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ORIGINAL ARTICLE

The immunosuppressive cytokine interleukin-4 increases the
clonogenic potential of prostate stem-like cells by activation of

STATG signalling

G Nappo'?, F Handle?, FR Santer®, RV McNeill*, Rl Seed', AT Collins', G Morrone?, Z Culig®’, NJ Maitland™>” and HHH Erb"%”

Interleukin-4 plays a critical role in the regulation of immune responses and has been detected at high levels in the tumour
microenvironment of cancer patients, where concentrations correlate with the grade of malignancy. In prostate cancer, interleukin-
4 has been associated with activation of the androgen receptor, increased proliferation and activation of survival pathways such as
Akt and NF-kB. However, its role in therapy resistance has not yet been determined. Here we investigate the influence of
interleukin-4 on primary epithelial cells from prostate cancer patients. Our data demonstrate an increase in the clonogenic potential
of these cells when cultured in the presence of interleukin-4. In addition, a Phospho-Kinase Array revealed that in contrast to
previously published work, signal transducer and activator of transcription6 (STAT6) is the only signalling molecule activated after
interleukin-4 treatment. Using the STAT6-specific inhibitor AS1517499 we could confirm the role of STAT6 in increasing colony-
forming frequency. However, clonogenic recovery assays revealed that interleukin-4 does not rescue the effects of either irradiation
or docetaxel treatment. We therefore propose that although the interleukin-4/STAT6 axis does not appear to be involved in therapy
resistance, it does play a crucial role in the colony-forming abilities of the basal cell population in prostate cancer. IL-4 may
therefore contribute to disease relapse by providing a niche that is favourable for the clonogenic growth of prostate cancer

stem cells.
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INTRODUCTION

Prostate cancer (PCa) is one of the most frequent malignancies in
males." Treatment is strongly dependent on tumour stage, patient
age, overall patient health and tumour risk assessment.?™ The
most commonly used treatment options for PCa are radical
prostatectomy, radiation therapy, multiple endocrine therapies
and chemotherapy with docetaxel. Although most PCa patients
respond initially to androgen deprivation treatment, the cancer
inevitably recurs and progresses to highly aggressive castration-
resistant PCa, for which only palliative therapeutic options exist.>>
However, the exact mechanism behind the development of
castration-resistant PCa is still unclear. One possible reason for this
progression is that currently used therapies have only been
designed to target androgen receptor-positive luminal cells in
the cancer.’ However, several studies have demonstrated that a
small population of primitive cells with a basal phenotype
(characterized by AR™, CD49f", CD44", CKs 5/14* and p63*
markers) exist within the tumour, and have the capacity to evade
current therapies.>® These rare cells (< 1%) have been shown to
possess a higher regenerative potential and express tumour
markers (including AMACR and theTMPRSS2-ERG fusion gene).g_11
Similar to benign prostate tissue, the basal cells (CD44*/CD49f*)
from malignant areas can further be subgrouped by high
expression of a2B1 integrin complex (CD49b), which results in

a rapid adhesion to collagen.'? The basal compartment can also
be further fractionated into stem cells (SC, CD49b"9"/CD133"), the
highly proliferative transit-amplifying cells (TA, CD49bM9"/CD133")
and committed basal cells (CB, CD49b'°"/CD1337).>'° CB cells
have also been reported in several studies as intermediate
cells, and harbour luminal and basal markers, such as cytokeratins
5, 14 and 18.>"° Interestingly, SC isolated from malignant areas
(cancer stem cells, CSC) are highly invasive, have a shorter
population doubling time and a distinct messenger RNA (mRNA)
and microRNA profile compared to normal SC, and in addition can
form tumours in mice.'®'""3

Recent clinical studies have demonstrated that inflammation is
not only linked to the development of cancer, but is also an
indicator of poor prognosis®'* Chronic inflammation has been
associated with the production of a variety of cytokines by
inflammatory cells, including interleukin (IL)-1, IL-6 and IL-4."° In
addition to the action on immune cells, cytokines modulate the
different cells types within the tumour microenvironment, and are
able to induce cell transformation.'® For example, increased IL-6
levels have been observed in PCa tissues, and are suggested to
influence growth and survival pathways.'® IL-6 expression levels in
prostate tissue also (i) correlate with Gleason score and biochemical
recurrence, (i) influence tumour initiation and (iii) affect clonogenic
recovery after docetaxel treatment of PCa stem-like cells.'®™'®
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IL-4 is a multifunctional cytokine that plays a critical role in the
regulation of immune responses.'® Cytokine binding to the IL4R
alpha-chain (IL4Ra) subunit results in the activation of mediators
of cell growth, resistance to apoptosis, gene activation and
differentiation.'”® The activated signal pathways include AKT,
p44/42 MAPK, NF-kB and the JAK/STAT6 pathways, which
represents the main mediator of IL-4 signalling in immune cells."®
Elevated levels of IL-4 (normally produced by tumour-infiltrating
lymphocytes) have been documented in patients with progressive
PCa,*®2% and in vitro studies using PCa cell lines have demonstrated
that IL-4 activates NF-kB and androgen receptor in a ligand-
independent manner.®® Treatment of androgen-sensitive LNCaP
cells with IL-4 increased the expression of the co-activators CBP/
p300 and their histone acetyltransferase activity.'>?* Overexpression
of IL-4 resulted in increased proliferation of LNCaP and 22Rv1 cell
lines,?® while IL-4 treatment also induced the proliferation of the
androgen receptor-negative PC3 cells under nutrient-depletion
stress.”®

In this study, we investigated the physiological and molecular
effects of the pleiotropic cytokine IL-4 on primary basal prostate
cells, isolated from benign and malignant prostate biopsies. By
simulating an IL-4-containing microenvironment (using IL-4
secreting feeder cells), we determined the effect of IL-4 on
primary basal cell fate, cell mortality, cell invasion, and whether
IL-4 signalling is involved in therapy resistance.

RESULTS
IL4Ra expression in primary prostate epithelial cells

IL-4 acts by binding to a heterodimeric receptor complex,
composed of the IL4Ra and the common gamma chain shared
by several IL receptors.” To evaluate IL4Ra expression patterns in
benign and malignant prostate tissue, we investigated expression
of IL4Ra in a tissue microarray (TMA) containing both malignant
and adjacent benign areas from 36 PCa patients (Figure 1a). The
TMA showed that IL4Ra is mainly expressed in luminal cells and
significantly elevated in cancerous compared to adjacent benign
areas (Figure 1b). The bulk of prostate adenocarcinomas consist of
luminal cancer cells, precluding analysis of the IL4Ra expression
levels in rare cell populations such as the basal cell compartment
in malignant areas.'>?® Due to these technical limitations, the
detection of rare basal cell populations in human tissue by
immunohistochemical methods is highly challenging. To over-
come these limitations, we made use of primary cell cultures from
benign prostate hyperplasia and PCa tissue specimens to amplify
the number of basal epithelial cells. In contrast to the findings
from the TMA (Figures 1a and b) IL4Ra mRNA (Figure 1¢) and
protein levels (Figure 1d) were not significantly different between
benign and cancerous CD44"CD49f" basal cells, which both
showed comparable expression levels to PC3 cells. Surprisingly,
in view of the TMA data, LNCaP cells expressed only minimal levels
of IL4Ra (Figures 1c and d). To investigate IL4Ra expression in the
individual cell subpopulations, we separated SC, TA and CB
according to their surface markers, as previously described.'#%”?
The functional isolation of SC, TA and CB subpopulations
(based on their clonogenic potential) was confirmed (Suppleme-
ntary Figure 1A), and quantitative real-time PCR analysis of the SC,
TA and CB subpopulations revealed that receptor expression was
significantly increased in the cancer (C)SC and cancer transit
amplifying subpopulation within the basal cell population
compared with their benign counterparts (Figure Te). We were
unable to stratify the clonogenicity of the basal populations or
IL4ARa expression using the expression of another common
prostate (basal) stem cell marker CD49f.2 which marked all basal
cells under these serum-free culture conditions (Supplementary
Figure 1B).8
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To simulate an IL-4-containing microenvironment, a human IL-4
complimentary DNA construct was inserted into murine STO cells
by lentiviral transduction. IL-4 expression and bioavailability as a
secreted protein were confirmed by quantitative real-time PCR and
ELISA (Supplementary Figures 2A and B). The newly generated STO
cell lines, STO-GUS (control cell line) and STO-IL-4 (IL-4 secreting cell
line) were used as feeder layers for the primary prostate epithelial
cultures in subsequent experiments in order to investigate the
influence of IL-4 on clonogenic potential. After 15 days of culture,
benign primary cells co-cultured with STO-IL-4 cells showed a minor
increase in colony forming efficiency (CFE), compared to cells co-
cultured with STO-GUS cells (Figure 2a; Supplementary Figure 3A).
In contrast, primary PCa cells showed a significantly (~3-fold) higher
clonogenic potential in response to STO-IL-4 (Figure 2b;
Supplementary Figure 3B). Similar effects were seen when PCa
cells were co-cultured with untransduced STO cells in the presence
of 5ng/ml recombinant IL-4 (Supplementary Figure 3C). To
investigate whether the presence of IL-4 affects the proliferative
ability of primary cells, colony growth was tracked over time.
Surprisingly, there was no significant difference between the size of
colonies in STO-GUS or STO-IL-4 co-cultured cells, or between
cancer and benign cells (Figures 2c and d). Similar results were
observed in cell lines and primary cells treated with 5ng/ml
exogenous IL-4 for 7 days (Supplementary Figures 3D-H). Moreover,
[*H] thymidine incorporation assays (Supplementary Figures 3I-L)
and MTT assays (Supplementary Figures 3M-P) of commonly used
PCa cell lines treated with a concentration range of IL-4 confirmed
that IL-4 is not able to affect cellular proliferation rate or viability,
respectively. To further corroborate whether IL-4 expedites colony
formation, the development of colonies was scored over time. After
6 days, there was a significant increase in colony number in primary
PCa cells co-cultured with STO-IL-4 compared to controls (STO-GUS)
(Figure 2e). Thus, IL-4 is able to increase CFE of primary PCa cells but
once colonies have formed, IL-4 is unable to regulate the expansion
of these colonies.

To investigate whether CFE of PCa cells is dependent on the
concentration of IL-4, primary cancer cells were co-cultured with
STO-IL-4/STO-GUS cells at different ratios (Figure 2f). For these
experiments STO-IL-4 cells were diluted with STO-GUS cells to
a maximum ratio of 1:10000. The IL-4 concentrations of the
supernatants were determined after 2 days by ELISA and showed
a concentration range from 0.004 to 32 ng/ml (Supplementary
Figure 4A). The results demonstrated that the number of colonies
correlated (Supplementary Figures 4B and C; R*=0.867; P=0.021)
with the concentration of IL-4 in the supernatant suggesting that
the clonogenic potential of primary PCa cells is increased in
a dose-dependent manner by IL-4. As IL-4 effects on benign cells
were absent, subsequent experiments were performed with
malignant cells only.

IL-4 does not influence the migration or invasive potential of
primary PCa cells

In order to determine whether IL-4 influences the chemotaxis of
primary PCa cells, migration (Figure 3a) and invasion assays
(Figure 3b) were performed with Boyden chambers in the presence
of STO-IL-4 and STO-GUS acting as chemoattractants. Media with no
supplements/chemoattractants were used as a negative control and
medium supplemented with 30% fetal calf serum (FCS) was used as
a positive control.”® STO cells in the absence of FCS had a similar
effect on migration and invasion as 30% FCS. However, we were
also unable to see any statistically significant effects on migration
and invasion of primary PCa cells when STO-IL-4 was used as a
chemoattractant. Noteworthy, this type of assay does not
discriminate between the different subpopulations of primary PCa
cells. We can therefore not exclude that SC niches do not need to
secrete IL-4 in order to attract SC or CSC.
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Figure 1.

IL4Ra expression in prostate epithelial cells. (@) Immunohistochemical staining for IL4Ra of representative malignant tissue and

adjacent benign tissue cores from a PCa patient. Scale bar =200 pm. (b) Evaluation of a TMA of malignant tissue and adjacent benign tissue
cores from PCa patients (n = 36) stained for expression of IL4Ra. Data are shown as box and whisker diagrams (10-90%, ***P < 0.001, outliers
are shown as dots). (c) IL4Rx mRNA levels in LNCaP (n=3), PC3 (n=3), benign (n=28) and malignant (n=8) primary prostate cell cultures
normalised to RPLPO expression. Data are shown as box and whisker diagrams (min to max; *P < 0.05). (d) IL4R« protein levels of LNCaP (n=3),
PC3 (n=3), benign (n =4) and malignant (n =5) primary prostate cell cultures analysed by flow cytometry. Data are shown as box and whisker
diagrams (min to max; *P < 0.05; **P < 0.01; ***P < 0.001). (e) IL4Rx mRNA levels of individual cell subpopulations from benign and malignant
primary prostate cell cultures (n=6). Data are shown as Box and whisker diagrams (min to max; *P < 0.05). CCB, cancer committed basal;

CTA, cancer transit amplifying; NS, not significant.

IL-4 signalling does not affect the sensitivity of primary PCa cells to
irradiation or docetaxel

Multiple cytokines, such as IL-6, IL-8 and IL-4, have been shown
to be expressed at higher levels after cancer treatment
(for example radiation and chemotherapy (docetaxel)), and
may play a crucial role in resistance mechanisms.'>?%?* In order
to verify whether IL-4 may influence the recovery potential of

primary cancer cells after irradiation, clonogenic recovery assays
were performed after cells were exposed to increasing doses
of y-irradiation (2.5, 5, and 10 Gy) in the presence or absence of
IL-4. As expected, y-irradiation caused a significant decrease in
colony numbers (expressed as relative survival fraction)
(Figure 4a). However, there was no significant difference in
clonogenic recovery between PCa cells co-cultured with STO-IL-4
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(inhibitory concentration (IC)50 3.44+1.60 Gy) and the STO-GUS
control (IC50 5.01£0.47 Gy).

To further corroborate whether IL-4 is able to affect the
clonogenic recovery rate in response to a treatment, we repeated
the assays after exposure to docetaxel, a standard of care
chemotherapeutic intervention for castration-resistant PCa.
A significant change in primary cell viability after 72 h treatment
with increasing doses of docetaxel was observed (Supplementary
Figure 5A). However, morphological observations (increase in
nuclear size) and cell cycle analysis (G, arrest) revealed that
docetaxel was already effective at the lowest concentration
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that IL-4 signalling is not able to decrease the sensitivity of
primary PCa cells in response to irradiation or docetaxel treatment.

IL-4 treatment induces phosphorylation of STAT6 in PCa cells
Next, we assessed which downstream signalling pathways are
activated by IL-4 and may be involved in the increase in
clonogenic potential observed in primary PCa cells. To this end,
a Proteome Profiler Human Phospho-Kinase Array was utilised.
Four primary PCa cell cultures from different patients were treated
for either 30 min or 48 h with 48 h-conditioned media from
STO-IL-4 cells. The array revealed that IL-4 treatment triggered
a highly heterogeneous response in primary PCa cells, with only
phosphorylation of signal transducer and activator of transcrip-
tion6 (STAT6) identified as being significantly upregulated
(P<0.05) in all samples and at all time points (Table 1;
Figures 5a—c). Activation of STAT6 was validated by Western blot
after treatment with IL-4-containing supernatant from STO-IL-4 for
either 30 min or 48 h (Figure 5d).

Previous immunohistological studies have reported that STAT6
is overexpressed in PCa,*° and assessment of our TMA for STAT6
expression supported these results (Supplementary Figure 6).
However, the data also showed a slight, statistically not significant
decrease of both STAT6 mRNA (Figure 5e) and protein (Figure 5f)
levels in cancer-derived primary cells compared to benign cells.
Cancerous primary cells showed similar STAT6 protein expression
to PC3 cells, despite the malignant primary cells demonstrating
higher transcript expression. In contrast, LNCaP cells showed very-
low STAT6 mMRNA expression and no detectable protein
(Figures 5e—qg). In addition, no differences in STAT6 mRNA levels
were observed between the fractionated subpopulations from
cancer or benign cultures (Figure 5h). We concluded that STAT6 is
highly expressed in primary PCa cells, albeit at lower levels than in
benign cells, and can readily be activated by IL-4.

Inhibition of phosphoSTAT6 reverses the IL-4-mediated increase in
clonogenic potential

In order to investigate whether direct inhibition of STAT6
signalling can antagonize the effects of IL-4 on the clonogenic
potential of primary PCa cells, a selective STAT6 inhibitor
(AS1517499) was used at varying concentrations.®’ After toxicity
testing in primary cells (Figure 6a), two concentrations of the
inhibitor (100 and 300 nwm) were selected for further use, and their
efficacy was verified by Western blot analysis for STAT6
phosphorylation following IL-4 exposure. While the inhibitor had
no observable effect on cell viability (Figure 6a) and total STAT6
protein expression (Figures 6b and d), the levels of phosphory-
lated STAT6 decreased to 60 and 20% of initial expression levels
following treatment with 100 and 300 nm AS1517499 respectively
(Figures 6b and c).

«
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As shown in Figure 2b, IL-4 increased the clonogenic potential
of primary cancer cells. When PCa cells were co-cultured with
STO-IL-4 in the presence of 100 nm of AS1517499, this increase in
clonogenic potential was found to be significantly inhibited
(P < 0.05) (Figure 6€). Furthermore, the higher dose of AS1517499
(300 nm) showed an almost complete reversion of IL-4-increased
clonogenic potential, to levels comparable to control (STO-GUS).
Although 300 nm AS1517499 had a minor effect on clonogenic
potential of the STO-GUS-co-cultured PCa cells, we concluded that
the increase of the clonogenic potential of primary PCa cells in
response to IL-4 is indeed mediated by STAT6 activation.

DISCUSSION

The role of important pro-inflammatory cytokines such as IL-1 and
IL-6 in carcinogenesis has been extensively investigated.'>3? In
contrast, less is known about the effects of anti-inflammatory
cytokines such as IL-4 on PCa cells. IL-4 is a pleiotropic cytokine
produced by a subset of CD4™ T cells in response to receptor-
mediated activation events. It induces a variety of responses in
hematopoietic tissues, signalling mainly through the IL4Ra
subunit, which is present in many tissue types including
hematopoietic, endothelial, epithelial, muscle, fibroblast, hepato-
cyte and brain.337° Using a TMA, we were able to demonstrate
that IL4Ra is significantly overexpressed in luminal PCa cells
compared to cells from benign areas of the human prostate.
Similar results have been observed in PCa xenograft models
where IL4Ra is overexpressed in both androgen-dependent
and -independent tumours.3® These results added PCa to the
group of solid human tumours where IL4Ra is highly expressed,
similar to breast, ovarian and colon cancers.®”® Interestingly, we
found no significant difference in IL4Ra expression between
benign and malignant primary basal prostate cells. However,
fractionation of these rare cell populations revealed that stem-like
cells isolated from cancers have significantly higher expression
levels of IL4Ra, suggesting a potential tumourigenic role for
IL-4/IL4Ra in PCa CSCs. Previously, IL-4/IL4Ra signalling activation
was shown to promote clonogenic potential and metastatic
colonisation in stem-like cells from human colon and mammary
cancers®*° Similar to these findings, we showed that IL-4
significantly increased the clonogenic potential of PCa
primary cells.

Former studies have demonstrated that IL-4 can induce NF-kB
activation through activation of PI3K/AKT in PCa cell lines.?® In
contrast, we found that IL-4 treatment induced only STAT6
phosphorylation in all the patient-derived cell cultures analysed
(despite high heterogeneity between samples). This is supported
by the findings of Ni et al.,*' who also showed significant levels of
activated STAT6 in primary prostate tissues.

Here we describe a new role for IL-4-activated STAT6 in
the regulation of clonogenic potential of primary PCa cells.

Figure 2.

IL-4 increases clonogenic potential of primary PCa cells. (a) Clonogenic assays of benign primary prostate cells (n=4) co-cultured

with STO-GUS or STO-IL-4 feeder cells. The number of colonies (>32 cells) was scored 15 days after plating. The results are expressed as fold
change in the number of colonies and are normalised to the STO-GUS control. A representative crystal violet staining is shown at day 15. Data
are shown as mean +s.d. (*P < 0.05). (b) Clonogenic assays of malignant primary prostate cells (n=4) co-cultured with STO-GUS or STO-IL-4
feeder cells. The number of colonies (> 32 cells) was scored 15 days after plating. The results are expressed as fold change in the number of
colonies and are normalised to the STO-GUS control. A representative crystal violet staining is shown at day 15. Data are shown as mean + s.d.
(*P < 0.05). (c) Average colony growth of benign primary prostate cells (n = 3) co-cultured with STO-GUS or STO-IL-4 feeder cells. Cell numbers
from two colonies from each condition were counted at day 8 and 15, and the increase in cell number of one colony expressed as fold change.
Data are shown as mean +s.d. (d) Average colony growth of malignant primary prostate cells (n=3) co-cultured with STO-GUS or STO-IL-4
feeder cells. Cell numbers from two colonies from each well were counted at day 8 and 15 and the colony growth expressed as fold change.
Data are shown as mean + s.d. (e) Time course of colony formation (=32 cells) in primary PCa cell cultures (n =3) co-cultured with STO-IL-4 or
STO-GUS for 8 days. The results are expressed as total number of colonies. Data are shown as mean + s.e.m. (*P < 0.05). (f) Clonogenic assay of
primary PCa cells (n = 3) co-cultured with a combination of STO-GUS and STO-IL-4 feeder cells in different ratios (1:1-1:10 000). The number of
colonies (=32 cells) was scored 15 days after plating. The results are expressed as total number of colonies. Data are shown as mean +s.e.m.
(*P < 0.05). NS, not significant.
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Figure 3. IL-4 does not influence the migration or invasion potential of primary PCa cells. (a) Fold change in migration of primary cancer cells
after 24 and 48 h incubation compared to controls (n =4). Keratinocyte-serum free medium (KSFM) without added supplements served as a
negative control for migration (nCTRL 0% FCS). KSFM supplemented with 30% FCS served as positive control (pCTRL 30% FCS; *P < 0.05;
*#*Pp < 0.01; ***P < 0.001). (b) Fold change in invasion through matrigel of primary PCa cells after 24 and 48 h incubation compared to controls
(n=4). KSFM without added supplements served as a negative control for invasion (nCTRL 0% FCS). KSFM supplemented with 30% FCS served
as positive control (pCTRL 30% FCS; *P < 0.05; **P < 0.01; ***P < 0.001). nCTRL, negative Control, pCTRL, positive Control.
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Figure 4. IL-4 does not influence the recovery potential of primary PCa after irradiation or docetaxel treatment. (a) Clonogenic recovery assay
of primary PCa cells (n = 3) co-cultured with STO-GUS or STO-IL-4 feeder cells after irradiation with 0, 2.5, 5 and 10 Gy. The number of colonies
(=32 cells) was scored 10 days after plating. The results are expressed as % survival decrease in the number of colonies and normalised to no
radiation (0 Gy) control. IC50 was calculated with GraphPad Prism from these results. (b) Clonogenic recovery assay of primary PCa cells (n=3)
co-cultured with STO-GUS or STO-IL-4 feeder cells after 48 h treatment with different doses of docetaxel (0, 1.25, 2.5, 5, 10, 100 and 1250 nm).
The number of colonies (>32 cells) was scored 10 days after plating. The results are expressed as % survival decrease in the number of
colonies and normalised to no treatment (0 nm) control (n=3). IC50 was calculated with GraphPad Prism from these results. IC, inhibitory
concentration; NS, not significant.
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Table 1. Evaluation of the Human Phospho-Kinase Antibody Array after treatment of primary PCa cells with IL-4
E =
0 1 2
STOs IL-4 30 min | 48h
SAMPLE H116/11 |H043/11 [H039/11 |H265/12 | p-value JH116/11|H043/11[H039/11 |H265/12 p-value
Akt (S473) 1.19 0.70 1.08 0.68| 0.551 1.06 2.16 0.59 1.18| 0.509
Akt (T308) 0.43 0.96 0.89 1.01] 0.280 1.58 0.39 0.84 2.31| 0.554
AMPK alphai (T174) 145 043] 056] 033] 0317 192 078] 088 1.39| 0424
AMPK alpha2 (T172) 1.08 1.21 1.14] 0.346 0.94 0.78 2.68| 0.256
beta-Catenin 0.97 1.24] 0.404 1.26 0.59 2.44| 0.370
Chk-2 (T68) 1.00 0.74 0.50] 0511 1.13 0.68 1.50| 0.345
c-Jun (S63) 0.40 0.89 0.89| 0.465 0.55 1.67 1.56| 0.364
CREB (S133) 0.62 0.62 0.39| 0.436 1.89 0.71 1.22| 0.327
EGF R (Y1086) 0.82 0.61 0.90| 0.484 1.97 0.53 1.66| 0.208
eNOS (S1177) 0.78 1.12 0.159 0.46 0.46 0.98 1.61| 0.684
ERK1/2 (T202/Y204, T185/Y187) 0.58 0.84 1.53 0.87| 0.839 0.48 0.80 0.64 2.56| 0.820
FAK (Y397) 1.27 1.09 7@’] 0.411 1.48 0.66 0.34| 0.459
Fgr (Y412) 1.08 1.00| 0.193 0.68 2197, 0.72 1.19] 0.588
Fyn (Y420) 2.32 1.59 0.83 0.99] 0.289 348 0.61 1.96| 0.556
GSK-3 alpha/beta (S21/S9) 1.14 0.46 0.77 0.79] 0.231 1.38 1.56 0.66 1.75| 0.250
Hek (Y411) 0.55 0.74 0.70 0.80| 0.010 0.95 0.57 0.61 1.83| 0.974
HSP27 (S78/S82) 1.83 1.50 0.95| 0.250 2.99 0.79 0.74| 0.267
HSP60 0.65 0.014 0.41 0.67 1:21 0.189
JNK pan (T183/Y185, T221/Y223) 1.60 0.92 0.85 0.99| 0.646 1.79 0.98 1.81| 0.157
JLck (Y394) 3.00 1.01 0.98| 0.719 2.24 1.46 0.73 2.31| 0.162
|Lyn (Y397) 1.57 0.94 1.22| 0.266 2.36 0.57 2.68| 0.581
JMSK1/2 (S376/S360) 0.94 1.28 1.24 1.25| 0.116 1.30 1.33 0.94 1.57| 0.115
p27 (T198) 0.31 0.90 0.535 0.62 0.501
p38 alpha (1180/Y182) 0.99] 1.18] o071 088 o0587] 175/ 208 1.00] 204] 0.065
p53 (S15) 0.78 0.65 0.69| 0.395 0.54 0.83 0.369
p53 (S392) 0.36 0.42 0.68| 0.393 0.52 0.75 2.02| 0.391
p53 (S46) 1.50 0.73 0.80 1.50] 0.571 0.85 2.61 0.346
|p70 6 Kinase (T389) 047 o084 1.04 1| 1.03] 328] 0848
|p70 S6 Kinase (T421/S424) 1.19 0.49 0.74 1.52 0.3 0.89 0.410
IPDGF R beta (Y751) 0.48 0.97 0.61 2.18 0.74 1.67| 0.153
|PLC gamma-1 (Y783) 0.70 1.19 0.51 1.00 0.269
|PRAS4O (T246) 0.93 1.22 0.87 1517 0.87 1.42| 0.823
1Pyk2 (Y402) 0.72 1.08 0.83 042 0.83 1.54| 0.528
RSK1/2/3 (S380/S386/S377) 0.65 0.97 2.01 ﬂ@a; 0.79 0.581
Src (Y419) 1.02 1.05 1.14 1.08 0.76 q57d 0.269
STAT2 (Y689) 1.69 2.67 1.16 0.67 3 2158 0.92 2.05| 0.073
STAT3 (S727) 1.85 0.35 1.08 0.40| 0.836 0.87 2.01] 0.393
STAT3 (Y705) 0.85 1.06 0.280 0.34 0.91 0:317,
STAT5a (Y694) 1.81 1.53 1.02 1.36] 0.079 222 0.92 0.75 242| 0.275
STAT5alb (Y694/Y699) 1.49 1.08 1.26| 0.242 0.53 1.12 0.70 2.14| 0.752
STATS5b (Y699) 1.85 1.12 1.19] 0.236 1.84 247 0.77 1.88| 0.118
TAT6 (Y641) 2.83 2.90 1.75| 0.040 3.02 2.18 0.04
TOR (S2448) 1.66 0.81 1.04] 0.383 1.10 1l 0.62 1.79] 0.353
WNK-1 (T60) 0.61 0.35 0.434 0.40 0.85| 0.516
Yes (Y426) 245 1.10 1.18] 0.204 0.85 1.45 0.79 1.82| 0427
Abbreviations: Green, downregulation (n=4 PCa); IL-4, interleukin-4; PCa, prostate cancer; Red, upregulation; Red rectangle, pSTAT6. X-fold change in
phosphorylation status in primary PCa cells after treatment for 30 min 48 h with conditioned media from STO-IL-4. The results of the Human Phospho-Kinase
Antibody Array were evaluated from densitometry analysis of the spotted membrane normalised to the untreated control (STO-GUS-conditioned media).

Previous studies from our laboratory have revealed that only
the progenitor subpopulations within primary benign and
malignant cell cultures hold the ability to form colonies
from single cells.'>'*** This observation, combined with our
results, leads to the hypothesis that IL-4 directly influences
the CSC population by providing a micro-environmental stimulus

to exit quiescence and initiate the formation of new colonies
from a single cell. This adaptation to the IL-4-producing tumour
microenvironment may play a critical role in the promotion
of novel tumour-initiating foci, and possibly tumour initiation
at distant sites. This hypothesis is supported by previous
findings, which have demonstrated that (i) knockdown of STAT6
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expression can inhibit tumour metastasis in PCa, (ii) STAT6 /~ mice epithelial to mesenchymal transition has also been linked to

are resistant to metastatic disease and (iii) STAT6 phosphorylation increased clonogenicity, and may play a role in the observed
promotes metastatic potential in colon cancer cells.**** However,  results.*®
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In vitro and in vivo studies with the STAT6 inhibitor Leflunomide
have reported reduced growth and promotion of apoptosis in
PCa.”” However, Leflunomide is known to have non-specific
effects and can alter targets other than STAT6.3%“®“° Recently,
Nagashima et al.*® synthesized the potent and selective STAT6
inhibitor AS1517499, which has been utilised in this study.
However, AS1517499 did not reduce proliferation as has been
previously reported for Leflunomide. Despite this, we showed that
AS1517499 was able to prevent the IL-4-activated STAT6-mediated
increase of the clonogenic potential of primary PCa cells.
Moreover, at a dose of 300nm, AS1517499 decreased the
clonogenic potential of primary basal PCa cells. Even though
dose-dependent non-specific effects of AS1517499 cannot be
excluded, it is more likely that the reduced clonogenic potential
observed is due to the inhibition of basal STAT6 activation, which
has been reported previously.*' These results support the hypo-
thetical novel role of STAT6 in the regulation of the clonogenic
potential of PCa.

Several markers have been identified in order to isolate the highly
tumourigenic CSC from PCa cell lines, as well as primary PCa cells.>®
However, these studies differ in both detection methods and the
cell culture conditions for the CSC population, which has been
shown to be highly adaptive to the microenvironment.>' The model
used here was first introduced by Collins and colleagues in 1998,
and the laboratory of Maitland and Collins has since then
demonstrated the reliability of this model in several publications.”
Others have recently published similar data on primary prostate
cells, using the basal cell marker CD49f. In contrast to Smith
and colleagues,® our data showed that all subpopulations isolated
from our primary cells expressed the same levels of CD49f, in
agreement with Taylor et al.”® and Collins et al.'®> who also demon-
strated CD49f expression on all the cell subpopulations previously
described by Collins and Maitland.'*'*?® This implies that, despite
the use of different basal cell markers, both groups are ultimately
describing the same populations of prostate epithelial cells.

Cytokines play an important role in the development of therapy
resistance.’>>* Current therapies such as radiation and docetaxel
can trigger an inflammatory response, and an increase in cytokine
levels of IL-6, IL-8 and IL-4 have all been reported.'>2%2%>%45>
In vitro studies demonstrated that, in cell lines, IL-4 enhances the
DNA repair activity triggered by radiation therapy.>® In this study,
we observed that IL-4 had no influence on clonogenic recovery of
primary PCa cells following irradiation. Similarly, IL-4 also
demonstrated no influence on the clonogenic recovery potential
of primary PCa cells following docetaxel treatment. We therefore
conclude that IL-4 does not have a direct influence on therapy
resistance in PCa.

Here we demonstrate for the first time that activation of STAT6
by IL-4 from the local microenvironment results in a significant
increase in the colony-forming ability of primary PCa cells. This
finding describes a novel role of the IL-4/IL4Ra/STAT6 axis in the
highly tumourigenic progenitor population of PCa. However, the
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specific role of STAT6 in rare CSCs has to be clarified in further
studies, in order to investigate STAT6 as a potential novel
therapeutic target. We have also further demonstrated the
complexity of PCa tumour initiation and progression, which
highlights the importance of targeting not only the epithelial cell
populations but also the tumour microenvironment.

MATERIALS AND METHODS

Culture of cell lines and primary prostate cells

The PCa cell lines LNCaP, PC3 and Du145 were obtained from the
American Type Culture Collection (Rockville, MD, USA), cultured, and
authenticated as previously described.’” The LNCaP sub cell line LNCaP
IL-6* was derived after long-term treatment with IL-6.® 293FT cells were
cultured as described by Invitrogen (Life Technologies Ltd, Paisley, UK).

Benign and cancerous primary prostate cells were cultured as described
previously.®'*?8 Tissues were obtained with patients' consent and full ethical
approval (Yorkshire and Humber NHS Research Ethics Office—NRES number
07/H1304/121) from patients. Stem cell populations (SC, CD49b"9"/CD133"),
transit-amplifying populations (TA, CD49b"9"/CD1337), and committed basal
populations (CB, CD44*/CD49b'°*/CD133") were obtained via cell fractiona-
tion using the protocol previously published by Richardson et al.?® Patient
donor details are listed in Supplementary Table 1.

Live cell count

Collected cells were stained with Trypan Blue (Sigma-Aldrich Company Ltd,
Gillingham, UK) and counted using a Neubauer's haemocytometer.
Unstained cells were seeded for subsequent experiments.

Irradiation of cells

Cells were irradiated using an RS2000 X-Ray Biological Irradiator, contain-
ing a Comet MXR-165 X-Ray Source (Rad-Source Technologies Inc.,
Suwanee, GA, USA). A dose of 2.5, 5, 10, or 60 Gy was administered with
a dose rate of 0.02 or 0.08 Gy/s.

STAT6 inhibitor and docetaxel treatment of cells

STAT6 inhibitor (AS1517499, Axon Medchem, Groningen, the Netherlands)
and docetaxel (Sigma-Aldrich Company Ltd) were dissolved in dimethyl
sulfoxide (DMSO, Sigma-Aldrich Company Ltd). For the STAT6 inhibitor
experiments, doses of 10, 30, 100 and 300 nm were used. For docetaxel
experiments, doses of 1.25, 2.5, 5, 10, 100 and 1250 nm were used.

Cloning strategy of pGLTR-IL-4-PURO and pGLTR-GUS-PURO

For cloning of human IL-4 complimentary DNA into the lentiviral vector
PGLTR-X-PURO, the Invitrogen Gateway Recombination Cloning Technol-
ogy (Life Technologies Ltd) was used. pGLTR-X-PURO was kindly provided
by Dr Stephan Geley.>® IL-4 was re-cloned from pcD-human-IL-4(clone 125)
(ATCC, Rockville, MD, USA) using a pair of specific primers (5-CAAAA
AAGCAGGCTCCATGGGTCTCACCTCCCAAC-3" and 5'-CAAGAAAGCTGGGTC
TCAGCTCGAACACTTTGAATATTTC-3'), which incorporated specific over-
hangs for the gateway reaction into the pDONOR221. The pDONOR221-
Escherichia coli-B-glucuronidase (GUS) was used for the control vector
pPGLTR-GUS-PURO and was provided by Invitrogen (Life Technologies Ltd).

<
Figure 5.

IL-4 treatment induces phosphorylation of STAT6 in Pca. (a) Representative membranes from the Human Phospho-Kinase Antibody

Array. Samples were treated with 48 h-conditioned media from either STO-GUS controls (first lane) or STO-IL-4, for either 30 min (second lane)
or 48 h (third lane). (b) Highlighted pSTAT6 dots on the representative membranes from the Human Phospho-Kinase Antibody Array. (c) Fold
change of pSTAT6 after 30 min and 48 h of IL-4 exposure in the Human Phospho-Kinase Antibody Array compared to the untreated control
(n=4 PCa). Data are shown as mean +s.d. (*P < 0.05 **P < 0.01). A two-fold change was chosen as the threshold for upregulation (black line).
(d) Validation for pSTAT6 by Western blot analysis of primary PCa cells treated with conditioned media from STO-GUS or STO-IL-4 for 30 min or
48 h (n=1). (e) mRNA levels of STAT6 in LNCaP (n=3) and PC3 (n=3) cell lines, and benign (n=8) and malignant (n = 8) primary prostate cell
cultures. Data are shown as Box and whisker diagrams (min to max; *P < 0.05). (f) Representative Western blot for STAT6 from primary prostate
benign cells (n = 3), primary PCa cells (n=3), PC3 (n=1) and LNCaP (n=1) cell lines. PC3 cells were used as a positive control and LNCaP cells
as a negative control. (g) Protein levels of STAT6 analysed in primary prostate benign (n=3) and cancer cells (n=3) from the representative
Western blot (Figure 5f). PC3 cells were used as a positive control and LNCaP cells as a negative control. Data are shown as Box and whisker
diagrams (min to max; * P < 0.05). (h) mRNA levels of STAT6 in individual cell subpopulations from benign and malignant prostate biopsies
(h=4). Data are shown as Box and whisker diagrams (min to max). CCB, cancer committed basal; CTA, cancer transit amplifying;
NS, not significant; Red rectangle, STAT6.
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Figure 6.

Inhibition of phosphoSTAT6 reverses the IL-mediated effects on clonogenic potential. (a) Cell viability of primary PCa cells treated

with different doses of AS1517499 for 24, 48 and 72 h using the Alamar Blue Assay (n=3). (b) Two representative Western blots of
phosphorylated and total STAT6 in primary PCa cells exposed to two different (100, 300 nm) doses of AS1517499 combined with STO-IL-4
supernatant for 30 min. (c) Densitometry analysis of pSTAT6 expression in AS1517499/IL-4-treated primary PCa cells compared to untreated
controls (n=3; *P < 0.05 **P < 0.01). (d) Densitometry analysis of total STAT6 protein expression in AS1517499/IL-4 treated primary PCa cells
compared to untreated controls (n = 3). (e) Fold change in the number of colonies in primary benign and cancer prostate cells after 15 days of
culture with two doses of AS1517499 (n=3 benign, n=3 cancer). (*P < 0.05; **P < 0.01; ***P < 0.001). NS, not significant.

Lentivirus production and generation of stable cell lines

For production of lentiviral particles, 293FT cells were transfected with
psPAX2, pVSV-G and the corresponding pGLTR-X-PURO expression vector
using the calcium phosphate transfection method.%® psPAX2 was a gift
from Didier Trono (Addgene plasmid # 12260) and pVSV-G was a gift from
Robert Weinberg (Addgene plasmid # 8454).°" Viral supernatants were
harvested 48 h after transfection and passed through a 0.45 um filter.
STO cells were incubated for 8 h with the virus in the presence of
2 pug/ml polybrene and subsequently selected with 5 ug/ml puromycin
(Sigma-Aldrich Company Ltd).

[*H] Thymidine incorporation assay and MTT Assay

PC3, Du145 and LNCaP IL-6" cell lines were seeded at a density of
2% 10 cells per well and LNCaP cells at 10 x 10® cells per well in triplicate
onto 96-well plates. On the following day, cells were treated with different
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concentrations of IL-4 (0, 0.1, 1; 5, 10 ng/ml, Sigma-Aldrich Company Ltd)
and were incubated for 96 h.

To measure DNA synthesis, BH] labelled thymidine (1 uCi per well)
was added to the wells 12 h before harvesting. The DNA was harvested
on UniFilter 96-well filter plates (Perkin-Elmer, Vienna, Austria) and
50 yl Scintillation fluid was added. The radioactivity was quantified
using a Chameleon 5025 liquid scintillation counter (HVD Life Sciences,
Vienna, Austria).

For the MTT Assay the EZ4U Proliferation Assay (Biomedica, Vienna,
Austria) was used and performed following the manufacturer’s protocol.

Western blot analysis

For Western blot analysis cells were washed with Phosphate-buffered
saline and lysed in Radioimmunoprecipitation assay buffer supplemented
with complete Mini EDTA-free protease inhibitor tablets (Roche, Welwyn
Garden City, UK) and the phosphatase inhibitor cocktail PhosSTOP (Roche).



Protein quantification and Western blot was performed as described
earlier.®? Antibodies used are listed in Supplementary Table 2. For the
Western blot experiments STO-free cultures were used and treated with
48 h-conditioned media from STO-GUS or STO-IL-4.

Flow cytometry

Flow cytometry for IL4Ra (CD124) was performed as described before by
Kroon et al.'® Antibodies used are listed in Supplementary Table 2.
All experiments were performed in at least three independent biological
replicates unless otherwise specified.

Clonogenic and clonogenic recovery assays

The clonogenic potential and clonogenic recovery assays were performed
as previously described.®* About 200 cells were plated from semi-confluent
primary prostate cells onto 6-well collagen I|-coated plates (BD Biocoat;
BD Biosciences, San Jose, CA, USA) in the presence of irradiated STO cells.
Colonies were counted after 15 days and recorded if they contained more
than 32 cells (five population doublings).

Cell migration and invasion assays

Cell migration and invasion assays were performed as previously
described.®* All experiments were performed in at least three independent
biological replicates unless otherwise specified.

Quantitative real-time PCR for mRNA
Total RNA was extracted from cells using Qiagen RNeasy Mini Kit (Qiagen,
Manchester, UK) according to the manufacturer's protocol. RNA was
reverse transcribed using random hexamers (Life Technologies Ltd) and
the Reverse Transcriptase Kit SuperScript lIl (Life Technologies Ltd).
Quantitative real-time PCR was conducted using TagMan gene
expression assays (Life Technologies Ltd) and the iTaq Universal Super-
mixes (Bio-Rad Laboratories Ltd, Hertfordshire, UK), according to the
manufacturer's protocol.

Proteome profiler human Phospho-Kinase Array

For the Proteome Profiler Human Phospho-Kinase Array (R&D, Abingdon,
UK) 1x10° primary PCa cells were seeded in a collagen I-coated
10 cm-well plate and treated with 48 h-conditioned media from STO-IL-4
or STO-GUS for 30 min or 48 h. The array was performed according to the
manufacturer’s manual and developed in a GeneGnome XRQ imaging
system (Syngene, Cambridge, UK).

Tissue microarray and immunohistochemistry

The construction of the TMA for IL4Ra was performed as previously
described.” Georg Schéfer (Institute of Pathology, Medical University
Innsbruck, Austria) evaluated the TMA by using the semiquantitative
scoring system ‘quickscore’ by multiplication of the proportion of positive
cells and the average staining intensity.®®

Statistical analysis

Prism 6 (GraphPad Software, La Jolla, CA, USA) was used for statistical
analyses and the evaluation of the IC50. Gaussian distribution was
determined using Kolmogorov-Smirnov test. Mann-Whitney U or
Student’s t-test (two-sided) were used to determine whether two sets of
data were significantly different from each other. For correlation analysis
(Pearson’s method) SPSS (IBM United Kingdom Ltd, Hampshire, UK) was
used. Data are presented as mean =s.d. or mean + s.e.m. unless otherwise
specified. Mean £ s.d. was used to describe the distribution of the sample
values in an experiment and s.e.m was used to estimate how variable the
means were in multiple repeated experiments.®® P-values of < 0.05 were
considered significant. All differences highlighted by asterisks were statisti-
cally significant as encoded in figure legends (*P <0.05; **P <0.01;
***P < 0.001). All experiments were performed in at least three indepen-
dent biological replicates unless otherwise specified.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

IL-4 affects prostate tumour-initiating cells
G Nappo et al

ACKNOWLEDGEMENTS

We thank all the urology surgeons MS Simms, L Coombes, G Cooksey and
J Hetherington (Castle Hill Hospital, Cottingham, UK). In addition, we wish to thank
Georg Schéfer for evaluating the TMA. We would also like to thank the patients
who kindly provided samples. The Cancer Research Unit, University of York is
acknowledged for their support and helpful discussions. This work was funded
by PRO-NEST Marie-Curie Grant (238278 to ZC), Forschungsfoerderung der
Oesterreichische Krebshilfe Tirol 2012 (to HHHE) and the Austrian Science Fund
FWF (P26799 to FRS). Further support for NJM was provided by Charity Soul and
Yorkshire Cancer Research (Y257PA).

REFERENCES

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer

statistics, 2012. CA Cancer J Clin 2015; 65: 87—108.

Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T et al. EAU

guidelines on prostate cancer. part 1: screening, diagnosis, and local treatment

with curative intent-update 2013. Eur Urol 2014; 65: 124-137.

Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T et al. EAU

guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and

castration-resistant prostate cancer. Eur Urol 2014; 65: 467-479.

Kupelian PA, Mahadevan A, Reddy CA, Reuther AM, Klein EA. Use of different

definitions of biochemical failure after external beam radiotherapy changes

conclusions about relative treatment efficacy for localized prostate cancer.

Urology 2006; 68: 593-598.

Rane JK, Pellacani D, Maitland NJ. Advanced prostate cancer--a case for adjuvant

differentiation therapy. Nat Rev Urol 2012; 9: 595-602.

Frame FM, Pellacani D, Collins AT, Simms MS, Mann VM, Jones GD et al. HDAC

inhibitor confers radiosensitivity to prostate stem-like cells. Br J Cancer 2013; 109:

3023-3033.

Frame FM, Maitland NJ. Cancer stem cells, models of study and implications of

therapy resistance mechanisms. Adv Exp Med Biol 2011; 720: 105-118.

Smith BA, Sokolov A, Uzunangelov V, Baertsch R, Newton Y, Graim K et al. A basal

stem cell signature identifies aggressive prostate cancer phenotypes. Proc Natl

Acad Sci USA 2015; 112: E6544-E6552.

Taylor RA, Toivanen R, Frydenberg M, Pedersen J, Harewood L, Australian Prostate

Cancer B et al. Human epithelial basal cells are cells of origin of prostate cancer,

independent of CD133 status. Stem Cells 2012; 30: 1087-1096.

10 Maitland NJ, Frame FM, Polson ES, Lewis JL, Collins AT. Prostate cancer stem cells:
do they have a basal or luminal phenotype? Horm Cancer 2011; 2: 47-61.

11 Polson ES, Lewis JL, Celik H, Mann VM, Stower MJ, Simms MS et al. Monoallelic
expression of TMPRSS2/ERG in prostate cancer stem cells. Nat Commun 2013; 4:
1623.

12 Collins AT, Habib FK, Maitland NJ, Neal DE. Identification and isolation of human
prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. J Cell
Sci 2001; 114: 3865-3872.

13 Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of
tumorigenic prostate cancer stem cells. Cancer Res 2005; 65: 10946—-10951.

14 Crusz SM, Balkwill FR. Inflammation and cancer: advances and new agents.
Nat Rev Clin Oncol 2015; 12: 584-596.

15 Culig Z. Cytokine disbalance in common human cancers. Biochim Biophys Acta
2011; 1813: 308-314.

16 Culig Z, Puhr M. Interleukin-6: a multifunctional targetable cytokine in human
prostate cancer. Mol Cell Endocrinol 2012; 360: 52-58.

17 Ishiguro H, Akimoto K, Nagashima Y, Kagawa E, Sasaki T, Sano JY et al
Coexpression of aPKClambda/iota and IL-6 in prostate cancer tissue correlates
with biochemical recurrence. Cancer Sci 2011; 102: 1576-1581.

18 Kroon P, Berry PA, Stower MJ, Rodrigues G, Mann VM, Simms M et al. JAK-STAT
blockade inhibits tumor initiation and clonogenic recovery of prostate cancer
stem-like cells. Cancer Res 2013; 73: 5288-5298.

19 Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE. The IL-4 receptor: signaling
mechanisms and biologic functions. Annu Rev Immunol 1999; 17: 701-738.

20 Wise GJ, Marella VK, Talluri G, Shirazian D. Cytokine variations in patients with

hormone treated prostate cancer. J Urol 2000; 164: 722-725.

Conticello C, Pedini F, Zeuner A, Patti M, Zerilli M, Stassi G et al. IL-4 protects

tumor cells from anti-CD95 and chemotherapeutic agents via up-regulation of

antiapoptotic proteins. J Immunol 2004; 172: 5467-5477.

Goldstein R, Hanley C, Morris J, Cahill D, Chandra A, Harper P et al. Clinical

investigation of the role of interleukin-4 and interleukin-13 in the evolution of

prostate cancer. Cancers 2011; 3: 4281-4293.

23 Lee SO, Lou W, Nadiminty N, Lin X, Gao AC. Requirement for NF-(kappa)B in

interleukin-4-induced androgen receptor activation in prostate cancer cells.

Prostate 2005; 64: 160-167.

—_

N

w

N

w

(o)}

~N

e

O

2

2

N

Oncogenesis (2017), 1-12

11



IL-4 affects prostate tumour-initiating cells
G Nappo et al

12

24

25

26

27

2

(<]

29

30

3

32

33

3

S

35

36

3

~N

3

e}

3

O

4

o

4

42

43

44

45

46

4

~N

Lee SO, Chun JY, Nadiminty N, Lou W, Feng S, Gao AC. Interleukin-4 activates
androgen receptor through CBP/p300. Prostate 2009; 69: 126—132.

Lee SO, Pinder E, Chun JY, Lou W, Sun M, Gao AC. Interleukin-4 stimulates
androgen-independent growth in LNCaP human prostate cancer cells. Prostate
2008; 68: 85-91.

Roca H, Craig MJ, Ying C, Varsos ZS, Czarnieski P, Alva AS et al. IL-4 induces
proliferation in prostate cancer PC3 cells under nutrient-depletion stress through
the activation of the JNK-pathway and survivin up-regulation. J Cell Biochem 2012;
113: 1569-1580.

Jiang H, Harris MB, Rothman P. IL-4/IL-13 signaling beyond JAK/STAT. J Allergy Clin
Immunol 2000; 105: 1063-1070.

Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a
novel marker for human prostatic epithelial stem cells. J Cell Sci 2004; 117:
3539-3545.

Takeshi U, Sadar MD, Suzuki H, Akakura K, Sakamoto S, Shimbo M
et al. Interleukin-4 in patients with prostate cancer. Anticancer Res 2005; 25:
4595-4598.

Das S, Roth CP, Wasson LM, Vishwanatha JK. Signal transducer and activator of
transcription-6 (STAT6) is a constitutively expressed survival factor in human
prostate cancer. Prostate 2007; 67: 1550—1564.

Chiba Y, Todoroki M, Misawa M. Interleukin-4 upregulates RhoA protein via an
activation of STAT6 in cultured human bronchial smooth muscle cells. Pharmacol
Res 2010; 61: 188-192.

Korkaya H, Liu S, Wicha MS. Regulation of cancer stem cells by cytokine networks:
attacking cancer's inflammatory roots. Clin Cancer Res 2011; 17: 6125-6129.
Ohara J, Paul WE. Receptors for B-cell stimulatory factor-1 expressed on cells of
haematopoietic lineage. Nature 1987; 325: 537-540.

Lowenthal JW, Castle BE, Christiansen J, Schreurs J, Rennick D, Arai N et al.
Expression of high affinity receptors for murine interleukin 4 (BSF-1) on
hemopoietic and nonhemopoietic cells. J Immunol 1988; 140: 456-464.

Seder RA, Paul WE. Acquisition of lymphokine-producing phenotype by CD4+
T cells. Annu Rev Immunol 1994; 12: 635-673.

Husain SR, Kawakami K, Kawakami M, Puri RK. Interleukin-4 receptor-targeted
cytotoxin therapy of androgen-dependent and -independent prostate carcinoma
in xenograft models. Mol Cancer Ther 2003; 2: 245-254.

Prokopchuk O, Liu Y, Henne-Bruns D, Kornmann M. Interleukin-4 enhances
proliferation of human pancreatic cancer cells: evidence for autocrine and
paracrine actions. Br J Cancer 2005; 92: 921-928.

Koller FL, Hwang DG, Dozier EA, Fingleton B. Epithelial interleukin-4 receptor
expression promotes colon tumor growth. Carcinogenesis 2010; 31: 1010-1017.
Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, lovino F et al. Colon
cancer stem cells dictate tumor growth and resist cell death by production of
interleukin-4. Cell Stem Cell 2007; 1: 389-402.

Venmar KT, Carter KJ, Hwang DG, Dozier EA, Fingleton B. IL4 receptor ILR4alpha
regulates metastatic colonization by mammary tumors through multiple signaling
pathways. Cancer Res 2014; 74: 4329-4340.

Ni Z, Lou W, Lee SO, Dhir R, DeMiguel F, Grandis JR et al. Selective activation of
members of the signal transducers and activators of transcription family in
prostate carcinoma. J Urol 2002; 167: 1859-1862.

Lang SH, Frame FM, Collins AT. Prostate cancer stem cells. J Pathol 2009; 217:
299-306.

Wang N, Tao L, Zhong H, Zhao S, Yu Y, Yu B et al. miR-135b inhibits tumour
metastasis in prostate cancer by targeting STAT6. Oncol Lett 2016; 11: 543-550.
Ostrand-Rosenberg S, Clements VK, Terabe M, Park JM, Berzofsky JA, Dissanayake SK.
Resistance to metastatic disease in STAT6-deficient mice requires hemopoietic and
nonhemopoietic cells and is IFN-gamma dependent. J Immunol 2002; 169:
5796-5804.

Li BH, Yang XZ, Li PD, Yuan Q, Liu XH, Yuan J et al. IL-4/Stat6 activities correlate
with apoptosis and metastasis in colon cancer cells. Biochem Biophys Res Commun
2008; 369: 554-560.

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-
mesenchymal transition generates cells with properties of stem cells. Cell 2008;
133: 704-715.

Hail N Jr, Chen P, Bushman LR. Teriflunomide (leflunomide) promotes cytostatic,
antioxidant, and apoptotic effects in transformed prostate epithelial cells:

48

49

50

5

=

5

w

54

5

V]

56

57

58

59

60

6

=

62

6

w

64

65

66

evidence supporting a role for teriflunomide in prostate cancer chemoprevention.
Neoplasia 2010; 12: 464-475.

Chiba Y, Todoroki M, Nishida Y, Tanabe M, Misawa M. A novel STAT6 inhibitor
AS1517499 ameliorates antigen-induced bronchial hypercontractility in mice.
Am J Respir Cell Mol Biol 2009; 41: 516-524.

Nagashima S, Yokota M, Nakai E, Kuromitsu S, Ohga K, Takeuchi M et al. Synthesis
and evaluation of 2-{[2-(4-hydroxyphenyl)-ethyllamino}pyrimidine-5-carboxamide
derivatives as novel STAT6 inhibitors. Bioorg Med Chem 2007; 15: 1044—1055.
Santer FR, Erb HH, McNeill RV. Therapy escape mechanisms in the malignant
prostate. Semin Cancer Biol 2015; 35: 133-144.

Michael S, Achilleos C, Panayiotou T, Strati K. Inflammation shapes stem cells and
stemness during infection and beyond. Front Cell Dev Biol 2016; 4: 118.

Jones VS, Huang RY, Chen LP, Chen ZS, Fu L, Huang RP. Cytokines in cancer drug
resistance: cues to new therapeutic strategies. Biochim Biophys Acta 2016; 1865:
255-265.

Laine A, lyengar P, Pandita TK. The role of inflammatory pathways in
cancer-associated cachexia and radiation resistance. Mol Cancer Res 2013; 11:
967-972.

Di Maggio FM, Minafra L, Forte GI, Cammarata FP, Lio D, Messa C et al. Portrait of
inflammatory response to ionizing radiation treatment. J Inflamm 2015; 12: 14.
Vlyas D, Laput G, Vyas AK. Chemotherapy-enhanced inflammation may lead to the
failure of therapy and metastasis. Onco Targets Ther 2014; 7: 1015-1023.
Ciszewski WM, Wagner W, Kania KD, Dastych J. Interleukin-4 enhances
PARP-dependent DNA repair activity in vitro. J Interferon Cytokine Res 2014; 34:
734-740.

Erb HH, Langlechner RV, Moser PL, Handle F, Casneuf T, Verstraeten K et al. IL6
sensitizes prostate cancer to the antiproliferative effect of IFNalpha2
through IRF9. Endocr Relat Cancer 2013; 20: 677-689.

Hobisch A, Ramoner R, Fuchs D, Godoy-Tundidor S, Bartsch G, Klocker H et al.
Prostate cancer cells (LNCaP) generated after long-term interleukin 6 (IL-6)
treatment express IL-6 and acquire an IL-6 partially resistant phenotype. Clin
Cancer Res 2001; 7: 2941-2948.

Sigl R, Ploner C, Shivalingaiah G, Kofler R, Geley S. Development of a multipurpose
GATEWAY-based lentiviral tetracycline-regulated conditional RNAi system (GLTR).
PLoS ONE 2014; 9: e97764.

Kutner RH, Zhang XY, Reiser J. Production, concentration and titration of
pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 2009; 4: 495-505.
Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS et al. Lentivirus-
delivered stable gene silencing by RNAi in primary cells. RNA 2003; 9: 493-501.
Rane JK, Erb HH, Nappo G, Mann VM, Simms MS, Collins AT et al. Inhibition of the
glucocorticoid receptor results in an enhanced miR-99a/100-mediated radiation
response in stem-like cells from human prostate cancers. Oncotarget 2016; 7:
51965-51980.

Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of
cells in vitro. Nat Protoc 2006; 1: 2315-2319.

Puhr M, Hoefer J, Schafer G, Erb HH, Oh SJ, Klocker H et al. Epithelial-to-
mesenchymal transition leads to docetaxel resistance in prostate cancer and is
mediated by reduced expression of miR-200c and miR-205. Am J Pathol 2012;
181: 2188-2201.

Detre S, Saclani Jotti G, Dowsett MA. 'quickscore’ method for immunohisto-
chemical semiquantitation: validation for oestrogen receptor in breast
carcinomas. J Clin Pathol 1995; 48: 876-878.

Vaux DL. Research methods: know when your numbers are significant. Nature
2012; 492: 180-181.

Oncogenesis is an open-access journal published by Nature Publishing
Group. This work is licensed under a Creative Commons Attribution 4.0

International License. The images or other third party material in this article are included
inthe article’s Creative Commons license, unless indicated otherwise in the credit line; if
the material is not included under the Creative Commons license, users will need to
obtain permission from the license holder to reproduce the material. To view a copy of
this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017

Supplementary Information accompanies this paper on the Oncogenesis website (http://www.nature.com/oncsis)

Oncogenesis (2017), 1-12


http://creativecommons.org/licenses/by/4.0/

	The immunosuppressive cytokine interleukin-4 increases the clonogenic potential of prostate stem-like cells by activation of STAT6 signalling
	Introduction
	Results
	IL4R&#x003B1; expression in primary prostate epithelial cells
	IL�-�4 increases the clonogenic potential of primary PCa cells
	IL�-�4 does not influence the migration or invasive potential of primary PCa cells
	IL�-�4 signalling does not affect the sensitivity of primary PCa cells to irradiation or docetaxel

	Figure 1 IL4R&#x003B1; expression in prostate epithelial cells.
	IL�-�4 treatment induces phosphorylation of STAT6 in PCa cells
	Inhibition of phosphoSTAT6 reverses the IL�-�4-mediated increase in clonogenic potential

	Discussion
	Figure 2 IL�-�4 increases clonogenic potential of primary PCa cells.
	Figure 4 IL�-�4 does not influence the recovery potential of primary PCa after irradiation or docetaxel treatment.
	Figure 3 IL�-�4 does not influence the migration or invasion potential of primary PCa cells.
	Table 1 Evaluation of the Human Phospho-Kinase Antibody Array after treatment of primary PCa cells with IL�-�4
	Materials and Methods
	Culture of cell lines and primary prostate cells
	Live cell count
	Irradiation of cells
	STAT6 inhibitor and docetaxel treatment of cells
	Cloning strategy of pGLTR-IL�-�4-PURO and pGLTR-GUS-PURO

	Figure 5 IL�-�4 treatment induces phosphorylation of STAT6 in Pca.
	Lentivirus production and generation of stable cell lines
	[3H] Thymidine incorporation assay and MTT Assay
	Western blot analysis

	Figure 6 Inhibition of phosphoSTAT6 reverses the IL-mediated effects on clonogenic potential.
	Flow cytometry
	Clonogenic and clonogenic recovery assays
	Cell migration and invasion assays
	Quantitative real-time PCR for mRNA
	Proteome profiler human Phospho-Kinase Array
	Tissue microarray and immunohistochemistry
	Statistical analysis

	We thank all the urology surgeons MS Simms, L Coombes, G Cooksey and J Hetherington (Castle Hill Hospital, Cottingham, UK). In addition, we wish to thank Georg Sch&#x000E4;fer for evaluating the TMA. We would also like to thank the patients who kindly pro
	We thank all the urology surgeons MS Simms, L Coombes, G Cooksey and J Hetherington (Castle Hill Hospital, Cottingham, UK). In addition, we wish to thank Georg Sch&#x000E4;fer for evaluating the TMA. We would also like to thank the patients who kindly pro
	ACKNOWLEDGEMENTS
	REFERENCES




