parallel direction
where at intermediate forces a long time tail can be obsemech is shown in €) on
a logarithmic scale. Here, one finds that for the forces irrémge off = 4 — 8 the
velocity autocorrelation function shows a power law deddgrag times over up to two
decades in time. This behavior increases with the forcesitirdaches a maximum
at f = 5 — 6. For even higher forces this effect decreases again anaiiges to an
exponential decay at the highest forces. This power lawydisadirectly related to the
superdiffusive motion observed in the MSDs|[35] by

<Ar2(f)> = </Ot\7(t’) dt’ /Ot\‘/(t”) dt”>

- 2/0t /Otl <\7(0)v(t’ - t”)> dt"dt’,

with ¥(¢) = v(t) — vV one has the direct relation betweénrz(t)> andCy(t). Due to

the bad statistics at long times this exponent can only bekeukfor the higher forces.
At f = 4.0 the exponent’ = —0.53 £ 0.05 of the velocity autocorrelation function is
measured which is in agreement with the obtained expanentt’ +2 = 1.52 £+ 0.05
of the MSD at that force.

This change in the decay behavior can also be seen in thearadiscattering func-
tions F;(g, t) which are shown in fig._613 for A particles & = 0.14. There, one
observes in the perpendicular direction a transition froendecay at low forces, with
a plateau at intermediate times and a stretched exponeetaly at long times, to a
completely Gaussian decay at high forces. In the perpeladidirection one finds
that atf = 4.0 the curvature of; (g, t) disappears completely and one has a behavior
Fs(g,t) ~ —log(t) over nearly 3 decades in time. At even higher forces the turza
changes in the opposite direction and one finds a behavibrabembles the behavior
of scattering functions in the Lorentz gas as was shown ij [Bfiere, one first has a
fast decay of the relaxation function and then a crossovaistow decay at long times
which is found for the forceg = 5 andf = 6 in the perpendicular direction. It is
clear, that in the case of the pulled probe the reason for¢hagation behavior differs

(6.4)
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Figure 6.3— Intermediate incoherent scattering functigty, t) atT = 0.14 andg = 6.14
of pulled A particles in dependence pfa) shows parallel and b) perpendicular direction.
For high forces the relaxation mechanism changes.

from the one in the Lorentz gas where the particles are loedlinside pockets of a
frozen structure. In the parallel direction the drift of fpeticles leads to an oscillatory
behavior at high forces. At intermediate forces one obsemsow transition from one
relaxation behavior to the other with a slowly disappeaptajeau, coming from the
low forces. In fig[6.4 thg-dependence df;(g, t) in both directions for some selected
forces are shown. As one can see, the general behavior depertie value ofy. For
lower forces the oscillatory behavior is shifted to lowelues ofg.

In fig. the corresponding van Hove correlation functiohthe probe particles for
the same forces are shown. Here, one finds that in the padaiésgtion the shape
becomes more and more Gaussian with increasing forces.eAntermediate forces
the distribution of the probe probability shows a two peakdure with a narrow but
strong peak at = 0 and a broad second peak peak at higheBuch a behavior was
also observed for a pulled probe in a triangular lattice gg4.7,/68]. In contrast to
these previous results, here a broad tail of this second feelkver x is found and
the peaks clearly deviate from a Gaussian distributiony@nthe highest forces the
first peak disappears completely and the shape of the van étwvelation function
is Gaussian for all times. From a comparison with the belatidnigh temperatures
follows that these long tails result from the cage strucag¢hey disappear at higher
temperatures even for small forces. This can be seen in 1i§.€. In the perpendicu-
lar direction one observes a transition from the typicapghaith the broad exponential
tails and a strong localization at= 0 to a completely Gaussian behavior.
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Figure 6.5— Self-part of the van Hove correlation functiéi(r, t) of the probe particle
at T = 0.14 for different external forces. Left plots show direction parallel aigght
perpendicular to the force at the same timesd forcesf.
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Figure 6.6 — Upper plots show the mean squared displacements of the probe in both dir-
ections atl’ = 0.14 with f = 8,10,20 for A (left) and B (right) particles. Lower plot
shows the self part of the van Hove correlation function for both direstairthe same
forces of A particles. Here, the distribution in the parallel direction wadeshiby the
average value, to make both curves comparable. At high forces a sa@duagtion of the
anisotropy of the particle motion can be observed.

6.2 The diffusive regime

For high forces the particle motion is diffusive again and ttan Hove correlation
function has a similar shape in both directions. Therefibiaakes sense to compare
the two particle directions directly with each other andathigow strong the anisotropy
in this region is. Pictured in fig. 6.6 in the upper plots are MSDs in both directions
together for the highest forces At= 0.14. For both particle types one finds that the
direction parallel (straight lines) and the direction odbnal (dashed lines) converge
against each other with increasing forces. This can alse®&e Isy directly comparing
the van Hove correlation functions of both directions ash@ in the lowest plot of
fig.[6.8. There, for reasons of better comparisarx, t) was shifted by the average
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Figure 6.7 — Temperature dependence of the behavior in the high force regimeplbeft
shows MSDs in both directions and right corresponding van Hovelatioe functions at
T = 0.14,0.34,1.0 for f = 30.

particle position.

The measurement of the friction coefficient showed that #régle motion in the high
force regime is independent of the system temperature efdrer, one would also ex-
pect that the diffusion shows a temperature independemti@mtas well. To check this
prediction in fig[6.V7 the MSDs for A particles aifid= 30 at different temperatures are
shown. At all temperatures one finds a clear difference betveth directions at short
times but no direction dependence in the diffusive long tfimé. Surprisingly even at
these extremely high forces a temperature dependence difthgion constant exist,
as can be seen in the inset. This temperature dependenciscaicaly be seen in the
van Hove correlation function that is shown in the right @bfig.[6.7. This quantity
gives exactly the same picture. No anisotropy any more [duastrong temperature
dependence which is a clear difference to the behavior drittteon coefficient.

One of the remaining questions that needs to be answeredvisabextend the DPD
thermostat influences the particle motion, especially nhigh force regime. This
thermostat introduces an additional friction term into #guations of motion and
therefore it could be possible that the particle behavidrigih forces is strongly in-
fluenced from it. Thus, some measurements were run at thestdamperature where
the thermostat was completely switched off. The resultingukations were therefore
performed completely micro-canonically. As a consequeheeavhole system energy
during the simulations with the pulled particle was not ¢ansas the external force
constantly increases the system energy. This leads to dysimweasing temperature
with the time. In the upper plots of fif. 6.8 selected disptaepts and MSDs in the
force direction for A particles & = 0.14 are shown. For all forces one finds that the
displacements with and without the thermostat are in goodeagent and therefore
no effect is visible. As a consequence also the frictionfadent is not influenced by
the DPD thermostat. Also the comparison of the MSDs showsd ggreement with
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Figure 6.8— Upper plots show direct comparison of displacements (left) and mearesiqua
displacements in the parallel direction (right) of the probe particles with andutitihe
DPD thermostat and lower left plot the corresponding temperatures inghensy without
thermostat. Shown curves are Bt= 0.14 with f = 1,5,20 for A particles. Lower
right plot shows density dependence of the high force platequ-at 0.18. There, red
symbols corresponds to the mainly used density Wib0 particles in a box of geometry
Ly =L, = L, = L, blue to1400 and black tal800 particles.

only slight deviations in the short time regime at the higliese. There, the ballistic
regime from the simulations without the thermostat is skitio slightly higher values
as the local temperature of the pulled particles is incret@gen more without the DPD
thermostat. Just to highlight the effect of the missingrnih@stat on the system temper-
ature the development of the temperature with the time cfette@mulations without
the thermostat is shown in fig.6.8. There can be seen thadtbesf = 5andf = 20
lead to a strong increase of the system temperature whéereasift for the smallest
force f = 1.0 can only be seen in the inset.

As a last point in this chapter it shall be checked if the higité plateau is density
dependent that has been found in previous warks[[54, 56]reftwe, the number of
particles were changed and new system configuratioiis=at).18 were equilibrated.

At this temperature the relaxation times are still not tagéabut the system already
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exhibits slow dynamics. For a better comparison systents twiv different densities
were used. One slightly less dense system WAtb0 particles 700 of each type) and
one with a slightly higher densiti800 particles 900 of each type) per subbox of size
Ly = L, = L, = L. With these equilibrated configurations new measuremerg ru
with applied external forces in the high force regime weneaddl' he calculated friction
coefficient from these simulations are pictured in the ldavpést of fig[6.8 where one
can see the value of the high force plateau shows a cleartgetependence and it
is shifted to higher values for higher densities. This isgnegment with the results
published in previous works [54, 56].

6.3 Summary

In this chapter the behavior at high forces was investigatetlit was shown that the
anisotropy of the particle motion reduces for higher fonsbere it is diffusive again

on the accessible time scales. In this regime the incoheeaitering function and
the van Hove correlation functions were investigated amwdag found that the latter
showed even for relatively high forces a double peak stractin addition the high

force regime was investigated where, in contrast to thédnaoefficient, the diffusion

showed still a strong temperature dependence at the hitgress. Furthermore, the
influence of the DPD thermostat and the density of the systeth® particle motion

were analyzed. With this chapter the part on the steadg-stattion in the liquid

is completed. In the next section the behavior after thechwadin and switch-off is

investigated and then a closer look at the behavior of thieciain the glass state is
taken.
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Chapter 7

Switch on, switch off and the glass
state

The previous chapters concentrated on the classificatidineoprobe particles in the
different steady state regimes. Up to now all the presemsults were obtained in the
steady state at temperatures ab®yén the liquid phase. On the other hand the MCT
presented in chaptér 3117 makes predictions for the trandigmamics. Thus, for a
direct comparison with the theoretical predictions one akseds to study the transition
behavior into the steady state. Furthermore, studyingctise helps to understand the
behavior at temperatures below the glass transition winereniotion of the particles
drastically slows down. At these temperatures the behafier the switch on of
the force is pronounced and influences some observableslémgaime. Here, the
interesting questions that arise are at what time the parsdn the steady state and
furthermore for what forces does it reach a steady stateawitbnzero velocity.

7.1 Switch-on and switch-off

The first investigated case is the switch-on case where ttiglpas initially at rest at

t = 0. With the beginning of the simulation the constant extefoiae f is switched on
and leads to an acceleration of the probe. At low temperatamd high forces, where
the patrticle is out of the linear response regime, one eg@enbn-linear response. To
measure this behavior a much better statistics at shorstismequired compared to the
previous simulations. Here, no self averaging over timeossble and therefore only
short simulation runs are practical where around 8000Qtitepes of the particle mo-
tions over 1500 steps are recorded. At low temperaturesloserees a strong increase
of the velocity directly after the switch-on of the force whiis shown in the first plots
of fig.[Z.1. Directly after the switch on the first increaselisgortional to the applied
force and linear in time. It reaches a maximum at arotird0.25 then followed by a
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Figure 7.1— Behavior of the pulled A particles after switching on the external field1t Firs
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for different forces and right plot fof = 5.0 and different temperatures.
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strong decrease which results from the influence of the saodiog particles that lead
to a constant friction and therefore to a reduction of théopreelocity. Interestingly,
one does not observe a monotonous decrease to the steadyedtatity from here
on. At low temperatures and high forces a dip to velocity Wwelwe steady state value
is found and only from there the velocity increases to thadstestate value. At the
highest forcef = 10 atT = 0.14 one even finds a second smaller dip in the velocity.
In the middle and lower plots of fil. 7.1 the displacementstiier same particles are
shown. At the first sight the displacements shown in e) and the log-log scale look
quite similar to the mean squared displacement in the stetadg with a quadratic
behavior at short times, a plateau at intermediate and arlinerease at long times.
But here in contrast to the MSD measurement, where it is tleglgtstate behavior, it
Is a transient behavior. If the displacements are measuorégeisteady state they only
show a linear increase with time. This can be seen i fig. 2revthe displacements
from the long simulation runs are shown. From this comparispe can extract a
timescale that describes how long it takes until the partiels reached the steady state
after the switch on. Here, this point is defined as the timmfwhere on the difference
between both curves is less than 25%. As one can see, thisctibeencreases strongly
with lower temperatures and shows an exponential incredsevdorces. Therefore,
the transient behavior of the displacements gives a falsppetive on the dynamics
of the probe particles. Hence, from the velocities one desstihe particles reach the
steady state quite fast at arouhe- 10 which is a few decades faster. Thus, the plat-
eau in the transient measurement of the displacement issieqoance of the velocity
overshoot at short times after the switch on. For low tentpeea the height of this
overshoot, compared to the steady state velocity, incsestsengly and therefore the
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plateau in the log-log plot increases by orders of magnitusiet the steady state is
reached much faster.

From these measurements it is also possible to calculatdiffasive motion of the
particles during the onset of the force. In fig.]17.3 a direanparison of the mean
squared displacements at different temperatures and Iretttidns for A particles is
shown. One finds that for temperaturBs> 0.15 the transient and the steady state
curves in both directions converge quite fast against e#leér.oOnly for the highest
forces one finds that the transient curves (dashed linebpatand intermediate times
show a deviation from the steady state motion. This restdts the heating up of the
probe particles that are at rest at the beginning of the sitiom. That behavior can
be observed at all investigated temperatures and in bo#letdbins. For temperatures
T < 0.14 a second effect can be found. Here, at intermediate and lorestone
observes that the transient motion in both directions ishmfaster than the steady
state motion. In the glass @&t = 0.10 that effect is strongly pronounced over up to 4
decades in time. For these temperatures the diffusione@diate times is strongly
increased after the switch on of the field. The same can alsed®in the incoherent
scattering functions shown in fig.T.4 where the relaxatsostiongly increased in both
directions as the correlation functions decay much fabtere, one even finds a strong
direction dependence that results from the drift which issubtracted in the parallel
direction. Shortly after the switch on the velocity of thertpdes is higher then in
the steady state and therefore leads to the strong decay afctitering functions.
These effects can be compared to the behavior under sheae whe also observes
an accelerated motion![5, 43]. Here, the effect after theéchwon differs strongly.
After the switch on of the shear field one also observes anereted diffusion and
relaxation. But in contrast to the single particle behaviier ¢urves move away from
the equilibrium to the steady state behavior. For the pyletbes the relaxation after
the switch on is even faster than in the steady state. Thesploserves for short times
a strong increase of the diffusion and relaxation with a maxn and then a decrease
to the steady state behavior. Whereas in the sheared casendsafmonotonously
increasing behavior. The difference of both cases couldrbsudt of the different type
of forces. In the sheared case the system was driven withstarvelocity that leads
to a fluctuating stress in the system. In this work the proséqgbes are pulled with a
constant force which leads to a fluctuating probe velocityusl, it could be that the
observed behavior results from the pulling with a constatgreal force and it might
be that by pulling the probe with a constant velocity the bérachanges.

As a direct comparison the behavior after the switch off cannvestigated. In this
experiment the force is switched of at tifi@fter it was initially switched on at= 0.
One can expect that the resulting switch off behavior styodgpends o’ until the
particle has reached the steady state. In[fig. 7.5 a) the lmehaivthe velocity is
shown after the external force is switched off at tithe Here, it is found that the
response increases with longer waiting times. At shortgiomee finds a behavior that
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Figure 7.5— c) Behavior of the velocities for pulled A particles with the external force
switched off at timet’. Dotted line shows the behavior of the steady state motion. b)
v(t)/v(t") is shown to compare the behavior at short times with the equilibrium velocity
autocorrelation function (dotted line). €)v(t) 4+ v(t') is shown to compare the response
at long times with the switch-on behavior (dotted line).

is similar to the velocity autocorrelation function in thgudibrium system. This can
be better seen in b), whetdt) /v (t') is displayed. Already for the shortest waiting
time t = 0.083 (10 integration steps) the response shows a slight demi&iion the
equilibrium velocity autocorrelation function (dottechdi). Thus, the response here
is only in the limitt’ — 0 the equilibrium velocity autocorrelation function. With
longer waiting times the magnitude of the response inceeasdl it is similar to the
inverse switch-on behavior. This is illustrated in fig.17)5where —v(t) + v(t') is
shown for long timeg’ against the switch-on behavior (dotted lines). In the stead
state (straight black curve) the long-time and short-tieggmes are identical and only
at intermediate times both curves differ from each otheer&hthe response from the
switch off shows a continuous decay to the long time valuere/tige switch on curve
has a dip with a minimum.
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Figure 7.6 — Upper plots show displacement of the pulled A particle¥ at 0.10 and
different forces. Right plot shows transient measurements (straigls) lamnpared to
the steady state measurements (dashed lines). Middle plots show the calstdathd
state velocities and friction coefficients in the glass in dependence of theaixterce
f. Lowest plots show steady-state measurements of the mean-squareckesispiain the
glass afl’ = 0.10 of pulled A particles and different forcegs Left plot shows parallel and

right perpendicular direction.
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7.2 The glass state

Having studied the steady-state behavior in the liquid &edstvitch on case the glass
state can now be investigated. At temperatufes< 0.14 the equilibrium dynam-
ics freeze on timescales accessible in the simulationss,Téne does not observe a
long time diffusive regime and also no relaxation to zerdhi@ incoherent scattering
functions. An interesting question that arises in this dageow particles under the
influence of an external force behave at these temperat@es.can expect that for
high forces the glass melts and that the particles move giirthe system. Here, it is
interesting to check if even for small forces a steady staiBan can be reached or if
the particle is completely trapped for forces below a aitforce fy. In the upper plots
of fig.[7.8 the transient displacements of A particle§'at 0.10 and different forces
are shown and in the right plot in direct comparison the stesdte displacements.
Even at long times a strong difference between both curveseisent and therefore
the particle does not reach the steady state in the trandigplacements. Here, the
overshoot of the velocities at short times is too strong arsequently it completely
hides the steady state motion. Nevertheless, it is presehitas reached as can be
seen from the dashed lines where even at the lowest fored).5 the average particle
moves the distancax =~ 0.1 and the displacement shows a linear behavior. This ob-
servation is in contrast to previous results![13,/54, 69] netefreezing at low forces
was found. Also the MCT predicts that below the glass tramsiéi threshold force
fo exists. Below this force the particles are completely aeasthe velocity is zero
and the friction coefficient is infinity. Only for forceg > f it is expected that the
cages are destroyed and the particles move with a constaoityehrough the system.
Close to that critical force it was found that the particleoe#tly can be described by a
power law which is given by

)
—0 , f<fo (7.1)

This behavior was also found in experiments| [13,/69, 70] whke predicted curves
could be fitted against the measured values as is shown [nfigThere, the experi-
mentally measured velocities in dependence of the appiiea fare shown for different
volume fractions of the colloidal PMMA suspension. For thewn curves the volume
fraction increases from left to right with the valugs= 0.29,0.45, 0.50, 0.52,0.53, 0.55
but is always below the glass transition valugpgf= 0.58. Experimentally it is chal-
lenging to apply small external fields and therefore theiglag could only be pulled
at velocities in the intermediate and high force regime donperatures below,. This
Is easier in computer simulations where the force can b@set arbitrary small value
and only the required statistics is a limiting factor. In th&ldle plots of fig[ 7.6 the
measured velocities and friction coefficientsla&= 0.10 are shown. Indeed one finds
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Figure 7.7 — Experimental values obtained for the velocities of the tracer particles in de-
pendence of the applied force from [13].

that at intermediate forces the behavior of the velocity bardescribed by such a
power law which is shown by the blue fit curve. The values ferektracted fit para-
meters arex = 6.55, fp = 0.03 andyy = 1.1- 106, Compared to the experiments
the exponent is much higher where ~ 2.5 was found and the obtained value for the
threshold force is more than a factor &f smaller than the lowest investigated force
and therefore not easily accessible with the present catipoal resources. Neverthe-
less, even for these much higher forces a strong deviatoon fihe power law behavior
Is found that has not been observed in previous measureméotsmall forces the
friction coefficient seems to converge against a plateawevanhich is in contrast to the
expected diverging behavior. Here, it is found that theigiarimotion is comparable
with the liquid state, but only for a cooler system with a skoyparticle motion. A
reason for that behavior could be the additional relaxgiimtesses in the simulation
that are not present in the theory such as the hopping terragiog processes. The
same behavior can also be observed for the diffusion angateba of the probe. In
the lowest plots of fig 716 the mean-squared displacements farticles atl’ = 0.10

in both directions are shown. There, the external forcedeéadn acceleration of the
diffusion and the particles are able to reach the diffusagime in the perpendicular
direction on a timescale accessible in the simulation. Rergarallel direction it is
found that at long times the motion at small and intermed@tees is again superdif-
fusive and also the transition to the diffusive behaviorightiorces can be observed.
In fig[7.8 the incoherent scattering functions for the sanrégdes are shown and they
also shows a strong decrease of the relaxation times witkasog force. These ob-
servations are in contrast to the predictions from the thebine MCT predicts a type
A transition for the transition in dependence of the extefoice. There, the plateau
in the glass is constant even for long times and continuodstyeases to zero with
increasing force, whereas in the simulations, even at loeefg a decay of the correl-
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Figure 7.8— Upper plots show steady-state incoherent scattering funEtignt ) of pulled

A particles in the glass & = 0.10 for different forcesf with g4 = 6.14. Left plot shows
parallel and right perpendicular direction. Lower plots show I€ffy, t) for g = 6.14
and right) mean-squared displacements in the perpendicular direction aftiélgs at
temperature§” = 0.14,0.10,0.05. In the glass it is found that the height of the plateau
shows a temperature dependence.

ation function to zero at long times is observed. Furtheemthre height of the plateau
seems to be independent of the force as can be seen [n {ig. /@ Wie scattering
functions and the mean-squared displacements at 0.14,0.10,0.05 are directly
compared with each other. There, the height of the platelaaisges with decreasing
temperature but they are independent of the force. Thiseigybical behavior for a
transition of type B. As a last point the behavior of the van &loarrelation functions
is investigated in the glass. For the forges= 2.5 andf = 4.0 atT = 0.10 they
are shown in figl_719 for the direction parallel to the forceeré] the behavior is also
comparable to the behavior in the liquidlat= 0.14 with a strong peak at = 0 and a
long stretched tail in the force direction and also the sdamd third order peaks are
visible.
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Figure 7.9— Van Hove correlation functionS;(x, t) in the parallel direction for pulled A
particles in the glass at = 0.10 for a) f = 2.5 and b)f = 4.0.

7.3 Summary

First in this chapter the behavior of the particles afterdimtch on of the force was
discussed. It was found that for short times an overshodtarvélocity appears where
the particles move faster than in the steady state. Thavhwhafluences the behavior
of the displacements for a long time and leads to a plateaie\thht can be misinter-
preted as a trapping region whereas the particle has alreadiied the steady state for
along time. This overshoot in the velocity also leads to tefadiffusion and relaxation
at the beginning of the simulation. As a second part the hehaiter the switch off
was investigated and it is found that the response depentig ovaiting times between
the switch on and the switch off. In the last part of this ckagbme measurements
in the glass state were shown. There, it is found that thécgaliehavior in the glass
is similar to the liquid case and that it reaches a steady statn for small forces.
This finding is in contradiction to previous experimentaluks and predictions by the
MCT where a threshold force is predicted and that expectsthieatvhole dynamics
Is frozen for forces below this force. Furthermore, the obes@ transition seems to
be of a different type. Here, a type B transition in dependevicthe external force
is observed, whereas the MCT predicts a type A transition.s@ ltgfferences could
be a result from the fact that the system in these simulatgnst in the equilibrium
any more and therefore the behavior shows a dependence waitied time before the
particles were pulled.

With this chapter the investigation of the forced partidéie supercooled liquid in this
work ends and the next chapter presents the results of teeteospic critical behavior
found in the Ising model.



Chapter 8

The Ising model under shear

The behavior of systems close to their critical point hasitstedied for a long time [74,
75,76/ 77]. For many equilibrium systems the important progs as the value of the
critical point and of the critical exponents are known or t&ncalculated. The cal-
culation of these informations in computer simulations a¢ always a simple task.
Especially close to a critical point it is not straight fomgddo obtain the right inform-
ations about the system. In this region one observes a sitmorgase of the relaxation
times and of the correlation lengths that complicates thekwit leads to an effective
reduction of the system size which causes a smootheninggitthse transitions and
thus an inaccurate measurement of the observables. Fogtiidgum measurement
the behavior of these finite systems is understood and a ché&timwn as finite-size
scaling has been developed that solves the problem. Thene sicaling arguments of
the observables the true values can be calculated [32, 7&fortunately, until now
the critical behavior is only understood for the equilibnicase and only in parts for
the non-equilibrium case. It has been investigated in regears in different simple
models as the driven lattice gas [78] 79] or the driven bimaiture [80]. Also a fluid
under shear in the critical region was investigated by Kakigasnd Onukil[29, 30, 31]
and many properties of the system as the behavior of theartemperaturd, in
dependence of the applied shear rate or the values of theatekponents were cal-
culated. Most of these predictions could be experimentadiyfied [81, 82] but up
to now it is not completely understood how these systems earelated in computer
simulations and thus how the finite-size scaling has to beddm the following the
behavior of the Ising model under shear is investigated amalyas presented how the
anisotropic finite-size scaling in the steady-state candmed

89
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8.1 The model

The model which is used in this work is the two-dimensionaigsnodel on a square
lattice with L, x L, spins and nearest-neighbor interactions, so that all syawme 4
direct neighbors. All spins can flip from the statd to —1 and back and are coupled
to their neighbors via the coupling constanf. The Hamiltonian for this model is

A =—] Y oo (0 =+1). (8.1)

<i,j>

This model is well understood and has been studied for a iamgih the equilibrium.
There, it was solved analytically in two dimensions by Orsd83] who showed that
the system has a critical point at the temperafiyre- 2.269. For simplification in this
work temperatures are given in unitsigf/ | with kg the Boltzmann constant. In this
part of the work this system under the influence of shear diests Therefore, it is not
a good idea to simply apply the normal periodic boundary e here (that were
presented in chapter 2 and used in the microrheology simn&t These would lead to
surface effects at the borders where the system would fa@lstichlly increased shear
which disturbs and complicates the measurements and hemewiwanted. There-
fore, Lees-Edwards type periodic boundary conditions g4] applied, that prevent
these effects. With their help one has a bulk system thatrigpbtetely homogeneous
and feels the same shear rate at every point in the system.imilementation of
these modified periodic boundary conditions is rather ssmpll that is required is
one counter that keeps track of the number of row shifts irbthlke system. Later on,
in the energy calculation for the lowest and uppermost rdvesdirect neighbors, not
the directly next neighbors are chosen. Instead the, bycthster shifted, neighbors
are used to counteract the shift of the whole system. Fortarhatderstanding these
boundary conditions are illustrated in fig 8.1 for a singleaststep.

8.1.1 The sampling step

Here, the Metropolis step is used as the sampling step. h ften used sampling
step in the study of equilibrium statistical mechanics [83jere the probability’; for
a given state at timef is

. 1
Pi(t) = - exp(—BL;). (8.2)
where, Z is the partition sum for the investigated system. The deraknt of the
probability is given by a master equation

op;(f 5 ?
aE ) _ ]ZPj(t)wjz' - ) Pi(Hwy, (8.3)

j
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Figure 8.1— lllustration of the shear step with Lees-Edwards type boundary consglition
Left is at the beginning before the first shear step, middle after thetistasnd right after
the second step. Upper gray layer is a copy of the lowest row and Ignagstayer a copy

of the first row to highlight the behavior of the boundary conditions thadego keep
track of the numbers of shifts to prevent surface effects.

with P;(f) the probability of finding the system in statat timef andw;; the transition
rate from state to statej. For the equilibrium system the left side is zero and then one
obtains the following equition

] i

For the case that
is fulfilled, the system preserves detailed balance. By imge(8.2) in [8.5) one ob-
tains the expression for the transition rate

wij _ B

w; B exp(—BAE), (8.6)
in the case foAE = E; — E; > 0. This is the Metropolis criterion for the change
from one configuration to the next. In the casgE < 0 the acceptance rate 1sand
the move is always accepted. Here, the sampling step is mgpited in the follow-
ing way. Randomly one lattice position is chosen and the rdiffeeAE between the
present configurationand the configuration with the flipped spimt that position is
calculated. IfAE > 0 a random number [86] betwedénand1 is drawn and it that
number is smaller thaexp(—BAE) the spin is flipped. IAE < 0 the spin is directly
flipped. That whole procedure is repeatéd= L, - L, times until the sampling step
is completed.

This sampling step can also be used in non-equilibrium systelhere, it is import-
ant to note that in contrast to the equilibrium case, thelrediuthe simulation de-
pends on the chosen sampling step. By using a different aaoeptate, for example
the Glauber-sampling step [87], the heat dissipation chsiaagd the system behaves
different. A direct comparison showed that the Glauber dyindeads to less heat
dissipation under shear and therefore to less cooling asyaEm([88].
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Figure 8.2— Typical configuration snapshots at temperaflire 2.45. Left picture shows
the unsheared equilibrium system with= 0.0 and right the sheared system with= 0.3.
In the sheared system one observes a strong anisotropic behaviotraitfly increased
fluctuations in the shear direction. Here, black points showing up spinsvhite down
spins on a., = L, = 250 lattice.

8.1.2 The shear step

Sampling the system only with the Metropolis step leads ¢oethuilibrium behavior
which is of no interest here. To reach a sheared steady st#eoad step is required
that drives the system out of equilibrium. In this work tiislbne by a shear step which
follows after each sampling step and brings the anisotropy the system. Here, a
shear algorithm is used that was first presented in [89] sthdy of nucleation under
shear. The strength of the applied shear is set by the stiegrwaich depends on the
two parameterd/; andP; viay = M; - Ps. Here,P; is the acceptance probability for
each single row shift andl; defines how often the shift is tried on average for each
row. Each single row step contains the following steps:

e Draw a random number betwe@randl. If that number is smaller thah, then
go on. Else stop this row-shift step.

e Choose a lattice row < n < L, and shift all spins in rows from to L, by one
lattice position into the positive x direction.

e Adjust the periodic boundary conditions to take the shegpldcement into ac-
count (increase the counter by one).

This row-shift step is repeatdd= M;L, times. After] such steps the shear step is
completed and the next relaxation step follows. Note, tatcharacteristic parameter
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of the system behavior is the shear ratand that the behavior is independent of the
explicit choice ofM; andP;. Therefore, all results presented here depend only.on

In fig.[8.2 some typical system configuration snapshots aneishThere, a direct com-
parison of the two systems with and without shedr at 2.45 can be seen. One finds
that the shearing strongly influences the behavior of thergpdrameter fluctuations.
In the equilibrium system one has an isotropic behavior efflinctuations. Switching
on the shear leads to a strong anisotropy in these fluctsatidere, it is found that the
fluctuations in the direction parallel to the shear are muainger than in the perpen-
dicular direction. Furthermore, one can conclude only lmking at these snapshots
that the correlation length of these two directions difi@nsl is not isotropic any more.

8.1.3 Isotropic finite-size scaling

In equilibrium it is found that one observes a diverging etation length¢ in the
system close to a critical point. In finite systems this letada smoothening of the
phase transition and to a strong system size dependence afdhsured properties.
Thus, a formalism is required to obtain the wanted infororagias the exact value of
the critical point or of the critical exponents. Here, thatéirsize theory comes into
play. For a finite system it is found that the behavior of theestables separates into
a part that depends only on the length séadnd a second part that depends only on
the system sizé.. One can therefore describe the system behavior in depeadén

a universal scaling variabte = tL'/V with t = (T /T, — 1). For the singular part of
the free energy of the system it is found|[32] 77] that it scale

F(L,T) = L==®)/v (LY (8.7)

for a given temperatur€ and system sizé. This function leads to expressions for the
other observables. For the magnetizatMifollows

M(L,T) = L=V M(¢L) (8.8)
and for the susceptibility
X(L,T) = LYV x(tLYY). (8.9)

For higher moments ik-th order of the magnetization the expressionl(8.8) can be
generalized to
(|MFy = L=*B/V My (b1, (8.10)

With the help of these scaling relations one has access tmplesimethod for cal-
culating the critical point in the system. There, the fractof the second and fourth
moment needs to be calculated

(M _ a(tLv). (8.11)

U(t) =1~ g3 =
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Figure 8.3— Correlation functiorG(r) for L, = L, = 250 systems aty = 0.3 and given
temperatures for a) parallel and b) orthogonal to the shear direction.

Here, the dependence on the system Eizancels out and the fraction only depends on
the universal scaling variable Direct at the critical point this variable is independent
of the system size = 0 and therefore the cumulant§(¢) for different system sizes
all have an intersection point &. Note, that this method requires that the system is
large enough to be in the scaling regime and that these pi@@are not fulfilled for
too small systems.

8.1.4 The correlation length

One characteristic property of a critical point is the diyeg correlation lengtld that
follows a power law according to
otV (8.12)

with the exponent. In the unsheared system this quantity can be measured lfrem t
behavior of the correlation functioG(r) between two spins at the distanceHere,
the system is isotropic and thagr) only depends on the magnituderof

G(r) = (d(0)o(r)). (8.13)

There, itis found that the correlation functiondilimensions has the Ornstein-Zernike
form [32,[76] and behaves as

G(r) o r=@=1/ 2 exp (—r/¢) (8.14)

It is interesting to investigate the behavior of this quigrfor the sheared system and to
check which differences can be observed. Infigl@(8) for the sheared system with
¥ = 0.3 at different temperatures is shown. The first differencéneodquilibrium is
that the pair correlation function shows a strong anisatrbphavior. This is in agree-
ment with the previous observations from the snapshots ifBf§jy In the direction
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Figure 8.4 — Direction dependence of the inverse structure fastol(g) againstg? at
T = 244 for v = 0.3 andL, = L, = 250 geometry. Black line is parallel and red
orthogonal to the shear direction. Blue line shows the difference betabrdirections.

perpendicular to the shear one finds a behavior that is ireaggat with the Ornstein-
Zernike behaviol (8.14). There, an exponential decay atdiistances is observed that,
at least in principle, allows to measure a correlation lentt the parallel direction the
case is different. Here, the behavior is strongly influenogdhe shear and shows a
different behavior. Even at the largest distances no expt@lelecay can be observed
and therefore the algebraic behavior cannot clearly betifteth A second important
observation that can be made is the shift of the critical &najpre under shear. For
the equilibrium case the critical temperaturéljs= 2.269 which is quite a bit away
from the presented temperatures. Thus, one would not espebta strong increase
of the correlation length at these temperatures. Pringiptls possible to extract the
correlation length from these measurements (at least ipéhnegendicular direction)
but unfortunately in this presented case the fluctuatiouisfimite-size effects are too
strong for a direct measurement and therefore a differeptisvehosen.

8.1.5 The structure factor

It is found that the structure factSi(g) [90] of the system is a useful quantity for the
understanding of the finite-size scaling of the system

1

5(a) = 1 {plp(-0)) = (| T ). 8.15)

Previous work on a theoretical binary fluid model under sz 30, 31] and exper-
iments [81/8R] found tha$(g) shows a strong anisotropy fgr — 0 and that the
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Figure 8.5— Left) Behavior of the difference of the inverse structure fastay) ! in de-
pendence of? for different shear rateg at T = 2.45. Right) Same curves in dependence
of 7 for a fixed valuey.

behavior of the inverse structure factor is given by

S Ygq) = A(T — T.)” + Bq¥ + Cq>. (8.16)
The identityA(T — T.)” = const is motivated by the equilibrium behavisr!(g) =
(kgTx)~'(1+ ¢%&?). Then, one can write

S7Hg) = A(T - T.)" <1 + %(T —T.) "qY + %(T — Tc)_7q2> . (8.17)

Generally wave numbetgscale as inverse length and therefore one can assume that
the following relations

C

Gy=7(T-T)™" = &(T—To) 2 (8.18)
and
=B omye ©.19)

hold. Inserting these expressions irito (8.15) leads to

S7Hq) = A(T = To) (1 + (Exqx)“ + (549)%).- (8.20)

with the following exponents
1/|| = — (8.21)

g=

and

v, = (8.22)

N[
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Both correlation length are therefore related via

v/

2/w __
CXOCy — by ’

(8.23)
with w/2 = v, /v);. The important consequence is that by calculating the &ojsic
structure factor one has found a way to measure the anisoegponentw. This
exponent plays an important role in the anisotropic finite-scaling as is shown in
the following sections. From the structure factor the valier can be calculated by
taking the difference of both directions

AS(q)~" =S(gx)"" = S(qy) " = BgY. (8.24)

In dependence aof the difference behaves as a power law with the wanted exponen
In fig. 8.4 the calculated structure factor for a system wite= 0.3 at T = 2.44 is
shown. As is seen, the behavior $fq) in the perpendicular direction is 4> and
in the parallel direction more complex. Also shown here inebis the difference
between both directions. The differenas(g) ! shows a power law behavior that
can be seen in fig. 8.5 where only the difference in a log-lag at T = 2.45 and
different shear rates is shown. There, one finds that thisadeis quite robust as it
shows no dependence on the shear rate and thus one can eoti@dudhe value of
this exponent is constant in the investigated region. Tekhew strong the following
results are influenced by the value of this exponent theiatig calculations are done
with two different exponentey = 0.64 andw = 2/3 that are both in agreement with
the simulation results. From fig. 8.5 also the behavior ofpttefactor in dependence
of the shear rate can be studied and it is found A8{t7) ! o« 4%.

8.2 Anisotropic finite-size scaling

After a short introduction of the basic system propertiegalast chapter, the aniso-
tropic finite-size scaling for this system shall be presgtere. For these systems the
finite-size scaling behavior differs drastically from thguéibrium cases. There, the
system shows an anisotropic behavior and therefore bo#ittdins have a different
correlation length. Furthermore, even the temperaturentignce in the different dir-
ections is not the same and thus one expects two or moredfiffexponents for the
correlation length. In this chapter an approach for theatropic finite-size-scaling is
presented that generalizes the isotropic methods to tlsetanpic case.

8.2.1 Finite-size scaling theory

The measured exponedt plays a crucial role for the finite-size-scaling in the aniso
tropic system under shear. Close to the critical pointittie moment of the order
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Figure 8.6 — Cumulant intersection points at shear rate= 0.05. Left plot shows geo-
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symbols are results from simulations and continuous colored lines from ahadgm.

parameter is given [91, 92] by
(M) = 11— T/T.|"® My(Lx/Ex, Ly/ &) (8.25)

Now, the scaling function depends on both directions. Bynigii factor( Ly /&, ) P/l
out of the scaling functiooM one gets

Mi(Ly/Ex, Ly/ &) = (Ex/ L) IM (L / Ex, Ly / &)
= LN - T T MG (L /8, Ly E). (8.26)

Here, the appearing prefactor was absorbed in the scalimgtifun and [(8.19) was
inserted forg,. This leads to the expression for theh moment

(M) = L PN (Lo 80 Ly /). (8.27)

In a second redefiniton step the temperature dependence isettond argument is
removed and one obtains the scaling funct}\éfr)C

~

Mk(Lx/‘:xr Ly/gy) :-A;lk <(Lx/€x)1/v\|, (Ly/éy)/(Lx/gx)VL/V”)
=M (tLy", Ly /L), (8.28)
As the final expression for theth moment of the magnetization one obtains

v

—kB/ ~ 1/
(MIFY = L My (™, Ly /LY (8.29)
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As in the isotropic casé (8.111), the fourth-order cumul&d{ tan now be defined by

(M%)
3<M2>2

VJ-/VH

~ 1/
Up,.,(t)=1- = T(tL, ", Ly /L (8.30)

Again, one has = 0 at the critical point andly,,(0) = U(0, Ly/L,VCL/U”). The

big difference to the isotropic case is that the cumulatfitdtipends on the relation

Ly/LzL/V”. To obtain a clear intersection point b, 1, (0) one needs to keep this

relation constant which is fulfilled by scaling the systemesaading toL, = cL;’/z.

In this work for the two measured valueswfthe chosen system sizes drgx L, =

216 x 120, 343 x 140, 512 x 160, 729 x 180 for w = 2/3 andLy x L, = 270 X
120, 437 x 140, 664 x 160 for w = 0.64. In both cases these correspond to the
choice ofc = 20. From the strongly enhanced fluctuations in the shear dwrect
follows that the sizd., has to be chosen quite big with > 200 to prevent unwanted
strong finite-size effects.

Interpolation method A helpful method to calculate the cumulants at the different
temperatures in the equilibrium case is the histogram patssion method/[32, 93].
With this method it is possible to calculate histograms atgeratures that are close
to the original simulated one from the same simulation. Thius usually possible to
reduce the fluctuations of the cumulants closé&tevithout additional computational
effort. As that method is based on the theory of equilibriuethanics[[94] it is there-
fore not expected to work in the steady state. Nevertheles® it was empirically
found that one can interpolate from one histogram to anatharsimilar way. In the
canonical ensemble the probability for a configuratioat temperaturd is given by

Pr(S) = ZiTe—ﬁE (8.31)
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Figure 8.8— Shift of the critical temperaturg, in dependence of the shear rgteBlue
straight line shows a power-law fit for low shear rates wjithwith ¢ = 0.44 + 0.01.

Therefore, one can write for the fraction of the two proh&bg of the same configur-
ation and different temperatures

PriS) _ Z p-pE _Z ~(F-P)E
PT(S) = Z/e <:>PT/(S) = Z/PT(S)e . (8.32)

As a consequence one can calculate the histogram of thersgsi different temper-
atureT’ by weighting every configuration by the factor(f’ ~P)E instead ofl. Here, it
is found that for the sheared system a similar reweightimgbsaapplied. In that case
the weights have to be chosen as

exp ((5 —B)E+c, (é - %) E). (8.33)

In fig. 8.6 and_8.7 the calculated cumulants for= 0.05 andy = 0.3 are shown.
As can be seen one finds a good agreement over the whole teorpei@nge of the
simulated values (black symbols) and the extrapolatecegafeolored lines). Thus, by
using this method it is possible to extract the values of titecal points with a much
higher precision. Furthermore, one can even calculate ¢nieadives at the critical
point that are important for the calculation of the critie&aponents. These calculations
of the cumulants were done for a range of shear rates. All biteireed values for the
critical temperatures in dependence of the shear rate asempied in figl_8/8. As
one sees, the critical temperature is shifted to higheregaWwith increasingy. For
small shear rates the critical temperatures follow a poaerldehavior according to
Te(7) — T.(0) o« 7% with ¢ = 0.44 £ 0.01 (straight blue line). This is in agreement
with the results found in [29, 82] where also a power-lawtshfifl, was observed. For
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Figure 8.9— Plots show derivativ%% of the cumulant and the susceptibiljtyin depend-
vi/y

ence of the system size, with constant ratid., /L, ". Left plotis fory = 0.05 at
T = T. = 2.345 with w = 2/3 andc = 20. Right plotfory = 0.3 atT = T, = 2.432
with w = 0.64 andc = 20. Second moments are scaled by a facto? &b fit into the
same plots.

extremely high shear rates one observes a saturation ofitlralctemperature and it
converges against the vallig ~ 2.68. It is found that the values of the critical points
are stable against small deviationsofs can be seen in fig. 8.6 dnd|8.7 where a direct
comparison for both values is shown.

8.2.2 Evaluation of the critical exponents

After the critical temperatures are determined it is mudiezao calculate the critical

exponents of the observables. Here, not only the singleegadfithese exponents are
of interest. Furthermore, it is interesting to check if astmte dependency exists or
if they are independent of. Knowing that theék-th moment scales according fo (8.29)

it follows that atT. with t = 0 and fixedL, / Lt "I the first and second moments of

the magnetization scale as

—B/y|
X

(M) « L (8.34)

and 28/
(M2) o L P, (8.35)
In an analogous manner it follows that the susceptiblif x = LyL,({M?) —
(|M|)?) at T, behaves as

x o LT, (8.36)

If 4] is known it is possible to calculate the valueg3aind-y from these relations. The
valuev| can be obtained from the derivative of the cumulant[32, 85}he first order
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atT = T, = 2.345 with w = 2/3 andc = 20. Right plot fory = 0.3 atT = T, = 2.432
with w = 0.64 andc = 20. Second moments are scaled by a facto? ¢ fit into the

same plots.

the derivative with a constant ration bf/ L varies according to

duLx/Ly (t) ~ L}C/VH .
dT

From this behavior the value of; can be extracted. In fig._8.9 the behavior of the
derivative and of the susceptibility are shown foe= 0.05 andy = 0.3. For the same
systems in fig,_8.10 the first and second moment of the magietizatT. are shown.
There, all properties show a power-law behavior over thestigated region of system
sizes and therefore the exponents can be measured. Theembtaitical exponents in
dependence of the shear rate and both values afe presented in tab. 8.1. Here, no
dependence on the shear rate for the investigated valugssobbserved but a slight
dependence ow is found.

(8.37)

For high shear rates it can be expected that the system Isliteasa mean field system

Table 8.1— Measured critical exponents of the system

0% w V| v, | B 0%
0.05|2/3 | 1.38|0.46|0.37|1.11
0.1 |2/3 |[1.38]0.46|0.35|1.23
0.3 |2/3 | 1.37|0.46|0.38| 1.07
0.05| 0.64| 1.45|0.48| 0.38| 1.17
0.1 [ 0.64|1.46|0.49|0.36| 1.21
0.3 | 0.64|1.47,0.49|0.39| 1.16
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2.372 for ¢ = 0.1. Right) Calculated prefactdr in dependence di,.

with an infinite shear rate. In this limit the system can beadlanalytically[[96] 97].
There, the values for the critical exponents of the conataength are/) = 1.5 and
v, = 0.5 with the mean field critical point i§, = 3.466. Especially the values of
the exponents faw = 0.64 are not too far away from the mean field values although
for the investigated region of shear rates still a strongeddpnce ofl, on § could
be observed. Thus, the system was definitely not in the melainréigion. For high
shear rateg > 10 the finite-size effects increased dramatically. Theres required
to go to even larger system sizes to obtain a realistic vdbrébe measured properties
that explains the strong difference between the measlradd the mean field value.
At these high shear rates it is found that the behaviotwomcreases strongly and
therefore one needs to measure this exponent with a higkeispon first before the
whole finite-size scaling analysis can be done.

8.2.3 Consistency checks

In this section a consistency check for the critical exptsespresented. At the critical
point the maximum size of the correlations in the finite sysie given by the system
size. In thex-direction the maximum correlation length is given by

Ex = Ly (8.38)
and therefore in the y-direction by
&y =cen =L, (8.39)

By choosing the system size as
Ly = ng, (8.40)
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for temperatures beloW, aty = 0.05, w = 2/3 andc = 20. Black line at high values
shows a fit with the exponept~ 0.36.

one hast uncorrelated clusters in thedirection. Thus, one expects a scaling of for
the second moment of the magnetization according to

1
2 -1
(M7) o — oLy~ (8.41)
On the other hand follows frorh (8.29) that
(M2) = Ly P My (0, L, /L), (8.42)
Combining these two relations, the following expressiorisid
<M2> — CL];l o L;Z,B/VHL;J_/VH L];l _ sz_/l/“fzﬁ/v“ L;l (843)
with )
C o LA/ N720, (8.44)

By keepingL, fixed and varyingL, one can calculate the constahin dependence
of Ly. Then, from thel., dependence af one obtains the value for; /VH — Zﬁ/VH
and from the already known value ﬁf/v” the relationv | /UH can be estimated. Here,
this was done fory = 0.1 where the system sizes were varied in the ra2@e <
Ly, Ly, < 600. The results for the second moments and the constare shown in
fig8.11. As one can see the prediction [of (8.41) is fulfilledhie chosen range of
system sizes. Against these curves fits with a behavior dicapto (8.48) were made
and the constarif was measured. These calculated values are shown in th@lagof
fig.[8.11. In the next step these points were fitted by a powealad the exponent was
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extracted. According t¢ (8.44) the exponent corresponds #v — 28/v) which in
this case has the value0.19 + 0.01. As a consequenag /VH ~ 0.32 4+ 0.01 follows
that is in agreement with the previous results obtained fitwerstructure factor.

A second consistency check is the calculation of the scélingtion

Bly

Yy = MLk (8.45)

My (tLy ", L, /LY
in dependence of the scaling variabhle= L,lc/vH (1—T/T.(7)). For the right geo-
metries the values for the different measurement shouldms# onto the same uni-
versal curve. Here, the previously calculated exponeﬂﬂandﬁ are required. For
v = 0.05 with w = 2/3 this universal scaling is shown in fig, 8]12. There, all value
of the different measurements collapse nicely onto the samersal scaling curve
and therefore the scaling properties are fulfilled. For vaglues ofx the scaling func-
tion should behave asymptotically as the infinite-latticgeaal behavior. Therefore, in

this regimeMkz xP should hold[[98]. This is checked by a power law fit against the
highest values (black line) which gives the vajfiez 0.36 that is in agreement with
the previous measurement.

8.3 Summary and outlook

In this chapter the finite-size scaling of the Ising modelemghear was investigated.
It was found that by an additional shear step a strong awoigptis brought into the
system which leads to two different correlation lengthsafyal and perpendicular to
the shear direction. As a consequence an anisotropic Siagescaling of the system
is required. The finite-size scaling can be accomplishedchiirgy both system sizes
with a fixed ratio, that is given by an exponent. With the hdiphe structure factor
that exponents could be measured. In the following thecatifpoints in dependence
of the shear rate were measured and it is found that theadrgimint shifts to higher
temperatures. From the scaling relations in addition titealexponents, ad and
v, could be calculated.
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Chapter 9

Final remarks

In this work two different slowly relaxing model systems endhe influence of ex-
ternal forces were studied. The first system was a binaryspbiere mixture that
shows a glassy dynamics at low temperatures. There, theeawin-linear microrhe-
ology was investigated. In the second part of the work thexbiel of the Ising model
under shear close to the critical point was studied and aodetlas presented how the
finite-size scaling can be accomplished in this anisotropge.

Soft-sphere mixture: Here, the behavior in the non-linear response was of irtteres
which could easier be studied in a slowly relaxing system.er&fore the binary
Yukawa mixture was chosen where at low temperatures a ghassition with strongly
increasing relaxation times is observed. By comparably Ist@raal forces the sys-
tem can be driven into the non-linear regime. In dependehttee@pplied force three
different regimes can be identified. For the lowest forcespdrticle motion is still in
the linear-response regime where the particle properteegigen by the equilibrium
properties. This can be seen from the constant plateau ini¢kien coefficient at low
forces and higher temperatures. At lower temperatures sarebs that at intermediate
forces the particle motion deviates from the linear-respdmehavior and the velocity
increases superlinearly. Thus, the friction coefficierdrdases with increasing force.
In that regime one finds a strongly anisotropic particle orotvhich is superdiffusive
in the force direction. Furthermore, a universal scalirggme is found that allows to
scale the perpendicular diffusion constants, the relaratmes and the friction coef-
ficients in dependence of temperature onto the correspgradjailibrium properties.
Therefore, the important properties of the particle in tba-finear regime behave as
in equilibrium but at a different temperature. This has leathe definition of an ef-
fective temperature which is found to scale quadratic Withdpplied force. At higher
forces a third regime was observed where the motion in theefdirection is diffusive
again and the anisotropy of the motion reduces with incngafirce. These results
are characteristic for a system with glassy dynamics thehfaozen structure which
prevents a backflow in the system and leads to a separatibtie tihte scales between
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the motion of the pulled particle and the surrounding emrnent. The behavior of the
pulled particles can be understood with the help of two teecal models. A simple
directed trap model shows the behavior of superdiffusivitythat model the strength
of the behavior depends on the external force and first leads increase and then
to a decrease at higher forces which is also found in this wédko the transition
to the diffusive motion at high forces is found but it cleantysses a lot of important
properties such as the equilibrium dynamics and the inflei@hthe pulled particle on
the surrounding. Therefore, it can only be seen as a firdirgdgsoint for the under-
standing of the particle behavior in a glassforming liquitie second model is a much
more sophisticated model, a schematic model in the framewicthe mode coupling
theory. This model succeeds in describing a big part of thaliequm dynamics of
the system and thus gives the correct low force limits in ttpaid. Here, the problem
Is in the superdiffusive motion that cannot be describedh Wittt model. A problem
with these predictions is that the used model is a reducezhsatic model which takes
only oneg-value into account. Therefore, one cannot expect thasitrilees the whole
dynamics correctly as effects that result from multiple emdre excluded. Here, these
simulation results should motivate further investigasiam the theoretical and exper-
imental side to improve the present models and measure thielpdehavior with a
higher precision. For further work from the simulation sitteould be interesting to
investigate the behavior in the superdiffusive regime witiigher precision and longer
simulation runs. There, it would be interesting to studylibbavior in a different sys-
tem for example in the Weeks-Chandler-Andersen (WCA) mixt@8] fhat can be
simulated more efficiently and allows longer simulationguihus, one has access
to a better statistics and could therefore gain more preesats about the effective
temperatures and their behavior. Here, it would be intergs$b definitely answer the
guestion if one observes different effective temperattoeshe different observables
or if it is the same for all quantities. Furthermore, it woaldo be interesting to in-
vestigate the behavior in the glass in more details. Therejmteresting question that
one could investigate is the effect of aging on the partieledvior where it could be
that with increased waiting times the behavior of the pesi@pproaches the theor-
etical predicted behavior with a threshold force and frogariicles for forces below
that threshold. In that case one could expect that thedriatdefficient increases with
longer waiting times and converges against the predictaegplaw behavior.

Ising model under shear: The second part of the work was a preliminary study to un-
derstand the behavior of a system under shear. Here, tharapis finite-size scaling

in the Ising model under shear was investigated which is @lsitnodel system for a
liquid system under shear. With the help of that model a way feand to accomplish
the finite-size scaling in the anisotropic system. Sheatiedsing model also leads to
a strong anisotropic behavior close to the critical poirtt Hre usual finite-size scaling
breaks down. In this work it was shown that the relation betwthe two exponents
of the correlation length is crucial for the scaling and thas value can be obtained
from the structure factor of the system. With that exponemvkn the scaling can be
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extended to the anisotropic case and the critical pointseapdnents could be identi-
fied. Here, it was found that the critical exponents change fthe equilibrium values
towards the mean-field values of the system. In a future wionlould be interesting
to check if this method can be applied in a continuous mod#éi@#®O model or the
binary liquid and if one can verify the theoretical predicis for these models. There,
also the influence of the hydrodynamic interactions woulebbmmterest as it is pre-
dicted that they lead to a shift of the critical temperatungs the opposite direction as
in the Ising case. Furthermore, it would be interesting talgtthe effect of shear on
additional properties such as the interface tensions arideooapillary waves also far
away from the critical point. In principle here one couldrstgain with these meas-
urements in the sheared Ising model and later move on to a mealistic continuous
model.
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